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INTRODUCTION

EVERY
layman is fascinated by a great engineering work a

large sewage system, a Keokuk dam, a twenty-story steel

structure and wishes he might be able to construct such work

and carry it to completion. And yet he hardly appreciates the

knowledge, experience, and judgment necessary to bring such a

work to a satisfactory close. Time was when all of the details of

such structures were determined by guesswork, but the develop-

ments in science and mathematics have changed all that. For-

mulas for the various types of stresses have been worked out;

constants for every known material have been collected; and a

multitude of diagrams and tables contribute to making the engi-

neer's work as precise as a bookkeeper's balance. The strength

and size of every rivet and the length and cross-section of every

girder in a steel structure are figured so they will bear the strains

put upon them. The design of a masonry dam, the strength of

the concrete mixture, and the amount of steel reinforcement are

all mathematically determined in order to safely restrain the given

volume of water behind it.

<I The final judgment, therefore, as to the size of every part of

the structure must depend upon the designer's knowledge of

"Strength of Materials." The treatment of Strength of Materials,

as found in standard textbooks, is so clothed in abstruse mathe-

matics that it is impossible for the average trained man to obtain

a working knowledge of the subject. As the subject is one of the

most important in any of the engineering branches, the author

has thought it wise to present it in simple form, culling out all

material that can not be used in practical design and analyzing

the subject from the theory through to the practical formulas

without the use of higher mathematics. In fact, he has used only

such mathematics as may be easily understood. While the author

has designed this work especially for home study purposes, the

material is valuable to the college trained man as well, as it gives

in clear, concise form the principles which are most used in engi-

neering and architectural work. It is the hope of the publishers

that the book will fill a place among the useful reference works in

the field of engineering.
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STRENGTH OF MATERIALS.

PART I.

SIMPLE STRESS.

i. Stress. When forces are applied to a body they tend in a

greater or less degree to break it. Preventing or tending to pre-

vent the rupture, there arise, generally, forces between every two

adjacent parts of the body. Thus, when a

load is suspended by means of an iron rod,

the rod is subjected to a downward pull at

its lower end and to an upward pull at its

upper end, and these two forces tend to pull
it apart. At any cross-section of the rod

the iron on either side "holds fast" to that on

the other, and these forces which the parts

of the rod exert upon each other prevent
the tearing of the rod. For example, in Fig.

1, let a represent the rod and its suspended

load, 1,000 pounds; then the pull on the

lower end equals 1,000 pounds. If we neg-
lect the weight of the rod, the pull on theo s.

upper end is also 1,000 pounds, as shown in

Fig. 1
(5) ;

and the upper part A exerts

on the lower part B an upward pull Q equal
to 1,000 pounds, while the lower part exerts

on the upper a force P also equal to 1,000 pounds. These two

forces, P and Q, prevent rupture of the rod at the "section" C; at

any other section there are two forces like P and Q preventing

rupture at that section.

By stress at a section of a body is meant the force which the

part of the body on either side of the section exerts on the other.

Thus, the stress at the section C (Fig. 1)
is P (or Q), and it equals

1,000 pounds.
a. Stresses are usually expressed (in America) in pounds,

sometimes in tons. Thus the stress P in the preceding article is

. 1.
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1,000 pounds, or
-J

ton. Notice that this value has nothing to do

with the size of the cross-section on which the stress acts.

3. Kinds of Stress, (a)
"When the forces acting on a body

(as a rope or rod) are such that they tend to tear it, the stress at

any cross-section is called a tension or a tensile stress. The

stresses P and Q, of Fig. 1, are tensile stresses. Stretched ropes,

loaded "tie rods" of roofs and bridges, etc., are under tensile stress.

(b.) "When the forces acting on a body (as
a short post, brick,

etc.)
are such that they tend to

crush it, the stress at any sec-

tion at right angles to the di-

rection of the crushing forces is

called a pressure or a compres-
sive stress. Fig. 2 () repre-

sents a loaded post, and Fig. 2

(&) the upper and lower parts.

The upper part presses down on

B, and the lower part presses up
on A, as shown. P or Q is

the compressive stress in the

post at section C. Loaded posts,

or struts, piers, etc., are under

compressive stress.

(c.)
"When the forces acting

on a body (as
a rivet in a bridge

T P
cu

Fig. 2.

joint) are such that they tend to cut or " shear " it across, the stress

at a section along which there is a tendency to cut is called a shear

or a shearing stress. This kind of stress takes its name from the

act of cutting with a pair of shears. In a material which is being
cut in this way, the stresses that are being

" overcome " are shear-

ing stresses. Fig. 3 (&) represents a riveted joint, and Fig. 3
(J>)

two parts of the rivet. The forces applied to the joint are such

that A tends to slide to the left, and B to the right; then B exerts

on A a force P toward the right, and A on B a force Q toward the

left as shown. P or Q is the shearing stress in the rivet.

Tensions, Compressions and Shears are called simple stresses.

Forces may act upon a body so as to produce a combination of simple
stresses on some section

;
such a combination is called a complex
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stress. The stresses in beams are usually complex. There are other

terms used to describe stress; they will be defined farther on.

4. Unit=Stress. It is often necessary to specify not merely
the amount of the entire stress which acts on an area, but also the

amount which acts on each unit of area (square inch for example).

By unit-stress is meant stress per unit area.

To find the value of a unit-stress: Divide the whole stress by

the whole area of the section on which it acts, or over which it is

distributed. Thus, let

P denote the value of the whole stress,

A the area on which it acts, and

S the value of the unit-stress; then

= AS. (l)

Strictly these formulas apply only when the stress P is uniform,

Fig. 3.

that is, when it is uniformly distributed over the area, each square
inch for example sustaining the same amount of stress. When
the stress is not uniform, that is, when the stresses on different

square inches are not equal, then P-r-A equals the average value

of the unit-stress.

5. Unit-stresses are usually expressed (in America) in

pounds per square inch, sometimes in tons per square inch. If

P and A in equation 1 are expressed in pounds and square
inches respectively, then S will be in pounds per square inch; and

if P and A are expressed in tons and square inches, S will be in

tons per square inch.

Examples. 1. Suppose that the rod sustaining the load in

Fig. 1 is 2 square inches in cross-section, and that the load weighs

1,000 pounds. What is the value of the unit-strese ?
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Here P = 1,000 pounds, A= 2 square inches; hence.

S = - = 500 pounds per square inch.

2. Suppose that the rod is one-half square inch in cross -sec-

tion. What is the value of the unit-stress ?

A=
-^-square inch, and, as before, P== 1,000 pounds; hence

S = 1,000-J g-
= 2,000 pounds per square inch.

Notice that one must always divide the whole stress by the area to get

the unit-stress, whether the area is greater or less than one.

6. Deformation. Whenever forces are applied to a body it

changes in size, and usually in shape also. This change of size

and shape is called deformation. Deformations are usually meas-

ured in inches; thus, if a rod is stretched 2 inches, the "elonga-
tion"= 2 inches.

7. Unit-Deformation. It is sometimes necessary to specify

not merely the value of a total deformation but its amount per

unit length of the deformed body. Deformation per unit length
of the deformed body is called unit-deformation.

To find the value of a unit-deformation : Divide the whole

deformation 1y the length over which it is distributed. Thus, if

D denotes the value of a deformation,

I the length,

s the unit-deformation, then

8=-j-,
also T>=ls. (2)

Both D and I should always be expressed in the same unit.

Example. Suppose that a 4-foot rod is elongated \ inch.

What is the value of the unit-deformation?

Here D \ inch, and 1=4: feet=48 inches;

hence =J-j-48=-J^r
inch per inch.

That is, each inch \s elongated
-

v inch.

Unit-elongations are sometimes expressed in per cent. To

express a** elongation in per cent: Divide the elongation in inches

by the original length in inches, and multiply l)y 100.

8. Elasticity. Most solid bodies when deformed will regain

more or less completely their natural size and shape when the de.
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forming forces cease to act. This property of regaining size and

shape is called elasticity.

"We may classify bodies into kinds depending on the degree
of elasticity which they have, thus :

1. Perfectly elastic bodies; these will regain their orig-

inal form and size no matter how large the applied forces are if

less than breaking values. Strictly there are no such materials,

but rubber, practically, is perfectly elastic.

2. Imperfectly elastic bodies; these will fully regain their

original form and size if the applied forces are not too large, and

practically even if the loads are large but less than the breaking
value. Most of the constructive materials belong to this class.

3. Inelastic or plastic bodies; these will not regain in the

least their original form when the applied forces cease to act. Clay
and putty are good examples of this class.

9. Hooke's Law, and Elastic Limit. If a gradually increas-

ing force is applied to a perfectly elastic material, the deformation

increases proportionally to the force; that is, if P and P' denote

two values of the force (or stress), and D and D' the values of the

deformation produced by the force,

thenP:P'::D:D'.

This relation is also true for imperfectly elastic materials,

provided that the loads P and P' do not exceed a certain limit depend-

ing on the material. Beyond this limit, the deformation increases

much faster than the load; that is, if within the limit an addition

of 1,000 pounds to the load produces a stretch of 0.01 inch, beyond
the limit an equal addition produces a stretch larger and usually
much larger than 0.01 inch.

Beyond this limit of proportionality a part of the deformation

is permanent; that is, if the load is removed the body only partially
recovers its form and size. The permanent part of a deformation

is called set.

The fact that for most materials the deformation is propor-
tional to the load within certain limits, is known as Hooke's Law.

The unit-stress within which Hooke's law holds, or above which
the deformation is not proportional to the load or stress, is called

elastic limit.



6 STRENGTH OF MATERIALS

10. Ultimate Strength. By ultimate tensile, compressive,
or shearing strength of a material is meant the greatest tensile,

compressive, or shearing unit-stress which it can withstand.

As before mentioned, when a material is subjected to an in-

creasing load the deformation increases faster than the load beyond
the elastic limit, and much faster near the stage of rupture. Not

only do tension bars and compression blocks elongate and shorten

respectively, but their cross-sectional areas change also; tension

bars thin down and compression blocks "swell out" more or less.

The value of the ultimate strength for any material is ascertained

by subjecting a specimen to a gradually increasing tensile, com-

pressive, or shearing stress, as the case may be, until rupture oc-

curs, and measuring the greatest load. The breaking load divided

l)y the area ofthe original cross-section sustaining the stress, is the

value of the ultimate strength.

Example. Suppose that in a tension test of a wrought-iron
rod

-|
inch in diameter the greatest load was 12,540 pounds. "What

is the value of the ultimate strength of that grade of wrought iron?

The original area of the cross-section of the rod was

0.7854 (diameter)
2=0.7854x J=0.1964 square inches; hence

the ultimate strength equals

12,540-^0.1964:=63,850 pounds per square inch, (nearly).

11. Stress-Deformation Diagram. A "test" to determine

the elastic limit, ultimate strength, and other information in re-

gard to a material is conducted by applying a gradually increasing
load until the specimen is broken, and noting the deformation cor-

responding to many values of the load. The first and second col-

umns of the following table are a record of a tension test on a steel

rod one inch in diameter. The numbers in the first column are

the values of the pull, or the loads, at which the elongation of

the specimen was measured. The elongations are given in the sec-

ond column. The numbers in the third and fourth columns are

the values of the unit-stress and unit-elongation corresponding to

the values of the load opposite to them. The numbers in the

third column were obtained from those in the first by dividing
the latter by the area of the cross-section of the rod, 0.7854

square inches. Thus,

3,930-^0.7854=5,000
7,850-^0.7854=10,000, etc.
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elongation (0.20) laid off from o (Fig. 4) fixes the point a, and a

perpendicular distance to represent the highest unit- stress (83,000)
fixes the point 1). All the points so laid off give the curve ocb. The

part oc
y
within the elastic limit, is straight and nearly vertical

while the remainder is curved and more or less horizontal, especially
toward the point of rupture t>. Fig. 5 is a typical stress-defor-

mation diagram for timber, cast iron, wrought iron, soft and hard

steel, in tension and compression.
12. Working Stress and Strength, and Factor of Safety.

The greatest unit-stress in any part of a structure when it is sus-

taining its loads is called the

working stress of that part. If

it is under tension, compression
and shearing stresses, then the

corresponding highest unit-

stresses in it are called its work-

ing stress in tension, in com-

pression, and in shear respect-

ively; that is, we speak of as~ """

many working stresses as it has

kinds of stress.

By working strength of a material to be used for a certain

purpose is meant the highest unit- stress to which the material

ought to be subjected when so used. Each material has a working

strength for tension, for compression, and for shear, and they are in

general different.

Byfactor of safety is meant the ratio of the ultimate strength
of a material to its working stress or strength. Thus, ifO O '

Su denotes ultimate strength,

Sw denotes working stress or strength, and

f denotes factor of safety, then

When a structure which has to stand certain loads is about

to be designed, it is necessary to select working strengths or fac-

tors of safety for the materials to be used. Often the selection is

a matter of great importance, and can be wisely performed only

by an experienced engineer, for this is a matter where hard-and-
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fast rules should not govern but rather the judgment of the expert.

But there are certain principles to be used as guides in making a

selection, chief among which are:

1. The working strength should be considerably below the

elastic limit. (Then the deformations will bft small and not per-

manent.)

Fig. 5. (After Johnson.)

2. The working strength should be smaller for parts of a

structure sustaining varying loads than for those whose loads are

steady. (Actual experiments have disclosed the fact that the

strength of a specimen depends on the kind of load put upon it,

and that in a general way it is less the less steady the load
is.)

3. The working strength must be taken low for non-uniform

material, where poor workmanship may be expected, when the
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loads are uncertain, etc. Principles 1 and 2 have been reduced

to figures or formulas for many particular cases, but the third must

remain a subject for display of judgment, and even good guessing
in many cases.

The following is a table of factors of safety* which will be

used in the problems:

Factors of Safety.

Materials.
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P 100,000A=
g-

- = -

13
' = 7.692 square inches.

A bar 2x4 inches in cross-section would be a little stronger

than necessary. To find the diameter (d) of a round rod of suffi-

cient strength, we write 0.7854 d2= 7.692, and solve the equation

fore?/ thus:

7 fiQ2
d2=^j^= 9.794, or rf= 3,129 inches.

3. How large a steady load can a short timber post safely sus-

tain if it is 10x10 inches in cross-section and its ultimate com-

pressive strength is 10,000 pounds per square inch ?

According to the table (page 12) the proper factor of safety is

8, and hence the working strength according to equation 3 is

10,000
S= -K = 1,250 pounds per square inch.

The area of the cross-section is 100 square inches; hence the safe

load (see equation 1) is

P= 100 X 1,250= 125,000 pounds.

4. When a hole is punched through a plate the shearing

strength of the material has to be overcome. If the ultimate shear-o

ing strength is 50,000 pounds per square inch, the thickness of the

plate -J inch, and the diameter of the hole f inch, what is the value

of the force to be overcome ?

The area shorn is that of the cylindrical surface of the hole

or the metal punched out^ that is

3.1416 X diameter X thickness= 3.1416 X f X J= 1.178 sq. in.

Hence, by equation 1, the total shearing strength or resistance

to punching is

P= 1.178 X 50,000= 58,900 pounds.

STRENGTH OF MATERIALS UNDER SIMPLE STRESS.

13. Materials in Tension. Practically the only materials

used extensively under tension are timber, wrought iron and steel,

and to some extent cast iron.

14. Timber. A successful tension test of wood is difficult,

as the specimen usually crushes at the ends when held in the test-

ing machine, splits,
or fails otherwise than as desired. Hence the
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tensile strengths of woods are not well known, but the following

may be taken as approximate average values of the ultimate

strengths of the woods named, when "dry out of doors."

Hemlock, 7,000 pounds per square inch.

White pine, 8,000
" "

.

Yellow pine, long leaf, 12,000
"

" "
,
short leaf, 10,000

"

Douglas spruce, 10,000
"

White oak, 12,000

Red oak, 9,000

15. Wrought Iron. The process of the manufacture of

wrought iron gives it a "grain," and its tensile strengths along and

across the grain are unequal, the latter being about three-fourths

of the former. The ultimate tensile strength of wrought iron

along the grain varies from 45,000 to 55,000 pounds per square
inch. Strength along the grain is meant when not otherwise

Btated.

The strength depends on the size of the piece, it being greater
for small than for large rods or bars, and also for thin than for

thick plates. The elastic limit varies from 25,000 to 40,000

pounds per square inch, depending on the size of the bar or plate
even more than the ultimate strength. Wrought iron is very

ductile, a specimen tested in tension to destruction elongating from

5 to 25 per cent of its length.

16. Steel. Steel has more or less of a grain but is practically
^f the same strength in all directions. To suit different purposes,
steel is made of various grades, chief among which may be men-

tioned rivet steel, sheet steel (for boilers), medium steel (for

bridges and buildings), rail steel, tool and spring steel. In general,
these grades of steel are hard and strong in the order named, the

ultimate tensile strength ranging from about 50,000 to 160,000

pounds per square inch.

There are several grades of structural steel, which may be

described as follows:*

1. Rivet steel:

Ultimate tensile strength, 48,000 to 58,000 pounds per square inch.

Elastic limit, not less than one-half the ultimate strength.

Elongation, 26 per cent.

Bends 180 degrees flat on itself without fracture.

*Taken from " Manufacturer's Standard Specifications."
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2. Soft steel:

Ultimate tensile strength, 52,000 to 62,000 pounds per square inch.

Elastic limit, not less than one-half the ultimate strength.

Elongation, 25 per cent.

Bends 180 degrees flat on itself.

3. Medium steel:

Ultimate tensile strength, 60,000 to 70,000 pounds per square inch.

Elastic limit, not less than one-half the ultimate strength.

Elongation, 22 per cent.

Bends 180 degrees to a diameter equal to the thickness of the

specimen without fracture.

17. Cast Iron. As in the case of steel, there are many
grades of cast iron. The grades are riot the same for all localities

or districts, but they are based on the appearance of the fractures,

which vary from coarse dark grey to fine silvery white.

The ultimate tensile strength does not vary uniformly with

the grades but depends for the most part on the percentage of

"combined carbon" present in the iron. This strength varies from

15,000 to 35,000 pounds per square inch, 20,000 being a fair

average.

Cast iron has no well-defined elastic limit (see curve for cast

iron, Fig. 5).
Its ultimate elongation is about one per cent.

EXAMPLES FOR PRACTICE.

1. A steel wire is one-eighth inch in diameter, and the ulti-

mate tensile strength of the material is 150,000 pounds per square
inch. How large is its breaking load ? Ans. 1,845 pounds.

2. A wrought-iron rod (ultimate tensile strength 50,000

pounds per square inch) is 2 inches in diameter. How large a

steady pull can it safely bear ? Ans. 39,270 pounds.
18. Materials in Compression. Unlike the tensile, the

compressive strength of a specimen or structural part depends on

its dimension in the direction in which the load is applied, for,

in compression, a long bar or rod is weaker than a short one. At

present we refer only to the strength of short pieces such as do

not bend under the load, the longer ones (columns) being dis-

cussed farther on.

Different materials break or fail under compression, in two

very different ways:
1. Ductile materials (structural steel, wrought iron, etc.),
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and wood compressed across the grain, do not fail by breaking Into

two distinct parts as in tension, but the former bulge out and

flatten under great loads, while wood splits and mashes down.

There is no particular point or instant of failure under increasing

loads, and such materials have no definite ultimate strength in

compression.
2. Brittle materials (brick, stone, hard steel, cast iron, etc.),

and wood compressed along the grain, do not mash gradually, but

fail suddenly and have a definite ultimate strength in compression.

Although the surfaces of fracture are always much inclined to the

direction in which the load is applied (about 45 degrees), the ulti.

mate strength is computed by dividing the total breaking load by
the cross-sectional area of the specimen.

The principal materials used under compression in structural

work are timber, wrought iron, steel, cast iron, brick and stone.O
19. Timber. As before noted, timber has no definite ulti-

mate compressive strength across the grain. The U. S. Forestry

Division has adopted certain amounts of compressive deformation
as marking stages of failure. Three per cent compression is

regarded as "a working limit allowable," and fifteen per cent as

"an extreme limit, or as failure." The following (except the
first)

are values for compressive strength from the Forestry Division

Reports, all in pounds per square inch:

Ultimate strength 3 Compression
along the grain. across the grain

Hemlock 6,000

White pine 5,400 700

Long-leaf yellow pine 8,000 1,260

Short-leaf yellow pine 6,500 1,050

Douglas spruce 5,700 800

White oak 8,500 2,200

Red oak 7,200 2,300 .

20. Wrought Iron. The elastic limit of wrought iron, as be-

fore noted, depends very much upon the size of the bars or plate, it

being greater for small bars and thin plates. Its value for com-

pression is practically the same as for tension, 25,000 to 40,000

pounds per square inch.

21. Steel. The hard steels have the highest compressive

strength; there is a recorded value of nearly 400,000 pounds per

square inch, but 150,000 is probably a fair average.
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The elastic limit in compression is practically the same as in

tension, which is about 60 per cent of the ultimate tensile strength,

or, for structural steel, about 25,000 to 42,000 pounds per square

inch.

22. Cast Iron. This is a very strong material in compres-

sion, in which way, principally,
it is used structurally. Its ulti-

mate strength depends much on the proportion of "combined car-

bon" and silicon present, and varies from 50,000 to 200,000 pounds

per square inch, 90,000 being a fair average. As in tension,

there is no well-defined elastic limit in compression (see
curve for

cast iron, Fig. 5).

23. Brick. The ultimate strengths are as various as the

kinds and makes of brick. For soft brick, the ultimate strength
is as low as 500 pounds per square inch, and for pressed brick it

varies from 4,000 to 20,000 pounds per square inch, 8,000 to

10,000 being a fair average. The ultimate strength of good pav-

ing brick is still higher, its average value being from 12,000 to

15,000 pounds per square inch.

24. Stone. Sandstone, limestone and granite are the

principal building stones. Their ultimate strengths in pounds

per square inch are about as follows:

Sandstone,* 5,000 to 16,000, average 8,000.

Limestone,* 8,000
"

16,000,
"

10,000.

. Granite, 14,000
"

24,000,
"

16,000.

Compression at right angles to the "bed" of the stone.

EXAMPLES FOR PRACTICE.

1. A limestone 12 X 12 inches on its bed is used as a pier

cap, and bears a load of 120,000 pounds. What is its factor of

safety ? Ans. 12.

2. How large a post (short) is needed to sustain a steady
load of 100,000 pounds if the ultimate compressive strength of

the wood is 10,000 pounds per square inch ? Ans. 8 X 10 inches.

25. Materials in Shear. The principal materials used under

shearing stress are timber, wrought iron, steel and cast iron.

Partly on account of the difficulty of determining shearing

strengths, these are not well known.

