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PREFACE

THIS book has been written mainly for Engineering students, and

covers the necessary ground for University and similar examinations

in Strength of Materials
;
but it is hoped that it will also prove useful

to many practical engineers, to whom a knowledge of the subject is

necessary.

In some sections of the work well-established lines have been

followed, but several special features may be mentioned. In Chap. II.

the different theories of elastic strength are explained, and subsequently

throughout the book the different formulae to which they lead in cases

of compound stress are pointed out. Considerable use has been made of

the method of finding beam deflections from the moment of the area of the

bending-moment diagram, i.e. from the summation tWf^l mv atten-

tion was called to the very simple application of this method to the

solution of problems on built-in and continuous beams developed in

Chap. VII., by my friend Prof. J. H. Smith, D.Sc. Other subjects

treated, which have hitherto received but scant attention in text-books,

include the strength of rotating discs and cylinders, the bending of

curved bars with applications to hooks, rings, and links, the strength

of unstayed flat plates, and the stresses and instability arising from

certain speeds of running machinery. Most of the important research

work bearing on Strength of Materials has been noticed, and numerous

easily accessible references to original papers have been given. Most

of the results involving even simple mathematical demonstrations have

been worked out in detail
; experience shows that careful readers lose

much time through being unable to bridge easily the gaps frequently

left in such work. Many fully worked-out numerical examples have

been given, and the reader is advised to read all of these, and to work

out for himself the examples given at the ends of the chapters, as being

a great help to obtaining a sound and useful knowledge of the subject.

Many readers will have the opportunity of seeing and using practical
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testing appliances, and this portion of the work has been treated some-

what briefly in the last three chapters, ample references to works on

testing and original papers being furnished.

I must acknowledge my great indebtedness to Prof. Karl Pearson's

most valuable work of reference, "The History of the Theory of

Elasticity," and to the treatises on testing by Profs. Unwin, J. B.

Johnson, and A. Martens.

I take this opportunity of thanking numerous friends who have

assisted me by suggestions, reading of MS. or proofs, or checking

examples; particularly Prof. Goodman, M.Sc., Prof. W. Robinson,

M.E., Prof. J. H. Smith, D.Sc. ; Messrs. T. H. Gardner, B.Sc., W.

Inchley, and G. A. Tomlinson, B.Sc.

I also express my thanks to the various makers of machines or

instruments, and others, who have supplied me with blocks or photo-

graphs, and whose names appear in connection with the illustrations.

It is too much to hope that this edition will be quite free from errors,

and any intimation of these, or any other suggestion, will be cordially

appreciated.

ARTHUR MORLEY.

UNIVERSITY COLLEGE, NOTTINGHAM,
September^ 1908.

THIRD EDITION

NUMEROUS minor alterations and corrections have been made, new

references have been given, and Art. 93A and new matter in Art. 162

have been added.

A. M.
fitly, 1912.
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STRENGTH OF MATERIALS

CHAPTER I.

ELASTIC STRESS AND STRAIN.

1. THE subject generally called Strength of Materials includes the

study of the distribution of internal forces, the stability and deformation

of various elements of machines and structures subjected to straining
actions. It is founded partly on the result of experiment and partly on
conclusions drawn therefrom by the application of the principles of

mechanics and mathematics. Except in very simple cases, the demon-
strations are less rigorous than those which form the Mathematical

Theory of Elasticity, an exact science which is unable to furnish solu-

tions for the majority of the practical problems which present themselves

to the engineer in the design of machines and structures. The semi-

empirical nature of the subject makes it desirable that its formulae should,
wherever possible, be tested by experiment, and that in all cases the

limits within which the theories may represent the facts should be

clearly appreciated. In proportioning the parts of machines and struc-

tures, various considerations other than strength and stiffness, such, for

example, as cost, lubrication, and durability, play an important part,
but rationally used, the results obtained in the subject of Strength of

Materials form an important part of the basis of the scientific design of

machines and structures.

2. Stress. The equal and opposite action and reaction which take

place between two bodies, or two parts of the same body, transmitting
forces constitute a stress. If we imagine a body which transmits a

force to be divided into two parts by an ideal surface, and interaction

takes place across this surface, the material there is said to be stressed

or in a state of stress. The constituent forces, and therefore the stress

itself, are distributed over the separating surface either uniformly or in

some other manner. The intensity of the stress at a surface, generally
referred to with less exactness as merely the stress, is estimated by the

force transmitted per unit of area in the case of uniform distribution,
this is also called the unit stress ; if the distribution is not uniform, the

stress intensity at a point in the surface must be looked upon as the

limit of the ratio of units of force to units of area when each is de-

creased indefinitely.
3. Simple Stresses. There are two specially simple states of stress

B
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body.

[CH. I.

More complex stresses may be splitwhich may exist within a

into component parts.

(i) Tensile stress between two parts of a body exists when each

draws the other towards itself. The simplest example of material

subject to tensile stress is that of a tie-bar sustaining a pull. If the pull

on the tie-bar is say P Ibs., and we consider any imaginary plane of

section X perpendicular to the axis of the bar, of area a square inches,

dividing the bar into two parts A and B (Fig. i), the material at the

A<
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tons, the total shear at the section XY is P tons, and the average force

per square inch is

This value q is the mean intensity of shear stress at the section XY.

FIG. 3.

4. Strain. Strain is the alteration of shape or dimensions resulting
from stress.

(i) Tensile strain is the stretch, and often results from a pull which

causes a condition of tensile stress to be set up. It is in the direction

of the tensile stress, and is measured bv the fractional elongation. Thus,
if a length / units is increased to / + S/, the strain is

The strain is obviously equal numerically to the stretch per unit of

length.

(2) Compressive strain is the contraction which is often due to

compressive stress, and is measured by the ratio of the contraction to

the original length. If a length / contracts to / S/, the compressive
strain is

Tensile stress causes a contraction perpendicular to its own direction,
and compressive stress causes an elongation perpendicular to its own
direction.

(3) Distortional or shear strain is the angular displacement pro-
duced by shear stress. If a piece of material be subjected to a pure
shear stress in a certain plane, the change in inclination (estimated in

radians) between the plane and a line originally perpendicular to it, is

the numerical measure of the resulting shear strain (see Art. 10).
5. Elastic Limits. The limits of stress for a given material within

which the resulting strain completely disappears after the removal of

the stress are called the elastic limits. If a stress beyond an elastic

limit is applied, part of the resulting strain remains after the removal
of the stress ; such a residual strain is 'called a permanent set. The
determination of an elastic limit will evidently depend upon the detec-

tion of the smallest possible permanent set, and gives a lower stress

when instruments of great precision are employed than with cruder
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methods. In some materials the time allowed for strain to develop or

to disappear will affect the result obtained.

Elastic strain is that produced by stress within the limits of elasticity ;

but the same term is often applied to the portion of strain which dis-

appears with the removal of stress even when the elastic limits have
been exceeded.

Hookas Law states that within the elastic limits the strain produced
is proportional to the stress producing it. The law refers to all kinds

of stress.

This law is not exactly true for all materials, but is approximately
so for many ;

some small deviations from it will be noticed later.

6. Modulus of Elasticity. Assuming the truth of Hooke's Law,
we may write

intensity of stress oc strain

or stress intensity
= strain x constant

The constant in this equation is called the modulus or coefficient

of elasticity, and will vary with the kind of stress and strain contem-

plated, there being for each kind of stress a different kind of modulus.
Since the strain is measured as a mere number, and has no dimensions
of length, time, or force, the constant is a quantity of the same kind as

a stress intensity, being measured in units of force per unit of area,
such as pounds or tons per square inch. We might define the modulus
of elasticity as the intensity of stress which would cause unit strain,
if the material continued to follow the same law outside the elastic

limits as within them, or as the intensity of stress per unit of strain.

7. Components of Oblique Stresses. When the stress across any
given surface in a material is neither normal nor tangential to that

surface, we may conveniently resolve it into rectangular components,
normal to the surface and tangential to it. The normal stresses are

tensile or compressive according to their directions, and the tangential

components are shear stresses.

/c

D/ B

FIG. 4.

A simple example will illustrate the method of resolution of stress.

If a parallel bar of cross-section a square inches be subjected to a pull
p

of P tons, the intensity of tensile stress / is - in the direction of the

length of the bar, or, in other words, normal to a surface, AB (Fig. 4),

perpendicular to the line of pull.
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Let / and pt
be the component stress intensities, normal and

tangential respectively, to a surface, CD, which makes an angle with

the surface AB. Resolving the whole force P normal to CD, the

component is

Pn = P cos 6

and the area of the surface CD is

a sec

hence ' - Hsrl
=
J cos' ' =f cos *

and resolving along CD, the tangential component of the whole

force is

P, = P sin

pt
=

^
- = - sin cos 6 = p sin cos 0, or ^

sin 20

Evidently pt reaches a maximum value J/ when = 45?, so that all

surfaces, curved or plane, inclined 45 to AB (and therefore also to

the axis of pull) are subjected to maximum shear stress. In testing
materials in tension or compression, it often happens that fracture takes

place by shearing at surfaces inclined at angles other than 90 to the

axis of pull.

EXAMPLE. The material of a tie-bar has a uniform tensile stress

of 5 tons per square inch. What is the intensity of shear stress on a

plane the normal of which is inclined 40 to the axis of the bar?
What is the intensity of normal stress on this plane, and what is the

resultant intensity of stress ?

Considering a portion of the bar, the section of which is i square
inch normal to the axis, the pull is 5 tons. The area on which this

load is spread on a plane inclined 40 to the perpendicular cross-

section is

(i X sec 40) square inch

and the amount of force resolved parallel to this oblique surface i

(5 X sin 40) tons

hence the intensity of shearing stress is

5 sin 40 -i- sec 40 =
5 sin 40 cos 40 =

5 x 0-6428 X 07660
= 2*462 tons per^square inch

The force normal to this oblique surface is

5 cos 40

hence the intensity of normal stress is

5 cos 40 4- sec 40 =
5 cos2

40 =
5 X 0*766 x 0*766

= 2*933 tons Per square inch
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The resultant stress is in the direction of the axis of the bar, and its

intensity is

5 -f- sec 40 =
5 cos 40 = 3-83 tons per square inch

8. Complementary Shear Stresses. State of Simple Shear. A
shear stress in a given direction cannot exist without a balancing shear

stress of equal intensity in a direction at right angles to it.

If we consider a small rectangular block, ABCD, of material

(Fig. 5) under shear stress of intensity q, we cannot have equilibrium with

merely equal and opposite tangential forces on the parallel pair of faces

AB and CD : these forces constitute a couple, and alone exert a turning

B
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The area of BD isBDx/=V2.j./
Therefore ifpn is the intensity of normal stress on the face BD,

hence

>f~2 .s .1= -^ .q .s .1
V 2

pn = q

and/n is evidently compressive.

Similarly the intensity of tensile stress on
a plane AC is evidently equal numerically
to q.

Further by resolving along BD or AC
the intensity of the tangential stress on such

planes is evidently zero. Hence a state of

simple shear produces pure tensile and com-

pressive stresses across planes inclined 45

-*- D

FIG. 7.

to those of pure shear, and the intensities of these direct stresses are

each equal to the intensities of the pure shear stress.

9. Three Important Elastic Constants. Three moduli of elasticity

(Art. 6) corresponding to three simple states of stress are important
Young's Modulus, also called the Stretch or Direct Modulus, is the

Modulus of Elasticity for pure tension with no other stress acting ;
it

has in most materials practically the same value for compression ;
it is

always denoted by the letter E. This direct modulus of elasticity is

equal to the tensile (or compressive) stress per unit of linear strain

(Art. 6). If a tensile stress/ tons per square inch cause a tensile strain

e (Art. 4), intensity of tensile stress = tensile strain x E
or

hence _p _ tensile stress intensity~
e tensile strain

and is expressed in the same units (tons per square inch here) as the

stress /.
The value of E for steel or wrought iron is about 13,000 tons per

square inch.

EXAMPLE i. Find the elongation in a steel tie-bar 10 feet long
and i '5 inches diameter, due to a pull of 12 tons.

Area of section = 1*5 X 1*5 X 07854 = 1767 square in.

Stress intensity = -r~^~
= 679 tons per square in.

Strain = *35L
13,000

Elongation = - x 10 x 12 = 0*0627 in.

EXAMPLE 2. A long copper rod one inch diameter fits loosely in a

steel tube \ inch thick, to which it is rigidly attached at its ends. The

compound bar so formed is then pulled with a force of 10 tons. Find
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the stress intensity in each metal (E = 13,000 tons per square inch for

steel, and 6000 for copper).

Let/! be the stress intensity in the steel and/2 that in the copper.
The strain being the same in each,

A = A
13,000 6000

A = A
The area of copper section is 0-7854 square inch, and the steel

section is 0*4417 square inch.

The total load

10 tons = 0-441 7 /! -f 0-7854/2
hence 10 =/2 (0*4417 x \- + 0*7854)

& =
r74^4

= 5
'

74 tons per square in '

and p\~ I2 '43 tons per square in.

10. Modulus of Rigidity, Modulus of Transverse Elasticity, or

Shearing Modulus, is the modulus expressing the relation between the

intensity of shear stress and the amount of shear strain. It is denoted

by. the letter N, also sometimes by C or G. If the shearing strain

(Art. 4) is
<f> (radians) due to a shear stress of intensity q tons per

square inch, then

shear stress = shear strain X N
or q = (f) X N

XT . . q shear stressN (tons per square in.) =-7-= -\'
< shear strain

The value of N for steel is about f of the value of E.

Strains in Simple Shear. A square face, ABCD (Fig. 8), of a piece
of material under simple shear stress, as in Art 8, will suffer a strain

B B" C C
1

FIG. 8. FIG. 9.

such as is indicated, by taking the new shape AB'C'D'. For expressing
the strain it is slightly more convenient to consider the side AD, say,

fixed, and the new shape accordingly, as in Fig. 9, AB"C"D. The
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strains being extremely small quantities, the straight line BB" practically
coincides with an arc struck with centre A, and a line CE drawn per-
pendicular to AC" is substantially the same as an arc centred at A.
The shear strain (Art. 4) </>

radians is (Fig. 9)

BB" CC" a

^AB~
or

"CD*
a 1S ec

l
ual to

jj"
as above.

The elongation of the diagonal AC is equal to EC", and the linear

strain is

i

EC"_CC"x71_ CC"_ q
AC
== >=

That is, the strain in this direction is numerically half the amount of the

shear strain. Similarly, the strain along the direction BD is J<, but

dimensions in this direction are shortened. These are the strains

corresponding to the direct stresses of intensities equal to q produced
across diagonal planes, as in Art. 8, by the shear stresses. Note that

the strain along AC is not simply ^ because in addition to the tensile

stress / there is a compressive stress of equal intensity at right angles
to it.

11. Bulk Modulus is that corresponding to the volumetric strain

resulting from three mutually perpendicular and equal direct stresses,

such as the slight reduction in bulk a body suffers, for example,
when immersed in a liquid under pressure : this modulus is generally
denoted by the letter K.

If the intensities of the equal normal stresses are each /,

p change in volume= volumetric strain = r-: ;
-

:K original volume

The volumetric strain is three times the accompanying linear strain,
for if we consider a cube of side a strained so that each side becomes

aSa,
where &a is very small, the linear strain is

a

The volumetric change is (a 8a)
3

a?, or

3a*8a

to the first order of small quantities. The strain then is

which is three times the linear strain -
, or, in other words, the linear

a
strain is one-third of the volumetric strain.
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12. Poisson's Ratio. Direct stress produces a strain in its own
direction and an opposite kind of strain in every direction perpendicular
to its own. Thus a tie-bar under tensile stress extends longitudinally
and contracts laterally. Within the elastic limits the ratio

lateral strain

longitudinal strain

generally denoted by --, is a constant for a given material. The value

of m is usually from 3 to 4, the ratio being about \ for many metals.

This ratio, which was formerly suggested as being for all materials \, is

known as Poissorts Ratio.

13. Relations between the Elastic Constants. Some relations

between the above quantities E, N, K, and m may be simply deduced.

The strain of the diagonal of a square block of material in simple

shear of intensity q or/ was (Art. 10) found to be
^7,

which by Art. 8

may be replaced by ^, where / is the intensity of the equal and

opposite direct stresses across diagonal planes.
The resulting direct stress / (Art. 8) in the direction of a diagonal

P
would, if acting alone, cause a strain ^ in the direction of that diagonal,

and the opposite kind of direct stress in the direction of the diagonal

perpendicular to the first would, acting alone, cause a similar kind

of strain to the above one, amounting to -
^ in the direction of

the first-mentioned diagonal.

Hence, the total strain of the diagonal is

from which =

or E = 2Ni+ ..... (i)

-0

Note that if m = 4, ^ =f.

Again, consider a cube, of material under a direct normal stress /,

say compressive, in each of the three perpendicular directions parallel

to its edges (Fig. 10). Each edge is shortened by the action of the

forces parallel to that edge, and the amount of such strain is
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and the volumetric strain is there-

fore

3 !( -5) (A* .)

which is also by definition

Again each edge is lengthened by the action of the two pairs of

forces perpendicular to that edge
and the amount of such strain is

2 X -

-^m j

The total linear strain of each

edge is then

P

,

FIG. 10.

where K is the bulk modulus.

Therefore

P
K

.-**
K 3E

or

?.

K
1

K
~
E

(,
*

V ~m

Hence from (i) and (2)

Eliminating E, this gives

m m

also, eliminating ;//,

i _ 3K - 2N
m
~
6K + 2N

_ 9KN

(3)

(4)

Alternative method. We may also obtain these results by another

slightly artificial method.

Imagine a cube ABC . . . H (Fig. u), of, say, unit side cut from the

interior of a piece of material having a uniform tension of intensity /
in a direction parallel to AD. Now imagine the forces / on the faces

ABFE and DHGC each split up into three equal parts A and further.

9

equal and opposite (balanced) normal forces -
acting on each lateral face

of the cube : these forces being neutralised will produce no effect. The
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state of the forces is represented in Fig. 12. We may regard the cube

as simultaneously under the three sets of forces shown in Fig. 13 (a),

FIG. ii. FIG. 12.

(), and (<:),
all of these together corresponding exactly to the forces

shown in Fig. 12.

(a) represents such a state of stress as that mentioned in Art. n.

(b) re)

FIG. 13.

(b} and (f) represent pure shears on planes inclined 45 to the

direction AD, as in Arts. 8 and 10.

Corresponding to (a) all edges suffer tensile strain

*f*
Corresponding to (b), all edges parallel to the original tensile stress

have a tensile strain

t. 10)

and the transverse edges AE, BF, CG, and DH are shortened by a

strain
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Similarly, due to the state (c), all longitudinal edges are lengthened,

taking a linear strain J .
-

-4- N, and the remaining transverse edges AB,
5

EF, DC, and HG, get the compressive strain \ .
-

-4- N.

Finally, then, the longitudinal strain throughout is an elongation
and its amount is

. P_ P JL P
9K

"*" 6N ^ 6N 9K
""

3N

and the transverse compressive strain is

. .L
6N K

TT

_L JL
i transverse strain _ 6N gK. ^ ^K 2N
m

"~

longitudinal strain
"~

i i

~
6K -f N

corresponding to (3) above.

Also the longitudinal strain is

Therefore ?^ = ^ -\ r?
KJ Qlv 3W

whence E = ^: ?7

as in (4) above.

EXAMPLE. For a given material Young's modulus is 6000 tons

per square inch, and the modulus of rigidity is 2300 tons per square
inch. Find the bulk modulus and the lateral contraction of a round
bar one inch in diameter and 10 feet long when stretched o-i inch.

From (i), Art. 13,

therefore m =
From (2), Art. 13,

K = -2=~ S - = p= Si" tons per sq. in.

Lateral strain = ^ X
12 x 10

Lateral contract

tion

'

|= 27?oo
= 0-000254 in.
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14. Compound Stresses. When a body is under the action of

several forces which cause wholly normal or wholly tangential stresses

across different planes in known directions, we may find the state of stress

across other planes by adding algebraically the various tangential com-

ponents, and the components normal to such planes, and combining the

sums according to the rules of statics.

Principal Planes. Planes through a point within a material such

that the resultant stress across them is wholly a normal stress are called

Principal Planes, and the normal stresses across them are called the

Principal Stresses at that point : the directions of the principal stresses

are called the axes of stress.

However complex the state of stress at a point within a body, there

always exist three mutually perpendicular principal planes, and stresses

at that point may be resolved wholly into the three corresponding
normal stresses : further the stress intensity across one of these

principal planes is, at the point, greater than in any other direction, and
another of the principal stresses is less than the stress in any other

direction.

In many practical cases there is a plane perpendicular to which

there is practically no stress, or in other words, one of the principal
stresses is zero or negligibly small

;
in these cases resolution and com-

pounding of stresses becomes a two-dimensional problem as in co-

planar statics. We now proceed to investigate a few simple cases.

15. Two Perpendicular Normal Stresses. If there be known normal

stresses across two mutually perpendicular planes and no stress across

the plane perpendicular to both of them, it is required to find the stress

across any oblique interface perpendicular to that plane across which

there is no stress. Let/^ and/y be the given stress intensities normal

PE IA G

D X--

B F

FIG. 14.

to the mutually perpendicular planes, say in directions OX and
OY. If px and py vary along the directions OX and OY, we might
consider the equilibrium of an indefinitely small element of material.

If not, however, we may take a piece such as EGFH (Fig. 14), of unit

thickness perpendicular to the figure. Our problem is to find the magni-
tude and direction of the resultant stress on a plane face EF, inclined
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to all planes which are perpendicular to the axis OX, or the normal

ON of which is inclined to OX, (j
-

J
to OY and in the plane of the

figure, perpendicular to which the stress is ml. The stresses px and pa

are here shown alike, but for unlike stresses the problem is not seriously
altered.

The whole normal force on the face FG is

Px=A X FG

the area being FG X unity.
The wholly normal force on EG is

P,=AXEG
LetA and A be the normal and tangential stress intensities respec-

tively on the face EF reckoned positive in the directions ON and OF.
Then considering the equilibrium of the wedge EGF, resolving forces in

the direction ON,

A X EF = Px cos -f- P, cos
(^

- 0\

= A-FG.cos<9 -fA. EG. sin

dividing by EF
-* n * * * * \ )

Resolving in direction OF

A X EF = Px sin -
P, cos

=A FG . sin 6 -A EG cos

dividing by EF

If = 45, the shear stress intensity

P* ~
2

and is a maximum.
Across this same plane the direct (tensile) stress intensity is

A =A cos2

45 + A sin
2

45 = Pj~i

Combining (i) and (2), if p is the intensity of the resultant stress,

since the two forces Px and P, are equal to the rectangular components
of the force / x EF,

/.EF= VP?TP7

= EF VA2 cos2 + A* sin2

p = V A" cos2
$ + A" sin2 * = ^/TTA2

. . (3)
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and since the component forces in directions OX and OY on unit
area of the plane EF are /, cos 6 and pv sin 0, / evidently makes
an angle a with OX such that

A, sin pvtana=A^=A tan * *
'""": (4)

And / makes an angle /? with the plane EF, across which it acts
such that

tan = or (-A)co*sin,?
= cot * (5)

where
cf>

is the angle which the resultant stress makes with the normal
to the plane EF.

EXAMPLE. Find the plane across which the resultant stress is most
inclined to the normal.

Let < be the maximum inclination to the normal. Then

pt _ (A-A)cos0sin0
tan * =A~Acos2

0+Asin*0 -(*)

When < is a maximum, tan ^ is a maximum, and

Therefore, differentiating and dividing out common factors,

(px cos2
-\-py sin

2
0) cos 20 + (px -/) sin cos x sin 20 = o

/ cos 20 -}-pt
sin 20 = o

P fr
tan 20 = = cot $ = tan I

- +
Pt \2

7T .

Substituting tl:is value of in equation (#) we get

.__(^- cos
-

A- T ~ sin-

Equation (<r) gives the maximum inclination to the normal, and

equation (b) gives the inclination of the normal to the axis of the direct

stress /,.



ART. 1 6] ELASTIC STRESS AND STRAIN.

Unlike Stresses. If the two given stresses px and py are unlike, say

px tensile and/y compressive, we have the slight modifications

Pn =Px cos2 -py sin
2

(tensile)

Pt =(A +A) sin cos = J(A +/,) sin 20

These results might be obtained just as before, but using Fig. 15.

The maximum shear is still when 6 = 45, and its value is

A+/
2

A G

FIG. 15.

In the special case of unlike stresses, where/, and pv are numerically

equal, the values for 6 = 45 are

These correspond exactly with the case of pure shear in Art. 8.

16. Ellipse of Stress. In the last article we supposed two principal
stresses px and p9 given, and the third to be zero, i.e. no stress per-

pendicular to Figs. 14 and 15. In this case using the same notation

and like stresses, the direction and magnitude of the resultant stress on

any plane can easily be found graphically by the following means.

Describe, with O as centre (Fig. 1 6), two circles, CQD and ARE,
their radii being proportional to px and pv respectively. Draw OQ
normal to the interface EF (Art. 15) to meet the larger circle in Q
and the smaller in R. Draw QN perpendicular to OX and RP per-

pendicular to OY to meet QN in P. Then OP represents the resultant

stress/ both in magnitude of intensity and in direction. The locus ofP
for various values of 0, i.e. for different oblique interfaces, is evidently an

ellipse, for the co-ordinate ON along OX is

OQ cos 6 or px cos
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and PN, the co-ordinate along OY, is

OR sin or py sin

FIG. 16. Ellipse of stress.

The axes of the ellipse are the axes of stress (Art. 14).

Also that
pv sin 6 pv

tan a =Y z
= T tan

px cos i>x

is obvious from the figure.

In the second case where, say, / is negative andpx is positive, OP'

FIG. 17.

(Fig. 17) will represent the stress in magnitude and direction : here tan a

is negative and ft is obviously less than ft in Fig. 16.
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In the particular case where px and py are equal in magnitude, the

ellipse is a circle (e.g. see Art. 121).
EXAMPLE. A piece of material is subjected to tensile stresses of

6 tons per square inch, and 3 tons per square inch, at right angles to

each other. Find fully the stresses on a plane, the normal of which
makes an angle of 30 with the 6-ton stress.

The intensity of normal stress on such a plane is

pn = 6 cos2
30 + 3 sin

2

30
= 6x| + 3X| = 4 + | = 5j tons per square inch

And the intensity of tangential stress is

pt
= 6 sin 30 cos 30 3 sin 30 cos 30

-~ = - - = 1*299 tons per square inch

The resultant stress then has an intensity,

= 3 X i X

= 5
.

4I tons per sq . in<

and makes an angle a with the direction of the 6-ton stress, such that

tan a = 3 sin 3 = 1 tan 30 = 0*288
6 cos 30

which is the tangent of 16 4'.

This is the angle which the resultant stress makes with the 6-ton

stress. It makes, with the normal to the plane across which it acts, an

angle

30
- 16 4' = 13 56'

To check this, the cotangent^ of the angle the resultant stress makes
with the normal, or the tangent of that it makes with the plane, is

At 5*25f = . = 4*O7;
pt 1-299

which is tangent of 76 4', and therefore the cotangent of 13 56'.

17. Principal Stresses. When bodies are subjected to known
stresses in certain directions, and these are not all wholly normal stresses,

the stresses on various planes may be found by the methods of the two

previous articles provided we first find the principal planes and principal
stresses (see Art. 14). It is also often important in itself, in such cases,
to find the principal stresses, as one of these is, as previously stated, the

greatest stress to which the material is subjected. We proceed to find

principal stresses and planes in a few simple, two-dimensional cases

where the stress perpendicular to the figure is nil.

As a very simple example, we have found in Art. 8 that the two
shear stresses of equal intensity, on two mutually perpendicular planes,
with no stress on planes perpendicular to the other two, give principal
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stresses of intensity equal to that of the shear stresses, on planes inclined

- to the two perpendicular planes to which the pure shear stresses are
4

tangential.
As a second example, let there be, on mutually perpendicular planes,

normal stresses, one of intensity /j and the other of intensity /2 ,
in

addition to the two equal shear stresses of intensity q^ as in Fig. 18,
which represents a rectangular block of the material unit thickness per-

pendicular to the plane of the figure, across all planes parallel to which
there is no stress

;
we may imagine the block so small that the variation

of stress intensity over any plane section is negligible. The stresses plt

pz, and q may be looked upon as independent known stresses arising
from several different kinds of external straining actions, or as rectangular

,t t t t"t t 1 1

Pr

\\ \\
FIG. 18.

components, normal and tangential (Art. 7), into which oblique stresses,
on the faces perpendicular to the figure, have been resolved.

It is required to know the direction of the principal planes and the

intensity of the (normal) principal stresses upon them. Fig. 18 repre-
sents the given normal stresses as tensions : the work is practically the

same in the case of compressive stresses, or if one stress be compressive
and the other tensile.

Let 6 be the inclination of one principal plane to the face BC.
Then an interface, AB, is a principal plane, and the stress p upon it is

wholly normal to AB. Consider the equilibrium of a wedge, ABC
(Figs. 18 and 19), cut off by such a plane.

Resolving forces parallel to AC

/ . AB x cos 6 =/j . BC + q . AC

=/j . AB cos e -f q . AB sin

hence (/ pi) cos = q sin

p- p^ = q tan . . . W '. . (i)
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Resolving parallel to BC

/ . AB x sin =A . AC + q . BC
=A . AB sin B 4- ?AB cos

(P A) sin = ? cos

(2)

Subtracting equation (i) from equation (2)

A -A = ?(cot
- tan 0)

=-^
tan 26 = 7-- (3)

From which two values of differing by a right angle may be found,
i..e the inclinations to BC of two principal planes which are mutually
perpendicular.

Further, multiplying (i) by (2)

(/- A) (/-/)=**
+A) - (<f-AA)= o

4(A

(4)

(5)

A)
2

These two values of/ are the values of the (normal) stress intensities

on the two principal planes. The larger
value (where the upper sign is taken) will

be the stress intensity on such a plane as

AB (Figs. 1 8 and 19), and will be of the

same sign as pi andA > tne smaller value,

say /', will be that on such a plane as

ED (Figs. 1 8 and 20) perpendicular to

AB, and will be of opposite sign to pl and

A if f is greater thanAA*
The planes on which there are maxi-

mum shear stresses are inclined 45 to the principal planes found, and
the maximum intensity of shear stress is (Art. 15)

FIG. 20.

The modifications necessary in (3) and (4), if/x orA is f negative
sign, are obvious. If, say,A is zero

>
tne results from substituting this

value in (3) and (4) are simple. This special case is of sufficient

importance to be worth setting out briefly by itself in the next article

instead of deducing from the more general case.

18. Principal Planes and Stresses when complementary shear
stresses are accompanied by a normal stress on the plane of one shear
stress. Fig. 21 shows the forces on a rectangular block, GHCF, of

unit thickness perpendicular to the figure, and of indefinitely small

dimensions parallel to the figure, unless the stresses are uniform. Let
be the inclination of a principal plane AB to the plane BC, which
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has normal stress of intensityp and a shear stress of intensity q acting
on it, and let p be the intensity of the wholly normal stress on AB.

FIG. 21.

The face FC has only the shear stress of intensity q acting tangential

to it.

Consider the equilibrium of the wedge ABC ; resolving the forces

parallel to AC (Figs. 21 and 22)

/ . AB X cos 6 =A . BC + q . AC
= /! AB cos + q . AB sin

(P A) cos = ^ sin

Resolving parallel to BC

p . AB . sin B = q . BC = q . AB cos 6

tan B = -T

Substituting for tan in (i)

- (/-A) =
^

(3)

and the values of may be found by substituting these values of /
in (2). The two values differ by a right angle, the principal planes

being at right angles. AB (Fig. 22) shows a principal plane of greatest

stress corresponding to

/ = iA + J\p? + f
and ED (Fig. 23) shows the other prin-

cipal plane on which the normal stress

is

of opposite sign to/lt

The planes of greatest shear stressFIG. 23.
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are (Art. 15) those inclined 45 to the principal planes, and the intensity
of shear stress upon them is

..... (4)

If from a point in a material under compound stress we trace out

(in, say, a plane across which there is no stress, as in Figs. 18 to 23)
a locus to which the axis of principal stress, for points in the locus, is

always tangential, a curve of principal stress is obtained : the curve cuts

another series of planes of principal stress for points in itself at right

angles (see Fig. 105). Such a line of stress is usually curved, since the

normal and tangential stresses on parallel planes usually vary differently
from point to point in any fixed direction. In other words, from any
point to a neighbouring one the principal stresses generally vary in

intensity and direction.

EXAMPLE. At a point in material under stress the intensity of

the resultant stress on a certain plane is 4 tons per square inch (tensile)
inclined 30 to the normal of that plane. The stress on a plane at

right angles to this has a normal tensile component of intensity 2\ tons

per square inch. Find fully (i) the resultant stress on the second plane,

(2) the principal planes and stresses.

(1) On the first plane the tangential stress is

q = 4 sin 30 = 2 tons per square inch

Hence on the second plane the tangential stress is 2 tons per
square inch (Art. 8). And the resultant stress is

p = V2*5
2
-f 2

a = 4^41 = 3*2 tons per square inch

(2) The intensity of stress normal to the first plane is

4 cos 30 = 3*464 tons per square inch

Hence the principal stresses are (Art. 17 (5))

= 2 982 Vo-23 -1-4
= 2*982 + 2 eo6
= 5-042 tons per square inch tension and 0-922 tons

per square inch tension

If 6 be the angle made by a principal plane with the first-mentioned

plane, by Art 17 (3),

tan 2$ = 2
- = 7 = 4.'i4o

3-464 - 2-5 0-964
26 = 76 27'
= 38 13-5'

^The principal planes and stresses are then one plane inclined

38 I 3'5' to the first given plane, and having a tensile stress 5*042 tons

per square inch across it, and a second at right angles to the other
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or inclined 51 46*5' to the first given plane, and having a tensile stress

0*922 tons per square inch across it. The planes are shown in Fig. 24.

r

34-6

<SI-47

346

T2-5

FIG. 24.

19. Principal Strains. In a bar of material within limits of perfect

elasticity a (say tensile) stress intensity/! alone will produce a strain

<?!, in its own direction such that

A

where E is Young's modulus of elasticity or the stretch modulus,

provided there is freedom of lateral contraction. The contraction

in all directions at right angles to the axis of the stress p will be

represented by a strain

A
mE

where is Poisson's ratio.

In an isotropic material, i.e. one having the same elastic properties
in all directions, the effect of a stress /2 acting alone at right angles to the

direction ofpi would be to produce a strain in its own direction, <?2>
such

that

* A
* = E

and at right angles to this, including the direction of the strain
^,

a

contraction strain

Similarly a stress /3 ,
the direction of which is perpendicular to both

the previously mentioned stresses, will produce in addition to its

longitudinal strain a contraction strain
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in all directions perpendicular to its direction, including the direction

of the stresspr
If we have at a point in isotropic material three principal stresses

of intensities /Xl p^ and p3 , each will independently produce the same
strains which it would cause if acting alone. Taking all the stresses

of the same sign the total strain produced in the direction of the stress

/x will then be

=A A+A

In the direction ofA tne strain

and in direction ofA tne strain

A A +A

If any one of the above stresses is of opposite kind, i.e. compressive
in this case, the strains will be found by changing the sign of that stress

in each of the above equations.
20. Ellipsoid of Strain. Using the symbols of the last article, at

a point where the principal stresses are p^ p.2) and /s, the strains in

directions other than these may be represented in the following manner.

Imagine a sphere centred at the point, and then each of three

mutually perpendicular diameters in the directions of the three principal

stresses, strained in the manner indicated by the equations (i), (2), and

(3) (Art. 19); further, that every line parallel to the direction of/x

receives the strain elt every line parallel to /2 is strained by an amount
j, and all lines parallel to/3 are strained by an amount *,. The sphere
will now have become an ellipsoid, and every radius vector drawn from
the centre terminated by the surface of the ellipsoid will represent the

length of the corresponding radius in the sphere.
21. Modified Elastic Constants. Young's modulus was denned

(Art. 9) by the relation

where el is the strain produced by a tensile stress of intensity p^
no other stress acting with it. The action of other independent prin-

cipal stresses would alter the strain produced, and so the constant

denned by the relation

modulus =
f\

would not be the ordinary stretch modulus, but a modification of it.

Varying circumstances would give different values of the modulus.
EXAMPLE i. If a bar be stretched in such a manner that all lateral

strain is prevented, what is the value of the modulus ?
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Under the given conditions, the* equations of Art. 19 become

ei
~
E

"
mE

?2
= O = ^r

Pi A+A
mE

A A+A
E #*E

(3) - =4-^
Evidently /2

=A
and from (a)

=*^

and from (i )
=

(A
-
^,)

= ^ (i
-

jj-5- jj

l
~
E

ft
'**

(
m -

the modulus being here modified to ,

m
_.\7^.t T

\
times that for

simple stretching with free lateral contraction. If m = 4 the modified

modulus will be i'2E, or in other words, the force required to produce
a given longitudinal strain, when lateral strain is prevented, is 20 per
cent, greater than when the material has free lateral movement.

EXAMPLE 2. The intensities of the three principal stresses in a

boiler-plate are at a certain point 4 tons per square inch tensile in one

direction, 3 tons per square inch tensile in a second, and zero in a

third. Find what stress acting alone would produce the same strain

in the direction of the 4-ton stress, given the ratio of Young's modulus
to the modulus of rigidity is ~.

By Art. 13 (i)

- = ^--1m
~
2N

Hence, in the direction of the 4-ton stress,

Strain =g 4K
= ^ X E

If/ is the stress intensity to produce this strain when acting alone

P _ i^
*

Jl* f^

or, / = ~ = 35 tons per square inch
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EXAMPLES I.

1. A round tie-bar of mild steel, 18 feet long and \\ inch diameter,

lengthens ^ inch under a pull of 7 tons. Find the intensity of tensile stress

in the bar, the value of the stretch modulus, and the greatest intensity of

shear stress on any oblique section.

2. A rod of steel is subjected to a tension of 3 tons per square inch

of cross-section. The shear stress across a plane oblique to the axis is I ton

per square inch. What is the inclination of the normal of this plane to the

axis ? What is the intensity of the normal stress across the plane, and what
is the intensity of the resultant stress across it ? Of the two possible solu-

tions, take the plane with normal least inclined to the axis of the rod.

3. On a plane oblique to the axis of the bar in question I, the intensity
of shear stress is 1*5 ton per square inch. What is the intensity of normal
stress across this plane ? Also what is the intensity of resultant stress across

it ? Take the plane most inclined to the axis.

4. A hollow cylindrical cast-iron column is 10 inches external and 8 inches

internal diameter and 10 feet long. How much will it shorten under a load
of 60 tons ? Take E as 8000 tons per square inch.

5. The stretch modulus of elasticity for a specimen of steel is found
to be 28,500,000 Ibs. per square inch, and the transverse modulus is

11,000,000 Ibs. per square inch. What is the modulus of elasticity of

bulk for this material, and how many times greater is the longitudinal strain

caused by a pull than the accompanying lateral strain ?

6. The tensile (principal) stresses at a point within a boiler-plate across
the three principal planes are o, 2, and 4 tons per square inch. Find the

component normal and tangential stress intensities, and the intensity and
direction of the resultant stress, at this point, across a plane perpendicular
to the first principal plane, and inclined 30 to the plane having a 4-ton

principal stress.

7. With the same data as question 6, find the inclination of the normal,
to the axis of the 4-ton stress, of a plane on which the resultant stress is

inclined 15 to the normal. What is the intensity of this resultant stress ?

8. At a point in strained material the principal stresses are o, 5 tons per
square inch tensile, and 3 tons per square inch compressive. Find the
resultant stress in intensity and direction on a plane inclined 60 to the axis

of the 5-ton stress, and perpendicular to the plane which has no stress.

What is the maximum intensity of shear stress in the material ?

9. If a material is so strained that at a certain point the intensities

of normal stress across two planes at right angles are 5 tons and 3 tons per
square inch, both tensile, and if the shear stress across these planes is 4 tons

per square inch, find the maximum direct stress and the plane to which it is

normal.
i a. Solve question 9 if the stress of 3 tons per square inch is com-

pressive.
il At a point in a cross-section of a girder there is a tensile stress of

4 tons per square inch normal to the cross-section ; there is also a shear
stress of 2 tons per square inch on that section. Find the principal planes
and stresses.

12. In a shaft there is at a certain point a shear stress of 3 tons per
square inch in the plane of a cross-section, and a tensile stress of 2 tons per
square inch normal to this plane. Find the greatest intensities of direct

stress and of shear stress.

13. In a boiler-plate the tensile stress in the direction of the axis of the
shell is 2\ tons per square inch, and perpendicular to a plane through the
axis the tensile stress is 5 tons per square inch. Find what intensity of
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tensile stress acting alone would produce the same maximum tensile strain

if Poisson's ratio is \.

14. A cylindrical piece of metal undergoes compression in the direction

of its axis. A well-fitted metal casing, extending almost the whole length,
reduces the lateral expansion by half the amount it would otherwise be.

Find in terms of " m " the ratio of the axial strain to that in a cylinder quite

free to expand in diameter, t Poisson's ratio -
-.j

15. Find the ratio between Young's modulus for compression and the

modified modulus when lateral expansion in one direction is entirely pre-

vented. Take Poisson's ratio as _ .

m
1 6. If within the elastic limit a bar of steel stretches y^^ of its length

under simple tension, find the proportional change in volume, Poisson's

ratio being .

17. Three long parallel wires, equal in length and in the same vertical

plane, jointly support a load of 3000 Ibs. The middle wire is steel, and
the two outer ones are brass, and each is } square inch in section. After

the wires have been so adjusted as to each carry J of the load a further load

of 7000 Ibs. is added. Find the stress in each wire, and the fraction of the

whole load carried by the steel wire. E for steel 30 x io6 Ibs. per square

inch, and for brass 12 x io6 Ibs. per square inch.



CHAPTER II.

MECHANICAL PROPERTIES OF METALS.

22. Elasticity. A material is said to be perfectly elastic if the whole
of the strain produced by a stress disappears when the stress is removed.
Within certain limits (Art. 5) many materials exhibit practically perfect

elasticity.

Plasticity. A material may be said to be perfectly plastic when no
strain disappears when it is relieved from stress.

In a plastic state, a solid shows the phenomenon of " flow
"
under

unequal stresses in different directions, much in the same way as a

liquid. This property of "
flowing

"
is utilized in the "

squirting
"

of
lead pipe, the drawing of wire, the stamping of coins, forging, etc.

Ductility is that property of a material which allows of its being
drawn out by tension to a smaller section, as for example when a wire

is made by drawing out metal through a hole. During ductile extension,
a material generally shows a certain degree of elasticity, together with

a considerable amount of plasticity. Brittlencss is lack of ductility.
When a material can be beaten or rolled into plates, it is said to be

malleable
; malleability is a very similar property to ductility.

23. Tensile Strain of Ductile Metals. If a ductile metal be

subjected to a gradually increasing tension, it is found that the resulting

strains, both longitudinal and lateral, increase at first proportionally to

the stress. When the elastic limit is reached, the tensile strain begins
to increase more quickly, and continues to grow at an increasing rate

as the load is augmented. At a stress a little greater than the elastic

limit some metals, notably soft irons and steels, show a marked break-

down, the elongation becoming many times greater than previously
with little or no increase of stress. The stress at which this sudden
stretch occurs is called the "

yield point
"
of the material.

Fig. 25 is a "stress-strain" curve for a round steel bar 10 inches

long and i inch diameter, of which the ordinates represent the stress

intensities and the abscissae the corresponding strains. The limit of

elasticity occurs about A, the line OA being straight. The point ,B
marks the "yield point," AB being slightly curved. Afcer the yield-

point stress is reached, the ductile extensions take place, the strains

increasing at an accelerating rate with greater stresses as indicated by
the portion of the curve between C and D. Strains produced at loads

above the yield point do not develop in the same way as those below
the elastic limit. The greater part of the strain occurs very quickly,
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but this is followed without any further loading by a small additional

extension which increases with time but at a diminishing rate. The

phenomenon of the slow growth
of a strain under a steady ten-

sile stress has been called
"
creeping

"
by Prof. Ewing.

On account of the part which
takes time to develop, the total

amount of strain produced by
a given load and the shape of

the stress-strain curve will be

slightly modified by the rate of

A loading. At D, just before the

greatest load is reached, the

material is almost perfectly

plastic, the tensile strain in-

creasing greatly for very slight
increase of load. It should

be noted that in this diagram
both stress intensity and strain

are reckoned on the original
dimensions of the material.

During the ductile elon-

~Z 7
~

: gation, the area of cross-section
Tensile* Str*<x,i<n, . . ..

decreases in practically the
FlG - 25- same proportion that the length

increases, or in other words, the volume of the material remains prac-

tically unchanged. The reduction in area of section is generally fairly

uniform along the bar.

After the maximum load is reached, a sudden local stretching takes

place, extending over a short length of the bar and forming a "
waist."

The local reduction in area is such that the load necessary to break the

bar at the waist is considerably less than the maximum load on the bar

before the local extension takes place. Nevertheless the breaking load

divided by the reduced area of section shows that the "
actual stress

intensity
"

is greater than at any previous load. If the load be divided

by the original area of cross-section, the result is the " nominal intensity
of stress," which is less, in such a ductile material as soft steel, at the

breaking load than at the maximum load sustained at the point D on

Fig. 25. Fig. 31 shows the stress-strain curves for samples of other

materials in tension; each curve refers to specimens i inch round

diameter, and 8 inches long. The elastic portions of the curves are .

drawn separately, with the strain scale 250 times as great as that for

the more plastic strains.

24. Elastic Limit and Yield Point. The elastic limit (Art. 5) in

tension is the greatest stress after which no permanent elongation
remains when all stress is removed. In nearly all metals, and par-

ticularly in soft and ductile ones, instruments of great precision (see
Art. 174) will reveal slight permanent extensions resulting from very
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low stresses, and particularly in material which has never before been sub-

jected to such tensile stress. In many metals, however, notably wrought
iron and steel, if we neglect permanent extensions less than, say,

i 00*000
of the length of a test-bar (i.e. strains less than o'ooooi), stresses

up to a considerable proportion of the maximum cause purely elastic

and proportional elongations. The proportionality of the strain to the

stress in Fig. 25 is indicated by OA being a straight line. For such

metals as wrought iron and steel, the proportionality holds good up to

the elastic limit that is, the end of the straight line at A indicates the

elastic limit, or in other words, Hooke's Law (Art. 5) is substantially
true. This is not equally true for all metals; in the case of rolled

aluminium slowly and continuously loaded, at very low stresses the

strains increase faster than the stresses, and yet practically all the strain

disappears after the removal of the stress ; hence the elastic limit cannot
be found from an inspection of the "

stress-strain
"
diagram.

Commercial Elastic Limit. In commercial tests of metals exhibiting
a yield point, the stress at which this marked breakdown occurs is often

called the elastic limit
;

it is generally a little above the true elastic

limit.

There are, then, three noticeable limits of stress.

(1) The elastic limit, as defined in Art. 5.

(2) The limit of proportionality of stress to strain.

(3) The stress at yield point the commercial elastic limit.

In wrought iron and steel the first two are practically the same, and
the third is somewhat higher.

The suggestion has been made that failure of perfect elasticity just
below the yield point is due to small portions of the material reaching
the breaking-down point before the general mass of the material. This

supposition is supported by the fact that ductile materials of very
uniform character show the yield point more strikingly than inferior

specimens of the same material.

When the necessary stress is applied, the yielding certainly does not
take place simultaneously throughout the mass, but begins locally at one
or more points (probably due to a slight concentration of stress), and

spreads through the remaining material without further increase of the

load. This spreading of the condition of breakdown may be watched
in unmachined iron and steel ; the strain in the material is too great to

be taken up by the skin of oxide, which cracks and flies off in minute

pieces as the yielding spreads. In highly finished drawn steel the

oxide chips off so as to form interesting markings on the surface of the

bar
; two systems of parallel curves, equally and oppositely inclined

to the axis of the bar, are formed. A similar phenomenon may be
noticed on a polished metallic surface when the metal is strained

beyond the elastic limit. The inclined curves are called Liiders' lines,

from the fact that Liiders first called attention to them. They appear
to indicate elastic failure by shearing.

Microscopic Observations. Metallography. The study of the struc-

ture of metals as revealed by the microscope has received much atten-

tion in recent years, and has led to various interesting discoveries. The
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general subject now known as Metallography is outside the scope of

this book,
1 but the effect of strain on the structure must be mentioned.

Microscopic observation shows metals to consist of an aggregation
of crystalline grains separated by films or membranes of material of

different composition. Evidently the mechanical properties will be
influenced by such films, and strain or fracture may take place along
the film due to brittleness or want of continuity, or by actual fracture of

the crystalline grains along their planes of cleavage or greatest weakness.

Ewing and Rosenhain 2
found, by microscopically examining a

specimen of metal under gradually increasing strain, that beyond the

yield point lines appeared on some of the crystals, and increased in

number as the strain increased. These lines, which they called slip

bands or slip lines, they attributed to steps formed on the surface,
due to slips along the cleavage planes of the crystal. Thus a surface,
ACB (Fig. 26), when pulled in the direction of the arrows, would

develop the shape shown in Fig. 27 by slips along the cleavage planes at

FIG. 26. FIG. 27.

{From Mellors "
Crystallization of Iron and Steel"}

a, t>, c, and d, C being the junction of two contiguous grains. During
plastic strain, according to their view, slipping along the planes of

cleavage of the crystals continues, and finally the slips develop into

cracks and fracture takes place, not generally at the boundaries, but

through the crystal grains themselves, the crystalline structure being
preserved during all stages of strain.

. 25. Ultimate and Elastic Strength and Factor of Safety. The
maximum load necessary to rupture a specimen in simple tension or

shear, divided by the original area of section at the place of fracture,

gives the nominal maximum stress necessary for fracture, and is called

the ultimate strength of the material under that particular kind of

stress. It is usually reckoned in pounds or tons per square inch. The
ultimate strength in tension is also called the Tenacity. The greatest
calculated stress to which a part of a machine or s-tructure is ever sub-

jected is called the working stress, and the ratio

ultimate strength

working stress

is called the Factor of Safety.
It is, of course, usual to ensure that the working stress shall be

below the elastic limit of the material
;
but this is not sufficient, and

designers, when allowing a given working stress, specify or assume,

1 A brief and interesting account of the "
Crystallization of Iron and Steel" for

engineering students has been written by Dr. J. W. Mellor. (Longmans.)
1 Phil. Trans. Roy. Soc., 1899.
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amongst other properties, an ultimate strength for the material, greater

than the working stress in the ratio of a reasonable factor of safety.

The factor of safety varies very greatly according to the nature of the

stresses, whether constant, variable or alternating, simple or compound.
It is frequently made to cover an allowance for straining actions, such

as shocks, no reliable estimate of which can in some instances be made,
diminution of section by corrosion, and other contingencies.

Elastic Strength. If it is desired to keep working stresses by a

certain margin within the limits of elasticity, it becomes important to

know for other than simple direct stresses whether the breaking down
occurs for a given value of the greatest principal stress (Art. 14) or for a

given value of the greatest principal strain, which is influenced by the

lateral strains produced by the other principal stresses (see Art. 19).

There are three theories as to when elastic failure takes place, viz.

(1) For a certain value of the maximum principal stress.

(2) For a certain value of the maximum principal strain.

(3) For a certain value of the maximum shearing stress, this being

proportional co the greatest difference between principal stresses (see (2),

Art. 15, and (4), Art 18).
If the second theory is correct, the elastic strength of a piece of

material in which the maximum principal stress is tensile, for example,
will be lessened by lateral compression and increased by lateral tension.

Accounts of some very interesting experiments bearing on this ques-
tion have been Dublished by Mr. "[ J. Guest and others ;

l these experi-
ments tend to confirm the third theory for ductile materials, and the

first one for brittle materials, intermediate materials following some
intermediate law. Mr. Scoble 2 has suggested that the condition

/ - af = b

where/ and /' are the greatest and least principal stresses and a and b

are constants may be the law of yielding for all materials, the constants

being different in different materials. Thus a might be near zero in a
brittle material and approximate to unity in ductile materials. Liiders'

lines (Art. 24) also offer some support to the third theory. The question
as to the deciding factors of ultimate strength is mentioned in Art. 37.

In this book the English and American practice of reckoning
strength from the greatest principal stress will generally be followed.

Its use must be justified by the choice of a factor of safety reckoned
on the ultimate and not on the elastic strength, and varying with

1
"Strength of Ductile Materials under Combined Stress," Phil. Mag., July,

1900, and Proc. Physical Society, May, 1900. Also see
"

Effects of Combined Stresses
on Elastic Properties of Steel," by Prof. E. L. Hancock, Phil. Mag., 1906, p. 276,
vol. xi., and p. 418, vol. xii. Also "

Strength of Ductile Materials under Combined
Stress," by Mr. W. A. Scoble, Phil. Mag., 1906, vol. xii. p. 533, and later, Phil. Mag.,
January, 1910, p. Il6, or Proc. Physical Society, vol. xxii. p. 130, and "Strength of
Brittle Materials under Combined Stress," Proc. Physical Society, vol. xx. p. 453,
and a second paper, Phil. Mag., June, 1910. Also papers by Mr. W. Mason and by
Mr. C. A. M. Smith in Proc. Inst. Mech. Eng. for December, 1909, and various
articles and letters in Engineering during 1909 and 1910. Also "

Strength of Thick
Hollow Cylinders under Internal Pressure," by Messrs. Cook and Robertson in

Engineering, Dec. 15, 1911.
2

Phil. Mag., January, 1910.
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circumstances, including the presence or absence of other principal
stresses.

The different conclusions from the three theories may be well

illustrated by the common case of one direct stress,A with shear stress,

^, on the same plane as in Art. 18.

The first theory gives a maximum principal stress

The second theory gives a maximum principal strain (see Art. 19)

e-f JL* ~ E E

or, E,, = i

where is Poisson's ratio (Art. 12).

And if m = 4, and equivalent simple stress

E* = |A + 4 ViA2 + f ..... (2)

The third theory gives a maximum .fto?- stress (see Art. 18 (4)) of

intensity , , _Z-=ViA2 + ?* ...... (3)

The differing results from the three theories is pointed out frequently
in the later chapters (see Arts. 113, 122, 126, 127, and 149-153).

26. Importance of Ductility. In a machine or structure it is

usual to provide such a section as shall prevent the stresses within the

material from reaching the elastic limit. But the elastic limit can, in

manufacture, by modification of composition or treatment be made

high, and generally such treatment will reduce the ductility and cause

greater brittleness or liability to fracture from vibration or shock.

Ductile materials, on the other hand, are not brittle, and a lower elastic

limit is usually found with greater ductility. Local ductile yielding in

a complex structure will relieve a high local stress, due to imperfect

workmanship or other causes, thereby preventing a member accidentally

stressed beyond its elastic limit from reaching a much higher stress such

as might be produced in a less plastic material. Thus in many applica-

tions the property of ductility is of equal importance to that of strength.

It is the practice of some engineers to specify that the steel used

in a structure shall have an ultimate tensile strength between certain

limits ;
the reason for fixing an upper limit is the possibility that greater

tensile strength may be accompanied by a decrease in ductility or in

power to resist damage by shock.

The usual criteria of the ductility of a metal are the percentages of

elongation and contraction of sectional area in a test piece fractured by
tension. Probably the percentage elongation is the better one ; smaller

elongation is sometimes accompanied by greater contraction of area.

27. Percentage Elongation. It was noticed in Art. 23 that in

fracturing a piece of mild steel by tension there was produced previous
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to the maximum load a fairly uniform elongation, and subsequently an

increased local elongation about the section of fracture (see Fig. 28).

In such a case the extensions on each of 10 inches, marked out on a

bar i inch diameter before straining, were as follow:

Inch ....
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from the whole extension, and expressing the difference as a general
extension on a length 2 inches shorter than the whole gauge length.

Professor Unwin l has pointed out that another possible method of

comparing the ductilities of two bars of unequal areas of cross-section is

to make the length over which elongation is measured proportional to the

diameter (or the square root of the area in the case of other than round

bars) ;
in other words, to use pieces which are geometrically similar. This

plan is in use in Germany, where the relation between the gauge length

/, over which extension is measured, and the area of cross-section 0, is

/= II'3A/#
This corresponds with a length of 8 inches (or centimetres) for a bar
of half-a-square-inch (or centimetre) area.

The British practice is to use a gauge length of 8 or 10 inches

irrespective of the area of section, and test pieces in which the ratio

=-S : is constant have not been commercially
square root of area of section

adopted on account of increased expense involved in preparing speci-

mens. Professor Unwin finds that with fixed length and fixed area of

section the shape of the cross-section in rectangles, having sides of dif-

ferent proportions, does not seriously affect the percentage elongation.
Within considerable limits the variation in percentage extension, due

to various dimensions, may be very clearly stated algebraically thus

If e = total extension and / = gauge length, e is made up of a

general extension proportional to /, say b X /, and a local extension a

nearly independent of /. That is

e=a+ bl

and percentage elongation, 100 .

e
- = ioof

j
+

bj,
a quantity which (for a

given sectional area) decreases and approaches TOO as /is increased.

Further, the local extension a is practically proportional to the

square root of the area of cross-section A, say

a = c*/~K

hence percentage elongation =
100^ \-

bj,
a quantity which in-

creases with increase of A and decreases with increase of /.

a and b are constants for a given quality of material. If the per-

centage extensions of two pieces of the same material, but of different

dimensions in length or cross-section, or both, or the extensions of

two considerably different lengths on the same piece, are known, the

constants c and b in the above formula can be found. Owing to the

want of uniformity in ordinary materials, they can, of course, be much
better determined as an average of a number of results than from two

only. Having determined c and b, it is easy to predict roughly from

this rational formula the elongation of another piece of the same

material, but of other dimensions. This gives a method of effecting

1 Proc. Inst. C.JS., vol. civ. p. 170. See also Publication No. 1 8 of Eng.
Standards Committee (Crosby Lockwood) and paper by Gordon and Gulliver, Trans.

Roy. Soc. Edinburgh^ vol. xlviii. Part I.
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an approximate comparison of ductilities as measured by ultimate

elongation in tests made on pieces of widely different proportions.
This point may be best illustrated by an example.

Given that a piece of steel boiler plate 1*332 square inches area of

cross-section shows an extension of 39*5 per cent, on 4 inches length,
and another piece of the same plate 0*935 square inch area shows an

extension of 30^2 per cent, on 6 inches, what would be the probable

elongation for this material on 8 inches length in a piece 0-5 square
inch sectional area ?

Using the equation ,

percentage elongation = ioo( 7 J

For the first piece

39
.

5
=

or, 39-5 = 28'8<r-f ioo ....... (i)

For the second piece

or, 30*2 = i6'ic -f- ioo ....... (2)

From (i) and (2)

b = 0-184 c = '73 2

For a length of 8 inches, and area of section 0*5 square inch, the

elongation would therefore be roughly

5 __ .

oo( per cent .

The Engineering Standards Committee have not, on account of the

increased cost which would be involved in machining test pieces, con-

sijdered it desirable to depart from the standard length of 8 inches for

measurement of elongation for strips of plate; but on account of the

greater elongation produced on this fixed length by using large cross-

sectional areas, a maximum allowable limit of width has been fixed

for every thickness of plate, thus limiting the area without making it

absolutely fixed for the fixed gauge length,
28. Percentage Contraction of Section. If a test piece is of uniform

section throughout its length, and during extension uniform contraction

of area goes on throughout the length, as in perfectly plastic material, the

percentage contraction of area reckoned on the original area is the same
as the percentage elongation reckoned on the final length at the time of

measurement. This statement will only hold good provided that the

volume of the gauged length of material remains constant, which is

always very nearly true, as shown by density tests. For if / and /' are

the initial and final lengths, and A and A' the initial and final areas of

cross-section respectively, since the volume is practically constant

/. A = /' . A'

/ A
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and subtracting unity from each

/-/' _ A'-A
/' A

/'_/ A-A'
=-K~

The left-hand side represents the elongation reckoned on the final

length, and the right-hand side represents the proportional reduction

of the original area. In materials which finally draw out to a waist

or neck, the proportional contraction atfracture will be greater than this

amount, which may be looked upon as a minimum of contraction possible,

except in the rare case of a specimen breaking owing to local hardness

or brittleness at a place where the section is substantially larger than

the remaining portions, which have become reduced by drawing out.

29. Actual and Nominal Stress Intensity. As a matter of con-

venience, it is usual to specify the ultimate strength of material as

so many pounds or tons per square inch of the original area of section.

This may be called the nominal stress intensity, but in a ductile

specimen tested to the point of fracture in tension as the piece elongates
the area of cross-section contracts, so that the intensity of the actual

stress is then greater than that of the nominal stress, being equal to

the actual load divided by the diminished area of section. Hence

intensity of actual stress _ load -r actual (reduced) area

intensity of nominal stress
~"

load 4- original area

original area A= -
i j j = T7(Art. 28)

actual reduced area A x

p^
In the previous article it was shown that this ratio is equal to

actual (increased) length /' -,-,, , -,

4-: PJ TT
~

}
or 7, provided the volume does not alter under

original length /

tensile strain. This relation suggests a simple geometrical construction

to obtain a curve showing the actual intensity of stress with correspond-

ing elongations from a curve showing the nominal stress intensity with

elongations for a tensile test. In Fig. 29, if on represents to scale the

extension for a nominal intensity of stress represented by fln, draw/w
parallel to on to meet the axis at m. Set off or to represent to scale

the original length, say 10 inches; join rm and produce the line to

meet/// produced in q. Then qn represents the actual stress to scale,

for with the notation of the previous article and above

gn _om __pn
rn or or

qn __ rn _ /'
__
A _ intensity of actual stress

Or' pn~or~7~&~ intensity of nominal stress

Other points on the curve showing the actual stress intensity may be

similarly found so far as /, where the section area of the test piece

begins to change locally, and is no longer nearly uniform throughout
the bar. After this point the construction fails, because the assumed
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conditions no longer hold. Other points on the curve might be found

by special measurements of section during a test. The last point w

may be found by dividing the breaking load by the section at fracture,

and setting offyw to represent this to scale.

30. Effect of Shape of Test Pieces on Ultimate Strength, etc.

Tensile test pieces are usually parallel for a length somewhat greater
than that over which elongations are to be measured, the ends being
left of larger section for the purpose of gripping to apply the tension.

The influence upon the percentage elongation, of measuring the exten-

sion over different lengths of the parallel reduced section, has been

dealt with in Art. 27, where it is shown that measurement over a

shorter length gives a greater percentage elongation. It remains to

state the effect of reducing the length of the parallel reduced section

itself; this effect in ductile materials is of an opposite kind to that

of merely measuring on a short portion of an extended parallel piece.
The effect of the proximity of enlarged sections is to reduce the local

drawing out, giving less elongation for a given gauge length, less con-

traction of area, higher ultimate strength reckoned on the original area

of section, and a higher yield-point stress. These effects are due to the
11 flow

"
of the partially plastic metal from the neighbouring large

sections tending to relieve the high local stress at the waist formed

particularly at the later stages of the extension. Thus, in Fig. 30, piece
B will show a higher ultimate strength than piece A, with smaller con-

traction of area. Also the elongation of the same length / will be
smaller in piece B than in piece A. The increase in ultimate strength
and yield point may also be due to the fact that fracture and yielding

taking place in ductile materials partly or wholly by shearing (see Arts.

25 and 37), along planes oblique to the axis of the test piece, is resisted

by larger sectional areas in bars B and C than in the parallel bar A l

(Fig- 3)-
On account of these effects the Engineering Standards Committee

has specified a minimum distance of nine times the diameter as the
1 See Proc. Roy. Soc. t vol. xlix. p. 243.
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I I

length of the parallel portion of the test piece for bars and rods, the

extension being measured on not less than eight times the diameter.

Abrupt Changes of Section. If the length of the parallel section

be so reduced as to amount to an abrupt change, the stress in any

but the most plastic materials will become unevenly distributed over

the section about the place of sharp change, being concentrated near

the re-entrant angle. The result of this is to cause failure under a

lower average stress for the section, giving a low value of the ultimate

strength of the mate-

1_ _J rial. Extreme cases

of this are the

nicked specimens of

rectangular section,

the V-grooved speci-

men (C, Fig. 30),

and the square-cor-
nered collar of cir-

cular sections. The

abrupt change of

section will lower

the value of the ulti-

mate breaking load

most in a brittle

or non - extensible

metal, such as cast

iron or hard steel,

while in very plastic

material the local

flow of the material

caused in the region
of high intensity of

stress will tend to

make a more uniform

! I

FIG. 30.

distribution of the stress, and so minimise the weakening effect of the

abrupt change. An attempt to investigate experimentally the distri-

bution of stress by analogy to the stream line flow of a liquid has been

made by Mr. Gulliver. 1

31. Tenacity and Other Properties of Various Metals. The
behaviour of a typical ductile metal has been described fully in Art. 23.

Stress-strain curves for two varieties of steel and a very good quality of

wrought iron are shown in Fig. 31 ;
all of these refer to round pieces

of metal i inch diameter, and extensions are measured on a length of

8 inches. The straight line representing the elastic stage of extension

has been plotted on a scale 250 times larger than that for the later

stages of strain.

Cast iron is a brittle material, i.e. it breaks with very little elongation

1 Proc. Roy. Soc. EJin.^ vol. xxx. p. 38. See also "Stress Lines and Stream

Lines," in Engineering, March n, 1910.
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or lateral contraction, and at a rather low stress. The stress-strain

curve for a sample of good cast iron is shown on the large scale of

Fig. 31, the ultimate strength or tenacity being just over 10 tons per

square inch, and the strain being then just above ~. Little if any

part of the curve for cast iron is straight, the increase of extension per
ton increase of stress being greater at higher stresses. It is to be noticed

that the value of the direct or stretch modulus of elasticity (E), which is

0*125 0-250 0-375

Strain* . ( OTI, two scaZesJ
FIG. 31. Tensile stress-strain curves.

proportional to the gradient of the curve, will differ according as it is

measured on, say, the first ton per square inch of stress or over the

whole range ;
in the former case it would be about 6000 tons per

square inch, and in the latter about 4000 tons per square inch. The

higher value is the more correct, as measurement should be made
within the elastic limit. The elastic limit is very low for cast iron,

it may be almost zero, for slight permanent sets may be detected under

verv low stresses. The considerable permanent set resulting, say from
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tension, may be due in part to the overcoming of initial stress existing
in the metal since it cooled from the liquid state

;
a considerable

degree of tension will remove this state of stress, and if a specimen is

loaded gradually for a second time the permanent set resulting is much
less than in a piece not previously strained. Fig. 32 shows the load-

extension curves for a piece of cast iron \ inch diameter and 10 inches

long, with the permanent sets resulting from the first loading. If the

permanent sets occurring

during each loading are sub-

tracted from the extensions,
the resulting so-called elastic

extensions are practically the

same in each case. If the

direct modulus of elasticity is

calculated from these reduced
extensions it will obviously
be higher than if reckoned
from the full extensions, but
in no case is the load exten-

sion a straight line, so that

the modulus obtained from,

say, the first 2 tons range of

load is not the same as from
the first 5 tons.

The ultimate strength of

cast iron in tension is usually
from 7 to 10 tons per square

inch; in compression it is

often about 50 tons per square
inch. Great differences are

found in test pieces from dif-

ferent parts of a casting, and
the properties are much modi-
fied by the rate of cooling.
Thus a cast bar would gene-

rally give a different result

tested in the rough with the

skin on from that obtained

from a similar bar with the

outer material machined off;

the former would show greater
ultimate strength.

Ol 002
Extensions in

FIG. 32. Stretch of cast iron.

Owing to the liability to porosity, initial stress in cooling, etc., the

working strength allowable in cast iron does not usually exceed about
i ton per square inch in tension and 8 tons per square inch in com-

pression.

Wrought Iron. Wrought iron is a typical ductile metal, and con-

tains over 99 per cent, of pure iron, and only about one-tenth per cent,

of carbon. It comes from the puddling furnace in a spongy or pasty



ART. 31] MECHANICAL PROPERTIES OF METALS. 43

state (not liquid), and subsequent hammering and rolling do not expel
all traces of slag, which may be traced in layers in the finished product.
The structure appears from a fractured specimen to be fibrous or

laminated : this results from the rolling and working up of the crude

product, but the metal itself, when examined under the microscope, is

found to consist of crystalline grains (see Art. 24). Both the tenacity
and ductility are greater with the fibres than across them. The
mechanical properties differ considerably in different qualities; those

of a high quality are represented in Fig. 3 1
;
lower qualities have a

lower ultimate strength and smaller elongation (see table at end of

chapter).
The composition of wrought iron varies in different qualities. It is

desirable to keep phosphorus below \ per cent, and sulphur below

0*05 per cent. Phosphorus makes the metal brittle when it is cold,

and sulphur causes brittleness at a red heat.

Steel. Steel was the term formerly applied to various qualities of

iron which hardened by being cooled quickly from a red heat. Such
material contained over ^ per cent, of carbon chemically combined with

the iron. The tenacity and ductility of these steels is not of so much
interest as that of the softer varieties. The high carbon steels are not

ductile, but have a high tensile strength.

Now, much more ductile materials, having a lower tensile strength,
are produced by the Bessemer, Siemens, and other processes, and are

classed as mild steels. The mild steels have for many purposes replaced

wrought iron, being stronger, more uniform, and more ductile ; unlike

wrought iron they can be cast, and when required for bars, etc., they are

first cast in ingots and then rolled ;
the ingot being obtained from the

liquid state no fibre is produced in the

subsequent rolling or forging, and the

metal is more homogeneous than

wrought iron, and often has as little

carbon present, but it is not so reliable

for welding, and when a weld is neces-

sary good wrought iron is used. These
steels contain less than J per cent, of

carbon, the quantity varying according
to the purpose for which the steel is *

required. Thus steel rails may have
jj

from 0-3 to 0-4 per cent., structural **

steel about 0*25 per cent., and rivet ^
steel about o'i per cent, of carbon. f \o //

The influence of carbon on the me-
chanical properties of steel is very
marked, and is illustrated in Fig. 33,
taken from Prof. Goodman's figures.
Other constituents, even in small quan-

tities, also greatly modify the properties
FlG ' 33-Effect of carbon on steel.

of steel, and apart from chemical composition, the mechanical and
thermal treatment which the metal receives will, as appears in the

/ 46

,1 20
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sequel, greatly modify the strength and ductility. Comparatively
recently, steels containing small quantities of nickel,

l
chromium, vana-

dium, or manganese have been produced, having very high tensile

strengths combined with a considerable degree of ductility.
The qualities desirable in steel for structural ship-building and

machine purposes are indicated by the Standard Specifications drawn

up by the British Standards Committee and published for them.2 The
chief requirements with respect to tensile tests and composition (when
specified) are shown in the following table. All the strengths and

elongations are to be measured on test pieces of standard dimensions

(see complete specifications), and other mechanical tests are specified.
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strongest alloys, such as delta metal, contain small quantities of iron
;

these have as high a tenacity as mild steel.

Bronzes. Bronzes are, generally speaking, mainly copper and tin

alloys.

Gun-metal v& an alloy of about 90 per cent, copper and 10 per cent,

tin. It is largely used for strong castings, being tough and of high
tensile strength.

Phosphor-bronze is an alloy of copper and tin containing a small

quantity of phosphorus. Its tenacity is high, but for malleability and
ductility the tin should not exceed 5 per cent, nor the phosphorus o-i

per cent. For hard castings, the tin may increase up to 10 per cent,
and the phosphorus to i per cent, without producing undue brittleness.

Manganese-bronze usually contains zinc as well as tin and manganese.
It is tenacious, ductile, hard, and offers great resistance to corrosion.

Silicon-bronze. A small quantity of silicon in bronze increases its

strength and ductility without reducing its electrical conductivity, as in
the case of the addition of phosphorus.

Aluminium-bronze* does not usually contain tin, but consists of

copper and aluminium, the latter not usually exceeding 10 per cent
1 See Eighth Report of Alloys Committee, Proc. 2nst. Mech. Eng., January,

1907 ; also Ninth Report, January, 1910.
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With increase of aluminium to this value, the tenacity rises without

brittleness. The 10 per cent, alloy has great strength (40 to 45 tons

per square inch), with a fair degree of ductility.

Aluminium. Aluminium is an important metal on account of its

lightness. Its specific gravity is only from 2*6 (cast) to 275 rolled.

The comparatively low tensile strength of about 5 or 6 tons per square
inch when cast is increased by rolling and wire-drawing. The elastic
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FIG. 35.

limit is low, and comparatively low tensile loads produce slow "
creep-

ing" (see Art. 23). Stresses much lower than those usually given as the

ultimate strength will suffice to cause fracture if continued for a long time.

Alloys. Copper, tin, and zinc are alloyed with aluminium for the

purpose of increasing the tenacity and hardness.

32. Raising the Tensile Elastic Limit and Yield Point: Over-

straining. If a piece of steel or other ductile material is "over-

strained," i.e. strained by some load sufficient to exceed the yield point

(Art. 23), on subsequently testing the same piece it will be found to

develop a new yield point at some load higher than that previously

applied to it, while the elastic limit and range of proportionality

between stress and strain has been reduced. For example, Fig. 35
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represents the load-extension diagram for a piece of Bessemer steel bar

originally i inch diameter, with extensions measured on a length which
was originally 10 inches. The loading was three times interrupted, the

toad being very quickly removed and then gradually applied again
from zero upwards. The first removal occurred at p\ on reloading
within a few minutes, the line qr represents the pirtially elastic

behaviour of the material up to a new yield point r, nearly a ton above
the previous load at p> and greatly above the previous yield load at m.
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FIG. 36.

The two later interruptions at s and w led to new and increased yield

points at / and y respectively, as little time as possible elapsing before

reapplying the loads.

Effect of Time. If the material, after being strained, is allowed to

rest for an interval before being loaded again, it exhibits the properties
associated with greater hardness in comparison with a specimen reloaded

immediately, its yield point being further raised and its elongation at

fracture being reduced
;
the ultimate load may also be raised, particularly

if the previous straining load has been not much below the ultimate

strength. The elastic limit is also increased to a point not much below
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the new yield point. These points are illustrated in Figs. 36, 37, and

38. Fig. 36 shows the load-extension curves for two almost identical

pieces of steel cut from the same i-inch bar, but treated somewhat

differently. Each piece was loaded up to 27 tons at /, curve A, and
then relieved from stress; the first was then immediately reloaded

steadily up to the point of fracture, developing a yield point at q just
below 28 tons : its subsequent strains are shown by the full line,

curve B. The second piece was allowed to rest 24 hours before
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FIG. 37.

reloading, the yield not occurring until the point s, about 30 tons load,

and the subsequent extensions being as shown on the dotted curve C.

The ultimate extension was greater in the specimen which was not

allowed a long interval in which to harden after the original over-

strain, and the fractures corresponded to those for metals of different

ductility (see Art. 37). The raising of the yield point is even more

marked after an interval in the loading if the load is allowed to remain

on instead of being removed,
1 and even a short stoppage in the appli-

cation of the load produces a notch on the stress-strain diagram.
1 See a paper by Ewing, Proc. Roy. Soc., 1880.
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It will be readily understood from the foregoing that the yield point
and ductility may be greatly modified by the treatment, often involving

great strains, which metals undergo during manufacture, such, for

example, as rolling or drawing while cold. Local hardness, or lack of

ductility, may also be produced in metal which has been subjected to

the rough treatment of punching or shearing.
The small strains occurring before the yield point in overstrained

specimens are of interest. Those for the two specimens just mentioned
are shown plotted on a larger scale in Fig. 37 with letters A, B, and C,

corresponding to Fig. 36. The original curve A shows practically perfect

proportionality between stress and strain almost to the yield point The
curve B (immediately after overstrain) does not show nearly 'such

proportionality, the elastic limit being also probably almost zero, while

the curve C, representing the state of the material after 24 hours'

rest, does not greatly differ in curvature from A. In comparing the

stretch modulus E by means of the gradient of the three curves, it should

be remembered that for curves B and C the area of cross-section has

been reduced about 5 per cent, from that for curve A, while extensions

are here shown on lengths which were 10 inches at zero load in each

case. Taking account of these facts, or plotting the stress intensity
instead of gross load, the values of the modulus for curves A and C are

practically the same.

Quick Recovery with Heat. The effect of such temperatures as the

boiling point of water have very remarkable effects on some metals in

hastening the recovery of elasticity after overstrain
;

the elasticity

is quickly made almost perfect again, and the yield point is raised to a

level as high as would be reached after a considerable period of rest.
1

The small differences between different curves of the kinds above
mentioned may be brought out more clearly by adopting a larger scale

of strains in the diagram, and this may be conveniently done in a small

space by a device adopted by Prof. Ewing
a of "

shearing back "
the

curves by deducting from each extension some amount proportional to

the load at which it occurs. The method is illustrated by plotting the

curves of Fig. 37 in Fig. 38, with each extension diminished by 0*0009
inch per ton of load at which it occurs.

Hysteresis in Overstrain. Some of the strain taking place in a piece
of material previously overstrained develops slowly by

"
creeping

"
;

also the strains, or part of them, disappear in a similar way some time

after the removal of the load. This property of temporary strain after

the removal of load has been called hysteresis. A similar effect within

the limits of elasticity may partially explain the ultimate failure of metals

under repeated applications of stress much below the ultimate static

strength, and the dependence of resistance to repeated stress upon the

frequency of application of the stress (see Art. 51).
33. Hardening by Cooling. Quite distinct from the various effects

of overstraining, which have been called "
hardening," is the hardening of

1 See papers by Muir, Phil. Trans. Roy. Soc.> vol. 193A ; and by Morley and

Tomlinson, Phil. Mag., 1906.
* Phil. Trans. , vol. I93A.

E
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steel by quickly cooling it down from a high temperature. This is

generally accomplished by plunging the hot metal in a cold liquid. The

degree of hardness attained depends upon the amount of carbon in the

steel and upon the rate at which it is cooled, more carbon up to at least

1*5 per cent, and quicker cooling producing greater hardness.

Extensions in incTies (reduce(L+&s

FIG. 38.

Steel hardened in this way has its tenacity raised, but becomes very
brittle and has little ductility : it does not show a marked yield point,

the stress-strain curve deviating gradually from straightness. Other

metals, such as copper, zinc, aluminium, and brass, show a similar

behaviour, inasmuch as they lose much of their elastic range and take a

set at very low stresses.
1

For various uses more or less of the hardness is removed from steel

by reheating the metal to various temperatures according to the degree
of hardness required. The process is called tempering, and the desired
"
temper

"
is recognised by the colours which appear on a clean polished

surface of the metal. By heating to a sufficiently high temperature, all

hardness induced by quick cooling may be removed. The precise

changes which occur during hardening and tempering of steel are

imperfectly understood, and acute differences of opinion are held

1 See a paper by Dr. Muir, Proc. Roy. Soc. t vol. 71.
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^

upon this subject by rival schools of metallurgical thought. All steels

except the very mildest varieties are liable to some slight amount of

hardening effect on quenching from a bright red heat.

Cast iron may be rendered hard by pouring the molten metal into

chilled moulds : the outer skin, which cools first, is rendered very hard.

Hardening at " Blue
Heat'' Hardening of mild
steel and wrought iron is

liable to occur if the metal

is bent, hammered, or other-

wise worked at a " blue

heat," as it is called, i.e.

between about 450 and
600 F., when the metal

shows a blue colour on a

freshly filed surface. Metal

so treated, unless subse-

quently annealed (see Art.

34), is liable to show
brittleness and unrelia-

bility,
1

although it may be

safely worked when cold.

34. Annealing. Iron

and steel rendered " hard
"

by straining or quenching
may be brought to a softer

and more ductile state,

more or less like its original

condition, by heating to a

red heat (1400 F.) and

cooling very slowly ; this

process is called annealing.

Copper, brass, and
bronzes are similarly an-

nealed by the process of

quenching or quick cooling
from a high temperature;
slow cooling hardens them,
while aluminium is an-

nealed by slow cooling.
The effect of annealing materials, such as drawn wire, is to reduce

the tenacity and elastic limit and to increase the ductility as measured

by the elongation, which has been reduced by much straining during
manufacture (see Figs. 34 and 39). Annealing rolled rods and drawn
wire generally raises the observed values of Young's modulus (E) for

the material, probably due to relieving initial stresses existing in the

material after manufacture.
In the process of making fine wire by successive drawings through

1 See paper by Stromeyer in Proc. Inst. C.E., vol. Ixvii., 1886.
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FIG. 39. Effects of annealing steel wire.
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dies of various sizes, it is necessary to anneal the material between the

various stages in order to restore the ductility.

Annealing steel castings increases the tenacity and ductility and

raises the elastic limit of the metal. Steel subjected to great strains in

wear, as in the case of lifting chains, is annealed from time to time to

prevent the metal from becoming brittle (see Art 45).

35. Influence of Rate of Loading. Within ordinary limits of time

occupied in testing specimens of most materials to fracture in tension,

the rate of loading does not greatly influence the ultimate load borne,
the yield point, or the elongation produced. Strains take time to

develop, and if the load is applied rather quickly (say in two minutes),
the strains will be less than if the load is applied more slowly. If, on
the other hand, the load is applied very slowly and not continuously, but

with pauses during which the metal may harden (Art. 31), a notched or

serrated load-extension diagram will result, showing smaller average
strains than if the specimen were loaded more quickly but continuously.

Also with rates of loading so fast as to be of the nature of an impact,
the elongation at fracture of mild steel is much higher than with rates

such as are common in testing.
1 Under such quick rates or impulsive

loadings it is probable, too, that the ultimate stress sustained at

the yield point is greater than that under far lower rates, but the

relation between stresses and the corresponding strains of exceedingly
brief duration is not necessarily the same as that for static loads.

2

Zinc and tin record higher stresses before fracture if the load is applied

quickly ;
the values obtained in slow tests may easily be doubled at rates

which are possible in ordinary testing machines. Cement shows a

similar property (see Art. 187).

36. Compression. Metals have generally practically the same limit

of elasticity and modulus of elasticity (E) in direct compression as in

tension, and the tension test being much easier to make than a satis-

factory compression test, it is quite usual to rely on tension tests as an

index of mechanical properties for nearly all metals.

For stresses beyond the elastic limit, hard or brittle materials under

compression generally fracture by shearing across some plane oblique to

the direct compressive stress
;
more plastic materials, on the other hand,

shorten almost without limit, expanding laterally at the same time (see

Fig. 43), and so increasing the area of cross-section as to require higher
loads to effect further compressive strain. An ultimate crushing strength

is therefore difficult to specify clearly. Typical compressive stress-

strain curves are shown in Fig. 40. It will be seen from Fig. 43 that

wrought iron cracks longitudinally after much crushing. If the metal

reached a state of perfect plasticity the actual stress intensity under

which the material
"
flows

" would be constant. Then, assuming no

change of volume, if / = original length of a bar, /j
= reduced length.

A = original area of section, and Aj = increased area of section.

A!/J = A/ (see Arts. 28 and 29).

1 See "Treatment of Gun Steel," Proe. Inst. C.E., vol. Ixxxix. Also paper on

impact tests in Proc. Inst. M.E., May, 1910.
2 See " Effects of Momentary Stresses in Metals," by B. Hopkinson, Proc. Roy.

Soc., 1905.
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load
Actual final intensity of stress = ^-

load load x

r

~
volume of bar

constant pressure intensity) __ load(/ reduction in /)

of plastic flow /
~
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FIG. 40. Compressive stress-strain curves.

Hence the loads (or the nominal intensity of stress), when plotted

as ordinates against the compressive strains as abscissae, would give a

rectangular hyperbola, since their product is a constant. The asym-

ptotes of the hyperbola are the axis along which strains are measured,
and a line perpendicular to it corresponding to a position of unit strain.

Fig. 40 shows the manner in which the stress-strain curves for such

plastic materials as copper and aluminium approach to a hyperbola,
i.e. how nearly the materials reach to a condition of perfect plasticity,

in which the metals flow continuously without increase of the actual
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intensity of pressure ; the pressure intensity then reached is called the

pressure of fluidity.

37. Fracture under Direct Stress. The form of fracture of

different materials in tension and compression is a matter of con-

siderable interest, from which various conclusions can be drawn. The
fracture of ductile materials under tension, and of brittle materials

under compression, generally takes place partially or wholly by shear-

ing or sliding in directions oblique to that of the direct stress (see

Figs. 41 and 42). The inclination of the surface of fracture to the

Tool steel. Copper. Aluminium. Wrought iron. Cast iron.

Mild steel. Mild steel. Bessemer steel.

FIG. 41. Tension fractures.

Bessemer steel

hardened by
overstrain.

axis of direct stress is not always that in which the intensity of

tangential or shear stress might be expected to be a maximum. In

the case of tension of ductile materials, it must be remembered that

just previous to fracture a local reduction of section takes place. This

somewhat abrupt change of section tends to an uneven distribution of

stress over the section just previous to rupture, and, consequently,
inferences as to the intensity of shear stress on any oblique plane or

other surface at fracture cannot be drawn with accuracy.

Compression Fractures. In brittle materials (see Fig. 43) the

strains up to the point of rupture are small, and if the material is

homogeneous and isotropic the distribution of stress is probably nearly
the same as within the limits of elasticity.

A piece of material under uniform compressive stress of intensity

p has, on all surfaces the normal of which is inclined to the axis of

direct compression (see Art. 7)

(i) a tangential or shear stresspt =/ sin cos

and (2) a normal compressive stress/,, =/ cos2

The intensity of shear stress is a maximum for = 45, but the

material is not in pure shear, on account of the accompanying normal

stress /, and the direction of the surface of shear may be partly
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determined by the action of the normal stress, the intensity of which

decreases as increases.

Navier's Theory. Supposing the material to shear over a surface

at some angle to the section of

wholly direct stress, the two por-
tions of material separated by
this surface are, before fracture,

pressed together across the sur-

face with a component stress of

intensity

/ cos2

and, if a coefficient of friction /*

between the two portions be sup-

posed, there will be a resistance

to rupture of FIG. 42. Tension fractures of mild steel.

/A/ COS 2

per unit of area, quite apart from the ultimate cohesive resistance to pure
shear, which may be taken as a constant, ?, say. Hence, at rupture

pt =/sin 0cos = ? + /4>cos
2

. . (i)

or
sm 6 cos -

/A cos2

Then, if rupture takes place at such an angle as to involve the

minimum intensity of compressive stress p
dp
Te
= Q

Aluminium, after and before. Mild steel. Wrought iron. Cast iron.

FIG 43. Compression.

hence, differentiating

cos2
6 sin*

2 6 + /A . 2 sin 6 cos 6 = o

cos 26 -f /u.
sin 20 = o

cot 20 = /A
= tan < = cot

where < is the angle of friction, or angle of repose, and tan

Finally, then

7T
.

<

=
p.
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or the inclination -of the surface along which the tendency to rupture is

greatest exceeds 45 by
~

t
where < is the angle of repose of the grains

of the material.

It is not obvious that, for the two portions ultimately separated by
shearing fracture, the coefficient of friction between the particles should

necessarily be the same as for two plane separate surfaces of the same

material, nor, indeed, that there should be any true frictional resistance

at all, but experiments on brittle metals and stones show a fair corre-

spondence between the actual values of the angle of fracture and the

angle as calculated above from the ordinary angle of friction. For cast

iron the usual value of is about 55, corresponding to a value for
<j>

of

20 (see Fig. 43).
Relation between Compressive and Shearing Stress. Assuming the

above relations to hold good, and 'substituting the value of
//,

from

equation (2) in equation (i)

/ sin cos = q +p cos2 X -cot 20

( . cos2 0- sm2 0\
p cos 6 I sin 6 + cos 6 :

7, TT )
= Q

\ 2 sm 6 cos J y

i + sin d>

/ = 2? tan0 or ag ^ ^
which gives the relation between the ultimate resistances to compressive
and shear stress in terms of the angle of fracture, and also in terms of

the angle of repose.
It is not easy to test such a relation experimentally; ordinary

shearing operations by some scissor-like action of sharp square edges
can hardly be obtained without the introduction of some other stresses,

while in the case of applying torsion to a round bar, although a pure
shear stress may be produced, the intensity of shear stress beyond the

elastic limit cannot be estimated accurately.
The angle of fractures under pressure, as well as the ultimate

resistance to crushing, is found to vary, in short pieces which do not

buckle, according as the crushed material is bedded at the surfaces,

receiving the external pressure on a hard unyielding substance such

as millboard or plaster, or on a soft material such as a lead plate, which
flows under the crushing pressure, if this exceeds its pressure of fluidity

(Art. 36). The lateral tensions, induced by the ready flow of the

bedding material, cause fracture to take place at a much lower load

and along surfaces more inclined to that of maximum crushing stress,

and even, sometimes, along faces parallel to the direction of- pressure.
1

This is illustrated for crushing tests of Yorkshire grit in Fig. 243,
details of which are given in Art. 191.

Fractures in Tension. It was shown in Art. 7 that for a parallel bar
under uniform tension of intensity /, the intensity of tangenital or shear

stress reaches a maximum value %p on surfaces the normals of which
are inclined 45 to the direction of the tension. Experiment shows
that the angle at which ductile metals actually fracture, by shearing

1 See a paper by Mr. G. H. Gulliver in Proc. Roy. Soc. Edin. t vol. xxix. p. 432.
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under tensile stress, is not greatly different from 45. From this ifr might
be inferred that the intensity of ultimate shear stress for such a material

is half the ultimate tensile strength. Before drawing such a conclusion
it is necessary to consider various points, such as the following :

(1) The shear stress j/, just mentioned, is accompanied by a
normal component tension \p, across surfaces inclined 45 to that of

maximum tension (see Art. 7), which may modify the resistance of the

metal to shear stress.

(2) The intensity of tensile stress at fracture is not the total pull
divided by the original area of section (see Art. 29), although this

nominal stress is the quantity usually quoted as the tenacity.

(3) In consequence of ductile metals drawing out locally to a waist

before fracture, the area of any surface such as a cone or plane, inclined

45 to the axispf tension, is not V 2 times that of the minimum cross-

section, nor *l 2 times that of the original cross-section
;

in Fig. 44, for

example, the area ef is V 2 times that of the cross-section in the portion
of the bar not suffering local contraction; gh is >/2 times the mini-
mum section aob, while the section cod is intermediate between the two
values, and depends upon the shape of the profile at

the waist.

(4) The intensity of shear stress over such a sur-

face as cd
t Fig. 44, is not uniform, being greatest at

the intersection 0, with the plane of minimum
cross-section aob.

The difficulty of measuring the ultimate shearing
strength has already been mentioned, but so far

as experimental results of shear under ordinary con-
ditions go, the ratio

ft ultimate shearing resistance

ft ultimate tensile strength
reckoned as usual on the " nominal "

stresses, varies

from about 1-2 for brittle metals to about o'6 for

very ductile metals. The value for mild steel and

wrought iron is about 0*75. Such values of the

shearing resistance apply to shearing stress as it is

applied in ordinary constructions, rather than an
ideal case of less practical importance, where the

shear is
"
pure," or free from other straining actions.

The theory has been advanced that all fractures

under tensile stress are ultimately fractures by
shearing under the tangential component stress,

1 but
this conclusion seems difficult to accept in the case FlG 44>
of hard materials, such as cast iron and tool steel,
which do not show any trace of oblique fracture (see Fig. 41).

Very ductile metals, such as aluminium, copper, and mild steel,

1 See "The Rupture of Steel by Longitudinal Stress," Proc. Roy. Soc., vol. xlix.

p. 243; also "Behaviour of Materials of Construction under Pure Shear," Proc.
Inst. Jlfi'c/i. Eng. t part i., 1906, and discussion.
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show oblique fractures at about 45, or a little more, to the axis of pull.

In a round bar the greatest tendency to shear will be along the symmetrical
conical surfaces, such as lod and cok (Fig. 44), and the fractures (see

Fig. 41) always show some such shape in homogeneous metal. In

harder material the ratio of shear strength to tenacity is usually greater,
and in rolled Bessemer steel, or steels hardened by drawing out, par-

ticularly at the central core, tensile fractures are usually in the form of

a truncated cone, the central part apparently tearing first, and then the

softer outside material shearing. This point is illustrated by the four

round bars of steel in Fig. 41. For broad flat bars of ductile metal the

forms of fracture to be expected if the material is homogeneous are

planes or truncated pyramids, with faces inclined a little over 45 to

the axis of the bar. Such fractures are shown in Fig. 42.
It is a remarkable fact that, while a piece of steel or wrought iron

fractured slowly shows a fine dull or even fibrous fracture in which the

crystals are very small, the same steel or iron fractured very quickly
shows relatively larger crystals at the surface of fracture.

38. Effect of Temperature on Mechanical Properties. The tenacity,

ductility, and elasticity of the most important metals do not vary to any
serious extent within the limits of ordinary atmospheric temperatures ;

but it is, of course, well known that the strength of many metals is

greatly reduced at
" white hot

"
temperatures.

Experiments show the following effects in statical tests for wrought
iron and steel at high temperatures :

(1) The tenacity (a) at ordinary temperatures falls off with increased

temperatures until between 200 and 300 F., when it is something of

the order of 5 per cent, less than at 60 F. (b) It rises from this

temperature to a maximum value at some temperature between 400
and 600 F., when it is something of the order of 15 per cent, more than

at 60 F. (c) It falls continuously with further increase of temperature.

(2) The elastic limit falls continuously with increase of temperature.

(3) The elongation (a) falls with increase of temperature above the

normal to a minimum value in the neighbourhood of 300 F., and then

(b) rises again continuously with increase of temperature.
The elongation under tension between 200 and 400 F. does not

take place steadily, but at intervals during the application of the load.

When the stress and strain are plotted they present a serrated curve

instead of a smooth one.

(4) The modulus of direct elasticity (E) decreases steadily with

increase of temperature, metals which give a value of about 13,000
tons per square inch at atmospheric temperature falling to about 12,000
tons per square inch at 500 F.

Low Temperatures. Experiments
* on a very mild steel at very low

temperature show progressive increase of tenacity with decrease of

temperature; while the elongation practically vanishes, the material

behaving like a very brittle substance. On return to ordinary tempera-
tures no permanent change from the original properties is observed.

1 See a paper by Hadfield in Journal of Iron and Steel Inst., 1901 ; or Engineer^

May 26, 1906 j or Engineering^ May 19, 1906.
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For more detailed information on the properties of metals at various

temperatures, see Johnson's
" Materials of Construction," containing

a summary of results at the Berlin Testing Laboratory and the

Watertown U.S. Arsenal. Also for various impact tests at different

temperatures see in Proc. Inst. Civil Engineers^ vol. lx., a paper by
Webster, with summary of previous experiments, and a paper in the

same Proceedings, vol. xciv., by Andrews.
39. Stress due to Change of Temperature. It is well known that

metals, when free to do so, change their dimensions with change of

temperature. If, however, such change of dimensions is resisted and

prevented, stress is induced in the material corresponding to the strain

or change of dimension prevented. Thus if a long bar is lengthened

by heat, and then its ends firmly held to rigid supports, so as to prevent
contraction to its original length, the bar on cooling will be in tension,

and will exert a pull on the supports. Numerous applications of this

means of applying a pull are to be found, such as tie-bars holding two

parallel walls together, and tyres shrunk on to wheels.

