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PBEFACE. 

rr^HIS  memoir  "  On  the  Sub-Mechanics  of  the  Universe "  was  com- 

municated  to  the  Royal  Society  on  February  3,  1902,  for  publication 

in  the  Philosophical  Transactions ;  it  was  read  in  abstract  before  the  Society 

on  February  13.  It  was  under  criticism  by  the  referees  of  the  Royal  Society 

some  five  months.  I  was  then  informed  by  the  Secretaries  that  it  had 

been  accepted  for  publication  in  full.  At  the  same  time  the  Secretaries 

asked  me  if  I  should  be  willing,  on  account  of  the  size  and  character 

of  the  memoir,  which  seemed  to  demand  a  separate  volume,  to  consent  to 

what  appeared  to  be  an  opportunity  of  making  a  substantial  reduction 

in  what  would  otherwise  be  the  expense.  The  Cambridge  University  Press 

had  already  published  two  volumes  of  my  Scientific  Papers  and  were  willing 

to  share  in  the  cost  of  publishing  this  as  a  separate  volume  to  range 

with  the  other  two,  special  copies  being  distributed  by  the  Royal  Society 

as  in  the  case  of  the  Philosophical  Transactions.  To  this  proposal  I 

readily  agreed. 

OSBORNE   REYNOLDS. 

January  23,  1903. 
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SECTION   I. 

INTRODUCTION. 

1.  By  this  research  it  is  shown  that  there  is  one,  and  only  one, 

conceivable  purely  mechanical  system  capable  of  accounting  for  all  the 

physical  evidence,  as   we   know  it,   in   the  Universe. 

The  system  is  neither  more  nor  less  than  an  arrangement,  of  indefinite 

extent,  of  uniform  spherical  grains  generally  in  normal  piling  so  close  that 

the  grains  cannot  change  their  neighbours,  although  continually  in  relative 

motion  with  each  other ;  the  grains  being  of  changeless  shape  and  size ;  thus 

constituting,  to  a  first  approximation,  an  elastic  medium  with  six  axes  of 
elasticity  symmetrically  placed. 

The  diameter  of  a  grain,  in  C.G.s.  units,  is 

5-534  x  10-18  =  a. 

The  mean  relative  velocities  of  the  grains  are 

6-777  x  10  =  a". 

The  mean  path  of  the  grains  is 

8-012  x  10-28  =  \. 

These  three  quantities  completely  define  the  state  of  the  medium  in 

spaces  where  the  piling  is  normal ;  they  also  define  the  mean  density  of 

the  medium  as  compared  with  the  density  of  water  as 

io4  =  22a 

The  mean  pressure  in  the  medium,  equal  in  all  directions,  is 

1-172  xl014=p. 

The  coefficient  of  the  transverse  elasticity  resulting  from  the  gearing  of 

the  grains,  where  the  piling  is  normal,  is 

9-03  x  1024  =  n. 

The  rate  of  propagation  of  the  transverse  wave  is 

3-004  x  1010=t  or  \Tnfp. 
R.  1 
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The  rate  of  propagation  of  the  normal  wave  is 

7-161  x  1010=  2-387  x  r. 

The  rate  of  degradation  of  the  transverse  waves,  i.e.  the  dissipation 

resulting  from  the  angular  redistribution  of  the  energy,  or  viscosity,  is 

5-603  x  10-16  =  tt 

or  such  as  would  require  fifty-six  million  years  to  reduce  the  total  energy  in 

the  wave  in  the  ratio  1/e*3,  or  to  one-eighth ;  thus  accounting,  by  mechanical 
considerations,  for  the  blackness  of  the  sky  on  a  clear  dark  night ;  while  the 

degradation  of  the  normal  wave,  i.e.  the  dissipation  resulting  from  the  linear 
redistribution  of  energy,  is  such  that  the  initial  energy  would  be  reduced 

to  one-eighth  in  the  (3-923  x  10_6)th  part  of  a  second,  or  before  it  had 
traversed  2200  metres  ;  and  thus  would  account  by  mechanical  considerations 

for  the  absence  of  any  physical  evidence  of  normal  waves,  except  such 

evidence  as  might  be  obtained  within  some  metres  of  the  origin  of  the 
wave ;  as  in  the  case  of  Rontgen  rays. 

2.  In  spaces  in  which  there  are  local  inequalities  in  the  medium  about 

local  centres,  owing  to  the  absence  or  presence  of  a  number  of  grains,  in 

deficiency  or  excess  of  the  number  necessary  to  render  the  piling  normal, 
such  local  inequalities  are  permanent ;  and  are  attended  with  inward  or 

outward  displacements  and  strains,  as  the  case  may  be,  extending  indefinitely 
throughout  the  medium,  causing  dilatation  equal  everywhere  to  the  strains 

but  of  opposite  sign,  i.e.  dilatation  equal  to  the  volume  of  the  grains,  the 

presence  or  absence  of  which  cause  the  inequality. 

When  the  arrangement  of  the  grains  about  the  centres  is  that  of  a  nucleus 

of  grains  in  normal  piling  on  which  grains  in  the  strained  normal  piling  rest, 
the  nucleus  in  normal  piling  cannot  gear  with  the  grains  outside,  in  strained 
normal  piling;  so  that  there  is  a  singular  surface  of  misfit  between  the 

nucleus  and  the  grains  in  strained  normal  piling. 

Such  singular  surfaces  are  surfaces  of  weakness  and  may  be  surfaces  of 

freedom  or  surfaces  of  limited  stability  with  the  neighbouring  grains. 

These  singular  surfaces,  when  their  limited  stability  is  overcome,  are  free 

to  maintain  their  motion  through  the  medium,  by  a  process  of  propagation, 

in  any  direction ;  the  number  of  grains  entering  the  surface  on  the  one  side 
being  exactly  the  same  as  the  number  leaving  on  the  other  side;  so  that 

when  the  inequalities  are  the  result  of  the  absence  of  grains  they  correspond 
to  the  molecules  of  matter. 

If  the  singular  surface  of  a  negative  inequality  is  propagating  through 
a   medium  which    is  at   rest,  the  grains  forming  the  nucleus  will  have  no 
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motion,  whatever  may  be  the  motion  of  the  singular  surface  :  but  the  strained 

normal  piling,  which  surrounds  the  singular  surface  and  moves  by  propa- 
gation with  the  singular  surface,  being  of  less  density  than  the  mean  density 

of  the  medium,  represents  a  displacement  of  the  negative  mass  of  the 

inequality,  i.e.  of  the  grains  absent.  And  in  whatever  direction  the  singular 

surface  is  propagated  the  motion  of  the  medium  outside  is  such  as  represents 
equal  and  opposite  momentum ;  as  when  a  bubble  is  rising  in  water. 

In  exactly  the  same  way,  for  inequalities  resulting  from  an  excess  of 

grains,  the  momentum  resulting  from  the  displacement  of  the  medium 

would  be  positive. 

The  principal  stresses  in  the  medium  outside  the  singular  surface  of 

a  negative  inequality  are  to  a  first  approximation  two  equal  tangential 
pressures  equal  in  all  directions ; 

Pt=§P> 

and  a  normal  pressure  pr  =  §  p, 

the  mean  of  these  pressures  being  everywhere  the  mean  pressure  of  the 

medium  p  equal  in  all  directions. 

Efforts,  proportional  to  the  inverse  square  of  the  distance,  to  cause  two 

negative  inequalities  at  finite  distances  to  approach  are  the  result  of  those 

components  of  the  dilatation  (taken  to  a  first  approximation  only)  which 

are  caused  by  the  variation  of  those  components  of  the  inward  strain  which 

cause  curvature  in  the  normal  piling  of  the  medium.  The  other  components 

of  the  strain  being  parallel,  distortions  which  satisfy  the  condition  of 

geometrical  similarity  do  not  affect  the  effort.  If  the  grains  were  inde- 
finitely small  there  would  be  no  effort.  Thus  the  diameter  of  a  grain  is 

the  parameter  of  the  effort ;  and  multiplying  this  diameter  by  the  curvature 

of  the  medium  and  again  by  the  mean  pressure  of  the  medium  the  product 
measures  the  intensity  of  the  effort. 

The  dilatation  diminishes  as  the  centres  of  the  negative  inequalities 

approach,  and  work  is  done  by  the  pressure  in  the  medium,  outside  the 

singular  surfaces,  to  bring  the  negative  inequalities  together. 

The  efforts  to  cause  the  negative  inequalities  to  approach  correspond, 

exactly,  to  gravitation,  if  matter  represents  negative  mass. 

Taking  the  mean  density  of  the  earth  as  —  5'67,  as  compared  with  water 
(-1), 

the  reciprocal  of  the  density  of  the  medium  being  TO-4, 
the  mean  pressure  of  the  medium     1172  x  1014, 

a  the  diameter  of  the  grain  5'534  x  10-18, 
the  mean  radius  of  the  earth  (v3709  x  108; 

1—2 
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the  effort  to  cause  approach  between  the  earth  and  a  unit  of  matter  on  the 

surface  (-  1)  is  the  product  of  these  quantities  multiplied  by  47r/3,  or 

pa  x  10-4  x  f  7T  x  567  x  6"3709  x  108  =  981  x  102. 

The  inversion  is  thus  complete.  Matter  is  an  absence  of  mass,  and  the 

effort  to  bring  the  negative  inequalities  together  is  also  an  effort  on  the  mass 

to  recede.  And  since  the  actions  are  those  of  positive  pressure  there  is  no 

attraction  involved ;  the  efforts  being  the  result  of  the  virtual  diminution  of 

the  pressure  inwards. 

3.  If  instead  of  the  negative  inequalities,  as  in  the  last  article,  the 

inequalities  are  positive,  the  efforts  would  be  reversed,  tending  to  separate 

the  positive  inequalities,  and  the  analysis  would  be  the  same,  except  that  the 

curvature  would  be  negative.  And  it  is  important  to  notice  that  if  such 

positive  inequalities  exist,  the  fact  that  they  repel  each  other — i.e.  they  would 

tend  to  scatter  through  space — together  with  the  evidence  that  the  number 
of  inequalities  either  positive  or  negative  occupy  an  indefinitely  small  space 

as  compared  to  the  total  volume  of  the  medium,  places  any  importance  such 

positive  inequalities  might  have  on  a  footing  of  indefinitely  less  importance 

than  that  of  the  negative  inequalities  which  are  caused  to  accumulate  by 

gravitation ;  and  thus  we  have  an  explanation  of  the  lack  of  evidence  of  any 

positive  inequalities,  even  if  such  exist. 

4.  Besides  the  positive  and  negative  inequalities  there  is  another 

inequality  which  may  be  easily  conceived,  and — this  is  of  fundamental  im- 

portance— whatever  may  be  the  cause,  it  is  possible  to  conceive  that  a 
number  of  grains  may  be  removed  from  some  position  in  the  otherwise 

uniform  medium,  to  another  position.  Thus  instituting  a  complex  in- 

equality, as  between  two  inequalities,  one  positive  and  the  other  negative ; 

the  number  of  grains  in  excess  in  the  one  being  exactly  the  same  as  the 
number  deficient  in  the  other. 

The  complex  inequalities  differ  fundamentally  from  the  gravitating 

inequalities,  inasmuch  as  the  former  involve  an  absolute  displacement  of 

mass  while  the  latter  have  no  effect  on  the  mean  position  of  the  mass 

in  the  medium  ;  and  in  respect  of  involving  absolute  displacement  of  mass 

the  complex  inequalities  correspond  with  electricity. 

Apart  from  the  displacement  of  mass  the  complex  inequalities  differ 

from  the  gravitating  inequalities.  In  the  complex  inequalities  the  para- 
meter of  the  dilatation  is  not  the  diameter  of  a  grain  but  one  half  the 

linear  dimension  of  the  volume  occupied  by  the  grains  displaced,  taken 

as  spherical. 

The  effort  to  revert  in  the  case  of  the  complex  inequality  is  the  product 

of  the   (ncssure   multiplied  by  the  product  of  the  volumes  of  the   positive 
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and  negative  inequalities  and  again  by  the  parameter  r0.  This  is  ex- 
pressed when  the  positive  and  negative  inequalities  are  at  finite  distance 

apart  by 

R  being  essentially  negative  and  the  dimensions  of  the  effort  (—  R)  are 

ndt~2  which  express  an  effort  to  the  displacement  of  mass. 

The  complex  inequality  which  corresponds  to  the  separation  of  the 

positive  and  negative  inequalities  is  one  displacement,  not  two.  This 

fact  admits  of  no  question  and  might  have  been  recognised  long  ago  had 

it  not  been  for  the  general  assumption  that  positive  electricity  repels 

positive  electricity,  the  fact  being  that  the  apparent  repulsion  of  the  positive 

electricities  is  the  result  of  their  respective  efforts  to  approach  their  re- 
spective negative  inequalities.  By  the  assumption  it  became  apparently 

possible  to  express  the  potential  V,  and  the  electricity  q  as  rational  quantities, 

when,  as  it  now  appears,  the  potential  V  and  the  electricity  q  are  re- 

spectively —  ( —  e2)*  -  and  (—  e2)*,  which  are  both  irrational.  Their  product 

being  the  rational  quantity 

e3 r  ' 
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and  the  mechanical  explanation  of  these  is, 

p[-a)  ro\z-  -p[-»    r°7\=-2> 

2  U 

and  for  the  effort  to  revert,  we  have 

Then   for  the  electrostatic  unit  we  have,  since  r  =  1,  ami  22  =  — 1, 

'fir)**-1- 
and  from   the  known   value   of  p   the  number  of  grains  displaced   through 

unit  distance  necessary  to  cause  the  unit  effort  is 

1-615  x  1045, 

and  r0  =  (y493x  10-3,  from  which  we  have  the  ratio  of  the  effort  to  reinstate 
the   normal  piling,  to   the  effort  of  gravitation,  from  the  same  number  of 
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grains  absent  in  each  inequality  as  are  displaced  in  the  complex  inequality, 
the  distances  being  the  same, 

1-2  x  1015, 

so  that  the  effort  of  attraction  between  two  inequalities,  the  grains  absent 

about  each  of  which  is  the  same  as  the  grains  displaced  in  instituting  the 

complex  inequality,  is  eighty-one  thousand  billions  less  than  that  of  the 
electric  effort. 

5.  Cohesion  between  the  singular  surfaces  of  the  negative  inequalities 

results  from  the  terms  which  were  not  taken  into  account  in  the  first  approxi- 
mation which  correspond  to  gravitation.  These  secondary  terms  involve 

the  inverse  distance  to  the  sixth  power,  and  therefore  have  a  very  short 

range,  and  so  correspond  to  efforts  of  cohesion  of  the  singular  surfaces  as 
well  as  surface  tensions  having  no  effect  unless  the  singular  surfaces,  or 

molecules,  are  within  a  distance  very  small  compared  with  the  diameter 

of  the  singular  surface. 

6.  Transverse  undulations  in  the  medium,  corresponding  to  the  waves 

of  light,  are  instituted  by  the  disruptive  reversion  of  the  complex  in- 
equalities. The  recoil  sets  up  a  vibration  which  is  exhausted  in  initiating 

light. 

7.  Thus  far  the  sketch  of  the  results  has  included  only  those  for  which 

there  exists  sufficient  evidence  to  admit  of  definite  quantitative  analysis. 

Nevertheless  these  quantitative  results  show  that  the  granular  medium, 

as  already  defined,  accounts  by  purely  mechanical  considerations  for  the 
evidence,  and  affords  the  only  purely  mechanical  explanation  possible.  If 
then  the  substructure  of  the  universe  is  mechanical,  all  the  evidence,  not 

already  adduced,  is  such  as  may  be  accounted  for  by  an  extension  of  the 
analysis,  and  this  is  found  to  be  the  case. 

The  results  of  the  further  analysis  afford  proof: — 

Of  the   existence   of  coincidence  between  the  periods  of  vibration  of 

the  molecules  and  the  periods  of  the  waves ; 

that  dissociation  of  compound  molecules  proves  the  previous  state  to 
have  been  one  of  limited  stability ; 

that  the  reassociation  of  compound  molecules  results  from  the  reversion 
of  complex  molecules; 

of  the  absorption  of  the  energy  of  light  by  inequalities ; 

that  negative  inequalities  affect  the  waves  passing  through  ; 
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that  refraction  is  caused  by  the  vibration  of  inequalities  having  the 
same  periods  as  the  waves ; 

that  dispersion  results  from  the  greater  number  of  coincidences   as 

the  waves  get  shorter  ; 

that  the  polarization  by  reflection  is  caused  only  by  that  component 

of  the  transverse  motion  in  the  medium  which  is  in  the  plane  of 

incidence  and  results  from  the  passage  of  the  light  from  a  space 

without,  or  with  few,  inequalities,  through  a  surface  into  a  space 
in  which  there  are  more  inequalities ; 

that  the  metallic  reflection  results  from  the  relative  smallness  of  the 

dimensions  of  the  molecules  compared  with  the  length  of  the 

wave  and  the  closeness  of  their  piling  when  the  waves  pass  from 

a  space  without  inequalities  across  the  surface  beyond  which  the 

inequalities  are  in  closest  order  ; 

that  the  aberration  of  light  results  from  the  absence  of  any  appreciable 
resistance  to  the  motion  of  the  medium  when  passing  through 
matter. 

8.  It  may  be  somewhat  out  of  the  usual  course  to  describe  the  results 

of  a  research  before  any  account  has  been  given  of  the  method  by  which 
these  results  have  been  obtained ;  but  in  this  case  the  foregoing  sketch 

of  the  purely  mechanical  explanation  of  the  physical  evidence  in  the  universe 

by  the  granular  medium  has  seemed  the  only  introduction  possible,  and 

even  so  it  is  not  with  any  idea  that  this  introduction  can  afford  any  pre- 
liminary insight  as  to  the  methods  by  which  these  results  have  been 

obtained. 

Certain  steps,  as  it  now  appears,  were  taken  for  objects  quite  apart 

from  any  idea  that  they  would  be  steps  towards  the  mechanical  solution 

of  the  problem   of  the  universe. 

The  first  of  these  steps  was  taken  with  the  object  of  finding  a  mechanical 

explanation  of  the  sudden  change  in  the  rate  of  flow  of  the  gas  in  the  tube 

of  a  boiler  when  the  velocity  reached  a  certain  limit — perhaps  this  would 

be  better  described  as  a  step  towards  a  step*. 

The  second  step  was  the  discovery  of  the  thermal  transpiration  of 

gas  together  with  the  analytical  proof  of  the  dimensional  properties  of 
matter  f. 

The  third  step  was  the  discovery  of  the  criterion  of  the  two  manners 
of  motion  of  fluids^:. 

*  Manchester  Lit.  and  Phil.  Soc.  1874 — 5,  p.  7. 
t  Royal  Soc.  Phil.  Trans.   1879. 

t  Royal  Soc.   Phil.  Trans.  1883. 
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And  it  was  only  on  taking  the  fourth  step,  namely,  the  study  of  the 
action  of  sand,  which  revealed  dilatancy  as  the  ruling  property  of  all 

granular  media*,  which  directed  attention  to  the  possibility  of  a  mechanical 
explanation  of  gravitation.  In  spite  of  the  apparent  possibility,  all  attempts 
to  effect  the  necessary  analysis  failed  at  the  time. 

There  was  however  a  fifth  step ;  the  effecting  of  the  analysis  for  viscous 
fluids,  and  the  determination  of  the  criterion!,  which  led  to  the  recognition 

of  the  possibility  of  the  analytical  separation  of  the  general  motion  of  a 
fluid  into  mean  varying  motion,  displacing  momentum,  and  relative  motion; 

and  this  suggested  the  possibility  that  the  medium  of  space  might  be 

granular,  the  grains  being  in  relative  motion  and  at  the  same  time  being 

subject  to  varying  mean  motion.  And  this  has  proved  to  be  the  case. 
At  the  same  time  it  became  evident  that  it  was  not  to  be  attacked  by 

any  method  short  of  the  general  equations  of  a  conservative  system  starting 
from  the  very  first  principles ;  and  it  is  from  such  study  that  this  purely 
mechanical  account  of  the  physical  evidence  has  been  obtained. 

*  Phil.  Mag.  1885. 

+  Royal  Soc.  Phil.  Trans.  18D5,  a. 



SECTION   II. 

THE   GENERAL   EQUATIONS   OF   MOTION   OF   ANY    ENTITY. 

9.  Axiom  I.  Any  change  whatsoever  in  the  quantity  of  any  entity  within 
a  closed  surface  can  only  be  effected  in  one  or  other  of  two  distinct  ways : 

(1)  it  may  be  effected  by  the  production  or  destruction  of  the  entity 
within  the  surface,  or 

(2)  by  the  passage  of  the  entity  across  the  surface. 

To  express  this  general  axiom  in  symbols  I  put ; — Q  for  the  quantity 
required  to  occupy  unit  volume,  as  an  indefinitely  small  element  of  volume, 

SS,  at  any  point  within  the  surface  is  occupied.  Q  is  thus  the  density  of  the 

entity  at  the  point,  and  however  it  may  vary  from  point  to  point  is  a  single 
valued  function  of  the  position  of  the  point : 

2  {QSS)=  1 1  \Qdxdydz  is  put  for  the  quantity  within  a  space  S  enclosed 

by  the  surface  s  at  the  instant  considered, 

2  (oQ&M)  is  the  quantity  enclosed  at  a  previous  instant. 

X(pQS8)  is  the  quantity  which  has  been  produced  within  5  during  the 
interval,  and 

2  (CQSS)  is  the  quantity  which  has  crossed  the  surface  inwards  during 
the  interval. 

Then  2  (QBS)  =  2  (0QSS)  +  2  (PQBS)  +  2  (eQBS) 

is  a  complete  expression  for  the  Axiom. 

Using  8  [    I  to  express  any  change  effected  in  the  time  St  this  may  be 
written 

S[2(QS5)]  =  S[S(i,QS^)]  +  S[2(cQ8/S)]   (1). 

And  this  equation  (1)  is  the  general  equation  of  motion  of  any  entity  as 
founded  on  Axiom  (I.). 

10.     General  equation  of  Continuity. 

Axiom  II.     When  the  entity  considered  is  some  particular  form  or  mode 

of  an   entity   which,  like    matter,  momentum,   or   energy,    can    neither    be 
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produced  or  destroyed,  any  production  or  destruction  of  a  particular  form  of 
the  entity  at  a  particular  place  and  instant  of  time  involves  the  destruction 

or  production,  at  the  same  place  and  time,  of  an  equal  quantity  of  the  same 
entity  in  some  other  form  or  mode. 

To  express  this  in  symbols  let  Q  refer  to  the  general  entity  without 
distinction  of  form  or  mode  and  Q1}  Q2,  &c.  respectively  refer  to  the  several 

particular  forms  or  modes  of  the  entity. 

Then  since 

8[%(pQ8Sy\  =  0, 

8[X(pQ18S)]  =  -8[X{pQ28S  +  &c.)]   (2), 

which  is  a  general  expression  for  the  law  of  conservation,  and  is  the  general 

equation  of  continuity  in  terms  of  the  several  distinct  actions  of  exchange 
between  the  different  modes  of  the  entity. 

11.  Transformation  of  the  Equations  of  Motion  and  continuity  for  a 
steady  surface. 

Equations  (1)  and  (2)  hold  however  large  or  small  the  space  S  and  the 

interval  8t  may  be  and  whatever  may  be  the  motion  of  the  surface  s  enclosing 
the  space  $ ;  for  the  8  covers  the  X  (   ). 

If  however  the  surface  s  be  steady  or  fixed  in  space  the  8  may  be  covered 
by  the  X(  )  and  the  equations  written 

X[8(Q8S)]  =  X[8(PQ8S)]  +  X[8(CQ8S)]      (3), 

S[S(3,Q1^)]  =  -S[a(i,Q28^f  +  r)]   (4). 

-Since  these  equations  hold  for  indefinitely  small  spaces  and  indefinitely 

small  intervals  of  time  in  the  limit,  when  dx,  dy,  dz  and  dt  are  severally 
zero : — 

X(Q8S)  =  Qdxdydz   (5), 

and  X[8(Q8S)]=~(Q)dtdxdydz    (6). 

In  cases  where  Q  is  not  a  continuous  function  of  t  the  meaning  of  such 
differential  coefficients  as  that  in  the  right  member  of  equation  (6)  become 
unintelligible  without  further  definition,  and  it  seems  desirable  here  to  point 
out,  once  for  all,  in  what  sense  they  are  used  in  this  paper. 

VL.     Discontinuity. 

If  Q  is  any  function  of  xyz  and  t,  which  is  single  valued  at  every  point  of 
space  at  every  instant,  but  which  at  a  particular  time  t  is  discontinuous  at  a 
surface  which  is  expressed  by 

</>  =  (/>  (x,  y,  z,  t)  =  0. 



13]  THE    GENERAL    EQUATIONS    OF    MOTION    OF    ANY    ENTITY.  11 

Where  (f>  has  positive  values  on  one  side  of  the  surface  and  negative 

values  on  the  other,  then  putting  Qi  for  the  continuously  varying  value  of 

Q  where  (/>  is  negative  and  Q.,  for  Q  where  <f>  is  positive,  Q  is  at  all  times 
expressed  by  the  limiting  value  of  the  function 

F_Qi  +  Q
3en* when  n  is  infinite*. 

For  any  finite  value  of  n  F  is  a  continuous  function  of  the  variables,  as 

are  also  the  derivatives  of  F;  and  substituting  F  for  Q,  the  limiting  values, 

when  n  is  infinite,  of  any  functions  derived  from  F  by  any  mathematical 

process  are  taken  as  the  values  of  the  function  expressed  by  the  same  mathe- 
matical process  performed  on  Qf. 

13.  Having  regard  to  the  foregoing  definition  of  the  interpretation  to 

be  put  upon  the  meaning  of  the  differential  coefficients  in  cases  of  discon- 
tinuity, the  expressions  obtained  by  equations  (5)  and  (6)  for  the  rates  of 

convection  into  and  production  in  such  indefinitely  small  spaces  may  be 
treated  as  continuous  functions  of  the  coordinates. 

Thus  taking  u,  v,  w  for  the  component  velocities  of  the  entity,  to  which 

Q  refers,  passing  a  point  x,  y,  z,  relative  to  the  surface  of  the  elementary 

space  dxdydz  at  rest  or  in  steady  motion,  since  u,  v,  w  are  single  valued  at 
each  point  at  any  instant  of  time  the  convection  into  the  space  in  the 
interval  dt  is  expressed  by 

dt  j%  (CQ)  dxdydz  =  -  dt  W  ( >Q)  +  j-  (vQ)  +  ̂ -  (wQ)\  dxdydz ' 
or  at  a  point  the  rate  of  change  by  convection  is 

t  n  =  -  \d  (uQ)  +  d  M)  +  d  (vQ)\ 
dtc  \    dx  dy  dz     \ 

•V), 

*  Electricity  and  Magnetism,  Maxwell,  §  8. 
+  Electricity  and  Magnetism,  Maxwell  §  8. 

dQi  ,  ̂Qa  .mi, 

dF  _   dt        dt,  _n(Ql-  Q2)  <**  d<f> 

dt  ~        l  +  c^  (l  +  e11^)2       dt  ' 
„  ,  .  .     .  ,  .  .-.-xi  •  L.      dF     (JO,        .  .  ...      dF     dQn 
h  rom  which,  taking  n  mfanite,  when  <f>  is  negative  —  =  -y-  ,   when  <b  is  positive  — -  —  —^ dt        dt  dt        dt 

and  when  <£  =  0 

dt  (l  +  e"*)a 

which  is  infinite,  but  which,  integrated,  from  <j>  negative  to  <p  positive  over  an  interval  dt,  indefi- 
nitely small,  gives 

/ 

JE1 

dF  *  =  «.-«!■ 
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whence  substituting  in  equations  (1)  and  (2)  for  the  indefinitely  small 
element  dxdydz  and  the  indefinitely  small  interval  of  time  dt,  these 

become : — 

dt  ̂  dxdydz  =  dt  j!  (PQ)  -  ̂  (uQ)  -  ±  (vQ)  -  ~  (wQ)\  dxdydz   (8), 

dt  -j-  (jjQi)  dxdydz  =  —  dt  \  -r  (PQ2  -\-  &c.)[  dxdydz     (9), 

or  at  a  point  the  rate  of  change  is 

d 
dt 

^(/«=-l(pft+&=-)   (II). 

Equation  (10)  expresses  the  rate  of  change  in  the  density  Q  at  a  point  in 
terms  of  the  densities  of  the  actions  of  production  and  convection  at  that 

point.  While  equation  (11)  expresses  the  relation  which  holds  between  the 
densities  of  the  several  actions  of  exchange  between  the  different  modes 
of  Q. 

14.     Moving  Surface. 

In  the  equations  (5)  to  (11)  the  surfaces  of  the  element  of  space  (SS  or 
dxdydz)  are  steady,  and  in  equations  (3)  and  (4)  the  closed  surface  over 

which  the  summation  is  taken  is  also  steady — the  8  being  covered  by  the  5. 

If,  however,  the  motion  of  every  point  of  the  surface  be  taken  into  account 

it  is  possible  to  sum  the  results  of  equations  (7),  (8),  (9)  over  the  space 
enclosed  by  a  surface  in  any  manner  of  continuous  motion. 

Putting  u,  v,  w  for  the  component  velocities  of  the  surface  at  the  point 

x,  y,  z,  then  the  component  motions  of  the  entity  represented  by  Q  relative 
to  the  surface  at  this  point  are  respectively 

U—U,      V  —  V,      w  —  w, 

and  although  a,  v,  w  are  only  defined  at  the  surface,  since  the  motion  of  this 

surface  is  continuous,  u,  v,  w  may  be  taken  as  continuous  function  of  x,  y,  z 
throughout  the  enclosed  space.  Then  the  rate  of  convection  across  the 
surface  is  expressed  by 

i 2  «w> = -jjj{i  K-  -  u)  <a+ 1 K.  -  v)  Q] 
d                        ) 

+        [(w  -  w)  Q]  J  dxdydz   (12). 
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The  instantaneous  rate  of  production  within  the  surface  is  not  altered  by 

the  continuous  motion  of  the  surface.     Therefore  equation  (1)  becomes 

-  am  k«  -  *> « + 1  k-  *) « + a  k-  - »)  «i  •  •  -<is>' 
and  integrating  equation  (10)  over  the  surface,  the  rate  of  change  in  the  space 

instantaneously  enclosed  as  by  a  fixed  surface  is 

susf uiSM 
at 

-  l\l{i  «> + 1  <•« +  a  (w«>} *•**   (14) ; 
whence  substituting  in  equation  (13)  for 

from  equation  (14), 

+///{s(''(3)+<|(5<2)+a(rae)}&rfy^   (15)- 
or  as  it  may  be  written 

|p(«as)]-s{«(|+s^  +  sJ+w^)o 

+«U+^+&)[   0<i)- 



SECTION    III. 

THE   GENERAL   EQUATIONS   OF   MOTION,    IN    A    PURELY- 
MECHANICAL-MEDIUM,    OF   MASS,    MOMENTUM    AND   ENERGY. 

15.  These  equations  are  obtained  by  taking  Q  in  equations  (1)  to  (16)  to 

refer  successively  to  the  density  of  mass,  the  density  of  the  component,  in 

a  particular  direction,  of  the  momentum,  and  the  density  of  the  energy. 

The  forms  of  the  equations  so  obtained,  as  well  as  the  circumstances  to 

which  they  are  applicable,  depend  on  the  definition  given,  respectively,  to  the 
three  entities. 

If  this  definition  is  limited,  strictly,  to  that  afforded  by  the  laws  of  motion 

as  distinct  from  any  physical  or  kinematical  properties  of  matter,  the  equations 

will  be  the  most  general  possible  and  applicable  to  all  mechanical  systems. 

In  which  case  by  introducing  separately  and  step  by  step  farther  definition 
of  the  entities  the  effect  of  each  such  definition  on  the  form  of  the  equations 

and  of  the  expressions  for  the  resulting  actions,  to  be  obtained  by  integration 

of  the  equations,  will  be  apparent ;  so  that  the  individual  effects  of  the  several 

particular  physical  properties  of  matter  may  be  analysed.  While  on  the  other 
hand  if  the  definition  is,  in  the  first  instance,  such  as  that  on  which  the 

equations  of  motion  for  fluids  and  elastic  solids  have  been  founded  the 

equations  so  obtained  will  be  essentially  the  same.  And,  although  the 

significance  of  the  several  expressions  in  the  equations  as  relating  to  accu- 
mulation, convection  and  production  will  be  more  clearly  brought  out  they 

will  afford  no  opportunity  of  analysing  the  several  effects  resulting  from 
particular  physical  definition. 

In  this  investigation  the  object  sought,  in  the  first  instance,  has  been  to 

render  the  equations  the  most  general  possible.  Only  introducing  restrictive 
definition  where  the  effect,  of  such  definition,  on  the  form  of  the  expressions 

which  enter  into  the  equations  and  define  the  limiting  circumstances  to 
which  the  equations  are  applicable,  becomes  clearly  defined. 

16.  A  mechanical-system  implies  the  existence,  in  the  space  occupied  by 
the  system,  of  an  entity  which  possesses  properties  which  distinguish  the 
space  so  occupied  from  that  which  is  unoccupied.  If  this  entity  includes 

everything  that  can  occupy  space,  within  the  space  occupied  by  the  system, 

it  is  the  mechanical-medium  in  which  the  system  exists. 
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The  sense  in  which  mechanical-medium  is  here  used  is  not  that  in  which 

the  term  '  medium '  or  '  medium  of  space '  is  generally  used  in  mechanical- 

philosophy,  nor  yet  that  for  which  "matter"  is  used.  For  although  that 
which  is  recognised  as  matter  is  the  only  entity  included  in  the  equations  of 
motion  which  has  the  property  of  occupying  position  in  space,  it  is  found 

necessary  in  order  to  account  for  experience  to  attribute  to  matter  properties 
extending  through  spaces  which  are  not  occupied  by  matter,  and  to  reconcile 
such  extension  with  the  absence  of  any  mechanical  properties  as  belonging  to 

space  itself  it  has  been  recognised  that  there  exists  in  space  some  other 

entity,  besides  matter,  which  has  the  property  of  occupying  position  and  is 

recognised  in  mechanical  philsophy  as  the  medium  of  space  or  the  ether. 

To  the  ether  are  attributed  such  mechanical  properties,  whatsoever  these 

may  be,  as  are  necessary  to  account  for  the  observed  properties  of  matter  which 
are  not  defined  by  implication  in  the  laws  of  motion,  as  well  as  to  account 

for  all  the  properties  extending  outside  the  space  occupied  by  the  matter. 
This  amounts  to  an  admission  that  these  physical  or  extended  properties  are 

not  inherent  in  the  matter  nor  yet  in  the  ether,  or  in  other  words  that  they 

are  not  the  properties  of  the  entity  which  occupies  position  in  space,  but  are 

the  consequence  of  the  mechanical  actions  and  of  the  arrangement  of  the 
mechanical  system  of  the  Universe. 

If  then  everything  that  occupies  position  in  space  is  included  by  definition 

in  the  mechanical-medium,  experience  affords  no  reason  for  attributing  to 
such  medium  inherent  properties  other  than  those  required  by  the  laws  of 

motion  and  the  law  of  conservation  of  energy,  and  so  defined,  the  medium  is 

here  designated  a  Purely -Mechanical-Medium. 

17.  The  properties  of  a  purely -mechanical-medium  necessitated  by  the 
laws  of  motion  are 

(1)  The  property  of  occupying' definite  position  in  space; 
(2)  The  continuity  or  continuance  in  space  and  time  ; 

(3)  The    property  of  definite    capacity   for    momentum,   i.e.  definite 
mass ; 

(4)  The    property   of  receiving   and    communicating    momentum    in 
accordance  with  the  laws  of  conservation  of  momentum  and  energy. 

Since  the  mass  of  any  particular  portion  of  the  medium  measures  the 
quantity  of  that  portion  of  the  medium  and  has  identically  the  same  position 

in  space  as  that  portion  of  the  medium,  this  mass  is  identified  with  the 

particular  portion  of  the  medium.  The  density  of  the  mass  at  every  point 
in  space  is  thus  a  measure  of  the  density  of  the  medium  at  every  point ;  and 

the  equations  of  motion  and  continuance  in  time  and  space  of  the  mass  are 
the  equations  of  motion  and  continuance  of  the  medium. 
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18.  The  equations  of  continuity  of  mass. 

Putting  P&S 

for  the  capacity  for  momentum  or  mass  in  the  indefinitely  small  space  8S 

and  substituting  p  for  Q  in  equation  (2)  the  equation  for  conservation  of 
mass  becomes 

S[Z(pP83)]  =  0    (17); 

and  by  equations  (1)  and  (17)  the  equation  of  motion  of  mass  becomes 

S[Z(P88)]  =  S[Z(ePSS)]   (18). 

Whence  for  the  indefinitely  small  element  of  space  dxdydz  and  the  inde- 

finitely small  interval  of  time  dt  it  follows  by  equations  (7)  that 

dp  +  djm  +  dpv  +  dpw  =  Q  ^. 
dt       dx        dy        dz 

which  is  the  general  equation  for  density  of  mass  or  medium  at  a  point. 

19.  Position  of  mass. 

Taking  x,  y,  z~&s  defining  the  position  of  the  indefinitely  small  steady 

space  8s,  and  putting  px,  py,  pz  successively  for  Q  in  equation  (2),  the  equa- 
tions for  the  conservation  of  the  position  of  the  mass  become  respectively 

$[8{p(px)8s}]  =  0,     2[8Uf>y)<fe}]  =  0,     t[S{p(pz)ds}]  =  0...(20). 

The  equations  for  the  rate  of  change  of  position  of  the  mass  within 

space  over  which  the  summation  extends,  become  by  equations  (1)  and 
(20) 

8[S(par&)]  =  8[2{c(/M08s}],  &c.,  &c   (21). 

Since  x,  y,  z  are  not  functions  of  the  time,  it  follows  by  equation  (19), 

if  .'•,  y,  z  define  the  position  of  the  centre  of  gravity  of  the  mass  in  the 
steady  space  over  which  the  summation  is  taken,  that 

dx      \\\{X  ~  *>  ( Ifc  +  ̂  +  ddz)  dxdydZ °±J21   V     ,,•    ,    ,    ,    ,  &c.,&c   (22). 
dt  (Up  dxdydz  v     ' 

For  in  a  fixed  space, < 

Also  ^2  (pds)  =  - ///(d£l  +&o.)  dxdydz. 
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For  a  space  moving  with  the  mass  by  (15) 

~  2  [(p»)  &]  =  2 dt 

+  X  [{dx  {pXU)  +  Ty  <*"»>  +  Jz  (PXW)}  8S 
.(22a). 

whence  since  x  is  not  a  function  of  t, 

( p  -tt  8s  j  =  2  (puSs),  &c,  &c. 

20.  Before  proceeding  to  the  consideration  of  momentum  and  energy 

it  will  be  found  convenient  to  express  certain  general  mathematical  relations 
between  the  various  expressions  which  enter  into  the  equations  for  quantities 
into  which  p  enters  as  a  linear  factor. 

When  Q  is  put  for  pq,  where  q  is  a  factor  which  has  only  one  value  at 

each  instant  for  each  point  in  mass,  but  which  value  for  the  point  in  mass 
is  a  function  of  the  time,  then  the  derivatives  of  discontinuous  functions 

having  the  meaning  ascribed  in  Art.   12, 

d(pQ)  _„d(pp)  t  ̂ d(pq) 
dt '"A     +' 

dt 
.(23). 

And  since  by  equation  (17) d(pp) 

dt 

=  0, 

d(pQ)  __     d  (pq) 

=  P 

dt 
.(24). 

Also 

and 

dt 

dQ  _    dp        dq 
dt'~qdt+pdt  ' 

d (eQ)         (d  ,  d  .      s      d 

~dT=~  \dx{pUq)  +  dy  <™>  +  dz  {m) 

•(25); 

=  -q{^  +  &C]-p{u^C]       j 
whence  subtracting  and  having  regard  to  equation  (19) 

dQ      d(cQ)         jdq         dqM„ 

therefore  by  equation  (8) 

d(pQ)  =  n  jdq dt 

.(26). 

dq      „ 

=p\dt  +  udx+&c 
Again,  if  Q  =  pq  =  pq1q2  and  Qx  =  pqu  Q1=pq2,  by  equations  (26), 

+  &c.l  ) d(pQ)  _     frfgiga  ,      dq,q, 

dt      ~P\   dt    +  U~dx~ 

=  P 

(h 

<%* , .. d&  ,  ̂ L«  idy±±o,d2i  +  ,^c  V dt 4  v  ̂ 2  +  foe  \  4-  a    Pl  +  M^+  &c  <- 
+  U  dx  +        j  +q"  {dt  +     dx  +^C-j 

•(27), 

R. 
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and  putting  q1  and  q2  respectively  for  q  in  equations  (26)  and  substituting 
in  the  right  member  of  the  equations  (27), 

dQ_d(M)_     (dQ2     d(cQM         (dQi_d(M\\ 

dt'      dt     ~qi[dt  '       dt     )^  h\dt         dt     I 

d(PQ)_     d(M  ,  ̂ d(M dt 

dt      +q'2     dt 
J 

.(28). 

21.  In  the  equations  (25)  to  (28)  p  is  subject  to  the  condition  of 

conservation  of  mass,  equations  (17)  and  (19).  If  instead  of  p  we  take  p" 
as  an  abstraction  of  the  density  we  obtain  a  corresponding  but  more  general 

theorem,  by  putting 

dp"
 

W dp"u     dp"v     dp'iu)      d  ( vp") 
dx         dy  dz   )  dt 

.(23a), 

where  the  last  term  on  the  right  expresses  an  arbitrary  density ;  then 

  (24a), d(vQ)        „d(pq)        d(pP") —  p        ̂      f  q dt         r       dt 

dQ        dp 

dt 

dt 
d(cQ) 

dt 

dt 

+  P 

dq 

dt 

-^'^)-?i"t+4 
Equating  by  (23a,  24a,  25a), 

r    \dt         dx 
dt 

dt 
dt 

d(pQ)  _  „  d(pP")  ,     //  (d1  ,  „  dq      „ 
~dr-q^r  +p  [Tt  +  udx+&c- 

And  putting  q  =  q,q,  and  Q,  =  p"Qlf  Q2  =  p"Qi}  we  have 

ldQ2     d(cQ2)\  d(vp")  „{dq2i      dqa 
<U  U       ST)  =  **  "it  +  ™      ft  +  U  dx  +  &C' 

(dQ,  _  d{cQ,) dt 

d(pp") q*  [  dt        ~¥"  )  =  q^~^~  +  W"  (  Tn  +  u±  +  &c- 
dQ  _  dJcQ)  _ 

dt  '      dt     ~Ma- 
From  which  it  appears 

dt 

d(pP") 
dt 

dq1  +  udqi 
dt  dx 

dq,q2         dq,q2 

'p   -dT-udx+s*c' 

dQ     d  (CQ) 
dt dt 

</i 

dQ2     d(.Qt) 
dt 

dt +  <1> 

d(PQ)  _„d  (pQs)  ,  n  d  (PQJ dt dt 

+  q* 

dQi  _  d(A) 
dt  dt 

d (Pp") 
M* 

d{pp"\ dt 

dt 

7.rA' 

dt 

.(25  a). 

.(26a). 

..(27a). 

.(28  a). 
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22.  Momentum. 

The  definition  of  momentum  afforded  or  required  by  the  laws  of  motion 

is,  that  the  momentum  in  any  particular  direction  is  the  product  of  the  mass 
multiplied  by  the  rate  of  displacement,  in  the  particular  direction,  of  the 
mass  in  which  it  resides.  Since  at  each  instant  mass  has  position  and 

capacity  for  momentum,  and  the  rate  of  the  displacement  at  the  instant 

has  magnitude  and  direction,  momentum  has  position,  magnitude,  and 
direction. 

Taking  as  before  u,  v,  w  to  represent  the  component  velocities  of  the 

mass  passing  a  point  at  any  instant,  and  p  for  the  density  of  the  mass  at 
the  same  instant,  the  densities  of  the  respective  components  of  momentum 
are  respectively 

Mx  =  pu,     My  =  pv,     Mz  =  pw. 

Substituting  Mx  for  Q  in  equation  (1)  it  becomes 

B[Z(MX8S)]  =  B[Z(PMXBS)]  +  Z[(CMX8S)],  fa.,  &c   (29). 

By  equation  (2)  substituting  PMX  for  PQX, 

B[X(pMxB8)]  =  -B[X(pQ2BS  +  &dc.)],  &c,  &c   (30), 

where  —  B  [S  ( PQ.2BS  +  8zc.)]  expresses  the  rate  of  destruction  of  momentum 
in  direction  x,  in  all  other  modes  than  that  represented  by  MXBS  within  the 

space  of  S. 

23.  Conduction  of  momentum  by  the  mechanical  medium. 

As  %  (MXBS)  represents  the  sum  of  all  the  momentum  in  direction  x 

within  the  space  S,  there  is  difficulty  in  realising  how  momentum  in  direction 

x  can  be  produced  or  destroyed  in  any  other  mode.  If,  as  in  this  research, 

pBS  is  defined  as  including  the  total  capacity  for  momentum  within  the  in- 
definitely small  space,  BS,  the  production  or  destruction  of  momentum  in 

direction  x  in  any  other  mode  than  MXBS,  at  a  point  within  the  space  BS, 

requires  that  momentum  should  have  entered  the  space  without  having  been 

conveyed  by  the  motion  of  the  mass  across  the  surrounding  space.  The 

difficulty  thus  presented  naturally  raises  the  question  as  to  whether  such 

production  or  destruction  is  necessarily  implied  in  the  laws  of  motion  ? — as  to 
whether  the  entire  exchanges  of  momentum  cannot  be  accounted  for  as  the 
result  of  convections  by  the  moving  mass  ? 

That  it  is  possible  for  momentum  to  be  conveyed  across  a  finite  space  by 

the  mass  within  the  space,  and  at  the  same  time  the  momentum  of  the  mass 

within  the  space  to  be  zero,  has  long  been  recognised,  and  follows  directly  as 

a  geometrical  consequence  of  the  fact  that  momentum  possesses  the  property 

of  being  negative  in  exactly  equal  degree  with  that  of  being  positive ;  just  as 

does  electricity;  so  that  a  stream  of  negative  momentum  in  any  direction, 

o   o 
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crossing  a  surface  in  a  negative  direction,  has  exactly  the  same  geometrical 

significance  as  an  equal  stream  of  positive  momentum  crossing  the  same 

surface  in  a  positive  direction.  The  result  being  the  convection  by  both 

streams  of  positive  momentum  in  the  positive  direction  and  negative 

momentum  in  the  negative  direction  at  equal  rates,  while  the  sum  of  the 

momenta  of  the  masses  in  the  two  streams  taken  together  within  the  space 

is  zero. 

In  such  streams  of  momentum  the  action  at  a  surface  is,  though  purely 

kinematical,  that  of  exchange  of  momentum  between  the  spaces  on  the 

opposite  sides  of  the  surface,  such  exchange  proceeding  at  a  definite  rate, 

which  rate  has  a  definite  intensity  at  each  point  of  the  surface,  and  the 

direction  of  the  momentum  exchanged  is  the  direction  of  the  motion  of  the 

mass  at  each  point.  The  condition  that  action  and  reaction  are  equal  and 

opposite  is  thus  completely  satisfied — that  is  to  say,  not  only  is  the  action 
one  of  exchange  of  momentum,  but  it  is  also  one  of  exchange  of  moment  of 

momentum  about  every  axis.  Hence,  where  the  boundary  conditions  of  the 

medium  admit  of  such  opposite  streams  of  momentum  in  different  directions 

through  the  same  space  in  the  same  interval  of  time,  exchanges  of  momentum 

in  any  direction  across  any  surface  may  be  effected  while  the  aggregate 
momentum  is  zero. 

In  this  way,  in  the  kinetic  theory,  the  stresses  in  gases  at  any  instant  are 

completely  accounted  for,  as  the  result  of  the  convection  of  momentum 

conveyed  by  the  molecules  amongst  which  the  motion  is  distributed  uni- 
formly in  all  directions.  But  even  in  the  case  of  gas  such  convection  does 

not  account  for  the  maintenance  of  the  distribution  of  velocities  amongst  the 

molecules.  This  requires  that  the  molecules  should  exchange  momentum, 

and  such  exchange  as  appears  by  equation  (13)  cannot  be  accounted  for  as 

the  result  of  kinetic  convection  by  moving  mass,  but  requires  mechanical 

action  between  the  molecules.  In  the  kinetic  theory,  therefore,  it  is  assumed 

that  'forces'  exist  between  the  molecules,  when  within  certain  distances  of 
each  other,  either  as  the  result  of  varying  stresses  in  the  matter,  or  as  exerted 

through  intervening  space. 

From  these  and  like  considerations  it  appears  that,  to  whatever  extent 

the  transmission  of  momentum  from  one  portion  of  space  to  another  may  be 

accounted  for  as  the  result  of  convection  by  moving  mass,  the  communication 

of  momentum  from  one  portion  of  mass  to  another  requires  either  that  it  be 

transmitted  through  space  occupied  by  mass  otherwise  than  as  moving  mass, 

or  that  it  be  destroyed  in  one  place  and  produced  in  another. 

Unless,  therefore,  it  is  assumed  that,  while  mass  has  continuous  existence 

in  time  and  space,  momentum  can  cease  to  exist  in  one  place  and,  at  the 

same  time,  come  into  existence,  in  the  same  quantity,  at  another  place,  that  is 



23]      GENERAL  EQUATIONS  OF  MOTION  IN  A  PURELY-MECHANICAL-MEDIUM.      21 

unless  we  accept  action  at  a  distance,  and  thereby  preclude  all  further 

definition  and  explanation,  it  is  necessary  that  the  purely-mechanical- 

mediuin,  in  addition  to  the  properties  of  occupying  position,  and  having 
capacity  for  momentum,  should  have  the  property  of  transmitting  or  con- 

ducting momentum  through  the  space  it  occupies  otherwise  than  by  the 

convection  consequent  upon  the  motion  of  the  mass ;  and,  to  completely  satisfy 
the  condition  that  the  direction  in  which  the  exchange  is  effected  is  the 

direction  of  the  momentum  exchanged,  it  is  necessary  that  the  direction  of 

conduction  should  everywhere  be  the  same  as,  or  the  opposite  to,  that  of 

the  momentum  conducted— that  the  conduction  should  be  by  streams,  real 
or  imaginary  streams,  of  real  or  imaginary  momentum  in  the  same  direction 

as  that  of  the  momentum,  just  as  in  the  case  of  convection,  except  that  in 
the  latter  case  the  streams  and  the  momentum  are  real ;  so  that  if  I,  m,  n 

refer  to  the  direction  in  which  h  is  measured,  which  is  that  of  such  a  stream, 

of  which  p  is  the  intensity,  positive  or  negative,  of  the  rate  of  exchange 

across  a  surface  normal  to  Ji,  the  intensities  of  the  rates  of  exchange  of 

momentum,  in  direction  h,  across  the  surfaces  yz,  zx,  xy  are  respectively 

pi,  pin,  pn,  and  the  intensities  of  the  rates  of  exchange  of  the  components  of 

momentum,  in  the  direction  of  x,  y,  z,  respectively,  are 

across  yz 
pi",     pirn, 

pin, 
zx 

pinl,   pin", plan, 

xy 

pnl,     ptun, 

pn2. 

This  property  of  conducting  momentum  (on  which  all  mechanical  action 

depends),  necessitated  by  the  laws  of  motion  as  inherent  in  a  purely- 
mechanical-medium,  must  be  continuous  in  time  and  space  if  the  medium 
is  continuous  in  time  and  space.  As  possessed  by  the  medium,  therefore, 

the  property  differs  from  the  property  of  strength  or  that  of  resisting  stress 

possessed  in  various  degrees  by  matter  in  respect  to  the  limits  to  the 

strength,  which  limits  depend  on  the  physical  condition  of  the  matter  and 
have  no  existence  in  the  medium.  This  difference  as  regards  limits,  however, 

does  not  affect  the  correspondence,  in  character,  between  the  property  of 

conduction  of  momentum  by  the  medium  and  the  property  of  sustaining 
stress  in  matter. 

The  magnitude  of  stress  being  nothing  more  nor  less  than  a  measure  of 

the  intensity  of  the  flux  of  the  component  of  momentum,  in  the  direction 
of  the  stress  across  the  surface  on  which  the  stress  acts,  if  the  intensity  of 

stress  at  a  point  on  a  surface  is  defined  to  be  the  intensity  of  the  flux  of 
momentum  conducted,  as  distinct  from  that  conveyed  by  the  motion  of  the 

mass  across  the  surface,  the  notation  used  for  the  expression  of  the  stresses 

in    matter   becomes    applicable    for    the    expression    of   the    components    of 
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momentum  conducted,  as  distinct  from  that  conveyed,  i
n  a  purely-mechanical- 

medium.     Thus 

Pxx,  Pyx,  Pzx,  pxy>  Pyy,  Pzy>  Pxz,  2V>  P™> 

the  expressions,  used  by  Rankine  for  the  component  intensities  of 
 the  stress, 

in  which  the  exchange  of  momentum  is  in  the  direction  indicated  by  t
he 

second  suffix  and  is  across  the  surface  perpendicular  to  the  direction  indicate
d 

by  the  first  suffix,  may  be  defined  to  express  the  intensities  of  the  rates  of 

conduction  of  the  components  of  momentum  in  which  the  momentum  is  in 

the  direction  indicated  by  the  second  suffix  and  is  conducted  in  the  direction 

indicated  by  the  first  suffix. 

Whence,  at  any  instant,  the  rates  of  conduction  of  the  component  of 

momentum  from  the  outside  into  the  indefinitely  small  steady  element 

dxdydz  are  respectively  expressed  by  the  left  members  of  the  equations 
(30  A), 

_  {dphcx  +  d]>y*  +  <%**}  dxdydz  =  Fxdxdydz  \ {  ax        dy        dz  ) 

%+%  +  %}***-*.*** d$>xz.  +  dpyz  +  d}^\  dxd  dz  =  Fzdxdydz dx        dy        dz  ) 

Fx,  Fy,  Fz  being  merely  contractions  for  the  expressions  in  the  left  member. 

24.  Since,  in  order  to  satisfy  the  condition  that  action  and  reaction  are 

equal,  accumulation  of  momentum  in  the  mode  in  which  it  is  conducted  is 

impossible,  the  expressions  for  the  rate  of  conduction  into  the  mass  in  the 

space  dxdydz  must  also  express  the  rates  at  which  momentum  in  the  mode 
in  which  it  is  conducted,  is  produced  in  the  mass  in  the  space  outside  the 
element  and  destroyed  within  the  element.  Whence  it  follows  that  Fx,  &c, 

respectively  represent  the  rates  at  which  the  densities  of  the  respective 
components  of  momentum,  in  other  mode  than  that  of  Mx,  &c,  are  destroyed 

within  the  element,  and  as  these  are  the  only  rates  at  which  momentum 

within  the  element  is  destroyed — Fx,  &c.  define  the  values  of  (PQ2  +  &c.)  in 
equations  (30),  and  the  equations  of  continuity  of  the  densities  of  the 

respective  components  of  momentum  in  a  purely-mechanical-medium  be- 
come by  equation  (11) 

d-±J^  =  Fx,  &c,  &c   (31), 

and  substituting  in  equations  (29)  we  have  by  equation  (10) 

d-^  =  Fx  +  ̂(eMx),  &c,  &c   (32), 

which  are  the  equations  of  density  of  momentum   in  a  purely-mechanical- 
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medium  expressed  in  terms  of  general  symbols  expressing  the  separate  effects 
of  the  distinct  actions  of  conduction  and  convection. 

Substituting  for  Fx  equations  (30  A)  and  d  (cMx)/dt  from  (7)  we  have 

the  full  detailed  expressions  for  the  equations  of  the  densities  of  the  com- 
ponents of  momentum  at  a  point 

dMx_ 
(it 

[dec  (pxx  +  pmL)  +  dy  (pvx  +  pUV^ +  dz  ̂Pzx  +  Patvy  &c>'  &c-'  •  ^33^ 

The  equations  (32)  and  (33)  are  the  equations  of  conservation  of  mo- 

mentum in  a  purely-mechanical-medium,  at  a  point,  in  which  the  first  terms 
in  the  brackets  on  the  right  of  (33)  express  the  rates  of  change  by  con- 

duction, and  the  second  the  rates  of  change  by  convection. 

The  integrals  of  the  right  members  of  these  equations  transform  into 

surface  integrals,  and  thus  they  express  the  condition  that  the  change  of 
momentum  within  any  space  S  is  solely  the  result  of  the  passage  of 
momentum  across  the  surface  of  S. 

25.     The  conservation  of  the  position  of  momentum. 

It  appears  from  the  previous  article  that  the  condition  of  conservation 

of  momentum  requires  that  action  and  reaction  should  be  equal  and  opposite, 

but  this  is  all;  so  far  pxx,  pyx,  &c.  may  be  independent  of  each  other,  and 
there  is  no  indication  that  exchange  must  take  place  in  the  direction  of 

the  momentum  exchanged.  This  is  however  expressed  by  the  equations  of 

conservation  of  the  position  of  momentum. 

Taking  x,  y,  z  and  pu,  &c.  as  referring  to  a  fixed  point.  Then  multiplying 
each  of  the  equations  (33)  by  x,  y,  z,  successively,  we  have dMx_ 

at 
\ dx  ̂xx  +  pU^  +  &C'  I '  &C''  &°   ^^' 

.(35), 

or  transforming,  since  x,  yy  z  are  not  functions  of  t, 
7  (A 

21  (®PU)  -  Pxx  ~  PUU  =-\jxX(  Pxx  +  PUU)  +  &C- 

^  (ypu)  -  pyx  -  pw  =  -\([xy  (p*x + puu)  +  &c- 

jj:  (zpu)  -  pzx  -  puw  =  -  |^  Z  (pxx  +  puu)  +  &C. 

and  corresponding  equations,  for  xpv,  &c.  and  xpw,  &c. 

The  right  members  of  these  equations  integrated  over  any  space  S  repre- 
sent surface  integrals. 

The  integrals   of  pxx,  &c.   on   the   left    of   the  equations  represent  the 

respective  rates  of  the  displacement  by  conduction  of  the  respective  com- 
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ponents  of  momentum  within  8,  while  those  of  puu,  &c.  represent  th
e  rates 

of  displacement  of  momentum  by  connection  within  8. 

Hence  what  these  equations  express  is  that  the  whole  rate  of  displace- 

ment of  momentum  in  S,  less  the  internal  rate  of  displacement,  is  equal  to 

the  rate  of  displacement  of  the  momentum  across  the  surface. 

This,  it  appears,  follows  directly  from  the  condition  that  action  and 

reaction  are  equal — i.e.  the  equations  of  motion — and  implies  no  relation 

between  the  components  of  conduction.  Such  conditions  however  follow 

from  the  further  condition  that  the  direction  of  exchange  is  the  direction  of 

the  momentum  exchanged. 

26.     Conservation  of  moments  of  momentum. 

Subtracting  equation  (35)  for  ypw  from  that  for  ypv, 

dt {ZpV  -  tJpW)   -  (pZy   -  PyZ) 
d 

•(36); 

dx  ̂  (J>,7/  +  UV^  ~  V  (Pxz  +  UW^  +  &C' 

whence  in  order  thai  the  rate  of  change  in  the  moment  of  momentum  about 

the  axis  of  x  may  be  expressed  by  a  surface  integral  we  have  the  condition, 

as  previously  obtained  (Art.  23), 

Pzt,  =  Pyz  >  and  similarly,  that  pxz  =  pzx  and  pyx  =  p3m   (36  a). 

27.     Boundary  Surfaces. 

The  conditions  at  the  bounding  surfaces  of  spaces  continuously  occupied 

by  the  medium  may  be  of  two  kinds,  according  to  whether  the  surface 

divides  the  medium  from  unoccupied  space,  or  separates  two  continuous 

portions  of  the  medium  which  are  in  contact  at  the  surface. 

Taking  r,  s,  t  for  distances  measured  from  a  point  in  the  surface  in  direc- 
tions at  right  angles  to  each  other,  that  in  which  r  is  measured  being  normal 

to  the  surface  and  lr,  mr,  nr,  ls,  ms,  nS)  lt,  mt,  nt  for  the  direction  cosines  of 

r,  s,  t  respectively,  then  since  pxy  =  Pyx>  &c->  &c-> 

Prr  =  Vxxh?  +  pyymr2  +  pzzn?  +  2pyzmrnr  +  2pzxnrlr  +  2pxylrmr 

Pss  =Pxxls1  +Pyy'ms2  +  pzzns2  +  2pyzmsns  +  2pzxnslfi  +  2pxylsms 

Ptt  =Pxxk"Ji-pyym,ti  +p2z7it2  +  2pyzmtnt  +  2pzxntlt  +  2pxyltmt 

Put  =PxxUt  +pyymsmt  +  pzzn8nt  +  pyz  (msnt  +  nsmt) 

+pzx  Ohk  +  h>h)  +  pxy  {lsmt  +  mdt) 

ptr  =PxxhK  +  pyyintmr  +pzzntnr  +pyz  (mtnr  +  ntmr) 

+  Pzx  (ntlr  +  hnr)  +Pxy  {kmr  +  Wr) 

Prs=Pxx^rk  +  Pyyinrms  +  j)^,.)^  +pyz  (mrns  -f  nrm,) 

+  Pzx  (nrls  +  h-ns)  +  Px!i(l'r»h+  mrk), 

V...(37). 
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Where  the  surface  separates  the  medium  from  unoccupied  space  the 

stresses  prr  &c.,  are  all  zero  at  the  surface,  but  where  the  surface  divides  two 

portions  of  the  medium  in  contact,  then  the  intensity  of  the  flux  across  the 

surface  at  a  point  is  the  intensity  of  the  rate  at  which  such  momentum  is 

received  by  the  one  portion  and  lost  by  the  other  across  the  surface  at  the 

point,  and  by  the  foregoing  notation  p„,  prs,  prt  respectively  express  the 
intensities  of  the  rates  of  flux  across  the  surface  of  the  components  of 
momentum  in  the  direction  in  which  r,  s,  t  are  respectively  measured. 

These  rates  are  the  limiting  values  at  the  surface  of  the  respective  com- 
ponents of  flux  within  the  medium  on  either  side  of  the  surface  in  the 

directions  in  which  r,  s,  t  are  measured,  and  are  thus  the  limiting  values,  at 

the  surface,  of  the  expressions  on  the  right  side  of  the  equations  (1). 

28.     Energy. 

Although  the  half  of  the  vis-viva  (that  is  half  the  rate  uf  the  displace- 
ment of  the  momentum,  or  half  the  product  of  the  momentum  multiplied 

by  the  rate  of  displacement  of  the  mass)  now  called  kinetic  energy,  has  long- 
been  recognised  as  the  general  measure  of  the  mechanical-effect  of  mechani- 

cal-action through  space,  the  recognition  of  energy  as  a  physical  entity  has 
resulted  from  the  discovery  of  the  reversibility  of  actions  by  which 

mechanical-action  produces  physical  effects,  and  of  the  linear  relations  which 
exist  between  the  physical  measures  of  the  physical  effects  so  produced,  and 

the  kinetic  energy  which  has  been  expended  in  producing  them. 

The  discovery  of  these  relations  and  the  reversibility  of  the  actions 

having  led  to  the  recognition  of  the  existence  in  the  Universe  of  physical 

entities  which  could  be  changed  to  and  from  the  mechanical  entity  kinetic- 
energy,  these  physical  entities,  although  not  otherwise  mechanically  definable, 
have  become  recognised  as  modes  of  the  general  physical  entity  of  which 

kinetic-energy  is  one  mode  and  the  only  mode  which  is  subject  to  strict 
mechanical  definition ;  and  hence  followed  the  recognition  of  the  law  of  con- 

servation of  energy. 

Taking  2)xx,  &c-  to  have  the  significance  ascribed  to  them  in  Art.  23,  the 

intensities  of  the  components  of  mechanical  action — that  is  the  intensities 
of  the  components  of  the  flux  of  momentum,  by  conduction,  from  the 

negative  to  the  positive  side  across  a  surface  of  which  the  direction  of  the 

normal  is  defined  by  I,  m,  n — are  respectively  expressed  by 

'Pxxl  +  Pyx™  +  pzxn,  &c,  &c. 

These  are 'the  expressions  for  the  time-measures  of  the  intensities  of  the 
components  of  mechanical  action,  in  the  directions  of  the  perpendicular  axes 
of  reference,  of  the  mass  on  the  negative  side  of  the  surface,  on  the  mass  on 

the  positive  side  of  the  surface,  at  a  point  in  the  surface. 
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Multiplying  these  time-measures  respectively  by  u,  v,  w,  the  component 
velocities  of  the  mass  at  the  point,  we  obtain 

Uipaj+Pyxm+Pzxll),   &C,    &C., 

which  are  the  corresponding  space-measures  of  the  respective  components  of 

the  intensity  of  mechanical  action  at  the  point. 

Adding  these  and  multiplying  by  8s,  the  element  of  a  closed  surface,  the 
integral  over  the  surface  is  expressed  by 

I j[iuPxx  +  VPxy  +  WPxz)  I  +  (upyx  +  VPyy  +  Wpyz)  ™>  +  {"Pzx  +  VPzy  +  Wzz)  n]  8$> 

which  is  the  space-measure  of  the  mechanical  action  of  the  mass  outside  the 
closed  surface  on  that  within. 

This  (if  there  are  no  purely  physical  exchanges)  is  by  the  law  of  conser- 
vation of  energy  equal  to  the  rate  of  change  of  energy  in  all  its  modes, 

within  the  surface — that  is  if  there  is  no  change  by  convection  across  the 
surface,  which  will  be  the  case  if  the  surface  is  everywhere  moving  with  the 
mass. 

The  changes  of  energy  may  be  partly  in  kinetic-energy  and  partly  in 
other  physical  modes,  according  to  the  expression  which  is  obtained  by 

transforming  the  equations  of  momentum  (33)  by  equation  (26) ;  multiplying 

respectively  by  u,  v,  w,  integrating  over  the  surface  and  adding,  the  equation 

becomes,  when  transformed  by  equation  (15),  taking  U  =  u,  &c,  and  assuming 
the  actions  continuous  in  space  and  time, 

Id 
2dt [p  (u2  +  v2  +  w2)}  dxdydz 

du  dti  du\ 

da 

dy 

Pxxdx  +Pyxdv  +Pzx  dz 

{  +Px 

dv 
dv 

dv +  P 

"ydx 

dw 

t-Pwfy+Pv  dz 
>  dxdydz 

dw 
dw 

*  dx  +  Pyz  dy  +  Pzz  dz  ) 

(upxx  +  Vpxv  +  Wpxz)  I 

=  [[|+  ( uVyx  +  vpvv  +  wPyz)  m 
(+  (uPzx  +  vpzy  +  Wpzz)  n  ■ 

BS.  .  (38). 

The  right  member  is  here  the  measure  of  mechanical  action  over  the 

surface  moving  with  the  mass ;  so  that  the  left  member  expresses  the  rate  of 

change  of  energy,  resulting  from  the  mechanical  action  within  the  surface. 
The  first  term  in  the  left  member  is  the  rate  of  change  in  kinetic  energy, 

within  the  surface,  and   the  second   term  expresses  the  rate  of  change   of 
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energy  in  other  or  physical  modes  within  the  surface  as  resulting  from  the 
mechanical  action  on  the  surface. 

29.  In  a  purely-mechanical-medium  (including  everything  that  has 
position  in  space  and  possessing  no  physical  properties  other  than  are  required 

by  the  laws  of  motion)  the  kinetic-energy  must  include  all  the  energy  in  the 
space  over  which  the  integration  extends,  hence  as  applied  to  such  medium 

the  second  term  on  the  left  of  equation  (38)  must  be  zero,  however  large  or 

small  the  space  over  which  the  integration  extends.  Whence  putting 

2E  =  p(u~  -i-  v- +  w-)  and  transforming  equation  (38)  by  equation  (15),  the 
equation  of  energy  for  a  fixed  space  becomes 

[(itPxx  +  VPxy  +  IVPxZ  +  UE)  I dt 
SIS 

+  (upyx  +  vpyy  +  wPvz  +  vE) m  +  (*fP»  +  vPzy  +  WP&  +  w^) n]  dS  ...  (39). 

Whence  since  this  holds  whatsoever  may  be  the  size  of  the  space  en- 
closed, we  have  for  the  rate  of  change  of  the  density  of  energy  at  a  point, 

by  differentiating  the  left  member  of  equation  (3.9)  with  respect  to  the 
limits 

dE  d  ,  v       d  .  >      d  . 

di  =  ~dx  ̂Upxx  +  VPxy  +  WPxz>  ~  dy  ̂UPyx  +  VPyy     WPyz'  ~  dz  ̂Pzx     vPzv+wP^ 

d(uE)     d(vE)     d(wE) 
dx 

dy 

dz 
.(40). 

30.  In  order  to  simplify  the  expressions  N  may  be  put  for  the  rate  at 

which  density  of  the  energy,  in  whatsoever  mode,  is  produced  by  the 

mechanical  action  at  any  fixed  point  in  space,  and  Nx,  Ny,  Nz  for  the 

densities  of  the  energies  which  have  been  produced  by  the  components  in 

the  directions  in  which  x,  y,  z  are  measured  respectively,  so  that 

N  =  NX  +  Ny  +  Nz. 

dW  =  -  [ix  (UPxx)  +  aij  ^Pyx)  +  Jz  (^24  '  &°-'  &°- 

Then 

(41), 

and dN     dN„     dN,     dN + + 
dt        dt         dt         dt 

s dN 
dt 

8S 
V...(42). 

=  I  I  {{uPxx  +  VPxy  +  U>Pxz)  I  +  (UPyx+VPyy+Wpyz) 7)1  +(upzx+Vpzy+Wpzz)n}  dS 

Whence  substituting  in  equation  (40)  it  becomes 

dE         dN     d  ,  „. 

li  =  +  -dt+dt(cE)   

(43) ; 
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which  may  be  obtained  from  (1)  and  (2)  together  with  the  condition  that  E 

is  continuous — and  is  the  equation  for  the  density  of  energy — in  terms  of 
genera]  symbols  expressing  the  densities  of  the  distinct  actions  of  conduction 
and  convection  at  a  point. 

31.     The  condition  of  a  purely-mechanical-medium. 

Equations  (40)  and  (43)  are  the  equations  of  continuity  of  energy  in  a 

purely-mechanical-medium  in  which  the  relation  between  the  stresses  and 
strains  is  continuously,  that  the  second  term  in  the  left  member  of  equation 

(38)  is  everywhere  and  continuously  zero.  Transposing  the  expression  under 

the  integral  in  the  second  term  in  the  left  member  of  equation  (38)  by  (36a) 

and  equating  to  zero  we  have 

{      du  dv  dw  fdv     dw\  (dw     du\ 
-  \P**  in.  +Pw  JT+Pzz  T„  +Py*   ̂   +  jt,    +  P*°  [jz  +  ~-  ~ ' 
f~  dx  T  ***  dy  T  **  dz  T  *»  \dz  T  djj)  " Izx  \dx  ̂   dz) 

(da     dv\\  .... 

+**\fi  +  <£•)}=  °   ^ 
Then,  for  convenience,  expressing  equation  (44)  as  dR/dt  =  0,  equation 

(44)  defines  the  action  in  the  medium  as  being  purely  kinematical. 

From  the  definition  of  pxx,  &c,  &c.  as  components  of  intensity  of  a  flux 

of   momentum    it   follows  geometrically  that   the   value    of  the   expression 

which  forms  the  left  member  of  equation  (44)  is  independent  of  the  direction 

in  which  the  axes  are  taken.     Hence,  if  i,  j,  k,  arc  measured  in  the  directions 
of  the  principal  axes  either  of  the  rates  of  distortion  or  of  the  stresses  at  a 

point  p  and   a,  v,  w  are  the  components  of  the  velocity  in  these  directions, 
respectively,  transforming   to   these   axes  we    have   by  equation  (44) ;   since 
either ; — 

dv      dw      _    0       .  „ 
j-  4-  -j-  =  0,  &c,  &c. ;  or  pjk  =  0,  &c,  Ace   (45), 

du  dv  dw 

Piid7+^Tj+Pkk^  =  0   <46> 
From  these  three  conditions  it  appears  that  no  energy  is  transformed  in 

distorting  the  medium.  And  we  have  as  the  three  possible  conditions  in  a 
purely-mechanical-medium 

Pa  =  Pa  —  Pkk  =  0 ;  which  is  the  condition  of  empty  space     (46a), 
,  du     dv     dw      n  „        ,    .  , 

Pa  =Pjj  =Pkk  ;  and  -r  +  -=-  +  - -  =  0  ;  perfect  fluid. "'i       a*       clfc 

du     dv     dw  dw      dv      du      dw      dv      du      .  .         .   .  , . 

32.  The  transformations  of  the  directions  of  the  energy,  and  angular redistribution. 
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Kinetic  energy  has  direction  at  every  point,  although  not  a  vector,  and 

the  equations  obtained  by  multiplying  equations  (33),  respectively,  by  u,  v,  w 

are,  respectively,  the  equations  of  energy  in  the  directions  of  x,  y,  z. 

For  an  element  in  a  closed  surface  within  the  mass 

\  dtSSI(pu2)  dxdydz  -  SSSipxx  £ + *-  % + pzx  s) dxdydz 
=  -  jjj te  (#«tt)  +  ̂  (Py*u)  +  Jz (P**u)\  dxdydz    . . . (47), 

&c,  &c. 

In  these  equations  the  members  on  the  right  represent  work,  in  the 

directions  x,  y,  z,  respectively,  done  on  the  surface  within  which  the  in- 
tegration extends.  And  as  these  efforts  are  all  in  the  direction  of  x,  y 

or  z,  respectively,  they  involve  no  change  from  one  direction  to  another. 

But  the  second  terms  on  the  left  of  each  of  the  equations  represent 

production  of  energy  in  the  directions  x,  y,  z  respectively,  at  the  expense 
of  the  energy  in  the  other  directions. 

It  is  thus  shown  by  condition  (44) — which  is  that  the  sum  of  these 

terms,  from  the  three  equations,  is  zero — that,  putting  Rx,  &c,  &c.  for  the 
densities  of  the  rates  of  angular  dispersions  at  a  point,  from  the  directions 

x,  y,.z  respectively,  these  are 

dRx         l      du  du  duy (       du  du  du\     0        . 

=  -  [P»*fa  +  Pyx  d~  +  Pzx  j-zj  ,  &c,  &c. dt  \r™dx  '  iyxdy 
It  is  to  be  noticed  that  in  a  medium  such  that  u,  v,  w  do  not  represent 

the  velocities  of  points  in  mass,  Rx  does  not  represent  angular  dispersion 

only,  unless  equations  (44)  are  satisfied ;  and  if  not  so  satisfied  dRx/dt  would 
represent  the  work  done  against  the  apparently  physical  actions  in  the 
medium,  as  well  as  the  angular  dispersion. 

The  analytical  separation  of  this  action  is  obtained  by  transforming  the 

general  equation,  which  becomes 

dR  1  .  x  /  _  du      dv      dw\ 

1  j        /du     dv\  /du      d  ii' 

+  2  fyx  [dy  "  dx)  +  pzx  [dz  ~  dx 
1  .  v  (du     dv      dw\ 

-^P**+Pyy+P**){^  +  d;+dz) 

Pxx  +Pyy  4"  Pzz\  du    f    1   (^       (du  ̂   dv\ 

rdu      dw^ 

- 1  ft.   f-^)  ffi  +  2  Jn.  [Ty  +  dxl 
(du      dw\\  /<K    > 
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From  the  member  on  the  right  of  equation  (47)  it  at  once  appears 

that  the  two  first  terms  express  angular  dispersion  only,  while  the  second 

two  terms  express  distortional  motions  only,  which,  by  the  conditions  (45), 
are  zero. 

33.     The  continuity  of  the  position  of  energy. 

Kinetic  energy  has  position  ;  and  hence,  putting  x,  y,  z  for  the  point 
at  which  the  density  of  energy  is  E,  by  equation  (1) 

8  [2  [EasBS}]  =  8  [X{c(Ex)  88}]  +  8  [2 \v(Ex)  8S}],  &c,  &c.    ...(48), 

in  which  x,  y,  z  are  not  functions  of  time.  And  if  x,  y,  z  are  put  for  the 
centre  of  energy,  u,  v,  w  for  the  component  velocities  of  the  surface,  as  in 

equations  (12)  to  (16),  Art.  14,  we  have  at  any  instant, 

x"Z{E8S}  =  Z{Ex8S],  &c,  &c   (49), 

whence,  differentiating  with  respect  to  time, 

~  %  {E8S}  =~xjt  [2 {E8S\}  +  jt  [X {Ex8S\l  &c,  &c   (50). 

Then,  by  equation  (15),  these  equations  become 

(^%{E8S\=-x% 
dE  dEu     dEu     dEw]  g  ' dt  dx        dy         dz   ) 

^n    dE  d(Exu)     d(Ex'o)      d(Eayw)\  ̂ " \     dt  dx              dy               dz      J 

(x  _  m  (*i + *m + *m + dJm\  BS\ V  dt         dx  dy  dz     J      j 

_  v 

+  S  (Eu8S),  &c,  &c   (51). 

Whence,  for  a  fixed  surface,  since  u  =  v  —  w  =  0, 

dx 
di 

s|(,-S)fas} 
,  &c,  &c   (52). 

%  (E8S) 

For   a    surface   moving   everywhere   with    the    mass   so   that  u=u,  &c, 
equation  (51)  becomes 

2  \(x  -  x)%  (PE)  8S)  +  S  {Eu8S},  &c,  &c. Jl   _-4__      (53), 
dx 
di 

[E8S\ 
or, 

~[l{(Ex)8S}]  =  %i[x^t(pE)  88^  +  ̂ (Eu8S)      (54), 

where,  as  in  equation  (42),  differentiating  with  respect  to  the  limits 

dJv,  ̂   =  ~  \dx  ̂PxxU  +  PxyV  +  P**0)  +  &c-  +  &c-  •  •  •  |      (55X 

or 
dN 

dt 
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34.     Discontinuity  in  the  medium. 

It  is  to  be  noticed  that  the  expressions  in  equations  (37)  to  (55)  are 
adapted  to  the  cases  in  which  the  medium  is  continuous,  so  that  for  the 

complete  expression  of  the  actions  where  the  medium  is  continuous  within 

closed  surfaces,  only,  it  is  necessary  to  express  the  conditions  at  the  bounding 
surfaces  by  using  the  expressions  in  equations  (37). 

These  complete  expressions  might  very  properly  be  introduced  at  this 

stage.  But  as  the  necessity  for  the  definite  use  of  these  does  not  arise 

until  a  much  later  stage  in  this  research,  and  then  arises  in  a  comparatively 

simple  case  which  has  already  been  much  studied  in  some  of  its  aspects, 
it  is  convenient  to  proceed  as  if  the  medium  were  continuous  until  this 

stage  is  reached.     See  equation  (132),  Section  IX. 



SECTION   IV. 

THE    EQUATIONS    OF  CONTINUITY    FOE    COMPONENT 

SYSTEMS    OF    MOTION. 

35  Component  systems  may  be  distinguished  by  definition  of  their  com- 

ponent vel  -  or  their  density. 

By  a  component  system  of  motion  distinguished  by  velocity  is  here 

understood  a  system  of  motion,  howsoever  defined,  in  which  the  velocity  at 

any  point  is  not  necessarily  the  velocity  of  the  mass  at  that  point  either  in 

direction  or  magnitude. 

>   before,   u,   r.   u\  to   express   the    components    of   the    actual 

vel-  -   of  the  mass        the  point  a  and  time  f.  and  p  for  the  dens 

the  mass,  and  as  express     g  the  components,  with  respect  to  the 

same  axes,  of  the  velocil  i  component  system,  there  exist  at  each  point 

the  residual  componc 

=     -      .         =     -  .    .  -           V 

sums  of  these  components  &      -  fcisfj    the  equations 
S     tion  III.,  and  the  following  equation,  for  the  resultant  system,  and  if  one 

-     -.--       ...  any   definition,  actual    or  conditional,   the 
equation   for  the       s     tant   system   becomes   the   equation   for  the   residual 
-   -    m. 

Ej  neral  method  in  mechanical  analysis  to  separate  the  motion 

he  ma--  .eh  point  iuto  two  component  systems,  whenever  the  condi- 

fche  independence  of  these  systems  is  obvious.      A-.  for 
the  motion  of  the  m   ss        each  point  at  any  instant  is  considered 

sisl     _   of  the  motion  of  the  centre  of  gravity  of  the  whole  mass;  at 

the  ins  _  her  componei  t  sys     m  which  is  the  motion  at 

the  point  i  the  motion  of  the  centre  of  gravity.     But  such  instances 

been  considered  as  depending  on  special  theorems,  and  do  not 

app  -    __   -    d  the  study  of  the  method  which  they  involve  as  a 

-   -  '  sis  apart   from   the   existence   of   conditions  which 
systems      ■mpletely  independent. 
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It  appears,  however,  that  the  manner  in  which  the  rates  of  increase  of 

the  momentum  and  kinetic  energy  of  the  one  component  system  depend  on 

convection  by  and  transformations  from  the  other  may  be;  subjected  to 
general  analytical  expression,  even  when  the  definition  is  arbitrary  and  only 
conditional. 

