








A STUDY OF THE CIRCULAR-ARC

BOW-GIRDER





THE CIRCULAR-ARC
BOW-GIRDER

BY

A, H. GIBSON
D.SC., ASSOC.MEM.INST.C.K., M.I.MECH.E.

Professor of Engineering in the University of Si. Andrews, University College, Dundee

AND

E. G. RITCHIE
B.SC.

,/lssistant Lecturer in Engineering, University College, Dundee

NEW YORK
D. VAN NOSTRAND COMPANY

25 PARK PLAGE

1915



Printed in Great Britain



PREFACE

THK problem of the state of equilibrium and of stress of the circular-arc bow-girder,

i.e., the girder forming a circular arc in plan such as is often used to support the

balcony of a theatre, is one affording some difficulties of solution. These arise mainly
from the fact that in addition to the bending moments and reactions involved in the

case of the straight encastre girder, twisting moments are called into play at each

section and at the ends of the bow-girder, and these moments affect very considerably
the state of equilibrium of the girder.

The general problem was solved in a paper read before the Eoyal Society of Edin-

burgh by Professor Gibson in 1912, and the first portion of this book is based on the

principles laid down in that paper. The solution in any particular case becomes easy
if the end fixing moments and the reactions are known, and values of these have been

calculated for the more important cases likely to occur in practice.

This investigation shows that the values of the various moments and reactions for

a given loading depend on the relative values of the flexural rigidity, E I, and the

torsional rigidity, C J, of the section. A knowledge of the geometrical properties of

the section and of its material enable the former of these to be predetermined with

some accuracy, but the authors have been unable to find any published data as to the

values of the torsional rigidity for such commercial sections as are usual in structural

engineering. With a view of obtaining such data experiments have been carried out

by Mr. Ritchie on a number of commercial sections, and the result of this work forms

the foundation for much of the second part of the book.

Chapter I. outlines the introductory theorems necessary for a thorough understanding
of Chapter II., which deals with the equilibrium of the bow-girder. In Chapter III.

the torsion of non-circular sections is considered, while Chapter IV. deals with the

stresses involved by such torsion alone or combined with bending, and Chapter V. deals

briefly with the general principles of design of a bow-girder exposed to both bending
and twisting.

It is hoped that the treatment is sufficiently complete to enable any one familiar

with the general principles of design of the ordinary straight plate-web or lattice girder
to adapt these to any specific case of a bow-girder under uniform or concentrated loading.

In view of recent failures of structures in which straight beams exposed to some
torsion have collapsed under seemingly inadequate loads, the data of Chapter III.,

emphasising as it does the extreme weakness of the commercial I, angle, or T section

under torsion, should be of interest.

Appendices have been added, giving a list of integrals which will be useful to the

reader working through the investigations of Chapter II., and also giving a table of

the geometrical properties of some commercial sections.

A. H. G.

E. G. R.

DUNDEE,
September, 1914.

331443
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A STUDY OF THE CIRCULAR-

ARC BOW-GIRDER
CHAPTER I

(i) Equilibrium of the Straight Girder.

IF a girder straight in plan and horizontal when unloaded is exposed to a series of

vertical loads, each section is subject to a bending moment M, whose magnitude varies

from point to point. Under the influence of this moment the girder is bent, and, so

long as the loads are not sufficient to produce stresses in excess of the elastic limit of

the material, the radius of curvature K of the profile of the neutral axis at a point
where the bending moment equals M is given by the relationship

1 M
R
=
EI ....... (a)

where I is the moment of inertia of the section about a horizontal axis through the

centroid of its area, and where E is the modulus of direct elasticity of the material.

If y be the vertical displacement of the neutral axis at a point distant x from some
datum point in the axis, it may readily be shown that

= (approx.)

so that, so long as the deflection of the beam is confined within practical limits,

d M

(2) Curvature, Slope, and Deflection.

From (lj) it follows that if, at any one point, the girder is horizontal after loading,

the slope -r- at any other point at a distance I will be given by

r l

dil |
M .

t .~ =
-777 . dx . . . . . (c)dx El

Jo
M

and will therefore be represented to scale by the area of the yry diagram between
Ji/J.

the two points, while if the slope at the first point is not zero, this area -will measure
E.G. B



2 A STUDY OF THE CIRCULAR-ARC BOW-GIKDKE

the difference of slope at the two points. On integrating both sides of expression (<),

the deflection y of the second point below the first is given by

fW , ,~
//
= 7- dx (a)

\dx/
Jo

i -i

|.V ,

I /;/
' dx'

*/

In a given beam under load the slope changes from point to point, and the difference

of slope at two points, a small distance Sx apart, is given by -p (

j-j Sx, or by f-^Jj

M
or pj . Sx, where M is the moment acting on the element included between the two

sections. If the rest of the beam were to remain straight the deflection at a distance

I from the element, due to the bending of the element under this moment, would be

equal to

M ,
-7TT . OX . I

El

and if the slope at one end of the element were zero this would be the actual relative

deflection at a distance I. Since every section of the beam is exposed to a bending
moment, any element at a distance x from the point whose deflection is being con-

sidered contributes its quota pj . x . Sx to the resultant deflection, so that the actual

deflection at the point /, relative to the point at which the slope is zero, is given by
i

M
j

-TT7 . x . dx
EL

o

or by Ax ....... (e)

M
where A is the area of the -^j diagram included between the two points and x is the

distance of its centroid from the point /.

If, instead of being zero, the slope at the point o is equal to i, the deflection at /,

relative to this point is given by
il + A x . . . (/)

Special Cases of Deflection.

In certain standard cases the maximum deflection is very readily calculated, and is

as follows :

Deflection.

Beam of uniform section and of length / with single load W at centre . ajW -777-

r

Beam of uniform section uniformly loaded with u- Ibs. per foot run . ^5 ...

IJ'/
:i

Cantilever of uniform section with load W at end -rrr

u-i
4

Cantilever of uniform section uniformty loaded ..... ^
-



AND CONTINUOUS BEAMS

(3) Encastre" and Continuous Beams.

A beam simply supported at its two ends has, everywhere, a curvature whose con-

cavity is upwards. If, however, it is built in to supports at its ends, these supports

prevent the beam adopting the slope natural to it when free, and a fixing moment is

W, W

<
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If, as in Fig. 2, the beam has one or more intermediate supports, whose

upward reactions are PI, P2 , PS, the moment at X, say between supports (1) and (2) is

given by

J/, = J/a l#a*a + (j)

-^f\ ' ' ' (k
'

}

Under such circumstances, the magnitudes of the fixing momentsMn and Mb ;
of the

reactions Ra ,
Rb ,

at the ends ;
and of PI, P2 , PS, the reactions at the supports, require

to be determined before equations (g),(h),(j), or (k) can be used to determine the value

of MS at any given section.

(4) Encastr Beam with no Intermediate Supports.

Considering, for example, the case of a beam built in at its two ends and carrying

a uniformly distributed load of w Ibs. per foot run (Fig. 3),

2

Mx
= Ma

- Rax + -r-.

U
1

FIG. 3.

Since from symmetry Ra = -> we nave

WLX

If, for simplicity, the section of the beam be taken as constant so that Ix
= constant

= I, we have, on integrating,

(]l- JLIjif x .

dX JltJ. V

where A is a constant of integration. Since the slope is zero where x = 0, i.e., at the

left-hand support, it follows that A = 0, and since the slope is also zero at B where

x = 1, we have

ivtw
_j_ A

4
^

Substituting this value of A/a in (m) gives

dx

1C

Tl 112
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or, on integrating this,

jv_ {Px x^ _ W }"
El 112

+ 24 12"* I'

The constant B is determined from the fact that the deflection y = when x = 0, so

that .6 = 0.

(5) Encastre" Beam with Intermediate Supports, or Continuous Beam on more
than Two Supports.

Let A, B, C, (Fig. 4) represent three adjacent points of support on an encastre

beam, or on a simple continuous beam with uniform loading iv Ibs. per foot run. To

determine the moments Ma ,
Mb , and Mc ,

and the reactions Ra ,
Rb ,

Rc . Take the

origin at A. Then between A and B,

Mx = Ma Rax-\-~ (n)

.'. At B M = M - r/i
2

2
. (o)

B

FIG. 4.

Similarly, working back from C to B,

Writing (>?) as

we get

and

dy _ war

(P)

a O 2i^

Since //
= when a: = 0, it follows that D = 0, while since y = when x = 1,

we have

Tl f- ^1_ -D ^1 I ^'^1 I /^7 Q"* Q n (* I 41/1 ~T~ v*l v

'' C ~ '2 6
+ 24 [

From (5) the slope at B is given by

and on substituting from (s) this becomes

f

dy\ 1 f /i

\d~xj ~m I "2
.

o 18 J
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Similarly, taking C as origin and working back from C to B, we should get

b hi ( t.2 3 8

the minus sign being taken before
y-_,

because x is now measured in the negative

direction.

Equating these expressions for (--J ,
and eliminating terms containing R <t

and 7?
(

.

\M / /
fa

by substitution from equations (p) and (o), we get

the relationship commonly known as the equation of "three moments." With;?

points of support this theorem yields n 2 equations, and the terminal conditions

supply the additional two which are necessary before the n unknowns can be

determined.

Taking, for example, the case of a beam resting on three equidistant supports and

forming two spans each of length /, J/,, ~MC
= 0, and the foregoing equation reduces to

Mb
=

-g-.

Also since Mb
= Ma I\J +

-i

.'. Rb
= 2 id -2 !!=, id.

8

Again, taking the case of an encastre beam with a central support giving two spans,
each of length /, from symmetry Ma

= Mc , ^=il 2
=

I, and equation (u) becomes

From (o) Mb
= 3/

rt

- Ral +
"

.'. 3 M - 2 Ra l + |
id2 =

Since the slope at A where x = is zero it follows from (q) and (s) that

Mal RJ* ,

id3
_

~2~ ~6" h 24~

.-. 83/a - RJ, + ^ =

and combining equations () and (x),

/, ._
'

1

lL"-
2

/. Rb 2 u-l 2 7^, = /.

/r/
2

?r/
2

-/
2

From :;.!/ =: - --- :
--



from (v)

ENCASTKti BEAM WITH UNIFORM LOADING

id2 Mn

1*2
'

(6) Encastre" Beam with Uniform Loading Effect of a Settlement

of One Support.

Where the fixing moments Mn and Mh at the ends of an encastre beam of span I,

or at any two intermediate supports of a continuous beam, are not equal, the moment
due to these varies uniformly from Ma to 3/,,, and, at a point distant x from the end

A
,
is equal to

From equations (</) and (A) (p. 3), it is evident that in a loaded beam, fixed at the

FIG. 5.

ends, the bending moment at any point is the difference between the bending moment
which would be produced by the same loading on a beam simply supported at the ends,

and that produced by the end moments, so that in the case of a uniformly loaded

encastre beam with end moments Ma andMb the diagram of effective bending moments
is represented by the shaded area of Fig. 5.

If one of the supports A of such a beam sinks through a distance d, the ends

remaining horizontal, the difference of slope of the ends is zero, and consequently
from (c) (p. 1), the area of the effective B.M. diagram is zero.

2

/. Ma

"S
'

8

Mb
= f .

Again, since the relative deflection of the two ends is d, the moment of the effective

B.M. diagram about A is equal to Eld ((e) (p. 2)).
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' 2 l l U
'

1
* 2 l

= (Mn + 2 37,,)
-

GEId.wP
. . M,, + 2 Mb

=
p
--

1-

7/;/2

and Ma + Af6
=~

,, 6Eld wP
/
2 h

12

_ .

~F" "12

If the only moment is that induced by the settlement of the support, i.e., ic = 0,

I.T-- r> T>* 6EId
this 5.M. = +

2
.

The reactions Ra and L'6 under the new conditions are determined from the equa-
tions

w/2

Mb
= M,, - lin l +~

M - Mb . wl
~

~z

_w 12EH
'

2 I
s

and /4 = / A',,

TT IZEId

(7) Beams with Unsymmetrical Loading, or with a Series of Concentrated Loads.

When the loading of an encastre or continuous beam is unsymmetrical or consists

of a series of concentrated loads, a semi-graphical treatment based on the considera-

tions outlined on p. 2 is preferable.

