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PREFACE

Tui problem of the state of equilibrium and of stress of the circular-are bow-girder,
i.e., the girder fo1ming a circular arc in plan such as is often used to suppors the
balcony of a theatre, is one affording some difficulties of solution. These arise mainly
from the fact that in addition to the bending moments and reactions involved in the
case of the straight encastré girder, twisting moments are called into play at each
gection and at the ends of the bow-girder, a,_nd these moments affect very considerably
the state of equilibrinm of the girder.

The general problem was solved in a paper read before the Royal Society of Ldin-
burgh by Professor Gibson in 1912, and the first portion of this book is based on the
principles laid down in that paper. The solution in any particular case becomes easy
if the end fixing moments and the reactions are known, and values of these have been
caleulated for the more important cases likely to occur in practice.

This investigation shows that the values of the various moments and reactions for
a given loading depend on the relative values of the flexural rigidity, E I, and the
torsional rigidity, C J, of the section. A knowledge of the geometrical properties of
the section and of its material enable the former of these to be predetermined with
some aecuracy, but the authors have been unable to find any published data as to the
values of the torsional rigidity for such commercial sections as are usual in structural
engineering. With a view of obtaining such data experiments have been carried out
by M. Ritchie on a number of commercial sections, and the result of this work forms
the foundation for much of the second part of the book.

Chapter I. outlines the introductory theorems necessary for a thorough understanding
of Chapter II., which deals with the equilibrium of the bow-girder. In Chapter III.
the torsion of non-circular sections is considered, while Chapter IV. deals with the
stresses involved by such torsion alone or combined with bending, and Chapter V. deals
briefly with the general principles of design of a bow-girder exposed to both bending
and twisting.

It is hoped that the treatment is sufficiently complete to enable any one familiar
with the general principles of design of the ordinary straight plate-web or lattice girder
to adapt these to any specific case of a bow-girder under uniform or concentrated loading.

In view of recent failures of struetures in which straight beams exposed to some
torsion have collapsed under seemingly inadequate loads, the data of Chapter 111,
emphasising as it does the extreme weakness of the commercial I, angle, or T seetion
under torsion, should be of interest.

Appendices have been added, giving a list of integrals which will be useful to the
reader working through the investigations of Chapter II, and also giving a table of
the geometrical properties of some commercial sections.

e Gt
E. G. R.
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A STUDY OF THE CIRCULAR-
ARC BOW-GIRDER

CHAPTER I

(1) Equilibrium of the Straight Girder.

Ir a girder straight in plan and horizontal when unloaded is exposed to a series of
vertieal loads, each section is subject to a bending moment 3, whose magnitude varies
from point to point. Under the influence of this moment the girder is bent, and, so
long as the loads are not sufficient to produce stresses in excess of the elastic limit of
the material, the radius of curvature IR of the profile of the neutral axis at a point
where the bending moment equals M is given by the relationship

ey

R = m . . . . . . . (a)
where I is the moment of inertia of the section about a horizontal axis through the
centroid of its area, and where I is the modulus of direct elasticity of the material.
If y be the vertical displacement of the neutral axis at a point distant x from some
datum point in the axis, it may readily be shown that

%y
e dr?
R> By
e

d*
= d_xé (approx.)

so that, so long as the deflection of the beam is confined within practical limits,
&y . M
d? - m . . . . . . . (1))

(2) Curvature, Slope, and Deflection.

From (V) it follows that if, at any one point, the girder is horizontal after loading,

the slope :—% at any other point at a distance ! will be given by -
l
dy (M
ﬂ—fm.dx : : : 3 : . (o)
0
M

and will therefore be represented to scale by the area of the boud diagram between

the two points, while if the slope at the first point is not zero, this area will measure
B.G. B






ENCASTRE AND CONTINUOUS BEAMS 3

(3) Encastré and Continuous Beams.

A beam simply supported at its two ends has, everywhere, a curvature whose con-
cavity is upwards. If, however, it is built in to supports at its ends, these supports
prevent the beam adopting the slope natural to it when free, and a fixing moment is

W, ‘ Wy
X ——

N

Ra

Fre. 1.

called into play at each support, these moments tending to make the beam concave
downwards. The effect of the fixing moment is transmitted to every section of the
beam, and at any such section as, say, X in the beam of Fig. 1, for equilibrium

M,=M,— Rz, — Wirr—Wars) . . . . (9)
= M, — (Ryx;, — Wars)
he— - X, ? % SATeE
i ' :
/ 4
My 7 X Vo
4 '
(_Xz_)l‘_xz
Ry ) % Ry
R P, Ps
Fia. 2.

while at X in Fig. 18, which represents a beam with uniform loading of magnitude
w 1bs. per foot run,

(T
M, =M, — Ry, — 50) )

g 2
—_ JIb —d (I{),xb e %).



4 A STUDY OF THE CIRCULAR-ARC BOW-GIRDER

If, as in Fig. 2, the beam has one or more intermediate supports, whose
upward reactions are Py, P,, Ps, the moment at X, say between supports (1) and (2) is
given by

2,
M, =M, — ]R z, + Pity — “"j" Jl RS "
=T Ry, + Pty + Pty — “’;’1 oot e

Under such circumstances, the magnitudes of the fixing moments 3, and M, ; of the
reactions R,, R,, at the ends; and of P, P,, Ps, the reactions at the supports, require
to be determined before equations (g), (1), (j), or (k) can be used to determine the value
of M, at any given section.

" (4) Encastré Beam with no Intermediate Supports.
Considering, for example, the case of a beam built in at its two ends and carrying
a uniformly distributed load of w lbs. per foot run (Fig. 8),

D
M,=M,— R +";

y
Y
y
4 : ’
My J M,
/

7 1
A A
Ra [ x R Ry
s L 4

F16. 3.

Since from symmetry R, = %t, we have

M, d4 bl wr?  wle
I S T AI{U ol ?)
If, for simplicity, the section of the beam be taken as constant so that I, = constant
=1, we have, on integrating,
dy _ 1 wrd  wlad® }

i IyI{JI +—————+A (m)

where 4 is a constant of integration. Since the slope is zero where x = 0, i.c., at the
left-hand support, it follows that 4 = 0, and since the slope is also zero at B where
x =1, we have
3
M+ “l - % )

0l2

=

1

J‘Ia =
Substituting this value of M, in (m) gives

N

l‘

I

@y _ w2 )
(TR T LT ) 6 4



ENCASTRE BEAM WITH INTERMEDIATE SUPPORTS 5

or, on integrating this,
w (Br i) )
A H{ 2"’24 12+BJ'
The constant B is determined from the fact that the deflection y = 0 when x = 0, s0
that B =0. '

(5) Encastré Beam with Intermediate Supports, or Continuous Beam on more
than Two Supports.

Let 4, B, C, (Fig. 4) represent three adjacent points of support on an encastré
beam, or on a simple continuous beam with uniform loading w lbs. per foot run. To
determine the moments M,, M,, and I, and the reactions I, R,, B,. Take the
origin at A. Then between 4 and B,

M, =M,—Raz+"3 . (n)
‘ u]l
. At B My=M,— RL+ — 5 5 . 4 s . (o)
{ ] i
[
I‘_;_, T P 4[
A - B s
Fic. 4.
Similarly, working back from C to B,
M, =M, — R+ "2 ®
Writing (n) as LIC; '{; = e A ey e,
we get EI Z—” =Myz— 1, ‘? oy ”l RGO G )
and Ely=M,~ +“‘"+C A% ¢ )
)1 Y = M, 2 (, () %4 o . . 1

Since y = 0 when z = 0, it follows that D = 0, while since y = 0 when x =],
we have

ll 11 w ll
M5 —BRt+50+H0h=0
4 _— A-In[l Rallz ?l'l]a !_
s C0=— {—2—" == 6 ?4—‘) . Je . . (3)
From (q) the slope at B is given by
dv\ 1 wl? 1
(dx> =15 iM Jye= 1{02-{- 2 NP EIR e

and on substituting from (s) this becomes

(]._Ij> . = 1 { ’1 ’11‘113)_
<dx = B — 1 +?J'







ENCASTRE BEAM WITH UNIFORM LOADING 7

2 M

. from (v) M, = % Ix: Jz[“
_uP
= 75

(6) Encastré Beam with Uniform Loading—Effect of a Settlement
of One Support.

Where the fixing moments 3, and 3, at the ends of an encastré beam of span [,
or at any two intermediate supports of a continuous beam, are not equal, the moment
due to these varies uniformly from M, to M;, and, at a point distant x from the end
4, is equal to

ML ; (M, — M,).

From equations (g) and (%) (p. 8), it is evident that in a loaded beam, fixed at the

N
\\\\\ !
NN

e NN

S SIS SN
=

N,

*—-

T —

— ——
— o - —

Fic. 5.

ends, the bending moment at any point is the difference between the bending moment
which would be produced by the saine loading on a beam simply supported at the ends,
and that produced by the end moments, so that in the case of a uniformly loaded
encastré beam with end moments 3, and 1, the diagram of effective bending moments
is represented by the shaded area of Fig. 5.

It one of the supports 4 of such a beam sinks through a distance d, the ends
remaining horizontal, the difference of slope of the ends is zero, and consequently
from (c) (p. 1), the area of the effective B.M. diagram is zero.

MM, WP 2
S 2

<l 8.§I=O

anl2
M, + M, = %

Again, since the relative deflection of the two endsis d, the moment of the effective
B.M. diagram about 4 is equal to IId ((¢) (p- 2)).






BEAMS WITH UNSYMMETRICAL LOADING 9

Similarly for the span CB, taking C as origin, since the supports at C and B are
at the same level

! 1 Ay 9
Ly = — —H('Azafz — A,z

O
it

Re

57

H
¥ W St
X

LV T——
GZ

G

Fic. 6.

G
- ——G/
—e ¢,

=0
A

3

i
i
o
|

e~

I jroes

& \
b =t —-—rl
the negative sign being taken, since & is measured in opposite directions in the two
cases.
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Liquating the two expressions for the slope at I3 gives

r= y - 7 (P L 2 =
A7) — 4,F Ay'Ty Py

L = — AT A Lt

Again, taking moments about .1 and (' of the fixing moment diagrams on each
span

L o
A8 = (M + 2M))

r= ]"2
g B G (M, + 2M,)

and, on substituting these values, equation (y) becomes
(A %y AT

td olg) __ >
T G e

This is the most general form of the equation of these moments and is applicable
to any form of loading,

M, + 2M, (0, + 1) + M1, — 6

T 2 wl3 2 wl,3 { J
Writing d;i=2 L. 4 =22 -5 =1.5 —=_
j L 3 =8 O ST SENORE 2 2 2

ives the equation for uniform loading, which 1s identical with (u), p. 6.
g g 1

If some or all of the supports sink, B falling d, below A and d, below C, equation
(2) becomes

MJI, 4+ 23, (1, + 1) + M, — 6 {A;.f, + AI'Z'T.Z]]'
1 2
g <’dl +iz) S0 TEEre =S ISal I e
Lo .

(8) Resilience of a Girder Exposed to Bending.

If, under the action of a bending moment 37, two originally parallel vertical sections
of a beam, enclosing an element of length dx, become inclined to each other at an angle
of 8i, the work done by the moment in bending this element is equal to A gl (This
assumes that the moment is applied gradually, and, at any instant, is proportional to
the curvature obtaining at that instant.)

.*. Whole work done in bending beam = I':%j Mdi, where the inlegration is

taken over the whole length of the beam.
But 8i measures the difference of slope at the two ends of the element.

o= SOV

SN v

!
Cr— :21/3211; dx . Searf : . c (B)
0

This quantity is termed the resilience of the beam under the given loading, and 1s
equal to the work done by the load or loads during the distortion of the beam. Thus,
if a single load 1 be applied to the beam, causing its point of application to deflect

Sx

. . . . . . 5
through a distance y, the work done by it during its application is equal to JI é



CASTIGLIANO’S THEOREM 11

wl _U—?/‘f;dx
0

1 /e

) el B i B

ol U/EI“U

E.g., beam simply supported at the two ends. Single load H” at a point C distant
a from one end and b from the other end of the beam (Ifig. 7)..

m (i nm
oo, =W (a+b B, =W +b>

Between 4 and C, M, = (a]:f)xb)
_ |l (V0 I
..L(ﬂ, c)‘—21( J( +b> Z
W2b2a3

T BEI (a +0)2

R:!‘:———;i—‘_——%m/—r
T e

Fic. 7.

Similarly between B and C
U W2)3aq?
Uo-o = §ET(a F )
T i
F e = §ET(a + b)
= Wi

_ Wl
T 8El(a+ D)
(9) Castigliano’s Theorem.
Where more than a single load is applied, the problem is readily solved by an
application of this theorem.
Suppose a structure, originally horizontal, to deflect through y; and y, at points
P, and P, under the application of loads 17, and W, (Fig.8). Then assuming smooth
supports, so that the work done by the end reactions is zero, we have—

= 11/1 Sila W 2l/n

Let 7] be now increased to (777, + & Wl), W, remaining constant, and let y; 4 dy,,
Ys -+ 8y, be the new deflections.






DEFLECTION PRODUCED BY SHEAR FORCES 13

Where a beam is exposed to both bending_and twisting moments, its resilience is
the sum of the works done by these moments, and this, by the principle of work, is
equal to the work done by the applied loads during distortion.

(11) Deflection Produced by Shear Forces.

In addition to the deflections produced by the bending of a girder, there is some
slight deflection due to the fact that each vertical layer is exposed to shear stress. In
a straight beam, exposed only to bending and shear stresses, the deflection due to shear
is always a small fraction of that due to pure bending, being greatest in a built up
beam of I section in which the web is comparatively thin.?

