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PEEFAOE TO THE FIRST EDITION

IN the following pages the attempt is made to give a

presentation of the subject of the strength of materials,

beams, columns, and shafts, which may be understood

by those not acquainted with the calculus. The degree

of mathematical preparation required is merely that

now given in high schools, and includes only arithmetic,

algebra, geometry, and such a course in mechanics as

is found in elementary works on physics. In particular

the author has had in mind the students in the higher

classes of manual training schools, and it has been his

aim to present the subject in such an elementary manner

that it may be readily comprehended by them and at

the same time cover all the essential principles and

methods.

As the title implies the book deals mainly with ques-

tions of strength, the subject of elastic deformations

occupying a subordinate place. As the deductions of the

deflections of beams are best made by the calculus they

are not here attempted, but the results are stated so

that the student may learn their uses; later, if he con-

tinues the study of engineering, his appreciation of

the proofs that he will then read will be accompanied
with true scientific interest.

All the rules for the investigation and design of com-

mon beams, including the subject of moment of inertia,

are here presented by simple algebraic and geometric
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methods. As the mechanical ideas involved are by far

the most difficult part of the subject, a special effort has

been made to clearly present them, and to illustrate

them by numerous practical numerical examples.

A chapter on the manufacture and general properties

of materials is given, as also one on resilience and impact.

Problems for students to solve are presented, and it

should be strongly insisted upon that these should be

thoroughly and completely worked out. It is indeed

only by the solution of many numerical exercises that

a good knowledge of the theory of the subject can be

acquired.

1TOTE TO THE SIXTH EDITION

In the fifth edition a new chapter was added on rein-

forced concrete, especially columns and beams. In this

edition a new chapter on combined stresses is added,

numerous changes have been made throughout, and many
new problems introduced. The number of articles is

increased from 72 to 91, the number of cuts from 48 to

54, and the number of problems from 140 to 230. For

45 of the new problems my thanks are due to Professor

J. M. Jameson, of the Pratt Institute. It is hoped that

the volume in its new form may advance the cause of sound

technical education more effectively than before.

MANSFIELD MERRIMAN.
NEW YORK, JUNE, 1912.
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STRENGTH OF MATERIALS

CHAPTER 1

ELASTIC AND ULTIMATE STRENGTH

ART. 1. DIRECT STRESSES

A 'stress' is an internal resistance which balances an

exterior force. When a weight of 500 pounds is suspended

by a rope, a stress of 500 pounds exists in every cross-

section of the rope; or, if this rope is cut anywhere and

the ends are connected by a spring balance, this will

register 500 pounds. Stresses are measured in the same

units as forces, namely, in pounds, tons, or kilograms.

A 'unit-stress' is the stress on a unit of area; this is

expressed in pounds per square inch or in kilograms per

square centimeter. Thus, when a bar of three square

inches in cross-section is subject to a pull of 12 000 pounds,

the unit-stress is 4000 pounds per square inch for the

usual case when the total stress is uniformly distributed

over the cross-section.

Three kinds of direct stress are produced by exterior

forces which act on a body in such a way as to tend to

change its shape; these are,

Tension, tending to pull apart, as in a rope.

Compression, tending to push together, as in a wall or column.

Shear, tending to cut across, as in punching a plate.

The forces which produce these kinds of stress may be

called tensile, compressive, and shearing forces, while the

i 1



2 ELASTIC AND ULTIMATE STRENGTH CH. 1

stresses themselves are frequently called tensile, com-

pressive, and shearing stresses.

A stress is always accompanied by a 'deformation' or

change of shape of the body. As the applied force increases

the deformation and the stress likewise increase, and if

the force is large enough it finally overcomes the stress

and the rupture of the body follows.

Tension and compression differ only in regard to direc-

tion (Fig. 1). A tensile stress in a bar occurs when two

forces of equal intensity act upon its ends, each acting

Fig.l

away from the end of the bar. In compression the direc-

tion of the forces is reversed, each acting toward the end

of the bar. The tensile force produces a deformation

called 'elongation' and the compressive force produces

a deformation called 'shortening.' If P is the force in

pounds, then the total stress in every section of the bar

is equal to P.

Shear implies the action of two forces in parallel planes

and very near together, like the forces in a pair of shears,

from which analogy the name is derived. Thus, if a

bar is laid upon two supports and two loads, each P
pounds, are applied to it near the supports, there are hence

produced near each support two parallel forces which

tend to cut the bar across vertically (Fig. 2). In each

of these sections the shearing stress is equal to P. The

deformation caused by the shearing force P is a vertical

sliding between the upward and downward forces; and
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the bar will be cut across if the external shear overcomes

the internal stress.

In all cases of direct stress the total stress is supposed,

unless otherwise stated, to be uniformly distributed over

Fig. 2

the area of the cross-section; this area will be called the

'section area.' Thus if A is the section area and S the

unit-stress, then

P = AS, S =
j-, A=^ (1)

from which one of the quantities may be computed when

the other two are given. For example, it is known that a

wrought-iron bar will rupture under tension when the

unit-stress S becomes 50 000 pounds per square inch
;

if the area A is 4l
/2 square inches, then the tensile force

required to rupture the bar is P=4^X50 000 = 225 000

pounds.

Prob. 1 A. A cast-iron bar which is to be subjected to a tension

of 34 000 pounds is to be designed so that the unit-stress shall be

2500 pounds per square inch. What should be the section area in

square inches? If the bar is round, what should be its diameter?

I

Prob. IB. If a cast-iron bar, 1MX2J^ inches in section area,

breaks under a tension of 66 000 pounds, what tension will probably

break a bar 1J4 inches in diameter?

Prob. 1 C. What should be the size of a round bar of structural

steel to carry a tension of 200000 pounds with a unit-stress of

15 000 pounds per square inch?
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ART. 2. THE ELASTIC LIMIT

When a tensile force is gradually applied to a bar it

elongates, and up to a certain limit the elongation is

proportional to the force. Thus, if a bar of wrought iron

one square inch in section area and 100 inches long is

subjected to a tension of 5000 pounds, it will be found to

elongate 0.02 inches; if 10 000 pounds is applied, the

elongation will be 0.04 inches; for 15 000 pounds it will

be 0.06 inches, for 20 000 pounds 0.08 inches, for 25 000

pounds 0.10 inches. Thus far each addition of 5000

pounds has produced an elongation of 0.02 inches. But

when the next 5000 pounds is added, making a total

stress of 30 000 pounds, it will be found that the total

elongation is about 0.13 or 0.14 inches, and hence the

elongations are increasing more rapidly than the stresses.

The 'elastic limit' is defined to be that unit-stress at

which the deformations begin to increase in a faster ratio

than the stresses. In the above illustration this limit

is about 25 000 pounds per square inch, and this indeed

is the average value of the elastic limit for wrought iron.

The term 'elastic strength' is perhaps more expressive

than elastic limit, but the latter is the one in general use.

When the unit-stress in a bar is less than the elastic

limit the bar returns, when the stress is removed, to its

original length. When the unit-stress is greater than

the elastic limit, the bar does not fully spring back, but

there remains a so-called permanent set. In other words,

the elastic properties of a bar are injured if it is stressed

beyond the elastic limit. Hence it is a fundamental rule

in designing engineering constructions that the unit-



ART. 2 THE ELASTIC LIMIT

stresses in the members should never exceed the elastic

limit of the material.

The following are average values of the elastic limits

of the four materials most used in engineering construc-

tion under tensile and compressive stresses.

TABLE 1. ELASTIC LIMITS

Material
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mation rapidly increases, until finally the rupture of the

bar occurs. By the term 'ultimate strength' is meant

that unit-stress which occurs just before rupture, it being

the highest unit-stress that the bar will bear.

The ultimate strengths of materials are from two to

four times their elastic limits, but for some materials

they are much greater in compression than in tension.

The average values of the ultimate strengths will be given

in subsequent articles.

The 'factor of safety' is a number which results by

dividing the ultimate strength by the actual unit-stress

that exists in a bar. For example, a stick of timber,

6X6 inches in section area, whose ultimate strength in

tension is 10 000 pounds per square inch, is under a

tensile stress of 32 400 pounds. The unit-stress then is

32 400/36 = 900 pounds per square inch, and the factor

of safety is 10000/900=11. The factor of safety was

formerly much used in designing, but it is now considered

the better plan to judge of the security of a body under

stress by reference to its elastic limit. Thus in the above

case, as the unit-stress is only one-third the elastic limit

for timber, the degree of security may be regarded as

sufficient.

Prob. 3 A. A bar of wrought iron 2^ inches in diameter ruptures
under a tension of 271 000 pounds. What is its ultimate strength
in pounds per square inch?

Prob. 3 B. What should be the size of a round bar of structural

steel to carry a tension of 125 000 pounds with a factor of safety of 5?

Prob. 3 C. What force is required to rupture in tension a cast-

iron bar 8 inches in diameter, the ultimate tensile strength of cast

iron being 20 000 pounds per square inch?
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ART. 4. TENSION

When a bar is tested under tension, it is done by loads

which are gradually applied. The elongations increase

proportionally to the stresses until the elastic limit is

reached. After the unit-stress has exceeded the elastic

limit the elongations increase more rapidly than the

stresses, and a reduction in area of the cross-section of

the bar often occurs. Finally the ultimate strength of the

material is reached, and the bar tears apart.

A graphical illustration of these phenomena may be

made by laying off the unit-stresses as ordinates and

the elongations per unit of length as abscissas (Fig. 3) . At

Fig. 3

various intervals, as the test progresses, the applied loads

are observed and the resulting elongations are measured.

The loads divided by the section area give the unit-

stresses, while the total elongations divided by the length
of the bar give the unit-elongations. On the plot a point
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is made for the intersection of each unit-stress with its

corresponding unit-elongation, and a curve is drawn

connecting the several points for each material. In this

way curves are plotted showing the properties of each

material. It is seen that each curve is a straight line

from the origin until the elastic limit is reached, showing

that the elongations increase proportionally to the unit-

stresses. At the elastic limit a sudden change in the curve

is seen, and afterwards the elongation increases more

rapidly than the stress. The end of the curve indicates

the point of rupture. The curve for steel in the diagram
is for a quality much stronger than structural steel, this

being the kind mostly used in bridges and buildings.

The ultimate elongation is an index of the ductility

of the material, and is hence generally recorded for

wrought iron and steel; this is usually expressed as a

percentage of the total length of the bar, or it is 100

times the unit-elongation. The following table gives

mean values of the ultimate strengths and ultimate

elongations for the principal materials used in tension.

TABLE 2. TENSILE STRENGTHS

Material
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qualities of the material; for instance, poor timber may
be as low as 6000, while strong timber may be as high as

20 000 pounds per square inch in ultimate tensile strength.

The ultimate strengths given in the table should, how-

ever, be memorized by the student as a basis for future

knowledge, and they will be used for all the examples and

problems in this book, unless otherwise stated.

Prob. 4 A. What should be the diameter of a wrought-iron bar

so as to carry a tension of 200 000 pounds with a factor of safety

of 5? If the bar is cast iron, what should be its diameter? V-

Prob. 4 B. A bar of wrought iron one square inch in section area

and one yard long weighs 10 pounds. Find the length of a vertical

bar which ruptures under its own weight when hung at its upper end.

ART. 5. COMPRESSION

The phenomena of compression are similar to those of

tension provided that the elastic limit is not exceeded,

the shortening of the bar being

proportional to the applied |
p

force. After the elastic limit

is passed the shortening in-

creases more rapidly than the

stress. When the length of

the specimen is less than about

ten times its least thickness,

failure usually occurs by an

oblique splitting or shearing, j-f

as seen in Fig. 4. When the
Fig 4

length is large compared with

the thickness, failure usually occurs under a sidewise

bending, so that this is not a case of simple compression.

All the values given in the following table refer to the
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short specimens; longer pieces are called 'columns' or

'struts,' and these will be discussed in Chap. 5.

The mean values of the ultimate compressive strengths

of the principal materials are tabulated below. These are

subject to much variation in different qualities of the

materials, but it is necessary for the student to fix them

in his mind as a preliminary basis for more extended

knowledge. It is seen that timber is not quite as strong

in compression as in tension, that cast iron is V-2 tunes

as strong, that wrought iron and structural steel have the

same ultimate strength in tension and compression.

TABLE 3. COMPRESSIVE STRENGTHS

Material
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Prob. 5 B. A short cast-iron column is 12 inches in outside

diameter and 10 inches in inside diameter. Compute its factor of

safety when carrying a load of 165 000 pounds.

ART. 6. SHEAR

Shearing stresses exist when two forces acting like a

pair of shears tend to cut a body between them. When
a hole is punched in a plate, the ultimate shearing strength

of the material must be overcome. If two thin bars are

connected by a rivet and then are subjected to tension,

the cross-section of the rivet between the plates is brought

into shear. If a bolt is in tension, the forces acting on the

head tend to shear or strip it off.

The following table gives the average ultimate shearing

strength of different materials as determined by experi-

TABLE 4. SHEARING STRENGTHS

Material
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Wooden specimens for tensile tests like that shown

in Fig. 5 will fail by shearing off the ends if the length ab

is not sufficiently great. For instance, suppose ab to be

6 inches, and the diameter of the central part to be 2 inches.

Fig. 5

The ends are grasped tightly by the machine and the

cross-section of the central part thus brought under

tensile stress. The force required to cause rupture by
tension is

P = vl = 3.14Xl 2

AXlOOOO = 31 400 pounds.

But the ends also tend to shear off along the surface of

a cylinder whose diameter is 2 inches and whose length

is ab; the force required to cause rupture by shearing on

this surface is

P= ,4 /S= 3.14X2X6XGOO = 22 600 pounds.

and hence the specimen will fail by shearing off the ends.

To prevent this the distance ab must be made longer

than 6 inches.

Prob. 6 A. The beam in Fig. 2 is 3 X4 inches in section-area, and

P is 13 000 pounds. Compute the shearing unit-stress.

Prob. 6 B. A wrought-iron bolt 1 J^ inches in diameter has a head

1 J4 inches long. When a tension of 15 000 pounds is applied to the

bolt, find the tensile unit-stress and the factor of safety for tension.

Also find the unit-stress tending to shear off the head of the bolt,

and the factor of safety against shear.

ART. 7. WORKING UNIT-STRESSES

When a body of cross-section A is under a stress P,

the unit-stress S produced is found by dividing P by
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A. By comparing this value of S with the ultimate

strengths and elastic limits given in the preceding articles,

the degree of security may be inferred. This process is

called investigation. The student may not at first be able

to form a good judgment with regard to the degree of

security, this being a matter which involves some expe-

rience as well as acquaintance with engineering precedents

and practice. As his knowledge increases, however, his

ability to judge whether unit-stresses are or are not too

great will constantly improve.

When a body is to be designed to stand a total stress P,

the unit-stress S is first assumed in accordance with the

rules of practice, and then the section area A is computed.

Such assumed unit-stresses are often called working

unit-stresses, meaning that these are the unit-stresses

under which the material is to act or work. In selecting

them, two fundamental rules are to be kept in mind :

1. They should be considerably less than the elastic limits.

2. They should be smaller for sudden stresses than for steady

stresses.

The reason for the first requirement is given in Art. 2.

The reason for the second requirement is hat experience

teaches that suddenly-applied loads and shocks are more

injurious and produce higher unit-stresses than steady

loads. Thus a bridge subject to the traffic of heavy

trains must be designed with lower unit-stresses than a

roof where the variable load consists only of snow and

wind.

It will be best for the student to begin to form his

engineering judgment by fixing in mind the following

average values of the factors of safety to be used for
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different materials under different circumstances. The

working unit-stress will then be found for any special

TABLE 5. FACTORS OF SAFETY

Material
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Prob. 7 A. A wrought-iron rod is to be under a stress of 82 000

pounds. Find its diameter when it is to be used in a building^ and
also when it is to be used in a bridge.

Prob. 7 B. The total shear on each rivet of a lap-riveted joint

is 2000 pounds. If the rivet is Y% inches in diameter, find the factor

of safety against shearing.

ART. 8. REVIEW PROBLEMS

The following problems may serve to test the student

as to his knowledge of the preceding principles and

methods. In solving problems it is very desirable that

a neat and systematic method should be followed. The

practice of making computations with a pencil on loose

scraps of paper should be discontinued by every student

who has followed it, and he should hereafter solve his

problems in a special book, using pen and ink. Before

beginning the solution, a diagram should be drawn when-

ever possible, for a diagram helps the student to under-

stand the problem, and a problem thoroughly understood

is really half solved. Before beginning the computation
of a numerical problem, it is best to make a mental

estimate of the answer, for thus the engineering judge-

ment of the student will be developed. In Art. 54 will

be found a few answers, but the student should never

look there for an answer to a problem until he has com-

pleted its solution.

Prob. 8 A. During the tensile test of a steel bar % inches in

diameter the load at the elastic limit was found to be 17 600 pounds.
What was the elastic limit in pounds per square inch?

Prob. 8 B. The pull on the piston-rod of a steam engine is 25 000

pounds. If the diameter of the rod is 2J4 inches, compute the

factor of safety.

Prob. 8 C.
'

During the tensile test of a cast-iron bar 1 inch in
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diameter rupture occurred under a load of 18 000 pounds. What
was the tensile strength of the cast iron?

Prob. 8 D. In a test on a wooden specimen of shape shown in

Fig. 5 a load of 1000 pounds was placed. Diameter of specimen
was l^i inches, and length of head was 6 inches. Find the tensile

unit-stress and the shearing unit-stress.

Prob. 8 E. The piston of an engine is 12 inches in diameter, and

the diameter of the piston rod is 2J4 inches. The maximum steam

pressure is 120 pounds per sq. in. Find the tensile unit-stress on

the rod and the factor of safety.

Prob. 8 F. A wrought-iron bolt 1^ inches in diameter has a head

1 inch long. Find the unit-stress tending to shear off the head when
a tension of 3000 pounds is applied to the bolt.

Prob. 8 G. A pipe-rack in a shop is supported by four wrought-
iron rods, each 1 inch in diameter. The total load supported by
the rods is two long tons. Is the structure safe?

Prob. 8 H. A steel column is supported by a stone base. If the

total load on the base is 30 000 pounds, and the factor of safety

is to be 10, find the cross-section area of the stone.

Prob. 8 /. A steel tie rod in a roof truss is to sustain a load of

6000 pounds. Find the size of rod so that it shall have a factor of

safety of 8.

Prob. 8 K. The total load on a vertical shaft hanger is 2000

pounds. The hanger is held in place by means of two 1-inch bolts.

The length of head of each bolt is 1^ inches. Find the factor of

safety against shear and tension.

Prob. 8 L. A bridge carrying a total load of 320 000 pounds
rests on two stone abutments. The bridge rests on four cast-iron

bearing plates. Find the size of these plates so that the stone shall

have a factor of safety of ten.
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CHAPTER II

GENERAL PROPERTIES

ART. 9. AVERAGE WEIGHTS

The average weights of the six principal materials

used in engineering constructions are given in the following

table, together with their specific gravities. These are

subject to more or less variation, according to the quality

of the material. For instance, brick may weigh as low

TABLE 6. WEIGHT

Material
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A wrought-iron bar one square inch in section-area and one

yard long weighs ten pounds.

Timber is one-twelfth the weight of wrought iron.

Brick is one-fourth the weight of wrought iron.

Stone is one-third the weight of wrought iron.

Cast iron is six percent lighter than wrought iron.

Steel is two percent heavier than wrought iron.

For example, if a bar of wrought iron be 1^X3 inches

in section and 22 feet long, its section-area is 4% square

inches and its weight is 45X7% = 330 pounds. A steel

bar of the same dimensions will weigh 330+0.02X330 =

337 pounds, and a cast-iron bar will weigh 330 0.06X
330 = 310 pounds.

By reversing the above rules the section-areas are

readily found when the weights per linear yard are given.

Thus, if a stick of timber 15 feet long weighs 120 pounds,

its weight per yard is 24 pounds and its section-area is

2.4X12 = 28.8 square inches.

Prob. 9 A. What is the weight of a stone block 12X18 inches

and 4:^2 feet long? How many square inches in the cross-section

of a steel railroad rail which weighs 95 pounds per yard?

Prob. 9 B. If a cast-iron water pipe 12 feet long weighs 1000

pounds, what is its section-area? Find the diameter of a wrought-
iron bar which is 24 feet long and weighs 1344 pounds.

ART. 10. TESTING MACHINES

The simplest method of testing is by tension, a speci-

men being used like that shown in Art. 6. The heads

are either gripped in jaws, or they are provided with

threads so that they may be screwed into nuts to which

the forces are applied. The power may be furnished

by a lever, a screw, or by hydraulic pressure, the last
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being the method in machines of high capacity. In these

tests the elastic limit, ultimate strength, and the ultimate

elongation are generally recorded, the latter being ex-

pressed as a percentage of the original length. For ductile

materials the contraction of area of the fractured speci-

men is also noted, as this does not vary with the length

of the specimen to the same extent as the ultimate elonga-

tion. In such tensile tests the load is applied gradually,

and not suddenly or with impact.

The elastic limit is detected by taking a number of

measurements of the elongation for different loads, and

then noting when these begin to vary more rapidly than

the stresses. For ductile materials the change is a sudden

one, and it may be often noted by the drop of the scale

beam of the machine.

Compressive tests are confined mainly to brick and

stone, and are but little used for commercial tests of

metals on account of the difficulty of securing a uniform

distribution of pressure over the surfaces. Cement,
which is always used in compression, is indeed usually

tested by tension, this being found to be the cheaper and

more satisfactory method.

The capacity of a testing machine is the number of

pounds it can exert as tension or compression. A small

machine for testing wire or cement need not have a

capacity greater than 1000 or 2000 pounds. Machines

of 50 000, 100 000, and 150 000 pounds for testing metals

are common. The Watertown machine has a capacity of

800 000 pounds, and can test a small hair or a steel bar

of 10 square inches section-area with equal precision.

A list of the fourteen largest testing machines in the
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United States is given in American Civil Engineers'

Pocket Book (New York, 1912).

Fig. 6 shows an Olsen screw testing machine of 40 000

pounds capacity. The power is applied by hand by means

of the crank on the left, and this causes the four vertical

Fig. 6

screws to have a slow upward or downward movement.

The upper ends of the screws are fastened to a table A,
which hence partakes of the vertical motion. When a

tensile test is to be made, one end of the specimen is

gripped by jaws in the movable table A, and the other

end by jaws in the upper fixed table B; in the figure

a tensile specimen is seen in this position. The crank is

then turned so as to cause the vertical screws and the

movable table to descend, and thus a stress is brought
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upon the specimen. For a compressive test the specimen

is placed between the lower fixed table C and the movable

table A, the latter being caused to descend by turning

the crank as before. The load applied to the specimen

at any instant is weighed on the lever scale at the right

by moving the weight D so that the scale arm will balance.

Machines of greater capacity than 40000 pounds are

usually operated by power, which is transmitted from

a motor to a pulley on the shaft of the machine.

Tests are also made by loading beams transversely and

measuring the deflections, as well as finding the load

required to produce rupture. The machine shown in

Fig. 6 can be used for flexural tests of short beams by

placing two supports on the lower fixed table, while for

long beams a special attachment can be made to this

table. In both cases the load is applied by lowering the

movable table.

Prob. 10 A. What is the diameter of the largest bar of structural

steel which can be tested in a machine of 100 000 pounds capacity?

Prob. 10 B. A steel eye-bar tested at Phcenixville was 10X2^
inches in size and 47 feet long. The length after rupture was 57.6

feet, and the area of the fractured cross-section was 13.0 square
inches. Compute the percentage of ultimate elongation and the

percentage of reduction of area.

ART. 11. TIMBER

Good timber is of uniform color and texture, free from

knots, sap wood, wind shakes, and decay. It should be

well seasoned, which is best done by exposing it to the

sun and wind for two or three years to dry out the sap.

The heaviest timber is usually the strongest; also the

darker the color and the closer the annular rings, the
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stronger and better it is, other things being equal. The

strength of timber is always greatest in the direction of

the grain, the sidewise resistance to tension or compression

being scarcely one-fourth of the longitudinal.

The following table which gives average values of the

ultimate strength of a few of the common kinds of timber

will be useful for reference. These values have been

determined from tests of small specimens carefully

selected and dried. Large pieces of timber such as are

TABLE 7. STRENGTH OF TIMBER

Kind
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and 600 respectively, yellow pine and oak perhaps 4000

and 600 respectively.

The elastic limit of timber is poorly defined. In precise

tests on good specimens it is sometimes observed at

about one-half the ultimate strength, but under ordinary

conditions it is safer to put it at one-third. The ultimate

elongation is small, usually being between 1 and 2 per

cent.

Prob. 11 A. What should be the size of a short piece of yellow

pine which is to carry a steady load of 80 000 pounds?

Prob. 11 B. If a piece of white cedar 2X2 inches in cross-section

ruptures under a compression of 20 800 pounds, what is the size of

a square section that will stand 25 000 pounds with a factor of

safety of 10 ?

ART. 12. BRICK

Brick is made of clay which consists mainly of silicate

of alumina with compounds of lime, magnesia, and iron.

The clay is prepared by cleaning it carefully from pebbles

and sand, mixing it with about one-half its volume of

water, and tempering it by hand stirring or in a pug mill.

It is then moulded in rectangular boxes by hand or by
special machines, and the green bricks are placed under

open sheds to dry. These are piled in a kiln and heated

for nearly two weeks until those nearest to the fuel

assume a partially vitrified appearance.