In Fig. 6, let A, B, C be three adjacent supports in a continuous beam, and let

AGB, BHC represent the bending moment diagrams for such a loading on two

simply supported spans AB and BC. Let ADEB and BEFC represent the fixing

moment diagrams, and G^, G\, G 2 ', G2 the positions of the centroids of the areas

A I>EB, AGB, BEEC, BU( '.

Let the area AGB = AI
ADEB = A,'

,, BHC = A 2

BEEC= A 2

'

Then, considering the span AB, taking .4 as origin, since the supports at .4 and

7) are at the same level

ih being the slope at B.
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Similarly for the span CB, taking C as origin, since the supports at C and B are

at the same level

1

o
r

K- a" A

the negative sign being taken, since x is measured in opposite directions in the two

cases.
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Equating the two expressions for the slope at 13 gives

fi^i__zulii _ _ 2 ~* 2
~

^z''-i /
{

\

fcj
/2

Again, taking moments about .4 and C of the fixing moment diagrams on each

span

and, on substituting these values, equation (/;) becomes

M,J, + 237, (^ + / 2 ) + 3/,./ 2
- 6 {^i + ^| - . . (*)

'i '2

This is the most general form of the equation of these moments and is applicable

to any form of loading,
9 trl 3 9 irJ 3 / /

1T T !' a UJt-i . II in (i '

Writing Ai = -
-gL ;

,1 8
= ---; x,

=
^

;
a- 2
-

^

gives the equation for uniform loading, which is identical with (u), p. (5.

If some or all of the supports sink, B falling d^ below A and d.
2 below C, equation

(z) becomes

MJ, + 2.V, (I, + g + M,.l,
-

C>

j4jfi + ^2
1

'l '2

(a)

(8) Resilience of a Girder Exposed to Bending.

If, under the action of a bending moment M, two originally parallel vertical sections

of a beam, enclosing an element of length bx, become inclined to each other at an angle
rj

of Si, the work done by the moment in bending this element is equal to M -
'. (This

2i

assumes that the moment is applied gradually, and, at any instant, is proportional to

the curvature obtaining at that instant.)

.'. "Whole work done in bending beam= ^ ---. M<ii, where the integration is

taken over the whole length of the beam.

But Si measures the difference of slope at the two ends of the element.

Bx M
' K =~R

=
~E2

**

So that if / be the length of the beam
t /V,,

09)

This quantity is termed the resilience of the beam under the given loading, and is

equal to the work done by the load or loads during the distortion of the beam. Thus,

if a single load W be applied to the beam, causing its point of application to deflect

y

through a distance y, the work done by it during its application is equal to
JC^.
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E.;/., beam simply supported at the two ends. Single load W at a point C distant

a from one end and b from the other end of the beam (Fig. 7).

Rb
= W

Wbx

Here IIa = W

Between A and C, J\IX =

1

2A7 Va + b
dx

FIG. 7.

Similarly between B and C

^
(6
-

c)
=

6h7(aH

'3EL (a + b)

(9) Castigliano's Theorem.

Where more than a single load is applied, the problem is readily solved by an

application of this theorem.

Suppose a structure, originally horizontal, to deflect through y l and yz at points
P x

and P 2 under the application of loads Wl and IVz (Fig. 8). Then assuming smooth

supports, so that the work done by the end reactions is zero, we have

Tl -u
i

Let TFj be now increased to (]V1 + 8}\\), W2 remaining constant, and let y +
2/2 H~ ^/2 ^e ^ne new deflections.
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The additional work done =
( > TI

r
^1

\ W + - ^ \ S// x + Tr2 8//2
{.

& }

.-.&U= ir^'/i + Wy t . (y)

Now suppose the structure unstrained and gradually loaded with (W\ -f ^^\)
and TT'2 ,

these loads during application always maintaining towards each other the

ratio of their final values. The final deflection must be the same as before, while the

resilience is given by

U' =

i + Tr2?/2) + y

= i {2^+517 + ^8^
But U' U must equal &U.

.-. 8[7= ?/

dU

TF

. (7)

a- -i i
(H

Similarly-^ =y2 ,
derivative of U with respect to any one load equals the

deflection of the point of application of that load.

(10) Resilience of a Beam Exposed to a Torque.

If a beam be exposed to a torque whose magnitude at a given point is T, successive

plane sections suffer rotation about the longitudinal axis of the beam, and the relative

rotation of two sections, distant Bx apart, is equal to 86, where

Here (' is the modulus of transverse rigidity or the shear modulus of the material

and J is the polar moment of inertia of the section, or its moment of inertia about an

axis through its centroid perpendicular to its plane.
1

5j/3 Y'2

The work done by the torque during this relative rotation is T - ^ bx, so that
Z ZCf7

over the whole length I of the beam the work done by the torque is given by
?

7-2

< j
'''

1

SeelChapter III. fur the effective value of J in any particular case.



DEFLECTION PRODUCED BY SHEAR FORCES 13

Where a beam is exposed to both bending arid twisting moments, its resilience is

the sum of the works done by these moments, and this, by the principle of work, is

equal to the work done by the applied loads daring distortion.

(u) Deflection Produced by Shear Forces.

In addition to the deflections produced by the bending of a girder, there is some

slight deflection due to the fact that each vertical layer is exposed to shear stress. In

a straight beam, exposed only to bending and shear stresses, the deflection due to shear

is always a small fraction of that due to pure bending, being greatest in a built up
beam of I section in which the web is comparatively thin. 2

In such a beam of normal proportions and span simply supported at the ends, the

deflection due to shear is seldom more than 4 or 5 per cent, of that due to pure

bending. In an encastre beam of this type the proportion may be as much as 20

or 25 per cent. In the type of bow-girder to which this treatise is particularly

devoted, the deflection is mainly due to torsion, and moreover the proportion of the

whole deflection due to torsion is greatest for those beam sections for which the shear

deflection is greatest. Even in an extreme case, in a bow-girder the shear deflection

does not amount to more than 4 or 5 per cent, of the whole, and will, in general, be

much less than this. It has, in consequence, been neglected in the following dis-

cussion. Where, as in a large built-up bow-girder of I section with very slight

curvature, it may be advisable to make allowance for the extra deflection, this may
most easily and with sufficient accuracy be taken into account by using in the calcula-

tions a value of E about 20 per cent, less than the true value for the material .

2 For a discussion of this point, see Morley's
"
Strength of Material?," p. 226, or any text-book

on the same subject.



CHAPTER II

(12) The Circular-Arc Bow-Girder

A GIRDEK built in to supports at one or both ends and forming an arc of a circle

in plan, is subject, at each section, to both bending and twisting moments. At the

supports, fixing moments of both kinds are called into play, and until these are known
the resultant moment tending to cause rupture at any section is indeterminate. The

following investigation is devoted to a consideration of the general state of elastic

equilibrium of such a girder under various systems of loading.

The investigation is based on the theorem (p. 1) that in a straight beam, fixed

horizontally at some point, the slope at any other point is given by the area of the

M
rjj diagram between the two points. Where a girder is circular in plan and is sub-

jected to both bending and twisting moments this theorem requires modification.

Let M and Te be the bending and twisting moments at a point P distant 6 (in angular

measure) from the support A (Fig. 9). Then a given slope at P in the direction of the

tangent at this point produces a slope of cos (6^ 6) times its magnitude at Q in the

direction of the tangent at Q. Also an angular displacement 7 at P, due to a torque
between the support and this point, produces a slope y sin (61 9) at Q, in the direction

of the tangent at Q.

It follows that if distances along the arc of the girder be represented by s, the

resultant slope at Q, assuming the slope at the support to be zero, is given by

/arc 61

(dy\ = IjM*
\ds/0i ] EI0

f A

arc 61 /*arc 61

Mfi
cos (0!

-
0) ds + ^ sin (0i

- e) ds

Here I6 and J6 are the moments of inertia of the section at 0, about the axes of

bending and of twisting.

Where the beam is of uniform section, this becomes

(^) = _L Me cos (0!
-

0) ds + ~ Te sin (0!
-

0) ds ;

\ds/8i El I CJ I

v */ *

or, sinceK if r is the radius of the arc,

. dy 1 dy
ds = rd6

;
-=-=-. -y^ ;'

ds r eld
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(13) Circular-Arc Cantilever with Load W at Free End.

Let a (Fig. 9) be the angle subtended by the arc.

Then, Me = W X CR = Wr sin (a 0),

Tg = W X RP = Wr{l cos (a 0)} ;

... W) = !IT
|

sin (a
-

8} cos (0,
-

0) </0 +~ I {1
- cos (a

-
0)} sin (0!

-
0) (10

On integrating
l and simplifying, this becomes

id-u\ in 3 T 1
~T7.

= rr? 0i sin (a 0i) + sin 0i sin a +W0M 2I L J

^r |2 (1 cos 0i) + 0i sin (a 00 sin 0i sin a . . (1)
^ V, t/ l^ J

FIG. 9.

As 61 is any angle between o and a, on writing X
= d in this expression and integrating

between the limits 6
1 and o, we get the deflection at dv

fOl
Wr3

I

/. 7/(e])
=: {0 sin (a 0) + sin sin a} c?0 +

^o
/fli

{2 (1 cos 0) + sin (a 0) sin sin a}d0

T'JT?*
3 r~=

^ry-ry 01 COS (tt 0l) COS Sin 01
2ilLl L

.) + 0! cos (a
-

0i) +
sin (a 0i) + sin a (cos 0i

r8 T2 (0!
- sin 6^ + 0i cos (a

- 6$ + "I

V L sin (a #1) + sin a (cos 0i 2)J
(2)

At the free end d = a, and wre have

Wr3 r "I Wr3 P ~l
yw = njT-T

a cos a sin a -\-
~ 8a 4 sin a + sm a cos a . (o)

2iJijL L J 2C't/ L -J

As a check on the validity of the reasoning leading to these results the deflection

1 For convenience in integrating this aad other expressions occurring in the course of this

investigation, a list of the necessary integrals is given in Appendix A.
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at the weight may be calculated by equating the resilience of the beam to the work

done during deflection. Taking, for convenience, the origin at the free end (Fig. 10),

M = Wr sin
;
Te = Wr (1 cos 6) ;

and, if I be the length of the beam, the resilience is given by

2EI
Tjds = - 2 cos

_ W 2rs
[~a

cos a sin a 3a 4 sin a -f sin a cos
a"|

~T~ El CJ J
'

\v
and, since this = - - X deflection at weight,'

FIG. 10.

Wr3 fa cos a sin a 3a 4 sin a + sin a cosal
"

lJw = -5- 7/r ni
5a L X" ^" ^

which is identical with equation (3).

a = ~ = 90,
a

uv r -n i-sir - q __ 3 r-7854 56621
7̂ =T L2E7 + ~CAT^

]}1 LET CJ J

a = ~ = 135,
4

ir/-

16
377 + 2 . 977 _ -^ _ 2

v 2

4CJ

= nv
1-4281 1/8716

AT CV

(14) Circular-Arc Cantilever with Uniform Loading w Lbs. per Unit Length

Taking the origin at the free end, we have, at any point (Fig. 11)

re

Me = wrz sin
<j>d<f>

= T2
(1 cos V),

Jo

CO

Te = wr*(l cos
</>) d<f>

= wi* (0 sin 0),

Jo
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as the moments produced at P by the loading on that portion of the beam between

P and the free end.

h/\ _ wr wr

where a is the total angle subtended by the beam. Integrating this expression and

simplifying gives

A
fa 0i . sin2a sin20i) sin 0i sin

2 a sin
3
0im (a _0;)_ COs -

sin (a 0i) a cos (a 0i)+ 0i cos0i
a 0i sin 2a sin20

]

''}

sin 0i sin2 a sin3

fa sin 2a sin 20) sin0sin2a sin3
0"1 ^

sin(a 0) acos(a
fa sin2a sin20T"~

sin 6 sin2 a sin 3

2AT

2 2 cos (a

--.
26'e/

-
| (cos

3 a

2 2 cos

. sin &i sin 2a
>i) + (a 0i) sin 0i + cos a cos 0i + -

5

a 0i sin 2a sin 20i
a cos3

0i) cos 0i snr a -\ ^
.cos 0i sin

2 a

0i) + a2 -
1

2 + (a-0i)sin0i

sin 0i sin 2a .