In such a beam of normal proportions and span simply supported at the ends, the
deflection due to shear is seldom more than 4 or 5 per cent. of that due to pure
bending. In an encastré beam of this type the proportion may be as much as 20
or 25 per cent. In the type of bow-girder- to which this treatise is particularly
devoted, the deflection is mainly due to torsion, and moreover the proportion of the
whole deflection due to torsion is greatest for those beam sections for which the shear
deflection is greatest. Even in an extreme case, in a bow-girder the shear deflection
does not amount to more than 4 or 5 per cent. of the whole, and will, in general, be
much less than this. It has, in consequence, been neglected in the following dis-
cussion. Where, as in a large built-up bow-girder of I section with very slight
curvature, it may be advisable to make allowance for the extra deflection, this may
most easily and with sufficient accuracy be taken into account by using in the calcula-
tions a value of I about 20 per cent. less than the true value for the material.

2 For a discussion of this point, see Morley’s * Strength of Materials,” p. 226, or any text-book
on the same subject.



CHAPTER II
(12) The Circular-Arc Bow-Girder

A 61RDER built in to supports at one or both ends and forming an are of a circle
in plan, is subject, at each section, to both bending and twisting moments. At the
supports, fixing moments of both kinds are called into play, and until these are known
the resultant moment tending to cause rupture at any section is indeterminate. The
following investigation is devoted to a consideration of the general state of elastic
equilibrium of such a girder under various systems of loading.

The investigation is based on the theorem (p. 1) that in a straight beam, fixed
horizontally at some point, the slope at any other point is given by the area of the
11"11 diagram between the two points. Where a girder is circular in plan and is sub-
jected to both bending and twisting moments this theorem requires modification.
Let 3, and T be the bending and twisting moments at a point P distant 8 (in angular
measure) from the support A (I'ig. 9). Thena given slope at P in the direction of the
tangent at this point produces a slope of cos (6, — ) times its magnitude at () in the
direction of the tangent at . Also an angular displacement  at P, due to a torque
between the support and this point, produces a slope y sin (6, — ) at @), in the direction
of the tangent at Q.

It follows that if distances along the arc of the gnde1 be represented by s, the
resultant slope at ¢, assuming the slope at the support to be zero, is given by

arc 01 arc 61
(ll[) 24 J‘[g i
<¢—l§ b f 1, % (6 — 0)ds + f " sin (6, — 0) ds

Here I, and J, are the moments of inertia of the section at 8, about the axes of

bending and of twisting.
Where the beam is of uniform section, this becomes

arc 01 ~arc 81
dyy _ 1 1. P = '
(}—[—3)91 X IT'IJ Mo cos (61— 6) ds + CJJ psin (0 — 6)ds;

0 0

or, since, if r is the radius of the are,
Sl g LTS
(ZS—”ZG’—(E—T'W’

-

01 o1
d 72
%G (%)61 = ']J‘Me COo8 (61 —_ 9) A0 + CJ SIH (()1 Xt 6) 9.

0 (0
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(13) Circular-Arc Cantilever with Load 17 at Free End.

Let a (Fig. 9) be the angle subtended by the are.

Then, ]
My=W X CR = Wrsin (a — 6),
Ty= W X RP = Wr{l—cos (a —0)};

Wy

91
: (d-'/ = ”’"'3( ' BT =Pyl 4 {1— (@ — )} sin (8, — ) df
S )= BT sin (a — 0) cos (8, — 0) d o] cos (a y
On integrating! fmd simplifying, this becomes

7y8
(%)9 ;11 [91 sin (a — ;) + sin 6, sin a] +

;I(;J [2 (1 — cos 6,) + 6, sin (@ — 6;) — sin 6, sin a:l ; o ()

C“//f\

“dT16. 9.

As 0, is any. angle between o and a, on writing #, = 0 in this expression and integrating
between the limits 6; and o, we get the deflection at 0.

- Yoy = ;I IJ-{G sin(a — 0) 4+ sinfsina} df +

”CIJJ{2 (1 —cosf) + 0 sin (@ — 0) —sin O sin a}db

73
;Ll [91 cos (@ — 6;) — cos a sin 91] -
[2 (91 — sin 01) + 01 Cco8 (a == 01) + :I (2)
20, sin (@ — 61) 4 sina (cos ; — 2)
At the free end 0, = a, and we have
= glfl I:a — coS a sin a] -+ ;IC’ [3a — 4 sin a 4 sin a cos a] . (8

As a check on the validity of the reasoning leading to these results the deflection

! For convenience in integrating this and other expressions occurring in the course of this
investigation, a list of the necessary integrals is given in Appendix A.
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at the weight may be calculated by eqmtmg the resilience of the beam to the work
done during deflection. Taking, for convenience, the origin at the free end (Fig. 10),

M =Wrsin0; Ty=MWr(l —cos0);
and, if { be the length of the beam, the resilience is given by—

1 a
A 12y
2 2 P 2 2
3 IfMg ds + —— 20J Titsi= = 5EI fsm 0d6 +—— 507 J‘(l — 2c08 0 4 cos? 8) do

0 0
__ W% [a —cosasina i 8a — 4 sin a + sin a cos a]
4 oy cJ j

V i !
and, since this = L2~ X deflection at weight,

P

e
A

Fia. 10.

. _Wr¥[a—cosasina , 3a — 4sina + sina cos a]
St kI + T

which is identical with equation (3).

Lyg., —2—90O
Wit [ 157 —47] g [7854 62]
Yo="9" LoET A Lt e o cJ -
3T

Ifa:z._135°
e 2% MG
go= 0|82 L2, PP Tm T =
: 2 | 4EI
4CJ

14281 | 18716
BT P

(14) Circular-Arc Cantilever with Uniform Loading—w Lbs. per Unit Length.
Taking the origin at the free end, we have, at any point 0 (Figf 11)

()
My= 5 wr? sin pdgp = wr? (1 — cos 9),
0

g .
= j wr2(1 — cos ¢) dp = wur? (0 — sin 6),
0
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as the moments produced at P by the loading on that portion of the beam between
P and the free end.

; (:Q) u)
d 8 a1

01

(l—cosﬂ)cos((?—01)d0+1”f(9 sin ) 8in (6 — 6,)d 8,

where a is the total angle subtended by the beam. Integrating this expression and
simplifying gives

?)_14 [sin (a —8)—cos 91{a—2 6’1+sin QaZSin 201} __sinb sil}z‘za—sinf‘ﬁl] e
(%)alz wrt ;n (a — 0)) —acos(a — 0;)+ 0, —cos Hl{a Tz L _si.n Qazsngl}“
J A Al
e ( 4 = sin 6, sin ; sin® 0, 24
s

Fic. 11.
wrt (T fa—0 , sin2a—sin 20\ _ sinfsin’a —sin’ 0] a0
ol f I:sm(a— 9)—cos0L 5 + 1 | 5
SO
% —0 sin2 —sin26)
S (Wa =], - sin(a—ﬁ)—acos(a—ﬁ)+9—cos9{a 5 ek i }’
‘ ) do
o @) sin @ sin?a — sin® § |
P + 2 f

sin 6, sin 2a
|22 Coq(a—el)'i“(a—91)811191+cosa—cosﬁl+_._-12_——
wr
. : — 6, _sin 2a —sin 20
e — } (cos® @ — cos?6) — cos B sin’a + * : 1 _ sin 2a z 1

5 9 — 9 cos (@ — 0y) — Zasin (@ — &) + a — 02 + (a — 6y)sin 6,

sin 6, sin 2a g
wrt -+ cosa — cos 0 — ——12— + 3 (cos®a — cos® 0;)

20J

et — 6, , sin2a — sin 26
+ cos 0, sin?a — & 3 !+ 2 i 1

B.G. C
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R H_r{l + cos (a + ¢)} < T, :; T, b D[azj A tan ¢ . . (6)

2 cos ¢
while R, = %{1 o coségsz 4’)} + 5 o= Loy M, - L2 AR
B e S T o )

Again, taking moments about the line AB,
(Mo + M,) cos ¢ — (T, + 13) sinp = Wr{sin(a + ¢) —sing} . . (8

while, equating the torques at the weight, as obtained by working from both ends of
the girder,

Tocosa+ Ry (1 —cosa) —M,sina = — T, cos 8 — Ryr (1 —cos B) +
M, sin 3 . s : ; : ; 5 : . . . - (9

The other two necessary relationships are obtained by expressing the fact that Doth
slqpe and deflection at the weight are the same, whether the latter is considered as
being at one extremity of the are A ¥, or of the arc BW.

The slope at any point 0, between 4 and 1V is given by

0

(I'I/ B )2 61 ) 61 :
160)0 = I M, cos (0; — 6)do + oJ T, sin (6, — 0) db,
ha)
and, on substituting for M, and T, from (4) and (5) and integrating,
<t_1.u) o
‘((9 o1 a
Similarly at any point between B and 7", distant 6, from OB,
> B
<d_'/> !
df/e s

2

S I:Mb {0,c08 0, +sin 0,} — (Ryr — T,) 6, sin 91]
The slope at the weight is obtained by writing 8, = « in the first, or 6, = B in the
second of these expressions, and is thus given by

.'.2
S [M,, {6, cos 0, + sin 0,} — (R, — T.,) 0, sin 91]

2 .
_+i;] [(Ta —Ryr)6,sin 6,4+ 212,7(1 —cos 8,) — M, {sin 6, — 6, cos 0, } :I

2 § K
+§-’ij [(Tb — Ryr) 0,sin 0, + 212,(1 —cos 6,) — M, {sin 6, — 0, cos 6, }]

2 [ ; ] . =
T Im ac ool o ]
(d_y) A YD wiacosa + sina} — (Ry ) asina o
160/ w 2 ,
: +or7 [(Ta— L s biria BB (= dose) —J1a1sina—acosa}]
or by R . =
3 : : 1
<(11/ Y I::‘[b {Bcos B + sin B} — (Ryr — T7%) B sin B:l
a6)e ~ 11)
la)w 2 ) (
a -+ 2%3 [(’lv,, — Ry)BsinB4 2Ry (1 —cosB)—Mb{sinB-—[o’cosB}]

according as the point IV is considered as forming part of span A W or of span BW.
On equating these two expressions, with the sign of the second changed since 6
c 2
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is measured in opposite directions in the two sections, a further relationship between
the unknowns is obtained.
Deflections.—Assuming the supports to be at the same level, integrating llét
obtain the deflection gives (between 4 and 1)
Ty 4 Tl v
2JE—I ( [Ma{ﬁcos 6 +sinf} — (R — T.,) 0sin 0] (s 8T

— 4 0
Yo =

+2(JJ[. [(T — R, 0sin 8+ 2Rr(1 —cos 0)—D!, !smﬁ—Bcosﬁt:l de

as the deflection at a point distant 6, from A. On integrating and simplifying,
this becomes

— =3
‘Z?TI Mtﬁl sin 8, — (R — T,) (sin 8; — 6, cos 91)] 2
=% ; :

i (T, — Ryr)(sin@, — 6,c080,) 4+ 2R,r (6, —sin 91)] Ve
‘2('J + M (6, sm9 +2c030 —2)

Similarly for a point between B and W, distant 6, from B,

3" 5 y
5117‘7 [JIbGI sin 0; — (Ryr — T}) (3in 01 — 0, cos 91)]

(T — Iyr) (sin 6, — 6, cos 0,) + 2Ry (6; — sin 01)]
‘)CJ 11’,,(0 sm 0, + 2cos 0, — 2)

(13)

Yo =

At the weight, 6, becomes a in (12) and 8 in (13) and these expressions give
(4 to W)

R ZLI [Uaasma—-(Rv—Ta)(sma—acosa):l A
e (T, = Ry} (sin & - o 008 a) + 2Ry (o~ sin'a) ;
QCJI_—_ + M, (asina + 2 cosa — 2)
and (B to W)
21« ST [AIstm B — (Ryr — T4) (sin B — B cos B)] ]
Yo = [(T,, — Ry (sin 8 — Bos B) + 2Ry (8 — sin B) (15}
2(; + M, (BsinB + 2 cos B — 2) ]

On,equatmg the identities (14) and (15) the final relationship is obtained, and
from the six equations (6), (7), (8), (9), (10 = — 11), (14 = 15), the six unknown
fixing moments and reactions may be determined in any particular case. These
moments depend somewhat on the relative values of I and of C/J, except where the
load is in the middle of the span. An increase in the ratio LI : C.J is accompanied by
an increase in all the fixing moments. The effect on the values of M, of M, and of the
end reactions, produced by a large variation in this ratio, is very small, especially
when the angle a is large. The effect on the end torques is more pronounced,
particularly for small values of a.

In order to facilitate the application of the results of this analysis, and to make
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it more useful in practice, the foregoing equations have been solved for a series of
values of a and of ¢, and the values of the end moments and reactions have been
caleulated for a series of values of EI: CJ. Owing to the comparatively small
effect of this ratio on the end bending moments and reactions, values of these have

eI iR i i §
(&) |
2 ! T 4 20
4 /0
r : f
= - =3 p-45 o y
<02 s> e Wt as =BT
o /j Cai e T 1-25)F “i/f)r
3. Hotsses Siaaas P« 7
e i W T !
= FHHH 1 ets ! .16
Oty 10° 20° 307, 20" 45" 7 ] :
Values of @ et T :
02 g, R + /s
S Lo 26 | B !
a . I = T 5 Yg=60" I
o Zgesnescognens ) ¢ 14
K3 HH ZesSeBs e id 125 1 %
0 U . I K 1 43
10 20 30 !
Values of @ ‘H
12 H / o 8
" HEOs \gers o,
” e | A
ss : /4 s = T
10 1 i Faszes L2 "0
A 4 T
407 i It
d r i
08 A > ? & — 08
P4 P TITTL100 I
a e h?g : 07
{d AT 2" -
"j:os 755 s Vg 06
g ) IJ -l 3 ;
205 +—— 4 05
= rdusp 7 A : gses a8 f~25} ! .
04_ Z, 1 L 1 04'1
v Q
A / 5 Hias §
4’ 1 )
02 = : oz =
A 1
o .0
- Il
LIl
a 10 20° 30 40° 50° 60° »’ 80° a0°

Values of &

T16. 15.—Values of T, + IFr for a bow girder built in at both ends, subtending an angle 180° — 2¢,
and carrying a single load 11" at a distance « from the end A.

only been calculated for the extreme cases likely to be found in practice—viz., for I :
CJ = 125 (its approximate value is a solid circular section) and for KI: CJ = 100,
These results are plotted as curves in Figs. 13 and 14, and for intermediate values of
the ratio the moments and reactions may be obtained with a sufficient degree of
accuracy by interpolation from these curves.

