

THE LIBRARY OF
THE UNIVERSITY OF CALIFORNIA LOS ANGELES

S U P P L E M E N T

TO THE

E N C Y C L O P Æ D I A,

$$
\begin{gathered}
\text { DICTIONARY } \\
A R T S, \quad S C I E N C E S,
\end{gathered}
$$

A ND
MISCELLANEOUS LITERATURE.

IN THREE VOLUMES.

Illustrated with Copperplates.

NON IGNORO QU在 BONA SINT, FIERI MELIORA POSSE DOCTRINA, ET QUE NON OPTIMA, ALIQUO MODO ACUI TAMEN, ET CORRIGI POSSE.-CICERO.

$$
\begin{array}{cc}
\text { V O L. } \quad \text { I. } \\
\text { A. } & \\
\hline
\end{array}
$$

pobiladelpyia :

PRINTED BY BUDD AND BARTRAM,
FOR THOMAS DOBSON, AT THE STONE HOUSE, $\mathrm{N}^{0} 4 \mathrm{I}$, SOU IH SECOND S'TREET.

$$
\overline{1803}
$$

ADVERTISEMENT

By the Rev. Dr GLEIG to the EDINBURGH EDITION.

IT would ill become me to dismiss these Volumes from my hands without acknowledging that, from many of the most valuable disquisitions which they contain, I can claim no other merit than that of having ushered them into the world.

Those who have read, and who understand, the articles in the Encyclopredia Britannica, which were furnished by Professor Robison of Edinburgh, can hardly need to be informed, that to the same eminent philosopher I am indebted for the valuable articles Arch, Astronomy, Carpentry, Centre, Dynamics, Electricity, Impulsion, Involution, and Evolution of Curves, Machinery, Magnetism, Mechanics, Percussion, Piano-Forte, Centre of Position, Temperament in Music, Thunder, Musical Trumpet, Tschirnhaus, and Watchwork, in this Supplement. Of a friend and co-adjutor, whose reputation is so well established as Dr Robison's, I am proud to say, that, while I looked up to him, during the progress of this Work, as to my master in mathematical and physical science, I found him ever ready to support, with all his abilities, those great principles of religion, morality, and social order, which I felt it my own duty to maintain.

To Thomas Thomson, M. D. of Edinburgh, a man of like principles, I am indebted for the beautiful articles Chemistry, Mineralogy, and I'egetable, Animal, and Dyeing Substances; of which it is needless for me to say any thing, since the Public seems to be fully satisfied that they prove their author eminently qualified to teach the science of chemistry.

The account of the French Revolution, and of the wars which it has occasioned, has been continued in this Supplement by the same Gentlemen by whom that account was begun in the Encyclopredia; and, owing to the cause assigned in the article, probably with the same merits and the same defects.

Suppi. Vol. I.

My thanks are due to Dr William Wright for his continued kindness in communicating much curious botanical information : and to Mr Professor Playfair of the university of Edinburgh, for lending his assistance, occasionally, in the mathematical department ; and for writing one beautiful article in that science, which is noticed as his in the order of the alphabet.

In compiling this Supplement, I have made very liberal use of the most respectable literary and scientific journals, both foreign and domestic; of all the late accounts of travels and voyages of discovery, which have obtained, or seem indeed to deserve, the regard of the Public ; of different and opposite works on the French revolution, and what are emphatically called French principles; and even of the most approved Dictionaries, scientific and biographical. From no Dictionary, however, have I taken, without acknowledgment, any articles, except such as are floating everywhere on the surface of science, and are the property, therefore, of no living author.

After all my labour and industry, which, whatever be thought of my other merits, I am conscious have been great, no man can be more sensible than myself, that the Encyclopædia Britannica, even with the addition of this Supplement, is still imperfect. It would continue to be so, were another Supplement added to this by the most learned and laborious man on earth; for perfection seems to be incompatible with the nature of works constructed on such a plan, and embracing such a variety of subjects.

No candid reader will suppose that, by expressing myself thus, I mean to censure the plan of the Encycloprdia Britannica in particular; for, to the general excellence of that plan I have elsewhere borne my testimony, which I have yet seen no reason to retract. Experience has indeed led me to think, that it is susceptible of such improvements as would enable the principal Editor to carry the work nearer to perfection, even with less trouble to himself; but the purchasers of the third edition and this Supplement need not regret the want of those improvements, for they are such as few would discern, who have not paid the same attention that I have done to dictionaries of arts, sciences, and literature.

Before I take leave of the reader, I must account for the omission of one or two articles (chiefly biographical) which I had given him reason to ex-
pect in these volumes. It was my intention at first to introduce into the Supplement articles on every subject which had been admitted into the Encyclopædia itself; and hence in the first supplementary volume will be found biographical sketches of men whose characters, though in some respects remarkable, have very little connection with science, arts, or literature. From this part of the original plan I was soon obliged to deviate. So many applications were made to me to insert accounts of persons who, whatever may have been their private virtues, were never heard of in the republic of letters, that I was under the necessity of excluding from the second volume the lives of all such as had not either been themselves eminent in literature, or in some liberal art or science, or been conspicuous as the patrons of science, arts, and literature, in others. Hence the omission of the life referred to from Aubigne in the first volume, and of one or two others, to which references are made in the same way. The life of Mr James Hay Beattie of Aberdeen, whose originality of genius, ardent love of virtue, and early and eztensive attainments in science and literature; raise him almost to the eminence of Barretier, of whom we have so pathetic an account from the pen of Johnson, I omitted with regret; but I thought not myself authorized to publish what his father had then only distributed among a few particular friends. For the omission of the life of Soame Jenyns I can make no apology: it was the consequence of forgetfulness.

For the errors of these two volumes, whether typographical or of a nature more important, I have perhaps no occasion to solicit greater indulgence than will be voluntarily extended to me by a generous public. The progress, however, of science, and of the revolutionary events in Europe, has been such, since great part of them was printed, that I must request the reader, in justice to myself, to proceed directly from the article Galvanism to Torpedo, and from Revolution to the life of Marshal SuwoRow.

Under the title Translation, both in the Encyclopredia and in the Supplement, expressions are made use of, which may lead the reader to suppose that Mr Fraser Tytler was indebted for the general laws of the art, which he so ably illustrates, to Dr Campbell's Preliminary Dissertations to his Translation of the Gospels. It is but justice to declare my
perfect conviction, as it was that of Dr Campbell himself, that Mr Tytler and he were equally intitled to the merit of having discovered those laws; and that howerer coincident in opinion, neither of them, when composing their separate works, had the smallest suspicion that the other had ever employed his thoughts on the subject. The only difference seems to have been in the mode of their discovery: Mr Tytler having deduced the laws of the art by regular analytical inference from his own description of a perfect translation ; whereas Dr Campbell appears to have fortunately diseovered them without that process of deduction.

Tire publisher begs leave to add to the foregoing, that the different Geographical articles so far as relate to America are taken from the Rev. Dr Morse's American Gazetteer. The article United Stctes is extracted from the new Edition of Dr Morse's Universal Geography, and the article Nezo England was written by the same author on purpose for this Supplement. The account of the Lucernal Microscope under the head of Optics was furnished by the Rev. Dr John Prince, the author of the improvements. The description of the American Air Pump in the article Puemmatics, was likewise inserted by permission of Dr Prince, the inventor. The corrections of the account of this Pump which was published in the Encyclopædia, are original. The observations on Vision by Dr Hosack of New York were published by his permission. The two articles of Artificial Horizon, and the Nere Log are published in an appendix by permission of Mr_{r} Gould the Patentee.

SUPPLEMENT

TO THE
ENCYCLOPRDIA.

A B E

Aaronfburg II. $\underbrace{\text { Aberration. }}$

AARONSBURG, a poft town in Northumberland county, Pemnfylvania, lies near the head of Penn's creek, it is chiefly a German fettlement, about 30 miles wefterly froni Lewifourg and 40 W . hy N. from Sunburs, 160 miles W. N. W. from Phi-ladelphia.-Morse.

ABACISCUS, in architecture, the fame with A. bacus; for which, fee Encyclopadia.

ABACOOCHEE, or Coofee, a large rivet rifing in the S. W. Territory, paffurg into Georgia, through the Chrerokee into the Creek country, where it unites with the Oakfufkee, and forms the Alibama.-ATorse.
ABATIS, or Abattis, is, in military language, the name of a kind of tetrenchment made of felled trees. When the emergency is fudden, the trees are merely laid lengthwife befide each other, with their branches pointed towards the enemy, to prevent his approach, whilt the trunks ferve as a breattwork before thofe by whom the abatis is raifed. When the abatis is meant for the defence of a pafs or entrance, the boughs of the trees are generally fripped of their leaves and pointed; the trunks are planted in the ground; and the boughs are interwoven with each other. It is needlefs to add that the clofer the trees are laid or planted together, the more fecure is the defence which they afford; and if, when they are planted, a fmall ditch be dug towards the enemy, and the earth thrown up properly againft the lower part of the abatis, it will be very difficult to pais it if well defended.-Simes's ATilitary Guide.

A BBEVILLE County, in Ninety-fix diftrict, S. Carolina, bnunded on the N. E. by the Saluda, and on the S. W. by the Savannah, is 35 miles in length and 21 in breadth; contains 9197 illabaitants, including 1665 flaves. The foil is rich and well watered. -Morse.
ABBREVIATION os fractions, in arithmetic and algebra, is the reducing of them to lower terms; which is done by dividing the numerator and denominator by fome number or quantity which will divide both without leaving a remainder of either.

ABERRATION, in optics (in Encycl.), refers the reader to the article Optics, $\mathrm{n}^{\circ} 17,136,173$. It flould have referred him to Optics, $1^{\circ}{ }^{\circ} 17$, and $25{ }^{1}$ -256 .

Aberration of the l'ifual Ray, is a phenomenon, of which, though fome account of it has been given in the Suppl. Vol. I.

A B E

Encyclopedia (fee Aberration, in aftronomy; and Aberration, the article Astronomy, $n^{\circ} 337$.), one of the mott candid of our correfpondents requires a fuller explanation. If fuch an explanation be requifite to him, it muit be much more fo to many orhers; and we know not where to find, or how to devife, one which would be more fatisfactory, or more familiar, than the following by Dr. Hutton.
"This effect (fays he) may be explained and familiarized by the motion of a line parallel to itfelf, much after the manner that the compofition and refolution of forces are explained. If light have a progreffive motion, let the proportion of its velncity to that of the earth in her orbit be as the line BC to the line AC ; then, the comporion 11 . then, by the compafition of thefe two motions, the par- fig. s. ticle of light will feem to defcribe the line BA or DC , intead of its real courfe BC ; and will appear in the direction AB or CD , inflead of its true direction CB . So that if AB reprefent a tube, carried with a parallel motion by an obferver along the line $A C$, in the time that a particle of light would move oves the fpace BC, the different places of the tube being $\mathrm{AB}, a b, c d, \mathrm{CD}$; and when the eye, or end of the tube, is at A, let a particle of light enter the other end at B; then when the tube is at $a b$, the particle of light will be at e, exacly in the axis of the tube; and when the tube is at cd , the particle of light will arrive at f, fill in the axis of the tube; and, lally, when the tube arrives at CD, the particle of light will arrive at the eve or point C, and confequently will appear to come in the direction DC of the tube, inflead of the true direction BC : and fo on, one particle fucceeding another, and forming a continued Atream or ray of light in the apparent direction DC. So that the apparent angle made by the ray of light with the line AE is the angle DCE, inttead of the true angle BCE; and the difference BCD, or ABC , is the quantity of the aberration."

Aberration of the Plunets, is equal to their geocentric motion, or, in other words, to the fpace which each appears to move as feen from the earth, during the time that light employs in pafling from the planet to the eye of the obferver. Thus the fun's aberration in longitude is confantly $20^{\prime \prime}$, that being the fpace actuaily moved by the earth; but apparently by the fun in 8 minutes and 7 feconds, the time in which light palfos from the fun to the earth. If then the diffance of any A

A D A [4]
 A F G

Adton ter, at sll diltanees, tendin towards each other by a fixed law, we mirht be lid to confider mutual attraction as an efential property of that fubfance, and think no more of inquiring into its caufe, than we think of inquiring into the caufe of extention. But when we find that the fame particles, which at one diftance feem to atract each other, are at is different diltance kept aflunder by a power of repulfion, which no force, with which we are acquainted, is able to overcome, we cannot attribute the principle or caufe of thefe changes to b:ute matter, but muft refer it to fome other agent exesting power according to a fixed law.

It is the fathim at prefent to defpife all metaphyfical inquiries as abltrufe and ufelefs ; and on this account we doubt not but fome of our readers will turn aw: from this difquifition with affected difgult, whillt the peculant and unthinking chermilt, proud of poffefing the fecrets of his fcience, will deem it fuperfluous to inquise after any other natural agents than thofe of which he has been accuftomed to talk. But with the utmolt rebject for the difcoveries made by modern chemits, which we acknowledge to be both numerons and inportant, we beg leave to obferve, that though thefe gertlemen have brought to light many events and operations of nature formerly urknown, and have fhown that thofe opetations are carried on by eftablithed laws, none of them can fay with certainty that he has difcovered a fingle agent. 'The mon enlightened of them indeed pretend not to have difcovered in one department of fcience more than Newton difonvered in another ; for they well know that agents and agency cannot be fubjected to any kind of phyfical experiments. Our very notions of there things are derived wholly f1om our own confcionfnefs and reflection; and when it is confidered what dreadful confequences have in another country refulted from that pretended philcfophy which excludes the agency of mind from the univerfe, it is furely time io inquire whether our confcioufnefs and reflection do not lead us to refer real agency to mind alone. Let this be our apology both to the real :and to the alfected enemies of metaplyyfics for endea. vouring to draw their attention to the prefent queftion. It is a queltion of the utmof importance, as well to fience as toreligion, and if the laws of human thought decide it, as we have endeavoured to thow that they do, we may without hefitation affirm, that the impious philofophy of France can never gain ground but among men incapable of patient thinking.

ACTON, a townthip in Middlefex county, Mafta. chufetts, containing S53 inhabitants; 24 miles N. W. of Bonton.-Mforse.

ACFVORTH, a townhip in Chefnire county, NewHampline, incorporated in 1766, and contains 70.4 inhabitants; 8 miles E. by N. from Charleftown, and 73 N. W. by W. from Portfmouth.-ib.

ADAMAS, a name given, in aftrulogy, to the mon.

ADAMS, a townfhip in Berkhire county, Maffacbufetts, containing 2040 inhabitants, is about 140 miles N. W. of B fton. In the northern part of this town, is a great matural curiofity. A protty mill fream, called Hudfon's Brook, which rifes in Vermont, and falls into the north branch of Hoofuck river, has, for 30 or 40 rods, formed a very deep channel, in fume places 60 fect deep, through a quar-
ry of white marble. Over this channel, where deepelt, fome of the rocks remain, and form a natural bridge. From the top of this bridge to the watcr, is 62 feet; irs length is about 12 or 15 , and its breadth about 10 . Partly under this bridge, and about 10 or 12 feet below it, is another, which is wider, but not folong; for at the eaft end they form one budy of rock, 12 or 14 feet thick, and under this the water flows. The rucks here are moftly white, and in other piaces clouded, like the coarfe marble common at Lanefb rough, and in other towns in Berkfhire county.-Morse.

ADDISON Cosuty, in Vermont, is on the ealt fide of Lake Champlain, and is divided nearly into equal parts by Otter creek; has Chittenden county on the N. and Rutiand counts on the S. and contains $64+9$ inhabitants, difperfed in 21 townfhips. It is about 3° miles by 27: a range of the green mountains paffes through it. Chief town Middlebury, granted Nov. 1761.-ib.

ADSON's Town, lies near the N. E. line of NewJerfey, and S. E. of the Drowned Lands; 27 miles N. of Morvitown, and 24 N . W. of Patterfon. ib.

AOLUS, in mechanics, a fmall machine invented by Mr. Tidd for refrething or changing the air in rooms when it becomes too hot or otherwife unfit for refpiration. The æolus is fo contrived as to fupply the place of a fquare of glafs in the window, where it works, with very little noife, like the fails of a wind-mill or a fmoke-jack.

AEROLOGY is a branch of fcience which was detailed in the Encyclopædia at fufficient length, and according to the principles which were then generally admitted by chemits. Subfequent experiments, however, have flown, that fome of thofe principles are crronenus, and of courfe that fome of the opinions advanced in the article Aerology are inconfifent with facts. Thefe opinions mult be corrected; but infead of fivelling this volume with a new article Aerologr, we apprehend that it will be more acceptable to our fcientific readers to refer them for thofe corrections to the article CHEmistry in this Supplement.

AFFUERA, one of the inlands of Juan Fernandes, on the Suuth Sea coaft, in the kingdom of Chili. Long. from the meridian of Callan, 30. 20. about 400 leagues to the N . of Cape Horn. This coaft fwarms with fea lions and wolves.-Morse.

AFGHANS, are a people in India who inhabit a province of Cabul or Cabulistan (fee Encycl.), and have always been connected with the kingdoms of Perfia and Hindoftan. They boalt of being defcended of Saul the firft king of Ifrael ; of whofe advancement to the royal dignity they give an account which deviates not very widely from the truth. They fay indeed, that their great anceltor was raifed from the rank of a thepherd, not for any princely qualities which he poffeffed, but becaufe his ftature was exafly equal to the length of a rod which the angel Gabriel had given to the prophet Samuel as the meafure of the fature of him whom God lad deftined to fill the throne of Lirael.

SaUl, whofe defeent, according to fome of them, was of Judah, and according to others of Benjamin, had, they fay, two fons, Berkia and Irmia, who ferved David, and were beloved by him. The fons of Berkia and Irmia were Afghan and Usbec, who, during

A F G

the reigns of David and Solomon, diftinguithed them. felves, the one for his corporeal Atrength, and the other for his learning. So great indeed was the itrength of Afyban, that we are told it Iruck terror even into demons and genii.

This hero uled frequently to make excurfons to the mountains; where his progeny, after his death, ettablifhed themfelves, lived in a ltate of independence, built forts, and exterminated infidels. When the felect of creatures (the appellation which this people give to M1ahomet) appeared upon earth, his fame reached the Afobans, who fought him in multitudes under their leaders Khalid and Abdul Reipid, fons of Walid; and the prophet honouring them with this reception "Come, O NTuluc, or Kings!" they affumed the title of Melic, which they retain to this day.

The hiltory, from which this abltrat is taken, gives a long and uninterefting detail of the exploits of the Afghans, and of their zeal in overthtowing the temples of idols. It boafts of the following monarchs of their race who have fat upon the throne of Defli: Sultan Benlole, Afyban Lodi, Sultan Secander, Sultan Ibrahim, Shir Shah, Islam Shah, Adil Shah Sur. It alfo numbers the following kings of Gaur defeended of the Afghan chiefs: Solaman Shab Gurzani, Beyazid Shab, and Kurb Sbah; befides whom, their nation, we are told, has produced many conquerors of provinces. The Afghans are fometimes called Solaimani, either becaufe they were formerly the fubjects of Solomon king of Ifrael, or becaufe they inhabit the mountains of Solomon. They are likewife called Pa. tans, a name derived from the Hindi verb Paina "s to rufl" which was given to them by ne of the Sultans whom they ferved, in confequence of the alacrity with which they had atticked and corquered his enemies. The province which they cocupy at prefent wis formerly called Rob; and hence is derived the name of the Robillas. The city which was eftablifhed in it by the Afghars was called by them Pailhwer or Paiker, and is row the name of the whole dittrict. The fects of the Afghansare very numerous; of which the principalare, Lodi, Lokouni, Sur, Serwani, Tufufwibi, Bangifh, Dilawaui, Khetti, Molin, Khai, and Beloje. They are MTufuimans, partly of the Sumni, and partly of the Sbiek perfuafion.

Though they are great bnalters, as we have feen, of the antiquity of their origin, and the reputation of their race, other Mufulmans rejest their claim, and confider them as of modern, and even of bafe extraction.

This is probably a calumny; for it feems inconffent: with their attention to the purity of their defcert-an attention which would hardly be paid by a people not convinced of their own antiquity. They ale divided into four clafles. The firft is the pure clafs, confilting of thofe whofe fathers and mothers were Afybans. The fecond clafs confifts of thote whofe fathers were Afgbans and mothers of mother nation. The third clafs contains th fe whofe mothers were Afgbans and fathers of another nation. The fourth clafs is compofed of the children of women whofe mothers were Afybans and fathers and hurbands of a different nation. Perfons who do not belong to one of thefe clalles are not called Afyburis.

This people have at all tinues diftinguifhed themfelves by their courage, both firgly and unitedly, as principals and auxilinies. They have conquesed for their
own prinees and for foreigners, and have always been confidered as the main ftrength of the army in which they ferved. As they have been applanded for virtues, they have alfo been reproached for vices, having pometimes been guilty of treachery, and of acting the bafc part cuen of affafins.

Such is the account of the Afghans pablithed in the fecond volume of the Afiatic Refearches. It was tranflated from a Perfian abridgment of a book written in the Pufbto language, and called The Secrets of the Afghans, and communicated by Henry Vanfittart, Efq; to Sir William Jones, then Prelident of the Asfiatic Society. Their claim to a defcent from Saul king of If: rael, whom they call MEelic Talut, is probably of not a very ancient date; for the introoustion of the angel Gabriel with his rod, gives to the whole fory the air of one of thefe many fictions which Mahomet borrowed from the later rabbins. Sir William Jones, however, though he furely gave no credit to this fable, feems to have had no doubt but the Afghans are defcendants of Ifrael. "Wre learn (fays he) from Esdras, that the ten tuibes, ster a wandering journey, came to a country called Arfureth, where we may fuppofe they fetthed: now the Afyhans are faid by the belt Perfian hiftorians to be dificended from the \bar{F} trows. They have traditions among themfelves of fuch a defcent; and it is even afferted, that their families are diftinguifhed by the names of \widetilde{F} ewifb tribes, although, fince their converfon to Iflazz, they Atudioufly conceal their origin from all whem they admit nor to their fecrets. The Puhto language, of which I have feen a dictionary, has a manileft refemblance to the Chaldaick; and a confiderable ditlrist under their dominion is called Hawareb or Hazaret, which mieht eafily have been changed intn the word afed by Esdras. I ftrongly recummiend an inquiry into the literature and hithoy of the Afghans."

It is to co-eperate will this accomplithed icholar that we have ineited into one Work this fhort account of that fingnlar peuple: and it is with pleafure that, upon the authority of Mr Vannitart, we can add, that a very particular accoum of the Afghans has been written by the late Hafiz Rahbat K'ban, a chief of the Rabillabs, from which fuch of our readers as are oriental fcholars may derive much curicus information.

AGAMENTICUS, a mountain of confiderable elevation in the diftrict of Maine, diftant about fix miles from Baid Head, and eight from York habor. Lat. 43.16. N. and 70. 39. W. long. from Grecn. wich. It is a noted land-mark for feamen, and is a good directory for the entry of Pufcataqua harbor, as it lies very nearly in the fame meridian with it, and with Pigeon Hill, on Cape Ann. The mountain is covered with wood and hlrubs, and affords pafture up to its fummit, where there is an enchanting profece. The cultivated parts of the country, efpecially on the S. and S. W. appear as a beutiful garden, interfected by the majeltic tiver Pafcataqua, its bays and branchec. The immente ranges of mountains on the N. and N. W. afford a fullme fpectacle; and on the fea fide, the various indertings of the coaft, from Cape Ann to Cape Elizabeth, are plainly in view in a clear day; and the Atlantic Reetches to the E.. as far as the power of vifion extends. At this fpot the bearings of tha following objects were taken, with a grood furveying inftrument, Odtober 11, 1780.

Summit

A L A $\left[\begin{array}{lll}6\end{array}\right] \quad A \quad L B$

Alàama
$\|$
Alacranes.

Submit of the White Mountains, N. 15 . WV. Cape Porpoife, N. 63. E.
Rochefter HIl!, N. O4. W.
'Tuckaway South Peak, S. 80. WV.
Froll's Hill, Fititery, S. 57. W.
Saddle of Bonaberg, N. I4. WV.
Ine of Shoals Mesting-houfe, S. G. E.
Varney's Hill, in Dover, diftant $10 \frac{1}{4}$ miles by men-
firation, N. 89. Wr. Variation of the Needle, 6 . W.-Morse.

ALABAMA, an Indian village, delightfully fitnated on the bitnks of the Mifidippi, on feveral fwelling green hills, gradually afcending from the verge of the rive:. Thele Indians are the remains of the ancient Alabama nation, who iahabited the eaft arm of the Greas: Niobile river, which fill bears their name, now porfeffed by the Creeks, or Mufcogulges, who conquered the former. - $i b$.

Alabama River, is formed by the junction of the Coofa or Cogec, or High Tozun river, and Tallapoofe river, at Little Tallafee, and runs in a $₫$. . W. Cirentinn, unail it meets Tombigbee river from the N. IV. at the great illand which it there forms, 90 miles from the mouth of Mobile bay, in the gulf of Mexicn. This beautiful river has a gencle current, pure waters, and excellent filh. It runs about 2 miles an hour, is 70 or 80 rods wide at its head, and from 15 to 18 feet deep, in the drieft Feafon. The banks are about 50 feet high, and feldom, if ever, overfowed. Travellers have gone down in large bats, in the month of May, in 9 days from Little Tallafee in Mobile bay, which is about 350 miles by water. Its banks abound with valuable protuctions in the vegetable and mineral kinguoms.- ib.

ALABASTER, or Eleuthera, one of the Bahama or Lucayo illands, on which is a fmall fort and garrifon. It is on the Great Bahama Bank. The fuil of this inand, and H:arbor Ifland, which lies at the north end of it, is better than Providence Illand, and produaes the greatelt part of the pine-apples that are exported; the climate is very healihy. N. l.tt. 25. to 26. W. long. 75. to 7G. 5.-ib.

ALACHUA SAVANNAH, is a level green plain, in the country of the Indians of that name, in E . Florida, fituated about 75 miles wefl from St. Auguftine. It is above 15 miles over, and 50 in circumferericc ; and fcarcely a tree or bufh of any kind to be feen on it. It is encircled with high floping liills, covered with waving forefts, and fratgrant orange groves, rifing from an exuberantly fertile foil. The ancient Alachua town food on the borders of this favamnah; but the Indians removed to Cufcowilla, 2 miles diftant, on account of the unhedthinefs of the former fuite, occafioned by the flench of the putrid fifh and reptiles, in the fummer and autumn, driven on fhore by the alligators, and the noxious exhalations from the marlhes of the fivannah. Though the horned cattle and lorres bred in thefe meadows are large, fleek, fprightly, and fat, yet they are fubjea to mortal difeafes; fich as the water rot, or feald, occafoned by the warm water of the favannah; while thofe which range ia the high forefts are clear of this diforder.il.

ALACRANES, LOS, a lnnr range of fhoals, banks, and rocks, on the fouth fide of the gulph of

Mexicn, oppofite the peninfula of Yucatan, calt from Stone Bank, and weft trom Cape St. Antonio; within the 23 d deg. of N. lat. and between the 89 th and 9 rit degrees of W. long.-Morse.

ALASKA, a long peninfula on the N. W. coaft of America, formed by briftol bay and the ocean on the N. W. and N. and by the ocean and the waters of Cook's river on the S. and S. V.. At its extremity are a number of iflands, the chief of which, in their order weftward, are, Oonemak, Oonalafha, and Ocumnak, which form part of the chain or clutter of iflands called the Northern Archipelagn. Capt. Cook, on his return in 1779, paffed through the channel eaft of Oonemak inland. See N.W. Corgh of America.-ib.

A LATAMAHA, a navigable river of Georgia. It rifes in the Clierokee mountans, near the head of a weftern branch of Savannah river, called Tugulo. In its defcent through the mountains it receives feveral auxiliary freams; thence it winds, with confiderable rapidity, through the hilly country 250 miles, from whence it throws itielf into the open, flat country, by the name of Oaknulgee. Thence, after meandering for 1 jo miles, it is joined by the Oconee, which likewife has its fource in the mountains. After this junction, it allumas the name of Alatamaha, when it becomes a large majeftic river; and nlowing with a gentle current through foreits and plains 100 miles, difo charges itielf into the Atlantic by feveral mouths. The north channel glides by the heights of Darien, about 10 miles above the bar, and after feveral turn. ings, enters the ocean between Sapels and Wolf iflands. The fouth channel, which is efteemed the largelt and deepen, after its feparation from the north, defcends gently, taking its courle between N1'Intolh and Broughton iflands; and at laft by the weft coaft of St. Simon's found, between the fouth end of the ifland of that name, and the north end of Jekyl ifland. At its conRucnce with the Atlantic, it is 500 yards wide.--ib.

ALBAN's St. a townthip in Franklin county, Vermont, on Lake Champlain, oppofite N. Hero ifland, 256 inhabitants.-ib.

ALBANY County, on Hudfon's river, in the fate of New-York, lies between Ulfter and Saratoga; its extent 4^{6} miles by 28 . By the fate confus, Jan. 20, 1796, the number of electors in this county were 6087 , and the number of towns 11 .-ib.

Albany, the chief town of the above county, is fituated on the welt bank of Hudfon's river, 160 miles north of the city of New-Yerk, to which it is next in rank, and 340 S. of Quebec. N. lat. 42. 39. W. long. 73.3c. This city and fuburbs, by enumeration in 1797 , contained 1263 tuldings, of which 86_{3} were dwelling-houfes, and 602 I inhabitants. Many of them are in the Gothic ftyle, with the gable end to the ftreet, which cialtom the firft fettlers brought from Holland; the new houfes are buit in the modern ftyle. Its inhabitants are collected from various parts of the world, and jpeak a great variety of languages, but the Englifin predominates; and the ufe of every other is gradaally leffening. Albany is unrivalled for fituation, being nealy at the bead of floop navigation, on one of the nobleft rivers in the vorld. It enjys a falubrious air, and is the natural emporiam of the increafing trade of a large extent of country W. and N.-a country of n excellent foil, abounding in every article

Albany II $\underbrace{\text { Albatcgni. }}$
article for the W. India market; plentifully watered with navigable lakes, creeks and rivers, fettling with almof unexampled rapidity, and capable of affording fubfitence to millions of inhabitants: and when the contemplated locks and canals are completed, and convenient roads ofoned ints every part of the country, all which will, it is expected, be accomplifhed in the courfe of a few years, Albany will probably increafe and flourifh beyond almolt any other city or town in the United States. The public buildings are, a Low Dutch church, of ancient and very curious confruction, one for Epifcopalians, two for Prefoyterians, one for Germans, or High Dutch, and one for Metloodills; an hofpital, city hall, and a handfome brick jail. The corporation confifts of a mayor, recorder, fix aldermen, and as many affitants. In the year ibog, Henry Hudfon, whofe name the river beare, afcended it in his boat to Alurania, the fpot on which Albany now fands.

The improvements in this city, within 5 or 6 years paft, have been very great in almon all refpects. Wharves have been built on the river, the ftreets lave been paved, a bank intituted, a new and handfome fiyle of building introduced, and now excellent water (an article in which this city has hitherto been extremely deficient, having been obliged to ufe the dirty water of the river) is about to be conducted into the various pants of the city, from a fine furing 5 miles weft of the city. For thefe improvements the inhabitants are indebted to the patriotic exertions of a very lew gentlemen.
One mile north of this city, ia its fuburbs, near the manor houfe of lieutenant governor Van Remlakider, are very ingenioufly confructed, catentive and ureful works, for the manufature of Scotch and rappee fnuff, roll and cut tobacon of different kinds, chocolate, muftard, flarch, hair powder, fiplit peale, and hulled batley. Theie valuable works are the property of Mr. James Caldwell, who unfortunately loll a complete fet of limilar works, by fire, in July, 1794, with the flock, valued at 37,500 dollars. It is a cuscumftance worthy of remark, and is cvincive of the indultry and enterpize of the proprietor, that the whole of the prefent buildings and machinery were begun and completed in the thort face of eleven mon:hs. Thefe works are decidedly fuperior to any of the kitad in America. All the articles above enmerated, cven to the fpimning of tobacco, ate mandactured by the aid of water machinery. For the invention of this machinery the proprietor has obtained a patent. 'Thefe works give employment and fublifience to to poor boys, and a number of workmen. Men who make fuch eiforts to advance American mandiactures, de. ferve well of their country.-Thorse.

Albany, a Britilh fortrets in New Soath Wales, in N. America, lituated on the river of the fame mome. N. lat. 53. 10. W. long. 87. 20.-ib.

Albany River, falis into James's bay, in N. America, in N. lat. 51. 30. W. long. 84.30. This river runs in a N. E. dircation, atad has communication with a valt chain of fmall lakes, in a line S . W. to the S . end of Winnipeg lake, a body of water next in lize to Lake Superior.--ib.
ALBATEGNI, an Arabic prince of Batan in Me. fopotamia, was a celcbrated aftronomer, :bout the gear
of Chrift 880, as appears by his obfervations. Hz is alfo called Muhammed ben Geber Albutani, Mabomet the for of Geber, and Mubamedis Arationfis. He made aftronomical obfervations at Anticclh, and at Racal or Aracta, a town of Chalded, which fome authors call a town of Syria or of Neiopotamia. He is highly fpoken of by Dr Halley, as vir cdmirandi acuminis, ac in adminiffrandis obferzationibus exeritatifirmus.
Finding that the tables of Ptoleny were imperfeat, he computed new ones, which wcre longr ufed as the beft among the Arabs: thefe were adapted to the meridian of A racta or Racah. Albategni cornpofed in Arabic a work under the title of The Sciince of the Stars, comprifing all parts of aftronomy, according to his own obfervations and thofe of Ptolemy. This work, trannated into Latin by Plato of Tibur, was publifhed it Nuremberg in 1537 , with fome additions and demonIfrations of Regiomontanus; and the fame was reprinted at Bologna in $16+5$, with this author's notes. Dr Halley detected many faults in thefe editions.- Ptil. Tranf. for 1693 , No 204.
In this work Albategni gives the motion of the fun's apogee fince Ptolemy's time, as well as the motion of the flars, which he makes one degree in 70 years. He made the longitude of the firlf flar of Aries to be $18^{\circ} 2^{\prime}$; and the obliquity of the ecliptic $23^{\circ} 35^{\prime}$. And upon Albategni's obfervations werc founded the Alphontine tables of the moon's motions; as is obferved by N'c. Muler, in the Tab. Frifice, p. 248.

ALBEMARLE County, in Virginia, lies between the Blue ridge and the tide wates s, ind cuntains 12,59 ; i:habitants, including 5579 dlaves. Its eitent about 35 miles fquare. - Morse.

Albemarle Sound, on the coalt of Nurih-Carolina, is a kind of inland fea, 60 niles in length, and from 8 to 12 in breadth. It lies north of Paplico Sound, and communicates with ir ; as it likewife does with Currituck Inlet. It receves Ruanoke and Meherrin rivers; and the paffage into it from the fea is cathed Roanoke Irlet.-ib.

ALDERAIMIN, a far of the third magritude, in the right thonder of the contellation Cepheis.

AILCXANDRIA, a townthip in Grafton county, New-Hamphire, containing 2088° inhbitunts; incorperated in 1 152. -Morse.

Alexasdria, a lownflip in Hunterdon comery, New. Jarley, containing 1503 inbatiotants, irclufre of 40 flaves.- $i b$.

Alexandria, a fmall town in Humtingdon comety, Pemiylvana, on the Frankitown banch of Junait, river ; 192 miles N. W. of Philadelphit.- b.

Alexandza, fommerly culled bichayen, a ciey in Virginia, fituaied on the fouthern bank of the P:towmac river, in Fairfas county, about 5 miles S . W. from the Federal City, 60 S. W. hom Bahtimo:e, 60 N. from Fredericklbugh, 168 N . of Willamiforgh, and $2 y 0$ from the fea; 3S. 45. N. 1.tt. and 77. 10. It: long. Its fituation is clevated and pleafant. The foil is chayey. The original iethers, anticipating is future grow th and importance, laid out the freets on the plaia of Pliladelphia. It contains about too houfes, many of which are handfomely built, and 2748 inlabitants. This city, upon opening the navigation of Potownac river, and in comequacte of its viomity to the future feat of the lederal govcrmment, bids fair to le one of

A L L

Alford the moit thriving commercial places on the continent. - Marse.

ALFORD, a townhip in Berkhare county, Maffa clufetts, containing 577 inhabitants; 145 miles weltward from Bufton.-ib.

ALPRAGAN, Alfergani, or Furgani, a celebrated Arabic aftronumer, who fourithed about the year 800. He wats fo called from the place (f his nativity, I'ergan, in Sogdiana, now called Maracanda, or Samarcand, anciently a part of Bacria. He is alfo called Alhad (or Nubammed) ben Cothair, or Katir. He wote the Elements of Aftronomy in 30 chapters or fextions. In this work the atithor chiehy follows Pto. lenay, ufing the fame hypothe!is, and the fame terms, and frequently citing him. Of Alfragan's work there are three Latin tranilations, of which the laft and beft was made by Golius, profeffor of mathematics and or ieutal languages in the univerfity of Leyden. This trantiation, which was publifhed in 1669 , after the death of Golius, is accompanied with the Arabic text, and with many learned notes on the firlt nine chapters, which wonld undoubtedly have been carried to the end, f:ad the tranflator lived to complete his plan.

ALGORAB, a fixed nar of the third magnitude, ia the right wing of the conltellation Corvus.

ALHAZEN, an Arabian aftronomer, who flonrifhed in Spain about the beginning of the 12 th century. See Astronomy, no 6. Encycl.

ALKANSAS, or Arkanfar, an Indian nation in Louiljana, on the welt fide of Miffinippi river, near the river of the fame name, in N. lat. 3t. See Arkanfas River.-Morse.

ALLBURG, a townhip in Franklin county, Verment, containing 44^{6} inhabitants; fituated on Milfifque Baj-ib.
Alleghany ATountains. See Appalachian, Escyclopadia.

Alleghany River, in Pennfylvania, rifes on the weftern fide of the Alleghany Mountain, and after running about 200 miles in a S. WT. direction, meets the Monongahela at Pittfurg, and both united, form the Ohio. The lands on each fide of this river, for 150 miles above Pittfburg, conift of white oak and chefnut ridges, and, in many places, of poor pitch pines, interfperfed with tracts of good land, and low ineadows. This river, and the Ohio likewife, from its hedd waters until it enters the Miffilippi, are known and called by the name of Alleghany River, by the Seneca, and other tribes of the Six Nations, who once inhabited it. - Morse.

Alleghan County, in Pennfylvania, extends from the junction of the river of that name with the Onio, where its chief town, Pittburg, is fituated, to whe New-York line. It contains 10,309 inhabitands, including 159 llaves.-ib.

Alleghany, is the mot weftern county in Maryland, and has Pennfylvania on the nortl. The windings of the Potowmac River feparate it from Virginia on the fouth, and Sideling hill Creek divides it from Wafhington county on the eall. It contains 4809 inlabitanes, including 258 flaves. Cumberland is its chicf town.-ib.

ALLEMAND, a river which falls into the Miaiffippi from the S. F. abcut 43 miles S. of the Nitcles. -ib.

ALLENSTOWN, a town in New.Jerfey, in Mon- Allentonm mouth county, 15 miles N. E. from Burlington, and 13 S. by E. firom Princeton.-Morse.

Allenstown, a townhip in Rockingham couy y, New-Hampfhire, containing 254 inhabitants; fitt ed on the E. fide of Merrimack river, 25 miles N. WT. of Exeter, and 40 from Portimouth. - ib.

ALLEN-TOWN, in Pennfylvania, Northampton county, on the point of land formed by Jordan's creek, and the Little Lehiegh. It contains about 90 houfes, and an academy.-ib.

ALLOWAY Creek, in Salem county, New-Jerfey, empties into the Delaware. It is navigable 16 miles, interrupted, however, by feveral draw-bridges.-ib.

ALL-SAINTS, a parifh in Genrgetown diftica, South Carolina, containing 2225 inlabitants, of whom 429 are whites, and 1795 flaves. It fends a member to each houfe of the ftate legiflature. - ib.

All-Saints Bay, a captainfhip in the middle divifion of Brazil, fo called from a large bay of that name, bounded N. by the Ria Real ; on the S. by that of Lis Ilheos; on the E. by the ocean; and on the W. by three unconquered nations of Indians. It is reckoned one of the richeft and moft fertile captainfhips in all Brazil, producing great quantities of cotton and fugar. The bay itfelf is about $2 \frac{3}{2}$ leagues over, interfperled with a number of fmall, but pleafant iflands, and is of prodigious advantage to the whole country. It has feveral cities and towns, particularly St. Salvador, which is its capital. All-Saints Bay lies in lat. 12. 3. S. long. 40. 10. W. See Salvador.-ib.

ALMAMON, was a philofopher and aftronomer, who, in the beginning of the gth century, afcended the throne of the caliphs of Bagdat. He was the fon of Harun Al-kathid, and grandion of Almanfor. His name is otherwife written, Mamon, Almaon, Almamun, Alamoun, or Al-Maimon. Having been edncated with great care, and with a love for the liberal fciences, he applied himfelf to cultivate and encourage them in his own country. For this purpore he requefted the Greek emperors to fupply him with fuch books on philofophy as they had among them; and he collected filfinl inter. preters to tranflate them into the Arabic language. He alfo encouraged his fubjects to fudy them; frequenting the meetings of the learned, and affifing at their exercifes and deliberations. He caufed Ptolemy's Almarुelt to be tranflated in 827 , by Ifaac Ben-honain, and 'Thabet Ben-korah according to Herbelot, bnt, according to others, by Sergius, and Alhazen the fon of Jofeph. In his reign, and doubtle's by his encouragement, an altronomer of Bagdat, named Habafh, compofed three fets of aftrononical tables.

Almamon himfelf made many attronomical obfervations, and determined the obliquity of the ecliptic to be then $23^{\circ} 35^{\prime}$ (or $23^{\circ} 33^{\prime}$ in fome manufcripts), but Voflius fays $23^{\circ} 51^{\prime}$ or $23^{\circ} 34^{\prime}$. He alfo caufed Nilful obfervers to procure proper inftruments to be made, and to exercife themfelves in aftronomical obfervations; which they did accordingly at Shemafi in the province of Baguat, and upon Mount Cafius near Damus.

Under the aufpices of Almamon alfo a degree of the meridian was meafured on the plains of Sinjar or Sindgiar (or, according to fome, Jingar), upon the borders of the Red Sea; by which the degree was found to contain $56 \frac{3}{3}$ miles, of 1000 coudees each, the coudee

A L O $\left[\begin{array}{lll}9\end{array}\right] \quad$ A L P

Almßury being a frot and a half: but it is not known what foot is here meant, whether the Roman, the Alexandrian, or fome other. Riccioh makes this meafure of the degree at ount to 8 t ancient Roman miles, which value anfuurs to 62.046 French toifes; a quantity more than the true value of the degree by almoft one third. Finally, Almamon evived the fiences in the Ealt to fuch a degree, that many learned men were found, not only in his oun time, but after him, in a country where the flady of the fciences had been long forgoten. This learned king died near Tarfus in Cilicta, by having eaten too freely of fome dates, on his return from a military expedition, in the year 833 .
A LMSBURY, commonly called Amefoury, is a flourilhing town in Effex county, Maflachuletts, on the north weltern bank of Merrimack river, about five miles N. W. of Newburyport, containing 1801 iubabitants. Powaws river divides the townhip from Salifbry, over which a handfome bridge has lately been erected. A number of milts lie on this river round the lower falls. Sce Powaws river.-Morse.

ALOE dichoroma, in botany, called by the Dutch Fookerboon or $Q^{2 u v e r-t r e e, ~ i s ~ a ~ n a t i v e ~ o f ~ t h e ~ f o u t h e r n ~}$ parts of Africa, and feems to be a fpecies of the Agave or American alue (fee Agave, Encycl.) It is thus defcribed by Le Vailiant in his New Travels into the Interior Parls of Africa: "The aloe dichotoma sifes to the height of 25 or 30 feet; its trunk is fmonth, and the bark white. When young, and the trunk not more than four or five feet long, it terminates with a fingle tuft of leaves, which, like thole of the ananas, fread and form a crown, from the midf of which all its flowers iffue. As it grows older, it puhles out lateral branches, perfectly regular and fymmetuicd, each of which has at its extremity a crown fimilar to that of the young plant. The kooker-bonm thrives much better on mountains than in the plain. Inftead of long roots penetrating deep into the earth, like thofe of other trees, it has but a very flight one by which it is fixed to the foil. Accordingly, three iuches of mould are fufficient to enable it to grow upon the very rocks, and attain its utmof beauty; but its root is fo feeble a fupport, that I could throw down the largeft with a fingle kick of my foot. The hordes on the weft make their quivers of the trunk of this tree when young, whence is derived the name given it by the planters."

It becomes not us, fitting in our chamber, to controvert a fact in natural hiftory, of the reality of which we never had an opportunity of judging; nor would it be proper, on account of our own icepticifm, to fupprefs the narrative of a traveller, who corrects the narratives of former travellers in terms which nothing fhould have diAated but the confcioufnefs of his own invariable veracity. Yet we hope to be fardoned for exprefing our furprife that, in any part of the world, trees fhould be found in great numbers 25 or 30 feet hi hh, and thooting out many branches, which have yet fol loofe a hold of the ground, that the largeft of them may be thrown down by the fingle kick of a man's foot. The reader's futprife will probably equal ours, when he is informed that the author faw one of thefe trees of which the trunk was ten feet four inches in circumference, whilf its branches overilhadowed a fpace of more than 100 feet in diameter! This tree he affires that he could have kicked over. The country, according to his account,

Surpl. Vol. I.
is not exempted from florms. Hs is himfelf a French Alptonfus. philofopher. What a pity then is it that he did not explain to thofe, who have not lad the benefit of being enlightened in that fclionl, upon what principle of mechanics or flatics the tree could refilt the violence of the elements till it arrived at fo enormous a fize?
ALPHONSUS X. king of Leon and Caftile (iee Encyd) This prince underffood aftronomy, philofophy, and biltory, as if he had been only a man of letters; and compofed books upon the motions of the heavens, and on the hittory of Spain, which are highly conumended. "What can be more furprifing (fays Mariana), than that a prince, educated in a camp, and handling arms from his childhood, fhould have fuch a knowledge of the flars, of philofophy, and the tranfactions of the world, as men of leifure can farcely acquire in their retirements? There are extant fome books of Alphonfus on the motions of the fars, and the biaftory of Spain, written with great fkill and incredible care." In his aftronomical purluits he difcovered that the tables of Ptolemy were full of errors; and thence he conceived the firt of any the refolution of correcting them. For this purpofe, about the year 124E, and during the life of his father, he affembled at Toledo the molt ikilful aftronomers of his time, Clriftians, Moors, and Jews, when a plun was formed for conftructing new tables. This tafk was accomplifhed about 1252 , the firlt year of his reign ; the tables being drawn up chief. ly by the fill and pains of Rabbi Ifach Hazan, a learned Jew, and the work called the Alphonfine Tables, in honour of the prince, who was at valt expenfes concerning them. He fixed the epoch of the tables to the 30th. of May 1252, being the day of his acceffion to the throne. They were printed for the firlt time in 1483, at Venice, by Radtoldt, who excelled in printing at that time. This edition is extremely rare : there are others of $149^{2}, 1521,15+5, \& c$.

In the Encyclopredia it is faid, that the charge of impiety brought againft this prince was unjuff. This was taid too confidently, becaufe we know not of any direft proof of his imnocence. All that has been faid for him by Dr. Hutton, one of his ableft apologits, amounts to nothing more than a high degree of probability that the charge was carried by much too far. The charge ifelf was, that Alphonfus affirmed, "that if he had been of God's privy council when he made the world, he would have advifed him better." Mariana, however, fays only in grencral, that Alphonfus was fo bold as to blame the works of Providence, and the confluction of our bodies; and he fays that this ftory concerning him refted only upon a vulgar tradition. The Jefui's wordsare curious: "Emanuel, the uncle of Sanchez (the fon of Alphonfus), in his own name, and in the name of other nobles, deprived Alphonfus of his kingdom ly a public fentence; which that prince merited, for dating feverely and boldly to cenfure the works of Divine Providence, and the conflruction of the human body, as tradition fays he did. Heaven moft jually punithed the folly of his tongue." Though the filence of fuch an hitorian as Mariana, in regard to Ptolemy's fyfem, ou hat to be of fome wcight, yet we cannot think it imptobable, that if Alphonfu; did pafs fo bold a cenfure on any part of the nuiverie, it was on the celellial fiphere, and meant to glance upon the contrivers and fupporters of that lifRem. For, be-
fides

A L U [10

Altead fides that he ftudied nothing more, it is certain that at that time aftonomers explained the motions of the heavens by intricate and confufed hypotheles, which
did no honour to God, nor any wife anfwered the idea of an able workman. So that, from confidering the multitude of fpheres compofing the fyftem of l^{3} tolerny, and thofe numerous cocentric cycles and epicycles with which it is embarraffed, if we fuppofe Alphonfus to have faid, "that if God had akked his advice when he made the werld, he would have given him better counrel," the boldnefs and impiety of the cenfure will be greatiy diminithed.

Such is the apology made by Dr Huston for this royal aftronomer of Spain; and we hope, for the honour of feience, that it is well founded. Sill it leaves Alphonfus guilty of great irreverence of language, which is to us wholly unaccountable, if it be really true that he read the Bible fourteen times. We have feen impiety indeed break out lately from very eminent aftro. nomers of a neighbouring nation; but thefe men read not the Bible, nor any thing elfe, but the dreams of the eternal flespers.

ALSTEAD, a townhlip in Chefhire county, NewHamphire, containing ifit inhabitants; 8 miles S. from Charleflown.- Alorse.

ALTERNA'TE angles. See Geometry (Encycl.), Part I. 35.

Alternater Ratio, or Proportion, is the ratio of the one antecedent to the other, or of one confequent to the other, in any proportion, in which the quantities are of the fame kind. So if $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, then alternately, or by alternation $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{D}$.

ALTITUDE, parallax of, is an arch of a vertical circle, by which the true altitude, obferved at the centre of the eath, exceeds that which is obferved on the furface. See Parallas (Encycl.) and Astronomy (Suppl.)

Altitude of the Nonagefinal, is the altitude of the goth degree of the ecliptic, counted upon it from where it cuts the horizon, or of the middle or highelt point of it which is above the horizon, at any time; and is equal to the angle made by the ecliptic and horizon where they interfect at that time.

Altitude of the Cone of the Earth's or Moon's Shadow, the height of the fhadow of the bociy made by the fun, and meafured lrom the centre of the body. To find it $f_{i y}$, As the tangent of the angle of the fun's apparent femidiameter is to radius; fo is i to a fourth proportional, which will be the height of the fhadow in femidiameters of the body.

ALUM is a falt fo ufeful in commerce and the arts, that the knowledge of its component parts, and of the beft method of preparing it, muft be of importance. In the article Chemistry (Encycl.), the npinions which were then held relpecting its compolition, and the practice which was generally followed in its preparation, lave been detailed at full length; but fome of thefe epinions have fince been controverted, and if they be crioneous, it mull be expedient to vary in fume degree the mode of preparation. In particular, the opinion that it is merely an excefs of acid which prevents the fommation of alum by evaporation of the ley, has been thown to be fahfe by Citizen Vauquelin, who contends, of courfe, that the addition of putrid urine to the ley is a very bad practice.

This cminent chemit had long fufpected, that the cryfallization of alum is not prevented by an cxcef; of acid, and that potafi is not of ufe fimply to faturate this acid, but to perform an office of more inportance. To bring his fufpicions to the telt of experiment, he diffived very pure A lumine in fulphuic acid of equal purity, and evaporated the fofution to drynefs, for the purpofe of expelling the fuperabundant acid. He then rediffolved the dry and pulverulent refidue in water, and reduced the folution to different degrees of fpecific gravity, with a view to feize the point mof favourable to cryftallization ; but with every pollible precaution he could obtain nothing but a magma (fee Magma), formed of faline plates, without condiftence or folidity. This folution, however, though it conftantly refufed to alford cryflallized alum alone, afforded it immediately by the addition of a few drops of the folution of pot-afh; and as he had employed thefe two fubltances in the requifite proportion, the reft of the folution, to the very crid, afforded pure alum, without any mixture of fulphate of pot-ath.

Into arother portion of the fame folution of pure alumine he dropped the fame quantity of carbonate of foda, as he had added of that of pot-ath to the former; but no crytallization was formed, even by the help of evaporation, nor did lime and barytes produce any better effect. But if the common opinion that pot-ath, in the formation of alum, is of ufe only to abttract the excefs of acid, be true, foda, lime, barytes, and all the fub. Itances which by a more powerful force would take this acid fromalum, ought to give the fame refult. Another argument prefented itlelf, which feemed decifive: If the alkalis, pot-ah, and ammoniac, do nolhing more than unite to the fuperabundant acid of the alum, the fulphates of pot-ath and of ammoniac ought not to occafion any change in pure alum in its acidula. ted Itate; whereas if thefe alkalis enter as a conflituent part into the alum, and are neceflary to its exiftence, they ought to produce the fame effects as pure pot-alh or ammoniac. He therefore added to a third portion of the folution of fulphate of alumine before-mentioned fome drops of the folution of fulphate of pot-afh; inmediately upon which octahedral cryftals of alum were formed. The fulphate of ammoniac prefented the fame effect.

This refult gave fill greater confirmation to his firf notions, though it did not yet afford a demonfration perfeetly without objection; for it might have happened that the two falts he made ufe of might determine the cryftallization of the alum, fimply by abforbing the fupetfluous acid, of which they are very greedy; but to determine this poffible fact, he mixed in the uncryftallizable folution of alumine fome fulphate of pot-afh with excefs of acid, and obtained a cryftallization no lefs abundant than with the neutral fulphate of pot-afh.

This laft experiment leaves therefore no doubt with regard to the influence and mode of action of potath and ammoniac in the fabrication of alum; and this action is fill more frongly confirmed by the examination of the alums which have been formed by the proceffes above related; for in this manner it is proved that they contain conliderable quantities of the fulphates of potafh and ammoniac.

Thefe experiments led M. Vauquelin to an examination of the different alums of commerce, of which he found not one that did not afford fulphate of potafh,

Alum. or of ammoniae, or of buth. His methods of analy fis are very accurate; but to cetail them at length would fwell this article to little parpofe. To fuch of our readers as are not cliemits they would hardly be intelligible ; and the experienced chemit will devife methods of analyfis for limfelf. It may be proper, however, to oblerve, that M. Vanquelin proved, to his own latisfaction, that the fulphate of pot-alh, or of ammoniac, is receffary to render alum capable of being precipitated by its earth, or to caufe it to pafs, as it were, to the earthy nate (A). He proved likewife, that fuch aluminous waters as do not contain put-ath, may remain, as long as may be defired, on their materials, withour being fatu. sated with too great a quantity of eath, or fulfering alum to precipitate.

From the whole of his experiments our author drew the following cunclufions, which he confiders as of importance to the arts, to chemiltry, and to natural hiatory.

1. It is net, at leaf in the greatef number of circumnances, the excefs of acid which impedes the crytallization of alun, but it is the want of pot-ath or ammoniac: Fior it is difficult to imagine that the fulphuric acid could remain difengaged after fo long remaining upon alunine in a fate of extreme divilion, and always fuperabundant. It is true that the aluminous waters redden the vegetable tindures; but this property is not owing to a difengarsed acid. This purtion of acid is a conftituent part of thefe waters; and it appears to have more atfinity with the neutral fulphate of alumine than with a new quantity of this earll at the temperature of the atmofphere.
2. The fulphate of pot-afh may be ufed, as well as pure pot-dh, to caufe the cryltallization of alum. It even has the advantage over the latter fait, becaufe if the alumincus waters do not really contain a difengaged acid, the pot-alh, in its combination, will precipitate a portion of :tlunsine, and diminith the product of the boiling; whereas the fulphate of put-ath does not produce the fame effect; but if the lisiviums contain difengaged acid, which muft very fildom be the cafe, it is not converted into alum by the fulphate of pot-afh, and is loft with regard to the produst. Our author there. fore is of opinion, that when the saters really contain an excefs of acid, or a very oxided fulphate of iron, the ufe of pot-afh is preferable to that of the fulphate of pot-afh. But when economy is an object, that in many places it would be profitable to ufe the fulphate of potath ; becaufe it is a falt indirectly produced in many manufactories, where of courfe it may be obtained for nothing. In paticular, the refidues of the diftillation of aquafortis by the tulphuric acid would be excellent for this operation, and much preferable to putrid urine, becaufe this fluid always contains phofporic falis, which decompure a portion of the fulphate of alumine, and confiderably diminilla the product.
3. Alumine cannot be ufed in the treatment of mother waters, as Bargman propofes. This earth is incapable of favouring the as thallization of alum, befides which, it decompores a portion of alum by the allitance of eballation; in which circumlance it feizes the
acid neceffaty to its folution, and precipitates it in the form of that powder which is called alum faturated with its earth.
4. Many alum ores muft naturaliy contain potah, becaufe perfect allum is often obtained from the firft cryftllization of new alum waters without the addition of this alkali. It is true that an objection may be made with regard to the wood ufed in calcining thefe ore: which may be fuppored to have furnifhed the alkali; but it is not probable that the fmall quantity of wood employed, in comparifon to the quantity of ore and the alum it affords, could fupply enough of pot-afh for the cryfallization.
5. All the earths and ftrnes whicla have giver, or Shall hereafter afford, by analy fis with the fulphuric acid, perfect alum without addition of pot-afh, nuft contain this alkdi naturally. For it is well proved, that alum cannot exift withont pot-afh or ammoniac; and as there is little probability that this laft fhould be found combined in earths or ttones, unlefs perhaps in very rare cafes, we may almolt conitantly be altured, when alum is obtained from any of thefe fubfances, that its formation was effected by pot-afh. The quantity of alum will immediately fhow in what proportion this alkali exitted in the fubtances analyfed.
6. The alum of commerce ought not to be confidered as a fimple falt, but as a conbination in the fate of a tripple and fometimes quadruple falt of fulphate of alumine, fulphate of pot-alh, or of ammonisc. Among thefe laft we may diftinguifh two fpecies; the one svithout excefs of acid, infoluble in water and infipid, being what is improperly called alum faturated with its own earth ; and the other, which contains an excefs of acid foluble in water, very fapid and aftringent, is the common alum.

There is likewife a pure fulphate of alumine, very aftringent, very difficult of cryftallization, in the form of brilliant pearl-coloured plates without confiftence, and which cannot be rendered foluble by the addition of a new quantity of its bafe. This laft falt may with the greatelt propriety be called the fulphate of alumine.
7. It follows from the comparative analy fis, and the knowledge acquired refpecting the different Itates of the combination of alumine with the fulphuric acid united at the fame time with other bafes, that we mult diftinguif feven ftates in this combination, and that it is neceffary to exprefs them accosding to the rules of the methodical nomenclature. Here follow the feries, the nature, and the names of thefe feven fulphates of ala. mine.

1. Sulphate of alumine, or the artificial combination of fulphuric acid and alumine. This falt is aftringent ; it cryftallizes in laminæ or flexible leaves, foluble in water. It has never been defcribed nor named by chemilts. 2. Acid fulphate of alumine is the foregoing falt, with excefs of acid, from which it differs by reddening blue vegetable colours. It is eafily made by diffolving that falt in the fulphuric acid, but it is not eafy to convert this into the neutral fulphate of alomine but by boiling it a long time with its carth. '1'his falt, like the firf, has not been deferibed. 3. Siturated B 2
fulphate
(A) It may be proper to notice, that Schecle feems to have known this long before, and that he mentions it exprefly in his paper on Pyrophorus.

A M L $\quad 12] \quad A \quad M \quad S$

fulphate of alumine and of $\mathrm{p}^{\mathrm{nct}-2 \mathrm{ah}}$ is the alum of the chemifts faturated with its earth. It is pulverulent, irflipid, infoluble, not cryftallizalle, and is eafily converted into true alum by the addition of fulphuric acid. 4. The acid fulphate of alumine and of pot-a ha greatly iefembles common alum, and is eafily prepared chemically ; but M. Vauquelin found no alum but that of La Tolfa which is exaetly of the fame nature with it. 5. The acid fulphate of alumine and of ammoniac has all the properties of alum, and may be ufed for the fame purpofes; but though it is eatily made in the laboratories, our author never found it pure in commerce. 6. The acid fulphate of alumine, pot-ah, and ammoniac. It is remarkable enough, fays M. Vauquelin, that this fhould be the nature of the alum moft frequently made in the arts, and that to exprefs its combination fo many words fhould be neceffary. This, however, may be avoided, by referving the name of alum to this fubftance, which will be fufficient to diftinguifh it perfectly. 7. The aciduluus fulphate of alumine and of pot-afh, our author fays, he is lefs acquainted with than with the preceding feries. The name by which he characterizes it was fuggefted to him, and he thinks it proper, becaufe by adding to the folution a fmall quantity of pot-afh more than is neceffary to obtain octahedral cryftals, it manifefly paffes to the cubic form.

From thofe deductions, the phyfician, the chemift, and the manufacturer, with whom the ufes of alum are greatly multiplicd, will hereafter poffers a knowledge of the fubfance they employ, and may appreciate its effeets on the animal economy, and other bodies to which it is fo frequently applied. See Annales de Climie, xxii. 258, and Nicholfon's Gournal, Vol. I. p. 318, \&c.

ALUMiNE, one of the fimple earths. See Chemisrey in this Supplement.

ALVARADO, a river in New Spain, which rifes in the mountains of the Zapotecas, and, after making a circuit through the province of Mazaltan, and receiving feveral fmaller rivers and freams, empties into the Gulf of Mexico, at 30 miles diftance from Vera-Cruz.-Morse.

AMBROSE, St. an iffand in the S. Pacific ocean, on the coalt of Chili, 4 or 5 leagues due W. from St. Felix ifland. At firt view, it appears like two fmall illands, but after a nearer approach, it is found they are joined by a reef. It lies in 26. 13. S. lat. and 80. 55. W. long. from Greenwich. There is a large rock 4 miles to the northward of the inland, called, from its appearance, Sail rock. Capt. Roberts, who was here in 1792, found St. Felix ifland inacceffible. On St. Ambrofe ifland, his crew killed and cured 3,000 feal fkins of the beft quality, in feven weeks. The illand has little elfe to recommend it. Fifh and crawfifh abound. The beft feafon for fealing is from the 1ft of April to the ift of Auguft. The iflard has the appearance of having had volcanic eruptions.-ib.

AMELIA, a county in Virginia, bounded N. by Appamatox river which feparates it from Powhatan and Chefterfield counties, N. W. by Prince Edward, E. by Dinwiddie, and S. by Nottaway. Scott. Amelia, including Nottaway, a new county, cuntains 18,097 inhabitants, of whom 11,037 are flaves.

Amelis $I f 0$, on the coaft of E. Florida, lies about 7 leagues N . of St. Auguftine, and very near

Talbot ifland on the S. at the mouth of St. John's river. Amicable It is 13 miles long and 2 broad, is very fertile, and has an exceilent harbour. Its N. end lies oppofite Cumberland inland, between which and A melia Inle is the entry into St. Mary's river, in N. lat. 30. 52. W. long. 67. 23.-MIorse.

AMICABLE numbers have been defined, and the firf pair of them given in the Encyclopædia. 'The fecond pair of amicable numbers are 17296 and isqi6; and the third pair are $936358+$ and $9+37056$.

Dr. Hutton informs us, that the efe three pairs of amicable numbers, with the properties from which they receive their name, were found out by F. Schooten, as appears from Sect. ix. of his Exercitationes Mathematica. To find the firlt pair, he puts 4^{x} and $4 ; z$, or $a^{2} x$ and $a^{2} y z$ for the two numbers where $a=2$; then making each of thefe equal to the fum of the aliquot parts of the other, gives two equations, from which are found the values of x and z, and confequently alluming a proper value for y, the two amicable numbers themfelves $4 x$ and $4 y z$.
In like manner for the nther pairs of fuch numbers; in which he finds it neceflary to affume $16 x$ and $16 y z$, or $a^{4} x$ and $a^{4} y z$ for the fecond pair, and $128 x$ and $128 y z$ or $a^{7} x$ and $a^{7} y z$ for the third pair.

Schooten then gives this pratical rule, from Defcartes, for finding amicable numbers, viz. affume the number 2, or fome power of the number 2, fuch that if unity or 1 be fubtracted from each of thefe three following quantities, viz. from 3 times the affumed number, alfo from 6 times the aflumed number, and from 18 times the fquare of the affumed number, the three remainders may be all prime numbers ; then the laft prime number being multiplied by double the aflumed number, the produst will be one of the amicable numbers fought, and the fum of its aliquot parts will be the other. That is, if a be put $=$ the number 2 , and n fome integer number, fuch that $3 a^{\mathrm{n}}-1$, and $6 a^{\mathrm{n}}-1$, and I $8 a^{2 n}-1$ be all three prime numbers; then is $18 a^{2 n}-1$ $\times 2 a^{n}$ one of the amicable numbers; and the fum of its aliquot parts is the other.
AMSTERDAM and S_{t} Pade, are two inhads in the South Sea, lying in the fame degree of longitude, and generally confounded with each other. The Dutch navigators have given the name of Amferdam to the northern, and of St Paul to the fouthern illand, and Captain Cook conforms to that appellation. Moft other Englifh navigators, and particularly Meffrs Cox and Mortimer, with Sir George Staunton, reverfe the names, calling the fouthern ifland Amferdam, and the other St Paul. At this fouthern ifand the Lion man of war ftopped on her voyage to China with Lord Macartney, the late ambaffador to the court of Pekin, which gave an opportunity to the men of fcience in the train of the ambaffador to examine the ifland with more fkill and attention than probably it had ever been examined before.

Dr Gillan, who was appointed phyfician to the embalfy, as well for his knowledge of chemittry as for his medical $\mathfrak{k k i l l}$, is confident that the inland of Amterdam is the product of fubterraneous fire, as it bears in every part of it evident marks of volcanic eruption. "On the weft and fouth-weft fides (fays he) there are four fmall cones regularly formed, with craters in their centres, in which the lava and other volcanic fublances

A M S [$13 \quad] \quad$ A M S

Amiter$\underbrace{\text { dam. }}$
have every appearance of recent formation. The heat continues ftill fo great, and fuch a quantity of elaltic vapour iffues through numberlefs crevices, that there can be no doubt of their having been very lately in a ftate of eruption. In a thermometer placed upon the furface, the quickfilver rofe conftantly to 180 degrees, and when funk a little into the alhes, it advanced to 212 degrees. It certainly would have rifen ftill higher; but the fale being graduated only to the point of boiling water, and the length of the tube proportioned to that extent, the thermometer was immediately withdrawn, lelt the increafing expanfion of the quickfilver thould burft the glafs. The ground was felt tremulous under the feet; a flone thrown violently upon it returned a holluw found; and the heat was fo intenfe for a confiderable diftance around, that the foot could not be kept for a quarter of a minute in the fame pofition without being forched. But the great crater on the eaftern fide, now full of water, is by far the largeft here, or perhaps elfewhere, and is of an aftonilhing fize, confiderably exceeding in diameter thole of Etna or Vefuvius. The quantity of matter to be thrown up, which required fo wide an orifice for its paflage, and the force with which fuch matter was impelled, in order to overcome the refiftance of the fuperincumbent earth and fea, muft have been indeed prodigious.
"This valt crater, according to the uinal method of computing the antiquity of volcanoes, mult have been formed at a very remote period. The lava all around its fides is much decompofed, and has mouldered into duft, which lies on the furface in many parts to a confiderable depth. The decompofition has fupplied a rich foil for the long grafs growing on the fides of the crater, and has even fpread over moft parts of the ifland. The fibrous roots of the grafs, extending in all directions through the decompofed lava and volcanic athes, and mixed in a decaying fate with the vegetable mould, produced from the annual putrefaction of the leaves and Italks, have formed a layer of foil feveral feet deep all over the ifland. But as it has nothing except its own weight to comprefs it together, it is of a light fpongy texture, with very little cohefion, and in many places furrowed and interfected by the fummer rains, and the torrents occafioned by the melting of the fnow which lies upon it in the winter, from three to four fcet thick, in all thofe places where the fubterraneous lieat is not great enough to prevent its accumulation. In fome parts thefe furrows and cavities are deeper than the level of the common channel; hence they ferve the parpofe of fmall natural refervoirs. The water flows into them from all the neighburing gronnd; and as their fides are fhaded, and almoft covered over by the leaves of the long grafs, growing from their edges in oppofite directions, the rays of the fun are excluded, and very little is lof by ev.iporation. Thefe refervoirs, however, are very fmall, and but few in number; the largeft could not contain more than three or four hogfbeads of water; and there is none elfe to be found, except in the fprings on the fides of the large crater.
"The foil everywhere being light and fpongy, and full of holes, fornied in it by fea-birds for netts, is very troublefome to walk upon; the foot breaks through the furlace, and finks deep at every thep; a circumitance which renders the journey acrofs the illand uncommonly fatiguing, although it be foarcely thtee miles from the
edge of the great crater to the oppofite welt fide. Anfter. There is one place near the centre of the ifland, extending about 200 yards in length, and fomewhat lefs in breadth, where particular caution is neceffary in walking over it. From this fpot a hot frefh fpring is fuppofed to derive its fource, finding its way through the interflices of the lava to the great crater, and burfting out a little above the water covering its bottom. The heat in this upper fpot is too great to admir of vegetation. The furface is covered with a kind of mud or pafte formed from the afhes, moiftened by fteam conftantly rifing from below. When the mud is removed, the vapour iffues forth with violence, and in fome parts copioufly. This mud is fo hot, that a gentleman who inadvertently ftepped into it, had his foot feverely fcalded by it. The fame caufes which have prevented vegetation on this fpot, have had the fame effect on the four cones recently thrown up. Their furfaces are co. vered with afhes only; nor is there the leaft appearance even of mofs on the furrounding lava, for the production of which there does not appear to have elapfed a fufficient length of time fince the cones were formed: but this is not the cafe with the lava of the great primary crater ; for in thofe parts of it where the edges are more perpendicular, and where confequently the mouldering decompofed earth, having no bafis to fupport it, flides down the fides of the rock, pretty long mofs was generally found growing upon it. All the fprings or refervoirs of hot water, except one only, were brackifh. One fpring derives its fource from the ligh ground and ridges of the crater. The water in it, inItead of boiling upwards through the ftones and mud, as in the other fprings, flows downward with a confiderable velocity; "in a fmall collected ftream. Its temperature has been found not to exceed 112 degrees. The hand could be eafily kept in it for a confiderable time. It is a pretty ftrong chalybeate. The fides of the rock whence it iffues, and of the cavity into which it falls, are incrufted with ochre depofited from it.
" When the great crater is viewed from the high ground, it appears to have been originally a perfect circle, but to have been encroached upon by the fea on the eaftern fide, where the food tide frikes violently. The rocks of lava which formed the edge of the crater on that fide have fallen down. The depth of the wa. ter in the crater is about 170 feet, rendering the whole height of the crater, from the bottom to its upper ridge, nearly if not quite 900 feet. The lofty rocks forming this ridge are the highelt parts of the ifland, which feems to have been originally produced by the melted lava flowing down on all fides from hence. Thus there is a gradual Hlope from the edges of the crater to the fea; and the lava, though very irregular, and lyingin mixed ruin and confufion immediately around the crater, affumesa more uniform appearance at fome diftance, layer refting regularly upon layer, with a gradual declivity the whole way down to the fea. This difpofition of the layers is particularly obfervable in the weft fide, where they happen to terminate in an abrupt precipice. The eruptions that took place at different periods appear here difinetly marked by the different layers that are found with regular divilions between them; the glafy lava being undermoft, the compact next, the cellular dava next above, over it the volcanic ahes and
lighter

A M S [$\left.14 \begin{array}{lll}\end{array}\right] \quad$ A M S

Amiter. lizhter fubpances, and a lager of vegetable mould codam.

The illand appears indeed in fuch a flate of volcanic intlammation, that from the lhips decks at night were obferved, upon the heights of the inand, feveral fires iffiling out of the crevices of the eatth, more confiderable, but in cther reppets refembling fome what the nightly flames at Pietra Mala, in the mountains between I'lorence and Pologna, or thofe near Bradley in Lancafhire, occafioned by forne of the coal-pits having taken fire. In the day nothing more than fmoke could he perceived.

The length of the ifand from north to fouth is upwards of four miles, its breadtly from ealt to weft about two miles and a half, and its circumference eleven miles, comprehending a furface of about eight fquare miles, or 5^{120} acres, almoft the whole of which is covered with a fertile foil. The itland is inacceffible except on the eaft fide, where the great crater forms a harbour, the entrance to which is deepening annually, and might by the aid of art be made fit for the paflage of large hims. The tides run in and out at the rate of three miles an hour, and rife perpendicularly eight or nine leet on the full and change of the moon; a northenly wind making the highelt tide. The water is eight or ien fathems deep clofe to the edge of the crater; and in the bafon formed by the crater itfelf, the variation of the compars was found to be ninetecn degrees and fifty minutes weftward of the north pole.

On the ifland, which has no native inhahitants, were found three Frenchmen and two natives of England, who at the end of the American war had emigrated to Bolton. The whole five hidd come hut from the Inte of France in the Indian Ocean, and had been left on the illand of Amferdam, about five months before the arsival of the Lion, for the purpofe of procuring a cargo of 25,000 feal-fkins for the Canton market, which, as they bad already procured 8000 , they hoped to complete in about ien months more. The veffel which brought them from the Ille of France was gone to Nootha Sound, with a view of bringing a quantity of lea-otter fkins to China; and afterwards of calling for the cargo of feal-fkins at this place, to be carried to China likewife; proceeding thus alternately to Nootka and Amfterdam ifland as long as the owners thould find their account in it.

The feals, whofe fikins are thus an article of commerce, are found here in greater numbers in the fummer than in the winter, when they generally keep in deep water, and under the weeds, which thelter them from the inclemency of the weather. In the fummer months they come afhore, fometimes in droves of Soe or 1000 at a time, out of which about 100 are deftroyed, that number being as many as five men can fkin and peg down to dry in the courte of a day. Little of the oil which thefe animals might furnifh is collected, for want of carks to put it in; part of the beft is boiled, and ferves thofe people inftead of butter. The feal of Amnetdam is the phoca urfina of Linnæus. The female weighs ufually frem 70 to 120 pounds, and is from three to five feet in length, but the male is confiderably larger. In general they are not fhy: fome. times they plunge into the water intantly upon any one's approach, but at other times remain fteadily on the rocks, bark, and rear hem?elves up in a menacing
pofture; but the blow of a flick upon the nofe feemed Amfterfufficient to difpatch them. As the $\mathbb{R k}$ ins alone were the objeets wanted, the carcales were left on the ground to putrify at leifure, Arewed in fucl numbers as to render it diflicult to avoid treading on them in walkings along. 'Ihe people thus employed were remarkable for the fqualc and filth of their perfons, clothes, and dwelling; yct none of them feemed defirons of leaving the place before the bulinefs they came upon fhould loe completed. One of them, an Englithman, who had been a conliderable time upon the iffand on a former adventure, gave but an unfavourable account of the weather during the winter months, which are always boillerous, with hail and fnow; but in fummer he ac. knowledged it to be very fine.

The feal fupplies this inand with great varieties of excellent filh, particularly a kind of cod, which was equally relifhed whether freth or falted. Cray fifin were in fuch abundance on the bar acrofs the entrance into the crater, that at low water they might be taken with the hand; and at the anchorage of the fhips, when bal: kets, in which were proper baits, were let down into the fea, they were in a few minutes drawn up filled with cray filh. This circumftance is the more extraordinary, that in the fame place were found abundance of tharks and dog filh of uncommon fize, which are known to be fo voracious and fuch enemies to all other filh. The b.ifon of the crater abounds with tench, bream, and perch: and the perfon who with a hook and line has caught any of thefe fifh in the cold water of the bafon, may with a light motion of his hand let them drop into the adjoining hot fipring already mentioned, in which they will be boiled and rendered fit for eating in the space of fifteen minutes. This was often prectifed by the gentlemen of the embalfy, and furnilhed them at once with a fingular amufement and a highly relifhed repalt.

Of all the birds which frequent this illand, fo extraordinary in its origin, formation, and appearance, not one is common to the fame degree of latitude in the northern hemifphere. Of the larger kind were feveral fpecies of the albatrofs; on examining one of which, diftinguilhed by the name of exulans, it was found, that inftead of having only the rudiments of a tongue, as naturalifts generally fuppofe, it had one equalling half the length of the bill. A nother large bird is likewife common here, called the great black petrel, or procellaria equinocialis of Linnæus. It is the determined enemy of the albatrofs, as well as of the blue petrel of Amfterdam, or procellaria forferi. This blue petrel, which is about the fize of a pigeon, conflitutes the principal food of the feal-catchers on the ifland. During the day-time they hide themfelves in the ground, in order to efcape, if poffible, their deftroyer the black petrel. At night they come abroad, and thence are termed night bisds by the people at Amfterdam; but being fond of flocking to any light, they fall into ancther fnare laid for them by the feal-catchers, who kindle torches to attraet them, and then kill them in multitudes. The prettielt of the feathered tribe, inluabiting or viliting Amfterdam, is the filver bird, or fierna birunds, about the fize of a large fwallow or fwift, with a forked or fwallow tail. The bill and legs are of a bright crimfon colour, the belly white, and the back and wings of a bluifh afh colour. 'lhis bird fubfits chiefly on fmall fifh, which

Ameins it picks up as they are fwimming over the furface of the water.

This fingular ifland lies in $3 S^{\circ} 42^{\prime}$ S. Lat. and in $76^{\circ} 54^{\prime}$ E. Long. from Greenwich. St Paul's, or the ifland lying in fight and to the northward, differed in appearance materially from Amhterdam. It prefented no very ligh land, or any rifing in a conic form ; and feemed to be overfpread with fhrubs or trees of a middlingr fize. It was faid to abound with frefh water, but to have no good anchorage near it, mor any place of ealy landing.-Sir Gtorge Staunton's Account of an Enbafly to the Emperor of China.

AMELINS, Ecor a, is a fouth eaflern head brancli of Wabafh river, whofe mouth is 9 miles N. E. from the month of Salamanie river, and 45 miles S. W. from the Miami village and fort.- Morse.

AMOENIA, a thriving townmip in Dutchefs county, New-York, 6 miles diftant from Sharon, in Connecticut. It contains 3078 imhabitants, of whom 383 are electors.一il.

AMHERST, a townfhip in Cumbetland county, Nova-Scotia, fituated on Chignecto Bafon, on the S. fide of La Planch River, and on the rivers Napan and Macon. The navigation of the two laft is diflicult on account of fhoals. The town was fettled by North Irifh, Yorkfhire and New-England people.-ib.

Amherst, the fhire-town of Hilifborough county, New.Hamplhire, is a town of fome note, formerly Soubegan $W_{e f t}$, and was originally granted from MTaffaclufcits. It has 2369 inhabitants, and was incorporated in 1762. The Aurcan Acaderiy was founded here in 1790. A few years agn, the townthip being much infelted with wolves, the people, on a day appointed, furrounded a large fwamp which they frequented, and keft up an inceffant firing of guns and beating of drums the whole day; which mufic forced the wolves to decamp the following night, with difmal howlings; and they have never done any mifchief in the town fince. Amherft lies on a northern branch of Souhegan River, which falls into Merrimack River, and is 60 miles W. of Portmouth, and 53 N . W. of Bofton. N. lat. 42. 54. W. long. 71. 33 -ib.

Amherst, a townfhip in Hampliire county, Maffachufetts, containing 1233 inhabitants; 91 miles welterly from Bofton, and abuut eight north-eafteriy from Northampton. -ib.

Ammerst County, in Virginia, lies between the Blue Ridge and the tidc waters, and contains 13,703 inhabitants, including 5296 llaves. It lies on the north of James River.-ib.

AMICU, a lake in the province of Cumana, SouthAmerica, whofe waters run fonthwardly through Harima River into the Amazon,-ib.

AMONOOSUCK, an Indian name given to two rivers in New-Hamphire: the one is called Upper Amonoofuck, paffing through a tract of excellent meadow. It rifes near the north end of the White Hills, runs northerly about 15 miles, where is a carrying phace of about three niles to Amarifenggin River. From thence the biver runs S. W. and V. nearly 18 miles, and empties into the Connecticut at Northumberland, near the Upper Coos.

The other is called Great or Lower Amonoofuck, which rifes on the welt tide of the White Mountains. If falls into the Comecticut juit above the town of

Haverhill, in Lower Coos, by a mouth 100 yards wide. About two miles from its mouth it receives Wild Amonoofuck, 40 yards wide from Franconia and Lincoln Mountains. 'Iwo or three hours rain raifes the water in this laft mentioned river feveral feet, and occafions a current fof furions as to put in motion Rones of a foot in diameter, but its violence foon fubfides. -ib.

AMOTAPE, a town near Tumbez, lying near the thore of the South Sea, in the empire of Peiu. Being near a river of fine water, the adjacent country is lighly improved. Lat. 4. 15. 43. S.-ib.

AMPALLA, by fome authors called Ampalia, a city and feaport in Guatimala Gulf, in that of Mexico, 350 miles S. E. of the city of Guatimala, and carries on a brifk trade in cochincal, cocoa, hides, indigo, \&c.-ib.

AMPARES, a jurifuiction under the archbifhnp of Plata, ealtward of that city, in the empire of Perte. It abounds in grain and cattle.-ib.

AMUSKEAG Falls, in New.ITampfhire, are on Merrimack River, fixteen miles below Concord, and feven below Hookfet Falls. It confifts of three pitches, one below the other, fo that the water falls about 80 feet in the courfe of half a mile. The recond pitch, which may be feen from the road, on the W. fide, is truly majeftic. In the middle of the upper part of the fall is a high rocky ifland, on the top of which are a number of pits, made exactly round, like barrels or loghneads, fome of which are capable of holding feveral tons; formed by the circular motion of fmall ftones, impelled by the force of the defcending water. There is a bridge acrofs the falls 556 feet in leanth, and 20 in breadth, confiling of 2000 tons of timber, and made pulídble for travellers 57 days after it was begun. N. lat. 42. 59-ib.

ANACLASTIC curves, a name given by M. de Mairan to certain apparent curves formed at the boitom of a veffel full of water, to an eye placed in tle air ; or the vault of the leavens, feen by refraction throush the atmofphere.

ANAPHORA, in aftrology, the fecond houre, or that part of the heavens which is 30 degrees from the horofope. The term anaphara is alfo fumetimes applied promifcuonlly to tome of the fucceeding houfes, as the 5 th, the 8 th, and the ifth. In this fenfe anaphora is the lame as epanapiora, and Itands oppofed to cataphera.

ANASTATIA, St. a fmall ifland clofe to the coaft of Eaft-Florida, fitnated S. of Maftances Inler, where the river Maftences forms two illands of the fame name at its mouh. St. Anaftatia illand is bounded on the N. by St. Augufine's bar. Here is a quarry of fine fone for building.

ANASTROUS sIcNs, in aftronomy, a name given to the duodecatemoria, or the twelve portions of the ecliptic, whith the figns poffeffed anciently, but have tince deferted by the preceflion of the equinox.

ANCHOR of A SHIs, is an inftrument which, as it is commonly made, has beenfonliciently defcribed in the Encyclopzjia. An improvement, however, has been propored on its confruction by Mr James Stuad of the parith of St Anne, MiJdlefex, who obtained a patent for lis iuvention, dated Feb. 9, 1796.

The whole of this invention conffits in making the

Anchor.

A N D [16 [$\quad 1 \quad$ A N D

anchor with one fluke or arm intead of two, and contriving to load that fluke or arm in fuch a manner as to make it always fall the right way. With this view Mr Stuard would have the thank of the anchor made very fhort, that it may cant the more when fufpended by the cable; and he would lave the arm and it made of bars in one length, that there may be no fhoot or joining in the whole inltrument. The bend of the thank and arm he would have munded, and not angular as in the common anchor; and on this bend he would have a fmall thackle, or two plates with a forall bolt between them, for the buoy rope to be made falt to. Inftead of wood. he propofes for the ftock of the anchor a bar of wrought iron, loaded or covered at the ends with knobs of caft iron; and he would have the palm of the fluke or arm either to be compofed entircly of calt iron, or to be a calt iron fhell filled with lead. This weight of the palm, the fhortnefs of the thank, and the ftructure of the ftock, will no doubt make the anchor fall the right way; which, having no upper fluke, will never betripped by the cable taking hold of it on the fhip's fwinging, nor will it prove fo dangerous as the common anchor to fuch velfels as may happen to ground by it.

ANCOCUS or RANCOCUS Creck, in New-Jerfey, a water of the Delaware, 6 miles S. Wr from Burlington. It is navigable 16 miles; and confiderable quantities of lumber are exported from it-Morse.

ANDAGUAYLAS, a jurifdiction in South-America, in the empire of Peru, fubject to the archbifhop of Lima; lying E. by S. of the city of Guamanga. It abounds in fugar plantations, grain of molt forts, and fruits.-ib.

ANDERSON (Alesander), an eminent mathematician, was born at Aberdeen towards che end of the 1 oth century Where he waseducated, or under what matters, we have not learned; probably he Itudied the belles lettres and philofophy in the univerfity of his native city, and, as was the practice in that age of all who could afford it, went afterwards abroad for the cultivation of other branches of fience. But wherever he may have Itudied, his progrefs in fcience mult have been rapid; for, early in the ipth century, we find him profeflor of mathematics in the univerfity of Paris, where he publifhed feveral ingenious works; and among others, 1. Supplementum Apollonii Redivivi; five analyfis problematis bactenus defiderati ad Appolionii Pergai doctrinaant aept vessew, a Marino Gbctaldo Patritio Ragufing kujifque, nors ita prilem refiiutam. In qua exbilietur mechanice aqualitatum terrii gradus five folidurnm, in quibus nudgnitudo omnino data, aquatur bomogenecs fub altero tantabn coefficicnte ignoto. Huic fubnexa eft variorum problematume pradice, Paris, 1612 , in 4 to.-2. Airionogua: Pro Zetelico Apolloniani problematis a fe jam priden edito in fupplemento Apollonii Redivivi. Ad clarifinum et ornat!/fmum virum Marinum Gbetallum Patritium Ragy/num. In qua ad ca que oliter mibi terflinxit Ghetaldus refpon. detur, et analytices clarius detegitur. Paris, 1615 , in 1to.-3. Francijci Victue Fontenacenfis de Equationum iRecornitione of Ementatione Traçatus duo, with a dedieation, preface, and appendix, by himfelf. Paris, 1615 , in 4 to.-4. Vieta's Angulares Sectiones; to which he added demontlrations of his own. Our profelifor was coufin german to Mr Divid Anderfon of Finfhaugh, a gentleman who alfo poffeffed a fingularturn for mathematical knowledge. This mathematical genius was here-
ditary in the family of the Anderfons; and from them it feems to have been tranmitted to their defeendants of the name of Gregory, who have for fo many generations been eminent in Scotland as profell rs either of mathematics, or, more lately, of the theory and practice of phyfic. The daughter of the D wid Anderfon jut mentioned, was the mother of the celebrated James Gregory, inventor of the reflceting telefcope; and obferving in her fon, while yet a child, a ftrong propenfity to mathematical ftudies, the inftructed him in the elements of that fcience herfelf. From the fame lady defcended the late Dr Reid of Glafgow, who was not lefs eminent for his knowledge of mathematics than for his writings as a metaplyfician.

The precife dates of Alexander Anderfon's birth and death, we have not learned either from Demplter, Mackenzie, or Dr Hutton, who feems to have ufed every endeavour to procure information ; nor are fuch of his relations as we have had an opportunity of confulcing, fo well acquainted with his private hiftory as we expected to find them.

ANDOVER, a large, fertile and thriving town in Effex county, Maffachufetts. It contains 2863 inhabitants, in two parifhes. In the South parifh are a paper mill and powder mill, from the latter of which the army received large fupplies of gun-powder in the late war. There is an excellent academy in this town, called "Phillips Academy," which owes its exiftence to the liberal benefactions of the family whore name it bears. Andover is under excellent cultivation, particularly that part which is watered by Shaw heen River. It lies about 20 miles W. from Newburyport, and about 22 N . from Bolton.-Morse.

Andover, in Hillfborough, New-Hampfhire, contains σ_{45} inhabitants, and was incorporated in 1779. -ib.

Andover, is the fouth-wefternmof townfhip in Windfor county, Vermont, has Chefter on the E. lies 32 miles N. E. of Bennington, and contains 275 in-habitants.-ib.

Andover, a place in Suffex countr, New-Jerfey, near the fource of Pequeft river, 5 miles S. E. from New-Town, and 16 in the fame direction from Wal-pack-ib.

ANDREW's, Sr. a fmall town in the contefted country becween New-Brunfwick and the United States; fituated in the rear of an ifland of the fame name, on the E. fide of the arm of the inner bay of Pallamaquoddy, called Scoodick. The town is legularly laid out in the form of an oblong fquare. The few inhabitants are chiefly employed in the lumber trade. The common tide rifes here about 18 feet.-ib.

Anvrew's, Sr. a townfhip in Caledonia county, Vermont, 100 mules N. E from Bernington.-ib.

Andrew's, St. a parith in Charlefton diftrict, South Carolina, con'aining 2947 inhabitants, of whom 370 are whites and 2546 ीlaves. - i.

Andrew's Sound, Sir. lies S. of Jekyl's Ifland, and is formed by it and a fonall ifland at the mouth of Great Satilla river. The fmall river oppofite this found reparates Camien from Glynn county, in Georgia.-ib.

ANDROSCOGGIN, or Amarifooggin river, in the diftist of Maine, may be called the main weftern branch of the Kennebeck. Its fources are N. of Lake Umbagog.

A N H [17] A N N

Umbagog. Its courfe is foutherly till it approaches near to the White Mountains, from which it receives Moofe and Peabody rivers. It then turns to the E. and then to the S. E. in which courfe it paffes within two miles of the fea-coaft, and then turning , N. runs over Pejepkaeg falls into Merry-Meeting-Bay, where it forms a junction with the Kennebeck, 20 miles from the fea. Formerly, from this bay to the fea, the conftuent fireatn was called Sagadahock. The lands on this river are very good.-Morse.

ANEGADA, one of the Virgin Ifles in the WeftIndies, and dependent on Virgin Gorda. It is about 6 leagues long, is low, and almot covered by water at high tides. On the S. fide is Treafure point. Lat. i8. 35 . N. long. 63. W.-il).

ANGARAEZ, a province in South-Americ:, in the empire of Peru, fubjeet to the archbifhop of Lima, 20 leagues N. W. by W. of the city of Guamanga. It abounds in all kinds of grain and frnits, befides vaft droves of cattle for labour and fuftenance.-ib.

ANGUILLA, a bank and ifland E. of the Great Bahama Bank, and N. of the ifland of Cuba. Long. 78. 10. to $79 \frac{\mathrm{x}}{\frac{1}{2}}$. lat. $23 \frac{1}{2}$. to 24 . 10. N. -ib.

ANGUILLE, Capt, a point of land in Newfoundland illand, on the W. fide, in the Gulf of St. Lawrence, 6 leagues N. from Cape-Ray, the S. W. extremity of the illand, in lat. 47.57. N.-ib.

Angulle, a bay on the N. N. E. fide of the ifland of St. John's, in the Gulf of St. Lawreice, oppofite Magdalen Infe; and having St. Peter's harbour on the S. E. and Port Chimene on the N. W. -ib.

ANHINGA, in ornithology, a fpecies of the pelicanus; confits of four known varieties, two peculiar to America, one to Senegal, and the fourth to the region about the Cape of Good Hope. This laft is thus defcribed by Le Vaillant in his New Travels into the Interior Parts of Africa.
" The denomination of Slange-Hals-V Logel, given to it by the Hottentots, charaderifes the anhinga in a very fimple and accurate manner. Buffon, who was fruck with the conformation peculiar to birds of this kind, has delineated them by a fimilar expreffion.
the lody of a bird.' Indeed there is no perfon who, upon feeing the head and neck only of an anhinga, while the rft of the body is hid among the fnliage of the tree on which it is perched, would not take it for one of thofe ferfents accuftomed to climb and retide in trees; and the mitake is fo much the eafier, as all its tortuous motiers fingularly favour the illuion. In whatever fituation the anhinga may be feen, whetler perched on a tree, fwimning in the water, or flying in the air, the moft apparent and remarkable part of is body is fure to be its long and flender neck, which is continually agitated by an ofcillatory mation, unlefs in its flight, when it becomes imrrove.ble and extended, and forms with its tail a perfcally flraight and horizontal line.
"The true place which nature ferms to have affign. ed to the anlingas, in the numerous clats of the palmipedes, is exactly between the commant and the grebe. They pastake indeed equally of borth theie genera of birds, having the fraight fender billand the long neck of the latter; while they approach the former by the

Suppl. Vol. I.
conformity of their feet, the four toes of which are Anhinga joined by a fingle membrane. They partake alfo of the comorant by their flight; having like it the wings \qquad larger and fitter for the purpofe than thofe of the grebe, which are fhort and weak. The tail of the anhinga is extremely long; a characteriftic very fingular and remarkable in a water fowl, and which ought, it would feem, to render them totally ditinet from diving birds, which in general have little or no tail. By this trait they approach fill nearer to the cormorants; for tho' the tails of the latter are fhorter, the tails of both have a great refemblance to each other, fince their quills are equally frong, elatic, and proper to form a rudder when there fowls fivim through the water in purfuit of fifh, which confitute their principal nourifliment. When the anhinga feizes a fifh, he fwallows it entire if it be fimall enough, and if too large he carries it off to a rock or the fump of a tree, and fixing it under one of his feet, tears it to pieces with his bill.
"Though water is the favourite element of this bird, it builds its nelt and rears its young on rocks and trees; but it takes great care to place them in fuch a manner, that it can precipitate them into a river as foon as they are able to fwinh, or the fafety of the little family may require it.

The male anhinga differs from the female, which is fmaller, in having the whole under past of the body, from the breall to the root of the tail, of a beautiful black, while the latter has the fame parts of a yellow ifabella colour. It has alfo, on each fide of its neck, a white ftripe, which extends Irom the eye to the middle of its length, and interfect a reddifh ground. A very fingular charaterific, common to all the anhingas, is that of having the feathers of the tail deeply ftriated, and as it were ribbed. It is a very fagacious bird, efpecially when furprifed fwimming; for its hedd is the only part which it expotes above the water ; and if the fortiman once mifs that part, the anhinga planges out of fight entirely, and never more thows itieif but at very great diftances, and then no longer at a time than is abfolutely necefiary for breathing.

ANNAPOLIS River, in Nova-Scntia, is of fmall fize. It rifes in the E. near the head waters of the fmall rivers which fall into the bafon of Minas. Annapulis river paffes into the bay of Fundy through the bafon of its own mame, in the S. fide of which, at the moulla of the river, nands the town and fort of A nnapolis Rnyal. It is navigable fir fhips of any burden 10 miles, for thofe of 100 tens, 15 miles; and is paltable for boats within 20 miles of Horton. The tide flows up 30 miles.-Morse.
Annapolis, a county on the above river, adjoining to King's ccunty, having 5 townhips, viz. Wilmot, Gianville, Annapolis, the chief towns, Clare, and Monckton. It is clieny inhabited by Acadians, Irith, and New. Englanders. $-i$ ib.

ANN ARUNDEL. Comit, in Maryland, lies between Patapfo and Patuxent Rivers, and las Chefapeak Bay S. E. Annopolis is the chief rown. This county contains 22,508 inhabitants, of whom 10,131 are tlaves.-ib.

ANN, CAPE, is the point of land in the town of that name, or Gloucefter, which fom mos the N . lide of Maffachufetts Firy, as Cape Cod does the S. fide. N. lat. 42 . 45. iong. ${ }^{70 .}$ C 7 . W. See Cloucyfer. 'This

A N T 18] $A \quad N \quad T$

Ana Cape was fo named in honour of Am, confort of ferfed with litule groves, that give a pleafing variety Anthony's Anthonys. King James I.--ib.
ANN, Sr. a lake in Upper Canada, not therly from Lake Superior, which fends its waters north-eaftily into Janies's Bay, through Albany River. Its northeaftern print lies in N. lat. 50. W. long. 88.-ib.

ANN, Sr. is the chief town of the province of Farana, in the E. divifion of Paraguay, Soblh Ameri-ca.-ib.
ANN's, St. a port on the E. fule of Cape Breton Thand, where filhing veffels often put in. It lies on the N. W. fide of the entrance into Labrador Lake. W. long. 60. N. lat. 47.-ib.

ANN's, $S t$. is a fmall toun on the RiverSt. Jhn's, province of New-Brunfwick, about 80 miles fram St. Juhn's. It is at prefent the feat of government.- $i b$.

ANiN, Fort, in the fate of New-York, lies at the head of batteanx navigation, on Wood Creek, which fails into South Bay, Lake Champlaia, near Skenefbirough. It lies $6 \frac{3}{3}$ miles S. W. by S. from Skeneihorough Fort; io E.S. E. from Fort George, and 12 N. E. by N. from Fort-Edward, on Hudfon River. Such was the favage fate of this part of the country, and the layers of trees laid lengthwife and acrofs, and fo broken with creeks and marthes, that General Burgoyne's army, in July, 1777 , could fearcely advance above a mile in a day, on the road to FortEdward. They had no fewer than 40 bridges to conftruct, one of which was of log work 2 miles in length; eircumftances whieh in afrer ages will appear hardly credible--ib.

ANSON, an interinr county of N. Carolina, in Fayette difliit, having Mecklinburg county N. and Bladen and Cumberland counties on the E. It contains 5 '33 inhabitants, including 828 llaves.- i.

ANTECEDENTAL calgulus. See Calcules it this Supplement.

ANTES, in ar chitecture, fmall pilaftres placed at the comers of buildings.

Aivehony's Falls, St . in the River Mififfippi, lie about to miles N. W. of the mouth of St. Pierre River, which joins the Miflifippi from the IV. and are fituated in about lat. 44.50 . N. and were fo named by father Louis Hennipin, who travelled into thefe parts about the year 1680 , and was the firlt Lurnpean ever feen by the natives there. The whole river, 250 yards wide, falls perpendicularly above 30 feet, and forms a moft pleafing cataract. The rapids belox, in the fance of 300 yards, render the defcent confiderably greater; fo that when viewed at a diftance, they appear to be much higher than they really are. In the middle of the falls is a fmall if ind, about 40 feet hroad, and fomewhat longer, on which grow a few hemlock and fpruce trees; and about half way between this illand and the caftern thore, is a roek, ly ing at the very edge of the fall, in an obl que potition, 5 or 6 feet broad, and 30 or 40 lang. There falls are peculiarly fituated, as they are approachable without the leaft obitruction from any intervering hill or precipice; which cannot be faid, perhaps, of any other confiderable fall in the world. The feene around is exceedingly beantiful. It is not an uninterrupted plain, where the eye finds no relief, but compofed if-many gentle afcents, which, in the fpring and fummer, are covered with verdure, and inter-
to the profpect.
At a little diflance helow the falls is a fmall inland, about $1 \frac{7}{2}$ acre, on which grow a great number of oak trees, all the branches of which, able to bear the weight. are, in the proper feafon of the year, lraded with eagles nefts. Their inflinative wifdom has taught them to choofe this place, as it is fecure, on account of the rapids above, from the attacks eithor of man or beaft. - Morse.

Anthony's Kiill, a weltern water of Hudfon River. Its mouth is 7 miles above that of Mohawk River, with which likewife it communicates at the E. end of Long Lake-ib.

Antuovy's Nofe, a point of lind in the Highlands, on Hudion River, in the flate of New-York, from which to Fort Montgomery on the oppofite fide, a large boom and chain was extended in the late war, which cof not lefs than 70,000 . Rerling. It was partly dettroyed and partly carried away by General Sir Henry Cliaton, in Oenber, 1777. Alfo, the, name given to the point of a mountain on the N . bank of Mohawk River, about 30 milcs ahove Selenectady. Around this point runs the flage road.-ib.

ANTICS, in architecture, figures of men and ani. mals placed as ornaments to buildings.

ANTICUM, in architecture, a poreh; alfo that part of a temple which lies between the body of the temple and the portico, and is therefore called the outer temple.

ANTIETAM Cretk, in Maryland, rifes by feveral branches in Pennfylvania, and empties into Potowmack River, 3 miles S. S. E. from Sharpburg. Elizabeth and Funk's towns fland on this creek. It has a number of mills and forges.-Morse.

Aintimeter, or Reflecting Sector, an inftrument invented by Mr William Garrard, for the purpofe of meafuring angles, particularly fmall ones, with a greater degrce of accuracy than can be done by Hadley's quadrant or by the fextant.
The frame of this inftrument is fimilar to that of Hadley's quadrant, having two radii, a limb, and braces; but with this difference, that the further radius is produced upwards of four inches beyond the centre of motion of the index; and the great fpeculum, or what is called the index.glafs in Hadley's quadrant, being placed there, is called the upper centre. In this inftrument there is no provifion for the back obfervation. The horizon-glafs is like that in Hadley's quadrant; there are two fight vanes, to fuit two different fituations of the large feculum or objest glafs: thefe vanes are adapted to receive a finall telefcope. On the centre of the index, where the index glafs of Hadley's quadrant is fixed, is a brafs or bell-metal femicircle, two inches in diameter, and one eighth of an inch thick: this femicitcle is ferewed falt to the inder, in fuch a manner that the axis of the index is a tangent to it. On the upper centre are two circu'ar brais plates, which revolve concentrically, either together or feparately. The under plate has a lever, or past perpendicular to the plane of the inftrument, projecting downwards, a little beyond the lower centre : this lever i, acted upon by the femicircular plate at the lower centre, to which it is always kept clofe by a foring on the other fide. In the upper of the above mentioned circular plates are
$\Lambda N T \quad\left[\begin{array}{ll}19\end{array}\right]$
Antimeter two circular perforations or flits, through one of which . II Antiparallels. a ferew takes into the head of the inftrument, and thro ${ }^{2}$ the other a ferew takes into the lower moveable plate. The large fpeculum is faitened to the upper plate; and by the :above mentioned fcrews the polition ot this glafs may be altered. A circular plate is fixed to the lower centre by three pillars: in its centre is a nut to admit a fcrew, by which the plate carrying the large fpeculum may be faftened here nccationally.

The leale on the limb is divided into 45 equal parts or degrees, and not into half degrees as is the cafe in Hadley's quadrant, by reafon of the double reflection. Thefe divitions are numbered in a retrogade orcier; zero being at the extremity of the further radius. Although the limb contains 45 degrees, yet the greateft angle which can be meafured, the large fpeculum remaining fixed to the circular plate, is $10^{\circ} 18^{\prime} 21^{\prime \prime} .8$; the dittance between the two centres being four inches, and the radius of the femicircle one inch. Agreeable to thefe dimenfions, the inventor has given a table exhibiting the value of each primary divifion on the lims; lic hath alfo given a more ample table, adapted to a diflance between the centres of three times the radius of the femicircle, which he fays hath been found the molt convenient in practice. If an angle greater than $10^{\circ} 18^{\prime}$ is wanted, it may be meafured by the method of anticipation, as the inventor calls it, which is as follows: Let the fcrew which faftens the two circular plates on the upper centre be made falt, and loofen the ferew which fattens the upper circular plate to the inftrument: Now acjunt the glaffes by the ufual method; bring forward the index to any given divifion on the limb, and make it fait ; alfo fatten the ferew which was before loofe, and loofen the other fcrew; then bring the index to zero, and proceed as before.

The inventor gives the following direatons for adjufting and nfing the infrument.

The firlt thing to be attended to is, to fet the horizon.glafs perpendicular to the plane of the inflrument, which is performed as follows: Hold the inltrument with its plane perpendicular to the horizon, and look over backwards into the glafs and beyond it. If the limb of the inftrument appears in a right line with its seffection, the glafs is upright; but if it does not appear (i), loofen or tighten the little ferew on the font of the glafs until it be adjulted : Then with the infrument, as in taking an altitude, look through the fight vane or telcfcope at fome diłant objest, with the index fixed in any intended lituation ; the two forews at the upper centre being loofe, turn the glafs about till tize fame object appears nanly in the fome part of the herizonglafs: Next hold it in a horioontal roftion, and adjuft the objeit-gla's or large feculum with the trews which are behind and before, on the foot of it, till the chject and its reffe?tion ate feen in the fame herizontal lne. Lafly, with the infroment cyright, turn the tangentficrew belonging to the horizon-glafs at the back of the inftrument, until there be a perfeck coincidence of the (bject and its reflection that way, and the acjuulments are complete.

ANTIPARALLELS, in cometry, are thofelines which make eçual angles u ith two other lines, but contrary ways; that is, calling the former pair the irret and fecond lines, and the latter pait the thind and fourth lines, if the angle made by the firf and third lines be
equal to the angle made by the feeond and fourth, and Antonio contratiwife the angle made by the firf and fourth equal to the angle made by the fecond and third ; then each Apalachipair of lines ate antipatallels with refpect to cach cther, viz. the firt and fecond, and the third and fourth. Sn, Mate II if $A B$ and $A C$ be any two lines, and $F C$ and $F E$ be fiv. s two others, cutting them fo,
that the angle B is equil to the angle E ,
and the angle C is equal to the angle D ;
then $B C$ and $D E$ are ansiparallels with refpeat to $A B$ and $A C$; alfo thefe latter are antiparallels with regard tu the two former. It is a property of thefe lines, that each pair cuts the other into proportional fegments, taking them alternately,
viz. $A B: A C:: A E: \Lambda D:: D B: E C$,
and $\mathrm{FE}: \mathrm{FC}:: \mathrm{FB}: \mathrm{FD}:: \mathrm{DE}: \mathrm{BC}$.
ANTONIO De Suchitepec, S_{t}. a town in Mexico or New Spain, on the coatt of the Pacific Ocean. N. lat. 15. W. long. 93 5.-Morse.

Antonio, St. the capital of the province of Apachiera, in New-Mexico-ib.

Antowio, a town in the province of Navarre, in North-America, on a river which runs S. W. into the Gulph of California.-ib.

Anfonio, Cape St. the moft weflern point of the inand of Cuba; having on the N. W. a number of iflets and rocks, called Los Colorados, between which and the cape is the channel of Guaniguanica. N. lat. 22. 15. W. long. $8 \frac{1}{2}$ - -ib.

Antonto De Cabo, St. a town in Brazil, in ScuthAnerica, near Cape St. Auguftine, fubject to the Portuguefe. Here they make a confiderable quantity of fugar. S. lat. 8. 34. W. long. 35. 22.--ib.

Antonio St. a town in New Mexico, on the W. fide of Rio Bravo River, below St. Gregoria. Alio, the name of a town on the river Hondo, which falls into the Gulf of Mexico, N. E. of Rio de Brava; and on the eatern fide of the river, S. by W. from '「cxas.-ib.

ANTERIM, a townhip in Hillibnough crounty, New-Hamplhire, having 528 inhabitants, incorporated in 1777; 75 miles W. of Portimouth, and about the fame diflance N. W. of Bolton.-ib.

ANVILLE, or Miller's Tuwn, in Dauphine couniy, Pennfylvania, at the he.rd of Tulpehocken Creek. When the canal between the Sufquehannah and Schuykill, along thefe creeks, is completed, this towa will probably tife to fome confequence. It lies is miles N. E. by E. from Harrißurg, and 6j. N. W. from Mhiladelphiz.--ib.

ANZERAA, is a town and province of Popaya, in South-A merica, laving nimes of gold. It is leated on the river Coca. N, lit. 4. 58.-2.

APACHERSA, an audience and province of NawMexics, whote capital is St. Fe, in N. lat. 36.30. W. long. 104.-ib.

APALACHES or St. Murk's 73 . rifes in the com. try of the Samirole Indians, in E. Fiorila, in N. lat. 31. 30. near the No W. fource of Great Stilla River; runs S. Wh through the Apalachy country, into the bay of Apalachy, in the Guph of Mexicn, about 15 miles beiow S:. Mark's. It runs about 135 miles, and fall: ints the Lay near the mouth of Apalachicola River.- -ib.

APALACHICOLA, a river betreen E. and W. O_{2}

Jlorida,

A P E [20] A P P

A pal ichí cola

Flonida, having its fource in the Apalachian Mountains, in the Cherokee country, within ten miles of Tugulon, the upper branch of Savannah River. From its frurce to the mouth of Flint River, a dif. tance of 300 miles, it is called Chata-Uche, or Chatahooche River. Flint River falls into it from the N. E. below the Lower Creek Towns, in N. lat. 31. From thence it runs near so miles and falls into the Bay of Apalachy, or Apalachicola, in the Gulf of Mexico, at Cape Blaize. From its fource to the 33 d deg. of N. lat. its courfe is S. W. from thence to its mouth it runs nearly S. See Chata-Ucba and Fint Rivers.-ib.

Apalachicola, is likewife the name of the mother town or capital of the Creek or Mulcogulge confederacy, called Apaluchucla by Bartram. It is, fays he, facred to peace; no captives are put to death or human blood fpil: here: and when a general peace is propofed, deputies from all the towns in the confede. racy meet here to deliberate. On the other hand, the great Cowera Town, 12 miles higher up the Cha-ta-Uche River, is called the Eloody Tozun, where the Micos chiefs and warriors aflemble when a gene al war is propofed; and there captives and fate malefators are put to death. Apalachicola is fituated a mile and an half above the ancient town of that name, which was fituated on a peninfula formed by the doubling of the river, but deferted on account of inundations. The town is about 3 days journey from Tallaffee, a town on the Tallapoofe River, a branch of the Mobile River. See Corveta, and Tallafice-ib.
APALACHY Country, extends acrofs Filint and Apalaches Rivers, in Eaft Florida, having the Seminole country on the N. E. A palachy, or Apdiachya, is by fome writers, applied to a town and harbour in Florida, 90 miles E. of Penfacola, and the fame difo tance W. from Del Spiritu Santo River. The tribes of the A palachian Indians lie around it .-ib.
APLRTURE, in optics, has been defined in the Lncyclopadia, but no rule was given thete for finding a juft aperture. As much depends upon this circumftance, our optical readers will be pleafed with the following praAlical rnle given by Dr Hutton in his Mathematical Dittionary. "Apply feveral circles of dark paper, of varions fizes, upon the face of the glats, from the brearth of a Araw to fuch as leave only a fmall hole in the glafs; and with each of thefe, feparately, view iome diftant objef, as the moon, ftars, \&c. then that apcrture is to be chofen through which they appear the minst diftinaly.
"Huygens firt found the ufe of apertures to conduce much to the perfection of teleforpes; and he found by experience (Diopt. prop. 56.), that the bell aperture for an objef-glafs, for examt le of 30 feet, is to be determined by this proportion, as 30 to 3 , fo is the fquare root of 30 times the diliance of the focus of any lens to its proper aperture : and that the focal diftances of the eye-glaffes are proportioned to the apertures. And M. Auzout fays he found, by experience, that the apertures of telefcopes ought to be nearly in the fub. duplicate ratio of their lengths. It has alfo been found by experience, that object. glafes will admit of greater apertures, if the tubes be blacked within fide, and their p:lflage furrifhed with wooden rings.
" It is to be noted, that the greater or lefs aperture
of an object-glafs, docs not increare or diminill the vifible area of the object ; all that is effected by this is the admittance of more or fewer rays, and confequently the more or lefs bright the appe.rance of the object. But the largenefs of the aperture or focal diftance caufes the irregularity of its refractions. Hence, in vieswing Venus through a telefcope, a much lefs apeture is to be ufed than for the moon, or Jupiter, or Saturn, becaufe her light is fo bright and glaring. And this circumfance fomewhat invalidates and difturis Azout's proportion, as is fhown by Dr Hook, Phil. Tranf. No 4 ."

APOCATASTASIS, or, as it fhould be written, Arokatastasis, is a Greek word employed in the language of aftronomers, io denote the period of a planet, or the time it takes to retura to that point of the zodiac whence it fet out.

APOQUENEMY Creck, falls into Delaware Bay from Middletown, in New-caftle county, Delaware, a mile and an half below Reedy Ifland. A canal is propofed to extend from the fouthern branch of this creek, at abcut 4 miles from Middletown, to the head of Boliemia River, nearly 8 miles diftant; which will form a water communication between Delaware Eay, and that of Chefapeak, through Elk River.-ib.

APPLE Ihund, a fmall uninhabited ifland in St. Lawrence River, in Canada, on the S. fide of the river, between Bafque and Green Intands. It is furrounded by rocks, which renders the navigation dan-gerous.-ib.

Apple Torun, an Indian village on the E. fide of Seneca Lake, i.J New. York, between the townflitps of Ovid or the S. and Romulus on the N.-ib.

APPOMATOX, is the name of a Couthern branch of James River, in Virginia. It may be navigated as far as Broadways, 8 or 10 miles from Bermuda Hundred, by any veffel which has croffed Harrifon's Bar, in James River. It has 8 or 9 feet water a mile or two farther up to Fifher's Bar, and 4 feet on that and upwards to Peterfburg, where all navigation ceafes.- ib.
APOLO BAMA, a juriflition confiting of mifions belonging to the Francifcans, fubject to the bifhop of Cufco, 60 leagues from that city, in the empire of Peru. Thefe confit of 7 towns of converted Indians. To protect thefe from the infults of the other Indians, and to give credit to the miffionaries, a militia is kept hete, under a major-general, formed by the inhabitantc.-ib.

APOTOME, is a term emplnyed by Euclid to de. note the difference bet ween two lines or quanities which are only commenfurable in power. Such is the difference between I and $\sqrt{ } 2$, or the diference between the fide of a fquare and its diagonal. The doctrine of apotomes in lines, as delivered by this ancient mathematician in the tenth book of his Elements, is a very curious fubject, and has always been admired by fuch as underfood it. The firt algebraical writers in Europe, fuch as Lacas de Burgo, Cardan, Tartalea, Stifelins, Sic. employed a confiderable portion of their works on an algebaaical expoftion of that which led them to the doctrine of iurd quantities.

APPARENT conjunction of the planets, is when a right line fuppofed to be drawn through their centres, paffes through the eye of the fpectator, and not through

Apocata.
deafis
!

Apparent.

the centre of the earth. And, in general, the apparent conjunction of ariy objects, is when they appear or are placed in the fame right line with the ese.

Atrakent Diannter of a planet or other heavenly body, is not the real length of the diameter of that body, but the angle which it fubtends at the ege, or under which it appears.

Amparent Difance, is that which we judge an object to be from us, when feen :uf.r off; and which is almoft always very differnt from the true diffance.

Aprarent Figure, is the figure or fhape under which an objeat appears when viewed at a diftance; and is often very different from the true figure. Thus a Atraight line, viewed at a dittance, may appear but as a point; a furface, as a line; and a folid, as a furface.

ApparRnt Motion, is either that motion which we perceive in a diftant body that moves, the eye at the fame time beiag either in motion or at rell; or that motion which an object at relt feems to have, while the eye itfelf only is in motion.

Apparent Place of a Planet, Scc. in altronomy, is that point in the furface of the fphere of the world where the centre of the luminary appears from the furface of the earth.

APPARITION, in aftronomy, denntes a Rar's or other luminary's becoming vifible, which befure was hid. So, the heliacal rifing, is rather an appaition than a proper rifing.

APURIMA, or Aporamac, a very rapid river in Peru, South-America, 30 miles from the river Aban-zai.-MTorse.

AOUAFORT, a fettlement on the E. fide of the fouth-eaftern extremity of Newfoundland Illand, lat. 47. 10. N.-ib.

AQUEDOCHTON, the outlet of lake Winnipifeogee, in New-Hamphire, N. lat. 43. 40. whofe waters pafs through feveral fmalier ones in a S. W. courfe, and empty into Merrimack River, between the towns of Sanburn and Canterbury.-ib.

ARARAT, Mlount or the Sone Head, a fhort range of mountains on the N . frontier of North-Carolina, in a N. E. direction from Ararat Rivcr, a N. W. branch of Yadkin River. -ib.

ARATHAPESCOW, an Indian tribe inhabiting the fhores of the lake and river of that name, in the N. W. part of North-A merica, between the latitudes of 57. and 59 . N. North of this nation's abode, and near the Aretic Circle, is Lake Edlande, around which live the Dog Ribhed Indians.-ib.

ARAUCO, a fortrefs and town of Chili, in SouthAmerica; fituated in a fine valley, on a river of the fame name, N . by W. from Baldivia. The native Indians are fo brave that they drove the Spaniards out of their country, though deftitute of fire-arms. S . lat. 37. 30. W. lorg. 73. 20.-ib.

ARAZIBO, one of the pincipal places in Porto Rico Inand, in the Weft-Indies. It has few inhabitants, and little trade but fmuggling.-ib.

ARCAS, an ifland in the Gulf of Mexico, in the Bay of Campeachy. Lae. 20. long. 92. 50.-ib.

ARCH, in building, is an artful difpotition and ad.
but may he extended to any width, and made to carry the moft enormous weights.

In thofe mild climates which feem to have been the firt inhabited parts of this globe, mankind food more in need of thade from the fun than of fhetter from the inclemency of the weather. A very fmall addition to the flade of the woodjeferved them for a dwelling. Sticks laid acrof; from tree to tree, and covered wih bruthwood and leaves, formed the firlt houfes in thofe delightful regions. As population and the aris improved, thefe huts were gradually refined into commodious dwellings. The materials were the fame, but more art-archew: fully put together. At liat agriculture led the imhabitants out of the wood into the open country. The connedion between the iohabitant and the fiol became now more conflant and more interefting. The wilh to preferve this cunneation was natural, and fixed eftablifhments followed of courfe. Durable buildings were more defirable than thofe temporary and perithable cot-tages-Itone was fubftituted for timber.

But as thefe improved habitations were gradual refinements on the primitive hut, traces of its confruction remained, even when the choice of more durable materials made it in fome meafure inconvenient. Thus it happened, that while a plain building, intended for accommodation only, confifted of walls, pierced with the neceffary doors and windows, an ornamented building had, fuperadded to thefe effentials, columns, with the whole apparatus of entablature, borrowed from the wooden building, of which they had been effential parts, gradually rendered more fuitable to the purpofes of accommodation and elegance.

This view of ornamental architecture will go far to account for fome of the more general differences of national fyle which may be obferved in different parts of the world. The Greeks borrowed many of their arts from their Afiatic neighbours, who had cultivated them long before. It is highly probable that architecture travelled from Perfia into Greece. In the ruins of Shafhan, Perfepolis, or Tchilminar, are to be feen the firft models of every thing that diftinguithes the Grecian architestures. There is no doubt, we fuppofe, among the learned, as to the great priority of thefe monuments to any thing that renains in Greece; efpecially if we take into account the combs on the monntains, which have every appearance of grcater antiquity than the remains of Perfepolis. In thofe tombs we fee the whole ordonnance of column and entablature, juft as they began to deviate from their firf and necefliay forms in the wooden buildings. We have the architrave, frize, and corniche ; the far-projecting mutules of the Tufcan and Doric orders; the moditions no lefs diftinet ; the rudiments of the Ionic capital ; the Corinthian capital in perfection, pointing out the very origin of this ornament, viz. a number of long gracefil leaves tied round the head of the column with a fillet (a cultom which we know to have been common in their teruples and banqueting rooms). Where the diftance between the columns is great, fo chat each had to fupport a weight too great for one tree, we fee the columns cluftered or fluted, \&c. In fhort, we fee every thing of the Grecian architecture but the floped roof or pediment; a thing not wanted in a country where it hardly ever rains.

The ancient Egyptian architecture feems to be a refinement on the hut built of clay, or unburnt bricks mix.

Hifory of architccture con-

\square

A R C [22$] \quad \mathrm{A}$ R C

Arch. 5 Arauian, and
ed with ftraw-every thing is maffive, clumfy, and timid -fmall intercolumnations, and hardly any projections. The Arabian architecture feems a refincment on the tent. A mofque is like a little camp, conifing of a number of little bell tents, Ituck clofe together romnd a great ore. A caravanferay is a court furrounded by a row of fuch tents, cach haviag its own deme. The Greek church of St Sophid at Conftantinople bas imitated this in fome degree: and the copies from it, which have been multiplied in Ruftia as the facred form for a Chriftian church, have adhered to the original model of cluffered tents in the fritell manncr. We are fometimes difpofed to think that the painted glafs (a fafhion brought from the Eaft) was an imitation of the painted langings of the Arabs.

The Chinefe architedure is an evident imitation of a wooden building. Sir Geo. Staunton fays, that the fingular form of their roofs is a profefed imitation of the cover of a §quare tent.

In the fone buildings of the Grecks, the roofs were imitations of the wooden ones; hence the lintels, lying corniches, ceilings in compartments, \&c.

The pediment of the Greeks feems to bave fuggefted the greateft improvement in the art of building. In erecting their finall houfes, they could hardly fail to obferve occationally, that when two tafters were laid together from the oppofite walls, they would, by leaning on each other, give mutual fupport, as in fig. I. Nor is it unlikels that fuch a fituation of fones as is reprefented in 6g. 2, would not unfrequently occur by accident to mafons. This could hardly fail of exciting a littleattention and refection. It was a pretty obvious reflection, that the ftones A and C , by overhanging, leaned againft the intermediate flone B , and gave it fome fupport, and that B cannot get down without thruling afide A and C , or the piers which fupport them. This was an approach to the theory of an atch; and if this be combined with the obfervation of fig. I. we get the difpofition reprefented in fig. 3 . having a ferpendicular joint in the middle, and the princtiple of the arch is completed. Obferve that this is quite different from the principle of the arrangement in fig. 2. In that figure the ftenes act as wedges, and one cannot get down without thrufing the $r \in f t$ afide ; the fame principle obtaias in lig. 4. contifting of five arch ttenes; but in fig. 3 . the ftones B and C fuppont each other by their mutual preflure (ind spendent of their own weight), aifing from the terdency of cach lateral pair to fall outwards from the pier. This is the principle of the arch, and would fuppori the key-ftone of fog. at. although each of its j .ints were perpendicular, by reafon of the great friction arifing from the horizontal thruft exerted by the adjoining funes.

This was a molt important difonvery in the ait of huilding; for now a building of any width may be soofed with fone.

We are difpofed to give the Greeks the merit of this difonery; for we obferve arches in the inolt ancient buildings of Greece, fuch as the temple of the fun at Athens, and of Apollo at Didymos; not indeed as roofs to any apartment, not as parts of the ornamental defigu, but concealed in the walls, covering drains or other neceflary openings; and we have not found any real arches in any monuments of ancicnt Perfia or EByFt. Sir John Chardin fyeake of numerous and ex.
tenfive fubterianean paffages at Tchelminar, built of the molt exquitite mafonry, the joints fo cxact, and the Itones fo beautifilly drelfed, that they look like ore continued piece of polified mabble; but he nowhere fays that they are arched; a circumitance which we think he would not have o!nitted-no arched door or window is to be feen. Indeed one of the tombs is faid to be arch-roofed, but it is all of one folid rock. No trace of an arch is to be feen in the ruins of ancient Egypt; even a wide roon is covered with a fingle block of fone. In the pyramids, indeed, there are two galleries, whofe roofs conlift of many pieces; but their conftration puts it beyond doubt that the builder did not know what an arch was: for it is covered in the manner reprefented in fig. j. where every projesting piece is more than balanced behind, fo thai the whole aukward mafs could have flood on two pillars. The Greeks therefore feem entitled to the honour of the invention. The arched dome, however, feems to have arifen in Etruria, and originated in all probability from the employment of the augurs, whofe bufinefs it was to obferve the flight of birds. Their Itations for this purpofe were templa, fo called a tempiando, "on the fummits of hills." To fhelter fuch a perfon from the weather, and at the fame time allow him a full profpeet of the country around him, no building was fo proper as a dome fet on columns; which accordingls is the figure of a temple in the moft ancient monuments of that country. We do not recollect a butilding of this kind in Greece cxcept that called the Lanthern of Demofthenes, which is of very late date, whereas they abounded in Italy. In the later monuments and coins of Italy or of Rome, we commonly find the Etrufean dome and the Grecian temple combined ; and the famous panthcon was of this form, even in its molt ancient fate.

It does not appear that the arch was confudered as a part of the ornamental archiecture of the Greeks during the time of their independency. It is even doubtfol whether it was employed in roofing their temples. In none of the andent buildings where the root is gone, can there be feen anj rubbilh of the vault, or mark of the foring of the arch. It is not menrequent, however, after the Roman conquelts, and may be feen in Athens, Delos, Palmyra, Balbek, and other places. It is very frequent in the magnificent buildings of Rome; fuch as the Colifeum, the baths of Dioclefian, and the tri. umpha! atches, whore its form is evidently made the object of atteation. But its clief employment was in bridges and aquejufts; and it is in thote works that its immenfe urility is the mof confpicuous: For by this happy contrivance a canal or a road may be carried across any lteam, where it would be almoft impoliole to erect piers fufficiently near to each other for carrying lintels. Arches have been executed 130 feet wide, and their execution demonftrates that they may be made four tinces as wide.

As fuch Rupendows arches are the greatelt parformances of the mafonic art, fo they are the molt difficult and delicate. When we reflest on the immenfe quan. tity of materials thus fufpended in the air, and compare this with the fmall cohefion which the firmelt cement can give to a building, we liall be convinced that is is nor by the force of the cement that they are kept together: they fand faft only in confequence of the proper balance of all their parts. Therefore, in order

$A R C \quad\left[\begin{array}{lll}23\end{array}\right] \quad A \quad R \quad C$

Arch. to eref them with a well-founded confierce of their durahility, this balance thould be well underltond and judici unly employed. We doubt not but that this was underfood in fome degree by the enginecrs of antiqui-

II
3kill and ty. But they have left us none of their knowledge. They mult have had a great deal of mechanic.al knowledge before they cund erect the magnificent and beautiful build ngs whofe mins fill enchant the world; but they kept it among themfelves. We know that the Dinnyfiacs of Ionia were a great coporation of architefis and engineers, who undertonk, and even monopolized, the building of temples, Radiums, and theatrce, precifely as the fratem nity of mafons in the midule ages ras nopolized the building of cathedrals and conventual churehcs. Irdeed the Dionyfiacs refembled the myltical fraternity now called frec mafons in ma!y important prticulars. They allowed no ftrangers to interfeie in their employment; they rccognifed ach other by figns and tokens; they profofied certain myferious doctines, under the tuition and tutelage of Bacchus, to whons they built a magnificent temple at Teus, where they celebrated his mylteries as folemn feftivals; and they called all wher men profate, becaule not admitted to thefe myftries. But their chief mynteries and mof important fecrets feem to be their mechanical and mathematical fiences, or all that academical knowledge which forms the regular education of a civil engineer. We know that the temples of the gods and the theatres required an immenfe apparatus of nachinery for the celebration of fome of their myferies; and that the Dionyfiacs contrafted for thofe jobs, even at far diftant places, where they had not the privilege of building the edifice which was to contain them. This is the moft likely way of explaining the very fmall quantity of mechanical knowledge that is to be met with in the writings of the ancients. Even Vitruvius does not appear to hive been of the fraternity, and fpeaks of the Greek architeds in terms of refpect next to veneration. The Collegiznt Murariorum, or incorporation of mafons at Rome, does not feem to have thared the fecrets of the Dionyfiacs.

The art of building arches has been mof affiduoully cultivated by the affociated builders of the middle ages of the Chritian chucch, both Saracens and Chritians, and they feem to have indulged in it with fondnefs: they multiplied and combined arches without end, placing them in every polible fituation.

Having Audied this branch of the art of building with fo much attension, they were able to erect the molt magnificent buildings with materials which a Greek Better than There is infnitely more icientific fiill diplayed in a by the Grecks and Romanns. Gothic cathedril, than in ail the buildings of Greece and Rome. Indeed thefe lalt exhibit very little knowledge of the mutual balance of arches, and are full of grofs blunders in this refpect; nor could they have refifted the fack of time folong, had they not been almolt folid maltes of fone, with no more cavity than was indifpenfahly necelfary.

Anthemius and Ifidorus, whom the Emperor Juntinian loud felected as the mof eminent architeats of Grecce for building the celebrated church of St Sophia at Conflantinople, feen to have known very little of this matter. Anthemius had boalted to Juntinian, that he would outdo the magnificence of the Roman pan-
theon, for h : would hang a greater done then it aloft in the air. Accortingly he attempted to raife it on the heads of four piers, diftant from each other about 115 feet, and about the fame height. He had probably feen the magnificent vaultings of the temple of Mars the A venjer, and the temple of l'eace at Rome, the thrufts of which are withtood by two mattes of folid wall, which join the fide walls of the temple at right angles, and extend fidevife to a great diftance. It was evident that the walls of the temple could not yield to the pref. fure of the vaulting without pufhing thefe immenfe buttreifes along thsir foundations. He therefore placed four buttrdes to aid his piers. They are almolt folid maftes of tone, extending at leaft go feet from the pier, to the morth and to the fouth, forming as it were the fide walls of the crofs. They effequatly fecured thern from the thrults of the two great arches of the naye which fupport the dome; but there was no fuch prov vifion agdiat the puff of the geat noth and fouth arches. Anthemius trufted for this to the lalf dome, which covered the femicircular eaft end of the church, and occupied the whole eaftern arch of the great dome. But when the dome was finilhed, and had ftood a few months, it pufhed the two ealtern piers with their burtrefies from the perpendicular, making them lean to the eaft warcl, and the dome and half dome fell in. I fidorus, who fucceeded to the charge on the death of Anthemius, frengthened the piers on the eat fide, by filling up fome hollows, and again raifed the dome. But things gave way brfore it was clofed; and while they were building in one part it was falling in in another. The pillars and walls of the eatern femicircular end were much fhattered by this time. Ifidorus feeing that they could give no refiftance to the pufll which was fo evidently direaled that way, erefted fome clumfy buttrelfes on the eaft wall of the fquare which furrounded the whole Greek crofs, and was ronfed in with it, forming a fort of cloifter round the whole. Thefe buttreffes, fpanning over this cloifter, leaned againtt the piers of the dome, and thus oppofed the thrults of the grear north and fouth arches. The dome was now turned for the third time, and many contrivances were adopted for making it extremely light. It was made offenfively fhat: and, except the ribs, it was roofed with pumice ftone; but notwithftanding thefe precantions, the arches fettled fo as to alarm the architeits, and they made all fure by filling up the whole from top to bottom with arcades in three fories. The lowelt arcade was very lofty, fupported by four noble marble columns, and thus preferved, in fome meafure, the cliurch in the form of a Greek crofs. The flory above formed a gallery for the women, and had fix columns in front, fo that they did not bear farr on thofe below. The third flory was a dead wal! filling up the arch, and pierced with three rows of fmall ill. fhaped windows. In this unworkmanlike fhape it has ftood till now, and is the oldelt church in the world; but it is an ugly mifhapen mafs, more refembling an overgrown potter's kiln, furrounded with furnaces pieced and patched, than a magnificent temple. We have been thas particular in our account of it, becaufe this hiftory of the building fhows that the ancient architects had acquired no diflinet notions of the astion of arches. Almolt any mafon of our time would know, that as the founh arch would pufh the pier to the ealtward, while the ealt arch pufliced it to the fouthward,

A R C [24] A R C

Arch. the buttrefs which was to withitand thefe thrults mult not be placed on the fouth fide of the pier, but on the fouth-call fide, or that there muft be an eaftern as well

15 Such as are as a fouthern buttreis. No fuch blunders are to be feen neverfound in a Gothic cathedral. Some of them appear, lo a carein a Gothic lefs fpecator, to be very maflive and clumfy ; but when church. judicionfy examined, they will be found very bold and light, being pierced in every direction by arcades, and the walls are divided into cells like a honeycomb, fo that they are very liff, while they are very light.

About the middle, or rather towards the end, oflaft century, when the Newtonian mathematics opened the road to true mechanical fcience, the conftruction of I6 arches eneroffedthe attention of the firf mathematicians. Dr Hookc's The firft hint of a principle that we have met with is principle of Dr Hooke'salfertion, that the figure into which a clain arches or rope, perfectly flexible, will arrange itfelf when furpended from two hooks, is, when inverted, the proper form for an arcla compofed of flones of uniform weight. This he affirmed on the fame principle which is made ufe of in the Encyclopredia in the article Roor, § 25 . viz. that the figure which a flexible feltoon of heavy bodies affumes, when fufpended from two points, is, when inverted, the proper form for an arch of the fame bodies, touching eaelh other in the fame points; becaufe the forces with which they mutually prefs on each other in this laft cafe, are equal and oppofite to the forees with which they pull at each other in the cafe of fufpenfion.

This principle is frictly juft, and may be extended to every cafe which can be propofed. We recollect fee. ing it propofed, in very general terms, in the St. James's Chronicle in 1759, when plans were forming for Black. firar's Bridge in London; and fince it is perloaps equal, in practical utility, to the moft elaborate inveftigations of the marhematicians, our readers will not be difpleafed

Let ABC (fg. 6.) be a parcel of magnets of any fize and hiape, arnl let us fuppofe that they adhere with great force by any points of entact. They will compofe fuch a flexible fictoon as we have been fpeaking of, if fuppended from the points A and C. If this figure be inverted, preferving the fame points of contact, they will remain in equibbrin. It will indced be that kind of equilibrium which will admit of no difturbance, and whieh may be calied a totiering cquilibriam. If the form be altered in the fmallett degree, by varying the points $\cap t^{\prime}$ contad (which indeed are points in the figure of cquililration), the m::gnets will no more recover their former pofition than a needle, which we had made to fand on its point, will regain its perpendicular pofition after it has been difurbed.

But if we fuppofe planes $d e, f g, b i, \& c$. drawn, that the points of mutual contact a, b, c, each bifecting the angle formed by the lines that unite the adjoining contacts ($f g$, for example, bifecting the angle formed by $a b, b c$), and if we fuppofe that the pieces are changed for others of the fame weights, but having flat fides, which meet in the planes $d e, f g, b i, \& c$. it is evident that we thall have an arch of equilibration, and that the arch will have fome ftability, or will bear a little change of furm withour tumbling down: for it is plain that the equilibrium of the original feltoon obtained only in the points a, b, c, of contact, whare the preitures were perpendicular to the touching furfioces; therefore if the
curve a, b, c, fill paffes through the touching furiaces perpendicularly, the conditions that are required for equilibrium ftill obtain. The cafe is quite fimilar in that of the fability of a body refting on a horizontal plane. If the perpendicular through the centre of gra. vity falls within the bafe of the body, it will not only fland, but will reçuire fome force to puih it over. In the original feftoon, if a fmall weight be added in ary part, it will change the form of the curve of equilibration a little, by changing the points of mutual contact. This new curve will gradually feparate from the former curve as it recedes from A or C . In like manner, when the feltonn is fet up as an atch, if a fmall weight be laid on any part of it, it will bring the whole to the ground, becanfe the fhifting of the points of contact will be jult the contrary to what it thould be to fuit the new curve of equilibration. But if the fame weight be laid on the fame part of the arch now conftructed with flat joints, it will be fuftained, if the new eurve of equilibration aill paffes through the touehing furfaces.

Thefe conclufions, which are very obvioully deditcible from the principle of the feftoon, fhew us, withont any further difcuffion, that the longer the joints are, the greater will be the ftability of the arch, or tlat it will requite a greater force to break it down. Therefore it is of the greateft importance to loave the arch fones as long as economy will permit; and this was the great ure of the ribs and other apparent ornaments in the Gethic architecture. The great projections of thofe ribs augmented their Riffnefs, and enabled them to fup. port the unadormed copartments of the roof, compofed of very fmall fones, feldom above fix inches thick. Many old bridges are fill remaining, which ase ftrengthened in the fame way by ribs.

Having thus explained, in a very familiar manner, the fability of an arch, we proceed to give the fame popular account of the general application of the principle.

Suppofe it to be required to afcertain the form of an arch which fhall have the fpan $A B$ (fig. 7.), and the height IF 8 , and which flall have a road-way of the dimenfons CDE above it. Let the figure $A C D E B$ be inverted, fo as to form a figure $A c d e \mathrm{~B}$. Let a chain of uniform thicknefs be fufpended from the points A and B, and let it be of fuch a lenoth that its lower point will hang at, or rather a lite below, f, correfponding to F. Divide $A B$ into a number of cqual parts, in the points $1,2,3,8 c$. and draw vertical lines, cutting the chain in the correfonding points $1,2,3$, \&c. Now take pieces of another chain, and hang them or at the points $1,2,3, \& x c$ of the chain A $f \mathrm{~B}$. This will alter the form of the curve. Cut or trim thele fieces of chain, till their lower ends all coincide with the inverted road-way $c d c$. The greater lengths that are hung on in the vicinity of A and B will pull down thefe points of the chain, and caufe the middle point f (which is lefs loaded) to rife a little, and will bring it near to its proper height.

It is plain that this procefs will produce an arch of perfect equlibration ; but fome farther confiderations are neceflary for making it exactly fuit our purpole. It is an arch of equilibration for a bridge, that is fo loaded that the weight of the arch flones is to the weight of the matter with which the haunches and crown are loaded, as the weight of the chain $A f B$ is

$\mathrm{A} R \mathrm{C} \quad\left[\begin{array}{lll}25 & 2\end{array} \quad \mathrm{~A} R \quad \mathrm{C}\right.$

Arch.

n

to the fum of the weights of all the littie bits of chain very nearly. But this proportion is not known beforehand; we muft therefore proceed in the following man. ner: Adapt to the curve produced in this way a thicknefs of the arch ftomes as great as are thought fufficient to enfure fability; then compute the weight of the arch Atones, and the weight of the gravel or rubbih with whicli the baunches are to be filled up to the road-way. If the proportion of thefe two weights be the fame with the proportion of the weights of chain, we may reft fatisfied with the curve now found; bur if different, we can eafily calculate how much mult be added equally to, or taken from, each appended bit of chain, in order to make the two proportions equal. Having altered the appended pieces accordingly, we flall get a new curve, which may perhaps require a very fmall trimming of the bits of chain to make them fit the road-way. This curve will be infinitely near to the curve wanted.

We have practifed this method for an arch of 60 feet fpan and 21 fect height, the arch ftones of which were only two feet nine inches long. It was to be loaded with gravel and fhivers. We made a previous computation, on the fuppofition that the arch was to be nearly elliptical. The diffance between the points 1, 2,3 , \&c. were adjufted, io as to determine the proportion of the weights of chain agreeable to the fuppo. fition. 'The curve differed conliderably from an ellipfe, making a confiderable angle with the verticals at the fpring of the arch. The real proportion of the weights of chain, when all was trimmed io as to fuit the road. way, was confiderably different from what was expected. It was adjutled. The adjultment made very little change in the curve. It would not have changed it two inches in any part of the real arch. When the procefs tas completed, we conftrueted the curve mathematically. It did not differ fenfibly from this mechanical conilruction. This was very agreeable information; for it fhowed us that the firft curve, formed by about two hours labour, on a fuppofition confiderably different from the tuth, would have been fufficiently exact for the purpofe, being in no place three inches from the accurate curve, and therefore far within the joints of the intended arch fores. Therefore this procefs, which any in elligent maton, though ignorant of mathematical fience, may go through with little trouble, will give a very proper form for an arch fubject to any conditions.

The chief difeet of the curve found in this way is a want of elegance, becaufe it does not fpring atright angles to the horizontalline; but this is the cafe with all curves of equilibration, as we fhall fee by and by. It is not material : for, in the very neighboushood of the piers, we may give it any form we pleate, becaufe the matonry is folid in that place; nay, we apprehend that a deviation from the curve of equilibration is proper. The conftuction of that curve luppofes that the prellure on every part of the arch is vertical: but gravel, carth, and rubbith, exert fomewhat of a hydroftatical preffure laterally in the act of fetcling, and retain it afrerwards. This will requite fome mose curvature at the haunches of an arch to balance it; but what hais lateral preflure may be, carnot be deduced with confidence from any experiments that we have feen. We are inclined to think that if, inthead of dividing the herizontal line AB in the points $1,2,3, \& c$. we divide the chain itfelf into

Suppl. Vol. I.
equal parts, the curve will approach nearer to the proper form.

After this familiar flatement of the general principle, it is now time to confider the theory founded on it more in detail. This theory aims at fuch an adjuft. Theory ment of the pofition of the arch Itones to the load on founded on every part of the arch, that all fhall remain in equili- this prinbrio, although the joints be perfeally polifhed, and with- ciple: out any cement. The whole may be reduced to tro problems. The firft is to determine the vertical preflure or load on every point of a line of a given form, which will put that line in equilibrio. The fecond is to determine the form of a curve which Thall be in equilibrio when loaded in its different points, according to any given law.

The whole theory is deducible from $\$ 27$. of the article Roof. The fundamental propofition in that fection flates the proportions between the various preflures or thrufts which are exerted at the angles of an affomblage of besms or other pieces of dolid heavy matter, freely moveable about thofe angles, as fo many joints, but retaining their pofition by the equilibrium of thofe preffures. It is there demonfrated, "that the thruft at any angle, if ellimated in a horizontal direction, is the fame throughout, and may be reprefented by any horizontal line BT, fig. 8. (Roofs, fig. 1o.Pl. CCCCXL); and that if a vertical lise QTS be drawn through T, the thruft exerted at any angle D by the piece $C D$, in its own direction, will then be reprefented by $B R$, drawn parallel to CD ; and in like manner, that the thrut in the direction ED is reprefented by BS, Sxc.; and, laftly, that the vertical thrults or loads, at each angle B, C, D, by which all thefe other preffures are excited, are reprefented by the portions QC, CR, RS, of the vertical intercepted by thofe lines; that is, all thefe pletfures are to the uniform horizontal thruft as the lines which reprefent them are to BT. The horizontal thruft, therefore, is a very proper mnit, with which we may compare all the others. Its magnitude is eaflly deduced from the fame propofition ; for QS is the fum of all the vertical preffures of the angles, and therefore reprefents the weight of the whale affemblage. Therefore as QS is to BT , io is the weight of the whole to the horizontal thruft.
'To accommodate this theory to the conftraftion of Accommoa curvelineal arch vaule, let us firf fuppofe the vault to dated to the be polygonal, compofed of the cords of the elementary confrucarches. Let AVE (fig. 9.) be a curvelined arch, of arch vault, which V is the vertex, and VX the vertical axis, which we fhall confider as the axis or ablcifla of the curve, while any horizontal line, fuch as HK , is an ordinate to the curve. About any point C of the curve as a centre defcribe a circle BLD, cutting the curve in \mathcal{B} and D. Draw the equal cords CE, CD. Draw alfo the horizontal line $C F$, cutting the circle in F. Deforibe a circle BCDO paffing through $\mathrm{B}, \mathrm{C}, \mathrm{D}$. Its centre O will let in a line COQ, which bifects the angle BCD , and $\mathrm{C} d$, which touches this circle in C , will bifect the angle $b \mathrm{C} d$, formed by the equal cords BC, CD. Draw CLP porpendicular to $c b$, and DP perpendicular to CD, meeting CL in P. Through L draw the tangent GLM, meeting CD in G , and the vertical line CM in M. Draw the tangent F a, cutting the cords $B C, C D$, in b and d, and the tangent to the circle DCDQ in c. Lally, draw $d \mathrm{~N}$ parallel to $b c$.

D
From

A R C $\quad\left[\begin{array}{ll}26\end{array}\right] \quad$ A R C

Arch. From what is demonflrated in $\$ 27$. of the article Roof, it appears, that if $\overline{B C}, \mathrm{CD}$ be two pieces of an equilibrated heavy polygon, and if CF reprefent the horizontal thrult in every angle of the polygon, $C d$ and C b will feverally reprcient the thitults exerted by the picces DC, BC, and that $b d$, or CN , will reprefent the weight lying on the angle BCD , by which thofe thrults arc balanced.

As the reader may not have the article Roof at hand, this equilitrium may be recalled to his remen. brance in the following manner: Produce $d \mathrm{C}$ to 0 , fo that C 0 may be equal to $\mathrm{C} d$. Draw on to the vertical parallel to d b, and join $n o$. It is evident that $b n 0 \mathrm{C}$ is a parallelogram, and that $n \mathrm{C}(=b d)=\mathrm{CN}$. Now the thruft or fupport of the piece BC is exerted in the direation $\mathrm{C} b$, while that of DC is exerted in the direftion C 0 . Thefe twon thrults are equivalent to the thruft the diagonal $\mathrm{C} n$; and it is with this corapound thruft that the load or vertical preflure CN is in imnmediutc equilibrium.

And de-monitretcd.

Becaufe b CL, NCF, are right angles, and FCL is common to both, the angles $b \stackrel{C F}{ }$ and MCL are equal. Therefore the right angled triangles $b \mathrm{CF}$ and MCL are fimilar. And ence CF is equal to CL, $c b$ is equal to CiM. It is evident that the triangles GCM and $d \mathrm{CN}$ are fimilar. Therefore $\mathrm{CG}: \mathrm{C} d=\mathrm{CM}: \mathrm{CN}$, $=\mathrm{C} b: \mathrm{CN}$. Therefore we have $\mathrm{CN}=\frac{\mathrm{C} b \times \mathrm{C} d}{\mathrm{CG}}$. But becaule CDP and CLG are right angles, and therefore equal, and/tibe angle GCP is common to the two triangles GCL, PCD, and $C D$ is equal to Cl , we have CG equal to CP . Therefore $\mathrm{CN}=\frac{\mathrm{C} b \times \mathrm{C} d}{\mathrm{Cl}}$. Alfo, fince $C D P$ is a right angle, DP meets the diameter in Q, the oppofite point of the circumference, and the angle DOC is equal to DC d, or DC b (becaure $b \mathrm{C} d$ is bifected by the tangent), that is, to PCQ (becaufe the right angles $b C P, c D O$ are equal, and $c \mathrm{DP}$ is common). Therefore $P C$ is equal to $P C$; and if $P O$ be drawn perpendicular to $C Q$, it will bifect it, and O is the centre of the circle $B C D C B$.

Now let the points B and I) enntinually approach to C (by diminiffing the radius of the imall circle), and ultimately cerincicce with it. It is evident that the circle BCDO is ultimately the equicurve circle, and that PC ultimately coincides with OC, the tajins of cirvature. Alfo $\mathrm{C} b \times \mathrm{C} d$ becomes uhtimately $\mathrm{C} c^{2}$. Wherefore CN , the vertical load on any poirt of a curve of equilibration, is $=\frac{\mathrm{C} c^{2}}{\text { Kad. Curv. }}$

It is farther evident, that CF is to $\mathrm{C} c$ as radius to the fecant of the elevation of the t:ingent above the ho. rizon. Therefore we have the loas on any poitt of the curve always proportional to $\frac{\text { Sec. }{ }^{2} \text { Elev. }}{\text { Kd.d. Curv. }}$

This load on every elementary arch of the wall is commonly a quantity of folid mutter incumbent on that clewent of the curve, and prefing it vertically; and it may be conceived as made up of a number of heavy lines ftanding vertically on it. Thus, if the element $\mathrm{E} e$ of the curve were lying horiznntally, a little parallelogram RLer, ftanding perpeñiculatly on it, would re. Frefent its lond. But as this element E e has a floping polition, it is plain that, in order to have the fame quantity of heavy matter preffing it vertically, the
height of the parallelogram mult be increafed till it meers in ep, the-line-R.d drawn parallel to the tangent EG. It is evident that the angle REp is equal to the angla 'AEG.' Therefore 'we have ER: $E_{p}=$ Rad.: Sec. Elev.

If therefore the arch is kept in equilibrio by the vertical preffure of a wall, we muit have the height of the wall above any point proportional to Sec. ${ }^{3}$ Elev.

Cor. I. If OS be drawn perpendicular to the verti- Corollaries. cal CS, CS will be half the vertical cord of the equicurve circle. The angle OCS is equal to c CF, that is, to the angle of elevation-i) Therefore I:Sec. Elev. = CS: CO, and the fecant of elevation may be expreffed by $\frac{\mathrm{CO}}{\mathrm{CS}}$, and its cube by $\frac{\mathrm{CO}^{3}}{\mathrm{CS}^{3}}$. Therefore the height of wall is proportional to $\frac{\mathrm{CO}^{3}}{\mathrm{CS}^{3} \times \mathrm{CO}}$, or to $\frac{\mathrm{CO}^{2}}{\mathrm{CS}^{3}}$, of CO^{2} or or to Sec. ${ }^{2}$ of Elev.
$\overline{\mathrm{CS}^{2}} \times \overline{\mathrm{CS}}$, or to Vert. Cord of Curv.
Cor. II. If we make the arch $\mathrm{VC}=\boldsymbol{z}$, the abfiffa $\mathrm{VH}=x$, the ordinate $\mathrm{HC}=y$, the radius of culi $\mathrm{CO}=r$, and the $\frac{x}{2}$ vertical cord $\mathrm{CS}=s$, the height of wall pref. fing on any point is proportional to $\frac{\dot{z}^{3}}{y^{3} r}$; or to $\frac{\dot{z}^{2}}{y^{2}}$, or $\dot{x}^{\dot{x}^{2}}+\dot{y}^{2}$. Therefore, when the equation of the curve is given, and the height of wall on any one point of it is alfo given, we can deternine it for any other point : for the cquation of the curve will always give us the relation of \dot{z}, \dot{x}, and \dot{y}, and the value of r or s. This may be illuftrated by an example or two. Fnr this purpofe it will generdly be molt convenient to aflume the height above the vertex V for the unit of computation. The thicknefs of the arch at the crown is commonly determined by other circumftances. At the vertex the tangent to the arch is horizontal, and therefore the cube of the fecant is unity or 1 . Call the height of wall, at the crown, H , and let the radius of curvature in that point be R, and its half cord R (it being then coincident with the radius), and the height on any other point b. We have $\frac{1}{\mathrm{~K}}: \frac{\dot{\frac{s}{}}^{3}}{y^{3} r}=\mathrm{II}: k$, and $b=\mathrm{I} \times \frac{\dot{\sigma}^{3}}{y^{3}}$ $\times \frac{R}{r}$. The other formula gives $b=H \times \frac{\tilde{z}^{2}}{i+\frac{R}{s}} \times \frac{1}{s}$.
Examp. i. Suppofe the arch to be a fegment of a Illuffrated circle, as in fig. io. where $A E$ is the diameter, and' O by examthe centre. In this arch the curvature is the fame ples. throughout, or $\frac{R}{r}=1$. Therefore $b=H \times \frac{\dot{z}^{3}}{y^{3}}$, or $=\mathrm{H} \times$ Cubs Sec. Elev.

This gives a very imple caiculus. To the logarithm of H add thrice the logarichm of the fecant of elevation. The fum is the logarithm of h.

It gives alfo a very fimple conftuction. Draw the vertical CS , cutting the horizontal diameter in S. Draw ST, cutting the radius OC perpendicularly in T. Draw the horizontal line $T z$, cutting the vertical in z. Join zo. Make $\mathrm{C} u=\mathrm{V} v$, and draw $u: x$ parallel to $\approx o$. $\mathrm{C} c$ mult be made $=\mathrm{C} x$. The demonfration is evident.

It is very eafy to fee that if CV is $s . n$ arch of 60°, and $V v$ is ${ }_{1} \frac{1}{4}$ th of $V C$, the points v and c will be on a level;

A R C

Arh- a levcl; for the fecant of CV is twice CO , and therefure $\mathrm{C} c$ is S times $\mathrm{V} v$, which is ${ }^{5}$ th of VH .

The dotted line vg of is drawn according to this calculus or conftruction. It falls confiderably below the horizontal line in the neighbourhood of c; and then, palfing very obliquely through c, it rifes rapidly to an unmeafurable height, becaule the vertical line through A is its alfymptote. This muft evidently be the cafe with every curve which fprings at right angles with a horizontal line.

It is plain that if $v \mathrm{~V}$ be greater, all the other ordinates of the curve $u g c f$, retting on the circumference AVE, will be greater in the fame proportion, and the curve will cut the horizontal line drawn through v in fome point nearer to v than c is. Hence it appears that a circular arch cannot be put in equilibrio by building on it up to a horizontal line, whatever be its fpan, or whatever be the thicknefs at the crown. We have feen that when this thicknefs is only $\frac{1}{4}$ th of the radius, an arch of 120 degrees will be too much loaded at the flanks. This thicknefs is much ton fmall for a bridge, being only $\frac{1}{2}$ th of the fpan CM, whereas it thould have been almoit double of this, to bear the inequalities of weight that may occafionally be on it. When the crown is made ftill thinner, the outline is ftill more depreffed before it rifes again. There is therefore a certain fpan, with a correfponding thicknefs at the crown, which will deviate leaft of all from a horizontal line. This is an arch of about 54 degrees, the thick. nefis at the crown being about one-fouth of the fpan, which is extravagantly great. It appears ingeneral therefore, that the circle is not a curve fuited to the purpofes of a bridge or an arcade, which requires an outline nearly horizontal.

Examp. 2. Let the curve beaparabola AVE (fig. II.), of which V is the vertex, and $D G$ the directrix. Draw the diameters DCF, GVN, the tangent CK, VP, and the ordinates VF and CN. It is well known that GV is to DC as VP^{23} to CK^{2}, or as CN^{2} to CK^{2}. Alro $=\mathrm{GV}$ is the radius of the of culating circle at V , and 2 DC is ore-half of the vertical cord of the ofculating circle at C. Therefore $C N^{2}: \mathrm{CK}^{2}$ (or $\left.y^{2}: z^{2}\right)=R: s$, and $s=\frac{\dot{z}^{2}}{y^{2}}$ R. But $\mathrm{C} c$, or $b=\mathrm{H} \times \frac{\dot{z}^{2} \mathrm{R}}{\dot{y}^{2} \mathrm{~S}}$. Therefore $b=H \times \frac{\dot{z}^{2} R}{y^{2} \dot{z^{2}} R}, H \times \frac{\dot{z}^{2} R}{y^{2} R}, \quad=H$. Therefore $\mathrm{C} c=v \mathrm{~V}$.

It follows from this inveftigation, that the back or extrados of a parabolic arch of equilibration mutt be parallel to the arch or foffit itfelf; or that the thicknefs of the arch, eftimated in a vertical direction, mult be equal throughout; or that the extrados is the fame parabola with the foffit or intrados.

We have felected thefe two examples merely for the fimplicity and perficuity of the folutions, which have been effected by means of elementary geometry only, intead of employing the analytical value of the radius of the cfculatory circle viz. $\frac{\dot{z}^{3}}{\because \quad \cdots}$, which would

$$
y x-x y
$$

have involved us at leaft in the elements of fecond Hurions. We have alfo preferred fimplicity to clegance
in the inveltigation, becaufe we wifh to influct the Arcle practical engineer, who may not be a proficient in the higher mathematics.

The converfe of the problem, namely, to find the 25 form of the arch when the figure of the back of it i. To find the given, is the molt ufual queftion of the two, at leaft in form of an cafes which are moft important and molt difficult. Of arch when thefe perhaps bridges are the chief. Here the neceffity of its back of a road-way, of eafy and regular afcent, confines us is givelb.
to an outline nearly horizontal, to which the curve of the arch muft be adapted. This is the moft difficult problem of the two; and we doubt whether it can be folved without employing infinite approximating \{eriefes initead of accurate values.

Let $a v e$ (fig. 12.) be the intended outline or extrados of the arch AVE, and let $v Q$ be the common axis of both curves. From c and C, the correfponding points, draw the ordinates $c h, \mathrm{CH}$. Let the thicknefis $v \mathrm{~V}$ at the top be a, the abfciffa $v b$ be $=\dot{u}$, and VII $=x$, and let the equal o: dinates $c h, \mathrm{CH}$ be y, and the arch VC be z.

Then, by the general theorem, $c \mathrm{C}=\frac{\dot{z}^{3}}{r y^{3}}, r$ being the radius of curvature. This, by the common rules, is $=\frac{\dot{z}^{1}}{y \ddot{x}-\dot{x} \ddot{y}}$. This gives us $c \mathrm{C} \doteqdot \frac{\dot{y} \ddot{x}-\dot{x} \ddot{y}}{y^{3}}$, or $=\frac{y-x y}{y^{3}} \times \mathrm{C}$; where C is a conftant quantity, found by taking the real value of $c \mathrm{C}$ in V , the rerte* of the curve. But it is evident that it is alfo $=a+a$ - u. Therefore $a+x-u=\frac{\dot{y}-\dot{x}-\ddot{y}}{y^{3}} \times \mathrm{C}=\frac{\mathrm{C}}{\dot{y}}$ \times fluxion of $\frac{x}{y}$.

If we now fublitute the true value of u (which is given, becaufe the extrados is fuppofed to be ol a known form), expreffed in terms of g, the refulting eguation will contain nothing but 2 and y, with their firft and fecond fluxions, and kmown quantities. From this equ.stion the relation of x and y muft befound by fuch methods as feem beit adapted to the equation of the extrados.

Fortunately the procefs is more fimple and eafy in the mof common and ufeful cafe than we thould expeet from this general rule. We mean the cafe where the estrados is a ftraight line, efpecially when this is horizontal. In this cafe u is equal to o.

Example. To find the form of the balanced arch Plate 1%. AVE (fig. 13.), having the horizontal line $c v$ for its extracios.

Keeping the fame notation, we have $z=0$, and therefore $a+x=\frac{\mathrm{C}}{\dot{y}} \times$ fluxion of $\frac{\dot{x}}{\dot{y}}$.

Aliume $y=\frac{\dot{x}}{v}$; then $\frac{\dot{x}}{y}=v$, and $\frac{C}{y} \times$ fiusion of $\frac{\dot{c}}{y}$, $=\frac{\mathrm{C} \dot{v}}{\dot{x}}$, that is $a+x=\frac{\mathrm{C} \dot{v}}{\dot{x}}$. Therefore $a \dot{x}+x \dot{x}$ $=\mathrm{C} v \dot{\mathrm{v}}$; and by taling the fluents, we have $2 a x+x^{2}$ $=\mathrm{C} v^{2} ;$ and $\dot{v}=\sqrt{\frac{2 a x+x^{3}}{\mathrm{C}}}$. Confequenty D $2 \quad i=$
 of thic, we have $y=\sqrt{ } \mathrm{C} \times \mathrm{L}\left(2 a x+2 x^{2}\right.$
$\left.+2 \sqrt{2 a x+x^{2}}\right)$. But at the vertex, where $x=0$, we have $y=\sqrt{ } \mathrm{C} \times \mathrm{L}(2 a)$. The corrected fluent is therefore $y=\sqrt{ } \mathrm{C} \times \mathrm{L} \frac{a+x+\sqrt{2 a x+x^{2}}}{a}$.

It only remains to find the conftant quantity C. This we readily obtain by felecting fome point of the extradus where the values of x and y are given by particular circumftances of the care. Thus, when the fpan $2 s$ and height b of the arch are given, we have $s=\sqrt{ } \mathrm{C} \times \mathrm{L}\left(\frac{a+b+\sqrt{2 a} b+b^{2}}{a}\right)$, and confe-
quently $\sqrt{ } \mathrm{C}=\frac{s}{\mathrm{~L}\left(a+b+\sqrt{\frac{2 a b}{a}+b^{2}}\right)}$
the general value of $y=s \times \frac{\mathrm{L}\left(\frac{a+x+\sqrt{2 a x+x^{2}}}{a}\right)}{\mathrm{L}\left(\frac{a+b+\sqrt{2 a b+b^{2}}}{a}\right)}$;

$$
=\frac{s}{\mathrm{~L} \frac{a+b+\sqrt{2 a b+b^{2}}}{a}} \times \mathrm{L} \frac{a+x+\sqrt{2 a x+x^{2}}}{a}
$$

As an example of the ufe of this formula, we fubjoin a table calculated by Dr Hutton of Woolwich for an arch, the fpan of which is 100 feet and the height 4°, which are nearly the dimenfions of the middle arch of Elackfriars Bridge in London.

y	x	y	x	y	x
0	6,000	21	10,381	36	21,774
2	6,035	22	10,858	37	22,948
4	6,144	23	11,368	38	24,190
6	6,324	24	11,911	39	25,505
8	6,580	25	12,489	40	26,894
10	6,914	26	13,106	41	28,364
12	7,330	27	13,761	42	29,919
13	7,571	28	14,457	43	31,563
14	7,834	29	15,196	$4+$	33,299
15	8,120	30	15,980	45	35,135
16	8,430	31	16,811	+6	37,075
17	8,766	32	17693	47	39,126
18	9,168	33	18,627	48	41,293
19	9,517	34	19,617	49	43,581
20	9,934	35	20,605	50	46,000

26
Defects of the Cutena rian curve.

The figure for this propofition is exactly drawn ac. cording to thefe dimenfions, that the reader may judge of it as an ohject of fight. It is by no means deficient in gracefnlnefs, and is abundantly roomy for the paffage of craft ; fo that no objection can be offered againit its being adapted on account of its mechanical excellency.

The reader will perhaps be furprifed that we have made no mention of the celebrated Catenarean curve, which is commonly faid to be the beft form for an arch; but a little reflection will convince him, that although it is the only form for an arch confifting of tones of equat weight, and touching each other only in fingle points, it cannot fuit an arch which mult be filled up in the haunches, in older to form a road-way. He will
be more furprifed to hear, after this, that there is a certain thicknefs at the crown, which will put the Catenarea in equilibrio, even with a horizontal road-way; but this thicknefs is fo great as to make it unfit for a bridge, being fuch that the preffure at the verter is equal to the horizontal thrult. This would have been about 37 feet in the middle arch of Blackfriars Bridge. The only fituation therefore in which the Catenarean form won!d be proper, is an areade carrying a height of dead wall; but in this fituation it would be very ungracefnl. Without troubling the reader with the inveftigation, it is fufficient to inform him that in a Ca tenarean arch of equilibration the abfciffa VH is to the abicifia $v b$ in the conftant ratio of the horizental thruft to its excefs above the preffure on the vertex.

This much will ferve, we hope, to give the reader a Inutility of clear notion of this celebrated theory of the equilibrium the comof arches, one of the molt delicate and important appli- mon theory cations of mathematical fcience. Volumes have been of equiliwritten on the fubject, and it Aill occupies the atten. tion of mechanicians. But we begleave to fay, with great deference to the eminent perions who have profecuted this theory, that their fpeculations have been of little fervice, and are little attended to by the practitioner. Nay, we may add, that Sir Chriftopher IVren, perhaps the moft accomplithed architect that Europe has feen, feems to have thought it of little value: for, among the flagments which have been preferved of his Audies, there are to be feen fome imperfect differtations on this very fubject, in which he takes no notice of this theory, and confiders the balance of arches in quite another way. Thefe are collected by the author of the account of Sir Chriftopher Wren's family. This man's great fagacity, and his great experience in building, and, atill more his experience in the repairs of old and crazy fabrics, had fhown him many things very inconfiftent with this theory, which appears fo fpecious and fafe. The general facts which occur in the failure of old arches are highly infructive, and deferve the mot careful attention of the engineer; for it is in this ftate that their defects, and the procefs of nature in their deftruction, are molt diftinetly feen. We venture to affirm, that a very great majority of thefe facts are irreconcileable to the theory. The way in which circular arches commonly fail, is by the finking of the crown and the rifing of the flanks. It will be found by calculation, that in mof of the cafes it ought to have been juft the contrary. But the cleareft proof is, that arches very rarely fail where their load differs mof remarkably from that which this theory allows. Semicircular arches have fond the power of ages, as may be feen in the bridges of ancient Rome, and in the numerous arcades which the ancient inhabitants have erefted. Now all arches which fring perpendicularly from the horizontal line, require, by this theory, a load of infinite height ; and, even to a confiderable diftance from the fpringing of the arch, the load neceffary for the theoretical equilibrium is many times greater than what is ever lid on thofe parts; yet a failure in the immediate neighbourhood of the fpring of an arch is a moft rare phenomenon, if it ever was obferved. Here is a moft remarkible deviation from the theory; for, as is already obferved, the load is frequently not the four ch part of what the theory requires.

Many other facts might be adduced which now great deviations

A R C [29] A R C

deviations from the legitimate refults from the theory. We hope to be excufed, therefore, by the mathematicians for doubting of the jutnefs of this theory. We do not think it erroneous, but defeaive, leaving out circunftances which we apprehend to be of great inportance; and we imagine that the defects of the theory have arifen from the very ansiety of the mechanicians to make it periect. The arch flones are fuppofed to be perfectly fmoath or polified, and not to be connect. ed by any cement, and therefore to futtain each ocher merely by the equilibrium of their vertical preflure. The theory enfures this equilibrium, and this only, leaving unnoticed any other caufes of mutual action.

The authors who have written on the fubject fay exprefsly, that an arch which thus fuftains itielf muft be Atronger thau another which would not ; becaufe when, in imagination, we fuppofe both to acquire connetion Ey cement, the firlt preferses the influence of this con. nection unimpaired; whereas in the other, part of the cohefion is watted in counterasting the tendency of fome parts to break off from the reit by their want of equilibrium. This is a very fpecious argument, and would be juft, if the forces which are mutually exerted between the parts of the arch in its fettled fate were merely vertical preffures, or, where different, were inconfiderable in comparifon with thofe which are really attended to in the confruction.

But this is by no means the cafe. The forms vilich the ufes for which arches are crected oblige us to adopt, and the loads laid on the different points of the arch, frequently deviate confiderably from what are neceflary for the equilibrium of vertical preffures. The varying load on a bridge, when a great waggon paffes along it, fometimes bears a very fenfible proportion to the weight of that point of the arch on which it refts. It is even very doubtful whether the preflures which are occafioned by the weight of the fuff employed for filling up the flanks really ast in a vertical direction, and in the proportion which is fuppofed. We are pretty certain that this is not the cafe with fand, gravel, fat mould, and many fubftances in very general ufe for this purpofe. When this is the cafe, the preffures fuftained by the different parts of the anch are often very inconfiftent with the theory-a part of the arch is overloaded, and tends to fall in, but is prevented by the cement. This part of the arch therefore acts on the remoter parts by the intervention of the parts between, employing thofe intermediate parts as a kind of levers to break the arch in a remote part, juft as a lintel would be broken. We apprehend that a mathematician would be puzzled how to explain the flability of an arch cut cut of a folid and uniform mafs of rock. His theory confiders the mutuai thrufts of the arch flones as in the direction of the tangents to the arch. Why fo? becaufe he fuppofesthat all his polifhed joints are perpen. dicular to thofe tangents. But in the prefent cafe he has no exifting joints; and there feems to be nothing to direat his imagination in the affumption of joints, which, however, are abfolutely neceflary for employing his theory, becaufe, without a fuppofition of this kind, there feems no conceiving any mutual abutment of the arch ftones. Afk a common, but intelligent, mafon what notion he forms of fuch an arch? We apprehend that he will confider it as no arch, but as a lintel, which may be broken like a wooden lintel, and which refilts
entirely by its cohefion. He will not readily conceive that, by cutting the under fide of a fone lintel into an arched form, and thus taking away more than half of its fubftance, he has changed its nature of a lintel, or given it any additional ftrength. Nor would there be any change made in the way in which fuch a mafs of flone would refift being broken down, if nothing were done but forming the under fide into an arch. If the lintel be folaid on the piers that it can be broken without its parts pulhing the piers afide (which will be the cafe if it lies on the piers with horizontal joints), it will break like any other lintel; but if the joints are direct. ed downwards, and converging to a point within the arch, the broken flone (fuppofe it broken at the crown by an overload in that part) cannot be preffed down without forcing the piers outwards. Now, in this mode of acting, the mind cannot trace any thing of the flatical equilibrium that we have proceeded on in the fore. going theory. The two parts of the hroken lintel feem to pulh the piers afide in the fame manner that two rafters puhh outwards the walls of a houfe, when their feet are not held together by a tye-beam. If the piers caunot be pufhed afide (as when the arch abuts on two folid rocks), nothing can prefs down the crown which does not crufh the fone.

This conclution will be friatly true if the arch is of fuch a form that a ftraight line drawn from the crown to the pier lies wholly within the folid mafonry. Thus if the valult confife of two Atraight fones, as in fig. I. or if it confilt of feveral hones, as in fig, ${ }^{4}$. difpofed in two flraight lines, no weight laid on the crown can deftroy it in any other way but by crufling it to powder.
But when Rraight lines cannot be drawn from the When it is overloaded part to the firm abutments through the fo- to be called lid mafonry, and when the cohefion of the parts is not able to withtand the tranfverfe frains, we muft call the principles of equilibrium to our aid; and, in order to employ them with fafety, we mult confider how they are modified by the excitement of the colering forces.

The colefion of the fones with each other by cement or otherwife, has, in almof every fituation, a bad effect. It enables an overload at the crown to break the arch near the baunches, caufing thofe parts to rife, and then to fpread outwarde, juit as a Manfarde or Kirb roof would do if the truls-beam which connects the heads of the lower rafters were fawn through. This can be prevented only by lodding that part more than is requifite for equilibrium. It would be prudent to do this to a certain degree, becaufe it is by this cohefion that the crown always becomes the weakelt part of the arch, and iuffers more by any occafional load.