,
, a

+ cos a cos 0i -^
- + | (cos

d

a 0, . sin 2a sin

+ cos 0j siir a -- ^ |

2 cos (a 0i) 2a sin (a 6

sm0lSin-za , -
;3 a _ COS3^

B.G.
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At the free end t
= 0, and the deflection becomes

ICI
A
[V a . sin 2a~|

typj
1 cos a f (cos

j a 1) sin- a + -
-\ 7

. tn A P 1
-

.,
a sin

_>"]
-)- I 1 cos a 2a sin a -j-a + 5(COS

8a 1)+ sin a -
H

1_( / L !u 4 J

e.g., if a = 5,
the deflection at the free end becomes

a

4 f-5594 . -1035
" = "' .^r +^r

(15) Circular-Arc Girder, Built in at Two Ends, with Single Load W.

Let the arc subtend an angle (n 2 <), and let (Fig. 12) be its centre
;
Alt

the line of supports; AOW = a; BOW T = @; It,, and 1\,, the vertical reactions at A

Fio. 12.

and 1? / 3/
ft
and Jl//,, T,, and 7',, the bending and twisting moments at the supports A

and B, the axes of these moments being respectively parallel to and perpendicular to

OA and OB.
The bending and twisting moments at any point between A and W, distant 6

from OA, are now given by

Me = ^f
ll
cos e ll,,r sin B + 7',, sin 6 (4)

TS = Tn cos + Iiar (1 cos 0) 3/
fl
sin . . . (5)

while the moments at a point between B and W, distant 6 from OB, are given

by similar expressions, with suffix b taking the place of suffix a.

Before these moments can be calculated for any particular case, the values of

the six unknowns, M(l , M,,, 7',,, T,,, It,,, 11,,, are to be ascertained; and for this, six

relationships between these unknowns are necessary.

Taking moments about B, of the forces and couples acting in a vertical plane we

have, for equilibrium,

E,, ('2r cos <) Ta cos </>
M

/r
sin cjb IF;- cos

</> + cos (a + 0)1 -f 'J'i,
cos

</> -f^ sin ^ =



CIRCULAR-ABC GIRDER, BUILT IX AT TWO ENDS 19

en

Again, taking moments about the line AB,

(Ma + Mb) cos <
-

(7
7

a + Tb ) sin < = Wr
{
sin (a + </>)- sin </>}. . (8)

while, equating the torques at the weight, as obtained by working from both ends of

the girder,

Tn cos a + Rar (1 cos a) Ma sin a = Tb cos ft Rbr (1 cos ft) +
Mb sin /3 ............ (9)

The other two necessary relationships are obtained by expressing the fact that both

slope and deflection at the weight are the same, whether the latter is considered as

being at one extremity of the arc A W, or of the arc BW.
The slope at any point X between A and W is given by

cos - sn -

and, on substituting for Jl/
fl and Te from (4) and (5) and integrating,

sin 6,\
- (Ra r

- Ta] 0, sin ^cos

Similarly at any point between B and IF, distant X from OB,

"
cos X + sin 0j I (Ebr Tb ) 6

l sin t

/4r) 1 sin X+ 2/4r (l cos X) M6 -[

sin X X

The slope at the weight is obtained by writing 6
l
= a in the first, or X

= ft in the

.second of these expressions, and is thus given by

/
2 r n

.,-777 I M,< i

a cos a + sin a
} (Rar Ta) a sin a

r
2 r

^7-7 (7
T

ft cosa) sna acosa
n

I

(10)

or by

cos sn ~ T ~ sn

r2 f "1+ 0777 (T6 74r)/3sin/3+ 2/4r(l cos/3) A/6 {sin/3 /3cos/?lZCe/ l_ ' J

according as the point IF is considered as forming part of span AW or of span B W.
On equating these two expressions, with the sign of the second changed since

c 2
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is measured in opposite directions in the two sections, a further relationship between

the unknowns is obtained.

Deflections. Assuming the supports to be at the same level, integrating

obtain the deflection gives (between A and W)

to

r^_
Cr

IKI] L a

Jo

- (Rar- ra)0sin0J
dd

ar(l cos 0) 3/
ft

! sin 0cos MIV / (I
(

( J1

. 2G'J

as the deflection at a point distant 61 from A. On integrating and simplifying,

this becomes

[A^ sin X
- (Rar

- TJ (sin 0,
-

d, cos

7
T

f(

_ jRar)(sin X 1 cos 0^+ 27^' (^i sm ^i

+ Ma(018in01+2eo801 2)

Similarly for a point between B and W, distant 6
l from B,

J
sin

X
- (/V - T

fc ) (sin X
-

1
cos

(12)

2EI

(Tb
- /V) (sin t

-
#1 cos ^) + 27^(0! sin 6r

2
r(

h 2CJ L + 3/6 (i sin 0! + 2 cos ^ - 2)

(18)

At the weight, X becomes a in (12) and /3 in (13) and these expressions give

(A to W)

r
2 f "1

JJTJ-
Maa> sin a (Ear Ta) (sin a a cos a) J

r2 r(!rrt
Ear) (sin a a cos a) + 2/O' (a sin a)

2CV L + ^/ (a s"1 a + 2 cos a 2)

(14)

and (B to IF)

sD2A7
Mb /S sin /3

-
(726r

- T6 ) (sin /3-j3cos

r(Tb - J?br) (sin /3
-

/3 cos /3) + 2 sn 1 (15)

On, equating the identities (14) and (15) the final relationship is obtained, and

from the six equations (6), (7), (8), (9), (10 = --
11), (14 = 15), the six unknown

fixing moments and reactions may be determined in any particular case. These

moments depend somewhat on the relative values of El and of CJ, except where the

load is in the middle of the span. An increase in the ratio El : CJ is accompanied by
an increase in all the fixing moments. The effect on the values ofMa , ofMb ,

and of the

end reactions, produced by a large variation in this ratio, is very small, especially

when the angle a is large. The effect on the end torques is more pronounced,

particularly for small values of a.

In order to facilitate the application of the results of this analysis, and to make
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10

1/sL/ues of (i

fi-MA
FIG. 13. Values of MA ,

MB and EA for a bow girder built in at both ends, subtending an angle
180

2<f>,
and carrying a load If at a point distant a from end A.
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30 40' 50"

\fa.lues of K

60 70 80

FlG. 14. Values of J/A ,
J/ H and A'A for a bow "inlor built in at both ends, subtending an arc

(180 2<f>},
and with a single weight II' distant a from the end A.
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it more useful in practice, the foregoing equations have been solved for a series of

values of a and of <, and the values of the end moments and reactions have been

calculated for a series of values of El: CJ. Owing to the comparatively small

effect of this ratio on the end bending moments and reactions, values of these have

40' 50'

Values of (L

FIG. 15. Values of 7\ -f- Wr for a bow girder built in at both ends, subtending an angle l.SO
?

2<f>,

and carrying a single load W at a distance a from the end A.

only been calculated for the extreme cases likely to be found in practice viz., forl^T:

CJ 1*25 (its approximate value is a solid circular section) and for El: CJ = 100,

These results are plotted as curves in Figs. 13 and 14, and for intermediate values of

the ratio the moments and reactions may be obtained with a sufficient degree of

accuracy by interpolation from these curves.

Owing to the relatively greater variation in the end torques, values of these for
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a series of values of El: C'J have been calculated, and are plotted in Figs. 15 and 16.

By substitution from these values in equations (4), (5), (12), and (13), the values of

10 4-0 50

Va-lues oF CL

FIG. 1<>. Values of TK
~ \\ r for a bow girder built in at both ends, subtending an angle ISO '1$,

ami with a single load II' at a distance a from the end J.

the bending and twisting moments, and of the deflections at any point of the girder,

may be obtained.

Special Cases.

Semicircular Bow-Girder with Single Load W in any Position. Here a -\- fi =
180 ;

<
;
and the foregoing equations simplify. The values of the various con-
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stants for such a girder have been calculated for the case where El = 1*25 CJ, and are

given in Table I.

TABLE I.

a



26 A STUDY OF THE CIRCULAR-ARC BOW-GIRDER

moments at each section of a semicircular girder clue to a single load IT at any distance

a (degrees) from one end, and ordinates of the envelopes to these curves shown in
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0= jo fan/erf

t
H

a g

dotted lines give the maximum positive or negative moments produced at any point

by a concentrated rolling load of this magnitude.
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Circular-Arc Girder, subtending an Angle less than 180, and carrying a Single

Weight at the Centre of the Span. Let 2a = (- 2</>) be the angle subtended

(Fig. 12). The moment of the weight about AB = }Vr (1 sin </>), and as, from

symmetry, Ma
= Mb ;

Tu = Tb ; equation (8) becomes

HV

or

also

31a cos d> Ta sin d> = (1 sin <f>)
2

II V

2 cos
</>

(1 sin
</>) -f 7',, tan </>,

7? = It =

On substituting these values of 37,, and Ra , equation (10) becomes

~Tn-3 r/i sind.
. r

d

2 cose/)

I si ^ ,"1

From symmetry this equals zero, and, on substituting for a and
</>

and equating
to zero, the value of Ta is obtained. Except in a semicircular girder (</>

=
0), this

value depends on the ratio of El : CJ. The following values have been calculated for

the case in which this ratio equals 1'25.

</>
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Let Ma,
Mb ,

Tn ,
Tb ,

have the same meanings as before Then, from symmetry,

;

_ Mh) Trt
= Tb ; and, on taking moments about the 1

Values of E I : C J

EIG. 19.-Values of M for a girder with uniform loading, subtending an angle 180 -

(

2A/
ft
cos <

- 2T rt
sin

</>
= 2T-

jcos
</> -^

-

. (17)



30 A S'lTDY OF THE CIRCULAK-ARC BOW-GIEDKIJ

Taking the origin of
</>

at the supports,

Me = J/,, cos 9 liar sin + Tn sin + wr\l cos 0)
l

= (Mn
- in-

2
) cos

- (U (,r
- Ta) sin d + ?rr

2
.

7* = Ta cos + AV(1 cos 0) 3/,, sin i<v
a
(0 sin

= (7
7

rt

- Iiar) cos -
(M,,

- in 3) sin + Rn r
- icr

2

If the girder is fixed horizontally at the ends,

. (18)

(19)

cos l
~

" sn (l -

0-3

f 0-2

0-1

Se/77

75.

30

m

iraert--

40 SO 70 /OO

Values or I : CJ

FIG. 20. Values of Ta for a girder with uniform loading subtending an angle 18()
c

and, on substituting for Md and T from (18) and (19), this gives

(<!.'t\
.

26V

! cos 0!+ sin 0J- (/A,r
- 7'a)^ sin 0!+ 2,n 2

sin

_ r(Ta Ear)e l sin 9l (Ma ?rr
2
){sin 0i t cos ^H

V L + 27iV(l cos 0J 2;n 2
(<91 sin 0JJ

(20)

Writing for ^ in this expression, and integrating between the limits 6
l and

we have

1 The last terms, representing the moments due to the portion of the load between A and 6, being
obtained as at the beginning of (4).
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10" 20" 30 40 SO"
Values of

(j>

60" 70 80' 3iT

FIG. 21. Values of Ma and of ra in a girder with uniform loading, subtending an angle
[180 -24*]. EI:CJ = 1Q.

,2 r

yj \(Ma wr^sin 1 (RarTa)(sm 6 ^cos^) 2w?-2 (cos^ :

(Ta Rar) (sin 1 1 cos ^)+ {(Ma wi*) (6l sin x+2 cos^5
2CJ cos -

(21)

From symmetry ^ is zero at the centre of the span where 6
l
=~

^,,
and

A

by substituting this value for ^ in (20), and by also substituting for Ma its value
f /7T T \ I

it;r
2

|l (^-
<^
_

^j
tan

</>
|
and equating to zero, the value of Ta may be obtained,
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after which the values of M6 and Te for any point on the girder may be obtained

by substitution in (18) or (19).