Owing to the relatively greater variation in the end torques, valves of these for
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a series of values of 1 : ('J have been calculated, and are plotted in Figs. 15 and 16.
By substitution from these values in equations (4), (5), (12), and (13), the values of
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Values of 0L
F16. 16.— Values of 7, + T'r for a bow girder built in at both cuds, subtending an angle 1507 — 2¢,

and with a single load 11" at a distance « from the end 1.

the bending and twisting moments, and of the deflections at any point of the girder,
may be obtained.

Special Cases.

Semicircular Bow-Girder with Single Load JI” in any Position.—Here a + 8=
180°; ¢ = 0; and the foregoing equations cimplify. The values of the various con-
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stants for such a girder have been calculated for the case where IJI = 125 CJ, and are
given in Table I.

Tase L

a s 30° 45° 60° 75° 90°

| 52 165 159 39 120 105
% 100 990 -940 870 764 640 500
],‘T‘: 00 0104 | 060 181 236 361 500
M, : ;
o 00 239 198 542 590 571 | 500
]"L" 00 0200 | 0725 | -165 976 895 500
s 00 |- 0251 | -0662 | -115 155 181 182
Ili—', 00 0118 | 0382 | 082 128 161 182

In the particular case where a = 90° = 15708 radians (i.c., weight at centre
of span) from symmetry
s’ e =S =1 " 5.
M=, =50
1 r,=1T,
dy | : A e

From (10) the value of PT. at the weight (a = ~2> is given by
,’.‘2 ,’.2

{ ,"_11) g5, 21 ,_(__'g_'__ )_,.[__V( .2_;-2_]
21«:[(”'(1 S e g\ g 2 2 ) —ola) = gpr — 5ai)

Y0 {W,- <1 —g) —l-nTa}.

From symmetry this equals zero ;
e ¢
5 P (’% z> = 182117,
a1

and in this case both M, and 7', are independent of the relative values of I<I and (7J.
The curves of Fig. 17 and 18 show respectively the values of the bending and twisting
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Let M,, M,, T',, T}, have the same Illéanings as before.
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Fie. 19.—Values of M for a girder with uniform loading, subtending an angle 180° — 2¢.
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Taking the origin of ¢ at the supports,
Mg=DM,co80 — Brsin€ + T, sin 6 + wr((1 — cos 6) !

= (M, —w1*)ycos @ — (R — T,)sin 6 4 wi?. : (18)
To=1T,cos 0 + R(1 —cos @) — M,sin 6 — w10 —sin )"
= (T, — Ryp)cos @ — (M, — wr®)sin @ + R,»r — w120 (19)
If the girder is fixed horizontally at the ends,
61 2 61
(‘Z_-’/) = M, eoa (8, — 6)48 4 — ( T, sin (6, — 6)d6
df/n ~ EI), ol !
u ! ]
aan ' 1
03 : SsEEfdILs
o emcircular Girder
Il (B
*
i i !
1 1l -
] i T
02
{ Jmme
HPl=/15%
0/ w y~—4:
=30
! Sa -
! it
! ;i
: Plas) i
na TR HH :
] A sesane pl60; e 5
0 == ! I T inai Tt L 8 E e
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Values of E1:CJ
F16. 20.—Values of T, for a girder with uniform loading subtending an angle 180° — 2¢.
and, on substituting for 3, and 7, from (18) and (19), this gives
g2 = 4
rdy ‘. ; 27—1’,[ [(J[a —wr?){0,c0860,+ sin 6, } — (R, — T,)0; sin 0; + 21 2sin 91] |
(d@ o y | (20)

sl [(Ta — R)0, sin 6, — (M, — wr?){sin 6; — 6, cos 6,}
L) 20 + 2R (1 — cos 0,) — 2ur* @, — sin 01)_‘

Writing 6 for 6, in this expression, and integrating between the limits 0, and 0

we have

! The last terms, representing the moments due to the portion of the load between 4 and 6, being

obtained as at the beginning of § (4).
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F1c. 21.—Values of M, and of 7, in a girder with uniform loading, subtending an angle
[180° — 2¢]. EL: CJ = 10.
i
-2%,1 [(M,, — wr?)0,8in 8, — (R — T,)(sin 8, — 6, cos ;) —2uwr? (cos 01—1)]
Yo, = 2 (T, — R,r)(sin 8, —6, cos 0,)+ {(M,—wr? (0, sin 6,42 cos §, —2)) (21)

t507 : Ve
cJ + 2R (6, sin 6,) — 2ur (7 + cos 8, — 1

From symmetry Z—g 1s zero at the centre of the span where 6, =—;—¢, and

by substituting this value for 6, in (20), and by also substituting for M, its value

r

1 ) >
zur“’{l e <721 —¢ — Eﬁ) tan ¢ )¥ and equating to zero, the value of 7', may be obtained,
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after which the values of M, and T for any point on the girder may be obtained
by substitution in (18) or (19).

The values of M,, T,, M,, Ty have been calculated from the foregoing equations
for one-half of a uniformly loaded girder for a series of values of ¢, and of 8 for each
value of ¢. These values depend slightly on the relative value of EI and of (J,
and in I'igs. 19 and 20 values of M, and of T, are plotted for a series of values of
EI: (J. Fig. 21 shows the variation of 3, and of 7', with ¢, for a given value of
EI: CJ. The curves of this figure are calculated for the case where this ratio equals
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16, 22.—DBending-moment diagrams for one-half of a uniformly loaded circular-are, subtending
an angle of [180° — 2¢7.

10, and for purposes of design these values may be taken as sensibly accurate for any
likely values of the ratio.

Figs. 22 and 23 show respectively the bending moment 3, and the twisting
moment T’ at each point of a uniformly loaded bow girder subtending an arc 180—2¢
degrees.

Special Case.

Semicircular Girder with uniform Load.—Here ¢ = 0, and we have:—

M, =My, = w2 uR =%, 2% o ik
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W e frRlehs
(dy) _|zE1 [(1 w — R0 sin 0, + 2wr? sin 01]
01

do oo (207
| JL a7 [(Ta — R )0, sin 6; + 2R (1 — cos 6;) — 2u12(0; — sin 01)] |
= el
311?,[ I: (T', — R,r)(sin 8, — 6, cos 6,) — 2ur*(cos 0, — 1)]
B = F (T, — Ry)(sin 8, — 8, cos 8,) + 2R(6, — sin 6,) . @)
2
i 20 — 2wr2<%1~ + cos 0, — 1) '
*30
\
A\
AY
\\
20 X
A=
\\Qoo
~ N @
C
Y /O l\\\\ = \:3,0 =
3 AN i
iq; \: G \‘i‘;@/
IRNEE=E == Sidte
.o ~ =
& LS = j //' /,
« AT CJ’
0 oy = A —— —
(%5} g R e A
wraes S = —
—-/0 e —
—.2 N
o 1% R0° 30° e So0° &80° 70‘ 8o° 90

Values of @ measured from ane support.

F16. 23.—Twisting-moment diagrams for one-half of a uniformly loaded circular-are girder,
subtending an angle [180° — 2¢].

Substituting for M, and R, in (20’), writing % for 6, and equating to zero, gives

2
T,=wr X < <71 — 2) = -298un%,
m\4
and on substituting in (18) and (19)

My = wr¥(1 — 1-2728 sin 6),
Ty = wr¥(1°5708 — 1°2728 cos 0 — 6).

1

This makes M, = 0 when sin 6 = 17798 = 7850 ; 1.e., when 6 = 51°48’, and
makes Ty = 0 when § = 22°40’, and again when 8 = 90°. 1}, is a maximum when
d—(%—" = 0; i.e. when cos § = 0, and therefore at the supports. T, is a maximum when

B.G.

D
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(51199 = 0, i.e. when sin § = 7850, or when 6 = 51°43’".

Writing 0, =g in (21') and substituting for 7', and R, the deflection at the

centre is given by
3 =i A i
Yicentre) = 20T 20

(17) Circular-Arc Bow-Girder, Subtending an Angle (180 —2¢)°, Built in at the
Ends and Carrying a Uniformly Loaded Platform.

Let w lb. per unit area be the load on the platform whose area will be

02
72 {77 — 2¢ — sin 2<;l>l Iinagine the latter to be divided into a series of strips

parallel to 4 B, each of these strips transmitting its load to the girder at its ends. The
length of the particular strip resting on the girder at points distant 6 from 4 and B,

Fic. 24

is 2r cos (0 4 ¢) (Fig. 24). If this strip covers a length 8s = 186 of the girder, its
width'is 780 cos (6 + ¢), and the load on it is 2ui? cos? (6 + ¢)80
Its moment about 4B = 2w cos? (6 + ¢)isin (0 + ¢) — sin ¢}66,

—-¢
.. Moment of whole load, about 4B = 2wr J cos? (0 +¢){sin(0 + ¢) — sin )58

- 2wra{M a Sl—‘li (o — 2 — sin 2¢)}

Since, from symmetry, M, = My; Ty = T); 3; follows that
M,cos p — T, sin p = wr? Fpicn ¢ 3124) (m— 2¢ —sin 2¢)}
oM, = m-s{cos3¢’ — $ (r — 2¢ — sin 2¢)} 4+ T, tan ¢.
Again, since the total load is
2wr f ;o_sz (8 + $)db
_ wrtf

=35 (ﬂ—2¢—c1112¢)
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o
“R,=R,= %-[w— 2 —sinzqs}.

The bending and twisting moments at a point z, distant 6, from O4 are given by
681

Mg, = M,cos 8, — (R,» — T,) sin 6, +f wrd cos? (€ + ¢)sin (6; — ) d6.
0
01

Toy = (T, — Ryr)cos 0 — M,sin 0 + R,r _Jwra cos? (0 + ¢) {1 — cos (6, — 0)}d,
0
the last term in each case representing the moment, bending or twisting, about the
point z; (Fig. 24), of the load between 4 and ;.
On integrating these terms and writing 8 for 6,, the general explesswns for M,
and 7’y become

e L s (cos 8 — 1){cos 8 —sin?p+sin 2¢sind}] ;

M, = M, cos6 — (RR,r—T') sin 6 + 2 [ N ain? 6 o] 22
7 . (cos2dcosf |, 2 ,,—

To= (T',— R cos 6 5 Tsiné 1—%— +35(1—cosf)— COS“¢} =

— M,sinf + R,y — wr? AL sinﬁQqS (1.— cos 8)? @s

As before, if the girder be fixed horizontally at the ends

dy\ _ 72 o b i
(clﬂ) o ‘"" cos (6, — 6)d0 + CJ Ty sin (6, — 6)d0,
0

and, on substituting the foregomg values of 11, and T, and integrating, this gives the

value of —;a at any point 6;. Thus
M0, cos 0, + sin 8,) — (R — T,)0, sin 6,
p e sin 6, (7 — sin®> ¢{8+ 01}) — 0, cos 8; (1 + sin®p)
9ET| +5- :
ol = ;gsin 2 (6, + ¢)
<Qg> = (1',— 1,0, sin 6,— M, (sin 8,— 0, cos 6,)+2R,(1—cos 0,) ©4)
d8/e 6, cos2
&= sind., ( Gl 0032¢+s1n 2¢+cos cos o)
,'.‘J 4 L
= 20 | —wrd T gtos 01)
+ 6, cos (cos2¢ 4+ it 2¢ g) + sm 2¢ (86, sin 6,
1 — gin? 61 +cos b —1)
From symmetry the slope is zero at the centre of the beam where 6; = 5 — ¢, and,

on substituting this value for 6; in (24), and also substituting the values of JIa and R,
as given on pp. 84 and 85, and equating to zero, the value of 7', may be obtained.
L.g., Semicircular Girder (¢ = 0).
D 2
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In this case, on putting ¢ = 0 in (24)

i | M, o{01cos 0 4 sin 0;} — (R — T,)0; sin 6‘1
wr? (7 4

‘ + ——1 5 sin 6; — cos 6, <§s1n 0, + 01> ;

o

72

53
(Z—’é) - (T, — B8y sin 6, — M,{sin 8, — ; cos 01} Ry
i z_gj + 2R (1 — cos 6;) — 1101-3{01 — sin 6, (1 cos 91)

+ 3 Bl cos 91}

At the centre, where 6; = L the slope is zero, and M, = ? R, = o . 5

Y EUERE AN BUCE T E S
“spilsa— \a "ws)atol Tagy (uf,-s_z grat ol

o e = C—;— — %g) wr3 =078uwr3.

w

It follows that, on substituting in (22) and (28)
1y \
My=wr{ RO o

(sm 0 cos 0

3l
7 " +——-707~1cos()——

o = w1

The deflection at any point 6, is obtained by writing f; =6in (24")and integrating
between the limits 6; and 0. Thus,

y2 | M.0ysin b — (R — 1) (sin 6; — 0, cos )

DY wrs (
+ 9 l10—1000540 —2s1n261—30151n01}

(25)
Yo = (T, — R,r)(sin 0y — 6;cos 01) 4 2R, (61 — sin 6;)
72 + M, (f15in 6; + 2 cos 6; — 2)
it 2CJ wrd (96,2 sm 0
— 1r 90 4 1608 6, — 16+ 5+ 391311101}

At the centre, where 6, =

(ST

— 1 .: 1S
a [M T (Rar = 1) + 865501 ]

Yeentre —

+ 565 [('12—1:‘,7-) + R (m — 2+ M, (12’ - 2) = -0350107-3]

__wrS 1815 | 0121
2 L EI cJ
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(18) Girder with Unéyrnrnetrical Loading.