The linear expansion under heat is for moderate ranges of temperature
closely proportional to the increase of temperature. The proportional

extension, or extension per unit of length per degree of temperature, is

called the coefficient of linear expansion. Thus if a is the coefficient

of expansion, a length / of a bar at t becomes

/{i +a(/,-/l)}

at a temperature t.
If subsequently the bar is cooled to t and contraction is wholly

prevented, a proportional strain

oft
-

A)

remains, and the corresponding tension and pull on the constraints is

Eo(/,
-

A)

per unit area of cross-section of the bar, where E is Young's modulus
for the material.

The following are the approximate linear coefficients of expansion
for Fahrenheit degrees :

Wrought iron 0-0000067
Steel o'ooooo62

Copper 0*000010
Cast iron 0*0000060

For steel the tensile strain per degree Fahrenheit if contraction is

prevented will be 0*0000062, and taking the stretch modulus as 13,000
tons per square inch, this corresponds to a stress intensity of

13,000 X 0-0000062 or 0*0806

tons per square inch. Thus the cooling necessary to cause a stress of

i ton per square inch would be

oT^oe or about 12 F.

The different amounts of expansion in different metals in a machine

may cause serious stresses to be set up due to temperature changes.

Occasionally use is made of the different expansions of two parts.
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EXAMPLE i. If a bar of steel i inch diameter and 10 feet long is

heated to 100 F. above the temperature of the atmosphere, and then

firmly gripped at its ends, find the tension in the bar when cooled to

the temperature of the atmosphere if during cooling it pulls the end

fastenings
~" nearer together. Assume that steel expands 0*0000062

of its length per degree Fahrenheit, and that the stretch modulus is

13,000 tons per square inch.

The final proportional strain of the bar is

0-0000062 x 100 ~
-4- 120

or, 0*00062 0*00021 = 0*00041

Intensity of stress = 13,000 X 0*00041

= 5*33 tons per square inch

and total pull on a bar i inch diameter is

5'33 X 07854 = 4*18 tons

EXAMPLE 2. A short bar of copper i inch diameter is enclosed

centrally within a steel tube if inch external diameter and \ inch thick.

While at 60 F. the ends are rigidly fastened together. Find the

intensity of stress in each metal if heated to 260 F. Expansion
coefficients as given above, E for steel 13,000, and for copper 7000 tons

per square inch.

The excess of free expansion for copper over steel per unit of

length is

0*0000100 0*0000062 = 0*0000038

The copper will not be elongated to the same extent as if free, and
the steel will be pulled so as to be extended more than if it were free.

The sum of the two linear proportional strains will be 0*0000038 per

degree, and for 200 degrees will be 0*00076.

If e
t
= strain in the steel,

and ec = strain in the copper,
then et + ec = 0*00076 (i)

The stress intensity in the steel = 13,000 . c,

copper = 7,000.^
The total pull in the steel = total thrust in the copper

therefore 13,000 e.
-

-^f
-

(f)
2
}
= 7000 ec

~

02
, 7 ^ _ 7 vx fi4 50
hence ~ =

Is x
XI 2 _ ^ la x o GS

or, 'e
=

IHk. (
2
)

Substituting this value in (i)

<-.(!+ ft)
= '76

et = 0*000352
ec = 0*000408

Intensity of stress in steel = 1 3,000 X 0*00035 2 = 4-57 t(>ns per sq. in.
'

copper= 7000X0-000408= 2-86
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TABLE OF ULTIMATE STRENGTHS.

( Thefollowing are average and not extreme values!)

Material.
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EXAMPLES II.

r. The following figures give the observations from a tensile test of

a round piece of mild steel i inch diameter and 10 inches between the

gauge points :

Load in tons



CHAPTER III

RESILIENCE AND FLUCTUATING STRESS.

40. Work done in Tensile Straining. During the application of a

gradually increasing tensile load to a bar, elongation takes place in

the direction of the applied force and work is done. If during an

indefinitely small extension Sx inch, the variable stretching force is

sensibly constant and equal to F tons, the work done is

F x &x inch-tons

During a total elongation / the work may be conveniently repre-
sented by the summation of all such quantities as F . *, i.e. by

S(F.&r) or / F.//*

Graphical Representation. In a load-extension diagram the
ordinates represent force and the abscissae represent the elongation
produced, and therefore the area

under the curve, viz.

represents the work done in stretch-

ing. Thus, in Fig. 45 the shaded
area represents the work done.

Scale. If the force scale is /
tons to i inch and the extension
scale is q inches to i inch, i square
inch of area on the diagram repre-
sents / . q inch-tons, which is the
scale of the work diagram.

In ductile metals the whole
work done up to fracture may be

Extension

FIG. 45.

taken as roughly equal to the product of the total extension and the

yield-point load plus f of the product of the extension and the excess
of the maximum load over the yield-point load. In other words, the

average load is

yield load -f f(maximum load yield load)
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This approximation is equivalent to neglecting the strain up to yield

point, and taking the remainder of the stress-strain curve as parabolic.
41. Elastic Strain Energy. The work done in producing an

elastic strain is stored as strain energy in the strained material and

reappears in the removal of the load. On
the other hand, the work done during non-

elastic strain is spent in overcoming the co-

hesion of the particles of the material and

causing them to slide one over another, and

appears as heat in the material strained. In

materials which follow Hooke's Law, the

elastic portion of the load-extension diagram

being a straight line, the amount of work
stored as strain energy for loads not exceeding
the elastic limit in tensile straining is equal to

| . load X extension

In Fig. 46 the work stored when the load

reaches an amount PN is represented by the

shaded area OPN, or by J.PN.ON, which
is proportional to

i-load X extension
FIG. 46.

42. Resilience. Colloquially, resilience is understood to mean the

power of a strained body to spring back on the removal of the

straining forces, but technically the term is slightly modified and
restricted to the amount of energy restored by the strained body.
Within the elastic limit this is generally, as above for tensile straining,
the product of half the load and the extension.

In a piece of metal under uniform intensity of tensile stress /,
below the elastic limit, if A is the area of cross-section and / the

length, the load is p . A, and the extension is

/ x proportional strain, or / x
|r(Art. 9)

where E is the stretch modulus. Hence the resilience is

? = J . ^ . /A = J^; x volume of piece

or the resilience is

.

per unit volume of the material. Where the tension is not uniform the

expression is of similar form, but the factor is less than \ if p is the

maximum intensity of stress. Some particular cases will be noticed later.

Proof Resilience. The greatest strain energy which can be stored

in a piece of material without permanent strain is called its proof
resilience. If/ is the (uniform) intensity of stress at the elastic limit

or proof stress, the proof resilience is then

f
i^pr x volume
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This is represented in Fig. 46 by the area OP'N' for a material obeying
Hooke's Law.

The proof resilience is often stated as a property of a material, and
is then stated per unit volume, viz.

,/*

Strain Energy beyond the Elastic Limit. As mentioned in Art. 5,

beyond the elastic limit a small portion of the strain is generally of an
elastic character. Fig. 37, Art. 32, shows
that the ratio of stress to elastic or nearly
elastic strain during ductile extension is

not greatly different from that in purely
elastic strain

;
in other words, it is nearly

equal to the original stretch modulus.
Hence the strain energy, or what may be ^
called the "

resilience beyond the elastic I

limit," is approximately

\ ^ X volume
XL.

and is represented by the area P"N"Q in

Fig. 47, P"Q being approximately parallel
to P'O and nearly straight. This quantity
is obviously very different from the work

Extension

FIG. 47.

done in reaching the stress / under a steadily increasing load, which
is represented by the area OP"N" and cannot be called resilience.

43. Live Tensile Loads within the Elastic Limit. If a tensile

load is suddenly applied to a bar and does not cause a stress beyond
the limit of elasticity, the bar behaves like any other perfect spring,
and makes oscillations in the tension, the amplitude on either side of

the equilibrium position being equal to the extension which would be

produced by the same load gradually applied. Hence the maximum
instantaneous strain produced is double that which would be produced
by the same load applied gradually.

Suppose, for example, that a tensile load W is suddenly applied to

a bar of cross-sectional area A. The instantaneous strain produced is

and the instantaneous intensity of stress produced is

which is twice that for a static or gradually applied load W. It is here

assumed that the stress-strain curve (or value of Young's modulus)
within the elastic limit is independent of the rate of loading, which

is probably nearly true.

The instantaneous stress-strain diagram is shown in Fig. 48. Its

area is proportional to
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JE^ or l
E

which is the work for unit volume of material.

If a bar already carries, say, a "dead" tensile load W
,
and

another "
live

"
load W of the same kind is applied, the greatest stress

reached, provided the elastic limit is not

exceeded, will be

si

3*
Si

Wo
A

2W
A A

change of load

If, on the other hand, the live load W
causes a stress of opposite kind (say com-

pressive) to that already operating, the in-

stantaneous stress would be

Wn W change in load

A
the statical load

2W
A

or z

- - e - -

Strain,
FIG. 48.

A A ' A
EXAMPLE. Find

which would produce the same maxi-
mum stresses as (a) a tensile dead load of

40 tons and a tensile live load of 10 tons
;

(b) a tensile dead load of 20 tons and a

compressive live load of 30 tons.

(a) Equivalent static load = 50+ 10= 60 tons tension.

(b) Equivalent static load = 20 30 30 = 40 tons, i.e. 40 tons

compression.
44. Impacts producing Tension. If an impulsive tensile load, such

as that of a heavy falling weight, is applied

axially to a light bar and the limits of pro-

portionality of stress to strain are not ex-

ceeded, the strain energy taken up by the

bar is equal to the kinetic energy lost by
the falling weight if all the connections except
the bar are infinitely rigid.

If a heavy weight W Ibs. (Fig. 49) falls

through a height h inches on to a stop in

such a way as to bring a purely axial tensile

stress on a bar of length / inches and cross-

section A square inches, causing a stretch

S/, strain
<?,
and an instantaneous tensile stress

of intensity /, then, if the stop, the falling

weight, and the supports of the bar be

supposed infinitely rigid

L.

FIG. 49.

+ S/)
= p> X A X S/, or fF . S/

where F is the equivalent statical load on
the bar in pounds, and E is the stretch

modulus of elasticity in pounds per square inch
; hence
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+ 8/)
= p> X A X el

=
\TL<? x volume of bar

or, since - =
e, W(^ + oY)

=
g
X volume of bar

volume of bar
"

volume

approximately when 6Y is very small compared to the fall /t.

From this p may be calculated if E is known. If, as a particular

case, we take // = o, the equation becomes

2 = 2EW87
__

W 87 _ W W

as in the previous article.

Taking account of the loss of energy at impact consequent on the

inertia of the bar, from the principle of the conservation of momentum,
the velocity v of the weight W and the free end of the bar immediately
after impact may be found by assuming the stretch to be distributed as

for a static load W, as if the tension were to spread instantaneously

throughout the length. Thus if w = weight of bar,

I J o/ VV -f- ^w
The total kinetic energy after impact is

K.E. = i\Vz

Then equating this kinetic energy plus the gravitational work done byW and w to the gain in strain energy,

p =' A
w

If / = o, / =
2-^-

as in the previous article and above. If h is

large compared to the extension $/, the term in/ vanishes, and

AE"V /A'

It is not unusual to assume that the stretch modulus is the same
for impulsive or very quick loadings as in a static test, although this is

not certain. In this connection reference may be made 1 to impact
experiments by Prof. B. Hopkinson, showing purely elastic stresses and
strains much beyond those usually associated with the limits of elasticity,

1 Proc. Roy. See., Feb., 1905. See also "Some Experiments on Impact," in

Engineering, April 30 and May 7, 1909.
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provided the time during which the stresses exceeded this limit is of

the order of T^oo second or IGSS - Whether the relation of stress to

strain is the same for such quick rates of applying stress as for rates

several thousand times slower is unknown.
EXAMPLE. If the impact produced by a falling weight of 2 cwt. is

wholly taken up in stretching a steel bar i^ inches diameter and 10 feet

long, find the extension and the intensity of stress produced, E for steel

being 30 x io6
Ibs. per square inch, and the height of fall before

beginning to stretch the bar being 2 inches.

If x = stretch in inches, energy equation in inch-lbs.

120 4

0*00203 = o, x = 0*0455 incn

stress intensity
=- X 30 Xio6 = 11,370 Ibs. per square inch

45. Resistance to Shocks. The capacity of a piece of material to

take up the energy of a blow is evidently some guide as to its suitability

for constructions subject to shocks. A question of interest arises as to

whether the proof resilience, or the total work done in fracturing the

piece, is the better criterion. Several points deserve consideration.

(1) A measure of capacity to resist blows without permanent injury
is the proof resilience or energy stored up to the elastic limit, which is

proportional to the area P'N'O, Fig. 46. This quantity being determined
from a static or slow-loading test, will only accurately measure the

capacity to resist blows without injury provided the magnitudes of the

strains are independent of the rate of application of stress.

(2) The total work done in fracturing material is a guide to its

capacity when not previously overstrained to resist fracture by a single
blow. Whether this is the same for very quick loading as for slow

loading depends on whether the non-elastic strains and stresses are the

same in the two cases probably both the extreme stresses and strains

are generally greater for very quick rates of loading, and consequently
resistance to fracture is greater.

(3) There is no necessary relation between the proof resilience and
the work done in fracturing a material, either slowly or quickly by a

single application of stress, or by repeated stresses.

In fracture by repeated equal or unequal blows, the total energy

expended will evidently not be the same as in the case of fracture by
one blow. If a single blow of energy proportional to the area OP'P"N",

Fig. 47, produces a stress proportional to P"N", the elastic strain energy
will be proportional to some area such as P"N"Q. The resulting

hardening (Art. 32) will increase the capacity to take up elastic strain,

but this will involve the production of higher stresses from a given
blow. The capacity to absorb shocks by plastic strain, after being
thus diminished, may be considerably restored by annealing, as in the

case of lifting chains, etc.

The relation of the total energy expended up to fracture after

several shocks, to that for fracture by a single shock, will evidently
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not be simple, and will depend on the magnitude of the various shocks

and the amount of hardening resulting. Also the energy of a final

blow producing fracture after other lesser blows will evidently depend
on the magnitude of the previous blows a fact sometimes lost sight of

in testing materials to destruction by repeated blows of increasing

magnitude, and estimating the resisting capacity by the energy of the

final blow.

The energy stored up to the elastic limit, or the work done in

fracturing a material when all of it is under the same intensity of stress,

is most conveniently expressed per unit volume of the material, and as

such is a property of the material. But for different-shaped pieces
under a given straining action, the distribution of stress is different, and
the resilience or work done during straining to fracture is different,

being partly a function of the geometrical form. For

example, two such pieces as A and B of the same A e

material (Fig. 50) would show a very different proof

resilience; the piece B would have a smaller actual

resilience than the piece A, and a still smaller resili-

ence per unit of volume than piece A.

Let f be the intensity of the proof tensile (or

compressive) stress for the material, i.e. the intensity
of stress at the elastic limit. Then, since the mini-

mum cross-section of B is the same as that for A,
the total proof load carried by either piece will be the

same
;
the stretch of B is evidently less than that of

A, and hence the resilience, which is half the product
of the load, and the stretch is less for B in proportion as the stretch is

less. The ratio

^ i

stretch ofB i + i X 4

the stress in the lower part of B being only \f.

The resilience of A is (Art. 42)

l-^X
volume =

J.^.^X
6

The resilience of B is

f' *
for upper part, i inch diameter, J ^

-
. 3

for lower part, 2 inches diameter, \ *{r . 4- 3 = 3 ^r
~

* ?
*

-
li, 4 -U. 4

Total,
l-J.J.jj

And the ratio

resilience of A 6
TTT jr-= = = " = i'6 (as above)

resilience of B
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That is to say, the piece of the form A is capable of absorbing 60 per
cent, more energy as elastic strain without permanent set than the

piece B, which contains a greater volume of the same material.

To compare the two forms per unit of volume

volume of A
__

'6 X i
9

volume of B (3 X i) + (3 X 4)
=

* r
'

4

resilience of A per unit volume i '6

nence, rr.
-

^jr-:
-

;
- = = 4 to i

resilience of B per unit volume o'4

To put the comparison of the two pieces in another way, if the

piece B just reaches an elastic stress f, as above, by storing as strain

energy the above amount of work

from an impulsive load, say, the piece A in receiving the same energy
would reach only a lower stress /, such that (using the previous

expressions)

i/; 6 _i/
1
5 ,

*EV -*'E V 3* /2
-

That is, the intensity of stress induced by a given action is 21 per cent.

less in a piece (A) containing 60 per cent, less material, because the

whole length, instead of only a portion of the length, yields in full

measure under the action.

From the foregoing comparison in a rather extreme case, it will at

once be evident what ground there is for reducing the section of the

shank of a bolt, subject to shocks or sudden loads, down to that at the

bottom of the screw threads. To leave the shank of larger section

than that at the minimum in the screwed portion, is to concentrate the

effect of impulsive forces on the weakest portion of the bolt, and to

increase its straining effect there.

46. Fatigue of Metals. It has been found by experience that

metals used in construction ultimately fracture under frequently repeated
stresses very much lower than their ultimate statical strength. Further,
that if the stresses are not merely repeated, but reversed, that is, the

material is subjected to repeated stresses of opposite kinds, the resist-

ance to fracture is less than if the same intensity of only one kind of

stress were repeated. In such cases the material is often said to have

become "
fatigued." Since the cause of failure under varying stress is

still imperfectly understood, it is doubtful whether the term fatigue of

the whole of the metal gives a correct idea of what occurs to the

material.

It may be pointed out that the treatment to which metals are

subjected in slowly or quickly repeated variations of stress is quite
distinct from the blows or impacts mentioned in the previous articles.



ART. 47] RESILIENCE AND FLUCTUATING STRESS. Jl

Since 1864, when Fairbairn published in the Philosophical Trans-

actions of the Royal Society results of some experiments on this subject,

many important researches upon it have been carried out, and others

are at present in progress. Some mention of the most important will

now be made : the term cf

varying" stresses must be understood to mean
stresses of the same kind, fluctuating between a maximum and a

minimum value, whilst the term "reversed" stresses will be reserved

for fluctuations from one kind of stress to that of an opposite kind,

(,g. from tension to compression.
47. Wtihler's Experiments.

1 Much light is thrown on the behaviour

of iron and steel under fluctuating stresses by the lengthy researches of

Wohler. The experiments included torsional, bending, and simple direct

stresses. The most important deductions from these experiments are :

(i) That the resistance to fracture under fluctuating stresses depends
within certain limits on the range of fluctuation of stress, i.e. upon the

algebraic difference between the maximum and minimum stress, rather

than upon the maximum stress; and (2) That reversed stresses (tensile
and compressive) much below the static breaking stress, and even well

within the ordinary elastic limit, are sufficient to cause fracture if repeated
a great number of times.

The second point may be illustrated by the following Table I. and

Fig. 51. The material selected is an axle-iron made by the Phoenix Co.,
and subjected to equal and opposite tension and compression produced
by bending action on a rotating bar. The ultimate strength of this

material, as determined by ordinary statical tension tests, was about

23 tons per square inch, and the elongation about 20 per cent.

TABLE I.

(STRESSES IN TONS PER SQUARE INCH.)

Maximum stress

(tension).
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repetitions necessary to cause fracture as abscissae. For an indefinitely

great number of repetitions the curve approaches a value of about

15*2 tons per square inch range, corresponding to a maximum tensile

or compressive stress of about 7'6 tons per square inch, a value probably

30

20

Repetitions
FIG. 51.

well below the ordinary elastic limit of the material. The range is

called the "
limiting range of stress," for which the number of repetitions

necessary to cause fracture becomes infinite.

These results, although rather more regular than some others, may
be regarded as typical in character of those for wrought irons and steels

of various strengths. The harder high carbon steels show a higher

limiting range of stress than the softer or milder steels.

The dependence of endurance under fluctuating stress upon the

range of stress may be illustrated by the following table (II.) of results

of pure tension tests of the above metal :

TABLE II.

(STRESSES IN TONS PER SQUARE INCH.)

Maximum stress.
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Here the limiting maximum stress for repeated stresses is about

15*28 tons per square inch with application and complete removal of

the load, and about 21 tons per square inch when only about half the

load is removed. Thus the limiting maximum stress for the three

types of fluctuating load are somewhat as follows :

Kind of repeated load.
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TABLE III.

[CH. III.

Material and tenacity.
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limits, but these were, even in Wohler's experiments, a smaller propor-

tion of the higher tenacities (see last column of Table III., Art. 47).

4-56
(uvTiiincLreds of

FIG. 52.

49. Stanton and Bairstow's Experiments.
1 These were made at

the National Physical Laboratory upon irons and steels in common
use by means of a throw-testing machine acting upon the same principle
as that of Reynolds and Smith, but taking four specimens simultaneously.
The reversals were at the rate of 800 cycles per minute, and the ratio

of tensile to compressive stress varied from 1*4 to 072 (
to f) with two

intermediate (reciprocal) proportions.
The inquiry also included the relative limiting resistance to fracture

under reversed stresses of material in various forms, some of which had

rather abrupt changes of section, such as in screw threads, etc.

Perhaps the most surprising result of these experiments was that

the values obtained for the limiting ranges of stress agreed, so far as it

was possible to compare the materials used, with those of Wohler and

Bauschinger made at about 60 cycles per minute rather than with those

1 " On the Resistance of Iron and Steel to Reversals of Direct Stress," Proc. Inst.

C.. y 1906, vol. clxvi. p. 78. See also "Elastic Limits of Iron and Steel undei

Cyclical Variation of Stress," by L. Bairstow, Proc. Roy. Soc., vol. A. 82, p. 483.
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of Reynolds and Smith at from 1400 to 2400 per minute; apparently
the change in speed from 60 to 800 does not seriously lessen the

resistance to reversals of stress. In fact, the reversal limits reckoned
for one million reversals were on the whole distinctly higher proportions
of the tenacities than in Wohler's experiments. Also the greater resist-

ance of the harder steels compared to the more ductile ones as found

by Wohler at 60 cycles per minute was maintained at 800 per minute.
Within the considerable limits mentioned above (1*4 to 072) the

ratio of tensile stress to compressive stress does not seriously affect the

limiting range of stress for wrought iron.

The specimens having a sudden change of section showed diminu-
tion in the limiting range of stress, the diminution being greater in the

harder than in the more ductile metal
;

the reduction was to 48 per
cent, of the maximum for a rather hard Bessemer steel and to 65 per
cent, of the maximum for the mildest steel, with intermediate proportions
for other materials. Specimens having less abrupt changes of section

showed diminished resistance in a smaller degree.
The research of Dr. Stanton and Mr. Bairstow also included the

relation of the limiting range of stress to elastic limits as modified by
repeated reversals of stress referred to in Art. 52, and microscopic

investigation of the changes which take place in the material during
the reversals of stress referred to in Art. 53.

50. Other Experiments on Reversal of Stress.

Rogers' Experiments^ These experiments included an investiga-
tion of the effect of annealing upon the endurance of steel under re-

versals of stress. It was found that annealing generally reduced the

number of reversals sustained.

The effect of heating steel which had already sustained a large
number of reversals was also investigated ;

no restoration of resisting

power was observable in steel fatigued beyond a certain point, a result

noted by other experimenters. (See also Art. 53.)
Arnolds Experiments? Professor Arnold has investigated the

endurance of specimens of metal by subjecting them to bending to and
fro through a standard distance on a fixed length (see Art. 182). The

intensity of stress produced at the first bending is in his test beyond
the elastic limit, and at subsequent strains will vary in a complex and
incalculable manner as the capacity of the metal to withstand the

alternating stress gets used up and as the elastic limit changes. The
strains produced being large, the number of alternations necessary to

produce rupture is comparatively small, and consequently the method
offers a quick way of investigating the relative capacity of different

metals to withstand such treatment as they are subjected to in Professor

Arnold's machine. This capacity to withstand the complex stresses

corresponding to repetitions of a constant deflection in bending does not

1 " Heat Treatment and Fatigue of Iron and Steel,"Journal of Iron and Steel

Institute, No. I for 1905.
2 Brit. Assoc. Report, 1904. Also Proc. Inst. Mech. Eng., 1904, parts 3 and 4,

p. 1172, and a paper read before the Institute of Naval Architects, April, 1908. See

Engineering Q\ Engineer , April, 1908.
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correspond to the capacity to withstand repetitions of straining actions,
which cause much lower stresses. It may be that the former in some
cases is the better index of quality or suitability of a metal for a

specified purpose. Professor Arnold's test does not, however, determine
the limiting range of stress for an infinite number of reversals, which is

perhaps the most important result of the Wohler test.

Eden's Experiments. Messrs. Eden, Cunningham and Rose,
1 ex-

perimenting on a rotating beam to find the limiting range of stress to

withstand a million reversals, were unable to detect any diminution
with increase of speed from 250 to 1300 revolutions per minute.

51. Limiting Stress with Various Ranges of Fluctuation. The
relation between the limiting values of the maximum stress for different

ranges of stress when, as in Wohler's experiments, the ratio of maximum
stress to minimum is varied over a very wide field, may be shown in

various ways graphically or algebraically. The three quantities, maximum
stress intensity (say tensile) /,., minimum stress intensity/min . (reckoned

negative if compressive), and the range of stress A, are evidently con-

nected by the equation, A =/11!tx . /mln .

The relation between these three quantities for practically an infinite

number of stress fluctuations may be illustrated by the results of one of

Bauschinger's tests of mild steel boiler plate, given in Table III., Art. 47,
viz.

/max. /min. A
(a) 26-6 26-6 o

(b) 22-55 *3'3 9^5
(t) i.T8 o 15-8

(d) +8-65 -8-65 17-3

Fig. 53 shows these values of /nax and of A plotted as ordinates

against the values of /min .

as abscissae. Perhaps the relation between
the three quantities is better illustrated by Figs. 54 and 55, where both

/max . and/min .
are measured vertically, and A, the range, is the vertical

distance between the two curves. The portions de and d'J are mere

speculations, but Stanton's results make it appear that about the portion
dd! of either figure the range is about constant, i.e. that de and d'e' are

nearly parallel. Obviously the range must decrease again with higher

compressive stress, but experimental evidence is lacking, this portion of

the curve being of least practical importance. The shaded area is such
that if both maximum and minimum stress fall within it the material

will stand unlimited repetitions or reversals of stress, as the case may
be, without fracture. Various empirical formulae have been suggested to

express the relations between the quantities/max .
and A from the experi-

ments of Wohler, Bauschinger, Spangenberg, and others. Of these, the

best known are the formulae of Weyraugh
2 and Launhardt, and Gerber's

parabolic relation.
3 The last is expressed by the equation

where / is the ultimate static strength or tenacity of the material,

1 " Endurance of Metals," Proc. Inst. M.E., 1911.
2 Proc. Inst. C.E., vol. Ixiii.

3 See Unwin's " Elements of Machine Design," vol. i. chap. ii.
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and n is a constant to be determined from experimental results. The
value of n is found to vary from about 1*4 for ductile metals to above 2

for more brittle ones, its value for ductile metals of construction being

generally about 1*5. This value gives a " reversal limit" of /, and a

repetition limit of o'6i/.

The value 1*53 is the mean value of n deduced from the results for

mild steel boiler plate quoted above, and points intermediate between

GOh

m m

-20
FIG. 55. Limiting ranges of stress.

the experimental values at (), (b), (<:),
and (d) have been calculated in

plotting Figs. 53, 54, and 55, from which it will be noticed how closely

the empirical relation fits the few observed points. How far such

calculated results may be relied upon is doubtful, and in any case

values of the maximum limiting stress between a and c considerably

exceeding the elastic limit, although of considerable scientific interest,

are not of great practical importance, since stresses which would pro-

duce considerable strains cannot be used in machines or structures.

The most important practical relations, then, are those between the
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repetition limit (minimum stress zero) and the reversal limit (equal and

opposite tension and compression), shown in the area cdef^ Figs. 54
and 55, and over this region the variation of the stress is not great.

1

Stanton and Bairstow's experiments seem to show that for wrought

iron, for some distance on either side of dd' the range A is practically

constant.

Owing to want of sufficient data the curves of Figs. 54 and 55 are

sometimes taken as straight lines, with a repetition limit of half and a

reversal limit of one-third the statical tenacity, these being average values

FIG. 56.

tor a variety of materials. The limiting range is as shown by vertical

ordinates of the shaded area in Fig. 56. The divergence of the lines

of maximum and minimum stress does not greatly alter the range in

the immediate neighbourhood of the reversal limit, and the method at

least possesses the merit of simplicity. The relation is algebraically

expressed by the equation

/ma,=/-A
52. Explanations of Failure under Fluctuating Stress. Many

attempts have been made to explain or to throw some light upon the

1 See remarks by Sir Alex. Kennedy in Proc. Inst. C.E. t 1906, vol. clxvi. p. 120.
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failure of metals under repeated fluctuations of stress, as found by

general experience and the experiments quoted in the preceding
articles, and whilst there is no complete and satisfactory explanation
of the phenomena observed, the various theories are interesting and
instructive.

Natural Elastic Limits. It is well known (see Art. 32) that the

limit of elasticity may be raised by the application of stress and strain,

and that the processes which wrought metal undergoes in manufacture

produce an elastic limit thus artificially raised. Bauschinger found that

after repeated stresses above the primitive elastic limit, the elastic

limit generally rose somewhat. If the repeated stress was less than the

new elastic limit to which the material was raised, Bauschinger found

the material would stand an unlimited number of such repetitions.
1

By the application of reversed stresses in a statical experiment the

elastic limit was sometimes lowered, and these modified values for both

tension and compression he considered to be the natural elastic limits

of the material. He suggested that these natural elastic limits were
coincident with the limits of stress for an indefinite number of stress

reversals.

Stanton 2 and Bairstow found that after pieces of material had
suffered over a million reversals of stress, the elastic limit in tension

was considerably below its primitive value, being slightly within the

greatest tension which had been applied in the reversals, and that

in compression was slightly outside the greatest compressive stress

which had been applied ;
the limiting range of stress was practically

equal to the total elastic range taken up by the material as a result

of the fluctuating stresses. This offers considerable confirmation to

Bauschinger's suggestion. If this theory, that for an indefinite number
of reversals the limiting range of stress is coincident with the elastic

range, is correct, Wohler's and other results showing fracture with

stresses much within the primitive elastic limit are in a considerable

measure explained, for permanent strains, however small, especially if

localised, might well cause fracture. It is, however, a remarkable fact

that Bauschinger, and later Smith, found that static tests of specimens
which had resisted a large number of fluctuations of load showed no

diminution, but a slight increase, in tenacity.
If we regard the natural limits of elasticity as fixed for complete

reversals of stress, it does not necessarily follow that the range between
these natural limits is of equal magnitude for repetitions of one kind of

stress, and experiments on this point are lacking. From some experi-
ments made by Bauschinger,

3
it appeared that raising the tensile elastic

limit lowers the compression limit, but this cannot be regarded as proved,
and there is some evidence that raising the tensile limit, in a static

test at any rate, may ultimately either raise or lower the compression
limit.

4

1 See Unwin's "Testing of Materials," pp. 353 and 364, 2nd edition.
2 Proc. Inst. C.E., 1906, pp. 96 and 104.
* Unwin's "Testing of Materials," p. 360, 2nd edition.
* See a paper by Muir, Proc. Roy. Soc. A., vol. Ixxvii. p. 277.

G
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Hysteresis at Low Stresses. By experiments on long wires, Ewing
has found l

that for stress much below what is usually regarded as the

elastic limit the strain is not strictly proportional to the stress, or that

there is a lag of the strain during gradual loading; during unloading

there is a lag in the diminution of strain so that a stress-strain diagram

encloses a loop the width of which, at any given stress, is the difference

of strain between the unloading and

loading curve (see Fig. 57). In Prof.

Ewing's experiments the width of the

loop at the middle was of the order of

3^0 of the greatest strain. The lag in

strain between cycles of fluctuating
stresses may cause a material at com-

paratively low stresses to accumulate

considerable local strains, and suggests
some explanation of fracture under re-

peated fluctuations of stress.

An ingenious theory built mainly on
this basis has been worked out by Mr.
Frank Foster.

2
It explains the larger

limiting range, but lower maximum limit-

ing stress for reversal than for mere

repetition of load, and also the lower

limiting stresses at higher rates of reversal, as found in Smith's

experiments.

Dynamic Effect of a Live Load.\\. has been suggested that the

effect of repeated fluctuations of load in producing rupture is due to

the fact that the load is not very gradually applied, and that the stress

produced is really greater than that supposed. The lower limiting

range of stress at high rates of fluctuation, as in Smith's experiments,
lends some support to such a theory. But the condition of metals, as

determined by static tests of the elastic limit and tenacity after a large
number of fluctuations, does not support the complete explanation by
dynamic action such as may take place in a perfectly elastic body (see
Arts. 43 and 44). Such an explanation giving a reversal limit of one-

third and a repetition limit of one-half the tenacity (compare last para-

graph of Art. 51, and Fig. 56) has been advanced, but any such expla-
nation would have to take account of the fact that ductile metals under

fluctuating stress often fracture without measurable elongation or

alteration of area, whilst the tenacity is usually reckoned from statical

experiments by the arbitrary standard of nominal stress on the original

area, which is not the actual stress at rupture (see Art. 29).

Critical Periods. It is quite probable that the coincidence of some
natural period of vibration of a member of a machine with that of a

periodic force impressed upon it may account for fractures which occur

in practice (see Art. 160). The augmented amplitude of vibration in

1 Brit. Assoc. Report, 1899, p. 502.
2 Memoirs and Proceedings Manchester Lift, and Phil. Sec., vol. xlviii.

Jan., 1904.

pi.
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such a case may well cause permanent strain, the cumulative effect of

which may be very important in injuring the metal.

53. Microscopic Investigation. Much attention has recently been
devoted to the microscopic examination of specimens of steel which
have fractured under repeated fluctuation or reversal of stress. It is

believed that fracture ultimately takes place by the development of

microscopic flaws into cracks by the concentration of stress produced
at the edges of the region of the flaw, which gradually spreads until it

leads to fracture.
1 Such a theory would explain the circumstance that

material quite close to the area of fracture retains its full tenacity.

Experiments of Ewing and Humphrey? These included a micro-

scopic examination of Swedish iron at intervals during the application
of a sufficient number of reversals of stress to cause fracture. The
observations showed that slip bands (see Art. 24) often appeared on
some crystals after a comparatively small number of reversals of stress

below the original yield stress, just as they do in plastic yielding.
With further reversals the slip bands increase in number as well as

broadening. Finally the numerous broadened slip bands developed
into cracks across the crystal. These cracks quickly spread from

crystal to crystal and quickly brought about fracture, probably, as

mentioned above, by tearing at the edge of the crack due to a concen-

tration of stress.

The experimenters attribute the formation of cracks to the destruc-

tion of cohesion by the grinding action on the cleavage planes (see
Art. 24 on Microscopic Observations), along which slipping to and fro
takes place in reversals of stress. Considerable evidence in support of

this view is found in the production of a roughened surface of metal

due to burring of the edges at the slip lines.

Stanton and Bairstow also examined microscopically some of their

specimens (Art. 49) and traced the development of micro-cracks from

slips in the crystalline grains of the metal.

Evidence of the existence of cracks in the metal previous to actual

fracture was found by Rogers in the research referred to in Art. 50.

Specimens which had been subjected to heat after a great number of

reversals of stress, on subsequently being fractured by further reversals

showed, on the surface of fracture, heat tinting in patches, indicating
that when subjected to heat there had been cracks the sides of which
had suffered slight oxidation.

54. Factors of Safety for Varying Stress. The various experi-
ments on fluctuating stress, as well as the results of general experience
in the design and use of structures and machines, point to the use of

different working stresses according to the nature of the straining
actions to be endured.3

If a factor of safety or ratio of ultimate statical

strength to working stress of, say 3, be sufficient for mild steel to cover

accidental and uncalculated straining actions, errors of workmanship,

1 See Andrews on "
Microscopic Internal Flaws inducing Fracture in Steel,"

Engineering, July, 1896.
* Phil. Trans. Roy. See., vol. 200.
* See Report of Brit. Assoc., 1887, p. 424.
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deterioration, and such contingencies for a steady, unvarying load,
then if the same allowance be made for similar contingencies in

mild steel subjected to reversals of an appropriate working stress, the

maximum stress would be \ of the reversal limit of stress, or about \ or

\ of the ultimate statical strength, since the reversal limit is about from

30 to 40 per cent, of the ultimate statical strength (Table III., Art. 47).
The factor of safety as above defined would then be 8 or 9.

Unwin gives the following table of factors of safety for different

materials and circumstances :

TABLE OF FACTORS OF SAFETY.

Material.
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before beginning to stretch the bar in order not to produce a greater stress

than 14 tons per square inch.

8. Two round bars, A and B, are each 10 inches long ;
A is I inch

diameter for a length of 2 inches and | inch diameter for the remaining
8 inches. B is I inch diameter for 8 inches and f inch diameter for a

length of 2 inches. If B receives an axial blow sufficient to produce a stress

of 15 tons per square inch, find the stress produced by the same blow on A.
How much more energy could A absorb in this way than B without exceed-

ing any given stress within the elastic limit ?



CHAPTER IV.

THEORY OF BENDING.

55. Beams and Bending. A bar of material acted on by external forces

(including loads and reactions) oblique to its longitudinal axis is called

a beam, and the components perpendicular to the axis cause the strain-

ing called flexure or bending. This and the following four chapters
deal only with beams which are straight or nearly straight. As beams
are frequently horizontal, and the external forces are weights, it will be
convenient to speak always of the beams as being horizontal and the

external forces as vertical, although the same conclusions would hold
in other cases. Members of structures are often beams as well as

struts or ties; that is, there are some transverse forces acting upon
them in addition to longitudinal ones.

56. Straining Actions on Beams. Shearing Force and Bending
Moment. Before investigating the stresses and strains set up in

bending, the straining actions resulting from various systems of loading
and supporting beams will be considered.

W W,

W,
^
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keeps A in equilibrium consists of the forces Wlf W 2 ,
W3,

and R
a ,

together with the forces exerted on A by B across the section X in

virtue of the state of stress in the beam. We may conveniently con-

sider these latter forces by estimating their total horizontal and vertical

components and their moments. Applying the ordinary conditions

of equilibrium
l from statics, we conclude

(1) Since there are no horizontal forces acting on the piece A except
those across the section X, the algebraic total horizontal

component of those forces is zero.

(2) Since the algebraic sum of the vertical downward forces

on A is

Wl + W9 + W, - R,

the total or resultant upward vertical force exerted by B
on A is Wj + Wa -f W3 Rlt which is also equal to an

upward force

R2 -(W4 + W6)

Shearing Force. The resultant vertical force exerted by B on A
is then equal to the algebraic sum of the vertical forces on either side

of the plane of section X ;
the action of A on B is equal and opposite.

This total vertical component is the shearing force on the section in

question.

(3) If the distances of W1} Wai W3 ,
and Ra from X be /lt 4 / and

#! respectively, the moment of the external forces on A about

the section X is

M = R^ - W/a
- W,A - W/3

which is also equal to W/4 -f W6/5 R^, and is of clock

wise sense if the above expressions are positive. The
moment exerted by B on A must balance the above sum,
and is therefore of equal magnitude.

Bending Moment. The above quantity M is the algebraic sum of

the moments of all the forces on either side of the section considered,
and is called the bending moment. The balancing moment which B
exerts on A is called the moment of resistance of the beam at that

section. The statical conditions of equilibrium show that the moment
of resistance and the bending moment are numerically equal.

57. Diagrams of Shearing Force and Bending Moment. Both

shearing force and bending moment will generally vary in magnitude
from point to point along the length of a loaded beam; their values

at any given cross-section can often be calculated arithmetically, or

general algebraic expressions may give the bending moment and

shearing force for any section along the beam. The variation may
also be shown graphically by plotting curves the bases of which

represent to scale the length of the beam, and the vertical ordinates

the bending moments or shearing forces, as the case may be. Some

simple typical examples of bending moment and shearing-force curves

1 See any text-book on Statics, or the author's " Mechanics for Engineers
"

(Longmans).
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follow in Figs. 59 to 69, inclusive. In each case M represents bending
moment, F shearing force, and R reaction or supporting force, with

K- - .V -T *----;---
LOADING

SHEARING
FORCE

BENDING MOMENT

FIG. 59. Cantilever with end load.

appropriate suffixes to denote the position to which the letters refer.

Other cases of bending-moment and shearing-force diagrams will be

SHEARING
FORCE

BENDING MOMENT

FiG. 60. Cantilever with several loads.

dealt with later (see Arts. 84-91). In the case of moving loads the

straining actions change with the position of the load : such cases are
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dealt with in books on the Theory of Structures. When a beam carries

several different concentrated or distributed loads the bending moment

LOADING
[ J wper inch

L ~

FIG. 61. Uniformly loaded cantilever.

i LOADING

Wper inch, run,

Wl' SHEARING FORCE

FIG. 62.

BENDING MOMENT

SHEARING FORCE

BENDING MOMENT

at any and every cross-section is the algebraic sum of the bending
moments produced by the various loads acting separately. In plotting
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the diagrams it is sometimes convenient to add the ordinates of

diagrams for two separate loads and plot the algebraic sum, or to plot
the two curves on opposite sides of the same base-line, and measure
resultant values (vertically) directly from the extreme boundaries of

the resulting diagram.
The two methods are illustrated in order in Fig. 62. Figs. 59, 60,

p-1-^
* --/&- ' ^1

^-^

7 LOADING

D wR2~2

L SHEARING FORCE

BENDING MOMENT

FIG. 63. Freely supported beam with central load.

61, and 62 represent cantilevers, i.e. beams firmly fixed at one end
and free at the other. Figs. 63, 64, 65, and 66 represent beams resting

freely on supports at each end, and carrying various loads as shown.

In calculating the shearing force or bending moment at any given point,

or obtaining a symbolic expression for either quantity for every point
over part or all the length of the beam, the first step is usually to find

@
T ^^ LOADING

f
^SHEARING FORCE

BENDING MOMENT

FIG. 64.

the value of the unknown supporting forces or reactions (Rx and R2).

These can conveniently be found by considering the moments of all

external forces about either support, and equating the algebraic sum
to zero. When all the external forces are known, the shearing force

and bending moment are easily obtained for any section, the former

being the algebraic sum of the external transverse forces to either side
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of the section, and the latter being the algebraic sum of the moments
of the external forces to either side of the section.

The question of positive or negative sign of the resulting sums is

arbitrary and not very important; but in a diagram it is well to show

LOADING
"% Wperinch run

FIG. 65. Freely supported beam with uniformly distributed load.

opposite forces and moments on opposite sides of the base-line. Take
the case in Fig. 66 fully as an example. The load is uniformly spread
at the rate of w per inch run over a length c of the beam. The
distances of the centre of gravity of the load from the left- and right-

r+*3cr--

"T^fi-
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The shearing force (F) from the left support to the beginning of

the load is equal to Ra .

Over the loaded portion, at a distance x from the left end, i.e. from

c
,

c
x = a -- to # = # + -,

2 2

-
(
a -

j ) }
=
wcj

- wx + w
(

- C
-

or,

which equals zero when x = c-, + a .

For the remainder of the length to the right-hand support the

shearing force is numerically equal to R2 ,
or algebraically to Rx we,

( cb \ (b-I\ a
F = w(~7 c

)
or wc

( T~ J or wej

The bending moment (M) at a section distant x from the left-hand

end to the beginning of the load, i.e. if

'

x is less than a --
, estimating

moments on the left of the section, is

Mx = Rj . x = wcj x (a straight line)

Over the loaded portion, i.e. if x is greater than a -- and less

than a + ~>
2

w

The first term is represented by the left-hand dotted straight line,

and the second by the. distance between the curve and the straight

line, and the value Mx by the vertical ordinate of the shaded diagram.

To the right of the load, i.e. when x is greater than a -f- -, esti-

mating to the left

Mx
= Rj . x - wc(x

-
a)

= wc.j-x wc(x a)

or, M,, = wca wcx( i j J
or wca we -

j
a = we -.(I x)

R 2(/
-

x) (a straight line)
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which is much more simply found by taking the moments of the sole

force R2 to the right of any section in the range considered.

Fig. 67 represents a beam symmetrically placed over supports of

v.
LOADING

fR/=W

w/,

i..

SHEARING FORCE

T

W
i

BENDING MOMENT

FIG. 67.

shorter span, /2 ,
than the length of the beam, /2 -f- 2/lf and carrying

equal end loads. Between the supports the shearing force is zero and
the bending moment is constant.

Fig. 68 shows a beam of length /2 -f 2/, with a uniformly spread load

LOADING

-l, ~

\

,L

-A, lf A -l,- + wper mcti run
fJlj**cf4, % If

rfrx. ^ SHEARING FORCE

BENDING MOMENT

FIG. 68.

placed on supports /2 apart and overhanging them by a length 4 at

each end. The bending moment at the supports is
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Within the span at a distance x from either support the bending
moment is

M, = W(l, + X) X
l^-- - R!#

the first term of which is the bending moment at the supports, and the

second is bending moment for a uniformly loaded span of length /2

(see Fig. 65). The two terms are of opposite sign, and, provided /2 is

long enough, the bending moment will be zero and change sign at two

points within the span, viz. when Ma
= o, or

w w-
- A"

- ~*(4 - x) = o

x* _ * + = o

?>. at two points distant ^/ |(
-M 4

2

1 On either side of mid span ;

the two points are coincident (at mid span) if /2 = 2/l5 and do not exist

if /2 is less than 2/1} when the bending moment does not change sign.

Points of Contraflexure. Bending moments of opposite sign evidently
tend to produce bending of opposite curvature. In a continuous curve

of bending moments change of sign involves passing through a zero

value of bending moment, and this point of zero bending moment and

change of sign is called a point of inflection or contraflexure, or a

virtual hinge. The positions of the points of contraflexure for Fig. 68

have just been determined above from the equation M* = o.

58. Bending Moments from Link or Funicular Polygon. The
vertical breadths of a funicular or link polygon for a system of vertical

forces on a horizontal beam represent to scale the bending moments at

the corresponding sections. This is illustrated in Fig. 69, where the

link polygon has been drawn on a horizontal base by making the vector

fo in the vector polygon horizontal, i.e. by choosing a pole o in the same
horizontal line as the point f, which divides the load-line abcde in the

ratio of the supporting forces. The proof of the statement follows easily
from the similarity of triangles formed by producing the sides of the

link polygon, to the corresponding triangles in the vector polygon,
1 and

the scale of bending moment is / . q . h Ib.-inches to i inch where the

scale of force is / Ibs. to i inch, of distance q inches to i, and the

pole distance fo measures h inches. It is not necessary to draw the

diagram on a horizontal base, but the distance h must be estimated
1 For proof see the author's "Mechanics for Engineers," chap. x. (Longmans.)

Or "
Theory of Structures," where bending moments by graphical methods are more

fully treated.
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horizontally, and the ordinates of bending moment must be measured

vertically.

The shearing-force diagram is shown projected from the vertical

load-line of the vector polygon.
The same method of drawing the bending-moment diagram to as

close approximation as is desired is applicable to loads distributed

w,

r f

.

jc,
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i.e. the rate of change of shearing force (represented by the slope of the

shearing-force curve) is numerically equal to the intensity of loading.

M

JFJ FVl
I

F F+F
FIG. 70.

Or integrating between two sections x x apart

F F (the total change in shearing force)
= I w .dx

'
*0

or, F = F + Fw . dx
*o

taking appropriate signs for each term.

These relations for w = constant are illustrated in the shearing-force

diagrams of Figs. 61, 65, and 68.

Equating moments of opposite kinds, of all external forces on the

piece of length 8#, about any point in the left-hand section
^

M -f (F + 8F)8* -w.^xx~=M + 8U

&M = F$x, to the first order of small quantities

and dx

i.e. the rate of change of bending moment is equal to the shearing force.

Hence, integrating, the total change of bending moment from x to x
/.

Fdx, which is proportional to the area of the shearing-force

diagram between the ordinates at x and x. For example, this area is

zero between the ends of the beam in Figs. 63 to 69 inclusive, there

being as much area above the base-line as below it.

The relation (2) indicates that the ordinates of the shearing-force

diagram are proportional to the slopes or gradients of the bending-
moment curve. Where the shearing force passes through a zero value

and changes sign, the value of the bending moment is a (mathe-

matical) maximum or minimum, a fact which often forms a convenient

method of determining the greatest bending moment to which a beam
is subjected, as in Figs. 65, 66, and 68. In Fig. 66 the section at which
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the shearing force is zero evidently divides the length c in the ratio
"D

=\ or, using the expression given in Art. 57, F is zero at a distance

from the left support. At this point the bending moment is a maximum,
and its value is easily calculated.

Signs. It is to be noted that x being taken positive to the right

and w positive downwards, F has been chosen as positive in (i) when
its action is upwards to the left and downwards to the right of the section

considered. Hence, taking account of sign forces being reckoned posi-

tive downwards, the shearing force is equal to the downward internal

force exerted to the right of any section, or to the algebraic sum of the

upward external forces to the right of the section, or to the algebraic
sum of the downward external forces to the left of the section. Also M
has been chosen as positive in (2) when its action is clockwise on the

portion of the beam to the left of the section and contra-clockwise to

the right of the section. Hence the bending moment is equal to the

clockwise moment of the external forces to the right of a section or to the

contra-clockwise moment of the external forces to the left of the section.

It is evident that a positive bending moment will produce convexity

upwards and a negative bending moment convexity downwards.
Concentrated Loads. In the case of loads concentrated (more or

less) at fixed points along the span, the curve of shearing force (see Figs.

60, 62, 63, 64, 67, and 69) is discontinuous, and so also is the gradient
of the bending-moment curve. Between the points of loading, however,
the above relations hold, and the section at which the shearing-force
curve crosses the base-line is a section having a maximum bending
moment (see Figs. 63, 67, and 69). A concentrated load in practice is

usually a load distributed (but not necessarily uniformly) over a very
short distance, and the vertical lines shown in the shear diagrams at

the loads should really be slightly inclined to the vertical, there being
at any given section only one value of the shearing force.

EXAMPLE i. A beam 20 feet long rests on supports at each end
and carries a load of J ton per foot run, and an additional load of ij
ton per foot run for 1 2 feet from the left-hand end. Find the position
and magnitude of the maximum bending moment, and draw the

diagrams of shearing force and bending moment.
The loading is indicated at the top of Fig. 71 at ACB.
The reactions due to the \ ton per foot are 5 tons at A and B. For

the i J ton per foot load, the centre of gravity of which is 6 feet from A

(reaction atB)X2o = i8x6
reaction at B = IT4 tons 1 ,

hence reaction at A = 18 - 5-4 = 12-6 tons/
due to second load

The shearing-force diagrams for the two loads have been set off

separately on opposite sides of a horizontal line, and the resultant

diagram is shown shaded.
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The bending moment is a maximum where the shear force is zero,

as shown at D. The distance from the left support is perhaps most

easily found from the fact that the shearing force at the left support is

17-6 tons, and falls off at the rate of 2 tons per foot run, and therefore

reaches zero at a distance

? or 8'8 feet from the left-hand support

The bending moment at 8 '8 feet is

Q.O

17-6 X 8'8 - 8-8 X 2 x = 77*44 tons-feet

The bending-moment diagrams for the two loads have been drawn

LOADING on
opposite

sides of the same
base-line in Fig. 71, giving a

combined diagram for the

two, by vertical measurements
between the boundaries.

For the ton per foot load

alone the maximum bending
moment is at the middle of

the span, and is

5 x 10 -| x 10 x 5
= 25

tons-feet

For the if ton per foot-

load alone the maximum
occurs where the shearing
force due to that load would
be zero, a distance from A
which is given by

12'6-f- 1*5
= 8-4 feet

The maximum ordinate

of this curve is then

12-6 x 8-4
-

8-4 X ij

=52-92 tons-feet

8-4
X -

FlGt 7I>

At C the ordinate of this curve is

5-4 X 8 = 43 -2 tons-feet

and to the right of C it varies directly as the distance from B the

curve being a straight line.

EXAMPLE 2. A horizontal beam, AB, 24 feet long, is hinged at A,
and rests on a support at C, 16 feet from A, and carries a distributed

load of i ton per foot run, and an additional load of 32 tons at B.

Find the reactions, shearing forces, and bending moments. If the load

at B is reduced to 8 tons, what difference will it make ?

Let Rc be the upward reaction at support C.
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Taking moments about A (Fig. 72)
16 . Rc = (32 x 24) + (24 x 12) = 1056

Rc = 66 tons

If the upward reaction at A = RA

RA = 24 + 32 - 66 = - 10 tons

or 10 tons downward.
The shearing-force diagram is shown in Fig. 72. From B, where

the shearing force is 32 tons, it increases uniformly by 8 to C, where it

FIG. 72.

is reduced by 66 tons to 26 of opposite sign. From C to A the total

change at a uniform rate is 16 tons, giving a value 10 at A.
The bending moment at C is

(32 X 8) + (8 x 4) = 288 tons-feet

This falls to zero at A and B, and does not reach a maximum value,
in the mathematical sense, in either range. The bending moment 4 feet
from B is / \ , /

(S 2 X 4) + (4 X 2) = 136 tons-feet

Midway between A and C it is

(10 X 8) + (8 x 4) = 112 tons-feet

The full diagram is shown in Fig. 72.

Treating the problem with only 8 tons load at B
i6Rc = (24 x 8) + (12 x 24) = 192 + 288 = 480
RC = 30 tons

Total load = 24 + 8 = 32 tons

RA = 2 tons upward
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The diagrams of shearing force and bending moment are shown in

Fig- 73- The shearing force at B is 8 tons, and increases by a further

8 tons to 1 6 at C, where it decreases by 30 tons to 14 of opposite sign.

From C to A it changes by 1 6 to 2 tons at A, changing sign and

passing through zero between C and A.

/ ton per foof

FIG. 73.

The section which has a (mathematical) maximum bending moment
between A and C is that for which the shearing force is zero, and since

the shear is 2 tons at A and falls off at i ton per foot run, the zero

value will be, at a section D, 2 feet from A.

The bending moment at C is

(8 x 8) + (8 x 4) = 96 tons-feet

At 4 feet from B it is

(8 x 4) + (4 X 2)
= 40 tons-feet

Between A and C, at a distance x from A, it is

X

**;- or x\

which is zero, for x = 4 feet, i.e. 4 feet from A, where a point of con-

traflexure E occurs. This distance might have been inferred otherwise,
for it is evidently twice that of the point D from A.

Finally, MD =2X1 2X2= 2 tons-feet

EXAMPLE 3. A beam simply supported at each end has a span of

20 feet. The load is distributed and is at the rate of i ton per foot run

at the left support, and 4 tons per foot run at the right-hand support,
and varies uniformly from one rate to the other along the span. Find
the position and amount of the maximum bending moment.

The load may conveniently be divided into a uniformly spread load

of i ton per foot run, and a second varying from zero at the left to 3
tons per foot run at the right. The first will evidently cause a reaction

of 10 tons at each support. The second load has an average intensity
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of i '5 ton per foot run, or is 30 tons in all; its centre of gravity will

be | of the span from the left end, so that the right-hand reaction due
to this load will be f of 30 tons, or 20 tons, and the left-hand one will

be 10 tons.

The total reactions are therefore 20 tons and 30 tons at the left- and

right-hand ends respectively.
The load per foot at a distance x feet from the left support is

i 4- -jo* tons per foot

since it increases ^ ton per foot per foot.

The average over the length x feet is

5(1 + i 4- -JQX) or i 4- JQ* tons per foot

and the total load on x feet is

*(' +
The bending moment is a maximum when the shearing force is zero,

i.e. at the section where the load carried to the left of it is equal to the

left-hand reaction of 20 tons.

For this point the- shearing force

Boo = o
x = 10*96 feet = 10 feet 11*5 inches

The bending moment at a distance x feet from the support is

x 3 x3
i20* X X -- - X \X

2 40

and when x = 10*96 feet

M = 219 60 33 = 126 tons-feet

The shearing-force and bending-moment curves may be plotted
from the two above expressions for F and M.

60. Theory of Elastic Bending. The relations existing between the

straining action, the dimensions, the stresses, strains, elasticity, and
curvature of a beam are under certain simple assumptions very easily
established for the case of simple bending, i.e. flexure by pure couples

applied to a beam without shearing force.

Most of the same simple relations may generally be used as close

approximations in cases of flexure which are not "
simple," but which

are of far more common occurrence, the strains involved from the

shearing force being negligible. In such cases, the justification of the
"
simple theory of bending

" must be the agreement of its conclusions

with direct bending experiments, and with those of more complex but

more exact theory of elastic bending.
61. Simple Bending. A straight bar of homogeneous material

subjected only to equal and opposite couples at its ends has a uniform
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bending moment throughout its length, and if there is no shearing force,

is said to suffer simple bending. Such a straining action is illustrated

in Fig. 67 for the beam between its two points of support. The beam
will be supposed to be of the same cross-section throughout its length,

and symmetrical about a central longitudinal plane, in and parallel to

which bending takes place. In Fig. 74, central longitudinal sections

before and after bending and a transverse section are shown, the cross-

section being symmetrical about an axis YY.

(
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Suppose the section A'B' and CD' produced to intersect, at an angle
6 (radians), in a line perpendicular to the figure and represented by O,
and that the radius of curvature OE' of the neutral surface E'F' about

O is R. Let y be the height (E'G') of any layer (H'G') of material

originally parallel to the neutral surface FE. Then

E'F
7
=

R0

and the strain at the layer H'G' is

H'G' - HG H'Gf - E'F'
c = HG E'F'

R

(R+jflfl- Re
R0

The longitudinal tensile-stress intensity / at a height y from the

neutral surface, provided the limit of elasticity has not been exceeded,
is therefore

where E is Young's modulus, provided that the layers of material

behave under longitudinal stress as if free and are not hindered

by the surrounding material,
which has not the same inten-

sity of stress. The intensity of

compressive stress will be the

same at an equal distance y
on the opposite side of the

neutral surface, provided E is

the same in compression as in

tension.

The intensity of direct lon-

gitudinal stress/ at every point
in the cross-section is then pro-

portional to its distance from
the neutral axis

;
its value at

unit distance
(i.e. at y = i) is

y

~, and it reaches a maximum
s\.

value at the boundary furthest

from the neutral surface. The
variation in intensity of longi-
tudinal stress is as shown in

Fig. 75, where the arrow-heads denote the direction of the force exerted

by the portion R on the portion L at the section AB. Since the stresses

on opposite sides of the neutral surface are of opposite sign or kind,

they may be represented as at aeb.

62. Position of the Neutral Axis. The beam has been supposed

subjected to pure couples only, and therefore the portion, say, to the left

of the section AB (Figs. 74 and 75), being in equilibrium under one
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externally applied couple and the forces acting across AB, these forces

must exert a couple balancing the external one in the plane of bending.
The (vertical) shearing force being /7, the internal forces exerted across

AB are wholly horizontal (or longitudinal), and since they form a couple
the total tensile forces must balance the compressive ones, i.e. the

algebraic sum of the horizontal internal forces must, like the external

ones, be zero. Putting this statement in symbols, we can find the

FIG. 76.

position
of the neutral axis. The cross-section of the beam in Fig. 74

is symmetrical about a horizontal axis, but this is not necessary to the

argument. Taking any other cross-sections symmetrical about the

plane of bending YY, as in Fig. 76, let Ba or z . By be an elementary strip

of its area parallel to the neutral axis ZZ, z being the (variable) width of

the section. Then, the total horizontal force being zero

.8a) =

and since by (i), Art. 61

or . By)
= o

= or

the quantity 2,(y . Ba) or ^(y . z .By) represents the total moment of the

area of section about the neutral axis, and this can only be zero if

the axis passes through the centre of gravity or centroid of the section.

p*

The use of the value -='y for/, in all parts of the cross-section

involves the assumption that the value of E is the same in compression
as in tension, an assumption justified by experiment within the limits of

elasticity.

Assumptions made in the Theory of Simple Bending. It may be well

to recall the assumptions made in the above theory of "
simple bend-

ing," under the conditions stated

(1) That plane transverse sections remain plane and normal after

bending.

(2) That the material is homogeneous, isotropic, and obeys Hooke's

law, and the limits of elasticity are not exceeded.

(3) That every layer of material is free to expand or contract

longitudinally and laterally under stress, as if separate from other layers.
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Otherwise, E in the relation (i), Art. 61, would not be Young's modulus,
but some modified elastic constant (see Art. 21); but the relation

would otherwise remain unaltered.

(4) That the modulus of direct elasticity has the same value in

compression as for tensile strains.

63. Value of the Moment of Resistance. Having found the in-

p>

tensity of longitudinal stress (p = -^y)
at any distance y from the

neutral axis, and knowing that these longitudinal internal forces form

a couple equal to the bending moment -at every section, it remains to

express the value of the couple, which is called the moment of resist-

ance (see Art. 56), in terms of the dimensions of the cross-section, and
the intensity of stress produced.

Using Fig. 76, as in the previous article, the elementary area of

cross-section, at a distance y from the neutral axis, is 8#, or z . y, and
the intensity of stress upon it is

The total stress on the elementary area is

/ . 8a or / . z . ty

and the moment of this stress is

p.y.^a or p.z.y.Sy

and the total moment throughout the section is

M = 2(^..y.&j) or M = 2t(p.z.y.'by)

p
and putting p = R . y (Art. 61)

) or *(*/fy) . . (3)

The sum SO^&a), or ^(zy^y), represents the limiting value of the

sum of the products of elements of area, multiplied by the squares of

their distances from the axis, when the elements of area are diminished

indefinitely, and is usually called the Moment of Inertia of the area of

the section about the axis. The values of the moments of inertia for

various sections are dealt with in Arts. 66-68. If we denote the

moment of inertia of the area of the section by I, so that

the formula (3) becomes

E. ME
M== R I or r

= ;

R
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and since by (i), Art. 6i
} ^=-

from the neutral axis), we have

and since by (i), Art. 6i
} ^=- (the stress intensity at unit distance

= =
y I R

These relations are important and should be remembered. If we

put this relation in the form

M E
/ = T ..X or ^.y

we have the intensity of longitudinal stress at a distance y from the
neutral axis, in terms of the bending moment and dimensions (I) of

cross-section, or in terms of the radius of curvature and an elastic

constant for the material. The extreme values of p, tensile and

compressive, occur at the layers of material most remote from the
neutral axis. Thus, in Figs. 75 and 76, if the extreme layers on the
tension and compression sides are denoted by yt

and yc respectively,

ft and/ being the extreme intensities of tensile and compressive stress

respectively

/ = / = /c= M ==
E

y yt y* i R

or, =M- .
= .

(6)

The variation of intensity of stress for an unsymmetrical section is

shown in Fig. 75 at a'e'b'.

For sections which are symmetrical about the neutral axis, the

distances yt and yc will be equal, being each half the depth of the

section. If we denote the half depth by ylt and the equal intensities

of extreme or skin stress by/!, so that

M =/
I

the quantity is called the modulus of section, and is usually denoted
y\

by the letter Z, so that

M = /Z or / = ^ ....... (7)

the moment of resistance (M) being proportional to the greatest intensity
of stress reached and to the modulus of section.

In the less usual case of unsymmetrical sections, the modulus of

section would have the two values

and -

yt yc

which may be denoted by Z, and Zc, so that the relation (6) becomes

fc
Zc ....... (8)
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64. Ordinary Bending. The case of simple bending, dealt with in

the previous articles, refers only to bending where shearing force is

absent, but such instances are not usual, and generally bending action

is accompanied by shearing force, which produces a (vertical) shear

stress across transverse sections of the beam (see Figs. 59 to 66, etc.).

In such cases the forces across any section at which the shearing force

is not zero have not only to balance a couple, but also the shearing force

at the section, and, therefore, at points in the cross-section there will be

tangential as well as normal longitudinal stresses. The approximate
distribution of this tangential stress is dealt with in Art. 71, and the

deflection due to shearing in Art. 96. When the shearing stresses are

not zero, the longitudinal stress at any point in the cross-section is

evidently not the principal stress (Arts. 14 and 73) at that point, and
the strain is not of the simple character assumed in Art. 61 and Fig.

74, and there is then no reason to assume that plane sections remain

plane.
1

St. Venant, a celebrated French elastitician, has investigated
the flexure of a beam assuming freedom of every layer or fibre to

contract or expand laterally, under longitudinal tension or compression,
but without the assumption that plane sections remain plane after bend-

ing. His conclusion is that Bernoulli's assumption and equations of the

type (5), Art. 63, only hold exactly when the bending moment from

point to point follows a straight line law, i.e. when the shearing force

is constant. For the more exact elastic theory of St. Venant, applicable
to other cases, the reader is referred to Todhunter, and Pearson's
"
History of Theory of Elasticity," vol. ii. pt. i, pp. 53-69.
For most practical cases the theory of "Simple Bending" (Arts. 61,

62, and 63) is quite sufficient, and gives results which enable the

engineer to design beams and structures, and calculate their stresses

and strains with a considerable degree of approximation. It may be
noticed that in many cases of continuous loading the greatest bending
moment occurs as a mathematical maximum at the sections for which
the shearing force is zero (Art. 59, and Figs. 63 to 69), and for which
the conditions correspond with those for simple flexure

;
in numerous

cases where the section of the beam is uniform throughout its length, the

maximum longitudinal stress occurs at the section of maximum bending
moment

; the usefulness of the simple theory in such a case is evident.

Further, it often happens that where the shearing force is considerable
the bending moment is small, and in such cases the intensity of shear
stress can be calculated sufficiently nearly by the method of Art. 71.

In this book the usual engineer's practice of using the simple beam
theory will be followed, a few modifications in the strains and stresses

in certain cases will be mentioned.
65. Summary of the Simple Theory of Bending. At any trans-

verse section of a horizontal beam carrying vertical loads, from the
three usual conditions of equilibrium, we have

(i) The total vertical components of stresses across a vertical section

are together equal to the algebraic sum of the external forces to either

side of the section, i.e. to the shearing force F.

1 See footnote to Art. 71.
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(2) The algebraic total horizontal force is zero.

(3) The total moment of resistance of the horizontal forces across

the section is equal to the algebraic sum of the moments of the external

forces to either side of the section, i.e. to the bending moment M.
If plane sections remain plane, longitudinal strain is proportional to

v
the distance from the neutral axis, e being equal to ^ ; hence, longi-

tudinal stress intensity at any point in a cross-section is proportional to

the same distance, or
Tj

p oc y and / = ^ . y

Summing the moments of longitudinal stress

M -I. i-4R y
P - M _ E _/,
* r"***

where /i and ji are the intensity of skin stress, and the vertical distance

from the neutral axis to the outer boundary of the section respectively.
In applying these relations to numerical examples, it should be

remembered that the units must be consistent; as cross-sections are

usually stated in inches, and stresses in pounds or tons per square inch,
it is well to take the bending moment, or moment of resistance, in

Ib.-inches or ton-inches.

EXAMPLE i. To what radius of curvature may a steel beam of

symmetrical section, 12 inches deep, be bent without the skin stress

exceeding 5 tons per square inch? (E = 13,500 tons per square inch.)

Since != .-.R = 5R yi A
y1 being the half depth, which is 6 inches.

Hence R = -^-- - = 16,200 inches, or 1350 feet

EXAMPLE 2. If the elastic limit is not exceeded, find the stress

induced in a strip of spring steel, ^ inch thick, by bending it round a

drum 2*5 feet diameter? (E = 13,500 tons per square inch.)

The greatest value of y is \ X $
= ^ inch. The radius being 1 5

inches

/!
= -^ - = 22*5 tons per square inch

EXAMPLE 3. The moment of inertia of a symmetrical section

being 2654 inch units, and its depth 24 inches, find the longest span
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over which, when simply supported, a beam could carry a uniformly

distributed load of i'2 ton per foot run, without the stress exceeding

7-5 tons per square inch.

If /= span in inches, the load per inch run being ,
or 0*1 ton,

the maximum bending moment which occurs at mid-span is

. M = \ X o'i x /* (see Fig. 65)

And since M = /a .
,
and yl the half depth is 1 2 inches

i v JL v 72 T-C v 2fifi4
a A IM A * '-

/ 5 * 12

_
12

/= 364 inches, or 30 feet 4 inches

EXAMPLES IV.

1. A cantilever 12 feet long carries loads of 3, 7,4, and 6 tons at distances

o, 2, 5, and 8 feet respectively from the free end. Find the bending moment
and shearing force at the fixed end and at the middle section of the beam.

2. A cantilever 10 feet long weighs 25 Ibs. per foot run, and carries a load

of 200 Ibs. 3 feet from the free end. Find the bending moment at the

support, and draw the diagrams of shearing force and bending moment.

3. A beam rests on supports 16 feet apart, and carries, including its own

weight, a load of 2 tons (total) uniformly distributed over its whole length
and concentrated loads of i ton and ton, 5 feet and 9 feet respectively
from the left support. Find the bending moment 4 feet from the left-hand

support, and the position and magnitude of the maximum bending moment.

4. Where does the maximum bending moment occur in a beam of

24 feet span carrying a load of 10 tons uniformly spread over its whole

length, and a further load of 12 tons uniformly spread over 8 feet to the

right from a point 6 feet from the left support ? What is the amount of the

maximum bending moment, and what is the bending moment at mid-span ?

5. A beam of span / feet carries a distributed load, which increases

uniformly from zero at the left-hand support to a maximum iv tons per foot

at the right-hand support. Find the distance from the left-hand support of

the section which has a maximum bending moment and the amount of that

bending moment. Obtain numerical values when / = 18 feet and w = 2

tons per foot run.

6. A horizontal beam AB 30 feet long is supported at A and at C 20 feet

from A, and carries a load of 7 tons at B and one of 10 tons midway
between A and C. Draw the diagrams of bending moment and find the

point of contraflexure.

7. Find the point of contraflexure in the previous example if there is an
additional distributed load of J ton per foot run from A to C.

8. A girder 40 feet long is supported at 8 feet from each end, and carries

a load of I ton per foot run throughout its length. Find the bending
moment at the supports and at mid-span. Where are the points of contra-

flexure ? Sketch the curve of bending moments.

9. A beam of length / carries an evenly distributed load and rests on two

supports. How far from the ends must the supports be placed if the greatest
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bending moment to which the beam is subjected is to be as small as

possible ? Where are the points of contraflexure ?

10. A beam 18 feet long rests on two supports 10 feet apart, over-

hanging the left-hand one by 5 feet. It carries a load of 5 tons at the left-

hand end, 7 tons midway between the supports, and 3 tons at the right-hand
end. Find the bending moment at the middle section of the beam and
at mid-span, and find the points of contraflexure.

11. If the beam in the previous example carries an additional load

of I ton per foot run between the supports, find the bending moment at

mid-span and the positions of the points of contraflexure.

12. Find the greatest intensity of direct stress arising from a bending
moment of 90 tons-inches on a symmetrical section 8 inches deep, the

moment of inertia being 75 inch units.

13. Calculate the moment of resistance of a beam section 10 inches

deep, the moment of inertia of which is 145 inch units when the skin stress

reaches 7-5 tons per square inch.

14. What total distributed load may be carried by a simply supported
beam over a span of 20 feet, the depth of section being 12 inches, the

moment of inertia being 375 inch units, and the allowable intensity of stress

7-5 tons per square inch ? What load at the centre might be carried with

the same maximum stress ?

15. To what radius may a beam of symmetrical section 10 inches deep be
bent without producing a skin stress greater than 6 tons per square inch, if

E = 13,500 tons per square inch? What would be the moment of resist-

ance, if the moment of inertia of the section is 211 inch units ?



CHAPTER V.

IN BEAMS.

66. Moment of Inertia of a Section Area. The intensity of stress

produced at any point in the cross-section of a beam depends upon
the straining action and the dimensions of the beam. In Art. 63 a

relation was found between the bending moment the stress produced,
the depth of the beam, and the moment of inertia (I) or second
moment of the area of cross-section, the quantity I being defined by
the relation

where values of y are the distances of elements of area SA from the

axis about which the quantity I is to be estimated, viz. the neutral axis

of the section.

The calculation of the quantity I for various simple geometrical

figures about various axes will now be briefly considered. The
summation denoted by 2(^

2
.8A) can often be easily carried out by

ordinary integration. If A be the area of any plane figure and I its

moment of inertia about an axis in its plane, the radius of gyration

(k) of the area about that axis is defined by the relation

or k is that value of y at which, if the area A were concentrated, the

moment of inertia would be the same as that of the actual figure.

Two simple theorems are very useful in calculating moments of inertia

of plane figures made up of a combination of a number of parts of

simple figures such as rectangles and circles.

Theorem (i). The moment of inertia of any plane area about any
axis in its plane exceeds that about a parallel line through its centre

of gravity (or centroid) by an amount equal to the product of the area

and the square of the distance of the centroid from the axis.

Otherwise, if I is the moment of inertia of an area A about any
axis in the plane of the figure, and IG is the moment of inertia about
a parallel axis through the centroid, and / is the distance between the

two axes

I = IG -h/
2A ....... (i)

or, dividing each term by A
# = Q + / . (2)
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where k is the radius of gyration about any axis distant / from
the centroid and kG that about a parallel axis through the centroid.

The proof of the theorem may be briefly stated as follows :

2ly -h/)SA}
2/20'. SA) + 2(/SA)

= /
2 .A + o + IG

when y is measured from an axis through the centroid.

Theorem (2). The sum of the moments of inertia of any plane

figure about two perpendicular axes in its plane is equal to the moment
of inertia of the figure about an axis perpendicular to its plane passing

through the intersection of the other two axes. Or, if Iz,
Ix ,

and Iy

are the moments of inertia about three mutually perpendicular axes

OZ, OX, and OY intersecting in O, OX and OY being in the plane
of the figure

Iz = Ix + IY

for S(r* . SA) = 2(/ . SA) + 2(*
2
S A) or 2{(*

2
4- /)SA}

where r, y, and x are the distances of any element of area SA from OZ,
OX, and 6Y respectively, since r2 = x2 + y\

Rectangular Area. The moment of inertia of the rectangle ABCD,
Fig. 77, about the axis XX may be found as follows, using the notation

given in the figure, by taking strip elements of area

b . dy parallel to XX

Similarly about YY

IYY =

About DC, by theorem (i) abov

IDC = Ixx + b

which might also be obtained by integrating thus

y being measured from DC.
Hollow Rectangular Area and Symmetrical I Section. The moment

of inertia about the axes XX of the two areas shown in Fig. 78 are

equal, for the difference of distribution of the areas in a direction

parallel to XX does not alter the moment of inertia about that line.

In either case

Ixx = A(BD - bf)

Triangular Area. For any of the triangles shown in Fig. 79 about

the base
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and using theorem (i), about a parallel axis GG through the centroid

IGG = Ixx
~

*__- B --*, K--- B --H
t
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and -
>' or -D -

Modulus of Section (Z). When the foregoing plane figures are the

cross-sections of beams, the moment of inertia about the neutral axis

is usually one of those given above, and the modulus of section

(Art. 63) is equal to this moment of inertia divided by the half depth

( ). The various values are shown in the annexed table.

Section
Moment of
inertia I

^(D
4 - a4

)

64

Modulus of
section (Z}.

D

if D 4 - d*

EXAMPLE i. A timber beam of rectangular section is to be simply
supported at the ends and carry a load of ij ton at the middle of

a i6-feet span. If the maximum stress is not to exceed f ton per
square inch and the depth is to be twice the breadth, determine suitable

dimensions.

The reactions at the ends are each f ton, and the bending moment
at the centre is

5X8x12 = 72 tons-inches

The modulus of section (Z) is given by

and if

=72 Z= 96(inches)
s

b = \d^ = 96
d = $1152 = jo'5 inches nearly
b = 5 "2 5 inches
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EXAMPLE 2. Compare the weights of two beams of the same
material and of equal strength, one being of circular section and solid

and the other being of hollow circular section, the internal diameter

being f of the external.

The resistance to bending being proportional to the modulus of

section, if D is the diameter of the hollow beam and d that of the

solid one

The weights are

solid d

hollow
~

>

a
-(|D)-

67. Common Steel Sections. Such geometrical figures as rectangles
and circles, although they often represent the cross-section of parts
of machines and structures subjected
to bending action, do not form the

sections for the resistance of flexure

with the greatest economy of material,
for there is a considerable body of

material situated about the neutral

surface which carries a very small

portion of the stress. The most eco-

nomical section for a constant strain-

ing action will evidently be one in

which practically the whole of the

material reaches the maximum in-

tensity of stress. For example, to re-

sist economically a bending moment,
which produces a longitudinal direct

stress the intensity of which at any
point of a cross-section is propor-
tional to the distance from the neutral

axis, much of the area of cross-section

should be placed at a maximum distance from the neutral axis. This

suggests the I section, which is the commonest form of steel beams
whether rolled in a single piece (see Fig. 82) or built up

l

by riveting

together component parts. In such a section most of the area is

situated at nearly the full half depth, so that, neglecting the thin vertical

web, the moment of inertia 5(^
2

8A), approximates to

FIG. 82.

(area of two flanges) X -

1 Such plate girders are dealt with in the author's "
Theory of Structures."
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or the radius of gyration approximates to -, and the modulus of sec-

d
tion, Z, which is the moment of inertia divided by -, approximates to

d
(area of two flanges) X -

orj Z = 2bt X - = b. t. d approximately

where t is the mean thickness of the flange, generally measured in a

rolled section at J the breadth from either end. These approximations

are often very close to the true values, for they exaggerate by taking

the flange area wholly at - from the neutral axis XX and under-estimate

by neglecting the vertical web.

The moment of inertia, etc., of a rolled I section such as that in

Fig. 82 may generally be calculated by dividing it into rectangles,

triangles, circular sections, and spandrils as shown in Fig. 83, and

applying theorem (i) of Art. 66, but such a process is very laborious

' K 6>
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proceed as follows. Find the distance h of the centre of gravity or
centroid from the edge PQ by the methods of moments, thus

#(B.T) + (b.d)} = (B.T.JT) + (b.<t)(Y + \d)

from which h can be found.

Then find the moment of inertia IPQ about PQ taking the rectangles

PRSQ and VWUT-

or taking the rectangles VWNM and twice RTMP

Having found IPQ , apply theorem (i), Art. 66, whence

Ixx = IPQ
- (BT +

Another alternative would be to find Ixx directly by subdivision

into rectangles and application of theorem (i) Art. 66; as h will not

generally be so simple a number as the main dimensions, this will

generally involve multiplications of rather less simple figures than in

the above methods.
Yet another plan would be to find the moment of inertia about

VW, thus

and then apply theorem (i), Art. 66 to find Ixx .

Precisely similar principles may be applied to find the moment
of inertia of any section divisible into rectangles and not symmetrical
about the neutral axis, e.g. that in Fig. 94.

68. Graphical Determination of Moments, Centroids, and Moments
of Inertia of Areas. To determine the moment and moment of

inertia (or second moment) of sections which are not made up of

simple geometrical figures, some approximate form of estimation must

generally be employed, and a graphical method offers a convenient
solution. Of the various graphical methods, probably the following
is the simplest, a planimeter being used to measure the areas.

To find the moment and moment of inertia of any plane figure

APQB (Fig. 85), about any axis XX, and the moment of inertia about
a parallel axis through the centroid. Draw any line SS parallel to XX
and distant d from it

; choose any pole O in XX, preferably the point
nearest to the figure APQB. Draw a number of lines, such as PQ and
AB across the figure parallel to XX. From the extremities P and Q, etc.,

project lines perpendicular to SS, meeting it in N and M, etc. Join
such points as N and M to O by lines meeting PQ in P: and Qt ,

AB
in A! and B

lf etc. Through the points so derived, draw in the modified

or first derived area P1Q tB1A 1 . Repeat the process on this figure, pro-

jecting P1Q1 at NiM, and obtaining P2Q2 and a second modified figure
or derived area P2Q2B2A2. Then

(First derived area P^B^,) X d = moment of area PQBA about

the line XX, or ^(y . 8A) ;
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and Ixx = area PoQ^As x <P

or second moment of area PQBA about XX.
And about a parallel axis through the centre of gravity-

(area

[CH. V.

(area PQBA)
'

Proof. Let the areas PQBA, P 1Q1B1A 1 and P2Q2B2A2 be represented

by A, Alf and A2 respectively, and their width at any distance y from

M,M

XX be denoted by z, z
1} and z2 respectively. Then elementary strips

PQ, PiQi, and P2Q2 ,
or SA, 8A15 and SA2 of area are respectively equal

to z . dy, zl . dy^ and zz . dy.
In the first derived figure, a strip PQ is reduced to P^ in the

ratio y to d^ or

SAjzs-^.SA or z^y '.z.dy

Taking the sums

A,, or SfSAJ, or

or in integral form

. 8A) = . dy)

The area Aj or 2(8A!) is therefore proportional to the moment of the

area A about XX, which is equal to AI . d.

Then the centroid of the area A is at a distance y from XX
given by

= A_i ,
' *'
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Again in the second derived figure the strip PiQt is further reduced

v
to P2Q2 in the ratio -* and-

or z.2dy = -, . z^ . dy = ^ . z . dy

And taking the sums

A2 ,
or 2(SA 2), or

2r^.
SAJ =

~^(y SAj) = ^2(y. ^A)

The area A2 is therefore proportional to the moment of inertia or

second moment of the area A about XX, which is equal to A.3 x <A or

^
And since the distance of the centre of gravity of A from XX is

-^
"

by theorem (i) of Art. 66

I = A2 . d? - Ay =

A slightly modified construction is shown in Fig. 86, where, instead

of using a constant pole as at O in Fig. 85, a different one is used for

Rx M, M R
T

FIG. 86.

each line, such as PQ or AB, across the area PQBA, viz. the foot of the

perpendicular from the points such as P or A on XX
; by this means the
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left-hand side of the perimeter of the original and derived areas are

the same, the areas A, Aj, and A2 being shown by PQBA, PQ^A,
and PQ2B2A respectively. This construction is rather easier to use in

many cases, and with the same care should give rather better results

FIG. 87. FIG. 88.

s

than the previous one for areas which are not symmetrical about an
axis perpendicular to XX.

The modulus of section Z may, in the case of sections symmetrical
about the neutral axis, be found by dividing the value of IG by the half-

depth, and in other cases by dividing the

value of IG by the distance to the extreme
tension or compression layers according to

which modulus of section is required (see

(8), Art. 63).
Illustrations of these graphical methods

are shown in Figs. 87 to 93 inclusive.

Figs. 87 and 88 represent rail sections,
the centroid and moment of inertia being
found as in Fig. 85. Figs. 89 and 90
represent the modified construction of

Fig. 86 applied to the same rails as those
in Figs. 87 and 88. Figs. 91 and 92
represent symmetrical I beam sections,
the moment of inertia being found as in

Fig. 85; but in Fig. 92 the moment of

inertia about the usual neutral axis is

found directly for half the section without
the use of theorem (f), Art. 66. In this

area multiplied by
-

gives the modulus of

Fig- 93 gives the alternative construction of

FIG. 89.

case twice the inner

section Z for the beam.



ART. 68] STJRMSSJSS IN BEAMS. 121

Fig. 86 applied to the same section as that in Fig. 92. In Figs. 92
and 93 the first derived area A! is evidently such that if the whole were

subjected to uniform stress of the intensity which exists at the outer

x

FIG. 90. FIG. 91.

skin of the beam, the total stress on the half section would be the

same as is actually brought into play in the half section during bending :

this is evident since every strip of original area has been reduced in

G '

FIG. 92. FIG. 93.

the ratio \y to - \ in which the intensity of stress upon it is less than

that at the outer skin. The first derived area of a beam section is

sometimes called a modulus figure.
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The " centres
"

of the parallel longitudinal stresses on either side

of the neutral axis will evidently be at the centre of area or centroid

(or centre of gravity) of the modulus figure. The longitudinal forces

across a transverse section are statically equivalent to the total of the

tensile forces acting at the centroid of the modulus figure on the tension

side, together with the (equal) total thrust at the centroid of the modulus

figure (which is the centre of pressure) on the compression side.

In comparing algebraic and graphical methods, it is useful to

remember that the expression \yzdy
j * represents the area of the

modulus figure between the lines corresponding to the limits of integra-

tion and parallel to the neutral axis, y1 or - being the half depth.

68a. Ellipse of Inertia, or Momental Ellipse. Principal Axes of a
Section. The principal axes OX and OY of a plane area may be defined

as the rectangular axes in its plane, and through the centroid such that

the sum ^(xy . SA), called ft& product of inertia (or product moment), is

zero, x and y being the rectangular co-ordinates of an element A of

the area with reference to OX and OY.

Then the mo-
ment of inertia

of the area about

any perpendicu-
lar axes OX' and
OY' in its plane
when OX' is

inclined at an

angle a to OX
maybe found by
writing from the

right hand side

of Fig. 93A for

the co-ordinates

(x
r

, y'} of any
point P,

x'= x cos

a -\-y sin a

M=y'=y cos

a x sin a

4- 2 sin a

(i)

hence

FIG. 93A.

SA) = cos2

aSfc'SA) 4- sin
3

cos

Also similarly
Ix .
= I, cos2 a 4- I, sin

2 a )

kj = k* cos2 a 4- kf sin- a f

snce
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Adding (i) and (2)

k*t
l

k~-k*+.*}= constant ....... (3)
Kj.1 T~ Ky'

- KX T h.y )

A result which follows directly from Theorem (2) Art. 66.

If OA = OA', Fig. 93A be set off to represent k
y and OB = OB' to

represent kx and an ellipse ABA'B' be drawn with OA and OB as semi-

principal axes, then k
y

> is represented by OC, the perpendicular distance

from the centre O to the tangent parallel to OY' when OX' and OY'
are inclined as shown at an angle a to OX and OY respectively. For
a property of the ellipse is

OC2 = OA2 cos2 a + OB2
sin

2 a

which is the relation given by (i). This momenta! ellipse then shows
the radius of gyration about any axis, such as OY' by the length of the

perpendicular from O on the tangent parallel to OY'. Also since the

product OD . OC is constant in an ellipse (viz. equal to OA . OB),
the radius of gyration about any axis such as OY' is inversely pro-

portional to the radius vector OD in that direction. Its value is

~
OD

If a curve be drawn such that every radius vector measured from O is

proportional to the square of
,

i.e. proportional to I about that radius

vector, it is called an inertia curve for the given section. The radius

vector in the direction OX', for example, would be given by equation (2),
and others might be found similarly.

It is evident by differentiating (i) with respect to a, or by inspection
of the ellipse, that k has maximum and minimum values, kx and / the

values of k about the two principal axes. It is often important to find

the minimum value of k (and I) of a given section, and therefore to find

the principal axes. If the section has an axis of symmetry that is evi-

dently one principal axis, for from the symmetry the sum ^(xy . 8A) must
be zero. The other principal axis is then at right angles to the first,

and through the centroid of the section; a case in point is an angle
section with equal sides.

If a plane figure (such as a circular or square section) has more than

two axes of symmetry, its momental ellipse becomes a circle, and its

moment of inertia about every axis in its plane and through the centroid

is the same. If a section has not an axis of symmetry the principal axes

and the principal or maximum and minimum moments of inertia may
be found from the moments of inertia about two perpendicular axes OX'
and OY', say, and the moment of inertia about a third axis OW, Fig.

93A, inclined 45 to each of the other two; these three moments of

inertia may be found by the methods described in the preceding articles.

Let lw be the moment of inertia about OW. Then applying (2)

I. = I, cos2
(a + 45) + I, sin

2
(a + 45) = JI,(i

- sin 20)

+ ily(l + Sin 2a) ........ (4 )

2lw = I, + I, + (I,
-

I,) sin 20 ......... (5)

Hence by (3) (I,
-

I,) sin 2a = 2 1,,
-

(I,, + I, ) . . . (6)

and subtracting (2) from (i)

(i,
- ij cos 20 = iy

-
i, . .' . ;: . . (7)



124 STRENGTH OF MATERIALS.

Dividing (6) by (7)

tan 20. =

[CH. V.

(3)

which determines the directions of the principal axes, a to be measured
from OX' in the direction opposite to OW.

Also from (3) and (7)

I. = i { I* + I,' + (I*
-

Iy) sec 20.
}

+ ~ - sec 2a

.. (9)

which gives the principal moments of inertia in terms of the three

known moments of inertia.

69. Some Special Sections. Cast Iron and Concrete Steel.

(1) Cast Iron Beams. Cast iron is generally five or six times as

strong in compression as in tension, but a symmetrical section would
in bending get approximately equal extreme intensities of tension and

compression so long as the material does not greatly deviate from

proportionality between stress and strain (see Art. 63). Cast iron has

no considerable plastic yield, so that the distribution of stress beyond
the elastic limit will not be greatly different from that within it. Hence
a cast-iron beam of symmetrical section would fail by tension due to

bending, and it would appear reasonable to so proportion the section

that the greatest intensity of compressive stress would be about five

times that of the tensile stress. This could be done by making the

section of such a form that the distance of its centroid from the extreme

compression layers is five times that from the extreme tension layers.

This, in a flanged or irregular I section, would involve a large tension

flange, and a much smaller compression
flange : so great a difference as that indicated

above involves serious initial stresses due to

the quicker cooling of the small compression
flange compared to that of the larger tension

flange, and experience shows that distances

of the compression and tension edges to the

centroid in the ratio of about 2 or 3 to i

(see Fig. 94) give the most economical

results, the tension flange being made wide
in order to avoid great thickness, which
would involve relatively slow cooling. The
moment of inertia of such a section as that

shown in Fig. 94 may be estimated by
division into rectangles (see Art. 67), or

graphically, as in Art. 68.

(2) Reinforced Concrete Sections? Cement and concrete are well

adapted to stand high compressive stress, but little or no tension.

They can be used to withstand bending by reinforcement with metal
to take the tension involved, the metal being by various means held
fast in the concrete. The usual assumption is that the metal carries

1 For graphical method see "The Graphic Statics of Reinforced Concrete
Sections," in Engineering, December 25, 1908.

T

FIG. 94.
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the whole of the tension, and the concrete the whole of the compression.
In the case of a compound beam of this kind, the neutral axis will not
generally pass through the centroid of the area of cross-section because
of the unequal values of the direct modulus of elasticity (E) of the two
materials (see Art. 62). It may be found approximately by equating
the total compressive force or thrust in the cement to the total pull in
the metal. As the cross-section of metal usually occupies a very little

of the depth, it is usual to take the area of metal as concentrated at
the depth of its centre and subject to a uniform intensity of stress

equal to that at its centre.

The following simple theory of flexure of ferro-concrete beams
must be looked upon as approximate only, since the tension in the
concrete is neglected ; and further, in a heterogeneous substance like

concrete, the proportionality between stress and strain will not hold
accurately with usual working loads.

More elaborate and less simple em- * B- --*

pirical rules have been devised and
tested by experiment, but the following
methods of calculation are the most h
widely recognised. i

Suppose a ferro-concrete beam has
the sectional dimensions shown in Fig.

95; assume that, as in Arts. 61 and 65,
the strain due to bending is propor-
tional to the distance from the neutral

axis and to the direct modulus of

elasticity of the material. Let h be
the depth of the neutral axis from the

compression edge of the section, fe the FIG. 95.

(maximum) intensity of compressive
stress at that edge, and / the intensity of tensile stress in the metal

reinforcement, this being practically uniform. Let Ec be the direct

modulus of elasticity of the concrete in compression, and E, that of the
steel in tension.

Then =.- is the proportional strain in the concrete at the compression

edge (see Art. 61), and
j

is the proportional strain in the metal.

The distances from the neutral axis at which these strains occur are

h and (d h) respectively, and since the strains are to be assumed

proportional to the distance from the neutral axis (Arts. 61 and 65)

Total.

Neutral

d

E, d-h

or, d h' E
t

(l)

The ratios of Ec to E, for given materials are known
;
for concrete

and steel the ratio is usually from ^ to ^5.
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The total thrust is

(mean intensity of compressive stress) X (compression area) = ./$. B
2

The total tensile stress, neglecting any in the concrete, is

ft X (area of section of reinforcement) =ft . a

And since the total thrust equals the total pull, the two together

forming the couple which is the moment of resistance

2a

and therefore from (i)

d-

which gives a quadratic equation in h in terms of the quantities B, a, dt

p
and W* all of which are supposed to be known.

*V
Ferro-concrete beam sections are generally rectangular, but in case

of the compression part of the section having any other shape, we
should proceed as follows to state the total thrust in terms of the

maximum intensityfc at the extreme edge at the (unknown) distance

h from the neutral axis.

Let z be the width of section parallel to the neutral axis at a height

y from it, varying in a known manner with, say, the distance (h y)
from the compression edge, and let / be the intensity of stress at any
height y from the neutral axis

;
then

~y~li *-%*
/ f /

Total thrust, = \p.z.dy=ji \y.z.dy
J o "" J

which can be found when the width z is expressed in terms of, say, h y.
This might also be written

Total thrust =/c X (area of compression modulus figure)

(see end of Art. 68). In the rectangular section of Fig. 95, z = B =
constant, this being the simplest possible case.

Frequently the compression area of ferro-concrete is T-shaped, con-

sisting partly of a concrete slab or flooring and partly of the upper part
of the rectangular supporting beam, the lower part of which is rein-

forced for tension, the floor and beam being in one piece, or " mono-
lithic

"
(see Ex. 3 below, and note following it). The breadth is then

constant over two ranges, into which the above integrations can con-

veniently be divided. The thrust in the vertical leg of the T (or
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upper part of the beam) is often negligible compared to that in the

cross-piece or slab.

The resisting moment of the total thrust would be

-^ or f..

where I is the moment of inertia of the compression area about the

neutral axis. The graphical equivalent of this would be

fc x (area of compression modulus figure) X (distance of its centroid

from the neutral axis)

the centroid of the modulus figure being with the centre of pressure or

thrust, or, using the second derived area as in Art. 68

resisting moment of the thrust =/c x h x second derived area of

compression section

The resisting moment of the total tension is evidently/ x a x (d /$),

and the total moment of resistance is

total thrust (or pull) X distance of centre of thrust from reinforcement

EXAMPLE i. A reinforced concrete beam 20 inches deep and
10 inches wide has four bars of steel i inch diameter placed with

their axes 2 inches from the lower face of the beam. Find the position
of the neutral axis and the moment of resistance exerted by the section

when the greatest intensity of compressive stress is 100 Ibs. per square
inch. What is then the intensity of tensile stress in the steel ? Take
the value of E for steel 1 2 times that for concrete.

Using the symbols of Fig. 95 and those above

d 20 2 = 18 inches

fe.ft _ maximum compressive strain h

Ec

"^
E,

~~

tensile strain in metal
~

18 h
/< = 5< h h

ft E,
'

18 - h 12(18 - //)

and equating the total pull in the steel to the thrust in the concrete

Therefore
(18

-
/i)i2

hence 5//
2 + i2ieh 216-* = o

and solving this, h = 8 '5 inches

The distance from the neutral axis to the centre of the steel rods
= 1 8 8-5 = 9'5 inches. The total thrust is

100
- X 10 x 8-5

= 4250 Ibs.

and the total tension in the metal is equal to this.
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The distance of the centre of pressure from the neutral axis is f of

8*5 inches, and that of the tension is 9*5 inches.