This  is  accomplished  by  equating  the  expressions  for  the  rates  of  increase 

of  u" ',  &c.  at  a  point  moving  with  the  mass  to  arbitrary  functions  which, 
multiplied  by  p,  express  the  rates  at  which  density  of  momentum  is  trans- 

formed from  the  system  pu'  into  the  system  pu"  and  represent  the  only  rates 
of  production  of  momentum  in  that  system,  so  that  the  equations  of  motion 

of  either  of  the  component  systems  may  then  be  obtained  from  equations 
(1)  and  (2)  or  (10)  and  (11)  Section  II.  The  equations  so  obtained  will 

differ  in  form  from  the  equations  of  the  resultant  system  in  five  particulars. 

(1)  The  equations  for  the  component  system  will  differ  from  that  of  the 

resultant  system  from  the  fact  that  u",  v",  w"  do  not  represent  the  whole 
causes  of  convection,  which  are  u,  v,  w :  so  that  the  rate  of  increase  of  Q  by 
convection  is  not 

jt  (,Q)  =  J{  (e"Q)  +  J(  (,'Q),   &o      (57), 

where  the  pre-suffix  c"  indicates  convections  by  u"  and  c  indicates  the  con- 
vections by  u ,  inwards  across  the  bounding  surface  of  the  element. 

(2)  A  difference  in  the  form  of  the  equations  also  results  from  the  fact 

that  pu",  pv",  piv"  are  not  the  only  modes  in  which  densities  of  momentum 
in  the  directions  x,  y,  z  exist  at  a  point  in  the  medium.  The  rates  of  increase 

of  density  in  the  modes  pu" ,  &c.  by  conduction,  into  the  steady  element  of 
space  dxdydz  are  not  the  only  increases  other  than  by  convection  ;  since  there 
are  the  further  possibilities  of  exchanges  of  densities  of  momentum  between 

the  modes  pu",  and  pu',  &c.  existing  at  the  same  point  in  the  same  mass. 
That  such  abstract  exchanges,  without  mechanical  action,  must  result 

from  the  definition  by  which  the  component  systems  are  distinguished  is  at 

once  seen,  for  to  this  definition  u",  v",  w"  are  subject  at  each  point  and  each 
instant.  And  therefore  the  rates  of  increase  of  u",  v",  w",  the  defined  com- 

ponents of  acceleration  of  the  moving  mass,  expressed  by 

du"        du"        du"         du"     0       0 -j-  +  u  -= — h  v  -5 — h  w  —j—  ,  &c.  &c. 
dt  dx         ay  dz 

are  subject  to  arbitrary  definition  independent  of  the  actual  accelerations  of 
the  mass.     And 

R.  3 
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as  arbitrary  expressions  for  these  defined  rates  of  increase  and  multiplying 

by  p  we  have  as  the  equations  of  continuity  for  the  components  of  momentum 

pu",  &c,  &c.  by  equation  (28)  Section  III. 

*£  -  i  c*o+ ,|<^***>   w. 
and  again  by  the  equations  for  the  resultant  system 

jt(pi'-''  +  pu')  =  jt(cPu'  +  cpu')+  Fx,  &c.,  &c...   (59). 

Subtracting  equation  (58)  we  have  for  the  other  system 

^.'  =  (|(^')  +  ̂ -p^(X)>  &*.  &c   (60). 
It  thus  appears  that 

p  jt  (Pu"),  &c,  fee., express  rates  of  transformation  of  density  of  momentum  from  the  component 

system  pu'  to  the  system  pu",  &c,  &c,  consequent  od  the  geometrical  conditions 

by  which  u",  v",  w"  are  defined. 

The  arbitrary  rates  of  increase  of  density  of  momentum  represented  by 

these  transformations  may  be  considered  as  variations  either  in  an  arbitrary 

system  of  stresses  or  an  arbitrary  system  of  convections' to  be  determined  by the  actual  definition. 

(3)  The  equations  of  the  component  systems  differ  from  that  of  the 

resultant  system  on  account  of  the  expression  for  the  transformation  of 
energy  to  and  from  each  of  the  component  systems  in  consequence  of  the 

definition  to  which  they  are  subjected.  The  densities  of  each  of  these  rates 

of  transformation  of  energy  are  by  equation  (28),  putting  u"  for  q1}  &c. 
respectively,  the  sums  of  the  products  of  the  densities  of  the  component 

ratios  of  transformation  of  momentum  to  the  particular  component  systems 

(dppu"/dt,  &c.)  respectively  multiplied  by  the  component  velocity  (u",  &c.)  of 
the  same  system. 

Thus  expressing  the  density  of  energy  so  transformed  at  a  point  as 

pT(E"),  &c,  respectively,  since  there  is  no  transformation  of  mass, 

(ci). 
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From  these  eq  s  if  will  be  seen,  at  once,  that  the  sum  of  the  trar.-- 
formati     -  mpor.  -  -       t  necessarily  rea  hat  the 
transformation  is  not  whollv  I  .   .  B  . 

m 

rhe  equal       -  g  compone:     -   si    as      *Ter  in  form 
from  th  -  -  sum  of 

the  dei-         s  .  aent  syst       -  >  not 

equal   to  the   de:  -  gy  of  the  resultant  sysl 
or  tha: 

=±p       -     -    *+w*+i  --    --:        -      -       •: 

whence  p   B—E    -E')  =  p  -         -   .   «/) 

Whence   it  appears  the  transformation  of  energy    is  - 
between  th     systems  E     and  S\  but  also  between  each  of  thes 

-  fee      -      oat  besides  the  Equations  rf  ei    :_       :  :  he  component 

stems    there    fe  equation   of  energy    ::    the    :   -idual   system  to  be 
considered. 

The  den;i:v     ;  1         ::rmation  to  the  resiJual  s;  -  by 

definition  equal  in  valoe  and  op     -:~      in    s           the  sum  of  the  rates 

-    .  1    v        nergies    :"  the  componrL"  sysl 

p(%(*  *%<?>). 

Another    expression   for   the    transformation  to  the   residual    - 
obtained  by  multiplying  each  of  the  rates  o:  jf  comp:  l 
of  momentum  tc  the  compone  nt  ae  corresponding  componer 

:   the  »thei  -        on  and  adding,  as  in  equations  (28). 

The   de^  :    rhe  rate   of  production  into  residual  energy  may  be 

obtained  in  the  same  way  by  equati . :.    28      thenhyequ 
exr  ressi  ds  i  i 

p^   B-B    -E     and  j:   . 

In  the  equation  of  motion  for  the  resultai.:   -     :em  of  motion  in  a 

purely-mechanieal-medium,  d  B         the  he  rate  at  which 
is  iuced  in  i  E,  is    lefim  I    as   : 

expression  for  this  production  disappears  from  the  equation  of  energy.     It 
does  not  i  r  follow  a .-       g     metrical  consequence  th 

for  tanddiL-:      dt,  obtained  from  the  equ        ns  of  mom 

equ:::  b    28),  ar.  ro,     But  it  d        follow  th 
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values  may  be,  they  are  pure  abstractions  resulting  from  the  definition  of 

the  systems  of  motion,  and  are  therefore  transferences  of  such  energy  from 
the  one  system  to  the  other.  Therefore  while  it  is  necessary  to  retain 

these  expressions  in  the  equations  of  energy  for  the  three  systems,  it  is 

convenient  to  indicate  that  they  express  a  transference  by  a  pre-suffix  T  as 

d{TR')jdt. 

36.     Component  systems  distinguished  by  distribution  of  mass. 

Taking,  as  before,  p  for  the  density  of  the  mass  at  xyzt  and  p"  for 
any  defined  density  of  mass  at  the  same  point,  there  exists  the  residual 
mass 

P=P-P"   (63). 

The  sum  p"  +  p  satisfies  equations  (33)  Section  III.  for  the  resultant 
system,  also  equations  (58)  and  (60),  Section  IV.,  for  the  component  systems 

distinguished  by  the  distribution  of  velocity,  and  if  p"  is  subjected  to  any 
definition,  actual  or  conditional,  the  equation  for  the  resultant  density  defines 

the  equation  for  residual  density  of  mass. 

The  equations  so  obtained  will  differ  in  form  from  the  equations  for  the 
resultant  mass  in  one  particular. 

The  fact  that  the  integrals  of  p"  and  p  do  not,  either  of  them,  taken  by 
themselves,  represent  the  only  mass  included  in  the  space  over  which  the 

integrals  extend,  entails  a  difference  in  the  form  of  the  equations  from  that 

of  the  resultant  system. 

The  rate  of  increase  by  convection  of  p"  is  not  necessarily  the  only  rate 
of  increase,  since  there  are  possibilities  of  exchanges  between  the  densities 

p  and  p"  at  the  same  point. 

That  such  exchanges  must  result  from  the  definition  is  at  once  seen,  for 

dp"jdt  is  subject  to  these  exchanges  at  each  point  at  each  instant,  and  there- 
fore the  defined  rate  of  increase  of  the  component  density  p"  at  a  point 

moving  with  the  mass  is  subject  to  arbitrary  definition  independent  of  the 
rate  of  increase  of  the  actual  density. 

Taking  as  in  equations  (24  a)  Section  III. 

dTp"  _  dfS     dp"u      dp"v     dp"w  (        , 
dt        dt        dx         dy         dz      

as  the  arbitrary  expression  for  this  defined   rate  of  increase,  we  have  the 

equation  of  continuity  for  the  component  density 

dp"     dc{9")  _dT{p") 
dt  dt  dt 

(64). 
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And  by  the  equation  for  the  resultant  system 

d(p"  +  p')      dc(P"  +  p)        \ 
dt  dt 

dp'     dcp  dTp" 
dt       dt dt (65). 

Then,  since  by  equation  (24),  dp(pu)/dt  =  pdpu/dt,  substituting  in  equation 
(32),  the  equation  at  a  point  for  the  resultant  system  is 

(66). 

du         du        du         du  _  dpu 

dt         dx        dy         dz       dt   
rJ    "  rl       " 

Then  multiplying  by  p"  and  adding  u  -~ —  u  -~-  to  the  left  member 

and  the  equivalent  udpp"/dt  to  the  right  member,  we  have  for  the  equation 
of  momentum  of  the  defined  density  : 

dp'u     dc(p"u)        „  dpu        dTp"\ 
~dt  dt~  =  P   ~dt  +U~aT 

dp  (p"u) 
dt 

(67), 

and  in  precisely  the  same  manner 

dp'u     dcp'u  _    ,dp(u)        dTp dt  dt 

=  P 

dt 

—  u 

dt 

_  dp  (p'u) 
dt (68). 

37.     Component  systems  of  motion  distinguished  by  density  and  velocity. 

Again  substituting  u"  and  u  successively  for  u  in  equations  (67)  and  (68) 
we  have  the  four  equations 

dp'u"     dc  (p"u")  _  dp  {p"u")       „  dTu"        „  dcp"       ,  r     „  „-,         \ 

~dt  dt  d^  =  p  ~W~U  -df~d[Tpu} 
'I  J    .  /' 

de'P 

=  p  ̂ r  +  w  dt 
dp'u"  dc  (p'u")  _  dp  (p'u")  ,  dTu dt  dt                dt 

dp"u  dc(p"u)  ̂ dp(p"u')  „  druT  _    ,  dc-p"  [  p"Fx  -  pFx" 
dt  dt                 dt  P      dt     ~U    dt               p" 

}   (69), 

dp'u'        de  (p'u')       dp  (p'u,')  ,  dTu"        ,  d^p       p'Fx  -  pFx" 
~dt  dT  ~dT    ~  ~ p  ~df  +  U     dt  p" 

together  with  corresponding  equations  for  v",  w",  v  ,  w. 

Adding  the  last  three  of  equations  (69)  together,  it  appears  that 

d(pu-p"u")  _  dc(pu-p"u")  =  dp(pu-p"u")^ 
dt        "  dt 

dt 

7  H      II 

dTp  u 

=F*-~iir-  i 
(70), 
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whence  putting  Mx"  for  p"u",  Mx  for  pu  —  p"u",  &c,  &c.,  we  have 

dMx"     dcMx"  ̂ dpMx"  _    „dTu"       „dTp"         \ 
dt           dt            dt         P      dt  dt 

dMx  _  dcMx  _  dpMx'  F  _    „  dTu"  _    „  dTp" 
dt          dt           dt  x     P     dt     ~U     dt 

(71). 

It  is  to  be  noticed,  however,  that  these  last  equations  might  be  obtained 

by  the  simple  definition  of  (pu)",  so  that  they  do  not  express  all  the  definition 
which  results  from  the  separate  definition  of  p",  u".  The  importance  of 
this  appears  at  once  on  proceeding  to  derive  the  corresponding  equations 

of  energy  by  multiplying  the  equations  respectively  by  u"  and  u  ,  and  trans- 
forming, which  process  since  u",  v"  have  defined  values,  gives  definite 

results,  whereas  the  mere  definition  of  the  product  (pu)"  which  leaves  the 
definition  of  either  factor  incomplete  would  not  admit  of  such  derivation. 

38.     Distribution  of  momentum  in  a  component  system. 

The  condition  imposed  by  the  laws  of  motion,  as  the  result  of  experience 

of  physical  actions, — that  action  and  reaction  are  equal  and  opposite,  and 
that  the  exchanges  of  momentum  take  place  in  the  direction  of  the 

momentum  exchanged, — will  not  of  necessity  be  fulfilled  by  an  arbitrarily 
defined  component  system.  But  should  this  not  be  so  within  all  sensible 

spaces  and  times,  the  effects  of  one  component  system  on  the  other  will  not 

accord  with  any  physical  action ;  so  that  for  purposes  of  analysis  the  general 

expression  for  this  condition  in  a  component  system  is  of  the  first  im- 

portance. 

It  has  already  been  shown  that  the  first  of  the  conditions  requires  that 

the  integral  rate  of  increase  in  each  component  of  momentum,  in  a  resultant 

system,  shall  be  a  surface  integral,  however  small  may  be  the  limits  (Section  III, 
Art.  24).  The  same  holds  for  a  component  system  within  defined  limits ;  so 
that  we  must  have,  within  such  limits, 

////|s  UM"")]  +  Tt  (**")}  dxd'Jdzdt 

where  so  far  qxx,  qyx,  &c.  are  arbitrary. 

As  in  a  resultant  system  it  is  necessary,  in  order  to  satisfy  the  second 
condition,  that  the  integrals  of  the  rates  of  increase  of  the  moments  of 

momentum  should  be  surface  integrals  and  that  this  may  be  the  case  within 
defined  limits,  it  follows,  as  in  Art.  26,  that 

j J  J  Why  ~  (hz)  dxdydzdt  =  0,  &c,  &c   (73), 
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which  is  the  general  condition  to  be  satisfied  by  the  component  system  pu",  &c. 
if  the  analysis  is  confined  to  physical  properties. 

If  this  condition  is  satisfied  by  the  system  p"u",  &c.  it  follows  that  since  it 
is  satisfied  in  the  resultant  system  the  same  condition  will  be  satisfied  by  the 

residual  system  pu  —  p"u". 

39.  The  component  equations  of  energy  of  the  component  systems  as 

distinguished  by  density  and  velocity. 

Multiplying  the  first  of  equations  (6.9)  by  u"  and  transforming  by 

equations  (28  a),  Section  III.,  and  putting  p"Ex"  for  p"  (u")2/2,  we  have 

d  (p"Ex")     dc  {p"Ex")  _  dp  {p"Ex")  _    „  „  dTu"     u">  dTp" 

dt  dt        ~         dt     '  ~     P      dt    +  2      dt    +<*°- 

Also  multiplying  the  third  of  equations  (69)  by  v!  and  trans- 
forming (28  a)  we  have 

dP"Ex     de(p"Ex)     dp(p"Ex) 
dt dt dt 

"F 

=  «  [E£ - p» d-^>)  +  u" d~W  +  u> d-^} dt dt 
dt 

Then  multiplying  the  first  by  u   and  the  third  by  u"  and 
adding,  &c. 

d(p"Ex)     dc(P"Ex)     dp(p"Ex)     dTp"v!u"        r,„p"F,n '■ —      —    =   ^     =      ;      -+-  p    U           ■+"   OiO. 
dt  dt  dt  dt  ^  p 

=  u  u 

,.„dT(p") 
dTu"     o"u"Fr. 

dt  ~df p  (u  —  u  ) 
//\  "Tc 

+ 
+  &C. 

Again,  multiplying  the  second  by  u" ,  &c. 

dp'  Ex     dc  (P'EX")  =  dp  (P'EX")  =  u„  ,dTu"  t  u"*dTp    |  fca dt  dt  dt 

Multiplying  the  fourth  by  u',  &c. 

dp'Ex     dc  {p'E£)  _  dp  (p'Ex) 

dt 2     dt 

dt dt  dt 

,  , dTu      u 2 dTp         ,  ,  „       o 
dt    '   2    dt 

Then  multiplying  the  second  by  u'  and  the  fourth  by  u"  and 
adding,  &c. 

dp'Ex     dc(p'Ex)  =  dp (P'EX)  =  dT(p'uu")  _  PWF  +  &q dt dt dt dt 

=  u>u»  clTf + P'  d-i^pn +pj^+ &, dt        r  dt  p 

.(74). 
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The  first   of  these  equations  is  the  equation  of  the  component  system 

p  ,  u  . 

Then    adding    together    the   several    corresponding    terms    of   the    five 

equations  following  the  first,  we  have 

d  (PE  -  P"E")     dc  (pE-  p"E")  _  dp  (PE  -  P"E") dt  dt  dt 

for  the  energy  of  the  system  of  momentum  pu  -  p"u" 

hSfSgtVD-vr.+vr^vr.-t&iP   (76). 

40.     Generality  of  the  equations  for  the  component  systems. 

As  the  actions  which  are  respectively  expressed  by  the  several  terms  in  the 

equations  (68)  to  (72)  (remembering  -^— '  =  '°^~  +  -~ -J  are  mechanically 

distinct,  these  equations  are  perfectly  general  and  may  be  applied  to  the 

analysis  of  any  resultant  system  of  motion  existing  in  a  purely-mechanical- 

medium,  into  any  two  component  systems  which  are  geometrically  distinguish- 
able. 

The  motions  in  the  two  systems  are  not  necessarily  independent  but  the 

effects  of  the  one   on   the  other   are  generally  expressed  in  the  equations. 

Thus  it  may  be  that  neither  of  the  component  systems  is  a  conservative 

system,  since  one  system  may  be  subject  to  displacement  of  momentum  by 
and  may  receive  energy  from  the  other  system,  although  they  both  exist  in 

a   purely-mechanical-medium.     And   it   thus  appears   that  there  may  exist 
a  non-conservative  system  of  motion  in  a  purely-mechanical-medium ;  that 
is  to  say,  it  appears  that,  so  far  as  one  abstract  system  of  motion  is  concerned, 

a   purely-mechanical-medium    may  be    possessed   of  physical    properties  in 
consequence  of  the    simultaneous  existence  of  another  system    of  motion. 

Thus  where  the  only  motion  apparent  to  our  senses  is  that  of  a  component 

system,  (the   other  component  system  being  latent,)   although    this    exists 

in  a  purely-mechanical-medium,  the  apparent  system  will  not  of  necessity 
follow    the   laws    of  a  conservative   system,   but  is  expressed  by  equations 

involving  terms  expressing  the  effects  of  the  latent  system  on  the  apparent 

system,  which  apparent  effects  depend  on  certain  physical  properties  in  the 

medium.      Such  apparent  physical   properties  however  receive   mechanical 
explanation  when   the  complete  motion  of  it  is  known ;    or,  on  the  other 
hand,   the    experimental    determination    of  these  properties    may  serve  to 
define  the  latent  component  motion  so  as  to  account,  in  the  equations  of  the 

recognised  system,  for  the   terms  expressing  its  effect;  as  for  instance  the 
potential  energy. 
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41.     Further  extension  of  the  system  of  analysis. 

So  far  the  complete  expression  of  the  equations  of  motion  has  been 

confined  to  the  case  of  two  component  systems  of  motion.  But  by  a  precisely 

similar  method  either  of  the  two  component  systems  of  motion  may  by 

further  definitions  be  again  abstracted  into  two  or  more  component  systems 

of  motion  which  in  virtue  of  the  definition  are  geometrically  distinguishable 

from  each  other  and  from  the  remaining  component  system. 

If  instead  of  taking  u" ,  v" ,  w"  to  express  the  defined  components  of  the 
motiou  after  the  abstraction  of  the  residual  motion,  we  take 

u"  +  u>»  +  &c.,     v"  +  v"'  +  &c,     w"  +  w"  +  &c. 

and  for  CQ  put  &Q  +  d>Q  +  C-Q  +  &c.,  for  TM'  put  PM"  +  pM'"  +  &c,  and  so  on 
for  the  other  functions,  expressions  are  obtained  for  the  equations  of  as  many 

component  systems  of  motion  as  are  distinguishable  by  definition. 



SECTION    V. 

THE    MEAN    AND    RELATIVE    MOTIONS    OF   A    MEDIUM. 

42.     Kinematical  definition  of  mean  motion  and  relative  motion. 

By  the  mean  motion  of  the  medium  is  here  understood  an  abstract 

component  system  of  motion  of  which  the  mass  and  the  components  of  the 

velocity  respectively  satisfy  certain  conditions  as  to  distribution ; — 

(1)  The  condition  of  continuous  velocity,  that  the  mean  component 
velocities  are  continuous  functions  of  x,  y,  z  and  t,  however  discontinuous 

the  mass  may  be,  Art.  12. 

(2)  The  condition  of  being  mean  velocities,  that  the  quadruple 

integrals,  with  respect  to  the  four  variables,  of  the  respective  densities  of 
the  mean-components  of  the  momentum  (the  components  of  the  mean 

velocity  multiplied  by  the  density  of  the  mass  at  each  point)  taken  over 

spaces  and  times,  the  measures  of  which  exceed  certain  defined  limits,  shall 
be  the  same  as  the  corresponding  integrals  of  respective  components  of  the 

density  of  the  resultant  momentum. 

(3)  The  condition  of  momentum  in  space  and  time  of  the  components 
of  momentum  of  mean-velocities,  that  the  integrals  of  the  momentum  of 
the  mean  velocities  taken  over  the  same  limits  as  in  (2)  shall  be  respectively 

the  same  as  in  the  resultant  system. 

(4)  The  condition  of  relative  energy,  that  the  quadruple  integrals 

with  respect  to  the  four  variables,  taken  over  limits,  of  the  products  of  the 
differences  of  the  respective  components  of  the  actual,  or  resultant,  and  mean 

velocities,  each  multiplied  by  the  density  of  the  corresponding  components 
of  momentum  of  mean  velocities,  as  defined  in  (2)  shall  be  zero. 

By  the  relative  velocity  of  the  medium  is  here  understood  the  velocity 
which  remains  in  the  medium  after  the  mean-velocity  is  abstracted  from 
the  resultant  motion  when  this  velocity  satisfies  certain  conditions  besides 

those  entailed  by  the  abstraction  of  the  mean-velocity. 

The  conditions  entailed  by  the  abstraction  of  the  momentum  of  mean- 
velocities  are,  besides  the  condition  (4) — 
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(5)  The  condition  of  the  momentum  of  relative-velocity,  that  the 
mean  densities  of  the  components  of  momentum  of  relative  velocity  are  zero. 

(6)  The  condition  of  distribution  in  space  and  time  of  the  momentum 

of  relative  velocity,  that,  taken  over  the  same  limits  as  the  mean  velocity, 

the  means  of  the  products  of  the  respective  components  of  the  momentum 
of  the  relative  velocities  multiplied  by  any  one  of  the  measures  of  the 
variables  are  all  zero. 

The  further  condition  that  must  be  satisfied  by  the  velocity  left  after 

abstracting  the  mean  motion  in  order  that  this  may  be  relative- velocity  is: 

(7)  The  condition  of  position  of  energy  of  mean  and  relative  velocities, 
that  the  mean  values  of  the  products  of  relative  energies,  as  defined  in  (4), 

multiplied  by  measures  of  any  one  of  the  variables,  shall  be  zero,  or  that  the 

mean  position  of  the  energies  of  the  mean-velocity,  together  with  the  energy 
of  relative-velocity,  shall  be  the  mean  position  in  time  and  space  of  energy 
of  the  resultant  system. 

By  the  mean  density  of  mass  is  here  understood  an  abstract  system  of 
mass  which  satisfies  certain  conditions  as  to  distribution. 

(8)  The  condition  of  continuous  density,  that  the  mean  density  is  a 
continuous  function  of  the  variables. 

(9)  The  condition  of  mean  density,  that  the  quadruple  integrals  with 

respect  to  the  four  variables  of  the  mean-density  taken  over  spaces  and 
times  which  exceed  certain  defined  limits  shall  be  the  same  as  the  corre- 

sponding integrals  of  the  actual  density. 

(10)  The  condition  of  distribution  of  mean-density,  that  mean  position 
in  time  and  space  of  the  mean-mass  shall  be  the  same  as  the  mean  position 
of  the  resultant  mass. 

By  the  relative  density  of  the  medium  is  here  understood  the  density 

(positive  or  negative)  which  remains  in  the  medium  after  the  mean-density 
has  been  abstracted,  when  this  residual  density  satisfies  certain  conditions 

besides  those  entailed  by  the  abstraction  of  the  mean-density. 

The  conditions  entailed  by  the  abstraction  of  the  relative  density  are : 

(11)  The  condition  of  relative  density,  that  the  mean  of  the  relative 
density  is  zero. 

(12)  The  condition  of  distribution  of  relative  mass,  that  the  product 

of  relative  density  multiplied  by  the  measure  of  any  one  of  the  variables 
has  no   mean  value  when  taken  over  the  defined  limits. 

The  further  conditions  which  have  to  be  satisfied  by  the  relative  density 
of  mass  are : 
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(13)  The  condition  of  momentum  of  relative  mass,  that  the  products 

of  the  components  of  mean  velocity  multiplied  by  the  relative  density  of 
mass  have  no  mean  values  over  the  defined  limits. 

(14)  The  condition  of  distribution  of  momentum  of  relative  mass, 

that  the  products  of  the  components  of  mean  velocity  multiplied  by  the 
relative  density  of  mass  and  again  by  the  measure  of  any  one  of  the  variables 
have  no  mean  values  over  the  defined  limits. 

(15)  The  condition  of  energy  of  relative  mass,  that  the  products  of 

the  squares  of  the  components  of  mean  velocity  multiplied  by  the  relative 

density  have  no  mean  values  when  taken  over  limits. 

(16)  The  condition  of  position  of  energy  of  relative  mass,  that  the 

products  of  the  squares  of  the  components  of  mean  velocity  multiplied  by  the 
relative  density  and  again  by  the  measure  of  any  one  of  the  variables  have 
no  mean  values. 

By  the  mean  motion  of  the  medium  is  here  understood  the  product  of 

the  mean-velocity  multiplied  by  the  mean  density,  which  is  also  the  density 
of  the  mean  momentum.  And  by  the  relative  motion  of  the  medium  is 

understood  the  density  of  the  resultant  momentum  less  the  mean  mo- 
mentum. 

In  the  same  way  by  the  density  of  energy  of  mean-motion  is  understood 

the  product  of  the  square  of  mean-velocity  multiplied  by  the  mean-density 
of  mass ;  and  by  the  density  of  energy  of  relative  motion  is  understood  the 

density  of  energy  of  resultant  motion  less  the  density  of  energy  of  mean- 
motion. 

43.     The  independence  of  the  mean  and  relative  motions. 

It  will  be  observed,  that  according  to  the  foregoing  definitions,  in  any 

resultant  system  which  consists  of  component  systems  of  mean-  and  relative- 
motion,  satisfying  all  the  conditions,  all  the  motion  which  has  any  part  in 

the  mean  momentum  or  in  the  mean-moments  of  momentum  is,  by  integra- 
tion, separated  from  the  relative-motion  in  such  a  manner  that  the  motion 

of  each  component  system  is  subject  to  the  laws  of  motion.  Action  and 

reaction  being  equal  and  opposite  and  the  exchanges  of  momentum  taking 

place  in  the  direction  of  the  momentum  exchanged.  And  that  the  relative 

motion,  separated  out  by  integration,  is  confined  to  motions  of  linear  and 

angular  dispersion  of  momentum  the  effects  of  which  on  the  mean-motion 
are  such  as  correspond  to  the  effect  of  observed  physical  properties  of  matter. 

It  also  appears  that  all  the  conditions  must  be  satisfied  in  the  resultant 

motion  in  order  that  such  separation  may  be  effected. 
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44.  Component  systems  of  mean-  and  relative-motion  are  not  a  geo- 
metrical necessity  of  resultant  motion.  A  very  general  process  in  Mechanical 

Analysis  is  to  consider  motion  in  a  mechanical  system  for  a  definite  interval 

of  time  as  consisting,  at  each  point  of  space  at  any  instant  of  time,  of  com- 
ponent velocities  which  are  the  mean-component  velocities  of  the  whole  mass 

over  the  whole  time,  together  with  components  which  are  the  differences 

between  the  actual  components  at  the  point  and  instant,  and  the  mean- 

components.  These  systems  respectively  satisfy  the  conditions  as  to  con- 

tinuous and  mean-velocity  (1)  and  (2).  Also  the  condition  of  relative- velocity 
(5),  and  that  of  relative-energy  (4),  but  they  do  not  satisfy  the  conditions  as 
to  distribution  of  mean-momentum  or  any  of  the  other  conditions  ;  and  hence 
are  not  mean  and  relative,  except  for  particular  classes  of  motion,  in  the 
sense  in  which  these  terms  have  been  defined. 

Such  component  systems  of  constant  mean-motion  in  a  defined  space  and 
time  are  a  geometrical  necessity  in  any  resultant  system.  And,  although 

I  am  not  aware  that  it  has  been  previously  noticed,  it  appears  that  con- 
sidering the  number  of  geometrical  conditions  to  be  satisfied  by  the  momentum 

of  mean- velocity  and  of  relative-velocity  ((1),  (2),  (3),  and  as  a  consequence 
(5)  and  (6)),  and  the  opportunities  of  satisfying  them,  the  latter  are  sufficient 

for  the  former ;  so  that  every  resultant  system  of  motion  existing  in  a  defined 

space  and  time  consists  of  two  component  systems  which  satisfy  the  con- 
ditions (1),  (2),  (3),  (4),  (5)  and  (6),  although  they  do  not,  as  a  geometrical 

necessity,  satisfy  all  the  further  conditions  required  for  mean  and  relative 
motion  as  here  defined. 

45.  Theorem  A. 

Every  resultant  system  of  motion  consists  of  a  component  system  of  mean 

motion  which  satisfies  all  the  conditions  of  mean-velocity  (1,  2,  3),  and  the 
condition  of  relative  energy  (4),  but  not,  of  necessity,  that  of  position  of  relative 

energy  (7);  together  with  another  system  ivliich  satisfies  the  conditions  of 

relative  velocity  (5)  and  (6),  but  not  of  necessity  (7),  the  condition  of  distribu 

tion  of  relative  energy. 

Taking  the  mean-velocity  at  a  point  x,  y,  z  at  the  time  t  within  the 
defined  limits,  to  be  expressed  by 

u"  =  A+{x-x)Ax  +  {y-y)Ay  +  {z-z)Az  +  {t-t)Au  &c,  &c....(77), 
where  the  barred  symbols  refer  to  the  mean-position  of  the  mass  within  the 
limits,  whether  time  or  space,  thus 

JJJfxpdasdydzdt    „  m 

X=  ffffpdxdydedt  '  &C   
(78)' 

the  limits  being  assumed  ;  the  conditions  to  be  satisfied  by  the  component 

velocity  u"  are : 
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(1),(2),(5);  that 

I  jp  (u  —  u")  dxdydzdt  =  0, 
(3),  (6) 

(4) 
Iff  Up  (u  -  u")  dydxdzdt  =  0,  &c,  &c,  &c.\    (79) 

p  (u  —  n")  u"  dxdydzdt  =  0. 

The  last  of  these  conditions  will  be  identically  satisfied  if  the  others  are 

satisfied.  Hence  there  are  only  five  conditions  to  be  satisfied,  while  in  the 

expression  for  u"  there  are  five  arbitrary  constants,  which  are  determined  by 
putting 

JJJKpu)  dxdydzdt 

JjjJ(p)  dxdydzdt  
 ^ 

then  integrating  the  four  equations  of  position  and  obtaining  the  values  of 

Ax,  Ay,  Az,  At  by  elimination  from  the  resulting  equations.  These  values 
must  be  real  since  the  Ax,  &c.  enter  into  the  equations  in  the  first  degree 

only.  The  same  reasoning  applies  to  the  component  velocities  v"  and  w" ;  so 
that  the  first  part  of  the  theorem  is  proved. 

To  prove  the  second  part  all  that  is  necessary  is  to  observe  that  the  con- 
dition (7)  requires  that 

|  fffxp  (u  -  u")  u"  dxdydzdt  -  0     (81), 
when  it  is  at  once  seen  that  this  condition  is  not  satisfied  as  a  geometrical 

consequence  of  the  definition  of  u",  since  the  terms  involve  products  of  the 
variables  x  (y  —  y)  pAy,  &c,  which  do  not  necessarily  vanish  on  integration  : 
so  that  the  second  part  of  the  theorem  is  proved. 

46.     Theorem  B. 

In  a  similar  manner  it  appears  that  every  resultant  system  of  mass 

consists  of  a  component-system  of  mean-mass  which  satisfies  all  the  conditions 
(8),  (9)  of  mean  density,  and  the  conditions  of  relative  density  (11)  and  position 

of  relative  density  (12),  also  the  condition  of  momentum  of  relative  mass  (13) ; 
but  does  not  satisfy,  of  necessity,  the  condition  of  distribution  of  momentum, 

of  relative- mass,  or  of  mean-mass  (10),  (14),  nor  tlie  conditions  of  energy  of 
relative  inass,  (15)  and  (10). 

Taking  the  mean-density  of  mass  at  x,  y,  z  and  t  to  be 

p"  =  D  +  (x-x)Dx  +  (y-y)Dy  +  (z-z)Dz  +  (t-i)Dt   (82), 
where,  as  before,  the  barred  symbols  refer  to  the  mean  position  of  mass 

between  limits  of  time  and  space.     And  putting  ̂ ,  x1,  yx,  &c,  as  referring  to 
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the  mean  position  in  time  and  space,  not  of  the  mass,  but  of  the  time  and 

space  between  limits.  Since  the  mean  value  of  p"  between  limits  is  not  the 
mean  value  at  the  centre  of  gravity  or  epoch,  the  conditions  to  be  satisfied 
are: 

(8),  (9),  (11) 

(10),  (12)  [...(83), 

\\\\x(p  —  p") dxdydz  dt  =  0,  &c,  &c,  &c. 

which  five  conditions  determine  D,  Dx,  Dy,  Dz  and  Dt  whatever  may  be 

the  distribution  of  mass,  so  that  putting  p  =  p  —  p"  the  conditions  (11) 
and  (12), 

\p  dxdydz  ■--  0 

re    ,    <8*> 
I  jxp  dxdydz  =  0,  &c,  &c,  &c. 

are  satisfied. 

Again,  since  the  constants  A  and  D  in  the  equations  (77  and  S3)  for  u" 

and  p"  are  respectively  the  values  of  u",  p",  at  the  mean  position  of  mass 
respectively,  and  the  constants  Ax,  &c.  and  Dx,  &c,  are  the  differential 

coefficients  of  u"  and  p",  respectively,  the  equations  may  be  written 
u"=u"  +  u,  &c,  &c.)  /0_x 

\    (bo). 
p"  =  p"  +  p\  &C,   &C.J 

Then  multiplying  the  corresponding  members, 

pu  =  p"u"  +  p'u"  +  pit,  &c,  &c   (86), 

whence  it  appears,  since  the  integrals  of  the  last  three  terms  on  the  right 
are  by  definition  of  necessity  zero,  that 

jpudxdydzdt=  1 1 1  ipii'dxdydzdt     (87), 

so  that  condition  (13)  is  of  necessity  satisfied,  which  concludes  the  proof  of 
the  first  part  of  the  theorem. 

To  prove  the  second  part.  Multiplying  the  equation  respectively  by  x, 

&c,  then,  since  the  integrals  of  xpu',  &c.  are  zero  while  those  of  x2p'  are  not 
of    necessity    zero,    and    the    expression    of    xpu,    &c.    includes    the    terms 

ft'}/ 

x-p   -j— ,  &c,  it  appears  that  the  product  p"u"  does  not  of  necessity  satisfy 

the  condition  of  position  of  mean-momentum  for  every  distribution  of  mass, 
which  proves  the  second  part  of  the  theorem. 
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It  has  thus  been  proved  that  in  order  that  a  resultant-system  of  motion 

may  satisfy  the  condition  of  consisting  of  a  component  system  of  mean- 
momentum  which  is  a  linear  function  of  any  one  or  more  of  the  variables 

together  with  a  component-system  of  relative-motion  which  satisfies  all  the 

conditions  (1)  to  (15),  the  relative  motion  and  the  relative-mass  must,  what- 
ever may  be  the  mechanical  cause,  be  subject  to  certain  geometrical 

restrictions  relative  to  the  dimensions  of  the  limits  over  which  the  mean 

motion  is  taken.  With  a  view  to  studying  the  mechanical  circumstances 
which  cause  such  restrictions,  where  they  are  shown  to  exist  by  the  existence 

of  systems  of  mean  and  relative  motion,  it  becomes  important  to  generalise, 

as  far  as  possible,  the  geometry  of  these  restrictions. 

47.  General  conditions  to  be  satisfied  by  relative-velocity  and  relative- 
density. 

The  general  condition  to  be  satisfied  by  relative- velocity  is  that,  in 
addition  to  the  conditions  which  follow  from  the  definition  of  mean-velocity, 
the  integrals  of  the  products  of  the  density  of  relative  component  energy, 

pu"u,  multiplied  by  the  measure  of  any  variable,  are  zero,  or 

jffLpu"u'dxdydzdt  =  0,  &c,  &c,  &c   (88). 

Hence  as  u"  is  a  linear  function  of  the  variables  these  conditions  will  be 

satisfied  if  pu' ,  multiplied  by  any  variable,  and  again  by  the  squares  of  any 
power  of  this  variable,  all  vanish  on  integration  with  respect  to  all  four 

variables,  so  that  the  general  condition  is  at  once  seen  to  be  that  pu',  &c,  the 
components  of  momentum  of  relative  velocity,  integrated  between  limits 

with  respect  to  any  two  independent  variables  independent  of  the  variable 

in  which  u"  varies,  must  have  no  mean  value ;  and  in  the  same  way  for  v", 
w",  since  v",  w"  are  not  necessarily  functions  of  the  same  one  variable,  in 

order  to  generally  satisfy  the  conditions  pit ,  pv',  piv  must  vanish  when 
integrated  with   respect  to  any  two   variables. 

Again  when  the  previous  condition  of  relative  velocity  is  satisfied,  it 

appears  that  the  general  condition  of  position  of  mean-momentum, 

I  \xp"ii'  dxdydzdt  —III  jxpudxdydzdt,  &c,  &c. 

requires  that  the  products  x*p ',  &c.  shall  vanish  when  integrated  between 
limits  with  respect  to  all  four  variables.  Whence  we  have  for  the  condition 

of  relative  mass — that  the  integrals  of  p  taken  between  limits  with  respect 
to  any  two  independent  variables  which  are  independent  of  the  variable  in 

which  u"  varies  &c.  must  be  zero. 

If  both  the  previous  conditions  are  satisfied  it  appears  that  the  conditions 
(15)  and  (16)  will  be  satisfied  for 

pu  —  pu    =pu    +  pu      (k"), 
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and  since  u"  is  a  linear  function  of  the  variables 

(Pa  -  p"u" )  u"  =  p'u"*  +  pu'u"   (90), 

whence  the  integrals  of  both  the  terms  on  the  right  vanish  by  the  previous 
conditions. 

And  further,  the  conditions 

ljlfcc(pu-  p"u")=0,  &c,  &c,  &c   (91) 

are  satisfied;  for  by  taking  u"  constant  in  equation  (77),  by  the  definition  of 

u"  we  have  one  relation  between  four  independent  variables,  so  that  there 
are  three  independent  variables  with  respect  to  which  u"  is  constant.  And 
in  exactly  the  same  way  there  are  three  independent  variables  with  respect 

to  which  p"  is  constant.  Therefore  u"2  and  p"  are  each  functions  of  one 
independent  variable  only.     Hence  in  the  expressions 

xp'u"2  +  xpu'u",  &c,  &c, 

since  v",  w"  are  not  functions  of  the  same  variable  as  u",  p'x,  &c.  must  vanish 

when  integrated  with  respect  to  any  two  variables,  or  u",  v",  w",  must  be 
constant.  The  factors  of  p'  and  pu'  are  each  functions  of  two  independent 
variables  only,  and  hence  these  terms  vanish  on  integration  between  limits 

with  respect  to  all  four  variables  by  the  previous  conditions  of  relative  density 
and  relative  velocity. 

Whence  it  appears  that  the  general  conditions,  besides  those  which  follow 
from  the  definitions  of  mean  velocity  and  mean  density,  that  must  be 
satisfied  by  the  momentum  of  relative  motion  and  by  relative  density,  are 

that  these  must  have  no  mean  values  when  integrated  between  limits  with 

respect  to  any  two  independent  variables  independent  of  the  variable  with 

respect  to  which  u"  varies,  &c.  And  it  is  only  resultant  systems  in  which 
these  conditions  are  satisfied  that  strictly  consist  of  dynamical  systems  of 
mean-  and  relative-motion. 

That  these  conditions  can  be  strictly  satisfied  by  any  system  within  finite 

limits  seems  to  be  impossible ;  as  for  this  it  would  require  that,  in  a  purely 
mechanical  medium,  there  should  be,  in  the  same  space  and  time,  two  masses 

moving  in  opposite  directions,  such  that  at  each  point  the  density  of  the 

momentum  of  the  one  was  equal  and  opposite  that  of  the  other.  It  is  how- 
ever possible  to  conceive  masses  with  equal  and  opposite  momenta  at  any 

finite  distance  from  each  other,  and  in  such  cases  the  conditions  may  be  con- 

ceived to  be  satisfied  to  any  degree  of  approximation. 

r.  4 
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48.  Continuous  states  of  mean-  and  relative-motion. 

The  abstract  systems  of  relative  velocity  and  relative  density  as  defined 

in  the  previous  article  must,  as  a  geometrical  necessity,  be  of  an  alternating 
character  in  respect  of  some  of  the  variables,  such  that  the  respective  means 

of  the  positive  and  negative  masses  of  relative  densities,  and  the  positive 

and  negative  momentum  of  relative  velocity,  taken  over  the  limits  as  to  any 
two  variables,  balance.  And  as  a  consequence  the  distribution  of  such 

relative-masses  and  relative-velocities,  whether  regularly  periodic,  as  in  the 

case  of  waves  of  light  or  sound,  or  such  as  the  so-called  motions  of  agitation 
among  the  molecules  of  a  gas,  involves  a  geometrical  scale  of  distribution 

defined  by  the  dimensions  of  the  variables  over  which  the  alternations 
balance. 

Such  scales  of  relative-density  and  velocity,  clearly,  define  the  inferior 
limits  of  the  spaces  and  times  over  which  the  resultant  system  can  consist 

of  systems  of  mean-  and  relative-motion.  But  there  is  no  necessity  that  the 

defined  space  and  time  over  which  the  system  of  mean-motion  extends  should 
be  confined  to  the  dimensions  of  such  scales.  That  is  to  say  the  defined 

space  and  time,  over  which  the  mean-system  may  be  a  linear  function  of  the 
variables,  may  be  in  any  degree  larger  than  the  minimum  necessary  for  the 

satisfaction  of  the  conditions  of  relative-density  and  relative-velocity,  since 
these  conditions  will  be  satisfied  for  the  whole  space  if  they  are  continuously 

satisfied  in  every  element  of  dimensions  defined  by  these  conditions. 

49.  Under  such  circumstances  the  expressions  for  the  mean-motion 
admit  of  another  interpretation,  one  which  has  already  been  discussed  in  a 

paper  on  "  The  Theory  of  Viscous  Fluids*." 

In  this  expression  the  mean- velocity  at  any  point  x,  y,  z,  t  is  defined  as 
the  mean  taken  over  an  elementary  space  and  time,  of  dimensions  defined  by 

the  scales  of  the  relative-velocity  and  density,  so  placed  that  the  mean 
position  of  the  mass  within  the  element  is  defined  by  x,  y,  z,  t 

Then,  since  by  definition  the  relative-velocity  and  relative-density,  as 
defined  by  integration  over  the  whole  space  and  time,  have  no  mean  value  in 

the  element,  the  mean  velocity  at  x,  y,  z,  t  (the  mean  position  of  mass) 

obtained  by  integration  over  the  element  will  be  the  same  as  that  at  the 

same  point  obtained  by  integration  over  the  whole  space  and  time,  as  in  the 

first  of  equations  (79) ;  and  since,  by  definition,  not  only  the  relative  density, 

but  also  the  variations  of  relative  density,  with  respect  to  any  variable,  have 

no  mean  values  in  the  element,  the  mean-density  at  the  mean  position 

x,  y,  z,  t,  obtained  by  integration  over  the  element  as  in  equations  (87)  will 
be  the  same  as  that  obtained  (as  in  the  second  equation  (89))  by  integration 
over  the  whole  space  and  time. 

*  Royal  Soc.  Phil.  Trans.  1894,  pp.  123—164. 
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It  thus  appears  that  p",  u",  in  equations  (89)  to  (91)  may  be  taken  to 
represent  the  values  of  the  mean-density  and  mean-velocity  at  x,  y,  z,  t,  as 
defined  by  integrations  with  respect  to  two  variables  over  an  element  having 

dimensions  defined  by  the  scales  of  relative-velocity  and  relative-density, 
so  placed  that  the  mean  position  of  the  density  in  space  and  time  is  at 

x,  y,  z,  t. 

50.  The  instruments  for  analysis  of  mean-  and  relative-motion. 

It  further  appears  that,  since  in  the  method  of  Arts.  43  and  44  u"  may  be 
taken  to  represent  any  entity,  quantities  consisting  of  the  squares  and 

products  of  u,  u",  u,  Ffp  may  by  the  theorems  of  those  articles  be  separated 
into  mean-  and  relative-components  which  satisfy  the  conditions  Art.  42,  (1), 
(2),  (3),  (4),  (5)  and  (6),  respectively,  the  mean  components  being  linear 
functions  of  the  variables,  and  the  relative  components  having  no  mean 

value  when  integrated  with  respect  to  any  three  independent  variables  over 

dimensions  determined  by  the  scales  of  relative-velocities  and  relative- 

density.  And  in  the  case  of  the  quantities  p ',  pu,  &c,  subject  to  the  further 
definition  Art.  48,  but  only  in  the  case  where  the  relative  components  will 

have  no  mean  values  when  integrated  with  respect  to  any  two  independent 
variables  over  the  same  scales.  But  in  either  case,  if  Q  expresses  the  density 

of  any  function,  integrating  over  definite  limits  about  any  point  x,  y,  z,  t  as 
mean  position  of  mass  at  that  point  we  have 

fffj'Q  dxdydzdt  =  -„ 
ffffdxdydzdt and 

ffff(Q-Q")  dxdydzdt  = 

fffjdxdydzdt 
and  putting  h  and  k  for  any  two  variables,  r    W^/- 

(h  (Q  -  Q")  dxdydzdt  =  0, 

hk  (Q  -  Q")  dxdydzdt  =  0V 

Equations  (92)  are  thus  the  general  instruments  of  mean  and  relative 
analysis. 

51.  Approximate  systems  of  mean-  and  relative-motion. 

The  interpretation  of  the  expressions  for  mean-  and  relative-motion  con- 
sidered in  the  last  article  is  adapted  to  the  consideration  of  systems  in  which 

the  mean  motion,  taken  over  spaces  and  times  which  are  defined  by  the 

scales  of  relative-density  and  relative-velocity,  is  everywhere  approximately 
a  linear  function  of  the  variables  measured  from  the  mean  position  and  mean 

4—2 
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time.  Thus  if  p"  and  u"  are  any  continuous  functions  of  the  four  variables 

x,  y,  z,  t,  taking  x0y0z0t0  as  referring  to  a  particular  point  and  time,  then  at 

any  other  point  x,  y,  z,  t, 

■  (•  -  "0  ffi  +  &c'  +  5  («  -  *»)'  S)  +  *» 
f 

•(93), 

i 

where  the  differential  coefficients  are  all  finite.  Therefore  as  (x  —  x0),  &c. 
approach  zero  all  terms  on  the  right  except  the  first  approximate  to  zero,  and 
the  terms  of  higher  order  which  involve  as  factors  multiples  of  the  variables 

of  degrees  higher  than  the  first  become  indefinitely  small  compared  with  the 
linear  terms.  It  is  therefore  possible  to  conceive  periodic  or  alternating 
functions  of  which  the  differential  coefficients,  continuous  or  discontinuous, 

are  so  much  greater  as  to  admit  alternations  to  any  finite  number  being 

included  between  such  values  of  (x  —  x0),  &c,  as  would  leave  the  terms  of 
the  second  and  higher  orders  indefinitely  small  as  compared  with  those  of 
the  first  order,  and  those  of  the  first  indefinitely  small  as  compared  with  the 

constant  term.  Therefore  as  long  as  p"  and  u"  are  finite  and  continuously 
varying  functions  of  the  variables  it  is  always  possible  to  conceive  systems 

of  relative-density  and  relative-motion  which  together  with  their  differential 
coefficients  satisfy  the  conditions  of  having  approximately  no  mean  values 

over  the  limits,  and  thus  to  any  degree  of  approximation  satisfy  the  con- 
ditions necessary  to  be  relative-component  systems  to  the  mean  system 

Po"uo"  +  &c.  within  the  limits  denned  by  the  scale  of  relative  motion. 

The  method  of  approximation  therefore  consists  in  obtaining 

p",  u",  p"u'\  &c,  &c, 

and  the  variations  of  these,  Q",  when  Q  is  any  function  of 

p  u  ,  p  ,  p,  pu, 

by  integrating  over  the  element  taken  about  x,  y,  z,  t,  as  the  mean  position, 

then  using  these  quantities  as  determined  for  x,  y,  z,  t,  to  express  by 

expansion 
p"u",  &c,  &c, 

for  any  other  point  within  the  limits  of  integration  as  in  equation  (93) 
so  as  to  obtain  the  mean  values  of  these  terms  in  the  equations  by  integration 

over  the  elements,  neglecting  the  integrals  of  all  terms  which  involve  as 
factors  functions  of  the  increments  of  the  variables  of  degrees  higher  than 

the  first :  and  in  this  way  may  be  obtained  any  necessary  transformations  of 

products  of  mean  inequalities  and  rates  of  variation,  as 

u"dp"u"  =  dp"u"'2  —  u"p"du",  &c. 
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It  thus  appears  that  the  only  motions  neglected  are  those  which  are 

defined  as  small  by  the  conditions,  being  of  the  second  degree  of  the  dimension 
of  the  scale  of  relative  motion,  while  those  retained  may  have  any  values  at 

a  point,  and  are,  within  the  limits  of  approximation,  linear  functions  of  the 

variables ;  so  that  within  the  same  limits  p  ,  pu,  &c,  &c,  satisfy  by  the 

special  definition  the  conditions  of  having  no  mean  values  over  the  limits  of 

any  two  variables ;  and  generally  Q'  has  no  mean  value  over  three  independent 
variables. 

As  has  already  been  pointed  out  the  maintenance  of  such  a  system  must 

depend  on  the  distribution  and  constraints,  and  the  process  of  analysis 
consists  in  assuming  such  a  condition  to  exist  at  any  instant,  and  then  from 

the  equations  of  motion  ascertaining  what  circumstances,  as  to  distribution 

and  properties  of  conduction,  the  actions  of  convection  and  transformation  by 
and  to  the  relative-motion  on  the  variations  of  the  mean-motions  will  be  to 
increase  or  to  diminish  these  variations  of  the  first  and  second  orders. 

52.     Relation  between  the  scales  of  mean-  and  relative-motion. 

From  the  previous  article  it  is  clear  that  the  absolute  dimensions  of  the 

scale  of  mean-motion,  as  determined  by  the  comparative  values  of  the  terms 
of  higher  orders  as  compared  with  those  of  the  lower,  do  not  enter  into  the 

degree  of  approximation  to  which  the  conditions  of  relative-mass  and 

velocity  are  satisfied,  except  as  compared  with  the  scale  of  the  relative- 
motion.  But  it  does  appear  that  the  degree  of  approximation  depends  on 

the  comparative  values  of  these  scales.  And  hence  it  is  only  under  circum- 
stances (whatever  these  may  be)  which  maintain  distributions  of  mass  and 

velocity  which  admit  of  complete  abstraction  into  two  systems  widely 
distinct  as  to  relative  scales,  that  systems  of  mean  and  relative  motion  can 
exist. 

Thus,  as  we  have  previously  pointed  out,  it  is  not  sufficient  that  the 
relative  motion,  or  one  class  of  motions  such  as  the  motion  of  the  molecules  of 

a  gas  in  equilibrium,  should  be  subject  to  superior  limits  by  the  scale  of 
distribution.  It  is  equally  necessary  that  the  scale  of  variation  of  mean 

motions,  such  as  the  mean  motions  of  a  gas,  should  be  subject  to  superior 

limits  (whatever  may  be  the  cause)  which  prevent  the  scale  of  these  mean- 
motions  approaching  that  of  the  molecules.  And  it  is  the  existence  of 
circumstances  which  secure  both  these  effects,  which  is  indicated  by  resultant 

systems  which  satisfy  the  conditions  of  mean-  and  relative-motion  as  defined. 

It  has  been  already  proved  that  the  existence  of  component  systems 

which  satisfy  the  conditions  of  mean  position  of  density  and  of  relative 

energy,  as  well  as  those  of  mean-density  and  mean-position  of  momentum 

of  mean-velocity,  is  not  a  geometrical  necessity  of  the  definition  of  mean- 
motion  as  is  the  existence  of  component  systems  which   satisfy  the   latter 
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conditions  only.  Were  it  not  so  there  would  be  no  point  in  the  analysis,  for 
then  the  existence  of  such  component  systems  would  reveal  no  special 

circumstances  as  to  the  geometrical  distribution  of  the  medium,  or  the  motion 
in  the  medium,  whereas  it  has  now  been  shown  that  the  existence  in  such 

systems  of  mean-  and  relative-motion,  as  indicated  by  the  observed  mean- 

motion  and  the  apparent  "  physical"  properties  of  the  medium  or  matter, 
depends  (if  in  a  purely  mechanical  medium)  upon  circumstances  which 

constrain  the  geometrical  distribution  of  the  motion  of  the  medium.  Thus 

the  application  of  this  method  of  analysis  affords  a  general  means  of  studying 
the  conditions  of  the  medium,  either  intermediate  or  fundamental,  which 

would  admit  of  such  relative  or  latent  motion  as  is  necessary  to  account, 

as  a  mechanical  consequence,  for  the  apparently  physical  properties  of  matter 

and  the  medium  of  space. 



SECTION   VI. 

THE    APPROXIMATE    EQUATIONS   OF   COMPONENT  SYSTEMS    OF 
MEAN-    AND    RELATIVE-MOTION. 

53.  These  equations  must  conform  to  the  general  equations  of  component 

systems  as  expressed  in  the  equations  (61)  to  (76),  Section  IV. 

Thus  if  in  equations  (69),  (70),  (71),  together  with  equations  (74),  (75),  (76), 

p",  u"  and  p'u'  are  at  any  time  subject  to  the  respective  definitions  for  mean- 
and  relative-motions,  these  suffice,  for  the  instant,  to  determine  the  rates  of 

transformation  (as  expressed  by  arbitrary  functions)  in  terms  of  the  several 

defined  rates  of  convection  and  production. 

Then  these  rates  of  transformation,  as  expressed  in  the  defined  symbols, 

having  been  substituted  in  the  equations,  these  equations  express  the 

approximate  rates  of  change  of  the  mean  and  relative  component  systems 
at  the  instant. 

These  equations  express,  in  terms  of  the  so  far  defined  mean  and  relative 

quantities,  the  initial  approximate  rates  of  change  in  the  defined  quantities 
and  thus  afford  the  means  of  studying  whatever  further  conditions  must  hold 

in  the  distribution  of  the  medium  in  order  that  these  rates  of  change  may- 
tend  to  maintain  or  increase  the  degree  of  approximation  to  which  the 

conditions  of  mean-  and  relative-motion  are  initially  subject.  This  study  of 
the  further  definition,  however,  must  of  necessity  follow  the  complete 

expression  of  the  initial  equations,  to  which  this  section  is  devoted. 

54.  Initial  conditions. 

The  initial  conditions  for  approximate  component  systems  of  mean-  and 
relative-motion,  as  defined  in  Arts.  50  and  51,  Section  V.,  define  all  mean 

quantities  as  continuous  functions  of  the  variables,  such  that  within  the 

limits  over  which  the  means  are  taken  they  are  constant  to  a  first  approxi- 
mation, whether  they  are  the  means  of  density,  means  of  velocity,  or  means 

of  component  momentum;  also  the  means  of  any  products  or  derivatives  of 

products,  of  velocity,  or  density,  the  means  of  any  products  of  mean  and 

relative  quantities,  while  the  products  of  the  relative  quantities,  correspond- 

ing, multiplied  by  the  density,  are  such  that  their  means  taken  over  the  same 
limits  are  zero. 
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Thus  if  Q  be  any  term  expressing  increase  of  density  of  mass,  momentum, 

or  of  energy  for  the  resultant  system,  or  for  either  of  the  component  systems 

at  a  point,  x,  y,  z,  t,  at  distance  8x,  8y,  8z,  8t, 

=  ffffQdxdijdzdt  _Bxd<y  +  &c  ) 
JJfjdxdydzdt  dx 

•  (94), 

Q'  =  Q-Q" 
satisfy  the  conditions  (1),  (2),  (3),  (4),  (5)  and  (6),  Art.  42,  of  being  respectively 

mean  and  relative,  approximately,— that  is  to  say  Q"  is,  approximately,  a 

linear  function  of  the  variable,  and  Q'  has  approximately  no  mean  value 
when  integrated  over  any  three  independent  variables. 

Also  if  -j*-  is  a  derivative  of  any  quantity 

dx )        dx 

.(95). 

and  Q  W  =  d  (Q,"&)  _  QfdQt 
dx  dx  dx 

55.  The  rate  of  transformation,  at  a  point,  from  mean-velocity,  per  unit 

of  mass. 

From  equation  (58)  or  the  first  two  of  equations  (69)  transforming  by 
equation  (19), 

du"        ..  du"        ..  du"         „  du" 
-j-  +  u"  -j    +  v"  -=-  +  w"  -=- dt  dx  dy  dz 

+  U  Hx  +V  ~dy+W    dz=dt  {*U  }>  &C-'  &C   (96)- 
The  first  four  terms  in  this  are  all  mean  accelerations,  while  the  last 

three  terms  on  the  left  are  such  that  multiplied  by  p  have  no  mean  values — 

are  entirely  relative-accelerations — whence  by  definition  it  follows  that  since 

du'Jdt  is  a  mean-acceleration  the  right  member  must  contain  terms  which 
exactly  cancel  the  last  three  terms  on  the  right,  and  that  these  form  the  only 

relative  terms  it  can  contain.  These  terms  which  represent  the  acceleration 

at  a  point  per  unit  mass,  due  to  convection  of  mean  velocity  by  relative 

velocity,  are  the  only  transformation  from  mean  velocity  at  a  point. 

Since  after  abstracting  these  terms  the  right  member  remains  wholly 
mean,  we  have 

%^'  =  M'*':  +  &c.  +  f%i-T   (97). dt  dx  \  dt  J  v     ' 

56.  The  rate  of  transformation  at  a  point  from  relative  velocity,  per  unit 

of  mass. 

From  equations  (60),  or  the  last  two  of  equations  (69), 

dpu"      de(pu)      „         dvu"    0       .  /noN 
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In  this  the  term  on  the  left  is,  by  definition,  such  as  has  no  mean  value, 

hence  taking  a  mean  by  equation  (92),  Section  V. 

i  Clpll 

¥)"=ffM'   (99)' 
or  dividing  by  p"  it  appears  that  the  transformation  from  relative-velocity  to 
mean-velocity,  at  a  point,  is  expressed  by 

1^  jde (pit) P 
dt +  FX[  ,  &c,  &c; 

that  is  the  mean  accelerations  due  to  the  mean  convections  of  the  relative- 

velocity  by  the  relative-velocity,  plus  the  mean  acceleration  due  to  con- 
duction. 

Substituting  from  equation  (97)  the  expression  dpu" '/dt  in  equations  (58) 
and  (60),  Section  IV. 

m 
,  du"        ,  du"         ,  du"      1  de  (pu)"     Fx"     .       .     \ +  V  -7     +  w 

dy  dz 
dt 

.(100). 
dv  (u)  . du"       ,  du"        ,  da"      1  de (pu)      Fx"     0        0 

).        =~U  -j   V    ~j   W     -j   j,   f.  -      +  —tt  ,    &C,   &C. dt  dx  dy  dz       p        dt  p 

57.     The  rates  of  transformation  of  the  energy  of  mean-velocity. 

As  already  pointed  out,  Art.  35,  Section  IV.  equation  (61),  the  rates  of 

transformations  of  energies  per  unit  of  mass,  of  mean-velocity  and  relative- 
velocity,  are  respectively  obtained  by  multiplying  the  rates  of  transformation 

of  mean-  and  relative-velocity,  u"  and  v! ,  &c,  &c.  respectively ;  thus 

2      dt  2U     dx     +&c-  +  p»\     dt     +  *.J  ,  «&,  *c 

1  dT  (u'Y  {   .  .  du"       ,  .  du"        .    ,  du") 

2T-  =  i""¥+"T,+"*j 
u'  (dc  {pu')      „  ' &c,  &c. 

dT  (u"u) dt 

v.. .(101). 

1  \dT{u'J  ,  dT(u'f\ 

-z\—d^+^r)>  &c-'  &c- 
i    d_^r_f    (u-- u')  (dc{Pu) 

~      2U      dt      ~       p"       \     dt      +     a 

■    +  It'll  -%-  +  &c->  &c- dx  j 

58.  The  expressions  for  the  rates  of  transformation  in  equations  (100) 

and  (101)  include  all  the  rates  of  transformation  of  component  velocities,  and 

of  the  squares  and  products  of  the  component  velocities  of  the  component 

systems  of  mean-  and  relative-velocities  which  enter  as  arbitrary  functions 
into  the  equations  (69)  and  (74).    But  as  is  pointed  out  in  Art.  35,  Section  IV. 
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any  one  of  these  quantities,  the  rate  of  increase  of  which  is  expressed  by 
one  of  the  equations,  may,  by  definition,  be  further  abstracted  into  two 

component  systems. 

The  component  systems  of  the  energies  of  the  mean-  and  relative-velocity 
per  unit  mass  may,  therefore,  be  separately  abstracted  into  mean  and  relative 

component  systems.  And  the  importance  of  this  at  once  appears,  since  the 

process  of  analysis  is  solely  between  the  mean  and  relative,  and  while  (u")2 
is  mean  and  (u"u)  is  relative,  (u)2,  although  positive,  is  not  continuously 
distributed  as  a  continuous  function  of  the  variables. 

The  rate  of  transformation  from  the  mean  rate  of  increase  of  energy  of 

relative-velocities  to  relative-energy  of  relative  velocity.  Adding  the  second 
and  fifth  of  the  equations  (74)  as  they  stand,  and  substituting  the  expression 

for  the  transformation -function  from  the  second  of  equations  (101),  we  have 

1  dp  {u'f  _  1  d[c(puj  +  u'Fx] 2 
(de  (pu) 

dt 
dt 

,  ,  da"
 pu  u 

dx 

pu 

P dt 

+  Fa 

.(102). 

Then  putting 

(uj  =  ((u)r  +  ((.ujy   (103), 

where  {(u'Y)"  is  obtained  after  the  same  manner  as  u" ;  putting  d(T((u')'2)")/dt 
for  the  total  rate  of  transformation,  we  have  as  in  equations  (97)  and  (98), 

substituting  {(u'J)"  for  u"  and  the  three  last  terms  in  equations  (102)  for  Fx 
in  equations  (100),  since  the  last  term  has  no  mean  values, 

ldp((uj)"_l(      d((uj)" 
2"dT'~2\U        dx      +&C' 

+ d  [dcP  {{uj)'] 

1^ 

V 

,  ,  du 

pu  u 

dx 

dt 

+  &c 

+  u'Fx 
.(104) 

and i4MJf     iKpr.a,,   {104A). 2       dt  2       dt 

dTu 

=ar"°- 
Then  since 

dp (w2)  _  dT {u'j   dT({ujy 

dt   -~~dT~+      dt    ~+UJi*> 

\dp\y?-(u*)"]     1    ,d((u'y  +  (uY) 
dt 

2U
 

u 

+  — 

P 

dx 
+  &c.  -  u'Fx 

[1  dcpu' 

+  Fa 

+ 
1 

2    dt 

1  dcp((u')T 2  dt 
dx 

\-u'Fx-[  pwV^  +  &c. 

.(105). 
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The  expressions  for  the  production  of  mean  energy  of  relative  motion 
which  form  the  left  members  of  equations  (104)  are  not  transformations  from 

energy  of  mean  motion  only.  They  include  the  relative  parts  of  the  rates  of 
convection  and  production  of  energy  of  relative  motion  which  are  being 

transformed  to  the  system  of  relative  energy.  These  rates  of  convection  and 

production  of  relative-energy  are  expressed  by  the  first  two  terms  in  the 

equations  (104),  while  the  last  term  expresses  the  only  rates  of  trans- 

formation from  energy  of  mean-motion. 

Whence  the  only  transformations  from  energy  of  the  component  mean 
motions  are 

(   ,  ,  du"        ,  ,  da"        ,  ,du"\      0       0 —  p  \u  u  -?   \-  v  u     ,    +w  u  -7—  > ,  &c,  &c. 
r   [         dec  dy  dz ) 

59.     The  rate  of  transformation  from  mean  to  relative  energy. 

From  equation  (64),  at  a  point, 

dTp"  _dp"     dp"u"     dp"v"     dp"w"     dp'ti      dp"v      dp"w 

dt         dt         dec  dy  dz  dx  dy  dz       

where  the  first  four  terms  on  the  right  are  all  mean,  and  the  last  three  may 
be  in  part  mean  and  in  part  relative.  Hence  the  relative  part  of  the 

convection  of  mean-density  by  the  relative-velocity  is  the  transformation 
to  the  relative  density  at  a  point,  and  this  must  form  the  only  relative  of 
the  left  member,  and 

dTp"         dcp"      (dc>p"\"      (dTp dt  dt        \  dt  J        \  dt 

Also  from  the  last  of  equations  (65)  \-   (107). 

dTp"     dp      dp'u"     dp'v"     dp'w"     dQp') 
dt         dt        dx  dy  dz  dt 

In  the  last  of  the  equations  (107)  the  first  four  terms  on  the  right  are 
relative,  and  therefore  the  mean  rate  of  transformation  is 

drp"  _  (dcp)' dt  dt 
.(108). 

Then  adding  the  mean  and  relative  parts ;  since 

(dC'(P'))"=    (4- (/>")) dt  dt 

and  (pu  +  &c.)"  =  0, 
7        //  1        n 

Orl_  =  _a^_   
dt  dt  v        ' 



60  ON    THE    SUB-MECHANICS    OF   THE    UNIVERSE. 

60.     The  transformations  for  mean  and  relative  momentum. 

[60 

We  have dT(p"u")  _    „  dTu"        „  dc>p dt 

=  P 

dt 

—  u 

dt 
.(110). 

Then  substituting  from  the  first  of  equations  (101)  and  (109),  and  trans- 
forming, 

dT{p"u")^     dc-{p"u")  ,   \d0{p"u) dt dt + 
dt VF%\  +&c   (Ill), 

and  we  have 

dT{pu-p"u")_d,{p"u")      \dc(p"u')  J 

df    -—it     i"rfT~"+^r&c   (lllA)- 

61.     The  rates  of  transformation  of  mean- energy  of  the  components  of 
mean-  and  relative-velocity. 

From  equations  (74),  (100)  and  (109)  we  have 

id[T(P"(uy)]_    id{c.P"(u"y\    \  AdcPu)" ,  „„} 
2"    dt    ~~  2     dt     +  r    *        r 

1  d[>''  ((^)T]  =  _  1  d[c,(p"(uj)"] 2  dt  2 

+ 
1 "<k  (P  ((ujy 

dt 

dt 

+u'Fa 
pu  U  —j   V  &c.  - 

.(112). 

In  the  second  of  equations  (112)  it  is  the  last  term  only  that  expresses 
transformation  from  energy  of  mean  motion. 

The  last  terms  of  equation  (112)  admit  of  different  expression,  by  substi- 
tuting for 

dc  (pu')"
 its  equivalent 

or 

dt 

dpu'u'      dpv'u'      dpiv'u'y 
dx  dy  dz 

{dp"  (u'u)"      dp"  (v'u)"     dp"  (w'u)' 
\       dx  dy  dz 

and  we  have 

„  (dcPu)"  (d(p"(u'u)"u") u di 

dx +  &c.J  L"(kV)"^  +  &c. l...(l  13), 

also 

dx         dy        dz  ' 
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so  that  by  equation  (95),  Fx"  may  be  expressed  by 

\dp"xx 

61 

dx +  &c. 

Then  we  have 

u r  r    =    r   h  <KC.  —  V  Tr.  -,   &C. 

.(114); 

dx  dx 

also  (u'Fx)"  =  (uFx-u"Fx)"    (115), 

and  this  may  be  expressed  as 

\d{wpxx)'' 

+ 

UPXX)''        .  O  1  .  (d(ll"p")  g -f-   1-  &c.\  +  {    \j  r   V  &( dx  )       I     dx 

Then  substituting  in  the  first  of  equations  (112)  we  have  for  the  rates 

of  transformation  to  the  energy  of  mean  motion 

\d[T (p"(u"Y)]  _       \d[e (p"  {u'J)-\       id [u"  (p"  (uu)")] dt dt 
dx 

+  &c. 

-  ̂'£m) + &cj + K  (mV)" + ^-j  % + &c  j  -(u6)j 
and  again  substituting  in  the  second  of  equations  (112)  we  have  for  the  rates 
of  transformation  to  the  energy  of  relative  motion 

id[T(p"({ujm=_\d[,P"{{U'w] 2 dt 
dt 

i  d  [C-P  ((uyyr    [d  (upxxy    &j 2  dt  1        dx 

U*>  ̂ Y 

+  \i 
>xx 

dx) 
+  &C, J 

+jl^k)+&cl 

du' 

{p- (uUy + p"*x}"g  +  &c. 
•(117). 

The  purpose  of  this  transformation  is  easily  seen  on  adding  the  equations. 

The  two  last  terms  in  each  equation  cancel,  showing  that  they  represent 

a  transformation  between  the  rate  of  increase  of  the  mean-energies  of 

relative-  and  mean-velocities ;  while  changing  the  sign  of  the  right  members 
of  the  resulting  equation,  which  then  represent  the  rate  of  transformation  to 
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the  energy  of  residual  motion,  or  of  relative  energy,  these  become 

1  dT [pu2  -  p" (un  _  1  d  [cp"  (u?)]" dt  2  dt 

id[c-(p(uyyr  |  \d[u"{p"{uu)")]   fcj 2  dt  \  dx  j 

+ f¥- + &4  -  {*-  s + &c-}"  ■  &°- &°- 

.(118); 

and  these  are  the  exact  forms  in  which  the  rate  of  transformation  to  relative- 

energy,  obtained  by  substituting  u2,  (u2)",  (u2)',  u^  wr  u>  u">  u>  ̂   respectively 
in  equation  (111)  for  relative  momentum,  is  expressed. 

In  a  purely  mechanical  medium  the  last  terms  in  these  equations  (118) 

represent  the  mean  rate  of  angular  dispersion  both  of  mean  and  relative 

motion  of  energy,  as  explained  in  Art.  32,  Section  III.,  while  the  integrals  of 

the  remaining  terms  are  all  surface  integrals.  It  is  thus  seen  that  the  rates 

of  exchange  between  mean-energy  and  relative-energy  are  purely  conservative 
within  the  limits  of  the  approximation. 

On  the  other  hand,  the  integral  rates  of  exchange  by  transformation 

between  mean-energy  of  mean-motion  and  mean-energy  of  relative-motion  as 
expressed  by  the  integrals  of  the  last  terms  of  equations  (116),  (117)  are  not 

surface  integrals,  nor  are  these  rates  confined  to  angular  dispersion ;  so  that 

they  express  exchanges  at  each  point  which  are  not  expressed  by  a  surface 

integral,  and  thus  appear  to  represent  those  actions  of  the  relative-motion  on 

the  mean-motion  the  study  of  which  is  the  object  of  the  investigation.  But 
this  is  found  on  closer  examination  not  to  be  the  case. 

62.  The  expressions  for  transformations  of  energy  from  mean  to  relative 
motion. 

,     du" 

The  expressio
ns  

p"(u'u')" 
 
-,  -    +  &c,   which   occur  in   the   last    terms    of 

equations  (116)  and  (117),  are  simply  transformation  terms  expressing  the 

mean  effect  of  the  convections  of  relative-momentum  by  relative  motion  on 
the  energy  of  mean  motion,  and  this  is  the  most  general  and  most  important 
transformation. 

The  other  transformations  are  the  results  of  conduction.  These  are  in- 

cluded in  the  expressions 

K-rf|r+&cj'  K£+&cj 
as  they  occur  in  equations  (116)  and  (117),  but  they  are  not  explicitly 
expressed  by  these.  The  first  of  these  expressions  includes  the  rate  at  which 

the  energy  of  the  component  of  mean-motion  is  being  increased  by  angular 
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dispersion  from  the  energy  of  the  other  components  of  mean-motion,  as  well 

as  the  rate  at  which  the  energy  of  the  component  of  mean-motion  is  being 
increased  by  transformation  from  the  energy  of  the  corresponding  com- 

ponent of  relative-motion.  The  second  of  these  expressions  includes  both 

the  rates  at  which  energy  of  the  component  of  mean-motion  and  the  energy 

of  the  component  of  relative-motion  are  increasing,  by  angular  dispersion,  at 

the  expense  of  the  other  components  in  their  respective  systems, — together 
with  the  rate  at  which  energy  of  the  component  of  the  resultant  system  is 

being  increased  by  transformation  from  energy  in  some  other  mode — which 
latter  rate  does  not  exist  if  u,  v,  w  are  the  motions  of  points  in  mass. 

In  the  expressions 

(p"xx  -^  +  &c.j  ,  &c,  &c, 

and 

P* 

dx 

du 

dx 
+  &c.      ,  &c,  &c, 

the  analysis  necessary  to  separate  out  the  expressions  for  the  separate 

actions  in  either  system  is  furnished  by  equations  (47  a),  Section  III.,  the 

symbols  for  the  mean  and  the  relative  motions  being  substituted  for  those  of 

the  resultant  system. 

Putting  p=t—t — ~t — — ,  the  first  two  terms  in  these  equations  (47a) o 

which   express  the   rates   of  angular  dispersion  in  the  directions  of  x,  y,  z 

respectively  on  the  square  of  the  components  of  the  mean  and  the  resultant 

system,  become  respectively 

df_ 

dx „    (du"     dw"\ 

\dz 

&c,  &c, 

du 

dy 

dv 

dx Pv*\j7.-jz)+P** 

du 
dz 

dw\  | 
dx)) 

&c,  &c. 

The  corresponding  expressions  for  the  rate  of  increase  of  the  resilience 
are 

&c,  &c, 

dx     dy      dz 
)  +  (Pxx  -  P) 

du     dv 

dy     dx 

+  Pz 
du 
dz 

dw\) 
dx)) 

&c.  &c. 
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da"       „     \  ,    /        dl 
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Substituting  these  for  \p"xx  -~j—  +  &c- )  and  (pXx  -r-  +  &c.  J    as  they  enter 

into  equations  (116)  and  (117),  these  equations  become 

1  dT  [p"  {u'J]  ldd[p"(u'J]      [de„[p(u'u)"-\  ,  s     )       \du"V"xx  ,  gT    | 
2  '     ~5T        "2  d£  (         dm         ~ +  &C-j  "  \ ~dx       +  65C'j 

c?m"      dv"     dw' 

+  {I  p"  (^dx-dy-ih)*^  Y'y*Kdy  ~^)+p' 
+ 

doc       dy        dz 

1     „(du"     dv^_     dw' 
3       V  dec       dy 

du"  _  df\ 

'du"     dw' [~dz~~llx~ 

„  /du"     dv"      dw"\      ,   „  „.  d 

1  (  „     (du"     dv"\        „     (da,"      dw"\\ 
if  «*{ly+7te)  +  p"{w  +  lte)\ 

a 

+ ,  &c,  &c   (116a). 

ld[Tp"(u'u')"}_       1  d  yP" (uu')"]      1  d Up  (u'u)']"      \d  (u'pzx)"  I 

2  "        dt  2~        dt  2  dt  '  \      dx  ') 
V 

p 

du 

dx 
dv'      dw'V 

dv'
 

dy 

du      dv' dx      dy      dz 

dz  J 

dw" 

+ 

P> 

+  \(pxx-p) 

du'
 

-dy
 

dtf\" 

dx  I 

~Pzx[ (du 

\dz 

dw" 

dx 

dx 

1  (   „    (du      dv'\" ,     , 

2\Py^  +  Tx)+P 

p"(u'uyit\  +  8zc.  +  8zc. 

du      dw'V dz       dx  J 

,  &c,  &c   (117a). 

In  these  equations  the  first  three  terms  in  the  members  on  the  right 

express  rates  of  linear  redistribution  of  the  energy  of  components  of  motion 

of  the  respective  systems,  while  the  fourth  terms  express,  respectively,  rates 

of  energy  received  from  the  other  components  of  the  same  system  by  angular 
dispersion,  and  the  fifth  and  the  last  terms  express  the  direct  exchanges 

between  the  two  systems,  of  mean  density  of  energy,  by  transformation. 

This  last  statement  however  is  only  true  when,  as  in  the  case  of  the 

resultant  system,  in  a  purely  mechanical  medium,  there  is  no  resilience  in  the 
resultant  system,  for  the  fifth  term  in  the  last  equation  expresses  rates  of 

decrease  of  the  resilience  in  the  resultant  system  less  that  of  the  abstract 

resilience  in  the  mean-system  ;  so  that,  if  the  former  is  not  zero,  this  term, 
besides  the  exchange  by  transformation,  expresses  the  total  rate  of  increase 
of  the  resilience  of  the  resultant  system. 

In  a  granular  medium  when  u,  v,  w  are  the  component  velocities  at  points 
in  mass,  and  there  is  no  resilience  in  the  resultant  system,  the  sum  of  the 
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resilience  of  the  mean  and  relative  systems  is  zero,  and  the  fourth  term  in 

equation  (117)  has  the  identical  value,  under  opposite  sign,  as  the  fourth 
term  in  equation  (116),  which  expresses  rate  of  decrease  of  abstract  resilience 

in  the  mean  system. 

The  first  term  in  the  brackets  represents  the  angular  dispersion  by 

distortion  under  mean  strains,  equal  iu  all  directions,  and  the  second  re- 
presents the  rates  of  angular  dispersion  by  rotational  motion  of  the  mass. 

63.  The  equations  for  the  rates  of  change  of  density  of  mean-  and 
relative-mass. 

By  equations  (64)  and  (109)  we  have  for  mean  density 

dp"  _dc»P"  .       , 

It  ~~dT   {  W)' 

and  by  equations  (65)  and  (109)  we  have  for  the  equation  of  relative  mass 

MdW)     dQp)   (n9A) 
dt  dt  dt  v 

64.  The  equation  for  mean  momentum. 

By  equation  (58)  and  the  first  of  equations  (100)  we  have  for  the  equation 
of  mean  momentum 

d£^     d,,p''u"  _  (d  (Pxx  +  p"  (u'u')")  |    dt  dt  \  dx  J  ' 

and  by  equations  (60)  and  the  second  of  equations  (100)  we  have  the  equation 
of  relative  momentum 

d{pu-p"u")  =  de  (pu)  _  de»  jp"u")  _  ,  .      ,y,  _ 
dt  dt  dt  KcP    } dx 

...(121). 

65.  The  equations  for  the  rate  of  change  of  the  density  of  mean-energy  of 

the  components  of  mean-motion  and  of  the  mean-energy  of  the  components  of 
relative-velocity. 