26. Timber. The ultimate shearing strengths of the more

important woods along the grain are about as follows:
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Hemlock, 300 pounds per square inch.

White pine, 400 " "

Long-leaf yellow pine, 850 " "

Short-leaf " " 775 " "

Douglas spruce, 500 " "

White oak, 1,000
" "

Red oak, 1,100
" "

Wood rarely fails by shearing across the grain. Its ultimate

Fig. 6 a. Fig. 6 b.

shearing strength in that direction is probably four or five timsa

the values above given.

27. Metals. The ultimate shearing strength of wrought

iron, steel, and cast iron is about 80 per cent of their respective

ultimate tensile strengths.

EXAMPLES FOR PRACTICE.

1. How large a pressure P (Fig. 6 a) exerted on the shaded

area can the timber stand before it will shear off on the surface

abed) if ab = 6 inches and "bo= 10 inches, and the ultimate shear-

ing strength of the timber is 400 pounds per square inch ?

Ans. 24,000 pounds.
2. When a bolt is under tension, there is a tendency to tear

the bolt and to "strip" or shear off the head. The shorn area

would be the surface of the cylindrical hole left in the head.

Compute the tensile and shearing unit-stresses when P (Fig. 6
)

equals 30,000 pounds, d 2 inches, and t 3 inches.

j
Tensile unit-stress, 9,550 pounds per square inch.

"

( Shearing unit-stress, 1,591 pounds per square inch.

REACTIONS OF SUPPORTS.

28. Moment of a Force. By moment of a force with re-

epect to a point is meant its tendency to produce rotation about

that point. Evidently the tendency depends on the magnitude of

the force and on the perpendicular distance of the line of action

of the force from the point : the greater the force and the per-

pendicular distance, the greater the tendency; hence the moment
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of aforce with respect to a point equals the product of the force
and the perpendicular distancefrom theforce to the point.

The point with respect to which the moment of one or more
forces is taken is called an origin or center of moments, and the

perpendicular distance from an origin of moments to the line of

action of a force is called the arm of the force with respect to

that origin. Thus, if F
1
and F

2 (Fig. 7) are forces, their arms

with respect to O' are / and a
2

'

respectively, and their moments
are F^'i and F

2
<r'

2
. "With respect to O" their arms are #/' and a"

respectively, and their moments are F^/' and F
2 2

".

If the force is expressed in pounds and its arm in feet, the

moment is in foot-pounds; if the force is in pounds and the arm
in inches, the moment is in inch-pounds.

29. A sign is given to the moment of a force for conven-

ience; the rule used herein is as follows: The moment of a

force about a point is positive or negative according as it tends

to turn the hody about that point in the clockwise or counter-

clockwise direction*.

Thus the moment (Fig. 7)

of Fj about O' is negative, about O" positive;
" F

2
" O'

,
about O" negative.

30. Principle of Moments. In general, a single force of

proper magnitude and line of ac-

tion can balance any number of

forces. That single force is called

the equilibrant of the forces, and

the single force that would balance

the equilibrant is called the result-

ant of the forces. Or, otherwise

stated, the resultant of any num-
ber of forces is a force which pro-
duces the same effect. It can be

proved that The algebraic sum

of the moments of any number

offorces with respect to a point,

equals the moment of their re- Y\S. 1.

sultant about that point.

*By clockwise direction is meant that in which the hands of a clock

rotate; and by counter-clockwise, the opposite direction.
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This is a useful principle and is called "principle of moments."

31. All the forces acting upon a body which is at rest are

said to be balanced or in equilibrium. "No force is required to

balance such forces and hence their equilibrant and resultant are

zero.

Since their resultant is zero, the algebraic sum of the mom-

looolbs. aooolbs. aooolbs. loooltos.

A r^ is
5 v

u lC -5 u
Fig. 8.

ents of any number offorces which are balanced or in equilib-

. rium equals zero.

This is known as the principle of moments for forces in

equilibrium; for brevity we shall call it also "the principle of

moments."

The principle is easily verified in a simple case. Thus, let

AB (Fig. 8) be a beam resting on supports at C and F. It is

evident from the symmetry of the loading that each reaction

equals one-half of the whole load, that is, \ of 6,000=3,000

pounds. (We neglect the weight of the beam for simplicity.)

With respect to C, for example, the moments of the forces

are, taking them in order from the left:

1,000 X 4 = 4,000 foot-pounds

3,000 X 0= "

2,000 X 2= 4,000

2,000 X 14 = 28,000

3,000 X 16 = 48,000
"

1,000 X 20 = 20,000

The algebraic sum of these moments is seen to equal zero.

Again, with respect to B the moments are:

1,000 X 24 = 24,000 foot-pounds

3,000 X 20 = 60,000

2,000. X 18 = - 36,000

2,000 X 6 = 12,000

3,000 X 4= 12,000

1,000 X 0=
The sum of these moments also equals zero. In fact, no matter
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where the center of moments is taken, it will be found in this and

any other balanced system of forces that the algebraic sum of their

moments equals zero. The chief .use that we shall make of this

principle is in finding the supporting forces of loaded beams.

32. Kinds of Beams. A cantilever 'beam is one resting on

one support or fixed at one end, as in a wall, the other end being
free.

A simple beam is one resting on two supports.
A restrained beam is one fixed at both ends; a beam fixed at

one end and resting on a support at the other is said to be re-

strained at the fixed end and simply supported at the other.

A continuous beam is one resting on more than two supports.

33. Determination of Reactions on Beams. The forces which

the supports exert on a beam, that is, the "supporting forces," are

called reactions. We shall deal chiefly with simple beams. The

reaction on a cantilever beam supported at one point evidently

equals the total load on the beam.

When the loads on a horizontal beam are all vertical (and

looolbs. 2000 Ibs. aooolbs.

L, ,1
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Let the reactions be denoted by R
t
and R

2
as shown; then

the moment equations are:

For origin at A,

1,000 X 1+ 2,000 X 6+ 3,000 X 8 R
2 X 10 = 0.

For origin at E,

2100lbS. 3600 llOS.

L a,_ 6. 1

I [B JC . ID

Fig. 10.

R
i
x 101,000 X 92,000 X 43,000 X 2 = 0.

The first equation reduces to

10 R
2
= 1,000+12,000+24,000 = 37,000; or

R
2
= 3,700 pounds.

The second equation reduces to

10 E1= 9,000+8,000+6,000 = 23,000; or

B
1=
= 2,300 pounds.

The sum of the loads is 6,000 pounds and the sum of the reactions

is the same; hence the computation is correct.

2. Fig. 10 represents a beam supported at B and D (that is,

it has overhanging ends) and sustaining three loads as shown. We
wish to determine the reactions due to the loads.

Let Rj and R
2
denote the reactions as shown

;
then the moment

equations are:

For origin at B,

-2,100x2+0+3,600x6 R
2 X 14+ 1,600x18 = 0.

For origin at D,

-2,100x16+^x143,600x8+0+1,600x4 = 0.

The first equation reduces to

14 E
a
= -4,200+21,600+ 28,800 = 46,200; or

R
2
= 3,300 pounds.

The second equation reduces to

14 R1=
= 33,600+28,800-6,400 = 56,000; or

E1= 4,000 pounds.
The sum of the loads equals 7,300 pounds and the sum of the

reactions is the same; hence the computation checks.

3. What are the total reactions in example 1 if the beam

weighs 400 pounds ?
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(1.)
Since we already know the reactions due to the loads

(2,300 and 3,700 pounds at the left and right ends respectively

(see illustration 1 above), we need only to compute the reactions

due to the weight of the beam and add. Evidently the reactions

due to the weight equal 200 pounds each; hence the

left reaction =2,300+2002,500 pounds, and the

-right
= 3,700+ 200 3,900 .

(2.) Or, we might compute the reactions due to the loads

and weight of the beam together and directly.
In figuring the

moment due to the weight of the beam, we imagine the weight
as concentrated at the middle of the beam

;
then its moments with

respect to the left and right supports are (400 X 5) and (400 X 5)

respectively. The moment equations for origins at A and E are

like those of illustration 1 except that they contain one more

term, the moment due to the weight ;
thus they are respectively :

1,000x1+ 2,000x6+ 3,000x8 R
2 X 10+400X5-0,

E!X 101,000 X 92,000X 43,000X2400X 5-0.

The first one reduces to

10 E
2
= 39,000, or R, = 3,900 pounds;

and the second to

10 .E1= 25,000, or E1=
= 2,500 pounds.

4. What are the total reactions in example 2 if the beam

weighs 42 pounds per foot ?

As in example 3, we might compute the reactions due to the

weight and then add them to the corresponding reactions due to

the loads (already found in example 2), but we shall determine

the total reactions due to load and weight directly.

The beam being 20 feet long, its weight is 42x20, or 840

pounds. Since the middle of the beam is 8 feet from the left and

6 feet from the right support, the moments of the weight with

to the left and right supports are respectively:

840X8 = 6,720, and 840x6 5,040 foot-pounds.

The moment equations for all the forces applied to the beam

for origins at B and D are like those in example 2, with an addi-

tional term, the moment of the weight; "they are respectively:

2,100x2+ 0+3,600x6 R
2 X 14+ 1,600 X 18+ 6,720 = 0,

2,100 X 16+ Rj X 143,600 X 8+ + 1,600 X 45,040 = 0.
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The first equation reduces to

14 R
2=52,920, or R

2=3,780 pounds,
and the second to

14 R^ 61,040, or R^ 4,360 pounds.

The sum of the loads and weight of beam is 8,140 pounds;
and since the sum of the reactions is the same, the computation
checks.

EXAMPLES FOR PRACTICE.

1. AB (Fig. 11) represents a simple beam supported at its

ends. Compute the reactions, neglecting the weight of the beam,

.

j Right reaction = 1,443.75 pounds.
''

J
Left reaction = 1,556.25 pounds.

eoolbs. 900 Ibs. soolbs. looolbs.

k 2' * 4-

IB

Fig. 11.

2. Solve example 1 taking into account the weight of the

beam, which suppose to be 400 pounds.
. ( Right reaction = 1,643.75 pounds.

|
Left reaction = 1,756.25 pounds.

3. Fig. 12 represents a simple beam weighing 800 pounds

supported at A and B, and sustaining three loads as shown.

"What are the reactions ?

.
j Right reaction = 2,014.28 pounds.

'

(
Left reaction = 4,785.72 pounds.

2000 Ibs. 1000 Ibs. 3000 Ibs.
'

t
'

t*

Fig. 12.

4. Suppose that in example 3 the beam also sustains a uni-

formly distributed load (as a
floor) over its entire length, of 500

pounds per foot. Compute the reactions due to all the loads and

the weight of the beam.

.

j Right reaction = 4,871.43 pounds.QS *

(
Left reaction == 11,928.57 pounds.
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EXTERNAL SHEAR AND BENDING MOMENT.

On almost every cross-section of a loaded beam there are

three kinds of stress, namely tension, compression and shear. The

first two are often called fibre stresses because they act along the

real fibres of a wooden beam or the imaginary ones of which we

may suppose iron and steel beams composed. Before taking up
the subject of these stresses in beams it is desirable to study certain

quantities relating to the loads, and on which the stresses in a

beam depend. These quantities are called external shear and

bending moment, and will now be discussed.

34. External Shear. By external shear at (or for) any sec-

tion of a loaded beam is meant the algebraic sum of all the loads

(including weight of beam) and reactions on either side of the

section. This sum is called external shear because, as is shown

later, it equals the shearing stress (internal) at the section. For

brevity, we shall often say simply "shear" when external shear is

meant.

35, Rule of Signs. In computing external shears, it is cus-

tomary to give the plus sign to the reactions and the minus sign

to the loads. But in order to get the same sign for the external

shear whether computed from the right or left, we change the sign
of the sum when computed from the loads and reactions to the

right. Thus for section a of the beam in Fig. 8 the algebraic sum is,

when computed from the left,

-1,000+ 3,000= +2,000 pounds;
and when computed from the right,

-1,000+3,000-2,000-2,000= -2,000 pounds.
The external shear at section a is +2,000 pounds.

Again, for section b the algebraic sum is,

when computed from the left,

-1,000+ 3,000-2,000-2,000+ 3,000 =+ 1,000 pounds;
and when computed from the right, -1,000 pounds.
The external shear at the section is + 1,000 pounds.

It is usually convenient to compute the shear at a section

from the forces to the right or left according as there are fewer

forces (loads and reactions) on the right or left sides of the

section.
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36. Units for Shears. It is customary to express external

shears in pounds, but any other unit for expressing force and

weight (as the ton) may be used.

37. Notation. We shall .use Y to stand for external shear at

any section, and the shear at a particular section will be denoted

by that letter subscripted; thus Y
1?
Y

2 , etc., stand for the shears

at sections one, two, etc., feet from the left end of a beam.

The shear has different values just to the left and right of a

support or concentrated load. We shall denote such values by Y'
and Y"; thus Y

5

'

and Y
5

" denote the values of the shear at sec-

tions a little less and a little more than 5 feet from the left end

respectively.

Examples. 1. Compute the shears for sections one foot

apart in the beam represented in Fig. 9, neglecting the weight of

the beam. (The right and left reactions are 3,700 and 2,300

pounds respectively; see example 1, Art. 33.)
All the following values of the shear are computed from the

left. The shear just to the right of the left support is denoted by
Y ", and Y "= 2,300 pounds. The shear just to the left of B is

denoted by Y/, and since the only force to the left of the section

is the left reaction, Y/= 2,300 pounds. The shear just to the

right of B is denoted by Y/', and since the only forces to the left

of this section are the left reaction and the 1,000-pound load,

Y/'= 2,300 - 1,000= 1,300 pounds. To the left
oj

all sections

between B and C, there are but two forces, the left reaction and

the 1,000-pound load; hence the shear at any of those sections

equals 2,300-1,000^1,300 pounds, or

Y
2
= Y

3
= Y

4
= Y

5
= Y

6
'= 1,300 pounds.

The shear just to the right of is denoted by Y6"; and since the

forces to the left of that section are the left reaction and the

1,000- and 2,000-pound loads,

Y
6

" == 2,300 - 1,000 - 2,00l - 700 pounds.
Without further explanation, thb student should understand

that

Y
7
= + 2,300 - 1,000 - 2,000 === - 700 pounds,

Y; =-700,
Y

8

" = + 2,300 - 1,000 - 2,000 - 3,000= -
3,700,

Y
9
= V

10
'=- 3,700,

Y
10

"= + 2.300 - 1,000 - 2,000 - 3,000 + 3,700=
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2. A simple beam 10 feet long, and supported at each end,

weighs 400 pounds, and bears a uniformly distributed load of

1,600 pounds. Compute the shears for sections two feet apart.

Evidently each reaction equals one-half the sum of the load

and weight of the beam, that is, \ (1,600+400) =1,000 pounds.
To the left of a section 2 feet from the left end, the forces acting
on the beam consist of the left reaction, the load on that part of

the beam, and the weight of that part ;
then since the load and

weight of the beam perfoot equal 200 pounds,
Y

2
= 1,000-200 X 2= 600 pounds.

To the left of a section four feet from the left end, the forces

are the left reaction, the load on that part of the beam, and the

weight ; hence

V\= 1,000-200 X 4= 200 pounds.
Without further explanation, the student should see that

Y
6
= 1,000-200 X 6 =-200 pounds,

Y
8
= 1,000-200 X 8= -600 pounds,

V
10

'= 1,000-200 X 10 = -1,000 pounds,
V

10
"= 1,000-200x10+1,000= 0.

3. Compute the values of the shear in example 1, taking
into account the weight of the beam (400 pounds). (The right
and left reactions are then 3,900 and 2,500 pounds respectively;
see example 3, Art. 33.)

We proceed just as in example 1, except that in each compu-
tation we include the weight of the beam to the left of the section

(or to the right when computing from forces to the right). The

weight of the beam being 40 pounds per foot, then (computing
from the

left)

V
o

" =+ 2,500 pounds,

V/ =+2,500-40 =+2,460,
V/' =+2,500-40-1,000=+ 1,460,

V
2 =+2,500-1,000-40x2 =+1,420,

Y
3
= f 2,500-1,000-40 X 3= + 1,380,

V.
4 =+ 2,500-1,000-40 X 4= + 1,340,

Y
5 =+2,500-1,000-40x5= +1,300,

V
6

' =+ 2,500-1,000-40 X 6= + 1,260,

Y
6

" =+ 2,500-1,000-40 X 6-2,000= -740,
V

7 =+2,500-1,000-2,000-40 X 7= -780,



26 STRENGTH OF MATERIALS

V
8

' =+ 2,500-1,000-2,000-40 X 8 = -820,
V

8

" =+ 2,500-1,000-2,000-40x8-3,000 =-3,820,
Y

g
=+ 2,500-1,000-2,000-3,000-40 X 9 = -3,860,

V'io
=+ 2,500-1,000-2,000-3,000-40 X 10 = -3,900,

Y"10
=+ 2,500-1,000-2,000-3,000-40x10 + 3,900=0.

Computing from the right, we find, as before, that

V
7 =-(3,900-3,000-40 X 3)=-780 pounds,

Y/ =_(3 5900-3,000-40X2)=-820,
V

8

"
=-(3,900-40 X 2)^-3,820,

etc., etc.

EXAMPLES FOR PRACTICE.

1. Compute the values of the shear for sections of the beam

represented in Fig. 10, neglecting the weight of the beam. (The

right and left reactions are 3,300 and 4,000 pounds respectively;

see example 2, Art. 33.)

rV, =V
2
'=-2,100 pounds,

Ans J
Y*" =V.=V4

=V
B
=V

6
=V

T
=V'

8
=+ 1,900,

'

1 V8

" =Y
9
=Y

10
=Y

11
=Y

12
=Y

13
=YU=Y 15

=Y'
16=-1,700,

L V"
16
=Y

17
=Y

18
-Y

19
=Y'

20
=+ 1,600.

2. Solve the preceding example, taking into accoun-t the

weight of the beam, 42 pounds per foot. (The right and left

reactions are 3,780 and 4,360 pounds respectively; see example 4,

Art. 33.)

Y " = - 2,100 Ibs. Y
7
=+ 1,966 Ibs. Yu =- 1,928 Ibs.

Y
1 =-2,142 Y

8

' =+ 1,924 Y
15
=- 1,970

Y
2

' = - 2,184 Y
8

" = - 1,676 Y
16

' = - 2,012

Y
2

" =+ 2,176 Y
9 =-1,718 V

16
"= +1,768

Y
3
=+ 2,134 Y

10
= - 1,760 Y

17
=+ 1,726

y
4
=+ 2,092 Yn =-1,802 Y

I8
=+ 1,684

Y
5
=+ 2,050 Y

12
=- 1,844 Y

19
=+ 1,642

y
e
=+ 2,008 Y

13
= - 1,886 VM

' =+ 1,600

3. Compute the values of the shear at sections one foot apart

in the beam of Fig." 11, neglecting the weight. (The right and

left reactions are 1,444 and 1,556 pounds respectively; see example

1, Art.
33.)

Ans.
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V " =V
1=V/=+ 1,556 pounds,

V," =,=,=,=;= +956,
V

6

" =V/=+ 56,

V," =V8
=V

9
=V

10
=V

11
=V12=V 13'=-444,

[
V 13"=V14=V15=V16'=-1,444.

4. Compute the vertical shear at sections one foot apart ID

the beam of Fig. 12, taking into account the weight of the beam,

800 pounds, and a distributed load of 500 pounds per foot. (The

right and left reactions are 4,870 and 11,930 pounds respectively;

see examples 3 and 4, Art. 33.)

Y = Y
7
= + 6,150 Ibs. Y

15 =+ 830 Ibs,

V
x

' = - 540 Ibs. V
8

' = +5,610 Y
16
=+ 290

VY'=- 2,540 V
8

"
=+4,610 Y

17

' = - 250

Y
2
= _ 3,080 Y

9 =+4,070 Y
17

" = -3,250
Ans. -< Y

3
= - 3,620 Y

10
= + 3,530 Y

18
= -3,790

Y
4
= - 4,160 Yn = +2,990 Y

19
= - 4,330

Y
5
= - 4,700 Y

12
= +2,450 Y

20

' = - 4,870

Y
6

' = - 5,240 Y
13
= + 1,910 Y

20
"=

Y
6"=+ 6,690 VM = + 1,370

38. Shear Diagrams. The way in which the external shear

varies from section to section in a beam can be well represented

by means of a diagram called a shear diagram. To construct

such a diagram for any loaded beam,
1. Lay off a line equal (by some scale) to the length of

the beam, and mark the positions of the supports and the loads.

(This is called a "base-line.")

2. Draw a line such that the distance of any point of it

from the base equals (by some scale) the shear at the correspond-

ing section of the beam, and so that the line is above the base

where the shear is positive, and below it where negative. (This is

called a shear line, and the distance from a point of it to the

base is called the "ordinate" from the base to the shear line at

that point.)

We shall explain these diagrams further by means of illus-

trative examples.

Examples. 1. It is required to construct the shear diagram
for the beam represented in Fig. 13, a (a copy of Fig. 9).
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Lay off A'E' (Fig. 13, &) to represent the beam, and mark the

positions of the.loads B', C' and D'. In example 1, Art. 37, we

computed the values of the shear at sections one foot apart; hence

we lay off ordinates at points on A'E' one foot apart, to represent
those shears.

Use a scale of 4,000 pounds to one inch. Since the shear for

any section in AB is 2,300 pounds, we draw a line ab parallel

to the base 0.575 inch (2,300 ^-4,000) therefrom; this is the shear

line for the portion AB. Since the shear for any section in BC

equals 1,300 pounds, we draw a line Vc parallel to the base and

looolbs. 2000 Ibs. 3000 Ibs.

r a~T~" o * *
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values. We shall use the same scale as in the preceding illustra-

tion, 4,000 pounds to an inch. Then the lengths of the ordinates

corresponding to the values of the shear (see example 3, Art. 37}
are respectively:

2,500-^4,000=0.625 inch

2,460-^4,000=0.615
"

1,460-^4,000=0.365
etc. etc.

Laying these ordinates off from the base (upwards or downwards

according as they correspond to positive or negative shears), we

get ob, J'tf, c'd, and d'e as the shear lines.

iooolbs. aooolfos. 3000 Ibs.

, ,
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4. Suppose that the cantilever of the preceding illustration

sustains also a uniform load of 200 pounds per foot (see Fig. 16, a).
Construct a shear diagram.

2000 Ibs.

First, we compute the values of the shear at several sections.