The moment of resistance is therefore

(4250X9-5 + | of 8-5) = 64,460 Ib.-inches

The intensity of tensile stress in the steel of area TT square inches is

4250
ft

~ ~
135 Ibs. per square inch

or thus,
A =I2X

|| =I342

which checks the above approximate result.

EXAMPLE 2. A reinforced concrete floor is to carry a uniformly

spread load, the span being 12 feet and the floor 10 inches thick.

Determine what reinforcement is necessary and what load per square
foot may be carried, the centres of the steel bars being placed ij inch

from the lower side of the floor, the allowable stress in the concrete

being 600 Ibs. per square inch, and in the steel 12,000 Ibs. per square

inch, and the modulus of direct elasticity for steel being 10 times that

for concrete. If the load per square foot of floor is 300 Ibs., estimate

the extreme stresses in the materials, assuming bending in one direction

only.
Let h = distance of the neutral axis from the compression edge.
Then the distance from the centres of the steel rods is 10 1-5 h

= 8*5 h inches.

The ratio of stress intensities is

intensity of tensile stress __i2,ooo_ 8*5 h

maximum intensity of pressure
~~

600 h

hence 8-5
- h = zh

h = 2-83 inches

Taking a strip of floor i inch wide

600
thrust of concrete = X2'83Xi = S5o Ibs.

The total tension in the steel must also be 850 Ibs., and the area of

section required is therefore

3 = o '0708 1 square inch
12,000

per inch width of floor. If round bars i inch diameter are used, they

might be spaced at a distance

07854 .

-5
= in inches apart

0-0708

The total moment of resistance is

8so{(f x 2-83) -|- (8-5
- 2 83)} = 6422 Ib.-inches
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which is the product of the total thrust (or tension), and the distance

between the centre of pressure and the centres of the rods.

If w load per inch run, which is also the load per square inch of

the floor, equating the moment of resistance to the bending moment

\w X 144 X 144 = 6422
8 x 6422 = 357

which is the load per square foot.

If the load were only 300 Ibs. per square foot, the stresses would be

proportionally reduced, and

maximum intensity of pressure = 600 X fff
= 505 Ibs. per square inch

intensity of tensile stress = 12,000 X ffy
= 10,090 Ibs. per square inch

EXAMPLE 3. A reinforced beam is of T section, the cross-piece or

compression flange being 20 inches wide and 4 inches deep, and the

vertical leg 14 inches deep by
The reinforce-

of two round
8 inches wide.

ment consists

bars of steel ij inch diameter

placed with their axes 2 inches

from the lower face. Making
the usual assumptions, calculate

the intensity of stress in the

steel, and the total amount of

resistance exerted by a section

of the beam when the com-

pressive stress in the concrete

reaches 500 Ibs. per square
inch. Take the modulus of

direct elasticity in steel 12

times that for concrete in

compression.
Let ft

= intensity of stress

in the steel

h distance of the

neutral axis
from the com-

pression edge
(see Fig. 96).

The ratio of the stress intensities is then

/' _*6-* *

20

Axis

Fro.

whence
,

X 6000
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The total thrust =^ I 2oydy -f $--\ tydy

the first term representing the thrust in the cross-piece, and the second
that in the vertical leg above the neutral axis. The total tension is

and substituting for/ from (i) and equating to the total thrust

9?r ifi /i , 40,000, 2000,
s -r- 6oo -*-*$-(*-*)+ -ji-(*

-
4

from which h = 6 -6 inches and

16 6-6

/, = 6000. ^ = 8550 Ibs. per square inch.

The moment of resistance for the compression is

66 xV2 ^ = I39 '
000 lb -'inches

The moment of resistance for the tension is

855 X^ X 9'4 = 284,000 Ib.-inches

and the total moment of resistance is

139,000 + 284,000 = 423,000 Ib.-inches

The values found for total thrust and the moment of resistance would
not be greatly altered by the omission of the second term in the

respective integrals, i.e. by neglecting the small thrust in the vertical leg
of the section above the neutral axis. The moment of resistance might
be estimated graphically by drawing the modulus figure for the com-

pression area with a pole on the neutral axis (see Fig. 96) ;
the moment

of resistance for compression would then be

500 X (area of compression modulus figure) x (distance of its

centroid from the axis)

or if a second derived figure be drawn, the moment would be

500 x 6 '6 X (area second derived figure)

The total tension moment would be

500 x (area of first compression modulus figure) x 9*4
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Note. A very common example of a T section occurs in ferro-

concrete floors with monolithic cross-beams, the floor forming the cross-

piece of the T. The cross-piece is then often very wide in proportion
to the remainder of the T section, and with a moderately high intensity

of stress in the reinforcement the neutral axis would fall within the

cross-piece instead of below it. This would involve tension in the

lower side of the floor slab, which is not reinforced for tension in that

direction, and might start cracks. This undesirable result can be

avoided by employing more reinforcement at a consequently lower

intensity of stress in the cross-beam or vertical leg of the T section.

70. Beams of Uniform Strength. The bending moment generally
varies from point to point along a beam in some way dependent on the

manner of loading ;
if the cross-section does not vary throughout the

length of the beam, it must be sufficient to carry the maximum bending
to which the beam is subjected anywhere, and will therefore be larger

than necessary elsewhere. Evidently less material might be used by pro-

portioning the section everywhere to the straining action which it has to

bear. This, with practical limitations, is attempted in compound girder
sections of various types. In other cases there is seldom any practical

advantage in adopting an exactly proportioned variable cross-section,

although variable sections are common, e.g. ship masts, carriage springs,
and many cantilevers.

A brief indication of the type of variation of section for uniformity
of strength will be given. Considering only direct stresses resulting
from bending, in order to reach the same maximum stress intensity /at
every cross-section of a beam under a variable bending moment M, the

condition

.. - M , MM =/Z or Z = -j or /=-^/

must be fulfilled, where Z is the variable modulus of section of the

beam. In other words, since f is to be constant, the modulus Z must
be proportional to the bending moment. Taking rectangular beams in

which Z = \b& (Art. 66), either b or d (or both) may be varied so that

bd? is proportional to M. If the beam is a cantilever with an end load
W (see Fig. 59), in which the bending moment at a distance x from the

free end is W . x, uniform strength for direct stresses may be attained by
varying the breadth b proportionally to x, i.e. by making the beam of

constant depth d and triangular in plan, thus

W.* 6W
* ~7 J#'

x

In general, for rectangular beams of constant depth the condition of

uniform strength would be that the width should vary in the same way
as the height of the bending-moment diagram, for

b =
-=^2'

M (/"and d being constant)

If the breadth is made constant the square of the depth should be
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proportional to the bending moment, i.e. the depth should be every-
where proportional to the square root of the bending moment, or

if = 7-7- M (/and b being constant)

For solid circular sections in which the diameter varies

or a* =
7T/

and the diameter varies as the cube root of the bending moment.
71. Distribution of Shear Stress in Beams. In considering the

equilibrium of a portion of a horizontal beam in Art. 56 it was found
convenient to resolve the forces across a vertical plane of section into

horizontal and vertical components. The variation in intensity of the

M
B

K

G'

C
FIG. 97.

horizontal or longitudinal components of stress has been investigated
in Arts. 61, 62, and 63, and we now proceed to examine the distribu-

tion of the tangential or shearing stress over the vertical cross-section.

The vertical shear stress at any point in the cross-section is accom-

panied by a horizontal shear stress of equal intensity (see Art. 8), the

tendency of the former being to produce a vertical relative sliding on
either side of the section, and the tendency of the latter being to pro-
duce relative horizontal sliding on either side of a horizontal or longi-
tudinal section. The mean intensity of shear stress at a height y from
the neutral axis for a beam may be found approximately as follows :

In Fig. 97, let AD and BC be two cross-sections of the beam
distant EK or Bx apart measured along the neutral surface GH

;
let

the variable breadth at any height y from GH be denoted by z-, let

the bending moment at the section AD be M, and at BC be M + SM.

Then, at any height y from the neutral surface, the longitudinal or

horizontal direct stress intensity on the section AD is

=
(Art.
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where I is the moment of inertia of the cross-section. Consider the

equilibrium of a portion ABKE between the two sections. On any
element of cross-section, of area zdy, the longitudinal thrust at AE is

p .z .dy or r.z^dy

But at BK, on the element at the same height, the thrust is

j -.z.dy

The thrusts on any element at BK being in excess of those at AE
by the difference in the above quantities, viz

-^-.y.z.dy

the total excess thrust on the area BK over that at AE will be

f'SM SM (
Vl

J ~Y.y.z.dy
or

-yj y.z.dy

where yl is the extreme value of y, i.e. HA, and z represents the variable

breadth of section between EK and AB. Since the net horizontal force

on the portion ABKE is zero, the excess thrust at BK must be balanced

by the horizontal shearing force on the surface EK ; hence, if q repre-
sents the mean intensity of shear stress at a height y (neglecting any

change in q in the length 8*), the shearing stress on EK is q. z . Sx, and

-r-J y.z.dy
1 J y

8M
hence

where F = -y- (Art. 59 (2) )
= total shearing force on the cross-

section of the beam. Actually the intensity of shear stress at a height

y varies somewhat, laterally being greatest at the inside.

F [
Vl

In the expression y . z . dy, the symbol z outside the sign of
1ZJ y

integration, and the symbol y, which is the lower limit of integration,
refer to a particular pair of values corresponding to the height above
HG for which q is stated, while in the product y . z within the sign of

integration each letter refers to a variable over the range y to y, or

A to E (Fig. 97). It may be noted that the quantity

\

J
y.z.dy

y

is the moment of the area KBK' about the neutral axis GG', which

is equal to the area multiplied by the distance of its centre of gravity
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or centroid from GG', or the area of so much of a modulus figure

(see Art. 68) as lies above KK', multiplied by the height HA or y\
so that

F
?=j X KK x (

area KBK
') X (distance of its centroid from GG') (2)

or

q-
j |& x (area of modulus figure between B and KK') . (3)

which give graphical methods of calculating the intensity of shear stress

at any part of the cross- section.

It is obvious from the above expressions (i) or (3) that q is a

maximum when the lower range of integration is zero
(i.e. at the

neutral surface), and that it is zero at either edge (y = y-^ or y = y^.
If the graphical method with modulus figures be used, the areas on

opposite sides of the neutral axis should be reckoned of opposite signs.

Rectangular Section (Fig. 98). Width b, depth d. At any height y
from the neutral axis, since z is constant and equal to b

FIG. 98. FIG. 99.

If the various values of q are shown by ordinates on d as a base-line,

as in Fig. 98, the curve is a parabola, and when^ o

, F

The mean intensity of shear stress is F -f- bd ; the greatest intensity is

thus 50 per cent, greater than the mean.
Circular Section. Writing y = R sin 0, and z = 2R cos 0, and dy =

rrR4

R cos QdO, as in Fig. 99, I being ,

= -, cos'S or
4F

(5)
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At the neutral axis, = o, or y = o, and q = f -^ which is f
7TJX

times the mean intensity of shear stress on the section. The other

ordinates vary as shown in Fig. 99, the curve being parabolic.
These results are only approximate; the stress is considerably greater
at the inside, and decreases outwards over the strip zdy.

1 The
mean height of this diagram (Fig. 99) does not represent the mean

intensity of shear stress, the width of section not being uniform. In

the case of a thin tube thickness of metal /, the maximum value of q

pi
at the neutral axis would be, taking I yzdy as the half area multiplied

by the distance of its centroid from the neutral axis

2F 2 2F
f= Kr^rtJ7Tf* K

^-
E = ^R/

which is twice the mean on the whole section.

Rectangular I Section with Sharp Corners (Fig. 100). In the flange
at a height y from the neutral axis.

T-,
^ ^ < 6

fr
- .

r

and when y = - at the inner edge of

the flange
F D2 d?

In the web q = f

D

Ff

:
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The curves in Fig. 100 show the variation in intensity at different

heights, both parts being parabolic.
The mean shear stress intensity anywhere might conveniently be

stated from (2) above
; thus, in the web at level y

Y
1 -

Yfr
X (moment of section area above level y about neutral axis)

e.g. the maximum stress when y = o is (taking moments of parts)

F /D <A/D <A d

which agrees with the previous result.

Rolled I Section. This may best be treated graphically by the

method of the modulus figure given above. An example is shown

maximum
intensity

of shear stress

FIG. loi.

in Fig. 101. Every ordinate is proportional to the area of modulus

figure above it, divided by the corresponding breadth of the cross-section.

Built-up Girder Section. Fig. 102 shows the intensity of shear

stress at different parts of the section of a built-up girder. The stress

intensities have been calculated, as in Fig. 100, for the I section, but

the integration requires , splitting into three parts, as there are three

different widths of section.

Approximation. The usual approximation in calculating the inten-

sity of shear stress in the web is to assume that the web carries the whole
vertical shearing force with uniform distribution. Fig. 102 shows that

the intensity in the web does not change greatly. The intensity of

shear stress according to the above approximation is shown by the

dotted line WW, which represents the quotient when the whole shearing
force on the section is divided by the area of the section of the web.

Judging by Fig. 102, this simple approximation to the mean shear stress

in the web for such a section is a good one. The line MM shows the
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mean intensity of shearing stress, i.e. the whole shearing force divided

by the whole area of section
;

this is evidently no guide to the intensity
of shear stress in the web, which everywhere greatly exceeds it.

EXAMPLE. A beam of I section 20 inches deep and ;| inches wide
has flanges i inch thick and web 0*6 inch thick, and carries a shearing
force of 40 tons. Find what proportion of the total shearing force is

1
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The maximum value of q (when y o) is evidently 3-87 tons per

square inch.

Testing the usual approximation of taking all the shearing stress

as spread uniformly over the web section

40
O'o X

= 37 tons Per square inch

which is intermediate between the mean value of q in the web, viz.

38-26~
6 x 8

or tons Per scluare

and the maximum intensity 3-87 tons per square inch.

72. Pitch of Rivets in Girder. In compound I sections the flanges
and web being plates, the connection between the two parts is made by
angle irons riveted to the web and to the flanges (see Fig. 103). The

FIG. 103.

rivets have then to transmit the longitudinal shear between the web and
the flanges. Let / be the pitch of the rivets and let R be the safe

working resistance of one rivet to fracture. Neglecting any variation

in intensity of the shear stress in the web and adopting the approxima-
tion mentioned in the previous article, the intensity of shear stress,

horizontally and vertically, is

F

where / = thickness, and h = depth of web, and F = gross shearing
force on the section. In a distance p horizontally the total horizontal

shearing force to be resisted is q.p . t, hence

_R _ FU
- ~T't~ T

which might also be obtei^eTl by taking moments about a point P

(Fig. 103) of the forces on a section of the web of length/, remember-

ing that the only important force on the web is the shearing force F.
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The expression above for the pitch / shows that in a girder of constant

depth h the pitch may be made greater where the variable shearing
force F is smaller; for example, towards the middle of the span of

a girder carrying a distributed load. Often a pitch suitable for the

section of a maximum shearing force is used throughout for convenience

instead of a variable pitch. The working resistance R of a single rivet

may be found by its resistance to fracture by shearing or by its resist-

ance to crushing across a diameter. In the former case, for the rivets

attaching the angles to the web, since two circular sections in each

rivet resist shearing

where d is the diameter of the rivet, and ft
is the safe intensity of sheai

stress. The resistance to crushing is

d. /./,

wherefb
= safe intensity of crushing or bearing stress on the projected

area of the rivet
; /6 is generally taken as about twice/. The working

resistance should be taken as the lower of the above values
; this will

be the resistance to crushing only when the web is very thin.

For attaching the angles to the flanges twice as many rivets will

be necessary if the shearing resistance is the criterion, for each rivet

only offers one circular area of resistance to shear; this will require
the same pitch p as before on either side of the web, there being then

twice as many rivets as are used for attaching the angles to the web.

If, however, resistance to crushing is the criterion throughout, a pitch

2p might be used to attach the angles to the flange.

For vertical joints in the web, two pieces being connected by
double cover plates, the rivets are in double shear, and the pitch

T? ft

p = may be used, where F is the value of the shearing force at
F

the vertical section at which the joint occurs, and R is the smaller of

the two rivet resistances given above.

EXAMPLE. The web of a girder is |-inch steel plate, and is

50 inches high. Find a suitable pitch for i-inch rivets to attach the

web to the flanges, the angle plates being 6 inch x 6 inch x \ inch,

the average shear stress in the rivets to be 4 tons per square inch, and

the total shearing force on the section being 150 tons.

The total resistance of a i-inch rivet in the web, being in double

shear, is

2 x 07854 x 4 = 6'28 tons

Using the formula above

6-28 x 50 u \

/ =- =2-09 mcL
t ^ay 2 inches)

This is too small for i-inch rivets in a single row, but double rows,
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arranged as shown in Fig. 104, in each of which the distance between

rivets is 4 inches, will give the same resistance.

FIG. 104.

73. Principal Stresses in Beams. The intensity of direct stress

due to bending, as found in Arts. 61 to 65, and the intensity of

horizontal and vertical shear stress, as found in Art. 71, are only, as

indicated in Arts. 56, 64, and 65, component stresses in conveniently
chosen directions. Within the limitations for which the simple theory
of bending is approximately correct (Art. 64), the methods of Arts. 17
and 1 8 may be applied to find the direction and magnitude of the

principal stresses, the greater of which, at any point, has the same

sign as the longitudinal direct component there, and makes the smaller

(acute) angle with it. Fig. 105 shows the directions of the principal

Tension,

FIG. 105 Curves of principal stress and magnitudes of principal and component
stresses.

stresses at numerous points in a simply supported beam of rectangular
cross-section carrying a uniformly distributed load, as well as the
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intensities of the component horizontal direct and vertical shear stresses

on certain vertical sections, and the intensities of the two opposite

principal stresses on one section. The distribution of horizontal direct

component stress over a given section is as shown in Fig. 75, and the

values of its intensity for a given height vary along the length of the

beam, as shown in the bending-moment diagram, Fig. 65. The dis-

tribution of tangential or shear stress across vertical sections is as in

Fig. 98, and the intensities at a given height vary along the length of

the beam, as in the shearing-force diagram in Fig. 65. For the purpose
of illustration, the intensity of vertical shearing stress has been made
excessive for a rectangular section by taking a span, /, only four times

the depth of the beam. The maximum intensity of vertical (and

horizontal) shear stress, which occurs at the middle of the end section,

is, by Fig. 65 and Art. 71

_ 3 \wl 3
wl

q ~ '

^bd
~

* bd

where w is the load per inch run on the span /.

The maximum intensity of horizontal direct stress, which occurs at

the top and bottom of the middle section, is, by Fig. 65 and Art. 63 (7)

maximum q d
hence maximum/= 7

=
'

The magnitudes of the principal stresses for all points in the one
cross-section \l from the right-hand support have been calculated from
the formula (3) in Art. 18, and are shown in Fig. 105. The two

principal stresses are of opposite sign, and the larger one has the same

sign as the direct horizontal stress, i.e. it is compressive above the

neutral axis and tensile below it. The diagram does not represent
the direction of the principal stresses at every point in this section.

For such a large ratio of depth to span as 5, the simple theory
of bending could not be expected to give very exact results, but
with larger spans the shearing stresses would evidently become more

insignificant for a rectangular section. The magnitudes shown in

Fig. 105 must be looked upon as giving an idea of the variation in

intensity rather than an exact measure of it.

Curves of Principal Sfress. Lines of principal stress are shown in

Fig. 105 on a longitudinal section of the beam. They are such that

the tangent and normal at any point give the direction of the two

principal stresses at that point. There are two systems of curves

which cut one another at right angles: both cross the centre line at

45 (see Arts. 8 and 1.5). The intensity of stress along each curve
is greatest when it is parallel to the length of the beam and diminishes

along the curve to zero, where it cuts a face of the beam at right angles.
For larger and more usual ratios of length to

depth,
for rectangular

beams the curves would be much flatter, the vertical shearing stress

being smaller in proportion about mid-span.
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Maximum Shearing Stress. At any point in the beam the intensity
of shear stress is a maximum on two planes at right angles, inclined at

45 to the principal planes, and of the amount shown in Art. 18 (4),

viz. half the algebraic difference of the principal stress intensities, which

is, in the case shown in Fig. 105, half the arithmetic sum of the magni-
tudes of the principal stress intensities taken with like sign.

Principal Stresses in I Sections. In I sections, whether rolled in

one piece or built up of plates and angles, it has been shown (Art. 67)
that the web area is of little importance in resisting the longitudinal
direct stresses due to bending, or, in other words, it contributes little

to the modulus of section; and in Art. 71 (Fig. 102) it was shown that

the flanges carry little of the shear stress. It should be noticed, how-

ever, that in the web near the flange the intensity of longitudinal direct

stress is not far below the maximum on the section at the outer layers,
while the intensity of vertical shear stress is not much lower than the

maximum, which occurs at the neutral plane. The principal stress in

such a position may consequently be of higher intensity than either of

the maximum component stresses (see example below). Only low shear-

stress intensities are allowed in cross-sections of the webs of I-section

girders ; it should be remembered that the shear stresses involve tensile

and compressive principal stresses, which may place the thin web in

somewhat the condition of a long strut. See also remarks in Art. 25
on the strength of material acted on by principal stresses of opposite

kinds, which is always the case in the webs of I sections, where, in the

notation of Art. 18

For full consideration of the design of. plate girder webs, the reader

should consult a treatise on " Structures."

EXAMPLE. A beam of I section, 20 inches deep and 7| inches

wide, has flanges i inch thick, and web o'6 inch thick. It is exposed
at a particular section to a shearing force of 40 tons, and a bending
moment of 800 ton-inches. Find the principal stresses (a) at the

outside edges, (b) at the middle of the cross-section, (c) i\ inch from the

outer edges.
The moment of inertia about the neutral axis is

^(7-5 X 2o3 -
6-9 X i83

)
= 1647 (inches)

4

(a) At the outside edges / = -?- = 4*86 tons per square

inch pure tension or compression, the other principal stress being zero.

(b) At the middle of the cross-section the intensity of vertical and
horizontal shear stress is

q = !647

4

x o-'6(
7

'

5
'j\

ydy + '

6
//^)

= 3'87 tons per square inch

as in example at end of Art. 71.

This being a pure shear, the equal principal stresses of tension and
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compression are each inclined 45 to the section, and are of intensity

3 '8 7 tons per square inch.

(c) Intensity of direct stress perpendicular to the section is

800 x 8-5
p\ = g

- = 4*13 tons per square inch

The intensity of vertical shear stress on the section is

1647 x 2 X o*6 lw
'

q 2*99 tons per square inch

Hence, the principal stresses are, by Art. 18

*-*
7')

+ 1\
= 2

' 65 3-63

which are 5*695 and 1*565 tons per square inch, and the major
principal stress is inclined at an angle

tan
- 1

or 27 40' (see Art. 18 (2))

to the corresponding direct stress along the flange, or 62 20' to the

cross-section.

Intensities of Stress

FIG. 106. Magnitudes of component and principal stress intensities in I-section beam.

This illustrates the fact that just within the flange of an I section,

carrying a considerable bending moment and shearing force, the

intensity of the principal stress (5*695) may exceed that at the

extreme outside layers of the section.

The intensities of principal stress in the web, calculated as above,
are shown in Fig. 106, which shows that the material bears principal
stresses the greater of which is nowhere greatly less than the maximum.
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In accepting such conclusions as to principal stresses, the limitations

of the simple theory of bending should be borne in mind : these results

can only be looked upon as approximations giving a useful idea of the

nature of the stresses.

74. Bending beyond the Elastic Limit. Modulus of Rupture.
If bending is continued after the extreme fibres of a beam reach the

limit of elasticity, the intensity of longitudinal stress will no longer be

proportional to the longitudinal strains, and the distribution of stress

will not be as shown in Fig. 75. For moderate degrees of bending
beyond the elastic limit, the assumption that plane sections remain

plane is often nearly true. In this case the strains will be proportional
to the distances from the neutral axis (Art. 61), and the longitudinal
stress intensities will vary from the neutral axis to the extreme layers,

practically as in stress-strain diagrams for direct stress. Different

types of distribution will occur according as the elastic limit is reached
first in tension or compression, or simultaneously. The true elastic

limit for cast iron is very low in tension or compression, but at, say,
8 tons per square inch the strain in tension is much greater, and
deviates much more from proportionality to stress than in compression.
The distribution of stress on a symmetrical section will therefore be
somewhat as in Fig. 107 ;

the neutral surface will no longer pass

through the centroid of the area of cross-section, but will be nearer

the compression edge, which, yielding less than the tension edge, will

have a greater intensity of stress. If the beam is of constant breadth,
i.e. of rectangular cross-section, the neutral surface will move from half-

depth in such a way that the areas OPQ and ORS remain equal, for

the total tension and total thrust are of equal magnitude, and form a

couple.
If the material of a beam has the same stress-strain diagram in

tension and in compression, the neutral surface will continue to pass

through the centroid of the area of cross-section, the distribution of

tension and compression being symmetrical, but the intensity of stress
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will not in either case be proportional to the distance from the neutral

surface (see Fig. 108) after the elastic limit is exceeded; the material

nearer the neutral surface will carry a higher intensity of stress than if

FIG. 108.

the stress were proportional to the distance from the neutral surface,
the intensities being intermediate between a proportional and a uniform
distribution.

1

Modulus of Rupture. When a bar of metal is tested by bending
until rupture takes place, the intensities of stress at the outer layers at

rupture are not those given by the formula (6) in Art. 63, viz.

-

and fc
=

since the condition of elasticity there assumed has ceased to hold good.
Nevertheless, the quantity

yi M
My or

-j

where M is the bending moment at rupture, is very often used as a

guide to the quality of cast iron, the bending test with a central load

being easily arranged. It is evidently not a true intensity of stress, and
is called the transverse modulus of rupture. The term is practically
confined to the tests of a rectangular section, and in cast iron the

modulus is much higher than the ultimate tenacity in a tensfle test, for

two reasons. Firstly, because the tensile strain at comparatively low
stress at one edge allows a distribution of stress similar to that sketched

in Fig. 107, thereby using the high compressive strength of cast iron

to advantage. And secondly, because the inner layers of material

under the distribution of stress previous to rupture carry a higher intensity
of stress than is contemplated by the formula

/jy
or & 4- \b<P (for a rectangular beam)

1 Some experiments on the distribution of strain on cross sections of beams will

be found in a paper by Dr. J. Morrow, Proc. Roy. Soc. t vol. 73, p. 13.
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for the moment of resistance, thereby increasing the resistance. This
second reason would not apply in any considerable degree to a thin

I section, in which the direct stress is borne almost entirely by the

flanges, and with comparatively uniform distribution in them, both
before and after the elastic limit is passed (see Fig. 108), near outside

edges. Practically, however, the term " modulus of rupture
" and the

transverse test to rupture are confined to cast iron and timber and to

the rectangular section.

74a. Unsymmetrical Bending. In considering simple bending
(Art. 61) it was assumed that the beam had a cross section symmetrical
about the axis through its centroid and in the plane of bending. The

planes of bending and that of the ex-

ternal bending couple will be parallel
if the axis of cross section in the

plane of the external moment is a prin-

cipal axis (Art. 68a). If this condition

is not fulfilled, let OY', Fig. io8A,
be the plane of the external bend-

ing moment (shown by its trace on the

section which is in the plane of the

figure) inclined at an angle a to the

principal axis OY, or let the bending
couple M be in a plane perpendicular
to OX'. If the couple M, repre-
sented by OP, say, be resolved into

components represented by OR and RP about the principal axes OX
and OY, these components will be

M cos a and M sin a respectively.

The intensity of bending stress and the strain everywhere on the section

can then be found by taking the- algebraic sum of the effects produced
by the component bending moments about the two principal axes.

Thus, the unit stress at any point Q the co-ordinates of which referred

to the principal axes OX and OY are x, y will be from (5), Art. 63

yM cos a xM sin a . .

FIG. io8A.

where Ix and ly are the principal moments of inertia of the beam
section about OX and OY respectively. For a point the co-ordinates

of which are x, y
yM. cos a xM. sin a . *

/ = H v
2/

For points on the neutral axis, putting/ = o in (i)

I*=
XY~

^n a
y

(3)

which is a straight line ON through the centroid of the section inclined

to OX at an angle (3,
so that
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y = x\wp ....... (4)

and tan /3
=

T
f tan a ....... (5)

i
y

It may be noted that the relation (5), which may be written

k*
tan ft

= -TV tan a ....... (6)Kn
is that between the slopes of conjugate axes of the momental ellipse

(Art. 68a), the principal semi-axes of which are the radii of gyration
ky about OY in the direction OX and kx about OX in the direction OY.
Consequently, if the momental ellipse is drawn the direction of the

neutral axis ON (Fig. io8A) may be found by drawing the diameter

conjugate to OY', which is easily accomplished by joining O to the

point of bisection of a chord parallel to OY'.

To find the maximum stress in a given section resulting from a

given bending moment in any given plane we first calculate the direc-

tion of the principal axes and values of the principal moments of

inertia as described in Art. 68a. Then calculate the direction of the

neutral axis from (5) and draw it on the given section and find by
inspection the point in the section furthest from the neutral axis and

apply equation (i). The intensity of stress might also be stated in

terms of/', the distance from the neutral axis (Fig. io8A) for

QM =y"=ycosj3 - xsin /? .... (7)

, e . * cos a sin a y cos 8
^'- =

<8>

hence

and substituting this in (i) and then for sin a from (8)

M./ sin a__M.y_
I,

'

sin ft

"~

vX2 cos55

ft + I,
2 sin

2
ft

' '

The maximum value /1} tensile or compressive of /, can be found

by writing the maximum value of /' on the tensile or compressive side
of the neutral axis.

Another form of the result. The value ofp might also be stated

directly in terms of the moment of inertia of the section about the
neutral axis ON from the general formula (5) Art. 63, for the com-
ponent bending moment about ON resulting from the bending moment
M about OX' is M cos (/2-a), hence

y.Mco,(0-.)
AN

where IN is the moment of inertia about the neutral axes ON, which

may be found graphically, as described in Art. 68a, from the momental

ellipse or from (2) Art. 68a, writing ft for a, which gives from (i i) above

y'M cos (ft
-

a)
f ~

I. cos2

ft + I, sin
2
ft

'
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a formula easily reduced to the form (10) by the relation (5) between

ft and a.

The choice of one or other method of dealing with a case of un-

symmetrical bending will depend partly on the type of section. Thus
in rectangular sections a corner will always be a point of maximum
stress, and formula (2) may be applied directly. In other sections it

may be more convenient to draw the neutral axis to determine for

which point in the section the unit stress is a maximum.
EXAMPLE i. Calculate the allowable bending moment on a British

Standard unequal angle 6" X 3i" X f", carrying a load on the short

edge with the long edge vertically downwards, if the stress is limited

to 6 tons per square inch and the area, principal moments of inertia

and position of the centroid of the section are given.
The particulars from the standard tables are given in Fig. io8B, and

as follows. Tan XOX' = tan a = 0*344, hence a = 19; 1^ = 13 '908

(inches)
4

;
l
y
= 1*963 (inches)

4

;
area = 3*424 square inches, hence

kx = 2-015 inches, ky = 0757 inches.

FIG. io8s.

The position of the neutral axis may be found by (5)

tan ft
=^~ X 0-344 = 2'43 7

= tan 67 7

The neutral axis ON is set off on the left of Fig. io8B, and by

inspection it is evident that P is the furthest point in the section from
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ON
;

its distance from OX is 3*84" = y, and its distance from OY
is 0-83" = + x

t
hence from (i) putting/ = 6 tons per square inch

r84M cos 10 0*8iM sin 10
6 = -

7
- = M(o'26i + 0-137:5)

13-908 1-963

hence M = 15*05 ton-inches, the negative sign merely indicating
the kind of bending moment, P being, say, on the tension side of the

neutral axis ON. The compressive stress at the point Q can readily
be found from (i).

Graphical Solution. Set out the momental ellipse on the right of

Fig. io8B such that tan XOX' = 0-344 or angle XOX = 19, O'A = kx
= 2-015", O'B = 0-757" (on any scale). Draw any chord RS parallel
to OY', and bisect it in V; draw NO'N' the neutral axis through O'

and V. Set out this neutral axis ON on the section, as shown to the

left of the figure, and look out the distance from it of the most remote

point P which measures 2*22". Through C draw the tangent to the

ellipse parallel to ON, and measure its perpendicular distance from
NO'N' which is 1-04". Then the moment of inertia of the section

about ON is

(ro4)
2 x 3-424 = 37 (inches)

4

Then measuring the angle NOX' as 48*7 and applying (n)

6 = 2-22 x M X cos 48-7 = 0-396X1

and M=i5'i5 ton-inches, confirming approximately the previous
result.

EXAMPLE 2. A British Standard equal angle section measures

44" x 44" * I" and 1S rounded to a radius of 0-275 mcn at its outer

ends or toes. Its area of section is 3*236 square inches, and the

distance of its centroid from either outside edge is 1*244 inch. Its

principal moments of inertia are 9-768 (inches)
4 and 2-514 (inches)

4
, the

former being about an axis through the intersection of the outer edges.
A beam of this section, and simply supported at its ends, has one side

of the angle horizontal and carries on it a vertical load of \ ton

midway between the supports, which are 5 feet 4 inches apart. Find
the greatest tensile and compressive stresses in the material.

In this case from the symmetry a = 45.
If ft is the angle which the neutral axis makes with the principal

axis passing through the intersection of the edges, from (5)

tan ft
= 2J^? -

3-885
2-514

Hence from tables ft
= 75-6

The neutral axis is inclined to the loaded edge at an angle

75-6
- 45 = 30-6

The most distant point in tension may be measured from a drawing
to scale or calculated ; it occurs on the curved toe, as in Fig. io8B.

The co-ordinates of the centre of the curve referred to axes parallel to



150 STRENGTH OF MATERIALS. [CH. V.

the angle edges are known, and hence the distance from the neutral

axis is easily calculated about an oblique neutral axis
;
the distance to

the curved toe exceeds the distance to the centre by the radius 0-275".
Either method gives y" = 2' 26".

About the neutral axis

IN = 9'?68 cos2 75-6 + 2-514 sin
2
75-6 =2-96 (inches)

4

which may be checked by drawing the momental ellipse. The bending
moment M midway between the supports is

Jxix64=8 ton-inches

Hence from (n)
., .

.,
2-26 x 8 x cos 30-6Maximum tensile stress = -

r-^~
-
=5^26 tons per sq. inch

Also from the neutral axis to the intersection of the outer edges where

the compressive stress is greatest measures 1*70" (viz. 1*244 X \f2 x
sin 75 '6). Hence, similarly, the maximum compressive stress is

1-70 X 8 x sin 75'6LJ = 3*97 tons per sq. inch.

EXAMPLES V.

1. A wooden beam of rectangular section 12 inches deep and 8 inches
wide has a span of 14 feet, and carries a load of 3 tons at the middle of the

span. Find the greatest stress in the material and the radius of curvature
at mid span. E = 800 tons per square inch.

2. What should be the width of a joist 9 inches deep if it has to carry a

uniformly spread load of 250 Ibs. per foot run over a span of 12 feet, with
a stress not exceeding 1200 Ibs. per square inch?

3. A floor has to carry a load of 3 cwt. per square foot. The joists are
12 inches deep by 4^ inches wide, and have a span of 14 feet. How far

apart may the centre lines be placed if the bending stress is not to exceed
loco Ibs. per square inch?

4. Compare the moments of resistance for a given maximum intensity
of bending stress of beam of square section placed (a} with two sides

vertical, () with a diagonal vertical, the bending being in each case parallel
to a vertical plane.

5. Over what length of span may a rectangular beam 9 inches deep and
4 inches wide support a load of 250 Ibs. per foot run without the intensity of

bending stress exceeding 1000 Ibs. per square inch ?

6. A beam of I section 12 inches deep has flanges 6 inches wide and
i inch thick, and web

|-
inch thick. Compare its flexural strength with that

of a beam of rectangular section of the same weight, the depth being twice
the breadth.

7. A rolled steel joist 10 inches deep has 'flanges 6 inches wide by f inch

thick. Find approximately the stress produced in it by a load of 15 tons

uniformly spread over a span of 14 feet.

8. Find the bending moment which may be resisted by a cast-iron pipe
6 inches external and 4^ inches internal diameter when the greatest intensity
of stress due to bending is 1 500 Ibs. per square inch.

9. Find in inch units the moment of inertia of a T section, about an
axis through the centroid or centre of gravity of the section and parallel to

the cross-piece. The height over all is 4 inches, and the width of cross-

piece 5 inches, the thickness of each piece being inch.
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10. The compression flange of a cast-iron girder is 4 inches wide and

\\ inch deep ; the tension flange 12 inches wide by 2 inches deep, and the

web 10 inches by \\ inch. Find (i) the distance of the centroid from

the tension edge ; (2) the moment of inertia about the neutral axis ; (3) the

load per foot run which may be carried over a lo-foot span by a beam

simply supported at its ends without the skin tension exceeding i ton per

square inch. What is then the maximum intensity of compressive stress ?

In Examples Nos. n to 16 inclusive the tension in the concrete is to be

neglected, and the modulus of direct elasticity of steel in tension taken as

15 times that of concrete in compression. The concrete is to be taken as

perfectly elastic within the working stresses.

11. A reinforced concrete beam 10 inches wide and 22 inches deep has

four i^-inch bars of round steel placed 2 inches from the lower edge. If

simply supported at the ends, what load per foot run would this beam

support over a i6-feet span if the compressive stress in the beam reaches

600 Ibs. per square inch ? What would be the intensity of tensile stress in

the reinforcement ?

12. A reinforced concrete floor is 9 inches thick, and the reinforcement

is placed 2 inches from the lower face. What area of section of steel

reinforcement is necessary per foot width if the stress in the concrete is to

reach 600 Ibs. per square inch, when that in the steel is 15,000 Ibs. per

square inch, and what load per square foot could be borne with these stresses

over a span of 10 feet?

13. A concrete beam is 18 inches deep and 9 inches wide, and has to

support a uniformly distributed load of 1000 Ibs. per foot run over a span of

1 5 feet. What area of section of steel reinforcement is necessary, the bars

being placed with their centres 2 inches above the lower face of the beam,
if the intensity of pressure in the concrete is not to exceed 600 Ibs. per

square inch ?

14. A ferro-concrete floor is 8 inches thick, and carries a load of 200 Ibs.

per square foot over a span of 12 feet. What sectional area of steel

reinforcement 2 inches from the lower surface is necessary per foot width
of floor if the pressure in the concrete is to be limited to 600 Ibs. per square
inch ? What would then be the working stress in the steel ?

15. Part of a concrete floor forms with a supporting beam a T section,
of which the cross-piece is 30 inches wide by 6 inches deep, and the vertical

leg is 8 inches wide, and is to be reinforced by bars placed with their centres

12 inches below the under side of the floor. What area of cross-section

of steel will bring the neutral axis of the section in the plane of the under
side of the floor ? What would then be the intensity of tension in the steel

when the maximum compression reaches 600 Ibs. per square inch ?

1 6. A reinforced concrete beam of T section has the cross-piece 24
inches wide and 5 inches deep, the remainder being 10 inches wide by
1 8 inches deep. The reinforcement consists of two 2-inch round bars placed
with their centres 3 inches from the lower face of the beam. Find the

intensity of tension in the steel and moment of resistance of the section

when the extreme compressive stress in the concrete reaches 600 Ibs. per
square inch.

17. A (reinforced) flitched timber beam consists of two timber joists each

4 inches wide and 12 inches deep, with a J-inch steel plate 9 inches deep
placed symmetrically between and firmly attached to them. What is the
total moment of resistance of a section when the bending stress in the timber
reaches 1200 Ibs. per square inch, and what is the greatest intensity of stress

in the steel ? (E for steel may be taken 20 times that for the timber.)
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1 8. Find the ratio of maximum to mean intensity of vertical shear stress

in a cross-section of a beam of hollow circular section, the outside diameter

being twice the internal diameter.

19. Find the greatest intensity of vertical sheer stress on an I section
10 inches deep and 8 inches wide, flanges 0*97 inch thick, and web o -

6 inch

thick, when the total vertical shear stress on the section is 30 tons. What
is the ratio of the maximum to the mean intensity of vertical shear stress ?

20. The section of a plate girder has flanges 16 inches wide by 2 inches
thick ; the web, which is 30 inches deep and f inch thick, is attached to the

flanges by angles 4 x 4 x inch, and the section carries a vertical shearing
force of 100 tons. Find approximately the intensity of vertical shear stress

over all parts of the section and plot a curve showing its variation. (Neglect
the rivet holes and rounded corners of the angle plate.)

21. If the above section in No. 20 is also subjected to a bending moment
of 5000 ton-inches, find the principal stresses in the web 7 inches from the
outer edge of the tension flange.

22. Find the moment of resistance to bending in a longitudinal plane
perpendicular to the short edge which may be exerted by a beam of angle
section 6" x 4" x f

"
if the toes of the angle are rounded to a radius of 0-3"

and the root to a radius of 0-425", the stress being limited to 6 tons per
square inch. The principal moments of inertia will be found to be 15*209
(inches)

4 and 2713 (inches)
4 and the distances of the centroid from the short

and long outer edges are 1*912" and 0-923" respectively. The principal
axis about which the moment of inertia is a maximum is inclined to the
short edge at an angle the tangent of which is 0-439.



CHAPTER VI.

DEFLECTION OF BEAMS.

75. Stiffness and Strength. It is usually necessary that a beam should

be stiff as well as strong, i.e. that it should not, due to loading, deflect

much from its original position. The greatest part of the deflection

is generally due to bending, which produces curvature related to the

intensity of stress in the manner shown in Art. 61. We now proceed
to find the deflection of various parts of beams under a variety of

different loadings and supported in various ways. The symbol y, a

variable, will be used for deflections for different points along the neutral

plane, from their original positions. This symbol is not to be confused

with the variable y already used for the distances of points in a cross-

section from the neutral axis of that section, although it is estimated

in the same direction, usually vertical. It will be assumed that ali

deflections take place within the

elastic limit, and are very small

compared to the length of the

beam.
76. Deflection in Simple

Bending : Uniform Curvature.

When a beam of constant sec-

tion is subjected throughout its

length to a uniform bending
moment M it bends (see Arts. 61

and 63) to a circular arc of radius

R, such that

^r = ^r or = =r
M̂
El

FlG>

where E is the modulus of direct

elasticity, and I is the moment of

inertia of the area of cross-section

about the neutral axis. If a beam
AB (Fig. 109) of length /, originally straight, bends to a circular arc

AP'B, the deflection PP' or yt
at the middle, can easily be found from

the geometry of Fig, 109.
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PP' . PC =

[CH. VI.

PP'( 2R- PP') = -
4

and for small deflections, neglecting (PP')
2
,
the square of a small

quantity

2PF - R = -
4

(i)

since
"A

In this case the whole length is subject to the maximum bending
moment M as between the supports in Fig. 67. In other cases where

parts of the beam are subject to less than the maximum bending
moment, the factor in the above expression for maximum deflection

will be less than f.

If * is the angle of slope which the ends of the beam make with

the original position AB, taking i = sin / for small deflections (in

radians)

._PB / M/
1 " OB

~
2R

~
^El * * ' ' ' W

77. Relations between Curvature, Slope, Deflections, etc. Measur-

ing distances x, along the (horizontal) span from any convenient origin, y
(vertical), deflections perpendicular to

x, i angles of slope in radians of the

beam to some fixed direction, usually

horizontal, and s lengths of arc of the

profile of the neutral surface of the

beam when bent (Fig. no)

-i = tan / = * (very nearly if / is

**
always very small)

The curvature of a line is usually
defined as the change of i per unit of

arc, or

di

Js

and since (Fig. i TO) 8/is very small, &# is sensibly equal to 8s, or
- =

i,
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i di di d(dy\ d?y
hence the curvature ^ = ~r = -.- = -r( :r )

=
~j > (i)R ds dx dx\dx) dx~

M i ff-yand
El
=
R
=
7^ (2)

for any point x along the beam, for this relation, established for uniform

curvature ^-, will also hold for every elementary length ds in cases
. _K

where the curvature =- is variable.X
Hence the slope

the integration being between suitable limits.

And the deflection

(dy r f [M
y = h^<*x = MX or rlw****' ... (4)

between proper limits.

Combining the above relations with those in Art. 59, viz.

<tM d?
-7- = r and -7- = w = -^dx dx do?

where F is the shearing force and w is the load per unit length of

span at a distance x from the origin, we have

when E and I are constant, and

If a/ is constant or a known integrable function of x, general ex-

pressions for F, M, i, and y at any point of the beam may be found

by one, two, three, or four integrations respectively of the equation

a constant of integration being added at each integration. If sufficient

1 The approximation may be stated in another way. The curvature

fir

.

and if -~ is very small, higher powers than the first may be neglected, and =

reduces to -r-..
ax*
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conditions of the fixing or supporting of the beam are given, the values

of the constants may be determined. If the general expression for the

bending moment at any point can be written as an integrable function

of x, as in Art. 57, general expressions for / and y may be found by
integrating twice the equation

aPy _ M
d^-EI

Examples of both the above methods are given in the next article.

dy
Signs. For y positive vertically downwards slopes i or

-f-
will be

positive downwards in the direction of x positive (generally to the right) ;

dy
and convexity upwards corresponds to increase of -r with increase of x

3

i.e. to positive values of -3. In Art. 59 the sign of the bending moment

was so chosen that a clockwise moment of the external forces to the

right was positive. Hence, if the clockwise moment of the external

forces to the right of a section is written for M in equation -(2) (whether
cPy

positive or negative) positive curvature, i.e. + -r& must be written on

the other side of the equation. The same, of course, applies for the

contra-clockwise moments
to the left of a section.

If the moments are esti-

mated in the opposite senses

to those stated -j-2 must

be used in equation (?). A
violation of the rule of signs
will lead to an error in the

FlG - lflt
signs of i and y resulting

from integrations of (2). It may be noted that a positive clockwise

moment of external forces to the right of a section gives a positive

value to
-j^-ji

*"* tne beam will be convex upward at that section.

78. Uniform Beam simply supported at its Ends with Simple
Loads. The two following examples are worked out in considerable

detail to illustrate the method of finding the constants of integration.

(a) Let there be a central load W (Fig. in), and take C as origin.

Then at P, distant x horizontally along the half span CB from the origin

C
<Py M i

^ =
EI

=
-EI-

and integrating this

where A is a constant.
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Since / = o when x = o, substituting these values, o = o -(- A,
therefore A = o

;
and with this choice of origin (C) A disappears, and

dy W// #*\
i or -/-

= -r=rt ( -x -- ) ..... (i)dx 2E1A2 2/

Integrating again

the constant of integration, B, being + - since 7 = when
48 El

x =-. The equations (i) and (2) give the slope and deflection any-

where on the half span, e.g. at the end, or x = -,

W //2
/
2\ W/2

'B= -^ElV4-8/=-l6EI
..... (3)

W/3

and at the centre, yG = ,-,.. ........... (4)

The slopes and deflections on the other half span are evidently of
the same magnitude at the

same distances from C.

(b) Let there be a uni-

formly spread load w per
unit length. Take the origin
at A (Fig. 112), and use the

d*y
equation EI-^-4

= w. The FIG. 112.

four integrations require four known conditions to evaluate the four

added constants. The four conditions in this case are

EI = M = o for x = o

y = o for x = o, and y = o for x I

Integrating, EI = wx + A ......... (6)

<Pv
Integrating again, EI^ =

\wx
*' + A* +

the added constant being zero, since both sides must reduce to o for

* =0>
^v

Putting -j^
= o when x = I

o = J?^/
2 + A/

hence A = -
\
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(a result which might also be obtained from (6), since the shearing

force is zero for x = -
) .

2 /

Then substituting for A

El . -7-3
= \wy? \wlx (7)

Integrating this

Integrating again

the constant being zero, since y = o for x = o.

Putting y = o for x = /

o = ->/
4 - i>/

4 + B/
therefore B = -^uuP

which might also be found from (8), since by symmetry * = o for

*=

and y = '*
> - ^w/x* +

'

J>

wx(l x)
or, y=

(6), (7), (8), and (9) give F, M, *, and y respectively for any point
distant x along the beam from the end A. E.g. / is a maximum when

-7- = o or M = o, i.e. at the ends
; thus, writing x = o in (8)

B wl*

dy I

y is a maximum when -r* or / = o, i.e. when x = -

a//
4 a//

4

and then 7c = (^ - I + i)
=

st?

or, if the whole load / = W
. W/s

7c =
f4'-Ex

....... (12)

The signs here all agree with and illustrate the convention given at

the end of Arts. 59 and 77.
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Overhanging Ends. For points between two supports a distance /

apart the work would be just as before, except that
ELj-^

at each

support would be equal to the bending moment due to the overhanging
end instead of zero.

Propped Beam. If this beam were propped by a central support to

the same level as the ends, the central deflection becomes zero, or, in

other words, the upward deflection caused by the reaction of the prop

(and proportional to it) is equal to the downward deflection caused by
the load at the middle of the span.

Let P be the upward reaction of the prop ; then from (4) and (i i)

48EI
"

38 * El (13)

and P = fa//, i.e. the central prop carries f of the whole load, while the

end supports each carry -^ of the load.

Sinki?ig of Prop. If the prop is not level with the end supports, but

removes - of the deflection due to the downward load, the reaction of

the prop will be - of the above amount.
n

Elastic Prop. If the central prop and end supports were originally
at the same level, but were elastic and such that the pressure required

p
to depress each unit distance is

<?,
the compression of the prop is ->

and of each end support . Then equating the difference of

levels to the downward deflection due to the load, minus the upward
deflection due to P

which evidently reduces to the previous result for perfectly rigid

supports for which e is infinite, and approaches \wl for very elastic

supports. If the elasticities of the end supports and central prop are

different, the modification in the above would be simple.
EXAMPLE i. A beam of 10 feet span is supported at each end and

carries a distributed load which varies uniformly from nothing at

one support to 4 tons per foot run at the other. The moment of

inertia of the cross-section being 375 (inches)
4
,
and E 13,000 tons per
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square inch, find the slopes at each end and the magnitude and position
of the maximum deflection.

The conditions of the ends are as before. Take the origin at the

light end
; then at a distance x inches along the span the load per inch

run is

x x
X A = 7- tons

120 12
360

**
~

360

' x

36oEIV 6

=

A'
3 ^"

A j-

-~ = o for x = /: hence A = - F and
^jc- 6

36oEI\24 12

= o for a: = /; henc

= _..-
36 120 360

dy = i r ^ _ /V _T/|_
\

^t:~6oEI\2 12 60712 360
i

36 360

At the light end x = o

<y 7 X i2o4
i

-nr = -T
-- X -7
- radians= o* 1 31

//* 360 360x13,000x375

At the heavy end x = 120 inches, -^ = 0*150

At the point of maximum deflection
-j-
= o

; therefore

hence, solving x = o'$2l = 62-4 inches

and substituting this value, y = 0^0925 inch

EXAMPLE 2. A wooden plank 1 2 inches wide, 4 inches deep, and
10 feet long, is suspended from a rigid support by three wires, each of
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which is \ of a square inch in section and 15 feet long, one being at

each end, and one midway between them. All the wires being just
drawn up tight, a uniform load of 400 Ibs. per foot run is placed on the

plank. Neglecting the weight of the wood, find the tension in the central

and end wires, and the greatest intensity of bending stress in the plank,
the direct modulus of elasticity (E) for the wires being 20 times that for

the wood.
Let E, be the modulus for the wires, and that for the wood

The force per inch stretch of the wires (e)
= ---1

, the strain being ^~.o X loO

For the wooden beam supported at the centre,

I = ^j x 12x64= 64 (inches)
4

The load on the central wire may be found from (14) above

24EJ __ 24EU, x 64 x 8 X 180 _
el

3
~

E, X 120 x 120 X 120
""

hence, by (14) the total tension in the middle wire is

0*621; + 0*064
'

= 4 X
i + (3 X 0-064)

= 4 X '

578 = 2312 lbs>

In each end wire, total pull = - = 844 Ibs.

The greatest bending moment may occur at the middle support,
where the diagram is discontinuous, or as a mathematical maximum
between the end and the middle of the beam.

At x inches from one end

which is zero for x = 25-32 inches.

Substituting this for x

M = 21,370 10,685 = IO>685 Ib.-inches

At the middle of the span

M = (844 X 60) (2000 x 30) = 9360 Ib.-inchcs

this being less than that at x = 25-32 inches.

The greatest intensity of bending stress is

Myi 10,685 X 2

j^-=
- =334 Ibs. per square inch

i 04

79. Uniform Cantilever simply loaded. (a) A concentrated load

W at the free end. Take the origin O (Fig. 113) at the fixed end.

dyThen for x = o, -r =
o, and y = o.

** M
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At any point x the bending moment

[CH. VI.

At the end A

and

FIG. 113.

W/3

W/2

CO

Note that the upward deflection of the support relative to the centre

of the beam in Fig. ui might be found from the formula (2), viz.

W //V
2 'U' W/3

.

,EI
=

TotrT (as m M> Art.

(b) A concentrated load distant A from the fixed end. Origin at O
(Fig. 114) at the fixed end, all conditions as above.

From O to C

AtC

and

. VTlf . . , x
f =

^Ei (
as before)

yc
3EI

(3)

(4)
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At any point B beyond C the slope remains the same as at C, and
the deflection at B exceeds that at C by

W/ a

b X (slope from C to B) = b .
-

In particular
W/t

ill (5)

The same formula would be applicable to any number of loads. The

equation of upward and downward deflections as used in the previous
article may be used to find the load taken by a prop at the free end or

elsewhere.

(<r) Uniformly distributed load w per unit length. Origin O (Fig. 115)

FIG. 115.

at the fixed end. A start may be made from relation (2) or (6) of

Art. 77. Selecting the former

M -^/- *)=-</* -

^ = -</*.*-ax 2

El.,-?

For * = /

dy
or

where W = wl.

// = or
W/3

(6)

(7)

The result (12), Art. 78, might be deduced from the above, for the

upward deflection of the support relative to the centre of the beam is

//\
8 //V

U) KsJ
wl

EI "SET EI

Propped Cantilever. From (2) and (7) it is evident, by equating

upward and downward deflections, that a prop at the free end level with
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the fixed end, when loaded, would carry f of the whole distributed load.

The bending-moment diagram may be drawn by superposing diagrams
such as Fig. 59 and Fig. 61, making W =

#>/, and taking the difference

of the ordinates as representing the resulting bending moments. The
curve of shearing force is a straight line similar to that of Fig. 61, but

raised throughout by an amount \wl relative to the base-line. Other

types of loading of propped cantilevers may be dealt with on similar

principles. The reader should work out this simple case fully as an

exercise, noting the points of maximum deflection, contraflexure, etc.,

d*y
by integration of the equation EI--^ = w, the conditions being y = o

<Py
at both ends, slope = o at the fixed end, and = o at the free end.

Sinking Prop. If the prop is below the level of the fixed end, the

load carried by it would be proportionately reduced. If it is above that

level, the load on it would be proportionally increased.

Elastic Prop. If the fixed end is rigid and the support at the free

end is elastic, requiring a force e per unit of depression and being before

loading at the same level as the fixed end, for the above simple case of

distributed load, equating the depression of the prop to the difference

of deflections due to the load and the prop

_P
e

whence P = wl

For other types of loading or positions of prop, similar principles
would hold good.

(d) Partial distributed load.

If the load only extended a distance /x from the fixed end, the

deflection at the free end would be, by the method employed in (5)
above

(8)

If the load extended from the free end to a distance /a from the

fixed end, the deflection of the free end would be found by subtracting

(8) from (7).

EXAMPLE i. A cantilever carries a concentrated load W at f of its

length from the fixed end, and is propped at the free end to the level of

the fixed end. Find what proportion of the load is carried on the

prop.
Let W be the load, and P the pressure on the prop. Then
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EXAMPLE 2. A cantilever 10 feet long carries a uniformly spread
load over 5 feet of its length, running from a point 3 feet from the

fixed end to a point 2 feet from the free end, which is propped to the

same level as the fixed end. Find what proportion of the load is

carried by the prop.
Let w = load per foot run, and P = pressure on the prop. The

total load is \wl. Deflection of the free end if unpropped would be

, l
'- El El 8 ET~ -e EI
'/

4
1 0*4006 , 0*1024 o'ooSi o'oiSq)

'
wl*=

Eirt- +
-

6~ 6 r'o64I ET

Therefore ^ FT
= '^4 I

"pT"

P = 0*1 9230/7 or 0*385 of the total load

Note that this is less than half the load, although the centre of

gravity of the load is nearer to the propped end.

EXAMPLE 3. A cantilever of uniform cross-section carries a load

which varies uniformly from a maximum w per foot run at the fixed end
to zero at the free end. If the free end is propped to the level of the

fixed end, find the load carried by the prop.
This might be solved by the methods of the two previous exercises,

first finding the deflection if unpropped, or by direct integration. Using
the latter method, let the origin be at the fixed end.

= o for x = I.

Substituting these values, B =
J/

2 - i/2 - A/ = -
J/

2 -
A/, and

*3

=
w(\x>

-
Jy + Ax - i/2 -

A/)

3 2 A& -f
o)

rfe 7 + -i
-A*8 - i/V - 1A/^2 f

o)

Since j = o for x = /, A(- i + J)
= /(^

-
T^ -

i)
= -

&/, and

&> hence
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which gives the shearing force anywhere, and at the free end x = /,

and the shearing force is

MI -}-!) = TcX
which is the reaction at the free end.

The total load is \wl, hence the proportion carried at the free end
is of the whole. If both ends were free it would be J.

EXAMPLE 4. A bar of steel 2 inches square is bent at right angles

3 feet from one end ; the other and longer arm is firmly fixed vertically in

the ground, the short (3-foot) arm being horizontal and 10 feet above
the ground. A weight of ton is hung from the end of the horizontal

arm. Find the horizontal and vertical deflection of the free end.

E = 13,000 tons per square inch.

The bending moment throughout the long arm is sensibly the same
as that at the bend, viz. 5 X 36 = 9 ton-inches.

It therefore bends to a circular arc, the lower end remaining vertical.

A line joining the two ends of the long arm would therefore make with

the vertical an angle

/* f i \\ 9 X 120 9 X 120 X 12 81
(Art. 76 (2))

= -- =
2Xl3jQooXl6

= radians

and the horizontal deflection of the whole of the short arm will be

81 120 243
X ~T= 6

= 3-74 >nches

The inclination of the upper end of the long arm to the vertical is

evidently twice the amount ^loo* which is the average inclination. The
downward slope of the short cantilever arm is therefore j~j at the

bend. The total vertical deflection at the free end is

36 xrfj, +LJX = ,243 + ,,4 = ,467 inches
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from the other support, B, the span being a -f b = I. The Reaction RA

at A is evidently

r-r-W and R B = JJL-Wa + b a -f b

Suppose that a is greater than b. Taking A as origin, from A to C

^ =
~EliT+T* (0

dy W^ A-
3

, A

dx
=

~EI(> + ) 2

dy . W a?

and at C ^ or/c= ~
EI(0 + b)'~2

+ A

^ W^ x2 - a2
,

.

and ^ =
-El(^TT)--7-

+ /c

y= ~EI(4-M6""T"^
/C) 4- 'c x +

and at C, where x = a

. _ + 0./-c (4)

Similarly, taking B as origin and measuring x as positive towards C,

making / of opposite sign

Wa ^_ . . M
^"EI^ +^'s

"

Substracting (5) from (4)

-
Substituting this value of /c in (3)

W^ /^ _ ^r _ ^\ _ Wfa ^ -f 2^ - ^ 2
, ,~6"" 6

" ~ "

and at C, when x = a under load
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The maximum deflectio

/ in (2), or differentiating (7)

dy
The maximum deflection occurs where

j
=

- Substituting for

dx El( + l>)\2

a

6 3 /
' ' '

dy
and when ~ = o

= \a(a

or =
V3

which gives the value of # where the deflection y is a maximum.
Note that this value of x is always less than a if b is less than

a. A corresponding expression for the other part of the span would

dy .

not hold, for x is then greater than b; ^-is
not zero within the smaller

segment b.

Also note that as b varies from f/ to zero, the position (x) of

maximum deflection only varies from f/ to-^/, or 0*5 7 7/, so that

r 3

the point of maximum deflection is always within 8 per cent, of the

length of the beam from the middle. Substituting the above value of x
in (7)-

r '+ b) 9VsK . I . /
'

Within the smaller segment b the deflection at any point distant

(a _j_
_

#), or, say tf' (less than ^), from B, the deflection corresponding
to (7) will be

Wax' P + 206 - x1*

and corresponding to (20)

dy Wa (x'* P ab

which is never zero when x' is less than b.

Several Loads. If there are several concentrated loads on one

span the deflection at any selected point, whether directly under a

load or not, may be found by adding the deflections due to the several

loads as calculated by (7) or (10) above, using (7) for points in major

segments, and (10) for points in minor ones, the origins being chosen

for each load so that the selected point is between the origin and the

load.
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The slope between any two loads might be written down in terms of

x, the distance from A, by using the sum of such terms as (20) and (n),

writing (a + b x) instead of x' . If this sum vanishes for any value

of x lying between the two chosen loads, that value of x gives the position

of the maximum deflection. If not, the maximum lies between another

pair of loads. The pair between which the maximum deflection lies can

usually be determined by inspection, from the fact noted above, that

every individual load causes its maximum deflection within a short

distance of the mid-span. A simpler method is given in Art. 81.

EXAMPLE. A beam of 2o-feet span is freely supported at the ends,

and is propped 9 feet from the left-hand end to the same level as the

supports, thus forming two spans of 9 and 1 1 feet. The beam carries a

load of 3 tons 5 feet from the left-hand support, and one of 7 tons 4
feet from the right-hand end. Find the reactions at the prop and at

the end supports.
If the beam were not propped, the deflection at C (Fig. 117), 9 feet

3 TONS. 7 TONS.

from A, would be, for the 3-ton load, taking =
5,

= 15, W = 3 and

x1 = u, in (10) above

3 X 5 X 11/225 + (io x 15)
- izil^.349^57- 2oEI 1 6 J El

and for the 7-ton load, taking a = 16, b = 4, W =
7, x = 9, in (7)

TJX 4(729
-

(256 x 9)
-

(2 X 16 X 4 X 9t = 636-3
yc ~ ~2oElt 6 El

Adding these, the downward deflection of the beam would be, if it were

not propped

If Rc is the reaction of the prop at C, the upward deflection is, by (8)

above
RC X 81 X 121 _ i63'35Rc

3EI X 20 El
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Equating this to the above deflection at C

[CH. VI.

The reactions at A and B follow by taking moments about the free
ends.

_ (3 X 5) +(7 X 16)
-

(6-03 x 9)
tons

RA = 10 - 6-031
-

3-635 = ton

81. Deflection and Slope from Bending-moment Diagrams.
Slopes. The change of slope between any two points on a beam

may be found from the relation shown in (3), Art. 77

dy
/or ^ =

/ 4 dx = \~dx = ~ Mdx

FIG. 118.

if E and I are constant.

Between two points P and Q (Fig. 118, in which the slopes and-
deflections are greatly exaggerated), on a beam of constant cross-

section, the change of in-

^^ *i?*_ clination /2 ilt which is

the angle between the twoQ^T-^ /
tangents at P and Q, may
be represented by

(i)

The quantity I

J Zj

represents the area

ABCD of the bending-
moment diagram between

P and Q. If the lower limit xl be zero, from O, where the beam is

horizontal, to Q, where the slope is i.% the actual slope is equal to the

change of inclination, viz.

I fx2

/a = - _
/

Mdx (which is proportional to OECD) . (2)
Ely o

Thus the change of slope between two points on a beam is pro-

portional to the area of the bending-moment diagram between them, and

from apoint of zero slope to any other point the area under the bending-
moment curve is proportional to the actual slope at the second point.

Changes of sign in the bending-moment diagram must be taken into

account if the curve passes through zero. One algebraic sign, generally

positive, is attached to bending, which produces convexity upwards, and
the opposite sign to a bending moment, producing convexity downwards

(see Art. 77), but the choice is of little importance in the present

chapter.
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Scales. If in the bending-moment diagram i inch horizontally

represents q inches, and i inch vertically represents s Ib.-inches, i square
inch of bending-moment diagram area represents q . s Ib.-(inches)

2
,
and

also represents fey-
radians slope if E is in pounds per square inch and

I in (inches)
4
units.

Deflection. From the equation

0=!| ((2), Art. 77)

(Py MX

Integrating between x = x.2 and x = x^ using the method of

integration by parts for the left-hand side

(XI
"
y)" r

=
I 'Sf

dx =
ii I

*

Uxdx (if EI is constant)
~ X1 J 1 J 1

or, (#2/2
- y2)

-
(xji

-
yi)

= ^ ]**
MxJx ... (4)

If the limits of integration between which the deflection is required

are such that x-r is zero (from either of the factors x or
-^- being

zero) at each limit, the expression

(x-j- y\
2

becomes -
(yz

-
y,) ... (5)

\ ax -* Jx = xi

i r
and ^j I Mxdx gives the change in level of the beam between the

li/l J *i

two points.
The quantity

represents the moment about the origin of the area of the bending-
moment diagram between x.2 and x

{
. If A is this area and x is the

r*2

distance of its centre of gravity or centroid from the origin, I Mxdx
J Xi

may be represented by A . x.

dy
This quantity only represents the change in level when x.

^r
vanishes

at both limits. The product x .

-j~
or x. ix denotes the vertical projection

of the tangent at x
}
the horizontal projection of which is x. If the

lower limit is zero, and y is zero at the origin, the quantity
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represents the difference between the vertical projection of the tangent
at x, over a horizontal length x, and the deflection at x

;
in other words,

the vertical deflection of the beam from its tangent. Hence, in this

case, the deflection at a distance x from the origin is equal to the

difference between x.ix and ^y * (moment of bending-moment diagram

area), or

i f
x

x . 4 ^rv I Mxdx

where I WLxdx may be either positive or negative.

Scales. I/ in the bending-moment diagram i inch (horizontally)

represents q inches, and i inch (vertically) represents s Ib.-inches, A being
measured in square inches and x in inches, the product A . x represents

the deflection on a scale ~- inches to i inch.

Applications : (a) Cantilever with Load W at the Free End (see Fig.

59). If the origin be taken at the free end before or after deflection

dy
for x = o x-j- = o

dx
'*

dy
and at the fixed end x I and - = o, hence

gives the difference of level of the two ends J y which is equal to

El

where A = J. W/. /and x =
f/.

So that the deflection is

W/3

which agrees with (2), Art. 79.

Similarly, if the load is at a distance /x from the fixed end, A =
x = I i/!, and the deflection of the free end is

which agrees with (5), Art. 79, and might be applied to the case of any
number of isolated loads.

The deflection of a cantilever carrying a uniformly distributed load

might similarly be found from the diagram of bending moment (Fig. 61)
if the distance of the centroid of the parabolic spandril of Fig. 61 from



ART. 8 I] DEFLECTION OF BEAMS. 173

the free end is known. Otherwise the moment of that area may be found

by integration. Taking the origin at A (Fig. 61)

w

which agrees with (7), Art. 79.

(b) Irregularly Loaded Cantilever. For any irregular loading of a

cantilever the same method can be applied after the bending-moment

diagram ABFEDA has been drawn (Fig. 119). The deflection of the

free end is given by -^=-~
as before, the scales being suitably chosen.

The method in such a case

is a purely graphical one,

consisting in drawing the

bending-moment diagram
to scale,_measuring

A and

rinding x by any of the

various graphical methods,

or finding the product Ax
by a derived area, as in

Art. 68; the derived area

corresponding to the pole
B would represent the area

under a curve M . x with

origin at B.

If the irregular loading
consists of a number of

concentrated loads, the

whole area A may be looked upon as the sum of the

Fro. 119.

_ areas of a

number of triangles, and the product A . x as the sum of the products
of the areas of the several triangles and the distances of their centroids

from the free end.

Propped Cantilever. Irregular Load. If the cantilever is propped
at the end, let P be the upward reaction of the prop at B (Fig. 119).
The bending-moment diagram for the irregular loading is ABFED, and

that for the prop is the triangle ABC, the ordinates being of opposite

sign. The moments of these two areas about B are together zero, for

the quantity (
x-j- y\ between limits o and / is zero, every term being

zero, hence
A . x = i

. P/X / X /

a general formula applicable to regular or irregular loads, the latter

problem being worked graphically.
The resultant bending-moment diagram is shown shaded in Fig. 119,

E giving the point of inflection. The parts DCE and EFB are ot

opposite sign.
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The deflection of any point X between A and B may be found by
taking the moment about X of so much of this diagram as lies between
verticals through X and A, taking account of the signs of the areas.

Since the areas reckoned from A represent the slopes, the slope is zero,
and the deflection a maximum at some point to the right of E where
the area to the right of E is equal to DCE.

If the cantilever is propped somewhere between A and B the above
formula holds good, provided the area A and the length x refer to the

portion of the diagram ABFED between A and the prop, x being
measured from the prop, and / refers to the distance of the prop
from A.

(c) Beam supported at two Points on the same Level. Taking the origin
at one end A (Figs. 116 and 120)

where A is the area of the bending-moment diagram, and x is the

distance of its centroid from A, or A . ~x represents the moment of the

area about the origin A, hence

and similarly from the moment about B

and is of opposite sign to *B . With the convention of signs given in

Art. 77, A is negative for a beam carrying downward loads which pro-
duce convexity downwards ; hence /'A is positive and /B is negative.

Thus (in magnitude) the slopes at the supports are proportional to

the area of the bending-moment diagram between them, and the ratio

of one to the other is inversely proportional to the ratio of the distances

of the supports from the centroid of that area just the same kind of

relation, it may be noted, that the reactions at the supports have to the

total load.

If the area of the bending-moment diagram from A to a point X,
distant x to the right of A, be Aw which is negative with convexity

downwards, and the slope at x is ix

r4 + ^ .... (8)

which is zero at the section where maximum deflection occurs, A, being

negative.

Again, since \g& _ A = xix - yx
= ^ I

Q
Mxdx

i [*
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and substituting for 4 from (8)

y. = * >\ +
# i= #/A + -=y g| (moment

of A, about A) . (9)

or the deflection at X is

yx
= (x x slope at A) + (moment of Az about X) . (10)

which gives the deflection anywhere along the beam, the second term

being negative. And from (80) we may write

yx
= (x x slope at X) (moment of A, about A) g? (u)

remembering that A, is a negative quantity.

Probably the form (10) is more convenient than (n), /A being a
constant. As indicated by (8), the slope at X will be negative if X
is beyond the point of maximum deflection. Note that the second term
in (10) is negative, and represents the vertical displacement of the beam
at X from the tangent at A, and the second term in (n) represents the

vertical displacement of the beam at A from the tangent at X. In the

case of convexity upwards the signs of these second terms would be

changed. The reader should illustrate the geometrical meaning of the

various terms on sketches of beams under various conditions.

Overhanging Ends. The deflection at any point on an overhanging
end, such as in Figs. 67, 68, 72, or 73, may be determined as for a

cantilever, provided the deflection due to the slope at the support be
added (algebraically). For points between the supports of an over-

hanging beam the above relations hold, provided that the signs of the

areas and moments of areas, etc., be taken into account. For irregular

loading these processes may be carried out graphically, and the moments
of areas (A . x) may be found by a " derived area," as in Art. 68, without

finding the centres of gravity of the areas.

When the above expressions for slopes and deflections, which are

applicable to any kind of loading, are written down symbolically in

terms of dimensions of the bending-moment diagram, they give algebraic

expressions, such as have already been obtained in other ways for

various cases of loading, e.g. the deflection and slope anywhere for a beam

carrying a single concentrated load may be found in this way as an
alternative to the methods in Art. 80.

Non-central Load. From Fig. 116 and (7) above, dividing the

moment of the area of the bending-moment diagram about B into

two parts

2b)
(



176 STRENGTH OF MATERIALS.

and from (8) within the range A to C

*' = /A
""

El

az +

[cH. VI.

az -f 2<FJ ** \

6 ~2/
which agrees with (20), Art. 80.

For 4 = o x* --

Also from (10), within the range A to C

Vfbx x x= I

which agrees with (7), Art. 80. And when x = a

(15)

Several Loads. If there are several vertical loads W15 W2,
W3, andW4 at P,, P., P3 ,
and P4w' 'w- w w-

(Fig. 120), distant a^a^a^
and a4 from A, the bending-
moment diagram may be
drawn as in Art. 58, or

calculated as in Art. 56.
Let the bending moments
at P!, P2,

P8> etc., be M1}

M2,
M3 , etc., respectively.

Let the total area of the

bending-moment diagram
be A, and let it be divided

by verticals through Pb P2,

P3 ,
and P4 (Fig. 120), into five parts, A1} A2,

A3 ,
A4, and A6,

as shown,
so that

FIG. 120.

^
A, = - A2

= 4s-
M2 + M3

and so on, all the areas being negative for downward loads.

where x is the distance of the centroid of the area A from the

origin A, and / x is its distance from B.

The quantity A(/
-

x), or the moment of the area A about B, may
be found by the sum of the moments of the triangular areas of the bend-

ing-moment diagrams, which might be drawn for the several weights

separately, i.e. the quantity /A is the sum of four such terms as (12)

ibove.
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The slopes 'at P1} P2,
P3 , etc., are then

A, . A! + Aa . . A! + A2 4- A3

*i
= 'A + gj

*2
= 'A 4 E1

' = *A 4 El

and so on, the second term in each case being negative.
The segment in which the slope passes through zero is easily found

from the slope, or total area from point A to successive loads. If the

zero slope occurs between, say, P2 and P3 ,
the slopes at P2 and Ps are of

opposite sign
ti _ y\

(Aj -f- A2) is less than --j-^

(Ai + Aa -f A8) is greater than ---,
-'

If the zero slope is at X, distant x from A, the bending moment

there is M2 + - - (M3 M2), and the slope being zero, the area from
a3

"~
a<i I x

point A to the point X of zero slope is equal to A
9
or

from which quadratic equation x may be found.

The magnitude of the maximum deflection is then easily found from

(u) above, viz.

gy(moment
about point A of the bending-moment diagram over AX)

an expression which may conveniently be written down after dividing
the area over AX into triangles, say, by diagonals from P2. The deflec-

tion elsewhere may be found from equation (10). With numerical data

this method will appear much shorter than in the above symbolic form.

Other purely graphical methods for the same problem are given in the

next article.

Other Cases. Beams carrying uniformly distributed loads over

part of the span might conveniently be dealt with by these methods, the

summation of moments of the bending-moment diagram area being
split up into separate parts with proper limits of integration at sudden

changes or discontinuities in the rate of loading.
EXAMPLE i. The example at the end of Art. 80 may be solved

from the bending-moment diagram as follows :

Let the bending-moment diagram be drawn by the funicular polygon
(see Art. 58), or by calculation (see Art. 57). It is shown in Fig. 117,
AEDB being the diagram for the two loads on the unsupported span
AB. Then from (7)

/A = pTv (moment of area AEDB about B) -f- AB

Divide the (negative) area AEDB into four triangles by joining DF for

N
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convenience in calculating the above moment. Using ton and feet
units

El

And from (10), dividing EHCF by a diagonal'FH

1397 - 4n'5 985-5 .,

y* = EI
-- = -- (downward)

For an upward load R c at C, by (15)

Rc x 81 X 121 163-35 Rc
^c=

3EI X 20 -^(upward)

Equating this to the downward deflection at C

Rc
= 9 5

.
= 6-03 tons

RB = 10 - 0-334
-

6-03 = 6-636 tons

The above methods might now be applied to the resultant bending-
moment diagram, shown shaded in Fig. 117, to determine the deflection

anywhere between A and C, or between C and B, and the position of

the maximum deflection, etc.

EXAMPLE 2. Find the deflection of the free ends of the beam
in Fig. 68. From (6) and (7) above, slopes downward towards the

right
w

_ Xy _or
' 2E1V 2 8

X 3 X V -
24E1

which is negative if 4 is less than /xJ 6

Downward deflection at the free end is
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Upward deflection at the centre consists of

(upward deflection due to end loads) (downward deflection due to
load between supports)

which, using (u) for the first term, is

-L( 4- ^" -2
>
- -5-wl* -

ElV 2 '2' 4}
384 El

~
I6EI

which is positive if /2 is less than ^ 4'8/j.

EXAMPLE 3. Find the deflection at B and midway between A and
C in Ex. 2 of Art. 59 (see Fig. 72).

Taking the origin at A, RA being 10 tons, by (6), downwards
towards B

E being in tons per square foot, and I in (feet)
4

Deflect at B =
(
8 x^) + *i*l|Li*- + xx8x_.

(If E and I are in inch units, deflection at B = 1728 x ~^r~ inches.)

Taking an origin midway between A and C and x positive towards C

x2

M = 10(8 + x) + 1(8 -f *Y = ~ + 180; + 112 tons-feet

and using (40) over the range from the origin to C, the deflection

upward at the origin is

=
^(10,922- 7168) = - feet

or, 1728 x r- inches if E is in tons per square inch and I in (inches)
4
.

82. Other Graphical Methods.
First Method. The five equations of Art. 77 immediately suggest

a possible graphical method of finding deflections, slopes, etc., from
the curve showing the distribution of load on the beam. If the five

quantities w, F, M, /, and y (see Art. 77) be plotted successively on
the length of the beam as a base-line, each curve will represent the

integral of the one preceding it, i.e. the difference between any two
ordinates of any curve will be proportional to the area included
between the two corresponding ordinates of the preceding curve.
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Hence, if the first be given, the others can be deduced by measuring
areas, i.e. by graphical integration. Five such curves for a beam
simply supported at each end are shown in Fig. 121. At the ends

+
J.-?/^

LOAD.

SHEARING
FORCE.

BENDING
MOMENT.

If 1.(
l

nax SLOPE.
L El J

DEFLECTION.

FIG. 121.

the shearing forces and slopes are not zero, but the methods of

finding their values have already been explained, and are shown in

Fig. 121, G and G' being the centroids of the loading- and bending-
moment diagrams respectively. The reader should study the exact

analogies between the various curves. In carrying into practice this

graphical method the various scales are of primary importance; the

calculation of these is indicated below.

In the case of a cantilever, the F and M curves corresponding to

(b) and (^), Fig. 121, must start from zero at the free end (unless there

is a concentrated end load), and the i and y curves corresponding to

(d) and
(<;), Fig. 121, must start from zero at the fixed end.

Scalesfor Fig. 121. Linear scale along the span, q inches to I inch;
E in pounds per square inch

;
I in (inches)

4
.

(a) Ordinates, / Ibs. per inch run = i inch.

Therefore i square inch area represents/.^ Ib. load.
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(b) Ordinates, n square inches from (a)
= i inch = n .p . q Ibs.

Areas i square inch represent n .p . q* Ib. -inches.

(c) Ordinates, m square inches from (b)
= i inch = mnpq* lb.-

inches.

Areas i square inch represent mnp<f Ib.-(inches)
2

(d) Ordinates,
'

square inches from (c)
= i inch =

jfj
radians.

rimnpcf .

Areas i square inch represent ^ inches.

(e) Ordinates, m' square inches from (d) = i inch =
''

inches.

If instead of / Ibs. per inch run to i inch the force scale is / Ibs. to

m n mnpq* .

i inch, the deflection scale would be --^ r inches to i inch.
ii,l

Second Method. This is probably the best method for irregular

types of loading. The equations

fPy i ^M_ = -. M and -^=w
or the diagrams in Fig. 121 show that the same kind of relation exists

between bending moment (M) and deflection (y) as between the load per
unit of span (w) and the bending moment. Hence, the curve showing y
on the span as a base-line can be derived from the bending-moment
diagram in the same way that the bending-moment diagram is derived
from the diagram of loading, viz. by the funicular polygon (see Art. 58).
If the bending-moment diagram be treated as a diagram of loading,
the funicular polygon derived from it will give the polygon, the sides
of which the curve of deflection touches internally, and which approxi-
mates to the curve of deflection with any desired degree of nearness.

With a distributed load it was necessary (Art. 58) to divide the

loading diagram into parts (preferably vertical strips), and take each

part of the load as acting separately at the centroid of these parts.

Similarly the bending-moment diagram, whether derived from a dis-

tributed load or from concentrated loads, must be divided into parts
(see Fig. 122), and each part of the area treated as a force at its centre
of gravity or centroid. A second pole O' is chosen, and the distances

ab, be, cd, de> etc., set off proportional to the areas of bending-moment
diagram, having their centroids on the lines AB, BC, CD, DE, etc.

The second funicular polygon, with sides parallel to lines radiating
from O', gives approximately the curve of deflection

; the true curve is

that inscribed within this polygon, for the tangents to the deflection
curve at any two cross-sections must intersect vertically below the
centroid of that part of the bending-moment diagram lying between
those two sections.

To show the form of the beam when deflected the deflection curve
must be drawn on a base parallel to the beam, i.e. horizontal. This
can be done by drawing the second vector polygon again with a pole
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on the same level as r, and drawing another funicular polygon
corresponding to it, or by setting off the ordinates of the second
funicular polygon from a horizontal base-line.

This method is applicable to other cases than that of the simply

supported beam here illustrated, provided the bending-moment diagram
has been determined. When different parts of a beam have opposite
curvature, i.e. when the curvature changes sign, e.g. in a overhanging or

in a built-in beam (see Chap. VII.), the proper sign must be attached to

SECONE
FUNICULAR
POLYGON.

'AUCTION

FIG. 122.

the vertical vectors in the vector polygon. If bending-moment diagram
areas of one kind are represented by downward vectors, those of opposite
kind (or sign) must be represented by upward vectors.

Scales. If the linear horizontal scale is q inches to i inch and the

force scale is/ Ibs. to i inch, the horizontal polar distance of the first

vector polygon being h inches, the scale of the bending-moment diagram
ordinates is/, q .h Ib.-inches to i inch, as in Art. 58. One square inch

area of the bending-moment diagram represents /. q* . h Ib.- (inches)
2

;

and if the (horizontal) polar distance of the second vector polygon is

H inches, and the vector scale used for it is m square inches of bending-
moment diagram to i inch, the deflection curve represents El .y on a

scale m . p . f . h . h' Ib.-(inches)
3 to i inch, and therefore represents y

on a scale

in .p . q* . h . h . .

- ^ inches to i inch
Jtvf

E being in pounds per square inch, and I in (inches)
4
.
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If instead of a force / Ibs. to i inch a scale of / Ibs. per inch run

to i inch be used on a diagram of continuous loading, as shown in

Fig. 122, the final scale would be g^~ inches to i inch. If the

forces are in tons, E should be expressed in tons, and the other

modifications in the above are obvious.

83. Beams of Variable Cross-Section. The slopes and deflections

so far investigated have been those for beams of constant section, so

that the relation (3) of Art. 77

/ = 1

ET^-*
has become

^-,J

If, however, I is not constant, but E is constant, this becomes

. i /-M
' =

EJT
M,
dx

and the equation (i), Art. 81, becomes

h - 'i
=
E

and the equation (3), Art. 81, becomes

*y

The methods of finding the slopes and deflections employed in

Arts. 78, 79, 81, and 82 may therefore be applied to beams of variable

M
section, provided that the quantity y is used instead of M throughout.

Where I and M are both expressed as simple algebraic functions of
x (distance along the beam), analytical methods can usually be employed
(see Ex. i below), but when either or both vary in an irregular manner,
the graphical methods should be used. Thus equation (3) of Art. 81

may be written

f*'M
r

T
fa =

J *i

where A or
|

'- dx = area under the curve and x is the distance

of its centroid from the origin. The moment A.# may of course

be found conveniently by a derived area (see Art. 68). When the

quantity I varies suddenly at some section of the beam, but is a

simply expressed quantity over two or more ranges, neglecting the

effects of a discontinuity in the cross-section, ordinary integration

may be employed if the integrals are split up into ranges with suitable
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limits (see Ex. 2 below). The solution of problems on propped
beams of all kinds by equating the upward deflection at the prop
caused by the reaction of the prop to the downward deflection of an

unpropped beam caused 'by the load, is still valid, the deflections

being calculated for the varying section as above. For example, the

equation giving the load carried by a prop at the end of a cantilever,
with any loading, as in Fig. 119, may be stated as follows. If M is the

bending moment in terms of the distance from the free end B

f M f P* _ P *
~^xdx

=
-^-xdx

= P
-^

Jo Jo Jo

and P=

For a graphical solution, let A be the area enclosed by the curve

y and x the distance of its centroid from B. Assume any load / on

the prop, and let P = a/. Draw the bending-moment diagram (a

straight line) for the end load/; divide each ordinate (p . x) by I, giving

a curve
j~*

Let A' be the area enclosed by this curve, and x' the

distance of its centroid from B. Then the above equation in graphical
form becomes

A . jc = a
._
A' . x'

_
a = A* -^ AV and P = a/

The moments A.x and A'.#
f

may be most conveniently found

graphically by the derived area method of Art. 68, with B as pole ;
the

bases (/) being the same for each diagram, the equation A . x = aA'x
becomes

first derived area of A =
a(first derived area of A')

The scales are not important, a being a mere ratio; it is only neces-

sary to set off the ordinate // in the bending-moment diagram for the

assumed reaction/, on the same scale as the bending-moment diagram
for the loading. A more general application of these methods to other

cases will be found in Arts. 88 and 91.
EXAMPLE i. A cantilever of circular section tapers in diameter

uniformly with the length from the fixed end to the free end, where the

diameter is half that at the fixed end. Find the slope and deflection of

the free end due to a weight W hung there.

Let D be the diameter at the fixed end at O, which is taken as

origin (Fig. 113). Then diameter at a distance x from O is

D('-) or r/2/ -*>
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At O about the neutral axis, I = ^- D 4

(see Art. 66) ;
hence at a

04
distance x from O

and M = W(/ - x) (see Fig. 59).

Then ^ or * =
g

M

or in partial fractions

I6W/1

EI

x

3

the constant term --*-
being such that * = o for x = o.

[ \ ''(/-

Then, for * = /

'A-|-
EIi

Also

i6WA __ _
EI

~
C
(2/-^)

2

2(2/- *) J2/2 24^
W/3

and for * = / ^A = f ^
If the deflection only were required, it might be obtained by a single

integration by modifying (3), Art. 81, taking the origin at the free end A,

Fig. 113

dy V
"n=^ =

/
a 2/

i6W/ 4
/
2

/ i )' W/3

EXAMPLE 2. A cantilever of circular section is of constant diameter
from the fixed end to the middle, and of half that diameter from the

middle to the free end. Estimate the deflection at the free end due to a

weight W there.

If I = moment of inertia of the thick end (fixed)

Hjlo
= thin (free).
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As in Art. 79, taking the origin at the fixed end O (Fig. 113), from
O to C (the middle point)

and at x = -

and at x -

3'
w/ 2

y =

48EI<

From C to A (free end)

at * = -

/
at a? = -

and at 3; =

, 2/
t =

j- (above)

W/3

A

hence A = -

(above) hence B = J/
3

y = -

o

W/3

To find the deflection only the method of Art. 81 might be used,

taking the origin at A, the free end (Fig. 113). Then M = \VX and

slitting the integration into two ranges, over which I is I and ~1

Deflection of Rectangular Beams of Uniform Strength. The con-
M

dition of uniform bending strength (Art. 70) is -=- =/= constant, where
j LI

Z (the modulus of section) = I -4- - for a rectangular beam of depth d\

hence

EI
- v
E

'

d
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Varying Breadth. If d is constant, evidently the curvature
-r^

is constant, and the beam bends to a circular arc, and the deflections

might be found by the method of Art. 76.
Or by direct integration, for the cantilever of length / and any load-

ing, taking the origin at the wall, the maximum slope (at the free

end) is

2/7 M,/
Vd or ET V

where M and I refer to, say, the fixed end, where M and I reach
their greatest values, and the maximum deflection is

ED 2ET. (3)

The case of a beam simply supported at its ends, and loaded sym-
metrically on either side of the middle of the span, can be deduced from

this by taking the origin at mid-span and writing
- for / where M and

I refer to the middle section.

Varying Depth. If the breadth is constant and the depth varies

M MO Z M
/ = "Z

==

Zo-
and Z

= M
D2 MO ii /M;hence ^ =

M~
or

^
= DV M"

where Z = D2 and Z = \bd*

b being the constant breadth, d the variable depth, and D the maximum
value of d corresponding to Z and M . Hence (i) becomes

(4)

'"^HTjTB (5)

a suitable constant of integration being added in particular cases, and
the integral depending on what function M is of x. Then for the

deflection^ =fidx.
For example, a cantilever with end load W (Fig. 113), with origin O,

M = W(/ x)
= M j ,

the maximum values (at the free end) of the

slope and deflection are

EX
or T? or IB > .'- 'r (6)

w/3 .M^ .fi-
or |jr (7)
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MI

With a uniformly distributed load wl (Fig. 115), M =
(/ #)

/A is infinite, that is, the tangent line is vertical, and the deflection

or
EJ

r ED

For the simply supported beam with central load W (Fig. m),
writing

- for /and for W in (6) and (7)

2/7

4-El
r ET

r ED
w/3

W/2 M
rt
/

M /
2

or oryn "^ -n r vi x T~ rJC 24EI 6EI

and with a uniformly distributed load wl (Fig. 112),

(8)

(9)

M= -[-- j*J=M ^

7T Wl* IT

TTT or - '

>/
4

v- or

El

7T

or -f^
2 ED

M /
2

or --

The verification of the above values by integration are left as exer-

cises for the reader.

Deflection of a Carriage-Spring. A carriage-spring is usually a beam
of constant breadth (b) and variable depth, built up of a number of

overlapping plates each

of thickness d (see Fig.

1220), the number de-

creasing outwards from
U -

"-*
i J w the centre to the ends.

'
i .=3=J->f -f; The load W is taken at

the middle, and the two

ends are supported.

^
-
j Every strip of plate

^^^C^r/x^x'O^C'C-C^xC'^ J
nas initially tne same

FIG. i22dt. Carriage spring. curvature ( p )>
and the

proof load is usually that which straightens all the plates together, so

that the change of curvature in each strip is the same. If there are

n strips, the modulus of section of each being \bd
z

(see Art. 66), the

n
modulus of section of the whole spring at the centre will be

g&vi
and

not \b(ndf, since the strips are separate, and if the proof stress in each
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strip is / tons per square inch, the bending moment being W/ (see

Fig. 63)

If this intensity of stress is to be reached by every plate at every
transverse section of the spring, the modulus of section must be

everywhere proportional to the bending moment, i.e. from the end to

the centre it must be proportional to the distance from the end. The
modulus of section at any section is proportional to the number of

plates there, so that this number must increase from the ends to the

centre proportionally to the distance (see Fig. 122^). The overlapping
ends may be tapered in breadth, as in Fig. 1220, to give the same con-

tinuous rate of change of moment of resistance between abrupt changes
in the number of plates. Every plate will then reach the same, skin

stress intensity / at every section, and will exert the same moment oi

resistance, viz. \jbcP) at every section, corresponding to a bending
i W/

moment -
n 4

Evidently, then, the change of curvature
^,

which is /-.--- ( or

or ----- ), should be the same for each plate. The central
El ;/ 4 12 r
deflection due to a central load may be found from that for the longest

plate, which, by Art. 76, is

12 _ 8 W/3

Actually the deflection will be less than this with an increasing load

and more with a decreasing load, due to friction between the plates.

EXAMPLE 3. A steel carriage-spring is to be 30 inches long, and to

carry a central load of | ton. If the plates are 3 inches wide and J inch

thick, how many plates will be required if the stress is to be limited to

1 2 tons per square inch ? What will be the deflection of the spring at

the centre ? By how much will any one plate overlap the one below it

at each end, and to what radius should each piece be curved ?

If n plates are used

12 x // X \ X 3 X (i)
2 =

I X X 30
n = 10 plates

The central deflection, neglecting friction, will be

--- 0*3 i

Considering half the spring, the overlaps will be

15-5-10= i '5 inch
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The radius of curvature of each strip, if each is to straighten at

proof load, may be found from that of the longest strip from Fig. 109,

neglecting PP'2 or (o^)
2-

0*83 X 2R = 15 x 15 hence R = 135*5 inches

or thus for the longest strip

* M I2 *
-

j? r To * 4 *
~a
* 3 * T ,v ^ 7 x C

1
)
3
~~

1 1 ; cO \-i/ O D

EXAMPLES VI.

1. A railway axle is 4 inches diameter and the wheels are 4 feet 8 inches

apart; the centres of the axle boxes are each 6 inches outside of the wheel

centres, and each axle box carries a load of 5 tons. Find the upward
deflection of the centre of the axle. (E = 13,000 tons per square inch.)

2. A beam of I section, 14 inches deep, is simply supported at the ends of

a 2o-feet span. If the moment of inertia of the area of cross-section is 440
(inches)

4
,
what load may be hung midway between the supports without

producing a deflection of more than inch, and what is the intensity of

bending stress produced? What total uniformly distributed load would

produce the same deflection, and what would then be the maximum intensity
of bending stress ? (E = 13,000 tons per square inch.)

3. A beam is simply supported at its ends and carries a uniformly dis-

tributed load W. At what distance below the level of the end supports must
a rigid central prop be placed if it is to carry half the total load ? If the

prop so placed is elastic and requires a pressure e to depress it unit distance,
what load would it carry, the end supports remaining rigid ?

4. A beam rests on supports 20 feet apart and carries a distributed load
I y which varies uniformly from i ton per foot at one support to 4 tons per foot

at the other. Find the position and magnitude of the maximum deflection

if the moment of inertia of the area of cross-section is 2654 (inches)
4
,
and

E is 13,000 tons per square inch.

5. A cantilever carries a load W at the free end and is supported in the
middle to the level of the fixed end. Find the load on the prop and the
deflection of the free end.

6. A cantilever carries a load W at half its length from the fixed end.
The free end is supported to the level of the fixed end. Find the load carried

by this support, the bending moment under the load and at the fixed end,
and the position and amount of the maximum deflection.

If this cantilever is of steel, the moment of inertia of cross-section being
20 (inches)

4
,
and the length 30 inches, find what proportion of the load

would be carried by an end support consisting of a vertical steel tie-rod

10 feet long and \ a square inch in section, if the free end is just at the level

of the fixed end before the load is placed on the beam.
7. A cantilever carries a uniformly spread load W, and is propped to the

level of the fixed end at a point f of its length from the fixed end. What
proportion of the whole load is carried on the prop ?

8. A cantilever carries a distributed load which varies uniformly from 10

per unit length at the fixed end to zero at the free end. Find the deflection
at the free end.

9. A girder of I section rests on two supports 16 feet apart and carries a
load of 6 tons 5 feet from one support. If the moment of inertia of the area
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of cross-section is 375 (inches)
4
,
find the deflection under the load and at the

middle of the span, and the position and amount of the maximum deflection.