Substituting  for  the  transformation  function  in  the  first  of  equations  (74) 

from  equation  (116),  the  equation  for  mean  density  of  energy  of  mean  motion 
becomes 

i_  djp^jurn  _  i  jMp:  (u'7)]    \d[u" (p"(uu'r  +  P„")]  |  ̂  +  krn 
2  "      dt  2  dt  {  dx 

+  |(p''(«V)''  +  ̂ )^,  +  &c.  +  &c.|,  &c,  &c....(122), R. 
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and  the    equations    for   the   mean   density   of  energies   of  relative-velocity 
become 

i d [P" {{uj)"] _   i d[c>-(p"((uj)")]  i d[,(p((ujy)r  \d(uP„Y dt + dt 
+ dt 

dx 
+  &c 

+  |^)  +  &cl 

-  f[/)"(uV)"  +  pxx"]  ̂ +&4  ,  &c.,  &c   (123). 

66.     The  equation  for  density  of  relative-energy. 

Proceeding  in  the  same  manner  as  in  equations  (74)  and  substituting  the 

rate  of  transformation  to  relative-energy  equation  (118),  the  equation  for 
relative-energy  of  component  velocities  becomes 

1  d  [pu*  -  p"  (M»)"]  _  1  d  [>  (pu*  -  p"  (a*)")]      Idy  (p  (u*)")\ dt 
dt + 

■2 

dt 

1  d{c,(p(u>)')]      1  d  [.p  ((uj)'}" 2  dt  2  dt 

+pjg«n+&,j 

&c,  &c   (124). 

67.     Complete  equations. 

1  d[p"{(u'y+(vJ+{w'J)\      1  d  [>  [p"  ({u'J  +  (v'J  +  (w'J)}-] 2  dt 2  dt 

(       \d  [u"  (p"  (u'u')"  +  pxx")] + 

(/, 

&c. 

X -<  + 

+ 

id[v"(p"(vu)"+pXy")][tc) 

d  \w"  jp"  (w'u)"  +  pxz")]     &e 

die"
 

+  ](p"(u'uy+pxx")^+&c. 

+  \ip"(tv'u)"+pxz")d^  +  ̂  

.(125). 
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i  d[p\{uy+(vy+{wyy]  _  i  a  [Ap"(W+  mw)] dt dt 

id[AP(w+(vy+(Wyy)Y 
+  2  dt 

(  +  [d  [(upxx)"  -  n"pj']     &) 
\  dx  ') 
d  \ivpyx)"  -  v"Pyx"]    ]  &c  }    }    + 

-■>     + 

+  \d  [(wpzx)"  -  v/'pm"]  +  &c  I 
\  dx  ')  j 

+  \(P"(WuT+pJ')d^+^c 

( +  {(*-  s) +&a 

^ 

~j  +{(p"(^/r+^/)^,+&c.| 

^  +{0»'V»T+ ft.")  ̂  +&<?.} 

1  d  [p  (a2  + i>2  +  W>)  -  p"  {{a?)"  +  if)"  +  (w2)")] 
2  rZi 

.(126). 

+ 

i  d  [c»  (p  (u>  +  v>+ w>))  -  p"  ((Uy  +  (vr  +  <y  p] 
2  d« 

1  d  [,  (p  (u2  -M2  +  <Q] 
2  d£ 

1  <Z  [c,  (p  Q2  +  ̂2  +  w*)')  -  [e,  (p  (m3  +  i;2  +  w2))}"] 
+  2  cZi 

f       {d\u"p"(u'ii)"}      . 
+  \     L     'y   —  +  &c. 
{  dx 

\ 

K 

( 

(d[v"p"{v'u)"]       9    ) 

+  <   +{         Pdl      ;J+&4i 

rfa; 
; 

♦f^Ml  r+WW — <  + 

+ 

f(Z  [t^Vr]'    .    fc 
eZ# +  &C.      )-+<     +\[Pyxj-)    +&C. 

<*[«?«]'       &(J 
cZ# 

cZ«V 

dw\' 

)        \ 
+      ?■ 

[V^^ 

+  &c. 

.(127). 

5—2 
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The  equations  (119)  to  (127)  are  the  equations  for  mean  and  relative 
component  systems  of  any  resultant  system  in  which  the  conditions  are 

satisfied,  irrespective  of  the  medium  being  a  purely  mechanical  medium  ;  that 
is  to  say,  irrespective  of  whether  or  not  in  the  resultant  system  (p,  u,  v,  w,  pxx, 

&c.)  are  related  to  the  actual,  mechanical-medium,  or  represent  the  densities, 

motions  and  stresses  of  a  component  system  of  mean-motion  of  the  resultant 

system. 

It  has  already  been  pointed  out  (Art.  52)  that  the  absolute  scale  of  the 

variations  of  the  mean  motion  has  no  part  in  determining  the  degree  of 

approximation,  but  only  the  relative  magnitude  as  compared  with  the  scale 

of  variations  of  the  relative  motion.  So  that  any  component  of  mean-motion 
may  be  a  resultant  system  if  the  conditions  exist  which  ensure  its  satisfying 
the  conditions  of  mean  and  relative  motion.  There  is  however  this  difference 

according  to  whether  the  unqualified  symbols  refer  to  the  purely  mechanical 
medium  or  not.  If  they  do  refer  to  the  mechanical  medium,  then  the  last 

terms  in  equation  (124)  and  the  last  but  two  in  (123)  represent  angular 

dispersion  of  energy  only,  and  the  last  term  in  equation  (127)  and  the  last 

but  one  in  (126)  are  zero ;  if  not,  they  represent  changes  of  energy. 



SECTION   VII. 

THE   GENERAL   CONDITIONS    FOR   THE   CONTINUANCE   OF   COM- 

PONENT  SYSTEMS    OF   MEAN-    AND    RELATIVE-MOTION. 

68.  The  general  conditions  for  the  existence  of  mean-,  and  relative- 

motion,  as  defined  in  Art.  47,  Section  V.,  are  that  the  components  of  momen- 

tum of  relative-velocity,  as  well  as  the  relative  density,  must  respectively  be 
such  that  their  integrals  with  respect  to  any  two  independent  variables, 

taken  over  limits  defined  by  the  scale  of  relative-motion,  have  no  mean  values. 

By  equation  (1),  Section  II.,  it  follows  that  for  the  continuance  of  such 

states  the  respective  rates  of  increment  of  these  quantities  by  all  causes, 

convection  and  production,  must  satisfy  the  same  conditions.  Therefore  as 
the  necessary  and  sufficient  conditions  we  have,  that 

r'djg)         tHjg)         r^         w J  o      at  J  o      at  J  o      at  J  o  at 

where  the  limit  t  may  have  any  value,  when  integrated  between  the  limits, 

as  initially  defined  by  the  relative  scales,  with  respect  to  any  two  indepen- 
dent variables  shall  be  zero  within  the  limits  of  approximation. 

The  satisfaction  of  these  conditions  does  not  follow  as  a  geometrical 
consequence  of  the  initial  condition. 

The  rate  of  change  in  the  density  of  relative-momentum  is  a  consequence 
of  the  space  rates  of  the  variation  of  the  convections  and  conductions 

existing  at  the  instant.  And  initially  the  mean-  and  relative-motions  are 

subject  to  definition,  from  which,  as  a  geometrical  consequence,  their  varia- 
tions, in  space,  are  also  subject  to  definition,  which  although  less  complete 

has  been  already  fully  defined,  Art.  45,  Section  V. 

It  therefore  follows  that  the  general  conditions  to  which  the  initial  rates 

of  increase,  by  convections  and  conductions,  are  subjected,  are  defined.  And 

this  at  once  appears  on  considering  the  equations  of  motion  for  the  momen- 
tum of  relative- velocity,  which  are  obtained  by  substituting  in  equations  (98) 

the  expressions  for  the  rates  of  transformation  from  equations  (100),  Section  VI. 
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n£r dt  Has  ̂V) + J  ("oV) + s  ̂v>} rf< 
/   .  du"       ,dv"        ,dw"\  7, 

-plu'  -j-+V  -j-  +  w  -j-    (ft 
r  V      ow?  a#  a.z  / 

z{s^v>+|^v>  +  sW* 
-^Fx'Bt  +  F'^&cSzc   (128). P 

In  these  equations,  according  to  the  method  of  approximation,  all  the 
terms  in  the  member  on  the  right  are  such  as  have  no  mean  values  when 

integrated  over  any  three  variables,  as  a  geometrical  consequence  of  the 
definition. 

It  therefore  appears  that  it  does  not  follow  as  a  geometrical  consequence 
that 

d(pu') 

dt ,  &c,  &c, 

should  satisfy  the  condition  of  having  no  mean  values  when  integrated 
with  respect  to  any  two  variables,  to  the  same  degree  of  approximation  as  do 

the  initial  values  of  pu\  pv',  pw'.  And  this  applies  to  both  rates  of  increment 
by  convection  and  rates  of  increment  by  relative  accelerations. 

If,  then,  this  condition  is  to  be  continuously  satisfied  it  must  be  as  the 

result  of  some  redistributing  effects  of  the  actious  of  conduction  on  the 

convections.  For  the  rates  of  increase  by  convection  are  a  geometrical 

consequence  of  the  initial  motions  which  are  subject  to  the  definition  as  to 

scale  and  relative-motion ;  while  on  the  other  hand,  the  rates  of  increase  by 
conduction  depend  on  the  conducting  properties  of  the  medium,  as  well  as 
on  the  distribution  of  the  medium  in  space  and  time. 

69.  The  fourth  property  of  mass,  necessitated  by  the  laws  of  motion,  is 

that  of  exchanging  momentum  with  other  mass,  Art.  17,  Section  II.,  and  it 

now  appears  that  this  is  the  fundamental  property  on  which  the  existence 

of  systems  of  mean-  and  relative-motion  depends. 

For  if  there  were  no  conduction,  that  is,  if  mass  were  completely  pene- 
trable by  mass ;  so  that  two  continuous  masses  could  pass  through  each 

other  without  affecting  each  other's  motion ;  then  the  only  rates  of  increase 
w^uld  be  those  by  convection,  each  point  of  mass  preserving  its  course  with 

no  interruption,  with  constant  velocity,  and  there  could  be  no  redistribution. 
Hence  : — 

Certain  properties  of  conduction  are  necessary  for  the  maintenance  of 
systems  of  approximately  mean-  and  relative-motion. 



72]  COMPONENT    SYSTEMS   OF   MEAN-    AND    RELATIVE-MOTION.  71 

70.  Notwithstanding  the  extremely  abstract  reasoning  on  which  the 

foregoing  conclusion  is  based  it  is  definite.  And  it  appears  possible  to  carry 
this  reasoning  further  and  so  obtain  conclusive  evidence  as  to  what  the 

general  properties  of  conduction  and  the  general  distributions  of  the  medium 

must  be  for  the  maintenance  of  the  mean-  and  relative-systems,  when  the 
resultant  system  is  purely  mechanical. 

71.  The  general  laws  of  conduction  of  momentum  by  a  purely  mechan- 
ical medium,  as  defined  by  the  laws  of  motion,  have  already  been  deduced 

(Section  III.  Art.  24),  and  the  effects  of  conduction  in  displacing  momentum 

and  in  angular  dispersion  of  vis  viva  have  been  proved  (Section  III. 

Arts.  31 — 2),  and  also  the  effect  of  conduction  on  the  resilience,  if  any. 
However,  since  there  is  no  resilience  in  a  purely  mechanical  medium, 

it  at  once  follows  that  the  medium  must  be  perfectly  free  to  change  its 

shape  without  changing  its  volume,  or  it  must  consist  of  mass  or  masses, 
whether  infinite,  finite,  or  indefinitely  small,  each  of  which  absolutely 

maintains  its  shape  and  volume  ;  that  is  to  say,  each  of  which  is  a  perfect 
conductor  of  momentum. 

Thus  the  class  of  media  in  which  the  general  conducting  properties 

satisfy,  as  a  resultant  system,  the  condition  of  being  a  purely  mechanical 
system  is  not  large ;  being  confined  to 

(1)  The  "perfect  fluid"  ; 
(2)  The  perfect  solid  ; 

(3)  Perfect  discontinuous  solids  ; 

(4)  Perfect  discontinuous  solids  with  perfect  fluid  within  their  inter- 
stices. 

This  class  of  media  all  satisfy  the  conditions  for  purely  mechanical  media 

as  resultant  systems.  But  it  does  not  follow,  as  a  geometrical  necessity, 

that  they  all  satisfy  the  conditions  of  consisting  of  mean  and  relative  com- 

ponent systems. ' 

For  although  any  medium  which  satisfies  the  conditions  of  consisting  of 

component  systems  of  mean  and  relative  motion  must  of  necessity  satisfy 
the  conditions  as  a  resultant  system,  the  converse  of  this  is  not  a  necessity. 

It  therefore  remains  to  obtain  from  the  previous  definition  the  further 

limitations  imposed,  as  a  geometrical  necessity,  by  the  conditions  of  consisting 

of  component  systems  of  approximately  mean-  and  relative-motion. 

72.     Evidence  as  to  the  properties  of  conduction  for  component  systems. 

(1)     From  the  equations  (128)  it  appears,  as  already  pointed  out,  that  in 
order  that 
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may  satisfy  the  condition  of  having  no  mean  values,  when  integrated 
between  the  limits  of  the  scale,  in  time  and  space,  of  relative  motion,  over 

any  two  independent  variables  to  any  defined  degree  of  approximation,  the 
time  integrals  of  the  members  on  the  right  must  satisfy  the  same  condition. 

Whence  it  follows  that  the  condition  for  the  maintenance  of  the 

inequalities  steady  requires  that  the  rate  of  increment,  as  expressed 

by  all  terms  on  the  right,  in  each  of  the  equations  (128),  shall  be  such  as 

has  absolutely  no  mean  value  when  integrated  over  limits,  with  respect 

to  any  two  independent  variables. 

This  condition,  although  it  applies  only  in  a  somewhat  particular  case, 
is  such  as  must  be  satisfied  for  the  maintenance  of  mean  and  relative  systems 

to  be  general,  and  hence  any  evidence  that  may  be  derived  from  it  must  be 

perfectly  general. 

To  apprehend  the  importance  of  this  evidence  we  have  only  to  consider, 

what  has  already  been  pointed  out,  that  the  first  four  terms  in  the  right 

members  in  each  of  the  equations  (128)  require,  as  a  geometrical  necessity, 
integration  between  limits  over  three  independent  variables  in  order  that 

they  may  have  no  mean  values.  Whence  it  follows  that  in  order  to 

maintain  the  inequalities  steady  the  fifth  term,  which  expresses  relative  rates 

of  increment  of  momentum  by  conduction,  must  be  such  when  integrated, 

over  limits,  with  respect  to  any  two  variables,  as  will  exactly  cancel  the 
integrals  of  the  other  four  terms  when  they  are  taken  over  the  same  limits 
with  respect  to  the  same  two  variables. 

Thus  we  have  for  a  particular  case,  which  however  must  occur  in  all 

general  systems  consisting  of  component  systems  of  mean-  and  relative- 

motion,  an  inexorable  condition  as  to  the  necessary  properties  of  conduction. 

It  will  be  readily  granted  that  the  satisfaction  of  this  condition  involves 

the  absolute  dependence  of  the  functions  Fx',  &c,  on  the  condition  of  the 
medium  and  its  relative-motion. 

(2)  Evidence  as  to  the  necessary  properties  of  the  medium  is  also 

obtained  from  the  condition  that  the  inequalities  must  be  maintained  small. 

The  satisfaction  of  the  condition  of  equality  between  the  rates  of  opposite 
actions  resulting  from  transformation,  convection,  and  conduction,  does  not 

define  the  magnitudes  of  the  inequalities  which  may  be  maintained,  but 
only  the  fact  that  they  remain  steady. 

It  therefore  appears  that  the  definition  of  the  relative  values  of  the 
inequalities  which  are  maintained  depends  on  a  balance  of  rates  of  institu- 

tion and  decrement.  And  in  order  that  such  a  balance  should  institute 
itself  and  remain  steady,  it  is  necessary  that  the  state  of  the  medium  shall 

be  such  that  integrals  of  Fx',  &c,  taken  over  limits  with  respect  to  any  two 
independent  variables,  shall  be  such  functions  of  the  inequalities  that  they 
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increase   with   the  inequalities  and  are   of  opposite   sign,   whereby  the   in- 
equalities are  subject  to  logarithmic  rates  of  decrement. 

Then,  whatever  might  be  the  rates  of  institution  of  inequalities  resulting 
from  all  the  other  actions,  the  inequalities  would  increase,  increasing  the 

rates  of  decrement  by  conduction  until  these  balanced  the  rates  of  increment, 
that  is  until  the  other  actions  were  cancelled  by  the  actions  expressed  by 

Fx',  &c,  after  which  the  inequalities  would  remain  steady  as  long  as  the  rate 
of  institution  remained  steady. 

(3)  Evidence  as  to  the  necessary  properties  is  also  obtained  from  the 
conditions  that  define  the  scales  of  relative  motion. 

Where  mean  motion  is  everywhere  uniform  this  condition  requires  that 
the  scale  of  relative  velocities  and  relative  mass  shall  approximate  to  some 

finite  scale  at  which  it  will  remain  as  long  as  the  mean  motion  is  everywhere 

uniform.  This  does  not  follow  as  a  geometrical  necessity  of  the  initial 

definition,  for  if  constraining  limits  were  absent  from  the  mass,  the  actions 

which  insure  the  logarithmic  rates  of  decrement  would  continue  to  diminish 

the  scale  indefinitely  ;  hence  inferior  limits  of  relative-mass  and  relative- 
motion  define  the  properties  of  the  medium  as  regards  limiting  constraints. 

73.  This  evidence,  together  with  the  definitions  of  mean-velocity  and 
mass,  suffices  to  differentiate  the  four  general  states  of  media,  which,  as 

resultant  systems,  satisfy  the  conditions  of  being  purely  mechanical,  from 
those  which  also  satisfy  the  conditions  of  consisting  of  component  systems  of 

approximately  mean  and  relative  motion. 

Since  continuous  mass  cannot  pass  through  continuous  mass  without 

exchanging  momentum,  the  reciprocal  actions  between  the  masses  in  relative 
motion  will  be  to  cause  continual  diversions  of  the  paths  of  points  in  mass. 

And  by  definition  of  relative  motion,  if  there  is  no  mean  motion,  the 

mean  component  momentum  in  any  positive  direction  is  exactly  equal  to  the 

mean  of  the  negative  momentum  in  the  same  direction.  Therefore  the 
mean  rate  of  increase  of  component  momentum  in  the  positive  direction,  by 

the  components  of  the  reciprocal  relative  accelerations,  is  exactly  equal 
to  the  mean  rate  of  increase  by  the  component  reciprocal  accelerations 

of  the  component  momentum  in  the  negative  direction.  The  mean  motions 

being  uniform,  the  reciprocal  accelerations  have  no  effect  on  energy  of 
relative  motion  in  all  three  independent  directions.  Whence  the  effects  of 

the  component  reciprocal  accelerations  are  rates  of  change  in  the  positive 
and  negative  component  momenta,  in  one  direction,  with  the  positive  and 

negative  momenta  in  other  directions.  Such  exchanges  of  positive  and 
negative  momenta  from  one  direction  to  another  are  possible  only  when  the 

component  accelerations  of  relative  motion  are,  not  resultant  accelerations, 
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but,  are  the  means  of  the  components  of  resultant  reciprocal  accelerations 

with  various  degrees  of  divergence  from  the  direction  of  the  previous  motion. 

And  it  is  thus  shown  that  any  angular  redistribution  of  positive  and 

negative  components  of  momenta,  or,  which  is  the  same  thing,  of  the  vis 

viva  of  the  component  velocities,  results  solely  from  the  impenetrability  of 
the  medium. 

74.  From  the  foregoing  reasoning  it  might  be  inferred  that  the  impene- 
trability of  mass  together  with  the  definition  of  relative  motion  must  secure 

logarithmic  rates  of  decrement  of  all  inequalities  provided  that  the  medium 

were  sufficiently  mobile.  That  this  is  not  the  case  is  however  at  once  seen 

from  the  theory  of  a  "  perfect  fluid." 

(a)  For  in  such  media  every  point  in  mass  is  in  complete  normal  con- 
straint by  the  surrounding  medium,  with  lateral  freedom.  So  that,  while  no 

point  can  move  without  affecting  the  motion  of  every  other  point  in  some 
degree,  there  is  no  lateral  action.  Thus  the  continuous  finite  accelerations 

do  not  cause  finite  diversions  of  the  paths  of  points  in  mass  from  the 
previous  directions  at  any  point  of  their  courses,  but  cause  finite  curvature 

of  these  paths.  And  thus  the  paths  of  adjacent  points  are  ultimately 

parallel.  There  being  no  finite  lateral  deviation,  there  is  no  lateral  exchange 
of  momentum  in  the  direction  of  motion  at  any  point. 

Whence  such  lateral  exchange  of  momentum  being  necessary  in  order 

that  there  may  be  general  rates  of  logarithmic  decrement  of  inequalities, 

it  follows  that  in  a  perfect  fluid  there  cannot  exist  logarithmic  rates  of 
decrement  of  all  inequalities  of  relative  motion. 

It  thus  appears,  since,  as  has  already  been  pointed  out,  general  logar- 
ithmic rates  of  decrement  of  all  angular  inequalities  are  necessary  for  the 

maintenance  of  approximate  systems  of  mean  and  relative  motion,  that 

a  perfect  fluid,  although  satisfying  the  condition  of  a  purely  mechanical 

medium  as  a  resultant  system,  cannot  satisfy,  generally,  the  condition  of 

consisting  of  component  systems  of  approximately  mean  and  relative  motion. 

(b)  A  perfect  continuous  solid,  that  is  a  continuous  mass  which  conducts 

momentum  perfectly,  whether  direct  or  lateral,  can  only  move  as  one  piece, 
and  therefore  cannot  consist  of  component  systems  of  mean  and  relative 
motion. 

(c)  It  thus  appears  that  of  the  class  of  media  that  satisfy  the  conditions 

of  a  p'urely  mechanical  medium,  neither  the  perfect  fluid  nor  the  perfect 
solid  satisfies  the  condition  of  consisting  of  component  systems  of  approxi- 

mately mean  and  relative  motion.  And  as  these  are  the  only  two  continuous 
media  in  the  class  we  have  the  conclusion :  that  no  continuous  medium  can 

satisfy  the  condition  of  consisting  of  component  systems  of  mean  and 
relative  motion. 
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(d)  If  then  the  conditions  for  mean  and  relative  systems  are  to  be 
satisfied  it  can  only  be  by  discontinuous  media. 

These  all  include  perfectly  conducting  parts  and  are  capable  of 

separation  into  two  classes  according  to  whether  or  not  these  parts  are  or 

are  not  in  such  constraint  with  each  other  that  each  part  is  in  complete 
constraint  with  the  neighbouring  parts  ;  lateral  as  well  as  normal. 

(e)  In  media  in  which  the  perfectly  conducting  parts  are  each  in 

complete  lateral  as  well  as  normal  constraint  with  their  neighbours,  there 
can  be  no  logarithmic  rates  of  decrement.  Whence,  as  in  the  case  of 

a  perfect  fluid,  such  discontinuous  media  cannot  generally  consist  of  com- 
ponent systems  of  approximately  mean  and  relative  motion. 

It  thus  appears  that  no  purely  mechanical  medium  can  satisfy  the  condi- 
tion of  consisting  of  approximate  systems  of  mean  and  relative  motion  unless 

it  includes  discontinuous  perfectly  conducting  parts,  each  of  which  has 

certain  degrees  of  freedom  with  its  neighbours. 

(f)  If,  therefore,  it  could  be  shown  that,  as  in  the  other  purely 
mechanical  media,  these  discontinuous  media,  with  degrees  of  freedom,  do 

not  admit  of  logarithmic  rates  of  decrement  of  the  inequalities  of  relative 

motion,  it  would  follow  that  component  systems  of  approximately  mean  and 

relative  motion  are  impossible. 

As  it  is,  however,  it  can  be  shown  that  these  discontinuous  media,  with 

or  without  perfect  fluid  occupying  the  interstices,  as  long  as  the  perfectly 

conducting  parts  have  any  degrees  of  freedom  with  their  neighbours,  do 
admit  of,  and  not  only  admit  of,  but  entail,  logarithmic  rates  of  decrement  of 

all  inequalities  of  relative-momentum. 

This  will  be  fully  proved  in  the  following  sections.  But  it  is  sufficient  at 
this  stage  to  show  how  this  comes  about. 

(g)  The  actions  between  perfectly  conducting  masses  are  instantaneous 
finite  exchanges  of  momentum  in  the  direction  of  the  common  normal  to 

the  surfaces  at  contact.  The  direction  of  this  normal  has  no  necessary 
connection  with  the  direction  of  the  relative  motion  of  the  masses  before 

contact ;  therefore  the  direction  of  relative  motion  after  contact  has  no 

necessary  connection  with  the  direction  before  contact.  And  thus  the 
actions  will  be  to  render  the  path  of  the  centre  of  each  mass  a  rectilinear 

polygon  in  space,  with  angles  which  may  be  anything  from  0  to  ir  according 
to  the  freedoms. 

Such  action  entails  that  mean  component,  positive  or  negative,  accelera- 
tion of  the  relative  motion  in  any  direction  is  not  a  resultant  acceleration, 

but  the  mean  of  the  component  resultant  impulses  in  all  directions,  thus 
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securing  continued  angular  redistribution  in  direction  and  magnitude  of  the 
relative  momentum  of  each  of  the  perfectly  conducting  masses ;  so  that  any 

mean  inequality  in  the  relative  motion  is  subjected  to  rates  of  decrement 

proportional  to  the  inequality,  and  to  the  mean  of  the  positive  or  negative 

components  of  relative  velocity,  divided  by  the  scale  of  relative  motion — to  a 
logarithmic  rate  of  decrement. 

(h)  The  evidence  furnished  by  the  necessity  of  the  maintenance  of  the 

scales  of  relative  mass  and  relative  motion  has  not  been  drawn  upon  in  the 

foregoing  reasoning,  and  therefore  may  now  be  brought  forward  as  con  firming 
the  conclusion  already  arrived  at ;  that  the  only  media  that  satisfy  the 

conditions  of  mean  and  relative  component  systems  are  those  which  involve 

discontinuous  perfectly  conducting  parts,  since  such  media  are  the  only 
media  in  which  limits  to  the  scales  of  relative  mass  and  relative  motion 

are  of  necessity   maintained. 

75.  Having  thus  arrived,  for  reasons  shown,  at  the  conclusions  that  the 

only  purely  mechanical  media  which  can  consist  of  component  systems  of 

approximately  mean-  and  relative-motion  are  those  which  consist  of  perfectly 
conducting  members  which  have  certain  degrees  of  independent  movement, 

and  that  such  media  of  necessity  satisfy  the  condition  of  securing  logarith- 
mic rates  of  decrement  of  all  mean  inequalities  in  the  positive  or  negative 

components  of  relative-momentum  in  every  direction,  the  further  analysis 
may  be  confined  to  this  class  of  media  only. 

It  is  still  a  class  of  media  and  not  a  single  medium. 

Such  media  may  be  distinguished  according  as  the  interstices  between 

the  grains  are  occupied  by  perfect  fluid  or  are  empty  of  mass.  But  this  is 

by  no  means  the  only  distinction.  For  the  perfectly  conducting  members 

may  have  any  shapes,  and  hence  may  include  any  possible  kinematical 
arrangement  or  trains  of  mechanism,  provided  that  there  is  always  a  certain 
amount  of  freedom  or  backlash,  as  it  is  called  in  mechanism;  or  they  may 

consist  of  parts  of  any  similar  shape  but  of  different  sizes  or  of  parts  the 

same  in  size  and  shape,  as  for  instance,  spheres  of  equal  size  and  mass.  Nor 
is  this  all,  for  the  relative  extent  of  the  freedom  as  compared  with  the  size 

of  the  members  may  introduce  fundamental  distinctions  in  the  properties 
of  media  consisting  of  similar  members. 

76.  This  last  source  of  distinction,  arising  from  the  relative  extent  of 

the  freedoms  as  compared  with  the  dimensions  of  the  grains,  being  perfectly 

general  however  the  media  may  otherwise  be  distinguished,  is  a  subject  for 

general  treatment,  the  outlines  of  which  may  with  advantage  be  drawn  at 

this  stage  from  the  evidence,  already  adduced,  as  to  the  conducting  properties 

of  the  media  consisting  of  component  systems  of  approximately  mean-  and 
relative-motion. 
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In  this  preliminary  discussion  of  the  effect  of  the  extent  of  the  freedoms, 

relative  to  the  dimensions  of  the  perfectly  conducting  members,  the  latter 

may  be  considered  as  being  spherical  grains  of  equal  size  and  mass. 

In  the  first  place  it  must  be  noticed  that,  so  far,  in  this  section,  no 

account  has  been  taken  of  any  transformation  of  mass  or  of  the  displacement 

of  momentum  by  conduction,  so  that  the  logarithmic  rates  of  decrement 

by  accelerations  refer  only  to  changes  in  the  direction  of  the  vis  viva,  leaving 

out  of  account  the  fact  that  there  is  displacement  of  momentum  by  con- 
duction at  each  encounter,  and,  thus,  the  reasoning,  so  far,  does  not  touch 

on  the  possibility  of  redistribution  of  inequalities  of  rates  of  conduction 

of  component  momenta. 

It  has,  however,  been  shown  that,  owing  to  the  fact  that  the  directions 

of  the  normals  at  contact  are  independent  of  the  directions  of  relative  motion 

before  contact,  in  a  granular  medium,  there  must  exist  rates  of  redistribution 

of  all  mean  angular  inequalities  in  vis  viva  of  the  components  of  relative 

motion,  whatever  may  be  the  inequalities  in  rates  of  conduction  of  momentum 
in  different  directions. 

Thus  far,  then,  for  anything  that  has  been  shown  in  the  previous  reason- 

ing, the  actions  which  determine  the  rates  of  displacement  of  momentum  by 

conduction  may  be  independent  of  any  effect  of  the  independence  of  the 
direction  of  the  normals  at  contact,  and  the  direction  of  the  relative  motion 

of  the  grains  before  contact,  which,  as  shown,  secures  angular  dispersion 
of  the  momentum  of  relative  motion. 

77.  In  the  simple  case  of  uniform  spherical  grains,  which  may  be 

conceived  to  be  smooth,  without  rotation,  whatever  may  be  the  relative 

paths  of  the  grains  as  compared  with  their  diameters,  if  the  state  of  the 

relative-motion  is  without  angular  inequalities,  since  this  state  is  maintained 

by  the  continual  finite  exchanges  of  momentum  lateral  to  their  paths,  the 

mean  component  of  the  aggregate  momentum  in  an  interval  of  time,  deter- 
mined by  the  time  scale  of  relative  motion,  must  be  the  same  in  all 

directions,  as  also  must  be  the  aggregate  component  paths  traversed  in  a 

positive  direction,  and  also  those  traversed  in  a  negative  direction. 

But  it  in  nowise  follows  as  a  necessity  of  complete  angular  dispersion  of 

components  of  momentum,  within  the  limits  of  relative  motion,  that  the  mean 

length  of  the  component  paths  traversed  in  one  direction  shall  be  the  same 
as  the  mean  of  those  in  another  direction. 

The  clear  apprehension  of  this  fact  is  of  extreme  importance,  when  we 

come  to  consider  the  rates  of  displacement  by  conduction  of  momentum  ; 

this  is  easily  seen : — 

If  each  grain  traverses  the  same  aggregate,  positive  and  negative,  com- 

ponent paths   in  the  same  time,  but  their  mean   component  paths  in  one 
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direction  differ  from  those  in  another,  since  the  paths  are  limited  by  en- 
counters, and  the  displacement,  by  conduction,  of  momentum  in  the  direction 

of  the  component  is  the  mean  of  the  product  of  the  diameter  of  the  grain 
multiplied  by  the  component  of  the  relative  momentum ;  then,  if  the  mean 

component  conductions  are  the  same  in  all  directions,  the  number  of  the 

conductions  in  any  direction  must  be  inversely  proportional  to  the  component 

mean  path  in  that  direction.  And  thus  the  rate  of  displacement  of  momen- 
tum in  any  direction  must  be  inversely  proportional  to  the  mean  component 

path  in  any  direction. 

78.  Tn  order  to  secure  that  the  rates  of  displacement  of  the  momentum 

shall  be  approximately  equal  in  all  directions,  it  is  not  sufficient  that  there 

should  be  logarithmic  rates  of  decrement  of  the  mean  inequalities  of  the 

relative  components  of  momentum,  positive  or  negative,  but  requires  in 
addition  that  there  should  be  logarithmic  rates  of  decrement  of  mean 

inequalities  in  the  mean  component  paths  of  the  grains. 

The  length  of  the  path  of  a  grain  in  any  direction  depends  only  on  the 
positions  of  the  surrounding  grains ;  and  if  the  mean  distance  between  the 

grains  is  such  that  the  probable  length  will  carry  its  centre  through  several 

surfaces  set  out  by  the  centres  of  these  other  grains,  then,  since  all  possible 
arrangements  of  the  grains  would  be  probable,  all  directions  of  the  normal 

at  encounter  would  be  equally  probable,  whatever  might  be  the  directions  of 
the  paths.  And  hence  continual  encounters  would  lead  to  such  distribution 

of  the  grains  that  the  probable  length  of  the  path  would  be  equal  in  all 
directions;  and,  so,  there  would  be  logarithmic  rates  of  decrement  of 

inequalities  in  the  lengths  of  the  mean  paths  in  different  directions. 

78  A.  Evidence  of  the  necessity  of  such  logarithmic  rates  of  decrement 

of  inequalities  in  the  arrangement  of  the  mass  is  furnished  by  the  equations 

of  relative-mass;  in  a  manner  similar  to  that  furnished  by  the  equations 
of  relative-motion  as  to  the  necessity  of  logarithmic  decrement  of  the 
inequalities  of  vis  viva. 

This  at  once  appears  from  the  equations  of  relative-mass  (119),  which 
may  be  expressed : 

In  this  equation,  according  to  the  limits  of  approximation,  the  terms  in 

the  right  member  are  such  as  have  no  mean  values  when  integrated  over  the 
denned  limits  with  respect  to  three  independent  variables. 

Therefore  it  does  not  follow  as  a  geometrical  consequence  of  the  definition 
of  relative  mass  that 

ay 

dt 
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should  satisfy  the  condition  of  having  no  mean  value,  when  integrated  over 
definite  limits  with  respect  to  any  two  independent  variables,  to  the  same 

degree  of  approximation  as  do  the  initial  values  of  p  ;  and  this  applies  both 
to  the  rates  by  convection  and  the  rates  by  transformation. 

If  then  the  conditions  are  to  be  continuously  satisfied,  it  must  be  as  the 

result  of  the  redistributing  actions  on  the  rates  of  convection  by  the  mean- 
velocity,  which  alone  institutes  inequalities. 

78  B.  Inequalities  in  the  integrals  of  relative  mass,  over  defined  limits, 

with  respect  to  any  two  independent  variables,  correspond  to  inequalities  in 

the  'products  and  moments  of  relative  mass.  And  it  thus  appears  that  these 

inequalities  have  no  connection  with  inequalities  in  the  mean-mass,  which  is 
a  mean  over  all  four  variables. 

Therefore  these  inequalities  are  inequalities  in  the  symmetry  or  angular 

arrangement  of  the  relative  mass. 

This  significance  of  the  inequalities  becomes  apparent  on  multiplying 
both  members  of  the  equation  of  relative  mass  by  the  square  of  any  variable, 

as  cc2,  or  by  the  product  of  two  variables,  as  yz,  and  taking  the  mean  over 
all  four  variables  ;  as 

„  iMl  =  _,=  {<L(g'^+&cl  -*  HM>+&cl   (128  a). dt  [     dx  }  {    dx  J 

Then  if  x2p'  integrated  over  all  four  variables  satisfies  the  conditions  to 
any  degree  of  approximation,  the  maintenance  of  the  same  degree  of  approxi- 

mation requires  that 

X~  dt 

should  satisfy  the  identical  conditions  to  the  same  degree  of  approximation. 

Hence  we  have  the  necessity,  in  order  to  maintain  the  inequalities 

steady,  that,  whatever  may  be  the  rate  of  institution,  resulting  from  distor- 
tional  mean  motions,  as  expressed  by  the  first  term  in  the  right  member, 

the  rate  of  rearrangement  resulting  from  the  transformation  expressed  by 
the  second  term  must  be  such  as  exactly  counteracts  the  rate  of  institution. 

78  c.  It  thus  appears,  as  in  the  case  of  Art.  72,  that  this  condition  of 

equality  between  the  rates  of  institution  and  rearrangement  can  be  satisfied 

only  when  the  rate  of  rearrangement,  as  expressed  by  the  second  ter 

depends  on,  and  is  proportional  to,  the  inequality  instituted. 

m. 

78  D.  From  this  evidence  it  appears  that  the  logarithmic  rate  of  decre- 
ment of  inequalities  in  the  mean  arrangement  of  the  grains,  which  has  been 

shown  (Art.  7 8 a)  to  follow  as  the  result  of  diffusion  in  granular  media,  is 

a   necessity  for  the   maintenance  of  systems  of  mean   and  relative  motion. 
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And  thus  it  appears  that  granular  media  may  satisfy  the  condition  of 

consisting  of  component-systems  which  are  mean  and  relative  in  respect  of 
conductions  as  well  as  convections. 

78  E.  It  also  appears,  and  perhaps  this  is  of  greater  analytical  import- 
ance, that  the  two  rates  of  logarithmic  decrement,  that  of  inequalities  of 

vis  viva,  and  that  of  rearrangement  of  mean  inequalities  in  the  symmetry  of 
the  mean  arrangement  of  the  grains,  which  also  secures  the  redistribution  of 

angular  inequalities  in  the  rates  of  component  conduction  of  momentum,  are 

in  a  measure  independent  and  are  analytically  distinct. 

79.  The  inequalities  in  the  mean  symmetrical  arrangement  of  the  mass, 

although,  being  the  most  remote,  they  have  presented  the  greatest  difficulties 

to  recognition  and  analytical  separation,  are  of  primary  importance  and 
distinguish  between  classes  of  granular  media.  It  has  been  shown  that 

logarithmic  decrement  of  these  inequalities  results  from  diffusion  among  the 

grains. 

79  A.  It  does  not,  however,  follow  that  such  logarithmic  rates  of  decre- 
ment would  exist  when  the  grains  were  in  such  close  order  that  no  grain 

could  break  through  the  closed  surface  which  might  be  drawn  through  the 

centres  of  its  immediate  neighbours.  For  then,  whatever  might  be  the 

order  of  arrangement  of  the  grains,  notwithstanding  the  existence  of  a  certain 
extent  of  freedom,  it  could  undergo  no  change. 

If  in  this  last  case  the  general  state  of  the  medium  were  such  that  the 

mean  freedoms  of  each  grain  were  equal  in  all  directions,  so  that  there  were 

no  inequalities  in  the  mean  component  paths  in  different  directions,  the 

relative-motion  would  be  in  a  state  of  mean  equilibrium  without  inequalities 
and  the  rates  of  displacement,  by  conduction,  would  be  equal  in  all  directions. 

But  if,  from  the  last  condition,  the  medium  were  subjected  to  a  mean 

distortional  strain,  however  small,  the  mean  component  paths  of  the  grains 

would  no  longer  be  equal  in  all  directions  ;  and  the  rates  of  displacement  of 

the  momentum,  by  conduction,  would  be  no  longer  equal  in  all  directions, 
but  would  be  such  as  tended  to  reinstitute  the  former  condition ;  that  is 

to  say,  the  rearrangement  of  the  grains  within  the  limits  of  freedom  would 

be  such  as  to  balance,  not  the  external  mean  stresses  by  which  the  strains 

were  brought  about,  but  the  stresses  necessary  to  maintain  the  strain  steady. 
And  thus  the  logarithmic  decrement  would  not  be  to  a  state  in  which  the 

mean  paths  were  equal  in  all  directions,  but  to  a  state  in  which  the  in- 

equalities in  the  mean  paths  were  such  as  to  maintain  the  necessary 

inequalities  in  the  rates  of  displacement,  by  conduction,  to  secure  equili- 
brium under  the  external  stresses. 

80.  It  thus  appears  that,  while  the  effect  of  relative  accelerations  to 

redistribute  all   mean  inequalities,   in    the   angular  distribution  of  relative 
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vis  viva,  is  independent  of  any  symmetry  in  the  mean  arrangement  of  the 

grains,  and,  hence,  of  mean  angular  inequalities  in  the  mean  component 

paths  of  the  grains,  and  is  therefore  subject  to  no  limits.  Whatever  the 

relative  freedoms  of  the  grains  may  be,  the  angular  redistribution  of  in- 

equalities in  the  mean  component  paths  depends  solely  on  the  rate  of 

redistribution  of  the  mean  inequalities  in  the  symmetry  of  the  arrange- 
ment of  the  grains  and  is  subject  to  limits  depending  on  the  relative  lengths 

of  the  mean  component  paths  of  the  grains,  taken  in  all  directions,  as  com- 
pared with  the  diameters  of  the  grains. 

81.  It  also  appears  that  the  definite  limit,  at  which  redistribution  of 

the  lengths  of  the  mean  paths  ceases,  is  that  state  of  relative  freedoms 

which  does  not  permit  of  the  passage  of  the  centre  of  any  grain  across  the 

triangular  plane  surface  set  out  by  the  centres  of  any  three  grains  which  are 
neighbours. 

This  definite  limiting  condition  obviously  corresponds  to  that  at  which  all 
diffusion  of  the  grains  amongst  each  other  ceases. 

82.  It  thus  appears  that  there  is  a  fundamental  difference  in  media, 

otherwise  similar,  according  to  whether  or  not  the  freedoms  are  within  or 
without  this  limit. 

This  difference  amounts  to  discontinuity  in  the  media,  for  within  the 

limit  there  will  be  no  rearrangement  of  the  grains  however  long  a  time  may 
elapse  or  whatever  the  state  of  strain  may  be.  While  outside  the  limit, 

in  however  small  a  degree,  any  state  of  mean  strain  must  ultimately  be 
relaxed  however  long  the  time. 

83.  The  time  taken  for  such  relaxation  will  in  some  way  be  a  function 
of  the  degree  in  which  the  freedoms  are  without  the  limit  of  no  diffusion 

which  will  range  from  infinity  to  zero,  so  that  there  are  continuous  degrada- 

tions in  the  properties  of  the  media  according  to  the  degree  in  which  the 
freedoms  exceed  the  fundamental  limit. 

84.  The  independence  of  the  redistribution  of  relative  vis  viva  on  this 

fundamental  limit  to  redistribution  of  the  arrangement  of  mass  in  media 

consisting  of  perfectly  hard  spheres,  or  of  masses  of  any  rigid  shapes,  does 

not  appear  to  have  formed  a  subject  of  study  by  those  who  have  developed 

the  kinetic  theory  of  gases ;  so  that  however  complete  this  development 
may  be  with  respect  to  limited  classes  of  granular  media  which  have  formed 

the  subjects  of  this  study,  the  methods  employed  can  have  been  applicable 
only  to  those  classes  of  media  in  which  the  extent  of  the  relative  freedoms 

has,  in  a  large  degree,  been  outside  the  fundamental  limit  of  no  diffusion. 

85.  It  seems  important  that  the  limitation  imposed,  by  the  methods  of 

analysis  hitherto  used  in  the  kinetic  theory,  on  the  class  of  media  to  which 
r.  6 
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that  theory  applies,  should  be  distinctly  pointed  out  here,  before  proceeding  to 
the  further  analysis  of  the  general  theory.  Otherwise  confusion  might  arise 
in  the  mind  of  any  reader  acquainted  with  the  conclusions  already  accepted 

as  resulting  from  the  kinetic  theory,  as  to  the  reason  why,  after  having 
arrived  at  the  general  conclusion  that  the  only  media  which  can  consist 

of  component  systems  of  mean  and  relative  motion  belong  to  the  class  of 

granular  media  with  some  degree  of  freedom,  which  is  also  the  class  of  media 
to  which  the  kinetic  theory  has  been  applied,  any  further  analysis  should 

not  simply  follow  the  lines  of  the  kinetic  theory  as  hitherto  developed  ? 

This  question  having  been  anticipated  by  the  answer  which  is  given 

in  the  previous  paragraph,  in  which  it  is  shown  that  the  general  class  of 

granular  media  is  subject  to  fundamental  differentiation  according  as  the 
ratio  of  the  mean  paths  of  the  grains  to  the  dimensions  of  the  grains  is 
within  certain  limits ;  and  that  hitherto  the  method  of  the  kinetic  theory 

has  not  been  such  as  to  take  account  of  these  limits,  and  is  thus  only 

applicable  to  media  in  which  the  relative  paths  are  large  as  compared  with 

the  linear  dimensions  of  the  grains*. 

86.  Besides  the  fundamental  limit  of  no  diffusion  there  is  also  another 

fundamental  limit,  which  appears  as  soon  as  a  finite  relation  between  the 

paths  and  the  linear  dimensions  of  the  grains  is  contemplated.  This  limit  is 
that  to  which  the  medium  approaches  as  the  paths  of  the  grains  approach 
zero. 

If  the  granular  medium  is  in  a  steady  condition,  then  if  the  relative 
vis  viva  is  finite  there  will  be  some  extent  of  freedom.  But  for  any  given 

vis  viva  the  mean  paths  will  depend  on  the  rates  of  conduction  or  vice  versa. 

Thus  it  is  possible  that  the  relative  mean  paths  may  be  indefinitely  small  as 

compared  with  the  diameters  of  the  grains,  and  the  rates  of  conduction 
indefinitely  large. 

87.  It  has  been  shown  Art.  74  (a)  that  a  granular  medium,  in  which  the 

grains  are  in  such  arrangement  that  each  grain  is  in  complete  constraint 
by  its  neighbours,  cannot  consist  of  mean  and  relative  systems  of  motion. 

While  from  the  previous  paragraph  it  appears  that  granular  media  in  which 

there  is  finite  relative-energy  may  approach  within  any  approximation  of 
the  condition  of  complete  constraint  with  their  neighbours. 

88.  The  conclusion,  as  stated  at  the  end  of  the  last  paragraph,  has 

a  fundamental  significance.  It  clears  the  way  to  the  recognition  of  the 
definite  geometrical  distinction  between  the  effects  of  redistribution  in 

media,  otherwise  similar,  in  which  the  mean  paths  are  respectively  within 
and  without  the  fundamental  limit  of  no  diffusion. 

*  Phil.  Mag.  1860,  Vol.  xix.  p.  19,  Vol.  xx.  p.  21. 
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When  there  is  no  relative  motion  and  each  grain  is  in  complete  con- 
straint with  its  neighbours,  if  there  is  no  mean  motion,  it  follows,  at  once, 

that  the  directions  of  the  normals,  at  the  points  of  contact,  to  the  surfaces  of 

the  grains,  whatever  these  directions  may  be,  are  undergoing  no  change — 
are  fixed  in  space. 

If  then,  as  shown  in  the  last  paragraph,  granular  media  in  which  there  is 

vis  viva  of  relative-motion  may  approach  indefinitely  to  the  condition  of 
complete  constraint,  it  follows  that  in  such  media,  when  the  mean  paths  are 

indefinitely  small  compared  with  the  diameters  of  the  grains,  the  directions 

of  the  normals  at  points  of  contact  approximate  indefinitely  to  certain 

definite  directions  fixed  in  space,  that  is,  as  long  as  there  is  no  mean- 

motion.  Thus  we  have  the  definite  geometrical  distinction,  that  as  long  as 
the  mean  paths  are  within  the  fundamental  limit  of  no  diffusion,  and  there 

is  no  mean-motion,  the  normals  to  the  surfaces  at  encounters  are  within 

certain  angles  of  directions  fixed  in  space ;  while  if  the  mean  paths  are 

without  these  limits,  in  however  small  a  degree,  the  normals  continually 
change  their  directions  so  that,  if  sufficient  time  is  allowed,  all  directions 

are  equally  probable. 

89.  While  within  the  fundamental  limit  any  one  grain  can  only  have 

contacts  with  a  strictly  limited  number  of  other   grains,  in  the   case   of 

wC^]^  / 

/                   i^-0^0"^          yv.      s 

Fig.  1. 

uniform  spherical  grains,  in  regular  symmetrical  piling,  the  number  of  grains 

any  grain  can  come  in  contact  with  is  twelve,  so  that  if  there  is  no  strain 
in  the  medium  and  the  mean  paths  are  indefinitely  small,  as  compared  with 

6—2 
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the  diameter,  there  are  twelve  fixed  normals  in  which  this  grain  can  have 

contact  with  other  grains.  The  twelve  normals  radiate  from  the  centre  of 

the  grain,  and  when  the  grains  are  in  the  regular  formation  each  normal 
is  in  the  same  line  with  an  opposite  normal  so  that  there  are  six  fixed  axes 

symmetrically  situated  in  which  encounters  take  place.  And  as  the  resultant 
accelerations  are  in  the  directions  of  the  normals  at  encounter,  these  six 
directions  of  the  normals  are  six  axes  of  conduction  of  momentum. 

These  axes  pass  through  the  twelve  middle  points  in  the  edges  of  a  cube 

circumscribing  each  grain,  if  there  are  no  mean  strains  in  the  medium,  and 

are  thus  symmetrically  placed  with  respect  to  the  three  principal  axes  of 
the  cube.     This  is  shown  in  Fig.  1,  p.  83. 

If,  then,  the  rates  of  conduction  across  surfaces  perpendicular  to  these 

six  axes  are  equal,  the  momentum  conducted  being  in  the  direction  of  the 

axes,  the  grains  will,  of  necessity,  be  in  mean  equilibrium. 

This  state  of  equilibrium  in  no  way  depends  on  the  mean  density  of 

the  relative  vis  viva  of  the  grains.  Therefore,  in  the  limit,  as  the  mean 

paths  of  the  grains  become  indefinitely  small,  as  compared  with  their 

diameters,  as  regards  the  direction  of  the  rates  of  conduction,  whatever  the 

relative  vis  viva  may  be,  the  state  will  be  the  same. 

Thus,  if  there  is  no  relative  motion,  but  the  grains  are  under  stress, 

equal  in  all  directions,  by  rates  of  conduction  resulting  from  actions  at 
the  boundaries  of  the  medium,  the  rates  and  directions  of  the  resultant 
actions  would  be  the  same  as  if  the  rates  of  conduction  resulted  from  the 

exchanges  of  momentum  of  relative-motion. 

90.  This  limiting  similarity  between  the  states  of  media,  one  of  which, 

having  no  system  of  relative  motion,  is  purely  kinematical,  and  cannot 

satisfy  the  conditions  of  consisting  of  mean  and  relative  systems  of  motion, 

while  the  other,  essentially,  satisfies  these  conditions,  has  a  fundamental 

significance,  although  (except  by  the  recognition  that  in  the  one  case  the 
conduction  results  from  mean  actions  at  the  boundaries  of  the  medium, 

while  in  the  other  the  conductions  are  between  the  moving  grains)  this 

significance  in  no  way  appears  as  long  as  there  are  no  mean  strains  in  the 
media. 

If  these  media  are  subject  to  any  indefinitely  small  distortional  strains 

the  discontinuity  between  them,  as  classes  of  media,  appears. 

In  the  case  of  kinematical  media  without  mean  strain,  the  stresses  being 

equal  in  all  directions  and  finite,  no  strain  will  result  from  indefinitely  small 
stresses,  nor  will  any  strain  result  until  the  mean  distortional  stresses  arrive 

at  the   same  order  as  the  mean  stress  equal  in  all  directions.     Thus  if  p 
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represents  the  stress,  equal  in  all  directions,  and  pxx  —  p  is  the  normal  stress 
imposed  in  the  direction  in  which  x  is  measured,  the  stress  in  the  direction 

at  right  angles  remaining  equal  to  p  (and  not  affected  by  the  strain),  there 

will  be  no  strain  until  pxx  is  greater  than  2p.  Whence  it  follows  that  any 

distortional  strain  is  attended  by  an  increase  of  mean  volume  occupied 
by  the  medium  equal  to  the  contraction  in  the  direction  in  which  x  is 

measured,  since  there  is  no  work  spent  in  resilience,  or  in  accelerations  of 

relative  vis  viva.  Thus  the  kinematical  medium  has  absolute  stability  up  to 
certain  limits*. 

91.  On  the  other  hand,  the  granular  medium  with  relative  motion, 

however  small  may  be  the  mean  paths,  when  subject  to  no  distortional 

strain,  and  to  indefinitely  small  distortional  stresses,  yields  in  proportion 
to  the  stress  so  that  such  stress  is  equal  to  the  strain  multiplied 

by  a  coefficient  which  is  constant  if  the  terms  involving  the  square  and 
higher  powers  of  the  strain  are  neglected;  and  this  medium  has  the  character 

of  a  perfectly  elastic  solid  for  indefinitely  small  strains.  It  has  therefore  no 

finite  absolute  stability,  and  no  dilatation  as  long  as  the  squares  of  the 
strains  are  indefinitely  small.  As  the  strains  increase,  however,  dilatation 

ensues,  as  expressed  by  the  terms  involving  the  squares  and  higher  powers  of 
the  strains. 

Thus,  although  for  small  strains  the  two  media  are  fundamentally 

different,  as  the  strains  become  larger  the  conditions  of  the  two  classes  of 

media  approximate  towards  similarity,  as  regards  the  relation  between 
stresses  and  strains;  and  thus  the  door  opened  to  mechanical  analysis 

by  the  recognition  and  analytical  study  of  the  property  of  dilatancy,  as 

belonging  to  all  media  consisting  of  rigid  discontinuous  members,  is  not 
closed  to  the  analysis  of  systems  of  mean  and  relative  motion.  So  far  from 

this  being  the  case,  the  recognition  of  the  coexistence  of  relative  motion,  by 

easing  off  the  condition  of  absolute  stability,  belonging  to  the  purely  kine- 
matical system,  supplying  as  it  were  kinetic  cushions  at  the  corners,  has 

removed  difficulties  which  otherwise  rendered  analysis  impossible. 

92.  The  primary  conclusion  arrived  at  in  this  section,  that  the  only 

media  which,  as  purely  mechanical  resultant  systems,  can  consist  of  com- 
ponent systems  of  mean  and  relative  motion,  are  those  which  consist  of 

discontinuous  perfectly  conducting  members  with  some  degree  of  freedom, 

while  limiting,  as  already  pointed  out,  the  scope  of  the  subsequent  analysis 

necessary  for  the  definite  expression  of  the  several  rates  of  action  resulting 
from  convections  in  such  media,  also  indicates  the  methods  by  which  this 

analysis  may  be  accomplished. 

*  Phil.  Mag.  Dec.  1885,  "On  the  Dilatancy  of  Media  composed  of  Rigid  Particles  in  Contact." 
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Given  the  mean  actions  across  the  boundaries  of  any  portion  of  the 

medium,  the  mean  action  of  the  grains  enclosed  is,  at  any  instant,  a  mean 

function  of  the  generalised  ordinates  which  define  the  shapes,  positions  and 
dimensions  of  the  members,  the  intervals  of  freedom,  number  of  grains  in 
unit  volume,  their  velocities  and  their  directions  of  motion. 

Thus  the  method  of  analysis  is  to  express  the  several  probable  mean 

rates  of  action,  resulting  from  convection  and  conduction,  in  terms  of  the 

mean  vis  viva  of  relative  velocity,  the  mean  component-paths  and  mean  paths, 

their  number,  mean-mass,  and  any  other  generalised  mean  ordinates  that  the 
shapes  of  the  grains  may  entail.  Then  these  expressions  may  be  substituted 

in  the  members  on  the  right  of  the  equations,  Section  VI.,  since  these  include 

general  expressions  for  the  several  actions. 

The  method  thus  indicated  constitutes  a  general  extension,  or  completion, 

of  the  method  employed  in  the  kinetic  theory  of  gases. 



SECTION    VIII. 

THE   CONDUCTING    PROPERTIES   OF   THE   ABSOLUTELY   RIGID 

GRANULE,    ULTIMATE- ATOM    OR   PRIMORDIAN. 

93.  Although  the  absolutely  rigid  atom  is  as  old  as  any  conception  in 

physical  philosophy,  the  properties  attributed  to  it  are  outside  any  experience 

derived  from  the  properties  of  matter.  In  this  respect,  the  perfect  atom  is 

in  the  same  position,  though  in  a  different  way,  as  that  other  physical 

conception — the  perfect  fluid.  Both  of  these  conceptions  represent  conditions 
to  which  matter,  in  one  or  other  of  its  modes,  apparently  approximates, 

but  to  which,  the  results  of  all  researches  show,  it  can  never  attain,  although 

this  experience  shows  that  there  is  still  something  beyond. 

The  analysis  of  the  properties  of  conducting  momentum,  which  must  belong- 
to  the  perfect  atom  considered  as  of  uniform  finite  density,  is  obtained  from 

the  principle  of  conduction  defined  in  Art.  72,  Section  VII.;  from  which 

it  appears  that  it  must  conduct  in  all  directions  at  an  infinite  rate,  or  that 

it  must  be  capable  of  sustaining  stress  of  infinite  intensity,  tension,  com- 
pression or  shearing;  while  it  is  shown  that  the  property  of  conducting 

negative  momentum  in  a  positive  direction  or  vice  versa  requires  that  the 
momentum  and  the  conduction  shall  be  imaginary. 

In  the  case  of  matter  (rigid  bodies)  these  imaginary  stresses  and  rates 

of  conduction  are  held  to  imply  rates  of  actual  conduction,  round  the  outside 
of  the  bodies,  in  the  medium  of  the  ether.  A  conclusion  confirmed  in  the 

case  of  matter  by  the  existence  of  limits  to  the  intensities  of  these  stresses. 
Such  outside  conduction  is  at  variance  with  the  conception  of  fundamental 

atoms  outside  of  which  there  is  no  conducting  medium  and  which  atoms 

do  not  possess  the  properties  of  changing  their  shapes  or  of  separating 
into  parts. 

It  becomes  clear  therefore  that  any  fundamental  atom  must  be  con- 
sidered as  something  outside — of  another  order  than — material  bodies,  the 

properties  of  which  are  not  to  be  considered  as  a  consequence  of  the  laws 
of  motion  and  conservation  of  energy  in  the  medium  but  as  the  prime  cause 
of  these  laws. 
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94.  If,  for  the  sake  of  simplicity,  the  medium  consist  of  closed  spherical 

surfaces  of  equal  radii  cr/2  with  the  same  internal  constitution — anything  or 
nothing — and  the  interstices  between  them  are  unoccupied ;  these  surfaces 
having  the  property  of  maintaining  their  motions,  uniform  in  direction  and 

magnitude,  across  the  intervals,  and  that  of  instantly  reversing  the  com- 
ponents of  their  relative  velocities  in  the  directions  to  the  surfaces  at 

contact  on  encounter  without  having  changed  their  shapes ;  such  a  medium, 

however  far  it  might  go  to  satisfy  the  kinematical  conditions  necessary  for 

the  physical  properties  of  matter,  would  of  necessity  entail  the  laws  of 

motion  and  the  conservation  of  energy ;  and  would  thus  constitute  a  purely 
mechanical  medium  in  which  the  results  would  be  the  same  whatever  might 

be  the  constitution  of  the  space  within  the  surfaces. 

The  mean  density  in  such  a  medium  would  be  measured  by  the  number 

(N)  of  closed  surfaces  divided  by  the  space  occupied.  And  the  density 

within  the  surfaces  would  be  the  reciprocal  of  the  volume  enclosed  (7rer3/6). 

Since  each  of  the  grains  represents  the  same  mass,  this  mass  becomes  the 

standard  of  mass  ;  and  being  common  to  all  the  grains,  is  of  no  analytical 

importance. 

In  the  same  way  <r,  the  diameter  of  the  grains,  becomes  the  standard  of 

scale  in  the  medium ;  and  being  the  same  for  all  the  grains  has  no  analytical 
importance. 

It  is,  therefore,  important  and  convenient,  as  adapting  the  notation  to 

any  arbitrary  system  of  units,  to  define  the  mass  of  a  grain  in  terms  of 

the  dimensions  of  the  grains  in  the  arbitrary  units. 

The  most  definite  and  convenient  definition  appears  to  be  that  which 

makes  the  mean  density  of  the  medium,  when  the  grains  are  piled  in  their 
closest  order,  a  maximum,  that  is  when  each  grain  has  contact  with  twelve 

neighbours  at  the  same  time.    In  this  way  the  mass  of  a  grain  is  expressed  by 

f 

Vl' 

where  a  is  the  diameter  of  a  grain  expressed  in  arbitrary  units. 

Then  if  p"  expresses  the  mean  density  of  the  medium 

>"=f   (*> 
And  thus  p"  becomes  unity  when  the  grains  are  in  closest  order. 



SECTION   IX. 

THE  PROBABLE  ULTIMATE  DISTRIBUTION  OF  VELOCITIES  OF 

THE  MEMBERS  OF  GRANULAR  MEDIA  AS  THE  RESULT  OF 

ENCOUNTERS,   WHEN   THERE   IS   NO    MEAN    MOTION. 

95.     Maxwell's  Theory. 

Since  the  only  action  between  elastic  hard  particles,  as  considered  by 

Maxwell,  is  that  of  exchanging  each  other's  relative  motion  in  the  direction 
of  contact  at  the  instant  of  contact,  and  the  action  of  the  grains,  as  defined 

in  Section  VIII.,  is  identically  the  same,  notwithstanding  that  it  is  not 

ascribed  to  elasticity,  Maxwell's*  proof  of  the  law  of  probable  distribution 
of  velocities  to  which  the  action  between  the  particles  tends,  applies  equally 

to  the  grains.  This  law  of  Maxwell's  is  perfectly  general  and  independent 
of  all  circumstances  as  to  shape  and  size  of  the  particles,  and  the  extent  of 

their  freedoms,  as  long  as  there  is  freedom  in  all  directions,  and  there  is 
no  distortional  mean  motion. 

According  to  this  law  the  mean  of  the  energy,  taken  over  limits  of  space, 
such  as  define  the  scale  of  the  relative  velocity  of  the  motion  in  each  degree 

of  freedom,  is  the  same  for  each  and  every  degree  of  freedom,  and  is 

constant  when  equilibrium  has  been  established.  From  this  it  follows  that 

the  time-mean  of  the  energy  of  motion  in  each  degree  of  freedom  is  the 

same,  and  is  equal  to  the  space-mean. 

In  the  case  of  all  the  grains  being  similar  and  equal  the  mean  component 

velocities  positive  or  negative  are  the  same,  whether  taken  with  respect  to 

time,  or  to  space.  And  when  the  grains  differ  the  mean  component 
velocities  are  inversely  as  the  square  roots  of  the  masses. 

This  law  of  distribution,  to  which  the  relative- velocities,  in  any  granular 

medium,  tend  when  the  mean  motion  ceases,  being  general  requires  no 

further  exposition  here. 

*  Phil.  Mag.  1860,  Part  I.,  pp.  20—23,  Props.  I,  II,  III,  IV. 



90  ON    THE   SUB-MECHANICS   OF   THE   UNIVERSE.  [96 

In  following  up  the  consequences  of  the  law,  to  which  the  mean  com- 
ponent vis  viva  tends,  on  the  mean  distribution  of  the  spheres,  Maxwell, 

it  appears,  has  tacitly  introduced  an  assumption  which,  although  legitimate 
in  cases  in  which  the  diameters  of  the  spheres  are  negligible  as  compared 

with  the  mean-paths  of  the  spheres  between  encounter,  has  completely 
obscured  the  fact  that  the  mean  arrangement  of  the  grains  does  not  depend 

solely  on  fulfilment  of  the  law  of  distribution  of  the  vis  viva;  but  also 

depends  on  the  hindrance  which  the  surrounding  grains  may  offer  to  the 

enclosed  grain  in  changing  its  neighbours. 

When  the  grains  are  small  compared  with  spaces  separating  them  this 

hindrance  becomes  negligibly  small.  And,  further,  whatever  effect  it  might 

have  is  entirely  dependent  on  the  conduction  through  the  grains  ;  so  that 

the  neglect  of  the  displacement  of  momentum  by  conduction  renders  any 

account  of  such  mutual  constraints  which  the  grains  may  impose  on  each 
other  futile. 

It  now  appears,  however,  that  taking  account  of  the  conditions,  we  have 

in  these  a  class  of  actions  which,  however  insignificant  they  may  be  when 

the  density  is  small,  entirely  dominate  all  other  actions  when  the  density 

approaches  maximum  density.  And  it  thus  becomes  evident  that  the 

failure  of  the  kinetic  theory,  as  applied  to  gases,  to  apply  to  the  liquid  and 
solid  states  of  matter  is  owing  to  this  tacit  assumption  that  the  distribution 

of  the  mass  depends  only  on  the  action  which  secures  that  the  distribution 

of  vis  viva  shall  approach  that  of  uniform  angular  dispersion  as  the  medium 

approaches  a  state  of  equilibrium. 

It  will  thus  be  seen,  that  accepting  Maxwell's  law  of  probable  distri- 
bution of  vis  viva,  it  still  remains  necessary  for  the  purpose  of  definite 

analysis,  to  define  the  limits  of  its  consequences  on  the  probable  arrange- 
ment of  the  grains,  i.e.  of  mass. 

96.  Maxwell's  law  of  probable  distribution,  of  vis  viva  is  independent 
of  equality  in  the  lengths  of  the  mean  paths. 

This  is  founded  on  the  demonstration  (1)  that  when  two  elastic  spheres, 

having  relative-velocities  in  any  particular  direction,  undergo  chance  en- 
counter, all  directions  of  subsequent  relative-motion  are  equally  probable, 

and  (2)  the  demonstration  that  whatever  may  be  the  shape  of  the  elastic 

bodies  the  same  law  holds,  as  to  the  linear  velocity,  and  is  further  extended 
to  their  rotational  motions.  As  consideration  here  is  confined  to  the  case 

of  smooth  spheres  it  is  sufficient  to  take  into  account  the  first  case  only. 

The  most  general  expression  of  this  law  for  uniform  grains  is,  taking 

x,  y,  z  to  represent  the  component  velocities  of  grains  in  the  directions  x,  y,  z 

respectively,  and  N  for  the  number  of  grains  in  unit  space,  the  numbers 
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of  grains  which  have  component  velocities  which,  respectively,  lie  between 

x  +  8x,  y  +  8y,  z  +  8z,  are 
XT         {X2  +  ,f.  +  zn 

SN=  — 7--,e   Z*       8x8y8z    (130). 
a*  (7r)5  a 

From  this  definite  expression  of  the  law  it  will  be  seen  that  it  is  confined 

to  direction  only  and  would  apply  equally  to  cases  where  in  some  directions 

the  grains  were  making  short  paths  and  in  others  long  paths,  as  well 
as  to  that  in  which  the  mean  paths  are  equal  in  all  directions.     Q.  E.  D. 

97.     The  distribution  of  mean  and  relative  velocities  of  pairs  of  grains. 

In  Proposition  V.  of  the  same  paper  Maxwell  extended  the  law  of 
probable  distribution  of  vis  viva  to  the  distribution  of  the  relative  vis  viva 

of  all  pairs  of  grains.  He  does  not  seem,  however,  to  have  further  extended 
it  to  that  of  the  mean  motions  of  the  pairs;  which  is  remarkable  as  it 

appears  to  follow  directly  from  his  method  and  would  have  saved  him  much 
subsequent  trouble. 

These  extensions  do  not  in  the  least  involve  the  arrangement  of  the 
grains.  It  is  however  convenient  to  introduce  the  demonstration  of  the 

law  of  distribution  of  the  mean-velocities  here,  for  the  purpose  of  reference, 
and  it  is  simpler  to  demonstrate  both  at  the  same  time. 

Taking  x,  y,  z  as  the  components  of  the  mean-velocity  of  a  pair  of  grains 

and  x,  y1,  z  as  the  relative  components  of  the  same  pair,  and  xly  yl7  z1} 
#2>  2/2.  #2  as  the  components  of  the  individual  motions,  we  have 

X1  =  X  +  X',      y1  =  y  +  y'l      Z1=Z  +  Z  , 

x2  =  x-  x',    y,  =  y-  y',    z,  =  z-  z' . 
Then  for  the  numbers  of  grains  for  which  x\  is  between  ar,  and  x1  +  8x1, 

yx  between  y1  and  yx  +  8yx,  zx  between  zx  and  zx  +  8z1}  and  x2  is  between  x2  and 
x2  +  8x„,  &c,  &c. 

N't         /(g+s')'.  (y+y'Y2  ,(5+g'Fl —  e  l   o?     +    a?    +    a?   i  dxdydz 
.(131). 

a3(7r)^ 

No  Hx-x'V2.  (y-y'y.g-gTl 
n2=   . ,    x»e    «■    a8  a2         a2    sdx'dydz' 
2     a3  (tt)5  y 

The  first  of  these  equations  expresses  the  probable  number  of  grains 

having  mean-velocities  between  x  and  x  +  8x,  &c,  &c,  for  any  particular 
value  of  x,  the  relative-velocity,  &c,  &c. 

And  the  second  equation  in  the  same  way  expresses  the  number  of 

grains  having  relative-velocities  between  x  and  x'  +  8x',  &c,  &e,  for  any 
value  of  x,  &c,  &c.  Whence  the  probability  of  the  double  event  is  expressed 

by  the  product 

a6irs .(132). 
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Then  if  r  =  x2  +  y2  +  z2  and  r  =  x'2  +  y'2  +  z'2,  the  number  of  pairs  having 
mean-velocities  between  f  and  r+Br  and  relative  velocities  between  r'  and 
r+Br  is 

nin2=^lK2e-^-+r^  dxdydzdx'dy'dz'      (133). 

These  admit  of  integration  either  with  respect  to  x,  y,  z,  or  x' ',  y',  z. 

Thus  integrating  x,  y,  z  from  x  =  —  go  to  #  =  co  we  find 

TV"  TV  r'2 ,1 x    2      e-wdxdy'dz'   (134) 

(\/2a)3  (tt)*  *  
7 

for  the  whole  number  of  pairs  whose  components  of  relative  velocities  are 

between  x'  and  x  +  Sx',  y  and  y'  +  8y',  z'  and  z'  +  Bz'.  And  integrating  for r  instead  of  r  we  find 
N N         J^L 

  jL — - —  e~  a2  dxdydz     (135) 
(a/\/2)3(7r)S  J  V       ' 

for  the  number  of  pairs  whose  mean  components  of  velocity  are  between 
x  and  x  +  Bx,  &c,  &c. 

These  may  be  expressed  in  a  more  convenient  form  by  substituting 

—  r^cos  0d<fi  for  dx,  dy,  dz. 

And  applying  this  to  the  three  expressions  for  the  number — 

of  grains  having  velocities  between  r  and  r  +  Br, 

of  pairs  having  relative-velocities  between  \f%r  and  Vz  {r  +  Br), 

of  pairs  having  mean  velocities  between  ?-/V2  and  (?*+  Sr)/v/2, 

since  N  is   the    number   of  grains    in   unit    volume   and  N  (N  —  1)  is   the 
number  of  pairs  of  grains, 

7V4  (r\2      r"   )J^e~^hr  =  n1   (136), 
a3  V7T 

{A«rk        a-g-Vg^-^-D^,   (137), 
(iV-l)^(;VV2)%_(^gr/V-  =  ̂ _1)Mi   

(a/v 2)3  V7r 
Q.  E.  D. 

The  first  and  second  of  these  laws  of  angular  distribution  of  vis  viva  are 

the  same  as  those  given  by  Maxwell ;  and  the  third,  that  for  the  distribution 

ot  the  mean  vis  viva  of  pairs  of  grains,  leads  to  the  same  results  as  Maxwell 

arrived  at  in  a  different  manner.  Together  they  constitute  the  principal 

means  of  giving  definite  quantitative  expression  to  the  results  of  the  analysis 

of  the  actions  in  a  granular  medium.  And  it  is  important  to  notice  that  they 
are  derived  from  the  probable  independence  of  the  preceding  and  antecedent 



98]      DISTRIBUTION    OF    VELOCITIES   OF   MEMBERS   OF   GRANULAR   MEDIA.       93 

directions  of  the  relative  velocities  of  a  pair  of  grains  before  and  after 
encounter  under  conditions  in  which  the  mean  density  and  constitution  of 
the  medium  remain  unaltered. 

In  Proposition  VI.  Maxwell  has  shown  the  rates  at  which  the  several 

members  of  the  medium  exchange  vis  viva,  using  arbitrary  constants.  And 

in  his  Proposition  VII.  he  proceeds  to  the  demonstration  of  the  probable 

length  of  the  path  of  a  grain  in  terms  of  N,  the  number  of  grains  in  unit 
volume,  s  the  diameter  of  a  grain,  and  v  the  velocity.  He  has  first  shown 

that  if  r  is  the  relative  velocity  of  a  particle  with  respect  to  N  particles  in 

unit  volume,  this  particle  will  approach  within  the  distance  s  of  iWrs2 
particles  in  a  unit  of  time. 

Thus  in  Propositions  VIII.  and  IX.  he  determines  the  number  of  pairs 

moving  according  to  the  laws  expressed  in  equations  (137)  and  (138)  which 

will  undergo  encounters  in  a  unit  of  time,  and  in  Proposition  X.  determines 
the  mean  path  of  a  particle  to  be 

l 

1  = 
iW27TS2 In  this  result  there  are  two  things  to  be  noticed. 

In  the  first  place  the  7rs'2  in  the  denominator  represents  the  area  of  the 
target  exposed  to  the  centre  of  a  spherical  grain  by  another  grain  in  the 
direction  of  their  relative  motion ;  while  the  \/2  is  merely  the  ratio  of 

the  mean  relative  velocity  of  the  pair  to  the  mean  velocity  of  either  grain, 

equations  (136),  (137).  It  is  thus  seen  that,  although  the  dimensions  of  the 

grain  are,  perforce,  taken  into  account  as  determining  the  probability  of  an 
encounter,  no  account  is  taken  of  the  third  dimension  of  the  grain  in 

diminishing  the  actual  distance  the  centres  of  the  grains  would  travel 

between  encounters.  Hence  Maxwell's  mean  path  I  can  only  be  an  approxi- 
mation when  his  s  is  small  with  respect  to  his  I. 

The  second  point  to  be  noticed  in  Maxwell's  deduction  of  the  mean  path 
is  that  he  has  tacitly  assumed  I  to  be  the  same  in  all  directions.  And  has 

thus  assumed  not  only  that  the  density  is  constant,  which  is  assumed  in  the 

determination  of  his  laws  of  distribution  of  vis  viva,  but  also  that  the  arrange- 
ments of  the  particles  must  be  such  that  the  mean  chance  of  encounter  is 

equal  in  all  directions,  a  condition  which  does  not  enter  into  the  laws  of 
distribution  of  vis  viva,  and  consequently  limits  the  application  of  this  mean 

path  to  conditions  of  the  medium  such  that  all  directions  afford  equal  chance 
of  encounter.  A  condition  which  is  obviously  approximated  to  as  the  actual 

density  becomes  small  compared  with  the  maximum  density,  when  each 
particle  is  in  continuous  contact  with  twelve  neighbours. 

98.  In  pointing  out  the  limits  to  the  application  of  Maxwell's  analysis  of 
the  action  in  a  medium  of  hard  elastic  spheres,  my  chief  object  has  been  to 
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direct  attention  to  those  extensions  and  modifications  which  are  necessary 

to  render  the  analysis  general,  and  thus  to  present  a  clear  idea  as  to  how  far 

Maxwell's  method  may  be  applied.  At  the  same  time  it  seemed  very  desirable 
to  show  clearly,  that  in  extending  the  analysis  to  include  conditions  of  the 

medium  to  which  Maxwell  had  not  applied  his  method,  there  is  nothing  at 
variance  with  the  results  he  had  obtained  under  the  condition  to  which  his 

application  of  this  method  extended. 

Maxwell's  laws  of  the  probable  distribution  of  vis  viva,  and  mass,  extended 
to  include  the  mean  vis  viva  of  pairs  of  grains,  are,  as  already  pointed  out, 

perfectly  general. 

But  it  is  necessary  to  obtain  expressions  in  terms  of  the  quantities  which 
define  the  relative  motions  of  the  medium  for  the  rates  at  which  the  actions 

of  conduction  through  the  grains  displace  momenta  and  vis  viva  of  relative 

motion,  which  expressions  shall,  if  possible,  be  as  general  as  the  law  of  distri- 
bution of  vis  viva. 

In  the  media  considered  by  Maxwell  the  distances  between  the  grains  are 

assumed  to  be  large  compared  with  the  dimensions  of  the  grains.     Whereas 

in  the  general  theory  it  is  fundamental  that  cases  should  be  considered  in  • 
which  the  distances  between  the  centres  of  the  grains,  which  are  neighbours, 

approach  indefinitely  near  to  the  linear  dimensions  of  the  grains. 

Such  consideration  involves  methods  of  analysis  by  which  the  several 

effects  of  the  action  between  the  grains  may  be  defined  whatever  may  be 

the  relation  between  a  the  diameters  of  the  grains  and  A,  their  mean  path. 

In  the  first  instance  the  consideration  of  these  rates  is  confined  to  states 

of  the  media  in  which,  whatever  may  be  the  density  as  compared  with  the 

possible  density,  the  arrangements  of  the  grains,  however  varying,  are  such 
that  the  mean  actions  in  every  direction  are  similar  and  equal ;  the  medium 

being  everywhere  in  mean  equilibrium.  And  afterwards  to  proceed  to  the 

effects  of  inequalities  both  angular  and  linear. 



SECTION   X. 

EXTENSION  OF  THE  KINETIC  THEORY  TO  INCLUDE  PROBABLE 

RATES  OF  CONDUCTION  THROUGH  THE  GRAINS,  WHEN  THE 

MEDIUM  IS  IN  ULTIMATE  CONDITION  AND  IS  UNDER  NO 

MEAN   STRAIN. 

99.  The  mean  rates  of  convection  and  conduction  of  momentum,  ex- 

pressed in  equations  (120)  by  pxx,  pyx,  &c.,  and  p"(uu')",  p"(v'u')",  &c, 
admit  of  expression  as 

P+Pxx-P*  pyx,  &c;   %p" (v'v')"  +  p" {u'u)" -y (v'v)"t  p"(v'u')",  &c, 

where  p  =  $ (pxx  +pw  +  pzz),  p   (v'v)"  =  p" (u'ti  +  v'v'  +  w'w')" 

and  in  this  case  p  and  ̂ p"(v'v')"  represent  the  mean  action,  equal  in  all 

directions,  while  pxx—p,  p"  (u'u')"  —  \p"(v'v')"  &c,  pyx,  &c.  and  p"(v'u')"  repre- 
sent inequalities. 

In  this  first  extension  of  the  kinetic  theory  the  object  is  to  express  the 

actions  indicated  by  p  and  p"(v'v')"  only,  assuming  that  the  inequalities  are 
zero,  in  terms  of  the  quantities  which  define  the  condition  of  the  medium. 

100.  To  determine  the  mean  path  of  a  grain. 

The  mean  path  of  a  grain  expressed  by  X  is  the  distance  traversed  by  its 
centre  between  encounters,  which  is  not  the  component  in  the  direction  of  its 

motion,  of  its  distance  between  the  points  at  which  the  two  actual  contacts, 

which  limit  the  path,  have  occurred,  although  it  approximates  to  this  as  X/cr 
becomes  large. 

Maxwell  has  shown  that  neglecting  <r/X  the  mean  path  of  a  grain  and  the 
relative  path  of  a  pair  of  grains  are  expressed  by 

X=  -— ^   and  V2X=  — -^   (139) 

respectively,  while  both  of  these  are  obtained  from 

V2ttXo-2  =  ̂    (140), 
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where  JV  expresses  the  number  of  grains  in  unit  volume ;  so  that  either 

member  represents  the  mean  volume  maintained  free  from  other  grains  by 
the  kinetic  action  of  each  grain. 

In  this  estimate  however  no  account  is  taken  of  the  striking  distance,  of 
the  centres  of  the  pair  of  grains,  from  the  plane,  normal  to  their  relative 

paths  before  contact,  through  the  point  of  contact,  so  that  the  centres  of  both 

grains  are  assumed  to  be  in  this  plane  at  the  instant  of  contact. 

When  X/cr  is  large  we  have  all  positions  of  the  projection,  in  the  direction 

of  relative  motion  of  the  striking  grains,  over  the  disc  7r<r2/4,  equally  probable, 
and  then   the  probable  mean  relative  striking  distance  in  the  direction  of 
relative  motion  is 

2 

This  is  a  relative  distance  and  the  corresponding  actual  extension  of  their 

actual  paths  is,  by  equations  (136)  and  (137), 
V2 

101.  The  assumption  that  all  positions  of  the  projection,  in  the  direction 

of  relative  motion,  of  the  striking  grains  are  equally  probable  over  the  disc 

area  7rcr2/4  is  obviously  legitimate  when  \  is  large  compared  with  a,  and 
hence  these  estimates  of  the  probable  mean  striking  distance  when  \/cr  is 

large  are  precisely  on  the  same  footing  as  Maxwell's  estimate  of  the  mean 
path  neglecting  a/X.  But  there  does  not  seem  to  be  the  same  ground  for 

this  assumption  when  a/X  is  large ;  while,  on  the  other  hand,  there  is 

evidence,  as  pointed  out  in  Section  VII.  (Arts.  88  and  89),  that,  when  the 

grains  are  close,  the  normals  at  encounter  fall  into  line  (approximately)  with 

the  direction  of  a  finite  number  of  axes,  fixed  in  space,  not  more  than  six. 

