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PREFACE

The following book differs from the usual reports issued under

the auspioes of the Office of Scientific Research and Development . It

does not answer speoific questions, and it does not contain summaries

of results which a casual reader could use without studying the analyt-

ical details; instead, basic theoretical aspects of gas dynamics are

presented in a rather mathematical form for the increasing number of

well-trained scientists in related war work.

While trying to make practical contributions to problems of

gas flow. Dr. K. 0. Friedrichs and the undersigned have found a thorough

understanding of the theoretioal background indispensable; the present

manual is an attempt to condense the result of their efforts in this

theoretical direction. Before being drawn into work for the NDRC, the

writers were preparing a set of lecture notes on topics of mathematical

physics. This plan had to be postponed, but contact with classified

publications and active participation in work on the theory of explosions

and gas dynamics made it possible to write this manual, covering far more

ground than planned originally for a chapter in a volume on wave propa-

gation.

The content of the following pages is largely conditioned by

personal experience and interest. No attempt at a balanced presentation

was made. Even less was it possible to appraise the merits of all recent

contributors to the field. The names of scientists with whom the authors

had much contact will appear frequently, while others are hardly mentioned,

This is also true of the bibliography whioh, incidentally, contains a few

references to souroes of general information for those readers who find

that the present book starts at a point somewhat beyond their general

background.

The book was written during, not after, a period of study and in-

vestigation while points of view underwent gradual changes. As a conse-

quence, for example, scant attention is given to phenomena in liquids
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as compared with those in gases. Important subjects, such as flow

of compressible fluids around obstacles, are hardly touched. Under

conditions of more leisure such shortcomings should have been remedied.

A collective effort of the New York University Group of the

Applied Mathematics Panel was necessary to produce the book. In particu-

lar, the authors are indebted to Messrs. Charles DePrima, Earvey Conn and

John Knudsen. Much labor is embodied in the drawings (by Mr. John

Knudsen), most of which represent relevant actual cases. But Mr. Robert

Shaw, more than anyone else, has rendered invaluable help in all matters

of technical, literary and scientific character. Without his help the

book would contain far more errors than it does now. Even so, it is

full of imperfections; its publication in the present state was prompted

by the feeling that further delay might make it useless for the purpose

for which it was planned.

For obvious reasons, detailed references to classified material

and specific applications are not provided, and thus the table of contents

may convey an impression of overemphasis on theoretical aspects. The fol-

lowing comr.ents may, therefore, be made.

Chapter I contains classical facts underlying any mathematical

treatment of compressible flow.

Chapter II develops a theory of the type of partial differential

equations which occur in treatable problems of compressible flow. An

important point is the emphasis on what the authors oall "simple waves",

representing motion in domains adjacent to domains of constant state.

Chapter 'III is a rather extensive analysis of motion in one

dimension. After an initial mathematical disoussion the basic types

of continuous motion, so-called rarefaction waves, are studied. Then

follows an analysis of discontinuous motion, that is, of shock waves.

The last part deals with the phenomena that occur when such elementary

motions interact, e.g., when shock waves and rarefaction waves collide

with, G'r overtake, each other. Ultimately every motion of a gas must

be analyzed by a study of such interactions. The theory of detonation
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waves, wave propagation in elastic-plastic solids under impact loading,

and wave motion in open water ohannels are discussed briefly in the

appendices to Chapter III.

Chapter IV deals with the case of steady two-dimensional flow,

which presents itself most readily to a oomprehensive mathematical

analysis and, fortunately, provides an acceptable approximation to reality

in many cases. Of particular interest to some readers may be the treat-

ment of shock reflection, including the so-called Mach reflection.

Chapter V is of necessity the least systematic one, It deals

with such problems in three dimensions as permit a reasonable theoret-

ical attack. The first part concerns flow in nozzles and jets, a topic

with increasingly important applications in many fields, e.g., rocket

and jet propulsion. The second part is concerned with flow against con-

ical obstacles such as projectiles, and gives an integrated summary of

some work by Taylor and by Busemann. The problem of spherical waves,

e.g., blast waves, is discussed very briefly in the last part of this

chapter.

Altogether, the authors have tried to avoid discussions valuable
mainly for their mathematical interest. Still, the book was written by
mathematicians, and their willingness to accept compromise with an

empirical approach does not make them physicists or engineers. Never-

theless, the authors hope that their effort will prove useful for the

further development of the field.

R. Courant

Technical Representative
Contract OEMsr-945
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INTRODUCTION

Violent disturbances - such as result from detonation of explo-

sives , from flow through nozzles of rockets , from supersonic flight of

projectiles, or from impact on solids - differ greatly from the "linear"

phenomena of sound, light, or electromagnetic signals. In contrast to

the latter, their propagation is governed by non-linear differential

equations, and as a conseauence, the familiar laws of superposition, re-

flection, and refraction cease to be valid; but even more novel features

appear, among which the occurrence of shock fronts is the most conspicu-

ous. Across shock fronts the medium undergoes sudden and often consider-

able increases in pressure and temperature. Even when the start of the

motion is perfectly continuous , shock discontinuities may later arise

automatically. Under other conditions, however, just the opposite

happens; initial discontinuities may be smoothed out. Both these possi-

bilities are essentially connected -.dth the non-linearity of the under-

lying laws.

Nature confronts the observer with a wealth of non-linear wave

phenomena, not only in flow of compressible fluids, but also in many

other instances of practical interest. Such an example , rather differ-

ent from those mentioned above , is the catastrophic pressure in a crowd

of panicky people who rush toward a narrow exit or other obstruction.

If they move at a speed exceeding that at which warnings are passed

backward, a pressure wave arises much like that behind a shock front

receding from a wall (see p. 77). In this manual, however, we shall

refrain from further digressions into such fields and rather concentrate

on the theory of compressible fluids.

Understanding and control of non-linear wave motion is a matter

of obvious importance. Riemann, Earnshaw, Rankine , Hugoniot, Rayleigh

and others wrote profound mathematical papers inaugurating this field

of research almost a hundred years ago. Then the development was left

mainly to a small group of ingenious men in the fields of mechanics

and engineering. During the last few years , however , when the barriers
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between applied and pure science were forced down, there has arisen a

wide-spread interest in non-linear wave motion, particularly in shock

waves and expansion waves.

It is the purpose of the present manual to make the mathematical

theory of non-linear waves more accessible, giving particular attention

to recent developments.*

1. Qualitative differences between linear and non-linear waves .

Some characteristics of non-linear wave motion can be described in

general terms. In linear wave motion, such as in propagation of light

or sound, local disturbances are always transmitted with a definite

light speed or sound or sonic speed , which may vary within the medium

and even in time, but which is a local property of the medium itself

and remains Uie same for every congeivable wave motion in the medium.

Such a sound speed also plays a role in non- linear wave motion. Small

disturbances or "wavelets", slightly modifying a given primary wave

motion, are propagated with a certain speed, again called sound speed ,

though in this case the sound speed depends not only on the medium but

also on the specific character of the primary motion.

The distinctive feature of non-linear waves, however, concerns

disturbances or discontinuities which are not necessarily small. In

linear wave motion any initial discontinuity is preserved as a discon-

tinuity and propagated with sonic speed. Non- linear wave motion behaves

in a different manner. Suppose there is an initial discontinuity, e.g.,

between two regions of different pressures and flow velocities. Then we

have the following alternative possibilities: either (1) such initial

discontinuities are resolved immediately and the disturbance, while

propagated, becomes continuous, or (2) the initial discontinuity will be

propagated as a shock wave , a discontinuity advancing not at sonic but at

As standard treatises on the theory of compressible fluid flow we

refer to the following articles in the Bibliography at the end of

the manual: Taylor and Lfe.ccoll;[2j , Busemann [3] , Ackeret [<| .

Extensive bibliographies are contained in these articles.

CONFIDENTIAL



1-1 3 CONFIDENTIAL

supersonic speed relative to the part of the medium into which the dis-

continuity penetrates. As previously stated, the shock fronts or shock

waves are the most conspicuous phenomena occurring in non- linear wave

propagation; they appear even without being caused by initial discontin-

uities. A continuous beginning does not ensure that the motion will

subsequently remain continuous; after a while, discontinuities may

develop automatically and be propagated further as shock waves.

In the mathematical theory, discontinuities which develop in

this manner are represented by singularities of the solutions of the

mathematical initial value problem. Unlike linear mathematical prob-

lems, non- linear ones often do not admit of solutions which can be

continuously extended as far as the differential equations themselves

remain regular.

The meaning of our alternative possibilities can be grasped
more precisely if discontinuities are interpreted as idealizations
or limits of continuous states. To fix our ideas, let us imagine
a fluid medium in which at the beginning, i.e., at the time t = 0,
the values of the velocities, the density /o and the pressure p
undergo jump discontinuities across the plane x = 0. Instead of
attacking the corresponding initial value problem for the differ-
ential equation of gas dynamics directly, we consider the discon-
tinuous initial values as limits of a sequence of continuous (even
analytic) initial distributions. The initial value problem for
the nth set of these approximating initial values certainly has a

continuous and uniquely determined solution in a space-time neigh-
borhood N of x = and t = 0.

In the case of linear wave motion, the passage to the limit
n -»- ex> for discontinuous initial values simply leads to the solu-
tion representing the propagation of the initial discontinuities
at sound speed.* The non-linear case, however, exhibits a differ-
ent behavior. To the nth of the approximating sets of continuous
initial conditions there corresponds, as before, a neighborhood Nn
in which the (continuous) solution of the initial value problem is
determined (but beyond which possibly no continuous solution exists)
Now the two alternative cases arise as follows. As n tends to
infinity, or as the initial values approach the discontinuous dis-
tribution, either (1) all the neighborhoods Nn enclose a fixed
neighborhood N of t = and x =0, in which case the solutions tend

* See Courant-Hilbert [12] , II, p:360.
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in N to a continuous solution of the problem with discontinuous
initial values; or (2) there is no such common neighborhood N,

which means that the Nn shrink nearer and nearer to the place of
the discontinuity. In the latter case the approximating solutions
do not converge to a solution for the limit initial values, and our
procedure in no way enables us to deduce a solution of the problem
under consideration. Only further supplementary conditions, taken
from physical facts, lead to a meaningful mathematical initial
value problem. These general remarks will become more easily
understood in the light of the specific details discussed later.

By the principle of superposition for linear waves, pressures

of interfering sound waves are at most additive. In striking contrast

to this fact interaction and reflection of non- linear waves may lead

to enormous increases in pressure.

2. The medium .

(a) Gases and water . We shall be concerned with wave

propagation in a medium whose state is described by quantities such

as the density p or specific volume T = -5- , paessure p, entropy tj

per unit mass, internal energy e per unit mass, and temperature T.

All these quantities may depend on the rectangular space coordinates

x, y, z and the time t as well. Likewise, the particle velocity If,

with components u, v, w, in general also depends on x, y, z, t. We

shall be concerned mainly with the motion of compressible fluids or

gases , disregarding heat conduction and viscosity. Accordingly, for

continuous motions at least, we assume that the particles of the

medium undergo only adiabatic changes of state.

As known from thermodynamics, only two of the parameters o, p,

T,T> are independent; the specific thermodynamical nature of the

medium is then characterized, for example, by a function defining T

in terms of p and r\ and by a functional dependence

(1) P = f(/©,7?) or p = g(T,^) ,

which, with a certain freedom of nomenclature, we shall call the
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equation of state . Adiabatic changes correspond to tj = constant along

the path of a particle. Then, whenever the entropy r\ is initially the

same throughout the medium, it retains its constant value during the

motion and we are justified in simplifying (1) to a relation

(2) p = f(p) or p = g(r)

between the density, or the specific volume, and the pressure alone.

A basic assumption, well established by experience, is (for a> 0)

(3) f'(/o) > or g'(T) < .

For most gases the equation of state is

(4) p-

A

P
» or i.

(£)'

Such is the case for polytropic gases.* The factor A is related to the

entropy "^ by

(5) 9j = ± logA
,

cT being the specific heat at constant density. 8 is the adiabatic

exponent , its value for air at normal temperature being V= 1.4, and

for all polytropic gases $ > 1. For liquids a similar equation of state,

(6) p = A^o - B (V = 7, B = 3000 atm. for water),

where the pressure p is measured in atmospheres and A and B are inde-

pendent of the entropy, has been empirically established as approximately

valid for wide ranges. The qualitative behavior of polytropic gases will

be seen to be dominated by the convexity of the function p = g(r)

,

expressed by

* For the definition see the footnote on page 12, Art. 4.
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(7) g"Cr) > 0.

(b) Elastic-plastic solids * (See also Appendix 2 to

Chapter III), A quite different equation of state, and consequently

a rather different type of non-linear vave motion, occurs in a solid

slab capable of elastic and plastic deformations. Denoting by T the———————————— o
specific volume of the slab in the unstrained state and by 6 the strain,

we have

(s) r = r
o
d + e)

while the stress <T is the negative of the pressure,

O) r * -P .

Instead of the equation of state (2) for gases, we now have to oonsider

the stress-strain relation

(io) <r= <r(e) = -g(T) ,

which, for elastic-plastic deformations, has the following character.

With the elastic limit 6 for the strain £ we have an elastic region

|E| < Sm where

<T = E£M
* Note that f"(/o)>0 iJiiplies (7) by virtue of (3),

** It appears from theory confirmed by experience that r should be
chosen as the "engineering stress", i.e., the force acting in

normal direction on the cross-section of the slab divided by the

original area of the oross-section of the unstrained slab.
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E being Young's modulus. For |£| > £ , i.e., beyond the elastic limit

for the strain, the qualitative behavior of g(r) is characterized by

decreasing — = -g* (T) (in many actual cases decreasing to zero as T

approaches zero or infinity). For a graphical representation of the

elastic-plastic stress-strain relation see Appendix 2 to Chapter III.

(c) Non-linear wave motion can also be studied in a

medium consisting of a finite number of elements such as a chain of

mass points connected with one another by elastic forces which obey

a non-linear law of attraction and repulsion.

3. Differential equations of motion .* The phenomena to be

studied in this manual will depend essentially on the general frame-

work of the differential equations of hydrodynamics expressing Newton'

£

law of motion and the principle of conservation of mass. By adding to

these general statements the specific equation of state we obtain a

complete system of differential equations which, together with appro-

priate initial and boundary conditions, determine an individual

phenomenon

.

In the following sections a brief survey of classical results

is given in a form suitable for our purposes. The general equations

of hydrodynamics can be expressed in two different forms, the form of

Lagrange and the form of Euler . The equations in Lagrange's form des-

cribe the paths of the individual particles of the gas, i.e., the

coordinates x, y, z of the particle, as functions of the time t and

three parameters a, b, c which characterize the individual particle

(a, b, c are often chosen as the coordinates of the particle at the

time t = 0). In Lagrange's representation differentiation with

respect to the time t will be denoted by a dot (*) or by the symbol D.

In most cases, however, Euler's representation is preferable

from a mathematical as well as from a physical point of view. This

* For this article see references Lamb [8] and Milne-Thomson [9] in
the Bibliography.
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representation aims at expressing more immediately observed quantities,

namely, velocity, density, pressure, etc., as functions of the coordin-

ates x, y, z and the time t. In Euler's representation, differentation

with respect to the independent variables x, y, z, t is denoted by sub-

scripts. The transition from Euler's representation to Lagrange's is

effected by solving the system of ordinary differential equations

J

x = u(x,y,z,t)

(ID < y = v(x,y,z,t)

(^ z = w(x,y,z,t)

where a, b, c now appear as constants of integration.

Newton's law of conservation of momentum, supplemented by the

statement of conservation of mass are formulated as the differential

equations of motion. In Lagrangean form

(12) ^oy + p
y
= Y

express the former, while

(13) (pa)* =

expresses the latter, where A _ 0}
x iVi z i denotes the Jacobian of the

aia,b,c;
functions x(a,b,c,t)', y(a,b,c,t), z(a,b,c,t) and where X, Y, Z, are the

components of the external forces per unit mass, which we shall assume

to be zero in this manual.

The derivatives of the pressure p in equations (12) refer to

x, y, z, t as independent variables. An explicit expression in the

h P-O^, etc., will lead to

are to be expressed by the
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derivatives of the inverse functions x(a,b,c,t) Usually, there-

fore, the Lagrangean representation becomes too cumbersome. This

objection does not hold for one-dimensional motion, characterized by

merely one space coordinate x; in this case the Lagrangean representa-

tion is often advantageous. For motion in more than one dimension,

however, it is generally preferable to write the equations (without

external forces) in Euler's form

u
t
+uu

i
+ vu

y
+wu

z
+ -±-p

x
=

(14)

v .
-(- uv +w +wv + -«- p =0

t x y z r y

w
t
+ Uw

x
+vw

y
+ ww

z
+-i-p

z
=0

/°t + uPx + vPy + Tz + f>l"x+ T
y + w

2
) =

These four equations contain the five unknown quantities u, v, w, p, p

and so constitute an "underdetermined" system of differential equations

for these unknowns. In gas dynamics another equation, the equation of

state (1), is added and an additional unknown, the entropy??, is intro-

duced. Therefore one more relation is needed, and this missing equation

is provided by the following crucial assumption, justified as long as we

can disregard the effects of viscosity and heat conduction in the medium,

the changes of state, as long as they remain continuous, are adiabatic;

in other words, r\ does not change along the path of a particle. Thus,

the four equations (14) are supplemented by the two equations

(15) p = f {f>,rj) ,

(16) 7j = \ + UT^ + vt^ + wtj
z
= .

Now the number of unknowns corresponds to the number of equations so

that our system is "determined".

In most cases a further simplifying assumption can and will be

made; viz., at the beginning of the process the entropy has the same
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value throughout the medium. In this case the flow will be called

isentropic . Then, by (16), the entropy will retain its constant

value, i.e., the flow will remain isentropic, and our system (14) is

completed by the simpler relation

(IV) p =f(/o); pz = f(/»)/°x , Py
= f*(f)/V. P

z
= S%W* '

and we have four equations* for the four unknowns u, v, w, p. The

quantity

c = y/f'(/o)

will play an important role throughout, and for reasons soon to become

apparent, it is called the sound speed . Since f ' (|°) > 0, c is always

real.

Of particular interest is the special case of a steady motion

defined as a motion where the flow velocity, pressure, and density

remain unchanged in time at each point, i.e., depend only on x, y, z

and not on t. Tor such a motion the terms in our differential equa-

tions containing u
t

, v
t , w^, p^ and 7j t

drop out. In a steady flow all

the particles passing through a particular point have the same velocity,

density, pressure and entropy at this point and they will follow the

same path, the streamline , through the point. The medium is thus

covered by streamlines which do not change in time.

4. Remarks on the thermodynamical relations. Before completing

the general framework of Euler's equations by specific relations between

thermodynamical quantities, we recall briefly some underlying notions of

the thermodynamics of a homogeneous medium. From the quantities T, tj,

1

It is well knovm how the system for linear wave motion can be obtained
from these equations by assuming that u, v, w, p deviate but little
fraa normal constant values uQ , v , wQ , pQ . (See Courant-Hilbert [12]

vol. II, pp. 305-6.)

CONFIDENTIAL



1-4 11 CONFIDENTIAL

Then the basic equation of thermodynamics, written in differentials, is

(13) de + pdr = TdTf .

If r and T^ are considered as independent variables, the substance

is thermodynamically characterized by the dependence of e[Y,T\) on T and

7J,
and by (18) pressure and temperature are given as partial derivatives,

(19) er = -p, e^ =T,

the first of the two relations expressing p in terms of t or p with *n as

a parameter.

In gases, the pressure p depends noticeably on the entropy tj .

There are substances such as water, however, for which the pressure may

be considered a function of density alone since the influence of changes

in entropy are negligible. Then (18) shows that the temperature T

depends only on 7} and that the energy e separates into the sum of a

function of density alone and a function of entropy alone. Vice versa,

such a separation of the energy , e = eAx) + eAnj), is also a sufficient

condition for the dependence of p on /a (or T) alone.

Returning to the general case, we observe that it is often use-

ful to introduce instead of the energy another quantity, known as the

enthalpy or heat content i, given by

(20) i= e +Tp .

Then we can rewrite (18) in the form

(21) di - rdp = Td-rj .

Introduction of the enthalpy proves particularly useful when

adiabatic processes are considered, for then along a particle path

the entropy tj is a constant parameter and the enthalpy depends only

CONFIDENTIAL



CONFIDENTIAL 12 !_5

on a or T, so that along a particle path (21) simplifies to

(22) di = Ydp .

Therefore, for adiabatic changes we can write*

i =F(|0)

always with the understanding that F(<o) still depends on the entropy

7\ as a parameter.

For constant entropy we may express the terms -s-px , tpt,jp,
in the equations (14), by means of the enthalpy i, as the components

of the gradient of i = F(^>) , this quantity considered as a function

of x, y, z.

5. Irrotational flow. Steady flow. Bernoulli's law . Occasionally

it is convenient to rewrite the differential equations (14) in vector

notation. Under the assumption of isentropic flow, we have for the

vector If of flow velocity and the enthalpy i,

(24) "q* + grad i = .

Rearranging terms,

(25) q^ + -g-grad(q2 ) - "qx curl ~q •+ grad i = 0,

This function is determined only within an additive function of the

entropy, which for gases may be assumed to be a constant. Then F(^>)

may be chosen as

-fi-fi
(23) F(f ) = I SEL =r I -2L<y>

provided this integral exists for the particular equation of state in

question. If in addition to this assumption relation (4), p = A^o*

("8 > 1), holds, the gas will be called polytropic .
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where q is the magnitude of the flow velocity or flow speed

|q| = J\i
z + v2 + w2

and where the symbol x stands for vector multiplication.

Under rather wide assumptions, the equations of gas dynamics

admit of important "integrals" which are easily deduced. (As always

in this manual we restrict ourselves to the case where no external

forces are acting).

We shall first formulate the law of conservation of circulation

in isentropic flow. Let V be an arbitrary closed curve moving with

the fluid. We consider the circulation C along V ,

C = <t udx + vdy + wdz
,

f
as a function of t. Then the theorem states that during the process

the circulation remains constant: C = 0. This follows almost immed-

iately if we represent T by functions x(<r,t) ,y(«",t) ,z(<r,t) , <T being

a parameter on V such that P is described for - G" - 21T and

u(0) = u(2ir), etc. Then we have

fi
+ vy_ +- wz +- vJl^+ vy^. + wz^) d<r .

From the Lagrangean equations (12) and the form which (21) assumes

when the entropy is constant, we have x^= ur , . .
. , u =^Tp

x
= -i

x
>-

so that

=/{iM»2+^w\- V}

If the motion starts as an irrotational flow with curl "q* •= (which is

true for any motion starting from rest), then by Stokes 1 theorem we
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have, at the beginning, C = for any curve F; and since by (26)

C = remains valid throughout the motion, the irrotational character

of the motion is preserved, that is, curl "if = holds throughout the

motion. Consequently there exists a velocity potential, i.e., a

function 0(x,y,z,t) such that

If = grad j> , or u = j*x , v =
y

, w =
Z

•

The second consequence of the equations of motion is Bernoulli '

s

law , which may be valid in the "weak" or "strong" sense depending on

the assumptions made.

(a) Bernoulli's law for steady flows . A flow was called

steady if local quantities such as p, u, v, w, p do not depend on the

time t, so that in (25) the term qt drops out. In steady flow the

particles move along streamlines which are fixed in space and char-

acterized by dx:dy:dz = u:v:w.

From the differential equations (24) we may immediately infer

that on each streamline of a steady flow we have

"q "q'+'q grad i = —(— q + i)

(27) i q2 + i = i-(u2 + v2 + w2 ) + i = \& ,

where q is constant along a streamline (but need not necessarily have

the same value along different streamlines), q will be called the

ultimate or limit speed. Relation (27) is Bernoulli' s law in the

weak form . It is valid for steady, isentropic , but not necessarily

irrotational , flow. If the limit speed 5 is the same for all stream-

lines, \7e speak of Bernoulli's law in the strong form .

(b) Bernoulli's law in the strong form is valid for flows

which are irrotational and isentropic although not necessarily steady.

CONFIDENTIAL
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In terras of the velocity potential <t> , Bernoulli's law is expressed as

(23) \{^
'* 2

+ *
2
)

+
t
+ i = |-q

2 +
t
+ i = f q

2

where the limit speed q (which may depend on the time) is the same

throughout the fluid, whether or not the flow is steady. The proof

follows immediately from the fora (25) of the equations of motion.

Along the streamline of a steady flow the pressure, density and

flow speed vary. Bernoulli's equation q
2 + 2i = q

2 establishes a one-to-

one relation betv/een q and i along the streamline of a steady flow. Since

|* s -Sj- is positive, the quantities a, p = p(^o), c = Jp' (o) are uniquely

determined functions of q. We consider here q as an independent variable

in the interval ^ q ^ §; whether or not such values are actually assumed

on the streamline under consideration is immaterial for this analytical

aspect of Bernoulli's law. As q increases from zero on the difference

/° = 0, as is true for polytropic gases; then for /> = the ultimate speed

q" is attained, and q
2 - c

2 is positive for q = q. Since q
2 - c2 is nega-

tive for q « 0, there exists a single intermediate value c < q, called the

critical speed , such that for q = c flow speed and sound speed agree;

q = c = c . For a given q, wherever the flow speed is faster than the

critical speed, q > c
+ , it is automatically supersonic , i.e., q > c; and

wherever q < c the flow is subsonic , i.e., q <. c. In other words, q > c

implies q > c and q < c implies q < c. This follows immediately from

the fact that c decreases as q increases.

Evidently the value of the critical speed c (which we shall also

occasionally denote by q^ ) is determined by the value of q which char-

acterizes the streamline in question.

This concept of a critical speed c
+

separating the subsonic from

the supersonic region does not depend on whether or not the critical

speed is actually attained along a specific streamline in the flow.

Every streamline has such a critical value associated with it in any case.

__
* This follows from -^-(q2 - c

2
) = 1 + i^- = 1 4 i *!*£. =

d 2 2 di 2 dp

A_ r2
dp_ *

r d2p dr

1 - = r-— = - ——

f

3-— > by virtue of assumption (7).

dr dr
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Analytically we may characterize the critical speed for given q

t defining e

in (27) , we obtain

by first defining a critical value p^. Setting q
2 = c = p' = f'(p

This relation then determines p^ and hence c
2 = P'(^) uniquely.

In the case of polytropic gases with the equation of state

p = kp (see equation (4), Art.2(a)), the form of Bernoulli's law is

particularly simple. We easily obtain

i - A tf—o*- 1 - J P

and c
2 = ii

,

where A still depends on the entropy. Bernoulli's law for steady

flow becomes

i„2 + * £ =i&2 , or
2 q T^T/o 2

q

(29) q
2 + y^T 02 =^ ,

and the critical speed c
+

, obtained for q = c = c
+ , is expressed by

(30) =,
2 =T^T«S

•

Setting

i^=M2

TTT r

we have

(31) C*=/*S
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and we may write Bernoulli's law in the form

(32) yuV + (1 -yu2„2 j. M - ,i2i c2 _ c
2

/I -

or (32')
/*

1-/

6. Various forms of the differential equations . For steady isen-

tropic irrotational flow we obtain a simple differential equation of

second order for the velocity potential 0(x,y,z). First we use the three

£* h. £l
p p ' p

equations of motion in (14) to express the quantities ^p, ^-, -^r in

terms of c2 = p'(o) and u, v, w and their derivatives. Substituting

in the equation of conservation of mass in (14), we find

(33) (c
2 - u2)^* (c

2 - v2)^ + (c
2 - w2)^

- 2uvtfiy
- 2vw^

yz
- 2wu^

x
=

with c
2 given as a function of q

2 = u2 + v2 + w2 by Bernoulli's law (32).

Now u =
, v =

<f> , w =
<f> , so that (33) represents a single differential

equation for one unknown function #(x,y,z).

In the special case of steady flow in two dimensions we have

w = 0, all the derivatives with respect to z vanish and the original

differential equations can easily be replaced by the following system

of the first order

(34)

u^c2 - u2 ) - (u + vx )uv -t- v (c
2 - V2 ) =

CONFIDENTIAL
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with c
2 defined by Bernoulli's equation (32). This system is equiva-

lent to the original equations with the added assumption that

Bernoulli's law holds in the strong sense or that the flow is irrota-

tional. Hence the equivalence is true, in particular, for flows that

start from rest.

Another and even more simple form of the differential equations,

immediately expressing the irrotational character of the flow and the

principle of conservation of mass, is

(Uy - V^ ^

(35) I

which, of course, is equivalent to the preceding form by Bernoulli's

law.

7. Lagrange's equations of motion for one-dimensional flow .

In the case of one-dimensional motion , i.e., motion for which every

quantity depends on the time and on only one space variable x, the

existence of a velocity potential is trivial and not especially

interesting. In this case, however, it is often convenient to use

the differential equations in the Lagrangean form, which become

particularly simple upon introducing in place of the density p the

mass h in a column of unit cross- section bounded by planes through

an arbitrarily chosen "zero" particle with the coordinate x and the

particle with the coordinate x (both of which move in time). "v7e then

consider x and p as functions of h and t. We have

/C/xa />dx

o

CONFIDENTIAL



1-7 19 CONFIDENTIAL

Moreover, since -p
x is the force per unit volume, the force per unit

mass is -Tpx = -pjj. Thus Newton's law is expressed by

(36) :tt ~ "Ph

The law of conservation of mass is already implicit in the choice of

our variables, while the assumption of adiabatic changes will now in

general have the form 7j = 7| (h) . If, in particular, the entropy is

constant throughout, we have with the equation of state p = g(T) the

relation

(37) ph
=g'(T)T

h

and hence by (36) we obtain

(38) xtt
= k2^^

where

k(r) = y-g'(T) = pc

k =ac is often called the impedance of the medium. Equation (38) is

the Lagrangean form of the equation of motion as a single differential

equation of second order. This form seems somewhat more convenient

than the form referring directly to the initial coordinate a of the

particle x, with which the mass h is connected by h = aj0 , where o
Q

is

a constant density at time t = and a = corresponds to xQ .

Instead of this single differential equation of second order we

may write the equivalent system of first order by considering the two

unknowns x^ = T = -75- and u = x+ satisfying the system

(39) <

u+ = k2 (T)T
v

CONFIDENTIAL



CONFIDENTIAL

II. MATHEMATICAL THEORY OF ISENTROPIC FLOWS

DEPENDING ON TWO INDEPENDENT VARIABLES

8. The differential equations . The general case of three-

dimensional non-steady flows is much too involved for analytic treat-

ment except when only two independent variables occur and when the

flow is assumed to be isentropi c. This is typical of the following

cases:

(a) 0ne-dimen3ional fluid motion, i.e., motion in which the

state depends only on the time t and on one space coordinate x; for

example, gas in a cylindrical tube along the x-axis, the independent

variables being the distance x and the time t.

(b-j_) Axially symmetric two-dimensional motion, where the state

depends only on the time t and on the distance x from a fixed axis

normal to the plane of motion.

(b„) Three-dimensional flow with spherical symmetry about the

origin, the independent variables being x and t, where x is now the

radial distance from the origin.

(c) Steady flow in the x,y-plane.

(d) Steady flow in space with symmetry about the x-axis, the

independent variables being x and the distance y from the x-axis.

The following are the differential equations corresponding to

these various cases:

(a) Flow in one dimension . The flow at any point x at time t

is characterized by the velocity u, the pressure p and the density

p = — . If we assume that p = p(<>) and 22- > 0, and introduce the

sound speed c = ,/§^ , the equations of flow become

(A)

or, for the dependent variables u and the enthalpy i (1(23), Art. 5) (yo
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c
2 being considered as functions of i

)

,

(B) 1

( H + °2ux + uix = ° '

For a polytropic gas (or water) with the adiabatic exponent a, we may

introduce u and c as dependent variables; the equations then become

{

u
t
+ uux + yfr ccx = °

ct+ l^cux+ uc
x
=

In Lagrangean form, with the independent variables t and

h = / /o(£,t)d£ and the dependent variables x
fa
= T and u = x

%
, we

have the system

f"h= T
t

(D) {
2/

where k2 (T) = c
Z

(f>)/o
Z

.

(bi) Two-dimensional flows with axial symmetry . V.'ith x as the

radial distance from the axis of synmetry and u as the radial velocity

the equations are

!

u
t + ™x + f/°x=°

u

/°t +P*x + *Px+ x
= ° •

(bp) Three-dimensional flow with spherical symmetry about the

origin . Here, with x as the radial distance from the origin and u as

the radial velocity, the equations become
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(F)

u
t + uux + ^-/°x = °

2x>u

/°t
+/>ux

+ u
/°x + x ° •

The essential difference between equations (E) and (F) and those of
pu 2/Ou

case (a) is the presence of the terras L— and -2—
-, respectively, in

which the independent variable occurs explicitly.

(c) Steady flow in two dimensions . Here x and y are the inde-

pendent variables and the velocity components u and v are the depen-

dent variables. We assume that Bernoulli's law in the strong sense

applies, which for isentropic flow is tantamount to the assumption of

irrotational flow. Then c is a function of q
2 = u2 + v2 , this

relationship being given in the case of a polytropic gas by

c
2 = ' ~ -1

(t
2 - q

2
) , § = constant.

In this case the equations of motion become (see equations (34), Art. 6)

Uy - v
x

=

(G)

u^c2 - u2 ) - (uy + vz )uv + v
y
(c
2 - V2 ) =

(d) Steady flow with symmetry about the x-axis . Again assuming

Bernoulli's law in the strong sense and considering as the dependent

variables the axial component of the velocity u and the radial component

of velocity v, with x and the radial distance y from the x-axis as the

independent variables, we have as the equations of motion
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As in the case of three-dimensional flow with spherical symmetry and

two-dimensional flow with axial symmetry, the essential difference
2

between this flow and steady plane flow is the occurrence of a term —

-

7
containing explicitly the independent variable y which measures the

radial distance.

All these systems have a similar mathematical structure; they

consist of two quasi-linear partial differential equations of first

order in two dependent and two independent variables. A general

mathematical theory applicable to all these types of flow will clarify

and unify the analysis of the various special cases.

Let us denote by u, v the dependent and by x, y tho independent

variables. These will later be identified with the various dependent

and independent variables of the preceding problems. Then the general

form of the differential equations is

fVx + B
l
u
y
+ C

l
vx + D

l
7y + h =

(D

where the A,B,C,D,E are known functions of x,y,u,v. If E, = E?
=

the system is homogeneous . If the A,B,C,D,E are functions of x,y alone

the equations are linear and are consequently much easier to handle; and

if A,B,C,D are functions of u,v alone and Ej_ = Eg = 0, a similar simpli-

fication will present itself.

In this case the differential equations (1) are made linear by

interchanging the rflles of dependent and independent variables . Eor, if

x and y are considered functions of u and v, we have

u^ = Ayv , Uy=-Axv ,

vx=- A yU '
v
y = Alu-
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provided that the Jacobian

does not vanish. Hence, in our special case, the equations (1) are

transformed into the linear differential equations

fVv- B
i
xr- C

iyu
+ D

i
zu=°

IVv" Vv-Vu +DA =0
•

This situation occurs in the case (a) of one-dimensional general flow

and the case (c) of two-dimensional steady flow.

The possibility of this linearization depends essentially on the

assumption A =£ 0, and hence those solutions for which A = are

excluded. We shall see, however, that these latter are of particular

interest.

9. Characteristic parameters . The theory depends upon the

transformation of system (1) to a normal form or characteristic form

by the introduction of two suitable new independent variables ol, p
(so-called characteristic parameters ) in place of x and y. In this

characteristic form the two equations (1) for u and v as dependent,

and x and y as independent variables are replaced by four equations for

the four quantities u, v, x, y as dependent variables and the two

parameters <x, ft as independent variables. Thus a decided simplifica-

tion can be attained; in two of the new equations only differentiations

with respect to a, and in the remaining two only differentiations with

respect to & will occur, and the independent variables ol,/B do not occur

explicitly.

The derivation can be indicated briefly. Let us consider a

solution u(x,y), v(x,y) of (1) and, in particular, the values of

u and v along a curve L given by a parameter <r in the form x x(c),
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y = y(«") . Along L,u and v also become functions of T and, if

we denote differentiation with respect to <r by a dot, we have
along L

xu + yu

(1*)

u =

*v
x
+ yv

y
- v =0

If x(c) , y(c) , u(<r) , v(<r) are considered as given, then (1)

and (1*) form a system of four linear equations for the four
quantities ux , uy , vx , vy along L. In general, therefore, the

given quantities x(<r), y(ff) , u(<r), v(<T) will determine uniquely
the derivatives ux , uy , vx , vy along L. It is natural, however,

to investigate the exceptional case when the determinant of the

coefficients, i.e., the first determinant of the matrix

vanishes:

/Ai BL C X DX EjJ

A
2

B2 C2 D2 Eg

i y -u

i x y -v/

U^c. AgC^y2 - (AXD2 - A2DL + BXC2 - BgC^xy + (B^g - BgD^x2 = 0.

In this exceptional case, since the system (1), (1 ) according to

our assumptions also has a solution, not only the determinant van-

ishes, but in addition the whole matrix has rank not more than

three, which yields one more independent relation.
Now we consider the two values 4+and 4_of the ratio y : x

for which the determinant is zero; if £ + and £_ are real and different

then we have for our solution u(x,y), v(x,y) two different families

of such exceptional curves L. Calling our parameter <r either ct or p
according to which of the two roots t, we choose, we obtain the trans-

formation described in the text above. It is easily seen that if

this procedure is reversed, the four equations in the text lead by

elimination of oc. and (3 to the differential equations (1) and thus

are completely equivalent to them.

The characteristic differential equations equivalent to (1) can

be written in the following form:
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(2)

*l?

ii+ u^* (r4

*-** - °

+ (K£+- H)x
(

N
H_ u^+ (Rt_- S)^ + (x£_- H)*^ s=

where £,+and £_ are defined as the two roots of the quadratic equation

(3) [AC]£2 - ([AD] + [BC])£+ [BD] = ,

and where
[AC]

CAB]

CAB]

. IBCJ_
" CAB]

T, _ [BE]H - mr>

the brackets denoting the determinant

[XY] =

*2 Y
£

The possibility of the characteristic transformation of (1) given

above depends on the hyperbolic character of the system, expressed by

the inequality

(4) ([AD] + [BC]) 2 - 4[AC][BD] >

This condition is satisfied for all our problems, with the qualifica-

tion that in the case of steady flow the velocity is supersonic, I.e.

q = u + v > c
2

. Furthermore, it is supposed that the conditions

[A3] =£0, and therefore [CD] =s*0, as well as [AC] =* and [BD] 5^0
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are satisfied in all cases under consideration.*

Under these conditions the quadratic equation (2) yields two

different real solutions t,+, L_ (different from zero and infinity) as

functions of u,v,x,y.

Obviously, without changing the form of the characteristic

equations, we may replace a by a.' = W(ot) and /3 by /S' = V(/8) where W

and V are arbitrary monotonic functions.

The main point is that under our assumption the system (1) is

equivalent to our characteristic system in the sense that a solution

of either yields a solution of the other. To this we add a few

further remarks and conclusions.

For a specific solution of our system, we consider the two

families of lines a. = constant and/8 = constant in the x,y-plane and

their images in the u,v-plane, and call them the characteristics C

and the characteristics I" respectively, distinguishing

C+ »r+ : /3 = constant,

C_ , P_ : oc - constant

.