(E = 13,000 tons per square inch.)
10. If the beam in the previous problem carries an additional load of

8 tons 8 feet from the first one, and is propped at the centre to the level

of the ends, find the load on the prop. By how much will it be lessened if

the prop sinks 0*1 inch?
11. A girder of 16 feet span carries loads of 7 and 6 tons 4 and 6 feet

respectively from one end. Find the position of the maximum deflecticn

and its amount if the moment of inertia of the cross-section is 345 (inches)
4

and E = 13,000 tons per square inch.

I2.>A steel beam 20 feet long is suspended horizontally from a rigid

support by three vertical rods each 10 feet long, one at each end and one

midway between the other two. The end rods have a cross-section of
i square inch and the middle one has a section of 2 square inches, and the

moment of inertia of cross-section of the beam is 480 (inches)
4

. If a uniform
load of i ton per foot run is placed on the beam, find the pull in each rod.

13. A cantilever carries a uniformly distributed load throughout its length
and is propped at the free end. What fraction of the load should the prop
carry if the intensity of bending stress in the cantilever is to be the least

possible, and what proportion does this intensity of stress bear to that

in a beam propped at the free end exactly to the level of the fixed end ?

14. At what fraction of its length from the free end should a uniformly
loaded cantilever be propped to the level of the fixed end in order that

the intensity of bending stress shall be as small as possible, and what

proportion does this intensity of stress bear to that in a beam propped
at the end to the same level ? What proportion of the whole load is carried

by the prop ?

15. A cast-iron girder is simply supported at its ends and carries a

uniformly distributed load. What proportion of the deflection at mid-span
may be removed by a central prop without causing tension in the com-
pression flange? What proportion of the deflection at span may be
removed by a prop there under a similar restriction ?

1 6. A bearn, AB, carries a uniform load of i ton per foot run and rests

on two supports, C and D, so that AC = 3 feet, CD = 10 feet, and DB =
7 feet. Find the deflections at A, B, and F from the level of the supports, F
being midway between C and D. I = 375 (inches)

4
. E = 13,000 tons per

square inch. How far from A is the section at which maximum upward
deflection occurs ?

17. If the beam in the previous problem carries loads of 5, 3, and 4 tons
at A, F, and B respectively, and no other loads, find the deflections at A, F,
and B, and the section at which maximum deflection occurs.

1 8. A cantilever is rectangular in cross-section, being of constant breadth
and depth, varying uniformly from d at the wall to \d at the free end. Find
the deflection of the free end of the cantilever due to a load W placed
there, the moment of inertia of section at the fixed end being I .

19. A vertical steel post is of hollow circular section, the lower half of

the length being 4 inches external and 3^ inches internal diameter, and the

upper half 3 inches external and 2^ inches internal diameter. The total

length of the post is 20 feet, the lower end being firmly fixed. Find the

deflection of the top of the post due to a horizontal pull of 125 Ibs., 4 feet

from the top. (E = 30,000,000 Ibs. per square inch.)
20. A beam rests on supports at its ends and carries a load W midway

between them. The moment of inertia of its cross-sectional area is I at

mid-span, and varies uniformly along the beam to I at each end. Find
an expression for the deflection midway between the supports.
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21. Find the deflection midway between the supports of the beam in the

previous problem if the load W is uniformly spread over the span.
22. A carriage-spring is to be 2 feet long and made of f-inch steel plates

2 inches broad. How many plates are required to carry a central load
of loco Ibs. without exceeding a stress of 15 tons per square inch ? What
would then be the central deflection, and what should be the initial radius of

curvature if the plates all straighten under this load ? (E = 30,000,000 Ibs.

per square inch.)

23. A carriage-spring is built up of 10 plates each J inch thick and
4 inches broad, the longest being 4 feet long. If the deflection necessary to

straighten the spring is 1*5 inches, what central load will cause this deflection,
and what is the intensity of stress produced in the metal, E being taken
as 13,000 tons per square inch ?



CHAPTER VII.

BUILT-IN AND CONTINUOUS BEAMS.

84. Built-in or Encastre" Beams. By this term is understood a

beam firmly fixed at each end so that the supports completely constrain

the inclination of the beam at the ends, as in the case of the "
fixed

"

end of a cantilever. The two ends are usually at the same level, and
the slope of the beam is then usually zero at each end if the con-
straint is effectual. The effect of this kind of fastening on a beam of

uniform section is to make it stronger and stiffer, i.e. to reduce the

maximum intensity of stress and to reduce the deflection everywhere.
When the beam is loaded the bending moment is not zero at the ends
as in the case of a simply supported beam, the end fastening imposing
such "

fixing moments "
as make the beam convex upwards at the

ends, while it is convex downwards about the middle portion, the

bending moment passing through zero and changing sign at two points
of contraflexure.

If the slope is zero at the ends, the necessary fixing couples at the
ends are, for distributed loads, the greatest bending moments anywhere
on the beam. Up to a certain degree, relaxation of this clamping, which

always takes place in practice when a steel girder is built into masonry,
tends to reduce the greatest bending moment by decreasing the fixing
moments and increasing the moment of opposite sign about the middle
of the span. In a condition between perfect fixture and perfect freedom
of the ends, the beam may be subject to smaller bending stresses than
in the usual ideal form of a built-in beam with rigidly fixed ends. The
conditions of greatest strength will be realized when the two greatest
convexities are each equal to the greatest concavity, the greatest

bending moments of opposite sign being equal in magnitude.
Simple cases of continuous loading of built-in beams where the

rate of loading can be easily expressed algebraically may be solved

by integration of the fundamental equation

EI0=w (Art. 77)

Taking one end of the beam as origin, the conditions will usually be
dv = o for x = o and for x /, and y = o for x = o and for x I.

x
o



194 STRENG7W OF MATERIALS. [CH. VII.

For example, suppose that the load is uniformly distributed, being
w per unit length of span, integrating the above equation

El . -A = wx 4 A

El .

Tj4
= \wx* 4 A* + B

El . -T- = \u*x* + JA.*
2 + B^t: + o

since ~- = o for x = o, and putting
~ = o for x = /

d^T iC

o = \wl
2 + |A/ + B and B = \wP 1A/

El . = fow
3 + JA*

8 -
Jo//

8* -

El .^ = ^7^4 + |A*
3 - ^w/

2^2

since j = o for x = o, and putting y = o for x = /, and dividing by T
3-

hence A = \wl and

Substituting these values in the above equations, the values of the

shearing force, bending moment, slope, and deflection everywhere are

found, viz.

M = EI 2
=

T>(6^ - 6/x + /
2
)

which reaches a zero value for x = /( o'289), /.^. 0*2897, on either

side of mid-span. Also for x = o, or x = /, M = ^w/
2
, and for # = -

M = -

which reaches zero for x o, #=/, and ^= -

and at the centre, where ^ = -, the deflection is

24 EI\2/ Aa/
"

384 E[

or J of that for a freely supported beam (see (12), Art, 78).



ART. 84] BUILT-IN AND CONTINUOUS BEAMS.

The bending-moment diagram is shown in Fig. 123; it should be
noticed that the bending moment varies in the same way as if the

ends were free, varying

from+i^to-J^f, ^VWN^W<^^^W^^^
a change of ^wr, as in

the freely supportedbeam

(see Fig. 65), but the

greatest bending moment
to which the beam is

subjected is only ^w/
3

instead of w/2
,
so that

with the same cross-

section the greatest in-

tensity of direct bending
stress will be reduced in

-0-2891 *n

FIG. 123.

the ratio 3 to 2. The greatest bending moment and greatest shearing
force (\wl) here occur at the same section. Evidently, to attain the

greatest flexural strength the bending moment at the centre should be

equal to that at the ends, each being half of \wP. In this case the

equation to the bending-moment curve would be, from (7), Art. 78

M = El =

the last or constant term alone differing from the equation used above.

Integrating this twice and putting y = o for x o and for x = /, or

dy I
integrating once and putting ^ = o for x = - because of the symmetry,

wlz

the necessary slope at the ends is found to be ^ r or J of that in a

beam freely supported at its ends (see (10), Art. 78).
Other types of loading where w is a simple function of x may be

easily solved by this method.
As another example, suppose that w = o, but one end support sinks

a distance 8, both ends remaining fixed horizontally. Taking the origin
at the end which does not sink

where F is the (constant) shearing force throughout the span,

El.
dx*

where m is the bending moment for x = o
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dy
and putting

- o for x = /,

and

and putting y = 8 for x I

I2EI8

F-..T-JT:

and the bending moment anywhere is

6EI.8

6ELS

P

ATT T^

a straight line reaching the value ^~
at x I The equal and

opposite vertical reactions at the supports are each of magnitude F.

85. Effect of Fixed Ends on the Bending-Moment Diagram. In

a built-in beam the effect of the fixing moments applied at the walls

or piers when a load is ap-

plied, if acting alone, would
be to make the beam convex

2*\ x ^' upwards throughout. Sup-
*v &L -.__-_J pose only these "fixing

couples" act on the beam,
the bending moment due to

them at any point of the

span may easily be found

by looking on the beam as

one simply supported, but

overhanging the supports at

FIG. 124. Effect of fixing couples.
each end and carrying such

loads on the overhanging
ends as would produce at the

supports the actual fixing moments of the built-in beam. If these

fixing moments are equal they produce a bending moment of the same

magnitude throughout the span (see Fig. 67). If the fixing moments
at the two ends are unequal, being say MA at one end A (Fig. 124) and
MB at the other end B, the bending moment throughout the span varies

from MA to MB as a straight-line diagram, i.e. at a constant rate along
the span, as the reader will find by sketching the diagram of bending
moments for a beam overhanging its two supports and carrying end
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loads. At a distance x from A the bending moment due to fixing

couples will be

M' P MA 4- *(MB
- M A) (see Fig. 124)

The actual bending moment at any section of a built-in beam will be

the algebraic sum of the bending moment which would be produced

by the load on a freely supported beam, and the above quantity M'.

Without any supposition of the case of an overhanging beam, we

may put the result as follows for any span of a beam not " free
"

at

the ends.

Let FA (Fig. 124) be the shearing force just to the right of A, and

FB the shearing force just to the left of B, MA and M B being the

moments imposed by the constraints at A and B respectively. Let w
be the load per unit length of span whether constant or variable.

Then, as in Art. 77, with A as origin

dx* (0

FA being the value of F for x = o.

Then M =
J *jwdxdx+

FA . x -f M A ... (3)

MA being the value of El-j4 f r * = - Putting x = /

M f f **/.* + FA/+M
J oj o

M B
- M A IB
-

A , .

hence FA = -^--- -fi ^ wdxdx ..... (4)

Note that the term -,l I wdxdx is the value of the reaction at A if

M B = MA,
or if both are zero as in the freely supported beam.

Substituting the value of FA in (3)

E& or M = f ('u'dxdx + (MB
- MA)^ + MA

-
^ f ?wdxdx (5)

r J oj o i ij oJ o

or re-arranging

M = MA + (MB
- MA

)^ ^^^wdxdx
- ^^wdxdx (6)

With free ends MA = MB = o, and

M = fTk - -T ^wdxdx
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and if the ends are not free there is the additional bending moment,
which may be written

M' = MA + (MB
-

or,

a form which will be used in Arts. 87 and 89.
With this notation (5) may be written

El^ = M + M' = M + MA + (MB
- M A)*

ax I

(7)

(7")

(8)

ActualWat
curve ofM'

where M is the bending moment at any section for a freely supported
beam similarly loaded, and M' is the bending moment (Fig. 124) at that

section due to the fixing moments MA and MB at the ends. Usually M
and M' will be of opposite sign ;

if the magnitudes of M and M' are then

plotted on the same side of the

same base-line, the actual bend-

ing moment at any section is

represented by the ordinates

giving the difference between
the two curves (see Fig. 125).
The conventional algebraic

signs used in the above inte-

grations (see Art. 77) make M
FIG. 125. negative for concavity upwards.

The reactions RA (= - FA)

and RB may be found from equation (4). If MB MA is positive, the

reaction at A is less (in magnitude) than it would be for a simply

supported beam by -/(M B M A ), and the reaction at B is greater than

for a simply supported beam by the same amount.
86. Built-in Beam with any Symmetrical Loading. For a sym-

metrically loaded beam of constant cross-section the fixing couples at

the supports are evidently equal, and Fig. 67 shows that equal couples
at the ends of a span cause a bending moment of the same amount

throughout. Or, from (7), Art. 85, if MB = MA ,
M' = MA = MB at

every section. Hence, the resulting ordinates of the bending-moment
diagram (see Art. 85) will consist of the difference in ordinates of a

rectangle (the trapezoid APQB, Fig. 125, being a rectangle when
MA = MB) and those of the curve of bending moments for the same

span and loading with freely supported ends. And since between
limits

dy

dx

M
'k (

see (3), Art. 77)

if E and I are constant, the change of slope gy
two ends of the beam is

between the
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with the notation of the previous article, where / is the length of span
and the origin is at one support. Now in a built-in beam, if both ends
are fixed horizontally, the change of slope is zero, hence

f(M
'

= o

or,

- M' =
7/.

This may also be written

A -f A' = o

where A stands for the area of the M curve, and A' stands for the

area of the trapezoid APQB or M' curve (Fig. 125), which in this

special case is a rectangle, AA'BB' (Fig. 126).n
I (M + M'X# represents the area of the bending-moment diagram

for the whole length of span, and equation (i) shows that the total

area is zero. Hence the rectangle of height MA (or M'), and the

bending-moment diagram M for the simply supported beam have the

same area A, and the constant value (MA) of M' is \\
tj o

^
the ordinate representing it is

y,
A and M being generally negative.

Hence, to find the bending-moment diagram for a symmetrically
loaded beam, first draw the bending-moment diagram as if the beam were

simply supported (ACDC'B,
Fig. 126), and then reduce

all ordinates by the amount
ot the average ordinate, or,

in other words, raise the

base-line AB by an amount
MA, which is represented

by the mean ordinate of

the diagram ACDC'B, or

(area ACDC'B) -^- (length
FIG. 126.

AB). The points N and
N' vertically under C and C are points of contraflexure or zero

bending moment, and the areas AA'C and BB'C' are together equal
to the area CDC' and of opposite sign. With downward load, the
downward slope from A to N increases and is at N proportional
to the area AA'C. From N towards mid-span the slope decreases,

becoming zero at mid-span when the net area of the bending-moment
diagram from A is zero, i.e. as much area is positive as negative.



200 STRENGTH OF MATERIALS. [CH. VII.

The slopes and deflections may be obtained from the resulting

bending-moment diagram by the methods of Art. 81, taking account

of the sign of the areas. Or the methods of Art. 82 may be employed,
remembering the opposite signs of the different parts of the bending-
moment diagram area, and that the slope and deflection are zero at the

ends. Another possible method is to treat the portion NN' between
the points of contraflexure (or virtual hinges) as a separate beam

supported at its ends on the ends of two cantilevers, AN and BN'.

If the slopes at the ends A and B are not zero, but are fixed at

equal magnitudes i and of opposite sign, both being downwards towards

the centre, slopes being reckoned positive downwards to the right,

equation (i) becomes

f(M

and fMV* = - PM<& - 21 . El or M' = - -- (W.* - ^L'-^I
Jo Jo I J o /

M being usually negative, and for minimum intensity of bending stress

this value of M' should be equal in magnitude to half the maximum
value of M.

EXAMPLE i. Uniformly distributed load w per unit span on a

built-in beam. The area of the parabolic bending-moment diagram
for a simply supported beam (see Fig. 65) is

f X >/2 X I = wl*

The mean bending moment is therefore ^wl*. By reducing all

ordinates of Fig. 65 by the amount yVe'/
2

,
we get exactly the same

diagram as shown in Fig. 123.
EXAMPLE 2. Central load W on a built-in beam.

The bending-moment diagram for the simply supported beam is

shown in Fig. 63. Its mean height is proportional to \. or --
4 8

I
y

a

vvl

FIG. 127.

Hence for the built-in beam the bending-moment diagram is as shown

in Fig. 127. The points of contraflexure are evidently \l from each

end, and the bending moments at the ends and centre are .

Taking the origin at the centre or either end, usinp the method of
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dy
Art. 8 1 (3) and taking account of the signs,

-~^
vanishes at both limits

and y at one limit, and the central deflection under the load is

i i/\ ^x/Y^iA A w? /Y1 -M - w/3

I92EI

87. Built-in Beams with any Loading. As in the previous article,
and with the same notation, if I and E are constant

or, A + A' = oj

or, substituting for M' its value from (7), Art. 85

The loading being not symmetrical, MB is not necessarily equal to

MA ,
and the area A' is not a rectangle but a trapezoid (Fig. 128), and

the equation of areas A and
A' is insufficient to deter-

'

M M
mine the two fixing couples
MA and MB. We may,
however, very conveniently

proceed by the method used

in Art. 81 to establish

a second relation. Thus,

taking one end of the span,

say A, Fig. 128, as origin

<Py _ M + M'

dx*~ El

and multiplying by x and integrating (by parts), with limits t and

FIG. 128.

or,

where x and x' are the respective distances of the centres of gravity or

centroids of the areas A and A' from the origin. Further, the term

is obviously zero, since each part of it vanishes at both limits x = /and
x = o

-,
hence

fl
= o (3)
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or the moments about either support of the areas A and A' are

equal in magnitude, in addition to the areas themselves being equal,
or, in other words, their centroids are in the same vertical line (see

Fig. 128).

Evidently, from Fig. 128, the area APQB or A' = - x /, hence

from (i)

and, taking moments about the point A (Fig. 128), dividing the

trapezoid into triangles by a diagonal PE-

7<?7-
2> ' <7>

AV = (JMA ./.!/) + (JME . /. /)
= i/

2

(MA + 2 M B) .

or from (3), /
2

(MA + 2MB)
= -A* (5)

6
or, MA 4- 2MB = -^j

. A*

2
and from (4), MA 4- MB = -

. A

2 A A y\jc 2 ^V / ***

"V \

from which MB = , jr
or

~Tj(
T

7 ) (6)

\x AMA =
o-jjj-

-
4y

or

Thus the fixing moments are determined in terms of the area of the

bending-moment diagram (A) and its moment (Ax) about one support,
or the distance of its centroid from one support. The trapezoid APQB
(Fig. 128) can then be drawn, and the difference of ordinates between
it and the bending-moment diagram for the simply supported beam

gives the bending moments for the built-in beam. The resultant

diagram is shown shaded in Fig. 128. With the convention as to signs
used in Art. 77 the area A must be reckoned negative for values of M
producing concavity upwards. With loading which gives a bending
moment the area of which and its moment are easily calculated, MB and
M may be found algebraically or arithmetically from (6) and (7), and
then the bending moment elsewhere found from the equation (8) of

Art. 85. With irregular loading the process may be carried out graphi-

cally ;
the quantity A . x may then conveniently be found by a " derived

area," as in Art. 68, Fig. 85, using the origin A as a pole, without

finding #.

When the resultant bending-moment diagram has been determined,
either of the graphical methods of Art. 82 may be used to find the

deflections or slopes at any point of the beam, taking proper account of

the difference of sign of the areas and starting both slope and deflection

curves from zero at the ends. Or the methods of Art. 81, (b) and
(<:),

may be employed, taking account of the different signs in calculating

slopes from the areas of the bending-moment diagram or deflections

from the moments of such areas. When the bending moment has been
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determined, the problem of finding slopes, deflections, etc., for the

built-in beam is generally simpler than for the merely supported beam,
because the end slopes are generally zero. The shearing-force diagram
for the built-in beam with an unsymmetrical load changes from

point to point just as for the corresponding simply supported beam

( since_ = w \ but the reactions at the ends are different, as shown

by (4), Art. 85, one (RB) being greater in magnitude, and the other (RA )

being less by the amount -(M B MA), which may be positive or

negative.
If the ends of the beam are built in so that the end slopes are not

zero, equation (i) becomes

A + A' = Elft, - IA)

where i'B and *A are the fixed slopes at the ends B and A, and are

reckoned positive if downward to the right (usually they will have

opposite signs). Equation (3) then becomes

A2c + A'5? = El././,

and the values of MB and MA are

2A 6A^ 2(2/B -|- i'A)EI 6A* 4A (/ -f 2/A)EI
MB = -^ -JT

+ - ~
f

,
MA = ^ j

- 2 - ~

quantities which will be less in magnitude (the area A being negative)
than (6) and (7) when both ends slope downwards towards the centre

unless ZB and /A are very unequal in magnitude. To secure the greatest

possible flexural strength from a given section it would be necessary
to make the two fixing moments MB and MA equal, and opposite to

half the maximum bending moment for the freely supported beam.
The necessary end slopes could more easily be calculated than secured

in practice.
EXAMPLE i. A built-in beam of span / carries a load W at \l from

one end. Find the bend-

ing
- moment diagram,

points of inflection, de-

flection under the load,

and the position and

magnitude of the maxi-

mum deflection.

For the simply sup-

ported beam the bending
moment at C (Fig. 129)

"

would be
f
W x J/=&W/. FlG ' I29-

Then, dividing the bend-

ing-moment diagram into two parts, ADC and CDB, with oiigin at the

point A and the above notation
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A
i= :J?^^^

and from (6), MB = W/( - & + M) = + &W/MA = W/( - U + |)
= + &W/

The resultant bending-moment diagram can now be completed by
the line GH, Fig. 129.

Taking moments about B

from which the shearing-force diagram may be drawn.

For the larger segment A to C, with A as origin

M = -i

M M' = M + MA -f
*
(MB

- MA) = -

This vanishes for x =
-j%/,

which gives the point of inflection E (Fig.

129).
For the shorter segment C to B

M = -
fW(/ - x)

M + M' = -|W(/ -x)+ W/+ &W* = W
(
_

This vanishes for x = f/, which gives the point of inflection F.

Slopes from A to C reckoned positive downwards to the right

This vanishes for x = f/, which gives the position of the point of

maximum deflection. That its distance from A is twice that of the

point of inflection under E is evident from a glance at the bending-
moment diagram, Fig. 129.

For * = \l at C

""
5 X T* + ^ = ~

T 5̂< ET

Slopes from C to B
w

which does not reach zero for any value of x between |/ and /.

Deflections from A to C
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and at C, where x = J/

and at x =
f/, >W = -p 3200

2O5

at x = -, = +314-

Deflections from C to B

W/3

EXAMPLE 2. The more general problem of a load W on a built-in

w

i .

FIG. 130.

beam, placed at distances a from one support A and b from the other B,

may be solved in just the same way.
If a is greater than b, and A is the origin (Fig. 130)

Wat? ^
MA -

(a + bf
iViB

~
(a

RA = W

The points of inflection are at

a
x =

I / \ '

The slope under the load is

(a
-

/>)

and x = a^- 2b
-

i+ 3^
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The zero slope and maximum deflection occurs at

and when b = o this becomes f(# + b), so that the maximum deflection

is for the built-in beam always within the middle third of the span.
The deflection under the load is

which is , ,;-8 times that for a freely supported beam.

The maximum deflection is

and the deflection at mid-span is

48EI

88. Built-in Beams of Variable Section. Having considered in

Art. 83 how simple beam-deflection problems are affected by a variable

section, and in Art. 87 the case of built-in beams of constant section, it

will be sufficient to point out briefly the modifications in the work of

Art. 87 when the quantity I is not a constant. The change consists in

using Y instead of M as a variable throughout. Thus, with the same

notation, since the total change of slope is zero

/ dy V
also, since the total change of level is zero, fdHr y] is zero, or

Thus the areas under the curves
-y-

and y are the same, and have

M'
their centroids in the same vertical line, but the curve

-y-
is not generally

a straight line, so that the second and third terms in each equation do
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not reduce so simply as in the case of constant values of I. When M
and I are known functions of x, each term of equations (i) and (2) may
be integrated separately. This gives two simple simultaneous equations

in which the unknown quantities are MA and
-^(M

A MB). When

these have been solved MA and M are known.
If M varies in some irregular manner, or if the above integrals are

MX . M
too tedious, the integration of the quantities -y-

and
-y- may be per-

Mx M
formed graphically by plotting the curves

-y-
and

j-
on the span as a

base, and finding their areas from o to /.

Further, if I varies in some arbitrary but specified manner which

cannot be expressed as a function of x, or which makes the above

integrals cumbersome, the integration of all three terms in (i) and
all three terms in (2) may be accomplished graphically by plotting the

curves

M i x MX x , xz

r i' p P and
T

on the span as a base and finding their areas from o to /. This involves

five operations only, as the third and fifth curves are the same. It may
ri

^,2
n

be convenient to take I -dx as
/
-dx multiplied by the distance of the

J o I J I

centroid of the area under the curve
y
from the origin A, or the moment

nx
of the area I *-dx, as found by the

" derived area
" method of Art. 68.

J o*-

A similar statement applies to the pair of curves
y

and
j,

and to the

MX A M
pair

- and .

Note that the first terms in (i) and (2) will be negative, the sum
M -f M' being algebraic.

When MA and MB have been found, the bending-moment diagram
may be plotted as in the case of constant values of I. The net area

of the resultant bending moment will not necessarily be zero, nor will

its moment about A or B.

If the slopes at the ends A and B (Fig. 128) are fixed at angles /A

and /B other than zero, reckoned positive downwards to the right, the

right-hand side of equation (i) becomes E(/B /A),
t'A and /B being

usually of opposite sign. And the right-hand side of equation (2)
becomes E . /. /B,

the origin being at A.

Special Case. If the loading is symmetrical about the middle of the

span, and the values of I are also symmetrical about mid-span, the

centroids of the
-y- and-y- diagrams being at -from each end, MA = MB,

and equation (i) becomes
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TV/T A/r I j i
**'*

and since the beam is horizontal at mid-span

the origin being taken at the end or centre, as is most convenient.

Alternative Form for Graphical Method. To put the above equations

(i) and (2) in the form of

equations of areas and of

moments of areas for graphi-

- ^ ^^^^T--^
M ^ 9 ca^ sonition

>
it is rather more

convenient to proceed as

follows. Treat the effect of

the two fixing couples sepa-

rately, adding their effects.

In other words, split M' into

two parts, regarding the ordi-

nates of the trapezoid APQB,
Fig. 128, as the sum of the

vertical ordinates of the two

triangles APB and PQB, or

APB and AQB, i.e. with A
as origin at a distance x

and --= /-*

Let MA = a . Mj and M B

= /2M2,
where Mj and M 2

are any assumed equal or

unequal values of the fixing

couples. Draw the lines /B
and #A, which represent

ivr
l ~ x

M! and M 2 T as shown

in Fig. 131, and by dividing
each ordinate by I, find the

curves r/B and JZ/A, or

x >i M! ~y ~/~
and M2 T/

FIG. 131.

as shown in Fig. 131.
M a / X ,

Let A/ and A2
'

be the areas under the two curves
-j-

. ^-
and
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~
j respectively, and Xi and x be the distances of their respective

centroids from the origin A. Let A and x refer to the curve
-y-

for a

beam simply supported' at A and B, then, the change of slope being

A .+ a . A/ + /3A2

' = o (3)

And the change of level being nil

ft /* JT i "\jrf\

I

or,
A . x 4- oA/tfj + /3A2':*2

= o
(4)

And from the two simultaneous equations (3) and (4), a and /? may
be found. The scales will be very simple, that of bending moment

being alone important, since I enters similarly into every term of the

equations, and a and /? are mere ratios.

The equation (4) in terms of moments of areas may very con-

veniently be reduced to one of areas by taking the first derived areas

(Art. 68) of each of the three areas under the curves, with the origin A
as pole.

If the end slopes are not zero, the right-hand sides of the equations

(3) and (4) are the same as those mentioned for (i) and (2).

89. Continuous Beams. Theorem of Three Moments. A beam

resting on more than two supports and covering more than one span
is called a continuous beam. Beams supported at the ends and propped
at some intermediate

UJ)

point have already been

noticed (Arts. 78 and

80), and form simple

special cases of continu-

ous beams.

Considering first a

simple case of a con- A B C

tinuous beam, let AB FIG. 132.

and BC, Fig.. 132, be

two consecutive spans of length and /2 of a continuous beam, the

uniformly spread loads on /x and /2 being w1 and wz per unit length

respectively. Then for either span, as in Art. 85, the bending moment
is the algebraic sum of the bending moment for a freely supported
beam of the same span and that caused by the fixing moments at the

supports, or, as in Art. 85 (8)

EI^
= M + M'

M' being generally of opposite sign to M. First apply this to the

span BC, taking B as origin and x positive to the right, M being equal
p
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'W'-)

to - "(4*
- x2

), being reckoned negative when producing concavity

upwards, by (7) and (8), Art. 85

= - H* + *,' + MB + (Mo - M,)* (r)

and integrating

*V + M, . .r + (Mc
- M D) + El . ;

where /B is the value of
-j-

at B, where x = o.

Integrating again, y being o for # = o

Et.j=-^
2 .^ + ^V +

^-
B .^+(Mc-MB

)^4-EI./B .^ + o (3)

and when x = 4 y = o, hence dividing by /2

El . IR = __ (Mc
- MB)/2

24 2 6

or

Now, taking B as origin, and dealing in the same way with the

span BA, x being positive to the left, we get similarly (changing the

sign of IB)

B = -2MB/1
-MA ./1 ... (5)

and adding (4) and (5)

MA/! + 2M B(/1 + /2) + Mc . /2
- {(a^ + ivJl] = o . (6)

This is Clapeyron's Theorem of Three Moments for the simple

loading considered. If there are ;/ supports and n i spans, or

n 2 pairs of consecutive spans, such as ABC, n 2 equations, such

as (6), may be written down. Two more will be required to find the

bending moments at n supports, and these are supplied by the end
conditions of the beam : e.g. if the ends are freely supported, the

bending moment at each end is zero.

If an end, say at A, were fixed horizontal, i'A = o and an equation
similar to (5) for the end span would be

TV/T . -\ir WJ?2MA + MB
- - 1- = O

4

When the bending moment at each support is known, 'the reactions

at the supports may be found by taking the moments of internal and

external forces about the various supports, or from Art. 85 (4), the.

shearing force just to the right of A 15

MB MA wl , .

FA = -
j

-
being positive downwards
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The shearing force immediately to each side of a support being
found, the pressure on that support is the algebraic difference of the

shearing forces on the two sides. As the shearing force generally

changes sign at a support, the magnitude of the reaction is generally
the sum of the magnitudes of the shearing forces on either side of the

support without regard to algebraic sign.
EXAMPLE i. A beam rests on five supports, covering four equal

spans, and carries a uniformly spread load. Find the bending moments,
reactions, etc., at the supports.

Since the ends are free (Fig. 133), MA = o, and M E
= o.

And from the symmetry evidently MD = MB.

FIG. 133.

Applying the equation of three moments (6) to the portions ABC
and BCD

0+2M B .2/+Mc ./->/3 =
and M B . / + 2MC . 2/+ M B/

-
\wl* = o

hence 4MB/ + M c/
-

\ivl*
= o

and 4MB/+ 8M,/- w/3 = o

7MC . / =X1 Mc
= >/ MB = %u.p = MD

Taking moments about B

Taking moments about C

RJ nftttJ^ * T/v/2
B ./ 2WI -pjTCV

Rc
= 4#//

The shearing-force diagram for Fig. 133 may easily be drawn by

setting up ^wl at A, and decreasing the ordinates uniformly by an
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amount wl to J|w/ at B, increasing there by fa//, and so on, changing
at a uniform rate over each span, and by the amount of the reactions

at the various supports.
The bending-moment diagram (Fig. 133) may conveniently be drawn

by drawing parabolas of maximum ordinate \wP on each span, and

erecting ordinates MB ,
Mc ,

. MD ,
and joining by straight lines. The

algebraic sum of M and M' is given by vertical ordinates across the

shaded area in Fig. 133. An algebraic expression for the bending
moment in any span may be written from (8) Art. 85 as follows

(positive for convexity upwards) :

Span AB, origin A

IS) *WCC

2 2

Span BC, origin B

M = (Ix oP) -j ^rZd'/
2

-^wlx = ( loc T
9

3?)
2 - 8 2

EXAMPLE 2. A continuous girder ABCD covers three spans, AB
60 feet, BC 100 feet, CD 40 feet. The uniformly spread loads are

i ton, 2 tons, and 3 tons per foot-run on AB, BC, and CD respectively.
If the girder is of the same cross-section throughout, find the bending
moments at the supports B and C, and the pressures on each support.

For the spans ABC

o -j- 32oMB 4- iooMc
=

5 X 1000(216 -f 2000) = 554,000
hence i6MB + 5MC

= 27,700 tons-feet.

For the spans BCD

iooMB 4 28oMc 4- o =
-J
x 1000(2000 4 192)

hence 5MB + i4Mc
= 27,400 ton-feet.

From which MB = 1260*3 ton-feet Mc
= 1507-0 ton feet.

Taking moments about B, RA x 60 60 x 30 = 1260-3
RA = 9 tons

,, C, 9 X 1 60 -f iooRB 60 x 130 200 x 50
= 1507 RB = 1 48-5 tons

: , ,, C, 4oRD - 120 x 20 = 1507
RD = 2 2 -3 tons

5, B, 22'3 X 140 -f- iooRc 120 Xi2o 2oox 50
= 1260 Rc = 200'! tons

90. Continuous Beams; any Loading. Let the diagrams of bend-

ing moment APB and BQC be drawn for any two consecutive spans
AB or / and BC or /2 (Fig. 134), of a continuous beam as if each span
were bridged by independent beams freely supported at their ends. Let

the area APB be A1} and the distance of its centroid from the point
A be tfj, so that A^ is the moment of the area about the point A. Let

the area under BQC be A2 ,
and the distance of its centroid from
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C be xa ,
the moment about C being A2^2 - (In accordance with the

signs adopted in Art. 77, and used subsequently, the areas Aa and A3

will be negative quantities for downward loading, bending moments
which produce upward convexity being reckoned positive.) Draw the

trapezoids ARSB and BSTC as in Art. 85, to represent M', the bending
moments due to the fixing couples. Let A/ and A2

'

be the areas of

FIG. 134.

ARSB and BSTC respectively, and */ and x.2
f

the distances of their
centroids from A and C respectively.

From A as origin, x being measured positive towards B, using the
method of Art. 81 equation (3) between limits x = ^ and x =

o, the

supports at A and B being at the same level

SB being the slope /- at B.

From C as origin, x being measured positive toward B, C and B
being at the same level

'*'> '()
Equating the slope at B from (i) and (2) with sign reversed on

account of the reversed direction of x

(3)
f,

And as in Art. 87 (4^), by joining AS and taking moments about A-

and similarly
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hence (3) becomes

-f
1 + -P + |MA . /, + |MB(/a + /2) + JM C4 = o

L
\ h

or, + +MA ./1 + 2MB(/1 + /J + M 4 = o . (4)

This is a general form of the Equation of Three Moments, of which

equation (6) of the previous article is a particular case easily derived

by writing Aj = f .
--

. A, and ^ = -, etc., the areas Aj and A 2

being negative for bending producing concavity upwards. For a

beam on ;/ supports this relation (4) provides n 2 equations, and the

other necessary two follow from the manner of support at the ends. If

either end is fixed horizontally, an equation of moments for the adjacent

span follows from the method of Art. 87. If A is an end fixed hori-

zontally, and AB the first span, from area moments about B, an equation
similar to (5), Art. 87, is

2MA + MB + ~
^
2

L = o (A! being generally negative)

If both ends are fixed horizontally, a similar equation holds for the

other end. If, say, the end A is fixed at a downward slope /A towards

B, the right-hand side of this equation would be ---~ instead of

zero. If either end overhangs an extreme support the bending moment
at the support is found as for a cantilever.

If some or all the supports sink, the support B falling 8, below A
and 32 below C, a term corresponding to^

1

appears in (i) and (2), so that

(3) becomes

k 4

and (4) becomes

8
. /j+ 6EI(J +

2

)
= o (5)^

l\
'

*2i\ *2

Wilson's Method. A simple and ingenious method of solving general

problems on continuous beams, published by the late Dr. George Wilson,
1

consists of finding the reactions at the supports by equating the upward
deflections caused at every support by all the supporting forces, to

the downward deflections which the load would cause at those various

points if the beam were supported at the ends only. This provides

sufficient equations to determine the reactions at all the supports

except the end ones. The end reactions are then found by the usual

method of taking moments of all upward and downward forces about

one end, and in the case of free ends, equating the algebraic sum to

1 rroc. Roy. Soc., vol. 62, Nov., 1897.
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zero. To take a definite case, suppose the beam to be supported at

five points A, B, C, D, and E, Fig. 135, all at the same level. Let the
distances of B, C, D,
and E from A be b, c, 2P ? ?

and ^ respectively. "-" ...
V."_".j!c

J
Let the deflections at A, r; _"e y_;

B, C, D, and E due to f I I I
the load on the beam if

'

RB R

simply supported at A FlG - '35-

and E be 0, yB , y^ yD ,

and o respectively. These may be calculated by the methods of Arts.

78, 80, 8 1, or 82, according to the manner in which the beam is loaded.
Now let the upward deflection at B, C, and D, if the beam were

supported at the ends, due to i Ib. or i ton or other unit force at B be

6<$B , A> and A respectively,

and those at B, C, and D due to unit force at C be

A A) and A respectively,

and due to unit force at D be

A) A> and A respectively.

Then all the supports being at zero level, if RB,
Rc,

and RD are the
reactions at B, C, and D respectively, equating downward and upward
deflections at B, C, and D for the beam supported at the ends A and E
only

JB = (RB X A) + (Rc X A) + (RD X A) ... (6)

^c = (R B X A) + (Rc X A) + (RD X A). . . (7)

JD = (RB X A) + (Rc X A) + (RD X A) ... (8)

Note that A =
c> A = A, A = A which becomes apparent by

changing b into x> x into
,
and a into a \ b x in (7), Art. 80.

From the three simple simultaneous equations, (6), (7), and (8),RB ,
Rc ,

and RD can be determined. RE may be found by an equation
of moments about A.

RE x e = (moment of whole load about A) b . RB <:RC ^RD
and RA = whole load - RB

- Rc
- RD

- RE

The exercise at the end of Art. 80 is a simple example of this

method, there being only one support, and therefore only one simple
equation for solution.

Wilson's method may be used for algebraic calculations when the

loading is simple, so that the upward and downward deflections may
be easily calculated, but it is equally applicable to irregular types
of loading where the downward deflections at several points are all

determined in one operation graphically.
When the reactions are all known, the bending moment and shear-

ing force anywhere can be obtained by direct calculation from the

definitions (Art 56).
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Sinking of any support can evidently be taken into account in this

method very simply. If the support at B, for example, sinks a given
amount, that amount of subsidence must be subtracted from the left-

hand side of equation (6).

If one end of the beam is fixed, the deflections must be calculated

as for a propped cantilever (Arts. 79 and 81). If both ends, they must
be calculated as indicated in Arts. 86 and 87.

EXAMPLE i. Find the reactions in Ex. i of Art. 89 by Wilson's
Method. Using Fig. 133, the beam being supported at A and E only,
and A being the origin, by (9) Art. 78.

= - 8 + 64)
=

fJ =
}'D from the symmetry

And by (n), Art 78

5 256/
4

_ ]Q 2//
4

yc 384 '
~

1
=

S
''

And using (7) and (8), Art. 80, the upward deflections due to the props
are, at B

/
3

jRB X 9 X I _ Ro_X_2xi __ 4 _ 4N Rp/l 9 _ 8N

Ell 3 x 4 4'
l-

4
l(

=
g|(fRB + iiRc); since by symmetry RB = RD

And at C

i{- 4 12

Equating upward and downward deflections at B and C

from which RB = RD = \wl and Rc = yf

RA = RE = i(4W/ - 2 x
7///

2

MB =

Mc = 2'/2 - f//
2 - Wl X 2l =

The bending moment anywhere can be simply stated, the diagrams
of bending moment and shearing being as shown in Fig. 133.

EXAMPLE 2. A continuous beam 30 feet long is carried on supports
at its ends, and is propped to the same level at points 10 feet and
22 feet from the left-hand end. It carries loads of 5 tons, 7 tons, and
6 tons at distances of 7 feet, 14 feet, and 24 feet respectively from the

left-hand end. Find the bending moment at the props ;
the reactions

at the four supports, and the points of contraflexure.
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Firstly, by the General Equation of Three Moments. For the spans

ABC, Fig. 136, with the notation of Art. 90.

Moment of the bending-moment diagram area on A.B about A

A!* = (-i
. 7 . f . 7) + ft . 3 - 8) = ^ + 126 =, 297-5 ton-(feet)

3

Moment of the bending-moment diagram on BC about C

A^ =
( . 4 f - ) + G 8 IT v) = HP + -T1 - 746-6 ton-(feet)

3

6Tons

FIG. 136.

This must be taken as negative in accordance with the signs adopted
at the end of Art. 77. Then from (4) of Art. 90, since MA = o

-(6 X 2975)
6 x 746'6

12

4- i2Mc = 551-83

2MB X 22 + I2MC = O

or 44MB

For the spans BCD

About B, A^ =
(l. 4 .f ..4) + (1.8. )

= 597-3
About D, A2^2

=
(i. 2 . 9 .^) + (I. 6 . 9 . 4) = 168

Taking these as negative, from (4), MD being o

6 x 597'3 6 x 168---
j^M

--- + i2MB + 2MC x 20 4- o = o

or, i2MB + 4oMc = 424-6 .....
And from the equations (9) and (10)

(9)

(ro)

M B = 10-51 ton-feet Mc = 7-46 ton-feet
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Taking moments to the left of B

5 X 3 ioRA = 10*51 RA = 0*449 ton

Taking moments to left of C

5XI5 + 7X8-22X 0*45
- i2R B = 7-46 RB == 9-471 ton

Taking moments to right of-C

6 x 2 8RD = 7*46 RD = 0*567 ton

RC = 5+7 + 6- 0*45
-

9-47
-

0*57 = 7*51 tons

Inflections. Taking A as origin and taking convexity upward as

positive bending. From 5 ton load to B

bending moment = 5(# 7) 0*449.* = 4*551.* 35, which vanishes, for

x = 7*9 feet.

From B to 7 ton load, bending moment is

4*5513: 35 9'47 I (^ I0
)
= 597 1 4'9 2 -*> which vanishes, for x

= 12*14 feet.

From 7 ton load to C the bending moment is

59*71 4'92.# 4- T(X 14) = 2*08.* 38*29, which vanishes, for x
= 18*5 feet.

From C to 6 ton load the bending moment is

2*08.* 38*29 *]'$i(x 22) = 126*9 5*43.*, which vanishes, for x
= 23-4 feet.

Secondly, by Wilson's Method. With end supports only, the down-
ward deflections, by (7) and (10) of Art. 80, are, at B

"
ell'x 30

to X 7 X 2 (4oo -529 -322)}

4-{7X i6x 10(100-448 - 196)}+ {6 x6x 10(100-576-288)}]
I 1,200,020+ 6 9 '

28 + 275> 40) =
iSoEI

?= ~
6EIX 3o

[<5 X 7 X 8(64 - 5*9 - 3")}

+{7 XI4X 18(64- 256-448)}+{6x 6 X 22(484-576- 2 88)}1

01 *> = (220>36 + 5 I>76 + 3 '96o) = ^ 2

With end supports only, the upward deflections caused by the props
at B and C are

AtB [{2RB X iooX4o} + {-Rc x8x 10(100-484-352)}]
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At C, 6E[

T

[{- R B x 10 x 8(64
- 400 - 400); 4-

< 2RC x 64 x 484}]

Equating the upward and downward deflections at B and C

80,oooRB + 58,88oRc
= 1,200,020 . . . . (n)

58,88oRB + 6i,952Rc = 1,023,080 . . . . (12)

which equations give the values

RB = 9'47 tons RC = 7'S 1 tons

confirming the previous results. The reactions at the ends, bending
moments at the supports, and position of the points of inflection follow

by direct calculation very simply (see Fig. 136).
EXAMPLE 3. If the cross-section of the continuous beam in

Example 2 above has a moment of inertia of 300 inch units, and the

support B sinks ~ inch and the support C sinks inch, find the bend-

ing moments and reactions at the supports, E being 13,000 tons per

square inch.

Firstly, by Wilson's Method. The downward deflection at B due to

the load would be

i /i,2oo,Q2o\ , ton-(feet)
3

Ell, 180 ) ton (feet)*

if E and I are in foot and ton units. If E and I are in inch units the

deflection at B would be

L^?J^ inches, the dimensions being
El 1 80

b
ton-(mches)

The upward deflection at B due to the props has to balance 0-05
inch less than this amount, hence

58>88oRc) = 78

or corresponding to (n), putting I = 300 and E = 13,000

8o,oooRB + 58,88oRc
= 1,200,020 - 20,312 = 1,179,708 (13)

and corresponding to (12) with o'i inch subsidence at C

58,88oRB + 6i,952Rc
= 1,023,080

- 40,625 = 982,455 (14)

From the simple equations (13) and (14)

Rc
= 6-13 tons RB = 10*23 tons

And by an equation of moments about A, RD = 1*33 tons,

and by an equation of moments about D, RA = 0*31 ton.
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Secondly^ by the General Equation of Three Moments. From
equation (5), Art. 90, an equation corresponding to equation (9), the

units of which are ton-(feet)
2
, may be formed. Using inch units, this

becomes

T44(44MB + I2MC) + 6 X 13,000 X 3c - ~ = SS*'*3 * J 44

or, 44MB + i2Mc = 551-83
-

11-3 . . (15)

And corresponding to (10)

6 x 13,000 x 300
=424-6

or, i2MB + 4<>Mc = 199 ...... (16)

And from (15) and (16)

MB = 11-87 ton-feet Mc = 1*404 ton-feet

From an equation of moments to the left of B, RA = 0-31 ton

ii ii ii right of C,RD = 1-33 tons

ii ii i, ,, right of B, Rc = 6-13
left of C, RB = 10-23 ii

confirming the previous results.

The diagram of bending moments is shown in the lower part of

Fig. 136. The serious changes in the magnitude of the bending
moments at B, C, and under the 6-ton load may be noted

;
also the

change in position of the points of inflection to the right and left

of C, involving change in signs of the bending moment over some

length of the beam : all these changes arise from the slight subsidence
of the two supports at B and C.

91. Continuous Beams of Varying Section. The methods of the

previous article may be applied to cases where the moment of inertia

of cross-section (I) varies along the length of span. The modifications

in the first method will be as follow. Equation (i), Art. 90, becomes

xdx =
g(A^, + A/*/) . . (i)

o

where A! and x1} etc., refer to areas of the curves y , etc.

With such modified meanings for the symbols equation (3), Art. 90,
holds good, but it may also be written in integral form thus

o

the origins being A for the left side and C for the right side.
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For the left side

M' = MA + |(M
B
- MA)

x measured positive towards B, and for the right side

M' = Mc + (MB
- Mc)

<"t

x measured positive towards B; hence (2) may be written

_

!/*

Z2 /^2M* ,
, ., [

x
T^ + Mc

I
J o J o

If M and I can be expressed as simple functions of x (from either

origin) the above integrals can usually be found without much trouble,
and (3) becomes a simple equation with two unknown quantities,MA and MB . For a beam on n supports, this relation (3) provides
n 2 equations, and the other two necessary for the n unknown
bending moments at the n supports follow as before from the fixing
conditions at the ends.

M* x x*
If the quantities -j-, j, -j,

etc., are not simple and convenient to

integrate, the integrals may be found graphically by plotting the curves

7//
as in Art. 88. Note that ~

\
-dx is represented by the area of a

o

figure derived, as in Art 68, from the curve -v, with A as pole, and

similarly with other curves.

Alternative Form for Graphical Method. We may state the above

equations in a convenient form for graphical solution, as in Art. 88, by
treating separately the effect of the moments at each support on the

two adjacent spans. This is equivalent to regarding the trapezoid
ARSB, Fig. 134, as the sum of two triangles ARE and ASB, and,
similarly, with BSTC, or with origin A

and with origin C

x
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Let MA = aM t

M B = y3M
Mc

= yM2

where MI, M , and Ma are any assumed equal or unequal values of the

r s

FIG. 137.

bending moments at A, B, and C respectively. Draw the lines AS and

Br (Fig. 137), the ordinates of which represent j M and
1
~ * M

a
n l\

with A as origin. Also draw the lines CS and B/, which represent

7M and 2
]y[2 w}th C as origin.

** /2

Divide the ordinates of these four curves by the variable values
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of I, and so get the curves h.w and Bz>, Cw and Bu, as shown in

Fig. 137. Let a' and a" be the areas under the curves Az/B and AwB
respectively, and let x^ and 3ca

" be the respective horizontal distances

of their centroids from A. Let A! be the area under the curve
-^

on the span AB and xlt the horizontal distance of its centroid

from A.
Let c' and c" be the areas under the curves CwB and C>B, xe

' and
x"

t
the horizontal distances of their centroids from C, A2 being the

area under the
-y

curve on the span BC, and x the horizontal distance

of its centroid from C.

Then, corresponding to (3), Art. 90, we have

+ ftd'x; , A2*2 + ySx.' +~ ~~
This is a form of the equation of three moments in which the unknown

quantities are a, /?, and y, and the requisite number of equations
follows from the consecutive pairs of spans and the conditions of

support at the ends just as in the previous cases.

The equation (4) may very conveniently be reduced to an equation
of areas by taking the "

first derived areas
"

(see Art. 68) of the areas

under the six curves, the pole being at A for those on the span AB,
and at C for those on the span BC (see dotted curves, Fig. 137).

Sinking of the supports may readily be taken account of in this method,
as in Art. 90, by using terms E . ^ and E . 82 in the above equation (4)
in place of EISx and EIS2 in equation (30) of Art. 90.

Fixing of the girder ends at any inclination may also be taken into

account as indicated in Art. 90, at the end of Art. 87, and at the end
of Art. 88.

Wilson's Method of solving problems in continuous beams by
equating the downward deflections produced by the load to the upward
deflections produced by the supporting forces, supposing the beam to

be supported at the ends only, may be applied in cases where the value

of I varies, provided the deflections for the necessary equations are

determined in accordance with the principles in Art. 83. Generally,
a graphical method will be the simplest for determining the deflections.

Full details of a numerical example will be found in Dr. Wilson's paper
already referred to, where the deflections are found by a novel graphical
method.

92. Advantages and Disadvantages of Continuous Beams. An
examination of Figs. 133 and 136, and other diagrams of bending
moment for continuous girders which the reader may sketch, shows
that generally (i) the greatest bending moment to which the beam
is subjected is less than that for the same spans if the beam were cut

at the supports into separate pieces ; (2) disregarding algebraic sign, the

average bending moment throughout is smaller for the continuous beam,
and less material to resist bending is therefore required; (3) in the
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continuous beam the bending moment due to external load is not

greatest at points remote from the supports, but at the supports ; hence,
in girders of variable cross-section the heavy sections are not placed
in positions where their effect in producing bending stress is greatest.

On the other hand, a small subsidence of one or more supports

may cause serious changes in the bending moment and bending stresses

at particular sections, as well as changes of sign in bending moment and

bending stresses over considerable lengths, with change in position of
the points of contraflexure. These changes, resulting from very small

changes in level of a support, form serious objections to the use of

continuous girders. Another practical objection in the case of built-up

girders is the difficulty in attaining the conditions of continuity during
construction or renewal, or of determining to what degree the conditions

are attained. In a loaded continuous girder two points of contraflexure

usually occur between two consecutive supports ;
if at these two points

the girder is hinged instead of being continuous, the bending moment
there remains zero, and changes in load or subsidence of a support
do not produce changes in sign of the bending moment and bending
stresses. This is the principle of the cantilever bridge :

l the portions
between the hinges are under the conditions of a beam simply supported
at its ends, and the portions adjoining the piers are practically canti-

levers which carry the simply supported beams at their ends. The
points of zero bending moment being fixed, the bending moment
diagrams become very simple.

EXAMPLES VII.

1. A beam is firmly built in at each end and carries a load of 12 tons

uniformly distributed over a span of 20 feet. If the moment of inertia of

the section is 220 inch units and the depth 12 inches, find the maximum
intensity of bending stress and the deflection. (E = 13,000 tons per square
inch.)

2. A built-in beam carries a distributed load which varies uniformly
from nothing at one end to a maximum TV per unit length at the other.

Find the bending moment and supporting forces at each end and the

position where maximum deflection occurs.

3. A built-in beam of span / carries two loads each W units placed \l
from either support. Find the bending moment at the supports and centre,
the deflection at the centre and under the loads, and find the points of

contraflexure.

4. A built-in beam of span / carries a load W at a distance \l from one
end. Find the bending moment and reactions at the supports, the deflection

at the centre and under the load, the position and amount of the maximum
deflection, and the position of the points of contrary flexure.

5. A built-in beam of 2O-feet span carries two loads, each 5 tons, placed

5 feet and 13 feet from the left-hand support. Find the bending moments
at the supports.

6. A built-in beam of span / carries a uniformly distributed load w per
unit of length over half the span. Find the bending moment at each

1 See the author's "
Theory of Structures."
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support, the points of inflection, the position and magnitude of the maximum
deflection.

7. The moment of inertia of cross-section of a beam built in at the ends
varies uniformly from I at the centre to ^I at each end. Find the bending
moment at the end and middle, and the central deflection when a load W is

supported at the middle of the span.
8. Solve the previous problem when the load W is uniformly distributed

over the span.

9. A continuous beam rests on supports at its ends and two other

supports on tfie same level as the ends. The supports divide the length
into three equal spans each of length /. If the beam carries a uniformly
spread load W per unit length, find the bending moments and reactions at

the supports.
10. A continuous beam covers three consecutive spans of 30 feet,

40 feet, and 20 feet, and carries loads of 2, i, and 3 tons per foot run

respectively on the three spans. Find the bending moment and pressure
at each support. Sketch the diagrams of bending moment and shearing
force.

11. A continuous beam ABCD 20 feet long rests on supports A, B, C,
and D, all on the same level, AB = 8 feet, BC = 7 feet, CD =

5 feet. It

carries loads of 7, 6, and 8 tons at distances 3, u, and 18 feet respectively
from A. Find the bending moment at B and C, and the reactions at

A, B, C, and D. Sketch the bending-moment diagram. (The results should
be checked by using both methods given in Art. 90.)

12. Solve problem No. 9, (a) if one end of the beam is firmly built in,

(b] if both ends are built in.

13. Solve problem No. n, the end A being fixed horizontally.

14. Solve problem No. n, if the support B sinks ^ inch, I being 90
(inches)

4 and E = 13,000 tons per square inch.



CHAPTER VIII.

SECONDARY EFFECTS OF BENDING.

93. Resilience of Beams. When a beam is bent within the elastic

limits, the material is subjected to varying degrees of tensile and

compressive bending stress, and therefore possesses elastic strain

energy (Art. 41), i.e. it is a spring, although it may be a stiff one.

The total flexural resilience (see Art. 42) may be calculated in various

ways it may conveniently be expressed in the form

2

c X E * v lume f tne material of the beam . . (i)

where/ is the maximum intensity of direct stress to which the beam is

subjected anywhere, and c is a coefficient depending upon the manner
in which the beam is loaded and supported, but which is always less

than the value f, which is the constant for uniformly distributed stress

(see Art. 42). If/ is the intensity of stress at the elastic limit of the

material, then

/
c X

JJT
X volume

is the proof resilience of the beam.

For a beam of any kind supporting only a concentrated load W,
the resilience is evidently

\ . W x (deflection at the load) .... (2)

e.g. a cantilever carrying an end load W has a deflection

W/3

(see (2), Art. 79)

hence the resilience is

W2/
c x ^ X volume = f .

If the beam is of rectangular section, the breadth being b and the

depth d
p = w/

volume = bdl
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and I = W
P*

hence c = jg, or resilience = . ^ . bdl . . . . (3)

For any shape of cross-section, if the radius of gyration about the

neutral axis is k
-

since / = W/ 4- -7 and area of section = I -r &

from (i)

WW2 I W2/
3

resilience = c X pE X
-p
X / = J X

gj

//\2 2
^
2

hence * = f( -3]
and resilience = J v % X volume

*.. for the rectangular section \-A ^ for standard I sections
^ is

usually about 0*4.

The same coefficients, etc., as those above will evidently hold for a

beam simply supported at its ends, and carrying a load midway between
them.

If all the dimensions are in inches and the loads in tons, the

resilience will be in inch-tons.

If with the notation of Art. 77, in a short length of beam dx, over
which the bending moment is M, the change of slope is di

t
the elastic

strain energy of that portion is

i-M.rf ........ (4)

and over a finite length the resilience is

J/M*......... (5)

which may also be written

or, if El is constant

mSWJx (?)

From these forms the resilience of any beam may be found when
the bending-moment diagram is known. For a beam of uniform
section and length /, subjected to "simple bending" (see Arts. 61 and
76), for which the bending moment and curvature are constant, the

resilience, from (4) or (7), is

M2
/

JM x change in inclination of extreme tangents = J -p-r. (8)

If such a beam is rectangular in section, the breadth being b and



228 STRENGTH OF MATERIALS. [CH. VIII

the depth d, p = M -r-J/W
2
,
and in the form (i), the resilience, from

(7), is

,xx volume or <

hence c = ^, and the resilience = J^ . bdl
.hi

The same coefficient (J) will hold for any of the rectangular beams
of uniform bending strength, in which the same maximum intensity
of skin stress/ is reached at every cross-section, and which bend in

circular arcs. For circular sections the corresponding coefficient is \.
In the case of a distributed load w per unit length of span, the

resilience corresponding to (2) may be written

\fwydx. ... ..... ( 9 )

where y is the deflection at a distance x from the origin.
Beam Deflections calculated from Resilience. In equation (2) the

deflection has been used to calculate the elastic strain energy. Similarly,
if the resilience is calculated from the bending moments by (5) or (7),
the deflections may be obtained from the resilience. For example, in

the case given in Art. 80, of a non-central load W on a simply supported
beam, using the notation of Art. 80 and Fig. 116, taking each end as

origin in turn, and integrating over the whole span, using (7)

hence

which agrees with (8), Art. 80.

Taking as a second example the case (3), Art. 78, and Fig. 112, of

a uniformly spread load w per unit span on a beam simply supported
at each end, at a distance x from either support

M = -
(Ix

-
x*) (see Fig. 65)

To find the deflection at a distance a from one end, consider the

effect of a very small weight W placed at that section. It would cause

an additional bending moment

or =
dx

at a distance x from the end anywhere over the range of length a;
hence over this portion

and similarly for the remainder at a distance x from the other end
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Hence from (5) the total increase of strain energy in the whole beam
due to W would be

=
ij^.

~
[(I

-

= ^.\V.y

Reducing this, y =
wa

(
l ~

"1
(p + fa - a*)

which agrees with (9), Art. 78, when x is written instead of a.

Generalising this for any type of beam, take W = i, and let m be
the bending moment at any section due to unit weight at the particular

section the deflection at which is y, then di~ . dx.
xLl

or J-/f=* . (10)

the integration being over the whole length of the beam and if necessary
divided into separate ranges with convenient origins. In the particular
case of the deflection under a load W, M = W;//, and

Carriage Springs. The resilience of a carriage spring constructed
as indicated in Art. 83, Fig. 122^, would be

"' E X (vo^ume of material)

This may be verified from (i i), Art. 83, for the resilience

t>
2 W/3

c x g X volume = JW x deflection = i\V X l

and from (10), Art. 83 __ 3 W/
/I=

Substituting this value of/
W2/3

2

hence <r = J, and the resilience is Jg . volume or ^ , nbdl

f2

Or, under proof load, the resilience is \ . ^ X volume of spring, where/is

the intensity of bending stress at the elastic limit. The value of/for
steel would usually be about 12 to 15 tons per square inch, and that

of E 13,000 tons per square inch, so that the proof resilience would be
about 0*002 inch-ton, or say 5 inch-lbs., per cubic inch of steel.

EXAMPLE. A beam of rectangular section is supported at its ends,
and carries a uniformly distributed load. Find the resilience in terms
of the greatest intensity of stress, and the volume of the beam.

Using the notation of Fig. 65
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the total resilience from (7) is

If the breadth of section is b and the depth </, the greatest intensity
"wl^

of stress / occurring at mid-span is \wP 4- \b(P
=

\~TT^

p* c 9
a/

2
/
4

a/
2
/
5 x 12

and c -=F volume or ^, ^ -T^TI odl =
E a #W4

hence c = ~ and resilience = ^ x |r X volume

This might also be obtained as the sum

wydx/
J

using the expression (9) of Art. 78 forjy.

93a. Impact producing Flexure. If an impulsive load such as that

of a falling weight be applied transversely to a bar so as to produce
flexure and the limits of proportionality of stress to strain are not ex-

ceeded, the strain energy or resilience of the bar at the extremity of the

deflection is equal to the kinetic energy and potential energy (if any) of

the load and bar immediately after the impact. If the inertia of the

bar is negligible in comparison with that of the load and the supports
are rigid, the loss of kinetic energy at impact is negligible, and the

resilience of the bar is equal to the kinetic energy of the load before

impact.
Let the bar be supported freely at its ends, and the load W fall

through a height h on to the bar of span length /, midway between the

supports, as in Fig. in. Let B = _yc
= deflection under the central

impulsive load W, and let P be the equivalent static load, i.e. the

central load, which would produce the same deflection and the same

bending stresses, then from (4) Art. 78.

If the weight of the bar is negligible, equating the work done by W
to the resilience after the deflection

' + -* ..... (2)
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P = W + ^y W
2
4- v^"? and P - W =^ W2

4-
v

, (3)

and if 8 is negligible compared to h

/^ATTTWA
(4)

Correction for Inertia of the Bar. If the effect of the bar is small
but not negligible, for the purpose of an estimate the deflection may be
assumed to take the same form as for a concentrated static load (2)
and (4), Art. 78, Fig. in, viz.

Then if v = velocity of the centre of the bar just after impact the

y
velocity at a distance x from the centre is v X - From the equality

JQ
of the total momentum before and after impact, if w = weight of the

bar per unit length

W x Jligh = Wv + 2r
/ ydxyd o

and substituting fory from (5), this becomes

W . \f~2gh
= v(W + fa//) or v =--

. X Vqsfi . (6)

Again, equating kinetic energy plus" work done after impact to the

increase of strain energy

y ~
<r v *"

]

~
I

~ " '

t * \i /
6 6 Jc ^ 'O J Q

or substituting from (5) and (i)

and substituting for v from (6), and solving the quadratic

= w + x/ w- ^n.^_^_ . (9)



232 STRENGTH OF MATERIALS. [CH. VIII.

The quantity P W is the amount by which impact load exceeds
the static load W

;
its ratio to W diminishes with increase of W, and

the impact bending stress bears the same ratio to the static bending
stress. If 8 is negligible compared to h, the work is simplified by the

omission of the term W . 8 in (7) and the first term (W
2

) under the

radical sign in (9) disappears.
fixed Ends. In the case of the bar being fixed in direction at both

ends and subjected to an impulsive load W midway between its ends,

using the results of Art. 86, in place of (5), the coefficient JJ is replaced

by J|, and the coefficient f by |.

Cantilever. In the case of a cantilever receiving the impact of

a falling weight W at its free end, using the results of Art. 79 in

place of (5), the coefficient ~ is replaced by T
3
-^, and the coefficient

5 Kv 3
s uy 8*

More General Positions of Points of Incidence of Load. The effect

of the inertia of the bar may be similarly found in more general
cases by the same methods as above, using the results of Arts.

79, 80, and 87 (Ex. 2), and splitting the integration into suitable

ranges.
94. Transverse Curvature. If a horizontal beam is bent so as to

be concave upwards, the upper fibres are compressed and the lower

ones stretched, hence lateral expansion and con-

traction will make the upper portion of the beam
wider and the lower portion narrower. These
lateral strains (Arts. 12 and 19), being propor-
tional to the longitudinal ones, are proportional
to the distances from the neutral surface, and
transverse bending accompanies the longitudinal

\ \ / flexure. The amount of the transverse curvature

^ \ / may be found from the strains in exactly the same

\\ / way as the longitudinal curvature (Arts. 61 to 63).
x

v / I

\\
/ The transverse strains are times the longi-

\\ / ^
x\ / tudinal ones,

- -

being Poisson's ratio, and the

FIG. 138. curvature is therefore times the longitudinalm
curvature. Hence, if R', Fig. 138, is the radius of transverse

curvature

or R' =

where R is the radius of longitudinal curvature.

It is here assumed that lateral movement is free, just as free

longitudinal strain, uninfluenced by surrounding layers, was assumed in

Art. 6 1. This is nearly true for sections, the depth of which is greater
than the width, but is not true for broad, flat strips. In very broad

beams practically no transverse curvature occurs, except near the edges,
where a lateral strain is free to take place. This approximates to a
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case where lateral strain is prevented in one direction, and the modulus
of elasticity appropriate to such a case of flexure is a modification of

the ordinary direct modulus (see Art. 21).

Using the equations of Art. 19, the direction of ^ being the length
of the beam, and that of ^ being the breadth, /3 being zero, equation

(i), Art. 19, gives

_A_ A_
~E mE

and equation (2), Art. 19, gives

_A A.~
E
"
mE

hence ,, =-( i - ~) - *^^>- or /, = x E-

the quantity

being a modified modulus of elasticity, which if m = 4 is yf times E,
and for such cases of flexure longitudinal deflections are only about yf
of what might be expected if the lateral strains were free.

EXAMPLE. A piece of iron plate, rectangular in section, 4 inches

wide and J inch thick, is placed on horizontal supports 3 feet apart,
the long side of the cross-section being horizontal, and a load of 200

Ibs. is placed at the centre; the central deflection is 0*149 inch. The

plate is then placed on the supports with the long side vertical, and
a central load of 2000 Ibs. causes a central deflection of 0-025 inch.

Find the value of Poisson's ratio for this material.

In the first position I = ^ 4 |
= ^.

Using the formula (4), Art. 78, with modified modulus

**' 200 X 36 X 36 X 36 _

(
a -

i)
' E

48 x A x 0-149
31,312,750

And in the second position I = y^ . J . = f

2000 X 36 X 36 x 36 x 3E = = 29.160,000
48 X 8 X 0-025

Dividing the previous result by this

m = 3-81 jj
= 0-263

95. Elastic Energy in Shear Strain ; Shearing Resilience. When
material suffers shear strain within the elastic limit, elastic strain energy
is stored just as in the case of direct stress and strain. For simple

distributions of shear stress the resilience or elastic strain energy is

easily calculated. Let Fig. 9 represent a piece of material of length
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/ perpendicular to the plane of the diagram, having uniform shear stress

of intensity q on the face BC, causing shear strain
<j> and deflection BB".

Then the resilience evidently is

i X (force) X (distance) = J x (BC . /. q) X BB" = 1
. BC . /. q . AB</>

=
J.BC./.AB.fJ

\ . . X volume or i
per unit of volume

where N is the modulus of rigidity.

Note the similarity to the expression J^ per unit volume, which is

the resilience for uniformly distributed direct stress (Art. 42).
96. Deflection of a Beam due to Shearing. In addition to the

ordinary deflections due to the bending moment calculated in Chap. VI.,
there is in any given case other than "

simple bending
"

(Art. 64)
a further deflection due to the vertical shear stress on transverse

sections of a horizontal beam. This was not taken into account in

the calculations of Chap. VI., and the magnitude of it in a few simple
cases may now be estimated.

In the case of a cantilever of length / carrying an end load W
(Fig. 59), if the shearing force F (= W) were uniformly distributed over
vertical sections, the deflections due to shear at the free end would
be

/ X (angle of shear strain)

*'* 5
where A is the area of cross-section. If the section were rectangular,
of breadth b and depth d, the deflection with uniform distribution would

W/
be ^N'

But we have seen (Art. 71) that the shear stress is not uniformly
distributed over the section, but varies from a maximum at the neutral

surface to zero at the extreme upper and lower edges of the section.

The consequence is that the deflection will be rather more than

W/
j-^=.

We can get some idea of its amount in particular cases from

the distribution of shear stress calculated in Art. 71. But it should

be remembered that such calculations are based on the simple theory
of bending (see Art. 64), and are approximate only. While the simple

(or Bernoulli-Euler) theory gives the deflections due to the bending
moment with sufficient accuracy, the portion of the total deflection

which is due to shearing cannot generally be estimated with equal

accuracy from the distribution of shear stress deduced in Art. 71. It

becomes desirable, then, to check the results by those given in the more

complex theory of St. Venant (see Art. 64) if a very accurate estimate

of shearing deflection is required. In a great number of practical cases,
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however, the deflection due to shearing is negligible in comparison
with that caused by the bending moment. Assuming the distribution

of shear stress to be as calculated in Art. 71, and constant over a

narrow strip of the cross-section parallel to the neutral axis of the

section, a few deflections due to shear will now be calculated for cases

where the shearing force is uniform, and for which the simple theory
of bending is approximately correct (see Art. 64).

Cantilever of Rectangular Section with End Load. The breadth

being b and the depth d> a longitudinal strip of length /, width ^, and
thickness dy^ parallel to the neutral surface and distant y from it, will

store strain energy

1 .

|*
. b . I . dy (see Art. 95)

due to shear strain. And from (4), Art. 71

q

where F = W, the end load.

Hence f .

The total shearing resilience in the cantilever is

or

If 8 be the deflection at the free end due to shearing, the shearingW2/
resilience is J . W . 8 = f ,

hence

which is 20 per cent, greater than it would be with uniformly distributed
shear stress.

Similarly, for a beam simply supported at its ends and of length 7,

/ W
carrying a central load W, putting for /, and for W, the shearing

deflection is

-a. ^
10
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or the total deflection due to bending and shearing is

W/3

3
W/ W/3

I ^( d \\
48EI

10 N&/
~
4E^1 *N \ 7 x )

p
or if ^ =

|, this becomes

W/ ;

4

or for the cantilever

The second term is negligible if
\-j} is large, which is generally the

case in practice. This expression for the shearing deflection is in fair

agreement with the more exact expression deduced by St. Venant. 1

provided the breadth is not great compared with the depth.
Circular Section. In a cantilever of circular section, assuming

uniform distribution of shear stress in a horizontal direction across the

section and vertical variation as in (5), Art. 71, q = ^fa cos2 where

y = R sin 0, z = 2R cos 0, dy = R cos Odd (see Fig. 99), and the

integral resilience corresponding to (i) is

2 .

-=^

O 10 . 10 \*
. ~-~ >-.- ^ .,

hence o = -
9
-

'^5 . ^ = -
9
- X - ^

And the total deflection in a length / is

. . -, . 1
3EI

"*" 8
'

TR"
'

N 3^'El
1 1~"* -

N
3

... E

For the simply supported beam the deflection is

Here again the second terms are negligible unless the beam is very
short. If the beam is very short the distribution of shear stress is not

known, and is probably between that calculated in Art. 71 and a uniform

distribution.

Distributed Loads. With a distributed load the simple theory of

bending does not hold with the same accuracy as when the vertical

1 See Todhunter and Pearson's "
History of Elasticity," vol. ii., Arts. 91 and 96.
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shearing force on the cross-sections is constant throughout the length

(see Art. 64). Neglecting this, however, the resilience due to shear

strain of an element of length dx would be

i^.z.dy.dx

If z and y are not functions of x, i.e. if the sections of the beam are

constant throughout its length, the effect of integrating the energy
expressions throughout with respect to x will be to multiply the previous

values for the cantilever by the ratio of I *dx to AY2
. For example, in

the case of a uniformly distributed load w per unit length at a distance
x from the free end F2 = w2

x\ hence the above ratio is Jo/V
8
to /W2

or

HWr t^ie e êct ^ a distributed load being ^ that of the same load con-

centrated at the end. The same coefficient will evidently hold good for

a beam freely supported at its ends, and uniformly loaded, compared to

similar beam carrying the same load concentrated midway between the

supports.
^.-Section Girders. The cases in which the shearing deflections

are of more importance are the various built-up sections of which girders
are made, particularly when the depth is great in proportion to the

length. In an I girder section, for example, the intensity of shear
stress in the web is (see Art 71) much greater than the mean intensity
of shear stress over the section. A common method of roughly esti-

mating the total deflection of large built-up girders is to calculate for

ordinary bending deflection, using a value of E about 25 per cent, below
the usual value to allow for shearing, etc.

Any Section} For any solid section instead of (i) the elastic energy
JW8 would be

/P
J-f

where z is the breadth of the section at a depth y, as in Art. 71, and q

=
YZ ) yzdy* as in Art. 71, hence the strain energy

or for the cantilever symmetrical about the neutral axes of the sections

with end load W, where F = W

- -

o y
1 A general formula applicable to beams of variable section is given by Prof. S. E.

Slocum, in the Journal vi the Franklin Institute, April, 1911.
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For a simply supported beam of span / and central load W, the

deflection would be f of the above expression.
For sections the width (z) of which cannot be simply expressed as a

function of the distance (j>) from the neutral surface, a graphical method
will be most convenient. The values of q may be found as in Art. 71
and Fig. 101. A diagram, somewhat similar to Fig. 101, may then be

plotted, the ordinates of which are proportional to f X z by squaring
the ordinates of Fig. 101 and multiplying each by the corresponding
width of the section. The total area of this diagram would represent

fzdy, and the deflection of, say, a cantilever may be found from it by

multiplying by v% and dividing by W. If the diagram of q is not

required it is rather more convenient to proceed as follows (see Fig. 139).

Draw the ordinary modulus figure for the section as shown at (a), and

(c)

FIG. 139.

plot a diagram (b) showing q . z instead of q, on the depth of the beam
as a base line. Equation (3), Art. 71, shows that at any height y from the

neutral axis

qz -,- X (area of modulus figure between y and -
J

from which equation the ordinates of (b) may be found by measuring
areas on Fig. (a). Square the ordinates of this diagram (b), and divide

each by the width z and plot the results as ordinates of the diagram (c)

on the depth d as a base. The area of the resulting figure (c) represents
C -

\*
J-i

fzdy as before, and the deflection (see (2) above) is found by
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multiplying by ~ and dividing by W for a cantilever with an end load,

and is \ of this for a beam of length / supported at its ends and carrying
a central load W, provided W is used as above in finding qz^ or

W
\ this if ,

the actual shearing force, is used in finding qz.

It is, of course, not necessary to actually plot the diagram (b).

Scales. Fig. 139 (a) being drawn full size, the width of the modulus
2 v

figure represents
~ X z. If/ square inches of modulus figure area at

(a) are represented by i-inch ordinates on (), the ordinates represent

C- d
V yzdy on a scale of i inch =/ X -

(inches)
3
. If the ordinates of (b) in

inches are square and divided by #, say, for convenience, and then plotted
/*
/ 2

in inches, on Fig. (c), the area of Fig. (c) represents *( \*yzdy\dy
a*^ y J

'

J ~2
/ </\

2

on a scale of i square inch = ;/(/ .
-
J

,
the units being (inches)

8
.

To obtain, say, the cantilever deflection, it is only necessary to

W/
multiply the result in (inches)

6

by p^,
the units of which are (inches)-

5

when inch units are used for /, I, and N, to obtain the deflection in inches.

W/
For the centrally load beam the factor would be

JiKf' Fig- i39> when

drawn full size, represents the British Standard Beam section, No. 10,

for which d = 6 inches, I = 43 '6 1 (inches)
4

,
and the web is 0^41 inch

thick: the area of the diagram (c) represents 761 (inches)
6
, and the

W/
shearing deflection of a cantilever would be 0-41 6 -Cinches.

The deflection due to shearing of an I beam with square corners
such as Fig. 100 may be found by integration in two ranges over which
the breadth is constant (see example below), and this method might
be used as an approximation for any I section by using mean values
for the thickness of the flanges and web : an example is given below.

Simple Approximation for I Sections. Owing to the limitations of the

simple theory of bending none of these calculations can be regarded as

correct, and perhaps the simplest approximation may also be the best,
viz. to calculate the deflection due to shear as if the web carried the
whole shearing force with uniform distribution, so that for a cantilever

i'JM"AN
and for a beam simply supported at its ends-

W/
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where A is the area of the web and / is the length of the beam, all the
linear units being, say, inches.

^
EXAMPLE. Find the ratio of the deflec-

-i^ff tions due to shearing and bending in a
J cantilever of I section, 6 inches deep and

5 inches wide, the flanges and web each \
Tj

inch thick, carrying an end load, TT being

taken as f ,
I =

43-125 (inches)
4

(see Fig.
140). In the flanges

.4 t__

W w

W2

FIG. 140.

In the web

vdy\ - ^(IM _ f\ __
w/

lart A
y*y)= 1 1^16 4;- rt-r:'-^

Taking both sides of the neutral axis, the total shearing resilience

is by (2)

/ P /i 2 3

=

, 2/W 632W/
8 = Nl2(l

'

65 + 314
'

5)
=

i^N~
=

'34o-^

(This agrees closely with the result given for Fig. 139, being less in

about the same proportion that the web thickness is greater, I being
nearly the same in each.)

Ratio of deflections
shearing

bending I
2N

3EI _ 1896 E i

N>, and

E no
taking I = 43*125 and^

=
f> this ratio is

^- nearly. For a simply

supported beam of span / the ratio would be - ,and if the span were 10

times the depth, or 60 inches, the ratio would be ^o, or over 12

per cent.

EXAMPLES VIII.

i. A strip of steel i inch wide and ^ inch thick is wound on to a drum
8 feet diameter. Find the intensity of stress in the metal and the resilience

per foot length of the strip if E = 30 x io6 pounds per square inch.
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2. A length of steel wire ^ inch diameter is wound on a drum 5 feet

diameter. Find the work stored per cubic inch and per foot length of wire.

E = 30 x io6 Ib. per square inch.

3. Find the elastic energy stored per cubic inch in a bar of circular

section resting on supports at its ends and carrying a central load. State
the result in terms of the greatest intensity of bending stress and the direct

modulus of elasticity.

4. If the limits of safe bending stress for steel and ash are in the ratio

8 to I, and the direct moduli of elasticity for the two materials are in the
ratio 20 to I, compare the proof resilience per cubic inch of steel with
that for ash and where both are bent in a similar manner. If steel weighs
480 Ibs. per cubic foot and ash 50 Ibs. per cubic foot, compare the proof
resilience of steel with that of an equal weight of ash.

5. If the safe limit of stress in a carriage spring is io tons per square
inch, how many cubic inches of material would be necessary to take up
i inch-ton of energy, E being 13,000 tons per square inch? If the longest
plate is 6 feet 6 inches long and the plates are 4 inches wide by inch thick,
how many would be required ? What would be the proof load, proof
deflection, and initial radius of curvature ?

6. A beam of I section is 20 inches deep and 7^ inches broad, the thick-
ness of web and flanges being o

-6 inch and I inch respectively. If the beam
carries a load at the centre of a 2O-feet span, find approximately what pro-

portion of the total deflection is due to shearing if the ratio =
2-5.



CHAPTER IX.

DIRECT AND BENDING STRESSES.

97. Combined Bending and Direct Stress. It often happens that

the cross-section of a pillar or a tie-rod mainly subjected to a longitudinal
thrust or pull has in addition bending stresses across it, the pillar or tie-

rod suffering flexure in an axial plane ;
or that the cross-section of a

beam resisting flexure has brought upon it further direct stress due to

an end thrust or pull, the loads on the beam not being all transverse

ones, such as were supposed in Chapters IV. and V., but such as make
the beam also a strut or a tie. In either &ise the resultant longitudinal

intensity of stress at any point in a cross-section will be the algebraic
sum of the direct stress of tension or compression and the direct stresses

due to bending. If / is the intensity of stress anywhere on a section

subjected to an end load

/=A+A (i)

where / is the total end load divided by the area of cross-section, and

pb is the intensity of bending stress as calculated from the bending
moments for purely transverse loading in Art. 63, and is of the same

sign as / in part of the section and of opposite sign in another part.

The stress intensity / will change sign somewhere in the section if the

extreme values of pb are of greater magnitude than / ,
but the stress

will not be zero at the centroid of the section as in the case of a beam
bent only by transverse forces. The effect of the additional direct

stress / is to change the position of the neutral surface or to remove
it entirely.

98. Eccentric Longitudinal Loads. If the line of action of the

direct load on a prismatic bar is parallel to the axis of the bar, and
intersects an axis of symmetry of the cross-section at a distance h from
the centroid of the section, bending takes place in the plane of the

axis of the bar and the line of action of the eccentric load. Thus,

Fig. 141 represents the cross-section of a bar, the load P passing through
the point C, and O is the centroid of the section. Let A be the area

of cross-section, and .ft distance OD from the centroid O to the extreme

edge D in the direction OC, and let I be the moment of inertia of the

area of section about the central axis FG perpendicular to OC. Then,
p

in addition to the direct tension or compression -r or / ,
there is a
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bending moment M = P . h on the section, the intensity of stress at any
point distant y from FG being

P P h v

p = /0 +A = - +-y (Art. 63)A L

or since I = A/fc
2
,
where k is the radius of gyration about FG

being positive for points on the same side of FG as C, and negative
on the opposite side. The intensity
varies uniformly with the dimension

y^ as shown in Figs. 141, 142.
The extreme stress intensities at

the edges of the section will be

A+/I and A-//

FIG. 141. FIG. 142.

where/ and// are the opposite extreme values ofA, or if^ and yj are

the distances of the extreme edges from the centroid O, the extreme
stress intensities of stress are

L / =
/.('

+
I')

and p =A
(r

-
*') ...()

on the extreme edges D and E, the former being on the same side of

the centroid as C, and the latter on the opposite side. If the section is

symmetrical about FG

Evidently/ = o for y =
j-

if this distance is within the area of

cross-section, i.e. if is less than yf the distance from the centroid to



244 STRENGTH OF MATERIALS. [CH. IX.

k?
the edge E opposite to C. An axis parallel to FG and distant from

it on the side opposite to C might be called the neutral axis of the

section, for it is the intersection of the area of cross-section by a surface

along which there is no direct longitudinal stress. The uniformly vary

ing intensity of stress where h is greater than
,
is shown in Fig. 141.

If
-j

is greater than j/, i.e. if h is less than the stress throughout the

section is of the same kind as / ;
this uniformly varying distribution

of stress is shown in Fig. 142. With loads of considerable eccentricity,
it should be noted, such metals as cast iron, which

""

G I
are strong in compression, ultimately fail in tension

under a compressive load.

Rectangular Section. In the rectangular section

of breadth b and depth d, shown in Fig. 143, in

order that the stress on the section shall be all of
IG. 143. ^e same signj the maximum deviation in the direc-

tion OE of the line of action of the resultant stress from the line

GH through the centroid is

-o--

From this result springs the well-known rule for masonry, in which no
tension is allowed that across a rectangular joint the resultant thrust

across the joint must fall within \ of the thickness from the centre line

of the joint, or within the middle third. The limiting deviation in the

direction OG under the same conditions is \b.

If the line of action of the stress is on neither of the centre lines of

the section, the bending is unsymmetrical, and may conveniently be

resolved in the planes of the two principal axes as in Art. 68a. If the

line of action of P fall in the quarter GOEB say, at a point the co-ordi-

nates of which, referred to OE and OG as axes, are x and y measured

positive toward E and G respectively, the bending moment about OE
is P .y, and about OG is P . x, and the stress at any point in the section

the co-ordinates of which are x'
t /, is

.*.* _ "1. . y.
* "^

12

d
The least value of this is evidently always at D, where x' = ~

and y = when the least value of/ is

bd\* b d.

This just reaches zero when
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the equation to the straight line joining points 7 from O along OG, and

T from O along OF. Similar limits will apply in other quarters of the

rectangle, and the stress will be of the same sign in all parts of the

section, provided the line of the resultant load falls within a rhombus

the diagonals of which lie along EF and GH, and are of length
- and

-
respectively. This rhombus is called the core of the section.

Circular Section. In the case of a circular section of radius R, the

deviation which just produces zero stress at one point of the perimeter of

the section and double the average intensity diametrically opposite is

and for a hollow circular section of internal radius ;- and external radius

R the deviation would be
, R2 + r

-?T
which approaches the limit JR in the case of a thin tube.

Other Sections. A more general form of (3) is evidently

, _ ,
.= I+

y '

where kx and kv are the radii of gyration of the area of section about

the axes of x and y respectively, and for zero stress at a point the

co-ordinates of which are a/, y'

yL +f^ = _ 1
(5)

For a symmetrical I section of breadth b in the direction of x, and depth
d in the direction of y, the four corners will be limiting points of zero

stress, and the limits of deviation of load from the centroid for no

change in sign of the stress will be the bounding line

and three others forming a rhombus having the principal axes as

diagonals. Similar bounding lines will fix the deviation limits or cores

for various other sections the boundaries of which can be circumscribed

by polygons.
For a symmetrical I section such as Fig. 82, if the axis OY is taken

as the vertical principal axis of the section, for a corner

,
b A . d

*'=-and/ = -

If x and y are the co-ordinates of the centre of the loading, the unit

stress from (4) is
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P/ yd xb \ yd xb

For various values of
^equation (7) would represent a series of

straight lines on which the load centre would lie
;
the inclination of the

lines to the axis OX would be at an angle 6 such that

tan = - p -
d (8)

and equation (6) is the particular line for p = o. The minimum

eccentricity of loading to give any ratio ~ at the corner of the section
/o

would occur when a line joining the centroid to the load centre is

perpendicular to the lines represented by (7), i.e. inclined to the axis

OX at an angle the tangent of which is

A 2 J
K,, a

Common examples of eccentric loads occur in tie-bars "cranked"
to avoid an obstacle, frames of machines, such as reciprocating engines,
members of steel structures, and columns or pillars of all kinds ; but

it is to be remembered that, particularly in the case of pillars, the

deviation h is a variable along the length if flexure takes place.

Frequently, however, in columns which are short in proportion to their

cross-sectional dimensions, and in which the deviation h of resultant

thrust from the axis is considerable, this variation in h is negligible.
Crane Hooks. The formulae (i) and (2) are very frequently applied

to find the extreme stress intensities in crane and coupling hooks due
to the pull, the axis of which is at a considerable distance from the

centroid of the middle section of the hook. It has been shown to be

wrong to use the theory applicable to a straight beam to such bending
of a hook of very considerable curvature, the effect being to under-

estimate the tensile stress at the inside of the hook (often by nearly

50 per cent.), and to overestimate the compression at the outside.

The subject is treated in Art. 132.

Masonry Seatingfor Beam Ends. If we assume the forces exerted

by the walls on a cantilever or a built-in beam to consist of a uniform

upward pressure equal to the total vertical reaction R and equal upward
and downward pressures varying in intensity uniformly along the length
from zero at the centre of the seating to maxima at the ends, giving a

resultant couple or fixing moment, formula (i) may be applied to calcu-

late the maximum intensity of pressure on the masonry. If b be the

(constant) breadth of the beam and d the length of the seating, pQ
=

"D

7}. The moment of the seating pressures about the centroid of the

seating is nearly the same as the bending moment at the entrance to

the wall if the seating is short,
1

exceeding it by R X -. Taking the

case of a cantilever of length /carrying an end load W (Fig. 59), the
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moment is wf/ -f
-
J ; writing this for P . ft, and b . d for A, and \bd^ for

A A2
1 in (i) or (2), the extreme intensity of pressure at the entrance to

the wall is /

V_ W
Anax.

- ~

which serves to calculate the maximum pressure intensity if d is known,
or to determine d for a specified value (say about 500 pounds per

square inch) of the working intensity of crushing stress on the seating.
EXAMPLE i. In a rectangular cross-section 2 inches wide and

i inch thick the axis of a pull of 10 tons deviates from the centre

of the section by yV inch in the direction of the thickness, and is in

the centre of the width. Find the extreme stress intensities.

The extreme bending stresses are

, M y^ X 10
/= - = r x 2 x i

= 3 tons per square inch

tension and compression along the opposite long edges of the section.

To these must be added algebraically a tension of
:f = 5 tons per square inch

hence on the side on which the pull deviates from the centroid the

extreme tension is

5 + 3 = 8 tons per square inch

and on the opposite side the tension is

5 3=2 tons per square inch

Here a deviation of the load a distance of ~ of the thickness from

the centroid increases the maximum intensity of stress to 60 per cent.

over the mean value.

EXAMPLE 2. A short cast-iron pillar is 8 inches external diameter,
the metal being i inch thick, and carries a load of 20 tons. If the

load deviates from the centre of the column by i* inches, find the

extreme intensities of stress. What deviation will just cause tension

in the pillar ?

The area of section is -(64
-

36) = 22-0 square inches
4

The moment of resistance to bending is equal to

2oxif = 35 ton-inches

hence the extreme intensities of bending stress are

T 84 - 64

35 X 8 X 32
35 + - '

g
= -

r x 2800
= r 17 tons Per S(

luare mch

The additional compressive stress is

f|
= 0*909 ton per square inch

hence the maximum compressive stress is 1*017 + 0*909 = 1-926 tons

per square inch, and the minimum compression is 0*909 1*017 =
0*108, i.e. 0*108 ton per square inch tension.

If there is just no stress on the side remote from the eccentric load

the deviation would be
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o'oog
175 X r^ = r 56mch

EXAMPLE 3. A short stanchion of symmetrical I section withstands
a thrust parallel to its axis such that the stress would be 2 tons per
square inch if the thrust were truly axial. Determine the eccentricity
which would be sufficient to produce a stress of 10 tons per square inch
if the section is 9 inches deep, 7 inches wide, 17-06 square inches area,
the principal moments of inertia being 229-5 (inches)

4 and 46-3 (inches)
4

,

the former being about an axis in the direction of the breadth.

Taking ^ = 1' = = ,3-45 V- - -I*

and in equation (7)
= l- = 5 ;

this gives

13-45
n

2*714
or y = -3-854*- 11-96

as the locus of the centre of pressure to produce the extreme stress at

one corner. The inclination of this locus to the horizontal principal
axis is

tan-^-a'Ss^ = 1 80 - 75'55 = i4'45

and for x =
o, y

-
11-96 inches.

Hence the distance of the line from the centroid is

11*96 cos 75 '5 5
= 3*00 inches

in a direction inclined 14*45 * the horizontal axis. If the centre of

pressure were on the horizontal axis of the I section, the deviation to

produce the same extreme stress would be

11*96 .

P^ = 3'i mches

99. Pillars, Columns, and Struts. These terms are usually applied
to prismatic and similar-shaped pieces of material under compressive
stress. The effects of uniformly distributed compressive stress are

dealt with in Chap. II. on the supposition that the length of the strut

is not great. The uniformly varying stress resulting from combined

bending and compression on a short prismatic piece of material is dealt

with in Arts. 97 and 98. There remain the cases in which the strut is

not short, in which the strut fails under bending or buckling due to a

central or to an eccentric load. Theoretical calculation for such cases

is of two kinds : first, exact calculation for ideal cases which cannot

be even approximately realized in practice, and secondly, empirical

calculation, which cannot be rigidly based on rational theories, but

which can be shown to be reasonable theoretically, as well as in a fair

measure of agreement with experiments. Calculations of each kind

will be dealt with in the following articles, and the objections and

uncertainties attaching to each will be pointed out, but the stresses

and strains produced in struts by known loads cannot be estimated
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by any method with the same degree of approximation as in the case

of beams or tie-rods, for reasons which will be indicated.

100. Euler's Theory: Long Pillars. This refers to pillars which
are very long in proportion to their cross-sectional dimensions, which
are perfectly straight and homogeneous in quality, and in which the

compressive loads are perfectly axially applied. Under such ideal

conditions it is shown that the pillar would buckle and collapse under
a load much smaller than would produce failure by crushing in a short

piece of the same cross-section, and that until this critical load is

reached it would remain straight. This evidently could not apply
to any pillar so short that the elastic limit is reached before the

buckling load.

The strength to resist buckling is greatly affected by the condition

of the ends, whether fixed or free. A fixed end means one which is so

supported or clamped as to constrain the direction of the strut at that

point, as in the case of the ends of a built-in or encastre' beam, while

a free end means one which by being rounded or pivoted or hinged
is free to take up any angular position due to bending of the strut.

If the collapsing load for a strut with one kind of
I

end support is found, the corresponding loads for

other conditions may be deduced from it.

Case /., Fig. 144. Notation as in the figure.

One end O fixed, and the other end, initially at R,
free to move laterally and to take up any angular
position. Taking the fixed end O as origin, measur-

ing x along the initial position of the strut OR,
and bending deflections y perpendicular to OR,
the bending moment at Q' is P(a y) if the

moment is reckoned positive for convexity towards
the initial position OR ; then, neglecting any effects

/>f direct compression and using the relations for

ordinary transverse bending, the curvature

M P(a-y)
g|

=
EI

-
.

(approximately, as in Art. 77)

where I is the least moment of inertia of the cross-

section, which is assumed to be the same throughout-
the length

<Py ,
P P

The solution to this well-known differential

equation is
*

FIG. 144.

V ^|
. x -f C sin \j gj

. x . . (2)

1 See Lamb's " Infinitesimal Calculus," Art. 182.

VKT-*
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where B and C are constants of integration which may be found from
the end conditions. When x = o, y = o, hence

o = # + B -f- o or B = a

dyAnd when x = o,
- = o, hence, differentiating (2)

rX + U COS

/~P~
and o = \J pj(

o + C) hence C = o

and (2) becomes

cos

This represents the deflection to a curve of cosines or sines, and holds

for all values of x to x = I. In particular, at the free end x = / and

y = a, hence

a a a cos // -.,V
or, a cos lt\j

- = o

From this it follows that either a = o or the cosine is zero. In the

former case evidently no bending takes place ;
in the latter case, if

bending takes place

/VE =COS/ = O ..... .... (3)

/ P 7T

and 7V E!
=

2
or or '

etc<

EI

7T 3?T 57T

Taking the first value -, which gives the least magnitude to P

P 7T
2

7T
2EI

^n =
7

or p =
7/r

...... (4)

This gives the collapsing load, and for a long column is much within

the elastic limit of compressive stress. Writing A . J? for I, where A is

the constant area of cross-section and k is the least radius of gyration

or the average intensity of compressive stress is

P 7T

Case //., Fig. 145. Both ends on pivots or frictionless hinges or

otherwise free to take up any angular position. If half the length of
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the strut be considered, its ends and loading evidently satisfy the con-
ditions of Case I.

; hence the collapsing load

'

and

/
2

A 2

(6)

Case III., Fig. 146. Both ends rigidly fixed in position and direc-
tion. If the length of the strut be divided into four equal parts,

\

FIG. 145

MQ

FIG. 146

*///////,

p

FIG. 147.

evidently each part is under the same end and loading conditions as in
Case I., hence the collapsing load

P = 47T
2EI

(8)

and
(9)
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Thus the ideal strut fixed at both ends is four times as strong as one

freely hinged at both ends. These two are the most important cases.