In  this  article  the  arrangement  of  the  grains  is  assumed  to  be  similar  in 

all  directions ;  so  that,  whatever  may  be  the  law  of  distribution  of  the  pro- 

jections of  encounters  on  the  disc-area,  the  probability  will  be  equal  in  all 
directions  at  equal  distances  from  the  centre  of  the  disc. 

Therefore  taking  6,  as  before,  for  the  angular  distance  from  the  axis  of  the 

disc  at  which  the  normal  at  encounter  meets  the  hemisphere  of  unit  radius, 

the  law  of  radial  distribution  on  the  disc  may  be  expressed  by  a  function  of 

cos  6,  which  function  will  depend  only  on  the  ratio  a/X.  Thus  as  a  general 

expression  for  the  probable  mean  striking  distance  we  have 

2-rra  I    cos  6  (1  +  A1  cos  6  +  &c.)  sin  6d  sin  6 

j"  -=§-/©-<141>- 
2-7T  I    (1  +  ̂.jcos  6)  sin  0dsin0 

Jo 
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in  which  Al  &c.  are  functions  of  a/X  only ;  and  as  the  law  of  radial  distri- 
bution of  the  striking  distance  is  perfectly  general  we  have  in  the  right 

member  a  perfectly  general  expression  for  the  mean  relative  striking  distance 

of  a  pair  of  grains  in  the  direction  of  their  relative  motion.  And  dividing  this 
by  V2  we  have  for  the  mean  probable  actual  striking  distance  of  a  grain 

$•/© 
Thus  as  a  general  expression  for  the  mean  path  of  a  grain  we  have 

=  ±^-l,f(?l 
V2  [ira'N and  for  the  volume  maintained  by  a  grain 

^Ht-OK' 
(142). 

102.     Further  definition  of  f(a/\). 

Since  the  foregoing  expression  for  the  volume  from  which  a  grain  excludes 

other  grains  applies  to  all  conditions  of  the  medium  it  must  include  the  case 

in  which  X  is  indefinitely  small;  in  which  case,  if  the  medium  is  in  uniform 

condition  with  three  perpendicular  axes  of  similar  arrangement,  the  unique 

condition  is  that  in  which  the  volume  maintained  by  each  grain  approximates 

to  as/\/2,  as  explained  in  Section  IX.,  each  grain  being  in  contact  with  12 

neighbours.  In  this  case  N  approximates  to  \/2/<x3  which  is  the  reciprocal  of 
the  volume  maintained  by  the  grain,  which  thus  approximates  to  the  volume 

of  the  spherical  grain  multiplied  by  6/\/27r.  Substituting  this  for  the  right 
member  of  the  second  equation  (142)  we  have  for  the  limit  when  a/X  is  large 

/©-i 
6 
  (143). 

4  V2tt 

Then,  again,  if  X/a  is  large  the  value  to  which  f(<r/X)  approximates  is  unity. 
Whence  for  an  expression  satisfying  all  cases  in  a  uniform  medium  with  three 

axes  of  similar  arrangement  it  appears  that  we  may  take 

where     a?  =  1  —  6/4\/2  ir     and  b2  is  arbitrary 

.(144). 

It  is  convenient  however  to  render  the  expression  for  this  function  a  little 

more  general,  since  in  a  granular  medium  although  generally  in  uniform 

condition,  with  three  axes  of  similar  arrangement,  there  may  exist  localities 

where  the  arrangements  vary  about  local  centres ;  the  medium  being  still  in 

equilibrium  and  X/a  being  small.  Under  such  conditions  the  limits  of 

variation  are  defined  by  the  fact  that  equilibrium  requires  that  each  grain 

shall  be  in  approximate  contact  with  at  least  four  grains.  And  it  seems  that 

r.  7 
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these  may  be  included  by  substituting  1  -  6r/4,  where  G  has  the  value  6/V27T 
when  the  medium  is  in  uniform  condition,  and  values  ranging  to  the  limit 

18/4V27T  when  the  medium  is  in  varying  condition,  as  about  centres  of 

disarrangement,  instead  of  6/4a/2  it  in  a'\     Then 

/©-^-SK"'   (145)- 
By  definition  (Section  IX.)  p  =  N^J^I,  and  by  the  second  equation  (142) 

a 

2ttP 

.(146). 

103.  In  order  to  render  the  expressions  for  the  mean  relative-path  of  a 

pair  of  grains  and  the  mean  path  of  a  grain,  taking  account  of  the  three 

dimensions  of  the  grains,  general  and  complete,  use  lias  been  made,  equation 

(139)  in  Art.  100,  of  the  ratio  (1/V2)  of  the  mean  path  of  the  grain  to  the 

mean  relative-path  of  a  pair  of  grains  as  determined  by  Maxwell  for  con- 
ditions in  which  the  third  dimension  is  negligible. 

The  legitimacy  of  this  assumption  therefore  remains  to  be  proved.  But 

before  proceeding  to  the  proof  of  this  proposition  the  proofs  of  two  other 

geometrical  propositions  are  desirable,  as  they  depend  directly  on  the  law  of 

distribution  of  the  component-striking  distance  over  the  area  of  the  normal 
disc. 

104.  The  first  of  these  propositions  is  : 

When  a  pair  of  grains  having  any  particular  relative  velocity  (a/2  V\),  all 

directions  being  equally  probable,  undergo  chance  encounter,  the  probable  mean 

product  of  the  displacement  of  momentum,  in  the  direction  of  the  normal  at 

encounter,  by  conduction,  multiplied  by  the  component  q/\/2  V7  in  the  direction 

of  the  normal  is 

To  prove  this,  let  x  De  the  acute  angle  between  two  diameters  drawn 

through  the  centre  of  a  sphere  of  unit  radius  in  the  directions  of  the  normal 

at  contact  and  that  of  the  relative  motion  before  contact,  and  let  co  be  any 

small  area  on  the  surface  of  the  sphere  taken  so  that  its  mean  position  is  at 

the  point  in  which  the  diameter  in  the  direction  of  the  normal  meets  the 

surface  of  the  sphere. 

Then  by  the  law  of  probability  of  the  striking  distance  it  follows  that,  at 

a  chance  encounter,  the  probability  of  the  normal  meeting  the  surface  in  co  is 

co  cos  x  (1  —  Ai  cos  %  +  &c.) 

~  > 

7T 
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or  multiplying  this  probability  by  the  product  of  the  normal  component  of 

the  relative  velocity  VSF/cos^,  and  again  by  a,  the  normal  displacement, 

integrating  over  the  hemisphere  for  all  values  of  ̂ ,  and  dividing  this 
integral  by  the  integral  of  the  probability  of  an  encounter  on  co  for  all  values 

of  x  over  the  hemisphere,  we  have  for  the  probable  mean  product  of  the 
normal  component  of  relative  velocity  multiplied  by  the  displacement 

■n 

2-7T  |     -  V2  o-TVcosx(l  —  Al  cos  ̂   +  &c.)  sin  %d  sin  % 

-^~X   =f  ̂</(0..(147). 
2tt       -cos%(1  -  J.1cos^  +  &c.)sin^^ 

Q.  E.  D. 

105.     The  second  of  the  two  geometrical  propositions  is : 

The  probable  mean  component  conduction  of  component  momentum  in  any 
fixed  direction  at  a  single  collision  is 

2  <r 

r3
 

3  V2 

'^'t/G 

To  prove  this  we  have  to  multiply  the  mean  product  of  normal  displace- 

ment multiplied  by  the  component  of  the  relative  velocity  by  (o-3/\/2)  the 
mass  of  a  grain  ;  thus  obtaining  the  expression  for  the  mean  displacement, 

in  the  direction  of  the  normal  at  encounter,  of  momentum  at  a  single 
encounter,  as 

V2 

\ 

Then,  taking  6  as  the  angle  which  the  direction  of  the  normal  makes  with 

any  fixed  direction,  say  that  in  which  ̂   is  measured,  and  resolving  the  normal 

displacement  a  and  the  mean  normal  component  of  V  in  the  direction  of  ̂ , 

multiplying  by  sin  Odd,  integrating  over  the  sphere  and  dividing  by  4nr, 
7T 

^2nr\a^Vlf(^)   fees9*  sin  0d0      0     ,     ,9  .  . 
V2        3  J  \\J  Jo  2  a3  v2     T7,,M     /1M 

Q.  E.  D. 
This  expression  for  the  probable  mean-component  conduction  at  a  single 

encounter  is  one  of  the  factors  of  the  rate  of  component  conduction  by  pairs 

of  grains  having  particular  relative  velocity  \/2  F/,  the  other  factor  being  the 
number  of  collisions  that  take  place  between  such  pairs  in  unit  space  in  unit 
time. 

This  second  factor  involves  the  discussion  of  the  ratio  of  the  mean  path 

to  that  of  the  relative  path  of  a  pair  of  grains. 

7—2 
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106.  The  number  of  collisions  between  pairs  of  grains,  having  particular 
relative  velocities,  in  unit  of  time,  in  unit  space. 

Taking  N  for  the  number  of  grains  in  unit  space  and  substituting  F/  for 

r  in  the  equations  (136),  (137),  (138),  Section  IX.,  we  have  for  the  numbers 

of  grains  having  velocities  between  V(  and  F/  +  SF/ 

(TY)« 
m{y^]e        -dV^nx    (149), 

for  the  number  of  pairs  of  grains  having  relative-velocities  between  \j2  F/ 
and  V2  (7/+8P7) 

.(.Dyr,-).^     ff|     f,         
(V 2  a)  v71" 

and  for  the  number  of  pairs  of  grains  having  mean-velocities  between  F//V2 
and(F/  +  SF/)/V2, 

7V7JV— 114(F7*/2¥  -(F'W2)" 

wv2)v:    e  °"v2  JW=,f-1)"   
(151)- 

107.  From  the  equations  of  distribution  of  velocities,  relative-velocities, 
and  mean-velocities  amongst  the  grains  and  pairs  of  grains  in  unit  volume, 
it  follows  that  the  proportion  of  the  N  grains  having  velocities  between  F/ 

and  Vi  +  SVi  is  the  same  as  the  proportion  of  the  N  (N  —  1)  pairs  of  grains 

having  relative- velocities  between  *J2  F/  and  \/2(V1'  +  8V1')  as  well  as  the 
proportion  of  N(N  —  1)  pairs  having  mean-velocities  between  V-i\sl2  and 

( V{  +  8  V1')/\J2,  since  for  every  one  of  the  grains  having  velocities  between 
Vi  and  F/  +  8F/  there  are  (JV—  1)  pairs  of  grains  having  relative-velocities 

between  \]2  F,'  and  »J2  (F/  +  SF/)  and  (iV  —  1)  pairs  having  mean-velocities 
between  F//V2  and  (F/  +  SV1')/y/2. 

Multiplying  the  equations  (136),  (137),  (138)  respectively  by  F/,  ̂ 2  F/, 

and  F//V2  respectively,  and  integrating  from  F/  =  0  to  V-[  =  oo  ,  we  have  for 

the  mean  velocity  of  grains,  the  mean  relative-velocity  of  pairs  of  grains,  and 
the  mean  mean-velocity  of  pairs  of  grains, 

(F/)"^,       4l(J{fjy**     and     (F/)7V2  =  ̂...(152). 

And  as  the  grains  are  of  equal  mass  the  relative  velocity  of  each  grain  in  a 
pair  is  half  the  relative  velocity  of  the  pair;  so  that  the  mean  relative 
velocity  of  each  grain  in  the  pairs  is 

<¥-£   (153)' 
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108.  To  find  the  mean  path  of  the  grains,  taking  V2A,  for  the  mean  path 

of  the  pairs. 

Each  grain  has  at  any  instant  N  -  1  relative  paths  with  the  N  —  1  other 

grains  in  unit  volume,  and  JS  —  1  relative  velocities,  so  that  the  N  grains 
have  in  all  N  (N  —  1)  relative  paths  and  N  (N  —  1)  relative  velocities. 

A  change  in  the  actual  velocity  of  any  one  grain  causes  a  change  in  the 

relative  velocity  of  each  of  the  JST  —  1  pairs  of  which  it  is  a  member.  And 
as  at  an  encounter  between  the  members  of  a  pair  two  grains  change  their 

actual  velocities,  there  are  2  (N  —  1)  changes  at  each  collision  in  the 
N(N—  1)  relative  velocities  of  the  pairs  in  unit  volume.  The  mean 
relative  path  of  a  pair  of  grains  between  changes  being  by  definition  \J2\, 

the  mean  relative  path  of  a  grain  is  A./V2.  And  considering  a  particular 

pair  of  grains,  their  paths  and  velocities  relative  to  each  other,  though 

continually  changing,  are  always  parallel  and  equal,  so  that  the  distances 
relative  to  each  other  traversed  by  each  of  the  grains  in  unit  of  time  have 

a  mean  value  (V1')"/\/2,  and  the  mean  number  of  changes  of  relative  path 
and  velocity  in  unit  of  time  is 

(H"A/2  =  (7T 

X/V2      ~     A,     ' 
Whence  the  number  of  changes  in  all  the  relative  paths  of  all  the  grains 

is  N  (N  —  1)  (F')"/\;  and  since  there  are  2  (N—  1)  changes  for  each  collision 
the  number  of  collisions  in  unit  volume  in  unit  time  is 

N{V')" 2      \     " 
Having  thus  found  the  number  of  collisions  between  the  N  grains  in 

unit  volume  in  unit  of  time,  since  there  are  two  grains  engaged  in  each 

collision  the  total  number  of  encounters  made  by  all  the  individual  grains 
in  a  unit  of  volume  in  a  unit  of  time  is  twice  the  number  of  collisions  : 

that  is 

N(V')" Therefore  the  mean  number  of  paths  traversed  by  each   grain  in  unit 
time  is 

Then  since  ( V')"  is  the  mean  distance  traversed  by  a  grain  in  unit  time, 
dividing  by  the  number  of  encounters  the  mean  path  is 

r/f 

£U-X   (154). 
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Therefore  if  \/2  X  is  the  mean  relative  path  of  pairs  of  grains,  A  is  the 

mean  path  of  a  grain.  It  also  appears  that  the  mean  number  of  collisions 
in  unit  of  time  in  unit  volume  is 

N(V')"     N     a  . —  v — —  =  —  .  —j-    (loo). 2       A  A     \/7r 

And  the  mean  number  of  grains  a  grain  encounters  in  unit  time  is 

(V)"         2a X  \Jtt  .  A 
(156). 

109.  The  mean  path  of  a  pair  of  grains. 

This  follows  directly  from  the  last  proposition.  For  as  the  number  of 

mean  paths  of  pairs  of  grains  is  identical  with  the  number  of  relative  paths 

of  pairs,  and  the  mean  velocities  of  pairs  is  one-half  their  relative  velocities, 
the  mean  paths  of  the  pairs  must  be  one-half  the  mean  relative  path  of  the 
pairs,  that  is,  must  be  equal  to  the  mean  relative  path  of  each  grain  of 
the  pair,  or 

V2
" 

110.  The  number  of  collisions  of  pairs  of  grains  having  relative  velocities 

between  V2  F/  and  V2  (F/  +  dV,').  ' 
Since  the  mean  relative  distance  traversed  between  changes  by  a  pair  of 

grains  irrespective  of  relative  velocity  is  \/2  A,  the  mean  time  of  a  pair  of 

grains  having  relative  velocity  V2  F/  in  traversing  their  mean  path  (\/2  X) 
is  A/F/. 

Then  since  the  number  of  pairs  of  grains  in  unit  volume  having  relative 

velocities  between  V2  F/  and  V2  (F/  +  dV-l)  is  N {N  —  1),  and  each  of  these 
pairs  changes  F//X  times  in  unit  time,  the  total  number  of  changes  of  these 
pairs  in  unit  of  time  is F/ 

n(N-l)  V-. X 

And  since  there  are  2  (N  —  1)  changes  for  each  collision,  we  have  for  the 

numbers  of  collisions  of  the  n(JSr—  1)  pairs  of  grains  in  unit  of  time, 
equation  (148), 

ihPi'     ̂ F/4(F/^   Jhl 

"2T  =  Ix7vVe         'dVl       (157)' 
The  integral  of  this  from  F/  =  0  to  F/  =  oo  gives  the  number  of  collisions 

of  the  N  grains  in  unit  time. 

111.  The  mean  rate  of  conduction  of  component  momentum  in  tlie  direc- 
tion of  the  momentum  conducted.     Cases  1  and  2. 



3 •(158), 
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Multiplying  the  probable  mean  component  conduction  from  a  mean 

collision  of  a  pair  with  relative  velocity  »J2  V-[,  equation  (136),  by  the  number 

of  collisions  in  a  unit  of  time,  equation  (157),  and  integrating  V-l  between 
the  limits  V-[  =  0  to  V-[  =  go  we  have  for  the  mean  rate  of  conduction 

*JZ<Tf(*\lWY      _ffiZ    wfilj,  ,m  V2o"    f(<r\(V'V')" 
P'Txf[x)-*w^-e    a  'dVj06d(-cosd)  =  P--Jx-f{x) 

whence  since  (V'VJ'  =  3(U'U')" 

P.^lf(l)(U'Uy=pxx'',&c.,&c   (159). 

112.  The  left  members  of  equation  (159)  express  in  terms  of  the 

quantities  which  define  the  relative  motion  of  the  medium,  the  mean  normal 
stresses,  or  the  mean  rates  of  conduction  of  momentum,  in  the  direction 
of  the  momentum  conducted.  And  besides  these  there  are  the  mean  tan- 

gential stresses,  or  rates  of  conduction  in  directions  at  right  angles  to  the 
direction  of  the  momentum  conducted. 

These  rates  are  obtained  by  substituting  in  equation  (158),  for  cos3  0, 
&c,  &c,  cos  0  sin  0  cos  <£,  &c,  which  when  integrated  over  the  surface  of 

a  hemisphere  are  zero,  if  all  directions  of  relative  motion  are  equally  pro- 
bable, but  have  values  in  a  medium  with  linear  inequalities  when  the  axes 

of  reference  are  other  than  the  principal  axes  of  the  inequalities. 

It  is  therefore  necessary  to  obtain  their  integral  values  over  the  several 

groups  of  pairs  having  relative  velocities  in  directions  in  which  the  sign 

of  the  component  displacement  is  the  same  as  that  of  the  component  of 

normal  velocity,  as 
7T         7T 

o  ?/'(?)  V2  Vi   I     I    cos  0  sin  0  cos  0  sin  0d0d<j>  .    w, o  X'    \\J  Jo  Jo  ^  °"  w^A  V^  Kj 

n    i  ¥[l)  ̂ r  -<160>' 
sin  0d0d(f> 

0J0 Si J  0  J  * 

which  multiplied  by  the  mass  and  the  number  of  collisions  and  taking 
the  mean  is 

H^Ms)^--**--^'-*8   (m)> 
so  that  to  each  of  these  groups  of  pairs  there  is  a  corresponding  group  for 

which  the  normal  components  of  mean-relative  motions  are  of  opposite  sign, 
the  mean  taken  over  the  two  groups  or  over  the  whole  unit  sphere  is  zero ; 
so  that  in  a  medium  without  linear  inequalities 

Pxy"  =  Q,  &c,  &c   (102). 
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113.  The  mean  rate  of  convection  of  components  of  momentum  in  the 

direction  x  by  grains  having  velocities  F/,  for  which  all  directions  are  equally 

probable,  is  expressed  by 

fn         F' 2ttP      X F/  -1 cos2  0  sin  d  dd      v ,2 
— "   ±   =  ̂-    (163.x 

2ttP      sin  6d6 
Jo 

which  becomes,  taking  Maxwell's  expression  for  the  mean  value  of  v-  from 
0  to  oo  ,  (a2 .  ■§),  when  multiplied  by  the  product  of  the  mass  into  the  number 
of  grains, 

I^OVPiT-pf   (!64)- 
And  for  the  mean  rate  of  momentum  conveyed  in  the  direction  of  the 

momentum 

p"^  =  p'(U'Uy',&c.,&c   (165). 

For  the  lateral  convections  of  momentum  the  expression  is 

2  n    (F/FT 
8      J  0  J  0 \v         w   cosflsin2  6d6  sin  <f>d(f) 

a"7-&c,  +&c,  -&c   (166), n      "  7T 

i    rA  r2  . 
h/3  I     /    sm  6d6d<p 

where  the  integration  extends,  as  in  the  case  of  lateral  conduction,  over 

groups  of  grains  of  which  the  directions  are  such  that  cos  6,  sin  6,  cos  <£,  &c. 

have  the  same  signs,  positive  or  negative.  The  groups  in  which  the  corre- 
sponding signs  are  opposite  have  integrals  with  the  opposite  signs  negative 

or  positive,  so  that  for  the  complete  integrals 

p»(V'Wy  =  0,  &c,  &c   (167). 

114.  The  total  rates  of  displacement  of  mean-momentum  in  a  uniform 
medium. 

Adding  the  expressions  for  the  rates  of  conduction  and  convection  in 

the  respective  members  of  equations  (159)  and  (105),  also  (162)  and  (167), 

we  obtain  for  the  whole  rates  of  displacement  of  the  components  of 
momentum 

P^+P»aruT=P»{i4^f(£)}arirr,  &c.  &o.)  (168) 
pxy"  +  P"(U'vy  =  0,  &c.  &c 
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115.  The  number  of  collisions  which  occur  between  pairs  of  grains  having 
mean  velocities  between   V{\*]1  and  ( F/  +  d  F/)/\/2. 

Since  the  mean  distance  traversed  between  changes  of  a  pair  of  grains, 

irrespective  of  mean  velocity,  is  X  \/2,  the  mean  time  of  a  pair  of  grains 

having  mean  velocity  F//V2  in  traversing  their  mean  path  is  \/V.  And 
since  the  number  of  pairs  of  grains  in  unit  volume  having  mean  velocities 

between  F//V2  and  ( F/  +  d  F1')/V2  is  n(n  —  1),  and  each  of  these  pairs 
changes  V/\  times  in  a  unit  of  time,  the  total  number  of  changes  of  these 
mean  paths  is 

V 

n(N-l)^-. 

And  since  there  are  2(iV  — 1)  changes  for  each  collision  the  number  of 

collisions  of  the  n  (n  —  1)  pairs  of  grains  in  unit  volume  in  unit  time  is 

n  v,'   nv;  ir,'  .tza 
rY  =  2T^e    '  -dv   <169>' 

which  integrated  gives  the  total  number  of  collisions  ajsjir .  \. 

116.  The  mean  velocities  of  pairs  having  relative  velocities  V2F/  and 

T7/V2. 

Since  the  time  of  existence  of  a  pair  between  changes,  whatever  the 

mean  and  relative  velocity,  is  the  time  of  existence  of  both  the  mean  and 

relative  velocities  between  changes,  and  the  mean  ratio  of  the  mean  and 

relative  paths  between  changes  is  that  of  I/a/2  to  V2  or  1  to  2,  it  follows 
that  the  mean  ratio  of  the  mean  and  relative  velocities  is  1  to  2.  And 

hence  the  mean  velocity  of  all  pairs  having  relative  velocities  between  \/2  F,' 

and  V2  (T/  +  d  F/)  is  between  F//V2  and  (  V{  +  d  Fa')/\/2.     Q.  E.  d. 

117.  All  directions  of  mean  velocity  of  a  pair  are  equally  probable  what- 
ever the  direction  of  the  mean  velocity. 

This  follows  directly  from  the  expression  for  the  number  of  pairs  having 
particular  mean  and  relative  velocities 

N,  (No  -  1)  |   -f —  .e"*.  dr\d  (cos  0,) .  dfr 

JO
  ■"

* 
r  2  2r22 x   -2   .  e     <*2  .  dr,d  (cos  02)  dd>2 

(— V      7T? 

r,  being  the  mean  velocity,  r2  the  relative  velocity  and  0^,  0«<j>2  having 
reference  to  the  angular  positions  of  rx  and  r2. 

For,  taking  7\S}\  and  r^Sr*  constant,  and  ascribing  any  particular  values 

to  62<f).2  and   8628(f>.,,  the    number  of  pairs,  having   a    mean  velocity   Fx   in 
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directions  such  that,  referred  to  the  centre  of  a  sphere  of  unit  radius,  they 

meet  the  spherical  surface  element  dcos  Oid^,  is  to  the  total  number  which 

meet  the  sphere  as  d  cos  0^1^  is  to  4<tt.     q.  e.  d. 

118.     The  probable  component  of  mean  velocity  of  a  pair  having  relative 

velocity  r2  =  V2  V1  in  the  direction  of  the  normal  at  encounter. 

Since  rx  =  r2/2  and  r2  =  \J2  F/,  i\  =  ViJy/2.     In  all  directions  the  probable 
component  value  is 

17 

+ 2  V2 

119.  The  probable  mean  transmission  of  vis  viva  at  an  encounter  in 

the  direction  of  the  normal. 

When  two  equal  spheres  encounter,  the  displacement  of  energy  by 

conduction  of  momentum  is  the  product  of  the  displacement  <r  multiplied 
by  twice  the  product  of  the  components  of  the  mean  velocity  and  relative 

velocity  of  a  pair  in  the  direction  of  the  normal.  Therefore  since  the 

probable  component  of  mean  velocity  in  the  direction  of  the  normal  (last 

article)  is  F//2  ̂ 2,  and  the  probable  component  of  the  relative  velocity  as 

obtained  by  dividing  out  the  a  in  equation  (147)  is  2  ̂ 2  .f(a/X).Vl/S,  the 
probable  displacement  of  vis  viva  in  the  direction  of  the  normal  is 

41/(0  *-±$|/©W«>  +  rf>l?   (HO). 
If  I,  m,  n  are  the  directions  of  the  normal  referred  to  fixed  axes,  the 

component  displacements  of  the  vis  viva  of  components  parallel  to  the 
axes  are 

±  {I3  +  Inr  +  In'}  |/(£)  ,  &c.,  &c. 

120.  The  mean  distance  through  which  the  actual  vis  viva  of  a  pair  of 

grains  having  relative  velocities  between  *J2  F/  and  V2  (F/ +  SF/)  is  dis- 
placed at  a  mean  collision. 

Since  the  mean  velocities  of  pairs  of  grains  having  relative  velocity 

/J2  Vi  is  F//V2  and  the  actual  vis  viva  of  such  a  pair  is 

2(n2  +  !|)  =  4(F1/V2)2  =  2F1, 

we  have  for  the  displacement  of  the  total  vis  viva  of  a  pair  of  grains 

And  since  the  displacement  of  vis  viva  by  convection  by  a  grain  having 

velocities  between   F/  and  Vi  +  BV/  between  encounters  is  XF/- and  there 
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are,  in  unit  time,  twice  as  many  mean  paths  traversed  as  there  are  collisions, 

the  relative  rates  of  displacement  of  vis  viva  by  convection  and  conduction 

are  as  A.  to  a  .f(a/X)/S,  and  the  displacement  of  vis  viva  on  encounter  is 
in  cases  (1)  and  (2) 

X  + i/(3 

It  thus  appears  that,  while,  as  has  already  been  shown,  the  range  of 

mass  or  any  mean  quantity  carried  by  mass  is  X,  and  the  range  of  relative 
velocity  or  momentum  is 

the  range  of  vis  viva  is 

4+&'©l- 

4-is/(x 
121.  The  probable  mean  component  displacement  of  vis  viva  at  a  mean 

collision  by  conduction. 

Multiplying  the  mean  normal  conduction  of  vis  viva  at  a  collision  of 

a  pair  of  grains  having  relative  velocity  *J2V(  by  cos  6  .  sin  0 .  dQ .  2ir  and 

integrating  from  0  =  0  to  0  =  ir/2  and  dividing  by  2tt  we  get 

■n 

±]J-a-f\jJ— 2-=  +  !sAx)   :-'(m)- 

122.  The  probable  mean  component  displacement  of  vis  viva  by  convection 

between  encounters  by  a  grain  having  velocities  between  V-[  and  V-[  +  d  V^. 

Multiplying  the  product  of  the  vis  viva  of  the  grain  V{2  into  the  probable 
displacement  (X)  by  cos  6 .  sin  0  .  dd,  dividing  by  27T  and  integrating  from 

0  =  0  to  0  =  7r/2,  the  rate  of  the  mean  probable  convection  is 

i    *  d  sin2  e  ja, 

123.  The  mean  component  flux  of  vis  viva. 

Since  there  are  two  mean  paths  traversed  for  each  collision,  adding 

twice  the  mean  component  displacement  by  convection  for  one  path  to  the 

mean  displacement  by  conduction  at  an  encounter  and  multiplying  by 

7i1F1/2X,  the  expression  for  the  mean  flux  by  grains  having  directions  such 
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that  cos  6  and  cos  <j>  are  positive,  and  for  pairs  of  grains  for  the  mean  velocity 

of  which  cos  6  and  cos  </>  are  positive,  is 

in     s\ 1  n 

8N 

124.     The  mean  component  flux  of  component  vis  viva. 

The   flux    of   the   components  of  vis   viva  may  be  separated  for   direct 
;ii) 

2 
„ ,,    d  sin2  6  .      d  sin2  6         ..      ,  ,.  , 

action   by  substituting  cos2  6  .  -  — —  for   —      in    the  last  equation  and 

integrating : 

N\l  +  3\Jf  ' 

TV  7T 

\  r2  fid  cos2  e 
n 

4"    ■d*-^4ir 

V 

fl+-^ 
8"F 

3XjJ  W   4 

d  sin2  # and  for  lateral  action  by  substituting  sin2  6  .  cos2  cf> 
7T  7T 

"2  p  rf  sin4  0  /I  +  cos  2<f> y   (174). M1+fx)/£) (WO 

^■*-£ 

/3      W    / =§-#l1  +  rJ/(0T/ 

125.     TAe  component  of  flax  of  mass  in  a  uniform  medium. 

Since  mass  is  not  subject  to  conduction,  and  the  probability  of  a  grain 

having  velocity  F/  is  nJN  while  the  probable  mean  path  is  X  and  the 
number  of  collisions  in  unit  space  and  time  between  the  grains  having 

velocities  between   F/  and  (F/+8F/)  is 

the  component  in  direction  of  a?  of  a  grain  of  which  the  direction  is 

defined  by  sin  0 .  d6 .  d<f>  is  X.  cos  6,  and  multiplying  by  the  number  of  mean 

paths  traversed  by  each  of  such  grains  in  a  unit  of  time  we  have 
V 

X  cos  On  .  — -  sin  6  .  d6 .  dcf) X 
4>TT 

n 4-7T 

V1 

,,  d sin2  0.d0.d<j> •(175). 

Then  integrating  from  6  =  0  to  6  —  tt/'2  and  <f>  =  0  to  $  =  7r/2  and  from 
V;  =  0  to   F/  =  oo 

n,Fx      iV     2a  _ 
o     4         4     yV 

Jo 
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and  taking  account  of  the  mass  of  a  grain 
a 

is  the  flux  of  mass  by  the  grains  for  which  cos  0  is  positive,  &c,  &c. 

126.  The  extension  of  the  kinetic  theory  has  thus  been  carried  as  far 

as  to  include  the  expression  of  the  rate  of  flux  of  momentum,  vis  viva, 

and  mass,  by  conduction,  as  well  as  by  convection,  in  the  ultimate  state  of 
the  medium  without  mean  strain.     Q.  E.  D. 

It  is  to  be  noticed  that  the  analysis  effected  in  this  section  does  not 

complete  the  extensions  which  are  desirable,  and  possible,  as  these  include 

the  extension  for  the  expression  of  the  rates  of  conduction  as  well  as  con- 
vection, when  the  medium  is  subject  to  mean  uniformly  varying  conditions 

though  still  in  equilibrium. 

These  form  the  subject  of  Section  XII.  so  that  their  consideration  may 
follow  the  consideration  of  the  logarithmic  rates  of  redistribution  of  angular 

inequalities  resulting  from  the  varying  condition  of  the  medium  on  which 

they  depend. 



SECTION  XL 

REDISTRIBUTION    OF   ANGULAR   INEQUALITIES    IN   THE 
RELATIVE   SYSTEM. 

127.  When  a  granular  medium,  however  uniform  and  symmetrical 

its  mean  initial  condition,  passes  from  a  state  of  equilibrium  and  mean 
rest  into  a  state  in  which  there  are  mean  rates  of  strain,  there  follow,  as 

a  consequence,  rates  of  establishment  of  inequalities  in  the  mean  distribution 

in  the  relative  system,  which  are  expressed  by  the  rates  of  transformation 
from  mean  to  relative  motion,  as  in  the  last  term  in  equations  (116)  and 

(117)  and  in  (116  a)  and  (117  a). 

The  general  analysis  of  the  effects  of  the  mean  motion  on  the  relative 

motion  for  granular  media  comes  later  in  the  research*;  and  it  is  sufficient 
here  to  have  pointed  out  the  general  source  of  such  inequalities,  as  in  this 
section  we  are  not  concerned  with  the  source  except  in  as  far  as  it  may  be  an 

assistance  in  realizing  the  general  distinction  between  the  two  classes  of 

inequalities.  Thus  the  inequalities  which  are  called  into  existence  by  rates 

of  strain  partake  of  the  characteristics  of  the  rates  of  strain. 

Local  volumetric  rates  of  strain,  which  cause  the  density  to  vary  from 

point  to  point,  institute  what  will  here  be  called  linear  inequalities,  while 
uniform  distortional  rates  of  strain  institute  what  will  here  be  called  angular 

inequalities. 

The  inequalities  so  instituted,  owing  to  the  activity  of  the  relative- 

motion,  are  subjected  to  rates  of  redistribution  proportional  to  their  magni- 
tudes, and  it  is  the  determination  of  these  rates  in  terms  of  the  constants 

which  define  the  condition  of  the  medium  that  constitutes  the  purpose  of 
this  section  and  the  next. 

These  two  rates  of  redistribution,  like  the  volumetric  and  distortional 

strains,  are  analytically  distinguishable  as  belonging  to  different  classes 
of  mean  actions. 

The  rates  of  angular  redistribution  have  the  characteristics  of  production 

at  a  point.  Their  integrals  are  not  surface  integrals,  and  they  are  included 
in  the   expression   for  angular  redistribution  in   the  fourth  term,  equation 
(117  A). 

*  Section  XIII. 
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The  rates  of  linear  redistribution,  on  the  other  hand,  have  the  character- 
istics of  a  flux.  Their  integrals  are  surface  integrals,  and  they  are  included 

in  the  expressions  for  the  linear  rates  of  distribution  in  the  second  and 
third  terms,  equation  (117  a). 

It  thus  appears  that  these  rates  require  separate  treatment,  and  as 

the  analysis  for  the  linear  rate  depends,  to  some  extent,  on  the  angular  rate, 

the  angular  rate  is  taken  first  as  the  subject  for  this  section,  and  the  linear 

for  the  subject  of  the  next,  Section  XII. 

128.  Logarithmic  rates  of  angular  redistribution,  by  conduction  through 

the  grains  as  well  as  by  convection  by  the  grains. 

The  necessity  of  logarithmic  rates  of  angular  redistribution  in  the  mean 

angular  inequalities  in  the  vis  viva  of  relative-motion,  and  of  inequalities 
in  the  symmetry  of  the  mean  arrangement  of  the  grains,  for  the  maintenance 

of  approximately  mean-  and  relative-motion  has  already  been  proved  in 
Section  VII. ;  and  the  actions  on  which  these  rates  depend  have  undergone 

considerable  qualitative  analysis  (to  use  a  chemical  expression)  in  the  same 
section.  What  is  uecessary,  therefore,  in  this  section  is  the  application 

of  the  definite,  or  quantitative,  analysis  for  the  definition  of  these  rates. 

The  first  step  in  this  direction  is  the  defiuite  consideration,  in  the 
concrete,  of  the  instantaneous  effects  of  encounters  between  hard  spherical 

grains  of  equal  mass  and  dimensions. 

For  this  purpose  use  is  here  made  of  the  conceptions  and  the  method 

given  by  Rankine  in  his  paper  "On  the  Outlines  of  the  Science  of  Energetics*," 
a  remarkable  paper,  which  seems  to  have  received  but  little  notice. 

129.  In  a  purely  mechanical  medium,  since  any  variation  of  any  com- 
ponent-velocity of  a  point  in  mass  can  only  result  from  some  action  of 

exchange  of  density  of  energy  with  other  points  in  mass,  there  are  always 

masses  engaged  in  such  an  exchange.  Considering  these  to  include  all  the 

mass  through  which  the  exchange  extends  (as  between  some  particular 

portion  of  the  medium  and  all  the  rest)  the  sum  of  the  energies  of  the 

components  of  motion,  in  any  particular  direction — that  of  x — immediately 

before  the  exchange  is  the  active  accident,  or  the  "  effort,"  of  the  component 
energy  to  vary  itself,  by  conversion  into  some  other  mode,  which,  in  a  purely 

mechanical  system,  considered  as  a  resultant  system,  can  only  be  energy  of 

component  motion  in  some  directions  y  and  z  at  right  angles  to  x. 

The  energy  so  converted  into  directions  y  and  z  is  called  the  "  passive 

accident."  And  in  the  same  way  the  sum  of  the  energies  in  the  directions 
y  and  z,  antecedent  to  the  action,  is  the  active  accident  or  the  effort  of  these 

energies  to  vary  the  energy  in  the  direction  x. 

*  Proc.  of  the  Phil.  Soc.  Glasgow,  Vol.  in.  No.  1 ;  Rankine's  Scientific  Papers,  p.  209. 
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It  is  at  once  apparent  that  the  result  of  such  accident  is,  taking  account 
of  the  dimensions  of  the  grains,  to  produce  three  instantaneous  effects, 

while,  if  the  dimensions  of  the  grains  are  neglected  as  being  small  (as  has 
been  the  case  in  the  kinetic  theory),  only  one  of  these  effects  is  recognised 

as  the  result  of  the  exchanges  of  energy  on  the  instant.  And  although  this 

one  effect  has  been  taken  into  account  in  the  kinetic  theory  its  position 

in  that  theory  has  not  been  generally  defined,  nor  has  it  been  made 

the  subject  of  separate  expression  in  the  equations. 

The  first,  and  hitherto  the  only,  published  mention  it  has  received  as 

a  specific  effect  occurs  in  Arts.  20  and  21  of  my  paper  "  On  the  Theory  of 

Viscous  Fluids  *,"  where  reference  is  made  to  the  "  angular  redistribution  of 
relative-mean  motion." 

It  was  not  however  till  some  time  afterwards  that  I  was  able  to  distin- 

guish, geometrically,  the  circumstances  on  which  the  existence  of  angular 
redistribution  of  relative  motion  depend,  and  obtain  separate  expressions 
for  their  effect. 

It  is  included  in  those  terms  in  equations  (47  a),  Section  III.  of  this 

research,  which  are  not  surface  integrals,  although  not  specifically  expressed, 

being  associated  with  the  resilience-effects  in  these  equations  for  a  resultant 
system ;  the  specific  expressions  for  the  separate  effects  for  a  resultant 

system  are  however  effected  in  equations  (47  a). 

The  instantaneous  action  of  which  this  angular  redistribution  is  the  effect 

turns  out  to  be  the  only  instantaneous  action  on  the  energy  of  the  relative 

motions  of  the  mass  or  densities  of  masses  engaged  other  than  the  effects 

on  resilience ;  so  that,  when  the  masses  engaged  are  two  equal  hard  spheres, 

angular  dispersion  of  the  energy  of  their  relative  velocities,  that  is,  of  their 
velocities  relative  to  their  mean  position,  is  the  only  instantaneous  effect 

on  this  relative  energy.     This  theorem  may  be  easily  proved. 

130.  When  two  hard  spheres  encounter,  their  relative-velocities  are  in 
the  same  direction,  and  their  momenta,  relative  to  axes  moving  with  their 

mean -velocity,  are  equal  and  opposite.  Suppose  the  axis  of  x  to  be  the 
direction  of  relative  motion.  Then  at  encounter  the  grains  exchange 
components  of  momenta  in  directions  of  the  line  of  centres,  and  thus  the 

relative  component  momentum  of  each  sphere  in  the  direction  of  the  line  of 
centres  is  reversed ;  so  that  if  the  line  of  centres  does  not  coincide  in 

direction  with  the  lines  of  relative  motion,  the  instantaneous  effect  (1)  of 

conduction  is  exchange  of  energy  of  component  motion  from  the  direction  x 

to  those  of  y  and  z  at  right  angles  to  x.  This  is  angular  redistribution 

of  the  energies  of  component  motion,  and  is  the  only  change  of  the  energies 
of  the  relative  motions,  measured  from  the  moving  axes.     For  as  the  relative 

*  Royal  Soc.  Phil.  Tram.,  Vol.  186  (1895)  A,  pp.  146—7. 
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momenta  in  direction  of  the  line  of  centres  of  the  respective  grains  are 

reversed  at  the  instant  there  is  no  change  in  the  position  of  their  energies ; 

so  that  at  the  instant  there  is  no  linear  displacement  of  the  energy  of  the 
relative  motions.     Q.  E.  D. 

131.  The  other  fundamental  effects  of  the  action  between  the  grains — 

those  which  have  been  neglected  in  the  kinetic  theory — are  (2)  the  dis- 
placement of  momentum  which  results  when  two  spheres  encounter,  having 

components  of  actual  momentum  (referred  to  fixed  axes),  in  the  direction  of 

the  line  of  centres,  which  differ  in  magnitude,  causing  the  instant  displace- 
ment of  the  difference  of  the  component  momenta,  in  the  direction  of  the  line 

of  centres,  through  a  distance  cr,  or  the  sum  of  the  radii  of  the  spheres.  And 

(3)  the  instantaneous  exchange  of  actual  component  energies  in  the  direction 
of  the  normal. 

This  linear  redistribution  of  momenta  by  conduction  and  the  consequent 

linear  displacement  of  their  energy,  relative  to  fixed  axes,  when  there  is  mean 

motion,  are  the  complement  of  the  angular  redistribution  of  energy,  the 

three  effects  being  the  total  instantaneous  effect  of  the  encounter,  which 

admit  of  analytical  separation,  as  long  as  there  is  no  resilience. 

132.  The  concrete  effects  of  encounters  between  the  grains  must  be 

considered  as  belonging  to  the  resultant  system  in  which  there  is  no 

resilience.  For  when  the  effects  come  to  be  analytically  separated  by  inte- 
gration into  effects  on  the  mean  and  relative  systems  respectively,  if  there 

are  rates  of  strain  in  the  mean  system  there  will  be,  perforce,  abstract 

complementary  resilience-effects  in  both  systems. 

It  therefore  appears  that,  if  the  mean  effects  of  encounters  are  to  be 

considered  as  belonging  to  the  relative  system,  it  is  necessary  to  assume  that 

the  mean-motion  is  not  undergoing  strain,  or  that  any  rates  of  strain  are 
indefinitely  small.  Then  since  the  relative  motions  are  the  only  motions,  the 

following  theorem  requires  no  further  demonstration. 

133.  If  the  directions,  velocities  and  positions  of  the  grains,  constituting 

a  granular  medium,  be  considered,  at  any  instant,  as  a  complex  accident,  at 

the  instant  an  encounter  occurs,  between  any  pair  of  grains,  the  three  instan- 
taneous effects,  already  discussed,  will  constitute  an  instantaneous  finite 

variation  in  the  complex  accident,  which  variation  will  continue  the  same 

finite  change,  from  the  condition  that  would  have  existed,  had  the  pairs 

passed  through  each  other  without  effect,  no  matter  what  other  variations 

might  have  taken  place.  Also,  the  subsequent  effects  resulting  from  the 

first  encounter  will  remain  unchanged.  And  thus,  the  integral  effect  of  an 

encounter,  at  a  time  subsequent  to  the  encounter,  is  its  instantaneous  effect 
added  to  all  effects  which  ensue  as  a  consequence  of  the  encounter.  In  a 

granular  medium,  since  each  encounter  involves  two  grains,  the  number  of 
r.  8 
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changes  would  increase  as  the  sum  of  the  series  in  geometrical  progression 
with  the  factor  2  ;  so  that  in  a  time  ten  times  as  long  as  the  average  time 

between  two  encounters,  by  the  same  grains,  the  number  of  effects  resulting 

from  a  single  encounter  would  be  on  the  average  8000. 

Thus  taking  account  of  the  three  analytically  distinct  instantaneous 
effects,  in  a  time  ten  times  as  long  as  the  average  life  of  a  path,  the  effects 

of  an  encounter  would  entail,  on  the  average,  8000  changes  in  the  directions 

of  paths  of  grains,  8000  linear  shunts  of  component  momenta  through  the 
distance  a  in  different  directions,  and  8000  shunts  of  the  difference  of  the 

vis  viva  of  the  normal  velocities  through  a  in  the  direction  of  the  normals. 

Assuming,  then,  that  in  these  changes,  or  variations  of  the  complex 
accident,  each  has  its  effect  in  removing  a  portion  of  any  mean  inequality, 

which  portion  is  proportional  to  the  mean  inequality,  some  idea  may  be 

gathered  of  the  predominance  of  the  effect  of  these  changes  in  bringing 
about  and  maintaining  the  mean  condition  of  the  medium  to  which  the 
changes  tend. 

134.  In  order  to  form  definite  estimates,  in  terms  of  the  quantities,  or 
mean  constants,  which  define  the  condition  of  the  medium,  of  the  rates  of 

decrement  of  inequalities  from  the  condition  to  which  the  variations  tend,  as 

well  as  to  find  expressions  for  the  resulting  condition  of  the  medium,  it 
seems,  in  the  first  place,  necessary  to  define,  somewhat  precisely,  what  are 

the  immediate  after-effects  which  follow,  severally,  from  the  three  instan- 
taneous effects  which  have  been  analytically  distinguished.  For  such 

definition  the  following  general  theorems  may  be  proved. 

Theorem.  The  only  effect  ivhich  folloivs  the  instantaneous  effects  of  an 

encounter,  until  there  occurs  another  in  which  one  of  the  grains  is  engaged, 

is  the  linear  change  in  position  of  mass,  energy,  and  momentum,  which  results 
from  the  instantaneous  change  in  the  direction  of  vis  viva. 

The  proof  of  this  theorem  follows,  at  once,  from  the  analytical  definition 
of  the  three  effects  and  their  continued  existence. 

For  the  instantaneous  effect  of  linear  displacement  of  the  component 

momenta  by  conduction  through  the  distance  a  in  the  direction  of  the 

common  normal  remains  unaltered  and  hence  produces  no  further  effect 
till  the  next  encounter. 

And  exactly  in  the  same  way  the  instantaneous  exchange  of  the  energy 

or  vis  viva  of  the  components  of  the  velocity  of  the  grains,  in  the  direction  of 
the  normal,  remains  unchanged  until  the  next  encounter.  Therefore  it  follows 

that  the  instantaneous  changes  in  the  direction  and  velocity  (which  is  obtained 

for  each  grain  by  superimposing  on  its  actual  velocity,  before  contact,  the 

normal  component  of  the  relative  velocity  of  the  pair,  measured  in  the  direc- 
tion opposite  to  the  normal  component  of  the  velocity  of  the  grain  before 
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contact)  represent  the  actual  changes  in  the  directions  and  velocities  of  the 
respective  grains,  whence,  as  these  effects  are  to  institute  rates  of  linear 

displacement  of  mass,  momentum  and  energy  by  convection,  these  are  the 

only  changes,  and  they  are  the  after-effects  of  the  instantaneous  change  in 
the  direction  of  vis  viva.     Q.  E.  D. 

135.  From  the  theorem  in  Art.  134  it  follows,  as  a  corollary,  that : — 

The  instantaneous,  and  after-effects  of  an  encounter  (before  the  next 

encounter  of  either  of  the  grains)  are  confined  absolutely  to  normal  displace- 
ments of  mass,  and  of  normal  components  of  momentum  and  energy ;  so  that 

they  have  no  effect  whatsoever  on  the  positions  of  mass,  momentum  or  energy 

as  measured  in  directions  at  right  angles  to  the  normal. 

Therefore  whatever  may  be  the  directions  and  velocities  of  pairs  of  grains 
before  encounters,  if  the  normals  at  encounter  are  all  parallel  to  one  axis,  there 

is  no  lateral  redistribution  as  the  result  of  the  encounters,  whatsoever  may  be 
the  extent  of  the  normal  redistributions. 

136.  From  the  principle  stated  in  the  corollary,  Art.  135,  that  the  redis- 
tributions resulting  from  encounters  are  confined  to  the  directions  of  the 

normals  at  encounter,  the  following  theorem  may  be  proved. 

Theorem.  In  a  granular  medium,  in  its  ultimate  state,  without  angular 

inequalities  in  the  vis  viva,  &c,  &c,  the  rates  of  angular  redistribution  of  the 

vis  viva  will  be  equal  in  all  directions,  and  equal  to  the  rate  of  redistribution 

in  the  directions  of  the  normals,  if  the  directions  of  the  normals  are  such  that 

all  the  lines,  drawn  from  a  point,  parallel  to  the  directions  of  the  normals, 

meet  the  surface  of  a  sphere,  about  the  point,  of  unit  radius,  in  points  which 
are  symmetrically  distributed  over  the  surface  of  the  sphere. 

For  in  granular  media,  without  angular  inequalities,  if  \/a  is  large,  all 

directions  are  equally  probable  for  the  normals  of  encounters,  in  which  the 

changes  in  normal  vis  viva  are  equal ;  so  that  the  probable  rates  of  redistri- 
bution of  inequalities  are  equal  in  all  directions. 

And  in  media  in  which  a/\  is  small,  as  has  been  shown  (Section  VII. 

Art.  89),  the  directions  of  the  normals  will  be  arranged  about  n  axes  sym- 
metrically placed ;  w  =  4  being  the  smallest  number  of  mean  normals  that 

admits  of  symmetrical  arrangement;  and  n  =  12  the  largest  number,  and  the 
number  in  the  ordinary  piling.  These  mean  normals  being  parallel  to  six 

axes,  so  that  the  probable  arrangement  in  each  group,  of  the  directions  of  the 

normals,  at  encounters,  in  which  the  changes  of  normal  vis  viva  are  equal,  will 
be  similar  about  the  axes;  and  it  has  to  be  shown  that  the  rates  of  distribution 
will  be  the  same  in  all  directions. 

This  proof  follows  from  the  principle  of  the  resolution  of  stresses  or 
component  vis  viva. 

8—2 
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If  the  angles  between  any  line  OA  drawn  through  a  point  0,  and  the  lines 
drawn  through  the  point  0,  in  the  directions  of  the  normals,  are  respectively 

6U  02,&c.,then  the  sum  of  the  products  of  jOjCOS2^,  p2cos262,  &c.  is  the  rate  of 
redistribution  in  the  direction  OA,  and  is  the  same  for  all  directions  if  the 

directions  of  the  normals  are  symmetrical.     Q.  E.  D. 

137.  The  theorem  in  Art.  136  includes  the  redistribution  of  the  actual 

vis  viva  between  the  grains,  as  this  results  from  the  same  exchanges  in 
directions  of  the  same  normals  as  determine  the  directions  of  vis  viva ;  and, 

further,  includes  the  redistribution  of  the  limited  displacement  of  normal 

momentum  by  conduction.     Q.  E.  D. 

138.  When  the  mean  condition  is  such  that  there  are  more  normals  in 

any  one  direction  than  in  those  at  right  angles,  the  rates  of  redistribution  will 
be  greater  in  that  direction  in  which  there  are  most  normals.  But,  as  regards 

the  vis  viva,  as  long  as  the  distribution  of  the  normals  is  such  that  the  normal 
redistribution  is  in  no  direction  zero,  there  will  be  rates  of  redistribution  which, 

though  not  equal  in  all  directions,  all  tend  to  bring  about  an  equal  distribu- 
tion of  vis  viva  in  all  directions,  and  also  tend  to  bring  about  the  normal 

distribution  of  the  actual  vis  viva  of  the  grains. 

As  long  as  the  inequalities  in  the  symmetry  of  the  directions  of  the 
normals  are  small,  the  effect  on  the  rates  of  redistribution  will  be  very  small, 

that  is,  on  the  rate  of  redistribution  of  vis  viva,  and  on  the  actual  distribution 

of  velocities  of  the  grains,  whatever  may  be  the  state  of  the  medium  as  regards 
the  ratio  cr/A. 

Thus  for  the  component  vis  viva  and  actual  vis  viva  there  is  a  continuous 

law  of  rate  of  redistribution  and  only  one  even  when  cr/A,  becomes  indefinitely 

large,  so  that  the  directions  of  the  normals  approximate  to  steady  axes  which 
only  change  their  position  on  account  of  mean  strain  in  the  medium. 

139.  The  redistribution  of  rates  of  limited  conduction  of  momentum,  or 

the  limited  displacement  of  normal  momentum,  is  primarily  dependent  on  the 
rates  of  redistribution  of  the  directions  of  the  normals.  And  the  redistribution 

of  the  normals  is  primarily  dependent  on  the  redistribution  of  the  positions 

of  mass,  which  again  has  a  primary  dependence  on  diversion  of  the  paths,-  as 

the  after-effect  of  the  instantaneous  angular  redistribution  of  vis  viva,  but  this 
dependence  on  the  divergence  of  the  path  is  essentially  limited  by  the  value 
of  <r/A, 

If  this  is  small — that  is  if  the  freedoms  are  great — then,  after  an  encounter, 
it  is  a  matter  of  chance,  like  the  length  of  the  path  of  a  grain,  in  what  direction 

the  normal  at  the  next  encounter  will  be,  all  angles  being  equally  probable, 
and  consequently  the  redistribution  of  the  normals  is  determined  by  this 

probability. 
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But  when  the  condition  of  the  medium  is  such  that  <x/\  is  large  the 

greatest  possible  distance  a  grain  can  travel  before  the  next  encounter  may 

be  much  less  than  a,  and  this  in  any  direction,  in  which  case  the  possible 

direction  of  the  normal  is  limited  by  a  conical  surface,  which  may  be  of  angle 
zero,  in  the  limit. 

Then  the  rate  of  redistribution  of  the  normals  varies  with  the  angle  of  this 

cone.  Thus,  as  a/\  approximates  to  oo  ,  the  directions  of  the  normals  approxi- 
mate to  fixed  axes  according  to  the  arrangement  of  the  grains ;  in  which  case 

there  is  a  redistribution  of  the  rates  of  conduction  of  momentum  or  of  the 

conduction  of  energy. 

And  here  it  may  be  noticed,  that  before  the  grains  become  virtually  close, 

a  limit  is  reached  at  which  change  of  neighbours,  or  diffusion  of  the  grains, 
ceases,  and  as  soon  as  that  limit  is  reached  the  mean  position  of  the  grain  is 

constant,  except  for  mean  strains,  and  then  the  normals  group  round  mean 
axes  which  only  move  with  the  mean  strains  of  the  medium. 

Thus  the  displacements  of  normal  momentum  and  energy  depend  on 
the  arrangement  of  the  grains  apart  from  the  mean  freedoms,  and  the 

redistribution  of  the  conduction  depends  on  the  redistribution  of  inequali- 
ties in  the  symmetry  of  the  arrangement  of  the  grains,  so  that,  although 

both  the  angular  redistribution  of  the  vis  viva  and  rearrangement  of  in- 
equalities in  the  symmetry  of  the  mean  arrangement  of  the  grains,  are 

included  in  the  fourth  term  of  equation  (117  a),  expressing  angular  redistri- 
bution, they  have  not  been  analytically  separated,  in  the  terms,  as  depending 

on  angular  dispersion  of  vis  viva  and  rearrangement  of  the  inequalities  in  the 

symmetry  of  the  mean  arrangement  of  the  grains. 

The  analytical  separation  of  the  abstract  actions  on  which  the  two  effects 

of  angular  redistribution  respectively  depend,  effected  by  the  demonstration 

of  the  foregoing  theorems,  renders  it  possible  to  deal  with  the  two  rates 

separately  and  so  to  obtain  analytical  definition  of  the  respective  rates  in 
terms  of  the  constants  which  define  the  state  of  the  medium. 

140.  The  analytical  definition  of  the  rates  of  angular  redistribution  of 

inequalities  in  the  directions  of  vis  viva  of  relative  motion. 

As  these  actions  do  not  appear  to  have  been  the  subjects  of  previous 

consideration  it  is  necessary  to  demonstrate  two  preliminary  propositions 
before  considering  the  mean  effects. 

141.  The  energy  of  component  motion  in  any  direction  cannot  by  its  own 

effort  increase  the  energy  of  component  motion  in  this  direction. 

This  proposition  might  be  taken  as  self-evident ;  but  it  may  be  definitely 
proved.  In  the  case  of  spherical  grains  the  proof  is  simplified,  and  particularly 

if  the  relative-motion  is  such  that  the  only  inequalities  are  in  the  energies 

of  motion  in  different  directions — unequal  angular  dispersion. 
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Taking  the  axes  of  reference  fixed,  I,  m,  n  and  I',  m',  n',  and  I",  m",  n"  as  the 
direction  cosines  of  the  normal  at  the  point  of  contact  and  of  two  other  direc- 

tions at  right  angles,  also  ultv1}  wx,  u2,  v2,  w2  for  the  antecedent  velocities  of  the 

two  grains,  and  U^  V1}  Wu  U2,  V2,  W2,  for  the  subsequent  velocities,  it  follows 
as  a  direct  result  of  the  exchange  of  the  components  of  motion  in  the  direction 

of  the  normal  that  at  a  single  encounter, 

U?  +  U22  -  mx2  -  u£  =  -  2  (m2  +  n2)  I2  {u.2  -  u,)2 

+  2P  [m2  (v2  -  v^)2  +  n2  (wa  -  wx)2) 
+  U2mn  (v2  —  Vj)  (w2  —  ivx) 

+  2(2l—l)[lm(u2  —  u1)(v2  —  v1) 
+  nl  (w2  —  Wj)  (u2  —  ̂ i)} ' 

Then,  since  for  any  two  spheres  with  particular  relative  motion,  u%  —  %, 
v2  —  vly  w2  —  w1,  the  probability  of  their  normal,  at  the  point  of  contact,  having 
a  direction  within  any  small  area,  sin  0ddd<j>,  on  a  sphere  of  unit  radius, 

having  its  centre  at  the  centre  of  one  of  the  spheres,  assuming  all  angles 
of  relative  motion  after  encounter  equally  probable,  is  : 

sin  $d6d<f>  cos  ̂  

7T 

where  %  is  the  angle  between  two  radii,  one  meeting  the  surface  of  the  unit 

sphere  in  the  direction  of  the  point  of  contact,  and  the  other  in  the  direction 

of  the  relative  motion,  drawn  so  that  ̂   is  an  acute  angle,  so  that  %  is 
always  between  zero  and  7r/2. 

142.     The  active  and  passive  accidents. 

In  considering  the  action  resulting  from  conduction  of  momentum  of  two 

spheres  at  a  single  encounter,  the  problem  is  greatly  simplified  by  taking  the 
direction  of  one  of  the  axes  of  reference  to  be  that  of  the  relative  motion  of 

the  spheres ;  while,  as  will  be  seen,  it  does  not  lose  in  generality. 

Taking  x  to  De  measured  in  the  direction  of  the  relative  motion,  v2  —  vx, 

w2  —  w1  are  each  zero,  and  putting 

l(%  +  ̂ )8  +  i(t*2-Mi)2  for  uf+uj,  &c,  &c. 
in  equation  (177)  we  have 

U2  +  U22  -  i (Ml  +  u2)2  -  i {u2  -  Ul)2  =  -2(m2  +  n2)  I2 (u2  - %)2  +  0  +  01 

Vi2  +  V-£  -  i(fi  +  v2f  -         0        =-0  +  0  +  2m2l2(Ul-u2)2  ...(178), 

W1i+Wi2-^(w1+w!iy-         0        =-0  +  2n2l2(u2-Ul)2  +  0 

in  which  the  ciphers  represent  the  values  of  the  terms  having  factors  (v2  -  vj 
and  (w2  —  Wj). 

Multiplying  these  equations  by  the  factor  of  probable  positions  of  the 
normal  and  integrating  over  the  sphere  of  unit  radius,  since  cos  %  is  positive 
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and  equal  to  +  cos  6—±l,  the  equations  become  on  transposing  the  last  terms 
in  the  left  members 

u2  +  m  -  \  (u,  +  u,y  =  (Wl-2  %j2  -  i  («,  -  ?02  +  o  +  o 
J?  4-  Vi  -  \  (Vl  +  v.2)2  = 

(179), 

-o  +  o  +  H^-^)2) 

where,  since  the  square  of  the  relative  motion,  (u2  —  i^)2,  is  double  the  sum  of 
the  squares  of  differences  between  the  actual  component  motions  and  the 
mean  component  motions, 

w2  +  wA2 U2   K    I     + 

U, 

2 

£^2  +  ̂ 2  - 1  («,  +  ̂ 2)2  =  g 

J?  4-  F22-|(^  +  ̂ )2  =  g 

«2   S —  I    + 

M,  4-  M2\2 Ws   - — '  I    4" 

!!., 

2 

u,  4-  m2\2 
+ 

ux 

4- 
w2' 

2 

ux 

+ 

w2' 

2 
U-y 

4- 

zt2 

.(180). 

The  left  members  of  equations  (178)  express,  respectively,  the  effects,  both 
active  and  passive,  of  the  accidents  on  the  energies  of  the  components  of  motion 

in  the  directions  of  x,  y,  z  respectively. 

The  first  terms  in  the  right  members,  which  are  all  negative,  or  zero,  express 

the  effects  of  the  active  accidents  on  the  energies  in  these  directions  respec- 
tively, while  the  last  two  terms,  which  are  positive,  or  zero,  express  the  effects 

of  the  passive  accidents  in  these  directions.     Q.E.D. 

143.  The  active  accidents  are  work  spent  by  the  efforts  produced  by 

u2  —  u1}  v2  —  v1}  w2  —  wlf  respectively,  in  other  directions  than  those  of  x,  y,  z 

respectively.  Thus  the  effort  in  the  direction  of  the  normal  caused  by  «2  —  «, 
is  21  (u,  -  «x)  and  the  component  of  the  relative  velocity  u2  -  ux  in  the  direction 

of  the  normal  is  l{%2-u^)\  so  that  the  total  result  of  this  effort  is  -  2l2(u.2  —  u1)2, 

work  spent  by  energy  in  direction  of  x.  Of  this  2l4  (u.2  -  ux)2  is  work  returned 
to  the  energy  in  direction  of  x ;  so  that  the  portion  of  the  energy  in  the 
direction  x  expended  in  (passive  accidents)  changing  the  energy  in  directions 

of  y  and  z  is  —  2  (I2  -  1)  I2  (iu  -  u^f,  and  the  passive  accidents  in  the  directions 

of  y  and  z  are  2l2m2(u2-u1)*,  2l2n2(u2-u1)2  respectively. 

144.  The  angular  dispersion  of  relative  motion. 

The  equations  (180)  show  that  considering  the  chance  encounter  between 

two  grains,  whatever  their  relative-motion  before  encounter,  all  directions  of 

the  subsequent  relative-motion  are  equally  probable.  So  that  any  angular 

inequality  in  their  relative-motion  is  virtually  extinguished  after  a  single 
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encounter;    although    if  the   pair  have  any  mean-motion,  whatever  it  may 
be,  the  inequality  in  this  remains  as  before  encounter.     Q.  E.  D. 

145.  The  mean  angular  inequalities. 

Before  we  can  pass  from  dispersion  of  the  component  relative-velocities  of 

a  pair  of  grains  to  that  of  the  mean-inequalities  of  all  the  grains  the  demon- 
strations of  several  propositions  become  necessary. 

For  reasons,  which  will  appear,  we  have  here  to  consider  only  such  mean 

angular  inequalities  as  are  introduced  in  the  relative  motion  of  the  medium 

while  the  mean  system  is  undergoing  mean  rates  of  strain. 

These  inequalities,  as  Maxwell  has  shown,  for  a  medium  consisting  of 

equal  hard  spheres,  are  expressed  by,  taking  N  for  the  number  of  grains 
in  unit  volume, 

^N=      a0y  (it?— tedydz*    (181), 
where  a2,  ft2,  <f  are  double  the  mean  of  squares  of  the  respective  component 
velocities. 

Since  the  differences  between  a2,  /32,  <f  and  the  mean  (a2  +  /32  +  72)/'i  are 
always  small  compared  with  their  mean  it  becomes  more  convenient  to  alter 

the  notation  and,  taking  a2  as  expressing  the  mean  of  a2  +  /32  +  <f,  to  take 

a  (1  +  a),  a  (1  +  6),  a  (1  +  c)  respectively  for  Maxwell's  a,  fi,  y ;  a,  6,  c  are  then 
small  fractions  of  unity  such  that  their  squares  may  be  neglected  and  for  the 
mean  squares  we  have 

a2(l+2a),     a2  (1+26),     a2(l  +  2c), 

and  the  inequalities  are  2aa2,  26a2,  2ca2 ;   2a,  26,  2c  being  the  coefficients  of 
inequality  from  the  mean  of  the  mean  squares  of  the  respective  components. 

It  is  to  be  noticed  that  in  equation  (136)  the  axes  of  reference  are  the 

principal  axes  of  the  space  variations  of  the  mean  motions  of  the  medium — 

the  principal  axes  of  distortional  mean  motions — and  also  of  the  inequalities. 

146.  The  angular  inequalities  in  the  mean  relative  motions  of  pairs  of 
grains  have  the  same  coefficients  of  inequality  as  the  mean  actual  motions. 

Integrating  equation  (181)  with  respect  to  y  and  z  from  —  oo  to  +  oo 

Ne~^il~'
2a) 

s/N
=  

dx  
 

(182). 

Then,  after  Maxwell,  taking  x1  as  a  particular  component  of  velocity  in 

direction  of  x,  the  number  of  grains  which  have  component  velocities 
between  xx  and  x1  +  S^  is 

N 

ol  (1  +a)  \Jir 

Phil.  Tram.  Royal  Soc,  1866,  p.  64. 
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And  again  taking  x2^=x1  +  x'  the  number  of  grains  between  xl  +  x   and 
%!  +  cc'  +  Bx'  is 

^a(l  +  a)  yV  / 

Then  the  number  of  pairs  of  grains  which  satisfy  both  these  conditions  is 

m       i^g{(.4)v?} 

Then,  since  xx  +  —  may  have  any  value  from  —  oo   to  +  x  for  any  value 

of  x',  integrating  for  xx  between  these  limits  for  any  particular  value  of  x,  the 
number  of  pairs  which  have  component  relative-velocities,  in  direction  x, 

between  x'  and  x'  +  Bx    is  : 

N*     --S(i-2*w. V2a(l  +a)Vir 

In  exactly  the  same  way  it  is  shown  that  the  numbers  of  component 

relative-velocities  between  y'  and  y'  +  By'  and  between  z'  and  z'  +  Bz'  are 
respectively 

e    2a2  ̂ ', 
V2a(l+6)v/^ *-faa-2v. 
V2a(l  +c)Vtt 

Multiplying  these  expressions  by  x"2,  y'2,  z'2  respectively  and  integrating 
from  —  oo  to  +  oo  ,  and  dividing  by  N2,  we  have  for  the  mean-squares  of  the 
respective  components,  in  the  directions  x,  y,  z 

2a2  (1  +  2a),     2a2  (1  +  26),     2a2  (1  +  2c), 

which  have  precisely  the   same   coefficient    of  angular   inequalities   as    the 

mean    squares   of  the   components    of  the    actual   velocities  obtained    from 
equations  (181) 

a2  (1  +  2a),     a2  (1  +  26),     a2  (1  +  2c).         Q.  E.  D. 

147.  The  mean  squares  of  the  components  of  relative-motion  of  all  pairs  are 
double  the  mean  squares  of  the  components  of  actual  motion. 

In  the  last  paragraph  of  the  last  article  it  has  been  shown  that  the 

mean  squares  of  the  components  of  relative-motion  of  all  pairs  including 
the  inequalities  are  double  the  mean  squares  of  the  components  of  the 

actual  motion,  so  that  no  further  demonstration  is  necessary. 

148.  The  rate  of  angular  redistribution  of  the  mean  inequalities  in  the 

actual  motion  is  the  same  as  the  rate  of  redistribution  of  the  angular 
inequalities  in  the  relative  motion  of  all  pairs. 

This  follows  at  once  from  the  inequality  of  the  coefficients  of  inequalities 
which  has  already  been  proved. 
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149.     The  rate  of  angular  dispersion  of  the  mean  inequalities  in  vis  viva. 

It  has  been  shown,  equations  (180),  that  the  angular  inequality  in  the 

squares  of  the  relative  velocities  of  any  pair  of  grains  is  virtually  extinguished 

at  a  single  encounter.  From  this  it  follows  that  the  virtual  inequality  in  the 
motion  of  any  grain  exists  only  from  the  time  of  the  institution  of  the 

inequality  to  the  time  of  its  next  encounter. 

This  time  is  expressed  by 

Vj  being  the  actual  velocity  of  the  grain,  and  \  the  distance  traversed  before 
encounter. 

This  distance  Xj  may  be  anything  from  0  to  oo  .  But  it  is  proved  by 
Maxwell  to  be  independent  of  Vx  and  to  have  a  probable  mean  value, 

neglecting  a  as  compared  with  X,  of 

x  =  v^y   <183>- 
Taking  <r  into  account,  as  will  be  shown,  the  probable  value  of  X 

becomes 

v/g-/©   <18*>- 
V2  TT<T2N The  probable  path  being  X,  the  probable  time  of  any  grain  with  velocity 

V,  is 
A 

TV 

It  thus  appears  that,  although  the  mean  relative  distance  traversed 

between  encounters  by  pairs  of  grains  having  the  same  relative  velocities 

Vx  is  independent  of  Vx,  the  mean  time  between  encounters  varies  inversely 
as  Fj. 

In  order  therefore  to  obtain  the  probable  mean  time  of  existence  of 

inequalities  in  the  angular  distribution  of  the  vis  viva,  it  is  not  sufficient  to 

find  the  probable  value  of  the  mean  time  -rjr ,  for  all  values  of  Vlf  since  this 

would  only  be  the  probable  mean  time  between  encounters  during  which  the 

inequalities  in  the  mean  velocity  are  sustained. 

150.     The  mean  time  of  mean  inequalities  of  vis  viva. 

The  direction  of  motion  of  each  grain  is  the  direction  of  its  path ;  so 

that  if  I,  m,  n  are  the  direction-cosines  of  the  motion,  the  probable  times  of 
the  continuance  of  the  components  of  motion  in  directions  x,  y,  z  are 

Xl        Xm        Xn 
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and  since  the  chance  of  a  collision  in  a  unit  of  time  is  VJX  the  probability 
of  continued  existence  is 

e    A    , 

and  the  probability  of  continuing  for  a  time 

t  = 

V, 

is  e~n' 

Whence  it  follows  that,  taking  account  of  all  the  pairs  of  grains  at 

different  relative  velocities,  but  moving  nearly  in  the  same  directions,  the 

times  for  which  their  continuance  is  equally  probable  are 

t1=yj,    t2  =  yrj,  &c   (18o), 

so  that,  multiplying  V^P,  V22l2,  &c.  respectively  by  tly  t2,  &c,  and  adding,  the 
sum  will  be  equal  to 

2  {nM  (  Vt  +  V2  +  &c.)},  =  |  V\l, 

and  similarly  for  the  other  two  components. 

And  putting  Fand  V2  respectively  for  the  mean  values  of  V  and  V2,  the 

mean  time  of  equal  probability  for  the  continued  existence  of   V2  is  obtained 

by  dividing  the  product  by  V2 :  -4=   ,  and  for  the  other  components 

n1\m2V     thXn'F 

Vhu2   '       V2n2 
These  mean  times,  it  will  be  noticed,  are  independent  of  the  directions 

of  the  groups,  being  all  expressed  by 
■ —                                                                                  v3- 

n  \  V                                              .               .                  ~  ~  t 
t—     _  -  ,  where  the  probable  continuance  is  e~n>  =  e  KV    (186). 

Differentiating  this  expression  with  respect  to  t, 

^  =  S_   (187). 

From  equation  (181)  the  mean  values  of  u2,  v2,  w2  are  found  to  be 

|(l  +  2a),    |  (1  +  26),    f(l  +  2c). 

In  these  a2  is  constant,  and  a  +  b  +  c  =  0,  and  the  inequalities  are 

|2(l  +  2a)-|2=2a|,  &c,  &c   (188). 
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Then  by  equation  (187)  the   probability  of  continued  existence  is  ex- 
pressed by 

0    a2  a2   -[—J* 

Whence  if  nx  =  0, 

a2  d  (2a)               a2  */ir  m 

2-rfr  =  -6ai2  2aX'&C-'&C   (189)' 
a"  (2a) 

~dT 

=  -  2a  ( 3  ̂  j ,  &c,  &c.     Q.E.F. 

151.  Translated  into  the  notation  adopted  in  this  research  for  the  ex- 
pression of  the  velocities  of  the  component  system  of  relative  motion,  we 

have  for  the  mean  inequalities  referred  to  their  principal  axes, 

p"[(u'u')"-i(u'u+v'i/  +  w'u/)"],  &c,  &c   ,   (190), 

and  for  the  rates  of  dispersion  with  reference  to  the  same  axes  we  have, 

putting  d2jd2t  in  place  of  djdt  to  distinguish  these  as  rates  of  angular 
dispersion, 

P   z}[(uu)   -h(uu+vv+ww)]  =  -T-ap '.  ,  ,.„     (u'u  +  v'v'  +  w'w'Y 

(uu)   —   

3 

&c,  &c,    (191), 

where  ̂ ajsjir  is  the  time-mean  of  the  velocities  of  a  grain,  and  \  is  the 
measure  of  the  scale  of  the  system  of  relative  motion.  (N.B.  These  rates 
are  independent  of  a.) 

As  already  pointed  out,  Art.  146,  the  expressions  in  equations  (189)  and 

(190)  for  the  inequalities  are  with  reference  to  their  principal  axes  only;  so 
that  in  order  to  obtain  expressions  that  shall  apply  for  any  axes  it  is 

necessary  to  effect  the  transformation  from  the  principal  axes,  at  a  point,  to 
fixed  axes. 

152.  Rates  of  angular  dispersion  referred  to  axes  which  are  not  necessarily 

principal  axes  of  rates  of  distortion. 

Taking  hm^,  l2m2n2,  l3m3n3  to  be  respectively  the  direction  cosines  of  the 
principal  axes  with  reference  to  any  rectangular  system  of  fixed  axes, 

a',  V,  c',  f,  g\  h' 

to  be  the  mean  values  of  u'2,  v'2,  w"2,  v'tv',  w'u',  u'v  (u,  &c,  as  before,  repre- 
senting the  relative  velocities  referred  to  the  principal  axes  1,  2,  3),  and  let 

a,  b,  c,  f,  g,  h,  be  their  corresponding  mean  values  when  referred  to  the  fixed 
axes  of  x,  y,  z. 
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f'  =  g'  =  h'  =  o 

a  =  l*a'  +  l2-b'  +  l32c 

b  =  m?d  +  m22b'  +  m32c' 

c  =  n?d  +  n22b'  +  n32c 

f  =  m^a  +  m2n2b'  +  m3n3c' 

g  =  nf,xa'  +  n2l2b'  +  w3Z3c' 

h  =  lxmxd  4-  l2m2b'  +  l3m3c' 

From  these,  adding  the  second,  third,  and  fourth, 

a  +  b  +  c  =  d  +  b'  +  c'  . 

.(192). 

.(193). 

Also  since  the  principal  axes  do  not  change  their  position  in  consequence  of 
the  dispersion  of  the  inequalities 

~W  =  h ^T  +k ~U~ +  h ~aj~ ' &c-' &c- 
d2(f)  d2(a')  d2(V)  92(c')    e       „ -  =  WiWx  -^-  +  m2W2  -^j-'  +  7tt3H3  -^-y ,  &c,  &c. 

.(194). 

d2t d2t d2t 
d2t 

Then  substituting  from  equations  (190)  for  d2a'/d2t,  &c,  in  (194),  and 

remembering  that  lxv!  +  l2v'  +  l3iu\  when  referred  to  the  principal  axes  is  the 

same  as  u'  referred  to  the  fixed  axes,  we  have  by  equation  (193),  for  the 
rates  of  dispersion,  referred  to  any  axes, 

P   ̂ rA\uu)  —^(uu+vv+ww)] dot 

■—-j  p"  —  a.  [(ii'u')"  —  \(u'u  +  v'v'  +  w'w'Y'],  &c,  &c. 4         A 
V.. .(195). 

P   g^  l(v  u  )  J    =  4  P   y  a  («  u )  ,  &c.  &c. 

p"~[{w'u')"]    =lp"^a  (w'u')",  &a,  &c. Ont  T  A. 

153.     TAe  analytical  definition  of  the  rates  of  angular  redistribution  of 
inequalities  in  rates  of  conduction  through  the  grains. 

As  already  proved,  Arts.  78  c  and  79,  Section  VII.,  and  the  theorem  Art.  136 
in  this  section,  the  angular  inequalities  in  the  rates  of  conduction  are  the 

result  of  unsymmetrical  arrangement  of  the  grains.  And  as,  according  to 

the  definitions  of  mean-  and  relative-mass,  Art.  47,  the  mean-mass  is  inde- 
pendent of  the  arrangement,  since  the  number  of  grains  within  the  scale  of 

relative-mass  is  not  affected  by  the  arrangement,  the  inequalities  in  the 
rates  of  conduction  are  the  result  of  unsymmetrical  arrangement  of  the 
relative-mass. 
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It  has  also  been  showD,  Art.  77,  Section  VII.,  that  angular  inequalities  in 

the  mean  conduction  result  from  angular  inequalities  in  the  lengths  of  the 

mean  paths  of  the  grains,  and  it  has  been  further  pointed  out  that  angular 
inequalities  in  the  lengths  of  the  mean  paths  are  the  result  of  the  distortion 

rates  of  mean  strain.  And  the  number  of  paths  traversed  being  inversely 

proportional  to  their  lengths,  there  are  more  mean  paths  traversed  in  direc- 
tions in  which  the  relative  paths  are  shortest. 

It  thus  appears  that,  although  the  rates  of  conduction  are  not  of  the 

same  dimensions  as  the  mean  paths  or  the  position  of  relative-mass,  the 
rates  of  angular  redistribution  of  the  angular  inequalities  are  the  same. 

154.  The  rate  of  angular  redistribution  of  mean  inequalities  in  the 

position  of  the  relative-mass  in  terms  of  the  quantities  which  define  the  state 
of  the  medium. 

When,  owing  to  the  rates  of  distortional  or  rotational  strain  in  the  mean- 
motion  of  a  granular  medium,  there  are  instantaneous  inequalities  in  the 

symmetry  of  the  arrangement  of  the  grains,  there  will  be  inequalities 

in  the  lengths  of  the  mean  component  paths;  and,  the  number  of  com- 
ponent paths  traversed  being  inversely  proportional  to  their  lengths,  there 

will  be  more  relative  paths  traversed  in  the  directions  in  which  they  are 
shortest. 

Then,  since  after  each  encounter  all  directions  of  relative  paths  are 

equally  probable,  after  each  encounter  any  inequality  which  may  be  attri- 
buted to  any  pair  of  grains  is  virtually  extinguished.  And,  as  shown  in 

Art.  150,  the  probability  for  the  continued  existence  for  a  time 

k  =  n1y  is  e~n>      (196). 

From  this  it  follows,  as  in  equation  (185), 

ti  =  yhyll,   U  =  n2yj,  &c,  &c   (197), 

in  which  expressions  the  direction  cosines  llt  m1}  n^,  &c.  are  nearly  constant 
and  n1;  the  index  of  probability,  is  constant. 

Therefore  taking  the  products  (tj  Vx  +  &c.)  and  dividing  the  mean  product 

by  V — the  mean  velocity — the  mean  time  of  existence  of  the  inequality  is 
found  to  be 

l  =  ̂ \   (198), 

and  the  mean  probability  of  continued  existence  is 
9-M.    — 

It e  "i  =  e   a. 
•(199), 
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which  when  the  inequalities  are  small  becomes   1 

Q       \Jtt  \ 
If,  then,  we  take  a,  f,  &c,  the  angular  inequalities  in  the  positions  of 

relative  mass,  we  have  for  the  relative  rates  of  angular  dispersion, 

It  will  be  observed  that  the  logarithmic  rate  of  decrement  of  inequalities 
in  relative  mass  differs  somewhat  from  that  of  the  vis  viva.  This  is  a 

consequence  of  the  difference  in  the  mean  time  of  probable  existence  of  V 
and  of  V2. 