We expect that it will be faid in anfwer to all this, that the cohefion given by the Arongef cement that we can employ, nay the cohefion of the fone itfelf, is a mere nothing in comparifon with the enormous thrults that are in a fate of continual exertion in the different parts of an arch. This is very true; but there is another force which produces the fame effect, and which increafes nearly in the proportion that thofe thruits in. creafe, becaufe it arifes from them. This is the friation of the fones on each other. In dry freeflone this fric. tion confiderably exceeds one-half of the mutual preffure. The reflecting reader will fee that this produces the fame effect, in the cafe under confideration, that co-

$A R C \quad[30] \quad A R C$

 arch.hefion would do; for while the arch is in the att of failing, the mutual preffure of the arch fones is arting with full force, and thus produces a fristion more than adequate to all the effects we have been fpeaking of
When thefe circumfances are confldered, we imagine that it will appert that an arch, when expofed to a great overload on the crown (ct indeed on any part), divides, of itfelf, into a number of parte, each of which contains as many arch fones as can be pierced (fo :o feak) by one Araight line, and that it may then be conflusted as nearly in the time fituation with a polygonal arch of long fones buting on cach cther lite fo many leams in a Norman roof (fee Roor, $\mathrm{n}^{0} 49$), but without their braces and ties. It terids to break at all thole angies; and it is not fufficiently relifed therc, becaufe the matetials with which the flanks are filled up have fo little cohelion, that the angle feels no load except what is inmediately above it ; whercas it thould be immediately loaded with all the weight which is diffufed oret the adjoining lide of the polygon. This will be the calc, even though the curvelineal arch be perfealy equilibrated. We recollect fome circumftances in the failure of a confiderable arch, which may be worth mentioning. It had been built of an exceedingly foft and friable fone, and the arch fones were too fhort. About a formight before it fell, chips were obferved to be dropping off from the joints of the archifones about ten feet on each fide of the middle, and alfo from another place on one fid= of the arch, about twenty fect from its middle. The mafons in the neighbourhood prognollicated its fpeedy downfal, and faid that it would feparate in thofe places where the chips were breaking off. At length it fell; but it frit fplit in the middle, and about 15 or 16 feet on each fide, and alfo at the very fpringing of the arch. Immediately before the fall a thivering or crackling noife was heard, and a great many chips dropped down from the middle between the two places from whence they had dropped : formight before. The joints opened above at thofe new places above two inches, and in the middle of the arch the joints opened biclow, and in about five minutes after this the whole came down. Even this movement was plainly didinguilhable into two parts. The crown funk: little, and the haunches rofe very fenfily, and in this fate it hung for about half a minute. The arch fones of the crown were langing by their upfer correts. When thefe fplintered off, the whole fell down.

We appreherd that the procelure of nature was fomewhat in this manner. Straight lincs can be drawn within the archtiones from A (fig. I 5.) to $[$) and D, and from thofe points to C and E . Each of the portions $\mathrm{ED}, \mathrm{DA}, \mathrm{AD}, \mathrm{BC}$, relift as if they were of one fone, compofing a polygonal vault EDABC. When this is overloaded at A, A can defcend in no other way than by pufliing the angles B and D outwards, caufing the portions BC, DE, to turn rcund C and E. This notion muft raife the points 13 and D, and caufc the arch fennes to prefs on each other at their inner joirits b and d. This produced the copious fplintering at thefe joints inmediately preceding the total downfal. The iplistering which happeneda fort night before arofe from this citcumfance, that the lines AD and AD , aleng which the preffure of the overlode was propagated, were tangents to the foflit of the arch in the points F, H,
and C, and therefore the frain lay all on thefe comers of the arch fones, and f_{p} lintered a little from off them till the whole took a firmer bed. The fubfequent phenomena are evident confequenses of this diltribution and modification of preffure, and can hardly be explained in any other way; at leaft not on the theoretical principles already fet forth: for in this bridge the londs at B and D were very confidcrably greater than what the equilibrium renuired; and we thirk that the fir \cap obferved fplintering at H, F, and G , was mon infructive, fhowing that there was an extraor dinary prefifure at the inner joints in thofe places, which cannot be explained by the ufual theory.

Not fatisfied with this fingle obfervation, after this way of explaining it occursed to us, and not being able to find any fimilar faet on record, the writer of this article got fome frall models of arches executed in chalk, and fubjected then to many trials, in hopes of collecting fome general laws of the internal workings of atches which finally produce their downfal. He had the pleafure of oblering the above mentioned circumflances take place very regularly and unitormly, when he cverloaded the models at A. The arch always broke at fome place B confiderably begond another point F , where the firt clipping had been obferved. This is a method of trial that defcrves the attention both of the fpeculatif and the practitioner.
If thefe refections are any thing like a juft account of the procedure of nature in the failure of an arch, it is evident that the ingeninus mathematical theory of equilibrated arches is of little value to the engineer. We ventured to foly as much already, and we refted a good deal on the authority of Sir Chritopher Wren. He was a good mathematician, and delighted in the application of this fcience to the arts. He was a celebrated architect ; and his reports on the various works committed to his charge, fhow that he was in the continual habit of making this application. Several fpecimens remain of his own methods of applying them. The roof of the theatre of Oxford, the roof of the cupola of St. Paul's, and in particular the movid on which he turned the inncr dome of that cathedral, are proofs of his having fudied this theors moft attentively. He flourilhed at the very time that it occupied the attention of the greatel inecharicians of Europe ; but there is nothing to be found among his papers which fhows that he had paid much regard to it. On the contrary, when he has occafion to deliver his opinion for the infruetion of others, and to explain to the Dean and Chapter of Weitminfter his operations in repaining that collegiate church, this creat architect confiders an arch jult as al fentible and fagacions mafon would do, and very much in the way that we have juft now been treating it: (See Account of the Fami!' of IVren, p. 356, \&c.) Supported therefore by fuch authority, we would recommend this way of confidering an arch tn the fudy of the mathernatician ; and we would defire the experienced mafon to think of the molt efficacious meihods for refitting this tendency of arches to rife in the flanks. Unfortunately there feems to be no precile principleto point out the place where this tendency is moft remarkable.

We are therefore highly pleafed with the ingenions contrivance of Mr. Mylne, the architeg of Blackfriars Bridge in London, by which be determines this point

A R C [31] A R C

with precifion, by making it impofible for the overloaded arch to fpring in any other place. Having thus confined the failure to a pasticular fot, he with equal art oppofes a refiftance which he believes to be fufficient; and the preient condition of that noble bridge, which does not in any place thow the fmallefl change of thape, jroves that he was not miftaken. Iooking on this work as the fiff, or at lealt the fecond, fipectmen of m fonic ingenuity that is to be fien in the world, we imagine that our readers will be pleafel with a particular account of its molt remarkable circum. Atances.

The fpank a (fig. i6.) of the middie arch is 100 feet, and its height OV is $+\infty$, and the thicknefs IVV of the crown is fix feet feven incises. Its form is aeally elliptical; the part AVZ being an arch of a cirele whofe centre is C , and radius 56 feet, and the tro lateral portions $A k B$ and $Z a$ E being arches deferibed with a radius of 3 ; feet neatly. The thicknefs of the pier at $a b$ is 19 teet. The thicknefs of the arch increafes from the crown V to Y, where it is eirht or nine feet. All the arch fones have their juints ditected to the centres of their curvature. The joints ate all joggled, having a eubic foot of hard \&one let half way into each. By this contrivance the joints cannot lide, nor can any weight laid on the crown ever break the atch in that part, if the piers do not yield; for a ftraight line from the middle of KV to the middle of the joint YI is contained within the folid mafonry, and does not even come near the inner joints of the arch flones. Therefore the whole refifts like one fone, and can be broken only by crufhing it. The joint at Z is very nearly perpendicular to a line YF drawn to the outer edge of the foundation of the pier. By this it wats intended to take off all tendency of the preffure on the joint $d^{\prime} Z$ to overfet the pier ; for if we fuppofe, according to the theory of equilibration, that this preflite is necelfarily exerted perpendicularly to the joint, its direstion palfes through the fulcrum at F, round which it is thought that the pier mult turn in the act of overfetting. 'l'his precaution was adopted, in order to make the arch quite indepeadent of the adjoining arches; fo that although any of them fould fall, this arch thould run no rik.

Still farther to fecure the independsnce of the arch, the following conlluction was practifed to unite it into one mafs, which thould rife all together. All below the line $a b$ is built of large blocks of Portland fone, dovetailed with found oak. Four places in eacho courfe are interrupted by cqual blocks of a hard Rune called Kers tiff ras, funk half way in each courfe. Thefe af as joggles, breaking the couries, and preventitg them from diding laterally:
'The portion a Y of the arch is joggled lilie the upper part. The interior part is flled up with large blocks of Kentifh rag, forming a kind of courfed rubble-work, the courfes iending to the centres of the arch. The under corner of each arch flone projects over the one below it. By this form it takes fath hold of the rubblework behind it. Above this rubble tiacre is contructed the inverted arch I $c G$ of Portland itone. 'I'his arch fhares the preffure of the two adjoining arches, along with the arch tones in $Y a$ and in $G b$. Thus all tend together to comprefs and keep down the rubble-work in the heart of this part of the pier. This is a very
ufeful precaution: for it ofeen happens, that when the centres of the arches are Atuck, before the piers are built up to their intended height, the thrult of the arches fqueezes the rubble-work horizontally, after the morter has fet, but before it Jas died and acquired its ntmoft hardnefs. Its bond is broken by this motion, and it is rqueezed up, and never acquires its former firmnefs. This is tffectually prevented by the piellure excrted by the back of the invested arch.

Above this counter arch is another mars of courled rubble, and a!l is covered by a horizontal courfe of large blocks of Postlard fone, butting againf the back of lie arch frone ZI and its correfponding one in the ad. joining arch. This courfe connects the feet of the two atches, preterves the 1 ubble work from 100 great compreflion, and protects it from foaking water. This latt circumitance is important ; for if the water which falls on the road-way is not carried off in pipes, it foaks through the gravel or other rubbith, rells on the motter, and keeps it continually wet and foft. It camnot efcape through the joints of good matonry, and therefore fills up this part like a funnel.

Suppofing the adjoining arch fallen, and all tumbled off that is not withheld by its fituation, there will fill remain in the pier a mal's of about 3500 tons. The weight of the portion VY is about 2000 tons. The dircetions of the thrults RY and YF are fuch, that it would require a load of 4500 tuns on VY to overturn the pier round F . This exceeds VY by 2500 tons; a weight incomparably greater than any that can ever be laid on it.

Such is the ingenious conftruction of Mr. Mylne. It evidertly proceeds on the principles recommended above; principles which have occurred to his experience and fagacious mind during the courfe of his extenfive prac. tice. We have feen attempts by other engineers to withfand the horizontal thrufts of the arch by means of counter arches inferted in the fame manner as here, but extending much farther over the main arch; but they did not appear to be well ealculated for producing this effect. A counter arch fpringing from any point between Y and V has no tendency to hinder that point from siling by the finking of the crown; and fuch a counter arch will not refit the precifely horizontal that fo well as the \&raight courte of Mr. Mylne.

The great incorporation of architents who butilt the Origin of cathedrals of Europe departed entirely from the ityles the Gothio of ancient Greece and Rome, and introduced atnother, arches. in which arcades made the principal part. Not findingr in every place quaries from which blocks could be raifed in abundance of fufficient fize for forming the far. projecting corniches of the Greek orders, they relinquithed thofe proportions, and adopted a llyle cf ornament which required no fuch projections: and having fubfituted arches for the horizontal architrive or lintel, they were now able to erect buildings of vaf extent with fpaci=us openings, and all this with very fmall pisces of ftone. The form which had been adoptad for a Chriftian temple occafioned many intertection; of vaultings, and multiplied the archosexceedingly. Condant pratice gave opportunitics of giving every polible varisty of thefe interfetions, and taught the art of balancing arch againlt arch in evcly variety of fituation. An art fo mulifarious, and fo much out of the road
of ordinary thoughr, could not but become an object of tond fudy to the architeds molt eminent for inge. nuity and invention. Becoming thus the dupes of their own ingenuity, they were fond of difplaying it even when mot necelfary. At lat arches became their principal or nament, and a wall orceiling was not thought dreffed out as it frould be till filled full of mock arches, crofing and butting on each other in every direction. In this procefs in their ceilings they found that the projecting mouldings, which we now call the Gothic tracery, formed the chief fupports of the roofs. The plane durfaces included between thofe ribs were commonly vaulted with very fmall tones, feldom exceeding fix or eight inches in thicknefs. This tracery therefore was not a random ornament. Every ribhad a pofition and direction that was not orly proper, but even necelfary. Hibituated to this fcientific arrangement of the mouldings, they did not deviate from it when they ornamented a fmooth furface with mock arches; and in none of the highly ornamented ancient buildings will we find any falfe pofitions. This is by no means the cale in many of the modern imitations of Gothic architecture, even by our beft arcliteets. Ignorant of the directing principle, or not attendiug to it, in their fucco work, they pleafe the unkilled eye with pretty radiated figure: : but in thefe we frequently fee fuch abatments of mouldings as would infallibly break the arches, if thefe mouldings wore really performing their ancient office, and fupporting a vaulting of confiderahle extent. Nay, this began even before the Gothic Ryle was finally abandoned. Several inftances are to be found in the highly enriched valultings of New College, and Chrift Church in Oxford, in St George's Chapel at Windior, and Henry VII's Chapel in Weftminfter.

We call the middle ages rude and barbarous; but there was furely much knowledge in thofe who could esecute fuch magnificent and difficult works. The working drafts which were neceflary for fuch varieties of oblique interfections mult have required confiderable A.ill, and would at prefent occupy many very expenfive volumes of mafons jewels and carpenters manuals, and the hike. All this knowledge was kept a profound fe. cret by the corporation, and on its brealing up we had all to learn again.

There is no appearanze, however, that thefe architeets had lludied the theory of equilibrated arches. Tley laad alopted an arch which was very ftrong, and permitted confiderable irregularities of preffire-we mean the pointed arch. The rery deep mouldings with which it was ornamented, made the arch fones very lnog in proportion to the fpan of the arch. But they hatd ftudied the mutual thruft of arches on each other with great care; and they contrived to make every Invention for this purpofe bcome an ornament, fo that
cipal columns to withitand the combined thruft of the ailles, of the nave, and tranfepts. In thort, the nore clufely we examine the ornaments of this architedure, the more fhall we perceive that they are effential parts, or derived from them by imit tion: and the more we confider the whole Ityle of it, the more clearly do we dee that it is all deduced from the relifh for arcades, in. dulged in the extreme, and puthed to the limit of poifibility of execution.

There is another fpecics of arch which muft not be overlooked, namely, the Dome or Cupota, with all its varieties, which include even the pyramidal fteeple or fpire.

It is evident that the erestion of a dome is alfo a fcientific art, proceeding on the principles of equilibration, and that thefe principles admit and require the fame or fimilar modifications, in confequence of the cohelion and friction of the materials. At firft fight, too, a dome appedrs a more difficult piece of work than a plain arch; but when we obferve potters kilns and glafshoufe domes and cones of valt extent, erected by ordinary bricklayers, and with materials valtly inferior in fize to what can be employed in common arches of equal extent, we mult conclude that the circumftance of curvature in the holizontal direction, or the abutment of a circular bafe, gives fome affiftance to the artife. Of this we have complete demonttration in the cafe of the cone. We know that a vaulting in the form of a pent roof could not be executed to any confiderable extent, and would be extremely hazardous, even in the fmalleft dimentions; while a cone of the greateft magnitude can be raifed with very fmall itones, provided only that we prevent the bottom from flying out, by a hoop, or any fimilar contrivance. And when we think a little of the matter, we fee plainly, that if the horizontal fection be perfectly round, and the joints be all directed to the axis, they all equally endeavour to flide inwards, while no reafon can be ofiered why any individual tone thould prevail. They are all wedges, and operate only as wedges. When we confider any fingle courfe, therefore, we fee that it cannot fall in, even though it may be part of a curve which could not fand as a common arch; nay, we fee that a dome may be conhtucked, having the convexity of the curve, by the revolution of which it is formed, turned towards the axis, fo that the outline is concave. We fhall afterwards find that this is a ftronger dome by far than if the convexity were outwards, as in a common arch. We fee alfo that a eone may be loaded on the top with the greateft weight, without the fmallef danger of forcing it down, fo long as the bottom courle is firmly kept from burlting outwards. The flone lanthern on the top of St Paul's cathedral in London weighs feveral hundred tons, and is carried by a brick cone of eighteen inches thick, with perfect fafety, as long as the hottom courfe is prevented from burling outwards. The reafon is evident : The preflure on the top is propagated along the cone in the direction of the flant fide; and, fo far from liaving any tendency to break it in any patt, it tends rather to prevent its being broken by any irregular preffure from foreign caules.

For the fame reafons the oftagonal pyramids, which form the fires of Gothic archiecture, are abundantly firm, although very thin. The fides of the fipire of

Salifoury

Arch.
-

35.

Dome or cupola -
\qquad 1

$$
1
$$

 the eye required it as a neceifary part of the building. Thus we frequently fee fmall buildings having buttreffes at the fides. Thefe are neceflary in a large vaulted building, for withftanding the outward thruft of the vaulting; but they are ufelefs when we have a fiat ceiling within. Pinacles on the heads of the buttreffes are now confidered as ornaments; but originally they were put there to increare the weight of the buttrefs: even the great tower, in the centre of a cathedral, which now conftitutes its great ornament, is a load almoft indifienfably neceflary, for enabling the lour prin.
$3^{6 .}$ Of eafier conftruction thats a plain arch.
\qquad ,
-

A R C [33] A R C

Arch. Salifbury cathedral are not eight inches thick after the octagon is fully formed. It is proper, however, to direct the joints to the axis of the pyramid, and to make the courfing joints perpendicular to the flant fide, becaufe the projecting mouldings which run along the angles are the abutments on which the whole pannel depends. A confiderable art is neceffary for fupporting thofe pannels or fides of the octagon which fpring from the angles of the fquare tower. This is done by beginning a very natrow pointed arch on the fquare tower at a great difance below the top; fo that the legs of the arch being very long, a ftraight line may be drawn from the top of the keytone of the arch through the whole arch itones of the legs. By this difpofition the thrufts arifing from the weight of thefe four pannels are made to meet on the maffive mafonry in the middle of the fides of the tower, at a great diftance below the fpringing of the fpire. This part, being loaded with the great mafs of perpendicular wall, is fully able to withitand the horizontal thruft from the legs of thofe arches. In many fires thefe thrufts are fill farther refifted by iron bars which crofs the tower, and are hooked into pieces of brafs firmly bedded in the mafonry of

Examples There is much nice balancing of this kind to be obof fuch con- ferved in the highly ornamented open fpires; fuch as Aruction. thofe of Bruffels, Mechlin, Antwerp, \&c. We have not many of this fort in Britain. In thofe of great magnitude, the judicious eye will difcover that parts, which a common fpectator would confider as mere ornaments, are neceffary for completing the balance of the whole. Tall pinnacles, nay, even pillars carrying entablatures and pinnacles, are to befeen flanding on the middle of the flender leg of an arch. On eramination, we find that this is necelfary, to prevent the arch from fpringing upwards in that place by the preflure at the crown. The fteeple of the cathedral of Mechlin was the moft elaborate piece of architecfure in this tafte in the world, and was really a wonder ; but it was not calculated to withftand a bombardment, which deltroyed it in 1578.

Such frequent examples of irregular and whimfical buildings of this kind, thow that great liberties may be taken with the principle of equilibration without rifk, if we take care to lecure the bafe from being thruft outwards. This may always be done by hoops, which can be concealed in the mafonry; whercas, in common arches, thefe ties would be vifible, and would offend the cye.

It is now time to attend to the principle of equilibrium, as it operates in a fimple circular dome, and to determine the thicknefs of the vailting when the curve is given, or the curve when the thicknefs is given.
Plate 11. Therefore, let B 6 A (fig. 17.) be the curve which pro duces the dome by revoiving round the vertical axis AD. Stability of We fhall fuppofe this curve to be drawn through the a dome de- middle of all the arch fones, and that the courfing or pends on principles horizontal joints are every where perpendicular to the curve. We fhall fuppofe (as is always the cafe) that
ℓb of the curve. As we proceed downwards, courfe af. ter courfe, we fee plainly that this direction mult change, becauie the weight of each courfe is fuperadded to that of the portion above it, to complete the preffure on the courfe below. Through B draw the vertical line BCG , mecting βb, produced in C. We may take $b c$ to prefs the preffure of all that is abnve it propagated in this direction to the joint KL. We may allo fuppofe the weight of the courfe HL united in ℓ, and acting on the vertical. Let it be reprefented by $b F$. If we form the parallelogram $b \mathrm{FGC}$, the diagonal $b \mathrm{G}$ will reprefent the dircetion and intenfity of the whole preflure on the joint KL. Thus it appears that this preffure is continually changing its direction, and that the line, which will always coincide with it, muft be a curve concave downward. If this be precifely the curve of the dome, it will be an equilibrated vaulting; but fo far from being the frongeft form, it is the weakeft, and it is the limit to an infinity of others, which are all fronger than it. This will appear evident, if we fuppofe that $\ell \mathrm{G}$ does not coincide with the curve Ab B, but paffes without it. As we fuppofe the arch fones to be exceedingly thin from infide to outfide, it is piain that this dome cannot ftand, and that the weight of the upper part will prefs it down, and foring the vaulting outwards at the joint KLL. But let us fuppofe, on the other hand, that l G falls within the curvelineal elcment $b \mathrm{~B}$. This evidently tends to pulh the arch fone inward, toward the axis, and would caufe it to flide in, fince the joints are fuppofed perfectly fmooth and flipping. But fince this takes place equally in every forie of this courfe, they mult all abut on each other in the vertical joints, fqueezing them firmly together. Therefore, refolving the thruit $b \mathrm{G}$ into two , one of which is perpendicular to the joint KL, and the other parallel to it, we fee that this lalt thruft is withfood by the vertical joints all around, and there remains only the thruft in the direction of the curve. Such a dome muft therefore be firmer than an equilibrated donse, and cannot be fo eafily broken by overloading the upper part. When the curve is concave upwards, as in the lower part of the figure, the line $b \mathrm{C}$ always falls below $b \mathrm{~B}$, and the point C below B . When the curve is concave downwards, as in the upper part of the figure, ' $b \mathrm{C}$ ' paffes above, or without b B. The curvature may be fo abrupt, that even b ' G^{\prime} 'hall pars without ' $b \mathrm{~B}^{\prime}$, and the point G^{\prime} is above B^{\prime}. It is alfo evident that the force which thus binds the ftenes of a horizontal courle together, by pufling them towards the axis, will be greater in flat domes than in thofe that are more convex; that it will be flill greater in a cone; and greater ftill in a curve whofe convexity is turned inwards: for in this laft cafe the line $b \mathrm{G}$ will deviate moft remarkably from the curve. Such a dome will fand (having polifled joints) if the curve (prings from the bafe with any elevation, however fmall; nay, fince the friction of two pieces of fone is not lefs than half of their mutual preffure, fuch a dome will ftand, although the tangent to the curve at the bottom fhould behorizontal, provided that the horizontal thruft be double the weight of the dome, which may eafily be the cafe if it do not rife high.

Thus we fee that the fability of a dome depends on very different principles from that of a common arch, and is in general much greater. It differs alfo in anoE the thicknefs KL, HI, \&c. of the arch tiones is very fmall in comparion with the dimenfions of the arch. If we confider any postion HA b of the dome, it is plain that it preffes on the courfe, of which HL is an arch fone, in a direction $l \mathrm{C}$ perpendicular to the joint III, or in the direation of the next fuperior element Suppl, Vol. I.

$A \mathrm{R}$ C $\quad\left[\begin{array}{lll}34\end{array}\right] \quad$ A R C

Arch. \rightarrow
the very important circumftance, viz. that it may be open in the middle : for the uppermolt courfe, by tending equally in every part to flide in toward the axis, preffes all together in the vertical joints, and acts on the next course 1 be the key-tone of a common arch. Therefore an arch of equilibration, which is the weakeft of all, may be open in the middle, and carry at top another building, fuch as a lanthern, if its weight do not exceed that of the circular fegment of the dome that is omitted. A greater load than this would indeed break the dome, by catling it to firing up in forme of the lower courfes; but this load may be increafed if the curve is flatter than the curve of equilibration: and any load whatever, which will not crush the Pones to powder, may be fit on a truncate cone, or on a dome formed by a curve that is convex toward the axis; provide always that the foundation be effectually prevented from lying ont, either by a hoop, or by a fufficient malls of fold pier on which it is fer. We have mentioned the many failures which happened to the dome of St Sophia in Confantinople. We imagine that the thrult of the great dome, bending the ealtern arch outward as foo as the pier began to yield, deftroged the half dome which was leaning on it, and thus, almoft in an infant, took away the eaters abutment. We think that this might have been prevented, without any change in the injudicious plan, if the dome had been hooped with iron, as was practifed by Michael Angelo in the valtly more ponderous done of St Peter's at Rome, and

41 Excellency of the dome of St Paul's. by Sir Chriftopher Wren in the cone and the inner dome of St Paul's at London. The weight of the latter confiderably exceeds 3000 tons, and hey occa. fin a horizontal thrult which is nearly half this quadtity, the elevation of the cone being about 60°. This being diftributed round the circumference, occafions a strain on the hoop $=\frac{7}{2 \times 22}$ of the thrult, or nearly 230 tons. A fquare inch of the wort iron, if well forged, will carry 25 tons with perfect fafety; therefore a hoop of 7 inches broad and $1 \frac{1}{2}$ inches thick will completely fecure this circle from burning outwards. It is, however, much more completely fecured ; for betides a hoop at the bale of very nearly thee dimenfions, there are hoops in different courfes of the cone which bind it into one mats, and caufe it to profs on the piers in a direaction exactly vertical. The only thrusts which the piers fultain are those from the arches of the body of the church and the tranfepts. There are molt judicioufly directed to the entering angles of the building, and are there refitted with infuperable force by the whole lengths of the walls, and by four fold maffes of mafonry in the corners. Whoever confiders with attention and judgment the plan of this cathedral, will fee that the thrufts of thee arches, and of the dome, are incomparably better balanced than in St Peter's church at Rome. But to return from this fort of digreffion.

We have fees that if $b \mathrm{G}$, the thrift compounded of
$b \delta b^{\prime \prime}, \mathrm{BDB}^{\prime \prime}, \mathrm{C} d \mathrm{C}^{\prime \prime}$. Let the tangents at b and $b^{\prime \prime}$ meet the axis in M, and make MO, MP, each equal to $b c$, and complete the parallelogram MONP, and draw OQ perpendicular to the axis, and produce $b \mathrm{~F}$, cutting the ordinates in E and e. It is plain that MN is to MO as the weight of the arch HAb to the thrult $b c$ which it exerts on the joint KL (this thruft being propagated through the courfe HILK) ; and that MO: or its equal $b e$, or δd, may reprefent the weight of the half AH.

Let AD be called x, and DB be called y. Then $b e=\dot{x}$, and $e \mathrm{C}=\dot{y}$ (because $b c$ is in the direction of the element βb). It is aldo plain, that if we make y. conftant, $B C$ is the fecond fluxion of x, or $B C=\ddot{x}$, and $b e$ and BE may be confidered as equal, and taken indifcriminately for \dot{x}. We have alpo $l \mathrm{C}=\sqrt{\dot{x}^{2}+\dot{y}^{2}}$. Let d be the depth or thicknefs HI of the arch !tones. Then $d \sqrt{\dot{x}^{2}+\dot{y}^{2}}$ will reprefent the trapezium HL : and lance the circumference of each course increafes in the proportion of the radius $y, d y \sqrt{x^{2}+y^{2}}$ willex . prefs the whole course. If $\int b c$ taken to reprefent the fum or aggregate of the quantities annexed to it , the formula will be analogous to the fluent of a fluxion, and $\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}$ will reprefent the whole mans, and aldo the weight of the vaulting, down to the joint HI. Therefore we have this proportion $\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}$ $: d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}=b e: b \mathrm{~F},=\ell e: \mathrm{CG},=\delta d: \mathrm{CG}$, $=\dot{x}:$ CG . Therefore $C G=\frac{d y x \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{\int d y \sqrt{\dot{x}^{2}+y^{2}}}$,

If the curvature of the dome be precifely foch as puts it in equilibrium, but without any mutual preffure in the vertical! joints, this value of OG mull be equal to $C B$, or to $\ddot{\therefore}$, the point G coinciding with B. This condition will be expreffed by the equation $\frac{d y \cdot \sqrt{x^{2}+\dot{y}^{2}}}{\sqrt{x}}$ $=\ddot{x}$ or $\frac{\int d y \sqrt{\dot{x}}+\dot{y}^{z}}{\frac{\ddot{x}}{\ddot{x}^{2}+\dot{y}^{2}} \quad \ddot{x}}$ $=\ddot{x}$, or, more conveniently, by $\frac{d y \sqrt{x^{2}+\dot{y}^{2}}}{\dot{x}}=\frac{\ddot{x}}{\dot{x}}$. But this form gives only a tottering equilibrium, indpendent of the friction of the joints and the cohelion of the cement. An equilibrium, accompanied by forme firm nubility, produced by the mutual preffure of the vertical joints, may be expreffed by the formula $\frac{d y \sqrt{x^{2}+\dot{y}^{2}}}{}$

$$
\int d y \sqrt{x^{2}+\dot{y}^{2}}
$$

$\Rightarrow \frac{\ddot{x}}{\dot{x}}$, or by $\frac{d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}}=\frac{\ddot{x}}{\dot{x}}+\frac{\dot{t}}{t}$, where t is forme
variable politive quantity, which increafes when x in-
creates.

Arch. creafes. This laft equation will alfo exprefs the equilibrated dome, if t be a conftant quantity, becaufe in this cale $\frac{t}{s}$ is $=0$.

Since a firm ftability requires that $\frac{d y x+\sqrt{\dot{x}^{2}+\dot{y}^{2}}}{\sqrt{\dot{0}}}$ hall

$$
\int d y \sqrt{x^{2}+y^{2}}
$$

he greater thas \ddot{x}, and CG muft be greater than $C B$: Hence we learn, that figures of too great curvature, whofe fices defcend too rapidly, are improper. Alfo,
fince Itability requires that we have $\frac{d y \dot{x} \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{\ddot{x}}$ greater than $\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}$, we learnthat the upper part of the dome mult not be made vers heavy. This, by diminifhing the proportion of $b \mathrm{~F}$ to $b \mathrm{C}$, diminifhes the angle $c b \mathrm{G}$, and may fet the point G above B , which will infallibly furing the dome in that place. We fee here alfo, that the algebraic analy fis expreffes that peculiarity of dome-vaulting, that the weight of the upper part may even be fuppreffed.

The fluent of the equation $\frac{d y \sqrt{\dot{x}+\dot{y}^{2}}}{\qquad \int d y \sqrt{\dot{x}^{2}+\dot{y}^{3}}}=\frac{\ddot{x}}{\dot{x}}+\frac{\dot{i}}{t}$
is moft eafily found. It is $\mathrm{L} \int d y \sqrt{\dot{x}^{2}+\dot{y}^{3}}=\mathrm{L} \dot{x}+$ $\mathrm{L} t$, where L is the hyperbulic lingarithm of the quantity annexed to it. If we confider \dot{y} as conftant, and correct the fluent fo as to make it nothing at the vertex, it may be expreffed thus, $\mathrm{L} \int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}-\mathrm{L}} a=\mathrm{L} \dot{x}$ $-\mathrm{L} y+\mathrm{L} t$. This gives us I $\frac{\int d y \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{a}=\mathrm{I} \frac{\dot{x}}{y} t$ and therefore $\frac{\int d y \sqrt{\dot{x}^{2}+\dot{y}}}{a}=t \frac{\dot{x}}{\dot{y}}$.

This laf equation will eafily give us the depth of vaulting, or thickneis d of the arch, when the curve is given. For its fluxion is $\frac{d y}{} \frac{\dot{x}^{2}+\dot{y}^{2}}{a}=\frac{\dot{i}+t \ddot{x}}{\dot{y}}$, and $d=\frac{a \dot{t} \dot{x}+a \ddot{x}}{y \dot{y} \sqrt{\dot{x}^{2}+\dot{y}^{2}}}$, which is all expreffed in known quantities; for we may put in place of t any power or fumstion of s or of y, and thus convert the expreflion into another, which will till be applicable to all forts of curves.

Inftead of the fecend momber $\frac{\ddot{x}}{x}+\frac{i}{t}$, we might employ $-\frac{p \ddot{x}}{\dot{x}}$, where p is fome number ${ }_{o}$ reater than unity, This will evidently give a dome having ftability; becaufe the original formula $\frac{d y x \sqrt{\dot{x}^{2}+\dot{y}^{2}}}{\int \sqrt{\dot{x}^{2}+\dot{y}^{2}}}$ will then be
greater than x. This will give $d=\frac{p a \dot{x}^{p-1} \dot{x}}{\dot{y} p \sqrt{\dot{x}^{2}+\dot{y}^{2}}}$. Each $y \dot{y} p \sqrt{\dot{x}^{2}+\dot{y}^{2}}$
of thefe forms has its advantages when applied to particular cafes. Each of them alfo gives $d=\frac{a \dot{x}}{y \dot{y} \sqrt{\dot{x}^{2}+\dot{y}^{2}}}$ when the curvature is fuch as is in precife equilibrium. And, laftly, if d be conftant, that is, if the vaulting be of uniform thicknefs, we obtain the form of the curve, becaufe then the relation of x to \dot{x} and to \dot{y} is given.

The chief ure of this analyfis is to difcover what curves are improper for domes, or what portions of given curves may be employed with fafety. Domes are generally built for ornament; and we fee that there is great room for indulging our fancy in the choice. All curves which are concave outwards will give domes of great firmnefs: They are alfo beautiful. The Gothic dome, whofe outline is an undulated curve, may be made abundantly firm, efpecially if the upper fart be convex and the lower concave outwards.

The chief difficulty in the cafe of this analyfis arifes from the neceflity of expreffing the weight of the incumbent part, or $\int d y \sqrt{x^{2}+y^{2}}$. This requires the meafuement of the conoidal furface, which, in moft cafes, can be had only by approximation by means of infinite feriefes. We cannot expect that the generality of practical builders are faniliar with this branch of mathematics, and therefore will not engage in it here; but content ourfelves with giving fuch inllances as can be underflood by fuch as have that mederate mathematical knowledge which every man thould poffefs who takes the name of engineer.

The furface of any circular portion of a fphere is very eafily had, being equal to the circle defcribed with a radius equal to the chord of half the arcl. This radius is evidently $=\sqrt{\dot{x}^{2}+\dot{y}^{2}}$.

In order to difcover what portion of a hemifphere may be employed (for it is evident that we cannot employ the whole) when the thicknefs of the vaulting is uniform, we may recur to the equation or formula $\frac{d y \dot{x} \sqrt{\dot{x}^{2}-y^{2}}}{\ddot{0}}=\int d y \sqrt{\dot{x}^{2}+\dot{y^{2}}}$

Let a be the radius of the hemifplere. We have $\dot{x}=\frac{a y \dot{y}}{\sqrt{a^{2}-y^{2}}}$, and \ddot{x} $=\left.\frac{a^{2} \dot{y}^{2}}{a^{2}-y^{2}}\right|^{\frac{3}{2}}$. Subrituting thefe values in the formula, we obtain the equation $y^{2} \sqrt{a^{2}-y^{2}}=\int \frac{a^{2} y \dot{y}}{\sqrt{a^{2}-y^{2}}}$. We eafily obtain the fluent of the fecond member $=a^{3}$ $-a^{2} \sqrt{a^{2}-y^{2}}$, and $y=\sqrt{-\frac{y}{2}+\sqrt{\frac{5}{4}}}$. Therefore if the radius of the fphere be 1 , the half breadth of the dome mut not cxceed $\sqrt{-\frac{1}{2}+\sqrt{\frac{5}{4}}}$, or 0,786 , and the height will be 6i8. The arch from the vertex is about $5^{\circ} 49^{\prime}$. Much more of the hemifphere cannot fland, even though aided by the cement, and by the friction of the conrfing joints. This lat circumftance,

A R C $\quad\left[\begin{array}{lll}3 & 6\end{array}\right] \quad A \quad R \quad C$

Arch. by giving connection to the upper parts, caules the whole to prefs more vertically on the courfe below, and thus diminifhes the outward thrult ; but it at the fame time diminifhes the mutual abutment of the vertical joints, which is a great caufe of firmnefs in the vault ing. A Gothic dome, of which the upper part is a portion of a phere not exceeding 45° from the vertex, and the lower part is concave outwards, will be very

But the public tafte has long rejected this form, and feems rather to feleet more elevated domes than this portion of a fphere; becaufe a dome, when feen from a fmall diftance, always appears flatter than it really is The deme of St Peter's is nearly an ellipfoid externally, of which the longer axis is perpendicular to the horizon. It is very ingeniouly conftructed. It fprings from the bafe perpendicularly, and is very thick in this part. After rifing about 50 feet, the vaulting feparates into two thin vaultings, which gradually feparate from each other. Thefe two fhells are connected together by thin partitions, which are very artificially dovetailed in both, and thus form a covering which is extremely fliff, while it is very light. Its great ftifnefs was neceffary for enabling the crown of the dome to carry the elegant fone lanthern with fafery. It is a wonderful performance, and has not its equal in the world; but it is an enormous load in comparifon with the dome of St. Paul's, and this even independent of the difference of fize. If they wore of equal dimenfions, it would be at leaft five times as heavy, and is not fo firm by its gravity; but as it is connected in every part by iron bars (lodged in the folid maionry, and well fecured from the weather by having lead melted all round them), it bids fair to laft for ages, if the foundations do not fail.

If a circle be defcribed round a centre placed anywhere in the tranfverfe axis AC (fig. 18. N^{0} I.) of an ellipfe, fo as to touch the ellipfe in the extremities B, b, of an ordinate, it will touch it internally, and the circular arch $\mathrm{B} a b$ will be wholly within the elliptical arch BA b. Therefore, if an elliptical and a fpherical vaulting fpring from the fame bafe, at the fame angle with the horizon, the fpherical vaulting will be within the elliptical, will be flatter and lighter, and therefore the weight of the next courfe below will bear a greater proportion to the thruft in the direstion of the curve; therefore the fpherical vaulting will have more ftability. On the contrary, and for fimilar reafons, an oblate elliptical vaulting is preferable to a ipherical vaulting Springing with the fame inclination to the horizon. (Fig. 18. $\mathrm{N}^{\circ}{ }^{2}$.)
l'erfuaded, that what has been faid on the fubject convinces the reader that a vaulting perfectly equilibris ted throughout is by no mears the beft form, provided that the bafe is fecured from feparating, we think it unneceffary to give the inveftigation of that form, which has a confiderable intricacy; and flall content ourfelves with merely giving its dimenfions. The thicknefs is fuppofed uniform. The numbers in the firt column of the table exprefs the portion of the axis counted from the vertex, and thofe of the fecond column are the lengths of the ordinates.

AD	DB	AD	DB	AD	BD
0,4	100	610,4	1080	2990	1560
3,4	200	744	1140	3442	1600
11,4	300	904	1200	3972	16_{40}
26,6	400	1100	1260	4432	1670
52,4	500	1336	1320	4952	1700
91,4	600	1522	1360	5336	1720
${ }_{1}^{1}+6,8$	700	$\begin{array}{r}1738 \\ 108 \\ \hline\end{array}$	1400	5756	1740
223,4 326,6	800 400	1984 2270	1440 $1+80$	6214 6714	1760 1780
326,6 465,4	yo0 1000	2270 2602	1780 1520	7260	1780 1800

The curve delineated in fig. 19. is formed according to thefe dimenfions, and appears deflitute of gracefulnefs; becaufe its curvature changes abruptly at a little diffance from the vertex, fo that it has fonie appearance of being made up of different curves pieced together. But if the middle be occupied by a lanthern of equal, or of fmaller weight, this defect will ceafe, and the whole will be elegant, nearly refembling the exterior dome of St Paul's in London.

It is not a fmall advantage of dome-vaulting that it Advantages is lighter than any that can cover the fame arca. If, of domemoreover, it be fpherical, it will admit confiderable va. vaulting. rieties of figure, by combining different fpheres. Thus, a dome may begin fromits bafe as a portion of a large hemifphere, and may be broken off at any horizontal courfe, and then a fimilar or a greater portion of a fmaller fphere may fpring from this courfe as a bafe. It alfo bears being interfected by cylindrical vaultings in every direction, and the interfections are exact circles, and always have a pleafing cffect. It alfo fprings moft gracefully from the heads of fmall piers, or from the corners of rooms of any polygonal fhape; and the arches formed by its interfections with the walls are always circular and graceful, forming very handfome fpandrels in every pofition. For thefe reafons Sir Chriftopher Wren employed it in all his vaultings, and be has exhibited many beautiful varieties in the tranfepts and the aifles of St Paul's, which are highly worthy of the obfervation of architects. Nothing can be more graceful than the vaultings at the ends of the north and fouth tranfepts, efpecially as finithed off in the fine infide view publifhed by Gwynn and Wale.

We conclude this article with obferving, that the connection of the parts, arifing from cement and from frition, has a great effect on dome-vaulting. In the fame way as in common arches and cylindrical vaulting, it enables an overload on one place to break the dome in a diftant place. -But the refiftance to this effeet is much greater in dome-vaulting, becaufe it operates all round the overloaded part. Hence it happens that domes are much lefs fhattered by partial violence, fuch as the falling of a bomb or the like. Large holes may be broken in them without much affecting the reft ; but, on the other hand it greatly diminithes the ftrength which fhould be derived from the mutual preflure in the vertical joints. Friction prevents the fliding in of the arch fones which produces this mutual preffiure in the vertical joints, except in the very highelt courfes, and even there

PLATE H.

Fio. 2.

Fig. 3.

Fig. 4

Fig. 5.

A R C [37] A R C

there it greatly diminifhes it. Thefe caufes make a great change in the form which gives the greateft itrength: and as their laws of action are bat very imperfectly underfood as yet, it is perhaps impolfble, in the prefent ftate of our knowledge, to determine this form with tolerable precilion. We fee plainly, however, that it allows a greater deviation from the beft form than the other kind of vaulting, and domes may be made to rife perpendicular to the horizon at the bafe, although of no great thicknefs; a thing which muft not be attempted in a plane areh. The immenfe addition of ftrength which may be derived from hooping, largely compenfates for all defects; and there is hardly any bounds to the extent to which a very thin dome vaulting may be earried, when it is hooped or framed in the direction of the horizontal courfes. The roof of the Halle du Bled at Paris is but a foot thick, and its diameter is more than 200, yet it appears to have abundant flrength. It is, on the whole, a noble fpecimen of architecture.

We muft not conclude this article without taking notice of that magnuficent and elegant arch which has been erected in calt iron at Weremouth, near Sunderland, in the county of Durham. The inventor and architeat is Rowlazid Burdon, Efq; one of the reprefentatives of that county in the prefent Parliament.

This areh is a fegment of a cirele whofe diameter is about 444 feet. The fpan or cord of the arch is 236 feet, and its verfed fine or fpring is 34 feet. It fprings at the elevation of 60 feet from the furface of the river at low water, fo that veffels of 200 or perlaps 300 tons burden may pafs under it in the middle of the ftream, and even 50 feet on each fide of it.

The lweep of the arch confilts of a feries of frames of caft iron, which butt on each other, in the fame manner as the vouffoirs of a fone arch. One of thefe frames or blocks (as we thall call themin future) is repre-
Thate IV. fented in fig. 1 . as feen in front. It is eaft in one piece; and eonfifts of three pieces or arms $B C, B C, B C$, the middle one of which is two feet long, the upper being fomewhat more, and the lower fomewhat lefs, becaule their extremities are bounded by the radius drawn from the centre of the arch. 'Thefe arms are four inches fquare, and are connected by other pieces KL, of fuch length that the whole length of the block is five feet in the direction of the radius. Each arm has a flat groove on each fide, which is expreffed by thedarker fhading, three inches broad and three-fourths of an inch deep. A fection of this bloek, through the middle of KL, is reprefented by the light-fhaded part BBP, in which the grooves are more diltinely perceived. Thefe grooves are intended for receiving flat bars of malleable iron, whichare employed for connerting the difierent blocks with each other. Fig. 2. reprefents two blocks united in this manner. For this purpofe each arm has two fquare bolt-holes. The ends of the arms being nicely trimmed off, fo that the three ends butt equally clofe on the ends of the nexit bleck; and the bars of hammered iron being alfo nicely fitted to their grooves, fo as to fill them completely, and have their bolt holes exactly correfponding to thofe in the blocks, they are put together in fuch a manner that the joints or meetings of the malleable bars may fall on the middle between the boltholes in the arms. Flat headed bolts of wrought iron
are then put through, and keys or forelocks are driven through the bolt-tails, and thus all is firmly wedged together, binding each arm between two bars of wrought iron. Thefe bars are of fuch length as to connect feveral blocks.

In this manner a feries of about 125 blocks are joined together, fo as to form the precife curve that is intended. This feries may be called a rib, and it ftands in a vertical plane. The areh confites of fix of thefe ribs, diftant Irom each other five feet. Thefe ribs are connected together fo as form an arch of 32 feet in breadth, in the following manner.
Fig. ${ }^{3}$. reprefents one of the bridles or crofs pieces which comeat the different ribs, as it appears when viewed from below. It is a hollow pipe of cait iron, four inches in diameter, and has at each end two projecling fhoulders, pierced with a bolt hole near their estremities, fo that the diftanee hetween the bolt-holes in the fhoulders of ene end is equal to the diftanee between the holes in the arms of the blocks, or the holes in the wrought iron bars. In the middle of the upper and of the underfide of each end may be obferved a fquare prominenee, more lightly fladed than the reft. Thefe projections alfo advance a little beyond the flat of the fhoul. ders, forming between them a flallow notch, about an :nch deep, which receives the iron of the arms, where they butt on each other, and thus gives an additional firmnefs to the juint. The manner in which the arms are thus graped by thefe notches in the bridles is more diltincly feen in fig. 2. at the letter H in the middle of the upper rail.
The sib having been all trimmed and put together, fo as to form the exact curve, the boits are all taken out, and the horizontal bridles are then fer on in their places, and the bolts are again put in and made fan by the forelocks. The bolts now pafs through the fhoulders of the bridles, through the wrought iron bars, and through the caft iron arm that is between them, and the forelocks bind all faft together. The manner in which this connedion is completed is diftinctly feen in fig. 2. which thow's in perfpective a double bloek in front, and a fingle block behind it. The buting joints of the two front blocks are at the letters E, E, E; the holes in the fhoulders of the horizontal crofs pieces are at H .
This confruction is beautifully fimple and very judi- Its concious. A vall addition of firength and of flifneis is fruction procured by lodging the wrought iron bars in grooves fimple and formed in the calf iron rails; and for this purpofe it is of judicious, great importance to make the wrought iron bars fill the grooves comp'etely, and even to be fo tight as to reyuire the force of the furelocks to draw them home to the bottom of the grooves. There can be no doubt bat that this arch is able to withliand an enormuus pieffure, as long as the abutments from which it frrings do not yield. Of this there is hardly any rifk, becaufe they are maffes of rock, faced with about four or five yards (in fome places only) of fulid block mafonry. The mutual thruits of the frames are all in the direction of the rails, fo that no part bears any tranfverfe Atrain. We can hardly conceive any force that can overcome the ftrength of thofe alms by preffure or crufhing them. The manner in which the frames are conneقted into one rib, effectually feeures the buting joints from flipping; and the accuracy with which the whole can be execut-

$\mathrm{A} R \mathrm{C} \quad\left[\begin{array}{lll}38\end{array}\right]$

Arch. ${ }^{\sim}$ ed , focures us againft any warping or deviation of a rib from the vertical plane.

But when we conflder the prodigions fan of this arch, and reflect that it is only fivefeet thick, it fhould feem that the mot pas feet equilibration is indifenfably neceffary. It is but like a film, and muft be fo fupple that an overload on any part mult have a great tendency to bend it, and to canfe it to rife in a diftant part; and this effect is increafed by the vory firmnefs wih which the whole ficks togetler. The overloaded part afts on a diftant part, tending to break it with all the energy of a long lever. This can be prevented only by means of the Riffnes of the diftint part. It is very true, the archicannot break in the extrados except by tearing afunder the wrought iron bars which connect the blocks along the upper rail, and each of thefe requires more than a hundred tons to tear it afunder ; yet an oveıload of five toms on any rib at its middle will produce this ftrain at twenty feet from the fides, furpofing the fides held firm in their pofition. It were defirable therefore that fomething were done to fiffen the arch at the fides, by tire manner of filling up

49
Though in way. This is filled up in a manner that is extremely one parti- light and plealing to the eye, namely, by large cat iron cular capa- circles, which touch the extrados of the arch and touch ble, perhaps of improvement. the road-way. The road-way refts on them as on fo many hoops, while they reft on the back of the arch, and alfo toucle each other laterally. We cannot think that this contributes to the ftength of the arch; for thefe hoops will be eafily comprefed at the points of contact, and, changing their thape, will oppofe very little reliftance. We think that this part of the arch might have been greatly fiffened and frengthened, by connecting it with the road way by truffed frames, in the fame way that a judicions carpenter would have framed a roof. If aftrong caft iron pillar had been made to reft on the arch at about 20 feet from the impoft, and been placed in the direction of a radius, the top of this pillar might have been connecied by a didgonal bar of wronght iron with the impolt of the arch, and with the crown of the arch by anotier firing or bar of the fame materials. Thefe two ties would caufe the radial pillar to prefs ftrongly on the back of the arch, and they mult be turn afund er before it could bend in that place in the fmallelt deguce. Suppofing them of the fame dimenfions as the bars in the arms, their polition would give them near ten times the force for relifting the ftain produced by an overlodi on the crown.

This beantiful arch contains unly 260 tons of iron, of which about 55 are wrought iron. The fuperltructure is of wood, planked over s-1op. 'This fluer is covered with a coating of chalk and tar, on which is hid the matcrials for the carriare road, confiling of matle, limeftone, and gravel, with foot ways of fleg-tones at the fides. The weight of the whole did not exceed a thoufind tons; whereas the lightelt ftone arch which could have been erected would have weighed fifieen thoufand. It was turned on a very light but Riff faffolding, moft judicioufly conftucted for the prefervation of its form, and for allowing an uninterrupted paffage for the numerons fhips and fmall craft which fiequent the bufy harbour of Sunderland. The mode of framing the arch was fof fimple and eafy, that it was put up in ten dajs! without an accident; and when all was fi.
nifhed, and the fcaffolding removed, the arch did not Architecfenfibly change its form. The whole work was executed in three years, and colt about L. 26,000 .

ARCHITECTURE is an art of fo much importance, and capable of fo many embellifnments, as to have employed the attention and talents of men of fcience in almolt every age, and in every comntry. It is gencrally thought to have been carried to the utmod perfection among the Greeks and Romans; and it has been the aim of the moft eminent architects of modern times to imitate with fidelity the buildings of thofe accompl thed nations. There is, however, another fpecies of architecture, which was introduced into Europe in the middle ages, and is of fuch a nature as to Atrike every unprejudiced obferver with admiration and aftonifhment. The architecture to which we allude has been called, perhaps with little propriety,

Golhic Architectiog. It is that which is to be viewed in all our ancient cathedrals, and in other large buildings, which have been erected from the middle of the 12 th to the beginning of the 16 th century. That fuch edifices have been conftructed on principles of fcience, las been fhown elfewhere (fee Roor, Encycl. and $A_{R C H}$, in this Suph.) : but a queftion ftill prefents itfelf to the inquift. tive mind, "How came fuch ftructures to be thought of by a people whom we are accuftomed to call ignorant and basbarous?" This queftion has occupied the attention of many ingenious men, who have attributed the Gothic Ityle of building, fome to recelfity, and others to an imitation of the works of nature. That, where materials are bad, larger edifices can be erected in the Gothic than in the Grecian Ityle, has been made fufficiently evident in the articles to which we have referred; and that neceflity is the parent of invention, is an adage which has been too long received to be now called in queftion. But whence came the peculiaritics of the Gothic ornaments in building, the pointed arch, and the double row of cluftered pillars compofed of flender thafts, which, reaching from the ground aimoft to the roof of the building, are there foread out in all directions, forming the ribs or groins of a vaulted roof?

The moft fatisfactory folution of this queftion which we have feen, is in a memoir publifhed in the fourth volume of the Tranfistions of the Royal Society of Edinlurgh, by Sir James Hall, Bart. with whofe permifion the following abltract is laid before our readers.
" Althouch the connection between beauty and atility be fill invoived in fuch obfeurity, that we are unable to decide concerning the univerfality of that connection, of one thing we are certain, tlat, in a work intended to anfwer fome ufeful purpore, whatever vilibly counteracts that purpofe always occafions deformity. Hence it i, that, even where ornament is principally intended, the oftenfibly ufeful object of the work, if it have any tuch, mult be provided for, in the fiuft place, in preference to every other confideration.
"But in moft vfefnl work, fome parts occur, the fhape of which is quite indifferent with refpect to the propofed utility, and which, therefore, the artift is at liberty to execute as he pleafes: a liberty which has opened a wide field to the talle and invention of ingenious men of every age and country, who have turned their attention to the compolition of ornaments ; and
whore

A R C

the fate of civilization in which they lived. It would feem, however, if we may judge by tbofe various efforts, that little has been eftected by mere human ingenuity ; fince we fee that recourfe has been had, almof univerfally, to nature, the great and legitimate fource of beauty; and that ornament has been attained by the imitation of objects, to which the has given a determinate and charakterittic form.
"Where the materials employed are themfelves poffeffed of variety and elegance, the attainment of this object requires little or no alteration of their natural forms. Thus cups are made of fhells, of cocoa nuts, or of oftrich eggs ; the charadter and beauty of which depend upon the natural form of the materials: and in the cafe of the bottles ufed by the Roman Catholic pilgrims an example occurs of an utenfil, in which the natural form has undergone litlie or no variation, lince it confifts of the hard outward thin of a gourd, of the fame thape in which it grew upon the plant (A). This laft clafs of forms has been introduced, by imitation, into works compofed of thapelefs materials. Thus we have filver cups in the form of thofe made of Phells, and fruitdifhes of fone ware in the form of balkets.
"As fone is not naturally poffeffed of any peculiar Ihape, and as the ufeful object propofed, by foructures formed of it, may be accomplithed in various ways, very great latitude is left to the invention of the artift. We fee, accordingly, that in every country where much refinement has been introduced, great pains have been beftowed in ornamenting ftone buildings with fignres reprefenting various natural objects; whilit the building itfelf has been executed in imitation of a ftructure, compofed of materials which naturally poffefs a determinate and characteriftic form. Such was the method followed by the architects of ancient Greece, who conftructed temples, and other public edifices, in imitation of a ruftic fabric, compofed of fquare beams, fupported upon round polts or ttems of trees, and who derived the numerous ornaments of that beautiful ftyle from circumftances which would naturally take place in ficla a firucture.
"A faint and diftant refemblance, however, of the original, has generally been found to anfwer all the end propofed by the inntation; a refemblance, which may fontetimes be traced in the general diftribution of the edifice, fometimes in its minute parts, and not unfrequently in both.
" But the forms of nature thus introduced have been greatly modified by thofe of mafonry. For though ftome is by nature fhapelefs, yet, in the conefe of prac. tice, many peculiar forms have been long eftablithed, and currently employed, in working it ; fuch as ftraight lines, plain furfaces, fquare angles, and varions monldings uled to foften the effect of abrupt terminations: all of which, originating in motives of mechanical convenience, and of fimple ornament, had, in very early times, been appropriated to mafonry, and confidered as effential in every finifhed work of ftome; fo that, when
the imitation of nature was introduced, thefe mafonic forms flill maintained their ground, and, being blended with the forms of nature, the two claffes reciprocally modified each otber.
"This combination of art with nature, of which we fee the moft perfect example in the Corinthian capial, produces what are called architectonic forms, in which the varicty of nature, being fubjected to the regularity of art, the work acquires that peculiar character which, in a natural object, we confider as offenfive, under the name of formolity; but which, in architecture, we ad. mire as a beauty, under the name of fymmetry: thus, we repiobate the formality of an avenue, and praife the fymmetry of a colonnade.
"Such is the nature of architectonic imitation ; a device which probably originated in accident, but to which architedure is indebted for its higheft attainments."

As the tlone edifices of ancient Grecce were conftrusted in imitation of a wonden fabric, compofed if fquare beams laid at right angles on round polts or ftems of trees, Sir James conceives that the Gothic fabrics with pointed arches have been executed in imita. tion of a rultic dwelling, conflonsed in the following manzer : Suppofe a fet of round polts driven firmly in. to the ground in two oppofite rows, the interval between the neightouring pofts in the fame row being equal to that between the rows, and each poit being raifed above the ground to a height equal to three of thofe intervals: then a fet of long and flexible rods of willow being applied to each polt, let them be thrult into the ground at its bafe, and bound to it by two tyings, one near the ground, and another at two thirds of its height; the rods being left loofe from this laft point upwards, and firee to be moved in any direction. Let three rods be connected with each ontlide corner polt, and five with each of the others, and let their pofition be fuch as to cover the infide of the poit, fo that when feen from between the rows the lower part of each polt fhall be concealed from the view, and prefent the appearance of a bundle of rods (fig r.)

Things being thus difpofed, the fkeleton of a thatch. ed roof may be formed by means of the loofe ends of the rods. A rod from one of the polts being fo bent as to meet a fimilar one from the poft immediately oppofite to it, in the middle of the fpace between them, let the two rods be made to crofs each other, and let them be bonnd together at their croffing (6 g .2 2.), and we thall have the exact form of the Gothic arch. The fame being done with cach pair of oppofite polts, and a fet of pointed arches being formed, let them be connected together by means of a Atraight pole laid upon the forks of the croling rods, and bound to each of them, as in fig. 3 : then let a loofe rod be brought from exch of any two contiguous pons in the fame row, fo as io form a pointed arch, fimilar to that juft defcribed, and nearly of the fame height. This being done with every two contiguous potts (fg. 4.), and a new fet of pointed alches being thus pruduced, ftanding oppofite
(A) "Even in this cafe, however, the natural form undergoes a certain degree of modification, by the device employed to produce the neck of the botile. The fruit, while fmill and tender, is furrounded with a fling, which remaining during its growth, prevents the part, thus bound, from fwellng with the reft."

A R C

to each other in pairs, let each pair be bound by a ho. rizontal pole lying on the oppofite forks, and crofing the longitudinal pole defcribed above.
" T'wo of the rods of each corner poft, and three of thofe of each of the others, being thus difpofed of, we have one of each corner poft and two of each middle poft fill to employ, which is done as follows: A pair of thefe unoccupied rods being brought from any two pofts which ftand diagonally to each other, and made to meet in the middle, not as in the firh cafe croffing in an angle, but lide by fide, forming a femicircle, and joined ugether after the manner of a hoop; and the fame being done with every pair of diagonal polts (fig. 5.1, the whole rods will have been employed.

In this manner a frame would be conftructed fit to fupport thatch or other covering; and fuch a one has probably been offen uied. It would feem, however, that, for the fake of ftrength, the number of rods has been increafed in each clutter, by the introduction, between every two of them, of an addational rod, which rifing with them to the roof, ftill continues its middle polition, as they fpread afunder, and meets the horizontal pole at an intermediate point. This is fhown in fig. 6. which is drawn with its covering of thatch; and, from the imitation of a dwelling fo conftructed, we may eaflly trace the three leading characteriftics of Gothic architecture, the pointed arch, the cluttered column, and the branching roof, as exhibited in fig. $7 \cdot 0$

Upon the fame principles Sir James Hall, with much ingenuity, accounts for the peculiar forms of the Gothic door, the Gothic window, and the pointed fpire: but it is not our intention to fuperfede the necefity of having recourfe to his memoir, but to excite the delire of onr readers to perufe as well that paper as a larger work which he promifes on the fame fubjes, and in which we doubt not but they will find both entertainment and inftrution. We thall conclude this article, therefore, with an experimental proof of the juftneis of his hypothefis.

In the greater part of our late attempts at Gothic a:chitecture, it is allowed by crery man of talte that we have failed. The failure is to be accounted for by the buildings having been conftructed upon no confiftent principle, applicable to every part of them, but upon a \{ervile copying of ancient edifices, of which the ftructure was little underfood by the copiers. Sir James Hall, however, by applying his theory to practice, has conftructed a building in this ftyle, which has far furpaffed, he fays, his own expectation, and has certainly gained the approbation of every man of tafte and fcience by whom we have had occafion to hear it mentioned. "A fet of poits of afh, about three inches in diameter, were placed in two rows, four feet afunder, and at the interval of four feet in the rows; then a number of flender and tapering willow rods, ten feet in length, were applied to the poits, and, in the manner which we have defcribed, formed into a frame, which being covered with thatch, produced a very fubftantial roof, under which a perfon can walk with eafe.
"This little ftructure exhibits, in miniature, all the characteriftic features of the Gothic fyle. It is in the form of a crofs, with a nave, a choir, and a north and fouth tranfept. The thatch, being fo difpofed on the frame as not to hide the rods of which it is compored,
they reprefent accurately the pointed and femicircular Arcins arches, and all the other peculiarities of a groined roof."

ARCTUS, a name given by the Greeks to two conPellations of the northern hemifphere, by the Latins called Ursa Major and Minor, and by us the Greater and Leffer BEAK.

ARGYLE, a townmip in Wafhington county, NewYork, on the E. bank of Hudfon River, containing $23+1$ inhabitants, inclufive of 14 flaves. In the ftate cenfirs of 1796 , there appears to be 404 electors. Morse.

Argile, a townfhip in Shelburne county, NovaScotia, fettled by Acadians and Scotch.-ib.

ARIES Kill, a fmall creek which runs northerls into Mohawk River, $2 \frac{1}{2}$ miles W. from Schoharic Ri$\mathbf{v c r}$, in New-York.-ib.

Binary Arithmetic. See Binary Aritbmetif, Encycl.

Duodecimal ARITHMEtic, is that which proceeds from 12 to 12 , or by a continual fubdivifion according to 12 . This is greatly ufed by moft artificers in calculating the quantity of their work ; as bricklayers, carpenters, painters, tilers, \&c.

Harmonical Arithmetic, is fomuch of the dofrine of numbers as relates to the making the comparitons, reductions, \&c. of mufical intervals.

Arithmetic of infinites, is the method of fumming up a feries of numbers, of which the number of terms is infinite. This method was firft invented by Dr. Wallis, as appears by his treatife on that fubject ; where he thows its ures in geometry, in finding the areas of fuperficies, the contents of folids, \&c. But the method of fluxions, which is a kind of univerfal arithmetic of infinites, performs all the fe more eafily, as well as a great many other things, which the former will not reach.

Logifical Arithmeate, a name fometimes employed for the arithmetic of fexagefimal fraktions, ufed in afro. nomical computations. Shakerly, in his Tabu'. Britannica, has a table of logarithms adapted to fexagefimal fractions, which he calls logifical logarithins ; and the expeditious arithmetic, obtained by means of them, he calls looifical arithnetic. The term logifical arith. melic, however, or logiftics, has been ufed by Vieta and others for the rules of computations in aigebra.

Political Arithaetic. See Political Arithmetic, Encycl.

Sexagefimal Asifhuetic. See Arithmetic (Hifi.) Encycl.

Tetratio Arithesetic, is that in which only the four characters, $0,1,2,3$, are ufed. A treatife of this kind of arithmet'c is extant by Erhard or Echard Weigel. But both this and binary arithmetic are little better than curiofities, efpecially with regard to practice : as all numbers are much more compendinuly and conveniently expreffed by the common docuple fcale.

Univerfal Arithmetic, is the name given by New. ton to the fcience of algebra; of which he left at Cambridge an excellent treatife, being the text-book drawn up for the ufe of his lectures, while he was profefior of mathematics in that univerfity.

ARITHMETICAL complement, of a logarithm, is what the logarithm wants of 10.0000 c , \&ic. and the eaficlt way to find it is, begrinning at the

Fig. 7

A R T [41$]\left[\begin{array}{lll}\text { A R T }\end{array}\right.$

Arlington left hand, to fubtract every figure from 9 , and the laft from 10.

ARLINGTON, a townfhip in Benningto county, Vermont, 12 miles N. from Bennington. It has 991 imhabitants.-Morse.

ARRACIFFE, a port town of Brazil, in the cap. tainhthip of Pernambaco; efteemed the ftrongelt in all Brazil. The port confifts of a fuburb, in which are fome large houfes, and repofitories for fores; and is built upon a narrow paflage, with a cafte to defend the entrance. Notwithftanding which, James Lancafter entered the harbour in 1595 , with 7 Englifh veffels, and made himelf mafter of the town and cafte, where he continued a month, and cariced off immenfe plunder; but fince that time, the Portuguefe have rendered it almott inacceffible to enemies. Lat. 8. 20. S. long. $3^{\text {6. }}$ 10. W.-ib.

ARRAYAL Df Porate, a town in Brazil, fituated on the W. fide of Para Rives, below the jundion of its two great branches.-ib.

ARROWSIKE, an ifland in the diftrict of Maine, parted from Parker's Iflind by a fmall frait. It is within the limits of George-Town, and contains nearly $\frac{5}{3}$ of its inhabitants, and has a church. It contains about 20,000 acres of land, including a large quantity of falt marfh.-ib.

ARSACIDES, the Iflands of the, the name given by M. de Surville, in 176y, to Solomon's Iflands, on account of the barbarous charager of their inhabitants, particularly at Purt Praflin. Thefe iflands were vifited by Mr. Shortland in ${ }_{7} 788$, and by him called New-Genrgia.-ib.

ARTEDI (John), was born in the year 1705, in the province of Angermania, in Sweden. From nature lie inherited an ardent paffion for all branches of natural hiftory, but he excelled moft in that branch of it which is termed ichthyology. In 1724 he went to fudy at the univenfity of Upfal, where fome years afterwards he gained the friendthip of the immortal Linnæus, who narrates the principal events of his life in the following animated terms.
"In 1728 (fays Linnæus) I came from Lund to Upial. I wihhed to devnte myfelf to medicine. I inquired who, at that univerfity, excelled moft for his knowledge: every one named Artedi. I was impatient to fee him. I found him pale, and in great diftrefs for the lofs of his father, with his thin lair neglected. He refembled the portrait of Ray the naturalit. His judgment was ripe, his thoughts profound, his manners timple, his virtues antique. The converfation turned upon fones, plants, animals. I was enchanted with his obfervations, equally ingenious and new; fur at the very firt he was not afraid to communicate them to me with the utmolt franknefs. I defired his friendfhip, he afked mine. From that moment we formed a friendfhip; which we cultivated with the greatelt ardour for feven months at Upfal. I was his belt friend, and I never had any who was more dear to me. How fweet was that intimacy! With what pleafure did we fee it increafe from day to day! The difference, even of our charagters, was ufeful to us. His mind was more fevere, more attentive; he obferved more flowly, and with greater care. A noble emulation animated us. As I defpaired of ever becoming as well inftructed in chemiftry as he, I abandoned it; he alfo ceafed to fu-

Suppl. Vol. I.
dy botany with the fame ardour, to which Yhat devo. ted myfelf in a particular manner. We continued thus to Itudy different branches of fcienee; and when one of us excelled the other, he acknowledged him for his mafter. We difputed the palnı in ichthyology ; but foon I was forced to yield, and I abandoned that pare of natural hiftory to him, as well as the amphibia. I fucceeded better than he in the knowledge of birds and infects, and he no longer tried to excel in theie branches. We marched together as equals in lithology, and the hiftory of quadrupeds. When one of tur made an obfervation, he communicated it to the other: fcarce a day paffed in which one did not learn from the other fome new and inierefting particular. Thus emulation excited our induftry, and mutual affance aided our ef. forts. In fpite of the diftance of our lodgings, we faw each other every day. At laft 1 fet out fur Lapland ; he went to London. He bequeathed to me his manufrripts and his books.
"In 1735 I went to Leyden, where I found Artedi. I recounted my adventures: he communicated his to me. He was not rich, and therefore was unable to be at the expence of taking his degrees in phyfic. I recommended him to Seba, who engaged him to publint his work on fifhes. Artedi went to join him at Amfterdam.
"Scarcely had 1 finifhed my Fundamenta Botanica. I communicated it to him; he let me fee his Pbilofophia Ichtbyologica. He propofed to finith as quickly as porfible the work of Seba, and to put the laft hand to it. He thowed me all his manuftripts which I had not feen: I was preffed in point of time, and began to be impatient as being detained fo long. Alas! if I had known this was the laft time I fhould fee him, how fhould I have prolonged it!
"Some days after, as he returned to fup with Seba, the night being dark, he fell into the canal. Nobody perceived it, and he perifhed. Thus died, by water, this great ichthyologift, who had ever delighted in that element."

Ofthe works of this eminent naturalit there have been two editions, of which the former was publifhed by Linnæus in 1738 , and the latter by Dr. Walbaum of Lubeck, in the years ${ }_{17} 83,1789$, and 1792 . This edition, which is by much the molt valuable, is in three volumes 4 to ; of which the firft contains the hiftory of the fcience of ichthyology, commencing feveral years before the Chriftian era, and coming down to the prefent times. The fecond prefents to the reader the Pbilofopbia Icbthyologica of Artedi, improved by Walbaum, who was benefited by the writings of Monro, Camper, Kxtfeuter and others. Here alfo are added tables containing the fyftem of fifhes by Kay, Dale, Schaeffir, Linnæus, Gowan, Scopola, Klein, and Gronovius. The third volume, which completes the colle@ion of Artedi's works, contains the technical definitions of the fcience. After the generic and individual characters, come the names and Latin phrafes of Artedi ; the fynonymes of the beft naturalifts; the vulgar names in Englifh, German, Swedifh, Ruftian, Danifh, Norwegian, Dutch, and Samoyed; the feafon and the countries where every kind is found, their varicties, their defcription, and obfervations. The modern difcovcries, even to our own times, are added; fo that in F this

Artedi. $\mathrm{Ar}^{\text {Artedi. }}$

A S T $\quad\left[\begin{array}{ll}42\end{array}\right] \quad \mathrm{A}$ S T

Arthur this part is colleged the obfervations of Gronovius, Afleulot. felquitt, Broulfoner, Lefke, Buifh, Linnæus, and other
great examiners of nature.

ARTHUR KULL, or Necvark Bay, on the coaß ef New-Jerfey, is formed by the union of Paffaic and Hackinfack Rivers.-MTorse.

ARUNDEL, a townflit in York county, diftrigt of Maine, containing 1458 inhabitants. It lies between C.ape Porpoife, and Biddeford on the N. E. on Saco River, 21 miles N. E. from York, and 96 N. E. from Bofon.-ib.

ASANGARO, a jurifliction under the bifhop of Cufco, in Peru, South America, 50 leagues from that city: numbers of cattle are bred here. There are fome filver mines in the N. E. part of it; and it produces papas, quinoas, and canaguas. Of the two laft they make chicha, as others io from maize.-ib.

ASIIEURNHAM, formerly Dorchefter Canada, lics in Worcetter county, Maffachuletts, 30 miles N. of Worcefler, and 55 from Boiton, was incorporated in 1765 , aid contains 95 t inhabitants. It fands upon the height of land E. of Connecticut River, and W. of Merrimack, on the banks of Little Naukheag. In this townihir, is a white fand, equal in finenefs to that at Cape Ann, and which, it is judged, would make fine glafs.-ib.

ASHBY, a townmip in Middlefex county, Maflachufetts, 50 miles N. W. rrom Bofton, containing 75 inhabitants.-ib.

ASHCUTNEY, or Afacutney, a mountain in Vermont, being partly in the townfhips of Windfor and Weathersfield, and oppofite Claremont on Sugar River, in New-Hampfhire llate. It is 2031 feet above the fea, and 1732 , above high water in Connecticu: River, which glides by its E. fide.-ib.

ASHFIELD, a townihip in Hamphire county, Maffachufetts, about 15 miles N. W. of Northampton, and 117 W. from Botton, containing 1459 inhabitants.—ib.

ASHFORD, a townihip in Windham county, Connecticut, fettled from Marlborough in Maffachufetts, and was incorporated in 1710 . It lies about 38 miles north-eaftenly from Hartiord, and 76 fouthwelterly from Bolton.-ib.

ASHMO1, the principal harbour in ITe Madame, which is denendent on Cape Breton. See Breion Cape--ib.

ASHUELOT, or A/pwillet, a fmall river, having a number of branches, whofe molt diflant fource is at the N. end of the Sunapee Mountains, in New-Hamp-
thire. It runs fouth-wefterly through part of Chefhire AFpotagoen county. Delow Winchefter it runs W. by N. and empties into Connedicut River, at Hinfdale.-ib.

ASPOTAGOEN Mountain. This high land lies on the promontory that feparates Mahone from Margaret's Buy, on the coaft of Nova-Seotia. It is feen at a great diftance from the offing, and is the land generally made by the fhips bound from Europe and the Welt-Indies to Halifax. The fummit is about 500 feet above the level of the fea.-ib.
ASSENEPOWALS, a lake weftward of Chitianaux Lake, and through which its waters run into Albany River, in New South Wales.- ib.

ASSINIBOILS, or Ajfiniboe's, a river and lake in the N. W. part of North America. The river is faid to rife in the Mountain of Bright Stones, runs N. E. into Lake Ouminique in N. lat. $5^{\frac{1}{2}} \mathrm{~W}$. long. 106.—ib.

The lake is placed in fome maps in the 52 d deg . of N. lar. and 96 th of W. long. It has communication with Chrilianaux Lake, on the eaft ward, which fends its waters to James Bay. Near thefe, lie the countries of the Chriftianaux, and Kiris, called alfo Killiftins.-ib.
ASSUMPTION, an epifonpal city, in the province of Paraguay, in the E. divilion of Paraguay or La Plata in S. America. It fands on the eaftern bank of a river of its name, a little above the place where the Picolmaga falls into it; having Vill.a Ric.a on the N. and La Plata on the S. and is nearer the fouthern, than the Pacific ocean; but not far from the middle of that part of the continent. It was built by the Spaniards in 1538 , and is remarkable for its healihy fituation, as well as for the number of its inhabitants, and the rich and fruitful territory in which it tands; which produces a great variety of native and exotic fruits, in the higheft perfection. Here are feveral hundred Spanifh families, defeendants of the flower of the gentry who fettled in this place; while the dregs of their countrymen removed to other parts. There are likewife a rumber of Meftizos and Mulattoes. The city lies about 50 leagues above the confluence of the Paraguay and Parana, where the former begins to be called, the River de la Plata. Near the city is a lake, noted for having in the middle of it a rock, which floots up to a prodigious height like an obelifk. Lat. 26. S. long. 57. 40. W.-ib.

Assumption River, in New-York, falls in from the E. into Lake Oatario, after a N. W. and W. courle of aiout 28 miles, 5 miles S. E. from Pl. Gaverfe. -ib.

A $\mathrm{S} \quad \mathrm{T} R \mathrm{O} \quad \mathrm{N} O \mathrm{M} \mathrm{Y}$

IS a fcience which has been cultivated from the earlicft ages, and is converfant about the moft fublime wbjects of inquiry which ean employ the mind of man. It has accordingly been tieated at great length in the Encycloprdia; but, in the opinion of fome of the moft judicions readers of that work, the compiler of the fytem whech is there delivered has failed in his attempt to give a perficuous and connected view of the frience
in its prefent ftate of improvement. This defert it is our duty to remedy. Our object, therefore, in this ${ }^{?}$ fupplementary article, will be to bring intoone point of object of view the phyfieal fcience which may be derived from the confideration of the celeftial motions; that is, to deduce from the general laws of thofe motions the inferences with refpect to thei. fuppofed caufes, which conftitute the philofophy of the athonomicr.

A S T R O N O M Y.

The caures of all phenomena are not oniy inferred from the phenomena, but are charaterifed by them ; and we can form no notion of their nature but what we conceive as competent to the phenomena themfelves. The altrnamical phenomena are affumed to be the mo. tions of the bodies, which we call the fun, the planets, the romets, \&ic. The notion which we exprefs by the word borly in the prefent cafe, is fuppofed to be the fame with that which we form of other objects around us, to which we give the fame narne; \{uch as Rones, Atcks, the lociics of animals, \&c. Therefore the notion which we have of the caufes of the celeftial motions muft be the fume with that which we have of the caufes of motion actapho- in thofe more fumiliar bedies. All men feem to have xical ufe of agreed in giving the nime rorces, or moving rorcts, the term force. to the caufes of thofe familiar motions. This is a figurative or metaphorical term. The tre and esiginal
mearing of it is, the exertion which we ate confcious of making when we ourfelves put other bodies in mation. Force, when ufed wihout figure, always fignifies the exertion of a living and acting thing. We are more interefled in thofe producions of motion than in any other, and our recilletions of them arc more numerous. Hence it has happened that we ufe the fame term to exprets the catie of hodily motion in general, and fay that a magnet has force, that a fpring has force, that a moving body has force.

Our own force is always exerted by the intervention of our own body; and we find that the fame exertion by which we move a Rone, enables us to move another man; therefore we couceive his body to refemble a fone in this refpet, and that it alifn requires the exertion of force to put it in motion. But when we refect on our employment of force for producing motion in a body, we find ourfelves puzzled how to account for the motion of our own bodies. Here we perceive no intervening exertion but that of willing to do it; yet we find that we cannot move it as we pleafe. We alfo find that a greater motion requires a greater exertion. It is therefore to this exertion that the reflecting man refrains the term force; and he acknowledges that every other ufe of it is metaphorical, and that it is a refemblance in the ultimate effect alone which difpofes us to employ the term in fuch cales: but we fird no great inconvenience in the want of another term.

We farther find, that our exertion is neceffary, not only for producing motion where there was none before, but alfo for producing any change of motion; and accurate obfervation Rows us, that the fame force is required for changing a motion by any given quantity, as for producing that quantity where there was none before.

Lafly, we are confcious of exerting force when we refilt the exerted force of another ; and that an exertion, perfectly fimilar to this, will prevent fome very familiar tendencies to motion in the bodies around us: thus an eyertion is neceffary for carrying a weight, that is, for preventing the fall of that weight.

All thele refemblances between the effects of nur forcible exertions and the changes of motion which accompany the meeting, and fometimes the mere vicinity of other bodies, juntify us in the ufe of this figurative language. The refemblance is found to be the more pe:fect as we obferve it with more care, and, in fhort, appears to be without exception. Bodies asc therefore
faid to at on each other, to refif each other, to refiga a change of motion, \&c.

Therefore, wherever we nbferve a change of motion, we infer the exittence and exertion of a changing force; and we infer the direction of that exertion from the d!rection of the change; and the quantity of the exertion, or intenfity of the force, from the quantity of the change.

The fudy of the caufes of the celefial motions is therefore hardly dificent from the fludy of the motions themfe'ves; fince the agency, the kind, and the degree of the moving force, are immediate inferences from the exifence, the kind, and the quantity of the change of motion.

Our notion of a moring power is that of a power Our ${ }_{\text {vetious }}$ which produces motion, that is, a fucceffive change of of amoving place. Continuation of the motion produced is there power. fore involved in the very notion of the production of motion; therefore the continued agency of the moving power, or of any powcr, is not neceffary for the continuation of the motion. Motion is confdered as a faie or condition of the body' ; there is not any exertion of power therefore in the continuation of motion: Bat every change is indicative of a changing caufe; and when the change is the fame, in all its circumftances, the caufe is necelfatily conceived to be the fame or equal.

The condition of a body, in refpect of motion, can differ from that of another cqual body only in its direction and in its velocity. If the directions are the fame, the difference of conditions can on'y be in the difference of velocity. One body has a determination, by which it would deferibe ten feer uniformly in a fecond, if nothing changed this determination; the other has a determination, by which it would defrribe twenty feet in a fecond. Each of thefe determinations are fup- Meafure of pofed to be the effects of forces acting fimilatly in every moving refpect. Therefore thefe determinations are the only forzes. meafures of thefe two torces; that is, moving forces are conceived by us as having the proportion of the velocities which they produce in a body by acting in a manner perfealy fimilar.

We can conceive a force acting equally oz unequally. If we fuppofe it to ad equally or uniformly, we luppofe that in equal times it produces equal effeets : that is, equal determinations, or equal changes of determination. We have no other notion of equality or uniformity of ation. Therefore it muf produce equal augmentations or diminutions of velocity in equal times; therefore it mult produce an uniformly accelerated or retarded motion. Uniformly accelerated or retarded mo tio is, Aceellcration is, therefore, the mark of uniform or unvaried ac- ted motion tion. In fuch a motion, the changes of velocity are the mark of proportional to the times from the beginning of the action; and if the motion lias begun from reh, the whole acquired velocities are propertional to the times from the beginning of the motion. In this cafe, the fpaces defrribed are as the fquares of the times from the beginning of the motion; and thus we arrive at an ofterfible mark of the unvaried action of a moving force, viz. fpaces increafing in the duplicate ratio of the times: for fpace and time are all that we can immediately ob. ferve in any motion that is continually varjing; the velocity or dctermination is only an inference, on the F_{2} fuppofition

$\mathrm{N} \quad \mathrm{O} \quad \mathrm{M}$.

fuppofition that the motion continues unchanged for fome time, or that all action ceafes for fome time.

This abftract reafoning is perfectly agreeable to every phenomenon that we can obferve with ditinctnefs. Thus we cannot, or at leaft we do not, conceive the weight of a body to vary its action during the fall. We contider this weight as the caule of the fall-as the moving force-and we conceive it to act uniformly. And, in fact, a body falling freely, defribes fpaces which are proportional, not to the times, but to the fquares of the times, and the fall is a motion uniformly acceletated. In like manner, the motion of a body rifing in the air, in oppofition to gravity, is uniformly retarded.

This kind of motion alfo gives us a certain meafure of the acquired velocity, although there is not, in fact, any fpace obferved to be uniformly deferibed during any time whatever. In this motion we know that the final determination, produced by the accumulated or continued action of the unvaried force, is fuch that the body would defcribe uniformly twice the fpace which it ! has defcribed with the accelerated motion.

And it is by this method that we obtain the fimpleft medure of any moving force, and can compare it with another. If we obferve that by the action of one force (known to be uniferm by the fpaces being proportional to the fquares of the times) ten feet have been deferibed in a fecond, and that by the uniform action of another force eighty feet are defcribed in two feconds, we know that the laft force is double of the firft: for in the fecond motion, 80 feet were defcribed in two feconds, and therefore 20 feet of this were defcribed in the firft fecond (becaufe the motion is uniformly accelerated); and at the end of a fecond, the firft body had a determination by which it would defcribe 20 feet uniformly in a fecond; and the fecond body had acquired a determination by which it would have defcribed 40 fcet uniformly in the next fecond, had not the moving force continued to aft on it, and made it really defcibe 60 feet with an accelerated motion.

Becaufe halves have the fame proportions with the vnits of which they are the halves, it is plain that we may take the fpaces, defcribed in equal times with motions uniformly accelerated, as meafures of the forces which have produced thofe motions. The velocities gencrated are, however, the bift meafures.
neafure of When the actions of forces are not uniform, it is the velocity more dificult to learn what is the meafure of the veloproduced by ation city produced by their aceumulated action. But it can sot uniform.
flecting a body from its former direction. When a body, moving uniformly in the direction AB (fig. I.), Plate VI. has its motion changed in the point B, and, inftead of deferibing BC uniformly in the next moment with the former velocity, delcribes BD uniformly in that moment, it is plain that the motion BD will be the fame, whether the body had begun to move in A, or in F, or in G, or in B, provided only that its determination to move, or its velocity, be the fane in all thofe points. Complete the parallelogram BCDE. It is well known, that if one force act on the body which would make it defcribe BC, and another which would make it deferibe BE, the body will defcribe BD. Hence we learn, that when a body has the motion BC changed into the motion BD, it has been acted on in the point B by a force which would have caufed a body at reft in B to defcribe BE. Thus we can difcover the intenfity and direction of the tranfverfe force which produces any deflection from the former direction. In gemeral, the force is that which would have produced in a body at reft that motion BE, which, when compounded with the former motion BC , produces the new motion BD.
Thefe two principles, viz. ift, that forces are proportional to the velocities which they produce in the fame circumftances, and, 2 d , the compolition of motion or forces, will ferve for all the phyfical inveftigations in aftronomy. All the celeflial motions are curvilineal, and therefore are inltances of continual deflection, and of the continual action of tranfverfe or deflecting forces. We muft therefore endeavour to obtain a general meafure of fuch continual deflecting forces.

Let two bodies A and a (fig. 2.) defcribe in the fame Meafure of time the arches AC, a of two circles. They are de- there forces flected from the tangents $A B, a b$. Let us fuppofe that obtaincd. the direction of the deflecting forces is known to be that of the chords AE, $a \in$ of thefe circles. Let thefe be called the deflectipe chords. Draw CB, cb, parallel to $\mathrm{AE}, a \varepsilon$, and $\mathrm{CD}, c d$ parallel to $\mathrm{AB}, a b$. Join AC, $u c$, CE, and $c e$. It is plain that the angle $B A C$ is equal to the angle CEA in the aiternate legment. Thercfore ACD is alfo equal to it ; and, becaufe the angle CAD is common to the two triangles CAD and EAC, thefe two triangles are fimilar, and $A D: A C=A C: A E$, and $A D=\frac{A C^{2}}{A E}$. Fur fimi. lar reafons a $d=\frac{a c^{2}}{a e}$. But AD and $a d$ are refpec. tivel y equal to BC and $b c$. Therefore $\mathrm{BC}=\frac{\mathrm{AC}^{2}}{\mathrm{AE}}$, and $b c=\frac{a c^{2}}{a c}$. Therefore $\mathrm{BC}: b c=\frac{\mathrm{AC}^{2}}{\mathrm{AE}}: \frac{a c^{2}}{a c}$, or $\mathrm{BC}: b c=\mathrm{AC}^{2} \times a c: a c^{2} \times \mathrm{AE}$. But BC and $b c$ being refpectively equal to AD and $a d$, are equal to the fpaces through which the deflecting forces would have impelled the bodies from a ftate of reft in the time of defcribing the arches $A C$, a c. Therefore when thefe times are diminifhed without end, the ultimate ratio of AD and $a d$ is the ratio of the forces which de-月leat the bodies in the points A and a. Dut it is evident that the ultimate ratio of $A C$ to $a c$ is the ratio of the velocity in the point A to the velocity in the point a; becaufe thefe arches are fuppofed to be defcribed in the fame or equal times. Therefore the deflecting forces, by which bodies are made to defribe arches of circles,

A S T R O N O M Y.

circles, are to each other as the fquares of the velocities directly, and as the deflective cords of thofe circles inverfely. This ratio may be expreffed fymbolically thus, $\mathrm{F}: f=\frac{\mathrm{V}^{2}}{\mathrm{C}}: \frac{v^{2}}{6}$; or thus, in a proportional equation, $f \doteqdot \frac{v^{2}}{c}$

It is eafy to fee that in this laft formula f expreffes directly the lime $b c$, or the face through which the body is actually made to deviate from rectulineal motion in the time of deferibing the arch ac. It is a third proportional to $a e^{e}$ the deflective chord, and ac the arch of the circumference defcribed in a fmall moment of time. This is the meafure afforded immediately by obfervation. We have obferved the arch $A C$ that is deicribed, and know the direction and the length of AE from fome circumftances of the cafe. The formula which comes to us, when treating this quettion by the help of fluxions, is $f=\frac{2 v^{2}}{c}$. This is perhaps a more proper exprcfion of the pliyfical fact; for it expreffes twice the line $b c$, or the meafure of the velocity which the deflecting force would have generated in the body by acting on it during the time of its defcribing the arch ac. But it is indifferent which meafure we take, provided we always take the fame meafure. The firt mathematicians, however, have committed miltakes by mixing them.

The planets, however, do not defcribe circles: but all the curves which can be defcribed by the action of finite deflecting forces are of fuch a nature, that we can defcribe a circle through any point, having the fime tangent, and the fame curvature which the planetary curve has in that point, and which therefore ultimately coalefes with it. This being the cafe, it is plain that the planet, while pafling through a point of the curve, and defcribing an indefinitely tmall arch of it, is in the fame condition as if defcrioing the coincident arch of the equicurve circle. Hence we obtain this molt general propofition, that the tranfoerfe force by which a planet is macie to deforibe any curve, is directly as the fuare of its velocity, and inverfely as the deflutive chord of the equicurve circle.

Farther: The velocity of a body in any point A (fig. 2.) of the cu:ve, is equal to that which the deflective force in that point would generate in the body by acting uniformly on it along AF, one-fourth purt of the deflective cord AE of the equicurve circle. It is the fame which the body would acquire at F , after a uniformly accelerated motion along AF.

For it is certain that there is fome length AF, fuch that the velocity acquired at F is the fame with the velocity in the point A of the curve. Draw FG parallel to the tangent, and join $A G$. Make the arch $A C I=2 A F$. Then, becaufe the fpice defribed with a unifomly accelerated motion is one half of the fpace which would be uniformly defcribed with the final velocity, the arch ACI would be uniformly defcribed with the velocity which the body las an A in the time that $A F$ is defcribed with the uniformly accelerated motion; and the arch $A B$ will be to the arch $A I$ as the time of defcribing $A B$ to that of defcribing $A I$; that is, as the time of falling through Al) to that of falling through AF. But the motion along AF being uni-
formly accelerated, the fpaces are as the fquares of the times. Therefore $A D$ is to $A F$ as the fquare of the arch $A C$ to the fquare of the arch $A I$. But $A D$ is to $A F$ as the fquare of the chord $A C$ is to the fquare of the chord AG. Therefore the arch AC is to the chord $A C$ as the arch $A I$ is to the chord $A G$. But the arch and chord $A C$ are ultimately in the ratio of equality. Theretore the chord $A G$ is equal to the arch $A I$. Therefore AG is double of AF. But becaufe the triangles FAG and GAE are fimilar, AF is to $A G$ as $A G$ to $A E$; and therefore $A E$ is double of $A G$ and quadruple of $A F$. Therefore the velocity at A in the curve is that which would be prodaced by the uniform impulfe of the deffecting force along the fourth part of the deflective chord of the equicurve circle.

Thefe two affections or properties of cutvilineal mo- T tions are of the moft extenfive ufe, and give an eafier folution of molt queftions than we obtain by the nore ufual methods, and deferve to be kept in remembrance by fuch as engage much in the difcuftion of queitions of this kind.

Thus the inveftigation of the forces which regulate the planetary motrons, is reduced to the tafk of difoovering the velacity of the planet in the different points of irs orbit, and the curvature in thofe points, and the pofition of the deflective chords.

The phytical fience of altronomy mutt confif in the phyfical difcovery of the general laws which can be affimed with fcience of refpect to the exertion of thofe forces, whether with re- attronomy fpect to their direction or the intenfity of their action. If the mechanician can do more than this, and thow that every motion tiat is obferved is an immediate or remote confequence of thofe general hats, he will have completed the fcience, and explained every appearance.

This has accordingly been done by Sir Ifada Newton Completed and his followers. Sir Ifaac Newton has difcovered the by Newton general laws which regulate the exertions of thofe forces and which produce the planetary motions, by reafoning from general phenomena which had been obfer ved with a certain precifion before his time; and has alfo fown that certain confiderable deviations from the generality which he fuppofed to be pertect were necelfary confequences of the very univerfality of the phyfical law, although the phenomenon was not io general as was at firt imagined. He has gone farther, and has pointed out fome other minute deviations which mult refult from the phyfical law, but which the art of obfervation was not then fufficiently advanced to difcover in the phenomena. This excited the efforts of men of icience to improve the art of aftronomical obfervation; and not only have the inti. His fill mations of Newton been vetified by modern obfervation, ers. but other deviations have been difcovered, and, in procei's of time, have alfo been thown to be confequences of the fame general lav of agency: And, at this pre. fent day, there is not a fingle amomaly of the planetary motions which has not been thown to be a modification of one general law which regulates the action; and therefore characterifes the nature of that fingle force which actuates the whole fyftem of the fun, and his attending planets and comets.

It was a moft fortunate circumfance that the confttution of the folar fyltem was fuch that the deviations from the general law are not very confiderable. The cafe might have been far otherwife, although the law, or nature of the planctary force, were the fame, and
the fyltem had been equally harmonious and beautiful. Had tiwo or three of the planets been vally larger than they are, it would have been extremely difficult to dif. coser any lares of their motion fuffiently general to haveled to the fufpicir n or the difoovers of the univerfalluw of acton, or the frecilic circumfance in the planutary force which dillinguithes it from all others, ard characterifes its nature. Hut the three laws of the pia. uatary motions difcevered by Fepler were fonearly true, at leaf with sefpect to the primary planets, that the deviations could not be obferved, and they were thought to be exact. It was on the fupprition that they cuere exach, that Newton affrmad that they were only modifications of one law fill more genetal, nay univerfal.

We hall follow in order tine fteps of this inveliga. ti.วn.
Sir Iface Newton too' it for granted, that the fun and planets confited of matter which refembled thofe bodies which wa daily handle, at leaft in refpect of their mobility; and that the forces which agitate them, conlidered merely as moving forces, but without conlidering or attending to ther mode of opera. tion, were to he infered, both as to their direction and as to their intenfity, from the changes of moiton which were afcribed to their agency. He firf endeavoured to difover the direfion of that tranfve, fe force by which the planets are made to defcribe curve lines. Kepler's firt lav furnithed him with ample means for this difcovery. Kepler had difeovered, that the r:she: line joining the fun and any planet defcriled areas froportional to the times. Newton demonftrated, that it a body was fo carried round a gaxed point fituated in tise plane of its motion, that the right line joining it with that puint defcribed areas prouortional to the timex, the force which deflected it from an uniform rectilineal motion was continually directed to that fired point. This makes the 2d propolition of his immortal work The Matwematical Principles of Natural Pbilgroply, and it is given in the arsicle Astronomy of the Encyclopredia 1560 .

Hence Sir IGace Newton inferred, that the primary pianets were retained in their orbits hy a force continually directed to the fun; and, becaufe Kcpler's law of motion was alfo ooferved by the fecondary planets in their revolutions round their refpective prima!y plaa planet in which eftablifhes a general law of the motion of any the different points of its orbit. From the circumdance that the planetary deflecting forces in the different points of the orbit are always directed toward one point as to a centre, they have been called centripetal forces.
planet in the different parts of its mbit, namely, that the vclocity which a planet has in the different points of its path are inverfely proportional to the perpendiculars drawn from the fun on the tangents to : be orbit in thofe points refpectuely. For, let AB, ab (fig. 3.) be two arches (extremely fmall), defcribed in equal times thefe arches mult be ultimately proportional to the velocities with which they arc defcribed. Let $S l^{\prime}, S p$ be perpendicular to the tangents $A P, a p$. The triangles $\mathrm{ASB}, a \mathrm{~S} b$ are equal, becaufe equal areas are defcribed by the radii vealores $\mathrm{SA}, \mathrm{S} a$, in equal
times: but in equal triangies, the bafes, $A B$, ab, are reciprocally as their heights $S P, S p$, or $A B: a b=$ Sp:SP.
This corollary gives us another expreffion of the ratio of the contifetal forces in different points A and a of a curte. We fave by it former propofition, that the force at A (fig. 2.) is to the force at a as $\mathrm{AC}^{2} \times$ ae to $a c^{2} \times \mathscr{A}$, which we may exprefs thus: $\mathrm{F}: f=\mathrm{V}^{2}$ $\times c: v^{2} \times C$. If we exprefs the perpendiculars $S P, S_{p}$ (infig. 3.) by the fymi:ols P, f, we have $V^{2}: v^{2}=p^{2}: P^{2}$, and therefore $\mathrm{F}: f=p^{3} \times c: \mathrm{P}^{2} \times \mathrm{C}$. The centripzal forces in different foints of an orbit are in the ratio compoundel of the itwerfe diplicate ratio of the perpendiculurs drazus to the tangents in thofe points from ibe centre of forces, and the interfe ratio of the deflecaive chords of the cquicurve circies.

We are now in a condition to determine the law of action of the contripetal force by which a planet is retained in its orbit round the fun, or the relation which fubfits between the intenfity of its action and the diftance of the planet from the fun: for we know the elliptical figure of the orbit, and we can draw a tangent to it in any point, and a perpendicular from the fun to that tangen:-

Kepler's fecond law or observation of the planetary motions was, that each primary planet deforited an ellipfo, baving the fun in orte forus. It is eafy to thow, even without any knowledge of the geometrical properties of the ellipfe, what is the proportion of the intenfities of the deflesting force at the aphelion and perihelion (fee fig. 4) At thofe two points of the orbet, the motion of the planet is at right angles to the line joising it with the fun. Therefore, fince the areas deferibed in equal times are cqual, the arches defcribed in equal times muit be inverfely as the dítances from the fun; or the velocities muR be inverfely as the diffances from the fun. But the curvature in the aphelion and peribelion is the fame; and therefore the diameters of the equicurve circles in thofe points are equal. But thofe diameters are, in this particular cale, what we called the deflcetive chords. Thercfore, caliing the aphelion ard perihelion diftances D and d, the velocities in the aphelion and feribelion V and v, let the common defestive chord be C . Then we have $\mathrm{F}: f=\mathrm{V}^{2} \times \mathrm{C}: v^{2} \times \mathrm{C}$, $=V^{2}: v^{3},=d^{3}: D^{3}$. That is, the forces which deAcot the planet in the aphelion and perilelion are inverfcly as the fquares of the dittances from the fun. A perfon almontignorant of mathernatics may fee the truth of this by looking into a table of natural verfed fines. He will obferve, that the verfed fine of one degree is quadruple the verfed line of half a degree, and fixteen times the verfed fine of a quarter of a degree; in thort, that the veried fines of fmall arches are in the proportion of the fquares of the arches. Now fince the arches defcribed in equal times are inverfely as the difances, their wenfed fines are inverfely as the fquares of the diflances. But thefe verfed fines are the faces throug! which the centripetal forces at the aphelion and perihelion defiect the planet from the tangent. Therefore, Sc.

Thus we have found, that in the aphelion and perihelion the centripetal force acts with an intenfity that is proportional to the fquares of the diftances inverfely. As thefe are the eatreme fituations of a planet, and as

A S T R O N O M Y.

the proportion of the aphelion and peribelion difances are confiderably difierent in the different planets, and yet this law of action is cbferved in them ails, it is reafonable to imagine that it holds true, not in thote fituations only, but in every intermediate fituation. Lut a conjecture, however probable, is not fufficient, when we aim at accurate ficnce, and it is necelfary to examine whether this law of action is really oberved in every point of the elliptical orbit.

- For this purpole it is necefliry to mention fome geoted with re- metrical properties of the ellipfe. Thetefore let ADBE fpect to the (fig. 4.) be the ellipttical orbii of a planet or comet, garth, having the fun in the focus S. Let $A B$ be the trarf. verfe axis, and DE the conjugate asis, and C the centre. Let P be any point of the ellipfe. Draw PS through the focus. Draw the tangent $l^{\prime} N$, and $S N$ from the focus, perpendicular to PN. Draw PCperpendicular to PN, mecting the tranfverfe axis in (. Draw QO parallel to $P N$, meeting PS in O. Alou ưraw $Q R$ perpendicular to PS. Bifect PO in T.

It is demonftrated in the treatifes of conic fections, that PO is one half of the chord of the equicurve or ofculating circle drawn thoogh the point P. Therefure PO is one half of the deflective chord of the planetary orbit. It is alfo demontrated, that PK is one half of the parameter or latus reatum of the iranfverle axis AB , or that it is the third proportional to AC and DC . Therefore PR or Dr is ot the fane confunt magnitude, in whatever part of the circumference the point P is taken.

It is evident that the triangles NSP, RPO, and $Q P O$, are all fimilis, by reaton of the parallels $P N, Q O$, and the right angles SNP, PRC, PQO. Theretve we have $P R: P Q=P Q: P O$. Thetofore $P R: P O$ $=\mathrm{PR}^{2}: \mathrm{PQ}^{2},=\mathrm{SN}^{2}: \mathrm{SP}^{2}$. Therefore $\mathrm{P}^{R} \times \mathrm{SP}^{2}$ $=\mathrm{PO} \times \mathrm{SN}^{\frac{1}{2}}$. But the latus rectum L is equal to twice PR , and the deflective chord C is equal to twice PO. Therefore $\mathrm{L} \times \mathrm{SP}^{2}=\mathrm{C} \times \mathrm{SN}^{2}$. Dut we have feen, that when a curve is ufferibed by means of a centripetal force, fo that are:s are defcribed proportional to the times, and therefore the velocities are reciprocally proportional to the perpendiculars drawn from the ceritre of forces to the tangent, the forces arc iaverfely proportional to $\mathrm{C} \times \mathrm{SN}^{3}$. Therefore, in the elliptical motion of the planets, the forces are inverfily proportional to $L \times S P^{2}$; and fince L is a confant quantity, the centripetal forces are inverfely proportional to $\mathrm{Sr}^{2=}$, or to the fquares of the ditances from the fun.

Thus it appeas that, with refpect to any individual planet, the centripetal force which contianally deflects
19 it from the tangent to its orbit diminithes in the inverfa Obfervedin duplicate ratio of the diftance from the fitn. The fame the notica thing is obferved to be very nearly true in the moon's of the mooa motion round die carth, and in the motion of fuch ra$\& \mathrm{c}$. tclites of Jupiter and Batorn as defcribe orbits which ate fealibly elliptical. It is alfo obferved in the motion of the comess, at lealt in that which appearce in 1682 and in 1759.

It was therefore very natural for Sir Ifare Newton to examite whether the like diminmion of force obtained in the action of this force on different hanets; that ic, whecher the deflestion of the earth from the tangent of its rrbit was to the fimultaneous deflestion of Jupiter as the fquare of Jupiter's difance from the fun to the Equare of the carth's ciltance. This was very probable,
but by no means certain. Its probability is very great indeed, when we know that a comet moves fo in its orbit that its deflections in equal times are inverfely as the fquares of its diftances from the fun, and that the comet palfes through the orbits of all the planets; and when at the fame diftance from the fun as any one of them, it iuffers the fame deflection with it. Newton therefore calculated the actual firnultaneous deffections of the different planets, and found them agreeable to this law. But it was delirable to obtain a demonftration of this important propofition in general terrs. This And dewas fupplied by Kepler's third general obfervation of nonfrated the motions, viz. that the fquarcs of the periodic times of in gencral the diferent planets were proportional to ibe culcs of their na:aibliflazees fiom the fin. The ublis of the planets are fonearly circuar, that we may fuppole them exadly fo in the preient queftion, without any remarkable eror. In this cafe, then, the deflective chords are the diameters of the orbits (for DS is equal to AC), and are proportional to the difances, which are treir halves. The ceraipetal furces, beirg pioporticnal to $\frac{v^{2}}{c}$, are proportional to $\frac{v^{3}}{d}$, when d is the radius of the orbit, or the mean difance from the fun. But the velocity in a circular orbit is as the circumlerence direatly, and as the time of a revolation inverifly 'lherefore, inftead of v^{z}, we may write $\frac{d^{2}}{t^{2}}$, and then the forces will be proportional to $\frac{d^{2}}{l^{2} d}$, or io $\frac{d}{l^{2}}$; ihat is, direstly as the diftrices, and inverfely as the fquares of the times of revolution. Dut, by Kepler's obfervation, t^{\prime} is proportional to d^{3}. Therefore the centripstal forces are pro. portional to $\frac{d}{d^{3}}$, or to $\frac{1}{d^{2}}$; that is, inverfely as the fquares of the mean diftances from the fun.

Eut fince the orbits of the planets are not accurate circles, this determination is but an approximation to the truth, and therefore infuacient for the foundation of formportant a propodition; at any rate, it will not apply to the comsts, whofe orbits are very far from being circular. We mult obtain a more accurate demenfration.

Therefore draw SD (fig. 4.) to the extremity of the conjugate axis, and bifect it in t. About S, with the radius SD . defcribe the circle DFG. Let D) d, D \& be equal frath arches of the ellipfe and the circie. Join $d S, \delta S$. Jt is tell known that DS is half of the chord of the equicurve circle at D , and therefore $\mathrm{D} t$ is one fourth pat of it. It has been demonitrated, that the velocity in any point 1) of a curve, defcribed by means of a deplefing force, is that which the force in that point wonld communicate to it by undorniy impeling it, along the fourth part of the deflective chord, that is, along D: But ifa body revolvedround S in a circle 1 CB , its velocity in that circle would be that which the deflesting force would communicate to it by unfornty impelingitalong one-fourthof the diametcr, that is, along 5) t. Therefore the planet, if projected in the discotion $D s$, with the velocity which it has in the point D of the ellipfe, would defcribe the circle DFC. Ly the adion of the centripetal force. Farther, it would defcribe it in the fame time that it defertibes the ellipre; for bcaufe the velocitics are equal, the areas

DS4,

D $\mathrm{S} d, \mathrm{DS}$ \& are defcribed in the fame time. But the bafes $\mathrm{D} d, \mathrm{D}$ \& being equal, thefe areas are as their heights $S n$ (or $C D)$, and $\Delta D(o r C A)$. But becaufe the diameter of the circle is equal to AB, the area of the whole ellipfe is to the areat of the circle as $C D$ is to CA; that is, as the area D S d to the area DS d defcribed in the fame time. Therefore the elliptical and circular areas are fimilar portions of the ellipfe and cirele; and therefore the times of defribing them are fimilar portions of the whole revolutions in the ellipfe and in the circle. Therefore thefe revolutions are performed in equal times.

And thus it follows, that if all the planets and co. mets were projected, when at their mean diftances from the fun, perpendicularly to the radii vectores, they would detcribe circles round the fim, and the fquares of their periodic times would be proportional to the cubes of their mean diflances fron the fun, as Kepler has ohferved; and therefore the centripetal forces would be inverfely as the fquares of their ditances from the fun.
Il the planets retain ed in their refpective orbits by one and the fume force.

They are not different forces therefore whichretain the different plamets in their refpective orbits, but one force, acting by the fame law upon them all. We may either conceive it as an attractive force, exerted by the fun, or as a tendency in each planet; nay, nothing hinders us from conceiving it as a force external, both to fun and planets, impelling them towards the fun. It may be the impulle of a lream of fluid moving continually toward the fun. Sir Ifaac Newton did not concern himfelf with this queltion, but contented himfelf with the difcovery of the law according to which its action was exerted. The Iteps of this inveltigation thowed him, that a bodj, projected in any direction whatever, and with any velocity whatever, and fubjected to the astion of a force directed to the fun, and inverfely proportional to the fquare of the dittance from the fun, will necellarily defcribe a conic fection, having the fun in the focus. This will be a parabola, if the velocity of projection be that which the centripetal force in that place would communicate to the body by acting on it uniformly along a line equal to half its ditance from the fun. If the velocity begreater than this, the path will be a hyperbold; if the velocity be lefs than this, the path will be an elliprical orbit, in which the body will rembe for ever round the fun.

The 3 d Keplerean law is alfo obferved in the revolutions of the fatellites of Jupiter, Saturn, and the lately difcovered planet ; and we mult infer from it, that they are retained in their orbits round their sefpective primary planets, by forces whofe intenfity decreafes according to the fame law of the diftances. Alfo the elliptical motion of the moon round the earth, fhows that the force by which the is retained in her orbit varies in the fame proportion of the diflances. But when we compare the motion of a fitellite of Jupiter with that of one of the fatellites of the other two planets, we find that the proportion does not hold. We thall find, that, at equal dillances from Jupiter and Saturn, the force toward Jupiter is almoft thrice as great as the force toward Saturn. We flall alfo find that the force toward Jupiter is three hundred times greater than the force which retains the moon in its elliptical orbit round the earth, when acting at the fame difance.

Since a force directed to the fun, and inverfely as the fquare of the diftance, is thus found to pervade all the planetary orbits, it is lighly improbable that it will not affect the fecondary planets alfo. The moon accompanies the earth in its motion round the lim. It may appear fufficient for this purpofe, that the monn be retained in its orbit by a force direeted to the earth. Were the moon connested with the earth by a rope or chain, this would be true; for the earth could get no mution without dragging the moon along with it: but it is quite otherwife with bodies moving in free fpace, with. out any material connections. When a body that is moving uniformly in a ftraight line is accompanied by another which defcribes around it areas proporional to the times, the force which continually deffects this fittellite is always directed to the moving central body. This is eafily feen; for whatever be the mutual action The fal of two bodies, and their relative motions in confequence lites of all of this action, if the fame velocity be impretTed at once on both bodies in the fame direction, their mutual actions and relative motions will be the fame as they would have been without this common impulfe. Thus every thing is done in a fhip that is failing fleadily in the fame manner as if the were at rell. If therefore the moon be obferved to defcribe areas round the earth, which are precifely proportional to the times, while the earth moves in an orbit round the fun, we mult infer that the moon receives, in every inflant, an impulfe the fame in every refpest with what the earth receives at the fame inftant; or that the moon is acted on by a force parallel to the earth's diftance fromthe fun, and proportional to the fquare of that diftance inverfely. Now this is very nearly true of the lunar motions; and we mut infer that the moon is fubjected to this folar action, or this tendency to the fun. The fame muld be affirmed of the fatellites of the other planets.

But a force inverfely proportional to the fquare of the earth's difance from the fun is not what the univerfality of the law requires: It mult be inverfely as the fquare of the moon's diftance from the fun : and it mult not be parallel to the earth's difance from the fun, but mult be directed toward the fun ; and therefore, in the quadratures, it muft converge to the earth's raitur veetor. Therefore, lince a force having the above mentioned conditions will allow the defcription of areas round the earth exanlly proportional to the times, a force afting on the moon, inverfely proportional to the fquare of her difance from the fun, and dirested exactly to the fun, is incompatible with the accurate elliptical motion round the eartl. At new monn, her tendency to the fun exceeds the earth's tendency to him, and this excefs will diminith her tendency to the earth, and her motion will be lef's incurvated, fo that fhe will retire a little from the earth. At full moon, the earth's tendency to the fun exceeds the moon's tendency to him, and the earth will feparate a little from the moon, fo that the relative orbit will again be lefs incurvated. In the quadratures, the impulfe on the moon is indeed equal to that on the earth, but not parallel, and tends to make the moon approach the earth, and increafe the curvature of her orbit. In other fituations of the moon, this want of equality and parallelifm of the forces afting on the earth and moon, mult produce other dif turbances of the regular elliptical motion.

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & Y\end{array}$

Newton faw this at once ; and, to his great delight, he faw that the great deviations from regular motion, which had been difonvered by Ptolemy and Ty cho Brahé called the Annual Eqqation, the Variation, and the Evection, were fuch as moti obvioufly refulted from the regular influence of the fun on the moon. The firf deviation from the regular elliptical motion is occafioned by the increate of the fun's diflurbing foree as the earth approaches the perihelion ; and it enlarges the lunar or bit, by diminifhing the tendency to the eafth, and increafes the periodic time. The fecond arifes from the dirction of the difturbing force, by which it accelerates the moon's angular motion in the fecond and fourth quadrants of her orbit, and retards it in the finit and third. The laft affects the eccentricity of the orbit, by changing the ratio of the whole or compound tentency of the moon to the earth in her perigee and apogee.
2.

May becalculated with precifion. the confequences of this influence. It is the boalt of this difcovery of the law of the planetary deflections that all its effects may be calculated with the utmolk precifion. The part of the moon's deflegion toward the fun, which is neither equal nor parallel to the fimul. taneous deflection of the earth, may be feparated from the part which is equal and parallel to it, and it may be called the fun's difturbing forcc. Its proportion to the moon's defletion towards the earth may be accurately afcertained, and its inclination to the line of the moon's motion in every point of her orbit may be pointed out. This being done, the accumulated effect of this difurbing force after any given time, however variable, buth in direction and intentity during this time, may be determined by the 39 th and other propofitions of the firlt book of the Mathematical Pinciples of Natural Philof phy. And thus may the moon's motion, when fo difturbed, be determined and compared with her motion really obferved.

Ail this has been done by Sir Ifaac Newton with the molt altonithing addrefs and fagacity, fua mathefi fucent preferente, partly in the Principia, and partly in his Luna Theoria. This inventigation, whether we confider the complete originality of the whole procefs, or the ingenuity of the method, or the fagacity in feeing and clearly difriminating the different circumitances of the queltion, or the wonderful fertility of tefource, or the new and moft refined mathematical principles and methods that he employed-mmeter beconlidered as the mon brilliant fecimen of human invention and reafoning that ever was exlibited to the world.

In this invefligation Newton not only determined the quantity, the period, and the changes of thofe inequalities, which had been fo confiderable and remarkable as to $\mathrm{b}=$ obferved by former aftronomers, and this with an exactnefs far furpafing what could ever be attained by mere obfervation ; but he alfo pointed out feveral other periodical inequalities, which were too fmall, and too much implicated with the reft, ever to be difcovered or to be feparated from them. We do not fay that he completed the theory of the lunar motions; but he pointed out the methods of invelligation, and he furnilhed all the means of profecuting it, by giving the world the elements of a now fpecies of mathematics, without which it would have been in vain to attempt it. Doth this new mathematics, and the methods of applying it to fuch quellions, have been afinuoufly fudisd
and improved by the great mathematicians of this century ; and the lunar theory las been carried to fuch a degree of perfection, that we can compute her place in the heavens for any patt age without deviating above one minute of a degree from the adual obfervation.

There is one empirical equation of the moon's motion which the comparifon of ancient and modern eclipfes obliges the aftronomers to cmploy, withont being able to deduce it, like the reft, a priori, from the theory of an univerfal force inverfely proportional to the fquare of the diftance. It has therefore been confidered as a The fectue Aumbling tlock in the Newtonian philofophy. 'This lar equais what is called the fecular equation of the moon's meun tion of the motion. The mean motion is deduced from a compari- ruon's ron of difant obfervations. The time between them, mean dibeing divided by the number of intervening revolutions, gives the average time of one revolution, or the mean lunar pariod. When the ancient Chaldean obfervations are compared with thofe of Ifipparchus, we obtain a certain period; when thofe of Hipparchus are compared with fome in the gth century, we obtain a period fomewhat fhorter; when the laft are compared with thofe of Tycho Brahé, we obtain one Aill fhorter ; and when Brahe's are compared with thofe of our day, we obtain the ihorteft period of all-and thus the moon's mean motion appears to accelerate continually ; and tha accelerations appear to be in the duplicate ratio of the times. 'The acceleration for the century which ended in 1700 is about 9 feconds of a degree; that is to fay, the whole motion of the moon during the 17 th century mult be increafed 9 feconds, in order to obtain iss notion during the 18 th ; and as much mull be taken from it, or added to the computed longitude, to obtain its motion during the 16 th ; and the double of this mult be taken from the motion during the 16 th, to obtain its motion during the 15 th, $\& x$. Or it will be fufficient to calculate the moon's mean longitude for any time paft or to come by the fecular motion which obtains in the prefent century, and then to add to this longitude the produet of 9 feconds, multiplied by the fquare of the number of centuries which intervene. Thus having found the mean longitude for the year 1200 , add 9 feconds, multiplied by 36 , for fix centuries. By this method we thall make our calculation agree with the moft ancient andall intermediate obfervations. If we neglect this corretion, we fhall difer more than a degree from the Chaldeun obfervations of the moon's place in the heavens.

The mathematicians having fucceeded fo completely in deducing all the obferved inequalities of the planerary motions, from the fingle principle, that the deflecting forces diminithe! in the inverfe duplicate ratio of the difances, were freted by this exception, the reality of which they could not contefl. Many opinions were formed about its canle. Some have attempted to deduce it from the action of the planets on the moon; others have defuced it from the oblate form of the earth, and the tranflation of the ocean by the tides; others have fuppofed it owing to the refiltance of the ether in the celellial faces; and others have imagined that the adion of the deflecting force requires time for its propagation to a diftance: But their deductions have been proved unfatisfactory, and have by no means the precilion and evidence that have been attained in the other queltions of phyfical afronomy. At hat M. de

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{Y}\end{array}$

Ia Place, of the Royal Academy of Sciences at Paris, al to the time, this effect will be as the fquares of tha has happily fucceeded, and deduced the fecular equation of the moon from the Newtonian law of planetary de-
flection. It is produced in the following manner.

Suppofe the moon revolving round the earth, undifurbed by any deflection toward the fun, and that the time of her revolution is exactly afcertained. Now let the influence of the fun be added. This diminithes her tendency to the earth in oppofition and conjunction, and increafes it in the quadratures: but the diminutions exceed the augmentations both in quantity and dura. tinn; and the excefs is equivalent to $\bar{T}^{\frac{r}{7} \mathrm{~g}^{i} h}$ of her tendency to the earth. Therefore this diminithed tendency cannot retain the moon in the fame orbit ; fhe mutt rctire farther from the eath, and defcribe an orbit which is lefs incurvated by ${ }_{\mathrm{T}} \frac{1}{7}$ th part ; and fhe mult employ a longer time in a revolution. The period therefore which we obferve, is not that which would have obtained had the moon been influenced by the earth alone. We flould not have known that her natural period was increafed, had the ciflurbing influence of the fun re. mained unchanged; but this varies in the inverfe triplicate ratio of the earth's difance from the fun, and is therefore greater in our winter, when the earth is nearer to the fun. This is the fource of the annual cquation, by which the lunar period in Jonuary is made to exceed that in July nearly $2+$ minotes. The angular velocity of the monn is d minithed in general $\frac{1}{\frac{1}{9}}$, and this numerical coefficient varies in the inverfe ratio of the cube of the earth's difance from the fun. If we expand this inverfe cube of the earth's dillance into a feries arranged according to the fines and colines of the earth's mean motion, making the earth's mean diftance unity, we thall find that the feries contains a term cqual to $\frac{3}{2}$ of the fquare of the eccentricity of the earth's orbit. Therefore the expreffion of the diminution of the mnon's angular velocity contains a term equal to $\frac{-1}{3,2}$ of this velocity, mu'tiplied by $\frac{3}{2}$ of the fquare of the earth's eccentricity; or equal to the product of the fquare of the cccentricity, multiplied by the moon's angular velocit\%, and divided by 119,33 . ($\frac{1}{3}$ of 179). Did this eccentrivity remain conflant, this product would alfo be conAtant, and would fill be confounded with the gencral diminution, making a confant part of it: but the eccentricity of the carth's orbit is known to dirsinifh, and its diminution is the refule of the univerfality of the Newtonian law of the planeary defections. Although this dirrinution is exceedingly frall, iss effeet on the linnar motion becomes fenfible by accummation in the courfe of ages. The cocertricity diminifing, the diminution of the moon's angular motion nuft alfo diminith, that is, the angular motion moft increafe.

During the 18% century, the firare of the earh's eccentricity las diminithed 0,0000015325 , the mean dinance from the fun being $=1$. This has increafed the argular motion of the moon in that time 0,00000001285 . As this augmentation is gradual, we mult multiply the angular mution during the century by the half of this quantity, in order to obtain its accumuldted effect. This will be found to be 9 " very nearly, which exceeds that deduced, from a molt carsful comparifon of the motion of the latt two centuries, only by a fraction of a fecond!

As long as the diminution of the fquare of the eccentricity of the earth's on bit can be fuppoled propoticn.
times. When this theory is compared with oblervations, the coincidence is wonder ful indeed. The effect on the moon's motion is periodical, as the change of the folar eccentricity is, and its period includes milliens of years. Its effeet on the moon's longitude will amount to feveral degrees before the fecular accelcration change to a retardation.

Thofe who are not familiar with the difquilitions of modern analylis, may conceive this queftion in the following manner.

Let the length of a lunar period be computed for the earth's difance from the fun for every day of the jear. Add them into one fum, and divide this by their number, the quotient will be the mean lunar pariod. This will be fonnd to be greater than the arithmetical medium between the greatelt and the leal. Then fuppore the eccentricity of the earth's orbit to be greater, and make the fame computation. The average period will be found fill greater, while the medium between the greatelt and leaf periods will bardly differ from the former. Something very like this may he obferved without any calculation, in a cafe very timilar. The angular velocity of the fun is inverfely as the fquare of his diflance. Look into the lolar tables, and the greaseft diurnal motion will be found $3573^{\prime \prime}$, and the leaft $3+33^{\prime \prime}$. The mean of thefe is $3553^{\prime \prime}$, but the nedium of the whole is $354^{\prime \prime}$. Now make a fimilar cofervation in tables of the rnotion of the planet Mars, whefe eccentricity is much geater. We forll find that the mediun between the greateft and lealt exceeds the true medium of all in a much greater preportion.

Thus has the patient and afliduous cultivation of the Certainer 27 New tenian difcoveries explained every phenomenon, and and utility enabled us to forefee changes in them which no exami- of this law. nation of the palt appearances, unallifted by this theory, could have pointed out, and which mult have exceedingly embarraffed future altronomers. This great but fimple law of deftection reprefents every phenomenon of the fytem in the moft minute circumflances. Far from fearing that firture experience may overturn this law, we may reft affured that it will only confirm it mote and more; and we may confide in its moll itmote confequences as if they were actually obferved.

It is difcorered by obfervation, that the deftection of Reciprncal the morn to the earth, and of the planets to the fin, defletion are accompanied by an equal and oppofite deffecion of the earth to the moon, and of the fun to the planets.

The tendency of the earth to the moon is plainly indicated by the rife of the waters of the ocean under the nets, moon, and on the oppolite lide of the earth. Sir Ifac Nawton tried what fhould be the refuit of a tendency of the water to the moon. His invelliration of this queltion was very fimilar to that in his lunar theory. We may conceive the moon to be one of many millions of paticles of a fluid, occupying a globe as biz as the lunar orbit. Each will leel a finuilar difurbing force, which will diminifh its tendency to the earth in the neighbourhond of the place of conjunction and oppofition, and will increafe it in the reighbourhood of the quadratures. They cannot therefore remain in equili. Proved b brio in their fpherical formi ; they mull ink in the qua- the cobing dratures, and rife in the conjunction and oppofition, till and flowtheir greater height compenfates for the diminifhed ing of the weight of each particls. In like manne:, the waters cf the of the earth and mocn, and of the fun and planeti,

A S 'T K O

 oceanmuffink on thofe partsof the earth where the moon is feen in the horizon, and muft rife in thofe which have the moon in the zenith or nadir. All the efe effects are not only to be feen in general, but they may all be cal. culated, and the very form pointed out which the furface of the ocean mult aftume: and thus a tondency of every particle of the ccean to the inoon, inverfely pro. portional to the fquare of its ditance from it, gives us a theory of the ebbing and flowing of the fea. This is delivered in fufficient detail in the article Tride of the Encyclopædia, and therefore need not be infifted on in this place. The fanse inference mutt be drawn from the precenion of the equiroxes produced by the attion of the meon on the protuberant matter of sur equatoteal regions. See Precession in the Encycl.And by dif- But the mutual tendency of the earth and moon is ferent com- clearly feen in a phenomenon that is much move fimple. putations, If we compute the fun's place in the heavens, on the of the fun's fuppofition that the earth defcribes areas proportional place in the to the times, we flatl find it to agree with obfervation at every new and full moon: But at the firlt quarter the fun will be obferved about 9 feconds too much ad. vanced to the eaftward; and it the laft quarter he will he as much to the weltward of his calculated place. In all intermediate pofitions, the deviation of the obferved from the computed place of the fun will be 9 feconds, multiplied by the fine of the moon's ditance from conjunction or oppofition. In fhert, the appearances will be the fame as if it were not the earth which defcribed areas proportional to the times round the fun, but that a point, lying between the earth and moon, and very near the earth's furface, were defcribing the ellipfe romed the fun, while the earth and moon revolve round this point in the courfe of a lunation, having the point al. ways in the line between them, in the fame manner as if they were on the extremities of a rod which turns round this point, while the point itfelf revolves round the fun.

This then is the fact with refpect to the motions; and the earth in a month delcribes an orbit round this common centre of the earth and moon. It cannot do this unlefs it be continually deferied from the tangent to this orbit : therefore it is cortinually deflected toward the moon: and the momentum of this defection, that is, its quantity of motion, is the fame with that of ihe moon's deflection, becaufe their diftances from the common centre are as their quantities of matter in. verfely.

Appearances perfectly fimilar to the fe oblige us to affirm that the fin is continmally dellected toward the planets. Aftronomical inftruments, and the art of oblerving, have been prodigioufly improved fince Sir lfac Newton's time; and the moft fcrupulous attention has been paid to the fun's motion, becaufe it is to his place in the univerfe that continual reference is made in computing the place of all the planets. He is tuppofed at reft in the common focus of all their orbits; and the obferved diftance of a planet from the fon is always confidered as the radius vecfor. If this be not the cafe, the orbital motions contained in our tables are not the abfolute motions of the planets, nor the defleations from the tangents the real deflections from abfolute rectilineal motion; and therefore the forces are not fuch as we in. fer from thefe miltaken deflections. Accordingly Sir

N O M Y.
IGac Newton, induced by certrin metaphy fical confiderations, affumed it as a law of motion, that every ac- obferva tion of a body A on another body 1 , is accomparied tious on by an equal and contrary action of B on A. We do the thitu not fee the propriety of this affertion as a metarlyylical axiom. It is ferfeetly conceivable that a picce of iron will always approach a niagnet when in its neighbourhood; but we do not fee that this obliges us to affert that therefore the magnet will alfo approach the iron. 'Thofe who explian the phenomena of magnetifm by the impulfe of a fluid, mult certainly grant that there is no metaingyeal necefity for another dream of fiuid impelling the magnet toward the iron. And accordingly this, and the fintilur reciprocity in the phenomena if elcéricity, have always been confidered as deductions of experimental philotophy; yet we obfeive the fame re. ciprocity in all the actions of fublunary bodies; and Newton's third law of motion is roccived as true, and admitted as a principle of seafoning. But we appre-Nervon's hend that it was hafty in this great philofopher, and extenfion unlike his ferupulous caution, to extend it to the pla- of that daw netary motions. He did, however, extend it, and af. ferted, that as each planet was defiected sorward the furn, the fun was equally (in refpect of momentum) deflected toward each planer, and that lis real motion was the compofition of all thofe fimultaneous deflections. He aflelted, that there was acertain point round which the fun and his attending planets revolved; and that the orbit of a planet, which our meafurements determined by continual reference to the fun as to a fixed body, was not the true oibit, but confilted of the contemporaneous orbits of that planet and of the fun round this fixed point. Any little feetor of the apparent orbit was greater than the correfponding fector of the planet's true orbit in abfolute fpace, and the apparent m) rion was compounded of the true motion of the planet, and the oppofite to the true motion of the fun. After a moll ingenious and refined inveftigation, he flowed that, notwithttanding this great difference of the Keplerean laws from the truth, the inference, with refpect to the law of planstary deflection, is juft, and that not only the apparent deflections are in the inverfe duplicate ratio of the diftances from the fun, but that the real deflections vary in the fame ratio of the diflances from the fixed point, and alfo from the fun; for he fhewed that the diftances from the fun were in a conItant ratio to the diftances from this point. He flewed alro that the fame forces which produced the contemporaneous revolution of a planet and the fun round the centre of the fyftem, would produce a revolution of the planet in a fimilar orbit round the fun (fuppofed to be held fa!t in his place) at the fame diftance which really obtains between them, with this fole difference, that the periodic time will be longer, in the fubduplicate ratio of the quantity of matter in the fun to the quantity of matter of the fun and planet together. A. reas will be defcribed proportional to the times, and the orbit will be elliptical; but the ratio of the fquares of the periodic times will not be the fame with the ratio of the cubes of the diftances, unlers all the planets are equal.

Thus was the attention of aftronomers directed to a number of apparent irregularities in the motion of the earth, which muft refule from this derangement of the fun, which they had imagined to remain Itedfaft in his
place. They were told what to expeet, and on what poftions of the planets the kind and quantity of every irregularity depended. This was a moft inviting field of obfervation to a curious fpeculatift; but it required the niceft and moft expentive inftruments, and an uninterrupted feries of long continued obfervations, fufficient to occupy the whole of a man's time. Fortunately the accurate determination of the folar and lunar motions were of the utmolt importance, nay, indifpenfably necelfary for folving the famous problem of the longitude of a hip at fea: and thus the denands of commercial Europe came in aid of philofophical curiclity, and occafioned the erection of obfervatories, firlt at Greenwich, and foon after at Pais and other places, witheftablifimentsfor aftronomers, who fhould carefully watch the motions of the fun and moon, not neglecting the 33 other planets.
Confirmed The fortunate refult of all this folicitude has been the by obferva- complete eftablihment of the Newtonian conjecture (for tion. fo we mult fill think it), and the verification of Newton's affertion, that action was accompanied, through the whole foldr fynem, by an cqual and contrary reaction. All the inequalities of the folar motion predited by Newton have been obferved, although they are frequently fo complicated that they could never have been detected, had not the Newtonian theory directed us when to find any of them pretty clear of complication, and how to afcertain the accumulated refult of them all in any ftate of combination.

But in the courfe of this attention to the motions of the fun and moon, the planets came in for a thare, and confiderable deviations were found, from the fuppofition that all their deflections were direaed to the fun, and were in the inverie duplicate ratio of their diffances. 'Ihe nice obfervation fhewed, that the period of Jupiter was fomewhat horter than Kepler's law required.

A flight reflection flewed that this was no incorGiftency; becaufe the common centre of the conjoined orbits of the Sun and Jupiter was fenlibly diftant from the centre of the fun, namely, about the 1100 h part of the radius vector; and therefore the real deflection was atout a $2200 t h$ part lefs than was fuppofed. It was now plain that the dittances to which the Keplerean law mult be applied, are the difances, not from the fun, but from the fixed point round which the fun and planets revolve. This difference was too fmall to be obferved in Kepler's time; but the feeming error is only a confirmation of the Newtonian philofophy.

But there are other irrcgularities which cannot be exphained in this manner. The planetary orbits change their pofition ; their aphelia advance, their nodes recede, their inclination to each other vary. The mean motions of Saturn and Jupiter are fuaject to confiderable changes, which are periodical.

Sir Ifacac Newton had no tooner difcovered the uni. of the pha- verfality and reciprocity of the deffections of the planets to- nets and the fun, than he alfo fufpected that they were wards each other. continually deflected towards each other. He immediately obtained a general notion of what fhould be the more general refults of fuch a mutual attion. They may be conceived in this way.
Plate VI.
Let S (fig. 5.) reprefent the fun, E the earth, and I Jupiter, defcribing concentric orbits tound the centre of the fyttem. Make IS:EA $=E I^{2}: \mathrm{SI}^{2}$. Then, if IS be taken to reprefent the deflection of the fun to-
ward Jupirer, EA will reprefent the deflectinn of the Earth to Jupitcr. Draw EB equal and paralicl to SI, and complete the parallelogram EBAD. ED will re. 35 and complete the parallelogram EBAD. ED will re- General refoived into EF, perpendicular to ES, and EG in the direction of SE. By the firft of thefe the earth's angular motion round the fun is affeqed, and by the fecond its deflection toward him is diminifted or increafed.

In confequence of this firlt part of the difurbing force, the angular motion is increafed, while the earth approaches from quadrature to conjunation with Jupiter (which is the cafe reprefented in the fizure), and is diminifhed from the time that Jupiter is in oppofition till the earth is again in quadrature, weftward of his oppofition. The earch is then accelcrated till Jnpiter is in conjunction with the fun; after which it is retarded till the earth is again in quadrature.

The carth's tendency to the fun is diminifhed while Jupiter is in the neighbourhood of his oppofition or conjunction, and increafed while he is in the neighbourhood of his ftationary pofitions. Jupiter being about 1000 times lefs than the fin, and 5 times more remote, IS muft be confidered as reprefenting $\frac{13}{25000}$ th of the carth's deflection to the fun, and the forces ED and EG arc to be meafured on this fcale.

In confequence of this change in the earh's tendency to the fun, the aphelion fometimes advances by the diminution, and fometimes retreats by the augmentation. It advances when Jupiter chances to be in oppofition when the earth is in its aphclion; becaufe this diminution of its deflection towards the fun makes it later before its path is brought from forming an obtufe angle with the radius vedor, to form a right angle with it. Becaufe the earth's tendency to the fon is, on the whole, more diminifhed by the difturbing force of Jupiter than it is increafed, the aphelion of the earth's orbit advances on the whole.

In like manner the aphelia of the inferior planets advance ly the difturbing forces of the fuperior: but the aphelion of a fuperinr planet retieats; for thefe reaions, and becaufe Jupiter and Saturn are larger and more powerful than the inferior planets, the aphelia of them all advance while that of Saturn retreats.

In confequence of the fame difturbing forces, the node of the diaturbed planet retreats on the orbit of the difturbing planet; therefore they all retreat on the ecliptic, except that of Jupiter, which advances by retreating on the orbit of Saturn, from which it fuffers the greateft difturbance. This is owing to the particular pofition of the nodes and the inclinations of the orbits.

The inclination of a planetary orbit increafes while the planet approaches the node, and diminifaes while the pl:met retires from it.
M. de la Place has completed this dedurtion of the planetary inequalities, by explaining a peculiarity in the motions of Jupiter and Saturn, which has long employthe metions ans retardations of the planetary motions depend, as has and Saturn. been fhown, on their configurations, or the relative quarters of the heavens in which they are. Thofe of Mercury, Venus, the Earth, and Mars, arifing from their mutual deflections; and their more remarkable deflections to the great planets Jupiter and Saturn, nearly compenfate each other, and no traces of them remain after a few revolutions: bat the pofitions of the aphe-

A $\quad 5 \quad \mathrm{~T} \quad \mathrm{R} \quad \mathrm{O} \quad \mathrm{N} \quad \mathrm{O} \quad \mathrm{M} \quad \mathrm{Y}$.

Ia of Siturn and Jupiter are fuch, that the retardations of Saturn fenfitly exceed the accelerations, and the anomaliftic period of Saturn increafes almoft a day every century; on the contrary, that of Jupiter diminifhes. iv. de la Place flows, that this proceeds from the pofition of the aphelia, and the almolt perfect commeniurability of their revolutions; five revolutions of Jupiter making 21,675 days, while two revolutions of Saturn make 21,538 , differing only 137 days.

Suppoling this relation to be exact, the theory flews, that the mutual action of thefe planets mult produce mutual accelerations and retardations of their mean motions, and afcertains the periods and limits of the feculas equations thence arifing. Thefe periods include feveral centuries. Again, becaufe this relation is not precife, but the odd days nearly divide the periods already found, there mult arife an equation of this fecular equation, of which the period is immenfely longer, and the maximum very minute. He fhews that this retardation of Sturn is now at its maximum, and is diminifling again, and will, in the courfe of years, change to an acceleration.

This invelligation of the fmall inequalities is the mor intricate problem in mechancal philofophy, and has been completed only by very flow degrees, by the arduous efforts of the createll mathematicians, of whom M. de la Grange is the molt eminent. Some of his general refults are very remarkable.

He demonftrates, that fince the planets move in one direction, in orbits nearly circular, no mutual difturbances make any permanent change in the mean diftances and mean periods of the planets, and that the periodic changes are confincd within very narrow limits. of the pla- of them ever has been or will be a comet moving in a netary fyl- very eccentric orbit. The ecliptic will never coincide tem.

In the next 200 it will happen in Taurus, Capricornus, and Virgn; in the next 200 years, it will happen in Gemini, Aquarins, and Libra; and in the next 200 years, it will happen in Cancer, Pifces, and Scorpio: then all begins again in Aries. It is highly probable that thefe remarhable periods of the oppofitions of Jupiter and Satum, progreflive for 40 years, and ofcilla ting dusing 160 more, occiafioned the altrological divi fion of the heavens into the four trigons, of fire, air, earth, and water. Thefe relations of the figns, which compofe a trigon, point out the repetitions of the chisf irregularities of the folar fy fem.
M. de la Place offerves (in $y^{2} 9^{5,}$) that the laft dif. covered planct gives evident matks of the action of the relt ; and that when thefe are computed and taken into the account of its bygone motions, they put it beyond doubt that it was feen by Flamifead in 16yo, by Mayer in 1756, and by Monnier in 1769.

We have hitherto overlooked the comets in our ac- Aation of count of the mutail difurbances of the folar fyllem. the concts. Their number is very great, and they go to all quasters of the univerie: but we may conclude, from the wonderful regulatity of the planetary motions, when ali their own mutual actions are taken into account, that the quantity of inatter in the comers is very inconfiderable. They remain but a thort time in the neighbourhood of the planets, and they pafs them with great rapidity. Some of them bave come very near to Jupiter, but left no trace of their attion in the motions of his fatellites. They doubtlefs contribute, in general, to make the apfides of the planetary orbits advance.

Oa the other band, the comets may be confiderably affected by the planets. The very important phenomenon of the return of the comet of 1682 , which was to the planets. decide whether they were revolving planets deferibing elliples, or bodies which came but once into the planetary regions, and then retired for ever, cauled the attronomers to confider this matter with great care. Halley had thown, in a rough way, that this comet mult have been confiderably affected by Jupiter. Their motion near the aphelion mult be fo very flow, that a very fraall change of velocity or direction, while in the planetary regions, muft confiderably aflect their periods. Halley thought that the anion of Jupiter might change it half a year. Mr Clairaut, by conlidering the diturbing forces of Jupiter and Saturn through the whole revolntion, Thowed that the period then runaing would exceed the former nearly two years ($6: 8$ days), and affigned the middle of April 7759 for the time of its perihelion. It really paffed its perithelion on the 12 th of March. 'l'his was a wonderful prection, when we reftct that the co. met had been feen but a very few days in its former apparitions.

A comet obferved by Mr Profperin and others in 1771 has greatly puzzled the aftronumers. Its mations appear to have been extremely irregular, and it certain'y came fo near Jupiter, that his momentary inflacuee vas at leaf equal to the fun's. It has not been recocnaifed fince that time, although there is great provabolity that it is continually among the planets.

It is by no means impoifible, nur highly inprobable, Conlethat in the courle of aryes, a corret may atom! y meet quence of a one of the plancts. The effert of fuch a concourfe muft cernet and be dreadful: a chanre of the axis of diurnal rotation planct murt refult from it, and the fea mut delert its former metting-
bed and overfow the rew fquatorial regions. The flack ard the deluge muft defuroz all the works of man, and moft of the race. The remdiader, reduced to nifets, muft long firggie for exidence, and all remern. braluce of former arts and events muft be lof?, and every thing niuft he inverted anew. There are not wating traces of fuch devaltations in this glabe: ftrata and thengs ate now found on mountain tops which were cer. tantly at the botom of the ncean in former times; re. mams of tropica! amimals and plants are now dug up in the circumpolat regions. Timpora mutantur, at ros mudamur in ifis.

It is phoin, that when we know the diredtion and the intentity of the cifurbing force, we can tell what will h: the accumblated effect of its antion for any time. The direction is eafily determined by means of the diflanc: : hat how fall we determine the intenfity? Since we fee that the whole waters of the ocean are deflected toward the moon, and have fuch probable evidence that planstary deflection is mutual; it follows, that the moon is delletred towards every drop of water, and that all the matter in one body is defseted towards all the matter in another body; and therefore that the deflection towards the fun or a planet is greater or lefs in profortion to its guantity of matter. Newton indeed thonght it unreafonable to fuppofe that a planet was defiected to the centre of the fun, which had no diftinguithing phyfical property; and thought it more probable that the deffection of a planet to the fun was the accumulated deflection of every particle in tlae planet to every particle in the fun. Dut he was too forupulous to take this for granted. Ile therefore endeavoured to difocoer what would be the fenfible deflection of one fphere to anotlier, when each confified of matter, every particle of which was deflecte:l to every particle of the
other with an intenfity inverfely proportional to the fquare of the diftance from it. By help of a moft beau. titul and fimple procefs, he difcorered, that the tendency of a particie of matter to a fpherical furface, fhell, or folid, of uniform denfity at equal diftances from the centre, was the fame as if all the particles in the furface, thell, or folid, were united in its centre: hence it legitimately followed, that the mutual tendency of fpherical furfaces, fhells, or folids, was proportional to the quantities of matter in the attracting body, and inverfely as the fquare of the difance of their centres; and thus the law of attraction, competent to every particle of planetary matter, was the fame with that which was offerved among foherical bodies confifting of fuch matter. And it is remarkable, that the inverfe duplicate ralin of the diflances is the only law that will hold, both with refeect to fingle particles and to globes compofed of fuch particles. He alfo demonltrated, that a part'cle placed within a fphere was not affected by all the fhell, which was more diftant than itele front the centre, being equaily attracted on every lide, and that it tended toward the centre of a homogeneous fphere, on the furface of which it was placed, with a force proportional to its dittance from the centre.

Newton faw a cafe in which it was pofible to difco. ver whether the tendency of the matter of which the planets confited was directed to a ma hematical centre void of any phyfical properties, or whether it was the refult of its united tendency to all the matter of the planet. He demonitrated, that if the earth confifted of
matier which tended to the centre, it behoved it to arfume the frims of an elliptical plaeroid, in confeonence of the centrifugal force arifing from its diarnal motion, and that the polar axis mult be to its equaturial diame. ter as 577 to 578 ; but if every particle tends to every other prasticle in the invelfe duphocate ration of the diAtance from it, the form muft ftili be ellijuical, bet more protuhcrant, and the polar axis mult be to the equatotial diameteras 230 to 23 x. Then orly will a column of water from the pole to the centre balance a column from the equator to the centre. He alfo thewed what fhould be the vibrations of pendulums in different latitudes, on both fuppofitions. Nathematicians were ea. ger therefore to make thofe experiments on pendulums, and to determine the figure of the easth by the meafure. ment of degrees of the meridian in different latitudes. The refult of their endeavours has heen decidedly in favour of the mutual tendency of all mutter. This has been farther confirmed by the obfervations of the ma. thematicians who meafured the degrees of the meridian in Peru, and by Dr Mafkelyne in Britain, who found that a pendulum fufpended in the neighbourhood of a great and folid mountain, fenfibly devited from the true vertical, and was deflected toward the mountain.

From a collective view of all thefe circumftances, Sir Ifac Newton concluded, with rreat confidence, that Proportithe deflection toward anf planet was the united deflec- tities of tion toward every particle of matter contained in it.

This enabled him to determine the intenfity of the planetary difturbing forces, by previontly afcertaining the proportions of their quantities of matter. This propartion, the difoovery of which feems above our reach, is eafily afcertained in all thofe bodies which have others revolving round them : for the dellection of the revolving body, being occafioned by all the matter in the central body, will be proportional (cesteris paribus) to the quantity of matter in the central body, and therefore will give us a meafure of that quantity. Would we compare the quantity of matter in Jupiter with the quantity of matter in the fun, we lave only to fuppofe that a planet revolves round the fion at the diftance of Jupiter's fourth fatellite. Kepler's third law will tell us the time of its revolution. The diftances, in this cafe, being the fame, the centripetal forces, and coniequently the quantities of matier in the central bodies, will be inverfely as the fquares of the periodic times of the revolutions around them. In this way have the quastities of matter been determined for the Sun, tbe Earth, Jupiter, Saturn, and the lat difcovered flanet. If the quantity in the Edrth be confidered as the unit, we have,

The Earth
The newl difcovered phe
Saturn
;
Saturn - 8616
Jupiter - - - - 317,1
The Sun
$3 \div 8343$.
Thus we fee that the fun is incomparably bigger than any planet, having more than a thoufand times as much matter as Jupiter, the molt maffy of them all. There is a confiderable uncertainty, however, in the proportion to the fun, becaufe we do not know his difance nearer than within $5_{50}{ }^{\text {oth }}$ th part. The proportions of the reft to each other are more accurate. The quantities of matter in Mercury and Mars can only be gueffed at: the quantity in Mercury may be called 0,1 , and Mars

$\begin{array}{lllllllll}\text { A } & \mathrm{S} & \mathrm{T} & \mathrm{K} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{Y} .\end{array}$

may be called 0,12 . Venus is fuppofed rearly equal to the Earth. This is coucluded from the effect which fhe produces on the preceffion of the equinoxes and the eçuation of the fun's motion. The moon is luppofud to be about $\frac{7}{\sigma}$ th of the earth, from the effect the produces on the tides and the precefion of the equinoses, compared with thofe produced by the fun.

When thefe quantities of matter are introduced into

Sun's place and the tranfit of a planet determined exacty.
a particular inflance of the exertion of the univerfal planetary force. This computation was but roughly made at firlt; but it was this coincidence that excited the philofopher to a more attentive review of the whole fubjent. Whaen every circumitance which can affect the refilt is taken into account, the coincidence is found to be moft accurate. The full of the fione is not the full effest of its weight; for it is diminithed by the rotation of the earth round its axis: It is alfo diminithed by the weight of the air which it difplaces: It is allo diminithed by its tendency to, the moon. On the other hand, the moon does not revolve round the earth, but lound a common centre of the earth and moon, and its period is about $\frac{1}{12}$ th florter than if it revelved round the earth; and the moon's deflection is affested by the fun's dilturbing force. Dut all thefe cometions can be accurately made, and the tatio of the fill weight of the frone to the fuil deffetion of the moon afertained. This has been done.
'Terreftial gravity therefore, or that power by which bodies fall or piefo on their fupports, is only a particu. lar inftarice of that geneal tendency by which the planets are retained in their crbits. Bodies may be fuid to gravitate when they give indications of their being gra* wis or heavy, that is, when they full or preis on their fupports; therefore the planets may be faid to gravitate when they give imilar indications of the fume tendency by their curvelineal motions. The general fact, that the bodies of the fular fyltem are mutually deHect. ed towards each other, may be exprefled by the verbal noun gravitation. Gravitation dues not exprefs : quality, but an event, a deflection, or a preffure.
'The weight of a tene?tial body, or its prellure on its lupport, is the effect of the accumulated gravitation of all its particles; for bodies of every kind of matter fall equally faft. This has heen afcertamed with the utmolt accuracy by Sir Ifaac Newton, by comparing the vibrations of pendulums made of every kind of matter. Therefore their united gravitation is proportional to their quantity of matter ; and we have concluded, that every atom of terrefrial mater is heary, and equally heavy. We extend this conclufion to the fun and planets, and fay, that the obferved gravitation of a planet is the united gravitation of every particle. Therefore Sir fiame Newton inferred, from a collective view of all the phenomena, that all foutter stavitates to all matter with a force in the inverfe dupl cate ratio of the dilance.

But we do not think that this inference is abfolutely certain. We acknowledge that the experiments on pendulums, confifting of a val variety of terreltrial matter, all of which performed their oicillations in equal tumes, demonllate that the acceleration of gravity on thote pendulums was proportional to their quantities of matter, and that equal gravitation may be affamad of ail terreftrial matter.

The elliptical motion of a planet is full proof tha:t the accelerating power of its gravity varies in the inverle duplicate ratio of the diftance: and the proportionality of the fquates of the periods to the cabes wit the dillances, thows that the whole gravitations of the planets vary by the fane law. But this thind cofervation of Kepler might have been the fame, although the gravitation of a particle of matter in Inpiter had been equal to that of a particle of terveltrial matcer, provicied that all the matter in Jupiter did not gavisute. If

Newton's ocean formed into 1 here. This force cxtended, with difcovery of out any remarkable diminution, to the tops of the high-
faid he to limfelf, fince tha diflance of the moon from the centre of the earth is about 50 times greater than the centre of the earth is about 50 times greater than
the diftance of the fone which I throw from my hand, and which is deflecied 16 feet in one fecond, the weight of this fione, if taken up to the height of the moon, fhould be reduced to the 2500 h part, and fhould there
 defled $\frac{s^{5}}{}$ soth of 16 feet in a fecrnd; and the moen thould
deflect is much from the tangent in a lecond. Having the dimentions, as he thought, of the moon's orbit, he the dimentions, as he thrught, of the moons orbit, he cond; tut he found it conliuerably different from what cond: tut he found it conliuerably diferent from what
he wifhed it to be. He therefore concluded that the planetory force was not the weight of the planet. For fome years he thought no more of it ; but one day, in the Royal Society, he heard an account read of meafurements of a degree of the meridian, which thowed bina that the radius of the earth and the diftance of the micon were very diferent from what he had belicved them to be. When he went home he repeared his computation, and found, the the dethection of a flone was to the fimuitaneous deflection of the moon as the fquare of the moon's diflance from the cente of the eatitito the Iquare of the fune's diflance. Therefere the moon is defleated by its weight; and the fall of a Rone is jot eft mountains. Might it not reach much farther? May it not operate even at the diftance of the moon? In the fame manner that the planetary force deflects the moon from the tangent to her orbit, and caufes her ta defcribe an ellipfe, the weight of a cannon ball deflects it from the line of its direction, and makes it deferibe a parabola. What if the teflecting force which incurvates her path towarc's the eath be the fimple weight of the moon? If the weight of a body be the fame with the general planetary force, it will dininifh as the fquare of its diftance from the earlh increafes. Therefore, the computation of the planetary inequalities, and the intenfity of the difurbing forces affumed accordingly, the refults of the compatations tally fo exactly with obfervation, that we can now determine the fun's place for any moment within two or three feconds of a degree, and are certain of the tranfit of a planct within one beat of the clock !

> Fan dibios nulla caligine pregravat crror ; Queis fuperumh pentrane comos atque ardua cali Scandere fuliuis is genii conceffit acumeh.

Hallef.
Sir Ifaac Newton laving already made the great difcovery of an univerfal and mutual deflection of all the matter in the foiar if Rem, was one day feculating on this fubject, and comparing it with other deflections which he obferved among bodies, fuch as magnets, \&c. He confidered terreflial gravity as a force of this kind. By the weight of terreftrial bodies they kept united
E
r*sth of Jupiter had been fuch gravitating matter, his deflection from the tangent of his orbit would have been the fame as at prejert, and the tine of his revolintion would have been what we nbferve. In order that the third law of licpler may hold tue of the planetary motions, no more is required than that the acemmulated gravitation of the planet be proportional to its quantity of matter, and thas the matter which does not gravitate will be compenfated by the fuperior gravitation of the reft.

But becaufe we have no authority for faying that there is matter which gravitates differently from the eff, or which does not gravitate, we are entitled to furpere that gravity operates alike on all matter.

And this is the ultmatum of the Newtonian philofrphes, that the folar fyRem contilas of bodies compofed of matter, every paricle of which is, in fata, continually deffected by its weight towards every other particle in the fy fem; and that this deflection, or aftual deviation, or achual piefiare, tending to deviation from uniform rec tiliteal motion, is in the inverfe duplicate ratio of the

49
Objcctions to the law of gravita tion illlourded.
dilance.
This doctrine has been called the fyfem of univerfal graviation; and it has been blamed as introducing an unphilof phical principle into fcience. Gravitation is fuid to be an occult quality; and therefore as unfit for
the explanation of phenomena as any of the occult qualitues of Atilotle. But this reproach is unfounded; gravitation does not exprefs any quality whatever, but a matter of fact, an event, an achual defection, or an actual phefire, producing an actual deflection of the bndy prefled. Theie are not occult, but matters of continual obfervation. True, indeed, Newton does not deny, although he does not pelitively fay, that this deflection, prellire, or gravitatior, is an effed having a canfe. Gravity is faid to be this caufe. Gravity is the leing oravis or beavy, and gravitation is the giving indicutions of beivg heavy. Heavinefs therct re is the word which exprelfes gravitas, ind cur notion of the caufe of the planetary deilections is the fame with our notion of heavinefs. This may be indiffinet and unfati factery to a mind fafidioufy cuious; but nothing can be more faniliar. The planet is deffected, becaife it is heary. We are fuppofed to explain the fall of a thone through wher very latisfactorily, and without baving recourfe to any occult quality, when we fay that it is heavier than the water; and we explain the rife of a picce of crik, when we fay that it is not fo heavy as the water. The explanations of the mutual adicns of the planets are equally fatisfactory, founded on the fame principles, and cqually free from all fophitity or employment of occult cautes. The weight of a body is not its heavinefs, but the effect of its heavinefs. It is a gravitation, an atual preffure, indicated by its balancing the fup. pofed heavinefs of another body, or by its balancing the known elafticity of a liring, or by balancing any other natural power. It is fimitar to the preifure which a magnct exerts on a piece of iron. This may perhaps be produced by the impulfe of a flream of fiuid; fo
may the weight of a heavy body. But we do not concern ourfelves with this quefion. We gain a moft extenfive and important knowledge by our knowledge of this univerfal law; for we can now explain every phenomenon, by pointing out how it is contained in this lay'; and we can predia the whole events of the folar
fyftem with unerring exactnefs. This hould fatisfy the moft inquifitive mind.

But, nitimur in vetitum, fimper cupinuffue negata. There feems to be a fatal and ruinous dilporition in the human mind, a fort of priapifm of the underfanding, that is irritated by every interdict of natural imperfection. We would take a microfoope to look at light; we would knozv what knowing is, and we would zucig/s hearine/s.

All who are acquainted with the writings of A rifotle have fome notion of his whimfical opinions on this fubject. He imagines that the planeta are conducted in their orbits by a fort of inteiligerces, $i=\pi \pi p \neq t \% \not x$, which animate the orbs that wheel them rourd. Although this crude conception met with no favour in later times, another, not more reafonable, was maintaired by Leibnitz, who called every particle of matter a monuld, and gave it a perception of its fituation in the univerfe, of its diftance and direction from evers other, and a power and will to move itfelf in conformity to this fituation, by certain conftant laws. This istep $\Psi \iota^{n}$ in the Monad is nothing but an aukward fublitute for the principle of gravitation, which the learned irfifted that Newton placed in every particle of matter as an innate power, and which they reprobated as unphilofophical. But in what refpest this perception and aciive propenfity is better, we do not perceive. It is more complex, and involves every notion that is reprehenfible in the other; and it offers no better explanation of the phenomena.

But Newton is equally anxious with other philofophers not to arcribe gravity to matter as an innate inberent proferty. In a letter to Dr Bently, he earneflly requefts him not to charge him with fuch an abfiurd opinion. It is an avowed principle, that nothing can ar on any thing that is at a diltance; and this is confidered as an intuitive asiom. But it is furely very obfcure; for tee camot obtain, or at leaft convey, clear notions of the terms in which it is exprefled. The word $a d$ is entireiy figurative, borrowed from animal exertions; it is therefore unlike the expreffin n of any thing insitled to the appellation of intwitive. If we try to exprefs it without figure, we find our confidence in its certainty greatly diminihed. Should we fay that the condition of a body A cannot depeud on another body B that is at diflance from it, we believe that no perfon will lay that he makes this afiertion from perceiving the abfurdity of the contrary propoltion. In the demonfleation, as it is called, ot the perfeverance of a body in a fate of rell, the aly argument that is oficed is, that no caufe can be atligned why it fhould move in ol:e direction rather than in another: but fhould any one fay that another body is near it, to the right hand, and that this is a dufficient reafon for its moving that way, we know no mecthod by which this affertion can be thown to be falfe.
Such, however, has been the uniform op'nion of philofophers. Nibil movetar (fays Lesibnitz) nifi a contizuo et moto. Tlie celebrated mathematician Euler having difcovered, as he thought, the production of a preffure, like gravity, from motion, fays, "as motion may arite from prefing powers, fo we have feen that prelling powers may arie from motion. We lee that both exitit in the maiverf. It is the butmets of a philofopher to difiover, by redion and obfervation, which is the origin

51 Tain attempts to account for it.

A S T R O

of the other．It is incompatible with reafon，that bo－ dies fhould be poffeffed of inherent tendencies；much more that powers flowld exilt independently．Farther， that philofopher muft be reckoned to have affigned the true caufes of fhencmena，who demonftrates that they arife from motion；for motion，once exilting，mut be preferved for ever．In the profent infance（a certain whimfical fact of a ball running round the infide of a hoop）we fee how a prefing power may be derivell from motion ；but we cannot fee hovi powers can exert them． Selves，or be preferved，without motion．Wherefore we may conclude that gravity，and all other powers，are derived from motion；and it is our bufiness to inveni－ cate from what motions of what bodies each obferved power derives its origin．＂

Accordingly many attempts have been made to trace the planetary deffections to their origin in the motion of fome impelling matter；but thefe attempts could not be fucceffiul，becaufe they are all built on hypothefes． It has been affumed，that there is a matter diffufed through the celeftial fpaces ；that this matter is in mo－ tion，and by its impulfe moves the planets：but the on－ ly reafon that can be given for the exilence of this matter is the difficuly we find in explaining the plane－ tary deffections without it．Even if the legitimate con－ fequences of this hypothefis were confifent with the phenomena，we have not advanced in our knowledge， nor obtained any explanation．We have only learned， that the appearances are fuch as would have obtained had fuch a matter exifted and acted in this manner． The cbferved laws of the phenomena are as extentive as thofe of the hypothefis；therefore it teaches us no－ thing but what we knew withont it．
But this is not all that can be faid againft thofe at－ tempts；their legitimate confequences are inconffent wuith the phenomena．By legitimate confequences we mean the laws of motion．There mult be admitted，and are admitted，by the philofopher who attempts to explain the planetary motions by impulfe．It would be ridicu－ lous to fuppcfe a matter to fill the hearens，laving laws of impulie different frum thode that are coferved by common matter，and which laws muft be contrived fo as to anfwer the purpuse．It woold be more fimple at once to afign thote pro se ratu laws to the planets themifelves．

Yet fuch was the explanation which the celebrated Defeartes offered by his hypothefis of vortices，in which the planets were immerfed and whirled round the fun． It is aftonifing that focrude a conception ever obtain－ ed any partifans；yet it long maintained its authority， and ftill has zcalous defenders．Till Sir Ifaac Newton faw the indipenfible neceffity of mathematical inveltiga－ tion in every queltion of matter in motion，no perion－ had taken the trouble of giving any thing like a diftingt defcription of thofe vortices，the circumitances of their motion，and the manner of their acti：n；all determined with that precifion that is required in the explanation： for this mult always be kept in mind，that we wamt an explanation of the precife motions subich bave been ob erved，and uhich will enable us to predict thofe which are yet to happen．Men were contented with fome vague notion of a fort of fimilarity between the effects of tiuch vortices and the planetary motions in a few ge－ neral circumfances；and were neither at the trouble to confider how thefe motions were produced，nor how far they tallied with the phenomena．Their account of things

Suppl．Vol． 1.

N O M Y．
was only fit for carelefs chat，but muworthy of the at－ tention of a naturalift．But fince this explanation came from a perfon defervedly very eminent，it was refpected by Newton，and he honoured it with a ferions examio Examineil nation．It is to thig examination alone that we are in－by Newton． debted for all the knowiedge that we have of the con－ flitution of a fluid rortex，of the motions of which it is fufceptible，of the manner in which it can be produ－ ced，the laws of its circulation，and the effets which it can produce．We have this account in Sir If are New． ton＇s Principles of Natural Philutophy ；and it contains many very curious and interefting particulars，which have been found of great fervice in other branches of mechanical philof pply．But the efefolt of the cxanaian－ tion was fatal to the hypothefis；隹解的 that the mo tiens which were polfible in the vortices，and the effects which they muft produce，are quite incompatible with． the appearances in the heavens．We do not know one perfon who has acquired any reputation as a mechani： cian that row attempts to defend it ；nor do we knove of any other perf n befides Newton who has atterapted to explain mathematically how the circulation of a fuid can produce the revolution of a planet，if use except Mr Leibnizz，the celebrated rival of the Britifh Philofopher． This gentleman publifled in the Leiplic Review in 1689，three years after the publication of the Principia， an attempt to explain the elliprical motion of the pla． ncts，and the defcription of areas propotional to the times by the impulfe of a vortex．It mult not be paffed over in this place，becaufe it acquired great authority in Germany，and many of that conntry fill affirm that Leibnitz is the difcoverer of the law of planetary grit－ vitation，and of the mechanical confitution of the folar fyltem．We cannot help thinking this explanation the mon faulty of any，and a moll ditingenuous plagiarifin from the writings of Newton．

Mr Leibnitz fuppofes a fluid，circulating round the fun in fuch a manner that the velocisy of circulation in every part is inverfely as its diftance from the fion． （ $N . B$ ．Newton had fhown that fuch a circulation was poffible，and that it was the only one which could be generated in a fluid by an action proceeding from the centre）．Leibnitz calls this karmonical circulation．He fuppofes that the planet adopts this circulation in every part of its elliptical orbit，obeying without any refit－ ance the rootion of this fluid．Hedoes not afcribe this to the impulie of the fuid，faying exprefsly that the pla－ net follows its motion，non abrepta tamen，fed tranguilli－ ter quaji natante．The planct the efore has no tenden－ cy to perfevere in its firmer feate of motion．Why therefore docs it not follow this bamonic motion ex－ actly，and defriibe a circle tranquilliter natinss？This is owing，Cays Leibnit\％，to its centrifugal fotce，by which it perfeveres in a fate of rectilineal motion．It has no teadency to preferve its former velocity，but it perfe－ veres in its former direstion．The planet therefore is not like common matter，and has laws of notion pecu－ liar to iticlf；it was needlefs therefore to employ any impulfe to explain its mo ions．But to proceed ：This centrifugal force muft be counterated in every point of the orbit．Leibnitz therefore fuppofes that it is allo unged toward the cente by a folicitation like gravity or attraction．He calls it the paraientric force．He computes what mun be its intenfity in different parts of the oriit，in order to produce an ellipsical motion，and he finds that it mult be inverfuly as the iquare of the

$\begin{array}{lllllllll}\text { A } & S & T & R & O & N & O & M & Y\end{array}$

difance from the centre (for this reafon he is frequently quoted by Bernoulli, Wolff, and others, as the difcoverer of the law of gravitation). But Leibnitz arrives at this refult by means of feveral mathematical blunders, either arifirg from his ignorance at that time of fluxionary geometry, or from his perceiving that an accurate procedure would lead him to a conclufion which he did not wifh: for we have feen (and the demontration is adopted by Leibnitz in all his pofterior writings of this kind), that if the ordinary laws of motion are cbferved, a body, actuated by this paracentric force alone, will defribe an ellipfe, performing both its motion of harmonic circulation, and its motion of approach to and recels from the centre, without farther help. Therefore, if the harmonic circulation is produced by a vortex, a force inverfely as the fquare of the diftance from the centre, combined with the harmonic circulation, will produce a motion entirely different from the elliptical. It is demonfrated, that the force which is neceflary for defcribing circles at different diftances, with the angular velocity of the different parts of the orbit, is not in the inverfe duplicate, but in the inverfe triplicate, ratio of the diftances. This mult have been the nature of his paracentric force, in order to counteract the centrifugal force aring from the harmonic circulation. Therefore Leibnitz has not arrived at his conclufion by juft reafoning, nor can be faid to have difcorered it. He
fays, Fideo banc fropofitionem innotuife viro celeberrimo Ifaaco Newtono, licet nons polfm judicare quomodo ad eam pervenerit. This is teally fomewhat like impudence. The Principia were publifhed in 1686 . They were reviewed at Leipfic, and the Review publifhed in 1687. Leibni:z was at that time the principal manager of that Review. When Newton publithed, Leibnitz was living at Hanover, and a copy was fent him, within two months of its publication, by Nicholas Facio, long before the Review. 'The language of the Review has fereral fingularities, which are frequent in Leibnitz's own compofition; and few doubt of its being his writing. Befides, this propofition in the Principia had been given to the Royal Society feveral years before, and was in the records before 168 . Thefe were all feen by Leibnitz when in England, being lent him by his friend Collins.

We think that the opinion which a candid perfon mult form of the whole is, that Leibnitz knew the pro. pofition, and attempted to demonftrate it in a way that would make it pals for his own difcovery; or that he only knew the enunciation, without underftanding the principles. His hatmonic circulation is a clumfy way of explaining the proportionality of areas to the times; and even this circulation is borrowed from Newton's differtation on the Cartefian vortices, which is alfo contained in the Leipfic Review above mentioned. Leibnitz was by this time a competitor with Newton for the honour of inventing the fluxionary mathematics, and was not guiltlefs of acts of difingenuity in afferting his claim. He publifhed at the fame time, in the fame Review, an almoft unintelligible differtation on the refiftance of fluids, which, when examined by one who has learned the fubject by reading the Principia of Newton, affords an enigmatical defcription of the very theory publihed by Newton, as a neceffary part of his great work.

But befides all the above objections to Leibnitz's theory of elliptical motion, we may alk, What is this paracen.
tric force? He calls it like gravity. This is precifely Newton's doctrine. But Leibnitz luppofes this alfo to be the impulfe of a fluid. It would have been enough had he explained the action of this fluid, without the other circulating harmonically. He defers this explanation, however, to another opportunity. It mult have very fingular properties: it mult impel the planet without difturbing the other fluid, or being difturbed by it. He alfo defers to another opportunity the explaining how the fquares of the periodic times of different planets are proportional to the cubes of the mean diftances; for this is quite incompatible with the harmonic circulation of his vortex. 'This would make the fquares of the periods proportional to the diftances. He has performed neither of thefe promifes. Several years after this he made a correction of one of his mathematical blunders, by which he deftroyed the whole of his de. monftration. In fhort, the whole is fuch a heap of obfcure, vague, inconfiftent affumptions, and fo replete with mathematical errors, that it is aftonifhing that he had the ignorance or the effrontery to publifh it.

There is another hypothefis that has aequired fome Hypothefis reputation. M. le Sage of Geneva fuppofes, that there of Le Sage. palfes through every point of the univerfe a ftream of fuid, in every direction, with aftonifhing velocity. He fuppofes that, in the denfeft bodies, the racuity is incomparably more bulky than the folid matter; fo that a folid body fomewhat refembles a piece of wire cagework. The quantity of fluid which paffes through will be incomparably greater than that of the intercepted fluid ; but the impulfe of the intercepted fluid will be fenfibly proportional to the quantity of folid matter of the body. A fingle body will be equally impelled in every direction, and will not be moved; but another body will intercept fome fluid. Each will intercept fome from the other; and the impulfe on B, that is intercepted by A, will be nearly proportional to the matter in A, and inverfely proportional to the fquare of its difance from B ; and thus the two bodies will ap. pear to tend toward each other by the law of gravitation.
M. le Sage publifhed this in a work called Chimie Mechanique, and read lectures on this doetrine for many years in Geneva and Paris to crouded audiences. It is alfo publifhed by Mr Prevoft in the Berlin Memoirs, under the name of Lucrece Nesutonien; and there are many who confider it as a good explanation of gravita. tion: for our part, we think it inconceivable. The motions of the planets, with undiminithed velocity, for more than four thoufand years, appear incompatible with the impelling power of this fluid, be its velocity what it will. The abfolute precifion of the law of gravitation which does not thow the fmalleft error during that time, is incompatible with an impulfe which cannot be exarly proportional to the çuantity of matter, nor to the reciprocal of the fquare of the diftance, nor the fame on a body moving with the rapidity of the comet of 1680 in its perihelion, as on the planet Saturn, whofe motion is almoft incomparably flower. What is the origin of the motion of this fluid? Why does it not deftroy itfelf by mutual impulfe, fince it is continually pafing through every point? \&c.

We have already obferved that Newton expreffed the 58 fame anxiety to avoid the fuppofition of action among Newton bodies at a diftance. He alfo feemed to flow fome dif- folves no polition to account for gravitation by the action of a difficultics. contiguous fluid, This is the fubterfuge fo much re-
curred to by precipitate fpeculatits, by the name of the ether of Sir Ifaac Newtor. He fuppofes it highly elaftic, and much rarer in the pores of bodies and in their vicinity than at a diftance ; therefore exceedingly rare in the fun, and denfer as we recede from him. Being highly elafic, and repelled by all bodies, it muit impel them to that fide on which it is moft rare; therefore it mull impel them toward the fun. This is enough of its general conftitution to enable us to judge of its fitnefs for Newton's purpofe. It is wholly unfit ; for fince it is fluid, unequally denfe and elaftic, its particles are not in contact. Particles that are elaftic, and in a flate of compreffion, and in contact, cannot be fluid ; they mut be likefo many blown bladders compreffed in a box ; therefore they are not in contact ; therefore they are elafic by mutual repulfion; that is, by acting on each other at a diftance. It is indifferent whether this dittance is a million of miles, or the millionth part of a hair's breadth; therefore this fluid does not free Newton from the fuppofition which he wifhes to avoid. Nay, it can be demonftrated, that in order to form a fluid which fhall vary in denfity from the fun to the extremity of the folar f f fem, there mull be a mutual repulfion extending to that difance. This is introducing millions of millions of the very difficulties which Newton wifhed to avoid; for each particle prefents the fame difficulty with a planct.

We would now afk thefe atomical philofophers, why they have, in all ages, been fo anxious to trace the ce. leftial motions to the effects of itrupulie? They imagine that they have a clear perception of the communication of motion by impulfe, while their perception of the production of it in any other way is obfeure. Seeing, in a very numerous and familiar collection of facts, that motion is communicated by impulfe, they think that it is communicated in no other way, and that impulfe is the only moving power in nature.

But is it true that our notion of impulfe is more clear than that of gravitation? Its being more familiar is no argument. A caufe may be real, though it has exerted itfelf but once fince the beginning of time. In nu cafe do we percive the exertion of the caufe; we only perceive the change of motion. The conflitution of our mind makes us confider this as an effect, indicating a caufe which is inherent in that body which we always fee affociated with that change. Granting that our perception of the perfeverance of matter in its 1tate of motion is intuitive, it by no means follows that the body A in motion mult move the body B by ftaking it. The moment it ftrikes B , all the metaphyfical argu. ments for A's continuance in motion are at an end, and they are not in the leaf affefted by the fuppofition that A and B fhould contizue at reft after the itrole ; and we may defy any perfon to give an argument which will prove that B will be moved; nay, the very exifence of B may, for any thing we know to the contrary, be a fuficient reafon for the ceflation of the motion of A. The production of mation in B , by the impulfe of A , muft therefore fland on the fame foundation with every other production of motion. It indicates a moving power in A; but this inherent power feems to have no dependence on the motion of A: (See what is contained in n ${ }^{0}$ 81. of the article Physics, and $n^{0} 67$. of Optics of the Encycl.) We fee there a motion produced in B without impulfe, and taken from A, fimilar in every refpect to every cafe of impulfe; and we
fee that the motion of A is neceffary for producing fuch a motion in B as is obferved in all cafes of impulfe, merely in order that the moving power, which is inherent in A, whether it be in reft or in motion, may act during a fufficient time. Our confidence in the communication of motion, in the cafe mentioned there, is derived entirely from experience, which informs us that A poffelfes a moving power totally different from im. pulfe. Our belief of the impelling power of matter therefore does not necelfarily flow from our intuitive knowledge of the perfeverance of matter, although it gives us the knowledge of this perfeverance. It is like a mathematical demonfration, a road to the difcovery of the property of figure, but not the caufe of that property. The impulfion of matter is merely a fact, like its gravitation, and we know no more of the one than of the other.