Two special cases of our system (1) are particularly simple:

(1) When the differential equations (1) are linear , i.e.,

when A-
L
,...,Eg depend on i and y only, then by (3) <£ + and £,_ are

known functions of z and y alone and the differential equations I are

not coupled with the equations II. The equations I are equivalent to

two ordinary differential equations

* If [AC] = [BD] = 0, the equations (1) could be put into the desired
normal form by a si-nple elimination. Furthermore, if one of the
determinants [AC], [CDJ vanishes, a rotation of the coordinate
system will correct this. [aB] and [CD] are assumed different from
zero for obvious reasons.
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= ^(x.y)

(5)

£ - U*>v)

which determine the families C«. and C_ respectively. In the linear

case the C characteristics in the x,y-plane are fixed, i.e., they do

not depend on the specific solutions u,v of (1).

(S) If \ = Eg ~ °» and if A1»«"» D2 dePend on u » v only ( as in

the case of steady supersonic flow in two dimensions) the situation is

similar. Then t, + and £_are known functions of u and v and the diff-

erential equations II are independent of x and y.* They determine the

characteristics V in the u.v-plane , or what is equivalent, the ordinary

differential equations

(6)

r+ : £ = S-R£+

»—»*-

determine the families Y+ and I~l respectively. (For the underlying

reason behind the reciprocity of these two special cases, see the

remark at the end of Art . 8 )

.

10. Initial value problem. Domain of Dependence. Range of

Influence In the preceding article the characteristics appeared

essentially as a mathematical tool for simplifying the form of the

differential equations. Physically, however, the point of primary

interest is the role of the characteristics as lines of propagation

of disturbances, or Mach lines . This role together with the out-

standing mathematical features of wave propagation in general are

* The same, incidentally, remains true even if E and E„ still depend

on u and v.
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best understood in connection with the basic problem of hyperbolic

differential equations, the initial value problem, which we consider

for system (1). Given a curve L in the x.y-plane by means of a para-

metric representation i = x(<r), y = y(ff) and along L values u(<r), v(«")

such that L is nowhere characteristic or tangent to a characteristic;

the problem then is to find a solution of (1) which assumes the values

u(<T), v(B") on L.

To solve the problem* we apply the transformation to character-

istic parameters ocand/9, which, with no loss of generality, may be

normed so that the initial curve A in the x^3-plane is represented by

A: a+^0.
The initial value problem can now be formulated for the differ-

ential equations I, II in the Qj^-plane. On the line A the values of

x,y,u,v are prescribed, and in a neighborhood ofA a solution of the

characteristic equations I and II is sought which assumes these given

values onA.

To construct the solution we differentiate 1+ and II+ with

respect to (3 and I_ and II_ with respect to oc and thus obtain four

linear equations in ^ , y^ , u^ , v^ . The determinant of these

linear equations has the value (£+
- 4_)

2R which is different from

zero. Hence we can solve for x , y , u m , v „ and obtain a system

of equations of the form

where the functions f depend on all the quantities x,y,u,v,r ,z ,y ,y ," A « A
U«' us '\ »7s * For these equations the initial value problem can be

solved by the method of iterations** (at least in a neighborhood of the

initial line A), and solving the characteristic system (7) is seen to

* For greater detail see Courant-Hilbert [12] , Vol. II, Chapter V.

** See Courant-Hilbert [12] , vol. II, Chapter V, Art. 7.
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be equivalent to solving the initial value problem for our original

system (1) (provided that the Jacobian x^y^ - x^y^ does not vanish).

Furthermore, this solution is uniquely determined.

Most significant is the

* (<*,fi)

A:<X-+/3 = O

Figure 1

fact that the values u,v,x,y for

the arguments a,^8 depend only on

the initial values on A. between

the points A and B indicated on

the diagram.

Since oc a constant and

ft
= constant are characteristics,

our result has the following

interpretation in the x,y-plane.

The values of u,v at a point P in the x,y-plane do not depend on the

totality of the initial values on L, but only on the initial values

on the section of L intercepted by the two characteristics through P.

This interval on the line L intercepted by the two characteristics is

called the domain of dependence of the point P.

Correspondingly we may speak of the range of influence of a

point Q, on the line L, that is, the totality of points in the x,y-plane

which are influenced by the initial data at the point Q,. Evidently

this is the angular region between the two

characteristics drawn through Q. This range

of influence of the point Q, consists of all

points P whose domains of dependence contain G>

It is the existence of such domains of

dependence and ranges of influence which

characterizes phenomena of wave propagation

in contrast to states of equilibrium. In the

latter there is an organic connection between

all the points of the medium. The differential

equations are then elliptic and their solutions

are analytic functions which are entirely
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determined by their values in any domain, however small. For problems

of wave propagation, however, the solutions of the differential equations

are not necessarily analytic. The role of the concepts of domain of

dependence and range of influence is implicitly referred to in such

expressions as "the medium at a point P does not know of the state at

a point Q" (meaning that P does not belong to the range of influence

Of Q) .

Yhile the initial values of u and v along L are assumed continuous,

discontinuities in the first or higher derivatives of these initial

values may be permitted. At those points P whose domains of dependence

do not contain the discontinuity points of the derivatives of the

initial data, the solutions u,v have continuous first and higher deriv-

atives.* From our preceding construction it could be inferred that

such discontinuities of derivatives occur only along characteristics

through the discontinuity points on the initial curve L (unless new

discontinuities appear due to vanishing of the Jacobian x^y - r.
fi
yot ).

11. Propagation of discontinuities along characteristic lines .

It is useful to enlarge upon the role of characteristics as possible

loci of discontinuities. If at a point A there is a discontinuity in

some derivatives of the initial data on L, then this discontinuity will

be propagated along the t /o characteristics through A. It can never

disappear.

In case the variable y is identified with the time t, this can

be interpreted as follows. Any discontinuity will spread through the

one-dimensional x-region with velocities -r*- given by the slopes of the

two characteristics through the corresponding point of discontinuity

in the x,t-plane.

In two-dimensional steady flow, characteristics issuing from the

boundary of the flow will indicate small disturbances caused by slight

roughness of the boundary which reach out into the medium. Such

* See Courant-Hilbert CIS] , vol. II, Chapter V, Art. 7.
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characteristics, or Mach lines, are often actually visible in flows

between slightly roughened walls.

The discontinuities spreading along characteristics can be
described by the following mathematical considerations. Let us
employ characteristic coordinates and suppose that the discontin-
uity appears across the line cc = constant, so that the tangential
derivatives with respect to^d remain continuous. Then consider
the two jumps

r -|<* + r -iOL +

t4t-
" u ¥"- W«-o" v*"-

where u = u(ot,0).* We may assume that not only x, y, i
, y but

also x^ and y^ as well as x^ and yoip are continuous across the
line cc = constant. (This can be achieved by proper choice of
the parameter ot, replacing, if necessary, ot by oC = W(ct) with a
suitable W) . We can now establish two homogeneous linear diff-
erential equations along ot = constant for the discontinuity
intensities U(y9) and Y[a) .

Consider first equation 11+ on both sides of the character-
istic oc = constant, and subtract these equations from each other.
Since the coefficients and derivatives with respect to (3 are con-
tinuous, we conclude that

(9) U^3) + G^yflJV^) = 0,

where Gj_^8) = r4+ - S is a known function of p along ot = constant.
To obtain information from 11^ we first differentiate with respect
to ot and carry out the previous process again. We then find a
differential equation of the form

(y) Ug + G^ + MU + NV = 0,

where Go, M, N are known functions of A along oc = constant.**

* The use of characteristic coordinates will not be affected by
the presence of discontinuities in ux , u^., vx , vv as long as
u, v, x, y are continuous. Incidentally, the following consic
orations would not apply to discontinuities in u and v.

** Note that differentiation of G„ with respect to oc leads to

%!>*] + %W • etc -
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The last two equations define each of the discontinuities
U and V as a solution of a linear homogeneous ordinary differential
equation. Hence these discontinuities are uniquely determined and
are different from zero along the whole characteristic if they are
known and different from zero at any point of the characteristic.

12. Characteristic lines as separation lines between regions of

different types of flow . A remark of basic importance might be made

here, whenever the flow in two adjacent regions is described by

expressions which are analytically different (e.g., when one is a region

of rest or constant state while in the other region the state is not

constant), then the two regions are necessarily separated by a character-

istic. This statement is an immediate consequence of the fact that only

along characteristics can derivatives of u and v of any order change

discontinuously, or again, of the uniqueness theorem for the initial

value problem for non- characteristic initial curves.*

If the differential equations are elliptic, no characteristics

exist** and consequently no discontinuities of any type can occur. It

is shown that in this case the solutions must be analytic functions of

x and y and therefore cannot be constant in any region without being

constant throughout.

13. Characteristic initial values . Along a curve L which is not

characteristic for initial values of u,v, our differential equations,

as we have seen, permit the calculation of the derivatives of u and v

(and similarly of all higher derivatives), and determine the solution

uniquely on both sides.

What corresponding information do the differential equations

yield for a line L with values u,v which make it characteristic? The

answer is found immediately from the normal form I, II of the equations.

* See Courant-Hilbert [12], vol. II, p. 297.

** Ibid., Chapter III, Art. 2 and p. 295.
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pigure 3

Suppose L is a line C + or /3 - constant. Then II + shows that along L

the values of u,v cannot both be prescribed arbitrarily but rather

establishes a relation between them since it is an ordinary differential

equation in u and v. We are conse-

quently at liberty to prescribe only

one function, e.g., u and, at a

single point, the value of the other, v.

In many important applications

the initial value problem is posed

not for a non-characteristic initial

curve L, but for initial data along

two intersecting characteristic arcs.

This characteristic initial value problem is formulated for the char-

acteristic differential equations as follows. Given compatible values

of u and v along two characteristic segments oc = ac.
Q , /3 = /3Q

as indicated

in Fig. 3, find the solution of I and II with these initial values for

points oc,/3 in one of the four angular domains, e.g., ct>ot
, /3 >/3Q .

The solution is again uniquely determined and is obtained by the iteration

method described above in Art. 10.

14. Relation between the characteristics in the z,y-plane and in

the u,v-plane . The characteristics C and Y can be brought into a simple

geometric relation if we make the x,y-plane and the u,v-plane coincide

along their respective coordinate axes and if we restrict ourselves to

the special case where one of the equations (1) is u_ - vx = and where

the other is homogeneous. This occurs when the flow is two-dimensional ,

isentropic, irrotational and steady . Then, as is easily verified,

equations I and II (Art. 9) become

(11)

and it follows that
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;

x
/9
ua + y^'a

= ° '

This means that if x,y and u,v are represented in the same coordinate

system, the directions of C + and T and of C_ and 1^ respectively

through corresponding points (i.y) and (u.v) are perpendicular.

15. Application to the differential equations of gas dynamics .

The preceding results form the basis for a more or less complete treat-

ment of the equations of gas dynamics in the cases (a) - (d) character-

ized in Art .8. In all these cases the reduction of the differential

equations to their characteristic form is immediately carried out,

opening the way for theoretical as well as for numerical procedure. In

Chapters III, IV and V we shall supplement the general theory for the

different categories of flow problems under consideration. For the

present we shall continue the general theory by discussing a point of

major importance in applications, the notion of "simple wave".

16. Flow adjacent to a region of constant state. Simple waves.

Very often the following situation is encountered. In a certain region

(I) of the x,y-plane velocity, pressure and density are constant while

this zone of constant state is followed by another zone (II
)
in which

velocity, pressure and density vary. Then, as we saw, the two zones

ara necessarily separated by characteristics C or Mach lines. While

restrictive conditions for a flow adjacent to a zone of constant state

cannot be formulated in simple terms for every type of flow, there is

an important class of flows in which the description of such flow pat-

terns (II) is particularly simple. These are the cases where the differ-

cntial equations (l) are homogeneous and have coefficients which do not

contain :c and y explicitly. Under these conditions, which are satisfied

in cases (a; and (o), for one-dimensional flow and steady isentronio
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irrotational two-dimensional flow, respectively, the characteristics

F in the u,v-plano are two fixed families of curves which can be repre-

sented in the form y3(u,v) = constant and oC,(u,v) =• constant. In the

following pages we shall make the assumption of fixed characteristics in

this sense. (Always, we assume the hyperbolic character of the differ-

ential equations, which in the case (c) is tantamount to the supersonic

oharacter of the flow.) Then the flow (II) is of peculiar pattern, called

a simple wave, which we shall presently define.

For any flow, the characteristics C^. and C in a zone of constant

state are straight lines, since constant values of u and v imply oonstant

values of /3 and 06 • For flows with fixed characteristics we define a

simple wavo as a zone with the following property: One of the two sets

of characteristics C, say the family of curves C+, consists of straight

lines along each of which the values of u, v, p,/o remain constant, while

these constants vary from one characteristic C to another .

The situation thus described can be interpreted by reference to

the hodograph plana with the coordinates u,v. In general, i.e., when

A = uv -uv ?fcO, there corresponds to a sufficiently small domain

of the flow in the x,y-plane an image domain in the u,v-plane, and we

may introduce u and v as independent variables (find thus linearize our

differential equations, as seen in Art. 8). For a domain of constant

state in the x,y-plane, however, the image in the hodo graph plane is a

single point, which maices the interchanging of dependent and independent

variables impossible and of course implies A 0. Likewise, a domain

(II) of a simple wave is not mapped on a domain of the u,v-plane as in

the general case, but only on a one-parametric set of points (u,v), each

corresponding to a whole C+ characteristic of the simple wave in the

x,y-plane of the flow. Thus, for simple waves we again have A = 0,

and linearization is impossible. As a remarkable fact we shall find that

the point sets (u,v) corresponding to a simple wave are restricted to an

arc of a r characteristic in the hodograph plane.
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Wo shall now supply the mathematical proof and some additional

facts. This is almost immediately achieved on the basis of the character-

istic forms I and II of our differential equations (l), which we may write

-.There <^, £_, >j , 7j_ ar^ known functions of u and v. Since

*?_ " V+ = £(&». - 4L) v/ith R ^ 0» the relation o^ - ??_ * follows from

<S +
- <£_ J* 0, the latter being a consequence of the hyperbolic character

of our equations.

Now let us assume that A = u^v,, - u^v^ = in a region of the

:c,y-plane. Then from II we conclude that

1% -V- )v> = o

and hence "^v = 0. Suppose that the factor v^ vanishes so that

v = v(j3) is a function of only one of the characteristic parameters.

Then from II+ we also infer that u
rf

= so that u = u(p) likewise

depends on the same characteristic parameter ft alone, which means that

u and v are constant along C+ . Unless u and v are also independent of

ft
so that the state is constant, the one-parametric set of points (u,v)

will, according to II_, satisfy the ordinary differential equation

a— = f}- anii will constitute an arc of a characteristic r_ in the u,v-

plane.

We now make the general observation that if the values of u and v

are constant on a characteristic C+ , then this C<_ is a straight line*

For on C+ the value &f
will be constant, t,+ depending only on u and v

according to our assumption; and therefore -~ = <£+defines a fixed slope

for the curve C+.

As a consequence, we infer that our region of the x,y-plane is

covered by a family of straight characteristics C + depending on the

paraneter/3 , each carrying a fixed set of values u,v. If the point
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(u,v) is the same for the whole region of the flow plane, then this

region is one of constant state. Otherwise the values u and v depend

on the parameter^, and the point u(^), v(^) describes an arc of a

12 characteristic in the hodograph plane, so that our region is then

covered by a genuine simple wave.

There exists a great variety of simple waves satisfying our

differential equations, and it is of interest to ascertain what data

are suitable for specifying an individual simple wave. One mathe-

matical possibility is to prescribe arbitrarily the family of straight

characteristics C+ and in addition to select arbitrarily the TZ. char-

acteristic on which the (u,v) values of the wave lie. From the

physical point of view, however, it is more natural to prescribe other

data, such as one streamline and the flow speed at one point of it.

In the special case where all the straight characteristics C+

diverge from a point 0, we call the wave centered with the center 0.

Such a centered wave, as we shall see, is determined if we know the

velocity on one of the lines C+ .

The role of simple waves as zones necessarily neighboring zones

of constant state (in a flow with fixed characteristics T ) is established

by the following fundamental -theorem ; If on a characteristic line C +

of the differential equations (1) the values u
ft
,v

Q
remain constant,

then C° is a straight line and is embedded in a family of straight line

characteristics C+ on each of which u and v remain constant. (Hence

C° is either embedded in a zone of constant state or in a simple wave,

or forms the boundary between two such zones). This may be proved as

follows. First, C° is a straight line by I , since t*+ is constant on

C°. Now let C + be another characteristic sufficiently close to C+. so

that the characteristics C_ through any two points A and B on C+ will

intersect C° in two points A
q
and B

Q
. Now we make use of the fact

* To construct the wave, i.e., to find the corresponding solution u(x,y),

v(x,y) of (1), one proceeds as follows. To each ^8 characterizing u(/3),

v(/3) oni:, we determine £
+ [

u(/3),v( ftf] . Then we select from the given

family of" lines C+ in the x,y-plane those having the slope &+ and at-

tach to these lines the values u = u(/s), v = v(/s). Thus u(x,y) and

v(x,y) are constructed. That we really have obtained a solution is

easily verified.
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that the characteristics V+ are fixed and can be represented in the

forms /3(u,v) = const, and o6(u,v) = const., respectively. Since

Draajn curued for

sake of argument

the images of the points A and A in the u,v-plane lie on the same char-

acteristic n and since the same is true for the points B and B , while

the images of the points A and B are on the same characteristic 1^. , we

have, in an obvious notation

06(A) = Ct(A
Q ), 06(B) = <*(B ) t /3(A) = /3(B)

Furthermore, acoording to our assumptions, the point in the u,v-plane

corresponding to A is the same as that corresponding to B . Hence we he

06 (A
Q

) = 0£(B )

the value of both of -the functions oc being determined by the two argu-

ments u,v. Consequently we have

oi(A) = oC(B),

which, together with

/3(A) = /6(B),

implies that

u(A) = u(B), v(A) = v(B).

In other words, u and v are constant on C+ ; and, as a consequence, C,

must also be straight, which proves our theorem.
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In the subsequent analysis of various types of flows we shall

discuss simple waves in greater detail. Two remarks might be added here,

however

.

The first remark concerns the fact that if the lines of a system

of characteristics C+ in a simple wave are sufficiently extended, in

general they have an envelope (which might possibly degenerate into a

point). Obviously the geometrical points in which two different char-

acteristics C + intersect must be outside the region for which the simple

wave solution of the differential equations represents the actual flow,

for the two different characteristics carry different values of u and v,

and thus at a point of intersection a physical absurdity would arise.

Therefore the actual simple wave can never reach beyond the envelope in

the x,y-plane. The solution can be geometrically interpreted by consider-

ing the mapping of the a,j3-plane onto the x,y-plane by means of a simple

wave solution x = x(oc,/s), y = y(«,/3) . As long as the mapping is one-to-one

the simple wave solution has a physical meaning; but this is no longer true

when in the mapping of the ct,/3-p lane into the x,y- image plane a part of the

ot,|3-plane is folded over, so that a sector of the image plane will be

covered three times. In this case the edges of the fold then form the

envelope of the lines C+ and it is clear that the solution ceases to repre-

sent a definite physical state.

The second remark concerns the fact that constant states as well as

simple waves are merely convenient idealizations of actual phenomena, and

that of the various types of flows under consideration only the general

flow in one dimension and the steady isentropic flow in two dimensions

admit of simple waves as studied in this chapter. In all other cases it

is no longer true that the' flow in a region adjacent to a zone of constant

state is covered by characteristics along which the velocity and density

are constant. The fundamental problem of determining the flow in such a

region must be answered by a direct attack on the corresponding character-

istic initial value problem of the differential equations.

CONFIDENTIAL



CONFIDENTIAL

III. MOTION IN ONE DIMENSION

A. Integration of the Differential Equations

17. Introductory remarks . Motion of compressible fluids admits

of a fairly exhaustive mathematical treatment if the state of the medium

depends only on the tine t and on a single space coordinate x. In this

case we speak of motion in one dimension or one-dimensional notion. The

differential equations of motion then reduce to the simple systems (A),

(B) , (C) or (D) of Chapter II, Art. 8, and a complete integration in

terms of arbitrary functions becomes possible.

As the model of one-dimensional motion we shall usually consider

the flow of a gas in a long tube extending along the x-axis.* The tube

may be infinite, semi-infinite or finite, i.e., open at both ends, closed

by a piston at one end, or by pistons or walls at both ends. Unless

otherwise stated, we shall assume an initial state of uniform velocity u Q ,

say rest, u = 0, and uniform pressure p and density
f>

. The motion will

then be caused by the action of the pistons at the ends.

It is convenient to represent the phenomena in an x,t- coordinate

system, and to refer to "paths of particles" in the x,t-plane. The

x-coordinate of the piston at the left end of the gas-filled tube may be

x = for t = 0. Then the motion of the piston is represented in the

x,t-plane as a curve L, the "piston curve", starting at the origin as indi-

cated in Fig. 1(a) for compressive, or as in Fig. 1(b) for expansive action

of the piston.

In Section B of the present chapter we shall study the simplest

types of continuous motion of a gas, in particular, the so-called

rarefaction waves or expansion waves , caused by receding pistons. Section C

is devoted to a discussion of motion involving shock discontinuities, which

* This problem was treated by Hugoniot and later by Rayleigh. See
Rayleigh [161 in the Bibliography.
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may develop as a result of compression . With what may be some sacrifice

of conciseness, an attempt is made to illuminate the shock wave theory

(a) Piston curve.

Compressive action.
Figure 1

(b) Piston curve.
Expansive action.

from various angles. In .Section D it is shown how more general types of

motion result from interaction of the elementary motions studied in

Sections B and C.

18. Solution of the differential equations . The differential

equations of one-dimensional motion (see Chapter II, Art. 8) can be inte-

grated almost immediately when written in their characteristic form.

Replacing the quantity y by t and the quantity v by p in the theory of

Chapter II, Art. 9, we find, with c
2 = ?'(/>), the expressions t,+ =

u +
and £,_ = (by a straight- forward application of the procedure

described there); accordingly, the characteristic form of the differential

equations with the characteristic parameters oc,/3 as independent variables

is

(1)

= (u + c)ta

= (u - c)t»

II*: iw= - A

7°/3

The system II can be completely solved for u,^o by the relations
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u + G{f>) = V(£) = 2r

u - G{p) = »(«.- = 2s ,

where V and B (and r and a) are arbitrary functions and where G(p) is

defined by pf>

/>' being an arbitrary constant. Instead of ot and
ft

it is often con-

venient to introduce the special parameters r and s so that

(4) u = r + s, G(o) = r - s;

then u, p and c are known functions of r and s.

Substituting these solutions of II in I, we obtain for x and t

as functions of oiand/3, or of r and s, two linear differential equations

of first order.

The structure of the solutions is best described by reference to

the characteristics /3 = constant, ct = constant (or r = constant,

s = constant), which in the x,t-piane are characteristics C+ and C_

respectively, and in the u,/o-plane characteristics T]. and Ii respectively.

Then we have

'On T+ : u + G(/o) =
a - constant

or

constant

(5)

constant

or

constant

dx
dt
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On C+ : -rr = u + c, and the value of
U

dt

(6)

2 If
- 1

)n C_: || = u - c, and the value of j

remains constant.

remains constant.

If we consider not u and p , but u and

the sound speed c as dependent vari-

ables, the characteristics I

-
" become

straight lines :*

C: S
1 + ' o

(?)
2 "T^T constant

l-i u c
1 _ : g- - TT-! = constant

with c ^0.

Figure 2

Characteristics
in u,c-plane.

* The characteristics T^ and I~L are fixed

curves in the u,o-plane, namely,

f-1

(8)

T+ : u

T_: u

\j _ .. /° 2 = constant

2/a^ 111
g _ , P 2 = constant

as shown in Fig. 3, where the left-hand Figure 3

branches represent the curves EJ. and the Characteristics
right-hand branches the curves I"L . in u,/?-plane.

With u and the enthalpy

fi i/°
= TTT

as dependent variables, the characteristics I~ become ordinary para-
bolas in the u,i-plane:

(9)

+ constant

+ constant

,

C0NFID31TTIAL
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Characteristics
in u,i-plane.



111-19 45 CONFIDENTIAL

19. Simple waves . Our main subject in the present and next

few articles will be the motion caused by a piston moving in a gas

which is initially at rest.

No matter whether the piston recedes from or moves into the

gas, not all parts of the gas will be affected instantaneously.

There will be a "wave" proceeding from the piston into the gas and

only the particles which have been reached by the wave front will .

be disturbed from their initial state of rest. If this wave repre-

sents a continuous motion, as is always the case if the piston

recedes from the gas, the wave front progresses with the sound speed

c of the quiet gas. If the piston moves into the gas the situation

may become more complicated through the emergence of a supersonic

discontinuous shock wave as we shall see in Section C. At any rate,

in Sections A and B we confine ourselves to a consideration of

continuous motions satisfying the differential equations (at least

near the piston). Such a continuous motion of the gas can be

completely determined by the simple wave theory of Chapter II, Art. 16,

where the left-hand branches of the parabolas represent H. , the right-
hand branches TL. For i*0, naturally, as for p ^ or c £. 0, the
differential equations lose their physical meaning.

No essentially new elements occur in the Lagrangean representa-
tion (see Chapter I, Art. 7). With the independent variables

h =
e
//°(^ d £ (instead of x) and t (instead of y) , with the dependent

variables u and r (instead of v) , and with k(T) = ac = ^122, the equa-
tions are

(10)

The characteristics 1^ and TL again can be explicitly described

(11) u t / k(T)dr = constant.
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In the x,t-representation the undisturbed gas corresponds to

a zone of rest (I) adjacent to the x-axis and (as long as the dis-

turbance proceeds at sound speed) bounded by a characteristic

C+ : x = cQt, which terminates

the range of influence of the

piston curve L. According to

the general theory of Art. 16,

the zone (I) of rest is followed

beyond the line x = c t by a

simple wave (II) generated by a

family of straight character-

istics C + .

We shall here give a brief

description of the simple waves

and then in Sections B and C

supply the details of the two

cases of receding and impinging

piston motions separately.

Along each conjugate characteristic C_, which cuts across the

lines C + , we have, according to equation (5), Art. 18, the relation

Figure 5
Simple wave (II) adjacent to
zone of constant state (I).

u - G(yO) = 2s = constant

where the constant is determined by the consideration that all the

characteristics intersect an "initial characteristic" C° with values

u
o' /°o ( e, 6«» tlie characteristic terminating the zone of constant

state of rest (I)). Thus, throughout the simple wave we have

(12) u - G(f>) = u
Q

- G(/0 )

and, in particular, if the initial characteristic terminates a state

of rest,

(13) u -
G{f>) = -Gf/tfe).
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For polytropio gases we have G(f>) = ^°J J , therefore the

basic relation in a forward-I'acing simple wave (see (7), Art. 18) is

2 2

T^T c = uo " 7TT co(14)

or, in particular, if the initial state (o) is a state of rest,

(15)
y - i

c " f^~T c°

where c is the sound speed in the quiet gas. With the abbreviation

our relation can be written in the form

(17) yu2 (u - uQ ) = (1 -yu.
2 )(c - c ).

Incidentally, these last equations are nothing but the equation of the

single characteristic I~l in the u,c-plane which belongs to the simple

wave in accordance with the general theory of Chapter II, Art. 16, and

which happens to be a straight line also.

B. Continuous Motion. Rarefaction Waves .

20. Rarefaction waves . We now distinguish between the cases of

expansive and compressive motion and consider first the case of expan-

sive motion caused by a receding piston, assuming from the outset that

the medium is a polytropic gas originally at rest with constant density

foQ and sound speed c . Furthermore, it is assumed that the piston,

originally at rest, is withdrawn with increasing speed until ultimately

the constant velocity -w is attained. Then the piston curve L will

bend backward from to a point B where the slope -w with respect to
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the t-axis is reached and then

continue as a straight line in

the same direction, as shown in

Fig. 6. We then have a zone (I

of rest: ^ c Q
t ± x, and an

adjacent zone (II) of a simple

wave, which we shall call an

expansion wave or rarefaction

wave because, as we shall see,

the gas flowing through the zone

of this wave steadily decreases

in density, and even at a fixed

point of the tube the density

decreases as long as the point

Figure 6

Rarefaction wave (II)

resulting from expansive
action of piston.

remains in the zone of the simple wave. The particles flow toward the

receding piston, starting with zero velocity at the head or front of

the rarefaction wave, which is represented by the characteristic

C°: x = cQt, and proceed into the zone of constant state with the speed

of sound. In this wave the straight lines of the generating family of

characteristics C+. start at the piston curve L: x = f(t).

To construct the wave and to prove and amplify the preceding

statement we consider a point A on the piston curve L from which a

characteristic C + is assumed to start into zone (II). At A the velocity

u of the gas is known, since it is equal to the velocity -r*- =f'(t) of

the piston. We also obtain the value of the sound speed c^ at A by

formula (14 ) of Art. 19:

(18)
2

V- 1

Now the straight line C + through A is determined by its slope

4? =u,, + c»; and on C+. the values of u, c, p, p are now fixed as u A ,

at "• •" '

cA , pA , pA where pk , pA are given by
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(19)
Po ~\fo]

2 _ ^£A
1

" Va

which leads immediately to the important relations

2?

(20) P =P r
1 +

2 c

j^t

(21) P =l°o
t - 1

u - u
c

2 c n

where the subscript A is omitted. With reference to the state on any-

initial characteristic C°, these express density and pressure in the

simple wave in terms of the velocity. If v/e choose as this initial

ana obtain

(22)

(23)

1 + ir-±JL
2 Cn

f =
/°0

25?

2

*-l

(24)

Since u is negative in the simple wave, these formulas exhibit

the fact that density and pressure decrease as we follow the path of a

particle represented in the x,t-plane by a trajectory of the family of

characteristics C + .* For increasine t a fixed point in the pas will

* For air o = 1.4 and the exponents are 7 and 5 respectively, which
shows that the decrease in pressure and density in an expansion wave
is rather rapid.
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belong to "later" characteristics C + , i.e., larger values of -u, and

hence, as stated before, to smaller values of p and/).

Tne law of rarefaction expressed by (22) and (23) becomes

meaningless as soon as -u > q^ where

(25) *e=f^-l co

is the escape speed of the gas originally at rest. If -u reaches the

escape speed, the rarefaction has

thinned the gas down to zero

density and pressure and the

sound speed has likewise decreased

to zero. If a rarefaction wave

extends to this stage it is called

a complete rarefaction wave as it

then ends in a vacuum.

For the end or tail of the

expansion wave there result two

possibilities, according to

whether or not the terminal speed

w of the piston is below the

escape speed q .

If w < qe , the preceding

construction of the simple wave will yield characteristics C + for every

point A on the piston curve from to B. The rarefaction wave is incom-

plete and ends at the characteristic C^ through B with u = uR = -w and

*- 1

Figure 7

Simple wave (II)

connecting two regions
(I) and (III) of constant

state (w < q„)

.

(26)

Cb = cc

PB =Po

/°B =/°o
<le

tf-1

2

J-l
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It is followed by a zone (III) of constant state Ug, f>^, pB , cB between

the tail of the incaaplete rarefaction wave and the piston in which the

characteristics C+ are all parallel (as they are in the zone (I) of

constant state in front of the simple wave J.

y.

Figure 8
Complete rarefaction (w = q ).

If w = qe the characteristic cj through B = B
Q is tangent to the

piston curve, for at B the piston curve has the slope f'(t) = -w, while

that of the characteristic C^ is ^ = u
B + cB

= -w = -q since cB
= 0.

In other words, the wave is just completed at the piston.

cavitation

Figure 9

Cavitation (w > q )

part id* paths
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If w ;> q the completion of the wave is already achieved before

the piston reaches the terminal speed. There will be a point B
e on

the piston curve L between and 3 for which the characteristic C+
e is

tangent to the piston curve and carries the value zero for density,

pressure and sound speed. In this case the rarefaction is completed

with this line C +
e and beyond it we have a zone (III') of cavitation

,

equivalent to a vacuum between the receding piston and the tail of the

wave in the gas.

Physically speaking, the escape speed qe is the speed beyond

which a piston cannot recede without separating from the thinned-out

gas. If the speed of the piston exceeds qe , then, as far as the motion

of the gas is concerned, it does not matter what the actual value of

w is. We might just as well consider w as infinite or imagine the

piston or a wall suddenly removed, allowing the gas to escape into a

vacuum, an interpretation to which the name "escape speed" alludes.

We can summarize our results qualitatively as follows. A piston

receding from a gas at rest with speed which never decreases causes an

expansion wave of particles moving toward the piston. At the head or

front of the wave, which moves into the gas at sound speed, the velocity

of the gas is zero. Through the wave the gas is accelerated. If the

piston speed w is below the escape speed qe , the gas will expand until

it has reached the speed w of the piston and then continue with constant

velocity, density and pressure. If, however, the piston speed exceeds

the escape speed, the expansion is complete and the wave ends in a zone

of cavitation between the tail and the piston. In any case the wave

moves into the quiet gas, while the gas particles move at increasing

speed from the wave front to the tail, i.e., from zones of higher

pressure and density to zones of lower pressure and density.

A further remark of a general character might be added. In

our diagrams it was assumed that the characteristics C+ of the

rarefaction wave diverge from the piston curve L, i.e., that

dx/dt = u^ + ca decreases, as A moves from to B.

Since along the piston curve p decreases and since u and c

are functions of p in our wave, our statement amounts to
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du/d^o + dc/dyo > 0. At the piston we have, from (12), 1^ = 4; hence

the preceding relation is equivalent to ^ + — ^ > or ^-(log-ocj > 0.

In other words, a sufficient condition for the desired divergence
of the lines C+ (admitting a general equation of state) is that the
acoustic impedance pc increases with-©, a condition certainly satis-
fied for polytropic gases.

Finally, it should be stated that in our simple waves the
conjugate characteristics C_ and the paths of the gas particles can
be found by integrating the ordinary differential equations

dx
and 4*. = u,

dt '

respectively, after the functions u(x,t) and c(x,t) have been found
by the previous construction.

In a complete rarefaction wave the characteristics C_ as well
as the particle paths acquire asymptotically the direction of the
last characteristic C+e, i.e., the direction dx/dt = -q_.

21. Centered rarefaction waves . Of particular interest is the

case of a centered rarefaction wave , which corresponds to an idealized

piston motion where the acceleration

from rest to a constant terminal

velocity -w takes place in an infin-

itely small time interval, i.e.,

instantaneously. Then the family of

characteristics C + forming the simple

wave will degenerate into a pencil

of lines through the origin 0: x =0,

t = (see Fig. 10 j.

In the center U the quantities

u, yO, p as functions of x and t are

discontinuous, but this discontinuity

is immediately smoothed out in the subsequent motion. Here we have the

first and typical example of an initial discontinuity which immediately

resolves into continuous motion.

Figure 10
Centered rarefaction
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22. Explicit formulas for centered rarefaction waves . For

centered rarefaction waves all quantities can be expressed explicitly

as simple functions of x and t. With the center at the origin 0, we

have for each line C+ through with flow velocity u

dx _x

dt t
*

Hence, by virtue of i?- = u + c = u +• (c +-
"

u) (see equations (6)

and (24)), we have in the wave zone (II), 2L - u +- (c Q
+ ° " -1

u) or

where u. = -j~
-,

', and from c = c + "
u we obtain

(28) -/l^uyieo.

Thus u and c are known explicitly in the zone (II) of the rarefaction

wave, and p and yo can be found (see (22), (23), (25)) by using

Figure 11

Particle paths in flow

involving centered
rarefaction wave

(w < qj .
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:J

(29) p = p 1+
Oe fVo 1

2

.Ye can find the particle paths in (II) by integrating

~ =u = (1 ~ H?)[y~ co )
( 3ee e<luat;ion (27)). Upon making the sub-

stitution x = |(t) -
,»

°
t = £(t) -

X "
j^ c nt, we obtain

|» = (1 -/*-
2
)-V. and by integrating we find that \ = At 1 A*

,
where A

is an arbitrary constant, or

(30) x = MAt"^
4"{«+-&}

This formula is valid as long as the particles remain in the rare-

faction zone (II)

.

Particle
piths

Figure 12

Cavitation behind centered
rarefaction wave (w > qe ).

In the case of a complete rarefaction ending with zero density

for w ^ q , formula (30) holds for arbitrarily large values of t, and

we have, for larjje t, the asymptotic expression

(31)
2 c

CONFIDENTIAL



C0HFID3NTIAL 5G 111-22

As remarked previously, the fluid remains in the zone (II) of rare-

faction, and in the x,t-diagram the particle paths acquire asymptot-

ically the direction of the characteristic C® on which the escape

speed qQ is attained (see Fig. 12).

For w < qe the rarefaction wave terminates at the character-

istic C+ on which the velocity has the value u = -w, and all the

particle paths emerge from (II) parallel to the terminal direction

of the piston curve L and remain parallel in zone (III).

Figure 13

Non-straight characteristics
C_ in flow involving centered

rarefaction wave (w < qe ).

The conjugate characteristics C_ are given by the differential

c = (1 - 2yx2 )-^-- 2(1 -yji2 )c (see equations (27)equation ^ = u

and (28)) which leads, with a constant A_ of integration, to

(32) ,.,{„V-^}.

For w < qe the characteristics C_ emerge from the (incomplete)

rarefaction zone (II) with the slope

(33) = -w - (c
c
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and then continue as straight lines meeting the piston line L: x = -wt.
2cnFor w =s q = ^—^ the characteristics C_ again remain within the

2c
"complete rarefaction zone", and, since x — - <? t, they approach

the particle paths asymptotically.

Obviously these considerations can be generalized to other

equations of state.

Figure 14
Characteristics C_ in flow involving
centered rarefaction wave that ends

in cavitation (w > q )

.

23 • Reoark on centered simple -vaves in Lagrangean coordinates.

"<7e could just as well have developed the theory of simple waves in La^ran^e'

coordinates, using the equations (38) or (39) of Chapter I, Art. 7. Only a

brief remark is made here concerning the characteristics in the Lagrangean

fom. The characteristics C+ are given by

134 )

and the characteristics C_ by

(35J
dh = -yoc = -k.
dt
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For centered simple waves the lines C + are straight lines in the

constant

.

h,t-plane on each of which— = constant. Since -tt-

In other words, the impedance is always simplyC+ we find pc = -r

k = —, no matter what the equation of state is

we have — = - —, which can be immediately integrated as
dt t

xjc along a line

always simply

Consequently for C_

(36) ht = constant.

Thus, for centered rarefaction waves the non-straight characteristics

are always equilateral hyperbolas in Lagrangean coordinates.

Figure 15

Characteristics in

Lagrangean coordinates

for centered simple wave.

24. Compression waves . If a piston is not withdrawn, but is

moved into the gas-filled tube with a speed which never decreases, or

if a receding piston is slowed down or stopped, then a contraction wave

will originate at the piston. The qualitative statements and formulas

pertaining to rarefaction waves also apply to contraction waves, except

C01IFIDE1ITIAL
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that the forward characteristics C+ no longer diverge from the piston.

Density, pressure and sound speed at the piston increase, and the

characteristics C + , covering zone (II), converge and therefore have

an envelope if extended sufficient-

ly far. Certainly the solution

constructed above as a simple con-

traction wave cannot extend beyond

the envelope. For if it did, a

forward characteristic C+ , with

values uA , f>^, corresponding to a

position A of the piston, and

another with values u
R , p corres-

ponding to a subsequent position 3,

would intersect beyond the envelope,

and at such a point of intersection

unique values of u and ^o would no longer be determined. The analytical

extension of our mathematical solution beyond the envelope would there-

fore be multivalued and hence could no longer represent the state ~hich

occurs in reality. Physically speaking, the values of u and p are

propagated along the characteristics C+ , and the values corresponding

to a later position of the piston are propagated with a greater velocity

so that they would overtake the values propagated from an earlier posi-

tion of the piston, An absurdity is inescapable unless we abandon the

assumption that the motion remains continuous. Consequently all com-

pressive motion inevitably leads to discontinuities* and such discon-

tinuities must occur before or on the envelope.