Case IV., Fig. 147. One end O rigidly fixed, and the other R
hinged without friction, i.e. free to take any angular position, but not to

move laterally. Evidently, if bending takes place, some horizontal force

F at the hinge will be called into play, since lateral movement is pre-
vented there. Take O as origin. The bending moment at Q', reckon-

ing positive those moments which tend to produce convexity towards

OR, is F(/
- x) - P .y, hence

- //

S' EI'-^ElC-
the solution of which is

/ p
y = B cos x\J JTJ

+ C sin

Finding the constants as before

F F
y = o for x = o gives o = B -f o -J- p/

and B =
p/

d = o for * = o gives = + C^/Z _
| and c =

and substituting these values in (10)

F/ /T , /El . /P" (

y = p(^*
cos x\J g-j +\/ -p

sin x\y ^ -f / -

for all values of x. And putting y = o for x = I

O =
|(-/COS Ay/gJ t>/IF

SlnV S)
hence either F = o, in which case there is no bending, or

p-
an equation in

l/\J
-

t
which may be easily solved by a table giving

the values of tangents and of angles in radians. The solution for which

P is least (other than P = o) is approximately

-p-

El
= 4

'

5 radians

TTT

from which P =
2ol-^-

....... (11)

and A =P = 20lE , . . . (12)
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By substituting the known values of y in the original equation, and

equating -j^
to zero, we find approximately 4-5 = tan

^-,
which is

satisfied by x = I or x = o*3o/, i.e. the point of inflection I (Fig. 147)
is o'30/ from o and o-yo/ (approximately) from R, 0*35 of the length

being under conditions similar to Case I.

The ultimate strength of the strut in each case is inversely proportional
to the square of its length, and comparison between the four cases above

shows that the strengths are inversely proportional in Figs. 144, 145,

146, and 147 to the square of the numbers i, i, 5, and 0-35 (approx.),
the fraction of the lengths between a point of inflection and a point of

maximum curvature. The strengths in the same order are therefore

proportional to the numbers i, 4, 16, and 8 (approx.).

101. Use of Euler's Formulae. Since actual struts deviate from

many of the conditions for the ideal cases of Art. 100, the use of the

formulae there derived must be accompanied by a judicious factor to

take account of such deviations, beyond the ordinary margin of a factor

of safety, the effect of very small deviations from the ideal conditions

being very great (see Art. 104).
"Fixed" and "Free" Ends. Most actual struts will not exactly

fulfil the condition of being absolutely fixed or perfectly free at the ends,

and, in applying Euler's rules, allowance must be made for this. An end

consisting of a broad flat flange bolted to a fairly rigid foundation will

approximate to the condition of a perfectly
"
fixed

"
end, and an end

which is attached to part of a structure by some form of pin-joint will

approximate to the "
free

"
condition ; in other cases the ends may be

so fastened as to make the strength conditions of the strut intermediate

between two of the ideal cases of Art. 100, and sometimes to make the

conditions different for different planes of bending.
Elastic Failure. Euler's rules have evidently no application to

struts so short that they fail by reaching the yield point of crushing or

compressive stress before they reach the values given in Art. 100. For

example, considering, say, a mild steel strut freely hinged at both ends

(Case II., Art. 100), and taking E = 13,000 tons per square inch, and
the yield point 21 tons per square inch, the shortest length to which
formula (7) could possibly apply would be such that

= 21 = IT
2

. 13,000
/^\

2

.

Ijl

/ being about 80 times k, which would be about 20 diameters for a solid

circular section, and 28 diameters for a thin tube. Since these rules

only contemplate very long struts, it is to be expected that they would

not give very accurate values of the collapsing load until lengths con-

siderably greater than those above mentioned have been reached. For

shorter struts than these Euler's rules are not applicable, and will, if

used, evidently give much too high a value of the collapsing load ; such

shorter or medium-length struts are, however, of very common occur-

rence in structures and machines. The values of/ f r columns of mild

steel and cast iron with freely hinged ends, as calculated by (7), Art. 100,

are shown in Fig. 148.
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102. Rankine's and Other Empirical Formulae.

Rankine. For a strut so very short that buckling is practically

impossible the ultimate compressive load is

PC =/C XA ....... (i)

where A is the area of cross-section and fc is the ultimate intensity
of compressive stress, a quantity difficult to find experimentally (see
Arts. 36 and 37), because in short specimens frictional resistance to

lateral expansion augments longitudinal resistance to compression, and
in longer specimens failure takes place by buckling ; fc may well be taken
as the intensity of stress at the yield point in compression.

The ultimate load for a very long strut is given fairly accurately by
Euler's rules (see Art. 100). Let this load be denoted by Pe ; then,

taking the case of a strut free at both ends (Case II., Art. 100)

If P is the crippling load of a strut ofany length / and cross-section

A, the equation
- -L

p F

evidently gives a value of P which holds well for a very short strut,

for ^ then becomes negligible, or P = Pc very nearly, and also holds
ttf y

for a very long strut, for then becomes negligible in comparison with

i

p- and P = Pe very nearly. Further, since the change in P caused by
f*
increasing /, for a constant value of A, must be a continuous change, it

is reasonable to take (3) as giving the value of P for any length of

strut.

For a strut with both ends free, the equation (3) may be written

~
//\

a
(k)

(4)

where a =
-4|j ,

a constant for a given material, or if / is the mean

intensity of compressive stress on the cross -section

. (5)

In the case of a strut
" fixed

"
at both ends the constant is -, and for

4
. . a 1

a strut fixed at one end with angular freedom at the other it is -

1 - is simpler and more correct than the value -a often given (see Case IV.

Art. i oo).
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(approximately), and for a strut fixed at one end and free to move
in direction and position at the other it is 40 (see Cases III., IV.,
and I., Art. 100). The above are Rankine's rules for struts; they
are really empirical, and give the closest agreement with, experiments

on a series of struts of different ratios 7 when the constants are deter-

mined from such experiments rather than from the values of E and/c for

a short length. The values/ and ^ of the constants in (4) may be

called the "
theoretical

"
constants ; the value of a would evidently be

less than jfe for ends with hinges which are not frictionless, and which

consequently help to resist bending.
Gordon's Rule. Rankine's rule is a modification of an older rule of

Gordon's, viz.

p=^? w
'+<;?)

where d is the least breadth or diameter of the cross-section in the

direction of the least radius of gyration, and c is a constant which will

differ not only for different materials and end fixings, but with the shape
of cross-section, its relation to Rankine's constant a being

- or e-

e.g. in a solid circular section of radius R, d = 2R, k =
,
and c i6a.

" Rational
"

derivations of Rankine's and Gordon's formulae have
often been given, but they depend on the inexact assumptions that

since the deflection of a beam under purely transverse loads is directly

proportional to the square of the length within the elastic limit, the

same is true of deflections resulting from end loads and beyond the

elastic limit.

Rankings Constants. The usually accepted values of fc and a in

Rankine's formula are about as follow :

Material.



256 STRENGTH OF MATERIALS. [CH. IX.

obtained from Rankine's formula (5) with the above constants will

generally be rather above the values of Euler's "ideal" strut, and
therefore obviously too high ;

for very long columns with absolutely free

ends, because the values of a (generally deduced from experiments in

which the ends are not absolutely free) are smaller than the "theo-

retical
"
value

-4J5
The average intensities of stress, or load per unit

area of cross-section, occurring at the ultimate loads for mild steel and
cast-iron struts of various lengths with free ends, as calculated by
Rankine's formula, and the above constants, are shown in Fig. 148.

30

I
20

60 80

Ratio

FIG. 148. Ultimate strength of struts.

Choice of a Formula. If the ratio
^

exceeds about 150, Euler's

values may be used to give the breaking loads, and factors of safety on
the average intensity of stress of 5 for steel and wrought iron, 6 for cast

iron, and 10 for timber may be used to give the working loads. For
shorter struts Rankine's formula may be used with factors of safety of

about 3 or 4 for steel.

It may be noted that the specifications of the American Bridge Co.
for dead loads give the permissible loads in pounds per square inch of

cross-section, as

I5>00
(for soft steel)

13.50
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and p = //xa (f r medium steel)

ii,ooo\//

where / is the length of a structural strut centre to centre of the pins at

its ends.

Euler's formula, for cases in which it may reasonably be used, has

the advantage of directness
;
the necessary area of cross-section may be

found for a given load from (4), (6), (8), or (n), Art. 100.

Rankine's formula, like all others except Euler's, while quite con-

venient for finding the working or the ultimate load for a given area,
and shape of cross-section, is not very direct for finding the dimensions
of cross-section in order to carry a given load

;
it leads to a quadratic

equation in the square of some dimension.

Johnson's Parabolic Formula. Johnson has adopted an empirical
formula

A =/. -

which, when plotted on a base-line giving values of - is a parabola,

fe is the yield point in compression, and b is a constant determined so

as to make the parabola meet the curve plotted with Euler's values of

p9 tangentially. For a strut absolutely "free" at the ends this con-

/2
dition makes b = -^

and, owing to friction, Johnson adopts the

f2 f2

smaller values of about ,-'^ for pin ends and _. for flat ends. For

values of j beyond the point of tangency with Euler's curve, Euler's

values ofA must be adopted, and to allow for the frictional resistance

to bending offered by pin or flat ends, (7) of Art. 100 is modified to

/\2 /^\
2

yj
and

2$E\-j) respectively, these values of / being based on

experimental results. The form of Johnson's formula is a trifle more
convenient than that of Rankine's.

103. Comparison with Experiments. A great many experimental
determinations of the ultimate strength of struts have been made under

various conditions, a list of references to which will be found at the end
of the present chapter, and various empirical formulae have been devised

to suit the various results. The results have been most consistent, and
in agreement with empirical algebraic formulae, as might be expected,
when the conditions of loading and fixing have approached most nearly
to the ideal, but, on the other hand, such conditions do not correspond
to those for the practical strut, as used in machines and structures, which

deviate from the ideal in want of straightness and homogeneity of

material, more or less eccentricity of the thrust, and in the conditions

of freedom or fixture at the ends. The results of tests obtained for

struts under more or less working conditions show great variations,
s
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and no formula, empirical or otherwise, can more than roughly predict
the load at which failure will take place in a given case. 1 This being
so, for design purposes one empirical formula is generally about as

accurate as another, and the simplest is the best form to use, the

constants in any case being deduced from a (short) range of values

of-?, within limits for which experimental information is available;

for example, straight-line formulae of the type

^ / l\=/ (
constant x

^ J

where / is the load per unit area of cross-section and/ is a constant,

may be used to give the working or the breaking-stress intensities over

short ranges of
^.

Experiments always show that flexure of struts intended to be

axially loaded begins at loads much below the maximum ultimately

borne, this being due to eccentricity and other variations from the

premises upon which Euler's and Rankine's rules depend. This leads

us to consider in the next article the effect of eccentric loading on a

long column where the flexure is not negligible (as it is in a very short

one), and where the greatest bending moment is mainly from the

increased eccentricity which results from flexure.

EXAMPLE i. A mild-steel strut hinged at both ends has a T section,

the area being 3*634 square inches, and the least moment of inertia is

4-70 (inches)
4

. Find, by Rankine's formula, the crippling load of the

strut, which is 6 feet long, if the ultimate crushing strength is taken at

21 tons per square inch.

The square of the least radius of gyration is -. = 1*293 (inches)
2

is-
72 x 72 = 4000
1-293

Using the constant given in the text, viz. y^ ; for this case

P = 3
f + MOO*

= M X 3-634 X 21 = 49-7 tons
1 7500

EXAMPLE 2. A steel stanchion of the form shown
in Fig. 149 has a cross-sectional area of 39*88 square

j inches, and its least radius of gyration is 3*84 inches.

Both ends being fixed, and the length being 40 feet,

find its crippling load, (i) by Euler's formula, (2) by
Rankine's formula. (E = 13,000 tons per square

inch.)

By Euler's formula
M
P , gLx '3. X 39-38 X (3-84)- =

480 X 480
1 References to experimental researches, numerical straight line formula, forms

and proportions of built-up struts are given in the Author's "
Theory of Struc-

tures."
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By Rankine's formula, and the constants given

21 x 39-88 21 x 39-88

480 x 480 1-520
=55 1 tons

3-84 x 3-84 x 30,000

EXAMPLE 3. Find the necessary thickness of metal in a cast-iron

column of hollow circular section, 20 feet long, fixed at both ends, the

outside diameter being 8 inches, if the axial load is to be 80 tons, and
the crushing load is to be 6 times this amount.

Let d be the necessary internal diameter in inches.

The sectional area is -(8
2 -

^), and I = ^ (8
4 -

d*\ hence JF=

The breaking load being 480 tons, Rankine's formula, with the

constants given in Art. 102, becomes

240 X 240 x 16 208 +
6400(8*

~

d* + 17^ 560 = o

d? = 16-65 d = 4-08"

Thickness of metal = - = 1-96, or nearly 2 inches.

104. Long Columns under Eccentric Load. As Euler's formulae
are only strictly applicable to struts absolutely axially loaded, it is

interesting to find what modifications follow if there is an eccentricity
h at the points of application of the load. Variation of elasticity of the
material and initial curvature of the strut must give a similar effect, and
may be looked upon as an increased value of h. Taking Case I., Art.

100, if P is applied at a distance h from the centre at R' Fig. 144 (and
on the principal axis perpendicular to that about which the minimum
value I is taken), the bending moment at Q' will be P(a + h - y),
and (i), Art. 100, becomes

d^y P P
*? + EI"y = EI<<l+ *> ..... <'>

and the solution (20) of Art. 100 becomes -

y = (a + h)(
i - cos x\J prT )

.... (2)

and at x =1 this becomes

'OS '\/ T77

r /P~ // >
tf COS /

/^/ |
=

/^
I 'OS /x /

/sec/\/^-r- (3)
=

/^
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The eccentricity of loading at the origin O is

/"p"
the bending moment there being increased sec l\J g|

times due to

/ P
flexure. The bending moment at O is ~P(a -f Ji) P/i sec S\/ ^r>

ji/ j.

which, so long as the intensity of stress is proportional to the strain,

causes in a symmetrical section equal and opposite bending stresses of

intensity

* = 5* sec / /^ = - sec / /^

where d is the depth of section in the plane of bending, i.e. in the

direction of the least radius of gyration ;
if the section is unsymmetrical,

yc and yt
must be used instead of -

(see Art. 63) ; hence the greatest

compressive stress/, by (i), Art. 97, is

/ hd /"P" \

(5)

which becomes infinite, as in Art. too, when

TT= or p==

and if fc is the crushing strength of the material, i.e. say the stress

intensity at the yield point in compression, at failure by buckling

hd
(7)

In the case of a column free at both ends (Case II., Art. 100, and

Fig. 145), with an eccentricity h of the thrust at the ends, by writing

~
instead of /, (4) becomes

(a + k)
= A sec ^/JL .';... (8)

and (5) becomes

,
hd I /P~\
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and at failure by compressive yielding (7) becomes

(10)-

Allowing for a slight difference of notation, when /= o, (5) and (9)
reduce to the form (i) of Art. 98, the increase of bending stress due to

flexure being only important when the length is considerable.

If failure occurs by tension, as is usual in cast iron, the greatest

intensity of tensile stress corresponding to (9) is

?(hd

and \ift is the limit of tensile-stress intensity at fracture, instead of (10)
at failure by tension the average compressive stress is

P
A hd hd I / p,^ sec -

2v^-<
From equations (9) and (u) the extreme intensities of compressive

and tensile stress may be found for a strut with given dimensions, load,

and eccentricity, or the eccentricity which will cause any assigned

intensity of stress may be found.

It is evident that/ becomes infinite for P = ~JTi Just as m Euler's

theory, where the eccentricity h o
; but these equations show that

where h is not zero, / approaches the ultimate compressive or tensile

strengths for values of P much below Euler's critical values. The
reader will find it instructive to plot the values of P and / for any
given section, and for several different magnitudes of the eccentricity

^, and to observe how / increases with P in each case.

For a strut of given dimensions with given eccentricity h, the

ultimate load P (or /) to satisfy equations (10) or (i 2 ) for a given
ultimate stress intensity fe or ft may be found by trial or by plotting
as ordinates the difference of the two sides of either equation, on a

base-line of values of P, and finding for what value of P the ordinate

is zero. It is convenient to write -\/Jr - ~Vp where p*
= ~^

Ap
when solving for P by trial, the angle in degrees being go*/ ^-.^ P

Fig. 150 shows the ultimate values of / for mild-steel struts of

circular section and various lengths, taking/c = 2 i tons per square inch

with various degrees of eccentricity. It shows that for struts about

20 diameters in length, for example, an eccentricity of ^ of the

diameter greatly decreases the load which the ideal strut would support.
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Also that when there is an eccentricity of ^ of the diameter an addi-

tional eccentricity of T^j of the diameter does not greatly reduce the

strength.
To find the dimensions of cross- section for a strut of given length,

load and eccentricity, and shape of cross-section, in order not to exceed
a fixed intensity of stress fe or fa the above equations may be solved

by trial or plotting if A and k (or i) are put in terms of d
t
viz. A = ^ x d2

,

20 40
RATIO -R

60 80 .100 120 I4-O 160

MILD STEEL STRUT OF CIRCULAR SECTION

FIG. 150. Eccentric loading of struts.

ft? = cz X d? (or I = <:3 X ^4

),
where ^ and c.2 (or 3̂)

are constants depend-
ing on the shape of cross-section. In solving by trial a first approxima-
tion to the unknown quantity may be found by taking the secant as

unity, as in Art. 98 ;
the further adjustment of the result is then simple.

Prof. R. H. Smith 1 has shown how, where a large number of such

problems are to be solved, the calculation may be facilitated by drawing
a series of curves corresponding to various degrees of eccentricity and

adaptable to any shape of section.

It may be noticed from equations (9) and (10) that with increase

of load P the maximum intensity of stress is increased more than

proportionally, because the part due to bending increases with the

increased eccentricity due to flexure as well as with the increased load.

Hence the ratio of the ultimate or crippling loads to any working load

will be less than the factor of safety, as understood by the ratio of the

maximum intensity of stress to the ultimate intensity of crushing stress

1 See the Engineer, October 14 and 28, and November 25, 1887.
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(at the yield point, say). This point is illustrated in Examples Nos. 3
and 4 at the end of the present article.

In the case of a long tie-rod with an eccentric load the greatest
intensities of stress are at the end sections, where the eccentricity is

/ /~P~~
h

\
in the, centre it is only h sech ~\/ -p?"

Approximate Method? Professor Perry has shown that the trigono-

metrical function sec ~\/ ur f or S c ~\/ p~
wnere P =

~~j*~>
Euler's

critical value of P when h = o) may be replaced approximately by the

algebraic function

the factor i'2 being about an average value applicable over the range
p
p-
= o'5 to o'9, which errs on the side of safety for working loads ;

for
*

p = i, which is about a usual working load for a strut, the constant is

1*05. Making this substitution, (9) becomes

/=! (' + ^V ) (i 3)

which may most neatly be written

//A
(-p-

and (n) becomes

P\ (p W \ hd- or -

(15)

As before, from (14) and (16) the extreme intensities of stress may
be found for a strut of known dimensions carrying a known load with any
assigned eccentricity ; or the allowable eccentricity may be calculated

for a given limit of the tensile or compressive-stress intensity. Also for

1 See the Engineer, December 10 and 24, 1886. A more accurate and equally

simple approximation is given in the Author's "
Theory of Structures."
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a strut of given dimensions, and maximum safe intensity of stress with

a given eccentricity, the load P may be calculated directly as the root

of the quadratic equation (14) or (16), according as the specified stress

limit is compressive (p =fc) or tensile (p =ft).

The dimensions of cross-section for a strut of given length and

shape to carry a given load, with given eccentricity and a given
stress limit, may be found by taking, as before, A =

^ . dz
,
kz = cz . d2

,

I = cz .d* = .Ci .* ^4
>
where A and cz are constants, in (14) or (16).

Since Pe is proportional to d\ these equations evidently become sextic

(or sixth-power) equations in d, and (14) or (16) being used according
as the specified limit of stress intensity is compressive or tensile, d may
be found by trial or plotting. For a solution by trial a first approxima-
tion may be obtained by taking /= o when equation (14) reduces to

the form of (i), Art. 98. If h should be specified as a fraction of d,

the equation will reduce to a cubic in d 2
.

The approximate solution may be tested by the more exact rules

(10) and (12), and adjusted to satisfy them.

Assuming any initial curvature of a strut to be of the form of a

curve of cosines, Prof. Perry, in the paper referred to above, shows that

initial curvature is equivalent to eccentricity not greatly different from

the maximum deflection of the strut at the centre from its proper

position of straightness. This may be verified by substituting hi cos -
-.

dy
for h in (i), the conditions being y o and -

;
= o for x = o and y = a

doc

for x = /; the maximum bending moment is then P(# + //i),
which is

equal to

where Pe
=

j^' A similar value holds for other cases when the value
4/

of P is modified as in Art. 100.

EXAMPLE i. A cast-iron pillar is 8 inches external diameter, the

metal being i inch thick, and carries a load of 20 tons. If the column
is 40 feet long and rigidly fixed at both ends, find the extreme intensities

of stress in the material if the centre of the load is if inch from the

centre of the column. What eccentricity would be just sufficient to

cause tension in the pillar? (E = 5000 tons per square inch.) The

corresponding problem for a very short column has been worked in

Ex. 2, Art. 98, and these results may be used

p^ = 0-909 ton per square inch j? = ^(8
2 + 6

2

)
= ~

7 /
The bending stress is increased in the ratio sec y/* El

r

sec -\/ 77,
= sec *%r\/

~ 7 ~ 7 - = sec 0-646 = sec
A X / lj />"

wv*>v < -^y .TN^N^N VX f\ f*
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Hence the bending- stress intensity is

I'oiy x 1*25 = 1*27 ton per sq. in.

The maximum compressive stress = 1*27 + 0*909 = 2*18 tons per sq. in.

The maximum tensile stress = 1*27 0-909 = 0-36 ton per sq. in.

or more than treble that when there is no flexure increasing the

eccentricity.
If the eccentricity is just sufficient to cause tension in the pillar,

its amount is

1 75 X ~~ = 1*25 inch

EXAMPLE 2. A compound stanchion has the section shown in

Fig. 149 ;
its radius of gyration about YY is 3*84 inches, and its breadth

parallel to XX is 14 inches. The stanchion, which is to be taken as

free at both ends, is 32 feet long. If the load per square inch of section

is 4 tons, how much may the line in which the resultant force acts at

the ends deviate from the axis YY without producing a greater com-

pressive stress than 6 tons per square inch, the resultant thrust being
in the line XX? How much would it be in a very short pillar?

(E = 13,000 tons per square inch.)

Evidently from (9) the bending-stress intensity must be 6 4 = 2

tons per square inch ; hence, if h is the eccentricity

hd

4.^. 14 192
I75TT2 Sec --* / : = 2

//(i*897 sec 50-3) = 2-97^ = 2

h = 0*675 mcn

For a very short pillar where the flexure is negligible this would

evidently be
h X 1*897 = 2 h = 1*055 mcn

the equation reducing to the form (i), Art. 98, since the secant is

practically unity.
It is interesting to compare the solution by (14)

/ io
;
ooo X 4^ 14

. (?
-

i)( i ~
)
= 0*6 x - - X h

i\ 13,0007^ /
N

14*75
h = 0*605 mcn

This is less than the previous result, because the factor 1*2 introduced

in (13) is too great for an average stress so much below the ultimate

value
;
without the factor the approximate method would give a value

20 per cent, higher, i.e. h = 0*726, which is too large, and errs on the

wrong side for safety.

EXAMPLE 3. Find the load per square inch of section which a
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column of the cross-section given in Ex. 2 will carry with an eccentricity

of i| inch from XX, the column being 28 feet long and free at both

encte, the maximum compressive stress not exceeding 6 tons per square

inch. Find also the ultimate load per square inch of section if the

ultimate compressive strength is 21 tons per square inch. (E = 13,000

tons per square inch.)

Using first the approximate method, (14) gives

/

V

28xi2V 14

*r
2 X 13,000 V 3*84

(6
- / )(i

-
0-059/0) = 0-858/0

or, A2 -
37 '3A> 4- 102 = o

hence A = 2 '95 tons Per square inch

Testing this value in (9)

14 168
sec

= 2-95 (i + 0715 sec 37*8) = 5-62 tons per square inch

instead of 6, hence 2-95 is rather too low. Trial shows that

/ = 3 'i 2 tons per square inch

satisfies (9), and is the allowable load per square inch of section. Sub-

stituting 21 tons per square inch for 6 in the above work gives 8'2 tons per

square inch of section as the crippling load. Note that while the factor

of safety reckoned on the stress is -^ =
3^, the ratio of ultimate to working

load is - - = 2-63.
3-12

EXAMPLE 4. A steel strut is to be of circular section, 50 inches

long and hinged at both ends. Find the necessary diameter in order

that, if the thrust of 15 tons deviated at the ends by ^ of the diameter

from the axis of the strut, the greatest compressive stress shall not

exceed 5 tons per square inch. If the yield point of the steel in com-

pression is 20 tons per square inch, find the crippling load of the strut.

(E = 13,000 tons per square inch.)

d trd* dk= - A = - h = -
4 4 10

Using the approximate equation (14)

X 15 X 64 X 2500 \
__

d
il^X

1.6

TT* X 13,000 X W4
/ 10 d

(o-26i6^
2

i) ^
i

^4-J
= 0-96

a cubic equation in ^, which by trial gives

^=7-9
d = 2'8i inches
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Testing this result by equation (9)

^T9 (l + ^ S6C '

484) = 4
'

58

instead of 5 tons per square inch.

By trial d = 2*7 inches nearly.

Taking this value for failure when/ = 20 tons per square inch, (14)
gives

'

20

pQ
= 8*15 tons per square inch

and by trial, from (9)

PQ = 8*43 tons per square inch

the whole load on the strut being

8'43 X ~ X (27)* = 48-4 tons

Thus the factor of safety reckoned on the greatest intensity of stress

is -
5
- = 4, but the ratio of crippling load to working load is =3*22.

105. Struts and Tie-rods with Lateral Loads. When a pris-
matic piece of material is subjected to axial and lateral forces it may be
looked upon as a beam with an axial thrust or pull, or as a strut or

tie-rod with lateral bending forces. The stress intensity at any cross-

section is, as indicated by (i), Art. 97, the algebraic sum of the bending
stress, and the direct stress which the axial thrust would cause if there

were no lateral forces.

In a beam which is only allowed a very limited deflection, i.e. which
is not very long in proportion to its dimensions of cross-section, the

bending stress may usually be taken as that resulting from the transverse

loads only. If, however, the beam is somewhat longer in proportion to

its cross-section, the longitudinal force, which may be truly axial only at

the ends, will cause a considerable bending stress due to its eccentricity

elsewhere, and will play an appreciable part in increasing or decreasing
the deflection produced by the lateral load, according as it is a thrust or

a pull. In this case, the bending stresses at any section are the algebraic
sum of those produced by the transverse loads, and those produced by
the eccentricity of the longitudinal forces. Unless the bar is very long,
or the longitudinal force is very great, a fairly close approximation to

the bending moment may be found by taking the algebraic sum of that

resulting from the transverse forces and that resulting from the eccen-

tricity of the longitudinal force, on the assumption that the deflection or

eccentricity is that due to the transverse loads only. The solution of a

problem under these approximations has already been dealt with, the

bending stress due to transverse loads being as calculated in Chapters
IV. and V., the deflection being as calculated in Chapter VI., and the

stresses resulting from the eccentric longitudinal force being calculated as
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in Art. 98. It remains to deal with those cases where the end thrust or

pull materially affects the deflection, and where consequently the above

approximation is not valid
;

this is the work of the two following
articles, which give the stress intensities for members of any proportion,
and indicate the circumstances under which the simpler solution of the

problem will be approximately correct.

106. Strut with Lateral Load. Let / be the length of a uniform
strut freely hinged at each end and carrying a load w per unit length.
Let the end thrust which passes through the centroid of the cross-

section at each end be P. Take the origin O (Fig. 151) midway
between the ends, the line joining the centroids of the ends being the

FIG. 151.

axis of x. The bending moment at Q' is
-

(
-- jc

2
) due to the lateral

load and P .y due to the end thrust P. Since each tends to cause

concavity towards the initial position of the strut, the sum is equal to

cfy
El-f4' where I is the (constant) moment of inertia of the cross-

do?

section about an axis through its centroid and perpendicular to the

plane of flexure, or

2 \4
(i)

The solution to this equation is

y = IJU
2 -

fp
-
^pT + A cosV El* + B sin V EI* (3

and the conditions ~ o for x = o and y o for x = -
giveUX 2

B = o
wEI

El

hence

and at the origin

w 7//
2 ze/EI/ / /P ^ /P \

=^ ~
8P

'

"FT SGC 2V E1
C SV EL*)

' W

Kf ) fe)

wl*
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and the maximum bending moment at O is

= sec X - 1 . . (6)

or,
_ Mo = sec\/f-i) ....... (7)

7T
2FI

where Pc
=

,
Euler's limiting value for the ideal strut (Case II.,

Art. 100). If P = Pe, M and^o become infinite. The expansion

may be applied to (6), which then reduces to

or

These two forms (8) and (9) show the relation of the approximate
methods mentioned in the previous article to the more exact method of

calculating bending moment. The first term in each is the bending
moment due to the lateral loads alone

;
the second term in (9) is the

product of the axial thrust P and the deflection -~- ^ (see (n), Art.

p
78) due to the transverse load alone. Even in the longest struts ^5

*

will not exceed about J, and in shorter ones will be much less. The
errors involved in the approximate method of calculation, which gives
the first two terms in (9), are evidently then not great

1

An approximate solution 2 of equation (i) may be obtained by
, , y/

2

2\ ,,
... wf* x

writing, instead of (
- x?l the very similar expression -^-

cos TTT;

this makes

(10)

~S(Pe -P) I"'

- M = \wi*
* -v '; . . .

;

. . (12)* e

1 See a paper by the Author in the Phil. Mag., June, 1908.
* See a paper by Prof. Perry in Phil. Mag., March, 1892. The same result

may be obtained by taking all the numerical coefficients in (8) as unity.



270 STRENGTH OF MATERIALS. [CH. IX.

Whether the bending moment is calculated by the approximate
methods of the previous article applicable to short struts, or by (7) or

by (12), the maximum intensity of bending stress pb disregarding sign,

by Art. 63, is

__ M ^ Mo M </A- =

z"
= ir ..... VI3)

where yl is the half-depth
- in a symmetrical section, and Z is the

modulus of section. Hence, by Art. 97, (i) the maximum intensity of

compressive stress

where / is the mean intensity of compressive stress on the section, viz.

p
,
where A is the area of cross-section, and the bending moment is

taken as positive.
And the maximum intensity of tensile stress is

,
= -/, or

which, if negative, gives the minimum intensity of compressive stress.

If the section is not symmetrical, the value of the unequal tensile and

compressive bending stress intensities must be found as in Art. 63 (6).
The formula (14) affords an indirect means of calculating the

dimensions of cross-section for a strut of given shape, in order that,

under given axial and lateral loads, the greatest intensity of stress shall

not exceed some specified amount. As the method is indirect, in-

volving trial, the value M = \wl
z
may be used to give directly a first

approximation to the dimensions, which may then be adjusted by testing
the values offe by the more accurate expression (14), where M satisfies

(7) or ()
An interesting case of a strut with a lateral load arises in a locomo-

tive coupling rod. The lateral load is that due to the centrifugal force

exerted by the material of the rod, so that w is proportional to the area

of cross-section. The area of cross-section is often I-shaped, and the

rod often tapers from the centre to the ends. Exact calculation in such

a case becomes very complex, if not impossible, even if the axial loads

could be accurately estimated. A good estimate of the bending stress

may, however, be found by estimating the bending moment and deflec-

tion due to lateral loads alone on the beam of variable section, as in

Art. 83, and increasing the central bending moment by the amount due
to the axial thrust.

If the strut carried a lateral load W at the centre instead of the

uniformly distributed load, equation (2) becomes

d? P
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W /El ^ /T W,
^ = ^PV -p

tan 2V ET~ 4 P
' ' '

2 /-p
/ fpM = WV El

tan 2V KE

Other cases may be found in a paper in the Philosophical Magazine^

June, 1908.
107. Tie-rod with Lateral Loads. 1 The notation being, as in the

previous article, the only change necessary in considering a tie-rod

instead of a strut is a reversal in the sign of P. Thus equation (2),

Art. 1 06, becomes

_ _-
d** El'-*'- 2EIV

and the conditions of fixing being the same, the solution is

w w! 2 wEI/ /T/ /P*\~
2P*~ + 8P

*
"F"V

T ~ sechV El 2
C0shV El J

' (2)

and

wEI/
,

/ /P\ wEI/
,

TT /"P\- MO =
-pr^i

- sech ->y/ ^J
=
~?"V

~ s
2 v Fe J

' ^3 ^

If the previous substitution ^o//
2 cos

^TT
be made for ( -- x?

J
p

in (i) the solution makes M = fat
2

p
*

p.
Which may also be

p
obtained by expanding (3) in a series of terms of rising powers of ^~*

the coefficients being approximately + 1 and i alternately.

The stress intensities due to bending and axial pull may be

calculated as in the previous article, disregarding the sign of M

- ........... (4)

M
fe
=

-j PQ (which may be positive or negative) . . (5)

If the tie-rod carries only a lateral load W at the centre, (16) of Art.

106 becomes

d*v P W //

W /El / / P
and ^o=^pVT tanh 2V El

w /ET ,
/ /T"- MO

= TV p^
tanh ;V ET

1 See a paper by the Author in the Phil. Mag., June, 1908.
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Other cases may be found in a paper in the Philosophical Magazine,

June, 1908.
EXAMPLE i. A round bar of steel one inch diameter and io feet

long has axial forces applied to the centres of each end, and being freely

supported in a horizontal position carries the lateral load of its own

weight (0*28 Ib. per cubic inch). Find the greatest tensity of compres-
sive and tensile stress in the bar : (a) under an axial thrust of 500 Ibs. ;

(b) under an axial pull of 500 Ibs.
; (c) with no axial force. (E = 30 X io6

Ibs. per square inch.)

7T
2 X 30 X io6 x v TT

P. = -
7 = ioio Ibs. w = 0*28 X - = o'22 Ib.

120 X 120 X 64 4

(a) The maximum intensity of bending stress by (7) and (13),

Art. 1 06, is

I
and since ^

=
2 mc"

A =^ X 3

x
-

(sec (90 X 07036)- 1}

= 6600 X 1*2274 = 8100 Ibs. per square inch

P 5
A. = -T- = -*-= =637 Ibs. per square inch^ A 0-7854

Maximum compressive stress/. = 8100 -f 637 = 8737 Ibs. per square
inch.

Maximum tensile stress/= 8100 637 = 7463 Ibs. per square inch.

(b) The maximum intensity of bending stress, by (3), Art. 107, is

( i sech ^ X 0-7036 J
= 6600 X (i sech 1-1042)

/EI

PZ

p^
_ 6600 X 0-4040 = 2666 Ibs. per square inch

/4
= 2666 + 637 = 3303 Ibs. per square inch

fc
= 2666 637 = 2029 Ibs. per square inch

M i ,22 120X120X32
\ / ' Z 8 TOO TT

= 4030 Ibs. per square inch

EXAMPLE 2. Find how far from the axis the 5oo-lb. end thrusts in

Ex. i should be applied in order to produce the least possible intensity

of stress.

Let h be the necessary eccentricity of the thrust below the axis.

Then, as in Art. 106 (i), with the addition of the moment P .h
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the solution of which is, as in Art. 106, and at the centre

7//
2

y*- -lp-
and

which causes upward concavity if the first term is greater than the second
;

and at the ends the bending moment producing convexity upwards is

P./fc

A consideration of the bending-moment diagram or the above

expressions will show that as h increases the magnitude of the bending
moment at the ends increases from zero, and the magnitude of the

bending moment at the centre decreases, and for the least bending
moment, bending stress and value of/c,

the bending moments at the ends
and centre should be equal in magnitude and opposite in sign, or

hence

and

Using the numerical values from Example i

22 30 X io6

^ IT 1-2274
^ =- X - X 7 X- = 0*402 inch

100 250,000 64 3*2274

and the value /6 being reduced by the eccentricity in the ratio i to

3-2274

8100 = 637 + 25 7 = 3T44 lbs ' per square inch

EXAMPLE 3. A locomotive coupling-rod 100 inches long is of I

section, area 6| square inches, moment of inertia io (inches)
4 about a

central horizontal axis, and depth 4- inches. The maximum thrust in

the rod (estimated from the maximum adhesion of the coupled wheel)
is 1 7 tons and the lateral inertia load at full speed is 24 lbs. per inch

length. Neglecting friction at the pins, estimate the maximum compres-
sive stress in the rod. (E = 13,000 tons per square inch.)

13,000 X 7T
2 X io P 17

.0000
- = " 8 '3 tons P

= ^F =
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7<"EI/ 7T /P~ \
Central bending moment =

p-
( sec -\/ _ j

)

24 x 13,000 x 10 .

2240x17 -(Sec 3'77 -i)
= 82 x 0*189 = I 5 '5 ton-inches

A = ~
Q x

= 3'49 ton s per square inch

/c = 6-01

As a check, the central bending moment by the other method
(which for working thrusts is very nearly correct) is

P i

*wt p-^-p = i3'4 X -x2 A
= I5H5 ton-inches
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EXAMPLES IX.

1. In a short cast-iron column 6 inches external and 5 inches internal

diameter the load is 12 tons, and the axis of this thrust passes ^ inch from
the centre of the section. Find the greatest and least intensities of compres-
sive stress.

2. The axis of pull in a tie-bar 4 inches deep and \\ inch wide passes

fa inch from the centre of the section and is in the centre of the depth.
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Find the maximum and minimum intensities of tensile stress on the bar at

this section, the total pull being 24 tons.

3. The vertical pillar of a crane is of I section, the depth of section parallel
to the web being 25 inches, area 24 square inches, and the moment of

inertia about a central axis parallel to the flanges being 3000 (inches)
4

.

When a load of 10 tons is carried at a radius of 14 feet horizontally from the

centroid of the section of the pillar, find the maximum intensities of com-

pressive and tensile stress in the pillar.

4. If a cylindrical masonry column is 3 feet diameter and the horizontal

wind pressure is 50 Ibs. per foot of height, assuming perfect elasticity, to

what height may the column be built without causing tension at the base if

the masonry weighs 140 Ibs. per cubic foot ?

5. A mild-steel strut 5 feet long has a T-shaped cross-section the area

of which is 4771 square inches, the least moment of inertia of which is 6*07

(inches)
4

. Find the ultimate load for this strut, the ends of which are freely

hinged, if the crushing strength is taken as 21 tons per square inch and the

constant a of Rankine's formula ygW
6. Find the greatest length for which the section in problem No. 5 may be

used, with ends freely hinged, in order to carry a working load of 4 tons per

square inch of section, the working load being J of the crippling load and
the constants as before.

7. A mild-steel stanchion, the cross-sectional area of which is 53*52 square
inches, is as shown in Fig. 149 ; the least radius of gyration is 4*5 inches.

The length being 24 feet and both ends being fixed, find the crippling load

by Rankine's formula, using the constants given in Art. 102.

8. Find the ultimate load for the column in problem No. 7, if it is fixed

at one end and free at the other.

9. Find the breaking load of a cast-iron column 8 inches external and 6

inches internal diameter, 20 feet long and fixed at each end. Use Rankine's
constants.

10. Find the working load for a mild-steel strut 12 feet long composed of

two T-sections 6" x 4" x ", the two 6-inch cross-pieces being placed back
to back, the strut being fixed at both ends. Take the working load as the

crippling load by Rankine's rule.

11. Find the ultimate load on a steel strut of the same cross-section

as that in problem No. 10, if the length is 8 feet and both ends are freely

hinged.
12. Find the necessary thickness of metal in a cast-iron pillar 15 feet

long and 9 inches external diameter, fixed at both ends, to carry a load of 50
tons, the ultimate load being 6 times greater.

13. Find the external diameter of a cast-iron column 20 feet long, fixed

at each end, to have a crippling load of 480 tons, the thickness of metal being
I inch.

14. Solve problem No. I if the column is 10 feet long, one end being
fixed and the other having complete lateral freedom. (E = 5000 tons per

square inch.)

15. With the ultimate load as found by Rankine's formula in problem
No. 5, what eccentricity of load at the ends of the strut (in the direction

of the least radius of gyration and towards the cross-piece of the T) will

cause the straight homogeneous strut to reach a compressive stress of 21

tons per square inch, assuming perfect elasticity up to this load ? The
distance from the centroid of the cross-section to the compression edge
is 0*968 inch. (E = 13,000 tons per square inch.)

16. With the eccentricity found in problem No. 15 and a load of 16 tons

per square inch of section, of what length may the strut be made in order
that the greatest intensity of compressive stress shall not exceed 21 tons per
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square inch ? What is then the least intensity of stress, the distance from
the centroid of the cross-section to the tension edge being 3*032 inches?

17. Find the load which will cause an extreme compressive stress of
21 tons per square inch in a stanchion of the section given in problem
No. 7, 12 feet long and freely hinged at the ends, if the depth of section

in the direction of the least radius of gyration is 16 inches, and the devia-
tion of the load from the centre of the cross-section is I inch in the direction

of the i6-inch depth. (E = 13,000 tons per square inch.)
1 8. What load will the column in problem No I. carry if it is fixed at one

end and has complete lateral freedom at the other, if the column is 10 feet

long, the eccentricity of loading \ inch, and the greatest tensile stress I ton

per square inch ? What is the greatest intensity of compressive stress ? (E =
5000 tons per square inch )

19. Find the necessary diameter of a mild-steel strut 5 feet long, freely

hinged at each end, if it has to carry a thrust of 12 tons with a possible
deviation from the axis of^ of the diameter, the greatest compressive stress

not to exceed 6 tons per square inch. (E = 13,000 tons per square inch.)
20. Solve problem No. 18 if the deviation may amount to I inch.

21. A round straight bar of steel 5 feet long and I inch diameter rests in

a horizontal position, the ends being freely supported. If an axial thrust of
2000 Ibs. is applied to each end, find the extreme intensities of stress in

the material. Weight of steel, 0*28 Ib. per cubic inch. (E = 30 x io6 Ibs.

per square inch.)
22. Find what eccentricity of the 2ooo-lbs. thrust in the previous problem

will make the greatest intensity of compressive stress in the bar the least

possible, and the magnitude of the stress intensity.

23. A locomotive coupling-rod is of rectangular cross-section, 3^ inches

deep and i inch wide. The maximum thrust in the rod is estimated at

io tons and the maximum inertia and gravity load at 17 Ibs. per inch length.
The length of the rod between centres being 8 feet 4 inches, neglecting
friction at the pins, estimate the maximum intensity of stress in the rod.



CHAPTER X.

TWISTING.

108. Stress and Strain in Pure Torsion. Circular Section. When
a cylindrical bar is twisted by a couple the axis of which coincides
with that of the bar, it is subjected to pure torsion. The stress at any
point in a cross-section is one of pure shear, the two planes across

FIG. 152.

which the stress is wholly tangential (see Art. 8) being (i) that con-

taining the point and perpendicular to the axis, and (2) the plane
through that point and the axis. The direction of stress on the former

plane is everywhere perpendicular to radial lines from the axis. The
principal planes are inclined at 45 to those of tangential or shear
stress (see Arts. 8 and 15), and the intensities of the two principal
stresses, which are of opposite sign, are of the same magnitude as the

intensity of shear stress.

The strain is such that any section perpendicular to the axis of the
bar makes a small rotation about the axis of the bar relative to other
similar sections. The nature of the strain within the elastic limit is

illustrated in Fig. 152, which represents a solid cylindrical bar in equi-
librium under two equal and opposite couples at its ends. A line ABC
on the curved surface, originally straight and parallel to the axis of
the bar, after the strain takes place becomes part of a helix A'BC,
which everywhere makes an angle </>i

with lines such as AB, which are

parallel to the axis ; the constancy of this angle would be apparent if

the curved surface were developed into a plane one, when A'BC'
would be a straight line. The angle & is the shear strain (Art. 10)
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for all the material at the curved surface, and the elastic strain being
small

AA' /^ =
AB

=
^ (radians) ..... (i)

where / is- the intensity of shear stress at the surface, and N is the
modulus of rigidity (see Art. 10).

For any point such as D, distant r from the centre of the cross-

section, the shear strain < and intensity of shear stress q are similarly
connected by the equation

DD' q

The radial line originally at OA, after straining occupies a position
A'O, the angle of twist AOA' being 9 in a length AB or /. If the
radius of the bar is R, from (i)

..... (3)

and similarly from (2)

= =
Radians)

From (i) and (3)
"R fi

/.
= ^N =T .N ....... (5)

and from (2) and (4)

q =^ = ~N ........ (6)

the intensity of shear stress on the cross-section being at every point

proportional to the distance r from the axis, varying from zero at the

axis to the extreme valueft at the circumference.

109. Relation between Twisting Effort, Torsional Strain and
Stress. The relation between a given torsional straining action and

the effects produced within the elastic limit

on a cylindrical bar of given dimensions

may be calculated from the principles of

equilibrium and the formulae of the previous
article. Considering the equilibrium of the

piece EGHF of the circular bar, Fig. 152,
the only external forces upon it are those of

the couple T at the end AGH, and those

exerted by the piece KEFL in the shear

stress across the plane EBF; hence the

latter must reduce to a couple of magnitude
FIG. 153. T, and of opposite sense to that applied at

the end AGH. If Fig. 153 represents the

cross-section, the total shearing force on an elementary ring of radius

r and width Sr is

q X 2-rrrBr
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and from (5) and (6), Art. 108

r 27T
hence q x 27rror = fi '^t

and the moment of this about the axis is

Dividing the whole section into elementary concentric rings and

summing the moments, the total couple exerted across the section is

or i- T

where D or 2R is the diameter of the bar. The quantity

?rD 4

or = J (say)

is the polar moment of inertia of the area of cross-section about the

axis, and (i) may be written

T = = or =

It should be remembered that if, say, inch units of length are used for

the dimensions and for/, the same units must be used for T (pound-
inches or ton-inches).

In this form (2) the close analogy between the relations connecting
the couple, stress, and dimensions for torsion and those for bending

(Art. 63) is apparent, and the quantity ^ may be called the polar

modulus of a solid circular section.

From (5), Art. 108

/./ T./ 32T/,
* = R7N

=
N7j

r HW (radians <
' ' ' (3)

T
or

^.-r:
radians per unit length ; also in degrees

6 = de rees .....
. (4)

the amount of twist being proportional to the length, and inversely pro-

portional to the (polar) moment of inertia (J) of cross-section about
the axis, i.e. in a shaft of solid circular section, inversely proportional
to the fourth power of the diameter. The product NJ to which the

amount of twist is inversely proportional, may be called the torsional

rigidity of the shaft. For other than circular sections quantities
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somewhat less than J must be used (see Art. 112). For solid circular

sections the intensity of stress from (i) is inversely proportional to

the cube of the diameter.

110. Shaft Diameters for Power Transmission. In the transmis-

sion of power through a shaft the product of the mean twisting moment
or torque multiplied by the angle turned through in (radians) gives the

work transmitted. Hence, if T is the mean twisting moment in

pound-inches, caused in transmitting of a horse-power (H.P.) at n revo-

lutions per minute

T _ 12 x 33 ?
ooo x H.P.

2irn
' ' X '

The maximum twisting moment will generally be considerably in

excess of this amount, as the twisting moment usually varies con-

siderably in driving of all kinds. If some coefficient to represent the

ratio of the maximum to the mean torque be adopted, the twisting
moment will be

TT p
T = x constant (2)

and for a shaft transmitting torsion only (without bending stress), if/, be

the intensity of safe maximum shear stress, from (i), Art. 109

D = \/
I

-j-
= \/ X constant .... (3)v

Trfs
v n

a common value of the constant for steel shafts being about 3*3.
When the maximum twisting moment has been estimated, common
working values offt are 8000 to 10,000 Ibs. per square inch. Suitable

values of ft or of the constant in (3) will be found in manuals of

machine design.
1 In long shafts the condition that the twist in a

given length shall be within some assigned limit may require a larger
diameter than considerations of maximum intensity of shear stress.

The necessity of this torsional stiffness will be understood from Art. 167.
111. Hollow Circular Shafts. The intensity of stress in a circular

shaft being for all points in a cross-section proportional to the distance

from the axis, when the material at the outside of a solid shaft reaches

the maximum safe limit of stress, that about the centre is only carrying
a much smaller stress. In the case of a hollow shaft the stress inten-

sity is, as before, everywhere proportional to the distance from the axis,

but it varies from a maximum to some smaller value, but not to zero.

With the same magnitude of maximum stress the average intensity of

stress is greater, and consequently for a given cross-sectional area a

greater torque can be resisted.

Let Rj or -- and R2 or be the external and internal radii

respectively of a hollow shaft; then Art. 109 (i), integrated between

limits, gives
1 See Unwin's "Elements of Machine Design," or Low and Bevis's "A Manual

of Machine Design
"
(Longmans).
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the value of J in (2) and (3), Art. 109, being

for a hollow shaft. The angle of twist

6 =

Comparing the strength (or twisting resistance for a given extreme

intensity of stress) per unit area of cross-section or per unit weight of

a hollow shaft with that of a solid shaft, both having the same external

diameter

hollow R 4 - R 4 R 3

_~
solid ""RjJR^-Ra

8

)

'

Rj
2

which tends to the limiting ratio 2 as R2 approaches R 15 i.e. in a thin

tube. The ratio of the torsion rigidities of the two shafts is the same
as that of their strengths.

112. Torsion of Shafts not Circular in Section. The torsion of

shafts symmetrical but not circular in section is very complex. The
cross-sections originally plane become warped, and the greatest intensity
of shearing stress generally occurs at the point of the perimeter of
cross-section nearest to the axis of twist or centroid of cross-section.

The subject has been investigated by St. Venant, who has devised

simple empirical formulae for cases where the more exact results are

complex. An account of St. Venant's work will be found in Tod-
hunter and Pearson's "

History of the Theory of Elasticity," vol. ii.

part i, from which the following values have been derived. The
notation is that of the four preceding articles.

Square Section. Length of side s. The greatest intensity of stress

/occurs at the middle of the sides

T = 0-208. s
3
./8 ....... (i)

7T

which is only about 6 per cent greater than 7 '/, . s
s
,
the value for the

inscribed circle. Also
T./ T/

-
7

' ir N.^-

J being^
Elliptic Section. Major axis a, minor axis b. The greatest inten

sity of stress yi occurs at the ends of the minor axis.

(3)

- i6(a* + P) T/
v = irys . -^7

TT aAP N
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Rectangular Section. Long side a, short side b. Maximum intensity
of stress/. occurs at the middle points of the long sides

or

For more exact values of the empirical coefficient

i

see a table in Todhunter and Pearson's "
History of Elasticity," vol. ii.

pt. i, p. 39-
For any symmetrical section including rectangles approximately

a 4oJ T/
'= A*'N <6)

where A is the area of cross-section and J is the polar moment of

inertia. Instead of 40, for a circular or elliptic section the exact factor

is 47r
2
,
and for rectangles, where

^
is less than 3, the factor is about 42.

Round Shafts with Keyways. For a given elastic stress limit/, the

torque applied to a circular shaft having a keyway of width w times

the shaft diameter, and depth h times the shaft diameter, expressed as

a fraction of the torque applied to the uncut shaft may be taken as *

I'O 0'2W 1'T.k

The elastic deflection is increased in the ratio

1*0 -f- o'^w -f o"jA
EXAMPLE i. Find the maximum intensity of torsional shear stress

in a shaft 3 inches diameter transmitting 50 H.P. at 80 revolutions per
minute if the maximum twisting moment exceeds the mean by 40 per
cent. What is the greatest twist in degrees per foot of length if

N = 12 x io6
Ibs. per square inch?

The twisting moment in Ib.-inches is

33,000 X 12 X 50 X i'4T = ~Sorf^
~ =

55' 12 5 Ib.-mches

16 T 16 x 55,125
fg
= X -* = - = 10,400 Ibs. per square inch

7T CL 2 77T

The twist per foot length in degrees is

= 55,^5 X 12
x

180 = ^^go
X 81 X 12 X io6 v

32
EXAMPLE 2. A solid round shaft is replaced by a hollow one, the

external diameter of which is n\ times the internal diameter. Allowing
the same intensity of torsional stress in each, compare the weight and
the stiffness of the solid with those of the hollow shaft.

1 This experimental result, due to Prof. H. F. Moore, is taken from Bulletin
No. 42 of the Engineering Experimental Station, University of Illinois.
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Let d be the diameter of the solid shaft, and D be that of the
hollow one.

For equal strength

-y = \ - = I*o = I'IQ2d V 0*5904

Ratio of weight

solid i

(ri 9 2)
2

(i
- o'8

2

)

=

Ratio of stiffness

hollow _ (ri92)
4

(i
- o'84

) __

~^lid~
=

~T~
*

19

113. Combined Bending and Torsion. In the preceding articles it

has been assumed that the shafts have been subjected to an axial couple

producing torsional shear stress only ; in practice nearly all shafts are

subject also to bending actions due to their own weight or that of

pulleys, or to the thrust or pull of cranks and belts. The component
stresses in the shaft will therefore be (i) shear stress due to torsion, on

planes perpendicular to and planes through the axis; (2) tensile and

compressive bending stresses parallel to the axis; (3) shear stresses

resulting from bending forces, on planes parallel to and perpendicular
to the axis. In shafts which are not very short, the maximum principal
stresses will generally occur at the circumference of the shaft, where the

tensile and compressive stresses on opposite sides reach equal and

opposite maximum values
;

in this case, the shear stress resulting from
the bending forces need not be taken into account, being zero at the

circumference (see Art. 71). In very short shafts it may happen that

the component shear stress caused by the bending forces is more
important than the direct stress parallel to the axis : in this case, the

greatest principal stress may be within the section
; usually, however,

the maximum principal stress is at the circumference. Let / be the
value of the extreme equal and opposite intensities of longitudinal

bending stress occurring at opposite ends of a diameter of a section,
viz.

where Z = d* is the modulus of section for a round shaft of diameter d
3 2

subjected to a bending moment M. Let ft be the extreme value of
<?,

the intensity of torsional shear stress occurring at the circumference,
so that

I09 (*) ) (2 )
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The intensities of the principal stresses may be found as in Art. 18,
the maximum value being

this being tensile on the skin which has maximum tensile bending
stress, and compressive diametrically opposite. Substituting the above
values for/and f,

(4)

....... (5)

From (5) it is evident that the bending moment

T2

) ...... (6)

without torsion would produce a direct bending stress equal to the

maximum principal stress f^; it is therefore sometimes called the

equivalent bending moment.

Similarly, from the relation (4) the quantity

T. = M+M + T ....... (7)

is called the equivalent twisting moment, since a twisting moment of
this value without any bending action would produce a torsional shear
stress of intensity / and consequently a principal stress of the same
magnitude (see Art. 8).

For a hollow shaft of external diameter DI and internal diameter
D2

the values of M< and Te from (6) and (7) being as before.

Combined bending and torsion being perhaps the most important
case of compound stress, it is instructive to notice that if the principal
direct strain is the criterion for elastic failure, and Poisson's ratio is 5,

(2) of Art. 25 makes the equivalent bending moment

|M + f>v/M
2 + T2 ....... (9)

which is greater than M, in (6). When the value in (6) is used, a

rather lower working value of the intensity of stress would be used

than with the value (9) (see Art. 25). If the criterion is the maximum
shear stress, which is

or

the bending moment which, acting alone, would produce this intensity

of shear stress (on planes inclined 45 to the axis of the shaft) is

(10)
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which is greater than (6) or (9). A twisting moment M2 + Ta would
also produce the same intensity of shear stress. If 6 is the angle which
the axis of principal stress makes with the axis of the shaft, or which
the principal plane makes with the cross-section, by (3), Art. 17

114. Effect of End Thrust. If there is an axial thrust or pull in

addition to bending and twisting forces, the intensity of stress due to

the axial force must be added algebraically to the intensities of longi-
tudinal direct bending stress before the principal stresses are found.

For an axial thrust P the extreme intensity of longitudinal compressive
stress will be

where A is the area of cross-section, and M the bending moment upon
it; fe may be used instead of/ in equation (3) of the previous article

to find the greatest intensity of compressive stress.

The extreme intensity of longitudinal tensile stress will be

which (if positive), when used instead of / in equation (3) of the

previous article, will give the greatest intensity of tensile principal
stress.

EXAMPLE i. A shaft 3 inches diameter is subjected to a twisting
moment of 40,000 Ib.-inches, and a bending moment of 10,000 lb.-

inches. Find the maximum principal stress. If Poisson's ratio is
J,

find the direct stress which, acting alone, would produce the same
maximum strain.

Intensity of torsional shear stress

16 X 40,000
' =

TT x 27
= 7544 IDS. per square inch

Intensity of bending stress

32 x 10,000
/= ---

3 ~ = 377 2 Ibs. Per square inch
TT X 27

Intensity of maximum principal stress

i/-h Vi/
a

-f/
2 = 1886 + 100^356 + 5 694 = 9664^5. per square inch

Intensity of minimum principal stress

1886 100 v
7

356 -f 5694 = 5892 Ibs. per square inch
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Maximum strain in the direction of the maximum principal stress

(see Art. 19) is

Direct stress to produce this strain would be 11,137 Ibs. per square
inch.

EXAMPLE 2. A propeller shaft is subjected to a twisting moment
of 1 80 ton-feet, a bending moment of 40 ton-feet, and a direct thrust of

30 tons. If its external diameter is 16 inches, and its internal diameter
8 inches, find the maximum intensity of compressive stress.

The polar modulus of section is

TT i6 4 - 84

76 l6
= 24Q7T = 755 (inches)

3

and the "
bending

" modulus is half this amount.
The maximum torsional shear stress in a cross-section is

180 x 12
ft
= = 2*86 tons per square inch

The maximum bending stress is

40 x 12 x 2-- = 1*27 ton per square inch

and the compression due to thrust is

o- 7854X 191
= '

2 t0" per Square inch

The direct compression parallel to the axis is therefore

1*27 + 0-20 = 1*47 ton per square inch

hence the maximum compressive (principal) stress is

'735 H~ ^*735
2 + 2'862 = 3*688 tons per square inch

115. Torsion beyond the Elastic Limit. When twisted by a

gradually increasing couple until fracture takes place, metals, whether

ductile or brittle, exhibit characteristics very similar to those which

they show in a tension test. If the twisting moments are plotted as

ordinates on a base of angular deformations measured on any fixed

length, the resulting diagram is very similar to that for tension and

elongation (see Fig. 31). In the case of ductile metals, the yield point
and limit of proportionality of angular strain to twisting moment,

particularly in a solid bar, are less marked than in a tension test, being
masked by the fact that the whole of the material does not reach those

points simultaneously, the outer layers first reaching them, and the

more plastic condition spreading towards the axis as straining proceeds.
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The yield point would be more clearly observed in a thin hollow tube-

There being no appreciable reduction in section, there is no "
droop

"

in the curve such as occurs when local contraction takes place in a

tension test, but the curve becoming almost parallel to the strain axis

or base, indicates that the material has become practically perfectly

plastic. In such a case the intensity of shear stress, instead of being

proportional to the distance from the axis of the bar, is practically
uniform over the section, and instead of (i), Art. 109, the twisting
moment T is related to the ultimate intensity of shear stress/,, and the

radius R or -, as follows :

2

T = *,fdr = t^Rs
or ./, . f

Fractures. In ductile materials the fracture is generally almost

plane and perpendicular to the axis of twist. In brittle materials, such

as cast iron, in which under torsion fracture apparently occurs by tension,

the surface of fracture meets the cylindrical surface in a regular helix

inclined 45 to the axis of the specimen, this being perpendicular to

the direction of the tensile principal stress (see Arts. 8 and 108, and

Fig. 219).
Other Phenomena. The raising of the yield point by stress, recovery

of elasticity with time, and similar effects, may be observed in materials

torsionally strained beyond the primitive yield point much in the same
manner as in tension experiments. An account of sundry experiments

1

of this kind by Dr. E. G. Coker is to be found in the Phil. Trans. Roy.
Soc. of Edinburgh, vol. xl. part ii. No. 14.

116. Torsional Resilience. The elastic strain energy or shearing
resilience of a material having a uniform intensity of shear stress q is

per unit of volume (Art. 95). If we consider a solid shaft torsionally
strained within the elastic limit, the shearing resilience of any tubular

element of radius r
t
thickness dr, and length /, is

where q = ./,

f, being the intensity of shear stress at the outer radius R. Hence the

total torsional resilience of the shaft is

1 See also "Tests of Metal in Reverse Torsion," by Prof. E. L. Hancock, Phil.

Mag., 1906, vol. xii. p. 426.
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In the case of a hollow cylindrical shaft of outer and inner radius

R! and R2 respectively the torsional resilience is similarly

which approaches J^ per unit of volume as Ro approaches Rx , />. for

a thin tube where the intensity of shear stress is nearly uniform.

If ft
in (i) and (2) represents the intensity of shear stress at the

elastic limit, the above expressions may be called the proof torsional

resilience in conformity with the terminology adopted in Art. 42.

An alternative method of arriving at the above results would be
to take the work done in twisting, viz. half the product of the twisting
moment and the angle of twist or

J.T.0

and substitute for T and 6 from (i) and (3), Art. 109, in the case of

a solid cylindrical shaft, and corresponding values for the hollow shaft

(Art. in).
This method might well be applied to other sections in which the

distribution of stress is not so simple, e.g. for a square shaft; the

resilience, using the formulae (i) and (2) of Art. 112, is

f2

=
0-154^

x volume. . . . ....... (3)

The same method might be extended to the other sections given
in Art. 112.

117. Helical Springs, close coiled.

(a) Axial Load. The material of a helical spring wound so closely
that any one coil lies nearly in a plane perpendicular to the axis of the

helix may be regarded as subject to torsion only, when the spring is

acted on by an axial pull or thrust; the twisting moment exerted on
the wire of the helix is the product of the axial force and the radius

of the cylindrical surface containing the helix or centre line of the wire,
i.e. the mean radius of the coils. When the helix is not "

close coiled
"

the axial force causes bending of the coils in addition to torsion of the

wire, and in any case there is on every cross-section of the wire the

shearing force due to the axial load apart from the torsional shear. In

many cases, however, the torsional strain is so much greater than that

due to bending or shear, that strains other than torsional ones may
be neglected.

Taking a close-coiled helix of round wire of diameter d, let W be
the axial load in pounds, say tensile, and R be the mean radius of the

coils in inches (see Fig. 154). Let n be the number of complete coils
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and / the total length of wire in them, so that the coils being
close

/= 27rR (approximately)

and let N be the modulus of rigidity or shearing modulus in pounds
per square inch. The whole of the wire is

subjected to a twisting moment

T = WR
and if one end is held fast the other will,

consequently, twist through an angle (Art. 109

(3))-

32T/ 32WR/ ,.

--I.XT = *XT radians
T/= ^n- or

or JL radians per unit length. Consequently,
N J

the free end will have an axial movement R . 0,

as may easily be realized by considering the

axial movement of the free end, due to the

difference in twist at the ends of any short

portion of the total length, and remembering
that, one end being fixed, the whole axial

movement must take place at the free end. If

8 is the axial movement or deflection of the

free end

8 = R.0 = 32WRV
or

64WR3
.

inches . (2)

This might also be obtained very simply by equating the torsional

resilience or work done by the twisting moment to the work done in

terms of the axial force and deflection, viz.

(3)

and or (as before)

The resilience in inch-pounds is

i6W2RV ./a
,4X r or 4*r X volume

as in Art. 116, where/ =F^WR
>
as in Art - I09 (O-

The deflections for a spring of hollow circular section, i.e. made
of tubing may similarly be obtained from (i) and (2), Art. in.

The stiffness of a spring in pounds may be defined as the force

per unit deflection, and is equal to ^ when W is one pound. If in the
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above formulae the linear units are inches (as is usual), the force per
foot of deflection may be taken as e where

V ~8RV~

in the units commonly employed in considering the kinetics of

vibrations.

In the case of a square section

1>O

/ 2

the resilience being 0*154 ^ per unit volume, as in the previous article.

It is interesting to note that in any of the above cases the resilience

per unit volume for a given intensity of shearing stress is much greater
than the resilience for uniform tension or for a bent beam (Art. 93)
with the same numerical intensity of direct stress, N for steel being

only about fE, and the numerical coefficient being greater for torsion

than for bending, because the material is for most usual cases more

uniformly stressed. The steel from which springs are usually made has

a high elastic limit and correspondingly high capacity for storing strain

energy. The safe working value of shear stress for small wires is over

30 tons per square inch when suitably tempered for springs.

(b) Axial Twist. When a closely coiled spring is held at one
end and subjected to a twisting couple M about the axis of the helix,

the free end to which the couple is applied is twisted by an amount

proportional to the magnitude of the couple. Neglecting any slight

obliquity of the coils, whether one coil or several be considered, the

wire of which the helix is made has to resist at every normal cross-

section a bending moment M tending to bend or unbend the coils of

the helix, i.e. to increase or decrease their curvature according to the

sense of the applied couple. If we assume, as an approximation, that

the coils which have considerable initial curvature behave like a beam
of

initi^j
curvature zero, and that the same relations hold good as in

Arts. 6 1 and 63

bending moment M = El X (change of curvature) . (4)

where I is the moment of inertia of cross-section about the neutral axis

of the section, which is through its centroid and parallel to the axis

of the helix. This is very nearly correct when the radius of the coil

is several times as great as the cross-sectional dimensions of the wire

(see Art. 129). If the bending moment increases the curvature, the

mean radius of the coils decreasing from R to R' and their number

increasing from n to ',
and 27rR = 2?r'R' = /

-}
. . . (5)

and the total twist <f> of the free end in radians is

M/
<f>
=

2Tr(n'
-

)
= (radians) (6)
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This result might easily be obtained from the resilience, for by (7),
Art. 93

,
M/

hence 9 = ^y

The change in curvature or angle of bend per unit length

JL 1 ^
R'
~
R Tl

is uniform throughout the length, and from (5) or (6) its amount
M

15
El"

For a wire of solid circular section and diameter d (6) becomes

64M/ i28MR
* = 1&& r ~EJr

~ radians W
and the extreme values of the intensity of direct bending stresses are

, 3*M
/ ~ 7H/

3

For a square section of side S (6) becomes

I2M/
ES4 u

ES

A f
6M

and J =:

-g- (u)

Resilience. For a circular section the resilience is

| . per unit volume

and for a rectangular section it is

| .

g- per unit volume (see Art. 93)

118. Open Coiled Helical Spring.

(i) Axial Load W. With the notation of the previous article, let

the coils make everywhere an angle a with planes perpendicular to the

axis of the helix (see Fig. 155, the plane of which is tangential to the

cylindrical surface containing the helical centre line of the wire) ;

the length / of n coils is then

2?rR sec a

Then the moment WR about OX, which the axial force W exerts

on the normal cross-section at O may be resolved into two moments

T' = WR cos a
and M' = WR sin a
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the former giving a twisting moment about OX' tangent to the centre

line of the wire, and the latter a bending moment about an axis OY'

perpendicular to the axis of the wire

and in the plane of Fig. 155.
'Y If the axial extension only is re-

quired we may most easily find it from
the strain energy, using (3) and (7) of

the previous article. For a circular

wire of diameter */
.X

X 1

NJ
l

"T"5

M/2
/

El (i)

FIG. 155.

where & and <' are the angular dis-

placements of the free end about such
axes as OX' and OY' respectively, or

/W2R2 cos2 a . /W2R2
sin

2 a

and

8 = W/R2

(

NT El

'cos* a sin
2 a\

El /
or

,

n sec
COSJ a . Sin

2 a

_ 3 2W/R2/cos2 a
,
2 sin

2 a\ _ 64\VR
3K sec a/cos2 a

^~ N E /" ^4 V N
L

which reduces to the form (2), Art. 117, when a = o.

(3)

N
Taking T = f ,

the effect of the obliquity on the deflection if a = 10 is under i per
cent, and for a = 45 is about 10 per cent, reduction compared to the

case of a close-wound spiral (a
= o) having the same length of wire / for

a wire of solid circular section ;
for some other sections the effect is

much greater; for non-circular sections the values of given in

T7
Art. 112 must be used instead of in (i).

Both the bending action about the axis OY' and the twisting about

OX' cause rotation of the free end of the coil about the axis of the

coil ;
if this rotation < is required it may be deduced by resolving the

rotations about OX' and OY' of a short length dl at O into components
about OX and OY. Taking an increased number of coils, i.e. increased

curvature as a positive value of <, due to twisting moment about OX'
the rotation is

WR cos a
d& - - X dl ...... (4)

and the component of this about OY is positive and equal to

W . R . dl. cos a

N y

- X sin a (5)
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The bending about OY' is negative (or
"
unbending ") and is

sn a-- -dl ...... (6)

and the component of this about OY is

W. R. dl. sin a

EI

hence the total component rotation about OY is

X cos a ..... (7)

d$ = W . R . dl. sin a cos cy - ~ ... (8)

d<$>
and for all equal lengths dl the rotation d<$> is the same, or = con-

stant, and

$ = W . R ./sin a cos a - l or 27rWR2
sin - (9)

which, for any given length / and cross-section, evidently reaches a

maximum when a = 45.
The component rotations of an element dl about the axis OX would

similarly give the total rotation 6 = - and the deflection

For a solid circular section of diameter d

32WR/ . /i 2\ 64\VR
2

. /i 2

4-sm a cos a - or -- sin a- radians (10)

N
which when ^

=
f is evidently positive.

For non-circular sections, instead of
^

in the above expressions, the

T/
coefficients of

-^ given in (2), (4), and (6), Art. 112, may be used; in

such sections as ellipses and rectangles, of which the principal cross-

dimensions are very unequal, the torsional and flexural rigidities may
differ greatly while in the circular section

_
EI

N
when = f . In the case of such elongated sections the rotation

<f>

may be much larger than for a circular section, and may be positive or

negative.
1

1 See a paper on the theory of such springs by Profs. Ayrton and Perry, Proc.

Roy. Soc., vol. 36, 1884.
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The intensity of the greatest principal stress may be estimated by

(3), Art. 113. The component stressf results from a bending moment
WR sin a, and the component ft from a twisting moment WR cos a,ft

for non-circular sections being calculated as in Art. 112. For circular

sections the principal stress by (4), Art. 113, reduces to

.n

The maximum intensity of shear stress is

VWW COS2 a + W 2R2
sin

2 a =

as for a closely coiled spring.

(2) Axial Torque M. The moment about OY, reckoned positive if

it tends to increase <, i.e. to increase the curvature of the coils, may be

split into components M cos a about OY' and M sin a about OX', as

before, and the equation of resilience becomes

/M2 cos2 a M2
sin

2 a- ........ (12)

s
2 a sin

2 a\ /cos2 a sin
2 a\

T +
NJV

= 2lrR"M sec a
(-ET +

lip
the modification of J for non-circular sections being as before in

accordance with Art. 112, and for a circular wire of diameter d

cos3

sec a

which reduces to the form (8), Art. 117. when a = o.

N
Taking

=
,

this exceeds the value for a = o and the same

length of wire by under i per cent, when a = 10, and by 12^ per cent.

when a 45.
The axial extension caused by the couple M may be found by

resolving the rotations as before. The result for circular sections is

8 = M/R sin a cos
afc-pf

~"~
u7 ) (

J 5)

and for a solid round wire of diameter d

x2/ iVL J\. m / I 2 \ w^AiiAv / j- **\ / s\"
_ ,4 sin a cos aUf ~ ^ or ^T~ sm aUf -

r< (
l6)

the modifications in (15) for non-circular sections being as before.

The various formulae derived in this article must be regarded as

approximations only, because R and a have been treated as constants :

actually they are variables which are changed by changes in axial length
and by twist according to the obvious relations
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axial length of coil = / sin a

27T//R = / COS a

The deflection 8 is the change in axial length, and the twist < is the

change in 2irn
;
for small deflections and twists, however, the changes

in a and R may be neglected, and the formulae given are nearly exact.

EXAMPLE i. A closely coiled helical spring is made of J-inch round

steel, and its ten coils have a mean diameter of io inches. Find the

elongation, intensity of torsional stress, and resilience per cubic inch

when the spring carries an axial load of 40 pounds. N = 12 x io
6
Ibs.

per square inch.

The twisting moment about the axis of the wire is

40 x 5
= 200 Ib.-inches

The angle of twist consequently is

200 x IOTT X io _ ei adian

12 x io6 x TO x
ir
-

32

and the deflection is

ft X 5
= IT* inches

The intensity of shear stress is

200 x 16 X 8 . ,

ft
= - - = 8150 Ibs. per square inch

The resilience per cubic inch is

i fi i 8150 x 8150
* 1

=
*
~

6
= I>3 inch-pounds

EXAMPLE 2. Find the axial twist, intensity of bending stress, and

work stored per cubic inch in the spring in Ex. i if an axial torque of

125 Ib.-inches is applied. E = 30 X io6
Ibs. per square inch.

The angle of twist

M/ 125 X IOTT X io X 64 x 16 B4
^ = El

=
30 X io X <*

= &4
o radian = 24-4

The intensity of bending stress is

32M _ 32 x 125 X 8
/ =

-33-
- = 10,180 Ibs. per square inch

and the resilience per cubic inch is

t/
2

(io-i8)
2 x io 6

inch'P"ndE 8 X 30 X io*

EXAMPLE 3. Find the deflection and the angular twist of the free

end of a helical spring of ten coils io inches diameter, made of J inch
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round steel, due to an axial load of 40 Ibs., if the helix makes an angle
of 60 with the axis (i.e.

a = 30). Estimate also the greatest intensity,
of stress in the material.

Using the results of the simpler case of Ex. i and of (3), Art.

118

8 = 4^ X sec
30(cos

2

30 + sin
2
30

=
fI X I>1 55('75 + 0*2) = 4*68 inches

(Note that the length of wire is 15*5 per cent, greater than in

Ex. i.) And from (10), Art. 118

128 X 40 x 25 x 10 x 16 / 2 \
* = ~

12 x io6
" x V ~~

T$)
=^ radian = 9 degrees

From (n), Art. 118, the maximum principal stress intensity is

16 x 200 X 8,
(i -r 2)

= 8100 x 1*5
= 12,240 IDS. per square inch

EXAMPLE 4. A helical spring is made from a flat strip of steel i

inch wide and ^ inch thick, the thickness being perpendicular to the

axis of the helix. The mean diameter of the coils, of which there are

five, is 4 inches, and their pitch is io inches. If the upper end is held

firmly, estimate approximately the rotation of the lower end per pound
of axial load. Take the values of N and E given in Exs. i and 2.

If a is the angle which the coils make with the horizontal when the

axis is vertical

pitch io
tan a =---:

-
f
- = = 0*707mean circumference 477

hence . sin a = 0*623

Then in (9), Art. 118, instead of
y, (6), Art. 112, may be used, viz.

,
and J for a rectangle b by d is ^bd(P + rf

8

), hence
A

J=Ax&(i-oi)=^ while A = A
40] _ 40 X i'oi X 10,000 _ 10,100

"A*"" 120 3

Also , I

hence, from (9), Art. 118, the angle of twist for i-lb. load is

_ 27T X 4 X 5 X 0-62,3/10,100 _ I2,000\* =

io6
\3 X 12 30 /

2^x4x5x0-623, .=-
6 ^(3367-48oo)= -0-00935 radian= -o

12 x io
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The negative sign denotes that the spring unwinds.

EXAMPLE 5. Find the weight of a closely coiled helical spring of

round steel necessary to take a safe load of 500 Ibs. with an elongation

of 2 inches, the safe intensity of shear stress being 50,000 Ibs. per

square inch, and N = 12 x io6
Ibs. per square inch, the weight of steel

being 0-28 Ib. per cubic inch.

The proof resilience per cubic inch is

i f*
2

2500 x io6
. ,

. rr = - = 5 2 i inch-pounds4 N 4 X 12 x io6 3
4 x 12 x

Work to be stored = 1x500x2 = 500 inch-pounds.

Cubic inches required,

2

500

S2
7
!

_.. . , r . 500 x o'28
Weight of spring = .

= 2*69 Ibs.

EXAMPLES X.

1. A steel shaft is 3 inches diameter, and the twist is not to exceed i in

5 feet length. To what maximum intensity of torsional stress does this

correspond if N = 5200 tons per square inch ?

2. Find the twisting moment which will produce a stress of 9000 Ibs. per

square inch in a shaft 3 inches diameter. What is the angle of twist in

io feet length if N = 12,000,000 Ibs. per square inch ?

3. What diameter of shaft will be required to transmit 80 H.P. at

60 revolutions per minute if the maximum torque is 30 per cent, greater
than the mean and the limit of torsional stress is to be 8000 Ibs. per

square inch? If N = 12,000,000, what is the maximum angle of twist

in io feet length?
4. If a shaft 3 inches diameter transmits 100 H.P. at 150 revolutions per

minute, find the greatest intensity of torsional stress, the maximum twisting
moment being iJ times the mean.

5. Find the maximum stress in a propeller shaft 16 inches external

and 8 inches internal diameter when subjected to a twisting moment only of

1800 ton-inches. If N = 5200 tons per square inch, how much is the

twist in a length 20 times the diameter ?

6. Compare (i) the torsional elastic strength, (2) the stiffness or torsional

rigidity of the shaft in problem No. 5 with those of a solid round shaft of the

same weight and length.

7. Compare (i) the weight and (2) the strength or moment of torsional

resistance for the same maximum stress of the shaft in problem No. 5 with
that of a round shaft which has the same torsional rigidity and is solid.

8. A shaft 4 inches diameter is at a certain section subject to a twisting
moment of 40,000 Ib.-inches and a bending moment of 30,000 Ib.-inches.

What is the maximum intensity of direct stress in the material, and what is

the inclination of the greatest principal stress to the axis of the shaft ?

9. What must be the diameter of a solid shaft to transmit a twisting
moment of 160 ton-feet and a bending moment of 40 ton-feet, the maxi-
mum direct stress being limited to 4 tons per square inch ? What should
be the external diameter of a hollow shaft to do this if the internal diameter
is o -

6 of the external diameter ?
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10. A shaft 2^ inches diameter is subjected to a bending moment of
6 ton-inches. If it runs at 100 revolutions per minute, what horse-power can
it transmit without the greatest direct stress exceeding 5 tons per square
inch ?

11. A propellor shaft of solid section is 10 inches diameter and transmits
1200 H.P. at 90 revolutions per minute

;
if the thrust of the screw is 10 tons,

estimate the maximum intensity of compressive stress in the shaft where
bending stresses are negligible.

12. If in the previous problem there is in addition a bending moment of
10 ton-feet, find the maximum intensity of compressive stress.

13. If a round bar of steel I inch diameter, supported at points
50 inches apart, deflects 0*106 inch under a central load of 60 Ibs. and
twists 2*96 degrees between two points 40 inches apart under a twisting
moment of 1500 Ib.-inches, find E, N, and Poisson's ratio for the material.

14. A closely coiled helical spring made of ^-inch round steel wire has
ten coils of 4 inches mean diameter. Find its deflection under an axial force

of 12 Ibs. (N = 12 X io6 Ibs. per square inch.) What is the maximum
intensity of shear stress in the wire, and what is the stiffness of the spring in

pounds per foot of deflection ?

15. A closely coiled helical spring is to be made of |-inch wire (N
12 x io6 Ibs. per square inch), and is to deflect ^ inch per Ib. of load

;
if

the coils are made 3 inches diameter, what length" of wire will be necessary?
1 6. Find the maximum safe load and deflection of a closely coiled

helical spring made of |--inch square steel, having ten complete coils 2 inches
mean diameter. (N = 12 x io6 lbs. per square inch. Maximum safe shear
stress 50,000 Ibs. per square inch.)

17. Find the necessary weight of a closely wound helical steel spring
of round wire to stand a safe load of 3 tons, and give a deflection of I inch.

(N = 5200 tons per square inch; maximum safe stress 25 tons per square
inch ; weight of steel 0*28 Ib. per cubic inch.)

1 8. If the mean diameter of the coils of the spring in the previous
problem is 5 inches, find the length and diameter of the round steel of

which it is to be made.

19. What twisting moment will be required to twist the spring of problem
No. 14 through an angle of 30 about the axis of the helix ? (E = 30 x io6

Ibs. per square inch.)
20. A closely coiled helical spring is to be made of steel, square in

section, and is required to stand an extreme couple about its axis of 500
Ib.-iiches and to twist through 360 for this twisting moment. Estimate
the necessary length and thickness of the wire to construct the spring.

(E = 30 x io6 Ibs. per square inch. Bending stress not to exceed 60,000 Ibs.

per square inch.)
21. Helical springs 4 inches diameter and having ten complete coils are

made of steel : (i) J inch diameter round
; (2) elliptical section \ inch by

| inch, the smaller diameter being radial to the axis of the coil
; (3) inch

square ; and (4) rectangular section \ inch wide and \ inch thick, the

thickness being radial to the axis of the coil. The coils in each case make
an angle of 30 with a plane perpendicular to the axis of the coils. Find in

each case the stretch due to an axial load of 12 Ibs. (N = 12 x io6 and
E = 30 x io6 Ibs. per square inch.)

22. Find the rotation of the free ends of the springs in the previous

problem.
23. Find the twist of the springs in problem No. 21 due to an axial

torque of 1 5 Ib.-inches.



CHAPTER XI.

PIPES, CYLINDERS, AND DISCS.

119. Thin Cylindrical Shell with Internal Pressure. Hoop Tension

When a very thin circular cylinder or pipe contains fluid under

pressure, neglecting the weight of the fluid, it is subjected to uniform

pressure normal to the walls, and this causes a tensile stress in

the material in directions which are tangential to the perimeter of

a transverse section, which is usually called circumferential or hoop
tension. The intensity of the hoop tension is rather greater at the

inner side of the wall than at the outer (see Art. 122), but where

the wall is of a thickness which is small compared to the diameter

of the shell the variation is negligible, and the stress may be taken

as uniformly distributed. Let r be the internal radius and / the

radial thickness of a thin seamless circular cylinder (Fig. 156) subject

Zprl

K- - -
\-l

- -rf

B --- D
l

2f,tl

FIG. 156.

to an internal pressure of intensity/, which causes a hoop tension of

intensity /. Consider the equilibrium of a half cylinder ABC of

length DE or /. The walls not being subject to any shear stress, on

planes perpendicular to the axis the total hoop tensions perpendicular
to the diametral plane AB will be /i . / . / on each side of the cylinder
as shown at A and B. These myst just balance the resultant fluid

pressure on the curved surface ACB, which is the same as that across

the diametral plane AB, viz. p x 2rl. Hence

zfl .l.t=2p.r.l (i)

and (2)
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Longitudinal Tension. The ends of a cylindrical shell may be
connected by some form of stays parallel to the axis which resist

wholly or in part the tendency of internal fluid pressure to force the

G t
ends apart, and so prevent or reduce longi-^ tudinal stress in the material of the shell

;

in other cases the ends may be connected

only by the material of the shell, and in this

case the shell will have, in addition to the

hoop tension f1} a longitudinal tension ot

intensity, say f2 . The forces in an axial

direction on any length of the cylinder,
bounded by a closed end and a normal

FIG. 157. plane of cross-section FG (Fig. 157), are
the axial thrust of the fluid pressure, which

is independent of the shape of the end and is equal to p . Tir
2
, and

the total longitudinal tension/2 . 2-trrt. Hence

2f2jrri ~

pr

(3)

(4)

the intensity being just half that of the circumferential or hoop
tension, i.e.

/a
= 4/i (5)

In addition to the two principal stresses/! and^ there is a third

principal stress which is radial pressure, which varies from p at the

inner side to zero at the outside of the shell. In thin shells this stress

may generally be neglected in comparison with f^ and /2. The
circumferential strain e1 is evidently, by Art. 19

where is Poisson's ratio, and E is the direct or stretch modulusm
of elasticity, and

which reduces to /i if m = 4.

The longitudinal strain ez is

which reduces to \fz when m = 4. Evidently, according to the

"greatest strain
"
theory of elastic strength (see Art. 25), the longitudinal

stress strengthens the shell in a circumferential direction.
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The radius increases in the same proportion fo) as the circumference,

and the proportional increase of capacity or the volume enclosed by
the shell is therefore

Oval Cylinders. In thin cylinders of any oval section, such as an

elliptical cylinder,"the inten-

sity of hoop tension varies

from point to point along
the periphery. In addition,

the oval section tends to

become circular, a bending
moment tending to increase

the curvature acting in the

neighbourhood of points of

minimum curvature such as

B and D in Fig. 158, and

a bending moment of oppo-
site sign acting at points of

maximum curvature such as

A and C. The hoop tension at A and C is found just as in (i) and (2)

to be

and at B and D is similarly

and, as in (3) and (4), the longitudinal tension is

_p X (internal area of pipe)

/ X (perimeter of pipe)

The bending moments reach their extreme values at A, B, C, and

D, being alternately of opposite signs at those four points, and passing

through zero between two consecutive points. A simple graphical
method of finding the bending moment and shearing force and tension

at different points in the perimeter of such a pipe or cylinder is given

by Mr. A. T. Weston in the Engineer, Sept. 23, 1904.
120. Seams in Thin Shells. Very frequently, as in pipes of large

diameter and steam boilers, cylindrical shells are not seamless, but

are constructed of plates curved to the correct radius and connected

by riveted joints. The strength of a riveted joint cannot be calculated

with any great accuracy, as the distribution of stress is very complex ,

when stresses in the rivets and plates are calculated the average stress

is generally understood. The proportions and pitch of the rivets are

not always fixed from considerations of strength alone, and the proper

arrangement of such joints, based on rules formed from experience,
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belongs to the subject of design of structures and machines. 1

Neglect-

ing any frictional resistance of the riveted joint, the average tensile

stress at the minimum section in the plate perforated to receive the

rivets is greater than in the solid plate in the same ratio that the section

of the solid plate is greater than the smallest section of the perforated

plate perpendicular to the direction of tension.

In a cylindrical shell exposed to internal pressure having circum-

ferential and longitudinal seams, evidently the area of section perpen-
dicular to the direction of tension may be reduced more in the

circumferential seams, which resist the longitudinal tension, than in

the longitudinal seams which resist the circumferential tension, the

intensity of the latter (in the solid plate) being twice that of the former.

Hence circumferential riveted joints are often made of much lower

efficiency than longitudinal ones, the efficiency being the ratio of the

strength of the joint to that of a corresponding width of seamless plate.
Helical Seams. The weakest part of a thin cylindrical shell being

the longitudinal seams, it might evidently be made stronger with regard
to internal pressure by making all the seams inclined to the axis of the

cylinder. If is the inclination of a helix on the cylindrical surface

to the plane of a transverse section, or 90 6 the inclination to the

axis of the cylinder, the intensity of normal stress across the helix is,

by Art. 15 (i), with the notation of Art. 120

/2 cos2 +/i sin
2 or /( cos2 + sin

2
0)

and the intensity of the resulting stress which is oblique to the helix,

by Art. 15 (3), is _
V/i

2 cos2 +/2
2
sin

2

121. Thin Spherical Shell with Internal Pressure. The forces

across a diametral plane are the same as those across a transverse

section of a cylinder perpendicular to its axis, and if r is the radius

of the sphere, / the intensity of internal pressure, and / the intensity

of tension in the shell of thickness /, as in (3), Art. 119

/ X 2-rrrt = p X irr*

f= P-
J 2t

This is the direction of stress in every direction tangential to the

spherical shell, the ellipse of stress being a circle. The circumferential

strain in every direction, neglecting radial compressive stress in the

shell, is evidently

*-
1 For a discussion of the points involved in the design of riveted joints, see

Unwin's " Machine Design," vol. i.
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The proportional increase of radius is e, and of the enclosed volume

122. Thick Cylinder subject to Fluid Pressure. The intensities

of the circumferential and of the radial stress in a thick cylinder
of homogeneous and isotropic material can be calculated if simple

assumptions are made. The following theory is due to Lame :

Let R2 and RI respectively be the internal and external radii

(Fig. 159), and let /2 and/! be the internal and external pressure
intensities. Let/.,. and/y be the intensities of radial compressive stress

and circumferential tension respectively at any variable radius x, the

third principal stress being parallel to the axis of the cylinder. Then,

considering the equilibrium of half of any very thin cylindrical element
of radius x, thickness &*, and, say, length / (Fig. 160), as in (i), Art. 119,

FIG. 159. FIG. 160.

the outward pressure on the curved surface, i.e. the outward resultant

of the pressure on inside and outside, must be equal to the total hoop
tension across a diametral plane, or

(px x 2x1) (px + S/*)2 (x 4- 8*X = *pa
/ . 8*

and in the limit when the thickness of the element is reduced

indefinitely

dp d / \

P == ~~
'P

"" JP
" ~ = " ~T~ \Px &) ' ('/

Another relation between/,, and/,, depends upon an assumption as

to longitudinal strains. It is assumed that plane transverse sections

remain plane under the pressure, an assumption which must be nearly

true at a considerable distance from the ends, however the ends may be

supported or even if they are free. This involves the longitudinal strain

at any point in a cross-section being constant, i.e. independent of x. Now
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if the longitudinal stress is uniformly distributed and its intensity is fly

say, tensile, and the longitudinal strain is e, at any point distant x from

the axis, by Art. 19

6 ~ EV 1 m

which is constant with respect to x if cross-sections originally plane
remain plane. And since ^, E . /lf and m are constants, / px must

be constant. Take

Py -P* = (2)

and substitute for/y
its value from (i)

_ xdp, = 2(g

dp,

px + a
~~

x

Integrating, log (px + a)
= -

log & + constant

b

or, /* + =
2

A = J
- ...... (3)

where b and a are constants to be determined from the known internal

and external radial pressure and radius. Also from (2)

Py = ^ + ...... (4)

For the solution of numerical problems the equations (3) and (4)
are the most convenient formulae. Inserting the conditions px

=pl for

x = RI and/* =/2 for # = RSI as in Fig. 159

~ _

which may be substituted in (3) and (4) to give the most general

expressions.
Internal Pressure. If the internal pressure intensity is /2 and the

external pressure pl is zero, as in hydraulic main pipes and cylinders, etc.,

(3) gives

Ri
2R2

8 A __ AR2
2 R2

2
/R,

2

**
-

Rj
2 - R2

2
'

x* Ri
2 - R2

2
~ /2 Rf - R2

2 V or
~

The manner in which the radial compressive stress px and the hoop
tension py vary in a given case is shown in Fig. 161 (see Ex. 3 below),
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which also shows the radial and hoop or circumferential strains which,

according to the maximum strain theory, Art. 25, should be used as a

measure of elastic strength. It has been assumed, in estimating the

strains in Fig. i6ij that the walls of the cylinder carry the whole end

FIG. 1 6 1.--Stresses and strains in thick cylinder.

thrust of the internal pressure as a uniformly distributed tensile stress.

The greatest algebraic difference of principal stresses is also shown in

Fig. 161
; according to the "maximum shear stress" theory of elastic

strength (Art. 25), it is this greatest "stress difference
"
which determines

elastic failure.

The greatest intensity of stress is the hoop tension at the inner
surface of the tube where x R2 ,

afid is

(7)

The greatest value of/.,. is/2,
at the inner surface.

If the longitudinal stressf is zero, the greatest strain which occurs in

the direction of the maximum hoop stress is

A.
mE

_A/R1

2 + R2
2

,

i \
"

EVR;2 - R2
2 ' m)
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and

E . * =A(glg + ^) orAJ^^l^r^ (8)

which is greater than the value (7), and which, when m 4, reduces

i

2 + fR2
2

(9)

If the cylinder wall carries the end pressure 7rR.2
2

/2 , taking f-^ as

uniform tension

R!
2 - R2

2

and in this case at the inner surface, by Art. 19

_ A2 i A -/i
*2

~~
T? -fill?
XL* mci

and E .
<fy2 =Af / p 2 o"2\ i ( I0)

^ ffl{\*l
-

JN. 2 )

which is less than (8).

External Pressure. If the external pressure is p^ and the internal

pressure/2 is zero, using the constants a and b as found above

R 2

the negative sign denoting that the circumferential stress py is in this

case compressive ;
it reaches its greatest magnitude when x = R2, viz.

123. Thick Spherical Shell. Ifpx is the radial compressive stress at

any radius x and pv the circumferential tensile stress, which in the

spherical shell is equal in all directions perpendicular to the radius, an

equation between the principal stresses px and py may be formed by
considering the forces on an elementary spherical shell of radius x and
thickness Bx for

. (2)

Another equation connectingp and py may be found from a considera-

tion of the strain if we make a simple and reasonable assumption from
the symmetry. If the displacement of every point in the shell is radial,

it follows that the volumetric strain is the same everywhere, i.e. from
Art. 19
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2e
y -f ex = constant *

where ey and ex are the circumferential and radial tensile strains respec-

tively (or 2ey is the superficial strain). Substituting in the equations of

Art. 19, we find

2py px constant = 30 (say) (3)

Substituting the value 30 +A for 2A in
(
2)~~

*P*

_
A + a x

Integrating, log (px + a)
= -log .r

5 + constant (say log *b)
2b

A -y-:-
and substituting for /^ in (3), ,

=
-^
+

The constants and are to be found as in the previous article from the

known intensity of pressure at the inside and outside surfaces of the shell.

124. Compound Cylinders. Fig. 161 shows that in a thick cylinder

subject to internal pressure, while the metal near the inside of the tube

may carry a heavy intensity of stress, that near the outside may only

carry a much lower stress. A more uniform distribution under internal

pressure may be obtained by giving the inner part of the metal an initial

hoop pressure. This is attempted in various ways, one method being
to shrink tubes on to smaller tubes, so producing a compound cylinder,

the initial circumferential stress in the outer part being tensile, and that

in the inner part being compressive. The state of stress when the

compound tube sustains an internal fluid pressure is the algebraic sum
of the initial stresses, and that resulting from the internal pressure
as calculated in the previous article. The initial stress intensity any-
where may also be calculated as in the previous article. Considering a

compound cylinder consisting of two tubes, one shrunk on to the other,

if the inner radius be R2 and the outer one R3, and at the junction the

radius be R^ for the inner tube

*
/. = -.-*

$%Jfgi
A = J+ '.- -': -.;

1 The reader may verify this after reading Art. 126 by writing
u \(m - i I \ thi if 2

e'
= -
x
=
^-JT-A

+
I<y Sf-8\

"A -
jj

where u is the radial displacement at a radius x ; solving these equations and
substituting the values ofpx and py in (2), we get an equation

which, when integrated as in (n), Art. 126, gives
dii u
-j~ + 2- = ex + 2ey = constant
ax X

The stresses and strains may now be found as in Art. 126 or as in Art. 123,
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px being compress!ve and/y being tensile when positive. Also for the
outer tube, similarly

a' and b' being constants other than a and b.

The four conditions necessary to find the four constants may be stated

as follows : (i) px
= o for x = R2 ; (2) px = o for x = R3 ; (3) px for

each tube has the same magnitude for x Rx ; (4) the algebraic
difference of the hoop-stress intensities for the two tubes at x = R1}

divided by E equals the original difference of radii at the junction
radius R! before shrinking, divided by R15 or equals the algebraic
difference of the hoop strains. If a value of px is assigned for x = Rj
the conditions (3) and (4) are unnecessary. To explain condition (4)
more fully, at the junction of the tubes the circumferential tensile strain

of the outer tube is

A+AE *E

and the original radius is therefore increased after the shrinking by an
amount

The increase of radius of the inner tube at the radius R! is similarly

a and b being in this case negative quantities, and the strain being

compressive, the decrease of radius being

The total difference of original radii at junction is therefore

since, by condition (3), ^ a = ^ a'

Hence condition (4) leads to the equation

r /jj J)
\

original difference of radius at R,

i(^r + a "

^^""

where a and b will be negative quantities (see Ex. 4 below).