It is not a clearer perception, therefore, which has procured this preference of impulfion as the vilimate explanation of motion, and has given rife to all the fool. ifh hypothefes of planetary vortices, ethers, animal foirits, nervous fluids, and many other crude contrivances for explaining the abltrufe phenomena of nature.

Nor does it deferve any preference on account of its 60 greater familiarity. Juft the contrary: for one fact of Impulfe undoubted impulfe, we fee millicns where no impulfe is rarely ohobferved. Confider the motion produced by the explo. ferved. fion of gunpowder. Where is the original impulfe? Suppofe the impulfe of the firf fparts of fire to be immenfe, how comes it that a greater impulfe is produced by a greater quantity of gunpowder, a greater quantity of quiefcent matter? The ultimate impulfe on the bullet Dould be lefs on this account. Here are plain exettions of moving powers, which are not reducible to impulfe. Confider alfo the facts in animal motion. Reflect allo, that there has been more motion, without any obferved impulfe, produced in the waters of a river ince the beginning of the world, than by all the impulfe that man has ever oblerved. Add to thefe, all the moticns in magnetifm, electricity, \&cc. Impulfe is therefore a phenomenon which is comparatively rare.

Have we ever obferved motioncommunicated bypure impulie, without the action of forces at a ditance? This appears to us very doubtful. Every une acquainted with Newton's difcoveries in optics will grant, that the colours which appear between two oljeea-glaffes of long tolefcopes, when they are preffed together, demonftrate, that the glaffes do not touch each other, except in the place where there is a black fpot. It requires more than a thoufand pounds to produce a fquare inch of this fpot. Therefore every communication of motion bitween two pieces of glafs, which can be produced by one of them Ariking the other, is produced without impulfe, unlef's their mutual preffurehas exceeded 1000 pounds on the fiquare inch of the parts which act on each other. Nay, fince we fee that a blace fipet appears on the top of a foap bubble, in the middle of the coloured rings, we learn that there is a certain thicknefs at which light ceafes to be vifibly reflected; therefore the black fpot between the glafes doas not prove that they touch in that patt ; therefore we cannot fay that any force whatever can make them touch. The ultimate repulfion may be infuperable. If this be the cafe, the produation of motion by impulfe is, in every initance, like the production of motion between the magnets in $n^{\circ} 8$. of the article PHysics in the Encycl.
and is of the fame kind with the procuction of motion by gravity.

Therefore no explanation of gravitation can be derived from any hypothefis whatever of inter vening fluids. They orily fixtitite millions of bodies for one, and fall leave the action e diftanti the fame dificulty as before. It is not in the leait neceffary that we thall be able to conceive how a paiticle of matter can be influenced by another at a diftance; if we have difcovered in cvery inflance the precife degree and direction of the effect of this influence, we have made a moft important addition to cur knowledge of nature; and our fuccels in the cate of the power of gravity fhould make us afliduous in our endeavours to dilcover, from the phenomena, the laws which regulate the other actions edifanti, which oblervation is daily finding out. A knowledge equally accurate of the law of magnetic and electric setion may enable us to give theories of magnetifm and electricity equally exas with the Newtonian theory of gravitation.

Having, we lope, evinced the truth of this theory, by following cut the inveligations to which Newton was gradually led, we might proceed to confider, in order, the complicated and fubordinate phenomena which depend on it. The lunar and planetary inequalities are the fubjects that naturally come firft in our way; but they have already been explained in all the detail that this concife account will admit, as they occurred to Newton as telts of the truth of his conjecture. If the luw be fuch as he fufpected, its confequences mult be fo and fo; if the celellial motions do not agree with them, the lav muf berejected. We thall not repeat any thing therefore on this head, but confine our obfervations to fuch applications of the theory of univerfal gravitation 25 newly difcovered objects, or the improvement of af. tronomical ublervation and of fuxionary analyfis, have snabled us to make fince the time of Newton.

The fubferviency of the eeliples of Jupiter's fatellites to grography and navigation had occafioned their motions to be very carefully obferved, ever fince thefe nies of them were firft fuggelted by Galileo, and their theory is as far advanced as that of the primary planets. It has peculiar difficulsies. Being very near to Jupiter, the great deviation of his figure from perfect fphericity makes the relation between their diftances from his centre and their gravitations toward it vaftly complica. ted. But this only excited the mathematicians fo much the more to improve their analy fis; and they faw, in this little fy\&em of Jupiter and his attendants, an epitome of the folar fyltem, where the great rapidity of the motions muft loring about in a lisort time every variety of configaration or relative pofition, and thus give us atn example of thefe mutuat difurbances of the primary planet, which require thoulands of years for the difcovery of their periods and limits. We have derived
62 fome very remarkable and ufeful pieces of information Eternal du- from this inveltigation; and have been led to the difribility of covery of the eternal durability of the folar fyltem, a the folar fyftem thing which Newron greatly doubred of.

Mr Pound had obferved long ago, that the irregula- rities of the three interior fatellites were repeated in a period of 437 days; and this obfervation is found to be juft to this day.

247	revolutions of the firft occupy	437	d.	3
123	fecond	44^{\prime}		
61	third	437	3	42
26	fourth	437	3	36
		435	14	16

This naturaily led mathematicians to examine their motions, and fee in what manner their relative pofitions or configurations, as they are called, correfponded to this period: and it is found, that the mean longitude of the Firt fatelitite, minus thrice the mean longitude of the ie. cond, flus twice the mean longitude of the third, always made 180 degrees. This requires that the mean motion of the firt, added to twice that of the third, thall be equal to thrice the mean motion of the fecond. Thlis correfpundence of the mean motions is of itfejf a fingular thing, and the odds againft its probability feems infinitely great ; and when we add to this the particular pofitions of the fatellites in any one moment, which is neceflary for the above conftint relation of their longitudes, the improbability of the coincidence, as a thing quite fortuitous, becomes intinitely greter. Dcubts were firf entertained of the coincidence, becaufe it was not indeed accurate to a fecond. The refult of the inveftigation is curinus. When l:e follow out the confequences of mutual gravitation, we find, that although neither the primitive motions of projection, nor the points of the orbit from which the fatel. lites were projected, were frecifcly fuch as fuited theie obferved relations of their revolutions and their contemporaneous longitudes; jet, if they differed from them only by very minute quancities, the mutual gravitations of the fatellites would in time bring them into thofe pofitions, and thofe fates of mean motion, that would induce the obferved relations; and when they are once induced they will be continued for ever. There will indeed be a fmall equation, depending on the degree of unfuitablenets of the firt motions and pofitions; and this caules the whole fyftem to ofcillate, as it were a little, and but a very little way on each fide of this ex. adt and permanent fate. The permanency of thefe relations will net be deftroyed by any fecular equations arifing from external caules; fuch as the action of the fourth fatellite, or of the fun, or of a refilting medium; becaufe their mutual actions will diftribute this equa. tion as it did the original error.

This curious refult came into view only by degrees, as analyfis improved and the mathematicians were enabled to manage more complicated formulas, including more terms of the infinite ferie!cs that were employed to exprefs the dirierent quantities. It is to M. de la Grange that we are indebted for the completion of the difcovery of the permanency of the fyltem in a ftate very little different from what obtains in any period of its exiftence. Although this required all the knowledge and at Irefs of this great mathematician, in the management of the molt complicated analyfis, the evidence of its truth inay be perceived by any perfon acquainted with the incre elements of fusionary geometry. The law cit the compofition of forces enables us to expreis every action of the mulual forces of the fun and planes by the fines and colines of circular arches, whic! increafe with an uniferm motion, like the perpetual laple of time. The natu:e of the circle hows, that the va. riations of the fines and colines are proportional to the cofines and fincs of the fame arches. The variations of their fquarcs, cubes, of cther powers, are proportiond to the fines or colines of the doubles or triples, or other muitiplies of the fame arches. Therefore fince the infinite feriefes which exprefs thofe actions of forces, and their variations, include only fines and cofines, with their powers and flusions, it follows, that all accumsla:cu

A S T R O N O M Y.

lated forces, and variations of forcer, and variaticns of validions, through infinite orders, are ftill expreflible by repeated fums of fines or cofires, cortefponding to arches which are generated by going round and round the circle. The analyf know's that thede quantities become altelvately pofitive and negative; and therefore, in whatever waly they ate compounded by addition of themfeives, or their multiplies, or both, we mult always arrive at a pesiod after which they will be repeated with all their intermediate variations. It may be extremely difficult, it may be impolfible, in our piefent tate of mathernatical knowledge, to afcertain all thofe periods. It has aequired all the efforts of all the geninies of Europe to manage the formules which include terms contuining the fourth and fifth powers of the eccentricities of the planetary orbits. Therefore the pcriods which we have already determined, and the limits to which the inequalities expreffed by fecular equations arrive, are ftill fobjested to fmaller corrections of incomparably longer periods, which arife from the terms neglected in our formulas. Ent the correction ariling from any newlected term has a period and a limit; and thus it will huppen that the fyltem works itfelf into a late of permanency, containing many intervening apparent anomalies. The elliptical motion of the earch contains an anomaly or deviation from uniform circular motion; the attion ol Jupiter produces a deviation from this elliptical motion, which has a period depending on the contiguration of the three bedies; Satumintroduces a deviation from this motion, which has allo a period: and fo on.

There is another accurate adjultment of motions which has attracted attention, as a thing in the highelt degt ee improbable, in events wholly independent on cach other. This is the exact coincidence of the period of the moon's revolution round the earth with that of her rotation round her own axis. The ellipticity or oval thape of the roon differs fo infenfibly from a fiphere, that if the original rotation had differed confiderably from the period of revolution, the pendular tendency to the earth could never have operated a change : but if the difference batween thofe two motions was fo fimall, that the pendular tendency to the line joining the contres of the earth and mon wa; able to overcome it after fome tinue, the pole of the lunar fipheroid would deviate a litie from the line joining the earth and moon, and then be brought back to it with an accelerated motion; would pafs it as far on the other lide, and then return again, vibrating perpetually to each fide of the inean pofition of the racius vecur. The extent of this vibration would depend on the original difference between the motion of rotation and the mean motion of revolution. This difference muft have been very fmall, becaufe this pendular vibration is net fenfible from the earth. The obferved libration of the moon is precifely what arifes from the inequality of her orbisal mo. tion. For the fame 1 eafons, the etfets of the fecular equations of the morn (which would, in the courfe of ages, have brought her whole fufface into our view, had her rotation been firiolly uniform) are counteraded by her fendular tendency, which has a force fufficient to alter her rotation by nearly the fame flnw and infenfible changes that obtain in her mean metions. The fame caufes alfo preferve the nodes of her equator and of her ortit in the fame points of the ecliptic. The complete demonfration of this is perhaps the mont delieate and elegant fpecimen that has been given of the modern an-
alyfis. We owe it to M. de la Grange : and he makes it appear that the figure of the moon is not that which a fluid fphere would acquire by its gravitation to the earth ; it mult be the effer of a more confiderab!e ellipticity, or intermal inequality of denfity.

This permanency of the fyitem, within very narrow Depends on limits of deviationfrom its prefent flate, depends entirely on the law of planetary deflection. Had it been direetly or inverfely as the difance, the deviations would the law of lawe been fuch as to have quickly rendered it wholly unfit for is prefent purpoles. They would have been very great, had the planetary obbits differed much from circles; nay, had fome of them moved in the oppofite direction. The election of this law, and this form of the orbits, Arikes the nind of a Newton, and indeed any heart pofferled of ferfibility to moral or intellectual exccllence, as a mark of widom prompted by benevnlence. Bus De la Place and whers, infented with the Theophobia Gallica engendered by our licentious defires, are eager to point it out as a mark of futalifm. They lay, that it is ellentill to all cualities that are ditfuled from a centre to diminith in the inverle duplicate ratic of the difance. But this is Calle, and very folfe : it is a mere geometrical conception. We indeed lay, that the dentity of illumination decreafes in this proportion; but who finys chat this is a quality? Whether it be conficlered as the emifion of iuminous corpufcles, or an undulation of an elaftic forid, it is not a quality emanating from a centre: and even in this eftimation, it feems gratuitous, whether we thall confider the bafe of the luminous pyramid, or its whole contents, as the ex. preffon of the quantity. Nay, if all qualities mult diminilh at this rate, all act:one difontimult do the fame; for when the diltances bear any great proportion to the diameters of the particles, their action deviates infenfibly from this law, and is perceived only by the accumula. tion of its effects after a long time. It is only thus that the effects of the oblate figure of Jupiter are perceived in the motion of his fatellites. The boalfed found philofophy which fees fatal neceflity where the mofl fuccofsful fudents of nature faw moral excellence, has Jerived very little credit or title to the name of reifdom, by letting loofe all thoie propenfities of the human heart which are effentially deftugive of focial happ nefs. Thele propentities were always known to lurk in the heart of man ; and thofe furety were the wifelt who laboured to keep them in check by the influence of moral principles, and particularly by cheriming that difpofition of the human heart which prompts us to fee contrivance wherever we fee nice and refined adjuftment of means to cnds; and, from the admirable beauty of the fular fyftem, to cry out,
"Thefe are thy glarious works, Parent of good!
"Almighty, thine this univerfal frame,
"Thus wond'rous fair : thy felf how wond'rnus then!
"Unfpeakab'e, whofitt'f above the:e heavens,
"To us inviible, or dimly fen
"In thefe thy lowet? works; yet thefe uec'ure
"Thy groodnet's beyond thought, and power divine." lar. Lof, b. v.
"But wandering oft, with brute unconícious gaze, "Mar marks moot Thee, marks not the mizhty hana "That, ever bufy, wheels the filent fpheres."

Thompson.
The

6.4

And evinces the wifdom of the Creator.

A S Tllllll

The mof important addition (in a philofophical view) that has been made to aftronomical fcience fince the difcovery of the aberration of light and the nutation of the earth's axis, is that of the rotation of Saturn's ring. The ring itfelf is an object quite fingular ; and when it was difcovered that all the bodies which bad any immediate connection with a planet were heavy, or gravitated toward that planet, it became an interefting queftion, what was the nature of this ring? what fupported this immenfe arch of heavy matter without its refting on the planet? what maintains it in perpetual concentricity with the body of Saturn, and maintains its furface in one invariable pofition?

The theory of univerfitl gravitation tells us what things are poftible in the folar fyftem; and our conjectures about the nature of this ring mult always be regulated by the circumflance of its gravitation to the planet. lhilofophers had at firft fuppofed it to be a luminous atmofphere, thrown out into that form by the great centrifugal force ariling from a rotation: but its well defined edge, and, in particular, its being two very narrow rings, extremely near each other, yet perfectly feparate, rendered this epinion of its conftitution more improbable.
Difcovery of Dr Her fhel relat ing to it.

D1 Herfchel's difcovery of brighter fpots on its furface, and that thofe fots were permanent during the whole time of his obfervation, feems to make it more prooable that the parts of the ring have a folid connec-
tion. Mr Herfchel has difcovered, by the help of thofe fpots, that the ring turns round its axis, and that this axis is alfo the axis of Saturn's rotation. The time of rotation is $10 h .32^{\frac{1}{4}}$. But the other circumftances are not narrated with the precifion fufficient for an ac. curate comparifon with the theory of gravity. He informs us, that the radii of the four edges of the ring are 590 751, 774, 830, of a certim fale, and that the angle fubtended by the ring at the mean diftance from the earth is $46 \frac{2}{3}$. Therelore its elongation is $23 \frac{17}{\frac{1}{3}}$. The elongation of the fecond Caffiniaa iatellite is $56^{\prime \prime}$, and its revolution is $2 \mathrm{~d}, 17 \mathrm{~h} .44^{\prime}$. 'This thould give, by the third law of Kepler, $17 \mathrm{~h} .10^{\prime}$ for the revolution of the outer edge of the ring, or rather of an atom of that edge, in order that it may maintain itfelf in equilibrio. The fame calculation applied to the outer edge of the inner ring gives about $13 \mathrm{~h} .36^{\prime}$; and we obtain th. 16 for the inner edge of this ring. Such varie. ties are inconfiftent with the permanent appearance of a foot. We may fuppole the ring to be a luminous fluid or vapour, each particle or which maintains is fituation by the law of planetary revolution. In fuch a ftate, it would confift of concentric ffrata, revolving more flowly as they were more remote from the planet, like the concencric flrata of a vortex, and therefore having a relative motion incompatible with the permanency of any fpot. Belides, the rotation obferved by Herfchel is too rapid even for the innermon part of the ring. We think therefore that it confifts of cohering matter, and of confiderable tenacity, at leaft equal to that of a very clammy fluid, fuch as melted glafr.

We can tell the filure which a fluid ring mult have, fo th.it it may maintain its form by the mutuall gravitation of its paricles to each other, and their gravitation to the plazet. Suppofe it cut by a meridian. It may be in equilibrio if the feaion is an ellipfe, of which the longer axis is direzed to the cente of tion planet, and vory fram in comparifon with its ditanes from the
centre of the planet, and having the revolution of ifs midcle round Saturn, fuch as agrees with the Keplerean law. Thefe circumftances are not very coalifent with the dimenfions of Saturn's inner ring. The diftance between the middle of its breadth and the centre of Sa_{3} turn is 670 , and its breadth is 161^{\prime}, nearly one-fourth of the diftance from the centre of Saturn. De la Place fays, that the revolution of the inner ring obferved by Herfchel is very nearly that required by Kepler's law: but we cannot fee the grounds of this affertion. The above comparifons with the fecond Cafinian fatellite fhows the contrary. The elongation of that fatellite is taken from Bradley's obfervations, as is alfo its periodic time. A ring of detached particles revolving in roh. $32 \frac{{ }^{\frac{1}{4}}}{}$ mult be of much fmaller diameter than even the inner edge of Saturn's ring. Indeed, the quantity of matter in it might be fuch as to increafe the gravitation confiderably; but this would be feen by its difturbing the feventh and fixth fatellites, which are exceedingly near it. We cannot help thinking therefore that it confifts Its probaof matter which has very confiderable tenacity. An ble confinequatorial zone of matter, tenacious like melted glafs, ency and whirled brikly round, might be thrown off, and, retaining its great velocity, would fretch ont while whirling, enlarging in diarneter and diminifhing in thicknefs or breadth, or both, till the centrifugal force was balanced by the united force of gravity and tenacity. We find that the equilibrium will not be fenfibly diAurbed by confiderable deviations, fuch as unequal breadth, or even want of flatnefs. Such inequalities appear on this ring at the time of its difparition, when its edge is turned to the fun or to us. The appearances of its different fides are then confiderably different.
Such a ring or rings mult have an ofcillatory motion round the centre of Saturn, in confequence of their mutual action, and the action of the fun, and their own irregularities : but there will be a certain pofition which they have a tendency to maintain, and to which they will be brought back, after deviating from it, by the ellipticity of Saturn, which is very great. The fun will occalion a nutation of Saturn's axiz and a preceffion of his equinoxes, and this will drag along with it both the rings and the neighbouring fatellites.

The atmofphere which furrcunds a whirling planet cannot have all its parts circulating according to the third $\mathrm{l}_{\mathrm{L}} \mathrm{w}$ of Kepler. The mutual attrition of the pla. net, and of the different ftrata. arifing from their different velocities, null accelerate the flowly moving flrata, and returd the rapid, till all acquire a velocity proportional to their diftance from the axis of rotation ; and this will be fuch that the momentum of rotation of the planet and its atmofphere remains al ways the fame. It will fuell out at the equator, and fink at the poles, till the centrifugal force at the equator balances the weight of a fuperficial particle. The greatelt ratio which the equatorial diameter can acquire to the polar axis is that of four to three, unlefs a cohefive force keeps the particles united, fo that it conffitutes a liquid, and not an elatic fluid like air; and an elaltic fluid cannot form an atmofphere bounded in its dimenfions, unlefs there be a certain rarity which takes away all elaitticity. If the equator firells beyond the dimention which makes the gravitation balance the centifugal force, it mutl immediately diffipate.
If we fuppre that the atmofphere has extended to this limit, and then condenfes by cold, or any chemical
or other caufe different from gravity, its rotation neceffarily augments, preferring its former momentum, and the limit will approach the axis; becaufe a greater velo-
city produces a greater centrifugal force, and requires a greater gravitation to balance it. Such an atmofphere may therefore defert, in fucceffion, zones of its own matter in the plane of its equator, and leave them revolving in the form of rings. It is not unlikely that the rings of Saturn may have been furn:fhed in this very way; and the zones, having acquired a common velocity in their different Etrata, will preferve it ; and they are fuiceptible of irregularities atiling from local caufes at the time of their feparation, which may afford per. manent fors.
We think that the rotation of Saturn's ring affords fome hopes of deciding a very important queftion about the nature of light. If light be the propagation of elaftic undulations, its velocity depends entircly on the elafticity and denfity of the fluid; but if it be the emif- fion of corpufcles, their velocity may be affected by other caufes. The velocity of Saturn's ring is $\frac{50}{6}$ 号 of that of the earth in its orbit, and therefore about $\frac{{ }^{5}}{500}$ of the velocity of light. The weftern extremity (to us in the nothern regions) is moving from us, and the eaftern is moving toward us. Iflight, by which we fee it, be reflcted like an elaftic ball from an elaftic body, there will be an excefs in the velocity of the light by which we fee the eatern limb above the velocity of the light by which we fee the weftern limb. This excefs will be $\frac{t}{2300}$ of the mean velocity of light. This fhould be difcovered by a difference in the refraction of the two lights. If an acromatic prifm could be made to refract fourteen degrees, and if Saturn be viswed thro, a telefcope with this prifm placed before it, there fhould be a change of fhape amounting to fixteen feconds; if the axis of the prim be parallel to the longer axis of the ring, it will dillort it prodigioully, and give it an oblique pofition.

A fimilar effect will be produced by placing the prifm between the eye-glais and the image in the focus of the object-glafs.

Our expectation is founded on this unqueftionable principle in dynamics, that when a particle of light paffes through the attive fratum of a tramparent body which refracts light toward the perpendicular, the addition made to the fquare of its velocity by the refracting forces is equal to the fquare of the velocity which thofe forces would communicate to a particleat reft on the furface of this refrading ftratum of the tranfparent body. Therefore if the velocity of the incident light be increafed, the ratio of the fine of incidence to the fine of refraction will he diminithed. It is confonant to common fenfe, that when the incident light has a greater velocity, it palfes more rapidly through the attracting fratum, and a fmaller addition is made to the velocity. When the velocity of the incident light is 30000 times greater than that of the earth's annual motion, the line of incidence is to the lign of refraction in glafs as 20 to 31 , or as 10000 to 15500 . If this be increafed $\frac{1}{250 \sigma}$, making it 10004, the ratio will be that of 10004 to 15502,62 , or of 10000 to 15496.4 . The difference between the refrations of the light from the eaftern and weftern extremities of the ring will be, to all fenfe, the fame, if the velocity of the one be diminifhed to 9998 , and the other increafed to 10002 .

We may jull add here, by the way, that the action
of another body may confiderably change the confitution of this atmofphere. Thus, fuppoling that the moon had originally an atmofphere, the limit will be that difance from the moon where the centrifugal force, arifing from the moon's rotation, added to the gravitation to the earth, balances the gravitation to the mon about the tion to the earth, balances the gravitation to the monn, moon.
If the moon be $\frac{5}{59}$ th of the earch, this limit will be about $\frac{1}{9}$ th of the moon's difance from the earth. If at this diflance the clatticity of the atmofphere is not annihilated by its rarefaction, it will be all taken off by the earth, and accumulate round it. This may be the reafon why we fee no atmofphere about the moon.
What has been faid in the article Tide (Encycl.), will explain the trade-winds on the earth and in Jupiter and Saturn. On the earth they are increafed by the expanfion of the air by hedt. This caufes it to rife in the parts warmed by the fun, and how off toward the poles, where it is again cooled and condenfed. The under Rratum of colder and denfer air is continually flowing in from the poles. This having lefs velecity of circulation than the equatorial parts of the earth, mult have a relative motion contrary to that of the earh, or from eaft to weft, and this mult augment the curtent produced by gravitation.

Thus we fee that all the mechanical phenomena of the folar fytem, whather relating to the revolutions round the various centres of gravitation, or to the figure of the planets and the ofcillations of the fuids which cover them, or to the rotations round their refpective ases-are necelfary confequences of one fimple principle of a gravitation in every particle, decreafing in the reciprocal duplicate ratio of the diftance. We fee that this, combined with a primitive projection, will produce every motion that we obfer ve. It was not neceflary, as Copernicus imagined, to imprefs three motions on the earth; one, by which it was made to revolve round the fun; a fecond, cauling it to curn round an axis inclined to that of its orbit; and a third, by which this axis defcribed that conic furfice which forms the precefino of the equinoxes. One impulfe, not pafing through the centre of the earth, nor in the plane of the ecliptic, will produce the two firt motions, and the protuberant matter produced by the rotation will generate the third motion, by the tendency of its parts to the other heavenly bodies. Without this principle, the elliptic mo. tion of the planets and comets, their various inequalities, fecular or periodical, thofe of the moon and of the fatellites of Jupiter, the precelfion of the equinoses, the nutation of the earth's axis, the figure of the earth, the undulations of its ocean-all would have been imprrfectly known, as matters of fact, wholiy different from each other, and folitary and unconected. It is truly deferving admiration, that fuch an immenfe variety of important phenomena flow fo palpably from one principle, of fuch fimplicity, an 1 fuch univerfality, that an phenomenon is now left out unexplained, and prediced with a certainty almoft equal to actual obfervation.

> Qup toties animos veterum tor ère fophorum, 2ueque fobolas bodic rasco certamine vexant Obvia con/picinus, nubenz pellente Matheli, Surgite mortales, terrenas mittete car as, Atque binc caligence vircs dignoficie mentis, A pecudum vitä longe lutique remsti.

Probable reafon why we fee no atmofphere moon.
\qquad -1

\square 1

\qquad

A New Catalogue of the principal Fixed Stars to the beginning of

 the Year Eighteen Hundred;Formed from Obfervations made in the Obfervatory at Gotha.

$\begin{array}{\|l} \mathrm{N}^{N} \text { of } \\ \mathrm{Star} . \end{array}$	Name and Character of Star.	$\left.\begin{gathered} \text { Mag- } \\ \text { ni- } \\ \text { tude. } \end{gathered} \right\rvert\,$	Medium Right Afcenfion in Timc.	Annual Variation in R. A. and in Time.	Medium Dcelination.	Mcdium Right Afcenfion in Equat. Pazt.	Annual Variation in R.A.
			$\mathrm{h}, \quad \prime \frac{1}{100}$	ठठण	- , Nor.	(1) $\frac{1}{10}$	" 10 10
1	88 \% Pegalus	2	- 256,79	$\frac{+}{3,063}$	$144^{\text {N }}$	- 4411,85	$\frac{+}{45,95}$
2	8 , Cetus	3	- 5 13,51	3,059	957 s	21822,66	45,89
3	15 a Caffiopea	4	- 2145,12	3, 301	6150 N	52616,75	49,51
4	17 ל Caffiopea	4	- 2553,93	3,262	5249 N	62829,01	4.8, 93
5	318 Andromeda	3	- 2839,02	3, 161	2945 N	$7 \quad 945,31$	47, 4.2
6	18 a Caflinpea	3	- 2914.40	3,311	5526 N	7 18 35,95	49,66
7	16β Cetus	$=3$	- $333^{1,53}$	3,001	1985	82257,40	45,01
8	24: Cafliopea	4	- 37 1 44	3,389	5646 N	91521,64	50, 83
9	$\sigma_{3} \delta$ Pifces	4	- $3^{8} 19,08$	3, 093	6.30 N	93446,15	+6,39
10	27 \% Caffiopea	3	- 44 44,75	3,505	593^{88}	1 I II 11,29	52,58
11	7 7 \& Pifees	4	- 5233,95	3,103	649 N	$\begin{array}{lll}13 & 8 & 29,20\end{array}$	46, 55
12	43 B Andromeda	2	- 5834,23	3,297	34.33 N	$143^{\text {8 }} 33,3^{8}$	49,46
13	33 * Caffiopea	4	- 590,22	3,531	5335%	$1445 \quad 3.33$	52,96
1.4	86 \% Piaces	4	1316,99	3,109	631 N	154914,80	46,63
15	37 С Caņopea	3	1250,58	3,761	59 11*	181238,70	56, 42
16	$9^{8} \mu$ Pifces	5	119 42,07	3,108	57 N	1955531,07	+6,62
17	${ }_{102} \pi$ Pifces	5	13030,70	3,164	117 N	223740,56	47, 46
18	106 Y Pifers	45	31 1,77	3,107	423 N	224506,62	46,61
19	110 O Pifces	45	13450,72	3, 144	89 N	$23 \quad 42 \begin{array}{llll}20,9\end{array}$	47,16
20	45 \& Callopea	3	40 10,01	4, 155	$62+5 \mathrm{~N}$	$25=30,13$	62,33
21	55 ¢ Cetus	3	14136,69	2,953	1120 s	25 2.4 10,33	44,30
22	2 a Triang. North.	34	14142,74	3,379	2836 N	$2525 ; 1,15$	50,68
23	$5 \gamma^{1}$ Aries	4	$1{ }_{1} 1234,52$	3, 258	1819 N	$25 \quad 3837.73$	48,87
24	6β Aries	3	14336,77	3,277	1950 N	2554 II, 48	49, 15
25	9λ Aries	5	14648,86	3,315	2237 N	2642 12,83	49,73
26	57% Andromeda	2	15141,05	3, 615	4122 N	$27 \quad 5515,76$	54, 23
27	* preced. a r	-	15026,15		-•	273632,25	54,
28	I 3 a ARIES	2	I 5555,27	3,335	2231 N	285849,05	$50 \quad 02$
29	* fequ. a r		I 5938,13	- .		$295+31,95$	- .
30	$22 \vartheta^{1}$ Aries	56	271,64	3,308	is $5^{8} \mathrm{~N}$	$31+5 \quad 24,55$	49,62

Cataloguc of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{\mathrm{N}} \text { of } \\ & \text { Star } \end{aligned}$	Name and Character of Star.	$\left.\begin{array}{\|c\|} \text { Mag- } \\ \text { ni- } \\ \text { nude. } \end{array} \right\rvert\,$	Medium Right Afcenfion in Time.	Annual Variation in R. A. and in Tinne.	$\begin{gathered} \text { Mediunn } \\ \text { Declination. } \\ \cdot \end{gathered}$	Medium Right Afeenfion in Equat. l'art.	Annual Variation in 12. A.
			$\mathrm{h}, 11 \frac{\mathrm{x}}{5}$	" उОठ-	- , Nor. ${ }_{\text {Sour }}$	" ${ }^{\frac{1}{O}}$	" $\frac{1}{\text { ²0 }}$
31	68 - Cetus (Varia.)	102	$29^{14,70}$	$\underset{3,+}{+}$	354 s	3218 40,50	$\begin{gathered} \frac{1}{6} \\ 45,29 \end{gathered}$
32	42π Aries	6	$z \quad 38 \quad 9,29$	3, 321	1638 N	3932 19,32	49, 8 I
33	43σ Aries	6	24028,09	3,285	14 I 5 N	$40 \begin{array}{lll}40 & 7,39\end{array}$	49,28
34	$\mathrm{Hz}_{2}{ }^{\text {o }}$ Cetus	3	$=2914,17$	3,060	- 33 s	371832,54	45,90
35	83 - Cetus	3	$2 \quad 29$ 53,42	2,884	12445	$3728=1,37$	43,27
36	86 \% Cetus	3	23257,18	3, 102	223 N	$3^{8} 14417,76$	46,53
37	$89 \sim$ Cetus	3	$23+36,02$	2,849	1443 s	$\begin{array}{llll}38 & 39 & 0,29\end{array}$	42, 74
3^{8}	39 r Lilius North.	4	$=3557,70$	3,521	2825 N	$3^{8} \quad 59 \quad 25,49$	52, 81
39	$41 r$ Lilius South.	4	23^{81} I4,43	3, 4^{89}	2626 N	39333636,49	52,34
40	$40 \%^{2}$ Aries	6	$=4+35,65$	3, 344	1731 N	41884,72	50, 16
41	$4^{6} 8^{3}$ Aries	56	$245 \quad 9,35$	3, 340	17 I3 N	411720,19	50,10
42	$3 n$ Eridanus	3	$2 \begin{array}{lllll}2 & 46 & 39,72\end{array}$	2,917	9425	413955,78	43, 75
43	48. Aries	5	247 48,01	3,401	2032 N	$4157 \mathrm{1}, 80$	51,01
44	23% Perfeus	3	25024,42	4, 250	5243 N	$42 \begin{array}{lll} \\ 4 & 36 & 6,25\end{array}$	$63: 75$
45	9^{2} \& CETUS (Me.)		25150,07	3, 119	318 N	425731,06	46,66
46	* Sequ. a Cetus		25154,61		$\cdots \cdots$	425839,15	\cdots
47	26 3 Perfeus	23	$=5512,07$	3, 846	4 O 1 I N	434^{88} 1,0.4	57,69
48	578 Aries	4	3 ○ 12,71	3, 393	$185^{8} \mathrm{~N}$	$45 \quad 310,59$	50,89
49	58% Aries	5	$3 \begin{array}{lll}3 & 3 & 25,98\end{array}$	3, 422	2018 N	$455^{1} 29,77$	$5 \mathrm{I}, 3.3$
50	${ }^{1} 3 \zeta$ Eridanus	3	3677,48	2, 004	9343	463152,20	43,56
51	$61 \tau^{\text {r }}$ Aries	7	$3 \quad 942,36$	3, 4.33	2025 N	$4725 \quad 35,39$	51.49
52	$33 *$ Perfens	2	3106085	4, 203	49 S N	$4731+2,77$	63,05
53	$63 \tau^{2}$ Aries	6	3 II 16,37	3, 428	20 I	45495043	51, 42
54	65 Aries	7	$31255,5=$	3, 430	205 N	48 13 52, 74	5I, 45
55	$5 f$ Taurus	5	31954,65	3,289	1215 N	495739.75	+9,33
56	I8 \& Eridanus	34	3 23 31,52	2,883	10 ?	$505252,3+$	
57	398 Perfeus	3	32844.93	$\stackrel{4}{4}, 203$	478 N	525 11 1 5 3	63,05
58	$25 \times$ Lucida Plejad.	3	$\begin{array}{llll}3 & 35 & 37,17\end{array}$	3,535	2329 N	535417.56	53,03
59	$4+\zeta$ Perfeus	3	34135,20	3,734	3117 N	552348,00	56, OI
60	45 E Perfeus	3	3 4! 29,19	3,977	3925 N	56 717,87	59, 66

Supfl. Voz. I.

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{\mathrm{o}} \text { of } \\ & \text { Star. } \end{aligned}$	Name and Character of Star.	$\begin{gathered} \text { Mag- } \\ \text { nil- } \\ \text { tude. } \end{gathered}$	Medium Right Afcenfion in Time.	Annual Variation in R.A. and in Tinic.	Medium Declination,	Medium Right Afcention in Equat. Part.	Annual Variation in R. A.
			h , "r ${ }^{\text {ºb }}$	" $\frac{1}{100}$	- Nor.	01310	
91	11_{1} \% Lepus	3	$5 \quad 23 \quad 54,9+$	$2, \stackrel{+}{6}$	1759 s	So 58 44,13	$\begin{gathered} + \\ 39,59 \end{gathered}$
92	123 \% Taurus	3	$5 \quad 25+241$	3, 575	210 N	812536.14	5362
93	4^{6} \& Orion	2	5 26 4015	3,037	120 s	813132,19	45,55
94	50ζ Orion	2	$530+0,57$	3, 020	$2+3$	$82+8$ 8,57	45,30
95	* Columba	2	$5 \quad 3225.03$	2, 167	3.411 s	$83 \quad 615.45$	32,50
96	13% Lepus	34	$5 \quad 36 \quad 9.02$	2, 517	22315	$8+215,3+$	37, 75
97	$53 \times$ Orion	$+$	$53^{5} 126168$	2, 839	94.5 s	$8+374,21$	+2,59
9^{8}	* preced. «Orion		$5{ }_{5}^{5} 41127,74$	- .	- . .	852156,10	.
99	5^{8} e ORIUN	I	5 it 20,57	3, 239	721 N	$85 \quad 5 \quad 8,55$	48,59
100	* $*$ fequ. a Orion		$5 \quad 47 \quad 35,59$			$86 \quad 58 \quad 23,85$	
101	$3+\beta$ Auriga	23	5 4+ 51,68	+ 398	$4+55 \mathrm{~N}$	861255,22	65,97
102	$1 H$ Gemi. (Prop.)	+ 5	$5 \quad 51 \quad 57,72$	3, 642	2316 N	8759 25,77	54,63
103	$7 n$ Gemini	$3+$	$6 \quad 24829$	3,623	2233 N	$20 \quad 42 \quad 4.34$	54, 34
$10+$	13μ Gemini	3	6 10 51,44	3, 624	2236 N	9242 1.64	54, 36
105	1ζ Cancer major	3	$6 \quad 1239,08$	2, 295	2959 s	$93 \quad 9+62+$	3+, 47
106	2 \& Cancer major	23	61353,76	2,638	1752 s	9* 2882633	3957
107	$18 \times$ Gemini	4	$6 \quad 1750,48$	3,526	2020 N	9.1 16 22,22	53.43
IC8	24γ Cemini	23	$6 \quad 26 \quad 9,35$	3, 463	$163+\mathrm{N}$	$1,63220,32$	51,95
109	27 : Gemini	3	$6{ }_{6}^{6} 31137.34$	3,645	2519 N	975420,05	55, ${ }^{2}$
I 10	* preced. a Can. ma.		$6 \quad 294180$			$9725 \quad 27,00$	
I 11	9 SIRIUS	1	$6{ }_{6} \quad 3619.91$	2, 6_{47}	1626 s	$97+58.65$	39, 71
11	* fequa a Can maj.		$\begin{array}{llll}6 & 41 & 26,68 \\ 6 & 50 & 6,21\end{array}$	- ${ }^{\text {, }}$,	23	1002140,20	1
[113	21% Cancer maj 43ζ Gumi	$\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}$	$\begin{array}{lll}6 & 50 & 46,21 \\ 6 & 52 & 14,55\end{array}$	$2,35+$ 3,567	$\begin{array}{lll}28 & +3 & 5 \\ 20 & 1 & 1\end{array}$	$\begin{array}{rrr}102 & 41 & 33,20 \\ 103 & 3 & 38,24\end{array}$	35,31 53,47
115	25 \% Cancer major	23	$7 \quad 15,39$	$2,+36$	265 s	$10535 \begin{array}{lll}10,85\end{array}$	36,54
116	55 \& Gemiti	3	$7 \times 810,06$	3,594	2220 N	10723094	52.91
117	3β Cancer minor	3	$\begin{array}{llll}7 & 16 & 18,01\end{array}$	3,261	$5+1: 1$	$100+30,21$	$+8,92$
118	* proced. a Gemini	.	$7 \begin{array}{llll}7 & 16 & 13.65\end{array}$	-	10932490	-••
119	66 CaSTOR	12	7 21 488,81	3,855	$3219:$	1102712,15	57,83
120	* Sequ. a Genimi		$7 \quad 27484$. . .	111 +612.60	

Catalogue of the principal Fixed Stars to the beginaing of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{\circ} \text { of } \\ & \text { Star. } \end{aligned}$	Name and Character of Star.	$\begin{gathered} \text { Mag- } \\ \text { ni- } \\ \text { tude. } \end{gathered}$	Medium Right Afcenfion in Time.	- Annual Variation in R. A. and in Time.	Miedium Declination.	Mediun Right Afcenfion in Equat. Part.	Annual Variation in R. A.
			h , " $\frac{1}{100}$	" गठठ	- , Nor.	- 1 $1^{\frac{1}{100}}$	T\%
121	69 u Gemini	$+5$	$7 \begin{array}{lll}7 & 23 & 34,54\end{array}$	$\stackrel{+}{+15}$	2721 N	$1105338,0 \div$	$\frac{1}{55,72}$
122	* preced. a Can.mi.		72640,27			11140400	
123	10 PRCCYON	12	72849,10	3,137	$544 \times$	II 21216,50	47, 06
124			$7 \quad 3027,12$			$\begin{array}{llllll}12 & 3^{6} & 46,80\end{array}$	
125	78 POLLUX	2	$7 \begin{array}{lll}7 & 33 & 3,18\end{array}$	3,687	2830 N	II 31547,70	55,31
126	* requ. β Gemini		73528,73			11352 11,70	- \cdot
127	IO μ^{2} Cancer	5	$7 \quad 55 \quad 57,64$	3, 545	$22 \quad 9 \mathrm{~N}$	IIS $59=4.955$	53, 18
128	If ψ^{2} Cancer	4	$7 \quad 582325$	3, 639	267	$\begin{array}{lllll}119 & 35 & 48,73\end{array}$	54,58
129	17β Cancer	34	$8 \quad 5 \quad 39.37$	3,266	$94^{8} \mathrm{~N}$	I21 $2+50,61$	+8, 99
130	31 \% Cancer	56	$8 \quad 2010,35$	3,441	I 846 N	I25 235,31	51,61
13 I	33 * Cancer	67	$8 \quad 2170,79$	3, 491	216 N	$\begin{array}{lllll}125 & 16 & 56,87\end{array}$	52,36
152	4δ Hydra	4	8273,04	3, 189	623 N	1264545,53	+7,83
133	+3 \% Cancer	4	$8 \quad 31412,86$	3,499	2210 N	$12755 \quad 27,85$	52,49
13 \%	478 Cancer	4	83318,11	3,428	1853 N	128 I9 31,70	51,42
135	II \& Hydrai	4	83610,14	3,199	78 N	129232,03	47, 98
$1{ }^{1} 36$	16 ¢ Hydra	45	$8 \quad 44+8,96$	3, 187	$\mathrm{C}_{1} 4^{2} \mathrm{~N}$	1311212,54	47, 81
137	$60 a^{1}$ Cancer	45	$8 \quad 4459,39$	3,290	I2 24.4	131 14 50,81	49, 35
138	$65 a^{2}$ Cancer	34	$\begin{array}{llll}8 & 47 & 31,82\end{array}$	3,292	1237 N	13152 57,26	49,38
${ }^{1} 39$	76: Cancer	$+5$	$8 \quad 56$	3, 263	I 128 n	$\begin{array}{lllllll}13+4 & 1 & 34,92\end{array}$	48,95
$1+0$	$665^{\text {² }}$ Cancer	56	$8 \quad 58$ 30,37	3,472	2251 N	$13+2735,48$	52,08
141	22% Hydra		$935 \div 80$	3, 120		$1355342: 03$	46,80
142	$1 \times$ Leo	4	91258,32	3, 524	27 2N	$1581+3 \div 97$	52,86
143	30 ALPHARD	2	$9 \quad 17 \div 4997$	2,935	74^{8}	1392614,35	$4 \frac{1}{4}, 03$
$1+7$	* fequ. a IIydra		$9 \quad 23$ 9,19	- .	-•••	$1.104717,85$	
$1+5$	5 \% Lco	4	9 21 9:26	3,253	12 11	14017 18,97	4S, 80
146	It 0 Leo	4	93027,65	3,224	1048 N	$14^{2} 3654.82$	48, 36
147	17 - Leo	3	93428,29	3, 434	$2+41 \mathrm{~N}$	14337 4,31	51, 51
148	2: 4 L Leo	3	$94121,3+$	3, 457	2657 N	1452027,54	51,85
149	27.140	4	947 26,92	3, $2+3$	1.324 N	1465143,76	48, 65
150	29π Leo	4	9 4937,99	3, 183	90	I+7 2429,89	4, 75

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.							
$\left\{\begin{array}{l} N^{\circ} \text { of } \\ \text { Star. } \end{array}\right.$	Nance and Charazter of	$\begin{aligned} & \text { Mar- } \\ & \text { nit } \\ & \text { nude. } \end{aligned}$	$\underset{\substack{\text { Medium } \\ \text { Righte Aceufion } \\ \text { in Timc. }}}{\text { i }}$		Medium Declination	$\begin{gathered} \text { Mrediunn } \\ \text { Right Alcenfion } \\ \text { in Equat. Part. } \end{gathered}$	
					${ }_{\text {Sour }}^{\text {Nor. }}$	- , ، ${ }^{\frac{1}{06}}$	\%. $\frac{1}{100}$
				$\underset{3,289}{+}$			
151 152	33^{3} R Leo	$3_{1}{ }_{4}$	$\begin{array}{lll}9 & 52 & 24,60 \\ 9 & 57 & 42,02\end{array}$	$\left\|\begin{array}{l} 3,289 \\ 3,204 \end{array}\right\|$	1256 N	1+9	4, 4 4, 336
153	${ }_{*}^{32}$ fequ. a Leo		10 428,58			[151 $\begin{array}{lll}15 & 8,70 \\ 151 \\ 151 & 23 & 5,16\end{array}$	
5	36ζ Leo	23	$\begin{array}{ll}10 \\ 10 & 5 \\ 10 & 5 \\ 8\end{array}$	3, 3 361	24 24 20 0	[1515	50,42 49,60
155	$41 r^{2}$ Leo	23			2051 N		
156	$3+\mu$ Urfa major		10 10. 21,35	3, 635	4230 N	$\begin{array}{lllll}152 & 35 & 23.32 \\ 155 & 33 & 56.49\end{array}$	
157	47 \% Leo	4	$\begin{array}{llll}10 & 22 & 15,77 \\ 10 & 49 & 39,53\end{array}$	3, 170	1020 N 5727 N		47,55 55,63
158	4^{8} \& Uria majo	4	$\begin{array}{llll}10 & 49 & 39,53 \\ 10 & 50 & 455 \\ 10\end{array}$	3, 2,709	57 ${ }^{17} 17 \mathrm{~s}$	(162 ${ }^{1}$	55,
159 160	${ }_{\text {\% }} \begin{gathered}\text { a Crater } \\ 50\end{gathered}$	4	$1{ }^{10}$	3, 847	6250 N	1624857,61	57.
	ı β Crater	34	$11.150,06$	2,933	31445	16527 30,97	
162	688 Leo	23		3,199	2137 N 1631		
		5_{5}^{3}	$\begin{array}{rrr}11 & 3 & 4+23 \\ 11 & 13 & 28,15\end{array}$	3, 2 , 695	1717 s		
$\begin{aligned} & 164 \\ & 165 \\ & 165 \end{aligned}$	$13 \times$ Crater 78. Leo	${ }_{5}^{56}$	$\begin{array}{lll}11 & 13 & 28,15 \\ 11 & 13 & 28,32\end{array}$	2, ${ }^{2,125}$	113^{88}	$: \begin{array}{lll} 168 & 22 & 4,85 \\ 168 \end{array}$	
						$1692+52,3+$	46,28
167	${ }_{91}{ }^{1}$ L Leo	4	:1 26 42,82	3, 069	$\bigcirc 17 \times$	1714042,29	46,04
1	3 V Virgo	5	11 35 34,11 11 18	6, ${ }^{3}, 087$	739	1735351,70 $17+3+51,90$	46, 3^{1}
169	* preced. ${ }^{\text {® }}$ Leo		$\begin{array}{llll}\text { 11 } & 38 \\ 11 & 19,46 \\ 11 & 3 & 50,49\end{array}$	3,062	$1541:$		45,93
17°	$9+$ DENEBOLA		$11 \quad 3850,49$	3,062			
	Virgo	3	i1 $_{11} 4016,3^{8}$	8 3, 1	254 N		83
172	$6+2$ Uria major				54 23 23 37	179 31 4 +4,10	
17		$\begin{aligned} & + \\ & 4 \end{aligned}$	$\begin{array}{lll}11 & 58 & 6,94 \\ 11 \\ 11 & 59 & 1,63\end{array}$		2130 s	1795754247	46,00
$\left[\begin{array}{l} 177 \\ 175 \end{array}\right.$	${ }^{2}$ 2\% Corvus	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	11 59 12 5 27,23 12	${ }_{3}{ }_{3}{ }_{3}$	5898	1812148,42	+5,32
			532,31		1626	181 $23 \quad 4,58$	
	$15 \% \quad \mathrm{Virgo}$	3	1298040,74	+ 3,067	$7{ }^{1} \times 27$		O1
1	98 Corvis	3	$12 \begin{array}{lll}12 & 23 & 54,39 \\ 12\end{array}$	3, ${ }_{2}$	2217		sc
,	5 * Draco		$\begin{array}{lll}12 & 24 \\ 12 & 77,65 \\ 12 & 31 & 3,45\end{array}$		70	$\mathrm{s}_{1} 18753 \mathrm{~F} 27$,	40,03
18	$29 r^{1}$ Virgo	3	$\begin{array}{llll}12 & 31 & 3\end{array}$				

[^0]
Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\left\|\begin{array}{l} \mathrm{N}^{\circ} \text { of } \\ \text { Star. } \end{array}\right\|$	Name and Character of Star.	$\left(\begin{array}{c} \mathrm{Mag}- \\ \text { ni- } \\ \text { rude. } \end{array}\right.$	Medium Right Afcenfion in Time.	Annual Variation in R. A. and in Time.	Medium Declination.	Medium Right Afcenfion in Equat. Part.	Annual Variation in R. A.
			$\mathrm{h}, 11 \mathrm{~T} \frac{\mathrm{t}}{6}$	गठठण	- , Nor.	${ }^{*}$ Tठ	${ }_{4} \frac{1}{105}$
181	77 : Urfa major	23	$\begin{array}{llll}12 & 45 & 12,58\end{array}$	$\stackrel{+}{1,746}$	573 N	1911888	$\underset{+1,19}{+}$
182	43 \& Virgo	3	$1 \begin{array}{llll}12 & 45 & 33,66\end{array}$	3, 047	+ 29 N	1912324,93	45, 71
183	47 : Virgo	3	$12 \quad 5213,33$	3,004	$12 \quad 2 \mathrm{~N}$	1933 20,01	+5,06
184	51 \% Virgo	$3+$	1259 36,46	3,095	428 s	$19+5+6,97$	+6, 42
185	2% Hydra	3	$13 \quad 8 \quad 4,31$	3,225	227	197 1 4,64	48,38
186	* preced. a Virgo	-	13913,00		-•••	197 is 15,00	
187	67 SPICA	F	$13 \mathrm{I} 4+\mathrm{t}, 11$	3, 137	1078	$19^{8} 40 \quad 1,66$	47,06
188	79 \} Ur¢a major	3	13 15 49,62	2,425	5559 N	$19^{8} 57{ }^{2} 2+26$	36,37
189	99 i Virgo	4	131610,79	3, 129	1140 s	199241,83	+6,93
190	79 ら Virgo	3	$13 \quad 2430,65$	3,064	- 26 N	201739,68	45,96
191	4 т Bootes	4	13 37 46,36	2, 884	1827 N	20, 26 35,35	43,26
192	85 : Uraa majo	23	1339388,85	2, 355	5019 N	$2045+42,80$	35,88
193	8 - Bootes	3	$13 \quad 45 \quad 9,21$	2,860	1925 N	2061718,12	$44^{2}, 90$
$19+$	11 a Draco	23	1358858,88	1, 628	6520 N	20944 43,24	$2+, 42$
195	$98 \times$ Virgo	4	$14 \quad 2 \begin{array}{ll}14,87\end{array}$	3, 179	920 s	2103343,04	47,68
196	16 ARCTURUS	1	14632,21	2, 722	2015 N	$2113^{8} 3,16$	40,83
197	* fequ. a Bootes	.	$1+636,46$	-.	,	$\begin{array}{llllll}211 & 39 & 6,90\end{array}$	
198	100λ Virgo	4	148819,14	3, 223	12275	$212+47,16$	48,35
199	$2+\gamma$ Buotes	3	14241,50	2, 428	3911 N	216022,54	36,42
200	30% Bootes	3	$1+3135,56$	2, 85+	1436 N	2175353,42	42, 81
201	36 : Bootes	3	1483614,99	2,622	2756 N	2193344,80	39. 33
202	7μ Libra	5	$14 \quad 38 \quad 22,95$	3,268	1318 s	219 3544,22	49,02
203	$8 a^{1}$ LIBRA	6	$1+3938,74$	3, 299	159 s	2195441,10	49,49
204	* prcced. $a^{2} \sim$		$1+3938,77$.	2195441,55	-
205	$9 a^{2}$ LIBRA	23	$1+3949,97$	3,289	1512 s	2195729,55	$4.9,3+$
206	7β Urfa minor	3	$1+5127,55$	--0,329	7459 N	2225153,19	--4, 94
207	20γ Scorpio	3	$14 \quad 5224,35$	3, + 82	$2+29 \mathrm{~s}$	22365,22	5223
208	42β Bootes	3	$145+24,99$	2, 262	4111 N	2233614,85	33, 93
209	43 \& Bootes	5	145552,50	2, 580	2744 N	$22358 \quad 7,57$	38, 70
210	27 \& Libra	23	$15 \quad 615,61$	3, 215	838 s	22633 54,2 1	48, 22

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{\circ} \text { of } \\ & \text { Star. } \end{aligned}$	Name and Charadter of Star.	$\begin{aligned} & \text { Mag- } \\ & \text { ni- } \\ & \text { tude. } \end{aligned}$	$\underset{\text { Right }}{\mathrm{M}}$	Medium Afcenfion 'l"me.	Annual Variation in R.A. in Time.	Mediun Declination.	Medium Right Afcenfion in Equat. Part.	$\begin{gathered} \text { Annual } \\ \text { Yariation } \\ \text { in R.A. } \end{gathered}$
				" $\frac{\mathrm{T}}{1} \frac{1}{0} 0$	" テ̄ँण		- , " $\frac{1}{\frac{1}{0} \overline{0}}$	" 1
21	498 Bootes	3		7 26,62	$\stackrel{+}{+}$	344 N	2265139,28	${ }_{3}^{\text {t }}$
212	1 - Corona North	6	15	1151,97	2, 487	3021 N	2275759,55	37, 30
213	2 *Corona North.	,		14 56,05	2,465	3 I 1 N	228440.73	36,97
214	3β Corona North.		'15	19 3, 4,88	2, 43	294^{88}	2295343,13	37124
215	${ }^{1} 3 \gamma^{2}$ Uria minor					$7233 \mathrm{~N}$	23017 56,39	--3 14
216	35% Libra	4		2138.42	3, 365	1610 s	2302436,26	50,48
217	$3^{8} \gamma$ Libia	34.		$2+21,22$	3, 328	147	231518,34	49, 52
218	138 Serpens	3		2515,84	2,861	II 13 N	2311857,61	42,91
219	5 GFMMA	2		2613,29	2, 543	2724 N	$\begin{array}{lllll}231 & 33 & 19.35\end{array}$	38, 15
220	$43 \times$ Libra	4		3027,12	3. 433	191	$23236 \div 677$	51,49
22 I	24 a SERPENS	2		$3+25,21$	2, 936	74^{*}	$23336 ; 8,00$	4, c 4
22	* requ. a Serpees			$36 \quad 23.53$		- - .	234553,05	\cdots
223	23 B Serpens	3		36 57,70	2,756	164 N	2341425,47	41,34
12\%	32μ Serpens	4		39 10,30	3, 023	248 s	$23+4734.55$	45,35
22.5	37 : Serpens	34		4050,97	2,964	56	2351244.51	44, 54
226	10 \% Cnrona North.	4		41 12,45	2, 515	$26+2$ N	$\begin{array}{llll}235 & 18 & 6,71\end{array}$	
227	45^{λ} Libra.	4		4144,86	3, 457	1933	$23562612: 93$	$51,86$
228	5 ¢ Scorpio	34		$4 \div 33,34$	3,671	2837	2368820,06	$55,06$
229	6π Scorpio	3		$4^{6} 46,43$	3,600	25315	$\begin{array}{lllll}236 & 41 & 36 & 48 \\ 236\end{array}$	$54,00$
230	48 \& Libra	4		47 0,91	3,339	1345	$23645 \quad 13,63$	50,09
	412 Serpens	3		4712.93	2,740	1621 N	2364813,98	41,10
$2{ }^{-2}$	78 Scospio	3		4831,89	3, 521	2225	$\begin{array}{lll}237 & 7 & 58,38\end{array}$	52, 82
233	13 - Corona LVort	45		49 18.54	2,483	2728 N	237193838	37, 2.4
234	44π Serpens	4		53 41,18	2576	2321 N	$1 \begin{array}{llll}238 & 25 & 17,72\end{array}$	38,64
235	8 \& Scripio	2		5349,71	3,465	19 15 s	$238 \quad 27 \quad 25,65$	51,97
	13% Draco	$3!$		$5^{8} \quad 8,28$	1, 142	596 N	$\begin{array}{llll}239 & 32 & 4,27\end{array}$	17, 13
1237	It " Scorpio	$+$		- 23,31	3, 465	1856 s	$2,40 \quad 5 \quad 49,60$	51, 96
1238	I \& Ophiuchos	3	16	3 52,80	3, 132	310 s	2405811,95	46, 98
239	2 \& Ophiuchos	34	16	7 45,09	3, 154	412 s	$2+156$	7,30
2.40	202 Harcules	3		13 5,83	2, 642	1938	$24316 \quad 27,41$	39, 63

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{\mathrm{o}} \text { of } \\ & \text { Star. } \end{aligned}$	Name and Character of Star.	$\begin{gathered} \text { Mag- } \\ \text { ni- } \\ \text { tude. } \end{gathered}$	Mediunz Right Afcenfion in Timc.	Annual Variation in R. A. and in Time.	Mediun Dcclination.	Mcdium Right Afcenfion in Equat. 1'art.	Annual Variation in R. A.
			$\mathrm{h}, \mathrm{\prime} \frac{1}{\text { % }}$	"	- , Nor.	- , $11 \frac{1}{10}$	" $\frac{1}{100}$
271	22λ Sigittarius	\pm	$18 \quad 15$ 37,66	$\frac{+}{\frac{1}{7}}$	2531 s	2735424,92	+ 55,57
272	* preced. a Lyra		182840,12	- .		27710 1,88	5
273	3 WEGA	1	I8 $30 \quad 9,89$	1, 994	3836 N	27732 28,35	29,91
274	* fequ. a Lyra		18 18 3140,00	- \cdot	-••	2775450,00	
275	27 ¢ Sagittarius	34	i8 $33 \begin{array}{ll}\text { 18,39 }\end{array}$	3,747	271115	$\begin{array}{llll}278 & 17 & 20,84\end{array}$	56,2I
276	4: Lyra		183718 $4^{2,8}$	1, 983	3928 N	2792543,03	29,74
277	$32 v^{1}$ Sagittarius	$+5$	$\begin{array}{lll}18 & 42 & 5,41\end{array}$	3, 625	2259 s	280 3121,22	54, 38
278	10 B Lyra	3	184241,86	2, 211	$33 \quad 9 \mathrm{~N}$	2804027.89	33,16
279	34 - Sagittarius	3	184251,40	3, 724	2632 s	2804250,99	55,86
280	$35 y^{2}$ Sagittarius	$+5$	$18 \quad 43 \mathrm{I}, 13$	3,623	$225+\mathrm{s}$	$280+516,39$	54, 35
281	63 o Serpens Dup.	3		2,977	357 N	$28134 \begin{aligned} & 8,2,35 \\ & 34,84\end{aligned}$	44, 66
282	12 \& Lyra	34	184731,16	2,095	3639 N	2815247,43	31, 42
283	47 - Draco	4	184814,15	0, 880	59 9 N	2823332,20	13, 21
284	14% Lyra	3	185127,04	2, 241	3226 *	28251515,55	33, 61
285	39 - Sagittarius	4	$1852{ }^{1} 10,18$	3,595	22 I	2831017,72	53,92
286	+0 \% Sagitarius		$185+26,45$	3, 758	2757 s	$2833^{6} \quad 36,82$	56,37
287	16 a Antinous	34	185538,10	3, 186	510 s	2835431,55	47,79
288	17 ¢ Aquila	3	$\begin{array}{llll}18 & 56 & 12,69\end{array}$	2, 755	I 335 N	$28+3{ }^{2} 10,37$	41,33
289	41π Sagittarius	34	185751,37	3,574	2120 s	2842750,57	53,61
290	42 * Sagittarius	45	19315,27	3,685	2535 s	2854849,04	55,27
291	43 d Sagittarius	46	19555,86	3,517	1918 s	2862857,90	52,76
292	57 o Draco	3	191227,95	0, 033	6719 N	288659,21	0, 49
293	$1 \times$ Cygnus	4	191228,28	3, 383	$525^{8} \mathrm{~N}$	28874 4,19	20,73
294	30 o Aquila	3	$1915 \quad 24,12$	1,008	$24+\mathrm{N}$	2885151,79	45, I2
295	6 \% Cygnus	3	192238.53	2, 415	2733 N	3903937.97	$3^{6,23}$
296	10, Cygnus	46	I9 2439,61	1, 511	51 19 N	291 9 54,19	22,67
297	41 A Antinous	34	192622,16	3, 106	143 s	$29135 \quad 32: 37$	46, 59
29^{8}	13 \& Cygnus	4	19315,16	I, 645	4946 N	2924517.40	24, 68
299	5 a Sagitta.	4	I9 31 9,25	2, 673	$173+$ N	2924718,74	40, 17
300	56 f Sagittarius	6	19 $3+41,43$	3,520	120145	203 40 21,39	52,80

Suppl. Vol. I.

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\left\{\begin{array}{l} N^{0} \text { of } \\ \text { Sidr. } \end{array}\right.$	Name and Character of star.	$\begin{aligned} & \text { Mag- } \\ & \text { ni- } \\ & \text { tude. } \end{aligned}$		Medium Right Afeenfion in Time.	$\left\|\begin{array}{c} \text { Annual } \\ \text { Yariation } \\ \text { in R.A. } \\ \text { and } \\ \text { in Time. } \end{array}\right\|$	Medium Declination.	Medium Right Afcenfion in Equat. Part.	$\left\|\begin{array}{c} \text { Annual } \\ \text { Yariation } \\ \text { in R. A. } \end{array}\right\|$
				"	15		\| 0 , " $\mathrm{x}^{\frac{1}{0} 5}$	1
331	7 Aquarius	6		- 46 4,59	+ ${ }_{3,255}$	1028 s	31131880	$+\frac{\overline{+}}{4,82}$
332	23 Q Capricornus	54		5+39,75	3,384	1815	$\begin{array}{lllll}313 & 39 & 56,25\end{array}$	50, 76
333	$13 \times$ Acquarius	5		- 53 41,2+	3,274	12103	3144018,64	49, I 1
334	S \& Equuleus	4		$54^{9,78}$	2, 297	426 N	$316 \quad 2711,73$	44,96
335	32 - Cispricornus	5		1115,67	3, 355	${ }^{17} 741 \mathrm{~s}$	$317+625,00$	50,33
33^{6}	4β Equaleus	6		1257,71	2,931	$55^{8} \mathrm{~s}$	3181425,62	44, 72
337	18 Aquarius	6		1314,77	3,286	13445	318 18841,53	49,29
338	5 a Cepheus	3	1	13, 46,85	1,427	6145 N	$31826+2,69$	21,40
339	22β Aquarius	3	2 I	211,12	3, 165	627 s	32015 16,7+	47, 48
340	39 : Capricornus	4		25 52,29	3,379	2021 s	$\begin{array}{llll}321 & 28 & 4,34\end{array}$	50,68
341	8β Cephens	3	21	26 1,18	O, S21	$69+1 \mathrm{~N}$	3213017,76	12, 32
342	40γ Capricornus	34		28 59,14	3, 329	1733 s	3221447,15	49,93
343	$43 \times$ Capricornus		21	3127.9^{8}	3,360	$19+6 \mathrm{~s}$	$32251597+$	5c, 40
$34+5$	8 : Pegatus	3	1	3+ 21,53	2,943	858 N	$32335 \quad 22,99$	+4, 15
345	So π^{2} Cygnus	4		$3+59,63$	2, 116	$50 \quad 17 \mathrm{~N}$	$3234+5+, 3^{8}$	31,74
34^{6}	49 ¢ Capricornus	3		3558,63	3,310	1715	$\begin{array}{llll}23 & 59 & 40,25\end{array}$	49, 65
347	* preced. \% Aquarius	-	21	55 8,21		17	$\begin{array}{llll}328 & 47 & 3,15\end{array}$	$\cdots \cdots$
34^{8}	34 a AQUARIUS	3	21	55 29,75	3,067	1175	$\begin{array}{lllll}328 & 52 & 26,25\end{array}$	46,00
349	48 y Aquarius	3	22	1118,89	3,094	223 s	$332+9+3.29$	$46, \div 1$
350	52π Aquarius	+ 5	22	$15 \quad 4.00$	3,065	- 22 N	$333+5$ 59,98	45,97
351	55 \% Aquerius	4		1831,68	3,079	72 s	354 3755,26	+5, 18
352	57 F Aquarius	5	22	$20 \quad 2.99$	3,186	11 教 5	$33504+84$	+7,79
353	7 Lacerta	4	22	23 7,61	2,431	41) 16 N	$335+54,14$	35, 46
354	62 * Aquarius	4	22	$25 \quad 4.59$	3,079	19 s	3361688,78	45, 19
355	$\sigma_{3} \times$ Aquarius	5		2723381	3, I17	$51+5$	3365050,67	46, 76
356	42 \% Pegafus	3	22	31 29:06	2,981	948×3	$\begin{array}{llll}337 & 5215,89\end{array}$	44, 72
357	$44 \times$ legatus	3	22	33 37, 77	2,792	2り11 11×3	$3382+27291$	41, 88
358	G9 τ^{2} Aquarius	5	22	37400	3, 197	15 7 s	3391610,57	47.96
359	$71 \tau^{2}$ Aquarins	56	2	3859,29	3, 190	$1+39$ s	339 +4 $+9 \times 1$	+7, 35
1360	$73 \times$ Aquarius	4		4210,52	3, 137	8 38 s	3703237,87	$\therefore 7,05$

Catalogue of the principal Fixed Stars to the beginning of the Year Eighteen Hundred.

$\begin{aligned} & \mathrm{N}^{0} \text { of } \\ & \text { Star. } \end{aligned}$	Name and Character of Star.	$\left.\begin{gathered} \text { Mag- } \\ \text { ni- } \\ \text { tude. } \end{gathered} \right\rvert\,$	Rig	Medium ht Afcenfion in Tinse.	Annual Variation in R. A. and in Time.	Medium Declination.	Medium Right Afcenfion in Equat. Part.	Annual Variation in R.A.
			h	$\stackrel{1}{0}$	" 1 ¢ ${ }^{\text {¢ }}$	- , Nor.	$\hat{0} 111{ }^{\frac{1}{100}}$	$1 / \frac{1}{105}$
361	32 . Cepheus	4		4235,33	$\stackrel{+}{+109}$	659 N	$340 \quad 38 \quad 49.95$	$\frac{+}{1,63}$
1362	${ }_{7} 6$ o Aquarius	3		$4+1,80$	3, 201	1653 s	341027,06	48,02
363	* prec. a Pifc. South.			40 17,35	- .	- .	$340+20: 25$	
364	24 FOMALHAUT	1		4633,60	3,330	3041 s	$\begin{array}{llll}341 & 3^{8} & 24,00\end{array}$	49,95
365	* fequ. \& Pisc. South.	.		$4^{8} 3 \mathrm{~S}, 0+$		$34^{2} 930,60$	
366	53 B Pegafus	2		5+ 5,50	2, 874	27 ON	3433122047	43, 11
367	54 MARLAB	2		54 47,99	2, 964	148 N	$343+159,85$	44,46
368	* fequ. a Pegafu	-		55 35,64		- . .	$3+353 \quad 54,60$	
369	90 ¢ Aquarius	$+5$		3 57,39	3,109	$7 \quad 7 \mathrm{~s}$	$34559 \quad 20,79$	46, 64
370	$91 \psi^{\text {x }}$ Aquarius	5		5 23,05	3, 125	1010 s	$3+6 \quad 20+5,68$	46,88
	6γ Pifces	5		646,42	3, 05	212	$34^{6} 4^{1} \quad 36,37$	
372	$95 \chi^{3}$ Aquarius	3		832,63	3, 125	1042 s	347 S 9,48	+6,88
373	16 Pifces	6		26 11,40	3,065	10 N	3513250,96	45,97
374	18 a Pifes	5		3 5 51,01	3,066	0 +0 N	3525745,08	45,99
375	19 Pifices	56		3610,88	3,062	223 N	354243,18	45,93
376	28 a Pifces	5	23	$49 \quad 2,88$	3, 061		$35715+3,16$	45,92
377	* prec. a Andromeda			5545,47	,		$\begin{array}{lllll}358 & 56 & 22,05\end{array}$	- ${ }^{5}$
378	* prec. a Andromeda	.		56	3,060		359349,19	45,90
379	$21 * A N D R O M E D$.	2		$5^{8} \quad 4,32$	3,065	2759 N	359314,95	45,97
380	* fequ. a Andromeda			2 -8 5 2,98	- -	5	02314,70	- .
381	11 B Cailiopea.	2		$5^{8} 3+32$	3,0,1	$58 \quad 3 \mathrm{~N}$	3593834,75	45,76

A U G $\quad\left[\begin{array}{lll}77 &]\end{array} \quad\right.$ A U T

Afrothe- ASTROTHEMATA, the places or pofitions of the mata ftars, in an aftrological fcheme of the heavens.

ASTROTHESIA, is ufed by fome for a conltellation or collection of ftars in the heavens.

ASTRUM, or Astron, a conltellation or affemblage of ftars: in which fenfe it is diftinguifhed from Afler, which denotes a fingle ftar. Some apply the term, in a more particular fenfe, to the Great Dog, or rather to the large bright far in his mouth.

ASYMMETRY, the want of proportion, otherwife called incommensurability, or the relation of two quantities which have no common meafure, as between 1 and $\sqrt{2}$, or the fide and diagonal of a fquare.

ASYMPTOTES, (fee Encycl.) are, by fome, diftinguifhed into various orders. The afymptote is faid to be of the firft order, when it coincides with the bafe of the curvilinear figure ; of the fecond order, when it is a right line parallel to the bafe; of the third order, when it is a right line oblique to the bafe; of the fourth order, when it is the common parabola, having its axis perpensicular to the bafe ; and, in general, of the $t+2$ order, when it is a parabola whofe ordinate is always as the n power of the bafe. The afymptote is oblique to the bafe, when the ratio of the firt fluxion of the ordinate to the fluxion of the bafe approaches to an allignable ratio, as its limit ; but it is parallel to the bale, or coincides with it, when this limit is not affign3 ble.

ATTAR of roses. See Roses, Otter of, both in the Encyclopredia and in this Supplement.

AVANT-foss, or Ditch of the Counterfcarp, in for. tification, is a wet ditch furrounding the counterfarp on the outer fide, next to the country, at the foot of the glacis. It would not be proper to have fuch a ditch if it could be laid dry, as it would then ferve as a lodgment for the enemy.

AVALON, a peninfina at the S. E. corner of the inand of Newfoundland, which is joined to the ifland by a narrow neck of land, that has Placentia Bay on the S. and Trinity Bay on the N. The E. part of this peninfula is encompafled by the Great Bank, and has, befides the two former bays, the bay of Conception on the N . and the bay of St Mary's and Trepally bay on the S . It contains feveral excellent harbors, bays and capes, among which are St Mary's, Pine, Race, Dallard, St Francis, \&c.-Morse.

AUblGNE. See Stuart in this fupplement.
AVES, or Lird's Ifland, in the Weft Indies, fituat. ed in N. lat. 15. 3c. TV. long. 63. 15. named fo from the great number of birds that breed there, yet is without a tree, which obliges them to lay their eggs in the fand. A thoal runs from hence to the infands of Saba, St Eutatius, and St Chrifophers; which is about 2 leagues broad, and from 10 to 20 fathom foundings.

There is another ifland of this name, among the Little Antilles, between the coatt of St Jago de Leon, in Terra Firma, and the illand of Eonaire-Morse.

AUGUSTA Co. in Virginia, has Albemarle co. on the E. Part of it lies E. and part W. of the North Mt. a ridge of the Allegany. The foil is fertile, and the county contains 10,886 inhaoitants, including 1567 flaves.

Here is a remarkable cafcade, called the Falling Spring. It is a brar.ch of the James, where it is called Suppl. Vol. I.

Jackfon's River rifing in the mountains 20 mitiss S . W. from the Warn Spring, or Hot Spritg, which lies in N. lat. 38. 9. W. long. 80. 6. At the Faling Spring, the water falls 200 feet $;$ which is about 50 feet higher than the fall of Niagara. Between the flhect of water and the rock below, a man may walk acrofs dry. The theet of water is only 12 or 15 feet wide above and fomewhat wider below. It is broken in iss breadth in two or three places, but not at all in its height.-ib.

Augusta, in the Upper Difrict of Georgia, was till lately the feat of government. It is fituated on a fine plain in Richmond co. on the S. W. bank of Savannah R. where it is mearly 500 yards broad, at it bend of the river, $\mathbf{3} 27$ miles N. W. from Savamah; from Wathington S. E. by E. and from Louiville S. wetterly, 50 miles; and 934 miles S. W. from Pliladelphia.

At the firit fettlement of the colony, Gen. Ogle. thorpe erected a fort here, for protecting the Indian trade, and hulding treaties with the natives. In 1739 , about 600 penple teparated themfelves from the maritime fettlemer"s, and temoved to its neighbourhood to carry on a peltry trade with the Indians. Thete were, however, but 3 or 4 houfts in the town of Augufta in 1780 , and in 1787 it cortained 200 . The countiy round it has an excellent foil, which with its central fituation between the upper and lower countries, will bring it falt into importance. N. lat. 33. 19. WV. long. 80. 46.-ib.

AUMIL, in Bengal, a native colleiter or manager of a diftrict on the part of government.

AVON, a river of Nova-Scotia, which empties into the Atlantic Ocean a little eaftword of Halifax. It is navigable as far as Fort Edward for veffels of 400 tons, and for veffels of 60 tons 2 miles higher. A river called St Croix runs into the Avon, whofe fource is in lakes and fprings, about 7 miles from its en. srance, where it is croffed by a bridge on the road leading to Windfor. It is navigable for veffels of 60 tons 3 miles, and for large boats 7 miles.-Morse.

AURELIUS, a military townfhip in New-York, in Onondaga co. on Owafoo Lake having the Cayuaga Refervation Lands W. and Marccilus E. and 9 miles E. of the ferry on Cayuaga Lake. By the ftate cenfus of 1796,213 of the inhabitants are electors.-ib.

AUTENIQUA, a large and beantiful conntry in Africa, lying to the ealt of the Cape of Good Hope, and inhabited, part of it, by Duich colonifts. The word itueniqua fignifies, in the Hottentot language, " a man loaded with honey;" a name which is not improperly given to the country, fince, as yon enter it from the Cape, you cannot proceed a flep without feeing a thoufind fwarms of bees. 'Ihe flowers on which they feed fpring up in myiads; and your attention is engaged, and your courfe fufpended, by the mixed odours which exhale from them, by their colours and variety, and by the pure cool air which you breathe. Nature has made thefe enchanting regions like fairy land. The calyxes of all the flowers abound with excellent juices, from which the bees extract the honey that they every where depofit in hollow rocks and trees.

This comntty was vifited in 1782 by M. Vallant, who calls it the moit delightful region in the univerfe:

A U T $\left[\begin{array}{ll}78 &]\end{array} \mathrm{A} \mathrm{U}\right.$ T

Auteniqua. and fays, that, as he approached it, he beheld, from the top of a very high mountain, an immenfe valley, adorned with agreeable hills, variegated in an infinite number of thapes, and extending in an undulating manner as fa: as the fea; whilt enamelled meads, and the moft beantiful paftures, ftill added to the magnificent feene. It abounds with fmall rivulets, which, flowing down from the nountains, run into the fea through an hundred different clannels. The water of thefe rivulets has the colour of Madeira wine, and a ferrnginous tafte; bat nur traveller did not examine whether this tafte and colour froceed from their flowing through fome mine in their paffage, or from the roots and leaves of trees which they carry along with them.

The whole of Auteniqua, from the chain of mountains which divides it frcm the country of that race of Hottentots called Gonaquas to the fea, is inhabited by feveral planters, who rear a number of catte, make butter, cut down timber, and collet honey; all of which they tranfport to the Cape: but it appears that they make not the moof of their fituation. "Can it be bejieved (fays M. Vaillant), that the directors of the Company, for their own ufe, thould order fhips to be fent every year from Amflet dan, loaded with planks and boards of every kind, whilf in this country there are immenle forelts, and the mof beautiful trees in the world? This abfiurdity, however, is not at all aftonifhing. The Company gratuitouly furnifhes the governor and all the officers with whatever wood they have occafion for; and it is delivered to them at therr houfes without any expence. The governor therefore has no perfonal interelt to extend his views to this part of the adminill ration, and to abulilh an abufe fo prejudicial to the colony."

But the colonifts themielves muft be a very indolent and fupid kind of people; fince, if our traveller deferves credit, they neglect advantages with which the perforal interelt of the governor cannot poffibly interfere. "I was filled with indignation (lays M. Vail. Jant) to fee people, who have wood within their reach, employ it in comnerce, and not have the courage to build for themfelves habitable houfes. They live in wretched hovels, conftructed of wicker-work, daubed over with clay ; the flin of a buffalo, fixed at the four corners to as many flakes, ferves them for a bed; and the door, which is at the fame time a window, is flut by a mat ; while two or three mutilated chairs, a few pieces of plank, a kind of table, and a pitiful box of two feet fquare, form all the furniture of thefe colunial habitations. Thus is the picture of the moft profound mifery contrafted with the charms of this terrefial paradife; for the beauties of thele regions extend even beyond Auteniqua. The people, however, though their houfes be lad, live well. They have game and falt-water fifh in abundance; and enjoy exclufively, over all the other cantons of thefe colonies, the advantage of having, for the whole year without interruption, vegetables of evcry kind in their gardens. For this they ate indebted to the excellence of the foil, and to its being naturally watered by fmall freams, which crcfs each other in a thoufand cifferent direations, and, as one may fay, lay the four feafons under contribution to fertilize Auteniqua. Thefe ftreams, which frequently orerflow their banks, but never dry up, proceed from a caule well known; the high mountains towards the
calt, which are covered with forefte, flop the clouds Aureniqua. and the fogs carried from the fea, and this occafions very abundant rains."

In thefe mountainous regions, which, as well as the plain, our author comprelends under the denomination of Auteniqua, there are multitudes of elephants, buffaloes, panthers, hyenas, and antelopes of evers fpecies; and all thefe animals are hunted and killed by the natives, as well for food as for the protestion of their flocks and herds from fuch of them as are beatts of prey. Our author has eaten the flefh of every nne of them except the hyena; and declares, that the foot of an elephant, baked after the Hottentot manner, is one of the mort delicious morfels that he ever tafted. He gives directions for hunting them all ; but warns his readers from attacking elephants when he finds them in droves, for then, he fays, they are invincible. He even thinks it exceedingly dangerous for one man, however well armed, to attack a fingle elephant in the plain. The buffalo he defci ibes, contrary to moft other travellers, as a timid animal, which never refifts till his fituation becomes defperate; and he thinks that there would be no difficulty in training him, if caught when a calf, to the yoke like the bullocks of Europe.

The kites and vultures of this country, our traveller reprefents as in the highelt degree voracious and fierce, infomuch that it is hardly poffible to fright them from their prey. He had on one occafion killed two buffaloes, which he ordered to be cut into very fmall pieces, that they might be more eafily falted, and expofed afterwards to the air and the fun. His waggons, as well as the buthes and trees which furrounded him and his people, were loaded with the bloody fragments of thefe two animals, and they had begun their operation of falting: but on a fudden, while they were not expeciing it, they found themfelves attacked by flights of kites and vultures, which, without exhibiting the leaft fymptoms of fear, perched in the midft of them. The kites were above all the molt impudent. They feized upon the morfels of fefh, and even contended furioufly with his people." When they had each carried away (fays he) a pretty large piece, they retired to fome branch, at the diftance of ten paces from us, and devoured it before our eyes. Though we fired our fufees they were not frightened, but returned inceffantly to the charge; fo that finding our powder wafted in vain, we refolved to keep them off with large poles until our provifions fhould be quite dry. This mancuvre, which for a long time harrafied my people, did nor prevent us from being plundered without mercy; but had we not employed it, nothing would have remained to us of our two buffaloes."

This battle with the kites trok place on the confines of the Dutch fettements; but when M. Vaillant had with dificulty pafied over the mountains which bound them, the profpects became more magnincent, the fuil feemed to be more froitful and rich, nature appeared to be more majeftic and grand, and the lofty mountains prefented on all fides more charming and delightful points of view than any that he had ever bcfore met with. Thefe feenes, contrafted with the dry and parched fields of the Cape, made him exclaim, he fays, in ccftacy, "What! thall thefe fuperb regions be eternally inhabited by tygers and lions? What fpeculator, with the fordid view only of eltablifhing a kind of centre for
commerce,

A U T [79] A U T

Autcniqua. commerce, conld have preferred the formy Table Bay to the numberiefs roads and commodious harbours which are to be found on the eaftern coalts of Africa? Thus (continues he) was I reflecting within myfelf, whillt I was climbing the mountain, and forming vain withes for the conqueff of this beautiful country, which the indolent policy of the European nations will perhaps never gratify."

If his defoription of its beauties and fertility be not greatly exaggerated, it is indeed wonderful that either the Dutch or fome other maritime power of Europe has not long ago taken poffeffion of it. After he had paffed the mountain, one could not, he fays, choofe a more agreeable or advantageous fpot than that upon which he then was for eftablifhing a thriving colony. The fea advances through an opening of about a thoufand paces in breadth, and penetrates into the country to the diftance of more than two leargues and a half. The bafon which it forms is more than a league in extent (he does not fay whether in breadth or in circumference) ; and the whole coaft, buth on the right and the left, is bordered wilh rocks, which intercept all communication with it. The land is watered by limpid and refrefling ftreams, which flow down on all fides from the ealtern mountains; and thefe mountains, crowned with majcftic woods, extending as far as the bafon, and winding round it with a number of finuofities, exhibit a hun. dred groves, which are naturally variegated, and each more agreeable than another.

The author proceeding forwards about two days journey, arrived at a bay known to navigators by the name of the Bay of Agoa, but'called by the colonilts Bletrenberg's Bay, from its having been vifited fome time before by a Governor Blettenberg, who ordered his name, together with the year and diy of his arrival, to be engraven on a tone column. This bay is a little beyond the limits of the country called Auteniqua; but it is not foreign from the purpofe of this article to infert in this place our traveller's account of it, and of the country around it.

The bay itfelf, he fays, is very fpacious, and has a fufficient depth of water for the largelt velfels. The anchoring ground is fure, and boats can fail to a beautiful part of the fhore, which is not contined by the rocks, as they are all there detached from one another. By advancing a league along the coalt, the crews would arrive at the mouth of a confiderable river called the Q ${ }^{2}$ eur-Boom, where they would find water. Refrelh. ments might be procured from the inhabitants of the environs; and the bay would fupply them with excel. lent fith, with which it abounds.

This bay is one of thole places where government might eftallith warchonfes and repofitories for timber ; and it is for this reafon that we have introduced it to motice in this article, The forelts around it, fays M. Vaillant, are everywhere magnificent, and the trees could be thore ealily cut down than any where elfe; for it is not to Iteep mountains that one mult go for wood, as at Auteniqua; it is here ready at hand; and during the fine monfoon might he tranf(ported to the Cape with little trouble and nor rik. The inexhanfaible and fertile lands in the neighbourhood of the b:1y, if once cul. tivated, would produce abundant crops, and draw together a great number of intelligent planters, on account of the ready communication which they would have
with the Cape. In a word, the Company, continues he, have nothing to do fo much for their own intereft as to form here a proper eftablithment. To the general profits of fuch an inftitution, would be added thofe of individuals, which could net fail to be of great importance. They might, for example, cut down a certain tree called ftinking wood, and export it 10 Europe, where it would undoubtedly be fonn preferred to mahogany and every other kind of wood employed by cabinet makers.

The Hottentots, who in feattered Rrauls inhabit this delightful country, our author defcribes as a faithful, gentle, and rather timid race. He affirms, that they have no religious impreffions whatever, nor any notion of fuperior powers who govern the world. But this, if not a wilful falfehood dictated by the philofophy of France, is probably a miftake arifieg from his fearity knowledge of their language, and total ignorance of the meaning of their religious ceremonies. His great mafter, as well as the malter of his fect. Lucretios, might have taught him, that fear, if not a better principle, will generate the notion of fuperior beings in the minds of favages; and from fear, by his own account, the inhabitants of Auteniqua are far from being free. He likewife affirms, and feems to confider it as mucla to their credit, that this race of gentle beings, fo far from being a prey to the palfion of jealouly (as other travel. lers have reprefented the Hottentots in general), are fo obliging, as to lend their wives to travellers who vifit them, and that they actually accommodated his Hottentots in this way. Auteniqua, as laid down in M. Vaillant's map, lies between $33^{\circ} 30$ and $34^{\circ} 50^{\prime}$ of fouth latitude, and between 20° and $23^{\circ} 40^{\prime}$ of eatt longitude; and his rout through the country was from fouthweft to north-eaft, or nearly fo.

AUTOMATON. Under this title and that of Androides full credit was allowed in the Encyclopedia to the fory of M. de Kempell's mechanical chefs-player, and a detail at fome length was given of the leats of that figure, as well as of fome other furprifing aulomata. No man more readily admits the powers of the fkilful mechanician than the writer of this fhort article ; but having many years ago detected the impofition which was practifed on the public in fome parts of Scotland by a circumferaneous mountebank, who exhibited a figure apparently capable of writing a certain number of words, he has ever fince furpected impofture in all automata which appear to have the power of varying their motions according to circumftances. With refpect to the chefs-player, there is now lufficient evidence that his furpicions were well founded.

In the defcription of this figure (Enoych. Vol. I. p. 787.), " it is faid, that the antomaton could not play unlefs M. de Kempell or his fubfitute was near it to dired its moves. A fimall box during the game was frequently confulted by the exhibiter ; and lierein confifled the fecret, which he faid he could in a moment communicatc." The fecret was indecd fimple: " i well tanght boy, very thin and fmall of lis age, was concealed in this box almon immedidtely under the chels-board, and agitated the whole machine." This we learn from Thomas Collinfon, Efq. Who was lat into the fecret at Drefden by a gentleman of rank and ta. lents, named Fofeph Freidrick Freybere, by whom the vitality and foul of the chess-playing figure had forne M 2
time

Autnma- time before been completely difcovered. Mr Collinfon, con. us to the reality of mechanisal chefs-playing, undeceived his friend, by communicating the difcovery of Freyhere in a latter, which the Doctor has with great propriety publifhed in the Addenda to his Mathematical Diction. aty. Mr Collinfon adds, and we doubt not with truth, that, " even after this abatement of its being firialy an automaton, much ingenuity remains to the contriver." This was in fome degree true of the mechanifm of the writing figure, of which the compiler of this article detected the bungling impofure of the two exhibiters. The ligure itfelt, with all the principles of its motion, was very ingenioully conltructed; but the two men who exhibited it were ignorant and aukward, and could not conccal from a fcrutinizing eye, that the automaton wrote fometimes well and fometimes ill, and
never wrote at all when they were both prefent to the Automacompany. It was by infifting upon feeing them both together, and threatening to expofe the cheat to the whole town, that the prefent writer prevailed upon him who appeared to be the principal exhibiter, to confefs in private that his companion was concealed behind a fcreen, and to fhow how, from thence, he direcled the movements of the figure.

Conjugate AXIS, or Second Axis, in the ellipfe and hyperbola, is the diameter paffing through the centre, and perpendicular to the tranfverfe axis; and is the fhorten of all the conjugate diameters.

Tranferfe Axts, in the elliple and hyperbola, is the diameter palling through the two foci and the "wo frincipal vertices of the figure. In the hyperbola it is the fhortelt diameter, but in the ellipfe is is the longef.

B.

Baal's

BAAL's River and Bay, in Weit Greenland, lie between Bear Sonnd on the S. E. and Delft's Point on the N. W. and oppofite the mouth of Hudfon's Sirait.-Morse.

BABAHOYO, a village and cuftom houre on Guayaquil River, in Pern, being the landing place from the city of Guayaquil. Here the merchandize from Pern and Terra Firma, and their refpective provinces, are landed.- $i b$.

BABOPAS, a cown in the interior parts of New Albion, eaftward of the long range of mountains which extend northward from the head of the peninfula of California. N. lat. 37.45. W. long. 114. 25. -ib.

BAFFIN's Bay, is the latgelt and mot northern gulf, or bay, that has yet been difcovered in N. America; and lies between the 70 th and 80 th degrees of N. lat. It opens into the Atlantic ocean through Bafin's and Davis's Ilraits, between Cape Chidley on the Labrador coalt, and Cape Farewell on that of Weft Greenland; both of which are in about the 6oth degree of N . lat. It abounds with whales; and on the S. W. fide of Davis's 』raits has a communication with Hudfon's Bay, through a clufter of iflands. It was difcovered by the navigator whofe name it bears, in the year 1662. Some maps thew a communication with Hudfon's Byy, in the 'goth degree of N. lat. and in the $70: \mathrm{h}$ of W. long.-ib.

BAHAMA Iflands, (See Encycl.) The firf difcovery of the New World, by Columbue, began Osto. ber 11, 1492, at Guanahani, or Cats I'land, one of the Buhamas. They ware then full of people; who were fimple, mild and lived happy in the midit of plenty. Thefe unfortunate people were tranfported to the mines of St Domingo, after the cruel Spaniards had exterminated the numerous intabitans of that
large ifland; 14 years after the difcovery of there iflands, not one perfon remained in any of the Bathamas. At this time Charles II. Granted the Bahamas to the proprietors of Carolina. They fent feveral governors, and built the cown of Nalfat, which is now the feat of government in the Illand of Providence. The inland of Providence afterwards became an harbour for pirates, who, for a long time, infelted the American navigation. In 17 18, Capt. Woods Rogers was fent out to diflodge the pirates, and form a fettlement. This the captain effected; and the iflands have been improving fince by a flow progrefs. In time of war, the people gain confiderably by the prizes condemned there; and in the courfe of the prefent war between Great-Britain and France, numbers of American veffels, carrying provifions and ftores to French ports, have been carried in and condemned; and at all times they profit by the wrecks which are frequent in this labyrinth of rocks and floals. The Spaniards and Americans captured thefe inlands during the lait war; but they were retaken April 7, 1783. The Bahamas are faid to be 500 in number; fome of them only rocks, others very low and narrow, or little fpots of land on a level with the water's edge; but 12 of them are large and fertile, fome indeed rocky and barren. Five of them only are inhabited, viz. Providence, Harbor, Eleutkera, Cat, and Exume; Turk's iflands have about 500 men in the fait feafon, but at other times half of them return to Bermuda.

The principal ifland which has given its name to the whole clufter is Great Babama, in the Northerna Bank, called the Little Eiank of Balsana, whofe ficuation is E. and W. about 20 leagues from the coall of Florida. At a little difance to the E. is Lucayoneque, of nearly the fame fize, whofe fituation is N. and S. To the N. of both is Lucajo, which dics E. and W. A channes

Bahamto

Eahsma II
channol of 8 or 10 leagues feparates the Little Eank, from th: Great Bank, in which is Providence I. with the great ifland of Alabofler, which has Harbor I. on the N. Cape. Audros iflands are on the S. W. of Providence, which take up a fpare of 30 leagues long and 5 broad. Towards the S. E. are Stocking, Exunta, and Tuma, or Long Ifland. Guanabani, or Cats I. the firt difcovered in America, lies E. of the Great Bank, and is feparated from it by Esuma Sound.

The climate of thefe iflands is temperate and the air tealthy. On the coafts is found ambergrife; and the inhabitants catch great quantities of green turtle. The only article cultivated for exportation is cotton; of which the medium export is 1,500 bags of 2 cwt. each. In 1787, there were 4,500 acres in cotton. In 1785,1786 , and 1787 , which were favorable years, each acre produced about 1121 t . It is very liable to be deflroyed by the worms; between Sept. and March, 1788 , no lefs than 280 tons were deftroyed. Thefe iflands alfo produce a great quantity of dying woods, and fome lignumvitx and mahogany ; and lie between 22, and 27. N. lat, and 73. and 81. W. long. In 1773, there were 2052 white, and $22+\mathrm{I}$ black, inhabitants; but of late years there has been a confiderable emigration from Norlh America, fo that the precife number cannot be given.-ib.

BAHIA DE CHETUMEL, called by the Britih Hanover Bay, l:es on the E. fide of the peninfula of Yucatan in the fea of H-nduras, and into which falls Honde River. It bas the Logwood Country oa the S. At its mouth are two large inands and a number of ifluts. The largen hand is Ambergrife Key, which runs along the mouth of the bay, and is 70 males long.-ib.

BAHRDT' (Dr Carl Friedirich) was fo deeply concerned in a combination of plilofoptuers formed, as they faid, for the advancement of ficierce and viriue, that an account of his life mult be interefting, if it were only to how the effects of this phitofophic culture on his own morals. We trunt therefore that our readers will be pleafed, perbaps improved, by the following narrative, taken from documents the moft authentic, by a man * whefe communications on other fubjects do credit to this volume.
Carl Friedirich Babrdt was, in 1741, bron at Leipfig, where his father, then a parifh miniter, and afterwards profeflor of theology, died in 1775 . It is natural to fuppofe that fuch a parent would be at due paiis to infilinto the mind of his fon the principles of piety, virtue, and partiotifin, which is indeed a branch of virtue; but if fo, he lived to fee that his labour had been in vain. While yet at college, where the courfe of his ftudies was calculated to fit him for the important of fice of preaching the gofpel, the young man enlifted as a huffar in the Putfisn fervice: but being bought off, he returned to the univerfity, where, in 176 t , he was admitted to the degree of M. A. Soon afterwards be became catechilt in lis father's church, was a popular preacher, and in 1765 publifhed fermons, and fome controverfial writings, which evinced that he poffeffed boch learning and genius. Neither learning nor genins, however, nor both united, could att.ich him to the caufe of virtue, or make him obferve even the common rules of decorum; for immediately after this publica.
tion he began to indulge in conviviality, and to give foope to his refentments in anonymous pafquinades, in the higheft degree bitter and offenfive. From the fhafts of his malice no perfon was fafe. Profeffors, magittrates, and clergymen, had indeed his chief notice; but lic condefcended occalionaliy to attack Audents, and fpated not even his own comrades or his friends.

Whillt he was thus labouring to make enemics of all to whom he was known, unfortunately, for his own ciraracter, his temperament was what the atomical philotopliers (who can explain every thing by ethers and vibrations) call fanguine; and he was, as he himfelf acknowledged, a paffinnate admirer of the ladies. Coming loome from his midnight revels, he frequently met in his way a young girl nextly drefled in a rofe coloured filk jacket and train, and a coltly fable bennet; and one evening, after havirg, as he $f_{1 y s}$, indulged frecly in fome old Rhenifh, he faw her hame to her lodgingre. Some time after this interview, the mitrefs of the honte (a Madan Godfchufky) came into his roon, and faid that the poor maiden whom he had debauched was pregnant. This was a misfortune autich be cou'd not lielp; but as it would ruin his character if known, he gave to the old lady a bond for $2 c 0$ dahlers (about L. 40 fterling), to be paid by inflalnents of tsenty-five, to keep the matter fecret. "The girl (he fays) was fonfible and grod; and as her converiation, for which he liad al. ready paid, was agreeable, he did not difcontinue his acquaintance."

It could not be fuppofed that fuch vifits, by a clergyman, would pafs unobiersed, however cauticufly made, in the midft of a town, of whicls the inhabitants had been the indifcriminate objects of his fatire; and he could hardly be furpufed when told by a friend, that one Bel, a magiftrate whom he had lampooned, was acquainted with the whole affair, and would bring it into a comit of juftice, unlefs the bond was immediately retired.

This bond was the enly evidence which could be produced againft Bahrdt, but it was fufficient to blatt his character in I ejplig, and muft therefore by any means be remored out of the way. To accomplith this, however, was a matter of fome difficulty ; for neither he nor his friend could raife the money. In this dilemma they fell upon a contrivance worthy of themfelves. They invited Madam Godfchutky to meet them in anocher houfe to receive the 200 danlers due to her by Bathrdt; but when the was ufhered into the room, and found no perfon waiting for her but Buhrdt's friend, the could not be prevailed upon to produce the bond till the money fhould be put into her hands, together with a prefent to herfelf. The Gentleman tried to intimidate her. He drew his fword; fhowed her how men fence : made puithes at the wall and then at her; but finding that the could not be frightened out of her fenfes, he threw away his fword, and cndervoured to take tlie bond from her by force. It was fome time before he prevailed; but at laft getting the paper out of her pocket, he tore it in pieces, opened the door of a clofet in which Bahrdt was concealed, and $\rho_{\text {aid, " There, you b-; there is }}$ the honourable fe!low whom you and your whore have bullied; but it is with me youbave now to do, and you know that I can bring you to the gallows."

Bahrdt, from whole memoirs of himfelf this ftory is taken, admits that there was a great fquabble on the
occafion;

Bahrid. n occafion; but he went home, comforting himfolf with the belief that he flould now have no farther trouble from Madam Godichulky or her girl. He clanced, howcver, to be miftaken. The magiftrate Bel had fome how been mode acquainted with this nefaricus tranfaction, and brought it into court on the day that our hero was to make fome very reverend appearance at church. The cafe of Bahrdr was now hopelefs; for after fome unfuccefsful attempts of his poor father to fave him, he was obliged to give in his gown and band, and to quit Leiplig.

To a parent the public difgrace of a child is one of the fivereft calamities to which homan nature is liable; bat for this calamity the father of Buhrot mult have been long prepared, as his ton appears to have been reanakably undutiful. Of this we have one memorable intance recorded by himfelf. His father, he fays, was fevere, and his own temperament halty, fo that he fometimes forgot limfelf. "One day (continues he) I laid a loaded pillol on the table, and told him that he fhould meet with that if he went on fo; but I was then only seventeen!"

On his being obliged to leave the place of his nativity, the friends of Bahrdt, and in particular Semler, an eminent theological writer, who had formed a very favourable opinion of his talents, were affiduous in their endeavours to procure an eftablifhment for him elfewhere; but his ligh opinion of himfelf, his impetuous and precipitant temper, and that fatirical habit which he had fo freely indulged in his outfer in life, made their endeavours long ineffectual. At laft he got a profefforfhip at Erlangen, then at Erfurth, and in 1771 at Gieffen. But in each of thefe places he was no fooner fettled than the got into difputes with his colleagues and with the elablifhed church; for he was a flrenuous partizan of the innovations then attempted to be made in the doctines of Chriltianity. In his publications, which were generally anony mous, he did not trult to rational difutlion alone, but had recourfe to ridicule and perfonal anecdores, and indulged in the moft cutting farcafms and grofs feurrility.
His love for convivial company continuing, his income was infufficient for the craving demand. Finding therefore that anecdote and Ander always procured readers, and poffeffing a wonderful activity and facility in witing, he never ceafed from pubiilhing lampoons and fatires, in which he farsed neither friends nor foes. But it was impolfibie to prevent thefe publications from being traced to their author; and his avowed theological vritings being fuch as could not be fuffered in a profeffer of divinity, the hoft of enemies which he had been at fo much pains to raife againt himfelf, were furnifhed with fuficient grounds for fubjecting his conduct to legal cognizance; even the very fudents at Gieflen were fhocked at fome of his liberties.

The confequence of all this was, that, after much wrungling in the chorch judicatories, he was jut about to be difmiffed from his profeflorlhip, when he got an invitation to Marfchlins in Switzerland to fuperintend an academy.

To Marfchlins he went about the gear 1776, and began his new career by forming the feminary after the model of an academy which had fome time before been fet up in the principality of Auhalt Deffau by one Bafedow, a man of talents and learning, who gave to it
the appellation of philanthropine. The plan of this academy was very different from thofe of the univerfities; for its author profelfed to confider languages, fciences, and the ornamental exercifes, as mere acceffories, his aim being to form the young mind to the love of mankind and of virtue, by a courfe of moral education certainly fpecious, and apparently unexceptionable. To make this novel infitution the more extenfively ufeful, the rules by which the education was to be conducted were framed in fuch a manner as, it was thought, would remove from the minds of Catholics, Lutherans, and Calvinitts, all uneafinels refpecting the faith of their children, as it related to thofe particular tenets which feparated them into different communions. It was even propofed to banith from the philanthropine all offitive relizion vihatever, and to inftrut the youth educated there in the principles only of natural, or, as it was called, philofopkical religion.

This plan was peculiarly fuited to Bahrdt's tafte, be caufe it left him at liberty to introduce into his acaderiy any fy fem of religious or irreligious opinions that he pleafed; a liberty of which he refolved to avail himfelf, and, though now a doctor in theology, to outfuip, in licentioulnefs, even the founder of the philanilmopine, who was not in orders. By meditating on the workings of his own mind, he had by this time formed his thenry of human nature, which was indeed very fimple. "The leading propenfities of the human mind (he fays) are three; inftinstive liberty, inftinctive activity, and inRinalive I.cve." By thefe exprelfions we fuppofe he means, "innate love of liberts, infind prompting to action, and the fexual appetite:" and he immediately adds, that "if a man is obltucted in the gratification of any of thefe propenfities, he fuffers an injury. The bufinefs therefore of a good education is to teach us how they are to be gratified in the highef degrec."

That fuch an education would be approved of by the uncorrupted natives of Switzerland was hardly to be expected; and Bahrdt foon found his fituation at Marfchlins as uncomfortable as it had been at Giffen. "The Grifons (he fays) were a ftrong inflance of the immenfe importance of education. They knew noching but their handicrafts; and their minds were as coarfe as their perfons." He quarrelled with them all, and was obliged to abfcond after lying fome time in prifon.

From Marfchlins he went to Durkheim, a town in the palatinate, where his father had been minitter, and where his literary talents were well known. After fome little time he got an affociation formed for eresting and fupporting a Pbilanthropine or honte of education. A large fund was collected; and he was enabled to travel into Holland and Eng!and to engage pupils, and was furnifhed with proper recommendations.

In London he gained the friendthip of a clergyman, whom he reprefents as a perfon in the bigheft degree accomplifhed. "With found judgment (hays Bahrdt), great genius, and correct tafte, he was perfectly a man of che world. He was my friend, and the only perfon who warnly interefted himfelf for my inftitution. To his earneft and repeated recommendations I owe all the pupils that I got in England, and many moft refpectable conneations; for he was univerfally efteemed as a man of learning and of the moft unblemifhed character. He was my fiend, my conductor, and I may fay my
preferver;

BA H $[83] \quad$ B A H

$\underbrace{\text { Bahrdt. }}$
 $\xrightarrow{\sim}$

E:hrdt. $\underbrace{\text { Lihent. }}$

1793, the mof wretched and loathfome vistim of unbridted fenfuality.

Such were the fruits of the German Union, and of thut llonination which was to refine the heart of man, and bing to maturity the feeds of native virtue, which are choaked in the heant by fuperfition and defpotifm. 1): Balirdt affected to be the enlightner and reformer of the world; and affirmed, that all the evils of life originated from defpotifm and fuperRition. "In vain ((ays he) do we complain of the inefficaey of religion. All pofitive religion is founded on injultice. No prince has a right to prefcribe or fanction any fuch fyßtem; nor wruld he do it, were not the priells the firmelt pit. lats of his tyramy, and fuperfition the frongelt fetters for his fubjects. He dares not flow Religion as the is, pure and undefiled- he would charm the eyes and the hearts of mankind, would immediately produce truemo. rality, would open the eges of free born man, would teach lim what are his rights and who are his oppreffors, and princes would vanifh from the face of the earth."

Therefore, without troubling ourfelves with the truth or falfehood of his religion of mature, and afuming it as an indifputable point, that Dr Bahrdt has feen it in this natual and fo effetive purity, it is furely a very pertinent quellion, "Whether has the fight produced on his mind an effect fo far fuperior to the acknowledged faintnel's of the impreffion of Chriftianity on the bull of mankind, that it will be prudent to adopt the plan of the German Union, and at once put an end to the divilions which fo unfortunarely alienate the minds of profelligg Chrillians from each other ?"' The account here griven of Dr Balardt's life feems to decide the queltion.

But it will be laid that we have only related fo many infances of the quarrels of priefts and their flavilh adherents with Dr Bahrdt. Let us view him in his ordinary conduct, rot as the champion and marty of illumination, but as an ordinary citizen, a hufband, a father, a friend, a teacher of yonth, a clergyman.

When Dr Bahrdt was a parifh-minifter, and prefident of fome inferior ecc!efialticil diftrif, he was empowered to take off the cenfures of the charch from a ycung wornan who had borne a baltard child. By violence he again reduced her to the fanme condition, and efcaped cenfure by the poor girl's dying of a rever before her pregnancy was far advanced, or even legally document. ed. On the night of the flemn farce of confecrating his Philanthropine, he debauched the maid-fervant, who bore twins, and gave him up for the father. The thing was not judicially proved, but was afterwards made fuficiently evident by letters found among his papers, and publifhed by one of his friends in the Uwion. Having fupported thefe infants, in a pitiful manner, for little more than a year, he caufed them to be taken away from their mother, during night, fome time in the month of February 1780; and they were found espoted, the one at Ultein, and the other at Worms, many miles diftant from each other, and almof frozen to death.

So much for the purity of lis morals and his religion, as he appears in the clavacter of a father and of it clergyman. His decency as a hufband, and his gratitude to his friend, we have already feen; and we thall now fee lis kindnefs and fidelity. After walting the greateft part of his wile's little fortune, he was fo provoled becade her brother would not
give him up the remainder, amounting to about L. 110 , that he evor afterwards treated her with the greateft cruelty, and exhibited her to contempt and ridicule in two infamous novels. At Halle he brought a miftrefs into the houle, and committed to her the care of his family, confining his wife and daughter to their own apartment; and the laft thing which he did was to fend for a bookfeller, who had publifhed feme of his vileft pieces, and, without a thought of his injured wife, recommend his frumpet and lier children to his protection.
"Think not, indignant reader (fays Arbuthnot), that this man's life is ufelefs to mortals." It flows in a trong light the fallity of all his declamations in favour of his io much praifed natural religion and univerfal kindnefs and humanity. No man of the party wites with mose perfualive encrgy, and, though his pctulance and precipitant felf-conceit lead him frequently aftray, no man has occafionally put all the arguments of thefe philofophers in a clearer light; yet we fee that aild is falle and hollow. He is a vile hypocrite, and the real aim of all his writings is to make money, by foftering the fenfual pronenfities of human nature, although he fees and feels that the completion of the plan of the German Union wonld be an event more defructive an! lamentable than any that can be pointed out in the ar. nals of fuperfition. We will not fay that all the partifans of illummation are hogs of the Ry of Epicurus like this wretch; and it would be extremely unjult to confider his vices as the effects of his illumination. He was lenfual, ungrateful, and profane, before he was admitted into the order of the Illuminati; but had the views of that order been fuch as were beld out to the world at large, its fagacious founder would not have initiated a wretch fo notorioully profligate as Dr Bahrdt. Their views, however, being to govern mankind thro' the medium of their fenfual appetites, and to reign in hell, rather than ferve in heaven, thes could not have employed a better inftrument. Dr Bahrdt was a true difciple of illumination; and though his torch was made of the coarfeft materials, and ferved only to difcover fights of woe, the horrid glare darted into every corner, reufing hundreds of filthy vermin, and directing their flight to the rotten carrion, where tbey could beft depofit their poifon and their eggs. Whilft the more decent members of the Union laboured to pervert the refined part of mankind by declamations on the sights of man and the bleffings of liberty, Bahrdt addreficd himfelf to readers of all defcriptions, and aftialed at once the imagination and the appetites. He taught them, that religion is an impofture; that morality is convenience; and, wint blafphemy peculiar to himfelf, that he and his order, by thsir licentious doetrines, were to complete the plan and ain of $\mathrm{J}-\mathrm{C}-$.

BAILLY (Jean-Sylvian), who made fuch a figure during the firft years of the French revolution, was born at Paris on the 15 th of September 1736, of a family which had been difinguithed painters during four fucceffive generations. He was bred to the fame profeffron, but thowed an early tafte for poetry and the belles lettres. Chancing, however, to become acquainted with the geometer La Caille, this circumfance decided his genius, and he thencefor th devoted himfelf to the cultivation of fcience. He calculated the orbit of the comet of 1750 ; and on the 29 th of Jmuary 1763 was

B A I $[8 j] \quad$ B A I

received into the Academy of Sciences. In that year hc publifhed an ufeful and laborious compilation, being the reduction of the obfervations made by La Caille in 1760 and 1761 , on the zodiacal fars. He likewife began to confider the theory of Jupiter's fatellites, and, in the competition for this prize queltion of $1_{7} 6_{4}$, had a formidable ival in La Grange, who already promifed to become the firf mathematician in Europe. The refults of his inveftigations were collected into a treatife publifhed in 1766, enntaining alio the hiftory of that part of aftronomy. In 177 the gave a moft cuious and important memoir on the light of the fatellites, and introluced a degree of accuracy till then unknown in the obfervations of their ellipfes.

His ftudies were not confined to the abftract fciences; for he cultivated letters with fuccefs. His elogies of Charles V. of Corneille, of Leibnitz, of Moliere, and after wards thofe of Cook, La Caille, and Greffet, were much admired. His eloquence pointed him out as a proper perion to fill the charge, vacant in 1771, of fecretary to the Academy of Sciences; and, under the parronage of Buffon, he food candidate for that enviable place. He failed: but it was the high birth and promifing talents of the young Condorcet, joined to the active influence of D'Alembert, that carried the prize.

In 1775 appeared the firft volume of the Hitory of Afronomy, which indeed Arews the path of fcience with flowers, and in every refpect is a mon valuable work-full of animated defcription, of luminous narrative, and interefting detail. His very peculiar ideas concerning the early fate of Upper Afia gave rife to an ingenious correfpondence and difcultion with the veteran philofopher Voltaire, the fubfance of which foon appeared in two volumes, intitled, "Letters on the Origin of Sciences," and "Letters on the Atlantide of Plato." If imagination fhone forth in thefe eflays, crudition was no lefs confpicuous in a great work compofed in the year 1781 and 1782 , on the fables and religious creeds of antiquity; which ftill exilfs in manufeript, and the publication of which would affuredly extend the fame of its author and gratify the learned world. His opinions on fome points happening to coincile with the theories of Buffon, he contracted with that celebrated naturalift a clofe friendlhip, which was diffolved by Pailly's uncourtly oppofition to the election of the Abbé Maury into the Acalemie Frangaije. Of that academy he had been choien lecretary in 1784; and he was admitted, in the following year, into the Academy of Infcriptions and Belles Lettres; the only infance, fince Fontenclle, of the lame perion being at once a member of all the three academies. In the meantime, the other volumes of the Hillory of Afronomy fucceffively appeared, and that capital work was completed in 1757 by the Hiftory of the Indion and Oriental Altronenty ; a production of fingular acutenefs, refearch, and nice calculation.

In 1784 he made an elegant report to the Academy of Scicnces on the animal magnetiom of Mefreer; and in 1786 another report, which difplays the judgment and humanity of its author, on a project for a new boted dic: or iafirmary.

We now approach the evenfol period which fummoned Bailly from his retirement, to enter on a political cateer, that was full of cifficulty and danger, and for which his habits and fudies appear not to lave fitted

Suppl. Vol. I.
him. He had feen, as others faw, the defeats of the old government of France. His heart panted for civil and ecclefiaftical liberty; but unfortunately, like many other philofophers both in his own country and in this, he had formed notions of that blefing which experience Thould have tanght him can never be realifed among beings fo imperfeet as the bulk of mankind. When the Itates-gencral were fummoned to mect, he was on the 26 th of April 1789 nominated fecretary by the electors of Paris, and then appointed one of the deruties. He was chofen prefident of the Ticrs Etat; and when that chamber was contituted the National Alfembly, he continued in the chair, and concurred in all the levelling decrees which laid the foundation of the prefent mifery of his country, as well as of molt cther coun. tries of Europe.

After the taking of the Banitc, when the king was removed to Paris on the $15^{\text {th }}$ of July, Bailly was called by public acclamation to the head of that city, with the title of Mayor. In his feveral functions he acted with integrity, courage, and moderation. He reached the fummit of glory:-but ho:v mutable, alas! is human grandeur! That middle courfe of conduct, the aurica mediocritas, at which vistue aims, is fitted to pleafe neither of the contending parties in the midat of revolutions: and fuch proved the ruin of Bailly. His popularity began to decline, and was at length changred into inveterate enmity by an unfertunate accident. On the igth of July $\mathbf{x} 791$, the populace having collected tumultuoully to demand the abolition of monarchy, Bailly was ordered by the National Affembly to difperfe the mob. He was obliged to proceed to the Champ-de-Mars at the rifk of his life; and, in fpite of all his exertions and forbearance, fome fhots were fired by the foldiery. It was no longer delirable to hold his perilous charge, and on the i 6 th of November following he gave way to the afcending reputation of Petion. The impaired Hate of his health, too, rendered it expedient to retire from the focus of turbulence. He fpent the year 1792 and part of 1793 in travelling through different provinces of France. During this period he wrote memoirs of the events which he had witneffed, and in which he had often been a principal actor. 'Thefe come down only to the 2 d of Otober 1789, but would make a large quarto volume; and La Lande, from whofe Eloge de Bailly this article is taken, gives us hopes, that the manafcript will be publine.l. He was advifed by his friends to withdraw from France, but he chofe rather, like Socrates, to fubmit to the injultice and ingratitude of his country. At the nod of a vulgar tyrant he was arrelted, fummarily condemned by a danguinary tribunal, and on the 15 th of November 1793 was delivered over to appeafe the vengeance of an incenfed and indifcriminate populace. His fufferings were \{ludioully protracted, but he bore them with the calmuefs and magnanimity of a fage. Nature recoils at the recital of fuch barbarities.

In 1787 M . Bailly married the widew of one who had been during 25 years his intimate friend; a woman more qualified by her age and condition to infpire refpect than the pafition of love. He was tall in his perfon, of a ferious deportment, and joined firmnefs to fenfibility. Never did philofopher diftinguilh himfelf in fo many different lines, nor acquise fuch deferved reputation in them all. His difintereftedncis was pure and

N unaffected;

B A L [86] B A L

Bairdnown unaffeted ; and during his magitracy he fpent a part of his fottune in relieving the wants of the poor. His Bald Eagle virtue remained as untainted in his varinus public fa-

Such is the encomiam pafied upon this philofopher and fatcoman by no lefs a man than the celebrated aftronomer M. de la Lande; but to thefe who are not inferect with the mania of freedom, it will doubtlefs apfear greatly exaggerated. That M. Bailly was a man of eminence is the republic of letters, is known to all the laarned of Europe; that in his political conduet he meant to promote the good of his country, it would certainly be prefumptuous in us to deny; and that he fuf. fered unjurly, is incontrovertible: But let it be remembered, that he fuffered in a form, which he exerted ali his abilities to raife; and that he fet an example of injuitice, when he concurred in the degradation of the prisileged crders, and in the violent confifcation of the property of the church.

BAIRDSTOWN, or Beardforwn, in Nelfon co. Kertucky, is a flourifhing town, of 216 inhabitants, fituated on the head waters of Salt river, go miles S. E. from Louiville, and nearly the fame diftance S. W. from Ianvilie.-Morse.

EAKERSFIELD, a newly fettled townhip in Trankliz co. Vcrmont, formerly in Chittenden co. In 1790 it had only 13 i inhabitants. - ib.

LAKERSTOWN, in Cumberland co. Ditriot of Maine, contains 1276 inhabitants; 162 miles N. E. from Loton -ib.

BALD EAGLE, or Warrior Mountains, lie about 200 miles W. of Philadelphis, in Bedford co. Pennfyivania, and forms the weftern boundary of Bald Lagle Valley.

Bald Eagle is likewife the name of a river which runs a N. E. courfe 44 miles and falls into the W. branch of Sufqueh.anna River. The head water of Huron River which falls into Lake Erie, is called Bald Eagle Creek.-i\%.
liALD EAGLE VALLEY, or, as it is commonly called, Sinking Spring Falley, lies upon the frontiers of Bedford en. in Pennfylvania, about 200 miles W. from Philadelphia. It has on the E. a chain of high, rugged mountains, called the Canoe Ridge, and on the W. the Eald Eagle, or Warrior Mountains. This is a pleafant vale, of limeftone bottom, 5 miles in ex. tent where widett ; and in the vicinity are great quant:ties of lead orc. It contained, in 1779, about co or 70 families, living in ling houfes, who formed, in the fpace of 7 or 8 years, feveral valuble plantations, fome of which are remarkably agreable on account of their fituation.

During the late war with Great Eritain, lead was much wanted, and very dificult to be procured, which induced a company, under the promifes of the fiate, to fette here, and eftablifh a regular fet of works. A fort of logs was erected for the protection of the miners; and a confiderable quantity of ore was produced, from which lead enough was made, to give a competent ivea of the real value of the mincs in general. The danger of the fituation, however, while an Indian war continued, occationed the failure of the undertaking.

The lead ore was of miny kinds; fome in broad flakes, and others of the feely texture. Several re-
gular fhafts were funk to a confiderable depth ; one Eald Eagle of which was on the hill, upon which the fort sads erected, and from which miny lirge maffes of ore were procured; but, not forming a regular vein, it was difcontinued, and another rpened about a mile from the fort, nearer to Frank's 'Town. Here the miners continued until they finally relinquifhed the bufinefs. When they firft began, they found in the upper furface or vegetable earth, feveral hundred weight of cubic lead ore, ciean and unmixed with any fubfance whatever, which continued as a clue, leading them down through the different frata of earth, marl, \&cc. until they canne to the rock, which is here in general of the limellone kiud.
Among other curiofities of this place, is that called the Surallozus, which abforb feveral of the largelt ftreams of the valley, and after conveying them feveral miles under ground, in a fubterraneous courfe, seturn them again upon the furface. Thefe fubterraneous faffages have given rife to the name, Sinking Spring D'alley: Of thefe the mof remarkable is called the Arcb Springs, and run clofe upon the road from the town to the fort. It is a deep hollow, formed in the limeftone-reck, about 30 feet wide, with a rude natural ftone arch langing over it, forming a paffage for the water, which it throws out with fome degree of violence, and in fuch plenty as to form a fine fream, which at length buries itfelf again in the bowels of the earth. Some of thefe pits are near 300 fect deep; the water at the bottom feems in rapid motion; and is apparently as black as ink; though it is as pure as the fineft fprings can produce. Many of thefe pits are placed along the courfe of this fubterranenus river, which foon after takes an opportanity of an opening at a declivity of the ground, and keeps along the furface among the rocky hills for a few rods, then enters the mouth of a large cave, whofe exterior aperture would be fufficient to admit a fhallop with l.er fails full fread. In the infide it keeps from 18 to 20 feet wide. The roof declines as you advance, and a ledge of loofe, rugged rocks, keeps in tolerable order, on one fide, affording means to feramble along. In the midit of this cave is much timber, bodies of trees, branches, \&c. which being lodged up to the roof of this paffage, fhews that the water is fwelled up to the very top during frefhes. This opening in the hill continues about 400 yards, when the cave widens, after you have got rourd a fudden turning (whichl prevents its being difmovered till you are within it) into a facious room, at the bottom of which is a vortex, the water that falis into it whirling round with amazing force; flicks, or even pieces of timber, are inmediately abforbed, and carried out of fight, the water boiling up with exceffive violence, which fubfides by degrees, until the ex. periment is renewed.

From the top of the Bald Eagle Mountains is a fine profpet of thofe of the Allesiny, Atretching along until they feem to meet the clouds. Much flate is found here, with ftrong figns of fit cual. Such as vilit thefe parts mult crof f the Juniata river 3 or 4 times from Standing Stone or Huntington, to the fort; from which it is computed to be about 22 miles dif, tance. -ib.

BALIOL (John), the competitor with Bruce for the crown of Scotland, was not (as he is faid to lave

B A I

sallitic been in the Encoclonedia) the brother of King AlexAndfr, but the great granclion of Davia Earl of Huntington, third fon of King I)avid I.

BALListiC Pendulum, an ingenicus machine inverted by Benjamin Robin!, for afcertaining the velocity of military projesiles, ad confequently the force of fired gunpowder. It cr.afits of a large block of wood, annexed to the end cha ftrong iron ftem, having a crofs theel axis at the other end, placed horizontally, about which the whole vibrates together like the pendulum of a clock. The machire being at reft, a piece
Hution's of ordnance is pointed fraight towards the wooden Disionary.
relaticns and friends, found here an hofpitabic aryium, Batimore after fufferings hardly patalleicd in the annals of his. toly.

Hore are 9 places of public wornhip, which belong to Roman Cat!nlics, German Calvinals and Lutherans, Epifcopalians, Prefoytcians, Baptifte, Methodits, Quakers, and Nicolites, or New Quakers, who all live together in peace. It is inhabitedty people from molt parts of Europe. The principal freet is Market Street, which runs nearly E. and W. a mile in length, parallel with the water. This is crolled by a number of other ftreets, which run from the water; a number of which, particularly Calvent and Giay Arceis, are well built. N. and E. of the town, the land rifer, and prefents a nuble view of the torn and bay. In 1790, this city owaed 27 hipe, 1 fnow, 31 brigan. times, 34 fchooners, and 9 flonps-Tctal 102 ; tonnage 13,564. The exports in the fame je:r amounted to $2,027,770$, and the imports to 1,945809 dollars. The exports in July, Augult, and Sept. in 1790. amounted only to 343,584 dollars; but in thefe months in 1795, they amounted to $1,675,748$ dollars. The affairs of the town are managed by a board of town commiffioners, a board of feecial commillioners, and a board of wardens; the fult board fills its own vacancies, and is perpetual; the two laft are appointed by electors, choten every 5 th year by the citizens. It is 53 miles S. W. from Elktown, 176 N. E. from Richmond in Virginia; 50 N. E. from the city of Wafhington, and io3 S. W. from Philadelphia. N. lat. 39. 2 I . W. long. 77. 48.-ib.

BANGOR, a townflip in Hancock co. Diftrict of Main, on the weftern fide of Penobicot river, 25 miles from its mouth at Belfalt Bay; 65 N. W. by W. from Machias ; 63 N. E. from Hallowell, and 280 N. E. from Bufon.-ib.

BANKA (fee Banca, Eazycl) is noted throughout A fia for its tin mines. It lies oppofite to the river Pialam. bang, in the illand of Sumatra, on which the fovereign of Banka, poffeffor alfo of the territory of Palambang, keeps his conftant refidence. This prince maintains his authority over his cwn fubjects, and his independence of the neighbouring fovereigns, chiefly by the afifance of the Dutch, who have a fettlement and troops at Palambang, and enjoy the benefit of a con:ract with the king of Panka for the tin which his fuljects procure from that ifland. Such at lealt was the cafe in 1793, when Lord Macarney touched at Banka on his way to China. At that period the fovereiga compelled his fubje?s, and probably does fo at preient, to deliver the tin to him at a low price, and fold it to the Dutch at a fmall advance, purfuant to his contrat. Thofe miners, from long practice, hare arrived at great perfection in reducing the ore into metal, employing wood as fuel in their furnaces, and not foffile coal, or coak, which is fe'dom fo free from fulphur, as not to affect the malleability of the metal. It is fometimes preferted therefore to European tin at the Canton market; and the profit upon it to the Dutcl company was, at the period mentioned above, fuppofed to have long been not lefs than L. 150,000 a year. Into whofe hands this trade has now fallen we know not ; probably it is in a great degree neglected.

BANTAM, the capital of a kingdom of the fame name in the ifland of Java, is, in the Encyclopadio, faid to be a large town with a good harbour and fortified
caftle.

Bantam caftle. Sir George Staunton, however, who vifited
Bantam fince that atticle was publifhed, gives a very different account hoth of the town and of its harbour.

Once indeed it was a place of confiderable confequence, Leing the great mast for pepper and other fipices, whence they were diftibuted to the reit of the world. The chief factory of the Englifh as well as Dutch Eaft India Company was fettled there. The merchants of Arabia and Hindoftan reforted to it. Its forereigns were fo defrrous of encouraging trade, by giving fecurity to foreign merchants againft the violent and revengeful dilpofition of the natives, that the crime of murder was never pardoned when committed againf a firanger, but might be committed by a foreigner for a fire to the relations of the deceafed. This place flourithed for a confiderable time; but the Dutch having conquered the neighbouring province of Jacatra, where they fince liave built Batavia, and transferred their principal bufinefs to it, and the Englifh having removed to Hindofian and China, and trade in other refpects having taken a new courfe, Bantam was reduced to a poor rembant of its former opulence and importance. Other circumitances have acce!erated its decline. The bay is fo chol:ed up with daily acceffions of new eath wafhed cown from the mountains, as well as by coral thoals ex. rending a confiderable way to the eaftward, that it is inacceffible at prefent 10 veffels of burden; even the party who went there fiom the Lion, the fhip which carried Lord Macartney to China, was obliged to remove from her pinnace into a canoe, in order to reach the town. With the trade of Bantam the power of its fovercign declined. In his wars with other princes of Java be called in the affiflance of the Dutch; and from that period he became in fact their captive. He refides in a palace, built in the European Ityle, with a fort garrifoned by a detaclmment from Batavia, of which the commander takes his orders not from the king of Bantam, but from a Dutch chief or governor, who lives in another fort adjoiring the town, and nearer to the feafide. His Bantamefe majefty is allowed, however, to maintain a body of native troops, and has feveral fmall atmed veffels, by means of which he maintains authority over fome parts of the fouth of Sumatra. His fubjects are obliged to fell to him all the pepper they raife in either illand, at a low price, which he is under contract with the Dutch to deliver to them at a fmall advance, and much under the marketable value of that commodity. The prefent king joins the fpiritual to the temporal power, and is high prief of the religion of Mahomet ; with which he mingles, indeed, fome of the rites and fuperftitions of the aboriginal inhabitants of Java; adoring, for inftance, the great banyan, or Indian figtree, which is likewife held facred in Hindoltan, and under which religious rites might be conveniently performed; in like manner, as all affairs of tzate are actualIy tranfacted by the Bantamefe under fome fhadowing tree by moonlight. To complete the ruin of Bantam, a fire fome time ago deftroyed moft of the houfes, and few have been fince rebuilt.

BANYAN tree. See Ficus, Encycl.
Dritish BARILLA, is the name given by Mr James King of Newcaftle upon Tyne, to a material in. vented by him to fupply the place of Spanih barilla in the making of crown window-glafs, broad window-glafs, and glafs bottles, as affo in the manufakuring of foap
and alum. For thefe putpofes he affirmed that it anfwered much better than any other material then in ufe ; and in confequence of that affirmation he cobtained a patent for his invention, cated March 4,$1 ; 80$.

Though we can hardly allow to this invertion all the merit claimed for it by its fond author, yet as it may be of ufe to different manufacturers, we fhall lay before our readers his method of making the Britifh barilla. It is as follows: "Take a certain quantity of afhes obtained by burning the loppings or branches of alh, oak, beech, elm, alder, or any other kind of green wood or bramble: Take an equal quantity of the alhes obtained by burning the green vegetables known by the name of fern, brecon, bean and pea-Araw, whins, common field and high-way thifles, the ftalks of rape or muftard. feed, or the bent or rufhes that grow by the fea fhore." Though we know not in what qualities the afhes obtained from the former fubfances differ from thofe obtained from the latter, the author, as if the difference was very great, directs thefe equal quantities to be mixed together, fiffed through a fine fieve, and laid upon a boarded floor, where a quantity of forpers wafte-afhes, equal to the whole compound mafs, is to be added to it, and well mixed with it by means of a fhovel or other inftument. To this misture of vegetable afies and foapers wafte-athes is to be added a quanity of fine quick-lime, in the proportion of one bundred weight to twelve hundred of the blended afoes, and the lime and afhes are to be well mixed together. After this the whole is to be put into an iron pan, into which is to be poured a quantity of fea water fufficient, fays the author, to diffolve the afhes and lime; and the whole is to be \{lirred with an iron rake till it incorporate. This being done, a coal fire is to be lighted up under the pan, and kept burning for two days and two nights without intermiffion, additional quantities of fea water being contantly fupplied to impregnate the materials with fa. line matter fufficient for calcination in a reverberating furnace or calcar. In this calcar the faline mafs, which was boiled in the pan, is by intenfe heat to be diffolved, and kept in a sate of fufion for the fpace of an hour ; during which time the volatile part flies off, and leaves remaining a fixed alkaline falt, which, cooled in iron jans, is the Britifh barill:1, and has the appearance of Spanifh barilla. See Barilla, Encycl.

BARNEGAT, the name of a fmall village of 8 or so houfes, on the ealt bank of Hudfor river, 5 miles S. of Poughkeepfie, and 75 N. of N. York. The fole bufinefs of the few inhabitants of this place, is burning lime, from the valt quantities of lime \{tone which are fourd here. Their lime is marketed in N. York, whither they carry it in great quantities annually. - Blorse.

BARNET, a townfhip in Caledonia co. Vermont, formerly in Orange co. containing 477 inhabitants, and 112 miles N. E. from Bennington. The lower bar of the 15 mile falls in Connecticut River is fituated at the N. E. corner of this townfhip. Into that river it fends Siephens River which rifes in Peachum, the adjoining town on the W.-il.

BARNS'TABLE, the Mathackeefe, or Mattacheefet of the ancient Indians, is a post of entry and poft town, and is the thire town of Barnitable co. It extonds acrofs the peninfula, and is wafted by the fea on the N. and S. having Sandwich, and the diftriat called Marfhpee or Mafnpee on the W. is about 5

B A R

Earntable miles broac, and 9 long; 67 miles S. eafterly from II Barrell's. Lofon. Sandy Neck, on the N. Chore, runs E. almoft the length of the rown, and forms the harbor,
emboloming a large body of falt marth. The harbor is about a mile wide, and 4 long; in which the tide rifes from 8 to $1+$ feet. It has a bar running off N. E. from the Neck feveral miles, which prevents the entrance of large thips; but fruall veffels may pafs any part of it at high water; and where it is commonly crofied, it feidom has lefs than 6 or 7 fect at low water.

There is another harbor on the 'S. called Lerwis's Bay. Its entrance is within Barnftable, and it extends almoft 2 miles into Yarmouth. It is commodious and fafe, and is completcly land locked; and has 5 feet water at a middling tide.
A mile or two to the weftward, and near the entrance of Lewis's Bay, lies Hyanis Road. If is formed principally by an ifland, joined by a beach to Yarmouth, which together, make the ouffide of the bay before mentioned. The S . head of this inland is called Point Gammon. Oyfter Bay, near the S. W. limit of the town, admits fimall reffels; and which, with Lewis's Bay, has in years paft produced excellent oyfters, in great quantities; diough they are now much reduced.

There are about 20 or 30 ponds in Barnftable. The land here produces about 25 bufhels of Indian corn to an acre, and rye and other grain in proportion. Wheat and flax are cultivated; the latter with fuccefs. From 12 to 18,000 buthels of onions are raifed for the fupply of the neighboring towns. Upwards of 100 men are employed in the fifhery, which is yearly increafing. Whales feldom come into Maffachufetts Bay now, and that filhery is difcontinued. No quarrels with the ancient natives of the country are recorded in the accounts of this town, where the Englifh fettlers of New. England firt landed, Nov. 11, 1620 . The people, 2610 in number, are generally healthy ; and many inftances of longevity are to be met with. Numbers of the farmers are occafionally feamen; and this town has afforded, and continues to furnifh many matters of veffels and mariners who fail from other ports. N. lat. 41. 43.-Morse.

BARNSTEAD, a townhip in Stafford co. New. Hampfhire, containing 807 inhabitants; 32 miles N . W. of Portfmouth, and 16 E. by S. from Canterbury, on Connesticut river.-ib.

BARRE', a townhip in Worcefer co. Maffachufetts, containing 1623 inhabitants, 24 miles N. W. of Worcefter, and 66 W . of Bofton, deriving its name from Col. Barré, a Britilh fenator, who on the eve of the late war, plead the caufe of America, in the Britifh houfe of commons, with great, but unfucceffful ener. gy. This town has gond paftures, and here are fatted multitudes of cattle; and it is fuppoled, more butter and cheefe is carried from hence to the market, annually, than any other town of the fame fize in the state. -ib.

Barre', a townflap in Huntingdon co. Pennfylva-nia.-ib.

BARRELL's Sound, on the N. W. Coant of America, called by the natives Conget-boi.toi, is fituated about 6 leagues from the fouthern extremity of Wafhington, or Charlotte illands, in a N. W. dircetion, about N.
lat. 52. W. long. 131. from Greenwich. It has two inlets; one on the E. the other W. fide of the indand; the latter is the beft, the other is dangerous. The fhorcs are of a craggy black rock; the banks lined with trees of various kinds, as pines, fpruce, hemlock, alder, \&c. Mr Hoikins, in the fummer of 1791, meafured one of thefe trees, which was ten fathoms in circumference. On one fide of it a hole had been cut, large enough to admit a man: within was a fpacious and convenient room, which had apparently been dug and burnt out with much labor. Mr Hokkins concluded that it mult have been oceafionally inhabited by the natives; as he found in it a box, fireworks, dried wood, and feveral dome?ic ntenfils. This found was named after Jofeph Barrell, Efq. of Charlefown, (Maff.) and was firt vifited by Capt. Gray, in the Wathington, in 1789 .-Morse.
BARREN Creck, rifes in the N. W. corner of Delaware fate, runs about 9 miles S. wefterly, and empties into Nanticoke river. A triangular tract of land in the N. part of Somerfet co. Maryland, is enclofed between this creek on the S. Delaware fate E. and Nanticoke river on the W. and N. W.--ib.
BARRINGTON, a townllip in Queen's co. No. va-Scotia, on the S. fide of the bay of Fundy; fertied by Quakers from Nantucket Ifland.-ib.
Barrington, a townhip in Staford co. N. Hampfine, aburt 30 miles N. W. from Portimouth, incorporated in 1722 , containing 2470 inhabitants. Allum is found here; and the firt ridge of the Frof Hills, one of the three inferior funumits of Agamenticus, is continued through this town. Its fituation is very healthy; e. g. If of the firft fettlers in 1732, were alive in 1785 , who were between 80 and 90 years old. $-i b$.
Barrington, a townfhip in Brifolco. Rhode.Ifland, on the S. Weitern fide of the N. W. branch of Warren river, little more than $2 \frac{1}{2}$ miles N. W. of Warren, and about 7 S. E. from Fox Point, in the town of Providence. It contains 69_{3} inhabitants, including, 12 flaves.-ib.
Barrington, Great, is the fecond townhip in rank in Berkillire co. Malfachufetts. It contains 1373 inhabitants, and lies 140 miles W. from Bofton, and fouth of Stockbridge, adjoining.-ib.

BARTHELEMI (Jean Jacques), the Nefor of French literature, was a man fo cminent for his know. ledge of antiquities, that every clafical reader mult be interefted in his fate. He was born, we believe, at Patris about the latter end of the year 1715; and being educated for the fervice of the church, he became prior of Courcay, keeper of the medals and antiques in the Frencli king's cabinet, and in 1747 was elected a member of the Academy of Inferiptions. From that period his life was wholly devoted to letters; and in recording the principal events of it, we can only enumerate, in their order, his various publications.
A differtation of his on the river Pactolus was read $17 t^{8}$ (Hi/f. de l'Acal. X. 21.) ; Reflestions on a Medal of Xerxes, King of Arfamata (Mens. de l'died. XXXVII. 171.), found, or faid to be found, by Fiulrmont in the tomple of Apollo Anyclens (XXXIX. 129.) ; Effay on Numifmatic P.læography, ib: 223; Differtation on two Samaritan Medals of Antigonus King of Judea, ib. 257; Remarks on fome Infriptions
publithed

Earthelemi publifhed by diferenent authors, XLV. 99 ; Differtation on Arabic Cuins, ib. 143 ; by which it appears that the Mohammedan princes copied the heads of Greek and Roman ones on their coms, and gave Arabic infcriptions of their own names on the reverfe. On the Ancient Alphahet and L inguage of Palmyra, ib. 179; on the Ancient Monments of Reme, the refult of a tour in Italy to collear meda's for the royal cabiver, to which he added 300 , XLIX. 151; on fome Pticenician Moruments, and the Aiphabets formed from them, LIII. 23. The charaters on the written mountain, which lie bere cites, lave been proved of no value; and he illuftrates the conformity betwecn the Ploonician and the Egyptian charaners from the latter on the bandages of the mummes. Explanation of the Mofac Paveincrit of the Temple of Prenelte, ib. 149; of which there have been four engravings fince its firf difoovery in 1650, and which Barthelemi refers to the voyage of Acrian into Egypt. It may be of that date, but there is no reafo to luppofe that it reprefonts any thing mole than an Egyptian landicape. The form if leiters determines the date in the juigment of the lear ned Abbé. On the Relations of the Egyptian, Phonician, and Greek Languages, LVII. 303 ; on fome Medals publimed by different authors, LIX. 270; Explanation of an Infrription under a Bas-relief in the Bithop of Carpentras's Library, ${ }^{1767}, i b .365$; on the Number of Pieces reprefented in one Day on the Theatre at Athens, LXXIL. 286; thrce Comedies, as many Tragedies, a Satire, and a Petite Piece; Remarks on fome Medals of the Emperor Antoninus Aruck in Egypt, LXXX. 4S4. 1775 (A).
His interpretaion of the Phenician infcription at Malia, LIII. 23, was controverted by our learned linguift, Mr Swinton, in Philof. Tranfact. LIV. art. sxii. P. 119 ; in farther remarks, ib. art. lisx. P. 393.

In 1792 he publifhed a difertation on an ancient Greek inicription, containing an account of expences of the public feafts under the archontate of Glaucippus, 410 years before Chrith.

The intimate acquaintance which he had cultivated with clafical antiquity, enabled him, in the clofe of a iong life, to compore that chef-l"auvre, the "Travels of the Younger Anacharlis into Greece" in the middle of the fourth century before the vulgar era. In reprefenting the curiofity of a Scythian favage (for we cannot confider in any other light the man who put mufic and the excelifes of the table on the fame level), he takes occafion to interweave very curious and inftructive details on the laws, relizion, manners, cultoms, and general firit, of a great nation, as well as its progrefs in arts and fciences. The epoch which he has chofen is that of letters and arts, crmbining the age of Pericles with that of Alexander, the revolution which changed the appearance of Greece, and foon after overturned the empire of Perfia. The introduction comprehends the I250 years clapfed from the age of Cecrops to the fuppofed cra of Anacharfis, in two intervals; the firf reaching to the commencentent of the Olympiads, the fecond to the capture of Athens by the Lacedemonians. The hifory of the Athenians commences about 150 years
after the firn Olympiad, including the age of Solon, or Barthelemi that of leg flation ; inat of Themifocles and Ariftides, $\underbrace{\sim}$ or that of glors, of luxury, and arts. In the fecond. fpeaking of war, his olfervation, that "the example of one nation, that prefers death to flavery, is too impottant and too inllracive to be paffed in filence," Chould have preferved him from the horrors of a long corfinement in an advanced age, from which he was delivered only to die. Butats, fciencer, and literature, are alitse forgotea and overwhelmed in France. In the thir 1 interval, feaking of the corruption of manners introduced by Pericles to fupport his power, he has this obfervation, applicable to every Atate: "Corrnpted mo. rals are not retored but by the lois of liberts, which biings that porerty inconfifent with foftnefs, and infeparable from athemionfrefs, if not that rigid principle of a healthy mind, which is properly called virtuze." In this period, though the arts were encouraged, fhilotophy was neglected.
In this diverffied undertaking, where the piture of ancient Greece in its minutelt parts, both of public and private ufe, is brought before cur eyes, the Abbé is frequently more brilliant than folid, and occaficnally lofes the fublance of a reflection in purfuit of fomething ingenious to add to it. The plans, views, and maps, are executed with great fpirit and accuracy by Mr Barber, a young man of very promifing talents; ard to the charts many ufeful tables are added. The beauties of the clafics are diffufed in a very pleafing manner, and interfperfed witl anecdotes little known.

Such was the man whom the French government detained in prifon for months, and releafed on the fall of Robefpierre. As he concurred in the revolution, we know of no canfe for his imprifonment but the mildnefs of his difpofition, and the je:tloufy of that tyrant, which purfued, with relentlefs cruelty, every man fufpccted of being a friend to peace. Off the perfecution of Barthe. lemi, in the extremity of old age, the convention itfelf feemed to be afhamed; for it unanimounly voted him a penfion as fome recompence for his fufferings. But, alas! the recompence came toc late: the old man lived but a few months after his liberatinn, having died at Paris on the 4 th of May 1795 ; and the day after the fol. lowing tribute was paid to his memory by Duffaulx, in the national convention:
" Legillators, your liberality conferred bonour on the later days of the life of our refpectable fellow citizen, Barthelemi. Our fucceffors, I have no doubt, will confecrate his memory fo foon as the period fixed by the law flall pernit them. May his old friend, however, be permitted, in a few words, to point out the rare qualities of that Neftor of French literature? It might, perhaps, be fufficient to tell you, as Xenophon faid with fo much fimplicity of one of his molt illuftrious contemporaries, that Barthelemi was an excellent man in all refpects. In fact, thofe who knew hirn were at a lofs which to admire mon-his immortal Anacharfis, or his own life. His policy confilted in goodnefs; his fcience was an immenfe treafure of every thing that could purify the morals, perfect the tafte, render man more dear to man, and contribute to the fplendour of
(A) The references here are to the duodecimo edition of the Memoirs of the Academy of Infcriptions.

Bartheiemi his country. A fingle trait will convince you of the Il mildnefs of his plilanthropic mind: "Why is it not permitted (he often faid) to a mortal to bequeath profperity to his follow-creatures?' After having been overrhelmed with the favours of fortune, which came unezpectedly and unfught, he bacame poor; yet his chaiacter, far from finking under the preffure, acquired new refreet; and he proved that poverty, fupported with dignity, is not lefs honourable than wealth accompanied with benevolence. Perfecuted, as all virtuous and enlightened citizens were, he carried with him to the dungeon of that tyranny which you have fo glonicunly defroyed, the conitancy and ferenity of Socrates. It was there that the venerable old man offered to his companions in misfortune the magnificent frectacle of a good man Arraggling with adverlity. I have faid that he was rich; but let us not forget that he was not rich at the espence of the unfortunate, and that he adopted all the branches of his numerous family. The republic las gained by that family good citizens, who ferve her in the mof ufeful and brilliant manaer. Barthelemi felt that the period of his diffolution was approaching ; jet though exhauted by long fatigue, and bending beneath the weight of So years, his fenfibility was Athl vigorous, and your jut decrecs made the clofing feene of his life happy. When he heard that you were endeavouting to repair the ills under which fo many thoufand innocent men laboured, he lified up his hands to heaven, and exclaimed, 'Glory to God-honour to the national convention-I have lived long enough!' In the prefent pofture of aff.iirs, the country demands all your attention. I fhall therefore confine myfelf to requelt the f:vour due to the manes of the illultrious Barthelemi . One of his nephews, I do not mean your refpectable ambaffador at hane, but the citizen Courcey, has, for 25 years, dif harged all the duties of a fon to his uncle, and for a long time has performed the functions of keeper of the medals and antiquities of the national cabinet. I move, that the citizen Courcey be appointed to that office, which he has already proved himfelf fo worthy to fill."

Whatever became of this motion, which was referred to the committee of public influction, the cruelty of the government purfued the family; and the late banifhment of his other nephew by the directory, (f which he was a member, furpafles, if poffible, the irjultice of Robefpierre to the uncle. But their crimes were the fame : both Barthelemis were men of mild difpofitions and friends to peace.

BARTHOLOMEIV, St. a parifh in Charlefton diftrict, S. Carolina, containing 2.13^{3} white perfuns. Dy the cenfus of 1790 , it contained 12, Co6 inhabitants, of whom 10.338 were flaves. It fends 3 reprelentatives and 1 fenator to the f te leginature. Amount of taxes fi, 6 66-10 4 ferling. - Iherse.

Baktholomey St. che of the Caibbe inands, in the V. Indies, 25 miles N. of St. Chriltopher's, and 30 N . E. of Saba. It is reckoned 5 leagues in citcumference, bat has little ground fit for manuring. It produces tobacon, caflava, and abounds with woods. The trees mon in elleem are, 1. The foap tree, or aloes trea. 2. The calaback. 3. The canapia, whofe gum is an excellent catharic. 4. The parotare, whofe beughs grow downward, take ro t again, and form a kind of bulwatb and ftrong defence
called Sea Trees, whofe boughs are curiouhy plaited together, and look as if they were glazed. INere is an infinite variety of birds, and a peculiar kind of lime fone, which the inhabitints export to the adjacent illands. They have likewife plenty of lignumvita and iron wood. Its flores are dangerous, and the approaching them requires a good pilot; but it has an excellent harbour, in which hips of any fize are fheltered from all winds. Hall its inhabitants are Irilla Roman Catholics, whole predeceffors fettled here in 1606 ; the others are French, to whom the inand lately belonged. It was ceded by lrance to the crown of Sweden in 1785. They depend on the fkies for water, which they keep in citterns. It was a neff for privateers when in the hands of the French; and at one time had 50 Britifl prizes in its harbor. N. lat. 1\%, 56. W. long. 63. 10.-ib.

BARTRAM (John) a celebrated felf-taught philo. fopher and botaniit, was born near the village of Darby in Chefter county, Pennfylvania, in the year 1701. His grandfather Joln Bartram with his fanily hom Derbyfhire in England, came over with the adherents of the famons William Penn, when he enablifhed the colony of Pennylvania in 1682.
He very early in life manifeted an ardent thirt for knowledge; but the great difance from Earope, then the feat of arts and iciences, and the infant fate of the colony, rendered it difficult to cbain even a moderate education: however the refources of his own mind, and ihe moft intenfe application furmounted the difficulties of his fituation. Afrociating with the moft refpectable charaters, he obtaiaed the rudiments of the learned languages, which he fudied with eatraordinary application and fuccef. Su earmelt was he in the purfuit of learning that he feldom f_{at} at his meals without his book, often his victuals in one liand and his book in the other. He had an early inclination for the fudy of medicine and furgery, and acquired fo nuch knowledge as to adminifter gieat relief to the indigent and diftreffed in his neighbourhood; and as molt of his medicines were drawn from the vegotable kinzdom, this furnithed him with rfportunity for profecuting the fualy of botany which was his favourite object, together with natural hitory. Bred a hifoandman, le cultivated the ground as the priacipal means of lupporting a lirge fumily, he profecuted his avocations as a phildopher, being attentice to the ceconoms of nature, and obferving her molt minute rparations. When plotighing er fowing his fields or mowing his meadow, his inquitite nind was excrcifed in the contemplation of the vegetable fyftem and of animated nature.
He wats the filf American who conceived and carried into effect the defign of a botanic garden for the reception end cultivation of American vegetables as well as erotics, and of travelling for the acquifit in of them: and for the purpofe of accomplithing this fcheme he purchafed a plantation in a delightfuif fitnation on the banks of the Schuylkill, about five miles from rhiladelphia, where he laid ont with his own lands, a large garden, containing fix or feven acres comprehending a variety of foiks dol futuations, which be foon furnifhed with a great vatiety of the mof curious and beautiful vegetables, colleated in his variures cxcurtions

Bartram. excurfions in different parts from Canada to Florida. Dotany being his favourite purfuit he foon made fuch proficiency therein that the great Limans faid in one of his letters, that he rras the gieateft natural botarift in the wrild. His progrefs in botany, natural hifory and philofofhy, attracted the notice and efteem of the princ pall litenary and eminent characters in America, among whom were James Logan, Eiq. Dr Franklin and Dr Kemerfey of Philadelphia, Dr Colden of New York and Dr Clayton of Virginia, and introduced him to the correfpondence and friendhip of Peter Collirion, Efq. which continued for nearly fifty years and terminated only withlife; Loid P'etre, Dr Dillenius, Sir Hans Sluane, Mr Catefby, Dr Fathergill, Dr Hill, Gronuvius, Linnaus, Piofeffor Kalm, M. Wrangle, \&ic. wlio furnithed him with fuch books, philofophical apparatus, \&c. as his genius and fituation required, thereby leffening the difficulties with which he bad to Aruggle in a newly fettled country, and promoting the object which his benevolent mind had contemplated in communicating his diforeries and colieations to Eurepe. 'Thefe communications occafioned him to be employed in colleaing whatever was new and curious to furnifh and ornament the European cardens and plantations with the productions ol the New World. His indultry and fuccefs in the purfuit of fcience procured him fellowhip in many literary and fcientific focieties in Europe, as thofe of Lendon, Edinburgh, Stockholm, \&c. and at laft le was appointed American Botanif to his Britamic Majefty George the Third, in whilh appointment he continned till his death in September 1777 , in the Seventy-fixth year of his age.

He employed much of his time in excurfions threngh the provinces then fubjcit to England; chiefly in autumn, when his agricultural avocations leaft required his prefence at home. The object of thefe journeys was to collect curious and non-defcript vegetables, foffils, \&ic. His ardour in thefe purfuits was fuch that at the age of 7° he made a jonrney into Ealt Florida to exfl re th.c natural productions of that country. His travels among the Native Indians were attended with much danger ard difficulty, and the different parts of the country, from the flores of Lakes Ontario and Caiuga to the fource of the river St Juan in E. Floriua, contributed through his hands to enrich and embellifh the gardens and forefts of Europe with el egant flowering fhubs, plants, and ufeful and ornamental trees.

He was an ingenious mechanic, feveral monuments of which till remain at the houfe in which he lived which he built himfeif, after quarrying the fone: and he was nften his own maton, carpenter, black-fmith, \&c. and generally made his own farming utenfils.

His flature was rather above the midule fize, eecat ard hender, a fandy complection, checrful countenance, with an air of folemnity, his manners modeft and gentle, an amiable dilpofition and liberal mind, a lover of charity and focial order, he was never known to enter into a litigivus conteft with any one, active and tensperate, but always maintained a plentiful table, and annually on new year's day he made an entertainment at his own houfe, confecrated to friendflip and philofophy. He was an advocate for liberty, and for the abolition of Negro flavery, and gare freedom to an excellent ycung African whom he had brought up, and
who continued gratefully in his fervice while he lived. Born and educated in the Society of Friends (called Quakers) he was a pious man. The following diftich was engraved by himfelf on a fone in the wall over the front window of his own apartment.
"'Tis Gad alone, the Almighty Lord,
" The Holy One by me adol'd "
"The Holy One by me ador'd."
JOHN BARTRAM, 1770.
BARYTES, one of the earths. See Chemistry in this Supplement, Part I. Chap. iv.

BASTER, the name given by the Duteh at the Cape of Good Hope to the offspring of a white man and Hottentot woman.

Bit, an animal which has been defribed under its generic name Vespertillio in the Encycl. but fince that article was written, we have met with an account of a new feccies, fo very fingular, that, if the veracity of our author can be depended on, it is well intitled to a place here. This fpecies was difcovcred in the country of the Nimiquas, in the interior of Africa, by M. Vaillant, during the ccurfe of his fecond travels, and is by him called the oreillar bat. To this title it has indeed a very good claim; for it has, he fays, four ears, or at leaft the external part of four ears, each ear being double; the outer fold, which ferves as a covering to the inner, is very ample, being two inches eight lines high, and nearly as broad when ftretchad out. On the note alfo a membrane flands erett, one inch four lines in leight, which might be taken for another ear, as it has exactly the fhape of one. This membrane, as well as the ears and wings of the animal, are of a rulty red, paler below than above. The body is only thsee inches long, and is covered with very fine greyilh hair. Its width, from the tip of one wing to that of the nther, is eight inches. The reader will pardon me, fays our author, for inferting thefe trifling details of meafurcment, of which I am not more fond than himfelf; but they appeared to me neceflary here, to convey an accurate idea of the extraordinary length of the ears of this animal, which are certainly larger in proportion than thofe of any other we are acquainted with, fince they are only four lines, or the third part of an inch, frorter than the bedy itfelf.

DATAVIA, the capital of the Dutch fettements in the Eaft Indies, has been already defcribed under the article Jara in the Encyclopædia. The following account of it, however, as well as of the country around it, and the manners and cuftoms of its various inhabitants, as they prefented themfelves to Sir George Staunton in March 1793, will probably prove acceptable to many of our readers.
The city of Datavia, including the fuburbs, confifts of near eight thoufand houfes, inhabited by Dutch, Chinefe, and natives of Java. The houfes of the Chinefe are low, and crammed with people. The Dutch houfes are well built, clean, and fpacious, and their conftruction for the moft part well fuised to the climate. The doors and windows are wide and lofty. The ground floors are covered with flags of marble, which being fprinkled frequently with water, give a pleafant coolnefs to the apartment; but a conliderable proportion of thofe was unzenanted, which denoted a declioing fettlement. Among other circumftanes which announced the fame, were thofe of the Company's veffels lying

B A T $\quad\left[\begin{array}{lll}93 &]\end{array} \quad\right.$ B A

Butavia, $\underbrace{\sim}$
ueflefs in the road, for want of cargoes to fill, or men to navigate them; no fhips of war to protect their commerce, even againft pirates, who attacked their veffels fometimes in the fight of l3atavia road; an invafion threatened from the ine of France ; the place in no condition of defence, particularly againt an enemy lefs affeeted by the climate than Europeans; fometimes as many of the troops in hofpitals as fit for duty; commiffioners expected from Holland to reform abufes. Such a commifion, implying a general fufpicion, could not be welcome; nor was it quite certain whether, in fome minds, its arrival or that of the enemy was deprecated the moft cordially.

The fortifications of Batavia, though a place of fo much importance, were not, when Sir George faw then, fuclı as would be deemed formidable in Europe; but when the difficulties were confidered of forcing the paflage of the river, or of landing troops on other parts of the ifland, it might perhaps be thought of greater ftrength than it would at the firft view have credit for. The defences of the river were the water fort, fituated at its entrance, having mounted or difmounted fourteen guns and two howitzers. It confifted of a parapet, originally well conftrufted, retained by a wall; but the parapet was much neglceted, and the wall nearly deftroyed by the conflant working of the fea. This fort was protected on the land fide by a noxious fwamp, and towards the fea, on the northweft, by extenfive flats, over which even boats could not pafs. The only good approach was that by the channel, which it fees and defends. The next work upon the river was on the weft fhore, about a quarter of a mile from the water fort. It is a battery mounting feven guns, bearing down the river. Oppofite to this was a battery of fix guns, facing the river, and two to the eaftward. This formed one flank of a line that occupied the low land to the north-eaft of the town. The line was a low breat-work of earth, that was fearcely difcoverable. The canals which interfect the town joined the great canal or river, at the diftance of half a mile from the entrance. Below the junction a boom was laid of m wood, armed with iron fpikes. A little above was the caftle, a regular fquare fort, but without ravelins or other outworks. It had two guns mounted on each flank, and two, or fometimes three, on each face: they were not en barbette, nor properly en embrafure, but in a fituation between both, having both their difadvantages without the advantage of either. The wall was of mafonry, about 24 feet high. It had no ditch, but a canal furrounded it at fome diftance. It had no cordon. The length of the exterior fide of the work was about 700 feet. The town is rectangular, three quarters of a mile long, and half a mile broad, inclofed by a wall of about 20 feet in height. Small projections were conftructed, of various forms, at intervals of about 350 feet. Thefe generally mounted three guns each. It was alfo furrounded by a canal, having feveral nuices. At fhort diftances from the town, three or four fmall flar forts of earth were erected in particular pafles, perhaps for defence againft the inbabitants of the ifland.

The eftablifhment of regular troops was 1200 Europeans, of whom 300 were to be artillery, the reft infantry. Butas it was found impoflible, on account of the climate, to keep the number complete, tecourfe was had

Suppl. Vol. I.
to the natives, of whom 500 were employed; fo that the eftablifhment of European regulars was reduced to 700 . There were alfo 300 volunteers of the town, who were formed into two companies, but they were not difciplined. Their regulars were very numerous, confilting of enrolled natives of Java, who were never embodied, and of Chinefe, of whom the Dutcla were fo jealousas to arm them with lances only. Much dependence was not to be placed on the exertions of either of thefe bodies in favour of the Dutch; and as they lofe many of their European troops every year, their eftablifhment-appeared too finall for any effectual refitance. The chief protection of their ill-manned veffels lying here, mult be from the fortified inand of Onruft, well fituated to command the clannel that affords the principal palfage into the road. The work upon that ifland was of a pentagonal form ; its baftions were fmall and low, not more than 12 feet the highef, and not always connected by curtains. A few batteries were lately conftructed on the outfide of this work, that bore towards the fea. On thefe and on the baltions about 40 guns were mounted in different directions. South of there was another ifland, at the diflance of a few hundred yards, on which two batteries, mounting together 12 guns, had been lately erected.

The cafte is built of coral rock, brought from fome of the adjoining inands, compofed of that material ; and has the advantage of a fortification of brick, in which cannon ball is apt to bury itfelf without fpreading fplinters or fhattering the wall. A part of the town wall is built of lava, which is of a dark blue colour, of a very hard denfe texture, emits a metallic found, and refem. bles very much fome of the lava of Vefuvius. It is brought from the mountains in the centre of Java, where a crater is ftill finoking. No fone of any kind is to be found for many miles behind the city of Batavia. Marble and granite are brought thither from China, in veffels belonging to that country, commonly called junks, which generally fail for Batavia from the ports of the provinces of Canton and Fokien, on the fouthern and fouth-eaft coafts of that empire, laden chiefly with tea, porcelain, and filks.

The chief protection of Batavia againft the attacks of a foreign enemy, arifes from the havoc which it is well known the climate would make among European troops. This was acknowledged to Lord Macartuey by fome of the Dutch officers themfelves, and even by one of the counfellors of the Indies. Such indeed is the climate, that there have been very few examples of Atrangers remaining long in Batavia without being attacked by fever, which is the general denomination in that place for illnefs of every kind. Europeans foon after their arrival firlt become languid and feeble, and in a few weeks, or even in a few days, are taken ferioufly ill. The diforder at firft is commonly a tertian ague, which after two or three paroxyfms becomes a double tertian, and then a continued remittent, that frequently carries off the patient in a fhort time. Many fall victims to the fecond or third fit; but in thefe cafes a conftant delirium, and a great determination of the blood to the brain, accompany the other fymptoms. In fome it begins in a quotidian form, with regular intermiflions for a day or two; and then becomes a continued remittent, attended with the fame fatal confequences as the former. Of the Europeans of all clates who come O

Batavia.
to fetrle at Batavia, it is fuppofed that not half the number always furvives the year. The place refembles in that refpeef a field of battle or a town befieged. The frequency of deathe renders familiar the mention of them, and little figns are thewn of emotion or furprife on hearing that the companion of yefterday is to-day no more. It is probable, female Europeans fuffer lefs at Batavia than the men. The furmer feldom expole thenfelves to the heat of the fun, make frequent ufe of the cold bath, and live more timperately than the other fex.

But it is not to thofe who have lately arrived from Europe that this havoc is wholly confined. The greateft number of the Dutch fettlers, even thofe who had reficed lorg in the country, appeared wan, weak, and languid, as if labotiring with the " difeafe of death." Their place of refidence, indeed, is fituated in the midit of fwamps and tagnated pools, from whence they are every morning faluted with "a congregation of foul and peftilential vapours," whenever the fea breeze fets in, and blows over this morafs. The meridian fun railes from the thallow and muddy canals, with which the town is interfected, deleterious miafmata into the air ; and the trees, with which the quays and ftreets are crowded, emit noxious exhalations in the night.

The general reputation of the unhealthineis of Bataria is indeed fuch as to deter even Dutchmen, who can refide at home with any comfort, from coming to it, notwithftanding the temptations of fortunes to be quickly amaffed in it. From this circumflance it happens, that offices and profeffions are often neceflatily entrufted to perions little qualified to fill them. One of the clergymen, and the principal phytician of the place, were both faid to lave originally been barbers. The United Provinces furnifh even few military recuits. The ref are chiefly Germans, many of whom are faid to have been kidnapped into the fervice. Though nominally permitted, after a certain length of time, to return home, they are in fact compelled to enlift for a longer time, the pay being too fcanty to allow them to fave enough to defray the expence of their pafiage to Europe. The government is accufed of the barbarous policy of intercepting all correfpondence between the fe people and their mother country; by which means they are deprived of the confolation of hearing from their fiends, as well as of the chance of receiving fuch afiftance as migit enable them to get home.

Difficult, however, as it is, on account of the climate, to recruit the army, fuch is the defire of accumu. lating wealth in a forcign land, that it draws annmally great numbers of Chinefe as well as of Dutch to Batavia. Both indeed belong gencrally to the humbler claffes of life, and are bred in fimilar habits of induftry in their own country; but the different circumftances that attend them after their arrival in Batavia put an end to any further refemblance between them. The Chinefe have there no way of getting furward but by the contiruance of their former exertions in a place where they are more hiberally rewarded, and by a frict economy in the prefer vatinn of their gains. They have no chance of advancirg by favour, nor are public offices open to their ambition; but they apply to every induttious oc. cupation, and obtain whatever either care or labour can accomplith. They become in town retailors, clerks, and agents; in the country they are farmers, and are the principal cultivators of the fugar-cane. They do
at length acguire fortunes, which they value by the time and labour required to eann theni. So gradual an acquifition makes no change in their difpofition or mode of life. Their indultiy is not diminithed, nor their healh impaired. The Dutch, on the contrary, who are fent out by the Company to adminifter their affics in A fia, become foon fetfible that they have the power, wealth, and polfeftions of the country at their difpefal. They who furvive mount quickly into offices that are lucrative, and not to them laborious. They tife to the dignity of governor-general and counfellurs of the Indics, as the members of the Batavian government are called. Their influence likewite enables them to feculate in trade with valt advantage. The drudgery and detail of bufinefs are readily undertaken by the Chinefe; while their principals find it dificult, under fuch new circumftances, to retain their former habits, or to refift a propenfity to indolence and voluptuoufnefs, though often attended with the lacrifice of health, if nct of life. Convivial pleafures, among others, ase frequently carried to exceis.

In feveral houfes of note throughout the fettlement, the table is fpread in the morning at an early hour : befide tea, coffee, and chocolate, filh and fleth are ferved for breakfalt; which is no fooner nver than Nadeira, claret, gin, Dutch fmall beer, and Englifh porter, are laid out in the portico before the door of the great hall, and pipes and tobacon prefented to every gueft, and a bright Urafs jar placed before him to receive the phlegm which the robacon frequently draws forth. This occupation continues fometimes with little interruption till near dinner time, which is about one o'clock in the af. ternoon. It is not very uncommon for one man to drink a bottle of wine in this manner before dinner ; and thofe who have a predilection for the liquor of their own country fwallow feveral bottles of Dutch fmall beer, which they are told dilutes their blood, and affords plenty of fluids for a frec perfpiration. 1mmedately before dinner, two men haves go round with Madera wine, of which each of the company takes a bumper a; a tonic or whetter of the :appetite. Then follow three femaies, one with a filver jar containing water, fomelimes rofewater, to walh; a fecond with a lilver baton and low cover of the fame metal, pierced with holes, to receive the water after being ufed; and the third with towels for wiping the hands. During dinner a band of mufic plays at a little difance : the muficians are all flaves, and pains are taken to inftruct them. A confiderable number of female flaves attend at table, which is covered with a great varicty of difhes; but little is received, excopt liquors, into fomachs already clojed. Coffee immedately follows dinner. The 24 hours are here divided, as to the mamner of living, into two days and two nights; for each perfon retires, fonn after dunking colfee, to a bed, which confifts of a mattrafs, bolfter, pillow, and chintz counterpane, but no theecs; and puts on his night drefs, or muflin cap and loofe long cotton gown. If a bachelor, which is the cafe of much the greateit number, a female flave attends to fan him while he fleeps. About fix they rife, dre!s, cririk ted, take an airing in their carriages, and form parties to fpend the evening together to a late hour. The morning meetings confift generally of men, the ladies feldom choofing to appear till evening.

Few of thefe are aatives of Europe, but many are defcended

B A T

cefconded from Dutch fettlers here, and are educated with fome care. The features and outhines of their faccs arc Eurpean; but the complexion, charakter, ard mode of life, approach more to thofe of the native inhatitants of Java. A pale languor overfpreads the courtenarce, and not the leaft tint of rofe is feen in any rheck. While in their cwn houfes they drefs like their flaves, with a long red checkered cottor gown defeendirg to tl:e ankles, with large wide fleeves. They wear no head drefs, but plat their hair, and fathen it with a filver bodkin on the top cf the head, like the country girls in feveral cantons of Switzerland. The colnur of iheir hair is almof univerfally black; they anoint it vith the oil of the cocoa nut, and adorn it with chaplets of Aowers. When they go abroad to pay vifits, or to take an airing in their carriages, and particularly when they go to their e:ening parties, they drefs magnificertiy, in gold and filver fpangled menfin rubes, with a p:ofution of jewels in their hair, which however, is worn without foxder. They never attempt to mould or regulate the hape by any fancied idea of elcganre, or any fandard of fafnion; and confegnently formed a Ariking contraft with fuch few ladies as were lately arsived frem Hollatd, who had powdered hair and fair complexions, had contracted their wailts with fays, wore laige head drefles and hoops, and perfevcred in the carly care of forcing back the elbows, chin, and thoulders. Every native lady is conftantly attended by a female flave handifomely habited, who, as foon as her miftrels is feaied, fiis at her feet before her, on the floor, hoiding in her hands her miftrefs's gold or fitver box, divided into compartments, to contain areca nut, cardamom feeds, pepper, tobacco, and flacked lime; all which, mixed together in due proportions, and rolled within a leaf of betel, conflituie a mallicatory of a very pungent tafte, and in general ufe. When in the public alfemblies the ladies find the heat difagreeable, they retire to fice themfelves from their coltly but inconsenient habits, and return without ceremony in a more light and loofe attire, when they are farcely recognizable by Atrangers. The gentlemen folluw the example; and throwing of their heavy and fornal dreffes, appear in white jackets, fometimes indeed adorned with diamond butnns. The elderly gentlemen quit their periwigs for nightcaps. Except in thefe moments the members of this government have always combined their perfonal gratification with the Eaftern policy of ftriking awe into vulgar minds, by the affumption of ex. terior and exclufive dittinctions. They alone, for infance, appear abroad in crimfon velvet. 'Their carriages are diftinguifhed by peculiar ornaments. When met by others, the latter mult flop and pay homage to the former. One of the gatcs of the city is opened only to let them pafs. They certainly fucceed in fupporting abfolute fway over a valt fuperiority in number of the defcendents of the original inhabitants of the country, as well as of the flaves impnated into it, and of the Chinefe attracted to it by the hope of gain; thofe claftes, :!.oorgh healthy, ative, and as if quise at home, readily obeying a few emaciated Europeans. Such is the confequence of dominion once acquired; the prevalence of the mind over mere bodily exertions, and the effect of the combination of power againft divided atrengit.

The native J wanefe are in general ton remote from civilization to have any wants that are not eafily fatis-
fied in a xarm and fertile climate. No atiempt is made Bativia. to enflave their perfons; and they find the gorernment of the Dutch lefs rexatious than that of others, who divide fome fhare of the fovereignty of the ifland with them. The fultan of Mataran rules to the eaft, the emperor of Java in the centrs, and the king of Dantam to the weft; while the coaft and cffective power almols cntirely belong to Holland. Thofe other fovereigns are defcended from foreigners alfo; being Arabians, who imported the Mahometan relicgion into Jdva, and acquired the dominion of the country; a tew inhabitants in the mountains excepted, who lave rreferved their independerce and their faith, and among wher ar. ticles that of the tranfmigration of fouls. According to the Dutch accomes, nothirg can be more tyrann'c than thofe Mahometan rulers. The emperor is faid to mantain his authority by an army of many thouCand men difperfed throughout his termiorier, befide a nume. rous female guard about his perfon. Thefe military la . dies are trained, it feems, in arms, without negleding thofe accomplifhments which may occafion a clange in the occupation of fome among them, rendering them the companions, inftead of being the atterdants, of lis Imperial majelly. This fingular inftitution may owe its origin to the facility of obtaining recrui:s, if it be true, as the fame accounts pretend, that the number offemale births excceds very confiderably that of males in Java.

Moft of the fluses are imported into it from Celebes and other eaftern iflands. They do not form a corps, or have any bond of union: nor is the general conduct of their owners towarde them calculated to aggravate the misfortune of being the property of others. They are rot forced to excelive labour. They have fufficient futtenance; but many of the males among them, who had formerly perhaps led an independent life till made captives in their wars, have been found to take ffence againft their mafters upon very flight occafions, and to wreak their vengeance by aflaffination. 'Thise arprehen. fion of fuch an event is among the motives for preforring at Batavia female flaves for every ufe to vihich they can be applied; fo that the number purchafed of them mucla exceeds that of the other fex. The flaves when determined on revenge often fwallow, for the furpofe of acquiring artificial courage, an extraordinary dofe of opium, and foon becoming frantic as well as defperate, not only fab the objects of their hate, lout fally forth to attack in like manner cvery perfon they meet, till felf-prefervation renders it neceffary to deftroy them. They are faid in that flate to be running a muck; and inflances of it are not more common among flaves than among frec natives of the country, who in the anguilh for lofing their money, effects, and fometimes their lamilies, at gaming, to which they arc violently addicted, or under the pretfure of fome other palion or misfortune, have recourfe to the fame remedy, with the fame fatal effects.