Figure 16

Contraction wave and
envelope of characteristics
C+ which bounds possible
location of shock line.

25. Position of envelopes for compression waves . In Section C
of this chapter we shall be concerned with these discontinuities.
Here a few remarks are added regarding the envelopes formed by the
straight characteristics C+ of a compression wave. Let us consider

* This was apparently first noticed by Stokes (1648); see Rayleigh [16]
in the bibliography.

C01IFIDENTIAL



CONFIDENTIAL 60 II 1-25

an ideal gas with "uhe adiabatic exponent o. The piston curve L
corresponding to a compression can be described by

L: x = f(t), f'(t) - .

Then the straight characteristics C+ are given in terras of a

parameter T by

(37) x-f(*)«(t -T)|i±if'(T) +cj

corresponding to the parameter T. The envelope is obtained by
combining the last equation with

(38) -f'(T) = - ^-^f'(t) - c + ^^(t -T)f'(T) ,

which yields

(39) J
\

C
o
+

2
r tTJ

J (1?+ l)f{T)

_ T ,

2c + (?- i)f'(r)

V" T+
(? + l)f«(Y)

where T ranges from zero to the value of the time for which a

constant terminal speed is attained or f" (T) = 0.

As long as f" (T) ^ we have compressive motion and the
envelope exists.* In the special case of a piston accelerated
from rest with a constant acceleration a according to

L: x = -|-t
2

, a > 0,

the envelope is

(40) <

t - 2 * T + 2 °°

I* -TTTT +
JT-i

—

For a decelerated piston, f"(f) < 0, there is no point of the enve-
lope in the domain x > f (t) corresponding to the interior of the
x,t-domain of the flow.
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an arc of a parabola beginning at the point

2

[41 P: x' = f 2 C o

* + 1 a

and tangent at this point to the characteristic line x = c t.

II

I (rest)

C+ • % « c t

Figure 17

ikvelope formed by the characteristics resulting from the piston motion
xzr-S-t^, indicating the inevitable occurrence of a discontinuity.
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Figure 18

Envelope formed by the characteristics resulting from the piston motion
x= -^-t3 . (Note that in this case the discontinuity does not begin at

the boundary of the region of quiet and that the position of the envelope
indicates that the position of the shock front moves closer and closer

to the piston.)

We may consider the parabolic arc together with this char-

acteristic line for t > t' as forming a cusp, and it is easily
seen that a similar situation prevails for a piston motion given
by iri-t2 + •••, where the dots denote terms in t of order
higher Than two.

We note that the coordinate x' and the time t* of the
inevitable beginning of a discontinuity (later described as a

shock) will be very close to the origin for large accelerations
or for small sound speed c .

The motion just considered starts from rest with a sudden

acceleration. If there is no initial discontinuity of f"(t) as

for f(t) =-§
r t3 +-•••, where the dots indicate terms in t of

order higher than three, then the envelope has a genuine cusp
with both branches monotonically increasing.

In the typical case f(t) = -5-t3 the envelope is given by

CONFIDENTIAL



111-26 63 CONFIDENTIAL

l(f+ 1)T

(42) ^
(V+ UaT

which shows that to T = there corresponds a point at infinity
on the envelope, as is always the case for fn (0) = 0. There will
be a raini.ni.ua value of t along the envelope at the point where
dt/dT=-0, and since

dx/dt _ dx _ * + 1

diyi^-aT- c°
+ "T" f (r)

is finite, we see that dx/dT = for the same point on the enve-
lope. This together with the fact that f ' (T) > shows that the
point under consideration is really a cusp as described.

Incidentally, the situation previously discussed for the
piston curve x = -tj- t^ niay be considered a degenerate case where
the second branch of the cusp has degenerated into a straight
characteristic.

The shape of the envelope may be rather complicated if the
piston motion is not simple.* oince the fine features of the
geometry of the envelope depend on the local behavior of the second
and higher derivatives of f(t), however, we must expect that the
actual behavior of the flow will not be strongly affected by
geometrical complexities of the envelope. As a matter of fact, we
shall see that shock discontinuities always begin infinitely weak
at the cusp of the envelope. Whether they develop afterwards to
strong shocks no longer depends on the local factors producing the
cusp, but on the piston motion as a whole.

C. SHOCK FRONTS

26. Introduction . As we have seen, certain initial discontin-

uities are smoothed by centered rarefaction waves, while other motions

starting as perfectly continuous contraction waves cannot be maintained

* One can even move the piston in such a way that the characteristics
converge in a point.
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without a discontinuity.* The fact is that any compression of the

gas by the piston, however slow, will ultimately lead to discontin-

uities of velocity, pressure and density.

Hence, for a mathematical description of motions caused by

impinging pistons and of many other motions as well, we must abandon,

or rather supplement, the mathematical framework employed so far.

One possibility suggests itself immediately. We might try to

obtain the necessary generalization from the differential equations of

motion directly. In Chapter II, Art. 11, we saw that these differential

equations allow discontinuities of the first and higher derivatives of

u and p across characteristics in the u,t-plane. Such "sonic discon-

tinuities" are associated with the differential equations; for example,

they arise in initial value problems by passage to the limit from

initial values with continuous derivatives to values with local discon-

tinuities and in this limiting process the differential equations

remain unchanged. In the case of linear differential equations the

same type of limiting process leads to a "sonic propagation" even of

discontinuities of the dependent functions themselves.** For our non-

linear differential equations, however, no such sonic transmission of

discontinuities of a and u is deducible by a passage to a limit from

continuous solutions.

Hence to arrive at an adequate theory we must give up as over-

simplified our original description of reality and seek a closer

approximation to the actual situation by accounting for physical facts

neglected in the original differential equations. Accordingly, we

A particularly direct illustration of the inevitable development of
discontinuities is afforded by a piston moving into a gas at rest
with a speed ultimately exceeding the sound speed c . As shown for
continuous motion, the relation x = c t will define a zone of rest;
yet the piston itself will eventually move into the gas faster than
sound, and the piston curve h will penetrate into the zone of rest.
Consequently, the actual motion cannot be represented by continuous
functions u and p of x and t.

See Courant-Hilbert [12] , Vol. II, pp. 360-361
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should introduce viscosity and heat conduction, represented by addi-

tional (linear) terms of the second order in the differential equation?-.

To the smoothing effect of the force of viscous friction and heat con-

duction there corresponds the fact that, if the terms of second order

are included, the differential equations have continuous solutions* no

matter how small the coefficients of heat conduction and viscosity are.

Observed physical reality now points the way to a remarkable

mathematical simplification. For very small values of these coefficients,

the influence of heat conduction and viscosity is negligible except in

the immediate vicinity of sharply defined surfaces (which may move in

time) where velocity, pressure, density and temperature undergo rather

sudden and large changes.** Mathematically speaking, if we let the

coefficients of viscosity and heat conduction in the completed differ-

ential equations tend to zero, their continuous solution may be expected

to converge to solutions of the original differential equations of first

order except that certain surfaces emerge across which these solutions

have discontinuities in u, 0, p, c, t.***

The values of these quantities at both sides of such discontin-

uity surfaces are restricted by jump conditions discovered by Earnshaw,

Riemann, Rankine and Hugoniot, and the decisive fact is that the effect

of viscosity and heat conduction can be mathematically represented simply

by these jump conditions, while otherwise the original differential

equations are retained. Instead of attempting to carry out the cumber-

some passage to the limit we face the simpler, though still in most cases

difficult, problem of determining the surfaces of discontinuity in

A mathematical proof of this statement is not attempted here.

The fact that small viscosity and heat conductivity may safely be
neglected except for discrete discontinuity layers is analogous to
the boundary layer phenomenon in hydrodynamics (see Goldstein [131)

process will be given in Art. 34,
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addition to satisfying the jump conditions and, in the regions of

continuity, the original differential equations. We shall dis-

tinguish two types of such discontinuity surfaces, contact surfaces

and shock fronts . The former are surfaces separating two parts of the

medium without flow of substance through the surface; the shock fronts

are discontinuity surfaces which are crossed by the flow of gas . If

the shock front moves in time it is called a shock wave . The side of

the shock front against which the flow is directed will be called the

front side of the shock, the other the back side . As we shall see, the

shock front, observed from the front side, always moves with supersonic

speed . In this chapter we are concerned with one-dimensional motion.

Hence the shock fronts and contact surfaces are assumed to be planes

perpendicular to the x-axis and are represented on the x-axis by points

or in the x,t-plane by lines S, henceforth called shock lines , or

contact lines , respectively.

27. Shock wave in a tube . Let us first describe the simplest

case of a motion involving a shock wave. The centered expansion wave

caused by a piston receding at constant speed was studied as a basic

type of motion. Just as basic and typical is the motion caused by a

piston starting from rest and suddenly moving with constant speed w

into the quiet gas. No matter how small w is, the resulting motion

cannot be continuous.*

For, if between the zone of quiet (I), adjacent to the x-axis, and
the piston curve there were a rarefaction wave (as must happen for
continuous motion), then the end of the wave nearer the piston would
be the front of the wave since the flow from the piston is directed
toward this end. Hence at the start of the wave the velocity of the
gas would be positive and greater than the piston velocity, which is
obviously absurd, since the speed of the gas there is zero. There-
fore, a continuous connection of the motion of the gas at the piston
with the state of rest in the zone of quiet is impossible.
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'.'.Lot, then, will happen? Immediately there will appear

a shock front moving away from the piston with a constant and, as we
shall prove, supersonic speed £, uniquely determined by the density

and sound speed in the quiet gas and by the piston speed w. In front
of the shock the gas is at rest, while behind the shock it moves with

the constant velocity w

partt'cte paths
I dx l

/<<:/ /

^»7 / Shock o

In the

x,t-plane this very simple motion

is represented in Fig. 19. The

shock lir.e S always lies in that

region which would be the zone of

quiet if the motion were continuous.

For a sequence of decreasing values

of w the shock line approaches the

characteristic x = c t and the jump

of velocity, pressure and density

across the shock approaches zero.

The shock becomes weak and approaches

a 'teonic disturbance"

Before we can substantiate this qualitative description by proof,

must derive and discuss the jump conditions across the shock.

Figure 19

Shock resulting from
piston moving into gas
with constant velocity.

28. Shock conditions

of physics:

(1 ) Conservation of mass

(2 ) Conservation of momentum

(3 ) Conservation of energy.

We start from the following basic laws

Under the further assumption of continuous velocity, density and pressure,

the first two laws would lead to Euler's (or Lagrange's) equations of gas

dynamics. Application of these principles to discontinuous motions leads

to the corresponding first two jump conditions for shocks. The energy

law (3 ) takes care of a more delicate point. Our original system of

differential equations 1(14), Art. 3, was supplemented by the equation
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of state in which we assumed constant entropy in keeping with the

supposed adiabatic character of our processes. At first thought, it

might seem plausible to suppose that even a shock discontinuity does

not entail a change in entropy; in other words, that not only the con-

tinuous motion but also the shock involves merely adiabatic changes.

Making this assumption, Earnshaw (1855) and Riemann (1860) considered

only the conditions (1 ) and (2 ). However, as Rankine (1870),

Rayleigh (1878) and Hugoniot (1887) observed, this procedure violates

the principle of conservation of energy and thus fails to represent

physical reality adequately. One must admit (discontinuous) changes

of entropy across a shock and stipulate a third shock condition (3°)

expressing the energy principle. This "Rankine-Hugoniot" discontinuity

condition replaces the assumption of adiabatic changes made for con-

tinuous motions.

We shall now derive the conditions that hold across a discontin-

uity surface by applying the three general principles to a column of

gas in the tube, the column covering at the time t the interval

a
Q
(t) < x < a

1
(t), where a

Q
(t) and a-jjt) denote the positions of the

moving particles that form the ends of the column. By e we denote the

internal energy of the gas per unit mass, so that the total energy per
1 2

unit mass is e+ — u . Then, for the column, the three basic principles

are expressed by the relations

,,0| d
yOdx =

ft

A ' :,

' u

/9a
x
(t

e/aQ (t)

/•
8l (t

«/a (t)

where pQ =p[a (t),t], etc.
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Relation (i°) needs no comment, (ii°) egresses the fact that

the rate of change of momentum of the column equals the total

resulting force exerted on the column by the pressure on the two ends,

(iii ) states that the rate of increase of energy contained in the

column is equal to the "power- input", i.e., the work done in unit

time by the pressure against the end surfaces of the column (whose

velocities are £ = u and a, = u )

.

o a i a-]_

As long as we assume u, a, p continuous and differentiable in

the whole column, we can easily deduce from the first two of these

equations the differential equations of motion 1(14), Art. 3. In the

present analysis, however, we assume that in the moving column there

is a point of discontinuity whose coordinate x =4U) cioves with the

velocity |(t)

.

All of our integrals have the form

e/an (t

(t)

y(x,t)dx,

the integrand y/ being discontinuous at x = £. Differentiation leads to

dT
J=

dT / ,

*(*.*><* + & /. VU.tJa*
c/a (t) c/4(t)

c/a Q

1

i
(t)a^wtl

(t)
at

lx {y(£(t)-0,t)£(t) -y(a (t),t)u
j

V(a 1
{tJ,t)u 1 -V(^(t) + 0,t)|(t)

The quantities u = a (t) and u^ = a,(t) are the velocities at

the ends of the column. Our formula holds no matter how short our

column is, so long as it contains x = c, as an interior point. Tte

now perform the limiting process, letting the length of the column

approach zero. The first integral on the right-hand side of the last

equation then tends to zero. Denoting byT/f. , u. the limit values of

y, u as ^ is approached from the end a if we obtain immediately
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lim ^J=yiv1 -'%v
,

where

v
i = u

i - i

is the flow velocity relative to the discontinuity surface. Thus we

derive from our three basic equations the following conditions.

Conservation of mass

(i) /Vi - /° y = o

or foY =/Vl = m
-

m being the mass fluz through the surface.

Conservation of momentum

(lit
J yVl )vl" (/°o

u
o
)v

o = Po - Pi

or /° uo^o * Po =/°lulvl + Pi •

By (i) this relation is equivalent to

(ii)
/°o

v
o + Po = /°1T1 + Pi = P

>

which involves only the relative velocities v.

Conservation of energy

(iii,) /°l{iul + e
l} v

l
" /°o{luo + eo} vo = Pouo - Plul
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0r T/°ovouo -Vov
o
e
o
+ Vo = y/°lvlu! +/Vle

l
+ ulPl

These relations hold across both shock fronts and contact

surfaces. These two types of discontinuity surfaces were distinguished

by the property that there is gas flow across a shock front, m # 0, and

no gas flow across a contact surface, m = 0.

In this article we shall consider only shock discontinuities,

postponing the discussion of contact surfaces to Art. 29.

For shocks (ra ^ 0) relation (iii') can be simplified. Liultiply-

ing equation (ii'j by £ , subtracting it from (iii'), and using (i), we

obtain

where § is the limit speed introduced in Art. 5, Chapter I. Remembering

the definition of the enthalpy i =. e -t- — t we can write
P

(in) H + io=ii + i
i = T^ •

As we see, the third shock condition has exactly the form of Bernoulli's

law . It differs from it essentially, however, inasmuch as the function

which represents the enthalpy i in its dependence on a is discontinuous

across the shock, since the values i, and i correspond to different values

Tfl and T7 of the entropy.*

The conditions (i), (ii) and (iii) represent the three shock

conditions in a form in which only the relative velocities v = u - % are

involved and not the velocities u and \ separately. It is thus clear

* In other words, the change in enthalpy i.. - i across a shock is not

Jf
9
(1) /*(1)— but equals / (-£ + Tdr?).

(o) P e/(o) \P I
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that the shock conditions are invariant under translation with constant

velocity, in accordance with the Galilean principle of relativity.

Elimination of v and v
1
from conditions (i), (ii), (iii^)

leads to the following important shock relation:

(Hi*) Co-Ti*-1^ = el- eo ^ =T ) '

which could be interpreted to mean that the increase in internal energy

across the shock front is due to the work done by the mean pressure in

performing the compression. This relation is equivalent to

Since e, or i, is a known function of p and p depending on the

physical properties of the gas, we have three relations between seven

quantities p. , p- , u. , \ • Hence, if three of these quantities are fixed,

there is still a one-parameter family of shocks possible.

While the shock relations between the seven quantities are non-

linear and thus do not necessarily define this one-parametric family

uniquely, we shall see that under wide conditions, in particular, for

polytropic gases*, the following theorems hold:

(A) The state (o) on the front side of the shock front and the

shock velocity | determine the state (1) on the back side of the shock

front.

(B) The state (o) and the pressure p 1
determine the shock front

and the complete state (1) . The same is true when, instead of pj_, the

density p± or the velocity u± is known.

See Art. 38. For liquids see Art. 33. For the general case that

essentially only the condition ^-| > (see Art. 5, Chapter I) is

imposed, see Art. 39 and the memorandum by H. Weyl [32] in which this

case is treated in great detail.
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Generally speaking, in view of the fact that the unknown posi-
tions of the shock lines in the x,t-plane must be determined, extremely

difficult boundary value problems for our differential equations result.
Limy important special cases, however, are amenable to an analytical

treatment as, for instance, when simple piecewise solutions of the

differential equations can be fitted together across straight shock lines.

From the mathematical point of view it should be emphasized that

for none of the solutions involving shock fronts has a complete unique-

ness proof yet been given. Therefore, even more than is usually the case

in theoretical science, the physical significance of the mathematical

solutions must be verified by experiment. In gas dynamics mathematical

theory is largely a means of finding qualitative and quantitative

patterns which may serve to interpret experimental data.

29. Contact discontinuities . The discontinuity conditions (i),

(ii'), (iii') adr.it of a "trivial" or degenerate solution. If the flux

m through the surface of discontinuity is zero, i.e., if no substance

crosses it, then we have v
Q
= v^^ = 0, hence uQ = uj_ = £ , and from (ii)

we infer that p Q = p ± , while (iii') is automatically satisfied (but (iii )

and (iii) can no longer be deduced from (iii 1 )). Such a discontinuity sur-

face is called a contact surface. A contact surface moves with the gas and

separates two zones of different density (and temperature); but the

pressure and flow velocity are the same on both sides.* (It is obvious

that in reality such a contact surface cannot be maintained for an

appreciable length of time, for heat conduction between the permanently

adjacent particles on either side of the discontinuity would soon make

The flow velocity is continuous for one-dimensional flow. However, in
flows in more than one dimension we shall consider contact surfaces
across which the tangential component of flow velocity may suffer a
discontinuity, while the normal component relative to the surface is
zero, as in the case under discussion.
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our idealized assumption unrealistic).* Henceforth, unless the contrary

is stated, we shall always denote as shock only a genuine shock with the

flux m through the shock front different from zero.

30. Description of shocks . We recall the following definitions

given in Art. 26. The side of the shock against which the mass flux is

directed was called the front side . The other side was called the back

side . In other words, the particles cross the shock front from the front

toward the back side. This definition is independent of the choice of

coordinate system. Pressure and
particle path

density, as we shall see, are al-

ways greater behind the shock than

in front of it, and the degree of

this increase can be used in various

ways to measure the intensity of the

shock (see Art. 36). Usually we

shall denote the front side with the

subscript ( ) and the back side of

the shock front with (,). We also

say that the shock front faces the

front side or is directed toward the

front side.

Moving shock fronts are often called shock waves and it should be

clearly understood that the direction in which the shock wave moves , given

by the sign of % , has nothing to do with the direction toward which it

faces , i.e., with the distinction of front and back side of the shock, the

latter depending only on the relative velocity v.

We now discuss three different interpretations of a shock front,

While gas particles crossing a shock front are exposed to heat conduction
for only a very short time, those that remain adjacent on either side
of a contact surface are exposed all the time. Hence it is clear that
a contact layer will gradually spread out.
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all of which are equivalent by the Galilean principle of relativity,

(a) First, suppose that the velocity u
Q

on the front side is

zero. Then the shock impinges on n zone (o) of rest with the velocity

Fd
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waves will be encountered as shock waves reflected from a wall (see

Art. 41).

(c) Finally, suppose that the velocity of the shock front is

zero, i.e., that the shock front is stationary . (Any shock front will

be stationary if observed from a coordinate system moving with the

instantaneous shock front velocity £). Such a stationary shock front is

simply described by a fixed point x = 4 in "the tube into which the gas

flows at supersonic speed and behind which it is slowed down( to subsonic

speed; while pressure and density are increased. The discontinuity

conditions that hold for stationary shocks (4=0) can be found immedi-

ately by putting v
A
= u^ in (i), (ii), (iii), Art. 28:

(i») yO U = yOjU! = m

(ii")
f>

x? + P = f>?\ + Pl = P

uii") iu| + i =H^i = i^
2

31. :.iodels of shock motion . Shocks in their different aspects

can be visualized by an analogy with a motion of particles such as a

stream of fast automobiles on a highway. A stationary shock can be pro-

duced as follows. We assume a steady flow of traffic at high speed. In

such a flow there will be a 'feound speed", i.e., a speed at which small

disturbances occurring in the traffic will spread. If the speed of the

travelling cars exceeds this sound speed then a steady shock will occur

at a point where the velocity is suddenly reduced, say by a change from

a wide to a narrow road. There the driver in front will suddenly put on

his brakes and slow down, being unable to transmit a warning signal to

the driver in the rear. The increase in density is obvious and increase

in pressure is also immediately represented in our model if we imagine

the row of cars separated by springs or buffers with a non- linear law of

repulsion.*

Even an increase in temperature can be interpreted by means of such
models if the energy of small vibrations of the particles is

considered as representing heat.
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A receding shock wave can be pictured in a similar manner.
Let us assume, as before, a long column of equally- spaced cars

travelling at supersonic speed against an unanticipated obstacle

which suddenly brings the first car to a full stop. The second will

press close to the first and stop; then the third will be abruptly

stopped by the second, and so on. The point separating the stopped

cars from the moving cars obviously represents a receding shock front.
A shock front impinging on a zone of rest is represented by the

phenomenon of a column of fast moving cars pounding against a row of

widely spaced parked cars.

Models of one-dimensional wave motion by means of individual

particles connected by non-linear laws of repulsion are not only

suggestive, but may even be used as approximations to actual situations

and thus as a basis for numerical computation.*

32. Iviechanical shock conditions . V/e observe that only the third

condition explicitly introduces the thermodynamical nature of the sub-

stance represented by the energy e or the enthalpy i as a known function
of p and^. Hence all conclusions drawn solely from the first two shock

conditions (the "mechanical conditions"),

(i)

<"> /°ovo + Po =/°lvl+Pi = p
.

are valid for any medium irrespective of its equation of state. This

is true of the relations:

(43) m(v
n Pi

This is proposed by von Neumann (see von Neumann [30] ). It should
be noted that a mechanical model as described here fails to account
for a change in entropy.
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(44)

(45)
1

° /°o -n

Relation (43) follows directly from (ii). Relation (44) follows from

(43) by setting v
1
= ml^ and v = iar ; relation (45) by setting

mv
l = />o

T
o
v
l

8nd mv
o = /°l

v
l
To-

The velocities v
Q , v-j_ and the mass flux m obviously have the

same sign. Relation (43) then shows that the pressure p changes in

the sense opposite to that of the relative speed |v| . Relation (44)

or (45) shows that the density changes in the same sense as the

pressure.

If the shock is compressive, i.e., />-, > a
,

(which, as we shall

see, is always the case for polytropic gases) the pressure increases

and the relative speed |v| decreases as the gas crosses the shock front,

Suppose that for fixed entropy?? the sound speed c increases
monotonically with the density/), and that the pressure pLo,7?) also
increases monotonically with p and 7); then (45) yields

P(/°l^l) " P(/° '*?<>> P(/°1'V " P^o'lo) 2/rVl = —
TTTFo— >—K^K— = • **>.

where E is a properly chosen intermediate value between pn and/)-,,

Hence

'

' '
x

vovl > c2 (/°o'V - C 0'

c being the sound speed in the thinner medium. Since v > v-,

(assuming m > 0) , we have

i.e., the gas which has not yet reached the shock front flows
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with supersonic speed relative to the front. (For polytropic
gases we shall presently see that after passing the shock the
flow has subsonic speed relative to the front, i.e., v-, < c-,).

35. Cases in which the firs t two shock conditions are sufficient

to determine the 3hock. Certain further remarks should be made about

the rftle of the first two shock conditions, the mechanical conditions,

in contrast to that of the third, the thermodynamical condition, which

is the more trenchant one. There are cases of great practical impor-

tance in which the first two conditions alone together with the pressure-

density relation (equation of state) are sufficient to determine the

shock phenomenon. In these cases the third shock relation remains

valid, of course, but may be considered merely as a means of determin-

ing the energy balance after the problem has been solved. These remarks

apply to flow in substances in which the pressure depends on the density

alone and not, or not noticeably, on the entropy.

water , for example, is approximately such a substance, inasmuch

as in> its equation of state, p = kp - B, the coefficients A and B are

approximately independent of the entropy. The internal energy for such

substances splits into two parts, e = e1 (/>) + eAtf) , one depending only

on the density, the other only on the entropy. The third shock con-

dition can then be written

Since the right-hand side is already determined by the first two shock
r iw

conditions, epfT?) can be calculated and the rise in entropy can thus

be found.

These remarks also apply to weak shocks in any substance, i.e.,

to shocks for which the excess pressure ratio — - is small. For
o

such weak shocks, as we shall see, the entropy rise is very small, in

fact of third order in -= -, and can therefore be safely neglected
Po

(see Art. 37)

.
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Tne theorems (A) and (B) formulated earlier (Art. 28) are

valid for cases where the equation of state p =
pty>)

does not

depend on the entropy, provided that p'(/o) > and 1_|- >0.

To prove Theorem (A) we first show that if pn and v are

prescribed so that v is supersonic, |v
|
> sfPTpQ , then the

state (1) is uniquely determined; vj_ is subsonic, Ivjl < ^p' ifa) -

Since ^g- >0, the ratio ^ _
P
^ increases with p. Therefore the

equation jp—z^f = ffl2 > (
see (44 ^> has one solution/^, r1= ^-,

Pi = P(/°l)° ^^ *? > P'W we have m2 >
/°^P

, W> which is the

value that ^
_ Z approaches as /°-+/° - Hence we conclude^ >/> ,

IvJ-cjvJ. From v2 < vxv = ° ~
J
1

<p'(ft)f (see (45)) we see

that the state (1) is subsonic.

Theorem (B) is equivalent to the following statement. If

p , u and pi > p are prescribed, states (o) and (1) are uniquely

determined, provided it is in addition stipulated whether (o)

should be to the left or to the right of (1). From (44) we find

m2 . If (o) is to the left of (1), m^ 0. Then vQ = rQm,
I _ u _ y y. - f m and u± = v^ + % are determined.

34. Shock relations derived from the differential equations

for viscous and heat-conducting fluids . It seems appropriate to Imple-

ment the introductory remarks in Art. 26 by a brief and somewhat more

subtle analysis of how the shock conditions may be obtained by a

passage to the limit of vanishing coefficients vx of viscosity and X of

heat conduction* from the differential equations involving these

factors.**

, . ^ , , , _ (Equation of continuity
(Oj /°t

+(pu}
x = _

q
same as before.)

* The notation ll, X for these two coefficients is limited to this

article only; otherwise u2 is used as an abbreviation of \ " ± .

** For derivation of these equations see Goldstein [13], Vol. II,

Chanter 14.
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, . 4 n (Equation of motion
ifi) /

ou
t
+

/
ouuI + px

- -^xu^ =
w

.

th v
.

scoua friction> }

(*) /0Tr?t
+/ouT^ = j/x4 + (XTX )

We consider a sudden transition in the neighborhood of a point

and, with no restriction of generality, we can refer the phenomenon

to a coordinate system in which this point is at rest, say at x = 0.

For simplicity, assume that in the neighborhood of x = the phenomenon

can be considered steady, i.e., that we may set u
t
= p%

= rj
t
= 0. Then

we rewrite the equations by combining (a) with ifi) , and (06) and (0)

with (tf) in the form of three conservation laws

(OC) (,ou)
x
=

ifiP) K + P-f/AU
x

) x
=0

[t) ^
u(^ +i) _±rUi -xT

J x=
o

where the enthalpy i with the differential

dp
di = -£ + TdT?

has been introduced. Relation ()?') represents the conservation of

energy.

The possibility of writing all three of our conditions as laws

* The left-hand side is the heat acquired by a unit volume per unit

time. The second term on the right-hand side measures the contri-

bution due to heat conduction, while the first term measures the

contribution due to viscous friction, which is essentially positive

in accordance with the second law of thermodynamics.
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of conservation now leads to the shock conditions in the following

way. We integrate the equations (oC
) , (/5'), (!?') between -£ and 6

,

where £ is arbitrarily small, with the result

(OC") H-£ = °

(/*») [r
2
+ p - t/1^]

=
£

I

in which [f]
£ denotes the difference f(£) - f(-£). For varying

values of X and u. with the limit X-»0, U-—-0, we consider a sequence

of flows which are assumed to converge to a limit flow except possibly

at the point x =0.* Relations (tt"),
fy9"),

{%"), not involving

quantities at the point x =0, remain valid in the limit. Thus we

obtain for the limit flow

H-e =0
•
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equation were (77 + X#) x
= instead of (#'j,

<f>
being a function of

the quantities involved, the third snock relation would have been

[Tfr = 0, as was assumed "by Riemann). This remark shows clearly that

the system of shock conditions is not merely a mathematical framework

essentially inherent in the unmodified differential equations but that

it depends profoundly on a proper accounting for the finer features of

physical reality.

It is interesting to contrast the described limit process
with a different one which has always been successfully employed
for linear differential equations. One considers a set of con-
tinuous solutions of the unmodified differential equations

(/ou)
x
=0, fyou

2 + p) x
= 0, T?

x
= °.

hypothetically assumed to converge to a limit solution which
possibly has a discontinuity at x =0. Since for the continuous
solutions the relations

H-£ ^2
+ p]!,=o. W-£ = °

hold, the same is true for the limit solution. Of the system of
jump conditions obtained on letting £-»0, only the third differs
from the shock conditions. Thus a new type of discontinuity
appears to result across which the changes are adiabatic while
the two mechanical conditions remain. Such a reasoning would,

1 2
however, be fallacious. Since the relation (— u -- i) = is a con-

2 x
sequence of the three above differential equations, the relation

-u + i =0 also holds; and consequently the third shock

condition also holds for the discontinuities of the new type.

The new discontinuities would therefore be shocks in the sense
discussed above but without entropy change. There are no such
discontinuities, since our previous formulas imply changes'^in all
quantities u, p, p, and 17 across the shock front. This argument
shows that continuous solutions of the unmodified differential
equations never can approximate discontinuous solutions (see the
remarks in Art. 1, Chapter I).

See Art. 37 for change in entrooy.
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35. Critical speed and Prandtl's relation for polytropic

gases. The third or thenaodynamical shock condition becomes partic-

ularly simple in the case of polytropic gases. Then we have for the

enthalpy*

i = vLi = kiii c2 , with M2 = |_ 1.

hence the condition (iii) becomes

(iiij) ym
2v2 + (1 -yu2 )c

2 = ^vf + (1 -/x2 )cf = e
2

,

where c is the critical speed (Art. 5, Chapter I). Due to this

algebraic form of the third condition, the relations between the

various quantities on both sides of the shock front and the velocity

£ of the shock front are of a purely algebraic character.

The relation between the relative velocities vQ , v, on both

sides of the shock can be put in a very elegant and useful form, due

to Prandtl, i.e.,

(iiip) vovl = c| •

This fundamental relation involves velocities only and does not refer

explicitly to thermodynamic quantities such as pressure or density.

To prove Prandtl's relation we derive from (ii) of Art. 28,

(iii-g) and (1 -yu-2 )tf =1 +}XZ the relations

yU.
2P + Pl =

>
U2vfp1 +(1+ /*

2
)Pl = C

2^ ,

^ + Po = frfro
+ (1 +^

Z)
Vo = #o '

Subtracting, we find

Pl" Po = c
*

(

/
,
l -/°o )

* See equation 1(20), Art. 4, and Art f 5, Chapter I.
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/°1 "
/°o

*

and relation (iiip ) follows by (45), Art. 32.*

Prandtl's relation is evidently equivalent to the transition

formula

(iio i+S.-i + S
P v

l c
*

vo c
+

(Tl ^ v °einS assumed), which in turn can be proved directly as

follows. From the first two shock conditions we infer that

^-=r +v, = —|- +v . This and the third condition (iiij) o-^T "5
ri v

l /°o
v
o • " ± r

)? + l ? ? p )? + l c* tf - l tf + l/c
2

Flf"2 ^7 that i +T^f
ii_i

T
LT+ , = X*±(_

has the same value on both sides, whence (iiip) results immediately.

Incidentally, Prandtl's relation exhibits the fact that if a

shock is weak , i.e., if v
Q

is approximately equal to v-p then the shock

is approximately a sonic disturbance , for it follows from vQ = vx that

both have the common value c ; hence the weak discontinuity progresses

approximately with sound speed relative to the gas.**

Another way of obtaining Prandtl's relation is by eliminating p, , p,

,

i l» /°o» Po> ^ f1™ (*)• ( ii ^» (i 11 ^) and using c2 = V p/^o . The
result is an equation

v2 - (1 + n2 ) —v + c
2 = 0,

' m *

which must be satisfied for v = v
Q

as well as for v = v,. As a

consequence we find that vQv^ = c2 .

** Of course this fact is in agreement with the principle that distur-
bances occurring not in the quantities u and />, but only in their
derivatives are propa rated alonr characteristics,
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As a first, immediate consequence of Prandtl's relation we

state that the speed of the gas relative to the shock front is super-

sonic on the front side, subsonic on the back side of the shock front .

For, formula (iii
p ) shows that Jv |

> fvj implies (vQ |

> c
+

and

[vJ < c , and our assertion follows immediately from the definition of

the critical speed c^

.

Aa a further application we derive important relations between

the speed % of the shock front, the flow velocities u
Q
and u-j^ on both

sides and the sound speed on one side of the shock front.

By substituting v^ = u^ - | in (iiip) and using the definition

of c^ we obtain

(46) (u
Q

- bi^-t) = c2 =
y
u2 (u

o -t)
2 + (l-/^2 )c

2

=
/x
2
(u

1
-|) 2 + (l-/x2 )c

2
.

This is a quadratic equation for the shock velocity \ and the state

on one side if the velocity u^ on the other side is given. In partic-

ular, assuming that (o) is a state of rest, i.e., u
Q
= 0, and writing

u.. = w> we have for fe, the equation

(47) (1 - y?)i
2 - w£ = (1 -ya2 )c

2
,

or, referring to the state (1),

(48) (1 - jj?)(i- w)
2 + w(£ - w) = (1 -/*2 )c

2
,

relations that will soon prove useful.

36. Relations referring to the strength of a shock for poly-

tropic gases . It is convenient for various considerations to intro-

duce the notion of shock strength . Several parameters offer themselves

as a measure for the strength of a shock:
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P
l

' P
c

the excess pressure ratio —

/°1 " Po
the condensation

Po

o
the parameter M - 1 ,

v
LI = — being the Llach number of the incoming flow relative to the
° C

Q
shock front. V/e write down the relations between these quantities for

polytropic gases.

As stated before, (iii ), Art. 28, the third shock condition

can be expressed in the form

ir - r )

Po+Pl - e - elTo T
1 J

2 ! ° '

which, for polytropic eases with e = -3 ,-% = —"C fPi assumes the

form (T - Jul T1 )p = (T
1

- u?r )p, . This yields the important formula

p
l _ Pl ~^<°o

(49) — - g~.
Po Po "/Vl

which is equivalent to the relation

(50j
Pl " Po = 1 +m2 ft " ft

X

_tl_i/* r° ft-/^ /°o ("To"

connecting the excess pressure ratio with the condensation without

involving velocities.

Inversely we have

(51) *.£l+£sL,
/°o Po +/AT>1
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(53)
*

Po »Mr1+v
We note that the condensation approaches the finite value

"/*• = 2
., when the excess pressure ratio becomes infinite.

JUL
3 » - 1 O

Helation (51) shows that the compression —— is always restricted
ro

to the range
.2 . Pi _1

Po V
so that the compression is never more than uT 2 - fold. For V « 1.4 the

density compression is therefore always less than 6- fold and for i = 1.2

the limit of compression is 11- fold. For later purposes we note

(54)
.

^0-^1 „ 1-M2 Pl-Pp

which follows from (52).

The relation between the Ma eh number and the excess pressure
v Pi

ratio is particularly simple. To derive it we substitute — for — in
Tl Pa

relation (49) and eliminate Vj_ by Prandtl's relation v Vi = c2 . Thus we

obtain the relation

(55)



111-37 91 CONFIDENTIAL

37. Change in entropy . For polytropic gases the change in

entropy &Yf across a shock is obtained from the expression for 7? given

stant volume, that

(57) AT} = 7]

so that, by (49),

(56) ATJ s V1 -% s T

Furthermore, for the ratio of absolute temperatures we have

(59)

Cl Z

° % tMt)

With the aid of these relations we can characterize the thermo-

dynamic changes which occur across a shock front. The equivalence of

a
1
> p and Pi > PQ follows immediately from (49) and (51). Each of

these inequalities is then equivalent to T
1
> T

Q
by (59). Now

(60]
d(A7?) _ _1_

•ft-

M

L ft ft
r *

v
se-"i(. *
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P
Since u2 < 1 and since by (53) jl

Z— < 1, this derivative is positive

ft ° /°1

if — =£ l, i.e.,
f>

zfz p . Furthermore, for — =1, AT} = 0. The

/o ro ^
change in entropy AT} ~ Vi ~ % is therefore positive for — - 1 >

and negative for — - 1 < 0. Thus we have established that for poly-

tropic gases any one of the inequalities P± >/° , P]_ > P , Tj_ > TQ ,

97 > yj implies all the others . Thus for any shock in a polytropic

gas all the quantities change monotonically with — . As stated before,
r

shocks in polytropic gases are always compressive ; upon crossing the

shock front the gas acquires higher pressure, temperature, density and

entropy . This follows from the second law of thermodynamics, which

stipulates that the entropy increases from the front side to the back

side of the shock front.

A point of great importance is the following. The change in

entropy across a shock front is only of the third order in the shock

strength (i.e., in any of the quantities introduced to measure the

shock strength in Art. 36). Hence, for weak shocks the jump in entropy

ia very small and may be neglected. Accordingly, we may treat a weak

shock as an adiabatic change, and need consider only the first two

shock conditions, as Riemann did in his incomplete theory (see Art. 33).

That the change in entropy AT} is of third order in small conden-

P — fi

sation — can be seen immediately from (60) which shows that the

/°o

derivative of AT} is of second order in the condensation. Indeed, inte-

/°1

gration of (60) with respect to —— 1 leads to
ro

where terms of higher order than three in the condensation are neglected.

Using (52), this can be written in terms of the excess pressure ratio as
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(62)
' S- 12*

2 \P
/

again neglecting terms of order higher than three. For shocks in

water the condensation is small enough to make the assumption Aw
reasonably valid, except when the shock is excessively strong. For

gases the assumption is still justified when the shock is moderately

strong.

38. The state on one side of the shock front determined by the

state on the other side . The variety of relations derived for shock

transitions in polytropic gases leads to simple schemes for the cal-

culation of the state (1) when the state (o) and one additional quan-

tity are given, and thus incidentally to a proof of the theorems A and

B stated in Art. 28.