Where the loading of a girder does not admit of being represented by a simple
trigonometrical expression, or where the girder is not of uniform cross section through-
out its length, a solution is most readily obtained by dividing the load, including the
dead load due to the girder itself, into a series of comparatively short lengths, and by
caleulating the moments due to each of these portions of the load separately, by an
application of the reasoning and results of § (15). In practice a first approximation
would be obtained by assuming a likely value for the cross section and weights at each
point, and by then applying these results. A second approximation would then be
made taking into account the weight of the girder calculated from the sectionsg found
necessary by the first approximation, and this would in the majority of cases give
results sufficiently near for all practical purposes.

(19) Bow-Girder Built in at the Ends and Resting on Intermediate Supports.

Assuming all the supports to be at the same level, the reactions of the intermediate
supports may be most readily obtained by expressing the fact that the upward
deflections at these supports caused by their reactions, are equal to the downward
deflections produced at the same points by the loading.

(20) Girder with Uniform Loading and Central Support.

Let P be the reaction of this support. Let 180 — 2¢, or 2a, be the angle sub-
tended by the arc of the girder.

The upward deflection at the centre due to the reaction is given by equation (14),
in which W= P, and in which M, and 7', have the values given by the curves of
Figs. 13—16, for the corresponding value of a or (90° — ¢). The downward deflection
at the centre due to the load is obtained by substituting a for 6, and by substituting
the corresponding values of M, and 7 as given by the curves in Figs. 19—21, in
equatlon (21).

E.g., a = 90°; ¢ = 0 (semicircular girder).

The upward deflection at centre

97
ALIZ-45w—1wﬂ +zu/D1% 500+ 7 1+-<w—@]

4674 0382
= paf;
95T t 9os

The downward deflection at the centre, due to the loading

o [+ 38
and on equating these
72720 4 0531
4674CJ +- "0382LK1

The value of this depends slightly on the ratio of I/T to CJ. Taking this ratio as
1-25, gives

RS — 1)

L 17928)

) — )
L= sl

= 154wr.
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Again, R,+ R, + P =muwr
S 5= - =%{w L 1-54}
= ‘801wr.
Also
M, + M, = Zur® — Py

46uwr?
ois D= =9 S e
The value of 7', is the difference between the values produced by the load and by
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F16. 25.—Bending moments in a uniformly loaded circular-are built in at the ends and having
a central support. (Full-line curve.)

the upward reaction P.  The first of these is *298wr? (Fig. 20); the second is *182Py
(Fig. 16).

o Ty = {298 — ("182 x 1:54)) wr?
— SIS nas
This value may be obtained alternatively by substituting the foregoing values of
M, and of R, in equation (20) with 6; = %, and by equating to zero.
The values of M, and of T, at any point between the end and the support and
distant ¢ from the end then become, on substituting in equations (18) and (19)

My =wr>{1 —-77cos § — 783 sin 0},
T,=wr*{*801 — *783 cos § + *77 sin 6 — 8}.
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If EI : CJ = 10 the values of the end mvoments and reactions become P = 1°47 wr;
R, = R, = *835ur; M,= M, = ‘265wr?; T,=1T, = ‘030wr? and equations (18) and

(19) become
Mo = wr?{1 — *785 cos § — ‘805 sin 6!

Ty = wr?{*835 — ‘805 cos 6 4 "735sin 6 — 6}.
Figs. 25 and 26 show the bending and twisting moments at each section of one-
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¥F16. 26.—Twisting moments in a uniformly loaded cirenlar-arc built in at the ends and having
a central support. (Full-line curve.)

half of such a girder with a central support and with II < CJ = 1'25, while for com-
parison the moments with the same loading but without the central support are shown
by the dotted line curves on the same diagrams.

Where the girder subtends an angle less than 180°, the problem may be solved in
an exactly similar manner by making use of the requisite relationships from the fore-
going curves.
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(21) Circular-Arc Girder, built in at the Ends, with Uniform Loading, and with
two Symmetrical Intermediate Supports.

Let the angle subtended by the girder be (180—2¢)°, and let the sapports (at C and
D, Fig. 27) be distant y from each end. Let the upward reaction at each support
= P. Let M, T,”, R,” represent such end conditions at 4 as would be produced by
these two reactions alone, and let M/, T, IR, represent such end conditions as would
be produced by the load alone, with supports removed.

Under these conditions the downward deflection at C and D) due to the loading
would be, by equation (21)

2 e[|
2—}7—[ [(Jla’— wr¥)ysing—(R,'r—T,")(siny —ycosy) — 2uwr?(cosy — 1):| '
| (T, —R,/r)(siny —yeosy) + (M, — wr?) {ysiny 4+~ i (26)
2 :
2 cos y — 2} +2R,'r(y — siny) — 2'11'7*2(%-{- cosy—1) {

Yy i— 2

307

T1c. 27.

where R, = wr (2 — ,and M, 'and 7', for the particular value of ¢ obtaining in
2 2 g

the girder, are given by the curves of Figs. 19—21.
The upward deflection at C' and, from symmetry, at D, due to the two upward
forces P is obtained by substituting y for 6, in equation (12), which becomes

‘ ot [Ma" ysiny — (R = T (siny Sy 008 y)]

Yo = | r? (T, — R,r) (siny — ycosy) + 2R,"r (y — sin y)
;_+ 90J + M, (ysiny + 2cos y— 2)

(27)

The values of M,", B, T,” for use in this expression are the sum of the corresponding
values produced by each of the two forces P acting at points distant y from 4 and fromn
B, and may evidently be obtained by adding the values of M, and M,, R, and R,, 7T,
and 7', as obtained from the curves of I'igs. 13—16 for a girder having the correct
value of ¢, and having the force P at y from A.

On substituting these values, each of which is given in terms of P, in equation
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(27)-and equating to (26), the resultant expression contains I as the only unknown and
enables this to be calculated.

Il.g., Semicircular girder with uniform loading and with two piers at 60° from
the ends of the span (¢ =0; y = 60°).

From Figs. 19 and 20 the values of M./, and T, for substitution in equation (26)
are M," = wr?; T, = *298u»?; while R,” = 1'5708wr, and, on substituting, the down-
ward deflection at the supports (y = 60°) is given by

Yoo = wrd [;f—j = % .

The values of 37", T,”, and I&,” for substitution in (27) are, from Figs. 13, 14, 15

and 16
M, = (M, + M)y o,y - 60 = (‘588 + 278) Pr = ;
T = (L4 Tp)s=0,y =600 = (156 } 127) Pr = ‘283 Pr.,
V=l

and, on making these substitutions,

539 |, 035
ooy P [21«;1 Tacil-

Equating these two expressions for ys gives
[-564C + -03TEI
539C S 4 035111"°
and taking X1 = 1'25CJ, this makes P = 1-05wr.
The reactions at 4 and B are then given by

P = un

R,=R,= R, — R =ur (’Z’ 2 1-05)'= “52Laer.

while the mowments 31, and 3, are given by
My=M,=M, — M, =wr?(1 — 866 X 1:05) = ‘091uw2.
The torques 7', and 7', are given by
Ty,=T,=T, — T, = wr?{-298 — -283 X 105} = -001ur2
The state of affairs at any point on the girder is thus given by the relations
(equations (18) and (19)) :—Between 4 and C—
My= M, cos 6 — (R,r — T,) sin 6 + wi? (1 — cos 0)
= wr® {1 =909 cos 6 — 520 sin 0}
Ty =T, — Ryr)cos 0 + R, — M, sin 8 — wr? (§ — sin 6)
=wr? {521 — *520 cos 6 + 909 sin § — 6}
Between C and the centre (8 being measured from 0A4)—
My = M,cos § — (Ryr — 1) sin 0 4 wi? (1 —cos ) — Prsin (6 — 60°)
= wr? {1 — 1-045 sin 6}
Ty = (T — Ror)eos 6+ Ry — M, sin § —uwr*(8—sin 6) 4 Pr {1 — cos (0 — 60°)}
= wr® {1'571 — 1:045 cos 6 — gL

Fig. 28 shows the bending and twisting moment diagrams for such a girder, while
for purposes of comparison these have also been drawn as dotted line curves on Figs. 25
and 26. From these it appears that the maximum values of the moments with and
without supports have the following ratios, the bending and twisting moments for the
span without intermediate supports being taken as unity.
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Scale For Values of Mg +wr?

Number of Intermediate Supports.
none one at centre two at 60°
Maximum bending moment . 1-0 *26 09
Maximum twisting moment . 1-0 ‘11 ‘035
10
Values of Mg |11
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1 N
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Fre. 28.—Diagrams of bending and twisting moments for uniformly loaded semicircular girder,
with two intermediate supports, distant 60° from each end.

The following table shows how the fixing moments and reactions vary with the
ratio of EI : CJ in the foregoing example.

LI r e i, I
125 1:05 521 091 001

100 1-06 511 ‘081 —002
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From these figures it appears that a considerable change in this ratio has very
little effect on the magnitude of these moments.

Semicircular Girder with uniform Loading and with two Piers at 45° from Ends of

Span.
In this case, the end constants and pier reactions for £I=1-25 CJ become
P =1460wr : M,= — 081wr?;
Iy == QI LT oo — 0102

As before, befween 4 and C
My =M, cos 0 — (Ryr — T',) sin 0 4 wr? (1 — cos 0),
Ty =(T, — Ry)cos 0+ Ry — M, sin § — wr? (0 — sin 6),
while between C and the centre
My =DM,cos § — (I,r — T,)sin § — Pr sin (6 — 45°) 4+ wr? (1 — cos 0),
To =(To — Ryr) cos 0+ Ry — M, sin 0 + Pr {1 — cos (6 — 45°} — wr?(8 — sin 6).

(22) Semicircular Girder, built in at the Ends, with Uniform Loading, and with
three Intermediate Supports.

Let the supports be arranged symmetrically, P; and P, being the reactions at the
outer supports and () that at the central support. These reactions may be obtained
by expressing the facts (1) that the downward deflection at the centre due to the
loading is equal to the sum of the upward deflections at the centre due to the forces
Py, P,, and @, in their respective posifions; and (2) that the downward deflection at
Py due to the loading is equal to the upward deflection at this point due to forces
P,, P,, and @ ; thus if, for example, P; and P, are each at 45° from the ends, we
have—

Downward deflection at ¢ due to loading

o [7272 | -058)
wii {2E1'+20J
Downward deflection at P, or P, due to loading
(3928  -0213

NN a7 vl e
b EET 307 )
these values being obtained from equation (21’) by substituting the values of 8, viz., 90°
and 45° and of M, and 7', from Figs. 19 and 20.
Again, the upward deflection at ¢ due to force Q

-2 [4674 0382] . )
=Qr’| 37 T 507 | from (14) and Figs. 18 and 14,

and the upward deflection at @ due fo the two forces P, and P,(=P)

2110 0594
=LY SET QCJ] from (18) and Figs. 18 and 14.
Also the upward deflection at P, due to force P,
‘1865 005
=0 BT CJ5:| from (14) and Figs. 13 and 14,

while the upward deflection at P, due to P,

0845 | “0085)
3
e { QLT + 507 2CcT | from (18) and Figs. 18 and 14,
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and the upward deflection at P, due to force @
2297 , ‘015 : :
=5 {m + m} from (138) and Figs. 13 and 14.

Collecting and equating deflections at the same points gives
wr(*72720J 4 053 E1) = Q(4674CJ + -0382L1) 4 P(-4220CJ + 0594 E1),
wr(*8928CJ + “02183E1) = Q(2297CJ 4 -015L51) + P(-2710CJ - 0140L1),
where P = P; = P,.
If EI = 1-25C.J, the solution of this gives
Q = T4wr; P = 83w

)T T
1i H 13 iz 3
06 + ¥ J 1 J:
1
04 / A A
7 LY M.
o / _‘;’2
3 R0
& \
302
R A : /
E % :
g \ T wr2 X
f OFs seunse X \— AR Ry A
¥ “—Aﬁ‘ / O ;‘x» 1 N a i ==
b {1 N t
3 + i '/
§ P ‘L' \
Ny - A
02 spEieg
T T
I 1 i
(] 10° 20° 30° 40° 50° 60° 70° 80 90°

Values of 8 measured from one end of Girder

Fi1a. 29.—Bending and twisting moment diagrams for one-half of a uniformly loaded semicircular
girder with three inteimediate supports at 45°.

From this
R,= R, =} {mur — Q@ — 20}
=3
Also
M, + M, = 2wr? — 2Pr sin 45° — Qr
= 088w»?
L = =) e

while 7', (from Figs. 15 and 16)

= 298wr? — *112Pr — *182Q»r — -083Pr
= ("298 — -297)wr?
= 0010 w2

Fig. 29 shows the bending and twisting moment diagrams for one-half of this
girder, and a comparison of these diagrams with those of Figs. 25 and 26 indicates to
what extent the maximum moments are reduced by the addition of the third
support.
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(23) Effect of Dep‘ression of Supports.

Where a bow-girder is used to support the circle of a theatre, intermediate
supports are often provided by cantilevers built into the rear walls of the theatre. If
erected so that under no load the ends of these are level with the end supports of the
bow girder, their deflection under load will reduce the supporting pressure to a value
below that obtaining with rigid supports, will increase the end reactions, and, generally
speaking, will increase the average bending and twisting moment over the whole
girder.

If P be the end load on a given cantilever, its deflection at the free end is
proportional to P and is equal to kP where & depends on the dimensions of the
cantilever. For example, if of uniform section, of moment of inertia I1’, and of length

l3
l, k == é—m—,

The actual deflection under load of the bow-girder at this point is thus kP, and if y
would be its deflection with the support removed, the upward deflection due to the
upward force P is equal to y — kP.

Expressing y in terms of the load on the girder, and expressing the upward
deflection due to P in terms of P as in §§ 20, 21, and 22, and equating this to
y — kP, the pressure P on the support is obtained in terms of the load as in the
examples of the preceding articles.

E.g., Semicircular Girder with Uniform Loading, built in at the Ends and Sup-
ported at the Centre by the End of a Cantilever.