In the country round Batavia the eye looks in vain for the common animals and vegetables which it had been daily accuftomed to meet in Europe. The moit familiar bird about the houfe of the embaftidor's hoft was the crown bird, as it was called at Batavia, which was not, however, the ardea pavonina of Linnæus, but the columba criffata, laving nothing except its creft in common with the former. The fame gentleman had a?-

B A T [G6] B A T

$\underbrace{\text { Batavias }}$ fo at his country houfe fome large caflowary birds, which, though long in his poffeffion, and having the appearance of tamenefs, fometimes betrayed the fiercenefs of their nature, attacking with their ftrong bill thofe who approached too near them. The vegetation of the country is likewife new. Even the parterses in the gardens are bordered, inftead of boxwood, by the Arabian jeffamine, of which the fragrant flowers adorn the pagodas of Hindoftar. The Dutch, who are fo fond of gardens in Holland, have transferred that tafte, where it can certainly be cultivated with more fuccers, and indulge it to 2 great extent at their houfes a little way from the ciry of Batavia; but ftill within that fenny diftrif, concerning which an intelligent gentleman up. on the fpot ufed the ftrong expreffion, that the air was peftilential, and the water poifonous. Yet the country is cvery where fo verdant, gay, and fertile; it is interfperfed with fuch magnificent houfes, gardens, avenues, canals, and draw-bridges; ancl is fo formed in every refipect to pleafe, could health be preferved in it-that a youth coming juft from fea, and enraptured with the beauty of every object he faw around him, but mindful of the danger there to life, could not help exclaiming, ' what an excellent inabitation it would be for immortals!'

The moft tolerable feafon here is from March or A. pril to November; when the rains begin, and laft the reft of the year. The fea breeze fets in about ten o'clock in the morning, and continues till four or five in the afternoon. It becomes then calm till feven or eight, when the land brecze commences, and continues at intervals till day-break, followed by a calm for the remaining hours of the 24. Fahrenheit's thermometer was, in Batavia road, during the Lion's remaining there, from 86° to 88°, and in the town from 88° to 92°; but its variations by no means correfponded to the fienfations produced by the heat on the human frame; the latter being tempered by any motion of the air, which circumitance lias little effect upon the thermometer. Nor are the animal fufferings here from heat to be meafured by its intenfenefs at any given moment of the day, but by its pertifting through the night; when, inftead of diminithing, as it does in colder countries, fometimes 20 degrees, it keeps generally bere within four or five of what it attains in the fhade, when the fun is at its higheft elevation.

The native Javanefe derive, however, one advantage at leatt from an atmofphere not fubject to the viciflitudes of temperature experienced in the northern parts of Earope, where difeafes of the teeth are chiefly prevalent; as they are here entirely exempt from fuch com-plaint:- Their habit of living chiefly on vegetable food, and of abtaining from fermented liquors, no doubt contributes to this exemption; yet fuch is the caprice of tafte, that jet black is the favourite colour and tandard of beauty for the teeth amonglt them, comparing to monkeys thofe who keep them of the natural colour. They accordingly take carc to paint, of the deepeft black, all their teeth, except the two middle ones, which they cover with gold leaf. Whenever the paint or gild. ing is worn off, they are as attentive to replace it on the proper teeth, as the belles of Europe are to purify and whiten theirs.

We have mentioned the rich vegetation of the country and the gardens which the Dutch have planted. In thefe gardens or orchards they cultivate the nutmeg,
the clove, the camphor, and the cinnamon trees, together with the pepper plant, which creeping like a vine, is fupported on a living tree. It is a feecies of the pepper plant that affords the leaf called betel, chewed fo univerfally by the fouthern Afiatics, and ferving for the inclofure of a few flices or bits of the areca, from thence erroneounly calied the betel nut. The areca nut tree is among the fmalleft of the tibe of palms, but comes next in beauty to the mountain cabbage tree of the Wett Indies; the latter differing chiefly in its fize and amazing height from the areca nut tree, the diameter of whofe jointed tuonk feldom excceds four inches, or height 12 feet. But the fymmetry of each is porfect; the columns of a temple cannot be more regular than the trunk, which rifes without a branch, whule the broad and fpreading leaves which crown the top form the ornamented capital. The areca nut, when diied, has fome finilitude in form and tate to the common nutmeg, but is of a lefs fize.

It would have been very extracrdinary, and very culpable, in Sir George Staunton, and Dr Gillan phyfician to the embafly, if they bad not, when on the fpot, inquired into the truth of Foerich's account of the upas or poifonttee of Java (fee Porson Trec of Fava, Encycl.) But the moll minute inquities were made refpecting it ; and the refult of them was, that no fuch tree is known at Batavia, and certainly does not exift where Foerfch has planted it. It is indeed a common opinion at Batavia, that there exifts in that country a vegetable poifon, which, rubbed on the daggers of the Javanefe, renders the flighteft wounds incurable; though fome European practitioners have of late afferted that they had cured perions flabbed by thofe weapons, but not witbout having taken the precaution of keeping the wound long open, and procuring a fuppuration. One of the keepers of the medical garden at Batavia affured Dr Gillan, that a tree diftilling a poifonous juice was in that collection, but that its qualities were kept fecret from molt people in the fettlement, left the knowledge of them fhould find its way to the llaves, who might be tempted to make an ill ufe of it. In the fame medical garden, containing it feems hurtful as well as grateful fubfances, is found alfo the piant from whence is made the celebrated gout remedy, or mosa of Japan, mentioned in the works of Sir William Temple, and defcribed in the Encyclopedia under the titles of Artemisia and Moxa.

The whole country abounds with efculent fruits, and, amongt others, with the mangolteen, which is ripe in March, and is conlidered as the moll delicious of all fruits (fee Garcinia, Encycl.) l'ine apples are in Java planted not in gardens, but in large fields; and are carried like turnips in heaps upon carts to markct, and fold for confiderably lefs than a penny each, where money is cheaper than in England. It was a common pratice to clean fiwords, or other inftrumeuts of feel or iron, by running them through pine apples, as containing the ftrongelt and cheapeft acid for difolving the ruft that covered then. Sugar fold for about five-pence a pound. All forts of provifions were cheap, and the thips crews led on frellh meat every day.

The ferpents and nosious reptiles in Java have been mentioned elfewhere ; but Sir George Staunton affures us, that not many accidents happen fionu them. Among the pagan Javanefe, the crucodile, be fays, is an objeĉ

B A Y [97] B E C

Bath I
not only of fear, but alfo of religious weneration, to which offerings are made as to a deity. When a Javanefe feels hinifelf difeafed, be will fometimes build a kind of coop, and fill it with fuch eatables as he thinks molt agreeable to the crocodiles. He places the coop upon the bank of the river or canal, in the perfeat confidence that, by the means of fuch offerings, he will get rid of his complaints; and perfuaded, that if any perfon could prove fo wicked as to take away thofe viands, fuch perfon wuuld draw upon himielf the malady for the cure of which the offering was made. According to Sir George Stamton, Batavia road lies in $6^{2} 10^{\prime}$ fouth lat. and $106^{\circ} 5^{\prime}$ eaft long. from Greenwich.

BATH, a townthip in Lincoln co. Diftrict of Maine, containing 949 ithatitants. It lies ou the W. fide of Kennebeck River about 13 miles from Wifcaffet, 60 N. E. from Portland, 32 fr.m Hallowell, 13 from Pownalboro', and 16_{5} N. E. fiom Bufton. N. lat. 43. 49.-Murse.

Bath , a county of Virginia, about 60 miles in length, and 50 in breadth; bunded E. by the county of Augufta. It is noted for its medicinal lprings, called the Hot and Warne fprings, near the foot of Jackfon's Mountain, which fee.-ib.

Bath, a thriving town in Berkly co. Virginia, fituated at the foot of the Warm Spring Mountain. The fprings in the neiglabourlood of this town, although lefs efficacious than the Warm Springs in Bath co. draw upwards of 1000 penple here, during fummer, from various parts of the United States. The water is little more than milk-warm, and weakly impregnated with minerals. The country in the environs is agreeably diverfified with hills and valleys; the fiol rich, and in good cultivation; 25 miles from Martinburg, and 269 miles S. W. from Philadelphia.-ib.

Bath, a townihip in Grafton co. N. Hampfhire, containing 493 inhabitants. It lies on the E. bank of Connecticut River 35 miles N. E. by N. from Dartmouth College, and 97 N. W. from Portfmouth.-ib.

Bath, or Port Bath, an ancient town in Hyde co. N. Carolina, on the N. fide of Tar River aboat 24 miles from Pamplico Sound, 61 S. by W. of Edenton, and is the port of entry on Tar River. It contains about 12 houfes, and is rather declining. N. lat. 35. 31. W. long. 77. 15.-ib.

Bath, a village in the ealtern parifh of St Thomas, in the Ifland of Jamaica, in the W. Indies. It has its rife and name from a famous hot fpring in its vicinity, faid to be lighly efficacious in curing the dry belly-ache. The water is fulphureons, and hows out of a rocky mountain about a mile diftant; and is too hot to admit a hand being held in it.-ib.

Bитн, a village in the co. of Renffalaer, New-York, pleafantly fituated on the calt bank of Hudion siver, nearly oppofite the city of Albatiy, at the head of floop navigation. A mineral fpring has been difc vered here, faid to poffefs valuable qualities; and a commodious batiling-loufe has been erected, at a contiderable expente, containing hot, cold, and fhower baths. -ib.

DAY OF FUNDY, wafhes the flores of the Britih provinces of New-Brumfuick on the N. and Nova-Scotia on the E. and S. This bay is 12 leagues acrofs, from the Gut of Annapulis to St John's, the principal town of New-Brunfiwick. The tides are veiy rapid
in this bay, and rife at Annapolis Bafin about 30 feet; at the Bafin of Minas, which may be termed the N . arm of this bay, 40 feet; and at the head of Chignecto channel, an arm of this bay, the fpring tides rife 60 feet.-i3.

BAY OF ISI.ANDS, lies on the IV. fide of Newfoundland Ifiand in the gulf of St Lawrence. This bay is very extenfive, having 3 arms, by which feveral rivers cmpty into it. It has feveral iflands; the chief of which are called Harbor, Pearl, and Tweed. The centre of the bay lies in about 49.5. N. lat. and 58.15. W. long. from Greenwich.-ib.

BEAR Grajs Creck, a fmall creek on the eaftern fide of Ohio River, a few hundred yards N. of the town of Lonifville, in Kentucky. This is the fpot where the intended canal is propofed to be cut to the upper fide of the Rapids. From the mouth of the creek, to the upper fide of the rapids, is not quite 2 miles. This would render the navigation of the Ohio tafe and eafy. The country on the fides of this creck, between Salt River and Kentucky River is beautiful and rich.-ib.

BEAUFORT, a feaport town in Carteret co. on the N. E. fide of Core Sound, and diftict of Newbern, N. Carolina. It contains about 20 houfes, a court-houfe and gaol, and the county courts are held here. It is 55 miles S . by E. of Newbern, and about 27 from Cipe Lookout. N. 1at. 34. 47.-ib.

Beaufort, the chief town of Beautort diftrict, S. Carolina, is fituated on the illand of Port Royal, at the mouth of Coofawhatchie River. The courts which were formerly held here, are now removed to the town of Coofawhatchie, on the above fmall river. Beaufort is a little pleafant town, of about 60 houfes, and 200 inhabitants; who are difinguifhed for their hofpi:ality and politenefs. It has a fine harbor, and bids fair to become a confiderable town. It ufed to be a itation for the Britifh fquadron when in their poffefion. Beaufort is fituated 26 miles from Purifburg, and 73 from Charletton, to the S. W. noted for its healthy fituation. N. lat. 32. 26. W. long. 80. 55--ib.

Beaufort Diffict, in the lower country of S. Carolina, lies on the fea coaft, between Combahce and Savannah rivers. It is 69 miles in length, and 37 in breadth, and is divided into 4 parifhes, viz. St Helena, St Luke, Prince William, and St Peter, which contain 18,753 inhabitants; of whom only 4346 are whites. The northern part of this diftrict abounds with large forefts of cyprefs; the lands, however, are fit for raifing rice, indig), \&c. It fends 12 reprefentatives and + fenators to the flate legiflature ; each parifh fending an equal number. Amount of taxes \&3,022-2-11 ther.-ib.
BEAVER Crcek, runs into Lake Erie, at its E. end ; about 7 miles S. E. from Fort Erie.- \vdots.

BEAVERS Tozun, at Tufkarawas, lies between Margaret's Creek, an upper N. W. branch of Mukingum River and the N . branch of that river: at the head of which N. bransh there is only a mile's portage to Cayahoga River. Leavers Townlies about 95 miles N. W. from Pittfurg. A little below this a furt was crected in $17^{6}+$. - $i b$.

BECCKEE, a townfhip in Berkfire co. MaffachuCetts, containing 751 inhabitants. It is 10 miles E. of Stockbridge,

Bay of
Iflands
Becket.

B E E [g] B E H

Edford Stocknidge, 17 from Lenox, and 130 W. from Bof. $t 0 n$ - $\mathrm{i} b$.

BEDFORD, a townfhip in Hillborough co. New-

Hamplhire, which was incorporated in 1750, and con. tains En 8 inhabitarte. It lies on the TV. bank of Mernimack River 56 miles W. of Pontfmouth.--ib.

Berford, a townflip in Middlefex co. Maflichufetts, contaising 523 inhabitants; 13 miles northerly from Boften.-ib.

Bedford, New, is a flourifhing town in Britol co. in the fame fate, containing 3313 inhabitants; 58 miles f - t thward of Bofton. It lies at the head of navigation on Arcuthnet River. Lat. 4c. 41. N. long. 70. 52. WV. from Greenwich.-is.

Bedford, a townhip in W. Chefter co. New York, containing 2470 inhabitants, including 3^{8} flaves. It lies contrgu us to Connesticnt, 12 miles N. from Long-Inand Sound, and 35 from the city of Nev. York. In the flate cenfus of 1796 , there appears to be 302 ele ̂́ters. - ih.
bedford, a town on the W. end of Long Ifland New-York, 4 miles N. W. from Jamaica Bay, and 6 E. from the city of New-Yoik. - ib.

Bedford, Co. in Pennfylvania, lies on Tuniatta River; has part of the thate of Marylard on the S. and Huntingdon co. N. and N. E. It contains 13,124 inhabitants, including 46 flaves ; and has $\frac{x}{2}$ of is lands fett!ed, and is divided into 9 townfluips.

Its chief town, Bedford, lies on the S. fide of the Rayftown branch of the fame iver; 25 miles eaftward of Berlin, and 210 W . of Philadelphia. It is reculaily laid out; and the inhabitants, who live in 41 log loofes and 9 of fone, have water conveged in wooden pipes to a refervoir in the middle of the town. They have a fone gaol ; the market-lıoufe, court houfe, and record office, are built of brick. Bedford was incor porated in 179j, and their charter is fimilar to that of Chefter. N. lat. 40, W. long. 78. 50.-ib.

BEDMIINSTER, in Somelft co. New-Jerfey, is it townflip containing 1197 inhabitants, including 169 flaves.-i3.

BEENMAN, a confiderable townhip in Duchefs co. New-York, coutainirg 3597 inluabitants, including ic6 flaves. In the fate centus of 1796 there appears to be 502 electors in this townhip.-ib.

LEER is a liquor fo palatable to the ratives of Britain, and, when properly made, fo wholefome, efpecially in long voyages at fea, that Mr Thonnton of Ealt Sminfield cbtained a patent, dated April 15, 1758, for inventing a method uf reclucing malt and bofs to an eflence or extract, from which beer may be made anywhere, either at jea or in ditant countries. Though we do not ferceive any great degree of ingenvity dif. played in this invention, yet as the account of it is thort, we thall lay it before our readers.

His method then of preparing an effence or extract of malt and hops is, by the thanfmitted heat of comprefled vapour of boiling water, and a proper apparatus for that purpofe. 'This apparatus may be made of irm, tin, or copper: it confilds of a boiler of any dimenfions, a double veftel, and conducting tubes. The double verfel confifts of one veflel placed within another, and fitted tight at their rims. The upper veffel forms the upper part of the under veffel, and contains the liquor to be evaporated. The under veflel is everywhere inclofed,
except at an aperture commanicating with the boiler, and at another aperture communicatirg with the conducting tubes; and is confructed fo as not to ailow any part of the vapour condenfed into drops within it to efcape, except back again into the boiler: it is not fo extenfive as to aft as a common refrigeratory, and yet is capacious enough to prevent the liquor boiling over. The aperture enmmunicatiry with the boiler is large enough to freely admit the vapour from the buiter into the under veflel; and the aperture communicatirg with the conducting tubes is of a proper fize to aliow of the vapour in the under veffel being comprolfect, in a degree capable of trarfnitting to the liquor to be evaporated a proper heat, and at the fame time to ferve as a paflage for more heat than is neceffary to keen up that degrea of compreffion. The conducting trbes are to convey this fuperfluous heat or vapour, to be ufed for farther purpufes, or immediately out of the building.

BEETEE, an infent deferibed in the Encycloprdia under the name given to it by naturalifts, Scarabeus. Since that article was publifhed, we have met with $2 n$ account of a rondefcrip: fpecies, which is furnifhed with very fingular armour for its own defence. It was brought to M. Vaillant in the interior parts of Africa by a Nimiqua woman, and is by lim called a fuperb beetle not to be found in any cabinet of Europe. " While I was examining this beautiful infect (fays he) with attention, If feit my face fuddenly wetted by a caufLic liquor, of a very frong alkaline fmell. The fprinkling was accompanied by a fort of explofion, loud enough to be heard at fome difance. Unformnately fome of the liquor entered one of my eyes, and occafioned fuch infupportable pain, that I thought I fhould have lof the fight of it. I was obliged to keep it covered for feveral days, and bathe it from time to time with milk. In every fart of my face that the alkaline liquor liad touched, I felt the pain of a burn; and everywhere the fkin changed to a deep brewn, which wore out only by degrees and a long time after. This will not le furprifing to many, who already are acquainted with the tame property in feveral infects of the fame genus; for inflance, in that beautiful golden green bupreftis, which is fo common in our kitchen-gardens in Europe: but as the infect of which I am here feaking is much larger, and inhabits a very hot country, it is natural that the effect produced by it fhould be more friking ; tho, the liquor which our golden bupreftis eject, at its enemy eccafions a very ferfible fmart, and its fmell is confiderably pungent."

The naturalins Dorci and Oivier have given, in their Entomology, the figure of this African inlect, which our author commanicated to them, but they have given it erroneoully. The human face, obfervable on its anterior corcelet in their figure, does not exift in nature ; but M. Vailhint having given no figure of it himfelf, we camot giatify cur readers with a corredt reprefer. tation.

BECAH, a land meaftre in Bengal, about one-third of an Englith acre.

BEHADER (Valiant), a title of honour conferred by the Mogul emperors upon cither Mahemedans or Hindoos, and placed after their name or other title.

BEHEM (Martin), though hitherto little talked of, was one of the moft enterpriling men that ever lived,

Behem. and deferves to have his name tranfmitted with reverence to the lateßt poßerity. Born at Nuremberg, an Imperial city in the circle of Franconia, of a noble family not yet :xtinet, he had the beft education which the darticels of that age would permit him to have; and the fludies to which from his infancy he was mof addicted, wete thofe of georraphy, attronomy, and navigation. As he advanced in life, lee often thought of the exiftence of the antipodes and of a weitern centinent, of which he was ambitious to make the difcovery.

Filled with this great idea, in 1459 he paid a vifit to I Cabella, daughter of John I. king of Portugal, at that time regent of the duchy of Burgundy and Flanders; and having informed her of his defigns, he procured a veffel, in which, failing well wasd, he was the firft European who is known to have landed on the inland of Fayal. He there eftabliftied in 1460 a colony of Flem. ings, whote defcendants yet exift in the Azores, which were for fome time called the Flemilh Iflands. This circumfance is proved, not only by the writings of contemporary authers, bet alfo by the manufcripts preferved in the records of Nuremberg; from the Latin of which the following is tranflated: " Martin liehem tendered his fervices to the daughter of John King of Iufitania, who reigned after the death of Dhilip of Bursundy, furnamed the Good; and from her procured a thip, by means of which, having failed beyond all the then known limits of the Weftern Ocean, he was the firft who in the memory of man difcovered the ifland of Fayal, abounding with beech trees, which the people of Lufitania call faye; whence it derived its name. After this he difcovered the neighbating iflands, catied by one general name the A zores, from the multitude of hawks which build their neits there (for the Lulitanians ufe this term for hawks, and the French too ure the word effos or efores in their purfuit of this game) ; and left colonies of the Flemifh on them, when they began to be called Flemifh Illands (A)."

After having obtained from the regent a grant of Fayal, and relided there sbout twenty years, Behem applied in 1434 (eight years before Culumbus's expedition) to John II. king of Portugal, to procure the means of undertaking a great expedition towards the fouth-welt. This prince gave him fome fhips, with which he difcovered that part of America which is now called Brazil; and he even failed to the Straits of Magellan, of to the country of fome favage tribes whom Ire called Patagonians, fiom the extremities of their bodies being covered with a flia more like a bear's paws than human hands and feet.

A fact folittle known, and apparentiy fo derogatory to the fame of Culumbus, ought not to be admitted wihhout fuficient proof; but the procfs which have bean urged in fupport of its autherticity are fuch as canrot be controverted. They are not only the letters
of Behem himfelf, witten in 1486 , and preferved in the archives of Nurembers, but likewife the public records of that city; in which we read that "Martin Behem, traverfing the Atlantic Ocean for feveral years, esamined the American iflands, and difovered the Arait which bears the name of Magellan before either Claritopher Columbus or Magellan failed thofe feas; whence he mathematically delineated, on a geographical chart, for the king of Lufitania, the fituation of the coalt around every part of that famous and renowned Arait loug before Magellan thought of his expedition."

This wondeaful difouvery has not efeaped the notice of contemporary vriters. The following pafirge is tranll sted from the Latin chronicle of Hartman Schedl: "In the year 1485 , John II. king of Purtugal, aman of a magnamimous pirit, fumifhed fome galless with provifons, and fent them to the fouthward, bejond the Straits of Gibraltar. He gave the command of this fquadron to James Canus, a Portuguefe, and Martin Dehem, a German of Nuremberg in Upper Germany, defcended of the family of Bonna: a man very well ac $\overline{-}$ quainted with the fituation of the globe; blelifd with a conftitution able to bear the fatigues of the fea; and who, by actual experiments and long failing, had m.xde himlelf perfeally mafter with remard to the longitudes and latitudes of I'toiemy in the wett. There two, by the bounty of Heaven, coallingr along the Southern Ocean, and having croffed the equator, got into the other hemifphere, where, facing w the caftward, their fhadows projected towards the fouth and right hand. Thus, by their indultry, they have opened to as ano. ther world hitherto unknown, and for many years attempted by none but the Genoere, and by them in rain. Having finifhed this cruize in the face of 26 months, they returned to Portugal with the lofs of namy of their feamen by the violence of the climate."

Belides this evidence of the firlt difcovery of America having been made by Belrem, we find the following particulars in the remaks made by Petrus Mateus on the canon law, two jears before the expedition of Co lumbus: "Pimine navigationes, \&ic. The firt Chritian voyages to the newly difcovercdiflands became frequent under the teign of IFenry, fon of John, king of Lufftania. After his death Alphonfus V. profecured the defign; and John, who fucceeded him, followed the plan of Alphonfus, by the affitance of Martin Bohem, a very fkiltul nurigator; fo that in a fhort time the name "f Lufitania became famous over the whole worlJ." Cellarius, one of the moll learned men of his age, fays exprefsly, "Bebcincus non modo, Eic. Bchm did not think it ennugh to furvey the illand of Fayal, which he firit difcovered, or the other adjacent illanis which the Luftanians call Aares, and we, alter the exmple of Lohm's companions, call Flemijb in inds, but advanced ftill farther and farther fouth, until he arrived at the remoteß Arait, though which Ferdinard Irigellan, following
(A) Althourh this record is contrary to the generally received opinion, that the Azores were difonvered by Gombiva Vetho, a Poltuguefe, yet its authenticity feems maquettionable. It is confomed at onfy by feveral contemporary writers, and by Wagerfeil, one of the moft learned men of the lafe century, but likewife by a note written on parchment in the German langiage, and lent from Nuremberg, a few yearo ago, to M. Otto, who was then inveltigating the difoovery of America. The note contained, with other things, the following firf: "Martin Beham, Efq; fon of Mr Martin Beham of Scoperin, lived in the reign of John II. king of Portugal, in an iflund which he difcowered, and called the ifland of Fagal, one of the Azores, lying in the Weftern Ocean."

Behem. $\underbrace{\text { Benem. }}$
following his track, afterwards failed, and called it af ter his own mame."

All thefe quotations, which cannot be thought tedious, fince they ferve to prove a fact almoft unknown, feem to demonfrate, that the firft dificovery of America is due to the Portuguefe and not to the Spariards; and that the chief merit belongs to a German aftronomer. The expedition of Ferdinand Magellan, which did not take place before the year 1519, arofe from the following fortunate circumitance: This perfon, being in the aparment of the king of Portugal, faw there a chatt of the coalt of America drawn by Dehem, and at once conceived the bold project of following the feeps of this great navigator. Jerome Benzon, who publihed a deficription of America in 1550, \{peaks, of this chart; a copy of which, fent by Behem himfelf, is preferved in the arclives of Nuremberg. The celebrated aftonomer Riccioli, thongh an Italian, yet does not feem willing to give his countryman the lionour of this important difoovery. In his Geographia Reformata, book. iii. p. 90. he fays, "Chriftopher Columbus never thought of an expedition to the Weft Indies until his arrival in the ifland of Madeira, where, amufing himfelf in forming and delineating geographical charts, he obtained information from Martin Behm, or, as the Spaniards fay, from Alphonfus Sanchez de Huelva a pilot, who had chanced to fall in with the iftand afterwards called Dominica." And in another place: "Let Behm and Columbus have each their praife; they were both excellent navigators; but Columbus would never have thought of his expedition to America, had not Bœhm gone there before him. His name is not fo much celebrated as that of Columbus, Americus, or Magellan, although he is fuperior to them all."

That Behem rendered fome very important fervices to the crown of Portugal, is put beyond all controverfy by the recompence beltowed on him by King John; of which the following account has been given to the public from the archivcs of Nuremberg. "In the year 1485, on the 18 th of Feb. in Portugal, in the city of Allafavas, and in the church of St Salvador, after the mafs, Martin Behem of Nuremberg was made a knight, by the hands of the molt puiffant Lord John II. king of Portugal, Algarve, Africa, and Guinea; and his chief fquire was the king limfelf, who put the fword in his belt; and the Duke of Begit was his fecond fquire, who put on his right fpur; and his third fquire was Court Chrifopher de Mcla, the king's coufin, who put on his left fpur; and his fourth fquire was Count Martuni Marbarinis, who put on his iron belmet ; and the king himfelf gave him the blow on the fhoulder, which was done in the prefence of all the princes, lords, and knights of the kingdom; and he efpoufed the daughter of a great lord, in confideration of the important fervices he had performed; and he was made governor of the illand of Fayal."

Thefe marks of ditinction, conferred on a Aranger, could not be meant as a recompenfe for the difcovery of the Azores, which was made twenty years before, but as a reward for the difcovery of Congo, from whence the Chevalier Behem had brought gold and different kinds of precious wares. This difcovery made much greater impreffion than that of a weftern world made at the fame time, but which neither increafed the wealth
of the royal treafury, nor fatisfied the avarice of the merchants.
In 1492 the Chevalier Behem, crowned with honours and riches, undertonk a journey to Nuremberg, to vifit his native country and his family. He there made a terreftrial glube, which is lonked on as a mafterpiece for that time, and which is Rill preferved in the library of that city. The outline of his difcoveries may there be feen, under the name of weftern lands; and from their fituation it cannot be doubted that they are the prefent coatts of Brazil, and the environs of the Straits of Magellan. This globe was made in the fame year that Columbus fet out on his expedition; therefore it is impofible that Behem could have profited by the works of that navigator, who befides went a much more northerly courfe.

After having performed feveral other interelling voyages, the Chevelier Behem died at Lifbon in July 1506, regretted by every one, but leaving behind him no other work than the globe and chart which we have juf been fpeaking of. The globe is made from the writings of Ptolemy, Piiny, Strabo, and efpecially from the account of Mark Paul, the Venetian, a celebrated traveller of the I_{3} th century ; and of John Mandeville, an Englifh. man, who, about the middle of the 1 th century, publifhed an account of a journey of 33 years in Africa and Afia. He has alfo added the important difcoveries made by himfelf on the coafts of Africa and America.

From thefe circumftantial accounts, but very lately brought to light, there can be little doubt, we think, but that America was difcovered by Martin Behem. Dr Robertfon is indeed of a different opinion: but great as we willingly acknowledge his authority to be, we may differ from him without prefumption, fince he had it not in his power to confult the German documents to which we have appealed, and has himfelf advanced facts not eafily to be reconciled to his own opinion. He allows that Behem was very intimate with Chriftopher Columbus; that he was the greateft geographer of his time, and fcholar of the celebrated John Müller, or Regiomontanus; that he had difcovered, in 1483, the kingdom of Congo, upon the coalt of Africa; that he made a globe which Magellan made ufe of; that he drew a map at Nuremberg, containing the particulars of his difcoveries; and that he placed in this chart land which is found to be in the latitude of Guiana. He adds indeed, without proof, that this land was a fabulous ifland; but if authentic records are to give place to bare affertion, there is an end of all hiftorical evidence. If Behem took for an ifland the firtt land which he difcovered, it was a miltake furely not fo grafs as to furnifh grounds for queltioning his veracity, or for withholding from him for ever that jultice which has been fo long delayed.

But this very delay will by fome be thought a powerful objeation to the truth of Behem's claim to the difcovery of America; for if it was really difcovered by him, why did not he leave behind him fome writing to confirm the difcovery to himfelf? and why did not the court of Partugal, fo jealous of the difcovery of the new world, proteft againt the exclufive claim of the Spaniards?

To thefe obje:tions we may reply, that, however plaufible they may at firl appear, they do not in the fmallen

B E H [101] B E I

$\underbrace{\begin{array}{c}\text { Estic:n } \\ \text { Behring.3. }\end{array}}$
fmallef degree invalidate the pofitive evidence which we have urged for the Chevalier Behem's being the real difcoverer of the new world; for it would furely be very abfurd to oppofe the diffoutity of affering motives for certain actions periormed at a remote period, to the reality of other actions for which we liave the teftimony of a cloud of contemporary witnefles. Suppofing it were true, therefore, that Behem had left behind him no writing claiming to himfelf the difoovery of any part of the continent of America, the only inference which conld be drawn from his filence would be, either that he was a man of great modefty, or that his mind was intent only on the acquifition of knowledge to himfelf, without feeling the ufual impulfe to eomamunicate that knowledge to others. But it is not true that he has left behind him no claim of this difcovery to himfelf. The letters to which we have appealed, and which are preierved in the archives of Nuremberg, together with the globe and map, which he certainly made, furnill as complete a confirmation of his claim as could have been furn thed by the mot elegant account of his voyages.

For the filence of the Portuguefe, many reafons might be afligned. The difcoveries of Columbus were made fo much farther north than thofe of Behem, that, in an age when geographical knowledge was fo very limited, both Spaniards and Portugueie might very naturally believe that the country difcovered by the former of thefe navigators had no connection with that difcovered by the latter. At any rate, the Portuguefe, whofe difcoveries proceeded from avarice, were fatisfied with fcraping together gold wherever they could find it ; and finding it in Africa, they thonght not of fearching for it in a more diftant region, till the fuccefs of the Spaniards fhewed them their mittake.

One thing more is worthy of attention. The long Stay of Columbus at Madeira makes his interview with Behem more than probable. It is impoffible that he thould have neglected feeing a man fo interelting, and who could give him every kind of information for the execution of the plan whic! he had formed. The mariners who accompanied the Chevalier Behem might alfo have fpread reports at Madeira and the Azores concerning the difcovery of which they had been witnelfes. What ought to confirm us in this is, that Mariana fays himfelf (book xxvi. chap. iii.), that a certain vellel going to Africa, was thrown by a gale of wind upon certain unknown lands; and that the failors at their return to Madeira had communicated to Chrifopleer Culumbus the circumftances of their voyage. All authors agree that this learned man had fome information refpecting the weftern thores; but they fpeak in a very vague manner. The expedition of the Chevalier Belem explains the mytery (B).

BEHRING's Bay, on the N. W. coaf of N. America, is feparated from Admiralty liay, on the northward, by a point of land; and lies N. W. from Crofs Sound.-Morse.

BEHKING's Straits, feparate A fia from America, are fo called from the Rullian navigator, Capt. Behring, who with Inirikow, failed from Kamptichatka,

Suppl. Vol. I.
in Sibciia, on the Afiatic coaft, in cquef of the New Lehring's World, in a quater where it had, perhaple, never been approached. They both difcovered hand within a few degrees of the N. IV. coaf of America. But the more recent difcoveries of Capt. Cook, and his fucceffor, Clarke, have confirmed the near approxinatiun of the two continents. Cape Prince of Wales is the mott we?erls point of the American continent, hitherto known. It is fituated in N. lat. 65.46. E. long. IgI 45. and is 39 miles diftant from the eaftern coaft of Afa.

The fea, from the S. of Behing's Straits, to the crefcent of ifles between Afia and America, is very flallow. It deepens from thefe fraits (as the Britifh feas do from Dover) till foundings are lof in the Pacific Ocean; but that dues not take place but to the S . of the ifles. Between then and the ftraits is an increafe from 12 tn 54 fathoms, except only off St Thaddeus Nofs, where there is a channel of greater depth. From the volcanic difpofition, it has been judged probable, not only that there was a feparation of the continents at thefe Rraits, but that the whole fpace from the ifles to that finall opening had once beea diy land; and that the fury of the watery element actuated by that of fire, had, in very remnte times, fubverted and overwhelmed the tract, and left the iflands to ferve as monumental irdgments.

The famous Japancefe map places fome iflands feemingly within thefe ftraits, on which is beffowed the title of $r_{a} Z_{u e}$, or the kingdom of the $d w a r f s$. This gives fome reafon to fuppofe that America was not unknown to the Japanefe; and that they had, as is mentioned by Kampfer, and Charleroix, made woyages of difcovery ; and, according to the lan, aetuatly wintered upon the continent, where protably mceting with the Efquimaux, they might, in comparifon of themfelves, and juftly, diltinguifh them by the name of dwarfs.-ib.

BEKIA, or Becouya, or Boquis, a fmail Britifl ifand among the Granadillas; 55 miles N. E. of Granada, and 65 leagues from Barbadoes. It was called Little Martinico by the Frencl, and has a fafe harbour from all winds; but no frefl water. It is only frequented by thofe who catch turtle. The foil produces wild cotton, and plenty of water melons. $-i b$.

BELCEER, a townhip in Hamphire co. Mafachufetts, containing 1485 inhabitants, who fubfitt chiefly by farming. It lies 12 miles E. of Hadley, and 85 W . of Bofton.-ib.

BELFASI, a townthip and bay in Hancock co. Diltrict of Maine, both fituated in what is called the Waldo Patent, at the mouth of Penoifcot River and $n \mathrm{n}$ its weltern fide; $3^{6 i}$ miles N. E. by E. from H.hlowell, and $2 \not+6$ IN. E. from Dulton. The town contains 245 inhabitants. The Bay, on the N. weltern part of which the town fands, runs up into the land by three fhort asms. Iffeforough Ifland lies in the middle of it, and forms two channels leading to the mouth of Penobicor river. - ib.

BELLAIRE,
(B) For the greater part of this memoir we are indebted to M. Ottn's paper on the difcovery of America, publifhed firf in the fecond volume of the American Tranfations, and afterwards by Nicholion in $\mathrm{N}^{\circ} \mathrm{Il}$, and III. of his Journal.

B E N [102] B E R

BELLAIRE, a poft-town near the centre of Harford co. Maryland, and the chief of the county. It contains a court boufe and gacl, and is thinly inhabited ; diftant from Harford, 6 miles, N. W; 22 N. E. from Baltimore, and 86 W. S. W. from Philadelphia. -Morse.

BELLINGHAM, a fmall farming townhip in Norfolk co. Maffachufets, containing 735 inhabitants, 20 miles northerly from Providence, and $3+$ fuutherly from Boiten. -ib.

EELLS RIIl, a fettlement in N. Carolina, near the Moravian fettlements, at the fource of Deep river the N. weftern-moft branch of the N. W. branch of Cape Fear, and about 50 miles W. of Hillßorough.- $i b$.

BELPRE, a poft-town and fmall fettlement in the territory N. W. of the Ohio, ons the N. W. bank of Ohio river between the Hockhocking and Mifkingum rivers and oppofite the mouth of the Little Kanhaway; : bout ia miles below Marietta, and 480 S. W. by W. from Yhiladelphia.-ib.

BELVIDERE, a new townih'p in Franklin co. Vermont.-Alfo a village in New. Jerfey, in Sufiex co. fituated on Delaware river at the mouth of Pequeft river and 11 miles above Eafton, in Pennfylvania.-ib.

BENNINGTON, a county in the S. W. corner of Vermont, having Windham co. on the E. and the ftate of N. York on the W ; into which fate it fends Batten Fill and Hoofack rivers, which both rife here, and fall into Hudfon river if miles apart : Rutland co. lies on the N. and the fate of Miffachufetts on the S. It contains In townthips, of which Bennington and Manchefter are the chief. It has 12,254 inhabitants, including 16 flives. The mountains here fursifh iron cre in abundance, and employ already, a furnace and two forges.-ib.

Bennington, the hire town of the above county, and the largett town in the late of Vermont, having about 1 Go houfes, in the compact part of the town, is fitnated at the foot of the Great Mountain, near the S. W . corner of the itate, 24 miles ealterly from the juncticn of Hudfon and Nohawk rivers, and about 52 from the S. end of Lake Champlain, at the confluence of the E. and S. bays; and lies 55 miles from Rutland; 202 miles. N. eafterly from New-York; and 300 in the fame cirestion from Mhiladelphia. N. lat. 42. 4=. W. long. 74 - 10 . Benuington has feveral eiegant buildings. lis public edifices are a congregational church, fate houfe and gaol. It is the oidelt town in the flate, having been firlt fettled in $1 ; 64$, and is in a flowtifing condition, containing 2,400 inhabitants. Within the townfhip is Mount Anthong, which rifes vere high in a conical form.

Two famous batles were fought in or near this town, in one day, Aug. 16, 177T, in which Col. Stark gained great fane. The Britifh loft 4 brafs field pieces, and other military fores; and belides thofe flain, 700 were taken prifoners. The killed and wounded of the Americans were about ioo men. Thlis defeat contributed, in a great meafure, to the fubfequent furrender of Gen. Burgoyne's army.-ib.

BENSON, the N. wefternmof townfhip in Rutland co. Vermont, is fituated on the E. fide of Lake Champlain; 57 miles N. N. W. of Bennington, and has 658 inhabitants. Hubberton tiver paffes through

Benfon in its way to Eaft Bay. Cockburne's Creek, Eereans. which feeds the fame bay, rifes here.-ib.
BEREANS, in ancient church hitory, the inhabitants of Berea. They are highly commended in Scripture for their ready reception of the gofpel, upon a fair and impartial examination of its agreement with the Old Teftament prophecies. Scpater, a Berean, attended the apoftle Paul to Afia. Ans xvii. 10-13. and xx. 4 .

Bekeans, in modern church hiftory, a fect of lroteftant difenters from the church of Scotland, who take their title from, and profefs to follow, the example of the ancient Bereans, in building their fyftem of faith and practice upon the Scriptures alone, without regard to any human authority whatever.
The Bereans agree with the great majority of Chri- Doctrines. Atians, both Proteftants and Catholics, refpesting the doctrine of the Trinity, which they hold as a fundamental article of the Chritian faith; and they alfo agree in a great meafure with the profefled principles of both our eltablifhed churches refpecting predeftination and election, though they allege that thefe doctrines are not confiftently taught in either church. But they differ from the majority of all feats of Chriftians in various other important particulars. Such :s,

1. Refpecting our knowledge of the Deity. Upon this fubject, they fay, that the majority of profefled Chriftians ftumble at the very threfhold of revelation; and, by adnitting the doatrine of natural religion, natural confcience, natural notices, \&c. not founded upon revelation, or derived from it by tradition, they give up the caufe of Chriftianity at once to the infidels; who may juftly argue, as Mr Paine in fact does in his Age of Reafon, that there is no occafion for any revelation or word of God, if man can difcover his nature and perfections from his works alone. But this, the Bereans argue, is beyond the natural powers of human realon; and therefore our knowledge of God is from revelation alone; and that without revelation man would never have entertained an idea of his exiftence.
2. With regard to faith in Chrift, and affurance of f.lvation through his merits, they differ from almof all other feets whatioever. Thefe they reckon infeparable, or rather the fome; becaule, they argue, God hath exprefsly declared, "He that believeth fhall be faved;" and therefore it is not only abfurd, but impious, and in a manner calling God a liar, for a man to fay, "I believe the Gofpel, but have doubts nevertheleis of my own falvation." With regard to the various diftinctions and definitions that have been given of different kinds of faith, they argue, that "there is nothing incomprehenfible or oblcure in the meaning of this word as uled in Scripture; but that as faith, when applied to human teftimony, figninies neither more nor lefs than the mere fimple belief of that teflimony as true, upon the authority of the teftifier; fo, when applied to the teflimony of God, it fignifies precifely the belief of his teftimony, and refting upon his veracity alone, without any kind of collateral fupport from concurrence of any other evidence or teftimony whatever." And they infift, that as this faith is the gift of God alone, fo the perfon to whom it is given is as confcious of poffeffing it, as the being to whom God gives life is of being alive ; and therefore he entertains no doubts either of this faith or his confequent falvation through the merits of Chrift,

Bereans. who died and rofe again for that purpofe. In a word, they argue, that the Gofpel would not be what it is heid forth to be, "glad tidings of great joy," if it did not bring full perfenal afiurance of cternal falvation to the belicver: which affurance, they infint, " is the prefent infalliblc privilege and portion of every individual belicver of the Gofpel." Thefe definitions of faith, and its infeparable concomitant affurance, they prove by a variety of texts, which our room permits us not to quote.
3. Confiftently with the above defiaition of faith, they fay, that the fin againft the Holy Gholt, which Luas alarmed and puzzled fo many in all ages, is nothing elfe but undelief; and that the expreflion, that "it maill not be forgiven, neither in this world nor that which is to come," means only, that a perfon dying in infidelity would not be forgiven, neither under the former difpenfation by NIofes (the then prefert difpenfation, kingdom, or government of God), nor under the Gofpel difpenfation, which, in refpect of the Mofaic, was a kind of future world or kingiom to come.
4. The Bereans interpret a great part of the Old Teftament prophecies, and in particular the whole of the Pfalms, excepting fuch as are merely hiftorical or lauditory, to be typical or prophetical of Jefus Chrift, his fufierings, atonement, mediation and kingdom: and they efteem it a grofs perverfion of thefe Pfalms and prophecies to apply thens to the experiences of private Chrilians. In proof of this, they not only urge the words of the apolle, that "nn prophecy is of any private interpretation," but they infift that the whole of the quotations from the ancient prophecies in the New Tefament, and particularly thofe fiom the Plalms, are exprefsly applied to Chrift. In this opinion many other clafles of Proteftants agree with them.
5. Of the abfolute all fuperintending fovereignty of the Almighty, the Bereans entertain the highell ideas, as well as of the uninterrupted exertion therenf over all works in heaven, earth, and hell, however unfearchable by his creatures. "A God without election (they argue), or choice in all his works, is a god without ex-iftence-a mere idol-a non-entity. And to deny God's election, purpofe, and exprefs will in all his works, is to make him inferior to ourfelves." For farther particulars refpecting the Berean doctrines, we muft refer the reader to the works of Meffrs Barclay, Nicol, Brookßbank, \&c.

The Bereans firft affembled as a Ceparate fociety of Chrifinas in the city of Edinburgh in autumn 1773, and foon after in the parifh of Fettercairn. The opponents of the Berean doctrines allege, that this new fyltem of faith would never have been heard of, had not Mr Barclay, the founder of it, been difappointed of a fettlement in the church of Scotland. A refpectable clergyman of the eftablifhed church has even hinted fomething to this purpofe in Sir John Sinclair's Statiftical Account, Vol. IX. p. 599. But the Bereans, in anfiver to this charge, appeal not only to Mr Barclay's dnctrine, uniformly preached in the church of Fette:cairn, and many other places in that neighbourhood, for fourteen years before that benefice became vacant; Eut likewife to two different treatifes, containing the fame doctrines, publithed by him about ten or twelve years before that period. They admit, indeed, that, previous to Maly 1773, when the general allimbly, by
fuftaining the king's prefentation in favour of Mr Foote, Bereans. excluded Mr Barclay from fucceeding to the church of Fettercairn (notwithfanding the almoft unanimous defire of the parithioners), the Bereans had not left the eltablithed church, or attempted to ereet themfelves into a diftinet fociety; but they add, that this was by no means neceffary on their part, unill by the affembly's decifion they were in danger of being not only deprived of his inftuctions, but of being fattered as theep without a fepherd. And they add, that it was Mr Barclay's open and public avowal, both from the pulpit and the prefs, of thofe peculiar fentiments which now diftinguifh the Bereans, that was the firft and principai, if not the only, caufe of the oppofition fet on foot againft his fettlement in Fettercairn.

Having thus given a concife view of the origin and dillinguifhing doctrines of Dereanifm, it only remains to mention a few particulars relative to the practice of the Bereans as a Chrifian focicty. Infant baptifm they confider as a divine ordinance inflututed in the room of circumcifon; and they think it abfurd to fuppofe that infants, who all agree ate admiflible to the kingdom of God in heaven, fhould neverthelefs be incapable of being admitted into His vibible clurch on earth. They commemorate the Lord's fupper in general once a month ; but as the words of the inflitution fix no particular period, they fometimes celebrate it oftener, and fometimes at more diftant periods, as may fuit their general convenience. In obferving this ordinance, they follow the primitive apoftolic plan, without any previous days of fafting or preparation; as they apprehend that fuch human inftitutions only tend to make an idol of the ordinance, and to lead people to entertain erroneous ideas of its fuperior folemnity and importance. Equal and univerfal holinefs in all manner of converfation, they recommend at all times, as well as at the table of the Lord. They meet every Lord's day for the purpofe of preaching, praying, and exhortation to love and good works. With regard to the admillion and exclufion of members, their method is very fimple. When any perfon, after hearing the Berean doctrines, profefles his belief and affurance of the truths of the Gofpel, and defires to be admitted into their communion, he is cheerfully received upon his profeffion, whatever may have been his former manner of life. But if fuch an one fhould afterwards draw back from his good profeffion or practice, they firft admonifh him ; and if that has no $\mathrm{cff}=\mathrm{C}_{\mathrm{t}}$, they lave him to himfelf. They do not think that they have any power to deliver up a backfliding brother to Satan. That text and other fimilar pafirges, fuch as, "Whatoever ye fhall bind on earth thall be bound in heaven,' \&c. they confider as reltricted to the apoftes and to the infpired teftimony alone, and not to be extended to any church on earth, or any number of churches or of Chriftians, whether clecidung hy a majority of votes or by unanimous voices. Neither do they think themiclves authorifed, as a Chrifian church, to enquire into eaclz others political opinions, any more than to examine into eacli nthers notions of philofophy. T'bey both recommend and practife, as Chilitian dutios, fubminion to lawful authority; but they do not think that a man, by becoming a Chriftian, or joining their fociety, is under any obligation, by the rules of the Golpel, to renounce his rights of private judgment upon matters of public or private impertance. Upon all

B E R

fuch fubjens they allow each other to think and act as each may fee it his duty. And they require nothing more of their members than a uniform and Ready pro. fellion of the apoftolic faith, and a fuitable walk and converfation. With regard to feet-wathing and the like practices, which fome other feets of Chriftians conlider as duties, the Bereans are of opinion that they are by no means obligatory. They argue, that the example given by our לaviour of walhing the feet of his difciples was not an inftitution of an ordinance, but merely a fitmiliar inftance, taken from the cufom of the country, and alopted bs nur Lord on that occafion, to teach his followers that they ought at all times to be ready 10 perform even the meaneft offices of kindnefs to each viber.

It may not be improper to add to the above delineation of the principles and practice of the Bereanc, that their doctrine has found converts in various places of Scutiand, England, and America, and that they have congregations in Edinburgh, Glafyow, Paifley, Stirling, Cricif, Dundee, Aıbroath, Montrole, Fettercairn, Aberdeen, and ohher towns in Scotland; as well as in Iondon and various places in England; not to add Penflyanis, the Carolinas, and other Scates in America.
'The above account of the doctrines, origin, practice, and prefent itate of this fociety, has been given to us by the founder bimfelf.

BERGEN Co. in New-Jerfey, on Hudfon river, lies oppofite New-York, en the E. and was firt planted by the Dutch, from New. York. It contains 6 townWhips, of Which the chicf are Bergen and Hackinfack, and 12,601 inhabitants, ineluding 2301 flaves. Here are 7 Dutch Calvinift churches, and 2 of Dutch Lutherans. These is a copper mine here, which when worked by the Sehuylers (to whom it belonged) was confiderably produstive ; but it has been neglected for many years.

It is a mountainous, rough and hilly county, 30 mites long, and 25 broad. It forms pait of the E. and nothern end of the fate; and its N. W. extremity meets the N. E. patt of Sufiex co.; fo that thefe two counties embofom Morris and Elex counties, except on the S. W. and form the whole breadth of the date in that guarter. - Morse.

BEFKENHOUT (Dr John), was about the year 1730 bern at Leeds in Yorkthire, and educated at the grammar fehool in that town. His father, who was a maerchant, and a native of Holland, intended him for tiade; and with that view ifnt him at an early age to Gernany, in order to learn foreign languages. After continuing a few years in that country, he made the tour of Eu: ope in company with one or more Englifh noblernen. On their return to Germany they vitited Tenlin, where Mr Berkenhout met with a near relation of his father's, the Baron de Bielfeldt, a nobleman then in high eftimation with Frederick the Great king of I'rullis; diftinguithed as one of the founders of the Roy. al Academy of Sciences a: lierlin, and univerfally known as a politician and a man of letters. With this relation our joung traveller fixed his abode for fome time; and, regardlefs of his original deftination, beeame a cadet in a Prulian regiment of foot. He foon obtained an enfign's commiffion, and in the fpace of a few Jeais was advanced to the rank of captain. He quit-
ted the Fruffian fervice on the declaration of war between England and France in 1756, and was honoured with the command of a company in the fervice of his native country. When peace was concluded in 1760 , not choofing, we fuppofe, to lead a life of inactivity on half pay, he went down to Edinburgh, and commericed Audent of phyfic. During his refidence at that univerfity, he publifhed his Clavis Anglica Iinguce Botanica; a book of great utility to all itudents of botany.

Having continued fome years at Edinburgh, Mr Berkenhout went to the univerfity of Leyden, where he was admitted to the degree of M. D. in the year 1765. On this oceafion he publifhed a thefis, intitled, Differtatio medica inauguralis de Podagra, which he dedicated to his relation Baron de Bielfeldt. Returning to England, Dr Berkenhout fettled at Illeworth in Middlefex, and foon atter publifhed his Pharmacopaia Mledici, the third edition of which was printed in 1782. In 1778 he was fent by government with the commiffioners to America. Neither the commiffioners nor their fecretary were fuffered by the congrefs to proceed further than New York. Dr Berkenhrut, however, found means to penetrate as far as Philadelphia, where the congrefs was then alfembled. He appears to have remained in that city for fome time without molefation: but at laft they began to fufpect that he was fent by Lord North for the purpofe of tampering with fome of their leading members. The Doctor was immediately feized and committed to prifon.

How long lie remained a ftate prifoner, or by what means he obtained his liberty, we are not informed; but we find from the publie prints, that he rejoined the commiftioners at New York, and returned with them to England. For this temporary facrifice of the emoltaments of his profeffion, and in confideration of his having, in the fervice of his fovereign, committed himfelf to the mercy of a congrefs of enraged republicans, he obtained a penfion.

Many years previous to this event, Dr Berkenhont had publifhed his Outines of the Natural Hifory of Great Britain and Ircland, in three volumes 12 mo ; a work which eftablifhed his reputation as a naturalif. In the year 1773 he wrote a pamphlet, entitled, An Eflay orn the Bite of a Mad Dog, in which the Claim to Infallibility of the Principal Prefervative Remedies, againgt the Hydropholia is exanined. This pamphlet is inferibed to Sir George Baker, and deferves to be univerfally read.

In the year following Dr Berkenhout publifhed his Symptomatology; a book which is too unirerfally known to require ans recommendation.

At the beginning of the year 1788 he publithed a work, entitled, Firf Lines of the Thoory and Practice of Philofoplical Chemifry, which he dedicated to Mr Eden, now Lord Auckland, who had been one of the commiffoners whom he accompanied to America.

Thefe, we believe, are the Doctor's prineipal publications in the line of his profeffion; but he wrote on many other fubjeets with equal ability. His tranflation of Count Tefin's Letters, which was his firlt publication and dedicated to the prefent king when prince of Wales, evinces his knowledge of the Swedifl language, and fhews lim to have been a good poet. His Elfay on Ways and Means, proves him to have been better acquainted with the fyftem of taxation than molt other

Berkley men who have written on the fubjeet. His biographical porvers appear in his Bingraphia Literaria; and in all his works are fufficient proofs of his claffeal learning, and that the Italian, French, German, and Dutch languages, were familiar to him. He poffefled likewife a very conliderable degree of mathematical fcience, which he acquired in the courfe of his military ftudies; and to thofe more folid attainments he is faid to have added no finall fkill in the fine arts of painting and mufic. This eminent man, who, for the variety and promptitude of his knowledge, has been compared to the Admirable Crichton, died on the 3ul of April 1791.

BERKIEY, a townthip in Briftel co. Matachu. fetts, containing 850 inhabitants; 50 miles fouthward of Bofton.-Mforse.

Berrley, the name both of a county and town, in Charlefton Diftrif, S. Carolina, lying sear Cooper and Athley rivers. In the centits of 1791 , it was call. ed St John's Parilh, in Berkicy co. and contained 75^{2} free perfons, and 5170 flaves.-ib.

Berkley Co. in Virginia, lies W. of the Blue Ridge, N. of Frederick co. and feparated from the ftate of Maryland, on the N. and E. by Potowmack river. This fertile county, about 40 miles long and 20 broad, has 16,781 free inhabitants and 2932 haves. Martinfburg is its chief town.- $i b$.

Berkley's Sound, on the N. W. coaft of N. America, lies on the ealtern fide of Quadras Inles. The land on its eaftern fide is oppofite Cape Flattery, and forms the N . fide of the Straits de Fuca.-ib.

BERK's Co. in Pennlylvania, has Northampton ce. on the N. E. ; Northumberland on the N. W. ; part of Luzern on the N. ; Dauphin and Lancatter counties S. W. and Chefter and Montgomery S. E. It is watered by Scluylkill River and is 53 miles long and near 29 broad, containing 1,030,400 acres. Here iton ore and coal ate found in plenty, which fupply feveral iron works. The northern parts are rough and hilly. Berks contains 30,179 inhabitants, of whom 65 only are flaves. It has 29 townhips, of which Reading is the chief.-ib.

BERKSHIRE Co. in Mafachufetts, is bounded W. by New York fate ; S. by the ftate of Connesticut; E. by Hamphire co, and N. by the flate of Vermont. It thus runs the whole extent of the fate from N. to S. and contains twenty-fix town!hips; the chief of which are Stockbidge, Lenox, Great Barrington. Williamfown, and Pittstield; and the number of inhabitants 30,291 . White and clouded marble is found in feveral towns, in the rough and hilly parts of this county.

In February, 1796 , the legillature paffed an act to eftablith a college in Williamfown, by the rame of Williams College.-it.

Berkshire, a newiy fettled townhip, in Franklin co. Vermont.-ib.

BERLIN, a neat and flourifhing town of York co. Pennfylvania, containing about ico bonfer. It is regularly laid out, on the S. IV. fide of Conewago Creek, 13 miles welterly of Yorktown, and ICI W. of Philadelphia. N. lat. 39. 56.-.\%.

Berlin, a townfhip in Orarge co. Veimont, on Dog River a branch of Onion River from the S .; which laft feparates Berlin from Mon'pelier, on the N. N. W. Berlin contains 134 inhabitants, and is about 94 miles N. callenly from Bemirgton.-ib.

Berlin, a townfip in Hartford co. Connecticut, 12 miles S. S. W. of Hartford, 42 N . W. of New.London; and 26 N. N. E. of New-Haven,-ib.

Berlin, a townhip in Worcefter co. Naffachurfetts, containing 5^{12} inhabitants; 34 miles W. uf Bofton, and 15 N. E. of Worceiter. H:ps lave been cultivated here lately, and promifed to be a valuable article of hufbindry-ib.

Berlin, in Somerfet co. formerly in that of Bedford, Pennfylvanin, lies on a branch of Stony Creek, a fouth water of Conemaugh River on the W. fide of the Alleghany Mountain; 25 miles weltward of Bedford; 23 N. W. of Fort Cumberland, in Virginia, and 200 W. of Philadelphia. Stone Creek, the chicf fource of Kifkeminitas river rifes N. N. E. of Berlin. N. lat. 39. 54.-ib.

BERMUDA HUNDRED, or City Point, as it is fometimes called, is a port of entry and polt town, in Chefterfield co. Virginia, fituated on the point of the peninfula, formed by the confluence of the Appamattox with James River, 36 miles welterly from Willi. amburg, σ_{4} from Puint Comfort, in Chefapea!Bay, and 315 S. WY. by S. from Philadelphia. City Point, from which it is named, lies on the forthern bank of Jarnes Kiver, 4 miles S.S. W. from this town. The exports from this place, chiefly collected at Richmond, 20 miles above it, amounted in 1794, to the value of 773.549 , dollars ; and from the ilt of October, to ift December 1795, were as follow: 15 kegs of butter, 578 bbls . fupertine flour, 101 half do. 789 fine do. 393 lbs indign, 10 tons pig iron, 100 lbs. fal. fafras, 80,320 hihd. faves, 66,300 bbl. Ataves, 1,8 ig hhds. tobacco, and 3 kegs minufactured do.-Total exports 90,859 dollurs, 45 cents. There are about 40 houfes here, including fome was choufes. It trades chiefly with the W. Indies, and the different flates. City Point, in James River, lies in N. lat. 37. 16. W. long. 77. $31 \frac{1}{2}$, -ib.

BERNARD's Bay, lies on the N. W. fide of the gulf of Mexico. The pallage into it, between feveral iflands, is called Pafco de Cavallo.-ib.

BEKNARDSLOWN, in Somerfet co. New-Jerfey, contains 2377 inhabitants, including 93 laves.

Alfo the name of a townfhip in Hamphire co. Marfachufetts, containing 691 inhabitants ; diftant 110 miles weftward from Boiton.-ib.

BERNE, a town!lhip in Aibany co. New. York. Bゼ the ftate cenfus of 1796 , it appears there are +17 if the inhabitants who are elecions.-ib.

BERNOULLI (John), a celebrated mathenatician, was born at B ifil the 7 ch of A ugalt 1667 . His fiather intended him for trade; but his own inclination was at firft for the belles lettres, which, however, iike his brothe: James, whofe life is given in the Encyciopredia, he left for mathematics. He laboured with his brother to difoover the methad ufed by Leibnit, in his eifays on the differential calculus, and gave the firlt principles of the integral calculus. Our auhor, with Mellis Huggens and Leibaitz, is faid to have been tice firlt who gave the folution of the problem propofed by James Bernoulli, concerning the catenary, of curve formed by a chain filpended by its two extremitics. But for more on this fubjert, fee $\dot{A} \mathrm{BCH}$ in this Supplement.

John Bernoalli had the degree of dostor of phyfic at Balil, and two years afterwand was named profeflor of mathematics.

B E T' [106] B E 'T

Eernoulli mathematics in the univerfity of Groningen. It was $\|$ here that he difcovered the mercurial phofphorus, or lu Eethabara. minous bromcter; and where he refolved the problem
propofed by his brother concerning ifoperimetricalc.

On the death of his brother James, the profeffor at Pafil, our author returned to his native country, againit the prefing invitations of the magiltrates of Utrecht to come to that city, and of the univerfity of Groningen, who tifhed to retain lim. The Academic Senate of B.fil focn afpointed 1 im to fucceed his brother, with. nut afleabling competitors, and contrary to the eftabl:thed practice ; an appointment whish he held during lis whole life.

In 1774 was publifhed his treatife on the manage. ment of fups; and in 1730 his memoir on the clliptical figure of the planets gained the frize of the Academy of Sciences. 'Гhefanse Arademy alfo divided the prize for their quetion concerning the inclination of the planetary orbits, between our author and his fon Daniel. See Bernoulli (Daniel), Encyd.

John Bemoulii was a member of molt of the academies of Etirope, and received as a foreign affociate of that of Patis in 1699 . After a long life fpent in conftant dudy and impiovement of all the branches of the mathematics, he died full of honours, the ift of January 1748 , in the Silt ycar of his age. Of five fons which he had, theee purfued the fame feiences with himfelf. One of thefe died before him ; the two others, Nicolas and D anitl, he lived to fee become eminent, and much refpeeted in the fame fciences.

The wriliogs of this great man were difpetfed through the periodical memoirs of feveral academies, as well as in many feparate treatifes. And the whole of them were carefully collected and publifhed at Lauranne and Geneva, 174^{2}, in 4 vols. 4 to. He was of undoubted eminence; but even in fcience he was a haity man, and certainly envious of the fame of Neveton.

BERTIE, a maritime co. in N. Carolina, in Edenton diftict, with the Roanoke its S. boundary, and A!bemarle Sound on the E. In it is fituated the ancient Indian tower of Tufcarora. It contains 12,606 fouls, of which number 5^{141} are flaves.- Morse.

BERWICK, or Abloflown, a neat town in York co. Pennfylvania, at the head of Conewago Creek, I 3 miles weftward of York, 26 S . s. VV. of Harrifurss, and ro3 W. by S. of Philadelphia. The town is re. gularly laid out, and contains about 100 houfes, a Germinu Lutheran, and a Calvinit church. N. lat. 39. 54.-il.

Berwick, or New-Buraick, a fmall town of North. umberland co. Peanflyania, on the N. wettern fide of the E. branch of Sufquehannalh River oppofite Nefcopeck Falis, and Nefcoreck Creek, $32 \frac{1}{2}$ miles N. E. from Northumberland and Sunbury, at the junction of the E. with the W. branch of Sufquebannah, and I 60 N. W. of Philadelphia. N. lat. $4^{\text {r. 3.- } i b . ~}$

Derwick, a townthip in York co. Diftriet of Maine, containing 3804 inhabitants. It has an incorporated academy, and lies on the E. fide of Salmon Fall River, 7 mites N. W. of York, and 86 E. of N. from Bnfton. -ib.

BETELGEUSE, a fixed far of the firf magnitude, in the right flumder of Orion.

BETHABARA, the finf fettlement of the Mo:s. vians in the lands of Wachovia, in N. Carolina, be-
gun in $1753 ; 6$ miles N. of Salem, and 183 W . of Malifax, in N. ldt. 36. 9. It is fituated on the W. fide of Gratif. Creek, which unites with the G.ırgales, and feveral others; and falls into the Yadkin. It contains a church of the United Brethren, and about 50 dwelling houfes.-Morse.

BETHANY, or Bethania, a Moravian fettlement and poft town, in the lands of Wachovia, in N. Carolina, begun in 1760 ; 9 miles N. W. of Salem, 4 N. W. of Bethabara, and 568 S. W. by S. of Piiladelphia. It contains about 60 houfes, and a church, built un a regular plan.-il).

BETHEL, a fmall Moravian fettlement on Swetara River in Pennfylvania, 12 miles from Mount Joy.
A townhip in Danphin counts - $-i b$.
Bethee, a townthip in Windfor co. Vermont, containing 473 inhabitants; N. N. W. of, and bounded by Stockbridge, and about 67 miles N. N. eafterly of Bernington. It gives rife to a fmall branch of White River.-ib.

Bethel, a townfhip in Delaware co. Pennfylvania. -ib.

Bethel (Mount) a townflip in Northampton county, Pennfylvania.

BETHLEHEM, a town in Albany co. New-York, very fruitful in pattures, and has large quantities of excellent butter. By the flate cenfus of 1796,388 of the inhabitants are electors.-ib.

Bethlehen, a townfhip in Berkthite co. Maffachus. fetts, having 26 rinhabitants. It lies about 10 miles S. of E. from Stockbridge, 10 from Lenox, and 130 from Boiton. It borders on T'yringham and Loudon.-ib.

Bethlehem, a townfip in Hunterdon co. NewJeriey, fituated at the head of the S. branch of Rariton River. It contains 1335 inhabitants, including 31 flaves. Turf for firing is iound here.-ib.

Bethlehen, a townhip in Litchfield co. Connecticut, joins Litchfield on the N. and Woodbury on the S.-ib.

Bethlehem, a poft town in Northampton co. Pennfylvania, is a celebrated fettlement of the Moravians, or United Bretbren, of the Proteftant Epifcopal church, as they term themfelves. It is fituated on Lehigh River a weftern branch of the Delaware, 53 miles notherly from Philadelphia, and 18 foutherly from the I Vind Gap. The town ftands partiy on the lower banks of the Manakes, a fine creek, which affords trout and other fifh. The fituation is healthful and pleafant, and in fummer is frequented by gentry from different parts. In 178\%, there were 60 dwelling houres of thone, well built, and 600 inhabitants. Befides the meeting-loure, are 3 other public buildings, large and fpacious; one for the fingle brethren, one for the fingle fifters, and the other for the widows. The literary eftablifmments, as weil as the religious regulations, here, deferve notice.-In a houfe adjoining to the church, is a fchool for females; and firce 1787, a boarding fchool for young ladies, who are fent here from different parts, and are inftructed in reading and writing (in the Englifh and German tongues) grammar, arithmetic, gengraphy, needle work, mufic, \&c. The minifter of the place has the direction of this as well as of the boys fchool, which is kept in a reparate houfe, where they are initiated in the fundamental branches of literature. Thefe fchools, efpecially that

B E Z [107]

Beverly
\|
Bezout.
for the young ladies, are defervedly in very high repute ; and fcholars, more than can be accommodated, are cffered from all parts of the United States.

There is at the lower part of the town a machine, of fimple conftruction, which raifes the water, from a fpring, into a refervoir, to the height of 100 feet; whence it is conducted by pipes into the feveral freets of the town.

There is a genteel tavern at the N . end of the town, the profit ailing from which, belongs to the fociety. There is alfo a ftore, with a general afforment of goods, an apothecary's fhop, a large tan- yard, a currier's, and a dyer's thop, a grif.mill, a fulling.mill, an oil-mill, and a faw-mill, and on the banks of the Lehigh, a brewery. N. lat. 40.37. W. long. 75. I4. - Morse.

BEVERLY, a townthip and polt town in Efex co. Maffachufetts, containing 3290 inhabitants, is leparated from Salem by a handfome bridge, and is about 20 miles E. of N. of Bollon, and 22 S. W. of Newburyport. It has two parifhes. In the parifh next the barbor, are a number of handfome houfes, exhibiting the cheering rewards of enterprife and indultry, and the inhabitants are devoted to the fifhery and other branches of navigation. In the other part of the town, which is chiefly agricultural, is a cotton manufactory. The bridge, mentioned before, is 1500 feet in length, erected in 1788 , and connects this town with Salem. It has a draw for velfels.-ib.

Beverly's Manor, or Iriß Tract, in Virginia, is a tract of land, in N. lat. 38. ic. at the head of Milfanuten's River, a weftern branch of the Shenandoah, which rifes here by three branches, viz. Middle River, Lewis and Chrifian Creeks. It lies between the Blue, and the North Ridge. The road from Yadkin River, through Virginia to Philadelphia, patfes through here. -ib.

BEZOUT (Stephen), a celebrated French mathematician, member of the Academies of Sciences and the Marine, and examiner of the guards of the marine and of the eleves of artillery, was born at Nemours the 34t of March 1730. In the courfe of his fudies he rnet with Some books of geometry, which gave him a tatte for that fcience; and the Eloges of Fontenolle, thewed him the horours attendant on talents and the love of the feiences. His father in vain oppofed the ftrong attachment of young Bezout to the mathematical fciences. April 8, 1758, he was named adjeintmechanician in the French Academy of Sciences; having before that fent them two ingenious memoirs on the integral calculus, and given other proofs of his pro. ficiency in mathematics. In $17 \sigma_{3}$, he was named to the new office of examiner to the marine, and appoint. ed to compofe a fyltem of mathematics for their ule: and in 1768 , on the death of M. Camus, he fucceeded as examiner of the artillery eleves.

Bezout fixed his attention more particularly to the refolution of algebraic equations; and he fill found ont the folution of a particular class of equations of all degrees. This method, different from all former ones, was general for the cubic and biquadratic equations, and juit became particular oniy at thofe of the 5 th degree. Upon this work our author laboured from 1762 till I 779, when he publithed it. He compoled two courfes of mathematics; the one for the marine, the other for the
artillery. The foundation of there two works was the fame; the applications only being different, according to the two different objects: thefe courfes have every where been held in great eftimation. In his office of examiner he difcharged the duties with great attention, care, and tendernefs. A trait of his juftice and zea! is remarkable in the following inftance: During an examination which he held at Toulon, he was told that two of the pupils could not be prefent, being confined by the fmall-pox: he himfelf had never had that difeafe, and he was great1y afraid of it; but as he knew that if he did not fee thefe two young men, it wonld much impede their im. provement, he ventured to their bed fides to examile them, and was happy to find them fo deferving of the hazard into which he put himfilf for their benefit.

IVr Bezout lived in this employment for feveral years, beloved of his family and friends, and sefpected by all, enjoying the fruits and the credit of his labours. But the trouble and fatigues of his offices, with fome perfona! chagrines, had reduced his frength and contitution; he was attacked by a malignant fever, of which he died Sept. 27, 1783 , in the 54% year of his age, regretted by his fimily, his friends, the young fudents, and by all his acquaintance in general.

The books publifhed by him were: 1. Courfe of Mathematics for the ufe of the Marine, with a Treatife on Navigation, 6 vols in 8 vo, Paris, 1764. 2. Courfe of Mathematics for the Corps of Artillery, 4 vols in 8vo, 1770 . 3. General Theory of Algebraic Equitions, I7\%9.

His papers printed in the volames of the Memoirs of the Academy of Sciences are: 1. On curves, whofe rectification depends on a given quantity, in the volume for 1758. 2. Onfeveral claffer of equations that admit of an algebraic folution, 1762 . 3. Firf volume of a courfe of mathematics, 3764 . 4. Un certain equations, Sc. ${ }^{1776+}$. 5. General relolution of all equations, $3,55$. 6. Second volume of a courfe of mathenatics, 1765. 7. Third volume of the fame, if 66. 8. Fourth volume of the fame, ${ }^{1767}$. 9. Integration of differentials, \&ic. vol. 3. Sav. Etr. 10. Experiments on cold, ェ777.

BIG BONE Cresk, in Woodford co. Kentucky, falls into the Oho from the E. in atout N. lat. 39.17. W. long. 85. 5% It is very fmall in lize, and has three branches; the N. weftermmof interlocks with Bank Lick Creek, which falls into Licking River. It is only noticeabie for the large bones, and fali licks near i°.-Mrorse.

Big Bone Licks, The, lie on each fide of the abovementiored creek, a littie below the junction of the two eaftorn tranches, about 8 miles fr m the mouth of the creek. Thefe, as alfo the other falt fprings, in the wefern comtry, are called fidks, becaufe the earih about them is furrowed up in a molt cutious manner, by the buffaloes and deer which lick: the earth, on account of the faline farticles with which it is impregnared. A liream of brackifh water runs through thefe licks, the foil of which is a fott clay.-The large boacs found here, and in feveral other places near falt licks, and in low foft grounds, thought to beinner to the mammoth, itill puzale the molt leaned maturalifts to determine to what animal they have belonged. A thigh bone found here by Gencrul Parfons, meafured forty-nine inches in length. A tnoth of this animal is depofited in Yale College. Mr Jefferfon,

Sig Sandy whon feems to have examined the fkeleton of one of thofe animals with curious atention, fays, that "The bones belpeak an animal of five or fix times the cubic volume of an elephant," as M. Buffon has admitted. Of this animal the natives have no tradition, but what is fo $f \rightarrow$ bulous, that no $\mathrm{c} \sim$ njequare can be aided by it, except that the animal was carnivorous; and this is the general opinion, and was admitted by the late Dr Hunter, of London, from an examination of the tufks, ic.-Morse.

DIG SANDY River, or Totterey, has its fource near that of Cumberland River; and, feparating Vircinis from Kentucky, empties into the Ohi-, oppofite the French Purchafe of Galiopols, in about N. lat. 38 . 30. Vancouver's and Harmar's forts fand on this river. On its banks are feveral falt licks and fprings. Little Sandy, is a thort, fmall river, which falls into the Ohio, about 20 miles W. of Big Sandy River in Mainn co. Kentucky--ib.

BILLERICA, a townflip in Middlefex co. Maffachufetts, incorporated in 1655 . It has 1200 inhabitants: nor has there been much variation in the number for half a century. It lies 20 miles nothward of Bofon, and is watered by Concord and Shawfheen rivers, which run N. eafterly into Merrimack River. -ib.

BILLINGSPORT, on Delaware River, lies i2 miles below Phitadelphia, was fortified in the late war, for the defence of the channel. Oppofite this fort, feveral largc frames of timber, headed with iron ipikes, called chevaus de frizes, ware funk to prevent the Britifh flips from pafing. Since the peace, a curious machine has been invented in Philadelphia, to raife them. $-i b$.

BINOMIAL, a quantity confifing of two terms or members, conneated by either of the figns + and - . See Algebra, def. 9. Encycl.

Impofible or Imaginary Bisomial, is a binomial which has one of its ternis an impoffible or an imaginary quantity; as a $+\sqrt{ }-b$.

Binomial Curve, is a curve whofe ordinate is exproffed by a binomial quantity, as the curve whofe ordinate is $x^{2} \times \overline{l+\left.d x^{4}\right|^{c}}$. Stirling, Method. Diff. p. 58.

Binomiat. Line, or Surd, is that in which at lealt one of the parts is a furd. Euclid, in the tenth book of his Elenents, enumerates fix kinds of binomial lines or furds, viz.

$$
\begin{aligned}
& \text { Firlt binomial } 3+\sqrt{ }, \\
& 2 d \text { binomial } \sqrt{ } 8+4, \\
& 3 \text { binomial } \sqrt{ } 2++\sqrt{18,} \\
& 4^{\text {th h binomial }}+\sqrt{ }+3, \\
& 5 \text { th binomial } \sqrt{ } 6+2, \\
& \text { Gth binomial } \sqrt{ } 6+\sqrt{ } 2 \text {. }
\end{aligned}
$$

Bixomial Thearem. See Algebra, Chap. VII. Sest. iii. (Encycl. Vol. I.) ; and Infnite Series, (Vol. XVII.) The reader who wilhes for a fuller account of this famons theorem, may find it in Dr Hutton's Mathematical Tracis, Vol. I.

BIRD-catching, is an art which, as it is practifed by mcans of bird-lime, nets, decoys, \&c. has been fufficiently explained in the Encyclopædia. But there is another method of catching birds alive, by means of a fufee or mufket, which was invented by M. Vaillant during his travels in Africa, and is fufficiently ingenious to delierve a place here. It is as follows:

Put a fmaller or larger quantits of powder into your Birdentch. fufee according as circumbtances may require. Immediately above the powder place the end of a candle of fufticient lhicknefs, ramming it well down; and then fill the barsel with water up to the month. When at a proper diftance you fire a muket thus loaded at a bird, you will only flun it by watering and moiftening its feathers; and if you be alert, you may eafily lay hold of it before it have time to fpoil its plumage by fluttering. Our author admits, that in his firit attempts he often put ton much powder, or ton thick a piece of candle into his fulee, or fired at too fhort a diftance; and when any one of thefe mintakes was committed, he generally found the candle entire in the animal's belly; but after a fhort apprenticefhip he acquired fufficient fkill to adjus matters fo as that the water impelled by the powder went direaly to the mark, whilf the tallow being lighter than the water fell fhort of it. If this method be indeed practicable (for not being fportimen we have not made trial of it), it may on many occafions aid the refearches of the ornithologit.

Bikns Nefs, in cookery. See Encycl. and Cap and Button in this Suppl.

BLACKLOCK (Dr Thomas) deferves, on fo ma. ny accounts, to have the principal incidents of his life recorded in this work, that to omit fuch an article from our lift of biographical fietches would be unpardonable negligence. We cannot, however, propofe to write of him any thing which has not been written before, by an author who has repeatedly appeared before the public, and on each appearance has gained poffeflion of the public heart. We fhall therefore content ourielves with inferting in this place a fhort abridgment of the elegant account of the life and writings of Dr Blacklock, which was prefixed to that edition of his works which was publithed in 1793 : and if we thas leffen our own labour, we are coulcious that we fhall at the fame time increafe the pleafure of our readers.

Thomas Blacklock was in 1721 born at Anan, in the county of Dumfries in Scotland, but his parents were natives of the bordering county of Cumberland; fo that, though a native of Scotland, his defcent was Englifh. His father was a bricklayer, and his mother the daughter of a confiderable dealer in cattle. Both were refpectable in their characters, and poffeffed, tho' moving in an humble fphere, a confiderable degree of knowledge and urbinity. Their fon was not quite fix months old when he lof his eye-fight in the fmall. por, which rendered him as complete a ftranger to the vifible world as if he had been blind from the hour of his birth. It rendered him likewife incapable of learning any of the mechanical arts; and therefore his father kept him at home, and with the affiftance of fome friends foltered that inclination which, at a very early period, he Thewed for bookso This was done by reading to him firf the fimple fort of publications which are commonly put into the hands of children, and then feveral of our beft anthers, fuch as Milton, Spencer, Prior, Pope, and Addifon. His companions, whom his early gentenets and kindnefs of difpofition, as well as their compaffion for his misfortune, Atrongly attached to him, were very afiduons in their gond offices, in reading to inftruct and amufe him. By their alliftance he acquired foine knowledge of the Latin tongue, but he never was at a grammar ichool till at a mure advanced period of
$\underbrace{\text { Blackliock. life. Poetry was even then his favourite reading; and }}$ he found an enthufiaftic delight in the works of the beft Englifh poets, and in thofe of his countryman Allan Ramfay. Even at an age fo carly as twelve he began to write poems, one of which is preferved in the collec. tion that was publifhed after his death, and is not perhaps inferior to any of the premature compofitions of boys aflited by the beft education, which are only recalled into notice by the future fame of their authors.

He had attained the age of nineteen when his father was killed by the accidental fall of a malt-kiln belonging to his fon in-law. This lofs, heavy to any one at that eariy age, would have been, however, to a young man polfifing the ordinary neeans of fupport, and the ordinary advantages of education, comparatively light ; bur to him-thus fuddenly deprived of that fupport on which his youth had leaned-dctitute almoft ot every refource which induftry affords to thofe who have the bleffings of fight-with a body feeble and delicate from nature, and a mind congenially fufceptible-it was not furprifing that this blow was doubly fevere, and threw on his fpirits that defpondent gloom to which he then gave way in the following pathetic lines, and which fometimes overclouded them in the fubfequent period of his life.
"Dejecting profecet foon the haplefs hour
" May come; perhaps this moment it impends,
" Which drives me furth to penury and cold,
"Naked, and beat by all the ftorms of heav'n,
"Friendlefs and guidelefs to explore my way;
" Till, on cold earth this poor unfhelter'd head
"Reclining, vainly from the ruthleis blat
"Refpite I beg, and in the flock expire."
He lived with his mother for about a year after his father's death, and began to be diftinguifhed as a young man of uncommon parts and genius. Thefe were at that time unaffited by learning; the circumftances of his family affording him no better education than the fmattering of Lat'n which his companions had taught him, and the perufal and recollection of the few Englifh authors which they, or his father in the intervals of his profeffional labours, had read to him. Poetry, however, though it attains its bigheft perfestion in a cultivated foil, grows perhaps as luxuriantly in a wild one. To poetry, as we have before mentioned, he was devoted fiom his earlieft days; and about this time feveral of his poctical productions began to be handed about, which confiderably enlarged the circle of his friends and acquaintance. Some of his compofitions being fhewn to Dr Stevenfon, an eminent phyfician of Edinburgh, who was accidentally at Dumfries on a profeifional vifit, that gentleman formed the benevclent defign of carrying him to the Scotch metropolis, and giving to his matural endowmens the affifance of a clafical education. He carne to Edinburgh in the year 1741, and was enrolled a fudent of divinity in the univer fity there, though at that time without any particular view of enteling into the church. In that univerlity he continued his ftudies under the patronage of Dr Stevenfon till the year 1745, when be retired to Dumfrics, and refided in the houfe of Mr M•Murdo, who had married his fifter, during the whole time of the civil war which then raged in the country, and particularly diflurbed the trannuillity of the mettopolis. When peace was reftored Suppl. Vol. 1.
to the gation, he returned to the univerfity, and pur. Blackinck. fued his \{tudies for dix years longer. During this]aft refidence in Edinbuıgh, he obtained, among other literary acquaintance, that of the celebrated Danid Humt, who attached himfelf wam mly to Mr Blacklock's inte. refts, and was afterwards particularly ufeful to him in the publication of the to edition of his Pocmis, which came out by fubfription in London in the year 1756. Previoufly to this, two editions in 8 vo had been publith. ed at Edinburgh, the finft in 1746 , and the lecord in 1754.

In the courfe of his cducation at Edinburgh, be acquired a proficiency in the learned languages, and became more a mafter of the French iongue than was then common in that city. For this laft acquiftion he was chiefly indebted to the focial intercourfe to which he lad the good fortune to be adnitted in the houle of Provoft Alcxander, who had matried a native of Fiance. At the univerfity he attained a knowledge of the various branches of phitofophy and thalogy, to which his courfe of fudy naturally led, and acquired at the fame time a confiderable fund of learning and information in thofe various departments of fience and belles lettres, from which his want of fight did not abfolutely pre-
clude clude him.

In 1757, he began a courfe of fucy, with a view to give lectures in oratory to young gentemen intended for the bar or the pulpit. On this occafion he wrote to Mr Hume, informed him of his plan, and requefted his affifance in the profecution of it. But Mr Hume doubting the probability of its fuccefs, be abandoned the project; and then, for the firft time, adopted the decided intention of going into the church of Scotland. After applying clofely for a confiderable time to the ftudy of theology, he pafied the ufual trials in the prefbytery of Dumfries, and was by that prefbytery licenfed a preacher of the gofpel in the year 1759. As a preach. er he obtained high reputation, and was fond of com. poting fermons, of which he has left fome volunes in manufcript, as alfo a Treatife on Morals.

The tenor of his occupations, as well as the bent of his mind and difpofitions, during this period of his life, will appear in the following plain and unfudied account, contained in a letter from a gentleman, who was then his mot intimace and confant companion, the Rev. Mr Jamefon, formerly miniter of the Epifcopal chapel at Dunfries, afterwards of the Enylifa congregation at Dantzic, and who lately refided, and perhaps yet refides, at Newcaftle upon Tyne.
"His manner of life (fays that gentleman) was fo uniform, that the hiftory of it during one day, or one week, is the hiftory of it during the feven years that our perfonal intercourfe la fled. Reading, mulic, walking, converfing, and difputing on various topics, in theology, ethics, \&c. employed almof every hour of our time. It was pleafant to hear him engaged in a difpute, for no man could keep his temper better than he always did on fuch occations. I have known him frequently very warmly engaged for hours together, but never could obferve one angry word to fall from him. Whatever his antagonift might fay, be always kept his temper. 'Semiter paratus it refillere fine pertinacia, et refelli fine ir acundia.' He was, however, extremely fenfible to what he thought ill-ufage, and cqually fo whether it regarded himfolf or his friends. But his refent-

B L A [IIO $] \quad \mathrm{B} L$ A

Blacklack. ment was always confined to a few fatirical verfes, which were generally burnt foon after.
"I have frequently admired with what readinefs and rapidity he could fometimes make verfes. I have known him dictate fiom thiriy to forty verfes, and by no nieans bad unes, as fatt as I could write them; but the moment le was at a lofs for a rhime or a verfe to his liking, he fopt altogether, and could very feldom be induced to finifh what he tad begun with fo moch ardcur."

This account fufficiently marks that eager fenfibility, chanened at the fame time with uncommon gentlenefs of emper, which charactenifed Dr Blacklock, and which indeed it was impoffible to be at all in his company without perceiving. In the fcience of mind, this is that divilion of it which perbaps one would peculiarly appropriate to poetry, at leaft to all thofe lighter fpecies which rather depend on quicknefs of feeling, and the ready conception of pleafing images, than on the hapny arrangement of parts, or the Akilfal conftuction of a who:e, which are effential to the higher departments of the poetical art. The firft kind of talent is like thefewarm and light foils which produce their armual crops in fuch abundance; the laft, like that deeper and firmer mould on which the roots of eternal foreits are fixed. Ot the firft we have feen many hapPY infances in that fex which is fuppofed lefs capable of fudy or thought; from the lat is drawn that maf. culine fublimity of genius which cotld build an Iliad or a Paradife Lolt.

Dr Blacklock could never dictate till he food up; and as his blindnefs made walking about without affiftance inconvenient or dangerous to him, he fell infen. fibly into a vibratory fort of motion of his body, which increaled as he warmed with his fubject, and was pleafed with the conceptions of his mind. This motion at Lan beame habitual to him; and thongh he could fometimes reftrain it when on ceremony, or on any public appearance, fuch as preaching, he felt a certain uneafinets from the effort, and always returned to it when he con:d without improprity. This appearance he deforibes in a foner poem, i: which he gives a ludicrous picture of hinnelf; a pifture indeed, of which, though the outlines are true, the gencral effect is greatly over. charged. Though his features were hurt by the dif. eafe which deprived him of fight, there was a certain placid expremion in his countenance, which marked the benevolence of his heart, and was calculated to procure to himindividual attachments and general regard.

In 1762 he married Mifs Sarah Johnfon, daughter of Nir Jofeply Johnifon furgeon in Dumfies; a connedion which formed the great folace and bleffing of his futare life, and gave him, with all the tendernefs of a rife, all the zealuus care of a guardian and a friend. Th:s event took place a few days before his being ordained minifter of the town and paifh of Kircadbright, in corfequence of a prefentation from the crown, obtained for him by the earl of Selkirk, a benevolent nobleman, whom Mr Blacklock's fituation and genirs had interefied in his behalf. But the inhabitants of the parih, whether froin that violent averfion to patronage, which was then fo univerfal in the fouthern parts of Scotland, from i me political difputes which at that tume lublifted between them and his noble patron, or from thofe prejudices which fome of them might natu-
rally enough entertain againlt a paltor deprived of fight, Blacklock. or perhaps from all thefe caufes uni:ed, were fo extreme. ly difinclined to receive him as their minifler, that after a legal difpute of nearly two years, it was thought ex. pedient by his friends, as it had always been wifhed by himfelf, to compromife the matter, by refigning his right to the living, and accepting a moderate amuity in its tead. With this flender provifion he removed in $176+$ to Edinburgh; and to make up by his induftry a more comfortable and decent fubfiftence, he adopied the plan of receiving a certain number of young gentlemen as boarders into his houfe, whofe ftudies in langua. ges and philofophy he might, if neceffary, affif. In this fituation he continued till the jear 1787 , when l:e found his time of life and fate of health required a degree of quiet and repofe which induced him to difcontinue the receiving of boarders. In 1,67 the degree of doftor in divinity was conferred on him by the univerfity and Marifchal college of Aberdeen.

In the occupation which he thus exerciled for fo many years of his life, no teacher was perhaps ever more agreeable to his pupils, nor matter of a family to its inmates, than Dr Blacklock. The gentlenefs of his manners, the benignity of his difpofition, and that warm interelt in the happinefs of others which led him fo conftantly to promate it, were qualities that could not fail to procure him the love and regard of the young people committed to his charge; while the fociety, which efteem and refpect for his character and his genius often affembled at his houle, afforded them an advantage rarely to be found in eltablithments of a fimildr kind.

In this mixed fociety he appedred to forget the privation of fight, and the melancholy which it might at other times produce in his mind. He entered, with the cheerful playfulnefs of a young man, into all the ferightly narrative, the fportful fancy, and the humorous jeft that rofe around him. Next to converfation, mulic was perhaps the fource of bis greatelt delight; for he not only relifned it highly, but was himfelt a tolerable ferformer on feveral inftruments, particulatly the flute. He generally carried in his pocker a imall flageolet, on which he played his favourite tunes; and was not dif. pleafed when afked in company to play or to fing them; a natural feeling for a blind man, who thus adds is fcene th the drama of his focisty.

Of the happinefs of others, however, we are incompetent judges. Companion/hip and fympathy bring forth thofe gay colours of mirth and cheerfulnefs which they put on for a while, to cover perbaps that fadueis which we have no opportunity of witnelfiag. Of a blind man's condition we are particularly liable to form a miftaken eltimate; we give him credit for all thofe gleans of delight which fociety affurds him, without placing to their full account thofe dreary moments of darkfome folitude to which the fufpenfion of that fociety condemns him. Dr Blacklock nad from nature a confitution delicate and nervous, and his mind, as is almolt always the cafe, was in a great degree lubjeet to the indifpofition of his body. He frequently complained of a lownefs and depreflion of pirits, which neither the attentions of his friends, nor the unceafing care of a moft affectionate wife, were able entirely to remove. The imagination we are fo apt to envy and admire ferves but to irritate this diforder of the mind ; and that fancy in whofe creation we fo mach delight, can draw, from

Flacklock. Canrces uninown to common men, fubjects of difgult, dif. quietude, and affiction. Some of his later poems exprefs a chagrin, though not of an ungentle fort, at the fuppufed failure of his imaginative powers, or at the faltidioufnefs of modern times, which loe defpaired to pleafe.
"Such were his efforts, fuch his cold reward,
"Whom once thy partial tongue pronounce'd a bard;
"Excurfive, on the gentle gales of fpring,
"He rov'd, whilt favour imp'd his timid wing;
"Exhautted genius now no more infpires,
"But mourns abortive hopes, and faded tires;
" The fhort. liv'd wreath, which once his temples grac'd,
"Fades at the fickly breath of fqueamifh tate ;
"Whila darker days his fainting flames immure
"In cheerlefs gloom and winter premature."
Thefe lines are, however, no proof of "cxhaufted genius," ur "faded fires." "Abortive hopes," indeed, muft be the lor of all who, like Dr E'acklock, reach the pericd of nld age. In early youth the heart of every one is a poet; it creates a fcene of imagined happinef's and delufive hopes; it clothes the world in the bright colours of its own fancy ; it refines what is coarfe, it exalts what is mean ; it fees nothing but difintereftednefs in triendihip, it promifes eternal fidelity in love. Even on the difleffes of its lituation it can throw a certain romantic fhade of melancholy that leaves a man fad, but does not make him unhappy. Dut at a more advanced age, "the fairy vifions tade," and he fuffers moft deeply who has indulged then the moft.

About the time that thefe verfes were written, Dr Blacklock was, for the firt time, aflicted with what to him mult have been peculiarly diftrefsful. He became occafinnally fubject to deainefs, which, though he feldom felt it in any great degree, was fufficient, in his fituation, to whem the fenfe of hearing was almoft the only channcl of communication with theexternal wold, to caufe very lively uneafinefs. Amidat thefe indifpofitions of body, however, and difquietudes of mind, the gentenefs of his temper never forfook him, and he felt all that refignation and confidence in the Supreme Being which his earlieft and his latelt life equally acknowledged. In fummer 1791 he was feized with a feverifh diforder, which at firft leemed of a flight, and never rofe to a very violent kind; but a frame fo little robult as his was not able to relift it, and after about a week's illnefs it carried him off on the 7 th day of July 1791. His wife furvives him, to fcel, amidt the heavy aflliction of his lofs, that melancholy coniolation which is derived from the remembrance of his virtues.

The writings of Dr Blacklock confifted principally of poems, which were poblifhed in 4 to in the year 1793; and to that edition was added, $A n$ Effay on the Educution of the Blind, tranflated from the French of MI. Hauy. But befides his avowed works, we have reafon to believe that he was the author if meny articles in the fecond edition of the Encycloperdia, though we cannot fay with certainty uhat thole articles were. If our memory does not deceive us, we have been informed that the preface to that edtion was furnifhed by him ; and we have clfewhere attibuted to him, on the belt authonity, the arucle Blind, and the Notes to the article Music: but he uncoubtecly contribued much more to the worl:, and was one of the proncipal guides of the propietors.

BLACK Rizer. There are two fmall rivers of this name in Vermont, one falls into Connecticut River at Spring field, the other runs N. into Lake Memphrema-gog.-Morse.

Beack River, in N. York, intenlocks with Camada Creek, and runs N. W. into Iroquois River, boatable 60 miles. Alfo, a long river which rifes in Virginia, and pafles fouth eafterly into Nottaway River in N. Carolina.-ib.

Black River, a Britifh fettement at the mouth of Tinto River, 20 leagues to the E. of Cape Honduras, the only harbor on the coaft of Terra Firma, from the ifland of Kattan to Cape Gracias a Dios, and was for more than 60 years the refuge of the logwocd cutters, when the Spaniards drove tinem from the forefts of Ealt Yucatan, which occalioned adventurers of different kinds to fettle here, where the cuaft is fandy, low and fwampy; higher up near the sivers and lagoons, which are fill of till, the foil is more fertile, and produces plantanes, cocoa-trees, maize, yams, potatoes, and variety of vegetables; and the paflion for drinking fpirits, made them plant fugar canes. The forelts are full of deer, Mexican, fwine and game. The thores abound with turtle, and the woods with mahngany, zebra-wood, farfaparilla, \&c. and indeed the whole fettlement flourifhes fpontaneoufly without cultivation. -ib.

Black River, in the inland of Jamaica, paffes through a level country, is the deepelt and largeft in the ifland, and will admit flat bottomed boats and canoes for about 30 miles.-il.

BLADEN, a county of N. Carolina, in Wilmington diftrict. It has $508+$ inhabitants, including 1676 flaves. -ib.

BLADENSBURG, a poft town in Prince Genrge co. Maryland, on the ealtern bank of the eaftern branch of Potowmack River at the confuence of the N. W. and N. E. branches; 9 miles from its mouth at the Federal City; 38 S . W. from Baltimore, and 12 N . E. from Alexandria, in Virginia. It contains about 150 houfes, and a ware-houfe for the infpection of to-bacco.-ib.

BLANCO Capes. There are many capes of this name, as follnw. I. The N. wettern point of the bay of Salinas, in the roth degree of N. lititude; and on the coalt of Teira Firma; and, in other maps, is call. ed the N. weltern point of the gulf of Nicoy:a-2. On the coalt of California, at the broadelt part of the peninfula, in the 32 d degree of N . latitude.-3. On the N. W. coaft of America, in Ncw-Albion, fouthward of the mouth of what has been called the River of the $W^{\prime} c f^{2}$, in the $44^{\text {th }}$ degree of N . latitude.-4. A promontory of Peru, in S. America, on the coalt of the S. Sea, 120 miles S. W. of Guayaquil, S. lat. 3. 45 . W. long $83-5$. A cape in the fouthern ocean, on the E. fide of Patagonia, S. eafoward of Julian Bay, in the 47th degree of S. latitude, 8 leagues W. of Pepys's Ifland.-ib.

Beanco, or Blanca, an ifland 35 leagues from Terra Firma, and N. of Margarita Ifland in the province of New.Andalutia. It is flat, low, and uninhabited; having favannahs of long grafs; is dry and healthy; has plenty of guanas, and fome trees of lignumvitæ. N. lat. i1. 50 . W. long. 6: 50.-ib.
$)^{2}$
Blanco,

Elact
\|
Blanco. Efanco.

B L E [I12 $] \quad$ B L E

Banco Maching.

Blanco, an illand on the S. eaftern part of the peninfula of Yucatan, in New-Spain. N. lat. 21. W. long. 88. 5.-Mforse.

BLANDFORD, a townfhip in Hampfire co. Marfaclufetts, W. of Connecticut River: about 25 miles S. W. of Northampton, and iiG W. of Botion. It has 235 houres, and 1416 inhabitants. -ib.

Blaxdford, a town in Prince George co. Virginia, about 4 miles N. E. from Peterfburgh, and is within its jurididion. It contains 200 houfes and 1200 in habitants, and is pleafantly lituated on a plain, on the eaftern branch of Appamattox River. Here are many large fores, and 3 tobacco ware-houfes which receive annually 6 or 7000 hihds. It is a thriving place; and the inarhes in its vicinity being now drained, the air of this town, and that of Peterfourgh, is much meliorated. -ib.

BLEACHING, Since the art:cle Bleaching in the Encyclopædia was writen, very great improvements have been introduced into the art. Of thefe improve- ments we fhall proceed to give an account.
Mr Schecle of Sweden difcovered the oxy-muriatic acid, or dephlogifticated muriatic acid, as he called it, about the year 1774, and foon after obferved its effects on vegetable colours. His method of procuring it was as fuilows: In a fand bath is to be placed a glafs retost, in which muriatic acid las been poured upon manganefe; to this fmall receivers are to be adapted capable of containing about twelve ounces each, into which is to be poured about two drachms of water, without any other lute than a flip of blotting-paper about the neck of the retort. In about a quirter of an hour a yellow air is perceived in the receiver, which is to be taken off. It the paper has been properly applied, the air rufhes out forcibly; the receiver muft be quickly fnpped, and another applied. Thus many receivers may be filled with the dephlogifticated muriatic acid; but it is neceffary to place the retort in fuch a manner that the drops which rife into its neck may be able to fall back. The water ferves to retain the vapours of the acid. "I ufe (fays he) many receivers, that I may not be obliged to repeat a limilar diftillation for every experiment. It is not proper to employ large ones, becaufe every time they are opened, a great part of the acid is dillipated in the air. What I fubmitted to ex. a mination with this derlhlogificated muniatic acid was placed in the neck of the receiver, which I had fopped. The cork was turned yellow, as by aquafortis. Paper tinged with turniol became almoft white; all red, blue, and yellow flowers, as alfo green plants, turned yellow in a flort time, and the water in the receiver was changed into a pure but weak muriatic acid. Neither alkalis nor acids were able to refture the colours of the flowers, or of the plants."
M. Berthollet, in 1785 , proved that this acid was compored of muriatic acid combined with oxygen ; and that when it had deprived vegetable matters of their co. Isur, it was reduced to the Rate of common muriatic acid ; that is, it had loft the oxygen with which it was Its applica- united. This oxygen had combined with the colourtions to
bleaching.
bleaching to deltroy. "At firlt (fays he) imãa infe of water highly impregnated with this acid; and I re. newed it when it was exhaufted, until the thread or Ann. de cloth appeared white; but I foon perceived that they Cbym. II. were confiderably weakened, and that they were en- 15%. tirely lofing their folidity. I then wakened the liquor a little, and I fucceeded in bleaching cloth without damaging it. But it feedily became yellow by kecping, efpecially if it was warmed, or pafled through an alkaline ley. I reflected upon the circumitances of common bleaching, and I endeavoused to imitate its frocefs, becaufe I thought the oxygenated muriatic acid might adt in the fame manner as the expofition of the cleth in the meadows, which alone does not fuffice, but which appears only to difpore the colousing parts of the cloth to be diffolved by the allali of the ley. I examined dew, not only that which falls from the atmoSphere, but alfo that which comes from the nocturnal tranjpiration of plants; and I obferved that both of them were impregnated with oxygen, fufficiently to deAtroy the colour of paper nightly tinged with turnfol.
"I therefore employed leys, and the aftion of oxygenated muriatic acid, alternately, and I then obtained a permarent white; and as, at the finifhing of the common bleaching, the cloth is paffed through fur milk, or throngh fulphuric acid diluted with a very latge quantity of water, I alfotried paffing the cloth thrrough a very dilute folution of fulphuric acid, and I obferved that the white was thereby rendered more clear. As foon as I made ufe of the leys intermediately, I found that it was not neceffary to empluy a concentrated l_{1} quor, or to let the cluth, at every immerfion, remain long therein: by this I avoided two inconveniences, which would have rendered this procefs impolible to be practifed in the large way. The firft is the fuffocating odour of the liquer, which it would be very inconvenient, and even dangerous, to refpire for any length of time, and which has difcouraged many perfons who tried to ufe it ; the fecond is, the danger of weakening the cloth. I now alfo left off mixing any alkali with the oxygenated muriatic acid, as I had practifed in the greatelt part of my firlt trials.
"This is nearly the fate in which mpexperiments were, when I made fome trials in the prefence of the celebrated Mr Watt. A fingle view fufficed for a phio lofopher whofe genius has been exercifed fo long upon the arts. In a thort time Mr Watt wrote to me from England, that even in the firft operation he had bleached five hundred pieces of cloth at Mr Grigor's, who has a large bleaching-ground at Glargow, and who continues to make ufe of the new procefs. In the mean time M. Bonjour, who had hitherto ntlited me in my experiments, and who joins great fagacity to a moft extended knowledge of chemiftry, affociated himielf with Mr Conftant, at Valenciennes, in order to form an eftablifhment in that city."
M. Caillau made a great number of experiments at Paris refpecting this new mode of bleaching; but the greateft part of thefe experiments was made upon cotton, which is more eafy to bleach, and does not require leys fo often or fo ftrong as flax or hemp. He alfo went to St Quentin, to perform the eperation upon the cloth of that country ; but he found that all the cloths, which he had bleached to the fatisfaction of the mannfafturers, became again of a reddifl colcur when they

B L E

were expofed to a common ley, or even when they were left fur fome time in a warehoufe. Several fimilat complaints were made by other perfons; and M. Berthollet himfelf had obferved the fame thing in his own experiments. M. Bonjour, however, and M. Welter, affirmed that the cloth which they had bleaclied preferved its colour peifecily. M. Berthollet foon fuund, that the imperteation in his bleaching was owing to the manner in which he had ufed the leys. "I had cuntented myfelf (fays he), in thofe trials on fmall pieces which I made in my laboratory, to pour the hot alkaline folution into a velfel where I placed the pieces; it there became cool very rapidly, and therefore did not att with fufficient power; but when I let thefe pieces remain in the liquor, which I kept nearly in a boiling heat during the ipace of two or three hours, they were then no longer fubject to the above mentioned defects: it was cherefore merely the weaknefs of the leys which had occafioned the accidents which were experienced by Alefis Caillau, Décroifile, and my felf. It is neceflary that the culour of the cloth thould not be changed by the lad ley, and this is the fureft mark that the Lleaching is finifled; neverthelefs, after this laft action of the leg, it is proper to put the cloth, for a few moments, in the bleaching liquor.
"After this lat immerfion, it is neceflary to plunge the cloth in four milk, or in water acidulated with fillphuric acid. I do not know the mot convenient proportion of fulphuric aeid; but it appeared to me that we might finceefsfully, and without danger, make ufe of one part, in weight, of this acid to fifty of water. We muft keep the cloths during about half an hour in this liquor warmed; after whicis it is proper to fquese them well, and plange them directly into common water; for if the evaporation thould take place, the fulphuric acid, becoming thereby concentrated, would corrode them. The cloths being then well wahed, require only to be dried and dreffed in the urdinary manner, according to their different forts.
"It is of the utmof importance to take care that the water is not too ftrongly impregnated with the fulphuric acid.
" The bleaching of cotton cloth is much cafier and fhorter ; two leys, or at molt three, and as many immerfions in the bleaching liquor, are fufficient for them. As they are bleached fo eafily, it is advantageous, when there are flaxen, hempen, and cotton cloths, to be bleached, to referve for the cotton the liquors which have been previoufly weakened by the cloths of fix or hemp; for it is economical to exhault the liquors as much as pofible, and thofe which are confiderably weakened itill fuffice for the cotton, allhough they have farcely any acion upon hemp or flax.
"Thread, in the common way of bleaching, is attended with a far greater number of difliculties than cl cth; becaufe of the immenfe number of furfaces whin it is necefary to prcfent fuccellively to the action of the atmofphere. Some part of thefe difficulties occur in bleaching with the oxygenated muriatic acid; neverthelefs, in the end, it is more advantageous with refpect to thread than with refpect to cloth. Mr Welter has formed at Lifle, with two partners, an cfablilhment for bleaching thread with great fuccefs, and he has already begun fome others. He has found that ten or twelve leys, and as many immerfions, are requited for fome
forts of thread; and, that the thread may be furround. Bleaching. ed with the liquor, it is necelfary to place it, quite loofely, in a balket, which permits the liquor to penetrate to all its furfaces; when the liquor is much weakened, it is Aill fit to be ufed for the bleaching of cotoon.
"I had, in the beginning of my experiments, tried whether the vapour would not be preferable to the oxygenated musiatic acid in a l'quid fate, and I obferved that it bleached with greater quicknefs; but, whatever precautions I employed, it appeared to me that a confiderabie lofs of it took place; that thofe parts of the cloths which were the moit expofed to it were fubjeat to be weakened; and that it was more difficult to obtain an equal whitenefs throughout.
"To prevent all the accidents which may refult from the liquor acting with too great power, it is important to have a means of meafuring its force. M. Decroifille thought of afing, for that parpofe, a folution of indigo in fulphuric acid. He t k kes one part of indigo, reduced into fine powder, and eighteen parts of concentrated fulphuric acid; this mixture is put into a matrafs, which is kept, during fome hours, in a waterbath; when the folution is finibed, it is diluted with a thouland parts of water. To try the power of the oxygenated muriatic acid, one meafure of this folution is put into a graduated glafs tube, and fome of the liquor is gradually added to it, until the colour of the indigo is deltroyed. We mult firlt determine how many meafures of a liquor, the goodnefs of which has been afcertained by experiments made upon cloth, are neceffisy to deftroy the colour of one meafure of the folution of indigo, and this sumber will ferve to eftimate the refpective ftrength of all the liquors which it nay be necefliry to compare with it. M. Wait employs, in the fame mamer, a folution of cochineal."
M. Berthollet recommended the following method Method of of procuring the oxy-muriatic acid: "If we have good procuring oxyd of manganefe, formed in fmall cryftals, and con- the acid for taining but little exiraneous matter, the proportions of bleaching. the fubitances to be fubmitted to diftillation are the following: Six ounces of calx of manganefe refuced to powder; one pound of common falt, alfo reduced to powder; twelve ounces of concentrated fulphuric acid, or oil of vitriol; from ten to twelve ounces of water.
" When thefe materials are prepared, we muf catefully mix the oxyd of manganefe with the commonfalt, and introduce the mixture into the difilling veffel placed upon a fand bath: we malk then pour upon it the fulphuric acid, previoully diluted (and of which the heat occafioned by its mixture with water is diffipatci), and immediately apply to the mouth of the matrats the tube which is to conduct the gas into the intermediate veffel.-It muf not be forgot, that in this operation the lutes require particular attention.
"The fize of the veffels thould be fach, that the diftilling matrafs may be abrut one-thitd enapty; and, for the quantity above mentioned, the tab flould hold 100 quart, of water; there thould alfo be an empry fpace of about 10 quarts, in order that when the gas lodges itfelt in the cavities intended to receive it, the water may have a free tpace to rite in.
" Before the commercement of the operation, the preumatic tub mult be filled with water. The mixture being made, the gas, which very foon begins to difengage

B E [114] B L E

 difengage itfelf, drives out the atmofpherical air which is in the apparatus: when it is judged that the atmofphenic air has paffed into the cavities, it is to be draven off by means of a bent tube, which is to be introduced fitcceliively under each cavity: to drive out the water which has entered into the tube, this lat is to be forcibly blown into. The operation is then fuffered to go on without fire matil it is perceived that the bubbles come over bat fluwly : then a litule fire is to be applied, which is not to be haftily increafed at the beginning, but may be gradually augmented, fo that at the end of the operation the matter may be Jrought to a boiling ftate. It is known to be nearly fnithed when the tube by which the gas is difengaged, and the intermediate veffel, become hot. When the gas is diengaged only in a fmall quantity, the fire may be withdrawn; and when the ditilling veffel retains but a gentle warmth, it is to be unluted, and warm water is to be poured upon the refidue, that it may remain in folution, and thereby be more eafily poured out." The operation is longer or fhorter according to the quantity of materials: with that above mentioned, it thould laft five or fix hours; it is proper not to hatten it, that a larger quantity of gas may be drawn off. A fingle perion is able to manage feveral difitiations at the lame time; to each of which may be given much larger quantities of materials than thofe which have been pointed out.
" The intermediate veffel by degrees becomes filled with a liquor which is pare, though weak, muriatic acid; neverthelefs, we may perform the operation fevcral times without extracting it : but when it is fuppricd that there is not fufficient empty fpace, this acid is to be drawn off by means of a fyphon, and, when we bave collected a fufficient quantity of it, it may be fubltituted for the mixture of vitiolic acid and common falt in the operation we have defcribed, if we have no other uie to make of it. That there may pafs but a fmill quantity of muriatic acid, not oxygenated, the filf tube ought to form a right angle, or even an obtufe one, with the body matrafs.
"During the operation, the agitator muft be from time to tine put in motion, to favour the abforption of the gas by the water: when it is finifhed, the liquor is of a proper flrength to ufe in bleaching; or we may put a lefs quantity of water in the tub, and then dilute the liquor atcording to the proportion already mentioned.
"In this ftate of concentration, althnugh the liquor has a pretty ltrong odcur, it neverthelefs is not hartful, nor even very unpleafant, to thofe who ufe it; it is, however, proper to conduct it into the troughs where the cloths are placed by means of wooden canals, which are to be connected with the faufet or tube which is at the lower part of the tub."-The following is a defcription of the apparatus:
Plate Vil.
fig. I .
and the intermediate veffel K , where it alfo paffes Bleaching through a cork I, which clofes one of the three openings of that veffel. The corks G and I ought to be prepared before-hand, and well fitted to each end of the tube of communication H, which is to be fo dif. pofed that it may be fitted in immediately after the mixture is made in the matrafs.

The intermediate veffel \mathbb{K} is about an eighth part full of water; into it is plunged the tube of fafety L, to prevent danger from regurgitation. This tube ought to be fo high, that the weight of the water which enters into it, by the preflure of the gas, may be great enough to caure the gas to pafs into the pneumatic tub NOP, by the tube of communication M , which is plunged therein, and reaches to the bottom, where it is bent horizontally, fo that the gas may be emitted under the firft of the three wooden, or (if they can be procured) Itone-ware, cavities, or receivers, which are placed in the infide of the tub, one above the other. O is a handle which ferves to turn the agitator E, the movernent of which facilitates the combination of the gas with the water. P is a fpigot and faufet to draw off the liquor.

It is neceffary 10 prepare the cloth by leaving it to Method of foak for 24 hours in water, or, which is better, in fome bleaching. old ley. Afterwards it fhould be fubmitted to the action of one or two good leys; becaufe all the colouring part which may be extracted by the leys would elfe, without any advantage, confurme a part of that liquor which it is important to be as fpaling of as pofible. After this, the cloth is to be carefully wathed; then it is to be placed in the troughs, without any part being preffed or confined, in fuch a manner that it may be thoroughly impregnated with the liquor which is to run thereon. The troughs, as well as the tub, ought to be confrufted without iron; for that metal, being rufted by the oxygenated muriatic acid, would produce iron monids, which could not be taken out but by means of falt of forrel.

The firlt immerion ought to be longer than the others; it may be continued for three hours, after which the cloth is to be taken out; it is to be again fubmitted to the adion of ley, and then placed in a trough, that frefh liquor may be poured thereon: it is fufficient that this immerfion, and the following ones, continue half an hour. When the cloth is taken from the trongh, the liquor is to be wrung out, it is to be again fubmitted to the ley, and afterwards to frefh immerfions. The fame liquor may ferve until its ftength is exhaufted: when it is much weakened, there may be fome frefh liquor added to it. When the cloth appears white, except fome black threads and the lifts, it is to be impregnated with black foap, and then ftrongly rubbed: after which it is to be fubmitted to the laft ley and the laft immerfion. We cannot determine what number of leys and immerfions may be neceftary, becaufe it vanies according to the nature of the cloth: neverthelefs, the limits of this number are between four and eight for linen or hempen cloths.

The manufacturers at Javelle, to whom Mi. Berthollet had communicated this proceff, foon after publithed, in different journals, that they had difcovered a particular liquor which had the property of bleaching cloth by an immertion of fome hours only. Tie clange they had madc in the procefs performed in their prefence, conlifted

B L E. [115] B L E

3. 3leaching. confifed in putting fome alkali into the water which receives the gas; this enables the liquor to become much more concentrated, fo that it may be diluted with feveral times its own quantity of water before it is ufed.
" Thefe are the proportions which yielded me (fays Berthollet) a liquor fimilar to the pretended Javelle ley; two ounces and a half of common falt, two ounces of fulphuric acid, fix: drachms of calx of manganefe, and, in the veffel where the gas is to be concentrated, one pound of water, and five ounces of potafh, which frould be diffolved in the water. The Javelle liquor has a fomewhat reddih appearance, cceafioned by a fmall quantity of manganefe, which either pafles in the diftillation, becaufe an intermediate veffel is not ufed, or exifts in the potafs; mof kinds of which contain it, as I have well convinced myfelf."
"This liquor may be diluted with from ten to twelve parts of water ; and, after this, it bleaches more fpeedily than the liquor itfelf: but wilhout fpeaking of the imperfections of the method which is defribed in the publications from Javelle, and which can only fuffice for cotton, we are not able to bleach near the fame quantity of cloth with the oxygenated muriatic acid combined in this manner with an alkali, as might be bleached with the fame quantity of that acid mixed with water alone; becaufe there is formed a portion of that nentral falt which is known at prefent by the name of oxygenated muriate of potafs, and in which the oxygen becomes concentrated. Now all the oxygen which enters into the compofition of this falt is rendered ufelefs for bleaching ; becaufe the oxygenated muriate of potah does not deftroy colours."

This method of bleaching was very foon adopted in Britain, and is now almoft univerfal among bleachers. A great many changes have been made in the procefs; one of the moft important of which is fubltituting lead veifels for wooden ones, which, befrdes weakening its aetion exceedingly, were very foou deftroyed by the acid. We believe, too, that the bleachers very generally add fome alkali to the acid, notwithftanding the ftrong objections which Mr Berthollet has made to that manner of bleaching.

This method of bleaching has been fornd to anfwer remarkably well : the only objection that has been made to it is, that the cloth is apt to be weakened. And this, no doubt, muft be the cafe, if care be not taken to prevent the acid from being too much concentrated; but we have listle doubt that, with a fufficient degsee of caution, it will prove as fafe as any other whatever ; and, in point of expedition, there cannot furely be any companifon drawa between the old mode of bleaching and the new.
It remains for us now to confider, whether the new diffoveries in chemifry do not throw fome rays of light upon the theory of bleaching; for it is only by perfeating the theory that we can adrance with certainty in our praftical improvements.

It has been already obfcered, in the article Bleaching (Encoch), that cloth, after being bleached, was a grood deal lighter than it had been before the operation: It follows, therefore, that it mult have been deprived of fomething during the bleaching. Cloth bleached by means of the oxy-muriatic acid likewife under-
goes a lofs of weight; fo that, in all probability, both Bleaching. modes act in precifly the fame manner.

If raw linen or thread be boiled in a fointion of cauftic alkali, properly diluted, it gives out formething which tinges the ley of a deep brown, and at the fame time the alkali lofes its cau!licity. If the linen be boiled in another fimilar folution, it commonicates the fame colour, and even a third may be flightly tinged ; but af. ter this, alkalis, unlefs fo much concentrated as to injure the texture of the cloth, have no effest on it whatever. If the linen be now planged into oxy-muriatic acid, properly prepared, and alloned to remain till it begins to become white, and then plunged int? an alkaline ley, the alkali lofes its caufticity, and affumes the fame deep colour that the firft ley did. Here, then, we have two alkaline folutions; the one laturated with colousing matter before the adtion of the oxy-mu. riatic acid on the linen, the other after it. When thefe folutions are faturated with an arid, a yellow coloured precipitate is obtained, which when dried affumes the appearance of a black powder. Precifely the fame fubftance is obtained from both folutions. This colouring matter is almof infoluble in water. Pure or cautic potafs diffolves about double its own weight of it ; carbonate of potafs not fo much.

Hence we fee the ufe of alkalis in bleaching. The colouring matter is not foluble in water, but part of it is foluble in alkali. However, after the alkali has exhaulted all its power, the linen is not white: colouring matter, therefore, exilts in it, which alkalis cannot act upon. But after being plunged in oxy-muriatic acid, it alfo becomes foluble in acids. Here, then, is the ofe of that acid in bleaching-it communicates fomething to the colouring matter which renders it foluble in alkali. This fomerhing, we have already feen, is oxygen. It follows, theretore, that before the greater part of the colouring matter of linen can be extracted by alkalis, it muft be combined with oxygen. It is in producing this combination that the ufe of the expofure to the fun and air confilts; and it is because the oxy-muriatic acid produces it almoft inftantancoufly, that the new mode of bleaching is fo much more expeditious than the old.

If into the alkaline folution of the colouring matter lime-water be poured, there takes place a copions precipitate, which confifls of the lime and colouring matter combined. Lime, therefore, has a flronger aiGinity for the colouring matter than alkali has: and as the compound of line and the colouring matier is not very foluble in water, lime-water might be ufed to deprive the alkaline ley of the colouring matter which is hus imbiod ; after which it might be ufed again. Cure, however, mat be taken that no lime-water rematis in the ley; votherwife it might precipitate and fix the colouring matter in the linen, after which it would be very difficule to renove it.

From an alkaline ley, faturated with the coloning matter of linen yarn, Mr Kirwan, by means of muriatic acid, precipitated the colouring matter. IJe found it to ing mattex polfefs the following properties: When fuffered to dry of linen. for fome time on a filter, it affumed a dark gisen co. lour, and felt fomewhat clammy like moill clay. "I took (dys he) a fmall portion of it, and added it to 60 times its weight of boiling water, but not a particle of

Nature of

B L E [116] B L E

Bleaching. it was diffolved. The remainder I dried in a fand heat : it then affumed a Chining black colour, became more brittle but internally remained of a greenilh yellow, and weighed one ounce and an balf.
" By treating eight quarts more of the faturated ley in the fame manner, 1 obtained a further quantity of the greenifh depofit; on which I made the following experiments :
" ilt, Having digefted a portion of it in rectified fpinit of wine, it communicated to it a reddith hue, and was in a great meafure diffolved: but by the affufion of diftilled water the fulntion became milky, and a wlite depofit was gradually formed; the black matter d:folved in the fame manmer.
" 2 dly, Neibher the green nor the black matter was foluble in oil of turpentine or linfecd oil by a long continued digeftion.
" 3 dly, The black matter being placed on a red.liot iron, burned with a ycllow flame and a black fmoke, leaving a coaly refiduum.
" 4 thly, The green matter being put into the vitriolic, marine, and nitrous acids, communicated a brownifl tinge to the two former, and a greenifh to the latter, but did not feem in the leath diminifhed.
"Hence it appears, that the matter extracted by alkalis from linen yarn is a peculiar fort of refin, different from pure refins only by its infolubility in effential oils, and in this refpect refembling lacs. I now proceed to examine the power of the different alkalis on this fubfance. Eight grains of it being digetted in a folution of cryfallized mineral alkali, faturated in the temperature of 60°, inftantly communicated to the folution a dark brown colour; two mealures (each of which would contain in pennyweights of water) did not entirely difolve this fubltance. Two meafures of the mild vegetable alkali difolved the whole.
"One meature of cauftic mineral alkali, whofe fpecific gravity was 1,053 , diffolved nearly the whole, leaving only a white refiduum.
" One meafure of caultic vegetable alkali, whore fpecific gravity was 1,039 , dificlved the whole.
"One meafure of liver of fulphur, whofe fpecific gravity was 1,170 , difiolved the whole.
" One meafure of cauttic volatile alkali diffolved alfo a portion of this matter."
'I'he colouring matter of cotton is much more foluble in alkali than that of linen; hence the greater facility with which cotton is bleached.

From thefe oblervations, the great importance of allalis in bleaching, and the necefity of regnlating the tirength, and accertaining the purity, of the leys made ufe of, mont be apparent. Manufacturers, therefore, lie under very great obligations to Mr Kirwan, who las lately examined the alkaline matters ufed in bleaching with his ufual accuracy and abilities. The refult of his experiments was as follows:

Irijo Tranf. Table of the quantity of mere alkali in 100 Avoirdupois 1789. pounds of the following fubftances. One bandred lbs. Cryftallized foda - - \quad - 20 lbs . Sweet batilla . . . 24 Mealy's cunnamara kelp - - 3,437 Ditto defulphurated by fixed air - 4,457 Strangford kelp - - - 1,25

One bundied hs.
Dantzic pearl alh
Clarke's refined afl

- - \quad - 6,875

Camup - - - ${ }^{\text {19,376 }}$
Common raw Irifh weed-ah - - 1,666
Ditto flightly calcined - - 4,666
When linen is allowed to romain for fome time in oxy-muriatic acid, it becomes white. It is evident, then, that when the colouring matter of linen is faturated with oxygen, it becomes colourlefs: Dut linen bleached in this manner very foon becomes yellow, efpecially when expofed to heat. Berthollet, to whofe ingenious experiments and obfervations we are indebted for the greater patt of the above remarks, has given the fcllowing explanation of the caufe of this change: He diftilled the colouring matter of linen, and obtained a thick oil, a little ammonia, and $\frac{24}{5} \frac{4}{0}$ of carbon remained belind. The oil contained carbon; and he fuppof. ed that carbonic acid gas, and carbonated hydrogen gas, were difengaged. He concluded in confequence, that one-third of this colousing matter was carbon. The other ingredient in the oil was hydrogen ; for Lavoifier las proved that oil is compofed of oxygen and hydrogen. The colouring matter of linen, then, is compofed principally of carbon and hydrogen.

Oxygen combines with hydrogen at a lower temperature than it does with carbon; for if a confiderable quantity of oxy-muriatic acid be mixed with a folution of fugar (a fubftance which confifts chiefly of carbon and hydrogen), and the liquor be evaporated, there remains behind little elfe than carbon, the hydrogen having combined with oxygen and formed water, which had paffed off in the form of vapour. Now, whenever a quantity of hydrogen is feparated from a body principally compofed of hydrogen and carbon, that body allumes a brown or yellow colour, becaufe the caibon becomes predominant; and this colour becomes the deeper the greater the proportion of the carbon is, compared to that of the hydrogen; and at laft, when nothing but carbon remains, it becomes quite black.

It is probable, then, that when the oxy-muriatic acid renders linen white, a quantity of oxygen has combined with the colouring patticles, but that this oxygen gradually enters into a combination with the hydrogen, and forms water which paffes off; that then the carbon becomes predominant, and the linen in confequence allumes a yellow colour.*
-Anro dec moching Clym. Vi wool and filk which anfwers for linen and cotton. One 2 ro. would be difpofed to think that thefe fubfances are bleached rather by lofing oaygen than by abforbing it. Bleaching Wool, for inftance, is rendered white vers quickly when of wool and expoled to the fumes of fulphurous acid, which we filk. know has a Arong affinity for oxjgen, and foon fatu- + See the rates itfelf with it. But what paffes during the white- memoir in ning of animal matters has never get been properly the $A_{n n}$ de enquired into, though it would not only greatly eluci- Cbym. xvii. date bleaching, but dying likewife, and throw much $\frac{156 \text {, and }{ }^{3-} \text { bridged in }}{}$ light upon iome of the obfoureft parts of chemitry. Nickuffon's A great improvement, however, has lately been made Journal, I. by M. Baumé ia the manner of bleaching filk. Of this 32 , from improvement we flatl proceed to give an account. + which laft

Before the filk is wound off the cocons in which the we have tafilk worms are inclofed, it is neceflary to kill the in- count of ite feits,

B L E [117] B L E

Bleaching. fects, otherwife they would in all probability eat thro' it and deftroy i t. This is commonly done by expofing the cocons, properly wrapped up, for two hours to the
8 New mode heat of about 15^{8} degrees of Fahrenheit in an oven; of whiten- after which they are kept for a certain time in a mafs ing filk. to preferve their heat, and effectually deftroy fuch of
the infects as might have efeaped the power of the oven. The eftect of this procefs is, that the filk is hardened, and is more difficult to wind of than before. Hence the product of filk is lefs by one-ninth part in quantity, and inferior in quality to what might have been obtained by winding off without this previous baking. Mr Baumé, not only from thefe views, but likewife becaufe the filk which has not been baked proves fufceptible of a greater luftre, was induced to defloy the cryfalis by fpitit of wine. For this purpole he difpofes them in a wooden box in a flratum fix inehes deep: upon each fyuare foot half a pint of finit of wine is to be fpinklect with a fmall watering pot made for that purpofe. The liquid is to be equally ditributed, but it is not neceffary that all the cocons thould be wetted. They are then to be mixed by hand. In the next place another flratum is to be formed over the firf, nearly of the fame depth, which is to be fprinkled and treated as before. By this method of proceeding, the box becomes filled, and mult then be covered, and left for 24 hours, during which time they become fpontaneoufly heated to about 100 degrees, and the vapour of the firit of wine exerts itfelf with wonderful activity. After this treatment they mult be firead out to dry, which lrappens in a fhort time, and is abfolutely neceflary previous to winding off.

The firit of wine to be ufed in this operation ought to be of the fpecific gravity .847 , at the temperature of 55 degrees. It is of the greatet importanee to ufe that fpirit only which has been kept in veffels of glats, of tinned copper, or of pure tin, Leaden velfels are abrolutely to be rejected; wooden veffels tinge the fpirit, which gives the filk a degree of colour of confiderable permanency, and very inimical to the bleaching procels.

The filk is wound off upon a reel, while the cocons are kept immerfed in water almolt boiling. Upon this part of the procefs M. Baumé remarks, ift, That the dead cocons mult be feparated. Thefe are known by the brown or black fpots on their furface. 2. That well water, which on account of its clearnefs is almof univerfally ufed in the filk manufactories, mofly contains nitre, and is extremely prejudicial to the bleaching procefs. The prefence of nitrous acid gives a yellow colour, which refifts bleaching and even fcouring; he therefore recommends river-water. 3. In fome countries a fmall quantity of alum is ufed. Neither this nor any other faline fubftance is of the leaft advantage to the culour, beauty, or quality of the filk.

At the four places of contad of the filk upon the reel, all the threads ftick together. It is abfolutely necelfary that this floould be remedied. The method confifts in foakirg the filk in a fufficient quancity of warm water, at abnut 90 degrees, for about two hours; after which the threads are to be feparated by opening the hanks upon a pin, and lightly rubbing the parts which achere. When the filk is dry it is to be lonfely folded in its original form, and is ready for bleaching.

The filk while wet is foft, and part of its gummy matter is in fuch a fate, that its threads would readily Supple. Vol. I.
adhere, if wrung while warm for the purpofe of clearing Bleaching. it of the water. After fuch improper treatment there would be no other remedy than to loak it again in warm water.

The apparatus for bleacling the filk confifts of a fone-ware vellel, nearly of a conical form, capable of holding about 12 gallons, having a large opening at the one end, and a imaller of about an inch diameter at the other end. Common pottery cannot be ufed in this operation, becaufe it is foon rendered unferviceable by the attion of the muriatic aeid, and the ftone-ware itflf is not very durable. This veffel mult be carefully examined, to afcertain that it does not leak in the flighteft degree; after which the infide is to be rubbed with a pumice-fone, to clear it of afperities which might break the threads. A cover of the fame material is to be fitted on by grinding : and the fmaller aperture, which in the ufe is the luweft, is to be cloled with a good cork, in the middle of which is thru!t a fmall glafs tube about a quarter of an inch in diameter ; this is likewife fopped with a cork, excepting at the time when it is required to draw off the liquid contents of the jar. A fmall perforated falfe bottom is placed within the veffel, to prevent this tube from being offructed.

Six pounds of yellow raw filk are to be difpofed in the earthen pot; upon this is to be poured a mixture, previoufly made, of 48 pounds of feinit of wine of the fpecific gravity 867 , with 12 ounces of very pure marine acid, abfolutely exempt from all prefence of nitrous acid, and of the fpecific gravity 1.114. The pot is then to be covered, and the whole left in digeftion till the following day, or until the liquor, which at firt affumes a fine green colour, fhall begin to affume that of a dufky brown.

The aciduiated fpirit is then to be drawn off, clean fpirit of wine poured upon the lilk, and drawn off repeatedly until it paffes colourlefs. The filk is then fuffered to drain withont flirring it. In this fate it is ready for a fecond infufion.

Forty-eight pounds of firit of wine, acidulated with 12 ounces of marine acid, is now to be poured on the filk, and the whole fuffered to remain for 24 hours or longer, until the filk becomes perfectly white. The time required for this fecond infufion is commonly longer than for the firlt: it fometimes amounts to two, three, or even fix days, according to eircumftances, particularly the temperature and the nature of the filk. Silk which has been in the oven is in general more difficult to bleach.

When the filk has thus obtained its utmof degree of whitenefs, the acidulated fpirit is to be drawn off into a feparate veffel. This fluid is but flightly coloured, and may be ufed again in the firtt infution of other yellow filk, with the addition of fix onnces more of marine acid. The receiving veffel is to be removed, and another clean veffel fubftituted in its place. The filk is then fprinkled with cleam fpirit, and occafionally prefied down with the hand. As foon as the fpirit of wine comes off ablolutely colourlefs, a third infution is to be made by pouring upon the filt 48 pounds of the pure fpirit without acid, which is to remain till the foliowing day: it is then to be drawn off, and referved for wafling other filk after the firft infllion.

After the filk has been left to drain, and affords no more firit, it fill retains its own weight of that fuid. R

This

B L E [II
Bleaching. This is recovered by frinkling the filk with a fmall quantity of very clear river-water at a time. While the waier applies itfelf and fubfides along the filk, it drives tive fpirit of wine before it, fo that the firlt portions which flow from the tabe are fcarcely diminifhed in litength. The addition of water is to be continued until nothing but mere water comes off below.

In this fituation the filk is found to be well bleached, but ftill retains a portion of marine acid fufficient to render it harfh to the touch, and after a time brittle. It mul be wafhed off witl water. The beft method is to phit the filk loofely into a coarfe woollen bag, which is to be fecured loofely in another cloth like a fruall bed or pillow, then placed in a balket, and left in a running ilream for five or fix hours; but where the convenience of a ftream is wanting, the carlien pot containing the filk is to be covered with a cloth, and water pumped through it for five or fix hours, or until that which iffies trom the lower aperture gives no red colour to the tincture of turnfol. At this period the lower opening is to be clofer, and the veifel filled with water, which muft be changed once or twice in 24 hours.

Though the mineral acids are the molt powerful and deftuctive of all fuline fubfances, yet they may be applied to filk when diluted with fipit of wine in very confiderable dofes. In trials made to afcertain the maximum, two ounces of marine acid were added to one pound of firit of wine, without altering the filk. Two drams of marine acid caufe a very perceptible alteration in one pound of lilk.

Spirit of wine which has been mixed with nitrous acid canant be ufed in bleaching, even though afterwards reatified upon an alkali, becaufe it till retains a portion of nitrous gas. Pure fpirit of wine without acid extracts a fine ̧ellow colour from filk, which does not feparate for years, even though expofed to the fun's light. Yellow filk, expofed to the fun, lofes its colour in a fhort time. The acidulated fpirit which has been ufed in the infufion of filk, is changed by expofure to the fun, but not in fuch a manner as to be rendered fit for ufe a fecond time. In order to obtain a beautiful white colcur, it is effential that the filk fhould be immerfed in a large quantity of the fluid, efpecially at the firt infufion. Without this management it would become neceflary to make three infulions in the acidulated fpirit. When the firlt infufion is well managed, the filk will have loft all its yellow colour, and become confiderably white, at the fame time that the liquor will have begun to change colour a little. As long as it continues of a fine green, it is certain that it has not exhauted its whole action upon the filk. The duration ot this firft infution may be longer or florter, without inconvenience, according to the temperature. When the temperatu:e is at 77 of Fahrenbeit, the firlt infufion is often made in 10 or 12 hours. In fmall experiments the heat of the atmofphere may be fupplied by the water bath; in which caie, all the infufions are eafily made in the courfe of a day.

When the firft infufion is finithed, and the liquor drawn off, the filk appears greenifl: the fubfequent wathings in fpirit of wine clear it of the liquor it retained. This fprinkling fould be made with the watering pot, otherwife the quantity poured will be greater, and the management more waltefu!.

B I. E

Pieccs of gauze and entire garments of filk have been Bleaching. fuccefsfully bleached in this way.
The fineft natural white filks are rendered infinitely whiter by this procefs. Spirit of wine alone has the property of depriving yellow filk of its coluur, which it brings to the ftate of the naturally white filk. In this fate the fill: is dipofed to acquire a greater degree of brightnefs by a fingle infution in the acidulated fririt. This procefs has it advantages over the other, to whith it is alfo inferior in certain refpects; concerning neither of which the author has entered into any detail.

The colouring matter was found to be a refin perfectly animalized, affording by diftillation the fame products as other animal matters, and the concrete volatile alkali.

Silk whitened by foouring may be dried freely in the air without affesting its luftre. This is not the cafe with the filk bleached in the gum: if it be left at liberty to dry in the air, it refembles white flax without any luftre. The beauty of this filk confifts in its fhining brilliancy; to fecure which it munt be dried in a flate of tenfion. Mr Baumé has contrived a fimple machine for this purpofe. It confitts of a ftrong fquare frame of wood ftanding upright upon feet: the upper horizontal bar is fix feet long, and has fix iron pins driven through it at equal diftances, fo as to project on each fide for the purpofe of receiving twelve bobbins. The lower horizontal bar is moveable up and down in a mortice, by means of a fcrew at each end : it is furnifhed with fix holes, adapted to receive as many pins to correfpond with thofe above. The flaains of filk are to be drefied and arranged upon wooden pins, as they are taken out of the fack from walhing. As foon as there are twelve together, they are to be wrung with a f.iff; after which the flains are to be hung one by one upon as many bobbins put upon the upper pins of the fquare frame. Another bobbin with tails is to be inferted in the lower loop of the fkain, and faftened to the correfponding pin of the lower bar, by means of a frap and hook, which need not be defcribed to fuch as are flightly acquainted with mechanical objects. When the machine is thus fupplied with fkains on both fides, the lower bar of the frame is to be preifed down by the fcre:vs until the filk is moderately ltretched. When it is dry, the fcrews are to be equally flackened, the fkains taken off, and folded with a flight twift, that they may not be become entangled.

To complete the defcription of this procefs, it only remains to fhow how to recover the alcohol, and enfure the purity of the acids made ufe of.

The alcohol which has been ufed in bleaching filk is Method of acid, and loaded with colouring matter. In this flate recovering it cannot be again ufed. There are two methods of the alcolol dittilling it, which have their refpective advantages and ufed, inconveniences.

By the firt the acid is lof ; which is faturated with potais, in order that the diftillation may be afterwards performed in a copper alembic. A folution of potafs is to be poured into the acid fpirit, and Atirred about to promote the faturation. Carbonic acid is difengaged with Atrong effervefcence from the alkali, and the point of faturation is known by the ufual telf, that the fluid does not redden the tinaure of turnfol. The difitilation is then to be made in the copper alembic, and the alcohol referved in proper veffels.

B L E [II9] B L E

Bieaching.

In the fecond procefs for diftilling without alkali, the acid fpirit is diftributed into a great number of glafs retorts, placed in the fand-bath, on the gallery of a furnace. The firit product is fearcely acid; but what follows is more and more fo, and mult be kept in verfels of glafs or ftone-ware, which become embarrating on account of their number. The fluid which remains in the retorts has the colour of beer flightly turbid, and contains the greatelt part of the marine acid. It mult be poured into one or more retorts, and concentrated by leat gradually applied. The firf liquor which comes over is flightly red, turbid, and fearcely acid. "This is to be thrown away, and the receivers changed. The fucceeding produef is the colourlefs marine acid, of an aromatic fmell refembling the buds of poplar. The refin of the filk remains in the retort decompofed by the acid. The marine acid thus obtained is weaker than it originally was; which is in fact of little confequence, as it is pure, and may be fafely ufed, either by increafing the dofe proportional to its diminifhed Atrength, or by concentrating it if required in the ufual way. If this diftillation be made in a filver alembic, inftead of retorts of glafs, and a capital and worm of pure tin be annexed, the alcohol will be obtained fo flightly acid as fcarcely to redden the tincture of turnfol; but it is fufficiently acid to receive injury if preferved in a copro per velfel.
And of pre- As to the acid, Mr Baumé obferves, that the muriaparing a tic acid of commerce is unfit for the purpofe. It was pure mu- formerly prepared with the marine falt of the faltpetre riatic acid. manufacturers; and even when it is made with good falt, the decompofition is effected with common vitriolic acid which contains nitrons acid. Marine acid mixed with a fmall quantity of nitrous acid does not prevent the filk from being beautifully whitened: it even accelerates the procefs confiderably, and in the mof fatisfactory manner. But the alcohol, every time it is ufed and rectified, becomes charged with the acid and gas of nitre, which aflume the charaters of the nitrous anodyne liquor. In this flate neither diftillations nor repeated recifications from alkali are fufficient to feparate the nitrous matter from the alcohos. Then it is that the fuccefs of the operator vanifhes, with a degree of rapidity equal to the advances which encourarred his hopes at the commencement.

To purify common fulphuric acid, 100 pounds of it are to be mixed in a large bafon of copper with the fame quantity of river-water, and ftirred with a wooden fpatula. The mixture inftantly becomes heated to the boiling water point, and a great quantity of red vapour is difengaged, whicls has the fmell of aqua-regia, and arifes from the nitric and muriatic acids. When this mixture is made, it is proper to immerfe the bafon to a fuitable depth in a large veffel of water, to laften the cooling. As foon as it is fufficiently cooled, it is to be drawn off into bottles, and left to become clear during feveral days. It is in the next plate to be decanted, and conveyed into retorts by a fyphon funnel, and the rectification proceeded upon until it becornes perfectly white. Towards the end of the nperation a fmall quantity of fulphur fublimes in the neck of the retort. InAtead of receivers, a fmall glafs cup is placed beneath the aperture of each retort, in order to facilitate the diffipation of the nitric and muriatic acids. When the acid in the retorts is fufficiently cooled, it is poured a
fecond time into the copper bafon, and mixed with 100 Bleaching. pounds of river-water, as at firf, and again concentra. ted in the retortstill it becomes perfectly clear. The muriatic acid is to be difengaged from common falt by the application of this acid in the ufual manner.

The oxy-muriatic acid is alfo ufed very generally for Bleaching bleaching paper, or rather the ftuff cut of which paper paper. is made. It has been alleged and we believe with fome truth, that fince this mode of whitening paper was in. troduced into this country, the Atrength of paper is much inferior to what it was formerly. If this be really the cafe, perhaps it is owing to the ufe of too concentrated an acid.

We fhall finifh this article with Mr Chaptal's account of this procefs, who was the firft perfon that introduced it. "Blotting paper (fays he), by being put into oxygenated muriatic acid, is bleached withous fuffering any injury; and rags of coarfe bad cloth, fuch as are ufed in the paper manufactories to make this lind of paper, may be bleached by this acid, and will then furnifh paper of a very fuperior quality. I bleached by it an hundred weight of pafte, intended to be made into blotting paper, and the increafe of value in the product was computed at 25 per cent. whereas the expence of the operation, when calculated in the ftricteft manner, amounted only to 7 per cent.
" The property poffeffed by this acid, of bleaching Mode of paper without injuring its texture, renders it very va- whitening luable for reftoring old books and fmoked prints. The old books, latter, when difcoloured to fuch a degree that the fubject of them could hardly be diftinguifhed, were re-eftablifted and revived, in fo aftonifhing a manner that they appeared to be new ; and old books, foiled by that yellow tinge which time always produces, may be fo completely renewed, that one might fuppore them to be juit come out of the prefs. The fimple immerfinn of a print in oxgenated muriatic acid (leaving it therein a longer or a fhorter time, according to the Atrength of the liquor (is all that is required for bleaching it; but when a book is to be bleached, fome farther precautions are to be ufed. As it is necelfary that the acid thould wet every one of the leaves, the book mult be completely fpread open, and then, by letting the boards of the binding reft upon the fides of the velfe?, the pa. per only will be immerfed in the liquor. It any of the leaves ftick together, they muft be carefully feparated, that all of them may be equally impregnated. The liquor takes a yellow tinge, the paper grows white; and after two or three hours the book may be tahen out of the liquor, and foaked in clean water, which fhould be changed from time to time, in order to wafh out the acid with which the book is impregnated, ard alfo to deprive it of the difagreeable fmell it has contracted.
"The above method, which is the firlt I made ufe of, has generally fucceeded pretty well ; too often, liow. ever, the leaves of my books have had a motely appearance, and fometimes feveral pages were not at all bleached; I was therefore obliged to have recourfe to the following more certain procefs. I began liy unfewing the books, and reducing them into meets; thefe theets I placed in divtlions made in a leaden veffel; by means of thin flips of wood, fo that the leaves when lad flat were feparated from each nther by very fmall intervals. I then put the acid into the velfel, pouring it againft the Gde, that the leaves might not be difurb.

Bleaching

 ค Boar. \rightarrowI.3.

And prints.
"When I had to bleach prints fo torn to pieces that they conlifted only of fragments fitted together, and pafted upon paper, I was afraid I might lofe fome of thefe fragments in the liquor, becaufe they feparate from the paper by the fofiening of the patte; in that cafe therefore I took the precaution of enclofing the print in a large cylindrical bottle which I turned upfide. down, firing its mouth to that of a velfel in which I had put a nixture proper for difengaging oxygenated muriatic = gas...This. gas fills the infide of the bottle, and, ating upon the print takes off the fains, ink-fpots, Sic. While the flagments remain pafted to the paper, and confequently keep their refpective places."

BLOCK Ifand, called by the Indians MIanifes, lies about 21 miles S. S. W. of Newiport, and is in Newport co. Atate of Rhode-Ifland. It was erected into a rownfhip, named Neru-Shoreham, in 1672 . This illand is 46 miles in length, and its extreme breadth is 38 miles. It has 682 inhabitants, including 47 : llaves. It is famous for cattle and theep, butter and cheefe : round the ledges of the illand confiderable quantitics of cod tifh are caught. The fouthern pant of it is in N. l.t. 41. S.-Aiorse.

BLOCKLEY, a townhip in Philadelphia co. Penn-fylvania.-ib.

BLOCKS (Encyct. Plate XCV. fig. 5) a, Reprefents a fingle block, and b, c, two double ones of diffesent kinds, without Rrops; e, f, two double tackle blocks, iron bound, the lower one, f, being fitted with a. fwivel ; g, a double iron block with a large hook; b, a fmall block; i_{5} a top block : k, a voyal block; l, a clow gannet block: m, the cat block, employed to draw the auchor up to the cat-head. See Cat-Head, Encycl.

B1.UE HILL, a townhip in Hancock co. Didriat of Maine, on the W. fide of Union River, $34+$ miles N. E. of Bofon, and 13 E. of Penobfot ; having 274 inlabitants.-Morse.

Blee Hile Bay, is formed by Nafkeag Point on the W. and Mount. Defart Ifland on the E. It extends northerly up to a mountain on the E. of Penobicot River, which, from its appearance at fea, is called,Blue Hill. Union K'ver, emapties into this bay.-ib.

Cape or Large Snouted BOAR, a fpecies of the genus Sus, which, according to M. Vaillant, differs from every known fpecies, and bas not been accurately defcribed by any writer of natural hiftory. Buffon, indeed, in the Supplement to his Hiftory of Quadrupeds, has given a figure of it; but notbing like the liead of the animal is difcoverable, fays our author, in that figure, all its characteriftics having been omitted by the draughtfman. M. Vaillant, during bis laft travels in

Tlate VII. Africa, thot a monfrous boar of this fpecies on the banks of Fifh.river, and in the country of the Greater Nimiguas. He defcribes it in the following terms: Its fnout, inflead of being taper and in the form of a probofcis, is, on the contrary, very broad and fquare at
the end. It has fmall eyes, at a very little diffance from each other, level with the furface, and near the top of the forehead. On each cheek a very thick cartilaginous fkin projects horizontally, being about three inches long and as many broad. At firt fight you would be tempted to take thefe excrefences for the ears; particularly as the real cars of the animal, fticking as it were to the neck, which is very fhort, are partly concealed by an enormous mane, the brifles of which, in colour red, brown, and greyifh, are 16 inches in length on the fhoulders. Directly below thefe falfe ears is a bony protuberance on each fide, projecting more than an inch, ferving the animal to frike with to the right and left. The boar has, befides, four tulks, of the nature of ivory, two in each jaw : the upper ones are feven or eight inches long; very thick at the bafe, and terminating in an obtufe point, grooved, and rifing perpendicularly as they iffue from the lips: the lower ones are much frmaller, and fo clofe to the-upper ones when the mouth is fhut, that they appear as one. The head is a truly hideous object. It is fcarcely lefy fo than that of the hippopotamus, to which at firf view it appears to have a friking refemblance. Syftematifts, accuflomed to view nature only according to rules eftablifhed by themfelves, will be far from acknowledging this animal to be a boar; for, not to mention its large fnout, it wants incifive teetl in both jaws. NotwithAtanding its wide muzzle, it ploughs up the earth to feek for roots, on which it feeds. It is very active, though large and bulky; running with fuch fpeed, that the Hotrentots give it the name of the rumer.

BOEUF, LE, a place in the N . weftern corner of Penniylvania, at the head of the N. branch of French Creek, and 50 miles from Fort Franklin, where this Creek joins the Alleghany; meafuring the diftence by water. The French fort of Le Boeuf, from which the place has its name, lay about 2 miles E. from Small Lake, which is on the N. branch of French Creek; and from Le Boeuf, there is a portage of 14 miks northerly, to Prefque Ille, in Lake Etie; where the French had another fort.

From Le Boeuf, to Prefque Ifle, is a continued chefnut-bottom fwamp (except for about one mile from the former, and two from the later) and the road between thefe two places, for 9 miles, 15 years ago, was made with logs, laid upon the fwamp. N. lat. +2. 1. W. long. 79. 53. 20-ib.

BOLTON, a townhip in Chittenden co. Vermont, on Onion River, about 104 miles N. N. E. from Bennington, having 88 inhabitants.-ib.

Bolton, a townthip in Tolland co. Connecticut, incorpolated in 1720 ; and was fettled from Weathersfield, Hartford, and Windfor, 14 miles E. from Hart-ford-ib.

Bolton, a townfhip in Worcener co. Maffachufetts; 18 miles N. E. from Worcelter, and 34 W. from Bofton. It contains 86 t inhabitants. - There is a fine bed of limenone in this town, from which confiderable quantities of good lime are made yearly.-ib.

BOMBAY Hook, an ifland at the mouth of Dalaware River about 8 miles long and 2 broad, formed by the Delaware on the eaftern fide, and Duck Creek and Litule Duck Creek on the Maryland fide; thefe are united together by a natural canal. It is propofed to comneet Delaware River with Chefapeak Bay,

B O N

by a canal from Duck Creek to that bay, through Chefter River. The N. W. end of Bombay Hook is about 47 miles from Capes Henlopen and May, from the Hook to Reedy Inand is 9 miles.

BONET (Theophilus', was born at Geneva in the year 1620. His parents were able to give him the moft liberal education, and his genius directed him to the Atudy of phyfic; and that he might have every advantage, he attended on the lectures of the moft eminent profeflors in many of the celebrated univerfities in Eu. rope. In 1643 he was admitted to the degree of M. D. and was for fome time phytician to the Duke of Longueville. His fuperior thill in his profeflion foon brought him into confiderable repute; but being feized with an excefive deafnefs, he was obliged to retire from bufinefs when about 60 years of age.
During this retirement he employed himfelf in col. lekting all the obfervations which he had made in a practice of forty years duration, and in arranging them under proper heads. His firft publication, which was intitled Pbaros Medicorum, \&xc. confifts of practical cautions, extracted mofly from the works of Bellonius; and in it he points out many errors which then prevailed in the general practice of phyfic. Of this work he gave to the world a fecond edition, conliderably improved and greatly enlarged; and in 1687 it was a third time printed at Geneva, under the title of Labyrintbi medici extricati, \&c.

In 1675 he puiblifhed Prodromus anatomi, practice, five de abditis morborum caufis, axc. This was intended mercly as an introduction to a work that foon followed, under the title of Sepulchretum, five anatomia pracica ex caduveribus morlo denatis. In thefe two publications he bas collected a great number of curious obfervations upon the difeafes of the head, breaft, belly, and other parts of the body.

In 1682 appeared at Geneva Mercurius Compitalius, five index meaioo-pradicus per decifones, cautiones, \&c. in folio; and in 1684 and 1686 two volumes in folio likewife, intitled Mudicini Septentrionalis collatitia. This laft work is a collection of the beft and moll remarkable obfervations in phyfic which had been then made in England, Germany, and Denmark, which Dr Bonet arranged under proper heads, according to the feveral parts of the human body. At Geneva, in 1692, was publifhed, in three volumes folio, Polyalthes, five Thefaurus mudica prafficus ex quibuflilet rei medice foriptorilus congefius, Scc. and fome years before, he gave to the world correct editions of Theodori Turqueti de Maerne tractatus de artbritide, una cum ejufdam aliquot confriiis; and of Facobi Robaulti trackutus pbysicus e Gallico in Latinum verfus. This laborious and vleful author died of a dropfy on the 29th of March $16 g 8$.

BONNE' (Charles), was defcended from a French family, who being compelled, on account of their religious principles, to emigrate fiom their native country, eftabliflied themfelves at Geneva in the year 1572. His grandfather was advanced to the magiltracy in that city, and adorned by his integrity an eminent Itation. His father, who preferred the Itation of a private citizen, paid unremitted attention to the education of his fon, who was born on the 13 th of Marcli 1720; and Charles, at a very early period, recompenfed lis father's affiduity, by the amiablenefs of his difpofition, and the rapid progrefs be made in general literature. When he
was abont 16 jears of age, he applied himfelf, with great eagerners, to the perufal of Le Spectacle de la Nature; and this work made fuch a deep impreffion on his mind, that it may be faid to have directed the talle and the ftudies of his future life. What that publication lad commenced, was confirmed by the work of La Plucbe; but having accidentally feen the treatife of Reaumur upon infects, he was in a tranfport of joy. He was very impatient to procure the book; but as the only copy in Gereva belonged to a public library, and as the librarian was reluctant to entrult it in the hands of a youth, it was with the utmolt difficulty that he could obrain his end.

By the poffeflion of this treafure, our affiduous youth was enabled to make feveral new and curious experiments, which he communicated to Reaumur himfelf; and the high applaufe he gained from fo great a natu. ralift added frefh vigour to his afliduity.

In compliance with his father's defires, he applied himself, though with much reluctance, tos the ftudy of the law. The works of Burlamaqui pleafed lim the mof, on account of the perfpicuous and philofophic manner in which the fubject was treated: the inftitutes of Heineccius gave him fome courage alfo, as he perceived order and connection ; but the Koman law terrified him as the lydra of Lerna. Notwithfanding his application to thefe authors, he ftill continued attached to natural hiftory, and was very ative in making experiments. The experiments which demonflrate that treelice propagate without copulation, was communicated by Reaumur to the Academy of Sciences; and this circumfance occafioned an epiftolary correfpondence between M. Bownet and that great naturalift. This weas doubilefs very flatiering to a youtls of twenty years. The letter of Reaumur was accompanied with a prefent of that very book which he had borrowed with fo much difficulty two years before.

Animated by fuch diflinguifhed marks of approba. tion, he diligently employed every moment he could Real from the thudy of jurifprudence to the conipletion of his natural hiftory of the tree loufe; to experiments on the refpiration of catterpillars and butterflies, which he difcovered to be effected by figmata, or lateral pores; to an examination of the conftuction of the trenia or tap.worm ; in frequent correfpondence with Reaumur; and in affifting Trembley in his difcoveries and publication concerning millepedes, \&x. Having in the year 1743 obtained the degree of doctor of laws, he relinquithed a purfuit which he had commenced with fo much reluctance. In the fame year he was admitted a fellow of the Roy:ll Society, to which he had com. municated a treatife on infects.

Bonnet being now liberated from his other purfits, applied himfelf, without intermiffion, to collefting together his experiments and obfervations concerning the tree-loufe and the worm, which he publithed in $17+1$ under the title of Infectology. This work acquired deferved approbation trom the public, and was honoured by the commendation of the celeb:ated B. de Jultieu. He was reproached, however, in a periodical publicetion, with having paid too little attention to the delicacy of his reader; though his patience and accuracy were acknowledged to be deferving of praife. Such untemitted application and labour could not fail of becoming injurious to his health. Infammations, nervous

Eonnet.

B O N [122] B O N

Bonnet. n-
fever, fore eyes, \&c. compelled him to relinquifh the ure of the microfcope and the ftudy of infects. This prevention was fo extremely mortifying to a man of his tafte and activity of mind, that lie was thrown into a deep melancholy, which could only be fubdued by the refolution infpired by philofophy, and the confolations of religion: thefe gradually roufed him from a dejected Atate of mind. About the end of the year 1746 our philofopher was chofen member of the Literary In Ititution at Bolngna, which introduced him to a correfpondence with the famed Z anotti, who may be deemed the Fontenelle of Italy.

In the year $17+7$ he undertook a very difficult work on the leaves of plants; which, of all his puolications in natural hifory, bore the Itrongeft marks of origina. lity, buth with refpect to the manner in which his experiments were made, and the difcoveries refulting from them. His extreme attachment to natural hiftory gradually led him to a ftudy of a very different nature; fpeculative philotophy now engaged his whole attention. The firlt iruits of his meditations in this depart. ment was his Efiay on Pfychology. In this work the principal facts oblervable in human nature, and the confequences refulting from them, are fated in a concife and confpicuous manner. He contemplated man from the firit moment of his exiftence, and purfued the developement of his fenfes and faculties from fimple growth up to intelligence. The work, which was publifhed without his name, met with great oppofition, and was criticifed with feverity ; but the cenfures were directed more againf his expreflions than his principles; nor were they of fufficient importance to impede the feneral acceptance of the publication.

His analyfis of the mental faculties was fimply a developement of the ideas contained in the preceding work. It engaged his incelfant attention for the fpace of five years; nor was it completed before 1759. It is fomewhat fingular that both he and the Abbe de Condillac Ghould have illuftrated their principles by the fuppofition of a flatue, organized like the human body, which they conceived to be gradually infpired with a foul, and the profreflive developement of whofe powers they careflilly traced. In the year 1760 this work was publifhed at Copenhagen, by order and at the expence of Frederick V. and it was followed in 1762 by contemplations on organized bodies. In this the author had three principal objects before him ; the firt was to give a concife view of every thing which appears interelting in natural bifory, refpecting the origin, developement, and reproduction of organized bodies; the fecond was to confute the two different fyftems founded upon the Epigenefis; and the third was to explain the fyftem of Germs, indicate the ground upon which it was founded, its correfpondence with facts, and the confequences refulting from it. This work was received with much fatisfaction by natural philofophers. The Academy of Berlin, which had propofed the fame fubject as a prize queftion for 1761 , declared that they confidered the treatife as the offspring of clufe obfervation and profound reafoning; and that the author would have had an indubitable right to the prize, if ke had confined his labours to the precife flatement of the quellion. It muft afo be recorded, to the honour of the great Ma'efherbes, that he reverfed the interdict
which the public cenfor had laid upon this book, nnder the pretext that it contained dangerous principles.

The Contemplation of Nature appeared in 1764. In this work the author firf enlarged upon the common conceptions entertained concerning the exiftence and perfections of God; and of the order and uniformity obfervable in the univerfe. He next defcends to man, examines the parts of his compofition, and the varions capacities with which he is endowed. He next proceeds to the plants; alfembles and defcribes the laws of their economy; and, finally, he examines the infects, indicates the principal circumftances in which they differ from larger animals, and points out the philofophical inferences that may legitimately be deduced from thefe differences; and he concludes with obfervations refpecting the indultiy of infects. This work being of a popular nature, the author fpared no pains in beftowing upon it thofe ornaments of which it was fufceptible. The principles which he thus difcovered and explained, induced him to plan a fy/fem of moral pbilofophy; which, according to his ideas, confifted folely in the obfervance of that relation in which man is placed, refpecting all the beings that furround him. The firlt branch would have comprehended, various means which philofophy and the medical fcience have difcovered for the prevention of difeafe, the prefervation and augmentation of the corporeal powers, and the better exertion of their force: in the fecond, he propofed to thew, that natural philofophy has a powerful tendency to embellifi and improve our mind, and angment the number of our rational amufements, while it is replete with beneficial effects refpecting the fociety at large. To manifeft the invalidity of opinions, merely hypothetical, he undertook, in the third place, to examine, whether there were not truths within the compafs of human knowledge, to which the moft feeptical philofopher mult be compelled to yield his confent, and which might ferve as the bafis of all our reafonings concerning man and his various relations. He then would have direst. ed his attention to a firlt caufe, and have manifefted how greatly the idea of a Deity and Supreme Lawgiver favoured the conclufions which reafon had drawn from the nature and properties of things: but it is deeply to be regretted that his health, impaired by inceffant labour, would not permit him to complete the defign.

His laft publication was the Palingenefis, which treats of the prior exifcnce and future ftate of living beings.

Of his publications in natural hitory, thofe deemed the moft excellent are, his Treatife on the bef Means of preferving Infects and Fifh in Cabinets of Natural Hiltory; a differtation on the Loves of the Plants; fundry pieces on the Experiments of Spal!anzari, concerning the Reproduction of the Head of the Snail ; a Differtation on the Pipa, or Surinam Toad; and diffe. rent Treatifes on Bees.

In the year 1783 he was elceted honorary nuember of the Academy of Sciences at Paris; and of the Aca. demy of Sciences and the Belles Lettres at Berlin.
Much of his time was employed in a very extenfive correfjondence with fome of the moft celebrated natural philofophers atdothers. Of this number were Reaumur, D_{e} Geer the Reaumar of Sweden, D_{u} Hamel, the learued Haller, the experimental philofopher Spal.

Eook- lanzani, I'an Swieten, Merian, and that ornament of keeping. Switzerland the great Lambert. He entertained, how-
ever, the utmolt averfion to controverfy. He thought that no advantage to be obtained by it could compenfate for the lofs of that repofe which he valued, with Newton, as the rem prorfus fulfantialenn. He rever anfwered remarks that were made to the prejudice of his writings, but left the decifion with the public ; yet, ever ready to acknowledge his errors, he was fincerely thankful to every one who contributed to the perfection of his works. He was ufed to fay, that one confeflion, I wuas in the surong, is of more value than a thoufand ingenious confutations.

His literary occupations, and the care he was obliged to take of his health, prevented him from travelling. He delighted in retirement, and every honr was occupied in the improvement of his mind. The laft 25 years of his life were fpent in the fame rural fituation where he had paffed the greater part of his early days; yet notwithfanding the purfuit of literature was his fupreme delight, he never refufed to fuffend his ludies, when the good of his country feemed to demand his fervices.

He was chofen in 1752 member of the Grand Council in the republic of Geneva; and he affifed regularly at their deliberations till the year 1768, where he diftinguifhed himfelf by his eloquence; his moderation, united with firmoefs; by his good fenfe and penetration in cafes of difficulty; and by the zeal with which he endeavoured to reclaim his fellow-citizens to that ancient fimplicity of manners which had been fo condncive to the welfare of the flate, and to the love of virtue, fo eflential to the exiftence of genaine liberty. His conduct, in every cafe, was contiftent with his principles. He took no pains to accumulate wealeh, but remained fatisfied with a fortune equal to his moderate wants, and to the exercife of his benevolence. The perfeet correfpondence between his extenfive knowledge and virtuous deeds procured lim univerfal efteem.

In the year 1788 evident fymptoms of an bydrops perioris manifetted themfelves; and from this time he gradually declined. He fuftained his indifpofition with unremitted cheerfulnefs and compofure. After various fuctuations, ufual in that complaint, he died on the 20th of May 1793, in the 73d year of his age; retaining his prefence of mind to the laft moment, adminiftering comfort to furrounding friends and relatives, and attempting to alleviate the diftreis of his dificonfolate wife, in whofe arms he expired.

As a demonitration of the high value placed upon lis lahours and talents by the lierati, we have only to remark, that he was member of moft of the learned Societies of Europe.

BOOK keeping, is an art of which the importance is univerfally known; and as commonly praatied, it has been fufficiently explained in the Encyclopxdia. But fince that article was written, a great improvement has been introdaced into the art, or rather a new method of book-kecping has been invented, by Mr Edward Thomas Jones, of the city of Brifol, accountant, who calls it the Eng li/b fyffem of book-kecping; and thinks that by it accounts may be more regularly kept, and errors in accour.ts more eafily detected, than by any other method hitherto known. We are
much inclined to be of his opininn; and fhall therefore Ecoklay before our readers his defctiption of this method, :as keeping. we find it in the pecification of the patent which was granted to hira January 26, 170 万.

The Englifß Syfum of Book Kerining requires three books, called a dey-book or journul, an alphaber, and a lelger, which mult be ruled after the following me hod, viz. the day-book to have three columns on each page, for receiving the amount of the tranfactions; one column of which to receive the amount of debits and credits, one column to receive the debits only, and one column to receive the credits only; or it may be ruled with only two columns on each page, one ccluma to receive the amcunt of the debits, and one column to receive the amount of the credits. There mutt ailo be on each page of the day-book four other columns ruled, two on the left fide nest the amount of the debits, and two on the right fide next the amount of the crecits, for receiving the letter or mark of polting, and the page of the ledger to which each anount is to be polted.
The alphabet need not be ruled at all, but muft contain the name of evcry account in the ledger, the letter: that is annexed to it as a mark of pofting, and the page of the ledger.

The ledger mutt be ruled with three, four, five, or feven columns on each page, as may be mof agrceable, for receiving the amounts of the different tranfactions entered in the cay-book. And the procefs for uing thefe books, or making up bouks of accounts on this plan, is as follows.
When a perfon enters into trade, whether by himfelf or with copartners, he muft have an account opened with himfelf in the ledger; entering fint in the daybook, and then to the credit of his account in the ledger, the amount of the property he advances into trade : The account may be headed either with his name only, or elfe called his Rock-account.

If you buy goods, give the perfon credit of whom you purchafe; when you fell goods, debit the perfon to whom faid goods are fold. If you pay money, debit the perfon to whom paid, not only for what you par, but alfo for any difcount or abatemert he may allow', and give the cafhicr credit for the neat amount paid. If you receive money, credit the perfon of whom yeu receive it, not only for what he pays, but alfo for any difcount or abatement you may allow, and debit the cathier for the neat amount received; taling care in thefe entries to have nothing myfterious or obtcure, but merely a plain narrative of the fact, introducing not one ufelefs word, and avoiding every technical term or phatac except the words debit and credit, which are full and comprehenfive, and the only ternis that are applicalie to every tranfaction, and may be affixed to every entiy.

But as a hurry of bufinets will fometines take plare in almof every counting houfe, which may canse the entries to be made to the debit infead of the cratit of an account in the day-book, and so the credit inftead of the debit, Mr Jones has endeavoured as much as pofible to counterat the evil, by having only one colamn tor receiving the amount of every tranfacion, whether debits or credits, at the infant of making the eritry; and, for the convenience of feparating the debits form the credits, previous to pofting, which is neceffary to prevent confufion and perplexity, he has two othe: columns

$1300 \quad\left[\begin{array}{lll}124\end{array}\right]$

Bonkkecpirg.
on the fome page; that on the left fide into which the ammunt of cevery debit mult be carefully entered, and that on the right for the amount of the credits, which columns muft be caft up once a month. The column of debits and credits of itfelf forming one amount; the column for the debits producing a fecond amount; and the column of crefits a third amount; which fecond and third amounts, added tngether, muft exactly agree with the firft amount, or the work is not done right.

By this means the man of bufinefs may obtain month1y fuch a Attement of his affairs as will how how much he owes for that month, and how much is owing so him ; and the debits being added together for any given time, with the value of the llock of goods on hand, xill, when the amount of the credit is fubtracted therefrom, flew the profits of the trade.

Our author now proceeds to the procefs of poting; which begins with opening an account in the ledger with every perfon to whofe debit or credit there has been an entry made in the day-book; alfixing to each account a letter, which is to be ufed as a mark of pofting. The perfon's mame, place of abode, and the folin of the ledger, mult then be entered in the alphabet, with the fame letter prefixed to each name as is affixed to the account in the ledger. Next the page of the ledger on which each account is opened (and which will be feen in the alphabet) muft be affixed to each amount in the day book, in the column for that purpofe. The date and amount of each debit mult then be polted in the columns for receiving it in the ledger, on the left or debit fide of that account to which it relates; entering, as a mark of polting in the day-book, againft each anscunt, the fame letter that is affixed to the account in the ledger, to which faid amount may be pofted. Obferving that the debits of January, February, March, \&c. mult be pofted into the column for thofe months in the ledger, and the credits muft alfo be pofted in like manner, filling up each account in the centre, at the expiration of every month, with the whole amount of the month's tranfactions; thus having in a fmall fpace, the whole ftatement of each perfon's account for the year; in the columns io the right and left the amount feparately of each tranfaction; and in the centre a monthly fatement.

Having defcribed the procefs of this method of bookkeeping, he thus flews how to examine books kept by this method, fo as to afcertain, to an abfolute certainty, if the ledger be a true reprefentation of the day-b;ok; i. e. not enly if each trandaction be correctly polted, as to the amount thereof, but alfo if it be rightly entered to the dehit or credit of its proper account. This examination differs from the modes that have heretofore been practifed, as well in expedition as in the certain accuracy which attends the procefs; it being only necelfary to calt up the columns through the ledger debits and credits, according to the examples given ; and the amount of thofe columns, if right, mult agree with the columns in the day-book for the fame correfponding face of time. Thefe caftings fhould take place once a month; and if the amounts do not agree, the polting mult then, but not elfe, he called over; and when the time, whether it be one, two, three, or four months, that is ailotted to each column of the ledger is expired, the amount of each column thould be put at the bottom of the firft page, and carried forward to the
bottom of the next, and fo on to the end of the accounts; taking eare that the amount in the day-book, of each month's tranfactions, be brought into one grofs amount for the fame time.

But although this procefs mult prove that the ledger contains the whole contents of the day-book, and neither more nor lefs, yet it is not complete witnout the mode of afcertaining if each entry be pofted to its right account; which may be afcertained oy the following method. He has laid down a rule that a letter, which may be ufed alphabetically in any form or fhape that is agreeable, fhall be affixed to each account in the ledger, and the fame letter prefixed to the names in the alphabet, thefe letters being uled as marks of pofting, and affixed to each account in the day-book as it is pofted; it is only neceffary therefore to compare and fee that the letter affixed to each entry in the day-book is the fame as is prefixed to the fame name in the alphabet; a difference here fhews of courfe an error, or elfe it mufl be right.

At the end of the year, or at any other time, when perfons balance their accounts, if there be no objections to the profits of the trade appearing in the books, the flock of goods on hand at prime colt may be entered in the day-book, either the value in one amount, or the particulars fpecified, as may be moft expedient, and an account opened for it in the ledger, to the debit of which it muft be polted. The cafting up of the ledger muft then be completed; and when found to agree with the day-book, and the amount placed at the bottom of each column, fubtract the credits from the debits, and it will lhew the profit of the trade; unlefs the credits be the greater amount, which will thew a lofs. In taking off the balances of the ledger, one rule mult be obferved, and it cannot be done wrong: As you proceed, firft fee the difference between the whole amounts of the credits and debits on each page for the year, with which the difference of the outltanding balances of the feveral accounts on each page mult exact ly agree, or the balances will not be taken right. By this means every page will be proved as gou proceed, and the balances of ten thoufand ledgers, on this plan, could not unobfervedly be taken off wrong.

BORDENTOWN, a pleafant town in Burlington co. New. Jerfey, is fituated at the mouth of Crofswicks Creek, on the E. bank of a great bend of Delaware River ; 6 miles below 'Trenton, 9 N. E. from Burlington, by water, and 15 by land, and 24 miles N. E. from Philadelphia; and through this town, which contains about 100 houfes, a line of flages paffes from New-York to Philadelphia. The fecond divifion of Heffians was placed in this town, in December, 1776 ; and by the road leading to it, 600 men of that nation efcaped, when Gen. Wathington furprifed, and made prifoners of 836 privates, and 23 Heflian officers, at Trenton.-Morse.

BOSCAVEN, a townthip in Hillborough co. New-Hamphire, on the weftern bank of Merrimack River abuve Concord; 43 miles N. W. of Exeter, and 38 S. E. of Dartmouth College; having ito8 inhabitants. Bofeawen Hills are in this neighborhood.-ij.

BOSCOVICH (Roger Jofeph), one of the molt eminent mathematicians and philofophers of the prefent age, was born, of virtuous and pious parents, on the ith of May ifir, in the city of Ragufa, the ca-

Bookkeeping II Bofcovich.