Thus V " ==- 500 pounds,

V, =-500 -200= -700,
Y

2

'

=_500-200x2^-900,
Y

2

" =_ 500 - 200 X 2 - 1,000^-1,900,
Y

3
=- 500 - 1,000 - 200 X 3=-.2,100,

Y
4

==- 500 - 1,000 - 200x4^-2,300,
Y

5

' =-500 - 1,000 - 200x5^-2,500,
Y

5

" =- 500 - 1,000 - 200X5 - 2,0004,500,
V

6
=- 500 - 1,000 - 2,000 - 200x6^-4,700,

Y
7
=_ 500 - 1,000 - 2,000 - 200 X 7^-4,900,

Y
8
=- 500 - 1,000 - 2,000 - 200 X 8=-5,100,

Y
9
=-500 - 1,000 - 2,000 - 200x9^-5,300.

The values, being negative, should be plotted downward. To a

scale of 5,000 pounds to the inch they give the shear lines #5, b'c,

c<d (Fig. 16, I).

EXAMPLES FOR PRACTICE.

1. Construct a shear diagram for the beam represented in

Fig. 10, neglecting the weight of the beam (see example 1, Art. 37).

2. Construct the shear diagram for the beam represented in

Fig. 11, neglecting the weight of the beam (see example 3,

Art 37).
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3. Construct the shear diagram for the beam of Fig. 12

when it sustains, in addition to the loads represented, its own

weight, 800 pounds, and a uniform load of 500 pounds per foot

(see example 4, Art. 37).
4. Figs, a, cases 1 and 2, Table B, represent two cantilever

beams, the first bearing a concentrated load P at the free end,

and the second a uniform load W. Figs, b are the corresponding

shear diagrams. Take P and W equal to 1,000 pounds, and satisfy

yourself that the diagrams are correct.

and satisfy yourself that the diagrams are correct.

5. Figs. ,
cases 3 and 4, same table, represent simple

beams supported at their ends, the first bearing a concentrated

500 Ibs. looolbs. zooolbs.

- ,
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2. In simple beams, the maximum shear occurs at a sec-

tion next to one of the supports.

By the use of these propositions one can determine the value

of the maximum shear without constructing the whole shear

diagram. Thus, it is easily seen (referring to the diagrams, page
53) that for a

Cantilever, end load P, maximum shear=P

,
uniform load W, " " =W

Simple beam, middle load P,
" " =P

"
,
uniform W, " =W

40. Bending floment. By bending moment at (or for) a

section of a loaded beam, is meant the algebraic sum of the mo-

ments of all the loads (including weight of beam) and reactions

to the left or right of the section with respect to any point in the

section.

41. Rule of Signs. We follow the rule of signs previously
stated (Art. 29) that the moment of a force which tends to pro-
duce clockwise rotation is plus, and that of a force which tends to

produce counter-clockwise rotation is minus; but in order to get
the same sign for the bending moment whether computed from

the right of left, we change the sign of the sum of the moments

when computed from the loads and reactions on the right. Thus .

for section a, Fig. 8, the algebraic sums of the moments of the

forces are :

when computed from tne left,

-1,000 X 5+ 3,000 X 12,000 foot-pounds ;

and when computed from the right,

1,000 X 19-3,000 X 15+ 2,000 X 13+ 2,000 X 1=+ 2,000 foot-

pounds.
The bending moment at section a is -2,000 foot-pounds.

Again, for section o, the algebraic sums of the moments of the

forces are:

when computed from the left,

-1,000 X 22+ 3,000x18-2,000 X 16-2,000 X 4+ 3,000 X 2=
-2,000 foot-pounds;

and when computed from the right,

1,000x2= + 2,000 foot-pounds.
The bending moment at the section is -2.000 foot-pounds.
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It is usually convenient to compute the bending moment for

a section from the forces to the right or left according as there

are fewer forces (loads and reactions) on the right or left side

of the section.

42. Units. It is customary to express bending moments -in

inch -pounds, but often the foot-pound unit is more convenient.

To reducefoot-pounds to inch-pounds, multiply ~by twelve.

43. Notation. We shall useM to denote bending moment at

any section, and the bending moment at a particular section will

be denoted by that letter subscripted; thus M
1?
M

2 , etc., denote

values of the bending moment for sections one, two, etc., feet

from the left end of the beam.

Examples. 1. Compute the bending moments for sections

one foot apart in the beam represented in Fig. 9, neglecting the

weight of the beam. (The right and left reactions are 3,700 and

2,300 pounds respectively. See example 1, Art. 33.)

Since there are no forces acting on the beam to the left of the

left support, M 0. To the left of the section one foot from the

left end there is but one force, the left reaction, and its arm is one

foot; hence M,=+ 2,300x1=2,300 foot-pounds. To the left of

a section two feet from the left end there are two forces, 2,300 and

1,000 pounds, and their arms are 2 feet and 1 foot respectively;

hence M
2
=+ 2,300x2-1,000x1=3,600 foot-pounds. At the

left of all sections between B and C there are only twro forces,

2,300 and 1,000 pounds; hence

M
3
=+ 2,300 X 3-1,000 X 2= +4,900 foot-pounds,

M
4
=+ 2,300 X 4-1,000 X 3=+ 6,200

M
5
=+ 2,300X 5-1,000 X4=+ 7,500

"

M =+ 2,300x6-1,000x5=+ 8,800
'

To the right of a section seven feet from the left end there

are two forces, the 3,000-pound load and the right reaction

(3,700 pounds), and their arms with respect to an origin in that

section are respectively one foot and three feet; hence

M
7
=-(-3,700 X 3+ 3,000 x 1)

=+ 8,100 foot-pounds.

To the right of any section between E and D there is only one

force, the right reaction
;
hence
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M
8=-(-3,700 X 2)^7,400 foot-pounds,

M
9=-(-3,700 X 1)=3,700

Clearly M 10
=0.

2. A simple beam 10 feet long and supported at its ends

weighs 400 pounds, and bears a uniformly distributed load of 1,600

pounds. Compute the bending moments for sections two feet

apart.

Each reaction equals one-half the whole load, that is, -|
of

.(1,600+400) =1,000 pounds, and the load per foot including

weight of the beam is 200 pounds. The forces acting on the

beam to the left of the first section, two feet from the left end, are

the left reaction (1,000 pounds) and the load (including weight)
on the part of the beam to the left of the section (400 pounds).
The arm of the reaction is 2 feet and that of the 400-pound force

is 1 foot (the distance from the middle of the 400-pound load to

the section). Hence

M
2
=+ 1,000 X 2-400 X 1=+ 1,600 foot-pounds.

The forces to the left of the next section, 4 feet from the left

end, are the left reaction and all the load (including weight of

beam) to the left (800 pounds). The arm of the reaction is 4 feet,

and that of the 800-pound force is 2 feet; hence

M
4
= + 1,000 X 4-800 X 2=+ 2,400 foot-pounds.

Without further explanation the student should see that

M
6
=+ 1,000 X 6-1,200 X 3=+ 2,400 foot-pounds,

M
8
=+ 1,000 X 8-1,600 X4=+ 1,600

Evidently M =M10
=0.

8. Compute the values oj; the bending moment in example

1, taking into account the weight of the beam, 400 pounds. (The

right and left reactions are respectively 3,900 and 2,500 pounds;
see example 3, Art. 33.)

We proceed as in example 1, except that the moment

of the weight of the beam to the left of each section (or to

the right when computing from forces to the right) must be

included in the respective moment equations. Thus, computing
from the left,
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M -0
M

t
=+ 2,500 X 1-40 Xj=+ 2,480 foot-pounds,

M
2
=+ 2,500 X 2-1,000 X 1-80 X 1=+ 3,920,

M
3
=+ 2,500 X 3-1,000 X 2-120 X1=+ 5,320,

M
4
=+ 2,500 X 4-1,000 X 3-160 X 2=+ 6,680,

M
5
=+ 2,500 X 5-1,000 X 4-200 X2=+ 8,000,

M, =+ 2,500 X 6-1,000 X 5-240 X 3=+ 9,280.

Computing from the right,

M
7 =-(-3,900x3+3,OOOxl+ 120x

M
8 =-(-3,900x2+80xl)=+ 7,720,

M
9 =-(-3,900xl+40x4)=+3,880,

M
10
= 0.

EXAMPLES FOR PRACTICE.

1. Compute the values of the bending moment for sections

one foot apart, beginning one foot from the left end of the

beam represented in Fig. 10, neglecting the weight of the beam.

(The right and left reactions are 3,300 and 4,000 pounds respec-

tively; see example 2, Art. 33.)

M,= - 2,100 M6
= + 3,400 Mn=+ 2,100 M 16=-6,400

M
2
= - 4,200 M 7

=+ 5,300 M 12
=+ 400 M

17=-4,800
M

3
= - 2,300 M. =+ 7,200 M 13

= - 1,300 M 18=-3,200

Ans.

(in foot-

pounds) M
4
= - 400 M, =+ 5,500 M 14

= - 3,000 M 19=-l,600
M

5
=+ 1,500 M 10

=+ 3,800 M 15
= - 4,700 M20

=
2. Solve the preceding example, taking into account the

weight of the beam, 42 pounds per foot. (The right and left

reactions are 3,780 and 4,360 pounds respectively; see example 4,

Art. 33.)

'M
x
= - 2,121 M6 =+4,084 Mn=+ 2,799 M 16

== - 6,736

Ans. M
2
= - 4,284 M 7

=+ 6,071 M12=+ 976 M
17
= - 4,989

(in foot. J M
3
= - 2,129 M8

=+ 8,016 M 13
= - 889 M

18
= - 3,284

pounds) MI== _ 16 M
9
=+ 6,319 Mu= - 2,796 M 19

= -
1,621

\

M
5
=+ 2,055 M 10=+ 4,580 M 15

= - 4,745 M20
=

3. Compute the bending moments for sections one foot

apart, of the beam represented in Fig. 11, neglecting the weight.

(The right and left reactions are 1,444 and 1,556 pounds respect-

ively; see example 1, Art. 33.)
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pounds)

,=+ l,556 M5
=+ 5,980 M9 =+6,104 M,,= +4,328

Ma=+<M>68 M7=+6,992 Mn=+ 5,216 MI6
=+ 1,440

M
4
=+ 5,024 M8

=+ 6,548 M12
=+ 4,772 M16

=
4 Compute the bending moments at sections one foot apart

in the beam of Fig. 12, taking into account the weight of the beam,
800 pounds, and a uniform load of 500 pounds per foot. (The

right and left reactions are 4,870 and 11,930 pounds respectively;
see Exs. 3 and 4, Art. 33.)

[X^- 270 M
6 =-19,720 Mn=+ 3,980 M16=12,180

Ans. M
a
=- 3,080 M 7

= -13,300 M12=+ 6,700 M17
=12,200

(in footJ M
8
=- 6,430 M8

=- 7,420 M 13=+ 8,880 M 18
= 8,680

pounds) M
4
= -10,320 M 9

=- 3,080 M 14
=+ 10,520 M 19

= 4,620

L
M

6
= -14,750 M lo

=+ 720 M
1B
=+ 11,620 M20

=
44. Moment Diagrams. The way in which the bending

moment varies from section to section in a loaded beam can be

well represented by means of a diagram called a moment diagram.
To construct such a diagram for any loaded beam,

1000 Ibs. sooolbs. 3000 Itas.

2'

ScaJie:i looooft.-lbs

Fig. 17.

1. Lay off a base-line just as for a shear diagram (see

Art. 38).
2. Draw a line such that the distance from any point of it

to the base-line equals (by some scale) the value of the bending
moment at the corresponding section of the beam, and so that the

line is above the base where the bending moment is positive and

below it where it is negative. (This line is called a "moment

line."}
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Examples. 1. It is required to construct a moment dia-

gram for the beam of Fig. 17, a (a copy of Fig. 9), loaded as

there shown.

Layoff A'E' (Fig. 17, 5) as a base. In example 1, Art. 43,

we computed the values of the bending moment for sections one

foot apart, so we erect ordinates at points of A'E' one foot apart,

to represent the bending moments.

We shall use a scale of 10,000 foot-pounds to the inch; then

<he ordinates (see example 1, Art. 43, for values of M) will be:

One foot from left end, 2,300-^-10,000 = 0.23 inch,

Two feet "
3,600-^-10,000 = 0.36 "

Three "
4,900-^10,000 = 0.49 "

Four " "
6,200-^-10,000 = 0.62 "

etc., etc.

r



38 STRENGTH OF MATERIALS

At left end,

One foot from left end, 2,480-^10,000=0.248 inch

Two feet "
3,920-^-10,000=0.392

Three "
5,320-f- 10,000=0.532

Four "
6,680-^-10,000=0.668

Laying these ordinates off at the proper points, we get
as the moment line.

3. It is required to construct the moment diagram for the

cantilever beam represented in Fig. 19, #, neglecting the weight
of the beam. The bending moment at B equals

-500x2=-l,000 foot-pounds;

atC,
-500 X 5-1,000 X 3=-5,500 ;

and at D,
-500X 9-l,OOOX 7-2,000 X 4=-19,500.

500 Ibs. looolbs.

Sca,1e:i"* sooooft.-ltas

Fig. 19.

Using a sca/e of 20,000 foot-pounds to one inch, the ordinates

in the bending moment diagram are:

AtB, 1,000-5-20,000=0.05 inch,

C, 5,500-^20,000=0.275

D, 19,500^-20,000=0.975
Hence we lay these ordinates off, and downward because the bend-

ing moments are negative, thus fixing the points 5, c and d. The

bending moment at A is zero; hence the moment line connects A
&, c and d. Further, the portions A, be and cd are straight, as

can be shown by computing values of the bending moment for

sections in AB, BC and CD, and laying off the corresponding
ordinates in the moment diagram.
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4. Suppose that the cantilever of the preceding illustration

sustains also a uniform load of 100 pounds per foot (see Fig. 20, a).

Construct a moment diagram.

First, we compute the values of the bending moment at sev-

eral sections; thus,

M
x
=-500 X 1-100 X J=-550 foot-pounda,

M
a
=-500x 2-200 XI =-1,200,

M
s
=-500 X 3-1,000 x 1-300 X 1J=-2,950,

M
4
=-500 X 4-1,000 X 2-400 X 2=-4,800,

M
5
=-500 X 5-1,000 X 3-500 X 2J=-6,750,

M
6
=-500 X 6-1,000 X 4-2,000 X 1-600 X 3=-10,800,

M=:-500 X 7-1,000 X 5-2,000 X 2-700 X 3=-14,950,
M

8
=-500 X 8-1,000 X 6-2,000 X 3-800 X 4=-19,200,

1L=-500 X 9-1,000X 7-2,000X 4-900 X 4=-23,550.

500 Ibs. 1000 Ibs.

3'

2000 Ibs.

ScaJe:

Fig. 20.

These values all being negative, the ordinates are all laid off

downwards. To a scale of 20,000 foot-pounds to one inch, they

fix the moment line A.'bcd.

EXAflPLES FOR PRACTICE.

1. Construct a moment diagram for the beam represented in

Fig. 10, neglecting the weight of the beam. (See example 1,

\rt. 43).
2. Construct a moment diagram for the beam represented

in Fig. 11, neglecting the weight of the beam. (See example 3,

Art. 43).
3. Construct the moment diagram for the beam of Fig. 12
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when it sustains, in addition to the loads represented and its own

weight (800 pounds), a uniform load of 500 pounds per foot.

(See example 4, Art. 43.)

4. Figs, a, cases 1 and 2, page 53, represent two cantilever

beams, the first bearing a load P at the free end, and the second

a uniform load W. Figs, c are the corresponding moment

diagrams. Take P and "W equal to 1,000 pounds, and I equal to

10 feet, and satisfy yourself that the diagrams are correct.

5. Figs. #, cases 3 and 4, page 53, represent simple beams

on end supports, the first bearing a middle load P, and the other a

uniform load W. Figs, c are the corresponding moment dia-

grams. Take P and "W equal to 1,000 pounds, and I equal to

10 feet, and satisfy yourself that the diagrams are correct.

45. Maximum Bending Moment. It is sometimes desirable

to know the greatest or maximum value of the bending moment
in a given case. This value can always be found with certainty

by constructing the moment diagram, from which the maximum
value of the bending moment is evident at a glance. But in any

case, it can be most readily computed if one knows the section for

which the bending moment is greatest. If the student will com-

pare the corresponding shear and moment diagrams which have

been constructed in foregoing articles (Figs. 13 and 17, 14 and

18, 15 and 19, 16 and 20), and those which he has drawn, he will

see that The maximum bending moment in a beam occurs

where the shear changes sign.

By the help of the foregoing principle we can readily com-

pute the maximum moment in a given case. We have only to

construct the shear line, and observe from it where the shear

changes sign; then compute the bending moment for that section.

If a simple beam has one or more overhanging ends, then the shear

changes sign more than once twice if there is one overhanging

end, and three times if two. In such cases we compute the

bending moment for each section where the shear changes sign;

the largest of the values of these bending moments is the maxi-

mum for the beam.

The section of maximum bending moment in a cantilever

fixed at one end (as when built int3 a wall) is always at the wall.
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Thus, without reference to the moment diagrams, it is readily seen

that,

for a cantilever whose length is Z,

with an end load P, the maximum moment is PZ,
" a uniform W, " " " "

J "W7.

Also by the principle, it is seen that,

for a beam whose length is Z, on end supports,

with a middle load P, the maximum moment is ^ PZ,

uniform " W, " " "
J-
WZ.

46. Table of Maximum Shears, Moments, etc. Table B
on page 53 shows the shear and moment diagrams for eight

simple cases of beams. The first two cases are built-in cantilevers;

the next four, simple beams on end supports; and the last two,

restrained beams built in walls at each end. In each case I

denotes the length.

CENTER OF GRAVITY AND HOMENT OF INERTIA.

It will be shown later that the strength of a beam depends

partly on the form of its cross-section. The following discussion

relates principally to cross -sections of beams, and the results

reached (like shear and bending moment) will be made use of

later in the subject of strength of beams.

47. Center of Gravity of an Area. The student probably
knows what is meant by, and how to find, the center of gravity of

any flat disk, as a piece of tin. Probably his way is to balance

the piece of tin on a pencil point, the point of the tin at which it so

balances being the center of gravity. (Really it is midway between

the surfaces of the tin and over the balancing point.) The center

of gravity of the piece of tin, is also that point of it through which

the resultant force of gravity on the tin (that is, the weight of the

piece) acts.

By "center of gravity" of a plane area of any shape we mean
that point of it which corresponds to the center of gravity of a

piece of tin when the latter is cut out in the shape of the area.

The center of gravity of a quite irregular p,rea can be found most

readily by balancing a piece of tin or stiff paper cut in the shape
of the area. But when an area is simple in shape, or consists of

parts which are simple, the center of gravity of the whole can be
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found readily by computation, and such a method will now be

described.

48. Principle of floments Applied to Areas. Let Fig. 21

represent a piece of tin which has been divided off into any num-

ber of parts in any way, the weight of the whole being "W, and

that of the parts "W,, W2 ,
W

3 ,
etc. Let Ow C2 ,

C
8 , etc., be the

centers of gravity of the parts, C that of the whole, and <?n <?
2 ,

<?
3 ,

etc., and c the distances from those centers of gravity respectively
to some line (L L) in the plane
of the sheet of tin. When the

tin is lying in a horizontal posi-

tion, the moment of the weight
of the entire piece about L L is

"We, and the moments of the

parts are W^, W2
<?
2 ,
etc. Since

the weight of the whole is the .

resultant of the weights of theo
Fig. 21.

parts, the moment of the weight
of the whole equals the sum of the moments of the weights of the

parts; that is,

Now let A
: ,
A2 ,

etc. denote the areas of the parts of the pieces

of tin, and A the area of the whole; then since the weights are

proportional to the areas, we can replace the "W's in the preceding

equation by corresponding A's, thus:

Ac=A
1
<?

1+A2
<?
2 -fetc..... (4)

If we call the product of an area and the distance of its

center of gravity from some line in its plane, the "moment" of the

area with respect to that line, then the preceding equation may be

stated in words thus:

The moment of an area with respect to any line equals the

algebraic sum of the moments of the parts of the area.

If all the centers of gravity are on one side of the line with

respect to which moments are taken, then all the moments should be

given the plus sign; but if some centers of gravity are on one side

and some on the other side of the line, then the moments of the

areas whose centers of gravity are on one side should be given the
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same sign, and the moments of the others the opposite sign. The

foregoing is the principle of moments for areas, and it is the basis

of all rules for finding the center of gravity of an area.

To find the center of gravity of an area which can be divided

np into simple parts, we write the principle in forms of equations
for two different lines as "axes of moments," and then solve the

equations for the unknown distances of the center of gravity of the

whole from the two lines. We explain further by means of specific

examples.

Examples. 1. It is required to find the center of gravity
of Fig. 22, a, the width being uniformly one inch.

The area can be divided into two rectangles. Let C
t
and

C

C2 1
^ To

Fig. 22.

C2 be the centers of gravity of two such parts, and C the center of

gravity of the whole. Also let a and ~b denote the distances of C
from the two lines OL' and OL"

respectively.
The areas of the parts are 6 and 3 square inches, and their

arms with respect to OL' are 4 inches and \ inch respectively, and
with respect to OL"

-J
inch and 1^ inches. Hence the equations of

moments with respect to OL' and OL" (the whole area being 9

square inches) are:

9x^=6x1+3x14=75.
Hence, a 25.5-^-9 2.83 inches,

I = 7.5-V-9 = 0.83 .

2. It is required to locate the center of gravity of Fig. 22, b,

the width being uniformly one inch.
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The figure can be divided up into three rectangles. Let Cj, C 2

and C
3
be the centers of gravity of such parts, C the center of

gravity of the whole; and let a denote the (unknown) distance of

C from the base. The areas of the parts are 4, 3 and 4 square

inches, and their " arms " with respect to

the base are 2,^ and 2 inches respectively;

hence the equation of moments with re-

spect to the base (the en tire area being 18

square inches) is:

18X0 = 4x2+10X-J+4x2 = 21.

Hence, a 21-r-18 1.17 inches.

From the symmetry of the area it is plain
that the center of gravity is midway be-

tween the sides.

EXAMPLE FOR PRACTICE.

1. Locate the center of gravity of

Fig. 23. Fig. 23.

Ans. 2.3 inches above the base.

49. Center of Gravity of Built=up Sections. In Fig. 24

there are represented cross-sections of various kinds of rolled steel,

called "shape steel," which is used extensively in steel construction.

Manufacturers of this material publish "handbooks" giving full

information in regard thereto, among other things, the position of

the center of gravity of each cross section. With such a handbook

1-foea.m Channel

Angle

Z-b^r

Fig. 2L

available, it is therefore not necessary actually to compute the posi-

tion of the center of gravity of any section, as we did in the pre-

ceding article; but sometimes several shapes are riveted together to
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make a "built-up" section (see Fig. 25), and then it may be neces-

sary to compute the position of the center of gravity of the section.