Three qualities of brick are taken from the kiln; 'arch-

brick' are those from around the arches where the fuel

is burned, these are hard and often brittle; 'body-brick,'

from the interior of the kiln, are of the best quality;

'soft brick,' from the exterior of the pile, are weak and

only suitable for filling. Paving brick are burned in
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special kilns, often by natural gas or by oil, the rate of

heating being such as to insure toughness and hardness.

The common size is 2X4X81
/i inches, and the average

weight 4% pounds. A pressed brick, however, may weigh

nearly 5% pounds. Good bricks should be of regular

shape, have parallel and plane faces, with sharp angles

and edges. They should be of uniform texture, and when

struck a quick blow should give a sharp, metallic ring.

The heavier the brick, other things being equal, the

stronger and better it is.

Poor brick will absorb when dry from 20 to 30 per

cent of its weight of water, ordinary qualities absorb

from 10 to 20 per cent, while hard paving brick should

not absorb more than 2 or 3 per cent. An absorption

test is valuable in measuring the capacity of brick to

resist the disintegrating action of frost, and as a rough

general rule, the greater the amount of water absorbed

the less is the strength and durability.

The crushing strength of brick is variable; while a

mean value may be 3000 pounds per square inch, soft

brick will scarcely stand 500, pressed brick may run to

10 000, and the best qualities of paving brick have given

15 000 pounds per square inch, or even more. Crushing
tests are usually made on whole or half-bricks and are

hence lacking in precision, since opposite surfaces are

rarely truly parallel. Tensile and shearing tests of

bricks are rarely made, and but little is known of their

behavior under such stresses; the ultimate tensile strength

may perhaps range from 50 to 500 pounds per square inch.

Prob. 12 A. Compute the unit-stress at the base of a brick wall

17 inches thick and 55 feet high. What is the factor of safety?
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Prob. 12 B. A brick weighs 4.42 pounds when dry and 4.75

pounds after immersion for one day in water. What percentage of

water has it absorbed? 1 d ^
ART. 13. STONE

Sandstone, as its name implies, is sand, usually quartzite,

which has been consolidated under heat and pressure.

It varies much in color, strength, and durability, but

many varieties form most valuable building material.

In general it is easy to cut and dress, but the variety

known as Potsdam sandstone is very hard in some

localities.

Limestone is formed by consolidated marine shells,

and is of diverse quality. Marble is limestone which

has been reworked by the forces of nature so as to expel

the impurities, and leave a nearly pure carbonate of lime;

it takes a high polish, is easily cut, and makes one of the

most beautiful building stones.

Granite is a rock of aqueous origin metamorphosed
under heat and pressure; its composition is quartz, feld-

spar, and mica, but in the variety called gneiss the mica

is replaced by hornblende. It is fairly easy to work,

usually strong and durable, and some varieties will take

a high polish.

Trap, or basalt, is 'an igneous rock without cleavage.

It is hard and tough, and less suitable for building con-

structions than other rocks, as large blocks cannot be

readily obtained and cut to size. It has, however, a high

strength, and is remarkable for durability.

The average weight of sandstone is about 150, of

limestone 160, of granite 165, and of trap 175 pounds

per cubic foot. The ultimate compressive strength of



26 GENERAL PROPERTIES Cfl. 2

sandstone is about 5000, of limestone 7000, of granite

12 000, and of trap 16 000 pounds per square inch; these

figures refer to small blocks, but the ultimate strength of

large blocks is materially smaller.

The quality of a building stone cannot be safely inferred

from tests of strength, as its durability depends largely

upon its capacity to resist the action of the weather.

Hence corrosion and freezing tests, impact tests, and

observations of the behavior of stone under conditions

of actual use are more important than the determination

of crushing strength in a compression machine.

Prob. 13 A. Find the weight of a granite column 18 feet high

and 18 inches in diameter.

Prob. 13 B. A stone pier 12X30 feet at the base, 8X24 feet at

the top, and 16^ feet high is to be built at $6.37 per cubic yard.

What is the total cost?

ART. 14. CAST IRON

Cast iron is a modern product, having been first made

in England about the beginning of the fifteenth century.

Ores of iron are melted in a blast furnace, producing

pig iron. The pig iron is remelted in a cupola furnace

and poured into moulds, thus forming castings. Beams,

columns, pipes, braces, and blocks of every shape required

in engineering structures are thus produced.

Pig iron is divided into two classes, foundry pig and

forge pig, the former being used for castings and the latter

for making wrought iron. Foundry pig has a dark-gray

fracture, with large crystals and a metallic luster; forge

pig has a light-gray or silver-white fracture, with small

crystals. Foundry pig has a specific gravity of from 7.1
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to 7.2, and it contains from 6 to 4 per cent of carbon;

forge pig has a specific gravity of from 7.2 to 7.4, and it

contains from 4 to 2 per cent of carbon. The higher the

percentage of carbon the less is the specific gravity, and

the easier it is to melt the pig. Besides the carbon there

are present from 1 to 5 per cent of other impurities, such

as silicon, manganese, and phosphorus.

The properties and strength of castings depend upon
the quality of the ores and the method of their manu-

facture in both the blast and the cupola furnace. Cold

blast pig produces stronger iron than the hot blast, but

it is more expensive. Long continued fusion improves the

quality of the product, as also do repeated meltings.

The darkest grades of foundry pig make the smoothest

castings, but they are apt to be brittle; the light-gray

grades make tough castings, but they are apt to contain

blow holes or imperfections.

The percentage of carbon in cast iron is a controlling

factor which governs its strength, particularly that

percentage which is chemically combined with the iron.

As average values for the ultimate strength of cast iron,

20 000 and 90 000 pounds per square inch in tension and

compression respectively are good figures. In any par-

ticular case, however, a variation of from 10 to 20 per

cent from these values may be expected, owing to the great

variation in quality. The elastic limit is poorly defined,

there being no sudden increase in deformation, as in

ductile materials.

The high compressive strength and cheapness of cast

iron render it a valuable material for many purposes;

but its brittleness, low tensile strength, and low ductility
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forbid its use in structures subject to variations of load

or to shocks. Its ultimate elongation being scarcely

one per cent, the work required to cause rupture in

tension is small compared to that for wrought iron and

steel, and hence as a structural material the use of cast

iron must be confined entirely to cases of compression.

Prob. 14 A. A cast-iron bar weighing 31 pounds per linear yard
is to be subjected to tension. How many pounds are required to

rupture it?

Prob. 14 B. What must be the capacity of a testing machine

to break a cast-iron block 2 inches square?

ART. 15. WROUGHT IRON

The ancient peoples of Europe and Asia were acquainted

with wrought iron and steel to a limited extent. It is

mentioned in Genesis, iv, 22, and in one of the oldest

pyramids of Egypt a piece of iron has been found. It

was produced, probably, by the action of a hot fire on

very pure ore. The ancient Britons built bloomaries

on the tops of high hills, a tunnel opening toward the

north furnishing a draft for the fire, which caused the

carbon and other impurities to be expelled from the ore,

leaving behind nearly pure metallic iron.

Modern methods of manufacturing wrought iron are

mainly by the use of forge pig (Art. 14), the one most

extensively used being the puddling process. Here the

forge pig is subjected to the oxidizing flame of a blast

in a reverberatory furnace, where it is formed into pasty

balls by the puddler. A ball taken from the furnace

is run through a squeezer to expel the cinder and then

rolled into a muck bar. The muck bars are cut, laid in
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piles, heated, and rolled, forming what is called merchant

bar. If this is cut, piled, and rolled again, a better prod-

uct, called best iron, is produced. A third rolling gives

'best best' iron, a superior quality, but high in price.

Tlie product of the rolling-mill is bar iron, plate iron,

shape iron, beams, and rails. Bar iron is round, square,

and rectangular in section; plate iron is from J4 to 1 inch

thick, and of varying widths and lengths; shape iron

includes angles, tees, channels, and other forms used in

structural work; beams are I-shaped, and of the deck or

rail form. Structural shapes and beams are, however,

now almost entirely rolled in mild steel.

Wrought iron is metallic iron containing less than 0.25

per cent of carbon, and which has been manufactured

without fusion. Its tensile and compressive strengths

are closely equal, and range from 50 000 to 60 000 pounds

per square inch. The elastic limit is well defined at about

25 000 pounds per square inch, and within that limit the

law of proportionality of stress to deformation is strictly

observed. It is tough and ductile, having an ultimate

elongation of from 20 to 30 per cent. It is malleable,

can be forged and welded, and has a high capacity to

withstand the action of shocks. It cannot, however, be

tempered so as to be used for cutting tools.

The cold-bend test for wrought iron is an important
one for judging of general quality. A bar perhaps

3/iX%
inches and 15 inches long is bent when cold either by

pressure or by blows of a hammer. Bridge iron should

bend through an angle of 90 degrees to a curve whose

radius is twice the thickness of the bar, without cracking.

Rivet iron should bend through 180 degrees until the
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sides of the bar are in contact, without showing signs of

fracture. Wrought iron that breaks under this test is

lacking in both strength and ductility.

The process of manufacture, as well as the quality of

the pig iron, influences the strength of wrought iron. The

higher the percentage of carbon the greater is the strength.

Best iron is 10 per cent stronger than ordinary merchant

iron owing to the influence of the second rolling. Cold

rolling causes a marked increase in elastic limit and

ultimate strength, but a decrease in ductility or ultimate

elongation. Annealing lowers the ultimate strength, but

increases the elongation. Iron wire, owing to the process

of drawing, has a high tensile strength, sometimes greater

than 100 000 pounds per square inch.

Good wrought iron when broken by tension shows a

fibrous structure. If, however, it is subject to shocks

or to repeated stresses which exceed the elastic limit,

the molecular structure becomes changed so that the

fracture is more or less crystalline. The effect of a stress

slightly exceeding the elastic limit is to cause a small

permanent set, but the elastic limit will be found to be

higher than before. This is decidedly injurious to the

quality of the material on account of the accompanying

change in structure, and hence it is a fundamental prin-

ciple that the working unit-stresses should not exceed

the elastic limit. For proper security indeed the allowable

unit-stress should seldom be greater than one-half the

elastic limit.

In a rough general way the quality of wrought iron

may be estimated by the product of its tensile strength

and ultimate elongation, this product being an approx-
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imate measure of the work required to produce rupture.

Thus high tensile strength is not usually a good quality

when accompanied by a low elongation.

Prob. 15 A. What should be the length of a wrought-iron bar,

so that, when hung at its upper end, it will rupture there under the

stress produced by its own weight?

Prob. 15 B. What is the section-area of a bar of wrought iron

which weighs 10 pounds per linear foot.

ART. 16. STEEL

Steel was originally produced directly from pure iron

ore by the action of a hot fire, which did not remove

the carbon to a sufficient extent to form wrought iron.

The modern processes, however, involve the fusion of the

ore, and the definition of the United States law is that

steel is iron produced by fusion by any process, and

which is malleable." Chemically, steel is a compound
of iron and carbon generally intermediate in composition

between cast and wrought iron, but having a higher

specific gravity than either. The following comparison

points out the distinctive differences between the three

kinds of iron:

Per cent of Carbon Spec. Grav. Properties

Cast Iron 5 to 2 7.2 Fusible, not malleable.

Steel 1.50 to 0.10 7.8 Fusible and malleable.

Wrought Iron.. 0.30 to 0.05 7.7 Malleable, not fusible.

It should be observed that the percentage of carbon

alone is not sufficient to distinguish steel from wrought

iron; also, that the mean values of specific gravity stated

are in each case subject to considerable variation.

The three principal methods of manufacture are the
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crucible process, the open-hearth process, and the Bessemer

process. In the crucible process impure wrought iron

or blister steel, with carbon and a flux, are fused in a sealed

vessel to which air cannot obtain access; the best tool-

steels are thus made. In the open-hearth process pig iron

is melted in a Siemens furnace, wrought-iron scrap being

added until the proper degree of carbonization is secured.

In the Bessemer process pig iron is completely decar-

bonized in a converter by an air blast and then recarbon-

ized to the proper degree by the addition of spiegeleisen.

The metal from the open-hearth furnace or from the

Bessemer converter is cast into ingots, which are rolled in

mills to the required forms. The open-hearth process

produces steel for guns, armor plates, machinery, shafts,

and for structural purposes ;
the Bessemer process

mainly produces steel for railroad rails.

The physical properties of steel depend both upon the

method of manufacture and upon the chemical composi-

tion, the carbon having the controlling influence upon

strength. Manganese promotes malleability and silicon

increases the hardness, while phosphorus and sulphur tend

to cause brittleness. The higher the percentage of carbon

within reasonable limits the greater is the ultimate

strength and the less the elongation.

A classification of steel according to the percentage

of carbon and its physical properties of tempering and

welding is as follows:

Extra hard, 1.00 to 0.60% C., takes high temper, but not weldable.

Hard, 0.70 to 0.40% C., temperable, welded with difficulty.

Medium, 0.50 to 0.20% C., poor temper, but weldable.

Mild, 0.40 to 0.05% C., not temperable, but easily welded.

It is seen that these classes overlap so that there are no
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distinct lines of demarcation. The extra-hard steels are

used for tools, the hard steels for piston-rods and other

parts of machines, the medium steels for rails, tires, and

beams, and the mild or soft steels for rivets, plates, and

other purposes.

The structural steel used in bridges and buildings

has an ultimate tensile strength of from 60 000 to 70 000

pounds per square inch, with an elastic limit from 30 000

to 40 000 pounds per square inch. The hard and extra-

hard steels are much higher in strength. By the use of

nickel as an alloy steel has been made with an ultimate

tensile strength of 277 000 and an elastic limit of over

100 000 pounds per square inch.

The compressive strength of steel is always higher

than the tensile strength. The maximum value recorded

for hardened steel is 392 000 pounds per square inch.

The expense of commercial tests of compression is, how-

ever, so great that they are seldom made. The shearing

strength is about three-fourths of the tensile strength.

Steel castings are extensively used for axle-boxes,

cross-heads, and joints in structural work. They contain

from 0.25 to 0.50 per cent of carbon, ranging in tensile

strength from 60 000 to 100 000 pounds per square inch.

Steel has entirely supplanted wrought iron for railroad

rails, and largely so for structural purposes. Its price

being the same, its strength greater, its structure more

homogeneous, the low and medium varieties are coming
more and more into use as a satisfactory and reliable

material for large classes of engineering constructions.

Prob. 16 A. If steel costs 3 cents per pound and nickel costs

3
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35 cents per pound, what is the minimum cost of a pound of nickel

steel which contains 3.25 per cent of nickel?

Prob. 16 B. A short steel piston-rod is to be designed to be used

with a piston which is 20 inches in diameter and subject to a steam-

pressure of 150 pounds per square inch. If the ultimate strength

of the steel is 90 000 pounds per square inch, what should be its

diameter, allowing a factor of safety of 15?

ART. 17. OTHER MATERIALS

Common mortar is composed of one part of lime to

five parts of sand by measure. When six months old its

tensile strength is from 15 to 30, and its compressive

strength from 150 to 300 pounds per square inch. Its

strength slowly increases with age, and it may be con-

siderably increased by using a smaller proportion of sand.

Hydraulic mortar is composed of hydraulic cement

and sand in varying proportions. The less the proportion

of sand the greater is its strength. A common pro-

portion is 3 parts sand to 1 of cement, the strength of this

being about one-fourth of the neat cement. The natural

cements are of lighter color, lower weight, and lesser

strength than the Portland cement, but they are quicker

in setting and cheaper in price. When one week old,

neat natural cement has a tensile strength of about 125

and Portland cement about 300 pounds per square inch;

when one year old the tensile strengths are about 300

and 500 pounds per square inch respectively. The com-

pressive strength is from 8 to 10 times the tensile strength,

and it increases more rapidly with age.

Concrete, composed of hydraulic mortar and broken

stone, is an ancient material, having been extensively

used by the Romans. It is mainly employed for founda-
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tions and monolithic structures, but in some cases large

blocks have been made which are laid together like

masonry. Like mortar, its strength increases with age.

When six months old its mean compressive strength

ranges from 1000 to 3000 pounds- per square inch, and

when one year old it is probably about fifty per cent

greater.

Ropes are made of hemp, of manila, and of iron or

steel wire with a hemp center. A hemp rope one inch

in diameter has an ultimate strength of about 6000

pounds, and its safe working strength is about 800 pounds.

A manila rope is slightly stronger. Iron and steel ropes

one inch in diameter have ultimate strengths of about

36 000 and 50 000 pounds respectively, the safe working

strengths being 6000 and 8000 pounds. As a fair rough

rule, the strength of ropes may be said to increase as the

squares of their diameters.

Aluminum is a silver-gray metal which is malleable

and ductile and not liable to corrode. Its specific gravity

is about 2.65, so that it weighs only 168 pounds per cubic

foot. Its ultimate tensile strength is about 25 000 pounds

per square inch, and its ultimate elongation is also low.

Alloys of aluminum and copper have been made with a

tensile strength and elongation exceeding those of wrought

iron, but have not come into use as structural materials.

Prob. 17 A Ascertain the weight of lead and brass per cubic foot,

and their ultimate tensile strengths.

Prob. 17 B. A bar of aluminum copper, 1%X1% inches in sec-

tion, breaks under a tension of 42 800 pounds. What tension will

probably bieak a bar of the same material which is 1^X2^ inches

in section?
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ART. 18. REVIEW PROBLEMS

Prob. ISA Compute the weight of a cast-iron water-pipe
12 feet long, and 20 inches inside diameter, the thickness of the

metal being 1 inch.

Prob. 18 B. A wrought-iron bar, 1 inch in diameter and 30 feet

long, is hung at its upper end. What load applied at the lower end

will stress it to the elastic limit?

Prob. 18 C. Find the weight of a wooden girder 10X12 inches in

cross-section and 16 feet long.

Prob. 18 D. A cast-iron column is 20 feet long. Inside diameter

of column is 8 and outside diameter is 10 inches. Find the weight
of this column.

Prob. 18 E. During a tension test on a steel bar 0.8 inches in

diameter the following data were obtained: Maximum load on

specimen 30 000 pounds, load at elastic limit 23 000 pounds,

original length of part tested, 8 inches, final length of part tested

1034 inches, diameter at break 0.32 inches. Find the ultimate

strength, elastic limit, percent elongation, and percent reduction

of area.

Prob. 18 F. A circular brick stack is 30 feet high, its outside diam-

eter being 8 feet and inside diameter 5 feet. Find total weight of

stack. What is the unit-stress at the base of the stack?

Prob. 18 G. A cylinder head is held in place by six /'s-inch

studs. The diameter of the cylinder is 8 inches and the maximum
steam pressure is 200 pounds per square inch. Find the unit tensile

stress at root of threads if the diameter of stud at root of thread

is 0.507 inches.

Prob. 18 H. A table with four legs carries a load of 1000 pounds

uniformly spread over it. When the table weighs 85 pounds and

each leg is 1% inch in diameter, what is the unit-stress in the legs?

Prob. 18 /. The pull upon a IJ^-inch bolt passing through a

yellow pine girder is 30 000 pounds. What size of washer must

be used so that the unit-stress on the pine shall not exceed 1000

pounds per square inch?
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CHAPTER 3

MOMENTS FOR BEAMS

ART. 19. THE PRINCIPLE OF MOMENTS

The moment of a force with respect to a point is a

quantity which measures the tendency of the force to

cause rotation about that point. The moment is the

product of the force by the length of its lever-arm, the

lever-arm being a line drawn from the point perpen-

dicular to the direction of the force. Thus if P in Fig. 7

is any force and p the length of a perpendicular drawn to it

from any point, the product Pp is the moment of the

force with respect to that point. As P is in pounds

and p is in feet or inches, the moment is a compound

quantity which is called pound-feet or pound-inches.

The most important principle in mechanics is the

principle of moments. This asserts that if any number

of forces in the same plane be in equilibrium, the algebraic

sum of their moments about any point in that plane is

equal to zero. This principle results from the meaning
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of the word equilibrium, which implies that the body

on which the forces act is at rest; and since it is at rest

the forces taken collectively have no tendency to turn it

around any point. All experience teaches that the prin-

ciple of moments is, indeed, a law of nature whose truth

is universal.

The point from which the lever-arms are measured
'

is often called the 'center of moments.' Forces which

tend to turn around this center in the direction of motion

of the hands of a watch have positive moments, and those

which tend to turn in the opposite direction have negative

moments. Thus, in Fig. 7, the numerical values of Pp
and Pipi are negative, while that of P^PZ is positive. If

the forces are in equilibrium, the sum Pp+Ptfi has the

same numerical value as Pipi, or the algebraic sum of the

three moments is zero; this will be the case wherever the

center of moments is taken.

In all investigations regarding the strength of beams,

the principle of moments is of constant application. A
beam is a body held in equilibrium by the downward

loads and the upward pressures of the supports. As the

beam is at rest these forces are in equilibrium, and the

algebraic sum of their moments is zero about any point

in the plane. Moreover, by further use of the principle

of moments the stresses in all parts of the beam due to

the given loads may be determined.

Prob. 19 A. A lever is 5 feet long and the fulcrum is placed 3

inches from one end. What force will be required at the longer end

to lift 1000 pounds at the shorter end?

Prob. 19 B. In the above figure, the three forces are in equilib-

rium, Pi being 500 pounds, P% being 866 pounds, and the lever-arms

being p = 1.5 feet, pi=3.5 feet, p2
= 5.1 feet. Show that the force

P is 4111 pounds.
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ART. 20. REACTIONS OF SUPPORTS

Let a simple beam resting on two supports near its

ends be subject to a load P situated at 6 feet from the

left support, and let the span be 24 feet (Fig. 8). Taking
the center of moments at the right support, the lever-arm

of Ri is 24 feet, that of P is 18 feet, and that of R-2 is

pi f|

Fig. 8

0; then by the application of the principle of moments

fl!X24-PX18 = 0, or RV
= %P. Again, taking the center

of moments at the left support the lever-arm of Ri is 0,

that of P is 6 feet, and that of R2 is 24 feet; then likewise

from the principle of moments -R2X24+PX6 = 0, or

Rz = ViP. The sum of these two reactions is equal to P,

as should of course be the case.

The reactions caused by the weight of the beam itself

may be found in a similar manner, the uniform load

being supposed concentrated at its center of gravity in

stating the equations of moments. Thus, if the weight of

the beam be W, the two equations of moment are found

to be B 1 X24-TTX.12 = 0, and -#2X24+TFX12 = 0,

from which R, =^W and RZ
=V2W.

The reactions due to both uniform and concentrated

loads on a simple beam may also be computed in one

operation. As an example, let there be a simple beam
12 feet long between the supports and weighing 35 pounds

per linear foot, its total weight being 420 pounds (Fig. 9).
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Let there be three loads of 300, 60, and 150 pounds, placed

3, 5, and 8 feet respectively from the left support. To

find the left reaction Ri, the center of moments is taken

, a|
601 1501

H---S--*fr-g-fr S -*$
---4--

"T

Fig. 9

at the right support and the weight of the beam regarded

as concentrated at its middle; then the equation of

moments is

fl 1X!2-420X6-300X9-GOX7-150X4 =

from which Ri = 520 pounds. In like manner, to find R2

the center of moments is taken at the left support; then

-#2 X12+420X6+300X3+GOX5+150X8 =

from which .R2 = 410 pounds. As a check the sum of

Ri and R% is found to be 930 pounds, which equals the

weight of the beam and the three loads.

By means of the principle of moments other prob-

lems relating to reactions of beams may also be solved.

For instance, if a simple beam 12 feet long weighs 30

pounds per linear foot and carries a load of 600 pounds,

where should this load be put so that the left reaction

may be twice as great as the right reaction? Here let

x be the distance from the left support to the load; let

RI be the left reaction and R2 the right reaction. Then

taking the centers of moments at the right and left sup-

port in succession there are found

R1= 180+50 (12 -x), fl2 =180+50z

and placing Ri equal to 2R2 there results x= 2.8 feet.
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Prob. 20 A. A beam weighing 30 pounds per linear foot rests

upon two supports 16 feet apart. A weight of 400 pounds is placed

at 5 feet from the left end, and one of 600 pounds is placed at 8 feet

from the right end. Find the reactions due to the total load.

Prob. 20 B. A wooden girder, 8X10 inches in section-area and

18 feet between supports, carries a uniformly distributed load of

500 pounds per linear foot for a distance of 8 feet from the left end.

The remaining 10 feet carry a uniformly distributed load of 700

pounds per linear foot. Find the reactions at the supports.

ART. 21. BENDING MOMENTS

The 'bending moment' at any section of a beam is the

algebraic sum of the moments of all the vertical forces

on the left of that section. It is a measure of the tendency

of those forces to cause rotation around that point. At

the ends of a simple beam there are no bending moments,
but at all other sections they exist, and the greater the

bending moment the greater are the horizontal stresses

in the beam, these stresses in fact being produced by the

bending moment.

For example, let a beam 30 feet long have three loads

of 100 pounds each, situated at distances of 8, 12, and 22

feet from the left support (Fig. 10). By the method of

Fig. 10

the previous article the left reaction Ri is 160 pounds
and the right reaction Rz is 140 pounds. For a section

4 feet from the left support the bending moment is 160X4
= 640 pound-feet, and for a section at 8 feet from the
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left support the bending moment is 160X8= 1280 pound-
feet. For a section 10 feet from the left support there

are two vertical forces on the left of the section, 160

acting up and 100 acting down, so that the bending

moment is 160X10-100X2-1400 pound-feet. For a

section at the middle of the beam the bending moment is

160X 15- 100X 7- 100X 3 = 1400 pound-feet. For a sec-

tion under the third load the bending moment is, in like

manner, 1120 pound-feet, and for a section at 3 feet from

the right support it is 420 pound-feet. The vertical

ordinates underneath the beam represent the values of

these bending moments, and the diagram thus formed

shows how the bending moments vary throughout the

length of the beam.