Hoforich. pital of a fmall republic of the fame name, lying on the eaftern coalt of the Adriatic Sea. At baptifm, the name of Roger was given him, to which he added that of Jofeph when he received the facrament (A) of confirmation.

He fudied Latin grammar in the fchools which were taught by the Jefuits in his native city. Here it foon appeared that he was endued with fuperior talents for the acquifition of learning. He received knowledge wih great facility, and retained it with equal firmnefs. None of his companions more readily perceived the meaning of any precept than he; none more juftly applied general inles to the particular cafes contained under them. He announced his thoughts with great perficuity, and came foon to compofe with propriety and elegance. His application was equal to his capacity, and his progrefs was rapid. At the beginning of the $15^{\text {ch }}$ year of his age, he had already gone through the grammar clafles with applanfe, and had ftudied rhetoric for fome months. His moral behaviour had likewife been very good : he was refpectful and obedient to his parents and matlers, affable and obliging to his equals, and exemplary in all the duties of religion. It was now time for him to determine what courfe he would fteer through life; nor did he hefitate long in coming to a refolution.

The Jefuit fathers, by teaching the fciences to youth, were very ufeful, and at the fame time had a fine opportunity of obferving their fcholars and of drawing into their focisty thole boys who feemed fit for their purpofe. Such a fubject as the young Bofcovich could not efcape their attention. They fhewed him particu. lar kindnefs, to which he was not infenfible. He had an ardent thirft for learning; to advance in which he felt himfelf capable; and he thonght he could no. where have a better opportunity of gratifying this laudable inclination than in their order, in which fo many perfons had fhone in the republic of letters. Accordingly, with the confent of his parents, he petitioned to be received among them; and his petition was imme. diately granted, becaufe it was defired by thofe to whom it was made.

It was a maxim with the Jefnits to place their moft eminent fubjects at Rome, as it was of importance for them to make a good figure on that great theatre. Wherefore, as Roger's mafters had formed great expettations of him, they procured his being called to that city; whither he was fent in the year 1725 , and entered the novicefhip with great alacrity. This novicelhip was a fpace of two years, in which the candidate made a trial of his new itate of life; and in the mean time his new fuperiors obferved him, and deliberated whather or not they would admit him into their body. During thefe two years, the novice was principally employed in exercifes of piety, in fudying books of Chriftian morality, and in becoming perfectly acquainted with the rules and conftitutions of the order. After thefe two years were paft, the Jefuits were wil. ling to retain Bofcovich, and be was no lefs defirous of remaining with them. He therefore paffed to the Suppl. Vol. I.
fchool of rhetoric; in which, for two other ycars under Iofoorich. the molt expert mafters of the fociety, young men perfected thenifelves in the arts of writing and fpeaking, which was of fogreat confequence to perfons who were deltined to treat to much with their neighbours. Here Bofcorich became perfectls well acquainted with all the claflical authors, and applied with fome predilection to Latin poetry.

Alter this he removed from the noviciate to the Roman College, in order to ftudy philofophy, which he did for three years. In order to undertand the doctrine of phyfics, it was neceffary to premife the knowledge of the elements of geometry, which is alfo otherwife proper for forming the mind, and for giving to it a true tafte for truth. Here it was that our young philofopher came to be in his truie element; and it now appeared how extremely fit his genius was for this kind of Itudy. His matter, though he was able and expert, inftead of leading him on, was farcely able to keep pace with him, and his condifciples were left far behind. He likewife found the application of the mathematics to natural philofophy pleafant and eafy. From all this, before the end of the three years, he had made a great advancement in phyfical and mathematical knowledge, and his great merit was generally acknowledged by his companions, and well known to his fuperiors. He had already begun to give private leffons on mathematics.

According to the ordinary courfe followed by the Jefuits, their young men, after nudying philofophy, were wont to be employed in teaching Latin and the belles lettres for the fpace of five years, that fo they might become ftill better acquainted with polite learn. ing, and arrive at the ftudy of theology and the priefthood at a riper age. But as Roger had difcovered extraordinary talents for geometrical ftudies, it was thought by his fuperiors that it would be a pity to detain him from his favourite purfuits in a drudgery for which fo many others were fit enough. He was therefore difpenfed with from teaching thofe fchools, and was commanded to commence the ftudy of di. vinity.

During the four years that he applied to that fublime fcience, he ltill found fome leifure for geometry and phyfics; and even before that fpace was ended, he was named profeffor of his beloved mathernatics.

He was now placed in an office for which he was fu. perlatively fit, and for which he had a particular predilection. Belides having feen all the beft modern productions on mathematical fubjects, he ftudied diligentIf the ancient geometricians, and from them learned that exact manner of reafoning which is to be obferved in all his works. Although he himfelf perceived eafily the concatenation of mathematical truths, and could follow them into their moft abotufe receffes, yet he accommodated himfelf with a fatherly condefcenfion to the weaker capacities of his fcholars, and made every demonitration clearly intelligible to them. When he perceived that any of lis difciples were capable of advancing fafter than the reft, he limfelf would propofe
(A) For this article we are indebted to a dignified clergyman of the church of Rome, who was one of Bofcovich's favourite pupils.

$B \quad \mathrm{~S} \quad\left[\begin{array}{lll}126\end{array}\right] \quad \mathrm{B} O \quad \mathrm{~S}$

Eoforich. his giving them private leffons, that fo they might not lofe their time; or he would propofe to them proper books with directions how to ftudy them by themfelves, being always ready to folve difficulties that might occur to them.

To the end that he might be the more ufeful to his fcholars, he took time from higher purfuits to compofe new elements of arithmetic, algebra, plain and folid geometry, and of plain and fpheric trigonometry; and although thefe fubjefts had been well treated by a great many authors, yet Bofcovich's work will always be efteemed by good judges as a mafterly performance, well adapted to the purpofe for which it was intended. To this he afterwards added a new expolition of conic feations; in which, from one general definition, he draws, with admirable perfpicuity, all the properties of thofe three moft ufeful curves. He had meditated a complete body of pure and mixed mathematics, in which were to be comprehended treatifes on mufic, and on civil and military architecture; but from accomplifhing this he was prevented by other neceffary occupations.

According to the cuftom of fchools, every clafs in the Roman College, towards the end of the feholatic year, gave to the public fpecimens of their proficiency. With this view Bofeovich publifhed yearly a diగertation on fome interefting phyfico-mathematical fuhject. The doetrine of this differtation was defended publickly by fome of his fcholars, atinted by their mafter. At thefe literary differtations there was always a mumerous concourfe of the moft learned men in Rome. His new opinions in philofoply were here rigoroully examined and warmly controverted by perions well verfed in phyfical fudies: but he propofed nothing without folid grounds; he had forefeen all their objestions, anfwered them vicorioufly, and always came off with great applaufe and increafe of reputation. He puhlif1ed likewife differtations on other occations; and there works, though fmall in fize, arc very valuable both for the matter they contain, and alfo for the manner in which it is treated. The principal fubjects of there differtations are the following: The foots in the fun; the tranlit of mercury under the fun; the geometrical conftruction of fpheric trigonometrs; the aurora borealis; a new ule of the telefope for the determination of celeftial objects; the figure of the eath ; the arguments made ule of by the ancients to prove the rotundity of the fame; the circles which are called ofculattors; the motion of bodies projecied in a face void of refiftance; the nature of infinites and of infinitely little quantities : the inequality of gravity in different parts of the earth ; the annual aberration of the fixed fars; the limits of the certainty to which aftronomical obfervations can arrive; a difcuffion on the whole of aitronomy ; the motion of a body attracted by certain forces towards an immoveable centre in fpaces void of refithance; a mechanical problem on the folid of greateft attraction; a new method of uling the obfervation of the phafer in the lunar eclippes; the cycloid; the logiftic and certain other curve lines; the furces that are called living; the comets; the flux and reflux of the fea; light; whirlwinds; a demonftration and illuftration of a paffage in Newton concerning the rainbow; the demonfration and illuftration of a method given by Euler regarding the calculation of fractions; the
determination of the orbits of a planet by means of ca- Bofovich. toptrics, certain conditions of its motion being given; the centre of gravity and that of magnitude; the atmoiphere of the moon; the law of continuity, and the confequences of it in the elements of matter and their forces; the law of the forces that exift in nature; lenfes and dioptrical telefcopes; the perturbation which appears to be caufed mutually by Jupiter and Saturn, and that chiefly about the time of their conjunction; the divifibility of matter and the elements of bodies; the objective micrometcr;-befides other fubjeats of the like nature, of which he has treated in feparate pieces, or in communications inferted in the tranfactions of literary focieties or academies, he being a member of thofe that are moft famous in Europe. It was in fome of the abovementioned differtations that Bofoovich made known firf to the world his fentiments concerning the nature of body, which he afterwards digefted into a regular theory, which is jufty become fo famous among the learned.

Father Noceti, another Jefuit, had compofed two excellent poems on the rainbow and the aurora borealis. Thefe poerns were publifhed with learned annotations by Bofcovich; in which, among other things, he with great laracity difoovers errors in optics into which De Dominis, Kepler, and others, had falien.

His countryman, Benedict Stay, after having publifhed the philofophy of Defcartes in Latin verfe, attempted the fame with regard to the more modern and more true philofophy, and has executed it with wonderful fuccets, to the admiration of all good judges. The two firlt volumes of this elegant and accurate work were publifhed with annotations and fupplements by Bofcovich. Thefe fupplements are fo many fort differtations on the moft important parts of phyfics and mathematics. Here is to be found a folution of the problem of the centre of ofcillation, to which Huygens had come by a wrong method; here he confutes Euler, who had imagined that the vis inertic was neceffary in matter ; here he refutes the ingenious efforts of Riccati on the Leibnitzian opinion of the forces called living. He likewife fhews the falfohood of the mathematical prejudice, according to which the right line is confidered as effentally more fimple than curves, and makes it appear, that the notion of the faid right line is commonly accompanied with many paradoxes. He demonflrates, by the doctrine of combinations, fome beautiful theorems concerning the ipace occupied by the funall maffes of body, with many ufeful obfervations on fpace and time.

Benedict XIV. who was a great encourager of learning, and a beneficent patron of learned men, was not ignorant how valuable a fubject Rome poffeffed in Bofcovich; and this pope gave him many proofs of the efteem be had for lim. Two fifliares which had been perceived in the cupola of the church of St. Peter's on the Vatican had occationed fome alarm. The pope defired Bofeovich and fome other mathematicians to make their cbfervations and give their opinion on the fame. They nbeyed, and their opinion was printed. Thiey fhewed that there was no catife to apprehond danger; but, for greater fecurity, they propofed certain precautions, which were adopted and put in execution.

The high opinion which the pope had formed of his talents, and the favour in which he was with Cardinal

$\left.\begin{array}{llll}\mathrm{B} O & {[127}\end{array}\right] \quad \mathrm{B} O \quad$ S

Bofiovich. Valenti, minifter of ftate, proved hindrances to his going to America, for which a propofal was made to him by the court of Lifbon. Some differences had long fubfifted between Spain and Portugal concerning the boundaries of their refpective dominions in that great continent; and John V. of Portugal wilhed that Bofeovich would go over and make a topographical furvey of the country in difpute. He was not unwilling to undertake fuch a tafk, which was entirely to his tafte; and he was refolved at the fame time to meafure a degree of the meridian in Brazil, which might be compared with that meafured at Quito by the French academicians Bouguer and Condamine, with the Spaniards Ulloa and Doy. But the pope hearing of this propofal, fignified to the Portuguefe minifter at Rome, that his matter mut needs excufe him for detaining Bolcovich in Italy, where he had occafion for him, and could by no means confent to part with him.

Accordingly a commiflion was given to Bofeovich by Benedict to correct the maps of the papal eltate, and to meafure a degree of the meridian palfing thro' the fame. This he performed with great accuracy, affifted by F. Chriftopher Maire an Englifh Jefuit, and likewife a great mathematician. Their map was engraved at Rome, and is perhaps the moft exact piece of the kind that ever was printed, as all the places are laid down from triangular obfervations made by the ableet hands. Bofcovich alfo publifhed, in a quarto volume in Latin, an account of the whole expedition, which appeared at Rome in the year 1755, and was afterwards printed at Paris in French in the year 1770. Here he gives a detail of their obfervations and of the methods ihey followed, and likewife of the difficulties they encountered, and how they were furmounted. One of thefe embarralfed them a good deal at the time, but was afterwards matter of diverfion to them and others. Some of the inhabitants of the Apeninnes, feeing them pafs from hill to hill with poles and Atrange machines, imagined that they were magicians come among their mountains in fearch of hidden treafures, of which they had fome traditions: and as tempents of thunder and hail lappened about the fame time, they fuppofed that thefe calamities were caufed by the forceries of their new vifitants. They therefore infifted that Bofcovich and Maire fhould depart; and it was not eafy to convince them that their operations were harmlefs. In this work there is inferted a defeription of the inftruments made ufe of in determining the extent of the degree of che meridian; and the whole work may be extremely ufeful to pradical geometricians and aftronomers.

In the year 1757 the republic of Lucca entrulted Bofcowich with the management of an affair which was to them of confiderable importance. Between that republic and the regency of Tufcany there had arifen a difagreeable difpute concerning the draining of a lake, and the diredion to be given to fome waters near the boundaries of the two eftates. The Lucchefe fenate chofe our philofopher to treat of this bufinefs on their part. He repaired to the fpot, confidered it attentively, and diew up a writing, accompanied with a map, to fhew more clearly what appeared to him mott equitable and molt advantageous for both parties. In order to enforce his reatons the more effectually, it was thonght proper that lie fhould go to Vienna, where the
emperor Francis I. who was likewife grand duke of Bofcovich. Tufcany, refided. He was fo fucceffful in this negociation, that he obtained every thing that Lucca delired, and at the fame time acquired great efteem at the imperial court. In proof of this, the emprefs queen made his opinion be afked concerning the ftability of the Cefarean library, and ti.e repairs to be made in it ; which he gave in writing, and it was roceived with thanks, as being very wall grounded.

When he had concluded the affair which had brought him to Vienna, he forefaw that, for a month or two, the frows in the Alps would not allow him to return to Italy. He therefore refolvcd to employ that time in completing his fyitem of natural philofophy, on which he had been meditating for the fpace of thirteen years. He publifhed his work on that great fubject in the beginning of the year 1758, in the abovementioned city. We fhall in the end give an account of that celebrated fy fem, and here go on with our narration.

On his return to Lucca, he not only met with the approbation of all he had done for the interelt of the republic, but alfo the fenate, in teftimony of their gratitude, made him prefents, and inrolled lim in the number of their nobility, which was the greateft honour they had in their power to confer on him.

He, who was thus ufeful to foreigners, could not refufe to be ferviceable to his own country when an occafion of being fo offered itfelf. The Britilh miniftry had been informed, that fhips of war, for the French, had been built and fitted out in the fea-ports of Raguf_{a}, and had fignified their difpleafure on that account. This occafioned uneafinefs to the fenate of Ragufa, as their fubjechs are very fea-faring, and much employed in the carrying trade; and therefore it would have been iuconvenient for them to have caufed any difguft againft them in the principal maritime power. Their countryman Bofcovich was defired to go to London, in order to fatisfy that court on the abovementioned head; and with this defire he complied cheerfuliy on many accounts. His fuccefs at London was equal to that at Vienna. He pleaded the caufe of his countrymen effectually there, and that without giving any offence to the French, with whom Ragufa foon after entered into a treaty of commerce.
Boforich came to London the more willingly, as he was defirous of converfing with the learned men of Britain. He was received by the prefident and principal members of the Royal Society with great refpect; and to that great body he dedicated his poem on the eclipfes of the fun and moon, which was printed on this occafion at London, in the year 1760 . This is one of his works on which he himfelf put the greatelt value, and it has been much etteemed by the learned. An edition of it was publihed at Venice the year following, and a third at Paris, which is the moit correct; a tranflation of it into French has likewife been publifhed at Paris. In this very elegant Latin poem he gives an exact compend of aftronomy, which ferves as an in. troduction to the fubject; he then explains all that belongs to the doatrine of eclipfes, and their ufe in geograply; he confiders the phenomena that are obferred in the ecliples of the fun, and likewife of the moon; he propofes a thenrem, which is his own, concerning the difribution of light refracted from the atmofphere of the earth by the fhadow of the moon, which happens

Eufcovich.
the reddifh colour which often appears in the moon when the is eclipfed, of which a fufficient explication had not before been given; this the author draws from the fundamental doctrine of Newton's theory concerning light and colours; and hence takes occafion to give a clear idea of the principal confequences of the faid theory. All this is clothed with a beautiful poetical drefs, and is adorned with pleafant epifodes, not to mention the learned annotations which are fubjoined. This poem was compofed, for the moft part, whilt the author was in journeys, or by way of anmfement, when he was obliged to wait for the opportunities of making aftronomical obfervations.

The fellows of the Royal Society invited Bofcovich to accompany fome of their number to America, to obferve the tranfit of Venus, which was to happen in the year 1762 ; but being otherwife engaged, he could not accept of that invitation. He intended, however, by all means to obferve that remarkable phenomenon, and had fixed on Conftantinople as a proper place for doing fo. He was conducted thither in a Venetian man of war, and much honoured by one of the baylos of that republic, who commanded the velfel; but, to his great regret, they arrived too late. He returned, by land, in the company of the Englifh ambaffador; and a relation of that journey was publithed in French and afterwards in Italian.

During thefe journeys, Bofocvich's place in the Roman College was well filled by fome of thofe whom he himfelf had trained up in mathematical learning. He was now called by the fenate of Milan to teach mathematics in the univerfity of Pavia, with the offer of a very confiderable falary. He and his fuperiors thought proper to accede to this propofal, and he was received without being fubjected to any previous examination; which was always obferved, excepting in fuch an extraordinary cafe, by the decrees of the univerfity. Hese he taught, with great applaufe, for the face of fix years, having at the fame time the care of the obfervatory of the Royal College of Brera. About the year 1770, the emprefs queen made him profeffor of altronomy and optics in the Palatine fchools of Milan; requiring of him, however, that he fhould continue to improve the obfervatory of Brera; which, under his direction, became one of the moft perfert in Europe.

Here he was extremely happy, teaching the friences, applying to his favourite fudies, and converfing and correfponding wilh men of learning and of polithed manners; when an event huppened which caufed to him the moft fenfible afliction. In the year 1773, the fociety to which he belonged, and to which he had been from his youth warmly attached, was, to his great regret and difappointment, abolifhed. They who had been Jefuits were allowed no longer to teach publicly; nor was there any exception made in favour of Bofcovich, neither (fuch was his humour then) would he have accepted of it, though it had been offered him. Propofals were made to him by feveral perfons of diftinction; and, atter fome deliberation, he chofe Paris for his plice of abode; to which he was induced by the circumftance of his being intimately acquainted with the prime minilter at that court. He had not been many months at Paris when the univerfity of Pifa
fent him an invitation to go thither, in order to pro. Bofcovich. fefs aftronomy. But the French minifter, underftanding this, declared to the minifter of Tufcany, that it was the intention of his molt Chriftian majetty to make his dominions agreeable to Bofcovich, by giving him liberal appointments. In fact he was foon naturalized, and two large penfions were beltowed on hinı; the one as an honourable fupport, to the end that he might profecute his fublime ftudies at his eafe and in affluence; the other as a falary annexed to a new office, created in his favour, under the name of Diredor of Optics for the Sea Service, and with the fole obligation of perfecting the lenfes which are ufed in achromatical telefcopes.

At Paris he remained ten years, applying principally to optics, and much regarded, not only by the molt reafonable men of letters, but likewife by the princes and minifers, both of France and of other nations. But the greatelt men are not exempt from being envied. Some of the French were difpleafed that a foreigner fhould appear fuperior to themfelves; others of them could not forget that Bofcovich had difcovered and expofed their miltakes. The irreligion which prevailed too much among thofe who bore the name of philofophers, was difitgreeable to him. Thefe, and other fuch circumftances, made him wearied of Paris, and he defired to revifit his friends in Italy; for which purpofe he obtained leave of abfence for two years.

The firft place in Italy in which he made any ftay was at Baffano, a town in the territories of Tenice. Here, mindful of his obligations, he printed what he had been preparing for the prefs during his ftay in France; and this compofes five volumes in large octavo, and is a treafure of optical and aftronomical knowledge. The fubjects treated of in thefe volumes are as follow: A new inftrument for determining the refracting and diverging forces of diaphonous bodies; a demonftration of the falfehood of the Newtonian analogy between light and found; the algebraic formulæ regarding the focufes of lenfes, and their applications for calculating the fphericity of thofe which are to be ufed in achromatical telefcopes; the corrections to be made in occular lenfes, and the error of the fohericity of cestain glafes; the canfes which hinder the exact union of the folar rays by means of the great burning glaffes, and the determination of the lofs arifing from it; the method of determining the different velocities of light paffing through different me. diums by means of two dioptrical telefcopes, one common, the other of a new kind, containing water between the objective glass and the place of the image ; a new kind of objective micrometers; the defects and inutility of a dioptrical telefcope propoled and made at Paris, which gives two images of the fame object, the one direst, the other inverte, with two contrary motions of moveable objects; maffes floating in the atmofphere, as hail of an extraordinary fize, feen on the fun with the telefcope, and refembling fpots; the allronomical refractions, and various methods for determining them; varions methods for determining the orbits of comets and of the new planet, with copious applications of thefe doctines to other aftronomical fubjects, and fill more generally to geomerry and to the fcience of calculation; the errors, the rectifications, and the ufe of cuadrants, of fextants, of aftronomical fectors, of the meridian line, of telefcopes called the infruments of cranfits, of the
meridian,

Bofovich. meridian, and of the parallactic machine; the trigonometrical differential formulx, which are of fo much ufe in aftrouomy ; the ufe of the micrometrical rhombus, extended to whatever oblique peffition; the error arifing from refractions in ufing the aftronomical ring for a fundial, and the correction to be made ; the appearing and the difappearing of Saturn's ring ; the methods of determining the rotation of the fun by means of the fpots, propofed formerly by the author, and now perfefted; the greateft exacinefs poffible in determining the length of a pendulum ofcillating every fecond of middle time by the comparifon of terreftrial and celeftial gravity; a compend of aftronomy for the ufe of the marine, containing the elements of the heavenly motions, and of the aftronomical inftruments to be explained to a prince in the courfe of one month; a method for determining the altitude of the poles with the greatelt exaeners, by means of a gnomon alone, where other inltruments are not to be had ; the determination of the illuminated edge of the moon to be obferved on the meridian; a znethod of ufing the retrograde return of Venus to the fame longitude, for determining the lefs certain elements of her orbit ; a method for correcting the elements of a comet, of which the longitude of the node is given, and the inclination of the orbit has been found nearly; another method for the fame purpofe, and for finding the elliptical orbit, when the parabolic one does not agree with the obfervations; a method for corresting the elements of a planet by three obfervations; the projection of an orbit inclined in the plane of the ecliptic ; the projection of an orbit inclined in any other plane; the calculation of the aberration of the Aars, arifing from the fucceffive propagation of light; fome beautiful theorems belonging to triangles, which are of great ufe in aftronomy, reduced to moft fimple demonfletations.

After having feen the impretion of thefe five volumes finifhed, Boforich left Baffano, made an excurfion to Rome, and vifited his old friendo there and in other places of Italy. He then took up his abode at Milan, and applied to the revifing of fome of his old works, and to the compofing of new ones. He fet himfelf particularly to prepare annotations and fupplements to the remaining two volumes of Stay's Modern Philofophy, which he had not had time to publifh fooner, and which he lived not to publifl.

He was happy at Milan in the neighbourhood of Brera, where was his favourite obfervatory; and in the company of many friends, who were become the more dear to him by his long sbfence from them. But he began to confider, with grief, that his two years of ab. fence were drawing to an end. He was very unwilling to leave Italy and return to France. He thought of applying for a prolengation of his abfence; he thought of making interelt at the Imperial court for fome honourable cummiflinn, which might be a pretest to him for remaining at Milan; but he was afraid that the propofal of never returning to France might appear indelicate and ungrateiul to a nation from which be was receiving conliderable penfions. He apprehended that thofe perfons at aris who had before oppofed him,
would take occafion to tax him with ingratitude, and Porcovich. that hence his reputation would be tarnilhed. Thefe, and other fuch thoughts, occafioned a great perplexity of mind, which was followed by a deep melancholy; and this could not be alleviated by the advice and comfort of his friends, becaufe by degrees he became incapable of hearing reafon, his ideas being quite confufed, and his imagination difordered. To this difagreeable change the itate of his health perhaps contributed. A gout bad been wandering for fome time through his body, and he had caught a fevere cold; nor would he admit of medical alfiftance, of which he had always been very diffident. It may alfo be that his long and intenfe application had hutt the organs of the brain, which in fome manner are fubfervient to the ufe of reafon as long as the foul is united to the body. Be that as it will, during the latt five months of his life this great man, who had been fo far fuperior in reafoning to his ordinary fellow creatures, was much inferior to eve$1 y$ one of them who is endued with the right ufe of the underflanding. He had indeed fome lucid intervals, and once there were hopes of a recovery; but he foon relapfed, and an impolthume breaking in his breaf, put an end to his mortal exittence. He died at Milan on the $13^{\text {th }}$ of February 1787 , in the 75 th year of his age.

He was tall in Rature, of a robuf confitution, of a pale complexion. His countenance was rather long, and was expreflive of cheerfulnefs and good humour. He was open, fincere, communicative, and benerolent. His friends fometimes regretted that he appeared to be too irritable, and too fenfible of what might feem an affront or neglect, which gave himfelf unneceflary uneafinef. He was always unftained in his morals, obedient to his fuperiors, and exat in the performanee of all Chriftian duties, as became a Catholic prieft, and in the obfervance of the particular rules of his order. His great knowledge of the works of nature made him entertain the higheft admiration of the power and wifdom of their Creator. He faw the neceffity and advantages of a divine revelation, and was fincerely attached to the Chrifian religion, having a fovereign contempt of the prefumption and foolifh pride of unbelievers; and being fully perfuaded that we cannot make a more noble ufe of our underfanding than by fubjecting it humbly to the authority of the Supreme Being, who knows numberlefs truths far beyond the utmolt limits of our narrow comprehenfion, and who may jully require eur belief of any of them that he fees fit to propofe to us.
The death of our philofopher, who truly deferved that name, was heard with regret by the learned through Europe, and more than ordinary refpeet has been paid to his memory. At Ragufa funeral exequies were performed for him with great folemnity by order of the fenate, who affitted at them in a body ; on which occation an cloquent oration in praife of him was pronounced. By a decree of the fame fenate, a Latin infcription to his honour, engraved on marble, was placed in the principal church of their city. Of this infesiption the following is a copy :

Rogekio. Nicolai. F. Boscovichio,
Summi. Ingenii. Viro. Philofopho. Et. Mathematico. Preitantifimo
Scriptori. Operum. Egregiorum
Res. Phyficas. Geometricas. Aftronomicas
Plurimis. Inventis. Suis. Auctas. Continentium
Celebriorum. Europæ. Academiarum, Socio
Qui. In. Soc. Jefu. Cum, Effet. Ac. Rome. Mathefim. Profiteretur Benedicto. XIV. Mandante
Multo. Labore. Singulari. Indufria
Dimenfus. Eit. Gradum. Terreftris. Circuli
Boream. Verfus. Per. Pontificiam. Ditionem. Tranfeuntis
Ejufdemque. Ditionis. In. Nova. Tabula. Sitns. Omnes. Defcripfit. Stabilitati. Vaticano. Tholo. Reddundæ
Portubus. Superi. Et. Inferi. Maris. Ad. Juftam. Altitudinem. Redigendis
Reftagnantibus. Per. Campos. Aquis. Emittendis. Commonftravit. Viam
Legatus. A. Lucenfibus. Ad. Francifcum. I. Cæfarem. M. Etrurix. Ducem
Ut. Amnes. Ab. Eorum. Agro. Averterentur. Obtinuit
Merito. Ab. Iis. Inter. Patricios. Cooptatus
Mediolanum. Ad. Docendum. Mathematicas. Difciplinas, Evocatus
Braidenfem. Extruxit. Inffuxitque. Servandis. Aftris. Speculam
Deletr. Tum. Societati. Sux. Superfes
Lutetix. Parifiorum. Inter. Gallix. Indigenas. Relatus
Commiffum. Sibi. Perficiundx. In. Ufus. Maritimos.
Oplicx. Munus. Adcuravit
Ampla. A. Ludovico XV. Rege. Xmo. Attributa. Penfione
Inter. Hæc. Et. Poefim. Mira. Ubertate. Et. Facilitate. Excoluit Doctos. Non. Semel. Sufcepit. Per. Europam. Peregrinationes
Multorum. Amicitias. Gratia. Virorum. Principum. Ubique. Floruit
Ubique. Animum. Chrifianarum. Virtutum Veræque. Religionis. Studiofum. Pre-fe-tulit
Ex. Gallia. Italiam. Revifens. Jam. Senex
Cum. Ibi. In. Elaborandis. Edendisque. Poftremis. Operibus
Plurimum. Contendiffet. Et. Novis. Inchoandis. Ac. Veteribus. Abfolvendis
Sefe. Adcingeret
In. Diuturnum. Incidit. Morbum. Eoque. Obiit. Mediolani
Id. Feb. An. MDCCLXXXVII. Natus. Annos LXXV. Menfes. IX. Dies II.
Huic. Optime. Merito. De. Republica. Civi
Quod. Fidem. Atque. Operam. Suam. Eidem. Sxpe. Probaverit
In. Arduis. Apud. Exteras. Nationes
Bene. Utiliterque. Expediundis. Negotiis
Quodque. Sui. Nominis. Celebritate. Novum. Patrix. Decus. Adtulerit
Poft. Funebrem. Honorem. In. Hoc. Templo. Cum. Sacro. Et. Laudatione Publice. Delatum
Ejufdem Templi Curatores
Ex. Senatus. Confulto
M. P. P.

This infcription was compofed by his friend and countryman the celebrated poet Benedict Stay. Zamagna, another of his countrymen, who had likewife been his fellow jefuit, publifhed a panegyric on him in elegant Latin. A fhort encomium of him is to be found in the Efratto della Literatura Europea; and another, in form of a Letter, was directed by M. de la Lande to the Parifian journalifts, and by them given to the public. A more full eulogium has been written by M. Fabroni; and another is to be met with in the journal of Modena; a third was publithed at Milan by the Abbate Ricca; and a fourth at Naples by the Dr Juliss Bajamonti, of which a fecond edition was made in the gear 1790. Of this laft chiefly ufe has been made here.

But what muft fecure to Boforvich the efteem of poflerity are his works, of the greater part of which we
have already taken notice. We have mentioned, 1 . His Elements of Mathematics, with his Treatife on Conic Stétions; 2. His many Dilfertations publifhed during his profefforthip in the Roman college; 3. His account of his Survey of the Pope's Eftate; 4. His Theory of Natural Philofophy; 5. His Poem on the Eclipfes; 6. His five volumes printed at Baffano.

To thefe we may add his hydrodynamical pieces. He had made a particular ftudy of the force of running water, and of its effects in rivers ; and he was often confulted concerning the befl means to prevent rivers from corroding their banks, and from overfowing the neighbouring plains, which of ten happens in Italy, where the Alps and Apennines pour down fo many impetuous Atreams. He gave a writing on the damages done by the Tiber at Porto Felice; another on the project of
turning the navigation to Rome from Fiumicino to Mac-
carefe; a third on two torrents in the territory of Pe lugia; a fourth on the bulwarks on the river Panaro; a fifth on the river Sidone, in the territory of Placentia; a fixth on the entrance into the fea of the Adige. He wrote other fuch works on the bulwarks of the Po; on the harbours of Ancona, of Rimini, of Magna Vacca, and Savona, befides others, almoft all which were printed. He had likewife received a commilfion from Clement XIII. to vifit the Pomptin lakes, on the draining of which he drew up his opinion in writing, to which he added further elucidations at the defire of Pius VI. On thefe occafions he thowed how ufeful philofophy may be to the public; and of this he gave another proof when it was referred entirely to his judginent to deternine whether or not the cupola of the cathedral of Mhlan could bear the weight of a very high fpire, which it was propofed to raife on it, and which was actually crected according to his directions.
His application to obflrule fudies did not hinder him from paying fome attention to what is more pleafant. We have feen that he was a poet : he was alfo well acquainted with hiftory, and particularly with that of the Greeks and Romans, and with their antiquities. He wrote a differtation on an ancient villa difcovered in his time upon the Tufculan Hill, and on an ancient dial found there, which difiertation was publifhed at Rome in a literary journal. He wrote likewife three letters on the obelifk of Crefar Augufus, two of which were printed with his own name, and the third under the name of another.
Belides all thefe works that were given to the public in his lifetime, many writings of his remained in manufcript in the hands of different perfons, and particulaty with his friend M. Gaetani, and many more with Count Michael de Sorgo, a Ragufan fenator, who inherited all his papers that were in his own hands at his death. Thefe, it is hoped, have either beern already fent to the prefs or will be fo; as nothing came from the pen of Bofoovich which was not uleful and deferving to fee the light.

It now remains that we give an account of his Themry of Natural Fhilosophy; and in doing this we fhali, in the firfl place, lay before our readers a view of this fyltem. We fhall, in the fecond place, rclate, from what pinciples and by what feps it was deduced. We fhall, third'y, take rotice of the principal objections made to it, and fubjoin the author's :unfivers to the fume. We fhall, fually, fhew how happily it may be applicd to explain the gene:al properties of matter, as well as the particular qualities of all the claffes of bodies, which have been examined according to what it teaches.

View of Bofcovich's fyttem of natural philofophy.

1. In this fyitem, therefore, the whole mafs of matter, of which all the bodies of the univerfe are comp fed, confifts of an cxceeding great, yet Rill finite, number of fimple, indivifible, inextended, atoms. Thefe atoms are endued with repulive and attradive forces, which vary and change from the one to the ocher, according to the diffance between them, in the following manner: In the lcaft and innermoft diftances they repel one another; and this repulive force increafes beyond all li.
mits as the diftances are diminifhed, and is confequent. Eofovich"s ly fufficient for extinguilhing the greateft velocity, and Syntem of for preventing the contaet of the atoms. In the fenfible dillances, this force is attrafive, and decreafes, at lealt fenfibly, as the fquares of the dittances increafe, confituting univcrfal gravity, and extending beyond the liphere of the mof ditant comets. Between this innermolt repulfive force and the outermof attractive one, in the infenfible difances, many varieties and changes of the force, or determination to motion, take place: for the repulfive force decreafes as the diftance increafes. At a certain duttance it comes to vanifh entirely; and, when that diftance is increafed, attration begins, increafer, becomeslefs, vanifhes; and the diftance becoming greater, the force becomes repulfive, increafes, leffens, and vanifhes as before. Many varieties and changes of this kind happen in the infenfible difances, fometimes more rapidly, fometimes more flowly, and fometimes one of the forces may come to nothing, and then return back to the fame without pafing to the other. For all this there is ful! room in the difitinces that are infenfible to us, feeing the lealt part of face is divifible in infinitum. Befides thefe repulfive and attragive forces, our atoms have that vis inertice which is admitted by almot all modern philofophers. Thefe 2tome, endued with thefe forces, conflitute the whole fubltance of B fonvich's fyten; which, however fimple and thort it may appertr to be, has numberlefs and very wonderful confequences, as we fhall fee afterwards. But, that The whole a more clear idea of the whole theory may be eafily theory exformed, we thath make ufe of a geometrical figure well prefed hy a accommodated to that purpofe. The rirlat line $\mathrm{C}^{\prime} A \mathrm{~A}$ geometrical is an axis, from which, in the point A , is drawn the curve. right hine $A B$ at right angle:. $A B$ is confidered as an fag. 6. afymptote; on each fide of which the two curves, quite fimilar ard equal, DEFGHIKLMNOPQRS CVU on the one fide, and $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$ on the wther, are placed. Now, if ED be fuppofed to be afymplotical, and be extended, it will fill approach to BA, but will never come to touch it. This curve ED approaches to the axis C'C, comes to it in E, cuts it and departs to a certain diftance in F , after which it again approaches the fame axis and cuts it in G. In like manner it forms the arches GHI, IKL, LMN, NOP, PQL.. At laft it goes on in $T p s V$, which is alymptotical, and approaches to the axis; fo that the diftances from it are in a duplicate reciprocal proportion of the diftances from the right line B.A. If from any points of the axis, as from a, b, d, we raife the perpendiculars $a g, b r, d b$, the fegments of the axis A $d, \mathrm{~A} b, \mathrm{~A} d$, are calied abjiffes, and teprefent the diftances of any two points of matter from one another; and the perpendiculars $a g, b r, d b$, arc called ordinates, and exhibit the repuifive or attractive force, according as it lies on the fame fide with D , or on the other fide of the axis.
Now it is evident that, in this form of the curve line, the ordinate a g wili be increafed beyond whatever li: mits, if the abtifs A a be leffened likewife bey ond wha'ever limits; that if this abfcifs be increaled to $A b$, the ordinate will be lellined, and will pafs into $b r$, which will fill be leffened as it approaches from b to E, where it will come to nothing; that then, the axis being increafed to Λd, the ordinate will change its disection into $b b$, and, on the oppolite fide, will incieafe at firfo

Naturai Philofophy
B. neovich's to F, then it will decreafe through il as far as G, where both $A E, A G, A I$, pofitive, and $A^{\prime} E^{\prime}, A^{\prime} G^{\prime}$, \&e. ne. Eofoovich's

Syftem of
Natural $\underbrace{\text { Philufophy }}$ it will again vanifh, and again change its direction in $m n$ to the former, and that, in the fame manner, it wall vanifh and change its directions in all the fections $\mathrm{I}, \mathrm{L}, \mathrm{N}, \mathrm{P}, \mathrm{R}$, until the ordinates op,vs, become of a contant direction, and decreafe, at lealt fembly, in a reciprocal duplicate proportirn of the abforfes Ao, A $\%$. Wherefore, it is manifert, that by fuch a curve are exprefled our forces; at firt repulfive, and increafing beyond all limite, the diftances being leffened in like manner, and which decreafe, the fame diftances being augmented ; then vanilh, change their direction, and become atrafive; vanilh again, and become repulfive; till at lath, at fenfible dilances, they rem.tin on the fide oppolite to D, and are attragive in a duplicate reciprocal preportion of the diftances.

We maty alfo oblerve, that the ordinates may increafe or decreatie rapidly, as in $y z, z t$. or fluwly, as in $v x$, $\approx c$; and, coniequently, that the forces may increale or decreafe in like nammer. We may add, that the curve may return buck without interfecting, or even touching, the axis, as in f, and may return alter having touched the fame axis.

Although this curve exprefis very clcarly the repulfive and allractive forces of our fy Rem, yet, at firlt fight, it may appear to be a complicated irregular line. But the author thews that his curve is uniform and regular, and may be expreffed by one uniform algebraical equation; which it will be necelfary for us to confider, in order to give fatizfaction to our readers, and to do jutice to the thcory.

Wherefore, from what we have feen, the curve muft The fimpli- lave the following fix conditions: $1 / f$, It muft be regular city of this and fimple, and not compofed of an aggregaie of arches of curve proved.

gative.

This being done, let any quantity be multiplied by 2 , providing it hath no common divifor with P, lelt z vanifhing, it likewife might vanifh; and having made x an infinitefim of the firlt order, it may become an infinitefim of the fame, or of a lower order, as will be whatever formula $z^{r}+g z^{r-1}+b z^{r-s} \&<c$. $+l$; which, being fuppofed equal to o, may have as many imaginary, and as many and whatever real roots, providing none of them be thofe of AG, AE, AI, \&c. either pofitive or negative. If then the whole formula be multiplied by z, let this product be called Q.

If we make $\mathrm{P}-\mathrm{Q} f=0$, this equation will latisfy the five firt conditions above mentioned; and the value of Q being properly determine \dot{d}, the fixth condition alfo may be complied with.

For, in the firt place, feeing the value P and Q are made equal to o, they have no common root, and therefore no common divifor. Hence this equation cannot be reduced to two by divifion ; and therefore it is not compofed of two equations, but is fimple, and therefore exhibits one fumple continued curve, which is not compofed of any others; which is the firlt condition.

Secondly, The curve thus espreffed will cut the axis $C^{\prime} A C$ in all the points E^{\prime}, G, I, \&c. $G^{\prime}, \& c$. and in them only: for it will cut that axis only in thofe points in which $y=0$, and in all of them. Moreover, where it will be $y=0$, it will alfo be Q $y=0$; and therefore, becaufe of $\mathrm{P}-\mathrm{Q} y=0$, it will be $\mathrm{P}=0$. But this will happen only in thofe points in which a will be one of the roots of the equation $P=0$; that is, as we have feen above, in the points $\mathrm{E}, \mathrm{G}, \mathrm{I}$, or $\mathrm{E}^{\prime}, \mathrm{G}$, \&c.: wherefore, only in thofe points will y vanifh, and the curve cut the axis. Again, that the fame curve will cat it in all thefe points, is clear from this, that in then all it will be $P=0$. Whesefore it will likewife be $Q y=0$; but it will not be $Q=0$, feeing there is no common root of the cquations $P=0$ and $Q=0$: it mult therefore be $y=0$, and the curve will cut the axis : and thus the fecond condition is fatisfied.

Befides, whereas it is $\mathrm{P}-\mathrm{Q} x=0$, it will be $y=\frac{\mathrm{P}}{\mathrm{Q}}$: the abfcifs x being, however, determined, we will have a certain determinate quantity for z; and thus P, Q, will be determined, and the only two of the kind. Whesefore y aifo will be fole and determined; and thercfore to every abfcifs z, one only ordinate y will correfpond. This is the third condition.

Again, whether x be affumed potive or negative, providing it be of the fame length, ftill the value $z=x, x$ will be the fame, and therefore the values of both P and Q will be the fame: wherefore y will fill be the fame. Taking, therefore, equal abiciffes z on both fides of A, the one pofitive, the other negative, they will have equal correfponding ordinates. This is the fourth condition.

If x be leffened beyond all limits, whether it be pofitive or negative, \approx likewife will be leffened beyond all limits, and will become an infinitefim of the fecond order: wherefore, in the value P, all the terms will decreafe in infinitum, except in y, becaufe all the ref befides it are multiplied by z; and thus the value P will be as yet finite. But the value Q, which has the for-

$B \quad$ O S $\quad\left[\begin{array}{lll}133\end{array}\right] \quad \mathrm{B} O \quad 5$

Eoforvich's mula multiplied by z, will be leffened in infinitum, and Syftem of Natural
Philofouhy. Philofophy.
infinite of the fccond order. Wherefore the curve will have the right line AB for an afymptote, and the area BAED will increafe in infinitum: and if the ordinate y be affumed pofitive on the fide $A B$, and exprefs repulfive forces, the afymptotic arch ED will lie on the fame fide AB . This is the fifth condition.

Now the value Q can be varied in infinite manners; fo that fill the conditions for which it was affumed may be fulfilled; and therefore the arches of the curve intercepted by the interfections may be varied in infinite manners; fo that the firit five conditions of the curve may be implemented: whence it follows, that they may be fo varied that the fixtli condition may alfo be anfwered.

For if there be given, however many, and whatever arches of whatever cusve, providing they be fuch that they recede always from the afymptote $A B$, and thus no right line parallel to that afymptore cut thefe arches in more than one point, and in them let there be taken as many points as you pleafe, and as near one another ; it will be eafy to affume fuch a value of P, that the curve fhall pafs through all thefe points, and the fame may be varied infinitely; fo that ftill the curve will pafs through all the fame points.

Let the number of points affumed be what you pleafe $=r$, and, from every one of fuch points, let right lines be drawn parallel to $A B$, as far as the axis $C^{\prime} A C$, which mult be the ordinates of the curve that is fought; and let the abfiffes from A to the faid ordinates be called $\mathrm{M}^{1}, \mathrm{M}^{2}, \mathrm{M}^{3}, \& \mathrm{c}$. and the ordinates ${ }^{\prime} \mathrm{N}^{\mathrm{x}}, \mathrm{N}^{1}, \mathrm{~N}^{3}$, \&c. Let there now be taken a certain quantity $\mathrm{A} z^{r}+\mathrm{B} z^{\prime-r}$ $+\mathrm{C} \approx^{r-2}+\mathrm{G}_{z}$, and let this quantity be fuppofed equal to R . Then let another fuch quantity T be affumed, fo that z vanifhing, whatfoever term of it may vanifh, and fo that there be no common divifor of the value of P, and of the value of $R+T$; which may be eafily done, feeing all the divifors of the quantity P are known. Let it now be made $\mathrm{Q}=\mathrm{R}+\mathrm{T}$, and then the equation of the curve will be P-R $y-\mathrm{T} y=0$. After this, let there be put in the equation $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, fuccellively for x, and $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$, \&x. for y; we will have a number of equations equal to r, which will contain the values of $A, B, C \ldots . G$, each of them of one dimenfion, in number likewife equal to r; and, befides, we will have the given values of $\mathrm{M}_{1}, \mathrm{M}_{2}, \& \mathrm{c} . \mathrm{N}_{1}, \mathrm{~N}_{2}$, N_{3}, \&c. and the arbitrary values which in T are the coeflicients of z.

By thefe equations, which are in number r, it will be eafy to determine the values $A, B, C, \ldots G$, which are likewife in number r, affuming the firt equation, according to the ufual method, the value A, and fuluftituting it in all the following equations; by which means the equations will become $r-1$. Thefe, again, by throwing ont the value B , will be reduced to $r-2$, and fo on until we come to one only; in which the value Q being determined by mcans of it, going back, all the preceding values will be detesmined, one by each equation.

The values $A, B, C, \ldots G$, being in this manner determined, in the equation $\mathrm{P}-\mathrm{R} y-\mathrm{T} y=0$, or $\mathrm{P}-$ $Q y=0$, it is clear that, the values $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathbb{\&} \mathrm{C}$. Suppl. Vol. I.
being fucceflivels put for x, the values of the ordinate Bofeovich's y muft fucceflively be $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$, \&xc. and, there- Syftem of fore, that the curve muft pafs through thefe given points in thofe given curves; and till the value 0 will have all the preceding conditions. For \approx being leftened beyond whatever linits, every one of its terms will be leffened beyond whatever limits, feeing all the terms of the value of T are leffened which were thus alfumed, and likewife the terms of the value R are leffened, which are all multiplied by z; and, befides this, there will be no common divifor of the quantities P and Q, feeing there is none of the quantity P and $R+T$.

But if two of the nearef of the points alfumed in the arches of the curves, on the fame fide of the axis, be fuppofed to accede to one another beyond whatever limits, and at latt to coincide, which will be done by making two M equal, and likewifetwo N equal; then the curve fought will touch the arch of the given curve; and if three fuch points coincide, they will ofoulate it: nay, as many points as we pleafe may be made to meet together where we pleafe; and thus we may have ofculations of what order we pleafe, and as near one another as we pleafe, the arch of the given curve approaching as we pleafe, and at whatever diftances we pleafe, to whatever arches of whatever curves, and yet Rili preferving all the fix conditions required for exprefting the law of the repulfive and attractive forces. And whereas the value of T can be varied in infinite manners, the fame may be done in an infinite number of ways; and therefore a fimple curve, anfwering the given conditions, may be found out in an infinite number of ways. Q. E. F.

What we have faid will, we hope, fatisfy our readers, and efpecially thofe of them who are in the lealt acquainted with high geometry, that Bofcovich's curve is imple, regular, and uniform; and that therefore the law of repulfive and attractive forces, exprefled by it, is fimple and regular.
II. If this fyftem were a mere hypothefis, it would Atill be very ingenious, and, from what we fhall fay afterwards, would ftill be well adapted for explaining the phenomena of nature. But its anthor is far from look. ing upon it as an arbitrary fuppofition; he affures us that he was led to it by a chain of Atict reafoning, from evident principles. We fhall now give an abridgement of that reafoning from his Differtations on the Law of Continuity, and from his Theoty of Natural Prilofophy.

He tells us, then, that in the examination of Leib Proofs of nitz's opinion of the vires vive, he came to confider the theory the collifion of bodics, and took for example two equal bodies, A proceeding with fix degrees of velocity, and B following with the velocity of 12 : after the collifion, they proceed jointly with the common velocity 9. Now, in the moment of collifion, it either happens that A palles abruptly from the velocity 6 to the velo. city 9 , without paling through the velocity 7 and \mathcal{S}_{2} and B paffes from 12 of velocity to 9, without paffing through it and 10 ; or elfe there mutt be fome caufe which accelerates the one and retards the other before they come to contact. In the firt cafe, the law of continuity is broken ; in the fecond, immediate contact of bodies would be rejected. Maclaurin faw this difficulty, and mentioned it in his work on Necuton's Difcoucries, 1. t. c. 4. He, not having courage to recede from the common opininn, allowed a breach, in fucin cafes, of the law of continuity; but Bofcovich

T maintains

B O S [$\left.\quad \begin{array}{lll}1 & 34\end{array}\right]$
 B O S

Pofovici's mintains the univerfality of the law of continuity; and Siftem of holds, that no bodies touch one another really and masiatural Plitiofophy. The law of continuity is that by wobich variable quantilies, pafing from one inagnitude to another, pafs through The law of allde intermediate magnitudes, withoul ever abruptly paf. cortinuity 1 roved. fing over any of them. This law Bofcovich proves to be univerfal, in the firlt place, from induction. Thus
we fee that the diltances of two bodies can never be clanged without their paffing through all the intermediaie diftances. We fee the planets move with different velocities and directions; but in this they ftill obferve the law of cominuity. In heavy bodies projected, the velocity decreafes and increafes through all the intermediate velocities; the fame happens with regard to elafticity and magnetifm. No body becomes more or lefs denfe without pulfing through the intermediate denfities. The light of the day incteafes in the morning and decreafes at night through all the intermediate poffible degrees. In a word, if we go through all nature, we flall fee the law of continuity Atictly take place, if all things be rightly confidered. It is true, we fometimes make abrupt paffages in our minds; as when we compare the length of one day with that of another immedately following, and fay that the fecond is two or three minutes longer or fhorter than the foriner, pafing all at once, in our way of fyeaking, round the globe; but if we take all the longitudes, we fla! find days of all the intermediate lengths. We likewife fometimes confound a quick motion with an ioftantaneous one: thus, we are apt to imatine that the ball is thrown abruptly out of the gun; but, in truth, fome §pace of time is required for the gradual inflammation of the powder, for the rarefaction of the air, and for the communication of motion to the ball. In like manner, all the objections made againft the law of continuity may be folved to fatisfaction.
Abreach of But however frong this argument from judgment this lawin-may appear to be, yet Bofcovich goes farther, and potitle. maintains, that a breach of this law, in the proper cales, is metaphyfically impoffible. This argument he draws from the very nature of continuity. It is effential to continuity that, where one patt of the thing continued ends and another fart begins, the limit be common to both. Thus, when a geometrical line is divided into two, an indivifible point is the common limit of both: thus time is continued; and therefore where one hour ends, another immediately begins, and the common limit is an indivifible infant. Now, as all variations in variable quantities are made in time, they all partake of its continuity; and hence none of them can haften by an abrup: paffiage from one magnitude to another, without pafing through the intermediate magnitudes. As we cannot pafs from the fixth hour to the ninth without pafing through the feventh, and eighth; becaufe, if we did, there would be a common limit between the fixth hour and the ninth, which is impolible; fo likewife you cannot go from the diftance 6 to the difance 9 without palling through the diftances 7 and 8 ; becaufe, if you did, in the infant of palf.ge you would be both at the diftance 6 and at the ditance 9 , which is impoffille. In like mamer, a bociy that is condenfed or ratcfied cannot pafs from the denfity 6 to the denfity 9 , or wice verfa, withont paling through the denfities 7 and 8; becaufe, in the abrupt palage, there
would be two denfities, 6 and 9 , in the fame infant. Boforich's The body mult pafs through all the intermediate den. Syrtem of fities. This it may do quickly or flowly, but fill it mutt evidently pafs throngh them all. The like may be faid of all variable quantities; and thence we may conclude, that the law of continuity is univerfal.

But, in creation, is there not an inftance of an abrupt paffage from non-exiflence to exiffence? No, there is not; becaufe before exiftence a beins is norhing, and therefore incapable of any ftate. In creation, a being does not pafs from one fate to another abruptly; it paffes over no intermediate flate: it begins to exift and to have a flate, and exiftence is not divifible. Do we not, at lealt, allow of an abrupt pafage from repulfive to attractive forces in our very theory itfelf? We do not. Our repulfive forces diminifh, through all the intermediate magnitudes, down to nothing; through which, as a limit, they pafs to attraction. In the building of a houfe or hip, neither of them is augmented abruptly; becaufe the additions made to them are cffeted folely by a change of diltances between the parts of which they are compofed; and all the intermediate diftances are gone through. The like may be faid of many other fuch cafes; and fill the law of continuity remains firm and conflant.

Let us now apply this doetrine to the cafe above Impoffibimentioned of the collifion of two bodies. We fay that lity of conthe budy B cannot pafs from the velocity σ to the velocity 9 without paffing through the velocities 7 and 8 ; becaufe if it did, in the moment of contact of the two fuperficies it would have the velocities 6 and 9. Now a body cannot have two velocities at the fame inflant. For if it had two aflual velocities at the fame time, it would be in two different places at the fame time: if it had two different pofential velocities or determinations to a certain velocity, it would be capable of being, after a given time, in two places at once-both which are impofible. It is therefore neceffary that it go through the velocities 7 and 8 , and through all the parts of them. What we have faid of the bodies A and B may be faid univerfally of all bodies. Therefore no two bodies in motion can come to immediate contact; but their velocities mult undergo the fucceffive neceffary change before contact. And as the velocity to be extinguifhed may be increafed beyond all limits, an adequate caufe to effect this extinction muft be admitted.

This naturally leads us to the interior repulfive for- Repulive ces of our fy flem. For the caufe retarding the one bedy forcos and accelerating the other muft be a for e, becavfe by this we mean a determination to metion ; and it muft be repulinve, becaufe it acts from the body; and it mult increafe beyond all limits, feeing the velocity of the incurring bodies may be increafed beyond all limits. It muft likswife be mutual, becaufe adion and reaction are always equal, as may be proved by incuation.
From thefe repulive forces Bofcovich deduces the In catendinextenfion of his atoms : for this repulfion being com- ed atoms. mon to all matter, mult caufe a perfert fimplicity in the firft elements of body. If thefe elements were extend. ed, and confequently compounded of particles of an inferior order, thefe particles might poflibly be feparated, and then they might mcet, and an abrupt paffage from one velocity to another might take flaee, which we bave excluded from na:ure by induaion, and by a pofitive argument.

Befides

Eofcorich's Befides this, by rejecting the extenfion of the firtt Sytem of NaturaI Fhilofnply. elements of matter, we get rid at once of all the difficulties arifing from continned extenfion in body, which have always perplexed the philnfophers, and have never been fatisfactorily explained. If thefe elements of matter are extendel, each of them may be divided in infonitum, and each part may ftill be divided in infinilunn. Can this divifion be actually made by the power of God or not ? Can there be one infinite in number greater than another? Can there be a compoun! without a fimple of the fame kind? Thefe difficulties regard not pace, which is no real being ; but they would regard mater if it had continued extenfion. All thefe perplexities are removed by maintaining, as Bofcovich does, that the firft elements of bodies are perfectly fimple, and

With regard to the exterior attractive forces of our fyltem, there can be no queltion ; feeing they conftitute univerfal gravity, the effects of which we fee and feel every day. But between the interior repalfive and exterior attractive forces we mult admit many tranfitions from repulfon to attraction, and from attraction back to repulfion, in infenfible difances, which are indicated to us by cohefion, fermentation, evaporation, and other phenomend of nattre. And thus we have given, in thort, Bofsovich's proofs of his whole fyitem.
III. This fyftem has been well received by the learned in Europe, and h.s contributed much to render its author famous; yet many objections againft it have been propofed. Some areftartled at the rejection of all imme.
diate contact between bodies; and indeed Bofcovich is perhaps the firf of mankind who advanced that ofinion; but he allows that bodies approach fo near to one another, as to leave no fenible diftance between them : and his repulive forces make the fame impreflion on the nerves of our fenfes as the fulid bodies could do. And therefore this opinion of his, however new, is nowife contrary to the tellimony of our fenfes. He only 1 emoves a prejudice which was before univerfal.

Some fay, that they canror cven form an idea of an inextended atom, and that Bofovich reduces all matter to nothing: but certainly extenfion is not neceflary for the effence of a being, as mult be allowed by all thofe who hold that fpirits are inextended. Becaule all the bodies that fall under our fenfes are extended, we are apt to luok upon extenfion as effential to matter: but this error may be corrected by reflection, and an idea of an inextended atom may be formed, by confidering the nature of a mathematical point, which is the limit of any two contiguous parts of a line.

Others again have faid, that if the elements of matter were void of extenfion, there would be no difference between body and fpisit. But the difference between body and fpirit does not conlift in the baving or not having extenlion; but in this, that the atoms of
matier are endued witla repulfive and attractive forces, Refonvich's which fpirit has not; and fpirit has a capacity of Syftem of thought and volition which bodies have not.

We may here obferve, thist among the ancients Zeno, and among the moderns Leibnitz, held, that the firft piinciples of matter are inextended points. But both held this opinion with the inconfiltencs, that they maintained the continued extenfion of bodics, witbout ever being able to fhew how continued extenfion conld arile from inextended elements.

It has been objceted likewife, that our repulfive and attractive forces are no better than the occult qualities of the Peripatetics. The like objection has been made to Newton's attraction: but the anfwer is eafy. We obferve the effects, and take notice of them; for them we mult admit an adequate caufe, without being able to de:ermine, whether that caufe is an immediate lat: $_{\text {a }}$ of the Creator, or fome mediate inftrument that he makes ufe of for that parpofe.

Some are unwilling to give up the idea of motion occafioned by immediate impulfe: but can they flow at good reafon why fome diflance may not occation motion as well as no difance? Thefe are the principal objections that have been made againft the Bofcovichian fyltem.
IV. Before we proceed to the explication of phenomena by means of our theory, we mult advert, that in ions with the curve exprefing this theory, the abfcifes denote regard to the diftances between the atoms that are under confi- the curve. deration; the ordinates give the prefent force, and the area between any two of thefe ordinates gives the fquare of the velocity generated between them: the arches are either repullive or attractive, according as they fall upon the fame fide with the afymptotic curve EG, or on the oppufite fide.

We mult, in the next place, confider the pafiges from one fide of the axis to the other. Sometimes the paffage is from repulfion to attraction, at other times from attraction tn repulfion. The firt are called limits Limits of of colscfion, becaufe a particle removed from that limit cohefion, returns back to it ; becaufe if it is removed to a greater \&ic. diftance it is attracted back, and if it is removed nearer it is repelled back. The fecond are called limits of noncohefiont ; becaufe a particle removed thence to a greater diftance is repelled fill further, and if removed nearer it is attracted ftill nearer. Of the firft kind are E, I, N ; of the fecond are G, L. Likewife, when the curve touches the axis, it may either be an attractive part of the curve, or a repulfive part. Thefe limits may be nearer one another, or farther away; and the limits of cohefion may be ftronger or weaker, according as the forces near them are greater or lefs.

Eefcovich confiders minntely the effects of thefe warieties of limits and forces; firf with regard to two points, then with regard to three and four, demonftrat-
(A) If a particle of matter is not extended, in what refpect does it differ from a point of face? Says Bofcovich, it is endowed with attractive and repulfive forces. What is this it before it is thus endowed? Does it then differ from a point of fpace? We can form no notion of any fuch difference. But a point of face, confidered as an individual, is diftinguifhed from another individual only by its fituation; it is therefore immoveable, but matter is moveable. Have thefe forces, then, which make matter an object of fenfe, any fubftratum, any thing in which they are inherent as qualities? What are the things which theic qualities diftinguilh from each other as individuals ?

Dofocoich's ing the great variety of forces that may arife from
sytem of thefe various combinations, and fhewing how from fim-

Natural Philofophy

15
Compofi-
tion of bo
dies. ple atoms a great variety of bodies may be formed. He particularly proves, that, from the various pofition of the atoms, they may either always repel or atways at. tract oller atoms, or do neither. Four atoms may form a pyramid, eight may form a cube, and fo on, in regular or irregular figures. Particles of the loweft order may compofe particles of a fecond order, thefe of a third, and fo on. This he cxemplifies by a library, in which the letters of the books flould be compofed of frall points, placed fo near one another as that their diftance could not be perceived without the help of a microfcope. Here the letters will be compofed of points, the words of letters, and all the variety of books on different fubjects, and in different languages, would be compofed of words. In like manner, he fays, his atoms may compofe particles, thefe may compofe others of different orders, of which may be firmed va. rious bodies, animal, vegetable, air, fire, water, earth, I6 whole planets, central bodies, the whole univerfe.
The fyitem applied, to account for

But to be more particular, our author proceeds to apply his fyftem to mechanics, and demonftrates, with his ufual accuracy and originality, what regards the centre of gravity, action and reaction, the collifion of bodies, the centre of equilibrium, and of ofcillation.

Of thefe fubjects he treats in the fecond part of his Theoria; to which we muft refer our learned readers, as it cannot be eafly abridged.

In the third part of the fame work he proceeds to

Impenetrability, account for the general propertics of matter, beginning with inipenctrability. This naturally flows from the interior repulfive forces, which prevent the compenetration of any two points. Befides, as the leaft part of face is divifible in infinitum, it is infinitely improbable that any two points fhould ever meet, feeing they have an infinite number of other lines in which they can move, befides the one that would join them. But an apparent compenetration might take place, if one body thould meet another with fo great a velocity as not to give time to the repulfive forces to exert their action. Thus an iron ball may pais fwiftly near a ftrong magnet, without being fenfibly attrached by it, which it would be if it moved more flowly. Thus a ball from a gun paltes through a piece of wood fo quickly as to make only a paffage for itfelf, without breaking the neighbouring parts, which it would do were its motion more flow. Of this kind of compenetration we have a refemblance in light paffing through pellucid bo-
dies.
Cohefion has never been well accounted for by any philofopher before Bofcovich. From his fyftem it follows naturally, as we have feen in feaking of the limits of cohefion; for when two atoms are placed in a limit of that kind, they neceffarily cohere more or lefs ftrongly, according as that linit is ftronger or weaker. From the cohefion of the atoms arifes the cohefion of compounded particles, and confequently of fenfible bodies.

From the cohefion of particles arifes the extenfion of bodies; becanfe there rnint always be face between the particles. However, it is evident that this extenfon is not formed of a continuity of matter; though it may appear to be fo to our fenfes, which cannot perceive the fmall intermediate diftance between the parts of
fome bodies, and much lefs the diftances between the fimple elements of which they are compofed.

Extenfion of bodies involves figurability; becaure every extended body mult befurrounded by fome fuperficies of a certain figure; but the fuperficies of bodies can never be accurately determined, upon account of the inequalities in all furfaces. We take however, that figure for the true one which the body appears to come neareft. Thus we call the earth a globe, notwithfand. ing the hills and valleys that are on it.

Under the fame figure, and of the fame magnitude, there may be contained very different quantities of matter. Hence we come to the confideration of denfity. That body is moit denfe which contains in the fame fpace the greateft number of atoms, and vice verfa.

This denfity may be increafed beyond any given li. mits by the nearer approach of the atoms to one another. Hience a body of any given magnitude, however fmall, may come to be divifible beyond any given limits.

Mobility, which is likewife reekoned among the ge- Mobility, neral properties of body, is effential to our fyftem, feeing an effential part of it confitts in forces, which are determinations to motion, at leaft in certain diftances.

Univerfal gravity in fenfible diftances is likewife a branch of our theory. On which fubject it may beobferved, that perhaps our curve, after it has extended beyond the fpluere of the comets molt diflant from the fun, may depart fromits alymptotical nature, and approach to the axis, interfeet it, and pais to repulfion. This would effectually anfwer the objection made by fome againf Newton's attraction, when they allege, that, from his opinion, it would follow, that the fixed Itars, and ali matter, would be drawn together into one mafs. If fuch a repulfion takes plare, it may foon pafs again into attraction, and form limits of cohefion; fo that our fun may be in fuch a limit with regard to the fixed Itars, and our planetary fyftem make only a frmall part of the whole univerfe. And this may fuffice conceraing the general properties of matter.

Let us now defcend to fome particular claffes of bodies, of which fome are fluid, others folid. The parts of fluid bodies are eafily feparated, and eafily moved round one another, becaufe they are fpherical and very homogeneous; and hence their forces are directed more to their centres than to one another, and their motions through one another are lefs obftrueted. Between the particles of fome of them there is very little attraction, as in fine fand or fmall grains of feed, which approach much to fluidity. The particles of fome others of them attrad one another fenfibly, as do thofe of water, and fill more thofe of mercury. This variety arifes from the various combinations of the particles themfelves, of which we have already taken notice. But in air the particles repel one another very Arongly; and hence comes that great rarefaction, when it is not compreffed by an external force. Its particles mult be placed in ample limits of repulfion.

Solid bodies are formed of parallelopipeds, fibres, and of irregular figures. This occafions a greater cohefion than in fluids, and prevents the motion of the parts round one another; fo that when one part is moved all the relt follow. Of thefe bodies fome are harder, whofe particles are placed in limits which have frong repul-

Bofrovich's Syitem of Natural Philofophy. $\underbrace{2 C}_{\text {Figure, }}$

B O S [137] B O S

Boforich's five arches within them ; others are fofter, whofe partisyftem of cles have thofe arches of repulfion weaker. Some are Natural flexible, the particles of which are placed in limits that $\underbrace{\text { Philofophy. }}$ have weak arches of repulfion and attraction on each

26
Softnefs, Aexibility, and clanticity.

28
Organization.

29 fide ; and if thofe atches are fhori, the particles may come to new limits of chefion, and remain bent: but if the arches are longer, the former repulfion and attraction will continue to act, and bring back the body to its former pofition; nay, in doing this with an accelerated velocity, the parts will pafs their former limits, and vibrate backwards and forwards, as may be feen in a bended foring. Thus elafticity is accounted for.

Vifcous bodies ftand in the middle between folid and fluid. 'Their particles have lefs cohefion than the firt, and more than the fecond: they fticl: to other bodies by an attraction which their particles have from their compofition. In like manner water itfelf ficks to fome bodies, and is repelled by others. All which arifes from the different compofition of the particles, which gives a varicty of refpeftive forces.

What appears very wonderful in nature, is the compolition of organic bodies. But if we confider that particles may be fo formed, that they may repel fome and attract others, the whole of vegetation, nutrition, and fecretion, may be underftood, and follows from our fyltem. And as one particle may attract another in one part only, and repel it in every other fituation, hence may be gathered the orderly fituation of the particles in many cryfallizations. The great variety of repulfive and attractive forces, or limits of cohefion, of the pofition of atoms, and of combinations of particles, will account for all thefe phenomena.

The chemical operations, which are fo curious in themfelves, and fo ufeful to fociety, are well explained by Bofcovich's fyftem, and ferve as a confirmation of its truth. Of this we fhall give fome inftances. When fome folids are thrown into fome liquids, there happens to be a greater attraction between the particles of the folid and of the liquid than there is between the particles of the folid itfelf. Hence the particles of the folid are detached and furrounded by the fluid; this misture retaining the form of globules, and therefore continuing to be fluid. This is called folution, But when the folid particles are covered to a certain depth, the attractive forces ceafe on account of the different diftances, and no more of the folid is detached. Then the fluid is faid to be faturated. If into this misture another folid be put, the particles of which attract the fluid more ftrongly, and perhaps at greater diftances than the particles of the former; then the fluid will abandon the former and cleave to the latter, diffolving them, and the particles of the former will fall to the bottom in the form of powder, into which they had been reduced by the folution. This feparation is called precipitation. Perhaps rain arifes from a precipitation of this kind, when the aqueous particles are left by the air, which is more ftrongly attracted by fome other particles floating in the atmofphere.

Fluids of the fame fpecific gravity are eafily mixed; and even though the fpecific gravity be different, the particles of the one attract thofe of the other, in fuch a manner that they feem to form one fluid by a kind of folution. Nay, it happens, that two Hluids mixed together form a folid, becaufe their particles come to be in
the limits of cohefion. They may even occupy lefs Bofoovich's face than they did before, by being attracted into lefs syftem of diftances between their parts.

Fermentation is a neceffary confequence of cur fyf- Philofophy tem. For when bodies, whofe particles, by the rarity of their compofition, are endued with different forces, come to be mixed, there muft arife an agitation of the parts, and an ofcillation among them; fometimes greater, fometimes lefs, according to the nature of the particles. This agitation is fopped by the expulfion of fome particles, by the intrufion of others into vacant fpaces and by the impreffion of external bodies; but always there is a change in what remains, becaufe there is a new difpofition of particles.

Fire confifis in a violent fermentation of fulphureous mater, focially whe fire and fuof light in any quantity. This fermentation agitates ftrongly the parts of other bodies, feparates theni from one another, and ofien throws them into a Atate of fufion; the cohefion between their parts being broken, and they being thrown into a circular motion. In this Itate they may be often mised together, fo as to form one body; they may be again feparated by the action of the fime fire, which evaporates fome of them fooner, fome later. Hence the art of fmelting metals.

When, in the agitation occafioned by fire, fome of the particles are thrown out into an arch of repulfion, they may fly off and evaporate. Sonsetimes the whole body may be thrown into a frong repulfion and volatilization, or a fudden explofion take place; when, before the particles are near an equilibrium, a fmall force may occalion a great change ; as the foot of a bird may occafion the fall of a great rock, which was before al. moft detached from a mountain. In evaporation, the bodies that remain affume a particular figure, as all falts do; and this upon account of their particles having certain parts only that attract one another, and confequently occafion a particular difpofition. All thefe chemical operations evidently prove that there are in nature repulfive and attractive forces between the particles of bodies at fmall difances; which greatly confirms our whole fyttem.

Bofcovich holds, that light is an effuvium, emitted with great velocity from the luminous bodies by a Arong repulfion. He explains all the mof remarkable properties of this extraordinary matter according to his own principles, and that with great acutenefs. On this fubject it is obfervable, that Newton faw the necellity of admitting repulfive forces for the reflexion of light, which extend at fome diftance from the reflecting furface, and therefore refemble the repullive forces of our theory.
Our author gives likewife a probable explication of electricity, according to Franklin's ingenious hypothefis, and likewife of magnetifm, deducing the whole of the appearances from various attractions and repulfions. He fuppofes that fire and the electrical fluid differ only in this, that lire is in actual fermentation, and not fo the electrical fluid.

Finally, he explains our bodily fenfations, in which Senfution. he agrees pretty much with other philofophers; excepting in this, that what they attribute to the immediate contakt of bodies, or of certain particles emitted from them, he afcribes to attractions and repulfions; which
indeed

$\mathrm{B} O \mathrm{~S} \quad\left[\begin{array}{ll}138\end{array}\right]$
 B O S

Fofoovich's indeed are particularly fit for caufing that motion in Syfem of nur nerves, which is fuppofed to take place in the orNateral Pnilofophy. gans of fenfation, and to be thence communicated to the brain.

It is to be obferved, that although Boforich maintains, that the very firt elements of matter are void of evtenfion ; yet he allows, that of theie elements, combined in a certain manner, may be formed extended particles of various figures, the parts of which may be

34
Reconciliation of this with other fyftems, fo coherent as to be infeparable by any power in nature. By thefe means the opinion of thofe philotophers who are fofond of extende! particles, may be in fo far gratiod. Niv, the Peripatetics may, if they pleafe, adopt Bofcovich's inextended atcms for their Nfateria Prima without any inconfitercy; and his repulfive and attractive forces may ferve for their fub/fantial forms. And as God can make impreflions on our fenfes independently of the atoms, their abfilute accients may in furre fenfe be admitted. Nor would fome fuch extraordinary exertions of Divine Puwer favour identifm in the ordinary courie of nature.

But what is of more confeguence, it is more than probable, that had Newton lived to be acquainted with the Bofcovichian theory, he would have paid to it a very great regaid. This we may conjecture from what he fays in his laft queltion of optics; where, after having mentioned thofe things which might be explained by an attractive force, fucceeded by a repulfive one on a change of the ditances, he adds, "And if all thefe things are fo, than all nature will be very fimple, and contiltent with itfelf, efecting all the great motions of the hesven!y brdies by the attraction of gravity, which is mutual between all thofe bodics, and almof all the lefs motions of its particles by another certain attractive and repulfive fince, which is mutual between thofe particles." And a little after, treating of the elemen-
Efpecially
that of
Newton.
of his fy tem, that he was wont to make ufe of the fol- Pofeorichi, lowing comparifon: When a letter has been written in syftem of occult characters, and we are endeavouring to decypher it, we make various fuppofitions of alphabsts; and

Natural

Philofophy. when we have found one according to which the whole letter comes to have a reafonable meaning, agreeable to all the circumftances of time, place, pertons, and things, we can entertain no doubt of our having difcovered the true key of the cypher-fo, faid be, my fyltem explains fo well all the phenomena to which it has been properly applied, that I mult flatter myfelf that I have difcorered the true key of nature.

The being accultomed to contemplate fo deeply the Exifence univerfe and the materials of which it is compofed, of God. made Bofcovich fee mont clearly the evident neceffity of admitting an all poweríul, intelligent, felfexiftent Being, for the creation of thofe materials, and for the arrangement of them into their prefent beautiful form. He was at a lofs to find words !trong enough to exprefs his furprife, that there fhould be any man, not to fay any one pretending to the name of philofopher, who could be fo deaf as not to hear the voice of nature loudly proclaiming its Author from all, even the leaft of its parts. He gives us his fentiments on this, the moft important of all fubjects, in the appendix to his Theoria, in which he treats of God and of the foul of man.

There, in the firt place, he Chows the abfirdity of The world their opinion, who maintain that this world may have cannot be been the work of chance, the eifed of a jumble of felf- the effeet of exiltent, felf-moving atoms : becaufe chance is an empty chance; word without a real meaning. Whatever exilis has its determinate caufe, and can only be called fortuitous by us on account of our ignorance of that caufe. Befides this, though the number of atoms compofing this world is finite, yet their poffible combinations are many times infinitely infurite: for they may be placed in intinite places of an infritite line; of thefe lines there is an infinite namber in every plane, and of thefe planes there is an infinite number in space. A gain, thefe points may have an intinite number of veiocities in an infinite number of dieectons. From all this it is evident, that the combinations in which the points of matter may be, is infinite in a higil degree, whereas duration can be infinite in only one dimenfion. Hence it is infinitely improbable that ever the pee:ent combination of things could come out by chance. And this is fo much the more infinitely improbable, becaufe the diforderly, claotic combinations are infiately more than the regular ones. The whole of matter might rall about in a blind motion fir a boundefs eternity, without ever being capable to produce one fingle muthroom.

Morenver, had matter been in motion from all eternity, every atom wond have deferibed an infinite line, and then a prart of that line would be affignable at an infinite ditance from the point of face in which the atom is at prefent : but an infinite line can never be run over; therefore the atom could never have come to its prefent place ; and therefore the fuppolition is abfurd. Nothing fucceffive can be eternal with a paft eternits, though it can continue without end. God alone can be eternal and actually infinite, but his eternity and infinity are beyond our comprehenfion.

Neither can the world have exifted of itfelf in any Nor have thing like to its prefent form from all eternity; for exifed matter is perfectly indifferent to numberlefs fates, and from eter-

B O S $\quad\left[\begin{array}{lll}\mathrm{I} & \mathrm{I} 9 &]\end{array} \quad \mathrm{B}\right.$ O S

Eofovich's to its prefont thate it mun be determined. This prefent Sy:tem of Natural 1'hilofoply flate is perfectly incapable of determining itfelf, becaufe this dedermination muft be previous to its exiftence. It muft be determined by the preceding fate, which is al-

40
Attributes of God which appear in the creation. fo incapable of determining itfelf, and for its determination we muft have recourie to the tate before. 'Ihus, though we go back to eternity, we fhall fill find a nullity of determination: now an infinite fum of nothing is nothing ; and therefore as the prefent flate of things could have no determination, it could not poflibly exif.

It is therefore evident that there mult be a Determiner extrinfic to the material world. This Determiner muft have an infinite knowledge of all the poffible combinatiors, and an infinite elective creative power to chufe and create freely the combination he pleafed, in that puint of eternity that he chofe, with all the numberlefs circumfances that are agrecable to him.

And here what a valt field of contemplation is laid open to a philofophic mind! What a truly infinite knowledge was requifite to forefee fo many ends, and fo many means requifite for obtaining thofe ends, as are contained in the creation! Let us confider light, for example, which was to be emitted for fo many ages from fo many luminous bodies, with fo great velocity, fo as to penetrate fo many mediums with different degrees of reflectibility and refrangibilits, with fo many other wonderful qualities; at the fame time fo many bodies were to be perfectly fitted for reflecting this light in a certain manner, and the arimal eye was to be do formed as to have a picture of vilible objects painted on the bottom of it.-How many particular combinations were neceffary for all this? What fhall we fay of the fo many herbs, flowers, trees, and animal bodies as there are on this our earth? All their kinds and fpecies, all the Ceries of their individuals, all their parts and particles, were forefeen, intended, and contrived, by one ack of the Divine Mind. Again, how wonderful are the heavenly bodies, of what furprifing magnitude, moving in the molt beautiful order, at an immenfe difance from one another? Tofay nothing of the numberlefs creatures that are beyond the reach of the beft telefcope, or below that of the microfcope. He who reflects ever fo little on thefe things, mult neceffarily fee the moft evident pronfs of an infinite power, wifdom, and providence ; and he muft be filled with admiration and awful refpect for the Creator and Ruler of the univerfe.
Natural re- Nor are we unconcerned fpectitors of this grand ligion. fcene. God has been pleafed to make 11 senter deeply into his great plan of creation. He fingled us out among an infinite number of pothble luman beings, in order to cali us into exiftence at a fixed period; and he has made a raft number of his creatures cont:ibute to the formation of thefe wonderful machines, our bodies, as likewie to our nourifment, to our prefervation, to our necefities, conveniences, and gratifications. Every moment that we exift we are enjoying a great number of benefic, exprefsl; deffried for us by that Supreme leing. This evidently demands from us the higheit degree of gratitude, love, and obedience.

Let us go a fep till farther: Is it not very reafonable to fuppofe, that our God, who effords 126 fo many inflances of his beneficence towards us in the natural order, will alfo, out of compafion to our wealinefs and isnorance, lave favoured us with a more full and explicit manifeftation of himflif, of our dulies towards him,
and of his intentions concerning us? According to Bofcovich and all true philofophers, reafon itfelt alone, and true philofophy, point out to us the probability at leaft

Eoflime
Bofton.
of God's having given us a ftill better and furer guide, by whofe cirection we may attain to that perfee happinefs which we naturally thirft after, and to which we muf have been defigned by our Maker. This is probable from reafon alone; and of this great fact we are afcertained by unqueftionable authority.

BOSHMEN have been generally defcribed as a diftinct race of Hottentots, who are enemies to the pattoral life, (fce Boshies- Ment, Encycl.) This M. Vaillant af. firms to be a miftake; and we think he lias completely proved that it is fo . "Thefe infamouswretches (fays he) do not form a particular nation, nor are they a people who have had their nigin in the places where they are now found. Bofomers is a name compofed of two Dutch words, which dignify bufbornen, or men of the rooods; and i is under this appellation that the inhabitants of th. Cape, and all the Dutch in general, whether in Africa or America, difinguifh thofe malefactors or aftafins who defert from the colonies, in order to efcape punifhment. In a worl, they are x hat in the Britifi and French Weft India indads are called Maroon Negroes. Thefe Bofhmen, thercfore, far fiom being a diftinct fpecies, are only a promifuous affemblage of nulattoes, negroes, and maftizos, of every fpecies, and fometimes of Hottentots and baikers (fee Baster, Supplenent), who all differing in colour, refemble each other in nothing but in villany. They are land pirates, who live without laws and without difci pline, abandoned to the vimolt milery and defpair ; bafc deferters, who have no other refuurces hut plandering and crimes. They retire to the Reepelt rocks and the moft inacceflible caverns, and there they pafs their lives. From thefe elevated places they command an extenfive profpect over the furrounding plains, lie in wait for the unwary traveller and the fcattered rocks, pour down upon them with the velocity of an arrow, and fuddenly falling upon the iahabitants and their cattle, flaughter them vithout difinction. Loaded with booty, and whatever they can cary with them, they then repair to their gloomy caves, which they never quit till, like the lions, hanger again impels them to frefh maftacres. But as treachery always marches with a trembling ftep, and as the prefence of one refolute perfon is fufficient to overawe whole tronps of thefe banditti, they carefully fhan thofe piantations where they are certain that the owners themfelves refide. Artifice and cunning, the nfual refources of timid fouls, are the only means which they employ, and the only gnides that accompany them in their expe-ditions."-Vaillant's Trave's into the Intrior Parts of Africa.

LOSTON, (Encyclopædia.) The following more accurate defcription is from Dr Morte's Gazetteer.

Boston, The capital of the Atate of Maffachufet:s, ihe largeft town in New England, and the third in fize and rank in the United States, lies in 42.23 .15. N. lat. and 70.58 .53 . W. long. This town, with the towns of Hingham, Chelfeal and Hull, conllitute the county of suffulk : I 76 miles S. W. of Vifalet, 61 S. by IV. of Portfmouth, $\mathrm{I}_{+}+\mathrm{N}$. E. of New-H:ven, 252 N. E. of New- York, 347 N. E. of Philadelphid, and 500 N. E. of the city of Wafhington. Bof-

$\mathrm{B} O \mathrm{~S} \quad[140]$

Bonon. ton is built upon a peninfula of irregular form at the bnttom of Maffachufetts Bay, and is joined to the main land by an ifthmus on the fouth end of the town leading to Roxbury. It is two miles long but is of unϵ qual breadth: the broade?t part is 726 yards. The peninfula contains about 700 acres (other accounts fay 1000) on which are 2376 dwelling houfes. The number of inhabitants in 1790 was 18,038 , but the increafe has been very confiderable fince. The town is interfected by 97 Atreats, 36 lanes, and 26 alleys, befides 18 courts, \&ec. molt of thefe are irregular, and not rery convenicnt. State-Atreet, Common-Atreet, and a few others, are cxceptions to this general charadter; the former is very facious, and being on a line with L-ng Wharf, where ftrangers ufudly land, exhibits a flattering idea of the town.

Here are nineteen edifices for public worfhip, of which nine are for Congregationalifts, three for Epifcopalians, and two for Baptilts; the Friends, Roman Catholics, Methodiits, Sandemanians and Univerfalits lave one each. Nof of thefe are ornamented with beautiful fipires, with clocks and bells. The other public buildings are the State-Houfe, Court-Houfe, two Theatres, Concert Hall, Fansuil Hall, Gaol, an Alms-Houfe, a Work-Houle, a Bridewell and Powder Magazine. Franklin Place, adjoining Federal-ftreet Theatre, is a great ornanent to the town; it contains a monument of Dr. Franklin from whom it takes its name, and is encompaffed on two fides with buildings, which, in point of elegance, are not exceeded, perhaps, in the United States. Here are kept in capacions rooms, given and fitted up for the purpufe, the Bofton Library, and the valuable Collections of the Hittorical Society. Moft of the public buildings are landfome, and fome of them are elegant. A magnificent State-Houfe is now erecting in Pofton, on the S. fide of Beacon Hill, fronting the Mall, the cornerflone of which was laid with great formality and parade on the $4^{\text {th }}$ of July, 1795; and which over-tops the monument on Beacon Hill.

The Market Place, in which Faneuil Hall is fituated, is fupplied with all kinds of provifions which the country affords. The fifh market in particular, by the bounteous fupplies of the ocean and rivers, not only furnilhes the rich with the rareft productions, but often provides the poor with a cheap and grateful repalt.

Bofton Harbor, is furmed by Point Alderton on the S. and by Nahant Point on the N. The harbor is car pacious enough for 500 veffels to ride at anchor in good deptle of water; whilft the entrance is fo narrow as fcarcely to adnuit two fhips abrealt. It is variegated with about forty iflands, of which fifteen only can be properly called fo; the others being fmall rocks or banks of fand, flightiy covered with verdure. Thefe iflands afford excellent patturage, hay and grain, and furnith agreeable places of refort in fummer to parties of pleafure. Caftic Inand is about three miles from the town; its fortifications, formerly called Cafle Wiiliam, defend the entrance of the harbor. It is garrifoned by about fifty foldiers, who ferve as a guard for the convicts, who are fent here to hard labour. The convicts are chicfly employed in making nails.

The Light-Houfe ftands on a fmall ifland on the N. entrance of the channel, (Point Alderton and Nantaf-
ket Heights being on the S.) and is about 65 feet ligh. T'o fteer for it from Cape Cod, the courfe is W. N. W. when within one league of the Cape; from Caps Cod to the Light. Houfe is about 16 leagues; from Cape Ann the courfe is S. W. diftant 10 leagues. A cannon is lodged and mounted at the Light Houfe to anfwer fignals.

Only feven of the iflands in the bay are within the jurifdiction of the town, and taxed with it, viz. Noddle's, Hog, Long, Deer, Spectacle, Governor's and Apple inlinds.

The wharves and quays in Boton are about eighty in number, and very convenient for velfels. Long Wharf, or Bofton Pier, in particular, extends from the bottom of State-freet 1743 feet into the harbor in a ftraight line. The breadth is 104 feet. At the end are 17 feet of water at ebb tide. Adjoining to this wharf on the north is a convenient wharf called Minot's T, from the name of its former proprietor and its form. Veffels are fupplied here with frelh water from a well furrounded by falt water, which has been dug at a great expenfe. Long Wharf is covered on the north fide with large and commodious fores, and in every respect exceeds any thing of the kind in the United States. In February, 1796, a company was incorporated to cut a canal between this harbor and Roxbury, which is nearly completed.

The view of the town, as it is approached from the fea, is truly beautiful and picturefque. It lies in a circular and plealingly irregular form round the harbour, and is ornamented with fpires, above which the monument of Beacon Hill rifes pre eminent ; on its top is a gilt eagle bearing the arms of the Union, and on the bafe of the column are infcriptions, commemorating fome of the moft remarkable events of the late war. Beacon Hill is the higheft ground on the peninfula, and affords a molt delightful and extenfive profpect. The common below it contains about 45 acres always open to refrefhing breezes; on its eaft fide is the Mall, a very pleafant walk above 500 yards in length, adorned with rows of trees, to which an addition of about 100 yards has been lately added. Charles River and Weft Bolton bridges are highly ufeful and ornamental to Bofton; and both are on Charles River, which mingles its waters with thofe of Myftic River, in Bofton harbor. Charles River bridge connects Bofton with Charleftown in Middlefex county, and is 1503 feet long, 42 feet broad, ftands on 75 piers, and colt the fubfcribers 50,000 dollars. It was opened June 19, 1787.

Wert Bofon bride ind

Mi
Bridge over the gore, 14 piers, 275
Abutment Bofton fide, $\quad 87 \frac{1}{2}$
Caufeway, 3344
Diftance from the end of the Caufeway to Cambridge meeting-houfe,

7810
Width of the Bridge, 40
This beautiful bridge exceeds the other as much in elegance as in length, and coft the fubfcribers 76,700 dollars. Both bridges have draws for the admiffion of $v \in$ โTels, and lamps for the benefit of evening paflengers. Seven Free Schools are fupported here at the public expenfe, in which the children of every clafs of citizens may freely afociate together. The number of fcholars

B O S [I 4 I$] \quad \mathrm{B} O \quad$ S

fcholars is computed at about 900 , of which 160 are taught Latin, \&c. There are befides thefe many private fchools.

The principal rocieties in the Commonwealth hold their meetings in this town, and are, the Marine Society, American Academy of Arts and Sciences, Maffachufetts Agricultural Society, Maffachufetts Charitable Society, Bofton Epifcopal Charitable Society, Maffachufetts Hiftorical Suciety, Socicty for propagating the Gofpel, Maffachufetts Congregational Society, Medical Society, Humane Society, Bofton Library Society, Bofton Mechanic Affociation, Socicty for the aid of Immigrants, Charitable Fire Society, and feven refpectable Lodges of free and accepted Mafons.

The foreign and domeftic trade of Botton is very confiderable, to fupport which there are three Banks, viz. the Branch of the United States Bank, the Union, and the Maffachufetts Bank; the latter confifts of 800 fhares of 500 dollars, equal to 400,000 ; the capital of the Union Bank is, 1,200,000 dollars, 400,000 of which is the property of the State. In $17+8,500$ veffels cleared out of this port for, and 430 were entered from, foreign parts. In 17^{8}, the entries of foreign and coalting veffels were 372 , and the clearances 450 . In 1794, the entries from foreign ports were 567. In 1795, thefe entries anounted to 725 , of which the thips were 96, barques 3, fnows 9, polacre 1, brigs 185, dogger 1, fchooners 362, fhallop 1, and floops 65. The principal manufactures coufift of rum, loaf-fugar, beer, fail-cloth, cordage, wool and cotton cards, playing cards, pot and pearl athes, paper hangings, hats, plate, glafs, tobacco, and chocolate. There are thirty diftlleries, two breweries, eight fugar houfes, and eleven ropewalks.

Eight years ago, the intercourfe with the country barely required two ftages and twelve horfes, on the great road between this and New-Haven, diftant 164 miles; whereas there are now twenty carriages and one hundred horfes employed. The number of the different flages that run through the week from this town is upwards of 20 , eight years ago there were only three.

Attempts have been made to change the government of the town from its prefent form to that of a city; but this meafure, not according with the democratic fpirit of the people, has as jet failed. At an annual meeting in March, nine Sclectmen are chofen for the government of the town; at the fame time are chofen a Town Clerk, a Treafurer, 12 Overfeers of the Poor, twenty-four Firewards, twelve Clerks of the Market, twelve Scavengers, twelve Conitables, befides a number of other officers. If the inhabitants do not reap all the advantages they have a right to expect from their numerons officers, it is not for want of wholefome laws for the regulation of the weights, meafures and quality of provifions, or other branches of police, but, becaufe the lawes are not put in execution.

Befides thofe called Trained Bands, there are four other military companies in Boton, viz. the Ancient and Honourable Artillery Company, the Cadets, Fufiliers and Artillery Company. The Ancient and Honourable Artillery Company was incorporated in 1638 , and the election of a captain and officers of it for the year is on the firt Monday in June annually, which is obferved here as a day of feftivity. Several

Suppl. Vol. I.
officers in the American army, who fignalized themfelves in the late war, received their firlt knowledge of tactics in this military fchool.

Bolton was fettled as early as 163 I , from Charleftown; it was called Shaumut by the Indians; Trimountain by the fectlers in Charlefown, from the view of its three hills; and had its prefent name in token of refpect to the Rev. Mr Cotton, a minifter of Bofton in England, and afterwards minifter of the firft church here. Bofton was greatly damaged by an earthquake in October 29, 1727, and fince that time has fuffered feverely hy numerous fires, the houfes being moftly built of wood. The latt large fire happened July 30 , 1794, and confumed 96 houfes, rope-walks, \&c. and the account of loffes given in by the fufferers amounted to 209,86I dollars.

It was in Bolton that the Revolution originated which gave independence to America, and from thence flew like an electrical Thock throughout the Union. It fuffered much at the commencement of the war, by the lofs of an extenfive trade, and other calamities. Bofton feels a pride in having given birth to Benjamin Franklin, and a number of other patriots, who were among the mot active and influential charaders in effecting the revolution.

BOSWELL (James), known to the learned world as the author of a life of Dr Johnfon and of feveral other valuable works, was born, we believe, at Auchinleck in Ayrfhire, in 1740. The family from which he fprung was ancient and honourable. At the time of his birth his father was a well employed lawyer at the Scotch bar ; but was afterwards raifed to the dignity of Judge, and filled that important ftation with acknowledged learning, probity, and honour. His title was Lord Auchinleck, taken from his family inheritance; and he died in 1782: on which occafion Dr Johnfon wrote an elegant and inftructive letter to the fubject of this brief memorial ; of which we thall tranfcribe a paffage that alludes to fome flight domettic differences, which did not happen in vain, fince they gave rife to fuch falutary advice:
${ }^{6}$ Your father's death had every circumftance that could cnable you to bear it. It was at a mature age, and it was expected; and as his general life had been pious, his thoughts had, doubtlefs, for many years palt, been turned upon eternity. That you did not find him fenfible mut doubtlefs grieve you: his difpofition towards you was undoubtedly that of a kind, though not of a fond father. Kindnefs, at leatt actual, is in our own power, but fondnefs is not; and if, by negligence or imprudence, you had extinguifhed his fondnefs, he could not at will rekindle it. Nothing then remained between you but mutual forgivenefs of each other's faults, and mutual defire of each other's happinefs."

The occafion of this family diffention is unknown to us. It might originate in the difference of their political principles, Mr Bofwell being a zealous Tory, and his father, as he reprefents him, a rancorous Whig; or it may have atifen from the celebrated Duuglas caufe, which fet many fiends at vdriance in Scotland, and in which Lord Auchinleck and his fon took oppofite fides. The Judge gave his vote on the bench for the Duke of Hamilton; and the advocate (for Mr Bofwell was then at the bar) was fo keen a partizan of Douglas, that when the caufe was finally decided by the Houfe of

$B \quad$ O S $\quad\left[\begin{array}{lll}142\end{array}\right] \quad$ B O S

Dofwell. $\underbrace{\text { Dorren. }}$

Peers, he got poffeflion of a Chinefe gong, and, at the head of a number of young men and boys patrolled the Atrects of Edinburgh, and made a loud and exulting noife at the windows of his fathen's houre, where there was no fymptom diplayed of the general joy.

In 1762 Mr Bofwell made his firlt journey to London: where, under the aufpices of Dodiley the bookfeller, he pubiifhed, "The Cub at Newmarket, a Tale." By the title of Cub he meant to characterize himfelf, as the reader will perceive in the following lines, which we thall give as a fpecimen of the poem:

> Lord Eglintoune, who loves, you know, A little dafh of whim, or fo, By chance a curious Cub had got, On Scotia's mountains newly caught.

During his ftay in London, Mr Bofwell was introduced to Dr Johnfon, with whom it is well known he continued to live in intimacy from that time till Johnfon's death in 1784 ; and this intimacy procured him the friendfhip of Burke, Goldfmith, Sir Johna Rey. nolds, and rnany other men of eminence, who compofed what was called The Literary Club. In the latter end of 1765 he became acquainicd with General Paoli when on his travels; and after his return he publifhed, in ${ }_{17} 768$ or 1769 , his account of Corfica, with the "Jourmal of a Tour to that Ifland."

Of this work, which gained him fome diftinction in the world, his great friend Johnfon writes thus: "Your hiftory is like all other hiftories, but your journal is in a very high degree curions and delightful. There is bet ween the hilfory and the journal that difference which there will alsays be found between notions borrowed from without and notions generated within. Your hiftory was copied from books; your journal rofe out of your own experience and obfervation. You exprefs images which operated ftrongly upon yourfelf, and you have imprefled them with great force upon your readers. I know not whether I could name any narrative by which curiofty is better excited or better gratified."

In 1770 MI Bofwell, who was then in good practice at the Scotch bar, married an amiable woman, by whom he had two fons and three danghters, who farvived him. In 1773 he was chofen a member of the Literary Club; and in the autumn of the fame year he vifited the Hebrides in company with his illuftrious friend Johnfon; after whofe death be publiflied a very entertaining account of their tour, the places they faw, the charactcrs with whom they converfed, and their own remarks on the different converfations. To many perfons, buth in England and Scotland, this book gave great offence, as it brought before the public the ungursied talk of private focial circies; but it furely furnithed much entertainment, as it exhibited a more faith. ful picture of Hebridian manners than the Britifh public had ever before feen.

In i F_{t}, when Mr Fox's famous India bill was before Parlianment, Mr Bofwell publifhed a "Letter to the People of Scotland on the Prefent State of the Nation;" in which he contends, that no charter would be fafe if that bill thould pass into a law ; and more than infinuates, that the principle of it was equally inimical to the liberties of the fubject and to the prerogative of the king. Dr Johnfon feems to have thought of that bill as he did; for having read the letter, he writes to
the author his approbation of it in the following words: "I am very much of your cpinion ; and, like you, feel great indignation at the indecency with which the king is every day treated. Your paper contains very conflderable knowledge of the hitory and of the conftitution, very properly produced and applied."

In 1785 Mr Bofisell quitted the Scotch bar, and went to refide in London, where he continued till the day of his death. Having entered himfelf in one of the inns of court, and fludied the Englith law, he became a barrifter in England: but we have reafon to believe that his practice there was not fo fuccefsful as it had been in his own country. He enjoyed, however, more completely than he could do in Edinburgh, the converfation of the great, the wife, the witty, and the good; and fuch converfation he always valued above wealth. He frequently vifited his native country, and efpecially Auchinleck, the feat of his anceftors; and foon after his return from one of thofe vifits he was feized with a diforder which proved fatal, on Tuefday the 19 th of May 1795.

Such were the principal events in the life of Mr Bof. well. Of his character, it would be difficult to fay much more than he has faid himfelf in his "Journal of a Tour to the Hebrides;" and which may, witb fome propriety, be copied here:
"I have given a fketch of Dr Johnfon. My readers may wih to know a little of his fellow-traveller. Think, then, of a gentleman of ancient blood; the pride of which was his predominant paffion. He was then in his 33d year, and had been about four years happily married. His inclination was to be a foldier ; but his father, a refpectable Judge, had preffed him iuto the profeffion of the law. He had travelled a good deal, and feen many varieties of human life. He had thought more than any body fuppofed, and had a pretty good ftock of general learning and knowledge. He had all Dr Johnfon's principles, with fome degree of relaxation. He had rather too little than too much prudence; and his imagination being lively, be often faid things of which the effect was very different from the intention. Hie refembled fometimes
'The beft good man, with the worft-natur'd mufe.'
"He cannot deny himfelf the vanity of finifhing with the encomium of Dr Johnfon, whofe friendly partiality to the companion of this tour reprefents him as one - whofe acutenefs would help my inquiry, and whofe gaiety of converfation, and civility of manners, are fufficient to counteraft the inconveniences of travel, in conntries lefs hofpitable than we have paffed."

Few of Mr Bofivell's friends, we believe, could adil much to this candid confeffion. His enemies, if he had any, might dwell upon his failings; but his failings were few, and injurious to no perfon. In his charader good nature was predominant. He appeared to entertain fentiments of benevolence to all mankind, and to be incapable of intentionally injuring a human being. His converfation-talents were always pleating, and often fafcinating. But can we wonder at this in him who, with a capacity to learn, had been the companion of Johnton for more than 20 years? His attachment to the Doctor for folong a period was a meritorious perfeverance in the defire of knowledge. T'o it the world is indebted for the moft finifhed picture of an eminent man
\square

Bofwell that ever was executed. We know there are objections to the mode of giving the life of Johnfon. It has been thought that ignorance has been wantonly expofed, and the privacy of locial life endangered. We thall not enter deeply into this queftion. All that we can certainly affirm is, that the work has been read with avidity and pleafure ; and that he who does not wifh to read it again may be fufpected to be deficient in tafte and in temper.

Mr Bofwell has been accufed of vanity; but when this acculation is brought againf him, it fhould not be forgotten that he enjoyed advantages which rendered that confpicuous in him from which no man can claim an exemption. We know not the man who would not have been vain to poffefs fo much of Dr Johnfon's converfation, and proud to give it to the world, in hopes that he who venerated Johnion would not be unthankful to his biographer. From the Doctor, however, he appeared to his friends to have imbibed a portion of melancholy, of which indeed he complained himfelf during the laft two or three years of his life; and he flew for relief where pertaps it is belt to be found, to the fociety of the learned and the gay. Here, as he confeffes, he had rather too litle than too much prudence;" and, with more attachment to the activity of rural life, he might, probably, have lengthened his days. But as his "belief in revelation was unfhaken," and his religious impreflions deep, and recurring frequently, let us hope that he has now attaised that Itate from which imperfection and calamity are alike excluded.

BOTANY-bay, See Nezu Holland, Encycl.; and New South W Whes in this Supplement.

BOTETOURT, a county in Virginia, on the Blue Ridge, W. of which are the Sweet Springs, about 4^{2} miles from the Warm Springs. Its chief town is Fin-calle.-Morse.

BOUDOIR, LE, a fimall ifland in the Pacific Ocean, S. lat. 17. 52. W. long. from Paris, 15.25. ; difcovered April 2, 1768 , by Bouganville. This ifland, the year before, had been difcovered by Wallis, and natned Ofraburg. - The natives call it Maitea, according to the report of Capt. Cook, who vifited it in 1769. Quiros difcovered this ifland in 1606 , and called it la Dezara.—ib.

BOUGUER (Peter), an eminent mathematician and mechanical philofopher, was born at Croilic, in Lower Bretagne, on the roth of February iGy8. His father John Bouguer, who was likewife a confaderable mathematician, was then profeffor royal of hydrography at that port; and under him young Bouguer Itudicd mathematics, and the application of them to Mipbailding, almolt from the period when he began to fpeak; fo that he was a proficient in thefe fciences betore he had reached beyond the years of childhood. He was, however, removed from Croific to the Jefuits col. lege at Vannes, where at 13 years of age, he triumphed, in a public contelt, over a profeffor of mathematics, who had advanced a mathematical propofition errone. oufly. Two years after this he loft his father, whom he was appointed to fucceed in the office of hydrographer, after being publicly examined, and giving the mof complete proof of his being duly qualified to fill the vacant chair. He was indeed qualified by prudence as well as by fcience; for however furprifing it may be,
he filled it both with dignity and with abilities, though Bongurr. then not more than 15 years of age.

In the years 1727,1729 , and 1731 , he gained the prizes fucceflively propofed by the Academy of Sciences for eflays on the belt way of equipping fhips with malts, on the beft method of obferving at fea the height of the fars, and on the molt advantageous way of obferving the dechination of the magnetic needle or the variation of the compafs. In 1729 he publifhed an Optical Effay upon the Gradation of Light, in which he examined the intenfity of light, and determined its degrees of diminution in pafing through different pellucid mediums, and particularly in traverfing the earth's atmofphere. Of this effay, which was written upon a fubject that till then had not attracted the attention of philofophers, the reader will find fome account in the Encyclopedia, usder the title Optics, $n^{\circ} 3^{2}$, \&c.

In 1730 Douquer was removed from the port of Croific to that of Havre. In 173 : he obtained, in the Academy of Sciences, the place of affociate geometrician, vacant by the promotion of Maupertuis to that of penfioner; and in 1735 he was promoted to the office of penfioner aftronomer. The fame year he was fent on the commilition to Scuth America, along with Meffrs Godin, Condamine and Jeuflieu, to determine the meafure of the degrees of the meridian, and the figure of the earth. In this painful and troublefome bufinefs of ten years duration, chefly among the lofty Cordelier mountains, our author, befides attending to the object of the voyage, made many fcientific obfervations, viz. on the effect of the Cordeliers on the polatity of the magnetic needle; on the expanfion and contraction of metals and other fubitances, by the fudden and alternate changes of heat and cold among thofe mountains ; and on the refraction of the atmofphere from the t ps of the fame, with the fingular phenomenon of the fudden increafe of the refraction, when the far can be obferved below the line of the level. He likewife afcertained the laws of the denfity of the air at different heights, from obfervations made at different points of thofe enormous mountains; he difocovered that the mountains have an effect upon a plummet, though he did not affign the quantity of that effect ; he found out a method of eltimating the errous commited by navigators in determining their route; gave a new conftrution of the lorg for meafuring a thip's way; and made feveral other ufeful improvements. M. Bouguer made at different times fome important experiments on the famous reciprocation of the pendulum; he invented in 1747 the heliometer (fee that article Encyci.); and made many difcoveries relating to the intenfity of light (for which fee Optics-Index, Encycl.) His unremitting application to ftudy undermined his health, and he died on the 15 th of Augul 1758, in the G1f year of his age.

Of his works which have been publithed, the chief are, 1. The Figure of the Earth, determined by the Oblervations made in South America, 1749 , in 4 to. 2. Treatife on Navigation and Pilotage, Paris, 1752 , in 4to. This work has been abridged by M. La Caille, in one volume 8vo, 1768. 3. Treatife on Ships, their Conltruction and Motions, in 4 to, 1756 . 4. Optical Treatife on the Gradation of Light, firft in 1729, then a new edition in 1760 , in 4 to.

His papers that were inferted in the Memoirs of the
Academy

B O U

Bonrger Academy are very numerous and important: as in the Bourbon. Memoirs for 1726, comparifon of the force of the folar and lunar light with that of candles: 173 I , obfer-
vations on the curvilinear motion of hodies in mediums; 1732, upon the new curves called the lines of purfuit; 1733 , to determine the fpecies of conoid, to be conftructed upon a given bafe which is expofed to the fhock of a huid, fo that the impulfe may be the leatt poffible; determination of the orbit of comets; 1734, compatifon of the two laws which the earth and the other planets muft obferve in the figure which gravity caufes them to take; on the curve lines proper to form the arches in domes; 1735 , obfervations on the equinoxes; on the length of the pendulum ; 1736 , on the length of the pendulum in the torrid zone ; on the manner of determining the figure of the earth by the meafure of the degrees of latitude and longitude; 1739, on the allronomical refractions in the torrid zone ; oblervations on the lunar eclipfe of the 8th September 1737, made at Quito; 1744, fhort account of the voyage to Peru by the members of the Royal Academy of Sciences, to meafure the degrees of the meridian near the equator, and from thence to determine the figure of the earth; 1745 , experiments made at Quito and divers other places in the torrid zone, on the expanfion and contration of metals by heat and cold; on the problcm of the malting of fhips; 1746, treatife on fhips, their Atructure and motions; on the impulfe of fluids upon the fore parts of pyramidoids, having their bafe a trapezium ; continuation of the fhort account given in 1744 of the voyage to Peru for meafuring the earth; 1747 , on a new confruction of the log, and other inftruments for meafuring the run of a fhip; ${ }^{1748 \text {, of the diameters of the larger pla- }}$ nets; the new inftrument called a beliometer, proper for determining them, with obfervations of the fun; obfervation of the eclipfe of the moon the 8th of Auguft
 tions, obferved in the torrid zone, with remarks on the manner of confructing the tables of them; figure of the earth deternined by MM. Bouguer and Condamine, with an abridgement of the expedition to Peru; $\mathbf{1 7 5 O}^{\mathbf{0}}$, obfervation of the lunar ecliple of the $13^{\text {th }}$ December 1750; 1751, on the form of bodies moft proper to turn about themfelves, when they are pufhed by one of their extremities, or any other point; on the moon's parallax, with the eftimation of the changes cauled in the parallaxes ty the figure of the earth; obfervation of the lunar eclipfe the 2d of December 1751; 1752, on the operations made by feamen calied corrations; 1753, obfervation of the paffage of Mercury over the fun the 6th of May 1753; on the dilatations of the air in the atmofphere; new treatife of navigation, containing the theory and practice of pilotage, or working of fhips; 1754, operations, \&sc. for diftinguihing, among the different determinations of the degree of the meridian near Paris, that which ought to be preferred; on the direation which the Atring of a plummet takes; folution of the chief problems in the working of thips; 1755 , on the apparent magnitude of objects; fecond memoir on the chief problems in the working of fhips; 1757, account of the treatife on the working of thips; on the means of meafuring the light.

BOURBON Co. in Kentucky, between Licking and Kentucky rivers, contains 7837 inhabitants, including ac8 Alaves.-Morse.

Bourbon, a pof town and capital of the above county, flands on a point of land formed by two of the fouthern branches of Licking River; 22 miles N. E. of Lexington, 21 eaflerly of Lebanon, and 749 W . S. W. from Philadelphia, and contains about 60 houfes, a Baptift church, a court-houfe and goal. There are feveral valuable mills in its vicinity.-ib.

BOW, is a townhip in Rockingham co. NewHampfhire, on the W. bank of Merrimack River, a little S. of Concord. It contains 568 inhabitants. $-i b$.

BOWDOIN, a townhip in Lincoln co. Diftrict of Maine, on the N. ealtern bank of Androfcoggin River ; diftant from York, N. eafterly, 36 miles, and from the mouth of Kennebeck River 6 miles, and 166 N . E. of Bofon. It contains $9{ }^{9} 3$ inhabitants.-ib.

BOWDOINHAM, a townfhip in Lincoln co. diftrict of Maine, feparated from Pownalborough E. and Woolwich S. E. by Kennebeck River. It has 455 inhabitants, and lies 171 miles N. E. from Bofton.- $i b$.

BOWLING Green, a village in Virginia, on the poft road, 22 miles S. of Frederickßurg, 48 N . of Richmond, and 25 N. of Hanover court-houfe.-ib.

BOXFORD, a fmall townfhip in Effex co. Mafachufetts, having 925 inhabitants. It lies on the S.E. fide of Merrimack River, 7 miles wefterly of Newburyport. In the fouthernmoft of its two parifhes is a bloomery.-ib.

BOYLSTON, a townhip in Worcefter co. Maffachufetts, having 839 inhabitants; 10 miles N. E. of Worcefter, and 45 N . W. of Bufton. It was incorporated in 1786, having been a parifh of Shrewfoury fince 1742 ; and contains by furvey, 14,396 acres of land, well watered, and of a rich foil.-ib.

BRADDOCK's Field, the place where Gen. Braddock, with the firt divifion of his army, conlinting of 1400 men, fell into an ambufcade of 400 men, chiefly Indians, by whom he was defeated and mortally wounded, July 9, 1755. The American militia, who were difdainfully turned in the rear, continued unbroken and ferved as a rear guard, and, under Col. Wafhington, the late Prefident of the U.S. A. preferved the regulars from being entirely cut off. It is fituated on Turtle Creek, on the N. E. bank of Monongahela River, 6 miles E. S. E. from Pittibarg.-ib.
Braddock's Bay, on the S. fide of Lake Ontario, 42 miles W. from Great Sodus, and 65 E. from Fort Niagara.-ib.

BRADFORD, Eaf and $W_{\rho} \ell$, are townfhips in Chefter co. Pennfylvania.-ib.

Bradford, a townhip in Effex co. Maflachufetts, fituated on the S. fide of Merrimack River, oppofite $H_{a v e r h i l l, ~ a n d ~} 10$ miles W. of Newburyport. It has t $x 0$ parihes, and 1371 inhabitants. Quantities of leather thoes are made here for exportation; and in the lower parifh fome veffels are built. Several freams fall into the Merrimack from this town, whicl fupport a number of mills of various kinds.- $i b$.

Bradford, a townfhip in Hillborough co. NewHampthire, cortaining 217 inhabitants, incorporated in $1760 ; 20$ miles E. of Charletown.- $i 6$.

Bradford, a townihip in Orange co. Vermont, on the W. bank of Connecticut River, about 20 miles above Datmouth College, having $65+$ inhabitants. There is a remarkable ledge of rocks in this townfhip,

$\mathrm{B} \quad \mathrm{R}$ E $\quad\left[\begin{array}{lll}145\end{array}\right] \quad \mathrm{B} \quad \mathrm{R} \quad \mathrm{E}$

Braintree as much as 200 feet high. It appears to harg over, and threaten the traveller as he paffes. The fpace between this ledge and Connecticut River is fcarcely wide enough for a road.- $i b$.

BRAINTREE, a townflip in Orange co. Vermont, lies 75 miles N. eattward of Bennington. It joins Kingfon weftward, Randolph on the ealtward, and contains 22 I inhabitanis.-ib.

Braintree, one of the molt ancient townthips in Norfolk co. in the fate of Maffachufetts, was fettled in 1625, and then called Mount Woolafon, from the name of its founder. It lies on a bay, 8 miles E. of S. from Bolton, and contained, before its divifion, 400 houfes and 277 I inhabitants. Great quantities of granite !tones are fent to Bolton from this town for tale. The bay abounds with fifh and fea fowl, and particularly brants. This town is noted for having produced, in former and latter times, the firt characters both in church and ftate; and, in diftant ages, will derive no fmall degree of fame, for having given birth to Jonn Adams, the firlt Vice Prefident, and the fecond Prefident of the United States of America; a man highly difinguifhed for his patriotifm, as a citizen ; his juftice, integrity, and talents, as a lawyer ; his profound and extenfive erudition, as a writer ; and his difeernment, firmnefs, and fuccefs, as a foreign miniter and Itatefman.-ib.

BRANDON, a harbor on the N. fide of Long Inand, New-York, 9 miles W. of Smithtown, and the fame diltance from Hampitead Plain.-ib.

Brandon, a townhip in Rutland co. Vermont, fituated on both fides of Otter Creek, containing 637 inhabitants, and is about 60 miles northerly from Bennington. Here Brandon Creek empties into Otter Creek from the N. E.-ib.

BRANDYWINE Creek, falls into Chriftiana Creek from the northward, at Wilmington, in Delaware flate, about 25 miles from its N . and N. weftern fources, which bothrife in Chefter co. Pennfylvania. This Creek is famous for a bloody battle, fought Sept. in, 1777, between the Britilh and Americans, which lafted nearly the whole day, and the latter were defeated with confiderable lofs: but it was far from being of that decifive kind which people had been led to expect, in the event of a meeting between the hoftile armies, on nearly equal terms, both as to numbers, and the nature of the ground on which each army was fituated. It was fought at Chadds Ford, and in the neighbourhood of, and on, the ftrong grounds at Birmingham church.-ib.

Brandywine, a townfhip in Chefter co. Pennfylva-nia.-ib.

BRANDFORD, a townthip in New.Haven co. Connecticut, confiderable for its iron works. It lies on the S. fide of a river of the fame name, which runs into Long Ifland found, Io miles E. from New.Haven, and 40 S . of Hartford.-ib.

BREAD is fo effential an article of food that every ufeful method of making it fhould be generally known. Much has accordingly been faid on that fubject (Encycl.) under the titles Baking, Barm, Breao, and Yeast; but, fince the laft of thefe articles was publifhed, we have feen, in Dt Townfon's Travels in Hungary, a method of making bread at Debtetzen; of which, as it
may fometimes be adopted with advantage in this coun. try, an account may, with propriety, be inferted herc.

In the baking of this bread, a fubftitute is ufed for yeaft, which is thus made: 'Two good handfuls of hops are boiled in fuur quarts of water: this is poured upon as much wheaten bran as can be well moitened by it: to this are added four or five pounds of leaven; when this is only warm, the mafs is well worked together to mix the different parts. This mafs is then put in a warm place for 24 hours; and after that it is divided into fmall pieces, about the fize of a hen's egg, or a fmall orange, which are dried by being placed upon a board, and expofed to a dry air, but not to the fun; when dry, they are laid by for ufe, and may be kept a half year. This is the ferment; and it may be ufed in the following manner: For a baking of fix large lo.ives, fix good handfuls of thefe balls, broken into fragments, are taken and diffolved in feven or eight quarts of warm water. This is poured through a fieve into one end of the bread-trough, and three quarts more of warm water are poured through the fieve after it, and what remains in the fieve is well preffed out. This liquor is mixed up with fo much flour as to form a mafs of the fize of a large loaf: this is Itrewed over with flour ; the fieve, with its contents, is put upon it, and then the whole is covered up warm, and left till it hat rifen enough, and its furface has begun to crack: this forms the leaven. Then 15 quarts of warm water, in which fix handiuls of falt have been difiolved, are poured through the fieve uponit, and the neceffary quantity of flour is added, and mixed and kneaded with the leaven: this is covered up warm, and left for about an hour. It is then formed into loaves, which are kept in a warm room half an hour; and after that they are put in the oven, where they remain two or three hours, according to the fize. The great advantage of this ferment is, that it may be made in great quantities at a time, and kept for ufe. Might it not on this account be ufeful on board of ihips, and likewife for armies when in the field?

Bread, in whatever way ir is made, is a dear article, and it may be a defirable object to many of our readers to know at what puice the baker can afford to fell it. This depends upon the price of wheat, the quantity of flour which the wheat may give, the lofs at the mill, the expence of grinding, and the expence of baking.

Of the price of wheat we can fay nothing with precifion, becaufe it varies according to the groodnefs or badnefs of the crop, and other circumftances; but a bufhel of Effex wheat, Wincheiter mealure, may be taken, on an average, as weighing 60 lb . Sixty pounds of wheat will yielt, exclufive of the lofs in grinding and dreffing, $45^{\frac{1}{2}} \mathrm{lb}$. of that kind of flour which is catled feconds; which alone is ufed, through the greatelt part of Engiand, for bread, and which makes, indecd, the belt of all bread, tirough not the whitelt. A peck of this four, weighing 14 lb . will take up between fox and feven pints of water, and give $181 b$. of exceilent hread; or a buthel of flour, weighing 56 lb . will yield 72 lb . of bread. The expence of baking a builal of fuch flour is, in Effex and fome other Englifl counties, about ninepence; viz. yealt, on an average, twopence; falt, before the late tax, one balfpenny; and baking, fixpence.

Bread.

But ficonds is not all that is got from wheat. tufhel of 60 lb . of wheat gives, belides $45^{\frac{1}{2}} \mathrm{lb}$. of feconds, 13 lb . of offal, i. e. of poliards and bran; for the utme ft l ofs in grinding and drefling a buthel of whert fhould not exceed t pound S nunces. The millers, indeed, ufually reckon en two pounds of lods; but we can finy, with the utmef confiderce, that the actual lofs is rather lefs than we have fated it. A correlpondent of nurs, on whofe accuracy we can depend, weighed, in $\mathbf{1 7 9 5}$, two bufhels, Winchefter meafure, the one of white and the cther of red wheat, and found the weight of them both to be $t 22 \mathrm{lb}$. This wheat was grown by his own fervants, and it yelded $121 \frac{x}{2}$ pounds of meal, fo that there was here but $\frac{x}{2} \mathrm{lb}$. lut of two buthels, or of 122 lb . in grinding. He admits that he fiffered the flones to turn too clofe, and that the lof fheuld the efore have been fomewhat greater. The meal was dreffed, as the wheat had been ground, nonder his own eye; and every poflible precantion being taken to prevent his being deceived in the refult, he had of Acur, or feconds, $93^{\frac{1}{2}} \mathrm{lb}$. and of bran and pollard $25 \frac{5}{2} \mathrm{lb}$. To that he luft, of two buftiels, but $2 \frac{1}{2} \mathrm{lb}$. both in grinding and drefling. The offal, or bran and pollard, being dreifed in a bolting mill, yielded as follows:

Sharps -	6 lb .0 oz	
Fine pollard	5	8
Coarfe pollard	7	8
Broad bran	5	8

There was lolt, therefore, in bolting, only one pound ; and of the tharps, about three pounds, if fifted, would have been good flour. Indeed were the fharps and fine pollard to be added to the flour, the bread would, perhaps, be better, and more wholefome, than without fuch addition. From thefe data, which we believe to be very accurate, it will be eafy to calculate, if the puice of wheat be given, what foonld be the price of flour per buflhel and peck, the price of bread per pound, and the quantity of bread that fhould be fold for a fhlling.

It is a fict, however, which thould be attended to, that lives are not always of the fame weight, though rade of ciual quantities of the very fame dough. This was fully afcertained fome years ago at Paris. On a violent complaint that the bread was not always of the firme flandard weight, the bakers of the city were cal. led before the police officers. They admitted the fact, that loaves, baked at the fame time, and in the fame oven, were feldom, if ever, of the fame weight; but they infifted, that they contained, each, the fandard quantity of dough, and that the variety of weight among them mult proceed from fome caute, which they diad not pretend to alcertain. The matter was referred to the Royal Academy of Sciences, which appointed one of its members to fuperintend, for fome days, the whole procefs of baking. This being done it was lound, that, of loaves baked in a large oven, thofe were always heavieft which occupied the centre of the oven, and that the bakers were innocent of the crime with which they were charged. The fact, we think, may eafily be accounted for. Even in an oven there mult be fome condenfation of feam; and, from the very thape of the oven, the greatef quantity mult be condenfed towards the centre. Hence the loaves in the
centre are neceffarily wetter and heavier than thofe round the circumference, if the plain of the oven has been equally heated.

BREAD of Rice might occafionally be of great ufe in many countries doring a fcarcity of wheat; but the nethod of making it is not generally known. It is indeed impoffible to make bread of the flour of sice, which is harfh and dry like fand or afhes, by treating it in the manner in which wheat Hour is commonly treat. ed; and therefore it has been propofed to mix it with an equal quantity of the flour of rye. But this method of ufing the flour of rice is a very uncertain remedy in cafe of want; fince we can have no rice bread if we have not rye. We are taught, however, in the Fournal des Sciences, des Lettres, et des Arts, how to make excellent bread from rice alone, by a methoul which the author of the memoir fays he learned from the natives of America.

According to this method of making the wifhed-for bread, the firft thing to be done to the rice is, to reduce it to flour, by grinding it in a mill, or, if we have not a mill, it may be done in the following manner: Let a certain quantity of water be heated in a faucepan or caldron; when the water is near boiling, let the rice we mean to reduce into flour be thrown into it : the velfel is then to be taken off the fire, and the rice left to foak till the nest morning. It will then be found at the bottom of the water, which is to be poured off, and the rice pet to drain upon a table placed in an in. clined pofition. When it is dry, it mult be beat to powder, and paffed through the fineft fieve that can be procured.

When we have brought the rice into flour, we mult take as much of it as may be thought neceftary, and put it into the kneading-trough in which bread is generally made. At the fame time we muft heat fome water in a faucepan or other veffel, and, having thrown into it fome handfuls of rice, we muit let them boil together for fome time: the quantity of rice mult be fuch as to render the watcr very thick and glutinous. When this glutinous matter is a little cooled, it mult be poured upon the rice-flour, and the whole munt be well kneaded together, adding thereto a little falt, and a proper quantity of leaven. We are then to cover the dough with warm cloths, and to let it fand that it may rife. During the fermentation, this pafte (which, when kneaded, muft have fuch a proportion of four as to render it pretty firm) becomes fo foft and liquid that it feems impollible it fhould be formed into bread. It is now to be treated as follows:

While the dough is rifing, the oven mut be heated : and, when it is of a proper degree of heat, we mult take a ftewpan of tin, or copper timned, to which is fixed a handle of fufficient length to reach to the end of the oven. A little water muft be pat into this fewpan, which mult then be filled with the fermented pafte, and covered with cabbage or any other large leaves, or with a theet of paper. When this is done, the few. pan is to be put into the oven, and pufhed forward to the part where it is intended the bread thall be baked; it mult then be quickly turned upfide down. The heat of the oven ats upon the pafte in fuch a way as to prevent its fpreading, and keeps it in the form the Atewpan has given it.

In this manner pure sice-bread may be made; it

B R E

Breakneck comes out of the oven of a fine yellow colour, like paf
${ }^{11}$ Brewing. try which has yolk of eggs over it. It is as agreeable to the tafte as to the fight; and may be made ufe of,
like wheat-bread, to put into broth, sec. It muft, however, be obferved, that it lofes its goodneis very much as it becomes ftale.

It may be here remarked, that the manner in which Indian corn is ufed in fome countries, for making bread, can only produce (and does in fact produce) very bad dough, and of courfe very bad bread. To employ it advantageouny, it fhould be treated like rice; and it may then be ufed, not only for making bread, but alfo for paftry.

BREAKNECK Hill, oppofite Butterhill, at the northern entrance of the highlands, in Hudion River, about 60 miles N. of New.York. On the S. fide of this hill, about half the diftance as you afcend it, the rocks are fo fituated as to give the fpefator a tolerable idea of a human face, with a nofe, mouth and double chin, but withont a forehead. On the nofe grows a tree of confiderable fize, which has the appearance only of a ihrub.-Morse.

BREWING is an art of valt importance, and has accordingly been explained in the Encycloprdia. A few improvements, however, have been made in the art, which, though not noticed in that Work, feem to be worthy of general attention, and, therefore, to deferve a place in this Supplement. The fird, of which we fhall give an account, is an invention of $\mathrm{Mr}_{1} W_{1 \mathrm{~L}}$ biam Ker of Korfold, in the county of Tweedale, for the faving of hops, and, at the fame time, giving to the liquor, whether ale, beer, or porter, a fuperior Havour and quality.

The fteam which arifes from the boiling copper is known to be ftrongly impregnated with the effential oil of the hops, in which their flavour confifts. In. ftead, therefore, of allowing it in efcape and evaporate, as it does in the common mode of brewing, Mr Ker contrives to preferve and condenfe it, by means of a winding-pipe fixed to the copper, fimilar to the worm of a ftill, or by a flraight pipe paffing through cold water, or any other cooling medium. The oil and water, thus obtained, are returned into the worts when boiled, or the cil, after being feparated from the water, along with which it had been exhaled, is returned into the worts after they are boiled: and the watery part, which, after the oil is feparated, ftill continues impregnated with the arnmatic tafte and bitter of the hop, is returned into the next copper or boiling-veffel; and fo on from one copper or boiling-velfei into another. By this procefs a confiderable part of the hop and flavour, which is lof in the ordinary mode of brewing, is preferved: the flavour of the liquor is improved by the prefervation of the finer parts of the aromatic oil: and the ale and beer are better fecured from any tendency to acidity or putrefaction, and therefore muf be fitter for home confumption and exportation. For this invention, which is certainly fimple, and we think rational, Mr Ker obtained a patent dated March 4.1788.

On the $4^{\text {th }}$ of June ${ }^{1790}$, Mr John Long of Long. villc, in the county of Dublin, Ireland, obtained a patent for an improvement in brewing, refembling in one particular, this invention of Mr Ker's. To his invention, however, he gives the name of an entire nesu me-
thod, in all the efential parts, of brewing gond malt-liquor; and therefore, as it comprehends the whole pio. cefs of brewing, we flall lay it before nur readers in the words of its anthor.
" 1 . For the better extracting from malt, place near a malh-tun a thallow copper or other velfel that will readily heat ; the curb of which to be on a level with the tun, and to contain from two to fix hogheads, according to the dimenfion of the tun, more or lefs; and, at the lower end of the copper, have a cock from two to five inches diameter, more or lefs, to conduct the heated liquor from the copper into a tube which palfes down the extenal part of the tun, and enters it through an aperture about inx inches from the bottom; then forming two revolutions, more or lefs, through the body of the tun, and commmicating its heat to the wort as it paffes through the tube ; and then, at a convenient diftance from the place it firl entered, it runs from the tun into a ciftern or tub, fituate as near as convenient to the copper or heating-veffel. In the tub or ciftern is to be placed a pump, for the purpofe of conveying the cooler liquor back to the copper or hat ing-veffel again; there to receive the heat of 208 degrees, more or lefs (which it will require after the firt half-hour), and then convey it through the mafning-tun as before, and in the fame manner, as long as the working brewer or diftiller may think neceflary, to raife the mafhing-tun to any degree of heat required. By adhering to the foregoing procefs, the firt liçuor may, with the greatelf fafety, be let upon the malt from 20 to 30 degrees lower than the prefent practice; by which means it operates with gentlenefs, opens and expands the malt and raw corn, and prepares it for the reception of tharper or warmer liquor, fo as to extract the whole of the faccharine quality from the malt and raw corn. By the foregoing method, the malhing-tun, inftead of lofing its firt heat (which it does by the prefent practice), continues to increafe in heat every moment, by conveying the heated liquor through the tube into the tun ; by which means, at the end of two hours, the working brewer or diftiller can have the tun brought to any degree of heat lie fhall think beft fuited to the different qualities of the malt or raw corn. Perfons who would wifh to fave expence, may heat their mathing-tun at the fide or bottom by a large piece of metallic fubstance made fire proof, and fixed therein; which, in fome degrce, will anfwer the ead propofed, but with great trouble and delay.
" 2 . To prevent the wort from receiving a difagreeable flavour while in the under-back, a tube mult be placed at the cock of the mathing-tun, to receive the wort as it comes off, and convey it to a great ciltern or refrigeratory, which is fupplied with a Areans of water. The wort, palling through that medium in a firal tule, foon Icfes that heat which fo often proves prejudicial to the brewer and diftiller in warm weather: then pais it from the tube into a velfel in which pumps are placed, to return the woits into the copper for the purpofe of boiling off. All veffels for receiving the cold wort mulf be placed lower than the fource whence the wort comes.
" 3. As the great object of long boiling the wort is remedied, by my invention of taking the extract from the hops in a feparate manner from the worts, 1 boil

Brewinge n my worts no longer than from 15 to 20 minutes; and, by purfuing that method, I fave much time and fuel, and regulate $m y$ lengths accordingly.
"4. I fteep my hops, the preceding day to which they are to be ufed, in a copper or other veffel, with as much fluid, blond-warm, as will cover the hops, where it is to remain over a flow fire at lealt 14 hours, clofe covered; the copper at the tenth hour not to be of a greater heat than 175 degrees, continuing flow until the latt hour. Then l bring the copper gradually to a fimmer or flow boil; in which ftate l let it remain about 10 minutes, and then run off the fluil; and this I do :t the fame time the filt wort is boiled off, that thes may both pals together through the refrigeratory into the fermentation or working-tun. A fter the foregoing operation, I cover the hops again with other liquor, and bring the copper to boil as foon as convenient, and let it remain in that ftate a confiderable time, until the fecond worts are boiled off. Then I pats the hop-fluid with the wort, the fame as in the firft inftance; and, if there is a third wort, I boil my hops it third time with fmall worts and pafs it off as before; by which means I gradually obtain the whole of the effential oil and pleafing bitter from the hops, which is effectually preferved in the beer.
" 5 . To cool worts. When the wort is boiled off, it is conducted from the cock of the copper or boiler into a tube of a proper dimenfion, which paffes the wort from the cock to the large ciftern or reftigeratory, and there performs feveral revolutions, in a fpiral manner, through the lame tube; which is immerfed in conitant fupply of cold water, where it lofes the greatelt part of its heat in a flort time, and thence continues a itraight courfe through the tube, a little elevated and of a luitable length, placed in brick work, until it meets a fnall refrigeratory, fupplied with colder water from a refervoir made for that purpofe at the head of the works; whence a continual ftream runs on the furface of the tube down to the great refrigeratory, cooling the wort as it paffes, in order to enable the working brewer or difilter to fend it into the backs or working-tuns at whatever degree of heat he fhall think proper. Thete is ne other difference between brewer and difiller in this procefs, but that the diftiller immediately paffes the ftrong wort from the mathing-tun to the back, through the fame machinery above inferted, and the tubes may be made of lead, or any other metallic fubttance.
"6. To enable me to brew in the warm fummer months, l fink my backs or working tuns at leaft to a level with the ground, but if deeper the better, and cover them clofely by an arch made of bricks, or other materials, that will totally exclude the atmofpheric air from them. I place them as near as poffible to a loring or fand-drain, as their depth will naturally draw the water thence, which mult be fo contrived as to paif or flow round the backs or tuns. I then introduce a large tube, which palfes through the tuns, and keeps the wort feveral degrees lower than can polfibly be done by the prefent practice; by which means I can produce a complete fermentation even in the dog-days.
" 7. In cold or frofty weather, if the tun and backs fhould lofe the firlt heat, intended to carry it through the procel's by the foregning method, you may convey a fupply of warm or boiling water by the tube, which
paffes through the body of the backs or tun, communicating its heat. which rifes to any degree the working brewer thall think proper: by purfuing this method, in the coldelt feafon, I never want a fermentation."

We regret that we cannot with propriety fate to our seaders, under this article, a fummary of Mr Rich. ardfon of Hull's Pbilofophical Principles of Brewing; for as the author has a new edition of his work in the prefs, it is our duty rather to refer to it, than to quote from a former edition, which contains not his laft improvements. See Fermentation and Malt, in this Supplement.

BRIAR Creck, a water of Savannal River, in Georgia. Its mouth is about 50 miles S. E by S. from Augufta, and 55 N . welterly from Savannah. Here Gen. Prevoft defeated a party of 2000 Americans, under Gen. Afh, May 3, 1779 ; they had above 300 killed and taken, befides a great number drowned in the river and fwamps. The whole artillery, baggage and ftores were taken.-Morse.

BRIDEALE. See Scotale in this Supplement.
BRIDGE. See that article (Encycl.), and Arch in this Supplement. A wooden-bridge, of large fpan, fhould be conftructed on the principles explained under the title Roof (Encycl.) See alfo Centre (Suppl.)

BRIDGETOWN, in Cumberland co. diftrict of Maine, haring Hebron on the N. W. and Bakerltown (on the W. fide of Androfcoggin River,) on the S. E. which three fettlements lie on the northern fide of Little Androfoggin River. It contains 329 inhabitants and lies 34 miles N. by N W. from Portland; and 156 N. E. from Bofton. Bridgetown confifts of large hills and vallies: the highland affords red oak, which are often three feet and tometimes four, in diameter ; and 60 or 70 feet without any branches. The vallies are covered with sock maple, bafs, afh, birch, pine, and hemlock. There is a curiofity to be feen in Long Pond, which lies moftly in Bridgetown, which may afford matter of feculation to the natural philofopher.

On the eafterly fide of the pond is a cove which extends about soo reds farther E. than the general courfe of the fhore, the bottom is clay, and fo thoal that a man may wade 50 rods into the pond. On the bottom of this cove are ftones of various fizes, which, it is evident from various circumfances, have an annual motion towards the fhore ; the proof of this is the mark or track left behind them, and the bodies of clay driven up before them. Some of thefe ftones are 2 or 3 tons weight, and have left a track of feveral rods behind them ; having at lealt a common cart-load of clay before them. 'The thore of the cove is lined with thefe frones, which, it would feem, have crawled out of the water.-Miorse.

Bridgetown, Cumberland county, New-Jerfey, lies on both fides Cohanzie Creek, 20 miles from its mouth ; and reffels of ioo tons can come up here. It has about 50 houres, and a brifk trade. Another Bridgetown is on the great Alage road, between Philadelphia and New-York, 6 miles W. of Elizabeth town.-il.

Bridgetown, a poft town in Queen Annes co. Maryland, lies on the weftern fide of Tuckahoe Creek, 8 miles E. from Centreville, as far S. E. from Church Hill, and 65 S. W. from Philadelphia.

Alfo the name of a town in Kent co. in the fane ftate, fituated on the N. bank of Chefter River, (which

Briar

Bridgetown.

$\mathrm{B} R \mathrm{i} \quad\left[\begin{array}{lll}149] & \mathrm{B} & \mathrm{R} \\ \mathrm{I}\end{array}\right.$

Brilge- fcparates this county from that of Ann) 7 miles S. E. water II Brindley. from Crofs Roads ; and 4 foutherly from Newmarket. - Morse.

BRIDGEWATER, a townfhip in Grafton co. New-Hamplhire, incorporated in 1769 , and contains 281 inhabitants.-ib.

Bridgewater, a townhip in Somerfet co. NewJerfey, which contains 2,578 inhabitants, including 377 1laves.-ib.

Bridgewater, a confiderable townthip in Plymouth co. Maffachufetts, containing 1975 inhabitants ; 5 miles N. E. from Raynham ; about 30 miles E. of S. from Bofon, in which large quantities of hard ware, nails, \&c. are manufactured.-ib.

Bridgewater, a townfhip in Windfor co. Vermont, about 55 miles N. E. of Bennington, containing 293 inliabitants.-ib.

BRIDPOR'Г, a townflup in Addifon co. Vermont, on the E. fhore of Lake Champlain; about 72 miles N. N. W. from Bennington. It has $4+9$ inlabitants. -ib.

BRIMFIELD, a townfhip in Hampfhire co. Maffachufetts, lituated E. of Connecticut River; having 1211 inhabitants; 34 miles S. E. of Northampton, and 75 W . of Bofton.-ib.

BRINDLEY (James), was born at Tunfted, in the parifh of Wormhill, Derbyfhire, in 1716 . His father was a fmall freeholder, who diffipated his property in company and field amufements, and neglected his family. In confequence, young Brindley was left deftitute of even the common rudiments of education, and till the age of 17 was cafually employed in rultic labours. At that period he bound himfelf apprentice to one Bennet, a mill-wright at Macclesfield, in Chefhire, where his mechanical genius prefently developed itfelf. The mafter being frequently abfent, the apprentice was ofeen left for weeks torgether to finifh pieces of works concerning which he had reccived no intruction; and Bennet, on his return, was often greatly altonifhed to fee improvements in various parts of mechanifm, of which he had no previous conception. It was not long before the millers difcovered Brindley's merits, and preferred him in the execution of their orders to the mafter or any other workm tn. At the expiration of his fervitude, Bennet being grown into years, he took the management of the bulinefs upon himfelf, and by his filll and induftry contributed to fupport his old mafter and his family in a conifortable manner.

In procefs of time Brindley fet up as a mill-wright on his own account ; and by a number of new and ingenious contrivances greatly improved that branch of mechanics, and acquired a high reputation in the neighbourhood. His tame extending to a wider circle, he was employed, in 1752, to erect it water-engine at Clifton, in Lancalhire, for the purpofe of draining fome coal mines. Here he gave an effay of his abilitics in a kind of work for which he was afterwards fo much diftinguifhed, driving a tunnel under ground through a rock nearly 600 yards in length, by which water was brought out of the Irwell for the purpofe of turning a wheel fixed 30 feet below the furface of the earth. In 1755 he was employed to execute the lareer wheels for a filk mill at Congleton; and another perfon, who was engaged to make other parts of the machinery, and to fuperintend the whole, proving incapable of completing

Suppl. Vol. I.
the work, the bufinefs was entirely committed to Brindley; who not only executed the original plan in a mafterly manner, but made the addition of many curious and valuable improvements, as well in the conftruction of the engine itfelf, as in the method of making the wheels and pinions belonging to it. About this time, too, the mills for grinding flints in the Staffordhire potteries received various ufeful improvements from his ingenuity.

In the year 1756 he undertook to erect a fleam engine, upon a new plan, at Newcatle-under-Line ; and he was, for a time, very intent upon a variety of contrivances for improving this ufeful piece of mechanifm. But from thefe defigns he was, happily for the public, called away to take the lead in what the event has proved to be a national concern of capital importance-the projecting the fyltem of canal navigation. The Duke of Bridgewater, who had formed his defign of carrying a canal from his coal-works at Worfley to Manchefter, was induced by the reputation of Mr Brindley to confult him on the execution of it; and having the fagacity to perceive, and frength of mind to confide in, the original and commanding abilities of this felf-taught genius, he committed to him the management of the arduous undertaking. The nature of this enterprife has already been defcribed (Encycl. vol. IV. p. 80) ; it is enough here to mention, that Mr Brindley, from the very firt, adopted thofe leading principles, in the pro. jecting of thefe works, which he ever after adhered to, and in which he has been imitated by all fucceeding artifts. To preferve as much as poffible the level of his canals, and to avoid the mixture and interference of all natural ftreams, were objects at which he conftantly aimed. To accomplifh thefe, no labour or expence was fpared; and his genius feemed to delight in overcoming all obftacles by the difcovery of new and extraordinary contrivances.

The moft experienced engineers upon former fyftems were amazed and confounded at his projects of aonueduct bridges over navigable rivers, mounds acrofs deep valleys, and fubterranecus tunnels; nor could they believe in the practicability of fome of thefe fchemes till they faw them effected. In the execution, the ideas he followed were all his own; and the minuteft, as well as the greateft, of the expedients he employed, bore the ftamp of originality. Every man of genius is an enthufiaft. Mr Brindley was an enthufialt in favour of the fuperiority of canal navigations above thofe of rivers; and this triumph of art over nature led him to view with a furt of contempt the winding flream, in which the lover of rural beauty fo much delights. This fentiment he is faid to have exprefled in a friking manner at an examination before a committee of the Houfe of Commons, when, on being afked, after having made fome contemptuous remarks relative to rivers, what he conceived they were created for? he anfwered, "to feed navigable canals." A direct rivalry with the navigation of the Irwell and Merfey was the bold enterprize of his firf great canal ; and fince the fuccefs of that defign, it has become common, all over the kingdom, to lee canals accompanying, with infulting parallel, the courfe of navigable rivers.

After the fuccefsful execution of the Duke of Bridgewater's canal to the Meriey, Mr Brindley was employed in the revived defign of carrying a canal from that X
river

B R I

Brindey. river to the Trent, through the counties of Chefter and Stafford. This undertaking commenced in the year 1766: and from the great ideas it opened to the mind of its conductor, of a fcheme of inland navigation which flould connect all the internal parts of England with each other, and with the principal fea-ports, by means of branches from this main fem, he gave it the emphatical name of the grand trunk. In executing this, he was called upon to employ all the refources of his invention, on account of the inequality and various nature of the ground to be cut through: in particular, the hill of Harecafte, which was only to be paffed by a tunnel of great length, bored through ftrata of different confitency, and fome of them mere quickfand, proved to be a moft difficult, as well as expenfive, obllacle, which, however, he completely furmounted. While this was carrying on, a branch from the grand trunk, to join the Severn near Bewdley, was committed to his management, and was finifhed in 1772 . He alfo executed a canal from Droitwich to the Severn; and he planned the Coventry canal, and for fome time fuperintended its execution; but on account of fome difference in opinion he refigned that office. The Cher. terfield canal was the laf undertaking of the kind which he conducted, but he only lived to finifh fome miles of it. There was, however, fcarcely any defign of canalnavigation fet on foot in the kingdom, during the latter years of his life, in which he was not confulted, and the plan of which he did not either entirely form, or revife and improve. All thefe it is needlefs to enumerate ; but, as an inftance of the vaftnefs of his ideas, it may be mentioned, that, on planning a canal from Liverpool to join that of the duke of Bridgewater at Runcorn, it was part of his intention to carry it, by an aqueduct bridge, acrofs the Merfey, at Runcorn Gap, a place where a tide, fometimes rifing fourseen feet, rufhes with great rapidity through a fudden contraction of the channel. As a mechanic and engineer, he was likcrife confulted on other occafions; as with refpect to the draining of the low lands in different parts of Lineolnfhire and the Ifle of Ely, and to the cleanfing of the docks of Liverpool from mud. He pointed out a method, which has been fuccetsitully practifed, of building fea-walls without mortar; and he was the anthor of a very ingenious improvernent of the machine for drawing water out of mines by the contrivance of a lo. fing and a gaining bucket.

The intenlity of application which all his various and complicated employments required, probably fhortened his days; as the number of lis undertakings, in fome degree, impaired his ufefulnefs. He fell into a kind of chrouic fever, which, after continuing fome years, with little intermifion, at length wore out his frame, and put a period to his life on September 27.1772 , in the 56th year of his age. He died at Tunhurlt, in Staffordfhire, and was buried at New Chapel in the fame county.

In appearance and manners, as well as in acquirement, Mr Brindley was a mere peafant. Unlettered, and rude of fpeech, it was eaficr for him to devife means for executing a defign than to communicate his ideas concerning it to others. Formed by nature for the profeflion he affumed, it was there alone that he was in his proper clement; and fo occupied was his mind with his bufinefs, that he was incapable of relax-
ing in any of the common amufements of life. As he had not the ideas of other men to affift him, whenever a point of difficulty in contrivance occurred, it was his cuftom to retire to his bed, where, in perfect folitude, he would lie for one, two, or thric dajs, pondering the matter in his mind till the requifite expedient had pre. fented itfelf. This is that true infpiration which poets have almoft exclufively arrogated to themfelves, but which men of original genius in every walk are actuated by, when, from the operation of the mind acting upon itfelf, without the intrufion of foreign notions, they create and invent.

A remarkably retentive memory was one of the effential qualities which Mr Brindley brought to his mental operations. This enabled him to execute all the parts of the molt complex machine in due order, without any he!p of models or drawings, provided he had once accurately fettled the whole plan in his mind. In his calculations of the powers of nachines, he followed a plan peculiar to himfelf; but, indeed, the only one he could follow without inftuction in the rules of art. He would work the quefion fome time in his head, and then fet down the refult in figures. Then taking it up in this itage, he would again proceed by a mental operation to another reful:; and thus he would go on by fages till the whole was finithed, only making ufe of figures to mark the feveral refults of his operations. But though, by the wonderful powers of native genius, he was thus enabled to get over his want of artificial method to a certain degree, yet there is no doubt that when his concerns became extremely complicated, with accounts of parious kinds to keep, and calculations of all forts to form, he could not avoid that perplexity and embarraffment which a readinefs in the procelles carried on by pen and paper can alone obviate. His eftimates of expence have generally proved wide of reality; and he feems to have been better qualified to be the contriver, than the manager, of a great defign. His moral qualities were, however, highly refpectable. He was far above envy and jedloufy, and freely communicated his improvenments to perfons capable of receiving and cxecuting them; taking a liberal fatisfaction in forming a new generation of engineers able to proceed with the great plans in the fuccefs of which he was fo deeply interefted. His integrity and regard to the advantage of his employers were unimpeachable. In fine, the name of Brindley will ever keep a place among that fmall number of mankind who form eras in the art or fcience to which they devote themielves, by a large and durable extenfion of its limits.

BRISSOT (J. P.), acted fo confpicuous a part in the French revolution, that a fair detail of the prancipal events of his life would undoubtedly be acceptable to all our readers. A fair detail, however, of fuch a life, we believe it impolible at prefent to give; for characters like Briffot's are almoft always milieprefented both by their friends and by their enenies; and till the troubles which they have excited, or in which they have been engaged, have long tubfided, the impartial truth is nowhere to be found.

In a fulfome panegyric, under the denomination of The Life of \%. P. Briffot, faid to be written by himfelt, we are told, that he was born January 14, 1754, and that his father was a traiteur, or "the keeper of an eating-houle," but in what place we are not informed.
$\underbrace{\text { Briffot. }}$ Our anther, however, affures us, that the old man was in eafy circumitances, and that he employed all the means refulting from them to give to his numerous family a good education. The fibject of this memoir was intended for the bar; but not relifhing the fudies neceflary to fit him tor the profeftion of the law, or, if we choofe to believe him, having a mind too pure and upright for the ftudy of chicanc, he relinquithed the purfuit after five years of drudgery!

To relieve his wearinefs and difguft, he applied himfelf, he fays, to literature and the iciences. The ftudy of the languages was above all others his favourite purfuit. Chance brought him acquainted with two Englifhmen on their travels through France : he learned their langrage; and this circumftance, he tells us, de. cided his fate.
"It was at the commencement of my pafion for that language (continues he) that I made the meta. morphofis of a diphthong in my name, which has fince been imputed to me as to heinous a crime. Born the thirteenth child of my family, and the fecond of my brothers in it, I bore, for the fake of diftinction, according to the cuftom of Beauce, the name of a village in which my father poffeffed fome landed property. This village was called Ouarville, and Onarville became the name by which I was known in my own country. A fancy fruck me that I would calt an Englifh air upon my name : and accordingly I fubftituted, in the place of the French diphthong ou, the w of the Englifh, which has precifely the fame found." For this puerile affectation, which was certainly not criminal, he jutifies himfelf by the example of the literati of the 16 th and $17^{\text {th }}$ centuries, who made no feruple of Grecifing and Latinifing their appellatives.

Having proferuted his fudies for two years, he had an application from the Englith proprietor of a paper then much in circulation, and intitled Le Courser de l'Europe. This man having drawn upon himfelf an attack from government, felt and yielded to the neceffity of printing his paper at Boulogne-fur-mer. It was his wifh to render it interelling to the French in the department of mifcellaneous intelligence ; which he therefore wifhed to fubmit to the fuperintendency and arrangement of Briffot, who reprefents himfelf as for fome moments hefitating. The profeffion of a journalif, fubject to a liconfer, was repugnant to his principles; yet it fecured his independence, and put into his power the means of profecuting an inveftigation of conffitutions and of the ficiences. After fome ridiculous reafoning from the origrinal Atations of Bayle, Paffel, and Rouffau, he at laft accepted of the employment, :nd became enamoured of it, " becaufe (fays he) it enabled me to ferve talents and virtue, and, as it were, to inoculate the French with the principles of the Englith conftitution.

This employment, however, did not laft for any length of time. The plan of the proprietor of the Cousrier was overthrown by adminiftration, and Briffot quitted Boulogne to return to his firt fudies. Having informed us of this fact, he makes an extravagant pretence to unfullied virtue, and calls upon the inhabitants of the city which he had left to bear witnees, not only that he had no vices, but that he had not even the feeds of any one of the vices which his ablerfaties, it feems, lad laid to his charge.
" Doubtlefs (fays he), too eager to publiff my ideas, I conceived that the proper moment had arrived, and I felt an inclination to commence with an important work. Revolting, from the very inftant of my beginning to reflect, againf religious and political tyranny, I folcmnly protefted, that thenceforward I would confecrate my whole life to their extirpation. Religious tyranny had fallen under the redoubled ftrokes of Rouffau, of Voltaire, of Diderot, and of D'Alembert. It became neceffary to attack the fecond;" and this was a tatk which the vanity of Briffot led him to confider as referved for him.

What Voltaire and his friends meant by religious tyranny, and how they conducted their attacks againft it, are matters, alas! too well known to all Europe; and as our author chofe thefe philofophers for his guides, we might infer, without much degree of mitake, what he underfood by political tyranny, and by what means he meditated its- extirpation. But he has not left us to make this difcovery by inference.
"It became neceflary (fays he) to break in pieces the political idol, which under the name of monarcly, practifed the moft violent defpotifm; but to attack it openly, was to expofe the aflailant without the pollibility of ferving mankind. It was by a fide blow that it was to be wounded molt effectually;" and therefore he refolved to begin his operations by attacking fome of thofe abufes which might be reformed without apparently thaking the authority of the prince.

Our readers, at leaft the fober part of them, will probably think, that this mode of attack is not peculiar to Briffot, but that it has been practifed, or attempted to be put in practice, by alpiring demagogues in all ages and countries, who have uniformly begun their career of innovation by exciting the public mind againft thofe abufes in government, of which the exiftence cannot wholly be denied. The fubject to which our author thought fit to call the attention of his countrymen, was the criminal jurifprudence: a fubject, fays he, which, with the exception of fome particulars that had been fuccefsfully inveftigated by Beccaria and Servan, no writer had thoroughly confidered in a philofophical point of view. Thinking himfelf fully equal to this tafk, he drew up a general plan; and in the year 1780 publithed his Theory of Criminal Laws, in two vols 8 vo. This work, favourably received by foreigners, applituded by fome journalifts, and pulled to pieces by others, procured him the friend hip of the warmeft advocates for human liberty, in whofe opinion the defects of his plan were highly pardonable, on account of the energy confpicuous in his remarks. This publication was foon followed by two difcourfes which gained the prize in 1782 at the Academy of Chalons-\{ur-Marne; the one upon the reform of the criminal laws, and the other on the reparation due to innocent perfons unjuflly accufed.

It is natural to fuppofe that the government beheld with an evil eye thefe writings, which, under pretext of dragging into light the abufes of the criminal laws, infinuated dangerous principles on the nature of go. vernment in general.

His next work was intitled, A Pbilofophical Library of the Criminal Laws, in 10 vols; the true object of which was to dilfeminate in France thofe principles of X 2
liberty
 \square

B R I [152] B R I

Eriffot. liberty which guided the Englifh and the Americans in framing and expounding their laws.

But the fludy of legiflation and politics had not entirely drawn him off from that of other fciences; fuch as chemiftry, phyfics, anatomy, theology, \&c. Thefe he conftantly cultivated with ardour ; but acknowledges that in each he met with obfcurities, and that in every quarter truth efcaped from his refearches. He therefore fat down to inveftigate the nature of truth, and the proper method of attaining to it in every department of refearch; and the refult of his labours was a kind of novum organum, by which he feems to have expected that Bacon's work would be buried in oblivion; and to this important volume he gave the title of Concerning Truth; or Thoughts on the Means of attaining Truth in all the Branches of Human Knozuledge. This volume was meant as nothing more than the introduction to a greater work, in which he propofed to inveftigate what is cortuin in knowledge and what doubtful, and then to ftrike the balance of the account.

He was prevented, however, from completing his plan, which he regrets exceedingly; for, as he affirms, with becoming modedy, his work would certainly have amended its readers! But the French government happened to think otherwife; his aim, which, he fays, was to lead mankind to reflect on their rights, was perceived, and he was accufed to the minifter as a feditious writer. The career of genius was ftopped by the dread of the Bafile; and be was obliged to take refuge in London. There it was his wifh to create a univerfal confederation of the friends of liberty and truth, and to eltablith a centre of correfpondence and union with the learned and the politicians of Europe. 'This dark defign, however, was fruftrated by the treachery, as it would appear, of his affociates, who had bound themfelves, he fays, by the moft facred oaths, to affilt him, and had offered to fign articles even zuith their awn blood.

Finding himfelf unable to proceed directly to the object which he had in view, he refolved to eulighten bis countrymen gradually, and to begin with exciting their love and admiration of the Englifh confitution. That conftitution, which he had inveltigated on the fpot, appeared to him a model for thofe focieties which were defirous of changing their form of government. It was but little known, he fays, in France (the work of De Loline being at that time only in the hands of the learned) ; and to make it known was to make it beloved, was to render it defired. But the French minifters flood upon their guard, and it became neceflary to deceive them. He refolved therefore to bring forward a journal, written actually in London, and profeffing to contain only a defcription of the feiences and arts of England, whilf the greater part of it was to be occupied in reality by an inveftigation of the Engli/b conflitution.

After many difficulties, the miniftry granted a privilege for this journal, being publifhed in London, to be reprinted in Paris; and it firlt appeared in 1784. "In the twelve numbers which have been publified (fays the author), the friends of liberty mult have perceived, that if, on the one fide, I endeavoured to inculcate more juft ideas than had hitherto bcen entertained concerning this celebrated illand; fo, on the other, I refolutely made my advances toward that important end which has perpetually prefided over all my labours, the univerfal emancipation of men."

His affairs calling him at this time to Paris, he was arrefted and conveyed to the Baftile on the 12th of July 1784. In this conduct of the government we cannot perceive any thing very tyrannical or arbitrary, fince he confeffes, that in the 16 th page of the firt number of his Journal, he had fuffered the fecret and fa. vourite aim, which always guided his pen, to become difcernible. He was, however, difcharged from prifon on the 5 th of September, and returned with increafed zeal to his former employments.
"This perfecution (fays he), far from extinguifhing the ardour of my wifhes to inculcate the principles of freedom, ferved only to inflame it the more." Accordingly, in 1785, he publifhed two letters to the Emperor Jofeph II. concerning the right of emigration, and the right of people to revolt. The firlt of thefe letters, which, though well known in Germany, were in France fuppreffed by the police, was occafinned by what the author calls the ridiculous and barbarous edict againft emigration; and the fecond by the punithment of Horiab the chief of the Walacbian infurgents. In this laft letter he lays it down as a maxim, that all people under fuch a government as that of the Walachians, have from nature a facred right to revolt, a right which they can and ought to exercife. In the fame fpisit he brought out, in 1786, his Philofophical Letters on the Hiftory of England, in 2 vols, and A Critical Examination of the Travels of the Marquis de Chatelleux in North America.

The French revolution appearing to him extremely diftant, notwithfanding all his efforts to haften it, he refolved to leave France for the purpofe of fettling in America. His project received the approbation of feveral, whofe fentiments were congenial with his own. But as it was thought imprudent to tranfport numerous families to a country fo far off, without thoroughly knowing it, Briffot was engaged to proceed thither, to examine the different places, to obferve the inhabitants, and to difcover where and in what manner the eftablinhment they had propofed might be moft advantageoully fixed. He had fome time before inflituted a fociety at Paris for accomplifhing the abolition of the negro trade, and for foftening the condition of the flaves. At the period of his departure, this fociety confiled of a confiderable number of diftinguifhed members, and he was commilfioned to carry the firft fruits of their labours to America. His ftay there, however, was not fo long as he was defirous of making it. In the beginning of 1789 he was recalled by the news of the French revolution, which he conceived might probably produce a change in his own meafures and in thofe of his friends. This idea added to other circumftances, accelerated his return. The fire had blazed forth in his native country. Hope (fays he) animated every heart ; the moft diftinguifhed champions had engaged in the conteft ; I too became defirous to break a lance, and I publifhed my Plan of Condurt for the Deputies of the People."

This, and other works of a fimilar kind, of which he loudly boafts the merits, raifed him high in the favour of the republican part of the nation, and he became prefident of his diffrict; where he acted, acecrding to his own account, with great uprightnefs in the municipality, in the firf committee of enquiries, and as an elector. At laft he became a member, firit of the National AJembly, and after its dififution, of the Sangui-

B R I [153] B R O

Briftol. nary Convention; and by fome means or other got to be the leader of a party called fometimes the Girondifts, and fometimes the Briffotines. From that period the principal events of his life were involved with the public tranfactions of the nation, of which we have given an account in the Encylopodia under the titie Revolution (fee that article, $\mathrm{n}^{0} 101$-182.) The Girondiff faction was denounced by the Mountain, and Briffot fuffered by the guillotine on the 3 oth of November 1793. He fell indeed by a very unjuft fentence; but his fall was the natural confequence of that anarchical tyranny under which no man had contributed more than he to fubject his native country.

BRISTOL, a townthip in Lincoln co. Diftrict of Maine, having 1718 inhabitants; ditant $20+$ miles N. E. from Bofton, and 8 N. of Pemaquid Point. - Morse.

Bristol, a county in the fouthern part of Maffachufetts, E. of a part of the fate of Rhode Ifland. It has 15 townhips, of which Taunton is the chief; and 31,709 inhabitants. The great fachem Phillip refided here; and it was called by the Indians Parwkunnazukutt; from which the nation derived the name; but were fometimes fyyled the Wampo-noags.-ib.

Bristol, Co. in Rhode Inand Rate, contains the townfhips of Briftol, Warren, and Barrington; having 321 I inhabitants, inclufive of 98 flaves. It has Brifol co in Maflachufetts, on the N. E. and Mount Hope bay E.-ib.

Bristol, a fea port town, and chief of the above county, lies on the weftern fide of the peninfula called Briftol neck, and on the E. fide of Briftol bay; including Poparqualh neck, and all the N. and E. part of Briltol neck, to Warren, N. ; and to Mount Hope bay, E. It is about 3 miles from Rhode Inand; the ferry from the S. end of the townhip being included, which is little more than half a mile broad; 13 miles northerly from Newport, 24 S. E. from Providence, and σ_{3} from Botton.-Brifol fuffered greatly by the ravages of the late war; but is now in a very flourifhing ftate, having 1406 inhabitants, inclufive of 64 flaves. It is beautiful for fituation-a healthful cli-mate-rich foil, and a commodious, fafe harhor. Onions, in confiderable quantities, and a variety of provifions and garden fuff, are raifed here for exportation. N. lat. . o. 40.-ib.

Bristol, a townhip in Hartford co. Comnecticut, 3 miles W. of the city of Hartford.-ib.
Mristol, a town in Bucks co. Pennfylvania, if miles S. S. E. from Newtown, and 20 N. E. from Philadelphia. It ftands on Delaware River, oppofite Burlington, in New-Jerfey; and has about 50 or 60 houfes. It is a great thoroughfare, and is noted for its mills of feveral kinds.-ib.

Bristol, a townfhip in Philadelphia county.-ib.
Bristol, a fmall town in Charles county, Mary-land.-ib.

Bristol, a townhip in Addifon co. Vermont, E. of Vergennes, having 211 inhabitants.- ib.

Bristol Baj, on the N. W. coaft of N. America, is formed by the peninfula of Alarka on the S. and S. E. and by Cape Newnham on the N.; and is very broad and capacious. A tiver of the fame name runs into it from the E.-ib.

BROOKFIELD, in the S. W. part of Worcefter Broolfieid co. Maffachufetts, is among the firit towns as to age, wealth and numbers, in the county; containing 3100 inhabitants. The great poft road from Bofton to N. York runs througl it. It is 6_{+}miles W. of Bofton and $2 \% \mathrm{~W}$ of Worcefter. The Indian name of this town was Quaboag. The river which fill retains the name paffes through it; and like its other ftreams and ponds, abounds with varions kinds of fin. Here is iron ore, and large quantities of ftone which yield copperas, and have a ftrong vitriolic quality. This town was fettled by people from Ipfwich, in 1660 , and was incorporated in $1673 .-i b$.

Brookfield, a townhip in Orange co. Vermont, has 42 I inhabitants, and lies 80 miles northerly from Bennington.--ib.

Brookfield, a townhip in Linco!n co. diftrift of Maine, $1+$ miles above Norridgewalk on Kennebeck River, and was formerly called Seven mile Brook.-ib.
Brookfield, a town in Montgomery co. New-York. By the ftate cenfus of 1796,160 of its inhabitants are electors.

Brookfield, a townfhip in Fairfield co. Connecticut, 6 miles N. N. E. from Danbury.-ib.
BROOKHAVEN, a townihip in Suffolk co. Long Inand, New-York, containing 3,224 inhabitants. Of thefe 233 are flaves; and by the ftate cenfus of 1796 , 535 only are electors. The compact part of the town contains about 40 houfes, an Epifcopalian, and a Pref. byterian clurch. It is 60 miles E. of New-York.-ib.

BROOKLYN, a townfhip in Kings co. New-York, on the W. end of Long Inand, having 1603 inhabitants; of thefe 405 are flaves; and $22+$ are eleetors, by the flate cenfus of 1796. Here are a Prefbyterian church, a Dutch Reformed church, a powder magazine, and fome elegant houfes which lie chiefly on one freet. Eaft River, near a mile broad, feparates the town from New.York.-ib.
Brooklin, a towndhip in Wyndlam co. Conneeticut, about 20 miles N. of Norwich.-ib.
BROTHERTON, an Indian village adjoining New-Stockbridge, (N. York) inhabited by about 150 Indians, who migrated from different parts of Connecticut, under the care of the Rev. Mr Occom. Thefe Indians receive an annuity of 2160 dollars, which fum is partly appropriated to the purpofe of maintaining a fchool, and partly to compenfate a fuperintendant, to tranfact their bufinefs, and to difpofe of the remainder of their money for their benefit.-ib.

BROWN (Dr John), author of the Elementa Medicinc, \&cc. was born in the village of Dunfe, or, as fome fay, Lintlaws, in the county of Berwick, in the year 1735-6. His parents were of mean condition, but much refpected in the ueighbourhood for the integrity of their lives. His father gained his livelihood in the humble capacity of a day-labourer; while his mother contributed her fhare towards the fupport of the family by the profits arifing from a milch cow.

Such were the perfons who, in an obicure part of the country, gave birch to a fon deflined, at a future period, to make a diftinguifhed figure in the republic of letters; and from whom originated a fytem of the animal economy, which, whatever be its real merits, has undoubtedly produced a confiderable revolution in the practice of medicine.

B R O

Browa.
At the age of three or four gears, young Drown was put to a reading fchool in Dunfe, which he bimfelf commemorates as the place rather of his education than of his nativity. Here, under the tuition of an old womall, he very early began to exhibit marks of that flrength of mind for which he was afterwards fo eminently diftinguilhed. In the fhort period of a year he became able to read with facility any part of the Bible, and acquired over his clafs-fellows that fuperiority which he ever after maintained both at fchool and college.

It was almoft immediately after his entrance into this fchool, that his infatiable defire of reading commenced; and fo unremitting was his application, that he is faid never to have been found, even at thofe hours which children much more advanced in life devote to amufement, without a book in his hand.

While he was making this rapid progrefs in the rudiments of literature, he fuffered what mult have ap. peared to be a very heavy lofs in the deat'? of his father; but his mother foon afterwards mariied a worthy man of the fame name, whofe care and attention fupplied the place of a father to her fon. This man being a weaver, defigned to educate his fon-in.law to the fame bulinefs, and began to inftruct him in his art when he was about nine years of age, but the tafte which young Drown had already acquired for letters, made him look with difgult on the infipid employment of a weaver. His Itep-father was no tyrant, and his mother was affectionate. They were both proud of the talents which at to early a period of life had appeared in their fon, ard they felt no inclination to flruggle with the invincible averfion which he expreffed to the bufinefs for which they intended him.

Another circumfance, however, contributed in no fmall degree to make them recal their original rcfolution. They were both of that feat of religionitts which in Scotland are called Scceders (fee Seceders, Encyl.); and it was fuggetted to them by fome perfons of their own perfuation, who had remarked the uncommon abilities of the boy, that he might one day prove an able fupport and promoter of their tenets as a preacher. He was accordingly, much to his fatisfaction, taken away from the bulmefs to which he had conceived fuch a diftefte, and fent to the grammar-fchool of Dunfe, which was taught at that time by a gentleman of the name of Cruickflank, eminent for his grammatical knowledge. Here he appears to have fpent fome years with uncommon advantage and happinefs; during which he was etteemed by all the country round as a kind of prodigy. Like Johnfon, and many other men of the highefit celebrity, he united in the fame perfon uncom. mon powers of mind, with no lefs ftrength of body, as indeed his appearance indicated; and in his yonth he infured his own perfonal importance among his fchoolfellows, by excelling them not lefs in athletic exercifes than in the tafks preferibed by their mafter. He was particularly fond, when a boy, of practifing the pugiliftic art; and indeed until the latt period of his life he was obferved by his friends always to view an exhibition of that kind with peculiar relifh. He alfo prided himfelt much in being a fout walker ; and mentions his having, in one day, accomplifhed, when but fifteen years of age, a journey of fifty miles between Berwick-uponTweed and Morpeth in Northumberland. When far. ther advanced in life, he travelled on foot from four in
the afternoon of one day to two in the afternoon of next day, with the fhort interval of one hour's reft! But as one of his biographers very juftly obferves, "we have feen that he could make a more rational ufe of his frength than merely to flake it againft time and fpace.*"

His early years while at fchool were marked by the docs. moft rigid attachment to his feet. So frict indeed were his religious fentiments, if a boy of ten or eleven can be faid to have any fentiments deferving to be called religious, that he would have conceived the holding of any communion with the eflablifhed church as a kind of profanation. An event; however, happened, fome time between the eleventh and thirteenth years of his age, which produced a total and unexpected revolution in his religious opinions. At a meeting of the provincial fynod of Merfe and 'Teviotdale, he was prevailed upon, though not without manifefting much reluftance, to accompany a party of his fchool-fellows to the parifh church of Dunfe. The confequence of this tranfgreffion, as he had dreaded, was an immediate fummons to appear before the feffion of the Seceding congregation ; to which, through pride, not choofing to attend, in order to preclude a formal expulfion, he voluntarily abjured their tenets, and openly avowed his apoftacy to the eftablihment.

All changes in religion which are not the confequence of candid inveftigation are dangerous. He who leaves one fect he knows not why, will quickly abandon, with as little reafon, that to which in a fit of paffion he had haltily joined himfelf. From the moment of his quitting the communion of the Seceders, Browa's religious ardour fuffered a gradual abatement; and though, to pleafe his mother, he continued to profecute his fludies with a view to the office of a clergyman in the church of Scotland, his opinions became daily more and more lax, and his life of courfe lefs and lefs regular. It was, however, a confiderable time before he admitted, in their full extent, thofe principles of irreligion which he afterwards avowed; for upon his firlt perufing the Ef. fays of Mr Hume, though his own zeal was then much cooled, he exprefled great indignation at their dangerous tendency.

At the age of twelve years he had been employed by Mr Cruickfhank as a lind of ufher in the fchool of Dunfe; and that gentleman having declared that his knowledga of the Latin language was equal to his $\mathrm{o}: \mathrm{n}$, his fame as a fcholar was fo fread over the country, that at the age of thirteen he was entrufted with the education ot a gentleman's fon in the neighbourhood, when he quitted the fchool and his beloved mafter. In his new fituation, however, he remained not long. Dr Beddoes conjectures, that to the Itiffnefs of pedantry he added the fournet's of a higot, and was therefore a difagreeable inmate of the family. That a boy of thisteen, proud of his talents, and prouder of his learning, thould have the Itiffnefs of a pedant, is indeed extremely probable ; it was the natural confequence of the praife with which he had been honoured by Mr Cruickfhank: but there is reafon to believe that of his original bigotry few traces now remained. The real caufe of his difmifion from the family, we are affured, was his pride; and as it mult have been the pride of parts, it confirms the firf part of Dr Beddoes's conjecture.
It feems he was much difpleafed that, when company
were

B R O [155] B R O

Brown.
were at dinner, he was not defired to remain after the cloth was removed ; and yet if he was then only thirteen years of age, it is not eafy to conceive for what purpofe he fhould have ftaid. He could not poflibly know much of the world, or of any thing likely to employ the converfation of country-gentlemen; and we cannot help thinking, that the maRer of the houfe would have treated his guefts with rudenefs had he detained among them a saw boy to liften to every unguarded expreffion which might efcape them over their wine. It would appear, however, that he was not unwilling to give the tutor of his fon an opportunity of difplaying his abilities, when fuch fubjects were introduced as he knew him to have ftudied; for a difpute having arifen, one day after Brown had retired to his own room, concerning the decrees of Providence, he feut to requeft his opinions on that abitrufe fubject. By the meffenger Brown returned a verbal anfwer, that " the decrees of Providence are very unjuft, for having made blockheads lairds."

Mir Cruickflank had fome time before requefted him to return to the fituation which he had formerly held in the fchool of Dunfe; and we cannot wonder that, immediately after making this infolent anfwer, be found it convenient to comply with his requelt. He was now about fifteen, and he continued in the fchool till the 20th year of his age; during which time, from the conltant habit of teaching the Latin and Greek lan. guages, he acquired a wonderful facility in reading both theere languages, and in writing the former, though he wrote not with talte.