155.     The  limits  to  the  dispersion  of  angular  inequalities  in  mean  mass. 

The  numerical  coefficient  is  the  only  respect  in  which  the  rate  of  angular 

redistribution  of  mass  differs  from  that  of  vis  viva  as  long  as  X/ar  is  large. 
But  as  the  density  becomes  large,  unlike  the  redistribution  of  vis  viva,  the 

redistribution  of  relative  mass  depends  on  two  circumstances,  the  inequalities 
being  small  in  both  cases. 

Inequalities  in  vis  viva  are  not  subject  to  any  limits  imposed  by  the 

neighbouring  grains  and  consequently  all  directions  of  motion  are  equally 

probable,  however  close  the  grains  may  be,  and  whatever  may  be  the  arrange- 
ment of  the  grains. 

On  the  other  hand  the  possibility  of  angular  rearrangement  of  the  grains 

turns  on  the  possibility  of  a  grain  passing  through  the  triangular  surface  set 

out  by  the  centres  of  three  of  its  neighbouring  grains  ;  and  this  possibility 
is  closed  at  some  density  less  than  that  of  maximum  density.  The  density 
at  which  this  closure  is  effected  is  that  at  which  diffusion  ceases  and  the 

state  of  permanent  distortional  elasticity  commences.  Before  this  density  is 
reached  the  diffusion  becomes  slower  and  slower  as  the  density  increases  ; 

so  that  in  a  granular  medium  of  which  the  mean  condition  is  uniform,  but 

which  is  steadily  contracting,  the  chance  of  a  grain  finding  a  clear  way 

between  three  of  its  neighbours  diminishes,  and  each  grain  dwells  longer 

and  longer  in  the  same  mean  position  in  the  medium,  until  all  chance  ceases 

and  its  mean  position  is  definitely  defined,  notwithstanding  that  it  has  still 

a  certain  range  of  freedom.  For  the  general  consideration  of  the  rate  of 

rearrangement  of  mass  it  is  necessary  to  take  account  of  the  probability  of 

a  grain  returning  after  encounters  to  the  formation  before  encounter,  and 

this  presents  great  difficulties.  But  it  will  be  sufficient  to  point  out  here 

that  owing  to  the  instantaneous  action  at  encounter,  no  more  than  two 

grains  are  ever  in  contact  at  the  same  time,  so  that  there  is  no  chance  of 
combination  of  the  grains,  and  that  the  mean  position  of  two  grains  is  not 
altered  at  encounter  while  the  relative  motions  are  reversed. 
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In  the  next  section  it  will  appear  that  the  linear  dispersion  of  vis  viva  of 

grains  is  very  slow  as  the  angular  dispersion  is  very  great,  so  that  any  chance 

activity  of  a  grain  of  an  exceptional  character  is  immediately  dispersed 

amongst  its  neighbours  and  brought  back  to  the  mean. 

When  therefore  the  density  is  such  that  \fa  is  very  small  and  the  density 

is  nearly  the  maximum,  i.e.  when  G  is  nearly  Q/\Z2tt,  there  is  no  rearrange- 
ment of  the  grains,  and  this  will  hold  good  as  G  increases  provided  that  the 

extent  of  the  medium  for  which  the  value  of  G  is  large  is  very  small. 

Thus  we  have  two  states  of  the  medium  in  which  the  rates  of  rearrange- 
ment are  defined,  and  between  these  a  gap  in  which  the  definition  is 

difficult. 

Fortunately  this  difficulty  is  confined  to  a  very  small  portion  of  the  total 

range  of  density,  being  that  between  the  density  at  which  diffusion  ceases 
and  that  at  which  diffusion  becomes  easy. 

This  gap  covers  a  region  of  which  the  higher  limit  of  p  is  slightly  less 

than  l/\/2,  when  the  distribution  is  uniform,  and  is  equal  to  1/3  at  irregular 

points  and  surfaces ;  \/tr  being  small  in  both  cases. 

For  values  of  p  above  these  limits  there  is  no  diffusion  and  consequently 
no  redistribution  in  the  arrangement  of  mass,  while  for  values  of  p  below 

these  limits  the  change  in  rate  of  redistribution  is  very  rapid  at  first, 

then  gradually  settling  down  to  the  same  relative  rate  as  that  of  redistribu- 
tion of  vis  viva. 

If  then  we  take  as  before  a  —  3X  (a)/d1  (t),  &c.  to  represent  the  small 
angular  inequalities  instituted  by  the  distortion  in  the  mean  system  during 
the  time  d2  (t) ;  the  rates  of  redistribution  to  which  these  are  subjected  will 

approximate  to  that  to  which  the  vis  viva  is  subjected  as  p  approximates 

to  zero.     Thus  the  law  of  redistribution  has  an  asymptote 

m=~^m   (0)- 
Then  if  we  take  f{G)  as  expressing  a  coefficient  by  which  the  upper 

limit  of  p  must  be  multiplied  to  bring  it  to  unity 

d2(a)  2  l-f(G)p  \ 

dM  =  "  vvx  m  TT^- {1  ~{ {G)  p]>  &c"  &c- 
.(202) 

are    expressions  which    give    the    rates    of   redistribution    correctly    except, 

perhaps,  in  the   immediate   region   of  the   higher  limit. 

156.     The  rates  of  probable  redistribution  of  angular  inequalities  in  the 
rates  of  conduction. 
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Any  angular  inequalities  in  the  rates  of  conduction  result,  solely,  from 
angular  inequalities  in  the  distribution  of  mass,  but  the  coefficients  of  the 
rates  of  redistribution  are  not  the  same  for  rates  of  redistribution  of  mass  as 
for  the  redistribution  of  conduction. 

The  mean  time  of  continued  existence  of  the  path  of  a  grain 

i=n£   
V 

.(203), 

is  not  the  mean  time  for  the  continued  existence  of  the  product  of  the  mean 

path  multiplied  by  the  vis  viva.  If  however  the  mean  time  for  the  mean  path 
be  multiplied  by  the  factor 

we  have I 

V2         V2   I 

.(204), 

which    is    the  same  coefficient   as   for  the  time  of  continued  existence  of 
vis  viva. 

To  obtain  the  expressions  for  the  probable  relative  rates  of  angular 

redistribution  of  angular  inequalities  in  the  rates  of  conduction  correspond- 
ing to  the  rates  of  angular  redistribution  of  angular  inequalities  in  the 

distribution  of  mass,  we  have  to  multiply  the  relative  rates  of  redistribution 
of  mass  by  the  factor 

37T 

IT- 

Then  substituting  the  actual  inequalities  in  the  angular  rates  of  con- 
duction 

{Pxx'-p"),      pyx',      Pzx",    &C., 

for   a,  f,    &c,    the    expressions    for    the    rates    of    redistribution     of    these 
inequalities  of  conduction  are 

~  (Pxx"  - p") = - 1 vtt  1 1  l~/}ZlL(p™  - p")>  &c->  H 
2   /         "  \ 

d~t {Fyx ) 

dTt(p™  ) 

V  II    ~     -.  av.^  [Jyx    > 

?v 

=  -|a/7T 

X  1  +  e-»(w(ff)p) a     l-f(G)P 

Xi+e-»(l-/(0)p) 

Pzx 

&C,    &C. 

&C,    &C 

V.. .(205). 

In  these  equations  (204)  for  the  rates  of  angular  dispersion  of  the  dis- 
tortional  inequality,  and  the  two  rotational  inequalities  in  conduction,  as  well 

as  in  the  corresponding  equations  for  the  rates  of  angular  dispersion  of  the 

corresponding  inequalities  in  the  vis  viva  of  relative  motion  (195),  the  analysis 
r.  9 
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for  each  inequality  has  been  effected  separately  in  terms  of  the  quantities 
which  define  the  state  of  the  medium. 

These  six  rates  of  dispersion  for  each  of  the  components  in  directions 

x,  y,  and  z  added  together  constitute  the  rate  of  increase  of  the  energy  of  the 

component  of  relative  motion  received  from  the  other  components  of  the  same 

system.  And  thus  it  appears  that  the  expressions  for  these  six  rates  of 
redistribution  are  the  analytical  equivalent,  in  terms  of  the  quantities  which 

define  the  condition  of  the  medium,  of  the  fourth  term  in  the  equation  (117  a); 

which  may  be  expressed  as 

1  fdu'      dv'     dw'\  | 
S\dx      dy      dzJ\ 

&c,  &c. 

Q.  E.  F. 



SECTION   XII. 

THE  LINEAR  DISPERSION  OF  MASS  AND  OF  THE  MOMENTUM 

AND  ENERGY  OF  RELATIVE-MOTION,  BY  CONVECTION  AND 
CONDUCTION. 

157.  These  actions  are  expressed  by  the  second,  third  and  fifth  terms  in 

equations  (123),  or  more  concisely  by  the  second  and  third  terms  in  (117  A), 

lid  }" 

2  )T~,  [(Pu'u'  +Pxx)'u']  +  &cl  ,  &c,  &c. 

It  has  been  shown  that  the  actions  of  the  component  mean  and  relative 

stresses  on  the  space- variations  of  the  relative  velocities  (p  du'jdx  +  &c.)"  are 
confined  to  the  resilience  and  the  angular  dispersion  of  the  energy  of  the 

components  of  relative-motion  at  the  points  where  the  inequalities  of  angular 
distribution  exist ;  and  therefore  do  not  account  for  any  linear  redistribution 
from  point  to  point. 

Linear  redistribution  requires  the  conveyance  or  transmission  of  energy,  &c. 
from  one  space  to  another,  and  the  integrals  of  these  actions  must  be  surface 
integrals. 

These  actions  of  linear  redistribution  are  again  such  that  their  effects 

can  be  studied  only  by  considering  the  causes  which  determine  the  rates 

at  which  energy,  &c,  is  carried  and  conducted  across  a  plane  from  opposite 

sides.  The  relative-velocities  at  which  the  grains  arrive  at  a  plane,  or  which 
come  in  collision  with  a  grain  intersected  by  the  plane,  are  not  determined  by 

any  action  at  the  plane,  but  by  the  antecedent  actions. 

As  far  as  these  actions  of  redistribution  depend  on  the  convections,  that  is, 

neglecting  the  dimensions  of  the  molecules,  they  have  been  taken  into  account 
in  the  kinetic  theory  of  gases. 

Clausius  was  the  first  to  obtain  the  true  explanation*  on  the  supposition 
that  the  mean  distance  between  the  molecules  was  so  great,  compared  with 

their  dimensions,  that  the  latter  might  be  neglected.    In  this  method  he  takes 

*  Pogg.  Ann.  1860. 
9—2 
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account  of  the  principle,  that  after  a  collision  the  mean  velocity  of  the  pair  is 
the  same  as  before,  and  of  the  consequence,  that  the  molecules  crossing  a 

plane  surface,  perpendicular  to  the  directions  in  which  the  inequality  varies, 

from  opposite  sides,  must  have  mean  velocities  such  that  their  sum,  in  the 
direction  of  the  downward  slope  of  the  inequality,  is  equal  to  V,  the  mean 

velocity  of  the  encountering  molecules,  the  same  as  if  they  arrived  at  the  plane 

from  uniform  gas  in  motion  with  this  mean  velocity,  V1 ;  the  uniform  gas  being 
discontinuous  at  the  surface  in  respect  of  density  and  velocity,  but  continuous 

in  respect  of  mean  vis  viva;  the  density  and  the  mean  relative- velocity  on 
either  side  of  the  plane  surface  being  that  of  the  varying  gas  at  a  distance 

proportional  to  the  mean  path  of  a  molecule. 

Maxwell  by  a  law  of  force  (which  he  had  arrived  at  from  his  experiments 

on  viscosity*  as  the  fifth  power  of  the  distance)  obtained  a  numerically 
different,  but  otherwise,  essentially,  the  same  law. 

In  a  communication — "  On  the  dimensional  properties  of  matter  in  the 

gaseous  state "f" — I  have  fully  discussed  this  action,  of  the  linear  redistribution 

by  the  convections ;  confirming  and  extending  Clausius'  explanation. 

In  that  paper,  by  making  use  of  the  arbitrary  constant  s  for  the  mean- 
range,  or  distance  from  the  plane  at  which  the  molecules  crossing  the  plane 

receive  their  characteristics  as  those  of  a  uniform  gas  in  motion  with  the 

mean  velocity,  V,  of  the  molecules  which  cross  in  unit  of  time,  the  assumption 

that  this  distance  is  proportional  to  the  mean  path  is  avoided,  and  this  is 

important  where  the  mean  path  (X)  is  of  the  same  order  as  the  dimensions,  <x, 
of  the  molecule  or  grain. 

In  these  analyses  account  has  not  been  taken  of  any  effects  of  conduction: 

so  that,  neither  Clausius'  nor  Maxwell's,  nor  yet  my  own  previous  method  is 
directly  applicable  for  the  determination  of  the  rates  of  linear  dispersion  of 

linear  inequalities  in  a  medium  in  which  a  and  X  are  of  the  same  order,  or 

in  which  X/cr  is  small. 

It  thus  appears  that  to  render  the  analysis  general  these  methods  must 

be  extended  by  taking  account  of  the  expressions  (159),.  (162),  (165),  for  the 
rates  of  flux  by  conduction  of  momentum,  as  well  as  of  vis  viva  in  terms  of  X 

and  a ;  so  as  to  obtain  expressions  for  the  mean-ranges  of  mass,  momentum, 
and  vis  viva,  as  determined  by  conduction  as  well  as  by  convection. 

158.  The  analysis,  to  be  general,  must  take  account  of  all  possible 
variations  in  the  arrangement  of  the  grains. 

But  in  the  first  instance  it  is  obviously  expedient  to  restrict  the  arrange- 
ment of  the  grains,  to  be  considered,  to  those  which  have  three  axes,  at  right 

angles,  of  similar  arrangement,  as  in  the  octahedral  formation;  in  which  cases, 

*  "On  the  Dynamical  Theory  of  Gases,"  Phil.  Trans.  Royal  Soc.,  p.  49,  I860, 
t  Phil.  Trans.  Royal  Soc,  1879,  Part  u. 
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whatever  may  be  the  formation,  equilibrium  is  secured  when  the  internal 

arrangement  of  the  medium  is  uniform  along  each  of  the  three  axes ;  and  the 

external  actions  on  the  medium  over  planes  which  are  perpendicular  to  the 
axes  are  also  uniform. 

159.  Mean-ranges. 

Having  obtained  expressions  for  the  rates  of  flux  of  mass,  momentum,  and 

vis  viva,  respectively,  by  conduction  as  well  as  by  convection,  for  any  group  of 
grains  in  any  direction,  in  a  uniform  medium,  it  remains  to  analyse  these 

expressions  so  as  to  obtain  the  component  mean-ranges  of  mass,  momentum, 
and  vis  viva. 

It  is  to  be  noticed  that  mass  and  vis  viva  are  scalar,  while  momentum  or 

velocity  is  vector ;  and  that  this  fact  gives  the  mean-ranges  of  momentum  and 
velocity  a  different  significance  from  those  of  mass,  and  vis  viva  or  energy. 

The  mean-range  of  convection  by  grains  in  the  direction  of  their  actual 

motion,  whatever  they  may  convey,  is  A.  And  the  mean-range  of  conduction, 
at  encounters  between  pairs  of  grains  in  the  direction  of  the  normal,  whatever 
is  conducted,  is  a. 

160.  The  component  mean-ranges. 

The  respective  component  mean-ranges  of  conduction  and  convection  are 
obtained  by  multiplying  the  components  of  the  rate  of  flux  by  convection,  in 

the  direction  of  the  elementary  group,  by  the  component  of  A  in  that  direction, 

and  the  component  rate  of  flux  by  conduction,  in  the  direction  of  the  elemen- 
tary group,  by  the  component  of  a  in  that  direction,  respectively,  integrating 

for  the  general  group  and  dividing  by  the  integral  flux  for  the  same  group. 

The  component  mean-range  of  mass. 

As  mass  is  not  conductible  the  mean-range  of  conduction  is  zero.  The 

component  mean-range — that  of  convection — is  then  obtained  from  equation 
(175)  as 

/;/>-  n> 
=  |X   (206). 

161.     The  component  mean-range  of  momentum  or  component  velocity. 

In  equations  (158)  and  (163)  if  the  factors  for  convection  and  conduction 

under  the  signs  of  integration  are  multiplied  respectively  by  A,  cos  9  and 

a  cos  6,  and  integrated  with  respect  to  6  from  6  =  0  to  6  =  tt/2,  (f>  —  0  to 

</>  =  7r/2  and  divided  by  the  respective  integrals  of  the  flux,  between  the 
same  limits,  the  component  ranges  of  momentum  in  the  direction  of  the 

momentum,  by  convection  and  conduction,  respectively,  are  found  to  be 

| A  and  §o\ 
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And  performing  the  same  operation  on  equations  (160)  and  (166),  the 

component  mean-ranges  of  momentum  at  right  angles  to  the  direction  of 
the  momentum,  bv  convection  and  conduction,  respectively,  are 

|  A,  and  §o\ 

162.      The  mean-range  of  vis  viva. 

Multiplying  the  convections  and  conductions,  under  the  signs  of  integra- 
tion, in  the  three  equations  (172),  (171),  (174)  respectively  by  \cosd  and 

acoscf)  and  dividing  by  the  respective  integral  rates  of  flux,  the  respective 

mean-ranges  are  found  to  be,  for  convection  and  conduction, 

For  actual  energy         §A     and     |cr,     coefficient     §. 

Direct  displacement     f  A.        „       |cr,  „  §§. 

Lateral  „  fg\       „     fza, 

35' 

The  mean-ranges  of  momentum  and  vis  viva,  inasmuch  as  they  are 
expressed  in  terms  of  A.  and  cr,  are  general  when  A  has  the  value  expressed 
in  equation  (146). 

It  should  be  noticed  that  while  the  mean-range  of  the  grains  in  an 

elementary  group  is  X,  the  mean  path  from  centre  to  centre,  owing  to  con- 
duction, the  mean-range  of  the  velocities  and  the  squares  of  the  velocities  are 

respectively  extended  to 

that  is  to  say  the  velocity  of  the  grain  is  not  determined  by  the  mean 

condition  at  the  centre  of  the  grain  at  which  it  last  undergoes  encounter, 
but  at  a  position  further  back ;  and  this  becomes  of  fundamental  importance 

when  A/cr  is  small. 

163.     The  mean  characteristics  of  the  state  of  the  medium. 

The  mean  quantities  which  define  the  state  of  a  (spherical)  granular 
medium  in  uniform  condition  are 

(1)  o-3/v/2,  the  mass  of  a  grain, 

(2)  the  constants  in   the  expression  /(c-)>  Art.  102, 

(3)  u" ,  v",  w",  the  mean  velocities  of  the  medium, 

(4)  N,  the  number  of  grains  in  unit  volume, 

(5)  a,  where  3x^2  =  (V1'V')'\ 

Of  these  five  mean  characteristics  (1)  and  (2)  stand  in  different  position 

from  the  rest,  (1)  being  constant  in  time  and  (2)  depending  on  the  ultimate 
arrangement  of  the  grains,  and  the  consideration  of  these  may  be  deferred. 
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The  mean  characteristics  (3),  (4)  and  (5)  all  enter  into  the  definition  of 
the  state  of  a  medium  in  uniform  condition. 

164.     Characteristic  velocities,  densities  and  mean-velocities  of  the  grains. 

From  equation  (136)  it  appears  that,  referred  to  axes  moving  with  the 

mean  motion  of  the  medium  (u",  &c),  the  number  of  grains  having  velocities 
between  F/  and  V}'  +  8V/  in  directions  which  referred  to  the  centre  meet  the 
surface  of  a  sphere  of  unit  radius  in  the  small  element  d  (cos  6)  d  (<£),  is 

n                         N   /FA2    -(— V     fV'\ 

-dcos0#  =  ̂ f(  ±)e    \*'d(^)de.d<l>    (207). 
Dividing  by  iV 

n                            1     'V'\2    -(—)'     /V'\ 
^dcoB0d4>  =  ̂ (-±)  e    ̂ 'dfflde.d*    (208). 

If  then  in  one  state  of  the  medium  a  has  the  value  al3  and  in  another  state 

has  the  value  O2  =  oti(l  +da1/a1),  the  characteristic  velocities,  for  which 

F,  =  F8   <209>' 
will  be    VI  and    F2'  =  Vx'  ( 1  +  da,/ a,). 

The  inequality  between  the  characteristics  is : 

In  the  same  way  for  the  characteristic  densities  if  the  numbers  of  grains 

in  the  two  states  are  jVj  and  ̂ 0  =  ̂ (1+  ~)  the  characteristic  numbers  of 

the  two  states  are 

ih  and  njl  +  -^M  , 

with   the   inequality  iij  -^-. 

And  if  u"  and  u"  (1  +  du"/u")  are  mean  component  velocities  in  the  two 
states  the  characteristics  are 

«/'  and  <' =  <  (l  +  9^Q   (210) 

165.     Characteristic  rates  of  flux  when  the  axes  are  fixed. 

Putting  I  =  cos  6,  m  =  sin  6  cos  (f>,  n  =  sin  6  sin  (/>  for  the  direction  cosines 
of  the  normal  at  contact  of  a  pair  of  grains  referred  to  axes  moving  with  the 

mean  motion  of  the  medium,  in  the  directions  of  x,  y,  z,  and  remembering 

that  the  range   of  convection  is  A,  while  that  of  conduction  is  a,  that  for 

momentum  the  rates  of  the  fluxes  are  ̂ 2  crf(  - )  /  3 A  and  for  vis  viva  ofl-  )/  3A, 

and  putting  d(cQ)xx,  &c,  and  d(pQ)xx  for  the  respective  rates  of  convection 
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and  conduction  of  an  elementary  group  in  direction  denned  by  —  d  (cos  6)  d<j), 
with  respect  to  fixed  axes;  for  the  flux  of  mass  we  have  by  equation  (175) 

d(eQ1U  =  p(u''+^\o8  0^d(^^jd<f>,  &c,  &c.  ...(211). 
And  by  the  last  Art. 

a  (cQS™  =  d  LQX*  +(S(a)~  +  8  (>")  ̂   +  8  (N)  ̂   d  (,&)**>    ' 
whence  the  inequality  of  flux  is 

a  (cQd™  -dicQO™  =  (S  (a)  ~  +  8{u")  ̂   +  S  (iV)  A)  d(cQl)xx . . .(21 2). 

Equation  (212)  is  general  and  Q  may  represent  mass,  momentum  or 
vis  viva. 

166.  Rates  of  convection  and  conduction  of  momentum  by  an  elementary 

group. 

Substituting  the  mean-rate  of  flux  of  momentum  by  convection,  and 

noticing  that  the  component  mean-path  is  increased  from  X  cos  6  to 

X  (u"  +  F,'  cos  6)f  V-{  while  the  conduction  is  not  altered  by  the  mean- 
motion — omitting  the  square  of  the  mean-motion  and  dividing  out  the  A,, 
we  have : — 

For  direct  action  referred  to  fixed  axes 

a  (CQ, ).,, + a  (M.vx = p  {(«'  +  v;  cos  ey  +^  £/ (?)  v^  co**}  | d  ( -  cos  0)  d<f> ' &c.  &c. 

&c.  &c. 
   (213). 

For  lateral    action 

a  (cQi)^  +  a  (M!IX  =  P  l(u"  +  v{  cos  6)  (v" + v;  sin  e  cos  </>) 

+  ̂̂ /(^F1'cos0sin0cos<J^(-cos0)<ty   (214). 
167.  For  the  rate  of  displacement  of  vis  viva  by  an  elementary  group 

referred  to  fixed  axes. 

Taking,  as  before,  X(u"  +  V-[  cos  6) ju  for  X  and  omitting,  for  the  sake  of 
simplicity,  all  quantities  of  the  second  order,  such  as  u"-/X  and  Xa2,  we  have 
for  the  direct  rate  of  displacement 

a  (&)**  =  p  {(»"  +  Vi  cos  0)  {u"  +  v;  cos  ey 

sT  f  GD Fl'2  (*" cos  ̂  +  v" sin  dc0S(f>+ w" sin  ̂ sin  ̂) cos30 }  ■  •  •(' 

+ 
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The  first  term  within  the  brackets  on  the  right,  which  is  the  convection 

term,  becomes,  omitting  the  terms  of  second  order, 

•Su,'V1,2cos"d+V1'3cos3d. 

One  part  of  the  first  of  these  two  terms  expresses  the  rate  of  displace- 

ment of  mean  vis  viva  by  u" ;  while  the  remainder  of  this  term  expresses  the 

displacement  of  the  inequality  of  vis  viva  (2u"  F/  cos-  0)  by  V-[. 

The  second  of  the  two  terms,  which  changes  sign  with  cos  0,  expresses  the 

displacement  ( F/2  cos-  0)  by  Vx'  cos  0. 

The  second  term  within  the  brackets  expresses  the  displacement  resulting 

from  conduction  on  the  mean  normal  velocity,  and  this  does  not  change  sign 
with  cos  0. 

For  the  lateral  action 

3  (Qi)m  =  P  lO"  +  Vx  cus  0)  (v"  +  V;  sin  0 cos  <£)2 

+ 
,3    / '( -  j F/2(M"cos#+v''sin0cos</>-H</'sin#sin(£)cos#sin-acos2</> 

+  £/(?)  J72 cos  0 sin20 cos20  \%d(- cos  0)  d<f> 
.(216). 

168.  The  inequalities  in  the  mean  rates  of  flux  of  mass,  momentum  and 

vis  viva  resulting  from  space  variations  in  the  mean  characteristics  in  a  medium 

of  equal  spherical  grains. 

When  the  mean  state  of  the  medium  varies  continuously  from  point  to 

point,  so  that  (\/N)(dN/dx), 

and  (A./a)  dajadt  are  of  the  first  order  of  small  quantities,  the  mean  charac- 

teristics N,  a,  u',  &c,  obtained  by  integrating  over  a  unit  of  volume,  taking 
account  of  the  motion  in  all  directions,  are  taken  as  the  mean  characteristics 
at  the  centre  P  of  the  unit  element. 

Then  it  follows  that  if  PQ  represents  a  distance  r  of  the  order  A.  +  a, 

having  a  direction  defined  by  I,  m,  n,  the  characteristics  at  Q  will,  to  the 

first  order  of  small  quantities,  be,  putting  /  for  any  one  of  the  characteristics, 

7«  =  /-  +  '-('<S  +  '"|  +  "<5)/'   (217)- 

If,  then,  r  is  the  range  of  /,  whether  it  is  \,  \f2<rf(-)/S  or  a  f 'f --  J /3, 
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as  the  case  may  be,  and  it  be  assumed  that  the  group  of  grains  arriving  at 

P,  from  the  direction  of  Q,  arrive  as  from  a  uniform  medium  having  charac- 
teristics which  are  the  mean  characteristics  at  Q,  the  inequalities  in  the  mean 

rates  of  flux  at  p  would  be  obtained  by  substituting 

/«-/'-r('=+'"S+"s)/j   (21<S) 
for  d  (I)  and  integrating  1 1  d  (I)  sin  6  dd  d<j>  for  the  partial  groups. 

There  is  however  nothing  in  the  definition  of  the  mean  characteristics, 

at  a  point,  in  a  varying  medium,  as  stated  above,  to  warrant  the  assumption 

that  the  grains  arriving  from  the  direction  Q  will  arrive  at  P  with  the  mean 
characteristics  of  the  medium  at  Q. 

The  mean  characteristics  are  the  means  of  all  the  groups  at  Q,  whereas 
the  grains  arriving  at  P  from  Q  must,  unless  PQ  is  at  right  angles  to  the 
direction  in  which  the  medium  varies,  differ  from  the  mean  at  Q  taken  in  all 

directions ;  and  therefore  cannot  have  the  mean  characteristics  at  Q.  It  is 

necessary  therefore  to  obtain  further  evidence  before  we  can  determine  what 

are  the  characteristics  of  the  elementary  groups  in  different  directions,  which 

evidence  is  found  in  the  conditions  of  equilibrium  of  the  varying  medium. 

169.  The  conditions  between  the  variations  in  the  mean  characteristics, 

a,  u",  &c,  N  or  p,  in  order  that  a  medium,  in  which   a  and  the  constants 

in  fir)   &re  constant,   may  be  in  steady  condition    with  respect    to   all    the 

characteristics. 

The  condition  of  equilibrium  of  a  medium  in  mean  uniform  condition 

requires  that  u",  a.  and  N  should  each  be  constant  for  all  positions  and  all 
directions ;  so  that  in  a  medium  in  which  any  one  of  these  mean  character- 

istics varies,  the  rest  being  constant,  the  equilibrium  would  be  disturbed. 

But  it  does  not  follow  that  equilibrium  would  be  impossible  if  two  or  more 
of  the  mean  characteristics  vary. 

For  the  case  where  <r/X  is  small  these  general  conditions  have  been 

already  determined,  in  the  study  of  the  conduction  of  heat  by  Clausius*, 
and  more  generally,  in  the  study  of  the  dimensional  properties  of  matter  in 

the  gaseous  state f.  In  the  latter  instance,  this  was  accomplished  by  the 

recognition  that  if  the  mean  characteristics,  u",  a,  N,  of  flux  by  a  mean 
group  of  molecules  arriving  at  P  were  the  mean  characteristics  of  the 

medium  at  Q,  PQ  being  the  range  of  the  characteristics,  the  three  conditions 

*  Pogg.  Ann.,  Jan.  1862  ;  Phil.  Mag.,  June  1862. 
t  Phil.  Trans.  Royal  Soc,  1897,  Part  n.  pp.  786—803. 
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of  steady  density,  steady  momentum  and  steady  vis  viva,  could  not  be 

satisfied ;  whereas  if  the  characteristics,  a  and  JST,  of  the  flux  arriving  at  P 
from  Q  were  the  characteristics  at  Q,  while  instead  of  the  characteristics 

n",  v",  w"  at  Q  arbitrary  functions  of  x,  y,  z  (U,  V,  W)  are  taken  for  the 
mean  velocities  of  the  arriving  group,  all  the  conditions  could  be  satisfied; 

and  the  values  of  U,  V,  W  be  determined  in  terms  of  it",  v",  iv",  a  and  N. 

This   method   may  be  applied   for  the  determination   of  the   conditions 

between  the  mean  characteristics,  U,  a,  N  and  u" ,  when  -  is  large  as  when A 

small,  now  that  the  expressions  for  the  mean  rates  of  flux  and  mean  ranges, 

resulting  from  conduction,  have  been  determined,  as  well  as  those  resulting 
from  convection,  in  a  uniform  medium. 

170.     The  equation  for  the  mean  flux. 

Substituting  U  for  u",  &c.  in  the  expressions  for  the  characteristic  rates 
of  flux  by  au  elementary  group  (  ),  remembering  that  \  is  the  range 
of  convection  and  <x  the  range  of  conduction,  that 

\ ,  dN  dN        dJS 
dN--=\  (I    ,  +  m •- ,  -  +  n  j- dx  dy           dz 

,  da  da           da 
da  =  A  [I  -r-  +  lib  -y-      +  11  -y- 

dx  dy          dz 

,  d  d     ,       d ' da  =  cr  ( I  -,-  +  in  -y-   +  n  -y- dx  dy          dzj 

For  convection 

For  conduction 

\ 

•(219), 

in  the  expression  for  the  inequality  of  the  flux,  and  integrating  from  6=0 
to  6  =  ir  and  from  $  =  0  to  <£  =  2tt,  the  equation  for  the  mean  flux  is  obtained 
to  a  first  approximation. 

For  the  flux  of  mass. 

From  equations  (176),  the  equation  for  the  flux  of  mass  in  direction  of 
x  is 

.(220). 

Equation  (220)  has  reference  to  fixed  axes,  for  moving  axes  the  equations 
become 

0  =  P"(^-O-l^{«f +  />"§•«   ^221>- 
These  equations  define  the  values  U,  V,  W  in  terms  of  the  characteristics 

(u",  a,  p  or  N),  the  mean  characteristics  at  the  point. 

For  the  rates  of  flux  of  momentum  to  a  first  approximation. 

From  the  first  of  equations  (213)  the  rates  of  direct  flux  of  momentum 
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become,  to  a  first  approximation,  assuming  \  to  be  the  same  in  all  directions, 

V2  o-  JarW  \ 
p   (uu)   +  p ■  +  7i/U 

„  a2     4  _\_ 
9    2+3vV 

aj-[p(U-u")}  +  p(U+u")da 
dx 

,  &c,  &c. 

jPo?'  lateral  flux. 

From  the  second  of  (213)  the  equations  become 

-f(-)\-~ 

V  ...(222). 

»/   i  i\,i  .a  i    ,    v-  °" 
p  («  v )  +  p  ̂   =  j  1  +   3 

«(£jA*(F-">] + 1  [/>"  (  p  - «")]} +p"(y- "")  a + p"  ( u  - "") 
da 

dyvtJ  /jj   ■  r  '  doe  '  r  ' '  dy_ 

For  the  rates  of  flux  of  vis  viva  to  a  first  approximation. 

From  equations  (215)  the  equations  for  the  rate  of  flux  of  direct  vis  viva 
become 

[P"  (*V  +  pxx)  u>)»  =  |  {l  +  ̂/  (£)}  ( U  -  u")  P»* 
"5U  + 3*/ W 

For  lateral  flux. 

From  equation  (216) 

V  («v +iw)  «r = ^  (i + i|(V  GDI ( ̂-  m,/)  '"' 
y  ...(223). 

u\x+kf{l a 

dp        da3 dx      "  dx 

I 

The  values  of  U  —  u",  &c,  as  defined  in  equations  (221),  are  small 
quantities  of  the  first  order.  Hence  as  these  quantities,  and  their  space 
variations,  enter  into  the  rates  of  momentum  as  factors  of  the  small  distances 

X  and  <r  only,  the  terms  into  which  they  enter  are  all  of  the  second  order 

of  small  quantities,  as  compared  with  p,  and  may  therefore  be  neglected  as 
being  within  the  limits  of  approximation.  Omitting  these  terms  from 

equations  (222),  the  rates  of  flux  of  momentum  to  the  first  order  of  small 

quantities  are  by  convection  : 

p"  CaV)"  =  p"  ?  ,  &c,  &c- 

p   (u  v')"  =  0,  &c,  &c, 
and  by  conduction,  equation  (159), 

p  **  "  T  \J  {x)p  2  '  &c"  &c-' 

p"xy  =  0,    &C,    &C 

.(224). 
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The  total  rates  of  flux  of  momentum  being 

P"«*+p"(uur=\i  +  ̂̂ f(')\p*° 3  V7  U/l  ...(225). 

p"xy  +  p"  (u'v')"  =  0,  &c,  &c. 

Substituting  in  equations  (223)  the  values  of  U-u",  &c,  as  obtained 
from  equations  (221),  the  rates  of  flux  of  the  vis  viva  of  the  component 
motions  become  by  transformation  : 

\ ,  //  /  /  ,Y,      ̂      a    (^  dp      21     da?\ 

{PxxU)"  =  ~ 
15     vV 

[£-*)' ,6a     _1_\    „  da?) 
1  A.      V2/P    dx] 

{pu'v'v')"  =  £  (pu'u'u') by  equation  (223) 

(P*yv')"  =  HP**"')" 
And  for  the  rate  of  flux  of  the  total  vis  viva 

,  &c.,&c.  ...(226). 

puuu  +pxxu' 
pu'v'v   +PxyV 

{-  pu'iu'w' + pxziv 

1    a 

-puv'v'  +  pxyV        =9^. 
i2  dp  _  21     da2 cfo;       2  "  dx 

'4c 

&c,  &c   (227). 

The  equations  (221)  to  (227)  as  they  stand  are  perfectly  general. 

So  far  however  these  equations  satisfy  the  conditions  of  steady  density 

and  steady  vis  viva,  only,  on  the  supposition  that  the  conditions  of  mean -mass 
are  satisfied.  And  these  conditions  explicitly  involve  the  space  variations 

of  A. ;    as  is  at  once  seen  from  equations  (225). 

171.  The  conditions  of  equilibrium  of  mass  referred  to  axes  moving  with 

the  mean  motion  of  the  medium. 

Differentiating  equations  (225)  with  respect  to  x,  y,  z,  respectively,  and 

transforming,  the  general  conditions  of  the  equilibrium  of  mass  may  be 

expressed  as dp 

dx 

=  P\ 6JA 

v/2o-/("-)-v/2A.a262e 

\ 

IdX      I  dor 

\  dx      a2  dx 3\  +  V2<r/( 

and  from  equation  (146),  differentiating  and  transforming, 

,  &c,  &c.  ...(228), 

b-\ 

dp        SX  +  \s/2a2b2e    «  1  dX 

dx 

=  P 

SX  +  ̂ ,/(£) A.  dx 
,  &c,  &c   (229). 
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Adding  the  equations  (228)  and  (229)  the  condition  of  equilibrium  is 

o-/>(*£-x£),fa.*°   <230>- 
The  rates  of  flux  of  vis  viva  when  the  medium  is  in  equilibrium. 

Substituting  in  the  first  and  second  of  equations  (226),  (227)  respectively 

from  equation  (228)  the  respective  rates  of  direct  flux  by  convection  and 
conduction  are  expressed  as : 

0  3  +  V2  orbH 
a 

p"  (u'u'u)"  =  —  z-^-r-      6X2 r  15  \/TT   ' 
3X  +  V2o-/ 

-1  +  21x1  P\  ̂,&c,&c. 
<t\  y  1  ax 
\)  J 

62A 

+ 

•(231), 

3\+V2<r/(? 

the  respective  rates  of  lateral  convection  and  conduction  being  one-third  of 
the  corresponding  direct  rates. 

Adding  the  respective  members  of  the  equations  (231)  the  expression  for 
the  total  rate  of  direct  flux  of  vis  viva  by  convection  and  conduction  is  : 

kav +1u  «r  -  - 13^  j(ex>  -  2  (*-  V2  ,)./(0)  ;;V;"'^;; 

Then,  since  the  rates  of  flux  of  lateral  vis  viva  are  each  one-third  of  the 
normal  rate,  the  total  rate  becomes 

(p  uu  +  pxx)u 

ip'liV     +pxy)V 

+  (p"u'w'+pxz)w> 6*A 

a 

Hp"u'V  +Pxy)  v  \    =q^\  [W  +  2  (4o-  -  V2  X)  cr/^-j 

c-\\3  +  V2as&3e    " 

+  m+,'^-V2)./g)},^,*o.,&c. 

3X  +  V2o-/g) 

....(233). 

The  equations  from  (221)  to  (233)  are  perfectly  general  to  a  first 

approximation  of  the  inequalities,  the  axes  moving  with  the  mean  motion  of 
the  medium,  the  medium  being  in  steady  condition,  and  the  arrangement 
such  that  ft-  and  b~  are  constant. 
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172.      The  coefficients  of  the  component  rates  of  flux  of  (a3 .  otr/2  \J2)  the 
mean  component  vis  viva  of  the  grain. 

By  equation  (129  b)  Section  VIII. 

o-3
 

Substituting  this  in  equations  (233),  dividing  by  N  and  putting  (C.22  +  D22) 
for  the  product  of  the  first  two  factors  of  the  member  on  the  right,  these 
members  take  the  form  : 

as  expressing  the  relative  rates  of  flux  of  the  vis  viva  of  the  grains  across 
surfaces  moving  with  the  mean  motion  of  the  medium. 

These  rates  expressed  by  the  space  rates  of  variation  of  the  vis  viva 

of  the  grains  multiplied  by  the  coefficient  (022  +  A2)  express  the  rate  of 
flux  under  the  condition  of  steady  motion. 

But  as  long  as  the  scales  of  the  variation  of  a2  are  sufficiently  large, 
as  compared  with  the  squares  of  the  scale  of  the  relative  mass  and  the 

mean  paths,  to  come  within  the  limits  of  approximation  for  the  maintenance 

of  mean  and  relative  systems,  the  rates  at  each  point  will  be  approximately 
the  same  as  under  the  conditions  of  equilibrium. 

Then  if  the  inequalities  of  mean  motion  are  so  small  that  the  inequalities 
instituted  in  N,  \  and  a  may  be  neglected  as  compared  with  N,  A,,  a, 
i.e.  if  the  scales  of  mean  motion  are  sufficiently  large  and  the  inequalities 

sufficiently  small,  the  coefficients  C','J  and  D22,  which  are  respectively  the 
coefficients  for  convection  and  conduction,  may  be  taken  as  constants  within 

the  limit  of  approximation. 

173.  The  rate  of  dispersion  of  linear  inequalities  in  the  vis  viva  of  the 

grains. 

Putting 

F Ft*- =¥ Tx [{p** +  pu'll'} "' " (Px" +  puV)  v' " (Pxz  +  puW) w'1  ■  '(2m 

Nd,t    *x~     K  2  +    2V'2^2V2 
we  have  Xr    */«*  =  -(  G?  +  A2)  775  ;v-2    « 

ds  j    _     (r2,D*\?t   &  f*!\\  (935) 
Ndst    x>l         v   2    '  ~"V2<ty 

NottIxz  =  ~(G**  +  I)^ V2  dz*\2t 

Thus  although  not  vectors  the  component  rates  of  redistribution  depend 
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severally  on  the  component  inequalities,  and  admit  of  separate  expressions 
which  when  added  together  give  the  expression 

1   d3  ?     ,„m  .    _  <r2_/a2 

Ngi-W+Mji*[i)  ■■(*»> 

And  multiplying  by  N 
dj 

g-W+iv>,>(f) 
174.  The  expressions  for  the  coefficients  C22  andD2-'  involve  the  arbitrary 

constant  b-,  so  that  the  general  expression  cannot  be  completely  interpreted 
until  b2  is  defined.  But  the  terms  which  depend  upon  b  are  very  small 

except  for  states  of  the  medium  in  which  X  is  greater  than  o-/10  or  less  than 

lOo-;  so  that  outside  these  limits  the  coefficients  are  independent  of  b'~ 
within  the  limits  of  approximation. 

Then,  outside  these  limits,  the  expressions  for  C,2  and  D22, as  appears  from 
equation  (233),  when  <r/\  is  small,  are,  within  the  limits  of  approximation, 

3\a 

CI2  = 

V7T 

D92=0 

.(237). 

And  when  <r/\  is  large 
C2  =  0 

"I 

n,_4_o-a/<M   (238). 

-~3v/7rx.UyJ 

And  these  values  become  infinite  in  the  limit. 

175.  Summary  and  conclusions  as  to  the  rates  of  redistribution  by 
relative  motion. 

The  equations  (202)  express,  in  terms  of  the  quantities  which  define 
the  relative  motion  of  the  medium,  the  rates  of  angular  rearrangement 

of  the  relative-mass,  by  institution  of  relative  motion,  corresponding  to  the 
last  term  in  equations  (119)  Section  VI. 

Equations  (235)  Section  XII.  express  the  linear  redistribution  of  in- 
equalities in  vis  viva  of  relative  motion  by  the  actions  of  convection  and 

conduction  corresponding  to  the  second  and  third  terms  of  equations  (117  a) 
Section  VI. 

Equations  (195)  and  (205)  express  the  respective  rates  of  angular  redis- 
tribution of  angular  inequalities  in  the  vis  viva  of  relative  motion,  resulting 

from  convections  and  conductions  respectively,  corresponding  to  the  fourth 

term  in  equations  (117  a). 

The  second  term  in  the  equations  (119)  Section  VI.  is  the  only  term 

in  the  equations  of  mass  which  does  not  become  zero  when  p"  is  constant  in 
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time  and  space.  Therefore  equations  (202)  express  the  only  redistributive 

actions  on  mass,  equation  (204),  resulting  from  relative  motion.  These 

redistributions  of  relative-mass  are  essentially  positive  dispersions  of  un- 
sym metrical  arrangement,  at  rates  which  are  proportional  to  the  inequalities 
in  the  arrangement  of  the  mass.  But  subject  to  the  same  limit  as  the 

permanent  diffusion,  as  \ja  becomes  small. 

Thus  the  action  of  relative-motion  on  the  mass  is  that  of  positive 
dispersion  of  all  inequalities. 

The  second,  third  and  fourth  terms  in  equations  (117  a)  are  the  only 
terms  in  the  equation  which  depend  on  relative  motion  only ;  that  is,  are 

the  only  terms  in  these  equations  that  do  not  necessarily  vanish  when  the 
vis  viva  of  mean  motion  is  constant. 

Therefore  the  equations  (195)  and  (204),  Section  XL,  express  the  only 
redistributive  actions  on  the  vis  viva  resulting  from  relative  motion. 

From  these  equations  it  appears  that  all  these  actions  are  essentially 

dispersive  of  inequalities,  at  rates  proportional  to  the  inequalities  multiplied 

by  coefficients  depending  on  the  characteristics  of  the  medium ;  the  only 

limit  being  that  imposed  by  the  nearness  of  the  grains,  which  is  the  same 
limit  as  that  of  permanent  diffusion  as  expressed  in  equation  (205). 

It  thus  appears  that  to  a  first  approximation  the  action  of  the  relative 

motion  on  relative  mass  and  relative  vis  viva  is  essentially  that  of  positive 

dispersion  of  inequalities ;  in  which  the  rates  of  linear  dispersion,  and  of 

angular  dispersion  of  vis  viva,  by  convection,  are  subject  to  no  limit,  while 

those  of  angular  rearrangement  of  mass  and  of  angular  dispersion  of  vis  viva 

by  conduction  are  subject  to  a  finite  limit  as  the  grains  become  closer. 

The  generalization  of  the  dispersive  actions. 

The  numerical  coefficients  of  the  several  rates  of  redistribution  expressed 

in  the  equations  (202),  (195),  (205)  relate  to  a  medium  consisting  of  uniform 

spherical  grains.  But  if,  for  these  numerical  coefficients,  arbitrary  constants 

are  substituted,  these  equations  become  general,  that  is  to  say,  they  include 

all  discontinuous  media  in  which  the  separate  members  do  not  alter  their 

shape  or  size. 

Whence  the  conclusion  follows,  that  discontinuous,  purely  mechanical 

media  satisfy  the  condition  for  the  maintenance  of  the  state  of  relative 
motion. 

K. 
10 



SECTION   XIII. 

THE   EXCHANGES   BETWEEN   THE   MEAN-    AND 
RELATIVE-SYSTEMS. 

176.  It  has  been  shown  (Sections  XI.  and  XII.)  that  the  effect  of  the 

relative  motion  is  to  disperse  all  inequalities  in  the  mean  vis  viva  of 

relative  motion  and  in  the  arrangement  of  the  mean-mass ;  the  rates  and  the 
limits  of  these  actions  having  been  expressed  in  terms  of  the  quantities 
which  define  the  relative  motion. 

It  remains  therefore  (1)  to  effect  such  analysis  of  the  terms  in  the 

equations  which  express  the  effect  of  inequalities,  in  the  mean-system,  in 
instituting  inequalities  in  the  relative-system,  as  is  necessary  to  define  the 

actions  they  express,  in  terms  similar  to  those  in  which  the  rates  of  redistri- 
bution are  expressed ;  and  (2),  by  combining  the  effects  of  the  respective 

actions  of  institution  and  redistribution,  to  arrive  at  expressions  for  the 

resultant  inequalities  which  may  be  maintained. 

The  only  terms,  which  remain  to  be  considered  in  the  members  on  the  right, 

of  the  equations  of  component  vis  viva  of  mean-  and  relative-motion  (123) 
after  transferring  the  first  term  on  the  right,  which  is  the  convection  term  : 

to  the  left  member,  are  those  terms  which  are  concisely  expressed  as  the  fifth 
and  sixth  terms  in  equations  (117  a). 

Therefore  these  terms  are  the  only  terms  which  express  exchanges  of 

vis  viva  between  the  two  systems  taken  as  a  whole.  And  since  these  terms 

do  not  become  surface  integrals  they  express  the  exchange,  at  points,  of  vis 

viva  from  the  mean-system  to  the  relative-system.  And  further,  these  terms 
are  transformation  terms  solely ;  so  that  they  each  express,  under  the 

opposite  sign,  the  exact  rates  of  exchange  as  the  corresponding  terms  in  the 

equations  (116  a).  Thus  the  fifth  term  in  equations  (117  a)  expresses  the 

rate  at  which  vis  viva  is  received  by  the  relative-system  from  the  mean- 
system  on  account  of  the  diminution  of  the  abstract  resilience  in  that 

system,  while  the  sixth  term  in  (117  a)  expresses  the  rate  of  exchange  of 
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kinetic  energy  necessary  in  order  to  satisfy  the  condition  of  no  energy  in  the 

residual  system,  the  expressions  under  opposite  signs  being  identical  in  the 
two  systems. 

177.  The  initiation  of  inequalities  in  the  state  of  the  medium. 

Since  the  terms  in  (117  a)  express  the  only  actual  rates  of  exchange  of 

energy  between  the  two  systems,  and  the  effects  of  the  relative-system  are 

purely  dispersive,  it  at  once  appears  that  in  a  medium,  in  a  state  of  general 

equilibrium,  inequalities  can  be  initiated  only  by  acceleration  of  mean- 

motion,  and  whatever  the  state  of  the  medium  may  be,  all  initiation  of 

inequalities  springs  from  acceleration  of  mean-motion  as  the  prime  cause. 
This  being  so,  any  rate  of  change  which  may  result  by  transformation  from 

inequalities  in  the  mean-motion  will  be  expressed  as : 

d,(  )    or  3i(  ) 

d,t  dxt    ' 
according  to  whether  or  not  the  rate  of  convection  dc»  (  )/dt  is  or  is  not 
included  in  the  action. 

In  this  way  the  joint  actions  of  institution  and  redistribution  are  ex- 
pressed as 

d,(  )  }d2(  ) 
dxt         d2t 

178.  As  presenting  by  far  the  greatest  difficulty,  and  thus  entailing  the 

most  discussion,  the  rates  of  institution  of  angular  inequalities  in  the  rates 
of  conduction  through  the  grains  demand  first  consideration.  These  rates, 

it  would  seem,  have  not  hitherto  been  the  subject  of  analytical  treatment ; 

and  although  the  expressions  for  these  rates  of  institution  are  clearly  dis- 

tinguishable, now  that  the  conductions  are  separated  from  the  convections, 

the  interpretation  of  these  terms  presents  difficulties  owing,  partly,  to  the 
novelty  of  the  conceptions  involved. 

It  appears  that  the  analysis  of  these  conductions  constitutes  the  kinetic 

theory  of  the  abstract  elastic  properties  in  the  mean-system  of  a  granular 
medium,  that  is  to  say,  properties  of  distortional  elasticity. 

The  terms  which  express  the  rates  of  increase  of  abstract  resilience  in 

the  mean-system  are  included  in  the  last  term  but  one  in  the  right  members 
of  equations  (116  a). 

In  a  purely  mechanical  medium  there  is  no  resilience  in  the  resultant 

system,  so  that  these  terms  in  the  mean-system  have  their  identical  counter- 
part under  the  opposite  sign  in  the  corresponding  equations  of  the  relative- 

system.  But  that  which  has  rendered  this  subject  obscure,  is  that  the 
counterpart  is  under  different  expressions. 

This  is  owing  to  the  generality  of  the  equations,  which  are  not  confined 

to  a  purely  mechanical  medium.     However,  on  changing  the  signs  of  the 

10—2 
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terms  in  (116  a)  we  have  the  interpretation  of  the  corresponding  terms  in 

(117  a).     These  terms, 

>"  /du"      dv"      dw"\  _v»)^ 

1  f   „     /du"     dv"\        „    /du"  ,  dw" ,  &c,  &c, 

represent  the  rate  at  which  kinetic  energy  in  directions  x,  &c.  is  being 
abstracted  from  the  relative-motion  to  supply  the  abstract  mean  resilience, 

depending  on  conduction,  to  the  mean-system  of  motion.  This  is  obvious,  as 

regards  the  first  of  the  terms  within  the  brackets,  for  the  components  in 

directions  x,  y  and  z.  But  as  these  represent  uniform  expansion  multiplied 

by  uniform  pressure,  both  the  expansion  and  pressure  being  equal  in  all 
directions,  it  introduces  no  angular  inequalities  in  the  relative  vis  viva.  It  is 

however  these  terms,  or  more  strictly,  the  three  corresponding  term's  for  the 
directions  x,  y  and  z  taken  together,  that,  owing  to  their  simplicity,  reveal 
the  modus  operandi  by  which  the  conduction  through  grains,  of  changeless 

shape  or  volume,  can  affect  the  work  done  in  contracting  the  space  in  which 

they  exist. 

It  is  not  the  conductions  that  are  the  active  agents.  But  these  conduc- 
tions are  a  passive  necessity  of  the  space  occupied  by  the  grains ;  and  thus 

measure  the  contraction  of  the  freedom  of  the  grains,  owing  to  their  volume. 
Whence,  it  is  at  once  realized  that  the  amount  of  increase  of  kinetic  energy, 

which  would  result  from  a  contraction  of  the  entire  space  occupied,  would 

not  be  the  same  as  it  would  be  if  the  grains,  while  conserving  their  mass, 

ceased  to  occupy  volume.  For  in  the  latter  case,  taking  V  the  velocity  of 

the  grains  and  p  for  the  density,  and  supposing  the  action  were  what  is 

called  "isothermal,"  the  velocity  V  remaining  constant,  the  rate  of  displace- 
ment of  momentum  would  not  be  pV2/S,  as  it  would  be  if  the  volumes  of  the 

grains  were  zero. 

Neither  would  this  stress  vary  with  p  but  with  p{l  +  <f>(p)}  where  <f>(p) 

represents  virtual  contraction  of  the  space  free  to  the  motions  of  the  centres 

of  the  grains.  Thus  the  variation  of  the  kinetic  energy  caused  by  a  mean 
volumetric  strain  in  the  medium  is  increased  by  the  proportion  of  the  volume 

occupied  by  the  grains  to  the  exclusion  of  other  grains.  It  is  thus  seen  that 
it  is  this  excess  of  work  in  any  mean  strain,  resulting  from  the  virtual 

space  from  which  the  grains  shut  each  other  out,  that  is  measured  by  the 

conductions.  These  effects  have  been  fully  expressed  in  equations  (158)  and 

(159),  Section  X.,  and  are  easily  realized  in  the  case  of  volumetric  strain. 
But  it  is  quite  a  different  matter  to  realize  how  a  purely  distortional  strain, 

which  neither  affects  the  volume  of  the  space  nor  the  volume  of  the  grains, 

can  produce  a  virtual  alteration  of  freedom  open  to  the  grains  or  inequalities 

in  rates  of  conduction ;  and  hence  the  importance  of  the  evidence  derived 
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from  the  consideration  of  the  volumetric  strain  in  the  interpretation  of  the 

results  of  distortional  strains  as  expressed  in  the  three  last  terms  within  the 

brackets.  From  these  it  appears  at  once  that  the  action  which  determines  the 

character  of  any  effect  there  may  be  is  rate  of  distortion,  which  also  determines 

the  rate  of  action,  while  the  subject  acted  upon  is  the  component  of  conduc- 
tion induced  by  the  distortional  strain.  In  the  first  of  these  distortional 

terms,  for  instance, 
1  .   ,,  tt.  ecu 

»<*--*)■&■ 

we  see  that  all  actions  on  the  mean  rates  of  conduction,  expressed  by  p" , 
equal  in  all  directions,  are  expressly  excluded.  The  recognition  of  this  is 

important  as  it  shows  the  independence  of  the  actions,  in  so  far  that  if  the 

distortional  strain  does  not  induce  any  change  in  the  rate  of  conduction  there 

is  no  effect.  This  raises  the  question :  what  is  it  that  determines  whether 

or  not  these  distortional  strains  shall  have  any  effect  ?  And  the  answer  to 

this  is  furnished  from  the  experience  derived  from  the  volumetric  strain. 

If  the  mean  distortional  strain,  by  altering  the  relative  positions  of  the 

grains  from  what  they  would  have  been  without  the  distortional  strains,  so 

alters  the  mean  extent  of  freedom  in  the  directions  of  the  principal  axes 

of  the  rates  of  strain,  there  will  be  effects,  otherwise  not.  "  Limiting  the 

freedoms  "is  only  an  expression  for  altering  the  probable  mean  paths,  and 
as  a  distortional  strain  consists  essentially  of  strains  in  directions  at  right 

angles,  such  that  one  of  these  strains  is  of  opposite  sign  and  equal  to  the 
sum  of  the  others,  the  action  of  a  distortional  strain  is  not  to  alter  the  mean 

density,  nor  if  cr/A,  is  small  the  mean  paths  of  the  grains,  taken  in  all 
directions,  but  to  institute  inequalities,  increasing  the  mean  paths  in  the 

directions  in  which  the  strain  is  positive,  and  decreasing  them  in  those 
directions  in  which  it  is  negative. 

It  becomes  plain,  therefore,  (1)  that  no  matter  what  the  mass  or  number 

of  grains  may  be,  if  the  volumes  are  such  that  the  space  they  occupy  is 

negligible  compared  with  the  space  through  which  they  are  dispersed,  the 
effect  of  distortional  strains  on  the  conductions  must  also  be  negligible. 

And  (2)  that  any  effect  the  distortional  strains  may  produce  on  account 

of  the  size  of  the  grains  depends  on  the  change  in  the  angular  arrangement 

of  the  grains,  as  measured  by  the  angular  inequalities  in  the  mean  paths, 
that  may  be  instituted. 

And  from  these  two  conclusions  it  appears  definitely  that  the  abstract 

exchanges  of  vis  viva,  from  the  mean  system  to  the  relative  system,  in  con- 
sequence of  distortional  strain  in  the  former,  and  the  space  occupied  by  the 

grains  in  the  latter,  depend  solely  on  the  angular  arrangements,  as  they  are 
here  called,  of  the  grains. 

This  general  and  definite  conclusion  brings  into  view,  for  the  first  time, 
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the  fundamental  place  which  the  conditions  to  be  satisfied  by  the  relative 
mass,  as  set  forth  in  Section  V.,  as  resulting  from  first  principles,  occupy  in 

the  exchanges  between  the  two  systems. 

It  also  calls  our  attention  to  the  fact,  pointed  out  in  the  preamble  to 

Section  IX.,  that  the  tacit  assumption  in  the  kinetic  theory  of  gases,  that 
the  redistribution  of  vis  viva  entailed  the  redistribution  of  mass,  has  limited 

the  application  of  this  theory  to  circumstances  in  which  the  conductions  are 

negligibly  small,  and  reveals  the  necessity,  for  the  general  theory,  of  a  study 
of  the  law  of  redistribution  of  mass  resulting  from  the  dispersion  of  mass 

as  a  subsequent  effect  of  encounters,  and  as  being  in  some  respects  inde- 

pendent of,  and  of  equal  importance  with,  Maxwell's  law  of  redistribution of  vis  viva. 

Although  in  such  studies  of  the  kinetic  theory  as  I  have  seen  I  have  not 

found  any  reference  to  the  existence  of  such  a  law  or  the  necessity  of  its 

study,  in  a  recent  reference  to  the  celebrated  paper  by  Sir  George  G.  Stokes, 

"  On  the  Equilibrium  of  Elastic  Solids,"  I  was  much  relieved  to  find  that,  in 

his  discussion  of  Poisson's  theory  of  elasticity,  he  expresses  the  opinion  that  it 
is  important  to  take  into  account  the  possible  effects  of  new  relative  positions 

which  the  molecules  may  take  up,  in  which  I  recognise  a  reference  to  what 

I  have  called  the  angular  distribution  of  the  grains. 

179.  The  probable  rates  of  institution  of  inequalities  in  the  mean  angular 
distribution  of  mass. 

When  the  condition  of  the  granular  medium  is  such  that  the  probable 

mean  path  of  a  grain  is  the  same  in  all  directions — that  is,  when  the  mean 
of  the  paths  of  all  the  grains  moving  approximately  in  one  direction  is  the 

same,  whatever  direction  this  may  be — there  are  no  angular  inequalities  in 
the  arrangement  of  the  grains.  And  when  the  means  of  the  paths  of  grains 

moving  approximately  in  the  same  directions  are  different  for  different 
directions,  these  differences  serve  to  measure  the  inequalities  in  the  angular 

arrangement  of  the  grains. 

And  in  exactly  the  same  way  the  angular  inequalities  in  the  number  of 

encounters  between  pairs  of  grains  having  relative-mean  paths  approximately 
in  the  same  direction  serve  (and  are  rather  more  convenient)  to  measure  the 

angular  inequalities  in  the  mass. 

Such  relative  angular  inequalities  are  instituted  solely  by  distortional 
motion  in  the  mean  system.  And  the  rate  of  distortion  is  one  of  the  factors 

of  the  product  which  represents  the  rate  of  institution  of  the  relative 

inequality ;  the  other  factor  being  the  ratio  of  the  average  normal  conduction 

of  momentum  at  an  average  encounter  of  a  pair  of  grains,  divided  by  twice 
the  average  convection  by  a  grain  in  the  direction  of  its  path. 
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By  equation  (147)  the  normal  conduction  at  a  mean  collision  is 

|v2(n'v/(|), 
and  by  equations  (155)  and  (156),  there  are  two  mean  paths  traversed  for 
each  collision,  and  the  mean  displacement  of  momentum,  by  the  convection 

of  a  grain  between  encounters,  is  W. 

Therefore  the  ratio  of  the  corresponding  normal  conductions  and  normal 
convections  is 

2V2(F')"(r,/(7\       sJ2cr,(a\ 

■f®-Hif®   (239)- 3  2(V)"X 
And  the  rates  of  institution  of  relative  angular  inequalities  in  the  arrange- 

ment of  the  mass  are  represented  by 

9X      V2  a    f*\  LduT_2(duT     <W     <M\)  &c*_(240). 
dj        3   XJ  \XJ  \     dx      S\dx       dy       dz  ))'  v       ' 

This  is,  only,  when  u",  v",  w"  are  referred  to  the  principal  axes  of  the 

rates  of  distortion.  And  da'/dt,  db'/dt,  dc'/dt,  represent  the  relative  rates  of 
increase  of  the  mean  paths  of  pairs  of  grains  having  relative  motion  in  the 

directions  of  x,  y,  and  z  respectively.  The  rates  of  relative  increase  of  pairs 

of  grains,  having  directions  of  motion  other  than  the  directions  of  the 

principal  axes,  are  obtained  from  those  in  the  directions  of  the  principal  axes 
as  in  the  ellipsoid  of  strain. 

Besides  expressing  the  inequalities  in  the  angular  distribution  of  mass 

and  in  the  mean  relative  paths,  da',  &c,  express  the  rates  of  increase  of  the 
inequalities  in  the  numbers  of  encounters  between  pairs  of  grains  having 
relative  velocities  in  the  directions  of  the  principal  axes.  But  they  do  not, 

without  further  resolution,  properly  represent  the  rates  of  increase  of  the 

inequalities  in  the  rates  of  conduction  in  the  directions  of  the  principal  axes  ; 
since  the  directions  of  encounter,  that  is,  the  normals  at  encounter,  may 

depart  by  anything  short  of  a  right  angle  from  the  direction  of  the  relative 
motion  of  a  pair. 

Before  proceeding  to  consider  the  relative-inequalities  in  the  rates  of 
conduction,  however,  it  seems  desirable  to  call  attention  to  the  distinction 

between  rates  of  strain  and  strains. 

It  will  be  noticed,  after  what  has  already  been  said  as  to  the  difference 
between  the  effects  of  volumetric  strains  and  distortional  strains,  that  in 

what  follows,  the  expressions  da'/dt,  &c.  are  used  to  express  the  rates  of 
increase    of   relative-inequalities    resulting    from    rates   of    distortion,   while 

*   N.B.     The  a',  b',  c',  in  this  article  have  no  relation  to  (a,    b,    c)   as  used  in  equations 
(181)  &c.  for  inequalities  of  vis  viva. 
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these   expressions  are  equally  applicable  to  the  rates  of  volumetric  strain. 

Thus  the  expressions, 

V2  <t  /./oA  (du      dv      dw^ 
~S\*\XJ  \dx  +  dy+dz 

and  tIKI 
du      2  (du      dv      dw\ 

"  dx     3  \dx     dy      dz ) 

express,  respectively,  the  rate  of  relative  increase  of  X,  the  mean  path, 
in  all  directions,  and  the  rate  of  increase  of  the  inequality  in  the  mean  value 

of  the  mean  paths  of  the  pairs  of  grains  having  motion  in  the  direction  of 

x  only.  This  at  first  may  appear  paradoxical ;  but  the  explanation  becomes 
clear  when  it  is  remembered  that  a  rate  of  strain  does  not  represent  a  strain, 
however  small. 

For  a  finite  rate  of  strain  to  cause  a  strain  it  must  exist  for  a  finite  time. 

And  to  convert  the  expression  for  a  rate  of  strain  into  the  expression  for  a 

strain  it  must  be  multiplied  by  the  expression  for  a  time;  recognising  this, 
the  difference  between  the  effects  of  volumetric  strains  and  distortional 
strains  is  at  once  seen.  In  the  uniform  volumetric  strain  the  effects  on  the 

path  of  every  pair  of  grains,  whatever  the  direction  of  the  paths,  are  the 
same ;  whereas  in  the  distortional  strain,  if  the  strain  in  direction  of  one 

of  the  principal  axes  is  positive,  the  sum  of  the  strains  in  the  other  two  axes 

is  equal  and  negative,  and  thus  they  neutralise  each  other  except  for  such 

effects  as  result  from  rearrangement  of  the  grains. 

Noticing  this,  it  is  seen  that  the  rates  of  strain  in  the  directions  of  the 

principal  axes  on  the  pairs  of  grains  with  relative  motion  only,  in  one  or 

other  of  these  axes,  are  perfectly  independent.  And,  assuming  that  there 

are  no  initial  inequalities,  these  independent  rates  express  the  initial  rates  of 

increase  of  the  initial  inequalities  in  the  mean  relative  paths,  with  relative- 
motion  in  the  directions  of  the  principal  axes  of  rates  of  distortion.  And, 

as  long  as  the  relative  inequalities  are  very  small,  this  independence  will 
be  approximately  maintained. 

Taking  St  as  an  indefinitely  small  increment  of  time  and  multiplying  both 

members  of  equations  (146)  by  this  time  we  have,  putting  a  =  da'Bt/dt,  as  a 
first  approximation  to  the  effects  of  the  rates  of  institution, 

,     V2  a-  .fa\  (adu"      2  (du"      dv"      dw"\)  .     0       0  ,ft.,,v 

or  since  A,  is  not  affected  by  the  distortional  strains  we  may  put  for  the  actual 
rates 

\  (1  +  a')  =  X ■        </2<r  ,/oA  f,du"     2  ,du"     dv"     dw"\\  , ,  &c,  &c. 
  (242), 

which  express   the   increase  in  the   mean  paths   of  pairs  of  grains  having 
relative  velocities  in  the  directions  of  the  principal  axes. 
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Then  since  the  numbers  of  encounters  between  such  pairs  are  inversely  as 

the  increase  of  the  paths,  we  have,  equating  the  reciprocals  of  both  members, 

From  which   we   have   for  the  rate   of   relative  increase   of   encounters  the 

numbers  of  pairs  with  relative  motion  in  the  directions  x,  y,  z, 

-*-$£'©  {"£-5(S+J*S)}*   (->• 
Having  thus  obtained  to  a  first  approximation  expressions  for  the  effect 

of  rates  of  institution  of  inequalities  in  the  pairs  of  grains  having  relative 

motion  in  the  directions  of  the  principal  axes,  we  may  proceed  as  in  Art.  149 

to  find,  to  a  like  approximation,  the  effect  of  these  inequalities  in  the  numbers 
of  encounters  on  the  normal  conductions  in  the  directions  of  the  principal 
axes  of  distortion. 

180.  The  initiation  of  angular  inequalities  in  the  distribution  of  the 

probable  rates  of  conduction  resulting  from  angular  redistribution  of  the  mass. 

Taking  x,  y ',  z  as  measured  in  the  directions  of  the  principal  axes  of 
the  distortional  strains,  and  —  a,  —  b',  -  c  respectively  for  the  relative  in- 

equalities in  numbers  of  encounters  between  pairs  of  grains  having  relative 

velocities  in  the  directions  of  x,  y',  z  respectively,  where  a  -\-b'  +  c  =  0,  we 
have  for  the  probable  relative  inequality  in  the  number  of  encounters  of  pairs 

of  grains  having  relative  motion  in  the  directions  defined  by  I',  m',  n  referred 
to  the  principal  axes, 

-  (Pa'  +  m"-b'  +  ri*c'),  since  /'  =  g  =  h'  =  0. 
Then,  taking  l1}  m^,  nx  as  the  direction  cosines  of  the  principal  axis 

measured  in  direction  x,  with  respect  to  any  arbitrary  system  of  axes 

measured  in  directions  of  x,  y,  z;  L,  m2)  n2  and  l3,  m3,  n3  being  the  direction 

cosines  of  the  principal  axes  of  y  and  z  respectively  referred  to  the  arbitrary 

system,  the  inequalities  in  encounters  between  pairs  in  directions  x,  y,  z 

respectively  are  expressed  by 

-(l^a'  +  l.fb'  +  l/c),  &c,  &c   (245) 

respectively.    Then  using  —  aly  —  bly  —  cx  to  express  these  inequalities,  we  may 
also  take,  in  the  usual  way,  /,  g,  h,  the  probable  tangential  inequalities, 

.  [dv      diu^ 
dy, 

—  (wj?i1a'+  m2n.J)'  +  m3n3c),  &c,  &c. 
Then  to  find  the  inequality  in  the  number  of  encounters  having  normals 

in  the  directions  of  the  axes  of  x,  y,  z,  respectively,  resulting  from  encounters 
between  pairs  of  grains  in  all  directions,  we  must  express  the  probable 

number  of  pairs  having  relative  velocities  in  a  direction  defined  by  I,  in,  n 
referred  to  the  directions  of  x,  y,  z ;  such  an  expression  is 

ax  =  Pa  +  m2b  +  n2c  +  2mnf  +  2nlg  +  2lmh   (247). 

>-iffi+a-fc-to   ^ 
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Then  the  angular  distances  of  the  direction  of  a^  from  this  line  to  the  axes 

of  x,  y,  z  respectively  are  defined  by  I,  m,  n  respectively  ;  and  the  probability 
of  the  normal  at  encounter  being  in  the  direction  of  x  is  lalt  in  the  direction 

of  y  is  malt  and  in  the  direction  of  z  is  na?.  These  are  the  inequalities  in 
the  numbers  of  encounters  of  which  the  directions  of  the  normals  are  in 

the  directions  x,  y,  z,  respectively,  resulting  from  encounters  between  pairs 

having  relative  motion  defined  by  I,  m,  n.  Then  integrating  —  aj,,  —  axm, 
—  a{ii  over  hemispheres  having  axes  in  the  directions  of  x,  y,  z,  respectively, 

we  obtain,  respectively,  on  dividing  by  ir  the  mean  inequalities  in  the  proba- 
bility of  encounters  having  normals  in  the  directions  of  the  axes  x,  y,  z. 

Thus  putting  I  =  cos  6,  m  =  sin  6  sin  c/>,  n  =  sin  6  cos  <f>, 

a     f2(cZ  cos4  6>         1    id  cos2  d      ldcos40\/7        J 

=  |  +  j(6  +  c)     (248). 

181.  The  mean  relative  inequalities  in  normal  conduction  are  obtained 

after  the  manner  in  which  equation  (148)  is  obtained,  by  resolving  the  com- 
ponents of  mean  normal  conduction  in  the  directions  of  x,  y,  z  respectively, 

and  multiplying  them  by  the  expressions  for  a,  b,  c,  &c.  equations  (247). 

Then,  since  a  +  b  +  c  =  0,  we  have  for  the  probable  inequalities  respec- 
tively a/4,  6/4,  c/4. 

Our  object  however  is  not  to  obtain  the  inequalities  in  the  probable 

number  of  encounters,  but  the  inequalities  in  the  mean  normal  conduction  in 

the  directions  of  the  principal  axes. 

The  mean  relative  inequality  of  normal  conduction  is  obtained  by  the 

same  method  as  in  Art.  104.     This  requires  that  for  the  direction  of  x,  lax 

must  be  multiplied  by  -^  V^/f-)  Vxl,  and  then  integrated.     Thus 

2    ,lTrff,/(r\      f*  (d  cos5  0  1    fdcos3d      d  cos5  6\  .,        .)     _       p 

  (249), 

reduce  to 

-V*W()9  (g« +  £(*  +  .))- -s  Avsf^j 

These  are  the  inequalities  in  the  probable  normal  conductions  in  the 

directions  of  the  axes  of  x,  y,  z  respectively,  and  it  remains  to  find  the 
inequalities  in  the  probable  conductions  in  the  directions  of  the  principal  axes. 
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The  probable  inequalities  in  the  conductions  resulting  from  an  encounter, 

having  the  normals  in  the  direction  of  x,  are  obtained  by  substituting  the 

expressions  for  a,  b,  c  in  the  preceding  equations,  then  resolving  the 
normal  components  of  V1  and  a,  in  the  members  on  the  right  of  these 

equations,  in  the  directions  of  x ,  y\  z  respectively,  integrating  over  a 

sphere  of  unit  radius  and  dividing  by  47r.     Thus  since  a'  +  b'  +  c  =  0, 

=-^l^^/©^'  +  r5(6'^')}l'&c-'&c   (251)- 

=  -0-32/(^2V
2<TFia' ,\J  9 

It  will  be  observed  that  these  expressions  are  for  inequalities  of  the 

probable  component  of  conduction  in  the  directions  of  the  principal  axes, 

taking  into  account  the  relative  inequalities  in  probable  normal  conduction 

in  all  directions ;  and  that  they  do  not  express  rates  of  conduction  corre- 
sponding to  the  expressions  in  equations  (158)  and  (159),  but  if  multiplied  by 

o-3/\/2  the  mass  of  a  grain,  they  express  inequalities  of  conduction  corre- 
sponding to  the  conductions  expressed  in  equation  (148). 

To  obtain  the  expressions  fur  the  inequalities  in  the  rates  of  the  relative 

component  conductions  in  the  directions  of  the  principal  axes  of  distortion, 

the  expressions  for  the  corresponding  component  conductions  must  be  multi- 
plied severally  by  the  number  of  encounters  each  grain  undergoes  in  unit 

time,  and  by  the  number  of  grains  in  unit  space,  as  expressed  by  the  integral 

of  equation  (157). 

Comparing  the  expressions  thus  obtained  with  the  rates  of  conduction, 

equation  (158),  it  is  at  once  seen  that  the  inequalities  in  the  probable  rate  of 

component  conduction  in  the  directions  of  the  principal  axes  of  distortion 

are,  remembering  that  a  expresses  d1(a')d1t/d1t,  &c, 

0:32  7 1  "f  ©  f  I  <a'>3-(= h  W"  -*">3A  &c"  &c   <232>- 
Then  although  the  significance  of  the  a  and  a,  &c,  used  to  express 

relative  inequalities  in  mean  paths  have  no  relation  to  the  a  and  a,  &c,  used 

to  express  inequalities  in  the  vis  viva,  in  equations  (192 — 194)  they  are  of 
similar  significance  and  admit  of  similar  transformation,  whence  it  follows 

that  by  a  process  strictly  corresponding  to  that  followed  in  Art.  152,  these 
rates  of  conduction  transformed  to  any  system  of  rectangular  fixed  axes  x,  y,  z, 

a4P  8lt  =  Un^  +  rn^^+wM  M,  &c. Oxt  {  Oxt  OjC  Oxt    ) 

.(253), 
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7\  /    f\ then  dividing  by  St  and  substituting  the  values  of  -^ — -    &c.  from  equations 

dit (146) 

d1(a) 
V2o-    (a\(adu"     2  fdu"     dv"     dw"\)          \ 
3   \f[\)\     dx      S\dx    '   dy   '    dz)]' 

V2o-  ,(<t\  (dv"     dw"\    1    0 

f.       

d1(f)_ 
(254). 

To  convert  these  into  rates  of  institution  of  inequalities  in  the  probable 

rates  of  conduction  they  must  be  multiplied  by  the  constant  coefficient  of 

the  d1(a')/d1t  in  equations  (252)  which  by  equations  (159)  may  be  expressed 
as:  0~'S2p";  the  coefficients  of  the  right  members  of  equations  (254)  may 
also  be  expressed  by  2p"/pa2.     Therefore 9  2 

Q-32p"2     (dvT     dvf 

a-      "  \dz       dy 

p2 
2dxt 

y 
.(255) 

(p"yz),    &C,   &C. 

express  the  initial  rates  of  increase  of  probable  angular  inequalities  in 

the  rates  of  conduction,  resulting  from  distortional  rates  of  strain  in  the 

mean-system,  which  are  expressed  in  the  last  term  but  one  of  equations 
(117  a). 

The  rates  of  increase  of  conduction  resulting  from  rates  of  change  of 
density. 

By  equations  (239)  the  relative  rates  of  increase  of  p"  are  the  products 
of  the  relative  rates  of  change  of  density  multiplied  by  the  ratio  of  the  rate 
of  conduction  to  the  rate  of  convection ;  the  last  factor  is 

3    \'\\J         a2' 

Thus  for  the  relative  rate  of  increase  of  p" 

1  d1(p")=      p"  fdu"     dvT     du/'}\ 
p"     dj  a2  \  dx       dy        dz 

the  actual  rate  of  increase  being 

3i  (/>") 

f 

p"2  fdu"     dv"      dw' 
Bit  a2  \dx       dy       dz 

p  2 

.(256). 
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182.     The  transformation  of  vis  viva  or  kinetic  stress. 

This  as  expressed  in  the  last  term  of  equations  (117  a)  and  multiplied  by  2 

so  as  to  express  the  rate  of  increase  of  vis  viva  (not  energy),  is 

v  { (-')» % + c  vr  % + K«.y  d4 } ,  &c,  &e. 
If  the  axes  are  principal  axes  of  rates  of  distortion  and  the  medium  is  in 

uniform  condition  the  last  two  terms  within  the  brackets  are  zero.  Then 

taking  a',  b',  c'  for  the  relative  inequalities,  which  are  initially  zero,  we  have 
for  the  rates  of  increase 

a2  Bxa 

  '   ■S-ftS.+S+T)}..*.*-™ 

Putting  km^,  l2m,7i.2,  l3m3n3  for  the  direction  cosines  of  the  principal 
axes  referred  to  any  system  of  rectangular  axes  and  taking  a,  b,  c,  f  g,  h 

as  expressing   the   inequalities  when   referred   to   other  fixed  axes,  by   the 
well-known  theorem 

a  =  lsa'  +  l.22b'  +  l32c 

b  =  nil  a'  +  m£b'  +  ni32c' 

c  =  n{-a'  +  n<?b'  +  n3c' 

f=  nixii^a'  +  m2n2b'  +  m3n3c' 
&c.  &c. 

where  a  +  b  +  c  =  a  +b'  +  c' 

.(258). 

Then Bxa  _]0da'      ]ndV     7  „  dc' 
B,t~k'  dt  +  2  dt  +  3'  dt 

.(259), 

and  substituting  for  the  values  of  da/dt,  &c,  from  (257) 

a2    B,a       „  „  fdu"      1  fdu"      dv"      dw' -r  •  -7T-.  =  P  aM  -i   ^    —i — I-  T- 

9  2  *  dxt     H  "~  \dx      3  \'dx   '  dy    '    dz  J 

+ 
)|,  &c.,&c   (260), 

a2    d1(f)      a    a2   dv"     dw"\     0       .  /0,.1X p  -  .   Vy  '  =  2p-  h-  +  -r-    ,  &c.,  &c   (261). 
r  9      a*  ^  4  \  ds       dy  J'  ' 

Then  putting  a2/2  for 

2'    d^  r  4<\dz       dy 

{uxi  +  v'v  +  w'w')"- 

aJ 

3 
=  -p 

3a2  fdu 

dx dv"      dw" 
dy       dz 

•(262), 

P     (!tl()     — 
9: 

aJ 

„  „a?\du"      \  fdu"      dv"      dw"\)     0       „ 

wb*W]~vf.J(£+fW* 
(263). 

2  '  2  V  dz 

These  equations  express  the  initial  rates  of  increase  of  angular  inequalities 
in  the  rates  of  convection  resulting  from  distortional  rates  of  strain  in  the 

mean  system,  which  are  expressed  in  the  last  terms  of  equations  (117  a). 
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183.  The  institution  of  linear  inequalities  in  the  rates  of  flux  of  vis  viva 

of  relative  motion  by  con  vection  and  conduction. 

Thus  far  the  analysis  for  the  rates  of  institution  of  inequalities  in  the 
vis  viva  and  rates  of  conduction  has  been  confined  to  the  effects  of  uniform 

rates  of  strain  in  the  mean-motion  extending  throughout  the  medium,  whether 
distortional,  rotational,  or  volumetric.  When  however  the  rates  of  mean 

volumetric  strain  are  other  than  uniform,  as  long  as  the  parameters  of  such 

motion  are  large  as  compared  with  the  parameters  which  define  the  spaces 
over  which  the  means  of  the  relative  mass  and  relative-momentum  are 

approximately  zero,  the  analysis  of  the  effects  resulting  from  small  variations 

in  the  rates  of  strain  in  the  mean-motions,  in  instituting  linear  dispersive 

inequalities  in  the  mean  vis  viva,  p  (a2)"/2,  of  relative-motion,  follows  as  a 
second  approximation  on  that  which  has  preceded. 