For a simple beam of span I and uniformly loaded with

w pounds per linear unit, each reaction is Vzwl. For any
section distant x from the left support (Fig. 11), the

bending moment is */<>wlXx wxXVix, where the lever-

Fig. 11

arm of the reaction is x and the lever-arm of the load

wx is Vsx. If w is 80 pounds per linear foot and I is 30

feet, the bending moment at any section is then 1200z

40z2
. For 3=10 feet, the bending moment is 8000

pound-feet; for a; =15 feet it is 9000 pound-feet; for

x 20 feet it is 8000 pound-feet, and so on. The diagram
shows the distributions of moments throughout the
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beam, and it can be demonstrated that the curve joining

the ends of the ordinates is the common parabola.

When a beam is loaded both uniformly and with con-

centrated loads, the bending moments for all sections

may be found in a similar manner. The maximum

bending moment indicates the point where the beam is

under the greatest horizontal stresses; this will usually

be found near the middle of the beam and often under

one of the concentrated loads. For simple beams resting

on two supports at their ends all the bending moments are

positive. It may further be noted that if the vertical

forces on the right of the section be used, the same numer-

ical values will be found for the bending moments.

Prob. 21 A. Two locomotive wheels, six feet apart and each

weighing 20 000 pounds, roll over a beam of 27 feet span. Find the

greatest reaction which can be caused by these wheels.

Prob. 21 B. A simple beam of 12 feet span weighs 60 pounds

per linear foot, and has a load of 150 pounds at 8 feet from the

left end. Compute the bending moments for sections distant 2,

4, 6, 8, 10 feet from the left support, and construct the diagram of

bending moments.

ART. 22. RESISTING MOMENTS

Suppose a simple beam to be cut by an imaginary,

vertical plane MN and the portion on the right of that

plane to be removed (Fig. 12) . In order that the remaining

part may be in equilibrium, forces must be applied to

the section; in the figure horizontal forces are shown,
and these represent the horizontal stresses in the section.

The reaction and loads on the left of MN together with

the stresses acting on that section constitute a system of

forces in equilibrium. The algebraic sum of the moments
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of the reaction and loads with respect to the point D
is the bending moment for the section MN, the value of

which may be found by the methods of the last article.

This bending moment tends to turn the beam in a clock-

?"



ART. 22 RESISTING MOMENTS 45

It is also found by experiment that the horizontal

stresses in any section increase uniformly from the neutral

axis to the top and bottom of the beam, provided the

elastic limit of the material is not exceeded. Thus, if S
is the horizontal unit-stress at the upper or lower side

of the beam in Fig. 11, the unit-stress halfway between

that side and the neutral axis is %S. Also, let c be the

distance from the neutral axis to the upper or lower side

of the beam, and z be any distance less than c, then the

horizontal unit-stress at the distance z is S(z/c).

'Resisting Moment' is the term used to denote the

algebraic sum of the moments of all the horizontal

stresses in a section with respect to its neutral axis. Let a

(Fig. 12) be any small elementary area of the section at a

distance z from the neutral axis. The unit-stress on this

small area is S(z/c) and hence the total stress on it is

aS(z/c). The moment of this stress with respect to the

point D is aS(z/c) multiplied by its lever-arm z, or aS

(z/c)z. Hence

Moment of stress on a = (S/c)az
2

and the resisting moment is the algebraic sum of all these

elementary moments for all possible values of z, or since

S/c is a constant,
Sf Sf

Resisting Moment =-(al
z

l

2+a2z2
2+a3 z3

2+ ) =-2az
2

C C

Here the notation 2az2
is used to denote the quantity

aiZi
2+02Z2

2+ The letter S is not a factor, but a symbol
which indicates the process of summation and it should

be called 'summation of all values of.'

This quantity Zaz2
is called the

' moment of inertia
'

of

the cross-section of the beam, and it will be shown in
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Art. 24 how its value is found. The moment of inertia

is designated by /, and hence

SI
Resisting Moment =

This expression for the resisting moment is applicable to

all kinds of cross-sections. It is shown above that the

bending moment for any section is equal to the resisting

moment for that section; letting M be the value of the

bending moment, found as in Art. 21, then

is a general formula applicable to all kinds of beams.

This formula will be constantly used in the next chapter.

The term ' moment of inertia
'

has no reference to inertia

when applied to plane surfaces, as is here the case. It is

merely a name for the quantity 2az2
,
and this quantity

is found by multiplying each elementary area by the

square of its distance from the given axis and taking the

sum of the products. As z2
is always positive whether z

be positive or negative, Saz2
or the moment of inertia / is

always positive. If all the elementary areas be taken as

equal and n be their number, then na = A, the total area

of the section. Hence / = Saz2 = a 2z2 =A 2z2
/n. Desig-

nate the average of all the values of z2
by r2

,
then 2z2

/n = r-

and thus I=A r2
is another definition of moment of inertia.

This is a constant which depends only on the size of the

section area and its arrangement with respect to the

neutral surface.

Prob. 22. In the above ngure let MD and DN be each 6 inches

and let the width of the beam CC be 8 inches. If the tensile unit-

stress S on the bottom of the beam is 600 pounds per square inch,

the compressive unit-stress on the top of the beam is also 600 pounds



ART. 23 CENTERS OF GRAVITY 47

per square inch. Show that the total tensile stress is 14 400 pounds,
and that the total compressive stress is also 14 400 pounds.

ART. 23. CENTERS OF GRAVITY

The center of gravity of a plane surface is that point

upon which a thin sheet of cardboard, having the same

shape as the given surface, can be balanced when held

in a horizontal position. In the investigation of beams

its section area is the given surface, and it is required

to know the distances from the top or bottom of the

section to the center of gravity. The letter c will be

used to denote these distances when they are equal,

and the longest of these distances when they are unequal.

For a square, rectangle, or circle, whose depth is d,

it is evident that c= %d. Also for a section of I shape,

where the upper and lower flanges are equal in size, it

is plain that c= y%d.

For the T section, shown on the left of Fig. 13, the

distance c is greater than %d, and its value is to be found

by using the principle of moments. If the width of the

horizontal flange is 4 inches and its thickness 1% inches,

the area of the flange is 5 square inches; if the height of

Fig. 13

the vertical web is 6 inches and its thickness 1 inch, the

area of the web is 6 square inches. The total area of the

cross-section is then 11 square inches. Now if this sec-

tion is a thin sheet held in a horizontal plane, the weights
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of the two parts and the whole are represented by 5, 6,

and 11. With respect to an axis at the end of the web

the lever-arms of these weights are 6% inches, 3 inches,

and c inches; the equation of moments then is

5X6%+6X3-llXc =

from which the value of c is found to be 4.65 inches. For

the channel section, shown on the right of Fig. 13, the

same method is to be followed as for the T.

The method of moments may thus be applied to areas

as well as to forces. If a be any area and z the distance

of its center of gravity from an axis, the product az is

called the static moment of the area. The algebraic

sum of the static moments of all parts of the figure is

represented by 2az, the summation of the values a\Zi,

o^Zz, a&z, etc. If A is the total section area, then

is a general expression of the method of finding the dis-

tance c. If the axis is taken within the section, some of

the z's are negative, and if the axis passes through the

center of gravity of the section, then the quantity Saz

is zero.

When the cross-section is bounded by curved lines,

as in a railroad rail, it is to be divided up into small

rectangles and the value of a be found for each; the sum
of all the a's is A, and then by the above method the

value of c is computed. For the various rolled shapes

found in the market the values of c are thus determined

by the manufacturers and published for the information

of engineers.
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Triangular beams are never used, but it is often con-

venient to remember that for any triangle whose depth

is d the value of c is %d.

For the angle section, shown in Fig. 14, the center of

gravity usually lies without the section, and there are

two values of c, called Ci and Cz, to be determined. Let

the thickness of each leg be % inches, the length of the

long leg be 6 and that of the

short leg be 4 inches. The

area of the long leg, including

the lower corner, is 6X%=
4.5 square inches, and its

center of gravity is 3 inches

below the axis AA and 3 %
inches to the right of axisBB.

The area of the short leg, excluding the corner, is

= 2.4375 square inches, and its center of gravity is 5%
inches below the axis AA and 1% inches to the right of

the axis BB. Then, as the total area of the section is

6.9375 square inches, the equation of moments with

respect to the axis AA is

6.9375 d = 4.5X3+2.4375 X 5.625,

and then ci= 3.92 inches. Also the equation of moments

with respect to the axis BB is

6.9375 C2 = 4.5X3.625+2.4375X 1.625,

from which C2
= 2.92 inches.

Prob. 23 A. For Fig. 13 let c=6 and ci =3 inches. If the unit

stress S at the top of the web is 6400 pounds per square inch, what
is the unit-stress Si on the lower side of the flange?

Prob. 23 B. A deck-beam used in buildings has a rectangular
4



50 MOMENTS FOR BEAMS CH. 3

flange 4X% inches, a rectangular web 5XK inches, and an ellip-

tical head which is 1 inch in depth and whose area is 1.6 square
inches. Find the distance of the center of gravity from the top of

the head.

ART. 24. MOMENTS OF INERTIA

The moment of inertia of a plane surface with respect

to an axis is the sum of the products obtained by mul-

tiplying each elementary area by the square of its distance

from that axis. In the discussion of beams the axis is

always taken as passing through the center of gravity

of the cross-section and parallel to the top and bottom

lines of the cross-section. Let / be this moment of inertia

as in Art. 22, its value is to be found by determining

the quantity 2a22
,
the summation of all the values a\z\,

a2z 2
2

,
a3z3

2
,
etc.

To find 7 for a rectangle of breadth b and depth d,

let CC be the axis through the center of gravity and

parallel to b (Fig. 15). Let the elementary area a be a

Fig. 15

small strip EE parallel to CC and at a distance z from it.

Let a line gh be drawn parallel to the depth d of the

rectangle, and normal to gh let lines be drawn equal to

the squares of z; thus ee is the square of CE, and gg is

the square of CG. Now the elementary product az~ is the
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elementary area EE multiplied by the ordinate ee; hence

Zaz2
is represented by a solid standing on bd whose variable

height is shown by the shaded area ghhcg. But the

volume of this solid is the product of its length b and this

shaded area. The curve ceg is a parabola because each

line ee is the square of the corresponding altitude ce;

accordingly the shaded area is one-third of ghhg. But

gh is equal to d, and gg is equal to (%d) 2
;
thus the shaded

area is represented by Va-d.^id?, or Mod3
. Hence

is the moment of inertia of a rectangle about an axis

through its center of gravity and parallel to its base.

The moment of inertia is a compound quantity resulting

by multiplying an area by the square of a distance; it

thus contains the linear unit four times. If 6 = 3 inches

and d= 4 inches, then 7=16 inches 4
,
or the numerical

unit of 7 is biquadratic inches.

Moments of inertia when referred to the same axis

can be added or subtracted like any other qualities

t>

JL Fig - 16

which are of the same kind. Thus, let there be a hollow

rectangular section whose outside depth and breadth

are 6 and d and whose inside depth and breadth are

61 and di, the thickness of the metal being the same

throughout (Fig. 16). Then the moment of inertia of
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this section is found by subtracting the moment of inertia

of the inner rectangle from that of the outer one, or

is the moment of inertia for the rectangular section whose

area is bd bidi.

For the common I beams whose flanges are equal

the same method applies. Let b be the width of the

flanges and d the total depth of the section shown on the

right of Fig. 16; also let t be the thickness of the web

and tr the thickness of the flanges. The moment of

inertia of the area (6 f)(d 2ti) is then to be subtracted

from the moment of inertia of the area bd, or

is the moment of inertia for the I section.

Fig. 17

For the
"J"

section the distance c from the end of the

web to the axis through the center of gravity must first

be computed by the method of the last article. Then ci,

the distance from the outside of the flange to the axis,

is also known (Fig. 17). Let 6 be the breadth of the

flange and ti its thickness, and let t be the thickness of

the web. Then the moment of inertia of the area tc is

one-half of that of a rectangle of depth 2c, or ^X Via'(2c)
3
,

which is i/^c
3

;
also the moment of inertia of the area

bci is one-half of that of a rectangle of depth 2ci. Adding
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these together and subtracting the moment of inertia

of the area (b 0(ci ti), there results

which is the moment of inertia for the "f section. The

same formula applies to the LJ section if t is the thick-

ness of the two webs.

The above formulas for I and "f sections are correct

for cast-iron beams Vhere the corners are but little

rounded. For wrought-iron and steel beams, however,

the flanges are not usually of uniform thickness, and

all the corners are rounded off by curves, so that the

formulas are not strictly correct; for such shapes the

numerical values of the moments of inertia for all the

sections in the market are published by the manufac-

turers, so that it is not necessary for engineers to compute
them. (See Art. 33.)

The moment of inertia of a circle with respect to its

diameter as an axis is /= %47rd
4 where d is the length

of the diameter.

The moment of inertia of a plane surface with respect

to any axis is equal to the moment of inertia with respect

to a parallel axis through its center of gravity plus the

area of the surface multiplied by the square of the dis-

tance between the two axes. Thus, let A be the area of a

surface (Fig. 18), / its moment of inertia with respect

to an axis CC through the center of gravity, and h the

distance to another parallel axis DD.then the moment of

inertia of the surface with Yespect to DD is Ii = I-\-Ah
2

.

This principle is used to find the moment of inertia for

compound and built-up sections, as illustrated in the

following example.
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For the section of a bridge-post, shown in Fig. 19, the

area of each 12-inch channel and its moment of inertia

with respect to an axis through its center of gravity

are given as A =7.35 square inches and /= 144.0 inches4
.

For the plate, which is 16 X % inches, the values are

A = 6.00 square inches and I= 0.007 inches4
. From Art. 21

D- -D

Fig. 18 Fig 19

the distance c to the center of gravity of the compound
section is found to be 7.99 inches. Hence for each channel

/i=1.99 inches, and for the plate /i = 4.57 inches. The

moment of inertia for the entire built-up section is then

71
= 2(144.0+7.35X1.99

2)+0.007+6.00X4.572 = 471.4.

In this chapter the fundamental applications of mo-

ments to be used in discussing beams have been presented,

and it is now possible to take up the subject and give the

theory of equilibrium of beams clearly and logically, so

that the student may undertake practical problems in

the most satisfactory manner.

Prob. 24. A steel I beam weighing 80 pounds per linear foot is

24 inches deep, its flanges being 7 inches wide and J/% inches mean

thickness, while the web is 0.5 inches thick. The moment of inertia

stated by the manufacturer is 2088 inches 4
. Compute it by the

formula here given.

ART. 25. REVIEW PROBLEMS

Prob. 25 A, Three men carry a stick of timber, two taking hold

at a common point and one at one of the ends. Where should be
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the common point so that each man may carry one-third of the

weight?

Prob. 25 B. Compute the bending moments under each con-

centrated load for Fig. 9, taking the weight of the beam into account.

Prob. 25 C. The two bases of a trapezoid are 8 and 5 inches,

and its height is 4 inches. Find the center of gravity.

Prob. 25 D. For a solid circular section the moment of inertia

with respect to an axis through the center is %t7rd4
. Find the

moment of inertia for a hollow circular section with outside diameter

di and inside diameter ck.

Prob. 25 E. A simple beam of 16 feet span weighs 60 pounds

per linear foot and has a concentrated load of 500 pounds at a dis-

tance of 4 feet from the left end. Compute the bending moments
for several sections throughout the beam and construct the diagram
of moments.

Prob. 25 F. Locate both gravity axes of a standard steel channel

8 inches deep, the average thickness of the web being 0.22 inches,

average thickness of flange 0.40 inches, and width of flanges 2.26

inches.

Prob. 25 G. Compute the moments of inertia of the channel

section with respect to each of the axes found in the last problem.

Prob. 25 H. Find the moment of inertia of a circle 3 inches in

diameter. Also the moment of inertia of that circle with respect to

another axis in the same plane, the shortest distance from the center

of the circle to that axis being 5 inches.

Prob. 25 J. A timber cantilever 4X6 inches in section projects

6 feet out of a wall. What load must be put upon it so that the

greatest shearing stress shall be 120 pounds per square inch?

Prob. 25 K. Show that the moment of inertia of a rectangle

with respect to an axis passing through its base is
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CHAPTER 4

CANTILEVER BEAMS AND SIMPLE BEAMS

ART. 26. DEFINITIONS AND PRINCIPLES

A simple beam is a bar resting upon supports at its

ends, and is the kind most commonly in use. A cantilever

beam is a bar resting on one support at the middle, or

if a part of a beam projects out from a wall or beyond a

support this part is called a cantilever beam. In a simple

beam the lower part is under tension and the upper part

under compression; in a cantilever beam the reverse

is the case. Unless otherwise stated, all beams will be

regarded as having the section area uniform throughout

the entire length.

Since a beam is at rest the internal stresses in any section

hold in equilibrium the external forces on each side of

that section. Thus, if a beam be imagined to be cut apart

i
Fig. 20

and the two parts separated, as in Fig. 20, forces must

necessarily be required to prevent the parts from falling.

These internal forces or stresses may be resolved into

horizontal and vertical components. The horizontal

components are stresses of tension and compression, while
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the vertical components add together and form a stress V
known as the resisting shear.

Each side of the beam is held in equilibrium by the

vertical forces and stresses that act upon it. The vertical

forces are the reaction and the loads, the stresses are the

horizontal ones of tension and compression, and the

vertical one of shear. The sum of all the horizontal

tensile stresses must be equal to the sum of all the hori-

zontal compressive stresses, or otherwise there would be

longitudinal motion. The sum V of the vertical stresses

must equal the algebraic sum of the reaction and loads,

or otherwise there would be motion in an upward or

downward direction. Lastly, the sum of the moments of

the stresses in the section must equal the sum of the

moments of the vertical forces, or otherwise there would

be rotation. These statical principles apply to each part

into which the beam is supposed to be divided.

It is found by experiment that the fibers on one side

of the beam are elongated and on the other shortened,

while between is a neutral surface, which is unchanged
-S

Fig. 21

in length. It is also found that the amount of elongation

or shortening of any fiber is directly proportional to its

distance from the neutral surface. Hence, if the elastic

limit is not surpassed, the stresses are also proportional

to their distances from the neutral surface (Fig. 21).
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From the above it can be shown that the neutral axis

passes through the center of gravity of the cross-section.

For, if S be the unit-stress on the remotest fiber and c its

distance from the neutral axis, then the unit-stress at the

distance z is Sz/c, and the total stress on an elementary

area a is aSz/c. The algebraic sum of all the horizontal

stresses in the section then is (S/c) Zaz, where Saz denotes

the summation of all the values a\z\, a2z2 ,
etc. From the

above statical principles this sum must be zero, and it

hence follows that 2az must be zero; that is, the sum of

the moments of the elementary areas is zero with respect

to the neutral axis. Hence the neutral axis passes through

the center of gravity, for the center of gravity is that

point upon which the surface can be balanced, or it is that

point for which 1,az = 0.

Prob. 26 A. An I beam which is 20 feet long weighs 700 pounds
and the area of its cross-section is 10.29 square inches. What is

the kind of material?

Prob. 26 B. Let Oi=2, a2 =2.5, a3
= 2.7 square inches, and

Zj
= +3.5, 22 = +1.5, z?= 2.6 inches. Does the axis pass through

the center of gravity of c^ +02+03?

ART. 27. RESISTANCE TO SHEARING

When a beam is short it sometimes fails by shearing

in a vertical section near one of the supports. The force

that produces this shearing is the resultant of all the

vertical forces on one side of the section. Thus, in the

simple beam of the first diagram (Fig. 22) this resultant

is the reaction minus the weight of the beam between

the reaction and the section; in the cantilever beam of

the second diagram it is the loads and the weight of the

beam on the left of the section.
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'Vertical shear' is the name given to the algebraic

sum of all the vertical forces on the left of the section

under consideration. Thus in the first diagram of Fig. 22,

if the reaction is 6000 pounds, the vertical shear V just at

the right of the support is 6000 pounds. If the beam

weighs 100 pounds per linear foot, the vertical shear at

a section one foot from the support and on the left of

the single load is 5900 pounds. Again in the second

diagram of Fig. 22, if the beam weighs 100 pounds

per linear foot and if each concentrated load is 800

pounds, and the distance from the end to the section

shown is 4 feet, the vertical shear in that section is 2000

pounds.

It is seen from these illustrations that in a simple

beam the greatest vertical shear is at the supports, and

that in a cantilever beam it is at the wall. Only these

sections, then, need be investigated in a solid beam. For

a simple beam of length I and carrying w pounds per

linear unit, the greatest vertical shear is the reaction

Y^wl. For a cantilever beam of length I,
the greatest

vertical shear due to uniform load is the total weight wl.
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The vertical shear V produces in the cross-section

an equal shearing stress. If A is the section area and S

the shearing unit-stress acting over that area, then

V= AS, S =~ A =^ (3)

are the equations similar to (1) of Art. 1; these are used

for the practical computations regarding shear in solid

beams.

For example, consider a steel I beam weighing 250

pounds per yard and 12 feet long, over which roll three

locomotive wheels 4 feet apart and each bearing 14 000

pounds (Fig. 23). The greatest shear will occur when

Fig. 23

one wheel is almost at the support as shown in the figure.

By Art. 20 the reaction is found to be 28 500 pounds,

and this is the greatest vertical shear V. By Art. 9 the

area of the cross-section is found to be 24.5 square inches.

Then the shearing unit-stress in the section is

28 500
S = - = 1160 pounds per square inch

^4.O

which is a low working unit-stress for steel.

As a second example, consider a wooden cantilever

beam which projects out from a bridge floor and supports

a sidewalk. Let it be 6 inches wide, 8 inches deep, and

7 feet long, and let the maximum load that comes upon it

be 7500 pounds. The vertical shear at the section where

it begins to project is then 7590 pounds, or the load that
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it carries plus its own weight. As the section area is 48

square inches, the shearing unit-stress is a little less than

160 pounds per square inch. The factor of safety against

shearing is hence about 19 (Art. 6), so that the security

is ample.

It is indeed only in rare instances that solid beams of

uniform cross-section are subject to dangerous stresses

from shearing. Beams almost universally fail by tearing

apart under the horizontal tensile stresses, and hence

the following articles will be devoted entirely to the con-

sideration of these bending stresses.

Prob. 27 A. A simple beam of cast iron is 3 X3 inches in section

and 5^ feet long between supports. Besides its own weight, it is

to carry a load of 4000 pounds at the middle and a load of 1000

pounds at 23/2 feet from the left end. Find the factor of safety

against shearing.

Prob. 27 B. On a simple beam 12 feet long there are two loads,

each 600 pounds, one at 3 feet from the left end, and one at 3 feet

from the right end. Find the vertical shear due to these loads for

a section near one of the supports, and also for any section between

the loads.

ART. 28. RESISTANCE TO BENDING

In Art. 27 it was shown that the resisting moment
of the internal stresses in any section is equal to the

bending moment of the external forces on each side of

the section. Art. 21 explains how to find the bending

moment, which hereafter will be designated by the letter

M. In Art. 22 an expression for the resisting moment
is derived. Therefore

f= A/ (4)

is the fundamental formula for the discussion of the
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flexure of beams, provided the elastic limit is not exceeded.

Here S is the unit-stress of tension or compression on the

top or bottom of the beam, c is the vertical distance of S

from the center of gravity of the cross-section, and 7

is the moment of inertia of the cross-section. Art. 23

explains how to find c, and Art. 24 shows how / is deter-

mined, S is often called the 'fiber unit-stress,' meaning

thereby the greatest horizontal unit-stress.

This formula shows that S varies directly with M,
that is, the greatest tensile or compressive stress in the

beam occurs at the section where M has its maximum
value. For a simple beam under uniform load the bending

momentM at any section distant x from the left support is,

as shown in Art. 21,

M=y2wi. x- wx . y2x = y#n (ix
- x2

)

and if x= 3^Z, this gives M = ^wl2 as the maximum

bending moment; or if W be the total load wl, this may be

written as M=
l/gWl. When concentrated loads are on a

simple beam the maximum bending moment must usually

be found by trial; it will generally be under one of those

loads.

For a cantilever beam of length I the maximum bending

moment always occurs at the wall (Fig. 24). For a

uniform load of w per linear unit the bending moment

at a section distant x from the end is the load wx into

its lever-arm %x, and this is negative as it tends to pro-

duce rotation in a direction opposite to that of the hands

of a watch (Art. 19). Thus, for any section M = %wx2
,

and when x becomes equal to I the maximum value is

M }/2wl
2

. The negative sign shows merely the direc-

tion in which rotation tends to occur, and when using
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formula (4) the value of M is to be inserted without sign.

The diagram of bending moments for this case is a para-

bola, since M increases as the square of x.

Fig. 24

For concentrated loads on a cantilever beam the

bending moment M is FIX until x passes beyond the

second load; then M=P1xPz(xp) where p is the

distance between the two loads. Thus the diagram of

bending moments is composed of straight lines (Fig. 25),

Fig. 25

the maximum M occurs when x becomes equal to Z, and

its value is -Pil-P2(l-p).

It may be noted that the only difference in stating

moment equations for a cantilever beam and for a simple

beam lies in the fact that for the former there is no
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reaction at the left end. A cantilever beam is hence really

simpler than a simple beam, as no reactions need be

computed.

Prob. 28-4. A cantilever beam has a load of 800 pounds at its

end, and is also uniformly loaded with 125 pounds per linear foot;

its length is 5 feet. Compute the bending moments for five sections,

one foot apart, and construct the diagram of bending moments.

Prob. 28 B. A simple beam weighing 60 pounds per linear foot

is 13 feet in span and has a load of 1000 pounds at the middle.