The values of M
lt , Ta ,

M
,
T have been calculated from the foregoing equations

for one-half of a uniformly loaded girder for a series of values of $, and of 6 for each
value of

</>.
These values depend slightly on the relative value of El and of CJ

,

and in Figs. 19 and 20 values of M, t
and of T,, are plotted for a series of values of

El : CJ. Fig. 21 shows the variation of M,, and of Tn with
tf>,

for a given value of

El : CJ. The curves of this figure are calculated for the case where this ratio equals

i-o

80

60

N^<r

p 'Zo

&
o^
^

20 -5o 40" 5"o Go"

Values of 6 measured from one support

80

FIG. 22. Bending-inoiiiciit diagrams for one-half of a uniformly loaded circular- arc, subtending
an angle of [180 2<p].

10, and for purposes of design these values may be taken as sensibly accurate for any

likely values of the ratio.

Figs. 22 and 23 show respectively the bending moment M
,
and the twisting

moment T6 at each point of a uniformly loaded bow girder subtending an arc 180 2</>

degrees.

Special Case.

Semicircular Girder with uniform Load. Here $ = 0, and we have :

M
lt
= Mb

= wr2
: Ea = Rb . wr :
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^ [(7'
- Rar)0i sin 0, r sn

sn - cos ~ <n-( - sn
(20')

/l> r)(sin *i
~ ^ cos i>

~ 2

(7
T

rt ZV)(sin ^! 0J cos
X) sn (21')

Values of d measured From one support .

FIG. 23. Twisting-moment diagrams for one-half of a uniformly loaded circular-arc girder,

subtending an angle [180 20] .

Substituting for Ma and Ra in (20'), writing
~ for 0, and equating to zero, gives

Ta = ivr
2 X ? (~ - 2)

= -298wr2
,

77 \4 /

and on substituting in (18) and (19)

M6 = wr\\ 1-2728 sin 0),

Te = W7\1'570S 1'2728 cos 0).

1
This makes M6 = when sin = = -7850 ; *.., when 6 = 5143', and

1-2728

makes Te = when = 2240', and again when = 90. Af
fl
is a maximum when

~-~ =
;
i.e. when cos = 0, and therefore at the supports. T,? is a maximum when

E.G. D
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cW
= 0, i.e. when sin 6 = '7850, or when 6 = 5143'.

7T

Writing 6
1
= ~ in (21') and substituting for Ta and Rn , the deflection at the

A

4
P7272

-053~|
^centre,-

_ ^.j +26VJ '

centre is given by

(17) Circular-Arc Bow-Girder, Subtending an Angle (180 2(/>), Built in at the

Ends and Carrying a Uniformly Loaded Platform.

Let w Ib. per unit area be the load on the platform whose area will be

r2
f )

-^ -j

TT 20 sin 20 \
. Imagine the latter to be divided into a series of strips

^ I )

parallel to AB, each of these strips transmitting its load to the girder at its ends. The

length of the particular strip resting on the girder at points distant 6 from A and B,

FIG. 24.

is 2r cos (6 + 0) (Fig. 24). If this strip covers a length S.s = rSd of the girder, its

width;is r&6 cos (6 + </>),
and the load on it is 2zw2 cos2

(9 + </>)#.

Its moment about AB = 2;r3 cos2 (0 +</>){ sin (9 + (/>)
sin <} 80,

/. Moment of whole load, about ^1 =
~*

= Zivr*

Jo
+^){ s in (6' + </>)- si

,

2 sin

Since, from symmetry, Ma = Mb ;
Ta = Tb ;

it follows that

Af cos - Ta sin = wi*[^ -^ (rr
-

20
- sin

20)}

., Ma = ^{2^*
-^ (W - 20

- sin
20)}

+ Ta tan 0.

Again, since the total load is

'

I
cos 2

(0 + 0>70
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.-. Ra = Kb
= -

-\TT 20 sin 20 \ .

4 (
r

j

The bending and twisting moments at a point xr distant Q
l from OA are given by

rMei
= Ma cos X (Kar Ta ) sin X + wr3 cos 2

(0 + 0) sin ft 0) dO.

T6i
= (Ta Rar) cos Ma sin 6 + Rar

r3 cos 2
(0 + <j>) {1 cos (ft

-
0)}d0,

the last term in each case representing the moment, bending or twisting, about the

point x
l (Fig. 24), of the load between A and xr

On integrating these terms and writing d for d
lt

the general expressions for M6

and Tg become
~

l){cos 6 sia fi> -r\ a .

M. = Ma cos
- (Rar-l J sm ^ +

=
( a
-

ar cos

M sin ^ ivr

6 . .- + sm(9
,

[_
_
(i
_ cos (9)

sin 2<i
,, ,,,,

^-.(l. cos Qy
b

(22;

(23)

As before, if the girder be fixed horizontally at the ends

dy\ -
''

and, on substituting the foregoing values of Me and Te and integrating, this gives the

value of -jTj
at any point 61. Thus

du

fjft cos 9
i -\- sin

X ) (Rar T^O^ sin 8^

I /7 \
.sin 6.

(
sin 2

0{3-f 0,} 3
cos

/^O I
1 \ O

/

-3 !

(Ta-Rar)d l
sin ^-.

7 .

sin2
(/>)

?-'
J

~t~ i^n

- cos

cos2</> . sin2<^ . cos 0] cos 20-- -

cos
. . sin2<f> 2\ . sin
+

g-f
-
gj
+ 9

sn i + cos i
-

(24)

From symmetry the slope is zero at the centre of the beam where #1 ;=
^ 0, and,

on substituting this value for #1 in (24), and also substituting the values of Ma and Ra

as given on pp. 34 and 35, and equating to zero, the value of Ta may be obtained.

E.g., Semicircular Girder (0 = 0).

D 2
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In this case, on putting < = in (24)

Ma{0icos 0i + sin 0i}
- (Rar Ta)0i sin (

2EI

+

'in
3' (7 /4 \ ^./ll* f\ rt I * " t\ \ f\ \+ ^sm0i-cos01 ^sm0i+0ij ;

2CJ

(!Tfl -JR^ sin i cos

+ 27?
ftr(l

- cos 0i)
- in-

3
-! 0i
- sin 0i (-^

- ~ cos 0i

(24')

At the centre, where 0i = -., the slope is zero, and Mtl
=

-g-
',

Ka wr
4

-

wr* Tl
(IT ^_

Ta \TT
7"|

,
n-r5 f / T _ TT\ TT

__ j. ,

lg"|
_

27 L3
"

\4 _ icrsJ 2
"""

9j
^

2C'J L Ur3 4/2 3

It follows that, on substituting in (22) and (23)

o fl 4- Sin 2
r,f\r,A ' a

Me = wr3
\

'7074 sm
( o

(sin 0cos .
TT= ivr

. T n

+ T '7074 cos ^
I D 4

The deflection at any point 0i is obtained by writing 0i = in (24') and integrating

between the limits 0i and 0. Thus,

ZCJ

Mu 6j sin 61
- (Rar

- Ta) (sin 8 - ^cos X)

4. ^{10 - 10 cos X
- 2 sin 2

0i
- 30X sin 81}v \

'

.

f (Ta - Rar) (sin 0i
- 0i cos 00 + 2Rar (0i

- sin 00

+ Ma (0i sin 0! + 2 cos 0i
- 2)

9 I 2

77

16cos 0i
- 16 + 30. sinin l\

J I

(25)

At the centre, where 0i =

^/centre

- "?t P1815 , -01211T i . JH cy J
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(18) Girder with Unsymmetrical Loading.

Where the loading of a girder does not admit of being represented by a simple

trigonometrical expression, or where the girder is not of uniform cross section through-
out its length, a solution is most readily obtained by dividing the load, including the

dead load due to the girder itself, into a series of comparatively short lengths, and by

calculating the moments due to each of these portions of the load separately, by an

application of the reasoning and results of (15). In practice a first approximation
would be obtained by assuming a likely value for the cross section and weights at each

point, and by then applying these results. A second approximation would then be

made taking into account the weight of the girder calculated from the sections found

necessary by the first approximation, and this would in the majority of cases give

results sufficiently near for all practical purposes.

(19) Bow-Girder Built in at the Ends and Resting on Intermediate Supports.

Assuming all the supports to be at the same level, the reactions of the intermediate

supports may be most readily obtained by expressing the fact that the upward
deflections at these supports caused by their reactions, are equal to the downward
deflections produced at the same points by the loading.

(20) Girder with Uniform Loading and Central Support.

Let P be the reaction of this support. Let 180 2$, or 2a, be the angle sub-

tended by the arc of the girder.

The upward deflection at the centre due to the reaction is given by equation (14),

in which W'= P, and in which Ma and Ta have the values given by the curves of

Figs. 13 16, for the corresponding value of a or (90 </>).
The downward deflection

at the centre due to the load is obtained by substituting a for dit and by substituting
the corresponding values of Ma and T'a as given by the curves in Figs. 19 21, in

equation (21).

E.g., ct = 90
; </>
= (semicircular girder).

The upward deflection at centre

= m. [I -e^o-182)] + ^ [oi82
-

-5oo) + 1
- 1 + 1 (i

_
2)]

. p,.3
f-4674 -03821

L 2A7 2CV J
'

The downward deflection at the centre, due to the loading

-7272 ,

and on equating these

-727207+ -053EI_
r

'4674C'J
r

The value of this depends slightly on the ratio of El to CJ. Taking this ratio as

T25, gives
'7928
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Again, 7?a -f Rb + P = trier

'

^a = #6 =
-^-

\TT

Also

= -801/cr.

.17,, + M b
= 2T2 - Pr
= -46/n- 2

/. .1/H = .V6
= -23v2

.

The value of Ta is the difference between the values produced by the load and by

20 80' 9030 4-0 50 60' 70

Ka/i/es of 8measured from the end support:.

FIG. 25. Bending moments in a uniformly loaded circular-arc built in at the ends and having
a central support. (Full-line curve.)

the upward reaction P. The first of these is -Z98wr* (Fig. 20) ;
the second is -182/V

(Fig. 16).
.-. Ta = {-298

-
(-182 x 1-54)} r2

= -018T2
.

This value may be obtained alternatively by substituting the foregoing values of

Ma and of E
l(
in equation (20) with Oi = >

and by equating to zero.

The values of M
g
and of T

e
at any point between the end and the support and

distant d from the end then become, on substituting in equations (18) and (19)

M
g
= u-r2 {l '11 cos '783 sin d},

T
e
= MT2

{-801 -783 cos 6 + '77 sin d d}.
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If El : CJ = 10 the values of the end moments and reactions become P = T47 wr
;

Ra = H b
= -885MT

;
M

(t
= Mb

= '265T2
;
Ta =Tb

= -OSOirr2
,
and equations (18) and

(19) become
Me = wr*{l '735 cos "805 sin d\

To = HT2
{-835 -805 cos 9 + '735 sin 6

9}.

Figs. 25 and 26 show the bending and twisting moments at each section of one-

20 30 40" 50 60 70 80'
Values oF Q measured From the end Support.

FIG. 26. Twisting moments in a uniformly loaded circular-arc built in at the ends and having
a central support. (Full-line curve.)

half of such a girder with a central support and with El -r- CJ = 1'25, while for com-

parison the moments with the same loading but without the central support are shown

by the dotted line curves on the same diagrams.
Where the girder subtends an angle less than 180, the problem may be solved in

an exactly similar manner by making use of the requisite relationships from the fore-

going curves.

50
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(21 ) Circular-Arc Girder, built in at the Ends, with Uniform Loading, and with
two Symmetrical Intermediate Supports.

Let the angle subtended by the girder be (180 2<), and let the supports (at C and
D, Fig. 27) be distant y from each end. Let the upward reaction at each support
- P. Let Ma", Ta", RJ' represent such end conditions at A as would be produced by

these two reactions alone, and let Ma ', Ta ', Ra
'

-represent such end conditions as would
be produced by the load alone, with supports removed.

Under these conditions the downward deflection at C and D due to the loading
would be, by equation (21)

2/v
=

-(^V r
((')(smy-7cosy)

ACJ

~(Ta
' -Ra 'r) (sin y

- 7 cos 7) + (Ma
' - T2

)
{
y sin y +

2

2 cos 7
-

2} + 2/4'r(y - smy)-2T2
(^-+cos7- 1)

.