Example. It is desired to locate the center of gravity of the

section of a built-up beam represented in Fig. 25. The beam con-

14"-

CVJ

Fig. 25.

sists of two channels and a plate, the area of the cross -section of a

channel being 6.03 square inches.

Evidently the center of gravity of each channel section is 6

inches, and that of the plate section is 12^ inches, from the bottom.

Let c denote the dis-

tance of the center of

gravity of the whole

section from the bot-

tom; then since the

area of the plate section

is 7 square inches, and

that of the whole sec-

tion is 19.06,

19.06X^ = 6.03X6+
6.03X6 + 7 X12J =
158.11.

Hence, c= 158.11-^-19.06=8.30 inches, (about).

EXAMPLES FOR PRACTICE.

1. Locate the center of gravity of the built-up section of

*

b

26 -
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Fig. 26, #, the area of each "angle" being 5.06 square inches, and

the center of gravity of each being as shown in Fig. 26, b.

Ans. Distance from top, 3.08 inches.

2. Omit the left-hand angle in Fig. 26, 0, and locate the

Center of gravity of the remainder.

. ( Distance from top, 3.65 inches,
'"

|

" " left side, 1.19 inches.

50. floment of Inertia. If a plane area be divided into an

infinite number of infinitesimal parts, then the sum of the prod-
ucts obtained by multiplying the area of each part by the square
of its distance from some line is ealled the moment of inertia, of the

area with respect to the line. The line to which the distances are

measured is called the inertia-axis; it may be taken anywhere in

the plane of the area. In the subject of beams (where we have

sometimes to compute the moment of inertia of the cross -section

of a beam), the inertia-axis is taken through the center of gravity
of the section and horizontal.

An approximate value of the moment of inertia of an area

can be obtained by dividing the area into small parts (not infini-

tesimal), and adding the products obtained by multiplying the

area of each part by the square of the distance from its center to

the inertia-axis.

Example. If the rectangle of Fig. 27, #, is divided into 8

parts as shown, the area of each is one square inch, and the dis-

tances from the axis to the centers of gravity of the parts are \
and 1^ inches. For the four parts lying nearest the axis the

product (area times distance squared) is:

lX( -J)

2

=4; and for the other parts it is

Hence the approximate value of the moment of inertia of the area

with respect to the axis, is

If the area is divided into 32 parts, as shown in Fig. 27, J,

the area of each part is J square inch. For the eight of the little

squares farthest away from the axis, the distance from their centers

of gravity to the axis is 1J inches; for the next eight it is 1J;

for the next eight J; and for the remainder J inch. Hence an
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approximate value of the moment of inertia of the rectangle with

respect to the axis is :

, 2 !L

If we divide the rectangle into still smaller parts and form

the products

(small area) X (distance)
2

,

and add the products just as we have done, we shall get a larger

answer than ,10J. The smaller the parts into which the rec-

tangle is divided, the larger will be the answer, but it will never

be larger than 10. This 10 is the sum corresponding to a

division of the rectangle into an

infinitely large number of parts

(infinitely small) and it is the

exact value of the moment of

inertia of the rectangle with re-

spect to the axis selected.

There are short methods of

computing the exact values of the

.

9
moments of inertia of simple fig-

ures (rectangles, circles, etc.,),

but they cannot be given here since they involve the use of difficult

mathematics. The foregoing method to obtain approximate val-

ues of moments of inertia is used especially when the area is quite

irregular in shape, but it is given here to explain to the student

the meaning of the moment of inertia of an area. He should

understand now that the moment of inertia of an area is sim-

ply a name for such sums as we have just computed. The name
is not a fitting one, since the sum has nothing whatever to do with

inertia. It was first used in this connection because the sum is

very similar to certain other sums which had previously been

called moments of inertia.

51. Unit of Moment of Inertia. The product (area X dis-

tance2

)
is really the product of four lengths, two in each factor

;

and since a moment of inertia is the sum of such products, a

moment of inertia is also the product of four lengths. Now the

product of two lengths is an area, the product of three is a vol-

ume, and the product of four is moment of inertia unthinkable in
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the way in which we can think of an area or volume, and there-

fore the source of much difficulty to the student. The units of

these quantities (area, volume, and moment of
inertia) are respec-

tively :

the square inch, square foot, etc.,
" cubic "

,
cubic " "

,

"
biquadratic inch, biquadratic foot, etc.;

but the biquadratic inch is almost exclusively used in this connec-

tion; that is, the inch is used to compute
values of moments of inertia, as in the pre-

ceding illustration. It is often written

thus: Inches4
,

i 52. Moment of Inertia of a Rectangle.

Jw -

Let 1} denote the base of a rectangle, and a

Pig 28.
its altitude; then by higher mathematics it

can be shown that the moment of inertia

of the rectangle with respect to a line through its center of gravity
and parallel to its base, is y

1

^ W.

Example. Compute the value of the moment of inertia of

a rectangle 4x12 inches with respect to a line through its center

of gravity and parallel to the long side.

Here 5=12, and a = 4 inches
;
hence the moment of inertia

desired equals

TV(12X4
3

)=64 inches4
.

EXAHPLE FOR PRACTICE.

1. Compute the moment of inertia of a rectangle 4x12
inches with respect to a line through its center of gravity and

parallel to the short side. Ans. 576 inches 4
.

53. Reduction Formula. In the previously mentioned

"handbooks" there can be found tables of moments of inertia of

all the cross-sections of the kinds and sizes of rolled shapes made.

The inertia-axes in those tables are always taken through the cen-

ter of gravity of the section, and usually parallel to some edge of

the section. Sometimes it is necessary to compute the moment of

inertia of a "rolled section" with respect to some other axis, and

if the two axes (that is, the one given in the tables, and the other)

are parallel, then the desired moment of inertia can be easily com-

puted from the one given in the tables by the following rule:
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-co

=

2

The moment of inertia of an area with respect to any axis

equals the moment of inertia with respect to a parallel axis

through the center of gravity
r

, plus the product of the area and
the square of the distance between the axes.

Or. if I denotes the moment of inertia with respect to any axis;

I the moment of inertia with respect to a parallel axis through
the center of gravity; A the area; and d the (^.stance between the

axes, then

I=I
o+A^.... (5)

Example. It is required to compute the moment of inertia

of a rectangle 2x8 inches with respect to a line parallel to the

long side and 4 inches from the center of gravity.
Let I denote the moment of inertia sought, and I the moment

of inertia of the rectangle with respect
to a line parallel to the long side and

through the center of gravity (see Fig.

28). Then

I =^5a8

(see Art. 52); and,

since =8 inches and a=2 inches,

Io=T
i
ir(8x2

3

)=5 1

L
biquadratic inches.

The distance between the two inertia-

axes is 4 inches, and the area of the

rectangle is 16 square inches, hence

equation 5 becomes Fi ' 29

I=5iL-f16x42=261iL biquadratic inches.

EXAMPLE FOR PRACTICE,

1. The moment of inertia of an "angle" 2-|x2X-J inches

(lengths of sides and width respectively) with respect to a line

through the center of gravity and parallel to the long side, is 0.64

inches*. The area of the section is 2 square inches, and the dis-

tance from the center of gravity to the long side is 0.63 inches.

(These values are taken from a "handbook".) It is required to

compute the moment of inertia of the section with respect to a

line parallel to the long side and 4 inches from the center of

gravity. Ans. 32.64 inches*.

54. Moment of Inertia of Built-up Sections. As before

stated, beams are sometimes "built up" of rolled shapes (angles,

K
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channels, etc.). The moment of inertia of such a section with

respect to a definite axis is computed by adding the moments of

inertia of the parts, all with respect to that same axis. This is the

method for computing the moment of any area which can be

divided into simple parts.

The moment of inertia of an area which may be regarded as

consisting of a larger area minus other areas, is computed by sub-

tracting from the moment of inertia of the large area those of the

"minus areas."

Examples. 1. Compute the moment of inertia of the built-

up section represented in Fig. 30 (in part same as Fig. 25) with

respect to a horizontal axis

passing through the center

of gravity, it being given
that the moment of inertia

of each channel section

with respect to a horizontal
*"

axis through its center of

gravity is 128.1 inches4

,

and its area 6.03 square
inches.

The center of gravity of

the whole section was found

in the example of Art. 49 to be 8.30 inches from the bottom of

the section; hence the distances from the inertia-axis to the

centers of gravity of the channel section and the plate are 2.30

and 3.95 inches respectively (see Fig. 30).

The moment of inertia of one channel section with respect to

the axis AA (see equation 5, Art. 53) is:

128.1+ 6.03 X2.302=160.00 inches4
.

The moment of inertia of the plate section (rectangle) with re-

spect to the line a"a" (see Art. 52) is:

^ ba3=
rV[14 >< (i)

3H-15 inches4

;

and with respect to the axis AA (the area being 7 square inches)

it is:

0.15+ 7 X3.95
2=109.37 inches4

.

Therefore the moment of inertia of the whole section with re-

spect to AA is :

2x160.00+109.37=429.37 inches*.
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2. It is required to compute the moment of inertia of the

" hollow rectangle
" of Fig. 29 with respect to a line through the

center of gravity and parallel to the short side.

The amount of inertia of the large rectangle with respect to

the named axis (see Art. 52) is:

B

<pi.66" a.

B
Fig. 31.

and the moment of inertia of the smaller one with respect to the

same axis is:

TV(4X8) = 170;

hence the moment of inertia of the hollow section with respect
to the axis is:

416 - 170 =-246 inches 4
.

EXAMPLES FOR PRACTICE.

1. Compute the moment of inertia of the section repre-
sented in Fig. 31, <z, about the axis AA, it being 3.08 inches

from the top. Given also that the area of one angle section is

5.06 square inches, its center of gravity C (Fig. 31, b) 1.66 inches

from the top, and its moment of inertia with respect to the axis aa

17.68 inches4
. Ans. 145.8 inches*.

2, Compute the moment of inertia of the section of Fig. 31, a,
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with respect to the axis BB. Given that distance of the center

of gravity of one angle from one side is 1.66 inches (see Fig. 31,5),
and its moment of inertia with respect to bb 17.68 inches.

Ans. 77.618 inches4
.

55. Table of Centers of Gravity and floments of Inertia.

Column 2 in Table A below gives the formula for moment of

inertia with respect to the horizontal line through the center of

gravity. The numbers in the third column are explained in Art.

62; and those in the fourth, in Art. 80.

TABLE A.

Moments of Inertia, Section Moduli, and Radii of Gyration.
In each case the axis is horizontal and passes through the center of gravity.

Section.
Moment of
Inertia.

Section
Modulus.

Radius of
Gyration.

a4

12 1/12

ba3

12

12

0.049d*

0.049 (d
4
-d/)

baf
6

6a

0.098d3

12

0.098-
l/d2 4-d, 2

STRENGTH OF BEAMS.

56. Kinds of Loads Considered. The loads that are applied
to a horizontal beam are usually vertical, but sometimes forces are

applied otherwise than at right angles to beams. Forces acting on

beams at right angles are called transverse forces ; those applied
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TABLE B.

Shear Diagrams (b) and Moment Diagrams (c) for Eight Different Cases (a).

Also Values of Maximum Shear (V), Bending floment (M), and Deflection (d).

'. f

V=P, M=P1, d=P!3H-3EI. d=W!3-H8EI.

JW-anfform

, M=MP1, d= P18-S-48EI. =J^ W, M=%W1, d=5Wl3-j-384EI.

, M=Pab-l. V=P, M=Pa, d=Pa(312-4a2)-?-24EI.

d=P!3
-f-192EI.
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parallel to a beam are .called longitudinal forces ; and others are

called inclined forces. For the present we deal only with beams

subjected to transverse forces (loads and reactions).

57. Neutral Surface, Neutral Line, and Neutral Axis. When
a beam is loaded it may be wholly convex up (concave down), as a

cantilever; wholly convex down (concave up), as a simple beam

on end supports; or partly convex up and partly convex down, as

a simple beam with overhanging ends, a restrained beam, or a con-

Fig. 32.

tinuous beam. Two vertical parallel
lines drawn close together on

the side of a beam before it is loaded will not be parallel after it

is loaded and bent. If they are on a convex-down portion of a

beam, they will be closer at the top and farther apart below than

when drawrn (Fig. 32&), and if they are on a convex-up portion,

they will be closer below and farther apart above than when drawn

(Fig. 325).

The " fibres
" on the convex side of a beam are stretched and

therefore under tension, while those on the concave side are short-

ened and therefore under compression. Obviously there must be

some intermediate fibres which are neither stretched nor shortened,

i. e., under neither tension nor compression. These make up
a sheet of fibres and define a surface in the beam, which surface is

called the neutral surface of the beam. The intersection of the

neutral surface with either side of the beam is called the neutral

line, and its intersection with any cross-section of the beam is

called the neutral axis of that section. Thus, if ab is a fibre that

has been neither lengthened nor shortened with the bending of the

beam, then nn is a portion of the neutral line of the beam; and,

if Fig. 32<? be taken to represent a cross-section of the beam, NN
is the neutral axis of the section.

It can be proved that the neutral axis of any cross-section of
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a loaded bearn passes through the center of gravity of that section,

provided that all the forces applied to the beam are transverse, and

that the tensile and compressive stresses at the cross-section are

all within the elastic limit of the material of the beam.

58. Kinds- of Stress at a Cross=section of a Beam. It has

already been explained in the preceding article that there are ten-

sile and compressive stresses in a beam, and that the tensions are

on the convex side of the beam and the compressions on the con-

cave (see Fig. 33). The forces T and C are exerted upon the

portion of the beam represented by the adjoining portion to the

or

i T

or

Fig. 33.

right (not shown). These, the student is reminded, are often called

fibre stresses.

Besides the fibre stresses there is, in general, a shearing stress

at every cross-section of a beam. This may be proved as follows:

Fig. 34 represents a simple beam on end supports which has

actually been cut into two parts as shown. The twro parts can

maintain loads when in a horizontal position, if forces are applied
at the cut ends equivalent to the forces that would act there if the

beam were not cut. Evidently in the solid beam there are at the

section a compression above and a tension below, and such forces

can be applied in the cut beam by means of a short block C and a

chain or cord T, as shown. The block furnishes the compressive
forces and the chain the tensile forces. At first sight it appears as

if the beam would stand up under its load after the block and

chain have been put into place. Except in certain cases*, how-

ever, it would not remain in a horizontal position, as would the

* When the external shear for the section is zero.
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solid beam. This shows that the forces exerted by the block and

chain (horizontal compression and tension
)
are not equivalent to

the actual stresses in the solid beam. What is needed is a vertical

force at each cut end.

Suppose that Rj is less than L
1 +L2+ weight of A, i. e., that

the external shear for the section is negative; then, if vertical' pulls
be applied at the cut ends, upward on A and downward on B, the

beam will stand under its load and in a horizontal position, just as

a solid beam. These pulls can be supplied, in the model of the

beam, by means of a cord S tied to two brackets fastened on A and

Fig. 34.

///ft/// RI

K
w

Fig. 35.

B, as shown. In the solid beam the two parts act upon each

other directly, and the vertical forces are shearing stresses, since

they act in the plane of the surfaces to which they are applied.

59. Relation Between the Stress at a Section and the Loads

and Reactions on Either Side of It. Let Fig. 35 represent the

portion of a beam on the left of a section
;
and let R

x
denote the

left reaction; Lj and L
2
the loads; W the weight of the left part;

C, T, and S the compression, tension, and shear respectively which

the right part exerts upon the left.

Since the part of the beam here represented is at rest, all the

forces exerted upon it are balanced; and when a number of hori-

zontal and vertical forces are balanced, then

1. The algebraic sum of the horizontal forces equals zero.

2.
" " " " vertical " " "

3.
" " " " " moments of all the forces with respect to

any point equals zero.

To satisfy condition 1, since the tension and compression are

the only horizontal forces, the tension must equal the compression.

To satisfy condition 2, S (the internal shear) must equal the
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algebraic sum of all the other vertical forces on the portion, that

is, must equal the external shear for the section; also, S must act

up or down according as the external shear is negative or positive.

In other words, briefly expressed, the internal and external shears

at a section are equal and opposite*

To satisfy condition 3, the algebraic sum of the moments of

the fibre stresses about the neutral axis must be equal to the sum
of the moments of all the other forces acting on the portion about

the same line, and the signs of those sums must be opposite. (The
moment of the shear about the neutral axis is zero.) Now, the

sum of the moments of the loads and reactions is called the bend-

ing moment at the section, and if we use the term resisting mo-

ment to signify the sum of the moments of the fibre stresses (ten-

sions and compressions )
about the neutral axis, then we may say

briefly that the resisting and the bending moments at a section are

equal, and the two moments are opposite in sign.

60. The Fibre Stress. As before stated, the fibre stress is

not a uniform one, that is, it is not uniformly distributed over the

section on which it acts. At any section, the compression is most
" intense

"
(or the unit-compressive stress is greatest) on the con-

cave side; the tension is most intense (or the unit-tensile stress is

greatest) on the convex side; and the unit-compressive and unit-

tensile stresses decrease toward the neutral axis, at which place the

unit-fibre stress is zero.

If the fibre stresses are within the elastic limit, then the two

straight lines on the side of a beam referred to in Art. 57 will still

be straight after the beam is bent; hence the elongations and short-

enings of the fibres vary directly as their distance from the neutral

axis. Since the stresses
(if

within the elastic limit) and deforma-

tions in a given material are proportional, the unit-fibre stress

varies as the distancefrom the neutral axis.

Let Fig. 36& represent a portion of a bent beam, 365 its cross-

section, nn the neutral line, and NN the neutral axis. The way
in which the unit-fibre stress on the section varies can be rep-
resented graphically as follows: Lay off ac, by some scale, to

represent the unit-fibre stress in the top fibre, and join c and n,

extending the line to the lower side of the beam
;
also make be* equal

to be? and draw ncf
. Then the arrows represent the unit-fibre

stresses, for their ^ngthsvary as their distances from the neutral axis.
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6i. Value of the Resisting Moment. If S denotes the unit-

fibre stress in the fibre farthest from the neutral axis (the greatest
unit-fibre stress on the cross-section), and c the distance from the

neutral axis to the remotest fibre, while Sn S
2 ,
S

3 , etc., denote the

unk-fibre stresses at points whose distances from the neutral axis

are, respectively, y,, y^ y^ etc. (see Fig. 36
),

then
Q

S : S, :: c : y,; or S,
= -~yr

G

Q QJ

Also, S
2
= ~ y2 ;

S3=yu etc.

Let a etc., be the areas of the cross-sections of the fibres

S c

dw 10

Fig. 36.

whose distances from the neutral axis are, respectively, yl9 y^ y^
etc. Then the stresses on those fibres are, respectively,

Sj a
l9
S

2
^

2 ,
S

3 3 , etc.;

S S S
Or, y\&V ^2^2J ^3^3? etC*

c c c

The arms of these forces or stresses with respect to the neutrai axis

are, respectively, y^ y^ y^ etc.; hence their moments are

S S S
etc.,

and the sum of the moments (that is, the resisting moment) is

Q Ql Q

i y! +-7^2 y\ + etc - =v^ 1 y
* ~4~ a*$ + etc>

)

Now ^ y\ + a
2 y\ -f etc. is the sum of the products obtained by

multiplying each infinitesimal part of the area of the cross-section

by the square of its distance from the neutral axis; hence, it is the

moment of inertia of the cross-section with respect to the neutral

axis. If this moment is denoted by I, then the value of the resist-

f
. SI

ing moment is
o
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PART II.

STRENGTH OF BEANS (Concluded).
62. First Beam Formula. As shown in the preceding

article, the resisting and bending moments for any section of a

beam are equal; hence

? = M, (6)

all the symbols referring to the same section. This is the most

important formula relating to beams, and will be called the " first

beam formula."

The ratio I H- c is now quite generally called the section

modulus. Observe that for a given beam it depends only on the

dimensions of the cross-section, and not on the material or any-

thing else. Since I is the product of four lengths (see article 51),

I -r- c is the product of three; and hence a section modulus can be

expressed in units of volume. The cubic inch is practically always

used; and in this connection it is written thus, inches 3
. See Table

A, page 52, for values of the section moduli of a few simple sections.

63. Applications of the First Beam Formula. There are

three principal applications of equation 6, which will now be ex-

plained and illustrated.

64. First Application. The dimensions of a beam and its

manner of loading and support are given, and it is required to

compute the greatest unit-tensile and compressive stresses in the

beam.

This problem can be solved by means of equation 6, written

in this form,

Q
MC M

or~
Unless otherwise stated, we assume that the beams are uniform

in cross-section, as they usually are; then the section modulus

(I-s-c)
is the same for all sections, and S (the unit-fibre stress on
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the remotest fibre) varies just as M varies, and is therefore greatest
where M is a maximum.* Hence, to compute the value of the

greatest unit-fibre stress in a given case, substitute the values of
the section modulus and the maximum bending moment in the

preceding equation, and reduce.

If the neutral axis is equally distant from the highest and low-

est fibres, then the greatest tensile and compressive unit- stresses

are equal, and their value is S. If the neutral axis is unequally
distant from the highest and lowest fibres, let c denote its distance

from the nearer of the two, and S' the unit-fibre stress there.

Then, since the unit-stresses in a cross-section are proportional to

the distances from the neutral axis,

If the remotest fibre is on the convex side of the beam, S is tensile

and S' compressive; if the remotest fibre is on the concave side, S

is compressive and S' tensile.

Examples. 1. A beam 10 feet long is supported at its ends,

and sustains a load of 4,000 pounds two feet from the left end

(Fig. 37, &). If the beam is 4 X 12 inches in cross-section (the

long side vertical as usual), compute the maximum tensile and

compressive unit-stresses.

The section modulus of a rectangle whose base and altitude

are 5 and a respectively (see Table A, page 52), is -J&&
2

; hence,

for the beam under consideration, the modulus is

i- X 4 X 122 = 96 inches3
.

To compute the maximum bending moment, we have, first, to find

the dangerous section. This section is where the shear changes

sign (see article 45); hence, we have to construct the shear dia-

gram, or as much thereof as is needed to find where the change of

sign occurs. Therefore we need the values of the reaction.

Neglecting the weight of the beam, the moment equation with

origin at C (Fig. 37, a) is

R, X 10 - 4,000 X 8 = 0, or R
t

= 3,200 pounds
* NOTE. Because S is greatest in the section where M is maximum, this

section is usually called the "
dangerous section

"
of the beam.
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Then, constructing the shear diagram, we see (Fig. 37, 5) that the

change of sign of the shear (also the dangerous section) is at the

load. The value of the bending moment there is

3,200 X 2 = 6,400 foot-pounds,

6,400 X 12= 76,800 inch-pounds.or

Substituting in equation 6', we find that

76,8008=
96

4oooltas.