Deflection at support with support) A ‘7272 . ‘053 34
removed , Sy SEL T 30T : . - P
Actual deflection at support . e
Upward deflection at centre due to) _ ,, 5 [4674 |, 0382 z
force P . . ] : ) i SET T Y3 \ ’ Wl
4674 | 03827 7272 | 058
. .3 D LN
- Pl e tocu :| R o I:ZLI o0
7972 + 053 2L ’
) ek cJ
. =ur
Z/CIJ

4674 0382 L - J+

Thus, for example, if the cantilever be of uniform section, of moment of inertia I’

3
and of length {, so that k = ¥ this becomes

3ET”
7279 4 058 1
€
5 A EI 2P 1
4674+ 0382 55 4+ 5 -

The following table shows how, in the case where I = and I =1, the yielding
of this support would modify the end moments and reactions as compared with those
experienced with a rigid support or with a cantilever so erected and designed as to
deflect under load to the level of the end supports. These figures apply to the case
where I = 10 CJ.
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Calling wl the load, let Z be the distance of its centre of gravity from the line joining
AG, and let x, and z, be the distances of supports B and C from this line.
Then taking moments about 4G gives

= %v — (Rxy + Ryxy).

wl

Again 5 = Ha+ By + R,

so that if I}, and R, are known, I}, and 7', may be deduced from these equations.
This leaves in effect three unknowns, M,, 12, and R, and in order to determine these,
three further equations are necessary.

These are to be obtained as follows :—

(1) Span A B.—Write down the expressions for the slope and deflection at B in
terms of I, M,, and T,. These are the same as equations (20) and (21), pp. 30 and
31, with », taking the place of ». Equating the deflection at B to zero gives the first
of the required relationships.

(2) Determine values of 3, and 7', from equations (18) and (19), p. 80, in terms
of R,, M,, and 7.

(8) Span BC.—Obtain the slope and deflection at C' in terms of MM, T}, B, and
R,, and of the slope at B. Equating the deflection at C to zero gives the second of the
required relationships.

(4) From equations (18) and (19) determine 3, and 7.

(5) Span CD.—Obftain the slope at D and equate to zero. This gives the third
relationship.

(25) Shear Force at a given Section.

The vertical shear force at any section of a bow-girder is the same as would
be experienced at the corresponding section of a straight girder subject to the
same loading and to the same reactions. Thus, between an end support—reaction I2,
—and the first concentrated load 77, the shear force is constant, except for the weight
of the girder itself, and equal to I2,. Between this load and a second load W,, the
reaction is R, — 1.

In the case of a uniformly loaded girder, carrying w lbs. per foot run, the shear force
at a distance z, measured along the arc, from the support 4 is R, — wx for all points
between the end and any intermediate support. If there be an intermediate support
at a distance x, from the end A, and if its reaction be P;, the shear force at a point
distant x from 4, between this intermediate support and any third support, is given
by

R,+ P, — wx
and so on.

(26) Experimental Verification of Formule.

In order to verify the formul® of this chapter by experiment, measurements of
deflection have been made by the authors on a series of bow-girders fixed at one or
both ends and loaded either by single concentrated loads or by a uniform load. Some
of these girders were of circular section, others of angle section. Values of EI and of
CJ were obtained by deflection and torsion experiments on straight lengths of the same
sections, and these values have baen adopted in the calculations.
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The following are the results of the experiments :—

Tasre II.
4 Deflection (ins.).
Angl
Series. gggt)?ogf Conditions. subtlelm(;}ed
by . Measured. Calculated.

a Circular | Circular arc cantilever 90° 1:469 1-475
with weight at free 185° 4475 4475
end >

b - Ditto with uniform 90° 510 502
loading

@ " Semicircular bow gir- a = 380° ‘0438 ‘043
derfixed at endswith SR ‘117 115
single load at a from 5 S602 202 204
one end—deflection A L08R 807 307
at weight

d = Circular arc girder with 120° ‘075 ‘074 -
single weight at
centre

e » Ditto with uniform 180° 310 306
loading

f Angle Circular arc girder 90° ‘011 ‘012
with weight at centre 180° 124 "116

g Angle | gomicireular bow gir- Deflection at oy o
der with single load 5 REP

t 45° f »
ab 107 fromUoRe) | pe e 072
centre

From these figures it appears that there is a very close agreement between
experimental and calculated values in every case.

(27) Non-circular Sections.

The foregoing formul are of general application to a beam of any section of which
the EI and CJ are known. The former of these products is usually known or can be
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determined by calculation with a close degree of approximation for any commercial
section. While the geometrical polar moment of inertia J of any section may also be
calculated, the product of this J and the shear modulus C of the material does not, how-
ever, give the effective value of C'J for use in these formula, except in the case of circular
sections. The reason for this and the question of the effective value of J/ for non-circular
sections 1s considered in some detail in the following chapter.
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Tasre III.
Type of Section. Yemarks. Effective value of J (= J').
Solid ellipse . : : Major axis — 2a ma®h’
Minor axis — 20 a? + b?
Hollow ellipse . 4 ¢ Major axes, 2a and 2qa, walh? I:l 2 (‘h) 4]
Minor axes, 2b and 2b, o’ + b
Square . ) ’ . Side = s ‘145t
Rectangle . ; : . | Lengths of sides, b and d | dl®( 6 BE )
NS (R (b =4 | T
8 d 1244/ )
Any symmetrical section,
ineluding rectangles, in S ;
which the ratio of outside ‘;1: g of‘.s iR ’ At
j 2 . JJ = geometrical polar —
dimensions in any two el Texti 40J
directions In a eross- 0 SR 00 THar.
section is not very great

It becomes apparent from St. Venant’s investigation that there is always greatest
distortion at that part of the section of a shaft or beam under torque, where the surface
is nearest the axis. The distortion, and hence the intensity of stress, becomes very
great at the apex of any re-entrant angle, becoming infinite where the apex of this angle

Fi6. 33.

coincides with the centroid of the section. On the other hand, the distortion and stress
in the neighborhood of projecting points is very small, so that while such projecting
areas at a distance from the axis add largely to the magnitude of the polar moment of
inertia, their effect on the tortional resistance of the section is usually inconsiderable.
Thus such sections as are usual in I, or channel beams, and which offer a very efficient
distribution of material to resist simple flexure, are relatively inefficient to resist
torsion, and their inefficiency becomes more pronounced as the distance of their main
members from the centroid of the section is increased.

As having an interesting bearing on these points the results of investigations on

the following sections may be cited. These are (Fig. 33)
E 2
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(1) Square section.

(2) Ditto with slightly coneave sides, and round corners.
(8) Ditto ditto ditto and acute corners.
(4) Star-shaped section with four rounded points.

7

T TL 4 ; x
Writing 0 = o7 where J’, the effective moment of inertia of the section, equals &J,

St. Venant showed that the values of & for these sections were :—

Section

il } 2 3 4

819 778 537

k ' ‘843

The concavity in section 8 was about 5 of the length of the side, and this small degree
of concavity reduces the value of k by approximately 8 per cent. As shown by the value
of k for section 2, this concavity has more influence in diminishing the torsional
stiffness of a beam, for the same moment of inertia, than the rounding of the corners has
in increasing it. The large effect of a greater degree of concavity, accompanied by the
massing of material in

I projecting points of the

section, is well marked

: in section 4. As com-

| pared with a ecircular

= = g o = === — - section of the same
< cross-sectional area and

weight, these sections

offer only 891, -867,

Fio. 84 ‘828 and ‘674 times

respectively the resist-

ance to torsion, notwithstanding the fact that the moments of inertia of their section
are respectively 105, 106, 1'07, and 1'25 times that of the circular section.

St. Venant’s investigation of the form of section shown in Tig. 84 is also of
interest. This section consists of two isolated masses of material symmetrically
situated with respect to the axis of twist; and on the assumption that this represents
the section of a beam subjected to torque, the investigation shows that the value of % is
only *0185. This section approximates more or less closely to the case of an I beam in
which the material is mainly concentrated in the flanges, the thickness of the web
being small. Comparison between this value for %, and the values obtained by
experiment on I sections (see Table V.), is instructive. It is evident that a structural
member consisting of two flat bars connected by a lattice bracing must of necessity be
excessively weak in torsion.

For complex sections, and indeed for the great majority of commercial sections,
the difficulties involved in a mathematical investigation of the value of J’ are
insuperable, and such values can only be determined from torsion experiments.

(29) Experimental Investigation of Torsional Rigidity of Commercial Sections.

Such experiments have been carried out by one of the authors and are deseribed
in the following pages. In all, twenty-one beam sections were tested. The details and
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dimensions of these are given in Table IV. “With the exception of the solid circular
and rectangular sections, and the welded tubes, which were of wrought iron, all were of

mild steel.
TasLe IV.
Dimensions. Moments of Inertia (ins. units).
No Section. A oy
A D Rl el R TR 5 S o T R
1 I 5SSO 605" 1r =30 8:02 91110 |13810 |104-20
) do. 3:01" (8:00"” | -825" | 200" | 243 370 1-20 4:90
3 do.” 1-75" 478" | 324" | 190" | 1-91 670 0°26 696
4 do. 1-66" |3-16" | -28" L 1-222 1-92 177 2:097
5 do. GO D954 N6 501 " 290 6825 336 ‘0281 3641
6 do. ETOENHER O | = 1G5HIM IR 47 4141 1328 0124 1452
il Channel R 9 (Y OO (8 s 25 {22 ‘7825 413 ‘0618 4748
8 Angle (SISASIEISESIT 50 250/ = 5245 ‘0615 -0615 1230
9 do. IMO0THHO0L i -1.85" — 3363 ‘0275 0275 ‘0550
10 Tee IS Al T s R SR AN SR (g ‘650 ‘1450 -0739 2189
11 do. OGNS GO IS5/ e[ L4517 ‘2573 ‘0236| +0108 ‘0344
Solid
12| Rectangular | 87" |1:96" — - 1-70 5460, 1075 6535
13 do. Tl el — — ‘827 1810, ‘0180 *1990
Solid
14 Square 96! - [ TI64 — —— *920 ‘0702 0702 1404
Hollow
15 | Rectangular | 872" 1482"| X *0360" thick ‘151 ‘0479 -0228 ‘0702
Hollow
16 Square 1-500” 1-500" | X -0502" ,, 296 B103 54 [ EEEl035 2070
Solid
17 Circular 1-01" dia. ‘801 ‘0510 0510 1020
18 do. ‘876" dia. ‘601 ‘0288] 0288 ‘0576
Hollow
Circular
19| (Welded) |O.S.dia.1-305" 1.S. dia. 1:05" 473 ‘0826 -0826 1652
Hollow
Circular
20 | (Solid-drawn) | O.S. dia. 1':005" 1.S. dia. -923"| -124 ‘0144 -0144 0288
Hollow
Oval
21 | (Solid-drawn)| ‘862" X 1-74" x ‘045" thick 1788 ‘0515 0173 ‘0688

The method of carrying out the torsion tests was as follows.—The beam under
test was mounted between the centres of a six-foot lathe, centre-pops being made on-
the ends of the beam at the centre of gravity of the section, to receive the lathe
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centres. To one end of the beam was clamped a lever from which was suspended a
hanger fitted with a knife edge, and carrying the load. Two pointers, each three feet
long, could be clamped to the beam at any desired position. These pointers moved
over scales, clamped to the bed-plate, and graduated in degrees and minutes. Readings
were taken to the nearest minute. The other end of the beam was clamped to the
head of the lathe, the gear being locked to prevent rotation.

On the addition of each increment of load, scale readings were taken at both
pointers. In order to eliminate the effect of friction at the centres, the torque lever
was elevated slightly, and allowed to decend slowly, depressed slightly, and allowed to
rise slowly, the angle of mean position being noted. Observations were made for both
loading and unloading, and the mean angle of twist per unit of load so obtained. The
value of the product of C and J’ was then found from the formula.

o 1 1 Tl
CIii= 7
where the symbols have the significance already ascribed to them.

In each case the experiment was repeated over a span of about half the original
span. In no case did the two values of CJ’ so obtained differ by more than 8 per cent.

The values of the product of I and I were also determined by supporting the
beam on two massive knife-edges firmly bolted to the bed-plate: Load was applied to
a hanger fitted with a hardened point, suspended from the middle point of the beam.
Deflections were measured by means of a micrometer microscope sighted on to a silk
fibre fixed to the beam. These deflections were observed to the nearest ‘001 inch.
Readings were taken for both loading and unloading, and the mean deflection per unit
load calculated. The value of EI was then found from the relationship

o 1 DI
Eli= 185

In order to obtain the values of the two moduli E and C, specimens were cut
from the thickest part of each section, turned down fo a diameter of about ‘18 inch,
and cut to a length of about 9 inches. The values of C were then found by means of
a small torsion meter, and the values of I determined by supporting the specimens
on knife-edges and applying a load at the middle of the span. The values of the
constants so found have been tabulated in Table V., which also shows the results of the
torsion and bending experiments on the beams.

The Bending Tests show that in general the experimental and theoretical values of
E I agree closely. In the few cases where a fairly large discrepancy exists between
them, it is probably due mainly to the fact that the section was not perfectly uniform
throughout the length of the beam. These figures indicate roughly the discrepancy
that might be expected from_calculations based on the ordinary suppositions that a
beam is of uniform section throughout, and is perfectly straight from end to end.