-]
(26)

where Ra
' = utri-

</>J
,
and A// and Ta

'

for the particular value of $ obtaining in

the girder, are given by the curves of Figs. 1921.
The upward deflection at C and, from symmetry, at D, due to the two upward

forces P is obtained by substituting y for 61 in equation (12), which becomes

~
|Vtt

"
y sin y

- (Ru"r
- Ta") (sin y

-
y cos

y)]

r*_ r(Ta
" - Ra"r) (sin y - y cos 7) + 2fl

rt
'V (y

- sin 7) "1

*~ 1CJ L + Ma
"
(y sin y + 2 cos y- 2)

(27)

The values of Ma", Ra", Ta
"
for use in this expression are the sum of the corresponding

values produced by each of the two forces P acting at points distant y from A and from

B, and may evidently be obtained by adding the values of Ma and Mb ,
Ra and R/t ,

Ta

and Tb ,
as obtained from the curves of Figs. 13 16 for a girder having the correct

value of <, and having the force P at y from A.

On substituting these values, each of which is given in terms of P, in equation
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(27) and equating to (26), the resultant expression contains P as the only unknown and
enables this to be calculated.

E.g., Semicircular girder with uniform loading and with two piers at 60 from
the ends of the span (</>

=
; y= 60).

From Figs. 19 and 20 the values of Ma
r

,
and Ta

'

for substitution in equation (26)
are Ma

' = wr2
;
Tn

'

'298/rr2
; while 74' = 1'5708/rr, and, on substituting, the down-

ward deflection at the supports (y = 60) is given by

, P564 , -0371

The values of Ma ", T tt", and 74" for substitution in (27) are, from Figs. 13, 14, 15
and 16

M,," = (.17,, + Mb)t =0> y = 6rp = (-588 + -278) I'r = '8Q6Pr.

Ta
" =(Ta + Tb\ =

o, y = GO> = ('156 + -127) Pr = '2837V.

R " P"'a * >

and, on making these substitutions,

v s P539
.

'0351
// '"

'

L2A7
"*"

2Gvd
*

Equating these two expressions for //00 gives

r.564(7j + -o37/';n

L-539CV7 + -035Elj '

and taking El = 1'256'J", this makes P = I'OS^r.

The reactions at A and 73 are then given by

74 = 74 = 7C - 74" = in- (j
- 1-05Y= -521/rr.

\ij /

while the moments Ma and A//;
are given by

,17,
= Mn

= Ma
' M

fl

" = wrz
(1
- "866 X 1'05) = -091-/-2

.

The torques Ta and Tb are given by

Tb
= Ta = Ta

' - Ta
" = jrr

2

{-298
- '283 X 1'05}

= '001/rr2
.

The state of affairs at any point on the girder is thus given by the relations

(equations (18) and (19) ) : Between A and C

Me = Ma cos - (Rar
-

T, ( ) sin 9 + WIA (1
- cos 6)

= wi* jl
- '909 cos 6 - -520 sin

9\

Te =(Ta
- Rar) cos B + R, t

r - Ma sin 6 - icr 2 (d
- sin 0)

= wr 2

{-521
- '520 cos 6 + "909 sin 0-0}

Between (7 and the centre (0 being measured from OA)

Me = Ma cos (74?- Ta) sin + wr* (1 cos 0) Pr sin (0 60)
= wr*

1

1 1-045 sin
1

Te = (Ta - 74r)cos + /4>-
- ,l/

ft
sin - /rr'

2

(0
- sin 0) + 7J ;-

j

1 - cos (0
- 60)

j

= r2

1

1-571 1-045 cos
;

.

Fig. 28 shows the bending and twisting moment diagrams for such a girder, while

for purposes of comparison these have also been drawn as dotted line curves on Figs. 25

and 26. From these it appears that the maximum values of the moments with and
without supports have the following ratios, the bending and twisting moments for the

span without intermediate supports being taken as unity.
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From these figures it appears that a considerable change in this ratio has very
little effect on the magnitude of these moments.

Semicircular Girder with uniform Loading and with two Piers at 45 from Ends of

Span.

In this case, the end constants and pier reactions for EI=1'25 CJ become

P = l-460?tr
;

Ma
= - -QSlwr2

;

Ea
= Rb

= -llltcr Ta
= -010/rr2

.

As before, between A and C
Me

=Ma cos e - (Rar
- Tn) sin d + v2

(1 cos 6),

Te =(Ta
- Rar) cos 6 + Rar

- Ma sin - wr* (d - sin 6),

while between C and the centre

Me =Ma cos 9 (Ea r
- Ta) sin - Pr sin (0 45) + wrz

(1
- cos 0),

Te
= (Ta

- Rar) cos + Rur
- Ma sin + Pr

{1
- cos (0

- 45) }

- wr* (0
- sin 0).

(22) Semicircular Girder, built in at the Ends, with Uniform Loading, and with

three Intermediate Supports.

Let the supports be arranged symmetrically, P1 and P2 being the reactions at the

outer supports and Q that at the central support. These reactions may be obtained

by expressing the facts (1) that the downward deflection at the centre due to the

loading is equal to the sum of the upward deflections at the centre due to the forces

JP
lt
P2 ,

and Q, in their respective positions ;
and (2) that the downward deflection at

PI due to the loading is equal to the upward deflection at this point due to forces

P
15
P2 ,

and Q ;
thus if, for example, Px and P

2 are each at 45 from the ends, we
have

Downward deflection at Q due to loading

J-7272 , -053)
j/i-r* -{_ _i_ - _ '-

\<2EI + 26VJ-

Downward deflection at P l or P2 due to loading

I

2A7 h 26V/'

these values being obtained from equation (21') by substituting the values of 0, viz., 90

and 45, and of Ma and Ta from Figs. 19 and 20.

Again, the upward deflection at Q due to force Q
. f-4674 ,

0882~l~'~ from ^14 ^ and FiSs - 13 and

and the upward deflection at Q due to the two forces Pl and P 2 (
= P

from 13 and Fis - 13 and
L

Also the upward deflection at P
l due to force Px

= Pt*
L~2El

+ 2C7J
from ^14^ and Figs ' 1B and 14

while the upward deflection at P1 due to P2

= Pr3 + from (13) and Figs. 13 and 14,
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and the upward deflection at P l due to force Q

and Figs. 13 and 14.

Collecting and equating deflections at the same points gives

UT(-7272CJ + '053EI)= Q('4674CJ + -0382EZ) + ZJ (-422(X'</ + '0594EZ),

io<-3928CJ + -0218EZ) = #(-2297C'/+ -015EZ) + P('271QCJ + -QUQEI),

where P = Pj = P 2 -

If El = T25GV, the solution of this gives

= -74wr ; P = -83r.

06

Values of 6 measured From one end of Girder

FIG. 29. Bending and twisting moment diagrams for one-half of a uniformly loaded semicircular

girder with three intei mediate supports at 45.

From this

Also

= '37 MT.

M
cl + Mb

= 2/n-2 2/Y sin 45 Qr
= -088/rr2

.'. Mu Mb
= -044/n-2

while '1\ (from Figs. 15 and 16)

= -298HT2 '112P;- -182Qr '083Pr
= ('298 -297) wr*

= -0010 jo-8.

Fig. 29 shows the bending and twisting moment diagrams for one-half of this

girder, and a comparison of these diagrams with those of Figs. 25 and 26 indicates to

what extent the maximum moments are reduced by the addition of the third

support.
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(23) Effect of Depression of Supports.

Where a bow-girder is used to support the circle of a theatre, intermediate

supports are often provided by cantilevers built into the rear walls of the theatre. If

erected so that under no load the ends of these are level with the end supports of the

bow girder, their deflection under load will reduce the supporting pressure to a value

below that obtaining with rigid supports, will increase the end reactions, and, generally

speaking, will increase the average bending and twisting moment over the whole

girder.

If P be the end load on a given cantilever, its deflection at the free end is

proportional to P and is equal to kP where k depends on the dimensions of the

cantilever. For example, if of uniform section, of moment of inertia 1', and of length
73

/ l-

The actual deflection under load of the bow-girder at this point is thus kP, and if y
would be its deflection with the support removed, the upward deflection due to the

upward force P is equal to y kP.

Expressing y in terms of the load on the girder, and expressing the upward
deflection due to P in terms of P as in 20, 21, and 22, and equating this to

y kP, the pressure P on the support is obtained in terms of the load as in the

examples of the preceding articles.

E.g., Semicircular Girder with Uniform Loading, built in at the Ends and Sup-

ported at the Centre by the End of a Cantilever.

Deflection at support, with support) _ 4 P7272
removed . .)

"

L 1EI
"

2G'JJ

Actual deflection at support . . = kP

Upward deflection at centre due to) _ _ p >3
F'4674

,

0882"!

force P I

: " "h
~

p. 34

p. 37

L 2EI ' 2GV

/. P = wr

05
3"|

2GVJ

7272 + -053

4674

Thus, for example, if the cantilever be of uniform section, of moment of inertia /'

I
3

and of length /, so that k = Q7 , this becomes

7 272 + -053^P wr

The following table shows how, in the case where I = r and 7 = I', the yielding
of this support would modify the end moments and reactions as compared with those

experienced with a rigid support or with a cantilever so erected and designed as to

deflect under load to the level of the end supports. These figures apply to the case

where El = 10 CJ.
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Calling wl the load, let x be the distance of its centre of gravity from the line joining

AG, and let xl and x2 be the distances of supports B and C from this line.

Then taking moments about AG gives

irl

Again ~Ra + Rb -\- Rc ,

so that if Rb and Rc are known, Ra and Ta may be deduced from these equations.

This leaves in effect three unknowns, Ma ,
Rb and R ,

and in order to determine these,

three further equations are necessary.

These are to be obtained as follows :

(1) Span A B. Write down the expressions for the slope and deflection at B in

terms of Ra ,
Ma ,

and Ta . These are the same as equations (20) and (21), pp. 30 and

31, with i\ taking the place of r. Equating the deflection at B to xero gives the first

of the required relationships.

(2) Determine values of Mb and Tb from equations (18) and (19), p. 30, in terms

of Ra ,
Ma ,

and Tu .

(8) Span EC. Obtain the slope and deflection at C in terms of Mb ,
Tb ,

Ra and

Rb ,
and of the slope at B. Equating the deflection at C to zero gives the second of the

required relationships.

(4) From equations (18) and (19) determine 3/
c and Tc .

(5) Span CD. Obtain the slope at D and equate to zero. This gives the third

relationship.

(25) Shear Force at a given Section.

The vertical shear force at any section of a bow-girder is the same as would

be experienced at the corresponding section of a straight girder subject to the

same loading and to the same reactions. Thus, between an end support reaction Ra

and the first concentrated load Wv the shear force is constant, except for the weight
of the girder itself, and equal to Ra . Between this load and a second load W2 ,

the

reaction is Ra W\.

In the case of a uniformly loaded girder, carrying w Ibs. per foot run, the shear force

at a distance x, measured along the arc, from the support A is Ra icx for all points
between the end and any intermediate support. If there be an intermediate support
at a distance x from the end A, and if its reaction be Px ,

the shear force at a point
distant x from A, between this intermediate support and any third support, is given

by
Ra + 1\ - wx

and so on.

(26) Experimental Verification of Formulae.

In order to verify the formulae of this chapter by experiment, measurements of

deflection have been made by the authors on a series of bow-girders fixed at one or

both ends and loaded either by single concentrated loads or by a uniform load. Some
of these girders were of circular section, others of angle section. Values of El and of

CJ were obtained by deflection and torsion experiments on straight lengths of the same

sections, and these values have bsen adopted in the calculations.
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The following are the results of the experiments :

TABLE II.

Series
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determined by calculation with a close degree of approximation for any commercial

section. While the geometrical polar moment of inertia J of any section may also be

calculated, the product of this J and the shear modulus C of the material does not, how-

ever, give the effective value of CJ for use in these formulae, except in the case of circular

sections. The reason for this and the question of the effective value of J for non-circular

sections is considered in some detail in the following chapter.