(A) Given pQ , p , uQ , \. We find first v
Q

= u
Q

- \ , c
2 = i

P ? ? P ? Z Pr?n '
°

then c£ =/TVq + (1 - jr)c* , whereupon ! =
T
* , />i

= —— and

v2
°

Vl

pi = p
{

(i v-
2)
HI"/

2

}
(aee (55)) '

or p i = vo + /°o^t
- c2 )-

c
o

(B) Given pQ , pQ , u
q

and p ±
> p Q . We first find

y&V a + Pi p Pn " Pi
/°1

=
/°o~r^ <

see
(
51^» thenm =-^ -± (see (44)) and

^ P l + P° ° 1

choose m > if (o) is to the left of (1); whereupon vn = — and v n
= —

,

g
°

/°o
X

ft
and furthermore, £ = u

Q
- v , u.^ = v

1
+ t, . As a check in computation

one can use

/°i

If the state (o) and the velocity \i± are given, a similar procedure

holds. (See details contained in Art. 33).
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39. Geometric representations of shock transitions for poly-

tropic gases . Prandtl and Busemann nave given a suggestive geometric

interpretation of the conditions for a stationary shock, i.e., of the

algebraic relations connecting the state (o) with the state (1)

adjacent to the two sides of the shock discontinuity. This represen-

tation, briefly described and supplemented here, is not restricted to

a polytropic gas.

It is based on diagrams

showing the dependence of the

pressure p on the flow velocity u,

the latter being considered as the

independent variable, the quanti-

ties 77 and q" being kept fixed; this

relation is given by a curve

p =p(u).* If we change the value

of the entropy rj, keeping the value

q of the limit speed fixed, we ob-

'.ntropy

Figure 24

Pressure as a function of flow
velocity u for the same limit

speed and various constant

values of the entropy.

tain a one-parametric family of

such p,u- curves. These curves do

not intersect; in particular, p

decreases when the entropy y[ in-

creases while u is fixed. This is clear from the relation ^|-p(u, 77)
=

-pT < 0, which follows from Tdp + TdTj = di = -udu.

Instead of u we can consider any one of the quantities i, p, p

as independent variable in our one-parametric family of states with

the same value of q\ Thus,

iu = -u and from i^ = -Si = Sjl

from c2 = p. , i = -5-(^
2 - u2 ) , we find

2 '

we have ^>u = - /£H
, hence pu = -on =

* Explicitly, for a polytropic gas with p = AfT})^ , we have

1

(63) p = A ±±i#2*
u2 )

1=1
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-4-4).and PUu
=

"Vl 1 " ^ I •
The P' u"

curves therefore have negative

curvature, i.e., are concave

toward the u-exis, for subsonic

ci.eed, |u| < c, and are convex

toward the u-axis for supersonic

speed; hence, u =±c are points

of inflection. As v.'as shown in

Art. 5, Chapter I, under the

Figure 25
Graphical representation of

m =/0U = -pu and P = P*
is Just one value c (this value

for polytropic gase3, c = u^,

being independent of the entropy) such that |u| < c for |u| .< c and

|u| > c for |u| > c . Consequently puu < for |u| < c and puu >

for |u| > c+ .

From pu = -pu the negative slope of our curve is seen to repre-

sent the flux crossing a unit section per unit time. The intercept of

the tangent on the p-axis is therefore equal to p + ou2 = P, a quantity

appearing in the second shock condition (ii").

It is now easy to represent a shock transition graphically. Let

us suppose that the shock front faces the left side (denoted by the sub-

script ); then the flux will come from the left, i.e., we shall have

The third shock condition (iii") simply states that for the state

(o) and the state (1) the limit speed q on both sides of the shock is

the same. In our graphical representation this condition is accounted

for by considering p,u- curves of the family corresponding to the same

value of the limit speed q with the entropy as parameter. The two states

p Q , uQ and pi, u.± on the two sides of the shock front will now be repre-

sented by two points on two different curves of the family. Since

p s -m = pu , the two tangents at these points are parallel,

lu = uQ lu = u1
and by virtue of the shock condition (ii") the two intercepts on the
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Figure 26
Representation of
shock transition
in T),u-diagram.

p-axis are equal. Hence the two

tangents are identical. Any two

3tates po , u and p,, u, which can

be. connected by a stationary shock

are therefore represented by the two

points o and 1 of contact of a

common tangent line to two curves of

a family belonging to the same value

of the limit speed q.

From the figure it is clear

that of the two velocities uQ , u-^

one must be supersonic, the other

subsonic, since at one point pnu >

Since

p < or, in other words, the p,u-c.urve with the greater entropy is

below the other curve, it is clear that the subsonic state has greater

entropy than the supersonic one.

It also follows from a continuity argument that to every super-

sonic state (o) there is a state (1) which can be connected with (o)

by a shock.*

The preceding representation of shock transitions is not the
only possible or reasonable one. Perhaps the following one, obtained
by a Legendre transforation, might prove just as usefal. We intro-
duce the flux

m = -pu = yOU

as independent and the expression

P = p + mu

as dependent variable, and we consider the function P(m) . In

* For a precise proof of this statement on the basis of quite
different arguments see Weyl [32].

C01JFIDZITTIAL



II I-40 :" cokfidzi:ti,-.l

performing this transformation from p,u to P,m we must realize that
bv Puu ^ ° for u t* c

+
we are assured of the feasibility of the

transformation separately for < |u| < c and for c. < |u| < q\
Thus we obtain two branches for P(m), a "lov/er" branch, corresponding
to |u| > c

+
, with P(0) = 0, and an "upper" branch, corresponding to

|u| < c , with P(0) =P . For different entropies the functions P(m)

differ only by a constant factor. The lower branches for different
entropies do not intersect each other, and the same holds for the
upper branches for different entropies. However, it can be seen
that through every point on a lower branch one can pass an upper
branch connected with a higher entropy. Such an intersection of
lower and upper branches for different entropies corresponds to a

shock transition, as is obvious from our shock relations.

40. Shock conditions in Lagrangean representation . A remark con-

cerning the Lagrangean form of the shock relations will be useful later

(see Art. 7, Chapter I for definitions and notations). If x(t) is the

coordinate of a moving particle, xQ (t) referring to a specific "zero"-

particle, then any particle is fixed (irrespective of the time) by the

Lagrangean coordinate h = I odx. With h and t as independent, u and

r
P

Art. 7)

1 ~-°-o

as dependent variables, the differential equations are (see 1(39)
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k*Tv k =^ =pc

Figure 28

Motion of shock front

in Lagrangean
representation.

u. Now let us

consider a shock front S moving

relative to the gas, enveloping

at the time t a particle with the

Lagrangean coordinate h = h(t).

Then if x(h,t) is the position of

the particle with the coordinates

h, t, the position of the shock

front is given by

I = x(h(t),t)

and the shock velocity is

X = rh + u.

iVith the abbreviations Tx - T = [r] , u
x

- u = [u] we immediately

obtain the (kinematic) shock condition

Ul> h[T] + [u] = 0,

which replaces the (automatically satisfied) condition of conservation

of mass. We note that -h is the mass crossing the shock front in unit

time from the front side to the back side. Consequently, the conser-

vation of momentum is expressed by

(iiL ) [p] - n[u] =0,

which by (i L) in a form invariant under translatory motion is
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[p] = o,

while the conservation of energy, since v = u - £ = -Th, is expressed

(lii) I^H + M-o,

the symbol [f] always denoting f , - f .

41. Shock in a uniform compressive motion . The simplest basic

instance of a shock transition is that between two constant states.

In Art. 27 we have already given a qualitative description of the

typical piston motion producing such

a phenomenon. We now supply the

quantitative details and proof of the

mathematical consistency of our pre-

vious description. We are concerned

with the problem of a piston moving

with the constant velocity w into a

Figure 29
Shock resulting from
compressive action of

piston moving at a

constant velocity.

sound speed is cQ . Then the situation

was described as follows. The piston

will be preceded by a shock front S

moving at supersonic speed £ > c into

the zone (o) of quiet. Between the impinging piston and the shock we

have an ever-widening zone of those particles of the gas which the

shock has suddenly accelerated from rest to the piston velocity w and

which then continue to move with that velocity.

To substantiate this description, we shall fit it into the

framework of the preceding theory by assuming the situation described
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and then determining the state (1) and the shock velocity £. Since

u-, = w, uQ = 0, we find £, from equation (47), obtained in Art. 35,

C2 w £ .2

The roots of this quadratic equation are

'W77> +
\Ffe)

:

(64)

£ 1 w JZ l( w V

of which only the first is positive and corresponds to the situation

we are considering. (The physical meaning of the negative root will

appear in the next article).

Clearly, the shock velocity \ = £+ is greater than cQ
and greater

than —^—5 . The latter observation shows, for example, that for air
1 - JUL*

2
o 1

with tf = 1.4, ixr = -±-, the shock is at least 20?: faster than the piston

or the oncoming column of gas.

With the shock velocity thus determined, the description of the

basic compressive piston motion is shown to be consistent. Although

we have given no proof of uniqueness, i.e., we have not mathematically

excluded the possibility of other flow patterns, v/e accept the preceding

reasoning as a satisfactory theory for the interpretation of actual

phenomena observed under circumstances resembling our idealized model.

Having obtained £, we find by the procedure A of Art. 38 the pressure

p, and the density /j-^ in the zone adjacent to the piston. For high

speed w of the oncoming piston (or gas), i.e., for — >> 1, we have,
co

by (64) and (55), (51) of Art. 36,
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(65)

7*

(66)
1 +>i2 w2

2.2 2U-/C

(67)
ft

/°0

42. Reflection of a shock on a rigid wall . We shall now discuss

a point of great importance, the reflection of a shock. Suppose an

oncoming column of gas of constant velocity w behind a shock front

Reflected
Shock . x =£>

Particle piths

Incident /

shock: x = £f
Liall

impinges on a zone of quiet bounded by

a rigid wall. Then the ensuing physical

phenomenon can be described as a re-

flection of the shock wave on the wall,

and can be represented mathematically

by piecewise constant solutions of the

differential equations, satisfying the

shock conditions across the incident

shock wave and the reflected shock wave.

Under the impact of the incident shock

wave the zone (o) of quiet next to the

wall will shrink to zero, say at t =0;

then a reflected shock will start in the

opposite direction and in turn will

leave a growing zone of quiet between itself and the wall. The situa-

tion can best be grasped from a diagram in the x,t-plane. State (o) is

a zone of quiet characterized by the quantities u Q = 0,^> , p Ql c Q . In

the state (1) following the incident shock we have u^_ = w; in the state

(2) adjacent to the wall we again have rest, u2 = 0, but new values
f> z ,

Figure 30
Reflection of

shock wave on

a rigid wall.

P>2' ^2* Our aim is to find the state (2) from the data p , p Q ,
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To this end we note that the pattern tentatively assumed in

Fig. 30 shows a state (1) with flow velocity w and sound speed c,

connected through a shock with a zone of rest (o) and through another

shock with a zone of rest (2). £+ is the velocity of the incident,

£_ the velocity of the reflected shock; then according to equation (48)

of Art. 35, both these velocities must satisfy the same quadratic

equation

or the two numbers M. = —^-^" and M =
w "5-

satisfy the quadratic
cl cl

equation M2 — M - 1 = so that M+-M_ = -1.

(l-^2 ) Cl

Moreover, the pressure relations following from (55), Art. 36,

are

^ - (1 + /)!«-/*?, ^ = (l +^M2.-^2 ,

and, using M+«M_ = -1, we obtain for the reflected pressure ratio

(68) r
2
- =

y

and for the excess reflected pressure ratio

(69)

This is the basic relation for the Important phenomenon of reflection .

While in linear wave motion the excess pressure after reflection is

simply doubled, we find here a totally different situation. In
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particular, suppose we have a strong incident shock , i.e., one for

l find

8 for $ =1.4

Piwhich the ratio — is large. We then find
•TO

(70) ^ ~ 2+ \ = "

1.2

23 for <? = 1.1

Thus, reflection of strong shocks results in considerable increase of

pressure at the wall , a fact obviously of major importance.
PiFor a weak incident shock -= - 1 is small and we find from (69)

in agreement with the well-known facts of sonic reflection.

43 » Non-uniform shocks . In the motion just discussed the situa-

tion was greatly simplified by the assumption that the shock establishes

the transition from one constant state to another, implying a constant

speed and strength of the shock wave. In the i,t-plane such a shock

wave is represented by a straight "shock line" whose slope with respect

to the t-axis is the shock velocity £ . Frequently, however, the states

on the two sides of the shock front cannot both be considered constant,

but are described by more complicated solutions of the differential

equations. Moreover, the shock wave will not have a constant velocity,

that is, the shock line in the i,t-plane will be curved. For such

shocks the entropy change will in general also vary. Hence, even if the

state in front of the shock is of uniform entropy, the gas, after pass-

ing the shock front, will no longer have the same entropy throughout.

Then we are forced to use the more general differential equations

1(14) , (15), (16) , Art. 3, and this is a mathematical complication which

has so far precluded any complete theory, though calculations in specific

cases are feasible. Fortunately, in many cases of practical importance,

COUFIDEIITIAL



C0ITFIDE1TTIAL 104 111-45

the clianges in entropy may be

neglected with good justifica-

tion (see Art. 33), and a numer-

ical treatment of the problem

becomes more feasible. In such

cases we can use the simpler

differential equations assuming

adiabatic processes, and oper-

ate solely with the first two

shock conditions disregarding

the third, using the latter only

for determining thermodynamical

quantities after completing the

solution.*

Figure 31
Simple (compression) wave
and envelope of character-
istics C+ which sweep it.

The motion under the influence of a piston moving at acceler-

ated velocity into quiet gas in a semi- infinite tube exhibits typical

features of phenomena involving non- constant shocks. In an earlier

discussion (Art. 24) we saw that a simple wave, represented in the

x,t-plane as in Fig. 31 by a few characteristics, starts from the

piston curve L: x = f (t) and moves into the gas. We noticed that if

d2f > 0, or if u = x increasesthe piston is accelerated, that is, if —

*

dt2
monotonically along L, then the forward characteristics C+ starting

at the piston and sweeping the domain (II) of the simple wave, have

monotonically decreasing slopes tt and in general have an envelope

(see the examples in Art. 25). Certainly the simple wave (II) cannot

extend beyond such an envelope. We can expect the following situation

to develop. From the piston curve L a simple wave (II) moves forward

into the zone of quiet (I) of the gas. The envelope E of the charac-

teristics may start after a while at a point A (in Fig. 32 this point

is shown on the characteristic C+ , x =cQt, through the origin, though

* This is always the case when the relation between pressure and den-

sity does not noticeably depend on the entropy (see Art. 33).
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Figure 32
Compressive action of
piston and resulting

shock.

it is not necessarily situated there). Then a shock line S will begin

at A. Through A we draw a characteristic C_ backwards until it meets

the piston curve L at B. The curved triangle OAB represents the simple

wave (II), which is completely

determined by our previous theory.

The shock curve S is unknown ex-

oepffc that it lies in the region

bounded by tho lower and upper

bronchos of the onv9lope formed

by the characteristics C+ issuing

from L« This can be inferred

from tho facts that the converging

characteristics C+ must bo cut off

before they form an onvolope, bo-

hind which the state yrould be

ambiguoxis. ITote that tho notion of

S is subsonic as seen from (III) and supersonic as seen from (I). Below

S and OA we have a zone of quiet (I). It is the domain formed by L, AB

and S which causes the deeper difficulties in the theory. Since the

shock line S is not straight, the shock impresses a different entropy

on the different elements of the gas crossing S from the state of rest

(I) into the zone (III). In this zone, therefore, the more general

differential equations 1(14) , (15) , (16) , Art. 3, are to be used. It

should again be emphasized that the problem is simplified considerably

whenever changes of entropy across S are negligible.

The shock curve S can be determined according to the following

consideration. After passing the shock S from (I), we obtain definite

initial values of u, a and the entropy 7} by means of the shock relations.

With these initial values we solve the differential equations 1(14), (15),

(16), Art. 3, thereby determining u, #,7} in a zone (III). Now the shock

line S is chosen in such a way that on the arc BB* of the piston curve L

this solution has the values u prescribed by the velocity of the piston.

This is a very complicated initial-boundary value problem with an
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unknown boundary, and no general theoretical treatment seems possible.""'

The reverse process, however, can be carried out more easily. Assume

that we have a shock line S and determine the initial values on the

other side of 3 according to the shock conditions. Then solve the

initial value problem and find the corresponding piston motion as the

motion of the flow through B. By carrying out such relatively simple

computations for a suitable variety of assumed shock lines S, an assort-

ment of flow patterns can be obtained from which one can choose the one

most closely representing a given piston motion.

While determining the shock line 3 from a given piston motion is

a difficult task, it is at least possible to analyse mathematically the

very beginning of the shock, i.e., the line S in the immediate vicinity

of A. This problem has been attacked by Hadamard**and more recently in

an improved way by Calkin.***

It should be kept in mind that the shock is weak (sonic) at the

Pi
beginning, i.e., starts with a pressure ratio —= = 1 at the tip A.

p o
Only after the shock line S has bent away from the characteristic direc-

tion (which represents sonic disturbances) will the shock become strong-

er, i.e., =7= will increase.
Po

As already mentioned (Art. 31) J. von Neumann in [30] has proposed
to determine unknown shock lines by using a system of moderately
few particles connected by appropriate spring forces instead of a

continuous medium, and solving problems for the corresponding
systems of ordinary differential equations. In preliminary tests
the proposed method proved to be successful in cases where entropy
changes are negligible and only the first two (mechanical) shock
conditions need be considered. Whether such a procedure is practi-
cable in case of entropy changes cannot be judged at present.

** See Hadamard , Lecons sur la Propagation des Ondes.

See references to a forthcoming report in von Neumann [19], p. 14.
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D. Interactiona

44. Introduction: General types of problems . So far we have

considered primarily simple expansion, compression and shock waves

originating from a state of rest, and have followed only the immediate

development of the motion. What happens in reality, however, is that

such waves are reflected (as already considered in Art. 42), or meet

or overtake each other, so that a more general state of motion results

as a consequence of various interactions in which no principle of

superposition ia valid . Thus, phenomena altogether different from

those of linear wave motion occur, the generation of excessively high

pressures by reflection of shocks being but one example.

As a classical instance we

mention the problem of Lagrange of

interior ballistics . A tube is closed

at a fixed point by a rigid wall and

at the other end by a piston of given

B mass with a variable position B. Up to

Figure 33 time t = there is atmospheric pressure

Initial situation in in the tube. Then at t = an explosion
problem of Lagrange.

in the tube produces a gas still at rest

with constant entropy i7 , density p , and a very high pressure p Q . The

piston is accelerated by the pressure difference at the two sides; con-

sequently the gas in the tube behind the piston is also accelerated and

thinned out. This expansion spreads into the interior of the tube as a

rarefaction wave. It travels from the piston to the wall at the point 0,

is reflected on the wall, meets and intersects the wave continuing from

the piston into the tube, is reflected on the piston, etc. The problem

is to describe the motion of the gas as well as that of the piston.*

* See the treatment of the problem by Love and Pidduck [17 1.
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In this manual we shall confine ourselves to the study of what

may be called elementary interactions , i.e., interactions of waves

meeting contact discontinuities, or of waves facing each other and

oollidiii^, or of waves overtaking each other .

We shall see that as the ulti-

mate outcome of interactions of these

various types of wave we can in general

expect two waves moving in opposite

directions away from the spot of inter-

action.

A general observation concerning

the important problem of overtaking of

waves should be made here. Any two waves

facing in the 3ame direction, with the

Figure 34

Overtaking of one
shock by another.

4l - Ui < G1$ % 2 - ul > cl<

i.e., \2 > |r

exception of two rarefaction waves, will eventually overtake each other .

If two shock fronts S, and S
2

facing in the same direction, travel

one after the other, then, according to our previous result (Art. 35),

the first shock Slf observed from the region (1) between the shock fronts,

travels with subsonic speed while the shock S2 travels with supersonic

speed relative to the gas in (1); hence Sg will catch up with S-^

Likewise, if a rarefaction wave

R is followed by a shock wave S it

will be overtaken (see Fig. 35), for

the shock front travels faster than

the sound speed in the intermediate

region (1) relative to the gas in (1),

while the tail of R travels with

sound speed Cj_ relative to (1).

In the case of a shock wave

followed by a rarefaction wave

(Fig. 36), the head of the rarefaction Figure 35

. , , . . ... . . Shock wave overtaking
wave will travel with sound speed ^ .rarefaction wave.

relative to the gas in the intermediate £, - u^ > c^, i.e.,

|>u1+ cr

t
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region (1) which is Greater than the shock speed relative to the

intermediate gas, since a shock front travels with subsonic speed

relative to the medium behind it.

Figure 36

Rarefaction wave
overtaking shock wave.

ll
K Bl»

i,e *» t ** u
l +

Figure 37

Two rarefaction
waves facing in

same direction.

Two rarefaction waves facing in the same direction, however,

will never meet (Fig. 37) . This is evident from the fact that relative

to the gas in the intermediate region (1) the tail of one will travel

with the same (sound) speed as the head of the other.

45. Decaying shock wave . The complicated motion that results

when a shock wave is overtaken by a rarefaction wave and gradually

diminished in strength is sometimes called a "decaying" shock wave.

When the shock is weak, an approximate description of a decaying

shock wave is possible (see Taylor r ?5] , Chandrasekhar [26] ). When the

excess pressure ratio is less than 0.5 the change in entropy across the

shock front is negligible. Therefore, the flow past the shock front

may be considered as approximately isentropic. Further, as Chandrasekhar

points out, the quantity (1 -/x2 )c - /jl
2
u, which is constant across a

forward facing simple wave (Art. 18), suffers little change across a

weak forward facing shock front. Therefore, the flow at the back side

of the shock front may be described as approximately a simple wave for
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which

yi) (1 -/J? Ai =(1 P/D Po/3c

where the subscript o refers to the state ahead of the shock front.

Only one shock condition may now be used in addition to the relation

(71). As such Chandrasekhar chooses the relation

(1 -/l2 )(^ c§) - ufc-0

(see (47), Art. 35), from which the shock velocity | can be determined

when the flow velocity u immediately behind the shock is given.

To construct the decaying shock wave on the basis of these

simplifying assumptions, one starts with the description of the simple

wave behind the shock front: u, c,
f>, p are functions of a parameter (X,

satisfying the equations (71), and the straight forward characteristics

C+ are given by

(73) C.: x = (u •+- c)t ¥ x,

x being also a given function of o£.

Assuming u = for o£ — 0, which implies jo =jOq , p = p Q for 06 * 0,

one has a state of rest behind the characteristic C+ : oL = 0. Relation

(72) determines a vector field

dx _ c

dt ^

through integration of which the

shock line

x = £(t)

can be determined.

This description is, of

course, only approximately correct,
figure 38

Decaying shock wave.
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In reality, the motion behind the shock front is not a single simple

wave but in addition involves a reflected wave which, however, is weak

when the shock itself is weak.

It may be mentioned that Taylor's treatment is somewhat more

general in that his only restriction on the change of entropy across

the shock front is that it be constant. The shock transition is then

determined by the two mechanical conditions. The end of the wave is

placed at the characteristic on which the pressure equals the pressure

ahead of the shock front. In general, the flow velocity on that char-

acteristic and behind it turns out to be different from zero. This

result seems to be in closer agreement with the discussion of later

sections.

In the following, a completely different approach to the prob-

lem of interactions will be discussed,

46. Piston motion and interactions . Interactions can be studied

in simple models of motion. For example, suppose that in the semi-

infinite tube the piston is first moved with uniform velocity into the

gas-filled tube and then is suddenly arrested. In the first phase of

the piston motion a shock wave is caused; the second phase, when the

piston is at rest, results in a rarefaction wave following the shock.

Figure 39

Motion resulting after
stopping of piston moving
with constant speed.

Figure 40
Motion resulting
from "polygonal"
piston motion.
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Near the piston we obtain a motion as indicated in the diagram. How-

ever, as soon as the rarefaction wave reaches the shock front S a more

complicated process starts in which the rarefaction wave is reflected

as a simple wave while the shock wave becomes a decaying shock wave

(see Art. 45) proceeding with diminished speed and strength.

More generally, if the piston motion consists of segments with

constant speeds, changing abruptly from one constant speed to another,

then the piston curve L in the x,t-plane is a more general type of

polygon. From each vertex at which the piston velocity is increased

a shock wave emerges, and each shock wave, as we have seen, overtakes

its predecessor, i.e., the shock lines will intersect. From vertices

at which the velocity decreases centered rarefaction waves start to

chase the preceding shock waves. The ensuing multiple interactions

lead to an exceedingly complex state in which the entropy is no longer

constant throughout the gas or even over parts of it. Detailed mathe-

matical analysis of such a flow bein-> out of the question, we must

content ourselves with a study of the elementary interactions between

two elementary waves , i.e., simple waves or shock waves, or with the

reflection and transmission of a wave on an interface between two media

of different states.

Nevertheless, the following general consideration should

not be omitted, since it clarifies a seeming paradox, aaooth

motion of a piston can be approximately represented by a "poly-

gonal" motion as just described. Now a smooth piston curve L

leads to an adjacent simple wave swept by characteristics and

. having a constant entropy throughout, while each shock emanating

from the vertices of a polygon L increases the entropy. This

would appear to be contradictory, but actually there is not

contradiction; for if at a vertex the sudden change in velocity
(or change in direction of the polygonal curve) is very small,

the shock line approaches a characteristic (since the shock becomes

almost a sonic wave) and the change in entropy is even smaller,

in fact, of third order with respect to change in velocity of the

piston (Art. 37). Then evidently a passage to the limit from a

polygonal to a smooth curve makes any entropy change disappear

and reduces the shocks to sound wave propagation along character-

istics.
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Incidentally, the first shock condition

/°o(
u
o - ^ " /°l

(u
l " 6

J

for a shock front emerging from a vertex of L can be written

/o(u-§) =
(f>

+ 5
/
o)(u +Su - \)

Or QU = S/O
~

t— ,Ui ryo + S^o

where Su, S/? are the increments of u and p across the shock.

Now if 8u and lo become very small and the shock approaches a

sonic wave, \ - u will approach c and in the limit we obtain

du = £-<y> ,

which is the basic relation for the simple wave adjacent to

the smoothly moving piston.

The reflected waves which, for the nearly smooth poly-

gonal motion L, are produced when one wave overtakes a preced-

ing one, disappear in the limit (as can be concluded from the

subsequent analysis) so that actually a simple wave results in

the limit.

47. Summary of results on elementary interactions . We now give

a brief account of elementary interactions, referring for details to a

more complete report.* Let us first summarize the results in a quali-

tative way.

Interactions have very different effects according to whether

the waves clash head-on or overtake each other in the same direction.

(One must always bear in mind that the front of a wave is the side

toward which the flow of gas is directed). The reflection of a shock

wave on a rigid wall is equivalent to a special case of the head-on

collision of two shock waves, namely, to the case of two symmetrical

*Courant and Friedricha [27 1.
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equal shock waves. In the general ease of two colliding shock waves

of different intensities a more complex situation results. After the

two shock waves have penetrated (and thereby weakened and retarded)

each other, they leave behind them an expanding zone of constant

pressure and flow velocity as in

the case of symmetry. In this zone,

however, the density is not uniform;

instead, a point moving with the

flow velocity of the zone separates

two regions of different (uniform)

density (and temperature). In other

words, a contact discontinuity of the

type envisaged in Art. 29 appears.*

This fact, which is well established

experimentally, shows that we must

consider contact discontinuities

together with shock and rarefaction

waves and study all the mutual interactions possible between any two

of them.

It is convenient to denote a shock front facing in the direction

of increasing x (right shock front) by S, an opposite (left) shock front

by S_, and similarly, rarefaction waves by R or R according to whether the

particles move into the wave from the right or from the left.** Contact

discontinuities are denoted by the symbol T, and by the symbol TT we

denote a zone in which the pressure and flow velocity are constant but

in which the density, entropy and temperature vary from one particle

path to another. Contact discontinuities may be distinguished as T,. or

TK according to whether the density is greater or smaller on the left

side of T.

Figure 41

Head-on collision
of two equal
shock waves.

This fact seems to have escaped writers in the field and was brought
to general attention by von Neumann (see von Neumann [19]).

Once more it should be stated that the direction in which an elementary
wave faces has nothing to do with the direction in which the wave front
moves.
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Now the effect of nead-on

collision of shock waves can be

described symbolically by the

formula

_S S_ -»STS ,

In words, head-on collisions of

shock waves result in two shock

fronts moving apart and separated

by a contact discontinuity. Only

in the case of two symmetric waves

(which is equivalent to reflection

of a shock on a rigid wall along

the line of symmetry) will the

contact discontinuity disappear.

Figure 42
Head-on collision

of two unequal
shock waves.

Overtaking of shock waves . in gases with an adiabatic exponent

1 £ — results in a transmitted shock, a reflected (in general weak)

rarefaction wave, and a contact dis-

continuity between them;*

S S R T S for
3

For tf > — , which never occurs for an
o

actual gas, we may have the same situ-

ation, but there are also cases where

a shock is reflected:

Figure 43
Overtaking of one shock

wave by another.

for 1

* This result was first obtained by von Neumann [1°].
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Reflection and refraction of shock waves on contact surfaces

(also between different media) occurs as indicated by the two formulas

S !.- S f S .

whose meaning in words is that a shock wave impinging from a gas of

low density on a gas of higher density results in a reflected and a

Figure 44a
Interaction of shock wave
and contact surface T<.

Figure 44b
Interaction of shock wave
and contact surface T>.

transmitted shock wave. If the second medium is of lower density a

rarefaction wave is reflected but a shock wave is still transmitted.

It is assumed that both media are gases with the same adiabatic ex-

ponent <?.

In interactions not involving rarefaction waves, a reflected

and transmitted wave always emerge immediately after the collision.

Interactions with rarefaction waves, however, at first lead to a

period of penetration during which the flow cannot be described as

made up of simple waves. Yet simple waves can ultimately be expected

to be formed as terminal states and the following descriptions refer
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only to these terminal states, whose existence is assumed. For

simplicity, we imagine that the process starts with two waves separ-

ating zones of constant pressure and flow velocity. (In a sufficiently

small neighborhood of the collision

this is no essential restriction of

generality) . Then, interactions with

I rarefaction waves lead to terminal

states as follows. The head-on colli-

sion of two rarefaction waves (which in

cases of symmetry is equivalent to

reflection of a rarefaction wave on a

rigid wall) again yields two rarefaction

waves as the terminal state:

Figure 45

Head-on collision of

two rarefaction waves.

RE-RB

Likewise, the outcome of a collision of a rarefaction wave with a zone

of higher density is simply described

by

while the interaction

is essentially more complicated (see

Courant-Friedrichs [37 ] )

.

A shock wave overtaking a rare-

faction wave can result in three diff-

erent types of terminal states, depend-

ing on whether the shock is strong

enough to consume the whole rarefaction

wave and to cross it:

Figure 46

Interaction of rare-
faction wave and contact

surface T,< •
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S R — S TTJ3 (for strong oncoming shock)

_S ]^ - s_ TT R (for weak oncoming shock)

SR -
j3_ TT (for an intermediate situation).

The case of a decaying shock wave . i.e., a shock wave overtaken

and gradually devoured by a rarefaction wave

has been discussed earlier (Art. 44) by a completely different kind

of analysis but this important type of interaction is also amenable

to the treatment omployed in the cases now under discussion (see r?7l
f
p.46)«

Two further comments relating to these descriptions and figures

are necessary. Zones TT result from shocks penetrating into a rare-

faction wave (with the effect of mutual weakening); the shock line is

bent and the particles crossing the shock undergo different changes in

entropy. That ultimately all these particles emerge with the same

velocity is a simplifying assumption which has been found to be true

in the first approximation.* This assumption, however, cannot be ex-

pected to represent the facts accurately. In various cases a rare-

faction wave or a shock wave is reflected as a compression wave and the

latter in turn leads to a shock. Our schematic formulas refer only to

such an ultimate shock.

48. Method of analysis . While reference must be made to the

report quoted above** for the detailed justification of the preceding

statements, the general method for obtaining these results can be

* In an unpublished computation carried out by AMP-NYU.

** Courant and Friedrichs [27].
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indicated here. It amounts to an algebraic discussion of the transi-

tion relations for shock fronts and rarefaction waves, guided by a

graphical representation.

By subscripts a, b, m, t, r, k we denote zones of constant

values of p and u, the letters Jl and r meaning "left" and "right" or

smaller and larger values of i respectively. It is convenient to

represent 3tates in a p,u-plane. In such a representation two con-

stant states p,u between which shock and rarefaction waves take place

Figure 47
Diagrams representing graphically the states
(u

t ,P£)
and (ur ,pr ) on left and right sides

respectively of shock and rarefactions waves.

can then be represented as in the accompanying diagrams (Fig. 47).

For shocks we always have u < u, ; for rarefaction waves u > u«

irrespective of the directions in which these waves face. The
Pr - P.

quotient -——j^ is always positive for forward waves and negative

for backward waves.

From our previous analysis we recall and infer the following

results. If a state (a) of the gas u = u , p = p , n „ = ;=-, and
. a / a Tg

another state (b), with the quantities u,, p,, =-, are connected

through a shock wave, then from (43), (44), Art. 32, and (54), Art. 36,

pb - Pa _ m = ± |

pb - Pa _ /ppf/Aawe have Hence
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(74)

(75)

lb = u
a
± ^a^b )

,(p) = (P " Pa )

and where, as will be seen immedi-

ately, the plus sign is to be taken

for shock fronts S, the minus sign

for shock fronts S_. The monotonic

function 0, incidentally, satisfies

(76) Pate*) ='^b (Pa )

Figure 48
Graph of the
function jzJ (p ) .

has the simple properties

p \S totoar
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In Fig. 50 the loci of all states which can he connected by

shock waves S and S with a given state (r) to the right or (£) to

tho left, are indicated.

o

Figure 50

Locus of possible states

(£) on left of a shock
wave if state (r) on

right is prescribed.

Locus of possible states
(r) on right of a shock
wave if state (£) on
left is prescribed.

A similar representation can be obtained for the one-parametric

family of constant states (b) which can be connected with a fixed

state (a) by a rarefaction wave. We saw (Art. 18) that across a rare-

uy ^ f . \t rp = constant. Now.faction wave R or R, u T
V - 1

since only adiabatic changes of state occur,

1-1 Izl
~

2 tf ^^ _" 21

we have
It W or

f»VbPb Thus

*i
—t i i / v-i i-i\

,3 a ^a V a ^b /

so that, analogous to (74), we have
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(79) ub
= u ±y;(Pb>

where

(80) W(j>)

, i i / i-i *-i\

and where the plus sign prevails for waves R^ and the minus sign for

waves R. The monotonic function

"^has the properties

| oo for p | oo
(81)

(Va (p)

w<p> for

touches the y^-axis tangentially

at

K(0)
^/^^?

&

1-Uf

and satisfies the relation

Figure 51

Graph of the
function y â (p)

.

(82) VQ (PbJ = -W><P«

As in the case of shock waves, and for similar reasons, the possible

states (b) as given by (79), which can be connected with a fixed state

(a) through rarefaction waves facing toward and away fron (a), are

shown graphically in Fig. 52. In Fig. 53 are shown the loci of all

states which can be connected with a given state (£) or (r), on the

left or right of the wave respectively, by rarefaction waves R or R.
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If the two states (&) and (r) are known we need simply draw the two

r curves through then. The point of intersection then determine*

the state (m* ) and the waves from (m* ) to (&) and to (r). In

practice, graphical construction often will not be sufficiently

precise, but it indicates the proper arrangement for numerical

calculation.

To illustrate the pro-

cedure we consider a few cases in

more detail.

(a) To study the clash of

two shock waves 5 and S we observe

that our states (JU and (r) must

be represented in the p,u-diagram

as in Fig. 56 since they are ob-

tained from (m) by a forward and

backward shock respectively (and

are therefore not entirely inde-

pendent, a fact which is not

essential to our procedure). The

curves l r andl~£ , according to

our diagram, must intersect in a point m* , and m* is on the upper

part of ]7 as well asFJ . Hence the two transitions from m* are

shocks, as stated.

In the state (m*) we have constant values of p and u. The

shock transition from (r) to (m*), however, in general determines a

value yO* different from the value f>t obtained by the shock transition

from (£). Hence, in the zone (m*) of the i,t-plane, a line of density

discontinuity coinciding with the particle path from the point of

collision.

(b) The collision between two rarefaction waves leads to a

terminal state which can be determined just as easily. Here the rela-

tive positions of (m), (£,) and (r) and consequently of (m* ) is

Figure 56

Graphical analysis of
head-on collision of

two shock waves.
(See also Fig. 42)

.
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immediately seen to be that* of

Fig. 57. But this shows that (m*

)

is on those parts of l T and 1^ to

which rarefaction waves correspond.

Hence our previous statement RR-*

R R is justified.

(c) The problem of one shock

wave overtaking another is slightly

more delicate. Here the original

states (£) , (m), (r) are separated

by two shock fronts facing to the

right; we have

Figure 58

One shock wave over-
taking another

(see also Fig. 43)

.

Figure 57

Collision of two
rarefaction waves

(see also Fig. 46)

.

In the p,u-diagram the point m is

evidently on the curve I since m is

connected to r by a shock and the

unknown point m* must be situated on

On the other hand, m*

lies on a 17 which connects it with

£ and hence a situation as in Fig. 58

results if I passes on the right side

of t. It is possible to show that

this is the case from the algebraic

form of our functions and y/ if

y ^ "§"•** Then our diagram indicates

that an intensified forward shock _S^

(between r and m* ) and a weak backward

the same L T

See Courant-Friedrichs [27], p. 28, for the case where no point of
intersection m* exists.

** See Ibid., Appendix A3.
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rarefaction wave result. For the same reason as in (a) we can expect

a contact discontinuity in zone (m*).

If V > -jj-, however, situations are possible where i passes to

the left of £,, so that we obtain a (weak) reflected shock instead of

a reflected rarefaction v/ave.

49. The process of penetration . ".Then rarefaction waves are

involved in interactions, first a more complicated flow occurs before

two waves emerge and move apart. This process of penetration requires

the solution of non- trivial boundary value problems for our differential

equations of flow. As observed before, one even has to consider the

more general system 1(14) , (15) , (16) , Art. 3, in which non-uniforra shocks,

and thus variable entropy and transition bands TT, are involved.

Hardly any mathematical work

has been done in these cases*, except

for the collision of two rarefaction

waves. In this case the problem depends

on the si npler equations 1(14), (17),

Art. 3, and can easily be formulated.

Suppose the two waves R and R

are given rarefaction waves. Assume

that they are centered, although it is

not necessary to do so. Then we know

not only the straight characteristics

sweeping these waves, but also the

curved conjugate characteristics. In

particular, through the first point of

collision we know the two character-

istics AA' and AA" (Fig. 59) closing

off the oncoming simple waves. Now we also know the value of u and p on

the characteristic angular line A'AA" , and the problem is to determine

Figure 59

Interaction of two
rarefaction waves
showing zone AA'BA"
of penetration.

oee, however, v. Neumann [30], and first footnote at end of Art. 43,
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u and p in a quadrangle A'AA"B formed by four characteristics, of which

the two sides A'B and A"B have to he determined together with the solu-

tion.

This is a so-called characteristic initial value problem . Its

solution constitutes an important part of Riemann's classical paper.

Riemann linearizes the problem by interchanging the rSles of dependent

and independent variables; then the machanism of "Riemann* s method of

integration" of hyperbolic differential equations can be applied with

the help of Riemann' s explicit construction of "Riemann* s function"

in terms of hypergeometric functions. In our presentation the situation

can be understood by introducing characteristic coordinates 3 and OC

(see Art. 9, Chapter II), .or, more conveniently, certain functions r and

s of S and oC (see Art. 18, Chapter III). Then our initial value problem

can be shown to refer to the equations

Xg - (u + c)t
g

= 2r = u
+ J

jdp

(85)
wher9

a u •£? *?x - (u - c)t = 2s
r r y

Since u ± c are known functions of r and s, the system (85) may be

linearized (see p. 25).