ART. 124] PIPES, CYLINDERS, AND DISCS. 309

EXAMPLE i. A steel pipe 6 inches internal diameter has to with-

stand an internal pressure of 400 pounds per square inch. Find the

necessary thickness if the intensity of tensile stress is to be limited to

6000 pounds per square inch. If this tube is closely wound with a

layer of round steel wire ^ inch diameter, having a uniform tension of

15,000 pounds per square inch before the pressure comes into the tube,
find the mean intensity of stress in the metal of the tube and wire

before and after the pressure of 400 pounds per square inch is in the

pipe, (a) if no stress in the direction of the axis is borne by the pipe,

(b) if all the stress in that direction is carried by the pipe. (Poisson's
ratio = \.)

From (2), Art. 119, the pipe thickness

400 x 3
/ = ~ - = 0-2 inch

oooo

Number of complete coils of wire = 20 per inch length of pipe. The
total tension across a i-inch length of pipe is

40 X
j
X (aV)

3 X 15,000 =1178 pounds

which causes a circumferential compressive stress in the material of the

tube ;
the intensity of this stress is

1178 -7- (2 x 0*2)
= 2945 pounds per square inch

(a) After the pressure is in the tube, the bursting forces across a

diametral plane are resisted jointly by the wall of the tube and the

winding, which, having practically the same strain and same modulus
of elasticity, have the same change in intensity of stress. Per inch

length of pipe the total force is

400 X 6 = 2400 pounds

and the resisting area is

(2 X 0-2) + (40 x
^
X 5^0)

= 0-47854 square inch

The change in intensity of stress is therefore

2400 -f- 0*47854 = 5015 pounds per square inch tension

The tension in the tube will therefore be

5015 2945 = 2070 pounds per square inch

and the tension in the wire will be

15,000 4- 5OI 5
= 2

>
OI 5 pounds per square inch

(#) If/is the change in hoop stress in the wall of the pipe due to

the pressure, the longitudinal stress being, from (4), Art. 119, equal to

3000 pounds per square inch, and the hoop strains of the tube and wire

being equal ~

where/' is the increase in tensile stress in the wire.
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Hence, equating the total change of tension to the bursting pressure

per inch length as before

0-4 X/4- 0-07854 x (/- 750) = 2400

/= Q 8
= 5 X 39 pounds per square inch

/' = 5*39 75 4389 pounds per square inch

The tension in the tube will therefore be

5139 2945 = 2194 pounds per square inch

and in the wire

15,000 -f 4389 = 19,389 pounds per square inch

EXAMPLE 2. A cylindrical boiler 7 feet internal diameter has to

stand a pressure of 200 pounds per square inch, the plates being \ inch

thick. If the section of plate through the centres of a row of rivets in

a longitudinal seam is 70 per cent, of that of the unperforated plate,
find the average tensile stress in the plate at the joint.

For the full plate, as in Art. 1 1 9

200 X 42 X 8
/! = - - - = 9600 pounds per square inch

Where the plate is reduced to 70 per cent, of the full area the intensity
will be

9600 X = 13,714 pounds per square inch

EXAMPLE 3. A hydraulic main is 6 inches internal diameter and
2 inches thick, and the water pressure is 1000 pounds per square inch.

Find the intensities of circumferential tension and radial compression
at all points in the cross-section.

From (3), Art. 122, the intensity of radial pressure

A = & - *

Puttingpx
= 1000 for x = 3, and/* = o for x 5

9000 225,000a= T6" ~I6"

9000/25 \
hence px

= -^ ( p
- i

)

and from (4), Art. 122, the intensity of hoop tension

The values of/, and/y for all parts of the metal walls are shown in
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Fig. 161. In calculating the radial and hoop strains, the end pressure has

been assumed to cause a uniform axial tensile stress of 1000 X -j-= 2 ,
or

562 pounds per square inch. At the inner surface x = 3

py m-(~ + i)
= 2126 pounds per square inch

px
= 1000 pounds per square inch

At the outer surface x = 5

pv
=

2-~Q-(i + i)
= 1125 pounds per square inch A =

EXAMPLE 4. A compound tube is made by shrinking one tube

on another, the final dimensions being : internal diameter, 4 inches ;

external diameter, 8 inches
;
diameter at the junction of the tubes, 6

inches. If the radial pressure at the common 3-inch radius is 2500
pounds per square inch, find the greatest hoop tension and hoop
pressure in the compound cylinder. What difference must there be
in the external diameter of the inner tube and internal diameter of the

outer tube before shrinking on, and what is the least difference of tem-

perature necessary to allow of the outer one passing over the inner one ?

If the compound tube is subjected to an internal pressure of 15,000

pounds per square inch, find the hoop stress at the inner, outer, and
common surfaces. How much heavier would a single tube require to

be in order to stand this pressure with the same maximum hoop
tension? Take the coefficient of expansion as 0*0000062 per degree
F., and E = 30 X io6

pounds per square inch.

Using the equations of Art. 124, for the inner tube

px
= o for x = 2 Px 2 5 f r x 3

hence a= -4500 b= 18,000

and for the outer tube

px
= o for x = 4 px

= 2500 for x = 3

Inner tube

18,000
at x = 2, py

= -
4500 = 9000, t.e. 9000 pounds per sq. inch

compression.

18,000
at x =

3, / = 4500 = 6500, or 6500 pounds per sq. inch

compression.

Outer tube

360,000 , 22,500
at x = 3,/y

= - - = 8929 pounds per sq. inch (tensile)

at- = 4, p. =
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Circumferential tensile strain at 3-inch radius in outer cylinder

8929 ,
i 2500 2500

30 X io6
+

3ox io6= > 2976 h m X 30 X io

where is Poisson's ratio.m

Circumferential compressive strain at 3 inch radius in inner

cylinder

6500 i 2=500 , 2 00--- 2-,= 0-000216--^-
30 X io6

;/*3o X io6 m X 30 X io6

The total difference of original diameters at the junction surface would
therefore require to be

6(0*0002976 + 0*000216) = 6 X 0*0005143 = 0*003086 inch

The minimum temperature difference to allow of the outer passing over

the inner tube would therefore be

0*0005143
-"- 0*0000062 = 83 F.

When the internal pressure of 15,000 pounds per square inch is

exerted, using new constants a and b, as in Art. 122

since px
= o for x = 4 and px

= 15,000 for x = 2

a = 5000 b = 80,000

and due to the internal pressure alone

80,000 . ,

at x = 2, p, = - --h 5000 = 25,000 pounds per square inch
4

80,000 00= 13.889 >'

80,000 ,

x = 4,/y
= --h 5

= 10,000

Finally, taking account of the initial stresses due to shrinkage, the

resultant hoop tensions are

at x = 2, 25,000 9000 = 16,000 pounds per square inch

x = 3, 13,889
- 6500 = 7389 (inner tube)

x = 3, 13,889 + 8929 = 22,818 (outer )

x = 4, 10,000 + 6429 = 16,429

The variations of stress throughout the tube are shown in Fig. 162.

With a single tube and a maximum tensile stress of 224818 pounds

per square inch at the inner surface

b
22,818 = - + a

b
15,000 = -- a

4

hence b = 75,636 a - 3909
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At the outer surface/* = o = o 399j &* = I 9'35-

The excess of weight in the single tube is

313

f
2

.."^
1 6 _3'35

16 4 12
= 28 per cent, nearly

25000 ^

FIG. 162.

125. Rotating Ring or Wheel Rim. A ring, when rotating about

an axis through its centre of gravity, and perpendicular to its central

plane, has induced in it a tension due to its inertia, and if the cross-

sectional dimensions are small compared to its radius, this hoop
tension is nearly uniform, as in the case of a thin cylindrical shell under
internal pressure. Let r be the radius of the ring in inches. In order

to rotate with uniform angular velocity o> radians or linear velocity v
inches per second, every point in the rim must have a radial inward

acceleration o>V or inches per second per second. If A is the area

of cross-section in square inches, and w is the weight of the material

per cubic inch, the radial inward force on a length of rim $s inches is

Ar pounds
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where g is approximately 32*2 x 12 inches per second per second.
The normal force per unit length of arc is

w v*
A pounds

On a length of arc rO, or arc PQ (Fig. 163), the resultant radial

inward force is -

Ax chord PQ
g r

w vz
. . 6

or A X 2r sm -
g r 2

along RO. This force is the

resultant of the tension T at

P and Q, hence, resolving
these along RO

. w v*
2T sin - = A X 2r sin -

2 g r 2

. w . w .

or, T = A ir or A wr2

FIG. 163.

The intensity of tensile stress in the rim is therefore

_ T _ w
2 _~~

A
~~

g
~

12 X 32-2

a result which also holds good for the "
centrifugal tension

"
in a belt

running on a pulley.
If/ is the limit of safe stress for a wheel rim the limit of peripheral

velocity is given by

v = V/^= V//X I2 X 32
'

2
inches per second . (2)w w

It is to be noted that for all the above formulae if w is the weight

per cubic inch, and the intensity is measured per square inch
t
v and g

must be in inch units.

If v and g are in foot units (i) becomes

12WVZ I2WVZ
. , , v

/ = - = =
o'37220/z/

2
pounds per square inch (3)

EXAMPLE. If the safe tensile stress in a cast-iron wheel rim is 1000

pounds per square inch, find the limit of peripheral velocity the weight
of cast iron being 0*26 Ib. per cubic inch.
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From (2) above

315

v
iooo X 32-2 X 12 .

.

2 ft

inches per second

or 1 02 feet per second (nearly).
126. Rotating Disc.1 The stresses in rotating circular discs and

cylinders can be found approximately by making simple assumptions,
and their approximate application to any part of the material can be

justified. In the case of the circular disc rotating about its axis, we
assume that the thickness of the disc is uniform and very small com-

pared with its diameter. Stresses for a circular section of the disc will

then hold approximately for any such section.

Evidently at the free flat faces there can be no stress normal to those

faces, and there can be no shear stress on or perpendicular to that face.

Hence the direction of the axis is, for all points on the originally flat

surfaces, very nearly the direction of the axis of a principal stress of

zero magnitude. Hence the radial and the hoop or circumferential

stress are also principal stresses. (This also follows for the central

plane, from the symmetry of the displacement of any point due to strain;
the displacement must be radial.)

Let the intensity of the radial principal stress be pM and that of the

circumferential or hoop stress be /y,
both being reckoned positive when

tensile. Let / be the uniform axial thickness of the disc, and let RI and
R2 be the external and internal radii respectively (Fig. 1 64) ;

let w be

FIG. 164. FIG. 165.

the weight of the material per unit volume, and to be the uniform

angular velocity of rotation.

Consider the forces on a element of the disc at a radius x, Fig. 165,

1 The solution of the disc problem here given is due to Grossman. For a rigid
examination of the problem by the mathematical analysis of the strains, and further

references, see a paper by Dr. Chree in the Proc. of the Cambridge Philosophical Soc.,
vol. vii. pt. iv. (1891). See also a correspondence in Nature, 1891.
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subtending an angle BO at the centre, and of radial width Sx. The
volume is x$0 X $x X /, and the radial inward force in gravitational

units, neglecting small quantities of the second order, is

-<Jx.t.xW .8* ....... (i)
8

This is equal to the resultant inward force exerted on the element

by the (variable) radial and circumferential stresses px and A> viz.

resolving as in the previous article

cN/i ^/\ VA \

A - ** 2 sin ^ +A 2* sin f -(A + SAM* + *) sin -
j

or to the first order of small quantities

4AS*-AS*-*8A)M ...... (2)

Equating (i) and (2) in the limit when 80 is reduced indefinitely

W o 9 .. _+A + ^ or -

Considering the strains, if owing to the purely radial displacements
of points in the central circular section the radius x increases to x + //,

the circumferential strain is evidently

The radial width of this element is evidently after strain

x -f &* + u + 8 ~
(x + n)

= x + 8

and the radial strain, which is tensile if positive, is the limiting value

of
Sx + Su - Sx __ du

~8x~ Tx ....... (5)

Hence from (i) of Art. 19 and (4) and (5) above, the principal stress

in direction of the axis being zero, in the direction of / (circum-

ferentially) ,

where is Poisson's ratio.m

And in the direction ofA (radially)

dn = l-
Tx E
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(Solving
the simultaneous simple equations (6) and (7)

Em /' u ,du\
py -o- 1 m- + -j- } ..... (8)m 2

i\ x dx J

TLm /u . du \
px = --

(

- + m I ..... (g)nr \\x dx /

Substituting for/^ and/,, in (3)

d*u
,
du u w m* - i

X r- "TjT
~~ ~ = -- w -9^F~d&2 dx x g m 2

E,

d zu . idu u w Om2
i

To find the complementary function of (n)
1

^ = ^_L_^f f
==

a8
riW1 """^p

which on integration gives

du
or, x + u = 2Ax

To find a particular integral of equation (io),
2 assume

r H = constant = 2A (say) . . . . (12)dx x
du

jx + u

And integrating again

ux = Ax2 + B
B

hence ~ = A-f-j ....... (13)

and from (12) or (13)

du B

Differentiating this twice and substituting in (io) gives

_ w <o
2

<
w2 - i

and since - = Co? and-,- = 3G*
2
,
the complete solution of (io) is

u
.
B w o>

2 w2
i

=A--..^ , (16)^P 3? g 8E /
a

1 Or see Lamb's "
Infinitesimal Calculus," Art. 191.
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Substituting these values in (9)

Em j B
"

w wa w2 - i

A^SCiU" + :
>
A -

(-')?- (3* + i)
-
SE -sr-

from which A and B may be found if the values of px are known for

two radii.

Disc with Central Hole. The condition necessary to determine A
and B for a disc with a central hole are px = o for x = RI and px

= o
for x = R2 . Substituting these values in (17), and solving the simple
equations for A and B

i)(ffl-i)/R 2 , R 2 v

w2 K] " ^
l)(l + l) 2 2=

^ 8E
~

~~^~

Substituting these in (17)

and from (8), substituting for - and -7- from (15) and (16)

The value of py
is always positive, and it decreases continuously

with increase of x. Its greatest value, at x = R2 is

i)Ri
2 + (^-i)R2

2

}. . (20)

In cases where R2 is very small this approaches the value

and when R2 approaches Ra , it approaches the form (i), Art. 125.

The value of/ which is zero at x = Rx and A: = R2 ,
is positive (i.e.

tensile) for all values of x between R! and R2.

which is zero for x =

at which radius the radial tension is a maximum, viz.

Solid Disc. When the disc has no central hole the conditions which

determine A and B in (15) are/* = o for x = R! and u = o for x = o.
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The latter from (15) gives B = o, and then the former condition in (17)

gives -
p a~

g 8E 0*
2

Hence from (8)

. (22)

This is a maximum at the centre, where x = o, viz.

A (max.) =^
or just half the amount of the expression (21) for the greatest intensity

of hoop stress in a disc with a very small hole through the centre, and

3 ;;* "i"
times that in a thin rim with the same peripheral velocity (see

offt

(i), Art. 125).
From (9) the radial stress intensity is

A =
jjJ(3

+ i)<R.'-*') .... (24)

This is always positive, and decreases continuously from the centre to

the outer edge ; its greatest value at the centre is

the same intensity as the greatest hoop tension. The expressions (22)
and (24) may be obtained from (19) and (18) respectively by omitting
every term containing R2.

The general variation of intensity of the principal stressespy andpx in

a rotating disc is very similar to that of the corresponding stresses in

a rotating cylinder shown in Figs. 166 and 167.
Numerical Values. In estimating numerical values a caution is

required, as in the previous article, if inch units are used for the

dimensions, stress intensities, and weight per unit volume ; in this case

g must be taken as about 32*2 x 12 (inches per second per second).
The value of m, as mentioned in Art. 12, varies between 3 and 4 for

most metals. In estimating stress intensities by the above formulae, the

error is on the safe side if m = 3 be adopted. This value is approximately
correct for cast iron ; for steel m = 4 is probably more correct.

For steel, using inch units and w = 0*28 Ib. per cubic inch, m = 4,

and n = revolutions per minute, (20) becomes

p9 (max.) = (6'46R!
2
-f i'49R 2

2

) X
2 X io~ 6

pounds per sq. inch (25)

and (23) becomes

py (max.) = 3-2 3
2
Ri

2 X 10" 6

pounds per square inch . . (26)



320 STRENGTH OF MATERIALS. [CH. XT.

127. Rotating Cylinder.
1 An approximate solution of the problem

of finding the intensities of stress in a cylinder rotating about its axis

may be found by making a few simple assumptions. We shall confine

ourselves to the stresses about the region of the central circular section

perpendicular to the axis of a cylinder, the length of axis being great

compared to the radius. At any point in the central cross-section let

the direction of x be radially outwards from the axis
; the direction of z

parallel to the cylinder axis, and that ofy be perpendicular to the other

two. Let/,,.,/^ and/z be the normal stresses in the direction x,y, and z

respectively. For an element of a cross-sectional thin disc cut at the

centre of the cylinder axis there can by symmetry be no shear stress,

either of the complementary parts of which (Art. 8) form a couple about

the ordinates x, or y, or z. Hence the radial, circumferential, and axial

stresses are all principal stresses ;
each of these principal stresses will be

reckoned positive when tensile. We shall assume that the plane

sections, originally perpendicular to the axis, remain plane after straining

by rotation of the cylinder. From symmetry this cannot be wrong at the

central sections, and must in a long cylinder be nearly correct everywhere

except near the ends.

An equation of the forces acting radially inward on an element of

the cylinder (Fig. 165) will be the same as that for the disc in the

previous article, viz.

(i)

Also the displacement of a point at a radius x being to x -f u
t
as in

the disc, the principal strains, from Art. 19, in directions x, y, and z

will be

radially, .

circumferentially,
= = - -JL- -

-.. *-!(,.-*A) ..... (,;

axially, *

and if plane sections remain plane, ez is evidently a constant with

respect to x.

From (4 ) t.-'-^+to. ....... (5)

Substituting this value in (2) and (3)

1 The results here deduced have been obtained by Dr. Chree by the method of

strain analysis. See Proc. Camb. Phil. Soc. y vol. vii. part vi., 1892, p. 283.
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Substituting these values in (i), exactly as in the disc problem of the

previous article

<Pv.d*v wm + i)Q
-

2)_
da? dx x

--
g TS,m(m-i)

The complete solution practically as before is

^ B 3#/ (* + i)(w - 2)= A-- M

Hollow Cylinder. The conditions, as in the disc with a central hole,

being px = o for x = RI where R t is the external radius, and/,,. = o for

x= R2 ,
the internal radius, the constants A and B are found by substituting

the values of -and -r- from (9) and (10) in (7), which gives

- 2 )~"~

A = g^ (^ + !)(**

2)(3^

-
2) ^ ^

^ 8 Em\m i) /

Tofind the Constant <?2. If the cylinder is divided into halves by a

plane perpendicular to the axis and midway between the ends, since
either half of the cylinder has no motion parallel to the axis, and no
external force parallel to the axis acts on the free end, there must be no
resultant thrust or pull in an axial direction across the central section
or

(13).

From (5), substituting the values of px and/,, from (6) and (7) with
the values (9) and (10)

Em , w<J(m + I)(OT
-

a) . 2

Substituting for A from (12), and multiplying by x

(R'

2 + R^ -

Hence, integrating between limits RI and RS, and inserting the con
dition (13)

g 4 \m(m - i) 2 2(;
-

i)
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Inserting this value in (12)

A-^W +B.,.^ ---- (I7 )

The circumferential strain

u__w? pm-s*-8E\ W -i (Rl
~

_. (** + i)(3
- s)Ri

2R2
2
_ (** + Ofo ~

2) ^\
7
- -

\
-

o -
7
- -

:
- *X >

m(m i) AT #/(#* i)

The radial strain

dU W
/R 2 , ^ 2N

^T(Rl *

(m + T)(3^ ~ 2 ) Ri
2R2

2

_ 3(^ + i)(///
-

2) 2

The hoop tension

The radial tension

The axial stress intensity

W to

The hoop tension /y is evidently always positive, and has its

greatest value when x = R2,
viz.

Note that when R2 is very small this approaches

w <J w-2

which is the maximum hoop tension for a cylinder with a small central

w
bore; and when R2 approaches Rj, /tf approaches (wRj)

2
,
the same

o
value as in (i), Art. 125.

The radial stress /^ which is never negative, is zero for x = R, and
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x = R2, evidently reaches a maximum for OL
' = *1 RiR2 > which makes

~ vanish, and for this radius
dx

The axial stress pz is greatest for x = R2,
and decreases continuously

as x increases j it passes through zero when

becoming negative for all greater values of x, the greatest compressive
stress which occurs at the external curved surface being

The manner in which the three principal stresses vary is shown in

Fig. 1 66 (see Ex. i below). This figure also shows the strain which,

according to the "greatest strain" theory, Art. 25, is the measure of

u
elastic strength ;

the maximum value of E - at the inner curved surface,

and all values until near the outer surface, are less than the correspond-

ing values ofpy,
the hoop stress. The greatest

"
stress difference

"
which,

according to the " shear stress
"
theory, Art. 25, is the measure of elastic

strength, is py px at the inner curved surface, and pv pt a short

distance outwards from it ; its maximum value, however, occurs at the

inner surface, where it is equal to/y. Thus, according to the "greatest
strain

"
theory, the cylinder is strengthened by the axial stress, while the

"greatest stress-difference" indicates the same elastic strength as the

maximum principal stress.

Solid Cylinder. When the cylinder has no central bore the

conditions as in the solid disc, are px
= o for x = Ra and u = o for

x = o
; hence, from equations (9), (10), and (7)

.

)fV _
(J6)

and inserting the condition

r*i

27rj o
pjcdx = ...... (27)

corresponding to the condition (13), we find

w o>
j

e
'
=
"?T^

and hence, from (26)

_w <o
2

3*g- 5
(29)
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Inserting these values of A and B in (9) and (10), and substituting

for and -r- in (6) and (7)x ux

w
g 8V m - i

w (Ai -im 2

-2 mK
i

~"

FIG. 1 66.

and the axial stress

The values (30), (31), and (32) may be obtained from (20), (21), and
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(22) by omitting all terms which contain R2 ,
and the strains

^
and

^~

which may be obtained by putting the above values (26) of A and B in

(9) and (10), are equal to the corresponding values (18) and (19) with

all terms containing R2 omitted. In the solid cylinder the hoop tension

is greatest at the axis, viz.

- >A =f-f-f^' (33)

this value being only half that in (24) for a "hollow" cylinder with a

very small central bore.

The intensity of radial stress px has its greatest value at the axis

when it is equal to the hoop tension (33) ;
it is everywhere tensile,

falling off continuously to zero at the curved outer surface. The

intensity of axial stress pt varies from a greatest tension

w o>
2 R*
m - i

at the axis to a compressive stress of the same magnitude at the outside
"D

where x = RI, passing through zero at x = -7^. The variation in
v 2

stresses and strains in the solid cylinder is shown in Fig. 167 (see Ex. 2

below) ;
the dotted curves illustrate the case of the same cylinder with

a small central bore. In the solid cylinder the "
greatest stress-difference

"

is everywherepy pz ,
and its greatest value occurring at the axis is con-

siderably less than the greatest principal stress, but greater than the

simple stress
(
E-

) equivalent to the maximum principal strain which is
\ ^/

reduced by positive values of the radial and axial stresses.

Comparison of Cylinder and Disc. The values of the hoop and
radial stresses in the cylinder and disc do not differ very materially, as

may be seen by comparing, say, (20) and (21) of the present article with

(19) and (18) of Art. 126. The value of m may be taken to vary for

metals from 3 to 4, the former being approached in cast iron and the

latter in mild steel
;

in calculating stresses the lower value of m errs on
the side of safety, i.e. of giving a higher calculated intensity of stress.

Taking m = 3 for comparison, we have
For a disc, intensity of hoop stress

. . (34)

intensity of radial stress

, . (35)
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For a cylinder, intensity of hoop stress

[CH. XI.

_ _ (36)

intensity of radial stress

200

FIG.

Thus, with the supposition of free axial expansion or contraction in

the disc or very short cylinder, the stresses are not greatly different from
those calculated for the long cylinder on the supposition that plane
cross-sections remain plane. The results for a long cylinder may
therefore with some confidence be applied as approximately correct to

cylinders which are not long.
It is interesting to note that, if we suppose such end forces applied
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to the cylinder as to prevent axial strain everywhere (i.e. to make et = o),
the hoop and radial stresses are not affected, and the calculation of their

values is considerably simplified.
Numerical Valuesfor Cylinders. Inch units, g = 32-2 X 12 inches

per second per second, n = number of rotations per minute.

Cast Iron. Taking w = 0*26 Ib. per cubic inch, m = 3, for the
hollow cylinder (23) becomes

(max.) py
= 2

(6'46R1

2 + o'92R2
2

) x io~6

pounds per sq. inch (38)

For the solid cylinder (33) becomes

(max.)/j, = 3'23
2
Ri

2 x io~6

pounds per sq. inch . . (39)

Mild Steel Taking w = 0*28 Ib. per cubic inch, m = 4, for the

hollow cylinder (23) becomes

(max.)/y
= 8

(6'62R 1

a + i'32R2
2

) x io~6
pounds per sq. inch (40)

For the solid cylinder (33) becomes

(max.)/y
= 3'3i

2
Ri

a x io~6

pounds per sq. inch . (41)

A comparison of (41) with (26) of Art. 126 shows only about 3 percent.
difference in the maximum hoop stress of solid discs and cylinders.

EXAMPLE i. Find the intensity of hoop stress in a cast-iron cylinder
1 6 inches external and 8 inches internal diameter, rotating at 1040
revolutions per minute, taking the weight 0*26 Ib. per cubic inch and
Poisson's ratio J.

From the formula (20), Art. 127, R! being 8 inches, R2 being 4

inches, and g being 32*2 x 12

= 3*s( 8 + -jj-) 2'S*
2
pounds per square inch

The various values of pv are shown in Fig. 1 66. The maximum
value at x = 4 is

3-5 x 144 - 40 = 464 pounds per square inch

which may be checked by the formula (38).

EXAMPLE 2. Find the intensity of hoop stress in a solid cylinder
of cast iron 16 inches diameter when making 1040 rotations per minute
about its axis.

Taking the constants as in Ex. i above, from (30), Art. 127

py
=

I x 64 f*
2 = 224 2'5#

2
pounds per square inch

the maximum value being 224 at x = o.

If there is a hole
J-
inch diameter at the centre, putting Ra

= ^ in.

f. = l



328 STRENGTH OF MATERIALS. [CH. XI.

For x = Y5 inch this gives

(max.)A 3'5 X 128*01 2*5 x 0*01 = 448*01 pounds per sq. inch

or twice the value 224 for a solid cylinder. The values ofA for both
cases are shown in Fig. 167.

128. Rotating Disc of varying Thickness. Having found that

the radial and hoop stresses in a long cylinder do not very materially
.differ from those in a very

z-
V*

in

uniform thin disc in which free

axial strain is assumed, we
may as an approximation find

the stress in a disc of small

but varying thickness by the

method of Art. 126, assuming
that the radial and hoop
stresses are principal stresses,

and that the axial principal
stress is zero. Let x,

y, and z be measured

radially, tangentially,
and axially respec-

tively, as in the previous article, z being the variable thickness of the

disc at a radius x. Considering, as for the uniform disc and the

cylinder, the forces on an element of the disc (Fig. 168) of radial

thickness 8x, and subtending an angle 80 at the centre, if it rotates

with uniform angular velocity <o, the radial inward force, with the same

symbols as before, must be

-a>2*. #80. Sx. z (i)

and to the same order of smallness the internal radial inward forces

are 1

or, (A- * 8* -A * 8* - ***** -/-*8*)80 (
2
)

Equating (i) and (2)

* A = -<* (3)

As in Art. 126, if /, = o and u is the radial displacement at a

radius x, by Art. 19

hoop strain =
J
= /.-

du i/ pv\
radial strain = -r- F( A, *]dx PA m)
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and hence, as before

Substituting these values in (3) and reducing

d2u . /i dz \du / T. dz i \ w w2
i

The integration of this equation depends upon the form of 2
;

for

example, if z = kxn (6) becomes

cPu . n + i du n m

</
2
// . du

.
n m n ,

or, ^^^-H.-.^--^--^ (8)

a homogeneous linear equation. The complementary function may be

obtained by assuming u = cx. Substituting the value for */, -y- and -3-3

on the left side of the equation a must satisfy the condition

a being either of the roots aj or ag of this quadratic and the complemen-
tary function being

u = d*
a

i + C*x
a
* ...... (9)

A particular integral of (8) may be found by assuming u = B#3
.

Substituting this in (8) we find

W to
2

T> / \"
~g

'

E
'

m(ynn + 8m + )

and the complete solution is

O/ W2 W2 - I .

2 =r , 75 \ of . . ( 1 1 )

g E w(3/;/ + 8w + )

Inserting the value of - and 7- in (4) and (5), the constants Ci and
X dX

C2 are to be found from some known condition. When the disc forms

part of a wheel the known conditions of stress or of the strain - arise at

the rim and at the hub or nave; for example, at the junction of the disc

and rim the hoop strains in the two parts must be equal, and the mean
radial-stress intensities in the rim and disc near their junction must be

inversely proportional to their thickness
; probably the intensities vary
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across the thickness, this variation being greater when the change in
thickness is abrupt.

Disc of Uniform Strength. An interesting case arises if the radial
and hoop-stress intensities are to be everywhere equal to one another
and of constant magnitude, i.e. px = py =/= constant. Substituting
this value in (3)

/. -

dz w o>
2

or> s+5-?

Multiplying by the integrating factor e
g 2jr

= o

and integrating, z = Ae 9 2J

where A is a constant
;
and for x = o, z = A, the constant being the

thickness of the disc at the axis if it extends so far.

EXAMPLES XI.

1. What is the necessary thickness of a seamless pipe 4 inches diameter
in order that when containing a fluid under a pressure of 200 Ibs. per square
inch the greatest intensity of stress should not exceed 12,000 Ibs. per square
inch?

2. What working pressure may be allowed in a cylindrical boiler 6 feet

internal diameter with plates f inch thick, if the working tension in the
solid plates is not to exceed 10,000 Ibs. per square inch ?

3. Find the intensity of stress in a cast-iron pipe 10 inches internal
diameter and ^ inch thick under an internal pressure of 50 Ibs. per square
inch. If the pipe had been closely wound with a single layer of steel wire

% inch diameter under a tensile stress of 1000 Ibs. per square inch, what
internal pressure would it stand with the same intensity of stress in the

pipe? What would be the intensity of tension in the wire under this

pressure ? Take the modulus of direct elasticity for steel as twice that
for cast iron, and take Poisson's ratio as 0-3.

4. Find the necessary thickness of a 5-inch hydraulic main to contain
a pressure of 1000 Ibs. per square inch, if the stress in the material is limited
to 1500 Ibs. per square inch. What is the intensity of stress at the outer
surface of the pipe ?

5. A hydraulic main is 4 inches diameter and is I inch thick. What is

the allowable internal pressure, if the stress in the material is not to exceed

4000 Ibs. per square inch ?

6. Find the thickness of metal necessary in a hydraulic cylinder 12 inches
diameter to stand a pressure of 1200 Ibs. per square inch, if the greatest
tension in the material is not to exceed 4000 Ibs. per square inch.

7. What must be the thickness of metal in a spherical shell 20 inches

diameter, containing a pressure of 200 Ibs. per square inch, if the greatest
intensity of stress is not to exceed 500 Ibs. per square inch ?
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8. A compound cylinder is formed by shrinking a tube 6 inches external

and 4^ inches internal diameter on to another tube, which has an internal

diameter of 3 inches. If, after shrinking, the radial compression at the

common surface is 4000 Ibs. per square inch, find the circumferential stress

at the inner and outer surfaces and at the common surface.

9. Find the necessary difference in diameter to be allowed for shrink-

age in the previous problem to produce the necessary radial pressure.

(E = 30 x io6 Ibs. per square inch.)
10. If the compound cylinder in problem No. 8 is subjected to an internal

pressure of 10,000 Ibs. per square inch, find the intensity of hoop tension at

the outer and inner surfaces and the maximum hoop tension.

1 1. The thin rim of a wheel 3 feet diameter is made of steel, weighing
0*28 Ib. per cubic inch. Neglecting the effect of the spokes, how many
revolutions per minute may it make without the stress exceeding io tons

per square inch, and how much is the diameter of the wheel increased ?

(E = 30 x io6 Ibs. per square inch.)
12. Compare the periphery velocities for the same maximum intensity

of stress of (i) a solid cylinder, (2) a solid thin disc, (3) a thin ring. Take
the velocity of the ring as unity and m =

3*5.

13. The cast-iron cylindrical case of a friction clutch is 19 inches internal

diameter and inch thick. The internal radial pressure of the friction

blocks on the case is 80 Ibs. per square inch, and the case makes about its

axis 500 revolutions per minute. Estimate the greatest intensity of tensile

stress in the material of the case, which may be taken as a thin shell.

Weight of cast iron 0-26 Ib. per cubic inch.



CHAPTER XII.

BENDING OF CURVED BARS.

129. Theory of Bending. The relations between the straining

actions and the stresses and strains produced in the
"
simple bending

"

of a straight beam under certain fundamental assumptions were

established in Arts. 60-64. These relations may also be applied with

sufficient exactness to cases where the curvature of the beam is small,

i.e. where the radius of curvature of the central longitudinal axis is

large in comparison with the dimensions of cross-section of the beam.

If R is the initial and
/>

is the final radius of curvature of the longitudinal

central axis, we should then have from (i), Art. 61, with the same

notation

and from (4), Art. 63

o-gether, *- ? =
E(!

-
1)

According to this approximation, which has been used in Art. 117,
the intensity of stress varies as the distance from the central axis of a

cross-section perpendicular to the plane of bending. If, when the bar

is not originally straight, we make the same fundamental assumptions
as in Arts. 60-62 we arrive at a different result, the difference being of

considerable magnitude when the curvature is great, as it is in many
cases where strength calculations are of importance.

In applying a modified form of the simple or Bernoulli-Euler theory
of bending to bars of great curvature, such as hooks, links, and rings,

it is to be borne in mind that generally the dimensions of cross-section

are not very small in comparison with either the radius of curvature or

with the length of the bar : we are thus pushing this theory beyond the

limits assumed in the case of straight bars, and the results must be
taken as perhaps the best working approximation for the calculation of

strength rather than as rigorously correct. It will be assumed that the

central line passing through the centroids of radial sections lies wholly
in one plane before and after bending. Let R be the original and p
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be the final radius of curvature of the central axis of a bar acted on by
equal opposite couples M at its ends (Fig. 169). Let distances of points
on the radial cross-sec-

measured from an

ZZ, through the

Z--

tions

axis

centroid and perpen-
dicular to the radius of

curvature, be denoted

by y, and be reckoned

positive when measured
outwards from the centre

of curvature, and nega-
tive inwards towards it;

let breadths of the section

perpendicular to y be z
9

and let A be the con-

stant area of section

^(zdy) or 2(&z), where
&z is an element of area.

Consider a short

length, the ' central axis

(AB) of which originally

subtends an angle < at

its centre of curvature

O, and after bending
subtends an angle 6 at its new centre of curvature O'.

length of the layer distant y from the central axis is

and the final length is

FIG.

The original

where/ is the value of^ after strain. Hence the circumferential strain

of this layer is

*
- i (i)

Also the central line has the final length

pO = R<(i + e ) .-',;;.' (2)

where ? is the circumferential strain at the central line 7 = 0, hence

and substituting this value in (i)

(3)
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The subsequent work will be greatly simplified if we neglect the

difference between / and y, and write approximately

, a. >
.

e =- (i + e,)
- i =-- + fa . . (4)

And assuming the circumferential strain to be free as in simple and
uniform direct stress, at the layer distant y from the central line the

intensity of stress

/ = E.<r ........ (5)

Also, as in Art. 62

= o = ES(<?. 80) ...... (6)

dividing by E and substituting the value of the variable e from (4)

or, R(i+,)-.Sa + , A = o ... (8)

Again, as in Art. 63, equating the bending moment to the moment
of resistance, using the values of/ from (5) and (4) as before

M =

or, since 2,(y8a)
= o, y being measured from an axis through the

centroid

From (8) and (9) the unknown quantities e and p may be found,

and then from (4) and (5) / may be found for any value of y. The

values of * and p will involve the above quantities s(
, R .

8J
and

S( , r>^)> which can be found by ordinary integration or graphically.
v ~r -K- /

We may, however, conveniently reduce these summations before solving

(8) and (9) for e and p, as follows :
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where , ^s.fc or

= o - RA + RA'
or

Substituting the values (n) and (12) in equations (8) and (9)
respectively

A) = , .A . . . (13)

A> = 1 (M)

M i i M A
'~EAR p R

"
EAR + M X

(A
T - A)R

'

hence, substituting these values in (4) and (5)

_ MJ y__ i)
/== '- A +

A!

M / K A'
or

p =
R(A' - A)(A "7+

From (16^) / is evidently zero when

A(S*y) ..... (17)

which gives the position of the neutral surface, the negative sign

denoting that it is on the "inner" side of the central line. From
(i6) the intensity of stress on the outside of the central line evidently
reaches a maximum value when y reaches its greatest positive value,

1 The quantity A' is commonly expressed in terms of Rs( ^rn[? )
a modified

moment of inertia of section. It appears to the author more convenient to express

(i/

250 \
-

R j
in terms of A', the modified area and other known constants. Another

alternative would be to use a special symbol for
2^ _f Sa

J
or A' A.
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and the stress on the inside reaches its maximum value when y reaches
its greatest negative value. According to the above formulae and con-

vention as to the sign of _y,
the stress on the convex side of the section

will be positive, and that on the concave side will be negative if M is

taken as a positive quantity.
Alternative Form of Resulf. Making as before the approximation

/ =j in (i)

=~

f\ __ -p
i

which is zero when y = --
^ __ ,

= h (say) ..... (19)

where h is the distance of the neutral axis from the centroid of the

section. Substituting in (18)

y - h -
<f> y - h

c (20)

where C is a constant. And since E^(eSa) = o

Also since

c=
M

Substituting this in (20) and multiplying by E

R+J>

and

M ^-/^
hence ^ ==

^A'7+-R (
22 >

This form is very simple in appearance, but in order to use it h must be
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evaluated: substituting for h its value (17), the form (22) reduces to

the values in (16), (160), or (i6). The evaluation of the quantity
A' (and consequently of ti) for common forms of section is dealt with

in the two following articles. Equation (i6) shows that if y and p
are plotted as rectangular co-ordinates, the result is a rectangular hyper-
bola (see Fig. 171).

As in the case of bending of straight bars, these formulae strictly

referring to "simple" bending may be applied as approximations to

cases where the bending action is not simple, but when in addition to

a bending couple there is a shearing force in the planes of the cross-

sections as in Arts. 133 and 136 below.

130. Various Sections. In order to use the formulae of the previous
article it is necessary to find the quantity

A'

This is a modified value of A, the area of section which can easily
be found graphically as in the next article, but

which can easily be calculated for simple
sections.

Rectangle-, Fig. 170. Depth d radially,

breadth b perpendicular to the depth. Taking
strips b . 8y = Sa

and consequently from (17), A being equal
to bd

If (i) be expanded

The value (i) substituted in (16), Art. 129, or the value (2) substituted in

(22), Art. 129, gives the intensity of bending stress in a bar of rect-

angular section. The variation of this stress for a section curved to a

mean radius R = d is shown in Fig. 171; the curve of variation is a

rectangular hyperbola. The straight dotted line indicates the stress

intensity resulting from the same bending moment on a straight bar of

the same cross-section.

Circle> Fig. 172.

Radius r, y = r sin z = 2r cos dy = r cos OdO
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A'

jf

I zdy I

2
.

'

= R ,p = 2^R r sin + R
J

' + R J-?
" r -2

f? / i .
R

= 2r*R I
- - sm 6 4- -j

J ;
r ^ '

r sin ^ +

Convex Side .

I.

Central Axis-

Neutral Axis.

Intensity of Stress.

~7

Concave Side .

FIG. 171.

A' = O + 27rR2 - 27TR-V/R2 - r2 = 27rR(R

^4y section

-^) . (3)

and for symmetrical sections the alternate

terms give a zero sum, and

A' = A + 2 + j +, etc. (4)

where I is the moment of inertia of the sec

tion about the axis from which y is measured,
the second term of such a series giving a first

approximation to the value of A' A.

131. Graphical Method of finding Modified Area A'. The value

of the quantity A' or R2&(
-
T^S\ ^ any section may be found
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graphically as follows : The centroid G of the section AECFBHDK,
Fig. 173, may be found as in Art. 68, and then OG is set off equal to

the radius of curvature R, or, say,

OD, equal to the radius of curvature

of the curved surface at D. Then
A' is the area of a modified figure

AE'CF'BH'DK', the width of which,

perpendicular to OG, is everywhere

modified in the ratio
, -p, where

y i
&

y is the distance from the axis AB
through G and perpendicular to OG,
by the process shown in the figure.

For example, the width EF is re-

duced to E'F' by joining F to O,
cutting AB in N; a line NF per-

pendicular to AB from N cuts EF in

F. All widths more remote than

AB from O are decreased, and the

remainder are increased. To use the

formulae of Art. 129, the original area

A and the modified area A' should

be measured accurately by a plani-
meter.

An alternative construction would
be to join F to the foot of a per-

pendicular from E on to a line

through O and parallel to AB, and
thus alter only half the boundary
line of the original figure. In sym-
metrical figures this does not offer

any advantage, for only half the figure, viz. CF'BH'DGC, need in any
case be drawn.

132. Stresses in Hooks. We may apply the formulae of Art. 129
as a very good approximation to find the bending stresses in the

principal or horizontal section through the centre of curvature of a

hook carrying a vertical load.1

Let Fig. 174 represent a hook, the centre of curvature for A and B
being at O, so that OC = R, C being the centroid of the section AB,
and the vertical load line of the weight W passing through D, so that

CD = /. Then, ifA is the area AEBF of the section at AB, and A' the

area derived from it, as above in Art. 130 or 131, and BC = yt
and

WAC = yci allowing for the average tension -r- in addition to the bending
A.

1 For a theory taking account of the lateral strains or change in y as in (3), Art.

129, see a paper by E. S. Andrews and Karl Pearson, "Drapers Co. Research

Memoirs," Technical Series I., published by Dulau & Co. ; also an experimental
investigation by Prof. Goodman in Proc. Inst. C.E., vol. clxvii.

FIG. 173.
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stresses, and remembering that values of jy towards O are negative, the

extreme intensities of stress, by (i*6), Art. 129, are

intensity of tension at B =R^A/R^ "
1) +

intensity of compression at A
R \ _ W

A

<
!
>

R(A'-A)
In well-designed steel hooks these two values are generally not very

unequal.
EXAMPLE i. The central horizontal section of a hook is a sym-

metrical trapezium 2\ inches deep, the

inner width being 2 inches, and the

outer width being i inch. Estimate

the extreme intensities of stress when
the hook carries a load of 1*25 tons, the

load line passing 2 inches from the inside

edge of the section, and the centre of

curvature being in the load line.

The section is shown in Fig. 175.
The distance CB of the centroid C
from the inner edge is found by taking
moments of the area about DE. The
area is f X f

= 3*375 square inches.

FIG. 174.

- D ^ - - 2" -

iivj. i/*f A' lj. /3

BC X (3-375) = (*i X I X 2j) -f (J X 2j X i X 2j)
BC = i inch

Hence the radius of curvature R at C is OC = 3 inches.

The width of section HK is 2 f = if inch, and measuring y from

HK positive towards A, the variable width of section is

hence

=
i(- 2-25 + 6-5 log.

4-2-5
)
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A' = f(-2-25 + 6-5 x 2-303 x 0-3273) = 3-5381 square inches
A' - A = 3-5381

-
3-375 = 0-1631 square inch

Hence, from Art. 132 (i), the maximum tension at B is

I>2 5 X 3 /3 _ 3'538l\ 1*25 1-25

3 x o-i63Aa 3-375 )
+

3-375

~
0-1631

* '

37

= 3
'

83 tons per square inch

and the maximum compressive stress at A is, by Art. 132 (2)

"
4^57

" '

37 = 2 ~ '

37 = 2 "

133. Stresses in Rings. A ring subjected to pull or thrust

through its centre has, at any radial section, a bending moment,
shearing force, and direct pull or thrust. The intensity of shearing
stress on normal planes being zero at the extreme inner and outer

edges of a section, in calculating the stresses at the extreme inside and
outside of the ring we may neglect
the shearing force at the section,

and calculate from the bending
moment and direct pull or thrust.

Approximate Variation of Bend-

ing Moment. If in estimating the

bending moment at any section we

neglect the curvature of the ring, and
use the rules applicable to straight

beams, we shall not make nearly so

large an error as in neglecting
curvature in calculating the stress.

A more rigorous examination of

the variation in bending moment
follows at the end of this article.

If Fig. 176 represents the ring

subjected to a pull W, although
there is bending at various sec-

tions, it is evident from the symmetry that the four sections at A, F, D,

and G pass through the centre O after the straining, and therefore,

between A and F, for example, the bending or change from original

direction is zero, i.e. the total amounts of bending in opposite senses

or of opposite sign are equal.

Let M be the bending moment producing greater curvature at any

section XX inclined 6 to the line of pull, and M^ be the bending

moment on the section EF. The piece XEFX being in equilibrium

and the shearing force on EF being zero, taking moments about the

centre of the section XX
W / \M = M! + R(i

- sin 0) (i)
2

And since the total bending between A and F is zero, treating the
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ring as a straight beam, as in Art. 77, where ds is an element of length

equal to R</0, since -y
=
gj

the bending per unit length,

/*=I

i
" =

Substituting the value of M from (i) and dividing by wj

= o

and therefore from (i)

M =

and at the section AB where = o

WR

^
-

I sin
0)

(

(3)

(4)

The bending moment vanishes for sin = -, and its values at all

sections are shown in Fig. 177 plotted

radially from the central line SLTK.
AdditionalDirectand Shearing Forces.

In addition to the bending stress there

is on every section such as XX the direct

W
force sin 0, giving an additional cir-

cumferential stress of intensity

Wsin
2A

W
and a shearing force cos 6 across the

radial sections, which will produce shear-

ing stress distributed more or less as

indicated in Art. 71. The greatestW
shearing force at 6 = o will produce

W
an average shear stress of intensity ^r- Taking the circular section,

for example, the maximum intensity would be about f of this amount.

FIG. 177.
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viz. at the centre lines of the section AB. The two equal and opposite

principal stresses corresponding to this state of simple shear are, even
in the smallest rings, of much lower magnitude than the greatest bending
stresses. Even the stresses at the centre line arising from shearing force

and direct pull are not at any section so great in comparison with the

bending stresses at the section AB as to be of much importance. (See
end of Ex. i below.)

Resultant Stress at Inside and Outside. The most important stresses

are those arising from bending and direct stress at the inner and outer

edges of the ring at the sections where the bending moments and the

direct stress reach their extreme values.

Let y be the distance from the central line to the extreme inside

edge of the cross-section, and let y^ be the distance from the central line

to the extreme outside edge of the cross-section ;
and consider a pull

W as shown in Fig. 176, the modifications for a thrust W being obvious.

At the intrados or inside edge of the ring, putting the value (3) in

of Art. 129 (y being equal to y\), and adding the direct stress

intensity of compres-} ATT // R _ A'\
__
W sin , x

jiw stress/ f

=
A' - A VR^i A/

"
2A

This reaches critical values at = - and at = o (a discontinuity).

7T

which is the greatest intensity of stress in the ring. At = -, reversing

the sign

R A\ W

The intensity of stress reaches zero for a value of which can be

calculated from (5).

At the extrados or outer edge similarly, writing y = +yz

-_
aui<7 R Wgin ^

intensity of tension/ = A , A I -T
-j )

H r (o)A ~~ A \-**- y% i -^-/ 2/V

W

At = -
reversing the sign

_R_\ W
3^fRJ

-
2-A (compressive) . (10)

and the position of the zero stress can be calculated from (8).
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In rings the mean radius of which is large compared to the dimen-
sions of cross-section, equation (7) will give the greatest tension in the

ring, and as R increases, and the curvature decreases, this must approach
the same magnitude as (6). When R is small, owing to the greater
curvature the greatest tension may be given by (9) ;

the critical radius

R above which the tensile intensity (7) exceeds the intensity (9) maybe
found by equating (9) and (7) and solving the equation for R. For any
symmetrical section with half-depth yl this gives

r

Taking the more exact value of the bending moments below, we find

similarly that the critical radius is

R *
'

a somewhat greater value, since A is less than A'. For a circular section

of radius r this gives
R = 3'96r

For rings of larger radius than this the tension at the extrados in the

line of pull is the greatest tension in the ring, and for rings of smaller

radius the tension at the intrados for the sections perpendicular to the

line of pull is the greatest tension in the ring.

The intensity of stress at the intrados and extrados is shown for all

angles in a particular case of a small ring in Fig. 178. (For details see

Ex. i below.)
More exact Estimate of Bending Moments. In estimating the bend-

ing moments, the initial curvature of the ring and the effect of the

W
normal forces sin 6 were neglected, as the error involved is small ;

to take account of these, we proceed as follows.

Substituting the value (i) in (14) of Art. 129, with the same notation

as in Art. 129, we have

M = M x + -^(i
- sin 0)

= ER2
(i + e

)(-
-

j^(A'
- A) (n)

Hence, writing dfr for R^

C
l

( C^i+e F }

\

M<tO = ER(A' - A) -Z^& -
(i + e9)dO (12)

J o U =
P

^o

But evidently in a complete quadrant after strain the total angle

between two normals OS and OL

J
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hence (12) becomes

345

ir jr ir

f
2

UdO = ER(A'- A){-
- - -

/ V0} = -ER(A'-A)(V0 (13)
J o

^ 2 2 '

o
' - o

and instead of the relations (6) or (8) or (13) of Art. 129, the total

normal force across the section in this case is

~ sin =
JR(i

+ e
)(-

-
^)(A

-
A') -f ^OA} (14)

which with (n) gives

M!
' ~

EAR +
W

(which is independent of 6) . (15)

Substituting this value in (13)

2 A
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But integrating (i)

Hence, equating (16) and (17)

WR/A
...... (18)

instead of the value (2), and substituting this value in (i)

instead of the value (3), and in particular at = o, the maximum bend-

ing moment

7 or '3l8W - (20)

a value lower than (4) since A is less than A'. Thus the bending
moment at any point of the ring is dependent upon the ratio between
the cross-sectional dimensions of the ring and its mean radius, and not

only upon the external force W and the mean radius of the rings as

indicated in (3). The use of these corrected values of M in deducing
formulae (5) to (10) will give slightly more correct values for the inten-

sities of stress ; it will be sufficient to notice that the greatest intensity
of stress, viz. the bending stress at the point of application of the load

in the intrados, instead of (6), becomes

W f R A \=
7r(A'-A)VR^7;-A

7
"
V '' '

a rather lower value, since A is less than A'.

A very close approximation to the above corrected bending moments
may be obtained, taking account of the bending which results from the

W
normal forces sin on the radial cross-sections. The normal force

W W sin 6
sin causes a strain T^~t and an element of length ds is stretched

2 2,/i.ilf

by an amount -r-~-
' ds. Dividing by R, the bending or change of

direction in a length ds is
~\^T

* dO approximately, and in a complete

quadrant between A and F this amounts to

W /T. W



ART. 133] BENDING OF CURVED BARS. 347

Adding this term to the equations above (2), we get

WR/ TT #\ WR/ J?\

Mt-^i-j-pJ and M = (i-^) (22)

results which may also be obtained by substituting the approximate
values of A' from (4), Art. 130, in (18) and (20) of the present article.

EXAMPLE i. A ring is subjected to a pull the line of which passes

through its centre. If the ring is made of round steel the radius of

which is | of the mean radius of the ring, find the intensity of stress at

the inside and outside of the ring. (This represents the smallest ring
which could be used as a link in connection with other links of the

same size.)

The radius of the round steel being r and the mean'radius of the

ring R = 3^, from Art. 130 (3)

A' = 6flT
2

(3 v 8)
= i

t

o2947rr
2 A = irr*

A'
A' A = 0-02947ZT

2 = 1-0294

using the approximate values of the bending moments.
Intrados. From (5), Art. 133, the intensity of compressive stress

=
^(-

~
8-5 n

B)o'o2947r^2

The values of p are shown plotted radially inwards for positive

quantities from the central line on the right-hand side of Fig. 178.
The maximum value at 6 = o is

16 W W
5 or TIO Q

TT irr Trr*

If the more exact value
-^> ^-

is adopted for the bending moment

in the line of loading the maximum stress intensity becomes

^ '

TTT*
X

1-0204
= 4

'

95
7Jr2'

the difference beinS under 3 per cent,

even in this extreme case of curvature. The value (22) gives
16 W W

.
2
X (i g\)

= 4*96 2 showing the very close agreement of

(22) with (20).
If W = i ton and the steel is i inch diameter, the maximum

intensity of stress is
g

=
6-3 tons per square inch.

If the rule applicable to the bending stress in straight beams ( (6),
Art. 63) had been used, the equal and opposite intensities of stress

would be, using the approximate bending moment

2*k 4 fiL
w-
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The value ^ is 33 per cent, greater than this.

Extrados. From (8), Art. 133, the intensity of tensile stress is

'

.

,

W sin (9 W /9
-

49 7 \
r -2 (1*0294 Q7sH -o =

ol
z

4*248 sm0)
0-02947J-H tJW* ur2\ TT

These values are shown plotted radially from the central line on
the left-hand side of Fig. 178.

The greatest stress arising from the radial shearing force is at the

central line of the section in the line of pull, and is about f ~^ &t which

is much less than the extreme bending stresses on the same section.

For points within the perimeter of other sections the principal stresses

may be estimated approximately from the radial and circumferential

shear stress, distributed as in Art. 71, the direct stress
g^ ,

and the

bending stress estimated by, say, (16^), Art. 129; such principal stresses

are everywhere of lower intensity than the maximum bending stresses

calculated above.

134. Deformation of Curved Bar. The bending of a curved bar

results in an alteration in the shape, and in particular, chords joining

FIG. 179.

points on the original centre line may be considerably altered in length.
Let ACB (Fig. 179) represent the centre line of a curved bar which is

subjected to a variable bending moment. To find the alteration in the

length AB, consider the effect of the bending of an element of length
ds

j
if the remaining part of the bar were unchanged while the element

ds turned through an angle di, A being supposed fixed, B would move
to E, the horizontal projection of this displacement being

DC.^' or y.di

And from Art. 77 the change of curvature

di M M
ds

=
EI

r
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where I is the moment of inertia of cross-section, and E is the modulus
of direct elasticity.

Hence the alteration EF in the chord AB resulting from the bend-

ing of the element ds is

M
JJvJl

and the total alteration due to bending is

./

the integral or sum being taken between limits corresponding to the ends
A and B. Bending moments producing greater curvature evidently
cause decrease of length of the chord, and those producing decrease of
curvature cause increase in length.

135. Deformation of Ring.
1 From the result of Art. 134, it is

easy to estimate approximately the change in the principal diameters
due to bending of the ring, considered in Art. 133. Thus, using
Fig. 176, putting y = R cos 0, ds = R</0, and from (3), Art. 133,

M = WR^- -
\ sin

0j
in (i) of Art. 134, the decrease in the diameter

KLis

or if the more exact value (19) of Art. 133 is used for M, the decrease
is

2WRVA _ A

The alteration in the diameter ST may similarly be found by writing

y = R sin 6 instead of R cos 6 ; the decrease is

PwRVi A ,
2\VR3

/i TT\

~Ei~l ^
~"

a sm ^
)
sm^ =

El (~
~~

%J (a negative quantity)
J o

or the increase is

WR'/Tr l\
2 / I l\
EI\8 TT/

'
3'

or using the more exact value (19), Art. 133, for M, the increase is

yv iA\
i
~
;AV

1 Since this chapter was written the Author has received from the University of

Illinois a bulletin containing an account of experimental tests of this theory of rings
and chain links by measurements of the deformations ; the agreement between

calculation and experiment is very striking.
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The alteration of diameter (4) in the direction of the pull is of

greater magnitude than the alteration (2) perpendicular to the pull.

Effect of Normal Forces. The alterations in the principal mean
diameters given above are those due to bending only, and are much
the most important part of the whole change. To take account of the

alteration due to the normal stress at the central line, we have, from

(15) and (18) of Art. 133 W
' ~

TrEA'

and due to the normal force the total increase of diameters KL and
STis

%in 6.e .ds = 2

*

cos O.e .ds= 2-!!^- I

"

cos OdO

2WR
(5)

Hence the Mai decrease in the diameter KL perpendicular to the line

of pull is '

2WR
TrEA'

A"
V

""

and the total increase in the diameter ST in the line of pull is

i A\ 2WR
El

The last terms in (6) and (7) will generally be small in comparison
with the remainder ; they will only be important when R is small.

EXAMPLE. Calculate the increase in length in the ring in Ex. i,

Art. 133. Take the total load as i ton, the ring 3 inches mean

diameter, and E = 12,660 tons per square inch.

Using the values previously obtained

I = -r4 A = -r2 A' = i'O2947rf
3 R = y

4

and substituting in (7), the increase in diameter is

6Wr54W;-
3 X 4/7T _ _1

E7T/-
4 \8 i -02E7T/-
4 \8 I-02947T/ E7T2 X

W W=
^(27

- 21-26 + 0-59)
=
^(5-74 + 0-59)

=^
In this extreme case of great curvature the stretch due to the normal

pull is over that due to bending.

Substituting the numerical values W =
i, r = \, and E = 12,660,

the increase in diameter is

6-33 X i X 2
^2 = o'ooi inch

12,660
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136. Simple Chain Links. The simplest form of chain link is

which has semicircular ends and straight sides connecting them.

may extend the approximate
theory of stress calculations

for the ring in Art. 133 to

make at least a useful estimate

of the intensity of stress in a

simple chain link.

Let R be the mean radius

of the semicircular ends, and
/ the length of the straight

sides, the other quantities

that

We

A

being as in Art. 133, and as

shown in Fig. 180. Then in _
the ends at a section XX

M=M 1+ R(i-sin0) (i)

where Ml is the bending
moment at the section UV
and in all the straight parts
of the link. Again using the

relation of Art. 77, since the

total bending or change from

original direction between A
and F is zero

-ft-Hi-

<
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Substituting this value of Mj in (i)

M = WR^^,L + W in
2 7rR-f-/ 2

and in particular at AB, where = o

WR 2R

which is evidently always of opposite sign and greater magnitude than

(2), since / is always positive. Moreover, M increases with increase of

WR WR
/, from -- when / = o, towards - when /is very great.

The intensity of bending stress at the intrados and extrados
of the curved ends may be found by substituting the above values in

(i6) of Art. 129. There is, in addition, the tension sin to be

added algebraically to the bending stress. At the section AB the

intensity of compressive stress at the inside (B) is

MQ / R _A;\ = w(2R4-/) / R _A;\
' - A)VR - yi A ) 2 (7rR + /)(A'

-
A)V,R - y, A /R(A'

where y1 is the distance from the central line to the inside edge B.

The bending stress in the straight portion is that resulting from a
W

bending moment MI. There is also a tension to be added alge-
2A

braically to the bending stress. At all sections, including EF, the

intensity of tension at the inside edge is

2A 2 I(7rR + /)

I)

A3

For symmetrical cross-sections, in which j2
= y^ even in the smallest

link practicable (see Ex. i below), this value (6) is less than the tension

at the point A at the outside of the section AB, which is, by (i6) of

Art. 129

MQ /A' _ R \ = W(2R + /) /A' _ R \ ..

R(A'
- A)\A y2 + R; 2(7rR + /)(A'

- A)VA yz + R/ v/y

Again, just in the curved portion above U, including the direct

pull, the intensity of tension at the inside edge would be

Mt
/ R _A'\, W

R(A'
- A)\R - y, A/ 2A2A

_Wj (7TR-2R) / R A\
i_

2 t (TrR + /)(A'
-

A)VR -
yi A)

"*" A

This value (8) being for a curved portion will always exceed the

value (6) for a straight portion under the same bending moment and



ART. 136] BENDING OF CURVED BARS. 353

direct stress
;
whether or not it will exceed the value (7) depends upon

the ratio of both R and / to the dimensions of cross-section. In the

smallest practicable link (8) is the greatest tension (see Ex. i below) ;

in more usual sizes, (7) gives the maximum tension in the link, being a

little greater than (8).

There would, according to these approximate estimates, be a sudden

discontinuity in the bending stress at the section UV, where the radius

of curvature suddenly changes from R to an infinite value. The
method is, however, only approximate, and we may take the values (6)
and (8) as holding approximately at short distances on either side of

the section UV
;
the stresses (5) and (7) are usually most important.

If we make the more exact calculation of bending moment as for

the ring at the end of Art. 133, the total change in a quadrant being

r=*
2

(i + e,}ds TT M,/ . .- = ^F instead of -

J ft = Q

we find, using the first approximation from (4), Art. 130, for I

WR 2R + /M = - -n (very nearly)

This gives a maximum bending moment rather below the value (4).

In this approximate theory, this correction, which affects the bending
stresses (5), (6), (7), and (8) slightly, does not seem worth making.
The deformation of the link may be estimated by the methods of the

previous article, using the proper values of M and *
,
and using separate

integrations over the curved and straight portions.
EXAMPLE i. Estimate the stresses on the principal sections of a

link having semicircular ends and straight sides, made of round iron,
the mean radius of the ends of the links being equal to the diameter of

the round iron, and the length of the straight sides being also equal
to the diameter of the sections. (This represents the shortest and most
curved link which it would be possible to use in a chain with others of

the same kind.)

Taking r as the radius of the section, the mean radius of the ends
R = 2r = /, A = Try

2
. And from Art. 130 (3)

A'
A' = 47rr(2

- V3) = royi&ry* A' - A = 0*07 iSwr2 = 1-0718

For the section in the plane of the pull, the intensity of compressive
stress inside, putting yl

= r in (5), is_6W>_ _ W 3 x 0-9282 W
2r(27T+ 2) X 0-07 iSTr^

2
'

7l8) -
Trr

2
'

2(77 + i) X 0-0718
- 4>68

7rr2

If W = i ton, and the iron is i inch diameter, the compressive
. 4*68

stress is ~~.~<r~ = 5*97 tons per square inch.

2 A
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These results should be compared with those for the ring in the

example at the end of Art. 133.
The tensile stress intensity at the outside of the same section

from (7) i

The tensile stress at the inside of the straight sides is, from (6)

Wr.4f*(ir- 2) X 4
,

W W
Y

-
H--1

= o(no
2 X 2(7T 4- l)77T

4
27IV

2
7IT-

V

.
W

0-5) = r6o -,
TIT

2

The tensile stress at the inside of the sections where the straight
sides join the curved ends is, from (8)

7r - 2) (i-78+Q'5)W

which is the greatest tension anywhere in the link.

A small increase in the length of the sides and radius of the ends

is necessary to make a link which would work freely, and such increase

is sufficient to make the tensile stress greatest at the outside of the

sections in the line of pull.

137. Flat Spiral Springs. The relation between the straining
actions and the winding up of a spiral spring such as is used to drive

various mechanisms may be determined as

follows. Suppose one end A of the spring

(Fig. 181) to be free and pulled with a force

P in the direction AB, the other end being
attached to a small spindle C. The bending
moment at any elementary length ds of the

spring, distant x from the line AB, is

The angular winding due to this element is

given by

di
L _ML

. _ M _~Px

where di is the change in the angle between the tangents at the two ends

of the elements ds, and I is the moment of inertia of the cross-section

about a central axis perpendicular to the plane of the figure. Hence
the total angle of winding up due to the force P is

i = or (radians) (i)

if I is constant, as is usual. The quantity jxds is what may be called

the moment of the profile of the spring about the line AB, or the whole

length of spring / multiplied by the distance of its centre of gravity
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tance is pra
le C from A

jxds = h.l

from AB; this distance is practically equal to ^, the distance of the

centre of the spindle C from AB, so that

M/ .

and * =
El

r
El (racuans ) ..... (

2
)

where M = P/i.

In an actual spring the point A is usually fixed and the spindle C is

turned, the action of winding up bringing into play a force P nearly

parallel to AB, and an equal and opposite force through C, forming a

couple P X AC or P^. So long as the spring at A remains sensibly
normal to CA, and no two parts of the spring come into contact, and
the shape remains such that the centre of gravity is at C, the above
relations will remain practically true. The angle i is proportional to

P or M, and consequently the work stored in winding, or the resilience

of the spring, from (8), Art. 93, is

MV PAV
. . ......

where M =
P/fc, the external moment applied.

The greatest bending stress on the spring may occur where the

spring joins the spindle if the curvature there is very great, but it will

usually occur about D diametrically opposite to A, where the bending
moment is greatest. If the spring is very thin, we may neglect the

curvature and calculate the bending stress as for a straight beam. At
D the bending moment is nearly P X 2^, hence the greatest intensity

of bending stress is -=-, where Z is the modulus of section for bending.

If the spring is rectangular in cross-section, the depth or thickness being
d and the breadth

,
Z = \bd*, and the intensity of bending stress at D

is nearly
I2M_

~~ ''

bd* bd*

If the safe or proof-stress intensity is / the maximum value of

(max.) P=^ or M=^
12/1 12

and substituting this in (3), I being y
1^ 3

fZ
fl

proof resilience = X bdl or ^ X volume (nearly)

f1

or about ^- g per unit of volume, which is only \ of that of a closely

wound helical spring subject to axial twist (Art. 117), where all the
material is subjected to the maximum bending moment instead of a

bending moment varying from zero to a maximum with a mean value
about half of the maximum.
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EXAMPLE i. A flat spiral spring is f inch broad, ~ inch thick, and
10 feet long. One end is attached to a small spindle, and the other to

a fixed point. If the spring is "run down," or in a state of ease, find

what turning moment on the spindle is required to give three complete
turns to the spring. How much work is done in winding, and what
is approximately the greatest stress in the spring ? (E = 30 x io6

Ibs.

per square inch.)

I = iV X X fe^)
3 =

1>536,ooo
(inch)

4
/ = 67T radians

From (2)

El./ 30 X io6 X 67rM = j
-

^
- = 3

-o68 Ib.-mches
/ 1,536,000 X 120

The work done is

|M x 6?r = 3-068 X 3?r
= 28*91 inch-pounds

The maximum bending moment is nearly 2 x 3*068, and the bend-

ing-stress intensity is nearly

2 x 3*068 x 6 .

!_ ,j_V2
= 117,800 pounds per square inch

2 * \40/

138. Arched Bibs. Curved beams, usually of metal, are frequently
used in roofs and bridges, and are called arched ribs. The straining

actions at any normal cross-section are con-

veniently resolved into a bending moment and
a shearing force, as in the case of a straight

beam carrying transverse loads, with the addi-

tion in the arched rib of a thrust perpendicular
to the section; for, unlike the case of the

straight beam, the loads not being all perpen-
dicular to the axis of the rib, the resultant

force perpendicular to a radial cross-section is

not zero. Thus, at a section AB (Fig. 182) of

an arched rib the external forces give rise to

(i) a thrust P through the centroid C, (2) a
FIG. 182.

shearing force F on the section AB, and (3)

a bending moment M. These three actions

are statically equivalent to a single thrust T, through a point D, in the

section AB produced, where T is the resultant of the rectangular com-

ponents F and P, and the distance CD =
-p-.

The curve to which the

line of thrust is everywhere tangent at points vertically above the

centroids is called the linear arch for the rib. The straining action

may thus be specified by the normal thrust, the shearing force, and

the bending moment, or simply by the linear arch, and when the strain-

ing actions are known, the stress intensities in the rib can be calculated.

As in straight beams, the shearing force may often be neglected as
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FIG. 183.

producing little effect on the stresses. The bending stresses might be
calculated as in Art. 129 if the curvature of the rib is great, but usually
it is sufficient to calculate them as for a straight beam, as in Art. 63.
The uniform compression arising from the thrust P is added algebraic-

ally to the bending stress, as in Arts. 97 and 98, and the radial and
circumferential shearing stress arising from the shearing force may be
calculated as in Art. 71, and, if necessary, combined with the bending
and other direct stress to find the principal stresses, as in Arts. 73, 113,
and 114. Arched rib may generally be taken as bridging horizontal

spans and sustaining vertical loads, and three cases will be considered.

139. Arched Rib hinged at Ends and Centre. A rib hinged at

the two supports or springings AB and at the crown C, and loaded with

vertical forces only, is

shown in Fig. 183. The c

reactions at A and B may
conveniently be divided

into vertical components
VA and VB, together with

the horizontal component j^

H, which must be the

same at both ends, since

these two are the only
external horizontal forces

to which the rib is sub-

jected, and consequently the horizontal thrust is constant and equal to

H throughout the rib. The vertical components VA and VB may be
found in exactly the same manner as the vertical reactions of a

horizontal beam with trans-

verse loads (Arts. 56 and 57)

by taking moments of the ex-

ternal forces about A or B.

The constant horizontal com-

ponent thrust is found in this

case from the fact that at the

hinge C the bending moment
is necessarily zero, and there-

fore the moment about C of

the horizontal thrust H must

be equal and opposite to the

moment of the vertical forces

from A to C, including the

vertical component VA of the

reaction at A. If ft denotes

the bending moment calcu-

lated for the vertical forces only, as for a straight horizontal beam, and

at C (Fig. 184) /A
=

/uc , represented by the ordinate ED

curve ofJJL.

TT =
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Then at any other section of which G (Fig. 184) is the centroid,
and y its height above the line AB, the moment M is

M=
/
t-H X = ,i->..r ..... (2)

where bending moments producing decreased convexity upwards or

decreased curvature are reckoned positive instead of the opposite con-

vention of signs adopted for straight beams in Art. 77.

If, therefore, a diagram of the bending moments
ju,

as for a straight

horizontal beam be plotted, and every ordinate be reduced by H . y or

PT-/,
the resulting ordinates, such as P'Q' (Fig. 184), will give the values

of the actual bending moments M on same scale as the curve of
//,,

or

(2) may be written

P'Q' = PQ-cB'GQ
A slightly different method of obtaining the bending moment from

the curve of jx
is to draw the linear arch. If each term of (2) be mul-

..... CD CD
tipUedby or_,

CD CD

Hence, if the ordinates, such as PQ, of the curve APEB of
ju,,

are

CD
reduced in the ratio

gyj ,
the difference, such as GK, between the resulting

CD
ordinates and the ordinates yt represents M x T^R on the same scale

as before, or represents M on a scale in which the bending moment
ED

represented by unit length is increased in the ratio
p=

The bending

moment in such a case is measured vertically from the curved base

AGCB, but to the modified instead of the original scale. Or (2) may
be written

= H( -7)= H( ft -y}= H(QK - GQ) = H x KG
v n / \ tJ*c* *

M
hence the bending moment is everywhere equal to the horizontal thrust

multiplied by the vertical distance between the linear arch and the
centre line of the arch. This is called Eddy's Theorem.

The line ANKCB is the linear arch, and the normal thrust P may
be found by dividing the bending moment M by the perpendicular
distance GN of G from the tangent at K to the linear arch (see Art. 138),
and the scale is such that

(4)
.!.* \~i

In the neighbourhood of points of maximum bending moment the
linear arch is parallel to the arched rib, and the resultant and normal
thrusts are then practically the same.

The resultant thrust may also be obtained by compounding the
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constant horizontal thrust H with the vertical shearing force determined
as for a straight horizontal beam.

It is evident that if the centre line of the arched rib is of the same
form as the curve of

//.,
the bending moment M is everywhere zero, e.g.

in the case of an arched rib carrying a load uniformly spread over the

length of span the bending-moment diagram of /x is a parabola (Art. 57,

Fig. 65) symmetrically placed with its axis perpendicular to and bisect-

ing the span ;
if the rib is also such a parabola the bending moment

is everywhere zero.

The determination of the linear arch, bending moment, and normal
thrust can often be very conveniently carried out graphically by means
of a funicular polygon, the pole distance of which is determined by (i) ;

these methods will be found more fully developed in treatises on
Structures.

EXAMPLE i. A symmetrical parabolic arched rib has a span of

40 feet and a rise of 8 feet, and is hinged at the springings and crown.
If it carries a uniformly spread load of J ton per foot run over the left-

hand half of the span, find the bending moment, normal thrust, and

shearing force at the hinges and at J span from each end.

Taking the origin at D, Fig. 183, the equation to the parabolic
curve of the centroids is

x2 =
<r(8 y) and at A, x = 20 y = o hence c = 50

and ^ = 50(8-7) or y=S - d = -
50 dx 25

which gives the tangent of slope anywhere on the rib.

The vertical components of the reactions are evidently

VA
= 3 X 20 X \ = 7*5 tons VB = 2-5 tons

Taking moments about C

7-5 X 20 - 10 X 20 X i
- H x 8 = o H =

6-25 tons

Normal Thrust at A.

Resultant thrust RA = ^(7-5)'' -f (6'25)'
2 = 9763 tons

V 7*c
Tangent of inclination to horizontal = * =

A- -
= r

'

2 = tan 50*20.

dy
Tangent of slope of rib from --

is

= 0-8 = tan 38-67

Inclination of RA to centre line of rib = 50-20 38-67 = n'53.
Normal thrust at A = 9763 x cos 11*53 = 9-56 tons

Shearing force at A = 9763 x sin 11-53 = 1-95 tons

Between A and C at x feet horizontally from D
M = 7-5(20

-
x)

-
(20

- x? - 6' 2 $y = 2-5*
- J*

3

This reaches a maximum for x = 10 when M = 12*5 ton-feet. The
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vertical shearing force is then 7*5 10 x J = 2-5 tons (upward external

to the left), the slopes of the rib and the thrust are the same, viz.

tan"1

0-4, and the normal thrust is equal to the resultant thrust, viz.

7
5)

72 = 673 tons.

At the crown, vertical shearing force = 7-5 10 2-5 tons or 2*5
tons (downward external to the left).

Thrust Tc = \/ (6-25)* + (2-5)*
= 673 tons

The direction and magnitude of the thrust on all the right-hand side

of the rib is constant, being in the line BC.
At 10 feet from B the bending moment, which is evidently the

maximum value on BC, is

2*5 x 10 6*25 x 6 = 12'5 ton-feet

i.e. 12*5 ton-feet tending to produce greater curvature of the rib.

2
*

C

At B, tangent of inclination of thrust = ?- = 0*4 = tan 21 '8

tangent of inclination of rib (as at A) is

o'8 = tan 38-67

Inclination of reaction at B to centre line of rib = 38-67 21*8= 16-87.

Normal thrust at B = 6*73 cos 16-87 = 6*44 tons

Shearing force at B = 6*73 sin 16-87 = ^95 tons

140. Arched Eib hinged at the Ends. A rib hinged at the ends

only differs from one having three hinges, in that bending stress may
result from expansion or

contraction of the rib if the

hinged ends are rigidly fixed

in position. The stresses

in such a rib are statically

indeterminate unless some
condition beyond the zero

bending moment at the two

hinges is assumed. It is

usual to suppose that before

loading the rib is free from

stress, and that after the load

is applied the hinged ends remain at the same distance apart as

previously, i.e. the span remains unchanged. This condition allows

of the horizontal thrust being calculated. With the notation of the

previous article, let M be the bending moment at any cross-section of

which G, Fig. 185, is the centroid
;
then

M = /t-H -. . . . . . . (i)

FIG. 185.
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and from Art. 134 (i), the total increase of span, neglecting the effect

of the normal thrust, is

where I is the moment of inertia of cross-section and ds represents an

element of the arc AGCB; and by the assumption that the hinges

remain in the same position

__ rf l XV
and H = T-? (3)

fa*

the summations being taken over the whole length of the rib. In a

large built-up arched rib I will generally be variable, but if not, and
E is constant, (3) reduces to

_ ft*, yds ,,
:

-jyT .

(4)

If 7, /x,
and ds can be expressed as functions of a common variable

this value of H may be found by ordinary integration, and in any case

it may be found approximately when the curve of p. has been drawn by
dividing the arc AGCB into short lengths 8s and taking the sums of

the products p.y. 8s and y* . 8s, using values of /* and y corresponding
//, y

2

to the middle of the length 8s. If I varies, products ^y . 8s and y 8s

must be used in the summations.
In a circular arch y, ds and horizontal distances can easily be

expressed as functions of the angle at the centre of curvature, and
if the moment p. can be expressed as in Chapter IV. as a function

of horizontal distances along the span, the integrals in (4) can easily

be found. In the case of concentrated loads the integral containing

/A can be split into ranges over which /A varies continuously. When
H has been found, M and the normal thrust P may be found from (i)
as in the previous article, or graphically from the linear arch drawn

by a funicular polygon with a pole distance proportional to H.

Graphical Method. If the force scale is p pounds to i inch, the

TJ
correct pole distance for drawing the linear arch is h =

,
and if the

linear scale is q inches to i inch, F (Fig. 185) being a point on

the linear arch or line of thrust

'p = P'Q xp.q. h (Art. 58) and ^ = ^.
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[P'Q x
/' El

hence from (3), H =
/>//

= '

/ -X-GQ.^
therefore

'

^
= i

If the diagram of bending moments
/>t

be drawn to any scale, the

ordinates PQ being n times the true ordinates P'Q

PQ . GQ
ET"^ = n

To get the true ordinates P'Q of the linear arch, each ordinate such

as PQ must be altered in the ratio i to n or multiplied by -, i.e. by

/?rds

a ratio which can be found for any case graphically, by approximate
summation after subdivision of the curve into a number of equal

lengths.
EXAMPLE i. A circular arched rib of radius equal to the span is

hinged at each end and carries a uniform load w per unit length of

span. Find the horizontal thrust and the maximum bending moment.
Solve also the same case when the rib is hinged at the crown as well as

at the ends.

Fig. 1 86 represents the centre line of the arch where

/ = R and sin a =
-^-

= J a =
^

or 30 cos a = -

ds R.<#? y = ED = R(cos cos a)

x =
^
- R sin = R(J - sin 0) /*

= -x(l - x) =
^

"(i
- sin

2

0)

Then from (4)

r9 = a W f
a

pyds 2 - -R4

(I
- sin

2

0)(cos
-

J 0=-a ^
cos a

rv= a. ,a

y*ds 2R3
/ (cos 6 - cos a)V0

J = - ^0= -a

*/ $ C
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From (i) the bending moment anywhere is

M = ~(i - sin
2

0)
- o-923-a-R

r

(cos
-

-JQ
=

(
sin 6 cos 9 + 0-923 sin 0)?/R

2

which vanishes for = o and cos = 0*923. Substituting these two

values, at = o, M = o*ooi32wR
2
,
a bending moment producing de-

creased curvature at the crown. At cos = 0-923, M = 0*00146wR2
,

a bending moment producing increased curvature; the position of

this bending moment is = 22*6, sin = 0*384, x = o*n6/, />. it

occurs at distances o'ii6 of the span from the ends.

If the rib is hinged at C as well as at A and B, since the bending
moment at C is zero

H X CD = >/2 =>R2 and CD =
R(I

- --$

rl =
0-134

Hence from (i)

_ .~D 2 / /~~\

M =
(J-
- sin

2

tf)
- o-934wR

:

(cos
- -)

JM\
sin 6 cos 6 + o*934^R

2
sin

which vanishes for 6 = o and cos 6 = 0-934. The latter value gives
the point of maximum bending moment, sin = 0*3573, and

(max.) M = -(0-25 -
0*1277)

~ o 934'R
2 X 0-068 =
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a bending moment producing increased curvature, 0-3573 of the span
(horizontally) from the centre of the span.

EXAMPLE 2. A circular arched rib of span / and radius R carries

a single load W at a distance a from the centre of the span. Find the

horizontal thrust if the rib is

hinged (i) at the crown and
C ends, (2) at the ends only.

With the notation in

w

FIG. 187.

y=R(cos0-cosa) x= Rsin0 CD = R(i-cosa)

(i) Taking moments about C, of the forces on CB

II x R(i
- cos a)

= -VB

l-2a .W
4R(i cos a)

(2) From A to E ^ = ~^j~
- w* = w(-

- R sin

from E to B /*
= -^ W(/ - x) = W '. ," '(

'- + R sin

C
?

//w
J 0= -a

/a

w/ tr" I (2
" R si " cos

p
f
- + R sin a

)(\2 /
J -a

cos - cos

R f

*

(cos 6 - cos a)V0
j -a

which may easily be found, the limits a and fi being as given above.

141. Temperature Stresses in Two-hinged Bib. If an arched rib

were free to take up any position it would expand, due to increase
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of temperature, and remain of the same shape. But if the ends are

hinged to fixed abutments the span cannot increase, and in consequence
the rib exerts an outward thrust on the hinges, and the hinges exert

an equal and opposite thrust on the rib
;
a fall in temperature would

cause forces opposite to those called into play by an increase. In

either case the horizontal reactions arising from temperature change
produce a bending moment as well as a direct thrust or pull in the rib.

The change in span arising from these bending moments and that

arising from temperature change neutralise one another or have a

sum zero.

Let a be the coefficient of linear expansion (see Art. 39), and / be
the increase of temperature of the rib

;
then the horizontal expansion,

being prevented by the hinges, is

a/./

where / is the length of span. Hence if M is the bending moment
produced at any section of the rib, the centroid of which is at a

height y above the horizontal line joining the hinges, and ds is an
element of length of the curved centre line of the rib, from Art.

134 (i)

and since M arises from the horizontal thrust H
M= -Hy ........ (2)

producing increased curvature (see Art. 139); hence

or H = a//

and if E and I are constant, this becomes

Ela//H
=-JyVs

^
the integrals being taken in either case over the whole span.

The bending moment anywhere, H._y, being proportional to y,
the ordinates of the centre line of the rib measured from the horizontal

line joining the hinge centres are
proportional

to the bending moment,
thus giving a bending-moment diagram; the straight line joining the

hinges is the line of thrust or "
linear arch

"
for the temperature effects.

The stresses at any section due to bending, and due to direct thrust or

pull, may be calculated separately and added, the former being the

more important. If h is the rise of the rib above the hinges at the

highest point or crown, and d is the depth of the section, taken as
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constant and symmetrical about a central axis, the maximum bending
moment due to temperature change is

H h --
<

and the resulting change of bending stress at outside edges of this

section is

. IU d

EXAMPLE. A circular arched rib of radius equal to the span is

hinged at each end. Find the horizontal thrust resulting from a rise

of temperature of 50 F., the coefficient of expansion being 0*0000062

per degree Fahrenheit. If the depth of the rib is -^ of the span,
and E = 13,000 tons per square inch, find the extreme change in the

bending stresses.

As in Ex. i, Art. 140, and Fig. 186

/=R sina = i a = cosa= _3
</J=

-.(COS -

fds = 2 R3

(cos
2 - V7 cos $ + X0 = R3

. ^LTLJLlJ
0=a ' J 12

hence, from (4), the horizontal thrust

ETa/R _ 50 x o'ooooo62EI El=
- 3

"
o-oo996R

2 tm

The bending moment at the crown is

Vi El El
J? -0-03112 X

0-134-^-= -0-00417

hence the extreme change of bending stress is

El R
0-00417^-

*
g^

= 0-0000521 x 13,000 = 0-677 ton per sq. inch

142. Arched Rib fixed at the Ends. The arched rib fixed or

clamped in direction at both ends bears to the rib virtually hinged at

each end much the same relation as that of the straight built-in beam
to the beam simply supported at each end. The principles of Chap. VII.
hold good for the built-in arched rib. In order to find the bending
moment at any section X of such a rib (Fig. 188), it is necessary to

know the fixing couples applied at the built-in ends and the horizontal
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thrust. Then we may write, as in Arts. 85 to 88, allowing for the effect

of horizontal thrust

xM = p + MA + (MB
- MA))

-
H>> . (i)

where /x is the bending moment on a straight horizontal freely supported
beam carrying the same vertical loads, MA and MB are the fixing

couples at the ends A and B respectively, H is the constant horizontal

thrust, and y is the height of the rib at X above the supports A and B.

Bending moments being reckoned positive if tending to decrease convexity

upwards as in Art. 139, the fixing couples MA and MB will generally be

negative quantities, instead of positive ones as in Chap. VII., where the

opposite convention as to signs was used.

FIG. 188.

The three unknown quantities MA,
MB ,

and H may be found from
the following three conditions :

(i) The assumption that A and B remain fixed leads, as in Art. 140,
from (i), Art. 134, to the equation

the integrals being taken over the complete length of the curved centre

line of the rib
;

if E and I are constant they may be omitted from each
term.

(2) The assumption, as in Arts. 87 and 88, that the total bending or

change from original direction over the whole length of arch is zero

when the ends are firmly fixed gives

-H-o (3,

the integrals being over the whole length of the curve, and El being
omitted when constant.

(3) If the ends A and B remain at the same level, as in Arts. 87
and 88

s
i MB M A
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the integrals being over the whole length of curve between A and B,
and El being omitted when constant.

The three equations (2), (3), and (4) are sufficient to determine the

three unknown quantities MA ,
MB ,

and H. If all the variables entering
into the integrals can easily be expressed in terms of a single variable,

ordinary methods of integration may be used. If not, some approximate
form of summation by division of the arch AB into short lengths Ss, or

graphical methods such as are explained in Art. 88, may be used.

In the case of symmetrical loading, MA = MB and equation (4)
becomes unnecessary; in that case equations (2) and (3) reduce to

which are still further simplified if E and I are constants.

An alternative plan would be to take as unknown quantities, say
H, VA, and MA ; here, again, for symmetrical loading the unknown
quantities reduce to two, VA being then equal to half the load.

143. Temperature Stresses in Fixed Rib. With the same notation

as in Art. 141, for the direction AB (Fig. 188), in which expansion is

prevented as for the two-hinged rib

"My
f.* + otf=o (l)

Also as in (3), Art. 142, J-^-Q /
2
\

J H.1 v '

and as in (4), Art. 142, E^ = ...... (3)

Let H and V be the vertical and horizontal thrusts at either end of

the span resulting from a temperature change of t degrees (V is equal
and opposite at the two ends), and let MA be the fixing couple at the

supports due to the temperature change ;
then

M = MA + V.*-H.j
'

..... (4)

This value of M substituted in the three equations (i), (2), and (3),

gives the necessary equations to find MA, V, and H. The bending
moment anywhere in the rib then follows from (4).

If the rib is symmetrical about a vertical axis through the middle of

the span, V is zero, and the two equations (2) and (3) reduce to one,

and equation (4) becomes

M = MA -Hj; ......... (5)

which, being substituted in (i) and (2), gives
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and

from which MA and H may be found.

The "
line of thrust

"
in this case is a straight horizontal line the

distance of which above AB (Fig. 188) is

MA

H
In the uncommon case of an unsymmetrical rib the line of thrust

would be inclined to the line AB, passing at distances -=r and -~

respectively from A and B when T is the thrust the components of

which are H and V, and MB is the fixing moment at B, viz. MA -f V . /.

EXAMPLE. Solve the problem at the end of Art. 141 in the case

of an arched rib rigidly fixed in direction at both ends. Find also the

points of zero bending moment.
In this case

a
* -

C C3
/

yds = 2R2

(cos
6 -

*tye
=

R'(i
- *&!\ = 0-093jR

J ,.-! Jo

f-5
fds = 0-00996R

3

(see Art. 141)

ds= -R = ro472R
7T

3

'e

Substituting these values in (6) and (7)

o'o93iMA . R2
0-00996R

3 H -f o'ooo3iEIR = o

ro472MA . R o'o93ioR
2H = o

MA = ^
hence H =

0*1845^2
MA = 0-0164^-

At the crown (Fig. 186) y = i - ^R = o'i3

Tf r Tf y

= - 008

2 B

and Mc
= 0-0164 -

0-1845 x 0<I 34 ^ = -
0083^-
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The maximum bending moment is MA at the supports, and at those

sections the extreme change in bending stress is

MA x d o-oi64EI R
" x = '0002 5 x I3 '

000

= 2-665 tons Per square inch

which is nearly four times the value for the similar hinged arch in

Art. 141.

The points of zero bending moment occur when Hj = MA .

y = ^ = o-o889R =
R(COS

-

cos = ^ + 0-0889 = *9549 0=17-3

Distance from support = x = R(J sin 0)
= o'2026R or 0^2026 of

the span.
144. Hanging Wires and Chains. The problem of the hanging wire

or chain carrying vertical loads is closely related to that of the arched

rib ;
it is also related as an extreme case to the very long tie-rod carrying

lateral loads. We assume the length to be so great that the flexural

rigidity is negligible, the load being supported entirely by the tension in

the hanging wire. In all cases the horizontal component of the tension

is necessarily constant ; at a concentrated load the vertical component
changes by the amount of that load. The problem of finding the shape
and tensions of a chain suspended from given points, carrying isolated

loads in given positions, may be treated graphically or analytically from
the elementary principles of statics.

1
If the loading is continuous and

easily expressed as a function of the length of chain or span, an analytical
solution is the simplest.

145. Uniformly Distributed Loads. When the load is uniformly
distributed over the span, a case approximately realised in some suspen-

sion-bridge cables and in

telegraph and trolley wires

which are tightly stretched

and loaded by their own

weight, the form of the

c curve in which the wire

hangs is parabolic.
Let w be the load per

unit length of horizontal

span, T the tension at any

point P (Fig. 189), and H
tension. Take the origin at the

FIG.

the constant horizontal component
lowest point O, and the axes of x and y horizontal and vertical

1 Some simple examples will be found in the Author's " Mechanics for Engineers,"
Art. 1 66.
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respectively. Then the length of wire or chain OP is kept in equi-
librium by three forces, viz. T, H, and its weight wx

t
where x = ON,

the horizontal projection of OP. Then from ihe triangle of forces,
or moments about P

H x wo?= r =

which is the equation to a parabola with its vertex at the origin O.
Also

'

.

_-

2y
"

*d ....... (2 >

where / is the span AB and d is the total dip. The tension anywhere is

(3)

which at the points of support A or B reaches the value

TT2 ,= V = 87V I +-7^ (4)

which does not greatly differ from H if y is a small fraction. If the

points of suspension are at levels differing by h (Fig. 190), and xl is the
horizontal distance of the vertex of the

parabola from the lower support B, and A
~~ "' ~

d is the dip below that support, from

h)
w

FIG. 190.

from which x1 may be found in terms

of d
y /, and h. The intensity of tensile stress in the wire, Fig. 189, is

where A is the area of cross-section, and neglecting the small variation

inT
H wfl

Note that for a hanging wire loaded only by its own weight, p is

independent of the area of section A, since w is proportional to A.
Also that if w is in pounds per/cv/ length, / and d in feet, p is in pounds
per square inch if A is in square inches.
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The length of such a very flat parabolic arc measured from the origin
is approximately

l

hence the total length of wire s is

A change of temperature affects the length of such a hanging wire

in two ways : the linear contraction or expansion alters the dip ;
a change

in dip corresponds to a change in tension, but owing to elastic stretch

or contraction a change in tension corresponds to a change in length

independent of temperature changes. The change in dip and in tension

resulting from a change in temperature is thus jointly dependent on the

change of temperature, coefficient of linear expansion, and the elastic

properties of the material.

Let ^ be the initial length of the wire, d% the initial dip, / the

initial intensity of tensile stress, / the rise in temperature, a the coefficient

of linear expansion, w the weight per unit length, A the area of cross-

section. and E the direct or stretch modulus of elasticity of the material
;

it)
- is then the weight per unit volume

After the change of temperature

and substituting for p from (6)

'+f*. (9)

If d^ /, w, A, and E are known, SQ and / are known from (7) and (6)
and (9) is then a cubic equation for d\ p may be obtained from d

approximately if -- is small ;
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from the relation (6). Reducing (9) by substituting for s9 and / and

dividing by j

wl* d,- d 8 d2 - d*
1 + ' + ^T --7T- = x +

3

'

71 approximately ( io)

a/ = O (ll)

which is the cubic equation for d in terms of the initial dip, the span,

change of temperature, and constants of the material. The change of

temperature which would cause any assigned change in dip or tension is

easily calculated from (10). In many cases where the hanging wire is

not very tight, for atmospheric temperature changes, the change in dip
is almost entirely due to the direct thermal elongation a/, and the

third term on the left side of equation (10) is negligible, the equation

reducing to

<P = &a/P d=

EXAMPLE i. A steel wire has a dip of 3 feet on a span of 100 feet.

Find the change of dip and of tension due to a fall in temperature of

50. Weight of steel 480 pounds per cubic foot
; coefficient of expansion

62 X io" 7
. E = 3oX io6

pounds per square inch.

The length of wire is s = 100 +
I
X yf^ = 100-24 feet

Shortening due to fall of temperature, { _ , _ 7

neglecting elasticity (

~ 5

= 31 X io
~ 5 of the length

s = 100*24(1 0*00031)
= 100*209

d*
100 + = 100*209 <t* = f X 20-9 = 7-8375

d 2 '80 feet a decrease of 0*20 foot

The weight of i foot length of wire i square inch in section = ffj
= i?lb.

Initially A=8-l? ><- - = 1389 pounds per square inch
5

hence p = ^ x 1389 = 1488

P-P*= 99

Elastic extension ?>
= -- - = ^ x io~ 7

L 30 x IOG 66

which is negligible in comparison with 31 X io~ 5
,

the shortening
calculated above due to thermal change, thus justifying the approxi-
mation made. If a more exact (cubic) equation for d be formed, as

in (io), the result is substantially the same.
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EXAMPLE 2. Take the initial dip in Ex. i to be i foot.

.5-0
= TOO + f X iio

= 100-0267 feet

/o = 8-~s~* 10>o = 4167 pounds per square inch

A reduction of 0-00031 of ^ would leave a length less than 100 feet;
the approximation made in Ex. i is not valid in this case. Substituting
the numerical data in (10)

i 1010,000(1 ^) 8^2
i

-0-00031 f-
3 30 X

which reduces to d* -f 0*683^ 0-521 =

from which by trial d = 0-537 foot = 6-44 inches, a decrease of 5-56

inches.

4167

The stress being proportional to

o'537
= 7761 pounds per square inch

an increase of 3594 pounds per square inch.

146. Common Catenary. When a cord or wire of uniform cross-

section hangs freely from two points of support, the curve formed is a

catenary; the parabolic form as-

sumed in the previous article is a

very close approximation when the

dip is small. With the same nota-

tion as in Art. 145, if w is the

weight per unit length of arc (in-

stead of per unit length of span),

considering the equilibrium of a

length AP = s (Fig. 191), measured
from the lowest point A, taking an

origin vertically below A

ws = H tan or

= a tan .

s = - tanw

H
where a = denotes the length of wire or cord which, hanging

vertically, would have a tension H at its upper end due to its own

weight ;

tan = -+
dx

ds

= sin v = -r
ds ds

and from (i),
- = a sec2

^.L = sin
ds dB

sector

/"sin
BdB

and integrating, y =
aj cos2 ^

= a sec . v .- . . .

ify = a when = o; i.e. the origin O is a distance a below A.
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Also fe = ~-^ = cos6.asec*0 = asecO . ... (3)

and integrating

x = afsec OdB = a log. tan
(^
+

-J
= a loge (sec + tan 0) (4)

or,
= sec + tan (5)

and taking the reciprocals, e
ll = sec 6 tan (6)

hence, adding

i(J _|_ e'l)
= sec =

^
from (3), i.e.

cosh - =
^

or j = cosh -
(7)

which is the equation to the catenary.