B.O.



CHAPTER III

(28) The Torsional Rigidity of Non-Circular Sections.

ON the assumptions that the displacement of every point in a section under
torsion is proportional to its distance from the centroid of the section, and that a

section originally plane re-

mains plane after straining,
the angle of twist of a

straight member of length /

is given by

TL
CJ (28)

;jl

where J is the polar moment
of inertia of the section, as

deduced from its geometrical

properties.

If the section is circular,

these assumptions are fully

justified by experiment so

long as the stresses involved are within the elastic limit of the material.

But this is not the case for any but a circular section. In any other section

radial lines originally straight do not remain straight after straining, and sections

originally plane become warped under

strain. For example, Fig. 31 shows

the shape assumed by each section of

an elliptical shaft, and Fig. 32 indicates

the deformation of a square section

under strain. The net result of this is

that a given torque produces a greater

angular displacement than is indicated

by formula (28), and the angle of twist

is given by

Tl Tl

CkJ CJ'
. (28A)

where J' is the effective polar moment
of inertia of the section.

In a few simple cases, where the

profiles of the section are the graphical

representations of definite mathematical

functions, values of J' may be deduced

from considerations of strain, and Table III. shows such values as deduced by St. Venant. 1

1 Todhnnter and Pearson, "History of Elasticity," Vol. II.

Fro. 32.
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TABLE III.

Type of Section. Remarks. Effective value of /(= /').

Solid ellipse Major axis 2a

Minor axis 2&

Hollow ellipse Major axes, 2a and 2aj

Minor axes, 26 and '2b 1

Square Side = s 14s4

Eectangle . Lengths of sides, b and d

Any symmetrical section,

including rectangles, in

which the ratio of outside

dimensions in any two
directions in a cross-

section is not very great

A area of section

./ = geometrical polar
moment of inertia

It becomes apparent from St. Venant's investigation that there is always greatest
distortion at that part of the section of a shaft or beam under torque, where the surface

is nearest the axis. The distortion, and hence the intensity of stress, becomes very

great at the apex of any re-entrant angle, becoming infinite where the apex of this angle

in

FIG. 33.

coincides with the centroid of the section. On the other hand, the distortion and stress

in the neighborhood of projecting points is very small, so that while such projecting
areas at a distance from the axis add largely to the magnitude of the polar moment of

inertia, their effect on the tortional resistance of the section is usually inconsiderable.

Thus such sections as are usual in I, or channel beams, and which offer a very efficient

distribution of material to resist simple flexure, are relatively inefficient to resist

torsion, and their inefficiency becomes more pronounced as the distance of their main
members from the centroid of the section is increased.

As having an interesting bearing on these points the results of investigations on
the following sections may be cited. These are (Fig. 33)

is 2
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(1) Square section.

(2) Ditto with slightly concave sides, and round corners.

(3) Ditto ditto ditto and acute corners.

(4) Star-shaped section with four rounded points.
T'L

Writing 6 = where J', the effective moment of inertia of the section, equals kj,

St. Tenant showed that the values of k for these sections were :

Section
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dimensions of these are given in Table I\r
. With the exception of the solid circular

and rectangular sections, and the welded tubes, which were of wrought iron, all were of

mild steel.

TABLE IV.

No.
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centres. To one end of the beam was clamped a lever from which was suspended a

hanger fitted with a knife edge, and carrying the load. Two pointers, each three feet

long, could be clamped to the beam at any desired position. These pointers moved
over scales, clamped to the bed-plate, and graduated in degrees and minutes. Readings
were taken to the nearest minute. The other end of the beam was clamped to the

head of the lathe, the gear being locked to prevent rotation.

On the addition of each increment of load, scale readings were taken at both

pointers. In order to eliminate the effect of friction at the centres, the torque lever

was elevated slightly, and allowed to decend slowly, depressed slightly, and allowed to

rise slowly, the angle of mean position being noted. Observations were made for both

loading and unloading, and the mean angle of twist per unit of load so obtained. The
value of the product of C and J' was then found from the formula.

CJ' - Tl

~e

where the symbols have the significance already ascribed to them.

In each case the experiment was repeated over a span of about half the original

span. In no case did the two values of CJ' so obtained differ by more than 3 per cent.

The values of the product of E and / were also determined by supporting the

beam on two massive knife-edges firmly bolted to the bed-plate; Load was applied to

a hanger fitted with a hardened point, suspended from the middle point of the beam.

Deflections were measured by means of a micrometer microscope sighted on to a silk

fibre fixed to the beam. These deflections were observed to the nearest *001 inch.

Readings were taken for both loading and unloading, and the mean deflection per unit

load calculated. The value of El was then found from the relationship

In order to obtain the values of the two moduli E and C, specimens were cut

from the thickest part of each section, turned down to a diameter of about '18 inch,

and cut to a length of about 9 inches. The values of C were then found by means of

a small torsion meter, and the values of E determined by supporting the specimens
on knife-edges and applying a load at the middle of the span. The values of the

constants so found have been tabulated in Table V., which also shows the results of the

torsion and bending experiments on the beams.

The Bending Tests show that in general the experimental and theoretical values of

E I agree closely. In the few cases where a fairly large discrepancy exists between

them, it is probably due mainly to the fact that the section was not perfectly uniform

throughout the length of the beam. These figures indicate roughly the discrepancy

that might be expected from calculations based on the ordinary suppositions that a

beam is of uniform section throughout, and is perfectly straight from end to end.

One point of considerable interest is brought out in the above tests. It will be

observed that in the case of the I, channel, and other sections, the values of E obtained

are not equal for both axes of bending. In the case of the large I section, for instance,

the observed values of E when the web is vertical and when the web is horizontal are

respectively 30'7 X 106 and 26'4 X 106 in.-lb. units. In the former case, the web pro-

vides 14'5 per cent, and in the latter case only '64 per cent, of the total moment of inertia.

Generally speaking, therefore, the modulus of elasticity of the metal in the flanges is less

than that of the metal in the web ;
this want of uniformity being undoubtedly produced

in the process of rolling. This is confirmed by the results of experiments by Prof. E. Mar-
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burg,
1 in which tension test pieces were cut from the flange, web, and root, of several

I beam sections. Tests on these specimens showed a considerable variation in E at

different points in a section, and indicated generally a lower value of E for the

flanges than for the web. The minimum value of E was invariably obtained from the

test piece cut from the junction of web and flange. In the authors' experiments the

channel section was tested with the web both in tension and in compression, and it is

interesting to note that the flexural strength is the same in each case. In the angle

sections also, the flexural rigidity is sensibly the same whether the flange is in tension

or compression.
The Torsion Tests afford substantial confirmation of St. Tenant's deductions as to

the inefficiency of material in the neighbourhood of projecting points and of sharp

corners in a beam section. The extreme weakness of all commercial sections is

apparent from the figures given in column 12 of Table V. The inefficiency of I and

channel sections is especially remarkable, while tee and angle sections are little better.

The hollow circular section is the most efficient of all for withstanding torsion. It

is, however, inefficient when exposed to bending, and is for many reasons ill adapted
for girder work. Next in order of efficiency comes the box section. So long as the

ratio of depth to breadth is moderate, this is equally well adapted for resisting either

torsion or bending, and would appear to afford the most economical distribution of

material when both are to be resisted.

Solid and Hollow Rectangular Sections. Reference to Table V. shows that k is

sensibly the same for a hollow as for a solid square section, having a value '86 in the

latter and '87 in the former case. The theoretical value of k deduced from St. Tenant's

formula for a solid square section is '84 which is in close agreement with the experimental
value.

The agreement between calculated and experimental results in the case of the solid

rectangular sections is equally close. Thus for section 12 (Table V.), depth -J- breadth

= 2'25, St. Tenant's formula gives k ='47 against the measured value '46, while for

section 18, depth
-=- breadth = 3'18, the theoretical and measured values of k are each

equal to '29. For the hollow rectangular section No. 15 (depth
-=- breadth = 1*64), the

experimental value of k is '69, while St. Tenant's value for a solid section with the

same ratio of breadth to depth is '68.

It thus appears that the value of k for a hollow rectangular section is sensibly the

same as that of a solid section of the same overall dimensions ; depends only on the

ratio of breadth to depth and not on the thickness of the walls
;
and that the value

is practically identical with St. Tenant's theoretical value for the corresponding solid

rectangle.

Tallies of /: for such sections, having different values of the ratio, breadth -i- depth,

are given in Table TL, while Table TIL shows how the effective value of J varies with

this ratio in such sections having the same area or weight per foot run. It will be

noted that while both k and J' diminish with an increase in the ratio, the relative

diminution of J' is not nearly so great as that of k. The relative diminution of J' is

approximately the same for hollow as for solid sections with the same overall dimensions.

Owing to the inefficiency of the material in the corners and at the ends of the

flanges of a typical commercial box section (Fig. 35) under torsion, the value of J or of

J' for such a section should be computed not on the whole area but on the portion

included by the rectangle abed.

1

Engineering News, Vol. 62, 1909, p. 168.
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TABLE VI.

Ratio.

Greater Side, 2c
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d

Since an increase in depth renders a section more efficient to resist bending, the

most effective value of this ratio when both torsion and bending are to be resisted,

depends on the relative values of the two moments. With zero bending moment the

section should be square. With zero torque, expe-

rience shows that the ratio of breadth to depth

should be between 3'5 and 5'0 for best results.

With both torsion and bending the most economi-

cal ratio will usually lie somewhere between 2O
and 3'5, its value increasing as the ratio of bending
moment to twisting moment increases.

/ Sections. A comparison of the results of the

torsion tests on I sections Nos. 1 to 6, Table V.,

indicates that the ratio of actual to calculated

value of ./ .diminishes with an increase in the size

of the section. The penultimate column in Table

VIII. gives the values of k for these sections. The

value of J' in inch units is given with a fair degree

of accuracy by the relationship

=
&> (r T

FIG. 35.

where A is the area of the section in square inches.

The last column of this table shows values of A 2
-^- 60, while experimental values of J'

are given in column 6.

TABLE VIII.

Section

Number
Table V.
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with the type of section. The value of J' is given within about 2 per cent, in every
case by the relationship

/' =
m (30)

where m varies with the type of section. Values of k and of m are given in Table. IX.

TABLE IX.

Section.



CHAPTEE IV

MAGNITUDE OF SHEAK STRESSES IN A BEAM UNDER TORSION

(30) Beam of Circular Section.

IN a beam of circular section the shear produced by torsion is everywhere circum-

ferential, and varies directly as the distance from the axis of twist. Thus if / be the

magnitude of this shear at a radius r, and fs its magnitude at the surface where the

radius is a, we have
T

f f -J-Js a
-

The moment of the shear on an elementary concentric ring of radius r and of radial

width Br will therefore be
2m* . /. . Br

a

and on integrating this expression over the whole section of the beam and equating the

result to the external torque T, we have

/.= (3D

Here fs is the maximum circumferential shear in the section. This formula is

applicable to both solid and hollow circular sections.

(31) Sections other than Circular.

In a non-circular section under torsion the assumptions that the shear at any

point is perpendicular to the radius at that point and is proportional to its distance

from the axis of twist, are no longer true. It has been shown both by St. Venant and

by Bach 1 that the maximum transverse shear stress in any non-circular section under

torque occurs at that point on the surface which is nearest to the axis of twist ;
that

the stress is great in the neighbourhood of re-entrant angles and zero in the neighbour-
hood of projecting corners.

Expressions for the maximum shear in the case of a few of the simpler sections

such as the ellipse and the rectangle have been deduced by St. Venant, and are given
on p. 72. Autenreith 2 assumes that the stress at a given point P (Fig. 37) on the

boundary of any solid or hollow section bounded by a continuous curve convex

outwards, is given by
9TT

f. = jf (82)

where T is the torque, A the area of the section, and r is the length of the perpen-
dicular from the centroid of the section on to the tangent at P. The maximum shear

stress will thus occur where r is a minimum, i.e., at the end of the minor axis of the

section, and the minimum surface shear at the end of the major axis.