Compute the maximum bending moment.

ART. 29. SAFE LOADS FOR BEAMS

A safe load for a beam is one that produces a tensile

or compressive unit-stress which is safe according to

the principles set forth in Chapter 1. To find such a safe

load for a given beam the safe value of S is to be assumed

from those principles. Then in formula (4) the values of

7 and c are known. The maximum bending moment M
is to be expressed in terms of the unknown load, and thus

an equation is derived from which the load is found.

For example, let a wooden cantilever beam be 2 inches

wide, 3 inches deep, and 72 inches long, and let it be

required to find what load P at the end will produce a

unit-stress S of 800 pounds per square inch. Here the

maximum value of M is PX72. From Art. 23 the value

of c is \Yi inches and from Art. 24 the value of / is 4^
inches4

. Then by (4) of Art. 28,

c 1.5

from which P is found to be 33% pounds.

Again, let a simple beam of cast iron be 3 inches wide,
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4 inches deep, and 36 inches long, and let it be required

to find what uniform load will produce a unit-stress of

2000 pounds per square inch. Here let w be the uniform

load per linear inch; the total load is wl, each reaction is

%wl, and the maximum bending moment M is }/%wl
z
.

The value of c is 2 inches, and that of 7 is 16 inches4
.

Then since I is 36 inches,

SI ^ 2000X 16

c
~

2

from which w = 98.8 pounds per linear inch, and hence

the total uniform safe load that can be put on the beam

is about 3560 pounds.

The student should notice that in using formula (4)

all lengths must be expressed in the same unit. If the

length of a beam is given in feet it must be reduced to

inches for use in the formula, because S, I, and c are

expressed in terms of inches. Formula (4) cannot be

used to find the load that will rupture a beam, except

in the manner indicated in Art. 66.

Prob. 29 A . A steel I beam 7 inches deep and weighing 22 pounds

per foot has for the moment of inertia of its cross-section 52.5

inches4

,
and it is to be used as a simple beam with a span of 18 feet.

What load P can it carry when the greatest unit-stress S is required

to be 12 000 pounds per square inch?

Prob. 29 B. WT
hat safe uniformly distributed load can be carried

by an oak beam, 4 inches wide and 6 inches deep, having a span
of 16 feet, if the greatest unit-stress is not to exceed 1000 pounds

per square inch?

Prob. 29 C. A wooden beam, 10X12 inches in section area,

projects 6 feet from the wall of a building. What safe load can be

suspended from the end of the beam so that there shall be a factor

of safety of 10?

5
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ART. 30. INVESTIGATION OF BEAMS

To investigate a beam acted upon by given loads the

greatest unit-stress S produced by those loads is to be

found from formula (4). From the given dimensions of

the beam 7 an$ c are known, from the given loads the

maximum value of M is to be found; then

Me
s=T

is the equation for computing the value of S. Then

by the rules of Chapter 1 the degree of security of the

beam is to be inferred. As formula (4) is deduced under

the laws of elasticity, it fails to give reliable values of S
when the elastic limit is exceeded.

For example, consider a cast-iron u section which is

used as a simple beam with a span of 6 feet, and upon
which there is a total uniform load of SO 000 pounds.

Let the total depth be 16 inches, the total width 12

inches, the thickness of the flange 2 inches, and the

thickness of the webs 1 inch. By Art. 28 the greatest

value of M is at the middle of the beam, this being

YsX80 000X 6X 12 = 720 000 pound-inches. By Art. 23

the value of c is found to be 10.7 inches. By Art. 24 the

value of I is found to be 1292 inches4
. Then,

720000X10.7
" =-10no

- = 5960 pounds per square inch.

This is the compressive unit-stress in the end of the web
when the beam is placed in the LJ position, as is usually

the case in buildings. On the base of the beam the tensile

unit-stress is about half this value, since ci is about one-

half of c. Thus under the compressive stress the beam
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has a factor of safety of about 15, and under the tensile

stress it has a factor of safety of about 7. As the least

factor of safety for cast iron should be 10, the beam

has not the full degree of security required by the best

practice.

Prob. 30-4. A piece of wooden scantling 2 inches square and 18

feet long is hung horizontally by a rope at each end and a student

weighing 175 pounds stands upon it. Is it safe?

Prob. 30 B. A floor is supported by 3 X 8-inch wooden joists of

16 feet span spaced 18 inches apart. When this floor carries a total

load of 200 pounds per square foot, what is the factor of safety of

the joists?

ART. 31. DESIGN OF BEAMS

The design of a beam consists in determining its size

when the loads and its length are given. The allowable

working unit-stress S is first assumed according to the

requirements of practice. From the given loads the

maximum bending moment M is then computed. Thus

in formula (4) everything is known except 7 and c, and

L-M
c S

is an equation which must be satisfied by the dimensions

to be selected.

For a rectangular beam of breadth b and depth d the

value of c is %d, and the value of I is %2 b<&. Thus the

equation above becomes

, _ 6M

and if either b or d be assumed the other can be computed.
For example, let it be required to design a rectangular

wooden beam for a total uniform load of 80 pounds, the
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beam to be used as a cantilever with a length of 6 feet,

and the working value of S to be 800 pounds per square

inch. Here the maximum value of M is 80X3 = 240

pound-feet = 2880 pound-inches. Thus bd2 = 2 1 .6 inches3
.

If 6 is taken as 1 inch, d= 4.65 inches; if 6 is 2 inches,

d=3.29 inches; if 6 is 3 inches, d = 2.Q8 inches. With due

regard to sizes readily found in the market 3X3 inches

are perhaps good proportions to adopt.

Prob. 31-4. A simple cast-iron beam of 14 feet span carries a load

of 10 000 pounds at the middle. If its width is 4 inches, find its

depth for a factor of safety of 10; also find its width for a depth of

12 inches.

Prob. 31 B. A yellow pine beam of 20 feet span is to carry a uni-

formly distributed load of 500 pounds per linear foot with a factor

of safety of 9. The depth of the beam is to be 1^ times the breadth.

Find the dimensions of the beam.

ART. 32. COMPARATIVE STRENGTHS

The strength of a beam is measured by the load it

can carry with a given unit-stress S. Let it be required to

investigate the relative strengths of the four following

cases :

1st. A cantilever loaded at the end with W.

2d. A cantilever loaded uniformly with W.

3d. A simple beam loaded at the middle with W.

4th. A simple beam loaded uniformly with W.

Let I be the length in each case, and the cross-section be of

breadth b and depth d. Then c = ^d, and I= Vi2bd?.

Then, from Art. 28, and formula (4),

For 1st, M= Wl and W=-~
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For 2d, M=Y2Wl and W=^f
For 3d, M

For 4th, M=
Hence the comparative strengths of the four cases are

as the numbers 1, 2, 4, 8; that is, if four such beams are

of equal size and length and of the same material, the

second is twice as strong as the first, the third is four

times as strong, and the last is eight times as strong as

the first.

From these equations the following important laws

regarding rectangular beams are derived :

The strength varies directly as the breadth and directly as the

square of the depth.

The strength varies inversely as the length.

A beam is twice as strong under a distributed load as under an

equal concentrated load.

The second and third of these laws apply also to beams

having cross-sections of any shape.

The reason why rectangular beams are placed with

the longest dimension vertical is now seen to be that

the strength increases in a faster ratio with the depth

than with the breadth. If the breadth is doubled the

strength is doubled; if the depth is doubled the strength

is four times as great as before.

A beam is said to be 'fixed' at its end when the end is

fastened in a wall in such a manner that that end

remains horizontal. The following are the maximum

bending moments for such beams:
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One end fixed, load W at middle, M =^Wl
One end fixed, uniform load W, M= }/%Wl

Both ends fixed, load W in middle, M=y%Wl
Both ends fixed, uniform load W, M =yl2Wl

It is thus seen that beams fixed at their ends are stronger

than simple beams similarly loaded, for under a given

unit-stress S they will carry a greater load W. Moment

diagrams for fixed beams are given in Art. 57

An 'overhanging beam' is shown in Fig. 26, the dis-

tance between the supports being I, one support being

k

Fig. 26

at the left end and the other support being at a distance

m from the right end. Under a uniform load of w per

linear unit, the left reaction is Ri = ]^w(lmi
/l), the

maximum positive moment is M= Y^R^Iw and the max-

imum negative moment is M= ^4wmz
. For instance, let

1=10 and m= Q feet, and w = 30 pounds per linear foot;

then the total weight of the beam is 480 pounds, the left

reaction is 96 pounds, the maximum positive bending

moment is 153.6, and the maximum negative bending

moment is 540 pound-feet.

For a load P placed between the supports of the over-

hanging beam in Fig. 26, the reactions Ri and #2 are

exactly the same as for a simple beam and the maximum
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moment is l
/iPl. For a load P placed at the end of the

overhanging arm, the reactions are Ri= Pm/l and R2 =

+P(1 m/l), while the greatest bending moment is Pm.

Prob. 32 A. Show that a beam 3 inches wide, 6 inches deep, and
4 feet long is nine times as strong as a beam 2 inches wide, 4 inches

deep, and 10% feet long.

Prob. 32 B. Compute, without using the above formulas, the

reactions for an overhanging beam where the distance between the

supports is 9 feet and the overhanging arm is 3 feet, the beam

weighing 40 pounds per linear foot.

ART. 33. STEEL I BEAMS

Wrought-iron rolled beams have been much used in

bridge and building construction, but now medium-steel

beams are almost exclusively employed. The ultimate

tensile strength of such steel will be taken as 65 000

pounds per square inch, and its elastic limit as 35 000

pounds per square inch, in the solution of examples and

problems hereafter given. These beams are manufactured

in about thirteen different depths, and of each depth

there are several different sizes or weights, so that designers
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have a large variety from which to select. In the following

table only the heaviest and lightest sections of each

TABLE 8. STEEL I BEAMS

Depth

Inches
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on the right-hand side indicating the heavier section and

the other one the lighter section.

In Table 8 the moments of inertia / in the fourth

column are those about an axis through the centers of

gravity and perpendicular to the web, and are those to

be used in all beam computations. The values /' given

in the last column are with respect to an axis through

the center of gravity but parallel to the web; these are

for use in the next chapter in the discussion of struts.

The quantity I/c is often called the 'section modulus'

as it contains all the dimensions of the cross-section.

The process of selecting an I section depends merely

on finding a value of I/c which corresponds to the value

of M/S, as shown in Art. 31; hence for convenience these

values are tabulated in the fifth column of the table.

For example, an I beam in a floor is to have 20 feet

span and to carry a uniform load of 13 500 pounds;

what size is to be selected? The bending moment is

M= y8X 13 500X 20 X 12 = 405 000 pound-inches; and the

working unit-stress S should be %X65 000 pounds per

square inch. Then from formula (4),

7 405 000

c 13 000
= 31.2 inches3

and hence, from the table, the heavy 10-inch beam should

be used.

Prob. 33-4. A heavy 15 -inch steel I beam of simple span carries

a uniform load of 42 net tons. Find its factor of safety if the span
is 6 feet; also if the span is 9 feet.

Prob. 33 B. A steel I beam of 25 feet span is to carry a uniformly
distributed load of 1000 pounds per linear foot. In addition there
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is a concentrated load of 6000 pounds at 10 feet from the left end.

Find the proper size of I beam to be used.

ART. 34. BEAMS OF UNIFORM STRENGTH

The beams thus far discussed have been of uniform

section throughout their entire length. As the bending
moments are small near the ends of the beam the unit-

stress S is there also small, and hence more material

is used than is really needed. A beam of uniform strength

is one so shaped that the unit-stress S is the same at all

parts of the length.

For a cantilever beam loaded with P at the end, the

bending moment at any distance x from the end is Px.

Fig. 28.

If the section is rectangular, formula (4) reduces to

V6Sbd2= Px
f
in which P and S are constant. If 6 is made

the same throughout, then

***j*

and therefore d2 must vary directly as x. If x= l, the

value of d is the depth di at the wall, and accordingly

6P/Sb=*di
2
/l; hence the equation becomes

d= .
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Thus, if x = %l, d = Vsdi; if x= %l, d=%di, and so on.

As the squares of the depths vary with the distances from

the end, the curve of the side of the beam should be the

common parabola (Fig. 28).

For a rectangular cantilever beam uniformly loaded with

w per linear unit the bending moment M is %wx* and

I

Fig. 29

formula (4) becomes

uniform throughout, then

If the breadth is

^joo

Here, if x= l, the value of d is the depth di at the wall,

and thus 3w/Sb = dlP/P. Accordingly,

gives the depth for any value of x, and it shows that

the elevation of the beam should be a triangle (Fig. 29).

The vertical shear near the end of the beam modifies

slightly the form near the end. Thus for the first case

above, if S f be the working shearing unit-stress there

must be a section at the end whose area A is equal at

least to P/S'.

Prob. 34. A simple beam of uniform strength is to be designed
to carry a heavy load P at the middle. If d\ be the depth at the

middle, show that the depths at distances O.I/, 0.21, Q.31, and QAl

should be 0.45d,, 0.63di, 0.77di, and 0.89*.
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ART. 35. REVIEW PROBLEMS

Prob. 35 A. Locate the neutral axis for a "f" section which is

3X3 inches and % inches thick.

Prob. 35 B. A timber 4X6 inches in section projects 6 feet out

of a wall. What load must be put upon it so that the greatest

shearing stress shall be 120 pounds per square inch?

Prob. 35 C. A simple wooden beam, 8 inches wide, 9 inches deep,

and 14 feet in span, carries two equal loads, one being 2.5 feet

at the left and the other 2.5 feet at the right of the middle. Find

these loads so that the factor of safety of the beam shall be 8.

Prob. 35 D. A simple wooden beam, 3 inches wide, 4 inches deep,

and 16 feet span, has a load of 150 pounds at the middle. Compute
its factor of safety.

Prob. 35 E. A simple beam of structural steel, % inches deep
and 16 feet span, is subject to a rolling load of 500 pounds. What
must be its width in order that the factor of safety may be 6?

Prob. 35 F. Compare the strength of a joist, 3X8 inches, when
laid with long side vertical with that when it is laid with short side

vertical.

Prob. 35 G. Compare the strength of a light 9-inch steel I beam
with that of a wooden beam 8 inches wide and 12 inches deep, the

span being the same for both.

Prob. 35 H. A cast-iron cantilever beam is to be 4 feet long,

3 inches wide, and to carry a load of 15 000 pounds at the end.

Find the proper depths for every foot of length, using 3000 pounds

per square inch for the horizontal unit-stress and 4000 for the

vertical shearing unit-stress.

Prob. 35 /. The wooden girders of a floor are 10X12 inches in

cross-section, 25 feet span and 16 feet apart. The floor carries a

load of 100 pounds per square foot. Find the maximum unit-stress

at the middle of the girders.

Prob. 35 K. A steel pin, 8 inches long and 3 inches in diameter,
is arranged like a simple beam to carry a load of 10 000 pounds
at the middle. Find the maximum flexural unit-stress.
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CHAPTER 5

COLUMNS OR STRUTS

ART. 36. GENERAL PRINCIPLES

A bar under compression whose length is greater than

about ten times its thickness is called a column or a strut.

For shorter lengths the case is one of direct compression

where the rules of Art. 5 apply. For the short specimen

failure occurs by the shearing or splintering of the material.

For the strut or column, however, failure generally

occurs by a sidewise bending; this induces bending

stresses, so that the phenomena of stress are more complex

than in a beam.

Wooden and cast-iron columns are usually square or

round, and are sometimes built hollow. Wrought-iron

columns are made by riveting together channels, plates,

and angle-irons. It is clear that a square or round section

is preferable to a rectangular one, since then the tendency

to bend is the same in all directions. For a rectangular

section the bending will evidently occur in a plane parallel

to the shorter side of the rectangle; thus in investigating

such a column the depth d is this shorter side instead of

the longer one, as in beams. When a single I beam is

used as a column it tends to bend in a plane parallel

to the flanges, and hence the moment of inertia to be

used in this discussion is /', which is given in the last

column of the table in Art. 33, the axis for this coinciding

with the middle line of the web.

If a short prism whose section area is A is loaded



78 COLUMNS OR STRUTS CH. 5

with the weight P, the unit-stress is P/A, and this is

uniformly distributed over the area A. For a column,

however, this is not the case; while the mean unit-stress

is still P/A, the unit-stress on the concave side, if bending

occurs, may be very much greater than P/A. The

longer the column the greater is this unit-stress on the

concave side liable to become, and hence a long column

cannot carry so large a load as a short one.

There are three ways of arranging the ends of columns

(Fig. 30). Class (a) includes those with 'round ends' or

Fig. 30

those having their ends hinged on pins. Class (6) includes

those with one end round and the other fixed; the piston-

rod of a steam-engine is of this type. Class (c) includes

those having fixed ends; these are used in bridge and

building constructions. The figure here given is a sym-
bolical representation, and is not intended to imply

that the ends of the columns are necessarily enlarged in

practice. It is found by experiment that class (c) is

stronger than (6), and that (6) is stronger than (a).

Prob. 36. In a certain test wrought-iron tubes 2.37 inches in

outer diameter and having a section area of 1.08 square inches

were used. A tube 8 feet long failed under 24 800 pounds and a
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tube 3*4 feet long failed under 38200 pounds. What load would

be required to cause failure for a tube only 6 or 8 inches long?

ART. 37. RADIUS OF GYRATION

In the discussion of columns a quantity r, called 'radius

of gyration of the cross-section,' is frequently used.

It is defined to be that quantity whose square is equal

to the least moment of inertia of the cross-section divided

by the area of that cross-section, or

Thus, for a heavy 10-inch beam it is found by the table

in Art. 33 that r2= 9.50/1 1.8 = 0.805 inches2
.

The values of r2 for rectangles of least side d are readily

obtained from the moments of inertia given in Art. 24;

For a solid rectangle, r2 =%2cP

fcc^-fcidi
3

For a hollow rectangle, rz == /L , r-
j^-

12(bdbidi)

For a solid square, i

For a hollow square, r2

The reason why the least moment of inertia is used

for columns is that the bending tends to occur in a plane

perpendicular to the axis about which the moment of

inertia is the least. Thus, a rectangular strut bends in a

plane parallel to the least side of its cross-section.

As circular cross-sections are frequently used for

columns, the values of the moment of inertia for these

will here be stated. Let d be the outer diameter and di

the inner diameter. Then

For a solid circle, / = Vo^ird
4
,

rz=

For a hollow circle, / = %4*-(d
4 -

dfi ,
r2= V\ e(d

2+dl
2
)
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Here the values of r2 are found by dividing the first /

by %Trd
2 and the second 7 by %Tr(d

2
d-f], these being

the areas of the cross-sections.

From the last paragraph in Art. 24 it is seen that r2

is the average of all the values of z2 for the cross-section.

There is, however, no way of finding this average r2

except by first determining 7 and then dividing it by the

area A.

Prob. 374. Compute the radius of gyration for a circular ring

of 10 inches outer and 8 inches inner diameter.

Prob. 37 B. Find the least radius of gyration for a standard

angle 4X4 inches and weighing 18.5 pounds per linear foot (see

American Civil Engineers' Pocket Book, Sect. 4, Art. 48).

ART. 38. FORMULA FOR COLUMNS

Columns and struts generally fail under the stresses

produced by combined compression and bending. The

phenomena are so complex that no purely theoretical

formula will fully represent all cases. The formula of

Rankine is that which has the best rational basis, but

this cannot here be fully developed as the laws of deflection

have not yet been discussed.

Let P be the load on the vertical column, and let a

horizontal plane ab cut it at the middle (Fig. 31). If A is

the section area, the average compressive unit-stress P/A
may be represented by the line cd. But in consequence

of the bending this is increased to aq on the concave side

and decreased to bq on the convex side. The triangles

pdq and qdp represent the longitudinal bending stresses,

as in beams. Let the maximum unit-stress aq be denoted

by S. The part ap is equal to cd or to P/A. The part
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pq is due to the bending and will be denoted by Si. Hence

the maximum unit-stress aq is given by

S-f+A
Now from the formula (4) established for cases of bending

in Art. 30, the value of Si is Me/ 1, where M is the bending

Fig. 31 Fig. 32

moment of the external forces. Here the only external

force is P, and its lever arm is the lateral deflection of

the central line of the column. Let this lateral deflection

be called /; then M= Pf, and accordingly,

^ =
P PC/

where c represents the distance ac in the figure.

Now let / be replaced by Ar2
,
where r is the radius of

gyration of the cross-section. Then the preceding equation

becomes
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which shows how the unit-stress S on the concave side

increases with the lateral deflection /. By a discussion

of the subject of deflection, such as is given in 'Mechanics

of Materials/ it is shown that the value of / which is

liable to occur increases as the square of the length of the

beam, or cf may be made equal to ql
2
,
where q depends

upon the kind of material and the arrangement of the

ends (see Art. 56). The last equation may now be written,

P S

which is Rankine's formula for columns.

The values of q to be used in problems and examples

in this book are given in the following table. These

mean values have been derived by the consideration of

numerous experiments on the rupture of columns and

TABLE 9. COLUMN CONSTANTS q

Material
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Prob. 38 A. If P/A=5QQ pounds per square inch for a timber

column with fixed ends, find from formula (5) the values of S when

l/r=Q, l/r = 50, and l/r
= lQO.

Prob. 38 B. When the length I becomes very small, show that

formula (5) reduces to formula (1).

ART. 39. SAFE LOADS FOR COLUMNS

To find a safe load for a column of given size and

material the working value of S is to be assumed by
Art. 7. The value of r is determined by Art. 37, and q

by the table in Art. 38. Then, from the formula (5),

AS

which gives the safe load P for the column.

For example, let it be required to find the safe load for

a timber strut 3X4 inches and 5 feet long, so that the

greatest compressive unit-stress S may be 800 pounds

per square inch. Here 6 = 4 inches, d= 3 inches, r2 =

Vi2d2=M inches2
,

Z
2= 3600 inches2

,
Z
2
/r

2= 4800, q
= 1/3000,

ql*/r
2 =l.Q. Then

D 12X800
,P = = 3 690 pounds

which is the safe load for the strut. If the length is

only about one foot, the safe load will be simply P =
12X800= 9600 pounds. If the length is 12 feet, P will

be found by the formula to be only 940 pounds. The

influence of the length on the safe load is hence very great.

Prob. 39 A. A hollow cast-iron column to be used in a building

is 6X6 inches outside dimensions and 5X5 inches inside dimen-

sions, the length being 18 feet, and the ends fixed. Find its safe load.
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Prob. 39 B. Find the safe load for the piston-rod of a steam

engine, its diameter being 2 inches and its length 36 inches, when the

allowable value of S is 5000 pounds per square inch.

ART. 40. INVESTIGATION OF COLUMNS

The investigation of a column under a given load

consists in computing the unit-stress S from formula (5)

and then comparing this with the ultimate strength and

elastic limit of the material, having due regard to whether

the stresses are steady, variable, or sudden (Art. 7). The

value of S is

and the given data will include all the quantities in the

second member.

For example, a wrought-iron tube used as a column

with fixed ends carries a load of 38 000 pounds. Its

outside diameter is ,6.36 inches, its inside diameter 6.02

inches, and its length 18 feet. It is required to find the

unit-stress S and the factor of safety. Here P = 38 000

pounds, J. = K7r(6.36
2 -6.02 2

)=3.31 square inches, q =

1/35000, 2=18X12 = 216 inches, r2= Vi6(6.36
2+6.02 2

)
=

4.79 inches2
. Then by the formula

q 38000/j 216X216_\
3.31 V

+
35000X4.79/

or =14700 pounds per square inch. The factor of

safety is thus about 4, which is a safe value if the col-

umn is used under steady stress, but too small if sudden

stresses or shocks are liable to occur. If the length of this

column is 36 feet, the unit-stress S will become about

25 000 pounds per square inch, so that its factor of safety

will be only 2.2, a value far too low for proper security.
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As a second example let a heavy 10-inch steel I beam

which is 25 feet long be used as a strut in a bridge truss,

the ends being hinged on pins. Let the compression

on it be 5900 pounds. Here from the table in Art. 33

there is found A = 11.8 square inches and /' = 9.50 inches4
,

whence r2= 0.80 inches2
;

also q= 4/25 000, Z=300 inches,

P = 5900 pounds. Then, from the formula, S is found

to be 9500 pounds per square inch, which is about one-

third of the elastic limit of the material, and hence a

safe value.

Prob. 404. A pine stick 3X3 inches and 12 feet long is used

in a building as a column with fixed ends. Find its factor of safety

under a load of 3000 pounds. If its length is only one foot, what is

the factor of safety?

Prob. 40 B. A rectangular wooden column, 12X12 inches in

outside dimensions and 9X9 inches in inside dimensions, is 14 feet

long. Compute the unit-stress S when the load P is 10 000 pounds
and the ends are fixed.

ART. 41. DESIGN OF COLUMNS

When the length of a column is given and the load to be

carried by it, the design consists in selecting the proper

material and then finding the dimensions so that the unit-

stress S in formula (5) may have the proper value. This

is often done by trial, dimensions being assumed and

inserted in (5), and if these do not fit, changes are made

in them until a satisfactory agreement is found. For

example, let it be required to find the size of a square

wooden column with fixed ends and 24 feet long to carry

a load of 100 000 pounds with a unit-stress S of 800

pounds per square inch. If the column is very short the

area A should be 100000/800=125 square inches, and

the side of the square about 11 inches. The column
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24 feet long must be larger than this; assume it 16 inches.

Then, from the formula of the last article find the value

of S; this being a little larger than 800 shows that 16

inches is too small. Again, trying 17 inches, S is found

to be a little smaller than 800. Hence 163^ inches is an

approximate solution of the problem.