One point of considerable interest is brought out in the above tests. It will be
observed that in the case of the I, channel, and other sections, the values of I obtained
are not equal for both axes of bending. In the case of the large I section, for instance,
the observed values of I£ when the web is vertical and when the web is horizontal are
respectively 80'7 X 10° and 264 X 106 in.-1b. units. In the former case, the web pro-
vides 14'5 per cent. and in the latter case only *64 per cent. of the total monient of inertia.
Generally speaking, therefore, the modulus of elasticity of the metal in the flanges is less
than that of the metal in the web; this want of uniformity being undoubtedly produced
in the process of rolling. This is confirmed by the results of experiments by Prof. E. Mar-



g 3 ! u Yt~ 1
. sl & R *y »iin . .:ﬂs._. 3




TABLE V.

ro
T 30[EA ROIOORL, | | | | | |l = |e] 8 |3 2 |8] 8 |5 L
) BN[BA PIAIS: H = ~ S 2 7 oy s ‘ '
L2 9n[EA PaAISIO el 8 & RSyl =l
I D
n '.
rn 0 "0 1 I - " & = —
73 30 SNITA [¥01301091LL, | | l | } | 3 o 2 = b o & =
& : & A B i & ¢
0 < (= »pD = an =) = — &
Rit] i o " PO PR S W ER e el 0 ) S |o | & &
T 10 °RIBA PRATsRQ ) F g o:c: L = < < % S8 2 i) -l: > !
= N =1
I [ N s )
=)
~™ i N =13 b~ b
0 eatony, = 5 & = 5 = .
2 paasssqo °H'Y = = 3 = < = =
I
b, S (= (= (=] —
‘901 =+ £J @ @© g > = = -
3 0 BUTBA [821331031], &N © o) o i b b
3z 0 w @ N - — 0 I
a8 ™
SE 2
£z B
Bl
a ‘uamtdadg punoy [[ewg BaL 2 = =
woiy g1 - 9 Jo en[eA z z 3 =
- — —_— - —
o = = = @ o
‘901 + 1) [ =3 > © S n <
Jo duJuA PaALRsqO ﬁ 5 ® x —~ =) —
—
—
& 22 N ~
<A PO e | [ I I | (5 e § 18|98
I (2013409, - 3 = : — —~ Ey — -~
) = = -
. - . > bl — s ™ D ==+ =3
o @ W g @ e 0 il a &N &0 & b v d S
JO an[BA [BI1}2I03Y], % g S g 8 ~ S v 2 ~ :2 =,
i~ o — N
L]
‘uswdedg punoy (8w (=] -+ & x
woay 901 + A JO oufep = 2 A 2 i
£
£
SE ‘ = =} =) =) =) =) = 3
@ Eg 901 + ] = o N o £ = e =
e Jo aujeA pealssqQ | | l | | ] 3 = = 0 2 3 4 3
2] p i A
[
=
901 + IH | | ! l | I x| o | ®» S o ) =
JO anJBy PAAIISAO g 3 ; I 3 = ;’; f 4
el —0 — .
| ! | ] ! ¢
1 g 1|2 L R Vot Y ]
| ! { { A
‘aInxdl JO SIXV H.—{ l—H H I "'r'l ‘—:—.l ‘—l-—l l ' '
) ' !
[} " ' | 1 ] H ] [} ] {
l ' 1 H | { !
| ‘ 5
—
3
3 g ! 3 ; .8
wopos s £ < = g < : e
? =
; T
i -
S | -
ASqUIMN, l - ™ o -« 0 < ~
> —I
N
. r



3¢ *d sanf o]

6¢8-
10¢-1 A we 38 010-T | I1€¥ 36-18 ¢a¥- =R (umeip-priog)
, 09¢9- ces. TN e pouinssy 940
] c¢ 00-11 <6 = -6 : AMO[[OH
o1 | e 992 g6 | G081 v | wet | ==
(umeip-prjos)
000-T OG- [ o061 00-1 9¥¢- 66-11 9¥¢. 000-1 L1F- 06-82 L1¥. = l@. - IB[MaIL)
MOTIOH
¢ (pepPAY)
000-T 0el-T | OeLI 00-1 6261 6611 6261 | 000-1 | 0223 €0-93 0863 = .mv -- TR[0OII)
T MO[IOH
000-T 281 2831 00-T L€9- ZF11 199- 000-T | 808 FI-82 803- =t~ 10U
¢ %% e 00-T | ET-1 : el T . 2115 3 --&-- AEO)
000-1 | 1681 | 1&&1 OLIT | €T | 000-1 | 0861 griz | o8&l .. PIOS
" ! > pomnssy ; 1 ] aaunbg
201-1 081-1 1081 0298 886G 00-TT eL6-T | 9%0-T | 0693 0-92 06-¥3 09¢-3 3 I_l. = —I moroy
BL¥-1 oLL gel-T 686- che- 01-L% 109- lmm_l
i pounssy X pamnssy 1B[NEUBIOY
0889. clL 00-TT 169. ¢8-92 MO0
151 9¢9-1 06¢-3 800-T | 0821 09-92 0L3-1 !..m - e
90T ole1 | 06gT 1628- e6e-1 og.TT oce-1 | 8601 | 2603 8:68 01.L3 ¢06-1 uu.l arenbg pijog
gg.e ¥2G- 0¢2. : £€0-1 06¥- 1€:02 FL%- - . -
0063 F61-2 00-11 agy- 0-2G "op
8¢.€ $2.2 9¢c., 160-1 06-F e<-95 ||.-l|
0L1-3 6L ze8- 066 00-€ 00-8% G0-¢ -~ -
TR N R 0Ll | 0898 0-82 p o
3612 261 123 €86 92-¢1 186 | 0gel | ~—fl-— -
01-61 L28- 82-c1 c00-T | 8§ 06-62 eae. -t~
a8.¢1 I18-1 08-85 $520- 16¢- 1311 <030 106-1 0T2- 008 00-¢¢ 06¢- -——]= - op
|
[
OL9T | SIST | 0262 ¢§1.T | OLL (34 A 66 I
| l
FOFL | 106 00€1 g0-l | 0653 s V2 R
9921 | 861 | soez | 0890 802G 0¢-TT | 9021 &1 | 009F 0-1¢ 6e-Le ILH.I 9L
g9zl | S6Ll | eLea 0911 | 00¢F : 08F% =
Ge 11 8081 cL¥I 1201 0GL. 06-9¢ e |
0E80- €09- 00-TT | 10¢0- L-se = eE
1801 | 08T | &L GOL-T | 062 i Zan

11

(28







EXPERIMENTAL INVESTIGATION OF TORSIONAL RIGIDITY 55

burg,' in which tension test pieces were cut from the flange, web, and root, of several
I beam sections. Tests on these specimens showed a considerable variation in X at
different points in a section, and indicated generally a lower value of E for the
flanges than for the web. The minimum value of I was invariably obtained from the
test piece cut from the junction of web and flange. In the authors’ experiments the
channel section was tested with the web both in tension and in compression, and it is
interesting to note that the flexural strength is the same in each case. In the angle
sections also, the flexural rigidity is sensibly the same whether the flange is in tension
or compression.

The Torsion Tests afford substantial confirmation of St. Venant’s deductions as to
the inefficiency of material in the neighbourhood of projecting points and of sharp
corners in a beam section. The extreme weakness of all commercial sections is
apparent from the figures given in column 12 of Table V. The inefficiency of I and
channel sections is especially remarkable, while tee and angle sections are little better.

The hollow circular section is the most efficient of all for withstanding torsion. It
is, however, inefficient when exposed to bending, and is for many reasons ill adapted
for girder work. Next in order of efficiency comes the box section. So long as the
ratio of depth to breadth is moderate, this is equally well adapted for resisting either
torsion or bending, and would appear to afford the most economical distribution of
material when both are to be resisted.

Solid and Hollow Rectangular Sections.—Reference to Table V. shows that & is
sensibly the same for a hollow as for a solid square section, having a value ‘86 in the
latter and 87 in the former case. The theoretical value of & deduced from St. Venant’s
formula for a solid square section is "84 which is in close agreement with the experimental
value.

The agreement between calculated and experimental results in the case of the solid
rectangular sections is equally close. Thus for section 12 (Table V.), depth <+ breadth
= 225, St. Venant’s formula gives & =47 against the measured value 46, while for
section 13, depth = breadth = 818, the theoretical and measured values of & are each
equal to -29. For the hollow rectangular section No. 15 (depth =+ breadth = 1'64), the
experimental value of % is 69, while St. Venant’s value for a solid section with the
same ratio of breadth to depth is 68.

It thus appears that the value of % for a hollow rectangular section is sensibly the
same as that of a solid section of the same overall dimensions; depends only on the
ratio of breadth to depth and not on the thickness of the walls; and that the value
is practically identical with St. Venant’s theoretical value for the corresponding solid
rectangle.

Values of % for such sections, having different values of the ratio, breadth <+ depth,
are given in Table VI., while Table VII. shows how the effective value of J varies with
this ratio in such sections having the same area or weight per foot run. It will be
noted that while both & and .J' diminish with an increase in the ratio, the relative
diminution of J' is not nearly so great as that of . The relative diminution of .J' is
approximately the same for hollow as for solid sections with the same overall dimensions.

Owing to the inefficiency of the material in the corners and at the ends of the
flanges of a typical commercial box section (Fig. 35) under torsion, the value of -J or of
J' for such a section should be computed not on the whole area but on the portion
included by the rectangle abed.

1 Engineering News, Vol. 62, 1909, p. 168.
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TaBLe VI

bl | ot otias, O REE

TLesser Side, 20. Cr =k Califle O e =1 2L
L 841 50 L
e 721 55 BT
S 550 60 g 8
25 413 ‘ 70 Pl
80 316 80 6
2 fess) 2 045
¥ | 198 100 e
45 | 161 . 200 s

TasLe VII.—ErrFecTiveE VALUES oF J FOR RECTANGULAR SECTIONS IAVING THE
SAME CROSS-SECTIONAL AREA.

Ratio i_: 2. 2. Theoret. J. 3 Effective J or J'.
1 10 1-0 166 ‘841 140
2 1416 708 209 550 ‘115
4 2:00 500 ‘354 198 ‘070
6 | 2:448 408 511 '096 ‘049
10 3 3-160 316 ‘917 ‘037 1034
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Since an increase in depth renders a section more efficient to resist bending, the
most effective value of this ratio when both torsion and bending are to be resisted,
depends on the relative values of the two moments. With zero bending moment the
section should be square. With zero torque, expe-

rience shows that the ratio of breadth to depth Q ad
should be between 85 and 50 for best results. p— —
With both torsion and bending the most economi- j I—J
cal ratio will usually lie somewhere between 20

and 3-5, its value increasing as the ratio of bending
moment to twisting moment increases.

I Sections.—A comparison of the results of the
torsion tests on I sections Nos. 1 to 6, Table V.,
indicates that the ratio of actual to calculated
value of ./ diminishes with an increase in the size
of the section. The penultimate column in Table
VIII. gives the values of & for these sections. The

value of J' in inch units is given with a fair degree
of accuracy by the relationship J L
Ao b P |
Ty - _: 4 ge=e )
e] —_ 60 . . . (29) 6_ C
Fic. 35.

where _1 is the area of the section in square inches.
Tle last column of this table shows values of 42—+ 60, while experimental values of J’
are given in column 6.

Tasre VIII.

Section e 2 )
i‘\T:lillLbe\:vx 1})}:};1::;3:::0 —j—o- Area “A” o /e k f)i()
1 S, 1:60 802 (1040 1-04 ‘010 107
2 48" % 18" 2:78 1-90 6:96 ‘G58 ‘0083 ‘060
3 BB 1-:00 2:43 4-90 099 0202 ‘098
4 8" x 13" 1-90 1:29 210 ‘024 ‘0114 ‘025
5 (S Lt 1< 682 ‘364 0094 ‘0260 ‘0078
6 14" x 3" 187 414 ‘145 ‘005 ‘0344 ‘0029

From these figures it appears that for sections 1 to 4 the formula gives results
which are accurate within about 8 per cent. These are all commercial sections. 'The
agreement is not so close for section 5, and is unsatisfactory for section 6. These
two are not commercial sections, and the relative thickness of web and of flanges is much
greater than in commercial sections, especially in section 6, in whicl: the discrepancy
is most pronounced. Probably for all normal commereial I sections expression (29)
will give results sufficiently accurate for purposes of design.

Angle, Tee, and Channel Sections.—An examination of the results of the tests on the
angle, tee, and channel sections of Table V., shows that the value of & varies widely
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with the type of section. The value of J’ is given within about 2 per cent. in every
case by the relationship
. A3

» (30)

where m varies with the type of section. Values of k and of m are given in Table. IX.

TasLe IX.

Section. Mean value of &. m.
Channel . ‘025 40
Tee . : ‘06 25
Angle z 09 18

Compound Girder.—Experiments were also carried out on a compound girder of the
type shown in Fig. 36. This consists of two 8” X 4” commercial I sections, distant
10-3 inches centre to centre, and tied together at intervals of 2' 6” by plates across the

bettom flanges. The value

fﬁ'] rm ) rm f’f J for _this combination
[ i o ) s 370 inch units; the
tj\ r"‘"dJ ’_’t Val.ue of J' is 2:05 inch
units; and the value of J:

is *0055.  Calling 4 the

AR total area of both sections,
-+ Fihee AT
Twist . 110

as compared with the value
2

0 for a single girder of

e : RN the same total weight per

© Tre. 36. : foot run as the combined
girder.

Tests on Hollow Box Sections filled in with Concrete.—Since in a hollow box section
torsion is accompanied by distortion of the webs and flanges (I'ig. 46)it was anticipated
that by filling the interior of such a section with concrete this relative distortion might
be reduced to some extent, and the section be stiffened in consequence. To test this
point the hollow sections Nos. 15 and 16, Table IV., were filled with cement grout and,
after setting for four weeks, were again tested in torsion. The effect of this is, however,
not great. Ii.g., with section (15), -/’ without filling was 0483, and with filling ‘0508,
while in section (16) .JJ’ was increased from °1645 to "1941 by the filling.




CHAPTER IV
MAGNITUDE OF SHEAR STRESSES IN A BEAM UNDER TORSION

(30) Beam of Circular Section.