On the same assumptions the surface shear in a hollow section having a continuous

1 "Elastizitat und Festizkeit."
2

Zeitschrift des Vereines deutscJter Inyenienre, 1901, p. 1099
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boundary, in which the ratio of inner to outer radius is sensibly constant and equal
to y for all radii, is given by

27'
/.= . (33)

(32) Solid and Hollow Elliptical Sections.

For a solid or hollow elliptical section, having semi-major and minor axes a and b,

the value of ; at any point P whose co-ordinates are xy (Fig. 37) is given by

.34)
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In a hollow section having a and b as the semi-major and semi-minor axes of its external

surface, the area of section is

, . ai bi
TT [ab a\bi\ , and since = = /

a o

/. A =Trab{l y
2
}

// 1-0 -9 -8 -7 -6 -5 -4 -3 -2 /

Note.- Intercepts of Normals Give Values of y
FIG. 38. Diagram showing distribution of surface shear stress in a'solid elliptical section subjected

to a twisting moment.

Thus in'the general case

J *
-nab [I -y2

] [1 + y
2
]
r

27Vv/
2
(a

2 b2) + />
4

y
4
]

(35)
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and for a solid elliptical section (y = 0) this becomes

_ arvv -
ip) +

''*
~

ird'b* (36)

Note:- Intercepts of Normals Give Values of

FIG. 39. Diagram showing distribution of surface shear stress in a hollow elliptical section

subjected to a twisting moment.

The maximum shear occurs at the end of the minor axis where y = b, and is

given by
277

/(max.)

which agrees with St. Venant's result.

The minimum stress on the periphery is given by

(37)

22'
lniuj

y
4
)
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Where a = b = r, each of these expressions reduces to

27V
f

77 \1
.4 _ . (38)

the expression for the shear at the periphery of a hollow circular section.

Figs. 38 and 39 show respectively the distribution of surface shear in a solid and

a hollow elliptical section, in each

of which a : b = 1'5, while y = '934.

These are subject to the same torque
and have the same cross sectional

area. The magnitude of the stress

is indicated by the normal to the

surface, intercepted between the sur-

face and the curve. In this case the

maximum stress in the solid section

is 5 times as great as in the hollow

section.

In a solid circular section of the

same area the maximum stress is "82

times that in the solid elliptical sec-

tion, while in a hollow circular section

having the same thickness and the

same area as the hollow elliptical

section, the maximum stress is "76

times that in the latter section.

While the assumptions made in

deducing the foregoing formulae give
results in close agreement with ex-

periment if the boundary is a con-

tinuous curved line, they fail to do so

if the section has a discontinuous

boundary. In the latter case the re-

searches of Bach indicate a state of

zero stress at projecting points, and,
in an extreme case would postulate
zero stress at the corners of a poly-

gonal section no matter how closely
this approximates to a circle. To
obviate this difficulty Autenreith as-

sumes that the stress at such a corner depends upon the included angle, being zero
for a right angle, and that, at any point in the surface of such a section in which this

angle is not less than 90, it is given by

FIG. 40.

- 2# fi (*
r L

sm a . (39)

where /; is the circumferential shear stress
;
r the length of the perpendicular from

the centroid to the corresponding side of the polygon ; a constant ; z the distance
from the mid point of the side to the point at which the stress is required ;

c half the
length of the side

; and a is the included angle (Fig. 40).
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When a = 180, i.e., for a circular section, this makes /, = constant. When
a = 90, i.e., for a square or rectangular section, fs becomes zero when z = c (at

corner), and attains a maximum value when z = 0, i.e., at the centre of the side. In

these two extreme cases the formula thus agrees with the results of experiment.

Assuming that at any point in the interior of the section the component of the shear

stress normal to the radius vector is proportional to the distance from the centroid, an

expression may be obtained for the moment of the shear on any element, and on

integrating this over the whole section and equating to the torque the value of the

constant ft may be obtained.

This is given by ..... (40>

.

where A is the area of the section.

Since p sin < = z (Fig. 40) equation 39 becomes

867' L /psin</>
2

For a hollow polygonal section in which the ratio of inner and outer radii vectores

is sensibly constant and equal to 7, this formula becomes

36T
| _ fp

sin <ft\
2

. )

*
"~

rA [18 (1 + 7*) 4 sm a (I + ^ + y*;] ( \ c )

In each case the maximum shear occurs at the middle of the side of the polygon where

</>
= 0, and is given by

-
, where, for a solid section,AT

li = ^-. (43)
9 2 sm a

and, for a hollow section,
ift

(44)
9(1 + 7*)

- 2 sin a (1 + y* + y
4
)

(33) Rectangular Sections Box Sections.

In a solid rectangular section (Fig. 41), whose longer side is 2 e and shorter side

2 b, r for the shorter side is c, and for the longer side is 1>. Also sin a = l, so that,

for the longer side equation 41 becomes

and for the shorter side

Thus the maximum stress in the longer side (at its mid point, where
</>
= 0) is given by

/_,:= 2-57-^
. (46)

and the maximum stress in the shorter side by

At the corners in each case/, = 0.

f 2-57 T. . (46A)
./(max.) "
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In the case of a hollow rectangular or box section in which y is sensibly constant

equation (42) applies. The shear at any point in the longer side is given by

18T L /psin

from which
Ab[l(l 4- y

2
)
- 2y

4
] v

1ST
/(max.)

(47)

(48)

FIG. 41.

while for the shorter side

'.-=

and

1ST

Ac[l(l + i

/(max.)

sn

1ST

+ y
2
)
- 2y

4
]

'

. (49)

. (50)

From equations (45) and (47) it appears that the curves of stress distribution in a

rectangular section are parabolic.

Figs. 42 and 43 show such curves drawn respectively for a solid and a hollow

rectangular section having the same ratio 1'5, of depth to breadth, and the same cross

sectional area and weight per foot run. In the hollow section the ratio of inside to

E.G. F
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outside dimensions, or y, is '975. From these curves it appears that the maximum
stress in the box section is about 19 per cent, of that in the solid section.

Comparing diagrams 39 and 43, it appears that the ellipitical section is the more

efficient in that the maximum stress is only 72% of that in the box section. In the

FIG. 42. Diagram showing variation in surface shear stress in a solid rectangular section sub-

jected to a twisting moment.

Ratio
breadth

=.1-5 ; Area of section = 2-4.

ordinary box section used in practice the value of y will not in general be the same for

the top and bottom flanges as for the webs, nor can it be the same for different points
on web or flange since these are of uniform thickness. From the following table,

which shows calculated values of il in the formula

./(max.) (51)
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for a hollow box section 4 ft. square and with different thicknesses of metal, it appears,
however, that a given percentage variation in y only produces about one-half the same

st-ss ia a rectangular box-section sub-

Eatio
breadth

7= '975.
Area of section = 2-4.

percentage variation in O. In practice the mean of the values of 7 measured at the
mid points of the two sides will give results within a few per cent, of the truth.

p 2
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Thickness
of Metal.
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of the web and is zero at the extremities of the flanges. Since the stress is always

large in the neighbourhood of a re-entrant angle, it is probable that it will be large at

the junction of web and flange, particularly where the radius of the fillet at this point
is small. As to this point, however, no definite information is available.

From experiments on I sections made of lead Bach found that rupture always
occurred at that point on the web nearest to the centroid of the section, and deduced

the expression

/^ax, = 4-5^ (52)

where A is the total area of the section and t is the thickness of the web.

Some confirmation of this formula has been obtained by the authors. Thus

considering I section No. 1 (Table IV.), the effective value of J' for the whole section is

T04, while J' for the web if isolated from the rest of the section would be approximately
086. Adopting these values, the web may be expected to take approximately

= '082 of the total torque, and from formula (46), p. 64, the maximum stress in

the web would then be equal to

2-57 X '082 T
Ab

where b is the half thickness of the web, or ^.a

On making this substitution the formula becomes

4-2 T
/(max.) At

which is in fair agreement with Bach's expression for the same stress.

Although the stress at other parts of the section is indeterminate, experiment
shows that if the web is made stiff enough to withstand this stress the remainder of

the section is amply strong.

(35) Horizontal Shear in a Beam Subject to Torsion.

What aver be the magnitude of the transverse shear stress due to torsion at a

point in a vertical section of a horizontal beam, this shear will be accompanied by an

equal shear stress on the horizontal plane passing through the same point. In a

beam of box section in which the depth exceeds the breadth, or in a beam of I section,

the magnitude of this shear on horizontal layers is a maximum at the neutral axis.

(36) Resultant Shear on Horizontal and Vertical Sections of a Beam Exposed
to Torsion or Bending.

The resultant shear at any point in a horizontal or vertical section of a beam is

the algebraic sum of the shears due respectively to bending and to torsion. The shear

stress due to torsion has already been discussed. The shear stress due to bending, or

to the application of the vertical loads and reactions which produce bending, varies

from point to point in a section.

If q denotes the intensity of shear due to this vertical loading at a point distant
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~~! from the axis of bending, and if the breadth of the section at this point be y lt
this

shear stress is given by
l

(38)

where F is the shear force at the section in question, and z 2 is the distance of the
outer fibres of the section from the neutral axis.

FIG. 44.

In a rectangular section of breadth 26 and depth 2c,

while
if/2
= c, and expression (53) becomes

Tc
2fd^

=
//i
= 2/> is constant,

2i
J (54)

This distribution of shear over the section is parabolic. The maximum value occurs

q 77* q T,
T

at the neutral axis where z\ = 0, and is equal to - - or -
,
or to 1'5 times the mean

o be
' A

shear over the section. The minimum value, zero, occurs at the outer extremity of

the section where z
1
= c.

(37) I and Box Sections.

In the case of an I or rectangular box section the breadth is constant over the

web and is suddenly increased at the flanges. As a result of this the magnitude of

the shear stress in the flanges is much less than that in the web. The distribution of

this stress is indicated in Fig. 44. In an average section the intensity of stress in the

1

Moiiey,
"
Strength of Materials," Chapter V.
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web does not change greatly, and the usual assumption that the web carries the whole

vertical shear force with uniform distribution gives stresses which are in fair agreement

with, and usually slightly higher than those actually attained.

In a hollow box section formed by the rectangles 2&, 2c, and 2&i, 2ci, or in the

corresponding I girder (Fig. 44), in the flange at a height z
1 from the neutral axis.

3 F
8 [be

3 blCl
3
]

. (55)

while in the web at a height z
lt

3 F \b(c
2

"

q ~ 8 [be
3 b^3

}
! b hi

.21

and, at the neutral axis,

(/(max.)

3 F
$ [be

3 blCl
3
] b -

. . (56)

(57)

It should be noted that whereas the shear on a vertical section produced by the

vertical loading acts in the same direction at all points in the section, that due to

torsion acts in opposite directions at opposite ends of a diameter. It follows that the

shear stresses due to bending and torsion act in the same direction in one of the webs
of a box girder, and in opposite directions in the other, and that under such combined
moments one web will be much more heavily stressed than the other.

The nature of the resultant shear stress distribution over the vertical section of

such a girder is indicated by the curves of Fig. 45.
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TABLE X.

Type of Section.



CHAPTER V

(38) General Principles of Design of the Bow-Girder,

FROM the data of Chapters III. and IV., it appears that where a beam is exposed
to any appreciable torsion, the box section is from every point of view the most suitable,

and, for beams of considerable span, or carrying heavy loads, is the only practic-

able section. For comparatively small spans ;
for spans in which the radius of

curvature is large and the angle sub-tended by the arc between successive supports is

small, or for moderate loads, the I section may be permissible, but in general its use

is to be deprecated wherever combined torsion and bending is anticipated.

In any case, where not barred by other considerations, intermediate supports are,

as shown by the results of the investigations in Chapter II., of the greatest value in

reducing the applied moments, and especially the twisting moment at a given section.

In a box section exposed to twisting and bending, a general consideration of the

problem indicates that most economical results are to be obtained where the ratio of

depth to breadth has a value somewhere between 2'0 and 3'5, the former value applying
to encastre beams without intermediate supports and subtending an angle in the

neighbourhood of 180, and the latter for beams adequately supported at intermediate

points or subtending angles not exceeding 45. The following may be taken as

affording a first approximation to the relative dimensions of such a girder designed for

heavy duty :
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take care of the additional small stress due to torsion. Having obtained the resultant

shear in the webs, these should be designed by the ordinary rule applicable to the web
of a straight plate-web girder subject to the same stress.