However, by using the method of iteration described in Art. 10,

Chapter II, we can deal directly with this characteristic initial value

problem for the characteristic system corresponding to the equations

(see 11(A), Art. S).

2

u. + uu + ~ p =0
t x p J X

(86)

J°t
+
/
>U
x
+U fx

= °

We shall omit further details concerning the interesting theoretical

mathematical aspects of the topic. It may be emphasized, however, that

the numerical solution of our initial value problem offers little

difficulty since methods of finite differences may be effectively employed,
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III. Appendix 1

DETONATION WAVES

50. Detonation conditions . Closely related to shock waves

are detonation waves* , i.e., waves in an explosion process which con-

sist of fast-moving discontinuity surfaces separating the unexploded

part of the explosive from the explosion products. The fact that the

equation of state of the medium is different on the two sides of the

front does not constitute an essential difference between these waves

and the shock waves considered in Chapter III. Obviously the two

mechanical discontinuity conditions (Art. 32) which express the laws

of conservation of mass and momentum subsist for detonation fronts as

well. An essential modification, however, arises in the third, the

thermodynamic condition, inasmuch as now the law of conservation of

energy requires an additional term in the energy balance, representing

the energy set free by the chemical reaction. This liberated chemical

energy per unit mass is a quantity f characteristic of the explosive

material.

Let us indicate the unexploded substance by the symbol (o), the

burnt gases by the symbol (1). Then, in the notation of Art. 28, Chap-

ter III, the thermodynamic discontinuity condition becomes

(87) ^-v2 + i
Q
= jTf + i

x
+ f .

Using the mechanical shock conditions to eliminate v^ and v? (see deri-

vation of III(iii ), Art. 28), this can be written

(88) ^Pl-PoHTi+V 1!- l = f -

* For a discussion of the detonation process particular reference is

made to the paper by Becker fl81. See also the report by von
Neumann [19], and the literature quoted there.
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The two mechanical conditions and condition (87) or (88) will be

called the detonation conditions .

51. Auxiliary hypothesis . We recall that an ordinary shock

wave is determined by the state on the front side (o) and one addi-

tional quantity referring to the situation on the back side (1), e.g.,

the speed of a piston. To maintain a shock wave some externally

acting agent, e.g., a piston, is necessary as a source of energy.

With a detonation wave, however, the physical situation is different.

The detonation process maintains itself by means of the liberated

chemical energy. While the whole process in a shock wave between a

front state (o) and a back state (1), for example, is determined by

the knowledge of the state (o) and the^piston speed" u, behind the

wave, a detonation wave racing into the explosive in the state of

rest (o) cannot be determined in the same way since nothing about

the state (1) behind the shock front is known in advance. Hence a

further condition is needed for characterizing the detonation wave.

Such additional conditions were proposed by Chapman (1899) and inde-

pendently by Jouguet (1905), the two proposals later being recognized

as equivalent. A completely convincing rational derivation of the

Chapman- Jouguet hypothesis has apparently not yet been given, but the

hypothesis can be made plausible and agrees well with experiments.

The detonation condition together with a given state (o) char-

acterizes a one-parametric family of possible discontinuity transi-

tions from state (o) to a virtual* state (1). Now the Chapman- Jouguet

hypothesis singles out from this family of virtual transitions two

particular cases as describing the actual detonation process.

The hypothesis will be formulated in three different equivalent

forms A, B, C.

(A) Jouguet* s hypothesis . The flow of the exploded gases

immediately behind the front is exactly sonic, i.e.,

* Called "virtual" because, of the one-parametric manifold of states

(1) so determined, only two are actually possible.
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(89)
:

1 '

We shall presently see why this is a plausible condition. At the
.2 _aj =

Tl"J= Tjn* = -Tj ^ I
P ° (see Art. 32) that

(89) is equivalent to
To

(90)
r, - t„ 7°i«

< B) Chapman's hypothesis . The velocity -v
Q

of the detonation
front relative to the undetonated explosive ahead of it is an extremum
(maximum or minimum) as compared with the velocities of virtual discon-
tinuity fronts relative to the explosive. Then from the first condition,

/°o
v
o - /°l

v
l = m, we have

22 2 p l " P
p

/V'o = » = - r-^r '

Hence property B is equivalent to the property that the ratio
P l " po

be an extremum, Pl and T± being coupled by relation (88). Accordingly,
the analytical expression of property B is

.

T
l " ro

•(91)

dp.

dT\

Geometrically speaking,

the straight line connecting the

point ir ,2 ) with the point

(Tl»Pi) in the T,p-plane is tan-

gential to the graph of the

relation (88) for T ""Ti, p = p^
(C) A third formulation is

the following. The entropy of the

state (1) behind the detonation

front is an extremum (maximum or

Figure 60
Geometrical representation

of Chapman's hypothesis (B)

.
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minimum) when compared with all virtual states that satisfy the

three detonation conditions, the state (o) being held fixed. The

analytical formulation of this is

(92) 5=1 = -rfc? ,

since c2 = —- = -f^ •$£ when the differential of the entropy vanishes.
d/° dr di, dpi

To show that property C entails A and B we note that -ps*- = T^ ^A

= -/hpi when the differential of the entropy vanishes. Hence on

differentiating relation (88) we obtain the relation

, dp, , dp,h + To)^ + i(pi-Po)- Ti^ =
>

dpi p p
which is equivalent to (91) and, by virtue of ^rr- =

-fi
c
i>

to (90).

That A or B entails the two remaining conditions is easily

shown in a similar manner.

Of the two possible transitions characterized by these hypo-

theses the one for which pressure and density are increased beyond

the front is identified with a detonation in the proper sense. The

detonation velocity -vQ is a minimum and the entropy a maximum in

this case. The second transition leading to lower pressure and density

is customarily identified with the process of deflagration .* Transi-

tions of this second type would correspond to expansive shocks with

decrease in pressure and it is doubtful whether or not such transitions

should be excluded on the basis of the second law of thermodynamics.

(Possibly the process of deflagration should rather be described as a

rarefaction wave).

If the detonation is initiated by the motion of a piston which

* Von Neumann [19] has advanced the idea that a detonation consists
rather in a non-reactive shock followed by a deflagration process,
with the same result that a single detonation shock would give.
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comes to rest after a short time, a rarefaction wave follows the

detonation wave through which the burnt gases are decelerated until

they come to rest. A rarefaction wave following a non-reactive shock

wave overtakes and devours it (see Art. 45). If a rarefaction wave

follows a detonation wave, however, its head may stay in contact with

the detonation front without interference, since both the head of the

rarefaction wave and the detonation front move with the same velocity

relative to the gas behind the front. This is a very significant con-

sequence of Jouguet's hypothesis A and makes it plausible.

The rarefaction wave is here assumed to be one-dimensional as

if the burnt gases were confined in a cylindrical tube. The walls of

the tube must be rather strong to withstand the high pressure in the

burnt gases. In frequent cases, however, the walls will yield and offer

negligible resistance. Then, observed from the detonation front, the

burnt gases flow as if they came out of an orifice.
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III. Appendix 2

WAVE PROPAGATION IN ELASTIC-PLASTIC MATERIAL*

52. The medium . Solid matter is capable of elastic deform-

ations under certain conditions, and of plastic changes in shape

under others. The property of matter characterizing it as elastic

or plastic can be expressed mathematically by the relation existing

between the stress and the strain , and will be defined in the follow-

ing paragraphs (see also Art. 2(b), Chapter I).

In such elastic-plastic materials an important variant of wave

propagation occurs which differs in many respects from wave motion in

gases. The decisive new feature is that shock waves and continuous

simple waves occur in both expansive and compressive motion. It is

also interesting that there is always a sonic discontinuity at the

head of a rarefaction wave entering a zone in which the material is

unstrained. In contrast to gas, which expands indefinitely under

zero pressure, an elastic-plastic material assumes a well-defined

original state when it suffers no stress.

The Lagrangean representation seems the natural one to employ

for the treatment of motion in such material. Let us consider an

elastic-plastic cylindrical bar of uniform cross-section in its ori-

ginal (unstrained) state. When the bar is deformed in the direction

of the axis, the axial coordinate x of a particle depends on its

"original" abscissa a and on the time t: x = x(a,t). The strain

(93)

When a is the density of mass and a the "original" density,

we clearly have /O da = pdx or

* For the theory of elastic-plastic waves, see a groat number of

reports and memoranda by v. Karman and others issued through

Division 2 of the KDRC.
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(94) & = (l +£).

The stress is the force per unit area acting in normal

direction acainst a cross-section; for the following considerations,

however, a somewhat different quantity is to be used. Actually, the

motion of the bar does not take place solely in the axial direction

since an extension in the axial direction is always connected with a

contraction in the perpendicular direction. Thus for the desired

approximate one-dimensional treatment, the significant quantity is

not the stress, but the total force acting in the normal direction

against a cross-section. This total force divided by the constant

area of the original cross-section, the so-called engineering stress
,

is the one denoted in the following by (T and simply called the stress .

This stress is then assumed to be a known function of the strain

(95) <T = <r(£),

this function depending only on the nature of the material. One always

has

(96) <T ^ for e^ 0,

that is, the stress is positive in tension and negative in compression

(<T = for £. = is true by definition) . For most materials the fur-

ther inequality

(97) ff >

is satisfied throughout; that is, increasing strain implies increasing

stress. In the following discussion we assume relation (97) to hold.

A material is called elastic when the stress depends linearly

on the strain. Most materials are elastic when the strain does not

exceed a certain limit, the critical strain £ . The stress-strain

relation is then

CONFIDZirriAL



eOIIFIDEITTLAL 136 III-

(98) <r = Ee, |e|

the constant E being Young's modu3.ua.

A material is here caller1 plastic when the stress is a non-

linear function of the strain, the latter being greater than the

critical strain. For the plastic region we assume

<
|f

< E, |6| > 6,

and

(ioo;

dt {:
for

It should be noted that for some materials there is a certain range

of values of the strain where the stress is independent of the strain

but depends on the' rate of strain. Some authors reserve the notion

"plastic" for such a state of the material. We have excluded these

cases by condition (97). A typical function (T = <T(6) is indicated in

the accompanying graph (Fig. 61a).

€*

Figure 61a

Graph of stress-strain relationship
for elastic-plastic material.
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It is interesting to com-

pare the stress-strain relation

for an elastic-plastic material

with the adiabatic pressure-

density relation for a polytropic

gas. To this end we identify the

pressure with the negative stress,

p = -C (although this is not quite

proper since «" is the "engineering

stres?"). We further set

fO = in accordance with

Figure 61b
Graph of "stress- strain'

relationship for a

gas (<T= -p).
(i + e)

(94) Then tne adiabatic relation for a gas becomes

<r =
(1

the graph of which is given in Fig. 61b . V/e observe that for tensile

strain, £. > 0, the trend of the two £,(T-curves is the same, in that

d£
decreases for increasing £. However, for compressive strain, £. < 0,

d<r

while for ga3 it increases as £ decreases. The significance of this

fact will become apparent in the following articles.

53 . The equation of motion . The motion of a particle with the

original abscissa a is given by a function 1 = x(a,t); its velocity is

therefore given by

(10i;
dx
at

The equation of motion, /OU+ = —— , becomes by (93) and (94)

(102) u + = g%
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with

(103)

As a second equation we have from (93) and (101)

(104) tt = u
fi

.

The difference between the present equations and the form of

the Lagrange equations which we have employed for gases (see Art. 7,

Chapter I) is that £ is used instead of T = -4 and a instead of h = pa,

The quantity g is clearly the rate of change ^|- with which a

disturbance shifts from particle to particle. We call a rate of

da
change tt a shift rate and g(£) is in particular called the character-

istic shift rate . The shift rate g is connected with the sound speed

c and the impedance k = pc, previously defined for gases (see Art. 7,

Chapter I), by the relations

(105) g = -4" = ^T-c»
/°o /°o

where c is defined by

'•{§(106)

In the elastic range, the shift rate

(107) g = jf
i To

p
is constant (while the sound speed c = ^-g_ is not). The graph of

r °

the characteristic shift rate g(£) is given below. In accordance

with assumption (100), g(£) decreases during tension when £ becomes

larger than £
+ , and also during compression when £ becomes smaller

than-6. .
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Figure 62a
Graph of relationship
between shift rate g

and strain £ for elastic-
plastic material.

Figure 62b
Graph of relationship
between "shift rate"
and "strain" for a gas.

54 . Impact loading . The basic problem of wave propagation

in a bar of elastic-plastic material is concerned with the motion

resulting from impact loading, i.e., from a velocity being suddenly

imparted to one end of the bar and then maintained there. Pushing

in or pulling out the end of the bar corresponds to pushing in or

withdrawing the piston in a tube filled with gas. From a receding

piston a centered rarefaction wave is propagated into the gas. We

proceed to discuss the corresponding phenomenon when the end of the

bar is pulled out.

Imparting a constant velocity u to the end cross- section is,

as we shall see, equivalent to imparting to it a constant strain £Q .

If this strain £
Q is less than the critical strain £. , the strain

resulting in the bar through wave propagation also remains below

the critical strain. The wave propagation is, therefore, governed

by linear differential equations with constant coefficients. If

such is the case, as was explained earlier (Art. 11, Chapter II),

initial discontinuities are propagated as discontinuities with
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constant characteristic shift rate.

Whenever the initial strain £
Q

is greater than the critical

strain, the differential equations of propagation are non- linear,

and non-linearity implies that whether the initial discontinuity is

propagated through a shock wave or smoothed out by a rarefaction

wave depends on whether the characteristic shift rate g(£) increases

or decreases with increasing £ . According to the assumptions made

here (see (1D0)), g(£) decreases when £ > E^ increases. Consequently

the influence of greater values of & is propagated with smaller speed.

This fact entails that a suddenly imparted initial strain £
Q ,

when it

is greater than the critical strain, is propagated through a rare-

faction wave.

In order to determine the resulting motion it is convenient to

write the equations of motion in characteristic form (see Art. 9,

Chapter II)

,

(108) da = ±gdt,

(109) du ^ gd£ = 0.

Introducing the function

<£(&) = g(£)d£,
•So

we can write equation (109) in the form

(111) d(u + <f>)
=0.

Suppose now that the bar lies along the positive x-axis,

x ^ 0, and ttee impact produces a velocity u
Q
< at the end cross-

section x =*. A centered simple wave will move in forward direction.

Across it u + #(£) is constant; since u = 0, #(£) = for t = 0, x > 0,

we have, across the wave,

(112) u +0(£) = 0.
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In particular, the strain £
Q
produced by the impact at the end croea-

section is such that

(113) u
o
=-*(6 ).

The quantity #(£) is called the impact velocity because -#(£)

ia the velocity u that must be imparted to the end of the bar in

order to produce the strain £ there.

The influence of the impact travels with the shift rate gQ ;

hence we have

(114) £ = 0, u = for ^ t ^ —

.

jumps from 6=0 to £ = £ at the time t = — , while the velocity
So

jumps from u = to u = -0(£
o) • Afterwards the state remains constant;

(115) £ = £ u=-#£ ) for til
&o

at the time t f 1 while the velocity jumps from u = to u = -#(£.

Afterwards there is a simple centered rarefaction wave which can be

described by the parametric representation

(116) u=-0(£), JL=g(£), for £
+
<£^£

c

From this representation to every time in the interval , . < t <

values £ and u are uniquely assigned, since g(£) decreases with

increasing £ according to assumption (100). After the impact strain

£ = -#(u ) has been reached, the state remains constant; in other words

(117) £ = £ , u = -*S(£ ) for

The motion would, of course, also be described by formulating the

occurrences at a fixed time t = t-^. Fig. 63b corresponds to such a

description.
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of the expansion wave by substituting -u for u in formulas (ll2)to

(117). That the description of the simple wave derived from(116) is

such that to every time in the interval ,

a
. < t - —^—r values of

g(-£*) g(6 )

£ and u are uniquely assigned, follows again from the fact that g(£)

decreases 8jS 6 decreases from -£ to e according to assumption (100) •

Quite generally, 9n initial discontinuity, as stated before,

is propagated through a simple wave if, and only if, the character-

istic shift rate g for the state ahead of the discontinuity is

greater than the shift rate for the state behind the discontinuity.

For the material considered we saw that this is the case for both a

tensile and a compressive impact since g(£) decreases as |£| increases

fran £ on. In a gas, however, g(£) increases with decreasing £,;

therefore a compressive impact in a gas is propagated through a shock

wave.

It may be mentioned that there are materials for which assumption

(99) is not satisfied and ^| changes sign for sufficiently large strains.

Then, if the impact is strong enough, the transition is propagated by a

simple wave followed by a shock, the state in front of the shock being

so determined that the characteristic shift rate of this state coincides

with the shift rate of the shock wave.

55. Stopping shocks There is another peculiar situation in

which shocks are propagated through an elastic-plastic material. So

far, it has been assumed that the velocity imparted to one end is

maintained there indefinitely by applying the appropriate stress,

<T=fl"(6o). It is, of course, important to investigate what happens

when this stress is suddenly released. The influence of this new

discontinuity can certainly not be propagated through a simple wave

since the characteristic shift rate g is smaller before stopping than

after stopping. It is therefore to be expected that the influence of

this stopping is propagated through a shock wave. This shock is of a

particularly simple type due to the following circumstances connected
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with, the phenomenon of hysteresis . When a plastic material is re-

leased from a strained position it will not, on its return, obey the

same stress- strain relation as when the strain was produced. The

general experience is that on returning, the stress depends linearly

on the strain and that ^=Eas in the elastic state (see Fig.«64 )•

Therefore, when the stress has re-

turned to zero, a •permanent" strain

different from zero remains. The

same then is true for the transition

across a stopping shock. Let [<r] and

[t\ be the differences of the values

of <r and £., respectively, in front of

and in back of the shock. Then,

Figure 64

Stress- strain graph
illustrating phenomenon

of hysteresis in

plastic material.

according to the property |^ = E
at

formulated above,

(118) [<r] = E [e] .

The shock transition relations for the Lagrangean representation were

derived in Art. 40, Chapter III. The first two of them can be written

(119) [u] = -a[e], [<T] = -y0oa[u],

where a is the shift rate of the shock, ok is the mass flux per unit

area crossing the shock from front to back. Eliminating [u] we find

(120) M =/V
2M

.? E
Hence a = -$- or a = g . Thus it is seen that the shift rate a of the

shock coincides with the characteristic shift rate g belonging to the

elastic state.

The third shock relation, expressing conservation of energy, can

now be used to determine energy changes; but the shock is already
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determined by the first two conditions alone. It is in this respect

that the present "stopping shock" is simpler in character than the

shocks occurring in gas dynamics.

The decisive feature of gas dynamical shocks is that they
produce permanent changes in the conditions of the gas by increas-
ing the entropy. One is tempted to consider the change of entropy
as analogous to the permanent strain resulting after a stopping
process. This analogy, however, does not carry very far. Perman-
ent changes in elastic-plastic material appear to be linked with
the non-linear phase of the process; in contrast to gases, they
would also occur if the stress were reduced in a gradual manner.
Therefore, permanent deformations can not be ascribed to the
shock transition as such.

56 « Interactions and reflections . The stopping shock eventually

catches up with the simple wave running ahead and a more complex pro-

cess of interactions will ensue. Due to the simple nature of the shock

it is possible to analyse this process of interaction in all detail.

This has been done, but we shall refrain from reporting on the results

here, mentioning only that the final permanent change of state of the

material can be determined completely.

Wave motion in elastic-plastic material haa also been analyzed

in another direction. The motion in a bar of finite length can be

described by a succession of reflections. It is appropriate to intro-

duce as new variables the velocity u and the impact velocity = 0(E)

.

Then equations (i02)and (104) ,50 over into the linear equations

(121) a = 6tu , a^ = gt^ ,

where g may be considered a function of
<f>.

When the other end of the

bar, x =Jl, is fixed, the velocity there is u = 0; hence the region in

the u,0-piane is the fixed strip

u ^ u £ 0, £ .
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It is to be borne in mind that in the u,0-plane the image of

a constant state is a point and the image of a simple wave is a line.

The image of a region of interaction between incoming and reflected

waves is a triangle. The motion corresponding to this triangle can

then be determined by an approximate method using characteristic lines.

Figure 65

Graphical representation of

motion of a bar as a succession
of reflected waves in u,jrf-plane

and a,t-plane.

It is seen that on successive reflections the strain increases.

Accordingly, the characteristics which coincided in the first simple

wave and formed the elastic discontinuity front will, when continued

through reflection, come into the non-linear range and thus spread.

Therefore the reflected waves have a continuous front. The char-

acteristic line resulting through reflection from the one with e = £^

is shown as a dotted line in Fig.65.

One more remark might be made in conclusion. The nature of

the stress-strain relation is in reality not so well established as

that for gases and varies considerably for different materials.
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Various approximate assumptions can be made. In particular, the

relation «" =«"(£) can with sufficient approximation be so chosen

that an explicit integration of the differential equation becomes

possible. The assumption

b
2
s„

(b

for instance, has proved to be very suitable for this purpose. In

particular, the problem of reflection can be treated rather explicitly

under this assumption and the final state approached as time increases

indefinitely can be determined.
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III. Appendix 3

WAVE MOTION IN OPEN CHANNELS

57. Another example of non- linear wave motion is encountered in

the motion of an incompressible fluid in an open channel. The

channel is* said to be open if the top surface of the fluid is free

and the pressure there equals atmospheric pressure. When the height

of the fluid is small compared with the lateral extension of the

channel, the problem may be simplified by considering only average

values. Iv will be sufficient to consider the one-dimensional case.

One then considers the fluid as moving in the x,z-plane, the

bottom of the channel being z = 0, the top surface being given by

z = h(x,t). Denoting the components of velocity in the x and z

directions by u(x,z,t) and w(x,z,t) respectively, the continuity

equation ux + w
z
= holds in the interior, while at the top surface

one has ht + uh_ = w. Integrating the former equation from z = to

z = h and using the latter equation at z = h, one finds

+ £- J udz

When one now introduces the average velocity

- 1 f h

(123) U =
h /

Udz

and the mass per unit area

(124) P = /°eh

(yO being the mass per unit volume, g the acceleration due to gravity)

the average continuity equation can be written
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(125) P + (Pu)
x
= 0.

Let p be the excess pressure over that of the atmosphere,

(126) 9 =-J Pdz

the excess force per unit length. Let a be the x- component of the

acceleration,

(127) * £-•

the average acceleration. Then, by integrating the relation

/)ag= -px , we obtain

(128) Pa = (?x

where p = at the top surface has been used. The equations (125)

and (128) are so far exact. An approximation is introduced when the

relation

( 129) a = ut
-•- uux

is assumed, which, of course, does not result by integration from

a = ut + uux + wuz .

Relations (125), (123), (129) are the same as those for com-

pressible fluids, P and (P taking the place of density and pressure

To complete the system we need a relation between P and S5
. Assuming

that the influence of the z-component of the acceleration on the

pressure is small, we may assume that the pressure increases linearly

with the distance from the top surface

(130) p = go(h - z),
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g being the acceleration of gravity. By integration we then find

t 131 ) <? = -i-yoh
2 = jf..

Thus the relation between P and (P is of the form <P = cP , with tf = 2.

Thus continuous motion in open channels corresponds closely to that in

gases.* If the fluid is retracted at one end of the channel, then the

water sinks to a lower level and this depression is propagated through

a "rarefaction" wave into the channel. If the fluid is pressed into

the channel, a shock wave producing a sudden increase in velocity and

altitude travels into the channel. Since the density-pressure relation

does not depend on an additional parameter, such as the entropy in

gases, the shock transition is completely determined by the mechanical

shock conditions.**

It is clear that the analogy to two-dimensional gas motion

could be carried through for two-dimensional flow in open channels as

well.

The analogy with gas flow was first mentioned by Jouguet and
worked out by Riaboushinsky (see v. Karman [53]).

In water-like substances (liquids), the third shock condition
could be used for determining the heat loss through the shock
necessary to restore the energy balance. For restoring the
energy balance in the present case it would be necessary to
refine the approximation process used so far, which consists
of taking simple averages.
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IV. ISOTROPIC IRROTATIONAL STEADY PLANE FLOW .

OBLIQUE SHOCK FRONTS. SHOCK REFLECTION .

58 . Introduction . Neit in simplicity to the theory of one-

dimensional flow is that of flow in a plane or two-dimensional or

plane flow
,
provided that the flow is steady, irrotational (Art. 5,

Chapter I) and isentropic (Art. 4). tony important phenomena can

be understood, at least qualitatively, on the basis of a theory of

two-dimensional steady flow. In this chapter the mathematical

theory of such a flow will be developed along lines similar to

those followed in Chapter III in the case of one dimension and

similar completeness can thus be achieved.

Let us recall the analytical background. Under our assumptions

the flow is characterized by the two components u,v of the flow

velocity ~q as functions of the Cartesian coordinates x,y in the plane;

likewise, p, p, c are functions of x,y alone, not depending on z or

on t. There exists for the flow a constant c , the critical speed,

so that Bernoulli's equation

(1) yu.
2
(u

2 + v2 ) + (1 -yuL
2
)c

fi = c
2 = ^2

,

with u2 = ^j" r , holds throughout provided that we assume the medium

to be a polytropic gas as we shall do in this chapter. The differential

equations can be written (see 1(35), Art. 6) in the form

(2) Uy - vx =

(3) (/>
u) i

+
ty>

v )y = °-

By eliminating a (see Art. 6, Chapter I) equation (3) becomes

(3») (c
2 - u2 )u

x
- uv(u »- v ) + (c

2 - v^v =
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which together with (2) and (1) formulates the general laws for the

flow, assuming the critical speed c^ as a parameter given from the

outset.

By introducing a velocity potential #(x,y) with #x = u and

y = v, equation (3') becomes a differential equation of second

order for &,

(4) (c
2 - O

2)^ - 2*x*y*zy
-f (c

2
- O

2)^ =

which must be considered together with (1).

As pointed out in Art. 8, Chapter II, the differential equations

(2) and (3*) are transformed into a system of linear differential

equations upon introducing u,v as independent, x,y as dependent

variables, provided that for the solution considered the Jacobian

uxvv - ^v- does not vanish.*

The transformation of the differential equations (2), (3') by

the introduction of characteristic parameters oc,/3 as developed in the

general theory of Art. 9, Chapter II, leads to the following character-

istic forms by a straightforward substitution of the coefficients of

(2), (3) into the formulas of Art. 9:

1+ ya = £+*«, I- 7p = t-*a

For the differential equation of second order (4) this change of

variables becomes a Legendre transformation. By virtue of xy = yy
we have a new potential x(u,v)' with^u = x and %Y = y, so that

Thus^ = Axdu + ydv) = xu + yv - /(udx + vdy) =. xu + vy -
<f>

the linearization of the differential equation of second order is

effected by the Legendre transformation $*x = u, # = v,

^ = xu + yv - 0, which is inverted by^u = x, ^y = y.

C0EF3DEHTIAL
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where £+= - HJL+J2 , 4. = - ^-^ (w
2 = u

2

c^ - u" c
2 - u2

given in terms of u and v by Bernoulli's law.

In the notation of Chapter II,
ft

= constant gives the char-

acteristics C+ in the x,y-plane and 1+ in the u,v-plane (hodograph

plane), while oc = constant gives the characteristics C_ and i_ in

the respective planes. The relations

expressing orthogonality of C+ onE. and of C_ on IT), follow immediately.

Equations (II) determine the families of characteristics I~^. and

I~l irrespective of the specific flow as the fixed curves satisfying

the ordinary differential equations ^ = -£_(u,v) and |^ = -^(u.v)

respectively.*

As remarked in Chapter II, the transformation to characteristic

parameters is possible in this case only if

u2 + v2 = q
2 > c2 ,

i.e., only for supersonic flow . Unless otherwise stated, we shall

henceforth make this assumption. Only then can the solutions of the

differential equations be interpreted in terms of "wave propagation",

implying the occurrence of definite ranges of influence and domains

of dependence.

A few remarks, though partly repititious, may be inserted here.

From Bernoulli's law it is clear that the relations between the critical

* Having obtained an integral of these ordinary differential equations,
one can integrate the system of the two partial differential equations
(II) completely by expressions involving two arbitrary functions;
substitution in (I) then leaves two linear partial differential
equations of first order whose solution is possible by simple iter-
ation (see Art. 10, Chapter II). We are, however, more interested in
solving specific problems than in a "general" solution of the differ-
ential equations.
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c
maxspeed c , the limit speed q for the flow and the greatest value

which the sound speed in the flow might conceivably attain (in a state

of stagnation, in which the flow speed q = 0) are

I t + 1 _ a [\

= C*\j-T- = a
-\J"*\Hr~

To the critical speea c^ there corresponds a critical pressure p+

and a critical density x?
i

connected by the relations

(7) °*=^' P
*

= A
A*'

There also exist for a given c
+

a stagnation pressure p^y and a

stagnation density />m9:r>
which are the maxima of pressure and density,

also attained in a state of stagnation (q = 0) of the flow, and our

relations imply the following relations between these quantities:

2j_
iff-1

(8)

(9)

* •w w
W = /Wj

_1
= U±Jj (= 1.893 for air]

where (6) and (7) have been employed.

It is interesting that our relationships determine rather

narrow margins within which the quotients ^-, £- and£- may vary in an

isentropic flow, this margin being determined solely by the adiabatic

exponent tf. Thus, the sound speed in air is always less than 10$

above the critical speed for a given flow (the latter, of course, may

be very large relative to the sound speed in air at rest and at atmos-

pheric pressure and normal temperature).

COKFIDEHTIAL
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Isentroplc steady flow la reversible , i.e., to any such flow

there corresponds another flow in which the pressure, density and

temperature remain unchanged while the direction of the flow velo-

city is reversed.

Finally, we should bear in mind that the steady character of a

flow must be understood with respect to a definite coordinate system.

Observed from a coordinate system moving at constant velocity relative

to the original one, the flow does not in general remain steady; vice

versa, we shall, in important cases, reduce non-steady flow to steady

flow by changing to a suitable moving coordinate system.

A. Continuous Motion. Simple Yfoves.

59. Characteristics. The I-Iach angle . As stated, the character-

istics C+ and C_ in the x,y-plane depend on the specific flow under

consideration. They are defined by the differential equation (see

equations 11(3), (5), Art. 9)

(10) ( c
2 - u2 )dy2 + 2uvdxdy + (c

2 - v2 )dz2 = 0,

a relation obviously invariant under rotation of the coordinate

system. Hence, without loss of generality, we may consider the flow

at a point where the velocity component v vanishes, so that |u| = q,

q being the speed of the flow. Then we obtain for the characteristic

directions ^ the relation ||- = .

c
. We define the angle otby

yq - c
2

M being the Mach number of the flow. The angle ot is often called the

Mach angle . Then our result means that the characteristics C ire the

two sets of lines in the x,y-plane which intersect the streamlines at

the IJach angle . (Occasionally characteristics in steady flows are

called Mach lines .) Mach made the characteristics visible by roughen-

ing walls along which steady flow takes place, so that disturbances

in the fluid (propagated along characteristics as seen in Art. 11,
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Chapter II) are observed as lines whioh form the Maoh angle with the

wall, the latter being a streamline*

The following is only another form of the definition of the

Mach angle or of characteristics. In steady two-dimensional super-

sonic flow the component of the flow velocity normal to the Mach

lines is equal to the local sound speed c .

Where the flow is subsonic, i.e., where q < c , the differential

equations are elliptic. The solutions are then necessarily analytic

and no characteristics can exist. Since, according to Art. , Chap-

ter II, the Jacobian u^v - u v. never vanishes for subsonic flow,

the rSles of dependent and independent variables can be interchanged,

and the differential equations (2) and (3*) can be reduced to a system

of linear differential equations. In this case our problem is

essentially of the same type as problems in ordinary potential theory.

In a steady subsonic flow there can be no subregion in which the state

* A geometrical construction of

the Mach angle and the local
sound velocity, due to Buse-
mann [3] , is almost obvious.

We draw an ellipse with 2c
and 2$ as the minor and major
axes respectively. To a given
value q of the flow speed we
find the point P on the ellipse
at the distance q from the
origin. Then the angle between
OP and the major axis is the
Llach angle otand the projection
of OP on the direction of the
minor axis is the local sound
velocity c. The proof follows
immediately from the form

:i2)

of Bernoulli's equation.

Figure 1

Busemann's geometric
representation of
flow speed q, sound
speed c, and the

Mach angle ot.

confidential
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is exactly constant, for the elliptio character of the differential

equations in such a subracion and its neighborhood would inply

analyticity of the solution, hence a constant state throughout.

However, for supersonic flow a constant state in some parts is

compatible with non-constant states in other parts, these different

zones being separated by characteristics C.

We saw in Art. 16, Chapter II, that zonss of non-constant

states adjacent to zones of constant state are covered by simple

waves ,*i.e. , are swept by straight characteristics (say C
+ ) along

each of which u,v and consequently also the thermodynamic quantities

p,«,T, c remain constant.

60. Simple waves . Epicycloidal shape of the characteristics V .

The simple waves are linked to the characteristics '1 in the

u,v-plane which satisfy the differential equation

(13) (c
2 - u

2
)du

2 - 2uvdudv + (c
2

- v
2
)dv

2
= 0.

We recall from Art. 16, Chapter II, that the states in each simple

wave are represented by the point of an arc of a characteristic

and that, vice-versa, to an arc of any characteristic V there

corresponds a simple wave. Hence by determining all possible

simple waves we automatically solve the differential equation (13)

and find the characteristics P . We shall see presently that the

latter are the epicycloids generated by circles of diameter q - c„
~

? 2 2
rolling on the sonic circle u + v = c„ . These characteristics

fill the annular ring between the sonic circle and the limit circle

* In one-dimensional flow the simple waves were rarefaction waves

or compression waves , the latter leading to a shock. In two-

dimensional steady flow continuous waves may equally well be

expansion or compression waves. They were discovered by Prandtl

and are frequently called Meyer-waves probably because "Meyer" is

more readily pronounced than "PrandtT". (Meyer elaborated Prandtl'

s

solution in his doctoral thesis [34]).
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2 2 ^2 2 2 2
u + v = q , leaving free the domain u + v < c , where the differ-

2 2 a2
ential equations are elliptic, and u + v > q , where the problem

becomes meaningless. Through each point in the ring there pass two

arcs of epicycloids, the branch whloh is orthogonal to characteristics

C at corresponding points of the x,y-plane is superimposed being T+ ,

the other being T » according to (5), Art, 58.

As vre saw in Art. 16, Chapter II, all possible simple waves

are found by integrating the differential equations (l), (2), (3) of

the flow under the additional condition that an arbitrarily prescribed

family of straight lines in the x,y-plane consists of characteristics

C, say a family of lines C
+

. If these lines pass through a point E,

the simple wave is called centered; otherwise we shall assume that

the prescribed lines C have an envelope E.

To determine the characteristics T , we consider the line C

through a point P and denote, as in Fig. 2, the length of the segment

on C from E to P by r, and by to , the angle, measured counter-clockwise

from the positive y-axis to the direction of C . The vector "q of the

flow velocity at P has a component

L parallel to C
+

and N normal to

C+ , and we denote by L and N the

measures of these components,

positive or negative according

as the components of ~q point in the

direction of increasing r or de-

Figure 2 creasing co respectively, as in Fig.
Indicating coordinates

r,ooof a point and components ;Te then have

L, N of flow velocity with refer-
ence to a characteristic C..

(14)

{:

-L sinto + N cos to

+L cos to + N sin to

and the continuity equation (3) and Bernoulli's equation (1) with

COIIFIDEHTIAL
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reference to L and N as dependent and r and w as independent

variables oan be shown to have the forms:

(15) (r/°L)
r
- (pN)^- 0,

(16) yu.
2
(L

2
+ N

2
) + (1 -^

2
)c

2
= c

2

while from the equation c = Ao * we have

Now we introduce the assumption that C is a characteristic; hence,

according to the preceding article, N
2

= N
2
(r,u)= c

2
(r,u) . Further-

more, we make use of the assumption that the solution to be determined

is a simple wave, i.e., that all the quantities i©,L,N are constant

along each C+ so that they depend not on r, but on oj alone. Then we

have &L = ^_ _gL
f ajxdby (lg)j L _ hp N _ N^ . henoQ

(18) L--^N =0.

Moreover, Bernoulli's equation becomes, by c

(19) l&.fif.fcl

The complete solution of the two equations for N and L is , with a

cos ll(w- Gl) ),
(20)

r °

— sin^u-t^),

whence we find, by (14), as the parametric representation of the

CONFIDENTLY
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characteristics

,

—- — sinu(w- to )sinoo + cos 11 (u- to) cos

(

(21)

— = - 77 sinu(u- to )cosu) + cos u(i*>-u> ) sinw.
Cjt /** * ° / o

From our construction it is obvious that all these curves result

from one of them by rotation about the origin 0.

To identify the characteristics T as epicycloids between the

circles u + v2 = c
2 and u2 + v2 = \ c#

= q we may, therefore

,

concentrate on the single curve '

(22) — = cosju.u>, — = --jjjsinuuj, or

(23)

— = — siniuosinw + cosawcos to

,

v 1— = - — sinutocosto + cosuwsinio,

Figure 3

Construction of

one pair of
epicycloidal characteristics.

Let us , independently of the

way in which this curve was

obtained, consider an epicy-

cloid described by the point Q

on the circumference

of a circle of radius
2\r'

1 c.

with center R rolling on the
2

sonic circle u + v = c„ with the

center 0, assuming that the

initial position S of Q is at

u = c , v = 0. With the notations

indicated in Fig. 3 we have

(24)
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and for the coordinates of Q.

(25)

MM cos^M cos(* +^
^l^ljsin^-^-ljsin^^).

2/x
9

2

Introducing the auxiliary angle

(26)

to have = (1 -/x)oo, + yr = (1 +^t)w, and thus from (25)

fc
1 =

lu.{
cos ^ " /^w " C0S ^ +

A
Jl') 0J

j
+ -|-{ COs (1 -/*-)«*>+ cos (l + yu.)cu 1,

(271

- = ^-{sin (1 -yuOoo - sin (1 +yj.)wj+ |{sin (1 - /x.)u> + sin (l +/x)u>j
,

u 1

(28)

= — sin/juosincj + cosuucosuj
,

1 .— = - — sanu.u)cosw+ cos^wsxnco

which establishes our epicycloid as the characteristic 1 .

From Fig. 4 we infev

R immediately the geometric

meaning of the angle u) as

the ingle between the line

TQ and the v-axis. Since
LL
~

TQ is orthogonal to the

epicycloid at Q, this con-

firms the previous definition

of to as the angle between the

Figure 4

Construction of line C
j

and angle u> .
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y-axis and the characteristic C associated with, and hence orthogonal

toF. Toy = 0,<*J = corresponds the cusp S of the epicycloid; to

<*> > 0, the upward arc, to oo < the downward arcj while \j/ = ±ir or

6J = ± ¥- give the points where the two arcs issuing from S touch the

limit circle. These two arcs are called complete arcs \ 17 and I"*

being, as remarked above, the arcs which are orthogonal to C and to

C respectively. All the other characteristics T are obtained from

these two by rotation about 0.

For the speed q = wL + IT of the flow we obtain immediately the

relation

(29) Ar" cos i*u>+ ^5 sinW « 1 +(^= - llsin^uw 1 + a "
n sixf/jooT 212 /l \ 2 22

/jtw+ —= sin^ « 1 +1—2 - llsinyito=« 1 +
^, _ sin ui

hence
HH 2

COS U.U3 J

(30) sin^u = i-^i !

The angle & between the vector "q" of the flow velocity and the

positive x-axis is given (see (23)) by

tan<*>- - tanuw
(31) taa*- ? -

1 + — tanu>tanua>

Mach's angle <x by

(32) oc - arc sin £.- arc sin H = arc sin
lcoS/*cu|

'
q

l l
q

« 1 + a _-» sin^ioo

(33) oC = arc tan \-r\ = arc tan (|ixcotju.u>|).