Expanding the equation (7)

y-

and for small values of x, neglecting the third and subsequent terms-

representing a parabola, being the same equation as (i), Art. 145, with

the origin a distance a below the vertex A.

The tension at any point P is, from (2)

equal to that at the upper end of a length y, hanging vertically.

The length of curve s measured from the vertex A is

[ . x
,

. . x=
/ cosh ax = a sinn
J a a

the constant of integration being zero, since s = o for x = o.

EXAMPLES XII.

i. A rectangular bar 2 inches wide and 3 inches deep is curved in a

plane parallel to its depth, the mean radius of curvature being 4 inches. If

the bar is subject to a bending moment of 15 ton-inches tending to reduce
its curvature, find the maximum intensities of tensile and compressive
bending stress.
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2. A round bar of steel \\ inch diameter is curved to a mean radius of

\\ inch. Find the extreme intensities of tensile and compressive stress

when the bar is subject to a bending moment of 4000 Ib.-inches tending to

bend the bar to a smaller radius.

3. The principal section of a hook is a symmetrical trapezium 3 inches

deep, the width at the inside of the hook being 3 inches and at the outside

i inch. The centre of curvature of both inside and outside of the hook at

this section is in the plane of the section and 2f inches from the inside of

it, and the load line passes i\ inches from the inner side of the section.

Estimate the safe load for this hook in order that the greatest tensile stress

shall not exceed 7 tons per square inch.

4. The figure shows the principal section of a hook, the centres O 3 and
O4 of the rounded corners being on the lines C^E and OjD. The centre ot

curvature of the inside and outside of the hook is in the line AB produced
and 2\ inches from B, and the load line passes through the centre of curva-

-v -<

Figure for problem No. 4.

ture. Estimate the greatest intensities of tensile and compressive stress on
the section if the hook carries a load of 10 tons.

5. A ring is made of round steel I inch diameter, and the mean diameter
of the ring is 5 inches. Estimate the greatest intensities of tensile and
compressive stress resulting from a pull of 2000 pounds on the ring.

6. Estimate the increase in the diameter in the line of pull of the ring in

problem No. 5, and the contraction of the diameter perpendicular to the

line of pull. Take E = 30 x io6 pounds per square inch.

7. The links of a chain are made of i-inch round steel and have semi-
circular ends, the mean radius of which is i^ inch; the ends are connected

by straight pieces I inch long. Estimate the greatest intensities of tensile

and compressive stress in the link when the chain sustains a load of 2000

pounds.
8. A flat spiral spring of rectangular section is I inch broad and -\j inch

thick and 20 feet long. What twisting moment may it exert on a central

spindle if the bending stress is not to exceed 100,000 pounds per square
inch ? How many complete turns may be given to the spring when it is run

down, and how much work is then stored in it ? What pull does the spring
exert on the fastening if its outer end is at a radius of 175 inches ?
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9. A symmetrical three-hinged arch rib is of circular form, has a span of

50 feet and a rise of 10 feet. If the uniformly distributed load is i ton per
foot of span, find the horizontal thrust and the bending moment at \ span

(horizontally) from one end.

10. A parabolic arched rib, hinged at the springings and crown, has a

span of 50 feet and a rise of 10 feet ;
if the load varies uniformly with the

horizontal distance from the crown from \ ton per foot of span at the crown
to i ton per foot run at the springings, find the horizontal thrust and the

bending moment at J span. What is the normal thrust and the shearing
force 5 feet from one of the abutments ?

11. Find the horizontal thrust for the arch in problem No. 9 if it is

hinged at the ends only.
12. A parabolic two-hinged arched rib has a span of 40 feet and a rise

of 8 feet, and carries a load of 10 tons at the crown. The moment of inertia

of the cross-section of the rib is everywhere proportional to the secant of

the angle of slope of the rib. Find the horizontal thrust and the bending

moment at the crown. (Hint, I = I -^ where I is the moment of inertia at

the crown.)

13. Find the maximum intensity of bending stress in a circular arched
rib 50 feet span and 10 feet rise, hinged at each end, due to a rise in

temperature of 60 F., the constant depth of the rib being 12 inches.

Coefficient of expansion x io~ 6
. E = 12,500 tons per square inch.

14. A semicircular arched rib of span /, and fixed at both ends, carries a

load W at the crown. Find the bending moment, normal thrust, and

shearing force at the ends and crown.

15. A piece of steel i inch square is bent into a semicircle of 20 inches

mean radius, and both ends are firmly clamped. Find the maximum bend-

ing stress resulting from a change in temperature of 100 F. in the steel.

What is the angular distance of the points of zero-bending moment from
the crown of the semicircle ? (Coefficient of expansion 62 x 10" 7

. E = 30 x ioc

pounds per square inch.)
1 6. A trolley wire t\j square inch in section has a span of 120 feet, a sag

of 10 inches, and weighs 115 pounds per 100 yards. Find the intensity of

tension in the wire.

17. With a maximum sag of I foot and maximum tension of 7000 pounds
per square inch, what is the maximum span for a copper wire, the weight of

copper being 0*32 pound per cubic inch ?

18. On a span of 60 feet a steel wire has a sag of 2 feet 3 inches. Find
the increase in dip due to a rise of temperature of 50 F. (Coefficient of

expansion 67 x io" 7
, weight of steel 480 pounds per cubic foot.)

19. A steel wire spans a distance of 100 feet and the dip at 90 F. is

i foot. What is the intensity of tensile stress in the wire ? At what tempe-
rature will the dip be decreased to 6 inches, and what is then the stress in

the wire ? E = 30 x io6 pounds per square inch. Steel 480 pounds per
cubic foot.

20. What would be the dip and the stress in the wire in problem No. 19,
when the temperature falls to 20 F. ?

21. A uniform wire 200 feet long and weighing iv pounds per foot of length
is suspended from two points 100 feet apart and on the same level. Find
the dip, the tension at the lowest point, and the tension at the points of

support.



CHAPTER XIII.

FLAT PLATES.

147. Flat plates supported at their edges and loaded by forces

perpendicular to their flat faces undergo flexure, and an investigation
of their strength is therefore somewhat similar to that of straight beams,
with the important difference that the bending is not all in or parallel

to one plane, but in every plane perpendicular to the flat faces.

The circular plate symmetrically loaded, from the symmetry about

every diameter, of the reaction or supporting force at its edge, is the

simplest case to consider
;

it is also in itself perhaps the most important

practical case of an unstayed flat plate. We shall examine the stresses

and strains in a circular plate by the simple Bernoulli-Euler theory of

bending, making such modifications as are necessary to allow for flexure

in other than a single plane. As in the case of straight beams, it will

be necessary to distinguish between cases where the plate is firmly

clamped or encastre at its perimeter, and where it is simply supported
there. By the stresses obtained by this theory we shall be able to test

the results of a simple approximate investigation, from which the stresses

in plates of various shapes may be calculated subject to a numerical

coefficient

148. Stress and Strain in a Circular Plate. The stresses and
strains calculated in the following articles have been given by Grashof,
and widely quoted. Grashof took the maximum strain as the measure
of elastic strength (see Art. 25), and very frequently the values of

E X (maximum strain)

given by him are incorrectly quoted as being the maximum stress ;

the maximum stress is of greater magnitude. As we neglect any

principal stress perpendicular to the face of the plate, the measure

of the strength according to the maximum shear stress or stress

difference theory (Art. 25) is the greatest principal stress.

In the case of beams it is assumed that cross-sectional dimensions

are small compared to the length, and so in calculating the bending
stress in circular plates we shall assume that the thickness is small

in comparison with the diameter. It will also be assumed that the

loading is symmetrical, and consequently the stress and strain will be

symmetrical about an axis perpendicular to the plate and through its
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centre. It will be convenient to speak of the plate as horizontal, and

the loads as vertical. We shall assume that straight lines in the plate

originally vertical become after strain straight lines inclined to the

vertical axis. By symmetry all straight lines originally vertical and at

the same radius must evidently suffer the same change of inclination,

and must all cut the vertical axis in the same point, a circular cylindrical

surface with axis COV (Fig. 192) being transformed into a conical

surface with the same axis.

Let x be the distance before

straining of any point P

(Fig. 192) in the plate from

the central axis perpendicu-
lar to the plate ;

let y be its

distance from the middle

plane of the plate, reckoned

positive downwards, and let

be the inclination to the

vertical of lines originally

vertical at a radius x. Let

the suffix z denote the cir-

cumferential direction where

x indicates the radial direc-

tion for the variable strains

and stresses, et and ex being
the circumferential and radial

strains, /, and px the circumferential and radial intensities of stress

respectively, reckoned positive when tensile. We shall neglect the

shear stresses perpendicular to px and py
in thin plates just as we did

the shear stresses and strains in long beams.
After straining, the concave side of the plate will evidently be in

compression, and the convex side will be in tension both radially and

circumferentially ;
the middle plane will evidently be unstrained or a

mutral plane. The radius at P will increase to

x + Oy

hence the circumferential strain at a depth y from the neutral plane is

IG -

P ~~"
t,9

Oy)
-

By

27TX

which may be written - where p = ? is the radius of curvature of the

originally horizontal surface through P at a radius x in a plane contain-

ing BV and perpendicular to the plane of BVand OV (compare Art. 61).

Also, if at a radius x -f 8x the inclination to the vertical of lines originally
vertical is + $#> at a depth y the distance Sx is increased to

and the radial strain is

aO
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V (J *

which may be written -, where p'
= ^ the radius of curvature of the

p utf

plate in the meridian plane containing BV and CV (compare Art 61).

Hence from Art. 19, the principal stress in the direction parallel to

the axis OV being zero, circumferentially

and radially,

/,)

(4)

where - is Poisson's ratio
; and solving the simultaneous equations (3)

and (4)
-

(5)

(6)

from which it is evident that both the radial and circumferential-stress

intensities on the section AB are proportional to the distance y from

the neutral surface, and may
be represented, as in Fig. 75,

for the intensity of bending
stress in a beam.

- ^ Consider now the equi-
"-^ librium of an element of the

plate (Fig. 193) included be-

tween radii x and x + &#, and
between two vertical meridian

planes inclined at a very small

angle 8< to each other. The

upper part of Fig. 193 repre-
sents a horizontal section

taken below the neutral sur-

face, and consequently the

stresses px and pt appear as

tensile stresses; the portion
FIG. 193. above the neutral surface

where y is negative will have
radial and circumferential compressive forces acting upon it due to the

stress across the boundaries of the element.

Resultant of Circumferential Stress on Element. The forces pz on
/7T 8<\

the faces AB and CD (Fig. 193) are inclined at an angle I-
J
to the

middle radius OHE. On any element of area &a of either face the

force is /z . 80
; resolving this parallel and perpendicular to EH, the

forces perpendicular to EH have a zero resultant, since components
on every pair of corresponding elements of AB and CD are equal and
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opposite. The forces parallel to EH from two corresponding elements
Sa, one in AB and the other in CD, are to the first order of small

quantities
o<z>

2/2 . 8a . sin = pz . Ba . 8<i
2

pz being of opposite sign on the opposite sides of the neutral surface,
the totalforce parallel to EH on the element resulting from the circum-
ferential stress is zero. The total moment of the couple formed by
the above elementary forces, 'about an axis in the neutral plane and
perpendicular to the radius OH, is

the summation being taken over one of the faces AB or CD and
substituting the value of/, from (5) the total moment is

If / is the thickness of the plate, ^(f. 80), the moment of inertia of
the rectangular face AB is ^ . 8x . /*, and the moment of the circum-
ferential stress about an axis perpendicular to EH is

which might also be expressed in the form

R2 X /

where R, = S<2(/z . Sa), the total force in the direction EO on one side
of the neutral plane, resulting from the circumferential stress on AB and
DC, and f/ is the arm of the couple or distance between the centre of

pull and centre of pressure (see Fig. 193). If is positive, i.e. the

vertex V of the conical surface (Fig. 192) is above the plate, and j
is positive, i.e. the plate is convex downwards, the amount (8) is

contra-clockwise viewed from the side DC of the element.
Resultant of Radial Stress on Element. The force on an element

Sa of the face BC resolved parallel to EH, to the first order of small

quantities is

/..*

The total force on the face BC due to radial stress is zero, the resultant

being a couple formed by the opposite forces on opposite sides of the
neutral plane, the moment of which is

the summation being over the face BC, of area t.x.8<f>; substituting
the value ofpx from (6) the moment is

de\ / x
1

7-J (9)
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Similarly, the moment M + SM on the face AD might be written in

terms of x + 8x and 6 + W. The difference SM between M + 8M

and M is --.&*, which, differentiating (9), is
dx

TS1 2 ~J~\dx

dB
~j~dx

d*6

If, as before, B and -j- are positive, the moment M in (9) will be

contra-clockwise in accordance with the moment (8). If in addition

i is positive, i.e. the moment M increases with increase of x, the

clockwise moment M -h SM on AD is in excess of the contra-clockwise

moment on BC, and (10) is a clockwise

moment resulting from the radial stress

on the element considered and is

opposed to the couple (8).
The resultant of the two couples (8)

and (10) must be balanced by the

external forces, including the loads

and reactions. We now proceed to

particular cases.

149. Circular Plate freely sup-

ported at its Circumference, under
Uniform Pressure on its Face. Let p
be the uniform pressure per unit of

area of the plate, and let r be the

radius and t the thickness of the plate

(Fig. 194). The external vertical force

on a circular portion of radius x, and
concentric with the whole plate, is

p . irx
2
. Hence the vertical cylindrical

surface which divides this circular por-
tion from the rest of the plate has a

total vertical shearing force p-no? upon
it, and a face such as BC, Figs. 193 and 194, will have upon it a

vertical shearing force

FIG. 194.

The shearing force F + SF on the vertical face AD will similarly

be

The moment of the external forces about an axis in the neutral plane
and perpendicular to EH (Fig. 193), neglecting quantities of the second
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order of smallness, such as the product of the vertical load on ABCD,
and the distance of its centre from E, will be

F . 8x = P~
. 8< . 8x ...... (2)

a clockwise moment as viewed from the side DC.
The conditions of equilibrium as applied to the element ABCD

require that the moment (2), together with the moments (8) and (10)
of Art. 148, shall have an algebraic sum zero, hence the contra-clockwise

moment is

T
E?;//

3

,.// 6
, dO\ ( d?Q

,
dO

12 2
--- 8* ^w I m -

4- -j- )
-

(
MX -7-2 + T2 mz

i l \ x dx) \ dx2 dx

or, dividing by 2 _ . Sx .

. -

and reducing: ^_+_-^= ^ . . . (3)

which is of the same form as equation (10), Art. 126.

The complete solution found, as in Art. 126, is

/,x.... (5)

The constants of integration, A and B, may be found from the

conditions at the centre and circumference. Evidently at the centre,

where x = o, 6 = o, hence from (4) B = o. At the edge x = r,

px = o, hence, substituting the values (4) and (5) in (6) of Art. 148

_ 3**
=

substituting, (4) and (5) become

^ _ s(^
2 - iW3 + i

;
. _ A

*"' E///
2
/
3 \/ + i

dO Jm* - iW3m + ii . A
T^ (7)

hence from (5), Art. 148, the intensity of circumferential stress is

A = l{(3 + iK - (* + 3)^} .-. (3)
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and from (6), Art. 148, the intensity of radial stress is

iX*-rf) ..... (9)

Both these intensities of stress reach their maximum values at the

centre x = o on either side of the plate y = +
-, and their value is--

7'

If m =
3, (max.) /. = (max.)/, = f/^a

....... (")

r2

If m =
4, (max.)/, = (max.) /, = 8^5 ....... (12)

If r and / are in the same units, say inches, the intensities of stress

px and /j are in the same units as /, generally pounds per square inch.

The strains (i) and (2), Art. 148, substituting the values (6) and (7),
are

H-= --=-
\
- '

x

each of which reaches the same maximum value at x = o, y = -
9

when

(max.) E . ,.
= (max.) E., = 8

(
* "
^ "+ T>

./ . g - . (15)

r2

If m =
3, (max.)E.^= (max.) E . f̂

= |/ .

^
. . . (16)

r2

If m = 4, (max.) E?, = (max.) E . et = |i| . / . (17)

which, according to the " maximum strain
"
theory of elastic strength

(Art. 25), is the measure of elastic strength. It may be noted that

at the centre of a circular plate symmetrically loaded and supported

A =A > hence, by Art. 1 9, since we neglect stress perpendicular to

the faces

m i m i

Further illustrations occur in Arts. 150, 151, 152, and 153.
Shear Stress in the Plate. Following the method adopted for

straight beams (Art. 71), we may roughly estimate the vertical shear

stress ; from (i) its average intensity at a radius x is

F 4- /.*.& OF /7r^
2
-7-

2/
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and if we take it to vary over the thickness of plate in the same way as
over the depth of a beam of rectangular section (Fig. 98 and Art. 71)
its maximum intensity, which occurs at the middle surface y = o, is

| times the mean, or

This has its greatest value

\'
f~
f (-8)

at the circumference, where x = r. This magnitude is only comparable

with (10) if - is not small. We are neglecting in our theory stress

intensities of the magnitude (18), and also the vertical direct compres-
sive stress, varying from p on the upper face of the plate to zero on the

lower face. The complementary shear stresses of magnitude (18) in-

volve two equal and opposite principal stresses of the same magni-
tude, and this must give a maximum principal strain e', such that, from
Art. 19

E e
' - m + * dL'

m t

Form of Deflection. Let v be the deflection at a radius x of the

neutral or middle surface of the plate from its original position (see

Figs. 192 and 194). Then the tangent of slope to the horizontal of a line

in which a meridian plane intersects the neutral surface is -= = tan 0.
ax

The deflections and slopes being supposed small as in a beam, we may
take the angle equal to its tangent, and from (6)

09)

. (20)

and since v = o for x = r

4
' m + i

and v =-
i 2 m - i 2

which reaches its greatest magnitude at the centre x = o, viz.

and if m =
3, this becomes

l
f~

';>:
', ..,. ; (.3)

2 C
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150. Circular Plate clamped at its Circumference and under
Uniform Pressure on its Face. The
horizontal circular plate firmly clamped
in a horizontal direction (Fig. 195) bears

to the plate freely supported at its cir-

cumference a relation analogous to that

of the beam built in at its ends to the

beam freely supported at its ends. The
work of Art. 149 holds good so far as (5).

For = o # = o, hence B = o. The
condition which determines A is at the

circumference = o for x = r, hence
from (4), Art. 149

FIG. 195.

.
"" ~~

4 V2

and substituting in (4) and (5), Art. 149

^- _ 8\'"
~

V/7 .3 _ - r2>

<**.

~
4 E;/*V ^

hence, substituting in (5), Art. 148

(3)

and substituting in (6), Art. 148

... (5)

Both these stress intensities reach extreme values of opposite signs,

on the faces of the plate, at the centre x o and the circumference

x = r. The greatest intensity of bending stress in the plate is that

of the radial stress at the circumference. Putting x = r in (5)

(6)

and for y = - this becomes

(max.) px
=

*,; ;
. (7)

At the centre x = o, and y = -, the radial and circumferential

stresses are
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The greatest strains are evidently the radial strains at x = r, and

from (3) the values at x = r^ y = -,

(max.)<r,= J = + *

At .* = o the signs are reversed and the magnitudes are halved,
and et has the same value as ex .

ri

Ifw = 3 (max.) Eex =
-^ p . ..... (10)

Ifi = 4 (max.)E.*,= jf-^./
..... (n)

Putting the slope equal to its tangent, as in the previous article,

and integrating

the deflection

and since z> = o for ^r = r

(14)

which reaches its greatest magnitude at the centre for x = o, viz.

16 Ew2
/
3

and if m = 3 this becomes

i pr
4

61?

which is J of the value (23), Art. 149, for the freely supported plate.

The intensity of vertical shearing stress may be estimated as for the

freely supported plate.
EXAMPLE i. A cylinder 16 inches diameter has a flat end i inch

thick. Find the greatest intensity of stress in the end if the pressure
in the cylinder is 120 pounds per square inch, if the end is taken as

(a) freely supported, (b) firmly clamped, at its circumference. Find in

each case what intensity of simple direct stress would produce the same
maximum strains. Take Poisson's ratio as .
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(a) From (n), Art. 149

(max.)/,, = J x 120 x 64 = 9600 pounds per square inch

From (16), Art. 149

(max ) Eex = f X 120 x 64 = 6400 .,

(b) From (7), Art. 150

(max.)A = f X 120 X 64 = 5760

From (10), Art. 150

(max.) Eex = f X 120 X 64 = 5120

151. Circular Plate freely sup-

ported at its Circumference and
loaded at its Centre. If we take the

load as concentrated at a point at the

centre of the plate, we should find

the stresses and strains at the centre

of the plate infinite if the material be
assumed perfectly elastic. The central

load will be taken as uniformly dis-

tributed over a small circle of radius

rQ concentric with the plate of radius r

(Fig. 196). It will be necessary to

treat separately the two regions into

which the plate is thus divided. If

W is the total load, the inner or loaded

portion of the plate carries a uniform

load/ per unit area where

The solution of equation (3) of Art. 149
therefore becomes

. B 3 (*K
2 -i)W^ J\ ~Y~

~~ '

A x9
4 Emzfnr *

<M_ = A - - 9 (
m* ~

i)w
^ A-

2
4

,
'

For the outer portion of the plate the moment of the external force

on an element ABCD (Fig. 193) is

F x 8* =^5L
. fy . &c instead of . 80 . x

W
and the equation (3) of Art. 149, p being equal to -^ becomes



-
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the complementary function is as before, and the particular integral is

The complete solution may therefore be written

n ,

D ;/i
2 - iW .

x
= c +

:^

dB D

The four constants A, B, C,, and D may be found from the four

following conditions, which give four simultaneous simple equations :

(1) The slope = o for x = o in (i), hence B = o.

(2) The slope 6 at x = rQ is the same for equations (i) and (5).
Jf\

(3) The curvature
^- at x = rQ is the same for equations (2) and (6).

These three conditions hold good whether the plate is clamped or

free. For the free plate the remaining condition is

(4) The intensity of stress/, = o for x= r, hence by (6), Art 148

. d6
h m -r = o for x = r

x dx

Solving the three simple equations for A, C, and D from conditions

(2), (3), and (4)-

By substituting these values (and B = o) in (i), (2), (5), and (6),
and using the relations (i), (2), (5), and (6) of Art. 148, the strains and
stresses in any part of the plate may be found. It will be sufficient

to examine their greatest values, which occur at the centre.

Stresses. When x = o and y = -> where / is the thickness of the

plate, remembering that tensile stress and strain have been chosen as

positive

(max.)A = (max.) /, = r ( + i)A

m
i

m ~~ x

g*
r. m~+\
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which reduces to the form (10), Art. 149, if r = r. If m = 3

W / r r
(max.) p> = (max.) px = -^f + 2 loge

- --
^

the last term of (10) or (u) being negligible if is small. Note that

as rQ approaches zero the term log becomes very great; such an
ro

approximate theory as the present should not be pushed to such limits
;

local plastic yielding at the place of application of the load will modify
the assumed conditions of elasticity. The neglected vertical com-

W
pressive stress of intensity

-
z under the load also approaches infinity

7T/*Q

as r approaches zero.

Shear Stress. The greatest vertical shear stress will be at the radius

W
x = r

,
where its mean intensity will be-- and its maximum about

i '5 times this value. Unless rQ is much less than / the greatest value

of this expression is much less than (n).
Strains. The quantity E X greatest principal strain, which, accord-

ing to the "greatest strain theory" (Art. 25), is the measure of elastic

strength, for x = o, y = - is

fi jr/J

(max.) E . ex
= (max.) Eez

= Ey- or Ey^
= EAy

- i)W/ m . . r m - i rf\

+ i
* og< r m + i )

' '

which reduces to form (15), Art. 149, when r = r. And for m = 3

.... (13)

the last term of (12) and (13) being negligible when - is small.

Deflection. The deflection anywhere on the plate may be found by

integrating the value
-j-

or 6 from (5) for the outer portion, and deter-

mining the constant of integration from the condition v = o for x = r.

The condition for the inner portion is that v as found from equation (i)
must be the same as that found from equation (5) at x = r . If rQ is

small compared to r, it will be sufficient to find the deflection of the

outer portion for x = rQ ,
that at the centre being very little greater

Substituting for C and D, and finding the constant of integration so that
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v = o for x = r, and then rejecting all terms in which r 2
is a factor,

for x = 1 o

\(m i)(3 -4- i)Wr
J

,
.

7
.- ' '

(approximately) . . (15)

and if in = 3 this gives the deflection

5 Wr2

tirE/3

or about 2-5 times the deflection (see (23), Art 149) caused by the same
load uniformly spread over the plate.

152. Circular Plate clamped at its Circumference and loaded at

its Centre. The investigation of this case is similar to that for the

freely supported plate in the previous article, except that the fourth

condition for the determination of the constants of the solutions (i),

(2), (5), and (6) is that = o for x = r. Solving the simple equations
for A, C, and D

.~
*

From these values (and B = o), and the relations (i), (2), (5), and

(6) of Art. 151 with (i), (2), (5), and (6) of Art 148, the strains and

stresses everywhere in the plate may be found. We shall examine

them for the centre and circumference, the tensile values being reckoned

positive.

Stresses. When x = o and^y = --

the last term being negligible if ~ is small, and the magnitude reducing

to the form (8), Art. 150, if rQ = r. If m =
3, (4) becomes

which is always less than (n), Art 151, for the freely supported plate.

When x = r, using (6), Art. 148, and (5) and (6), Art. 151, with the

constants of the present article
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and when y
- -> inserting the values of C and D

which reduces to the form (7), Art. 150, if r* = r.

It remains to examine the relative magnitudes of (5) and (6).

px at x = o exceeds px at x = r

2 -+- exceeds *- 3
.

247-2
i>.if log ^exceeds 2 -

|(^^o 4 o\*

which is satisfied if - exceeds 17 approximately, /.<?. the intensity of
?0

stress at the centre is the greatest stress in the plate if the diameter is

more than 17 times the diameter of the area on which the load is

applied.
Strains. At the centre x = o

and for y = - and x = o

the last term being negligible if - is small. For /// = 3

(8)

At the circumference, for x = r and y = -
, using the above values

of C and D

which agrees with (9), Art. 150, when rQ = r. And if m = 3

The value of E^ at the centre exceeds the value at the circumference

(for all values of m) if

loge
L + -^ exceeds i - ^r 4^ 2^

>. if loge
- exceeds i - f ^
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which is satisfied if - exceeds 2-4 approximately, i.e. the strain at the

centre of the plate is the greatest strain in the plate if the diameter of

the plate is more than 2*4 times the diameter of the area on which the

load is applied.
The vertical shearing stress will be similar to that in a freely

supported plate.

Deflection. As in the previous article, it will be sufficient to

examine the greatest deflection when - is small. Putting the above

values of C and D in (14), Art. 151, finding the constant of integration
under the condition that v = o for x = r, and then rejecting all terms

having r as a factor, we find for x = r

and if ;// = 3 this gives

2 \\V

which is | of the deflection (16), Art.

151, for the freely supported plate.
153. Circular Plate under Uniform

Pressure and supported at its Centre.

This case (Fig. 197) involves work

closely resembling previous cases, and

may be dealt with very briefly. The

support will be taken to be a uniform

pressure on a circular area of radius r
,

concentric with the plate of radius r.

The effective bending pressure on the

inner part will be

FIG. 197.

hence, for the inner portion as in Art. 149

d-e e
X
dxL + dx x~

B 3(OT-
*
=A +?~i- "I

<?<9 B g/W
5 -

^= A -^~i

-^
2

?^

C>

(2)

(3)

and since 6 = o for x = o, B = o. (If the plate were clamped to its

support so that = o for x = ;-
,
the result would differ but little from
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the present case if rQ is very small.) For the outer portion, in place of

(2), Art. 149, we should have

and the equation becomes

<POdO B
. (4)

and the particular integral follows the results of Arts. 149 and 151, the

solution being

<

The three simple equations to find A, C, and D follow from the

facts that the values of from (2) and (5) must be the same for x = r
;

the value
-j

from (3) and (6) must be the same for x = r0) and since

px = o for x = r,
- + mjx = o for x = r.

Solving these equations, we find

A = 3-^{^7^^-n')}. . (7)

_ 3(m
2 - l "
EmW
.(*
*

From these values the stress and strain anywhere may be written by
use of the relations in Art. 148.

Stress. At the centre x = o and y = -
:

(max.)A = (max.)A =
;;/2 J

X

J
. (01 + i)A

which vanishes for r =
r, and, if m =

3, gives

r 2 r
the term 4- being negligible if

-
is small. Compare this with (JT),

Art. 151, and with (5), Art. 152.
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Strain. At x = o and y = -

(max.) E . e,
= (max.) E . ex = E . A . j

which vanishes for r =
r, and, if w =

3, gives

(max.) E . , = / | log, + {i -
. . (13)

f ^
the term -A being negligible if is small. Compare this with (13),

Art. 151, and (8), Art. 152.

Deflection. Finding the central deflection as in the two previous

articles, when - is small

and when ;// = 3

(max.) v = gp

which is f of that when the plate with the same central load rests on its

edge (see (
1 6), Art. 151).

154. Approximate Methods applicable to Non-circular Plates.

By the following roughly approximate method we can estimate the

maximum bending stress in symmetrically shaped plates from the

average bending stress perpendicular to an axis of symmetry. Results

are subject to a numerical coefficient to be estimated from experiment
or comparison with the more rigorous examination of circular plates
made in the preceding articles. The method depends upon estimating
the bending moment on a section of the plate through an axis of

symmetry, from the loads and reactions of the supports on one side

of that axis, and is therefore only applicable to
"
supported

" and not to
"
clamped

"
plates. However, the preceding articles show that, in the

case of circular plates, the stress and strain are greatest in the simply
supported plates, and in practice the "clamping" of the edges of
a plate cannot always be relied upon to entirely prevent such small

inclinations of the plate as are consistent with "
free support

"
at the

edge. In a freely supported plate the maximum stress will generally
occur at the centre, and in a "

clamped
"
plate it will generally occur at

an outer edge. Imperfect clamping may result in removing so much of

the inclination at the supported edges as to equalise the stresses at the

centre and edges of the plate and so realise the maximum strength of
the plate ; a similar remark with regard to the analogous case of "

built-

in
" beams was made in Art. 84.

Application to Circular Plates. Uniform Pressure p per Unit Area
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(Fig. 194). Considering the half-plate ACB, the pressure on it is

n-r
2

. /, and the line of resultant pressure passes through the centroid G]

such that OGi = . The reaction on the edge ACB is also
7

^- ./>, and
O <J y ~*

its centre of action is at G2 ,
from O. The resulting bending moment

7T

across the section AOB due to the load and reaction is

M = /(
-

)
~

2 \7T 37T/ 3

We may calculate an average intensity of bending stress at the

outside surfaces of the section AOB in a direction perpendicular to AB
by dividing the bending moment by the modulus of section of AB, viz.

by \ . 2r . t
z or J/'/

2
;

this gives

But (10), Art. 149, shows that to give the greatest intensity of stress,

at O, this average value must be multiplied by a coefficient f
J*

r2

or 1*25 when m 3, giving a maximum intensity of stress 1*2 $p y

To get the stress (E .e) which would alone produce the same maximum

strain, it is necessary to multiply by the additional coefficient

or when m =
3, giving f ./ .

^-
Central, Load W. It the load W is uniformly distributed over a

concentric circle of radius rQ (Fig. 196), the moment about AB is

W/2r_4r \ =
2\7T 37T/

and the modulus being \rt
z as above, the average intensity of bending

stress would be

The numerical coefficient to give the maximum intensity of stress

at the centre ((10), Art. 151) will depend upon the ratio of rQ to r; for

large values of , taking m =
3, it will approach 1-25, and for smaller

values it will be greater, e.g. for =
-^ its value would be nearly 2-2.

155. Oval Plate under Uniform Pressure and supported at its

Perimeter. In the case of elliptical or other oval plates symmetrical
about two perpendicular axes, we shall only seek to justify a roughly
approximate empirical rule for the calculation of bending stress
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designed to fit extreme cases. If ABCD (Fig. 198) is such an oval

plate supported at its perimeter, the principal semi-axes OA and OB

being a and b respectively, the maximum deflection 8 will evidently

occur at the centre O, where the

slope 6 will be zero. The average
$

slope along OB will be 7, and the

average curvature or change of

slope per unit of length will be
c\

^2,
the actual curvature in a meridian

plane varying and reaching a maxi-

mum at O. Similarly, the mean pIG ,9g t

curvature in a meridian plane
s

through OA will be -g rising to a maximum at O. At the centre

O, where the slope is zero, we may take it from the theory of bend-

ing or from (6), Art. 148, that the intensity of bending stress varies

in different directions proportionally to the curvature ( -j- ), and if the

variation of stress along OA and OB follow similar rules, the bending

stress at O in the direction OB, i.e. across the section AC, is ^ times

that in the direction at right angles to it. Hence, if a is greater than b,

the bending stress at O in the direction OB is greater than that at right

angles to it, and will be the greatest in any direction.

Consider a very elongated oval in which a is very great and b is

very small; if a narrow strip of, say, unit width be cut with BD as

centre line, a uniform pressure / would cause on it at O a bending
moment lP(zb)

z or i^2
,
and the modulus of section of this strip

being |/
2
,
the intensity of bending stress \p& -7- \t* would be

In an actual oval, the plate not cut into strips, the effect of the

neighbouring (shorter) strips would be to reduce the value (i), which

must be looked upon as an upper limit for a very long oval.

In the other extreme case of an ellipse, viz. the circle where a = b,
79

the stress at the centre is about 1*25^ 2 ((u), Art. 149), and for inter-

mediate cases we may frame an empirical rule by using a coefficient

which is a linear function of -, varying from, say, 2^ when
- = o to 1*25

b
when - =

i, so that the greatest intensity of bending stress is

approximately
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A similar rule might be made for the case of a central load.

156. Square Plate under Uniform Pressure and supported at

its Perimeter. If ABCD (Fig. 199) represents a square supported

along its perimeter AEBFCHDK, we

might take bending moments about a dia-

gonal or about an axis of symmetry perpen-
dicular to a side

;
in the latter case the

unknown distribution of the reaction along
the edges presents a difficulty, hence we
choose a section along a diagonal AC.
But the bending-stress intensity at O is by
symmetry the same in the perpendicular
directions OC and OB. The intensity is

also by symmetry the same in the perpen-
dicular directions OF and OH, hence,

for a central point on the plate at O, the ellipse of stress (Art. 16) is a

circle, and in no direction does the bending stress exceed that perpen-
dicular to the chosen diagonal section AC. If 20 be the length of the

sides of the square and/ the pressure per unit area, the pressure on half

the square will be 202 ./. The reaction/^
2 on one side BC, however it

is distributed, will have a resultant at the middle point F of the side.

Similarly, the reaction on the edge AB will have a resultant pa* at E,
hence the total reaction of the two sides AB and BC will be at G2,

midway between E and F, and distant
-y=

from AC. The centre of the

pressure on the triangle ABC will be at G1} |OB or ^ a from AC,
i$

hence the bending moment on the section AC is

and the thickness of the plate being /, the modulus of the section on the

diagonal AC is

hence the mean intensity of the bending stress at the skin across AC is

as on a circle of diameter equal to the side of the square ( (2), Art. 154).

157. Rectangular Plate under Uniform Pressure and supported at

the Perimeter. Let the sides AB and BC of the rectangle ABCD (Fig,

200) be 20, and zb respectively. Then if the sides are not very unequal.
we may take it that the stress across a diagonal AC is about as great as

in any other direction. Let NB be a perpendicular from B on the

diagonal AC. The resultant reaction at the edges AB and BC being at
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the middle points E and F, the resultant reaction on the half-rectangle

ABC is in the line EF and is distant JBN" from AC. The centre of

pressure on the triangle ABC is at the centroid and distant |BN from

2a H

\Jr JL

FIG. 200.

AC, and the magnitude of the pressure and reaction is 20.. b .p hence

the bending moment on AC is

2ab . /(|BN - JBN) = \ab . p . BN
BN AB W& *t>

and BC
=
AC r =

2Sa*+-p=
27j+J

The moment of resistance of the section AC is

p
~

3

hence the average intensity of bending stress across AC is

(i)

For a very long rectangle in which is great, this will approach

and reasoning as for the limiting case of a very long oval, we may take

it that the average stress across an axis parallel to the long sides then

approaches

3 /
j*

the formula applicable to a flooring supported by joists, where the

bending parallel to the joists is negligible.

EXAMPLES XIII.

I. A circular plate is 20 inches diameter and f inch thick ;
if it is simply

supported at its perimeter, what pressure per square inch will it stand if the

intensity of stress is not to exceed 10,000 Ibs. per square inch? (Take
Poisson's ratio as 0-3.)
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2. What pressure may be allowed on the plate in problem No. i, if

the maximum principal strain is to be limited to that which would be pro-
duced by a simple direct stress of 10,000 Ibs. per square inch ?

3. Solve problem No. I for a circular plate clamped at its edge.
4. Solve problem No. 2 for a circular plate clamped at its edge.

5. What is the greatest allowable diameter for an unstayed flat circular

plate \ inch thick, supported at its circumference and subjected to a pressure
of 100 Ibs. per square inch, if the greatest stress is to be limited to 5 tons per
square inch ? (Poisson's ratio = 0-3 .)

6. Estimate the safe pressure on an oval plate I inch thick, simply sup-
ported at its perimeter, if the greatest length is 30 inches and the greatest
breadth 10 inches, and the allowable stress 10,000 Ibs. per square inch.



CHAPTER XIV.

VIBRATIONS AND CRITICAL SPEEDS.

158. Elastic Vibrations. When a body held in position by elastic

constraints is disturbed from its position of equilibrium, it executes

vibrations the nature of which is determined by the mass or inertia of

the system, the stiffness of the constraints, the elastic forces of which

govern the motion, and the amount of the disturbance. The greater
the amplitude of the motion the greater are the strains, and con-

sequently the stresses, caused in the supports or constraints of the body.
It is the existence of these stresses and strains which makes the study
of vibration of importance in the subject of Strength of Materials, and it

is to be remembered that vibratory stresses are of a fluctuating and
often of an alternating character, so that the stress intensities must be
lower than are permissible with static loads.

Exact calculation of the motion in a vibrating elastic system is often

a matter of great complexity, but very closely approximate calculations

are frequently very simple.
Three kinds of vibration of straight bars will be considered, viz.

Longitudinal, Transverse, and Torsional vibrations, the elastic forces

being those arising from longitudinal, bending, and twisting strains of

the bar. In many cases the inertia of the bar is negligible in com-

parison with that of attached masses, while in other cases the attached

masses may be zero or their inertia negligible in comparison with that

of the rod.

159. Tree or Natural Vibrations. Suppose a body to be held in

position by supports in which it causes strains within the elastic limit
;

the elastic forces of the supports or constraints are just such as will pro-
duce equilibrium of the body. If the body receives a linear or angular

displacement, say, due to an impact or the sudden addition or removal

of a definite mass, the elastic force of the constraints in the disturbed

position will not generally be such as will produce equilibrium, and
vibrations will ensue. Such vibrations, maintained by the action of the

elastic forces of the constraints alone, are called free or natural vibrations.

Their frequency depends upon the inertia of the system and the stiffness

of the elastic constraints, and their amplitude upon the magnitude of the

initial disturbance. If no subsequent disturbance occurs, the vibrations

continue until gradually damped by frictional resisting forces which,
however small, are always present.

2 D
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The elastic forces being always proportional to the displacement,
the motion of natural vibration will be of a "

simple harmonic "

character. A familiar instance is that of a weight hanging on a helical

spring ;
in this case the vibrations are often of so large an amplitude

and so low a frequency as to be easily discernible by the eye ;
in other

cases the motion involved by the maximum strain is so small and so

rapid as to be not plainly visible.

Fundamental and Higher Vibrations. In the subject of Strength of

Materials the most important vibration of a given kind is generally the

slowest or fundamental vibration. Often other vibrations of greater

frequency and smaller amplitude are possible, the relation of which to

the fundamental is important in the production of sound.

Relation of Inertia, Stiffness>
and Frequency. (i) Linear Vibration.

Suppose the whole vibrating mass has the same linear motion, and its

weight is W pounds, and suppose that the stiffness of the supports,
or elastic force per unit deflection or per unit linear motion of W, is e

pounds. Then using the ordinary relation for simple harmonic motion/
where T is the time of one complete

"
to and fro

"
vibration in seconds

The frequency or number of vibrations is

n = 1 =
2̂ Vw per SeC nd or N =

g being the acceleration of gravity, i.e. about 32*2 feet per second per
second if the stiffness e is in pounds per foot of deflection, or 32*2 x 12

inches per second per second if e is in pounds per inch of deflection. We
may also write equations (i) and (2)

T = n = L per second ..... (3)
p 27T

where/ is the constant angular velocity of a point moving in a circle,

the projection of which on a diameter of the circle defines the simple
harmonic motion of the vibrating weight W.

(2) Angular or Torsional Vibrations. Suppose the whole mass has

the same angular motion, and its weight is W pounds, and its radius

of gyration about the axis of motion is k (feet or inches), and the

torsional rigidity or stiffness is a moment C (pound-feet or pound-inches)

per radian of twist, then, corresponding to (i), choosing either foot or

inch units

T =
(4)

W
where I = . /

2
,
the (mass) moment of inertia of the weight W in

<*>

1 See the Author's
" Mechanics for Engineers," Chapter IV., or any text-book of

Mechanics.
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gravitational units, g being about 32*2 if the linear units are feet, and

12 x 32*2 for inch units.

The frequency of vibration is

n = ^
= 5Vf Per second or N =^V I

per minute (5)

The differential equation representing simple harmonic motion, and its

solution, bring out the above relations very clearly.
1

160. Forced Vibrations: Critical Frequency: Dangerous Speeds.
If a body held in position by elastic constraints is acted upon by a

periodic disturbing force, vibrations having the same frequency as that

of the disturbing force will be set up. Their amplitude, and therefore

the stresses caused by them, depend upon the relation between the

frequency of the disturbing force and that of the free or natural vibra-

tions of the body under the action of its elastic supports.
In vibration the energy of the system (consisting of, say, a single

load W and its elastic supports) changes in kind but not in amount. In

the mean or central position the velocity of motion is a maximum, and
the energy of the system is wholly kinetic ; in the extreme positions the

same amount of energy is wholly potential, being (neglecting any gravi-
tational effect) elastic strain energy of the supports or constraints. In

intermediate positions the same total energy is partly kinetic and partly

potential. The intensity of stress in the elastic constraints is in all

cases proportional to the square root of the elastic strain energy or

resilience (see Arts. 42, 93, and 116).
Critical Frequency. If the periodic force has exactly the same

frequency as a natural frequency of vibration, it will, at each successive

application, increase the total energy of the system, always acting in the

direction of motion and never against it. The increase of energy in-

volves additional strain energy, and therefore additional stress on the

constraints, particularly in the extreme positions, and the increase may
continue until the strain energy involves so great a stress intensity that

the limit of elasticity is reached and the elastic conditions cease to hold

good. This may involve a fracture or a change in natural period which

prevents further damage from the same periodic force, but in any case

the rhythmical application of even a small force of this critical frequency

may cause large and serious stresses. When a disturbing force has this

critical frequency which exactly synchronizes with the natural frequency,
the condition is sometimes called one of resonance^ from its acoustic

analogue.

Dangerous Speeds. A periodic disturbing force or moment may be
resolved into harmonic components the frequencies of which are usually
2

> 3> 4> 5 6, etc., times that of the periodic disturbance; hence a

periodic disturbance having a frequency of
, f, 5,

or J, etc., of the

natural frequency may become dangerous through one of its harmonic

components. In some instances parts of machines are so constructed as

to have a natural frequency much below the running speeds \
in such a

1 See Lamb's " Infinitesimal Calculus," Art. 182.



404 STRENGTH OF MATERIALS. [CH. XIV.

case there is no danger of the frequency of a harmonic component of a

disturbance arising from running approaching the natural frequency. In

starting and increasing such a machine to its full speed the resonant

condition exists for so short a time that no excessive stress results.

The effect of friction, which may be small when the vibrations

are very small, may increase greatly with increased amplitude of vibra-

tion, and so prevent the vibrations arising from a periodic force of

critical frequency attaining a very great amplitude.
It is not necessary that the frequency of a periodic disturbing force

should be exactly the same as the natural frequency of the system in

order to set up large vibrations
;

if it has nearly the same frequency
it will act in the direction of motion for a large number of successive

applications before becoming opposed to it, and thus may add to the

system sufficient energy to cause strains beyond a safe limit. For

example, if the natural frequency is 100 vibrations per second, and that

of an applied force, say, 97 per second, the difference in time of a com-

plete cycle is -^^ second
;
and dividing the period, ^ second, during

which the motion is in one direction, by ^ ,
it is evident that sixteen

successive increments to the energy of the system may be given before

the periodic force becomes opposed to the direction of vibratory motion.

The differential equations of motion *

representing the forced vibration

of an elastic system under, say, a harmonic or cosine periodic force,

framed in terms of acceleration or of energy, together with its solution,

bring out very clearly the nature and amplitude of the forced vibrations
;

an idea of the modifying effects of friction may be obtained by including
in the equation a term to represent the retarding force which increases

with the velocity.
161. Longitudinal Vibrations.

2 The extreme cases of a rod carry-

ing no load and a rod carrying a mass so large that its own inertia is

negligible will be considered separately.

Unloaded Rod. In this case the frequencies are usually so great that

synchronism with them is not likely to occur
, in running machinery. If a rod of length /
^

*j
(Fig. 201} is fixed so as to prevent longi-

'

tudinal displacement at one end, and free at

the other, the fixed end forms a node or

stationary point; the remainder of the rod
FIG. 201.

j.jas a iongitudinal vibratory movement in

which all parts move in the same direction at the same time, the

amplitude of vibration at any point distant x from the fixed end or

node being sin( -,
-

) times that at the free end. The frequency of the

slowest or fundamental natural vibration is
8-

i i /EA^- i /eg .
, .

" = T
=
4/v "^r

or 4V^?Persecond - W
1 See Lamb's "Infinitesimal Calculus," Arts. 186 and 187.
* See an article by the author in Engineering, vol. xc.

'See Rayleigh's "Theory of Sound," vol. i. Arts. 149-154 \
* Barton's "

Sound,"
Art. 171.
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orwhere E is the direct modulus of elasticity, e ( =
j-

\ is the stiffness

force per unit of elongation, w is the weight of the material per unit

length of rod, A is the area of cross-sectional area, and g is the accelera-

tion of gravity, which is about 32*2 x 12 inches per second per second.

The frequency is independent of the cross-sectional area, for both e and
w are proportional to A. If we take, as an example, a steel rod 10 feet

long fixed at one end, E = 30 x io6
pounds per square inch, and the

weight of steel 0*28 pound per cubic inch, the lowest frequency is

x I2
424 per second

a speed so high that cases of dangerous resonance in machinery are

improbable.
If both ends of the rod are fixed the nodes are at the ends, hence

the frequency is given by (i) if / is the half-length ; if both ends are

free longitudinally the node is at the centre, and the formula (i) again

gives the frequency if / is the half-length.
Loaded Rod. When the rod carries at its free end or point of

maximum amplitude a load W pounds, so heavy that the inertia of

the rod is negligible, the time of vibration and the frequency are given

by the general formulae (i) and (2), Art. 159, where e =
j- t

so that the

natural frequency of vibration is

per second . , . . . (2)

If the weight of the rod is not negligible, but is small compared to

the load, the amplitude of vibration of any point in the rod is practically

proportional to the distance x from the fixed end (Fig. 202), hence if W'
is the weight of the uniform rod, and v its velocity at a

distance from the fixed end where V is the velocity of the

free end, so that v = j .V, the kinetic energy of an

element of length 8x, distant x from the fixed end, is

and the total kinetic energy of the rod is

WVa

i

Hence the mass of the rod is dynamically equivalent
to i of the same amount at the free end, and may be
taken into account, if necessary, by adding one-third of the weight of

the rod to W.
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If the rod consists of two or more parts of length /
lf 4 etc., and area

of cross-section A l and A2,
etc. (Fig. 203), the stiffness

i or force per unit deflection is evidently given by

or

hence

= i

and the frequency (2), Art. 159, becomes

or

FIG. 203.

(3)

162. Transverse Vibrations. When a bar makes transverse or flex-

ural vibrations the extreme cases of the unloaded and heavily loaded bar

may be treated separately. The vibration of the unloaded bar, which is

of greater direct importance in the science of Sound than in Strength of

Materials, is dealt with briefly in the next article, while in the present article

a very closely approximate method of calculating the frequency of the
fundamental vibration applicable to unloaded or loaded bars is given.

1

This method consists in equating the strain energy which the bar

would have in its static deflected position under the same load to

the kinetic energy which the system would have in passing through its

mean or undeflected position, when vibrating throughout its length with

the same period and with an amplitude equal at every point to its static

deflection at that point. This arbitrary assumption as to the amplitude
of vibration is not strictly correct, particularly for the unloaded bar, but

gives a very nearly correct result by a simple calculation (see Art. 163).
An example will make the method clear.

Bar carrying Uniform Loadwper Unit Length ,
and simply supported at

the Ends (Fig. 112). The deflection
_>>

at any point of the bar, distant x
from one end ( (9), Art. 78) is

(0

where I is the moment of inertia of the area of cross-section, and / the

length of the bar
;
the strain energy ( (9), Art. 93) is

5 See also an article by the author in Engineering^ July 30 and Aug. 13, 1909.



ART. 162] VIBRATIONS AND CRITICAL SPEEDS. 407

If, vibrating about the undeflected position with amplitude y, the

velocity of any point is p.y-> where/ is the constant angular velocity of

a point moving in a circle of radius y, which defines the simple harmonic

motion, the kinetic energy of an element of length dx is then

hence, equating the total kinetic energy to the above strain energy

f
l

f
l

P* =g\ ydx-=r\ y* .dx
J o Jo

and substituting the value (i) ofy and integrating

_ 24^EI _%M _ 3034 ^EI _ _._
p ~7//r(5

' 63 ;
"

31
ze74

"" 97 55
rc-7

4

9^77 /JEI
P-- -jrVV ' ' ' ' ....... M

Frequency = n = =
Ll^y/lM . . . (5)

Barfixed at both Ends. If the bar is fixed in direction at both ends,
from Art. 84

and equation (2) gives

f=^\JS^ (7)

Frequency =
-j-
= M^V/I^ per second .... (8)

The same method may be applied to bars with other terminal con-

ditions or carrying various types of load, using for the values of the

deflection y those found in Chapters VI. and VII. Isolated loads involv-

ing discontinuity in the algebraic expression for y, if combined with

other continuous loads, require the ranges of integration dividing into

parts over which y is a continuous function of x. For isolated loads

only the equation corresponding to (2) will be

(9)
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Heavy Single Load. When a bar carries a single load W, so heavy
that other masses may be neglected, and of small dimensions compared
with the length of the bar, formula (9) may be used, both sides being
divided by JWy ;

this is equivalent to finding the stiffness e, and using
it in the general formulae (i) and (2), Art. 159. The value of e is found

by equating to unity the expression for the deflection under a load e,

placed in the position of the load W ;
the various algebraic expressions

for the deflection are to be found in Chapters VI. and VII.

For a heavy load W on a light rod of length / freely supported
at the ends, if W divides / into two lengths a and <, from (8), Art. 80

_ W^2

=

3EI/

and writing e for W and unity for y

3EI/
e = ^?w ........ < lo)

hence from (2), Art. 159, the frequency of natural vibration is

or from (9), dividing each side by JWy

_p _ i /7_ i /"
2', jTrV y 27rV

If the ends are fixed, from Ex. 2, Art. 87, the deflection under the

load is

and the frequency of vibration is

n = \/ - = \/ /U per second . . (13)27T 2-7T V V 27T V W/73#* * \ O/
27T 27T V 27T

If one end of the rod is fixed and the other free, and W is at a dis-

tance /j from the fixed end, from (4), Art. 79

per second . . . . (14)

Numerous other cases suggest themselves, and may be solved

similarly.

Effect cf Size of Vibrating Load. If the vibrating load is not of

small dimensions in comparison with the length of the shaft, it will

be necessary to take account of the fact that it has a rotatory motion



ART. 162] VIBRATIONS AND CRITICAL SPEEDS. 409

about an axis perpendicular to the length of the bar and per-

pendicular to the plane of vibration. Let I' be its (mass) moment
W

of inertia about this axis so that I' = IP where k is the radius of
g

gyration of the load about this axis. We may illustrate the effect of

this rotation on the above results by the case of the bar with one end
fixed and the other free, loaded with the weight W at a distance /x
from the fixed end. If is the slope of the axis of the bar at a distance

4 from the fixed end, from (3) and (4), Art. 79

\V7j- W/,'
'

2EI
"

The angular velocity of the load about the axis perpendicular to the

bar and to the plane vibration is

d&__ 3 dy
~di~~ ^df

hence in passing through the mean position

9

and the kinetic energy of rotation is

hence, equating the total kinetic energy to the strain energy by adding
to the general formula (9) a term giving the rotational energy

IrJ^+tr&^-iKr (15)& ^"i

all:
<"%// I

3

+*j>^L)

(I6)

and the frequency

27T 27T

+ 4

instead of the value (14). In the case of pulleys on shafts the term

Ij2
or

T/^v
*s ften so smaN as to be negligible in comparison

with unity, in cases where the transverse frequency is so low as to be of

importance.
The modifications appropriate to other cases with different end con-

ditions can easily be made if necessary. In the important case of
a single weight midway between similar bearings no correction is

j/\

required, for evidently 6 and -^ are always zero.
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Single and Distributed Load. Applying the general method of
this article to a single load at the centre of a bar simply supported at

both ends, writing v =p X 8 in (7) Art. Q3A, and omitting the term
w . 8, it is evident that the inertia is increased by an amount equivalent
to a load ^z^/at the position of W (Fig. in). Hence (n) becomes

For fixed ends similarly the frequency is

n = L\/ f^W + *w/)
corresP nding to (13) when w = o

27T

And for the cantilever loaded at the free end

i / 3E.I.P-n = ^/ /3
/w + **wj\ corresponding to (14) when w = o

The effect of the inertia of the bar in less simple positions of the

point of impact may be similarly found by using suitable ranges in the

integrations for total kinetic energy.
Several Loads. Empirical Formula. If a bar carries several

loads, W1} W2,
W8,

W4, etc., whether concentrated or distributed,
and including the weight of the bar when not negligible, and the

frequencies of vibration when the bar carries any one alone of these

loads are lf n^ ns , n^ etc., respectively, then if n is the frequency
when the bar carries all the loads

or,
=

1 + 2 + 3 + 4 ,etc. . . . IQ

where T1} T2,
T3 , etc., are the times of vibration for the separate loads,

and T is the time of vibration for all the loads together. This empirical
formula may be used as an alternative to (9) for the calculation of a

complex system.
163. Transverse Vibration of Unloaded Rods. Lord Rayleigh

1

has pointed out that for a rod making free transverse vibrations, different

assumptions as to the deflection curve of the rod within wide limits

make but small differences in the calculated frequencies. The method
of the previous article takes advantage of this fact for approximate cal-

culation, by assuming for an unloaded bar the particular form of the

static deflection under the uniformly distributed load of its own weight
which gives a simple algebraic expression. The more usual calculation

is briefly as follows :

Let y be the deflection of a point of a thin bar, distant x along the

bar from a chosen origin, at a time /, and let y' be the amplitude of

vibration or extreme value of y at this point. Then if w is the weight

1
"Theory of Sound," Art. 182.
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per unit length of bar, the elastic force towards the undeflected position,
iv d^y

per unit of length, is X
-^. Hence, corresponding to equation (6),

Art. 77-

Assume y to be harmonic, so that

which goes through a cycle in a time i\/ ~u7

vr /^EI
and has a frequency n= \/~27TV W
where /// is simply a number

; substituting this value (2) of y y equation

(i) becomes

where r =
,7^"

or ? where / = 2irn

the angular velocity corresponding to the simple harmonic motion.
The solution of this equation is

l the sum of the solutions of the two

(Py' <f*y'

equations -^2 + m<*y' a d ~T~-2 rn
2y == o, viz.

/ = A cos mx -f B sin mx + C cosh mx + D sinh mx . (4)

the four arbitrary constants A, B, C, and D being made to satisfy the end
conditions of the rod, as in Chapter VI. Four conditions are sufficient

to eliminate three of the constants and to give an equation which must
be satisfied by m, and this from (2) gives the frequency.

The case of a bar of length / simply supported at each end may
d*y

be chosen for illustration
;

if the origin is at one end, y = o = -X, for

x = o and for x = /. Putting x = o in (4), A -f C = o.

Differentiating (4) twice, and putting ^=o, -A + C = o, hence

A = C = o.

Putting x = / in (4), B sin ml -f- D sinh ml = o.

d*y
Differentiating (4) twice, and putting 3:3 =

B sin ml + D sinh ml = o
;
hence 26 sin mi = o.

If B = o or m =
o, y' = o for all values of x, and the bar is at rest.

If B is not zero, and sin ml = o, ml = TT, or 271-, 371-, 471-, etc.

1 See Lamb's "Infinitesimal Calculus," Art. 189.
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Taking the first value which corresponds to the slowest rate of

vibration m r,the frequency from (2) is

_ m
*

/s^- _ v /J53~
27T V w 2/2 V w (5)

A comparison of this with (5), Art. 162, shows how close is the

agreement with the approximate calculation. Taking a round steel

shaft of diameter d inches and length /inches, w = 0*28 x -d2
pounds,

I = j-^
4
>
"= 3 2

*2 X 12 inches per second per second. E = 30 x io
b

64

pounds per square inch, hence the number of vibrations per minute is

given by

__^OTT /32'2 x 12 X 30 X io6 X TT(P x~4 _ 4,800,000^
=

2/
2V 0-28 X W2 x 64 /

2

The frequencies in this case are proportional to m2
, hence, for the

second and subsequent modes of vibration and values of m, the frequencies
are 4, 9, 16, 25, etc., times as great as for the fundamental or slowest

vibration. Critical or resonant speeds of forced vibration may occur

with any of these modes of vibration, but the slowest or fundamental is

the commonest for ordinary working speeds of machinery. For other

conditions of the ends of the bar different modes of vibration occur.

The solutions will be found in books on Sound. 1 For a bar fixed at

each end, cos ml cosh ml = i,and for the slowest vibration the solution

is ml = 4*73, or roughly -. For a bar fixed at one end and free at the

other, cos ;/// cosh ml = i
,
and for the slowest vibrations the solution

is ml = 1*875. For a bar fixed at one end and supported at the other,
cot ml = coth ml, and the first solution is ml

' = 3*927.
161 Whirling Speed of Rotating Shafts. When a round shaft is

rotating, the centre line of the shaft will not coincide with mathematical
exactness with the axis of rotation owing to the weight of the shaft, want
of straightness, vibration, and other causes. Hence centrifugal forces

due to the inertia of the shaft will produce a bending moment on the

shaft tending to deflect it, increased deflection giving greater centrifugal
forces. These deflecting forces are proportional to the square of the

speed and to the deflection, and are resisted only by the elastic forces

of the shaft, hence, as the speed of rotation increases, a value will be
reached at which the centrifugal force will exceed the elastic forces, and
the deflection and stress, unless prevented, will increase until fracture

occurs. This critical speed at which instability sets in is called the

whirling speed of the shaft.

For an unloaded shaft, or for a shaft of negligible inertia carrying a

1 See Rayleigh's "Theory of Sound," vol. i. Arts. 161-181 ; or Barton's
"
Sound," Arts. 198-217.
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heavy load the radius of gyration of which is negligible compared with

the length of the shaft, the whirling speed is the same as the natural

frequency of transverse vibration under the same conditions of support.
If we regard the centrifugal forces exerted by any portion of the shaft,

resolved in any plane containing the axis of rotation, as a disturbing
force on the remaining portion, we might regard the phenomenon of

whirling as resulting from the coincidence of the frequency of forced

vibration with the frequency of natural transverse vibrations of the

shaft. Perhaps a better point of view is to regard the centrifugal forces

of the rotating shaft as counteracting the elastic forces which tend to

straighten the shaft, and so reducing the stiffness, the flexural stiffness of

a rotating shaft being dependent upon the righting force resulting from
the joint action of the elastic and centrifugal forces; the whirling

speed is then that at which the stiffness becomes zero and the period
infinite, or the frequency nil.

Unloaded Shaft. Let w be the weight of shaft in pounds per unit

length, I the moment of inertia of the cross-sectional area about a

7T

diameter, viz. ^-d* where d is the diameter, E be the direct modulus of
4

elasticity of the material, and CD the angular velocity in radians per
second. Taking the axis of rotation as axis of x, and the variable

deflections of the centre line of the shaft from the axis of rotation as
j^,

neglecting the effect of gravity, the centrifugal bending force per unit

length is

Using this instead of w, equation (6), Art. 77, becomes

d* wu?
' ' ' '

or, ^.,-^ = ......... (2)

lUii?

where = - ...... (3)

The equation (2) is identical with equation (3), Art. 163, if <o = /,
hence the whirling speeds in revolutions per second are the same as the

frequencies of transverse vibration. These have been given for various

cases in Art. 163, and it is unnecessary to repeat them; for practical
use the formulae for various cases may be reduced as shown in (6), Art.

163. In the case of a shaft, a very short or a swivelling bearing will

approximate to a "
support," and a long rigid bearing will give approxi-

mately the condition of a fixed end. The approximate values (4), (5),

(7), and (8) of Art. 162, and others similarly obtained are, of course,
valid for the whirling speeds.

Critical or whirling speeds other than the fundamental or lowest

value will occur at higher speeds, as indicated in Art. 163, the quantity
ml having a series of values which satisfy the conditions.
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Single Loads. When a shaft carries a load W, so heavy that the

mass of the shaft is negligible, and of dimensions small compared
to the length of the shaft, the critical speed of rotation is that at which
the centrifugal force of the load is just equal to the elastic righting force

of the shaft. If o> is this critical velocity, and y is the deflection of the

centre of gravity of the load froncf the centre of rotation, and e is the

stiffness or elastic force per unit deflection of the shaft at the point
of attachment of the load, equating the centrifugal force to the elastic

force

W
*y = v ....... (4)

...... (5)

and the speed in revolutions per second is

o> _ jc_ /eg
* =

^r
~

27rV W ....... (
6
)

which is the same as that calculated for the transverse vibrations (n),
(13), (14), Art. 162, and the general vibration formula (2), Art. 159.

Deflection at Other Speeds. Suppose that initially the centre of

gravity of the load deviates by an amount h from the centre line of

rotation
;

then at any speed w, equating the centrifugal force to the

elastic righting force of the shaft

7^.+j)-'-j
...... (7)

Wco* W<o2

This reaches the value infinity for the critical value o>
2 = for

lower values of o> it varies from zero to infinity ;
for higher values of w, y

is negative and approaches the value h. If the shaft is initially straight
and true, and the deviation h is due to the load being out of balance,
i.e. its centre of gravity not coinciding with the centre of the shaft, the

approach of y to the value h means that above the critical speed the

weight rotates about an axis which approaches its centre of gravity more
and more nearly as the speed increases. (This is the principle of the

flexible shaft of the De Laval steam turbine.) If the weight is in perfect

balance, and the initial deviation h is due to want of straightness of the

shaft (since y represents deflections of the shaft) the deviation of the

centre of gravity of the weight from the axis of rotation is

h + y = h - -%r^ = -h -
jjj-Jr
-

. (o)
eg War War eg

Below the critical velocity this varies from h to infinity, and
above the critical velocity it approaches the value zero, i.e. the rotation

tends to straighten the shaft. That rupture does not occur in passing
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through the critical speed is due to the circumstance that the interval

of time, during which the speed has the critical value, is too small

for a large deflection to occur. Equation (8), which may be written

to
2

co
2

fl
2 O* " ~2 2 *

(
*

)

where <oc is the critical value x/ -rvr, shows that if w remains nearly

equal to the critical value the deflection, and therefore the intensity
of stress, may be unduly great.

Effect of Size of Load. If the rotating load were not of small

dimensions in comparison with the length of the shaft, it would be

necessary to take account of the fact that, owing to the deflection of

the shaft, every portion of the rotating weight is constantly changing
its plane of rotation. (An important exception occurs in the case of a

single load placed midway between similar bearings.) The more exact

values in such cases, as well as much information on the subject of

Whirling of Shafts, is to be found in papers by Professor Dunkerley
J

and Dr. Chree 2 and the Author.3

Several Loads. When a shaft carries several loads, the critical

speeds of rotation may be found by the empirical formula (8) of

Art. 162, which has been verified experimentally. The same formula

may be used in cases where the inertia of the shaft itself is not negli-

gible. A number of practical rules for shafts loaded and supported
in various ways is to be found in a paper by Professor Dunkerley
in the Proceedings of the Liverpool Engineering Society, December, 1894.

EXAMPLE i. Find the whirling speed of a steel shaft i inch

diameter and 5 feet long, supported in short bearings, which do
not constrain its direction, at its ends.

From equation (6), Art. 163

4,800,000=
60 x 6

= J 333 revolutions per minute

EXAMPLE 2. A vertical steel shaft \ inch diameter and yj inches

between the long bearings at its ends, carries a wheel weighing 4

pounds midway between the befcrings. Neglecting any increase of

stiffness due to the attachment of the wheel to the shaft, find the

critical speed of rotation and the maximum bending stress when the

shaft is rotating at ~ of this speed, if the centre of gravity of the

wheel is^ inch from the centre of the shaft. E = 30 X io6
pounds

per square inch.

From Ex. 2, Art. 86, the stiffness e, or force per inch deflection at

the load, is _ 192El

-J~
1 Phil. Trans. Roy. Soc. t 1894, vol. 185.
* Phil. Mag., May, 1904; or Prof. Phys. Sac., vol. xix.
8
Engineering, July 30 and Aug. 13, 1909.



416 STRENGTH OF MATERIALS. [CH. XIV.

hence the critical velocity in revolutions per second is

606p /?._ 30 /
27rV "W

=~^V
= fx/

;

W/3

*9 2 X 30 X io6 X TT X 32-2 X 12 X 3

4 X 64 X 256 X 15 X i5~X~i5
= 4800 revolutions per minute

At o'9 of this speed, by (io), Art. 164, the central deflection i

'OI
|(lg0))".- ft)f[

= '01 x fi = "426 inch

The central (centrifugal) bending force is 0*0426 x e, and the

central bending moment (Ex. 2, Art. 86) is

M = l X 0-0426 x / X e =
'

426 X
Q

7
'

5 X
pound-inches

8

and the maximum bending stress is

M _ M _ 0*0426 x 7 '5 X 192 X 30 X io6 X I

Z
~
"8x1

~
8 x 8 X rxT7~5)

s

= 68,160 pounds per square inch

EXAMPLE 3. Solve Ex. 2 if the shaft bearings do not fix its

direction at the ends.

In this case, e
3 ,

or \ of the previous value. Hence the

critical speed is *J\ or
'

J of the previous value, i.e.
--

2
= 2400

revolutions per minute.

At ^ of the critical speed the central deflection will be as before,

0*0426 inch.

The equivalent central load, 0*0426 x e, will be \ of its previous

value, and the central bending moment will be

i X 0-0426 X e x I

which is 2 X J, or \ of its previous value, hence the bending stress will

be \ of its previous value, or

68,160- = 34,080 pounds per square inch

165. Transverse Vibration of Rotating Shafts. A rotating shaft,

when laterally disturbed, has its elastic righting forces reduced by the

centrifugal force arising from its own inertia, hence its stiffness and

frequency of transverse vibration are reduced, and its period increased.

Let the natural frequency of the shaft when not rotating be , and
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JL?

when rotating with angular velocity <o be . Then, from the equation

(3) of Art. 163, allowing for the centrifugal force as in (2), Art. 164

hence the vibrations are of the type in Art. 163, and

/2 + <0
2

=/> ........ (2)

or, /2 = /= - w2 ....... (3)

the frequency being

n = ~Jf=J ....... (4)

and the time of vibration

We have seen in the previous article that the whirling speed is

attained when o> = p ',
for a forced transverse vibration resulting from

any periodic disturbance, apart from rotation, the critical frequency is

that given by (4). Evidently the same holds good for a single weight
on a shaft of negligible mass.

166. End Thrust and Twist on Rotating Shaft. The decreased
flexural stiffness resulting from rotation will evidently diminish the

capacity of a shaft to withstand end thrust, i.e. it will reduce the

collapsing load of the shaft considered as a strut. A single case will

be sufficient to illustrate this. Take a rotating shaft of length /,

diameter </, and weight per unit length w, freely supported at its

ends by bearings which do not constrain its direction, and in which
it turns with an angular velocity <o, and let it be subject to an end
thrust P (Fig. 204). Taking the initial position of the axis of the shaft

as axis of #, ify is the deflection at a distance x from one end O, due
to end thrust alone, when a state of instability is reached, with the

convention of signs used in Art. 77, the shaft being concave towards

its unstrained position

dzv

El^=-P.y ,
-,_.

(i)

*y - 1 *y
dx '~ El

'

d
2 E
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Combining this with equation (i) of Art. 164, for end thrust and

centrifugal force due to rotation

The solution of this equation is the sum of the solutions of the

equations

~rL + ?y = o and - - m?y = o

#22
2 and ff/!

2
being the two roots of the quadratic equation

P 2

w +ET ~

hence the complete solution of equation (2) is

y = A cos m^c -f B sin w^ + C cosh m^x + D sinh M
Z
X (3)

y ,

And since y = o =^ tor A: = o

A = o C = o

<Py
And putting y = o = ^ for ^ = /

(#'i
2 + ^2

2

)B sin m-f o

since w,
a + m* is not zero, unless B = o (in which case y = o, and

there is no bending)
sin ;;/x/= o ....... (4)

i.e. under the unstable conditions

m-J = TT, 27r, 37r, etc....... (5)

Taking the lowest speed, m l
=
j-

P2
/(0

2 P 7T
2

This gives the limiting value of P for stability with rotation at a

given speed o>, or gives the critical value of <o under a given thrust P ;

the value o>, and therefore the frequency, is reduced by P. If P = o,

(6) reduces to the form (5), Art. 163, which gives the whirling speed of

the shaft with no end thrust, Art. 164. If o> = o, equation (6) reduces

to Euler's limiting value for this shaft considered as a stationary strut.
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The formula is evidently only a limiting value subject to limitations in

actual shafts due to want of straightness, gravitational and other trans-

verse loads, etc. If the sign of P were reversed it is quite evident that

the critical or whirling speed will be raised instead of being lowered
;

in this case w may be found by reversing the sign of P in (6). The
effect of eccentric end thrust, or transverse loads, might be taken into

account as in Arts. 104 and 105.
In actual shafts the effect of end thrust in producing instability is

usually very small in comparison with that of centrifugal forces.

A twisting moment T also has a small effect in producing instability,
but it is usually negligible in comparison with the effect of a moderate
end thrust, or with that of centrifugal forces. The condition of in-

stability in a shaft freely supported at each end is given by the

relation l

P T2

__T?
El 4E

2
1
2

J*

EXAMPLE i. Find the critical speed of the shaft in Ex. i, Art.

164, if there is an axial thrust of 200 pounds. Weight of steel, 0-28

pound per cubic inch. E =30 X io6

pounds per square inch.

w, the weight per inch length = 0-28 x 07854 = 0^22 pound

From (6)

/
2EI

_ /32'2 X 12 X 30 X io6 X IT/ 97-4 9*87 X 200 X 64 \^ 0'22 X 64 \I2,960,000 3600 X 30 X IO6 X 7T/

= 136 radians per second

which is equal to x 136 = 1300 revolutions per minute, the de-

crease due to the end thrust being about 2\ per cent.

167. Torsional Vibrations. The various cases of torsional vibra-

tion are closely analogous to those of longitudinal vibration (Art. 161).
The torsional rigidity varies with the form of cross-section (see Art.

112), and we shall consider only the case of shafts of circular section.

Unloaded Shaft. In the case of a uniform shaft of diameter d and

length / (Fig. 201), fixed so as to prevent twisting strain at one end
and free at the other, the fixed end forms a node or stationary section

;

the remainder of the rod has a vibratory movement, in which every
part at a given instant moves in a circle about the axis in the same
sense. The angular amplitude of vibration of any point distant x from

1 See a paper by Prof. Greenhill in Proc. Inst. Mech. JSng., 1883.
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the fixed end is sin
( / ~)

times that at the free end. The frequency

of the slowest or fundamental natural vibration is
l

where N is the modulus of transverse elasticity, A = -d"* is the area of

cross-section of the shaft, w is the weight per unit length, and g is the

acceleration of gravity, 32^2 x 12 inches per second per second. The

frequency is independent of the diameter (d) of the bar, since w is pro-

portional to A. As in the case of longitudinal vibration the natural

frequency of unloaded shafts is so high that cases of resonance in

machinery are improbable.
If both ends of the shaft are fixed the nodes are at the ends, hence

the frequency is given by (i) if / is the half-length; if both ends are

free the node is at the centre, and (i) again gives the frequency if /is

the half-length of the shaft.

Single Load. When the shaft with one end fixed carries at its free

end, or section of maximum angular amplitude, a load W (Fig. 202), the

/ W \
(mass) moment of inertia I (or J?

j
of which is so great that the

(mass) moment of inertia of the shaft is negligible, the time of vibration

and frequency of free or natural torsional vibrations are given by the

general formulae (4) and (5), Art. 159. If C is the "torsional rigidity"
or twisting moment per radian of twist of a circular shaft ( (3), Art. 109)

c- NJ
~J~

7T

where J
=

d*, the moment of inertia of the area of section about the
O

axis, hence (5), Art. 159, becomes

i /NJ ^ /N" i
n = \/ -jy

or \y ?7
or

^:

or ^v\S?persecond (2>

where k is the radius of gyration of the load W and g is 32-2 X 12

when inch units are used.

If we use pound and inch units, and take N = 12 x io6

pounds

per square inch for steel, this reduces to

n = V \\^&V per second ;,*- V;-:^ (3)

The approximate correction to be made in (2), if the (mass)
moment of inertia of the shaft is not quite negligible, is analogous to that

1 See Rayleigh's "Theory of Sound," vol. i. Art. 159; or Barton's "Sound,"
Arts. 173 and 174.



ART. 167] VIBRATIONS AND CRITICAL SPEEDS. 421

for the case of longitudinal vibration, viz. \ of the moment of inertia

of the shaft is to be added to I.

If the shaft consists of two or more parts of lengths /1} 4 etc., and
diameters dlt 4, etc. (Fig. 203), the twist caused by unit twisting
moment is evidently the sum of that caused in each section, or

a method of calculating the torsional stiffness C, which may be used in

all cases of shafts of varying diameter. From (3) the natural frequency
is

which may be written

r~ T / N~~
per second . (5)

or for steel, in inch and pound units

= 34 - - ..... (6)

The formulae (4) and (5) are equivalent to using formula (2) with a

diameter, say, d^ and lengths made up of the several parts, each part,

such as 4 etc., being altered in the ratios
(-j\ ,

etc. The method of

using such an "equivalent length" is useful in all torsional-stiflfness

problems where the diameter of a shaft is different in different parts.
T7vo Loads. If there are two loads on a free shaft of length / (Fig.

205), the node will be somewhere between them. Let and /2 be the

respective distances of the node from the loads of ^ and I2,
moments of

inertia. Then the natural frequency of vibration of the system is the

same as that of either load on a shaft fixed at the node and free at the

corresponding load ; hence from (2)

--;>-
<

/i I2
hence ~ = "
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and the node divides the length / inversely as the moments of inertia of

the loads. Also

=
27J-

r ^J- r + T. (8)

which might be put in a formula similar to (3). The equation (8)

may also be written

n9 = n^ + nf . ... . (9)

i /NJ i /NT"
when ! and 2 are the frequencies \J j-j

and \/ y-j
of the

shaft fixed at one end and carrying ^ and I 2 respectively at the free

end.

P
-,
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For the right-hand portion alone if fixed at the outer end

"* = SV 4lf

The frequencies n of the whole system are then given by the

equation

(n*
-

,)(
-

3
2
)
=

(nfa')* (10)

the roots of which are both real. The nature of the vibrations will

vary with the relations of the values C,, Q, Ii, I2) and I3 .

The equation (10) may be derived as follows: If nodes in the

sections /j and /3 fall at distances x and y respectively from ^ and I3,

the end loads have a time of vibration given by (2), as

I /NJ, i= ^V iS
The inner load I2 vibrates in the same period and as an anti-node

between the two nodes, and the torsional rigidity of the shaft is

evidently the sum of the torsional rigidities of the shaft between the

two nodes, viz,

C =

hence n = ~ i
. /I2\-

Eliminating x andjy from the equations (12) and (n) and reducing,
we arrive at the form (10), where nlt n3, /, and nl have the values

given above. The two roots indicate two possible modes of vibration :

one is a two-node vibration, in which the end loads Ij and I3 are

always turning in the same direction as each other, and the inner
load I2 in the opposite direction

;
the other is a single-node vibration,

in which the end load nearest to that node turns in one direction,
while the inner load Ia and the other end load turn in the opposite
direction.

Other cases,
1

together with some numerical examples, and a very
simple method of obtaining frequency equations such as (10), will be
found worked out in a paper by Chree, Sankey, and Millington, in

the Proc. Inst. C.E., vol. clxii. Also in a paper by Frith and Lamb
in &&Journal of tfo Inst. of Elec. Eng., vol. xxxi. p. 646.

EXAMPLE i. A gas engine has two flywheels, each weighing
800 pounds and having a radius of gyration of 30 inches, placed
28 inches apart and equidistant from the crank on a shaft 3 inches-

diameter. Estimate the natural frequency of torsional oscillations.

Take N = 12 x io6

pounds per square inch.

The moment of inertia of the crank and attached masses would
1 See an article by the Author on "Critical Speeds for Torsional Vibrations" in

Engineering, vol. xc., December 9, 1910.
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usually be so small compared with that of the flywheels as to be

nearly negligible. In this case, since the node occurs at the crank,
it is entirely negligible. The frequency is evidently the same as that

of a single wheel on a shaft 14 inches long, fixed at the unloaded

end. From (3) this frequency is

n = 3400 X 9/v/o = 9-65 per secondV 800 x 900 x 14

or 579 per minute.

Speeds in the neighbourhood of \, J, \, or J, etc., of the above

frequency might give undesirably large torsional oscillations.

EXAMPLE 2. A shaft 4 inches diameter carries a flywheel weighing
1200 pounds, the radius of gyration of which is 18 inches, and a

dynamo armature, the moment of inertia of which is f that of the

flywheel, the distance between the flywheel and armature being
28 inches. Estimate the frequency of natural torsional oscillations.

Take N = 12 x io6
pounds per square inch.

The node divides the length of 28 inches in the ratio 4 to 3, and
is f of 28, or 12 inches from the flywheel. Hence, from (7) or (3),

Art. 167

3400 x 1 6
n = '

=25*2 per second
V 1200 X l82 X 12

or 1510 per minute.

EXAMPLES XIV.

1. If a closely wound helical spring made of wire J inch diameter has io

coils, each 4 inches mean diameter, find the frequency of the free vibrations

when it carries a load of 15 pounds. (N = 12 x io6 pounds per square
inch.)

2. A steel wire 3 feet long and ^ inch diameter is fixed at one end and
carries at the other a short cast-iron cylinder 8 inches diameter, with its axis,
which is i inch long, in line with the axis of the wire. Find the frequency
of. the natural torsional oscillations of the cylinder, the weight of cast iron

being 0*26 pound per cubic inch, and N for steel being 12 x io6 pounds per

square inch.

3. A steel bar i inch wide and 2 inches deep is freely supported at two

points 3 feet apart, and carries a load of 400 pounds midway between them ;

find the frequency of natural transverse vibrations, neglecting the weight of

the bar. (E = 30 x io6 pounds per square inch.)

4. If the load in problem No. 3 is uniformly spread over the span, find

the frequency.
5. If the bar in problem No. 3 carries 400 pounds midway between the

supports and 400 pounds uniformly distributed, find the frequency.
6. If the load in problem No. 3 is placed 9 inches from one support, find

the frequency of natural transverse vibrations.

7. Find the whirling speed of an unloaded steel shaft inch diameter
and 4 feet long, assuming the bearings at its ends do not fix its direction

there. (E = 30 x io6 pounds per square inch.)
8. Estimate the critical speeds of a shaft i inch diameter and 15 inches

long, (a] unloaded
; (b} when it carries at its" centre a load of 24 pounds ;

(c) when the central load is equal to its own weight, assuming in each case
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that the end bearings do not fix the direction of the shaft. (Weight of steel,
0*28 pound per cubic inch.)

9. Find the maximum bending stress in the (vertical) shaft in problem
No. 8 (), when the speed is 0*95 of the critical speed, the load being 0*001

inch out of balance.
10. Find the natural frequency of transverse vibrations of the shaft in

problem No. 7 when rotating at 800 revolutions per minute.
11. A six-cylinder oil engine has a crank shaft 3^ inches diameter. If

two fly-wheels, each weighing uoo pounds and having a radius of gyration
of 17 inches, were placed at opposite ends of the shaft, the equivalent length
between them being 6 feet 8 inches, find the frequency of a free torsional

vibration.

12. A gas engine has two fly-wheels, each weighing 1350 pounds and
having a radius of gyration of 25 inches, placed 26 inches apart on a shaft

3i inches diameter. Find the frequency of natural torsional vibration.



CHAPTER XV.

TESTING MACHINES, APPARATUS, AND METHODS.

168. Testing Machines. Machines for testing pieces of material to

destruction vary greatly in principle and in detail, and to do justice
to their construction and use would require a separate volume

;
in this

chapter a brief description of a few simple types for particular purposes
will be given. For further information the reader is referred to works
on Testing,

1

original papers, and the technical press.
In English machines of considerable size, adaptable for various

purposes, the straining is often accomplished by means of hydraulic

pressure acting on a plunger ; in American 2 machines the usual method
of straining is by power-driven screw gearing ;

the same plan is used in

this country for smaller machines worked by hand, and latterly for

larger power-driven machines. The load or force exerted on the test

piece by the machine is usually measured or "
weighed

"
by a movable

counterpoise and a lever, or system of several levers, but sometimes the

force is measured by fluid pressure on a metallic diaphragm. Perhaps
the commonest type of large testing machine in Great Britain is that

having a single lever or steelyard for weighing the load
; this, and one

compound lever machine, will now be described and illustrated.

169. Typical General Testing Machines.
Vertical Single-Lever Testing Machine.3

Figs. 207, 208, and 209,
are diagrams showing the principle and most important parts of a

Wicksteed 5o-ton vertical single-lever testing machine, details being
omitted.

Tension. Fig. 207 shows a side elevation of the machine in use for

a tension test. When there is no pull on the test piece T, the travelling

counterpoise or jockey weight P being at zero of the scale, the beam is

just balanced on its knife-edge fulcrum F, which rests on a hardened

seating on the top of the main standard S. In this machine the strain-

ing is accomplished by admitting high pressure water through a con-

trolling valve to a steel hydraulic cylinder H, the ram of which is rigidly

1 See Unwin's "Testing of Materials," or Popplewell's "Materials of Construc-
tion

"
; or for Continental machines see Marten's " Handbook of Testing."

8 For descriptions of American machines see Johnson's
" Materials of Con-

struction."
3 For descriptions see a paper on an electrically controlled machine in the Prof.

Inst. Mech. Eng., 1907 ; a paper on an older type in Proc. Inst. Mech. Eng., 1882

ana 1891, and a description in Engineering, 1896.



ART. 169] TESTING MACHINES, ETC. 427

attached to a crosshead A. When the crosshead A is driven down the

pull is transmitted through the two long screws to the crosshead C

(which travels on guides G), to which the lower end of the test piece T is

attached by various means described in Art. 170. The upper end of
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the test piece is similarly attached to a shackle K, which hangs from a

knife edge fixed in the main lever or beam B. As the pull in the test

piece is increased by the straining cylinder K, the balance of the main
lever is maintained by running the poiseweight P to the right; the

load on the specimen is thus weighed as in an ordinary steelyard. The
position of the travelling weight P is indicated by a scale D, graduated
in tons and tenths of a ton, and read by a vernier on P to^ of a ton.

The poiseweight P in the 5<D-ton machine weighs i ton, and the knife

edge from which the shackle K is suspended is 3 inches from the

fulcrum F, hence P must be moved 3 inches for each ton increase of

pull in T. The method of moving the poiseweight is not shown in

Fig. 207 ; very frequently the traverse is effected by a long screw within

the beam driven by belting. This method is shown in Fig. 211; the

power is transmitted to the short end of the beam through a shaft con-

nected to a shaft in fixed bearings by a double Hooke's joint, which
allows the beam to move freely parallel to a vertical plane, about its

horizontal knife edge F. For very rapid traversing of the poiseweight
a hydraulic cylinder, the ram of which acts through a wire rope, is

sometimes fitted. The end of the long arm of the main lever B can
move for a distance which is regulated by the upper and lower stops
shown

;
the stops are provided with springs to prevent damage to the

beam from shock when a test piece fractures. The ram of the hydraulic

cylinder H during the straining of the test piece lifts a heavy balance

weight W, which serves to replace the ram in the cylinder when the

exhaust valve is opened to release the water. The ram has a sufficient

length of stroke for straining purposes, but adjustment of the straining
head C to suit the length of specimen is effected by means of the two

long screws which are screwed into or out of their sockets N in the

crosspiece A; in order that the two screws shall be turned the same
amount they are driven by similar worms on the same shaft (which is

carried in the crosshead C), and gearing with worm wheels (not shown)
attached to the screws just below the crosshead C ; the worm shaft is

turned by a handle in front of the machine.

Compression. Fig. 208 shows a side elevation of the machine in use

for compression, the beam being omitted. The upper end of the test

piece T is pressed down by the action of the hydraulic ram transmitted

through the screws to the straining head C, and applied to the test

piece by a flat plate. The lower end of the test piece rests on a flat

plate on a small platform L, which transmits the downward force to the

shackle K by four long detachable bars E. Similar long bars are shown

attaching a platform to the top shackle of the hand-power machine in

Fig. 210. When these long bars are in use, owing to the extra weight
on the shackle K the beam does not balance when there is no force

exerted on the test piece, and the poiseweight P is at the zero of the

scale
; this zero error must then be subtracted from all subsequent

readings.

Bending. Fig. 209 shows a front and a side elevation of the

machine applied to a bending test. The beam V to be tested rests

on supports Q, the distance apart of which on a very stiff cast-iron
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beam M is adjustable ;
M is carried on the platform L suspended from

the shackle K by the four bars E
;
the load is thus weighed by the

steelyard B (Fig. 207). The zero error arising from the extra weight of

M must be allowed for
;
the cross-beam M is often left in position for

compression tests, unless the greatest possible length of column is to be
tested. The front screw connecting A and C, as well as the two front

bars E, are shown broken off to make the diagram clearer. The load is

FIG. 2o3.

applied through a V-nosed piece R on the lower side of the crosshead

C. Alternative semi-cylindrical forms of the piece R and the supports

Q are shown in Fig. 210.

Other Single-Lever Machines. Fig. 210 shows a 5-ton Wicksteed

testing machine adapted to tension, compression, bending, and torsion

tests. The straining is in this case effected by a large central screw

driven through gearing by hand power applied to the large hand-wheel.

Fig. 211 shows a 5o-ton Wicksteed testing machine intended for
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tension tests only. The straining takes place by a screw driven

through gearing by belting.
A convenient device introduced into the Wicksteed vertical machine

is that of alternative fulcra ; the distance between the two knife edges is

made large for use with small and weak specimens, and smaller for

stronger pieces; the same travel of the poiseweight may thus represent,

say, 25 tons or 100 tons, according to which fulcrum is used.1

Compound-Lever TestingMachine. Fig. 212 shows a typical American

1 For description of changing mechanism, see Prof. Inst. C. E^ July, 1891.
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testing machine of 100,000 Ibs. capacity. The position of a tension

test piece is at T, between the straining head C and the fixed head H ;

FlG. 2IO. 5-ton hand-power testing machine.

the crosshead C is driven down by two screws, one of which is shown
at S; the power is transmitted to S through spur and bevel gearing,
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several different speeds being available. Compression tests are made
by placing the test piece at T" between the crosshead C and the table L,
and machines of this type are made suitable for bending tests by placing

the beam supports on the table L and applying the load from the under
side of C. In all cases the straining force exerted by C is transmitted

through the test piece to the table L, which rests on knife edges, and is

balanced through a system of levers by a comparatively light travelling
2 F



434 STRENGTH OF MATERIALS. [CH. XV.

poiseweight P, which is moved along the beam B. The poiseweight P
is moved outwards along the beam by a screw, driven either by hand
from the upper hand-wheel, or by power under electromagnetic control

;

the position of P is indicated by graduations on the beam, and sub-

divisions are read either by a vernier on P, or more usually by a

graduated dial D rotating with the screw in the beam ; the poiseweight
can be quickly returned to zero by hand after a test, the driving nut

being released from the screw. The main lever M consists of two parts
one within the other, each branching into a Y-shape under the table to

avoid one of the straining screws, and to spread the points of support,
which are knife edges resting in seatings on the main frame E. The
table is carried on knife edges in the main lever, the lines of these knife

edges passing through the centre lines of the screws S to secure equal
distribution of the pressure between the two sets of knife edges in the

main levers. The downward pull at the small end of the main lever M
is transmitted to a knife edge in the intermediate lever I, and the down-
ward pull at the far end of this lever is transmitted through a link to the

beam B, the long end of which is balanced by a counterweight W ; the

zero reading of the scale can be adjusted by a movable weight shown
above W. The bolts shown passing from the main frame E to the

table L are to prevent the table jumping in the recoil after fracture of a

test piece; the nuts on the top of these recoil bolts rest on spring
washers, usually of indiarubber.

170. Tension Tests
;
Form of Test Pieces and Methods of Gripping.

The tension test is most commonly adopted as an index of the

properties of a ductile metal such as wrought iron and mild steel
; the

difficulties in and objections to compression tests have been noted in

Art. 37. In a commercial test to ascertain whether a sample of material

complies with a specification (see Art. 31), the results most usually

required are (i) the maximum stress, and (2) the elongation after

fracture as a guide to ductility. In addition the stress at the yield

point and the contraction of the cross-sectional area (Art. 28) are

occasionally required. Observations of the elastic extensions for the

determination of the modulus of direct elasticity, the limit of elasticity,

Poisson's ratio, etc., although of scientific interest, are practically never

required in a commercial test. When required they are made by
extensometers (see Art. 174).

The proportion between the length and dimensions of cross-section

of test pieces has been dealt with in Art. 27. The ends of ductile

tension test pieces are generally gripped by serrated wedges, which fit

into recesses in a socket which rests on a spherical seating in the

shackle (see Fig. 207) so as to give a pull as nearly axial as possible.
The enlarged end for a flat ductile specimen, and serrated wedges suit-

able for holding it, are shown in Fig. 213. The serrated V-groove
wedges and end of test piece in Fig. 214 show a suitable arrangement
for round or square pieces of ductile metals the enlargement of the

ends may often be dispensed with in iron and steel bars
;
these wedges

and the spherical seating in the shackle are shown in Fig. 207. In the

Riehle' machine shown in Fig. 212 the serrated wedges shown lying on
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the table L are rounded on the gripping face to bite most deeply at the

middle of the face to secure the axial alignment of the test piece. Each

wedge has a handle and can be lifted into or out of its socket by
a balanced lever worked from the handle A

;
different thicknesses of

FIG. 213. Wedge grips for flat specimens.

flat metal are accommodated by the same wedges by the aid of different

liners fitting behind the wedges. The screwed socket at A, Fig. 215,
shows a common method of holding cast iron and other brittle tension

test pieces. The cheese-headed specimen at B, Fig. 215, resting in

FIG. 214. Wedge grips for round and square specimens.

split dies, which screw into a larger socket, shows a method applicable
to brittle or ductile material ; the heads are sometimes made to fit

spherical recesses in such split dies to secure axial alignment. When
only a small test piece cut out of a casting or forging is available, short
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lengths at each end are screwed, and nuts taking the place of heads fit

into the recess in the split dies.

FIG. 215,

171. Shearing Tests. Fig. 216 shows an arrangement by which

shearing tests may be made. The specimen A is held firmly between

pairs of blocks BB' and CC, and, the testing machine being arranged as

for compression tests, pressure is

applied through the cap D to the

upper cutting block K, which

shears the specimen at two cross-

sections. A nearly sheared

specimen is shown beside the

apparatus. The shearing block

K and the lower cutting blocks

B' and C are fitted with hard

steel cutting edges. As shown
in Fig. 216, the apparatus is

arranged for use on a round bar.

By reversing all the blocks BB',

^H CC and KK', it can be used for

a rectangular or flat test piece.

An alternative form of shear-

^^ r
;

V?* ing apparatus is that in which

the relative movement of the

two parts is obtained by pulling

FIG. 216. Shearing test apparatus. by means of tension shackles,

instead of by thrust.

Although tests in such an apparatus may not approximate to a con-

dition of pure shear, there being evidently bending and compression,
as well as shear stresses, it may represent the state of stress to which

many important elements are in practice subjected. The only method
of obtaining

"
pure

"
shear is by torsion of a cylindrical test piece, and
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in such a case the intensity of shear stress is not uniform, and beyond
the limit of proportionality of stress to strain, even its distribution is not

accurately known. Many results obtained from an apparatus similar to

that in Fig. 216 are, together with an interesting discussion, to be found

in a paper by Mr. Izod, in the Proe. Inst. Mech. Eng., January, 1906.
172. Calibration of Testing Machine. The tests to be applied to

a testing machine such as the vertical single-lever machine described in

Art. 169, to ensure that it is in good woiking order, are as follows :

(1) Zero Error. To test whether there is any zero error it is only

necessary to place the travelling counterpoise at the zero of the scale

and see that the beam is midway between the stops. Any zero error

may be corrected by moving the vernier on the travelling counter-

poise. In the Riehl^ compound-lever machine adjustment can be
made by the movable weight above W (Fig. 212).

(2) Sensitiveness. To determine the sensitiveness of the machine the

travelling counterpoise or jockey weight may be placed in zero position
and weights hung from the upper shackle, or at some other measured
distance behind the fulcrum. The greatest weight which may be so hung
without causing the beam to move upwards from its position midway
between the stops is to be noted. Similarly, the weight hung at a

measured distance on the opposite side of the fulcrum, which just causes

the beam to move downwards, is to be determined. The sum of the

moments of these suspended weights about the fulcrum, divided by
the distance between the two knife edges, gives the possible error in the

reading due to want of sensitiveness. The test might be performed
with a single observation by hanging the greatest possible load on the

beam at some point on the opposite side of the fulcrum to the shackles,
without causing the beam to move downwards, and then finding what
load may be hung on the shackle without moving the beam upwards.
The error due to want of sensitiveness may be actually greater at

heavy loads than at zero load at which the test is made, but propor-

tionally to the pressure on the knife edge it will probably be less. Want
of sensitiveness arises from wear, causing bluntness of the knife edges
or grooves in the seatings on which the knife edges rest.