Equations can be derived, however, for finding the

size of solid square and round columns by placing for A
and r2 in formula (5) their values in terms of the side

or diameter d. Thus for a solid square column

P P
d*-^d2 = ^.o o

and for a solid round column

7TO 7T

As an example, take the data of the last paragraph, where

P=100000, S = SOO, g=l/3000, and Z = 24X12. Insert-

ing these in the first equation it becomes d4 125d2 =

41 472, and solving, there is found d2=
275.5, whence d=

16.6 inches is the side of the square column.

For hollow square and round columns equations can

be derived in a similar way for finding the inner side or

diameter dt when the outer side or diameter d is given.

Thus for a hollow square column

and for a hollow round column

For example, let it be required to find the inner diameter
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d\ for a cast-iron hollow round column with fixed ends,

which is 18 feet long and 10 inches outer diameter, and

which is to carry a steady load of 240 000 pounds. Here

the working value of S is 15 000 pounds per square inch,

and q= 1/5000. Then the last equation gives di
2= Q0.7

whence ^ = 7.8 inches for the inner diameter.

Prob. 41 A. Find what steel I beam 12 feet long may be used

as a column to carry a load of 100 000 pounds, taking the working
value of S at 12 000 pounds per square inch.

Prob. 41 B. A hollow square column of wood with fixed ends

and 14 feet long has outside dimensions of 12X12 inches and carries

a load of 9450 pounds. Find the inside dimensions so that S shall

be 900 pounds per square inch.

ART. 42. ECCENTRIC LOADS

Thus far it has been supposed that the load is so applied

to the end of a column that its line of action coincides

C

Fig. 33

with the axis of the column. In many instances, however,

this is not the case. Let Fig. 33 represent a short block

where the load P is applied at a distance e from the axis
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passing through the center of gravity of the cross-section.

The distribution of the internal compressive unit-stresses

in every section is then not uniform. The mean unit-

stress on the area A is P/A, but this is increased on -the

side nearest P and decreased on the opposite side by the

unit-stress due to the flexure. Let CC be the neutral

axis of the cross-section and c the distance to the side,

let / be the moment of inertia and r the radius of gyration

of the cross-section with respect to the axis (7(7; let S'

be the flexural unit-stress at the side of the column. Then

from the flexure formula (4), S
f = Me/1. But the bending

moment M is Pe, hence S' = Pec/I = Pec/Ar
2

. Adding
this to the mean unit-stress P/A, there results

which is the compressive unit-stress on that side of the

column nearest P. On the other side of the column

the unit-stress is found by changing the + sign to .

A small eccentricity e causes the unit-stress S to deviate

much from the mean value P/A. For a rectangular

section r2 = Mad2 and c = %d, so that

P f &\
For side A of the prism, <Si= -r

( 1+6-5 I

A. \ Gil

For side B of the prism, Sz=-r(l6-?}
A. \ d/

When e= y6d, then Si = 2P/A which is double the mean

value, while 2
= 0. When e =yad, then Si = 3P/A and

2= P/A; hence the side B is under tension instead of

compression. It is thus seen that, in placing loads on a

column, eccentricity of application should be avoided.

The above formula (5) applies to a short column or
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to one in which l/r does not exceed 10. For longer col-

umns it is customary to add the quantity ce/r
2 to the

denominator in Rankine's formula, which thus becomes

?- ^ : (>'

This formula may be used for finding the safe load on

a column having an eccentric load, for investigating an

existing column, or for designing a section for a proposed

column.

Prob. 42 A. Using formula (5)' find the safe load for the data

given in Prob. 39 A, taking the eccentricity of the load as % inches.

Prob. 42 B. Using formula (5)' find the factor of safety for the

data given in Prob. 40 A, taking the eccentricity of the load as

% inches.

ART. 43. THE STRAIGHT-LINE FORMULA

Another formula for columns is that called the straight-

line formula, because the relation between P/A and l/r

is the same as that between y and x in the equation of a

straight line. This formula is

f-s-dA r

in which S is the unit-stress on the concave side of the

column and C is a quantity which varies with the material

and the condition of the ends. For columns with fixed

ends which are used in buildings under steady loads the

following are used in cases of design:

For cast iron, P/A = 10 000- 40(Z/r)

For wrought iron, P/A = 12 000- 60 (l/r)

For structural steel, P/A = 16 000-70(J/r)
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These formulas only apply when P is in pounds, A in

square inches, and when the value of l/r is less than 120.

They do not have the same degree of reliability as Ran-

kine's formula, since they are wholly empirical. When

specifications require that they should be used, this must

be done, but otherwise Rankine's formula (5) should be

employed.

For example, find the safe load for a hollow cast-iron

column 6X6 niches in outside dimensions and 5X5 inches

in inside dimensions, the length being 18 feet and the ends

fixed. Here A = 11 square inches, r2 = Vis(36+25) = 5.08

whence r 2.252 inches, Z/r
=

95.9, and then from the

formula P=67800 pounds. In this solution no use is

made of the unit-stress S on the concave side of the

column. By Rankine's formula, using S= 15 000 pounds

per square inch, there is found P=58 100 pounds, which

is a more reliable value.

Again, let it be required to find the diameter of a solid

cast-iron strut 6 feet long to safely carry a steady load of

64 000 pounds. Here for a very short strut, where 1= 0,

the area required is A = 64 000/10 000 = 6.4 square inches,

which corresponds to d = 2.85 and r= 0.71 inches. Assume

then d = 4 inches, whence .4 = 12.57 square inches, r=l

inch, and l/r
= 72

; inserting these in the formula there is

found P = 89 000 pounds which, being greater than the

given value, shows that 4 inches is too large a diameter.

Assume again that d= 3.5 inches, whence A = 9.62 square

inches, r= 0.875 and Z/r
=

84.6; inserting these in the

formula, there is found P= 63 600 pounds, which is very

close to the given value, so that d= 3.5 inches is a satisfac-

tory solution of the problem by the straight-line formula.
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Prob. 43. A column of structural steel has the dimensions

stated in Art. 25 for Fig. 19. What steady load can it carry accord-

ing to the straight-line formula?

ART. 44. REVIEW PROBLEMS

Prob. 44 A. Find the safe steady load for a hollow short cast-

iron column which is 12 inches in outside and 9 inches in inside

diameter.

Prob. 44 B. Given g =%ooo and <S = 9000 pounds per square

inch for a cast-iron column. Plot a curve for formula (5), taking

values of l/r as abscissas and values of P/A as ordinates.

Prob. 44 C. Determine the safe load for a fixed-ended timber

column 3X4 inches in section and 10 feet long, so that the greatest

compressive unit-stress may be 800 pounds per square inch.

Prob. 44 D. A cylindrical wrought-iron column with fixed ends

is 12 feet long, 6.36 inches in outside diameter, 6.02 inches in inside

diameter, and carries a load of 49 000 pounds. Find its factor of

safety.

Prob. 44 E. Compute the size of a square timber column with

fixed ends to carry a load of 100 000 pounds with a factor of safety

of 10, its length being 12 feet.

Prob. 44 F. A beam 25 feet long carries a uniform load of 3000

pounds per linear foot, and is supported at its ends by two round

cast-iron columns 15 feet long. The columns have fixed ends and

are 6 inches in outer diameter. Find the inner diameter of the col-

umns so that the unit-stress S is 10 000 pounds per square inch.

Prob. 44 G. A 10-inch standard I beam weighing 30 pounds per
linear foot is used as one of the compression members in a small

bridge. The column is fixed-ended and is 20 feet long. Will the

column be safe for a load of 50 000 pounds?

Prob. 44 H. The piston-rod of an engine is circular in shape and
its stroke is three feet. The maximum load upon the piston is

20 000 pounds. Find the proper diameter for the rod, using S as

6000 pounds per square inch.
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CHAPTER 6

THE TORSION OF SHAFTS

ART. 45. PHENOMENA OF TORSION

Torsion is that kind of stress which occurs when

external forces tend to twist a body round an axis. A
shaft which transmits power is twisted by the forces

applied to the pulleys, and thus all its cross-sections are

brought into stress. This stress is a kind of shearing

but the forces acting in different parts of a section are not

parallel.

Let one end of a horizontal bar be rigidly fixed, and

to the free end let a lever be attached at right angles

Fig. 34

to its axis (Fig. 34). A weight P hung at the end of this

lever will twist the shaft so that a line ab which originally

was horizontal will -assume a spiral form ad, while the

radial line cb will move to the position cd. It has been

shown by experiments that, if the material is not stressed

beyond its elastic limit, the angles bed and bad are pro-
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portional to the applied weight P, and that on the removal

of this weight the lines cd and ad will return to their

original positions. If the elastic limit is exceeded this

proportionality does not hold, and if the stress is made

great enough the bar will be ruptured.

Let p be the lever-arm of P with respect to the axis c.

Then experience also shows that the amount of twist

is proportional to p. The product Pp is the moment of P
with respect to the axis, and it is called the 'twisting

moment.' If there are several forces PI, PZ, etc., acting

on the shaft with lever-arms p\, pz, etc., the total twisting

moment Pp is the algebraic sum of the separate moments

Pipi, P^pz, etc., those being positive which tend to turn

in the direction of the hands of a watch, and those negative

which turn in the opposite direction.

For example, let the three lever-arms be applied to

a bar at the points B, C, and D, whose distances from A

Fig. 35

are 5, 8, and 12 feet. Let the forces in Fig. 35 be PI= 30

pounds, P2
= 60 pounds, and P3 100 pounds, their lever-

arms being pi
= 2.5 feet, p2

= 2.0 feet, and ps
= 3.5 feet.

Then for all sections between D and C the twisting

moment is +30X2.5= +75 pound-feet; for all sections

between C and B the twisting moment is +30X2.5
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60X2.0= 45 pound-feet; and for all sections between

B and A the twisting moment is +30X2.5 60X2.0+
100X 3.5 = +305 pound-feet. Thus the tendency to twist

between B and C is in the opposite direction to that in

the other parts of the bar.

Prob. 45 A. If a force of 600 pounds acting at 5 inches from the

axis twists the end of a shaft 30 degrees, what force acting at 12

inches from the axis will twist it 60 degrees?

Prob. 45 B. It is found by experiment that the angle bed in

Fig. 34 is proportional to the length of the bar when P and p are

constant. If the angle bed is 6 35' for a shaft 9.4 feet long, what will

this angle be for a shaft 13.5 feet long?

ART. 46. POLAR MOMENTS OF INERTIA

In the discussion of shafts the moments of inertia of

cross-sections are required with respect to a point at the

center of the shaft and not with respect to an axis in the

same plane, as in beams and columns. The 'polar

moment of inertia
'

of a surface is denned as the sum of the

products obtained by multiplying each elementary area

by the square of its distance from the center of the surface.

Thus if a be any elementary area and x its distance from

the center the quantity Sao;2
is the polar moment of inertia,

2 being the symbol of summation, which denotes that

all the values a^Xi, a2x?, etc., are to added until the

entire surface is covered.

In Fig. 36 let a be any elementary area and z its dis-

tance from an axis AB passing through the center of

gravity of the section; then 2a22
,
or the summation of

all the values of az2
,
is the moment of inertia with respect

to the axis AB (Art. 24). Also, if y is the distance from

a to an axis CD which is normal to A B, then Sa?/
2 is the
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moment of inertia with respect to the axis CD. But since

22 -f- ?/
2 = s;

2
,

the product Sax2
is equal to 2az2

-}-2a?/
2

;

that is, the polar moment of inertia is the sum of the

D

-&

Fig. 36

moments of inertia taken with respect to any two rec-

tangular axes.

The polar moment of inertia is represented by J.

By the aid of the above principle its value is readily

found from the values of / given in Arts. 24 and 37. Let

d be the diameter of a circle; then,

For a solid circle, J=y32Trd*

Also, in the case of a hollow section, let d be the outer

and di be the inner diameter; then,

For a hollow circle, J= 1/3271- (d
4

di
4
)

The circular sections are most frequently used for shafts,

and the discussions of this chapter apply mainly to such

shafts. The theory of the torsion of square and rec-

tangular bars is very complicated and cannot be given here.

Prob. 46 A. Show that the polar moment of inertia for the hollow

circular section is ]^A(d'
2+di2

), where A is the section area.

Prob. 46 B. Show that the polar moment of inertia for a square
section area is M)d4

.
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ART. 47. FORMULA FOR TORSION

If two cross-sections are taken in a shaft very near

together, each section tends to twist with respect to the

other, and shearing stresses are found to exist in all parts

of the section. These stresses are zero at the center and

greatest at the boundary of a circular section, and they

act everywhere perpendicular to the lever-arms drawn

to them from the center. If the elastic limit is not

exceeded it is found that the stresses are proportional to

their lever-arms.

Let P be the force acting with the lever-arm p which

produces the twisting moment Pp (Fig. 37). This must

Fig. 37

be equal to the resisting moment of the internal stresses.

Let S be the shearing unit-stress at the remotest part of

the section whose distance from the center is c. Then the

stress at a distance Y^c from the center is %S, and the

stress at a distance x from the center is Sx/c. The total

stress on an elementary area a at a distance x from the

center is then aSx/c, and the moment of this stress with

respect to the center is (S/c)ax
2

. The resisting moment is

the sum of all the values of S/cax
2
, or, since S and c are

constants, this sum is GS/c) 2az2
. But, as seen in the last
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article, the quantity Sax2
is the polar moment of inertia J.

Accordingly the resisting moment of the internal shearing

stresses is SJ/c, and, equating this to the twisting moment

Pp, there results

S
-^=Pp (6)

which is the fundamental formula for the torsion of

shafts with circular cross-sections.

This formula is analogous with formula (4) for beams,

and is used in a similar manner to investigate and design

shafts. The unit-stress S is here always a shearing stress,

and its working values are to be determined by applying

factors of safety to the ultimate shearing strengths given

in Art. 6. Shafts which transmit power are subject to

variable loads, and often to shocks, and hence their values

of S should be taken low. Formula (6) is subject to the

same limitation as formula (4), namely, it is only true

when the unit-stress S is less than the elastic limit of the

material (see Art. 66).

For example, the twisting moment Pp being 20 000

pound-inches, it is required to find the shearing stress pro-

duced by it in a circular shaft 4 inches in diameter. Here

c = 2 inches, ,7= 25.13 inches4
,
and then by (6) the value of

S is found to be 1590 pounds per square inch. If the

shaft is of wood this is too low a value of S, it being

about one-half of the ultimate shearing strength; if it

is of wrought iron or steel there is a high factor of safety.

Prob. 47 A. A round steel shaft is subject to a twisting moment
of 2500 pound-inches. What should be its diameter so that the

greatest shear S may be 6000 pounds per square inch?

Prob. 47 B. A pulley 36 inches in diameter is placed on a 2-inch

7
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wrought-iron shaft, and the effective pull of the belt on the pulley

is 500 pounds. What is the factor of safety of the shaft?

ART. 48. SHAFTS TO TRANSMIT POWER

'Work '

is the product of a force by the distance through

which it is exerted. Thus, if a weight of 10 pounds is

lifted vertically a distance of 5 feet there are performed

50 foot-pounds of work. If this weight is moved hori-

zontally, however, the force required depends only on

frictional and other resistances; if these require a force

of 3 pounds and this be exerted through a distance of

5 feet, then 15 foot-pounds of work are performed.

'Power' is work performed in a given time. The unit

of power is the 'horse-power,' which is denned as 33 000

foot-pounds of work performed in one minute. Thus, if

99 000 foot-pounds of work are performed in one minute,

the power exerted is 3 horse-powers; if 99 000 foot-

pounds of work are performed in two minutes, the power
exerted is 1^ horse-powers.

Power from a motor is usually transmitted to a shaft

by belts, and the shaft then transmits the power to the

places where the work is to be performed. In doing

this the shaft is brought under stress. Let H be the

power transmitted through a belt to a pulley. Let P
be the tangential force in pounds brought by the belt

on the circumference of the pulley, and let p be the radius

of the pulley in inches. Let n be the number of revolu-

tions made by the shaft and pulley in one minute. In one

revolution a force of P pounds acts through 2irp inches, and

the work of PX^wp pound-inches, or ^irPp pound-feet,

is performed. In one minute the work performed is
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pound-feet. The number of horse-powers exerted

is found by dividing this work by 33 000, or

H= nirPp
198 000

The twisting moment Pp may now be replaced by the

resisting moment SJ/c, and hence

&/= 19800Qg
c mr

which is the formula for the discussion of round shafts

that are used to transmit power.

For such a shaft c is equal to one-half of the outer

diameter, whether its section be solid or hollow. The
unit-stress S is here always that for shearing, and in

selecting its safe value a high factor of safety is to be

used, as the shaft is subject to variable stresses. It is

noticed that S varies inversely with n, that is, for a

given power transmitted the slower the speed the greater

is the stress in the shaft.

Prob. 48 A If a round shaft one inch in diameter transmits

one horse-power at 100 revolutions per minute, show that the

shearing stress produced is about 3200 pounds per square inch.

Prob. 48 B. A steel shaft making 300 revolutions per minute
is 3 inches in diameter. What horse-power is being transmitted

when the shearing unit-stress is 6000 pounds per square inch?

ART. 49. SOLID SHAFTS

For round solid shafts of diameter d, the polar moment
of inertia is V^d4

,
the value of c is }^d, and formula (7)

then reduces to

cP = 321000-'
n

in which d must be taken in inches and S in pounds per
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square inch. From this formula S may be found for a

given shaft which transmits power, or d may be computed
when it is required to design a shaft for that purpose.

For example, let it be required to find the factor of

safety of a round solid shaft of wrought iron, 2% inches

in diameter, when transmitting 25 horse-power at 100

revolutions per minute. Here d= 2.5 inches, # =
25,

n = 100, and the formula gives

321000X25
" = o 3 \7T7>rr

= * 140 pounds per square inch
Z.o X 1(JU

so that the factor of safety is about 10; this is a high

value for a shaft not subject to shocks.

As an example of design, let it be required to find

the diameter of a wrought-iron shaft when transmitting

90 horse-power at 250 revolutions per minute. Here

the factor of safety will be taken at 8, or the allowable

unit-stress S at 7000 pounds per square inch. Then,
from the formula,

,, 321 000X90
d =

-7000X260
=16 '5

and hence the diameter d should be 2 % inches.

The above formulas do not apply to square shafts;

in these the greatest stress is not at the corners but along

the middle of the sides. It is shown in Mechanics of

Materials (tenth edition) that the formula for a solid

square shaft of side d is

Sd3 = 283 600-
n

For example, let it be required to find how many horse-

powers are transmitted by a wooden shaft 12 inches
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square when it makes 25 revolutions per minute and S
is 200 pounds per square inch. Here all quantities in

the formula are known except H, and the solution gives

H = 305 horse-powers.

Prob. 49 A. Find the horse-power that can be transmitted by a

solid round steel shaft of 6J^ inches diameter when making 150

revolutions per minute, S being 7500 pounds per square inch.

Prob. 49 B. Compare the horse-powers per pound weight of

shaft which can be transmitted by a round shaft of diameter d

and a square shaft of side d.

ART. 50. HOLLOW SHAFTS

Hollow forged steel shafts are now much used for

ocean steamers, as their strength is greater than solid

shafts of the same area of cross-section. If d is the

outside and d: the inside diameter, the value of J is

l/
32ir(d4 c?i

4
) and c is Y^d, These inserted in (7) give

S
d"~ dl

'

=321000-
d n

which is the formula for investigation and discussion.

For example, a nickel steel shaft of 17 inches outside

diameter is to transmit 16 000 horse-powers at 50 revolu-

tions per minute; what should be the inside diameter

so that the unit-stress S may be 25 000 pounds per square

inch? Here everything is given except di, and from the

equation its value is found to be 11 inches nearly. The
area of the cross-section of this shaft will be about 132

square inches, and its weight per linear foot about 449

pounds.

Prob. 50^4. If a hollow shaft has the same area of cross-section

as a solid one, and if the inside diameter of the hollow shaft is
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one-half of the outside diameter, prove that the hollow shaft is 44

percent stronger than the solid one.

Prob. 50 B. The tail shaft of a marine engine is 15 inches outside

and 10 inches inside diameter. What horse-power is being trans-

mitted when the shaft is making 300 revolutions per minute and the

unit-stress S is 8000 pounds per square inch?

ART. 51. REVIEW PROBLEMS
/

Prob. 51 A. If a force of 80 pounds, acting at 18 inches from

the axis, twists the end of a shaft through 15 degrees, what force

will produce the same result when acting at 4 feet from the axis?

Prob. 51 B. Compute the polar moment of inertia for a hollow

shaft with outside diameter 18 inches and inside diameter 10 inches.

Prob. 51 C. Compute the shearing unit-stress for the shaft of

the last problem when it is subject to a twisting moment of 2500

pound-inches.

Prob. 51 D. Find the horse-power that can be transmitted by a

wrought-iron shaft 3 inches in diameter when making 50 revolutions

per minute, the value of S being 6000 pounds per square inch.

Prob. 51 E. Find the diameter of a solid wrought-iron shaft to

transmit 90 horse-power at 250 revolutions per minute, the value

of S being 7000 pounds per square inch.

Prob. 51 F. Find the ratio of the strength of a hollow shaft

to that of a solid one, the section areas being equal, and the outside,

diameter of the hollow section being three times as great as the

inside diameter.

Prob. 51 G. The crank of an engine is 9 inches long and the

maximum tangential thrust brought upon it by the connecting-rod

is 5000 pounds. Find the diameter of a steel shaft to stand the

above twisting moment when the allowable stress S is 6000 pounds

per square inch.

Prob. 51 H. What horse-power will be transmitted by a hollow

shaft of 8 inches outside and 5 inches inside diameter when running
at 300 revolutions per minute, the value of S being 7000 pounds per

square inch? Find the diameter of a solid steel shaft to transmit

the same horse-power with the same speed and unit-stress.
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CHAPTER 7

ELASTIC DEFORMATIONS

ART. 52. THE MODULUS OF ELASTICITY

It was explained in Chapter 1 that, when a bar is

subject to stresses produced by gradually applied forces,

the elongations increase proportionately with the stresses,

if the elastic limit is not exceeded. This law of elasticity

enables the elongations of bars and the deflections of

beams to be computed, provided none of the stresses

exceeds the elastic limit of the material.

The 'modulus of elasticity' in tension is the ratio

of the unit-stress to the unit-elongation. Thus, if a bar

one inch long and one square inch in cross-section is

under the stress S an elongation s is produced, and

*-f (8)

is the modulus of elasticity. If the bar has a section area

A which is acted on by the pull P, then the unit-stress S

is P/A ;
if the bar has the length I, an elongation e is

produced and the unit-elongation s is given by e/L

For compression E is the ratio of the unit-stress to

the unit-shortening accompanying that stress, and in

general E is the ratio of the unit-stress to the unit-deforma-

tion. Since s is an abstract number, E is expressed in the

same unit as S, that is, in pounds per square inch or kilos

per square centimeter.

Within the elastic limit S increases at the same rate
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as s, and thus E is a constant; beyond the elastic limit

there is no proper modulus of elasticity. For different

materials under the same unit-stress S, the value of E
increases as s decreases; thus E is a measure of the stiff-

ness of materials. Formula (8) also gives

S

which is the change of a unit of length of a bar under

a given unit-stress S.

The values of the moduluses of elasticity for tension

and compression are practically the same, and their mean
values for the different materials are given in the follow-

ing table. For shear the moduluses of elasticity are about

TABLE 10. MODULUSES OF ELASTICITY

Material
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Prob. 52 B. When a steel bar 30 feet long was subjected to a ten-

sile unit-stress of 12 000 pounds per square inch, it elongated about

0.143 inches. Compute the modulus of elasticity of steel.

ART. 53. ELONGATION UNDER TENSION

Let a bar whose section area is A and whose length

is I be under the tension P, and let e be the elongation

produced. The unit-stress S is P/A and the unit-elonga-

tion s is e/L Then the modulus of elasticity E is

E= S= PI

s Ae

and hence, if P/A be less than the elastic limit,

- Pl

'~AE

is the elastic elongation of the bar due to the applied

tension P.

For example, let it be required to find the elongation

of a wrought-iron bar 30 feet long when stressed up to

its elastic limit. Here P/A = 25 000 pounds per square

inch, #= 25 000 000 pounds per square inch, and Z= 360

inches. Then from the formula, e= 0.36 inches. This is

the elastic elongation; the ultimate elongation will be

about 72 inches. In all cases, as seen from the figure in

Art. 4, the elastic elongations are very small compared
with the ultimate elongations.

Prob. 53 A. A steel eye-bar 30 feet long is 1^X6 inches in size.

How much does it elongate under a pull of 90 000 pounds?

Prob. 53 B. What is the ultimate elongation of a steel bar 1 inch

square and 10 feet long?
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ART. 54. SHORTENING UNDER COMPRESSION

If a bar of cross-section A and length I be under the

compression P it shortens the amount e. For a short

bar where no lateral deflection can occur the unit-stress

S is uniform over the cross-section, and the shortening

follows the same law as does the elongation in tension,

and hence

PI
e =AE

Here, as before, the unit-stress P/A must not exceed

the elastic limit of the material.

For example, let a cast-iron bar one inch in diameter

and 5 inches long be under a compression of 30 000 pounds.

Here P = 30000 pounds, A = 0.785 square inches, 1= 5

inches, and E=I5 000 000 pounds per square inch. Then

from the formula, e= 0.0 128 inches; but this result is of

no value, because the unit-stress P/A is nearly double

the elastic limit of cast iron. If, however, P is given

as 3000 pounds, then the formula properly applies, and e

is found to be 0.0013 inches.