About this time it occurred to him that he might turn his claffical acquirements to more account, by becoming a private teacher of languages in Edinburgh. To that city he accordingly repaired, where, while he obtained a livelihood as a teacher, he propofed at the fame time to purfue his theological ftudies at the univerfity. But an accident happened to him liere which made him altogether change the plan he had come upon; and the death of his mother, after a refidence of fome time in Edinburgh, abfolved him, as he thought, from the promife which he had made to her of appearing one day in the pulpit. Shortly after an unfucceisful competition for one of the chairs then vacant in the high-fchool, an application was made to a friend of his for a proper perfon to turn a medical thefis into Latin. Brown was recommended. He was limited to a certain time ; within which it appeared farce practicable to perform the tafk. He accomplithed it, however, and in fuch a ftyle of grammatical correetnefs and purity as far exceeded the general run of fuch productions. On this being remarked to him by his friends, be obferved, "that he now knew lis Atrength, and was ambitious of riding in his carriage as a phylician." He therefore determined to apply himfelf with ardour to the ftudy of medicine, to which this accidental circumftance alone direded his attention. Accordingly, at the commencement of the next winter feffion, he addreffed a Latin letter to each of the medical profeffors, and by them was prefented with tickets of admittance to their feveral claffes.

From fuch a favourable beginning, being of a very fanguine difpofition, he conceived the moth flattering expectations of his future fuccefs; and indeed for fome time he feems to have lived in affluent circumfances. His attainments were fo various, and in fuch requeft in

Edinburgh, that as a fingle man he could fcarcely fail to gain a competent living; for during the laft five years of his refidence under Mr Cruickfnank, to a thorough acquaintance with ancient hiftory, he had added a very confiderable knowledge of mathematics ; in which, among other branches of fience, he never had any objection to give inftructions. In the acquifition of that variety of knowledge which he poffeffed, he was greatly aflifted by a molt tenacious memory; to the retentivenefs of which an old fchool-fellow bears teftimony, by affirming, that " after once reading over the leffon, confifting of two netavo pages in Latin, he would lay afide the book, and prelect the whole over without miltaking a fingle word."

Brown, already in eafy circumftances for an individual, faw, or thought he faw, in the eftablifhment of a boarding-houfe for tudents a refource which would enable him to maintain a family; and in expectation of realifing this profpect, he married in 1765 , the daughter of a refpectable tradefman in Edinburgh. The diItinguilhed attention at that time paid him by Dr Cullen, in whofe family he lad become a ncceffary perfon, contributed in all probabillity to Arengthen his hopes that his houfe wonld be filled with proper boarders through the Doctor's recommendation. His fuccel's in this way for fome time anfwered his molt fanguine expestations; and his circumitances at one period were fo flourithing, that lee is faid to have kept a one-horle chaife.

It was, perhaps, the greateft misfortune that could have befallen Brown, that he poffelfed, in a high degree, thofe talents which make a man's company fought after by the gay and the diflipated: He was capable of "s fetting the table in a roar." We need not therefore wonder at lis frequently neglecting more necelfary purfuits to enjoy the conviviality of the numerous friends who courted his company; or that drinking and diffipation became habitual to him. He was as deficient in point of prodence as he excelled in genius. His houfe was filled with refpectable boarders; but as he lived too fplendidly for an income at beft but precarious, he became gradually involved in debt, and his affairs were ftill more embarraffed by the burden of a numerous family. Sonn after he began to be involved in thefe difficulties, he fuffered an additional lofs in being deprived of the patronage of Dr Cullen, in confequence of a difagreement that had taken place between them. This enmity, which had for fome time before fecretly fubfilted, probably from mutual jealoufy, was a length excited into an open rupture; firlt, by Dr Cullen's not exerting his intereft in procuring for Brown the theoretical chair of medicine, then vacant in confequence cither of the death or refiguation of Dr Alexander Monro Drummond; and, fecondly, by his rejecting, fome time after, Brown's petition for admittance into the Edinburgh Philofophical Society.

In 1776 Brown was elected prefident of the Medical Society; and the fame honour was again conferted on him in 17^{80}. He was led on, in the gradual manner he himfelf deferibes in his mafterly preface to the Elenenta Medicina, to the difcovery of his new doctrine; which, on dropping all correfpondence with his tormer friend and bencfactor, he now, for the firit time, began to illuftrate in a courfe of public lectures; and in thede he difplayed equal ingenuity and philofoshical protimdity.
$\underbrace{\text { Brown. }}$
he publithed the firt edition of the Elementa Medicin.t; a work which certainly proves its author to have been a man of uncommon genius and originality of thought. The circumfances in which this work was compofed refleet great honour on his abilities. He never retired to his fludy; but, totally abforbed in his own ideas, wrote with the greatelt tranquillity amidft the noife of ten children, occafionally fertling their childifh differences.
In the year 1779 , though he had fudied medicine ten or twelve years at the univerfity of Edinburgh, he was prevailed upon by his friends to take a degree at St Andrews, where he gave a conficuous proof of his facility in Latin compofition. He wrote a thefis, or inaugural differtation, in the tavern while the cloth was laying for dinner; and one of his companions, who was finging befide him, having uttered a falfe note, or fung out of time, Mr Brown, in the middle of his writing, fopped to fhew him how the fong ought to be fung, and then inftantly proceeded in his thefis.

His family liaving now become fo numerous as to render keeping a boarding houfe inconvenient, he had already for fome time given it up, and depended for fupport entirely on his practice as a phylician and his public lectures. At this time, the difputes between the Cullenians and the Brunonians (as the young men now Ryled themfelves) were carried on with fuch acrimony on both fides, in the different focieties, that it was not unufital for them to terminate in duels; and there exifts at this day, on the records of the Medical Society, a lav which it was thought expedient to enact, by which a member who challenges another for any thing faid in public debate incurs the penalty of expulfion.

Cbferving the ftudents of medicine frequently to feek intiation into the myfteries of free-mafonry, Dr Bown thought their youthful curiofity afforded him a chance of profelytes. In ${ }^{1} 784$, he inflituted a meeting of that fraternity, and intitled it the Loodse of the Roman Engle. The bufinefs was conducted in the Latin language, which he forke with the fame fluency as Scotch; and he difplayed much ingenuity in turning into Latin all the terms ufed in matonry.

As the terms on which he lived with his brethren of the faculty were fuch that he obftinately avoided meeting them even in corfultation, we may conclude that his own private practice was but limited. His friends affirmed, perhaps without fufficient proof, that cabals were formed againt him, and every advantage taken of the errors he was led to commit by his own imprudence. After a long feries of fruggles, therefore, hoping to meet wilh that encouragement among the Englifh of which he had been difappointed in his own country, he put in practice a plan upon which he had long meditated, and removed io 1786 with part of his family to London. Immediately on his arrival, an incident befel him, which Dr Beddoes fays he has heard the late Mr Murray, bookfeller in Fleet-freet, relate as a proof of his fimplicity. The peculiarity of his appearance, as he moved along a (a fort fquare figure, with an air of dignity, in a black fuit, which heightened the fcarlet of his cheeks and nofe) fixed the atten. tion of fome gentlemen in the Areet. They addrefled him in the dialect of his country. His heart, heavy as it muft have been, from the precarioufnefs of his fitua-
tion, and diftance from his accuftomed hannts, expanded at there agreeable founds. A converfation enfued; and the parties, by common confent, adjourned to a tavern. Here the franger was kindly welcomed to town; and, after the glafs had circulated for a time, fomething was propofed by way of fober amufement-a game at cards, or whatever the Doctor might prefer. The Doctor bad been too civilly treated to demur ; but his purfe was fcantily furnifhed, and it was neceffary to quit his new friends in fearch of a fupply. Mr Murray was a perfon to whom he had recourfe: the reader will not wonder that his interference thould have fpoil. ed the adventure.

A London fharper, of another denomination, afterwards tried to make advantage by the Dokor. This was an ingenious fpeculator in public medicines. He thought a compofition of the moft powerful fimulants might have a run, under the title of Dr Brozun's exciting pill; and, for the privilege of his name, offered hin a fum in hand by no means contemptible, as well as a fhare of the contingent profits. Poor Brown, needy as he was, fpurned at the propofal.

After this period, his life affords little vatiety of incident. Like Avicenna, his time feems to have been fpent between his literary purfuits and his pleafures. A fplendid manner of living, without an income to fupport it, had become habitual to him: The confequence was, that, from inability to difcharge certain debts he had contracted, he was thrown into the king's bench prifon; from which, however, he was, not long afterwards, releafed by the exertions of a few firm friends, particularly Mr Maddion of Charing-crofs, a gentleman univerfally refpected for his well known benevolence. As a proof of the activity he was fill capable of exerting, it will be fufficient to mention, that he accomplifhed the tranflation of his Elementa, with the addition of the fupplementary notes, within 23 days, laving been informed that a tranllation of the fame was about to be publifhed by another perfon.

Shortly before his death, the ambaffador of the king of Prufia, in the name of his mafter, made Dr Brown an offer of a fettlement in the court of Betlin; during the negociation of which, he was unexpectedly cut of by an apoplexy early in the morning of the 7th of Dtober 1758 , the day fucceeding that on which he lad delivered to a company of thirteen gentlemen the greater part of the introdußory lecture to his fecond courfe. At his death, he was between 52 and 53 years of age. His remains were interred in the church-yard of Sit James's, Picadilly; and the only monument left behind him to tranfinit his name to poflerity is his own works; which, when perfonal prejudice no longer fhall prevail againft their ingenious author, cannot fail to procure him all that deferved celebrity which they have already, in part, obtained in the different countries of Europe.

In 1787 , he publifhed his "Obfervations," without lis name, which he afterwards, however, refers to in the Elements as his own. The "Enquiry," faid to be written by Dr Jones, and which was compofed in as fhort a time as the generality of men would tranferibe a work of its extent, we can affirm, from undoubted authority, to be his production.
This iketch of the life of the unfortunate Dr Brown would be of very little value, if not followed by a view

B li O $\left[\begin{array}{lll}157\end{array}\right] \quad \mathrm{B} \quad \mathrm{R}$ O

Brown. of his fytem; but to give a complete view of that fyftem would far exceed the limits within which, in a work like this, fuch articles muft be confined. We trult, therefore, that our readers will be fatisfied with an abitract; and as we are neither the partifans nor opponents of the Doctor, and not very partial to any medical fylem whatever, we fhall content ourfeives with inlerting, in this place, the view which Dr Beddoes has given of Dr brown's fundamental propofitions in the valuable obfervations which he has prefixed to his edition of the Elements of Medicine.
"The varied Itructure of organized beings (fays Dr Beddoes), it is the bufinefs of anatomy to explain. Confcioufnefs, affilted by common obfervation, will diftinguifh animated from inanimate bodies with precifion more than fufficient for all the ends of medicine. The caufe of gravitation has been left unexplored by all prudent philofophers; and Brown, avoiding all ufelefs difquifition concerning the caufe of vitality, confines himfelf to the phenomena which this great moving principle in nature may be obferved to produce. His molt general propolitions are eafy of comprehenfion.
" 1. To every animated being is allotted a certain portion only of the quality or principle on which the phenomena of life depend. This principle is denomi. nated excitability.
" 2. The excitability varies in different animals, and in the fame animal at different times. As it is more intenfe, the animal is more vivacious or more fufceptible of the adion of exciting powers.
"3. Exciting powers may be referred to two claffes. 1. External, as heat, food, wine, poifons, contagions, the blood, fecreted fluids, and air. 2. Internal ; as the functions of the body itfelf, mufcular exertion, thinking, emotion and paffion.
" 4. Life is a forced Itate; if the exciting powers are withdrawn, death enfues as certainly as when the excitability is gone.
" 5 . The excitement may be too great, too fmall, or in jult meafure.
" 6 . By 100 great excitement, weaknefs is induced, becaufe the excitability becomes defentive; this is indiroch delility: when the exciting powers or ftimulants are withheld, weaknefs is induced; and this is direct de. bility. Here the excitability is in excefs.
" 7. Every power that acts on the living frame is fimulant, ol produces excitement by expending excitability. Thus, although a perfon, accultomed to animal food, may grow weak if he lives upon vegetables, fill the vegetable diet can only be confidered as producing an effect, the fame in kind with animal, though inferior in degree. Whatever powers, therefore, we imagine, and however they vary from fuch as are habitually applied to produce due cxcitement, they can only weaken the fyftem by urging it into too much motion, or fuffering it to fink into languor.
"8. Excitability is feated in the medullary portion of the nerves, and in the mufcles. As foon as it is any where affested, it is immediately affected every where; nor is the excitement ever increafed in a part, while it is generally diminifhed in the fyfem; in other words, different parts can never be in oppofite ftates of excitement.
"I have already fooken of an illuftration, drawn up by Mr Chriftie from a familiar operation, to facilitate Suppl. Vol. I.
the conception of Brown's fundamental pofitions. I introduce it here as more likely to anfwer its purpofe than if feparately placed at the end of my preliminary obfervations. 'Suppofe a fire to be made in a grate, filled with a kind of fuel not very combultible, and which could only be kept burning by means of a ma. chine containing feveral tubes, placed before it, and conftantly pouring ftreams of air into it. Suppofe alfo a pipe to be fixed in the back of the chimney, through which a conftant fupply of frefh fuel was gradually let down into the grate, to repair the walte occafioned by the flame, kept up by the air machine.

- The grate will reprefent the human frame; the fuel in it, the matter of life-the excitability of Dr Brown, and the fenforial power of Dr Darwin ; the tube behind, fupplying frefh fuel, will denote the power of all living fyltems, conltantly to regenerate or reproduce excitability; while the air machine, of feveral tubes, denotes the various fimuli applied to the excitability of the body; and the flame drawn forth in con. fequence of that application reprefents life, the product of the exciting powers acting upon the excitability.
- As Dr Brown has defined life to be a forced fatie, it is fitly reprefented by a flame forcibly drawn forth from fuel little difpofed to combufion, by the conftant application of Areams of air poured into it from the different tubes of a machine. If fome of thefe tubes are fuppofed to convey pure or dephlogiflicated air, they will denote the higheft clafs of exciting powers, opium, muik, camphor, fpirits, wine, tobacco, \&c. the diffufible Itimuli of Dr Brown, which bring forth for a time a greater quantity of life than ufual, as the blowing in of pure air into a fire will temporarily draw forth an uncrimmon quantity of flame. If others of the tubes be fuppofed to conver common or atmofpheric air, they will reprefent the ordinary exciting powers, or Aimuli, applied to the human frame, fuch as heat, light, air, food, drink, \&cc. while fuch as ennvey impure and inflammable air may be ufed to denote what have formerly been termed fedative powers, fuch as poifons, contagious miafmata, foul air, \&c.
- The reader will now probably be at no lofs to un. derfand the feeming paradox of the Brunonian fyfem; that food, drink, and all the powers applied to the bo. dy, though they fuppoit life, y et confume it ; for he will fee, that the application of thefe powers, though it brings forth life, yet at the fame time it waftes the excitability or matter of life, juft as the air blown into the fire biings forth more flame, but waltes the fuel or matter of fire. This is conformable to the common faying, "the more a fpark is blown, the brighter it burns, and the fooner it is feert." A Roman poet has given us, without intending it, an excellent illuftration of the Brunumian fyftem, when he fays,

> "Balnea, vina, Venus, confumunt corpora nofra;
> "Sed vitam faciunt balnea, vina, Venus.
> "Wine, warmth, and love, our vigour drain;
> "Yet wine, warmth, love, our life fultain."

Or to trannate it more literally,
"Baths, women, wine, exhauf our frame ;
"But life itfelf is drawn from them."
' Equally eafy will it be to illuftrate the two kinds Y
of
of dibility, termed direct and indirea, which, according to Brown are the caufe of all difeafes. If the quantity of fimulus, or exciting power, is proportioned to the quantity of excitability, that is, if no more excitement is drawn forth than is equal to the quantity of excitability produced, the human frame will be in a flate of healh, jult as the fire will be in a vigorous Itate when no more air is blown in than is fufficient to confume the freth fupply of fuel contantly poured down by the tube behind. If a fufficient quantity of atimulus is not applied, or air not blown in, the excitability in the man, and the fuel in the fire, will accumulate, producing direet debility ; for the man will become weak, and the fire low. Carried to a certain degree, they will occafion death to the firft, and extinction to the laft. If, again, an over proportion of Atmulus be applied, or too much air blown in, the excitability will foon be wafted, and the matter of fuel almolt fpent. Hence will arite indirect debilit?, producing the fame weaknefs in the man, and lownefs in the fire, as before, and equally terminating, when carried to a certain degree, in death and extinction.

As all the difeafes of the body, according to Dr Brown, are occafioned by direct or indireet debility, in confequence of ton much or too little llimuli, fo all the defects of the fire muth arife from direct or indirect lownefe, in confequence of too much or too little air blown into it. As brown taught that one debility was never to be cured by another, but both by the more judicious application of Atimuli, fo will be found the cafe in treating the defects of the fire. If the fire has become low, or the man weak, by the want of the needful quantity of Almulus, more malt be applied, but very gently at firf, and increafed by degrees, left a frong fimulus ap. plied to the accumulated excitability flould produce death; as in the cafe of a limb benumbed with cold (that is, weakened by the accumulation of its excitability in confequence of the abftraction of the ufual Al mulus of heat), and fuddenly held to the fire, which we know from experience is in danger of mortification, or as in the cafe of the lire becoming very low by the accumulation of the matter of tuel, when the feeble flame, affailed by a fudden and ftrong blaft of air, would be overpowered and put out, initead of being nourifhed and increaled. Again, if the man or the fire have been rendered indirectly weak, by the application of too much Atimulus, we are not fuddenly to withdraw the whole, or even a great quantity of the exciting powers or air, for then the weakened life and diminifhed flame might tink entirely; but we are by little and little to dimin:fh the overplus of fimulus, fo as to enable the excitability, or matter of fuel, gradually to recover its proper proportion. Thus a man who has injured bis conflitution by the abufe of fipituous liquors is not fuddenly to be reduced to water alone, as is the practice of fome phyficians, but he is to be treated as the judicious Dr Pitcairn of Edinburgh is faid to have treated a Highland chieftain, who applicd to him for advice in this lituation. The Doctor gave him no medicines, and only exacted a promife of him, that he would every day put in as much wax into the wooden queich, out of which he drank his whiky, as would receive the impreflion of his arms. The was thus gradually accumulating, diminifned daily the quantity of the whifky, till the whole queich was filled with was;
and the chieftain was thus gradually, and withqut injury to his conftitution, cured of the habit of drinking fpirits.

- Thefe analogies might be purfued farther ; but my olject is folely to furnifh fome general ideas, to prepare the reader for entering more eafily into the Drunonian theory, which I think he will be cnabled to do after perufing what I have faid. The great excellence of that theory, as applied, not only to the practice of phyfic, but to the general condur of the health, is, that it impreffes on the mind a fenfe of the impropriety and danger of going from one extreme to another. The human frame is capable of enduring great varieties, if time be given it, to accommodate itielf to different Itates. All the mifchief is done in the tranlition from one flate to another. In a flate of low excitement we are not ralhly to induce a flate of high excitement, nor when elevated to the latter, are we fuddenly to defcend to the former, but flep by flep, and as one who from the top of a high tower defcends to the ground. From bafty and violent changes, the human frame always fuffers; its particles are torn afunder, its organs injured, the vital principle impaired, and difeafe, often death, is the inevitable confequence.
- I have only to add, that though in this illuftration of the Brunonian fyftem (written feveral years ago), I have fpoken of a tube conftantly pouring in frefh fuel, becaufe I could not otherwife convey to the reader a familiar idea of the power poffeffed by all living fyftems, to renew their excitability when exhaufted; yet it may be proper to inform the ftudent, that Dr Brown fappofed every living fyftem to have received at the beginning its determinate portion of excitability; and, therefore, although he fpoke of the exhauftion, augmentation, and even renewal of excitability, I do not think it was his intention to induce his pupils to think of it as a kind of fuid fubfance exifting in the animal, and fubject to the law by which fuch fubftances are governed. According to him, excitability was an unknown fomerwhat, fubject to peculiar laws of its own, and whofe different flates we were obliged to defribe (though inaccurately) by terms borrowed from the qualities of material fublances.'
"The Brunonian fyltem has frequently been charged with promoting intemperance. The objeation is ferious; but the view already given of its principles Chews it to be groundlefs. No writer had infifted fo much upon the dependence of life on external caufes, or fo Atrongly tated the incevitable confequences of excefs. And there are no means of promoting morality upon which we can rely, except the knowledge of the true relations between man and other beings or bodies. For by this knowledge we are directly led to fhun what is hariful, and purfie what is falutary: and in what elfe does moral conduet, as far it regards the individual, confitt? It may be faid that the author's life difproves the jultaefs of this reprefentation : his life, however, only thews the fuperior power of other caufes, and of bad habits in particular ; and I am ready to ac. knowledge the little efficacy of inftruation when bad habits are formed. Its great ufe conflifs in preventing their formation; for which reafon popular influstion in medicine would contribute more to the happinefs of the luman fpecies, than the complete knowledge of every thing which is attempted to be taught in educa-

B R U
 [159]
 B R U

Dsowniville ion, as it is condneted at prefent. But though the principles of the fyltem in queltion did not correct the propenfities of its inventor, it does not follow that they tend to produce the fame propenfities in others."

BROWNSVILLE, or Redflone Old fort, is a flourifhing polt-town in Fayette co. Pennfylvania; on the S. eaftern bank of Monongahela River ; between Dunlap and Reditone crceks; and next to Pittburg is the moft confiderable town in the weftern parts of the ftate. The town is regularly laid out, contains about 100 houfes, an Epifonpalian, and Roman Catholic church, a brewery and diftillery. It is connected with Bridgeport, a fmall village on the oppofite fide of Dunlap creek, hy a bridge 260 feet long. Within a few miles of the town are + Friends' mceting. houfes, $2+$ grit, faw, oil, and fulling mills. The trade and emigration to Kentucky, employ boat builders here very profitably; above 100 bnats of 20 tons cach, are buile annually. Byrd's Fort formerly food here, on the S. fide of the month of Redfone Creek, in N. lat. 39. 58. W. long. 8 I $12 \frac{1}{2} ; 37$ miles foutherly from Pittiburg; 13 S. by E. of Wafhington, and 341 W. of Pliiladelphia --Morse.

BRUCE (James, Efq; F. R. S.), the celebrated Abyffinian traveller, was born, 1730 , at Kinnaird houfe, in the parith of Larbert and county of Stirling. His defcent by both parents was ancient and honourable ; and of that defcent he was, perhaps, too proud. His grandfather was _-Hay, Efq ; of Woodcockdale, in the county of Linlithgow, who, marrying Mifs Bruce, the leeirefs of Kinnaird, gave the name of Bruce to all his defcendants.
lerhaps this change of name may have taken place in obedience to the deed by which the eftate of Kinnaird was fettled on Mrs Hay's children; but it is a change which, in a country like Scotland, where antiquity of defcent is highly valued, any man would voluntarily have adopted, who had married the heirefs of fuch a family. The Bruces of Kinnaird had been in poffeffion of that eftate for three centuries: they were defcended from a younger fon of Robert de Bruce, the competitor with Baliol for the crown of Scotland. It would readily occur, that the knowledge of fuch a de. fcent would be beft preferved by continuing the name of their great ancefor; and we have reafon to believe, that the fubject of this memoir was not much delighted when put in mind, as he frequently was, that, though the heir of the line, he was not the male heir of that branch of the illuttrious family.

As he was allied to royalty by his father and grandmother, through his mother he was related to fome of the noft refpectable families in the kingdom. She was the daughter of James Graham, Efq ; of Airth, dean of the faculty of advocates, and judge of the high court of admiralty in Scotland, by Marion daughter of James Hamilton, Efí ; of Pencaitland ; and to a man of our traveller's turn of mind, there can be no doubt but that it mult have afforded much fatisfaction to think, that no family ranks higher in Scotland than thofe of Bruce, Graham, and Hamilton. In him, however, it was weaknefs to be proud, if indeed he was proud, of family; for the talents bellowed upon him by nature, or to fipeak more properly, by nature's God, would have made him great though he had been born on a dung. hill. He would indeed have been, in all probability,
much greater than he was, had he not been in poffelion of the phantom of birth to gratify much of his ambition ; for the facility with which he maftered every ftudy in which he engaged, would have carried him quickly to the top of the moft honourable profefion.

Mr Bruce was inftructed in grammatical learning at the fcheol of Harrow on the Hill, in the county of Middlefex, where he gave the moft unequivocal proofs of genius, and acquired a very confiderable knowledge of the Greek and Latin languages. It was cultomary with him to perform, not only his own exercifes, but alfo the excrcifes of fuch of his companions as were not equal to the tank themfelves. Among thefe was his maternal uncle, who was frequently indebted to his afiftance, and, on one occalion, produced a copy of verfes of his compofition, which excited, not only the applaufe, but the admiration of their mafter. Mr Graham, who was but a few months older than Mr Bruce, had, for fome tranfgrcflion (we know not what), been punifhed, as boys in the great fchools in England are often punillied, by having a tafk fet him, which he foon found himfelf unable to perform. His nephew defired him to be under no unealinefs, promifing to furnifh him with the verfes before the time at which they were to be given in. He was as good as his word: but the matter of the fchool foon difcovering that they were not the performance of Mr Graham, exclaimed, that the author of thefe verfes, whoever he was, might apply to himfelf the words of Horace,

--Sublimi feriam fidera vertice.

While Mr Bruce was at Harrow, and for a year or two after he had left it, he was of a very delicate frame, and appeared to his friends to be threatened with a confumption. The truth is, that he was uncommonly tall for his age, and felt all the reeblenefs of joints and other bodily weakneffes to which overgrown boys are generally fubject. His father intended him for the profeffion of the law; and, upon his return from Harrow, he was entered into the univerfity of Edinburgh, where he went through a regular courfe of Itudy to fit him for being inrolled in the body of advocates ; but for fome reafon, which we do not perfectly know, he relinquifhed the fudy of law for the purfuits of trade; and, going to London, entered into partnerfhip with a wine-merchant of the name of Allen, whofe daughter he married.

That lady folling into a bad fate of health, Mr Bruce took her abroad, in hopes that travelling would beattended with beneficial effects; but in thefe he was difappointed, as the died within a year after her marriage. He was induced, in order to difpel his grief, to continue his travels; during which his father dying (at Edinburgh, $4^{\text {th }}$ May 175^{8}), the inheritance of his anceftors devolved upon him, and he returned to Britain. Some of his fubfequent tranfagions fhall now be related in his own words.
"Every one will remember that period, fo glorious to Britain, the litter end of the miniftry of the late earl of Chatham. I was then returned from a tour through the greateft part of Europe, particularly thro' the whole of Spain and Portugal, between whom there was then the appearance of an approaching war.
"I was about to retire to a fmall patrimony I had receivcd from my anceftors, in order to embrace a life

B R U [160] B R U

of Audy and reflection, nothing more active appearing within my power, when chance threw me unexpectedly into a very fhort and very defultory converfation with Lord Chathanı.
" It was a few days after this, that Mr Wood, then under fecretary of ftate, my zealous and fincere friend, informed me that Lord Chatham intended to employ me upon a particular fervice; that, however, I might go down for a few weeks to my own country to fettle my affairs, but, by all means, to be ready upon a call. Nothing could be more flattering to me than fuch an offer, when fo young; to be thought worthy by Lord Chatham of any employment, was doubly a preference. No time was loft on my fide; but juft after receiving orders to return to London, his lordhip had gone to Bath, and refigned his office.
"This difappointment, which was the more fenfible to me that it was the firft I had met with in public life, was promifed to be made up to me by Lord Egremont and Mr George Grenvilie. The former had been long my friend; but unhappily he was then far gone in a lethargic indifpofition, which threatened, and did very foon put a period to his exiftence. With Lord Egremont's death my expectations vanilhed. Further particulars are unneceflary; but I hope that, at leaft in part, they remain in that breaft where they naturally ought to be, and where I fhall ever think, not to be long forgotten, is to be rewarded.
"Seven or eight months were paffed in an expenfive and fruitlefs attendance in London, when Lord Halifax was pleafed, not only to propofe, but to plan for me a journey of confiderable importance, and which was to take up feveral years. His lordfhip faid, that nothing could be more ignoble than, at fuch a time of life, at the height of my reading, health, and ativity, I fhould, as it were, turn peafant, and voluntarily bury my felf in obicurity and idlenels; that though war was now drawing faft to an end, full as honourable a comperition remained among men of firit, which fhould acquit themfelves belt in the dangerous line of uffeful adventure and diforery.
"He obferved, that the coalt of Barbary, which might be faid to be jult at our door, was yet but partially explored by Dr Shaw, who had only illultrated (very judiciounly indeed) the geographical labours of Sanfon; that neither Dr Shaw nor Sanfon had been, or pretended to be, cap.ble of giving the public any detail of the large and magnificent remains of ruined architecture, which they both vouch to have feen in great quantities, and of exquifite elegance and perfection, all over the country. Such had not been their fludy, yet fuch was really the tafte that was required in the prefent times. He wifhed, therefore, that I fhould be the firlt, in the reign juf now beginning, to fet an example of making large additions to the royal collection; and he pledged himfelf to be my fupport and patron, and to make good to me, upon this additional merit, the promifes which had been held forth to me by former minifters for other fervices.
" The difcovery of the fource of the Nile was alfo a fubject of thefe converfations, but it was always mentioned to me with a kind of diffidence, as if to be expected from a more experienced traveller. Whether this was but another way of exciting me to the attempt I thall not fay; but my heart, in that inflant,
did me juftice to fuggef, that this too was either to be atchieved by me, or to romain as it had done for thefe laft 2000 years, a defiance to all travellers, and an opprobrium to geography.
"Fortune feemed to enter into this fcheme. At the very inftant, Mr Arpinwall, very cruelly and ignominioufly treated by the dey of Algiers, had refigned his confulhip, and Mr Ford a merchant, formerly the dey's acquaintance, was named in his place. Mr Ford was appointed, and, dying a few days after, the confulflip became vacant. Lord Halifas preffed me to accept of this as containing all furts of conveniences for making the propofed expedition.
"This favourable event finally determined me. I had all my life applied unweariedly, perthaps with more love than talent, to drawing, the practice of mathematics, and efpecially that part neceffary to aftronomy. The tranfit of Venus was at hand. It was certainly known that it would be vifible once at Algiers, and there was great reafon to expect it might be twice. I had furnifhed myfelf with a large apparatus of infturments, the completelt of their kind, for the obfervation. In the choice of thefe, I had been aftifted by my friend Admiral Campbell, and Mr Ruffel, fecretary to the Turkey Company: every other neceffary had been provided in proportion. It was a pleafure now to know that it was not from a rock or a wood, but from my own houfe at Algiers, I could deliberately take meafures to place myrelf in the lift of men of fcience of all nations, who were then preparing for the fame fcientific purpofe.
"Thus prepared, I fet out for Italy, through France; and though it was in time of war, and fome ftrong objections had been made to particular paffports, folicited by our government from the French fectetary of flate, Monfieur de Choifeul moft obligingly waved all fuch exceptions with regard to me, and moft politely affured me, in a letter accompanying my pafport, that thofe difficulties did not in any thape regard me, but that I was perfectly at liberty to pafs through, or remain in, France, with thofe that accompanied me, without limiting their number, as fhort or as long a time as fhould be agreeable to me.
"On my arrival at Rome, I received orders to proceed to Naples, there to await his majefty's further commands. Sir Charles Saunders, then with a fleet before Cadiz, had orders to vifit Malta before he returned to England. It was faid that the grand mafter of that order had behaved fo improperly to Mr Harvey (afterwards Lord Britol) in the beginning of the war, and fo partially and unjuftly between the two nations in the courfe of it, that an explanation on our part was become neceffary. The grand mafter no fooner heard of my arrival at Naples, than, guefing the errand, he fent off Chevalier Mazzini to London, where he at once made his peace and bis compliments to his majelty upon his acceffion to the throne.
"Nothing remained now but to take poffeffion of my confulhhip. I returned, without lofs of time, to Rome, and from thence to Leghorn, where having embarked on board the Montreal man of war, I proceeded to Algiers.
" While at Naples, I received from Raves, redeemed from the province of Conftantine, accounts of magnificent ruins they had feen while traverfing that country

B R U [161] B R U

Brace. with their mafter the Bey. I faw the abfolute neceffity there was for affiftance, without which it was impoffible for any one man, however diligent and qualified, to do any thing but bewilder himélf. All my endeavours, however, had hitherto been unfuccefstul to perfinade any Italian to put himfelf wilfully into the hands of a penple confantly looked upon by them in no better light than pirates. At laft Mr Lumifden, by accident, heard of a young man who was then fudying architecture at Rome, a native of Bologna, whofe name was Luigi Balugani. I can appe.si to Mr Lumiften as to the extent of this perion's practice and knowledge, and that he knew very little when firff fent to me. In the twenty months which he flaid with me at Algiers, by affiduous application to proper fubjects under my inftruction, he became a very confiderable help to me, and was the only one that ever I made ufe of, or that attended me for a moment, or ever touched one reprefentation of architecture in any part of my journey."

Our traveller, when in Spain, had endeavoured to find accefs to that immenfe collection of Arabic manu. fcripts which were perifhing in the duft of the efcurial; but in vain. "All my fuccefs (fays he) in Europe terminated in the acquifition of thole few printed Arabic books that I had found in Holland; and thefe were rather biographers than general hiftorians, and contained little in point of general information. The fudy of thefe, however, and of Maracci's Koran, had made me a very tolerable Arab; a great field was opening before me in Africa to complete a collection of manuicripts, an opportunity which I did not neglect.
"After a jear fpent at Algiers, conltant converfation with the natives while abroad, and with my manufcripts within doors, had qualified me to appear in any part of the continent without the help of an interpreter. Ludolf had afliured his readers, that the know. ledge of any oriental language would foon enable them to acquire the Ethiopic; and I needed only the fame number of books to have made my knowledge of that language go hand in hand with my attainments in the Arabic. My immediate profpect of fetting out on my journey to the inland parts of Africa, had made me double my diligence; night and day there was no relaxation from thefe ftudies, although the acquiring any fingle language had never been with me either an object of time or difficulty."

At Algiers Mr Bruce was detained longer than he expected, in confequence of a difpure with the Dey concerning Mediterranean paffes. This being adjufted, he proceeded to Mahon, and from Mahon to Carthage. He next vifited Tunis and Tripoli, and travelled over the interior parts of thefe flates. At Bengazi, a fmall town on the Mediterranean, he fuffered flipwreck, and with extreme difficuity faved his life, though with the lofs of all his baggage. He afterwards failed to the ifles of Rhodes and Cyprus, and proceeding to Afia Minor, travelled through a confiderable part of Syria and Palelline, vifiting Haffia, Latikea, Aleppo, and Tripoli; near which lat city be was again in imminent danger of perifhing in a rever. The ruins of Palmyra and Baalbec were next carefully furveyed and $1 k$ etched by him; and his drawings of theef places are depofited in the king's library at Kew; " the moft magnificent prefent in that line," to ufe his own words, "ever made by a fubject to his fovercigni."

It is much to be regretted that Mr Bruce publifhed no particular account of thefe various journeys; from the nature of the places vifited, and the abilities of the man, much curious and ufeful information might have been expected. Some manufcript accounts of different parts of them are faid to have been left by him, but whether in fuch a flate as to be fit for publication, we have not learned.
In thefe various travels fome years were paffed; and Mr Bruce now prepared for the grand expedition, the accomplifhment of which had ever been nearelt his accomplifhment of which had ever been nearelt his
heart, the difcovery of the fources of the Nile. In the profecution of that dangerous object, he left Sidon on the 15 th of June 1769 , and arrived at Alexandria on the 20th of that month. He proceeded from thence to Cairo, where he continued to the 12 th of December following, when he embarked on the Nile; and in a very extraordinary boat, called a carija, of which he fays the main-fail yard was about 200 feet in length, he failed up that river as far as Syene, vifiting in the courfe failed up that river as far as Syene, viliting in the courle
of his voyage the ruins of Thebes, and the place where Memphis once ftood, now known by the name of $M T_{e}$ trablenny. Leaving Kenne on the Nile, 1 Sth February 1769, he croffed the defert of the Thebaid to Coffeir on the Red Sea, and arrived at Jidda on the 3d of May. In Arabia Felix he remained, not without making feveral excurfions, till the 3 d of September, when he failed from Loheia, and arrived on the 19 hh at Mafuab, where he was detained near two months by the treachery and avarice of the Nay be of that place. It was not till the 15 th of November that he was allowed to quit Arkeeko, near Mafua; and he arrived on the 15 th of February 1770 at Gondar, the capital of Abyifinia, where he ingratiated himfelf with the molt confiderable perfons of both fexes belonging to the court. This he accomplifhed by being a phyfician in the city, a foldier in the field, a courtier every where, demeaning himfelf as confious that he was not unworthy of being a companion to the firlt of their nobility, and the king's gueft, which is there a charager, as it was with ealtern nations of old, to which a certain fort of confideration is due. "To this I may add (fays he), that, bcing in the prime of life, of no ungracious figure, having an accidental knack, which is not a trifie, of putting on the drefs, and Cpeaking the language eafily and gracefully, I cultivated, with the utmolt affiduity, the friendflip of the tivated, with the utmolt affiduity, the friendfhip of the
fair fex, by the moft modeft and refpectful diftant attendance and obfequiouinefs in public, abating jult as much of that in private as fuited their humours and much of that in private as fuited their humours and
inclination;" and jealoufy being a paffion unknown in Abyffinia, he thus acquired from the ladies great fupport at court,

Several months were employed in attendance on the king, and in an unluccefsful expedition round the lake of Dambea. Towards the end of Otfober Mr Bruce fet out for the furces of the Nile; at which long defited fpot he arrived on the 14 th of Novennber; and his feelings on the accomplifhment of his wifles cannot better be exprefied than in his own words:
" It is eafier to guefs than to deferibe the fituation of my mind at that moment; flanding in that fpot which had batfled the genius, indultry, and inquiry, of ancients and moderns for the courfe of near 3000 years. ancients and moderns tor the courfe of near 3000 years.
Kings had attempted this difcovery at the head of armies, and each expedition was diftinguifhed from the the firlt of their nobility, and the king's gueft, which

Bruce. m

 laft only by the difference of the numbers which had perifhed, and agreed alone in the difappointment which had uniformly, and without exception, followed them all. Fame, riches, and honour, had been held out for a feries of ages to every individual of thofe myriads thofe princes commanded, without having produced one man capable of gratifying the curiofity of his fovereign, or stiping off this ftain upon the enterprife and abilities of mankind, or adding this defideratum for the encouragement of geography. Though a mere private Briton, I tiumphed here in my own mind over kings and their armies; and every comparifon was leading nearer and nearer to the prefumption, when the place itielf where I ftood, the object of my vain glory, fuggetted what depreffied my fhort-lived triumphs."

If thefe triumphs were thort-lived, they were equally ill-founded; for if the fource of the Nile was feen by Mr Bruce, there can be no doubt of its lhaving been likewife feen by the Portugnefe jefuit. Of this we have elfewhere brought forward fufficient proof; and the candid reader, who fisall take the tronble to compare the extract printed at the bottom of this page (A), with our traveller's account of thefe coy fountains, as it flands in his own bouk or in our article Nile (Encycl.), will be convinced that it was ridiculous in Mr Bruce, and is equally ridiculous in his friends, to pretend that he difcovered what had bafled the genius of inquiry for the courfe of near 3000 years.

It was not, however, the confcioufnefs of having been anticipated by the jefuits (for thefe he without ceremony calls a fet of liars), but the profpect of danger to be encountered on his return to Europe, that caft fuch a damp on his prefent enjoyment. "I was but a few minutes (fays he) ar rived at the fource of the Nile, through numberlefs dangers and fufferings, the leatt of which would have overwhelmed me, but for the continual goodnefs and protection of Providence; I was, however, but then half through my journey, and all thofe dangers which I had already paffed awaited me again on my return. I found a defpondency gaining ground faft upon me, which blated the crown of laurels I had too rably woven for myfelf."

When he returned to reft the night of that difoovery, repofe was fught for in vain. "Mielancholy refledions upon my prefent flate, the doubtfulnefs of my return in fafety, were I permitted to make the atsempt, and the
fears that even this would be refufed, according to the rule obferved in Abyllinia with all travellers who have once entered the kingdom; the confcioufnefs of the pain that I was then occafoning to many worthy individuals, expecting daily that information concerning my fituation which it was not in my power to give them; fome other thoughts perlaps, ftill nearer the heart than thofe, crowded upon my mind, and forbade all approach of fleep.
"I was, at that very moment, in poffefion of what had for many years been the principal object of my ambition and withes; indifference which, from the ufual infirmity of human nature, follows, at leaft for a time, compleie enjoyment, had taken place of it. The marfh, and the fountains, upon comparifon with the rife of many of our rivers, became now a trifling object in my fight. I remembered that magnificent fcene in my own native country, where the Tweed, Clyde, and Annan, rife in one hill; three rivers I now thought not inferior to the Nile in beanty, preferable to it in the cultivation of thofe countries through which they flow ; fuperior, vaftly fuperior to it in the virtues and qualities of the inhabitants, and in the beauty of its flocks, crowding its paftures in peace, without fear of violence from man or beafl. I had feen the rife of the Rhine and Rhone, and the more magnificent fources of the Soane; I began, in my forrow, to treat the inquiry about the fource of the Nile as a violent effort of a diftempered fancy,

- What's Hecuba to him, or he to Hecuba,
- That he fhould weep for her ?"

Grief and defpondency now rolling upon me like a torrent, relaxed, not refrefhed, by unquict and imperfect fleep, I flarted from my bed in the utmuft agony; I went to the door of my tent, every thing was ilill; the Nile, at whofe head I Itood, was not capable either to promote or to interrupt my fumbers, but the coolnefs and ferenity of the night braced my nerves, and chafed away thofe phantoms that while in bed had oppreffed and tormented me.
"It was true that numerous dangers, hardfhips, and forrows, had befet me through this half of my excurfion; but it was fill as true, that another Guide, more powerful than my own courage, health, or underitanding, if any of them can be called man's own, had uniformly
(1) " In the eaftern pait of this kingdom, on the declivity of a mountain, whofe defcent is fo eafy that it fecms a beautiful plain, is that fource of the Nile which has been fought after at fo much expence of labour, and about which fuch variety of conjectures hath been formed without fuccefs. This fpring, or rather thefe two fprings, are two holes, each about two feet diameter, a fone's caft diftant from each other. The one is about five feet and an half in depth, at leaft we could not get our plummet farther, perhaps becaufe it was fopped by roots, for the whole place is full of trees: of the other, which is fomewhat lefs, with a line of ten feet we could find no bottom, and were affured by the inhabitants that none ever had been found. It is believed here that thefe fprings are the vents of a great fubterranecus lake; and they have this circumflance to favour their opinion, that the ground is always morill, and fo foft that the water boils up under foot as one walks upon it. Such is the ground round about thefe fountains. At a little difance to the fouth is a village named Griz: (the Gcefl of Mr Bruce), through which the way lies to the top of the mountain, whence the traveller difoovers a valt extent of land, which appears like a deep valles, though the mountain rifes fo imperceptibly, that thofe who go up or down it are fcarce fenfiblc of any declivity." - Yobnfon's Tranflation of Father Lobo's F'oyage to Abyfinia, Chap. X.

The only difference between Lobo's and Bruce's account of thefe fountains worthy of notice is, that the former found but two, while the latter found three holes; but Bruce fays exprefsly, that the holes are partly artificial; and Lobo's defcription of them indicates the fame thing. It is therefore not improbable that there may now be four or five holes.

B R U [163] B R U

Bruce. $\overbrace{}^{\sim}$ formly protected me in all that tedious half. I found my confidence not abated, that fill the fame Guide was able to conduct me to my wifhed-for home. I immediately refumed my former fortitude, confidered the Nile as indeed no more than rifing from fprings as all other rivers do, but widely differing in this, that ic was the palm for 3000 years held out to all the nations of the world as a detur digniffimo, which in my cool hours I had thought was worth the attempting at the rifk of my life, which I had long either refolved to lofe, or lay this difcovery a trophy in which I could have no competitor, for the honour of my country, at the feet of my fovereign, whofe fervant I was."

How unworthy is this ranting reflection of the greatnefs of mind which Mr Bruce on other occafions unqueltionably difplayed! Had he indeed been the firft European who difcovered thofe pitiful holes from which the Nile is faid to flow, his merit would not have confifted in travelling from Gondar to the village Geeth, and viewing the fountains which are at that village the objectes of idolatrous adoration, but in the addrefs with which he contrived to make himielf the favourite of all the factions which agitated a barbarous and almoft in. human nation. In managing thofe factions, he was indeed grat ; but he feems to have valued himflf more upon looking at three fprings, of which it is far from being certain that they are the fources of the Nile (fee Nile, Encycl.), and of which two had certainly been examined more tlan a century before he was born, by different millionaries from the kingdom of Portugal! This, however, he calls the nbject of his withes; and having now accomplitled it, he bent his thoughts on his return to his native country.

He arrived at Gondar on the $19 t h$ November 1770 ; but found, after repeated fulicitations, that it was by no means an eafy tafk to obtain permiflion to quit Abyffinia. A civil war in the mean time breaking out (no uncommon occurrence in that barbarous country), deveral engagements took place between the king's forces and the troops of the rebels, particularly three actions at a place called Sirbraxos on the 19 th, 20 th, and 23 d of May 1771 . In each of them Mr Liruce akted a confiderable part, and for his valiant conduct in the fecond received, as a reward from the king, a chain of gold, of $18+$ links, each link weighing $3 \frac{1}{2}$ dwts. or fomewhat more than $2 \frac{1}{2}$ lbs. troy in all. At Gondar, after thefe engagements, he again preferred the moft earneft intreaties to be allowed to return home, intraties which were long refilted; but his health at laft giving way, from the anxiety of his mind, the king confented to his departure, on condition of his engaging by oath (B) to return to him in tine event of his recovery, with as natny of his kindred as lee could engage to accompany him.

After a refidence of neariy two ycars in that wretch. ed countrs, Nr Brace left Condar on the 1 Gth of December 1771 , taking the dangerous way of the defart of Nubia, in place of the more eafy road of Mafuah, by which he entered Abyflmia. He was induced to take this route from bis knowledge and former expe.
rience of the cruel and favage temper of the Naybe of Mafuah. Arriving at Teawa the 2ift March 1772, he had the misfortune to find the Shekh Fidele of Atbara, the counterpart of the Naybe of Mafuah, in every bad
$\underbrace{\text { Bruce. }}$ $\overbrace{}^{-}$,

[^1]\qquad

[^2]\qquad
\qquad

[^3]

[^4]. -

At
\qquad

$+$

Bruce. $\underbrace{\text { Bruce. }}$ At Cairo Mr Bruce's earthly carecr had nearly been crncluded by a diforder in his leg, occafioned by a worm in the flefh. This accident kept him five weeks in extreme agony, and his health was not re-ettablih. ed till a twelvemonth afterwards, at the baths of Porretta in Italy. On his return to Europe, Mr Bruce was received with all the admiration due to fo exalted a character. After paffing fome confiderable time in France, particularly at Monttard, with his friend the Comte de Buffon, by whom he was received with much hofpitality, and is mentioned with great applanfe, he at lalt revifited his native country, from which he had been upwards of twelve years abfent.

It was now expected that he would take the earlieft opportunity of giving to the wolld a narrative of his travels, in which the public curiofity could not but be deeply interefted. But feveral circumftances contributed to delay the publication; and what thefe were will be beft related in his own words:
" My friends at home gave me up for dead; and as $m y$ death mult have happened in circumftances difficult to have been proved, my property became as it were a bareditus jacens, without an owner, abandoned in com. mon to thofe whofe original title extended no further than temporary poffeffion.
"A rumber of law-fuits were the inevitable confequences of this upon my return. To thefe difagreeable avocations, which took up much time, were added others ftill more unfortunate. The relentlefs agne, caught at Bengazi, maintained its ground, at times, for a pace of more than 16 years, though every remedy had been ufed, but in vain ; and what was worlt of all, a lingering ditemper had ferionfly threatened the life of a moft near relation (his fecond wife), which, after nine years conftant alarm, where every duty bound me to attention and attendance, conducted her at lalt, in very eatly life, to her grave."

Amidit the anxiety and the dittrefs thus occafioned, Mr Bruce was by no means neglecttul of his private affairs. He confiderably improved his landed property, inclofing and cultivating the wafte grounds, and he highly embellilhed his paternal feat, making many additions to the houfe, one in particular of a noble mufeum, filled with the molt precious fores of oriental literature, large collections of drawings made, and curious articles ubtained, during his far eatended peregrinations. fin excellent ftatum of coal at Kinnaird drew much of his attention; he erected fteam engines of the molt approved conftruation ; and placed his coalliery on fuch a footing that, at the period of his decea?e, it produced about 2000l. a-year.

The termination of fome law-fuits, and of other buflnefs, which had occupied much of his time, having at length afforded leifure to Mr Brace to put his materials in order, his greatly defired and long expected work made its appearance in 1790 , in five large quarto volumes, embellifthed with plates and charts. It is unnecefiary, and mignt be tedious, to enter at prefent into any cratic or analyfis of this celebrated work. It is univerfally allowed to be replete with much curious and ufeful information ; and to abound in narratives which at once excite our adniration and iniereit our feelings. The vely fingular and extraordinary picture which it gives of A byfinian manners, ftartled the belicf of fonse; but thefe manners, though ftrange in the fight of an

European, are little more than might be expected in fuch a barbarous country; and had an enlightened philofopher vifited Scotland in the times of our earlieft monarchs, he might perhaps have witneffed and related fcenes, different indeed from what Mr Bruce faw in Abylinia, but which to us would have feemed equally ftrange.

A more ferious objection to the truth of Mr Bruce's narrative was ftarted by an anonymous, but able, critic,* in an Edinburgh newfpaper, foon after the pub- * Suppofed lication, from the account of two altronomical phe- to be Dr nomena, which could not polfibly bave bappened, as Mr Bruce afferts. The firft of thefe is the appearance of the new moon at Furfhont, during Mr Bruce's fay of the new moon at Furfhont, during Mr Bruce's fay lofophy in
in that place, which he mentions to have been from the univer$25^{\text {th }}$ December 1768 to the 7 th of January 1769 ; fity of st and on a particular day in that interval afferts, that Andrew's. the new moon was feen by a fakir, and was found by the ephemerides to be three days old; whereas it is certain that the moon changed on the 8th of January 1769. 'The other phenomenon appears equally impoffible. At 'Ceawa Mr Brace fays he terrified the Shekh by foretelling that an eclipfe of the moon was to take place at four afternoon of the 17th of April 1772; that accordingly, foon after that hour, he faw the cclipfe was begun; and when the fhadow was half over, told the Shekh that in a little time the monn would be totally darkened. Now, by calculation, it is certain, that at Teawa this eclipfe muft have begun at 36 mi nutes palt four, and the moon have been totally cover. ed at 33 minutes paft five ; while the fun fet there a few minutes palt fix, before which time the moon, then in oppofition, could not have rifen: fo that as the moon rofe totally eclipfed, Mr Bruce could not fee the fhadow half over the difk, nor point it out to the Shekh. To thefe objections, which appear unfurmountable, Mr Bruce made no reply, though in converfation he faid he wou!d do it in the fecond edition of his book.

Thefe are miftakes which can hardly be accounted for by attributing them to the inaccuracy of his notes, or indeed to any caufe which we are inclined to name; and perhaps the has fallen into a miftake of the fame kind in his account of the enormous main-fail yard of the carja, in which he failed up the river Nile. To every man who has but dipped into the fcience of mechanics, it is known that a beam of wood 200 feet in length, mult be of proportional thicknefs, or it would fall in pieces by its own weight. This thicknefs muft be greatly increafed, to enable it to bear the ftrain occafioned by a prodigious fail filled with wind; and thofe only who have been at the Nile, and have feen the canjas, can lity, whether thefe veffels, or indeed any velfels which can be employed on the river, would not be overfet by yards,
——To equal which, the talleft pine Hewn on Norwegian hills, to be the maft Of fome great admiral, were but a wand.
The language of the work is in general harfh and unpolithed, though fometinues animated. Too great a difplay of vanity runs through the whole, and the apparent facility with which the travellet gained the moft familiar accefs to the courts, and even to the harams of the fovereigus of the countries through which he pafed, is apt to create in readurs fome doubts of the accuracy

B R U [165$] \quad$ B R U

of the narration. Yet there appears upon the whole fuch an air of manly veracity, and circumftances are mentioned with a minutenefs fo unlike deceit, that the fe doubts are overcone by the general impreflion of truth, rehich the whole detail irrefiftibly faftens upon the mind. The character of Ras Michael has often \{ruck us, as containing very ftrong internal evidence of its having been taken from nature; for it is fuch a character, at once extraordinary and confiftent, as neither Mr Bruce, nor perhaps any writer fince Shakelpeare, had genius to feign.

The firt imprefion of the book being almont difpofed of, Mr Bruce had ftipulated with an eminent bookfeller in London for a fecond edition to be publifhed, we think in 8vo; and he was bufy in preparing that edition for the prefs when death removed him from this tranfitory flage. On the 26 th of April $179+$ lie entertained fome company at Kinnaird-houfe with his ufual hofpitality and elegance. About eight o'clock in the evening, when his guefts were ready to depart, he was handing one of the ladies down ltairs, when, having reached the feventh or eighth ftep from the bottom, his foot llipped, and he fell down headlong. He was taken up fpeechlefs; his face, particularly the forehead and temples, being feverely cut and bruifed, and the bones of his hands broken. He continued in a ftate of apparent infenfibility for eight or nine hours, and expired on Sunday the 27 th, in the 64 th year of his age.

Mr Bruce's fecond wife, whom he married on the 20th May 1776 , was Mary, eldeft daughter of Thomas Dundas, Efq; of Carron-hall, by Lady Janet Maitland, daughter of Charles fixth Earl of Lauderdale. By that lady, who, after a fevere and lingering indifpolition, died in 1784 , he had three children, of whom one fon and one daughter furvive him.

Mr Bruce's perfon was jarge, his height exceeding fix feet, his bulk being in proportion to his height; and at the period when he entered on his dangerous expedition, he was equally remarkable for Atrength and for agility. To thofe who never beheld him, the engraved medallion in the title pages of the firt and third volumes of his 'Travels will convey fome idea of his features. He excelled in all manly accomplilhments, being trained to exercife and fatigue of every kind. He was a hardy, practifed, and indefatigable fwimmer; and his long refidence among the Arabs had given him a more than ordinary facility in managing the horfe. In the ule of fire arms he was fo unerring, that in innumerable inftances be never failed to hit ihe mark ; and his dexterity in handling the fpear and lance on horfeback was allo uncommonly great. He was mafter of moft languages; and was fo well ikilled in oriental literdture, that he revifed the New Teitament in the Ethiopic, Samaritan, Hebrew, and Syriac, making many ufeful notes and remarks on difficult paffages. He had applied from early youth to mathematics, drawing, and aftronomy, and had acquired fome knowledge of phyfic and furgery. His memory was aftonifhingly retentive, and his mind vigorous. He was dexterous in negociation, a matter ot public bufinefs, and animated with the warmelt zeal for the glory of his king and country. Such, at leaft, is his own reprefentation of his character; and though an impartial juage would probably make confiderable abatement for the natural bias of a man drawing his own portrait, yet it cannot be denied,

Suppl. Vol. 1.
that in perfonal accomplifhments Mr Bruce equallad, if not exceeded, moft of his contemporaries.

Thus accomplifhed, he could not bat be eminently fitted for an attempt fo full of difficulty and danger as what he called the difcovery of the fources of the Nile: no one who perufes his account of the expedition, can fail to pay an unfeigned tribute of admiration to his intrepidity, manlinefs, and uncommon dexterity, in extricating himfelf out of fituations the moft dangerous and alarming, in the courle of his long and hazardou, journey; not to mention his conduct during his relidence in Abyfinia, his behaviour at Mafuah, ' Peaw, and Sennaar, evinces the uncommon vigour of his mind: but it was chiefly during his palfage through the Nubian defert that his fortitude, courage, and prudence, appeared to the greatelt advantage. Of his learningy and fagacity, his delineation of the courfe of Solomon's fleet from 'Tarthifh to Ophir, his account of the caule of the inundations of the Nile, and his comprehenfive view of the Abyffinian hiftory, afford ample proofs. It mult indeed be confeffed, that in his account of the inundations of the Nile, as well as in his delineation of the courle of Solomon's fleet, he has not the merit of originality ; but on both thefe occafions he has ftated the hypothefis which he maintains with greater cleatnefs, and fupported it with more plaufible arguments, than any other author whofe writings have fallen into our hands; and it was furely to his honour, that as foon as he learned that his hypothefis refpecting Ophir and Tarthifh had been controverted by Dr Doig of Stirling, he earnettly courted the acquaintance of that eminent fcholar.

After his return to his own country, he refided moftly at Kinuaird; and till he became corpulent, fpent much of his time in the various fports of the field, in which he engaged with great ardour. Though ftudious in youth, and at all times a Atranger to intemperance and diffipation, he read but little in his later years; and feemed to find his chief pleafure in converfation, efpecially the converfation of well-informed ladies. In his friendfhips he fometimes appeared to be capricious, attaching himfelf to men in whofe heads and hearts no other perfon could perceive a charm for a mind like his. Though in his own dealings he was always juit and ho. nourable, he was too ready to apprehend unfairnefs in others, and to exprefs fuch apprehenfions with undue warmth. To Atrangers he was often arrogant, and fometimes infolent; but in his own family he was an affectionate hufband, a kind father, an agreeable entertainer, and to his fervants a matter perhaps too indulgent. In converfation, as well as in lis writings, he cmbraced every opportunity of exprefling a deep and lively fenfe of the care of a fuperintending Providence, without which he was convinced that there could be no fafety in human ftrength or human forefight. His belief of the Chriftian religion refted on the furelt grounds; and fuch was his veneration for the facred writings, that for fome years before his death they feemed to occupy all the time which he gave to fudy. He read no fermons, however elegant; and diffuaded others from fuch reading. "Read the Bible ((aid he), and yon will foon perceive the emptinefs of the moft applauded fermons."

BRUNSWICK, a maritinse county in Wilmington diltrict, N. Carolina, containing 3071 inlsabitants, of

[^5] 1

B U C [166] B U L

Brunfick whom 1511 are flaves. It is the moft foutherly coun$t y$ of the ftate, having S. Carolina on the S. W. and bounded by Cape Fear River on the E. Smithville is the feat of Jullice.-Morse.

Brunswick, the chief town in the above county, fituated on the W. fide of Cape Fear River ; it was formerly the beft built in the whole ftate, and carried on the moft extenlive trade. It lies 30 miles above the cares, abcut 9 miles N. of Fort Johnfon, 17 S. W. of Wilmington, and was formerly the feat of government. In 1780 , it was burnt down by the Britilh, and has nuw only 3 or 4 boures and an elegant church in ruins.-ib.

Brunswick, a townhip in Effex co. Vermont, on the W. bark of Connedicut River, oppofite Statiord, in New-Hampthire,-ib.

Brunswick, a city in Midellefex co. New-Jerfey, is fituated on the S. W. bank of Rariton River, in a low fituation; the molt of the houfes being built under a hill which rifes W. of the town. It las between 200 and 300 houfes, and about 2500 inhabitants, one half of whom are Dutch. Queen's College was in this city, Lut is nove extinct as a place of inftruction. There is :t confiderable inland-trade carried on hete. One of the moft elegant and expenfive bridges in America, has been built over the river oppolite this city. Branfwick is 18 miles N. E. of Princetown, 60 N. E. from Philadelphia, and 35 S. W. from New.Yort. N.lat. to 30. W. long. 74. 30.-i i.

Beunswick, in Cumberland co. ditrift of Maine, contains 1387 inhabitants, and lies N. E. of Portland 30 miles, and of Bofton I51. It is in N. lat. 43. 52. on the S. fide of Merry Meeting Bay, and partly on the S. weftern fide of Androfcogsin River. Bowdoin College is to be eftabliftied in this town. - $i b$.

Brunswick, the chief town of Glynn co. Georgia, is fituated at the mouth of Turtle River, where it empties into St Simon's found, N. lat. 3 I. Io. It has a fiffe harbor, and fufficiently capacious to contain a large flet. Although there is a bar at the entrance of the hatbor, it has depth of water for the largeft fhip that fwims. The town is regularly laid oui, but not yet boilt. From its advantageous fituation, and from the fertility of the back country, it promifes to be cne of the moft commercial and fourithing places in the flate. It lies 19 miles S. of Darien; 60 S. S. W. from Savannah, ard 110 S. E. from Louifville. -ib.

Mrunswick Co. in Virginia, lies between Nottaway and Mehenrin sivers, and is about 38 miles long, and 35 broad, and contains 12,827 inlabitants, including C7-G flawes.—ib.

DUCK-wheat, a fpecies of Polyganum (fee that a: icicle Encycl.), was firf introduced into Europe about the end of the 15 th or the beginning of the 16 th century. Accorling to fome botanifts, who lived at that period, its native country is the northern parts of Afia, whence it "as brought to Gelmany and France, where, about the jear 1587 , it was the common food of the poor.

A new Species of this grain, or, to fpeak perhaps more properly, a variety of this fpecies, has been for frme time known under the name of Siberian buckwheat, which appears to have confidcrable advantages over the former. It was fent from I'artary to St Pe-
tcrburgh by the German botanifts, who travelled thro' that country in the beginning of the prefent century; and it has thence been difperfed over all Europe. Linnxus reccived the firlt feeds of it in 1737 from Garber the botanift, and defcribed the plant in his Horius Clif. fertionus. After this it was mentioned by Ammann in 1739: but it muf have been earlier known in Germany; for in 1733 it was growing in the garden of Dr Ehrhart at Memmingen. In Siberia this plant fows itfelf for four or five years by the grains that drop; but at the end of that period the land becomes fo full of tares that it is choaked, and mult be fown afrefh. Even in the economical gardens of Germany, it is propagated in the fame manner; and in that country it is in fome places found growing wild, though it is nowhere cultirated in the neighbourhood. In the United States it is cultivated very extenfively and is found a valuable article, whether for manure, for theltering young clover, or for a crop of grain, which is much ufed for bread and alfo for feeding cattle.

BUCKS Co. in Pennfylvania, lies S. W. from Philadelphia. It is feparated from Jerfey by Delaware River, on the S. E. and N. E. and has Northampton co. on the N. W. It contains 25,401 inhabitants, including 114 flaves. Bucks is a well cultivated county, containing $41 \mathrm{I}, 900$ acres of land, and is divided into 27 townhips, the chief of which is Newtown. It abounds with lime fone, and in fome places are found iron and lead ore. There is a remarkable hill in the N. end of the county called Haycock, in the townhip of the fame name. It is 15 miles in circumference, having a gradual afcent, and from its fummit is a delightful profpect. The waters of Tohickon Creek wafh it on all fides except the weft.-Morse.

BULAM, or Bulama, as it is more ufually called, forms part of the Archipelago, or clufter of iflands, lying on the weftern or windward coalt of Africa," and known by the name of the Biflaos or Bifagos, which are fuppofed to have been celebrated by the ancients under the appellation of the Hefperides. It is fituated at the mouth of the Rio Grande, in $11^{\circ} \mathrm{N}$. Lat. and $15^{\circ} \mathrm{W}$. Long. from the meridian of London; and is between feventeen and eighteen leagues long, and from four to five broad.

This iftand las become an interefling object to the inhabitants of Great Britain, in confequence of its having been purchafed in the year 1792 by a focicty inllituted for the fame humane purpofes with thofe which gave rife to the Sierra-Leone company (fee Sterra. Loone, Encycl.). The Bulam alfociation was formed towards the Jatter end of the year 1791; and they were induced to pitch upon that ifland as the moft eligible tract for their intended colnny, in confequence of the flattering defcription given of its climate, foil, and harbours, by M. Biue, formeriy director-general of the French African companies.

The gentlemen originally appointed as truftees for managing the concerns of the affociation at lome were, Paul Le Mefurier, M. P.; James Kickpatrick, Eiq; George Hartwell, Efq; Mifes Ximenes, Efq; Sir John Riggs Milier, Bart. and David Scott, Efq; M. P; and for eftablifhing the colony, and conducting the affairs of the fociety abroad, the following gentlemen were nominated, viz. Mefrs H. H. Da'rympis, Fohn Foung, Sir Wiliam Halton, Lart. John King, Pbilis Deirver, Peier

B U L [167$] \quad$ B U L

Bulama. Clutberbuck, Nicholas Bayly, Francis Brodie, Cluarles Drake, Fohn Paiba, Richard Handcorne, Robert Dobbins, and Ifaac Ximenes.

A fum of L.9000 being quickly fubfcribed for the eftablifhment of the intended colony, this committee failed from Spithead in three fhips on the wth of April 1792 ; and landing in duc time at Bulama, they purchafel that ifland from the kings of Canabac, who claimed it as their property. They purchafed likewife frem the kings of Ghinala the neighbouring illand Arcas, and the adjacrit land on the continent; and thefe feveral purchafes being taken poffeffion of in the ufual form, a bedy of fettlers, confining of 49 men, 13 women, and 25 children, were left at Bulama under the fuperintendance of Mr Beaver, with a temporary fup. ply of provifions, Itores, plantation-tools, and merchandife, for trading with the neighbouring natives. It is from the difpatches of thefe fettlerc, after having lived fome time in Bulama, that the following account of the illand was drawn up by Mr Johanfen.
" 'The climate, on the whole, may be deemed falubrious, and will become more fo in proportion to the increafe of cultivation. The mornings and evenings are temperate and pleafant ; the middle of the day is hot, but the fine fea-breeze which then fets in tends greatly to cool and refrefh the air. The heat of the fun is not either fo exceflive or intolerable as has been generally fuppofed; indeed nature has moft admirably adapted our mechanical and phyfical qualities to the exigencies of different regions; and man, who is the inhabitant of every climate, may, in fome meafure, render himfelf indigenous to every foil. Here the only danger arifes from too fudden an expofure to the operation of the vertical rays of the fun, or an excefs of labour ; both of which the firft fettlers ought molt ftudioully to avoid.

* It appears from Mr Beaver's obfervatinns at noon, between the 20th of July 1792, and the 28th of April 1793, that the thermometer, when loweft, was at 74 ; the medinm heat 85 ; and that it never exceeded 96 , except at one time when it rofe to 100 , during a calm that occurred in the interval between the north-eait breeze in the morning and the fouth-weft in the evening of the rith of February 1793. The difference between the heat of noon and that of the morning and evening is from 20 to 30 degrees. On the 23 d of October 179^{2}, hail of the fize of a pin's head fell during two minutes, although not a cloud was to be feen during this phenomenon. The mercury in the thermo. meter then food at 85 ; the wind was at north-ealt in the morning and fouth-weft in the evening.
"Immediately after fun fet a dew conitantly begins to fall, which induces fome to light a fire in their houles; they at the fame time put on warmer clothing. There is little or no twilight; and night and day are nearly equal : the earth has therefore time to cool during twelve hours abfence of the fun.
"None of thofe terrible and deftructive hurricanes fo frequently experienced in the Weft Indies are to be met with here. The tornadoes, which arile chiefly from the eaftern point of the compafs, are but of fhort duration, feldom taking above an hour, and may be readily forefeen fome time previoufly to their commencement. They occur at the beginning and clofe of the wet feafon, and are lighly beneficial, as they punify the air,
and difpel the noxious vapours with which it wonld otherwife abund.
"The rains fet in about the latter end of Iviay or the begianing of June, and difcontinue in Oftober or November. They do not fill every day, for there is often a confiderable interval of clear weather, during which the atmofphere is beatifully ferene; the fhowers in the firit and lalt month occur but feldonn, and are far from being violent; while on the other hand, they fometimes refemble torrents; more efpecially towards the middle of the feafon. During the whole of this perind, Europeans Chould, if polfible, confine themfelves to their habitations, as the rains prove injurious to hoalth, more cfpecially if thofe expofed to them neglect to wipe their bodies Ury, and to change their clo:hes immediately on their return horne. It is deemed prudent alio not to dig the earth until the expiration of a month af. ter the return of fair weather, as this is confidered to be unhealthy.
"During the continuance of the dry feafon, a dew falls during the night, in fufficient quantity to anfiver all the purpofes of vegetation.
"Every Atranger is generally here, as well as in the Weft Indies, fubject to a fever or fenfoning, on his arrival. This is not infectious; it proceeds perhaps from an increafed perfpiration and a fudden extenfion of tha pores of the human body, in confequence of the heat, by which means it is rendered more liable to imbibe the abundant exhalations that arife from the animal, vegetable, and mineral king doms; but even this, flight as is is, might doubtlefs be avoided by means of a proper regimen, and a fhort feclufion from the full astion of the open air, more efpecially at noon, and during the evening, until the climate has been rendered familiar.
"Bulama is admirably adapted for all the purpores of an extenfive commerce, being not only happily fituated at the mouth of the Rio Grande, but in the vicinity of feveral other navigable rivers; fo that a trade with the internal parts of Africa is thereby greatly facilitated. The landing is remarkably eafy and liafe, there being no furge ; the ebb and flow is regular, and there is an increafe of 16 feet of water at fpring tide. The bay oppolite the Great Bulama is adorned with a number of iflands, covered with trees, and forms a moff cx cellent harbour, fufficiently capacious to contain tife whole navy of Great Britain, which might ride there in fafety. The fettlement in general is well fupplied with water. A number of fprings have been lately difcovered in different places; and befides a draw-well in the fort, which was erefled for the defence of the colony, there is a fmall Itream, which runs into E. lewfis Bay, near the new fettiement called Hefper Elewfis : this is admirably fituated for the fupply of dipping.
"The ifland is beatifully furrounded, and interfper-
fed with woods: lofty fruit and foreft trees, mofly free from underwood and brambles, form a verdant belt, in fome places two or three miles broad, which entirely
encircles it, in fuch a manner as to repreient a plantafome places two or three miles broad, which entirely
encircles it, in fuch a manner as to reprefent a plantation artificially formed around a park. Within this the fields are regularly divided by trees, fo as to refem-
ble the hedge rows in England. The beach has in fome the fields are regularly divided by trees, fo as to refem-
ble the hedge rows in England. The beach has in fome places the appearance of gravel walks ; it is fringed
with mangrove trees, which forming a line with the places the appearance of gravel walks; it is fringed
with mangrove trees, which forming a line with the bigh-water mark, dip their branches into the fea, and

Eulanad.
-rab

 or
\qquad

[^6]
B U L $\left[\begin{array}{lllllll}168\end{array}\right] \mathrm{B} \quad \mathrm{U} \quad \mathrm{N}$

Bulama.

 n thus afford nourifment to the oyfters that often adhere to their extremities.Several parts of Bulama have been occafionally cultivated by the ncighbouring blacks, though they did not conitintly refide on it.
"The land in general rifes gradually towards the middle of the ifland, where the higheit fpot is from 60 10100 feet above the level of the fea. The fmall hill nn which the fort is fituated is nearly of the fame altitude.
"The foil is abundantly rich and deep; Atones do not here impede the labours of the farmer; and indeed none have hitherto been difcovered, but a fmall fort, refembling pieces of ore, which are to be met with on the fhore. There ate many favannabs or natural meadows, fo extenfive that the eye can farcely defcry their bonndaries. Thefe are admirably adapted for the rearing of ftnck and feeding of cattle of every kind.
"Cotton, indigo, rice, and coffee, grow fpontaneonfly on this coaft; the fugar-cane is indigenous to many parts of Africa, and might be cultivated here by the labour of freemen, in equal perfection, and to much greater advantage, than in the exhaufted iflands of the Weit Indies. All kinds of tropical productions, fuch as pine-apples, limes, oranges, grapes, plums, caffada, guava, Indian wheat, the papaw, water-melon, mufkmelon, the pumkin, tamarind, banana, and numbers of other delicious fruits, alfo flourifh here. The adjoining territories produce many valuable forts of fipices, gums, and materials for dying; all of which, it is but fair to fuppofe, might be readily cultivated in a kindred climate and a congenial foil.
"The neighbouring feas abound with a variety of fifh, highly agreeable to the palate. The lion, tyger, jachall, \&c. are natives of the continent; but in Bulama no animals have been difcovered, the wolf, fome buffiloes, a few elephants, and a fpecies of the deer excepted.
"The woods abound with doves, guinea fowls, and a variety of birds, celebrated for the beauty of their plumage.
"The natives of this part of Africa, like all favages, arc entirely under the dominion of their paffions: hence the violence of their attachment to their friends, and the excefs of their refentment againft their enemies. Their notions of property are very obfcure and confured: they have no idea of any right arifing from occupancy or improvement. What they want, they either teceive or take wherever they may happen to meet with it, and they permit others to do the fame. They have been taught by experience, that the Europeans will not agree to this: againtt them therefore they employ every artifice that it $i s$ in the power of cunning to fuggelt.
"The colonits need not fear any attack on the part of the negroes, provided their own conduct be juft and peaceable: for Mr Beaver, who was indeed admirably calculated by nature and habit for the ftation he occu. pied, could infure both fafety and refpect when the fettlers under him were reduced to four white men, although the neighbouring nations knew that he was in polleffion of commodities, for the acquifition of which
many of them had become day-labourers. He often kept from twenty to forty gromittos, or black cultivators in pay, at that very period, at about four or five bars (A) each per month. Thefe are eafy to be procured, to almoft any number that can poffibly be wanted.
"Until a fufficient quantity of fock and provifions can be raifed in the company's rettlements, the adjacent iflands will furnifh abundance of cattle, hogs, fowls, \&c. at a very cheap rate. A horfe may be purchafed at Goree for I l. 10 s . a bullock may be had from 12 s . to 18 s . Aterling : provifions of all kinds are equally reafonable. Honey is alfo to be procured in great plenty, and bees wax may be rendered an advantageous object of commercial 反peculation.
"In thort, the acquifition of Bulama, Arcas, and the adjacent territories, prefents the fairelt opportunity of furniihing Europe with many valuable articles that have hitherto been brought from more remote countries, with much greater hazard, and at an increafed expence. The intercourfe with England is eafy, fafe, and expeditious; for the voyage may be performed in the fpace of three or four weeks: and by the terms of the firt fubfcription, a fettler on Bulama might purchafe 500 acres of land for L. 30 Aterling ; by the terms of the fecond, which we fuppoie are the terms at prefent, he might purcliafe on the inands of Bulama and Arcas, or on that part of the adjacent coalt which was ceded to the fociety by the kings of Ghinala, 200 acres for L. 50 Iterling.
"The colonization of Africa opens a noble and extenfive field to nations and to individuals. To people thofe fertile territories, defpoiled of their inhabitants by the flave-trade; to rear the productions of the climes between the tropics, by the afliftance of free men; to give ample fcope to the indultry and exertions of thofe who may be inclined to remove from Great Britain; and to extend the commerce and the manufactures of our native country - thefe are fubjects which have excited the attention of the Bulama affociation, and now claim the affitance of the ingenious, the fupport of the rich, and the concurrence and good wifhes of all.

BUNCOMB, the largeft and moft weltern county of North Carolina, and perhaps the moft mountainous and hilly in the United States. It is in Morgan diftrict, bounded W. by the fate of Tenneffee; and S. by the Itate of South Carolina. The Blue Ridge palfes through Buncomb, and gives rife to many large rivers, as Catabaw, Wateree, Broad River and Pacolet.Morse.

BUNTING, is a bird which has been defcribed under its generic name Emberiza (Encycl.); but there is one fpecies, the orange-ghouldered bunting of Latham, of which M. Vaillant relates fome particulars certainly not unworthy of notice in this place.
"The female of this beautiful bird (fays he) has the fimple colours of the fay lark, and a fhort horizontal tail, like that of almolt all other birds: the male, on the contrary, is wholly black except at the fhoulder of the wing, where there is a large red patch; and his tail is long, ample, and vertical, like that of the common cock. But this brilliant plumage and fine vertical tail fubfit only during the feafon of love, which continues

13 U R [169$] \quad B \quad U \quad R$

Buatirg fix months. This period over, he lays afide his fplendid habiliments, and aflumes the more modeft drefs of his mate. The molt extraordinary circumflance is, that the vertical tail alfo changes to a horizontal one, and the male fo exactly refembles the female, that it is not polfible to diftinguifh them from each other.
"The female has her turn. When the reaches a certain age, and has loit the faculty of propagating the fpecies, the clothes herfelf for the remainder of her days in the garb which the male had temporarily affumed; her tail, like his at that period, grows long, and, like his alfo, from horizontal becomes vertical.
"The birds of this feecies afficiate together, live in a fort of republic, and build their nefts near to each other. The fociety ufually confifts of :about fourfcore females; but whether, by a pasticular law of nature, more females are produced than males, or for any other reafon of which I am ignorant, there are never more than twelve or fifteen males to this number of females, who have them in common."

According to our author, this tranfmutation is by no means confined to this particular fpecies of bunting. Many females of the feathered creation, when they grow fo old as to ceafe laying eggs, afiume the more Iplendid colours of the male, which they retain during the remainder of their lives. This fact is ftrikingly perceptible in thofe fpecies in which the male and fernale very much differ in colour, as the golden phcafant of China, for infance. In fome fpecies, and thofe not a few, the male alone regularly changes his colour, and affumes once in a year the plumage of the female; fo that at a certain period all the birds of that fpecies appear females. "I have in my poffelion (Cays our author) fpecimens of more than fifty of thofe changing fpecies, in all their tranfitions from one hue to another; and the change is fometimes fo great, that a perfon would fuppofe himfelf to fee individuals totally different. A clofet-naturalift, for inftance, fhewed me four birds as fo many different feecies, and even as not belonging to the fame genus, with which I was well acquainted, and which I knew to be the fame bird, only of different ages."

Such changes as thefe, could they be proved to take place occafionally among domeftic fowls, would in fome meafure account for ftrange fories of cocks laying eggs, which we have heard related by perfons whofe general veracity was never queftioned.

BURKE (Edmund), was born in the city of Dnolin on the if of January 1730 . His father was an at. torney of confiderable knowledge in his profefion, and of extenfive practice; and the family from which he fprong was ancient and honourable. He received the rudiments of his claffical education under Abraham Shackleton, a Quaker, who kept a private fchool or academy, as it hats been called, at Bellytore, near Carlow, and is faid to have been a very fkilful and fuccefsful teacher.

Under the tuition of this mafler Burke devoted himfelf with great ardour, induilty, and perfeverance, to his ftudies; and manifetled, even from his boyifi days, a diftinguifhed fuperiority over his contenuporaries. He was the pride of his preceptor, who prognofticated every thing great from his genius, and who was, in return, treated by his illuntrious pupil, for forty years, with refpect and gratitude.

From fchool Burke was fent to Trinity-college, Dublin, where it was afferted by Goldfmith and others his contemporaries, that he difplayed no patticular eminence in the performance of his exercifes. Like Swift, he defpifed the logic of the fehools; and like him ton, he devoted his time and his talents to more ufeful purfuits. Johnfon, though proud of being an Oxonian, did not much employ himfelf in academical exercifes; and Dryden and Miton, who Audied at Cambridge, were neither of them ambitious of college diftinctions. Let not, however, the example of a Burke, a Johnfon, a Dryden, or a Milton, feduce into by-paths the ordinaty fludent ; for though great genius either finds or makes its own way, common minds muft be content to purfue the beaten track. Shakefpeare, with very little learning, was the greateft dramatic poet that ever wrote; but how abfurd would it be to infer from this fact, that every illiterate man may excel in dramatic poetry?

Whilh at college Burke applied himfelf vith fuffcient diligence to thofe branches of mathematical and phyfical fcience which are moft fubfervient to the purpofes of life; and though he neglested the fyllogitic logic of Ariftotle, he cultivated the method of induction pointed out by Bacon. Pneumatology, likewife, and ethics, occupied a confiderable portion of his attention; and whilit attending to the acquifition of knowledge, he did not neglect the means of communicating it. He Audied rhetoric and the art of compofition, as well as lngic, phyfics, hiltory, and moral philnfophy; and had at an early feriod of his life, fays Dr Biffet, planned a confutation of the metaphyfical theories of Berkeley and Hume.

For fuch a tafk as this, we do not think that natureincended him. Through the ever-ative mind of Burke ideas feem to have flowed with too great rapidity to permit him to give that patient attention to minute diftinctions, without which it is vain to attempt a confu. tation of the fubtleties of Berkeley and Hume. The ableft antagonift of thefe two plilofophers was remarkable for patient thinking, and even apparent flowners of apprchenfion; and we have not a drubt, but that if he had poffefled the rapidity of thought which claracterifed Burke, his confutation of Hume and Berkeley would have been far from conclufive: It might have been equal to the Efluy on the Nature and Immulability of Truth, but would not have been what we find it in The Inquiry into the Human Mind on the Principles of Common Senfe, and in The Efdys one the Intelleaual and Altive Powers of Man.

A tafk much better fuited to Burke's talents than the writing of metaphylical difquifitions on the fubltratum of body, prefented itfelf to him in the year 1749 . and a tulk which was likewife more immediately ufeful. At that period one Lucas, a democratic apothecary, wrote a number of very daring papers againf government, and acquired by them as creat popularity at Dublin as Mr Wilkes afterwards obtained by his North Briton in London. Lurke, though a boy, perceived, almolt intuitively, the pernicious tendency of fuch levelling doctrines, and refolved to counteract it. He wrote feveral effays in the ftyle of Lucas, imitating it fo exactly as to deceive the public; purfuing his principles to confequences neceffatily refulting from ther, and thewing at the fame time their abfurdity and their

B U R [170] B U R

Eurke. darger. Thus was his firt literary cffort, like his laft, c.ilculated to guard his country againf anarchical innovations.

Whilt employed in treafuring up knoxledge, which at a foture poriod was to command the admiration of liltening fenates, he did not negleft the means neceflury to render himfelf agreeable in the varicd intercoufe of private life. To the learning of a fcholat he added the matners of a rentleman. Iis compiny was fought among the gay and the fathionable, for his pleating converfation and eafy deportment; as much as among the learned, for the force and brilliancy of his genius, and the extent and depth of his knowledge. But though the object of very general regard in his native country, lue had hardly any profpect of obtaining in it an independent fettlement. He therefore applied, fome time after the publication of his letters expoling the doethines of Lucas, for the profelforthip of logic, which had then become vacant in the univerfity of Glafgow: but whether that application was made too late, or that the univerfity was unwilling to receive a Atranger, certain it is that the vacant chair was filled by another, and that Burke was difappointed of an office in which he was eminently qualified to excel. For many years very little attention has been paid in the univerfities of Scotland, perhaps even too little, to the Arittotelian logic; and the profeffors, intead of employing their time in the analy fing of fisllogifms, deliver lectures on rhetoric and the principles of compolition-lectures which no man was more capable of giving than the unfuccefsful candidate for the profefforlhip in Glafgow.

Difappointment of early view's has frequently been the means of finture adrancement. Had Johnion become malter of the Staffordhire fchool, talents might h:ave been confumed in the tuition of boys which Providence formed for the inftruction of men; and had Burke obtained the profefforthip of logic in Glafgow, he would have been the molt eloquent lecturer in that univerfity, inftead of the mof brilliant fpeaker in the Britih fenate: but whether his talents might not have been as ufefully employed in the univerfity as in the fenate, may perhaps be a queftion, though there can be no queltion whether they would have invelted himfelf with an equal blaze of fplendour.

Difappointed in Glafgow, he went to London, where he immediately entered himlelf of the Temple; and as there is reafon to believe that he was in fraitened circumflances, he fubmitted to the drudgery of regularly writing for daily, weekly, and monthly publications, effays on general literature and particular politics. The profits arifing from fuch writings were at firf fmall ; but they werc fo neceffary to their author, that the inrenfe afplication which they required gradually impaired his health, till at laft a dangerous illnefs enfued, when he reforted tor medical advice to Dr Nugent, a phylician whofe tkill in his profefion was equalled only by the benevolence of his heart. The Dector, confideing that the noife, and various difurbances incidental to chambers, muft retard the recovery of his patient, furnifhed him with apartments in his own houfe, where the attention of every member of the family contribu. ted more than medicines to the reftoration of his health. It was during this period that the amiable manners of Mils Nugent, the Dector's daughter, made a deep im. prefion on the heart of Burke; and as the could not
be infenfible to fuch merit as his, they felt for each other a mutual attachment, and were married foon after his recovery.

Hitherto his mental powers and acquirements were lnown in their full extent only to his friends and more intinate companions; but they were now made public in his firf acknowledged work, intitled, A Vindication of Natural Society. The object of this performance was to expofe the dangerous tendency of Lord Bolingbroke's phlofophy. By the admirers of that nobleman his principles were deemed inimical only to revealed religion and national churches, which they would have been glad to fec overturned, provided our civil eftablithment had been preferved; and to the civil eftablifhment they perceived no danger in the writings of the author of The Patriot King. Mr Burke thoughe very differently; and endeavoured to convince them, that if his Lordihip's philofophy fhould become general, it would ultimately deftroy their rank, their confequence, and their property, and involve the church and ftats in one common ruin. In his ironical attack upon artificial fociety, he makes ufe of the fame common-place mode of unfair reafoning which his noble antagonift had employed againt religion and religious eftablifhments. He argues, from the incidental abufes of political fociety, that political rociety mult itfelf be evil; he goes over every form of civil polity, pointing out its defects in the moft forcible language ; and, in perfect imitation of the fceptical philofophy, he pulls them all down, one after another, without propoling any thing in their Itead. So complete is the irony, that to many not acquainted with fuch difquiftions, he would appear to be ferioufly inveighing againft civil government: and we have atually heard fome of the advocates for modern innovation mention this work as a proof how different Mr Burke's opinions in politics once were from what they appear to have been when he wrote his Reflections on the Fronch Revolution.

The truth, however, is, that there is no inconfiftency between The Vindication of Natural Society and the lateft publications of its illuftions anthor. At the perod when that work was publifhech, infidelity had infected only the higher orders of men, and fuch of the Inwer as had got the rudiments of a liberal education. Of thefe we believe a fingle individual was not then to be found, who fuppofed that fociety could fubfif both without government and without religion; and therefore whilft they laboured to overturn the church, and to prove that Chrifianity itfelf is an impolture, they all pretended to be zealouny attached to the civil government as eltablifhed in king, lords, and commons. Except the clergy of the eitablifhed church, there was no order of men whom they indifcriminately revilad. Hence it was that not Burke only, but Warburton, and almoft every other opponent of Lord Bolingbroke, began their defences of revelation, by thewing the indiffoluble connection between the civil and ecclefiaftical eltablifiments, and all the difference was, that he did, through the medinm of the moft refined irony, the very fime thing which they had done by ferious seafoning.

Soon after his Vindication of Natural Society, Burke publifhed A Pbilofophical Enfuiry into the Origin of our Ideas of the Sublime and Beauliful; a wo:k which foon made its author univerfally known and admired, and which has been Rudied by every Engli!h reader of talle.
B U R [171]
B U R

Surke. It is thercfore needle:s for us to hazard any opinion either of its general merit or its particular defects. In one of the literary journals of that day, Mr Murphy urged objections againf fome of its fundame:tal puinciples, which, in our opinion, it would be very dificult to anfwer; whillt Johnfon, who was certanily a fevere judge, confidered it as a model of philofophical criticifm. "We have (faid he) an example of true criticifm in Burke's Ellay on the Sublime and Beautiful. There is no great merit in thewing how many plays have ghofts in them, or how this ghot is better than that; you mult thew how terror is impreffed on the mind."

In confequence of this manifeftation of Burke's intelleetual powers, his acquaintance was courted by men of diftinguifhed talents, and, among others, by Johnfon and Sir Jothua Reynolds. The literary club, which has been mentioned (Encycl.) in the life of Jounson, was inftituted for their entertainment and infruction, and confilled at firit of Johnfon, Burke, Reynolds, Goldfmith, Dr Nugent, Mr T'ophan, Beauclerc, Sir John Hawkins, Mir Chamier, and Mr Bennet Langton, who were all men of letters and general information, though far above the refl flood Burke and Johnfon. Of Burke in. deed, Johnfon declared, upon all occafions, that he was the greateft man living; whill Burke, on a very folemn cccalion, faid of Johnfon, "He has made a clafn, which not only nothing can fill up, but which nothing has a tendency to fill up. Johnfon is dead. Let us go to the next beft- There is nobody - No man can be mid to put you in mind of Jolnfon." Nor was the opinion which thefe two illultrious men held of each other's powers peculiar to thomfelves alone: all the members of the club olferved, that, in colloquial talents, they were nearly matched, and that Johnfon mever difoourfed with fuch animation and energy as when his powers were called forth by thofe of Burke.

Some years before the inflitution of this club, Burke, who had devoted much of his time to the fudy of hiftory and politics, propofed to Mr Dodfley, an eminent bookfeller, a plan of an Annual Register of the civil, political, and literary tranfactions of the times; and the propofal being acceded to, the work was begun and carried on for many years, cither by Burke himfelf, or under his immediate infpection. It bears indeed internal matks of his genius, his learning, and his candour, being by much the moft elegant and impartial periodical hittory which has perlaps appeared in any age or nation. Even when the heat of oppofition made him, in his fpeeches, fometimes mifreprelent the conduct of adminiltration, the Annual Regiller, under his management, continucd to render juftice to all parties.

He fall continued to write occationally political effays for other publications than the Anmaz Regiter; and fome of thefe oflays in the Publiz Alderififer having attracted the notice of the Marquis of Rockingham, that nobleman fought the acquaintance of their au:hor. It was in the year 1765 that the firf intcrview took place between them; and the Marquis, who was then at the head of the treafury, offering to make Burke his own fecretary, the offer was readily accepted. On this occafion he gave a remarkable proof of difintereftednefs and delicate integrity. Through the influence of Mr Hamilton, known by the appellation of Single-spech Hamilton, and long fufpened to be the auhor of $7 / 4$ -
nius's Letters, he had fome time before obtained a pern- Purlie. fion of L. 300 a year on the Irilh eftablifhment; but this penfion he now thought it incumbent upon him to refign, becaufe he had connected himfelf with a party oppofite in many things to the party whofe meafures were fupported by his fiend.

During the Rochingham adminilration he was chofen member of parliament for the borough of Wendover in the county of Bucks; and he prepared himelf for becoming a public fpeaker, by fuatying, fill more clofely than he had jet done, hillory, poetry, and philofophy; and by foring his mind with facts, images, renSonings, and fertiments. He paid great attention likewife to parliamentary ufage ; and was at much pains to become acquainted with o!d records, patents, and precedents, fo as to render himfelf complete mater of the bufinefs of office. That be might communicate without embarraffment the knowledge which he had thus laborioufly acquircd, he frequented, with many other men of eminence, the Robin Hood Socieny, where he pranifed the replies and contentions of eloquence; and to acquire a graceful adion, with the proper managenent of his voice, he was a very diligent obferver of Garric in Diury-Lane theatre. He procured his feat in 1765, and in the enfuing feffion delivered his maiden fpeech; which was fuch a difplay of eloquence as excited the admitation of the Houfe, and cirew very high praife from its mon diftinguilhed member Mr Pitt, afterwards Earl of Chatham.

The principal objects which engaged the attention of the Rockingham adminidration twere the ferments in America, which was then in a flate little fhert of rebellion, on account of the famous ftamp-at. Parliament was divided in opinion refpesting that meafure. Whilt Mr Gernville and his party (under whofe aufices the flamp-at had paffed into a law) were for enforcing obedience to it by coercive meafures, Mr Pitt and his followers denied that the parliament of Great Dritain had a tight to tax the Americans; and the marquis of Rockingham, who was hardly able to carry any meafure in oppolition to both thefe partics, had to confider, on this occalion, whofe fentiments he would adopt. By the advice, it is faid of Mr Burke, he chofe a middle courfe between the two oppofite cxtremes. To gratify the Americans, he repealed the ftamp-act ; and to vindicate the honour of Britain, he got a law paffed declaratory of her right in legiflate for A merica in taxation as in every other cafe.

This meafure, whoever was its author, was certainly not the offspring either of wifdom or vigeur. If the mother countiy had a right to legifate in all cafes for America, obedience to the flamp-act fhould certainly have heen enforced; and the minittry which elinquifhed an acknowledged right, to gratify the difpolition of diftant colonies, was confidered as unfit to guide the helm of a great empirc. Lord Rockingham and his friends were accordingly difmifed from office; and a new adminifration was formed under the aufices of Mir Pitt, now created Earl of Chatham.

Burke, in the mean time, wrote in defence of the party with which he was connested; and affumed great credit to it for compofing the diatractions of the Britifh empire by the repeal of the American famp-at, whild the conltitutional fiperiority of Greal Britain was preferved by the aft for fecuring the dependence

B U R [172] B U R

 of the colonies. After defending his friends, he proceeds to attack thofe who had fucceeded them in office. Of Lord Chathams he $\mathrm{f}_{\mathrm{d}} \mathrm{ys}$-" He has once more deigned to take the reins of government into his own hand, and will, no doubt, drive with his wonted fpeed, and raife a deal of duft around him. His horfes are all matched to his mind; but as fome of them are young and 1 kittifh, it is faid he has adopted the new contrivance lately exhibited by Sir Francis Delaval on Weftminfter bridge: whenever they begin to fnort and tofs up their lheads, he touches the ffring, throw's them loofe, and away they go, leaving his lordfhip fafe and fnug, and as much at his eafe as if he fat on a woolpack."The letter, of which this is an extract, was printed in the Public Advertifer; and is faid to have contributed, in no fmall degree, to lellen the popularity of the illuftrious ftatefman againft whom it was written. The miniftry, indeed, which he had formed, confifted of very heterngeneous materials, and was not heartily approved of by the nation. It therefore foon fell in pieces by its own difcord, and Lord Chatham retired in difgult.

The parliament heing diffolved in 1768 , Burke was re-elected for Wendover, and took his feat, when the houfe met, in November. The duke of Grafton was now prime minifter, and was oppofed by two powerful parties in parliament; that of the marquis of Rocking. ham, and that of which Mr Grenville was confidered as the leader. Thefe two parties, however, differed widely between themfelves. Mr Grenville had publifhed a pamphlet, intitled, The Prefent State of the Nation; in which he very ably vincicated his own meafures, and of courfe condemned the meafures of thofe who had fucceeded him; and Burke replied to him, with greater eloquence, but, perhaps, with lefs of argument, in a tract, intitled Dbfervations on the Prefent State of the Nation, in which he makes a very high panegyric on his own patron, and the connections of the party, and animadverts with cutting feverity on their fuccelfors in - office.

About this period commenced the natinnal frenzy which was excited by the expulfion of Wilkes from the houfe of commons, for baving prin'ed and publifbel a feditious libel, and three obfcene and impious libels. In the controverfy to which this tranfaction gave rife, Burke and Johnfon took oppofite fides. Johnfon, in his Falfe Alarm, contends, with great ability, that the expullion of a member from the houfe of commons for the commillion of a crime, amounts to a difqualification of that member from fitting in the parliament from which he is expelled; whillt Burke, tbough he difapproved of the conduct of Wilkes as much as his friend, laboured to prove, that nothing but an act of the legilldture can difqualify any perfon from fitting in parliament who is regularly chofen, by a majority of electors, to fill a vacant feat. It does not appear that this difference of opinion produced the fmalleft abatement of mutual regard between him and Johnfon. They both attended the weekly clnb, and were as much pleafed with each other as formelly.

The proceedings of the Grafton adminiftration, refpecting Wilkes and other fubjects, gave rife to the celebrated Letters of Funius. That thole compolitions were, in cleamers, neatnefs, and precifion of ftyle, in-
finitely fuperior to perhaps every other feries of newfpaper invectives, has never been controverted; and that they difplay a valt extent of hiftorical and political in. formation, is known to all who are not themfelves Atrangers to the hifory of Great Britain. Unclaimed by any author, and fuperior to the productions of molt authors, they have been given to Burke, to his brother Richard, a man likewife of very bright talents, to Mr Hamilton, and to Lord George Germaine. We fhould hardly hefitate to adopt the opinion of thofe who afcribe them to Burke, had he not difavowed them to his friend Johnfon. "I foould have believed Burke to be Junius (faid Johnfon), becaufe I know no man but Burke who is capable of writing thefe letters; but Burke fpontaneoufly denied it to me. The cafe would have been different had I afked him if he was the author. A man may think lie has a right to deny when fo queftioned as to an anonymous publication." The difference between the ftyle of thefe letters and that of Burke's acknowledged writings, would have luad no weight with us; becaufe fuch was his command of language, that he could affume, and occafionally did af. fume, any ftyle which he chofe to imitate. He had already fo clofely imitated the very different fiyles of Lucas and Bolingbroke as to deceive the public ; and what was to hinder him from imitating the ftyle of Lord George Germaine, which certainly has a ftrong refemblance to that of Junius? We think, however, with Jobnfon, that his fpontaneous difavowal of thefe letters ought to be held as fufficient proof that he was not their author.

Burke had now gotten a very pleafant villa near Beaconsfield in Buckinghamfhire; and being one of the freeholders of the county, he drew up a petition to the king, complaining of the condust of the houfe of commons refpecting the Middlefex election, and praying for a difolution of the parliament. The petition, though explicit and firm, was temperate and decorous, and as unlike to one on the fame fubject from the livery of London, as the principles of a moderate Whig are to thofe of a turbulent democrate.

About this period he flated very clearly his own political principles in a pamphlet intitled, "Thoughts on the Caufes of the Prefent Difcontents;" and his plan for removing thefe difcontents had not a grain of democracy in its compofition. He propored to place the government in the hands of an open arifocracy of talents, virtue, property, and rank, combined together on avowed principles, and fapported by the approbation and confidence of the people; and the ariflocracs which he thought fittelt for this great truft, was a combination of thore Whig families which had molt powerfully fupported the revolution and confequent eftablithments. He expreffed, in ftrong terms, his difapprobation of any change in the conflitution and duration of parliament; and declared himfelf as averfe from an adminiftration which thould have no other fupport than popular favour, as from one brought forward merely by the influence of the court.

In this plan there is not that wifdom or liberality which might have been expected from a man of Burke's cultivated mind and extenfive reading. The Whigs, when in power, had been as venal as the Tories; and the imprionment of Lord Oxford, the baniffment of Atterbury bifhop of Rochetter, and the refolution of

B U R [173] B U R

Burke.
$\underbrace{\text { Burke. }}$
the houfe of commons to fit for feven years, when it had been chofen by its conftituents for no more than three, were certainly greater violations of the conflitution than the difqualification of Wilkes, or any other meafure that had been carried by the court during the adminifrations of Grenville and the duke of Grafton. Burke fhewed himfelf in this publication to be indeed no republican; but every fentence of it breathed the fpirit of party.

Lord North was now prime minilter; and in order to tranquillize America, he propofed, in the beginning of his adminiftration, to repeal the obnoxious laws of his predeceffors in office, and to referve the duty on tea merely to maintain the authority of parliament. The confequences of this conduct we have detailed elfewhere (fee Britain, Encyel.) ; and they are too well known to all our readers. The part which Burke acted during his adminiftration will not, in our opinion, admit of any plaufible defence. It was not indeed the part of a democrate, but of a man dctermined to oppole every meafure of thofe in power. In the beginning of the contelt, he certainly difplayed more wifdom and patriotifm than the minifter; for, without entering di. rectly into the queftion Whether the mother-country had or had not a right to tax the colonies? he contented himfelf with warning the houfe againft dangerous innovations. "The Americans (faid he) have been very ferviceable to Britain under the old fyltem: do not, therefore, let us enter rafhly upon new meafures. Our commereial interelts have been hitherto greatly promoted by our friendly intercourfe with the colonies ; do not let us endanger poffeffion for contingency ; do not let us fubfitute untried theories for 2 fyltem experimentally afcertained to be ufeful."

This was undoubtedly found reafoning, and everyway beeoming a lover of his country: but his contimued oppofition to government, after all Europe had leagued againft Great Britain, was a conduct which will admit of no vindication, and for which the only poffible apology mult be found in that ardour of temper which made his friend Hamilton fay, on another occafion, " Whatever opinion Burke, from any motive, fupports, fo ductile is his imagination, that he foon conceives it to be right." In his moft violent oppofition, however, though his expreffions were often extravagant and indecent, he never for a moment gave his fupport to the metaphyfical doctrine of the impreferiptible rights of man, or to the actual innovations which fome meant to introduce on the bafis of that dectrine. His upright mind was indeed fufficiently guarded againft thefe novelties by what he had obferved in France during the year 1772. Whilft he remained in that country, his literary and political emincace made him courted by all the anti-monarchicaland infidel philofophers of the time ; and in the religious fcepticifm and political theories of Voltaire, Helvetius, Roufleat, and D'Alembert, he faw, even at that period, the probable overthrow of religion and government. His fentiments on this fubject he took occafion, immediately on his return, to communicate to the houfe of commons; and to point out the confpiracy of atheifm to the watchful policy of every government. He profeffed, that he was not over fond of calling in the aid of the fecular arm to fupprefs doetrines and opinions; but he recommended a grand alliance among all believers againft thofe minifters of re-

Suppl. Vol. I.
bellious darknefs, who were endeavouring to thake all the works of God eftablifhed in beauty and in order.

The American war proving unfuccefsful, though Great Britain never made a more glorious Aand, Lord North and his friends retired from office; and, in Fe. bruary 1782, a new miniftry was formed, at the head of which was placed the marquis of Rockingham; Lord Shelburne and Mr Fox were the fecretaries of Aate; and Mr Burke, who was appointed pay-malter to the forces, exulted, rather childilhly, in the houfe of commons, on the happinefs which was to accrue, both to the king and to the people, from the able and upright conduct of the new minifers. The time in which the greater part of them continued in office was too fhert to permit them to do either much good or much evil.

On the if of July the marquis of Rackingham died; and the earl of Shelburne being placed at the head of the treafury, Fox and Burke refigned in difgult, and, to the altonifhment of the nation, formed the famous coalition with Lord North, whofe meafures they had fo long, and fo vehemently oppofed. In the coalition of North and Burke there would have been nothing wonderinl. In the intercourfe of private life, thefe two Itatefmen had always met on terms of friend. thip and mutual regard; they had the fame ideas of the excellence of the conftitution, and the fame averfion to innovation under the name of reform; even their Itudies and amufements were very fimilar, being both men of talte and claflical learning; and though Burke oppofed the taxation of America by the Britith parliament, his oppofition proceeded rather from motives of prudence and expediency than from any fettled conviction that the meafure was unconflitutional. But the political enmity of Fox and North had proceeded, not only to perfonal abufe, but to profeffions of mutual abhorrence; and perhaps there was hardly an unpre. judiced perfon in the kingdom who entertained not fufpicions, that the unexpected union of fuch enemies was cemented by a principle lefs pure than patriotim.

Mr Pitt was now chancellor of the exchequer; and when he announced to the houfe of commons the peace which was concluded in January 1783, he found the terms on which it had been made feverely condemned by North, Fox, Burke, and all their friends. The cenfure paffed on it by Lord North and his followers was perfectly confiftent with their former conduet, and with the opinions which they had uniformly maintained; but it was with no good grace that Fux and Burke, who had offered an unconditional peace to the Dutch, and fo frequently propofed to recognize the independence of America, condemned the peace which had been concluded by Lord Shelburne. On this, as on many other occafions, they atted, not as enlightened politicians, but as the rancorous leaders of a party.

In confequence of a vote of cenfure palfed by the commons, the miniters refigned their employments, and were fucceeded by the duke of Portland, Lord North, Mr Fox, Mr Burke, and their friends. Burke had his former employment of pay-mafter to the forces; Lord North and Mr Fox were fecretaries of ftate, and the duke of Portland was firf lord of the treafury. To many perfons this miniftry had the appearance of greater ftrength than any that had governed the kingdom fince the time of Sir Robert Walpole ; but its duration was not longer than that of the preceding. On

$B \quad\left[\begin{array}{lll}174 &] & B \\ \hline\end{array}\right.$

Eurke. rne
the $18 \operatorname{in}$ of November, Mr Fox introduced his famous
India-bill, into the merits of which it is foreign from our purpofe to erter: fuffice it to fay, that after being ftrongly fupported by Burke, and ably oppofed by I'itt and Dundas, it paffed the houfe of commons by a very great majority; but was loft in the houfe of peers, and viewed by the king in fuch a light, that he determired on an entire change of adminiftration.

Mr Pitt was no:v placed at the head of the treafury, where he has remained ever fince, notwithfanding the violent and powerful oppolition which he met with at firt irom North and Fox and their coalefeed friends: the voice of the nation has been on his fide; and that voice will always drown the bellowings of patriotifm.

The principal events in which Dtake fignalized himfelf, fince the ycar 1784, were the trial of Haftings, the deliberations of the houfe on the propofed regency during the lamented illnefs of the king, and the French revolution; and on each of thefe occafions he difplayed talents which aftonifhed the nation. He has, indeed, been feverely blamed for the pertinacity with which he profecuted Mr Haftings, and his conduct has been attributed to very unworthy motives; but of this there is neither procf nor probability. The temperament of his mind was fuch, that, into whatever meafure he entered, he entered with a degree of ardour of which coolcr heads can hardly form a conception. Burke was but one member of a committee which found, or thought it found, evidences of the guilt of Haltings; and, in forming his opinion, it is little likely that he hould have been biaffed by intereft or refentment, whofe delicate fenfe of rectitude would not permit him to retain a penfion when he could no longer fupport the party of that friend who had obtained it for him.
When the eftablifhment of a regency was thought neceffary, he took the part, as it was called, of the prince of Wales, in oppofition to the plan propofed by Lord Thurlow and the minifter ; and we doubt not but he was actuated by the pureft principles: but the language which he ufed in the houfe was vehement, and fome of his expreflions were highly indecent. Our regard for his memory makes us wifh to forget them.

Soon afier the recovery of the king, the attention of Burke was attracted to the moft momentous event of modern times;-an event which has convulfed all Europe, and of which, from the very firl, his fagacity forefaw the confequences. Many of his friends in parliament, as well as numbers of wife and good men out of it, augured, from the meeting of the fates general of France, great benefit to that nation, of which the government was confidered as defpotic and oppreflive; and fome were finguine enough to pregnoflicate a new and happy order of things to all the nations connected with France, when its government fhould become more free. Burke thought very differently: He was well acquainted with the genius of the French people, and with the principles of thofe philofophers, as they called themfelves, by whom a total revolution in church and flate had long been projeited; and from the commencement of their career in the conftituent affembly, when they eftablithed, as the frundation of all legal govern. ment, the metaphyfical doctrine of the righls of man, he predicted that torrent of anarchy and irreligion which they have fince attempted to pour over all Europe. Fos and fome of the other leading men in oppofition
affected to confider this as a vain fear ; and a coolnefs took place between them and Burke, though they fill acted together in parliament. At laft, perceiving the French doctrines of liberty and equality and atheifm, fpreading through this mation, not only among thofe who had talents for fuch difquifitions, but in clubs and focieties, of which the members could be no judges of metaphyfical reafonings, he exprefled his apprchenfion of the confequences in the houfe of commons. This brought on a violent altercation between him and Fox, who was fupported by Sheridan; and a rupture took place between thefe old friends which was never healed. He no more attended the meetings of the oppofition members; and in 1790 he publifhed his celebrated Reflecions on the French Revolution.

By the friends of government this work was admired as the moft feafonable, as well as one of the ableft, defences of the Britifh conflitution that ever was written ; whilf Fox and his friends, with the great body of Eny. lifh diffenters, though they admitted it to be the offfpring of uncommon genius, affeted to confider it as declamatory rather than argumentative, and as inco:fiftent with the principles which its author had hitherto uniformly maintained. Many anfwers were written to it; of which the moft confpicnous were Vindicis Gallice by Mr Mac Inton, and The Rights of Man by Thomas Paine. To thefe Burke deigned not to make a direct reply. He vindicated his ganeral principles, as well as fome of his particular reafonings, in A Letter to a Member of the National AJcombly; and he very completely evinced the confiftency of his principles in his Appeal from the Neru to the Oll Whigs.

Of this great work, for great it undoubtedly is, the merits as well as the demerits have been much exaggerated; and fome have made it a queftion, Whether i: has on the whole been productive of good or of harm? By the enemies of the author, it is reprefented as having given rife to the fpirit of difcontent, by exciting fuch writers as Paine and his adherents, who, but for the provocation given by The Refergions, might have remained in filence and obfcurity. This was from the firf a very improbable fuppofition; for the firit of democracy has at all times been reflefs: but fince the appearance of Profeffor Robifon's Proofs of a con/piracy, and Barruel's Hiflory of Jacobinifn, it muft be known to every reader to be a duppofition contrary to fact. The confpirators were bufy long before Burke wrote his Refictions; and the friends of order and religion are his debtors, for having fo forcibly roufed them from their flumber, and put them on their guard. With refpert to compofition, it is certainly neither fo energetic nor fo argumentative as the political tracts of Johnfon, to which fome have affected to confider it as fuperior; but it is more poetical, gives foope for a greater difplay of the knowledge of human nature; and being written on a more interefting fubject, it has had a much grearer number of readers than thofe nnrivalled pieces of political controverfy.

Burke being now aflociated with Mr Pitt, continued to write from time to time memorials and remarks on the flate of France, and the ailiance that was formed againft the new order of things in that diffrated country, of which fome have been publifined fince his ceath; and having refolved to quit the bufle of public life as foon as the trial of Mr Haltings flould be concluded,

B U R [175] B U R

arke. he vacaied his fcat when that genteman was acquitted, and retired to his villa at Beaconsfield, where on the 2d of Auguft 1794 he met with a heavy domeftic Yofs in the death of his only fon. In the beginning of the fame year he had lof his brother Richard, whom he tenderly loved: but though this reiterated froke of death deeply affected him, it never relaxed the vigour of his mind, not leffened the intereft which he took in the public weal.

In this retreat, while he was labouring for the good of all around him, he was difturbed by a very unprovoked attack npon his character by fome diftinguifhed fpeakers in the houfe of peers. Soon after the death of his fon the king was gracioully pleafed to bellow a penfion on him and Mrs Burke; and this thofe noble lords were pleafed to reprefent as the reward of what thes termed the change of his principles and the defertion of his friends. The injuftice of this charge mult be obvious to every impartial mind, fince the penfion was given after he had retired from patliament, and could not by his eloquence either fupport the miniftry or gall the oppofition. He was not a man to fubmit tamely to fuch an infult. He publifhed a letter on the occalion, addreffed to a noble lord (Earl Fitzwilliam), in which he repels the attack on his character, and retaliates on thofe by whom it was made, in terms of fuch eloquent and keen farcafm, as will be read with admiration as long as the language of the letter fhall be underftood.

Burke having employed every effort which benevolence and wifdom could devife to fimulate civilized governments to unite in oppofition to the impiety and anarchy of France, laboured likewife in private to relieve thofe who had fuffered exile and profeription from the direful fyftem. Through his influence a fchool was eftablifhed in bis neighbourhood for the education of thofe whofe parents, for their adherence to principle, were rendered unable to afford to their children ufeful infruction; and that fchool, which on his deathbed he recommended to Mr Pitt, continues to flourifh under his powerful protection.

When the appearance of melioration in the principles and government of France induced our fovereign to make overtures of peace to the French directory, Burke refumed his pen; and in a fcries of letters, intitled, Thoughts on the Profpect of a Regicide Peace, difplayed a force of genius which is certainly not furpalfed, and perhaps not equalled, even in his far famed Refecions on the French Revolution. This was his laft work, and was confldered by himfeif as in its nature tefta. mentary.

From the beginning of june 1797 his bealth rapidly declined; but his underfanding exerted itfelf with undiminifhed force and uncontracted range ; and his difpofitions retained all their amiable fweetnefs. On the 7 th of July, when the French revolution was mentioned, he fpoke with pleafurc of the confcious reatitude of his own intentions in what he had done and written refpecting it; intreated thofe about him to believe, that if any unguarded expreffion of his on the fubject had offended any or his former friends, no offence was by him intended : and he declared his unfeigned forgivenefs of all who had on account of his writings, or for any other caufe, endeavoured to do him an injury. On the day following lie defired to be carried to another room;
and whilft one of his friends, allifted by fome fervante, was complying with his requelt, Mr Burke faintly uttering, "God blefs you," fell back and expired in the 68th year of his age.

From this detail, we truft that our readers are already fufficiently acquainied with his general charater. In genius, variety of knowledge, and readinefs of cx . prellion, Johnfon alone of all his contemporaries could be confidered as his rival; and, like that great man, he took every opportunity, efpecially during his laft illnets, to declare his unfhaken belief of the Chriftian religion, his veneration for fincere Chriftians of all perfuafions, and his own preference of the church of England. On the worhhip of that church he had indeed thronglt the whole of his life been a regular and devout attendant; and the tears which the poor, in the neighbourhood of his villa, fhed at his funeral, gave fufficient evidence that his faith had been productive of charity. In his public conduct, the irritability of his temper, and the ardour of his imagination, fometimes hurried him into the exceffes of a mere party-man; but we believe thit his great religious and political principles never varied. He has himfelf charaterifed his public conduct in the conclufion of his Reflections on the French Revolution, when he fays, that " they come from one who has been no tool of power, no flatterer of greatnefs, and who in his laft afts does not wifh to belie the tenor of his life; from one who wifhes to preferve confiftency, but who would preferve confiftency by varying his means to fecure the unity of his end; and when the equipoife of the veffel in which he fails may be endangered by overloading it upon one fide, is defircus of carrying the fmall weight of his reafons to that which may preferve the equipoife."

BUREE Co. in Morgan diftrict, N. Carolina, has 8118 inhabitants, including 595 llaves. Its capital is Morgantown.-Morse.

Burke Co. in the Lower diftrict of Gcorgia, contains 9467 inhabitants, including 595 flaves. Its chief towns are Louifville, and Waynefborough.-ib.

Burke, a townfhip in Caledonia co. in Vermont ; diftant from Bennington, $13+$ miles N. E.-ib.

BURLINGTON, is a pleafant townhip, the chief in Chittendon co. Vermont, fituated on the S. fide of Onion River, on the E. bank of Lake Champlain. It has 332 inhabitants. It is in this healthy and agreeable tituation, that the governor and patrons of the college of Vermont, intend to found a feminary of learaing, where youth of all denominations may receive an cducation.

In digging a well about 15 rods from the bank of the river, frogs have been found, at the depth of 25 feet, where no cavities or communication with the water appeared, through which they might have pafed; and when expofed to the heat of the fun they became full of life and attivity. Here fumps of trees are found 40 feet deep. It is conjectured that thefe animals muft have been covered up fome hundred years ago, by fome inundation of the river. Burlington is 22 miles northerly of Vergennes, 122 from Benning. ton, and 332 in the fame direction from New-York city, N. lat. 44. 30.-ib.

Burlington, or Ouineafka Bay, on the E. fide of Lake Champlain, about 34 miles N. by E. from Crown

B U R [176] B U R

Eurlington Point, 69 S. E. from Lake St Francis in St Lawrence River, and 70 foutherly from St John's. N. lat. 44. 22.—ib.

Burlington Co. in New-Jerfey, extends acrofs from the Atlantic ocean on the S'. E. 10 Delaware River, and part of Huntingdon co. on the N. W. in length about 60 miles. A great proportion of it is barren; about $\frac{3}{8}$ ths of it, however, is under good cultivation, and is generally level, and is pretty well watered. It has 13,095 inhabitants, including 227 flaves.-ib.

Burlington, city, the chief town of the above co. is under the government of a mayor, aldermen, and common council. The extent of the townhip is 3 miles along the Delaware, and a mile back; being about 18 miles N. E. of Philadelphia, and 11 from Trenton. The illand, which is the mof populous part, is about a mile each way. It has 4 entrances over bridges, and caufeways, and a quantity of bank meadow adjoining. On the ifland are about 160 houfes, 1000 white, and $1+0$ black inhabitants; few of the laft are flaves. The main flreets are conveniently facious, and moftly ornamented with rows of trees. The town is oppolite Briftol in Pennfylvania, where the river is about a mile wide. Under the fhelter of Mittinicunk and Burlington iflands, is a fafe harbor, commodioully fituated for trade; but too near the opulent city of Philadelphia to admit of any confiderable increafe of foreign commerce. Burlington was firt fettled in 1677, and has an academy and free fchorl. Mittinicunk Ifland belongs to the latter, and yields a yearly profit of \mathbb{L} r8o. Wualington has a place of public worlhip for the Friends, and another for the Epifcopalians ; the former denomination of chriftians are the moft numerous. Here is a market houle and the beft goal in the Itate, excepting the new flate prifon near Trenton. There is likewife a nail manufactory, and an excellent difillery. N. lat. 4o. 8.-ib.

Burlington, a townfhip on the eaftern fide of Unadilla River, in Otfego co. New-York, is 11 miles W. of Cooperttown. By the fate cenfus of 1796,438 of its inhabitants are electors.-ib.

BURNS (Robert), was a native of Ayrfhire, one of the wettern counties of Scotland. He was the fon of humble parents; and his father paffed through life in the condition of a hired labourer, or of a fmall farmer. Even in this fituation, however, it was not hard for him to fend his children to the parifh fchool, to receive the ordinary inltruction in reading, writing, arithmetic, and the principles of religion. By this courfe of education young Robert profited to a degree that might have encouraged his friends to deftine him to one of the liberal profeflions, had not his father's poverty made it neceffary to remove him from fchool, as foon as he had grown up, to earn for himfelf the means of fupport as a hired ploughboy or fhepherd.

The expence of education in the parifh fchools of Scotland is fo fmall, that hardly any parents who are able to labour want the means of giving to their children at lealt fuch education as young Burns received. From the fpring labours of a ploughboy, from the fummer employment of a Chepherd, the peafant-youth often returns for a few months, eagerly to purfue his education at the parifli fchool.

It was fo with Burns; he returned from labour to learning, and from learning went again to labour, till
his mind began to open to the charms of tafte and knowledge; till he began to feel a palfion for books, and for the fubjects of books, which was to give a colour to the whole thread of his future life. On nature he foon began to gaze with new difcernment and with new enthuliafm: his mind's eye opened to perceive affecting beauty and fublimity, where, by the mere grofs peafant, there was nought to be feen but water, earth, and $\mathfrak{k y}$ y-but animals, plants, and foil.

What might perhaps firf contribute to difpofe lis mind to poetical efforts is one particular in the devotional piety of the Scottifh peafantry; it is ftill common for them to make their children get by heart the Pfalms of David, in that verfion of homely rhymes which is ufed in their churches. In the morning and in the evening of every day, or at leait on the evening of every Saturday and Sunday, thefe Pfalms are fung in folemn family-devotion, a chapter of the Bible is read, and extemporary prayer is fervently uttered. The whole books of the Sacred Scriptures are thus continually in the hands of almoft every peafant. And it is impoffible that there fhould not be occafionally fome fouls among them, awakened to the divine emotions of genius by that rich aflemblage which thofe books prefent, of almolt all that is interefting in incidents, or pictureique in imagery, or affectingly fublime or tender in fentiments and character. It is impolible that thofe rude rhymes, and the fimple artlefs mufic with which they are accompanied, fhould not occafionally excite fome ear to a fond perception of the melody of verfe. That Burns had felt thefe impulfes, will appear undeniably certain to whoever thall carefully perufe his Cottar's Saturday's Night; or Thall remark, with nice obfervation, the various fragments of Scripture fentiment, of Scriptire imagery, of Scripture language, whiclı are fcattered throughout his works.

Still more interefting to the young peafantry are thofe ancient ballads of love and war, of which a great number are, in the fouth of Scotland, yet popularly known, and often fung by the ruftic maid or matron at her fpinning. wheel. They are liftened to with ravihed ears by old and young. Their rude melody ; that mingled curiofity and awe wbich are naturally excited by the very idea of their antiquity; the exquifitely tender and natural complaints fometimes poured forth in them ; the gallant deeds of knightly heroifm, which they fometimes celebrate; their wild tales of demons, ghofts, and fairies, in whofe exiftence fuperitition alone has believed; the manners which they reprefent; the abfolute yet picturefque and expreflive, language in which they are often clothed-give them wonderful power to tranfoort every imagination, and to agitate every heart. To the foul of Burns they were like a happy breeze tonching the wires of an 厄olian harp, and calling forth the moft ravilhing melody.

Befide all this, the Gentle Shepherd, and the other poems of Allan Ramfay, have long been highly popular in Scotland. They fell early into the hands of Burns; and while the fond applaufe which they receiv. ed drew his emulation, they prefented to him likewife treafures of phrafeology and models of verlification. He got acquainted at the fame time with the poetry of Robert Fergufon, writtell chielly in the Scottifh dialect, and exhibiting many fecimens of uncommon poetical excellence. The Seafons of Thomfon

B U R [177] B U R

Burns. too, the Grave of Blair, the far-famed Elegy of Gray, the Paradife Loft of Milton, perhaps the Minttrel of Beattie, were fo commonly read, even among thofe with whom Burns would naturally affociate, that poetical curiofity, although even lefs ardent than his, could in fuch circumtances have little difficulty in procuring them.

With fuch means to give his imagination a poetical bias, and to favour the culture of his tafte and genius, Burns gradually became a poet. He was not, however, one of thofe forward children who, from a miftaken impulfe, begin prematurely to write and to rhyme, and hence never attain to excellence. Converfing familiarly for a long while with the works of thofe poets who were known to him ; contemplating the afpect of nature in a diftrict which exhibits an uncommon affemblage of the beautiful and the ruggedly grand, of the cultivated and the wild; looking upon human life with an eye quick and keen, to remark as well the Atronger and leading, as the nicer and fubordinate, features of charater; to difcriminate the generous, the honourable, the manly, in conduct, from the ridiculous, the bafe, and the mean-he was diftinguifhed among his feilows for extraordinars intelligence, good fenfe, and penetration, long before others, or perhaps even limfelf, fufpected him to be capable of writing verfes. His mind was mature, and well ftored with fuch knowledge as lay within his fearch : he had made himfelf mafter of powers of languate, fuperior to thofe of almolt any former writer in the Scottifh dialect, before he conceived the idea of furpaffing Ramfay and Fergufon.

Hitherto he had converfed intimately only with peafants on his own level; but having got admifion into the fraternity of free-mafons, he had the fortune, whether good or bad, to attract in the lodges the notice of gentlemen better qualified than his more youthful companions to call forth the powers of his mind, and to fhow him that he was indeed a poet. A mafonic fong, a fatirical epigram, a rhyming epifle to a friend, attempted with fuccefs, taught him to know his own powers, and gave him confidence to try taks more arduous, and which fhould command fill higher burfs of applaufe.

The annual celebration of the facrament of the Lord's Supper, in the rural parifhes of Scottand, has much in it of thofe old popifh feftivals, in which fuperftition, traffic, and amufement, ufed to be ftrangely intermingled. Burns faw, and feized in it one of the happieft of all fubjects, to afford fcope for the difplay of that frong and piercing fagacity by which he could almoft intuitively dittinguif the reafonable from the abfurd, and the becoming from the ridiculous; of that pifturefque power of fancy, which enabled him to re. prefent fcenes, and perfons, and groupes, and looks, attitude, and geftures, in a manner almoft as lively and imprefive, even in words, as if all the artifices and energies of the pencil had been employed ; of that knowledge which he had neceffarily acquired of the manners, paffions, and prejudices of the sultics around him, of whatever was ridiculous, no lefs than of whatever was affectingly beautiful in rural life.
A thoufand prejudices of Popinh, and perhaps ton of ruder Pagan fuperllition, have from time immemorial been connected in the minds of the Scottifh peafantry, with the annual recurrence of the Eve of the Fentival of
all the Saints or Halloween. Thefe were all intimately known to Burns, and had made a powerful impreffion upon his imagination and feelings. He chofe them for the fubject of a poem, and produced a piece which is almoft to frenzy the delight of thofe who are beft acquainted with its fubject; and which will not fail to prcferve the memory of the prejudices and ufages which it defcribes, when they fhall perlaps have ceafed to give one merry evening in the year to the cottage firefide.

The fimple joys, the honef love, the fincere friendfhip, the ardent devotion of the cottage; whatever in the more folemn part of the rufic's lile is humble and artlefs, without being mean or unfeemly-or tender and dignified, withont afpiring to filted grandeur-or to unnatural, bufkined pathos, had deeply impreffed the imagination of the rifing poet; had, in fome fort, wrought itfelf into the very texture of the fibres of his foul. He tried to exprefs in verfe what he moft tenderly felt, what he moft enthufialically imagised; and produced the Cootar's Saturday's Niolt.

Thefe picces, the true effutions of genius, informed by reading and obfervation, and prompted by its nwn native ardour, as well as by friendly appldufe, were foon handed about among the moft differnmg of Burns's acquaintance; and were by every new reader perufed and reperufed, with an eagernels of delight and approbation whicin would not fuffer their author long to withhold them from the prefs. A fubfcription was propofed, was eamefly promoted by fome gentlemen, who were glad to intereft themfelves in behalf of fuch fignal poetical merit; was foon crowded with the names of a contiderable number of the inhabitants of Ayrfhire, who in the proffered purchafe fought not lefs to gratify their own paffion for Scottifh poefy, than to encourage the wonderful ploughman. At Kilmarnock were the poems of Burns for the firf time printed. The whole edition was quickly diftributed over the country.

It is hardly poffible to exprefs with what eager admiration and delight they were cvery where receiv-ed.-They eminently poffeffed all thofe qualities which the moft invariably contribute to render any literary work quickly and permanently popular. They were written in a phrafeology, of which all the powers were univerfally felt ; and which being at once antique, f_{2} miliar, and now rarely written, was hence fitted to ferve all the dignified and pi\&turefque ufes of poeiry, without making it unintelligible. The imagery, the fentiments, were at once faithfully ndtural, aud irrefiftibly impreflive and interefting. Thofe topics of fatire and fcanddl in which the ruftic delights; that humorous imitation of character, and that witty aifociation of ideas familiar and friking, yet not naturally allied to one another, which has force to thake his fodes with laughter ; thofe fancies of fuperfition, at which he Aill wonders and trembles; thofe affecting fentiments and images of true religion, which are at once de.ur and awful to his heart, were all reprefented by Burns with ail a poet's magic power. Old and young, high and low, grive and gay, learncd or ignorant, all were alike delighted, agitated, traniported.

In the mean time, fome few copies of thefe fafcirating poems found theit way to Edinhurgh; and having been read to Dr Blacklock, they obtained his wrmeit approbation. In the beginning of the winter $1786-7$

B U R $\left[\begin{array}{lll}\mathrm{I} 78\end{array}\right] \quad \mathrm{B} \quad \mathrm{U} \quad \mathrm{R}$

Burns. Burns vert to Edinburgh, where he was received by Dr Blacklock with the mof flattering kindnefs, and introduced to evcry man of generofity and tafte among that good man's friends. Multitudes now vied with each otlier in patronizing the ruffic poet. Thofe who pofiefied at once true tafte and ardent philanthrophy were foon earnefly united in his praife; they who were difpofed to favour any good thing belonging to Scotland, purely becaufe it was Scottifh, gladly joined the cty; thote who had hearts and underftanding to be charmed, without knowing why, when they faw their native cuftoms, manners, and language, made the fub$j \in$ ets and the materials of poefy, ciuld not fupprefs that voice of feeling which ftruggled to declare itfelf for Burns: for the diflipated, the licentious, the malignant wits, and the freethinkers, he was fo unfortunate as to have fatire, and obfenity, and ridicule of things facred, fuflicient to captivate their fancies; even for the pious he had paflages in which the infjured language of de votion might feem to come mended from his pen.

Thus did Burns, ere he had been many weeks iu Edinburgh, find himelf the olject of univerfai curiofity, favour, admiration, and fondnefs. He was fought after, courted with attentions the molt refpecfful and alliduous, feafted, flattered, careffed, treated by all ranks as the firf boaft of his country, whom it was fcarcely polible to honour and reward to a degree equal to his merits. in comparifon with the general favour which nuw promifed to more than crown his moft fanguine hopes, it could hardly be called praife at all which he had obtained in Ayıfhire.

In this pofture of our pnet's affairs a mew cdition of his poems was earnefly called for. He fold the copyright for one hundred pounds; but his friends at the fame time fuggelted, and actively promoted a fubferip. tion for an edition, to be publifhed for the benefit of the author, ere the bookfeller's right thould commence. Thofe gentlemen who had formerly entertained the public of Edinburgh with the periodical publication of the papers of the Mirror, having again combined their talents in producing the Lounger, were at this time about to conclude this laft feries of papers: yet before the Lounger relinquithed his pen, he dedicated a number to a commendatory criticifm of the poems of the Ayrflife bard.

The fubfcription-papers were rapidly filled; and it was fuppofed that the peet might derive from the fubfcription and the fale of his copy-right a clear profit of at leaft 700 pounds.

The converfation of even the moft eminent authors is often found to be fo unequal to the fame of their writings, that he who reads with admiration can liften with none but fentiments of the mon profound contempt. Dut the converfation of Burns was in comparifon with the formal and extesior circumilances of his education, peihaps even more wonderful than his poctis. He affected no foft air cr graceful motions of politenefs, which might have ill accorded with the ruftic olainnefs of his natuve manners. Confcious fuperiority of mind taught him to affociate with the grear, the learned, and the gay, without being overawed into any fuch bafhfulnefs as might have made him confufed in thought, or hefirating in elocution. He polfelfed withal an extraordinary fhare of plain common fenfe o: mother-wit, which prevented him from obtruding upon perfons, of
whatever rank with whom he was admitied to converfe, any of thofe effufions of vanity, envy, or feif-conceit, in which authors are exceedingly apt to indulge, who have lived remote from the general practice of lite, and whofe minds have been almolt exclufively confined to contemplate their own fudies and their own works. In converfation he difplayed a fort of intuitive quicknefs and rectitude of judgment upon every fubject that arofe. The fenfibility of his heart, and the vivacity of his fancy, gave a rich colomring to whatever reafoning he was difpofed to advance ; and his language in converfation was not at all lefs happy than in has writings. Fot thefe reafons, thofe who had met and converfed with him once, were pleafed to meet and to converfe with him again and again.

For fome time he converfed only with the virtuous, the learned, and the wife ; and the putity of his morals remained uncontaminated. But, alas! he fell, as others have fallen in fimilar circumliances. He fuffered himfelf to be furrounded by a race of milerable beings, who were proud to tell that they had been in company with Burns, and had feen Burns as loofe and as foolifh as themfelves. He was not yet irrecoverably loft to temperance and moderation; but he was already almoft too much captivated with their wanton rivals, to be ever more won back to a faithful attachment to their more fober charms. He now alfo began to contract fomething of new arrogance in converfation. Accultomed to be among his favourite alfociates what is vulgarly but expreflively called the cock of the company, he could fcarcely refrain from indulging in fimilar freedom and dictatorial decifion of talk, even in the prefence of perfons who could lefs patiently endure his prefumption.

The fubfription edition of his poems, in the mean time, appeared ; and although not enlarged beyond that which came from the Kilmarnock prefs by any new pieces of eminent merit, did not fail to give entire fatisfaction to the fubfribers. He was now to clofe accounts with his bookfeller and his printer, to retire to the country with his profits in his pocket, and to fix upon a plan for his future life. He talked loudly of independence of fpirit and fimplicity of manners, and boalted his refolution to return to the plough ; yet ftill he lingered in Edinburgh, week after week, and month after month, perhaps expecting that one or other of his noble patrons might procure him fome permanent and comperent annual income, which thould fet him above all necellity of future exertions to earn for himfelf the means of fubfiltence ; perhaps unconfcioufly relutant to quit the pleafures of that volupruous town-life to which he had for fome time too willingly accultomed himfell. An accidental diflocation or fracture of an arm or a leg contining him for fome weeks to his apartment, left hini during this time leifure for ferious reflection; and he deteranined to retire from the town without longer delay. None of all his patrons interpofed to divert him from his purpofe of returning to the plough, by the offer of any fmall penfion, or any finecure place of moderate emolument, fuch as might have given him competence without withdrawing him from his paetical itsdies. It feemed to be forgoten that a ploughman thus exalted into a man of letters was unfitted for his former toils, without being regularly qualified to enter the career of any new protefion; and that it became incumbent

B U R [179] B U R

Eurns.

 \sim cumbent upon thofe patrons who had called him from the plough, not merely to make lim their companion in the hour of rior, not fimply to fill his purfe with gold for a few tranfient expences, but to lecure him as far as was potlible from being ever overwhelmed in diftrefs in confequence of the favour which they had thown him, and of the habits of life into which they had feduced hin. Perhaps indeed the fame delufion of fancy betrayed both luarns and his patrons into the miltaken idea, that, after all which had pafied, it was 倓l poffible for him to return in cheerful content to the homely joys and fimple toils of undifipated rural life.In this temper of Burns's mind, in this fate of his fortune, a farm and the excife were the objects upon which his chcice ultimately lixed for future employment and fupport. By the furgeon who attended him during his illneis, he was recommended with effect to the ecmmiffoners of excife; and Patrick Nilllar, Efq; of Dalfiwinton, deceived, like Burns himfelf and Burns'sother friends, into an idea that the poet and excifeman might yet be refpectable and hap!'y as a farmer, gencroully propofed to eftablith him in a farm, upon conditions of leafe which prudence and induftry might eafly render exceedingly advantageous. Burns eagerly accepted the offers of this benevolent patron. Two of the poet's friends from Ayrlhire were invited to furvey that farm in Dumfriesfhire which Mr Millar offered. A leafe was granted to the poctical farmer at that annual rent which his own friends declared that the due cultivation of his farm might ealily enable him to pay. What yet remained of the profits of his publication was laid out in the purchafe of farme-ftock; and Mr Millar might, for fome fhort time, pleafe himfelf with the perfitation that he had approved himfelf the liberal patron of genius; had acquired a good tenant upon his eftate ; and had placed a deferving man in the very fisuation in which alone he himfelf defired to be placed, in order to be happy to his wifhes.

Burns, with his Jane, whom he now married, took up their refidence upon his farm. The neighbouring farmers and gentlemen, pleafed to obtain for an inmate among them the poet by whofe works they had been delighted, lindly fought his company, and invited him to their houles. He found an inexprefiible charm in fitting down belide his wife, at his own firefide; in wandering over his own grounds; in once more putting his hand to the fade and the plough; in forming his inclofures, and managing his cattle. For fome months he felt almolt all that felicity which fancy bad taught him to expect in his new fituation. He had been for a time idle; but his mufcles were not yet unbraced for sural toil. He now feemed to find a joy in being the hufoand of the miltrefs of his affections, in feeing himfelf the father of her children, fuch as might promife to attach him for ever to that modef, humble, and domeftic life, in which alone he could hope to be permanently happy. Even his engagements in the fervice of the excife did not, at the very firt, threaten neceflarily to debale him by afociation with the mean, the grofs, and the pronigate, to contaminate the poet, or to rain the farmer.

But it cuuld not be: it was not poffible for Burns now to aftume that fobernefs of fancy and pafions, that fedatenefs of feeling, thofe habits of earneft attention to grofs and vulgar cares, without which fuccels in his new
fituation was not to be expected. A thoufand difficul. ties were to be encountered and overcome, much money was to be expended, much weary toil was to be exercifed, before his farm could be brought into a fate of cultivation, in which its produce might enrich the occupier. This was not a profpect encouraging to a man who had never loved labour, and who was at this time certainily not at all difpofed to enter into agriculture with the enthufaim of a projector. The bufuers of the excife too, as he began to be more and more emplosed in it, diltracted his mind from the eare of his farm, led him into grofs and vulgar fuciety, and expued him to many unavoidable temptations to drunken e.scefs, fuch as he had no longer fufficient fortitude to refin. Famicta the anxieties, diltraftions, and feducements which thas arcfe to him, home became infenfibly lefs und lels pleaf. ing: even the endearments of his Jane's afeetion began to lofe their hold on his heart; he became every day lifs and lefs unwilling to farget in rot thoie grathering forrow's which he knew not to fu'odue.

Mr Millar and fome others of hisfriends would giadly have eserted as influence over his mind which might have preferved lim in this fituation of his affitirs, equally from defponsency and from dilipation; but Burns's temper fourned all controul from his fuperiors in fortune. He reiented, as an arrogant encroachment upon his independence, that tenor of conduct by which Mr Millar wilhed to tusn him from dilfolute conviviality, to that fleady attention to the bufinefs of his farm, without which it was impolfible to thrive in it. H1s crofles and difappointments drove him every day more and more into diffipation ; and his dillipation tended to enhance whatever was difagreeable and perplexing in the fate of his affairs. He lunk, by degrees, into the boon companion of mere excifemen; and almok every drunken fellow, who was willing to fpend his money la. vifhly in the alehoule, could eafily command the company of Burns. The eare of his farm was thas neglect. ed; walte and loffes wholly confumed his little capital; he refigned his leafe into the hands of his landlord; and retired, with his family, to the town of Dumfries, determining to depend entirely for the means of future support upon his income as an excile-officer.

Yet during this unfortunate period of his life, which paffed between his departure from Edinburgh to fettle in Dumfriesthise, and his leaving the country in order to take up his refidence in the town of Dumfries, the energy and activity of his intellectual powers appeared to have been not at all impaired. In a collection of Scottifh fongs, which were publifhed (the words with the mufic) by Mr Johnfon, engraver in Edinburgh, in 4 vol, 8 vo, Burns, in many inftances, accommodated new verfes to the old tunes with admirable felicity and Rkill. He aftited in the temoorary inflitution of a fmall fub. feription library, for the ue of a number of the well. difpofed peafants in his neighbourhood. He readily aided, and by his knowledre of genume Scottilh phria feology and manners greatly enlightened, the antiquarian refearches of the late ingenous Captain Grole. He fill carried on an epiltolary cernefpondence, fometimes gray, fortive, humosous, but aiways entivened by bright flathes of genias, with a number of his old friends, and on il very wide diverfity of topies. At times, as it floould feem from his writings of this perind, he reflected, with inexpremble heatt-bitternefs, on the

Burns. high hopes from which he had fallen; on the errors of moral conduct into which he had been hurried by the ardour of lis foul ; and in fome meafure by the very generofity of his nature; on the difgrace and wretchednefs into which he faw himfelf rapidly finking; on the forrow with which his mifonduct oppreffed the heart of his Jane ; on the want and deftitute mifery in which it fcemed probable that he mult leave her and their infints; nor amidat thefe agonizing reflections did he fail to look, with an indignation half invidious, half contemptuous, on thofe who, with moral habits not more excellent than his, with powers of intellect far inferior, yet bafked in the fun-hhine of fortune, and were loaded "ith the wealth and honours of the world, while his follics could not cotain pardon, nor his wants an honourable fupply. His wit became from this time more gloomily farcaltic; and his converfation and writings began to affume fomething of a tone of mifanthropical malignity, by which they had not been before, in any eminent degree, diftinguifhed. But with all thefe failings, he was ftill that exalted mind which had raifed itfelf above the depreffion of its original condition: with all the energy of the lion, pawing to fet free his hinder limbs from the yet encumbering earth, he fill appeared not lefs than arckangel ruined!

His morals were not mended by his removal from the country. In Dumfries his diflipation became fill more deeply habitual; he was here more expofed than in the country to be folicited to fhare the riot of the difflute and the idle: foolifh young men flocked eagerly about him, and from time to time preffed him to drink with them, that they might enjoy his wicked wit. The Caledonian Club, too, and the Dumfineshire and Galloway Hunt, had occafional meetings ia Dumfries after Burns went to refide there, and the poet was of courfe invited to fhare their conviviality, and hefitated not to accept the invitation.

In the intervals between his different fits of intemperance, he fuffered Atill the keenelt anguif of remorle, and horribly afflictive forefight. His Jane fill behaved with a degree of maternal and conjrgal tendernefs and prudence, which made him feel more bitterly the evil of his mifconduet, alhough they conld not reclaim him. At latt crippled, emaciated, having the very power of animation walted by difeafe, quite broken-hearted by the fenfe of his errors, and of the hopelefs miferies in which he faw himfelf and his family deprefed; with his foul fill tremblingly alive to the fenfe of fhame, and to the love of virtue ; yet even in the laft feeblenefs, and amid the lat agonies of expiring life, yielding readily to any temptation that offered the femblance of intemperate enjoyment, he died at Dumfries, in the fummer of 1796, while he was yet three or four gears un. der the age of forty, furnifhing a melancholy proof of the danger of fuddenly elevating even the greatelt mind above its original level.

After his death it quickly appeared that his failings had not effaced from the minds of his more refpestable acquaintance either the regard which had once been won by his focial qualities, or the reverence due to his intellequal talents. The circumftances of want in which he left his family were noticed by the gentlemen of Dumfries with earneit commiferation. His funeral was celebrated by the care of his friends with at decent folemnity, and with a numerous attendance of mourners,
fufficiently honourable to his memory. Several copies of verfes were inferted in different newfpapers upon the occafion of his death. A contribution, by fubfcription, was propofed, for the purpofe of raifing a fmall fund, for the decent fupport of his widow, and the education of his infant children.

From the preceding detail of the particulars of this poet's life, the reader will naturally and jufly infer him to have been an honeft, proud, warm-hearted man; of high paffions and found underflanding, and a vigorous and excurfive imagination. He was never known to defcend to any act of deliberate meannefs. In Dumfries he retained many refpectable friends even to the laft; and it may be doubted whether any poet of the prefent age has exercifed a greater power over the minds of his readers. Burns has not failed to command one remarkable fort of homage, fuch as is never paid but to great original genius; a crowd of poetafters farted up to imitate him, by writing verfes as he had done in the Scottifh dialect; but, 0 imitatores! /ervum pectus! To write rugged rhymes, in antiquated phrafe, is not to imitate the poetry of Burns.

eurrampooter. See Sandpy, Encycl.

BUSHWICK, a fmall, but pleafant town, in King's co. Long Inand, New-York. The inhabitants, 540 in number, are chiefly of Dutch extraction; 99 of thefe are electors.-Morse.

BUTTER is a fubflance fo well known, that it is needlefs to give here any definition of it. It is one of the three component parts of milk, the other two being wbey and cheefe. It is evident from the proceffes by which butter and cheefe are made, that thefe two parts are not completely diffolved in the ferum or whey, but only diffufed through it like an emulfion. They may indeed be feparated from it by reft alone, without any artificial preparation.

Butter, though ufed at prefent as food in moft countries of Europe, was not known, or known very intperfecly, to the ancients. This, we think, is completely proved by Profeffor Beckmann in the fecond volume of his Hiflory of Inventions. In our tranflation of the Hebrew Scripture, there is indeed frequent mention made of butter at very early periods; but, as the Profeffor well obferves, the greatef matters of biblical criticifm unanimoully agree, that the word fo tranflated fignifies milk or cream, or four thick milk, and cannot poffibly mean what we call butter. The word plainly alludes to fomething liquid which was ufell for wafhing the feet, which was drunk, and which had fonetimes the power of intoxicating; and we know that mare's milk may be fo prepared as to produce the fame effect. See Koumiss, Encycl.

The oldelt mention of butter, the Profeffor thinks, is in the account of the Scythians given by Herodotus (lib. iv. 2.), who fays, that "thefe people pour the milk of their mares into wooden reffels, caufe it to be violently firred or fhaken by their blind flaves, and feparate the part which arifes to the furface, as they confider it as more valuable and delicions than what is collected below it." That this fubftance muft have been a foft kind of butter, is well known; and Hippocrates gives a fimilar account of Scythian butter, and calls it mexapicy, which Galen tranflates by the word Reutupcr. The poet A naxandrides, who lived foon after Hippocrates, defribing the marriage fealt of Iphicrates, who married

Butrer.
married the daughter of Cotys king of Thrace, fays, that the Thracians ate butter, which the Greeks at that time confidered as a wonderful kind of food.

Diofcorides fays, that good butter was prepared from the fatteft milk, fuch as that of theep or goats, by fhaking it in a vellel till the fat was feparated. To this butter he alcribes the fanse effects, when ufedexternally, as thofe produced by our butter at prefent. He adds alfo, and he is the firft witer who makes the obfervation, that frech butter might be melted and poured over pulfe and vegretables inftead of oil, and that it might be employed in patiry in the room of other fat fubstances. A kind of foot likewife was at that time prepared from butter for external applications, which was ured in cu. ring inflammation of the ejes and other diforders. For this purpofe the butter was put into a lamp, and when confumed the lamp was again filled till the defired quantity of foot was collected in a veffel placed over it.

Galen, who difinguithes and confirms in a more accurate manner the healing virtues of butter, exprefsly remarks, that cow's milk produces the fattel butter; that butter made from theep's or goat's milk is lefs rich; and that afs's milk yields the pooreft. He exprelfes his altonifhment, therefore, that Diofcorides ihould fay that butter was made from the milk of theep and goats. He affures us that he had feen it made from cow's milk, and that he believes it had thence acquired its name. "Butter (fays he) may be very properly employed for ointments; and when leather is befmeared with it, the tane purpofe is anfwered as when it is rubbed over with oil. In cold countries, which do not produce oil, butter is ufed in the baths; and that it is a real fat, may be readily perceived by its catching fire when poured over hurning coals." What has been here frid is fufficient to hew that butter mult have been very little known to or ufed by the Greeks and the Romans in the time of Galen, that is, at the end of the fecond century.

The Profellor having collected, in chronological order, every thing which he could find in the works of the ancients refpecting butter, concludes, that it is not a Grecian, ind much lefs a Roman, invention, but that the Greeks were made acquainted with it by the Scythians, the Thracians, and the Phrygians, and the Romans by the people of Germany. He is likewife decidedly of opinion, that when thefe twon polifhed nations had learned the art of making it, they ufed it not as food, but only as an ointment, or fometimes as a medicine. "We never find it (fays he) mentioncd by Galen and others as a food, though they have fpoken of it as applicable to other purpofes. No notice is taken of it by Apicius; nor is there any thing faid of it in that refpeet by the authors who treat on agriculture, though they have given us very particular information concerning milk, cheefe, and oil."

The cafe, however, is now very different. It is, in this country at leat, fo general an article of food, that the proper methods of making and curing it have engaged the attention of fome of our abled writers on agriculture. In addition to what las been faid on thefe fubjects under the tilles Butter and Dairy (Encyciopadia), our readers will probably be pleafed with the following method of curing it, which is pratifed by fome farmers in the parifh of Udney, in the county of

Supfe. Vol. I.

Aberdeen, and gives to their butter a great fuperiorily above that of their neighbours.

Take two parts of the beft common falt, one part of fugar, and one part of faltpetre; beat them up logether, and blend the whole completely. Take one ounce of this compofition for every fixteen ounces of butter, work it well into the mafs, and clofe it up for ufe.

Dr James Anderfon, from whofe View of the Agriculture of the County of ρ_{3} berdeen this receipt is raken, fays, that he knows of no fimple improvement in economics greater than this is, when compared with the ufual mode of curing butter by means of common falt alone. "I have feen (continues he) the experiment fairly made, of one part of the butter made at one time being thus cured, and the other part cured with falt alone : the difference was inconceivable. I flould fuppofe that, in any open market, the one would fell for 30 per cent, more than the other. The butter cured with the misture appears of a rich marrowy confiftence and fine colour, and never acquires a brittle hardnefs nor taftes falt; the other is comparatively hard and brittle, approaching more nearly to the appearance of tallow, and is much falter to the tafte. I have ate butter cured with the above compofition that had been kept three years, and it was as fweet as at firf: but it mult be noted, that butter thus cured requires to fand three weeks or a month before it is begun to he ufed. If it be fooner opened, the falts are not fufficiently blended with it ; and fometimes the coolnefs of the nitre wi'l then be perceived, which totally difappears afterwards."

The following obfervations refpeiting the proper method of keeping both milk and butter are by the fame author, and we trult may prove ufeful. Speaking fill of the county of Aberdeen, he fays, "The pernicious practice of keeping milk in leaden veflels, and falting butter in ftone jars, begins to gain ground among fome of the fine ladies in this county, as well as elfewhere, from an idea of cleanlinefs. The fact is, it is jut the reverfe of cleanlinefs; for in the hands of a carefui perfon nothing can be more cleanly than wooden difhes, but under the management of a flatern they difcover the fecret which fone difhes indeed do not.
"In return, thefe latter communicate to the butter and the milk, which has been kept in them, a poifonous quality, which inevitably proves deftructive to the human conlitution. To the prevalence of this practice I lave no doubt we muft attribute the frequency of pallies, which begin to prevail fo much in this kingdom; for the well known effect of the poifon of lead is bodily debility, palfy-death !"

BUTTERHILL, a high round hill, on the W. bank of Hudfon river, at the northern entrance of the Highlands. In paffing this hill, afcending the river, the pafenger is prefented with a charming view of NewWindior and Mewburgh.-Morse.

BUXTON, a townilip in York co. diftrict of Maine, fituated on Saco River; 16 miles N. wefterly from Pepperelborough, at the mouth of that river, and 118 miles N. E. of Bofton; contaiaing ${ }^{1564}$ inhabitants. -ib.

BYEFIELD, a parifh in Newbury, Effex co. Maffachufetts. In a quarry of lime ftone here, is found the apefios, or incorruptible cotton, as it is fometimes D b
callcd.

Buater Eyefield. Bres.

CA F

$\underbrace{\text { Byrd. }}$ called. Beautifully variegated marble, which admits a good polifh, has likewife been found in the fame vicinity. Here is alpo a flourifing woollen manufactory eftablithed on a liberal pale; and machinery fur cutting nails. -ib.
EYRD, lOOT, lies on the eaten bank of Monogaheia River ; on the S. file of the mouth of Red-

Stone Creek; 35 miles S. from Pittburg, and about 29 N. W. from Ohiopyle Falls. On or near this foot funds the compact part of the town of Brownsville.

BYSAK, the frt month of the Bengal year, begin-
N. lat. 39.58. W. long. 81. 12. -ib. ming in April.

CABARRUS, a new county in the diftrict of Salifbury, North-Carolina.-Morse.
CABIN Point, a fall poft-town in Surrey co. Viregin: ia, lituated on Upper Chipoak creek, 26 miles E . S. E. of Peterbusg, 87 from Portfmouth, and 329 S. S. W. of Philadelphia. N. lat. 37.-ib.

CACAPEHON, a river of Virginia, which runs about 70 miles N . eafteriy along the weftern ide of North Ridge, and empties into Potowmack River, 30 miles N. from Frederickfown.-ib.

CADIZ, a town on the N. fide of the inland of Cuba, near 160 miles E. of Havannah, and 50 N. from Spiritu Santo.-ib.

CESA R1A River, or Cobanfse Creek, in New-Jerfey, empties into Delaware Bay, after a S. weferly courle of about 30 miles. It is navigable for veffels of 100 tons as far as Bridgetown, 20 miles from its mouth. -ib.

CAFIRLS, the inhabitants of Caffraria, are generally confounded with the Hottentots; but, according to M. Vaillant, there is a confiderable difference between the manners, cultoms, and even appearance of the fe two nations.

The Caffies, fays he, are generally taller than the Hottentots, more robust, more fierce, and much bolder. Their figure is likewife more agreeable, and their coontenances la ave not that narrownefs at the bottom, nor their cheeks thole prominences, which are fo difagreeable among the Hottentots. A round figure, a node not too Hat, a broad forehead, and large eyes, give them an open and lively air; and if prejudice can overlook the colour of the kin, there are rome Caffre women who, even in Europe, would be accounted pretty. Thefe people do not make their 1 aces ridiculous, by pulling out their eyebrows like the Hottentots; they tatboo themelves much, and particularly their bodies; their hair, which is frizzled very much, is never greafed, but their bodies are liberally anointed, merely with a view to preferve their vigour and agility.

The men generally bellow more attention on their drefs than the women, ant are remarkably fond of beads and copper rings. The women wear hardly any of the ornaments in which the other Ravages in Africa take fuch delight. They do not even wear copper bracelets; but their fall aprons, which are fill hotter than those of the Hottentots, are bordered with a feer rows of glafs-beads; and in this all their luxury comfits. It
would appear that the Caffres are not fo chafe as the Hottentots, becaufe the men do not ufe a jackal to vail what nature teaches other men, even favages, to concal. A fall cowl, which covers only the glans, inAhead of difplaying mode fy, feems to announce the greatef indecency. This fall covering adheres to a thong, which is fattened round their girdles, merely that it may not be loft; for a Caffre, if he be not afraid of being hurt or flung by infects, cares very little wheethe his cowl be in its place or not. Our author fay one Caffre, who, inftead of a cowl, wore a cafe made of wood, and ornamented with fculpture. This was a new and ridiculous falbion, which he had borrowed from a nation of black people who lived at a great difftrance from Caffraria.

In the hot feafon the Caffres go always naked, and retain nothing fut their ornaments. In cold weather they wear kroffes made of calves or oxen's hides, which reach down to the ground; but whatever the weather be, both fesses go bare headed, except that they formetimes, though rarely, fix a plume of feathers in their hair.

The Caffere huts are more spacious and higher than those of the Hottentots, and lave alpo a more regular form. The frames of them are conflructed of wooden work, well put together, and very folic, being intended to lan for a long time: for the Caffres, applying to agriculture, which the free Hottentots do not, remain fixed to one foot, unlefs fomething unexpected intersupt their repose.
A more perceptible induftry, an acquaintance with forme of the mon neceffary arts of life, a little knowledge of agriculture, and a few religious dogmas, feer to announce that the Caffres approach much nearer to civilization than the Hottentots. They entertain a tolerably exalted idea of the Supreme Being and his power; they believe that the good will be rewarded, and the wicked punifted, in a future fate; but they have no notion of creation, which indeed was not admitred by the rages of Greece and Rome. They prac. fife circumcifion, but can give no account of its origin among them, or of the purpofe for which the practice is continued.
Polygamy is unfed among the Caffres; and on the death of a father the male children and their mothers thane the fucceffion among them. The gits remain -

 1
 I

C. A.
 $\left[\begin{array}{lll}183\end{array}\right]$
 C. A L

they can procure hufbands. One very fingular cuftom of the Catfres is, that they do not, in general, inter their dead, but tranfport them from the kraal to an open ditch, which is common to the whole horde. At this ditch favage animals feed at their leifure on the multitude of carcafes which are heaped together. Funeral honours are due omly to kings and the chiefs of each horde, whofe bodies are covered with a heap of ftenes colleated into the form of a dome.

This nation is governed by a general, chief, or king, whofe porer is very limited. He appoints, bowever, the fuburdinate chiefs over the diferent hordes, and through the:n communicates his diredion, or orders. The arms of the Catife are a club, two feet and a half in length, and where thickeft three inches in diameter, and a plain lance or affagey. He defpifes poifoned arrows, which are fo much ufed by fome of the neighbouring nations; and with his two timple weapons feeks always to meet his enemy face to face in the field. The Hottentot, on the contrary, concealed under a rock or behind a bulh, deals out deftruation, without being expufed to danger. The one is a perfidious tyger, which rufhes treacheroufly on his prey; the other is a generous lion, which, having given warning of his approach, makes his attack boldly, and perifhes if he prevail not againt his antagonift.

CAGHNEWAGA, a tribe of Indians in Lower Canada, fome of whom inlabit near Montreal.- Morse

CALCAYLARES, a juriddiation in S. America, and empire of Peru, fubject to the bihop of Cufco, about 4 leagues W. of that city; exuberant in all kinds of grain and fruits, and fugar equal to any of the refined fugar of Europe. Formetly it produced 80,000 arobas ; but the quantity is now faid to be much lefs. -ib.

CALCULUS, in mathematics, denotes a certain way of performing inveltigations and refolutions, which occur on many oceafions, particularly in mechanical phiIofophy. Thus we fay, the antecedental calculus, the algebraical calculus, the arithonetical calculus, the diffe. rential calculus, the exponenial calculus, the fuxicnal c:llculus, and the integral calculus. Of by much the greater part of thefe calculi fome account has been given in the Encyclopredia; but there is one of them, of which no notice has been taken in that work. It is,

The Antcedental Cailculus, a geometrical method of reafoning, without any conlideration of motion or velocity, applicable to every purpofe to which the much ce!ebrated doctrine of flusions of the illuitrious Newton has heen, or can be, applied. This method was invented by James Clenie, Efq; "in which (he fays) every exprettion is truly and frictly geometrical, is fuanded on principles frequently made ufe of by the ancient geometers, principles adnitted into the very firl elements of geometry, and repeatedly ufed by Euclid himfelf. As it is a branch of general geomettical proportion, or univeral comparifon, and is derived from an cxamination of the antecedents of ratios, having given contequents and a given ftandard of conparifon in the various degrees of augmentation and diminution they undergo by compofition and decompoftion, I have called it the antecedental calculus. As it is purely geometrical, and perfettly feientific, I have, fince it firl occursed io me in 1779, always made ufe of it
intead of the fluxionary and differential calcult, which are merely arithmetical. Its principles are totally unconnected with the ideas of motion and time, which, fricty fpeaking, are foreign to fure geometry and ahfract feience, thourh, in mixed mathematics and natural philofophs, they are equally applicable to every invelligation, involving the confideration of either with the two numerical methods jult mentioned. And as many fuch invelligations require compofitions and decompofitions of ratios, extending greatly beyond the triplicate and fubtriplieate, this calculus in all of them furnifhes every exprefino in a ftrially geometrical form. The fandards of comparifon in it may be any magnitudes whatever, and are of courfe indefinite and innumerable; and the confequents of the ratios, compounded or de. compounded, may be eitter equal or unequal, homogeneous or heterogencous. In the fluxionary and differential methods, on the other hand, 1 , or unit, is not only the ftandard of comparifon, but alfo the confequent of every ratio compounded or decompounded."

This method is deduced immediately from Mr Glen:e's Treatife on the Doarine of Univerfal Comparifon or General Proportion: And as the limits of the prefent work will not allow us to enter upon this fubjeat, we therefore refer our readers to the two above mentioned treatifes, and to the fourth volume of the Tranfastions of the Royal Society of Edinburgh.

We confefs, however, that we do not expect fuch great advantage from the employment of this calculus as the very acute and ingenious author feems to promife from it. The mathematical world is truly indebted to him for the clear and diferiminating view that he has taken of the doctrine of univerfal comparifon, and we believe it to be perfectly accurate, and in fome refpects new. Notwithfanding the continual occupation of mathematicians with ratios and analogies, their particular objeas commonly reftriated their manner of conceiving.ratio to fome prefent modification of it. Hence it feems to have happened that their conceptions of it as a magnitude have not been uniform. But Mr Glenie, by avoiding every peculiarity, has at once attributed to it all the meafurable affections of magnitude, addition or fubtraction, multiplication or divifion, and ratio or proportion. He is perhaps the firlt who has roundly confidered ratio or proportion as an affection of ratio; and it is chiefly by the cmployment of this undoubted affection of ratio that he las rendered the geometrical analyfis fo comprehenfive.

But when we view this antecedental calculus, not as a method of expreffing mathenatical icience, but as an art, as a caiculus in fhort, and confider the means which it mult employ, and the notations whi hall be ufed, we become lefs fanguine in our hopes of advantaze from it. The notation caunot (we think) be more fimple than that of the Huxionary method, juitly called arith. metical; and if we intill on carrying clear conceptions along with us, we imagine that the arthmetical expolition of our fymbals will generally be the fimpler of the two. The ficnce of the anrecedental calculus feems to conlift in the attainable perception of all the limple ratios, whether of magniludes, or calios, or both, which concur to the furmation of a compond and complicated ratio. Now this is equally, and more eafily, attainable in the fluxionary or other arithmetical method, when the confequent is a fimple margnitude. When it is 1 Bb 2

Calenlur.
$\xrightarrow{\infty}$

C A L [184$] \quad$ C A I

not, the fame procefs is farther neceffary in both methods, for getting rid of its complication.

We apprehend that it is a miftake that the geometrical method is more abitrafed than the fluxionary, becaufe the latter cuperadds to the motion of extention the notions of time and motion. Thefe notions were introcuced by the illuftrious inventor for the demonflation, but never occupy the thoughts in the ufe of his propolitions. Thefe are geometrical truths, no matter how demonftrated; and when duly confidered, involve nothing that is omitted in the antecedental calculus. We even prefume to fay, that the complication of thought, in the contemplation of the ratios of ratios, is greater than what will generally arife from the additional clements, time and motion.

We do not find that any of our moft active mathematicians have availed themfelves of the advantages of this calculus, nor do we know any feecimen that has been exhibited of its eminent advantages in mathematical difcufions. Should it prove more fertile in geometrical expreffions of highly compounded or complicated quantities or relations, we fhould think it a mighty acquiGtion; being fully convinced that thefe afford to the memory or imagination an object (we may call it a fenlible picture) which it can contemplate and remember with incomparably greater clearnefs and Iteadinefs than any algebraical fornula. We need only appeal to the geometrical expreflions of many fluents, which are to be feen in Newton's lunar theory, in the phyfical tracts of Dr Matthew Siewart, and others who have fhewn a partiality for this method.

It would be very prefumptuous, however, for us to fay, that the accurate geometer and metaphylician may not derive great advantages from profecuting the very ingenious and recondite feculations of Mr Glenie, in his dectrine of univerfal comparifon.

CALEDONIA Co. in Vermont, contains 24 townfhips and has Conneeticut river S. E.; Orleans and Chittenden coumties N. W.; Eflex co. N. E.; and Orange co. of which, until lately, it formed a part, S. W.-Miorse.

Caledonta, a port on the ithmus of Darien, in the N. Sea, 25 leagues N. W. from the river Atrato. It was attempted to be eftablithed by the Scotch nation in 1698 , and had at firft all the promifing appearances of finccefs; but the Englifh, influenced by narrow national prejadices, put every impediment in their way; which, joined to the unhealthinefs of the climate, defroyed the infant colony.-ib.

CALENDAR, in chronology. See (Encycl.) lisalendar; and Revolution, $\mathrm{n}^{\circ}: 8$.

CALI, a city of New Granada, S. America, fituated on the river Cauca. The ftaple port for this city, as aifo for thofe of Popayan, Santa Fe, and the fouthern parts of Terra Firma, is Bonaventura in the difuriat of Popayan. The road by land from that port is not palfable for beafts of Lurden; fo that travellers, with their baygage, are carried on the backs of Indians in a chair, with which weight they crefs rivers and mountains, being entirely flaves to the Spaniards, who thus fubfitute them in the room of horles and mules. N. Jat. 3. 15. W. long. 76. 30.-Morse.

CALIPPIC PERIOD, in chronology, a period of 76 years, continually recursing; at every repetition of which, it was fuppofed by its inventor Calippus, an

Athenian aftronomer, that the mean new and full moons would always return to the fame day and hour.

About a century before, the golden number, or cycle of 19 years, had been invented by Meton; which Calippus finding to contain 19 of Nabonaffat's year, 4 days, and $\frac{33}{45 \frac{1}{y}}$, to avoid fractions he quadrupled it, and fo produced his period of 76 years, or 4 times 19; after which he fuppofed all the lunations, \&c. would regularly return to the fame hour. But neither is this exast, as it brings them too late by a whole day in 225 years.

CALLAO, as it is called by its inhabitants, but more generally known to Europeans under the name of Campello, is a frall inland, which was vifited by fome of Lord Macartney's fuite on their voyage to China. In confequence of that vifit, we have the following defcription of it in Sir George Staunton's Account of the Embally.
" It lies oppofite to, and about eight miles to the ealt ward of, the mouth of a confiderable river on the coalt of Cochin-china, on the banks of which is fituated the town of Fai-foo, a place of fome note, not far from the harbour of Turon. The bearing of the highelt peak of Callao from this hatbour is about fouth-ealt, diftance thirty miles. The extreme points of the illand lie in latitude $15^{\circ} 53^{\prime}$, and $15^{\circ} 57^{\prime}$ north; the greateft length is from north-welt to fouth-ealt, and is fomewhat about five miles, and the mean breadth two miles. The only inhabited part is on the fouth-weft coaft, on a flip of ground rifing gently to the eaft, and contained between the bottom of a femilunar bay and the mountains on each fide of it. 'Thofe mountains, at a ditance, appear as if they formed two diftinct iflands. The fouthern mountain is the higheft, and is about 1500 feet. The lower grounds contain about 200 acres. This fmall but enchanting fpot is beautifully diverfified with neat houfes, temples, clumps of trees, fmall hillocks fivelling from the plain, and richly decorated with fhrubbery and trees of various kinds; among which the clegant areca, rifing like a Corinthian column, is eminently confpicuous. A rill of clear water, oozing from the mountains, is contrived to be carried along the upper sidges of the vale, from whence it is occalionally conveyed through fluices, for the purpofe of watering the tice grounds, and appeared, though then in the dry feafon, fully fufficient for every purpefe for which it could be wanted.
"The houles, in general, were clean and decent; a few were built with ftone, and covered with tiles. One, probably the manfion of the chief perfon of the inland, was inclofed by a fone wall, and the approach to it was through a gateway between two ftone pillars. The houle was divided into a number of apartments, of which the arrangement did not feem to want either tafe or convenience. This building food at the head of the principal village, which confifted of about thirty habitations built of wood, chiefly the bamboo. Behind the village, and on the fide of the hill, was a cave, acceflible only by one way, through an irregular range of rocks. Within the cave, but near its mouth, was a fraill temple, commanding a view of the whole vale. Several other temples were difperfed over the plain, all of which were open in front, with a colonnade before them of round wooden pillars, painted red and varnifled. The number of houies on the inland fearcely ex-
ceeded

C A L [185] CA M

seeded fixty. Behind every house, not immediately in the principal village, were inclofures of fugar-canes, tobacco, and other vegetables, growing in great luxurance. The mountains were covered with verdure, and feemed well calculated for rearing goats, of which the inland produced a few.
"Bcfide the principal bay, there were feveral fancy inlets, with fall patches of level ground behind them. Boats might eafily land in any of the fe inlets; but a communication between them by land appeared in be exceedingly difficult, if not entirely prevented, by the tteep and rugged ridges which feparated them from each other. On this account very flight works, and an eflabli:thment of a few men only, would be requifite for the defence of the inland, a great part of its coal being impregnably fortified by nature. The depth of water in the bay and road was fufficient for flips of any burden, ard there was perfect thelter from every wind exsept the fouth-weft, to which quarter it was directly open. The fort difance however, from the contigent in that direction would always prevent the fa from riling high, though it might not be fufficiently near to break the force of the wind."

The inhabitants of this inland are fo exceedingly thy and afraid of Arangers, that upon the approach of the English veffel, they all, except a very few, retired on board their galleys. When the British landed, therefore, they found the doors of all the houses open, with feveral domefic animals feeding before them, but neither man, woman, nor child within. After fome time, however, a perfon was perceived lurking among the neighbouring trees, who, finding he was observed, came forward with reluctance and evident marks of fear. While be was yet at forme diftance, he fell upon his knees, and touched the ground with his forehead feveral times. On approaching to him, it was noticed that the firth joint of every one of his fingers and toes was wanting, and as if twitted off by violence; it was poffible that he might have thus been treated by way of punifhment for forme crime, and that he was confidered as the Fitter perron to be expofed to the fuppofed danger of watching the movements of the ftrangers coming afore. In a little time forme others, hidden in the thickets, find. ing that no mischief was fuffered by the firth, ventured out. None of them could underfand the Chinese interpeter; and not being able to read or write, there was no converting with them by the medium of the Chinefe characters. Recourfe was had to hieroglyphics, and rude figures were drawn of the articles which were propoled to be purchased; and this method fucceeded to. ierably well; poultry and fruits were brought for fall, for which high prices were given, purposely to concilate the good will of thole flanders. The few that were found grew foo familiar; and one old man preffingly invited the frangers to his house, fituated upon an eminence, at a little diftance. On arriving there, Le introduced them to his wife, an old woman, who, after recovering from her aftoniflment at the fight of figures fo different from thole the had ever been accuftimed to behold, laid, in a neat manner, before them fume fruits, tingar, cakes, and water. On departing from the houfe, this decent and holpitable couple made figns to tellify their define of feeing them again."

The poffeefion of this inland would be of fuch mmportance to any European nation who wifhed to trade
fecurely with Tuna cumin and Cochin-china, that it is raid the French had formerly forme thoughts of purchafig it. Sir George Staunton, however, is of opinion, that the want of fhel:er in the fouth-welt monsoon would render it of little value, without a further fettlemont near it upon the main land of Cochin -china; and he thinks, that if a folio eltablifhment there could be productive of advantage to any European nation, it would neceffarily be fo to Great Britain; because, befide the opening which it would make for the ale of Britifl manufactures among the people of the country, the Britih poffeffions in Hindoftan would be fare of a very contiderable demand for their productions.

CALLAO, a fea-port town in the empire of Pert, being the port or harbor of Lima, and is fituated 2 leagues from that city. On the N. file runs the river which waters Lima, on which fade is a foal fuburb built only of reeds. There is another on the S. file; they are both called litipiti, and inhabited by Indians. To the E. are extenfive plains, adorned with beautiful orchards watered by canals cut from the river. The town, which is built on a low flat point of land, was Atrongly fortified in the reign of Philip IV.; and numenus batteries command the port and road, which is the greatelt, finely, and fafeft in all the South Sea. There is anchorage every where in very deep water, without danger of rocks or thoals, except one, which is 3 cables-length from the those, about the middle of the inland of St Lawrence, oppofite La Galatea. The little inland of Callao lies jut before the town. In the opening between thee two iflands, there are two fall iflots, or rather socks; there is alfo a third very low, but half a league out at fra, S. S. E. from the N. W. point of the ind and of St. Lawrence. Near the fea-fide is the governor's house, which, with the viceroy's pallace, take up two fides of a fquare; the parih church makes a third; and a battery of 3 pieces of cannon forms the fourth. The churches are built of canes interwoven, and covered with clay, or painted white. Here are 5 monateries, and an hofpital. The houses are in general built of flight materials; the fingular circumiltance of its never raining in this country, remdoers fore houfes unneceffary; and betides, there are more apt to fifer from earthquakes, which are frequent here. The mont remarkable happened in the year 1746, which laid $\frac{3}{4}$ th s of Lima level with the ground, and entirely demolished Callao; where the deftruation was fo entire that only one man, of 3000 inhabitants, was left to record this dreadful calamity. S. lat. 12. 1. W. lng. 77-Morse.