(3) Weight of the Movable Counterpoise. This may be found by
balancing the beam with no extra load on the shackles, and then running
the counterpoise a measured distance behind or in front of the zero of

the scale, and balancing again by hanging weights on the beam at a
measured distance from the fulcrum. The weight of the counterpoise is

then equal to the suspended weight multiplied by the ratio of its distance

from the fulcrum to the distance the counterpoise has been moved from
the zero mark.

(4) Distance between Knife Edges. The determination of the distance

from the fulcrum to the knife edge from which the top shackle hangs,
other than by direct measurement, is a troublesome operation. It is

necessary, after balancing the beam with the counterpoise at zero, to hang
from the shackle a heavy weight (at least half a ton, and preferably

more), and then to run the counterpoise forward until a balance is again
obtained. The distance between the knife edges is then equal to the
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distance the counterpoise has been moved forward from zero, multi-

plied by the ratio of the weight of the counterpoise to that in the

shackle.

173. Torsion Testing Machine. Fig. 217 shows a very simple
form of torsion testing machine. One end of the test piece T is

keyed to a worm-wheel W, which is driven through a worm by a hand-

wheel H. The other end is keyed to a bracket attached to a horizontal

lever L, balanced on knife edges resting on hard steel seatings on

the frame, and in line with the axis of the test piece. The twisting

FIG. 217. Torsion testing machine, 6000 Ib.-inches capacity.

moment applied to the test piece is measured by the pull on spring
balances attached to knife edges at opposite ends of the lever L, which
remains horizontal, any deviation due to the pull on the balances being
corrected by adjusting screws. The capacity of the machine illustrated

is 6000 Ib.-inches, which is sufficient to break a mild-steel specimen
~ inch diameter.

More elaborate torsion machines differ from this one mainly in that

the twisting moment is measured by a jockey weight moving over a

graduated scale on the lever. The addition of a worm and worm-wheel
torsional straining arrangement on a side bracket is often made to a

single-lever tension testing machine, thus enabling it to be used as

a torsion testing machine. An example of this arrangement is shown
in the 5-ton hand-power machine (Fig. 210), which has a capacity of

2000 Ib.-inches for torsion tests.
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Form of Test Piece. Fig. 218 shows a common form of torsion test

piece, the ends being enlarged and having one or two keyways to secure

FIG. 218. Torsion test piece.

the specimen to the worm-wheel or other straining gear, and to the

lever. Fractured torsion test pieces of cast iron (in front) and mild
steel (behind) are shown in Fig. 219.

FIG. 219. Torsion fractures.

174. Extensojneters. Except in the case of very long specimens,
the elastic extensions are too small for direct measurement, and special
instruments are used for such work. A great amount of ingenuity has

been spent on the design of such instruments, and a large number of

different kinds are in use. A review of the various types, with refer-

ences, is to be found in a paper on the Measurement of Strains,

by Mr. J. Morrow, in the Proc. Inst. M.E.^ April, 1904.*

Beyond the elastic limit the larger strains of ductile material between
centre dots may conveniently be measured by a pair of dividers.

Goodmans Extensometer (Fig. 220). In this instrument the move-
ment apart of two points on the test piece is multiplied by a lever.

The two clips CC', which form part of the frame of the instrument, are

attached to the test piece T by screws with hardened steel points,

which enter the test pieces, the pairs of centres being generally 10

inches apart. The remainder of the frame F is made of light brass

tubing, and, although not hinged, has sufficient flexibility for the clips to

spring apart for about \ inch beyond the gauged distance without

damage ;
as the extreme measurement is about $ inch, this amount of

play is sufficient. Two pillars, KK', are attached to the clips CC', the

upper one by a steel strip, and the other one rigidly. The free ends of

the pillars KK' have V-grooves, which engage with two horizontal knife

edges firmly held at a fixed distance apart in a brass piece B, attached

to which is the long, light, wooden pointer P. When the test piece
1 For an experimental comparison of extensometers of different types, see Report

of the British Assoc., 1896 ; and for very sensitive instruments, see " An Interference

Apparatus for Calibration of Extensometers," Phil. Mag., Jan. 1905.
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T stretches, the V-grooves in K and K' recede from each other, and

consequently P tilts, and its point moves downward over the scale S,

which is clipped to the tube E, which forms part of the frame. After

attachment of the instrument to the test piece, the points may be brought
to zero or elsewhere by the adjusting screw A, which also allows of the

instrument being used over a somewhat greater range than that given by
the scale. The motion of the end of the pointer P is 100 times that

between the screw points. The instrument is calibrated by noting the

FIG. 220. Goodman's extensometer.

travel of the pointer over a large part of the full stroke for a motion of

the clip points, which is determined by a measuring machine. The
final adjustment may be made by fixing the length of the pointer P and
the position of the scale S on the tube E. A gauge (not shown) which

fits over the set screw shanks, facilitates the fixing of this handy instru-

ment on the specimen, so that the length over which extension is

measured is exactly the required amount, usually in this instrument

10 inches.

Ewings Extensometer (Fig. 221). Two clips, C and C', grip the test

piece A by means of set screws with hardened steel points, the two

pairs being usually 8 inches apart. A bar, B, rigidly attached to the lower

clip C', of which it forms a part, has a rounded point, which engages
with a conical hole in the end of a well-fitting screw S, in the upper

clip C. On the side opposite to B a light bar B' hangs from the upper

clip C, its upper end resting in a conical hole, and its lower end passing

freely through a guide in the clip C ;
the hanging bar B' is kept in posi-

tion by a long, light spring (behind B' in Fig. 221) attached to C, and
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by the guide in C'. When the test piece A stretches, the clip C turns,

parallel to a vertical plane, about the rounded end of B as a pivot, and
the hanging bar B' is raised relatively to the clip C'. The centres

of the rounded ends of B and B' are usually equidistant from the

gripping points, hence the movement of B' relative to C is equal to

twice the extension of A. This relative motion is measured by observ-

ing a wire stretched across a hole in the lower end of B' by means of

a microscope M, the eye-piece of which has a scale
;
observations are

made of one edge of the thick wire as it appears on the scale. The
scale is divided into 140 parts, each of which represent g^ inch ex-

tension between the pairs of gripping points when the microscope is

FIG, 221. Ewing's extensometer.

in correct adjustment, estimations to -^ of a division giving a reading to

50000 inch. D is a means of adjusting the cross-wire in focus, and E is

an illuminating mirror. When detached from the test piece, the instru-

ment is held together by a clamp fastened on to conical seatings on the

clips C and C' by the large winged nuts shown. The calibration of the

instrument is performed by observing the movement of the wire over the

scale while one complete turn is given to the screw S, which has fifty

threads per inch; this should cause the wire to traverse 50 of the 140
scale divisions,

~ inch movement of the socket being equivalent to

inch extension.

An extensometer recently introduced (1908) employs a principle of

magnification similar to Ewing's, but measurement of the motion is made
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by a micrometer screw, which is turned until its point makes contact

with a piece of metal attached to a spring piece or tongue, which vibrates

perpendicular to the micrometer screw.1

Measurement of Elastic Compression. Professor Ewing's extenso-

meter in a modified form is used for the measurement of compressive
elastic strains. The distance of the hanging bar corresponding to B',

from the axis is 9 times that of the rigid bar corresponding to B, so

that the strain is then multiplied 10 times, instead of only twice as in

the longer tensile specimens ;
the length over which compressive strain

is measured is
i-J-

inch.

175. Autographic Recorders. Various attempts have been made
to devise an apparatus for obtaining a continuous and accurate record
of the stress and strain throughout a tension test. An apparatus con-

sisting of a pencil having a movement proportional to the stress, over a

paper or other surface whichihas a movement at right angles to that of the

pencil, and proportional to the strain of the specimen, would give such
a record. The necessary motion of the paper proportional to the strain

is readily arranged by placing it on a cylindrical drum, which is caused
to rotate about its axis by a cord or wire wrapped round the drum and

passing at right angles to the specimen over a pulley clipped to the

specimen at one end of the length over which extension is to be
measured and gripped by a clip at the other end of the ganged length ;

with such a driving apparatus, no motion of the drum results from the

slipping in the wedge grips or from stretching of the specimen outside

of the length between the clips. Also the motion can be multiplied by
connecting the wire or cord to a pulley of small diameter attached to

the drum.
Recorders may be divided into two classes according to the manner

in which the motion proportional to the stress is obtained.

(1) Semi-Autographic Recorders. In this class the motion of the

pencil is obtained by connection or gearing of some kind from the

travelling jockey weight. Such an apparatus merely records automati-

cally as a curve the same results as would be obtained by isolated

measurements, and the record is only correct so long as the lever of the

testing machine "
floats

" between its stops ;
when it rests on a stop,

the position of the jockey weight is no indication of the stress. A
description of such an apparatus will be found in Unwin's "

Testing of

Materials."

(2) Fully Autographic Recorders.

Wicksteeds Hydraulic Recorder? In this apparatus the water under

pressure in the hydraulic cylinder which takes up the strain is also

admitted to a small cylinder, where it acts on a ram and compresses a

helical spring. The compression of the spring is taken as a measure of

the stress on the specimen. The friction of the ram in the recorder

cylinder is almost entirely eliminated by rotating the ram. The friction

of the packing of the main ram of the testing machine is taken as pro-

portional to the pressure, and as therefore affecting only the scale of the

1 See Engineer, May 15, 1908.
See Proc. Inst. Mech. Eng., 1886.
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diagram, which is determined by marking on the autographic diagram
some points from the scale-reading of the jockey weight while the lever

is floating between its stops.

Kennedy's Autographic Recorder? In this apparatus the diagram is

taken on a flat piece of smoked glass, which receives a multiplied
motion from the strain of the test piece between two clips. The
motion of the tracing point is obtained from the strain of a larger
tension piece which is pulled in series with the actual test piece, but has

so large a cross-section as not to reach its elastic limit
;

its strain is

therefore proportional to the stress applied. The motion so obtained

is used to turn a roller of small diameter, attached to which is a long

pointer having the tracing point at its end ;
the tracing point moves in

an arc instead of a straight line. In using this apparatus the travelling

jockey weight may be placed at a point on the scale beyond the

maximum load of the specimen. The instrument may be calibrated by
finding the travel of the tracing point for a movement of the jockey

weight between different points on the scale when the large spring piece
is being pulled and the beam is floating between the stops.

Goodman's Autographic Recorder? The motion of the pencil pro-

portional to the stress in the test piece is in this apparatus obtained from

the change in the elastic strain in the main standard of the testing
machine. A vertical rod several feet long is rigidly attached at its

lower end to the standard
; its upper end is connected by means of a

knife edge with the short end of a compound lever, the fulcra of which
are knife edges resting on seatings rigidly attached to the standard;
from the end of this compound lever the multiplied motion is trans-

mitted by a fine wire to a carriage fitted with a marking pen. To avoid

the effects of friction, the cylindrical rods which guide the pen carrier

are rotated by means of a gut band from the driving shaft of the

testing machine.

Gray's and Wicksteed?s Spring Autographic Recorders. In Gray's

autographic recorder (Fig. 222), fitted to the Richie* testing machines, the

movement proportional to the stress is obtained from the stretch of a

calibrated vertical spring attached below the end of the long arm of the

weigh-beam so as to prevent the beam reaching the upper stop when
the test piece is pulled. In this apparatus the jockey weight remains

at the zero of the scale throughout the test, and the spring or "
stress

"

movement is employed to turn the drum to which the diagram paper is

fastened, various amounts of magnification of the movement of the end
of the beam being obtained by different sizes of pulleys on the drum ;

the pencil movement is caused by the strain of the test piece, the

motion being multiplied by levers, a much greater multiplication being
used during the elastic extension than in the subsequent stages. The
rod shown in Fig. 222 connecting the clamps on the specimen to the

smaller-framed lever, which gives the higher multiplication, is provided
at its top end with an adjustment permitting the high multiplication to

be used for considerable strains, the pencil being repeatedly brought
1 See Proc. Inst. Meek. Eng., 1886.
- For a full description and illustrations, see Engineering, Dec 19, 1902.
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back to the zero to avoid passing off the cord. The longer-framed

lever, which gives the lower multiplication suitable for strains beyond
the elastic limit, is provided with three alternative fulcra, giving magni-
fications of strain suitable for different materials and gauge lengths.

Similarly, five alternative positions of the detachable link in the other

train of levers give five multiplications from 100 to 500 for the elastic

portion of the curve. The spring can be calibrated by loading a steel

specimen of so large a cross-section that the elastic limit is not reached,
and balancing its pull by the jockey weight in a definite position, then

running the jockey weight to zero on the scale, attaching the spring and

noting the revolution of the drum when the same pull is balanced by
the spring, the beam being brought to the same position again.

In using the Wicksteed autographic spring recorder (Fig. 222^)

FIG. 222a. "Wicksteed's autographic spring recorder.

{From " The Engineer"}

the jockey weight D is first placed at a point on the scale beyond
the breaking load of the test piece F3

. The beam B is supported and

prevented from reaching the lower stop by means of a helical spring, H,
in tension, placed above the end of the long arm of the beam. As the

tension is applied to the test piece by the straining apparatus, the spring
is relieved from stress by an amount which is proportional to the tension

in the test piece, and the helical spring shortens by a proportional amount.
This movement of the spring and the end of the beam is employed to

move a tracing point on a carrier, K, over the surface of the drum L
parallel to its axis, while the drum is rotated by the motion derived
from the strain of the test piece between a clip F

1 and a pulley at F" at

a fixed distance apart. The spring can be calibrated and the diagram
graduated by noting the movement of the pencil caused by a given move-
ment of the jockey weight.
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Autographic Diagrams. The autographic diagram offers no advan-

tage over ordinary measurements for the determination of the ultimate

strength, elongation, etc. By its use, however, it is possible to trace out
the relations of stress and strain qualitatively at least, and with fair

accuracy quantitatively, in circumstances where ordinary measurements
are difficult or impossible, e.g. in the neighbourhood of a yield point and

during the local extension which takes place just before fracture in a

ductile metal. It is also possible by the autographic diagram to

investigate the effects of various speeds of tensile straining, and cases

where extension takes place discontinuously at intervals under a

regularly increasing load.

176. Measurement of Beam Deflections. The elastic deflections of

a long beam may often be measured directly by a pair of vernier calipers,
or by clamping a vernier to the beam so as to move over a fixed scale.

In the case of a stiffer beam the elastic deflections may be measured by
attaching a finely divided glass scale or a cross-wire to the beam and

observing its movement through a reading microscope, or] by multiply-

ing the motion by a lever. An arrangement for multiplying the motion

by a simple lever is shown in Fig. 223 ;
if a vernier is added to the

pointer of such an instrument with a leverage of 10 to i, deflections

BEAM SECTION

FIG. 223. Deflection measuring apparatus.

can easily be measured correctly to -^oo mcn
>
and this is generally

sufficiently accurate. To eliminate any possible yielding of the

supports of the beam, the socket in which the knife edge of the

multiplying lever rests may be suspended by clips (such as those shown
in Goodman's extensometer, Fig. 220) from the beam, the points gripped

being preferably in the neutral plane. To record correctly the deflection

of the neutral surface it may also be desirable to actuate the short end of

the lever by a clip attached to points in the neutral surface, instead of by
the lower surface of the beam as shown in Fig. 223.

177. Measurement of Torsional Strain. Fig. 224 shows an

apparatus devised by Prof. E. G. Coker for the measurement of

torsional strain.
1 In this instrument the elastic twist of a specimen A

over a length of 8 inches is measured by observing the motion of a wire

W (as in Ewing's extensometer) through a microscope M, the eye-piece
E of which has a glass scale illuminated by the mirror F. The cross-

wire W
;
mirror F, and focussing screw K, are carried on an extension

1 See Phil. Mag., December, 1898, or Phil. Tram. Roy. Soc. Edinburgh, vol. xl.

part ii. p. 263.
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of an arm B of the vernier plate V, capable of being moved round a

finely graduated circular plate G attached by three steel-pointed screws

(behind the plate) to the specimen A. A chuck, C, similarly attached by
three screws to A, carries an arm D, into the upper part of which the

microscope fits. The lower part of the arm D consists of a divided

collar, which serves to attach it to the chuck C after the plate G and the

chuck C have been centred on the specimen A by the help of a clamp
(not shown). The clamp consists of two divided collars, wedge-shaped
in section and longitudinally connected, which grip G and C so as to

FIG. 224. Coker's torsional strain measuring apparatus.

form one rigid piece to be centred by the six gripping screws. The
lower split end of the arm D then takes the place of one of the divided

collars of the clamp on the chuck C. The divided collars of the clamp
and the arm D are hinged on one side of the division, and the free

ends can be clamped by screws and nuts.

The calibration of the instrument, i.e. determination of the value of

the divisions of the microscope scale, is effected by turning the arm B
carrying the wire W, along with the vernier plate V, by means of the

tangent screw S, through a definite angle of, say, 10 minutes of arc over

the graduated plate G, the angle being read with the help of the vernier

V, assisted by the small magnifying glass shown. The range of measur-

able strain is evidently not limited to the eye-piece scale, as the wire can
be readjusted to zero, after any given angle of strain, by the tangent
screw S : the limit of accuracy of readings is about one second of arc.
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In the absence of such an instrument as that just described, elastic

torsional strains may be measured by observing the movements over
fixed scales of two long straight pointers clamped to the specimen, and

taking the difference. A convenient alternative is to fix a scale to the

end of one pointer and a cross-hair and sighting hole, to avoid parallax
errors, to the other, and observe the movement of the cross-hair over
the scale. Another alternative is to replace the long pointers by mirrors

clamped to the specimen so as to reflect radially outwards. The
reflection of a fixed scale read by a telescope, or of a cross-wire on
a fixed scale, moves through twice the angle turned through by the bar,
and moving the point of observation to a great distance is equivalent
to using a very long pointer.

Non-Elastic Strain. For the very large torsional strains which
occur between the elastic limit, and the breaking load in torsion for

a ductile material, the microscope M (Fig. 224) might be replaced by a

pointer so bent as to travel over the graduated circle G. For measuring
only strains beyond the elastic stage the apparatus may be greatly

simplified by substituting for G a circle graduated, say, to whole degrees,
and for the microscope a pointer bent so that its point moves close to

the graduated circle. Wrought-iron specimens, f inch diameter, may
often be twisted through over four complete rotations in a length of

8 inches before fracture, and in such a case readings, correct to one

degree, would be of sufficient accuracy for the strains beyond the elastic

limit.

178. Tension of Wires. Testing machines of many varieties are

made for finding the ultimate strength of wires. Some are similar in

action to the single-lever testing machine described in Art. 169, but the

straining is accomplished by hand power through a screw driven through
worm or spur gearing; in others the load is measured by a spring

balance, or by fluid pressure behind a diaphragm, to which one end
of the wire is connected.

Elastic Extension of Wires. For the purpose of finding the modulus
of direct elasticity of thin wires, hanging weights in a scale-pan forms a

convenient method of applying a known load. If the wire is sufficiently

long the extensions may be read by clamping to the wire a vernier

to move over a fixed scale. A usual arrangement is to hang two wires

side by side from the same support, clamping a vernier to one and
a scale to the other ;

one wire carries a constant load to keep it taut,

and the other is given regular increments of load for which the exten-

sions are measured. This plan eliminates any error due to yielding of

the support or change of temperature, and minimises any trouble due to

swinging. It is often necessary to reject the observations from the

lower loads, the measured extensions for which represent partly the

stretch and partly the effects of straightening the wire.

Instead of using a vernier and scale, a micrometer screw and level

may be used as in Fig. 225, which represents Searle's apparatus. When
weights are placed in the scale-pan the wire A stretches and lowers the

right-hand side of the spirit level L, which is pivoted at P to the frame

attached to the idle wire B, and rests on the end of the screw S, which
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fits into the frame attached to the wire A
;
the extension is measured by

turning the micrometer screw S, which brings the bubble to the centre

of L, and noting the motion of S

by means of its graduated head. ssssssssss^rs'u
The frames attached to the two

[ J

wires are kept from separating by
a link C, which turns freely on

pins in both frames.

Fro. 225. Elastic extension of wire. FIG. 226. Elastic torsion of wire or rod.

The relative motion of two such wires may also be measured by
causing it to tilt a mirror. Prof. Ewing has employed this optical
method in an apparatus, the magnification of which is so great that

wires only about 3 feet long are used.

179. Elastic Torsion of Wires. In order to determine the modulus
of rigidity of a wire very simple apparatus may be used, for the torsional

rigidity of a long piece of thin wire being very small, large angles of

twist are produced by small twisting couples. The usual arrangement
applicable to long thin rods is shown diagrammatically in Fig. 226.

The upper end of a wire is firmly clamped in a vertical position, and
the lower end is clamped to a drum or pulley, to which a couple, having
the wire as axis, is applied by horizontal cords passing over pulleys and

carrying equal weights in scale-pans. The twist of the lower end of the

wire may be measured by the movement past a fixed pointer of a

graduated dial attached to the drum, and to avoid any effects of

possible slipping in the top clamp a horizontal pointer may be attached

to the wire near the upper end; the movement of this pointer over
2 G
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a fixed dial, subtracted from the angular movement of the lower end,
gives the twist in the length between the two points of observation.

Kinetic Method. The torsional stiffness, and hence the modulus of

rigidity, may also be obtained by observing the period of torsional

oscillation of a mass of known moment of inertia at the free end of
a wire fixed at the upper end (see Art. 181).

180. Bending of Light Beams. The bending of a beam of small
section to determine the modulus of elasticity, or to find the modulus of

rupture (Art. 74), may be accomplished by placing it on supports at each
end and hanging loads in the middle of the span. The deflection may

FIG. 227. Transverse bar-testing machine.

often be determined with sufficient accuracy by direct measurement, or

by calipers, or the methods given in Art. 176 may be used. Numerous
small single-lever machines are made for transverse tests of bars of
small sections, and are used particularly for small cast-iron bars made
from the same metal as a larger casting in order to comply with a speci-
fication. A common requirement is that a test bar i inch wide and
2 inches deep shall have a central breaking load on a span 36 inches

between supports of not less than 26 cwts.
; another is that a bar having

a section i inch square shall have a breaking load of at least 2000

pounds on a 1 2-inch span. Occasionally some requirement as to the

deflection is specified.

Fig. 227 shows a small transverse bar-testing machine made by
Messrs. W. and T. Avery for cast-iron foundry bars of sections up to
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2 inches deep by i inch broad, and lengths up to 36-inch span. The
strain is applied by a screw turned by the hand-wheel, which lifts the

central socket and puts an upward pull on the beam midway between

the two end sockets, and an equal downward thrust on the lever near

to the fulcrum. The deflection is measured by the movement of the

screw which is observed on the small graduated drum. The load is

measured by balancing the lever by the travelling poise, which is

driven along it by a screw worked by a handle and gearing. The

capacity of the machine illustrated is 40 cwts., which is an ample
allowance for breaking a cast-iron test piece of the extreme dimensions

given above.

181. Experimental Determination of Elastic Constants (Summary).
In all statical experiments involving measurements of elastic strain

for given loads, in order to avoid experimental errors it is desirable to

take a series of observations over as large an elastic range of stress as

possible. When the observed values of load and strain are plotted as

rectangular co-ordinates, correct values will lie on a straight line

(according to Hooke's law); by taking the stress and strain by
differences between corresponding ordinates of two points on a straight

line so plotted, a good experimental result may be obtained, zero errors

in particular being avoided.

Youngs Modulus (E).

(1) Bar of Metal. Series of observations of tension and extension

by testing machine and extensometer (Arts. 169 and 174).

uniform intensity of direct stress , . xE = -
j
-

r -
(Art o)

fractional extension

(2) Thin Wire. See Art. 178. Formula as above.

(3) Long Thin Bar. By flexure due to a central load. This method
assumes the correctness of the theory of simple bending in a case

where the bending is not "
simple," and if E has been previously found

by method (i) it becomes a test of the validity of the theory for such a

case. Deflections are measured as in Art. 176. Load is applied by
hanging weights, or as in Art. 180, Fig. 227.

1X7/1E=
&Tj (see (4), Art. 78)

where y is the average difference of deflection for a difference W of the
central load. Cantilevers or other beams may be similarly loaded, and
the formulae of Chapter VI. used to calculate E.

Modulus of Rigidity (N).

(i) Cylindrical Bar of Metal. By series of observations of twisting
moment and angle of twist by torsion testing machine and torsional

strain measuring apparatus (Arts. 173 and 177)

N =
^fwj (

see fe) and W Art*

7TJ_y \j

where 6 is the average difference of twist in radians for a difference T
of twisting moment.
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(2) Long Circular-Section Wire or Rod. Statical Method. By
series of observations of twisting moment and angle of twist, as in

Art. 179

' Y
'

N=g (as above)

(3) Long Circular-Section Wire. Kinetic Method. By torsional

oscillation of a mass of known (and comparatively great) moment
of inertia suspended at the free end of a wire hanging vertically.
The mass may conveniently be a hollow or a solid metal cylinder
with its axis in line with that of the wire, or a rather long bar of

cylindrical or rectangular cross-section with its axis perpendicular to

that of the wire and bisected by it. From (2), Art. 167

12 X 32-2 X

where n is the frequency of torsional vibrations per second, and all

linear dimensions are in inch units.

Another plan is to first find the frequency x of torsional oscilla-

tions of a carrier of unknown moment of inertia Ilf and then find the

frequency n% when a mass or masses of known moment of inertia Ia are

placed in the carrier. Then

_
J

and eliminating the unknown I :

A convenient form of carrier (which is used to overcome the

difficulty of attaching various masses to the wire) is a metal tube
into which a metal cylinder (I2) fits. The moment of inertia I2 is

determined by weighing and measurement, its radius of gyration about
a central axis perpendicular to its own axis being given by

~2 72

tf = ~ + -
4 12

where r is the radius and / is the length.

(4) Close-coiled Helical Spring. Statical Method. By axially load-

ing it, and measuring deflections directly, if large enough, or by a

vernier as in Art. 178. From (2), Art. 117

where 8 is the average difference of deflection for a difference W of

axial load.



ART. 1 8 1] TESTING MACHINES, ETC. 453

(5) Close-coiled Helical Spring. Kinetic Method. By vertical vibra-

tion of a heavy axial load W on the spring ;
if the mass of the spring

is not negligible | of its weight must be added to W (see Art. 161).
Then from Art. 159 (2)

u/iHH ~ \/ W
and from Art. 117

- Q P 2/ per /<?<?/ of deflection
OJx /

XThence N =
32-2 x 12 X d

where n is the frequency of the vibrations per second, and all the

linear dimensions are in inches.

Poissoris Ratio
\

\ (i) By measurement of E and N as above.

Then from (i), Art. 13
i E~ =

~^T
~ *m 2N

(2) By measurement of longitudinal strain by extensometers, Art.

174, and lateral strain by special instruments 1
of great magnification,

generally optical. Then

_ lateral strain

m longitudinal strain

Other methods depend upon the changes of shape in the cross-

section of bent beams, and therefore depend upon the accuracy of the

theory of flexure.

Bulk Modulus. (i) By measurement of E and N as above. From

(4), Art. 13

K=
9N- 3E

(2) By measurement of Poisson's ratio by method (2) above, and
measurement of E or N as above. From (2), Art. 13

K 1 m TP= .- . Jl

3 m - 2

From (i) and (2), Art. 13

K = 2(
-

m + T)
. N

3(/;/
-

2)

'

It is also evident that the direct method (2) of measuring Poisson's

ratio provides a method of measuring N, for from (i), Art. 13

m
N =

2(m + i)
' E

1 See a paper by Morrow in the Phil. Mag., October, 1903. Also a paper by
Coker, Proc. Roy. Soc. Edinburgh^ vol. xxv. p. 452.



CHAPTER XVI.

SPECIAL TESTS.

182. Repeated and Reversed Stresses. Wohler's Machines and
Tests. The celebrated experiments of Wohler (see Art. 47) on the

repetition of direct, bending, and torsional stress were made on
machines which will be found illustrated and described 1

in Unwin's
"
Testing of Materials," chap. xiii. ; the forces were applied and

measured by the deflection of springs, the stiffness of which was
measured. The Wohler test most frequently repeated now is that

of a rotating spindle fixed at one end and carrying a load at the

other. It is important to notice that in all such bending tests, if the

elastic limit is exceeded initially or during a test, the distribution of

stress over a cross-section is unknown, and the maximum intensity of

stress is not calculable. Simple direct stress is the only kind, the

distribution of which can be accurately estimated if the limit of

elasticity is exceeded.

Dr. Smith's Machines. The introduction by Dr. J. H. Smith, acting
on the suggestion of Prof. Osborne Reynolds, of a new method of

applying repeated and reversed direct stress, marked a new develop-
ment of repeated stress tests, which has already furnished considerable

information on the subject (see Arts. 48 and 49), and promises more.

In Dr. Smith's original machine 2 the simple direct stresses on the

test piece were those resulting from the inertia forces of reciprocating
masses driven from a rotating shaft by a crank and connecting rod,

the test piece being placed between the connecting rod and the

reciprocating weights. A more elaborate machine of the same type

taking four specimens simultaneously has been used at the National

Physical Laboratory by Dr. Stanton 3

(see Art. 49).

Probably the best machine employing inertia forces is Dr. Smith's

Patent Reversal Testing Machine, made by Messrs. Combe, Barbour,
Ltd. This machine is diagrammatically shown by elevation and half-

sectional plan in Fig. 228, which represents one unit, a machine usually

having two such parts. The alternating stress in the test piece T,
which remains stationary, results from the horizontal component of the

1 For a full description, see Engineering, vol. xi.
* For description and illustration, see Phil. Trans. Roy. Soe., 1902.
9 For description, see Free. Just. C. ., vol. clxvi.
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centrifugal force of the rotating masses M. One end of the test piece
T is locked by a conical end, seated on split dies, to the piece B, part
of which is of square section to prevent possible torsional vibration

;

the piece B forms a bearing at right angles to its own length for the

rotating piece C, which carries the masses M. The other end of the

test piece is locked to the piece A, which transmits the forces to the

frame
;
to avoid initial stress T is locked first to A and then to B, and

finally A is locked to the frame. To prevent damage to the machine

after fracture of the test piece, buffers are inserted at DD. A spring

S, with tightening nut N, provides a means of subjecting the test piece
to any required initial stress, so that the inertia forces then cause

FIG. 228. Dr. Smith's patent reversal testing machine.

stress between limits the mean value of which is not zero, the posi-
tion but not the magnitude of the range of stress being altered. The
motion of a driving shaft rotating in fixed bearings and co-axial
with C is communicated to the rotating piece C by means of a
pin fitting easily into a radial slot in a plate attached to the driving
shaft. The driving shaft is placed between two such units as are
shown in Fig. 228, and carries such balance weights as will balance
the forces on the frame of the machine and prevent vibration of
the foundation, and all the rotating journal bearings have forced
lubrication. The standard test piece is turned down to \ inch
diameter for a length of \ inch, and connected to the shoulders of

larger diameter by well-rounded fillets. On such a specimen, by suit-

able changes of the revolving masses and the spring S, the machine
is capable of giving stress intensities between practically any limits, and
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of any speed of reversal except very low ones, within the limits of
lubrication. A view of the machine as actually made is shown in Fig.
228A with letters of reference corresponding to those in Fig. 228.

1

FIG. 228A. Dr. Smith's patent reversal testing machine.

Prof. Arnold's Testing Machine? In this machine a bar f inch
diameter is firmly fixed or encastr'e at one end, and is subjected to

repeated bendings to and fro by a reciprocating plunger, through
a slot in which the specimen passes. In his tests Prof. Arnold has
standardised a rate of alternations of 650 per minute, and a distance
of 3 inches between the striking line of the slotted plunger and the

plane of maximum bending stress, where the specimen enters its

clamp; the deflection of the specimen at the striking line of the

plunger is f inch on each side of the undeflected position. With a
fixed deflection, if the elastic limit were not exceeded, the intensity of

bending stress would be proportional to Young's modulus for different

materials, but the elastic limit is exceeded, and the intensity of stress is

unknown
; it is, however, under such conditions evidently different for

different materials. The quantity measured is the number of alterna-

tions before fracture, and Prof. Arnold has found this a reliable guide

1 See description in Engineering, July 23, 1909.
2 Brit. Assoc. Report, 1904. Also Proc. Inst. Mech. Eng., 1904, parts 3 and 4,

p. 172, and Proc. Inst. Naval Architects, April, 1908 ; or Engineering and Engineer,

April, 1908.
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to the quality of different steels, and their capability to resist fracture

by shock in use. The test is quite distinct from the reversal tests of

Wohler, Smith, or Stanton, in which the object is the determination of

the range of stress which, under given conditions, a material will stand

without fracture for an indefinitely large number of times, a measure-
ment which, being a

limiting value, natur-

ally cannot be deter-

mined very quickly.
In Prof. Arnold's tests

the number of alter-

nations never reaches

2000, and the time

taken is therefore

under 3 minutes per

specimen. A corre-

spondingly quick test

could be made in any
reversal testing ma-
chine by using a high

range of stress. One
of the points shown

clearly by Prof. Ar-

nold's test is the

difference in quality
in different parts of

a large forging; the

use of so small a test

piece enables such

differences to be in-

vestigated.

Sankeys Hand-

bending Machine. A
common workshop
test of the quality of

material is to bend
a piece to and fro

through a definite

angle until fracture

occurs, the quality

being judged from the

number of times the

piece bends before fracture. Captain Sankey has devised a small

hand machine for carrying out this test and registering the number
of bends and other information; Fig. 229 shows the arrangement of
this machine, which is made by Messrs. C. F. Casella & Co. At one
corner of the bed plate there is a grip A for securing one end of a flat

steel spring B. The other end of the spring is fitted with a grip C,
which also holds one end of the test piece D. The other end of the
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test piece is fixed into a long handle E, by means of which it is bent

backwards and forwards through the fixed angle shown by the indicator

F. The bending effort or moment necessary on the handle to bend
the test piece D through the fixed angle is measured by the deflection

produced in the spring B
;

this deflection is recorded

by the horizontal motion of

the pencil H on the record

paper placed on the drum
G. The motion of the free

end of the spring is trans-

mitted by a steel strip L to

a multiplying pulley N, and
then by a steel strip M,
which is kept taut by the

spring box O, to the pencil
<u H. The pencil moves in

one direction from the zero

|
line in the centre of the

M paper when the bending is

% from right to left, and in

the opposite direction when

^ it is from left to right, and
in either case the distance

* moved from the zero line is

fr proportional to the resist-

1= ance offered by the test

^ piece D to bending. The

3 motion of the pencil carrier

J? advances the drum through
c one tooth of a ratchet wheel
K at the end of each bend,
and so an autographic dia-

gram of the character parti-

ally shown on the drum G
in Fig. 229 is produced.

I |1 The general appearance of

cpJi:
the machine is shown in

1MB Fig. 230. The record is

made on a paper graduated
in pound-feet (see G, Fig.

229), the free length of the
^

spring B being suitably ad-

justed at the grip A. Cali-

bration is effected by reversing the lever E, the outer end of which

has a reduced portion to fit into C, and finding by a spring balance, the

ring of which is placed in a groove P, the pull at a distance of 3 feet

from the point of bending of the test piece to bring the pencil to any

particular graduation line on the record paper. The standard or fixed
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angle of the indicator F is two radians, hence the energy in foot-pounds
absorbed by a complete bend from left to right, say, is equal to the

bending moment in pound-feet multiplied by 2, the material being

nearly plastic, and since the drum is advanced an equal distance after

each bend, the area enclosed by a line joining the outer tips of all the

lines of the diagram is proportional to the total energy absorbed in

fracturing the piece on a scale dependent on the recording gear. The

principal indications of the machine are firstly, the number of bends
which is a measure of the ductility; secondly, the bending moment

necessary for the first bend which may be taken as a measure of the

yield stress ;
and thirdly, the total energy absorbed during the bends

until fracture takes place ;
this may be taken as some measure of the

quality, its precise significance and relation to quantities obtainable

from a statical tension test still requiring examination.
1

183. Single Bend Tests. A common test for structural steel is to

bend it over through 180; for a flat piece of metal to withstand such

treatment without fracture or cracking is evidence of its ductility, for

the outer surface undergoes considerable elongation. The bend test is

often specified to occur at different temperatures; at ordinary atmo-

spheric temperatures it is called the cold bending test. It is sometimes

specified for iron or steel at a red or at a blue heat, when a freshly filed

surface takes a blue colour.

Under the name of the temper bend test it is also used for structural

steel on pieces heated to a blood-red heat and then quenched in water

below 80 F. If the flat test pieces for bend tests are sheared from

pieces of variously shaped section, it is usual to machine or grind the

sheared edges to cut away the material which may have been hardened

by shearing. The practice in bending tests is not uniform with regard
to the acuteness of the bending : sometimes the piece is completely
closed down so that the two parallel faces touch each other ;

in other

cases the two parallel faces are distant from one another by twice some

specified internal radius of curvature of the bend. The requirement of

the British Standards Committee for structural steel is that the test pieces
must withstand without fracture being doubled over until the internal

radius is not greater than iJ times the thickness of the test piece and
the sides are parallel ;

the test piece is to be not less than iJ inch wide.

The bend test may be made by pressure or by blows, and by the

latter method only common workshop appliances are required, hence the

test is a very common as well as a very good one
; wrought iron or

steel which will fold completely through 180 with an internal radius of

curvature zero is unquestionably of high quality. For material of

poorer quality, the angle through which it bends before fracture has

sometimes been used to indicate its quality.
184. Hardness Tests. Hardness is perhaps best defined as the

resistance to penetration by other bodies.

The various tests which have been devised to determine hardness

are of two classes, which may be called Indentation tests and Scoring

1 See papers in Engineering, December, 1907 j also paper on Comparison of Tests
in Proc. lust. M.E., May, 1910.
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or Scratching tests. Indentation tests have been arranged with punches
or indenting tools of various shapes,
and various methods of measurement
have been adopted. The depth, super-
ficial area, or volume of indentation

by a given static pressure, or by the

impact of a given weight falling through
a given height, may be measured, or

the pressure or blow necessary to give
some specific indentation may be
measured. One of the objections to

all indentation methods of hardness

testing is the difficulty of producing
the same degree of hardness in all

punches or indenting tools. A method
of hardness testing adopted in the

United States Ordnance Department
was to give a blow, by a given weight

falling through a given distance, to

a punch of pyramid shape, the section

being a rhombus having one very long
and one very short diagonal. The

comparative degree of hardness was
then taken as inversely proportional
to the volume of indentation. This
volume is proportional to the cube of

the linear dimensions of the pyramid-
shaped cavity which can be calculated

after measuring the long diagonal of

the rhombus on the plane surface

indented.

Unwiris Hardness Test.
1 In this

test a plunger b (Fig. 231), which fits

loosely in a guide block a, transmits

the pressure to an indenting tool d,

consisting of a piece of hardened and

ground f-inch square steel 2^ inches

long, which indents the small flat test

piece e. The downward movement
of the plunger b is measured by a

sliding scale attached to
,
read by

a vernier /, fixed to the frame. The

apparatus is used between the com-

pression plates of an ordinary testing

machine, the head c making spherical

joint with the plunger b and, allow-

ance being made for the compression
of the apparatus as determined by a

1 Proc. Inst. Civil Eng., vol. cxxix.

Illlllllllllllllllll

SCALE
FIG. 231,

(From Unwin's "
Testing of Materials")
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separate test, the scale readings give the depth of indentation. For
various pressures /, taken by Unwin per inch of width, the indentation

followed a law

where i is the depth of indentation and C is a number representing the

hardness, the index n, found for any particular material by plotting

logarithms of/ and i, being about i'2 for mild steel and not greatly
different for other metals.

Brinell Hardness Test. All pointed indenting tools are likely to

lose their sharpness, and subsequent tests may be much affected by the

loss of the keen edge. Probably a spherical ball offers the best form
for the purpose of making the indentation. This is the shape used in

the method of hardness testing elaborated by Mr. Brinell, which is

perhaps in wider use than any other. The test consists of forcing a

hardened steel ball of definite size into a flat surface of the material to

be tested, under a definite pressure and measuring the diameter of the

indentation. Brinell takes the hardness as proportional to the area of the

cavity made by a fixed pressure and size of ball. If D is the diameter

of the depression and r the radius of the ball and P the total pressure,
the area of the curved spherical surface of the cavity is

total pressure
and Brinell hardness number =

curved area of depression

P

a number which depends only on D if P and r are fixed. The usual size

of ball is 10 millimetres diameter (r 5 mm.), and the pressure
P = 3000 kilogrammes. The diameter D of the indentation is usually
read to ^j mm. by means of a microscope, and the hardness number
obtained from a table. Different values of P actually give different

hardness numbers : probably a hardness number based on P" instead of

P, where n is a constant for a given material, would give a constant

hardness number for different pressures, but the "standard" Brinell

hardness number is that derived as above from the 10 mm. ball and the

pressure (P) of 3000 kilogrammes.
Benedicks of Upsala has found that balls of different sizes give the

same hardness number if the Brinell hardness number is multiplied by
the fifth root of the radius of the ball, i.e.

total pressure B/
Benedicks hardness number = 5 f , : X vr

curved area of depression

To convert the standard Brinell hardness numbers (r
-

5) to Bene-

dicks' hardness numbers it is only necessary to multiply by ^5 or 1*38.



462 STRENGTH OF MATERIALS. [CH. XVI.

Benedicks, by plotting as ordinates the hardness numbers obtained

with different working pressures on the ball against the pressures as

abscissae, has found for various working pressures a constant ratio

between the hardness numbers of two substances when pairs of hardness

FIG. 232.

numbers of each metal are measured for the same pressure. He has

also investigated the relation between the Brinell hardness numbers as

obtained by different working pressures and the pressures, but this is of
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little importance since there is no disadvantage in working at the

standard pressure of 3000 kilogrammes.
Dillner of Stockholm has investigated the relation between the hard-

ness numbers and the tenacity of Swedish steels over a wide range of

carbon contents ;
he finds a remarkable correspondence over wide ranges

of hardness ;
thus with a mean error of 3*3 per cent, the tenacity in tons

per square inch of the steels having a hardness number below 175

(including all the structural steels) is found by multiplying the hardness

number by 0*230 when the indentation is made transversely to the

direction of rolling, or 0*225 when it is made in the direction of rolling.

Charpy has found a similar result for French steels. The hardness test

thus offers a very handy way of getting an approximate estimate of the

tenacity of steel from a very small sample without the cost of preparing
an ordinary tensile test piece; in some cases the actual materials

instead of a severed sample can be tested. Such a test along with

impact tests (Art. 185) as a criterion of ductility have found a certain

amount of favour as a practical workshop system of testing materials.

Hardness Testing Machines. Figs. 232 and 233 show the Brinell

hardness testing machine made by the Aktiebolaget Alpha and Messrs.

J. W. Jackman, Ltd. The ball k is attached to the lower side of a piston,
above which the necessary oil pressure is applied. The filed or ground
sample to be tested is placed on the stand s, and raised into contact with

the ball by means of the hand-wheel r (Fig. 232). The valve v (Fig. 233),

connecting the upper side of the piston to the oil reservoir, is then closed,
and the pressure is produced by a small hand-pump. As soon as the

requisite pressure of 3000 kgms. (total) is reached, it is indicated, not

only by the pressure gauge, but by the rise of the small upper piston

carrying the crossbar e and the necessary (adjustable) dead loads/, and
further rise of pressure is therefore prevented and the correct pressure
is assured. The piston is accurately fitted without any packing, and
friction is thereby eliminated ; any leakage of oil past the piston goes

by a pipe into the receptacle d^ whence it is poured into the reservoir

through the funnel/. After the test, the valve v having been opened,
the piston is drawn up to its original position by means of the helical

spring shown above it. The diameter of the impression made by the

ball is measured by means of the microscope m.

Guillery
l has designed a machine for hardness testing on the Brinell

system; the pressure is given by a hand-lever, and is regulated by a definite

deflection of a pile of Bellville springs (hollow circular dished plates).

Brinell has designed a hardness testing apparatus in which the

impression of the ball is given by the impact of a definite mass with a

definite fall. Guillery has designed an impact ball hardness tester in

which a blow is transmitted to the ball through Bellville springs which
can only deflect a specified amount, and the excess kinetic energy of the

blow is then taken up elsewhere.

Brinell's experiments on ball-hardness tests by a constant impact
showed that an impact which produced the same impression as 3000
kgms. static pressure on a very soft steel produced an increasingly

1 See Engineering, January 12, 1906, or Engineer, October 28, 1904.
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greater impression than that due to the same static pressure on steels

of increasing carbon contents, i.e. for harder steels the ratio of the

hardness numbers to those obtained by the static test diminished if the

ratio was made unity for a soft steel. Roos of Stockholm has shown

by experiment that the static hardness numbers for low carbon steels

may be found approximately by taking them as proportional to the
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185. Impact Tests. The failure in materials used in high-speed ma-

chinery under repeated forces of an impulsive character, even when such

material has shown satisfactory strength and elongation in a static tensile

test, has led to many attempts to devise a shock or impact test which

should discover the imperfection in a material likely to fracture by
"
shock."

Impact testing machines generally attempt to measure the energy
absorbed by a test piece in fracture by a single blow or the number of

blows of given energy necessary to produce fracture. Machines in

which the blow given by a falling weight fractures a test piece by simple
tension l or compression have been constructed. One of the greatest

objections to such a machine is the impossibilty of calculating the

proportion of the energy absorbed in straining the test piece when part
of the energy is necessarily spent in deformation of the falling weight,
the frame or anvil of the machine, and the foundations. This makes
standardization of such a machine and test almost impossible, although
instructive comparative results may be obtainable from one machine in

which the conditions of the test can be exactly repeated. The most usual

kind of impact test is the transverse or bending test on small pieces,

either plane or with a standard form of notch or groove cut in them.

Repeated Transverse Blows. Sometimes a test is made to determine

how many transverse blows a rail will stand without fracture, or some-

times the magnitude of the greatest blows is specified. This evidently

depends considerably upon the rigidity of the supports of the rail; it

has been pointed out (Art. 45) that with variable blows the magnitude
of the blow necessary to cause fracture depends in no simple manner

upon the number and magnitude of the previous blows. A machine
for testing materials by repeated transverse blows on a small nicked or

notched test piece has been described and discussed by Messrs. Seaton

and Jude.
2 The quantity measured is the number of blows of a definite

weight falling through a fixed height on the test piece before fracture

takes place. For general use, evidently the size of test piece, height
of fall, and weight of tup or hammer would have to be standardised.

Like all impact machines, for standardisation it would require a definite

weight and kind of frame or anvil and foundations.

Single Transverse Blow. A single-blow impact machine of the

pendulum type, made by Messrs. W. and T. Avery, is shown in Fig. 234.
The nicked test piece, which is 2 inches long, inch thick, and f inch

broad, is held in a vice with the axis of the 60 V notch set by gauge
in the plane of the vice jaws. The pendulum, having a striking edge at

its centre of percussion, is released by a trigger from a definite height,
strikes and fractures the test piece, and passes onward

;
the height to

which it reaches at the end of its swing is recorded by a pointer moved
over a scale by the upper end of the pendulum rod. The difference in

height of the centre of gravity of the pendulum at the starting-point and
the end of its swing, multiplied by the weight of the pendulum, gives the

1 At the National Physical Laboratory : see Proc. Inst. Mech.Eng., 1908, p. 880,
and May, 1910 ; also at Furdue University : see Engineering, July 4, 1902, p. 28.'

2 Proc. Inst. Mech. Eng^ November, 1904 ; see also Proc. Inst. Mech. Eng,,
1908, p. 889.

2 H
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energy absorbed by the blow
;
the scale is graduated to record this quantity

directly in foot-pounds, and would give the energy absorbed in fracturing
the test piece if the base and other parts were absolutely rigid. Pendulum

single-blow impact testing machines have also been used by Charpy
l

FIG. 234.

and by Russell.*
1 Another form of impact machine 3 has a flywheel, a

striker on the circumference of which fractures the test piece. The

speed of the flywheel before and after impact is observed by a fluid

tachometer, and from these readings the energy absorbed is determined.

1 See Engineer, March 10, 1905 ; also Engineering, November 9, 1906, and

June 19, 1908.
2 See Trans. Am. Soc. Civil Eng., 1898.
3 See Engineering, January 12, 1906, or Engineer, October 28, 1904.



CHAPTER XVII.

SPECIAL MATERIALS.

186. Cement.1 Cements are produced by roasting limestone with

various amounts of clay, either as found in nature or artificially added,
the product being subsequently finely ground. The most important
cement used by the engineer is Portland cement, which is made from
a mixture of about 3 parts of limestone or chalk to i part clay,

forming a calcium silicate and a calcium aluminate
;

natural and other

cements differ mainly in having a smaller proportion of clay, limes

having little or none except hydraulic limes, which have a small propor-
tion and are capable of setting under water. Portland cement, the

manufacture of which has undergone rapid expansion and alteration, is

a product which can be made with remarkable regularity as shown by
a number of distinct tests. When mixed with water it combines chemi-

cally with a certain quantity and sets in a solid mass impervious to

water. This hydraulic property is due to the presence of a silicate of

alumina ; the proportion of lime in Portland cement is about 2\ to 3 times

the combined weight of the silica and alumina. Gypsum present with the

limestone calcium forms sulphate or plaster of Paris
; up to 2 per cent,

the effect of this substance in cement is to increase the time taken to set

hard, which is often an advantage; beyond this amount it is injurious.
187. Tensile Cement Tests. Portland cement is not usually in

practice subjected to tension, but only to compression ; it is not usually

employed alone or "
neat," but in a mixture with inert material such as

sand, broken stone or brick ; nevertheless, the tensile test of neat cement
is the usual strength test employed, because under carefully specified
conditions it is found to be a good index of quality. For tensile tests

the neat cement is mixed with water and allowed to set in a mould to

form briquettes ; the form of the briquette and holding clips of the test-

ing machine have a considerable influence on the distribution of stress

on the breaking section of the briquette, and therefore have to be
standardised. Fig. 235 shows the standard form of briquette adopted
by the Engineering Standards Committee, the briquette being i inch

thick and i inch square at the minimum section. Fig. 236 shows the

standard clips or jaws by which the briquette is held during the tension

test. A form of briquette used on the Continent is shown at i in

1 See three papers in Proc. hist. Civ. Eng. y vol. cvii.
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Fig. 239, and mould for forming the briquettes is shown in Fig. 238.

For neat-cement tests the quantity of water used in mixingor gauging
has a considerable influence on the strength
of the briquette and should be such as

to just form a smooth paste; for any
particular Portland cement there is a pro-

portion of water, to be found by experi-
ment (usually from 18 to 25 per cent, by
weight of the cement), which gives the

highest possible tensile strength.

Cement increases considerably in re-

sistance both to tension and crushing,
with age from the time of setting,

1 conse-

quently the age and treatment of briquettes
after mixing must be specified; the in-

crease of resistance to crushing is fortu-

nately greater than the increase of tensile

strength.
The tensile breaking load of a briquette is considerably affected by

the rate at which the load is applied,
2
increasing with increase of speed

FIG. 235.

FIG. 236.

1 See papers by Mr. J. Grant, Froc. Inst. Civ. Eng., vols. xxv. and xxxii.
' See a paper by Mr. Faija, Proc. Inst. C.., vol. Ixxv.
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of loading ; the rate has therefore to be standardised, and on the

briquette shown in Fig. 235 the Standards Committee specify a rate of

100 pounds in 12 seconds, i.e. 500 pounds per minute.

Specifications of ultimate tensile strength of course vary, but the
" Standard

"
specification for the square inch section gives the following

figures for a briquette, made without mechanical ramming into the

mould, kept for 24 hours in a damp cloth in the atmosphere, and then

placed in fresh water until tested :

7 days from gauging, 400 pounds per square inch of section

28 5 u

the increase from 7 to 28 days to be not less than 25, 20, 15, or

10 per cent, according as the 7 days' test gives a result of 400 to 450,

45 t 5) 5 to 55 or ver 55 pounds per square inch respectively.
The results are to be measured by the average of 6 briquettes for each

period.
Sand Mixture Tests. As according more nearly with the use of

cement in practice, tests are often made of briquettes moulded from a

mixture of 3 parts by weight of sand to i part of cement. This is a

test of the adhesion of the cement and sand, and is of course affected by
the particular size and shape of the grains of sand used. Different

countries adopt their own standard sands. The British standard sand is

obtained from Leighton Buzzard, and such part is used as passes through
a sieve having 20 x 20 wires 0*0164 mcn diameter per square inch, and
remains on a 30 X 30 sieve made of wire 0-0108 inch diameter. The
sand and cement, being mixed with so much water as to thoroughly wet
the mixture and leave no superfluous water when the briquette is formed,
should have a tensile strength of

T2o pounds per square inch 7 days after gauging
22 5 ft

28
> >

with an increase of at least 20 per cent, in the interval.

188. Compression Tests. Compression tests of cement are not very
frequently made, the tension test being satisfactory and much simpler.
When compression tests are made an ordinary testing machine may be
used on about 3 or 4-inch cubes ; the difficulty and influence of a

satisfactory bedding for compression tests has been mentioned in Art. 37.
The ultimate strength of neat cement under pressure is from about 8 to

11 times its tensile strength, the ratio increasing with age. The stress-

strain curve, unlike that for metals, generally starts from zero concave to

the axis of stress, and becomes at great loads somewhat convex to it.

Fracture takes place in the manner characteristic of brittle materials by
shearing at angles of about 45 to the direction of compression (see

Fig. 237).
189. Cement Testing Machines. Tension tests of cement briquettes

are generally made on special testing machines of various types, single
and compound levers being used. The application of the load at a

steady and definite rate is in some cases accomplished by running



470 STRENGTH OF MATERIALS. [CH. XVII.

water or fine shot through a controllable opening into a vessel hanging
from the end of the lever

;
in other cases a travelling poise is caused to

move along a graduated lever at a steady speed.

FIG. 237. Portland cement.

{From Goodman's " Mechanics applic.i to Engineering"}

A single-lever testing machine, made by Mr. Adie, with a regulated

travelling poise D is shown in Fig. 238. The briquette is placed in

the clips BC, and the hand-wheel R serves to tighten the screw attached

to the lower clip C, so as to raise the lever F into a position of balance

between the stops on the standard E. The poise D may be moved

along the lever F by means of the handle at the end of the beam. For

loading at a uniform rate the traverse of the poise is accomplished by
the pull of a suspended weight W, regulated by a dashpot cylinder
below the pulley 5 ;

the rate of traverse is regulated by adjusting a

cock in the piston of the dashpot.

Fig. 239 shows the form of another of Messrs. Adie's cement-

testing machines, designed by Dr. Michealis ; this machine, which is

of the compound-lever type and is loaded by shot, may be taken as

typical of German practice. The briquette i is held between clips

d and e, the lower one of which is attached to a straining screw

turned by the hand-wheel /. The pull on the briquette is balanced
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through two levers against the weight of shot in the vessel c at the end
of the lever a, which also carries an adjustable balance weight b the

FIG. 238.

FIG. 239.

combined leverage of the two levers is 50 to i. The shot runs into

the vessel c from a reservoir g through a channel, which is regulated at
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o for any desired rate of loading by a lever n. The breaking of the

briquette and consequent fall of the lever automatically shuts off the

supply of shot, and 50 times the weight of shot in c gives the breaking
load, this quantity being recorded by a spring balance at /.

190. Other Cement Tests. In addition to the tensile test of

cement the allowable amounts of moisture and of calcium sulphate
is often specified, also the maximum proportion which the weight of

lime shall bear to the combined weight of the silica and alumina
; the

"Standard" specification gives this ratio as 275. Any excess of this

quantity of lime causes crumbling of the cement after setting.
Fineness Tests. Coarse grains in cement have a weakening effect

similar to that of sand or other inert matter, and to test the fineness of

grinding the cement is sieved, and the proportional residue by weight
on sieves of given dimensions is found. The Standards Committee

specification requires that the residue on a sieve with 76 X 76 wires,

0*0044 inch diameter per square inch, shall not exceed 3 per cent.,

and on a sieve 180 X 180 wires, 0*002 inch diameter, it shall not
exceed 22^ per cent.

Specific Gravity. Imperfectly burned cement is lighter than cement
of good quality ;

also cement which is left exposed to the atmosphere,

by absorption of moisture and carbonic acid, deteriorates and loses its

capability of combining with water, a change which is accompanied by
a loss of specific gravity. On the other hand, a certain amount of

aeration may be necessary to slake any free lime which would cause

cracking or crumbling in the cement. It is sometimes specified that

Portland cement shall weigh 112 to 115 pounds per bushel, but perhaps
a better practice is to specify a specific gravity of 3-10 after delivery.
Considerable doubt has been cast on the value of the specific gravity
test as an indication of proper calcination.1 The specific gravity is

measured by the displacement of the level of turpentine in a long,

narrow, graduated neck of a glass vessel ; when a weighed quantity of

cement is dropped into the vessel the weight of the cement in grammes,
divided by the displaced volume of turpentine in cubic centimetres, gives
the specific gravity. Another plan is to fill a narrow-necked bottle

with water to a given level and weigh it
; pour off some water and add

a weighed quantity of cement, and fill up with water to the original
level and weigh again. The weight of water equal in volume to the

cement used, is then equal to the weight of cement used, minus
the difference between the second and first weights of the bottle

and contents, and the specific gravity is equal to the weight of

cement, divided by the weight of an equal volume of water as above

calculated, or

.

___ weight of cement added
"~

ist weight of bottle -f wt. of cement 2nd wt. of bottle

Soundness Test. The Le Chatelier test of soundness is made in the

apparatus shown in Fig. 240, which consists of a small split cylinder of
brass C, 0-5 millimetre in thickness, forming a mould 30 millimetres

1 See a paper by D. B. Butler, Proc. I.C.E., vol. clxvi. part iv.
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internal diameter, and 30 millimetres thick. Pointers PP are attached

on either side of the split and have a length of 165 mm. from the tips

to the centre of the cylinder. The mould is placed on a piece of glass

and filled with the usual mixture of cement and water, the split edges

being meanwhile gently held together. After filling, the mould is

covered by a glass plate and a small weight, and placed in water at 58

to 60 F., and left 24 hours. The cement will then be set, and the

distance between the pointers PP is

measured on a millimetre scale, and

the mould is placed in cold water,

which is then heated to boiling point

and kept boiling for 6 hours. After

cooling, the distance between the

pointers P P is again measured. Ex-

cessive cracking of the cement due to

an excess of free lime or otherwise,

is indicated by excessive movement

Square

FIG. 240. FIG. 241.

apart of the pointers during the test. The " Standard
"

specification
allows an expansion not exceeding 6 millimetres in cement which
before mixing has been exposed to the air for seven days.

Time of Setting. The time of setting of a briquette or pat mixed in

the usual way is tested by the indentation of a weighted
"
needle," of

the form shown in Fig. 241, which has a flat end ^ inch square and

weighs 2j Ibs. The cement is considered to be "set" when the needle

fails to make an impression when its point is gently applied to the

surface, the needle being lifted into position by means of the loose
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hollow ring or washer H. The time of setting to be specified depends
upon the requirement of the work for which the cement is intended,
and varies from between 10 and 30 minutes for quick-setting cements
to between 2 and 5 hours for slow-setting cements.

191. Concrete, Stone, and Brick. Concrete is sometimes tested by
crushing of cubes of about Q-inch sides

;
the strength increases with

age after the time of setting, and usual ages for comparative tests are 3
and 9 months. Fracture takes place as in other brittle solids by
shearing at angles of about 45 to the direction of compression (see
Art. 37), the broken cube having somewhat the appearance of two

pyramids with a common apex (see Fig. 242). The strength of course

FIG. 242.

(.From Unwinds "
Testing ofMaterials of Construction")

varies with the proportion and character of the inert materials used

with the cement
;

for more detailed information on various mixtures,

treatises on concrete should be consulted.

Stone.
1 The strength of stone subjected to crushing stress, as it

usually is in buildings, varies greatly with the character of the stone,

granite having often a strength of 1500 tons per square foot, while

sandstone and the weaker varieties of limestone may often have only
about a quarter or a fifth of this crushing strength. A building stone is

generally chosen rather from considerations of durability and appear-
ance than for its ultimate crushing strength, which, except in very tall

1

Strength, density, and absorption tests of British stones from various quarries

may be found in a paper by Prof. T. Hudson Beare, Proc. Jnst. C.E., vol. cvii.
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structures, is often much more
than sufficient for all require-
ments. The porosity of stone is

tested by weighing the stone

when dried and then after satu-

ration by immersion in water.

Brick. The strength of bricks

varies greatly with the compo-
sition of the clay from which they
are made, the method of manu-

facture, and other causes. The

average strength of a common
brick may be taken as about 150
tons per square foot, and of blue

Staffordshire bricks about 400
tons per square foot.

Crushing Tests of Concrete^

Stone, and Brick. The great in-

fluence of the kind of bedding of

brittle material during crushing
tests has been mentioned in Art.

37, and is further illustrated in

Fig. 243, which shows the frac-

ture of three 4-inch cubes of

Yorkshire grit. The left-nand one
had 3 plates of lead each ^ inch

thick on each pressure face, and
broke in the manner shown at 36
tons

;
the middle one had single

plates of lead bedding, and stood

56 tons; while the right-hand
one was bedded on millboards,
and stood 80 tons. Setting in

plaster of Paris often gives a

result higher than with the card-

board bedding, and it, as well as

millboard, is often used in crush-

ing tests. It is to be remem-
bered that in actual structures

the crushing strength of such

materials is less than that of a

single piece as tested, and de-

pends partly on the nature of the

mortar in which it is set
;
a soft

mortar which flows under pres-
sure will tend to cause a tensile

stress perpendicular to the direc-

tion of compression.
In crushing tests of these
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brittle materials the chief function of the bedding should be to evenly
distribute the pressure, and prevent failure from high local pressure
which would result from unevenness of the external faces to which the

pressure is applied ; to obtain the highest strength the outer faces

should be carefully smoothed and made parallel, and a spherical seating
of the compression plate of the testing machine should be used.

192. Timber. The cross-section of a tree trunk from the outer bark

to the central pith consists of two parts, an inner and darker core of

heartwood and an outer portion of sapwood. Both heartwood and sap-
wood may be seen to consist of a number of tubes showing in section

rings, which are called annual rings, each representing one year's growth
of the tree. Closer inspection of an annual ring will reveal two kinds

of growth in each ring, the inner and less dense portion being the

spring growth, and the outer portion the summer growth. Slow growth
of the tree is indicated by closeness of the rings, and is associated with

greater strength than is quick growth. In mature trees the heartwood
is stronger and more valuable than the sapwood, unless the tree is so

old that the process of deterioration of the heartwood has set in.

193. Strength of Timber. The strength of a piece of timber is

greatly different in different directions, being much greater for tension

and compression along the grain than across it, in which direction the

fibres have not to be broken, but merely torn from one another, the

resistance being more a question of adhesion than strength in the usual

sense. Further, the strength of a stick of wood depends upon the part
of the tree from which the piece is cut, whether from the heartwood or

sapwood, and whether from the upper or lower part of the tree. The

strength of timber is also greatly affected by the amount and kind of

seasoning it has undergone, the place and soil in which it was grown,
the age of the tree, and the season at which it was cut down. Generally

speaking, the heavier woods are stronger than the lighter ones, the

comparison being made between different woods in the same stage
of dryness.

194. Tests of Timber. Number of Test Pieces. In so variable a

material as timber it is necessary, in order to draw reliable conclusions,
to test a large number of similar pieces, and to take the average results

of these tests.

Size of Test Pieces. Small pieces are not satisfactory for a material

like timber, which contains a certain proportion of knots and other

local defects, for such a defect, happening to lie in a small test piece,
will cause an extremely low strength to be recorded; and if, on the

other hand, the test piece is picked so as to be free from all defects,

the result will be to give too high a value for the true average sample ;

hence in important timber tests large sections are used. Investigation

shows, however, that a large section has the same strength per square
inch as a small one when both are of the same proportion and similarly
free from defects.

Effects of Moisture. A piece of timber attains its maximum strength
after having dried out of it all but about 4 or 5 per cent, of its own

weight of water. Very wet (fresh-cut) timber has about half this
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maximum strength, and in the process of drying its strength begins
to rise when the moisture present gets below 60 per cent, of the weight
of dry timber, and rises steadily with decrease of moisture to the

maximum strength. For comparison of different woods it is necessary
to adopt a definite standard percentage of moisture; from 12 to 15 per
csnt. is usually chosen, this being the amount retained after good air

drying; with a moisture percentage below 10, water is rapidly absorbed

from the atmosphere. The weakening effect of moisture which has

been reabsorbed by timber previously dried, is almost identical with

that of the moisture originally in the timber.

Determination of Moisture. This is conveniently accomplished by
boring a hole through the test piece and weighing the shaving im-

mediately, and again after drying in an oven at about 212 F.

195. Important Series of Timber Tests. The first thoroughly
scientific tests of timber with records of the moisture are due to

Bauschinger, who adopted a standard of 15 per cent, of moisture

reckoned on the weight of dried timber. Some account of these

experiments and their results is to be found in Unwin's "
Testing of

Materials."

America is a great timber-growing country, and most of the

important work on timber testing has been carried out there under
Government departments. An account of many tests on wooden beams
and columns made for the U.S. Government may be found in Lanza's
"
Applied Mechanics." Many inquiries into the strength of timber

have been made for the U.S. Department of Agriculture under the

Bureau of Forestry, chiefly under the direction of the late Prof. J. B.

Johnson, in whose " Materials of Construction
"

a sufficient account
of the work may be found. The work has latterly been carried on

by Prof. W. K. Hatt, of Purdue University. In Prof. Johnson's tests

the standard dryness adopted was 12 per cent, of moisture reckoned
as a percentage of the weight of dry timber.

196. Tension Tests. Tension tests of timber have not been found

satisfactory for two reasons. Unless the grain is very straight it is not

possible to cut a test piece wholly parallel to the grain ;
if the grain

is inclined to the direction of tension fracture takes place by shearing,
the failure being due to the small lateral adhesion of the longitudinal

layers. Very greatly enlarged ends have to be used for gripping the

test pieces or failure takes place either by crushing the ends across

the grain or by shearing of the ends along the grain ; very large ends
leave a correspondingly small section to fracture, and the desirability
of breaking large sections has already been mentioned. Strength tests

of timber in tension are not of much practical importance, for timber
in structures would rarely, if ever, fracture by simple tension, but by
shearing or splitting. Along the grain its resistance to fracture by
tension is very great, sometimes over 10 tons per square inch.

The variation in modulus of direct elasticity in different timbers
is very similar to the variation in ultimate tenacity, and the limit of

proportionality between strain and stress occurs practically at the

ultimate strength limit. In tests made three months after felling,
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Bauschinger found winter-felled timber to be some 25 per cent,

stronger than summer-felled, but this difference quickly decreased with

seasoning.
The following figures give some rough idea of the tenacity and

Young's modulus of different kinds of timber along the grain :
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be by longitudinal shear, and dimensions should be proportioned on

this supposition. For such beams the total load would be independent
of the length. Above these lengths the failure may be from longitudinal

direct bending stress, which, of course, increases with the length.

The strength factor most usually measured in bending tests of

timber is the " modulus of rupture
"

(see Art. 74) or coefficient of

bending strength, viz.

W7
/ = ti (see (6), Art. 63, and Art. 66)

where W is the central breaking load, / the length of span, b the breadth

and d the depth of the rectangular section, all dimensions being in

inches, and the same units of force being used in/and W.
The limit of proportionality of deflection to load in bending tests is

found to occur at a considerable proportion of the total load : the

stress calculated as above s- at this load, agrees with the ultimate

crushing strength as found by a direct crushing test along the grain.

Young's modulus, as determined by bending tests, increases and

decreases with the crushing and the bending strength or modulus of

rupture, and determined by plotting loads and deflections within the

limit of proportionality, Bauschinger considered this modulus of elas-

ticity to be a good indication of the value of timber for structural

purposes. The following figures give average values of the modulus of

rupture or coefficient of bending strength for various kinds of timber :

Ash ....... 5 to 6 tons per square inch

Elm ....... 4 to 5
Oak ....... 5 to 6

Yellow pine (American) . . 4 to 5
Red pine (American) . . 3 to 4
Teak ....... 6 to 8

Spruce . . . . . . 4 to 5

199. Shearing Tests. Shear stress in any plane being always accom-

panied by shear stress at right angles to it, shearing of timber always
takes place along the grain, separating but not rupturing the fibres.

This, as already mentioned, is a common method of failure in wooden
beams ;

the shear stress at the neutral axis of a beam of rectangular
section is, by Art. 7 1

where F is the shearing force on a section of breadth b and depth d.

In the case of a beam carrying a central load W, and supported at each

end, this becomes

Direct shearing experiments along the grain generally show rather

greater strength than values calculated by (2) from beams which fail

by shearing. This is to be expected from the fact that in shearing



480 STRENGTH OF MATERIALS. [CH. XVII.

experiments the plane of shear is arbitrarily selected, while in bending
tests the failure will take place in the weakest place in the neighbourhood
of the neutral plane, where there is the greatest intensity of shear stress.

The results of tests at the Watertown Arsenal on the shearing strength

along the grain give the following strengths :

Ash 458 to 700 pounds per square inch

Oak 726 to 999 ,, ,, ,,

Yellow pine .... 28610415 ,, ,,

Spruce 253 to 374

200. Prolonged Loading of Timber. Under heavy loads timber

continuously deforms, and loads in excess of about half those required
to produce failure when quickly applied will be sufficient to cause

fracture if applied for a length of time. The time elapsing before

rupture occurs increases as the load

diminishes, permanent resistance being
offered to about half the breaking load

of an ordinary test.

201. Strength of Wire Ropes. The
great tenacity of drawn wire is utilised

for heavy loads in the form of wire ropes.
In addition to their flexibility, which
allows ropes to bend round pulleys,
steel-wire ropes have generally a much
greater strength than bars of steel of the

same cross-sectional area and weight.
As shown by tension tests of separate
wires and whole ropes, the rope does
not develop the full strength of all the

wires. This probably arises mainly from
the fact that in the rope some wires are

initially lighter than others, and conse-

quently take an undue proportion of the

load.

For tensile tests of wire ropes it is

important to grip the ends without

damaging them, or fracture will occur at

the socket. A very satisfactory method,
recommended by Prof. Goodman, is

shown in Fig. 244. The rope is tightly
bound with fine wire about 5 inches from
each end, and the. length of rope between
these bindings is tightly bound with

tarred band to keep the strands in

position ;
the ends are then frayed out,

cleaned, and the wires turned over into hooks at the ends. A hard

alloy of lead and antimony is then cast on the ends in the form
of conical caps, which are received in split conical dies in the shackles

of the testing machine. The conical dies may conveniently be used as

moulds for casting on the metal caps.

FIG. 244. Method of capping
wire ropes.

{From Goodmans " Mechanics applied
to Engineering,")



ANSWERS TO EXAMPLES

EXAMPLES I.

(1) 3*96 tons per square inch; 13,700 tons per square inch; i'<)8 ton

per square inch.

(2) 20 54|' ; 2*62 tons per square inch
;
2*80 tons per square inch.

(3) 3'27 tons per square inch ; 3*60 tons per square inch.

(4) 0x331 8 inch.

(5) 23,200,000 Ibs. per square inch
; 3-385.

(6) 3-5 tons per square inch
;
0*866 ton per square inch : 3*60 tons per

square inch inclined 76 5' to the plane.

(7) 32*5 and 3*54 tons per square inch, or 72 and 2-27 tons per square
inch.

(8) 4-58 tons per square inch 40-9 to plane; 4 tons per square inch.

(9) 8' 1 2 tons per square inch ; normal of plane inclined 38 to axis of

5-ton stress.

(10) 6-65 tons per square inch ; normal of plane inclined 22^ to axis of

5-ton stress.

(11) 4*828 tons per square inch tensile on plane inclined 22^ to cross-

section. 0-828 ton per square inch compressive on plane inclined 67^ to

cross-section.

(12) 4-16 and 3-16 tons per square inch.

(13) 4*375 tons per square inch.

( 16) Wffff increase.

(17) 19,556 Ibs. per square inch (steel) ; 10,222 Ibs. per square inch

(brass) ; 48-89 per cent.

EXAMPLES II.

(1) 32*4 and 2i 6 tons per square inch ; 23-5 per cent.
; 13,120 tons per

square inch.

(2) (a) 15*77 tons; (b} 6*91 tons.

(3) 10*26 tons per square inch.

(4) (a) 4000 Ibs. per square inch in each ; () 11,080 Ibs. per square inch

(steel), 448 Ibs. per square inch (brass) ; 92*3 per cent.

(5) 2*1 tons per square inch.

2 I
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EXAMPLES III.

(1) 7*03 inch-tons.

(2) 620 inch-pounds.
(3) 2760 and i6'26 inch-pounds.
(4) 8 tons per square inch

; 0-0738 inch ; 4'o6 tons.

(5) () 55 tons ; 4-07 square inches ; (b) 25 tons : r85 square inches.

(6) 5-46 tons per square inch.

(7) 3'5 inches.

(8) 12*68 tons per square inch ; 40 per cent. more.

EXAMPLES IV.

(1) 158 tons-feet ;
20 tons ; 50 tons-feet ; 14 tons.

(2) 2650 tons-feet.

(3) 8 tons-feet ; 6 feet from left end ; 975 tons-feet.

(4) 1 0*958 feet from left support ;
88 'i tons-feet

; 87 tons-feet.

(5) -y^-/feet ; TT= tons-feet ; 10*4 feet ; 41*5 tons-feet.

(6) 1176 feet from A.

(7) 13*1 feet from A.

(8) 32 and 40 tons-feet
; 3*05 feet from supports.

(9) o'207/ and o'293/ from ends.

(10) 4*6 tons-feet
; 0-5 tons-feet

; 4-9 feet from left support ; 474 feet

from right support.

(n) 13 tons-feet; 2*89 feet from left support; 1*46 feet from right

support.
(12) 4'8 tons per square inch.

(13) 217-5 tons-inches.

(14) 15-625 tons
; 7-812 tons.

(15) 937*5 feet
; 253-2 tons-inches.

EXAMPLES V.

(1) 1470 Ibs. per square inch ; 609-5 feet.

(2) scinches.
(3) 13*1 inches.

(4) 1-414.

(5) 12 feet.

(6) 3-2710 I.

(7) 7 tons per square inch.

(8) 21,750 Ib.-inches.

(9) 5'96 (inches)
4
.

(10) 4'57 inches ; 930 (inches)
4

; 1-36 ton ; 1*95 ton per square inch.

(11) 1437 Ibs. ; 6930 Ibs. per square inch.

(12) 0*63 square inch
; 386 Ibs.

(13) 4*65 square inches.

(14) 0*565 square inch ; 14,580 Ibs. per square inch.

(15) 3 square inches ; 18,000 Ibs. per square inch.

(16) 9580 Ibs. per square inch
; 1,040,000 Ib.-inches.

C 1 ?) 35 I
59 Ib.-inches ; 18,000 Ibs. per square inch.

(18) 1-867.

(19) 5'8o tons per square inch ; 3-93.

(21) 4*68 tons per square inch tension inclined 53 44' to section ; 2 '60

tons per square inch inclined 36 46' to section.

(22) 15*34 ton-inches.
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EXAMPLES VI.

(1) 0*073 inch.

(2) 4-96 tons ; 474 tons per square inch ; 7-94 tons ; 379 tons per square
inch.

W

(4) 3 inches (nearly) from centre of span ; '262 inch.

I I W/8

(6) &W ; &W/ ; AW/ ; ^/
from free end

; r- ; 0-2038 W.

(7) ft

(9) 'I34 mch J 0*148 inch
; 9*25 inches from centre ; 0*148 inch

(10) 9* 1 8 tons ; 3*3 tons.

(n) 8*8 inches from centre ; 0*342 inch.

(12) 12*083 tons (centre) ; 3*958 tons (ends).

(13) 0-414; 0*68.

(14) 0*29 ; 0*337 ; 0*644.

TO*; ft.
(16) 0-0180 inch ; 0*224 inch ; 0*0181 inch (upward) : 9*87 feet.

(17) 0*0988; 0*073 inch (upward) ; 0-409 inch ; 4*63 feet to left of D.
W/3

(18)
0*544-^

(19) 2*98 inches.

W/3

(20) 0*0241 -

() oroiSS^-
(22) 4 ; 0-4096 inch ; 176 inches.

(23) 2*35 tons ; 16*92 tons per square inch.

EXAMPLES VII.

(1) 6*55 tons per square inch ; 0*152 inch.

(2) rfoo//
2

; -^w/
2

; -$wl\ ^wl-, 0*025 / from centre.
"

(3)*W/; *W/; rfB -gj J ik; i/ from ends.

W/3

(4) AW/; sVW/ ; -^W ;
W

; T&* ; ^ ; 4/from light

W/3

y ; f/ and ^/ from light end.

(5) 22-025 tons-feet (left) ; 19*475 tons-feet (right).

(6) fifawP and yf^w/
2

;
o*i82/ and ^f/ from heavy end; 0-443

heavy end; 0*00134^.
W/3

(7) o-iioSW/; 0-I392W/; 0-007 --
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W/3

(8)o*o759W/; 0-0491W/; 0*0037 -^ .

(9) o iW2
, iV^/

2
,
o

; AW/, HW/, JJw/, AW/.
(10) o, 175 tons-feet, 125 tons-feet, o; 24-16 tons, 57-083 tons, 55 tons,

2375 tons.

(11) 7-429 tons-feet at B, 4-913 tons-feet at C ;
in order A, B, C, D, 3-45,

7*34, 6-39, 3-82 tons.

(12) (a)
From fixed end, ^w/2

, jW2
, IfawP* o

; ffofft) ffw/, ffw/,

at each ; at ends, wl at inner supports.

(13) In order A, B, C, D, 6*193, 5-661, 5-486, o tons-feet; 4-441, 6-03,

6-843, 3703 tons.

(14) 2-94 and 8 65 tons-feet ; 4-01, 5'6o, 8-32, 3-07 tons.

EXAMPLES VIII.

(1) 15,625 pounds per square inch
; 0*815 inch-pounds.

(2) 5-43 and 0-15 inch-pounds.

(4) 3-2 to i, i to 3.

(5) 780 cubic inches ;
10

; 0-854 ton
; 2*34 inches ; 27 feet I inch.

(6) 7*4 per cent.

EXAMPLES IX.

(1) 1*936 and 0*844 tons per square inch.

(2) 5*6 and 2-4 tons per square inch.

(3) 7'4i7 and 6*583 tons per square inch.

(4) 14-85 feet.

(5) 72-8 tons.

(6) 4 feet 6*6 inches.

(7) 989 tons.

(8) 354 tons.

(9) 324 tons.

(10) 36*6 tons.

(n) 121*3 tons.

(12) 0*48 inch.

(13) 9*5 inches.

(14) 2*441 and 0*339 tons per square inch.

(15) 0-309 inch.

(16) 46*3 inches ; 0*34 ton per square inch.

(17) 770 tons.

(18) 19-06 tons
; 5*42 tons per square inch.

(19) 2*275 inches.

20) 13*2 tons ; 4*06 tons per square inch.

21) 4571 and 521 pounds per square inch compression.
22) 0*0308 inch ; 3173 pounds per square inch.

(23) 6'8 1 tons.

EXAMPLES X,

(1) 2*27 tons per square inch.

(2) 47,750 pound-inches ; 3*43.
(3) 4-11 inches ; 2*23.
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(4) 9910 pounds per square inch.

(5) 2-386 tons per square inch
; 1-05.

(6) 1-443 and 1-67.

(7) 0-776 and 0-984.

(8) 6370 pounds per square inch
;
26 34'.

(9) 14-63 inches; 15-34 inches.

(10) 25-4 H.P.

(n) 4423 pounds per square inch.

(12) 6060 pounds per square inch.

(13) 30 x 10 and ir8 x iofl

pounds per square inch
; 0*271.

(14) 1*31 inch ; 7820 pounds per square inch ; no pounds.
(15) 8 feet 6 inches.

(16) 162*5 pounds ; 1-546 inch.

(17) 13*96 pounds.
(18) 47-8 inches ; 1*15 inch.

(19) 23*9 pound-inches.
(20) 48 feet

; 0-3684 inch.

(21) 1*438 inch ; 3*61 inches
; 0*97 inch

;
2*286 inches.

(22) 3-76 winding up; 20-14 unwinding; 4-23 winding up; 9^28 un-

winding.

(23) 23-1; 79'5; I4'3; 477.

EXAMPLES XI.

(1) & inch.

(2) 173 pounds per square inch.

(3) looo pounds per square inch; .in pounds per square inch;
3120 pounds per square inch.

(4) 3'9 inches
; 500 pounds per square inch.

(5) 1539 pounds per square inch.

(6) 2- 1 8 inches.

(7) 2-04 inches.

(8) 14,400 compression ; 10,286 tension
; 14,286 tension, and 10,400 com-

pression at common surface
;

all in pounds per square inch.

(9) 0-00368 inch.

(10) 16,953 >*
22^7 ; 23,545 pounds per square inch,

(n) 2950 revs, per minute ; 0*0269 inch.

(12) 1-535: 1-56: i.

(13) 1070 pounds per square inch.

EXAMPLES XII.

(1) 6-67 tons per square inch tension
; 3-94 tons per square inch com-

pression.

(2) 7922 pounds per square inch tension
; 22,660 pounds per square inch

compression.
(3) 4' S3 tons.

(4) 8*83 and 3-7 tons per square inch,

(5) * 3)733 and 18,620 pounds per square inch,

(o) 0*003557 inch ; 0*002469 inch.

(7) 6830 and 12,930 pounds per square inch.

(8) 3^ pound-inches ; 6*36 turns
; 66*6 inch-pounds ; 1*91 pounds.

(9) 3 X *25 tons ; 8*4 tons-feet.

(10) 20-83 tons
; 6-51 tons-feet ; 25-1 tons ; 0*57 ton.

(11) 30-5 tons.
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(12) 976 tons, 21-9 tons-feet.

(13) 0*43 tons per square inch.

(14) Ends, 0-0553W/; ; o*459\V. Crown, o'O757\V/ ; 0*4591W ; zero.

(15) 1992 pounds per square inch ; 50*5.

(16) 8280 pounds per square inch.

(17) 121 feet.

(18) 1*2 inch.

(19) 4167 pounds per square inch ; 39-4 ; 8333 pounds per square inch.

(20) 4*46 inches ; 11,200 pounds per square inch.

(21) 79*74 feet ; 7.1'^w pounds ; 102*69 pounds

EXAMPLES XIII,

(1) 45'5 pounds per square inch.

(2) 64*9 pounds per square inch.

(3) 75 pounds per square inch.

(4) 82*4 pounds per square inch,,

(5) 9'5 2 inches.

(6) 192 pounds per square inch.

EXAMPLES XIV,

(1) 2*45 per second.

(2) 33*24 per minute.

(3) 22*44 per second.

(4) 32 per second.

(5) 18*4 per second.

(6) 29*9 per second.

(7) 1042 revs, per minute.

(8) 10,667, 1373, 6270 revs, per minute.

(9) 374 pounds per square inch,

(10) 667 per minute,

(n) 701 per minute.

(12) 651 per minute.
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428
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Anchor ring, 341, 349
Andrews, T., 59

Annealing, 51
Arched ribs, 356
Arnold, Prof. J. O., experiments of

reversals of stress, 76, 456
Assumptions in theory of bending, 104
Autographic recorders, 442

Bairstow, L., 75
Baker, Sir B., 73
Bauschinger, 73, 81, 477, 479
Beams, Chaps. IV., V., VI., VII., VIII

, built-in, Chap. VIII.

,
deflection of, Chap. VI. and 228,

234
,
stresses in, Chap. V.
of uniform strength, 131, 186

, resilience of, 226

Beare, Prof. T. H., 474
Bending, theory of, 86, 101, 107

beyond elastic limit, 144
combined with torsion, 283
tests, 428, 450, 478
of curved bars, 332
moments, 86

from funicular polygon, 94
, relation to shearing force, 95

unsymmetrical, 146, 244
Benedicks, on hardness, 461
Blue heat, hardening at, 51

Brass, 44
Brick, 475
Brinell hardness test, 461, 463
Bronzes, 45
Buckton testing machine, 427

Calibration of testing machines, 437
Cantilever, 90

bridge, 224
,
deflection of, 161, 172, 235

Carriage spring, 188, 229
Cast iron, 40

beams, 124, 144

Catenary, 374
Cement, 467

testing machines, 469
Centrifugal tension, 313
Chain links, 351
Chains, hanging, 370
Chree, Dr. C., 315, 415, 423
Christie, J., on struts, 274
Clapeyron's theorem of three moments,

210, 214
Clark, T. C., on struts, 274
Coefficient of elasticity, 4 ; table, 6 1

Coker, Dr. E. G., 287, 446, 453
Combined bending and direct stress, 242

torsion, 283
stresses, 33 and footnote

Commercial elastic limit, 31
tension tests, 434

Component stresses, 4
Compound cylinders, 307

stresses, 14

Compression, 52, 428, 475
Concrete, 474

, reinforced, 124
, steel, 124

Continuous beams, 209
, advantages and disadvantages,

223
of varying section, 220

Contraction of section, 10, 37

Contrary flexure, points of, 94

Copper, 44
, alloys of, 44

Cores, 245
Coupling-rod, stress in, 273
Critical frequency, 82, 403
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Crushing strength, table, 61

Curvature of beams, 103, 154
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Cylinders, compound, 307
, rotating, 320
, thick, 303
, thin, 299

Dangerous speeds, 403
Deflection of beams, Chap. VI.

due to shearing beams, 234
from bending-moment diagrams,

170, 1 80, 182
of carriage spring, 188
of flat plates, 385, 387, 390, 393,

395
of helical spring, 289, 292
of rotating shaft, 414

Diagrams of bending moment, 87
Disc, rotating, 315

of uniform strength, 330
of varying thickness, 328

Ductile metals, 29
Ductility, 29

, importance of, 34
Dunkerley, Prof. S., 415
Dynamic effect of live load, 65, 66, 82,

230

E

Eccentric loads, 242
on long columns, 259

Elastic constants, 7

,
determination of, 451

, modified, 25
, relations between, 10

Elastic limits, 3, 30
, commercial, 31
, raising, 47

Elastic strain energy, 64, 233
strength, theories of, 33

Elasticity, I, 3, 29
, modulus of, 4
, theory of, i

Ellipse of inertia, 122

of stress, 17

Ellipsoid of strain, 25

Elongation, percentage, 34
Encastre beams, 193
End thrust with torsion, 285
Engineering Standards Committee, 37,

39, 44, 467, 469
Equation of three moments, 210, 214
Euler's theory of long pillars, 249, 253
Ewing, Prof. J. A., 32, 49, 82, 83, 440
Experiments on struts, 257
Extensometers, 439

Factor of safety, 32, 83 ; table, 84
Fairbairn, 71

Fatigue, 70
Ferro-concrete, 124
Fidler, Prof. T. C., on struts, 274
Fixing-couples on beams, 196
Flexure, points of contrary, 94
Fluctuating stresses, 71 to 84

, explanation of failure under,8o
Flywheel rim, stress in, 313
Fractures, 54, 287
Funicular polygon, 94, 182

Gardner, T., preface
Gerber's parabola, 77
Goodman, Prof. J., 43, 339, 439, 443,
and preface

Gordon's rule for struts, 255
Graphical determination of area moments,

117
of beam deflections, 172, 179,

181

of centroids, 117
of moments of inertia, 117

Graphical methods for beam deflections

due to shearing, 238
for built-in beams, 202, 208
for continuous beams, 213,

221

Greenhill, Prof., 419
Guest, J. J., 33

Guillery hardness tests, 463
Gyration, radius of, 1 1 1

\

H
Hadfield, Sir R., 58 footnote

Hancock, Prof. E. L., 33 footnote, 287
footnote

Hanging wires and chains, 370
Hardening, 50, 51
Hardness tests, 457, 463, 464
Hatt, Prof. W. K., timber tests, 477
Helical seams in cylindrical shell, 302

springs, 288

Hodgkinson, E., on struts, 274
Hollow shafts, 280
Hooke's law, 4
Hooks, stresses in, 339

Hopkinson, Prof. B., 52 footnote, 67

Humphrey, J. C. W., 83

I

Impact of falling weight, 66

producing flexure, 230
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Impact tests, 495
testing machines, 465

Inertia, moment of, in
, graphical determination, 117

Infection, points of, 94
Intensity of stress, I

,
actual and nominal, 30,

33

Johnson, Prof. J. B., 58, 477, and

preface
,
formula for struts, 257

, timber tests, 477
Joints riveted, 138, 301

K

Kennedy, Sir Alex., 80 footnote

Keyways, effect of, on round shafts, 282

Lame's theory of thick cylinders, 303
Lateral loads on struts and tie rods, 267
Launhardt, 77
Le Chatelier cement test, 472
Lily, Prof. W. E., on struts, 274
Limiting range of stress, 77
Link polygon, 94
Links, 351
Live loads, 65
Long columns, 249

under eccentric loads, 259
Longitudinal vibrations, 404
Liider's lines, 31

M

Malleability, 29
Manganese-bronze, 45
Martens, Prof. A., hardness test, 464
Masonry seating for beam ends, 246
Mellor, Dr. J. W., 32 footnote

Metallography, 31

Microscopic observations, 31, 83
Modulus, bulk, 9, 453

of elasticity, 4
figures, 121

of rigidity, 8, 451 ; table of, 61
of section, 106, 114
of rupture, 145, 479

, Youngs, 7, 451 ; table of, 61
Moisture in timber, 476
Moment of inertia of sections, 105, 1 1 1

of resistance, 87, 105
Momental ellipse, 122

Moncrieff, J. M., on struts, 274

Morrow, Dr. J., on beam strains, 145 ;

on extensometers, 439 ; on Poisson's

ratio, 453
Muir, Dr. J., 49 footnote, 50 footnote,

8 1 footnote

N

Natural elastic limits, 81

vibrations, 401
Neutral axis, 102, 103

surface, 102
Nominal stress, 30, 38

Oak, strength of, 478, 479, 480
Oblique stresses, 4
Oval cylinders, 301

plate, 396
Overstrain, 47

Pearson, Prof. Karl, 339 footnote, and

preface

Perry, Prof. J., 261, 269 footnote, 274
Phosphor-bronze, 45
Pillars, 248
Pipes, 299
Pitch of rivets in girders, 138
Plasticity, 29
Plates, flat, 378
Points of contrary flexure, 94
Poisson's ratio, 10, 453
Principal planes, 14

strains, 24
stresses, 14, 19 ; in beams, 140

Proof resilience, 65, 226

Propped beams, 159, 163, 169, 173

Raising the elastic limit, 47
Rankine's formula for struts, 254
Rate of loading, 48, 52

Rectangular plate, 398
Reduction in area, 37
Reinforced concrete, 124
Relation between elastic constants, 10

of curvature slope and deflection in

beams, 154, 170
Resilience, 64

of beams, 226

, shearing, 233
, torsional, 287

Resistance to shocks, 68
Resolution of stresses, 14
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Reversals of stress, 71-84, 454
, explanations of failure

under, 80

Reynolds, Prof. O., 74
Riehle testing machine, 433
Rings, 341, 349
Rivets in boilers, 301

girders, 138

Rogers, F., experiments on reversals of

stress, 76
Rosenhain, W., 32
Rotating cylinder, 320

disc, 315
of uniform strength, 330
of varying thickness, 328

ring or wheel rim, 313

Safety, factor of, 32
Sankey, Capt. J. R., 423, 457

, hand bending machine, 457
Scoble, W. A., 33 footnote

Second moment of areas, in
Shafts, 280

of non-circular section, 281
Shear strain, 3

stress, 2

, simple, 6
in beams, 132, 142

Shearing deflection of beams, 234
force, 86

,
relation to bending moment,

95
resilience, 233
strength table, 61, 480
tests, 436, 479

Shells, 299
Shocks, resistance to, 68

Silicon-bronze, 45
Simple bending, 101

shear, 6

Slip bands, 32
Smith, Prof. J. H., experiments on re-

versals of stress, 74, 454
Smith, Prof. R. H., 262

Spangenberg, 73

Spherical shell, thick, 306
thin, 302

Spring, carriage, 188, 229
,
flat spiral, 354

, helical, 288

Square plates, 398
shafts, 281

Steel, 43
Steel sections, 115
Stiffness of beams, 153

of springs, 289, 402
Stone, 474

Strain, 3

, ellipsoid of, 25
energy, 64
principal, 24

Strength, elastic, 32
, tables of, 61, 478
, ultimate, 32

Stress, i

due to change of temperature, 58,

364, 368
due to impact, 66

, ellipse of, 17

lines, 40
, nominal and actual, 30, 38
, oblique, 4*
, principal, 14, 19
, shear, 2

, simple, 2

Struts, 246
laterally loaded, 267, 268

Temperature, effect on properties, 57
stresses, 59

in arched ribs, 364, 368
Tenacity, 32, 40 ; table, 61, 478
Tension tests, 426, 434, 477

of wire, 448
Test piece, 434

, effect of shape of, 39
Testing machines, 426

, calibration of, 437
for hardness, 461

Theorem of three moments, 209, 214
Theory of bending, 86, 101, 107
Thick cylinder, 303

spherical shell, 306
Thin cylinders, 297

spherical shell, 302
Thrust on columns, Chap. IX.

on rotating shaft, 417
with torsion, 285, 417

Tie rods laterally loaded, 267, 271
Timber, 476
Time, effect of, 48, 52, 480
Tin, 52
Tomlinson, G. A., 49 footnote, and

preface
Torsion, 277

and bending, 283
beyond elastic limit, 286
of non-circular shafts, 281
of wires, 449

Torsional resilience, 287
strain, 446
vibrations, 419

Transverse curvature of beams, 232
vibrations, 406, 410, 412
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u

Ultimate strength, 32
tables of, 6 1, 478, 479

Unit stress, I

Unsymmetrical bending, 146, 244.

Unwin, Prof. W. C., 35, 460

Vibrations, 401
free or natural, 401

forced, 403
longitudinal, 404
transverse, 406, 410, 416
torsional, 419

W
Weston, A. T., 301

Weyraugh, 77

Whirling speed of shafts, 412
Wicksteed's autographic recorders, 442,

443
testing machine, 426, 429

Wilson's method for continuous beams,
214

Wire ropes, 480
Wires, hanging, 370

,
tension of, 448

,
torsion of, 449

Wohler's experiments, 71, 454
Work done in straining, 63
Working stress, 32

Wrought iron, 42

Yield point, 30
,
determination of, 451

, raising. 47

Young's modulus, 7
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