In  Section  V.  equation  (93),  it  is  shown  that  provided  the  relative  motion 
and  relative  mass  are  subjected  to  such  redistribution  as  to  maintain  the 

scales,  over  which  they  must  be  integrated,  small  compared  with  the  corre- 

sponding scales  of  the  mean-motion,  the  conditions  for  mean-  and  relative- 
systems  will  be  approximately  satisfied. 

The  expressions  for  the  rates  of  institution  of  linear  dispersive  inequalities 

by  convection  and  by  conduction  are  given  by  equations  (201)  and  the  last  of 

equations  (256) 

d1  I    a2\  2     a"  fdu"      dv"      dw"\\ 
^Vr  2/         3r  2  \dx       dy       dz 

3i      ,/v  2  p"2  fdu"     dv"     div"  \f   (264). 
di  t   L  3  a2   \  dx       dy        dz 

184.     The  institution  of  inequalities  in  the  mean  motion. 

In  the  case  of  a  space  within  which  there  are  no  inequalities,  in 

either  system,  the  institution  of  inequalities  in  the  mean  system  within  the 
space  must  be  the  result  of  some  mean  inequalities  in  the  mean  state  of  the 

medium  outside  the  space — of  some  action  across  the  boundaries;  since  in 
an  infinite  medium,  including  all  the  mass,  all  actions  must  be  between  one 
portion  of  the  medium  and  another. 

For  the  sake  of  analysis  however  it  is  legitimate  to  consider  the  mean 

actions  on  the  boundaries  of  any  space,  as  determined  by  the  scale  of  mean- 
motions,  as  arbitrary.  And  it  is  important  to  notice  that  such  mean  actions 

on  the  mean  motion  are  the  only  actions  that  it  is  legitimate  to  treat  as 
arbitrary ;  since,  as  has  been  shown  in  the  last  article,  the  institution  of 

inequalities  in  the  relative  motion  results  solely  from  the  action  of  the  mean 
motion. 
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Arbitrary  accelerations  may  be  finite  or  infinite  and  by  assuming  the 
accelerations  infinite  we  are  enabled  to  institute  finite  inequalities  in  the 

mean  motion  in  an  indefinitely  short  time,  and  this  without  instituting  any 

inequalities  in  the  relative  motion,  as  the  instantaneous  result  of  the 

institution  of  the  inequalities  in  the  mean  motion ;  whence,  it  appears,  that 

we  may,  for  the  purpose  of  analysis,  start  with  a  medium  without  any 

inequalities  in  the  mean  mass,  relative  mass,  or  relative  motion,  but  with 

arbitrary  inequalities  in  the  mean-motion.  With  such  an  initial  start  we 
have,  from  equations  (120)  Section  VI., 

d,t 
=  0,  &c,  &c   (265). 

185.     The  redistribution  of  inequalities  in  the  mean-motion. 

The  effect  of  the  instantaneous  institution  of  inequalities  in  the  mean 

motion  is  an  instantaneous  finite  acceleration  to  the  institution  of  inequalities 

in  the  relative  motion  as  expressed  in  equations  (255)  to  (263)  as  the  result 
of  transformation  ;  the  action  including  both  the  convections  and  conductions. 

This  acceleration  of  the  inequalities,  in  vis  viva  of  relative  motion,  including 

conduction,  is  also  an  acceleration  to  the  institution  of  the  space-rates  of 

variation  of  these  inequalities,  and  these  space-rates  of  variation  of  the 

inequalities  of  relative  motion  are  transformed  back  as  accelerations  of  the 
mean  motion. 

Thus,  although  d^'/dxt  =  0,  the  institution  of  du"  jdx,  say,  has  instituted 
an  acceleration  to  the  institution  of  inequalities,  the  space  variations  of  which 

react  as  accelerations  on  the  mean-motion.  That  these  reactions  are  dis- 

persive, of  inequalities  in  the  mean  motion,  follows  definitely  from  the 
sequence  of  the  rates  of  action  already  defined. 

To  prove  this  we  may  consider  the  acceleration  of  any  one  of  the 

inequalities,  instituted  by  the  mean  motion,  as  to  its  rate  of  reaction,  on 

the  inequalities  of  position  of  the  mean-momentum,  by  itself — independently 
of  other  inequalities.     Considering  the  effect  of  acceleration  of  the  inequality 

//  /      /    l\H     .  // 

P       (UV)       +P     Xy 

on  the  acceleration  of  the  rate  of  increase  of  mean-momentum,  it  appears, 

at  once,  from  the  equations  (120)  that  the  reaction  resulting  from  this 

inequality  affects  both  u"  and  v" .  These  effects  may  be  considered  separately. 
But  from  equations  (255)  to  (263)  it  appears  that  the  rate  of  institution  of 

the  inequality  p"  (uV)"  +  p"xy  depends  on  the  mean  inequalities 
du"      dv"  # 

dy       dx 

so  that  if  du"jdy  is  zero  there  will  still  be  reaction  unless  dv"\dx  is  also zero. 
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From  equations  (255)  to  (263)  the  rate  of  institution  of  the  inequality  is 

9i  /  ///  >  f\tt       //    n         /  // «2      0-64     „\(du"     dv"\        „„„v 

^(p'(uv)   +y'w)  =  -(p'-  +  ̂ -,^(-  +  s)  ...(266). 
Then  changing  the  sign  and  differentiating  with  respect  to  y  we  have  for 

the  rate  of  increase  of  reaction  from  this  inequality, 

"  ̂2  /  »\    (  >>a\  °'64    A(d"u"  ■  d'v"\  /o^x 
P   W(U)  =  \P    2+27V^'j(^  +  ̂ J    ^267>- 

Differentiating  this  last  equation  with  respect  to  y  the  acceleration  of  the 

rate  of  increase  of  the  inequality  in  the  mean  motion  is 

„dx*  (du"\      /„a2      0-64     „\d2(du"clv"\  ,__fi, 

p  WV*y-)  =  \p   2+2pV?  )dtf[dj  +  te)      (268)- 
This  equation  expresses  the  partial  effect  of  the  inequality  p" (u'v')"  +  p"xy 

on  du"/dy.  And  proceeding  in  a  similar  manner  we  have  for  the  other 
partial  effect  on  dv"/dx 

„  d,2  (dv"\      (  „a2      0-64     „\  d2  (du"     dv"\  /a/lrtN 

p  m^)=\p  2+v^  )^{iy-+d^)   <269> 
Then  adding,  the  total  effect  becomes 

„d1a/dufdv"\      (  „a2      0-64     „\  /  d*       d2\  fdu"     dv"\     /aHns 

P    WK~dy-  +  ̂)==[P    2+2p^P    JW  +  dy-2)[dy-+d^h^70)- 
It  is  at  once  seen  that  this  equation  represents  a  positive  acceleration,  to 

dispersion  of  the  inequality  in  the  mean  motion,  du'jdy  4-  dv"/dx,  as  the 

result  of  the  rate  of  institution  of  the  inequality  p"  (u'v')"  -\- p"xy. 

In  a  similar  manner  it  may  be  shown  that  the  effects  of  the  five 
distortional  inequalities,  in  the  rates  of  convection  and  conduction,  are 

accelerations  to  the  dispersion  of  the  five  remaining  inequalities  in  the 

rates  of  increase  of  mean  motion.  These,  together  with  rates  of  dispersion 

of  the  volumetric  inequalities,  admit  of  expression  in  a  general  form. 

186.     The  inequalities  in  the  component  of  mean  motion. 

du"     dv" 

dvT_l  fdu^     dvT     dw"\)  ~dy~+dx~ dx      S\dx       dy  +  dz  )] '  2 
du"     duf\ 

dz  +  dx)  1  fdu"     dv"     dw 

1   ■    -s{-dx^+dJ+-dT)^c-'&c" 

admit  of  expression  after  the  manner  of  expression  of  component  stresses  by 

simply  substituting  I"xx  for  p"xx,  &c,  &c,  and  we  may  further  simplify  the 

expressions  by  putting  /"„  for  (I"xx  +  I"yy  +  I"zz)/S. 
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In  the  same  way  we  may  take  Ixx  for  {p"  (u'u')"  +  p"xx).  In  this  way  we 
have  for  the  three  typical  expressions  of  accelerations  to  rates  of  increase  in 
inequalities  of  mean  motion 

PW(I  XX~I  v)={p  a~+p"tfp  'Jd^1  --7  v) 

9i2  ,v,     ,T„   v     /  //«2,    0-64     „A/d2       d2\/r"        7-,/    v 

  (271). 

Each  of  these  types,  it  will  be  observed,  expresses  acceleration  to  the 
dispersion  of  the  inequality  of  the  mean  motion. 

Whence  it  appears  that  the  instantaneous  institution  of  inequalities  in 
mean-motion  is  also  an  instantaneous  institution  of  accelerations  to  the 

dispersion  of  the  inequalities  in  the  mean  motion.       Q.  E.  D. 

It  will  be  observed  that  since  by  definition  the  mean  relative  components 

taken  over  the  scale  of  relative  motion  are  all  zero,  there  can  be  no  change 

in  the  mean  momenta  as  the  result  of  exchanges  between  the  two  systems. 

And  hence  the  action  of  dispersion  can  be,  only,  changes  of  the  position  of 
the  momentum  from  one  place  to  another. 

187.  In  the  consideration  of  the  equations  for  momentum  the  question 

of  dissipation  of  energy  of  mean-motion  to  that  of  relative-motion  does  not 

arise.  But,  as  an  acceleration  to  dispersion  of  inequalities  of  the  mean- 
motion  is  an  acceleration  to  decrease  the  component  momentum  where  it  is 

greater  and  increase  it  where  it  is  less,  so  that  there  is  no  change  in  the 

integral  momentum  of  mean  motion,  it  follows,  as  a  necessary  consequence, 

the  acceleration  to  dispersion  of  momentum  entails  an  acceleration  to  dis- 

sipation of  energy  of  mean-motion  to  that  of  relative-motion.  The  expression 
for  these  initial  accelerations  to  dissipation  of  energy  may  be  obtained  in 

various  ways,  one  of  which  is  involved  in  the  proof  of  the  following  theorem  : 

Tlie  initial  rates  of  institution  of  inequalities  as  expressed  in  equations 

(255)  to  (263),  for  convections  and  conductions,  are  essentially  accelerations  to 

mean  rates  of  increase  of  the  vis  viva  of  relative-motion  as  well  as  to  the 
redistribution  of  inequalities  in  the  mean  system. 

The  terms  which  express  exchanges  of  energy  by  transformation  from  the 

mean  system  to  the  relative  system,  which  are  the  only  exchanges  between 
the  systems,  are  the  last  of  the  terms  in  each  of  the  equations  (116  a).  Then 

putting  p'"di{u'u')ld1{t),  &c,  &c,  as  the  initial  effects  of  the  instantaneous 
R.  11 
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institutions   of   inequalities  in    the   mean    motion   on    the    relative    motion, 
we  have 

(\ 

P   ̂ (uu)   =
- 

„  U  U  +VV  +  w  w 
P  -Q-  +P 3 

+ it        r       r 

p  uu 

lilt'  +  v'v  +  w'w' 3 

du"     do"     dw" 
dx       dy        dz 

dx 

\ 

+  pxx~P 

fdu"     dv" +9  [p'w+iVr^+ 
dy       dx 

„    ,  ,         y,(dii"     dw"\) 

.(272), 

and  two  corresponding  expressions  for  the  other  components. 

By  equation  (265)  dxu" fi^,  &c,  &c.  as  well  as  all  inequalities  of  relative 
motion  are  initially  zero;  so  that,  initially,  both  members  are  zero.  Then 

performing  the  operation  djdit  on  both  members  and  observing  that  by 

equation  (265)  this  operation  has  no  effect  on   the  mean  inequalities, 

Si    „  9i 

d,tP  dj 

/     /     r\l> 

P    crAuu)    = 

3  9^ 
,,ct-       , 

P    2+P 
du"     dv"     dw'' dx       dy        dz 

+ 
or 

u  u  -  2" )  f  P™  " 

7     " 

du 

lx~ 

3i 

+  ri[p'VM'+J)at]' 
+ 

dw"\ 

•(273), 

„  /  du"
 

djt  Lr 
 

'  /'Z!CJ  
  
V  ds    '    d*  / 

and  two  corresponding  equations  for  the  other  components. 

These  three  equations  taken  together  express  in  terms  of  the  differential 

coefficients  the  rates  of  institution  of  inequalities  of  the  relative  motion, 

expressions  for  which  in  terms  of  the  mean  motion  are  given  in  equations 

(255)  to  (263):  and  substituting  these  expressions  for  the  differential 

coefficients  in  each  of  the  three  equations,  and  adding  the  corresponding 
members,  we  have  for  the  total  initial  rate  of  acceleration  of  the  rate  of 

increase  of  relative  energy 

dl  /3   .A      t  „  „  .  0-64    „.,\  {fdu'y-      /dv"\"  .  (div" 3^1.2 

dw"\2 
+  W)  + 

p 

1  [fdu"      dv" 2  |\  dy       dx 
+ 

dx  J 

dv"
 

v  dz 

dz 

dw"      du" dx        dz .(274). 

The  member  on  the  right  is  essentially  positive  while  the  left  member 

expresses  the  acceleration  of  the  mean  rate  of  the  vis  viva,     Q.  E.  D. 

188.  The  first  term  on  the  right,  equation  (274),  expresses  the  accelera- 

tion of  the  rate  of  mean-energy  of  relative  motion  resulting  from  the 

inequalities    of  the  direct  space  variations  of  the  mean   motion,  including 
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both  volumetric  and  distortional  effects,  while  the  second  term  expresses 

the  acceleration  of  the  rate  of  mean-energy  in  consequence  of  the  tangential 
space  variations  of  mean-motion. 

These  accelerations  are  all  positive,  tending  to  produce  a  dispersive  con- 
dition of  relative-motion. 

The  tendency,  thus  proved,  of  the  effect  of  transformation  from  energy 

of  mean-velocity  to  energy  of  relative-velocity,  at  each  point,  so  to  direct 
the  signs  of  inequalities  in  relative  vis  viva  as  to  cause  dispersion  of  both 

energy  of  mean  and  energy  of  relative-velocity,  and  to  render  the  effect 

of  transformation,  of  mean-motion  to  energy  of  relative-motion,  positive, 
is  quite  independent  of  all  other  actions  or  effects  ;  and,  although  not 
hitherto  analytically  separated  in  the  theory  of  mechanics,  is  now  seen  to 

be  one  of  the  most  general  kinematical  principles — the  prime  principle 
which  underlies  those  effects  which  have  long  been  recognised  from  ex- 

perience and  generalised  as  the  law  of  universal  dissipation  of  energy. 

The  analytical  separation  of  this  principle  does  not  immediately  explain 

universal  dissipation.  It  accounts  for  the  initial  acceleration  to  the  dispersive 

condition,  but  it  does  not,  alone,  account  for  irreversibility  of  the  dissipation. 

The  proof  of  this  at  once  follows  from  equations  (271),  the  general 
solution  of  which  is 

=f{+Jp'*  +  ̂P')(t-y)    (275), P 

which   expresses  two  reciprocal  inequalities  of  mean  motion  proceeding  in 
opposite  directions  uniformly  at  velocities 

,      / "  „  _   0-64    „2 
±V  p  a+y^P  ■ 

If  then  u"  be  everywhere  reversed,  the  direction  and  the  rate  of  propaga- 
tion of  the  reversed  inequality  remaining  the  same,  will  bring  the  state  of 

the  relative  motion  back  to  the  initial  condition.  And  this  applies  to  all 

inequalities,  so  that  if  there  were  no  other  action  than  that  of  transformation 

including  its  effects  on  the  mean  and  relative  inequalities,  these  effects  would 

be  perfectly  reversible. 

189.  The  conservation  of  the  dispersive  condition  depends  on  the  rates  of 
reclistribidion  of  the  relative  motion. 

By  equations  (271)  and  (274)  it  appears  that  as  long  as  the  inequalities 

of  relative-motion  are  zero  while  the  inequalities  in  the  mean  motion  are 
finite  the  signs  of  the  acceleration  to  the  dispersive  condition  are  always 

positive.  Therefore  if  these  inequalities  remain  small  as  compared  with  the 

energy  of  relative  motion,  while  the  signs  of  the  inequalities  of  the  mean- 
motion  are  not  changed,  a  dispersive  condition  is  secured.     From  which  it 

11—2 
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follows  that  any  cause  which  maintains  these  inequalities  small,  compared 
with  the  relative  energy,  will  render  the  dispersion  irreversible  by  reversing 

the  mean  motion,  no  matter  how  great  the  acceleration  to  the  dispersive 

condition  arising  from  the  prime  tendency  to  the  dispersive  condition. 

Such  actions  exist  in  the  angular  and  the  linear  dispersions,  of  the 

angular  and  linear  inequalities  of  vis  viva  of  relative  motion,  and  rates  of 

conduction  through  the  grains,  equations  (195)  and  (205),  Section  XL,  and 

(236),  Section  XII. 

From  equation  (266)  it  appears  that  the  instantaneous  reversal  of  the 
mean  motion  has  no  effect  (instantaneous)  on  the  relative  motion ;  so  that 

this  is  not  simultaneously  reversed.  And  thus  it  is  not  the  resultant  motion 

that  is  subject  to  reversal,  but  only  the  abstract  mean  motion,  while  the 
abstract  relative  motion  continues  as  before  to  redistribute  the  reversed 

mean  motion. 

This  explanation  of  irreversibility  of  the  mean  motion  and  the  irreversible 

dissipation  of  energy  could  not  have  been  obtained  until  the  analytical 

separation  of  the  abstract  mean  motion  from  the  relative  motion  had  been 

accomplished.  And  this  fact  fully  explains  the  obscurity  which  has  hitherto 
surrounded  dissipation  of  energy. 

The  general  reasoning  in  this  article,  although  sufficient  to  afford  a 

general  explanation,  is,  of  necessity,  supplemented  by  the  definite  analysis 
by  which  the  inequalities  in  the  vis  viva  of  relative  motion  are  determined  in 
the  next  article. 

190.  The  determination,  in  terms  of  the  quantities  which  define  the  con- 
dition of  the  medium,  of  the  inequalities  maintained  in  the  vis  viva  of  relative 

motion,  and  in  the  rates  of  conduction,  by  the  combined,  actions  of  institution  by 

transformation,  and  redistribution  by  relative  relative-motion. 

In  entering  upon  this  undertaking  it  is  in  the  first  place  necessaiy,  in 
order  to  render  the  course  of  procedure  intelligible,  to  point  out  that  as  far 

as  mechanical  analysis  has  as  yet  been  developed,  including  the  present 
research,  it  has  not  included  such  analysis  as  is  necessary  to  express  the 
means  of  the  instantaneous  transmission  of  accelerations,  and  thus  we  are 

unable  to  deal  definitely  with  continuous  initiation  from  rest  of  continuous 

inequalities.  This  inability,  which  is  generally  recognised,  was  discussed 
in  a  paper  read  before  Section  A  of  the  British  Association  at  Southport, 

though  not  further  published.  In  this  paper  it  was  suggested  that  such 
inability  was  evidence  of  some  property  in  the  constitution  of  the  medium 

necessary  for  the  instantaneous  transmission  of  acceleration,  and  showed  that 

if  the  medium  consisted  of  rigid  particles  as  in  Maxwell's  Kinetic  Theory 
(I860),  then  since  any  acceleration  at  a  point  would,  necessarily,  extend 

through  the  thickness  of  the  grain,  it  would  therefore  afford  instantaneous 
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linear  transmission  of  acceleration,  and  so  render  the  necessary  analysis  for 

dealing  with  initiation  possible.  As  we  are  here  dealing  with  a  granular 
medium,  this  analysis,  if  fully  developed,  would  remove  the  disability.  But, 

having  assurance  of  this,  we  may  avoid  the  development  of  the  analysis  by 

following  the  method  of  Stokes — considering  only  such  inequalities  as  are 
steady  or  periodic  when  referred  to  moving  axes.  Under  such  conditions  the 

determination  of  the  inequalities  maintained  is  practicable,  and  indicates 

the  general  form  of  the  equations  for  the  general  inequalities. 

The  incompleteness  of  the  analysis  for  the  expression  of  the  linear 

instantaneous  transmission  of  accelerations  is  not  the  only  reason  for  con- 
fining the  application  of  the  analysis  to  steady  or  periodic  inequalities. 

Putting  aside  uniform  continuous  strains  and  rotations  in  the  case  of 

a  granular  medium,  of  which  the  mean  condition  is  uniform  and  indefinitely 

continuous,  it  is  the  properties  of  such  a  medium,  of  transmitting  undulations, 

that  first  claim  our  attention.  And  as  such  undulations  are  the  only 

motions,  in  such  a  medium,  that  can  extend  to  infinity  throughout  an  infinite 

space,  they  must  be  considered  as  the  principal  form  of  mean  motion. 

However,  before  proceeding  to  consider  the  undulations,  it  may  be  well 

to  point  out  the  several  classes  of  mean  motion  which  may  be  recognised  at 

this  stage  of  the  analysis. 

Other  than  undulations,  the  only  possible  mean  motions,  including  mean 
strains,  are  such  as  involve  some  local  disarrangement  of  the  medium, 

together  with  displacement  of  portions  of  the  medium  from  their  previous 

neighbourhood — as  in  the  vortex  ring — which  may  have  a  temporary 
existence  when  a/X  is  small ;  or,  of  far  greater  interest,  local  disarrangement 

of  the  grains  when  so  close  together  that  diffusion  is  impossible,  except  at 

inclosed  spaces  or  surfaces  of  disarrangement,  depending,  as  already  ex- 

plained, on  the  value  of  G  being  greater  than  6/V2 .  ir.  Under  which  con- 
dition it  is  possible  that,  about  the  local  centres,  there  may  be  singular 

surfaces  of  freedom,  which  admit  of  their  motion  in  any  direction  through 

the  medium  by  propagation,  combined  with  convection,  together  with  strains 
throughout  the  medium  which  result  from  the  local  disarrangement,  without 

any  change  in  the  mean  arrangement  of  the  grains  about  the  local  centres  ; 
the  grains  moving  so  as  to  preserve  the  mean  arrangement. 

191.  Steady  continuous  uniform  strains  or  undulations  extending  through- 
out the  medium  otherwise  in  normal  condition. 

We  have  : 

(1)     Equations  for  the  angular  inequalities  maintained  in  the  vis  viva  of 
relative  motion. 
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(2)  Equations  for  the  angular  inequalities  maintained  in  the  rates  of 
conduction. 

(3)  Equations  for  the  component  linear  inequalities  maintained  in  the 

'mean  vis  viva. 

(4)  Equations  for  the  linear  inequalities  maintained  in  the  rates  of 
conduction. 

(5)  Equations  for  the  rates  of  increase  of  mean  vis  viva — a2/2 — resulting 
from  angular  dispersion  by  convection. 

(6)  Equations  for  the  rates  of  increase  of  mean  vis  viva  resulting  from 

angular  dispersion  by  conduction. 

(7)  Equations  for  the  rates  of  increase  of  mean  vis  viva  by  linear  dis- 
placement resulting  from  inequalities  in  the  mean  vis  viva. 

(8)  Equations  for  the  rates  of  increase  of  mean  vis  viva  by  linear  dis- 
placements resulting  from  inequalities  in  the  mean  pressures. 

192.  Theorem.  To  a  first  approximation  the  first  four  of  these  eight 

equations  all  have  the  same  general  form  as  long  as  the  space  and  time 
variations  of  the  mean  motion  are  constant,  simple  harmonic,  or  logarithmic 

functions  of  time  and  space,  in  which  case  ilie  constants  of  frequency  and  the 

hyperbolic  variations  are  such  as  may  be  neglected  as  compared  with  cr/X 
and  1/X.     And  the  same  for  the  last  four  equations. 

It  is  to  be  noticed  that  the  condition  in  the  theorem  as  to  smallness 

of  the  constants  is  necessary  when  treating  the  variations  of  the  mean 

motion  as  arbitrary,  since  the  condition  is,  as  shown  in  Section  V.,  a  necessity 
for  the  maintenance  of  the  mean  and  relative  systems. 

To  prove  the  first  part  of  the  theorem  : 

The  equations  for  any  one  of  the  six  partial  angular  inequalities  in  vis  viva 
of  relative  motion. 

Putting 

V 

/  for  the  inequality  in  vis  viva  of  relative  motion. 

I"  „     „  „  „         „         in  mean  motion. 

A?  for  the  coefficient  by  which  /"  is  multiplied  to  represent  the  rate  of 
institution. 

A22  for  the  coefficient  by  which  /  must  be  multiplied  to  express  re- 
distribution. 
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- ,    j  ,    - ,    to  represent  distances   in  directions   x,   y,   z,   which   are   the 

parameters  of  the  component  harmonic  inequalities  in  the  mean  motion ;  the 

equation  for  the  maintenance  of  I  becomes: 

%  +  A2*i=2Ax*r 
V 

In  this  case  where  /"  and  /  are  component  inequalities  in  the  mean- 
motion,  and  in  the  vis  viva  of  relative-motion,  the  coefficients  A-?,  A.?, 

are  respectively,  as  in  equation  (203)  Section  XIII.  and  (195)  Section 
XL: 

^-vf.    ̂ ~§£«   (2"»- 
V 

Then  if  /"  is  as  before,  and  I  is  taken  for  the  inequality  in  conduction 
corresponding  to  the  inequality  in  convection  in  the  same  direction,  the 

equation  will  become  the  equation  for  the  inequality  in  conduction.  If 

Bx2,  B.,-  are  put  for  the  coefficients  of  conduction  corresponding  to  A-? 

and  A22, 

Q-32j>"3         R2_3Vtt        l-f(G)P 
B^'  =   — '      B*     4  ~\  a  1  +  r~*-fim   (278)' 

p2 

as  in  equation  (205)  Section  XI. 

Also,  if  /"  is  taken  to  express  the  linear  inequality  in  mean-motion  in 
any  direction,  say  that  of  x,  in  the  rate  of  volumetric  strain  in  the  rnean- V  ...  .  . 

motion,  and  I  is  taken  to  express  the  linear  inequality  in  the  mean  vis  viva 
V  V  V  V 

of  relative-motion,  since  d"I / 'doc- ,  &c.  take  the  forms  —  a2Ixx>  —  b'2Iyu>  -c2Izz, 
where  1/a,  1/6,  1/c  are  components  of  some  constant  parameter,  the  equation 
will  become  the  equation  for  the  linear  inequality  maintained  in  direction  x 
in  the  mean  vis  viva  when  X/a  is  large. 

Putting  CV  and  a2C22  to  correspond  to  Ats  and  A22  in  (277), 

Gl  -  3  P  2  '       °    '  "    Vtt    ' 

-CWI=-C?^{I)   (279). 

And  /"  being  the  linear  inequality  in  the  same  direction  in  the  rate  of 
volumetric  strain  of  mean-motion;  if  /  is  taken  to  express  the  linear 

inequality  in   the  rate   of   mean-conductivity  (p"),  equal   m   all   directions, 
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the  equation  becomes  the  equation  for  the  inequality  in  the  mean-conduction 

if  Di2,  a2D22  correspond  to  A?  and  A.r  in  equation  (277), 

Dt-\%,       *iV-«^££!   (280), 

P2 

V  f£2  V 

since,  as  in  equation  (270),  a"I  =  ̂ „  (I). 

Thus  as  long  as  the  inequalities  in  the  mean-motion  can  be  expressed 
as  simple  finite  harmonic  or  logarithmic  functions  of  time  and  displacement, 
the  equations  for  the  dispersive  inequalities  have  the  common  form  as  in 
equation  (276). 

The  second  part   of  the  theorem  follows  as  a  consequence  of  the  first 

for,  since  the  equations  for  the  dispersive  inequalities  have  the  same  form, 

the  general  solution  of  this  form  of  equation  will  apply  to  all  the  in- 
equalities. 

Then  if  such  solution  can  be  found  for  the  dispersive  inequalities, 

since  the  rate  of  increase  of  the  mean  vis  viva  at  a  point,  at  any  instant, 

is  the  result  of  the  action  of  the  inequality  on  the  space  rate  of  variation 
of   the  mean  strain  which  institutes  the   inequality,  the   rates  of  increase V 

of  the  mean  vis  viva  (a2/2)  are  the  products  of  the  inequalities  (I)  by  the 

corresponding  inequalities  (/")  in  the  mean-motion.  And  these  are  ex- 
pressed in  a  general  form. 

193.  The  approximate  solution  of  the  general  differential  equation  J  or 

the  inequalities  in  mean  vis  viva,  of  relative-motion  and  rate  of  conduction 

resulting  from  steady  or  periodic  inequalities  in  the  mean-motion. 

In  all  probability  the  equation  (276)  does  admit  of  complete  solution. 

But  the  analysis  is  greatly  simplified  by  recognising  that  any  secondary 
effects,  resulting  from  the  existence  of  inequalities,  to  vary  the  mean  vis 

viva  of  relative-motion  (oc2/2)  by  transformation  from  mean-motion,  and  thus 

to  vary  the  coefficients  A-?  and  A22,  are  proportional  to  d2I".  And  con- 
sequently, since  by  definition  a2  is  finite,  by  taking  /"  sufficiently  small  the 

secondary  effects  of  I"  and  a"  may  be  rendered  as  small  as  we  please,  and 
the  integral  effects  indefinitely  small  as  compared  with  the  finite  value  of  a2. 

In  this  way  the  coefficients  A?  and  A%  may  be  taken  as  constant,  and 

there  is  no  loss  of  generality  in  the  solution  ;  while  the  expression  for  the 

rate  of  increase  of  a2,  as  determined  by  the  approximate  solution  of  the  equa- 
tion of  transformation,  may  be  subsequently  introduced  as  a  small  quantity. 

Solution  to  a  first  approximation,  I"  small. 

Since  according  to  the  theorem  the  space  and  time  variations  of  /"  are 
constant    or   periodic,   we    may    transform    the    equation    (276)   by    putting 
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qxx,  &c.  for  the   maximum  values  of  I"xx,  &c,   which  are  constant.     And 

I"xxla  is  the  maximum  value  of  u".     Hence 

I"xx  =  qzx  sin{mt-ax), 

where  qxx  is  constant  in  time  and  space. 

We  then   have   for  the  angular  inequalities  and  linear  inequalities  re- 
spectively : 

d     v  v  \ 
=-  (/)  +  A22I    =  Afqzx  sin  {mt  —  ax),  &c.  | 

a  «         v  .  \   wn 
^-  (I)  +  d2C.?I  =  G^qxx  sin  {mt  —  ax),  &c. 

The  introduction  of  the  two  forms  is  only  a  matter  of  convenience  in 

keeping  the  partial  constants  distinct. 
V  .  ..... 

Then  if  we  put  /  =  CeM  and  eliminate  by  differentiation  with  respect  to 

time,  A{2,  A.,2  being  constant,  it  can  be  shown  that  for  steady  or  periodic  motion 

1 

or 

V 

V 

1= 

{A2f  +  rri 

Al_ 

CA*  
+  m2 

.A;2 
A.rl' 

»<'
"> 

**-  Wt  (I») 

(282), 

and  that  this  is  the  only  solution  if  Ai2,  A22,  &c.  are  constant.  The 
analysis  is  somewhat  long.  But  if  we  recognise  that  all  the  terms  in  the 

equation  (281)  must  have  the  same  frequency  m,  the  same  result  is  obtained 

by  differentiating  both  members  of  (281)  and  substituting  the  result  from 

A.?I  -  ̂ ~  (/)  =  A  ;2qxx  [A22  sin  {mt  -  ax)  -  m  cos  {mt  -  ax))  . .  .(283), 
V  V 

whence,  since  d'2I/dt2  =  —  m2t  is  of  the  same  form  as  equation  (282), 
v  ^ 

/  =   A?qxx  {A./  sin  {mt  —  ax)  —  m  cos  {mt  —  ax)}    . .  .(284), 
A..,     "T"  111 

winch  will  be  the  general  form  on  substituting  B^2,  2?22  for  Cj2,  a2G.?,  and 
A2,  «2A2  for  A,2,  Ai.         Q.  E.  D. 

The  equation  for  the  rate  of  increase  of  the  mean  vis  viva  {a2/ 2). 

Multiplying  the  expression  for  /,  equation  (284),  by  the  corresponding 

expression  for  /",  it  at  once  appears  that  /  consists  of  two  parts,  the  one 
being  continuously  positive  and  the  other  periodic. 

Thus 

//'
 

m2  +  A2* 

  
1 

wzHTZ74 

A-fq  A2°  sin  {mt  —  ax) 

Afqm  cos  {mt  —  ax)    (285), 
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from   which  it  appears  that  the  dispersive  inequality  in  equation  (284)  is 

expressed  by 

— ■   —  A^qAf  sin  (mt  —  ax) : 

m?  +  AS        1     -         v  ' 

the  remaining  part  of  /, 

1 
m2  +  AS Afqm  cos(m£  -  ax), 

representing  that  part  of  the  inequality  the  effect  of  which  is  purely 

periodic,  or  non-dispersive.  Therefore  the  equation  for  the  rate  of  increase 
of  the  mean  vis  viva  is 

II"  =     ,  1  A  4  AfqA.?  sin  (mt  -  ax)   (286), 

which  is  a  general  form  for  all  rates  of  dispersion  of  mean  vis  viva. 

Q.  E.  D. 

194.  Having,  in  Art.  193,  obtained  the  general  expression  for  total 

inequalities  maintained  by  relative-motion  as  the  result  of  institution  by 
transformation  and  redistribution,  as  well  as  the  general  expressions  for 

the  dispersive  and  periodic  components  of  the  inequalities,  it  appears  that 

the  analytical  distinction  between  the  corresponding  inequalities  in  vis  viva, 

and  rates  of  conduction,  may  be  expressed  by  substitution  for  A^  and 

A./,  &c,  the  values  of  these  constants  as  expressed : — 

„  .       .  ....      (convection,  in  equation  (277). 
for  angular  inequalities  in  <        .     ,.  *  ,«w„( 6  *  (conduction,  „  „  (278), 

e      ,.  •  ,.,.       •         (convection,   ;,  „  (279), 
lor  linear  inequalities  in      -         _       .  ,n     ' (conduction,  „  „  (280). 

They  are,  for  angular  inequalities  in  convection : 

I Xx  =  L    /      N  ,  Q  it  —  a  sm  (m^  —  ax)  ~  m  cos  (m* —  ax)\  •  ■  -(287) ; 

for  angular  inequalities  in  conduction : 

J-  =  — IFvV   l-f(G)P     Y  qU  X    *  1  +  r^iSm(^"M) iri-  -I-  <-.  -—  a 

[4    k   "l  +  e— fl-/<G)ri 

—  m  cos  (mt  —  ax) 

...(288); 
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for  linear  inequalities  in  a2/2  in  convection : 

oJ 

v  3P2  fa23Aa         .    ±         .  .    .  J       /aom 
/ya;  =  ,  7  {  — j —  sin  (/«£  —  a#)  —  m cos  (/mc  —  ax)\  . . .(z»y); 

m  +  ( v^") 
for  linear  inequalities  in  or/2  in  conduction  : 

4"*  =   /   4    **    g    V  fy  VTVtTa  4  tt" sin  (w* "  ̂  ~  m  cos  (m* "  clx)\ 

  (290). 

The  equations  for  angular  inequalities  are  general  for  all  states  of  the 
medium.  But  the  expressions  for  the  linear  inequalities  are  those  to  which 

linear  inequalities  approximate  according  as  \/<r  is  less  than  the  limit  at 
which  diffusion  ceases,  or  is  greater  than  that  at  which  diffusion  is  general. 

[See  Art.  145  and  Art.  155,  Section  XL] 

In  considering  periodic  inequalities  in  a  medium  of  unlimited  extent, 

which  is,  except  for  the  inequalities,  uniform  and  isotropic,  it  will  simplify 

the  analysis  to  recognise,  that  such  inequalities  as  can  be  propagated  through 

the  medium,  must  have  directions  of  propagation  which  are  normal  to  con- 
tinuous surfaces  which  are  either  spherical  closed  surfaces,  or  of  such  extent 

that  their  boundaries  are  at  distances  large  compared  with  the  periodic 

parameters. 

This  in  the  first  instance  confines  our  attention  to  directions  of  propaga- 

tion everywhere  normal  to  an  infinite  plane.  We  notice  that  the  classes  of 

inequalities  in  the  mean  motion  are  reduced  to  two:  those  in  which  the 
mean  motion  is  in  the  direction  of  propagation,  and  those  in  which  the  mean 
motion  is  normal  to  this  direction. 

We  also  notice  that  these  two  resultant  inequalities  are  to  a  first 

approximation  independent,  although  they  may  have  the  same  direction 

of  propagation,  and   therefore  may  be  dealt  with  separately. 

195.  Exp7%essions  for  the  resultant  institutions  of  inequalities  of  mean 
motion  luhen  the  motion  is  in  the  direction  of  propagation. 

Putting  xx  and  n"  as  the  direction  of  propagation  and  motion  for  institu- 
tion of  angular  inequalities   we  have,  since 

/du, 

\da 

duT     dv"     dw^y 
x       dy       dz  / 
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is  an   invariant,   for   the   Inequalities  of   moan   motion    for  the   inequalities 

(u'u,  v'r'.  w'w*),  &c. 

3  V  dxj    '  dyr       dzj 

1  d>^"  1  du," +  -  — —       +  — 
3  di/l  3   d:: 

Then,  taking  ./•, .  y,,  &,  as  principal  axes,  /,,  ///,,  »,  as  the  direction  cosin<  - 
ylt  z,  referred   to  any  rectangular  system  ./.  y,  e,  the  components  are, 

since 

1  (/»,"      da,"      efo,"      dir  '   !    =  _    -    -I   -  -f    —  , 
3  (irj        d:i\  dzr 

s  rfo,"      1    </«,"  dw 
1    (  3  V  (t'./j       di/i        d: 

& &c. 

2  10  a). 

Fur  the  linear  inequality  of  moan  motion,  taking  the  principal  ;ixr>  the 
same  as  lor  the  angular  inequality,  we  have 

dui"  dw"y 

where 

/diii        di\        du\  \ 

\  d.*\        rfy,         (/.-,  /  ' 

dy,      dzl  ' 
And  transforming  to  the  axes  x,  y,  z,  we  have  for  the  components  in  directi 

x,  y,  *, 

(du"      dv"      dw" 

-  U  +  </;/ +  7--     •*"    'v 
Exp  ess       -    ':-/-  fc&e  resultant  institutions  of  ineq  '    mmti  motion 

when  the  direction  of  propagation     -        pendicular  to  the  direction  of  motion. 

If  ./-, .  >/  .  are  measured  in  the  directions  of  propagation  and  moan  motion 
bively,  the  resultant  rate  of  shear  strain  is  expressed  by 

dvf 

dxt, 

Then  taku  _  s    for  the  principal  axes,  I:.  w,,  it,  for  the  direction- 
ines  of  the  principal  axes  referred  to  ;  .  we  have,  resolving  for  the 

principal  strai    - 

diii' 

«i'   ,    d»„   rfi-r   ,    rfi-,   dw,  n 

rf./j 

(£%      t&c, 
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And    since 

TO,  =  v.,  =  Mj,  =  0,         If  -  Lr  =  )il{2  =  in,r  =  \l^mx  =  —  Liu.,  —  ±  £, 

dnl/dx1  =  —  dvljdx1  =  ±  ̂dv0/dxn, 

and  referring  to  any  rectangular  axes  x,  y,  z,  the  partial  inequalities  are 

duT  _  fdu"      dv"      dw"\)      1  ,  dv"      du"\ 
'  { dx  "  \  doc       dy       dz  ))      2\da>       dy  ) 

I     1/- 

)      2  \  dx  + 

-  !(£■•■£)•*-*?   <290B>- 

196.     The  equations  of  motion  of  the  mean  system  in  terms  of the  quantities 

defining  the  state  of  the  medium. 

Having  obtained  the  four  general  expressions  for: 

The   total   angular  inequality  in  convection:  —  equation   (287) 

„       linear  „  „  „  „  (289) 

angular         „  „    conduction  „         (288) 

„      linear  „  „  „  „         (290) 

Adding  the  two  first  together  we  have  the  total  inequality  in  vis  viva. 

And  in  the  same  way  adding  the  last  two  together  we  have  the  total 

inequality  in  conduction. 

Then  again  adding  we  have  the  total  inequality. 

Thus  reverting  to  the  forms  Af,  Bf,  &c,  for  the  respective  constant-. 

and  introducing  the  actual  expressions  for  the  general  expressions  /",  or  the 

harmonic  expressions  p(u'u'),  &c,  for  the  inequalities,  we  have,  for  angular 
and   linear  inequalities  in  vis  viva, 

P(n")  =  -«S+Ar 

6? 
[  dl^duT      1  fdu"      dv"     dw"\ 

[_    *~dt\  [dx"    S\dx  +  dy  +   dz  ) 

m?  +  (aC2)4 A? a?Cf- 
dt 

(In"      dv"      dv/'} 
dx       dy        dz  ) 

p  (v  ii  )  =  — 
H  v       '        m2  +  A24 A? *-s]iffi+?P'*-fc   (292>' 
p(w'u')=- 

m'  +  AJ 

A*      dt 

±i^+df\,&c.,&c   (293). 2  |  dx       dz  ) 
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And  for  angular  and  linear  inequalities  in  conductions 

dz 
P  .  -  ̂   jf   mP  dt  =  -^Bs\B»-ft\  I'd,  ~  sUt  +  ̂   + 

A2  (  ari,      3  ]   {da"      dv"      dw")     0       0 
VA2  -^        ,     +  -r-  +   j— h ,  &c,  &c. 

ra2  +  («D2)4  J  9iJ   [  d!#       fZy        cfc   (294), 

and  two  corresponding  equations  in  directions  ?/  and  £  for  convections  and 
conductions. 

N.B.  The  linear  inequalities  which  form  the  second  member  of  equations 

(291)  and  (294),  and  the  corresponding  terms  of  the  equations  for  directions 

y  and  z,  do  not  include  such  linear  inequalities  in  the  vis  viva  and  con- 
ductions as  are  instituted  by  dispersion  of  angular  inequalities,  since  these, 

being  secondary  effects  of  the  mean  inequalities  which  are  themselves  small, 

are  altogether  negligible.  And  thus  equations  (291 )  to  (296)  are  the 

equations  for  the  inequalities  in  vis  viva  of  relative  motion  to  a  first 

approximation.     Q.  E.  F. 

As  to  these  inequalities  it  may  be  well  at  this  stage  to  point  out : 

(1)  That  if  m2  and  a2,  b2,  c2,  which  express  the  frequencies  in  time  and 
space  are  zero,  the  angular  inequalities  in  the  mean  motion  are  severally 
constant,  while  the  linear  inequalities  are  zero. 

(2)  If  the  direction  of  propagation  is  in  the  direction  of  motion,  or  is 

normal  to  a  shearing  motion,  all  the  inequalities  in  mean  motion  are  zero 

except  that  one,  whether  it  be 

du        du        du 

dx'      dy'      dz'        '  ^    '       ' 
But  otherwise  the  inequalities  of  mean  motion  as  expressed  in  equation  (291) 

are  partial. 

(3)  The  coefficients  of  these  partial  equations  must  be  such  as  will, 

within  the  limits  of  approximation,  resolve  into  the  resultant  equations  for 
the  resultant  inequalities. 

(4)  The  coefficients  in  the  partial  equations  which  express  component 
angular  inequalities  satisfy  the  condition  of  resolution  stated  in  (3)  as  a 
matter  of  form. 

(5)  The  coefficients  in  the  partial  equations  which  express  component 
linear  inequalities  do  not  obviously,  as  a  matter  of  form,  satisfy  the  condition 

of  resolution  to  a  first  approximation  unless  a?Qf/m2  is  small.     But  treating 
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this  quantity  as  small,  it  can  be  shown  that  they  do  satisfy  the  condition 

even  to  a  second  approximation.  Thus  omitting  the  square  of  adC.2/m2  as 

a  first  approximation,  and  putting  (a2  +  b2  +  c2)2GV/4m2,  the  mean  value  of 
a4C22,  in  the  second  approximation,  the  terms  expressing  component  linear 
inequalities  take  the  form 

V  (Mt  -  l\  I"  (l  -  ̂  +  ̂  +.^'-CA  ,  &c,  &c....(297), 
m dt 

4>m2 

and  these   obviously  satisfy  the  conditions  of  resolution  for  inequalities  in 
both  vis  viva  and  conduction  : 

Cr  /  ,„ ,     3  \  (du"     dv"     dw"\  f        (a2  +  ¥  +  c2)2  C24) 

Av^-| 

TO'
 

dw"     cfo"     rfw" 
cfoe       cfa/        dz 

;i-(^±^^j.&c.,&o....(299), 

which  satisfy  the  conditions  of  resolution,  and  the  second  approximation  may 

be  neglected. 

(6)  The  proof  that  these — a2C22/m2 — are  small,  is  not  possible  as  long  as 

m2  and  a'  are  considered  as  arbitrary,  and  subject  only  to  the  conditions  of 
being  small  as  compared  with  a/X  and  1/X,  since  the  proof  depends  on 

dynamical  analysis  which  is  effected  in  a  subsequent  article,  in  which  it 

is  shown  that  for  any  disturbance  propagated  through  the  medium  these 
constants  are  extremely  small. 

(7)  Although  small  the  second  approximation  is  finite  as  long  as  the 

first  approximation  to  the  inequalities  is  finite.  Beyond  reminding  us  of 

this  fact  there  is  no  object  in  retaining  this  second  approximation. 

197.     The  equations  of  motion  to  a  first  approximation. 

Substituting  in  the  equation  of  mean-motion  (119)  from  equations  (291) 
to  (296)  for  the  inequalities  in  the  relative  vis  viva  and  rate  of  conduction, 
these  take  the  form : 

du"__\     A2 
9  dt  "  \m2  +  A24 

A 
_ 

+  &c.  &c. 

+  \  
  G' 

W  +  iaCo) 
4 

dt 

+ 

B2 

to2  +  B,* 

B2- 

dt 

(wo+scS 

dvT     dw_ 

dx       dy        dz 

a2C2  - 
dt + 

A2
 

a2D2- dt 

aW     dv"     duT 
dx       dy        dz m:-+(aI)o)4 
  (300), 

with  two  similar  partial  equations  for  the  rates  of  increase  of  dv" /dt  and 

diu'jdt,  and  the  conditions dw     dv      .  . 

j    +  -j-  +  &c.  =  0. 
dy      dz 
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As  explained  in  (7)  in  the  last  article  the  last  factor  in  the  second 

term  on  the  right,  which  adds  the  second  approximation,  may  be  omitted 
within  limits  of  a  first  approximation. 

Substituting  for  the  coefficients  A^,  A22,  &c.  their  values  in  terms  of 
the  quantities  which  define  the  state  of  the  medium,  as  given  in  equations 

(277)  to  (280)  and  (287)  to  (290),  we  have,  to  a  first  approximation,  the 

equations  of  motion  in  the  mean  system  in  terms  of  the  quantities,  referred 

to  axes  moving  with  the  mean-motion  of  the  medium,  the  general  ex- 
pressions for  which  are  stated  in  equations  (119).       Q.  e.  f. 

From  these  partial  equations  (300),  we  get  the  partial  equations  for 

the  component  vis  viva  of  mean-motion,  in  terms  of  the  quantities  which 
define  the  state  of  the  medium,  by  multiplying  the  partial  equations  of 

motion  by  u",  v",  w"  respectively,  as  in  equation  (122),  and  these  added 
together  resolve  into  the  several  equations  of  vis  viva  in  terms  of  the 

quantities  the  general  expression  for  which  is  given  in  equations  (125). 

198.  The  equations  of  the  components  of  energy  of  the  relative  system 

in.  steady  or  'periodic  motion. 

It  has  already  been  shown,  equation  (285),  that  the  rate  at  which  the 

component  of  energy  of  relative  motion  is  increasing,  at  a  point  moving 

with  the  mean-motion  of  the  medium,  is  the  product  of  the  total  partial 
component  of  the  inequality  in  relative  motion  multiplied  by  the  inequality 

of  mean-motion  in  the  general  form : 
\P 

dt 2  /      m?  +  (aA2f 
a2Ai-~) 

Therefore,  proceeding  as  in  the  last  article  to  take  account  of  all  the 

inequalities  angular  and  linear,  since  the  constants  are  the  same,  and  the 

linear  inequalities  a,  b,  c  are  the  parameters  of  the  variations,  the  equations 

for  the  partial  rates  of  increase  of  the  energy  of  relative  motion  by  trans- 
formation from  the  mean-motion  become 

i  a 
2Pdt 

A? 

m-  +  Ao* 

A.?- 

i  a 
2  dt + 

A2
 

m?  +  B,4 

B2 

II"
 

2dt
 

du      1  fd\ ■u     dv      dw 

dx      3  \dx      dy      dz 

-if. 1  fdv_      duV      1 
+  4,[dx  +  dy)  +4 

G- 

+ 

m2  +  (aC2y 

  A2^ 
m2  +  (ai),)4 

-w-ii; 
"^-Ui_ 

du 

dx 

dv"      dw' +  -T-  + 

dy        dz 

dw      du\'2 

dx      dz 

(301), 

with  two  corresponding  equations  for  the  directions  y  and  z. 
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Then  substituting  for  the  coefficients  from  equations  (287)  to  (290)  we 

have,  to  a  first  approximation,  the  partial  equations  for  the  vis  viva  of 
relative  motion  in  terms  of  the  quantities  which  define  the  state  of  the 

medium,  terms  for  which  the  general  expressions  are  given  in  equations 
(123). 

Then  considering  the  partial  equations  (298)  we  have  for  the  resultant 

equation  of  relative  vis  viva,  the  general  expression  for  which  is  given  by 
equation  (126), 

1     3 

2pdt 3a2 2 

A, 
13 

2  dt 

m2  +  B,* 

^      2dt 

du" 

dx 

fdv"\2 

dw"s 

1  (duT_     djT     du/'y 3  \  dx       dy        dz 

+ 

du"
 

dy 

dv"V     (dv'_     dvf'y 
dx  J       \dz       dy  J dw"     du" dx        dz 

.\9i 

m2 

G22(a2  +  b2+(f)-^~ 

D.?  (a2  +  b2  +  c2)  - 

3  9/ 

2dt )  (du"     dv"     d + 
w 

\  \  dx      dy        dz 
.(302). 

And  putting  for  the  right-hand  member  its  equivalent 

1 1  [p"  (u'2  +  v'2  +  w'2)]  -  \  I  [p"  {u*  +  v'2  +  w'% 

we    have    the    expression    which    would    constitute    the    first    member    of 

equation  (126). 

Therefore  we  have,  in  the  second  member  of  equation  (302),  the  ex- 
pression, to  a  first  approximation,  for  the  rate  of  variation  of  the  energy 

of  the  relative  system  in  terms  of  the  quantities  which  define  the  state 
of  the  medium. 

Thus  equations  (300),  (301)  and  (302)  are,  to  a  first  approximation, 

respectively  the  partial  equation  of  momentum  of  mean-motion,  the  partial 
equation  of  energy  of  relative  motion,  and  the  resultant  equation  of  energy 
of  the  relative  system. 

And  it  may  be  noticed  that  the  equation  of  energy  of  mean-motion 

corresponding  to  equation  (125)  Section  VI.  is  at  once  obtained  by  multi- 

plying equations  (300)  by  u",  v",  w"  respectively. 

And  thus  the  dynamical  theory  of  a  purely  mechanical  medium  is 

established  and  defined  for  periodic  inequalities  to  a  first  approximation. 

Q.  E.  D. b.  12 
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It  is  to  be  noticed  here  that  the  three  equations  (300)  of  momentum 

in  the  mean  system,  to  a  first  approximation,  when  multiplied  by  the 

respective  components  of  mean  motion,  become  the  component  equations 

of  energy  of  mean  motion,  and  on  being  reduced  and  added  together  form 
the  resultant  equation  of  mean  energy. 

And  since,  in  a  conservative  system,  such  as  that  under  consideration, 

the  only  exchanges  between  the  two  systems  are  between  the  energy  of 
mean  motion  and  the  energy  of  relative  motion,  we  should  have  as  the  sum 

lUh')+Hi^+v'"+w"i)=0- if  the  approximation  is  complete ;  and  this  is  the  case. 

That  is  to  say,  the  approximate  expressions  for  energy  of  mean  motion 

obtained  from  equation  (128)  become,  on  changing  the  sign,  the  equations 

for  energy  of  relative  motion. 

It  thus  appears  that  there  is  only  one  equation  of  energy  although 

there  may  be  two  systems  of  partial  equations  for  the  energy  of  the 

components  of  mean  and  relative  motion. 

There  are,  however,  two  systems  of  equations  for  momentum,  one  for 
momentum  of  mean  motion,  and  the  other  for  the  mean  momentum  of 

relative  motion,  the  second  of  which  is  expressed  by 

(1*7-0,    W  =  o,    (O"=o, 
while  the  first  is  the  system  expressed  by  equations  (300). 

This  affords  a  check  on  the  method  of  approximation  which  only 

becomes  apparent  at  this  stage. 

199.     The  equations  of  motion  to  a  second  approximation. 

In  proceeding  to  a  second  approximation,  it  is  to  be  noticed  that  the 

rates  of  increase  of  a  or  a'2,  A-?,  B{2,  C\2,  and  D*,  the  coefficients  in  the  first 
approximation,  are  the  result  of  the  irreversible  dissipation  from  vis  viva 

of  mean  motion  in  consequence  of  the  inequalities  in  mean  motion,  as 

considered  in  the  first  approximation,  tending  to  increase  the  value  of  a, 

and  to  institute  linear  inequalities  in  the  value  of  a  or  or ;  such  secondary 

inequalities  are  instituted  both  by  angular  and  linear  inequalities  in  the 
first  approximation. 

But  it  is  not  in  taking  account  of  these  secondary  inequalities  that  the 

second  approximation  consists,  for,  as  will  appear  as  we  proceed,  such 
secondary  inequalities  are  of  no  account  as  compared  with  the  first. 

The  second  approximation  consists  in  taking  account  of  the  rate  of 
irreversible  dissipation  of  energy  resulting  from  each  of  the  several  actions, 
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as    expressed    in    the    first    approximation,    as    cause    logarithmic    rates   of 

diminution  in  the  linear  inequalities  of  mean  motion. 

In  this  portion  of  the  analysis,  since  the  general  expression  for  the 

equations  to  a  first  approximation  has  been  effected,  attention  may  be 

confined  to  the  two  primary  undulations,  approximately  simple  harmonic, 

referred  to  axes  in  the  direction  of  mean  strain ;  taking  the  axis  of  x  for 

that  of  propagation  and  the  axis  of  y  for  that  of  shear,  so  that  the 

inequalities  (/")  in  mean  motion  are  expressed  by 

die"         ,    dv" 
-j—    and    - ,  -  . (jjQu  \ajOG 

The  equations  for  the  undulations  are  obtained  to  a  first  approximation 

by  taking  all  the  rates  of  variation  of  the  mean  motion  zero,  except  those 

which  enter  into  the  two  expressions  respectively  in  the  equations  (300), 
(301)  and  (302). 

200.  The  determination  of  the  mean  approximate  rates  of  logarithmic 
decrement. 

To  do  this  it  is  necessary  to  know  two  quantities : — 

(1)  The  ratio  which  the  mean  of  the  total  undulatory  energy  bears 

to  the  mean  of  the  energy  of  mean  motion,  including  resilience,  per 
unit  volume. 

(2)  The  rate  of  irreversible  dissipation  per  unit  volume  in  terms  of 

the  energy  of  mean  motion  to  which  it  is  proportional. 

Let  R  be  the  ratio  of  the  total  energy  of  undulation  to  the  total, 

including  resilience,  per  unit  volume ; 

I1  the  coefficient  by  which  mean  energy  of  mean  motion  must  be 
multiplied  to  express  the  rate  of  dissipation. 

Then,  the  bar  indicating  the  mean, 

ai  — 111     ■      —  Hi      ,        1'0\  i  -lit      i      — //o      i      7TT.//-'\         \ 
u  -  +  v  -  +  w  2\        ™^  (u  2  +  V  2  +  w  2\     \ 

pKTt\   2   )=T* 
The  logarithmic  rate  of  decrement  is 

-T 

\/u"*  +  v"2  +  w"2  =  e  %R 

.(303). 

The  values   of  T  are   all  to  be  obtained  from  equation  (302)  omitting 
the  3/dt. 

The    values    of   R    are    a    little    more    complex.       But    as    in    the    first 

*  No  connection  with  r  (tau) — the  rate  of  propagation  of  light. 

12—2 
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approximation  the  motions  are  a  simple  harmonic  function  of  t  and  as  or 
x  and  y, 

R  =  2  for  normal  waves, 

R  =  2  for  transverse  waves  when  there  is  no  diffusion, 

R  =  1  for  transverse  waves  when  diffusion  becomes  easy. 

This  last  case,  whatever  other  interest  it  may  have,  is  of  great  interest 

in  affording  a  check  on  the  correctness  of  the  approximation,  since  Stokes 

has  obtained  a  complete  solution  of  this  case  for  a  gas  as  well  as  any  viscous 

fluid,  and  as  cr/X  is  small  in  this  case  it  enables  us  to  compare  this  approxi- 
mation, and,  as  will  appear,  to  show  that  the  results  are  identical.  In 

this  case  total  mean  energy  is  the  same  as  the  energy  of  mean  motion. 

The  only  values  of  R  which  are  not  included  in  the  list  above  are  the 
values  of  R  for  transverse  waves  for  the  region  between  the  state  of  no 

diffusion  and  that  at  which  diffusion  becomes  easy,  and  in  this  case  the 

value  of  R  varies,  very  rapidly  at  first,  but  at  a  diminishing  rate,  from 
2  to  1. 

201.     The  rates  of  decrement  in  a  normal  wave. 

Taking  x  for  the  direction  of  propagation  and  motion,  the  motion 

harmonic  and  v^"2  for  the  maximum  value  of  u"2 ;  the  mean  value  is  u"2\% 

and  the  mean  energy  u"2/4>. 

The  two  rates  of  irreversible  dissipation  of  energy  by  angular  inequalities 

and  linear  inequalities  are  obtained  by  omitting  the  d/dt  in  the  coefficients  of 
both  the  terms  of  equation  (302)  and  dividing  by  p. 

For  convenience  putting  A  for  the  sum  of  the  coefficients  for  the  angular 

inequalities,  and  L  for  the  sum  of  the  coefficients  for  the  linear  inequalities, 

resolving  in  direction  x,  we  have  for  the  respective  rates  of  dissipation 

3  fu"'2\         ,„  *      t,  fdi 

4(¥)=-«^>(^)s   <w And   we   have   for  the  mean  square  of  the  inequality,  mean  energy  of 
motion,  and  total  energy, 

q2/2,   q2/2a2,   and    q2\a?   respectively. 

Thus  R  =  2  and  g  =  =|  (*A  +  L)  a2, 

r  =  -(lA+*;)a2   (305). R        V3         2. 

And  the  equation  for  the  normal  wave  is 

u"  =  ̂e-QA+^a°~f  sin  (mt-ax)    (306) a 
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In  a  similar  manner  for  the  transverse  wave 

.(307). 

The  mean  values  of  -  (dv"/dxf,  (v")2,  and  total  energy  are,  when  cr/X  is 
large,  and  since  there  is  no  linear  inequality, 

2V/2,    q%x/2a\   and    tf\a\ 
T=-Aa\   E  =  2, 

and  the  equation  for  the  transverse  wave  becomes 

a      -J±t v»=ivxe   2Tam(mt-ax)   (308). 

If  a/X  is  small,  R  is  1  and 

v"  =  qyx  e-AaH  sin  (mt  -  ax)    (309). 

When  a/X  is  large  the  equation  for  undulations  in  the  direction  of  the 

propagation  is 
_ji       ,15  ̂ .4of_o_G  «n 

u"  =  {ile     l»        '+8  3  p2|  3WH  m*J     CQS  (mf  _  a^   (310); 

and  the  equation  for  transverse  undulations 

v"  =  £^e-(^«2)*  cos(mt-ax)   (311). 

In    the    same   way  if  a/X    is    small    the    equation    for  the    normal   un- 
dulations is 

n  1/4  p\         5     A.a%2  \    ,. 

u"  =  li  e~ pM>  vVa+ipv^W      cos (m<-  ax)     (312), 

and  for  transverse  undulations 

v"  =  qyx  e~(t^ai)f  Cos  (mt- ax)   (313). 

From  equation  (310)  the  coefficients  A.  B,  L,  are 

.      4  Xa        D 

and  for  —  small 
X 

and  for  -  large X 

L  = 

1  5Xa3a2, 

m2  2    V^   ' 

j.        5     £>2   4   tr2a    G   ., 

3^2  ~  3  \7w-  4  "" 

^2 

.(314). 

We   have   thus  obtained  the   complete   equations   for  indefinitely  small 

steady  continuous  undulations,  including  rates  of  decrement  for  normal  and 



182  ON    THE    SUB-MECHANICS    OF    THE    UNIVERSE.  [201 

transverse  waves,  in  terms  of  the  quantities  a,  A,,  <x  which  define  the  condition 
of  the  medium. 

These  equations  are  thus  available  for  obtaining  the  rates  of  propagation 
and  the  rates  of  decrement  for  normal  as  well  as  transverse  undulations  for 

any  specified  values  of  a,  X,  a. 

Also  if  the  rates  of  propagation  together  with  the  rates  of  decrement  for 

both  the  normal  and  transverse  waves  are  known,  the  values  of  a,  \,  <t  may 
be  found  from  the  equations. 

At  this  stage  of  the  analysis,  however,  we  have  not  before  us  all  the  data 

necessary  to  make  a  complete  determination  of  the  values  of  a,  X,  a,  so  that 

the  equations  would  be  the  equations  of  light,  as  this  would  require  a  know- 
ledge of  actual  rates  of  decrement  as  to  which  we  have  no  certain  knowledge, 

and  further,  these  equations  have  been  obtained  by  neglecting  all  secondary 

actions  (see  note,  Art.  196).  And  thus  these  equations  afford  no  evidence  as 

to  the  limits  of  the  possible  magnitudes  of  the  undulations. 

The  conditions  which  limit  the  possible  magnitudes  of  the  undulatory 

strains  have  been  generally  discussed  in  Art.  91,  Section  VII.  From  which 

discussion  it  appears  that,  when  the  medium  in  normal  piling  has  relative 
motion,  however  small  \/a  may  be,  the  medium  yields  in  proportion  to  the 

stress  when  subject  to  indefinitely  small  variations  of  stress ;  so  that  such 

stress  is  equal  to  the  strain  multiplied  by  a  coefficient  which  is  constant  if 

the  terms  involving  the  square  and  higher  powers  of  the  strain  are  neglected 
as  small  compared  with  the  first  term ;  and  in  this  case  the  medium  has  the 

properties  of  an  elastic  solid  within  the  limits  of  such  strain.  It  has  no 

finite  stability  and  only  such  dilatation  as  would  correspond  to  the  elastic 

solid  as  long  as  the  terms  involving  the  square  and  higher  powers  of  the 
strain  are  small. 

On  account  of  both  these  the  further  consideration  of  the  undulations  is 

continued  in  the  section  next  but  one  to  this — after  the  consideration  of 

the  possible  strains,  other  than  the  undulatory  strains,  which  afford  further 
evidence. 



SECTION  XIV. 

THE   CONSERVATION   OF   MEAN    INEQUALITIES,    AND   THEIR 

MOTIONS   ABOUT    LOCAL   CENTRES,    IN   THE    MEAN   MASS. 

202.  In  the  last  section  we  obtained  the  equations  for  continuous  steady 
undulations,  including  the  rates  of  decrement,  for  normal  and  transverse 

waves  in  terms  of  a",  X."  and  a,  the  only  quantity  undetermined  being  the 
superior  limit  to  the  amplitude ;  while  from  the  same  section  it  is  evident 

that  undulatory  strains  have  characteristics  which  differentiate  them  from 

strains  other  than  undulatory,  and  that  they  are  essentially  elastic  strains 

maintained  only  by  the  inequalities  of  the  mean  motion,  and  independent  of 

motion  by  propagation.  It  remains  to  effect  such  analysis  of  the  strains 

other  than  undulatory,  the  possibility  of  which  has  been  pointed  out  in 
Art.  190,  Section  XIII.     These  are: 

(i)  Some  local  disarrangement  of  the  medium  together  with  some  dis- 
placement of  portions  of  the  medium  from  their  previous  neighbourhood, 

such  as  vortex  rings,  which  may  have  a  temporary  existence  if  X"  fcr  is  large. 

(ii)  Local  abnormal  arrangements  of  the  grains  when  so  close  that 

diffusion  is  impossible  except  in  spaces  or  at  closed  surfaces  of  disarrange- 
ment, depending,  as  already  explained,  on  the  value  of  G  being  greater  than 

6/*J2tt,  under  which  conditions  it  is  possible  that,  about  the  local  centres, 

there  may  be  singular  surfaces  of  freedom,  which  admit  of  their  motion  in 

any  direction  through  the  medium  by  propagation,  combined  with  strains 

throughout  the  medium,  which  strains  result  from  the  local  disarrange- 
ment without  change  in  the  mean  arrangement  of  the  grains  about  the 

local  centres — the  grains  moving  so  as  to  preserve  the  similarity  of  the 
arrangement. 

203.  The  character  of  these  two  general  classes  of  strain  must  depend 

primarily  on  the  state  of  the  medium,  where  uniform,  as  indicated  by  the 

value  of  cr/X". 

When  crjX"  is  small  there  is  no  dilatation,  and  there  is  diffusion,  hence 
there  are  no  singular  surfaces  except  such  temporary  surfaces  as  result  from 
vortex  motion.  Therefore  this  class  of  strain  may  be  considered  as  belonging 
to  the  undulatory  class  which  does  not  concern  us  in  this  section. 
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The  second  of  these  classes  of  local  disturbance,  in  which  <r/\  is  large,  so 

that  there  is  no  diffusion  except  about  centres  of  disturbance,  includes  all 

local  disarrangement  of  the  normal  piling  that  can  under  any  circumstances 

be  permanent. 

(i)  Such  permanence  belongs  to  all  local  disarrangements  of  the  grains 
from  the  normal  piling,  which  result  from  the  absence  of  any  particular 

number  of  grains  at  some  one  or  more  places  in  the  medium  which  would 
otherwise  be  in  normal  piling.  The  centres  of  such  local  disturbance  may  be 

called  centres  of  negative  disturbance,  or  centres  of  negative  inequalities  in 
the  mean  density. 

(ii)  We  can  also  conceive  disarrangement  resulting  from  excess  of  grains 

in  the  otherwise  uniform  medium — a  definite  number  of  grains  over  and 
above  the  number  which  constitute  the  uniform  piling,  and  such,  whether  or 

not  capable  of  independent  existence,  will  be  called  a  positive  disturbance. 

These  positive  and  negative  centres  are  the  principal  centres  of  distur- 
bance, as  well  as  the  simple  centres  of  disturbance. 

There  are  other  classes  of  disturbance  which,  although  more  or  less  com- 
plex, are  to  some  extent  permanent. 

(iii)  If  by  any  action  on  the  medium  in  normal  piling  a  number  (n) 

grains  were  displaced  from  their  previous  neighbourhood  when  in  normal 

piling,  to  some  other  neighbourhood  previously  in  normal  piling,  the  distur- 
bance would  be  reciprocal,  and,  if  there  were  no  further  displacement,  would 

be  permanent  if  there  were  no  further  action. 

It  should  be  noticed  that  such  displacement  might  correspond  exactly 

with  that  of  a  negative  disturbance  resulting  from  the  absence  of  (n)  grains, 

and  a  positive  disturbance  from  introduction  of  (n)  grains  in  positions  corre- 
sponding to  those  from  and  to  which  the  (n)  grains  were  displaced. 

It  should  be  noticed  however  that,  assuming  the  possibility  of  the 
displacement  and  that  of  the  simultaneous  existence  of  equal  negative 

disturbances,  this  in  no  way  proves  the  possibility  of  the  existence  of  a 
solitary  positive  disturbance. 

(iv)  Another  class  of  possible  local  disarrangement  of  the  normal  piling 
in  an  otherwise  uniform  medium  is  that  class  which  does  not  depend  on  the 

absence,  presence,  or  linear  displacement  of  grains,  but  does  depend  on  the 

rotational  displacement  of  the  grains  about  some  axis. 

If  we  conceive  a  finite  spherical  surface  in  the  medium,  and  further 

conceive  that  for  .30°  on  either  side  of  a  diametral  plane  the  medium  im- 
mediately external  to  this  surface  is,  owing  to  rotational  disarrangement, 

resisting  positive  rotation  of  the  surface,  while  the  medium  immediately 

internal  to  the  surface,  that  which  extends  from  each  of  the  poles  to  within 
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30°  of  the  diametral  plane,  is  resisting  negative  rotation,  then  it  will  appear, 
since  owing  to  the  relative  motion  the  medium  is  to  some  degree  elastic, 

there  will  be  positive  rotational  strains  extending  outwards  in  the  external 

medium  within  30°  of  the  equator,  and  negative  rotational  strains  extending 
outwards  over  both  the  surfaces  from  the  poles  to  within  30°  of  the  diametral 
plane. 

These  represent  a  state  of  polarisation  in  the  strains  of  the  medium, 

inside  and  outside,  and  if  we  had  two  such  polarising  surfaces  with  similar 

poles  in  contact  the  strains  would  superimpose,  while  if  the  opposite  poles 
were  in  contact  the  strains  would  cancel. 

204.  With  regard  to  the  conservation  of  similarity  in  the  arrangement 

of  the  grains  within  and  without  singular  surfaces,  we  may  prove  the  follow- 
ing theorem. 

Theorem  1.  When  the  condition  of  the  medium  is  such  that  there  is  no 

diffusion  except  at  a  singular  surface,  where  G  is  greater  than  6/\/2  -w  as 
a  result  of  the  absence  of  n  grains,  the  replacement  of  which  would  restore  the 

uniformity  of  the  medium  to  that  of  unstrained  normal  piling,  there  will  result 

inward  strains  extending  from  an  infinite  distance  to  some  spherical  surface 

within  the  singidar  surface;  then  ivhatsoever  may  be  the  inward  strains  in 

the  normal  piling  and  the  disarrangement  of  the  grains,  with  the  surface  at 

which  the  strained  normal  piling  ceased  and  abnormal  piling  commenced,  the 

number  of  grains  absent  would  be  the  same  (n)  and  the  strains  in  normal 

piling  tvould  be  the  same. 

To  prove  this  we  have  only  to  consider  that,  owing  to  the  pressure  from 

the  outside  and  the  mobility  of  the  grains  due  to  the  relative  motion,  a", 
however  small,  would  secure  that  in  the  first  instance  the  arrangement 

of  the  grains  was  such  as  to  cause  the  minimum  dilatation,  and  hence 
would  secure  the  maximum  normal  inward  strain  and  then  would  be  in 

equilibrium.  Then  since  there  would  be  no  outside  disturbance,  if  there  are 

to  be  any  exchanges  of  neighbourhood  owing  to  relative  motion,  these  ex- 
changes must  be  such  as  do  not  entail  any  increase  in  the  mean  dilatation. 

Whence  it  follows  either  that  all  the  grains  within  the  singular  surface  must 

maintain  their  neighbourhood,  in  which  case  the  centre  of  disturbance 

would  remain  unchanged,  following  whatever  uniform  motion  the  medium 

might  have,  or  the  arrangement  of  the  grains  immediately  inside  and 

outside  the  singular  surface  must  be  such  that  the  dilatation  caused  by  any 

influx  of  grains  into  the  singular  surface  from  one  side  would  be  simul- 
taneously compensated  by  the  contraction  caused  by  the  efflux  of  the  same 

number  of  grains  from  the  opposite  side,  in  which  case  the  centre  of  dis- 
turbance, together  with  its  attendant  strains  extending  from  infinity  to  the 

abnormal  piling,  would  be  free  to  move  in  any  direction  and  maintain  the 
same  minimum  dilatation,     q.  E.  l>. 
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It  is  to  be  noticed  that  the  second  alternative  requires  conditions  as  to 

the  possibility  of  which  nothing  has  been  affirmed  in  the  proof  of  the  theorem, 
while  the  first  is  general. 

Then  again  we  have  as  a  corollary  to  the  last  theorem :  If  two  negative 

centres  of  disturbance  exist  within  any  finite  distance  of  each  other,  the 
numbers  of  the  grains  absent  in  each  of  the  centres  would  remain  the  same. 

But  it  does  not  follow,  as  a  necessity,  that  the  strains  in  the  normal  piling  in 

the  respective  centres  should  be  the  same  as  if  the  other  centre  of  disturbance 
was  absent. 

Then  again  we  have  a  theorem  with  respect  to  a  more  complex  dis- 
turbance : 

Theorem  2.  When  the  disturbance  is  such  as  would  result  from  the 

removal  of  n  grains  from  one  place  in  a  uniform  medium  and  their  introduc- 
tion to  another  place  at  any  finite  distance,  which  is  the  same  thing  as  two 

equal  centres  of  disturbance  at  a  finite  distance,  one  negative  as  the  result  of 

n  grains  being  absent,  and  one  positive  as  the  result  of  n  grains  in  excess. 
Then  whatever  may  be  the  resulting  strain  or  motion  in  and  about  the 

two  centres,  the  number  of  grains  absent  in  the  negative  disturbance  must 

always  be  the  same  as  the  number  of  grains  in  excess  in  the  positive  dis- 
turbance however  this  number  may  be  changed  by  exchanges  between  the 

centres. 

This  theorem  being  self-evident  needs  no  demonstration. 

205.  The  dilatations  which  result  from  strains  in  the  normal  piling  in 

the  otherwise  uniform  continuous  granular  medium  have  been  subjected  to 
somewhat  full  discussion  in  Arts.  86  to  92,  Section  VII.  This  discussion 

includes  the  ideal  case  (a"  =  0),  in  which  there  is  no  relative-motion,  as  well 

as  that  (a"  finite)  in  which  there  is  relative  relative-motion. 

It  is  with  the  second  of  these  cases  that  we  are  directly  concerned,  but 

it  appears  that  the  only  process  of  effecting  the  analysis  necessary  for 
determining  the  coefficients  for  the  dilatations  in  the  medium  with  relative 

motion  is,  in  the  first  instance,  to  determine  the  coefficients  of  dilatation, 

when  a"  =  0,  for  small  strains  in  the  directions  of  the  axes  of  distortion. 
Then  by  examining  the  effects  of  relative  motion  on  these  to  arrive  at  the 

general  coefficients  of  dilatation  for  small  strains  in  all  directions  in  the 
medium  with  relative  motion. 

206.  In  Art.  90,  Section  VII.  it  appears  that  in  the  uniform  kinematical 

medium  (A.  =  0)  there  are  six  axes  symmetrically  placed,  which  are  axes  of 
no  contraction,  and  bisect  the  middle  points  of  the  edges  of  the  cube  of 

reference,  and  all  pass  through  the  centre.     Between  these  axes  and  at  angles 
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of  45°  to  them,  that  is  in  directions  parallel  to  the  axes  of  reference,  or  the 
edges  of  the  cube,  there  are  three  axes  of  possible  symmetrical  distortion  ; 

hence  this  medium  under  any  mean  stress  p",  equal  in  all  directions,  has 
stability  and  crystalline  properties.  If  however  the  stability  resulting  from 

uniform  stress  is  overcome,  say  by  uniform  superimposed  stress  in  the 

direction  of  one  of  the  axes  of  reference,  the  dilatation  resulting  from  the 

initial  small  strain  is  positive,  and  can  be  shown  to  be  equal  to  the  normal 
contraction,  i.e.  the  result  of  the  normal  contraction  and  lateral  extensions 

is  to  increase  the  volume  by  a  quantity  equal  to  the  small  normal  strain 

multiplied  by  the  initial  volume.     Hence  the  coefficient  is  unity. 

As  the  strain  increases  the  coefficient  diminishes  according  to  a  definite 

law  (which  will  be  expressed)  slowly  at  first,  then  more  rapidly  until  maxi- 
mum dilatation  is  reached,  when  the  coefficient  is  zero,  and  G  =  Qjir.  The 

medium  is  then  unstable,  and  under  the  mean  pressure  equal  in  all  directions 

would  revert  to  some  second  state  of  normal  piling. 

207.     To  prove  the  statements   in  the  a 
last  article  as  to  the  coefficients  of  the 

dilatations  resulting  from  small  strain  in 
the  direction  of  one  of  the  axes  of  dila- 

tation in  a  kinematical  medium  :  /-""I 

Let  OA,  OB,  00=0,!,  bly  c1}  respectively 

be  the  principal  axes  of  strain.  b^-  -:fQ— 

Let  AB,  AG,  &c.  the  generating  lines  of 
the  conical  surface  be  the  lines  of.  no  con- 
traction. 

Put 

6  =  OAB,  <£  =  OA G,  LB  =  AB,  Lc  =  AG. 

Then  «*  2- 
a  =  Lj;  cos  6  =  Lc  cos  <£        ) 

b=L]ism6=G  =  Lvmncj>\   (315)' 
da  t      ■     n      da  r 

_  =  -LBsm6,     ^7  =  -Z,,sm</>      (316), 

V=-.a.b.c  =  -.a.  LltL,<  sin  6  sin  <£      (317), 

a       dV 

— r-  .  -y=-l  +  cot-  6  +  cot2  $     (318). 

Then,  since  dV/V  is  the  dilatation  and  -  da/a  the  strain,  the  coefficient 
of  dilatation  is  by  equation  (318) 

-^-  /y  =-l  +cot20-f  cut-'c/>      (319). 
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Whence  it  appears,  since  6  =  cj>  and  cot  0  diminishes  as  0  increases,  we  have 
for  the  maximum  coefficient 

cot2  0  +  cot2  0-1  =  1, 
and  this  is  when  the  axes  of  no  contraction  are  inclined  to  the  axes  of  dis- 

tortion at  45°. 

Further,  it  appears  that  as  6  increases  from  45°,  cot2  6  diminishes  until 
dilatation  is  zero,  when  the  condition  of  the  medium  is  unstable. 

This  may  be  demonstrated  graphically.  In  Figs.  3  and  4ii,  BB  and  GO 

are  the  three  axes  of  symmetrical  distortion,  and  the  full-line  circles  represent 
the  spherical  grains  in  contact.     (See  also  Fig.  1,  page  83.) 

Fig.  3. 

Fig.  4. 

Fig.  3  shows  a  loss  2  A  A'  in  height.  Fig.  4  shows  a  gain  4  A  A'  in  plan. 



208]         CONSERVATION   OF   MEAN    INEQUALITIES    AND   THEIR   MOTIONS.  189 

These  losses  and  gains  are  taken  on  the  three  axes  at  right  angles  of 
which  the  dimensions  are  A  A,  BB,  CC. 

The  normal  strain  is  2AA'/AA. 

The  volume  is  AA  .  BB  .  CC  or  (AAf. 

The  increase  of  volume  (AA)2 .  4>AA'  -  (AA)"- .  2AA'  =  (A A)- .  2AA'. 
Whence  we  have  the  dilatation 

dV_(AAf.2AA' V  ~  ~     (AA)3 

And  dividing  by  the  strain  —  2AA'/AA  and  changing  the  sign,  we  have  for 
the  coefficient  of  dilatation 

AA      (AAf  .  2AA'  _ 
2AA' '  "     (AAf       7 

207  A.  Then  as  regards  the  inequalities  of  pressure  pr  =  2pt  =  %p", 
resulting  from  such  symmetrical  distortional  strains  in  the  principal  axes  of 

strain,  since  there  is  no  work  done  on  the  grains  it  follows  directly,  putting 

p"  for  the  mean  pressure,  pr  for  the  normal  in  the  direction  of  the  strain, 
and  pt  for  either  one  of  the  tangential  since  these  are  principal  stresses 

p,.+  2pt  =  3p"   (320), 

and  since  there  is  no  work  done  on  the  grains, 

Pr  =  2pt      (321), 
whence  by  (320) 

JPr  =  fp",     Pt  =  %p"   (322). 

208.  It  is  to  be  noticed  that  contraction  strains,  such  as  that  discussed 

in  the  last  article,  the  strain  being  in  the  direction  of  one  of  the  axes  of 

distortion,  are  the  only  symmetrical  strains  when  a  =  0,  and  it  does  not  follow 
that  the  coefficient  of  dilatation  for  small  unsymmetrical  strains  is  unity. 

But  it  does  follow  from  virtual  velocities  that  if  p"  is  the  mean  pressure  in  a 
kinematical  medium  without  limit,  that  the  normal  pressure  resulting  from 

a  local  disturbance  cannot  be  greater  than  2p"  and  must  be  greater  than  zero 
if  p"  is  finite. 