CALOS, a bay on the W. coat of the peninfula of E. Florida, where are excellent filling banks and grounds. Not far from this is a confiderable town of Seminole Indians. The Spaniards from Cuba take great quantities of filth here, and barter with the Inclans and traders for fins, furs, \&c. and return with their cargoes to Cuba- -ib.

CAMBRIDGE, a town hip in Grafton co. NewHampshire, E. of Androfeggin, and S. of Unbagog Lake. -ib.

Cambridge, a township in Wafhington co. NewYork. By the cerfus of 1790 , it contained 4996 in. habitants, including 48 laves. Dy the that centimos of 1796 , it appears there are 623 electors. -ib.

Cambridge, the half hire town of Midllefex co. Mafachuiftts,

Callao
$\underbrace{\text { Cambridge. }}$

C A M $\left[\begin{array}{lll}186\end{array}\right] \quad \mathrm{C}$ A M

Cambridec Manachufetts, is one of the largeft and molt refpectable townflips of the county. Irs 3 parifhes, Cambridge, Little Cambridge, and Menotomy, contain 3 Congregational meeting houfes, one for Baptilts, and another for Epifocpalians; a number of very pleafant feate, and 2115 inhabitants. The elegant bridge which ennnects this town with Bolton has been defcribed under the head of Bofton. The compart part of Cambridge is pleafantly fituated $3^{\frac{\pi}{2}}$ miles weltward of Bofton, on the N. bank of Charles river, over which is a bridge leading to Little Cambridge. It contains about 100 dwelling honles. Its public buildings, befides the edifices which belong to Harvard univerfity, ate the Eipifcopal and Congregational mecting toufes, and a handiome courthoufe. The college buidings are 4 in number, and are of brick, named Hasvard, Hollis, and MdIfechufetts Halls, and Holden Chapel. They ftand on a beautiful green which fpreads to the N. W. and exkibic a pleafing view. This univerfity, as to its library, fhilofophical apparatus and profefforlhips, is at prefent the firf literary inltitution on this contiment. It takes its date from the year $16_{3} 8,7$ years after the firlt fettlement in the townlhip, then called Neruterun. Since its eftablihment, to July 179\%, 3399 ftudents have received honorary degrees from its fuccellive oflicers. It has generally from 140 to 200 ftudents. The library contains upwards of 12000 volumes. The cabinet of minerals, in the muteum, contains the more ufeful produstions of nature ; and ex. cepting what are called the precious fones, there are very few fublances yet difcovered in the mineral king. dom, but what may be found here. The univerfity owes this noble collection of minerals, and feveral other natural curiofities, to the munificence of Dr. Lettfom, of London, and to that of the republic ot France. N. lat. 42. 23. 2S. W . long. from Greenwich 71. 7. 30. -ib.

Cambridge, a poft town of Ninety-Six diltrict, in the upper conntry of S. Carolina, where the circuit crurts are held. It contains about 60 houfics, a court houfe and a brick gaol. The college by law inftituted here is no better than a grammar fihrol. It is 80 miles N. N. W. of Columbia; 50 N by W. of Augult, , in Georgid, $r \not+0 \mathrm{~N}$. W. of Charle!ton, and 762 S. W. of Philadelphia. N. litt. 3:9--ib.

Cambridge, the chief town of Dorchelter co. Maryland, is fituated on the s. fide of Choptank River, about 13 miles E. S. E. from Cook's point at its mouth; 9 W. S. W. from Newmarket, and 57 S. E. from Baltimore. Its fituation is herlihy, and it contains about 50 houfes and a church. N. lat. 38.34-ib.

Cambridge, in Franklin co. Vermont, is fituated on both fides of La Moille River, about 20 miles W. of Lake Champlan and has 359 inhabitants.-ib.

CAMDEN Co. in Edenten difrict, N. Carolina, is in the N. E. corner of the Itate. It has 4033 inhabitants, including to3s flaves. Jonclborough is the chief town.-ib.

Camden. Difiria, in the upper country of S. Carolina, has Cheraws diftrift on the N. E. Georgetown dif. trict on the S. E. and the flate of N. Carolina on the N. ; and is divided irito the following counties, Fairfiel, Richland, Clarendon, Claremont, Kerlhaw, Salem and Lancalter. It is 82 miles from N. to S. and 60 from E. to W. and contain 38,265 inhabitants, including

8865 flaves. This diftrit is watered by the Wateree, or Catahaw River and its branches; the upper part is variegated with hills, generally fertile and well watered. It produces Indian corn, wheat, rye, barley, tobacen, and cotton. The Catabaw Indians, the only tribe which re. fide in the ftate, live in the N. part of this ditrict.- ij.

Camden, a polt town, and chief of Camden dittrict, S. Carolina, in K.erfhaw co. Itands on the E. fide of Wateree River; 35 miles N. E. of Columbia; 55 S . W. of Cheraw; 120 N. by W. of Charlelton, and $G_{1} 3$ S. W. of lhiladelphia. It is regularly laid out, andi contains about 120 houfes, an Epircopal church, a court. houfe and gaol. The navigable river on which the town Rands, enables the inhabitants to carry on a lively trade with the back commtry. N. lat. 34. 12. W. long. So. 54.

This town, or near it, was the fcene of two battles in the late war. On the 16 th of Augul, 1780 , between Gen. Gates and Lord Cornwallis, in which the American general was defeated. The other was a brifk action between Lord Rawdon and Gen. Green, on the 25 th of April, 178 I . Lord Rawdon fallied out of the town with 800 men, and attacked the American camp, which was within a mile of the town. The Americans had 126 men killed, and 100 taken prifoners, and the Britilh had abont 100 killed. The town was evacuated the gth of May, in the fame year, after Lord Rawdon had burned the gaol, mills, many private houfes, and part of his own baggage. - \vdots.

Camden Co. in the lower diftrict of Georgia, at the S. E. corner of the ftate, on St Mary's River, contains 305 inhbitants, includirg 70 ीlaves. Chief town St Parricks.-ib.

Camden, a fmall polt town on the weftern fide of Penobfot bay, dittrict of Maine, and the S. calternmolt townhip of Lincoln co. having Thnmaltown on the S. W.; 35 miles N. N. E. from Powralborough, and 228 miles N. E. from Bofton.-ib.

Camden, a village in Kent co. Alate of Delasare; about + miles S. W. from Dover, and $; \mathrm{N}$. wetterly from Irederica.-ib.

CAMEL, in nsvigation, is a machine which has been deferibed with fifficient accuracy in the Encyclopxdia ; but the following account of its invention, given by Profeffor Beckmann, is perhaps net unworthy of a place in this Supplement.
" In the Zuyder-Zee, oppolite to the mouth of the river Y , abont fix minles from the city of Amterdam, there are two fand banks, between which is a parfage called the Paimpus, which is fufficiently deep for Imall fhips, but not for fuch as are large or heavy laden. In 1672 the Dutch contived, however, to carry their numerous fleet through this palfage, by means of large empty chelts faltened to the bottom of each thip ; and this contrivance gave rife to the invention of the camel." In the Encuclopxdia its invention is given to the famous De Wrt ; in the German Cyelopædia to Meyer a Dutcin engineer of very confiderable eminence; but the Dutch writers, almoft unanimoully, aferibe the invention of the camel to a citizen of Amferdam. Who ealls himfelf Mceuves Meindertfon Bakker. "Some make the year of the invention to have oeen r688, and others 1690 . Much bas been faid of the atility of this invention; but however bencficial it may be, we have reafon to fuppofe that fuch leetvy veliels as thips of war

Cameleon cannot be raifed up, in fo violent a manner, without fuf-
II
Camp
all. taining injury. A firre proof of this is the well known circumitance mentioned by Mischenbroek (Introducio ald Philofoph. Natur.), that the ports of a hip which lad been raifed by the camel could not afterwards be fiut clofely."

CAMELEON, one of the conflellations of the fouthern hemifphere, near the fouth pole, and invifible in our latitude. There are 10 ftars marked in this conftellation in Sharp's catalogue.

CAMELOPARDALUS, a new conftllation of the northern hemi!phere, formed by Hevelins, confint ing of 32 ftars, firlt obferved by him. It is fituated between Cepheus, CaGiopeia, Perfeus, the Two Bears, and Draco; and it contains 58 flars in the Britilh ca. talogue.

CAMELLIA, in botany (fee Encycl.), is a plant which the Chinefe call Clas zuha, or flower of tea, on account of the refemblance of the one to the other, and becaufe its petals are fometimes mixed among the teas to increafe their fragrance. Sir George Staunton, who calls it Camellia Sefanqua, faw it fourifhing on the fides and very bigh tops of mountains, where the foil confifted of little more than fragments of fone, crumbled into a fort of coarfe earth by the joint action of the fun and rain. It yields, he fays, a nut, from which is expreffed an efculent oil, equal to the beft which comes from Florence. On this account, it is cultivated in valt abundance; and is particularly valuable from the facility of its culture infituations fit for litile elfe.

CAMPBELL (George, D. D.), fo juflly admired for his metaphyfical acutenefs and varinus erudition, was, in 17 r9, born at Abcrdeen, where his father, the reverend Colin Campbell, was one of the miuifters of the eftablifhed church. He was educated in his native city; and, after pafing through the ufual courfe of academical learning, he ftudied divinity under the Rev. J. Chalmers, profefior of divinity in Marifchal College.-He was, in 1749, an unfuccefsful candidate for the church of Fordown, though his competitor Mr Forbes was a man of very flender abilities, and fuppofed to be attached to the conftitution and liturgy of the church of England. It might indeed be that attach. ment which contributed principally to procure him the living in preference in Mr Campbell.

The living of Fordown is in the gift of the crown; and it has generally been a rule with his majelty's minifters, to give fuch livings, when they become vacant, to thofe candidates who are favoured by the majority of land-owners in the parith. At the era of 1749 , the land-owners in fome of the northern and middle counties of Scotland were more generally attached to the conftitution of the church of England than to that of their own eftablifhment ; and fuch was certainly the cale in the parifh of Fordown.

But whatever was the caule of Mr Campbell's fail. ure, he tailed by a very imail number, and was not long without an eflablifiment. In 1750 , he was prefented, by Sir Thomas Burnett, of Leys, to the living of Banchary Tcrnan, on the Dee, about twenty miles weft from Abcrdeen. From this he was tranflated, or, as the Scotch ecclefiaftical phrafe is, tranfported to A berdeen in 1756 , and nominated one of the city minifters, in the room of Mr John Diflet deceafed, a puritan of
the old fchool, whofe frictnefs and peculiarities are get Campbell. remembered by many in that place.

In 1759, on the deceafe of principal Pollock, he was chofen principal of the Marifchal college, and fuccecded to the divinity chair in 177 r , on Dr Alexander Cerard being tranflated to the profefforthip of divinity in King's-college. Before his fettling in Aberdeen, he married Miss Grace Farquharfon, danghter of Mr Furquharion of Whitehoule, by whom he had no ilfue. This amiable woman died about a year before hirn. They were an eminent pattern of conjugal affection.

From this time he enjoyed a remarkable flate of good health and fpirits. He had, all his life, a rooted averion to medicine. He got the better of every ail. ment by a total and rigorous abntinence from inll bind of fuftenance whatever; and it was not till he was attacked by an alarming illncfs, about two years before his death, that he was perfuaded by his friends to call in medicalaid. What nature could do, fhe had all along performed well; but her day was over, and fome:hing of art became necelfary. Then, for the firt time, he owned the utility of medical men, and declared his recantation of the ver y mean opinion he had formerly cn . tained of them and their art. A few months betore his death, he refigned bis offices of principal, profefor of divinity, and one of the city minifers, and was in all fucceeded by Dr W. L. Drown, late of Utrecht, a man nf dittinguithed abilities. Dr Campbell tetained aill his faculties entire to the laft, and died on the 6th of April 1796 , in the 77 th year of his age. His character lias been fo juftly drawn by his fucceffor, that we fhall give it to our readers in his words, adding only a circumflance or two, which we have reafon to think will contibute to endear his memory to every liberal and enlightened mind.
"Dr Camphell, as a public teacher, was long admired for the clearnefs and copioufnels with which he illuftrated the great doctrines and precepts of religion, and the ftrength and energy with which he enforced them. Intimately perfuaded of the truth and infinite confequence of what revelation teaches, he was ftrongly defirous of carrying the fame conviction to the minds of his hearers, and delivered his difcourfes with that zeal which fous from frong imprefions, and that power of perfuafion which is the refilt of fincerity of heart, combined vith clearnefs of underftanding. He was ratisfied, that the more the pure dictates of the gofpel were fudiad, the more they would approve themflves to the mind, and bring forth, in the affections and conduet, all the peaceable fruits of righteoufnets. 'The unadulterated dictates of Chrillianity, he was, therefore, only ftudions to recommend and inculrate, and knew perfecty to difcriminatc then from the inventions and traditions of men. His cluef lludy ever was, to direct belicito the great objects of practice; and, without thefe, he viewed the molt oribodox profeflion as " a founding beafs, and a tirklines cymbal." Bur, befides the character of a preacher of vightenufnefs, he had allo that of a teacher of the fcience of divinity to fuftain. How admirably he difcharged this duty, and with what effect he convered the foundelt and mont profitable inftruation to the minds of his fcholars, let thofe deciare who are now in varions congre. gations of this country, communicating to their fellow

Chrifians

C A M [188$] \quad$ C A M

Campbell. Chrifians the fruits of their fudies under fo able and judicious a teacher. Difcarding all attachment to human fyftem;, merely confidered as fuch, he tied his faith to the Word of God alone, poffeffed the happieft talent in inveltigating its meaning, and communicated to his hearers the retult of his own inquiries, with a precifion and perfpicuity which brought light out of obfcurity, and rendered clear and fimple what appeared intricate and perplexed. He expofed, without referve, the corruptions which ignorance, craft, and bypocrify, had introduced into religion, and applied his takent for ridicule to the beft of all purpofes, to hold up to contempt the ablurdities with which the pureft and fublimett truths had been loaded.
" I'laced at the head of a public feminary of learning, he felt all the importance of fuch a fituation, and uniformiy direfed his influence to public utiity. His enlarged and enlightened mind, juitly appreciated the extenlive confequence of the education of youth. He anticipated all the effects refulting to the great community of mankind, from numbers of young men iffuing, in regular fucceflion, from the univerfity over which he prefided, and occupying the different departments of tocial life.
" His benevolent heart delighted to reprefent to itfelf the ftudents under his direction uffeflly and honourably difcharging the refpective duties of their different profeffions; and frome of them, perhaps, filling the moft diftinguifhed fations of civil fociety. With thefe profeects before him, he conitantly directed his public conduet to their attainment. He never fuffered his judgment to be warped by prejudice or partiality, or his heart to be feduced by paffion or private intereft. Thofe mean and ignoble motives by which many are aefuated in the difcharge of important trufts, approached not his mind. A ccrtain honourable pride, if pride it may be called, diffufed an uniform dignity over the whole of his behaviour. He felt the man degraded by the perverfion of public character. His undertanding alfo clearly thewed him even perfonal advantage attached to fuch principles and practice, as he adopted from a fenfe of obligation, and thofe elevated conceptions of real worth which were fo congenial to his fuul. He faw, he experienced, efteem, refpect, and influence, following in the train of integrity and beneficence; but contempt, difgrace, averfion, and complete infignificance, clofely linked to corruption and felfithnefs. Litthe minds are feduced and overpowered by felfifh confiderations, becaufe they have not the capacity to look beyond the prefent advantage, and to extend to the mifery that ftands on the other fide of it. The fame circumftance that betrays the perverfity of their hearts, alfo evinces the weaknef's of their judgments.
"His reputation as a writer, is as extenfive as the prefent intercourfe of letters; not confined to his own country, but fpread chrough every civilized nation. In his literary purfuits, he aimed not, as is very often the cafe, with men of diftinguifhed literaty abilities, merely at eftablifhing his own celebrity, or increafing his fortune; but had chiefly at heart the dcfence of the great caufe of Religion, or the elucidation of her diftates.
"At an early period he entered the lifts as a cham. pion for Chritlianity againft one of its acuteft opponents. He not only triumphantly refuted his arguments, but even conciliated his refpeer by the handfume
and dexterous manner in which his defence was concuct. Campietlo ed. While he refuted the infidel, he fpared the man, and exhibited the uncommon fpectacle of a polemical writer poffefing all the moderation of a Chriftian. But while he defended Chriftianity againt its enemies, he was defirous of contributing his endeavours to increafe, among its profelfors, the knowledge of the facred writings. Accordingly, in the latter part of his life, he favoured the world with a work, the fruit of cooious enudition, of unwearied application, for almoft thirty years, and of a clear and comprehenfive judgment. We lave only to regret, that the other writings of the New Teftament have not been clucidated by the fame pen that tranflated the Gofpels. Nor were his literary merits confined to theology, and the fudies more immediately connected with it. Philofophy, and the fine arts, are alfo indebted to his genius and labours; and in lim the polite fcholar was eminently joined to the deep and liberal divine.
"Political principles will always be much affected by general charader. This was alfo the cafe with Dr Campbell. In politics, he maintained that moderation which is the fureft criterion of truth and rectitude, and was equally diftant from thofe extremes into which men are fo apt to run on great political queftions. He cherifhed that patriotifm which confifts in wifhing, and endeavouting to promote, the greate? happinefs of his country, and is always fubordinate to univerfal benevolence. Firmly attached to the Britifh conflitution, he was animated with that genuine love of liberty which it infpires and invigorates. He was equally averfe to defpotifm and to popular anarchy; the two evils into which political parties are fo frequently hurried, to the deftruction of all that is valuable in government. Par-ty-fipit, of whatever defcription, he confidered as having an unhappy tendency to pervert, to the moft pernicious purpofes, the beft principles of the human mind, and to clothe the moft iniquitous actions with the moft fpecious appearances. Although tenacious of thofe fentiments, whether in religion or politics, which be was convinced to be rational and juft, he never fuffered mere difference of opinion to impair his good will, to obftrut his good offices, or to cloud the cheerfulnels of converfation. His own converfation was enlivened by a vein of the mofl agreeable pleafantry."
So far was he from being influenced by jealoufy, or any portion of that corporation fpirit which fometimes incites men of undoubted abilities to detrat from the merit of every writer who fills not a fation as conipicuous as their own, that he was loud in his praifes of thofe, whom men of meaner minds would have looked upon with difguft, as upon prefumptuous rivals. This generofity was fully experienced by the writer of the article Miracle, in the Encyclopadia, who, though he had prefumed to treat the fubject differently from Dr Campbell, received from him fuch a teftimony ot approbation of what he had done, as he will hardly look for from any other man in fimilar circumftances.
Among his other qualities, which fo much endeared him to all who had the honour of his acquaintance, Dr Campbell polfeffed an uncommon facility of paffing from the graveft to the moft airy fubjects, and from the livelieft to the gravef, without degrading the one or diminiflhing the pleafure of the other. The infirmities of age abated not the cheerfulnefs of his temper, nor did

Campell even the perfuafion of approaching diffolution impair his ferenity.

We cannot conclude this fhoro fletch better than with a lift of his works, in the order in which they were publifhed. In 1752, he publifhed a Scrmon, preached before the Synod of Abcrdeen.
1761. A Differtation on Miracles, againt Mr Hume. This treatife is well known to the learned world. He obtained, and defervedly obtained, a very high reputation, not only from the able manner in which he handled the fubject, but from the liberal fyle in which he addreffed his antagonift. It was fpeedily tranflated into French, German, and Dutch.
1771. A Sermon before the Society for Propagating Chriftian Knowledge, Edinburgh.
———before the Synod of Aberdeen.
1776. The Philofophy of Rhetoric, 2 vols 8 vo. A work which difcovers a clearnefs of difcernment, and accuracy of obfervation, which juftly intitled him to be ranked among the molt judicious critics. He entered on this inquiry as early as 1750 , when a part of the work was compofed. The laws of elegant compofition and criticifm are laid down with great perfpicuity: but the moft valuable part of the work is undoubtedly the theory of evidence, to which we know nothing fuperior, perhaps nothing equal, on the fubject, in our own or any other language. His philofophy, in general, is the philofophy of Dr Reid; and where he differs from that a. cute reafoner refpecting alflrafion, and fome other objects of metaphyfical difquifition, we think it impollible to refufe him the pre-eminence in every thing but ftyle. 1777. A Sermon on the King's Falt-day, on Allegiance, firf printed in 4to, and afterwards, at the expence of government, fix thoufand copies were printed in 12 mo , enlarged with notes, and fent to America, when the unhappy ftruggle had, however, put on appearances which prevented the effect hoped for from this fermon.
1780. An Addrefs to the People of Scotland on the Alarms which have been raifed by what is called the Popith Bill. This is a powerful diffative from bigotry, and every fpecies of reliyions perfecution.
1793. His Magnum Opus. The tranlation of the Gofpels, with Preliminary Differtations, 2 vols 4 to.

CAMIPEELL Co. in Virginia, lies E, of Bedford co. on Staunton River. It is 45 miles long, and 30 broad, and contains 7,685 inhabitants, including 2,488 llaves.-Morse.

CAMPBELLTOWN, a village in Dauphin co. Pennfylvania, which flands ncar a water of Quitipihilla Creek; ${ }_{1} 3$ miles E. of Harrifburgh, and 96 N . W. of Philadelphia.-ib.

Campbellown, in N. Carolina, is a large and flowrilhing town on a branch of Cape Fear River 100 miles above Wilmington; having, according to Bartram, "above 100 houfes, many wealthy merchants, refpectable public buildings, a valt refort of iuhabitants and travellers, and continual brifk commerce by waggons, from the back fettlements, with large trading boats."-: b.

CAMPBELL's Fort, in the ीate of Tenneflee, ftands near the junction of Holfon River with the Tennefiee; diftant 135 miles from Abingrdon, in Wahhington co. Virginia, and 445 V . of Richmond in Virginia.-ib.

Camprell's Salines, in North Holfon, in the fate of Suppl. Vol. I.

Tenneffee, are the only ones that have yet been difco. Camplells vered on the upper branches of the Tenneffee, though great fearch has been made for them. Large bones, like thofe found at Big Bone Lick, have been dug up here; and other circumftances render the tract which contains the falines a great natural curiofity. Capt. Charles Campbell, one of the firt explorers of the weftern country, made the difcovery of this tract in 1745. In 1753, he obtainced a patent for it from the governor of Virginia. His fon the late Gen. William Campbell, the fame who behaved fo gallantly in the years 1780, and 1781 , became owner of it on his death. But it was not till the time of his death, when falt was very farce and dear, that falt-water was difcovered, and falt made by a poor man. Since that time it has been improved to a confiderable extent, and many thoufands of people are now fupplied from it, with falt of a fuperior quality, and at a low price. The tract confifts of about 300 acres of falt maith land, of as rich a foil as can be imagined. In this flat, pits are funk, in order to obtain the falt water. The beft is found from 30 to 40 feet deep; after pafing through the sich forl or mud, from 6 to to feet, you come to a very brittle lime-ftone rock, with cracks or chafms, through which the falt water iffues into the pits, whence it is drawn by buckets and put into the boilers, which are placed in furnaces adjoining the pits. The hills that furround this flat are covered with fine timber; and a coal mine has been difcovered not far from it. -ib.

CAMPEACHE, a town in the audience of Old. Mexico, or New-Spain, and province of Yucatan, fituated on the bay of Campeachy, near the W. fhore. Its houfes are well built of fone; when taken by the Spaniards it was a large town of 3000 houfes, and had confiderable monuments of Indian art and induftry. There is a good dock and fort, with a governor and garrifon, which commands both the town and harbor. It has been often Itormed and taken, both by the Englifh and French buccaniers, in 1659,1678 , and laft in J 685 , when thefe freebooters united, and plundered every place within 15 leagues round it, for the firace of two months; they afterwards fot fire to the fort and town, which the governor, who kept the field with his men, would not ranfom; and to complete the pillage by a fingular piece of folly, the French buccaniers cele. brated the feaft of their king, the day of St Lonis, by burning to the value of $£ \cdot 50,000$ fterling of Campeachy wood, which was a part of their thare of the plunder. The port is large but flallow. It was a ftated market for logwood, of which great quantities grew in the neighbounhood, before the Englifh landed there, and cut it at the ifthmus, which they entered at Triefta Ifland, near the bottom of the bay, 40 leagues S. W. from Campeachy. The chief manufacture here is cotton cloth. Lat. 15. 40. long. 91. 30.-ib.

CAMPHOR, or Camphire (fee Encycl.), is, in China, obtained by boiling the branches, twigs, and leaves, of the Laurus-Campliora in water, upon the furface of which it is found fwimming in the form of an oil, or adhering, in a glutinous form, to a waoden rod, with which the boiling matter is conftantly ftirred. The glutinous mals is then mixed with clay and lime, and put into an earchen velfel, with another of the fame fize properly luied over it ; the lower vellel being placed C c

C A N [190] C A N

Camphor over a flow fire, the camphor gradually fublimes through the clay and lime, and adheres to the fides of the upper veffel, forming a cake of a fhape correfponding to the
cavity which received it. It is, however, lefs pure and much weaker than what is difoovered in a folid flate among the fibres of the trunk, as turpentine is found in different forts of pines. In the great, but ill-peopled, ifland of Borneo, and alfo in Japan, the camphor tree is felled for the fole purpofe of finding this cofly drug in fubtance among the fplinters of the trunk, in the fame manner as other, trees are felled in Louifiana mercly for colleding the fruit they bear upon their fummits. The Borneo, or Japan camphor, is pure, and fo very flrong, as readily to communicate much of its odour and its virtues to other infpiffated oils, which thus pafs for real camphor; and this adulterated drug is fold by Chinefe artifts at a vafly lower price than they gave themfelves for the genuine fubltance from Borneo or Japan.

Sir George Stannton, from whom we have this account, does not inform us whether the camphor-trec of China, if felled and torn into fplinters, would not produce as large quantities of the drug, and equally pure, as the trees of Borneo and Japan; but he allures us, that in China it is never fo torn, being there a large and valuable timber tree. "It is ufed (fays he) in the beft buildings of every kind, as well as fur matis of velfels, and bears too high a price to allow of any part, except the branches, being cut up for the fake of the druc."

CAMPO BELLO, a long and narrow ifland, on the E. coalt of Waftington co. diftriet of Maine, and the N . eafternmoft of all the inlands of the diftrict. It lies at the mouth of a large bay into which Cobfoook river empties, and has communication with Paflamaquoddy bay on the N. by two channels: the one between the W. fide of Deer Illand and the continent; the other into the mouth of Paflamaquoddy Bay between Deer lland and the N. end of Campo Bello Inand which hes in about N. lat. 44. 4^{8}. The S. end is 5 miles N. wefterly from Grand Mannan Ifland.-Morse.

CANABAC, an ifland lying contiguous to Bulam on the wettern conalt of Africa, and inhabited by a fierce people, governed by two kings or chiefs. It would appear that the Canabacs had been very troublefome to their neighbours, fince the inhabitants of fome other iflands in that clufter sejniced at the fettement of the Englifh in Bulam, hoping to find in them a defence agrainft the ufurpations of the Canabacs.

CANADA Crecks. There are three creeks which bear this name; one a water of Wood creek, which it meets 4 or 5 miles N. H. W. of Fort Stanwix or New Fort Schuyler. The other two are northern branches of Mohawk River; the utper one mingles its waters with the Mohawk in the townflip of Herkemer, on the German flats, 16 miles below Old Fort Schuyler ; over the mouth of it is a fightly and ingenioully confrueted bridge. The other empties into the Mohawk 13 miles below. Both thefe are long, rapid and unnavigable Areanıs, and bring a confiderable accefion of water to the Mohawk. The lands on thefe creeks are exceedingly sich and valuable, and faft fettling.-Morse.

CANADA SAGA, or Seneca Lake, a handiome picce of water from 35 to 40 miles long, and about 2 miles broad, in New.York. At the N. W. corner of the Lake ftands the town of Genev., and on the E.
fide between it and Cayuga, are the towns of Romu- Canajohary lus, Ovid, Hetor and Ulyfles, in Onondago co. New. York. Its outlet is Scayace River which alfo receives the waters of Cayuga Lake 9 miles N. E. from the mouth of Canada Saga, 18 miles below Geneva, on the fame fide of the lake flands the Friend's fettlement, founded by Jemima Wilkinfon; there are 30 families in it, each has a fine farm, and are quiet, induftrious people.-ib.

CANAJOHARY, a poft town in Montgomery co. New-York, fituated on the S. fide of Mohawk River comprehending a very large diftrict of fine country, 40 miles W. of Schenectady, and 56 miles from Albany. In the Itate cenfus of 1796,730 of the inhabitants appear to be electors. A creek named Canajohary enters the Mohawk in this town. In this townflip, on the bank of the Mohawk, about 50 miles from Schenectady, is Indian Cafte, fo called, the feat of old king Hendrick, who was killed in Sept. 1755, at Lake Geerge, fighting for the Britifh and Americans againft the French. Here are now the remains of a Britith fort, built during that war, about 60 paces fquare. A gold coin of the value of about 7 doilars was found in thefe ruins in 1 793. About a mile and half W. of this fort ftands a church, which is called lirant's church, which the noted chief of that name is faid to have left with great relufance. This was the primcipal leat of the Mohawk nation of Indians, and abounds with apple trees of their planting, from which is made cider of an exceilent quality.-ib.

CANALS of Communication may be of fuch advantage in a commercial or agricultural country, that every attempt to render them more convenient, and lefs expenfive in the confruction, is intitled to public notice. In the Encyclopadia, an account, fufficiently perfipicuous, is given of the common canals with locks; but in many cales it is very difficult to provide a fufficient quantity of water for the confumption of a canal where many boats are to pafs. Different attempts have therefore been made, by ingenious men, to fave water in the paffing of boats or lighters from one luck of a canal to another ; and, among thefe, perhaps none is more deferving of public favour than the following, by the late Mr James Piayfair of Ruffel-ftreet, architcet. We fhall flate his invention in his nwn words.
" The nature and principle of this manner of faving water conifit in letting the water which has ferved to raife or fall a boat or barge from the lock, pars into refervoirs or cifterns, whofe apertures of communication with the lock are upon different levels, and which may be placed or confructed at the fide or fides of the lock with which they communicate, or in any other contiguous fituation that circumitances may render eligible; which apertures may be opened or thut at pleafure, fo that the water may pafs from the lock to each refervoir of the canal, or from each refervoir to the lock, in the following manner: The water which fills the lock, when a boat is to afcend or defcend, inftead of being paffed immediately into the lower part of the canal, is let pafs into thefe cifterns or refervoirs, upon diffcrent levels; then, their communications with the lock being fhut, they remain full until another vetfel is wanted to pafs; then, again, the cifterns are emptied into the lock, which is thereby nearly filled, fo that only the remainder which is not filled is fupplied from the higher part of the canal. Each of thefe cifterns mult have a

C A N [191$] \quad$ C A N

furface not lefs than that of the lock, and mult contain half as much water as is meant to be expended for the paffing of each veffel. The ciftern the mot elevatcd is placed twice its own depth (meafuring by the aperture, or communicating opening of the cifterns) under the level of the water in the higher part of the canal. The fecond ciftern is placed once its own depth under the filf, and fo on are the others, to the lowelt; which laft is placed once its own depth above the level of the water in the lower part of the canal. The apertures of the intermediate cifterns, whatever their number may be, muft all be equally divided into different levels; the furface of the water in the one being always on the level of the botrom of the aperture of the ciftern which is immediately above. As an example of the manner and rule for conltructing thefe cifterns, fuppofe that a lock is to be conftructed twelve feet deep, that is, that the relfel may afcend or defcend twelve feet in paffing. Suppofe the lock fixty feet long and fix feet wide, the quantity of water required to fill the lock, and to pafs a boat, is 4320 cubic feet; and fuppofe that, in calculating the quantity of water that can be procured for fupplying the canal, after allowing for walte, it is found (according to the number of boats that may be expected to pais) that there will not be above 800 cubic feet for each; then it will be neceffary to fave five-fixths of the whole quantity that in the common care would be neceffary: to do which ten cifterns mult be made (the mode of placing which is expreffed in the drawing, fig. I. Plate VII.), each of which mult be one foot deep, or deeper at pleafure, and each mult have a furface of 360 feet fquare, equal to the furface of the lock. The bottom of the aperture of the loweft ciftern muft be placed one foot above the level of the water in the lower part of the canal, or eleven feet under the level of the high water; the fecond ciftern mult be two feet above the level of the low water ; the third three feet, and fo on of the others; the bottom of the tenth, or uppermoft ciftern, being ten feet above the low water, and two feet lower than the high water; and, as each ciftern muft be twelve inches in depth, the furtace of the water in the higher ciftern will be one foot under the level of the water in the upper part of the canal. The cifterns being thus confructed, when the lock is full, and the boat to be let down, the communications between the lock and the cifterns, which until then have all been fhut, are to be opened in the following manner: firl, the communication with the higher ciftern is opened, which, being at bottom two feet under the level of the water in the lock, is filled to the depth of one foot, the water in the lock defcending one foot alfo at the fame time; that communication is then flut, and the communication between the lock and the fecond ciftern is opened; one foot more of the water then paifes into that ciltern from the lock, and fills it; the opening is then fhut: the fame is dorie with the third, fourth, fifth, fixth, feventh, eighth, ninth, and tenth, cifterns, one by one, until they are all filled; and, when the tenth, or lowermolt ciftern, is filled, there remains but two feet depth of water in the lock. The communication between the lock and the lower part of the canal is then opened, and the laft two feet depth of water is emptied into the lower part of the canal. By this means, it is evident, that, intead of twelve feet depth of water being let defcend
into the lower part of the canal, there is only two feet depth that defcends, or one-fixth of the whole; therefore, inftead of 4320 cubic feet being ufed, there arc only 720 cubic feet ufed: the remainder of the water in the cifterns being ufed as follows. When another boat is to mount, the fluices being then flut, and the boat in the lock, the tenth or lowermolt ciftern is emptied into the lock, which it fills one foot ; the com. munication being then fhut, the next loweft ciftern, or the ninth, is emptied into the lock, which is thereby filled another foot; and fo, in like manner, all the other cifterns are emptied one after another, until the higher ciftern being emptied, which fills the tenth foot of wa. ter in the lock, there remains but two feet of water to fill, which is done from the upper part of the canal, by opening the higher fluice to pafs the boat; by that means, the fame quantity of water defcends from the upper part of the canal into the lock, that in the ofher cafe defcended from the lock into the lower part of the canal; fo that, in both cafes, the fame quantity of wa. ter is faved, that is, five-fixths of what would be necel. fary were there no citterns. Suppofe again that, upon the fame canal, and immediately after the twelve feet lock, it would be adyantageous to conftuct one of eighteen feet; then, in order not to ufe any greater quantity of water, it will be neceffary to have fixteen citterns, upon different levels, communicating with the lock in the fame manner. Should, again, a lock of only fix feet be wanted, after that of eighteen, then it will only be neceffary to have four cifterns on different levels, and fo of any other height of lock. The rule is this: for finding the number and fize of the ciflerns, each ciltern being the fame in fuperficies with the lock, its depth mult be fuch as to contain one half the quantity of water meant to be ufed in the paffing of one boat. The depth of the lock, divided by the depth neceffary for fuch a ciftern, will give, in all cafes, the whole number of cifterns, and two more: deduct the number two, therefore, from the number which you find by dividing the depth of the lock by the depth of one ciftern, and you have always the number of cifterns required; which are to be placed npon different levels, according to the rule already given. The above is the principle and manner of ufing the lock, for faving water in canals, and for enabling engineers to confruct locks of different depths upon the fame canal, without ufing more water for the deep locks than for the flallow ones. With regard to the manner of difpofing the cilterns, the circumflances of the ground, the declivity, \&c. will be the beft guide for the engineer."

But fuppofing a fufficiency of water, or admitting that this method of Mr Playfair's of faving it, where defective, is adequate to his fordelt expectations, ftill, in palling numerous locks, where the rife is confiderable, the interruption is fo great, that it has often been wifhed that an cligible method of lowering and eleva. ting boats could be devifed, without the allitance of water-locks. Though this is evidently at firlt view practicable, and feveral different modes of doing it have been fuggelted, fome of which have actually been carried into effect, yet all of them have been found to be attended with fuch inconvenience as to render an improvement in this refpect \&till necefary.

In China, where water-carriege is more generally C c 2
practifed

Canal: $\underbrace{\text { Canal: }}$

C A N $\quad\left[\begin{array}{lll}192\end{array}\right] \quad \mathrm{C}$ A N

Canals. $\underbrace{\text { Conais. }}$ practifed than in any kingdom of Europe, boats are raifed and lowered from one canal into another by filding them along an inclined plane : but the contrivances for effecting that purpofe are fo awkward, and fuch a number of hands are required, that it has in general been deemed inexpedient to refort to that mode of practice in Europe. Several devices that difcover conliderable ingenuity, however, have been publifhed, with a view to facilitate this operation; either by rendering the motion upthe inclined plane more equable, or producing a power fufficient to move thefe great weights. But none of them have yet been fo fimple in their conflruction as could be wihhed, nor have they afforded fatisfaction in pratice. For the greater part of them, likewife, patents have been granted ; fo that whatever he their value, no engineer could avail himfelf of them without previoufly purchaling a licence from the patentee.
The following contrivance for this purpofe is the invention of James Anderfon, LL. D. whofe knowledge of economics is well known, and of whofe public fpirit there cannot be a doubt. Inftead of applying for a patent, to fecure to himifelf the fruits of his ingenuity, he publifhed, for the good of his countrymen in general, his device, in the View of the Agriculture of the County of Aberdeen, which he drew up for the confideration of the board of agriculture. He introduces it to public notice with juflly obferving, that it poffeffes at leaft the merit of fimplicity, in as high a degree, perhaps, as could be wifhed; and, "in the opinion (fays he) of very good judges of matters of this fort, to whom the plan has been thewn, it has been deemed fully adequate to the purpole of raifing and lowering hoats of a moderate fize, that is of 20 tons, or downwards; and it is the opinion of moft men with whom I have converfed, who are beft acquainted with the inland navigations, that a boat of from to to 15 tons is better than thofe of a larger fize. When feveral are wanted to be fent at once, they may be affixed to one another, as many as the towing-horfe can conveniently draw. Were boats of this fize adopted, and were all the boats on one canal to be of the fame dimenfions, it would prove a great convenience to a country in a Itate of beginning improvements; becaufe the expence of fuch a boat would be fo trifing, that every farmer could have one for himfelf, and might of courfe make ufe of it when he pleafed, by the aid of his own horfe, without being obliged to have any dependence on the time that might fuit the convenience of his neighbour ; and if two or more boats were going from the fame neighbourhood, one horfe could ferve the whole.
"You are to fuppofe that fig. 2. (Plate VII.) reprefents a bird's eye view of this fimple apparatus, as feen from above. A is fuppofed to be the upper reach of the canal, and B the lower reach, with the apparatus between the two. This confifts of three divifinns; the midtle one, extending from C to D , is a folid piece of mafonry, raifed from a firm foundation below the level of the bottom of the fecond reach; this is again divided into five parts, viz. $d d d$, where the wall rifes only to the height of the water in the upper reach, and ee, two pillars, raifed high enough to fupport the pivots of a wheel or pulley g, placed in the pofition there marked.
"The fecond diviloz b confilts of a wooden coffer,
of the fame depth nearly as the water in the upper reach, and of a fize exactly fitted to contain one of the boats. This communicates directly with the upper reach, and being upon the fame plave with it, and fo connected with it as to be water-tight, it is evident from infpection, that nothing can be more eafy than to float a boat into this coffer from the upper reach; the part of the wheel that projects over it being at a fuf. ficient height above it, fo as to occafion no fort of interruption.
"Third divifion. At i is reprefented another coffer, precifely of the fame dimenfions with the firf. But here two fluices, which were open in the former, and only reprefented by dotted lines, are fuppofed to be fhut, fo as to cut off all communication between the water in the canal and that in the coffer. As it was impoffible to reprefent this part of the apparatus on fo fmall a fcale, for the fake of illuftration it is reprefented more at large in fig. 5 . where A, as before, reprefents the upper reach of the canal, and b one of the coffers. The fluice k goes into two cheeks of wond, joined to the mafonry of the dam of the canal, fo as to fit perfectly clofe; and the fluice f fits, equally clofe, into cheeks made in the fide of the coffer for that purp rfe; between thefe two fluices is a fmall fpace o. The coffer, and this divition o, are to be fuppofed full of water, and it will be eafy to fee that thefe fluices may be let down, or drawn up at pleafure, with much facility.
"Fig. 6. reprefents a perpendicular feation of thefe parts in the fame direction as in fig. 5. and in which the fame letters reprefent the fame parts.
"Things being thus arranged, you are to fuppofe the coffer b to be fufpended, by means of a chain paffed over the pulley, and balanced by a weight that is fufficient to counterpoife it, fufpended at the oppofite end of the chain. Suppofe, then, that the counterpoife be made fomewhat lighter than the coffer with its contents, and that the line $m n$ (fig. 6.) reprefents a divifion between the folid fides of the dam of feparation, which terminates the upper reach, and the wnoden coffer, which had been clofed only by the preffure of its own weight (being pufhed a very little from A towards B , beyond its precife perpendicular fwing), and that the joining all round is covered with lifts of cloth put upon it for that purpofe; it is evident that, fo long as the coffer is fuipended to this height, the joining muft be water-tight; but no fooner is it lowered down a little than this joining opens, the water in the fmall divifion o is allowed to run out, and an entire feparation is made between the fixed dam and this moveable coffer, which may be lowered down at pleafure without lofing any part of the water it contained.
"Suppofe the coffer now perfectly detached, turn tn fig. 3. which reprefents a perpendicular fection of this apparatus, in the direction of the dotted line $p p$ (fig. 2.). In fig. 3. b reprefemts an end view of the coffer, indicated by the fame letter as in fig. 2. fufpended by its chain, and now perfectly detached from all other objects, and balanced by a counterpoife i, which is another coffer exactly of the fame fize, as low down as the level of the lower reach. From infpection only it is evident, that, in proportion as the one of thefe weights rifes, the other mult defcend. For the prefent, then, fuppofe that the coffer b is by fome means rendered

C A N

Canals.
rendered more weighty than i, it is plain it will defeend while the other rifes; and they will thus continue till h comes down to the level of the lower reach, and i rifes to the level of the higher one.
"Fig. 4. reprefents a fection ias the direction A B (fig. 2.), in which the coffer i (feen in both fituations) is fuppofed to have been gradually raifed from the level of the lower reach B, to that of the higher A, where it now remains Itationary; while the coffer b (which is concealed behind the mafonry) has defcended in the mean time to the level of the lower reach, where it clofes by means of the juncture r s, fig. 6. (which juncture is covered with lifts of cloth, as before explained at $m n$, and is of courfe become water-tight, when, by lifting the fluice t, and the correfponding fluice at the end of the canal, a perfect communication by water is eftablifhed between them. If, then, inftead of water only, this coffer had contained a boat, floated into it from the upper reach, and then lowered down, it is very plain, that when thefe fluices were removed, after it had reached the level of the lower reach, that boat might have been floated out of the coffer with as much facility as it was let into it above. Here then we have a boat taken from the higher into the lower canal; and, by reverfing this movement, it is very obvious that it might be, with equal eafe, raifed from the lower into the higher one. It now only remains that I fhould explain by what means the equilibrium between thefe counter-balancing weights can be deftroyed at pleafure, and the motion of courfe produced.
" It is very evident, that if the two correfponding coffsrs be precifely of the fame dimenfions, their weight will be exactly the fame when they are both filled to the fame depth of water. It is equally plain, that fhould a boat be floated into either or both of them, whatever its dimenfions or weight may be, fo that it can be contained afioat in the coffer, the weight of the coffer and its contents will eontinue precifely the fame as when it was filled with water only: hence, then, fuppofing one boat is to be lowered, or one to he raifed at a time, or fuppoling one to be raifed and another lowered at the fame time-they remain perfectly in equilibrium in either place, till it is your pleafure to deftroy that equilibrium. Suppofe then, for the prefent, that both coffers are loaded with a boat in each, the donble fluices both above and below clofed; and fuppofe alfo that a top-cock u, in the under edge of the fide of the lower coffer (fig. 4. and 6.), is opened, fome of the water which ferved to float the boat in the coffer will flow out of it, and confequently that coffer will become lighter than the higher one; the upper coffer will of courfe defeend, while the other mounts upwards. When a gente morin has been thus communicated, it may be prevented from accelerating, merely by turning the Atop cock fo as to prevent the lofs of more water, and thus one coffer will continue to afcend, and the other to defeend, till they have affumed their flations refpectively; when, in confequence of a fop below, and another above, they are rendered Itationary at the level of the refpective canals (1).
"Precifely the fame cffect will be produced when the coffers are filled entirely with water.
" It is unneceffary to add more to this explanation, except to obferve, that the fpace for the coffer to defcend into mult be deeper than the bottom of the lower canal, in order to allow a free defcent for the coffer to the requifite depth; and of courfe it will be necelfary to have a fmall conduit to allow the water to get out of it. Two or three inches free, below the bottom of the canal, is all that would be neceffary.
"Where the height is inconfiderable, there will be no occafion for providing any counterpoife for the chain, as that will give only a fmall addition to the weight of the undermoft coffer, fo as to make it preponderate, in circumfances where the two coffers would ocherwife be in perfect equilibrinm : but, where the height is confiderable, there will be a necefity for providing fuch a counterpoife; as, without it, the chain by becoming more weighty every foot it defcended, would tend to deftroy the equilibrium too much, and accelerate the motion to an inconvenient degree. To guard againft this inconvenience, let a chain of the fame weight, per foot, be appended at the bottom of each coffer, of fuch a length as to reach within a few yards of the ground where the coffer is at its greatelt height (fee fig. 3.); it will an with its whole weight upon the higheft coffer while in this pufition; buf, as that gradually defcended, the chain would reach the ground, and, being there fupported, its weight would be diminifhed in proportion to its defcent; while the weight of the chain on the oppofite fide would be augmented in the fame proportion, fo as to counterpoife each other exactly, in every fituation, until the uppermoft chain was raifed from the ground. After which it would increafe its weight no more; and, of courfe, would then give the undcr coffer that preponderance which is neceffary for preferving the machine feady. The under coffer, when it reached its lowelt pofition, would tonch the bottom on its edges, which would then fupport it, and !:eep every thing in the fame pofition, till it was made lighter for the purpofe of afcending.
"What conftitutes one particular excellence of the apparatus here propofed is, that it is not only unlimited as to the extent of the rife or deprefion of which it is fufceptible (for it would not require the expenditure of one drop more water to lower it one hundred feet than one foot); but it would alfo be eafy fo to augment the number of pullegs at any one place as to admit of two, three, four, or any greater number of boats being lowered or elevated at the fame time; fo that let the fucceffion of boats on fuch a canal be nearly as rapid as that of carriages upon a highway, none of them need be delaycd one moment to wait an opportunity of paffing; a thing that is totally impracicable where water-locks are employed; for the intercourfe, on every canal contructed with water-locks, is neceffarily limited to a certain degree, beyond which it is impolfible to force it.
"For example; fuppofc a hundred boats are follow. ing each other, in fuch a rapid fucceffion as to be only halt
(A) "It does not feem neceffary to adopt any other contrivance than the above for regulating the motions; but if it fhould be found necelfary, it would be eafy to put a ratch-wheel on the fame axle.

Canal half a minute behind each other: By the apparatus of 1796 , it appears there are 29 releGors in this town
hete propofed, they would all be elevated precifely as they came; in the other, let it be fuppofed that the lock is fo well conftrugted as that it takes no more than five minutes to clofe and open it ; that is, ten minutes in the whole to each boat (for the lock, being once filled, mult be again emptied before it can receive another in the fame direction) : at this rate, fix boats only could be palled in an hour, and of courfe it would take fixteen hours and forty minutes to pafs the whole hundred; and as the laft boat would reach the lock in the fpace of fifty minutes after the firf, it would be detained fifteen hours and fifty minutes before its turn would come to be raifed. This is an immenfe detention; but if a fucceffion of boats, at the fame rate, were to follow continually, they never could pafs at all. In fhort, in a canal conllructed with water-locks, not more than fix boats, on an average, can be paffed in an hour, fo that beyond that extent all commerce mult be fopped ; but, of the plan here propofed, fixty, or fix hundred, might be paffed in an hour if neceffary, fo as to occafion no fort of interruption whatever. Thefe are advantages of a very important nature, and ought not to be overlooked in a commercial country.
"This apparatus might be employed for innumerable cther ufes as a moving power, which it would be foreign to our prefent purpofe here to fpecify. Nor does its power admit of any limitation, but that of the frength of the chain, and of the coffers which are to fupport the weights. All the other patts admit of being made fo immoveably firm as to be capable of fup. porting almeit any afignable weight.
"I will not enlarge on the benefits that may be derived from this very fimple apparatus: its cheapnets, when compared with any other mode of raifing and lowering veffels that has cver yet heen practifed, is very obvious; the waffe of water it would occafion is next to nothing; and when it is confidered that a boat might be raifed or lowered fifty feat nearly with the fame eafe as five, it is evident that the interruptions which arife from frequent locks would be avoided, and an immenfe faving be made in the original expence of the canal, and in the annual repairs.
" It is alfo evident, that an apparatus, on the fame principle might be eafily applied for raifing coals or metals from a great depth in mines, wherever a very fmall itream of water could be commanded, and where the mine was level-free."

CANANDAQUA, a polt town, lake, and creek, in Ontario co. New-York. It is the hire town of the co. fituated on the N . end of the lake of the fame name, at its outlet into Canandaqua creek. The lake is about 20 miles long and 3 broad, and fends its waters in a N. eaftward and eaftward courfe 35 miles to Seneca River. This is the fcite of an ancient Indian town of the fame name, and ftands on the road from Albany to Niagara, 22 miles E. from Hartford in Geneffee River; 16 miles W. of Geneva, and 235 miles N. W. from New-York city, meafuring in a fraight line, and 3.40 by Albany road. This fettlement was begun by Meffrs. Gorham and Phelps, and is now in a flourifhing flate. There are about 30 or 40 houfes, fituated on a pleafant flope from the lake; and the adjoining farms are under good cultivation. By the ftate cenfus
fhip.-Morse.
CANARY-bird, of which a defcription is given in the Encyclopxdia, was not known in Europe till towards the end of the 15 th century. Even in 1555, Beilon, who about that time defribed all the birds then known, does nct fo much as mention it. When it was firlt brought from the Canary Iflands, it was fo dear that it could be purchafed only by people of fortune, who were often impofed upon. It was called the fugar-bird, becaufe it was faid to be fond of the fugarcane, and could eat fugar in great abundance. This is rather a fingular circumitance, fugar being to many fowls a poilion. Experiments have fhewn, that a pigeon, to which four drams of fugar was given, died in four hours; and that a duck, which had fwallowed five drams, did not live feven hours.

In the middle of the laft century canary-birds began to be bred in Europe; and to this the following circumftance, related by Olina, feems to have given cccafion: "A veffel which, among other commedities, was carrying a number of canary birds to Leghorn, was wrecked on the coatt of Italy; and there birds being thus fet at liberty, flew to the neareft land, which was the inland of Elba, where they found the climate fo favourable, that they multiplied, and perhaps would have become domeflicated, had they not been caught in fnares; for it appears that the breed of them there has been long deftroyed. Olina fays, that the breed foon degenerated; but it is probable, that by much the greater part of thefe canary-birds were males, which coupling with birds of the illand, produced mules, fuch as are defcribed by Gefner and other naturalifts."
"Various treatifes have been publifhed in different languages on the manner of breeding thefe birds, and many people have made it a trade, by which they have acquired confiderable gain. It does no difcredit to the induftry of the Tyrolians, that they have carried it to the greateft extent. At Ymit there is a company, who, after the breeding feafon is over, fend out perfons to different parts of Germany and Switzerland to purchafe birds from thofe who breed them. Each perfon trings with him commonly from three to four hundred, which are afterwards carried for fale, not only through evers part of Germany, but alfo to England, Rufia, and even Confantinople. A bout fixteen hundred are brought every year to England; where the dealers in them, notwithflanding the confiderable expence they are at, and after carrying them about on their backs, perhaps a hundred miles, fell them for five hillings a piece. This trade, hitherto negletted, is now carried on in Schwarzwalde ; and at prefent there is a citizen at Gottingen who takes with him every year to England feveral canary-birds and bulfinches (loxia pyrrhula), with the produce of which he purchafes fuch fmall wares as he has occafion for."-Profefor Beckmann's Hiffory of Inventions and Difcoveries.

Canart-Seed. See Phalaris, Encycl.-Profeffor Beckmann doubts whether the plant which bears the canary-feed be the phaluris of the ancients, becaufe that name feems to have been given by Pliny to more than one fpecies of grafs. Hc thinks it very probable, however, that the plant which the modern botanifts call phalaris was firt brought from the Canary Inands to

Spain,

C A N

$\underbrace{\text { Candle. }}$
Spain, where it began to be cultivated, as well as in the fouth of France, as foon as canary-birds came into general efteem. At prefent it is cultivated in varions places, and forms no inconfiderable branch of trade, particularly in the ifland of Sicily, where it is called Scagliuola or Scaghiola. Were it not that the grains are not ealily freed trom the huiks, this plant night be cultivated for the food of man, for its feeds yield a good kind of meal. The phalaris has by feveral writers been confounded with argol or the lichen rocolla of Linnæus; but they are very different plants. See Lichen Rocolla in this Supplement.
CANDLE, a thing fo univerfally known as to need no particular defcription. Its ufe, however, is fo great, that every information tending to its improvement muft, we thould think, be acceptable to nur readers. Of the common method of making candles, whether of wax or of tallow, a fufficient account has been given in the Encyclopredia; but candles of every kind are far from being yet brought to that degree of perfection of which they feem fulceptible. Thus, for example, the light of a candle, which is fo exceedingly brilliant when firlt fnuffed, is very fpeedily diminithed to one-half, and is ufually not more than one-fifth or one-fixth, before the uneatinefs of the eye induces us to fnuff it. Hence it follows, that if candles could be made fo as not to require fnufing, the average quantiry of light afforded by the fame quantity of combufible matter would be more than doubled. It may likewife be worthy of inquiry, fince the coft and duration of candles are eafily afcersainable, whether more or lefs light is obtained at the fame expence during a given time, by burning a number of fmall candles inftead of one of greater thicknefs.

To determine this lat point, a method muft be found of meafuring the comparative intenlities of light, for which fee Photometer in this Supplement. With refpect to the defideratum firlt mentioned, we have fome very ingenious obfervations and well-contrived experiments by Mr Nicholion, in the fecond number of his valuable Journal, which we flall here infert nearly in the words of their author.

In every procais of combuftion the free accefs of air is of the utmoft confequence. When a candle has a very flender wick, the flame is fruall and of a brilliant white colour ; if the wick be large, the combulfion is lefs perfect, and the flame brown; and a wick Rill larger, not orly exhibits a brown flame, but the lower internal part appears dark, and is occupied by a portion of volatilized matter, which does not become ignited till it has afcerded towards the point. When the wick is either veny large or very long, part of this matter efcapes combution, and fhews itult: in the fo:m of coal or fmoke. The fame things take place in the burning of a lamp; but when the wick of a lamp is once adjufted as to its length, the flame continues bearly in the lame fate for a much longer time than the flame of a candle.
"Upon comparing a candle witha lamp (fays Mr Nichulion), two very remarkable particulars are immediately feen. In the fift place, the tallow itielf, which remains in the unfufed flate, affords a cup or cavity to hold that portion of melted tallow which is ready to flow into the lighted part of the wick. In the fecend place, the combuftion, inflead of bcing confined, as in
the lamp, to a certain determinate portion of the fibrons matter, is carried, by a flow fucceffion, through the whole length. Hence arifes the greater necefiry for frequent fauffing the candle; and hence alfo the fation of the freezing point of the fat oil becomes of great confequence. For it has been thewn, that the brilliancy of the flame depends very much on the diameter of the wick being as fmall as polible; and this requifite will be moft attaindble in candles formed of a material that requires a higher degree of heat to fufe it. The wick of a tallow candle mult be made thicker in proportion to the greater fufibility of the material, which would otherwife melt the fides of the cup, and run over in ftreams. The flame will therefore be yellow, fmoky, and obfcure, excepting for a flort time immediately after fnuffing. Tallow melts at the gad degree of Fahrenheit's thermometer; feermaceti at the 133 d degree; the fatty matter formed of fefl, after long immerlion in water, melts at 12% degrees; the pela of the Chinefe at 145 degrees; bees-wax at 142 degrees; and bleached wax at 155 degrees. Two of thefe materials are well known in the fabrication of candles. Wax in particular does not afford to brilliant a flame as tallow; but, on account of its lefs fulibility, the wick can be made fmaller, which not only affords the advantage of a clear perfect flame, but from its texibility it is difpofed to turn on one lide, and conte in contat with the external air, which completely burns the extremity of the wick to white athes, and thus performs the office of fnufling. We fee therefore that the important object to fociety of rendering tallow candles equal to thofe of wax, does not at all depend on the combuftibility of the refpective materials, but upon a mechanical advantage in the cup, which is afforded by the inferior degree of furibility in the wax; and that, to obtain this valuable objeat, one of the following effeets muft be produced: Either the tallow mult be burned in a lamp, to avoid the gradual progreflion of the Hame along the wick; or fome means muft be devifed to enable the candle to fruff itielf, as the wax candle does; or, laftly, the tallow iffelf mul be rendered lefs fufible by fome chemical proceis. I have no great reafon to boaft of fuccefs in the endeavour to effeet thefe; luit my hope is, that the facts and obfervations here reprefented may confiderably abridge the labour of others in the fame purfuit.
" The makers of thermometers and other fmall articles with the blow-pipe and lamp, give the preference to tallow inftead of oil, becaufe its combuftion is more complete, and does not blacken the glafs. In this operation the heat of the lamp melts the tallow which is occafionally brought into its vicinity by the workman. But for the ufual purpofes of illumination, it camot be fuppofed that a perfon can attend to fupply the com. buffible matter. Confiderable difficulties arife in the project for affording this gradual fupply as it may be wanted. A cylindrical piece of tallow was inferted into a metallic tube, the upper aperture of which was partly clofed by a ring, and the centrdl part oecupied by a metallic piece nearly refembling th.lt part of the conmon lamp which carries the wick. In this apparatus the piece laf deferibed was intended to anfwer the fame purpofe, and was provided wih a thort wick. The cylinder of tallow was fupported beneath in fuch a manner that the metallic tube and other part of this

C A N [196$] \quad$ C A N

Candie. \cdots
lamp were left to reft with their whole weight upon the tallow at the ring or contraction of the upper aperture. In this fituation the lamp was lighted. It burned for fome time with a very bright clear flame, which, when compared with that of a candle, poffeffed the advantage of uniform intenfity, and was much fuperior to the ordinary flame of a lamp in its colour, and the perfeet abfence of fmell. After fome minates it began to decay, and very foon afterwards went out. Upon exanination, it was found that the metallic piece which carried the wick had fufed a fufficient quantity of tal. low for the fupply during the combution; that part of this tallow had flowed beneath the ring, and to other remote parts of the apparatus, beyond the influence of the fiame; in confequence of which, the tube and the cylinder of tallow were fartened together, and the expected progretlion of fupply prevented. It feems probable, that in every lamp for burning confiftent oils, the material ought to be fo difpofed that it may defcend to the flame upon the principle of the fountain refervoir. I flall not here ftate the obftacles which prefent themfelves in the profpect of this conftruction, but thall difmifs the fubject by remarking, that a contrivance of this nature would be of the greatelt public utility.
"The wick of a candle being furrounded by the flame, is neally in the fituation of a body expofed to deltructive diltillation in a clofe veffel. After lofing its volatile products, the carbonaceous refidue retains its figure, until, by the defcent of the flame, the external air can have accefs to its upper extremity. But, in this cafe, the requifite combultion, which might fnuff it, is not effected: for the portion of oil emitted by the long wick is not only too large to be perfectly burned, but alfo carries off much of the heat of the flame while it affumes the elaftic ftate. By this diminifhed combullion and increafed efflux of half-decompofed oil, a portion of coal or foot is depofited on the upper part of the wick, which gradually accumulates, and at length affumes the appearance of a fungus. The candle does not then give more than one-tenth of the light emitted in its beft ftate. Hence it is that a candle of tallow cannot fpontaneoufly finuff itfelf. It was not probable that the addition of a fubftance containing vital air or oxygene would fupply that principle at the precife period of time required; but as experiment is the teft of every probabinity of this nature, I foaked a wick of cotton in a folution of nitre, then dried it, and made a candle. Wien this came to be lighted, nothing re. markable happened for a fucrt time; at the expiration of which a decrepitation followed at the lower extremity of the flame, which completely divided the wick where the blackened part commences. The whole of the matter in combuftion thercfore fell off, and the candle was of courfe intantly extinguifhed. Whether this would have happened in all proportions of the falt or conftructions of the candle I did not try, becaufe the fmell of azote was fufficiently ftrong and unpleafant to forbid the ufe of nitre in the purfuit. From various confiderations I am difpofed to think that the fpontaneous fnuffigg of candles made of tallow, or other fufible materials, will fcarcely be effected but by the difcovery of fome material for the wick which flall be voluminous enough to abforb the tallow, and at the fame lime fufficiently flexible to bend on one fide.
"The moft promifing fpeculation refpesting this mon
ufeful article, feems to direct itfelf to the cup which contains the melted tallow. The imperfection of this part has already been noticed, namely, that it breaks down by fulion, and fuffers its fluid contents to efcape. The Chinefe have a kind of candle about half an inch in diameter, which, in the harbour of Canton, is called a lobchock; but whether the name be Chinefe, or the corruption of fome European word, I am ignorant. 'The wick is of cotton, wrapped round a fmall titick or match of the bamboo cane. The body of the candle is white tallow; but the external part, to the thicknefs of perhaps one-thirtieth of an inch, confilts of a waxy matter coloured red. This covering gives a confiderable degree of folidity to the candle, and prevents its guttering, becaufe lefs fufible than the tallow itfelf. I did not obferve that the ftick in the middle was either advantageous or the contrary; and as I now write from the recollection of this object at fo remote a period as 25 years ago, I can only conjecture that it might be of advantage in throwing up a lefs quantity of oil into the Alame than would have been conveyed by a wick of cotton fufficiently fout to have occupied its place unfupported in the axis of the candle.
"Many years ago I made a candle in imitation of the lohchock. The expedient to which I had recourfe confiled in adapting the wick in the ufual pewter mould: wax was then poured in, and immediately af. terwards poured out: the film of wax which adhered to the inner furface of the mould foon became cocl, and the candle was completed by filling the mould with tallow. When it was drawn out it was found to be cracked longitudinally on its furface, which I attributed to the contraction of the wax, by cooling, being greater than that of the tallow. At prelent I think it equally probable that the cracking might have been occafioned by too fudden cooling of the wax before the tallow was poured in; but other avocations prevented the experiments from being varied and repeated. It is probable that the Chinefe external coating may not be formed of pure hard bleached wax.
"But the molt decifive remedy for the imperfection of this cheapeft, and in other refpects beft material, for candles, would undoubtedly be to diminith its fulibility. Various fubftances may be combined with tallow, either in the direct or indirect method. In the latter way, by the decompofition of foap, a number of experiments were made by Berthollet, of which an account is inferted in the Memoirs of the Academy at Paris for the year 1780 , and copied into the 26 th volume of the Fournal de Pbyigue. None of thefe point directily to the prefent object; befides which, it is probable that the foap made ule of by that eminent chemit was formed not of tallow, but oil. I am not aware of any regular feries of experiments concerning the mutual action of fat oils and other chemical agents, more efpecially fuch as may be direfted to this important of ject of diminifhing its folubility; for which reafon I fhall mention a few experiments made with this view.

1. Tallow was melied in a fnall filver veffel. Solid tallow finks in the fluid, and difolves without any remarkable appearatice. 2. Gum fandarach in tears was not difolved, but emitted bubbles, fwelled up, became brown, emitted fumes, and became crifp or friable. No folution nor improvement of the tallow. 3. Shell-lac fwelled up with bubbles, and was more perfeetly fufed

Cande than the gum fandarach in the former experiment. When the tallow was poured off, it was thought to congeal rather more fpeedily. The lac did not appear to be altered. 4. Benzoin bubbled without much fwelling, was fufed, and emitted fumes of an agreeable fmell, though not refembling the flowers of benzoin. A fight or partial folution feemed to take place. The benzoin was fofter and of a darker colour than before, and the tallow lefs confitent. 5. Common refin unites very readily with melted tallow, and forms a more fufible compound than the tallow itfelf. 6. Camphor melts eafily in tallow, without altering its appearance. When the tallow is near boiling, camploric fumes fly off. The compound appeared more fufible than tallow. 7. The acid or flowers of benzoin diffolves in great quantities without any ebullition or commotion. Much fmoke arifes from the compound, which does not fmell like the acid of benzoin. Tallow alone does not fume at a low heat, though it emits a fmell fomething like that of cil olive. When the proportion of the acid was confiderable, fmall needled cryfals appeared as the temperature diminifhed. The appearances of feparation are different according to the quantity of acid. The contpound has the hardnefs and confiltence of firm foap, and is partially tranfparent. 8. Vitriolated tartar, nitre, white fugar, cream of tartar, cryftallized borax, and the falt fold in the markets under the name of falt of lemons, but which is fuppofed to be the effential falt of forrel, or vegetable alkali fuperfaturated with acid of fugar, were retpectively tried without any obvious mutual action or change of properties in the tallow. 9. Calcined magnefia rendered tallow opaque and turbid, but did not feem to diffolve. Its effect refembled that of lime.
" It is propofed to try the oxygenated acetous acid, or radical vinegar ; the acid of ants, of fugar, of borax, of galls, the tanning principle, the ferous and gelatinous animal matter, the fecula of vegetables, vegetable gluien, bird-lime, and other principles, either by direct or indirect application. The olject, in a commercial point of view, is entitled to an extenfive and affiduous inveltigation. Chemits in general fuppofe the hardnefs or lefs fufibility of wax to arife from oxygen; and to this ohject it may perhaps be advantageous to direct a certain portion of the inquiry. The metallic falts and calces are the combinations from which this principle is moft commonly obtained ; but the combinations of thefe with fat oils have hitherto afforded little promife of the improvement here fought. The fubject is, however, fo little known, that experiments of the loofeft and moft conjectural kind are by no means to be defpifed."

Thus far Mr Nicholfon: but it is probable that many of the advantages which he prepofes by thefe mixtures might be obtained mercly by purifying the tallow, and keeping it in that flate for a long time expofed to the air before it be formed into candles. It is certain that tallow is rendered more dificult of fulion by age; and this is the fole reafon that old candles are lefs apt to run, and therefore more valuable than fuch as have been lately made.

CANIADERAGO, a lake in Otfego co. New-York, ncarly as large as Otfego lake, and 6 miles W. of it. A fream called Oaks Creck iffies from it, and falls into Sufquelhanna River about 5 miles below Otfego.

Suppl. Vol. I.

The beft cheefe in the ftate is faid to be made on this creek.-Morse.
CANNARES, Indians of the province of Quito, in
Pern. They are very well made, and very active; they wear their hair long, which they weave and bind about their heads, in form of a crown. Their clothes are made of wool or cotton, and they wear fine fafhioned boots. Their women are handfeme, and fond of the Spaniards; they generally till and manure the ground, whilft their hußands at home, card, fpin, and weare wool and cotton. Their country had many rich gold mines, now drained by the Spaniards. The land bears good wheat and barley, and has fine vineyards. The magnificent palace of Theomabamba was in the country of the Cannares,-ib.

CANNAVERAL, CAPE, the extrcme point of rocks on the E. fide of the peninfula of E. Florid?. It has Mofquitos Inlet N. by W. and a large Moal S. by E. This was the bounds of Carolina by charter from Charles II. N. lat. 28. 35. W. long. 81. 9.-ib.

CANONGOES, in Bengal, are the regiters of land and hereditary expounders of the ufages of the country. They have their officers and deputies every where; they are not liable to removal ; and all papers attelted by them are received as authentic and decifive, in all difputes relative to lands and their boundaries. See Sir Charles Roufe Boughton's Difertation on the Landelt Property of Bengal.

CANONNICOUT Ifand, in Newport co. RhodeInland, lies about 3 miles W. of Newport, the S. end of which, (called Beaver Tail, on which fands the light-houfe) extends about as far S. as the S. end of Rhode Ifland. It extends N . about 7 miles, its average breadth being about one mile ; the E. flore forming the W. patt of Newport-harbor, and the W. thore being about 3 miles from the Narraganfet thore. On this point is Jameltown. It was purchafed of the Indians in $\mathbf{1 6 5 7}$, and in 1678 , was incorporated by the name of Jameftown. The foil is luxuriant, producing grain and grafs in abundance. -Jameltown contains 507 inhabitants, including 16 flaves.-Morse.

CANONSBURG, a town in Wafhington co. Pennfylvanid, on the N. fide of the W. branch of Chattiers Creek, which runs N. by E. into Ohio River about 5 miles below Pittfburg. In its environs are feveral valuable mills. Here are about 50 houfes and an academy; 7 miles N. E. by E, of Wathington, and 15 S. W. of Pittfburg.-ib.

CANTERBURY, a townhip in Rockingham co. New. Hampftire, fituated on the ealleru bank of Merrimack River; $1+$ miles N. by W. of Concord, 45 N . W. of Exeter, and 48 from Portfmouth. It contains 103^{8} inlabitants.一ib.

Canterbury, a townflip in Windham co. Connecticut, on the W. fide of Quinnabaug River which feparates it from Plainfield. It is 7 miles E. by S. of Windham, and about 10 or 12 N . of Norwich.-ib.

CANTON, a new townthip in Norfolk co. Mafldchufetts, incorporated in 1797, it being formerly the notherly past if Stoughton.-ib.

CAOUTChOUC, Elastic Gum, or Inlian Rub. ber, is a fubftance of which a pretty full account has been given in the Encyclopxdia. It las there been likewile obferved how ufeful it might be, if we could

1) d
form

Caoutchouc.
form is into catneters and other fexible inftruments, by diffolving it in a menfruum lefs expenfive, or at leaf more eafily attained, than ether. Since that article was publifhed, we have feen an account of fuch a menflruum in the Cimales de Chimie, by M. Groffart (Chirly); and of the expence of that mentroum, or the difficulty of procuring it, no complaint will be made, when it is known to be nothing more than very hot water.

The author was led to this difcovery by fome experiments made with ether on caoutchoue; of which he gives the following account:
" It arpeared, even in my firf experiments, that L was attempting too much, and giving my?elf ufelefs trouble, in fearching for a manner of completely difolving the elaltic gum, fo that it might be again made up in new forms. I then thought that it would be eafier to find out a method, as it were, of foldering it, and of not ading upon it more than might be neceffary to caufe its f ftened parts to reunite. Experience las fhewn me, that a firong preffure made upon two pieces of caoutchouc (when brought to that tate of foftnefs,) and continued until they are entirely dry, caufed then to contract fo ftrong an adhefion, that the piece, being pulled out till it broke, often broke, not at the united part, hut by the fide of it.
"Bymeans of ether I immediately fucceaded in making thafe tubes. The method which appears to me to fucceed the beft is, to cut a bottle circulasly in a fpiral flip of a few lines in breadth. It is very eafy to cut a bottle in fuch a manner as to form a fingle long llip, and thus unneceffary joinings are avoided.
" The whole flip is to be plunged into ether, until it is fufficiently fuftened, which comes to pafs fooner or later according to the quality of the vitriolic ether that is employed. Half an hour frequently fuffices; but I have already obferved, that there is a great diverfity in the manner in which different forts of vitriolic ether aet, and of which the caufe is not yet, fo far as I know, determined.
"The fip being taken out, one of the extremities is to be taken hold of and rolled, firft upon itfelf at the hottom of the tube, preffing it; then the coiling is to be continued, mounting fipirally along the mould, and tahing care to lay over and comprels with the hand every edge, cne againft the other, fo that there may not be any vacant face, and that all the edges may j in exactiy. The whole then is to be bound hard with a tape of an inch in width, taking care to turn it the fame way with the flip of elaftic gum. The tape is to \}e tied up with packthread, fo that, by every turn of the packithead joinirg another, an equal prefire is given to every fart : it is then left to dry, and the tube is made.
"The bandage is to be taken off wilh great care, that none of the outward furfaces, vilich may have been lodged within the hollows of the tape (cf which the caoutchouc takes the exast imprefion), may be pulled away. I advife the application of a tape before packlinesad, becaufe, efpecialiy in the thinner tubes, we frould run the rik of cutting the caoutchouc, if the packthread were applied imnicdiately upon it.
" It is eafy to take off the tube of elattic gum which has been formed upon a folid mould of one piece; if the mould be made rather conic, it may be male to Dide off by the fmaller cnd; at the worlt, it is eafi'y
accomplifhed by plunging it into hot water. for it is foftened by the heat, and is difended; without this precaution it would be fometimes difficult to draw it off when dry, becaufe, having been applied upon the monld whilit it lad its volume augmented by the interpofition of the ether, the parts of the casutchouc are drawn nearer each other, by the evaporation of the interpofed bodies.
"The great afinity between thefe two bodies is feen by the length of time that the odour of the eiher remains, notwithftanding the great rolatility of the latter, and that the apparent drynefs of the tube feems to fhew that there is none remaining; neverthelefs, after a certain time, the odour difappears entirely. One of thore tubes, which was made with ether after the method here defcribed, does not retain the leaf trace of the folvent. It is needlefs to fay, that it is eafy to make tubes as thin or as thick as may be judged proper.
"Althongh the procefs that I am now defcribing is but very little expenfive, yet I have tried to employ other folvents in lieu of ether, becaufe it is not to be hal in every place, and requires particular care in its prefer. vation. I have employed, with fre meccefs, the eff=ntial oils of livender and of turpentine : both of them fpeedily dilate the caoutchouc, and are of no great price. The difagreeable fmell of the oil of turpentine becomes, perhape, in procefs of time, lefs difagreeable than that of lavender. This lat is deater; but the difference is not fo great as it appears at firf: for we may make fome advantage of the oil of lavender that is employed by the following operation: Upon plunging into alcohol the elaftic tube prepared with the oil of lavender, the alcohol charges itfelf with the oil, and forms a very good lavender-water; the fame as would be made by an immediate mixture of oil of lavender with foirit of wine. Immerfon in this liquor alfo ferves to haften the drying of the caoutchouc inftruments thus made by means of effential oils. I have made tubes with the oils of turpentine and of lavender ; both are much florer in evaporating than ether. The oil of turpentine particularly appeared to me always to have a kind of flickinefs, and I know not as yet that we have any means whereby to get fpeedily rid of its fmell.
"Neverthelefs there is a folvent which has not that inconvenience; it is cheaper, and may eafily be procured br every one: this folvent is water. I concsive it will appear ftrange to mention water as a folvent of elaftic gum, that liquid having been always fuppofed to have no action uponit. I myfelf refifted the idea; but reflecting that ether, by being faturated with weter, is the better enabled to act on canoutchouc, and that this gum when plunged into boiling water becomes more tranfarent at the edres, I prefumed that this effer was n it due fimpiy to the dilation of its volume by the heat. I thought that, at that temperature, fone action might iake place, and that a long-continued ebullution might produce more fenfible effects. I was nut difarpointed in my expectations, and one of thofe tubes was prepared without any other folvent than water and heat. I proceeded in the fame manner as with ether : the elallic gum dilates but very little in boiling water ; it becomes whitifh, but recovers its colour again by drying it in the air and light. It is fufficiently prepared for ufe when it has been a quarter of an lour in bniling

Caoutchouc.

C A P [$199 \quad] \quad \mathrm{C}$ A P

Canutcioue water : by this time its edges are fometimes tranfparent.
$\|$. It is to be turned fpirally round the mould, in the manner we de.cribed before, and replunged frequently into the boiling water, during the time that is employed in forming the tube, to the cnd that the edges may be diffofed to unite ingether. When the whole is bound with packlhread, it is to be kept fome hours in boiling water; after which it is to be dried, nill keeping on the binding.
"It we will to be more certain that the conneation is perfect, the fpiral may be doubled; but we molt always avoid placing the extcrior furfaces of the flips one upon the othc:, as thore furfaces are the parts which noon refift the action of folvents. This precaution is lefs neceffary when eilocr is employed, on account of its great action upon the caontchouc.
" It might be feared that the agtion of water upen caoutchouc would deprive us of the advaniages which might otherwife be expected; but thefe fears will be removed, if we confider that the afinities dififer according to the temperatures; that it is only at a very high temperature that water exercifes any fenfible action up. on caoutchous. I can affirm, that at 120° of Rexumur's thermometer (302° of Fabrenheit) this afinity is not fuch as that the water can give a liquid form to caoutchouc ; and it does not appear that we have any thing to fear in pratice from a combination between thefe two bodies, which, though it really is a true folution, does not take place in any fenfible degree but at a high temperature. It is thenefore at prefent cafy to make of caoutchouc whatever infruments it may be advantagecus to have of a flexible, fupple, and elaflic fubtance, which is impermeable to water at the temperature of our atmofpleere, and refints the axtion of acids as well as that of moft other folvents. As to the churability of thefe inffurnents, fcw fubfances promife more than this, becaufe it may be foldered afreth in a damaged part. Any woven fublance may be covered with it ; it is only requited that the fubfance thould be of a nature not to be atted upon during the preparation, either by ether or by boiling water; for thefe two agents are thofe which appear to me to mer:t the preference. Artilts will freguently find an advantage in employing ether, as it requires lefts time; fo that a perfon may make, in a fungle day, any tube he may lave occation for. The c.:pence of cther is very little, fince it is needful only to diffore the caotethouc to adhere; and being brought into that flate, the caoutchouc may be kept in a velfel perfealy well clofed. It would alfin diminifh the expence of the ether if, intead of wathing it with a large cuasitity of water, there thould be added to it only as much water as it can take up."
C.\P and Butron, are two fmall inlands, or rather rocke, lying in longitude $105^{\circ} 4^{8^{\prime}} 30^{\prime \prime}$ ealt: and in la. titude, the former $5^{\circ} 5^{\prime \prime} 30^{\prime \prime}$; the litter $5^{\circ} 49^{\prime}$ fouth. They were vifited by fone of the perfons attending 1.ord Macartney on his embalfy to China; and are thus defrribed by Sir George Stauston.
" At a biittle diftance they might be mifaken for the remains of old cantes, mouldering into he.lps of ruins, wilh tall trees aiready growing upon the tops; but at a nearer view, they betaycd evident maks of a velcanic origin. Explofions from fubterranesus fires, produce, for the mait part, hills of a segular th ipe, and terminating in truacated cones; bat when from a fub-
aqueous volcano eruptions are thrown up avove the furface of the fea, the materials, falling back into the water, are more irregularly difperifd, and generally leave the fides of the new creation naked and mifhapan, as in the infance of Amsterdam, and of thofe fmaller fpots called, from fome refemblance in fhape, the Cap and Button.
"In the Cap were fourd two caverns, running horizontally into the fide of the 1ock; and in thefe were a number of thofe birds nefts fo much prized by the Chinefe epicures. They feemed to be compofecl of fine fi!a. ments cemented together by a tranfparent vifoous matter, not unlike what is left by the foam of the fea upon fores alternatcly covered by the tide, or thofe gelittinous animal fubltances found floating on erery coaf. The nefts adhere to each other, and to the fides of th.e cavern, monly in rows, without any break or intersuption. The birds that build thefe nefts are fmall grey fwallows, with bellies of a dirty white. They wero flying about in confiderable numbers: but they were in fnall, and their flight fo guick, that they efcapes the thot fred at them. The fame nefls are faid allo to be found in deep caverns, at the foot of the higher? mourtains in the middje of Java, and at a diftance from the fea, from which the birds, it is thought, derive no mateials, either for their food or the condruction of their neils; as it does not appear probable they frould fly, in fearch of either, over the intermediate mountains, which are very high, or agaunt the boifterous winds prevailing thereabouts. They feed on infects, which they find hovering over Alagnated pools between the mountains, and for catching which their wide opening beaks are particularly adapted. They prepare their nefl's from the beft remuants of their iood. Their greatef enemy is the kite, who often intercepts them in their paffage to and from the caverns, which are generally furrounded with rocks of grey limefione or white marble. The nefts are placed in hotizontal rows at different depths, from 50 to 500 feet. The colour and value of the nefls depend on the quantily and quatity of the infects caught, and perhaps alfo on the fituation where they are built. Their value is chizay determined by the uniform finenefs and delicacy of their texture; thofe that are white and tranfparent being moft efteemed, and fetching often in China their weight in filver. Thefe nefts are a confiderabie object of traffic among the Javanefe, and many are employed in it from their infancy. The birds having fent near two months in preparing their mefs, lay each two egge, which are hatched in about fifteen days. When the young birds become fedged, it is thought time to feize upon their nent, which is done regularly thrice a year, and is ef. feated by means of ladders of bamboo and reeds, by which the people defcend into the cavern ; but when it is very dewp, ropeladders are preferred. This operation is attonded with much dingcr; and feveral break their necks in the attempt. The inhebitants of the mountains generally employed in it begin always by facrificing a buffin; which cuftom is conltantly obferved by the Javanefe on the eve of every extraordinary er.terprife. They alio pronounce fome prayers, anoint themfelves with fweet-fcented oil, and fmoke the entrance of the cavern with gum-berjamin. Near fome of thofe caverns a tutclar grodel's is worihipped, whote pricit buras incente, and hays his proteating hands on

CA P

 every perron preparing to defend into the cavern. A flambeau is carefully prepared at the fame time, with a gum which exudes from a tree growing in the vicinity, and is not eafly extinguithed br fixed air or fubterraneous vapours. The fallow, which builds thole nets, is described as not having its tail feathers marked with white foots, which is a charafter attributed to it bs Linnaeus; and it is polible that there are two species or varieties of the firallow, whole nets are alike valuable." See B:rds-Neffs, Encycl.Cape of Good Hope. See Good Hope, both in Eng: \% ! and this Suppleniert.
CAPE ST. ANDRETVS, on the coat of Paraguay, or La Plata, S. America. S. lat. 38.50 . W. long. 59. $\AA^{6 .}$ - Morse.

Cape St. Antonio, or Antonio, is the point of land on the fouthern ide of La Plata River in S. America, which, with Cape St Mary on the northward, forms the mouth of that river. S. lat. 36.32 . W. long. $56.3+\cdots i b$.

Cape st. Augustine, on the coat of Brazil, S. America, lies fouthward of Pernambuco. S. lat. 10. 15. IW. long. 35. 13- es.

Cape biow-me-down, which is the fouthern fade of the entrance from the bay of Fundy into the Bafin of Minus, is the eafternmoft termination of a range of mountains, extending about $\delta \circ$ or 90 miles to the gut of Annapolis; bounded N. by the flores of the bay of Fundy, and S. br the flores of Annapolis river. - \because

Cape Cod, anciently called Mallebarre, by the French, is the S. eafward point of the bay of Mafiachufets, oppofite Cape Ann. N. lat. fr. q. W. long. from Greenwich, 70.14 - -ib.

Cape Elizabeth, a headland and towafhip in Cumberland co. diftriat of Maine. The cape lies in N. lat. 43.33 . E. by S. from the centre of the town 9 miles; about 20 S. wefterly of Cape Small Point, and 12 N. E. from the mouth of Saco River. The town has Portland on the N. E. and Scarborough S. W. and contains $155 j$ inhabitants. It was incorporated in $\mathrm{i}-6 ;$, and lies $1=6$ miles N . E. of Boffo- - 33 .
Cape Fear, is the fouthem point of Smith's Inland which forms the mouth of Cape Fear River into two channels, on the coat of N. Carolina; S. T. of Cape Loo's-Out, and remarkable for a dangerous foal call. cd the Frying Pan, from its form. Near this cape is Iohnion's Fort, in Brunfick co. and dire of Wild. mington. N. lat. 33 - 32. W. long. -8. $=5$.

Cape Fan Riser more proper! Clarendon, afuods the belt navigation in N. Carolina. It opens to the Atlantic ocean by two channels. The S. weftera and largeft channel between the S. W. end of Smith's Inland at Bald Head, where the ligh:houle funds, and the E. end of Oases Inland, S. W. from Fort Johnton. The new inlet is between the fea-coaft and the N. E. end of Smith's thane. It will admit refitis drawing 10 or 11 feet, and is about 3 miles wide at its entrance, having is feet rater at full tides over the bar. It continues its breadth to the flats, and is avigable for large veffels 21 miles from its month, and If from Wilmington; to which town veffils drawing so or It feet can reach without any rink. As you afcerd this riser you leave Bruntivick on the left, and Wilroingion on the right. A little above Wilmington,
the river divides into N. E. and N. W. branches. The former is broader than the latter, but is neither fo deep nor fo long. The N. W. branch rites within a few miles of the Virginia line, and is formed by the jung. tron of Haw and Deep risers. Its geneal course is S. eafterls. Sea veifels can go 25 miles above Wilmington, and large boats 90 miles, to Fayetteville. The N. E. branch joins the N. W. branch a little above Wilmington, and is navigable by fear reffels $=0$ miles above that town, and by large boats to South Wanington, to miles further, and by rafts to Sareato, which is nearly 70 miles. The whole length of Cape Fear river is about $=00$ miles. $-i b$.

Cape May, is the S. wetternmoft point of the Rate of New-Jerfer, and of the county to which is gives name. N. lat. 39. W. long. 75.2 . It lies 20 miles N. E. from Cape Henlopen, which forms the S. W. point of the mouth of Delaware bay, as Cape May does the N. E. -ib.

Cape Mar Co. spreads northward, around the cape of its name, is a healths, fancy trad t of country, of fufficient fertility to give fupport to 25,1 indultious and peaceable inhabitants. The county is divided into Upper, Middle, and Lower precinats.-ib.
CAPITAL of a Bastion, is an imaginary line dividing any work into two equal and fimilar parts; or a line drawn from the angle of the polygon to the point of the baltion, or from the point of the baftion to the middle of the greige.
CAPRA, or the SHE-GOAT, a name given to the far Capella, on the left theulder of Auriga, and formetimes to the contellation Capricorn. Some again reprefent Capra as a confellation in the northers hemifphere, confining of three flare, comprifed between the 45 th and $55^{\text {th }}$ degree of latitude. - The poets fable her to be Amalthes's goat, which fackled Jupiter in his infancy.
CAPUT Draconis, of Dragon's Heads, a name given by forme to a fired far of the birl magnitude, in the head of the conftellation Draco.
CAR.ACCAS, a province of Terra Firms, S. Amefica, lying on the ionthern coat of the Caribbean Sea. This coat is bordered in its greaten length by a chain of mountains, running E. and W. and divided into many fruitful rallies, whole direction and opening are towards the N. It has maritime fortified towns, Puerto Cabelo, and La Guard. The Dutch carry thither to the Spaniards all forts of European good's, efpeciallit linen, making vat returns of filter and covoa. The cocoa tree grows here in abundance. There are from $; 00102000$ trees in a walk, of plantation. There suse are palled for money, and are ufed as foch in the bays ci Campeachs. N. lat. 10. 12. W. log. 6\%. Iに. Morse.
CARANGAS, a province and jurisdiction pander the bifhop of Plata, and $; 0$ leagues Tr. of that city, in Peru, gers batten in corn and grain, sic. but abound. ing in cattle. Here are a great number cf tiller mines confantly worked, among which that called Tureo, and by the miners Nechacado, is retry remarkable. The files of the filler forming an admirable intermixtare with the hone; foch mines are generally the richeff. There are other mattes of filler is this province equally remarkable, being found in the barren fancy defarts, where they End, by digging owl, detached
lumps

C A R [201] C A R

Carbon lumps of filver, unmixed with any ore or fone. Thefe lumps are called papus, becaufe taken out of the ground as that root is, and have the appearance of melted filver; which proves that they are thus formed by fufion. Some of the fe papas have weighed from 50° to 150 marks, being a Paris foot in length. - ib.

CARBON. See Cmemistry in this Supplement, Part I. Chap. II. Sect. iii.

CARLISLE, the chief town of Cumberland co. Pennfylvania, on the poft road from Philadelphia to Pitrfurgh; is 125 miles W. by N. from the former, and 178 E . from the latter, and 18 S . W. from Harrifourgh. Its fituation is pleafant and healths, on a plain near the fouthern bank of Conedogwinet creek, a water of the Sufquehanna. The town contains about 400 houfes, chiefly of Itone and brick, and about 1,500 imhabitants. The freets interfect each other at right angles, and the public buildings are a college, courthoufe and gaol, and 4 edifices for public worthip. Of thefe the l'reboyterians, Germans, Epifcopalians, and Roman Catholics, have each one. Dickinfon College, named after the celebrated John Dickinfon, Efq. auchor of feveral valuable tracts, has a principal, 3 profeffors, a philofophical apparatus, and a library contain-
ing near 3000 volumes. Its revenue arifes from $\mathcal{L} .4000$ in funded certificates, and 10,000 acres of land. In 1787 there were 80 ftudents, and its reputation is daily increaling. About 40 years ago this fpot was inha. bited by Indians, and wild bealts.-MIorse.

Carlisle, a bay on the W. fide of the ifand of Barbadoes, in the Weft-Indies, fituated between James and Charles Forts, on which ftands Bridgetown, the capital of the ifland, in N. lat. 13.9. W. long. 60.3. -ib.

CARMEL, a townhip in Dutchefs co. New.Yerk. By the fate cenfus of 1796,237 of its inhabitants were electors.-ib.

CAROLINE Co. in Virginia, is on the S. fide of Rappahannock River, which leparates it from King George's co. It is about 40 miles fquare, and contains $17,+89$ inhabitants, including 10,292 flaves.-ib.

Caroline Co. on the eaftern fhore in Miryland, borders on Delaware ftate to the E. and contains 9506 inhabitants, including 2057 llaves. Its chief town Danton - $i b$.

CARP. See Cyprinus, both in the Encycl. and in this Supp'ement.

C A R P E N TR Y,

Definition.HE art of framing timber for the purpofes of architecture, machinery, and, in general, for all confiderable ftructures.

It is not intended in this article to give a full account of carpentry as a mechanical art, or to defcribe the various rays of executing its different works, fuited to the variety of materials employed, the procefles which mult be followed for fafhioning and framing them for our purpofes, and the tools which mult be ufed, and the manner in which they muft be handled: This would be an occupation for volumes; and though of great importance, mult be entirely omitted here. Our only aim at prefent will be to deduce, from the principles and laws of mechanics, and the knowledge which experience and judicious inferences from it have given us concerning the ftrength of tiniber, in relation to the Atrain laid on it, fuch maxims of conftruction as will unite economy with ftrength and efficacy.

This object is to be attained by a knowledge, in, of the Atrength of our materials, and of the abfolute Atrain that is to be laid on them; 2 dly , of the modifications of this ftrain, by the place and direction in which it is exerted, and the changes that can bemade by a proper difpofition of the parts of our fructure; and, 3 bily, having difpofed evers piece in fuch a manner as to derive the utmof advantage from its relative frength, we mult know how to form the joinis and other connections in fuch a manner as to fecure the adrantages derived from this difpofition.
This is, evidently, a branch of mechanical fcience, which milkes carpentiy a liberal art, confitutes part of the learning of the ExGiverR, and diltinguifhes him from the workman. Its importance in all times and fates of civil fociety is manifett and great. In the prefent condition of thefe lingdoms, raffed, by the aftive
ingenuity and energy of our countrymen, to a pitch of profperity and infuence unequalled in the hiftory of the world, a condition which conffits chiefly in the fuperiority of nur mannfactures, attained by prodigious raultiplication of engines of every defcription, and for every fpecies of labour, the Science (fo to term it) of carpentry is of immenfe confequence. We regret therefore exceedingly, that none of our celebrated artifts have done honour to themfelves and their country, by digefling into a body of confecutive doctrires the refults of their great experience, fo as to form a fyीterm from which their pupils might derive the firt principles of their education. The many volumes called Complete Instruciors, Manuals, Jewils, \&ec. take a much humbler fight, and content hemfelves with inAructing the mere workman, or fometines give the maRer builder a few approved forms of roots and other framings, with the rules for drawing them on paper; and from thence forming the working draughts which muft guide the faw and the chiffel of the workman. Hardly any of them offer any thing that can be called a principle, applicable to many particular cares, with the rules for this adaptation. We are indebted for the Principally greateft part of our knowledge of this fubject to the indebred to labours of literary men, chiefly foreigners, who have foreigners publifhed in the memoirs of the learned academies dif for a knowlertations on different parts of what may be termed the fubject. fcience of carpentry. It is fingular, that the members of the Royal Society of London, and even of that ellabiith. ed and fupported by the patriotifm of thefe days for the encourasement of the arts, have contributed to little to the public inftruction in this refpect. We oberve of late forme beginnings of this kind, fuch as the laft part of Nicholfon's Carpenters and Joineks Assistant, publifled of J. Taylor, Holbuin, 1797. And

Carlifle

\qquad Сагр.

it is with pleafure that we can fay, that we were told by the editor, that this work was prompted in a great meafure by what has been delivered in the Encyclopedia in the articles Roof and Strengith of Materials. It abounds more in important and new obfervations than any bock of the hind that we are acquainted with. We ag in call on dich as have given a ícientific attention to this fuljeet, and pray that they would render a meritorious fervice to their country by imparting the refult of their refearches. The very limited nature of this work does not allow us to treat the fubject in detail; and we muit confine our obfervations to the fundamental and leading propolitions.
Theory, founded on on what. 15 , a knowled ge of the Itrains to whioh framings of timber a:e expofed, and a knowledge of their relative Atrength.

We fhall therefore attempt to biling into one point of view the propolitions of mechanical feience that are more immediately applicable to the art of carpentry, and are to be found in various articles of our work, particulariy Rnof and Strength of Naterials. From the第 propofitions we hope to deduce fuch principles as Thall e:able an attentive reader to comprehend diflinatly what is to ba amed at in framing timber, and how to attain this object with certainty: and we thall illultrate and confirm our principles by examples of pieces of carpentry which are acknowledged to be excellent in their kind.

Compofition and refolution of forces

The molt important prepolition of general mechanics to the carpenter is that which exhibits the compofition and refolution of forces; and we beg our prastical readers to endeavoar to form very ditlingt conceptions of it, and to male it very familiar to their mind. When aseommadated to their chizf purpofes, it may be thus exprelied:
Ilate vill. it If a boly, or any patt of a boly, be at once pref. fed in the twa directicns AD, AC (fig. I.), and if the intenfley or firce of thole prellines be in the proportion of thefe wo lines, the body is affetted in the fage manizer as if it we:e preted by a lingle force acting in the direction AD , which is the diagonal of the paralelogram ABIDC formed by the two lines, and Whofe intenfity has the fame proportion to the intenfity of each of the other two that $A D$ has to $A B$ or $A C$.

Such of our readers as hive foulird the laws of mo. tinn, krow that this is fully demnatrated. We refer tiena to the article Mechanics, $\mathrm{Ia}^{\circ} 5$, Ese. where it is thented at inme lergth. Such as wifh for a very accurate view of this propa fition, will do well to read the lementrati n given ty D. Bernoull, in the firl volume of the Coimment. Pitropol, and the improvement of This demmentration by D'Alembert in his Opufcles, and in the Comirent. Taurinerf. The practitioner in carpentry will get more ufetul confidence in the doAtrine, if he will thut his hook, and verify the theoretical demonftrations by aciual experiments. They are remarkably eafy and convincing. Therefore it is our reque!t that the artift, who is not fo habitually acquainted with the fulject, do not proceed further till he h.as made it quite familiar to his theughts. Nothing is fo conducive to this as the actual experiment ; and lince this onIy requires the trifing expence nitwo fmall palle;"s and a few vards of whipent, we lenpe that none of our
pratical readers will omit it: They will thate us for this injunction.
2. Let the threads $\mathrm{Ad}, \mathrm{AFb}$, and AEc (fig. 2), have the weights d, b, and c, appended to them, and let two of the threads be laid over the pulleys F and E. By this apparatus the knot A will be drawn in the directions $A B, A C$, and A. If the fum of the weights b and c be greater than the fingle weight d, the affemblage will of itfe'f fettle in a certain determired form; if you pull the knot A out of its place, it will always return to it again, and will rett in no other pofition. For example, if the three weights are equal, the threads will always make equal angles, of 120 degrces each, round the knot. If ore of the weighas be three pounde, another four, and the third five, the angle oppofite to the thread Aretched by five pounds will always be fquare, \&c. When the knot A is thus in equilibric, we mult infer, that the attion of the weight d, in the direction A d, is in direct oppofition to the combined action of b, in the direation $A B$, and of c, in the direation AC. Therefore, if we produce $d A$ to any point D, and take AD to reprefent the magnitude of the force, or preffure exertel by the weight d, the prefiures ex. erted on A by the weights b and c, in the direations $A B, A C$, are in fact equivalent to a preffure acting in the direction AD, whofe intenfity we have reprefented by AD. If we now meafure (fíhy a fale on AF and $A E$ the lines $A B$ and $A C$, having the fame proportions to A.l) that the weights b and c have to the weight α, and if we draw $D \mathrm{D}$ and DC , we fhall find $D C$ to be equal and parallel to $A B$, and $D E$ equal and parallel to AC ; fo that AD) is the diagonal of a para!. lelogran $A B D C$. We fall find this always to be the cafe, whatever are the weights made uie of; only we mult take care that the weight which we caufe to att - without the intervention of a pulley be lefs than the fum of the other two: if any one of the weights exceeds the fum of the other two, it will prevail, and drag them along with it.

Now fince we know thet the weight d would juft balance an eçual weight g pu:ling direally upwards hy the intervention of the pul'ey G; and fince we fee that it juft balances the weights b and c acting in the directinns $A B, A C$, we mult infer, that the knot A is affected in the fame manner by thofe two weighte, or by the fingle weight g; and therefore, that two preflues, aling in the directions, and wuith the intcnflies, AB, AC, are cquivalent to a fingle frefive baving the direation and probortion of AD. La like manner, the prefures $A \mathrm{~B}$, $A \mathrm{~K}$, are equivalent in AH , which is equal and oppofite to $A C$. Alfo $A K$ and $A C$ are equivalent to AI. which is equal and oppofite to $A B$.

We thall confider this comalination of preffires a lit- Confiderect tle more particulariy.

Suppofe an upright beam DA (fig. 3.) puthed in culaty. the direction of its length by a lad B , and abuting: on the ends of two beams, $A C, A D$, which are firmly $t c$ finted at their extreme points C and D , whicir relt on two blocks, but are nowile joined to them: there two beams can refill no way but in the direation; C.A, DA; ard therefore the prefines which they funtain from the beam $B A$ are in the direstions $A C, A D$. We with to know how mulh each finkains? Pinduce DA to F, taking AE from a fale of equal pats, to reprefent the number of tons or pounds by which Bid is prelest.

Fig. 1.

Fig. 2

Draw EF and EG parallel to AD and AC; then AF, meafured on the farne feale, will give us the number of pounds by which AC is Arainch or ciuhth, and AG will give the Atain on $A D$.

It deferves paticular remark here, that the length of AC or AD has no influence on the Atrain, ariting from the thruft of BA, while the direations remain the fame. The effefts, howcver, of this ftrain are modified by the lengtis of the piece on which it is exerted. This frain compreffes the beam, and will therefore comItefs a beam of double length twice as much. This mas change the form of the alfemblaye. If AC, forexample, be very much frorter than AD, it will be much lefs compreffed: The line CA will turn about the centre C, while DA will hardly change its fofition; and the angle CAD will grow more open, the point A fink. ing down. The artif will find it of great confequence to pay a very minute attonsion to this circumance, and to be able to fee clearly the change of flape which neceffarily refults from thefe mutual flrains. He will fee in this the caufe of failure in many very great works. By thus changing thape, Atrains are often produced in places where there were none before, and irequently of the very wort kind, tending to break the beams acrofo.

The dotted lines of this figure thew another pufition of the beam AD^{\prime}. This makes a prodigious change, not only in the frain on AD^{\prime}, but alfo in that on AC. Hoth of then are much increafed; $A G$ is almoft donbled, and AF is four times greater than before. This addition was made to the figure, to fhew what enormons Itrains may be produced by a very moderate force AE, when it is exerted on a very cibtufe angle.

The 4 th and 5 th figures will afit the moft uiinftuet. cd reader in conceining how the very fame frams AF, AG, are laid on thefe beams, by a weight fimply harging from a billet refling on A , preffing hard on AD , and alfo leaning a little on AC ; or by an upright piece $A E$, joggled on the two beams $A C, A D$, and performing the office of am ordinary king-poft. The reader will thus learn tu call off bis attention from the means Wy which the ftrains are produced, and learn to confider then abifrathedfy, merely as ftrains, in whatever fitua. tion le finds them, and from whatever caufe they arife.

We prefume that every reader will rerceive, that the proportions of thefe tlrains will be precifly the fame if every thing be inverted, and each beam be drawn or pulled in the oppofite dirention. Ia the fame way that we have fubfttuted a rope and weight in fig. f. or a king-polt in fig. 5 . for the loaded beam B.A if fig. 3, we might have fublituted the framing of fig. 6 . which is a very ufual prattice. In this forming, the batten DA is itretched by a force AG, and the piece AC is comprefied by a furce AF. It is evident, that we may employ a rope, or an iron rod hooked on at D, in place of the batten D.A, and the frains will Le the fane as before.

This feemingly fimple rater is fill full of inftruction; and we licpe that the weillinformed reader aill parcon us, though we dwell a little longer on it for the fake of the young artif.

By changing the form of this filming, as in fig. 7 . we produce the funa frains as in the dipofition reprefented by the dotted lines in fig. 3 . The Arains on woth the batiens AD, AC, are now greatly increafed.

The fame confequences refult from an improper clange of the pofition of AC. If it is placed as in fig. 8. the ftrains on both are varly increafed. In fhent, the rule is general; that the more ofen we inake the angle agdinh which the puth is exerted, the greater are the frains which are brought on the ftruts or ties which form the fides of the angis.

The reader maly not raadily conceive the piece $\Lambda \mathrm{C}$ of fig. S. as fultaining a compreflion; for the weight B appears to lang from $A C$ as much as from AD. But his doubrs will be emover by confidening whether he could employ a rape in place of AC. He cannot: But Al) may be exchanged fur a rope. AC is there. fore a frrut, and not a tie.

In fig. 9. AD is again a Rrut, butting on the blozk D, and $A C$ is a tie: and the batten $A_{2} C$ may be replaced by a rope. Whiie AD is componfed by the force $A G, A C$ is ftretched $L y$ the force $A F$.

If we give $A C$ the pofition reprefented by the dotted lines, the comprefion of $A D$, now $A G^{\prime}$, and the force fretching $A C^{\prime}$ is now $A I^{\prime}$; both much greater than they were before. This difpofition is analogous to fig. 8. and to the dotted lines in fig. 3. Nor will the yomig antift have any doubts of $A_{2} \mathrm{C}^{\prime}$ being on the feretch, if he confider whether AD can be replaced by a rope. It cannot, but AC^{\prime} may; and it is therefors not compreîed, but Atretched.
In fig. 10. all the three pieces, $A C, A D$, and $A B$, are lies, on the fretch. This is the complete invelfion of fig. 3.; and the dotted pofition of AC^{\prime} induces the fame changes in the forces $A F^{\prime}, A G^{\prime}$, as in fig. 3 .

Thus have we gone over all the varieties which can huppen in the bearings of three pieces on one point. All calculations about the flrength of carpentry are reduced to this cafe: for when more ties or braces meet in a point (a thing that rarely happens), we :educe them to three, by fubtituting for any two the force which refults from their combination, and then conloining this with another ; and foon.

The young artif muit be particularly careful not to mitake the kind of ftrain that is exerted on any piece of the framing, and fuppofe a piece to be a brace which is really a tie. It is very eafy to avoid all millakes in this matter by the following rule, which has no exception.

Take notice of the direction in which the piece acts Rule for from which the frain proceeds. Draw al ne in that ditinguifhdirction from the point on which the ftrain is exested; ing the caland let its length (meafired cas fome feale of equal fis of comparts) exprefs the magnitude of this actoon in pounds, preftionand hundreds, or tons. From its remole extremity draw lines parallel to the pieces on which the ftran is excrted. The line paralle! to one piece will neceilarily cat the other, or its direction produced: If it cut the piece itfelf, that piece is comprefed by the Atrain, and it is performing the cpise of a llrut or brace: if it cut its direction produced, the fiece is fretched, and it is a tie. In fort, the frains on the pizces $A C, \triangle D$, are to be eflimated in the dircation of the pairts IF and O from the ftrained point A. Thus, in f.5. 3. the upright piece BA, loaded with the weight B, prefles the point A in the direation $A E$: fo does the rope $A B$ in the uther figure, or the saten AB in fir. $\overline{3}$.

In general, if the frairirg piese is within the angle

C A R P E N T R Y.

formed by the pieces which are frained, the Itrains which they fuftain are of the oppofite kind to that which it exerts. If it te pulbing, lhey are drawing; but if it be within the angle formed by their directions produced, the frains which they fuftain are of the fame kind. All the three are either drawing or prefling. It the fraining piece lie within the angle formed by one p:ece and the produced direction of the other, its own ilrain, whether compreffion or extenfion, is of the fame kind will that of the molt remote of the other two, and oppofite to that of the nearelt. Thus, in fig. 9 . where $A B$ is drawing, the remote piece $A C$ is alfo drawing, while AD is puthing or refifting comprefion.

In all that has been faid on this fubject, we have not froken of any joints. In the calculations with which we are occupied at prefent, the refflance of joints has no flare; and we mult not fuppofe that they exert any force which tends to prevent the angles from changing. The joints are fuppofed perfectly flexible, or to be like compafs joints; the pin of which only keeps the pieces together when one or more of the pieces draws or pulls. The carpenter mult always fuppofe them all compafs joints when he calculates the thrufts and draughts of the different pieces of his frames. The ftrains on joints, and their power to produce or balance them, are of a diferent kind, and require a very different examination. prefio ofeelng that the angles which the pieces make with the magni- and the propertion of the excited Arains, it is proper to tude of the find out fome way of readily and compendioully conftrain.

EAD is alfo very fmall; and this is our multiplier. In fuch a cafe, the quotient cannot exceed unity.

But it is unneceflary to confider the calculation by the tables of fines more particularly. The angles are feldom known any otherwife but by drawing the figure of the frame of carpentry. In this cafe, we can always chain the meatores of the Arains from the fame fcale, with equal accuracy, by drawing the parallelogram AFCG.
Hitherto we have confidered the flrains excited at A only as they affect the pieces on which they are ex. payared to erted. But the pieces, in order to foftain, or be fubject the points to, any Atrain, mult be fupported at their ends C and of fupport. 1) and we may confider them as mere intermediums, by which thefe flrains are made to act on thofe points of fupport: Therefore $A F$ and $A G$ are alfo meafures of the forces which prefs or pull at C and D . Thus we learn the fupports which mult be found for thefe points. Thefe may be infinitely various. We flall attend only to fuch as fomehow depend on the framing itfelf.
Such a fructure as fig. ir. very frequently occurs, Artion of a where a beam BA is frongly preffed to the end of an- fraining other heam AD, which is prevented from yielding, beant. both becaufe it lies on another beam HD, and becaule its end D is hindered from fliding backwards. It is indifferent from what this preffure arifes: we have reprefented it as owing to a weight hung on at B, while B is withheld from yielding by a rod or rope hooked to the wall. The beanı AD may be fuppofed at full liberty to exert all its preffure on D, as if it were fupported on rollers lodged in the beam HD ; but the loaded beam BA preffes both on the beam AD and on HD. We wifh only to know what Atrain is borne by AD?

All bodies act on each other in the diredion perpendicular to their touching furfaces; therefore the fupport given by HD is in a direction perpendicnlar to it. We may therefore fupply its place at A by a beann AC, perpendicular to HD, and firmly fupported at C. In this cafe, therefore, we may take AE , as before, to rcpreient the preffure exerted by the loaded beann, and draw EG perpendicular to AD, and IF parallel to it, meeting the perpendicular $A C$ in F. Then $A C$ is the ftrain compteffing $A D$, and $A F$ is the prefure on the beam HD.

It may be thought, that fince we affume as a prin. ciple that the mutual preflures of folid bodies are exerted perpendicular to their touching furfaces, this balance of preflures, in framings of timbers, clepends on the directions of their butting joints: but it dnes not, as will readily appear by conlidering the prefent cafe. Let the joint or abutment of the two pieces $B A, A D$ be mitred, in the ufual manner, in the direction f A $f t$. Therefore, if A_{e} be drawn perpendicular to $A f$, it will be the direction of the actual preflure exerted by the loaded beam BA on the beam AD. But the reaction of AD, in the oppofite direction $A t$, will not balance the preffure of $B A$; becaufe it is not in the direction prccifely oppofite. BA will therefore flide along the joint, and prefs on the beam HD. AE reprefents the load on the mitre joint A. Draw Ee perpendicular to $\mathrm{A} e$, and $\mathrm{E} f$ parallel to it. The preffure $A E$ will be balanced by the reactions $e A$ and $f A$: or, mal fractions of the radius, which is confidered as unity. Thus, $\operatorname{Sin} .30^{\circ}$ is the fame thing with 0,5 , or $\frac{1}{2}$; and fo of others. Therefore, to have the ftrain on AC, arifing from any load AE a aing in the direction AE , multiply AE by the fine of EAD, and divide the product by the fine of CAD.
This rule thews how great the ftrains mult be when the angle CAD becomes very open, approaching to 180 degrees. But when the angle CAD becomes very fmall, its fine (which is our divifor) is alfo very fmall; and we thould expest a very great quotient in this cafe allo. But we mult obferve, that in this cafe the fine of

C A R P E N T R Y.

Origin of

 the itrain on a ticbeam.the preflure AE produces the preffures $\mathrm{A} c$ and $\mathrm{A} f$; of which Af mult be refitted by the beam HD, and Ac by the beam AD. The preffure A f not being perpendicular to HD, cannot be fully refifled by it; becaufe (by our affumed principle) it realts only in a direction perpendicular to its furface. Therefore draw $f p, f i$ parallel to HD, and perpendicular to it. The preflure $\mathrm{A} f$ will be refifted by HD with the force $p \mathrm{~A}$; but there is required another force $i \mathrm{~A}$, to prevent the beam BA from tlipping outwards. This mult be furnilh. ed by the reaction of the beam DA.-In like manner, the other force $\mathrm{A} e$ cannot be fully refifted by the beam AD , or rather by the prop D , ating by the intervention of the beam; for the astion of that prop is exerted though the beam in the directicn DA. The beam AD, therefore, is preffed to the beam HD by the force $\mathrm{A} e$, as well as by $\mathrm{A} f$. To find what this preffure on HD is, draw $e \mathrm{~g}$ perpendiculan to HD , and ©o parallel to it, cutting EG in r. The forces $g A$ and $O A$ will refift, and balance A e.

Thus we fec, that the two forces A_{e} and $A f$, which are equivalent to AE , are equivalent alfo to $A p, A$ i, Ao, and $\mathrm{A} g$. But becaufe $\mathrm{A} f$ and $e \mathrm{E}$ are equal and parallel, and $\mathrm{E} r$ and $f i$ are alfo parallel, as alfo e r and $f P$, it is evident, that if is equal to $r \mathrm{E}$, or to $\circ \mathrm{F}$, and $i \mathrm{~A}$ is equal to $r e$, or to $\mathrm{G} g$. Therefore the four forces $\mathrm{A} g, \mathrm{~A} o, \mathrm{~A} p, \mathrm{~A} i$, are equal to AG and AF . Therefore $A G$ is the compreilion of the beam $A D$, or the force prefling it on D , and AF is the force preffing it on the beam HD. The proportion of thefe preffures, therefore, is not affected by the form of the jcint.
This remalk is important ; for many carpenters think the form and direction of the batting jount of great importance; and even the theorift, by not profecuting the general pinciple through all its confequences, may be led into ant error. The form of the joint is of no importance, in as far as it affects the Itrains in the direction of the beams; but it is often If great confequence, in refpect to its own firmnefs, and the effect it may lave in bruling the piece on which it acts, or being crippled by it.
The lame compreflion of $A B$, and the fame thrult on the point D by the intervention of $A D$, will obtain, in whatever way the original preffure on the end A is produced. Thus fuppofing that a clord is made fatt at A, and pulled in the direction $A E$, and with the fame force, the beam AD will be equally compreffed, and the prop D mult reat with the fame force.

But it often happens that the obliquity of the preffiue on $A D$, inltead of compreffing it, ilretches it; and we defire to know what tenfion it fultains. Of this we have a familiar example in a common roof. Let the two rafters AC, AD (fig. 12.), prefs on the tiebeam DC. We may fuppote the whole weight to prefs vertically on the ridge A, as if a weight B were hung on there. We may reprefent this weight by the portion $A b$ of the vertical or plumbline, intercepted between the ridge and the beam. Then drawing bf and $b g$ parallel to $A D$ and $A C, A g$ and $A f$ will reprefent the preflures on AC and AD . Produce AC till CH be equal to $A f$. The point C is forced out in this direction, and with a force reprefented by this line. As thin force is not perpendicularly acrofs the bean, it evidently firctches it; and this extending force mult be withfored by an equal force puling it in the oppofite Suppl. Vol. l.
direction. This mult arife from a fimilar oblique thrunt of the oppofite rafter on the other end D. We concern ourfelves only with this extenfion at prefent ; but we fee that the enhefion of the beam does nothing but fupply the balance to the extending forces. It mult Atll be fupported externally, that it may refifl, and, by refilting obliquely, be Atretched. The points C and D are fupported on the walls, which they prefs in the directions CK and DO, parallel to $\mathrm{A} b$. If we draw HK parallel to DC, and HI parallel to CK (that is, to A b), meeting DC produced in I, it follows from the compofition of forces, that the point C would be fupported by the two forces KC and IC. In like manner, making $\mathrm{DN}=\mathrm{Ag}$, and completing the parallelogram DMNO, the point ID would be fupported by the forces OD and MD. If we draw $g o$ and $f k$ parallel to DC, it is plain that they are equal to NO and CK , while Ao and A_{k} are equal to DO and CK, and $\mathrm{A} b$ is equal to the fiom of $D O$ and CK (becaufe it is equal to Aot Ak). The weight of the roof is equal to its vertical preflure on the walls.
Thus we fee, that while a preffure on A , in the direstion $\mathrm{A} b$, produces the flrains $\mathrm{A} f$ and $\mathrm{A} g$, on the pieces AC and AD , it alfo excites a ftrain CI or DM in the piece DC. And this completes the mechanifm of a fiame; for all derive their efficacy from the triangles of which they are compofed, as will appear more clearly as we proceed.

But there is more to be learned from this. The External confideration of the Atrains on the two pieces AD and action of a $A C$, by the action of a force at A, only thewed them frame. as the means of propagating the fame flrains in their own direction to the points of fupport. But, by adding the Itrains exerted in DC, we fee that the frame becomes an intermedium, by which exertions may be made on other bodies, in certain directions and proportions; fo that this frame may become part of a more complicated one, and, as it were, an element of its conAltution. It is worth while to afcertain the proportion of the preflures CK and DO, which are thus exerted on the walls. The fimilarity of triangles gives the following analogies:

$$
\mathrm{DO}: \mathrm{DM}=\mathrm{A} b: b \mathrm{D}
$$

Cl , or $\mathrm{DM}: \mathrm{CK}=\mathrm{C} b: \mathrm{A} b$
Therefire DO: $\mathrm{CK}=\mathrm{C} b: b \mathrm{D}$.
Or, the prefures on the points C and D , in the direction of the fraining force A b, are reciprocally proportional to the portions of DC intercepted by A b.

Alfo, fince $\mathrm{A} b$ is $=\mathrm{DO}+\mathrm{CK}$, we have
$\mathrm{A} b: \mathrm{CK}=\mathrm{C} b+b \mathrm{D}$ (or CD$): b \mathrm{D}$, and
$\mathrm{A} b: \mathrm{DO}=\mathrm{CD}: b \mathrm{C}$.
In general, any two of the three parallel forces $A b$, DO, CK, are to each other in the reciprocal proportion of the parts of CD , intercepted between their direations and the direction of the third.

And this explains a fill more important office of the frame ADC. If one of the points, fuch as D, be fupported, an external power acting at A, in the direction A b, and with an inte: fity which maty be meafured by A b, may be fet in equil, brio, with another acting at C, in the direction CL, oppofite to CK or A b, and with an intenfity reprefented by CK: for fince the preflure CH is partly withitond by the force IC, or the firmmels of the beam DC cupported at D, the force KC will complete the balance. When we do not attend to the

Ee
fupport
fupport at D, we conceive the force $A b$ to be balanced by KC, or KC to be balanced by A b. And, in like manner, we may negleet the fupport or force asting at A , and confider the force DO as balanced by CK .

Thus our frame becomes a lever, and we are able to trace the interior mechanical procedure which gives it its efficacy: it is by the intervention of the forces of cohelion, which conneet the points to which the external forces are applied with the flupported point or fulcrum, and with each other.

Thefe ftrains or prefures A b, DO, and CK, not being in the direations of the beams, may be called tranfverfe. We fee that by their means a frame of carpentry may be confidered as a fulid body : but the example which brought this to our view is too limited for explaining the efficacy which may be given to fuch conitruetions. We fhall theref, re give a general proporition, which will more diftinctly explain the procedure of nature, and enable us to trace the frains as they are propagated throngh all the parts of the moft complica. ted framing, fiñalls producing the exertion of its molt diffant points.

We prefume that the reader is now pretty well habituated to the conception of the ftrains as they are propagated along the lines joining the points of a frame, and we fhall therefore employ. a very limple figure.

Let the Itrong lines ACBD (fig. 13) reprefent a frame of carpentry. Suppofe that it is pulled at the point A^{-}by a force acting in the direction AE , but that it refts on a fixed point C, and that the other extreme point B is held back by a power'which refifts in the direction BF: It is required to determine the proportion of the ftrains excited in its different parts, the proportion of the external preffures at A and 1 , and t the preffure which is produced on the obftacle or fulcrum C
It is evident that each of the external furces at A and Btend one way, or to one fide of the frame, and that each would caufe it to turn round C if the other did not prevent it; and that if, notwithfanding their action, it is turned neither way, the forces in atatual exertion are in equilibrio by the intervention of the frame. It is no lefs evident that thefof forces concur in prefing. the frame on the prop C . Therefore, if the piece CD were away, and if the joints C and D be perfectly fexible, the pieces CA, CB would be turned round the prop C , and the pieces AD, DB would alfo turn with them, and the whole frame change its form. This flews, by the way, and we defire it to be carefully kept in mind, that the firmnefs or Atiffnefs, of framing depends entirely on the triangles bounded bybeams which are contained in it. An open quadrilateral may always change its fhape, the fides revolving round'the angles. A quadrilaterdl may have an infinity of forms, without any change of its fides, by merèly púfhing two oppofite angles towards each other, or drawing them alunder. But when the three fides of a triangle are determined, its fhape is alfo invariably deternined ; and if two angles be held faft, the third cannot be moved. It is thus that, ly inferting the bar CD, the figure becomes unchangeable; and any attempt to change it by applying a force to an angle A , immediately excites furces of attration or repultion between the particles of the ftuff which form its files. Thus it happens, in the prefent infance, that a change of hape is prevented
by the bar CD. The power at A preffes iss end againtt the prop; and in doing this it puts the bar AD on the Atretch, and alto the bar DB. Their places might therefore be fupplied by cords or metal wires. Hence it is evident that DC is compreffed, as is alfo AC : and, for the fame reafon, CB is alio in a fate of compreflion; for either A or B may be conidered as the point that is impelled or withbeld. Therefore DA and DB are flretched, and are refilting with attractive forces. DC and CB are compreffed, and are refifting with repulfive forces. DB is alfo acting with repullive forces, being compreffed in like,manner : and thus the fupport of the prop, combined with the firmnefs of DC, puts the frame $A D B C$ into the condition of the two frames in fig. 8. and fig.' 9. Therefore the external force at A is really in equilibrio with an attrasting force actiag in the diredion AD , and a repultive force acting in the direction AK. And fince all the connecting forces are mutual and equal, the point D is pulled or drawn in the direction DA. The condition of the point B is fimilar to that of A, and D is alio drawn in the diection DB. Thus the point D, being urged by the forces in the direation' DA and DB, preffes the beim DC on the prop, and the prop retits in the oppofice dire aion. Therefore the line $D C$ is the diagonat of the parallelogram, whofe fides have the proportion of the forces which conneat D with A and B . This is the principle on which the reft of cur inveltigation proceeds. We may take DC as the reprefentation and meafure of their joint effec. Therefore draw CH, CG, parallel to DA, DB. Draw HL, GO, parallel to CA, CB, cutting $A E, B F$ in L and O, and catting DA, DB in I and M. Complete the parallelograms ILKA, MONB. Then DG and AI are the equal and oppofite forces which conneat A and $\mathrm{D}:$ fur $\mathrm{GD}=\mathrm{CH}$, =AI. In like manner DH and BM are the forces which connet D and B .

The external force at A is in immediate, equilibrio with the combined forces, connering - A with 1 and with:C. AI is one of them: Therefore AI is the other, and AL is the compound force with which the external-force at A is in immediate equilibrium. This external force is therefore equal and oppofite to $A L$. In like manner, the cxtermal force at B is equal and oppofite to $B O$; and $A L$ is to $B O$ as the external force at A to the external force at B. The prop C refilts with forces equal to thofe which are propagated to it from the points D, A, and C . Therefore it tefifts with forces CH, CG, equal and oppofite to DG, DH; and it rcfifts the comprelions KA, NB, with equil and oppofite forces $\mathrm{C} k, \mathrm{C} n$.- Draw $-k /$, no parailel to AD, BD, and draw $\mathrm{C} / \mathrm{C}, \mathrm{C} \circ \mathrm{P}$: It is plain that $k \mathrm{CH} /$ is a parallelogram equal to KAlL, and that $\mathrm{C} /$ is equal to AI . In like manner C_{0} is equal to BO. Now the forces $\mathrm{C} k, \mathrm{CH}$, exerted by the prop, compofe the force $\mathrm{C} /$; and $\mathrm{C} n, \mathrm{CG}$ compofe the force C o. Thefe two forces Cl, Co are equal and parallel to AL and BO ; and therefore they are equal and oppofite to the external forces acting at A and B. But they arc (primitively) equal and oppofite to the preffures (or at lealt the compounds of the preifiures) exerted on the prop, by the forces propagated to C from A, D, and B . Therefore the prefiures exerted on the prop are the fame as if the external forces were applicd there in the fame direations as they are applied to A

C A R P E N T R Y.

ard B . Now if we make CV, CZ equal to $\mathrm{C} l$ and Co , blems of his art. He alfo learns, from this propoftion, and complete the parallelegram CVYZ; it is plain that the force YC is in equilibrio with $/ \mathrm{C}$ and $o \mathrm{C}$. Therefore the preffires at A, C, and B, are fuch as would balance if applied to one point.

Latly, in order to determine their proportions, draw CS and CR perpendicular to DA and DB. Alfo draw $\mathrm{A} d, \mathrm{~B} f$ perpendicular to CD and Cl^{2}; and draw $\mathrm{C} g$, C i perpendicular to AE, DF.

T'he triangles CPR and BP fare fimilar, having a common angle P , and a right angle at R and f :

In like manner the triangles COS and $\mathrm{AQ} d$ are fimilar. Alfo the triangles CHR , CGS are fimilar, by reafon of the equal angles at H and G , and the right angles at R and S. Hence we obtain the following analogies:

$$
\begin{aligned}
& \mathrm{C} 0: \mathrm{CP}=\mathrm{O} n: \mathrm{PB},=\mathrm{CG}: \mathrm{PB} \\
& \mathrm{CP}: \mathrm{CR}= \\
& \mathrm{CR}: \mathrm{CS}= \\
& \mathrm{CS}: \mathrm{CQ}= \\
& \mathrm{CD}: \mathrm{CH}=\mathrm{CB} \\
& \text { Therefore, by equality, }
\end{aligned}
$$

$$
\begin{array}{cc}
\mathrm{Co}: \mathrm{C} l= & \mathrm{A} d: f \mathrm{~B} \\
\text { or } \mathrm{BO}: \mathrm{AL}= & \mathrm{C} g: \mathrm{Ci} .
\end{array}
$$

That is, the external forces are reciprocally proportional to the perpendiculars drawn from the prop on the lines of their direction (A).

Extenfive

 confequences.This propofition (fufficiently general for our pur$\mathrm{p}(\mathrm{fe})$ is fertile in confequences, and furnithes many ufeful inftuctions to the artif. The ftrains LA, OB, CY, that are excited, occur in many, we may fay in all, framings of carpentry, whether for edifices or engines, and are the fources of their efficacy. It is alfo evident, that the doctrine of the tranfverfe ftrength of timber is contained in this propofition; for every piece of timber may be confidered as an affemblage of parts, connected by forces which act in the direction of the lines which join the Atrained points on the matter which lies between thofe points, and alfo act on the refl of the matter, exciting thofe lateral forces which produce the inflexibility of the whole. See Strength of Materials, Encycl.

Thus it appears that this propofition contains the principles which direct the artift to frame the mont powerful levers; to fecure uprights by fhores or braces, or by ties and ropes; to lecure feafoldings for the erestion of fpires, and many other mof delicate pro-
how to afcertain the flains that are produced, without his intention, by pieces which he intended for other offices, and which, by their tranfverfe ation, put his work in hazard. Ia fhort, this propofition is the key to the fcience of his art.

We would now counfel the artif, after he has made the tracing of the frains and thrufts through the various parts of a frame familiar to his mind, and even amufed himfelf with fome complicated fancy framings, to read over with care the articles Strangly of Matiriuls and Roof in the Encyclopedia. He will now conceive its doertines much more clearly than when he was confidering them as abftrast theories. The mutual action of the woody fibres will now be eafily comprehended, and his confidence in the refults will be greatly increafed.

There is a propofition ($\mathrm{n}^{0} 19$. in the article Roor) which has been called in queftion by feveral very intelligent perfons; and they fay that Belidor has demonftrated, in his Science des Ingenieurs, that a beam firmly fixed at brthends is not twice as Arong as when fimply lying on the props, and that its ftrength is increafed only in the proportion of 2 to 3 ; and they fupport this determination by a lift of experiments recited by Belidor, which agree precifíy with it. Belidor allo fays, that Pitor had the fame refult in his experiments. Thefe are reffectable authorities : but Belidor's reafoning is any thing but demonftration; and his experiments are defribed in fuch an imperfeet manner, that we cannot build much on them. It is not faid in what manner the battens were fecured at the ends, any farther than that it was by chevalets. If by this word is meant a trefsle, we cannot conceive how they were emplojed; but we fee it tometimes ufed for a wedge or key. If the battens were wedged in the holes, their refiftance to fracture may be made what we pleafe: they may be lonfe, and therefore refit little more than when fimply laid on the props. They may be (and probably were) wedged very fatt, and bruffed or crippled.

Our propofition mentioned dintinctly the fecurity given to the ends of the beams. They were mottifed into remote polts. Our precife meaning was, that they were fimply kept from riiling by thefe mortifes, but at full liberty to bend up between E and I, and between G and K. Our affertion was not made from theory E e2 alone
(A) The learned reader will perceive, that this analogy is precifely the fame with that of forces which are in equlibrio by the intervention of a lever. In fact, this whole frame of carpentry is nothing elfe than a built or framed lever in equilibrio. It is asting in the fame manner as a folid, which occupies the whole figure compreffed in the frame, or as a body of any fize and fhape whatever that will admit the three points of application A, C, and B . It is always in equilibrio in the eafe firt ftated; becaufe the preflure produced at B by a force applied to A is always fuch as balances it. The reader may alfo perceive, in this propolition, the analyfis or tracing of thofe internal mechanical forces which are indifpenfably requifite for the functions of a lever. The mechanicians have been extremely phazled to find a legitimate demonitration of the equilibrium of a lever ever fince the days of Archimedes. Mir Vince las the honour of frat demonfazing, moft ingeninully, the principle ar: fumed by Archimedes, bat without fufficient ground for his demonitration: but Mr Vinee's demonfration is only a putting the mind into that perplexed fate which makes it acknowledge the propofition, but without a clear perception of its truth. The dificuley has proceeded from the abotract notion of a lever, conceiving it as a mathematical line-inAc:ibls, withoni tofering how it is infexible-for the very fource of this indifpenfable quality furnithes the mechanical conreation between the semote preffires and the fulcrum; and this fupphies the demonftration (withont the lealt d:hicuity) of the defperate cafe of a fraight lever urged by parallel forces. Sec Rotation, n° 11. Encych.
alone (although we think the reafoning incontrovertible), but was agreeable to numerous experiments made in thofe precife circumfances. Had we mortifed the beams firmly into two very fout pofts, which could not be drawn nearer to each other by bending, the beam would have borne a much greater weight, as we have verified by experiment. We hope that the following mode of conceiving this cafe will remove all doubts.

Let LM be a long beam (fig. 14.) divided into fix equal parts, in the prints D) B, A, C, E. Let it be firmly fupported at L, B, C, M. Let it be cut thro' at A, and have compafs joints at B and C. Let $F B$, GC he two equal uprights, rening on B and C , but without any connection. Let AH be a fimilar and equal piece, to be nccafionally applied at the feam A. Nuw let a thread or wire AGE be extelided over the piece GC, and made faft at A, G, and E. Let the fame thing be done on the other fide of A. If a weight be now laid on at A, the wires AFD. AGE will be Arained, and may be broken. In the inflatit of fracture we may fuppofe their ftrains to be reprefented by A f and Ag . Complete the parallelogram, and $\mathrm{A} a$ is the magnitude of the weight. It is plain that nothing is concerned bere but the cohefion of the wires; for the beam is fawed through at A, and its parts are perfectly moveable round B and C .

Inflead of this procels apply the piece AH below A, and keep it there by fraining the fime wire BHC over it. Now lay on a weight. It mult prefs down the ends of BA and CA , and caufe the piece AHl to ftrain the wire BHC. In the inftant of fracture of the fame wire, its refiftances $\mathrm{H} b$ and $\mathrm{H} c$ mult be equal to $A f$ and A_{ρ}, and the weight $b \mathrm{H}$ which breaks them mult be equal to $\mathrm{A} a$.

Lally employ all the three pieces $\mathrm{FB}, \mathrm{AH}, \mathrm{GC}$, with the fame wire attached as before. There can be no doubt but that the weight which breaks all the four wires mult be $=a \mathrm{~A}+b \mathrm{H}$, or twice $\mathrm{A} a$.

The reader cannot but fee that the wires perform the very fame office with the fibres of an entire beam LM held faft in the four holes D, B, C, and E, of fome upright pofts.

In the experiments for verifying this, by breaking flender bars of fine deal, we get complete demonitration, by meafuring the curvatures produced in the parts of the beam thus held down, and comparing them with the curvature of a beam fimply laid on the props B and C: and there are many curious inferences to be made from thefe obfervations, but we have not room for them in this place. this cafe, that purlius are able to carry twice the lodd when notched into the rafters that they carry when mortifed into them, which is the moft ufual manner of framing them. So would the binding joirs of floors; but this would double the thicknefs of the flooring. But this method fhould be followed in every poffible cafe, fuch as breaft fummers, lintels over feveral pillars, àc. Thefe fhould never be cut off and mortifed into the fides of every upright; numberlefs cafes will occur which fhew the importance of the maxim.

We mult here remark, that the proportion of the fpases BC and CM, or BC and LB, has a very fenfible effect on the Atrength of the beam BC; but we have not yet fatisfied our minds as to the rationale of this
effect. It is undoubtedly connected with the ferpentine form of the curve of the beam before fracture. This fhould be attended to in the contruction of the fprings of catriages. Thefe are frequently fupported at a middle point (and it is an excellent pactice), and there is a certain proportion which will give the eafieft motion to the body of the carriage. We alfo think that it is crnnected with that deviation from the beft theory obfervable in Buffon's experiments on various lengths of the fame Icantling. The force of the beams diminifhed much more than in the inverfe proportion of their lengths.

We have feen that it depends entirely on the pofition of the pieces in refpect of their points of ultimate fup. port, and of the direction of the external force which produces the Arains, whether any particular piece is in a llate of extenfion or of comprefficn. The knowledge of this circumftance may greatly influence us in the choice of the confruction. In many cafes we may fubAltute fle der iron rods for maffive beams, when the piece is to aft the palt of a tie. But we mult not invert this diffofition; for when a fiece of timber acts as a flrut, and is in a flate of comprefion, it is next to certain that it is not equally compreffible in its rppofite lides through the whole length of the piece, and that the comprefing face on the abut:ing joint is not act. ing in the moft equable manner all over the joint. A very trifling inequallty in eithcr of thefe circumftances (efpecially in the firft) will eomprefs the beam mure on one fide than on the other. This cannot be without the beam's bending, and becoming concave on that lide on which it is moft compreffed. When this happens, the frame is in danger of being eluthed, and foon going to ruin. It is therefore indipenfably neceflary to make ufe of beams in all rafes where Aruts are required of confiderable length, rather than of metal rods of flender dimenfions, unlefs in fituations where we can effectually prevent their bending, as in truffing a girder internally, where a caft iron ftut may be firmly cafed in it, fo as not to bend in the fnal'elt degree. In cafes where the preflures are enormous, as in the very nblique Aruts of a centre or arch frame, we mult be particularly cautious to do nothing which can facilitate the compreffion of either fide. No mortifes hould be cut near to one fide; no lateral preflures, even the fightelt, fhould be allowed to touch it. We have feen a pillar of fir 12 inches long and one inch in feation, when loaded with three tons, fnap in an inflant when preffed on one fide by 16 pounds, while another bore $4 \frac{1}{2}$ tons without hurt, becaufe it was inclofed (loofely) in a Rout pipe of iron.

In fuch cafes of enormous comprefion, it is of great importance that the comprefing f ree bear equally on the whole abuting furfice. The German carpenters are accultomed to put a plate of lead over the juint. This prevents, in fome meafure, the penetration of the end fibres. Mr Perronet, the celebrated French architect, formed his abutments into arches of circ'es, the centre of which was the remote end of the flut. By this contrivance the unavoidable change of form of the triangle made no partial bearing of either angle of the abutment. This always has a tendency to iplinter off the heel of the beam where it preffes flrongef. It is a very judicious practice.

When circumfances allow it, we fhould rather em. ploy

C A R P E N T R Y.

ploy ties than flruts for fecuring a beam againf lateral Atrains. When an upright pillar, fuch as a flag faff, a malt, or the uprights of a very tall icaffolding, are to be fhoared up, the dependence is more certain on thofe braces that are Aretched by the Itrain than on thofe which are compreffed. The fcaffolding of the iron bridge near Sunderland had fome ties very judicioully difp fed, and others with !efs judgnent.
We fhould proceed to confider the tranfverfe ftrains as they affect the v drinus parts of a frame of carpentry ; but we have very little to add to what has been faid already in the article Stringith of Materials (Encycl.) and in the article Roof. What we fhall add in this article will find a place in our occ:afional remarks on different works. It may, huwever, be of ufe to recal to the reader's memory the following propofitions.

1. When a beam AB (fig. 15.) is firmly fixed at the end A, and a ftraining force acts perpendicularly to its length at any point B , the flrain occalioned at any fec. tion C between B and A is proportional to $C B$, and may therelore be reprefented by the product $W+C B$; that is, by the product of the number of tons, pomads, Sc. which meafure the flraining force, and the number of feet, inches, \&c. contained in CB. As the loads on a beam are eafily conceived, we fhall fubititute this for any other fitraining force.
2. If the frain or load is uniformly diftibuted along any part of the beam lying beyond C (hat is, further frum A), the Itrain at C is the fame as if the load were all colleaed at the middle point of that part; for that point is the centre of gravity of the load.
3. The ftrain on any fection D of a beam $A B$ (fig 16.) refling freely on two props A and B, is $\times \frac{A D \times D B}{B}$ Materials, n^{0} 92, \&c. Encycl). Therefore,
4. The frain on the middle point, by a force applied there, is one-fourth of the ftrain which the fame force would produce, if applied to one end of a beam of the fame length, having the nther end fixed.
5. The ftrain on any feetion C of a beam, refling on two pr \cdot ps A and B , occafioned by a force applied perpendicuiarly to another point D , is proportional to the rectangle of the exterior fegments, or is cqual to sw $\times \frac{A C}{A B} \times D B$. Therefore

The frain at C occafioned by the preflure on D , is the fame with the ftrain at D occalioned by the fame peeflure on C .
6. The frain on any fection D , occafioned by a load unifurmly diffufed over any part EF, is the fame as if 2he two parts ED, DF of the lad were collected at their middle points eand f. Therefore

The Itrain on any part D, occafioned by a doad uniformly diltributed cuer the whole beam, is one-half of the Atrain that is produced when the fame lo.id is laid on at 1 ; and

The flrain on the middle print C , occafioned by a load uniformly diftributed over the whole beam, is the fame which half that load wuuld produce if laid on at C .
7. A. beam fupported at both ends on two props B and C (fig. 14), will carry twice as much when the
ends beyond the props are kept from rifing, as it will carry when it relts loofely on the props.
8. Laftly, the tranfverfe ftrain on any fection, occafioned ty a force applied obliquel y, is diminifhed in the proportion of the fine of the angle which the direction of the force makes with the beam. Thus, if it be inclined to it in an angle of thirty degrees, the ftrain is one-half of the frain occafioned by the fame force acting perpendicularly.
On the other hand, the relative strength of a beam, or its power in any particular fection to refift any tranfverie ltrain, is proportional to the abfolute cohefion of the feation directly, to the diftance of its centre of effort from the axis of fracture directly, and to the diftance from the ftrained point inverfely.
Thus in a rectangular fection of the beam, of which b is the breadth, d the depth (that is, the dimenfion in the direstion of the framing force), meafured in incles, and f the number of pounds which one fquare inch will juft lupport without being torn afunder, we mult have $f \times b \times d^{2}$, proportional to $w \times \mathrm{CB}$ (fig. 15.) Or, $f \times b \times d^{2}$, multiplied by fome number m, depending on the nature of the timber, muft be equal to $v \times \mathrm{CB}$. Or, in the cafe of the feation C of fig. 16. that is Arained by the force ε applied at D , we muf have $m \times f b d^{2}=w \times \frac{A C \times D B}{A B}$. Thus if the beam is of found oak, m is very nearly $=\frac{1}{9}$ (fee Strength of Ma. terials, $n^{0} \underset{A C}{1} \times \mathrm{CB}$ Encycl.). Therefore we have $\frac{f b d^{2}}{9}$ $=w \times \frac{A C \times C B}{A B}$.

Hence we can tell the precife force to which any fec. tion C can juft relift when that force is applied in any way whatever. For the above mentiuned for mula gives $w={ }_{9} f b d^{2}$, for the cafe reprefented by fig. 15. But the cafe reprefented in fig. 16. having the Atraining force applied at D, gives the frain at $C(=w)=f$ $\times \frac{b d^{2} \times \mathrm{AB}}{9 \mathrm{~A} \mathrm{C} \times \mathrm{CB}}$.

Example. Let an oak beam, four inches fquare, reft freely on the props A and B, feven feet apart, or 84 inches. What weight will it juft fupport at its middle point C, on the fuppofition that a fquare inch rod will juft carry 16,000 pounds, pulting it afunder?

The formula becomes $w=-16000 \times+\times 16 \times 8_{4}$, or $w=\frac{86016000}{15876}=5418$ pounds. $9 \times 42 \times 42$ near what was employed in Buffon's experiment, which vas 53 t2.
Had the fraining force acled nn a point D, half way between C and B , the force fufficient to break the beam at C would be $=\frac{16000 \times 4 \times 16 \times 84}{9 \times 4^{2} \times 21}=10836 \mathrm{lbs}$.
Had the beam beenfund red fir, we mult have tas ken $f=10,000$ nearly, and m ncarly 8 ; for although fir be lefs cohefive than oak in the proportion of 5 to 8 nearly, it is lefs compretible, and its axis of fracture is therefore neater to the concave fide.
Having confidered at fufficient length the firains of jointe

C A R P E. N T R Y.

of different kinds which arife from the form of the paits of a frame of carpentry, and the direction of the external forces which ast on it, whether confidered as impelling or as fupporting its different parts, we mult now perceed to conlider the means by which this form is to be facured, and the conneations by which thofe Arains are excited and communicated.

The joinings practifed in carpentiy are almolt infiritely varicus, and eacl has advantages which make it preferable in fome circumftances. Many varieties are employed merely to pleare the eye. We do not concern ourlelves with thefe: Nor fhall we confider thofe which are only employed in connecting fmail works, and can never appear on a great fcale; yet even in fome of thefe, the flill of the carpenter may be difoovered by his choice; for in all cafer, it is wife to make every, even the imallelt, part of his work as ftrong as the materials will admit. He will be particularly attentive to the changes which will neceftrilly happen by the forinking of timber as it dries, and will confider what dimenfons of his framings will be affected by this, and what will not ; and will then difpofe the pieces which are lefs effential to the ftrength of the whole, in fuch a manner that their tendency to fhrink thall be in the fame direction with the fluinking of the whole framing. If he do otherwife, the feams will widen, and parts will be fplit afunder. He will difpofe his boardings in fuch a manner as to contribute to the ftiffnefs of the whole, avoiding at the fame time the giving them pofitions which will produce lateral ttrains on trufs beams which bear great prefiures; recollecting, that althongh a lingle hoard has little force, yet many united have a great deal, and may frequently perform the office of very powerful ftrits.

Our limits confine us to the joinings which are moft effential for connecting the pasts of a fingle piece of a frame when it cannot be formed of one beam, either for want of the necelfary thicknefs or length; and the joints for connefing the different fides of a truffed trame.

Wiuch ingennity and contrivance has been bellowed on the manner of building up a great beam of many thiclinelfes, and many fingular methods are practifed as great roflums by different artifs; but when we confider the manner in which the cohetion of the fibres performs its office, we will clearly fee that the fimpleft are equally (ffectual with the mo? refined, and that they are lefs apt to lead us into falie notions of the flrength of the aftemblage.

Thus, were it required to build up a beam for a great lever or a girder, fo that it may aćt nearly as a bean of the fame fize of one log-it may either be done by plain joggling, as in fig. 17. A, or loy farting as in Sig. 17. B or C. It it is 10 act as a lever, having the gudgeon on the lower fide at C, we believe that moll at tills will prefer the form B and C ; at leaf this has been the cafe with nine-tenths of thofe to whom we have propofed the queftion. The beft informed on. ly hefitated; but the ordinary artills were all confident in its fuperiority; and we found their viers of the matter very coincident. They confidered the upper piece as graping the lower in its hooks; and feveral impgined that, by driving the one very tight on the other, the beam would be ftronger than an entire log: but if we attend carefully to the internal procedure in
the loaded lever, we fall find the upper one clearly the ftrongeft. If they are formed of equal logs, the upper one is thicker than the other by the depth of the jng. gling or fcarfing, which we fuppofe to be the fame in both; confequently, if the cohefion of the fibres in the intervals is able to bring the uppermot flaments into full adion, the form A is ftronger than B, in the proportion of the greater diftance of the upper filanients from the axis of the fracture : this may be greater than the difference of the thicknefs, if the wood is very compreflible. If the gudgeon be in the middle, the effect, both of the joggles and the fcarfings, is confiderably diminithed; and if it is on the upper fide, the fcarnings aft in a very different way. In this fituation, if the loads on the arms are alfo applied to the upper lide, the joggled beam is till more fuperior to the farfed one. This will be beft underltood by refolving it in imagination into a truffed frame. But when a gudgeon is thus put on that fide of the lever which grows convex by the Atrain, it is ufual to connect it with the relt by a powerful Arap, which embraces the beam, and caufes the oppofite point to become the reffting point. This greatly changes the internal actions of the filaments, and, in fome meafure, brings it into the fame ftate as the firft, with the gudgeon below. Were it pollible to have the gudgeon on the upper fide, and to bring the whole into action without a krap, it would be the frongeft of all; becaufe, in general, the refiftance to comprefion is greater than to extenfion. In every fituation the joggled beam has the advantage ; and it is the eafiefl executed.

We may frequently gian a conflerable acceilion of Atength by this builciing up of a beam; cfpecially if the part which is flretched by the ftrain be of oak, and the other part be fir. Fir being fo much fuperior to cak as a pillar (if Muffchenbroek's experiments may be confided in), and oak fo much preferable as a tie, this conftruction feems to unite both advantages. But we Thall fee much better methods of making powerful levers, girders, \&ic. by trulling.

Oblerve, that the efficacy of both metlinds depends entirely on the difficulty of cauling the piece between the crofs joints in flide along the timber in which it adheres. Therefore, il this be moderate, it is wrong to make the notches deep; for as fonn as they are fo deep that their ends have a force fufficient to pulh the nice along the line of junction, nothing is gained by making them deeper; and this requires a greater expentiture of timber.

Sidrfings are frequently made cblique, as in frg. is. but we imagine that this is a bad practice. It begins to yield at the point, where the wood is crippled and fplintered off, or at leaft bruifed out a little: as the proffure increafes, this part, by fqueezing broader, canfes the folid parts to rife a little upuards, and gives them fome tendency, not only to puth their antagonifs along the bafe, but even to tear them up a little. For fimilar reafons, we difapprove of the favomite practice of many artilts, to make the angles of their fearfings acute, as in fig. 19. This often caufes the two pieces to tear each other up. The abutments thonld always be perpendicular to the directions o $[$ the preffures. Left it lhould be forgotten in its prnper place, we may extend this injunction alfo to the abutments of different fieces of a frame, and recommend it to the artift even

C A R P E N T R Y.

to attend to the fhrinking of the timbers by drying. When two timbers abut obliquely, the joint thould be molt full at the obtufe angle of the end; becaufe, by drying that angle grows more obtufe, and the beam would then be in danger of iplintering off at the acute angle.
It is eviden:, that the niceft work is indifpenfably

We muft not wedge too hard. neceffary in builuing upa beam. The parts muft abut on eachother completely, and the fmalleft play or void takes away the whole efficacy. It is ufind to give the butting joints a fmall taper to one fide of the beam, fo that they may require moderate blows of a mal to force them in, and the joints may be perfectly clofe when the external furfaces ate even on each fide of the beam. But we mult not exceed in the leaft degree; for a very taper wedge has great foree; and if we have diiven the pieces together by very beavy blows, we leave the whole in a flate of violent ftrain, and the abutments are perhaps ready to fplinter off by a fmall addition of preffure. This is like tou fevere a proof for artillery; which, though not fufficient to burft the pieces, has weakened them to fuch a degree, that the frain of ordinary fervice is fufficient to complete the frafure. The cuorkman is tempted to exeeed in this, becaule it f!nooths off and conceals all uneven feams; but he mult be watched. It is not unufual to leave fome abutments open enough to admit a thin wedge reaching through the beam. Nor is this a bad practice, if the wedge is of materials which is not comprefled by the driving or the Atrain of fervice. Iron would be preferable for this purpofe, and for the jnggles, were it not that by its too great hardnels it cripples the fibres of timber to fome diftance. In confequence of this, it often happens that, in beams which are fabjected to defultory and fudden ftrains (as in the levers of reciprocating eugines), the joggles or wedges widen the boles, and work themfelves loofe: Therefore filitul engineers never admit them, and indeed as few boles as poffible, for the fame reafon: but when refilting a feady or dead pull, they are not fo improper, and are frequently ufed.

Beams are built ur, not only to inereafe their dimenfions in the direftion of the flain (which we have liftherto called their depth), but alio to inereafe their breadth or the cimenfions perpendicular to the Arain. We fometimes double the breadch of a girder whieh is thought tno weak for its load, and where we muft not increafe the thicknefs of the flooring. The matt of a great thip of war mult be made bigger athwarthip,
27 as well as fore and aft. This is one of the nicell proBuiiding of blems of the art ; and profeflional men are by too means malts. agreed in their opinions about it. We do not prefume to decide ; and fall content ourfelves with exhibiting the different methods.

The molt obvious and natural method is that fhewn in fig. 20. It is plain that (independent of the connection of crofs bolts, which are ufed in them all when the beams are fquate) the "piece C cannot bend in the

28

Method

 ufid in the (Frenchs Navy. direstion of the plane of the ligure without bending the piece 10 along with it. This method is nuch nted in the French navy; but it is undoubsedly imperfea. Hadly any two great trees are of equal chadity, and fuell or flarink ahke. If C farinks mose then D, the feather of C becomes lanfe in the groove wrought in 1$)$ to receive it; and when the team bend, the in . an dide on cacha cther like the plate of a^{cm};and if the bending is in the direstion $e f$, there is nothing to hinder this fiding but the bolts, which foon work themfelves loofe in the bolt-holes.

Fig. 21. exhibits another method. The two halves Another of the beam are tabled into each other in the fame man method. ner as in fig. 17. It is plain that this will not be affected by the unequal fwelling or flarinking, becaufe this is infenfible in the direstion of the fibres; but when bent in the direstion $a b$, the beam is weaker than fig. 20. bent in the direction e f. Each lalf ot fig. 20. has, in every part of its length, a thicknefs greater thas half the thicknefs of the beam. It is the contrary in the alternate portions of the halves of fig. 21. When one of them is bent in the direction $A B$, it is plain that it drags the other with it by means of the crofs butments of its tables, and there can be ro longitudinal liding. But unlefs the woik is accurately executed, and each hollow completely filled up by the table of the other piece, there will be a lateral flide along the crofs joints fuffieient to compenfate for the curvature: and this will hinder the one from compreffing or ftretching the other in conformity to this curvature.
The imperfection of this method is fo obvious, that Its inperit has feldom been practifed; tut it has been combined feetion. with the other, as is reprefen:ed in fig. 22. where the beams are divided alung the mivile, and the tables in each half are altemate, and aliernate alfo with the tables of the other half. Thus 1, 3, 4, are preminent, and $5,2,6$, are derrelfed. This conftrection evidently puts a top to both flides, and obliges every part of both pieces to move together. $a b$ and $c d$ how fealinis of the buitt-up beam corcefponsing to AB and CD .
No more is intended in this practice by any intali:gent artift, than the cauting the two pieces to aft together in all their farts, although the firains mas be unequally difributed on them. Thus, in a tult up gitder, the binding joits are frequen:ly mortifed into very different parts of the two fides. But many feem to aim at making the beam frenger than if it were of one piece; and this inconfiderate projeet hats given rife to many whimfical modes of tabling and feaffing, which we need not regard.
The practice in the Britih dock-yards is fomewhat Britifh different from any of theee methods. The pieces are method; tabled as in fig. 22. but the tables are not thin paral. lelopipeds, but thin prifms. The two outward jnints or vifible feanis are fraight lines, and the table n° I. rifes gradually to its greaten thicknefs in the axis. In like manner the hollow 5 for receiving the uppofite table, finks gratually from the edge to its greaten depth in the axis. Fig. 23. reprefents a festion of a round pece of timber buil: up in this way, where the full line EFGH is the fection eonrefpnting to $A D$ of fig. $=2$. and the dotted line EGFH is the fection correfponding to CD.

This confruction, by making the external feam ftraight, leaves no lodgment for water, and looks much fairer to the eye: but it appears to 1 s that it does not give fueh firm hold when the mall is bent in the direstion EH. The exterior parts are moll ftetched and molt comprefled by this bunding; but there is latoly any abutment in the extcrior parts of thefe tahes. In the very axis, where the abutment is the firmeft, there is little or no difference of extenfion and c.mepesion.

But this confruction has an advantage, which we imagine much more than eompenfates for thefe imperfections, at lealt in the particular cale of a round mait: it will draw together by hooping incomparably better than any of the others. If the cavity be made fomewhat too thallow for the prominence.cf the tables, and if this be done un:formly along the whole length, it will make a fomewhat noen feam; and this opening can be regulated with the utmoft exactueis from end to end by the plane. The heart of thofe vaft trunks is very fenfibly fofter than the exterior circles: Therefore, when the whole is hooped, and the hoops hard driven, and at confiderable intervals between each fpell -we are cunfident that all may be cr mpreffed till the ferm difappears; and then the whole makes one pieee, much Aronger than if it were an original \log of that lize, beeaule the middle has become, by comprefion, as fulid as the cruft, which was naturally firmer, and refilted farther compreffion. We verified this beyond a doubt, by hooping a built fick of a timber which has this inequality of firmnefs in a remarkable degree, and it was nearly t wice as trong as another of the fame fize.

Our mathanars are not without their fancies and whims; and the manner in which our mafts and yards are generally built up, is not near fo fimple as fig. ${ }^{22 .}$: but it confits of the famè effential parts, acting in the very fame manner, and derives all its efficacy from the principles which are here employed.

Attenced tion and office of a fhip's mift. It has no bolts; or, liar advantagres. at leaft, none of any magnitude, or that make very importint paris of its ernfruation. The mont violent itrains perhaps that it is expofed tn , is that of twilting, when the lower yards are clufe braced up by the force of many men a\&ing by a long lever. This dorm refilts a twit with pecular energy: it is therefore an excellent method for building up a great fhaft for a mill. The way in which they are ufually built up is by reducing a cemtial log to a polygonal prifm, and then filling it up to the intended fire by pouting pieces of timber alony its afides, either Spiking them down, of cocking them into it by a feither, or jiggling them by flips of hard wood funk into the central log and into the lips. N. B. Joggles of elm are fometimes ufed in the middle of the large tables of mafts; and when funk into the firm wood near the fuiface, they mult contribute much to the flength. Bat it is very necelfary to employ wood not mueh harder than the pine ; other wife it will foon enlarge its bed, and become loofe; fur the timber of thefe large trunks is very foft.

The mof general reafon for piecing a beam is to increafe its length. This is frequently neceffary, in order in procure tie-beams for very wide roofs. Two pieces mult be fcarfed together. - Numberlefs are the modes of doing this; and almont every mafter carpenter has his favorite nottrum. Some of them are very ingenious: But here, as in other cafes, the moft fimple are commonly the frongef. We do not imagine thit any, methods of the mit ingenious, is equally Arong with a tie confin?fearfing. ing of two pieces of the fame fcantling laid over each other for a certain length, and firmly bolted together. We acknowledge that this will appear an artlefs and clumfj tie-bearm; but we only fay that it will be itronger than any that is more artificially made up of
the fame thicknefs of timber. This, we imagine, will appear filfficiently certain.

The fimpleft and moft obvious fcarfing (after the one now mentioned) is that reprefented in fig. 24. n^{0} I. and 2. If confidered merely as two pieces of wood joined, it is plain that, as a tie, it has but half the Itrength of an entire piece, fuppofing that the bolts (which are the only connections) are taft in their holes. $\mathrm{N}^{\circ}{ }^{2}$. requires a bolt in the middle of the farf to gire it that frength; and, in every other part, is weaker on one fide or the other.

But the bolts are very apt to bend by the vinlent Arain, and require to be frengthened by uniting their ends by iron plates; in which cafe it is no longer a woden tie. The form of $n^{\circ} \mathrm{I}$, is better adapred to the office of a pillar than $n^{\circ} 2$.; efpecially if is ends be formed in the manner thewn in the elevation $n^{\circ} 3$. By the fally given to the ends, the fearf refilts an effort to bend it in that direction." Befides, the form of n° 2. is unfuitable for a poft ; becaufe the pieces, by fliding on each other by the preffure, are apt to fplinter off the tongue which confines their extremity.
Fig. 25. and 26 . exhibit the moft approved form of a fearl, whether for a tie or for a polf. The key reprefented in the middle is not effentially neceflary; the two pieces-might fimply meet fquare there. This form, without a key, needs no b.ilts (although they ffrengthen it greatly) ; but, if worked very true and clofe, and with fquare abuiments, will hold together, and will refift bending in any direation. But the key is an ingenious and a very great improvement, and will force the parts together with perfect tightnefs. The fame precaution mult be obferved that we mentioned on annther occafion, not to produce a conftant internal Atrain on the parts by overdriving the key. The form of fig. 25 . is by far the belt; becaufe the triangle of 26 . is much eafier fplintered off by the frain, or by the key, than the fquare wood of 25 . It is far preferable for a poft, for the reafon given when fpeaking of fig. 2_{4}. $\mathrm{n}^{\circ} 1^{1}$ and $\mathrm{n}^{\circ}{ }^{2}$. Botin may be formed with a fally at the ends equal to the breadth of the key. In this fhape fig. 25 . is vafly well fivited for joining the parts of the long corner poits offires and nther wonden towers. Fig. $25 \cdot n^{\circ}$ 2. differs trom n°, only by having three keys. The principle and the Iongitudinal Atrength are the fame. The lung feari of $n^{\circ} 2$. tightened by the three keys, enables it to refift a bending much better.

None of thefe fcarfed tie-beams can have more than one-third of the Arength of an encire piece, unlefs with the afliftance of iron plates; for if the key be made thinner than one-third, it has lefs than one-third of the fibres to pull by.

We are confident, therefore, that when the heads of the bolts are connected by plates, the fimple firm of fig. $2+\cdot n^{\circ}$ I. is Aronger than thofe more ingenious fearfings. It may be ftrengthened again? lateral bending by a little tongue, or by a fally ; but it eannot have both.

The Arongeft of all methods of piecing a tie-beam would be to fer the parts end to end, and grafp them between other pieces on each fide, as in fix. 27. This Finhing is what the thip-caupenter calls fofring a beam; and is a beam. frequent practice for occafional repairs. Mr Perronet ufed it for the tie-beams or Atretchers, by which he con-

.

C A R P E N T R Y.

nefted the oppofite feet of a centre, which was yield
ing to its load, and had pulhed afide one of the piers ing to its load, and had pufhed afide one of the piers
above four incles. Six of thefe not only withtood a ftrain of 1800 tons, but, by wedging behind them, he brought the feet of the trufs $2 \frac{x}{2}$ inches nearer. The firetchers were 14 inches by 11 of found oak, and could have withltood three times that frain. Mr Perronet, fearing that the great length of the bolts employed to connect the beams of thefe ftretchers would expofe them to the rifk of bending, fcarfed the two fide pieces into the middle piece. The fcarfing was of the triangular kind (Trait de Jupiter), and only an inch deep, each face being two feet long, and the bolt paffed through clofe to the angle.

In piecing the pump rods, and other wooden Itretchers of great engines, no dependence is had on fcarfing; and the engineer connects every thing by iron ftraps. We doubt the propriety of this, at lealt in cales where the bulk of the wooden connestion is not inconvenient. Thefe obfervations muft fuffice for the methods employed for conneaing the parts of a beam; and we now proceed to conlider what are more ulually called the joints of a piece of carpentry.

Where the beams fland fquare with each other, and the ftrains are alfo fquare with the beams, and in the plane of the frame, the common mortife and tenon is the molt perfect junction. A pin is generally put through both, in order to keep the pieces united, in oppnlition to any force which tends to part them. Every carpenter knows how to bore the hole for this pin, fo that it fhall draw the tenon tight into the mortife, and caufe the fhoulder to butt clofe, and make neat work; and he knows the rifk of tearing out the bit of the tenon beyond the pin, if he draw it too much. We may juft obferve, that fquare holes and pins are much preterable to round ones for this purpofe, bringing more of the wood into action, with lefs tendency to pplit it. The thip carpenters have an in. genious method of making long wooden bolts, which do not pais completely through, take a very faft hold, though not nicely fitted to their holes, which they mult not be, lell they thould be crippled in driving. They call it foxtuil suedging. They ftick into the point of the bolt a very chin wedge of hard wood, fo as to prnject a proper diltance: when this reaches the bottom of the hole by driving the boli, it fplits the end of it, and iqueezes it hard to the fide. This may be practifed with advanage in carpentry. If the ends of the mortife are widened inwards, and a thin wedge be put into the end of the tenon, it will have the fame effect, and make the joint equal to a dovetail. But this rifks the fplitting the piece beyond the thoulder of the tenon, which would be unfightly. This may be avoided as follows: Let the tencn T, fig. 28. have two very thin wedges a and c fluck in near its angles, projecting equally: at a very fmall ditance wichin these, put in two fhorter ones l, d, and more within thefe if neceffary. In diving this tenon, the wedges a and c will take firft, and fplit off a thin flice, which will eafily bend without breaking. The wedges l, d, will act next, and have a limilar effect, and the others in fucceffion. The thicknefs of all the wedges taken together muit be equal to the enlargement of the mortife toward the bottom.

When the ftrain is tranfverfe to the plane of the two Swipl. Vol. I.
beams, the principles laid down in $n^{\circ} 85,86$, of the article Strengith of Materials, will direct the artilt in placing his mortife. Thus the mortife in a girder for receiving the tenon of a binding joift of a floor fhould be as near the upper fide as polfible, becaufe the girder becomes concave on that fide by the frain. But as this expofes the tenon of the binding-joilt to the tifle of being torn off, we are obliged to mortife farther down. The form (fig. 29.) generally given to this joint is extremely judicions. The floping part abgives a very firm fupport to the additional bearing $e d$, without much weakening of the girder. This form fhould be copied in every cafe where the frain has a fimilar direction.

The joint that moft of all demands the careful atten- oblique tion of the artift, is that which connects the ends of mortife and beams, one of which pufhes the other very ohliquely, tenon. putting it into a flate of extenfion. The molt familiar inftance of this is the foot of a rafter preffing on the tie beam, and thereby drawing it away from the other wall. When the direction is very oblique (in which cafe the extending ftrain is the greateft), it is difficult to give the foot of the rafter fuch a hold of the tiebeam as to bring many of its fibres into the proper action. There would be little difficulty if we conld allow the end of the tie-beam to project to a fmall diftance beyond the foot of the rafter : but, indeed, the dimenfions which are given to tie-beams, for other reafons, are always fufficient to give enough of abutment when judicioully employed. Unfortunately this joint is mueh expofed to failure by the effects of the weather. It is much expofed, and frequently perifhes by rot, or becomes fo foft and friable that a very fmall force is fufficient, either for pulling the filaments out of the tie beam, or for crulhing them together. We are therefore obliged to fecure it with particular attention, and to avail ourfelves of every circumfance of confruction.

One is naturally difpofed to give the rafter a deep hold by a long tenon; but it has been frequently obferved in old roofs that fuch tenons break off. Frequently they are obferved to tear up the wood that is above them, and pufh their way through the end of the tie-beam. This in all probability ariles from the firft fagging of the roof, by the compreffion of the rafters and of the head of the king poft. The head of the rafter defeends, the angle wih the tie-beam is diminifhed by the rafter revolving round its Itep in the tie-beam. By this motion the heel or inner angle of the rafter becomes a fulerum to a very long and powerful lever much loaded. The tenon is the other arm, very fhort, and being ftill frefh, it is cherefore very powerful. It therefore forces up the wood that is above it, tearing it out from between the cheeks of the mortife, and then pufhes it along. Carpenters have therefore given up long tenons, and give to the tne of the tenon a fhape which abuts firmly, in the direction of the thrutt, on the folid bottom of the mortife, which is well fupported on the under fide by the wall plate. This form has the farther advantage of having no tendency to tear up the end of the mortife. This form is reprefented in fig. 30 . The tenco has a fmall portion a b cut perpendicular to the furface of the tie-beam, and the relt $b c$ is perpendicular to the rafter.
But if the tenun is not fufficiently frong (and it is Fif
not
not fo ftrong as the rafter, which is thought not to be Aronger than is necelfary), it will be crufhed, and then the ratter will fhade out along the furface of the beam. It is therefore neceffary to call in the affillance of the whole rafter. It is in this diftribution of the ittain among the various aburting parts that the varieties of jnints and their merits chiefly confifts. It would be endlefs to defcribe every noftrum, and we thall only mention a few that are moft generally approved of.

The aim in fig. 31 , is to make the abutments exactly perpendicular to the thrults. It does this very precifely; and the fhare which the tenon and the fhoulder have of the whole may be what we pleafe, by, the portion of the beam that we notch down. It the wall plate lie duly before the heel of the rafter, there is no rifk- of ftraining the tie acrofs or breaking it, becaufe the thruft is made direct to that point where the beam is fupported. The action is the fame as againft the joggle on the head or foot of king polt. We have no doubt but that this is a very effectual joint. $\angle \mathrm{It}$ is not, however, much prasifed. It is faid that the floping feam at the thoulder lodges water; but the great reafon feems to be a fecret notion that, it weakens the tie-beam. If we confider the direction in which it afis as a tie, we mult acknowledge that this form takes the bell method for bringing the whole of it into action.

Fig. 32. exhibits a form that is more general, but certainly worfe. What part of the thrult that is not borne by the tenon acts obliquely on the point of the fhoulder, and gives the whole a tendency to rife up and flide outward.

The thoulder joint is fometimes formed like the dotted line abcdefg of fig. 32. This is much more ogreeable to the tue principle, and would be a yery perfect method, were it not that the intervals $b-d$ and $d f$ are fo thort.that the little wooden triangles $b c d$, $d e f$, will be eafily pufhed off their bafes $b d, d f$.

Fig. 33. feems to have the moft general approbation. It is the joint recommended by Price (page 7.), and copied into all books of carpentry as the true joint for a rafter foot. The vifible fhoulder-jnint is - Huth with the upper furface of the tie-beam. The angle of the tenon at the tie nearly bifects the obtufe angle formed by the rafter and the beam, and is therefore fomewhat oblique to the thrult. The inner thoulder ac is nearly pelpendicular to $b d$. The lowermangle of the tenon is cut off horizontally as at ed. Fig 34. is a fection of the beam and rafter fout, thewing the driferent thoulders.

We do not perceive the peculiar merit of this joint. The effect of the three oblique abutments $a b, a c, e d$, is undoubtedly to make the whole bear on the outer end of the mortife, and there is no other part of the ticbean that makes immediate refiftance. Its only advantage over a tenon extending in the direction of the thruft is, that it will not tear up the wood above it. Had the inner fhoulder had the forme $c i$, having its face ic perpendicular, it would certainly have acted more powerfully in fretching many filaments of the tie-beam, and would have had much lef, tendency to force out the end of the mortife. The litule bit $c i$ would have prevented the niding upwards along ec. At any rate, the joint $a b$ being Hufl with the beam, prevents any fenfible abutment on the fhoulder a c.

Fig. 33. N° 2. is a fimpler, and in our opinion a preferable joint. We obferve it practifed by the moft
eminent carpenters for all oblique thrufts; but it furely employs lefs of the cohefion of the tie-beam than might be ufed without weakening it, at leaft when it is fupported on the cther fide by the wall plate.

Fig. 33. $\mathrm{N}^{\circ} 3$. is allo muchlpractifed by the firt carpenters.

Fig. 35. is propnfed by Mr Nichollon (page 65.) as preferable to fig. $33 \cdot 11^{\circ} 3$. becaufe the abutment of the inner part is better fupported. This is certainly the cafe ; but it fuppofes the whole rafter to go to the bottom of the focket, and the beam to be thicker than the rafter. Some may think that this will weaken the beam too much, when it is no broader than the rafter is thick; in which cafe they think that it requires a deeper focket than Nicholfon has given it. Pet haps the advantages of Nicholton's conftruction may be had by a joint like fig. $35 \cdot \mathrm{n}^{0} 2$.

Whatever is the form of thefe butting joints, great cirw 39 care thould be taken that all parts bear alike, and the fances to artik will attend to the magnitude of the different fur- be attended faces. In the general comprefion, the greater furfaces to. will be lef's conmpreffed, and the fmaller will therefore change monft. When all has fetted, every part fhould be equally clufe. Becaufe great logs are moved with difficulty, it is very troublefome to try, the joint frequently to fee how the parts fit ; therefore we muit expeat lef's accuracy in the interior parts. This fhould make us prefer those joints whofe efficacy depends chiefly on the vifible joint.

It appears from all that we have faid on this fubjest, that a very fmall part of the cohefion of the tie-beam is fufficient for withtanding the horizontal thrult of a roof, even though very low pitched. If therefore no other ufe is made of the tie-beam, one much flenderer may be ufed, and blocks may be firmly fixed to the ends, on which the rafters might abut, as they do on the juggles on the head and fuot of a king polt. Although a tic-beam has commonly floors or ceilings to carry, and fometimes the workthops and fore roums of a theatre, and therefore requires a great fcantling, yet there frequently occur in machines and engines very oblique ftreichers, whith have no other office, and are generally made of dimenfions quite inadequate to their lituation, often containing ten times the necefliary guantity of timber. It is therefore of importance to afcertain the moll perlect manner of executing fueh a joint. We have directed the attention to the principles that are really concerned in the effect. In all hazardous cales, the carpenier calls in the affiltance of iron ftrap; ; and they ase frequently neceflary, even in roofs, notwithtanding this fuperabundant frength of the tiebeam. But this is generally owing to bad condruction of the wooden jcint, or to the failure of it by time. Straps will be confidered in their place.

There needs but little to be faid of the joints at a joggle worked out of folid timber; they are not near fo dificult as the laft.... When the fize of a \log will al. low the joggle to receive the whole brendth of the abutting brace, it ought certainly to be made with a fquare houlder; or, thich is nill better, an arch of a circle, having the other end of the brace for its cenue. Indeed this in genetal will not fenfibly differ irom a ftraight line perpendicular to the brace. By this circular form, the fettling of the roof makes no change in the abutment ; but when there is not fufficient duff for

\therefore.

CARDENTIY MLATE XIl .

this, we muft avoid hevel joints at the floulders, becaufe thefe always tend to make the brace flide off. The brace in fig. 3 万. mult not be joined as at a, but as at b, or fome equivalent manner. Obfetve the joints at the bead of the main polts of Drury Lane theatre, fig. D.