We now enlarge upon the physical meaning of our geometric

constructions

•

A simple wave in the x,y-plane is called complete if it

CONFIDENTIAL
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corresponds to a complete arc T , i.e., if it is swept by a family

of straight lines ranging over all directions normal to a complete

arcT. If all these lines C pass through a point E the wave is

called centered; but any family of lines obtained from the normals

to an arc V by a deformation preserving the direction of each individ-

ual line is a possible set of lines C.

In a complete simple wave the flow is sonic at one end, while

at its other end, the speed is the limit speed q, pressure , density

Figure 5a
Complete simple wave

Figure 5b

Incomplete simple wave

and sound speed being reduced to zero; a zone adjacent to this end

would therefore be a zone of cavitation.

In general, a simple wave is incomplete , joining two regions

of constant state , whose supersonic flow speeds q , q and sound

speeds c , c, satisfy the inqualitives < c^ < c < c# < a < q.. < q,

the subscript ( ) denoting the region of higher density. Any simple

* Such a zone would not , of course , be an actual vacuum , but would be
filled with a substance whose motion cannot be traced by the theory
of fluid dynamics since the assumptions on which this treatment is
based break down.
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wave can be considered as a portion cut out of a complete wave, of

which the two end parts then have no physical existence but are in

reality replaced by constant supersonic states. We shall imagine

any simple wave as being completed; then the direction of the

characteristics C which have to be added are determined. In any

simple wave, whether complete or not, we shall measure the angles

co, & with reference to the sonic end of the completed wave, as

described above.

Since the flow through a simple wave is reversible, the gas

in a simple wave may flow either from the sonic end toward the cavita-

tion zone or in the opposite direction. In the first case the wave

is an expansion wave, pressure

and density decreasing along

the paths of the particles $ in

the second case we have a com-

pression wave.

It is easy to determine

explicitly the streamlines and

the conjugate, non-straight

characteristics C_ (say) in the

simple waves, using our para-

meters r and cj. Let us consider

these curves in a complete simple

77777777777777777

Figure 6

Simple compression wave.

Note that this flew is obtained
by reversing the flow in Fig. 56.

wave (as in Fig. 5a). To find the

streamlines take two points P(r,to) and

Q(r + dr,cu+ dco) along a streamline.

Then, from Fig. 7 it is evident that

the streamlines are given by the

differential equation

(34)
dr L 1 .

^dk3
=T =

-/T tan/
1<

see (20) , or explicitly by

CONFIDENTIAL
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2

(35) r^ cosugj = const.

By a similar construction one finds the differential equation

of the curved conjugate characteristics C_ in a complete simple wave

dr , cos 2o6 _ 1_ J
cose* _ since ) = ^JL

rdu>
= cot> ** =

sin 2o6 2 { since cosccf 2 \N

since by Fig. 7, « = cotot ; or, by (20),

(36) ^ = ||i taiytu -/xcot/xw} ,

whose solution is the family of curves

1
n

(37) r sinu-uj(cosuo)) ^ = const.

The characteristics C are all asymptotic to the two end characteristics

C of the complete wave, i.e. , to w = and w = "jy- for which we have

ft = and-0- = - - ~&
j respectively. The streamlines .enter the simple

wave with -9" = and are also asymptotic to to = —jy— * ^ = " —up *

Figure 8a shows a centered simple wave with streamlines , straight char-

acteristics C+ meeting in the center 0, and curved characteristics C_.

This complete simple wave is bounded by two regions of constant state,

one of sonic flow, the other of cavitation. Figure 8b shows an incom-

plete centered simple wave bounded by two constant states. Note that

the incomplete wave corresponds to a sector (shown darker in Figure 8a)

cut out of the complete wave, and that the states on either side of the in-

complete wave are constant and that in the regions of constant state the

straight characteristics C + are parallel and the conjugate characteristics

C_ continue straight and parallel, both cutting the streamlines at a con-

stant Mach angle.
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Figure 8a

Complete centered
simple wave.

(Air, 3 = 1.4)

Ullf/ljllllif

Figure 8b

Incomplete centered
simple wave.

(Air, tf = 1.4)
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Figure 9

Flo1
// around corner

by a simple (expans m) wave.

6l« Flow around a bend or corner . Construction of the simple

waves. The all-important instance of simple waves is in supersonic

flow around a bend or sharp corner. We supnose the flow arrives with
a constant velocity o^ along a wall which is straight up to a point A,

then bends along a smooth bend K from A to B and continues straight be-

yond the point 13. We further assume that the oncoming flow is of con-

stant state in a region adjacent to the straight part of the wall be-

fore A» Then the question ist How does the flow turn the corner?

Or how will the flow continue along the bend K and along the straight

wall beyond B?

If the oncoming flow is subsonic, the problem involves poten-

tial flow, governed by elliptic differential equations where the solu-

tion at any point depends on the boundary conditions even at remote points

of the boundary.

We are, however, concerned with the case of supersonic flow.

Then the solution is simpler. It can be obtained by piecing together vari-

ous domains of the flow having essentially different analytic character,

* For flow around a projectile of polygonal shape see Epstein [35] .
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namely the zone (I) of constant state of the oncoming flow, a simple

wave (II) which necessarily follows, and through which the flow effects

its turn, and finally a zone (III) also of constant state which may be

either a zone of flow parallel to the straight wall beyond B (if the

simple wave effects the complete turn prescribed by the bend), or a

zone of cavitation (if the flow has expanded to zero density before the

full turn around the bend has been achieved).

Let us construct this solution in detail. First, the zone (I)

of constant state is necessarily terminated by a Mach line or character-

istic C° or C° which forms the Mach angle 06
Q , defined by

(38) sinoc
o

with the direction of incoming flow, i.e. , with the straight wall.

This angle oc is known since the state (o) or (I) and hence the corres-

ponding sound speed c is known. Incidentally, the critical speed c^

of the flow is then given by

Two positions of such a Ilach line are possible, one inclined against the

incoming flow and one inclined in the direction of this flow. For the

moment we select the latter possibility, postponing the discussion of the

former. To construct the adjacent simple wave (which is necessarily in-

complete unloss q = c ) we have only to realize that at each point P of

the bend the direction of the bend is that of the flow. We complete our

sinplo wave backward beyond the initial characteristic C+ to the sonic

end and refer the angle <o, which gives the direction of the straight

characteristics C+ , and •S', which gives the direction of the flow, not

as before to the y-, or x-axis but to the (imagined) sonic end of the

corresponding complete simple wave, so that at this end cj = 0, -9 =» C>

and <o and -fr decrease when q turns clockwise. Then at C+ we have values

to , $ determined either by the formulas of Art. 60, or simply by the

following geometric procedure. We consider the complete epicycloidal arc V_
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Figure 10

Construction of simple expansion

wave in flow around a bend.

bending downward} on it the point A., at the distance q from corre-

sponds to the beginning A of the bend. The angle at subtended by

the epicycloidal arc SA is the initial angle & , and likewise the point

JL on T fixes co . By rotating the diagram we bring the line 0A-, into

a position parallel to the direction of the oncoming flow. Then to any

point P on the bend K we obtain the corresponding position P_ on Y_ by

drawing OP., parallel to the tangent on K at P. The characteristic C

through P is then determined as the line perpendicular to the direction

Yl has at P., i.e., parallel to the line TP... Along C
+
the velocity ~q

Is parallel to the line OP and the speed q is given by the length of

OPr
If each point P of the bend has an image P_ on I"* then the arc

A..B.. of r represents the incomplete simple wave from which the flow

emerges parallel to the straight wall beyond B with the speed equal to the

length o r the scement OB..

If, however, the bend Is too strong, i.e. , if the end B.. of the arc

r, where r touches the limit circle, corresponds to a point B of the bend

COEFIDEHTIAL
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Figure 11

Expansion wave ending in cavitation
occurring vhon bend is too strong.

cavitation

bgtween A and B, then the simple wave is completed by the characteristic

C through B, which is then tangent to the bend at B; beyond this character-

istic there will be cavitation (see footnote, pJ63), and the flow in the

wave zone (II) will acquire asymptotically the direction of this terminal

characteristic (see preceding article).

By using the non-dimensional quantities — , — , — , tx t we can carry
C^ C

.;;.
C

-;;-
'

out this continuation with one single epicycloidal arc T , depending on u.

only. It is obvious how to proceed graphically % for example, by using an

arc r drawn on transparent paper.

One could, of course, proceed just as well analytically on the

basis of the formulas of the preceding article. Instead, it is preferable

for practical purposes to translate these formulas into a table for a com-

plete simple wave , a table which depends only on t or ll and which can be

used in an obvious way, with proper interpolations if necessary. Such a

tabulation is reproduced in Table I. To apply it in a specific case one

determines the portion of the complete wave to be used from the ratio

q /c* or the Mach number If = q /c of the incoming flow. The table then

COWIDEiJTIAL
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P/Pmax
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which is attained only in the ideal case of a complete wave, in which

the flow starts at sonic speed c,.. and ends at the limit speed q. The

following table gives numerical values for this maximum angle for vari-

ous values of V

.

V
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62. Compression waves. The simple waves considered in the

preceding section are expansion waves ; as is obvious from our

formulas, density (and also pressure) decreases, while flow speed

increases along the streamlines. However, compression waves in

flow around a bend or corner are equally possible, as is immediately

seen, for example, by considering the flow which is the reverse of

an expansion wave. In the preceding sections we selected such solutions

(a) Expansion wave

Figure 12

Construction of simole expansion wave (a) and

compression wave (b) which can turn flow with
oncoming velocity 7f around bend K.
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of the differential equations as yield expansion waves along the

bend K by choosing that branch of the epicycloid from the point A.^

2 2 2
in the u,v-plane which leads to larger values of q = ti + v , and

hence to smaller values of p and P . However, for a given bend or

corner we might just as well have chosen the other epicycloidal

branch through the point u , v in the hodograph plane , which corre-

sponds to decreasing speed q and thus to increasing pressure and

density. All our arguments and formulas remain essentially the same

for the choice of a characteristic arc F representing a compression.

For compression waves the characteristics C along which

u,v, >o,c,p are constant are the Mach lines inclined, not towards,

but against the streamlines, as indicated in the Fig. 12b.

What actually happens in an individual case,whether an expansion

or a compression occurs in flow around a corner or a bend of a wall

depends on boundary conditions on other parts of the boundary, and

cannot be predicted by general rules.

63. Interaction of simple waves. Reflection on a rigid wall.

When interaction occurs between two simple waves, (I) and (II)

(centered or not), we must exnect a situation as indicated in Fig. 14,

analogous to that in the case of interaction of non-steady rarefaction

waves in one dimension (see Art. 44, Chapter III). There will be a

zone (III) of penetration bounded by a characteristic quadrangle, from

which two simple waves (I 1

), (II 1
) emerge. If the two interacting

waves (I) and (II) are known, then the emerging waves (I') and (II')

can be found easily without solving the differential equations; that

* The expansion wave (Fig. 12a) always results near the wall if the

opposite wall remains plane as long as the Mach lines C starting
from it hit the wall shown in Fig. 12 before the end of~the bend;
the contraction wave (Fig. 12b) will result only if the opposite
wall is exactly a streamline of the contraction flow. With reference
to this opposite wall the second flow is a flow in a concave bend
(see the general discussion in Art. 65). Thus, while the two cases
are complementary from a mathematical point of view, the first case
occurs under more general conditions than the second.
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Figure 13

Construction of flow
in Fir> 14.

Figure 14

Interaction of two simple v/avos

showinc region of penetration III,

is, we can determine the waves (I') (II') in the sense that the

corresponding characteristic arcs V , or u and v as functions of the

angle •& of the straight characteristics, can be found from our diagram

(or from corresponding algebraic operations).

Suppose that in the domain (l) we have a constant supersonic

velocity vl , v , say u.^ = cl > c^, v. = 0. Then in the hodograph

plane the two waves (I), (II) are represented by two arcs of epicy-

cloids 1-2 and 1-3 respectively. The waves (I 1

), (II 1

) will again

be represented by two epicycloidal arcs, as in the diagram, and the

latter define as their intersection the point 4, representing the

ultimate state of the fluid after the particles have passed both

waves. The outcome of a reflection on a rigid wall simply corresponds

to the interaction of two symmetric waves with the wall as the line of

symmetry.

The preceding reasoning does not give detailed information about

the width of the transmitted waves , the distribution of the straight

characteristics C in them, or about the zone of penetration (III). To

obtain such detailed information we have to determine the flow in zone
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(III), and for this purpose we must solve an initial value problem

for the differential equations of the flow. Zone (III) is not a

simple wave, but represents a "general" state in which
a

'

/
'

'
\ / °

(as can be seen by a detailed discussion, a one-to-one correspondence

between the x,y-plane and the u,v-plane exists for this zone). Our

task is the solution of a characteristic initial value problem. Zone

(III) is reached along the two known characteristics, A-A- and A-,A^

(Fig. 14), which bound the end of the incoming simple waves. Along

these initial characteristics the values of u tndv are known corre-

sponding to the two given arcs T which represent (I) and (II). For

these characteristic initial data we must solve the hydrodynamical

equations; thereby the two families of characteristics C covering (III)

are determined, and in particular the characteristics A-A. and AJL.

Beyond these curves simple waves (I 1

) (II 1
) will again occur, which can

be immediately constructed, since at each point of these arcs u and v

are determined, hence the slope of the straight characteristics C which

sweep the simple waves (I 1
) and (II 1

) and carry constant values of u

and v.

For the method of solving the initial value problem see the re-

marks in Arts. 10 and 13, Chapter II, and the literature quoted there.

Numerical or granhical integration is not difficult on the basis

of this theory, and has been carried out in various cases.

64. Jets . Interaction of simple waves is the basis of a descrip-

tion of phenomena in a jet, formed by gas flowing with supersonic speed

from an orifice into the atmosphere (see Fig. 15). For the moment we

confine ourselves to a somewhat over-simplified theory proposed by

Prandtl and Busemann (later in Art. 84, Chapter V we shall discuss

a refined analysis of jets as they usually occur). On the basis of obser-

vation we suppose that the jet of escaping gas is separated from the

quiet air at atmospheric pressure by a boundary wall consisting of a vor-

tex layer (which becomes thicker along the jet and may ultimately consume
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Figure 15
Jet streaming out of an orifice

it). Furtnermoro, we assume the phenomenon to be two-dimensional,

steady, and isentropic, taking place, say, between two plane plates.

Finally, we assume that the pressure p in the oncoming parallel

gas flow is greater than the atmospheric pressure p . Then P^andtl's

description of the phenomenon as long as the jet is not yet destroyed

by the boundary layer, is as follows.

At the corners of the orifioe the compressed gas expands in

two symmetrical centered simple waves to atmospheric pressure. These

two simple waves interact and emerge again as simple waves from their

zone of penetration. From the boundary layer which forms the wall

of the jet the two simple waves are reflected again as simple waves

which penetrate each other and continue as simple waves. Prandtl

assumed that these waves converge in a center at the opposite side of

the boundary. These latter waves are contraction waves inasmuch as

the gas flowing through them increases in density. As indioated in

Fig* 16, the pattern is assumed to repeat itself, and to continue

periodically if it were not for the influence of the boundary layer

which gradually leads to a disintegration of the phenomenon. As

seen in the preceding article, the pressures in the different regions

of simple waves can be found directly from the known state of the

* It is rather certain that this assumption is not correct (see Art. 84,
Chapter V).
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W^
Figure 16

Prandtl*s wave pattern assumed for a jet resulting when

a parallel flow enters a region of lower pressure.

oncoming flow and the pressure p. in the atmosphere by intersecting

the epicycloids corresponding to the various simple waves. Like-

wise, it should be emphasized that the interaction of the first two

expansion waves from the rim loads to a zone of constant pressure p.

In case the exhaust pressure p is less than the outside pressure

p , a compression is needed for adjustment. According to Prandtl's

and Meyer's theory this compression is effected by two symmetric oblique

shocks, discontinuities which will be described in subsequent seotions.

These shocks will interact and lead to a zone of pressure p > p •

From there on the jet behaves as in the case p > p.

«

representation in Fig, 17.)

(See the schematic
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Wave pattern involving shock fronts

assumed for a jet resulting

when a parallel flow enters a region

of higher pressure.
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B. Oblique Shock Fronts

65. Flow In a corner. Oblique shocks* Qualitative description .

Except for the remark at the end of the last section, to have assumed

that velocity, pressure, density, etc., in our flows are continuous

functions of x and y (though discontinuities in the derivatives may

occur across characteristics or Mach lines). However, just as in the

case of flow in one dimension it will often happen that a continuous

flow is not compatible with the conditions of the problem. Then dis-

continuities are bound to occur. Fortunately, as in the case of one-

dimensional flow, the simplest mathematical assumption, that of shock

fronts, is in agreement with experimental evidence. The situation is

similar to that in the one-dimensional case, where a simple wave was

seen to result in a shock when it entails a contraction rather than

a rarefaction and when the straight characteristics accordingly have

an envelope inside the x,t-domain of the flow. Throughout our present

analysis of two-dimensional steady flows the contrast between flow

around a corner and in a corner

plays a role corresponding to

that of the contrast between ex-

pansive and compressive motion

in the one-dimensional case.

A continuous flow around a cor-

ner was seen to be possible in

an expansion wave (and conceivably,

under special conditions , in a

contraction wave also). However,

if a parallel supersonic flow

arriving along a straight wall is

forced to bend in a concave corner

K a new situation arises.

In principle, our previous

construction of a simple wave remains

6end K

Figure 8

Envelope E of straight
characteristics issuing

from bend K,
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valid near the wall. There vdll be a characteristic (Mach line)

through A in the x,y-plane, along which the constant flow (I)

passes into a simple wave. But in contrast to the case of flow

around a bend, the subsequent straight characteristics of the

simple wave will now turn so that an envelope originates inside

the flow. The mathematically ambiguous state behind the envelope

(where u, v would not be uniquely defined) is physically impossible.

As observations indicate, it is avoided by a shock discontinuity,

i.e., a line S of discontinuity for the quantities u, v , p , n, T,^ .

This shock line S will start with zero strength at the cus^p of

the envelope, and will run between the two branches of this

envelope.

As we shall see presently, the shock conditions are such that

particles crossing the shock front S from a zone of constant entropy

will in general suffer different entropy changes, i.e., the flow

ceases to be isentropic. Hence, generally speaking, behind a shock

front consideration of non-constant entropy is unavoidable. However,

in many important cases (the only

ones that lend themselves to

relatively simple analysis) the

variation in entropy change is

either absent or negligible so

that our simple differential equa-

tions I (14), (17), Art. 3, of

isentropic flow remain valid on

both sides of the line S.

This latter condition is cer-

tainly satisfied when the shock line

S is straight and the state is con-

stant on either side of S. Typical

Figure 19
Straight shock line
resulting from flow
in sharp corner K.

* This envelope may degenerate into a single point, so that we have a

centered simple wave.
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for this situation and basically important in itself is the ideal

limiting case where the bend K is concentrated in a sharp corner K

if the flow arrives with constant supersonic speed at the corner K

parallel to one leg of the angle and discontinuous by turns into

the direction of the other leg, again at constant velocity. The

sudden transition of direction and speed of the flow will then be

effected across a straight shock line S extending from the corner K

into the fluid obliquely to the direction of the flow. In this case

the oblique shock front simply connects two zones (I) and (II) of

constant state, and not only is there no complication from variations

of entropy, but the algebraic character of the problem relieves us of

concern with even the differential equations. The situation is quali-

tatively indicated in Fig. 19.

Incidentally, by reflection alone the straight part of the wall

before the bend or corner, all the above remarks apply to two-dimensional

supersonic flow against a wedge , which can be regarded as an idealized

"projectile". Three-dimensional supersonic flow against the more real-

istic conical projectile will be treated later in Chapter V, Section B.

Before carrying out the quantitative analysis we must establish

the general shock conditions.

66. Shock conditions in more than one dimension. Contact discon-
£.

~~——————^—^—— '

tinuities . For shocks in two dimensions (and in three dimensions as

well) not restricted to steady isentropic flow, the discontinuity condi-

tions are obtained from the principles of conservation of mass, of momen-

tum, and of energy in exactly the same way as for one-dimensional flow.

An alternative method for obtaining the shock relations is to con-

sider the flow from a moving coordinate system with respect to which the

shock front is not oblique but normal so that the conditions of Chapter

III can immediately be applied.

Before stating the shock relations a few remarks may be inserted.

* See Meyer [34].
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First, by restricting our attention to a sufficiently small portion

of the surface 3 of discontinuity we are justified in assuming S plane,

and, in addition, by considering a sufficiently short interval of time,

•we may assume that the speed % with which the surface S moves in the direction

of its normal is constant. Likewise, the two velocity vectors of the flow

and altogether the two states (o) and (l) on the two sides of S may be

assumed to be constant "in the small".

According to Galileo^ principle of relativity, the shock conditions

are to be invariant if referred to a coordinate system moving, with a con-

stant velocity relative to the original one. Thus, as stated, we may

obtain these conditions by using the shock line S as one coordinate axis or,

what is equivalent, by regarding the shock front as stationary, no matter

whether or not the flow under consideration is steady. This leaves one

more degree of freedom, inasmuch as we oan move the origin of the coordi-

nate system from which we measure our observed data with constant speed

along the line S. Hence, without restriction of generality, we may

assume the velocity component of the oncoming flow parallel to S as zero

and thus visualize the flow as a flow of constant speed, meeting a

stationary surface S of discontinuity at .a right angle. If the speed q

is not zero, i»o», if mass is transported through S, then the law of

conservation of momentum requires that in the state (l) behind the shock

the new velocity is likewise perpendicular to S. In other words, observed

from a suitable coordinate system, an oblique shock front is always

equivalent to a stationary one-dimonsional shock front .

If, however, q = 0, seen from this coordinate system, then in the

state (l) by the law of conservation of momentum, the normal component N

of the velocity "q" vanishes while the tangential component may be arbitrary.

In this case we have a contact discontinuity, described generally for an

arbitrary surface S as follows, A contact discontinuity D is a surface

D through which there is no mass flux, so that the flow is accordingly

tangential seen from both sides, across which, however, density, pressure,

temperature and entropy may be discontinuous. Such a contact surface may
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be considered as a vortex sheei;, along which two different layers of

the substance (or even of different substances) glide.

For genuine shooK fronts through which there is a mass flux we

distinguish (as in one dimension) between the front side and the back

side of a shock front by saying that

the fluid passes through the shock:

front from the front ^ido to the bacic

side .

To formulate the shock conditions

we describe by N the normal, and by L

the tangential component of the flow

vector "q", by ? and L these components

considered as vectors (see Fig. 20).

Figure 20 . Then the conditions are

(i«)

Conservation of mass

Conservation of momentum

<*V

(K)

| o
N
o
(lIo-^ + P =^l1I

l(
1Ii-^ + P

1
'

Continuity of tangential component

H = L
o " h =

° •

In other words, the difference "q" - ~q of the velocity vectors is

perpendicular to the shock line .

Conservation of energy

(in.) i/°.<
H.-^V. (,.-* ) ».

+ V.

_ 1

7 p^\ - ihl +p1(\ - ^ )e
i
+ N

i
p
i
^ *

2= l
*
+n2
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Conditions for stationary shock fronts (£ = 0)

(i) K
oflj

= H^ = m

whero q = IT + L- is the square of the flow speed and q is the limit

speed of the flow*

Of course, the latter form of the conditions remains valid, if

N is replaced by II - § , and thus a moving shock front introduced*

The same relations (i), (i-i-rr). (iii) hold. for contact discontinuities

with m = 0; then p = p., U = II. follows, while now L. and L may

he different as well as
f>

and p.* In what follows, we shall oonsider

genuine shocks with m ^ 0, L = Is • unless the contrary is explicitly

stated.

A slightly different and more, symmetric way of writing the first

two conditions for stationary shocks, expressing the conservation of

the mechanical quantities mass and momentum, is the following:

,..*s
P " Pl —-/-* -»> \U^) — = q1 (q1

- %) -

t from which

(ii*) (P1 -P )(r
o
-r

1
) = (q;-^)

2
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follows. (ii
L )# ("<,) and UO together are equivalent to the

equations (i) and (ii.J •

As in the case of one-dimensional shocks it is important to

observe that the conditions (i), (iiy), (ii
L )» U**), (ii*) are valid

on the basis of mechanics alone. The thermodynamical characteristics

of the medium intervene only through condition (iii). (As previously

stated (Art. 33, Chapter III), there are many instances where the

solution of flow problems is greatly eased by the possibility of dis-

regarding the thermodynamical shocK condition.)

67. Conditions for shocks in polytropic gases . As for one-

dimensional flow the thermodynamical shock oondition (iii) in the case

of a polytropic gas (with which we shall be primarily conoerned) is,
• p 1 2

since ,= _.£=-_ c ,

(iiV Ao + & -'Ao =Al + (1 -A*\ = e
l

where c is the sound speed, c^ = ^q the critical speed, and m
2-^-1 .

Likewise, as in the case of normal shooks, we may replace (iii) by

the relation (see III (49), Art. 36) I,

p,
/-&

(40)

•°/£

which connects pressures and densities only and is invariant under

translations.

Of great importance for the study of shocks in gases is the
2generalization of Prandtl's relation q q = o previously obtained for

normal shocks (Art. 35, Chapter III). To apply this relation in the

oase of an oblique shock, we write

(41) "q" = 'N+'L
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where L is the vectorial component of the flow parallel, and U the

vectorial component normal to the stationary shock line S, so that
, t 2 2 2 2 2
HL=0. By substituting in Bernoulli f s equation^ + (l - p. )c = c^

we find
2 2 2T 2 , ,. 2, 2 2

(42) /J.V + (1 - /A?)c
2
= c

2
- /fl? = c

shock front is normal. Hence by the previous result (III (iii ), Art. 35),

(43) \\=\

(iii
p

)
N^I^c^/L2

an important relation, which may be used instead of the preceding forms

of the thermodynamical shock condition.

Some general and significant information follows from th3 rela-

tions developed so far. Equation (iii
p ) shows that

(44) q^q =^ + L
2 ^ -«- L

2
> H ^ + L

2
= C

2
-H (1 - ^-

2
)L

2
> c

2

because of jul < 1« Hence, if (o) is the front side of the shock and

therefore N > N, , then H > c : but we cannot, as for normal shocks,
o 1 o *

conclude that 1L < c •

(a) The speed of a flow on the front side of a shock (observed

from the shock front) is supersonic; the speed on the back side may be

subsonic or supersonic. (The latter possibility becomes obvious if we

recall that the tangential component L is quite arbitrary and may be

chosen larger than c
+ , whereupon q and q both become lar;;or than c 4 .
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|/v.| >M
Um L.

Figure 21

Showing how flow is

turned toward the shock line,

(b) An even more

immediate remark is : By an

oblique shock in a gas the

flow direction will always be

turned towards the shocK line S.

For, the normal component H will

become smaller when the flow

crosses S, while the tangential

component L remains unchanged.

(c) A further remark concerns the relative position of Uach

lines (characteri sties) and flow vectors. For a normal shock line S

facing towards (o) we have in the supersonic zone (o) two directions of
c

Uach lines C . and C , the Mach angle OL being defined by sinot = — •
o o a

In the zone (1), however, the flow is subsonic; consequently there

are no Mach lines in the zone behind the normal shock front (see Fig. 22),

For oblique shocks the latter statement remains true as long as

q < c , i.e., as long as the state (l) is subsonic. If q, = c#
a

IJach line will appear perpendicular to the flow velocity in (l). If

q > c we have two different Uach line directions in (l). It is

important to realize that their position is as indicated in Fig. 25.

c_
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(Note that the sum of the angles ?rhich C+ and C_ make with
q^^

equals 180°)

In other -words, behind the shock front the two Mach directions

(if they oxist) forming the same angle e£_ with the flow direotion will

lie in the obtuse angle between 3 and the direction of the flow vector

q~T. The statement is obviously equivalent to w<o^. where u> is the

acute angle between the flow in (l) and the line S. Now we have
o, N.

since = -i, sinu> = —=• ; hence we have to prove c* "> N^. This, however,

follows immediately when we reduce the oblique shook to a normal shock

by referring the motion to a coordinate system moving with the velocity

L"! Then the normal components N , N. of the flow velocities remain

unchanged^ as do the sound speeds c , c.., which depend only on pressures

and densities. In the new coordinate system the speed of the flow be-

hind the shock front is lL,,and since the shock front is normal, the

speod behind it is subsonic, i.e., K < c^.

(d) Finally we observe that a weak shock for which the difference

q, - q , or what amounts to the same thing, the difference f>^ -
f>Q

or

Pt~ P » is small, differ but little from a sonic disturbance . That
1' o p —"—————

—

is, for a sequence of shocks for which —&• tend to unity, the direction

of the shock line S will tend to a Ifach direction or characteristic

direction (compare the similar station for shocks in one dimension

described in Art. 35, Chapter III). As we have seen, the characteristic

direction can be defined by the fact that the component N normal to it

is equal to the sound speed c. Now, if in the limit N = N. = N, the,2222 ox
basic relation (iiip) states W" = c

+
- tt L or

C* =(l- A
L
2
)N
2

-^iL
2
(L

2 + N2 ) =(l-/)N2 +/?q2 .

2 2 2 2 2
On comparing this with Bernoulli's law, (1 - yn, )o + u. qQ

= c^ , we

find indeed c
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68. Geometrical representation of transitions through

oblique shocETTn-T^ dimensions . In Art. oU, Chapter in,

vro have interpreted Graphically the transition through a sta-

tionary normal shock. In two dimensions we obtain a similar

representation by a surface p(q) for q2 = uz 4- ¥• in a throo-

dimencional u, v, p-space. We simply rotate the curve p(u,
#

of Art. 39 about the p-axis and obtain the pressure surface.

P - p(q) = p(u,v), vrhore q
2 = u2 + v*. p = plqj = P^)

depends on the entropy 1?, decreasing to zero when for fixed q

the entropy inoreases to infinity. As before we have

(46)

(47) P
T

(48)

pu =-r

2 2
i

^uu^vv " Puv r

Thus the curvature of the pressure surface is positive for

subsonic speed, q
2 < c2 , and

negative for supersonic speed,

q
2 > c2 . The two parts of the

surface may be called the "dome"

and the"rim", the latter ending

horizontally at q = q (see [3] )•

Vfhilo a single pressure sur-

face represents various states of

the gas which may belong to differ-

ent points in the same continuous

steady flow, two states Uq, p Qt p_
and Ut, pi $ p-i on the two sides or

an oblique shock will be represented

by two points of two different

pressure surfaces with the same q
but with different entropies T}

and^. As is easily (see Art. 39)

seen from our shock conditions, the

straight lino in the u, v , p-space

Figure 24

Representation of shock

transition by u,v,p- surfaces.

* Explicitly, for a polytropic gas with p = A(*))^ , we have

(45) ^[jL^-^-v2

)]
7^r^r
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connecting two points Uq, /° , p and v~yP\» p, is tangent to the
two surfaces with the entropies 17 and^*

We now consider a fixed state (o) and ask for all states (l)

that can be connected with (o) by an oblique shock. The straight
lines in the u,v,p-space connecting (o) with all such states (l)

will then lie on the plane T tangent to p = p(u,v) at the point
(o). Let us consider a surface p = p(u,v) with any entropy and
intersect it with the tangent plane T . Through the point (o)

there will in general be two lines tangent to the intersection
curve. The points of contact of these tangents with the inter-
section curve represent states (l) that can be connected with (o)

by a shock.
To investigate the locus of the possible points (l ) we assume

that the state (oj is supersonic, q s»- c , i.e., that the point

(Po» uo» To) *s on *ke rim. We then consider the family of surfaces

P = p(u,v) for decreasing entropy. When the entropy is infinite

p is identically zero. When the entropy increases the dome of the
surface p = p(u,v) will rise, touch, and eventually cross the
tangent plane T . The state at which the dome touches T corresponds
to a normal shook . After the dome has crossed the plane T_ the
intersection will be an oval and there will be two tangent lines
yielding two states (l) that correspond to two possible oblique
shocks . When the entropy decreases tO7 these two points move in-
to the point (o). So far the state (o) was on the front side, the
state (l) at the back side of the shock. After y\ becomes less
than 77 this situation is reversed. The state (1} will then have
the greater speed, q? > q^ and, as r\ oontinues to decrease, the
point representing (l) will eventually approach the intersection
of T withthe limit circle, i.e., q? - q*. (A similar discussion
could be carried out for qQ < cQ ; the state (o) is then of course
always on the back side oi' the shock.

)

It may be added that , as in the case of normal shocks, other

geometric three-dimensional representations may be chosen, for ex-
ample, a generalization of that obtained above by a Legendre trans-
formation (see disoussion at end of Art. 39, Chapter III).

69. The shock polar . For a quantitative analysis of oblique

shocks constructions in two dimensions and corresponding analytical

methods are by far preferable to graphical representations in three-

dimensional spaoe.

* At the intersection of the rim with the plane TQ there are no tangent

lines through (o) as long as the entropy is greater tha.nt\ *
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Instead of obtaining such a two-dimensional construction by

projection of the pressure surface of Art. 68 on a plane we proceed

directly from our analytical shock conditions.

lYe shall discuss oblique shocks for flow in an x,y-plane, u

and v being the components of the flow velocity. The shock line S

is assumed to be straight and the states (o) and (l) on both its sides

to be constant, these assumptions being always valid "in the small".

'.Te assume the shock to be stationary and the medium to be polytropic

gas. The shock direction may be characterized by the angle /3 between

the shock line S and the direction

of the oncoming flow. The anp;le

between the vector q* of the on-no

coming and q~T of the outgoing

flow will be denoted by G. Placing

the coordinate system so that the

oncoming flow is parallel to the

x-axis and using our previous

notation, N and L, for the measures

of components of ~q normal and

tangential to the shock line S

respectively, we have

Figure 25

(49) vl = L-cosyS + KsinyS , v = L sin^ - N cos/3

L = \ =-q
o
coS/9, N

o
= q

o
sin/3

* Y/e recall tnat it is sufficient to study motion in an x,y-plane; for,
if seen in a small neighborhood of a point P on S the flow can be con-
sidered as a two-dimensional flow in the plane orthogonal to S and con-
taining the velocity vector of the oncoming streamline, and also the
outgoing streamline (since the two -velocity vectors have a common
tangential component. Locally, therefore, all oblique shocics are
phenomena in a plane, except at singular points of S such as the
vertex of a cone.
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Now Prandtl's basic relation (iii
p
). Art. 67, yields N '=

and thus, we obtain the following relations:

2

(50)

2 22
e^ - a. L

^=*-^)cos2
/3-l}q

o
-Mcot^

These equations show that for a given critical speed c
+
and given

speed q of the oncoming flow the angle /5 between the shock line S

and the direction of the vector q*" determines the outgoing flow
o

velocity qT, If /3 varies the point u, v in the hodograph-plane with

the rectangular coordinates u and v desoribes a curve, called the shook

polar which corresponds to the value q and to the critioal speed c
# ,

and which is represented by (50) with |3 as a parameter.

The shock polar is the well-known "Folium of Descartes", with a

double or isolated point at u = q^, v = and with an asymptote

u * (1 -/* )Qo -h-2*. * U (this asymptote lying outside of the limit circle

u2 + v^ = q. .

2 2 2
Of the shock polar only the part with u + v •= § has physioal

significance. It is the geometrical locus of all points (u-,v.

)

characterizing a state (l) which can be conneoted with the fixed state

(o) by a stationary shock.
v

Introducing
Q
2

q
o

(the speed of the flow that would result from a normal shock), eliminating

S 9 and writing u, v, q instead of u., v,, q, we obtain for the shock

* Busemann [3 ] calls this curvo a "strophoid" in disagreement with
custom; for the sako of brevity we shall follow Busemann in using

the word strophoid.
2 2 2 2 2

** c is known when the state (o) is given, from u q 4- (1 - u. )c = c •
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polar the equation

(51)
2 , n2 u - u

Figure 26a

Shook polar for
Figure 26b

Shook polar for

The one-parametric family of possible shook transitions from

the state (o) oan also be illustrated by a shock polar in the 8tp-plane #

exhibiting the pressure on the other side of the shook and the angle 6

through which the flow is turned (again the state (o) is assumed to

be fixed, e.g., by prescribing q , p , p or q , p , c
+ )» In parametrio

form with j3 as parameter we find from (ii*). Art. 66 and (50) the equa-

tions

(52)

P - P„

tan© =

/'oi^-ft-A"^!}

= U
a-^2

)oo8
2
/3

i)
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•which define the image of our strophoid in the f
p-plane; tliis

©,p-shock polar is shown in Fig. 27

Figure 27

Shock polar in the 9,p-plane.

70. Discussion of oblique shocks by means of shock polar .

The geometry of the shock polar gives immediately information about

the quantitative situation in shock transitions. The shock polar,

which depends on o and q as parameters, can be used to oonstruct

oblique shocks as follows. Fig. 28 shows a strophoid for q > c^

with the double point at P , the endpoint of the vector qQ
.

To any point P on the shock polar we find the velocity behind

the shock front as the vector OP. The angle © through which the shock

turns the incoming flow is the angle between OP and the u-axis. The

direction of the shocii line S, making the angle /9 with the incoming

flow, is perpendicular to the line connecting the double point P

with the point P, in accordance with the fact stated before that the

vector q - q is parpendicular to the shock line. The components
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Figure 28

Construction of shock with shock polar in u,v-plane

line can be read off from the diagram as indicated there.

The shock polar in the u,v-plane yields immediately only relations

between velocities. To obtain pressure and density behind the shock

front one may make use of the formula

(53) P-Po-Zo^o-W-Zo^o^
2^- ')

(obtained by using (ii ) of Art. 66 and (iii
p

) of Art. 67), which by

(49) and (50) is equivalent to

(53') p - pQ
= ji

Q
v tan^.

Of course , the pressure could also be obtained graphically by using the
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«,p-shock polar. The change in density is found from the relation

/°o

p , 2

(see III (51), Art. 36).

Our diagrams lead to the following observations which are easily

confirmed by calculation: /9 > 6 where y3 is the angle between the shock

line and the vector q, and 8 the angle between q and a (again the

subscript designating the state (1) is omitted).

The flow past the shock front may be supersonic , q > c , or

subsonic , q < c^ , the first case arising for relatively weak , the second

case for relatively strong shocks.

In particular for a normal shock

which is obtained when P lies on

the x-axis, q = — = u, (see equation

after (50)).

A point P with the coordinates

u,v near the double point q on the

loop of the strophoid represents a

weak shock with little change in

velocity and pressure. As P tends

to the double point the shock be-

comes sonic , the vector ~q - q*

becomes tangential and hence the

shock line S tends to a Mach line.

Consequently the two tangents to

Figure 29

Shock lines tend to Idaoh

lines for infinitely weak

shocks, q ^ q .
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the loop at the double point o givo the normals to the Mach lines

in the double point since they are orthogonal to the limiting shook

line.

The strophoid diagram shows immediately how to construct a

shook from a given state (o) in front if either the shook direction

/3 or the turning angle 6 is given. It also shows that for sufficiently

small angles /3 or 9 there are two possible shocks, a weak and a strong

shook transition, with small or great change in velocity (and pressure J

respectively. If 9 becomes small, we have in the limit either an

infinitely weak sonio disturbance or a strong normal shock (see Fig. 29).

There is an extreme angle 9 = &
Qxt , such that for 9=9, the two possible

shooks coincide and for 9 > e ^ no shock transition exists (see Fig. 30).

(sonic)

Figure 30a
Infinitely weak sonic
disturbance and strong
normal shock for 9 ~ 0.