Prob. 54 A. A wrought-iron bar 18 inches long weighs 24 pounds.
How much will it shorten under a compression of 7250 pounds?

Prob. 54 B. The piston-rod of a steam engine is 4 inches in

diameter and 30 inches long, while the piston is 24 inches in diam-

eter. What is the change in length of the piston-rod when the steam

pressure is 200 pounds per square inch?

ART. 55. DEFLECTION OF CANTILEVER BEAMS

The best method of deriving formulas for the deflec-

tions of beams is by the help of the calculus. These

methods are given in higher works on the subject; see
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for instance Merriman's Mechanics of Materials. The

formulas will be stated here without proof, and be accom-

panied by illustrations showing their value and importance.

When a load P is at the end of a cantilever beam whose

length is / (Fig. 38), a deflection of that end results, which

will be designated by /. This deflection will evidently

be the greater the greater the load and the longer the

length of the beam. The formula for it is

f-I*J 3EI

in which E is the modulus of elasticity of the material

(Art. 52) and 7 is the moment of inertia of the cross-

section (Art. 24). The ordinate y at any distance x from

the free end is given by y= lAf(3n n2
) in which n repre-

sents x/l.

When a uniform load is on the beam let this be called W
(Fig. 39). Then the deflection is

Wl3

J 8EI

It is thus seen that the deflection varies as the cube of

the length of the beam, so that if the length is doubled

the deflection will be eight times as great. It is also
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seen that a uniform load produces only three-eighths as

much deflection as a single load at the end. The ordinate

y at any distance x from the free end is given by

y~Vsf (4n n4
) where n represents x/l.

For example, let it be required to compute the deflec-

tion of a cast-iron cantilever 2X2 inches and 6 feet long,

due to a load of 100 pounds at the end. Here P=100

pounds, 1= 72 inches, ^=15000000 pounds per square

inch, and 7 = i/i 22
4 =

li<5 inches4
. Then from the formula,

/= 0.622 inches, which is the deflection at the end.

For a rectangular cross-section of breadth 6 and depth d

the value of / is y^bd?. Thus the deflections of rectangular

beams vary inversely as 6 and d3
. As stiffness is the

reverse of deflection, it is seen that the stiffness of a beam

is directly as its breadth, directly as the cube of its

depth, and inversely as the cube of its length. The

laws of stiffness are hence quite different from those of

strength.

Prob. 55 A. A steel I beam 8 inches deep and 6 feet long is used

as a cantilever to carry a uniform load of 240 000 pounds. What
will be its deflection?

Prob. 55 B. A cantilever beam 6.3 feet long and loaded at the

end has a deflection of 0.48 inches at that end. What is the deflec-

tion of a point half-way between that end and the wall?

ART. 56. DEFLECTION OF SIMPLE BEAMS

When a simple beam of span I has a load P at the

middle (Fig. 40), each reaction is %P. If this beam is

imagined to be inverted it will be seen to be equivalent

to two cantilevers of length
l
/%l, each having the load 3^P

at the end. Hence in the first formula for the deflection
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of a cantilever, given in Art. 55, if I is replaced by %l
and P by %P, it becomes

/_J2LJ 48EI

which gives the deflection of a simple beam due to a load

at the middle.

Fig. 40

When a simple beam is loaded with w per linear unit

the total load wl is represented by W. The deflection at

the middle due to this load is

which is only five-eighths of the deflection caused by
the same load at the middle.

The formulas of this and the preceding article are

only valid when the greatest horizontal stress S produced

by the load is less than the elastic limit. These formulas

can be expressed in terms of S by substituting the values

of P and W from the formula (4) of Art. 28. Thus for

the simple beam with load at the middle %Pl=SI/c, and

for the uniform load }/$\
7
l = SI/c. Hence

SP
For the single load P, f

For the uniform load W, f=
4o./iC

which show that the deflections of beams under the

same unit-stresses increase directly as the squares of their

lengths.
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Prob. 56 A. In order to find the modulus of elasticity of oak, a

bar 2X2 inches, and 6 feet long, was loaded at the middle with 50

pounds, and then writh 100 pounds, the corresponding deflections

being found to be 0.16 and 0.31 inches. Compute the modulus of

elasticity E.

Prob. 56 B. Compute the deflection of a steel I beam 6 inches

deep and 16 feet long when it is loaded so that the flexural unit-

stress at the middle equals the elastic limit of the material.

ART. 57. RESTRAINED BEAMS

A beam is said to be restrained at one end when that

end is horizontally fixed in a wall and the other end rests

on a support (Fig. 41). In this case the reaction of the

support is less than for a simple beam. For a uniform load

Fig. 41

of w per linear unit over the span I it is proved in Mechan-

ics of Materials that the reaction at the support is

%wl, provided the elastic limit is not exceeded. The

bending moment at any section distant x from the support

then is %wlx ^wx2
,
and this shows that when x= %l

there is no bending moment; when x = %l the greatest

positive bending moment is %2swZ2
,
and when x= l the

greatest negative bending moment is ^/gwl
2

;
the distribu-

tion of bending moments being as shown in the figure.

Also, the maximum deflection is

wl* JfT^
' 185#7 185EI

which occurs when x has the value 0.42 151.
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For a beam fixed at both ends and uniformly loaded

(Fig. 42) there is a negative bending moment Vi2w;Z
2 at

-*-->[

Fig. 42

each wall and a positive bending moment *4ticP at the

middle; also the deflection at the middle is

J

in which W is the total uniform load wl.

It is seen that in these restrained beams the lower side

is partly in tension and partly in compression, since a

positive bending moment indicates the former and a

negative one the latter (Art. 30). For a simple beam the

greatest bending moment is ]/$Vl, for a beam fixed at both

ends the greatest bending moment is ~y\%Wl; hence if

both be the same size the restrained beam will carry the

greater load, or if both carry the same load the restrained

beam may be of smaller size than the simple one. Thus

if beams can be fixed horizontally at their ends the con-

struction may be more economical.^

Prob. 57 A . When a beam is fixed at one end and supported at

the other, the reaction of the supported end due to a load P at the

middle is rAoP- Show that there is a positive bending moment

'fazPl under the load, and a negative bending moment 3AePl at the

wall. Also draw the diagram of bending moments.

Prob. 57 B. Show that the deflection of a simple beam is five

times as great as that of a beam fixed at both ends, both beams being

uniformly loaded.
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ART. 58. TWIST IN SHAFTS

When a shaft of length I transmits H horse-powers at

a speed of n revolutions per minute, one end of the shaft

is twisted with respect to the other through an angle of

D degrees, this being the angle bed in Fig. 34. When the

elastic limit is not exceeded, this angle is, for a round shaft,

TTJ
D = 3610000^-nFJ

in which J is the polar moment of inertia of the section

(Art. 46) and F is the modulus of elasticity for shear

(Art. 52). Here I must be taken in inches, J in inches4
,

and F in pounds per square inch.

For example, let a steel shaft 125 feet long, 17 inches

outside diameter, and 11 inches inside diameter transmit

16 000 horse-powers at 50 revolutions per minute. Here

#=16000 horse-powers, Z=1500 inches, n= 50, F =
10000000 pounds per square inch, ,7= 6765 inches4

.

Then from the formula D = 25.3 degrees, which is the angle

through which a point on one end is twisted relative to the

corresponding point on the other end. If this shaft

revolves with a speed of only 25 revolutions per minute

while doing the same work, its angle of twist will be twice

as great and the stresses in it also twice as great as before.

The formula also shows that the angle of twist varies

directly as the length of the shaft.

The above formula may also be written

from which D may be computed when the twisting

moment Pp is given,
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Prob. 58 A. A solid steel shaft 125 feet long and 16 inches in

diameter transmits 8000 horse-powers at a speed of 25 revolutions

per minute. Compute the angle of twist.

Prob. 58 B. A solid steel shaft 8 feet long and 2 inches in diam-

eter is subject to the twisting moment brought by a bejt on a pulley

of 30 inches diameter, the effective pull of the belt being 200 pounds.

Compute the angle of twist.

ART. 59. REVIEW PROBLEMS

Prob. 59 A. Show, for timber and wrought-iron bars stressed

to their elastic limits, that the change of length cf the former is

double that of the latter.

Prob. 59 B. Compute the tensile force required to stretch a bar

of structural steel, 1%X9% inches in section area and 23 feet

3M inches long, so that its length may become 23 feet 3% inches.

Prob. 59 C. Show that the modulus of elasticity is the unit-stress

which would stretch a bar to double its original length, provided this

could be done without impairing the elasticity of the material.

Prob. 59 D. What unit-stress will shorten a block of cast iron

0.4 percent of its length?

Prob. 59 E. A cast-iron bar, 2 inches wide, 4 inches deep and 6

feet long, was balanced upon a support and a weight of 4000 pounds

hung at each end, when the deflection of each end was found to be

0.401 inches. Compute the modulus of elasticity.

Prob. 59 F. Compute the elastic deflection of a light steel

10-inch beam of 30 feet span, due to its own weight, when resting on

supports at the ends.

Prob. 59 G. Compute for the beam of the last problem the

deflection when the beam is fixed at both ends.

Prob. 59 H. A wrought-iron shaft, 5 feet long and 2 inches in

diameter, is twisted through an angle of 7 degrees when transmitting
4 horse-powers at 120 revolutions per minute. Compute the shearing
modulus of elasticity.
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CHAPTER 8

MISCELLANEOUS APPLICATIONS

ART. 60. WATER AND STEAM PIPES

The pressure of water or steam in a pipe is exerted

in every direction and tends to tear the pipe apart longi-

tudinally. This external force is resisted by the internal

tensile stresses which act in the walls of the pipe normal

to the radii. If p is the pressure per square inch exerted

by the water or steam, D the diameter, and I the length

of the pipe, the total pressure P exerted on any diametral

plane is p .ID. If t is the thickness of the pipe and S
the tensile unit-stress, the total resisting stress will -be

S . 2lt, if the thickness is not large compared with the

diameter. Hence

plD = 2Slt or pD = 2St

is the formula for discussing water or steam pipes.

Water pipes are made of cast iron or wrought iron,

the former being more common, while for steam the

latter is preferable. A water pipe liable to the shock

of water-ram should have a high factor of safety, and

in steam pipes the factors should also be high. The

formula above deduced shows that the thickness of a

pipe must increase with its diameter, as also with the

internal pressure to which it is to be subjected.

For example, let it be required to find the proper

thickness for a wrought-iron steam pipe of 18 inches
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diameter to resist a steam-pressure of 250 pounds per

square inch. With a factor of safety of 10 the working

unit-stress is 5500 pounds per square inch. Then, from

the formula,

pD 250X18

so that a thickness of ^ inch would probably be selected.

The transverse resistance of a pipe is double the longi-

tudinal, or pD = 4St applies to the case of transverse

resistance. This equation also applies to hollow spheres

under internal pressure.

Prob. 60 A. Find the factor of safety of a cast-iron water pipe
12 inches in diameter and Y% inches thick under a pressure of 130

pounds per square inch.

Prob. 60 B. What internal pressure per square inch will burst a

cast-iron water pipe of 24 inches diameter and M inches thickness?

ART. 61. RIVETED LAP JOINTS

When two plates are joined together by rivets and the

plates then subjected to tension, there is brought a shear

upon the rivets which tends to cut them off. A riveted

lap joint is one where one plate simply laps over the other.

For a lap joint with a single row of rivets (Fig. 43),

let P be the tensile stress which is transmitted from one

plate to another by means of one rivet; let a be the pitch

of the rivets, or the distance from the center of one rivet

to the center of the next; let d be the diameter of a rivet

and t the thickness of the plate. The plate tends to tear

apart on the section area (a d)t, while the rivet tends

to shear off on the section area %ird?. Accordingly, if St
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and S8 are the unit-stresses for tension and shear, then

P= t(a-d)St
and P = ^7rd

2Sa

are formulas for the discussion of this case.

For example, a steel water pipe 30 inches in diameter

has a longitudinal rivet seam with one row of rivets,

Fig. 43

the diameter of the rivets being % inches, their pitch 2

inches, and the thickness of the plate % inches. If the

interior water-pressure is 130 pounds per square inch,

what are the unit-stresses in tension and shear? Here

the total pressure on a diametral plane of length equal

to the pitch is 130X2X30 = 7800 pounds. Then for

tension on the plate

3900
St= T/T^ 3-77

= 6240 pounds per square inch

and for shear on the rivet

OQQA
^ =

n *7QK\/ JL
= 8860 pounds per square inch

0.785X A

Here the factors of safety are about 10 for the plates

and about 6 for the rivets, so that the joint may be

regarded as a satisfactory one.
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The thickness required for a boiler or pipe having a

longitudinal lap joint like that shown in Fig. 43 is found

from the equation

2t(a-d)St
= paD

where D is the diameter and p the inner unit-pressure.

For example, let Z) = 30, a= 2, and d=% inches, while

p=130 pounds per square inch. Then, for ^ = 6000

pounds per square inch, the thickness is 2=130X2X
30/2X1^X60000 = 0.52 inches.

When two rows of rivets are used, these are staggered,

so that the rivets in one row come opposite the middle

Fig. 44

of the pitches in the other row (Fig. 44). Here the tension

P is distributed over two rivet sections instead of one, and

P = t(a-d)St F

are the formulas for investigation. Thus for the data

of the above example, if there are two rows of rivets,
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St
is 12 500 pounds per square inch, and $s

= 8900 pounds

per square inch, which are good working values for mild

steel if the pipe is not subjected to the shock of water-ram.

The working unit-stress for shear should be about

three-fourths of that for tension, or Sa
= %St

. Equating

the above values of P under this condition gives a joint

where the security of the plates in tension is the same

as that of the rivets in shear; thus

t

the first being for single lap riveting and the second for

double lap riveting. These are approximate rules for

finding the pitch when the thickness of plates and diam-

eter of rivets are given.

Prob. 61-4. A steel water pipe 30 inches in diameter has rivets

% inches in diameter and plates J/ inches thick. If double riveting

is used, what should be the pitch of the rivets?

Prob. 61 B. Compute the factor of safety of a steel boiler 5 feet

in diameter and -y\Q inches thick when it is subject to a steam

pressure of 300 pounds per square inch, there being longitudinal

lap joints having rivets of % inches diameter with 2^ inches pitch.

ART. 62. RIVETED BUTT JOINTS

When two plates butt together cover plates are used

on one or both sides; if the covers are on both sides each

Fig. 45

is one-half the thickness of the main plate (Fig. 45).

The shear on each rivet is here divided between the upper

and the lower cross-section, this being called a case of
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double shear. Thus if P is the tension which is trans-

mitted through one rivet, d the diameter of a rivet, a the

pitch, and t the thickness of the main plate,

P = t(a- d)St
P= 2. }4ird

2S8

which are the same as for two rows of lap riveting.

The 'efficiency' of a riveted joint is the ratio of the

strength of the joint to that of the solid plate. If the

joint is designed so as to be of equal strength in tension

and shear this efficiency is

t(a-d)St= d

taSt a

Thus if the rivets are % inches in diameter and the pitch

is 2 inches the efficiency is 1-% = 0.625, that is, the

riveted joint has only 62.5 percent of the strength of the

solid plate. Single lap riveting has usually an efficiency

of about 60 percent, while double lap riveting and common
butt riveting have from 70 to 75 percent. By using three

or more rows of rivets efficiencies of over 80 percent

can be secured.

When a joint is not of equal strength in tension and

shear there are two efficiencies, one being the ratio of the

tensile strength of the joint to that of the solid plate,

and the other the ratio of the shearing strength to that of

the solid plate. The least of these is the true efficiency.

Prob. 62^1. A butt joint with two cover-plates has the main

plate Yi inches thick, the rivets % inches in diameter, and the pitch

of the rivets 2% inches. Compute the efficiency.

Prob. 62 B. Show that the efficiency of a butt joint, based on

the shear of rivets, is double that of a lap joint.



120 MISCELLANEOUS APPLICATIONS CH. 8

ART. 63. STRESSES DUE TO TEMPERATURE

A bar which is free to move elongates when the tem-

perature rises and shortens when it falls. But if the bar

is under stress, or is fixed so that it cannot elongate or

contract, the change in temperature produces a certain

unit-stress. This unit-stress is that which would cause

a change in length equal to that produced in the free bar

by the change in temperature.

The coefficient of linear expansion is the elongation

of a bar of length unity under a rise of temperature of

one degree. For the Fahrenheit degree the average values

of the coefficients of expansion are as follows:

For brick and stone, (7 = 0.0000050

For cast iron, C= 0.0000062

For wrought iron, C= 0.0000067

For steel, C = 0.0000065

Thus a free bar of cast iron 1000 inches long will elongate

0.0062 inches for a rise of one degree, and 0.62 inches

for a rise of 100 degrees.

The elongation of a bar of length unity for a change

of t degrees is hence s = Ct. But (Art. 52) the unit-stress

due to the unit-elongation s is S= sE, where E is the

modulus of elasticity. Therefore

S = CtE

is the unit-stress produced by a change of t degrees on

a bar which is fixed. If the temperature rises S is com-

pression, if the temperature falls S is tension.

For example, consider a wrought-iron rod which is

used to tie together two walls of a building and which is
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screwed up to a stress of 10 000 pounds per square inch.

If the temperature falls 50 degrees there is produced a

tensile unit-stress,

S= 0.0000067X 50X 25 000 000 = 8400

and hence the total stress in the rod is 18 400 pounds

per square inch. If the temperature rises 50 degrees

the stress in the bar is reduced to 1600 pounds per square

inch. In all cases the unit-stresses due to temperature

are independent of the length and section area of the bar.

Prob. 63 A. A cast-iron bar 6 feet long and 4X4 inches in section

is confined between two immovable walls. What pressure is brought
on the walls by a rise of 40 degrees in temperature?

Prob. 63 B. When steel railroad rails are improperly laid with

their ends close together at a temperature of 40, what compressive
unit-stress occurs when the temperature rises to 80?

ART. 64. SHRINKAGE OF HOOPS

A hoop or tire is frequently turned with the inner

diameter slightly less than that of the cylinder or wheel

upon which it is to be placed. The hoop is then expanded

by heat and placed upon the cylinder, and upon cooling

it is held firmly in position by the radial stress produced.

This radial stress causes tension in the hoop.

Let D be the diameter of the cylinder upon which

the hoop is to be shrunk and d the interior diameter to

which the hoop is turned. If the thickness of the hoop
is small, D will be unchanged by the shrinkage and d

will be increased to Z). The unit-elongation of the hoop
is then s= (D d)/d, and hence the unit-stress produced is

where E is the modulus of elasticity of the material.
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A common rule in steel-hoop shrinkage is to make
Dd equal to Visood; that is, the cylinder is turned so

that its diameter is Visooth greater than the inner diameter

of the hoop. Accordingly the tangential unit-stress which

occurs in the hoop after shrinkage is 30000000/1500 =

20 000 pounds per square inch.

When the hoop is thick the above rule is not correct,

for a part of the stress produced by the shrinkage causes

the diameter of the cylinder to be decreased. The rules

for this case are complex ones, and cannot be developed

in an elementary text-book; they will be found in Chapter

XVI of Mechanics of Materials.

Prob. 64. Upon a cylinder 18 inches in diameter a thin wrought-
iron hoop is to be placed. The hoop is turned to an inner diameter

of 17.98 inches and then shrunk on. Compute the tensile unit-

stress in the hoop.

ART. 65. SHAFT COUPLINGS

Let a shaft be in two parts which are connected by
a flange coupling. (Fig. 46). A shows the end view

and B the side view of the coupling. The flanges of the

coupling are connected by bolts which are brought into

shearing stress in transmitting the torsion from one part

of the shaft to the other.

Let the shaft be solid and of diameter Z), let there

be n bolts of diameter d, and let h be the distance from



ART. 66 RUPTURE OF BEAMS AND SHAFTS 123

the center of the shaft to the center of a bolt. If D and

d are assumed, as also the distance h, then, as shown in

Art. 124 of Mechanics of Materials, the formula

_ (d+2h)Ds

gives the number of bolts which is required in order that

the strength of the bolts may be the same as the strength

of the shaft. Since d is usually much smaller than h

it may be neglected within the parentheses; then the

above formula becomes n=D3

/4ihd
2 which is a simpler

expression generally used in practice.

For example, let D = 8 inches, d=l inch, and h=l2

inches, then the second formula gives n=10.7, so that

11 bolts should be used. If D = 8 inches, d=l% inches,

and h = 12 inches, the formula gives n= 6.8 so that seven

bolts should be used.

The case shown at CD in the above figure is one that

should never occur in practice, because here the bolts

are subject to a bending stress as well as to the shearing

stresses due to the torsion. It is clear that this bending

stress will increase with the length between the flanges,

and that the bolts should be greater in diameter than

for the case of pure shearing.

Prob. 65. A solid steel shaft 16 inches in diameter transmits

16 000 horse-powers at 50 revolutions per minute. Design a flange

coupling for this shaft.

ART. 06. RUPTURE OF BEAMS AND SHAFTS

The formulas (4) and (6) deduced in Arts. 28 and 47

for the discussion of beams and shafts are only valid

when the unit-stress S is less than the elastic limit of
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the material. Formula (4) can, however, be used for

the rupture of beams, if S be taken as a certain quan-

tity intermediate between the ultimate compressive and

tensile strengths of the material. This quantity, which is

called the 'modulus of rupture/ has been determined

by breaking beams under transverse loads and then

computing S from the formula. In like manner formula

(6) can be used for the rupture of round shafts if the

modulus of rupture, as found by experiment, is used

instead of the ultimate shearing strength.

The following table gives average values of the modulus

of rupture as determined by testing beams and columns

TABLE 11. MODULUSES OF RUPTURE

Material
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square. The weight of a cast-iron bar x square inches

in section area and one yard long is 9Ax pounds; thus the

weight of the beam is I8.8x pounds. The bending moment
is %Wl or 169.2z pound-inches. The value of c is Y^x

and that of I is 1/i2^
4

- Then, by formula (4),

35000X*'
6x

and the solution of this gives a:= 0.1 7 inches.

It is to be noted, when formulas (4) and (6) are used

for cases of rupture, that they are entirely empirical

and have no rational basis.

Prob. 66 A. What load P applied at the middle of a cast-iron

bar, 18 inches long and 1 inch square, will cause its rupture?

Prob. 66 B. What force P, acting at 24 inches from the axis

of a steel shaft 1.4 inches in diameter, will cause failure by torsion?

ART. 67. REVIEW PROBLEMS

Prob. 67 A. What internal pressure per square inch will burst a

cast-iron sphere 24 inches in diameter and % inches thick?

Prob. 67 B. A wrought-iron boiler, 63 inches in diameter and
1:Vio inches thick, carries a steam pressure of 180 pounds per square
inch. Find the factor of safety of the metal when the efficiency

of the longitudinal riveted joint is 87 percent.

Prob. 67 C. Draw a figure for a double-riveted butt joint and
deduce formulas for the same. Find the efficiencies for plate and
rivets when plate thickness is Y^ inch, pitch of rivets is 334 inches,

and diameter of rivets is
1%e inches.

Prob. 67 D. Find the radial unit-pressure between the rim and
tire of a locomotive driving-wheel when the shrinkage is Visoo, the

diameter of the tire being 60 inches and its thickness % inches.

Prob. 67 E. A solid shaft 6 inches in diameter is coupled by bolts

13/t inches in diameter with their centers 5 inches from the axis.

How many bolts are necessary?
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CHAPTER 9

REINFORCED CONCRETE

ART. 68. CONCRETE AND STEEL

Columns and beams are made by ramming concrete

into wooden forms or boxes which surround their sides,

these being removed after the concrete has hardened.

Steel rods are often placed in the forms and the concrete

rammed around them, and this combination is often

called 'reinforced concrete.' The object of inserting the

steel is to make a safer and stronger construction than is

possible with concrete alone, and to do this at a lower

cost than is possible when only steel is used. Since 1895

there has been a great development in this kind of con-

struction, steel rods being now extensively used for the

reinforcement not only of columns and beams but also

in walls, sewers, and arches.

The kind of concrete generally used for this purpose

is made of Portland cement, sand, and broken stone,

an excellent grade being of the proportions 1 cement,

2 sand, 4 stone by measure, and a lower grade being

of the proportions 1 cement, 3 sand, 6 stone; these two

grades are frequently called '1 : 2 : 4 concrete
' and

'1 : 3 : 6 concrete
'

;
the former is stronger and better than

the latter, but its cost is higher. The average weight of

concrete is about 150 pounds per cubic foot, or about

the same as that of sandstone.

The strength of concrete increases with its age, reaching
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nearly the highest value by the end of the first year. Its

ultimate compressive strength is much higher than the

ultimate tensile strength, and the following are average

values of these in pounds per square inch for concrete

one year old:

Compressive Tensile

Strength Strength

For 1 : 2 : 4 concrete 3500 300

For 1 : 3 : 6 concrete 2500 200

These figures, like all those given in this chapter, refer

only to concrete made with Portland cement. The ulti-

mate shearing strength of concrete is from 800 to 1000

pounds per square inch.

It is seen from these values of the ultimate strengths

that concrete is not well adapted to resist tension, and

under tensile stresses it is almost impracticable to use con-

crete, unless it be strengthened by reinforcing rods of

metal.