= 800 inch.

U-a'-

c(a)

B'

c'(b)

V /

Fig. 37.

2 It is desired to take into account the weight of the beam

in the preceding example, supposing the beam to be wooden.

The volume of the beam is

X 10 = 3J cubic feet
;

and supposing the timber to weigh 45 pounds per cubic foot, the

beam weighs 150 pounds (insignificant compared to the load).

The left reaction, therefore, is

3,200 +(-i-X 150) = 3,275;
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and the shear diagram looks like Fig. 37, c, the shear changing

sign at the load as before. The weight of the beam to the left of

the dangerous section is 80 pounds; hence the maximum bending
moment equals

3,275 X 2 - 30 X 1 = 6,520 foot-pounds,

or 6,520 X 12 = 78,240 inch-pounds.

Substituting in equation 6', we find that

78,240
S =

q^
815 pounds per square inch.

The weight of the beam therefore increases the unit-stress pro-
duced by the load at the dangerous section by 15 pounds per

square inch.

3. A T-bar (see Fig. 38) 8 feet long and supported at each

I j =^j end, bears a uniform load of 1,200

pounds. The moment of inertia of its

cross -section with respect to the neu-

"<0 tral axis being 2.42 inches*, compute
w the maximum tensile and compressive
-*- unit-stresses in the beam

N

Evidently the dangerous section

is in the middle, and the value of the maximum bending moment

(see Table B, page 53, Part I) is J WZ, W and I denoting the load

and length respectively. Here

Wl =
-g-

X 1,200 X 8 = 1,200 foot-pounds,

or 1,200 X 12 = 14,400 inch-pounds.

The section modulus equals 2.42 -r- 2.28 = 1.06; hence

S = ' = 13,585 pounds per square inch.

This is the unit-fibre stress on the lowest fibre at the middle sec-

tion, and hence is tensile. On the highest fibre at the middle

section the unit-stress is compressive, and equals (see page 60):

S' = S =
^-ott

X 13,585 = 4,290 pounds per square inch.
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EXAMPLES FOR PRACTICE.

1. A beam 12 feet long and 6 X 12 inches in cross-section

rests on end supports, and sustains a load of 3,000 pounds in the

middle. Compute the greatest tensile and compressive unit-

stresses in the beam, neglecting the weight of the beam.

Ans. 750 pounds per square inch.

2. Solve the preceding example taking into account the

weight of the beam, 300 pounds
Ans. 787.5 pounds per square inch.

3. Suppose that a built-in cantilever projects 5 feet from the

wall and sustains an end load of 250 pounds. The cross-section of

the cantilever being represented in Fig. 38, compute the greatest

tensile and compressive unit-stresses, and tell at what places they
occur. (Neglect the weight.)

j Tensile, 4,471 pounds per square inch.

( Compressive, 14,150
" " "

4. Compute the greatest tensile and compressive unit-stresses

in the beam of Fig. 18, a, due to the loads and the weight of beam

(400 pounds). (A moment diagram is represented in Fig. 18, 5;

for description see example 2, Art. 44, p. 39.) The section of

the beam is a rectangle 8 X 12 inches.

Ans. 580 pounds per square inch.

5. Compute the greatest tensile and compressive unit-stresses

in the cantilever beam of Fig. 19, #, it being a steel I-beam whose

section modulus is 20.4 inches3
. (A bending moment diagram for

it is represented in Fig. 19, I; for description, see Ex. 3, Art. 44.)

Ans. 11,470 pounds per square inch.

6. Compute the greatest tensile and compressive unit-stresses

in the beam of Fig. 10, neglecting its weight, the cross-sections

being rectangular 6 X 12 inches. (See example for practice 1,

Art. 43.)
Ans. 600 pounds per square inch.

65. Second Application. The dimensions and the work-

ing strengths of a beam are given, and it is required to determine
its safe load (the manner of application being given).

This problem can be solved by means of equation 6 written
in this form,

M= (6")
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"We substitute for S the given working strength for the ma-
terial of the beam, and for I and c their values as computed from
the given dimensions of the cross -section; then reduce, thus

obtaining the value of the safe resisting moment of the beam,
which equals the greatest safe bending moment that the beam can

stand. "We next compute the value of the maximum bending
moment in terms of the unknown load; equate this to the value

of the resisting moment previously found; and solve for the

unknown load.

In cast iron, the tensile and compressive strengths are very

different; and the smaller (the tensile) should always be used if

the neutral surface of the beam is midway between the top and

bottom of the beam; but if it is unequally distant from the top
and bottom, proceed as in example 4, following.

Examples. 1. A wooden beam 12 feet long and 6 X 12

inches in cross -section rests on end supports. If its working

strength is 800 pounds per square inch, how large a load uniformly
distributed can it sustain ?

The section modulus is \ba?, b and a denoting the base and

altitude of the section (see Table A, page 52); and here

i la9 =r i x 6 X 122 = 144 inches3
.

Hence S = 800 X 144 = 115,200 inch-pounds.c

For a beam on end supports and sustaining a uniform load, the

maximum bending moment equals JW7 (see Table B, page 55),
"W denoting the sum of the load and weight of beam, and I the

length. If W is expressed in pounds, then

g-
Wl =

g
W X 12 foot-pounds

=
-^
W X 144 inch-pounds.

Hence, equating tl>Q two values of. maximum bending moment
and the safe resisting moment, we get

lw X 144 115,200;o

W-. 11B 8 - 6,400 pounds.
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The safe load for the beam is 6,400 pounds minus the weight of

the beam.

2. A steel I-beam whose section modulus is 20.4 inches8

rests on end supports 15 feet apart. Neglecting the weight of the

beam, how large a load may be placed upon it 5 feet from one end,

if the working strength is 16,000 pounds per square inch?

The safe resisting moment is

RT
- = 16,000 X 20.4 = 326,400 inch-pounds;c

hence the bending moment must not exceed that value. The

dangerous section is under the load
;
and if P denotes the unknown

value of the load in pounds, the maximum moment (see Table B,

page 53, Part I) equals f P X foot-pounds, or f P X 60 inch-

pounds. Equating values of bending and resisting moments,

we get

| P X 60 = 326,400;o

326,400 X 3
or, P=

2

'

x 6Q
= 8,160 pounds.

,3. In the preceding example, it is required to take into

account the weight of the beam. 375 pounds.

5'-

f
W= 3751105.

Fig. 39.

As we do not know the value of the safe load, we cannot con-

struct the shear diagram and thus determine where the dangerous
section is. But in cases like this, where the distributed load (the

weight) is small compared writh the concentrated load, the dan-

gerous section is practically always where it is under the concen-

trated load alone; in this case, at the load. The reactions due to

the weight equal X 375 = 187.5; and the reactions due to the

load equal A P and P, P denoting the value of the load. The
1. O O " O

larger reaction R
t (Fig. 39) hence equals P + 187.5. Since
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the weight of the beam per foot is 375 -j- 15 = 25 pounds, the

maximum bending moment (at the load) equals

( | P + 187.5) 5 - (25 X 5) 2J =

^ P + 937.5 - 312.5 = ^ P + 625.

This is in foot-pounds if P is in pounds.
The safe resisting moment is the same as in the preceding

illustration, 326,400 inch-pounds; hence

(-y
P + 625) 12 = 326,400.

Solving for P, we have

,
10 P 79,725;

or, P = 7,972.5 pounds.

It remains to test our assumption that the dangerous section

is at the load. This can be done by computing E x (with P =
7,972.5), constructing the shear diagram, and noting where the

shear changes sign. It will be found that the shear changes sign
at the load, thus verifying the assumption.

4. A cast-iron built-in cantilever beam projects 8 feet from
the wall. Its cross-section is represented in Fig. 40, and the

moment of inertia with respect to

the neutral axis is 50 inches4

;
the

working strengths in tension and

compression are 2,000 and 9,000

pounds per square inch respect-

ively. Compute the safe uniform

load which the beam can sustain,

neglecting the weight of the bearn.

The beam being convex up, the upper fibres are in tension

and the lower in compression. The
resisting moment (SI

-r-
c),

as determined by the compressive strength, is
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= 100,000 inch-pounds;

and the resisting moment, as determined by the tensile strength, is

2,000 X 50-~-~- = 40.000 inch-pounds.
6.U

Hence the safe resisting moment is the lesser of these two, or

40,000 inch-pounds. The dangerous section is at the wall (see

Table B, page 53), and the value of the maximum bending
moment is \ WZ, W denoting the load and I the length. If W is

in pounds, then

M = i W X 8 foot-pounds
= W X 96 inch-pounds.

Equating bending and resisting moments, we have

-i-W X 96 = 40,000;

w= 40,000 X 2 ^
833poundSt

EXAMPLES FOR PRACTICE.

1. An 8 X 8 -inch timber projects 8 feet from a wall. If its

working strength is 1,000 pounds per square inch, how large an

end load can it safely sustain ?

Ans. 890 pounds.
2. A beam 12 feet long and 8 X 16 inches in cross -section,

on end supports, sustains two loads P, each 3 feet from its ends

respectively. The working strength being 1,000 pounds per square

inch, compute P (see Table B, page 53).

Ans. 9,480 pounds.
3. An I-beam weighing 25 pounds per foot rests on end

supports 20 feet apart. Its section modulus is 20.4 inches3

,
and

its working strength 16,000 pounds per square inch. Compute
the safe uniform load which it can sustain.

Ans. 10,880 pounds-
66. Third Application. The loads, manner of support,

and working strength of beam are given, and it is required to de-

termine the size of cross-section necessary to sustain the load

safely, that is, to "design the beam."
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To solve this problem, we use the first beam formula (equation

6), written in this form,

JL *L. (
6'")

o
'

S

We first determine the maximum bending moment, and then sub-

stitute its value for M, and the working strength for S. Then we
have the value of the section modulus (I -r-

<?)
of the required

beam. Many cross-sections can be designed, all having a given
section modulus. Which one is to be selected as most suitable will

depend on the circumstances attending the use of the beam and

on considerations of economy.

.Examples. 1. A timber beam is to be used for sustaining
a uniform load of 1,500 pounds, the distance between the supports

being 20 feet. If the working strength of the timber is 1,000 pounds

per square inch, what is the necessary size of cross-section ?

The dangerous section is at the middle of the beam; and the

maximum bending moment (see Table B, page 53) is

-i-WJ = ~ x 1,500 X 20 = 3,750 foot-pounds,

or 3,750 X 12 = 45,000 inch-pounds.
I 45,000Hence =

., AAA = 45 inches3
.

c 1,UUU

Now the section modulus of a rectangle is \bo? (see Table A,

page 54, Part I); therefore, \la?
= 45, or be? = 270.

Any wooden beam (safe strength 1,000 pounds per square

inch) whose breadth times its depth square equals or exceeds 270,

is strong enough to sustain the load specified, 1,500 pounds.
To determine a size, we may choose any value for 5 or a, and

solve the last equation for the unknown dimension. It is best,

however, to select a value of the breadth, as 1, 2, 3, or 4 inches,

and solve for a. Thus, if we try b = 1 inch, we have

a2 = 270, or a = 16.43 inches.

This would mean a board 1 X 18 inches, which, if used, would

have to be supported sidewise so as to prevent it from tipping or

"
buckling." Ordinarily, this would not be a good size.

Next try J = 2 inches; we have

2 x a2 = 270; or a 1/270 -f- 2 = 11.62 inches.

This would require a plank 2 X 12, a better proportion than the

first. Trying 5 = inches, we have
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3 x a? = 270; or a = 1/270 -*- 3 = 9.49 inches.

This would require a plank 3 X 10 inches; and a choice between

a 2 X 12 and a 3 X 10 plank would be governed by circumstances

in the case of an actual construction.

It will be noticed that we have neglected the weight of the

beam. Since the dimensions of wooden beams are not fractional,

and we have to select a commercial size next larger than the one

computed (12 inches instead of 11.62 inches, for example), the

additional depth is usually sufficient to provide strength for the

weight of the beam. If there is any doubt in the matter, we can

settle it by computing the maximum bending moment including
the weight of the beam, and then computing the greatest uni*-fibre

stress due to load and weight. If this is less than the safe strength,

the section is large enough; if greater, the section is too small.

Thus, let us determine whether the 2 X 12-inch plank is

strong enough to sustain the load and its own weight. Tb plank
will weigh about 120 pounds, making a total load of

1,500 + 120 = 1,620 pounds.

Hence the maximum bending moment is

JlWZ == 4-1,620 X 20 X 12 = 48,600 inch-pounds.
o o

Since -i = i l>a
2 =

-^-X
2 X 122 = 48, and S =

j^L,

S = - ' = 1,013 pounds per square inch.

Strictly, therefore, the 2 X 12-inch plank is not large enough; but

as the greatest unit-stress in it would be only 13 pounds per square
inch too large, its use would be permissible.

2. What size of steel I-beam is needed to sustain safely the

loading of Fig. 9 if the safe strength of the steel is 16,000 pounds

per square inch ?

The maximum bending moment due to the loads was found

in example 1, Art. 43, to be 8,800 foot-pounds, or 8,800 X 12 =
105,600 inch-pounds.

I 105,600

T =

That is, an I-beam is needed whose section modulus is a little

larger than 6.6, to provide strength for its own weight.



70 STRENGTH OF MATERIALS

To select a size, we need a descriptive table of I-beams, such

as is published in handbooks on structural steel.

Below is an abridged copy of such a table. (The last two columns con-

tain information for use later.) The figure illustrates a cross-section of an

I-beam, and shows the axes referred to in the table.

It will be noticed that two sizes are given for each depth;
these are the lightest and heaviest of each size that are made, but

intermediate sizes can be secured. In column 5 we find 7.3 as the

next larger section modulus than the one required (6,6); and this

corresponds to a 12^-pound 6-inch I-beam, which is probably the

proper size. To ascertain whether the excess (7.3-6.6
= 0.70)

in the section modulus is sufficient to provide for the weight of the

beam, we might proceed as in example 1. In this case, however,
the excess is quite large, and the beam selected is doubtless safe.

TABLE C.

Properties ot Standard I-Beams

Section of beam, showing axes 1-1 and 2-2.

1
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EXAMPLES FOR PRACTICE.

1. Determine the size of a wooden beam which can safely

sustain a middle load of 2,000 pounds, if the beam rests on end

supports 16 feet apart, and its working strength is 1,000 pounds

per square inch. Assume width 6 inches.

Ans. 6 X 10 inches.

2. What sized steel I-beam is needed to sustain safely a

uniform load of 200,000 pounds, if it rests on end supports 10

feet apart, and its working strength is 16,000 pounds per square
inch?

Ans. 95-pound 24-incli.

3. What sized steel I-beam is needed to sustain safely the

loading of Fig. 10, if its working strength is 16,000 pounds per

square inch ?

Ans. 14.75-pound 5 -inch.

67. Laws of Strength of Beams. The strength of a beam is

measured by the bending moment that it can safely withstand
; or,

since bending and resisting moments are equal, by its safe resist,

ing moment (SI -f-
c). Hence the safe strength of a beam varies

(1) directly as the working fibre strength of its material, azid (2)

directly as the section modulus of its cross-section. For beams

rectangular in cross-section (as wooden beams), the section modu-

lus is \bc?, b and a denoting the breadth and altitude of the

rectangle. Hence the strength of such beams varies also directly

as the breadth, and as the square of the depth. Thus, doubling
the breadth of the section for a rectangular beam doubles the

strength, but doubling the depth quadruples the strength.

The safe load that a beam can sustain varies directly as its

resisting moment, and depends on the way in which the load is

distributed and how the beam is supported. Thus, in the first

four and last two cases of the table on page 55,

M = PZ, hence P =-- SI -f- Ic,

M = Wl, " W = 2SI -r- Ic,

M = | P/,
" P = 4SI -* Ic,

M = WZ, W = SSI -4- Ic,

M = I PI, P = 881 -f- Ic,

M = ^ WZ, W = 12SI -*- fo.
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Therefore the safe load in all cases varies inversely with the

length; and for the different cases the safe loads are as 1, 2, 4, 8,

8, and 12 respectively.

Example. What is the ratio of the strengths of a plank 2 X
10 inches when placed edgewise and when placed flatwise on its

supports ?

When placed edgewise, the section modulus of the plank is

\ X 2 X 102 =-- 33J,
and when placed flatwise it is \ X 10 X 22 =

6J-;
hence its strengths in the two positions are as 33J to

6-|

respectively, or as 5 to 1.

EXAMPLE FOR PRACTICE.

What is the ratio of the safe loads for two beams of wood,
one being 10 feet long, 3x12 inches in section, and having its load

in the middle; and the other 8 feet long and 2x8 inches in section,

with its load uniformly distributed.

Ans. As 28.8 to 21.3

68. Modulus of Rupture. If a beam is loaded to destruction,

and the value of the bending moment for the rupture stage is

computed and substituted for M in the formula SI -r- c = M, then

the value of S computed from the equation is the modulus of

rupture for the material of the beam. Many experiments have

been performed to ascertain the moduli of rupture for different

materials and for different grades of the same material. The fol-

owing are fair values, all in pounds per square inch :

TABLE D.

Moduli of Rupture.

Timber:
Spruce



STRENGTH OF MATERIALS 73

Wrought iron and structural steels have no modulus of rup-

ture, as specimens of those materials will " bend double," but not

break. The modulus of rupture of a material is used principally
as a basis for determining its working strength. The factor of

safety of a loaded beam is computed by dividing the 'modulus

of rupture of its material by the greatest unit--fibre stress in

the beam.

69. The Resisting 5hear. The shearing stress on a cross-

section of a loaded beam is not a uniform stress; that is, it is not

uniformly distributed over the section. In fact the intensity or

unit-stress is actually zero on the highest and lowest fibres of a

cross-section, and is greatest, in such beams as are used in prac-

tice, on fibres at the neutral axis. In the following article we

explain how to find the maximum value in two cases cases which

are practically important.

70. Second Beam Formula. Let Ss denote the average
value of the unit-shearing stress on a cross-section of a loaded

beam, and A the area of the cross-section. Then the value of the

whole shearing stress on the section is :

Resisting shear = S
s
A.

Since the resisting shear and the external shear at any section of a

beam are equal (see Art. 59),

S
S
A = V. (7)

This is called the " second beam formula "
It is used to investi-

gate and to design for shear in beams.

In beams uniform in cross-section, A is constant, and Ss is

greatest in the section for which Y is greatest. Hence the great-
est unit-shearing stress in a loaded beam is at the neutral axis of

the section at which the external shear is a maximum. There is

a formula for computing this maximum value in any case, but it

is not simple, and we give a simpler method for computing the

value in the two practically important cases:

1. In wooden beams (rectangular or square in cross-section), the

greatest unit-shearing stress in a section is 50 per cent larger than the average
value S .

2. In I-beams, and in others with a thin vertical web, the greatest

unit-shearing stress in a section practically equals S 8 ,
as given by equation 7,

if the area of the web is substituted for A.
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Examples. 1. What is the greatest value of the unit-

shearing stress in a wooden beam 12 feet long and 6x12 inches in

cross-section when resting on end supports and sustaining a uni-

form load of 6,400 pounds ? (This is the safe load as determined

by working fibre stress; see example 1, Art. 65.)
The maximum external shear equals one-half the load (see

Table B, page 53), and comes on the sections near the supports.

Since A = 6 X 12 = 72 square inches;

3,200
s
~~

72
=

pounds per square inch,

and the greatest unit-shearing stress equals

3 3

~2~
^s
=

~2~
^ = ^ pounds per square inch.

Apparently this is very insignificant; but it is not negligible, as

is explained in the next article.

2. A steel I-beam resting on end supports 15 feet apart
sustains a load of 8,000 pounds 5 feet from one end. The weight
of the beam is 375 pounds, and the area of its web section is 3.2

square inches. (This is the beam and load described in examples
2 and 3, Art. 65.) What is the greatest unit-shearing stress ?

The maximum external shear occurs near the support where

the reaction is the greater, and its value equals that reaction.

Calling that reaction R, and taking moments about the other end

of the beam, we have

R x 15 - 375 x 7-7T - 8,000 x 10 = 0;

therefore 15 R = 80,000 + 2,812.5 === 82,812.5;

or, R = 5,520.8 pounds.

Hence Sg
= ' = 1,725 pounds per square inch.

EXAMPLES FOR PRACTICE.

1. A wooden beam 10 feet long and 2 X 10 inches in cross-

section sustains a middle load of 1,000 pounds. Neglecting the

weight of the beam, compute the value of the greatest unit-shearing

stress.

Ans. 37.5 pounds per square inch.
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2. Solve the preceding example taking into account the

weight of the beam, 60 pounds.
Ans. 40 pounds per square inch. v

3. A wooden beam 12 feet long and 4 X 12 inches in cross-

section sustains a load of 3,000 pounds 4 feet from one end.

Neglecting the weight of the beam, compute the value of the

greatest shearing unit-stress.

Ans. G2.5 pounds per square inch.

71. Horizontal Shear. It can be proved that there is a

shearing stress on every horizontal section of a loaded beam. An

experimental explanation will have to suffice here. Imagine a

pile of six boards of equal length supported so that they do not

bend. If the intermediate supports are removed, they will bend

and their ends will not be flush but somewhat as represented in

Fig. 41. This indicates that the boards slid over each other during
the bending, and hence there was a rubbing and a frictional re-

sistance exerted by the boards upon each other. Now, when a

solid beam is being bent, there is an exactly similar tendency for

the horizontal layers to slide over each other; and, instead of a

frictional resistance, there exists shearing stress on all horizontal

sections of the beam.

In the pile of boards the amount of slipping is different at

different places between any two boards, being greatest near the

,supports and zero midway between them. Also, in any cross-

section the slippage is least between the upper two and lower two

boards, and is greatest between the middle two. These facts indi-

cate that the shearing unit- stress on horizontal sections of a solid

beam is greatest in the neutral surface at the supports.
It can be proved that at any place in a beam the shearing

unit-stresses on a horizontal and on a vertical section are equal.

Fig. 41. Fig. 42.

It follows that the horizontal shearing unit- stress is greatest at the

neutral axis of the section for which the external shear (V) is a

maximum. Wood being very weak in shear along the grain,

timber beams sometimes fail under shear, the "rupture" being
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two horizontal cracks along the neutral surface somewhat as rep-

resented in Fig. 42. It is therefore necessary, when dealing with

timber beams, to give due attention to their strength as determined

by the working strength of the material in shear along the grain.

Example. A wooden beam 3 X 10 inches in cross-section

rests on end supports and sustains a uniform load of 4,000 pounds

Compute the greatest horizontal unit-stress in the beam.