1

Under torsion such a girder tends to buckle as shown by the dotted lines of

Fig. 40, and particular attention should be paid to stiffening the webs against this

action. Under normal circumstances this may be accomplished by the use of angle or

tee stiffeners, between flanges, reinforced if necessary, where the torsion is greatest,

by the addition of a cover-plate to the web.

The pitch of the stiffeners should, strictly speaking, diminish as the torsion

increases. Where torsion is large the pitch should not exceed the depth of the girder,
for girders less than 2 feet 6 inches deep, and should not exceed about one half the

depth for a girder 6 feet deep.

Special attention should be paid to the design of the riveting at the junction of

web and flange, since this has not only to with-

stand a shear of magnitude equal to that of the

vertical shear at this point, but has also to resist

the tendency to relative distortion indicated in

Fig. 46. This latter effect also involves the use

of somewhat heavier angle sections than are usual

in the straight girder.

Where joints in the web plates are necessary
these should be placed where the sum of tor-

sional and load shear is a minimum.
As an example the preliminary design of a

bow girder of uniform section of 30 feet radius,

built in at the ends and subtending an angle of

120, and carrying a uniform load of 2 tons per
foot run, may be considered. The values of Me

and TO for such a girder having El : CJ = T25,

,
are given by the curves of Figs. 22 and 23, $
being 30. From these curves it appears that

MO has its maximum value ( 42 /rr
2
) at the support,

while at this point T = '048 irr2 . The maximum value of Tg ('052 wr2
) occurs at

approximately 30 from the support, but since at this point MO is zero, and since the

at support,vertical shear force is only wr
I5~~^"~gj

as against wr 5 <t>

the latter will be the point of maximum resultant stress.

Preliminary investigation indicates that a box girder 5 feet deep and 2 feet wide,

with flanges \\ inches thick and webs \ inch thick will be somewhere near the required

section. For such a section I = 104 X 103
(inches)

4
units; while J= 110 X 103

units. From Table VI., k for the given ratio of depth to breadth is '413, so that

J' = 45'5 X 103
(inches)

4 units. Assuming E = 30 X 106 Ibs. per square inch and

C = 12 X 106 Ibs. per square inch, the effective value of El : CJ becomes 5*73.

From Figs. 19 and 20 it appears that the values of the end moments Mn and T.,

for this value of the ratio when
</>
= 30, are Ma = '435 in-

2 and Ta = '067 wr2
.

The effective load per foot run, including the weight of the girder, is approximately

2*2 tons, so that the moments become

1 See " The Design of Plate Girders and Columns," Lilley, or any similar woik.
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M = -435 X 2-2 X 900 = 880 ft. tons

T = '067 X 2-2 X 900 = 133 ft. tons

while the shear force F = 2'2 X 30 X X \ % = 69 tons.
-LoU

Flanrfes. Adopting a working stress of 6 tons per square inch in tension and com-

pression, and assuming an effective depth of 57 inches, we have

6 X af X ST = 88
A4:

.'. a* = 61'8 square inches

where af is the flange area.

Assuming this to include | the area of the webs (
= ^ X 57 = 7 square inches

approx.) the required area of flange plates and angles is 54'8 square inches. This

might be made up of

2 plates, f" X 33" = 49'5 square inches

2 angles 6J" X 4" X '55" = 11'5

Total 61-0

From this is to be deducted the area corresponding to two rivets, and assuming these

to require 1-inch holes, this will be approximately 5 square inches, leaving an effective

area of 56'0 square inches, or slightly more than is required.
Webs. Calling aw the area of the two webs, the maximum shear stress due to

69
vertical loading = - - tons square inches. The maximum shear stress due to torque

- #to

1'547
T

=
rj (p. 65, equation 48), where A is the effective area of the section to resist
A f)

torsion and b is the breadth across the webs. Allowing ^ inch between the edges of

angles and of flange plates, 26 becomes equal to 33 10 = 23 inches, while

A =. (aw -\- area of a 23" width of flanges)

99 X 23
aw -\

33

= aw -\- 69 square inches

The resultant shear stress in vertical and horizontal planes at the neutral axis is

then given by
69 1-54 X 133 X 24

. K + 69)X 23

Equating this to the working shear stress, say 3 tons per square inch, and

simplifying gives

aw
2 - 25-8aw 1587 = 0,

from which a, = 54'4 square inches.

If t be the thickness of the web plates this makes

It X 57 = 54-4

. . t = '477 inch

or, say, | inch.

Rivets. Assuming the centre line of the riveting at the junction of webs and

flanges to be 3 inches from the edge of the web, or at a distance 25'5 inches from the
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neutral axis, the shear stress at this point due to the vertical loading is, by equation (56),

p. 71, equal to 0'90 ton per square inch of web section.

The shear stress at the same point, due to torsion, is, by (47), p. 65, equal to

1-547-
J M\ 2

I

~M~ I

1 '

(7) }

, i 25-5
where

c-=io-
so that this stress equals '2775 X 77Ab

_ -2775 X 1-54 X 133 X 24

(57 + 69) X 23

= '47 ton per square inch

The resultant horizontal or vertical shear at this point is therefore '90 + '47 = T37
tons per square inch.

Considering one of the web plates, the horizontal shear force corresponding to the
shear stress over a horizontal length p inches is

1'37 pt tons

= '685 'p tons

Then if p be the pitch of the rivets and R the safe working resistance to shear of

one rivet

R

Adopting a working stress of 5 tons per square inch for rivets in shear, and using
-inch rivets (area "602 square inch), gives

5 X '602
J>=~- = 4'4 inches.

To allow for the stress on the rivets due to the tendency to distortion indicated in

Fig. 46, the pitch would be reduced to about 4 inches, or alternatively two rows of rivets

with a correspondingly greater pitch would be used.

Stiffen ers. Considering the web as a column whose effective length is \/2

times the distance between adjacent stiffeners the allowable mean shear stress depends
on the ratio of this length I to the least radius of gyration

"
r
"

of the plate. For a J-inch

plate r (
= p=

j

= -144 and / -f- r = 6'92. In the case in question the mean stress

in the web is approximately (3 + T4)-^2 = 2*2 tons, and for this stress Moncrieff 1

has shown that the maximum permissible value of I
-=- r is about 265. This makes

I = 265 6*92 = 38'3 inches, in which case the distance between the stiffeners would

be 38'3 -f- \/2 27 inches. As the shear diminishes, this distance is to be increased to

suit, up to a maximum of about 3 feet 6 inches.

Over the end bearings the stiffeners should be designed as columns of sufficient

strength to transmit the total load. Intermediate stiffeners would be about

4" + 3" + f" angles.

For a more detailed examination of this point and of details of design the reader

is advised to consult any modern work on the design of girders.

1 J. M. Moncrieff, Trans. Am. Soc. G. E., Vol. XLV., 1901. See also "Structural Engineering,"
Husband & Harby, Longmans & Co., p. 154.
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APPENDIX A
THE following list of integrals will be found of service in solving the various

problems involved in the circular-arc bow-girder.

f f
I

cos dd = 6 sin -f cos
; sin (19 = sin cos .

J

Q _ sin 20
1

.C
e<w _ e__ sin 20

/* /*

cos 3 tlB = sin - S1

^

3

-
; sin 3 dd6=- C^ (sin

2 0-2)
J

f* r'
1

I

sin (0! 0) d0 = 1 cos 0i ; cos (0X 0) rf0 = sin 0i

/01

?i 0) d0 =0i sin 0! ; cos cos (0i 0) d0= ~ cos X

Jo

c"
1
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APPENDIX B.

MOMENTS OF INERTIA OF VARIOUS SECTIONS.
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Angle sections, torsional rigidity of, 57

Appendix A, 77
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Autenrieth, investigations of, on the torsion of

beam, sections other than circular, 59, 72

B.

Bach, researches of, 63, 69

Beims, bending of, 1

best section to resist torsion, 73

continuous, 3

having more than two

supports, 5

curvature, deflection, and slope of, 2

distribution of stress in, 59

encastre, effect of settlement of one

support, 7, 45
uniform loading of, 3

unsyinmetrical loading of, 8

with intermediate support, 5

with no intermediate support,
4

Box-sections, distribution of shear stress in, 70
torsional rigidity of, 56

C.

Cantilever, circular-arc, with single load at free

end, 15

uniformly loaded, 16

straight, deflection at free end of, 2

Castigliano's theorem, 11

Channel sections, torsional rigidity of, 57
Continuous beams, see Beams.

D.

Deflection of circular-arc bow-girder, 14

cantilever, 2

straight beams, 2

straight cantilever, 2

Deflection produced by shear forces, 13
Distortion of a beam section under torsion, 74
Distribution of shear stresses in a beam, 59

E.

Effective polar moment of inertia, 50
Encastre beams, see Beams.

Equation of three moments, 6

Experimental investigation of torsional rigidity
of commercial sections, 52

verification of formulae for
circular- arc girder, 47

F.
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vestigation, 52

Formulae, for deflection of bow-girder,

Chapter II., 14

straight beams. 2

for shear stress in a beam under
torsion, Autenrieth, 59

for torsion of beams, St. Venant, 72

G.

Girder, box section, distribution of shear stress
in a, 70

stiffening of a, 74
circular-arc bow, Chapter II., 14

carrying concentrated
load, 18

carrying uniform load,
28

carrying uniformly
loaded platform, 34

compound, 46
effect of depression of

supports, 45

equilibrium of, 14

general principles of

design of, 73

shearing-force at any
section of a, 47

uusymmetrical load-

ing, 37
with intermediate

supports, 37
with one central

support, 37
with two symmetrical

supports, 40
semi-circular-arc bow, carrying concen-

trated load, 24

semi-circular-arc bow, carrying uniform
load, 32

semi-circular-arc bow, carrying uni-

formly loaded platform, 34
"

semi-circular-arc bow, supported by
cantilever, 45

semi-circular- arc bow, with two inter-
mediate supports, 40

semi-circular-arc bow, with three inter-
mediate supports, 43

straight, Chapter I., 1

curvature of, 2

deflection of, 2

distribution of shear stress in a,
47
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Girder, straight, equilibrium of, 1

resilience of under bending, 10

torsion, 12

H.

Hollow sections, distribution of shear stress in,
65

effect on torsional rigidity of

concrete filling, 58
torsional rigidity of, 60, 64

Horizontal shear stress in a beam, 47

I.

I sections, shear stress due to torque, 68, TO
torsional rigidity of, 57

Inertia, moments of, for various sections, 78

J.

J, effective value of, in commercial sections, 54

M.

Maximum shear stress in a beam section under

torsion, 69

Moments, bending and twisting moments in a

bow-girder, 14

end fixing moments in circular-arc

girder, 14

of inertia of various sections, 78

N.

Neutral axis, shear stress at, 59

P.

Polar, moment of inertia, relation between
actual and theoretical in commercial sections,
5-1

Principles of design of a bow-girder, 73

R.

Relation between curvature, deflection, and

slope of a beam, 1

Resilience, flexual, of beams, 10

torsional, of beams, 11

Resultant shear stress in a beam subjected to

combined bending and twisting, 69

Rigidity, torsional, of non-circular sections, 50

S.

Sections, deformation of, under torsion, 74
moments of inertia for various, 78
most suitable type, to resist torsion, 73

Shear stress due to a torque, in sections having
a continuous boundary, 60

due to a torque, in hollow sections,
65

in I sections, 68, 70
in solid polygonal

sections, 63

horizontal, in abeam under torsion,
69

in a beam, due to vertical loading,
47

under combined loading
and torsion, 69

under torsion, 69
in sections other than circular

under torsion, 60

Shearing force, at any section of a bow-girder,
70

deflection produced by, 13

St. Venant, investigations of, on the torsion of

beam sections other than circular, 51, 52

Supports, effect of sinking of supports, 7, 45

T.

Tee sections, torsional rigidity of, 57

Theorem, Castigliano's, 11

of three moments, 6

Theory of bending, 1

Torsional rigidity of non-circular sections, 50

W.

Webs, design of. in bow-girder, 75
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