From  this  we  have  the  proof  of  the  important  theorem : 

That  ivhatever  the  coefficient  of  dilatation  may  be,  a  disturbance  such  as 

might  be  caused  by  the  removal  of  any  number  of  grains  from  a  space  in  an 
othemvise  uniform  medium,  without  relative  motion,  would  be  attended  with 

inward  radial  displacement  of  the  grains  from  infinity  throughout  the  entire 
medium. 

For,  as  has  just  been  shown,  pr  must  be  greater  than  zero ;  so  that  there 

can  be  no  cavity  greater  than  the  space  from  which  the  grains  can  exclude 
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other  grains,  and  there  can  be  no  dilatation  without  the  displacement  of 

grains,  so  that  as  the  ideal  excavations  proceeded  the  grains  would  follow 
inwards,  and  as  there  is  no  elasticity  and  the  grains  are  all  under  pressure, 

each  grain  as  it  disappears  must  cause  inward  movement  from  infinity;  for 
as  the  coefficient  of  dilatation  cannot  be  infinite,  the  grains  being  smooth 

spheres  without  friction  (so  that  any  binding  or  jamming  would  be  impos- 
sible) every  grain  would  be  under  pressure.     Q.  E.  D. 

Thus  the  relation  between  the  tangential  and  normal  pressures  would 

depend  upon  nothing  but  the  coefficients  of  dilatation,  and  if  these  were 
constant  the  normal  and  tangential  pressures  would  be  constant.  But  such 

constancy  would  depend  on  there  being  angular  similarity  in  the  arrange- 
ment of  the  grains  about  every  axis  through  the  centre  of  disturbance, 

which  similarity  does  not  exist  in  the  normal  piling.  It  is  therefore  certain 

that  the  inward  strains,  although  having  six  axes  of  similar  arrangement 

symmetrically  placed,  would  be  influenced  by  the  crystalline  formation  of  the 

uniform  piling;  particularly  at  great  distances  from  the  centre  of  disturb- 
ance. For  when  the  distances  from  the  centre  are  large  the  strains  would 

be  so  small  that  the  crystalline  characteristics  of  the  uniform  medium  would 

have  undergone  very  slight  modification,  whereas  near  the  centre  where  the 

displacements  are  greatly  larger  the  unsymmetrical  characteristics  would  be 

greatly  modified. 

On  these  grounds  it  appears  certain  that  the  coefficients  of  dilatation 

would  be  greatest  at  an  infinite  distance  from  the  centre  and  would  gradually 
diminish  ;  in  which  case  the  tangential  pressure  would  fall  and  the  normal 

pressure  rise  gradually  as  they  neared  the  centre,  satisfying  the  conditions  of 

virtual  velocities  and  the  condition  for  equilibrium,  which  latter  requires 

that  at  any  distance  r  from  the  centre  pr  +  2pt  =  p".  What  the  mean  of 
such  coefficients  might  be  is  doubtful,  but  it  seems  probable  that  they  would 
not  differ  greatly  from  the  coefficient  unity,  which  is  the  smallest  coefficient 

for  symmetrical  distortion. 

Whatever  these  coefficients  may  be  it  follows  from  the  paragraph  last 

but  one,  that  the  dilatation  resulting  from  the  inward  strain  must  occupy 
the  space  from  which  the  grains  were  absent,  so  that  the  sum  of  the  normal 

and  tangential  stresses  would  be  equal  to  the  mean  pressure  of  the  medium, 

or  pT  +  2pt  =  dp". 

209.  From  the  conditions  of  geometrical  similarity  in  the  case  of  uniform 
continuous  media  it  appears  : 

(i)  The  size  of  the  uniform  grains  has  no  effect  on  the  dilatation  or 

mean  pressures  resulting  from  continuous  uniform  distortions.  Tli  ere  fore 

similar  and  equal  continuous  finite  distortional  strains  will  produce  similar 
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and  equal   dilatations  'whether  the  grains  are  indefinitely  small  or  of  any 
finite  size. 

(ii)  The  size  of  the  uniform  grains  in  a  continuous  medium  does  affect 

the  dilatations  resulting  from  strains  other  tJian  continuous  uniform  distor- 
tional  strains. 

To  prove  these  theorems. 

If  we  consider  two  finite  media  of  which  the  parts  are  exactly  similar  in 
shape,  number,  and  relative  position,  but  in  one  of  which  the  scale  is  A 

and  the  other  B,  these  media  will  be  geometrically  similar  except  as  to  scale. 

Thus  whatever  strains  in  proportion  to  the  constant  parameters,  A  and 

B  respectively,  these  media  may  undergo,  the  proportional  similarity  will 
hold,  and  this  extends  to  the  dilatations,  the  coefficients  of  which  will  be 

equal.     Q.  e.  d. 

If  however  instead  of  considering  these  similar  actions  within  spaces 

proportional  to  the  scales  A  and  B,  we  consider  these  proportional  actions 

within  equal  spaces,  the  principle  of  similarity  disappears  unless. the  positions 

and  strains  are  such  that  there  is  perfect  uniformity  throughout  the  medium. 

This  proves  the  first  theorem.  Perfect  uniformity  exists  in  the  case  of  grains 
in  uniform  piling  subject  to  equal  distortional  strains  whatever  the  values  of 

A  and  B,  provided  the  spaces  are  such  that  there  is  no  sensible  effect  from 
the  boundaries.     Q.  E.  D. 

It  is  thus  proved  that  for  other  than  equal  uniform  strain  there  cannot  be 

similarity  in  the  effects  in  equal  spaces  in  media  of  which  the  scales  of 

similarity  A  and  B  differ. 

Thus  if  the  strains  in  the  medium  in  which  the  scale  is  A  are  subject  to 

variation  on  that  scale,  while  those  on  the  scale  B  are  subject  to  similar 

strains  on  that  of  B,  then  the  effects  of  these  variations  taken  over  equal 

spaces  will  of  necessity  differ.     Q.  E.  D. 

Then  since  the  dilatations  resulting  from  parallel  continuous  strains  are 

in  no  way  dependent  on  the  size  of  the  grains,  even  if  these  are  infinitely 
small  or  have  any  finite  size,  the  question  arises  as  to  what  would  be  the 

difference  in  the  dilatations  resulting  from  finite  similar  local  disturbances 

about  negative  centres  in  two  media  in  one  of  which  the  grains  are  infinitely 
small  and  in  the  other  finite. 

In  the  first  place  it  appears  that  as  far  as  regards  the  dilatations  resulting 
from  uniform  parallel  distortional  strain  these  would  be  independent  of  the 
size  a. 

And  it  can  be  shown  that  these  are  the  only  dilatations  if  a  is  indefinitely 
small  as  compared  with  the  reciprocal  of  the  curvature. 
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For  since  <r  is  indefinitely  small  when  the  scale  of  disturbance  is  finite, 

if  we  conceive  all  dimensions  including  a  to  be  exaggerated  so  that  <r 
becomes  finite,  and  the  distances  between  the  grains  exaggerated  on  the 

same  scale,  then,  since  the  mean  strains  before  exaggeration  vary  continuously 

without  crossing,  so  that  in  the  strains  the  finite  paths  of  two  grains  which 

were  neighbours  before  the  strain  would  still  be  neighbours  after  the  finite 

strain  although  separated  by  any  distance  which  is  less  than  the  finite 

distance  a,  their  two  paths  would  still  be  parallel  lines  of  infinite  length 
and  at  any  finite  distance  apart. 

It  is  thus  shown  that  if  the  grains  are  indefinitely  small  as  compared 

with  the  dimensions  of  the  disturbance,  the  only  dilatations  would  be  those 

resulting  from  uniform  parallel  distortional  strains.     Q.  E.  D. 

Again  in  the  case  of  the  medium  in  which  the  grains  are  finite  it  has 

been  shown,  Art.  207,  that  when  the  grains  are  finite,  however  small  as 

compared  with  the  dimensions  of  the  finite  volume  from  which  grains  are 

absent,  that  the  effects  must  differ  from  those  resulting  from  uniform  parallel 
distortion. 

And  by  The  last  theorem,  putting  4nrr03/3  for  the  volume  the  absent 
grains  would  occupy  in  normal  piling,  it  appears,  since  cr/r0  is  indefinitely 

small,  that  the  dilatations  result  solely  from  uniform  parallel  distortional 

strains.  And  hence  whatever  finite  curvature  may  result  from  finite  strains, 

this  curvature  does  not,  as  curvature,  produce  any  effect  on  the  dilatation ;  so 
that  there  are  no  curvature  effects. 

Then  since  it  is  shown  that  when  a  is  finite,  however  small  compared 

with  the  reciprocal  of  the  curvature  in  the  strained  normal  piling,  the 
dilatation  resulting  from  curvature  depends  solely  on  the  existence  of  a 

finite  value  of  the  product  of  a  multiplied  by  the  curvature,  the  dilatation 
will  equal  a  multiplied  by  the  curvature. 

Further,  it  follows  that  for  any  given  strain,  this  dilatation  resulting 

from  curvature  will  be  in  excess  of  the  dilatations  resulting  from  uniform 
parallel  strains. 

210.  The  analytical  separation  of  the  dilatation  resulting  from  uniform 

strain  and  that  resulting  from  the  curvature  would  be  perfectly  general  if  a 
might  have  any  value  as  compared  with  the  curvature.  But,  in  that  case, 

any  analytical  separation  of  the  dilatation  resulting  from  distortions  from 
that  resulting  from  the  size  of  the  grains  would  be  different  on  account  of 

the  reaction  of  the  dilatation  resulting  from  the  size  of  the  grains  on  that 
resulting  from  distortion.  But  we  are  only  concerned  with  cases  in  which 
a  is  such  that  a  multiplied  by  the  curvature  is  so  small  that  to  a  first 

approximation  any  reaction  from  the  dilatation  resulting  from  the  curvature 
may  be  neglected. 
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Whence  it  appears  that,  to  a  first  approximation  the  only  curvature  is 

that  institnted  by  a  uniform  distortional  strain — as  if  a  multiplied  by  the 

curvature  were  indefinitely  small — the  dilatation  resulting  from  small  inward 
radial  displacements  about  a  centre  being  of  necessity  equal  to  the  curvature 
at  each  point.  It  follows  as  a  necessity  that,  taking  A  as  the  dilatation 

resulting  from  the  uniform  distortional  strains,  the  dilatation  resulting 
from  curvature  owing  to  the  finite  size  of  the  grains  at  the  same  point  is 

expressed  by  A<t\%\,  where  i\  is  the  radius  of  the  singular  surface,  whence 
we  have  for  the  total  dilatation 

211.  Granular  media  with  relative  motion  have  this  fundamental 

difference  from  media  without  relative  motion,  that  when  in  normal  piling 

the  medium  with  relative  motion  is  within  certain  limits  perfectly  elastic 

without  crystalline  properties,  that  without  relative  motion  is  perfectly  rigid 
and  crystalline. 

When  the  media  are  both  under  strain  this  difference  is  not  so  apparent, 

as  the  medium  without  relative  motion  is  then  also  without  rigidity.  But 

the  difference  is  still  fundamental,  and  the  fundamentally  of  the  difference 

in  no  way  depends  upon  the  degree  of  relative  motion.  For  in  the  one  the 
medium  satisfies  the  condition  of  virtual  velocities,  while  in  the  other  state, 

owing  to  its  elasticity,  this  condition  cannot  be  absolutely  satisfied  however 
near  the  approximation  may  be. 

The  crucial  difference  between  the  two  states  is  virtually  reduced  to  the 

existence  of  a  state  of  absolute  rigidity  in  the  one,  however  limited,  when 

the  piling  is  normal,  and  the  absence  of  such  rigidity  in  the  other  however 

small  may  be  the  relative  motion. 

For  as  has  been  shown  in  Art.  207  the  medium  without  relative  motion 

while  satisfying  the  condition  of  virtual  velocities  when  strained  from  the 

normal  piling,  will  also  satisfy  the  condition  of  equilibrium— that  the  sum 
of  the  normal  and  tangential  pressures  equals  three  times  the  mean  pressure, 
or  that 

pr  +  2pt  =  Sp"   (323). 

Another  medium  will  also  satisfy  the  conditions  that  the  pressure  between 

the  grains  cannot  be  negative,  and  that  every  grain  is  in  contact  with  at 

least  four  grains,  whence  it  follows  (since  the  last  three  of  the  four  preceding 
conditions  are  satisfied  in  the  strained  medium  without  relative  motion  they 

are  of  necessity  satisfied  by  the  strained  or  unstrained  medium  with  relative 
motion)  that  if,  as  has  been  shown,  the  condition  of  virtual  velocities  can  be 

satisfied  to  any  degree  of  approximation  in  the  medium  with  relative  motion, 

such  medium  has  to  any  degree  of  approximation  all  the  properties  of  the 

r.  13 
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medium   without  relative  motion,  except  those   depending   on   the   limited 

stability  on  which  the  crystalline  properties  depend. 

It  is  thus  shown  that  the  necessary  distinction  between  the  two  states  is 

that  of  finite  rigidity  when  there  is  no  relative  motion. 

In  regard  to  this  statement  it  is  perhaps  necessary  to  call  attention  to 
the  fact  already  demonstrated,  that  in  the  case  of  a  medium  with  relative 

motion,  the  relative  motion  as  expressed  by  a  in  a  steady  state  of  strain 

must  be  constant,  since  any  inequalities  in  a  are  subject  to  redistribution, 

so  that  the  mean  energy  of  every  grain  remains  constant.  Therefore  the 

energy  of  the  medium  after  the  grain  has  been  removed  and  the  inward 
strain  established  would  be  constant,  and  there  would  be  no  change  in  the 

mean  relative  kinetic  energy  of  the  grains     0  .  — ,  and  it  is  the  state  after 

the  grains  have  been  removed  with  which  we  are  alone  concerned. 

This  although,  for  the  purpose  of  analysis,  an  ideal  action — that  of 

removing  grains  from  a  medium  in  otherwise  uniform  normal  piling — such 
action  has  no  existence.  This  appears  from  Theorem  1  in  this  section,  from 

which  it  follows  that  whatever  may  be  the  volume  occupied  by  the  absent 
grains  when  in  normal  piling  such  accident  is  permanent. 

It  has  thus  been  shown  that  the  inward  strains  resulting  from  the 

absence  of  grains  which  would  occupy  the  volume  4nrrQ3/S  in  normal  piling 
about  any  centre  in  the  infinite,  elastic  medium,  must  cause  dilatations 

extending  from  an  infinite  distance  to  the  singular  surface  about  the  centre 

of  disturbance,  which  dilatations  occupy  a  volume  equal  to  47rr0"/3,  the 
volume  from  which  the  grains  are  absent ;  and  they  are  such  as  satisfy  the 

conditions  of  equilibrium  under  the  same  mean  pressures  normal  and  tan- 
gential expressed  by 

pr  +  2pt  =  Sp"   (324), 

p"  being  the  mean  pressure  equal  in  all  directions. 

212.  It  also  follows  from  Art.  210  that  these  dilatations,  notwithstanding 
the  relative  motion  of  the  medium,  admit  of  analytical  separation  into  the 
two  classes : 

(i)  Dilatation  resulting  from  uniform  distortional  strains  such  as  would 
result  if  a  were  indefinitely  small. 

(ii)  Dilatation  which  results  from  the  finite  value  of  a  and  the  curvature 

induced  by  the  uniform  distortional  strains. 

The  relations  of  these  dilatations  are  those  expressed  in  Art.  210  by 

.  /         a  \       (the  total  dilatation  per  unit] 

V        2rJ       (     of  volume  at  the  point      j   ^       h 
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for  the  only  difference  resulting  from  the  relative  motion  is  the  absence  of 
any  limited  stability. 

213.  From  the  conclusions  arrived  at  in  Art.  211  it  follows,  if  p"  is 
constant,  that  the  total  dilatation  resulting  from  the  inward  strains  does  not 

depend  in  any  degree  upon  the  coefficients  of  dilatation,  nor  upon  the  relative 

motion  a,  as  long  as  crjX  is  within  the  limits  of  no  diffusion,  whatever  may  be 
the  value  of  a. 

It  does  not  however  follow  from  this  that  the  distribution  of  the  strains 

is  independent  of  the  variations  in  the  coefficients  of  dilatation,  since  it  has 

been  shown  (Art.  207)  that  if  there  is  no  relative  motion  the  coefficients  of 
dilatation  must  increase  with  the  distance  from  the  centre  of  disturbance. 

But  in  the  absence  of  any  limited  stability  as  in  the  case  of  a  beiug  finite, 
since  we  need  consider  those  cases  only  in  which  the  coefficients  of  dilatation 

from  small  strains  are  unity,  the  circumstances  may  be  so  chosen  that  the 

strains  follow  some  regular  law. 

However,  before  discussing  these  circumstances,  we  may  with  advantage 
consider  what  further  conclusions  as  to  the  relation  between  the  strains  and 

dilatations,  as  well  as  the  relation  between  the  normal  and  tangential 

pressures,  are  afforded  by  the  adoption  of  unity  as  the  general  coefficient 
of  dilatation  in  the  medium  with  relative  motion. 

Since  the  coefficients  are  constant  and  equal  to  unity,  the  mean  strains 

resulting  from  the  absence  of  a  volume  of  grains  expressed  both  in  magnitude 

and  shape  by  the  sphere  47rr03/3,  will  be  radial  and  symmetrical.  Then  by 
the  theorem  of  Art.  212,  if  a  is  small  compared  with  r0)  since  the  strains 

must  be  everywhere  very  small,  the  relations  between  the  inward  strain  and 

the  dilatation  will  be  such  (if  at  any  point  we  take  a*  for  the  principal 
strain  in  the  direction  of  any  radius  and  /3  and  7  for  the  principal  strains 

tangential  to  the  surface  of  the  sphere,  since  the  strains  are  inwards  ft  and  7 
are  negative  and  equal)  as  are  expressed  by 

/3  +  7  =  -4a,  or    -^   '  =  -1   (o2b). 
jd  +7 

Then  adding  (ft  +  7)  the  negative  or  contraction  strains  to  a  the  positive  or 

expansion  strain,  we  have  the  dilatation 

-08+7)  =  ! 
.(327). a=-2(/3  +  7)J 

Then  we  have  from  these  equations  the  general  relation  that  the  dilatation 

resulting  from  tangential  contraction  -  (ft  +  7)  is  equal  to  half,  and  can  only 

be   half,  the    normal   elongation  resulting  from   the  tangential   contraction, 
together  with  the  dilatation  caused  by  the  contraction  strain. 

*  a,  /3,  7  are  here  used  to  express  principal  strains. 

13—2 
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The  dilatation  expressed  by  either  member  of  equation  (327)  is  the  total 

dilatation  resulting  from  the  uniform  distortional  strains,  as  well  as  that 

resulting  from  the  curvature  on  account  of  the  finite  size  of  the  grains.  And 
to  complete  the  analysis  of  the  relations  between  the  dilatations  and  the 
strains  it  is  necessary  to  effect  the  analytical  separation  of  these  two 
dilatations. 

The  separation  of   the  dilatations  follows  at  once  from  equation  (324). 

By  equation  (327)  we  have  for  the  total  dilatation  per  unit  of  volume  at 

a  point -(/3  +  7)- 

And  from  equation  (325)  the  total  dilatation  is 

a(i  + 

Therefore A 

A    a  - 

2r, 

-(£+ 7) 

2^ 

-  03  +  7) 

2r} 

.(328). 

The  first  and  second  of  equations  (328)  are  respectively  for  the  dilatations 

resulting  from  uniform  strains  and  from  the  size  of  the  grains. 

These  involve  the  squares  of  c/2r1;  neglecting  this  term  we  have  as 

approximations : 

For  the  dilatations  resulting  from  uniform  strains 

-0+*>(i-£)- 

And  for  the  dilatations  resulting  from  the  size  of  the  grains 

Adding  these  two  last  expressions  we  have 

-(£  +  7)   (329>> 
which  expresses  the  total  dilatation  per  unit  of  volume  at  a  point  in  the 
medium. 

Then  integrating  the  partial  dilatations  from  go  to  rx  over  the  medium, 

since  the  total  integral  dilatation  is  4nrrQ3/3  we  have  for  the  integral  dilatation 
resulting  from  uniform  distortion 

£)£*   (330). 
-G8  +  7)[i_^_) 

z/-, 

3 
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And  for  the  dilatation  resulting  from  the  size  of  the  grains 

i^-08  +  7).^^*-(l-7l)«^Xr•,   (881)- 
The  relations  between  the  strains  and  the  resulting  dilatations,  as  expressed 

in  equations  (326  to  331),  are  the  complete  relations  to  a  first  approximation 

as  long  as  there  is  no  other  disturbance  in  the  normal  piling  than  the 

spherical  disturbance  which  gives  rise  to  the  radial  inward  strains.  And  they 
have  been  obtained  by  taking  the  coefficients  of  dilatation  as  unity. 

The  relations  between  the  principal  stresses  are  such  as  satisfy  the 

equation  of  equilibrium 

pr"+2pt"=3p"   (332), 

and  are  also  such  as  satisfy  the  condition  of  virtual  velocities  approximately, 

which  on  the  assumption  that  the  coefficients  of  dilatation  are  unity,  since 

the  contraction  strains  are  tangential,  requires  that 

Pt"  =  2pr"   (333). 

Therefore  from  (332)  and  (333)  we  have 

pt"  =  ip"  and  p;.'  =  \p"   (334). 

Equations  (332)  and  (333)  express  completely,  to  a  first  approximation,  the 

relations  between  the  constant  mean  pressure,  equal  in  all  directions,  and  the 

constant  mean  tangential  and  normal  principal  stresses  resulting  from  a 

negative  spherical  disturbance  about  an  only  centre  on  the  supposition  that 
the  coefficients  of  dilatation  are  unity. 

214.  Having  in  the  last  article  effected  the  analysis  of  the  relations 
between  the  dilatations  and  strains,  as  well  as  between  the  mean  tangential 

and  normal  principal  stresses  and  the  mean  pressures,  equal  in  all  directions, 

about  an  only  negative  centre,  on  the  supposition  that  the  coefficients  of 

dilatation  are  unity,  it  remains  to  consider  that  choice  pointed  out  (Art.  213) 
of  the  circumstances  under  which  this  condition  can  be  realised. 

The  definition  of  a  negative  local  disturbance  (Theorem  (i),  Art.  203)  in- 
volves the  absence  of  a  certain  number  of  grains,  which  if  present  in  normal 

piling  would  render  the  piling  in  the  medium  normal,  reverse  the  strains, 
and  so  obliterate  all  trace  of  disturbance  about  the  centre. 

There  is  nothing  in  the  definition  of  such  local  centres  that  defines  the 

mean  distance  from  the  local  centre  at  which  the  grains  may  be  absent,  nor 

is  there  any  obligation  that  the  space  from  which  the  grains  are  absent  shall 
be  continuous,  as  long  as  there  is  some  symmetry  about  the  centre. 

It  is  therefore  open  for  us  to  consider  such  arrangement  of  the  position 
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about  the  centre  from  which  the  grains  are  absent  as  will  result  in  the  least 

analytical  complexity. 

It  would  seem  at  first  sight  that  the  greatest  simplicity  would  be  secured 

by  assuming  that  the  grains  were  removed  from  a  spherical  space.  But  in 
that  case  it  at  once  appears  that  the  inward  radial  displacement  would 

extend  to  the  centre  of  the  sphere.  And  it  also  appears  (Art.  207)  that 

the  contraction  strains  as  the  centre  was  approached  would  be  such  that 

instability  would  come  in,  and  the  arrangement  near  the  centre  would  revert 

to  some  more  nearly  normal  piling,  forming  a  nucleus  of  grains  in  normal 

piling  without  dilatation.  In  this  case  the  dilatation  would  commence  in  the 

grains  outside  the  spherical  nucleus,  there  being  a  spherical  shell  of  grains  in 
abnormal  piling  constituting  a  broken  joint  between  the  nucleus  and  the 
medium  outside,  which,  although  strained  inwards,  would  still  be  such  that 

the  grains  had  not  changed  their  neighbourhood.  Thus  it  appears  that  the 

abstraction  of  grains  from  a  spherical  space  would  not  entail  that  this 

strained  normal  piling  would  reach  the  centre. 

The  arrangement  instituted  as  a  result  of  this  abstraction  from  a 
spherical  space  seems  most  natural  and,  with  a  little  modification,  such 

arrangement  presents  the  least  analytical  difficulty. 

If  we  adopt  the  nucleus  in  an  exaggerated  form  and  the  spherical  shell 

of  grains  in  abnormal  piling,  no  matter  how  thin,  also  take  1\  for  the  radius  of 

the  singular  surface  which  is  somewhere  within  the  spherical  shell  of  grains 

in  abnormal  piling,  since  the  volume  of  grains  absent  is  47rr03/3  which  volume 
as  a  spherical  shell  of  radius  1\  would  have  a  thickness  approximating  to 

?,03/3r12,  we  have  as  an  expression  for  the  inward  radial  displacement  of  the 
grains  in  strained  normal  piling  which  are  adjacent  to  the  singular  surface 

'o     _  'i'o  /'3'}t\ 

3n2     3n3   K     >' 

Then  since  this  is  the  greatest  possible  radial  displacement,  and  being 
adjacent  to  the  singular  surface  is  independent  of  dilatation,  the  contraction 

strain,  owing  to  the  displacement,  would  be  the  largest  contraction  strain 

possible.  Whence,  if  this  is  small,  all  the  contraction  strains  will  be  very 

small,  and  as  the  dilatations  are  equal  to  the  contraction  strains,  though 
of  opposite  sign,  the  dilatation  would  be  very  small,  and  by  Art.  207  the 
coefficients  of  dilatation  would  approximate  to  unity. 

In  order  to  show  that  the  contraction  strains  at  the  singular  surface 
resulting  from  radial  displacement 

3n2 

would  be  very  small ;    let  the   outer  circle    (Fig.  4  a)   represent  a  section 
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through  the  centre   of  disturbance   before  the  volume   47rr03/3   is  removed, 
and  the    inner    circle    represent  the   section  through   the  centre   after    the 

Fig.  4  a. 

volume  is  removed.  Then  if  the  inner  circle  is  taken  to  represent  the 

section  of  the  singular  surface  through  the  centre  of  disturbance,  since  the 

radial  displacement  [a  =  —  2  ((3  +  7)]  of  the  grains  at  that  surface  has  been 
shown  to  be  (equation  335)  ̂ /Sr^,  the  contraction  at  the  singular  surface  is 

rA  —r 

fir2  '   #1f 

Wl  (336). 

(3>y 
Then  since  ruh\  is  small,  according  to  powers  of  rnh\,  we  get  a  rapidly 

converging  series,  the  first  term  of  which  is 

-^=#  +  7   <3S7> 

Then  by  equation  (327)  we  have  as  a  first  approximation  to  the  dilatation 

resulting  from  the  contraction  at  the  singular  surface  r^jSr^.  And  as  this  is, 

approximately,  the  greatest  possible  dilatation,  it  follows  that  under  the 
conditions  as  stated  above  the  radial  displacement  and  inward  strains  are 
such  that  the  coefficients  of  dilatation  would  to  a  first  approximation  be 
unity. 

It  is  thus  shown  that  the  conditions  assiuned  in  the  present  article  are 

not  only  possible  but  are  also  the  most  probable. 

215.  In  order  to  complete  the  analysis  for  an  only  negative  centre  it 

remains  to  obtain  the  expressions  for  the  contraction  strains  and  dilatations 

at  any  distance  from  the  singular  surface  corresponding  to  those  found  in 
the  last  article  for  the  contraction  strains  and  dilatations  at  the  singular 
surface. 

Thia  problem  differs  essentially  from  that  of  determining  the  strains  at 

the  singular  surface;  this  difference  appears  at  once  when  we  realise,  as 

already  pointed  out,  that  the  radial  displacement  which  the  grains  at  the 

singular  surface  have  undergone  is  definitely  expressed  by  rQ*/Qrf,  since 

it  is  subject  to  no  displacement  from  dilatation,  whereas  the  radial  displace- 

ment which  the  grains  at  an  arbitrary  distance  r  from  the  centre  have 

undergone  depends  on  the  dilatation  between  r  and 
r. 
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There  are  however  two  definite  conditions  that  the  radial  displacements 

must  satisfy  to  a  first  approximation. 

(1)  The  condition  (Art.  207)  that  whatever  the  radial  displacement  may 
be  it  must  be  such  that  the  integral  of  the  dilatations  taken  from  r,  to  x 

shall  be  equal  to  the  volume  from  which  the  grains  are  absent. 

(2)  That  the  radial  displacement  must  be  such  that  at  any  distance 

greater  than  i\  the  resulting  tangential  contractions  will  cause  dilatation 

which,  integrated  over  the  volume  of  the  spherical  shell  4>tt  (r,3  —  r03)/3,  will 
express  when  divided  by  ?y  radial  displacements  corresponding  to  those 
assumed. 

If  instead  of  taking  —  r03/3r2  or  —r^/S^r2  we  take 

for  the  radial  displacement,  we  have  for  the  contraction  strains,  since  they  are 

negative  and  only  half  the  total  elongation, 

?Vo3 

6r3 

r\  —  r 

r  3
 

'0 

From  which  to  a  first  approximation  we  have  for  the  contraction  strain 

1  r^3 
Then  changing  the  sign,  multiplying  by  it  and  integrating  from  1\  to  r 

[r  1       ,       4<7rr03      47r?v03 
10  ]r  3? rdr==—s   3"    r~   (       )" 

The  result  arrived  at  in  equation  (338)  admits  of  more  general  proof, 

from  which  it  appears  that  this  result  is  the  only  result  possible. 

Putting  X  for  the  radial  displacement ;  since  the  dilatation  is  expressed 

by  X/r  we  have  to  obtain  the  expression  for  X  satisfying  the  condition 

whence  it  appears  that 

^7r\ri-r'dr  =  ̂r03   (339), r  6 

X=~WT   (840). 

Also  dividing  the  last  term  in  equation  (338)  by  r-  we  have  for  the  radial 
displacement  at  a  distance  r 

7VV5 

3r3  ' 

which
  

is  the  same 
 
expre

ssion
  

for  the  radial
  
displ

aceme
nt  

as  that  assum
ed. 

So  that  both  condit
ions  

are  compl
etely

  
satisfi

ed. 
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216.  In  this  section  it  is  assumed  that  there  is  no  diffusion.  Having  in 

the  previous  articles  in  this  section  effected  the  analysis  of  the  inward  strains 
and  the  consequent  dilatations  for  only  negative  spherical  disturbances 

resulting  from  the  absence  of  grains,  before  proceeding  to  consider  the  corre- 
sponding analysis  for  the  other  inequalities  in  the  density  of  mean  matter, 

it  seems  convenient  to  proceed  with  the  analysis  necessary  to  determine  the 

effects  such  negative  disturbances  may  have  on  each  other  when  existing 
within  finite  distances  of  each  other. 

Any  such  action  must  depend  on  the  interference  of  the  strains  outside 

the  respective  singular  surfaces,  and  any  attraction  of  the  centres  resulting 
from  such  interference  must  be  a  function  of  the  distance  between  the 
centres. 

From  Arts.  209  and  212  we  have  perfect  similarity  in  the  strain 

resulting  from  uniform  distortions,  from  which  it  follows  that  such  strains 
from  different  negative  centres  superimpose  without  affecting  their  respective 
dilatations,  and  hence  can  in  no  way  interfere  or  attract  one  another. 

In  the  case  of  the  strains  resulting  from  finite  values  of  a  owing  to  the 

curvature  resulting  from  distortions,  the  strains  from  different  negative  centres 

at  any  finite  distance  must  interfere. 

This  appears  in  Arts.  209  and  212,  in  which  it  is  shown  that  for  other 

than  equal  uniform  strains  there  cannot  be  geometrical  similarity  in  the 
effects  in  equal  spaces,  in  media  of  which  the  scales  are  different. 

For,  applying  this  to  the  case  in  hand,  since  the  diameter  of  the  grains, 

<7i  say,  is  common  to  all  the  grains,  while  the  number  of  grains  absent  as  well 
as  the  radii  of  the  singular  surfaces  may  differ  in  almost  any  degree,  the 

dissimilarity  at  once  appears. 

For  the  sake  of  clearness  we  may  consider  in  the  first  place  two  cases  in 

both  of  which  the  a  has  the  value  au  and  the  singular  surfaces  both  of  radii  i\, 

4<7r 

but  in  one  of  which  the  volume  of  the  grains  absent  is  —  ra3,  and  in  the 3 

other  —  »y. o 

Then  by  equation  (331)  we  have  for  the  dilatation  at  a  distance  r  for 
the  centre  a 

3     a  r*  \        2rx 

and  for  the  centre  b 

4-7T      9  O-!  ( ̂   cr1 

T 
r*3  ?  i1  -  ft) 
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and   neglecting  <r,/2r1   for  the    present,  as   small,   multiplying  by  r-dr  and 
integrating  from  ?\  to  r  =  oo  we  have  for  the  dilatation,  taking  w  to  express  it, 

.(341). 

4<7rra3  aA 
6      r 

4 

wh  = From  the  expressions  in  the  preceding  paragraph  for  the  total  dilatation 
resulting  respectively  from  the  two  centres  considered  as  if  each  were  the 

only  centre  within  an  infinite  distance,  it  appears  in  the  first  place  that  the 

dilatation  resulting  from  the  product  a  into  the  curvature  is  directly  propor- 
tional to  the  volume  occupied  in  normal  piling  by  the  grains  absent.  And 

in  the  second  place  from  the  form  of  the  expressions  obtained,  that  the  total 

dilatation  is  inversely  as  the  radius  of  the  singular  surface. 

It  is  this  fact,  that  whatever  may  be  the  volume  occupied  by  the  absent 

grains  in  normal  piling,  the  dilatation  will  be  inversely  as  the  radius  of  the 

singular  surface,  which  proves  the  effect  of  dissimilarity  between  the  constant 

value  of  a  and  the  different  values  of  rl3  namely  that  for  any  particular 
volume  of  grains  absent  the  dilatation  resulting  from  the  small  centre  will  be 

greater  than  that  resulting  from  the  large  centre  in  the  inverse  ratio  of  the 
radii  of  the  centres. 

So  far  we  have  only  considered  the  effect  of  dissimilarity  in  ajr^  on  the 
supposition  that  each  centre  is  the  only  centre  within  finite  distance. 

We  may  now  proceed  to  prove  that  negative  centres  at  finite  distances 
attract  each  other. 

Taking  &>  to  express  the  total  dilatation  from  i\  to  r  =  oo  resulting  from  a 
single  negative  centre,  then  as  has  just  been  shown 

°>.  =  4f^     (342). 

Then  the  number  of  such  singular  surfaces  which  would  occupy  an 

empty  spherical  shell  of  radius  rB  when  arranged  in  closest  order  would  be 

approximately 07  or, 
3 

N'  =  "'iiB     (343). 

And  by  equation  (341)  the  total  dilatation  of  each  of  the  N'  surfaces  outside 
the  surface  47rr02  is 

47rrn3  a 

••-V*   (nH)- 
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Multiplying  co1  and  wB  by  N'  we  have  for  the  respective  total  dilatations 

and 

N'co^N'^-    (345) 
3     i\ 

N'coB=N'~p3  -     (346). 6        7'B 

Subtracting  these  equations  as  they  stand  we  have 

*'<--« >-*-^£-3   <*«>• 
Then  from  equation  (347)  it  follows  that  the  dilatation  resulting  from 

any  number  of  negative  similar  disturbances  (if  the  singular  surfaces  are  at 
an  infinite  distance  from  each  other)  will  be 

„,  47rr03  a 
3     n 

while  if  these  surfaces  are  arranged  in  closest  order  the  dilatation  will  be 

Ar/47rr03  a 

6      rB 

Whence  since  rB  is  greater  than  i\  it  is  shown  that,  no  matter  how 

accomplished,  the  dilatation  resulting  from  negative  centres  diminishes  in 
the  ratio 

n 

as  the  centres  of  the  singular  surfaces  approach  until  they  are  arranged  in 
closest  order. 

This  proves  the  diminution  of  the  dilatation  owing  to  the  diminution  of 

the  variations  of  strain  as  the  centres  approach — or  the  diminution  of  the 
dilatation  owing  to  the  diminution  of  the  curvature  of  the  normal  piling  in 
the  medium  due  to  dissimilarity.     Q.  E.  D. 

From  the  proof  of  the  foregoing  theorem  it  also  appears  how  it  is  that 

the  dilatations  resulting  from  distortion  do  not  interfere  however  much  they 

superimpose,  for  since  the  dilatations  resulting  from  distortion  in  no  way 

depend  on  the  curvature  in  the  medium,  as  curvature,  they  depend  only  on 
the  strain,  whereas  the  diminution  is  in  the  variations  of  the  strain. 

In  order  to  prove  the  attraction  of  the  negative  centres  it  is  necessary  to 

consider  the  effects  of  the  pressures  in  the  medium.  These  have  already 
been  discussed  in  Art.  213,  equations  (332)  to  (334),  in  which  it  is  shown 

that  the  dilatations  resulting  from  curvature  are  subject  to  the  mean 

pressure  p"  and  satisfy  the  condition  of  virtual  velocities.  In  dealing  with 
attraction  it  might  seem  necessary  first  to  prove  or  assume  that  the  singular 



204  ON   THE   SUB-MECHANICS   OF   THE   UNIVERSE.  [217 

surfaces  are  also  surfaces  of  freedom  which  can  be  propagated  in  any 

direction  through  the  medium,  for  as  the  medium  is  elastic  in  consequence 
of  the  finite  relative  motion,  if  we  can  find  the  variation  of  the  work  done 

by  the  external  media  on  the  singular  surfaces  owing  to  variation  of  their 

distances,  it  becomes  possible  to  separate  the  active  effort  from  the  passive 
resistance. 

Multiplying  the  member  on  the  right  of  equation  (347)  by  p"  we  have 

„  4>7rr03 
^Ta-s) 

as  the  expression  for  the  difference  of  the  energies  in  the  media  when  the 

N'  singular  surfaces  of  radius  rx  are  at  an  infinite  distance  from  each  other, 

and  when  the  N'  singular  surfaces  of  radius  i\  are  arranged  in  closest  order 
within  the  surface  rB. 

This  difference  in  the  energy  proves  the  existence  of  attractions  what- 
ever may  be  the  passive  resistance  owing  to  want  of  mobility  of  the  singular 

surfaces. 

These  attractions  as  obtained  by  neglecting  a2  are  the  only  attractions 
between  negative  centres  of  disturbance  which  are  small  compared  with  their 

distances  apart,  as  follows  from  the  fact  already  proved  that  the  aggregate 

dilatation  resulting  from  distortional  strains  depends  only  on  the  volume  of 

the  absent  grains. 

217.  The  law  of  the  attraction  of  negative  centres  appears  at  once  from 

the  analysis. 

If  instead  of  taking  the  total  dilatation  from  rB  to  r  =  oo ,  as  in  equation 
(346),  we  take  the  dilatation  from  rB  to  r,  where  r  is  greater  than  rB,  the 

dilatation  from  the  N'  singular  surfaces  in  closest  order  is 

3      \rB     r 

Then  if  there  is  another  singular  surface  of  radius  r3  in  which  the  volume 

of  grains  absent  is  4>7rr03/S  at  the  distance  r  the  variations  of  the  strains  of 
the  outside  singular  surfaces  interfere  with  those  from  the  centre  rB\  and 

multiplying  the  dilatation  outside  rB  less  the  dilatation  outside  r  b}?  minus 
the  volume  of  the  grains  absent  in  the  outside  centre,  we  have  the  expression 

and  differentiating  this  expression  with  respect  to  r  we  have 

-N 

,  f4nrr V    3 

J  r2'
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whence  multiplying  by  p",  since  aj\  is  large  so  that  the  density  within  the 
singular  surfaces  is  unity,  we  have  for  the  acceleration 

^•Wife-S-^W?   ^ 
This  expresses  the  space  rate  of  variation  in  the  work,  or  energy  in  the 

system,  with  the  distance,  that  is  the  effort  to  bring  the  centres  together 
whatever  may  be  the  passive  resistance. 

It  is  thus  shown  that  the  law  of  attraction,  that  is  the  effort  to  bring  the 

surfaces  together,  whatever  may  be  the  passive  resistance,  is  the  product  ol 

the  masses  of  the  grains  absent  multiplied  by  a  and  again  by  minus  the 
reciprocal  of  the  square  of  the  distance. 

This  law  of  attraction,  which  satisfies  all  the  conditions  of  gravitation,  is 

now  shown  by  definite  analysis  to  result  from  negative  local  inequalities  in 

an  otherwise  uniform  granular  medium  under  a  mean  pressure  equal  in  all 

directions,  as  a  consequence  of  the  property  of  dilatancy  in  such  media 
when  the  grains  are  so  close  that  there  is  no  diffusion  and  infinite  relative 

motion ;  and  further  it  is  shown  to  be  the  only  attraction  which  satisfies  the 

conditions  of  gravitation  in  a  purely  mechanical  system. 

The  mechanical  actions  on  which  this  attraction  depends  are  completely 

exposed  in  the  foregoing  analysis,  and  offer  a  complete  explanation  of  the 
cause  of  gravitation. 

In  this  explanation  of  the  cause  of  gravitation  there  are  some  things 

which  are  at  variance  with  previous  conceptions,  besides  the  fundamental 

facts,  (i)  that  the  attraction  of  the  singular  surface  which  corresponds  to 

that  of  gravitation  is  not  the  effect  of  masses  present  but  of  masses  absent, 

which  has  already  been  revealed  in  the  previous  analysis,  and  (ii)  that  the 
volume  enclosed  within  the  singular  surfaces,  which  is  the  volume  from 

which  the  singular  surfaces  shut  each  other  out,  has  no  proportional  relation 

to  the  number  of  grains  absent,  but,  as  will  at  a  later  stage  appear,  depends 

on  the  possibility  of  some  one  definite  arrangement  of  the  grains  absent,  out 
of  a  finite  number  of  possible  different  arrangements. 

218.  In  the  analyses  of  Newton,  Laplace,  Poisson,  and  Green,  for  defining 

the  consequence  which  would  result  if  distant  masses  attracted  each  other 

according  to  the  product  of  the  masses  divided  by  the  squares  of  the  distances, 
the  attraction  is  taken  as  inherent  in  the  masses.  This  assumption  assumed 

that  there  was  something  that  was  not  force,  but  which  varied  with  the 

distance  from  a  solitary  mass,  and  this  something  after  various  names  is  now 

generally  called  the  potential.  That  any  of  the  philosophers  named  believed 
in  force  at  a  distance  is  more  than  doubtful,  as  Hooke  and  Newton  and 

Faraday   repudiated    any   such    idea.     Maxwell    went   a   stage    further   and 
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showed  that  such  attractions  might  be  a  result  of  a  certain  law  of  varying 

stresses  in  a  medium — as  to  this  he  writes,  "  It  must  be  carefully  borne  in 
mind  we  have  made  only  one  step  in  the  theory  of  the  medium.  We  have 

supposed  it  to  be  in  a  state  of  stress,  but  we  have  not  in  any  way  accounted 

for  the  stress  or  explained  how  it  could  be  maintained."   "  I  have  not  been 
able  to  make  the  next  step,  namely  to  account  by  mechanical  considerations 

for  the  stresses  in  the  dielectric*." 

Maxwell  is  here  writing  of  electricity,  which  is  not  the  same  thing  as 

gravitation,  as  will  presently  appear. 

This  second  step,  namely  that  of  accounting  by  mechanical  considerations 
for  the  stresses  in  the  medium,  has  now  been  overcome;  as  we  have  the 

mechanical  interpretation  of  the  potential  as  the  product  of  the  uniform 

pressure  p"  multiplied  by  the  integral  of  the  dilatation  over  the  medium 
rB  to  rlf  or 

V  =  p"N'^f<r{^-^\   (349), 

or,  omitting  the  constants, 
]\J'4—r  3 

V=-p"a       3      °      (350). 

This  is  entirely  rational  and  when  multiplied  by  —  4>7rr03/S  and  differ- 
entiated gives  us  the  attraction  hitherto  expressed  by  ttf. 

And  it  thus  appears  that  the  thing  to  which  the  name  potential  has  been 

applied  is  the  product  of  p"  multiplied  by  the  total  dilatation  between  the 
surface  of  radius  rB  and  the  surface  of  radius  r  (greater  than  rB). 

It  is  to  be  noticed  that  in  so  far  as  we  are  concerned  with  the  effort  of 

attraction  and  not  with  acceleration,  it  is  only  the  volume  of  the  space  from 

which  the  grains  are  absent,  and  not  the  mass  within  the  space,  that  we 
have  to  take  into  account. 

And  it  is  for  this  reason  that  in  the  foregoing  analysis,  in  this  section, 

p  has  not  been  introduced.  But  since,  in  states  of  the  medium  under 

consideration,  in  our  present  notation  p  is,  to  a  first  approximation,  equal  to 
unity,  it  would  have  made  no  difference  if  we  had  taken  it  into  account 

(when  we  have  to.  consider  the  displacement  of  mass  owing  to  the  effort,  the 

fact  that  p"  is  unity  is  of  primary  importance),  since  whatever  the  effort  to 
acceleration,  the  acceleration  is  inversely  proportional  to  the  density — and 
^his  will  appear  at  a  later  stage. 

In  order  to  render  the  expression  for  attraction  intelligible  it  should  here 

be  noticed  that  strains,  and  consequent  dilatations  in  the  medium,  which  have 

*  Electricity  and  Magnetism,  Vol.  i.  Arts.  110  and  111. 
t  This  R  has  no  connection  with  the  R  used  in  Arts.  200  and  '201. 
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no  dimension,  and  which  are  the  only  actions,  are  outside  the  singular 

surfaces ;  so  that  we  are  not  dealing  with  two  or  more  independent  masses, 

but  with  the  variations  in  the  displacements  in  the  entire  medium,  all  the 

mechanism,  so  to  speak,  being  in  elastic  connection  controlled  by  the  pressures, 
as  conditioned  by  the  positions  of  negative  inequalities  in  the  mean  mass 

represented  by  4>7rr03/S. 

There  is  no  complete  freedom  of  inequalities  as  long  as  there  are  other 

inequalities  within  a  finite  distance. 

Thus  it  appears  that  the  singular  surfaces  are  virtually  the  handles  of 
the  mechanical  train. 

219.  Having  effected  the  analysis  for  the  attractions  and  the  potential, 

we  may  now  return  to  the  inequalities  in  mass  as  mentioned  in  the  schedule, 
Art.  203. 

The  second  inequality  in  the  mean  mass  in  that  schedule  is  that  which 

may  be  conceived  to  result  from  an  excess  of  grains,  instituting  a  positive 
centre. 

The  analysis  for  the  effects  of  such  positive  centres  is  precisely  similar 

to  that  already  effected  for  the  negative  centre,  except  that  in  the  case  of 

the  positive  centre  the  curvature  would  be  reversed,  the  curvature  being 

away  from  instead  of  towards  the  centre. 

The  effect  of  this  appears  to  be  to  cause  positive  centres  to  repel  instead 

of  attract  each  other.  Such  repulsions  would  as  in  the  case  of  negative 

centres  depend  on  the  product  a  multiplied  by  the  curvature,  which  is  of 

opposite  sign  to  that  for  positive  centres,  and  thus  the  effort  of  repulsion 

between  two  positive  centres  would  be  expressed  by 

„/47rr03\    a 

The  coefficient  of  dilatation  is  the  same — unity.  There  is  thus  no 
necessity  to  repeat  the  analysis.  This  concludes  the  approximate  analysis  of 

the  actions  between  centres  having  similar  signs. 

It  may  however  be  remarked  that  there  are  reasons  why  it  is  probable 

that  positive  centres  should  exist,  as  will  appear  at  a  later  stage. 

220.  The  first  of  the  class  of  complex  local  inequalities  ((iii),  Art.  203)  is 

that  which  would  be  instituted  if  by  action  on  the  medium  in  normal  piling 

a  number  of  grains  (n)  were  displaced  from  their  previous  neighbourhood 

when  in  normal  piling  to  some  other  neighbourhood  previously  in  normal 

piling. 

Such   complex  inequalities  are   only  second  in  importance  to  groups  of 
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negative  inequalities  at  finite  distances,  such  as  have  already  been  discussed. 
In  the  case  of  complex  inequalities  there  is  no  difficulty  in  conceiving  that 

owing  to  the  mean  pressure  there  would  be  an  effort  to  reverse  the  displace- 
ment, as  nothing  would  seem  more  natural  if  we  have  an  absence  of  grains  in 

one  place  and  an  excess  in  another,  under  pressure,  than  that  there  should 

be  strains  from  the  place  of  excess  to  the  place  in  which  the  grains  are  absent, 
and  vice  versa. 

It  also  appears  at  once  as  pointed  out  in  Art.  203  that  the  case  is  identi- 

cal with  that  which  would  result  from  the  existence  at  finite  distance  of  equal 

positive  and  negative  centres,  having  the  same  number  of  grains  absent  and 
present  respectively. 

This  identity  indicates  the  direction  of  the  analysis  necessary  in  order  to 
obtain  the  expressions  for  the  effort  to  reverse  the  displacement. 

We  have  already  obtained  the  expressions  for  the  dilatations  per  unit  of 

volume  at  any  point  distant  r  from  a  negative  centre  resulting  both  from 
the  distortional  strain  and  from  the  curvature  owing  to  the  finite  size  of  the 

grain 47rr03  r,         ,   47rr03  a    and   —   -. 
3      r4  3      r4 

And  it  has  also  been  shown  that  there  is  no  diminution  in  the  dilatations  in 

the  former  as  the  centres  approach. 

It  has  also  been  shown,  Art.  217,  that  multiplying  the  dilatations  at  a 

point  resulting  from  a  negative  centre  by  p"r2dr  and  integrating  from  r\ 
to  r,  we  have  the  equation 

4-mv  [r<r      .  ,  „47rr03  fa V 

J   p.**-*  -rk—r)   (30lX 
the  second  member  of  which  expresses  the  potential  of  attraction  between 

the  two  equal  negative  centres.  This  multiplied  by  a  second  negative 
inequality  and  differentiated  with  respect  to  the  distance  between  the  centres 

expresses  the  effort  of  attraction  of  the  centres  as 
/47rr03Y 

And  again,  although  not  previously  noticed,  it  appears  at  once  from  equation 

(351)  that,  if  instead  of  the  limits  of  integration  being  from  r^  to  r,  they  are 
taken  from  r  to  r  =  go  ,  we  have 

P      3    J    ̂.fdr  =  p      3     •-   (353). 

This  integral  must  have  some  significance  as  a  potential.     And  it  appears 

on  multiplying  equation  (353)  by  47rr03/3,  which  is  an  expression  for  a  positive 
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inequality  equal  to  the  negative  inequality,  and  differentiating  with  respect 
to  the  distance  between  the  centres,  when  the  equation  becomes : 

1 
dr 

r4 

V*-)  Ir 
=  -P    [-3-)  r*      (3°4)- 

The  second  member  expresses  an  attraction  between  the  positive  and 

negative  centres. 

221.     The  significance  of  the  two  integrals. 

In  Art.  216  from  equation  (346)  it  is  shown  that  negative  centres 

attract,  therefore  if  there  were  a  choice  of  two  general  integrals  of  the  dilata- 
tion from  a  negative  centre,  from  one  of  which  in  the  case  of  negative  centres 

there  would  result  a  repulsion,  while  the  other  would  result  in  attraction,  it 

is  certain  that  the  integration  which  would  result  in  the  attraction  is  the 

only  one  between  negative  centres  whatever  might  be  the  significance  of  the 
other  integration.     And  this  is  what  actually  occurs. 

If  instead  of  the  limits  from  r\  to  r  as  in  equation  (351)  the  limits  are 

taken  from  r  to  oo  as  in  equation  (353),  then  taking  account  of  a  second 

negative  singular  surface  we  should  have  for  the  complete  potential : 

„  /4tt7'03\  o" 

which  differentiated  with  respect  to  r  is: 

/47rr03\  a P \TT; 

&  ■ 

which   expresses   a  repulsion.     Hence   this  cannot   be  the   integral  for  the 

attraction  of  one  negative  centre  for  another. 

As  already  remarked  this  form  of  integral  of  the  dilatation  from  a 

negative  centre  must  have  a  significance,  and  significance  appears  when  we 

substitute  a  positive  inequality  4>irr03/3  in  place  of  the  negative  inequality 
—  47rr03/3  in  the  last  expression  for  the  attraction,  which  becomes 

3    J  f 

Thus  we  have  the  expression  for  the   attraction   of  equal  positive  and 

negative  centres  resulting  from  the  finite  size  of  the  grains. 

222.     The   intensity   of  the   attractions   of  equal    positive   and    negative 

inequalities. 

In  the  first  place  it  is  to  be  noticed  that  the  intensity  of  the  attraction 

between  equal  positive  and  negative  inequalities  as  in  the  last  expression 
r.  14 
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(Art.  221)  is  as  a  to  i\  of  the  total  intensity  of  attraction  between  positive 

and  negative  surfaces.  Indeed  the  expressions  last  but  one  and  last  (Art. 

221)  only  indicate  the  significance  of  the  two  integral  potentials.  And 

such  intensity  as  they  express  in  no  way  depends  on  the  curvature. 

This  becomes  clear  if  we  recognise  that  in  the  case  of  a  displacement  of 

n  grains  the  strains  from  the  negative  centres  are  negative  and  extend  to 

infinity,  while  the  strains  resulting  from  the  positive  centres  are  positive  and 
extend  to  infinity.  The  components  of  the  negative  strains  cancel  with  the 

components  of  the  positive  strains  with  which  they  are  parallel ;  hence  the 
diminution  of  the  dilatation  as  the  displacement  diminishes  in  no  way 

depends  on  the  curvature  but  wholly  on  the  cancelling  of  the  distortional 
strains. 

It  thus  appears  that  in  order  to  express  the  effort  to  restore  the  normal 

piling  in  the  medium,  we  have  only  to  substitute  the  radius  of  the  singular 

surface  in  the  place  of  <r  in  the  last  expression  (Art.  221). 

Thus  for  the  total  effort,  in  the  complex  inequality  resulting  from  the 

displacement  of  a  volume  of  grains  47rr03/3  through  a  distance  r,  to  restore 
the  normal  piling  we  have 

R  =  -p"{^)2?   (355> 
Q.  E.  F. 

223.  It  may  be  noticed  that  in  obtaining  equation  (355)  no  use  has 

been  made  of  the  potential  of  attraction.  This  is  because  the  inequality 

caused  by  a  displacement  of  a  volume  of  grains  under  the  pressure  p", 
which  has  the  dimensions  ML3T2,  is  essentially  one  displacement,  not  two 
equal  and  opposite  displacements  as  in  the  case  of  two  equal  negative 

centres,  in  which  the  relative  displacements  of  energy  have  no  effect  on  the 
mean  position  of  energy  in  the  medium. 

This  may  be  shown  by  subjecting  the  expressions  for  the  effort  of 

attraction  between  negative  centres,  and  the  effort  to  reverse  the  displace- 

ment in  the  case  of  complex  inequality,  respectively,  to  further  analysis. 

Taking    the    effort    of  attraction    of  two    equal    negative  centres,  as  in 
equation  (354),  to  be  : 

„  47rr03     a 

-P 

,2: 

3      '  r and  the  effort  to  reverse  the  displacement  in  the  complex  inequality,  as  in 
equation  (355),  to  be  : 

„  /47rr03\2  ?'i 

-p 

•■>      I   ~& ' 

and  then  integrating  each  of  these  expressions  from  rt  to  oo ,  we  have  as 
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the  energies  resulting  from  the  dilatation  from  outside  the  singular  surfaces 
of  radius  1\, 

'47T/VY   1 

pa 

and 

„     /4irr0y  1 

/  r. 

-pr-{-s 

Then  to  obtain  the  expressions  for  the  potential  of  attraction  for  either 

of  these  respective  energies,  the  factor  \jr  must  be  separated  into  two  factors 

proportional  to  two  inequalities  of  the  same  or  opposite  sign  in  accordance 

with  the  sign  of  the  product  of  the  inequalities.  Then  multiplying  the 
factor  which  has  the  positive  sign  by  1/r  we  have  the  potential,  while  the 
other  factor  is  numerical  and  represents  the  attraction  of  the  centres. 

In  the  case  of  two  negative  centres,  taken  as  equal  for  simplicity,  as  the 
signs  of  the  inequalities  are  the  same  we  have  for  the  potential : 

/  „     MthvY  1 

and  for  the  attraction  : 

\A'v  ( 47rr0: "3" 

3\2 

And  in  the  case  of  the  complex  centre,  since  the  product  of  the  centres  is 
negative,  we  have  for  the  potential : 

p  n 

47rr03\2  1 3    I  r 

and  for  the  attraction 

—  i 
47T?VY 

-§-;■ 

Whence  it  appears  that  in  the  complex  inequality  both  the  potential  and 

the  attraction  are  irrational.  Whence  it  is  proved,  since  the  effort  is  real, 

that  the  absolute  displacement  of  energy  is  one  displacement  and  not  two. 

224.  The  electrostatic  unit  of  electricity  is  denned  as  the  quantity  of 

positive  electricity  which  will  attract  an  equal  quantity  of  negative 
electricity  at  unit  distance  with  unit  effort.  This  unit  as  is  shown  in 

Art.  223  is  irrational.  An  expression  for  the  unit  corresponding  to  the 

electrostatic  unit  is  obtained  from  either  of  the  last  two  expressions  in 
Art.  223. 

Thus  from  the  first  of  these,  putting  i\  =  rQ  and  r=  1,  we  get : 

Vp"(4/)V=i. 14—2 
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And  from  this,  since  all  the  quantities  under  the  radical  are  positive,  we 
have  the  condition 

P"(yJV  =  l      (356), 
from  which  if  p"  is  known  r0  may  be  found. 

225.  From  the  analysis  in  Art.  223  it  is  easily  realised  that  there  is  a 

fundamental  difference  in  attractions  between  two  negative  centres,  and  the 

attraction  of  two  equal  centres  one  positive  and  one  negative.  It  has  been 

shown  (Art.  217),  that  the  attraction  of  two  negative  centres  corresponds,  in 

every  particular,  to  the  attraction  of  gravitation  as  derived  from  experience. 

And  it  now  appears  that  the  alteration  from  a  positive  to  a  negative 

inequality  correspond  to  the  statical  attraction  of  the  positive  for  the 

negative  electricity.  Not  only  then  has  the  step  at  which  Maxwell  was 

arrested — that  of  accounting  by  mechanical  considerations  for  the  stresses 
in  the  dielectric — been  achieved,  and  a  moot  point  of  historical  interest 
settled,  but  as  now  appears  a  definite  error  as  to  the  actual  attractions  has 
been  revealed. 

This  error  is  in  the  general  assumption  that  electrified  bodies  repel  each 
other.  As  this  may  not  be  at  once  obvious  it  will  be  discussed  in  the  next 
article. 

226.  To  show  that  positively  electrified  bodies  do  not  repel. 

It  has  been  shown  in  Art.  225,  neglecting  the  small  attractions  of  two 
positive  or  two  negative  centres,  that  the  efforts  of  attraction  between  equal 

positive  and  negative  centres,  at  any  distance  r,  are  equal  and  opposite. 

If  then  in  the  same  line  we  have  two  equal  complex  inequalities  arranged 

so  that  their  displacements  are  opposite,  the  negative  centres  being  outwards 

as  H   h,  the  effort  of  attraction  of  one  of  these  complex  inequalities  would 
not  in  the  least  be  affected  by  the  other  complex  centre. 

Hence  there  is  no  attraction  between  two  positive  centres,  the  only  effort 

to  separation  of  the  two  positive  centres  being  between  those  of  the  two 

complex  inequalities,  the  effort  in  either  being  the  same  as  if  the  other  was 
not  there.     Hence  the  only  efforts  are  those  of  attraction.     Q.E.D. 

It  should  be  noticed  that  these  attractions  are  quite  apart  from  the 

repulsions  resulting  from  two  positive  centres  owing  to  the  curvature  and 

finite  size  of  the  grains  as  in  gravitation,  and  further  that,  other  things 

being  the  same,  the  ratio  of  the  attractions  between  positive  and  negative 

and  the  repulsions  between  positive  centres  is  as  rjcr,  and  hence  the 
repulsion  may  be  neglected  as  compared  with  the  attraction. 

227.  In  the  analysis  for  the  effort  of  attraction  of  negative  inequalities 

and  that  to  reverse  the  displacement  of  a  complex  inequality  the  terms  in 
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the  expressions  for  the  contraction  strains  which  involve  powers  of  rQ3/rx3 — 
the  ratio  of  the  volume  of  grains  absent  divided  by  the  volume  enclosed  by 

the  singular  surface — have  been  neglected  (Art.  214,  equation  (337))  and  it 

is  this  simplification  only  which  renders  the  law  of  attraction — as  the  inverse 
square — the  law  of  attraction  of  the  singular  surface  at  a  distance. 

But  this  in  no  way  limits  the  variation  of  the  stresses  over  those  portions 

of  the  space  in  and  between  the  parts  of  the  two  singular  surfaces  which  are 

within  indefinitely  small  distance  of  each  other.  Such  limits  can  only  be  de- 
termined by  taking  into  account  the  higher  terms  which  have  been  neglected. 

This  analysis  I  have  not  attempted.  But  it  seems  to  me  very  important 

to  notice  this  omission,  as  it  appears  that  the  attractions  or  repulsions  ex- 
pressed by  the  higher  powers  of  1/r,  when  the  surfaces  are  indefinitely  near, 

must  be  of  great  intensity,  so  that  owing  to  sudden  variations  the  work 

done  in  separating  the  surfaces  must  be  extremely  small. 

These  characteristics  are  those  of  cohesion  and  surface  tension  and  they 

promise  to  account  by  mechanical  considerations  for  the  hitherto  obscure 

cohesion  between  the  molecules  as  belonging  to  the  attractions  resulting 

from  the  finite  value  of  the  diameter  of  the  molecules  divided  by  the 

curvature  resulting  from  distortion,  or,  we  might  say  the  complement  of 

gravitation. 

228.  The  fourth  and  last  class  of  possible  local  disarrangements  causing 

strain  in  the  normal  piling,  with  some  degree  of  permanence,  in  the  schedule 

(Art.  203),  is  that  which  does  not  depend  on  the  absence,  presence,  or  linear 

displacement  of  grains,  but  does  depend  on  local  rotational  displacement  of 

grains  about  some  axis. 

Then  since  there  are  no  resultant  rotational  stresses  or  rotational  strains 

in  the  medium,  or  rotation  of  the  medium,  the  rotational  inequalities  must 

be  arranged  so  as  to  balance. 

Any  such  rotation  of  a  portion  of  the  medium  would  be  attended  with 
dilatations.  But  it  does  not  follow  that  the  dilatations  would  in  all  cases  be 

so  small  that  the  coefficient  would  be  unity. 

Then  noting  that  the  medium  in  virtue  of  relative  motion  of  the  grains  is 

in  some  degree  elastic,  if  we  conceive  that  by  two  opposite  couples  about 

parallel  axes  at  a  finite  distance  two  equal  spheres  of  grains  in  normal  piling 

having  their  centres  on  the  respective  axes,  could  be  caused  to  turn  about 

their  axes  through  opposite  but  equal  angles  6  and  —  6,  the  actions  would  be 
reciprocal,  and  supposing  the  actions  to  start  from  the  medium  in  normal 

piling,  when  the  angles  were  so  small  that  at  the  surfaces  there  was  no 

change  of  neighbours,  the  only  effects  would  be  strains  attended  by  dilatation 
about  the  axes,  which  on  removal  of  the  couples  would  revert,  restoring  the 
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unstrained  medium.     And  in  this  case  the  coefficient  of  dilatation  would  be 
unity. 

Then  if  the  angles  were  increased  the  strains  would  be  such  that  over  the 

equators  of  the  spheres  the  grains  would  change  neighbours,  diminishing  the 
dilatation ;  so  that  on  the  couples  being  removed  the  spheres  would  not 
revert  and  would  not  restore  the  unstrained  medium,  nor  would  the  angles  6 
and  —  6  be  zero. 

Those  portions  of  the  surfaces  of  the  spheres  nearer  the  axes,  where  the 

strains  had  not  been  sufficient  to  cause  a  change  of  neighbouring  grains, 

would  be  subject  to  stress  tending  to  diminish  the  angles  6  and  —  6,  while 
in  those  portions  where  the  grains  had  changed  their  neighbours  the  stresses 

would  be  resisting  this  change,  so  that  the  result  would  be  a  balance  of 

strains  and  stresses,  leaving  the  system  in  equilibrium  under  the  relative 
rotational  strains  and  stresses  and  dilatations  extending  outwards  from  the 
surfaces  of  each  till  they  vanish  at  an  indefinite  distance. 

The  strains  and  stresses  extending  from  the  sphere  of  which  the  residual 

angle  was  6,  since  the  axes  are  at  a  finite  distance,  could  not  in  any  way 

affect  strains  of  shear  having  the  angle  —  6.  But  if  the  shears  were  in  a 
plane  perpendicular  to  the  axes  and  at  a  finite  distance  from  each  other,  the 
strains  and  stresses  being  opposite  would  cancel,  and  the  dilatations  would 

diminish  in  such  manner  and  proportions  that  there  would  be  efforts  to 

approach  proportional  to  the  inverse  square  of  the  distance.  Or,  if,  other 

things  being  the  same,  the  spheres  were  at  finite  distances  on  the  same  axes, 

they  would  still  be  under  efforts  to  approach,  owing  to  the  cancelling  of  the 

strains  and  diminution  of  the  dilatation.  And  in  either  case,  other  things 

being  the  same,  if  one  of  the  poles  at  the  axis  of  either  one  of  the  spheres 
were  reversed  the  result  would  be  an  effort  of  repulsion,     q.e.f. 

Thus  efforts  of  attraction  correspond  exactly  with  those  of  fixed  magnets, 

and  thus  we  have  been  able  to  account  by  mechanical  considerations 

for  the  magnetism  which  has  any  degree  of  permanence. 

229.  Having  in  the  foregoing  articles  of  this  section  accomplished  the 

analysis  necessary  for  the  determination  of  the  attraction  of  negative  centres 

of  disturbance,  the  efforts  to  reverse  the  displacement  in  the  complex 
inequalities,  discussed  the  probability  of  cohesion  as  the  result  of  the  terms 

neglected  in  the  analysis  for  the  efforts  of  the  negative  centres,  and  effected 

the  analysis  for  the  efforts  of  attraction  resulting  from  opposite  rotational 

strains  about  parallel  axes  at  a  distance ;  it  remains  to  complete  the  section 

by  effecting  the  analysis  for  determining  the  mobility  of  the  singular  surfaces. 

230.  From  Theorems  1  and  2,  Art.  204,  and  more  particularly  in  Art.  214, 
we  have  defined  the  effects  of  local  inequalities  in  the  mean  mass,  when  a/X 
is  large,  on  the  arrangement  of  the  grains  and  the  distribution  of  the  strains 
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in  the  medium  about  both  negative  and  positive  centres.  Thus  it  has  been 

shown  in  the  case  of  a  negative  centre  that  the  inward  strains  would  be  such 

that  the  resulting  dilatation  would  pass  the  point  of  stability  and  reform, 

causing  a  nucleus  of  grains  in  normal  piling  which  might  increase  until  it 

was  stopped  by  meeting  the  inward  strained,  and  consequently  dilated, 
normal  piling. 

This  meeting  of  the  two  closed  surfaces,  the  outer  surface  of  the  nucleus 

in  normal  piling  with  the  inner  surface  of  the  inwardly  strained  normal 

piling,  affords  the  first  clue  to  the  possibility  of  a  surface  of  freedom.  For, 
since  the  grains  are  uniform  equal  spheres,  there  can  be  no  fit  between  the 

grains  in  normal  piling  at  the  one  surface  and  the  grains  in  strained  normal 

piling  at  the  other.  To  use  a  mechanical  expression  the  grains  cannot  pitch, 
and  consequently  there  is  a  spherical  shell  of  grains  in  abnormal  piling  which 

constitutes  the  singular  surface  a  surface  of  weakness  if  not  a  surface  of 

freedom.  Then  by  Theorem  1  it  follows,  whatever  may  be  the  arrangement 

of  the  grains  and  whatever  the  exchange,  there  can  be  no  change  in  the 
arrangement  or  number  of  the  grains.  Therefore  these  surfaces  of  misfit  are 

fundamental  to  all  inequalities  in  the  mean  mass. 

231.  Since  there  is  no  regular  fit  in  the  shell  of  abnormal  piling  at  the 

singular  surface,  say  of  a  negative  centre,  and  each  of  the  grains  is  in  a  state 

of  relative  motion,  each  of  the  grains  is  in  a  state  of  mean  elastic  equilibrium 

such  that  half  the  grains  are  on  the  verge  of  instability  one  way  and  half  in 

another.  If,  as  by  the  existence  of  another  negative  centre  at  finite  distance 
there  is  an  effort  of  attraction,  however  small,  it  would,  since  there  is  no 

finite  stability,  in  the  first  instance  cause  change  of  neighbours,  and  if 

sufficiently  strong  it  would  entirely  break  down  the  stability  and  cause  one 

or  both  the  centres  to  approach  at  rates  increasing  according  to  the  inverse 

square  of  the  distance,  since  as  by  Theorem  1  there  would  be  no  change  in 
the  mean  arrangement  of  the  grains  and  the  viscosity  may  be  neglected. 

232.  This  brings  us  face  to  face  with  questions  as  to  the  mode  of  dis- 
placement of  the  singular  surfaces,  as  well  as  the  manner  of  motion  of  the 

inequalities  in  the  mean  mass  which  constitutes  the  centre,  which  have  not 

as  yet  been  discussed. 

In  the  first  place  it  appears  at  once,  however  strange  it  may  seem,  that 

in  the  case  of  a  negative  inequality,  to  secure  similarity  in  the  arrangement 
of  the  infinite  medium  the  mass  must  move  in  the  opposite  direction  to  the 

inequality,  otherwise  there  would  be  no  displacement.  And  further  the 

opposite  displacements  of  the  positive  and  negative  masses  must  be  equal, 

subject  to  the  condition  that  for  every  indefinitely  small  displacement  of  the 

negative  inequality  there  should  be  an  equal  and  opposite  and  exactly  similar 

and  similarly  placed  displacement  of  positive  mass. 
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233.  Then,  apart  from  vortex  rings  which  cannot  exist  in  a  medium  in 

which  ajX  is  so  large  that  there  is  no  diffusion  of  the  grains,  it  appears  that 

the  only  way  in  which  the  conditions  in  the  last  paragraph  are  realised  is 

by  propagation.     This  admits  of  definite  proof. 

If  we  conceive  a  singular  surface  about  a  negative  centre  to  be  moving 

upwards  through  the  medium,  as  it  rises  the  upper  surface  will  be  con- 
tinuously meeting  fresh  grains.  Then  if  the  motion  continues  one  of  two 

things  must  happen.  The  grains  must  be  shoved  out  of  the  way,  in  which 

case  all  similarity  of  the  arrangement  would  be  destroyed,  or  the  grains  must 

cross  into  the  singular  surface.  If  this  were  all  we  should  again  have  the 

similarity  upset,  as  the  singular  surface  must  increase  to  accommodate  grains 
coming  in.  But  if  at  the  same  time  as  the  grains  enter  the  singular  surface 

from  above  grains  cross  out  of  the  singular  surface  in  exactly  the  same 

numbers  and  vertically  under  the  grains  which  enter  from  above,  the  motion 

of  the  singular  surface  would  not  disturb  the  similarity  of  the  arrangement 
beyond  such  limits  as  the  elasticity  of  the  medium  admits. 

This  manner  of  progress  of  a  singular  surface  is  that  which  has  several 

times  been  referred  to  as  propagation.  It  is  strictly  propagation.  For  if 
there  is  no  general  uniform  mean  motion  the  grains  within  the  singular 
surface  are  at  rest,  while  if  the  medium  has  such  mean  motion  it  would  not 

affect  the  motion  of  the  singular  surface  though  it  would  affect  the  rate  of 

propagation  since  that  would  include  the  propagation  through  the  moving 
medium. 

This  then  is  the  only  mode  of  displacement  of  a  singular  surface — the 

propagation. 

N.B.  This  law  of  propagation  would  not  prevent  strains  in  the  singular 

surfaces  such  as  might  be  caused  by  undulations  in  the  medium  corresponding 
to  those  of  light. 

234.  It  may  seem  that  displacement  by  propagation  does  not  of  necessity 
entail  displacement  of  mass;  nor  would  it  if  there  could  be  propagation 

without  local  inequalities  in  the  mean  density  of  the  medium.  But  in  a 

uniform  medium,  without  inequalities,  there  can  be  no  propagation  as  there 
is  nothing  to  propagate. 

Thus  it  is  that  the  inequality  in  density,  the  integral  of  which  is  the 

volume  of  the  grains,  the  replacement  of  which  would  restore  the  uniformity 

of  the  medium,  obliterating  the  inequality,  constitutes  the  mass  propagated. 

And  as  this,  for  a  negative  centre,  is  negative,  its  propagation  requires 

the  displacement  of  an  equivalent  positive  mass  in  the  opposite  direction 
to  that  of  propagation  of  the  negative  inequality. 

235.  It  thus  appears  that  the  distribution  of  the  density  of  the  positive 

moving  mass  is  at  all  points  the  same  as  the  distribution  of  the  density  of 
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the  negative  inequality',  and  as  this  on  changing  the  sign  is  the  same  as  the 
dilatation  at  all  points,  the  density  of  the  positive  moving  mass  is  equal  to 
the  dilatation. 

The  dilatation  at  any  point  in  the  medium  resulting  from  a  negative 
centre  is  expressed  by  : 

4  7r?\rQ3 

3      r4 in  which  r  is  greater  than  rlf   while  7'0/r  is  small. 

It  thus  appears  that,  since  the  density  of  the  medium  is  unity,  the  motions 

of  the  medium  of  unit  density  necessary  to  equal  the  displacements  of  the 

positive  mass  at  density  47r/'1r03/3r4,  which  can  under  no  circumstances  be 

greater  than  47rr03/3r13  are  almost  indefinitely  small. 

236.  Taking  U8  as  the  velocity  of  the  singular  surface  and  u"  as  the 
velocity  of  the  medium  at  any  point  outside  the  singular  surface,  since  there 

is  no  mean  motion  of  the  grains  within  the  singular  surface,  u"  is  everywhere 
small  compared  with  Us. 

Of  course  this  does  not  affect  the  integral  displacement  of  mass  integrated 
over  the  medium  from  t\  to  oo  .  But  it  does  affect  the  displacement  of  the 

apparent  energy  of  the  motion  of  the  inequality  which  is  taken  to  be  4<7rr03/3. 

For  if  we  integrate  u"'2  over  the  medium  it  is  small  compared  with 

4>7rrn3 

U, 

2 0 

3 

This  apparent  paradox,  however,  is  explained  on  recognising  that  the  grains 

being  uniform,  since  crjX  is  very  large,  the  conduction  of  energy  is  nearly 

perfect ;  so  that  the  rate  of  displacement  of  momentum  does  not  depend  only 

on  the  convections  of  the  order  u"2p  but  depends  also  on  the  conductions 
-  au  p, 

since  these  actions  are  the  direct  result  of  the  propagation  of  the  singular 

surface  through  the  medium,  so  that  there  is  no  change  in  the  strains, 

dilatations,  or  the  mean  arrangement  within  or  about  the  singular  surface 

for  an  infinite  distance.  It  is  easy  to  realise  the  way  in  which  the  strains  at 

any  fixed  point  contract  and  expand  as  the  singular  surface  moves  away  from 

or  approaches  the  point. 

237.  In  the  foregoing  reasoning  in  this  section  no  account  has  been 

taken  of  the  possibility  or  impossibility  of  any  lateral  motions  of  the  grains 

which  might  be  necessary  to  maintain  the  arrangement.  That  such  lateral 

motions  of  the  individual  grains  would  be  necessary  is  certain ;  but  it 

does  not  follow  as  a  matter  of  course  that  they  would  be  possible  without 

creating  temporary  strains  which  would  in  the  first  instance  require  a  certain 
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acceleration  to  start  them.  But  once  started  the  action,  since  it  involves 

a  certain  definite  rate  of  displacement  of  mass,  would  proceed  at  a  uniform 

rate,  supposing  no  viscosity,  and  the  medium  unstrained  by  other  centres. 

That  the  necessary  acceleration  to  effect  the  start  must  depend  on  the 

particular  arrangements  inside  and  outside  the  singular  surfaces,  is  clear. 
And  from  this  it  may  be  definitely  inferred  that  the  number  of  definite 

primary  arrangements  in  which  the  stability  to  be  overcome  by  acceleration 
is  within  finite  limits,  is  finite. 

Whence  it  follows  that  the  number  of  singular  surfaces  having  different 

numbers  of  grains  absent,  in  which  the  limits  of  stability  are  within  finite 

limits,  is  finite  ;  and  these  would  be  the  only  surfaces  of  freedom.     Q.E.D. 

It  should  be  noticed  that  the  expression  "  primary  arrangements  "  is  here 
used  to  distinguish  those  singular  surfaces  which  do  not  admit  of  separation 

into  two  or  more  singular  surfaces  of  freedom. 

It  is  thus  shown  that  singular  surfaces  about  negative  inequalities  admit 

of  motion  in  all  directions,  by  a  process  of  propagation,  without  any  mean 

motion  of  the  grains  within  the  singular  surfaces,  while  the  motion  of  the  mass 
outside  the  singular  surfaces,  when  there  is  no  other  inequality  within  finite 

distance,  is  such  as  to  maintain  the  similarity  in  the  arrangement  about  the 

centre  entailing  the  displacement  of  the  mass  (47rr03/3)  in  the  direction 
opposite  to  that  in  which  the  singular  surface  is  displaced  by  propagation. 

238.  We  have  thus  effected  the  analysis  for  the  determination  of  the 

mobility  of  solitary  negative  centres.  And  it  may  be  taken  that  the  analysis 
for  positive  centres  would  follow  on  the  same  lines  with  the  exception  of  the 

sign  of  the  inequalities. 

There  still  remains  to  consider  the  possibility  of  the  combination  of 

primary  singular  surfaces,  forming  singular  surfaces  with  limited  stability 

in  which  the  grains  absent  or  present  are  the  sum  of  the  grains,  the  absence 
or  presence  of  which  constitutes  the  inequalities  of  the  primary  singular 
surfaces  combined. 

It  has  been  shown  by  neglecting  certain  terms  (equation  337)  that 

negative  inequalities  attract  according  to  the  inverse  square  of  the  distance 
and  in  Art.  227  it  has  been  pointed  out  that  the  terms  neglected  are  such 
as  would  indicate  cohesion  or  repulsion  between  the  singular  surfaces  when 

closest;  and  in  such  conditions  there  would  be  a  connected  singular  surface 

however  many  were  the  primary  singular  surfaces  cohering,  so  that  mobility 
of  the  whole  group  would  be  secured. 

In  the  case  of  two  primary  negative  inequalities  in  which  the  numbers  of 

grains  absent  are  different,  although  neither  of  these  admit  of  separation  into 

two  or  more  separate  inequalities,  there  does  not  appear  any  impossibility, 
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except  such  as   results   from   their  limited   stability,  why   they  should  not 

combine  if  their  velocities  are  sufficient  to  break  down  the  limited  stability. 

In  such  case  it  seems  that  one  or  other  of  two  results  must  happen ; 

either  the  breakdown  would  be  temporary,  the  two  centres  immediately 

reforming  as  by  the  rebound,  setting  up  a  disturbance  in  the  medium  which 

would  be  propagated  through  the  medium,  or  they  would  reform  into  a  single 

negative  centre,  in  which  the  volume  inside  the  reformed  singular  surface 

would  be  less  than  that  of  the  sum  of  the  volumes  within  the  two  singular 

surfaces  of  the  two  primary  inequalities,  or  in  some  other  way  manage  to 
diminish  the  dilatation ;  and  in  this  case  also  there  would  be  a  disturbance 
in  the  medium. 

239.  It  is  certain  that  when  negative  inequalities  are  arranged  in  their 

closest  order,  there  is  cohesion  between  the  adjacent  singular  surfaces  which 

resists  the  separation  of  the  adjacent  singular  surfaces  but  does  not  cause 

attraction  between  the  singular  surfaces  when  these  are  at  a  distance  which 

is  greater  than  some  small  fraction  of  the  radius  (r\)  of  the  singular  surface 
(Art.  227).  It  is  also  certain  that,  when  under  the  conditions  stated,  the 

singular  surfaces  would  still  attract  one  another  at  a  distance — as  in 
equation  (348) : 

3/r 

And  thus  if  we  consider  N — the  number  of  such  negative  centres  within  a 

distance  r3 — to  be  indefinitely  large  as  compared  with  rlt  since  they  are  in 
closest  order  the  centres  would  be  in  stable  equilibrium  under  normal  and 

tangential  pressure,  as  in  the  case  of  gravitation. 