The maximum shear equals one-half the load (see Table B,

page 55), or 2,000 pounds. Hence, by equation 7, since A =
3 X 10 = 30 square inches,

2,000 2
s
=

30 =6677- pounds per square inch.

This is the average shearing unit-stress on the cross-sections near

the supports; and the greatest value equals

3 2- X 66-7- = 100 pounds per square inch.

According to the foregoing, this is also 1?he value of the

greatest horizontal shearing unit-stress. (If of white pine, for

example, the beam would not be regarded as safe, since the ulti-

mate shearing strength along the grain of selected pine is only
about 400 pounds per square inch.)

72. Design of Timber Beams. In any case we may pro-
ceed as follows: (1) Determine the dimensions of the cross-

section of the beam from a consideration of the fibre stresses as'

explained in Art. 66. (2) With dimensions thus determined, com-

pute the value of the greatest shearing unit-stress from the formula,

Greatest shearing unit-stress
-^-
Y -=- ab,

where Y denotes the maximum external shear in the beam, and

b and a the breadth and depth of the cross-section.

If the value of the greatest shearing unit-stress so computed
does not exceed the working strength in shear along the grain,
then the dimensions are large enough; but if it exceeds that value,

then a or &, or both, should be increased until
J.
V -s- ab is less

than the working strength. Because timber beams are very often

"season checked" (cracked) along the neutral surface, it is advis-
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able to take the working strength of wooden beams, in shear along
the grain, quite low. One-twentieth of the working fibre strength
has been recommended* for all pine beams.

If the working strength in shear is taken equal to one-

twentieth the working fibre strength, then it can be shown that,

1. For a beam on end supports loaded in the middle, the safe load de-

pends on the shearing or fibre strength according as the ratio of length to

depth (I
-s- a) is less or greater than 10.

2. For a beam on end supports uniformly loaded, the safe load depends
on the shearing or fibre strength according as I + a is less or greater than 20.

Examples. 1. It is required to design a timber beam to sus-

tain loads as represented in Fig. 11, the working fibre strength

being 550 pounds and the working shearing strength 50 pounds

per square inch.

The maximum bending moment (see example for practice 3,

Art. 43; and example for practice 2, Art. 44) equals practically

7,000 foot-pounds or, 7,000 X 12 = 84,000 inch-pounds.

Hence, according to equation 6'",

I 84,000= -sra- = 152.7 inches8
.

c 550

Since for a rectangle

- ba* = 152.7, or ba* = 916.2.

Now, if we let 5 = 4, then a2 = 229;

or, a = 15.1 (practically 16) inches.

If, again, we let b 6, then a2 = 152.7;

or a = 12.4 (practically 14) inches.

Either of these sizes wr
ill answer so far as fibre stress is concerned,

but there is more " timber " in the second.

The maximum external shear in the beam equals 1,556

pounds, neglecting the weight of the beam (see example 3, Art.

87; and example 2, Art. 38). Therefore, for a 4 X 16-inch beam,

* See "Materials of Construction." JOHNSON. Page 55.
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3
;

. 1,556
Greatest shearing unit- stress

=-gr
x

4 v ifi

= 36.5 pounds per square inch;

and for a 6 X 14-inch beam, it equals

3 1,556
~9~ X ^
-

TJ
= 27.7 pounds per square inch.

Since these values are less than the working strength in shear,

either size of beam is safe as regards shear.

If it is desired to allow for weight of beam, one of the sizes

should be selected. First, its weight should be computed, then

the new reactions, and then the unit-fibre stress may be com-

puted as in Art. 64, and the greatest shearing unit-stress as in the

foregoing. If these values are within the working values, then

the size is large enough to sustain safely the load and the weight
of the beam.

2. What is the safe load for a white pine beam 9 feet long
and 2x12 inches in cross-section, if the beam rests on end supports
and the load is at the middle of the beam, the working fibre

strength being 1,000 pounds and the shearing strength 50 pounds

per square inch.

The ratio of the length to the depth is less than 10; hence

the safe load depends on the shearing strength of the material

Calling the load P, the maximum external shear (see Table B,

page 53) equals -J- P, and the formula for greatest shearing unit

stress becomes
3 -i- P

50 = --x 2; or P = lj600 Pounds -

EXAMPLES FOR PRACTICE.

1. "What size of wooden beam can safely sustain loads as in

Fig. 12
T
with shearing and fibre working strength equal to 50 and

1,000 pounds per square inch respectively ?

f:..
Ans. 6 X 12 inches

2. What is the safe load for a wooden beam 4 X 14 inches,

and 18 feet long, if the beam rests on end supports and the load

is uniformly distributed, with working strengths as in example 1 ?

Ans. 3,730 pounds
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73. Kinds of Loads and Beams. We shall now discuss the

strength of beams under longitudinal forces (acting parallel to

the beam) and transverse loads. The longitudinal forces are

supposed to be applied at the ends of the beams and along the axis*

of the beam in each case. We consider only beams resting on

end supports.
The transverse forces produce bending or flexure, and the

longitudinal or end forces, if pulls, produce tension in the beam;
if pushes, they produce compression. Hence the cases to be con-

sidered may be called " Combined Flexure and Tension " and
" Combined Flexure and Compression."

74. Flexure and Tension. Let Fig. 43, <z, represent a beam

subjected to the transverse loads L
15
L

2
and L

3 ,
and to two equal

end pulls P and P. The reactions R
x
and R

2
are due to the trans-

verse loads and can be computed by the methods of moments just
as though there were no end pulls. To find the stresses at any
cross -section, we determine those due to the transverse forces

(Lj, L2 ,
L

3 ,
R

1
and R

2 )
and those due to the longitudinal; then

combine these stresses to get the total effect of all the applied
forces.

The stress due to the transverse forces consists of a shearing
stress and a fibre stress; it will be called the flexural stress. The

fibre stress is compressive above and tensile below. Let M denote

the value of the bending moment at the section considered; c
l
and

c
2
the distances from the neutral axis to the highest and the low-

est fibre in the section
;
and Sj and S

2
the corresponding unit-fibre

stresses due to the transverse loads. Then

, 2
b

x
==

y ;
and !3

2
=

-y- .

The stress due to the end pulls is a simple tension, and it equals

P; this is sometimes called the direct stress. Let S denote the

unit-tension due to P, and A the area of the cross-section; then

a
P

b "
A-

Both systems of loads to the left of a section between Lj and

* NOTE. By " axis of a beam "
is meant the line through the centers of

gravity of all the cross-sections.



80 STRENGTH OF MATERIALS

L
2
are represented in Fig. 43, &; also the stresses caused by them

at that section. Clearly the effect of the end pulls is to increase the

tensile stress (on the lower

fibres)
and to decrease the

compressive stress (on the

upper fibres) due to the flex-

u^e. Let Sc denote the total

(resultant) unit- stress on the

>per fibre, and St that on

e lower fibre, due to all

'\ the forces acting on the beam.

In combining the stresses

there are two cases to con-

sider:

(1) The flexural compressive unit- stress on the upper fibre is

greater than the direct unit-stress; that is, Sj is greater than S .

The resultant stress on the upper fibre is

Sc
=

Sj
- S (compressive) ;

and that on the lower fibre is

St
= S

2 + S (tensile).

The combined stress is as represented in Fig. 43, c, part tensile

and part compressive.

(2) The flexural compressive unit-stress is less than the

direct unit-stress; that is, Sj is less than S . Then the combined

unit-stress on the upper fibre is

Sc
= 80-8! (tensile);

and that on the lower fibre is

St
= S

2 + S (tensile).

The combined stress is represented by Fig. 43, d, and is all

tensile.

Example. A steel bar 2x6 inches, and 12 feet long, is sub-

jected to end pulls of 45,000 pounds. It is supported at each

end, and sustains, as a beam, a uniform load of 6,000 pounds.
It is required to compute the combined unit-fibre stresses.

Evidently the dangerous section is at the middle, and M =
;
that is,
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M = X 6,000 X 12 = 9,000 foot-pounds,8

or 9,000 X 12 = 108,000 inch-pounds.

The bar being placed with the six-inch side vertical,

c
1
= c

2
= 3 inches, and

I=JLx2x6 3 = 36 inches4
. (See Art. 52.)

I/O

108,000 X 3
Hence S,

= S
2
= ^ - = 9,000 pounds per square inch.

ob

Since A = 2 X 6 = 12 square inches,

45,000
fe =

^
= o,7oU pounds per square men.

l<o

The greatest value of the combined compressive stress is

S,
- S = 9,000 - 3,750 = 5,250 pounds per square inch,

and it occurs on the upper fibres of the middle section. The great-
est value of the combined tensile stress is

S
2 + S = 9,000 + 3,750 = 12,750 pounds per square inch,

and it occurs on the lowest fibres of the middle section.

EXAHPLE FOR PRACTICE.

Change the load in the preceding illustration to one of 6,000

pounds placed in the middle, and then solve.

A
( Sc

= 14,250 pounds per square inch.
QS '

j
S

t
= 21,750

75. Flexure and Compression. Imagine the arrowheads on

P reversed; then Fig. 43, ,
will represent a beam under com-

bined flexural and compressive stresses. The flexural unit- stresses

are computed as in the preceding article. The direct stress is a

compression equal to P, and the unit-stress due to P is computed
as in the preceding article. Evidently the effect of P is to increase

the compressive stress and decrease the tensile stress due to the

flexure. In combining, we have two cases as before:

(1) The flexural tensile unit-stress is greater than the

direct unit-stress; that is, S
2
is greater than S . Then the com-

bined unit-stress on the lower fibre is
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S
t
= S

2
- S

(tensile) ;

and that on the upper fibre is

Sc
=

S, -f S (compressive).
The combined fibre stress is represented by Fig. 44, a, and is part
tensile and part compressive.

(2) The flexural unit-stress on the lower fibre is less than

the direct unit-stress; that is, S
2

is less than S . Then the com-
bined unit-stress on the lower fibre is

S
t
= S - S

2 (compressive);
and that on the upper fibre is

Sc
= S + Sj (compressive).

The combined fibre stress is represented by
Fig. 44, ,

and is all compressive.

Example. A piece of timber 6x6
inches, and 10 feet long, is subjected to end

pushes of 9,000 pounds. It is supported in

a horizontal position at its ends, and sustains

a middle load of 400 pounds. Compute the

combined fibre stresses.

Evidently the dangerous section is at the

middle, and M = l
P/; that is,

Fig. 44.

M =
j
X 400 X 10 = 1,000 foot-pounds,

or 1,000 X 12 12,000 inch-pounds.

Since c
l

= c
2
= 3 inches, and

1
3

1
1 r= "To k># ==

~TT\ X o X 6 = 108 inches4
,

l/o /4

12,000 X 3 1
b

x
fe

2
_

^Qg
=

~3~ pounds per square inch,

Since A = 6 X 6 = 36 square inches,

9 000
S = ' = 250 pounds per square inch.

Hence the greatest value of the combined compressive stress is

So + S
a
= 333

-g-
-f 250 =

583-q- pounds per square inch.
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Ans.

It occurs on the upper fibres of the middle section. The greatest

value of the combined tensile stress is

S
2
- S =

333-g-
- 250 =

83-^- pounds per square inch.

It occurs on the lowest fibres of the middle section.

EXAMPLE FOR PRACTICE.

Change the load of the preceding illustration to a uniform

load and solve.

Sc
= 417 pounds per square inch.

St
== 83 "

(compression).

76. Combined Flexural and Direct Stress by flore Exact

Formulas. The results in the preceding articles are only approxi-

mately correct. Imagine the

beam represented in Fig. 45, a,

to be first loaded with the trans-

verse loads alone. They cause

the beam to bend more or less,

and produce certain flexural

stresses at each section of the

beam. Now, if end pulls are

applied they tend to straighten

the beam and hence diminish the flexural stresses. This effect

of the end pulls wTas omitted in the discussion of Art. 74, and

the results there given are therefore only approximate, the

value of the greatest combined fibre unit-stress (St ) being too

large. On the other hand, if the end forces are pushes, they in-

crease the bending, and therefore increase the flexural fibre stresses

already caused by the transverse forces (see Fig. 45, b).
The

results indicated in Art. 75 must therefore in this case also be

regarded as only approximate, the value of the greatest unit-

fibre stress (Sc ) being too small.

For beams loaded in the middle or with a uniform load, the

following formulas, which take into account the flexural effect of

the end forces, may be used :

M denotes bending moment at the middle section of the beam'

I denotes the moment of inertia of the middle section with

respect to the neutral axis;
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S
1?
S

2 ,
c

1
and c

2
have the same meanings as in Arts. 74 and

75, but refer always to the middle section
;

I denotes length of the beam
;

E is a number depending on the stiffness of the material, the

average values of which are, for timber, 1,500,000; and for struc-

tural steel 30,000,000.*

S =
~

10E

The plus sign is to be used when the end forces P are pulls, and

the minus sign when they are pushes.
It must be remembered that S

t
and S

2
are flexural unit-

stresses. The combination of these and the direct unit-stress is

made exactly as in articles 74 and 75.

Examples. 1. It is required to apply the formulas of this

article to the example of article 74.

As explained in the example referred to, M = 108,000 inch-

pounds; Cj= c
2
= 3 inches; and I = 36 inches4

.

Now, since I = 12 feet = 144 inches,

108,000 X 3 324,000
8
'
= S

*
=

45,000 X 144*
=
36+Ml == 8

'
284 P unda

^
10 X 30,000,000

per square inch, as compared with 9,000 pounds per square inch,

the result reached by the use of the approximate formula.

As before, S 3,750 pounds per square inch; hence

Sc
= 8,284- 3,750 = 4,534 pounds per square inch;

and St
= 8,284 + 3,750 = 12,034

" " "

2. It is required to apply the formulas of this article to the

example of article 75.

As explained in that example,
M = 12,000 inch-pounds;
c

1
= <?

2
=. 3 inches, and I = 108 inches4

.

Now, since I = 120 inches,

12,000 X 3 36,000
362

10 X 1,500,000
* NOTE. This quantity

" E "
is more fully explained in Article 95.
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per square inch, as compared with 333J pounds per square inch,
the result reached by use of the approximate method.

As before, S = 250 pounds per square inch; hence

Sc
= 362 -f- 250 = 612 pounds per square inch; and

S
t
== 362 - 250 == 112 .

EXAMPLES FOR PRACTICE.

1. Solve the example for practice of Art. 74 by the formulas

of this article.

A n * $
Sc
= 12,820 pounds per square inch.

1S '

I
S

t
= 20,320

2. Solve the example for practice of Art. 75 by the formulas

of this article.

Ans i
^c
~ ^^ pounds per square inch.

|
S

t
= 70 "

(compression).

STRENGTH OF COLUHNS.

A stick of timber, a bar of iron, etc., when used to sustain

end loads which act lengthwise of the pieces, are called columns,

posts, or struts if they are so long that they would bend before

breaking. When they are so short that they would not bend

before breaking, they are called short blocks, and their compres-
sive strengths are computed by means of equation 1. The strengths
of columns cannot, however, be so simply determined, and we now

proceed to explain the method of computing them.

77. End Conditions. The strength of a column depends in

part on the way in which its ends bear, or are joined to other

parts of a structure, that is, on its " end conditions." There are

practically but three kinds of end conditions, namely:
1.

"
Hinge

"
or "

pin
"

ends,
2. "Flat" or "square" ends, and
3. "Fixed" ends.

(1) When a column is fastened to its support at one end by
means of a pin about which the column could rotate if the other

end were free, it is said to be "
hinged

" or "
pinned

"
at the

former end. Bridge posts or columns are often hinged at the ends.

(2) A column either end of which is flat and perpendicular
to its axis and bears on other parts of the structure at that surface,

square" at that end.
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(3) Columns are sometimes riveted near their ends directly

to other parts of the structure and do not bear directly on their

ends; such are called " fixed ended." A column which bears on its

flat ends is often fastened near the ends to other parts of the struc-

ture, and such an end is also said to be " fixed." The fixing of an

end of a column stiffens and therefore strengthens it more or less,

but the strength of a column with fixed ends is computed as

though its ends were flat. Accordingly we have, so far as strength
is concerned, the following classes of columns :

78. Classes of Columns. (1) Both ends hinged or pinned;

(2) one end hinged and one flat; (3) both ends flat.

Other things being the same, columns of these three classes

are unequal in strength. Columns of the first class are the

weakest, and those of the third class are the strongest.

_A_
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The radius of gyration of any plane figure (as the section of a column)

with respect to any line, is such a length that the square of this length mul-

tiplied by the area of the figure equals the moment of inertia of the figure

with respect to the given line.

Thus, if A denotes the area of a figure; I, its moment of in-

ertia with respect to some line; and r, the radius of gyration

with respect to that line; then

r*A. = I',orr = I/I H- A. (9)

In the column formulas, the radius of gyration always refers to an

axis through the center of gravity of the cross-section, and usually
to that axis with respect to which the radius of gyration (and mo.

ment of inertia) is least. (For an exception, see example 3,

Art. 83.) Hence the radius of gyration in this connection is often

called for brevity the " least radius of gyration," or simply the

" least radius."

Examples. 1. Show that the value of the radius of gyration

given for the square in Table A, page 52, is correct.

The moment of inertia of the square with respect to the axis

is TV^* Since A = #2

, then, by formula 9 above,

r - J17I7= JITa, = aJJ.

2. Prove that the value of the radius of gyration given for

the hollow square in Table A, page 54, is correct.

The value of the moment of inertia of the square with respect
to the axis is T^ (a*

-
a'). Since A = a2 -

a*,

EXAHPLE FOR ^PRACTICE.

Prove that the values of the radii of gyration of the other fig-

ures given in Table A, page 52, are correct. The axis in each

case is indicated by the line through the center of gravity.

81. Radius of Gyration of Built=up Sections. The radius of

gyration of a built-up section is computed similarly to that of any
other figure. First, we have to compute the moment of inertia of
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the section, as explained in Art. 54; and then we use formula 9, as

in the examples of the preceding article.

Example. It is required to compute . the radius of gyration
of the section represented in Fig. 30 (page 52) with respect to the

axis AA.
In example 1, Art. 54, it is shown that the moment of inertia

of the section with respect to the axis AA is 429 inches4
. The

area of the whole section is

2 X 6.03 + 7 = 19.06;

hence the radius of gyration r is

f429~
\ 153)6

= 4.74 inches.

EXAMPLE FOR PRACTICE.

Compute the radii of gyration of the section represented in

Fig. 31, #, with respect to the axes AA and BB. (See examples
for practice 1 and 2, Art. 54.)

A ( 2.87 inches.
Ans. <

\ 2.09

82. Kinds of Column Loads. When the loads applied to a

column are such that their resultant acts through the center of

gravity of the top section and along the axis of the column, the

column is said to be centrally loaded. When the resultant of the

loads does not act through the center of gravity of the top

section, the column is said to be eccentrically loaded. All the

following formulas refer to columns centrally loaded.

83. Rankine's Column Formula. When a perfectly straight
column is centrally loaded, then, if the column does not bend and

if it is homogeneous, the stress on every cross-section is a uniform

compression. If P denotes the load and A the area of the cross-

section, the value of the unit-compression is P -r- A.

On account of lack of straightness or lack of uniformity in

material, or failure to secure exact central application of the load,

the load P has what is known as an " arm " or "
leverage

" and

bends the column more or less. There is therefore in such a

column a bending or flexural stress in addition to the direct com-

pressive stress above mentioned
;
this bending stress is compressive
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on the concave side and tensile on the convex. The value of the

stress per unit-area (unit-stress) on the fibre at the concave side,

according to equation 6, is Me -j- I, where M denotes the bending
moment at the section (due to the load on the column), c the

distance from the neutral axis to the concave side, and I the

moment of inertia of the cross-section with respect to the neutral

axis. (Notice that this axis is perpendicular to the plane in

which the column bends.)

The upper set of arrows (Fig. 47) represents the direct com-

pressive stress; and the second set the bending stress if the load

is not excessive, so that the stresses are within the elastic limit of

the material. The third set represents the combined stress that

actually exists on the cross-section. The greatest combined unit-

stress evidently occurs on the fibre at the concave side and where

the deflection of the column is greatest. The

stress is compressive, and its value S per unit-

area is given by the formula,

P Me
= TT T-

Now, the bending moment at the place of

greatest deflection equals the product of the

load P and its arm (that is, the deflection).
^*

Calling the deflection d, we haveM = P</; and

this value of M, substituted in the last equa
f^r^^^^^^- tion, gives

Fig. 47.

Let r denote the radius of gyration of the cross-section with respec
to the neutral axis. Then I = Ar2

(see equation 9); and this

value, substituted in the last equation, gives

P Rfo P do
= X + A?

-
~K

" + ~?}
-

According to the theory of the stiffness of beams on end sup-

ports, deflections vary directly as the square of the length Z, and in-

versely as the distance c from the neutral axis to the remotest fibre

of the cross-section. Assuming that the deflections of columns
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follow the same laws, we may write d = ~k (I
2 -=-

c), where ~k is

some constant depending on the material of the column and on the

end conditions. Substituting this value for d in the last equation,
we find that

and

P
x =

P = SA
(10)

Each of these (usually the
last) is known as " Rankme's formula."

For mild-steel columns a certain large steel company uses S = 50,000

pounds per square inch, and the following values of Jc:

1. Columns with two pin ends, k = 1 -r- 18,000.

2.
" " one flat and one pin end, k = 1 -f- 24,000.

3.
" " both ends flat, fc = 1 -*- 36,000.

With these values of S and fc, P of the formula means the ultimate load,
that is, the load causing failure. The safe load equals P divided by the

selected factor of safety a factor of 4 for steady loads, and 5 for moving
loads, being recommended by the company referred to. The same unit is to

be used for Z and r.

Cast-iron columns are practically always made hollow with

comparatively thin walls, and are usually circular or rectangular
in cross -section. Tho following modifications of Rankine's formula

are sometimes used:

For circular sections, --r =

For rectangular sections, -^ =

1,000 d2

(ID")

In these formulas d denotes the outside diameter of the circular sec-

tions or the length of the lesser side of the rectangular sections. The same
unit is to be used for I and d.

Examples. 1. A 40-pound 10-inch steel I-beam 8 feet

long is used as a flat-ended column. Its load being 100,000

pounds, what is its factor of safety ?

Obviously the column tends to bend in a plane perpendicular
to its web. Hence the radius of gyration to be used is the one
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with respect to that central axis of the cross-section which is in

the web, that is, axis 2-2 (see figure accompanying table, page 72) .