Figure 30b
Extreme angle 9 ezt

* From this result one can easily infer the interesting mathematical
result: The characteristic epicycloids of the differential equations
are obtained by projecting the asymptotic lines of the pressure surface
on the u,v-plane(see Art. 33).
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The shock angle fl reduces to the Mach angle oc for a sonio shock and

becomes 90 for a normal shock. In between it rises monotonically,

passing through a value /3&x̂ i
corresponding to the extreme value of

the angle ©.

Incidentally, for qQ
= £, we have sin 9

Qxt
= i . in particular,

for air, i.e., f or V = 1.4, we find ©^ = 45.5 degrees. The corre-

sponding angle /3Qxt
is fi^* f +• \ 9

Qxfc
which for air is about 67.75

degrees (for this case see Fig. 33).

It should be noted that for weak shook transitions from the front

(o) and for sufficiently small 9, the backward state is supersonic, while

it will be subsonic for the strong shock transition. As a straightforward

calculation shows, for the extreme angle 9 . the backward state is subsonic.

Besides the loop considered so

far, the strophoid of Fig* 26 has

also the two "forward branches"

approaching asymptotically the line

u = U. Within the limit oirole

u •»- t - q these two branches

likewise represent possible shock

transition, the only difference being

that for these forward branches in

contrast to the backward loop, the

state (o) is on the back side of the

shock front while the state on the

forward branoh is on the front side.

Again there will be a limit anglo

for 9, namely, 9 = §, the angle

corresponding to the intersection of

the forward branch with the limit circle.

Strophoid for subsonic state (o) . In the preceding disoussion we

assumed the state (o) supersonic. Fig. 25 shows the shock polar for

subsonic state (o), i.e.., for q <. c
+
. In this case the strophoid con-

sists of one single branch without a loop; the shock construction remains

as before and, of course, always yields shock fronts for which (o) is on

tho back side.

Figure 31
Limit Angle § .
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For practical purposes it is convenient to have a set of

strophoids with different values of qQ
prepared on transparent

paper. It is then simpler to use only those strophoids with q
Q
* o

+ ,

•which are sufficient to cover all cases that oocur.

Limiting cases. A word should "be said conoerning the limit-

ing cases which arise when qo
approaches either c, or q. In the first

case (Fig. 32) the loop shrinks to a point and the two forward branches

form a cusp at this point.

If q tends to the limit speed q (Fig. 33), then the forward

branches approach the line u = §, (which is without physical interest)

while the loop approaches the circle v = (q - u)(u -|t§).

Figure 32 Figure 33 ^
Shock polar for q

Q
- q.

C. Configurations With Several Oblique

Shock Fronts. Shock Reflection.

7! # Regular reflection of a shoe* wave on a rUid wall. Problems

of reflection occur in connection with physical situations of the following

* See the general report by von Neumann [19], and other papers quoted in

the Bibliography.
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type. Suppose an approximately plane shock front moving through space

hits a rigid wall obliquely. For example, such a shock -wave is produced

Figure 34

Regular reflection of shock wave
produced by projeotile.

by an explosion or by a fast-flying projectile if the wall is at a

sufficient distance from the source of disturbance so that the shock

fronts may be considered plane.

Observations show that a flow

pattern may result which ex-

hibits an "incident" and a "re-

flected" shock front. (The

genesis of such a pattern is

indicated in the Fig, 34.

)

A phenomenon similar to

that of shock reflection is the

interaction of two symmetric

* An entirely different physical

situation leading to "reflection"

of shocks will be discussed later
in connection with flow in jets.

Art. 81, Chapter 7.)

Figure 35

Regular reflection of

shock wave produced by
simultaneous explosion of

equal charges.
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shock naves meeting obliquely; the role of the wail will then be

played by the line of symmetry of the flow. (The situation can bo

produced, for example, by two simultaneous explosions of equal charges,

see Fig. 35.)

For very weak stationary shocks the shock lines, as seen before

(Art, 7U), are approximately Llach lines, and will therefore form the

Mach anglo with the wall, which is a streamline. Thus a stationary

flow pattern containing a weak "inoident" and "reflected" shock will

agree with the law of reflection of geometrical optics, i.e., both

shoe* lines will form the same angle with the wall.

There is no reason why the situation should be similar when the

incident or reflocted shock (or both) has appreciable strength. As a

matter of fact, observations show definite deviations of the fiow pat-

tern from that of sonic waves. One speaks of regular reflection when

the resulting flow resembles qualitatively that of the sonic case, i.e.,

when it can be described solely in terms of incident and reflected waves,

Even in regular reflection the angles between incident and reflected

waves are in general not equal. (The difference between the incident

and reflected angle is indioated in Figs. 36, 37; one observes that

the shock waves slant in the opposite direction after refleotion.)

The peculiar charaoter of the reflection of shock waves can

easily be derived and analyzed theoretically as a direot consequenoe

of the results in Art. 70. Such a theoretioal discussion consists

merely in finding a mathematically possible fiow pattern compatible

with the observed qualitative and quantitative features of the phenom-

ena and yielding quantitatively correct predictions of flows not yet

* In Art. 72 we shall discuss flow patterns which are even qualita-
tively quite different from sonic refleotion.

* Extensive research in the theory of oblique shock reflection is due
to von Neumann and his collaborators, [19], [37], [38].
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observed.

For the mathematical formulation of the problem an important

preliminary step is the following. The phenomenon, as it presents

itself to the observer, need not be stationary but we reduce the prob-

lem to one of steady flow by subtracting from all velocities the

velocity vector (parallel to the wall) of the point at which re-

flection takes place; in other words, by referring the flow to a

coordinate system moving with the point 0. Then we are to find a

steady flow in the x ,y-plane for y * such that the lower half-

plane y < is divided, as in Fig. 36, into three regions (o), (1), (2),

Figure 36

Regular (weak) reflection of shock fronts
on a rigid wall (see Figs. 37 and 38)

each of constant state, separated by two stationary shock lines S and

S» and such that in the regions (o) and (2) the flow is parallel to

the wall y = 0, i.e. , v = v_ =• 0. The configuration then consists
-K-ft

of the succession of two oblique shocks , the incident shock S

and the reflected shock S» , and it is clear from the previous sec-

tions that on passing the incident shock front the incident flow

with the velocity q* is turned toward the wall into a flow which is

still supersonic with the velocity at and that this flow on crossing

the reflected shock is turned into a flow with velocity ql parallel to

the wall, supersonic or subsonic as the case may be. (In Fig. 36 both

* For experimental facts we refer to the reports [37] and [39].

** One being analogous to a shock in a corner, the other to a shock
outside of a corner.
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shocks are facing toward the left.) From our knowlodge of refleotion

of normal shock waves (Art. 42, Chapter III), we should expect a con-

siderable rise in pressure behind the reflected shock front.

The mathematical objective is to find all such configurations

and the corresponding interrelations between the velocities, pressures,

angles, densities, eto. What the physioally given or observable quanti-

ties are may vary from case to case; as long as we know all the relevant

relations between q, p, p , o, c^, we may base the mathematical analysis

on whatever quantities are most suitable as independent variables.

Having transformed the problem into one involving steady shocks,

we find it convenient to take the critical speed o as one of the given

quantities. Regular refleotion oan then be discussed with the aid of

the shock polars in the u,v-plane. We start from state (o) and draw the

corresponding backward loop of the

shocic polar (strophoid). The state

(l) is represented by a point on

this loop. (If, for example, the

shock direction between (o) and

(l) is prescribed, then this point

is determined as the point 1 of

intersection with the loop and

the normal to the shock direction

through o.) Through the point 1

we again draw the backward stro-

phoid loop (symmetric about the

direction (©- l) ofqt). If, as

in Fig. 37, this second loop inter-

seots the line v = 0, then, as is

easily seen, one intersection 2 mi 31

be subsonic whilo the other, 2, may be supersonic. The states (2) and (2)

are mathematically possible states behind a "reflected" shock and the

reflectod shocic line is easily found as the line perpendicular to (1-2)

Figure 37

Construction of weak (S') and strong
(S») reflected shocks

{see Fig. 36).
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or (l-JH respectively. Hence, there are two possibilities for a

reflected shock: the regular strong reflection corresponding to

(2) involving a high value of p , and a regular weak: reflection

represented by (2) and involving a smaller value of p2
» The weak

reflected shock front makes a smaller angle 8 with the wall than

the strong reflected shock front. Ordinarily one should expect that

it is the weak reflected shock that occurs in phenomena of reflection

as described above. (The weak reflection is nearer to tne sonic case,

approaching it when the strength of the incident shock decreases. More-

over, it does not require an excessive rise in pressure.)

If the point 1 on the first loop

recedes from o, i.e., if the indioent

shock becomes stronger or the pressure
Pi

ratio-— greater, the second loop
Po ^

will shrink and the points 2 and 2

will come closer together. There

^ will be a last extreme case when the

two possible reflected states (2) a

and (2 ) coincide, and from there

on the intersections 2, "z cease to

exist; thus, no regular refleotion

is possible for sufficiently strong

incident shocks, q and c^ being

fixed.

The following is a different

way of formulating the same argument.

We start from state (l) and rotate

the diagram about so that the veotor q* is horizontal. Then we draw

the complete strophoid through 1. The state (o) now lies on the forward

branch as in Fig. 38. From the intersection of the line O-o we again

Figure 38

Alternative construction of

reflected shocks

(see Figs. 36 and 37).

* See, however, Art, 81, Chapter V, where instances of strong reflection

are pointed out
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obtain two possible states (2) and (z ) , one state, or none at all,

according to whether our line intersects at two points, touches, or

mi6ses the backward loop. The points (2) and (2 ) correspond to

states behind the reflected shock. The shock directions are again

immediately determined as perpendicular to the lines (o~l), (2-1),

and (§L 1).

Both of these constructions yield all the relevant information

about regular reflection; the quantities x>, p, etc., are determined

by the relations previously established (see also next article).

One important feature becomes evident from this construction.

Regular reflection, no matter whether weak or strong, can occur only

under restrictive conditions. These conditions are obtained from the

diagram in a manner immediately adapted to the case of stationary shock

fronts with given values of c
#

and q . If we are interested not in

steady flow, but in shock waves impinging obliquely on a zone of rest

(o), the extreme situations, where regular reflection ceases to exist,

must be characterized with respect to the state (o) of rest. The

corresponding conditions can easily be inferred from the preceding re-

sults.

Suppose state (o) is fixed as a state of rest, and the angle S

of the impinging shock wave and the pressure ratio — are considered

as the two independent variables. Then c is a dependent variable.

The relations previously obtained can then be solved numerically or

graphically for c and q and thus the reflected shock oan be deter-

mined by reduotion to a steady state. To describe the variety of pos-

sible regular reflections we consider in a plane with the coordinates

« Po
a and r- the rectangle

* Si 90°
, 0* -2 «1.

This rectangle is divided by a curve E: S - S —J^l * into two domains
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90°.

80".

70°.

60*.

SO'.

4C.

30'..

20°..

I0\.

Domain where no

regular reflection exists.

r- S
Je*t , f

Domain cohere regular

reflection fcoeak and
Strong] is possible.

Figure 39

S . there corre-
ext

as in Fig. 39. To each point in the domain •* S

spond two possible regular reflections, a weak one and a strong one,

as characterized above. For the data corresponding to the points in

the other domain no regular reflection exists. A comprehensive pic-

ture of the manifold of regular reflection patterns is obtained by-

studying a sequence of incident shock waves of the same strength, i.e.,

having the same pressure ratio -i, but with different angles of inci -

dence a . If this angle b tends to zero then for the weak reflections

the three states (o), (l), (2) tend to those occurring in a head-on

reflection of a shock wave which impinges normally on the wall. Thus
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tho reflected pressure ratio approaches for $ •*• the limit

2 Pi 2

2
P
l

given in III (68), Art. 42. As S increases we reach the "extreme

situation" represented by a point on the separating curve E. At

this position the weak and the strong refleoted shock coincide.

As remarked above, for larger angles 8 no regular reflection exists.

For the limit case of sonic shock, i.e., for— =1, the ex-

treme angle becomes 90° | for infinitely strong shocks, i.e., for

— = 0, S approaches the value arc sin-r , which for air with 1?= 1.4
Pi a

is approximately 39,970 (this is immediately read off from the fact

that the strophoid reduces to a circle for — = 0, see end of Art« 70).
Pl

In the memoranda [191, [38], von Neumann and Seeger have presented

a full discussion with many details of regular reflection for various

values of I j they use a different approach, starting from the outset

with rf and S as parameters. Of the results, the information concern-

P? r'
ing the reflected pressure ratio -= and the angle 6 between the re-

flected shock and the wall is of particular interest. We give a sum-

mary for the weak reflected shock. For small values of the angle of

incidence S we have S < S • As 8 rises from its value in the "head-on

situation", i.e., from the value S = 0, the reflected pressure ratio

LL is below the head-on value given in (55) as long as $ remains less

than S. Independently of the incident pressure ratio, the angles S

and S' become equal for cos 2S«—t— , which implies % = 39.23 for air

with "% - 1.4# When S = $ , the reflected pressure ratio i-2 equals
Pl

the value for head-on incidence. After $ has passed this value the

reflected pressure ratio rises and thus exceeds the head-on value.

However, only for shocks of small or medium strength (li ^7.02 for
V

Po
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air) equality of 8 and 8 is attained before the extreme situation

is reached. Hence for strong shocks oblique reflection will never

result in reflected pressures as high as those given by (55).

These remarks about increase of pressure by reflection are

obviously of practical importance; it should therefore be emphasized

that for water and waterlike substances the situation is significantly

different inasmuch as the rise of the reflected pressure ratio ^f

starts immediately from the head-on situation, S - 0, or S being

greater than S « In other words, oblique reflection in water always

results in higher pressure than for head-on reflection, equal strength

of the impinging shock waves being assumed.

Without relying on our strophoid diagrams one may use the

shock conditions for an independent algebraic approach to the problem

of reflection (and, as we shall see, to other problems concerning shock

configurations). Assume that in the three domains (oj, (,l)» (2) the

thermodynamioal quantities /o and p are known ( subject to the condi-

tions (40) Art. 66, and (54), for adjacent domains). Then vre have

four quadratic equations (see (ii ), (ii
1
)» Art. 66 ) :

'l
(56)

P -P

forfrom vihich the three velocity vectors "qt can be determined (except

an arbitrary rotation of the coordinate system) provided that one

additional condition is imposed. This condition is:

* The advantage is that the relations (56) do not depend on the equation

of state, and thus a clear separation is possible of such features of

reflection as are perfectly general, and others that are due to a

specific character of the medium.
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X q
g
=

or q and q„ are parallel (in the direction of the wall). If the
o c

wall is given by y = 0, this means v = v
g
= 0, and we are left with

the problem of determining u , vl, v1# Ug from our four (quadratic)

equations. We refrain from carrying out the analysis here.

72. Llach reflection. Experimental facts. Mathematical problem.

As we have seen, regular reflection is impossible in a groat many cases,

in particular, when the incoming shock is very strong (for given -^2),

or when a shock impinges on a quiet medium so that the angle yS j = S

between the incoming shock and the wall is rather large.

What happens in these cases under experimental conditions similar

to those which otherwise would have produced regular reflection? The

answer is provided by innumerable

phenomena of wave interaction

studied long ago in experiments

end papers by E. Mach. Yet

this "Mach reflection" as it is

now called, was all but over-

looked and forgotten until atten-

tion was recently drawn to it;

thereafter a mathematical theory

was developed by various authors

with a view toward applications

and understanding and control

of phenomena involving consider-

able pressure inoreases occurring

in oblique collision of shocks.

Figure 40
Hypothetical configuration
of three confluent shocks.

* Observable every day in ponds and brooks and in photographs in textbooks,
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The observations just mentioned show that in cases when regular

shock reflection does not occur, configurations of three shocks through

one point arise, It is, however, of great importance to note the follow-

ing faot: Three shocks separating three zones of different continuous

density and pressure are impossible. To prove this statement, we may

consider a small neighborhood of the point Z where the (assumed) three

shock lines meet; then for the three states near Z we have from the

three shock relations

(57)
vk - /°j

Vi -
/°k

with X= u = \"
, applied to the assumed three states (o), (l), (2).

' o + 1
After multiplication, we find

(58) D(A) = (jyo -/Vtyfe " /> )(^ V8
>- (Vl "

/°o
)(Vo -/°2 )(V2

-/,

1
) = °-

where D(X) is obviously a polynomial of 2nd degree in X and where our

equation presumably is satisfied for the value X =M- , which is between

and 1. Likewise we see immediately D(o) = D(-l) = 0. Hence D(X),

vanishing for three different values of X, must vanish identically, and

we have, for example, D(l) =0, which yields

(/°o-/°l )(/°2 -/°o )(/*L-/°2 )
= °-

Thus two of the adjacent states are identical, and our assumption of

three confluent shocks is refuted.

Reflection patterns must therefore allow for an additional dis-

continuity, and the iioplest assumption fortunately in agreement with

many observations, is that of a contact discontinuity line.
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The Mach reflection can be desoribed as a configuration con-

sisting of three shock fronts through one point and in addition a

line of contact discontinuity D through the same point. The incident

shock S is followed by a reflected

//////////////////////////

&•{•) 1?

Figure 41
Direct Mach Configuration

shock S' (S facing left in the

figure). In this case, the re-

flection takes place, not at the

•wall, but at a branch point Z

moving obliquely away from the

wall. The point Z is connected

with the wall by a perpendicular

shock through which the flow is

normal. Finally, there is a

discontinuity line, or vortex

line D from Z toward the wall.

Figure 42

Mach reflection of shock wave caused by projectile

As we saw, a configuration of three confluent shocks with no other

discontinuity is impossible. Thus the pattern described above seems

to offer itself as the scheme next in simplicity.
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Flow patterns of this type are presented by nature in abundance.

A possible genesis of Mach refleotion as frequently observed is indicated

in the Fig. 42.

£*/>/*

• Fxp/es t or)

Figure 43

Mach reflection resulting from simultaneous explosion of equal charges.

Duplicating the Mach configuration by reflection with respect to

the wall we obtain the flow pattern for Mach interaction of two symmetric

shock fronts meeting obliquely.

When two shook waves resulting

from simultaneous explosion of

two explosives meet, such Mach

interactions oan be observed

(Fig. 43).

A configuration of parti-

cular interest is the "stationary"

Mach reflection in whioh the line

D is parallel to the wall and the

point Z moves parallel to the wall.

Figure 44 In *ts duplicated form (reflected

Stationary Mach configuration &t the wall) it oould oocur when
in flow against parallel wedges

a steady jet of gas impinges on

CONFIDENTIAL

//////////////



IV- 213 COIIFIDENTIAL

two parallel wedges (Fig. 44). It is to be noted, however, that

the actual Mach configurations observed in jets mostly involve

curved shock fronts and flow consisting of non-constant states.

It is, however, important not to be misled by the nomen-

clature "stationary". "Stationary Mach configuration" means simply

a configuration in which the

////////////////////// crosses the Mach shock front

perpendicularly, and henoe also

the discontinuity line is nor-

mal to the Mach shock. Then

this normal direction of the

flow is automatically in agree-

ment with the existence of a

wall along which the gas flows.

Many actual Mach configurations

are observed in jets involving

non-constant states; hence the

shock lines are curved so that

the stationary character of the

flow and existence of a wall in

no way imply that at the branch

point the Mach configuration, which is characterized as a local pat-

tern, is "stationary" in the sense defined above.

In discussing the simple Mach configuration as shown in Fig. 41,

it is natural to ask how the gas will flow near the point E at

which the lino D intersects the wall. Observed from this point,

the flow along line D has the direction of D while the flow along
the wall has the direction of the wall. Adjustment of these two
directions will be brought about by a simple •wave with center E

in case the flow in (2) is supersonic when observed from E. If

the flow in (2), observed from E, is subsonic a non-constant
(elliptio) flow in a corner will result. In the following dis-
cussion we shall ignore this question; we shall consider only

the local Mach configuration at Z assuming that the states (given

by velocity, pressure and density) in each of the regions meeting
at the branch point Z are constant.

Figure 45
•Stationary" Maoh reflection
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To investigate all theoretically possible Mach configurations

we first disregard the wall and concentrate on finding local flow

patterns with three confluent shock fronts and a vortex line.

Any three shock configuration

is reduced to a steady flov,r "by ob-

serving it from the point Z. Thus

the problem becomes that of find-

ing configurations of three station-

ary shock fronts S, S\, H and a

vortex line D through a fixed point

Z, dividing the plane into four

domains (o), (1), (2), (3) as in-

dicated in Fig. 46.

After having determined velocity

vectors q*, q?, qT, q* for the four

domains we need only subtract from

all velocities the vector q~ in order
Figure 46 °

(Steady) direct Mach configuration, to obtain the situation when the in-

cident shock S impinges on a state (o) of rest and where the Mach shock

U is normal (i.e., crossed perpendicularly by the flow). The velocity q
z
=

-q* is that of the branch point Z moving into the zone (o), and the dis-

continuity line D, of course, is given by the direction of the flow in

(3). Since, as we have seen, in the steady state a shock turns the flow

toward the shock line, the relative inclination of the line D and the

line of motion of Z is as in the figures. After transforming (o) to rest,

the flow through the shock line M will be perpendicular, and therefore

a rigid wall, terminating the regions (o) and (3) is cornatible with the

flow. Hence, a theory of the Mach reflection essentially amounts to the

construction of steady three-shock configurations with a vortex line

through a fixed point.

Such a configuration may either represent an ordinary Mach reflec-

tion, namely, when the relative position of the shock M and the velocity

* The new vectors are again denoted by q in the diagrams.
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///////////////////////

Figure 47

Stationary Llach configuration
reduced to steady flow.

The transition between direct

and inverted Mach reflection is the

case of stationary Mach reflection,

i.e., the case where the velocity q*

is perpendicular to M, or what is

equivalent, when the velocities q*

and q* are parallel. In a station-

ary llach configuration the point Z

will move parallel to the wall and

the vortex lino D is likewise par-

allel to the wall (see Fig. 48).

73. Algebraic framework . To

attack the problem algebraically,

one could start from the relations

between pressures and velocities

q* is as in Fig. 41 ( in
o

which case the branch point

Z moves away from the wall),

or it may represent a so

called inverted Mach reflec-

tion when the configuration is

as in Fig. 47. In this con-

figuration the point Z would

move toward the wall and the

configuration would quickly

be destroyed. Hence this

inverted Mach reflection may

be eliminated from the considera-

tion of actual reflections of

shocks by rigid walls.

///////////////////

Figure 46
Inverted Mach configuration.

* Heavy arrows denote velocities corresponding to the steaay state; light
arrows denote velocities corresponding to a wave motion into a quiet zone
(o) (see footnote p. 214).
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in adjacent domains, expressed by the six equations (see (ii ), (ii,),

Art. 66):

r
o

(*l " P
o

} = % {% " *? •
T
l
(p

o
" Pl } ' *1 (*1 - % ]

(59) / T
1
(p

2
-
Pl ) = q£(qj- - qj) , T^ - p

g
) = qjftj - q^)

T (p - p ) = q*(q~* - q?) , T-te - p ) = qZ(qZ " T)00 ooo o o 3 33o

These relations are supplemented by the condition

(60) qj x q^ = or q^ parallel to q
3

Any system of four vectors satisfying these seven equations will give

a possible llach configuration. Once the velocities are known, the

shock lines are immediately determined. As we saw previously (Art. 71),

in these equations we may consider the pressures and densities as given

parameters subject to the relations (40), Art. 67 or (54) Art. 70. One

direction, e.g., that of q , might be arbitrarily prescribed; then we

aro to determine 7 quantities from 7 equations.

The stationary Llach reflection is simply characterized by one con-

dition in addition to those formulated above (59), (60), viz.,

(61) q
o
x q

3
=

or q* parallel to q . By elimination of the velocities a condition
o 3

involving solely densities and pressures can be obtained for stationary

Llach effect. We shall not, however, follow this line of an algebraic

treatment here, but rather discuss the Mach effect on a more intuitive
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oasis using "shock polars".

First we formulate the results of this discussion. To this

end we characterize each three-shock configuration by two quantities,
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the numbers

q P
2° and IS

q
ft

The first number is related to the Mach number M = — by
C
o

(1-/)
(62) l£=M

igrr
piof the incoming flow, the inverse —— of the second number characterize

the strength of the incident shock ?ront. In the rectangle

c
1^ ^p,

1
-

, 0^-2^1

77-e indicate two regions (C) and (P) to each point in both of v;hich a

three-shock configuration exists.

The region (c), shaded vertically f||
1 1||]

covers the "main branch*'

of three shock configurations, first determined by Chandrasekhar

The region is bounded by a line L corresponding to the limit oase in

which the strength of the reflected shock S 1 and the discontinuity of

the line D have shrunk to zero while the incident shock S is aligned

with the Mach shock M. The region (c) contains further a curve St

corresponding to stationary Mach reflections. The points between the

The equation of the curve St is quadratic in the variable x = —~ .

°*

. Pn
Y/ith the notation ^ = -2. , the equation of St is

P
l
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curves L and St correspond to inverted, those above the line St

to direct Mach configurations. The region (P), shaded obliquely

(\
ss\s

\\S^) bounded by a curve L^ represents an independent second

branch of direct three-shock configurations, first determined by

E. Polachek ^-flj •

(63) St: |\(x-l) -^U-^x) t(x-l) -idLci-^x)] = fc(l-/&c)

The angle of incidence & is then found from

(64) sln
*
x . niL.^i* .

The equations of L
c
on L aro

(G5) x = *-+** 11*2$ - (lV)S 2
]R

with

R =

^(yLL
2
+i)(l+/^

2
|)

the angle of incidence S being given by

(66) cos
2
S = (AfeKlV*)

(1 -/^)[^
2 + fc)x- (1 - $')]

Thoso fomulas aro equivalent to formulas (27), (30) in AMP Memo 6

and to the formulas on p. 41 in Seeger [3$ •
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74. Analysis by graphical methods . Substantiation and ampli-

fication of the preceding statements is appropriately based on a geo-

metrical analysis by means of shock polars. Instead of the strophoids

in the u,v-plane we use the shock polar in the 8,p-plane (52), Art. 69
:

which permits us immediately to take care of the condition that the

Figure 50
0,p-shock polar, which is the image of the u,v-shock
polar, showing angles Bexk and §. Loop gives possible
states in back of a shock front when (o) is in front

j

lower branches give state in front when (o) is in back.

vectors q^ and qj , and in the stationary case , the vectors ^ and q3 ,

be parallel. We saw that if a given state (o) is connected with
another state by a stationary shock, the second state can be character-
ized by the angle 6 through which the shock turns the flow and the
pressure p in the new state. All possible states that can be connected
with (o) by a shock may, therefore, be represented in a 0,p-plane by
a shock polar, represented by equations-" (52), Art. 69, and having the
shape shown in Fig. 50, which is similar to that of a strophoid.

* Or explicitly by

(67) tan©

P.- 1

v£o r,

>(1 » /)(lt - 1) -
(fr

- l)

T5 2
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The points on the loop correspond to states behind a shock front,

the state (o) at the front side p = p , 6 = 0. being represented

by the double point oj the points on the lower branches correspond

to front sides of shocks for which the state (o) is on the back

side.
This polar could have been used for the general discussion

of oblique shocks and of regular reflections. For instance, the

extreme turning angle ext ^s immediately exhibited as the maxi-

mum value of attained in the loop while the maximum angle 8

through which the flow can be turned if the state in back is pre-

scribed as that corresponding to the double point is given by

the point where a lower branch touches the 8 -axis (attained for

limit speed in front of the shock front, which means cavitation

and p = 0). The situation resulting from regular reflection may

be read off from the polar intersected by a line & = constant as

indicated in Fig. 50.

The 6,p-polar is of real advantage in the discussion of

Mach configurations, which are obtainable from the diagram in

such a way that numerical procedure can easily be supplied after-

wards. To find Mach configurations from our shock polar A
through the point o as double point, consider a shock leading

Figure 51

0,p-shock polars for direct Mach reflection,

(see Fig. 41). Point 2,3 represents states

(2) and (3), on either side of discontinuity
line D
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from a state (o) to a state (1) with higher pressure and a shock
leading from (1) to (2), as well as a shock from (l) to(3) (see

Fig. 41). In the 6 ,p-diagram the two states (2) and (3) (see

Fig. 51 ) on both sides of the vortex line D are represented by the
same point, since in these states the pressures and the flow direc-
tion are identical. This fact is the reason for using the 8 ,p-

diagram. We draw through the point o the shock polar loop A. ,

and likewise another shock polar loopAi through the point 1.

The point* 1 reached by a shock from (o) must be onA
Q ; likewise

the point 3 is on A Q . On the other hand, the state (2) is

reached bv a shock from state (l); hence the point 2 in our
diagram must lie on A]_, and since the points 2 and 3 in our
representation are identical , we obtain 2 and 3 by intersecting
the loops A and A i«

If 8 > for the point of intersection (see loop A^
in Fig. 52 and Fig. 41), then we have a direct or ordinary Mach
reflection, and stationary Mach reflection corresponds to the
case that the point of intersection occurs for 8=0, exactly
at the top of the loop (see loop Ast in FLe* 52 and Fip. 48).

Figure 52
0,p-shock polars A

D
for direct, A, for inverse,

and A
3t

for stationary Mach reflections. In each
case, the intersections of these loops with the
loop A

Q
represent the states on either side of the

discontinuity line D. (See Figs. 46, 48, 45.)
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Knowing the point 2 ,3 , we obtain the shock lines 3, S 1 and
M immediately, and then proceed to determine the densities from
the relation (54), Art. 70, and the velocity vectors from our
previous relations (59), Art. 73. Thereby the difference between
the states (2) and (3) becomes apparent automatically since we ob-

tain the quantities for (2) starting1

; from (1) and those for (3)
starting from (o).

Altogether, the search for Mach configurations is replaced
by a discussion of our shock polar loops and their intersections.
The results of such analysis may be briefly described. They con-
firm the diagram presented in Fig. 49*

We consider states (l) on the polar A starting near (o),

Pi
i.e., with weak incident shocks (o-l), or small —A - lj we then

p Po

proceed to larger values of — . If the loop A-, has an inter-

section with the loop AQ
we follow the position of this inter-

section until it disappears. We shall distinguish between three
a

cases , according: to the value of — (which number -is connected
c

>.

ao
with the Mach number — of the flow in region (o), (see (62),

Article 73).) 'Throughout this discussion reference should be
made to Fig. 49. Each case in which ai/c„ is keot constant cor-

¥heresponds to a horizontal line through the'figure.)

Case_(a) £ small, exactly: ^ < ^/^or ^ - f\^%
Then both branches of the loop A-, from 1 will start inside the
loop A • Therefore no Mach configuration exists in the neighbor-
hood (it seems that the second loop has no intersection at all with
the first, so that to these values of a/c^ no three-shock patterns
can correspond).

Ca3e V prji * s; * f-7 «

fi
/ 2 -M

1+2^ co v/i-,,2

pl
No inverse and no stationary Mach effect exists ; starting from 1

o

nearly zero, the intersections 2,3 always occur for positive values
of 0, until for increasing p, a limit position L is reached where
the second loop touches the first (taneentially) at the point 1,
(see loop A T

in Fig. 52), the shock S 1 becomes sonic and the
L
C
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shock S is aligned with the Mach
shock M, while the discontinuity
along the line D disappears (see

Fig. "53).

Case (b
2

)

M (3)

2/x

(.We assume ix.< f^- , i.e., j< —

from now on. For this case see
Fig. 52. ) (06) If the point 1 is

near the point o, i.e. , if

1 is small, then we have an
po
inverse Mach effect. (See loop A T ).

Fig. 53

Limit three-shock configuration.
Incident and Mach shocks are

aligned. Reflected shock S'

is sonic and discontin-
uity of contact line D

disappears.

1 1
(fl) If — assumes a certain value, the Mach configuration becomes sta-~ P

tionary. (See loop Ag+). ("#) If— lies beyond the value for which

the configuration becomes stationary we obtain direct Mach configuration
(see loop Ap).

When the point of intersection in the 6 ,p-plane is vertically
above (1) then the corresponding reflected shock S' will be a normal
shock and from then on the shock S 1 will turn the flow the other way,

pl
i.e. , toward the direction of the shock M. Finally, as — increases

po

we. reach a limiting position L
p

in which the shock S' becomes sonic
as in case (b.. ). (See Fig. 53 and loop A. of Fig. 52).

pl
No three-shock configuration exists when — increases further.

^o
q
o / 2

At the transition from (b, ) to (b_), i.e. , for — = J2 - jx
,

the stationary Mach configuration is assumed for — =1

i.e. , when the incident shock S is reduced to a sonic wave. This sit-
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uation implies the value S = arctan/l -}Z (=42.4° for air, ^=1.4) for

the angle which the indicent shock front S makes with the normal to

the shock front M.
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Case (c) ^
In this case the situation can be seen from Fig. 54. The loop A

Q
pl

through o is rather broad. For small 1 we have two configura-
po

tions on loopA_, one (i) indicating an inverse Mach reflection

and one (Dp) indicating a direct Mach reflection. As p^ increases.

a position Lp is approached where one intersect ion, D still repre-

sents a direct Mach reflection while Dp coincides with (1), i.e.,

the second loop touches the first one in. 1. For the limit configura-

tion Lp of Dp , the angle S is 90° and the shock S is aligned with

the shock M. From now on when p, increases, no configuration Dp ex-

ists, while we obtain further configurations D until another limit

situation Lq is reached where again the second loop touches the

first. The shock S' becomes sonic and S and M become aligned. On

further increase of p, no three-shock configuration exists#

75. Comparison between regular and Mach reflection . To discuss

under which circumstances regular or Mach reflection is possible we re-

turn from the problem of a steady three-shock flow with a fixed branch

point to the original problem of an incident shock wave penetrating into

a zone of rest and reflected at a wall. The situation is then to be

characterized by parameters which depend solely on the state (o) of

rest and on the incident shock wave. As such parameters we choose (1)
p

the ratio — of the pressure in front of the incident wave to the
Pl

pressure behind the wave , characterizing the strength of the incident

shock and (2) the angle & between the incident shock front and the wall.

The flow for which the state (o) is at rest is obtained from the flow

with stationary branch point by subtracting from all velocities the

velocity in region (o). It is not difficult to transform the results

described in terms of — and — into results in terms of — and &

.

P
l

c* pl

* In comparing theoretical and experimental results concerning three-
shock configurations, the angle S should be identified with the local
angle between the incident shock and the normal to the Mach shock at

the branch point, the reason being that in reality the Mach shock is

frequently curved and that therefore its direction at the branch ooint

is in general not exactly oerpendicular to the wall. (See a remark at

the end of this article.

)
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We confine ourselves to considering direct Mach reflections be-
p

longing to the main branch. The region of points in the — ,i -rectangle

(Fig. 55) to which such configurations correspond is shaded vertically

(II I llllll) Tnis region is bounded by a curve whose points correspond to

Figure 55

In the region {/////) regular reflection is possible

.;hile in the region ( III II II) Mach reflection is possible.

stationary Mach reflections. This curve is given by the equation

(68) cot 8
4 , . jxHi+jj) + (i-k)

2
..a . us + $ n , o

(i + /<?)(! + rh) (l + /t)
2

See footnote on p. 219, (63), (64) and eauations (27), (30) in

AMP Memo. 6 [41].
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As remarked in Art.

, we have

(70)
P2
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(o)

(i)

Figure 57
Flow against an "arrowhead 1

(see Fig. 56)

mathematical scheme which will adequately represent reality.

Complete success , as far as covering the available experimental

evidence is concerned, has not yet been attained, but the most direct

generalization, namely, modification of Mach patterns by additional

simple waves with the center in the branch point is already sufficient

to explain some of the more elusive phenomena.

Such waves can be inserted in the region (2) only if the flow

direction on crossing the reflected shock front from region (l) to

region (2) is turned toward the branch point and the flow in region

(2) (when observed from the branch point) is supersonic (more complete

conditions are given below). The region (2) is then divided into
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& irt rAc/t\-ns

Figure 58
Representation of modified Mach

configuration in ,p-plane (see Figs. 56, 57)
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two regions (2') and (2") and the flow on crossing from (2') through

the simple wave into (2 11
) will be turned further toward the branch

point. The conditions mentioned can be seen to be satisfied if the

angle of incidence o is sufficiently near to 90 .

Such configurations can be expected when the flow is deflected

by an arrow-head, i.e. , a wedge whose slone after some distance

changes abruntly, cf. Fig. 57. Actually observed "arrow-head" flows

seem to confirm this interpretation (note that the simple wave would

hardly show a trace on a shadow photograph).

The possibility of inserting a simple wave under the conditions

indicated can be read off from the 6 ,p-diagrams discussed earlier.

The diagrams in Fig. 58 are self-explanatory. Through a point 2" on

the loop A, one draws the image of a characteristic in the u,v-plane;

its intersection with the loop A gives the point 2", 3. This is pos-

sible only if the state (2') is supersonic. A discussion of the relative

position of shock lines and Mach lines would show" that then a possible

flow configuration results if 6 < 8, < ©„, < S„„«

* See AMP Memo No. 38. 9M [42],
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V. Flu,.' IN TifREE DLMt^SlUNS

78. Introduction . Flow in one dimension and steady isentropic flow

in two dimensions could be treated with a fair degree of completeness

because of the special character of the underlying differential equa-

tions and because of the existence of simple waves. Flow in three

dimensions, however, even under restricting assumptions of symmetry

which make a reduction to two independent variables possible, presents

a far more complicated type of mathematical problem. It may be that

extensive numerical computations of special examples could produce

valuable clues for a more general theoretical attack. As matters

stand now, however, one has to be content with a theoretical analysis

of some particularly simple types of problems.

In this chapter we shall consider three distinct topics:

axia^ly symmetric flow through nozzles and jets, flow against a conical

obstacle, and flow with spherical (or cylindrical) symmetry. The first

two flows are essentially steady in character while the third is not,

A. Flow in Nozzles and Jets

79. Nozzle flow . The first topic is amenable to a simple but

satisfactory approximate analysis. Strictly speaking, flow through

nozzles and jets should be considered as a steady, isentropic, irro-

tational flow with symmetry about the x-axis. An approximate treat-

ment of great practical value, however, is possible without entering

into difficult manipulations with the differential equations.

Some qualitative features of flow in two-dimensional jets have

already been discussed in Art. 64, Chapter IV. Here we shall deal with

the more realistic and highly important problem of the flow through a

"de Laval Nozzle" with symmetry about the x-axis. Such nozzles play a

decisive role in the operation of turbines, wind tunnels, and rockets.

The de Laval nozzle consists of a converging "entry section" and a
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diverging "exhaust section". When a gas at rest in a container or

"chamber" under high pressure escapes through such a nozzle, two pos-

sibilities arise. The first is that the flow is expanded in the entry

section, in which case the flow remains subsonic throughout. This

occurs when the ratio of chamber pressure to the pressure outside re-

mains below a certain "critical" value. Wuen this pressure ratio ex-

ceeds the critical value, the other alternative occurs; the flow be-

comes supersonic on passing the throat and is expanded from there on#

80. Flow through cones. The important fact that subsonic flow is

contracted, supersonic flow is expanded in a diverging section can

best be recognized by considering flow in a cone. We assume that the

flow is steady and isentropic, tiiat it is radially directed, that speed

q, density/) and pressure p depend only on the distance r from the tip.

Then the continuity equation can be written

(r2
/0 q) r

= ,

or r2 a q = const. Denoting the area intercepted by the cone on the

sphere r= const, by A=A r2 and the rate of mass crossing this area per

unit time by G we have

(1) Ayoq = G .