Ix a beam of circular section the shear produced by torsion is everywhere circum-
ferential, and varies direcftly as the distance from the axis of twist. Thus if f be the
magnitude of this shear at a radius », and fs its magnitude at the surface where the
radius is @, we have

r

o =i s =
The moment of the shear on an elementary concentric ring of radius » and of radial
width &r will therefore be

b

2w . f, . &r
a

and on integrating this expression over the whole section of the heam and equating the
result to the external torque 7', we have
Ta )
= 5 ] s . 3 2 . (81)
Here f, is the maximum circumferential shear in the section. This formula is
applicable to both solid and hollow circular sections.

(31) Sections other than Circular.

In a non-circular section under torsion the assumptions that the shear at any
point is perpendicular to the radius at that point and is proportional to its distance
from the axis of twist, are no longer true. It has been shown both by St. Venant and
by Bach ! that the maximum transverse shear stress in any non-circular section under
torque occurs at that point on the surface which is nearest to the axis of twist ; that
the stress is great in the neighbourhood of re-entrant angles and zero in the neighbour-
hood of projecting corners.

Expressions for the maximum shear in the case of a few of the simpler sections
such as the ellipse and the rectangle have been deduced by St. Venant, and are given
on p. 72. Autenreith? assumes that the stress at a given point P (Fig. 87) on the
boundary of any solid or hollow section bounded by a continuous curve convex
outwards, is given by

2T
= e : ; - . : . (82)
where 7' is the torque, 4 the area of the section, and » is the length of the perpen-
dicular from the centroid of the section on to the tangent at . The maximum shear
stress will thus occur where # is a minimum, i.c., at the end of the minor axis of the
section, and the minimum surface shear at the end of the major axis.
On the same assumptions the surface shear in a hollow section having a continuous

! ¢ Elastizitat und Festizkeit.”
2 Zettschrift des Vereines deutscher Ingenieure, 1901, p. 1099
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boundary, in which the ratio of inner to outer radius is sensibly constant and equal
to y for all radii, is given by

2T
X
; 3
4(,F
Iztla
’: ]
o X 7oz
’ [] P g =
%t L
/’ rom Tt ¥
=7 ,1' /,” [ P
% ! : y
¥ =
I
b
X/
Fic. 37.

(32) Solid and Hollow Elliptical Sections.

For a solid or hollow elliptical section, having semi-major and minor axes a and b,

the value of  at any point P whose co-ordinates are zy (Fig. 37) is given by
a®h? ab?

— =3 . /34
3 Va'y? + %2 NVyXa* — %) + b8 )
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In a hollow section having « and b as the semi-major and semi-minor axes of its external

surface, the area of section is

: l
7 [ab — a;0,], and since %1 = %1 =

v A = mab{l — 2}

o

] 23 456 7

)

Note:~ Intercepts of Normals Give Values of ?

F16. 88. —Diagram showing distribution of surface shear stress in a’solid elliptical section subjected
to a twisting moment.

Thus in"the general case :

AR e

Jo= mab [1 — ¥4] |1 4 ¥%]r
_ 2TV y%a® —b?) + I
e

L (85)






-

SOLID AND HOLLOW ELLIPTICAL SECTIONS 63

Where a = b = r, each of these expressions reduces to
27
= &
the expression for the shear at the periphery of a hollow circular section.

Figs. 38 and 89 show respectively the distribution of surface shear in a solid and
a hollow elliptical section, in each
of which «:b =15, while y =-934.
These are subject to the same torque
and have the same cross sectional
area. The magnitude of the stress
is indicated by the normal to the
surface, intercepted between the sur-
face and the curve. In this case the
maximum stress in the solid section
is 5 times as great as in the hollow
section.

In a solid circular section of the
same area the maximum stress is ‘82
times that in the solid elliptical sec-
tion, while in a hollow circular section
having the same thickness and the

same area as the hollow elliptical
section, the maximum stress is ‘76
times that in the latter section.

While the assumptions made in
deducing the foregoing formulae give
results in close agreement with ex-
periment if the boundary is a con-
tinuous curved line, they fail to do so
if the section has a discontinuous
boundary. In the latter case the re-
searches of Bach indicate a state of
zero stress at projecting points, and,
In an extreme case would postulate
zero stress at the corners of a poly-
gonal section no matter how closely
this approximates to a circle. To X Tia. 40.
obviate this difficulty Autenreith as-

sumes that the stress at such a corner depends upon the included angle, being zero

for a right angle, and that, at any point in the surface of such a section in which this
angle is not less than 90°, it is given by

fs=27/,8|:1-—(€>2sina]. P et 7 o (B

c

where f, is the circumferential shear stress; » the length of the perpendicular from
the centroid' to the corresponding side of the polygon ; B a constant; z the distance
from the mid point of the side to the point at which the stress is required ; ¢ half the
length of the side; and a is the included angle (Fig. 40).
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When a =180°, i.c., for a circular section, this makes f, = constant. When
a =90, we., for a square or rectangular section, f, becomes zero when z=r¢ (at
corner), and attains a maximum value when 2z =0, i.c., at the centre of the side. In
these two extreme cases the formula thus agrees with the results of experiment.
Assuming that at any point in the interior of the section the component of the shear
stress normal to the radius vector is proportional to the distance from the centroid, an
expression may be obtained for the moment of the shear on any element, and on
integrating this over the whole section and equating to the torque the value of the
constant B may be obtained.

This is given by :

36T
= A[18 — 4 sin a]

where A4 is the area of the section.

Since p sin ¢ = 2 (Fig. 40) equation 89 becomes

. 36T fa¥t (p sin ¢>2 =0 A

5= R e vy UL el SRS

For a hollow polygonal section in which the ratio of inner and outer radii vectores

is sensibly constant and equal to v, this formula becomes
36T j <p sin (f)) Egimn |

= — - Co(42

i rA[lS(l+fy‘)—4sma(l+y‘+y*)](1 ¢ ) (42)

In each case the maximum shear occurs at the middle of the side of the polygon where

l4al

¢ =0, and is given by %é, where, for a solid section,

18
O er Ty U e T 0

(40)

and, for a hollow section,
18
== : g . d . (44
2 91 + *) — 2sina(l + y* 4 y*) (44)

(33) Rectangular Sections—Box Sections.

In a solid rectangular section (Fig. 41), whose longer side is 2 ¢ and shorter side
2 b, r for the shorter side is ¢, and for the longer side is . Also sin a =1, so that,
for the longer side equation 41 becomes

187 in ¢\ 2
and for the shorter side
f, = 181’[1— (M) ] S |
= mGAG
Thus the maximum stress in the longer side (at its mid point, where ¢ = 0) is given by
s = 25T 2 (46)

and the maximum stress in the shorter side by
Somax) = 257 'ﬂ e 7 o R e B

At the corners in each case f, = 0.



RECTANGULAR SECTIONS—BOX SECTIONS

65

In the case of a hollow rectangular or box section in which y is sensibly constant

equation (42) applies. The shear at any point in the longer side is given by
i 187 {1 53 (p_ sin ¢>2}

AD[T(1 + %) — 294 ¢

from which
187

Jimax) = AVTA F 5 — 297 B

" g T
\\%0
\ '
N
\
\
\\
TW o !
o
© Y \\
N \
\
Se A ?
f \\\ \
~ o
l g‘g’\\
} : it f.‘:‘g
LS
TF1c. 41.

while for the shorter side

= 187 psin §\ 2
% T Ael7(1 + 72)—2)/4]{1 ny ( ) ) }
S 18T
max) 7 Ae[T(1 + %) — 24

and

(47)

(48)

(49)

(50)

From equations (45) and (47) it appears that the curves of stress distribution in a

rectangular section are parabolic.

Tigs. 42 and 43 show such curves drawn respectively for a solid and a hollow
rectangular section having the same ratio 1'5, of depth to breadth, and the same cross
sectional area- and weight per foot run. In the hollow section the ratio of inside to

B.G.
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outside dimensions, or v, is *975. From these curves it appears that the maximum
stress in the box section is about 19 per cent. of that in the solid section.

Comparing diagrams 89 and 43, it appears that the ellipitical section is the more
efficient in that the maximum stress is only 72% of that in the box section. In the
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F16. 42.—Diagram showing variation in surface shear stress in a solid rectangular section sub-
jected to a twisting moment.

e deptht e ebly IV (et
Ratio = =.1'5; Area of section = 24,

ordinary box section used in practice the value of y will not in general be the same for
the top and bottom flanges as for the webs, nor can it be the same for different points
on web or flange since these are of uniform thickness. Irom the following table,
which shows calculated values of £ in the formula
or
f(mux.) == E . . . - . . (51)
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for a hollow box section 4 ft. square and with different thicknesses of metal, it appears,
however, that a given percentage variation in y only produces about one-half the same
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F16. 43.— Diagram showing variation in surface shear stress in a rectangular box-section sub-
jected to a twisting moment.
- depth
Ratio
breadth
¥ = ‘973.
Area of section = 24,

— 115,

percentage variation in Q. In practice the mean of the values of ¥ measured at the
mid points of the two sides will give results within a few per cent. of the truth.
F 2
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of the web and is zero at the extremities of the flanges. Since the stress is always
large in the neighbourhood of a re-entrant angle, it is probable that it will be large at
the junction of web and flange, particularly where the radius of the fillet at this point
is small. As to this point, however, no definite information is available.

From experiments on I sections made of lead Bach found that rupture always
occurred at that point on the web nearest to the centroid of the section, and deduced
the expression

Fonany = 4-5% ERE e S0 T (59)

where A is the total area of the section and ¢ is the thickness of the web.

Some confirmation of this formula has been obtained by the authors. Thus
considering I section No. 1 (Table IV.), the effective value of J' for the whole section is
1'04, while J* for the web if isolated from the rest of the section would be approximately
‘'086. Adopting these values, the web may be expected to take approximately
‘086
104
the web would then be equal to

=082 of the total torque, and from formula (46), p. 64, the maximum stress in

2-57 X 082 T
Ab

where b is the half thickness of the web, or %

On making this substitution the formula becomes

42T
ﬁmax.) = .A—t

which is in fair agreement with Bach’s expression for the same stress.

Although the stress at other parts of the section is indeterminate, experiment
shows that if the web is made stiff enough to withstand this stress the remainder of
the section is amply strong.

(35) Horizontal Shear in a Beam Subject to Torsion.

Whataver be the magnitude of the transverse shear stress due to torsion at a
point in a vertical section of a horizontal beam, this shear will be accompanied by an
equal shear stress on the horizontal plane passing through the same point. In a
beam of box section in which the depth exceeds the breadth, or in a beam of I section,
the magnitude of this shear on horizontal layers is a maximum at the neutral axis.

(36) Resultant Shear on Horizontal and Vertical Sections of a Beam Exposed
to Torsion or Bending.

The resultant shear at any point in a horizontal or vertical section of a beam is
the algebraic sum of the shears due respectively to bending and to torsion. The shear
stress due to torsion has already been discussed. The shear stress due to bending, or
to the application of the vertical loads and reactions which produce bending, varies
from point to point in a section.

If ¢ denotes the intensity of shear due to this vertical loading at a point distant
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web does not change greatly, and the usual assumption that the web carries the whole
vertical shear force with uniform distribution gives stresses which are in fair agreement
with, and usually slightly higher than those actually attained.

In a hollow box section formed by the rectangles 20, 2¢, and 2by, 2¢1, or in the
corresponding I girder (Fig. 44), in the flange at a height 2, from the neutral axis.

Ji
g =g7 e — 2
3 F
=§m{c2—zl2} ) . h . (55)
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while in the web at a height z,,
3 F 1b(c® — ¢1%)

]
e 2 __ 20
(1 - 8 [[)(33 G= b1013] l l) — l)l + a #1 } © < i (56)

and, at the neutral axis,
il {'_3 F HI(I)CZ = 1)1(’12]_
Imax) 8 e — bied] U b — by )

It should be noted that whereas the shear on a vertieal section produced by the
vertical loading acts in the same direction at all points in the section, that due to
torsion acts in opposite directions at opposite ends of a diameter. It follows that the
shear stresses due to bending and torsion act in the same direction in one of the webs
of a box girder, and in opposite directions in the other, and that under such combined
moments one web will be much more heavily stressed than the other.

The nature of the resultant shear stress distribution over the vertical section of
such a girder is indicated by the curves of Fig. 45.
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TasLe X.

Type of Section.

Maximum surface shear stress.

St. Venant. Autenrieth.
Solid Circular 27 2T
Radius » s ys
Hollow C'i_rcular 2Ty, . 21y,
radii m , mm
7, and 79 .
?{O]?d ]:]xlli.pticaé o o
ajor Axis = 2¢ —2 ol
Minor ,, =2b L '
Hollow Elliptical 2T

formed by
[2¢ 2b] [2¢q 2bg)

w[eb® — cobg®]

Solid Rectangular
Long Side = 2¢
Short Side = 20

15¢ + 957 ., g
e |1 643

Hollow Rectangular
¥ = const.
Short side = 20

18 Vi
T{1+ 77 — 2 * 4b

Any Polygonal Section
Rad. of Inscribed Circle =
Included Angle =a

18

[9{14y?} —2sina[l4¥y24¥"] °

I
Web Thickness = ¢

1'
e 4;1_




CHAPTER V
(38) General Principles of Design of the Bow-Girder.

Frou the data of Chapters IIL. and IV., it appears that where a beam is exposed
to any appreciable torsion, the box section is from every point of view the most suitable,
and, for beams of considerable span, or earrying heavy loads, is the only practic-
able section. For comparatively small spans; for spans in which the radius of
curvature is large and the angle sub-tended by the arc between successive supports is
small, or for moderate loads, the I section may be permissible, but in general its use
is to be deprecated wherever combined torsion and bending is anticipated.

In any case, where not barred by other considerations, intermediate supports are,
as shown by the results of the investigations in Chapter II., of the greatest value in
reducing the applied moments, and especially the twisting moment at a given section.

In a box section exposed to twisting and bending, a general consideration of the
problem indicates that most economical results are to be obtained where the ratio of
depth to breadth has a value somewhere between 20 and 3°5, the former value applying
to encastré beams without intermediate supports and subtending an angle in the
neighbourhood of 180° and the latter for beams adequately supported at intermediate
points or subtending angles not exceeding 45°. The following may be taken as
affording a first approximation to the relative dimensions of such a girder designed for
heavy duty :—

Angle subtended by arc between supports.