The moment of inertia of the section with respect to that axis,

according to the table, is 9.50 inches4

;
and since the area of the

section is 11.76 square inches,

9 '5
--0808""L76

Now, I = 8 feet = 96 inches; and since k = 1 -r- 36,000, and S =
50,000, the breaking load for this column, according to Rankine's

formula, is

p = 50,000 X 11.76
_

446,790 pounds.

1 +
36,000 X 0.808.

Since the factor of safety equals the ratio of the breaking load to

the actual load on the column, the factor of safety in this case is

446,790

2. What is the safe load for a cast-iron column 10 feet long
with square ends and a hollow rectangular section, the outside,

dimensions being 5x8 inches; the inner, 4x7 inches; and the

factor of safety, 6 ?

In this case I 10 feet = 120 inches; A= 5 X8-4 X 7

= 12 square -inches; and d = 5 inches. Hence, according to

formula 10', for rectangular sections, the breaking load is

P =
80.000X^18

= 610>000 pound,
h
1,000 X 5 2

Since the safe load equals the breaking load divided by the factor

of safety, in this case the safe load equals

= 101,700 pounds.

3. A channel column
(see Fig. 46, $) is pin-ended, the pins

being perpendicular to the webs of the channel (represented by
AA in the figure), and its length is 16 feet (distance between axes
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of the pins). If the sectional area is 23.5 square inches, and the

moment of inertia with respect to AA is 386 inches4 and with

respect to BB 214 inches4

,
what is the safe load with a factor of

safety of 4 ?

The column is liable to bend in one of two ways, namely, in

the plane perpendicular to the axes of the two pins, or in the plane

containing those axes.

(1) For bending in the first plane, the strength of the col-

umn is to be computed from the formula for a pin -ended column.

Hence, for this case, r2 = 386 -r- 23.5 = 16; and the breaking
load is

p=
"

18,000 X 16

The safe load for this case equals
-

-^
- = 260,400 pounds.A i

(2) If the supports of the pins are rigid, then the pins
stiffen the column as to bending in the plane of their axes, and the

strength of the column for bending in that plane should be com-

puted from the formula for the strength of columns with flat ends.

Hence, r* = 214 -f- 23.5 = 9.11, and thebreaking load is

P =--'

nf^v iov
= 1,056,000 pounds.

36,000 X 9.11

The safe load for this case equals
- - = 264,000 pounds.

EXAMPLES FOR PRACTICE.

1. A 40-pound 12-inch steel I-beam 10 feet long is used as

a column with flat ends sustaining a load of 100,000 pounds.
What is its factor of safety?

Ans. 4.1

2. A cast-iron column 15 feet long sustains a load of

150,000 pounds. Its section being a hollow circle, 9 inches out-

side and 7 inches inside diameter, what is the factor of safety?

Ans. 8.9

3. A steel Z-bar column (see Fig. 46, a) is 24 feet long and

has square ends; the least radius of gyration of its cross-section is
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3.1 inches; and the area of the cross-section is 24.5 square inches.

What is the safe load for the column with a factor of safety of 4 ?

Ans. 247,000 pounds.
4. A cast-iron column 13 feet long has a hollow circular

cross-section 7 inches outside and 5J inches inside diameter.

What is its safe load with a factor of safety of 6 ?

Ans. 121,142 pounds.
5. Compute the safe load for a 40-pound 12-inch steel

I-beam used as a column with flat ends, its length being 17 feet.

Use a factor of safety of 5.

Ans. 52,470 pounds.
84. Graphical Representation of Column Formulas. Col-

umn (and most other engineering) formulas can be represented

graphically. To represent Rankine's formula for flat-ended mild-

steel columns,
P 50,000

36,000

we first substitute different values of I -r- r in the formula, and

solve for P -r- A. Thus we find, when

Z - r = 40, P - A = 47,900 ;

I + r = 80, P - A = 42,500 ;

l + r = 120, P -*- A = 35,750 ;

etc., etc.

Now, if these values of I -s- r be laid off by some scale on a line

from O, Fig. 48, and the corresponding values of P -r- A be laid

,1-r-r

100 zoo 300
Fig. 48.

off vertically from the points on the line, we get a series of points
as #, &, 6', etc.; and a smooth curve through the points a, b, c

t
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etc., represents the formula. Such a curve, besides representing

the formula to one's eye, can be used for finding the value of

P -5- A for any value of I -f- r; or the value of I -f- r for any value

of P -5- A. The use herein made is in explaining other column

formulas in succeeding articles.

85. Combination Column Formulas. Many columns have

been tested to destruction in order to discover in a practical way
the laws relating to the strength of columns of different kinds.

The results of such tests can be most satisfactorily represented

graphically by plotting a point in a diagram for each test. Thus,

suppose that a column whose I -r- r was 80 failed under a load of

276,000 pounds, and that the area of its cross-section was 7.12

square inches. This test would be represented by laying off Oa,

Fig. 49, equal to 80, according to some scale; and then ab equal to

276,000 -r- 7.12 (P H- A), according to some other convenient

scale. The point b would then represent the result of this par-

ticular test. All the dots in the figure represent the way in which

the results of a series of tests appear when plotted.

It will be observed at once that the dots do not fall upon any
one curve, as the curve of Rankine's formula. Straight lines and

50000

AOOOO- -

30OOO

2OOOO--

10OOO

,V*-r

1OO 2OO 300
Fig. 49.

curves simpler than the curve of Rankine's formula have been

fitted to represent the average positions of the dots as determined

by actual tests, and the formulas corresponding to such lines have

been deduced as column formulas. These are explained in the

following articles.

86. Straight-Line and Euler Formulas. It occurred to Mr.

T. H. Johnson that most of the dots corresponding to ordinary
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lengths of columns agree with a straight line just as well as with

a curve. He therefore, in 1886, made a number of such plats or

diagrams as Fig. 49, fitted straight lines to them, and deduced the

formula corresponding to each line. These have become known

as "
straight-line formulas," and their general form is as follows:

r- = S - m ,A T (I)

P, A, Z, and r having meanings as in Rankine's formula (Art. 83),
and S and m being constants whose values according to Johnson

are given in Table E below.

For the slender columns, another formula (Euler's, long since

deduced) was used by Johnson. Its general form is

JP
n

A (12)
(I
+ rf

n being a constant whose values, according to Johnson, are given
in the following table:

TABLE E.

Data for Mild-Steel Columns.
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feet long sustains a load of 100,000 pounds, and the ends are flat.

Compute its factor of safety according to the methods of this

article.

The first thing to do is to compute the ratio I -r- r for the

column, to ascertain whether the straight-line formula or Euler's

P-f-A
50000

4-OOOO-

30OOO

2OOOO-

JOOOO

100 200 300
Fig. 50.

formula should be used. From Table C, on page 70, we find that

the moment of inertia of the column about the neutral axis of

its cross-section is 9.50 inches4

,
and the area of the section is

11.76 square inches. Hence

9.50

1L76"
= 0.81; or r = 0.9 inch.

Since I = 8 feet = 96 inches,

J_ 96

r 0.9
- 106T

This value of I -5- r is less than the limiting value (195) indicated

by the table for steel columns with flat ends (Table E, p. 97), and

we should therefore use the straight-line formula; hence

= 52,500 - 180 X
106-jp

or, P = 11.76 (52,500
- 180 X 106-?-)

= 391,600 pounds.

This is the breaking load for the column according to the straight,

line formula; hence the factor of safety is

391,600

100,000
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2. Suppose that the length of the column described in the

preceding example were 16 feet. What would its factor of safety be?

Since I = 16 feet = 192 inches; and, as before, r = 0.9

inch, I ~- r = 213J. This value is greater than the limiting
value (195) indicated by Table E (p. 97) for flat-ended steel col-

umns; hence Euler's formula is to be used. Thus

P _ 666,000,000

IL76
"

(213J)
2 '

11.76 X 666,000,000
or, P = - - ^ 172

>
100

This is the breaking load; hence the factor of safety is

172,100

100,000
1.7

3. What is the safe load for a cast-iron column 10 feet long
with square ends and hollow rectangular section, the outside

dimensions being 5x8 inches and the inside 4x7 inches, with a

factor of safety of 6 ?

Substituting in the formula for the radius of gyration given
in Table A, page 52, we get

r= ,
8 X 5 3 -7x 43

12 (8 X 5 - 7 X 4)

Since I = 10 feet = 120 inches,

1 12
6122~

T96
= 6L22

According to the straight-line formula for cast iron, A being

equal to 12 square inches,

= 34
?
000 - 88 X 61.22;

or, P= 12 (34,000
- 88 X 61.22)

= 343,360 pounds.

This being the breaking load, the safe load is

= 57,227 pounds.
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EXAMPLES FOR PRACTICE.

1. A 40-pound 12-inch steel I-beam 10 feet long is used as

a flat-ended column. Its load being 100,000 pounds, compute
the factor of safety by the formulas of this article.

Ans. 3.5

2. A cast-iron column 15 feet long sustains a load of

150,000 pounds. Its section being a hollow circle of 9 inches

outside and 7 inches inside diameter, compute the factor of safety

by the straight-line formula.

Ans. 4.8

3. A steel Z-bar column (see Fig. 46, a] is 24 feet long
and has square ends; the least radius of gyration of its cross-

section is 3.1 inches; and the area of the cross-section is 24.5

square inches. Compute the safe load for the column by the

formulas of this article, using a factor of safety of 4.

Ans. 219,000 pounds.
4. A hollow cast-iron column 13 feet long has a circular

cross-section, and is 7 inches outside and 5J inches inside in

diameter. Compute its safe load by the formulas of this article,

using a factor of safety of 6.

Ans. 68,500 pounds
5. Compute by the methods of this article the safe load for

a 40-pound 12-inch steel I-beam used as a column with flat ends,,

If the length is 17 feet and the factor of safety 5.

Ans. 35,100 pounds.
87. ParaboIa=EuIer Formulas. As better fitting the results

of tests of the strength of columns of "
ordinary lengths," Prof.

J. B. Johnson proposed (1892) to use parabolas instead of straight

lines. The general form of the "
parabola formula "

is

P, A, I and r having the same meanings as in Rankine's formula,
Art. 83; and S and m denoting constants whose values, according
to Professor Johnson, are given in Table F below.

Like the straight-line formula, the parabola formula should

not be used for slender columns, but the following (Euler's) is

applicable:
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n

the values of n (Johnson) being given in the following table

TABLE F.

Data for Jlild Steel Columns.
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8 feet long sustains a load of 100,000 pounds, and its ends are flat.

Compute its factor of safety according to the methods of this

article.

The first thing to do is to compute the ratio I -f- r for the

column, to ascertain whether the parabola formula or Euler's for-

mula should be used. As shown in example 1 of the preceding

article, I -s- r = 106. This ratio being less than the limiting
-A .j

value, 190, of the table, we shoula use^he ;parabola
formula.

Hence, since the area of the cross -"section- is 11.76 square inches

(see Table C, page 70), .-.

-*-
B
= 42,000 -0.62 (106f);

or, P = 11.76 [42,000
- 0.62 (106f )

2

]
= 410,970 pounds.

This is the breaking load according to the parabola formula; hence

the factor of safety is

410,970 __ 41
100,000

"

2. A white pine column 10 X 10 inches in cross-section and

18 feet long sustains a load of 40,000 pounds. What is its factor

of safety ?

The length is 18 feet or 216 inches; hence the ratio I -f- d =
21.6, and the parabola formula is to be applied.

Now, since A = 10 X 10 = 100 square inches,

j^-
= 2,500 - 0.6 X 21.6';

or, P = 100 (2,500
- 0.6 X 21.62

)
= 222,000 pounds.

This being the breaking load according to the parabola formula,
the factor of safety is

222,000

40,000
=

3. What is the safe load for a long-leaf yellow pine column
12 X 12 inches square and 30 feet long, the factor of safety

being 5 ?

The length being 30 feet or 360 inches,

1
- -

36
so-

d
-

12"
~ 3

>
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hence the parabola formula should be used. Since A = 12 X 12

= 144 square inches,

JL = 4,000 - 0.8 X 302

;

or, P == 144 (4,000
- 0.8 X 302

)
= 472,320 pounds.

This being the breaking load according to the parabola formula,

the safe load is

1J! - = 94,465 pounds.

EXAMPLES FOR PRACTICE.

1. A 40-pound 12-inch steel I-beam 10 feet long is used as

a flat-ended column. Its load being 100,000 pounds, compute its

factor of safety by the formulas of this article.

Ans. 3.8

2. A white oak column 15 feet long sustains a load of

30,000 pounds. Its section being 8x8 inches, compute the

factor of safety by the parabola formula.

Ans. 6.6

3. A steel Z-bar column (see Fig. 46, a) is 24 feet long and

has square ends; the least radius of gyration of its cross-section

is 3.1 inches; and the area of its cross-section is 24.5 square
inches. Compute the safe load for the column by the formulas

of this article, using a factor of safety of 4.

Ans. 224,500 pounds.
4. A short-leaf yellow pine column 14 X 14 inches in sec-

tion is 20 feet long. What load can it sustain, with a factor of

safety of 6 ?

Ans. 101,100 pounds.
88. " Broken Straight-Line

" Formula. A large steel com-

pany computes the strength of its flat-ended steel columns by two

formulas represented by two straight lines AB and BC, Fig. 52.

The formulas are

X = 48,000,

and -?- = 68,400 - 228 ,

P. A, I, and r having the same meanings as in Art. 83,
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The point B corresponds very nearly to the ratio I ~- r = 90.

Hence, for columns for which the ratio Z -r- r is less than 90, the

first formula applies; and for columns for which the ratio is

greater than 90, the second one applies. The point C corre-

sponds to the ratio Z -r- r = 200, and the second formula does not

apply to a column for which I -f- r is greater than that limit.

P-J-A
50000

10OOO

The ratio I -r- r for steel columns of practice rarely Exceeds 150,

and is usually less than 100.

Fig. 53 is a combination of Figs. 49, 50, 51 and 52, and

represents graphically a comparison of the Rankine, straight-line,

Euler, parabola-Euler, and broken straight-line formulas for flat-

ended niild-steel columns, It well illustrates the fact that our

knowledge of the strength of columns is not so exact as that, for

example, of the strength of beams.

100 200 3OO

Fig. 53.

89. Design of Columns. All the preceding examples relat-

ing to columns were on either (1) computing the factor of safety
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of a given loaded column, or (2) computing the safe load for a

given column. A more important problem is to design a column

to sustain a given load under given conditions. A complete dis-

cussion of this problem is given in a later paper on design. "We

show here merely how to compute the dimensions of the cross -

section of the column after the form of the cross-section has been

decided upon.
In only a few cases can the dimensions be computed directly

(see example 1 following), but usually, when a column formula is

applied to a certain case, there will be two unknown quantities in

it, A and r or d. Such cases can best be solved by trial (see

examples 2 and 3 below).

Example. 1. What is the proper size of white pine column

to sustain a load of 80,000 pounds with a factor of safety of 5,

when the length of the column is 22 feet ?

We use the parabola formula (equation 13). Since the safe

load is 80,000 pounds and the factor of safety is 5, the breaking
load P is

80,000 X 5 = 400,000 pounds.

The unknown side of the (square) cross-section being denoted by

d, the area A is d2
. Hence, substituting in the formula, since I

= 22 feet = 264 inches, we have

=2,500- 0.6

Multiplying both sides by d2

gives

400,000 = 2,500 d
2 - 0.6 X 2642

,

or 2,500 d* = 400,000 + 0.6 x 264* = 441,817.6.

Hence d2 = 176.73, or d = 13.3 inches.

2. What size of cast-iron column is needed to sustain a load

of 100,000 pounds with a factor of safety of 10, the length of the

column being 14 feet ?

We shall suppose that it has been decided to make the cross-

section circular, and shall compute by Rankine's formula modified

for cast-iron columns (equation 10'). The breaking load for the

column would be
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100,000 X 10 = 1,000,000 pounds.

The length is 14 feet or 168 inches; hence the formula oecomes

1,000,000 80,000

or, reducing by dividing both sides of the equation by 10,000, and

then clearing of fractions, we have

100

There are two unknown quantities in this equation, d and A, and

we cannot solve directly for them. Probably the best way to pro-
ceed is to assume or guess at a practical value of d, then solve for

A, and finally compute the thickness or inner diameter. Thus, let

us try d equal to 7 inches, first solving the equation for A as far

as possible. Dividing both sides by 8 we have

100 n 1682
A . _ i I

and, combining,
441A = 12.5 + ~.

Now, substituting 7 for d, we have

441A = 12.5 + -JQ-
= 21.5 square inches.

The area of a hollow circle whose outer and inner diameters are

d and d
l respectively, is 0.7854 (d

2 -
d*). Hence, to find the inner

diameter of the column, we substitute 7 for d in the last expres-

sion, equate it to the value of A just found, and solve for d
t
. Thus,

0.7854 (49-^) = 21.5-

hence

and d* = 49 - 27.37 = 21.63 or d
l
= 4.65.

This value of d makes the thickness equal to

J (7-4.65) = 1.175 inches,
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which is safe. It might be advisable in an actual case to try
d equal to 8 repeating the computation.*

EXAMPLE FOR PRACTICE.

1. What size of white oak column is needed to sustain a load

of 45,000 pounds with a factor of safety of 6, the length of the

column being 12 feet.

Ans. d =
8-J, practically a 10 X 10-inch section

STRENGTH OF SHAFTS.

A shaft is a part of a machine or system of machines, and is

used to transmit power by virtue of its torsional strength, or resist-

ance to twisting. Shafts are almost always made of metal and are

usually circular in cross-section, being sometimes made hollow.

90. Twisting Moment. Let AF, Fig. 54, represent a shaft

with four pulleys on it. Suppose that D is the driving pulley
and that B, C and E are pulleys from which power is taken off to

drive machines. The portions of the shafts between the pulleys

Pig. 54.

are twisted when it is transmitting power; and by the twisting

moment at any cross-section of the shaft is meant the algebraic

sum of the moments of all the forces acting on the shaft on either

*NOTE. The structural steel handbooks contain extensive tables by
means of which the design of columns of steel or cast iron is much facilitated.

The difficulties encountered in the use of formulae are well illustrated in this

example.
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side of the section, the moments being taken with respect to the

axis of the shaft. Thus, if the forces acting on the shaft (at
the

pulleys) are P
15
P

2 ,
P

3 ,
and P

4
as shown, and if the arms of the

forces or radii of the pulleys are a
l9
a

z ,
#

3 ,
and a^ respectively, then

the twisting moment at any section in

BC is Pj
CD is P, a, + P

2 a ,

DE is Pj a, + P
2
a

2
- P

3
a

3
.

Like bending moments, twisting moments are usually ex-

pressed in inch-pounds.

Example. Let a
t
= a

2
= a

4
= 15 inches, a

3
== 30 inches,

P, = 400 pounds, P2
= 500 pounds, P3

= 750 pounds, and P
4
=

600 pounds.* What is the value of the greatest twisting moment

in the shaft ?

At any section between the first and second pulleys, the

twisting moment is

400 X 15 = 6,000 inch-pounds;

at any section between the second and third it is

400 X 15 + 500 X 15 = 13,500 inch-pounds; and

at any section between the third and fourth it is

400 X 15 + 500 X 15 - 750 X 30 = - 9,000 inch-pounds.
Hence the greatest value is 13,500 inch-pounds.

91. Torsional Stress. The stresses in a twisted shaft are

called "torsional" stresses. The torsional stress on a cross -section

of a shaft is a shearing stress, as in the case illustrated by Fig. 55,

which represents a flange coupling in a shaft. Were it not for

the bolts, one flange would slip over the other when either part

of the shaft is turned; but the bolts prevent the slipping. Obvi-

ously there is a tendency to shear the bolts off unless they are

screwed up very tight; that is, the material of the bolts is sub-

jected to shearing stress.

Just so, at any section of the solid shaft there is a tendency
for one part to slip past the other, and to prevent the slipping or

* Note. These numbers were so chosen that the moment of P (driving

moment) equals the sum of the moments of the other forces. This is always

the case in a shaft rotating at constant speed; that is, the power given the

shaft equals the power taken off.



STRENGTH OF MATERIALS 107

shearing of the shaft, there arise shearing stresses at all parts of

the cross -section. The shearing stress on the cross-section of a

shaft is not a uniform stress, its value per unit-area being zero at

the center of the section, and increasing toward the circumference.

In circular sections, solid or hollow, the shearing stress per unit-

area (unit-stress) varies directly as the distance from the center

of the section, provided the elastic limit is not exceeded. Thus,

if the shearing unit-stress at the circumference of a section is

Fig. 55.

1,000 pounds per square inch, and the diameter of the shaft is

2 inches, then, at
-J
inch from the center, the unit-stress is 500

pounds per square inch; and at J inch from the center it is 250

pounds per square inch. In Fig. 55 the arrows indicate the

values and the directions of the shearing stresses on very small

portions of the cross-section of a shaft there represented.

92. Resisting Moment. By "resisting moment" at a sec-

tion of a shaft is meant the sum of the moments of the shearing
stresses on the cross- section about the axis of the shaft.

Let Ss denote the value of the shearing stress per unit-area

(unit-stress) at the outer points of a section of a shaft; d the

diameter of the section (outside diameter if the shaft is hollow);
and d

l
the inside diameter. Then it can be shown that the re-

sisting moment is:

For a solid section, 0.1963 S
s d

3

;

0.1963 S
s (tf - df)lor a hollow section,
*

d>

93. Formula for the Strength of a Shaft. As in the case
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of beams, the resisting moment equals the twisting moment at

any section. If T be used to denote twisting moment, then we

have the formulas :

For solid circular shafts, 0.1963 Ss d? = T;

w VTI i
-

-u ** 0.1963 S
s (d*

- d*) r
For hollow circular shafts,-J-^-L^=

d }

In any portion of a shaft of constant diameter, the unit-

shearing stress S
s
is greatest where the twisting moment is greatest.

Hence, to compute the greatest unit-shearing stress in a shaft,

we first determine the value of the greatest twisting moment,
substitute its value in the first or second equation above, as the

case may be, and solve for Ss . It is customary to express T in

inch-pounds and the diameter in inches, Ss then being in pounds

per square inch.

Examples. 1. Compute the value of the greatest shearing
unit-stress in the portion of the shaft between the first and second

pulleys represented in Fig. 54, assuming values of the forces and

pulley radii as given in the example of article 90. Suppose also

that the shaft is solid, its diameter being 2 inches.

The twisting moment T at any section of the portion between

the first and second pulleys is 6,000 inch-pounds, as shown in the

example referred to. Hence, substituting in the first of the two

formulas 15 above, we have

0.1963 Ss X 23 == 6,000;

fi 000
or, Ss

=
n 1Q

'

xx o = 3,820 pounds per square inch.
/\ o

This is the value of the unit-stress at the outside portions of all

sections between the first and second pulleys.