Since the flow is automatically irrotational, the only additional

equations needed to determine the flow are the adiabatic relation

(2) pz> = const.,

and Bernoulli's law

(3) ^V+(1-/"L2 )C2 =C|

with c =tfp/^o.
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The critical speed c = a is, in what follows, always con-

sidered as a fixed parameter; then, by (1), (2) and (3), the critical

values p , a of pressure and density are also fixed, and likewise

the critical value A of the cross-section A, corresponding to the

value c = c . (These critical values are well-defined quantities,

whether or not they are attained in the actual flow. ) The preceding

equations may now be written in the following forms, in which c^c ,

/°//°*> p/p f A/A are expressed in terms of q/a = ft/c.:

,3 1-^
ft)

= "Ty 'V*'-

(5)

(6)

(?)

f. - feT*

1 -

1-^

pP

* (v

ft)

1

2/^1^ ^-1

r
Accordingly, we may consider any one of the quantities

A, q, r as independent variables (always for fixed c = q^ p^

,

p
and A ) and express all the other quantities in terms of it.

For a further discussion we derive from (1), (2), (3) the

relatione
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(8)
A p a

(9)
dp _ _2 dc

p V - 1 c

1 -JC dc
, and

(10) yji
2
qdq + (1 -^L

2
)cdc 0; hence

dA
r (H

The last relation shows that for increasing area A the speed q in-

creases when q > c and decreases when q < c. Moreover, since in-

creasing speed corresponds to decreasing density, it follows that

in the direction of increasing area A the flow is expanded when it

is supersonic, contracted when it is subsonic«

?,
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for q = q,, = C„. No flow with given C^, p^, A#
is possible in

the part of the cone with A < A^, , and a converging flow beginning

with A > A„ stops when the critical area A = A^ is reached. No

transition from subsonic to supersonic flow is possible in a cone .

81. De Laval's Nozzle ."" Such transition becomes possible

,

however, by the following modification. Two sections of cones or

similarly shaped tubes with the same axis are placed opposite to

each other and connected as in Fig. 2-, thus forming a de Laval

nozzle with entry section, throat, and exhaust section. Then a

evtry throat exhaust

Figure 2

De Laval nozzle.

subsonic expanding flow in the entry section, on oassing through

the throat, can turn into a supersonic expanding flow in the ex-

haust section.

The preceding exact treatment of the conical flow can now

be used to describe approximately the flow through such a de Laval

nozzle, whose components are not necessarily conical. The approxi-

mate treatment described below is a slight modification of the

"hydraulic" treatment due to 0. Reynolds (1886). A set of surfaces

of revolution is introduced which intersect the nozzle wall per-

pendicularly;
"""""

it is then assumed that the flow is orthogonal to

* With reference to what follows soe [44] to T50] in the Bibliography

**In Reynolds' "hydraulic" treatment planes perpendicular to the

axis are assumed instead of curved surfaces, which are suggested

when one starts with the consideration of conical flow.
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these surfaces and that all relevant quantities are constant on them.

Figure 3

Surfaces across nozzle on which

q, p, p are assumed constant.

Denoting by A the area on these surfaces intercepted by the nozzle

wall, the cross-section area , we apply the same formulas derived

above for the conical flow. In particular, we infer from relation (11)

that if the flow changes from a subsonic to a supersonic state at

all, it becomes sonic at the throat , i.e. , q = % = c^, at that sur-

face on which the area A assumes its minimum A = A^ = A^. The

assumptions on which this treatment is based are not exactly com-

patible with the irrotational character of the flow. Nevertheless,

both experiment and a refined theoretical treatment" based on a

more complete analysis of the differential equations show that the

results of the hydraulic theory provide very good approximations.

It might seem that an exact theory of two-dimensional

nozzle flow, (see Art. 64, Chapter IV) could be developed

by investigating the linear differential equations char-

acterizing the flow in the hodograph plane . Such a pro-

cedure , however , is not possible. To see this , one need

* See AMP Report 82. 1R [49].
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only imagine how the images of

the streamlines would run in the

hodopraph plane. Consider a

point of a streamline in the

subsonic region with negative

velocity component v. On the

same streamline v will eventually
be positive in the supersonic re-

gion. Since v = all along the

axis of the nozzle , one arrives at

the diagram shown in Fig. 4, cor-

responding to the section of the

flow with y > 0. One observes
that the images of the stream-
lines intersect each other. Thus

the image of the field of flow in

the hodograph plane is not simple

and the functions representing
x ,y in their dependence on u ,v

become singular at the envelope

of the images .of the streamlines.

This envelope 'is necessarily a

characteristic T , an epicycloid,

because along the envelope the Jacobian x y - x y becomes infinite

and, just as jump discontinuities can occur only along characteristics

(see Art. 11, Chapter II), it can be shown that the line along which

derivatives become infinite is also a characteristic. Evidently it

is the epicycloid with the cusp at the point (c^.,0). Thus a treatment

of nozzle flow in the hodograph plane is impossible.

Figure 4
Images of streamlines of

nozzle flow (for y > 0)

in the hodoeraph pl^ne
with envelope , which is

a characteristic V.

82. Various types of nozzle flow . The hydraulic nozzle theory,

in spite of its great simplicity, accounts for the various peculiar

types of nozzle flow that result under various conditions. For a proper

understanding of these occurrences it is convenient to assume that the

exhaust flow is discharged into a large receiver vessel in which an

arbitrary pressure can be maintained. We then imagine that the receiver

pressure p is varied while the chamber pressure p at the entrance of

the flow into the nozzle is kept fixed ,

is determined by

Then the critical pressure p^

(12) P~ (1
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assuming that the flow speed q in the chamber equals zero (which

corresponds to infinite cross-section area of the chamber). (Formula

(l2j follows fromS-8
A

by (6), where the sound speed c in

2 2 2
the chamber is given by (1 - u. )c = c

+
according to (3) and q = 0.

)

Let p be the pressure at the "cross-section" of area A, then by

fomulas (7), (4) and (6) of "cho preceding article the ratio A/A is

a \7ell defined function of the ratio p/p,.; p +
and A

+
being critical

pressure and cross-section area, respectively. While the critical p

is known, the critical area A is not determined by the given state

in the chamber.

To visualize the variety of flows compatible with a fixed state

in the chamber and various receiver pressures, it is advantageous to

,y°
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All these curves have the lines p = and p = p as asymptotes

and are loops reaching from A = A to A = 00. For any of these curves

there are two values p attached to every A > A , the greater value of

p referring to a subsonic , the smaller to a supersonic state , while

for A = A both states become identical, and for A < A^ no flow is

possible at all. In Fig. 6 the pressure p is shown as function of

the abscissa x along the axis resulting when for a given nozzle the

value A as function of x is inserted in A = A„fuL|. The rel.-ition

vW
between pressures and areas along any flow in the nozzle from chamber

to receiver is represented by arcs of these graphs.

"A ' \
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When the receiver pressure p equals the container pressure pQ

no flow results at all. When pr
is slightly less than p

c
, a flow

with low speed results (1). To determine it, one locates In the A,p-plane

the point p = p , A = A , A being the exit cross section area. For an

appropriate value of k>} A^ = A„(p
r
,A

e
), the curve A = A#

f/Lj passes through

this point: we follow this curve until A assumes the value A of the throat

cross-section area. The section of the curve between A and A represents
jj e

the flow from the throat to the exit, while the flow from the container to

the throat is represented by the section from A = oo to A =• A^ of the same

curve. The flow remains subsonic throughout. Evidently this description

of the flow, characterized by the subscript i^) , is valid only if the

curve A = A^f/iL
j
passing through the point (Pr »

A
e

) intersects the line

A A. ; i.e., if

where A^ = A_„(p ,A ) is the critical area associated with the specific

curve under consideration, and where A. is the fixed throat area of the

nozzle.

As the receiver pressure p is lowered, A^ decreases until fi-

nally the value A. = A^ is reached for a certain pressure pr = Pr

For p = p9 the flow just becomes sonic at the throat, but still remains

subsonic elsewhere.

When now the receiver pressure p is lowered below p2
a complete-

ly different type of flow arises , as indicated in Fig. 5 and 6. From

the chamber up to the throat the flow is subsonic and represented by

the upper arc of the curve, A = A. f (i— J , coming from k — oo and be-

longing to A„_ = A . This part of the flow is independent of the re-

ceiver pressure and solely determined by A and p^, (or pc by (12)).

After passing the throat the flow becomes supersonic and is repre-
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sented by the lower branch of the same curve A = V(pj »
this curve

intersects the line A = A at a definite point with p = P^ ; hence p^

is determined from A = A
t
fpa . In other words, the flow (6) is a

smooth flow with steadily increasing speed, sonic at the throat, and

steadily decreasing pressure and density. If the receiver pressure

happens to be exactly p = p^ we thus have what is considered the ideal

flow through the nozzle. The design of a nozzle for riven pressures

p and p usually means the selection of the dimensions A^ and A
g

so

that, in our notation, p,- = p; i.e.
* <©

In our imagined experiment, however, when p is gradually lowered,

we still have p > p, , after first passing pr
= p2

« How does the flow

after having attained supersonic speed behind the throat, adjust it-

selt to the prescribed receiver pressure p ? The answer is that first

the flow continues behind the throat as indicated by the lower branch

of the specific curve A = A f tE_| j but at a certain place in the di-

verging part of the nozzle a shock front interferes , the gas is com-

pressed and slowed down to subsonic speed. From there on the gas is

further compressed and slowed down; the relation between pressure and

area is then represented by the upper branch of the curve A = A^f |_j

passing through A and p with an appropriate smaller value of p^.

The position and strength of the shock front is automatically adjusted

so that the end pressure at the exit becomes p . In the diagram the

place corresponding to the shock front indicates a jump from the super-

sonic branch of the curve with A^. = A
t

to the upper branch of the

curve through p , A .

When the receiver pressure p is lowered from p = p_, the

shock front will move from the throat toward the exit. It will reach

the exit for a value p = p4
> p^. In other words , for pr

< p4
no

adjustment of the flow to the receiver pressure is oossible by a

shock in the nozzle. Again a new type of flow pattern must be found

to describe what hapnens under the condition p < p..
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Certainly we must now expect that in the nozzle the flow will

be the same as that in the ideal case (6). The whole curve A = A
t
f|£-

(precisely, the subsonic branch for A
t
< A < oo and the supersonic

branch A^ < A < A ) indicates the flow in the nozzle. Now it is in the
t e

jet outside the nozzle that the adjustment to the outside pressure pr

takes place. There will be two types of phenomenon according as

p . > p > p. or p < P^» the intermediate case pr
= p^ is the ideally

adjusted continuous flow considered before.

83. Shock patterns in nozzles and jets . To understand the ad-

justment of the flow in the jet it is better first to revert to the

shock patterns occurring within the nozzle for p, < p < p?
and refine

their description. These shock fronts are actually not just simple

discs across the nozzle and perpendicular to the nozzle wall. They do

not start perpendicularly at the wall; hence the shock front there is

oblique , and consequently changes abruptly the direction of the flow,

thereby leading to jet detachment . The actual situation is represented

in Fig. 7.

At the wall the shock front begins obliquely as a cone and is

tt 6oui?a(4ry

Figure 7

Jet detachment and shock pattern
inside a nozzle

.
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followed by jet detaohment. The shock cone is out off by the "Maoh

shock disk" perpendicular to the axis (Fig. 7), presenting approx-

imately the picture envisaged in the simplified description of the

preceding artiole. Behind the incident and Mach shock front a con-

ioal reflected shock front S* and a discontinuity surface D develops,

When the receiver pressure p decreases to the value p . ther r r
4

place of detachment moves toward the rim of the nozzle and remains

there when p becomes less than p , while the shock front leaving

the rim becomes longer (see Fig. 8). If the receiver pressure has

becomes zero. On further decrease of the receiver pressure p below

p. a new set of phenomena begins*
6

J *t 6 on >i</e i

Figure 8
Shock pattern in a jet emerging with
pressure less than receiver pressure.

Prandtl's original idea of what happens when the receiver

pressure is below the exhaust pressure was the following (see Art. 64,

Chapter IV). First suppose that the jet emerges from the nozzle

with oonstant axial velocity. If the flow is two-dimensional the

flow pattern consists of two centered rarefaction waves leaving the

rim, intersecting each other and being reflected as converging waves
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^a

Figure 9

Prandtl's wave pattern assumed for a

jet resulting when a parallel flow
enters a region of lower pressure.

at the boundaries of the jet (see Fig. 9). Prandtl assumed that these

waves converged to a point at the opposite boundary and that from there

on the wave pattern repeats itself periodically. A similar pattern

was expected for three-dimensional jets and for diverging jets emerging

from the nozzle. Experiments, however, contradict this expectation

(see Stanton [46] ). It is true, naturally, that at the rim expansion

waves develop which tend to lower pressure and density to the values

in the receiver, but somevdiere on the outer border of the rarefaction

waves a shock front develops which cuts across the rarefaction wave

and "intercepts" or "stops" it. The flow patterns that may result are

indicated in Figs* 10a and 10b. These intercepting shock fronts appear

to be a natural continuation of the shock fronts which begin at the

rim if p > p_. Even in the ideal case where the receiver pressure
r 6

equals the exhaust pressure, p = p
fi
, intercepting shock fronts develop

in the jet.

COEFIDEHTIAL
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.Leo^li
jat 6 our) dsry

Figures 10a and 10b

Shock patterns in a jet emerging with

pressure greater than receiver pressure.

That such intercepting or stopping shocks must occur can be

made plausible. First of all it seems that even for a two-dimensional

jet emerging with constant velocity, Prandtl's pattern as shown in

Fig* 9 is not a correct description; there is no reason why the con-

tracting wave resulting from the reflection of the incident wave at

the jet boundary should be a mirror image of the incident wave and

converge to a point at the opposite boundary. It seems (although

this is not obvious) that the converging reflected wave contracts

faster than if it were a mirror image of the incident wave and that

consequently there results a shock front in the form of a truncated

CONFIDENTIAL



CONFIDENTIAL 248 V-83

'4ZA

Figure 11
Probable wave pattern in a jet resulting when a parallel
flow enters a region of lower pressure (contrast Fig. 9).

Figure 12
Envelope of Mach lines issuing from
the jet boundary at equal angles.

cone (Fig. 11). When the ratio of the pressure of the emerging jet to

the outside pressure is increased, this shock front will eventually

form a full cone and, on further increase, configurations similar to

those shown in Figo 10a or 10b will ensue, depending on the Mach number

of the emerging jet (see Fig. 3 in Eartmann and Lazarus [52]).

This situation is even more pronounced in a jet emerging from

a nozzle mouth when the receiver pressure is less than p. u The flow

continues uninfluenced by the state in the receiver until the first

l'iach line issuing from the rimj i.e., the inner border of the rare-
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faction wave is met. Owing to the divergence of the jet, the pressure

decreases along the axis. The decrease of pressure is considerable when

the Mach number -2. of the emerging jet is noticeably greater than unity.*

Across the rarefaction wave the pressure further decreases to atmospheric

pressure at the rim, hence to below atmospheric pressure farther out.

In other words , the pressure below one atmosphere at the outer border

of the rarefaction wave while it equals one atmosphere at the jet bound-

ary. Consequently there is a pressure gradient acting from the jet

boundary toward the interior of the jet. Clearly this pressure gradient

will curve the jet inward. All the Jfech lines issuing from the boundary

make the same angle with the boundary, since at the boundary the pressure,

hence also c and q, remains constant. These Mach lines thus tend to con-

verge and very likely would have an envelope if they were not intercepted

by a shock front. To prevent the envelope singularity, a "stopping"

shock is therefore necessary (see Fig. 12).

Various shock patterns may result, depending on the degree of

divergence of the exhaust flow, its Mach number, M , and the ratio of

its pressure p to the outside pressure p . A most typical case is

that shown in Fig. 8 for p > p . The pattern is similar when p < p

except that the shock front does not begin at the rim but emerges as

a stopping shock. It involves conical "incident" and "reflected"

shock fronts connected by a Mach disk shock front perpendicular to the

axis. The characterizations "incident" and "reflected" are used only to

identify these parts of the shock pattern with those occurring in oblioue-

ly impinging shock waves. In a certain sense one may say that in the

present problem the "reflected" shock is the primary phenomenon, the

"incident" one being determined by it. (In certain cases of jets with weak

divergence only a section of the "reflected" shock wave has been observed,

Mach disk and "incident" shock being absent (see Fig. 11).) It should

* This follows from the relation

'«'¥•
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also be noted that the "reflected" shock is of the strong variety, an

occurrence never observed in the reflection of impinging shock waves.

The configuration shown in Fig. 8 is observed, for instance,

for M ~ 3, if the half-angle of divergence is greater than 15 .

The pressure in front of the Mach disk is found to be of the order of

magnitude 0.1 p to 0.03 p , hence very low. The strength of the Mach

shock is very great, its excess pressure ratio being of the order of mag-

nitude 20 to 50.

A few words about the continuation of the jet may be added. The

jet boundary will curve inward up to the place where the stopping shock

meets the boundary. This shock front will there be reflected as a rare-

faction wave and the jet boundary will diverge again. The whole process

repeats itself. Due to the action of viscosity at the jet boundary this

periodic jet pattern will eventually be blurred.

84. Thrust . Exhaust flow out of a nozzle is an essential ele-

ment of a rocket motor. The burnt gases which are formed in the

combustion chamber under high pressure acquire a considerable mo-

mentum when they are ejected through the nozzle. Accordingly, as

a reaction to this momentum flux, a thrust results which acts against

the rocket in the direction opposite to that of the exhaust flow.

The total thrust against the rocket can easily be expressed in terms

of the quantities characterizing the exhaust flow, and conditions

can be formulated for the shape of the nozzle such that a maximum

thrust is provided.

It is customary to define the total thrust F as the difference

(13)

of the internal thrust Fj., resulting from the pressure acting against

the wall of the chamber and the nozzle, and the external counter-

thrust Fa that would result if atmospheric pressure were acting

against the outer surface of the body in which the nozzle is im-

bedded.

To evaluate the thrust we consider the surface S through the

exit rim on which the speed and hence the pressure is constant.

The internal thrust F
i

(counted positive when acting against the

stream) is equal to the sum of the axial component of the momentum

M transported through S to the outside per unit time and of the

resultant pressure force, P, exerted against the surface S from
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the inside.

/ atm

/ atm

Figure 13

Forces contributing to the thrust

We denote by A the projection of the surface S on a plane

perpendicular to the axis; then P = pA and the internal thrust is

(14]

The external thrust is clearly

pA.

(15)

counted positive when acting in direction of the stream.

We consider the total thrust

(16) F = Fi - Fa = M + (p - pa )A

a function of the position of the rim, imagining that the nozzle

may be continued or cut off at various places. In particular, we

* I.e., the total pressure force, Fj, - P, exerted against the vol-

ume of gas enclosed by chamber, nozzle and surface S, equals the

momentum M transported in unit true through S.
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are interested in discovering for which position of the rim the

total thrust is a maximum. Tne answer can be given completely.

The total thrust la a maximum when the no7.zle is cut off

at such a place that the pressure at the exit rim .just agrees

with the outside pressure. In that case the total thrust is just

given by the momentum transport

(17) F = M.
1 '

'

max

To prove this statement we consider two different surfaces

S on which the pressure p is constant, P = Pj^ and p = P2 . The

r i
p2

change I M +- p A
J

of the sum of the momentum transport and pres-

sure force is clearly equal to the axial component of the pressure

force against the section of the nozzle wall cut out between the

two surfaces S. Accordingly, letting the two surfaces coalesce,

we find

d(M + pA) = pdA.

Consequently

dF = (p - Pa
)dA.

It is thus shown that F is an extremum when p = pa , or dA = 0.

It can be shown that at the throat, where dA = 0, F is a minimum,

while F is a maximum when p = Pa «

The maximum thrust so determined depends on the shape of the

nozzle contour. This shape can be so determined that the maximum

thrust is a maximum for all nozzles delivering the same mass flux.

The position of the exit rim of a fixed nozzle contour for

which the maximum thrust is obtained may be characterized by a

subscript (m ) . The surface S through this rim is S^ the speed o^

on Sm is solely determined by formulas (4), (6), and /7) through

the condition that the pressure Pm on % equals pa . The maximum

thrust is given by

(18) I
'm
=Mm =

%x fcosedG

where 9 is the angle of the flow direction with the axis and dG

the element of the mass flux per unit time G. Clearly Fm - o_G
i tt

is a maximum for fixed mass flux G if the exhaust velocity is con-

stant and has axial direction.
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85. Perfect Nozzles , A nozzle which produces a constant axial

exhaust flow may be called a perfect nozzle . Such perfect nozzles can

be designed without difficulty. As a matter of fact, whenever a diverg-

ing exhaust flow is given, it is possible, by re-routing only a section

of it, to make the flow "perfect", i.e. , to guide it so that it eventu-

ally acquires constant axial velocity. Every streamline of such a per-

fect flow yields a perfect nozzle. The possibility of constructing a

perfect flow has already been indicated by Prandtl and Busemann [3] ,[45], [47'

(see also [49]).

Perfect nozzles can be constructed so as to produce any desired

exhaust velocity; that is , expressed in dimensionless terms , the Mach

number of the exhaust flow, or what is equivalent, the ratio of chamber

to exhaust pressure can be prescribed. The first step in the construc-

tion consists in securing an exhaust flow, the basic "flow" F , which

leads at least to the desired exhaust velocity. The re-routing process

for a two-dimensional exhaust flow is so simple that it may be described

briefly. First the point A on the axis should be found where the basic

Figure 14
Construction of perfect
two-dimensional nozzle.
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exhaust flow F attains the desired exhaust velocity a . Through

the point A tiro lines are drawn, the backward Mach line C which is^ o ' o

determined by the flow F , and the straight line D which would be" o' o

the forward Mach line of a flow E with constant parallel velocity a

(pressures p and sound speed c being determined through the condi-

tion of isentropic change). The angle between the line D and the

axis is just the Mach angle oc of the flow E . Up to the line C the

original flow F will be retained j in the sector G between C and D

the flow will be changed , and beyond D it will be parallel with the

constant axial velocity a . To determine the new flow in the sector

G, the known directions of the Mach lines of the flow F should be marked
o

on the line C . Straight lines, D, should then be drawn from C in these
o D * * o

directions so as to cover the sector G. Further, the known direction of

to be transplanted parallel to itself along the lines D. Thus the direc-

tions of the new flow F in the sector G are determined. Through integra-

tion of this field of directions , beginning at C , the streamlines of the

new flow F are obtained. Beyond the line D the flow is to be continued

with constant axial velocity. We note that the streamlines so constructed

suffer a change of curvature on crossing the Mach lines C and D .

Perfect nozzles can also be designed for three-dimensional flow

with axial symmetry. Although the construction is no longer so simple

as for two-dimensional flow, it has been possible to carry it out.

* See Frankl (quoted in Kisenko [48]), Busemann [47] and Friedrichs [49]
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B. Conical Flow

86. Qualitative Description * The second type of problem treated

in this chapter, that of "conical flow", permits a rather far-reaching

analysis on the basis of the differential equations. It concerns steady,

isentropic, irrotational flow with symmetry about the x-axis and under a

further assumption, that the flow is conical, i.e., that the quantities u,

p , p, q retain constant values on cones (considered infinite) with a

common vertex, the origin. Flow satisfying this condition may occur, for

instance, at the conical tip of a projectile opposed to a supersonic

stream of air.

The flow against a cone is analagous to the flow against a wedge

and, as in the case of a wedge, two cases must be distinguished. If the

cone angle is not too large, the deflection of the flow is achieved by

a shock front which begins at the tip of the cone and, has the shape of

a straight cone (Fig. 14a). If, however, the cone angle exceeds a cer-

tain extreme value (Fig. 14b), no such conical shock front is possible.

Instead, a curved shock front stands ahead of the cone. Only the first

Figure 14a
Conical shock front and

conical flow resulting from
supersonic flow against a
cone with a sufficiently

small angle.

Figure 14b
Curved shock front in

supersonic flow against
cone with a large angle.
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case can be handled on the basis of the assumption that the flow is

conical. We therefore confine ourselves to this case.

In reality projectiles are not represented by infinite conesj

they have a conical tip and then taper off, e.g., into a cylindrical

shape of finite length. Thus, farther back, the wave from the conical

tip interacts with other waves, such as expansion waves ceding from the

bend of the projectile.* It is worth while noting that, in the case of

a shock wave standing ahead of the projectile, the distance, under other-

wise equal conditions, is the greater the farther the cone extends before

tapering off.

Returning now to the idealized case of a strictly conical flow, we

may describe the situation qualitatively as follows. Ahead of the shock

front the air is in a constant state flowing in the direction of the axis

with constant velocity. Sxnce the shock front is a straight cone making

everywhere the same angle with the incident flow, the state behind it is

also constant and it is tnerefore clear that the flow is isentropic behind

the shock front. Moreover, it can be continued so as to satisfy the basic

assumption that the flow is conical. The state of the air beyond the

shock cone will, therefore, be constant on co-axial cones. The angle

between such a cone and the flow direction approaches zero when this

cone approaches the obstacle cone#

-K-ft

87. The differential equations. For a mathematical treatment,

let x be the abscissa along the axis, r be the distance from the axis,

u and v be the components of the flow velocity "q in the direction of

the axis and in the direction perpendicularly away from the axis respect-

ively. The differential equations for isentropic flow are then

* For "two-dimensional projectiles" a rather complete theory is possible

on the basis of the material in Chapter IV. See also the paper by
Epstein [35].

**See Busemann [59] and Taylor and Maccoll [57], [58].
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This equation of second order assumes a form, which is particularly

amenable to treatment when v is introduced as function of u. From

(25) we have

(27) t = -v.

Differentiation of this relation with respect to t yields

(28) ut= "7

This relation together with (27) and (25) gives

(29) v = -IH-
z uu

Insertion of equations (27), (28) and (29) into (26) gives

(-sH-s)-s- r - 2—v =uu «c2
v
u

u

(30) = ! + J> , <
u » nJ2

Every section of a solution of equation* (30) gives a flow provided that

* It may be mentioned that Busemann gives an elegant geometric interpre-

tation of equation (30):

Figure 16

(31) R =
l>2

R being the radius of curvature
and the meaning of N and U being
obvious from Fig. 16.
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condition

(32) Yuu ±

is satisfied, because then i and r can be introduced as independent

variables by vu = - t = - x/r. Thus the ray to which values of u and

v are to be attached is determined. The direction of this ray in the

x.y-plane is evidently normal to the curve v = v(u) at the point (u,v)

in the hodograph plane.

The flows so obtained are in a certain way analagous to centered

simple waves for two-dimensional flows. However, while in the case of

two-dimensional steady flow the simple waves are represented in the

hodograph plane by two families of fixed characteristics (epicycloids),

the images of the special flows considered here in the hodograph plane

correspond to a greater variety of curves, namely, a whole family through

each point.

88. Conical shocks . The relations governing the transition

through a oonical shock are the same as for the plane oblique shock;

the curvature of the shock cone does not enter. 7,
rnen the shock cone is

a straight cone, as is assumed, the jumps of u,v,p, and of le entropy

are constant along each ray when the assumption of conical flow is

satisfied on one side; consequently this assumption remains satisfied

on the other side. The flow may continue as a conical flow with con-

stant entropy after crossing the shock. In other words, the assump-

tion of proper conical snooks is compatible with the basic assumption.

Suppose a flow characterized by p , p , u , v crosses such a

a conical shock. (I t is to be noted that this can occur only if the

speed q = ^v^ + y^ is supersonic, i.e., if qQ > c ) . The velocity

q]_ = (ult v^) immediately past the shock front is located on the loop

of the strophoid in the u,v-plane. The inclination of the ray which

generates the shock cone is perpendicular to the straight connection

between (u , v ) and (ulf v-^) . The positions of the cones corresponding

CONFIDENTIAL



CONFIDENTIAL 260 v-c

to the cases (a)

M
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The discussion of conical shock fronts by Busemann and by

Taylor and toccoll is restricted to case (a) with u
q

= c^ > and

v =0. This case (Fig. 18a) occurs when a constant axial flow is
o

deflected by a conical projectile. We shall indicate briefly how

Busemann treats this oroblen. ihrouph the shock transition relations

the flow velocity (u_ , v, ) past the shock is given (observe that the
1a2

third transition relation guarantees that the Bernoulli constant -^q

A solution of equation (30)is the same before and after the shock)

is to be found whose graph passes through the point (u., v ). The

slope v of this curve is given by (33). The solution is now to be

so corr-inued that t = x/r increases, i-e. , in view of (27) v decreases

up to a point at which the flow and the ray have the same direction,

i.e. , where v/u = x/r, or where the normal passes through the origin

j

such a point may be called an end point. This end point depends on

the choice of the point (u.,, v., ) on the strophoid. The manifold of

endpoints that can be reached from (a , 0) forms a curve which Busemann

calls the "apple curve" in view of its peculiar shape, see Fig. 19.

In this procedure the shock is

prescribed and the end direction

is found. If the end direction

is prescribed one may find the

corresponding point on the apple

curve by intersecting it with

the appropriate ray through the

origin. In general, there will

be two intersections of which the

one corresponding to the weaker

shock is likely to occur in

reality.

Figure 19
Apple curve sho^Ting all possible end
velocities that can be reached after
crossing a conical shock front from a
state with a given incoming velocity.

* It may be mentioned that in the procedure of Taylor and Maccoll one

begins with the end direction, the shock then being found by follow-

ing the solution of (26) backwards. This procedure has advantages

when single cases are to be investigated.
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The values of pressures and angles calculated on the basis of

the preceding considerations agree exceedingly well with experimental

values (see Taylor and Maccoll [57], [58]).

C. Spherical Waves

8o. General remarks . Spherical wave motion is obviously a sub-

ject of basic importance for the study of explosion waves in water, air

and other media. In spherical motion the velocity is radial and its

magnitude as well as that of density, Pressure, temperature, and entropy

depends only on the distance r from the origin and on the time t. Such

motion might be considered in a certain sense as somewhat analagous to

one-dimensional motion in a tube under the influence of a piston. In

the three-dimensional space the piston is replaced by an expanding (or

contracting) sphere which impresses a motion on the "medium inside cr

outside.

The simplest model would be that of a "spherical piston" pushing

at constant velocity into an infinite surrounding medium. Such a model

corresponds to the uniform "piston motion" in one dimension as studied

in Chapter III, in particular in Art. 41. One should bear in mind,

however, that in three-dimensional space an energy supply at an increas-

ing rate is required to maintain constant speed of the piston.

In better agreement with actual situations is the assumption

that the total energy available for the motion is given. This is the

case for spherical blast waves caused by the explosion of a given mass

of explosive.

TThile in the first of these two models the shock wave racing

ahead of the piston has constant speed so that the shock conditions are

compatible with the assumption of isentropic flow on both sides of the

* With slight modifications the following considerations apply also to

cylindrical waves .

CONFIDENTIAL



V-90 263 C0N7IDE1TTIAL

discontinuity, this is no longer true of blast waves. In the latter

the strength of the shock, and hence the change of entropy, rapidly

decreases so that behind tne shock front the flow is no longer isen-

tropic . Moreover, in blast waves the air or water, after having

crossed the shock front and having thereby undergone compression, will

rapidly expand again to a pressure in general even below that in front

of the shock wave, This suction phase is an important feature of mo-

tion caused by ejcplosions.

A phenomenon of major importance is that of reflection of spherical

shock fronts ; a contracting spherical v/ave preceded by a shock front may

be "reflected" at the center with the result of enormous pressure in-

crease behind the reflected shock front.*

At the present state of knowledge all that can be done along the

lines of mathematical analysis is to find and to discuss some particular

solutions of the differential equations of spherical waves which are

approximately in agreement with the additional conditions of the prob-

lems. One may hope that these solutions display at least qualitatively

important features of reality. It is remarkable that such an unambitious

approach seeas to be sufficient to lead to a certain degree of under-

standing and control of actual phenomena.

90. Auaxytical formulations . Assuming that the velocity is

radially directed and that the radial component of velocity u, the

pressure p and the density depend only on the distance r from the

center at the time t, the differential equations are (see II (F),

Art. 8).**

(34) u t + uur -«- ip
r = 0,

(35) A + Tr + (u
r + ~

] = °»

(36; (Pf

*3uch shock reflection in three dimensions with half- spherical, cylind-
rical or conical symmetry probably plays a decisive role in hollow
charge effects

**V/e have used here the notation r for the distance from the origin in-
stead of the x employed previously.
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assuming that the medium is polytropic with the adiabatic exponent x.

The third equation expresses the fact that the entropy is constant along

the path of a particle. It is not assumed that the entropy is constant

throughout since, as stated before, the entropy does not in general re-

main constant behind a shock front. If the head of the wave is given as

a function

(37) r = R(t),

the total energy carried by the wave motion is expressed as

(38) E = 4tt/ j-^Ou
S+-j-3j-plr2dr.

E is clearly a function of the time t.

Another important quantity, the impulse I per unit area received

by a section of the surface of the sphere at distance r, is given by

»oo

(39) I =
|

Pdt

f.

where T = T(r) is the time at which the wave front arrives at the place r,

T(r) is connected with R(t) through r = R(T(r)). Clearly, I is a func-

tion of r.

91. Special solutions. According to classical procedure, one may

obtain particular solutions of the differential equations by assuming a

specific form for the solution to reduce the problem to one involving

ordinary differential equations. Thus solutions are obtained which have

been called progressing waves,* These are solutions, conveniently as-

sumed in the form

(40) u = t*|u(|),
j

O=t
8
P(^),^ = t

£ ^T(£)

where {• is the combination

-06
(41) § = rt .

* Concerning a more general concept of "progressing wave" see, for in-

stance, Courant-Hilbert [12], Vol. II, p. 448.
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In other words , a progressing motion is a special motion for which the

quantities ut
-/<3

, pt
*

, pt~
E ~* appear constant for an observer who moves

on a path given by rt
-oc

= constant. The exponents oc, /3 , S, & should

be so adjusted that upon insertion of (40) and (41) in (34), (35), (36),

equations result which involve only the variable \ and no longer the

variables r and t explicitly. One immediately verifies that to this

end one must set

(42) /3 = c* -1 , £ - Zfi

The equations for U, P , T are then

(34') (U-06)(£U' + U) - PU + $T« + 2T + £f- T =

( 35 .) (u -U)\Y * oP + CfcU' + 3U)P =

(36') (U -od)|T« - (y- T)^U -ot)+^T + '2/3 - (y - l) &)? - 0.

It is interesting that after elimination of -^p- by (35'), equa-

tions (34') and (36') can be reduced to one equation of first order for

T as a function of U."

The equations (34'), (35'), (36') are, of course, amenable to a

numerical solution.

When the head of the wave is given by

(37') r = R(t) = Zt , or £ = Z,

Z being a constant , we obtain for the energy

(38-)

and for the impulse oer unit area

8-1

iS -2 /V*rM p^

(39') I
1

~^" +2 C P( \ )T( fc ) .,,

* See Guderley [641.
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92. Discussion of Special Cases . We shall discuss the simplifi-

cations resulting frco several special assumptions.

(a) If the flow is isentropic , implying constant strength of

the shock ahead of it, then relations (40) and (42) require that

(43) S = j*—^ .

If in particular S = (3 = 0, ot-1, the head of the wave

r = St moves with constant velocity E and p and p are constant be-

hind it. Such wave motion is therefore compatible with a constant

shock front.

As mentioned before, a wave of this type will result if a

sphere is suddenly expanded with constant velocity. After crossing

the shock front, every air particle acquires the same pressure, density,

entropy and velocity. Thereafter, as can be shown, the air particles are

further compressed and accelerated and their velocity approaches asymptot-

ically that of the expanding sphere.

(b) Except for the case just mentioned, a shock at the head of

the wave is not exactly compatible with a progressing wave. Strong

shocks , however, are compatible to a good approximation, if the exponents

p and S are properly related.

Denoting by P the density ahead of the wave, and setting the

pressure ahead of the wave equal to zero,* the shock transition condi-

tions reduce to

(44) /»"/^/>oi P = (l-/?)Rf ,
u = (1 - |£)R,

as can be inferred by setting p = 0,^, = 0, uQ = 0, and 1 = R in

* This is the simplifying approximation corresponding to the assumpti<

of a strong shock.
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IV (i 1

) (ii' ), (iii 1 ).Insertion shows that these relations are compat-

ible with (40), (42), and (37') only if

(45) S = 0,

i.e., if the density remains constant on the paths r = £, t. For the

wave motion behind the shock front one then obtains the boundary

values

(46) pes) =/^"Vo> T(z) = y^ 1 -/^/3 + 1)2
>

U(S) = (1 -/J-
2
)(/3 + 1),

A situation of particular interest arises if the shock wave

contracts toward the origin and is eventually reflected by another

progressing wave preceded by a strong shock. Such an occurrence

can be expressed in terms of progressing waves of the type considered

here only if 06 = .717 (or 06 = .834 for cylindrical waves ).* It is

very significant (see [64],?^>4) that the pressure past the reflected

shock front is about 26 times the pressure behind the incident shock

front (for air, i =1.4) as compared with a 17-fold increase for

cylindrical motion and an 8-fold increase for one-dimensional mo-

tion.

(c) The condition that the energy remains constant leads by

(38') to the condition

(47) S = -506 + 2.

If, in addition, the wave is to possess a strong shock at its head,

so that i = 0, we have

(48) fi
= -§, oc = §, e = -§.

* See Guderley [64].
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The motion of the shock front is then given by

2

(49)

The pressure behind the shock,

6
4 , n 2s -=-2 ~5 _ 4M 2s -5D-3

(50) p = £ (1 -X ) ro^t =^l-p.)f,oS. R

approaches zero as t -» oo. Consequently the assumption that the

shock is strong will eventually be violated. As long as this assump-

tion is valid, however, the solution represents a progressing blast

wave . G. I. Taylor, who first recognized its existence, has carried

out the solution numerically and has been able to draw important con-

clusions from the results (see [63] ), although actual blast waves

are in general not of this simple , "progressing" type.

The difficulties of determining non-propressing snh^rical

waves are very great and for that reason inferences from v irious ap-

proximate treatments have been attempted. The " incompressible approx-

imation" arises when one lets $ , and accordingly c , become infinite

while p remains constant. For water, with *i = 7, this appears to be

acceptable. The " sonic approximation" results when the deviation

from the state at rest is small so that only linear terms in these

deviations need be considered."

Finally it may be mentioned that certain conclusions can be

drawn from the differential equations (l), (2), (3) by a purely

dimensional analysis. Any solution,
/u(r,t),^'(rf t ), ^(^t),

leads to a variety of other solutions

For such approximate treatments see Bethe , Kirkwood [65].
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x o o' \ o oJ \ o o/

when r , t , c , c , p are any fixed quantities (of obvious dimensions)

satisfying

(62 > r
o = coV po = |°o

c
o

2
•

of the shock wave. In the case of a blast wave with the energy E one

may set

Then one finds for the impulse per unit area (see (39), Art. 91)

2\l/3

<*> -^m-¥ m
In conclusion, it might be emphasized again that the theory of

flow in three dimensions is still in a state where one can proceed

only by groping for such clues as may come from typical examples which

can be handled by some special device. There is much need for, and

some prospect of, progress in this field.
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LIST OF SYMBOLS

Numbers refer to pages on which symbols are defined.

A 5, 11, 23, 234

A 235

A
t

2ZQ

A 242
e

B 5, 11, 23

C 13, 23, 27

D 23, 254

E 6, 23, 104, 158, 254

F 12, 253

F 252
max
G 32, 43, 234, 253

J 69

L 24, 158, 183

t 186

M 32, 89, 252

N 32, 158, 183

N 186

P 70

(? 149

R 258, 264

d 114

£ 114

S 66, 252

S 114

S 114

S« 202

S« 203

T 4, 114, 264

T> 114

* Note that the same symbol may have different connotations , depending
on where it is used.

CONFIDENTIAL

T<



CONFIDENTIAL