180° 1500 1200 l 90° ‘ 60° t 30°

depth

B rondih 2:0 2-25 2:5 275 30 325

Having assumed a suitable section for the girder, the tensile and compressive stresses
due to the bending moment, and the shear stresses due to the vertical loading, are
to be determined for each section of the girder, as in the case of a straight girder, the
value of the bending moment being obtained from the data of Chapter II. The value
of the twisting moment at each section having been calculated in the same way, the
shear stress due to this may be determined by an application of the results of
Chapter III., and this shear stress is to be added to the shear stress due to the vertical
loading, to give the actual shear at a given pointin the section. In the box or I section
both components of shear have their maximum value at the neutral axis. The shear
in the flanges of such a girder, due to the vertical loading, is sensibly zero. That due
to torsion is in general also small, and where the flanges are of adequate thickness to
withstand the direct stresses due to bending there is little question as to their ability to
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take eare of the additional small stress due to torsion. Having obtained the resultant
shear in the webs, these should be designed by the ordinary rule applicable to the web
of a straight plate-web girder subject to the same stress.l

Under torsion snch a girder tends to buckle as shown by the dotted lines of
Fig. 46, and particular attention should be paid to stiffening the webs against this
action. Under normal circumstances this may be accomplished by the use of angle or
tee stiffeners, between flanges, reinforced if necessary, where the torsion is greatest,
by the addition of a cover-plate to the web.

The pitch of the stiffeners should, strictly speaking, diminish as the torsion
increases. Where torsion is large the pitch should not exceed the depth of the girder,
for girders less than 2 feet 6 inches deep, and should not exceed about one half the
depth for a girder 6 feet deep.

Special attention should be paid to the design of the riveting at the junction of

web and flange, since this has not only to with-

= — stand a shear of magnitude equal to that of the

K ’ vertical shear at this point, but has also to resist

| \ the tendency to relative distortion indicated in

“ Fig. 46. This latter effect also involves the use

i of somewhat heavier angle sections than are usual

| in the straight girder.

I Where joints in the web plates are necessary

I these should be placed where the sum of tor-
’ sional and load shear is a minimum.

|
|
|
I
!
|
r

A

| As an example the preliminary design of a
| bow girder of uniform section of 30 feet radius,
1 built in at the ends and subtending an angle of
\ 120°, and carrying a uniform load of 2 tons per
| foot run, may be considered. The values of 3,

\ and 7’ for such a girder having EI : C.J = 1°25,
———— are given by the curves of Figs. 22 and 28, ¢

— N
— ——

Fia: 46 being 30°. From these curves it appears that
' M, has its maximum value (- 42 w1?) at the support,
while at this point 7' = 048 w72 The maximum value of 7T (052 w1? occurs at

approximately 80° from the support, but sinee at this point M, is zero, and since the
vertical shear force is only wr {g — ¢ —g] as against wr {g— ¢} at the support,
the latter will be the point of maximum resultant stress.

Preliminary investigation indicates that a box girder 5 feet deep and 2 feet wide,
with flanges 1} inches thick and webs 3 inch thick will be somewhere near the required
section. For such a seetion I = 104 X 10® (inches)* units; while J = 110 X 10?
units. From Table VI., & for the given ratio of depth to breadth is ‘413, so that
J' =455 X 103 (inches)* units. Assuming I =30 X 10® lbs. per square inch and
(' =12 X 10° Ibs. per square inch, the effective value of IJI : ¢'J becomes 5°73.

From Figs. 19 and 20 it appears that the values of the end moments M, and T,
for this value of the ratio when ¢ = 30, are M, = *435u»? and T, = "067 wr

The effective load per foot run, including the weight of the girder, is approximately
92:2 tons, so that the moments become

! See * The Design of Plate Girders and Columns,” Lilley, or any similar work.
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~J
(&7

M =485 X 22 x 900 = 880 ft. tons
T =067 X 22 X 900 = 133 {t. tons
120
while the shear force F = 22 X 80 X = 5 X 180 — = 69 tons.
Flanges.—Adopting a working stress of 6 tons per square inch in tension and com-
pression, and assuming an effective depth of 57 inches, we have

6><af><2 = 880

‘. a-= 61'8 square inches
where a; is the flange area.
Assuming this to include % the area of the webs (=% X 57 = 7 square inches

approx.) the required area of flange plates and angles is 54'8 square inches. This
might be made up of

2 plates, 3" x 33" = 495 square inches
2 angles 61" DAL 5 BIE={ 111 25 3
Total 610

From this is to be deducted the area corresponding to two rivets, and assuming these
to require 1-inch holes, this will be approximately 5 square inches, leaving an effective
area of 560 square inches, or slightly more than is required.

Webs.—Calling a,, the area of the two webs, the maximum shear stress due to

vertical loading = ? tons square inches. The maximum shear stress due to torque

= 1;)14;)1 (p. 65, equation 48), where A is the effective area of the section to resist

torsion and b is the breadth across the webs. Allowing 4 inch between the edges of
angles and of flange plates, 2b becomes equal to 33 — 10 = 23 inches, while

4 = (a, + area of a 23" width of flanges)

99><23
=yt —aa—

=a, + 69 square inches

The resultant shear stress in vertical and horizontal planes at the neutral axis is
then given by

69 | 154 X 138 x 24
(a, + 69) x 23

Equating this to the working shear stress, say 8 tons per square inch, and
simplifying gives
a,: — 25'8a,, — 1587 = 0,
from which a, = 544 square inches.

If ¢ be the thickness of the web plates this makes

2t X 57 = 544
t = 477 inch
or, say, % inch.
Rlivets—Assuming the centre line of the riveting at the junction of webs and
flanges to be 8 inches from the edge of the web, or at a distance 25'5 inches from the
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neutral axis, the shear stress at this point due to the vertical loading is, by equation (56),
p. 71, equal to 0°90 ton per square inch of web section.
The shear stress at the same point, due to torsion, is, by (47), p. 65, equal to
1'54le (o (@)Zb
40 | Cr/as)
2 _ 255
'h Lo tE
where ~=-55
AT
so that this stress equals ‘2775 X : Zil
_ 2775 X 154 X 138 X 24
- (67 + 69) x 23

= 47 ton per square inch

The resultant horizontal or vertical shear at this point is therefore ‘90 4 ‘47 = 137
tons per square inch.
Considering one of the web plates, the horizontal shear force corresponding to the
shear stress over a horizontal length p inches is
137 pt tons
. = '685'p tons
Then if p be the pitch of the rivets and 12 the safe working resistance to shear of
one rivet

)—i' 1
P = g inch

Adopting a working stress of 5 tons per square inch for rivets in shear, and using
§-inch rivets (area *602 square inch), gives

LD S GO RS
D= —eer - = 44 inches.

To allow for the stress on the rivets due to the tendency to distortion indicated in
Fig. 46, the pitch would be reduced to about 4 inches, or alternatively two rows of rivets
with a correspondingly greater pitch would be used.

Stiffeners—Considering the web as a column whose effective length is 4/2
times the distance between adjacent stiffeners the allowable mean shear stress depends
on the ratio of this length ! to the least radius of gyration “» ” of the plate. For a {-inch

plate (= 7%:)) = 144 and | +» = 6:92l. In the case in question the mean stress
in the web is approximately (8 4+ 1-4) -+ 2 = 22 tons, and for this stress Monecrieft!
has shown that the maximum permissible value of I = # is about 265. This makes
{ = 265 =692 = 383 inches, in which case the distance between the stiffeners would
be 88'3 - v/2 = 27 inches. As the shear diminishes, this distance is to be increased to
suit, up to a maximum of about 8 feet 6 inches.

Over the end bearings the stiffeners should be designed as columns of sufficient
strength to transmit the total load. Intermediate stiffeners would be about
4" 4 33" 4 3’ angles.

For a movre detailed examination of this point and of details of design the reader
is advised to consult any modern work on the design of girders.

1 J. M. Moncrieff, Irans. Am. Soc. C. E., Vol. XLV., 1901. See also ‘“ Structural Engineering,”
Husband & Harby, Longmans & Co., p. 154.
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APPENDIX A

Tue following list of integrals will be found of service in solving the various
problems involved in the circular-arc bow-girder.

fﬁcos 6df = Osin 6 + ccs 0; f@sin 6df =sin§ — fcos
8  sin26 g § sin26
2 P o 2 e~ L S
Jos@dﬁ 2-{- 1 g Jsm 9:19_2 -
X AT
Jcosﬂe(IQ:sianS1g 6’; fsmaﬁdﬁ____cos_e(s n? § — 9)
&1 3
fsin (6 —0)df =1 —cos 6;; f 0s (6 — ) df = sin 0;
0
01
f@sin (0, — 0)d0= 6, —sin 0, ; fcos 6 cos (6, — ) de_g cos 61+§1961
091 ', 7
f() cos (6 — 6)d0 =1 — cos 0y (sm 6 cos (6; — 0) d8 = 2 Sl; 2.
: 06[ 9 3 0 1
f cos 0 sin (0, — 6) df = J%J ; , f sinf sin (6; — 6)d0 = s“‘;l —~ %cosﬁl
0 0

91 61
fcoswsin(el — 0)df = §(1+ sin20; — cosby) ; {cosﬁn(el — 0)do = S‘ngl (2 ecosfy + 1)
0 0

0%

01
1 —cos 61)?

fsinz Osin (6, — 0) d0 = ( 3 3

0

{sinzO cos (6, — 9)d€=§sin01 (1—cosb)

01

cos? @ sin (6, — 0) dP = S8

4

( sin 26, + 2 91>

o1

cos® 0 cos (; — 0) db = S 16 °08 01 (sin 260, + 260,) + g 61

B e

61

: 8 4
sin® @ sin (6; — 0) d8 = -}(sm 6, + w — % 0, cos 61>
4 i
01
fsin3 6 cos (0; — 0) df = 1_6. sin 6y (260; — sin 26,)
0
1 01
< - I . g
fsm 20 sin (0; — 6) d6 = 3 8in 01 (1 — cos 6y) ; J sin 20 cos (6, — ) df = — § cos 269
0

0
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APPENDIX B.

MoyeNts oF INERTIA OF VARIOUS SECTIONS.

Moments of Inertia.

Section,
1, 1y
o o
64 64
%Y Al 4] i [ Ty 4]
64 I:D 4 64 -
7BD?3 7D B3
64 64
Z. B 08 A [ ) =t 3]
z [BD bd ] Zlop—aw
BD3 DB3
12 119

!

__ 3__ 173
o [BD bd :|
1 pps — 3]
1 [BD bd
L I:BD3 — bd3]
12

l 3 3]
= [bD + Bd

[BD? — bd?12 — 4ABDbd [D — d}?

1 ppie 3]
12[1)3 db

1 s 3]
- [bl) + Bd

[BD? — bd%2 — 4BDbd [D — d}?
12 [BD — bd]

[BD? — bd%2 — 4BDbd [D — dJ?
12[BD — bd]

[DB? — d1?)* — 4BDbd [B — b]?

12 [BD — bd]

_1_1 3 3]
o [bI) + Bd

12 [BD — bd]

L pa ]
5 [bD + Bd

J=1I,+1,



INDEX

AR

Angle sections, torsional rigidity of, 57
Appendix A, 77
» , 78
Autenrieth, investigations of, on the torsion of
beam sections other than circular, 59, 72

B.

Bach, researches of, 63, 69
Beams, bending of, 1
best section to resist torsion, 73
continuous, 3
having more than two
supports, 5
curvature, deflection, and slope of, 2
distribution of stress in, 59
encastré, effect of settlement of one
support, 7, 45
uniform loading of, 3
unsymmetrical loading of, 8
with intermediate support, &
with no intermediate support,
4
Box-sections, distribution of shear stress in, 70
torsional rigidity of, 56

C.

Cantilever, circular-are, with single load at free
eud, 15
uniformly loaded, 16
straight, deflection at free end of, 2
Castigliano’s theorem, 11
Channel sections, torsional rigidity of, 57
Continuous beams, see Beams.

D.
Deflection of circular-arc bow-girder, 14
cantilever, 2

straight beams, 2

straight cantilever, 2
Deflection produced by shear forces, 13
Distortion of a beam section under torsion, 74
Distribution of shear stresses in a beam, 59

E.

Iiffective polar moment of inertia, 50
Encastré beams, see Beams.
Iquation of three momeunts, 6
lixperimental investigation of torsional rigidity
of comnmercial sections, 52
verification of formule for
circular-arc girder, 47

JiI

Fixing-moments in circular-are bo w-girder, 14
in encastré and continuous
beams, 3
Flexual strength of beams, experimental in-
vestigation, 52
Formulw, for deflection of bow-girder,
Chapter IT., 14
straight beams, 2
for shear stress in a beam under
torsion, Autenrieth, 59
for torsion of beams, St. Venant, 72

G.

Girder, box section, distribution of shear stress
in a, 70
stiffening of a, 74
circular-are bow, Chapter 1I., 14
carrying concentrated
load, 18
carrying uniform load,
28
carrying  uniformly
loaded platform, 34
compound, 46
effect of depression of
supports, 45
equilibrium of, 14
general principles of
design of, 73
shearing-force at any
section of a, 47
unsymmetrical load-
ing, 37
with intermediate
supports, 37
with  one
support, 37
with two symmetrical
supports, 40
semi-circular-arc bow, carrying concen-
trated load, 24
semi-circular-are bow, carrying uniform
load, 32
semi-circular-arc bow, carrying uni-
formly loaded platform, 34
semi-circular-arc bow, supported by
cantilever, 45
semi-circular-arc bow, with two inter-
mediate. supports, 40
semi-circular-arc bow, with three inter-
mediate supports, 43
straight, Chapter L., 1
curvature of, 2
deflection of, 2
distribution of shear stressin a,
47

central
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