Concrete suffers a greater change of shape under a

given applied unit-stress than steel, or the stiffness of

steel is much greater than that of concrete. Mean values

of the modulus of elasticity for the two grades of concrete

are in pounds per square inch:

For 1 : 2 : 4 concrete E= 3 000 000

For 1 : 3 : 6 concrete E= 2 000 000

For steel the mean value of E is 30 000 000 pounds per

square inch (Art. 52), and hence it is seen that concrete

suffers an elastic deformation ten or fifteen times as great

as that of steel when subjected to the same stress per

square inch.
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The elastic limit of concrete is not well defined, but as

a rough average it may be taken in compression at about

one-sixth and in tension at about one-fifth of the ultimate

strength. The allowable working unit-stress for concrete

under compression is generally taken as about one-

seventh of the ultimate strength, that is, about 500

pounds per square inch for 1:2:4 concrete and about

350 pounds per square inch for 1:3:6 concrete.

The rods or bars used for reinforcement are generally

of structural steel having an ultimate strength of about

60 000 and an elastic limit of about 35 000 pounds per

square inch. These may be the round, square, and

rectangular shapes such as are everywhere found in the

market, and various special patented forms are also widely

used. The Ransome rods are square bars which have been

twisted so that the corner lines are spirals; the Thacher

and Johnson bars are rolled so as to have protuberances

or swellings at intervals along the length; these forms are

claimed to possess special advantages in preventing the

rods from slipping in the concrete. The Kahn bar has

projecting fins which are intended to prevent beams from

shearing, and there are also several other forms which are

advertised and used. Some of these are claimed to be

advantageous in having an elastic limit much higher than

that of structural steel.

Prob. 68^1. Consult the advertising columns of the engineering

journals and obtain pictures of several kinds of reinforcing bars

for beams.

Prob. 68B. Compute the amount of shortening of a 1 : 2 : 4

concrete column, 12 inches square and 9 feet long, under a load

of 60 000 pounds.
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ART. 69. COMPOUND BARS

A bar which is under tension is usually called a rod,

while one under compression is called a strut. The rods

and struts considered in the previous chapters may be

called simple ones, as each has been only of one material;

a compound rod or strut, however, is one formed of two

or more kinds of materials. For example, a steel rope

with a hempen center, or a concrete column with a steel

bar within it parallel to the axis, are instances of com-

pound tension and compression members.

When a rod of two materials is subject to a longitudinal

tension P, part of this is resisted by one material and

part by the other. Let A\ be the section area of one

material and A* that of the other, and let Si be the unit-

stress over the area AI, and Sz the unit-stress over the

area A 2 . Then AiSi and A 2S2 are the total stresses on

the two sections, and hence, since the resisting stresses

must equal the applied tension,

P = AiSi+AzSz (9)

is a necessary equation of equilibrium. When P, AI, and

AZ are given, the values of Si and S2 cannot be determined

from this equation, and hence a second condition between

them must be derived.

This second condition is established from the fact

that the elongation of the two parts of the bar is the same.

Let EI be the modulus of elasticity of the first material

and Ez that of the second. Then, if the elastic limit

of neither material is exceeded, the elongation of a unit

of length of the first material is Si/Ei (Art. 52) and that
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of the second material is S2/E2 . Since these must be

equal,

S\ $2 Ol El

which shows that the unit-stresses in the two materials

are proportional to their moduluses of elasticity. If

Ez is 10 times as great as E\, then S2 must be 10 times

as great as Si.

By help of the above formulas the values of Si and Sz

due to a load P on a compound rod of two materials may
be easily found. The above reasoning applies also to

compression if the length of the strut is not more than

about 10 times its thickness, so that lateral flexure does

not change the uniform distribution of the stresses. For

example, consider a wooden bar having wrought-iron

straps fastened along two opposite sides; here E\ for the

timber is 1 500 000, while Ez for the wrought iron is

25 000 000 pounds per square inch, so that Ei/E2 is 0.06,

and hence the unit-stress Si in the timber is equal to

0.06$2 ,
so that, if S2 is 5000 pounds per square inch, Si

will be 300 pounds per square inch. The formula Si/S%=

Ei/Ez cannot, however, be used when Si exceeds the

elastic limit of the timber or when $2 exceeds the elastic

limit of the wrought iron.

The determination of the values of Si and $2 for this

compound rod is now easily made when AI, At, and P
are given. Let AI for the timber be 30 square inches and

A 2 for the wrought iron be 4 square inches. Let the load

P be 60 000 pounds. Since i
= 0.06 2 ,

formula (9) gives

60000 = 36X0.06^2+4^2

from which $2 = 9740 pounds per square inch for the
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wrought iron, and hence $i= 580 pounds per square inch

for the timber. It is here seen that the total stress which

comes on the wrought iron is 4X9740 or about 39 000

pounds, while that on the timber is about 21 000 pounds.

The metal hence carries the greater part of the load,

and it does this largely by virtue of its greater stiffness.

In general, the higher the value of E for a material in a

compound bar, the greater is the part of the load carried

by it.

Prob. 69. A short timber strut, 8X8 inches in section, has four

steel plates fastened to its sides, each being 6 X /^ inches in size, and

it carries a load of 180 000 pounds. Compute the compressive unit-

stresses in the two materials.

ART. 70. REINFORCED COLUMNS

Concrete columns are generally square or round.

Fig. 47 shows a square form having four steel rods im-

>.,

Fig. 49Fig. 47 Fig. 48

bedded in it near the corners. Fig. 48 shows a round

column having a single rod through its axis. Fig. 49

shows a round column formed by a hollow metal cylinder

which is filled with concrete. The length of these columns

will be considered short compared with the thickness,

so that no tendency to lateral flexure exists.
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The investigation of a reinforced column consists in

determining the compressive unit-stresses due to the

given load P, and comparing them with the allowable

unit-stresses. Let A\ be the section area of the concrete

and Az that of the metal, and let E\ and E2 be the corre-

sponding moduluses of elasticity. Let n represent the

known ratio Ez/E\\ then, as shown in the last article,

the value of Sz/Si must also be n, provided the elastic

limit of neither material is exceeded. Inserting for $2

its value nSi in the first formula of Art. 69 and solving,

there results

from which the unit-stress in the concrete may be com-

puted, and then the unit-stress in the metal is found

from Sz = nSi.

As an example of investigation, take a reinforced

column of 1 : 3 : 6 concrete which is 14 inches square and

has four steel rods, each % inches in diameter, parallel

with its length near the corners, as in Fig. 47, while the

load P is 71 000 pounds. Here the section area of the

four rods is A 2
= 0.442 square inches and that of the con-

crete is ^li = 196 0.44=195.56 square inches. Then,

since n is 15 (Art. 68), formula (9)' -gives Si = 7l 000/202.2
= 351 pounds per square inch for the concrete, and hence

$2= 5270 pounds per square inch for the steel. These are

safe working stresses, that for the steel being very low.

When a reinforced column is to be designed, the load P
and the unit-stress Si for the concrete are known or

assumed, while n is to be taken as 10 or 15, depending

on the kind of concrete (Art. 68). Then the above
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investigation shows that the section areas AI and A 2

of the two materials are to be determined so as to satisfy

the equation
p

In order to do this, one section area is usually assumed

and the other can then be computed. Evidently many
different sets of values of AI and A 2 can be found, and the

one to be used will generally be determined by conven-

ience and local conditions. For example, let the column

in Fig. 48 be of 1:2:4 concrete for which Si is to be

500 pounds per square inch, and it be required that the

diameter shall be 6 inches, while the load P is 20 000

pounds. Let it be required to find the diameter d of the

single steel rod. Here A^^ird2
,
and Ai = ]4ir(3G-d

2
),

and then

YTT (36
- d -+ 1 Orf

2
)
= 20 000/500

from which d is found to be 1.28 inches, so that a rod

1%6 inches in diameter should be used.

For a column like Fig. 49, cast iron is often used for

the outer casing, and since E is 15 000 000 pounds per

square inch for cast iron, the value to be used for n will

be about 7j^ for 1:3:6 concrete, which is the grade that

would be most likely to be used for a column of this kind.

The safe load P which such a column can carry may then

be found by formula (9), in which Si = 350 and S2
=

73^X350 = 2620 pounds per square inch. The inves-

tigation or design of such a column may be made by the

methods above explained.

Prob. 70. A column like Fig. 49 is to be made as described

in the last paragraph. The diameter of the concrete is 2 feet 6 inches.
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and the load to be carried is 500 000 pounds. Compute the thick-

ness of the cast-iron casing.

ART. 71. BEAMS WITH SYMMETRIC REINFORCEMENT

Although beams of timber are sometimes reinforced by

fastening metal plates upon the sides, the most common

example of reinforcement is that of a concrete beam in

which the steel is imbedded. Concrete beams are

usually rectangular and Fig. 50 represents a section of

one with no reinforcing rods, this being called a plain

concrete beam; such a beam is not well adapted for

carrying heavy loads on account of the low tensile strength

of the concrete (Art. 68). Fig. 51 gives a section of a

Fig. 50 Fig. 51 Fig. 52

concrete beam in which a steel I beam is imbedded;

although this form is sometimes used, the steel part is

generally made sufficiently large to carry the given loads,

the office of the concrete being to protect the steel from

fire. Fig. 52 is a form in which steel rods are imbedded

near both the top and the bottom of the beam, and

symmetrically arranged with respect to the neutral axis

of the concrete section.

The discussion of a plain concrete beam is made by the

help of formula (4) and the methods explained in Arts.

28-31. For example, let the beam be 8 inches wide, 10
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inches deep, 6 feet in span and let it be required to compute
the total uniform load which it can carry when the concrete

is stressed to 100 pounds per square inch on the tensile

side. The bending moment for the total load W is

^sWX72 in inch-pounds (Art. 21). The section modulus

I/c is, from Arts. 23 and 24, found to be y X8X102 =

133.3 inches3
. Accordingly, the flexure formula (4) gives

M= S(I/c), or QW= 100X133.3

from which W=1480 pounds is the total uniform load

which the beam can carry. Since this beam weighs about

500 pounds, an additional uniform load of about 980

pounds will stress the concrete on the tensile side to 100

pounds per square inch.

For cases where the imbedded steel is placed sym-

metrically with respect to the concrete section as in Figs.

51 and 52, the flexure formula (4) may be modified so as

to take the two different materials into account. Let

S\ be the unit-stress in the concrete on the remotest fiber

at the distance Ci from the neutral axis, $2 the unit-stress

in the steel at the distance 2, and /i and 72 the moments

of inertia of the concrete and steel sections. M being

the maximum bending moment carried by the beam,
this must be equal to the sum of the resisting moments

of the two sections (Art. 26). Therefore, for compound

beams,

Now, for the beam as for the column, the change of

length of any line drawn on the sides parallel with the

length must be the same for both concrete and steel.

At the distance unity from the neutral axis the unit-
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stress in the concrete is Si/ci and the change in a unit

of length is then Si/CiEi, if EI is the modulus of elasticity

of the concrete. Similarly for the steel the change in a

unit of length at the distance unity from the neutral axis

is Sz/c2E2 . Hence

S S c
TT
=-~

,
whence S2

= -nS<
c

1
E

l
c2E2

> '

c,

in which n represents the ratio E2/Ei, the value of which

is 10 or 15 (Art. 68). Also inserting this value of $2

in the above expression for M, there results

or ft- dO)

which are formulas for the design and investigation of

reinforced concrete beams.

As an example, let it be required to find the total

uniform load W which a beam like Fig. 52 can carry,

Si being 100 pounds per square inch and n being 10.

Let the width be 8 inches, the depth 10 inches, the span

6 feet, and each of the six steel rods be % inch in diameter

and have its center 3 inches ifrom the neutral axis. The

value of M in pound-inches is ]/^WX12, or 9W. The

section area of each rod is 0.196 square inches, so that the

moment of inertia 72 is 6X0.196X32 = 10.6 inches 4
. The

moment of inertia of the 8 X 10-inch rectangle is 1/12X8

X103 = 666.7 inches 4
,
and hence h= 666.7 -10.6 = 656

inches4
. Then, since Si/c\ is 100/5, the first formula in

(10) gives QW= 20(656+ 106), from which W=172Q

pounds, which is 13 percent more than a plain concrete

beam of the same dimensions can carry.

For the above case the unit-stress 82 in the steel rod

is quite small. If the rods are at the upper and lower
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surfaces of the beam, the above formula shows that S2

is nSi, but since the rods are only 3 inches from the neutral

axis 2
=%X 10X100 = 600 pounds per square inch,

while the steel may safely bear twenty-five times as great

a unit-stress. The full safe strength of the steel rods

cannot indeed be developed unless the tensile strength of

the concrete is entirely overcome. A symmetric arrange-

ment of the rods, like that in Fig. 52, is not economical

and is rarely used for beams. The above discussion indi-

cates, however, the principles involved, and the formulas

will be modified in the next article so as to apply to the

usual cases of unsymmetric reinforcement.

Prob. 71. A beam like Fig. 52 is 10 inches wide, 12 inches deep,
14 feet in span, and has eight steel rods each % inches in diameter,

four being 1 inch below the top and four being 1 inch above the

bottom. Compute the unit-stresses for the 1:2:4 concrete and for

the steel when the beam is loaded with 200 pounds per linear foot

besides its own weight.

ART. 72. UNSYMMETRIC REINFORCEMENT

For the reasons stated in the last article, reinforced

concrete beams are generally built with imbedded rods

only on the tensile side, as shown in Fig. 53. Let Si be

the compressive unit-stress on the upper surface of the

beam, T\ the tensile unit-stress on the lower surface, and

Ti the tensile unit-stress in the steel. Let n, as before,

represent the ratio E2/Ei found by dividing the modulus

of elasticity of the steel by that of the concrete. Let 6

be the breadth and d the depth of the rectangular section,

A the section area of the steel rods, the centers of which

are at the distance h below the middle of the beam.

Let M be the bending moment of the loads for the given
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section, and let it be required to find the values of Si,

Ti, and Tz due to M. The following formulas are demon-

strated in Mechanics of Materials (eleventh edition).

Case I When the loads on the beam are light, so that

the unit-stress on the tensile side does not exceed about

one-half of the tensile strength of the concrete, the dis-

tribution of stresses in the vertical section is that shown in

I---6 *i

Fig. 53

Fig. 53. The neutral surface in this case lies at a certain

distance g below the middle of the beam, and the value

of g may be computed from

h

Then the unit-stresses for the concrete are

d + 2g QM d-2g 6M
d* + I2gh

'

bd d* + 12gh
'

bd

while that for the steel is

= 2n(h - g) QM
d* + 12gh

'

bd

and from these formulas the beam may be investigated,

provided the load does not produce a value of TI greater

than about 100 pounds per square inch.

For example, let 6 = 10 and d = 12 inches, h = 4 inches,

A = 2.4 square inches, and n = 15 for 1:3:6 concrete
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(Art. 68). Then g= 0.923 inches is the distance of the

neutral surface below the middle of the beam. Now let

the span of the beam be 8 feet and the uniform load upon
it be 2400 pounds; the bending moment at the middle

is M= 1/%WI= 28 800 inch-pounds. The compressive unit-

stress on the upper surface of the concrete is then found

to be Si = 106 pounds per square inch, and the tensile

unit-stress on the lower surface is Ti = 7S pounds per

square inch, while the tensile unit-stress in the steel is

Tz=l 110 pounds per square inch. Both Si and Tz are

quite small, but T is about one-third of the ultimate

tensile strength.

Case II When a heavy load is applied to a reinforced

concrete beam the tensile resistance of the concrete is first

overcome, vertical cracks extending upward from the lower

side, and thus a greater stress is thrown upon the steel.

The theoretic analysis for this case is a difficult one unless

it is assumed that the concrete below the neutral surface

L'f
r*

_.J

"2

Fig. 54

exerts no material resistance, and this assumption is

the one usually made. Fig. 54 shows the distribution

of stresses, the neutral surface being usually above the

middle of the beam. Let 6 be the breadth of the beam,
d the distance of the centers of the reinforcing rods below

the top, and kd the distance of the neutral surface below
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the top, k being a number less than unity. Also let the

ratio A/bd be called p. First, compute k from

k= - np+ V2np + (np)
2

and then the unit-stresses are

_2M_ M
- -

the first being for compression on the concrete and the

second for tension on the steel. As an example, let 6 = 12

and d = 4.5 inches, A = 0.6 square inches, 1 = 60 inches, the

uniform load be 1800 pounds, and n = 10. Then k = 0.373

which locates the depth of the neutral surface below the

top of the beam. From the given load and span, M is

found to be 13,500 inch-pounds, and then from formula

(11) the compressive stress on the upper surface of the

concrete is C = 340 pounds per square inch, and the tensile

stress in the steel rods is 7
1= 5710 pounds per square inch.

Both of these are lower than maximum allowable values.

The formulas of Case II are those usually required for

the investigation of a reinforced concrete beam unless it

is so lightly loaded that the unit-stress T\, found by the

formula of Case I, is less than about 100 pounds per

square inch.

Prob. 72. Let a reinforced beam of 1: 2: 4 concrete be 24 inches

wide, 5 inches deep, and 6 feet span, with 1.2 square inches of steel

at 2 inches below the middle; compute the unit-stresses S\, Ti, T*,

due to the light uniform load of 1125 pounds. Also compute the

unit-stresses C and T due to the heavy uniform load of 4500 pounds.

ART. 73. DESIGN OF BEAMS

When a reinforced concrete beam is to be designed

the allowable unit-stresses for concrete and steel are
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given or assumed, as also the span and width, and it

is then required to compute the depth of the beam and

the section area of the steel. When this is done according

to the formulas applicable to Fig. 53, the steel is stressed

but slightly; if T\ is taken as 100 pounds per square inch

for the concrete, the stress T2 for the steel will be less

than 1500 pounds per square inch. It is found impossible

to economically design a beam on this theory and have

unit-stresses prevail that are satisfactory, this being due

to the low tensile strength of the concrete. Nothing
remains to be done, therefore, but to allow the concrete

to crack on the tensile side and thus to stress the steel

higher in tension than is otherwise possible. The formulas

(11) given above for the distribution of stresses shown in

Fig. 54 may be transformed so as to be applicable to cases

of design.

The quantities usually given in designing are the

allowable compressive unit-stress C on the concrete, the

allowable tensile unit-stress T on the steel, the ratio

Ez/Ei = n, the bending moment M, and the breadth b

of the rectangular beam. It is required to find the depth
d of the beam and the section area A of the reinforcing

steel. Let the ratio T/C be designated by t, then for the

case of Fig. 54,

are the formulas for computing d and A. The unit-stress

C should be taken as high as allowable by the specifica-

tions; T should not be higher than the highest allowable

value, but it may be taken lower than this value if econ-

omy in cost is promoted.
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For example, a rectangular beam of 1 : 3 : 6 concrete

is to have a span of 14 feet, a breadth of 20 inches, and is

to carry a uniform load of 300 pounds per square foot,

including its own weight. It is required to find the depth

of the beam and the section area of the reinforcing rods

so that the unit-stresses C and T shall be 350 and 14 000

pounds per square inch respectively. Here ft =15, t =

T/C= 40, and 6 = 20 inches. The total load on the beam is

300X 14X 20/12 = 7000 pounds, and the bending moment is

M=y8X 7000X 14X 12 = 147 000 inch-pounds. Inserting

these values in the first of the above formulas, there is

found d= 13.0 inches. Then bd = 20X 13 = 260 square in-

ches, and from the second formulaA=0.90 square inches.

For the above case the section area of the steel is

about one-third of one percent of the section area bd

of the concrete. Higher percentages of steel are fre-

quently used, from 0.60 to 1.25 percent being common

values, but these are probably not economical except

for high-class concrete and low-priced steel. The depth d

computed by the above formula is that from the top of the

beam to the centers of the reinforcing rods. The actual

depth of the beam is, however, greater than d by 1 or 1^4

inches, the extra thickness of concrete serving to protect

the steel from corrosion and from the effects of fire.

Prob. 73 A. For the above numerical data except that for T,

compute the depth d and the section A. taking the value of T as

12 000 pounds per square inch. Also taking the value of T as 9000

pounds per square inch. If steel costs 50 times as much as concrete,

per cubic unit, which of the three beams is the cheapest?

Prob. 73 B. Design two reinforced concrete beams 12 inches

wide for a span of 12 feet 6 inches and a uniform load of 1500

pounds per linear foot, one being 1:2:4 concrete and the other

1:3:6 concrete.
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ART. 74. GENERAL DISCUSSIONS

The formulas and methods above presented for rein-

forced concrete beams are valid when the unit-stresses in

the concrete are proportional to their distances from the

neutral surface, and this is the case only when the changes

of length are proportional to the unit-stresses. Concrete

is a material in which this proportionality does not exist

for compressive stresses higher than 500 pounds per

square inch, so that it cannot be expected that the

formulas will apply to cases of rupture. Formulas for

rupture have been deduced by Hatt and others in which

the unit-stresses are taken as varying according to a

parabolic law with their distances from the neutral

surface, and such formulas are sometimes used for design-

ing beams by applying proper factors of safety.

The phenomena of failure of reinforced concrete beams

have been fully ascertained by the experiments made by
Talbot in 1905. The beams were tested by applying

two concentrated loads at the third points of the span,

and the deflections at the middle were measured for

several increments of loading, as also horizontal changes

of length near the top and bottom. Under light loads

the tensile resistance of the concrete was plainly apparent;

when the tensile unit-stress in the concrete approached

the ultimate strength, the neutral surface rose and the

stress in the steel increased. A little later fine vertical

cracks appeared on the tensile side, while the tensile

stresses in the steel and the compressive stresses in the

concrete increased faster than the increments of the load.

The last stage was a rapid increase in the deformations,

and rupture generally occurred by the crushing of the
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concrete on the upper surface, the steel being then stressed

beyond its elastic limit.

In some cases, especially in short beams, failure is

observed to occur by an oblique shearing near the sup-

ports, and this may be prevented by inclined or vertical

reinforcing rods. In designing a beam, however, it is

usually not necessary to make computations for this shear-

ing stress because the dimensions obtained by the flexure

formulas are for a beam which is to carry only about one-

fifth or one-sixth of the load that causes rupture.

The above discussions give only an introduction to the

subject of reinforced concrete. Many questions in

regard to beams remain yet to be settled, but it is believed

that the methods above given are fundamental and not

liable to essential change. It seems likely that the use of

combined concrete and steel, not only for beams and

columns, but for arches, walls, piers, dams, and aqueducts,

is to increase rapidly and become a most important feature

in engineering construction.

Prob. 74. A plain concrete beam, 12 inches wide, 13K inches

deep, and 14 feet span, broke under two single loads, each of 1300

pounds and placed at the third points of the span. Compute the

modulus of rupture by the common flexure formula. If this beam
has one percent of steel placed 1J^ inches above the lower surface,

compute the values of C and T.

ART. 75. REVIEW PROBLEMS

Prob. 75 A. Find the safe load for a short column of 1 : 2 : 4

concrete which is 2X3 feet in section area.

Prob. 75 B. A short timber column, 6X8 inches in section,

has two steel plates, each %X8 inches, bolted to the 8-inch sides.

Compute the load P when the timber is stressed to 750 pounds per

square inch.
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Prob. 75 C. A pier of 1:3:6 concrete, 6 feet in diameter, is

surrounded by a cast-iron casing 1.15 inches thick. What part

of the total load is carried by the concrete?

Prob. 75 D. For a 1 : 2 : 4 concrete beam like Fig. 52 let 6 = 10

and d = 12 inches, and the six steel rods be 5 inches from the neutral

surface. Find the size of the rods when the beam is 13 feet in span
and carries a total uniform load of 5000 pounds.

Prob. 75 E. For the dimensions in Prob. 72, what uniform load

will probably cause the concrete to begin to fail in tension?

Prob. 75 F. Design a beam of 1 : 2 : 4 concrete with three rein-

forcing rods, the width to be 8 inches and the span 6 feet, so that it

will safely carry a total uniform load of 2500 pounds.

Prob. 75 G. Consult a paper by Sewall and the accompanying
discussions in Vol. 56 of Transactions of American Society of Civil

Engineers, and ascertain different opinions as to what should be the

comparative cost of concrete and steel in order to produce the most
economical reinforced beam.

Prob. 75 H. If a force of 235 pounds, acting at the end of a lever

17.5 inches long, twists the end of a shaft of 6.5 feet length through
an angle of 14 45', what force acting at the end of a lever 9.75

inches long will cause a twist of 28 31' when the length of the shaft

is 10.62 feet?

Prob. 75 K. What center load will rupture a wooden beam 1 inch

square and 12 inches in span?

Prob. 75 L. A wrought-iron simple beam is 2X2 inches in

section. What must be its length so that it will rupture under its

own weight?
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CHAPTER 10

COMBINED STRESSES

ART. 76. COMPRESSION AND FLEXURE

When a simple beam is subject to compressive forces

at its ends the compressive stress due to this force increases

the deflection, and hence also the compressive stress on

the upper side of the beam. LetM be the bending moment

at the middle of the beam, found as in Art. 21, c the dis-

tance of the neutral surface of the beam from the com-

pression side (Art. 23), and / the moment of inertia of the

section area (Art. 24); then the unit-stress due to the

simple flexure is Me/1 (Art. 30). Let A be the section

area of the beam and P the compressive load acting on the

ends; then P/A is the unit-stress due to the direct com-

pression (Art. 1). Roughly and approximately, then, the

total compressive unit-stress on the upper side of the beam

is Mc/I+ P/A.
A more extended discussion will show (as in Mechanics

of Materials, tenth edition, p. 256) that the following

formula obtains for the case where the simple beam is

loaded at the middle:

P ,Mc/( PP \

**-A+T/ V 12EJJ

where E is the modulus of elasticity of the material (Art.

52). For a uniform load on the beam the number 12 is

to be replaced by 9.6.