240.  If  the  number  of  grains  absent  about  each  of  the  centres  which 

constitute  the  total  negative  inequality  is  the  same,  and  by  some  shearing 

stress  the  inequality  is  subject  to  a  shearing  strain,  there  would  result 

dilatation,  doing  work  on  the  medium  outside,  which  would  be  maintained 

as  long  as  the  shearing  stress ;  but  since  all  the  centres  are  equal,  whatever 

arrangements  of  the  grains  under  the  stress  take  place  between  the  centres, 
there  would  be  no  absolute  displacement  of  mass. 

And  the  result  would  be  the  same  whatever  might  be  the  number  of 

grains  absent  in  the  primary  inequality. 

241.  Thus  we  may  consider  what  the  action  would  be  if  we  had  two 

such  total  inequalities  A  and  B  differing  in  respect  to  the  number  of  grains 

absent  in  their  primary  inequalities — say  that  the  number  of  grains  absent  is 
greatest  in  A. 

If  these  total  inequalities  are  brought  together  by  their  attractions  the 

grains  in  abnormal  piling  which  separate  the  two  total  inequalities  A  and  B 
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may  be,  for  simplicity,  taken  parallel  to  a  plane  which  is  a  plane  of  weakness  in 
the  medium.  If,  then,  there  are  shearing  strains  parallel  to  this  plane  such 

as  cause  grains  from  the  inequality  A  to  pass  to  the  inequality  B  in  the 

abnormal  piling  in  the  plane  of  weakness,  so  that  in  this  piling  the  arrange- 
ment, instead  of  the  two  primary  inequalities  in  which  the  numbers  of  grains 

absent  are  A  and  B,  is  two  equal  negative  inequalities  in  each  of  which  the 

number  of  grains  absent  is : 
A+B     A+B 

2      '        2      ' 

and  one  complex  inequality  in  which  the  numbers  of  grains  absent  in  the 

positive  and  negative  centres  are  : 
A-B     B-A 

in  this  case  it  at  once  appears  that  besides  the  attraction  correspond- 
ing to  gravitation  and  cohesion,  the  effect  of  the  rotational  strain  would  be 

to  cause  absolute  displacements  of  mass,  which,  by  Art.  225,  would  cause 

efforts  of  reiustitution  between  the  strained  aggregate  inequalities,  correspond- 
ing to  electric  attractions.  But  as  the  attraction  would  be  normal  to  the 

surface  of  weakness,  while  for  reiustitution  the  action  must  be  tangential, 

the  rotational  strain  might  be  stable,  and  the  attraction  might  hold  when 

the  strained  aggregate  inequalities  were  forced  apart.  If  the  rotational 
strains  were  sufficient  the  normal  attractions  might  overcome  the  normal 

stability  of  the  complex  inequalities,  and  in  that  case  there  would  be  a 

sudden  tangential  reversion,  which,  as  there  is  absolute  displacement  of  mass, 
would  in  the  recoil  reverse  the  complex  inequality  and  so  on,  oscillating  until 

the  energy  was  exhausted  in  setting  up  undulations  in  the  medium  which 

would  be  propagated  through  the  medium  at  the  velocities  of  the  normal  or 
transverse  waves  as  in  light. 

If  we  have  two  aggregate  inequalities  in  one  of  which  the  primary 
inequalities  are  not  combined,  while  in  the  other  the  different  primary 

inequalities  are  combined,  we  should  have  three  total  inequalities  A,  B/2,  0/2 
in  the  arrangement : 

,      B     C 

4+2+2 

a     B     G 

A+2+2 

2 

alities  : 

A          (B         G\ 

2 

B     G       . 

2+2"^
 

and  two  complex  inequalities  : 

2  '  2 

Then  if  the  strains  were  sufficient  the  normal  attraction  might  overcome 

the  normal  stability  of  the  complex  inequalities,  causing  a  reversion.  In  this 
case  however  it  does  not  follow  that  the  reversion  would  be  complete  and  so 
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reinstitute  A,  5/2,  0/2  ;  for  since  the  work  done  by  the  strains  might  be 
sufficient  to  overcome  the  resistance  to  combination  of  B/2  and  0/2,  the  recoil 

from  the  breakdown  would  cause  a  total  or  partial  combination  of  B/2,  0/2, 

instituting  B  the  aggregate  inequality  and  so  diminishing  the  energy  available 
for  undulations,  thus  affording  an  explanation  by  mechanical  considerations  of 

the  part  electricity  plays  in  instituting  the  combination  of  molecules  into 
compound  molecules  with  limited  stability. 

It  is  to  be  noticed  that  the  effects  of  rotational  strain  between  the 

aggregate  negative  inequalities  which  differ  as  to  the  number  of  grains 

in  the  primary  inequalities,  correspond  to  the  effects  produced  when  resin  is 

rubbed  by  silk — or  frictional  electricity — and  thus  the  so-called  separation  of 
the  two  electricities  by  friction  is  accounted  for  by  mechanical  considerations. 

Having  shown  that  negative  inequalities  may  not  only  attract,  but  may 
also  cohere  when  in  contact,  we  may  return  to  the  consideration  of  the 

significance  of  the  fact  mentioned  in  Art.  217,  that  the  attractions  correspond- 
ing to  gravitation  as  well  as  cohesion  depend  solely  on  the  numbers  of  grains 

absent,  while  the  volume  within  the  singular  surfaces,  which  determines 
the  volume  from  which  one  centre  excludes  other  centres,  depends  on  the 

possibility  of  some  arrangement  between  the  grains  in  abnormal  piling  and 

those  in  strained  normal  piling  (Art.  214). 

241  A.  It  is  shown  in  Art.  217  that  for  any  displacement  of  a  negative 

inequality  there  must  be  a  corresponding  displacement  of  positive  mass  in 
the  same  plane  and  in  the  opposite  direction.  From  this  it  follows  that 

as  two  negative  centres  approach  under  their  mutual  attractions  the  mass  in 
the  medium  recedes,  which  is  an  inversion  of  the  preconceived  ideas.  Such 

action  however  is  not  outside  experience,  since  every  bubble  which  ascends 

from  the  bottom  in  a  glass  of  soda-water  involves  the  same  action.  The 
matter  in  the  bubble  having  the  density  of  the  air  requires  the  descent 

of  an  equal  volume  of  water  at  a  densit}^  800  times  greater  than  that  of  the 
air.  It  is  the  negative  inequality  in  the  density  of  matter  which  under 

the  varying  pressure  of  the  water  causes  the  negative  or  downward  displace- 
ment of  the  material  medium — water — and  the  positive  or  upward  displace- 
ment of  the  negative  inequality  in  the  density  within  the  singular  surface. 

In  order  to  recognise  the  significance  of  the  parallel  drawn  in  the  last  para- 
graph it  must  be  noticed  that  in  this  research  we  have  adopted  a  definition 

of  mass,  which,  although  satisfying  the  laws  of  motion  and  the  conservation 

of  energy,  is  independent  of  any  other  definition  of  matter.  Hence  it  is  open 

to  us  to  suppose  that  what  we  call  matter  may  be  such,  that  if  expressed  in 
the  notation  so  far  used  in  this  research,  would  represent  local  negative 

inequalities  in  the  mean  density  of  the  medium. 

Then  since,  as  has  already  been  shown,  and  will  be  confirmed  in  what  is 

to  follow,  the  definition  of  matter  as  representing  negative  local  inequalities 
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in  the  mean  density  of  the  granular  medium  completes  the  inversion  and 

removes  all  paradox,  this]  definition  of  matter  is  adopted  as  the  only  possible 
definition. 

We  then  have  for  the  negative  inequality : 
4"rrr0s      „ --3-. P. 

where  p"  =  1. 
And  for  the  volume  from  which  one  negative  inequality  excludes  other 

similar  inequalities,  when  in  closest  order,  we  have  by  equation  (343) : 
4    4 

3  .  3  7T .  n . 
Then  dividing  the  negative  inequality  by  the  volume  from  which  other 

centres  are  excluded  we  have  as  the  expression  for  the  mean  density  of  the 

negative  inequalities  when  in  closest  order : 

3    r,3 

4'
 

r p"  =  U   (357). 

Then  again  dividing  p"  the  density  of  the  uniform  medium  by  IT,  the 
mean  density  of  the  inequality,  we  have  in  the  ratio  of  the  two  densities  a 
number  without  dimensions  as  expressed  by 

p"  _  4  r* 
n      3r3 

.(358). 0 

In  equations  (357)  and  (358)  IT  is  used  to  express  the  mean  density  of 
the  negative  centres  when  in  closest  order.  Thus  II  is  the  maximum  mean 

density  of  the  negative  centres  for  any  particular  negative  centres. 

It  does  not  however  follow  that  n  expresses  the  maximum  mean  density 

of  negative  inequalities  for  all  negative  inequalities  when  in  closest  order. 

For  as  pointed  out  there  is  no  proportional  relation  between  the  number  of 

grains  absent  and  the  volume  within  the  singular  surfaces  for  inequalities 
which  differ. 

But  it  does  follow,  from  the  fact  that  the  number  of  centres  which  have 

surfaces  of  freedom  is  finite,  that  there  must  be  some  negative  inequality  of 

which  the  mean  density  is  a  maximum.  And  from  this  it  again  follows  that 

p"/H  must  have  a  minimum  value. 
Then  taking  II  to  express  the  minimum  value  which,  whatever  it  may  be, 

is  constant  and  without  dimensions,  we  may  express  the  densities  of  all  the 

other  negative  inequalities  in  terms  of  H,  making  use  of  any  system  of  units. 

Then  if,  as  before,  the  density  of  the  medium  is  unity,  the  maximum 

density  of  negative  inequalities  is  : 

1_ 

12' 
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and  if  the  mean  density  of  an  inequality  is  n  times  less  than  the  maximum 
inequality  it  is  expressed  by: 

nil"
 

And  again,  if,  changing  the  unit  of  density,  the  density  of  the  medium 
becomes  nfl,  the  maximum  density  of  negative  inequalities  is  expressed  by  n. 

The  proof  that  the  quotient  Q  of  the  density  of  the  uniform  medium 

divided  by  the  maximum  mean  density  of  the  negative  inequalities  is  a 
numerical  constant,  independent  of  units,  giving  us,  as  it  were,  the  gauge  by 
which  we  can  compare  the  quantities,  as  obtained,  in  this  and  the  previous 
sections,  with  the  evidence  derived  from  actual  experience,  completes  the 

consideration  of  the  possible  strains  other  than  the  undulatory  strains  (con- 
sidered in  Section  XIII.)  resulting  from  the  conservation  of  inequalities  in 

the  mean  mass,  which  formed  the  subject  of  this  section. 



SECTION   XV. 

THE  DETERMINATION  OF  THE  RELATIVE  QUANTITIES  a",  X",  <r,  G, 
WHICH  DEFINE  THE  CONDITION  OF  THE  GRANULAR  MEDIUM 

BY  THE  RESULTS  OF  EXPERIENCE.  THE  GENERAL  INTEGRA- 

TION OF  THE  EQUATIONS. 

242.  In  the  last  paragraph  of  Section  XIII.  it  was  noticed  that,  up  to 

that  stage,  it  was  not  possible,  for  want  of  evidence  as  to  the  actual  rates  of 

degradation  of  light,  to  complete  the  determination  of  the  values  of  a",  a,  \". 
And  further,  that  as  the  equations  (310 — 313)  have  been  obtained  by  neglect- 

ing all  secondary  inequalities,  they  afford  no  evidence  as  to  the  limits  imposed 

by  dilatation  on  the  shearing  and  normal  strains.  These  disabilities  have  not 

as  yet  been  altogether  removed.  But  we  have,  in  the  last  section,  obtained 

expressions,  in  terms  of  p",  a",  a,  X",  for  the  attraction  of  negative  centres, 
which  correspond  to  those  of  gravitation.  Also  in  the  last  article  it  is  shown 

that  what  is  known  as  "  matter "  corresponds  with  the  inequality  in  the 
medium  resulting  from  absence  of  grains.  Also  it  is  proved  that  there  must 

be  a  finite  maximum  mean  density  for  negative  inequalities  when  in  close 

order,  which  corresponds  to  the  mean  of  the  heaviest  matter.  And  further, 

it  is  shown  that  the  mean  density  of  the  uniform  granular  medium,  divided 

by  the  maximum  density  of  negative  inequalities,  is  a  number  without 

dimensions — expressed  by  H — whence  we  are  enabled  to  measure  the  density 
of  any  inequalities  in  closest  order,  in  any  system  of  units.  We  are  thus 

in  a  very  different  position,  as  regards  evidence,  from  what  we  were  at  the 
end  of  Section  XIII. 

243.  By  the  last  article  of  Section  XIV.,  taking  22  as  expressing  in  C.G.s. 

units  the  density  of  the  matter  platinum,  which  is  approximately  the  densest 
form  of  matter,  we  have  unity  for  the  density  of  the  matter  water  in  c.G.S. 
units. 

Then  for  the  density  of  the  granular  medium  in  c.G.s.  units  we  have 22H, 

where  the  constant  number  12  has  still  to  be  determined. 
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The  change  of  units  of  density,  from  that  in  which  the  density  of  the 
medium  was  taken  as  unity,  to  the  density  as  measured  in  units  of  matter, 
has  thus  been  effected. 

244.  From  the  last  article  it  follows  that,  measured  in  c.G.s.  units  of 

matter,  the  mean  pressure  in  the  medium,  equal  in  all  directions,  becomes 

p  =  22nP"     (.359). 

Also  the  mean  density  of  the  medium  p"  or  unity  becomes 

p  =  22nP"     (360). 

And,  if  in  c.G.s.  units  of  matter,  p  expresses  the  mean  density  of  any 

negative  inequalities  in  closest  order,  however  complex,  such  as  the  mean 

density  of  the  earth — 5'67,  the  corresponding  expression,  when  p"  is  taken 
as  unity,  is 

'-B5    <361>- 

245.  From  equation  (359)  we  may  now  proceed  to  find  an  expression  for 

the  mean  pressure  in  terms  of  the  rate  of  degradation  in  the  transverse 

undulations  when  ajX"  is  large. 

From  equation  (311)  the  rate  of  degradation  of  transverse  waves  is 

expressed  by 

1      dv"         2  X"a"  /q«o\ -77   .    — r-  =  —  -    — :     .    Of,2      (362). 
v"     dt  3    Vtt  v       ! 

Then  if  tt  is  the  time  taken  to  reduce  v0"  to  v1 

where  v±  =  -  .  v0  , e 

vv,     3    yV    1    (363)j 2      a?     tt 

which  gives  one  equation  between  the  three  quantities  a",  \"  and  tt. 

A  second  equation  is  obtained  from  the  dynamical  condition  of  undulation 

-=r  =  A/-    (364), a  V  P 

and  n  =  8^''  *  bein&  i  2ir\")  '  P  '  ~2     (365). 

Therefore,  reducing, 

'  4    '  2tt  "  X" 
T  =  ̂3.^     "      (366), 

X"      a/3       <r  /o«7\ 

15 
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Then,  L  being  the  wave-length,  if  we  put 

n2  .  <r  =  L 

t      2tt since  -^  =  —  , 

2_ 

sub
sti

tut
ing

  

— 
 
for 

 
a  in  equ

ati
on 

 

(367
), 

^'  =  ̂?.  J-    (368). 

Then  eliminating  a"  from  equations  (367)  and  (368)  to  find  \" 

\"  =  Sl  .  (n2tt)-*   (369), 

the  value  of  the  constant  coefficient  being 

Sl  ~  8aV  ' 

Then  substituting  from  equation  (369)  in  equation  (367) 

„        1       3  *J7T   ,  ,        1] 

or  a"  =  s2{n2tt)^  .  - 

n"2       <?2  1 

V=|(^>^   (371>- 
The  equations  (369)  and  (371)  define  the  values  of  the  constants  \"  and  a" 

which  enter  into  the  expression  p"  in  equation  (159)  in  terms  of  a,  r,  n2  and 
tt  which  define  the  wave-length  and  rate  of  propagation  for  any  particular 
rate  of  degradation. 

Thus  substituting  in  the  equation  (159)  which  is 

.(370), 

V2      a_  aT2     fa_ 

V        3    ' A" ' P  *    2  J  U' 

and  which,  under  the   condition   aj\"  large,  is,  taking  the    density  of  the 
medium  as  unity, 

//_V2  <r  a"2      6  (  72) 

the  equation  becomes 

„     \/2    L     \/nJt    s22  1  6  7. 

*  =t-»/  — •  T^^tf-4^?   (373)- 
Then  transforming  we  have 

4<7T     S-, V 

rv7!   (374)- 
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If  the  constants  sx  and  s2  are  taken  to  correspond  with  the  rate  of  propa- 

gation of  light  and  with  the  wave-length  of  the  ultra-violet  light  in  the  C.G.S. 
units 

«,  =  9-7005  x  10-14 
52=  10738  x  103, 

from  which  substituting  in  equations  (309)  and  (371) 1       X *Jn,t 

2H 

n2 

.(375). 

9-7005  x  10~14 

a"  =1-0738  x  103 

a"2      _H~,~      -i^ffhU 

T  =  5755xl0(# 

And  since  the  wave-length  L  is  3'933  x  10~5  we  have,  dividing  by  s1  and 

substituting  in  the  second  expression  for  p", 

p"  =  1-8574  x  10"  (^Y   (376), 

which  becomes  in  C.G.S.  units  of  matter  (by  equation  359) 

220p"=22Q  x  1-8574  x  10u(^)      (377). 

For  convenience  the  expression  for  a"\"  may  be  here  included : 
1 

tt  
 

a "\"=  1-0418  xlO-10 .(378). 

246.  Having  effected  the  translation  of  units  and  obtained  an  expression 

for  the  mean  pressure  in  the  uniform  medium  in  terms  of  n2/tt,  we  now 

proceed  to  the  evidence  as  to  the  absolute  density,  or,  what  is  the  same 
thing,  the  value  of  the  number  expressed  by  X2. 

The  density  of  the  luminiferous  ether,  thus  far,  has  been  an  unknown 

quantity.  Such  views  as  have  been  expressed  range  from  a  density  in- 
definitely greater  than  that  of  the  heaviest  material — Hooke — to  a  density 

indefinitely  smaller  than  that  of  the  lightest  solid  material — Sir  Gabriel 
Stokes  and  Lord  Kelvin. 

But  as  pointed  out  in  Art.  242  we  have  now  the  two  sources  of  evidence — 
that  arising  from  the  known  law  of  gravitation,  which  includes  the  existence 

of  permanent  negative  inequalities,  or  molecules  with  surfaces  of  freedom, 
and  that  resulting  from  the  limits  to  the  intensity  of  waves  of  light ;  besides 

such  evidence  as  may  accrue  from  the  determination  made  by  Lord  Kelvin  as 
to  the  dimensions  of  the  molecules,  and  such  evidence  as  has  been  obtained  as 

to  the  rates  of  degradation  of  the  transverse  and  normal  waves. 

15—2 
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The  equations  (376)  and  (377)  define  the  pressure  in  terms  of 

J    or  22H?|2, according  to  whether  the  density  of  the  uniform  medium  is  taken  as  unity,  or 

is  expressed  in  C.G.s.  units  of  matter. 

247.  As  measured  in  c.G.s.  units,  the  matter  in  the  earth,  assuming 

Baily's  value,  5"67,  for  the  mean  density,  is 
6-14  x  1027, 

the  mean  radius  is  6'3702  x  108  and  the  attraction  of  the  earth  on  a  unit  of 
matter  at  the  surface  is 

#  =  981    (379). 

To  compare  with  this  evidence  we  have  the  expressions  for  the  correspond- 
ing quantities  as  obtained  from  equations  (348)  for  corresponding  conditions 

when  translated  into  the  same  units. 

In  the  general  expression  for  the  attraction  of  negative  centres  in  closest 

order,  equation  (348),  where  p"  =  1 : 

r/  /47T         \2  a 

r8' 

where  N'  =  *75  (  — J  and  r  =  rB; 

substituting,  the  expression  for  the  attraction  of  unit  mass  becomes,  if  the 

,.    n3     4      5-67 
ratio  -i  =  3  x  22^  when  p  =  1, 

-'TP   <r[-J  -rB- 

r0\s 

Then,  supposing  that  rfjr?  is  a  maximum,  we  have  from  equation  (358) 
T  3  1 

  (380). 

1\3     75H    And  as  the  density   of    the    mean    negative   inequality   is   5*67/22    of    the 
maximum  inequality,  we  have  for  the  attraction 

5-67 

which  becomes,  on  substituting  from  equation  (380)  and  reducing, 

4      „  4      „     5-67 

Then  transforming  so  that  the  density  of  the  medium  is  22H,  since  rB  is 

6"37  x  108,  we  have  for  g 

4      ̂ -67 
981  =  22%/Vg  7T  ~  .  637  x  108   (381). 
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Then  substituting  the  value  of  22%/'  in  equation  (377)  we  have 

-7TO-67  x  6-37  x  108  x  1-8574  x  10"  x  (j*\  <r  =  981   (382). 

Then,  cancelling  and  reducing  the  numerical  factors,  since 

a-(7i2ftt)i=L/^/n2tt, 
we  have 

981-M0BJLlff1   (383). 
981  =  1105xwn 

vn2tt 

whence  */n2tt  =  1126  x  JO14, 
And  thus  we  have  obtained  the  value  of n2tt, 

which  satisfies  the  condition  g  =  981. 

248.  The  evidence  afforded  by  the  limits  of  the  intensity  of  light  and 

heat  does  not  appear  to  have  hitherto  demanded  much  attention.  But  it 

now  appears  that,  if  we  can  find  a  fair  estimate  of  the  maximum  intensity  of 

transverse  undulations,  it  would  afford  important  evidence. 

For  the  rate  of  displacement  of  energy  by  the  transverse  waves  in  the 

uniform  medium  we  have,  taking  U  for  the  rate  at  which  energy  must  be 

supplied  to  maintain  the  waves,  and  t  for  the  rate  of  propagation :  since  the 

velocity  of  light  is  independent  of  the  wave-length,  the  maximum  energy  of 
mean  motion  over  a  unit  surface 

P-T* 

is,  by  equation  (308),  the  mean  energy  of  the  undulation ;  and 

U=r.p"-2    and  «"=(4tH     ■   (384). 

It  must  be  noticed  that  in  these  expressions  for  U  and  v"  no  account  is 
taken  of  the  secondary  effects  imposed  by  the  dilatation  in  the  granular 

medium.  This  was  noticed  in  the  last  paragraph,  Section  XIII.,  as  sho wing- 
that  there  is  a  limit  to  the  intensity  of  harmonic  institutions. 

Put  definitely,  the  condition  to  be  satisfied  for  harmonic  undulations  is 

that,  taking  x  and  y  for  the  directions  of  propagation  and  mean  motion 
respectively, 

-K-^is  small  as  compared  with  p". 

Thus  if  the  amplitude  of  the  transverse  motions  is  considerable,  the 
action  will  not  be  confined  to  the  institution  of  simple  harmonic  waves, 

but  will  include  compound  harmonic  waves,  and  probably  normal  waves, 

which  would  proceed  faster  than  the  simple  transverse  harmonic  waves, 

until,  by  divergence  or  degradation,  their  intensity  was  reduced. 
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Evidence  from  which  we  may  form  an  estimate  of  the  limit  to  the 

amplitude  at  which  the  waves  cease  to  be  sensibly  harmonic  may,  it  appears, 
be  found.  The  greatest  intensity  of  transverse  waves  is  obtained  from  the 

carbons  of  the  electric  arc.  If  then  we  assume  that  U,  the  work  expended 

in  producing  the  light,  is  all  spent  in  radiation  of  heat  and  light  from  the 
carbons,  we  have  only  to  measure  the  radiation  area  of  the  carbons  to  obtain 

an  outside  estimate  of  the  mean  value  of  v" . 

Thus  if  U  per  sq.  cm.  is  2*29  x  109  ergs 

2-29x109  =  i/o</2.t  (t  =  3x1010)    (385), 
whence  we  have 

152 
Vi'a  =  —  xlO-1  in  c.g.s.  units   (386), P 

where  p  is  220/)"  and  where  p"  is  unity. 

249.  From  this  value  of  v"  we  may  obtain  the  expressions  for  y  the 
amplitude  of  the  undulations,  and  for  x. 

Taking  r  as  an  arbitrary  amplitude 

y  =  r  cos  0  and  dyjdt  =  —  r  sin  0  .  dd/dt. 

Then  since  the  periodic  time  is  27r/m,  differentiating  0  with  respect  to 

time  dOjdt  =  in,  and 

v"  =  —  mr  sin  0  and  v"  is  a  maximum  when 

0  =-w/2. 

.".  r  =  —  ,       y  =  —  cos  0, 

and  x  —  -  , a 

'•    dx-a-T0-~a  mSmd~V    (887)- 

Then  multiplying  this  by  n  or  pr2  we  have  for  the  shearing  stress 

22n§--l="»"T   <388>' 
and  these  are  in  gravitation  units. 

Then   from  equation   (386)  we   have,    for   the   maximum  value  of  the 

transverse  velocity  v", 

-"A   <*» 
and  multiplying  by  220  we  have  for  the  maximum  shearing  stress 

p  .v".  t  =  1172  x  1010  x  V22fi    (390). 
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Taking  s  (=  10-2)  as  the  coefficient  of  the  limit  within  which  22ft  .  3/c/8 

may  approach  22Qp",  we  have,  substituting  the  expression  on  the  right  of 
equation  (377)  for  22ftp", 

22ft  x  1-8574  x  1011  (~)  =  V22ft  x  1172  x  1012, 

logs whenc e  follows : 

(!
)*
= 

6-31 

V'«2^= = 1126 x 

1014 
7108  x 

1014 

1U  = 

equation  (390),  '8000  -  log  V22ft    (391), 

  (384),  -0517  +  14   (392), 

^=p    ,  -8517 +  14- log  V22H... (393), 

tt  =  1-785  x  1013  x  \/22ft,  -2517  + 13  +  log  V22H  . .  .(394), 

o- =  5-534  x  10--°  XV22H   (372),  -7430  -  20  +  log  V22ft  ...(395), 

G'777  x  103    ' 

a"=-^mr   (370)'     -83io+3-iogV22n    (396) 
X"=  8-612  xlO-28      (375),  '9351-28 

250.  So  far  we  have  obtained  the  expressions  for  the  limiting  values  of 

a",  A/',  a  and  the  logarithmic  decrements  for  transverse  and  normal  waves 
in  terms  of  the  constant  coefficient  ft  which  enters  as  a  factor  into  the 

expressions  for  the  density  of  the  medium  and  the  potential  of  attraction. 

Substituting  from  the  equations  (391 — 393)  in  equation  (375)  we  have 
gmxiop   

V22fl \"=  8612  xlO-23   (398), 

a  =  5-534  x  10-20  x  V22ft    (399). 

Then  for  logarithmic  decrement  of  the  transverse  undulations,  aj\"  large, 

substituting  in  equation  (311)  the  values  as  given  above  for  a"  and  \"  we  have 

as  in  equation  (362),  tt  being  the  time  required  to  reduce  v"  from  v0  to  v0/e, 

tt=l    /^=  1-784  xl013V22ft   (400). 2  A.  a  cr 

N.B.  This  result  checks  the  calculation,  since  this  value  corresponds 

with  equation  (394)  in  the  first  three  significant  figures,  which  is  the  limit 

of  the  arithmetical  approximation  attempted. 

The  value  of  tt  thus  found  in  terms  of  the  coefficient  V22ft  expresses  the 

time  the  transverse  waves  would  travel  before  their  amplitude  was  reduced 

in  the  ratio  from  1  to  1/e,  or  their  energy  in  the  ratio  1/e2. 
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The  values  of  a",  X",  <r  cannot  be  defined  except  by  further  evidence.  Such 
might  be  obtained  if  we  could  completely  solve  the  dilatation  problem  and 
so  obtain  the  value  of  ft.  Failing  this,  however,  there  remains  one  source  of 
evidence  from  which  we  may  obtain  a  close  approximation  to  the  value  of  the 
ratio  V22ft. 

251.  The  conclusions  to  be  drawn  from,  the  absence  of  evidence  of  any 

normal  waves  in  the  medium  of  space  until  very  recent  times. 

From  equations  (310)  and  (311)  it  appears  that  in  a  granular  medium 
normal  as  well  as  tangential  waves  may  exist,  the  only  difference  being  in 

their  rates  of  propagation  and  in  their  rates  of  degradation. 

From  this  it  would  seem  that,  if  the  medium  of  space  is  purely  mechanical, 
either  such  waves  did  not  exist  for  lack  of  incitement  or  the  normal  waves  had 

no  effect  upon  our  senses  or  on  the  physical  properties  of  matter.  The  recent 

remarkable  discovery  of  Rontgen  that  under  certain  intense  electrical  actions 

a  system  of  waves  which  have  the  properties  of  normal  waves  in  a  uniform 

medium  subject  neither  to  refraction  nor  reflection,  can  be  produced,  has 

opened  the  door  to  different  conclusions.  The  first  suggestion  by  Rontgen 

was  that  these  were  normal  waves.  And  although  various  special  explana- 
tions have  been  attempted  to  avoid  the  admission  of  their  being  normal 

waves,  every  one  of  these  explanations  involves  normal  action. 

It  appears,  from  the  definite  analysis  of  the  granular  medium,  that  when 

the  uniform  medium  is  in  the  state  to  propagate  transverse  waves  the  degra- 
dation of  which  is  such  that  the  diminution  from  loss  of  energy  by  degradation 

in  some  millions  of  years  is  in  the  ratio  1/e2,  the  rate  of  degradation  of  the 

normal  wave  is  such  as  would  occupy  something  less  than  the  millionth  (10~6) 
part  of  a  second  to  reduce  it  in  the  same  ratio ;  so  that  the  normal  wave 

would  lose  nine-tenths  of  its  energy  before  it  had  traversed  some  thousands 
of  metres,  say  x  metres,  and  this  affords  crucial  evidence  of  the  purely 

mechanical  granular  structure  of  the  medium  of  space.  The  coincidence 

is  such,  that  in  the  absence  of  any  definite  proof  to  the  contrary,  it  should 

carry  conviction  notwithstanding  those  things  which  cannot  be  defined  for 
want  of  evidence. 

252.  Without  attempting  any  general  discussion  of  X-rays  there  are 
several  very  significant  characteristics  which  afford  evidence  besides  that 

of  not  being  subject  to  refraction  or  reflection.  In  the  first  place  the  rays 

in  their  production  are  attended  with  very  intense  light,  that  is  they  are 

attended  with  transverse  waves.  In  the  second  place,  after  the  light  waves 
have  been  filtered  out,  they  can  again  be  transformed  into  visible  transverse 

waves  by  their  passage  through  certain  earthy  substances.  And  in  the  third 

place,  in  passing  through  any  matter  they  are  subjected  to  rapid  degradation 
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which  is  proportional  to  the  density  and  thickness  of  the  matter  through 
which  they  pass. 

Thus  it  has  been  so  far  impossible  to  study  these  rays  except  by  their 

passage  through  matter,  while  it  is  shown  that  in  two  wTays  their  passage 
through  matter  is  attended  by  degradation  other  than  the  degradation  of 
the  normal  waves  in  vacuo. 

Any  estimate  as  to  what  might  be  the  rate  of  degradation  of  these  waves 
in  vacuo  is  at  best  very  difficult.  But  the  fact  that  these  waves,  which  are 

subject  to  divergence  as  well  as  the  three  sources  of  degradation,  have 

sufficient  range  to  permit  of  experiment  through  a  distance  of  some  metres, 
shows  that  if  they  are  normal  waves  their  rate  of  degradation  in  vacuo  would 

be  much  less  than  it  appears  to  be  in  the  experiments.  It  thus  appears  that 

x,  the  distance  the  waves  must  travel  in  vacuo  to  reduce  the  energy  in  the 

ratio  lje2,  cannot  be  less  than  some  thousand  odd  metres. 

253.  To  find  the  rate  of  decrement  of  the  normal  wave  under  the  limits 

defined  by  equations  (221)  to  (224)  in  terms  of  the  ratio  l/v/22H. 

From  equation  (310)  we  have,  neglecting  as  small  the  first  term  in  the 
index,  and  substituting  6/a/27t  for  G, 

1^ 

U 

du" 

~dt 

a* 

1   /5   p2        4  <r2     a 

2\3~7^  +  3\'JirJ2  4^m2 

=  e 

.(401). 

The  index  in  the  right  member  of  this  equation  represents  the  logarithmic 
rate  of  decrement  of  the  normal  wave. 

Transforming  this  index  and  substituting  the  values  of  a,  A  and  er  as  defined 

in  equations  (221)  to  (225)  for  the  transverse  wave,  and  of  m  and  a  for  the 
normal  wave,  taking  the  time  frequency  m  to  have  the  same  value  as  for  the 

transverse  wave  and  the  linear  frequency  a  to  be  a'/2-387  where  a  is  the  same 

as  for  the  transverse  wave  [2-387  being  V 3/c  +  4m/3n].  Then  taking  A  as 
expressing  the  numerical  constant  in  the  expression  for  the  decrement,  w^e 
find   as  the  values  of  the  several  factors  and  their  logarithms, 

A    =  1-567  x  10-2 

t-2  =1-111  x  10~21 

a-    =  2-553  x  1010 

I     =  3-102  x  10~2 

o-4    =  9-376  x  10~82  x  (22ft)2 

a"3  =  3-113  x  1011    x  (22fl)-f 

A"-3=  6-387  x  108,i 

log  -1952  -  2 •0457  -  21 

•4068  +  10 

•4916-2 

•9720 -82  + log  (22H)2 

•4930  +  11  +  log(22fl)- •8053  +  86 

....(402). 
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The  logarithm  of  this  product  being 

•4076  +  3  +  1  log  (22.Q)   (403), 
log  decrement  log  (log  decrement) 

-  2-556  xl03xV22O,      -  [-4076  +  3  +  £  log  (22ft)]    (404). 

Then  if  tn  is  the  time  to  reduce  u"'2  in  the  ratio  1/e2  we  have 

tn  =  3-923  xl0-4/\/ 2211",     log  tn  =  '5924>  -4   (405). 
The  product  of  the  time  tn  multiplied  by  the  rate  of  propagation  of  the 

normal  wave  is  the  linear  distance  which  the  normal  wave  must  travel  so 

that  the  energy  is  reduced  in  the  ratio  1/e2. 

The  rate  of  normal  propagation  is  2387  x  3  x  1010  as  above. 

Therefore  taking  x  as  the  distance  the  normal  wave  must  travel  to 

diminish  the  energy  in  the  ratio  1/e2  we  have 

#  =  2-801  x  107x— L=    (406). 
V22H 

Q.  E.  F. 
254.  Then  to  find  the  inferior  limit  to  the  value  of  the  raiio  ex- 

pressed by n. 

From  the  evidence  furnished  by  Rontgen  rays  we  have  in  Art.  253 

denned  this  ratio  to  be  such  that  the  value  of  x  (in  c.G.S.  units)  shall  not 

be  less  than  some  thousand  odd  metres.  And  from  the  absence  of  any 

evidence  of  normal  waves  other  than  Rontgen  it  follows  that  there  must 
be  a  superior  limit ;  but  this  depends  on  the  value  of  II  and  cannot  be 
defined  without  further  evidence. 

To  find  the  superior  limit  of  fl,  putting  for  simplicity 

#  =  2-801  x  107~'i   (407), 

we  have  by  equation  (406)  from  the  evidence  of  Rontgen  rays 

V22H  =  109  where  q  is  not  less  than  2, 

whence  we  have  for  the  value  of  Q, 

102? 

fl=  ̂ -  =  4-546  x  102?-1  
 

(408), 

and  for  the  density  of  the  uniform  medium 

22fl  =  102«   (409). 

255.  It  is  pointed  out  (Art.  254)  that  the  superior  limit  to  the  value 

of  fl  cannot  be  obtained  except  on  further  evidence ;  evidence  which  has 

as  yet  not  been  taken  into  account,  and  is  exactly  to  the  point,  is 
available. 

This  is  the  evidence  as  determined  by  Lord  Kelvin  (and  confirmed  by 
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the  observation  as  to  the  area  over  which  a  definite  volume  of  oil  would 

destroy  the  ripple  caused  by  a  moderate  wind  on  the  surface  of  water),  that 
the  diameters  of  the  molecules  or  singular  surfaces  are  of  the  order  of  the 

ratio  of  the  wave-lengths  of  the  ultra-violet  light  multiplied  by  some  ten 

thousandths,  say  4  x  10~10,  and  this  evidence  comes  in  as  directly  bearing 
on  the  value  of  q. 

Although  there  is  a  degree  of  uncertainty  about  the  relative  value  of  the 

"atomic- volumes"  of  the  elementary  molecules,  it  appears  certain  that  there 
is  no  great  difference,  that  is  to  say,  no  difference  greater  than  from  1  to  10 
in  the  relative  volume  of  the  molecules,  and  for  our  purpose  it  is  sufficient 

to  consider  that,  assuming  the  relative  volumes  equal,  the  greatest  difference 

of  the  grains  absent  is  from  1  to  1/200. 

It  has  been  shown  (Art.  230)  that  the  probable  arrangement  of  the  grains 

in  a  negative  local  inequality,  which  has  a  surface  of  freedom,  is  that  of 
a  nucleus  in  normal  piling,  that  is  to  say,  a  permanent  nucleus  on  which 
the  inward  strained  normal  piling  reaches,  forming  a  broken  joint  in 

abnormal  piling,  whence  it  appears,  in  order  that  the  singular  surface  may 
be  a  surface  of  freedom,  the  maximum  inward  strain,  that  is,  the  inward 

strain  at  the  singular  surface,  must  be  greater  than  a  the  diameter  of  a  grain, 

and  probably  some  five  times  a. 

In  this  way  we  have  a  limit  to  the  diameter  of  the  singular  surface, 

4  x  10-10, and  by  the  last  paragraph,  taking  10  to  be  the  inferior  limit  to  the  maximum 
inward  strain,  we  can  find  a  value  for  q  which  is  quite  independent  of  any 

evidence  already  adduced. 

Taking         22D  =  ]  02q  for  the  density  of  the  medium, 

7\  =  2  x  10-10  for  the  radius  of  the  singular  surface, 

4nrr03/3  =  volume  of  grains  absent. 

By  equation  (380) 

r»,=I6*-ri'   (410)- 

Then  since  by  equation  (396) 

0-3  =  (5-534)3  x  10-54+3?, 
and  r0/<r  =  n0/2,    also  r1/<r  =  n1/2   (411), 

^Y=n03,     and  6  (^Y  =  6  «>2    (412), 

3 
n0'        \  a 

2r^3 

0 

6V      6  /2r,y 

.(413). 
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Equation  (413)  expresses  the  number  of  diameters  of  a  grain  which  would 
measure  the  inward  strain  at  the  singular  surface  of  the  maximum  inequality 

as  of  platinum  or  22. 

Then  reducing 

n,s 

6^-2  =  1-602  x  10  <9-3?>      (414). 

For  the  minimum  inequality,  n1  remains  the  same,  and  n0s  is  divided  by 
200,  and  we  have  from  equation  (414), 

T  x  1
0"2 

— — - — =  8-013  x  106-3?    (415). 

brii 

Then  if  we  take  the  number  of  the  diameters  of  a  grain  which  measure 

the  inward  strain  at  the  singular  surface  of  the  minimum  inequality  to  be 
8-013, 

q  =  2      (416). 

We  have  thus  found  the  superior  limit  of  the  square  root  of  the  density 
of  the  uniform  medium  to  be 

V22H  =  100. 

256.  Comparing  the  inferior  limit  of  V22I2  in  Art.  254,  obtained  from 

the  evidence  of  Rontgen  rays,  with  the  superior  limit  in  Art.  255  obtained 

from  the  evidence  as  to  the  size  of  the  molecules,  we  see  they  are  identical. 

Too  much  weight  must  not  be  attached  to  this  identity  since  the 

estimates  on  which  they  are  based  are  somewhat  wide  approximations,  so 

that  they  must  be  considered  as  relating  rather  to  the  order  of  the  quantities 
than  the  actual  numbers.  Yet  considering  that  the  evidence  of  the  size 

of  the  molecule,  and  that  of  the  Rontgen  rays,  are  perfectly  independent, 

the  result,  which,  taken  as  a  wide  approximation,  would  be  almost  infinitely 

improbable  as  a  mere  coincidence,  when  substituted  in  the  equations  (390) 

and  (396),  and  (402)  and  (409)  enables  us  to  obtain,  in  c.G.S.  units,  the  values 

of  all  the  arbitrary  constants  which  define  the  condition  of  the  purely 

mechanical  medium,  and  they  are  such  as  correspond  with  the  experience — 

as  to  the  rates  of  propagation  and  as  to  their  rates  of  decrement — of  both 
transverse  and  normal  waves ;  they  also  correspond  with  experience  as  to 
the  existence  of  molecules  and  gravitation,  the  limit  of  the  intensity  of  the 

energy  of  light  and  radiant  heat,  besides  the  absence  of  normal  waves,  and 
the  evidence  of  Rontgen  rays. 

The  numerical  values  of  these  constants  are  for  convenience  given  in  the 
following  table. 
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It  is  thus  shown  by  definite  analysis  that  an  infinite,  purely  mechanical, 

medium  consisting  of  uniform  spherical  grains,  in  relative  motion,  the  grains 

being  in  normal  piling,  except  for  local  inequalities  in  the  mean  density,  and 

so  close  that  there  is  no  diffusion,  affords  a  complete  account  by  purely 
mechanical  considerations  of  potential  energy,  the  propagation  of  transverse 

waves  of  light  and  the  apparent  absence  of  any  rate  of  degradation,  the 

lack  of  evidence  of  normal  waves,  the  gravitation  of  matter  and  electricity, 

as  the  result  of  the  dilatation  which  follows  from  the  strains  caused  by  local 

inequalities  in  the  density  of  the  medium. 

It  is  also  shown,  by  definite  analysis,  that  this  is  the  only  explanation 

possible  by  purely  mechanical  considerations. 

257.  Having  arrived  at  the  conclusion  stated  in  Art.  256  we  might 

make  this  the  end  of  this  research,  having  every  confidence  that  the  evidence 

which  has  not  already  been  adduced  would  confirm  that  which  has  been 

adduced.  It  is  not,  however,  the  sole  purpose  in  undertaking  this  research 

merely  to  show  that  there  is  a  mechanical  explanation  of  such  parts  of  the 
universe  as  shall  render  the  mechanical  structure  of  the  remainder  in- 

definitely probable,  but  also  to  obtain  as  much  light  as  may  accrue  from  the 

purely  mechanical  analysis.  The  analysis  is  therefore  continued  so  far  as  it 

relates  to  effects  in  the  medium,  that  is  to  say,  it  does  not  include  electro- 

dynamics or  electro-magnetics,  since  the  institution  of  complex  centres,  that 
is,  the  magnetic  conditions,  is  not  a  primary  effect,  for  it  results  in  separating 
the  molecules,  after  combination,  the  reunion  of  which  results  in  electric 
currents. 

258.  The  blackness  of  the  sky  on  a  clear  dark  night  would  be  explained 

if  the  light  waves  were  subject  to  viscosity  however  small,  or  nearly  so. 
It  has  been  so  far  a  moot  question  whether  there  is  such  viscosity.  But 

it  now  appears  from  the  rate  of  decrement  of  the  transverse  waves,  Art.  256 

(5'603  x  10-lfi),  that  the  time  taken  to  reduce  the  energy  of  the  wave  in 
the  ratio  1/e2,  or  1/8,  would  be  more  than  fifty-six  million  years.  This  rate 
of  decrement,  although  affording  an  ample  account  by  mechanical  considera- 

tions of  the  absence  of  uniform  brilliance  in  the  sky,  such  as  would  result 

in  an  infinite  space  from  an  infinite  number  of  stars,  however  sparsely 

scattered,  if  there  were  no  rate  of  decrement  as  the  result  of  viscosity,  is 

such  as  has  baffled  all  attempts  to  obtain  any  evidence  of  decrement  by 
observation. 

259.  The  dissipation  of  the  inequalities  in  the  mean  energy  of  the 
medium  resulting  from  the  rates  of  decrement  of  transverse  and  normal 

waves  which,  as  shown  in  Art.  256,  affords  a  complete  mechanical  explanation 

of  the  blackness  of  the  sky,  differs  fundamentally  from  that  dissipation  which 

results  in  the  increase  of  energy  of  the  molecules,  or  singular  surfaces.     This 
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is  at  once  apparent  since  the  degradation  of  the  energy  of  the  normal  and 

transverse  waves  can  only  be  a  dissipation  from  the  energy  of  the  molecules, 

or  mean  motion,  to  increase  the  irreversible  energy  of  the  mean  relative 
motion  of  the  medium. 

It  thus  appears  that  the  dissipation  of  the  mean  motions  of  matter,  such 

as  the  motions  of  the  sun  and  planets,  or  vortices  in  fluids,  until  all  motion 

ceases,  does  not  complete  the  dissipation  of  energy,  for  this  would  go  on 

until  the  only  energy  was  irreversible  relative  motion  of  the  grains,  which  is 

expressed  by  a"2. 

260.  The  electrostatic  unit,  or  more  correctly  the  unit  corresponding  to 
the  electrostatic  unit,  is  defined  (Art.  224)  by  the  condition 

W^)V=1   (417). 3 

This  definition  is  on  the  supposition   that  the  density  of  the  medium 

is  taken  as  unity. 

Thus  if  the  density  is  taken  as  22fl,  we  have  as  the  condition 

„  /47rV 
2211/' (^j  rj  =  l   (418). 

Then  reducing  the  member  on  the  left  by  the  table  (Art.  256)  it  is  found 

that  the  complex  inequality  in  which  the  number  of  grains  is  displaced  is 

1-615  x  1045, 

and  in  which  the  displacement  is  unity ;  the  effort  to  institute  the  normal 

piling  is  unity  and  thus  corresponds  to  the  electrostatic  unit. 

Comparing  the  effort  to  revert  to  the  effort  of  attraction  between  two 

negative  centres,  each  having  the  number  of  grains  as  above,  since  the  radius 

of  the  shell  which  would  contain  the  grains  is 

r0=6-493  x  lO"3    (419), 

the  ratio  of  the   effort   to  reinstitute    the   normal    piling,  to    the    effort  of 

attraction  between  gravitating  mass,  is  approximately 

1-2  x  1015. 

Thus  the  effort  of  attraction  between  the  two  gravitating  masses,  the 

grains  absent  in  each  of  which  are  the  same  as  the  grains  which  constitute 

the  electrostatic  unit,  is  eighty-one  thousand  billion  times  less  than  unity. 

261.  The  conclusion  arrived  at  in  Art.  256,  as  to  the  density  of  the 
medium,  does  not  exhaust  the  conclusions  to  be  drawn  from  the  size  of 

the  molecules.  Coupled  with  the  evidence  afforded  by  the  effects  in  dis- 
sociating  certain   compound   molecules,  possessed   by  the   transverse  waves 
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of  shorter  length  and  greater  frequency,  it  appears  that  there  must  exist 
certain  coincidences  of  periods  between  the  possible  internal  vibration  periods 

of  compound  molecules  and  the  periods  of  the  shorter  waves. 

262.  From  the  evidence,  Art.  261,  it  follows  that  the  compound  mole- 
cules which  are  dissociated  by  the  waves  of  light  must  have  been  in  a  state 

of  limited  stability :  so  that 

(1)  by  the  breakdown  the  total  potential  energy  is  reduced, 

(2)  a  sudden  disturbance  in  the  medium  is  produced  causing  waves, 
which  are  of  undefined  length,  in  the  medium. 

263.  Comparing  the  evidences  as  to  the  effects  of  waves  of  greater 

frequency  in  dissociating  certain  compound  molecules,  adduced  in  Arts. 

253,  254,  with  the  conclusions  arrived  at  in  Arts.  238 — 241  as  to  the 
effects  of  collisions  between  compound  singular  surfaces,  rotational  strains, 

and  the  institution  of  complex  inequalities  corresponding  to  electrostatic 

induction,  it  appears  that  the  latter  account  for  the  former  by  mechanical 

considerations  as  will  appear  in  the  following  articles. 

264.  Accepting  the  statement  in  Art.  263,  we  find  ourselves  face  to  face 

with  the  question,  What  is  the  source  of  light  ? 

From  the  mechanical  analysis  it  follows,  Art.  238,  that  undulations  in 

the  medium  can  arise  from  nothiug  else  than  the  relative  motion  of  the 

singular  surfaces.  The  collisions  of  these  surfaces  would  set  up  disturbances 

which  would  be  propagated  through  the  medium  with  the  velocity  of  light, 

and  which  would  correspond  to  the  waves  of  heat.  But  from  Arts.  238 — 241 
it  appears  that  there  is  another  effect  than  that  of  simple  collision,  by  which 

undulations  may  be  instituted. 

In  Art.  241  it  appears  that  when  two  aggregate  inequalities,  separated  by 

a  surface  of  weakness,  in  which  the  numbers  of  grains  absent  in  the  primary 

inequalities  differ,  are  subjected  to  rotational  strain,  parallel  to  the  surface 

of  weakness,  the  strain  will  cause  the  total  aggregate  inequalities  to  reform, 

instituting  two  fresh  aggregate  inequalities  with  limited  stability,  which,  as 
the  strain  is  gradually  reduced,  do  not  gradually  revert  but,  owing  to  the 

limited  stability,  are  maintained  until  the  strain  has  been  relaxed  sufficiently 

to  overcome  the  limited  stability  and  then  break  down  under  the  nearly 

full  effort  of  the  complex  inequality;  which,  by  Art.  260,  is  more  than  two 
hundred  billion  times  greater  than  what  would  be  the  effort  of  attraction 
of  the  two  equal  negative  inequalities  at  the  same  distance. 

Such  a  transverse  reversion  as  that  considered  would  not  result  merely 

in  reinstituting  the  normal  piling.  But,  as  it  involves  the  absolute  displace- 
ment of  mass,  the  recoil  by  reversing  the  strain  would  institute  a  complex 
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inequality  of  the  opposite  sign ;  and  this  would  be  repeated,  in  a  gradually 
diminishing  degree,  until  all  the  energy  was  spent  in  setting  up  undulations 
which  would  be  transverse. 

We  have  thus  two,  more  or  less  distinct,  sources  of  undulations;  and 
from  the  evidence  it  appears  that,  whatever  undulations  result  from  the 

collisions  of  singular  surfaces,  the  undulations  corresponding  to  those  of 

polarised  light  are  those  caused  by  the  reversion  of  the  complex  inequalities. 

265.  Since,  from  Art.  264,  it  appears  that  the  institution  of  light 
depends  on  the  existence,  in  the  medium,  of  compound  molecules  with 

limited  stability,  and  it  also  appears  that  these  compound  molecules  dis- 
sociate in  the  production  of  light,  it  follows  that  either  the  source  of 

light  must  be  continually  diminishing  or  that  there  must  exist  some  action 
which  results  in  thus  reassociating  the  primary  inequalities,  and  as  the 

first  alternative  is  contrary  to  experience  we  must  accept  the  second  as 
a  fact. 

The  reassociation  of  the  primary  molecules  which,  when  associated,  form 

compound  molecules  with  limited  stability,  receives  its  explanation  from 
the  mechanical  analysis  on  the  same  lines  as  that  of  their  dissociation. 

Thus  if  we  have  two  aggregate  inequalities  in  one  of  which  the  primary 
inequalities  are  not  combined  the  differing  primary  inequalities  are  combined. 

These  may  be  analysed  by  putting 

a  +  a    for  the  combined  total  aggregate  inequality,  and 

b  +  b'  for  the  total  aggregate  inequality  uncombined,  then 

a  +  a'  +  b  +  b'        a  +  a'+b  +  b' 
~2~      "'  ~2~      ~' 

a  +  a'-(b  +  b')      b  +  b'-  (a  +  af) 
2  " '  2 

These  if  added  together  constitute  the  total  aggregate  inequalities ;  they 

express  two  equal  total  negative  aggregates  together  with  one  complex 

aggregate  inequality. 

Thus  putting  a  +  a  =  A  the  total  aggregate  inequality  in  which  the 
primary  inequalities  are  combined,  we  have 

A  +  b  +  V  A  +  b  +  b' 
2  2 

A-(b  +  b')       b  +  b'-A 2  2 

Then  if  the  strains  were  sufficient  the  normal  attraction  might  overcome 

the  normal  stability,  i.e.  the  stability  in  the  direction  of  the  normal,  of  the 
r.  16 
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complex  inequality,  causing  a  reversion.  In  this  case,  however,  it  does  not 

follow  that  the  reversion  would  be  complete  and  so  reinstitute  A,  b  and  b', 
for  since  the  work  done  by  the  strains  might  be  sufficient  to  overcome  the 

resistance  to  combination  of  b  and  b',  the  recoil  from  the  breakdown  would 

cause  a  total  or  partial  combination  of  b  and  b',  thus  instituting  B,  the  total 
aggregate  inequality,  and  so  diminish  the  energy  available  for  the  institution 
of  undulations. 

We  have  thus  an  explanation  by  mechanical  considerations  of  the  part 

played  by  electricity  in  instituting  the  combinations  of  molecules  which 
differ  into  compound  molecules  with  limited  stability. 

266.  The  absorption  of  the  waves  of  light,  let  us  say  by  lamp-black, 
presents  a  problem,  the  explanation  of  which,  by  the  assumption  that  the 
molecules  are  capable  of  internal  vibrations  in  various  periods,  is  altogether 

sufficient.  Thus,  supposing  the  molecules  in  the  lamp-black  are  so  various 
that  there  are  molecules  the  internal  vibrations  of  which  coincide  with 

all  periods  of  the  incident  wave,  they  would  be  set  in  periodic  motion 
and  absorb  the  energy  of  the  waves ;  but  this  is  not  all.  For  supposing 

the  absorption  of  the  light  continuous,  the  energy  in  the  molecules  would 
continually  increase,  and  this  is  not  in  accordance  with  experience.  There 

must  therefore  be  some  means  by  which  the  energy  absorbed  by  the 

molecules  may  escape.  This  cannot  be  by  radiation,  since  in  that  case 

it  would  only  escape  as  light,  which  it  does  not.  It  is  mechanically 

impossible  that  it  should  escape  by  radiation  in  the  form  of  the  long 

dark  waves.  And  the  only  other  mode  of  escape  for  the  energy  is  by 

transmission — by  convection  and  conduction  through  the  molecules  to  the 

surface  of  the  lamp-black.  Nor  does  this  altogether  solve  the  problem — for  in 

such  an  experiment  as  we  are  considering,  it  may  be  possible  that  the  lamp- 
black is  in  vacuo ;  in  which,  having  reached  the  surface,  it  would  be  arrested. 

And  the  absorption  continuing  the  energy  of  the  molecules  would  con- 
tinually increase  indefinitely.  Since  any  such  indefinite  increase  of  the 

absorbed  energy  is  outside  experience  it  follows  that  within  the  limits  of 
experience  such  perfect  vacuum  as  contains  no  free  molecules  is  impossible. 

The  evidence  which  follows  from  the  theoretical  explanation  of  Sir  William 

Crookes'  radiometer*  at  once  illustrates  the  fact  mentioned  above,  for  when 
the  light  is  turned  on  the  receiver  which  contains  the  vanes,  the  latter 

almost  instantly  acquire  a  steady  speed  which  shows  that  the  lamp-blacked 
surfaces  as  well  as  the  opposite  surfaces,  which  are  white,  have  acquired 
a  steady  difference  of  temperature,  so  that  there  is  no  further  increase  of 

temperature  from  the  absorption  of  the  light ;  the  energy  received  from  the 

light  wave  by  the  black  surfaces  of  the  vanes,  taking  the  form  of  energy 

*  "  Certain  dimensional  properties  of  matter  in  the  gaseous  state."  Phil.  Trans.  R.  S.,  1879, 
p.  823. 
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of  vibration  of  the  molecules,  is  transmitted  to  the  surface  beyond  which 
the  vibrating  molecules  do  not  pass,  but,  as  the  molecules  at  the  surface 

are  vibrating,  the  energy  of  this  vibration  is  communicated  by  contact  to 

any  free  molecules  whose  paths  bring  them  in  contact  with  the  molecules 

at  the  surfaces  of  the  vanes,  causing  reaction  and  conveying  the  energy  to 
the  inner  surface  of  the  receiver. 

Thus  if  there  were  no  free  molecules  there  would  be  no  motion  imparted 

to  the  vanes,  and  as  the  stage  of  exhaustion  at  which  the  vanes  do  not 

revolve  in  unlimited  light  has  not  yet  been  attained,  it  follows  that  on  the 

assumption  that  the  waves  of  light  are  capable  of  communicating  energy 
to  the  molecules  in  the  mode  of  internal  vibration,  the  production  of  an 
unlimited  intensity  of  energy  by  the  absorption  of  light  is  outside 
experience. 

267.  The  assumption  on  which  the  absorption  of  light  is  based,  Art.  266, 

has  not  as  yet  been  subjected  to  the  further  analysis  necessary  for  a 
mechanical  explanation  of  the  actions  involved. 

It  therefore  remains  to  show  that,  in  spaces  where  negative  inequalities 

exist,  the  state  of  the  granular  medium  is  so  far  affected  by  these  in- 
equalities that  it  no  longer  transmits  waves  which  pass  through  the  medium 

at  the  same  velocity  as  when  there  are  no  inequalities,  undisturbed,  other- 
wise than  by  divergence. 

To  show  this  : 

We  have  (Art.  230)  the  fundamental  misfit  between  the  nucleus  in  the 

singular  surface  with  the  grains  in  strained  normal  piling,  instituting  in  the 

medium  a  shell  of  grains  in  abnormal  piling  which  constitutes  a  shell  about 
each  singular  surface  which  offers  little  or  no  resistance  to  strains  tangential 

to  the  singular  surface. 

We  have  also  (Art.  255)  the  diameter  of  the  singular  surface  some  ten 

thousand  times  less  than  the  wave-length.  Thus  we  have  a  free  singular 
surface  through  which  the  medium  is  free  to  move  by  propagation,  the 
diameter  of  which  is  10000  times  less  than  the  transverse  wave,  but  which 

is  still  subject  to  the  undulatory  motion  of  the  medium  corresponding  to  the 
light  waves. 

Consider  next  what  must  happen  from  the  existence  of  a  single  negative 

inequality  in  a  space  through  which  transverse  waves  are  passing : — 

In  the  first  place,  since  the  surface  of  the  inequality  is  a  surface  of 
freedom  there  would  be  a  certain  small  area  of  the  surface  about  an  axis 

through  the  centre  of  the  inequality  which  presents  a  nearly  plane  surface 

perpendicular  to  the  direction  of  propagation,  and  this  small  surface,  owing 

to  the  freedom  of  the  inequality,  offers  no  resistance  to  the  transverse  wave. 

16—2 
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This  area  of  freedom  would  relieve  the  stress  in  the  medium  iu  the  plane 

normal  to  the  direction  of  propagation,  and  so  cause  an  increase  of  the 

undulatory  motion  at  the  small  surface,  the  recoil  from  which  would  reverse 

the  direction  of  propagation  over  the  small  area,  thus  instituting  a  partial 
reflection.  (N.B.  The  amount  of  this  reflection  would  admit  of  quantitative 

determination,  but  the  analysis  is  long  and  it  does  not  appear  to  be 
necessary.) 

The  reflection  considered  does  not  constitute  the  entire  reflection  which 

would  result,  for  there  would  be  similar  reflections  at  the  opposite  surface  of 

the  inequality,  and  besides  the  reflections  on  the  small  surfaces  nearly  plane, 

there  would  be  reflections  resulting  from  the  relaxation  of  the  components 

of  the  transverse  stress  all  over  the  surface  of  the  inequality,  causing  re- 
flections in  all  directions  except  in  planes  normal  to  the  direction  of 

propagation.  So  that  there  would  be  a  general  but  varying  scattering  of  the 
transverse  wave  in  all  directions  greater  than  7r/2  from  the  direction  of 

propagation,  varying  from  a  maximum  at  ir  to  nothing  at  tt/2. 

The  proportion  of  undulations  within  a  distance  7\  of  the  axis  iu  the 

direction  of  propagation  scattered  by  the  passage  of  a  wave  by  a  single 

inequality  is  extremely  small,  for,  although  the  small  surfaces  of  freedom  do 

relax,  to  some  extent,  the  stresses  consequent  on  the  undulations  in  the 

medium,  a  singular  surface  is  so  small  as  compared  with  the  wave-length, 
that  they  follow  the  motions  of  undulation,  and  are  subject  to  nearly  the 
same  stresses  as  if  there  were  no  inequalities. 

Then  if  we  consider  a  space,  through  which  the  waves  are  passing,  to 
be  occupied  with  negative  inequalities  in  somewhat  close  order  it  does 

not  appear  that  the  rate  of  propagation  would  be  greatly  altered  owing  to 
relaxation  of  the  elasticity  of  the  medium. 

But  the  rates  of  propagation  do  not,  as  it  seems,  depend  solely  on  the 

elasticity ;  for  the  singular  surfaces,  owing  to  their  cohesion,  introduce 

another  system  of  possible  vibrations — the  internal  vibrations  of  the  negative 
inequalities. 

That  the  vibrations  possible  in  the  inequalities  may  be  instituted  as 

the  result  of  undulatory  stresses  requires  only  a  coincidence  in  the  periods 
of  the  waves  and  the  vibrations  of  the  inequalities.  Then  since  the  evidence 

of  the  existence  of  a  considerable  number  of  periods  of  vibration  in  all 
inequalities  is  according  to  evidence,  and  it  has  been  shown  that  however 

small  the  effects  of  the  undulations  solitary  grains  do  cause  a  certain  dis- 

turbance in  the  negative  inequalities,  it  follows  that  the  passage  of  a  wave 
through  a  space  in  which  the  inequalities  are  somewhat  close  will  result, 

if  continued  for  a  sufficient  time,  in  imparting  periodic  motions  to  the 

inequalities  having  periods  coinciding  with  the  wave  periods. 
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Then  supposing  the  regular  undulation  to  cease,  the  vibrations  of  the 

inequalities  would  institute  waves  of  the  same  period  until  their  energy  was 

exhausted.  Whence  it  follows  that  in  the  case  in  which  waves  are  passing 
steadily  into  and  through  a  space  occupied  by  inequalities  in  somewhat  close 
order,  they  will  maintain  the  vibration  of  the  molecules  and  at  the  same 

time  pass  through  the  medium,  and  then  the  energy  of  the  waves  and  the 

vibration  of  the  inequalities  together  would  be  greater  than  that  of  the 
inequalities  alone  in  the  ratio 

energy  of  wave  motion  +  energy  of  inequalities 

energy  of  wave 

Then  supposing  a  steady  state  to  have  been  reached,  if  either  of  these 
actions  were  diminished  it  would  receive  assistance  from  the  other;  and 

from  this  it  follows  directly  that,  while  the  energy  in  a  wave-length  before 
entering  the  space  containing  the  inequalities  is  the  only  energy  of  the 

undulation,  the  energy  in  a  wave-length  in  the  space  would  be  the  energy 
of  the  undulation  before  passing  plus  the  energy  of  the  inequalities. 

Then  again  if    the    mean   rate    of    the   motion   of   the  energy  of  both 

undulation  and  inequality  were  that  of  the  undulation,  there  would  be  more 

energy  passing  out  of  the  space  than  that  entering,  and  the  state   could 
not  be  maintained  steady.     But   if,   on   the  other  hand,  after  entering  the 

space  with  inequalities,   the   rate  of  passage  of  the   total  energy  was  that 

given  by 
energy  of  wave 

energy  of  wave  +  energy  of  inequalities  ' 
the  state  would  be  steady,  and  the  rate  of  propagation  diminished  in  the 
same  ratio. 

It  has  thus  been  shown  that  in  the  granular  medium  waves  corresponding 

to  light  waves  are  capable  of  communicating  energy  to  the  negative 

inequalities  corresponding  to  molecules,  which  was  the  object  in  this  some- 
what long  article. 

268.  Refraction  of  waves  in  the  granular  medium,  when  passing  from 

one  space  to  another  which  differs  as  to  the  closeness  of  the  arrangement, 

follows  directly  from  the  paragraph  last  but  one,  Art.  267,  in  which  it  is 
shown  that  the  waves  pass  from  a  space  in  which  there  are  no  inequalities 

into  a  space  in  which  the  inequalities  are  in  some  close  order;  the  ratio 

of  the  rate  in  the  space  without  inequalities  to  the  rate  in  the  space  with 

inequalities  is  as 

energy  of  propagation  4-  energy  of  inequalities 
energy  of  propagation 

and    this    is    the    expression    which    corresponds    with    the    index    of    re- fraction. 
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inequalities,  the  wave  will  be  reflected  according  to  the  laws  of  reflection, 
such  reflection  being  strictly  parallel  to  the  paper. 

On  the  other  hand,  it  follows  that  the  transverse  waves  in  which  the 

motion  is  normal  to  the  paper  can,  in  a  granular  medium,  be  instituted  only 

by  rotational  stress  in  which  the  rotation  is  normal  to  the  paper ;  such  waves 

propagate  parallel  to  the  paper  in  the  direction  to  which  their  planes  are 
normal,  and  are  not  subject  to  reflection  at  an  inclined  surface  perpendicular 
to  the  paper,  as  shown  in  Fig.  5,  since  the  motion  in  these  transverse  waves 

is  entirely  normal  to  the  paper,  as  is  shown  by  the  line  GH,  turned 

through  90°  in  Fig.  6.  Thus  it  is  seen  that  the  only  reflection  resulting 
from  both  components  of  the  motion  in  the  medium  when  the  waves  pass 

from  a  space  without  inequalities  into  a  space  with  inequalities  is  the 

reflection  resulting  from  the  inclination  of  the  surface  parallel  to  the  plane 
of  incidence,  as  shown  in  Fig.  5. 

It  may  appear  from  what  precedes  that  there  is  a  difference  besides  that 

of  the  motion  of  one  of  the  rays  being  parallel  and  the  other  normal  to 

the  paper,  since  so  far  no  mention  has  been  made  of  any  reflection  of  the 

ray  in  which  the  motion  is  perpendicular  to  the  paper.  This  apparent 

difference  disappears,  however,  since  if  the  reflecting  surface  in  the  plane 

of  incidence  were  removed  and  replaced  by  a  surface  normal  to  the  paper 

inclined  at  a  corresponding  angle  to  the  direction  of  propagation,  then 
the  reflection  would  be  from  the  waves  perpendicular  to  the  plane  of 

incidence,  and  there  would  be  no  reflection  from  the  plane  of  incidence. 

It  is  thus  shown  that  in  the  granular  medium  when  the  transverse  stresses 

in  the  medium  are  equal  in  all  directions  normal  to  the  direction  of  propa- 
gation, when  waves  proceed  from  a  space  in  which  there  are  no  inequalities 

into  a  space  in  which  there  are  inequalities,  if  the  separating  surface  is 

inclined  to  the  direction  of  propagation  there  will  be  reflection  in  the  plane 

of  incidence  of  that  component  of  the  wave  which  is  in  the  plane  of  incidence, 

in  a  degree  depending  on  the  closeness  of  the  inequalities  and  the  angle  of 

incidence,  while  the  other  component  of  the  wave-motion  will  not  be  subject 
to  any  reflection  resulting  from  the  inclination.  And  as  this  applies  whatever 

the  direction  of  propagation  may  be,  it  affords  a  definite  proof  that  the 
motion  in  the  medium  which  is  reflected  is  in  the  plane  of  incidence. 

This  result  in  the  granular  medium  corresponds  in  every  particular  with 

the  experiences  of  polarisation  except  that  heretofore  it  seems  to  have  been 
a  moot  question  whether  or  not  the  motion  in  the  ether  which  is  polarised  by 

reflection  was  parallel  or  perpendicular  to  the  plane  of  the  medium*. 

*  "In  the  theories  of  Fresnel  and  Canchy  the  vibrations  are  assumed  to  be  perpendicular  to  the 
plane  of  polarisation — in  those  of  MacCullagh  and  Neumann  to  be  parallel  to  it.  Stokes  arrived 
at  the  conclusion  that  they  are  parallel,  while  by  a  similar  experiment  Holtzman  arrived  at  the 

opposite  conclusion."     Lloyd,  Wave  Theory  of  Light,  1857. 
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Thus  not  only  does  the  analysis  of  the  granular  medium  account  by  purely 
mechanical  considerations  for  the  phenomena  of  polarisation,  but  also  removes 

all  doubt,  if  the  explanation  is  mechanical,  as  to  the  fundamental  necessity 

that  the  motion  in  the  medium  that  can  be  reflected  must  be  in  a  plane 

parallel  to  the  plane  of  incidence. 

The  foregoing  proof  that  that  component  of  the  motion  of  the  medium 
which  is  reflected  is  that  parallel  to  the  plane  of  incidence  has  been  based  on 

the  relaxation  of  the  mean  coefficient  of  rotational  elasticity  owing  to  the 
presence  of  negative  inequalities,  as  discussed  in  Art.  267.  This  was  all 

that  was  required,  as  the  relaxation  in  translucent  matter  is  comparatively 
very  small.  When,  however,  we  come  to  metallic  reflection,  which  in  the 

case  of  mercury  at  perpendicular  incidence  is  0*666  as  against  0"()018  for 
water,  it  appears  that  the  relaxation  is  altogether  of  another  order  than  in 
translucent  substances. 

In  the  mechanical  medium  such  difference  is  accounted  for  by  the 
extremely  small  size  of  the  singular  surfaces,  the  radii  of  which  are  about 

2  x  10~10  or  2  x  10-5  of  the  length  of  the  shorter  waves.  These  singular 
surfaces  as  long  as  their  arrangement  is  in  open  order  will  cause  relaxation 

which  is  small  but  which  increases  somewhat  proportionally  to  the  number  of 

such  surfaces  in  unit  space,  each  surface  being,  as  it  were,  independent,  so  that 

the  abnormal  pilings  which  embrace  every  grain  will  only  meet  at  a  few 

points.  But  as  the  inequalities  approach  the  closest  order  the  rate  of 

decrease  of  the  relaxation  increases  very  rapidly  until  the  normal  piling 

of  the  singular  surface  becomes  nearly  continuous.  The  surface  of  the  space 

enclosing  the  inequalities  then  becomes  a  singular  surface  of  the  aggregation 
of  inequalities  outside  of  which  the  piling  is  abnormal. 

To  realise  the  evenness  of  such  a  boundary  surface  embracing  the  whole 

or  any  part  of  the  aggregate  inequalities  it  is  only  necessary  to  remember 

that  the  radii  of  the  singular  surfaces  are  less  than  one  ten-thousandth  of  the 

wave-length,  whence  the  roughness  which  would  be  less  than  1  x  10~9  cm.  and 
thus  would  be  smoother  than  any  artificial  polish  which  can  be  imparted  to 

metal,  and  hence  could  only  compare  with  the  surface  of  mercury. 

It  is  thus  shown  that  the  granular  medium  not  only  affords  an  explana- 
tion of  the  polarisation  of  light  but  also  affords  an  explanation  of  metallic 

reflection.  And  these  explanations  being  accomplished  it  appears  that  the 

mechanical  explanation  of  the  rest  of  the  phenomena  of  light  must  of 

necessity  follow. 

271.  The  aberration  of  light  admits  of  an  explanation  so  simple  and  the 

coincidence  of  the  value  of  the  velocity  of  light  thence  deduced  with  that 

derived  from  the  observations  of  the  eclipses  of  Jupiter's  satellites  is  so  re- 
markable as  to  leave  no  doubt  in  the  mind  as  to  the  truth  of  the  explanation. 
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But  when  the  aberration  is  subjected  to  closer  examination  the  explana- 
tion is  found  to  rest  on  the  heretofore  unexplained  absence  of  any  resistance 

to  the  motion  of  the  ether  through  matter ;  for  notwithstanding  the  efforts 

made  to  rest  the  explanation  on  another  basis  this  has  not  been  completely 

accomplished. 

The  difficulties  in  conceiving  the  free  motion  of  the  ether  through  matter 

do  not  present  themselves  in  the  analysis  of  the  properties  of  the  granular 
medium  as  now  accomplished.  This  follows  from  the  analysis  which  has  been 

effected  in  this  and  the  previous  section. 

It  is  shown : — 

(1)  That  the  motions  of  the  singular  surfaces  are  independent  of  the 

mean-motion  of  the  grains  in  the  medium  (Art.  233). 

(2)  That  the  institution  of  undulations  depends  on  the  varying  strains 
resulting  from  relative  motion  of  the  singular  surfaces  (Art.  264). 

(3)  That  the  energy  of  the  wave  is  absorbed  by  the  singular  surfaces, 

and  that  the  energy  thus  absorbed  is  conducted  and  conveyed  through  the 

aggregate  singular  surfaces  (Art.  266). 

Whence  it  follows  that  the  singular  surfaces  which  correspond  to  matter 

are  free  to  move  in  any  direction  through  the  medium  without  resistance,  and 

vice  versa  the  medium  is  free  to  move  in  any  direction  through  the  singular 

surfaces  without  resistance.  And  that  the  waves  corresponding  to  those  of 

light  are  instituted  and  absorbed  by  the  singular  surfaces  only.  So  that  after 

institution  at  the  place  where  the  singular  surfaces  are,  the  motion  of  the 

waves  depends  solely  on  the  mean  motion  of  the  medium,  and  the  rate  of 

propagation  is  equal  in  all  directions  until  they  again  come  to  singular 
surfaces.  Thus  all  paradox  is  removed  and  the  explanation  of  aberration 

is  established  on  the  basis  of  the  absence  of  any  appreciable  resistance  to 

the  medium  in  passing  through  matter. 

Thus  besides  the  explanations  by  definite  analysis  of: 

the  potential  energy, 

the  propagation  of  transverse  waves  of  light, 

the  apparent  absence  of  any  rate  of  degradation  of  light, 

the  lack  of  evidence  of  normal  waves, 

the  gravitation  of  matter, 

electricity, 

which  explanations  render  the  purely  mechanical  substructure  of  the  universe 

indefinitely  probable,  we  have  by  further  analysis  obtained : — 
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The  explanation  of  the  blackness  of  the  sky  on  a  clear  night.     (Art.  258.) 

The  definite  proof  of  the  fundamental  dissipation  of  the  energy  of  the 

waves  of  light  and  the  relative  energy  of  the  molecules  to  increase  the  mean 
irreversible  relative  motion  of  the  grains ;  which  dissipation  is  independent 

of  that  which  tends  to  the  equalisation  of  the  mean  energy  of  the  molecules. 
(Art.  259.) 

The  number  of  grains,  the  displacement  of  which  through  a  unit  distance 
represents  the  electrostatic  unit.     (Art.  260.) 

The  proof  of  the  coincidences  between  the  periods  of  vibration  of  the 
molecules  and  the  periods  of  the  waves.     (Art.  261.) 

Proof  that  dissociation  of  compound  molecules  proves  the  previous  state 
to  have  been  one  of  limited  stability.     (Art.  262.) 

Proof  that  light  is  produced  by  the  reversion  of  complex  inequalities. 

(Arts.  263—264.) 

Proof  that  the  reassociation  of  compound  molecules  results  from  the 

reversion  of  complex  inequalities.     (Art.  265.) 

Proof  of  the  absorption  of  the  energy  of  light  by  inequalities.    (Art.  266.) 

Proof  that  negative  inequalities  affect  the  waves  passing  through. 
(Art.  267.) 

Proof  that  refraction  is  caused  by  the  vibrations  of  the  inequalities  having 
the  same  periods  as  the  waves.     (Art.  268.) 

Proof  that  dispersion  results  from  the  greater  number  of  coincidences  as 

the  waves  get  shorter.     (Art.  269.) 

Proof  that  the  polarisation  of  light  by  reflection  is  caused  only  by  that 

component  of  the  transverse  motion  in  the  medium  which  is  in  the  plane  of 

incidence,  and  results  from  the  passage  of  the  light  from  a  space  without 

inequalities  through  a  surface  into  a  space  in  which  there  are  inequalities. 

(Art.  270.) 
Proof  that  metallic  reflection  results  from  the  relative  smallness  of  the 

dimensions  of  the  molecules  compared  with  the  wave-length,  and  the  close- 
ness of  their  piling,  when  the  waves  pass  from  a  space  without  inequalities 

across  the  surface  beyond  which  the  inequalities  are  in  closest  order. 

(Art.  270.) 

Proof  that  the  aberration  of  light  results  from  the  absence  of  any 

appreciable  resistance  to  the  motion  of  the  medium  when  passing  through 
matter.     (Art.  271.) 
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redistribution  of,  110 — 28 

attraction,  law  of,  204 — 5 

blackness  of  sky,  238 

Clausius'    explanation    of    redistribution 
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cohesion,  212 

component  systems  of  mean  and  relative 
motion : 

approximate  equations  of,  55 — 66 
conditions  for  continuance  of,  69 — 

85 

equations  of  continuity  for,  32—41 
conducting   properties   of  the   absolutely 

rigid  grain,  71 — 3,  87 — 8 
conduction  of  momentum,  19—22 

rates  of,  through  the  grains,  95 — 
109 

conservation  of  inequalities,  183 — 221 
continuity  of  mass,  16 
convection,  11 

Crookes,  Sir  W.,  radiometer,  242 

decrement     of    normal     and    transverse 

waves,    179—82,   233 

of  inequalities,  78—9 
density  of  medium,  234 

dilatation,  coefficients  of,  186—92,  195— 
200 

discontinuity  of  the  medium,  74—82 
dispersion  of  mass,  momentum,  and  energy 

of  relative  motion,  131 — 44 

dispersion  of  light,  246 

distribution  of  velocities  of  grains  result- 

ing from  encounters,  89 — 93 

electricity,  209—12,  220,  239 

equations  for  any  entity,  9 — 13 
of  momentum  and  energy,  19 — 30 

of  continuity  for   component  sys- 

tems, 32—41 
of  motion  for  component  systems, 

55—66 

for  the  mean  system  in  terms  of 
a",  X",   o",    G,   173 

for    the    mean    path    of  a   grain, 

96—7,  101—2 
for   rates    of    conduction    through 

the  grains,  95 — 109 
for  redistribution   of    angular    in- 

equalities, 110 — 28 
for  linear  dispersion  of  mass,  mo- 

mentum and  energy,  131 — 44 
for  the  exchanges   between   mean 

and  relative  systems,  146 — 80 
for  the  conservation  of  mean  in- 

equalities, 183—221 
general  integration  of,  224—36 

exchanges    between    mean    and    relative 

systems,  146 — 80 

fluid,    reasons   for  rejecting   the   perfect, 

71,  74 

gases,  effects  neglected  in  kinetic  theory 

of,  113 
grains,    rigid,    conducting    properties    of, 

87—8 case  of  uniform  spherical,  77 
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grains,  points  of  contact  of,  83 

distribution  of  velocities-  of,  89 — 93 

mean  path  of,  95—8,  101—2 
gravitation,  law  of,  204 — 5 

Hooke's  views  of  density  of  medium,  227 

inequalities   in  the    relative    system,   re- 
distribution of,  110—28 

in  the  mean  mass,  conservation  of, 
183—221 

institution  of,  146 — 70 
negative,  204 

positive,  207 

complex,  207 — 11 

Kelvin,  Lord,  views  of  density  of  medium, 
227 

determination  of  diameters  of  mole- 
cules, 234 

kinetic  theory  of  gases,  effects  neglected 

in,  113 

light,  production  of,  234 
aberration  of,  249 

refraction  of,  245 — 6 
dispersion  of,  246 

polarisation  of,  246 

magnetism,  213 
mass,  continuity  of  position  of,  16 

matter — the  absence  of  mass,  221 — 2 

Maxwell's  theory  of  hard  particles,  89 
extension  of,  93 

Maxwell's  law  of  redistribution  of  veloci- 
ties, 89 

Maxwell's  theory  of  the  stresses  in   the 
medium,  206 

mean  and  relative  motions,  42 — 53 

systems,  exchanges  between,  146 — 
80 

media,  the  only  possible,  71 — 6 
medium,  meaning   of  purely  mechanical, 

14,  15 

medium,    density   of   purely   mechanical, 

88,  224,  234—6 
discontinuity  of,  74 — 82 
characteristics     of    the     state     of, 

134—5 diffusion  in  the,  79 

pressure  in,  189,  194 — 7 
momentum,  conduction  of,  19 — 24 

displacement  of,  in  uniform  medium, 
104 

normal  waves,  231,  233 

perfect  fluid,  71,  74 

piling  of  grains,  83 

potential,  205 
pressure  in  the  medium,   189,   194 — 7 
purely  mechanical  medium,  definition  and 

necessary  properties  of,  15 

Rankine's   expressions   for    intensities   of 
component  stresses,  22 

"  Outlines  of  Energetics  "—the  pas- 
sive and  active  complex  accidents, 

111 

redistribution     of     angular     inequalities, 

110—28 
redistribution  of  mass  &c,  by  convection 

and  conduction,  131 — 44 
Rontgen  rays,  232,  236 

singular  surfaces,  214 — 15,  216 — 18 
Stokes,     Sir    G.,     views    of    density    of 
medium,  227 

angular  distribution  of  the  grains, 
150 

surface  tension,  212 
surfaces,  boundary,  24 

velocity  of  grains  resulting  from  encoun- 

ters, 89—94 

waves,  normal  and  transverse,  231 — 3 
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