2. A hollow shaft is circular in cross-section, and its outer

and inner diameters are 16 and 8 inches respectively. If the

working strength of the material in shear is 10,000 pounds per

square inch, what twisting moment can the shaft safely sustain ?

The problem requires that we merely substitute the values of

Ss , <?, and d^ in the second of the above formulas 15, and solve for

T. Thus,

rp 0.1963 X 10,000 (16*
- 8 4

)
- Q0n . ,

--JL_ L = 7,537,920 inch-pounds.
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EXAMPLES FOR PRACTICE.

1. Compute the greatest value of the shearing unit-stress in

the shaft represented in Fig. 54, using the values of the forces

and pulley radii given in the example of article 90, the diameter

of the shaft being 2 inches.

Ans. 8,595 pounds per square inch

2. A solid shaft is circular in cross-section and is 9.6 inches

in diameter. If the working strength of the material in shear is

10,000 pounds per square inch, how large a twisting moment can

the shaft safely sustain? (The area of the cross -section is practically

the same as that of the hollow shaft of example 2 preceding.)
Ans. 1,736,736 inch-pounds.

94. Formula for the Power Which a Shaft Can Transmit.

The power that a shaft can safely transmit depends on the shear-

ing working strength of the material of the shaft, on the size of

the cross-section, and on the speed at which the shaft rotates.

Let H denote the amount of horse-power; S
s
the shearing

working strength in pounds per square inch; d the diameter

(outside diameter if the shaft is hollow) in inches; d
l
the inside

diameter in inches if the shaft is hollow; and n the number of

revolutions of the shaft per minute. Then the relation between

power transmitted, unit-stress, etc., is:

For solid shafts, H =
321 QOQ

'*'

L (16)O '

For hollow shafts, H =

. 1. What horse-power can a hollow shaft 16

inches and 8 inches in diameter safely transmit at 50 revolutions

per minute, if the shearing working strength of the material is

10,000 pounds per square inch?

We have merely to substitute in the second of the two for-

mulas 16 above, and reduce. Thus,

II =
321 QOQ X 16

-- = 6j0 horse-Power (
nearl

j)-

2. What size of solid shaft is needed to transmit 6,000 horse-

power at 50 revolutions per minute if the shearing working

strength of the material is 10,000 pounds per square inch?
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We have merely to substitute in the first of the two formulas

16, and solve for d. Thus,

10,000 X <P X 50
6

'
0(

321,000
"'

6,000 X 321,000
therefore df

1U)00o x 50
= 3

>
852

;

or, d = 3852 = 15.68 inches.

(A solid shaft of this diameter contains over 25% more material than

the hollow shaft of example 1 preceding. There is therefore considerable

saving of material in the hollow shaft.)

3. A solid shaft 4 inches in diameter transmits 200 horse-

power while rotating at 200 revolutions per minute. "What is the

greatest shearing unit-stress in the shaft?

We have merely to substitute in the first of the equations 16,

and solve for Ss . Thus,

X 43 X 200
200 =

321,000

200 X 321,000
or, S =

43 \/ 200
=

">.
" pounds per square inch.

EXAMPLES FOR PRACTICE.

1. What horse-power can a solid shaft 9.6 inches in diameter

safely transmit at 50 revolutions per minute, if its shearing work-

ing strength is 10,000 pounds per square inch ?

Ans. 1,378 horse-power.
2. What size of solid shaft is required to transmit 500 horse-

power at 150 revolutions per minute, the shearing working strength

of the material being 8,000 pounds per square inch.

Ans. 5.1 inches.

3. A hollow shaft whose outer diameter is 14 and inner 6.7

inches transmits 5,000 horse-power at 60 revolutions per minute.

What is the value of the greatest shearing unit-stress in the shaft?

Ans. 10,273 pounds per square inch.

STIFFNESS OF RODS, BEAMS, AND SHAFTS.

The preceding discussions have related to the strength of
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materials. We shall now consider principally the elongation of

rods, deflection of beams, and twist of shafts.

95. Coefficient of Elasticity. According to Hooke's Law

(Art. 9, p. 7), the elongations of a rod subjected to an increasing

pull are proportional to the pull, provided that the stresses due to

the pull do not exceed the elastic limit of the material. Within

the elastic limit, then, the ratio of the pull and the elongation is

constant; hence the ratio of the unit-stress (due to the pull) to the

unit-elongation is also constant. This last-named ratio is called

" coefficient of elasticity." If E denotes this coefficient, S the

unit-stress, and s the unit-deformation, then

-T> 07)

Coefficients of elasticity are usually expressed in pounds per square inch.

The preceding remarks, definition, and formula apply also to

a case of compression, provided that the material being compressed
does not bend, but simply shortens in the direction of the com-

pressing forces. The following table gives the average values of

the coefficient of elasticity for various materials of construction:

TABLE Q.

Coefficients of Elasticity.

Material.
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Then
S = P -j- A (see equation 1),

and s = D -+- I (see equation 2).

Hence, substituting these values in equation 17, we have

d7')

The first of these two equations is used for computing the value of

the coefficient of elasticity from measurements of a "
test," and

the second for computing the elongation or shortening of a given
rod or bar for which the coefficient is known.

Examples. 1. It is required to compute the coefficient of

elasticity of the material the record of a test of which is given on

page 9.

Since the unit-stress S and unit-elongation s are already

computed in that table, we can use equation 17 instead of the first

of equations 17'. The elastic limit being between 40,000 and

45,000 pounds per square inch, we may use any value of the

unit-stress less than that, and the corresponding unit-elongation.

Thus, with the first values given,

5,000

With the second,

This lack of constancy in the value of E as computed from different

loads in a test of a given material, is in part due to errors in measuring the

deformation, a measurement difficult to make. The value of the coefficient

adopted from such a test, is the average of all the values of E which can be

computed from the record.

2. How much will a pull of 5,000 pounds stretch a round

steel rod 10 feet long and 1 inch in diameter ?

We use the second of the two formulas 17'. Since A =
0.7854 X I 2 == 0.7854 square inches, I ?* 120 inches, and E -

30,000,000 pounds per square inch, the stretch is:
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EXAMPLES FOR PRACTICE.

1. "What is the coefficient of elasticity of a material if a pull

of 20,000 pounds will stretch a rod 1 inch in diameter and 4 feet

long 0.045 inch ?

Ans. 27,000,000 pounds per square inch.

2. How much will a pull of 15,000 pounds elongate a round

cast-iron rod 10 feet long and 1 inch in diameter ?

Ans. 0.152 inch.

96. Temperature Stresses. In the case of most materials,

when a bar or rod is heated, it lengthens; and \vhen cooled, it

shortens if it is free to do so. The coefficient of linear expansion

of a material is the ratio which the elongation caused in a rod or

bar of the material by a change of one degree in temperature bears

to the length of the rod or bar. Its values for Fahrenheit degrees

are about as follows:

For Steel, 0.0000065.

For Wrought iron, .0000067.

For Cast iron, .0000062.

Let K be used to denote this coefficient; t a change of tem-

perature, in degrees Fahrenheit; I the length of a rod or bar;

and D the change in length due to the change of temperature.

Then
D = = K tl. (18)

D and Z are expressed in the same unit.

If a rod or bar is confined or restrained so that it cannot

change its length when it is heated or cooled, then any change in

its temperature produces a stress in the rod; such are called tem-

perature stresses.

Examples. 1. A steel rod connects two solid walls and is

screwed up so that the unit-stress in it is 10,000 pounds per

square inch. Its temperature falls 10 degrees, and it is observed

that the walls have not been drawn together. What is the temper-
ature stress produced by the change of temperature, and what is

the actual unit-stress in the rod at the new temperature ?

Let I denote the length of the rod. Then the change in

length which would occur if the rod were free, is given by formula

18, above, thus:

D = 0.0000065 X 10 X I = 0.000065 I.
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Now, since the rod could not shorten, it has a greater than normal

length at the new temperature; that is, the fall in temperature has

produced an effect equivalent to an elongation in the rod amount-

ing to D, and hence a tensile stress. This tensile stress can be

computed from the elongation D by means of formula 17. Thus,

S = Es;

and since s, the unit-elongation, equals

D = .0000065 I = JMOO(ft
i i

S = 30,000,000 X .0000065 = 195.0 pounds per square inch.

This is the value of the temperature stress; and the new unit-

stress equals

10,000 + 195.0 = 10,195 pounds per square inch.

Notice that the unit temperature stresses are independent of the length
of the rod and the area of its cross-section.

2. Suppose that the change of temperature in the preceding

example is a rise instead of a fall. What are the values of the

temperature stress due to the change, and of the new unit- stress in

the rod ?

The temperature stress is the same as in example 1, that is,

1,950 pounds per square inch
; but the rise in temperature

releases, as it were, the stress in the rod due to its being screwed

up, and the final unit stress is

10,000 - 1,950 = 8,050 pounds per square inch.

EXAHPLE FOR PRACTICE,

1. The ends of a wrought-iron rod 1 inch in diameter are

fastened to two heavy bodies which are to be drawn together, thej &

temperature of the rod being 200 degrees when fastened to the ob-

jects. A fall of 120 degrees is observed not to move them.

What is the temperature stress, and what is the pull exerted by
the rod on each object ?

( Temperature stress, 22,000 pounds per square inch.
AnS '

\ Pull, 17,280 pounds.
97. Deflection of Beams. Sometimes it is desirable to know

how much a given beam will deflect under a given load, or to design
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a beam which will not deflect more than a certain amount under a

given load. In Table B, page 53, Part I, are given formulas for

deflection in certain cases of beams and different kinds of loading.

In those formulas, d denotes deflection; I the moment of inertia of the

cross-section of the beam with respect to the neutral axis, as in equation 6
;

and E the coefficient of elasticity of the material of the beam (for values, see

Art. 95).

In each case, the load should be expressed in pounds, the length in

inches, and the moment of inertia in biquadratic inches; then the deflection

will be in inches.

According to the formulas for d, the deflection of a beam

varies inversely as the coefficient of its material (E) and the mo-

ment of inertia of its cross-section (I) ; also, in the first four and

last two cases of the table, the deflection varies directly as the cube

of the length (Z
3

).

Example. What deflection is caused by a uniform load of

6,400 pounds (including weight of the beam) in a wooden beam

on end supports, which is 12 feet long and 6 X 12 inches in

cross -section ? (This is the safe load for the beam
;
see example

1, Art. 65.)

The formula for this case (see Table B, page 53) is

5W
=
384 El

'

Here W = 6,400 pounds ;
I = 144 inches

;
E = 1,800,000

pounds per square inch
;
and

I =
-^

la? =
jg-

6 X 123= 864 inches4
.

Hence the deflection is

5 X 6,400 X 144*
=
384 X 1,800,000 X 864

=

EXAMPLES FOR PRACTICE.

1. Compute the deflection of a timber built-in cantilever

8X8 inches which projects 8 feet from the wall and bears an

end load of 900 pounds. (This is the safe load for the cantilever,

see example 1, Art. 65.)
Ans. 0.43 inch.

2. Compute the deflection caused by a uniform load of 40,000
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pounds on a 42-pound 15-inch steel I-beam which is 16 feet long
and rests on end supports.

Ans. 0.28 inch.

98. Twist of Shafts. Let Fig. 57 represent a portion of a

shaft, and suppose that the part represented lies wholly between

Fig. 57.

two adjacent pulleys on a shaft to which twisting forces are applied

(see Fig. 54). Imagine two radii ma and nb in the ends of the

portion, they being parallel as shown when the shaft is not twisted.

After the shaft is twisted they will not be parallel,
ma having

moved to ma', and nb to nb 1

'. The angle between the two lines in

their twisted positions (ma' and nb') is called the angle of twist,

or angle of torsion, for the length 1. If a a" is parallel to ab, then

the angle a"nb' equals the angle of torsion.

If the stresses in the portion of the shaft considered do not

exceed the elastic limit, and if the twisting moment is the same

for all sections of the portion, then the angle of torsion a (in

degrees) can be computed from the following:

For solid circular shafts,

a = 584 TZ 36,800,000 HI

For hollow circular shafts, (19)
584 Tld 36,800,000 HZ

Here T, Z, d, d
l9 H, and n have the same meanings as in Arts. 93

and 94, and should be expressed in the units there used. The

letter E1 stands for a quantity called coefficient of elasticity for

shear; it is analogous to the coefficient of elasticity for tension and

compression (E), Art. 95. The values of E 1

for a few materials

average about as follows (roughly E
1 = | E) :
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For Steel, 11,000,000 pounds per square inch.

For Wrought iron, 10,000,000
" " " "

For Cast iron, 6,000,000
" " "

Example. What is the value of the angle of torsion of a

steel shaft 60 feet long when transmitting 6,000 horse-power at

50 revolutions per minute, if the shaft is hollow and its outer and

inner diameters are 16 and 8 inches respectively ?

Here I 720 inches; hence, substituting in the appropriate
formula (19), we find that

36,800,000 X 6,000 x=
11,000,000 X (16-

-
80 50

=

EXAMPLE FOR PRACTICE.

Suppose that the first two pulleys in Fig. 54 are 12 feet

apart; that the diameter of the shaft is 2 inches; and that P, = 400

pounds, and a
l
= 15 inches. If the shaft is of wrought iron,

what is the value of the angle of torsion for the portion between

the first two pulleys ?

Ans. 3.15 degrees.

99. Non-elastic Deformation. The preceding formulas for

elongation, deflection, and twist hold only so long as the greatest
unit-stress does not exceed the elastic limit. There is no theory,
and no formula, for non -elastic deformations, those corresponding
to stresses which exceed the elastic limit. It is well known, how-

ever, that non -elastic deformations are not proportional to the

forces producing them, but increase much faster than the loads.

The value of the ultimate elongation of a rod or bar (that is, the

amount of elongation at rupture), is quite well known for many
materials. This elongation, for eight-inch specimens of various

materials (see Art. 16), is :

For Cast iron, about 1 per cent.

For Wrought iron (plates), 12 - 15 per cent.

For " "
(bars), 20-25 " "

.

For Structural steel, 22-26 " "
.

Specimens of ductile materials (such as wrought iron and

structural
steel), when pulled to destruction, neck down, that is,

diminish very considerably in cross-section at some place along
the length of the specimen. The decrease in cross-sectional area
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is known as reduction of area, and its value for wrought iron and

steel may be as much as 50 per cent.

RIVETED JOINTS.

100. Kinds of Joints. A lap joint is one in which the

plates or bars joined overlap each other, as in Fig. 58, a. A butt

joint is one in which the plates or bars that are joined butt against

each other, as in Fig. 58, b. The thin side plates on butt joints

Fig. 58.

are called cover=plates ; the thickness of each is always made not

less than one-half the thickness of the main plates, that is, the

plates or bars that are joined. Sometimes butt joints are made

with only one cover-plate; in such a case the thickness of the

cover-plate is made not less than that of the main plate.

"When wide bars or plates are riveted together, the rivets are

placed in rows, always parallel to the " seam " and sometimes also

perpendicular to the seam; but when we speak of a row of rivets,

we mean a row parallel to the seam. A lap joint with a single

row of rivets is said to be single=riveted ; and one with two rows

of rivets is said to be double-riveted. A butt joint with two rowa

of rivets (one on each side of the joint) is called "
single-riveted,"

and one with four rows (two on each side) is said to be "double-

riveted."

The distance between the centers of consecutive holes in a

row of rivets is called pitch.

101. Shearing Strength, or Shearing Value, of a Rivet.

When a lap joint ia subjected to tension (that is, when P, Fig. 58,

#, is a pull), and when the joint is subjected to compression (when
P is a push), there is a tendency to cut or shear each rivet along

the surface between the two plates. In butt joints with two cover-
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plates, there is a tendency to cut or shear each rivet on two sur-

faces (see Fig. 58, b). Therefore the rivets in the lap joint are

said to be in single shear ; and those in the butt joint (two covers)

are said to be in double shear.

The "
shearing value "

of a rivet means the resistance which

it can safely offer to forces tending to shear it on its cross-section.

This value depends on the area of the cross-section and on the work-

ing strength of the material. Let d denote the diameter of the

cross-section, and S
s
the shearing working strength. Then, since

the area of the cross-section equals 0.7854 d2

,
the shearing strength

of one rivet is :

For single shear, 0.7854 d2 S8 .

For double shear, 1.5708 <& S, .

102. Bearing Strength, or Bearing Value, of a Plate. When
a joint is subjected to tension or compression, each rivet presses

against a part of the sides of the holes through which it passes.

By
"
bearing value

"
of a plate (in this connection) is meant the

pressure, exerted by a rivet against the side of a hole in the plate,

which the plate can safely stand. This value depends on the

thickness of the plate, on the diameter of the rivet, and on the

compressive working strength of the plate. Exactly how it

depends on these three qualities is not known; but the bearing
value is always computed from the expression t d S

c ,
wherein t

denotes the thickness of the plate; 6?, the diameter of the rivet or

hole; and S
c ,

the working strength of the plate.

103. Frictional Strength of a Joint. When a joint is sub-

jected to tension or compression, there is a tendency to slippage
between the faces of the plates of the joint. This tendency is

overcome wholly or in part by frictional resistance between the

plates. The frictional resistance in a well-made joint may be

very large, for rivets are put into a joint hot, and are headed or

capped before being cooled. In cooling they contract, drawing the

plates of the joint tightly against each other, and producing a

great pressure between them, which gives the joint a correspond-

ingly large frictional strength. It is the opinion of some that

all well-made joints perform their service by means of their

frictional strength; that is to say, the rivets act only by pressing
the plates together and are not under shearing stress, nor
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are the plates under compression at the sides of their holes. The
" frictional strength

" of a joint, however, is usually regarded as

uncertain, and generally no allowance is made for friction in com-

putations on the strength of riveted joints.

104. Tensile and Compressive Strength of Riveted Plates.

The holes punched or drilled in a plate or bar weaken its tensile

strength, and to compute that strength it is necessary to allow for

the holes. By net section, in this connection, is meant the small-

est cross-section of the plate or bar
;
this is always a section along

a line of rivet holes.

If, as in the foregoing article, t denotes the thickness of the

plates joined ; d, the diameter of the holes; n
l9
the number of riv-

ets in a row
;
and w, the width of the plate or bar

;
then the net

section = (w
- n

td) t.

Let S
t
denote the tensile working strength of the plate ;

then

the strength of the unriveted plate is wtS
i9
and the reduced tensile

strength is (w - n^) t S
t
.

The compressive strength of a plate is also lessened by the

presence of holes
;
but when they are again filled up, as in a joint,

the metal is replaced, as it were, and the compressive strength of

the plate is restored. No allowance is therefore made for holes in

figuring the compressive strength of a plate.

105. Computation of the Strength of a Joint. The strength
of a joint is determined by either (1) the shearing value of the

rivets
; (2) the bearing value of the plate ;

or (3) the tensile

strength of the riveted plate if the joint is in tension. Let P
8
de-

note the strength of the joint as computed from the shearing
values of the rivets

;
P

c ,
that computed from the bearing value of

the plates ; and P
t ,

the tensile strength of the riveted plates.

Then, as before explained,

P
t
=

(
W - n,d) *S

t ;
J

P
8
= n

2
0.7854 ^2S

8 ;
and V (20)

n
z denoting the total number of rivets in the joint ;

and n
a
denot-

ing the total number of rivets in a lap joint, and one-half the

number of rivets in a butt joint.

Examples. 1. Two half-inch plates 7^ inches wide are con-
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nected by a single lap joint double-riveted, six rivets in two rows.

If the diameter of the rivets is | inch, and the working strengths
are as follows : S

t
= 12,000, S == 7,500, and S

c
= 15,000 pounds

per square inch, what is the safe tension which the joint can

transmit ?

Here n
l

==
3, n= 6, and n

3
= 6

;
hence

P
t
=

(7-i-
- 3 X ~) X -i- X 12,000 == 31,500 pounds;

Ps
= 6 X 3.7854 X

(-|-)

2 X 7,500 = 19,880 pounds ;

PA*= 6 X
-5- X--J-

X 15,000 = 33,750 pounds.

Since P
8
is the least of these three values, the strength of the

joint depends on the shearing value of its rivets, and it equals

19,880 pounds.
2. Suppose that the plates described in the preceding example

are joined by means of a butt joint (two cover-plates), and 12

rivets are used, being spaced as before. What is the safe tension

which the joint can bear ?

Here n
l

==
3, n2

= 12, and n
3
= 6; hence, as in the preced-

ing example,

P
t
= 31,500; and Pc

= 33,750 pounds; but

P
s
= 12 X 0.7854 X

(-|-)

2 X 7,500 = S9,760 pounda

The strength equals 31,500 pounds, and the joint is stronger than

the first.

3. Suppose that in the preceding example the rivets are

arranged in rows of two. What is the tensile strength of the

joint ?

Here n
l

= 2. n
2 12, and n

3
== 6; hence, as in the preced-

ing example,

P
s
== 39,760; and Pc

= 33,750 pounds; but

P
t
=

(7 -|--2
X

-|-) ^- X 12,000 = 36,000 pounds.

The strength equals 33,750 pounds, and this joint is stronger than

either of the first two.
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EXAMPLES FOR PRACTICE.
Note. Use working strengths as in example 1, above.

St = 12,000, S8 = 7,500, and Sc = 15,000 pounds per square inch.

1. Two half-inch plates 5 inches wide are connected by a

lap joint, with two |-inch rivets in a row. "What is the safe

strength of the joint ?

Ans. 6,625 pounds.
2. Solve the preceding example supposing that four |-inch

rivets are used, in two rows.

Ans. 13,250 pounds.
3. Solve example 1 supposing that three 1-inch rivets are

used, placed in a row lengthwise of the joint.
Ans. 17,670 pounds.

4. Two half-inch plates 5 inches wide are connected by a

butt joint (two cover-plates), and four |-inch rivets are used, in

two rows. What is the strength of the joint ?

Ans. 11,250 pounds.
106. Efficiency of a Joint. The ratio of the strength of a

joint to that of the solid plate is called, the "
efficiency of the

joint." If ultimate strengths are used in computing the ratio,

then the efficiency is called ultimate efficiency; and if working

strengths are used, then it is called working efficiency. In the

following, we refer to the latter. An efficiency is sometimes ex-

pressed as a per cent. To express it thus, multiply the ratio

strength ofjoint --f- strength of solid plate, by 100.

Example. It is required to compute the efficiencies of the

joints described in the examples worked out in the preceding article.

In each case the plate is
-|
inch thick and 7J inches wide;

hence the tensile working strength of the solid plate is

7-L x _L x 12,000 = 45,000 pounds.

Therefore the efficiencies of the joints are :

(
2
)

= 0.70, or 70 per cent;
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