For example, let a simple wooden beam 16 feet long,
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10 inches wide, and 9 inches deep be under an axial com-

pression of 40 000 pounds, while at the same time it

carries a total uniform load of 2000 pounds. Here

M=y8Wl=4SQQQ pound-inches, c=4.5 inches, 7= i/126cP

= 607.5 inches4
,

Z= 96 inches, P- 40 000 pounds, E=
1 500 000 pounds per square inch, andA = 90 square inches.

Inserting these values in the formula, there is found

S= 444+428 = 872 pounds per square inch as the flexural

unit-stress at the middle of the beam due to the combined

compression and flexure.

Prob. 76. A simple wooden beam, 10 inches wide and 4 feet long,

carries a uniform load of 500 pounds per linear foot and is subjected

to a longitudinal compression of 40 000 pounds. Find the depth
of the beam so that the maximum compressive unit-stress may be

800 pounds per square inch.

ART. 77. TENSION AND FLEXURE

Let a beam be subject to flexure by transverse loads and

also to a tension in the direction of its length. The effect

of the tension is to decrease the deflection of the beam

and hence also the flexural unit-stress. The formula of

the last article can be applied to this case by a change
in one of the signs. Thus for the case of a single load

at the middle of the simple beam,

and for a uniform load on the beam the number 12 is

to be changed to 9.6.

For example, take a steel eye bar, 18 feet long, 1 inch

wide, and 8 inches deep, which is under a longitudinal

tension of 80 000 pounds. The weight of this beam is
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490 pounds and M=12230 pound-inches. Also c = 4

inches, 7 = 42.67 inches4
,
#= 30 000 000 pounds per square

inch, P = 80 000 pounds, and A =8 square inches. Then

the formula gives S= 10 000+950= 10 950 pounds per

square inch due to the combined flexure and tension.

By using the approximate method noted in the first para-

graph of the last article, there is found S = 10 000+1240=
11 240 pounds per square inch.

Prob. 77. A light steel I beam, 4 inches deep, and 10 feet long>

has a load of 650 pounds at the middle and is under the longitudinal

tension of 20 000 pounds. Compute the flexural unit-stress due to

the combined loads.

ART. 78. SHEAR AND AXIAL STRESS

Let a bar having the section area A be subjected to the

longitudinal tension P, and at the same time to a shear V
at right angles to its length. The axial unit-stress on

the section area is P/A which will be designated by S,

and the shearing unit-stress is V/A which will be denoted

by S8 . These two direct stresses combine to produce

tensile, compressive, and shearing unit-stresses in other

directions. The following formulas, demonstrated in

Mechanics of Materials, Art. 105 (tenth edition), give the

greatest of these internal unit stresses:

Max. shearing unit-stress, $S

' = \/

Max. tensile unit-stress, Si =

Max. compression unit-stress, $2 = Ss

'

VzS

When P is compression, then the second of these formulas

gives the maximum compressive unit-stress and the third

gives the maximum tensile unit-stress.

For example, take a bolt one inch in diameter which is
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subject to a longitudinal tension of 5000 pounds and at

the same time to a cross shear of 3000 pounds. Here

S= C366 and S8
= 3820 pounds per square inch. Then the

first formula gives $/ = 4970 pounds per square inch for

the maximum shearing unit-stress, $i = 8155 pounds per

square inch for the resultant maximum tensile unit-

stress, and 82= 1790 pounds per square inch for the result-

ant maximum compressive unit-stress which act in the bolt

in directions different from the applied unit-stresses.

Prob. 78. A short bolt % inch in diameter is subjected to a longi-

tudinal compression of 2000 pounds and at the same time to a

cross shear of 3000 pounds. Find the maximum compressive, ten-

sile, and shearing unit-stresses which exist in the bolt.

ART. 79. COMPRESSION AND TORSION

Compression and torsion are combined when a loaded

vertical shaft rests in a step at its foot. Here there is a

compressive unit-stress S due to the weight of the shaft

and its loads, a torsional unit-stress Ss due to the trans-

mitted horse-power (Art. 48). These combine to produce

the resultant unit-stresses Ss

f

, Si, and S2 which may be

computed by the formulas of the last article.

To find the diameter of a vertical solid shaft for this

case the following formula may be used:

V(16 Pp)
2

in which d= diameter, $/ = the working shearing unit-

stress, Pp = the twisting moment computed by Art. 48,

W= the weight of the shaft and its loads. Assumed values

of d are to be inserted in the formula until one is found

that satisfies it. This formula also serves to compute
Sa

'

directly when d is given.
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A vertical shaft is sometimes so arranged that its weight

and loads are supported near the top on a series of circular

disks, sometimes called a thrust bearing. The shaft is

thus brought into tension instead of compression, and

this is a better arrangement because there is then no

liability to flexure. The above formula applies also to

this case.

Prob. 79. A vertical shaft, weighing with its loads 6000 pounds,
is subjected to a twisting moment by a force of 300 pounds acting

at a distance of 48 inches from its center. If the shaft is structural

steel, 4 feet long and 2 inches in diameter, find its factor of safety.

ART. 80. FLEXURE AND TORSION

This case occurs when a horizontal shaft for the trans-

mission of power is loaded transversely with weights.

Let S be the flexural unit-stress computed from (4) and

Ss the torsional shearing unit-stress found from Art. 49.

Then by the last article the resultant maximum unit-

stresses are

Max. shearing unit-stress, Ss

f = \^S8
2 + %= S2

Max. flexural unit-stress, S' =y + VSS
2 + VS2

These can be used to find the greatest internal unit-stress,

and then the factors of safety of the material are known.

It is thus seen that the actual maximum unit-stresses

in a shaft due to combined flexure and torsion are much

higher than those derived from the formulas for flexure

or torsion alone. In determining the diameter of a shaft

it is hence necessary to take Ss

f

as the allowable shearing

unit-stress and S f

as the allowable tensile or compressive

unit-stress. For a round shaft of diameter d, the value of
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S8 is Ppc/J where Pp is the twisting moment (Art. 45)

or Ss
= IQPp/irtf, while the value of S is Me/1 (Art. 30)

or S = 32M/ird?. Inserting these in the above formulas

they reduce to

the first being for the resultant shearing and the second

for the resultant tension or compression. Since the

allowable Sg

'

is smaller than the allowable S', it often

happens that the first formula will give a larger diameter

than the second.

As an example, find the diameter of a horizontal steel

shaft to transmit 90 horse-powers at 250 revolutions

per minute, when the distance between bearings is 8 feet

and there is a load of 480 pounds at the middle, the

allowable unit-stress being Ss

f = 5000 and S f = 7000 pounds

per square inch. Here the twisting moment is Pp =

63030X90/250 = 22690 pound-inches, and the bending

moment is AT= 480X96/8 = 5760 pound-inches. Then

using the first formula the diameter d is found to be 2.9

inches, while from the second formula it is 2.8 inches.

Hence the shaft should be about 3 inches in diameter.

Prob. 80. A horizontal steel shaft o" 17 inches outer and 11 inches

inner diameter is to transmit 16 000 horse-powers at 50 revolutions

per minute, the distance between bearings being 18 feet. Taking
into account the flexure due to the weight of the shaft, compute the

maximum unit-stresses.

ART. 81. TENSION AND COMPRESSION

When a tensile unit-stress Si exists in a body acting

in a certain direction and a second tensile unit-stress S2

is applied in the same direction, then the resultant unit-
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stress is Si+S2 . When Si is tensile and S2 compressive

then the resultant unit-stress is Si S2 ;
if Si is greater than

2 then Si S2 is tensile, but if Si is less than 2 then it

is compressive.

When a tensile unit-stress Si exists in a body acting in a

certain direction and a second tensile unit-stress S2 is

applied in a direction at right angles to Si, then the true

resultant unit-stress T\ is Si\Sz where X is the 'factor

of lateral contraction.' The mean value of X for wrought
iron and steel is about % while for cast iron it is about J^.

Thus if a tensile unit-stress of 5000 pounds per square

inch acts in a certain direction on a steel bar and another

tensile unit-stress of 6000 pounds per square inch acts

at right angles to the first, then the true resultant tensile

unit-stress in the original direction is T\= 5000 % (6000)

= 3000 pounds per square inch.

Let a body be subject to tensile forces acting in three

rectangular directions, as for instance upon the faces of a

cube. Let Si, S*, S3 be the tensile unit-stresses in the

three directions. Then the true unit-stresses acting in

these three directions are

If any unit-stress S is compression it is to be taken as

negative in the formulas, then the true unit-stresses are

tensile or compressive according as their numerical values

are positive or negative.

As an example, let a steel bar 2 feet long and 3X2
inches in section area be subject to a tension of 60 000

pounds in the direction of its length, and to a com-
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pression of 432 000 pounds upon the two flat sides.

Here Si = 60 000/6 = 10 000 pounds per square inch, S2
=

432 000/72 = 6000 pounds per square inch, and S3
= 0.

Then, taking X as 1/3, the true internal unit-stresses are

Ti= +12 000, Tz
= -9330, T3

= -1330 pounds per square

inch. For this case the true tensile unit-stress Tt is

20 percent greater than Si and the true compressive unit-

stress T2 is more than 50 percent greater than S2 .

Prob. 81. A common brick, 2J^X4X8M inches, is subject to a

compression of 3200 pounds upon it? top and bottom faces, 500

pounds upon its sides, and 60 pounds upon its ends. Taking X as

%, compute the true internal unit-stresses in the three directions.

ART. 82. REVIEW PROBLEMS

Prob. 82 A. An I beam, 12 inches deep and weighing 35 pounds

per foot, acts as a simple beam with a span of 30 feet. Compute the

flexural unit-stress at the middle due to its own weight.

Prob. 82 B. When an axial compression of 60 000 pounds acts

on the beam of the last problem, find the unit-stress due to the

combined compression and flexure.

Prob. 82 C. A horizontal eye bar, 1J^X9 inches in section, is

under a tension of 120 000 pounds. Find the tensile unit-stress at

the middle due to the combined tension and flexure.

Prob. 82 D. Compute the greatest tensile, compressive, and shear-

ing unit-stresses due to the combination of a direct tension of 24 000

pounds with a cross-shear of 7500 pounds, both acting on a bar

1% inches in diameter.

Prob. 82 E. A vertical steel shaft weighs with its loads 64 000

pounds and transmits 1200 horse-powers at 75 revolutions per
minute. What should be the diameter?

Prob. 82 F. A cast-iron ball is subjected in every direction to a

uniform hydrostatic pressure of 625 pounds per square inch. What
is the actual true compressive unit-stress which exists at every point
within the ball?
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CHAPTER 11

RESILIENCE OF MATERIALS

ART. 83. FUNDAMENTAL IDEAS

When a force of uniform intensity P is exerted through

the distance e the work performed is measured by the

product Pe. When a bar is tested in a machine, however,

the force gradually and uniformly increases from up
to the value P and produces the elongation e; here the

work performed is i/^Pe, because the average value of the

uniformly increasing force is i/>P. In the first place the

work may be represented by a rectangle of height P
and base e; in the second case the work may be repre-

sented by a triangle of height P and base e; and the area

of the triangle is one-half that of the rectangle.

As the external force increases from up to P the

internal stress in the bar increases gradually and uni-

formly from up to S. The internal work of these

stresses is called the 'resilience' of the bar. As the

internal work equals the external work y2Pe, this quantity

is a measure of the resilience.

Strength is the capacity of a body to resist force;

stiffness is the capacity of a body to resist deformation;

resilience is the capacity of a body to resist work. The

higher the resilience of a material the greater is its capacity

to resist the work of external forces.

Elastic resilience is that internal work which has been

performed when the internal stress reaches the elastic
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limit. Ultimate resilience is that internal work which

has been performed when the body is ruptured. Ultimate

strength is usually from two to three times the elastic

strength; ultimate elongation is always much greater

than elastic elongation; and ultimate resilience is very

much larger than elastic resilience.

Resilience, like work, is expressed in foot-pounds, or

inch-pounds, usually in the latter unit. Thus, if a bar

is subject to a stress which gradually and uniformly

increases from up to 5000 pounds and is accompanied

by an elongation of 0.5 inches, the resilience is 1250

inch-pounds.

Prob. 83. A wrought-iron bar weighing 30 pounds per linear foot

is subject to a stress of 5000 pounds per square inch which is accom-

panied by an elongation of 0.25 inches. What is the resilience in

inch-pounds?

ART. 84. ELASTIC RESILIENCE OF BARS

Let a bar of length Z and section area A be under a

tension P, which produces a unit-stress S equal to the

elastic limit of the material and an elongation e. The

elastic resilience of the bar is then equal to ^Pe. Now
P = SA, and by Art. 53 the elastic elongation is e=

Pl/AE= Sl/E; hence letting K represent the elastic

resilience, the product y^Pe becomes

K=
JEAl <12)

or the elastic resilience of a bar is proportional to its

section area and to its length, that is, to its volume.

When the bar has a section of one square inch and a

length of one inch, then Al is one cubic inch, and the
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elastic resilience is

S*

''~2E

in which S is the elastic limit of the material.

This quantity k is called the modulus of resilience, since

for any given material it is a constant. For bars under

tension the average values of S are given in Art. 2, and

those of E in Art. 52. Using these constants, the 'mod-

ulus of resilience' k has the following values for tension:

For timber, k = 3 inch-pounds ^
For cast iron, k= 1 inch-pound V
For wrought iron, k=l2 inch-pounds V

For hard steel, k = 42 inch-pounds *
t

These figures show that the capacity of steel to resist

work within the elastic limit is the greatest of the four

materials, and that of cast iron the least.

For a bar of any size the elastic resilience is found

by multiplying its volume by the modulus of resilience k,

Thus, a bar of timber whose volume is 50 cubic inches

has an elastic resilience of about 150 inch-pounds, that is,

the external work required to stress it up to the elastic

limit is 150 inch-pounds. The particular shape of the

bar is unimportant; it may be 5 inches in section area and

10 inches long, or 2 inches in section area and 25 inches

long, or any other dimensions which give a volume of 50

cubic inches.

The above formula (12) also gives the work required

to produce any unit-stress S which is less than the elastic

limit. For example, let it be required to find the work

needed to stress a bar of wrought iron up to 12 500 pounds
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per square inch, the diameter of the bar being 2 inches

and its length 18 feet. Here =12500 pounds per

square inch, #= 25000000 pounds per square inch,

J.=3.14 square inches, and Z= 216 inches. Then

12 5002 X3.14X216
(

2X25000000

If the bar is required to undergo this stress 250 times per

minute, the work required in one minute is 250X2120 =

530000 inch-pounds = 44 200 foot-pounds. The power

expended in stressing the bar is hence 44 200/33 000 = 1.34

horse-powers.

When a bar is under a unit-stress Si and this is in-

creased by additional exterior loads to $2, the resilience

due to these loads is

provided *S>2 be not greater than the elastic limit.

Prob. 84. A bar of steel 10 feet long and weighing 490 pounds
is stressed in one second from 4000 up to 9000 pounds per square
inch. What work and what horse-power are expended in doing this?

ART. 85. ELASTIC RESILIENCE OF BEAMS

When a simple beam of span I is brought into stress

by a load P applied gradually and uniformly at the middle,

the deflection / results and the work y2Pf is performed.

This work equals the resilience of the beam. The value

of/ in terms of the horizontal unit-stress is given inArt. 56,

and the value of P in terms of the unit-stress S is given

by (4) of Art. 28. Accordingly the product %-P/" has the

value
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in which 7, the moment of inertia of the section, has

been replaced by its equivalent Ar*, where A is the section

area and r its least radius of gyration (Art. 37).

For a simple beam under a full uniform load the elastic

resilience is given by

which is 1% times that of the simple beam with a single

load at the middle.

These expressions show that the elastic resilience of

beams of similar cross-sections is proportional to their

volumes. For rectangular sections where the depth is

d, the value of c is y^d and that of r2
is i/fad

2
;
thus r2/c

2

is y$. Hence a rectangular bar under tensile stress has

nine times the resilience of a rectangular beam loaded

at the middle and 5% times that of the same beam under

a full uniform load.

Prob. 85. What horse-power is required to stress in one second

a heavy 20-inch steel I beam of 24 feet span from 500 up to 8000

pounds per square inch, this being done by a load at the middle?

ART. 86. ULTIMATE RESILIENCE

The ultimate resilience of a body is equal to the external

work required to produce rupture. The ultimate resilience

greatly surpasses the elastic resilience, it being for wrought

iron and steel sometimes five hundred times as large.

It is not possible, however, to establish a formula by
which the ultimate resilience can be computed, because

the law of increase of the deformations beyond the elastic

limit is unknown.

If a diagram is made showing the increase of elonga-
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tion with stress, as in the figure of Art. 4, the abscissas

indicating the elongations and the ordinates the stresses,

then the area included between the curve and the axis

of elongations represents the ultimate resilience for one

cubic inch of the material. The total ultimate resilience

is then found by multiplying this area by the volume

of the specimen in cubic inches.

In Art. 15 it was remarked that the product of the

ultimate strength and ultimate elongation is an index of

the quality of wrought iron and steel. This is so because

it is a rough measure of the ultimate resilience or resistance

to external work. A measure which more closely fits the

area given by a stress-diagram is

in which Se is the elastic limit, S
t
the ultimate tensile

strength, and s the ultimate unit-elongation. For example,

take a wrought-iron specimen where Se
= 25 000 and S

t
=

50 000 pounds per square inch, while s = 30 percent = 0.30
;

then k = 12 500 inch-pounds is the ultimate resilience for

one cubic inch of the material.

Prob. 86. Show from the values given in Arts. 2 and 4 that the

average ultimate resilience of timber in tension is about 50 percent

greater than that of cast iron.

ART. 87. SUDDEN LOADS

When a tension is gradually applied to a bar it increases

from up to its final value, while the elongation increases

from to e and the unit-stress increases from to S. A
'sudden load' is one which has the same intensity from

the beginning to the end of the elongation; this elonga-

tion being produced, the bar springs back, carrying the
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load with it, and a series of oscillations results, until

finally the bar comes to rest with the elongation e. The

temporary elongation produced is greater than e, and

hence also the temporary stresses produced are greater

than S.

Let P be a suddenly applied load and y the temporary

elongation produced by it; the external work performed

during its application is Py. Now let Q be the internal

stress corresponding to the elongation y; this increases

gradually and uniformly from up to Q, and hence its

resilience or internal work is ^/^Qy- But, since internal

work must equal external work,

Py, or Q = 2P

that is, the sudden load P produces a temporary internal

stress equal to 2P.

Now after the oscillations have ceased, the bar comes

to rest under the steady load P and has the elongation e.

If the elastic limit of the material has not been exceeded,

corresponding elongations are proportional to their

stresses; thus

that is, the sudden load produces a temporary elongation

double that caused by the same load when gradually

applied.

If A is the section area of the bar the unit-stress S
under the gradual load is P/A, and the temporary unit-

stress produced under the sudden load is 2P/A or 2S.

The unit-stresses temporarily produced by sudden loads

are hence double those caused by steady loads. It is for
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this reason that factors of safety are taken higher for

variable loads then for steady ones.

Prob. 87. A simple beam of wrought iron, 2X2 inches and 18

inches long, is 1o be loaded with 3000 pounds at the middle. Show
that the beam will be unsafe if this be applied suddenly.

ART. 88. STRESSES DUE TO IMPACT

Impact is said to be produced in a bar or beam when

a load falls upon it from a certain height. The temporary

stresses and deformations in such a case are greater

than for sudden loads, and may often prove very injurious

to the material. If the elastic limit is not exceeded, it is

possible to deduce an expression showing the laws that

govern the stresses produced by the impact. This will

here be done only for the case of impact on the end of a bar.

When the load P falls from the height h upon the end

of a bar and produces the momentary elongation y, the

work performed is P(/i+?/) . The stress in the bar increases

gradually and uniformly from up to the value Q, so

that the resilience or internal work is y^Qy. Hence there

results

Also, if e is the elongation due to the static load P, the

law of proportionality of elongation to stress gives

y = Q
e P

By solving these equations the values of Q and y are
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which give the temporary stress and elongation produced

by the impact.

If h = these formulas reduce to Q = 2P and y = 2e,

as found in the last article for sudden loads. If h = 4e

they become Q = 4P and ?/
=

4e; if h=l2e they give

Q = GP and y 6e. Since e is a small quantity for any
bar it follows that a load P dropping from a moderate

height upon the end of a bar may produce great tem-

porary stresses and elongations. If these stresses exceed

the elastic limit they cause molecular changes which

result in brittleness and render the material unsafe.

The above expressions for Q and y are not exact, as

the resistance against motion due to the inertia of the

material has not been taken into account. In Chapters

XIII and XIV of Mechanics of Materials (tenth edition)

the subject is discussed far more completely than has been

possible here.

Prob. 88. In an experiment upon a spring a steady weight of

15 ounces on the end produced an elongation of 0.4 inches. What

temporary elongation would be produced when the same weight
is dropped upon the end of the spring from a height of 7 inches?

ART. 89. REPEATED STRESSES

Ultimate strength is usually understood to be that

steady unit-stress which causes the rupture of a bar in

one application. Experience and experiment teach,

however, that rupture may be caused by a unit-stress less

than the ultimate strength when that unit-stress is applied

to a bar a large number of times in succession. For

example, Wohler showed that a bar of wrought iron could

be broken in tension by 800 applications of 52 800 pounds
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per square inch and by 10 140 000 applications of 35 000

pounds per square inch, the range of stress in each applica-

tion being from up to the designated value.

It has also been shown by Wohler and others that the

greater the range of stress, the less is the unit-stress

required to rupture it with a large number of applications.

Also that when the range of unit-stress is from up to

the elastic limit, rupture occurs only after an enormous

number of applications.

Let PI be the least and P2 the greatest tensile stresses

which occur in a bar under repeated stress and let n be

the ratio Pi/P2 . Let Su be the ultimate strength and Se

the elastic limit of the material. Then Weyrauch's for-

mula for the unit-stress which ruptures the bar after an

enormous number of repetitions is

For structural steel, using the mean values given in

Tables 1 and 2, this becomes = 35 000(1 +%ri) and for

wrought iron $= 25 000(1+ 1
/:jw)- For example, let a bar

of structural steel range in tension from 80 000 to 160 000

pounds; then n =y2 and = 47500 pounds per square

inch is the tensile unit-stress which will rupture it after

an enormous number of applications, although the ulti-

mate strength observed in one application is 65 000 pounds

per square inch. The above formula also applies to the

case where PI and P2 are both compressive stresses.

When PI and P2 are stresses of different kinds, one

being tension and the other compression, let n be the ratio

Pi/Ps without respect to sign. Then Weyrauch's formula

for the unit-stress which produces rupture after an
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enormous number of applications is

For structural steel this becomes S = 35 000(1 y^n) and

for wrought iron S = 25 000(1 y^ri). For example, if

the forces in a bar of structural steel range from 80 000

pounds compression to 160 000 pounds tension, then

n = i/> and S = 26 200 pounds per square inch is the

compressive unit-stress which will rupture the bar after

an enormous number of applications.

The above formulas are sometimes used to find working
unit-stresses for designing bars, such a factor of safety

being used that the value of S shall be less than one-

half of Se .

Prob. 89. A wrought-iron bar is subject to axial forces which

range from 320 000 to 400 000 pounds. Compute the rupturing

unit-stress S after an enormous number of repetitions, first when
both forces are tension, second when the smaller one is compression
and the larger one is tension.

ART. 90. REVIEW PROBLEMS

Prob. 90 A. How many foot-pounds of work are required to

stress a steel piston-rod, 3 inches in diameter and 4 feet long, from

up to 16 000 pounds per square inch?

Prob. 90 B. What horse-power is required to stress the rod of

the last problem 120 times in one minute?

Prob. 90 C. Compute the horse-power required to deflect, 59

times per second, a wrought-iron cantilever beam, 2X3X72 inches,

so that at each deflection the unit-stress S shall range from to

9000 pounds per square inch.

Prob. 90 D. What work is required to rupture by tension a

wrought-iron bar which weighs 325 pounds?

Prob. 90 E. Discuss the case where a sudden load P is applied
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to a bar which is already under the static load PI. What is the

maximum stress?

Prob. 90 F. What is. the height from which a weight must fall

upon the end of a bar in order to produce a deformation equal to

three times the static deformation ?

Prob. 90 G. Consult Test of Metals, published annually by the

U. S. Ordnance Department, and describe some of the endurance

tests made by Howard on rotating shafts.

Prob. 90 H. A bar of wrought iron is to be subjected to re-

peated stresses ranging from 16 000 pounds tension to 80 000

pounds tension. What should be its diameter using a safety factor

of 4 in the above formula for S ?

Prob. 90 J. Solve the last problem, taking the smaller stress as

compression and the larger one as tension.

ART. 91. ANSWERS TO PROBLEMS

Below are given answers to a few of the problems

stated in the preceding pages, the number of the problem

being placed in parentheses. However satisfactory it

may be to a student to know the true result of a solution,

let him remember that after commencement day answers

to problems will never be given.

(1 A) 4%2 inches. (16 B) 3ys inches.

(3 C) About 1 000 000 pounds. (17 B) 105 000 pounds.

(4 A) 4K inches for wrought- (ISA) 1200 pounds.
iron bar. (23 B) 4.04 inches.

(5 A) 1780 feet. (24) 2097 inches4
.

(6 B) Factors are 6 and 16. (25 J) 2840 pounds.

(7 A) 3y8 inches for second (29 A) 3130 pounds.
case. (31 A) 18 inches.

(10 B) Reduction of area = 50.5 (33 A} 5.9 and 3.9.

percent. (35 D) Nearly 8.

(13 B) $1058.84. (35 E) 24 inches.

(14 A) 66 000 pounds. (35 F} 2%iol.
(16 A) 4.04 cents. (36) 54 000 pounds.
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(39 A} 58 000 pounds.
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