When the very oblique action of one fide of a frame of carpentry does not extend but comprefs the piece on which it abuts (as in fig. II.), there is no difficulty in the joint. Indeed a joining is unneceffars, and it is encugh that the picces abut on each other; and we have only to take care that the mitual preffure be equal. ly borne by all parts, and that it do not produce lateral preffures, which may caufe one of the pieces to flije on the butting joint. A very fight mortife and tenco is fufficient at the joggle of a king poft with a rafter or ftraining beam. It is beft, in general, to make the butting plain, bifecting the angle formed by the fides, or elfe perpendicular to one of the pieces. In fig. $3^{6} \cdot n^{\circ}$ 2, where the fraining beam $a b$ canuot flip away from the preffure, the joint a is preferable to l, or indeed to any uneven joint, which never fails to produce very unequal preffures on the different parts, by which fome are crippled, others are fplintered off, \&c.
When it is necelfary to employ iron ftraps for flrength. ening a joint, a confiderable attention is necelfary, that we may place them properly. The firlt thing to be determined is the direction of the frain. This is learned by the obfervations in the beginning of this article. We mult then refolve this ftrain into a frain parallel to each piece, and another perpendicular to it. Then the frap which is to be made falt to any of the pieces mult be fo fixed, that it fhall refift in the diredion parallel to the piece. Frequendy this cannot be done; but we mult come as near to it as we can. In fuch cafes we mult fuppofe that the affembiage yields a little to the preffures which act on it. We muft examine what change of fhape a fmall yielding will produce. We mult now fee how this will affect the iron Arap which we have already fuppofed attached to the joint in fome manner that we thought fuitable. This fettling will perhaps draw the pieces away from it, leaving it loofe and unferviceable (this frequently happens to the plates which are put to fecure the obtufe angles of butting timbers, when their bolts are at fome diftance from the angles, efpecially when the fe phates are laid on the infide of the angles) ; or it may caufe it to comprefs the pieces harder than hefore; in which cafe it is anfwering our intention. But it may be producing crofs Itrains, which may break them; or it may be crippling them. We can hardly give any general rules; but the reader will do well to read what is written in $n^{0} 36$. and 41 . of the article lioof, Encycl. In $n^{\circ} 36$. he will fee the nature of the frap or firrup, by which the king pott carries the tie-beam. The flrap that we olferve mof generally illplaced is that which conneets the foot of the rafter with the beam. It only linds down the rafter, but does not act againft its horizontal thruft. It fhould be placed farther back on the beam, with a bolt through it, which will allow it to turn round. It thould embrace the rafier almof horizontally near the foot, and fhould be notched \{quare riulf the back of the rafter. Such a conftruction is reprefented in fig. 37. By moving round the eye-bolt, it follows the raiter, and cannot pinch and cripple it, which it always does in its ordinary form.

We are of opinion that Atraps which have eye-bolis in the very angles, and allow all motion round them, are of all the molt perfect. A branched Arap, fuch as may at once bind the king pol and the two braces which lutt on its fout, will be more fersiceable if it have a joint. When a roof warps, thofe branched fraps frequently break the tenons, by affording a fulctum in one of their bolts. An attentive and judicious artift will confider how the beams will att on fuch occafions, and will avoid giving rife to thefe great frains by leversA fiilful carpenter never employs many fraps, confidering them as ausiliaries foreign to his art, and fubject to imperfetions in workmanfhip which be cannot difcern nor amend. We mult refer the reader to Nicholfon's Carpenter and Joiner’s Assistant for a more particular account of the various forms of firrups, firewed sods, and other iron work for carrying tie-beams, \&c.

As for thofe that are neceffary for the turning joints of great engines conftructed of timber, they make no part of the art of carpentry.

After having attempted to give a fyftematic view Examples of the principles of framing carpentry, we fhall con- of different clude, by giving fome examples which will illuftrate and pieces of confirm the foreguing principles.

Fig. 38 . is the roof of the chapel of the Royal Hof Roof of pital at Greenwich, conitructed by Mr S. W Yatt.

Inches
Scantling.
AA, is the tie-beam, 57 feet long, fpanning

The truffes are 7 feet apart, and the whole is covered with lead, the boarding being fupported by horizontal ledgers l, h, of 6 by 4 inches.

This is a beautiful roof, and contains lefs timber than mon of its dimenlions. The parts are all difpored with grat judgment. Perhaps the iron rod is unnecetlary; but it adds great tiffnefs to the whole.

The iron flraps at the rafter feet would have had more effect if not fo oblique. Thofe at the head of the pofts are very effective.

We may obferve, however, that the joints between the Araining beam and irs braces are not of the beft kind, and tend to bruife both the Araining beam and the trufs beam above it.

Fig. 39. the roof of St Paul's, Covent Garden, con- St Pauls, Aru气ted by Mr Wapfor in $1796 . \quad$ Covent
AA, Tie-beam fpamning 50 feet 2 inches 16.12
1, Queen poft - - $\quad 9 \times 8$
C, Trufs beam - - 10×8
D, King polt (ifat the joggle) - 9×8
E, Brace - - $\quad-\quad \times 7^{\frac{1}{2}}$
FF, Principal brace (at bottom) - $10 \times 8^{\frac{1}{2}}$
HH, Principal rafter (at bottom) - $10 \times 8 \frac{1}{2}$
$g g$, Studs fupporting the rafter - 8×8
This roof far excels the original one put up by Inigo Jones. One of its truffes contains in 8 feet of timber.

One of the old roof had 273 , but had many inactive, timbers, and others ill difpofed ($N . B$. The figure which we gave of it in the article Roof, copied from Price, is very erroneous). The internal trufs FCF is admirably contrived for fupporting the exterior rafters, without any prefiure on the far projecting ends of the tie-beam. The former roof had bent them greatly, fo as to appear ungraceful.

We think that the camber (fix inches) of the tiebeam is rather hurtfil; becaufe by fettling, the beam lengthens; and this mult be accompanied by a confilerable finking of the roof. This will appear by calcula.
Fig. ${ }^{1}$ c. the roof of Birmingham theatre, conftructed by Mr Gco. Saunders. The fpan is 80 feet clear, and the truffes are io feet apart.

This roof is a fine fpecimen of Britifh carpentry, and is one of the boldeft and lighteft roofs in Europe. The flraining fill Q gives a firm abutment to the principal braces, and the fpace between the pofts is $19 \frac{1}{2}$ feet wide, affording roomy workfhops for the carpenters and other workmen connected with a theatre. The contrivance for taking double hold of the wall, which is very thin, is excellent. There is alfo added a beam (marked R), bolted down to the tie-beams. The intention of this was to prevent the total failure of fo bold a truffing, if any of the tie-beams fhould fail at the

Akin to this roof is fig. 41. the roof of Drury Lane theatre.
theatre, 80 feet 3 inches in the clear, and the truffes 15 feet apart, confructed by Mr Edward Grey Saunders.

The main beams are trulfed in the middle fpace with oak truffes 5 inches fquare. This was neceffary for its width of 32 feet, occupied by the carpenters, painters, \&c. The great fpace betwcen the truffes afford good Aore-rooms, dreffing rooms, \&c.

It is protable that this roof has not its equal in the
world for lightnefs, Atiffnefs, and Atrength. The main trufs is fo judicioully framed, that each of them will fafely bear a load of near 300 tons; fo it is not likely that they will ever be quarter loaded. The divifion of the whole into three parts makes the exterior roofings very light. Thie frains are admirably kept from the walls, and the walls are cven firmly bound together by the roof. They alfo take off the dead weight from the main trufs one-third.
The intelligent reader will perceive that all theie Remarks, roofs are on one principle, depending on a trufs of three pieces and a ftraight tie-beam. This is indeed the great principle of a trufs, and is a fep beyond the roof with two rafters and a king port. It admits of much greater variety of forms, and of greater extent. We may fee, that even the middle part may be carried to any-fpace, and yet be flat at top; for the trufs-beam may be fupported in the middle by an inverted king poft (of timber, not iron), carried by iron or wooden ties from its extremities: And the fame ties may carry the horizontal tie-beam K ; for till K be torn afunder, or M, M, and P be crippled, nothing can fail.

The roof of St Martin's church in the Fields is conAtrusted on good principles, and every piece properly difpofed. But although its fpan does not exceed 40 feet from column to column, it contains more timber in a trufs than there is in one of Drury Lane theatre. The roof of the chapel at Greenwich, that of St Paul's, Covent Garden, that of Birmingham, and that of Drury Lane theatres, form a feries gradually more perfect. Such fpecimens afford excellent leffons to the artifts. We therefore account them a ufeful prefent to the pnblic.

48
There is a very ingenious project offered to the pub- Projeat by lic by Mr Nicholion (Carpenter's Alfiftant, p. 68.) He Mr Nicholpropofes iron rods for king pofts, queen polts, and all fon. other fituations where beams perform thie office of ties. This is in profecution of the notions which we publifhed in the atticle Roof of the Encycl. (fee n ${ }^{\circ}$ 36, 37.) He receives the feet of the braces and flruts in a focket very well connested with the foot of his iron king paft; and he fecures the feet of his queen poits from being puthed inwards, by interpofing a fraining fill. He does not even mortife the foot of his principal rafter into the end of the tie-beam, but fets it in a focket like a fhoe, at the end of an iron bar, which is bolted into the tie-beam a good way back. All the parts are formed and difpofed with the precifion of a perfon thoroughly acquainted with the fubjee ; and we have not the fmalleft doubt of the fuccefs of the project, and the complete fecurity and durability of his roofs, and we expect to fee many of them executed. We abound in iron, but we mult fend abroad for building timber. This is therefore a valuable project ; at the fame time, however, let us not'over-rate its value. Iron is but about 12 times Atronger than red fir, and is more than is times heavier ; nor is it cheaper, weight for weight, or ftrength for ftrength.

Our illuftrations and examples have been chiefly taken from roofs, becaule they are the moot familiar inftances of the difficult prohlems of the art. We could have wilhed for more room even on this fubjert. The conftruction of dome roofs has been (we think) mitaken, and the difficulty is much lefs than is imagined. We mean in refpect of ftrength; for we grant that the

C A $\quad \mathrm{R} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{R} \quad \mathrm{Y}$.

obliquity of the jnints, and a general intricacy, increafes the trouble of workmanhip exceedingly. Another opportunity may perhaps occur for confidering this fubject Wooden bridges form another clafs equally difficult and important; but our limits are already overpaff. ed, and will not admit them. The priaciple on which they thould all be conftructed, without exception, is that of a thifs, avoiding all lateral hearings on any of the timbers. In the application of this principle, we mull farther remark, that the angles of our trufs fhould be as acute as polible; therefore we fhould make it of as few and as long pieces as we can, taking care to prevent the bending of the trufs beams hy bridles, which embrace them, but without prefling thern to either fide. When the trufs confifts of many pieces, the angles are very obtufe; and the thrult increafe nearly in the duplicate proportion of the number of angles. The proper maxims will readily occur to the artift who confiders with attention the fpecimens of centres or coombs, which we fhall give in the aticle Centre.
With retpect to the frames of carpentry which occur in engines and great machines, the varieties are fuch that it would require a volume to treat of them properly. The principles are diready laid down; and if the reader be really interefted in the fud y, he will engage in it with ferimenefs, and cannot fail of being inftrueted. We recommend to his confideration, as a fpecimen of what may be done in this way, the working beam of Hornblower's fteam engine (fee SFEAM-Engine, ${ }^{0} 8_{4}$. Encycl.) When the beam muft act by chains hung from the upper end of arch heads, the framing there given feems very fcientifically conftructed; at the fame time, we think that a flrap of wrought iron, reaching the whole length of the upper bar (fee the figure), would be vafly preferable to thofe partial plates which the engineer has put there, for the bolts will foon work loofe.

But when arcles are not neceffary, the form employed by Mr Watt is vally preferable, both for fimplicity and for frength. It confifts of a fimple beam AB
(fig. 42.), having the gudgeon C on the upper fide. The two pifon rods are attached to wrought iron joints A and B. Two itrong ftruts DC, EC reft on the upper fide of the gudgeon, and carry an iron Atring ADEB, conlifting of three pieces, connected with the fruts by proper joints of wrought iron. A more minute defcription is not needed for a clear conception of the principle. No part of this is expofed to a crofs ftrain; even the beam $A B$ might be fawed through at the middle. The iron fring is the only part which is ftretched; for $\mathrm{AC}, \mathrm{DC}, \mathrm{EC}, \mathrm{BC}$, are all in a thate of comprefion. We bave made the angles equal, that all may be as great as poffible, and the preffure on the ftruts and frings a minimum. Mr Watt makes them much lower, as $\mathrm{A} d e \mathrm{~B}$, or $\mathrm{A} \delta \in \mathrm{B}$. But this is for economy, becaufe the ftrength is almoft infuperable. It might be made with wooden frings; but the worknanthip of the joints would more than compenfate the cheapnefs of the materials.
W_{E} offer this article to the public with deference, Concturion. and we hope for an indulgent reception of our eflay on a fubject which is in a manner new, and would require much fudy. We have beflowed our chief attention on the ftrength of the confluction, becaufe it is here that perfons of the profefion have the moft fcanty information. We beg them not to confider our obfervations as too refined, and that they will fudy them with care. One principle runs through the wholc; and when that is clearly conceived and lamiliar to the mind, we venture to fay that the practitioner will find it of eafy application, and that he will improve every perfurmance by a continual reference to it.

If this attempt to inftruct our molt valuable and much efteemed artifts fhall appear to meet with their approbation, it may encourage us to engage in the ferious talk of compofing a fyltem on the fubject. But. this is a great work, and will require much time and liberal contribution of knuwledge from the eminent carpenters who do honour to this country by their works.

C A R

Carré.
CARRE' (Lewis), was, in 166_{3}, born in the province of Brie in France; and refuling to enter into the fervice of the chutcl, for which his education was intended to fit him, he incurred the difpleafure of his father. His refources being thus cut off, he was obliged to quit the miverfity, and go out into the world without employment or the means of fubfifence. In this exigency he was fomehow introduced to the celearated Malebranclie, and retained by hinı as an amanuenfis. Under this great matter he fudied mathenatics and metaphyfics, and could hardly fail to become ilrongly attached to the latter fcience. After refiding teven years with Malebranche, he refolved to enter upon fome employment, which might procure him a lefs precarious eftablifhment than what could be cnjayed by the favour of any individual : and with that view he began at Paris a courfe of lectures in mathematics, metaphyfies, and moral philofophy, to fuch young ladies and gentlemen as chofe to put themfelves under his tuition. When we think of the mafter under whom he himflf ftadied thofe fciences, we cannot wonder that he made geome.

C A R

try ferve merely as an introduction to his beloved metaplyyfics; and indeed the order of his courfe deferves to be univerfally adopted. It is furely much better to accoftom the youthfal mind to Iteady apprehention and patient thinking in the liudy of the ancient geometry, before it proceed to fciences more abilraf, than to hurry it at once, as is the practice in fome univerfities, into all the mazes and intricacies of what is called the firit philofophy.

But althuugh M. Carré gave the preference to metaphyfics, he did not negleft mathematics; and while he taught both, he took care to make himfelf acquainted with all the new difcoveries in the latter. This was all that his conftant attendance on his pupils would allow him to do till the year 1697 , when M. Valignon fo renarkable for his extreme fcrupuloufnefs in the choice of his eleves, took M. Carté to him in that Atation. Soon after, viz. in the year 1700 , our author, thinking himfelf bound to do fomething that might render him worthy of that title, publithed the firlt complete work on the integral calculus, under the title of "A Method

Carré. $\underbrace{\text { Carre. }}$

$\mathrm{C} A \mathrm{R} \quad\left[\begin{array}{ll}218\end{array}\right] \quad \mathrm{C}$ A S

of Nifeafuring Surfaces and Solids, and finding their Centres of Gravity, Percuffion, and Ofcillation." He afterwards difocered fome errors in the work, and was candid enough to own and correot them in a fubfequent edition.

In a little time M. Carré became affociate, and at length one of the penfioners of the Academy. And as this was a fufficient eftablifhment for one who knew fo well how to keep his defires wihhin jult bounds, he gave himfelf up entirely to fudy ; and as he enjoyed the apprintment of mechanician, he applied himell more particulaty to mechanics. He took alfo a furver of every branch relating to mufic ; fuch as the docirine of founds, and the defcription of mufical inftuments; though he defpied the practice of mufic as a mere fenfual pleafure. Sonie fketches of his ingenuity and induffry in this way may be feen in the Memoirs of the French Academy of Sciences. M. Carté alfo compofed fome treatifes on nther branches of natural plilofophy, and fome or mathenatical fubjects; all which he bequeathcd to that illuftrious body, though it does not appear that any of them have yet been publifhed. It is not unl:kely that he was hindered from putting the laft hand to them by a train of diforders proceeding from a bad digeftion, which, after harraffing him during the face of five or fix years, at length brought him to the grave in 1711, at 48 years of age.

Though he poffeffed a confiderable degree of fcience and much ingenuits, like many other eminent men he had neglected in his youth to fudy the language of his native country. In confequence of this, one of the earlict of his female pupils, perceiving that his language was the reverfe of elegant, told him pleafantly, that as an acknowledgment for the tronble which he had taken to teach her phillfophy, fle would in return teach him I'rench; and he cyer atterwards faid, that from her leffons he had reaped great advantage. To this circumnaace probably it was owing that he thought more lighly of the genius of women than that of men.

The following is a chronological lift of his memoirs printed in the volumes of the Academy.

1. The restification of curve lines ty tangents, 170 . 2. Solution rf a problem propofed to geometricians, \&c. 1701. 3. Reflections on the table of equations, 1701. 4. On the canfe of the refrasion of light, 1702 . 5. Why the tides are always augmenting from Breft to St Malo, and diminifhing along the coafts of Nermandy, 1702. 6. The number and the names of mufical inferuments, 1702. 7. On the vinegar which caules fmall ftones to roll upon an inclined plane, 1703. 8. On the reatification, \&c. of the caulics by reflestion, 1703. 9. Merhod for the reatification of curves, 1704. 10.Obfervations on the production of found, 1704. 11. On a curve formed from a circle, 1705 . 12. On the refraction of muiket-balls in water, and on the refiftance of that fluid, 1705. 13. Experiments on capillary tubes, 1705. 14. On the propotion of pipes to have a determinate quantity of water, 1705. 15. On the laws of motion, 1706. 16. On the properties of pendulums, with fone new properties of the parabola, 1707. 17. On the proportion of cylinders, that their founds may form the mufical cords, 1709. 18. On the elaflicity of the air, 1710. 19. On catoptrics, 1710. 20. On the Monochord: in the Machines, tom. 1, with fume other pieces, not mathematical.

CARTERET, a maritime co. of Newbern diftrict, N. Carolina, on Core and Pamlion Sounds. It contains 3732 inhabitants, including 713 flaves. Beaufort is the chief town.-Mcros.

CASCABEL, the knob or button of metal behind the breech of a cannon, a; a kind of handle by which to elevate and direct the piece; to which fome add the fillet and ogees as far as the bafe-ring.

CASCO Bay, in the diftrict of Maine, fpreads N. W. between Cape Elizabeth on the S. W. and Cape Small Point on the N. E. Within thefe points, which are about 40 miles apart, are about 300 fmall iflands, fome of which are inlabited, and nearly all more or lefs cultivated. The land on thefe illands, and on the oppofite coaft on the main, is the beft for agriculture of any on the fea coaft of this country. Cafco includes feveral hays. Maquait Bay lies about 20 miles N. of Cape Elizabeth. The waters of Cafco extend feveral arms or creeks of falt water into the country. The waters go up lifeadows River, where veffels of a confiderable fize are carried by the tide, and where it flows within one mile of the waters of Kennebeck. On the E. fide of Cape Elizabeth is the arm of the fea called Stroudrouter. Fatther E. is Prefumpfoot River formerly called Prefumpea, or Frefumpkeag, which rifes in Sebago Pond. This river opens to the waters of Cafco Bay on the E. of Portland; its extent is not gieat, but it has feveral valuable mills upon it. Rayal's River called by the natives Wetecuftego, falls into the bay 6 miles from Prefumpfoot River. It has a good harbor at its mouth for fmall veffels; and has feveral mills upon it ; 2 miles higher a fall obftruets the navigation. Between it and Kennebeck there are no rivers; fome creeks and harbors of Cafco Bay throw themelves into the main land, affording harbors for fmall veffels, and interfecting the country in various forms.-Morse.

Casemate, or Cazemate, in fortification, a kind of vault or arch of llone-work, in that part of the flank of a baftion next the curtain; ferving as a battery to defend the face of the oppofite baftion, and the moat or ditch.

It is now feldom ufed, becaufe thie batteries of the enemy are apt to bury the artillery of the cafemate in the ruins of the vault ; befide, the great fmoke made by the difcharge of the cannon renders it intolerable to the men. So that, inflead of the ancient covered cafemates, later engincers have contrived open ones, only guarded by a parapet, \&c.

Casemate is alfo ufed for a well with feveral fubterraneous branches, dug in the paffage of the baftion, till the miner is heard at work, and air given to the mine.

CASSINI (James), a celebrated French aftronomer, was born at Paris February 18.1677, being the younger fon of Johannes Dominicus Cafini, of whom forve account has been given in the Encyclopadia.
After his firf lludies in his father's houfe, in which it is not to be fuppufed that mathematics and aftronemy would be neg'ected, he wa, fent to dludy philofophy at the Mazarine col'ege, where the celebrated Varignon was then proteflor of mathernatics. From the affiftance of this eminent man young Cutini rofored fo well, that at 15 years of age hefupporteda mathematical thefis with great henour. At the age of 17 he was admitted a member of the Acaderny of Sciences; and the fame year be accompanied

C A S [219] C A S

Caflini. accompanied his father in a journey to Italy, where he affited him on the verification of the meridian at Bologna and other meafurements. On his return he performed fimilar operations in a jounney into Holland, where be difenvered fome crrors in the meafure of the earth by Snell, the refult of which was communicated to the Academy in 1702. He made alfo a vifit to England in 1696 , where he was made a member of the Royal Society. In ifiz he fucceeded his father as aftronomer royal at the obfervatory of Paris. In 1717 he gave to the Academy his refearches on the difance of the fixed flars; in which he fhewed that the whole annual onbit, of near zco millions of miles diameter, is but as a point in comparifon of that ditance. The fame year he communicated alfo his difcoveries concerning the inclination of the orbits of the fatellites in general, and efpecially of thofe of Saturn's fatellites and ring. In 1725 he undertwok to determine the caufe of the moon's librdtion, by which the fhews fometines a little towards one fide, and fometimes a litule on the other, of that half which is commonly behind or hid from our view.

In 1732 an important queftion in aftronomy exercifed the ingenuity of our author. His father had determined, by his oblervations, that the planet Venus revolved ahout her axis in the fpace of 23 hours; and M. Bianchini had publithed a work in 1729 , in which be fetted the period of the fame revolution at 24 days 8 hours. Frum an examilution of Bianchini's obfer vations which were apon the fpots in Venus, he difcovered that he had intermitted his obfervations for the fpace of three hours, fricm which caufe he had probably mitaken new ipots for the old ones, and fo had been led into the miftake. The probability is, that boct had fallen into fome miftake, or that they had proceeded on very different principles; for otherwife fuch different refults are wholly nnaccountable. Dr Herfchel feems fitisfied that the period of the revolution is lefs than Bianchini has made; but he does not fay what it is, or that it is not much greater than it was fuppofed by Caffini. Our author, after he had convided Bianchini, as le thought, of error, determined the nature and quantity of the acceleration of the motion of Jupiter at hall a fecond per year, and of that of the retardation of Satu:n at two minutes per year ; that thefe quantities would go on increating for 2000 years, and then would decreate again. In 1740 te publithed his Aftronomical Tables, and his Elements of Aftronomy; very extenfive and accurate works.

Altheugh aftronomy was the principal object of our author's confideration, he did not contine himfelf abfolutely to that branch, but made occational excurfions into other fields. We owe alfo to him, for example, Experiments an Eleaticity, or the Light produced by Bodes by Friation; Experiments on the Recoll of Firearms; Refearches on the Rife of the Mercury in the Baromoter at different Heights above the Level of the Sisa; Refieaicns on the perifeting of Burning-glafes; and other Memoirs.

The French Academy had properly jodged, that one of its mort important objects was the medfurement of the earth. In 1669 Picard oneafured a little more than a degree of latitude to the noth of Paris; but as that extent appeared too finall from which to conclude the ubole circumference with fuficient accurdey, it was refolved to coutinue that meafurcreat on the meridian of

Paris to the notth and the fouth, through the whole extent of the country. Accordingly, in 1683 , the latc M. de la Hire continued that on the notll fide of Paris, and the older Caffimi that on the fouth fide. The latter was affited in 1700 in the continuation of his operation by his fon our author. The fime work was farther continued by the fame academicians; and, finally, the part left unfinifhed by De la Hire in the north was finithed in 1718 by our author, with the late Maraldi, and De la Hire the younger.

Thefe operations produced a contiderable degree of precifion. It appeared alf, from this meafured extent of fix degrees, that the degrees were of different lengths in different parts of the meridian; and in fuch fort that our author concluded, in the volume publifhed for 1718, that they decreafed mote and more towards the pole, and that therefore the figure of the earth was that of an oblong fplesoid, or having its axis longer than the equatorial diameter. He alfo meafured the perpendicular to the fame meridian, and compared the medured diffance with the differences of longitude as before determined by the eclipfes of Jupiter's fatelites: whence he concluded that the length of the degrees of longitude was imaller than it would be on a fphere, and that therefore agin the figure of the earth was an oblong ipheroid, contrary to the determination of Newton by the theory of gravity. Though Newton was of all men the moll averie from controverfy, the other marhematicians in Britain did not tamely fubmit to crnclufions in direct cppofition to the fandamental doctrine of a philofopher of whofe talents the nation was jufly proud. The confequence was, that the French government fent two differcut fets of meafurers, the one to meafure a dagree at the equator, the other at the polar circle; and the comparion of the whole dctermined the ligure to be an oblate fpheroid, contrary to Cafini's determination.

After a long and labonious life, James Caffini died in April ${ }^{1756}$, in confequence of a fall, and was iucceeded in the Academy and Obfer vatory by the fubjeat of the following article. He puldilaed, a Tratiteon the Magnitude and Figure of the Earth; as alto, The Elements or Theory of the Planets, with T'ables; belide an infinite number of papers in the Memairs of the Academy, from the year 1699 to 1755 .

Cassing de Thury (Cefar Françuis), a celebrated French aftronomer, diredor of the obfervatory, penfioner aftronomer, and member of mon of the learned focieties of Europe, was born at Paris June 17. 1714, being the lecond fon of Janes Caffini, the fubjeet of the preceding memoir, whofe nccopations and t.llents he inherited and fupposted wihgreat honour. He received his firt lefifus in altronomy a:ad mathomatics from MM. Maraldi and Camus; and made Cuch a rapid progrefs, that when he was not more that ten years of age he calculated the phafes of a total eclipfe of the fun. At the are of eighteen he accompanied his father in his two journeys urderiaken tor deawing the perpendicular to the obfervatory meridian from Stabourg to Bref. From that time a general chatt of France was devifed; for which purpoic it was neceflary to triverte the country by feveral lines parallel and perpendicular to the meridian of Paris, and our author was charged with the conduet of 4 is bulinefs; in which he was fo fcrup::lous as to mealire arain what had been meafur.

Caffini.
~-

Caffui. ed by his father. This great work was publifhed in 1740, with a chart fhewing the new meridian of Paris, by two different feries of triangles, paffing along the fea coafts to Bayonne, traverfing the frontiers of Spain to the Mediterranean and Antibes, and thence along the eaftern limits of France to Dunkirk, with parallel and perpendicular lines deferibed at the diftance of 6000 toifes from one another, from fide to fide of the country.

A tour which, in 1741, our author made in Flan. ders, in the train of the king, gave rife, at his majefty's infance, to the chart of France ; relative to which Caffini publithed different works, as well as a great number of the theets of the chart itielf. In 1761 he under. tonk an expedition into Germany, for the purpofe of continuing to Vienna the perpendicular of the Paris meridian; to unite the triangles of the chart of France with the points taken in Germany; to prepare the means of extending into that country the fame plan as in France; and thus to eftablifh fucceflively for all Europe a moft ufeful uniformity. Our author was at Viemna the 6th of June 1761, the day of the tranfit of the planet Venus over the fun, of which he obferved as much as the ftate of the weather would permit him to do, and publifhed the account of it in his Voyage en Allemagne.

Finally, M. Calini, always meditating the perfeclion of his grand defign, profited of the peace of 1783 to propofe the joining of cerrain points taken upon the Englifitenaft with thofe which had been determined on the coalt of France, and thus to connett the general chart of the latter with that of the Britill ifles, like as he had before united it with thofe of Flanders and Germany. The propofal was favourably received by the Englifh government, and prefently carried into effect under the direction of the Royal Society, the execution being committed to the late General Roy. See the life of that general in this Supplement.

Between the years 1735 and 1770 , M. Caflini publithed, intile volumes of Memoirs of the French Academy, a prodigious number of pieces, confifting chief. ly of aftronomical obfervations and quettions; among which are obfervable, refearches concerning the parallax of the fun, the Moon, Mars, and Venus; on altronomical refractions, and the effect caufed in their quantity and laws by the weather; numerous obfervations on the obliquity of the ecliptic, and on the law of its variations. In fiort, he cultivated attronomy for fifty years, the moft important for that fience that ever elapfed for the magnitude and variety of objects, in which he commonly futained a principal thare.
M. Caffini was if a very ftrong and vigorous conttitution, which carried him through the many laborious operations in gengraphy and altronomy which be condicted. An habitual reterition of uine, however, rendered the laft twelve years of his life very painful and difrelfing, till it was at length terminated by the fmall. pox the 4 th of September 1784 , in the 71 ft year of his age. He was fucceeded in the acauemy, and as direitor of the obfervatory, by his only fon John-Do.
minic Caffini, the fourth in order of direst defcent who has filled that honourable ftation.

CASTINE, the thire town of Hancock co. diftrict of Maine, is fituated on Penobfor bay. It was taken from the town of Penobicot, and incorporated in Feb. 1796. It is named afier a French gentleman who refided here 130 years ago, as alfo

Castine River, which is about 14 miles long, is navigable for 6 miles, and has feveral mills at the head of it. It empties into Penobfot bay.-Morse.

CASTLETON, a townthip and river in Rutland co. Vermont, 20 miles S. E. of Mount Independence, at Ticonderoga. Lake Bombazon is chiefly in this town and fends its waters into Cafleton River which, rifing in Pittsford, paffes through this town in a S. wefterly courfe, and falls into Pultney River in the town of Fairhaven, a little below Col. Lyon's iron works. Fort Warner flands in this town. Inhabitarts 805 .-ib.

CASTRAMETATION, the art or act of encamp. ing an army.

CASWELL Co. in Hillborough diftrict, N. Carolina, borders on Virginia N. It contains 10,096 inhabitants, of whom 2,736 are flaves. Leefourg is the chief town.-Morse.

CATABAW Indians, a fmall tribe who have one town called Catabaw, fituated on the river of that name, N . lat. 34. 4y. on the boundary line between N. and S. Carolina, and contains about 450 inhabitants, of which about 150 are fighting men. They are the only tribe which refides in the flate: 144000 acres of land were granted them by the propuietary government. Thefe are the remains of a formidable nation, the braveft and molt generous enemy the fix nations had; but they have degenerated finee they bave been furrounded by the whites. -ib.
catacaustics, or eatacaustic Curves, in the higher geometry, are the fpecies of cautlic curves formed by reffection.

Catacoustics, or Cataphonics, is the fcience of reflected founds; or that part of acouttics which treats of the properties of echoes.

CATALOGUES of Books, is a fubject of which a very curious hiftory has been given to the world by Profeffor Bechmann. In the Encyclopxdia mention has been made of iome of the mof valuable catalogues, their defeats f:ointed out, and rules given for making them more perfect; but nothing has there been taid of their origin, or of the ules which might be made of the oldeft catalogues.

Accordiig to the Puffefor, Csorge Willer, whom fome inproperly call Vither, and chhers IValter, a bookfeller at Augharg, who kert a very large thop, and frequented the Franclforfairs, in it te:l wor the plan of calfing in be primed, whice every rar, a catalogue of all the new bocks, in whicls the lize and printers names were marked Le Mire, better known under the name of Mirxus, fays, that catal gues were firft printed in the year 1554; buc Labbe (1), Reimann (b) and Heumann (c), who wok thenr infermation from Le Mire, make the jear erroneoully to be 1564 . Willer's
(A) Labbe, Bibliotheca Bibliothecarum. Lipfix, 1682, 12 mo , p. 112.
(в) Einleitung in die Hiforium Literariam, i. p. 203.
(c) Conflectus Reip. Litter. c. vi. § 2. p. 3 iG.

C A T [221$] \quad$ C A T

Cualoguce. Willer's cataiogues were printed till the year 1592 by Nicol. Baffeus, printer at Franckfort. Other bookfellers, however, muft have fonn publifhed catalogues of the like kind, though that of Willer continued a long time to be the principal.

In all thefe catalogues, which are in quarto and not paged, the following order is obferved. The Latin books occupy the firf place, beginning with the Proteflant theological works, perhaps becaufe Willer was a Lutheran; then come the Catholic; and after thefe, books of jurifprudence, medicine, philofophy, poetry, and mufic. The fecond place is alfigned to German books, which are arranged in the fame manner.

The bookfllers of Leipfic foon perceived the advantage of catalogues, and began not only to reprint thofe of Franckfort, but alfo to enlarge them with many books which had not been bronght to the fairs in that city. Our author had for fome time in his cuftody, Catulogus univerfalis pro nundinis Francofurtenfibus vernalións, the anno 1600 ; or, A catalogue of all the books on fale in Book-ftreet, Francklont, and alfo of the books publifhed at Leipfic, which have not been brought to Franckfort, with the permifion of his highnefs the elector of Saxony, to thofe new works which have appeared at Leipfic. Printed at Leipfic by Abraham Lamberg, and to be had at his hop. On the September catalngue of the fame year, it is faid that it is printed from the Franckfort copy with additions. He found an Imperial privilege for the firf time on the Franck. fort September catalogue of 1616: Cum gratia et privilegio fpeciali f. caef. maj. Profat. apud \mathcal{F}. Krvgerum Auguftanum.

Reimmann fays, that after Willer's death the catalogue was publithed by the Leipfic bookfeller Henning Groffe, and by his fon and grandfon. The council of Franckfort caufed feveral regulations to be iffued refpecting catalogues; an account of which may be feen in D. Orth's Treatije on the Imperial Fairs at Franck. fort. After the bufinefs of book-felling was drawn from Franckfort to Leipfic, occafioned principally by the reffrictions to which it was fubjected at the former by the cenfors, no more catalognes were printed there; and the fhops in Book-ltreet were gradually converted into taverns (A).
"In the a 6th century there were few libraries; and thefe, which did not contain many books, were in monatteries, and confifted principatly of theological, philofophical, and hiftorical works, with a few, however, on jurifprudence and medicine; while thofe which treated of agriculture, manufactures, and trade, were thought unworthy of the notice of the learned, or of being preferved in large collections. The number of thefe works was, neverthelefs, far from being inconfiderable; and at any rate, many of them would have been of great ufe, as they would have ferved to illuftrate the inftructive hiftory of the arts. Catalngues which might have given occafion to inquiries after books, that may be fill fomewhere preferved, have fuffered the fate of tombflones, which, being wafted and crumbled to pieces by the dellroying hand of time, become no longer legible. A complete feries of them perhaps is nowhere to be Suppl. Vol. I.
found, at leall I do not remember (fays the Profeffor) Catalogues to have ever feen one in any library."

This lofs, however, he thinks, might be in fome meafure fupplied by the catalogues of Clefs and Draudius; who, by the defire of fome bookfellers, collected together all the catalogues which had been publithed at the different fairs in different years. The work of Clefs has the following title: Unius feculi ejufque virorunt litteratorum womumentis tum florentifimi, tunh fertilififin, ab anno 1500 ad 1602 nundinat un aulumnalium ind iufive, elenchus confummatifinus - defiumtus partime ex fingularims nundinarum catalogis, parlim ex bibliothecis. Auctore Joanne Cleffio, Wineccenfi, Hannoio, philofopho ac me-dico.-By the editor's preface, it appears that the firn edition was publifhed in 1592. The order is almolt the fame as that obferved by Willer in his catalogues.

The work of Draudius, which was printed in feveral quarto volumes for the firft time in 1611, and afterwards in 1625 , is far larger, more complete, and more methodical. Our author, however, confefies, that he never faw a perfect copy of either edition. This catalogue confifts of three parts; of which the firf has the title of Billiotheca claffica, five Catalogus officinalis, in quo fing zuli fingularum faculiatum ac profefionum libri, qui in quavis fere lingua extant-recenfentur ; ufque ad an. num 1624 ind lafive. Auctore M. Georgio Draudio.It contains Latin works on theology, jurifprudence, medicine, hiftory, geography, and politics. The copy in the library of the univerfity of Gottingen ends at page 1304, which has, however, a catch-word, that feems to indicate a deficiency.-The fecond part is entiuled, Bibliotheca clafica five Catalogus officinalis, in quo pbilofophici artiumque adeo bunnaniorum, poetici etiant et inufici libri ufque ad annum 1624 continentur. This part, containing Latin books alfo, begins at page 1298 , and ends with page 1654, which is followed by an index of all the authors mentioned.-A fmaller volume, of 302 pages, without an index, has for title, Billiotheca exotica, five Catalogus officinalis librorum peregrinis ling uis ufualibus fripioram. And a third part, forming 759 pages, befides an index of the authors, is called, Bilibitheca librorum Germanicorum clafica; that is, A catalogue of all the books printed in the German language till the jear 1625.

We have reafon to belicve that there are other editions of this catalogue than thofe mentioned by Profef. for Beckman; and it might become fome prince or great man, for it is not a work for a bookfeller, to compare all the editiors together, and publith a new one more correct than any that is at prefent extant. This indeed would be an expenfive and not an eafy tafk; for our author obferves, that all the oldeft catalogues had the fame faults as thofe of later date, and that thefe faults have been copied by Draudius. Many books are mentioned which were never printed, and many titles, names, and dates, are given incorreedly; but Draudius neverthelefs is well worth the attention of any one who may be inclined to employ his time and ingenuity on He hiltory of literature; and his work certainly was of ufe to Haller when he compofed his Biblictleca.

Catalogues of the Stars, have ufually been difpofed,
G g either

C A T [222] C A T

Cavalogue either as collected into certain figures called confellations, of the Stars. or according to their right afcenfions, that is, the order of their paffing over the meridian.

Of the principal catalogues, according to the firft of thefe forms, an account has been given in the Encyzlopadia. The firt catalogue, we believe, that was printed in the new or fecond form, according to the order of the right afcenfions, is that of Dela Caille, given in his Ephemerides for the ten years between 1755 and 1765 , and printed in 1755 . It contains the right afcenfions and declinations of 307 Arars, adapted to the beginning of the year 1750. In 1757 De la Caille publifhed his Affronomice Fundamenta, containing a catalogue of the right afcenfions and declinations of 398 ftars, likewife adapted to the berinning of 1750 . And in 1763 , the year after his death, was publified the Calum Auftrale Stclliferum of the fame author; containing a catalogue of the places of 1942 fars, all fituated to the fouthward of the tropic of Capricorn, and obferved by him while he was at the Cape of Gond Hope in 1751 and 1752 ; their places being alfo adapted to the beginning of 1750. In the fame year was publifhed his Ephemerides for the ten years between 1765 and 1775 ; in the introduction to which are given the places of 515 z.0diacal ftars, all deduced from the obfervations of the fame author; the places adapted to the beginning of the year 1765 .

In the Nautical Almanac for 1773, is given a catalogue of $3^{8} 7$ ftars, in right afcenfon, declination, longitude, and latitude, derived from the obfervations of the late celebrated Dr Bradley, and adjufted to the beginning of the year 1760 . This fmall catalngue, and the refults of about 1200 obfervations of the moon, are all that the public have yet feen of the mnltiplied labours of this mof accurate and indefatigable obferver, although he has now (1798) been dead upwards of 36 years.

In 1775 was publinlied a thin volume, intitled, Opera Iredita, containing feveral papers of the late Tobias Mayer, and among them a catalogue of the right afcenfions and declinations of 99^{8} Atars, which may be occulted by the moon and planets; the places being adapted to the beginning of the year 1756 .

Ar the end of the firt volume of "AAtronomical Obfervations made at the Royal Obfervatory at Greenwich," publifhed in 1776, Dr Malkelyne, the pretent aftronomer royal, has given a catalogue of the places of 34 principal Itars, in right afcenfion and north polar diftance, adapted to the beginning of the year 1770 .

Thefe being the refult of feveral years repeated obfervations, made with the utmof care, and the beft infruments, it may be prefumed are exceedingly accurate.

In 1782, M. Bode of Berlin publifined a very ex. tenfive catalogue of 5058 of the fixed ftars, colle Eted from the cbfer vations of Flamfteed, Bradley, Hevelius, Marer, De la Caille, Meffier, Monnier, D'Arquier, and other aftronomers; all adapted to the beginning of the year 1780; and accompanied with a celeftial atlas or Ret of maps of the conflellations, engraved in a molt dclicate and beautiful manner.

To thefe may be added Dr Herfchel's catalogue of double Atars printed in the Phil. Tranf. for 1782 and 1783 ; Meffier's nebulx and clukers of fars, publithed in the Comoifance des Temps for 1784; and Herfchel's
catalogue of the fame kiad, given in the Phil. Tranf. Catalogue for 1786.

In 1789 Mr Francis Wollaton publifhed "A Spe. cimen of a General Aftronomical Catalogue, in Zones of North-polar Diftance, and adapted to January 1. $1790 . "$ Thefe ftars are collested from all the catalogues before-mentioned, from that of Hevelius downwards. This work contains five diltinet catalogues; viz. Dr Mafkelyne's new catalogue of 36 principal itars; a general catalogue of all the ftars, in zones of northpolar diftance; an index to the general catalogue; a catalngue of all the ftars, in the order in which they pars the meridian; and a catalogue of zodiacal fars, in longitude and latitude.

Finally, in 1792 , Dr Zach publifhed at Gotha, Tabule Motuum Solis; to which is annexed a new catalogue of the principal fixed Atars, from his own oblervations made in the years $1787,1,88,1789,1790$. This catalogue contains the right afcenfions and declinations of 3^{81} principal ftars, adapted to the beginning of the year 1800 .-Hutton's Mahbematical Diaionary.

Befides thefe two methods of forming catalogues of the ftars, Dr Herfchel has conceived a new one, in which the comparative brightnefs of the fars is accurately expreffed. It is long fince aftronomers were firf led to arrange the fars in claffes of different magnitudes by their various degrees of brilliancy or luttre. Brightnefs and tize have at all times been confidered as fynonym rus terms; fo that the brightef fars have been referred to the clais comprehending thofe of the firft magnitude ; and as the fubequent nrders of fars have been fuppofed to decreafe in lullre, their magnitude has been determined in the fame decreafing progreflion: hut the want of fome fixed and fatisfactory ltandard of luftre has been the fource of confiderable confufion and uncertain. ty in fettling the relative magnitudes of the Atars. A far marked 1.2 m . is fuppoled to be between the firt and fecond magnitude; but 2. im. intimates, that the ftar is nearly of the fecond magnitude, and that it partakes fomewhat of the lattre of a Atar of the firft order. Such fubdivifions may be of fome ufe in afcertaining fars of the firt, fecond, and third claffes; but the expreffinns $5 \mathrm{~m}, 5.6 \mathrm{~m}, 6.5 \mathrm{~m}, 6 \mathrm{~m}$, muk be very vague and indefinite. Dr Herfchel nbferves that he has found them fo in fact; and he therefore confiders this method of pointing ou: the different luftre of ftars as a reference to an imaginary fandard. If any dependence could be placed on this method of magnitudec, "it would follow, that no lefs than eleven flars in the conftellation of the Lion, namely, $\beta \sigma \pi \xi$ A 6 cd $54,48,72$, had all undergone a change in their lullre fince Flamfteed's time: For if the idea of magnitudes had heen a clear one, our anthor, who marked $\beta 1.2 \mathrm{~m}$. and 22 m . ountht to be unjerkood to mean that β is larger than γ; but we now find that actually γ is latger than β. Every one of the eleven fars (fays Dr Herfchel) which I have pointed out may be reduced to the fame contradiction."

The author has pointed out the intances of the infufficiency of this method, and of the uncertain conclufions that are deduced from it in determining the comparative brightnefs of ftars fund not only in Mr Flamfteed's cataligue, but alfo in the catalngues of other altronomers. It is fufficiently apfarent that the prefent method of exprefling the brightuefs of the flars is very
defective.

Catalogue deftetive. Dr Herfchel therefore propofes a different nor can three fuch Itars, as 20, 40, 39, Librx, admit Catalogae $\underbrace{\text { of the Stars. mode, that is more precife and fatisfactory. }}$
"I place each far (he fays), inftead of giving its magnitude, into a fhort feries, conftructed upon the order of brightnefs of the nearelt proper ftars. For infrance, to exprefs the luftre of D, I fay CDE. By this lhort notation, inftead of referring the ftar D to an imaginary uncertain ftandard, I refer it to a precife and determined exiling one. C is a flar that has a greater luftre than D , and E is another of lefs brightneds than D. Both C and E are neighbouring Atars, chofen in fuch a manner that I may fee them at the fame time with D, and therefore may be able to compare them properly. The luftre of C is in the fame manner afcertained by BCD; that of B by ADC ; and alfo the brightnefs of E by DEF; and that of F by EFG.
"That this is the mol natural, as well as the moft effectual way to exprefs the brightnefs of a ftar, and by that means to detcat any change that may lappen in its luftre, will appear, when we confider what is requifite to afcertain fuch a change. We can certainly not wifh for a more decifive evidence, than to be alfured, by actual infpection, that a certain far is now no longer more or lefs bright than fuch other fars to which it has been formerly compared; provided we ate at the fame time affured that thofe other ftars remain Itill in their former unaltered luftre. But if the far D will no longer fland in its former order CDE, it mutt have undergone a clange; and if that order is now to be expreffed by CED, the Itar has loft tome part of its luftre ; if, on the contrary, it ought now to be denoted by DCE, its brightnefs mult have had fome addition. Then, if we fhould doubt the Itability of C and E , we have recourfe to the orders BCD and DEF, which exprefs their luAtre; or even to ABC and EFG, which continue the feries both ways. Now having before us the feries BCDEF, or if neceffary even the more extended one ABCDEFG, it will be impolible to miftake a change of brightnefs in D , when every member of the feries is found in its proper order except D."

In the author's journal or catalogue, in which the order of the luftre of the flars is fixed, each ftar bears its own proper name or number, eg. " the brightnefs of the far \mathcal{S} Leonis may be expreffed by $\beta \delta$ Leonis, or better by 94-68-17 Leonis; thefe being the numbers which the three above fars bear in the Britifh catalogue of fixed Alars."

This method of arrangement occurred to Dr Herfchel fo early as the year 1782 ; but he was diverted from the regular purfuit of it by a variety of other af. tronomical engagements. After many trials, he propofed, in the Tranfactions of the Royal Society of London for 1796 , the plan which appeared to him the mont eligible. It is as follows:--Inttead of denoting particular fars by letters, he makes ufe of numbers; and in his choice of the ftars which are to exprefs the luftre of any particular one, he directs his firit view to perfect equality. Whan two ltars feem to be fimilar both in brightnefs and magritude, he puts down their numbers together, Ceparated merely by a point, as 30.24 Leonis; but if two flats, which at firfe feemed alike in their luftre, appeated on a longer infpection to be different, and the preference fhould be always decidedly in favour of the fame flar, he feparates thefe flars by a comma, thas, $41,9+$ feonis. This order mult not be varied;
of a different arrangement. If the flate of the heavens of the stara, fhould be fuch as to require a different order in thefe numbers, we may certainly infer that a change has taken place in the luftre of one or more of them. When two flars differ very little in brightnefs, but fo that the preference of the one to the other is indifputable, the numbers that exprets them are feparated by a fhort line as 17 - 70 Leonis, or $68-17-70$ Leonis. When two fars differ fo much in brightnefs, that one or two other flars might be interpofed between them, and ftill leave fufficient room for diftinction, they are diflinguifhed by a line and comma, thus, 一, or by two lines, as $32--4$ Leonis. A greater difference than this is denoted by a broken line, thus - - 29 Bootis. Ois the whole, the auchor obferves, the marks and diflinctions which he has adopted cannot pofibly be miftaken; "a point denoting equality of luftre; a comma indicating the leaft perceptible difference; a thort line to mark a decided but fimall fuperiority; a line and comma , or double line, to exprefs a confiderable and friking excefs of brightnefs; and a broken line to mark any other fuperiority which is to be looked upon as of no ufe in eflimations that are intended for the purpofe of directing changes."

The difficulties that attend this arrangement are not difguifed; but the importance and utility of it more than compenfate for the labour which it muft neceflarily recpuire. By a method of this kind, many difcoveries of changeable and periodical flars might probably have been made, which have efcaped the mott diligent and accurate obfervers. We might then, as the authur fuggefts, be enabled to refolve a problem in which we are all immediately concerned.
" Who, for inflance, would not will to know what degree of permanency we ought to afcribe to the luftre of our fun? Not only the flability of our climates, but the very exiftence of the whole animal and vegetable creation itfeif, is involved in the queftion. Where can we hope to receive information upon this fubject but from altronomical obfervations? If it be allowed to admit the fimilarity of flars with our fun as a point eftablifhed, how neceffary will it be to take notice of the fate of our neighbouring funs, in order to guefs at that of our own! That flar, which among the multitude we have dignified by the name of fun, to-morrow may flowly begin to undergo a gradual decay of brightnefs, like B Leonis, a Ceti, a Draconis, \& Urfe majoris, and many other diminifhing flars that will be mentioned in my catalogues. It may fuddenly increafe, like the wonderful ftar in the back of Caliopea's chair, and the no lefs renarkable one in the foot of Serpentarius; or gradually come on like β Geminorum, ε Ceti, ζ Sagittarii, and many other increafing ftars, for which I alfo refer to my catalogues; and, lafty, it may turn into a periodical one of 25 days duration, as Algol is one of three days, \& Cephei of five, β Lyix of fix, "Antinoi of feven days, and as many others as are of various periods."

Having thus explained the general principle on which this catalogue is formed, as we find it in the author's firft memoir on the fubject, we mull refer the reader to the Doctor's own account for its particular arrargement ; oblerving only that the catalogue fubjoined comprehends nine confellations, which are arranged in al-

C A T [224$] \quad$ C A T

Catalogue phabetical order, with the comparative brightnefs of of the stars the ftars accurately ftated. In a fubfequent paper, pubII $\underbrace{\text { Catawefly. }}$ lifhed in the fame volume, he has completely verified the utility of his method by experience, and fhewn that
there is no permanent change of luftre in the ftars. In the notes to his firt catalogue he mentioned a Herculis as a periodical ftar. By a feries of obfervations on this flar, compared with x Ophiuchi, which was moft conveniently fituated for his purpofe, he has been able not only to confirm this opinion, but to afcertain its period. His obfervations are arranged in a table, by means of which be determines that this ftar had gone through four fucceffive changes in an interval of 241 days; and therefore the duration of its period muft be ahout 60 days and a quarter. This faet coneurs with other eircumflances in evincing the rotatory motion of the fars on their axes. "Dark fpots, or large portions of the furface, lefs luminous that the reft, turned alternately in certain directions, either towards or from us, will account for all the phenomena of periodical changes in the luftre of the fars, fo fatisfactorily, that we certainly need not look out for any other caufe." If it be alleged that the periods in the change of luftre of fome ftars, fuch as Algol, β Lyræ, o Cephei, and n Antinoi, are fhort, being only $3,5,6$, and 7 days refpectively ; while thofe of o Ceti, and of the changeable ftar in Hy dra, and that in the neek of the Swan, are long, amounting to 331,394 , and 497 days; and that we cannot afrribe phenomena fo different in their duration to the fame caufe-it may be anfwered to this objection, that the force of it is founded on our limited acquaintance with the fate of the heavens. To the 7 ftars, the periodical changes of which were before known, we may now add a Herculis, which performs a revolution of its changes in 60 days.
"The ftep from the rotation of a Hereulis to that of - Ceti is far lefs confiderable than that from the pcriod of Algol to the rotation of a Hereulis; and thus a link in the chain is now fupplied, which removes the objection that arofe from the vacancy." The rotation of the fifth fatelite of Saturn is proved by the cliange obfervable in its light; and "this variation of light, owing to the alternate expofition of a more or lefs bright hemifphere of this periodical fatellite, plainly indicates, that the fimilar phenomenon of a changeable ftar arifes from the various luttre of the different parts of its furface, fucceftively turned to us by its rotatory motion."

Befides, we perceive a greater fimilarity between the fun and the ftars, by means of the fpots that muft be admitted to exift on their furfaces, as well as on that of the fun.

Dr Herfehel farther obferves, that the ftare, befides a rotatory motion on their axes, may have other movements; "fuch as nutations or changes in the inclination of their axes; which, added to bodies much flittened by quick rotatory motions, or furrounded by rings like Saturn, will eafly aceount for many new phenomena that may then offer themfelves to our extended views." To this paper is likewife fubjoined a catalogue of nine conftllations; and the author promifes to give the whole of them in fucceflive thort catalogues on the fame plan.

CATAIVESSY, a townhip in Northumberland co. Pennfylvania, fituated on the S. E. bank of the E. branch of Sufquehannah River oppofite the mouth of

Fifhing Creek, and about 20 miles N. E. of Sunbury. Catenaria -Morse.
CATENARIA, or Catenary Curve. See En. Catharine. cycl. and Arch in this Supplement.

CATHARINE II. emprefs of all the Ruffias, acted fo confpicuous a part on the theatre of the wolld; poffeffed fuch uneommon powers of mind, bighly cultivated by fcience and literature; and was fuch a patronefs of fcience and literature in others-that it cannot be deemed foreign from a work of this nature to give fome account of the principal events of her more private life.

Sopmia Augusta Frederica, who, upon her marriage to the grandfon of Peter the Great, alfumed the name Catharine Alexievna, was born at Stetion on the 2d of May 1729. Her father was Chriftian Au. gultus, prince of Anhalt Zerbft-Dornburg, at that time major general in the Pruffian fervice, commander in clief of the regiments of infantry, and governor of the town and fostrefs of Stettin. Her mother, who was born princefs of Hulle ein Eutin, was a woman of great parts and beauty, of nearly the fame age with the prince royal of Pruffia, afterwards Frederic the Great, with whom the kept up a regular eorrefpondence, and who afterwards contributed to the aggrandifement of her daughter. This accomplifhed princefs took upon herfelf the care of educating the joung Sophia, whom the brought up in the fimpleft manner, and would not fuffer to exhibit the leaft fymptoms of that pride to which the had fome propenfity from her earlieft childhood. The confequence of this falutary reftraint was, that good humour, intelligence, and fpirit, were even then the flriking features of her youthful character. Being naturally addicted to reading, to reflection, to learning, and to employment, fhe was taught the French and other fathionable languages; and was inftructed to read fuch books chiefly as might make her acquainted with hifory and with the principles of fcience; whillt the doctrines of the Lutheran religion were carefully explained to her by a divine, who little thought how foon his illuftrious pupil would embrace another faith.

The emprefs Elizabeth, who then fwayed the feep. tre of Ruffia, had in early life been promiled in marriage to the young prince of Holitein-Eutin, brother to the prineefs of Anhalt Zerbft ; but at the inftant when the marriage was about to be celebrated, the prince fell fick and died. Elizabeth, who loved him to excefs, became inconfolable, and in the bitternefs of her grief made a vow of celibacy. This vow, though fenfual, and even lafcivious, fhe kept fo far as never publicly to acknowledge any man as a hufbind; and upon her afcending the throne of her ancettors, fhe called her nephew the Duke of Hollein Gottorp to her court, where he was folemnly proclaimed, when fourteen years of age, Grand Duke, with the title of Imperial High. nefs, and declared fucceffor to the Emprefs Elizabeth. To fecure the fuccelfion in the farnily of Peter the Great, the Emprefs was very defirous to have her nephew marri=d; and the princefs of Anhalt Zerbft, not ignorant of the tender remembrance which the ftill preferved for her brother, conceived the idea of placing, by means of it, her daughter on the throne of Ruffia. She communicated her plan to the king of Prufia, who not only applauded it, but lent her his anliftance to carry it into execution.

C A T [225.$] \quad$ C A T

Catharine. n

Full of ambitions hopes, therefore, the princefs repaired with her daughter to St Peterfourgh, where fhe was received with friendllip by Elizabeih, and where the young Soplia fron made a confiderable impreffion on the mind of the Grand Duke. As Peter was well made, of a gnod figure, and, though uneducated, not deftitute of natural talents, the attachment became re. ciprocal; and the princefs of Zerbft, throwing herfelf at the feet of the emprefs, affured her, that the two lovers were attached to each other by a paffion unconquerable; and calling to ber mind the love which the lad herfelf borne to the prince of Holltein, conjured her to promote the happinefs of that prince's nlece. The ftratagem fucceeded. The choice of Elizabeth was next day announced to the council and to the foreign minifters; and preparations were made for celebrating the marriage with a magnificence worthy of the heir of the throne of the Ruffias. In the mean time the Grand Duke was feized with the fmall pox, from which, though he recovered, it was with fuch a change of features, as rendered him, from being comely, almoft hidenus, and converted the love of the young princefs of Anlualt, if indeed the ever felt for him that paffion, into horror and difgult. She was not, however, of a difpofition to let a disfigured countenance frighten hes from a throne. She embraced the Greek religion, changed her name from Sophia Augufta Frederica to Catharina Alexievna, and with the entire approbation of Elizabeth was married to her nephew the Grand Duke.

For fume time this ill matched pair lived together, though without love, yet on terms apparently decent; but a mutual dillike gradually took place between them, which the courtiers quickly difcovered, and were at pains to foment into hatred. Peter was now ugly and his mind was uninformed. Catharine, if not a beauty, was at leaft a lovely woman, and highly accomplifhed. She could find no entertainment in his converfation, and he felt himfelf degraded by her fuperiority. A faction was formed at court, headed by the great chancellor Beftucheff, to exclude the Grand Duke from the throne, and to place Catharine at the head of affairs; and to accomplith this end, every art was employed to fill the feeble mind of the emprefs with jealoufies of her nephew, and with a contempt of his character. He was reprefented at one time as extremely ambitions, and capable of the molt daning enterprifes, in get immediate poffeffion of the throne; and at another, as a wretch given up to druakennefs and to every unprincely vice.

The confequence of the firf of thefe accufations was, that he was kept at a diftance from his aunt, and a Atranger to public affairs; and being wholly unemploy. ed, that time which his education had not fitted him to fill up with reading, refleclion, and rational converdation, hung fo heavy on his mind, that it was no dificult matter for thofe difinpated young men, who were placed about him for that very purpoie, to initiate him in the habits of drunkenne's and the other mean practices to which it was pretended he had long been devoted. In fuch a fehonl, it was no wonder that he became a proficiont in grovelling diflipation: or that, being unpolitised, and even of rude manners, he chote for his companiors fome of the loweft of the people.

Catharime, in the mean time, languifed for that hap-
pinefs which the could not find in the fociety of her Catharine. hufand. She was fond of pleafure ; hut it was that comparatively refined pleafure which the had enjoyed at the court of Berlin. She loved balls, mufic, and elc. gant converfation, and could take no thare in the drunken revels of Peter. Among the young men with whom he was furrounded, his chamberlain Soltikoff was particularly remarked for the elegance of bis tafte and the graces of his perfon; and though yet farcely more than a boy in years, he was faid to have obtained the favours of feveral ladies of the court. Succefs had made him confident and ambitious; and his ambition prompted him to afpire at making a conquelt even of the Grand Duchefs. By ftudying her tatte, and con. triving to amufe her, he was at laft fuccefsful; and obtained from her Imperial Highnefs every favour which he could wifh ; but he enjoyed not his fortune with moderation, and his enemies contrived $t o$ get him placed in an honourable office at a diftance from the court. He was commiflioned to repair to Stockholm, with the title of Envoy Extraordinary, to notify to the king of Sweden the birth of Paul Petrovitch, of whom the Grand Duchefs had juft been delivered.* The pre- * oct. з. fumptuous Soltikoff, proud of the employment, fet off 1754° with halte to Sweden, and left it with equal rpeed. But farcely had he quitted Stockholm, on the wings of love and ambition, when he was fopped on the road by a courier, who put into his hands an order for him to go immediately to Hamburgh, and there to refide in the quality of miniter plenipotentiary from the court of Ruflia.

Catharine for fome time preferved her attachment to the exiled chamberlain : but all at once the prefence of a ftranger, whom fortune had brought to the court of Ruffia, made her forget the lover whom the no longer faw. This perfon was Staniflaus Poniatowfky, the late king of Poland, who firt made his appearance at St Peterfburg in the train of the Britifl ambaffador, and very quickly gained the affections of the Grand Duchefs. In carrying on this intrigue, the lovers were not fo cautious as to deceive the eyes of the envious courtiers, who repoited to the emprefs not only all that they faw, but whatever they fufpected. Elizabeth was incenfed, and commanded Ponatow k y to quit without delay the dominions of Ruflia. The accomplifhed Pole obeyed ; but foon returned clothed with a character which made him in fome degree independent of the emprefs.

The Count de Bruhl, then prime minifter to the king of Poland, faw of what impostance it was to his malter to have a powerful intereft at the court of Ruffia. He was likewife no ftranger to the paffion which the Grand Duchefs entertaincd for Poniatowfiy; and having got that nobleman decorated with the order of the Whiie Eagle, he fent him back to St Peterfourgh in the quality of minifter plenipotentiary from the repub. lic and king of Poland. Nor was this all that Bruhl did for the two lovers. Being informed by the chancellor Beftucheff, that the Grand Duke and Grand Duchefs were languifhing in a penury unworthy of their rank, he remitted to Poniatowfky 6ooo ducats, to be employed in fuch a manner as he might judge bett for fecuring the favour of the prince and lis confort. The ambafiador profied by thefe countels and benefactions. He was already fure of the Grand Duchefs's heart, and he very quickly gained the favour of her hufband. He
talked

C A T [226] C A T

$\underbrace{\text { Catharine. talked Englith and German with him; drark, fmoked, }} \begin{aligned} & \text { abufed the French, and extolled the king of Pruflia }\end{aligned}$ with unlimited praife.

The Grand Duchefs was fo blinded by her paffion, that the was never without Poniatowlky in her company. She devoted to him the whole of her time; and the made this intimacy fo little a fecret, that public report was lond to her prejudice. In the mean time fhe was delivered of the Princels Annet, who lived only fifteen months. The Grand Duke was the only perfon about
court who feemed to know nothing of what was palling. His uhole time was occupied in copying, with fervile affectation, the air, the manners, the tone of the king of Pruflia; and in drefling a little army at Oranienbaum in the Pruflian uniform. His eyes, however, were at latt opened. Some of the courtiers, from hatred to the chancellnr, who conntenanced the intrigue between the Grand Ducheis and the Polith ambaffador, roufed his jealoufy in order to dettroy their enemy. They fucceeded. He forbade his wife to be feen with Poniatowiky, and prevailed with the emprefs to deprive the chancellor of his office, and to banifh him to an eflate which he had 120 verts beyond Mofcow.

Catharine had now to fupport at once the averfion of her hufband, the indignation of the emprefs, the infulting difdain of a court, which a few days before was lavilh of its affiduities and fmiles; and what amisted her molt cf ali, the dread of lofing for ever her favourite Poniatowiky. Her courage, however, did not forfake her. Poniatowiky was indeed recalled, and left Rufia, after fuffering fome deferved indignities from the Grand Duke, who about this time formed a connection with one of the daughters of the Senator Vorontzoff, brocher to the new chancellor. This lady, Elizabeth Romanovna Vorontzoff, was elder lizer to the Puincefs Dafhkoff, who acted fo confpicuous a part in the revolution which fet the crown on the head of Catharine. She was beautiful, but vain; and poffelled not either the wit or the underftanding of her fifter.

In the mean time the health of the emprefs vifibly declining, Catharine was very defirous of being reconciled to her: but the irritated fovercign would litten to no accommodation, except on terms too humiliating for the laughty fpirit of the Grand Duchefs. Catharine, theretore, abjented herielf from court, and afked permifion to retise into Germany. This, as the had forefeen, was refufed. Elizabeth was too fond of the young Paul Petrovitch to permit the departure of his mother, and thereby expole him to the danger of being at fome future period declared illegitimate. She took the Grand Duchefs again into favour; and it is thourght, that had the lived a little longer than the did, the would have excluded Peter from the throne, and declared l'sul her immediate fuccefior.

While the emprefs was meditating the aggrandizement of the young prince and his mother, the Grand Duke had conceived a plan for degrading them both. He had refolved, at the moment his aunt thould clofe her ejes, to affemble his troops, to get himfelf proclaimed emperor, to repudiate the Grand Duchefs, to declare the yound Paul Petrovitch illegitimate, and publicly to marry his miftels Elizabeth Romanorna Voront-
zoff. We have fhown elfewhere (fee Russia, no 72. Catharine. Encycl.) how this plan, when almolt ready to be carried into exccution, was betraged to Catharine, who, ever fince her caballing with the Chancellor Bellucheff, had refolved, by fome means or other, to fatch the fceptre from the feeble hand of her huband. At prefent, we believe the was nct acquainted with it; and though the had, fhe could not now have turned it to her advan. tage, as her party, ever fince the difgrace of Beftucheff, was without a leader of any abilities.

Amid thele diltraftions caufed by the profpect of the death of the emprefs, and the known hatred of the Grand Duke and Duchefs to each other, Court Panin, preceptor to the young prince, devoted himfelf entirely to Catharine. He withed to fee her polfeffed of all the power of the empire; but he was afraid to proceed to the extremity to which the propofed to go, and to deprive Peter of the name of Emperor. He contrived therefore to procure an apparent ieconciliation between the Grand Duke and his confert, as well as between him and his aunt Elizabeth; and he bad almoft perfuaded the filly prince not to allume the fovereign power on the death of the emprefs, till he fhould be folemnly invelted with it by a decree of the fenate. Could he obtain this point, he knew that the power of Peter would be limited, and the authority fecured to his wife and his fon. He was, however, difappointed. Catharine herfelf difapproved of this plan, and concurred with the real friends of her hufband in adifing him "to conform to eltablithed cuftom in affiming the reins of empire."

He had hardly received this advice when word was brought him that the Emprefs Elizabeth was dead (a); and the contiers preffed in crowds about him. He accofted them with dignity, received the oaths of the oflicers of his guard, and feemed at once to have laid afide his weaknefs. In an hour he got on horfeback, travelfed the Streets of St Peterfburg, and diftributed money among the multitude and the foldiers. He had been fo treated by his aunt, that he could not polibly be grieved at her death; but in paying the laft duties to lier renains, he betrayed no indecent elation. The firft adions of his reign were orudent and patriotic, and fich as would have done honour to a greater prince. He appea:ed to be reconciled to his wile, in whote company he fpent much of his time; he recalled from prifon and banilhment 17,000 perfons, fome of them of rank and of great talents, who had been the victims of Elizabeth's jealous timidity ; he permitted the nobility to bear arms or not at their own dulcretion, freeing them at the fame time from the extreme fervitude under which they had been held by his immediate predeceffors; and he abolithed the fecret comnittee, an infamous inquifitorial tribunal, which ever lince the reign of the father of Peter the Great had been the chief engine of Rumian defpotifm.

He negle?ed, however, cne thing; which, among the people over whom he wis appeinted to reign, would have contributed more to the lecurity of his throne than all the wife and beneficent edicts which he had publiohed. He made no preparations to be crowned at Mnf. cow. Inltead of complying with this anciert ceremony, and hamouring the prejudices of his luperfitions fuo-
(A) Chriftmas-day 176 according to the Rutian calendar, or the 5 th of January 1762 according to ous

C A T [227] C A T

Catharine. fects, he thought of nothing but of war with Denmark, and of a perional interview with the king of $P_{1} u f f a$ in Germany. His admiration of that great monarch hurried him indeed into the moft extravagant follies. Not contented with giving him peace, and entering into an offenfive and defenfive alliance with him, he had the meannefs to folicit a commifion in his army, and to accept of the rank of major-general. Of this title he feemed more vain than of that of Emperor of all the Ruffias. He conftantiy wore the Pruffian uniform; intro. duced among his troops the Pruffian difcipline, which, though better than their own, was difagreeable, becaufe it was new, and much more becaufe it was German ; and lie raifed his uncle, a man of no military talents, and a fureigner, to the dignity of generalifimo of the Ruffian armies; giving him at the fame time the particular command of the hosfe-guards, a body of men which had never before been under any command but that of the fupreme head of the empire. Nor did his infatuated predilection for Germany, a country abhorred by the Rufians, fop even here: He difbanded the noble guards which had placed Elizabeth on the throne, difmiffed the horfe-guards from the fervice which they performed at court, and fubftituted his Holfein guards in their place.

Whilft he was thus alienating from himfelf the affections of the army, he contrived to difguft another order of men, whofe attachment he fhould have laboured above all things to retain. He was at pains to thew his preference of the Lutheran faith and worfhip to the doctrines and ceremonies of the Gieek church; he attempted to make fome alterations in the drefs of the monks; he annexed great part of the poffeflions of the church to the domains of the crown; and he banifned the archbimop of Novogorod, who oppofed thefe innovations; and found himfelf obliged fuddenly to recal lim.

He had now returned to his former courfes. He flut himfelf up for whole days with his mittrefs and drunken companions; he compelled the nobility and ladies of the court to fit in company with buffoons and comedians; he infulted every foreign minilter but the minifters of Great-Britain and Pruflia; and he made no fecret of his intention to repudiate the emprefs, declare Paul Petrotitch illegitimate, and marry the Countefs Vorontzoff. Convinced, however, as it would feem, that he could not be a father, be refolved to adopt Prince Ivan, the detcendant of the elder brother of Peter the Grear, whom Elizabetn had dethroned and confined in prifon, to declare him his fuccellir, and to unite him in marriage with the goung princefs of Holltein Beck, who was then at St Peterfourgh, and whom he cherifhed as his dauglater.

This inconfintent and weak conduct of the emperor turned the attention of all orders of men to the cm puefs, who made it her fille employment to gain thofe learts which he was lofing. loftrusted from her infancy in the arts of diffinulation, it was not dificult for her to affect, in the fight of the multitude, fentiments the monf forcign to hes mind. The pupil of the French philof phers put on the air of a bignt to the mof fupertitions ccremonies if the Greek religion, and treated the miniters of that eligion with the profoundeft reverence. And whilft her lufband was getting drank amidtt a rablile of buffoons, and difguling every perfon
of decency who approached him, the kept her court Catharine. with a mixture of dignity and affability, which attrafted to her all who, by capacity, courage, or reputation, were capable of ferving her.

Correct, however, as her public conduct appeared, her private life was not lefs licentious than formerly. While yet Grand Duchefs, the had formed a very tender connection with Gregory Orluff, a man of mean birth, and of no education, but poffeffed at once of perfonal beauty and the moft daring courage. He had an inferior commiffion in the artillery, while his two brothers were common fuldiers in the regiments of guards. The intrigue which the carried on with him was known only to one of hor women named Catharine Ivanovna; nor did Orioff himfelf for fome time fulpect the rank of the lady who fo lavifhly conferred upon lim her favours in fecret. At laft finding himintrepid and difcreet, the difcovered herfelf, unveiled to him all her ambitious defigns, and eafily prevaled with him and his brothers to cnter with zeal into her confpiracy agdinft the emperor. Orloff likewife gained over Bibik iff his friend, a Lieutenant Paffick, with other officers; and by their means eafily feduced fome regiments of the guards. The Princef, Dafhkoff was ftrongly attached to Catharine, we believe, from worthy motives, and had frequent meetings with Orloff on the bufinefs of the compiracy, without fufpecing that he was fo much as hnown to the emprefs. Count Panin, too, and the Hetman of the Koffacks, were determined to tumble Peter from the throne; but they were not inclined to go all the lengths propofed by Catharine and her two favomites. Hoping to enjoy the actual power of the empire themfelves, they were for declasing Paul Petrovitch empelor in the room of his father, and conferring upon his mother the name and :tuthority only of regent; while the princefs and Orloff, knowing the fentiments and wifles of the emprefs, were refolved to veft her with fovereign power, or to perifh themfelves in the bazardous attempt.

In the mean time the anniverfary of the patron faints of Ruflia w:as at hand, when Peter had determined, at the conclufion of the fefival, to divorce the emprefs, fhut her up in prifon, declare her fon illegitimate, and publickly man ry his miftrefs. As they who plan a confiracy are aluays more vigilant than thofe againft whom it is directed, the friends of Catharine were carefully informed of all that paffed about the emperor, whill he was kept in total iunorance of their proceedings. It was therefore neceffary for them to unite in the fame plan, and to carry it quickly into execution; for delay or divifons would involve them all in one common ruin. The emprefs contrived to bring over the Hetman entirely to her views; and the Princefs Dathkoff, by the facrifice, it has been fiid, of her charms, frund little difficulty in reconciling Count Panin to the fame meafures. 'They now agreed to feize the T\%ar on his anival at Pererhoff, an Imperial palace on the lhore of the Gulf of Cronitadt, where he propofed to celebrate the approaching feltival; and they were waiting impatiently for the moment of action, when all at once their plot was difcovered.
l'aflick, who lias been mentioned among the confpirators, had gained the foldiers of the company of guards in which he was a lieutenatut but one of them, who thonght that his captain was in the fecret, afked that

Catharice. officer one evening, When they were to take up arms againt the emperor? The captain, furprifed, had recourfe to difimulation, and eafily drew from the foldier all that he knew of the confpiracy. It was nine o'clock at night. Patick was put under arrelt; but found means to nip into the hands of a man who had been placed as a fpy over him by the Princefs Dafhkoff, a fcrap of paper containing thefe words, "Proceed to execution this inltant, or we are undone." The man was detired to carry it to the Herman, by whom he would be handfomely rewarded; but he hurtied with it to the princefs, who inftantly communicated the inteiligence to the other confpirators. She herfelf put on man's apparel, and hatened to the place where the was accultomed to meet Orloff and his friends; where the found them, as impatient as herfelf to carry their plot into immediate execution.

During this awful crifis the emprefs was at Peterhoft, at the difance of 25 verlts from St Peterfburgh ; and one of the brothers of Gregory Orloff, named Alexius, undertcok to find her out, whilit he himfelf, with his other brother and Bibikoff his friend, repaired to the barracks for the purpofe of inftructing the foldiers of their party how to act on the firtt fignal. Alexius Orloff carried with him a fhort note from the Princefs Dafhkoff, but neglected to deliver it; and the emprets, being fuddenly roufed from a found fleep, was much alarmed, when the faw at the fide of her bed a foldier of whom the knew nothing. Her alarm was increafed when the ftranger laid, "Your majelty has not a moment to lofe; get ready to follow me ;" and infantly difappeared. She rofe, however, and calling her woman Ivanovna, they difguifed themfelves in fuch a manner that they could not be known by the fentinels about the palace; and the foldier returning, they burried with him to a coach which was waiting at the garden gate. Orloff took the reins, but drove with fuch fury that the horfes foon fell down; and they were ooliged to travel part of the way on foot. They had not, however, gone far, when they met a light country cart; and the who was afpiring to the throne of the greatelt empire in the world, was glad to enter the capital of that empire in this humble vehicle.

It was leven in the morning when the arrived in St Peterburgh : and to the foldiers, who gathered about her in great numbers, fhe fad, that " her danger had diven her to the neceflity of coming to afk their afiltance; that the Tzar liad intended, that very night, to put her and her fon to death; and that the had fo great confidence in their difpofitions, as to put herfelf entirely into their hands." They immediately fhouted, " Long live the emprefs !" And the chaplain of one of the regiments fetching a crucifix, received their oaths of fidelity.

The troops, however, were not unanimous in this revolt. Thougin Gregory Orloff was treafurer of the artillery, and well enough beloved by the foldiers, that corps refufed to follow him until he fhould produce the orders of Villebois their general; and that officer, withheld either by fidelity to the emperor or by fear, presumed to fpeak to Catharine of the obitacles which yet remained for her to furmount ; adding, that fhe ought to have forefeen them. She hanghtily replied, that " the had not fent for him to ank what fhe ought to have forefeen, but to know low he intended to ast." "To
obey your majety," returned Villebois; and putting Catharins. himfelf at the head of his regiment, he immediately joined the confpirators. So ripe indeed were the minds of all men for this revolt, that in the fpace of two hours the emprefs found herfelf furrounded by 2000 warriors, together with great part of the inhabitants of Peterfburgh; and with that numerous train of attendants fhe repaired to the churcli of Kafan, where the archbifhop of Novogorod, fetting the Imperial crown on her head proclaimed her fovereign of all the Rullias, declaring, at the fame time, Paul Petrovitch her finceeffor.

Matters had now proceeded by much too far to ad. mit of any compromife between Catharine and her hufband: but had the infatuated Tzar put his affairs whol ly into the hands of Marfhal Munich, that intrepid ve. teran would have tumbled the emprefs from her throne almoft as quickly as fhe had got pulfeffion of it. He acted, however, a very different part. Upon receiving intelligence of what had been done at St Peterfburgh, he afked indeed the Marfhal's advice, but fuffered himfelf to be guided by his miftrefs and timid companions. Through their terrors and his own irrefolution opportunities were loft which could never be recovered; for though his Holftein guards, with tears in their eyes, fivore that they were all ready to facrifice their lives in his fervice, and though the old Marfhal offered to lead thern againt the rebels, faying to the emperor, "I will go before you, and their fwords fhall not reach you till they have pierced my body," he was perfuaded to treat with the emprefs, to acknowledge his mifconduet, and to offer to thare with her the fovereign power. At laft he was weak enough to abandon his troops, and to furrender at diferetion to his confort ; whofe creatures hurried him from Oranienbaum to Peterhoff, Atripped him of all his clothes, and after leaving him for fome time in his fhirt, a butt to the outrages of an infolent foldiery, threw over him an old morning gown, and thut him up alone, with a guard at the door of his wretched apartment. On the 29 th of June, O. S.* 1762 , Count Panin was fent to him by the emprefs; and after along conference, prevailed with him to write and fign a folemn refignation of his crown, and a declaration of his utter incapacity to govern fo great an empire.

The revolution was now complete, and Peter feemed to enjoy fome compofure of mind; but in the evening he was carried a prifoner to Ropicha, a immll Imperial palace, at the diftance of 20 verfts from Peterhoff, where he was murdered on the 17 th of July, juft one week after his depofition. Of the manner of his death different accounts have been given. By fome he is faid to have been poifoned; by others, to have been ftrangled by one of the Orloffs; and a few have thought that he perifhed by the fame means as Henry VI. of England. Whether the emprefs was accelfary to his death is not known; though it is certain, that fo far from making any in: quiry after his murderers, fhe affected to believe that he had died naturally of the piles!

The firlt care of Catharine was to reward thofe who had been the principal actors in the revolt. Panin was made prime minilter; the Orloffs received the title of Count ; and the favourite Gregory was appointed lieu-tenant-general of the Ruffin armies, and knight of the order of St Alexander Nef:ky, the fecond order of the empire. Several officers of the guards were promoted, of whom 24 received confiderable eftates; and among

C Λ T [229] C A T

Catharine. the foldiers, whom the treated with the greatelt affability, brandy and beer were liberally diftributed. The chancellor Beftucheff, who had been the mof inveterate enemy of Peter, was recalled from his exile, reltored to his rank of field-matifal, and had an annual penfion fettled upon him of 20,000 rubles. To the friends of the emperor the behaved with great moderation. Prince George, whom he had conftituted Duke of Courland, was indeed obliged to renounce his title; but the adminiftration of Holftein was committed to him, and he ever after ferved the emprefs with zeal and fidelity.

The news of the revolution was foon fpread over Europe; and none of the fovereigns, though they knew by what fteps Catharine had mounted the throne, helitated for a moment to acknowledge her title. She was not, however, at perfect eafe in her own mind; nor was her right recognifed by all her fubjects. Tho' fhe publithed manifeftos, fetting forth the intentions of the late emperor towards her and her fon, which made refiftance neceffary; though in thefe papers the attributed her elevation to the wifhes of her people and the providence of Goal; and though fhe called upon all who were fincerely attached to the orthodox faith of the Greek church, to conlider the fudden death of Peter as the judgment of heaven in favour of the revolution ; yet in the diftant provinces no exultations were heard; both foldiers and peafants obferved a gloomy filence. Even at Mofcow, fo great was the difaffection to Catharine's government, that it was fome time before fhe could venture to go to that city to be crowned; and the found in it at lat fo cold a reception, that the very quickly returned to St Peterfourgh.

Nor was this the only caufe of her uneafinefs. The connection between Orloff and her became vifible, and gave juft offence to her other friends. The princefs of Dalhkoff firft perceived it ; and when fle prefumed to expoftulate with the emprefs on the meannefs and imprudence of her palfion, the was banifhed from the court to Mofcow. Count Panin and the Hetman faw with indignation that they had dethroned the grandfon of Peter the great, to aggrandife a rude and low born upftart. Cabals and confpiracies were entered into by high and low, both againit Catharine and againft her favourite; and it required all her abilities and firmnefs to preferve at once her throne and her lover. On one occafion the hoped to obtain from the Princefs Dafh. koff fufficient proof that Panin and the Hetman of the Koflacks were concerned in a plot which had juft been difonered ; and with this view the wrote to her a letter of four pages, filled with the moft tender epithets and the moft magnificent promifes, conjuring her in the name of their long ftanding friendfhip, to reveal what the knew of the recent confpiracies. With becoming magnanimity, the princefs replied, "Madam, I have heard nothing; but if I had heard any thing, I fhould take good care how I fpoke of it. What is it you rcquire of me? That I lhould expire upon a fcaffold? I am ready to mount it."

Catharine, defpairing of conquering fuch a fpirit, atrempted to attach to her thofe whom fhe dared not to punifh. Some of the inferior confpirators were banifhed to Siberia, while Panin and the Eetman, whom the moft dreaded, received additional marks of her favour. In the mean time, to gain the affections of the people at large, the paid the utmoft attention to the adminiftra-

Suppl. Vol. I.
tion of juftice ; formed magnificent eftabilhments for Catharine, the education of the youth of both fexes; founded hofpit:lds for orphans, for the fick, and for lying-in women; invited foreigners of all nations, poffelfed of any merit, to fettle in different parts of her valt territories; increaled the naval force of the empire; and gave fuch encouragement to the cultivation of every elegant and uleful art, that in the fhort fpace of a year and a half from her acceffion to the throne, the national improvement of Ruflia was vifible.

In the good fortune and glory of Catharine, no one rejoiced more fincerely than Count Poniatowfoy. He approached towards the confines of Rullia, and virote to her in the tendereft fyle of congratulation, requell ing permiffion to pay his refpects to her in the capital of her empire. It is not improbable that he fattered himfelf with the hopes that the would give him her hand in marriage, and thus raife him to the throne of the Tzars; but the had promifed to the Emprefs Eli. zabeth, that the would never again fee the count; and to that promife fhe at prefent adhered. She wrote to him, however, in the molt affectionate terms; and the" the gave him no encouragement to repair to St Peterf burgh, fhe affured him that the had other profpects in view for his aggrandifement, and that he might depend upon her perpetual friendfhip: and the foon appeared to be as good as her word. On the death of Augnitus III. The raifed her former favourite to the throne of Poland, in oppofition to the wifhes of the courts of Vienna and Verfailles, as well as of a great majority of the Polifa nobles. She defcated the intrigues of the two foreign courts by more fkilfully conducted intrigues of her own; and, by pouring her armies into the republic, fhe fo completely overawed the nuncios, that Poniatowfky was chofen by the unanimous fuffrages of the diet which met for the election of a fovereign; and, on the 7 th of September 1764, was proclaimed King of Poland and Grand Duke of Lithuania, by the name of Staniflans Auguftus.

Whilt fhe was thus difpofing of foreign kingdoms, The was kept under perpetual dread of being rumbled from the throne of her own valt empire. Her want of title to that throne was now feen by all ranks of her fubjects ; the good qualities of Peter the third were remembered, and his failings and faults forgotten. His fate was univerfally lamented; and, except the confpirators, who may be faid to have embrued their hands in his blood, there was hardly a Ruffian who did not regret that the fovereignty had paffed from the ancient famity of the Tzars to a foreigner, allied only by marriage to the blood royal. Even the confpirators themfelves had loft much of their regard for Catharine. The princefs of Dafhkoff was a fecond time banifhed to Mofcow; and, to magnify her own importance, fhe fpoke freely of the means by which the emprefs, whom the accufed of ingratitude, had been raifed to the throne. The inhibitants of Mofcow, who never favoured the ufurpation, were thus made ripe for a revolt. At St Peterfburgh, Count Panin felt limmelf uneafy under the predominant influence of the favourite, and tried in vain to divert Catharine's affections to a new object. She received a few fecret vifits from a handfome young man, and then appointed him to a lucrative and honourable employment in fome diftant province of the empire; when Orloff recovered his forH b
mer

C A T [230] C A T

Cetharine. mer aicendency, which through his own careleffnefs he had nearly loft. In this flate of the public mind, confpiracies were very frequent; 2nd as the general object of them was to flace on the throne prince Ivan, who was again langtifhing in the dungeon from which Peter had taken him, the emprefs had given to his guard an order, figned by her own hand, to put that unfortunate prince to death, thould any attempt be made to liberate him from his priton. An attempt was made by a very inferior officer, as fome have fuppofed, by the inftuctions of Catharine, and her bloody order was inftantly obeyed. The affaffins were rewarded and promoted in the army; but the officer who attempted to retcue the prince was condemned to death, and fuffe:ed unexpectedly the fentence of the law. The brothers and fifters of Ivan, who bad been kept in a prifon different from his, were fent to Denmark; and, to provide them with necelfaries fuitable to their rank, the emprefs made them a prefent of 200,000 rubles, and paid annullly to the maintenance of their dignity a penfion of thirty thoufand.

The throne of Catharine was now firmly eftablifhed by the death or renunciation of every perfon who was defcended of the imperial family; and fhe had leifure to turn her thoughts to the aggrandifement of the empire. It was foon feen that this was the object which the hatd in view: when the raifed Count Poniatowny to the thone of Puland, and that the was not actuated on that occafion by any remains of her former attachment. We have elfewhere Mewn (fee Poland, Encych. n ${ }^{\circ} 98$ -15) under what pretences fie invaded the kingdom of him who had formerly been one of her moft favoured lovers, and by what means the annexed great part of it to the territories of Rufia. But it is not through her wars that in this article we mean to trace her character: It is not as a fovereign and heroine that her life is entitled to a place in a generd repofitory of arts, fiences, and mifcellaneous literature, but as a patronefs of art and of fience, and as the legiflatrix of a valt empire, who employed all her talents and all her power for the civilization of a great part of the kuman race.

Under the article Russia (Encycl.), we have mentioned the famous code of larus for a great empire, and the propored convention of deputies from all the claffes, which Catharine and the princels Dathioff fo arlfully emfloyed as means to bring about the revolution which feated the former on the throne. The flatcs acicailly met in the ancient capital of the empire, and the fovereign's inftructions for framing a new code of liws was read amidet reiterated burlts of applaure. All prefent extclled tle fagacity, the wifdom, the humanity of the emprefs; but fear and flattery had a greater fhare ia the fe exclamations than any jult knowledge of the fuhject. The deputies of the Samoiedes alone lad the courage to fpeak freeiy. One of them ftood up, and, in the name of himfelf and his brethren, faid, "We are a fimple and honett people. We quietly tend ou: reindeer. We are in no want of a new code; but make laws for the Rufians, our neighbours, that my put a flop to their depredations." "The following fittings did not pafs fo quietly. A debate about the liberation of the boors was carried on with fuch warmth, that fital confequences were to be apprehended; and the deputies were difnifled to their refpective provin-
ces in the manner which we have elfewhere related.
Previous, however, to the diffolution of this affembiy, Previous, however, to the ditfolution of this affembly, the members were required to fignalize the meeting by fome confpicuous act of gratitude; and, by a general acclamation, the titles of Great, Wise, Prudent, and Mother of the Country, were decreed to the emprefs. With affumed modelly the accepted only of the laft, " as the molt benign and glorious recompenice for her labours and folicitndes in behalf of a people whom fhe loved."

For that people fhe did indeed labour, and labour molt ufefully. She introduced into the adminiltration of juatice the greatelt reformation of which the half civilized tate of Ruffia would perhaps admit. She fpared neither trouble nor expence to diffufe over the empire the light of fcience, and the benefits of ufeful and elegant arts; and the protected, as far as the could, the poor from the oppreffions of the ricl. About the middle of 1767 , the conceived the idea of fending feveral learned men to travel through the interior of her vaft dominions, to determine the geographical pofition of the principal places, to mark their temperature, and to examine into the nature of their foil, their vegetable and mineral prodnctions, and the manners of the people by whom they were inhabited. To this employment the appointed Pallas, Gmelin, Euler, and many others of the higheft eminence in the republic of letters; from whofe journals of thefe interelting travels large additions have been made to the general thock of ufeful knowledge. This furvey of the empire, and the maps made from it, had Catharine done nothing elfe, would alone have been fufficient to render her name immortal. Well convinced in her own mind, that it is not fo much by the power of arms, as by precedence in fcience, that nations obtain a confpicuous place in the annals of the world, with a laudable zeal the encouraged artilts and fcholars of all denominations. She granted new privileges to the two academies of fciences and the arts ; encouraged fuch of the youth as had behaved well in thefe national infitutes, to travel for farther improvement over Europe, by beltowing upon them, for three years, large penfions to defray their expence ; and, to remove as much as poffible the Ruffan prejudice againtt all kinds of learning, fhe granted patents of nobility to thofe who, during their education, had conducted themfilves with propriety, and become proficients in any brancl of neful or elegant knowledge. Still farther to encourage the fine arts in leer dominions, the affigned an annual fum of 5000 rubles for the tranllation of foreign literary works into the Ruflian langtuge.

In the year 1768 , the fmall. pox raged at St Peterf. burgh, and proved fatal to vaft numbers of all ranks and of every age. The emprefs was defirous to intro. dace the prastice of inoculation among her fubjects; and refolved to fet the example by having herfelf and her fon inoculated. With this view, the apolied for a phyfician from England: and Dr Thomas Dimfdale of Hertford being recommended to her, he repaired with his fon to the capital of Ruffia, where be inocula. ted firt the emprefs, then the grand duke, and afterwards many of the nobility. The experiment proving fuccefsful, be was created a baron of the empire, appointed actual counfellor of fate, and phyfician to her imperial majeft, with a peufion of L. 500 Rerling

C A T [231 [C A T

Catharine, a.gea:, to be paid him in England, befides L. 10,000 which he immediately receivcd. So popular was the emprefs at this period, that, by a decree of the fenate, the anniverfary of her recovery from the fmall-pox was enjoined to be celebrated as a religisus feftival; and it has ever fince been obferved as fuch.

She was now engaged in war with the Turks, of which a fufficient account for a work of this nature has been given under the title Turkey (Encycl.); but there was one tranfation of her and her friends, of which no mention was made in that article, though it is of importance to him who would form a juft entimate of her perfonal character.

We have noticed the fenfuality of the emprefs Elizabet.). She bore three children to the grand veneur Alexy Gregorievitch Razumoffiky, to whem, indeed, the is faid to have been clandeftinely married. Of there children the youngeft was a girl, brought up under the name of princefs Tarrakanoff. Prince Radzivil, who has been mentioned in the article Poland (Encycl.), irritated at Catharine's cruelties to his countrymen, conceived the project of placing the young princefs on the throne of her anceltors; and, having gained over the perfons to whom her education was entrufted, he carried her cff to Rome as a place of fafety. Catharine, in return, feized his large eftates; and he and the princefs were reduced to extreme poverty. Radzivil repaired to Polaad in order to learn v:hat could be done to forward his great enterprife; and fearcely had he arrived there when an offer was made to reftore to him his poffefions, upon condition of his carrying his ward to St Peterfburgh. Thishe refufed ; but had the bafenefs to promife, that he would give himfelf no farther concern about the daughter of Elizabeth; and he was put in poffeffion of all his eftates.

By the inftructions of the emprefs, Alexius Orloff, who ncminally commanded the Ruflian fleet at the Dardanelles, repaired to Rome, got acceís to young Tarrakanoff, and found means to perfuade her that all Rullia was ready to revolt from Catharine, and place her on the throne of her mother. To convince her of his fincerity, he pretended to feel for her the tendereft and mof refipeaful paffion; and the unfufpicious lady was induced to accept of him as a hufband. The ruffian who had alfafinated the grandfon of Peter the Great, did not hefitate to feduce and betray his granddaughter. Under pretence of having the marriage cereniony performed according to the rites of the Greek church, he fuborned fome fubaltern villains to perfonate priefts and lawyers; thus combining profanation with impofture againft the unprotected and too confident Tarrakanoff.

Having been treated for fome days, both at Rome and at Leghorn, with all the refpect due to a fovereign, the unfurpecting princefs expreffed a wifh to go on board a Ruffian hlip of war. This was juft what Orloff wanted. Attended by a numerous and obfequious train, fhe was rowed from the fhore in a boat with mag. nificent enligns, hoifted upon the deck of the thip in a plendid chair, and immediately handcuffed. In vain did the throw herfelf at the feet of her pretended huf-
band, and conjure him by every thing tender which Cathatine. had paffed between them. She was carried dovan int: the hold; the next day the vefiel failed for St Peterf. burgh; where, upon her arrival, the princefs was flut up in the fortrefs; and what bceame of her fince was never known. Such wese the me:ans whicl Catharine fcrupled not to employ in order to get tid of all protenders to her throne.

Soon after this fervice rendered to her by Alexius Orloff, the difmilfed his brother Gregory from her f_{a} vour, and connected herfelf with Vaffiltchikoff, a fublieutenant of the guards. The former favourite had indeed become infolent, and, as Catharine thought, ungrateful. He afpired to nothing lefs than the throne. From love to himfelf and to a fon which the had born to him, fhe offered to enter into a fecret marriage; but with this propofal the froud prince (A) was not fatisfied, and hoped that his refufal would impel her to teceive him publicly as her hufband and parter in power. He was miltaken. She divefted him of all his employments; but gave him a penfion of 150,000 rubles, a handfome fervice of plate, and an eftate with 6000 peafants upon it ; and, thus enriched, he fet out upon a journey through various parts of Europe. He returncd, however, much fooner than was expected ; the new favourite was handfomely rewarded, and fent to a diftance ; Orloff was reflored to all his offices, and his baleful influence was again felt.

He attempted to perfuade the emprefs to difmifs Panin from the court; but the grand dake interpofed in behalf of his old preceptor; and, for once, Catharine liftened to the entreaties of her fon. When a dreadful rebellion, under a Koflak of the name of Pugethoff, who pretended to be Peter III. efcaped from his affaflins, was fhaking the thrune to its foundation-the influence of Orloff was fuch as to prevent the emprefs, for fome time, from employing her ableft general againft the rebels, becaufe that general was Panin, brother to the minither. Danger, however, at laft prevailed over the favourite: Panin was fent againft Pugethoff; the rebeilion was crufhed; and Catharine found leifurc to give fomething like a legal confitution to the empire. In that work, the laws and regulations eftablithed for the government of the various provinces, and for the equitable adminilltration of juftice through the whole of hervaft dominions, evinces the greateft wifdom and fagacity in their anthor, as well as a proper regard to the pradicable liberties and rights of men. In the capital, fhe eftablifhed the molt perfeat police, by which the internal tratquillity of a great city was, perhaps, ever maintained; and whilt her private conduct was far from correct, the was acting in the capacity of fovereign, fo as to deferve, indeed, the appellation of Motber of her feopic.

To follow her through all her wars and intrizucs with futeign courts, would fwell this article to the fize of a volume. Such a narrative, 100 , belongs rather to the hiftory of Ruffia than to the memoirs of Catharine; in which it is the bufinefs of the biographer to develope the private character of the woman rather than to detail the exploits of the fovereign. Her partition of Poland, and afterwards the annililation of it as ao in-
$\mathrm{H}_{\mathrm{h}} 2$
clependent
(A) She had fome time before obtained for him a patent, creating him a prince of the Roman emgire.

C A T [232$] \quad$ C A T

ries of the grand fignior; her formation of the armed neutrality; the influence which the maintained over the courts of Sweden and Dermark; and the art with which the threw the weight of Ruflia fometimes into the fcale of Auftria, and fometimes into that of Pruffia, juf as the interelts of her own dominions required the one or the other to preponderate-lhew how admirably the was qualified to guide the helm of a great empire in all its tranfactions with foreign ftates. We fpeak not of the equity of her proceedings; for it mult be confeffed, that equity formed no barrier againft her ambition; and that fhe never failed to fubjugate thofe whom fhe pretended to take under her protection. Her ruling paffion was to enlarge her own territories, already lo very extenfive; and, for the attainment of that object, fhe contrived the mof judicious plans, which fhe executed with vigour. In this part of her conduct, however, fhe has been equalled by other monarchs; but in the zeal and the wifdom with which fhe endeavoured to introduce among her half. favage fubjects the bleffings of knowledge and induftry, fhe flands unrivalled, cxcept, perhaps, by her predeceffor Peter the Great. Of this we need bring no other proof, in addition to what has been already flated, than that the founded in St Peterfburgh alone thirty-one feminaties, where 6800 children of both fexes were educated at the annual ex. pence to the government of 754,335 rubles. She fuperintended herfelf the education of her grandchildren, and wrote for them books of inftruction. If it be true, that "every man acquainted with the common principles of human action, will look with veneration on the writer who is at one time combating Locke, and at another making a catechifm for children in their fourth year ;" with what veneration fhould we look upon the emprefs of Ruffia, cculd we forget the means by which the obtained that elevation from which fhe frequently defcended for a fimilar employment? This fhe did, not for her own defcendants alone, but alfo for the children of others; of whom fhe had always a great number in her apartments, who fhared in the inftruction given to her grandchildren, and whofe careffes fhe returned with extreme complaifance.

Her greateft weaknefs was furely that grofs paffion which her panegyrifts have dignified with the name of love: but to fuch an appellation it had no claim, if love be any thing more than a fexual appetite. Belides Gregory Orloff, fhe had not fewer than ten favourites after the death of her hufband; and of thefe fhe feems to have felt a refined affection for none but Lankoi, a young Pole of a very ancient family, and of elegant manners, and the famous Potemkin, to whom the is faid fecretly to have given her hand, and who preferved her friendihip, if not her affection, to the end of liis life. To Lankei, whofe education had been much weglected, fhe condefcended to become preceptrix; and, as he made great progrefs in the acquifition of ufeful knowledge, the admired in him her own creation. Potemkin, though not amiable, deferved her favour for the fidelity and abilities with which be ferved hcr, both in the council and in the field; and in him, when fhe had ceafed to look on him with the eyes of love, the refpected the intriguing politician and intrepid commander, who had formed plans for driving the Turks out of Farope, and fetting her on the throne of By=
zantium. Her other favourites had nothing to recom- Catharine. mend them but mafculine beauty and corporeal frength. One of them, however, thought it neceffary to have a library in the grand houfe, of which the emprefs, upon receiving him into favour, had made him a prefent; and defired the principal bookfeller to fill his helves. The man afked him what books he would pleafe to have. "You underftand that better than I (replied the favourite) ; that is your bufinefs. You know the proper affortments; I have deftined a large room to receive them. Let there be large books at the bottom, and fmaller and fmaller up to the top; that is the way they fand in the emprefs's library !" In the converfation of fuch men, the cultivated mind of Catharine could enjoy no interchange of fentiments.

We know not whether that more than Afiatic magnificence, which the difplayed on every public occafion, thould be confidered as an inftance of weaknefs or of wifdom. If the delighted in balls, and mafquerades, and fumptuous entertainments, and drefs loaded with jewels and every kind of fplendid ornament, for their own fakes, the betrayed a weaknefs unworthy of that fovereign who held in her hand the balance of Europe, and at whofe nod the greateft powers of A fia trembled: but if fhe introduced fuch fplendour into her court merely to divert the attention of the Rufians from the means by which fhe get poffetion of the throne, and to wean them from their own favage and flovenly manners; even this may perhaps be confidered as one of her mof mafterly ftrokes in politics.

Her ambition was boundlefs; but, if fuch a phrafe may be allowed, it was not always true ambition. When the French republic had eftablifhed itfelf on the ruins of monarchy, and was propagating new theories of government through all Europe, true ambition would furely have led the autocratrix of the north to unite her forces with thofe of the coalefced powers, in order to cruft the horrid hydra before its anarchical principles could be introduced among her own barbarous fubjects. Such would certainly have been the advice of her favourite Potemkin, who longed to lead a Ruflian army into France, even before the murder of the unfortunate Louis. That general, however, had died in October 1791; and when Britain, Aultria, and Pruffia, were leagued againft the new republic, Catharine looked coolly on, in hopes, it is probable, of availing herfelf of their weaknefs, when exhaulted by a long and bloody war. She gave refnge, indeed, in her dominions to many emigrants from France, and fent a Equadron of Chips to co-operate with the navy of England: but in this lat meature the regarded merely her own imme. diate intereft ; for her crazy hhips were repaired by Britifh carpenters at the expence of the Britifh government, and her officers had an opportunity of learning the evolutions of the Britifh nayy. She had likewife other profpects in view when fhe lent to the allies this flender aid. She meditated a new war with Turkey; and, depending upon meeting with no oppofition, if the fhould not receive affiftance from England and Auftria, the flattered herfelf with accomplifting her darling projest of driving the Ottomans out of Europe, and of reigning in Conllantinople. But the was difappointed. On the morning of the 9 th of November 1796, fhe was feized with what her principal phyfician judged a fit of apoplexy; and, at 10 o'clock in the

C A U [233$] \quad$ C A Y

Cauda Caufe.
evening of the following day, expired, in the 68 th year of her age, leaving behind her the cluaracter of one of the greateft fovereigns that ever fwaycd a fceptre.

After this long detail of the incidents of her life, it is needlefs to inform the reader that Catharine II. had no religion, and, of courfe, no principles of morality, which could induce her in every inftance to do to others as the would have them do to her. She was a profeffed difciple of the French philofophers; by fome of whom The was ridiculed, and by others cheated. The incenfe which the paid to the genius of Voltaire did not hinder him from frequently breaking his jelts upon the autocratrix of Ruffia and her fucceffive favourites; and Diderot, whom fhe careffed, fold to her an immenfe library, when he poffelfed hardly a book, and was oblig. ed to ranfack Germany and France for volumes to enable him to fultil his bargain. Such is the friendfhip, and fuch the gratitude, which fubfitt among the amiable pupils of nature, and the philanthropic advocates for the rights of man.

CAUDA. Capricorni, a fixed Itar of the fourth magnitude, in the tail of Capricorn; called alfo, by the Arabs, Dineb Algedi; and γ by Bayer.

Cavda Ceti, a fised ftar of the third magnitude ; called alfo, by the Arabs, Dineb Kaetos; marked β by Bayer.

CAUDA Cygni, a fixed Atar of the fecond magnitude, in the Swan's-tail; called by the Arabs Dineb Aldigege, or Eldegiagich; and marked a by Bayer.

CAUDA Delphini, a fixed flar of the third magnitude, in the tail of the Dolphin; markeds by Bayer.

CAUDA Draconis, or Dragon's tail, the moon's fouthern or defcending node.

CADDA Leonis, a fixed ftar of the firft magnitude, in the Lion's tail; called alfo, by the Arabs, Dineb Eleced; and marked β by Bayer. It is called alfo Lucida Cauda.

Cavda Urfa Majeris, a fixed ftar of the third magnitude, in the tip of the Great Bear's tail; called alfo, by the Arabs, Alalioth, and Benenath; and marked aby Bayer.

Cauda Urfe Minoris, a fixed Itar of the third magnitude, at the end of the Leffer Bear's tail ; called alio the Pole Star, and, by the Arabs, Alrukabah; and marked a by Bayer.

CAVENDISH, a townhip in Windfor co. Ver. mont, W. of Weathersfield, on Black river, having 49 I inhabitants. Upon this river, and within this townShip, the chanrel has been worn down 100 feet, and rocks of very large dimenfions have been undermined and thrown down one upon another. Holes are wrought in the rocks of various dimenfions, and forms; Conse cylindrical, from 1 to 8 feet in diameter, and from 1 to 15 feet in depth; othess are of a fpherical form from 6 to 20 feet diameter, worn almoft perfectly fmooth, into the folid body of a rock.-Morse.

CAUSE has been defined, we think, with accuracy in the Encyclopædia, and the doctrine ftated which we believe to be true. Objections however have been made to that doctrine, of which we have endeavoured to remove fome, under the title Action, in this Supplement; and the doctrine itfelf has been well illuftrated (at leaft fuch is our opinion) in the fupplementasy article Astronomy. We have, therefore, very little to add here on the fubject of caufes, though it is the molt
important fubject which can employ the mind of man. What is the relation between a phyfical caufe and that which is termed its effect-between heat, for inftance, and the fufion of metals? Is it a neceffary conneclion, or only a conjunaion, difcovered by experience to be conflant?

If by neceffary connection be meant that kind of connettion of which the contrary cannot be conceived, we do not think that the connection of any phyfical caufe with its effect can be called neceffiry. We fee no difficulty in conceiving, that fire, intead of fufing gold, might fix mercury. This may indeed be impoffible; and we might perhaps fee the impoflibility, did we as completely know the nature of fire and of metals as we know the relations of pure geometry. We know that the three angles of a plain triangle cannot polfibly be either greater or lefs than two right angles; for in this comparifon nothing is hid from our mental view. We do not, however, perceive the impolfibility of mercury being fixed, as clay is hardened, by heat; for of heat, and mercury, and clay, we know very little, and that little is the offspring of experience.

But if the connection between caufe and effect be not neceflary, are we not deprived of the means of demonftrating the great fundamental truth of religion? We have nowhere faid, that the connection between caufe and effect is not necelfary; but only, that we do not perceive the neceffary connection between what are called phyfical canfes and their effects. That every event is, and muft be, brought about by fome caule, or fome agency, we hold to be a felf-evident truth, which no man can deny who undertands the terms in which it is expreffed ; but what or where the agency is, we can very feldom, if ever, know, except when we think of our own voluntary actions. When a change is obferved, we cannot doubt of its being produced by fomething: either the thing changed is animated and has produced the change by its own agency, juct as we move our heads and legs by an act of volition; or if it be inanimated, and of itfelf incapable of agency, the change has been produced by fomething external, denominated a caufe. But all external caufes, which are not likewife agents, in the proper fenfe of the word, may be traced, we think, as effects up to fome agency; and therefore, in our opinion, there is no real, ultimate, efficient, caule but mind, or that which is endued with power. In proof of this doctrine, if it need any proof, we can only refer to what has been faid elfewhere on our notions of power and of phyfical caufes. See (Encycl.) Metaphysics no rog, \&ic.- Philosophy and Physics paflim-and (Suppl.) Action and Astronomy.

CAYAHAGA, or Cayuga, fometimes called the Great river, empties in at the S. bank of lake Erie, 40 miles eaft ward of the mouth of Huron; laving an Indaan town of the fame name on its banks. It is navigable for boats; and its mouth is wide, and deep enough to receive large nloups from the lake. Near this are the celebrated rocks which project over the lake. They are feveral miles in length, and rife 40 or 50 feet perpendicular ont of the water. Some parts of them confift of feveral Arata of difierent colours, lying in a ho. rizontal direction; and fo exaftly parallel, that they refemble the work of art. The view from the land is grand, but the water prefents the molt magnificent profpect of this fublime work of nature; it is attended,

C E N [234$]$ G E N

Cayega however, with great danger; for if the leaf ftorm arifes, the force of the furf is fuch that no veliel can efcape being dafhed to pieces againt the rocks. Col. Broadthead fuffered hipwrect here in the late war and loft a number of his men, when a ftiong wind arofe, fo that the lif canoe narrowly \in feaped. The heathen Indians, when they pals this impending danger, offer a facrifice of tobacco to the water.

Bart of the boundary line between the U. S. A. and the Indians, begins at the mouth of Cayahogr, and runs up the fame to the portage between that and the Tufcarawa branch of the Alufkingum.

The Caynga nation, conliliing of 500 Indians, 40 of whom refide in the United States, the relt in Canada, receive of the fate of New Y'ak an annuity of 2300 dollars, belides 50 dollars granted to one of their chiets, as a confideration for lands fold by them to the ftate, and 500 dollars from the United States, agreeably to the treaty of 1794. - Aforse.

CAYUGA, a beantiful lake in Onondaga co. NewYork, from 35 to 40 miles long, about 2 miles wide, in fome places 3 , and abounds with falmon, bafs, cattifh, eels, \&ic. It lies between Seneca and Owafco lake, and at the N. end empties into Scayace River which is the S. eallern part of Seneca River whofe waters iun to lake Ontario. On each fide of the lake is a ferry houfe, where good attendance is given. The refervation lands of the Cayuga Indians lie on both fides of the lake, at its northern end.-ib.

CEDAR Point, a port of entry in Charles co. Maryland, on the E. fide of Potowmac River, about 12 miles below Port Tobacco, and 96 S. by W. of Baltianore. Its cxports are chielly tobacco and Indian corn, and in 1794, amounted in value to 18,593 dollars.- ib.

CEN'SER, or Centre, a word borrowed from the French name cintre or ciutre, given to the frame of timber by which the brick or ftone of arched vaulting is fupported during its erection and from which it receives its form and curvature.
It is not our intention to defcribe the variety of con this article. Itructions which may he adnpted in eafy fituations, where the arches are of fmall extent, and where fuficient foundation can be had in every part of it for fupporting the frame. In fuch cafes, the frequency of the props which we can fet up difpenfes with much care; and a frame of very flight timbers, connected together in an ordinary way, will fuffice for carrying the weight, and forkeeping it in exaf thape. But, when the arches have a wide fpan, and confequently a very great waight, and when we cannot fet up intermediate pillars, either for want of a foundation in the fuft bottom of a river, or becanfe the arch is turned between two lofty piers, as in the dome of a Atately cathedral-we are then obliged to teft every thing on the piers themfelves; and the framing which is to furport our arch before the keyftone is fet, muft itfelf be an arch, depending on the mutnal abutment of its beams. One frould think that this view of the conftruction of a centre would offer itfilf at the firft, naturally derived from the erection it was to afita: but it has not been fo. When intermediate pillars were not employed, it was ufual to frame the mould for the arch with little attention to any thing but its Chape, and then to crofs it and recrofs it in all directions with other pieces of timber, till it was thought fo hound together that it could be lifted in any
pofition, and, when loaded with any weight, could not change its thape. The frame was then raifed in a lump, like any folid body of the fame fluape, and fet in its piace. This is the way itill practifed by many coun. try artilts, who, having no clear principles to guide them, do mot llop till they have mase a load of tumber almoll equal to the weight whic! it is to carry.

But this artlefs method, befides leading the employer into great expence, is frequently fatal to the underaker, from the unikilfulnefs of the confiruction. The bedms which connect its extremities, are made alfo to fupport the middle by means of polts which reft on them. They are therefore expofed to a tranfverie or crofs Atrain, which they are nut able to bear. I'heir number muft therefne be increafed, and this increafes the load. Some of thefe crofs ftrains are derived from beams which are prefled very obliquely, and therefore cxert a prodigious thrult on their fupports. The beams are allo greatly weakened by the mortifes which are cut in them to receive the tenons of the crofling beams: and thus the whole is esceedingls weak, in proportion to what the fame quantity of timber mas be made by a proper difpolition of its parts.

The principles fiom which we are to derive this dif- General pofition are the general mechanical principles of car- principles pentry, of which we have given fome account in that of conftrucaticle. Thefe furnith one general rule: When we tion. would give the utmof flrength polfible to a frame of carpentry, every piece frould be fo difpofed that it is fuhject to no frain but what either pufhes cr draws it in the direction of its length: and, if we would be indebted to timber alone for the force or ftrength of the centre, we muft rett all on the firt of thefe trains; for when the ftraining force tends to drasw a beam out of its place, it mult be held there by a mortife and tenon, which polfeffes but a very trifing force, or by iron Itraps and bolts. Cafes occur where it may be very difficult to make every ftrain a thruft, and the beft artifts admit of ties; and indeed where we can admit a tie. bcam connesting the two feet of our frame, we need feek no better fecurity. But this may fometimes be very inconsenient. When it is the arch of a bridge that we are to fupport, fuch a tie-beam would totally ftop the paffige of fmall craft up and down the river. It would often be in the water, and thus expofed to the moft fatal accidents by frefhes, \&cc. Interrupied ties, therefore, mut be employed, whole joint or meetings muft be fupported by fomething analogous to the king-polts of roois. When this is judicioully done, the fecurity is abundantly good. But great judgment is neceffary, and a very ficrupulousattention to the difoofition of the pieces. It is by no means an eafy matter to difcern whether a beam, which makes a part of our centre is in a ftate of comprefion or in a Aate of exter. fion. In fome works of the moft eminent carpenters even of this day, we fee piecea confidered as fruts (and confiderable dependence had on them in this capacity), while they are certainly performing the office of tie-beams, and fhould be fecured accordingly. This was the cafe in the boldeft centre (we think) that has been exectuted in Europe, that of the bridge of Orleans, by Mr Hupeau. Yct it is evidently of great confe. quence not to be miftaken in this point ; for whlsen we are miltaken, and the piece is Atretched which we imagine to be comprefed, we not only are deprived of fome
fupport

C E N [235] C E N

Center.

$\underbrace{-2}$4 becone an additional load.
How to dif- To afcertain this point, we may fuppofe the piers tinguifh a to yield a little to the preflure of the arehfones on the Arut froma centre frames. The feet, therefore, fiy outwards, and tie. the fhape is altered by the finking of the crown. We mult draw our frame anew for this new flate of things, and mull notice what pieces muft be made longer than before. All fuch pieces have been acting the part of tie beams.

But a centre has fill another office to fuftain; it muft keep the arch in its form ; that is, while the !oad on the centre is continually increafing, as the mafons liy on more courfes of atch-flones, the frame muit not yield and go out of fhape, finking under the weight on the haunches, and rifing in the crown, which is not yet carrying any load. The frame muft net be fupple; and mult derive its fliffnefs, not from the clofenel's and frength of its joints, which are quite infignificant when fet in competition with fuch immenfe frains, but from ftruts or ties, properly difpofed, which hinder any of the angles from changing its amplitude.
faid, that the Arength and Aliffiefs of the whole mult be found in the triangles into which this frame of carpentry may be refolved. We have feen that the Arains which one piece produces on two others, with which it meets in one point, depends on the angles of their interfection; and that it is greater as an obtufe angle is more obtule, or an acute angle more acute. And this fuggefts to us the general maxim, "to avoid as much as pollible all very obtufe angles." Acute angles, which are not neceffarily accompanied by obtufe ones, are not fo hurtful; becaufe the frain here can never exceed the ftraining force; whereas, in the cafe of an obtufe angle, it may furpafs it in any degree.
Such are the general rules on this fubject. Although fomething of the mutual abutment of tumbers, and the fupport derived from it, has been long perceived, and employed by the carpanters in roofing, and alfo (doubtlefs) in the forming of centres, yet it is a matter of hiflorical fact, that no general and diftinet views had been taken of it till about the beginning of this centary, or a little earlier. Fontana has preferved the figure of the frames on which the arches of St Peter's at Rome were rurned. The one employed for the dome is confructed with very littl: fkill ; and thofe for the arches of the nave and tranfepts, though incomparably fuperior, and of confideratole limplicity and Arength, are yet far inferior to others wish have been employed in later times. It is much to be regretted that no trace rem.ins of the forns employed by the great atchited and confunmate mechanician Sir Chrifopher Wren. We llould donbt. leis have feen in them every thing that fience and great figacity conld fuggen. We are toid, indeen, that his centering fer the dome of St P.ull's was a wonder of its kind; begun in the air at the height of 160 feet from the ground, and witheut making ufe of cven 6 a projecting curniche wherenn to reft it.
The earlieft The eallieft theory of the kind that we have met theory, on with, that is propofed on fcientific principles, and with fcientific principles, the exprefs purpofe of ferving as alefion, are two centres by Mr Pitot of the Academy of Sciences, about the beginning of this century. As they have conliderable merit (areatly refembling thefe c:mple yed by Mi-
chael Angelo in the nave of St Peter's), and afford fome good maxims, we fhall give a flort account of them. We crave the excufe of the artifts if we fhould employ their terms of att fomewhat ankwardly, not bcing very familiarly acquainted with them. Indeed, we obferve very great diferences, and even ambiguity, in the terms employed.
What we fhall deferibe under the name of a centre is (properly fpeaking) only one frame, trufs, or rib, of a centre. They are fet up in vertical planes, parallel to each other, at the diftance of $5,6,7$, or 8 feet, l:ke the trulfes or main couples of a roof. Bridging joitts are laid acrofs them. -In fmaller works thefe are laid fp.ringly, but of confiderable feantling, and are boarded over ; but for great arches, :a bridging joift is laid for every courfe of archatonec, with blockings between to keep them at their proper diflances. The !tones are not laid immediately on the je joifs, but beans of foft wood are laid along each joil, on which the fone is laid. There beams are afterwards cut ont with the chificl, in order to feparate the centre from the ring of fones, which mult now fupport each other by their mutual abutment.

The centre is diRinguilhable into two parte, ALLB illufrated (fig. 1.) and LDL, which are pretty independent of Plate XIV each other, or at leaft act feparately. The horizontal Stretcher LL cuts the femicicte ADB half way between the fpring and the crown of the arch; the arches AL,LD, being $+5^{\circ}$ each. This fretcher is divided in the fame proportion in the points G and H ; that is, GH is one half of LL, and LG, HL are each onefourth of LL nearly. E:tch end is fupported by two Srruts Ei, GI, which rell below on a Sole or Bed properly fupported. The interval between the heads of the flruts GI, HK is filled up by the Stratining Beam GH, abnating in a proper manner on the fruts (fee Carpentry, Supplement). The extremities L, L, are united in like manner by butting joints, with the heads of the outer Aruts. The Arch Moulds AP, DP, are connected with the ftuts by crofs pieces PQ , which we fiall call Bridees, which come inwards on each lide of the ftrn:s (being double), and are bolied to them. This may be called the lower part of the frame. The upper part confifts of the king poit DR, furported on each lide by the two ftruts or braces ML, ON, mortifed into the pott, and alfo mortifed into the ftetcher, at the points L, N, where it is fupported by the Atru's below. The arches L.D, LD are connefted with the Aruts by the bridles P Q , in the fame manner as below.

There is a great propriety in many parts of this ar- Propricty rangement. The lower parts or haunches of the arch of this arprefi very lightly on the cen:res. Each archfone is ly- rangemerite. ing on an inclined pline, and tends to flide down only with its relative weight ; that is, its weight is to its tendency to flide doria the joint as radius to the fine of elcuation of the joint. Now it is only by this tendency to llide down the joint that they prets on the senterinc, which in every part of the arch is per pendicular to tha joint: But the prefilure on the joint, arifing from this caufe, is much lefs than thic, by reafon of the fretion of the joints. A block of dry freetone w.1! not tide down at all ; and therefore will not prefs on the centering, if the joint be not elevated 35 degrees at lealt. Bit the architones are not leid in this manner, by fliding them down along the joint, but are laid on the centres, and

C E N [236$]$ C E N

Center
lide down their flope, till they touch the blocks on which they are to relt; fo that, in laying the archAtones, we are by no means allowed to make the great deduction from their weight junt now mentinned, and which Mr Couplet prefcribes (Mem. Acad. Sciences, 1729). But there is another caufe which diminifhes the preffure on the centres; each block flides down the planks on which it is laid, and preffes on the block below it, in the direction of the tangent to the arch. This preffure is tranimitted through this block, in the fame direation, to the next, and throngh it to the third, \&c. In this manner it is plain that, as the arch advances, there is a tangential preflure on the lower archlones, which diminithes their preflure on the frame, and, if fufficiently great, might even pufh them away from it. Mr Couplet has given an analyfis of this preffure, and thews, that in a fernicircular arch of uniform thicknefs none of the arcl flones below 30° prefs on the frames. But he (without faying fo) calculates on the fuppofition that the blocks deficend along the circunference of this frame in the fame manner as if it were perfeetly fmooth. As this is far from being the cafe, and as the obftructions are to the laft degree various and irregular, it is quite ufelefs to inftitute any calculation on the fubject. A little reflection will convince the reader, that in this cafe the obftruction arifing from friction muft be taken into account, and that it mu/f not be taken into account in ellimating the preflure of each fuccefive courfe of fones as they are laid. It is enough that we fee that the preflure of the lower courfes of archftones on the frame is diminifhed. Mr Couplet fays, that the whole preffure of a femicircular arch is but $\frac{4}{8}$ ths of its weight ; but it is much greater, for the reafon juft now given. We have tried, with a well-made wooden mo-
del (of which the circumference was rubbed with black lead to render it more nippery), whether any part of the wooden blocks reprefenting the architones were detached from the frame by the tangential preffure of the fuperior blocks; but we could not fay confidently that any were fo detached. We perceived that all kept hold of a thin flip of Chinefe paper (alfo rubbed with black lead) between them and the frame, fo that a fenfible force was required to pull it out. From a combination of circumfances, which would be tedious to relate, we believe that the centres carry more than two thirds of the weight of the arch before the keytone is fet. In elliptical and lower pitched circular arches, the proportion is fill greater.

It feems reafonable enough, therefore, to difpofe the framing in the manner propofed by Pitot, directing the man fupport to the upper mafs of the arch, which prefles mont on the frame. We thall derive another advantage from this conflruction, which has not occurred to Mr Pitot.

There is an evident propriety in the manner in which he has diftributed the fupports of the upper part. The Alruts which carry the king poff fring from thofe points of the ftretcher where it refts on the ftruts below: thus the flretcher, on which all depends, bears no tranfverfe Arains. It is ftretched by the ffrut above it, and it is compreffed in a fmall degree between the fruts below it, at lealt by the outer ones. Mr Pitot propofes the fraining beam GH as a lateral fupport to the fretcher, which may therefore be of two picces: but although it does augment its Arength, it does not feem neceflary for it.

The fretcher is abundantly carried by the frap, which may and thould furpend it from the king polt. The great ufe of the ftraining piece is to give a firm abutment to the inner ftruts, without allowitg any lateral fratin on the fretcher. N.B. Great care mult be taken to make the hold fufficiently firm and extenfive between the firetcher and the upper flruts, fo that its cohefion to reilit the thrufts from thefe fruts may be much employed.

The only imperfection that we find in this frame is the lateral frains which are brought upon the upper Atruts by the bridles, which certainiy tranfmit to them part of the weight of the archfones on the curves. The fpace between the curves and ML fhould alfo have been truffed. Mr Pitot's form is, however, extremely ftiff; and the caufing the middle bridle to reach down to the ftretcher, feems to fecure the upper fruts from all rik of bending.
This centre gives a very diftinet view of the offices of all the parts, and nakes therefore a proper introduction to the general fubject. It is the fimpleft that can be in its principle, becaufe all the effential parts are fubjegted to one kind of ftrain. The Aretcher LL is the only exception, and its extenfion is rather a collateral circumitance than a ftep in the general fupport.

10
The examination of the ftrength of the frame is ex- The tremely eafy. Mr Pitot gives it for an arch of 60 feet frength of fpan, and fieppofes the architones 7 feet long, which is this frame a monftrous thicknefs for fo finall an arch; f feet is an abundant allowance, but we thall abide by his conftruction. He gives the following fcantlings of the parts:

The ring or circumference confilts of pieces of oak 12 inches broad and 6 thick.

The flretcher LL is 12 inches fquare.
The ftraining piece GH is alfo 12 by I 2 .
The lower ftruts 10 by 8.
The king poft 12 by 12 .
The upper ftruts io by 6.
The bridles 20 by 8 .
There dimenfions are French, which is about $\frac{7}{8}$ th larger than ours, and the fuperficial dimenfions (by which the fection and the abfolute ftrength is meafured) is almoft $\frac{x}{8}$ th larger than ours. The cubic foot, by which the fones are meafured, exceeds ours nearly $\frac{1}{5}$ th. The pound is deficient about $\frac{1}{3}$ th. But fince very nice calculation is neither eafy nor neceffary on this fubject, it is needlefs to depart from the French meafures, which would occafion many fractional parts and a troublefome reduction.

The arch is fuppofed to be built of fone which weighed 160 pounds per foot. Mr Pitot, by a computation (in which he has committed a mittake), fays, that only $\frac{x}{5} \frac{x}{2}$ ths of this weight is carried by the frame. We believe, however, that this is nearer the truth than Mr Couplet's affumption of $\frac{4}{9}$ ths already mentioned.

Mr Pitot farther alfumes, that a fquare inch of found oak will carry 8640 pounds. By his language we fhould imagine that it will not carry much more: but this is very far below the Itrength of any Britifh oak that we have tried; fo far, indeed, that we rather imagine that he means that this load may be laid on it with perfect fecurity for any time. But to compenfate for knots and other accidental imperfections, he aflumes 7200 as the meafure of its abfofute force.

C E N [237$] \quad$ C E N

He computes the load on each frame to be 707520 pounds, which he reduces to $\frac{17}{87}$ ths, or 555908 pounds.

The abfolute force of each of the lower flruts is 576000 (at 7200 per inch), and that of the curves 518400. Mr Pitot, confidering that the curves are kept from bending outwards by the arch fones which prefs on them, thinks that they may be confidered as acting precifely as the outer ltruts EI. We have no II objection to this fuppofition.
Computed. With thefe data we may compute the load which the lower trufs can fafely bear by the rule delivered in the article Carpentry. We therefore proceed as follows:

Meafure off by a fcale of equal parts as, at, each 576000 , and add $t v 518400$. Complete the parallelogram $a v x s$, and draw the vertical $x c$, meeting the horizontal line $a \mathrm{C}$ inc. Make $c b$ equal to $c a$. Join $x b$, and complete the parallelogram $a x b y$. It is evident that the diagonal $x y$ will reprefent the load which thefe pieces can carry; for the line $a v$ is the united force of the curve AP and the Arut IE, and as is the ftrength of IG. Thefe two are equivalent to $a x, x b$ is, in like manner, equivalent to the fupport on the other fide, and $x y$ is the load which will jut balance the two fupports $a x$ and $b x$.

When $x y$ is meafured on the fame fcale, it will be found $=2850000$ pounds. This is more than five times the load which adtually lies on the frame. It is therefore vaftly fronger than is neceffary. Half of each of the linear dimenfions would have been quite fufficient, and the ftruts needed only to be 5 inches by 4 . Even this would have carried twice the weight, and would have borne the load really laid on it with perfect fafety.

We proceed to meafure the Arength of the upper part. The force of each ftrut is 432000 , and that of the curve is 518400 ; therefore, having drawn $\mathrm{M} v$ parallel to the Itrut ON , make $\mathrm{Mv}=432000$, and M s $=432000+518400$. Complete the parallelogram Msrv. Draw the horizontal line $r k$, cutting the vertical MC in k, and make $k y=M k$. It is plain, from what was done for the lower part, that $\mathrm{M} y$ will meafure the load which can be carried by the upper part. This will be found $=1 \times 60000$. This is alfo greatly fuperior to the load; but not in fo great a proportion as the other part. The chief part of the load lies on the upper part; but the chief rcafon of the difference is the greater obliquity of the upper Atruts. This thortens the diagonal M y of the parallelogram of forces. Mr Pitot thould have adverted to this; and inftead of making the upper ftruts more flender than the lower, he thould have made them !touter.

The Rrain on the itretcher LL is not calculated. It is meafured by $r^{\prime} k^{\prime}$, when My is the load aktually lying on the upper part. Lefs than the fixth part of the cohefion of the ftretcher is more than fufficient for the horizontal thr uft ; and there is no difficulty of making the foot joints of the ftruts abundantly frong for the purpofe.

The reader will perceive that the computation jult now given does not fate the proportions of the frains Suppl. Vol. I.
aflually exerted on the different pieces, but the load on the whole, on the fuppofition that each piece is fub. jected to a frain proportioned to its frength. The other calculation is much more complicated, but is not necef. fary here.

This centre has a very palpable defect. If the piers thould yield to the load, and the feet of the centre f y out, the lower part will exert a very confiderable ftrain on the Aretcher, tending to break it acrofs between N and L, and on the other fide. HKF of the lower part is firmly bound together, and cannot change its thape, and will therefore act like a lever, turning round the point F . It will draw the frut HK away from its abutment with GH, and the ftretcher will be ftrained acrofs at the place between H and F , where it is bolted with the bridle. This may be refifted in fome degree by an iron ftrap uniting ON and HK ; but there will till be a want of proportional Atrength. Indeed, in an arch of fuch height (a femicircle), there is but little rifk of this yielding of the piers; but it is an imperfection.
The centre (fig. 2.) is conftructed on the fame prin- A centre ciple precifely for an elliptical arch (A). The calcula. on the fame tion of its ftrength is nearly the fame alfo; only the principles two upper fruts of a fide being parallel, the parallelo- fur an ellipgram Ms $r v$ (of fig. r.) is not needed, and in its ftead we meafure off on ON a line to reprefent twice its frength. This comes in place of M r^{\prime} of fig. I. $-N . B$. The calculation proceeds on the fuppofition that the fhort ftraining piece MM makes but one firm body with the king poft. Mr Pitot employed this piece (we prefume) to feparate the heads of the Aruts, that their obliquity might be leffened thereby: and this is a good thought; for when the angle formed by the ftruts on each fide is very open, the itrain on them becomes very great.

The ftretcher of this frame is fcarfed in the middle. Suppofe this joint to yield a litrle, there is a danger of the lower flrut ON lofing its hold, and ceafing to join in the fupport; for when the crown finks by the lengthening of the ftretcher, the triangle ORN of fig. 2. will be more diftorted than the fpace above it, and ON will be loofened. But this will not be the cafe when the finking of the crown arifes from the mere com. preffion of the fluts. Nor will it happen at all in the centre, fig. 1. On the contrary, the ftrut ON will abut more firmly by the yielding of the foot of ML.

The figure of this arch of Mr Pitot's confifts of three arches of circles, each of 60 degrees. As it is elegant, it will not be unacceptable to the artift to have a conftruction for this purpofe.

Make $B Y=C D$, and $C Z=\frac{1}{2} C Y$. Defcribe the ${ }^{1}{ }^{3}$ femicircle ZIEY, and make $Z S=Z \mathbb{Z E} . \quad S$ is the centre confruct of the fide arches, each of 60 degrees. The centre T of fuch an the arch, which unites thefe two, is at the angle of an arch. equilateral triangle STS.

This conlfruction of Mr Pitot's makes a handfome oval, and very near an ellipfis, but lies a little without it. We thall add another of our own, which coincides with the ellipfe in eight points, and furnifhes the artif,

I i
by
(A) It is the middle arch of the bridge at Lille Adam, of which Mr Pitot had the direction. It is of 80 feet fpan, and rifes 31 feet.

C_EN $\quad[238] \quad$ C E_N

Center. by the way, a rule for drawing an infinite variety of ovals.

Let $A B, D E$ (fig. 2. N° 2.) be the axes of an elliple, C the centre, and F, f the two foci. Make $C b$ $=\mathrm{CD}$, and deferibe a circle AD be paning through the three given points A, D, and b. It may be demonftrated, that if from any point P of the arch $A D$ be drawn a chord PD, and if a line PR r be drawn, making the angle $\mathrm{DPR}=\mathrm{PDC}$, and meeting the two axes in the points R and r, then R and r will be the centres of circles, which will form a quarter APD of an oval, which has $A B$ and $D E$ for its two axes.

We trant an oval which fhall coincide as much as pof. fible with an elliplis? 'The moft likely method for this is to find the very point P where the ellipfis cuts the circle $\mathrm{AD} b$. The eafieft way for the artit is to deferibe an arch of a circle anm, having $A B$ for its radius, and the remote fucus f for its centre. Then fet che foot of the compaffes on any point P, and try whether the diftance PF from the nearelt focus F is exaetly equal to its diftance P. m from that circle. Shifting the foot of the compaffes from one point of the arch to ano. ther, will foon difcover the point. This being found, draw PD, make the angle, DP $r=P D r$, and R and r are the centres wanted. Then make $C s=C R$, and we get the centres for the other fide.

The geometer will not relifh this mechanical conAruction. He may therefore proceed as follows : Draw $\mathrm{D} d$ parallel to AB , cntting the circle in d. Draw $e d$, cutting AC in N. Draw CG parallel to A e, and make the angle $C G i=A D e$. Difeet $C N$ in O, and join O i. Make $\mathrm{OM}, \mathrm{OM}^{\prime}=\mathrm{O} i$, and draw $\mathrm{MP}, \mathrm{M}^{\prime} \mathrm{P}^{\prime}$ perpendicular to AB. Thefe ordinates will cut the circle $A D$ be in the points P and P^{\prime}, where it is cut by the ellipfe. We leave the demonftration as a geometrical If exercife for the dilettante.

Aretcher EF, had reited on a row of chocks formed like double wedges, placed above each other, head to point, the upper part of the centering might be ftruck independent of the lower, and this might be done gradually, beginning at the outer ends of the ftretcher. By this procedure, the joints of the archltones will clofe on the haunches, and will almoft relieve the lower centering, fo that all can be pulled out together. Thus may the arch fettle and confolidate in perfect fafety, without any chance of breaking the bond of the mortar in any part; an accident which frequently happens in great arches. This procedure is peculiarly advifable for low pitched or elliptical arches. But this will be more clearly feen afterwards, when we treat of the internal move. ments of an arch of mafonry.

This may fuffice for an account of the more fimple conftruction of truffed centres; and we proceed to firch as have a much greater complication of principle. We flall take for examples fome conltrueted by Mr Perronet, a very celebrated French architect.

Mr Perronet's general maxim of confruction is to Parronet's make the trufs confift of feveral courfe's of feparate truf- maxim of fes, independent (as he thinks) of each other, and thus conftructo employ the joint fupport of them all. In this con- tion. Aruction it is not intended to make ufe' of one trufs, or part of one trufs, to fupport another, as in the former fet, and as is practifed in the roofs of-St Paul's church, Covent Garden, and in Drury Lane theatre. Each trufs fpans over the whole diftance of the piers, and would itand alone thaving, however, a tottering equilibrium). It confifts of a number of Atruts, fet end to end, and forming a polygon. Thefe truffes are fo arranged, that the angles of one are in the midtle of the fides of the next, as when a polygon is infcribed in a circle, and another (of the fame number of fides) is circumfrribed by lines which toush the circle in the angles of the infcribed palygon. By this conftruction the angles of the alternate truffes lie in lines pointing towards the centre of the curve. King polts are therefore placed in this direction between the adjoining beams of the truffes. Thefe king polts confit of two beams, one on each fide of the trufs, and embrace the trufsbeams between them, meeting in the middle of their thicknefs. The abutting beams are mortiled, half into each half of the poft. The other beam which makes the bafe of the triangle, paffes through the poft, and a ftrong bolt is driven through the joint, and fecured by a key or a nut. In this manner is the whole united; and it is expected, that when the load is laid on the tuppermoft trufs, it will all butt together, forcing down the king pots, and therefore preffing them on the bearns of all the inferior truffes, caufing them alfo to abutt on each other, and thus bear a thare of the load. Mr Perronet does not aflume the invention to himfelf; but fays, that it was invented and practifed by Mr Manfard de Sagonne at the great bridge of Moulins. It is much more ancient, and is the work of the celehrated phyfician and architect Perrault ; as may be feen in the collection of machines and inventions of that gentleman publifhed after his death, and alfo in the great collection of inventions approved of by the Academy of Sciences. It is this which we propofe to extmine.

Fig. 4. reprefents the centering employed for the Centering bridge of Cravant. The arches are elliptical, of 60 feet for the fpan and 20 feet rife. The archfones are four feet bridge of thick, Cravant,

C E N [239$]$ C E N

thick, and weigh i 76 pounds per foot. The trufs beams were from 15 to 18 feet long, and their fection was 9 inches by 8 . Each half of the king pofts was about 7 feet long, and its fection 9 inches by 8. The whole was of oak. The five truffes were $5 \frac{\pi}{2}$ feet afunder. The whole weight of the arch was 1350000 lbs. which we may call 600 tons (it is 558). This is about 112 tons for each trufs. We muft allow near 90 tons of this really to prefs the trufs. A great part of this preffure is borne by the four beams which make the feet of the trufs, coupled in pairs on each fide. The diagonal of the parallelogram of forces drawn for thefe beams is, to one of the fides, in the proportion of 360 to 285 . Therefore fay, as 360 to 285 ; fo is 90 to $71 \frac{\text { t }}{4}$ tons, the thrut on each foot. The fection of each is 144 inches. We may with the utmoft fafety lay three tons on every inch for ever. This amounts to 432 tons, which is more than fix times the frain really prefling the foot beams in the direction of their length; nay, the upper trufs alone is able to carry much more than its load. The abfolute ftrength of its foot-beam is 216 tons. It is much more advantagcoufly placed; for the diagnonal of the parallelograme of forces correfponding toits pofition is to the fide as 438 to 285 . This gives $58 \frac{6}{8}$ tons fur the ftrain on each toot; which is not much above the fourth part of what it is able to carry for ever. No doubt can therefore be entertained of the fuperabundant ftrength of this centering. We fee that the upper row of truts is quite fulficient, and all that is wanted is to procure ftiffnefs for it; for it munt be carefully kept in mind, that this upper row is not like an equilibrated arch. It will be very unequally loaded as the work advances. The haunches of the frame will be preffed down, and the jcints at the crown raifed up. This mult be refifted.

Here then we may gather, by the way, a ufeful lef. fon. Let the outer row of ftruts be appropriated to the carriage of the load, and let the reft be employed for giving ftifinefs. For this purpofe let the outer row have aburdant ftrength. The advantages of this metho 1 are confiderable. The pofition of the beams of the exterior row is more advantageous, when (as in this example) the whole is made to relt on a narrow foot: for this obliges us to make the latt angle, at leat of the lower row, more open, which increafes the ftrain on the ftrut ; befides, it is next to impofible to diftribute the comprefling thruits among the different rows of the trufs-beams; and a beam which, during one period of the mafon work, is acting the part of a ftrut, in another period is bearing no ttrain but its own weight, and in another it is ftretched as a tie. A third advantage is, that, in a cafe like this, where all relts on a narrow foot, and the loverer row of beams are bearing a great part of the thent, the horizontal thrutt on the pier is very great, and may pufh it afide. This is the moft ruinous accident that can happen. An inch or two of yielding will caufe the crown of the arch to fink prodigisunly, and will inftantly derange all the bearings of the abutting beams: but when the lower beams already adt as ties, and are quite adequate to their office, we render the frame periectly ftiff or unchangeable in its form, and take away the horizontal thrult from the piers entirely. This advantage is the more valuable, becaufe the very circumitance which obliges us to relt all on a narrow foot, places this foot on the very top of the pier, and makes the horizontal thrult the more dangerous.

But, to proceed in our examination of the centering of Cravant bridge, let us fuppofe, that the king polts are remored, and that the beams are joined by compars joints. If the pier fhall yield in the fmalleft degree, both rows of fruts mult fink; and fince the angles (at leaft the outermoft) of the lower row are more open than thofe of the upper row, the crown of the lower row will fink more than that of the upper.

The angles of the alternate row's muft therefore feparate a little. Now reftore the king polts; they prevent this feparation. Therefore they are flretched; therefore the beams of the lower row are alfo ftretched; confequently they no longer butt on their mortifes, and muit be held in their places by bolts. 'I'hus it appcars that, in this kind of fagging, the original dittribution of the load among the different rows of beams is changed, and the upper row becomes loaded beyond our expeetation.

If the fugging of the whole trufs proceed only from the compreffion of the timbers, the cafe is different, and we may preferve the original diftribution of mutual abutment more accurately. But in this cafe the Itiffnefs of the frame arifes chiefly from crofs ftrains. Suppofe that the frame is loaded with arelifiones on each fide up to the pofts $\mathrm{HC}, b c$; the angles E and e are preffed down, and the beams EOF, eo F pulh up the point F. This cannot rife without bending the beams EOF, eo F; becaufe O and o are held down by the double king pofts, which grafp the beams between them. There is therefore a crofs itrain on the beams. Obferve alfo, that the tiangle EHF does not preferve its fhape by the connection of its joints; for although the ftrut beams are mortifed into the king poft, they are in very fhallow mortifes, rather for fleadying them than for holding them together. Mr Perronet did not even pin them, thinking that their abutment was very great. The triangle is kept in fhape by the bafe EF, which is firmly bolted into the middle poft at O. Had thefe interfections not been ftrongly bolted, we imagine that the centres of fome of Mr Perronet's bridges would have yielded much more than they did; yet fome of them yielded to a degree that our artifts would have thought very dangerous. Mr Perronet was obliged to load the crown of the centering with very great weights, increafing them as the work advanced, to prevent the frames from going out of fhape: in one arch of 120 feet he laid on 45 tons. Notwithftanding this imperfection, which is perhaps unavoidable, this mode of traming is undoubtedly very judicious, and perhaps the beft which can be employed without depending on iron work.

Fig. 5. reprefents another, conftructed by Perronet For the for an arch of 90 feet fpan and 28 feet rife. The truf. bridge of fes were 7 feet apart, and the arch was $4 \frac{1}{2}$ thick; fo that Nogent, the unreduced load on each frame was very nearly 235 tons. The feantling of the flruts was 15 by 12 inches. The principle is the fame as that of the former. The chief difference is, that in this centre the outer trufsbeam of the lower row is not coupled with the middle row, but kept nearly parallel to the outer beam of tho upper row. This adds greatly to the frength of the foot, and takes off much of the horizontal thruft from the pier.

Mr Perronet has fhewn great judgment in caufing the pulygon of the inner row of trufs beams gradually to approach the polygon of the outer row. By this

C E N [240] C E N

 occafion to refer to this figure on another occafion.This maxim is better exemplified by Mr Perrone the maxim is better exemplified by Mr Perronet in fig. $5 \cdot \pi^{0}$. 保 the bridge of St Maxence, exhibited in we think that a horizontal trufs-beam $a b$ fhould have been inferted (in a fubordinate manner) between the king pofts next the crown on each fide. This would prevent the crown from rifing while the haunches only are loaded, without impairing the fine abutments of $c d$, $c d$, when the arch is nearly completed. This is an excellent centering, but is not likely to be of much úfe in thefe kingdoms; becaufe the arch irfelf will be confldered as ungraceful and ugly, looking like a huge lintel. Perronet fays, that he preferred it to the ellipfe, becaufe it was lighter on the piers, which were thin. But the failure of one arch mult be immediately followed by the ruin of all. We know much better methods
difpofition, the angles of the-inner polygon are more acute than thofe of the outer. A little attention will Shew, that the general fagging of all the polygons will keep the abutments of the lower one nearer, or exactly, to their original quantity. We mult indeed except the foot-beam. It is fill too oblique; and, inftead of converging to the foot of the upper row, it fhould have diverged from it. Had this been done, this centre is almolt perfect in its kind. As it is, it is at leaft fix times fronger than was abfolutely neceffary. We fhall have of lightening the piers.
Fig. 6. reprefents the centering of the bridge of Neuilly, near Paris, alfo by Perronet. The arch has 120 feet fpan, and 30 feet rife, and is 5 feet thick. The frames are 6 feet apart, and each carries an abfolute (that is, not reduced to $\frac{11}{17}$ or to $\frac{4}{9}$) load of 350 tons. The frut beams are 17 by 14 inches in fcantling. The king poits are of 15 by 9 each half; and the horizontal bridles which bind the different frames together in five places, are alfo 15 by 9 each half. There are eight other horizontal binders of 9 inches fquare.

This is one of the mof remarkable arches in the world; not altogetleer on account of its width (for there are feveral much wider), but for the flatnefs at the crown; for about 26 feet on each fide of the middle it was intended to be a portion of a circle of 150 feet radius. An arch (femicircular) of 300 feet $\{$ pan might therefore be eafily conltructed, and would be much Aronger than this, becaufe its horizontal thruft at the crown would be valtly greater, and would keep it more firmly united.

The bolts of this centre are differently placed fram thofe of the former; and the change is judicious. Mr . Perronet had doubtlefs found by this time, that the ftiffnefs of his framing depended on the tranfverfe Arength of the beams; and therefore he was careful not to weaken them by the bolts. But notwithfanding all his care, the-framing funk upwards of 13 inches before the keyfones were laid; and during the progrefs of the work, the crown rofe and funk, by various fteps, as the loading was extended along it. When 20 courfes were laid on each fide, and about 16 tons laid on the crown of each frame, it funk about an inch. When 46 courfes were laid, and the crown loaded with 50 tons, it funk about half an inch more. It continued finking as the work advanced; and when the kesfone was fet it had funk $13 \frac{7}{4}$ inches. But this finking was
not general ; on the contrary the frame had rifen greatly at the very haunches, fo as to open the upper part of the joints, many of which gaped an inch; and this opening of the joints gradually extended from the hauncles towards the crown, in the neighbourhood of which they opened on the under fide. This evidently arofe from a want of ftiffnefs in the frame. But thefe joints clofed again when the centres were ftruck, as will be mentioned afterwards.
We have taken particular notice of the movements and twiting of this centre, becaufe we think that they indicate a deficiency, not only of fiffnefs, but of abutment among the trufs beams. The whole has been too flexible, becaure the angles are too obture: This arifes from their miltiplicity. When the intercepted arches have fo little curvature, the power of the load to prefs it inward increafes very faft. When the intercepted arch is reduced to one half, this power is more than doubled; and it is alfo doubled when the radius of curvature is doubled. "The king-pofts fhould have been further apart near the crown, fo that the quantity of arch between them fliould compenfate for its diminifhed curvature.

The power of withtanding any given ineqnality of load would therefore have been greater, had the centre confifted of fewer pieces, and their angles of meeting been proportionally more acute. The greatelt improve. ment would have been, to place the foot of the lower tier of trufs-beams on the very foot of the pier, and to have alfo feparated it at the head from the reft with a longer king-poft, and thus to have made the diftances of the beams on the king-polts increafe gradually from the crown to the fpring. This would have made all the angles of abutment more acute, and would have produced a greater preffure on all the lower tiers when the frame fagged.

Fig. 7. reprefents the centering of the bridge of Or- Orleans. leans. The arch has 100 feet fpan, and rifes 30 , and the arch!tones are 6 feet long. It is the contruction of Mr Hupeau, the firft architect of the bridge. It is the boldelt work of the kind that we have feen, and is conftructed on clear principles. The main abutments are few in number. Becaure the beams of the outer polygon are long, they are very well fupported by ftraining beams in the middle; and the Atuts or braces which fupport and butt on them, are made to relt on points carried entirely by ties. The inventor, however, feems to have thought that the angles of the inner po-lygon-were fupported by mutual comprefion, as in the outer polygon. But it is plain that the whole inner polygon may be formed of iron rods. Not but that both polygons may be in a fate of compreffion (this is very poflible); but the fmallett fagging of the frame will change the proportions of the preffures at the angles of the two polsgons. The preffures on the exterior angles will increale, and thofe on the lower or interior angles will diminih moll rapidly; fo that the abutments in the lower polygon will-be next to nothing. Such points could bear very little preffure from the braces which fupport the middle of the long bear:ings of the upper beams, and their preffures mult be borne chiefly by the joints fupported by the king-polts. The king-polts would then be in a fate of extenfon. It is difficult, however, to decide what is the precife ftate of the prefure at thefe interior angles.

C E N $\quad\left[\begin{array}{lll}241\end{array}\right] \quad \mathrm{C} \quad$ E N

The hiftory of the erection of this bridge will throw much light on this point, and is very inftructive. Mr Hupeatu died before any of the arches were carried farther than a very few of the firft courfes. Mr Perronet fucceeded to the charge, and finifhed the bridge. As the work advanced, the crown of the frame rofe very much. It was loaded; and it funk as remarkably. This Shewed that the lower polygon was giving very little aid. Mr Perronet then thought the frame too weak, and inferted the long beam DE, making the diagonal of the quadrangle, and very nearly in the direction of the lower beam $a b$, but falling rather below this line. He now found the frame abundantly frong. It is evident that the trufs is now changed exceedingly, and confilts of only the two long fides, and the fhort ftraining beam lying horizontally between their heads. The whole centering confilts now of one great trufs a E $e b$, and its long fides $a \mathrm{E}, e b$, are truffed up at B and f. Had this fimple idea been made the principle of the confruction, it would have been excellent. The angle a DE might have been about 176°, and the polygon D c z^{b} employed only for giving a flight fup. port to this great angle, fo as not to allow it to exceed 180°. But Mr Perronet found, that the joint c, at the foot of the pof E c, was about to draw loofe, and he was obliged to belt long pieces of timber on each fide of the joint, embracing both beams. Thefe were evidently ating the fame part as iron flraps would have done; a complete proof that, whatever may have been the original preffures, there was no abutment now at the point c, and that the beams that met there were not in a flate of compreffion, but were on the Aretch. Mr Perronet fays that he put thefe cheeks to the joints to fiffen them. But this was not their office; becaule the adjoining beams were not flruts, but ties, as we have now proved.

We may therefore conclude, that the outer polygon, with the affiftance of the pieces $a b$, DE, were carrying the whole load. We do not know the diflance between the frames; but fuppofing them feven feet apart, and the arch 6 feet thick, and weighing 170 pounds per foot, we learn the load. The beams were 16 inches fquare. If we now calculate what they would bear at the fame very moderate rate allowed to the other centres, we find that the beams $A B$ and $a b$ are notloaded to one-lixth of their flrength.

We have given this centre as a fine example of what carpentry is able to perform, and becaufe, by its fimplicity, it is a fort of text on which the intelligent artift may make many comments. We may fee plainly that, if the lower polygon had been formed of iron rods, firmly bolted into the feet of the king-pofts, it would have maintained its ftape completely. The fervice done by the beam DE was not fo much an increafe of abutment as a difcharge of the weight and of the pull at the joint c. Therefore, in cafes where the feet of the trufs are neceflaitly confined to a very narrow fpace, we fhould be careful to make the upper polygon fufficient to carry the whole load (fay by doubling its beams), and we may then make the lower polygon of flender dimenfions, provided we fecure the joints on the kingpofts by iron ftraps which embrace a confiderable portion of the tic on each fide of the joint.

We are far from thinking that thefe centres are of the beft kind that could be employed in their fituation;
but they are excellent in their kind; and a careful Audy of them will teach the artift much of his profeffion. When we have a clear conception of the Aate All thefe of Atrain in which the parts of a frame really are, we centres know what thould be done in order to draw all the ad. good in vantage poflible from our materidls. We have faid in their kind. another place, that where we can give our joints fufficient connection (as by Itraps and bolts, or by cheeks or fifhes), it is better to ufe ties than ftruts, becaule ties never bend.

We do not approve of Mr Perronet's practice of giving his truffes fuch narrow feet. By bringing the foot of the lower polygon farther down, we greatly diminith all the ftrains, and throw more load on the lower polygon ; and we do not fee any of Mr Perronet's centres where this might not have been done. He feems to affeet a great fpan, to fhew the wonders of his art ; but our object is to teach how to make the befl centre of a given quantity of materials; and how to make the molt perfect centre, when we are not limited in this refpect, nor in the extent of our fixed points.

We thall conclude this feries of examples with one Excellence where no fuch affectation takes place. This is the cen. of the centering of the bridge at Blackfriars, London. The \{pan tre employof the arch is 100 feet, and its height from the foring is about 43. The drawing fig. 8 . is fufficiently minute to convey a diftinet notion of the whole conitruction. We need not be very particular in our obfervations, after what has been faid on the general principles of conftruction. The leading maxim, in the prefent example, feems to be, that every part of the arch foll be fupported by a fimple trufs of two legs refing, one on each pier. H, H, \&c. are called apron pieces to ftrengthen the exterior joints, and to make the ring as fliff in itfelf as poffible. From the ends of this apron-piece proceed the two legs of each trufs. Thefe legs are 12 inches fquare: They are not of an entire piece, but of feveral, meeting in firm abutment. Some of their meetings are fecured by the double king-pofts, which grafp them firmly between them, and are held together by bolts. At other interfections, the beams appear halved into each other; a practice which cannot but weaken them much, and would endanger their breaking by crofs Atrains, if it were pollible for the frame to change its fhape. But the great breadth of this frame is an effectual ftop to any fuch change. The fact was, that no finking or trwifing whatever was obferved during the progrefs of the mafon work. Three points in a Atraight line were marked on purpofe for this obfervation, and were obferved every diy. The arch was more than fix feet thick; and yet the finking of the crown, before fetting the key-ftones, didnot amount to one inch.

The centre employs about one-third more timber than Perronet's great centre in proportion to the fpan of the arch; but the circumference increafes in a greater proportion than this, becaufe it is more elevated. In every way of making a comparifon of the dimenfions, Mr Mylne's arch employs more timber; but it is beyond all comparifon ttronger. 'The great elevation is partly the reaton of this. But the difpofition of the timbers is allo much more advantageous, and may be copied even in the low pitched arches of Neuilly. The fimple trufs, reaching from pier to pier for the middle point of the arch, gives the flrong fupport where it is moft of all wanted; and in the lateral points H , al-
though

C E N [242$]$ C E N

Center. though one leg of the trufs is very oblique, the other compenfates for it by its upright pofition.

The chiet peculiarity of this centre is to be feen in its bafe. This demands more particnlar attention; but we frult fint make fone obfervations on the condition of an arch, as it refts on the centering after the keyfones are all fer, and on the gradual transference of the preffure from the boards of the centering to the joints of the architones.

Obfervations on the flate of an arch as it refts on the ecntering.

While all the archftones lie on the centering, the lower courfes are alfo leaning pretty ftrongly on each other. But the mortar is hardly compreffed in the joints; and leaft of all in the joints near the crown. Suppofe the arch to be Catenarean, or of any other flape that is perfectly equilibrated: When the centering is gradually withdrawn, all the architones follow it. Their wedge-like form makes this impoflible, without the middle ones fqueezing the lateral ones afide. This compreffes the mortar between them. As the fones thus come nearer to each other, thole near the crown muft defcend more than thofe uear the haunches, before every flone has leffened its diftance from the next by the famequantity; for example, by the hundredth part of an inch. This circumitance alone mult caufe a finking in the crown, and a change of flape. But the joints near the crown are already more open than thote near the haunches. This produces a till greater change of form before all is fettled. Sume mafons endeavour to remedy, or at leaft to diminith, his, by uling no mortar in the joints near the crown. They lay the nones dry, and even force them together by wedges and blocks laid between the ftones on oppofite fides of the croun: They afterwards pour in fine cement. 'This appears a good praclice. Perronet rejects it, becaufe the wedging fometimes breaks the ftones. We fhould not think this any great harm; becaufe the fracture will make them clofe where they would otherwife lie hollow. Bit, after all our care, there is ftill a finking of the crown of the arch. By gradually withdrawing the centering, the joints clofe, the archftones begin to butt on each other, and to force afide the lateral courfes. This abutment gradually increafing, the preffure on the haunches of the centering is gradually diminifhed by the mutual abutment, and ceafes entirely in that courfe, which is the lowelt that formerly prefled it: it then ceafes in the courle above, and then in the third, and fo on. And, in this manner, not only the centering quits the arch, gradually, from the bottom to the top, by its own retiring from it, but the arch alfo quits the centering ly changing its flape. If the centering were now puthed up again, it would touch the arch firf at the crown; and it muft lift up that part gradually be. fore it come again in contact with the haunches. It is evident, therefore, that an arch, built on a centre of a fhape perfectly fuited to equilibration, will not be in equilibrio when the centering is removed. It is therefore necelfary to form the centering in fuch a manner (by raifing the crown), that it flalil leave the arch of a proper torm. This is a very delicate tafk, requiring a previous knowledge of the enfuing change of form. This cannot be afcertained by the help of any theory we are acquainted with.

But, fuppofe this attained, there is another difficulty: While the work advances, the centering is warped by the load laid on it, and continually increating on each
fide. The firt pieffure on the centering forces dowa the haunches, and raifes the crown. The arch is there. fore lefs curved at the haunches than is intencled: the joints, however, accommodate themfelves to this form, and are clofe, and filled with mortar. When the mafons approach the middle of the arch, the frame finks there, and rifes up at the haunches. This opens all the joints in that place on the upper fide. By the time that the keyfones arefer, this warping has gone farther ; and joints are opened on the under fide near the crown. It is true we are here feaking rather of an extremecafe, when the centering is wery flexible; but this oc. curred to Mr Perronet in the two great bridges of Neuilly and of Mantz. In this laft one, the crown funk above a foot before the key was fet, and the joirts at the haunches opened above an inch above, while fome nearer the crown opened near a quarter of an inch bclow.

In this condition of things, $i t$ is a delicate bulinefs to lrike Welicate arik would probably come down ; for the archftones are not Atrike the yet abutting on each other, and the joints in the middle centering. are open below. Mr Perronet's method appears to us to be very judicious. He began to detach the centering at the very bottom, on each fide equally, where the preflure on the centering is very flight. He cut away the blocks which were immediately under each archfone. He proceeded gradually upwards in this way with fome fpeed, till all was detached that had been put out of thape by the bending of the centering. This being no longer fupported, funk inward, till it was fopped by the abutment which it found on the archifones near the crown which were fill refting on their blocks. During part of this procefs, the open joints opened ftill more, and looked alarming. This was owing to the removal of the load from the haunches of the centering. This allowed the crown to fink fill more, by forcing out the arch flones at the haunches. He now paufed fome days; and during this time the two haunches, now hanging in the air, gradually preffed in toward the centering, their outer joints clofing in the mean while. The haunches were now prelfing pretty hard on the arch fones nearer the crown. He then proceeded more flowis, defroying the blocks and briagings of thele up. per archfones. As foon as he deftroyed the fipport of one, it inmediately yielded to the preffure of the haunch; and if the joint between it and the one adjoining toward the crown happened to be open, whether on the under or the upper fide, it immediately clofed on it. But in proceeding thus, he found every fone fink a little while it clofed on its neighbour; and this was like to produce a ragged foffer, which is a deformity. He therefore did not allow them to fink fo much. In the places of the blocks and bridgings which he had cut away, he fet fmall billets, lt:inding on theirends, between the centering and the architones. 'Thefe allowed the pendulous arch to pulh toward the crown without fenlibly defcending; for the billets were pufhed nut of the perpendicular, and fome of them tumbled down. Proceeding in this way, he advanced to the very next courfe to the keyltone on each fide, the joints cloting all the way as the advanced. The latt job was very tronblelome; we mean the detaching the three uppermoft courfes from the centering: for the whole elalticity of the centering was now trying to unbend, and preffing hard againlt them. He found that they were lifted up; for the

C E N [243] C E N

Center. juints beyond them, which had clofed completely, now opened again below: but this job was finifhed in one day, and the centre fprung up two or three inches, and the whole arch funk about fix inches. This was an anxious time; for he dreaded the great momentum of fuch a vaft mafs of matter. It was hard to fay where it would forp. He had the pleafure to fee that it fopped very foon, fettling flowly as the mortar was compreffed, and after one or two days fettling no more. This fettling was very confiderable both in the bridge at Neuilly and in that at Mantz. In the former, the finking during the work amounted to 13 inches. It fonk fix inches more when the blocl:s and bridgings were taken out, and $i \frac{1}{2}$ when the little ftandards were deftroyed, and $1 \frac{1}{4}$ more next day; fo that the whole finking of the pendulous arch was $9 \frac{2}{2}$ inches, befides what it had funk by the bending and comprcfition of the centering.

The crown of the centering was an arch of a circle defcribed with a radius of 150 feet; but by the finking of the arch its fhape was confiderably changed, and about 60 feet of it, formed an arch of a circle whofe radius was 244 feet. Hence Mr Perronet infers, that a femicircle of 500 feet fpan may be erected. It wonld no doubt be ftronger that this arch, becaufe its greater horizontal thruft would keep the fones firmer tegether. The finking of the arches at Aianiz was not quite fo great, but every thing proceeded in the fame way. It amounted in all to $20^{\frac{1}{2}}$ inches, of which 12 inches were owing to the compreffion and bending of the center. ing.

In fig. 5. n° 1. may be obferved anindication of this procedure of the mafonry. There may be noticed a horizonta! line $a c$, and a diagonal $a b$. Thefe are fuppofed to be drawn on the mafonry as it would have flood had the frames not yielded during the building. The dotted line $A b^{\prime} c^{\prime}$ fhews the Thape which it took by the finking of the centering. The dotted line on the other fide was adually drawn on the mafonry when the keyfone was fet; and the wavy black line on the fame fide thews the form which the dotted line took by the faiking of the centering. The undulated part of this line cuts its former pofition a little below the middle, going without it below, and falling within it above. This flew's very difinctly the movement of the whole mafonry, diftinguifhing the parts that were furced out and the parts which funk inward.

We prefume that the practical reader will think this account of the internal movements of a Itupendous arch very inftuctive and ofeful. As Mir Perronet obferved it to be uniformly the fame in feveral very large arches which he erected, we miy conclude that it is the general procefs of nature. We by no means have the confidence in the durability or folidity of tis arches which he prudently profeffes to have. We have converfed with fome very experienced mafons, who have alfo crected very great arches, and in very difficult lituations, which have given univerfal fatisfaction; and we have found them uniformily of opinion, that an arch which has fettled to fuch a proportion of its curvature as to change the radius from 150 to 244 feet, is in a very hazardons fituation. They think the hazard the greater, becaufe the fpar of the arch is fogreat in proportion to its weight (as they exprefs it very emphatically) or its
height. The weight, fay they, of the haunches is too fmall for forcing together the keyfones, which have fcarcely any wedgelike form to keep them from fliding down. This is very good reafoning, and expreffes very familiar notions. The mechanician would fay, that the horizontal thruft at the crown is too fmall. When we queftioned them about the fropriety of Mr Perronet's method of removing the centering, they unanimonfly approved of its general pinciple, Lut faid that it was very ticklifh indced in the execution. 'I'he cafes which he narrates were new to them. They fhould have al. molt defpaired of fuccefs with arches which had gone fo much out of fhape by the berding of the centres; becaufe, faid they, the flope of the centering, to a great diftance from the crown, was fo little, that the archftones could not flide outwards along it, to clofe even the under fide of the joints which had opened above the haunches; fo that all the architones were at too great a difance from each other ; and a great and general firbfiding of the whole was neceffary for bringing them even to totich each other. They had never obferved fuch bendings of the centerings which they had em. ployed, having never allowed themfelves to contraft the fear of their truffes into fuch narrow fpaces. They obferved, that nothing but lighters with their mafts down can pafs under the truffes, and that the fides muft be fo protected by advanced works from the accidental hock of a loaded boat, that there cannot be left room for more than one. They added, that the bridges of communication, necefiary for the expeditious condueling of the work, made all this fuppofed roominefs ufelefs: befides, the bufinefs can hardly be fo urgent and croweded any where, as to make the pafiage through every arch indifpen\{ably neceflary. Nor was the inconvenience of this obltrution greatly complained of during the erection of Weftminfter or Blackfriars bridges. Nothing foould come in competition with the undoubted folidity of the centering and the future arch; and all boalting difplay of tadent and ingenuity by an engineer, in the exhibition of the wonders of his art, is mifplaced here.

Thefe appeared to us good reafons for preferring the more cautisus, and incomparably more fecure, contruction of Mr Mylne, in which the breadth given to each bafe of the trufles permitted a much more effective difpofition of the abutting timbers, and alfo enabled the engineer to make it incomparably fiffer; fo that no change need be apprehended in the joints which have already clofed, and in which the mortar has already taken its fer, and commenced an union that never can be refored if it be once broken in the fmalleft degree, no not even by greater comprefion.

Here wa begr lave to mention our notions of the nection cornection that is formed by mortar compoled of lime that is or gypfum. We confider it as continting chiefly, if not folely, in a cuyfallization of the lime or gypfins and water. As much water is taken up as is neceffary for \&o the formation of the cryftals during their gradual converfion into mild calcareous earth or alabafter, and the reft evaporates. When the free accefs of air is abfolately prevented, the cry\{allization riever proceeds to that fate, even al hough the moitar becomes cxtremely dry and hard. We had an opporiunity of obferving this accidentally, when pafling throngh Maetricint in 1770 , while they were cutting up a maffy revetment of
$\underbrace{\text { Center }}$

C E N

Center. $\underbrace{\text { cner. }}$ a part of the fortifications more than 300 years old. The mortar between the bricks was harder than the bricks (which were Dutch clinkers, fuch as are now ufed only for the greatefl loads) ; but when mixed with water it made it limewater, feemingly as ftrong as if frefh lime had been ufed. We oblerved the fame thing in one fmall part of a huge mafs of ancient Roman work near Romney in Kent; but the reft, and all the very old mortar that we have feen, was in a mild Itate, and was generally much harder than what produced any lime water. Now when the mortar in the joints has begun its firt cryftallization, and is allowed to remain in perfect reft, we are confident that the fubfequent cryftals, whether of lime, or of calcarcous earth, or of gypfum, will be much larger and ftronger than can ever be produced if they are once broken; and the farther that this cryftallization has been carried, that is, the harder that the mortar has become, lefs of it remains to take any new cryfallization. Why fhould it be otherwife here than in every other cryftallization that we are ac-

Necefity of We think therefore that it is of great confequence keeping the to keep the joints in their firf fate if poffible; and juints in their firft ftate. that the ftrength (as far as it depends on the mortar) is greatly diminifhed by their opening; efpecially when
the mortar has acquired confiderable hardnefs, which it will do in a month or fix weeks, if it be good. The cohefion given by mortar is indeed a mere trifle, when oppofed to a force which tends to open the joints, acting, as it generally does, with the tranfverfe force of a lever: but in fituations where the overload on any parcicular archfones tends to pulh them down through between their neighbours, like wedges, the cohefion of the mortar is then of very great confequence.

We mult make another obfervation. Mt Perronet's ingenious procefs tended very effectually to clofe the joints. In doing this, the forces which he brought in. to astion had little to uppofe them; but as foon as they weie clofed, the contatt of the parts formerly open oppofed an obftruction incomparably greater, and immediately balanced a force which was but juft able to turn the llone gently about the two edges in which it touched the adjoining tones. This is an important remark, though feemingly very trifing; and we wifh the practitioner to have a very clear conception of it; but it would take a mulcitude of words to explain it. It is worth an experiment. Form a little arch of wooden blocks; and form one of thefe fo, that when they are all relting on the centering, it may be open at the outer joint-Remove the centering-Then prefs on the arch at fome dillance from the open joint.- You will find that a very fmall preffure will make the arch bend till that joint clofes-l'refs a little harder, and the arch will bend more, and the next joint will open.-Thus you will find that, by preffing alternately on each fide of the open joint, that tone can eafily be made to flap over to either fide; and that immediately after this is done the refifance increafes greatly. This thews clearly, that a very moderate force, judicioully employed, will clofe the joints, but will not prefs the parts Atrongly together. The joints therefore are clofed, but no more than clofed, and are hanging only by the edges by which they were hanging while the joints were open. The arch, therefore, though apparently clofe and firm, is but loofe

244] C E N
and tottering. Mr Perronet fays, that his arches were firm, becaufe hardly a fone was obferved to chip or fplinter off at the edges by the fettlement. But he had donc every thing to prevent this, by digging out the mortar from hetween the headers, to the depch of two inches, with faws mate on purpofe. But we are well informed, that before the year 1791 (twenty years after the erection) the arches at Neuilly had funk very fenfibly, and that very large fplinters had flown off in feveral places. It could not be otherwifc. The original conftruction was too bold ; we may fay needleffly and oftentatioufly bold. A very gentle flope of the net Perro roadway, which would not have flackened the mad gal- ftructions lop of a ducal carriage, nor fenfibly checked the labo. too bold. rious pull of a loaded waggon, and a proper difference in the fize of the arches, would have made this wonderful bridge incomparable ftronger, and alfo much more elegant and pleafing to the eye. Indeed, it is far from being as handfome as it might have been. The ellipfe is a molt pleafing figure to every beholder; but this is concealed as much as poffible, and it is attempted to give the whole the appearance of a tremendous lintel. It has the oppreflive look of danger. It will not be of Jong duration. The bridge at Mantz is Aill more exceptionable, becaufe its piers are tall and fender. If any one of the arches fails, the reft mult fall in a moment. An arch of Blackfriars Bridge might be blown up without diturbing its neighbours.

Mr Perronet mentions another mode of friking the centering, which he fays is very ufual in France. Every fecond bridging is cut out. Some time after, every fecond of the remainder; after this, every fecond of the remainder; and fo on till all are removed. This is never practifed in this country, and is certainly a very bad method. It leaves the arch hanging by a number of diftant points; and it is wonderful that any arch can bear this treatment.
Our architects have generally proceeded with extreme caution. Wherever they could, they fupported the centering by intermediate pillars, even when it was a truffed centre, having a tie-beam reaching from fide to fide. The centre was made to relf, not immediately on thefe The compillars, but on pieces of timber formed like acute wedges, mon meplaced in pairs, one above the other, and having the thod in point of the one c a the thick end of the other. Thefe wedges were well foaped and rubbed with black lead, to make them flippery. When the centres are to be ftruck, men are ftationed at each pair of the wedges with heavy mauls. They are direlted to Atrike together on the oppofite wedges. By this operation the whole centering defcends together ; or, when any part of the arch is obferved to have opened its joints on the upper fide, the wedges below that part are flackened. The traming may perhaps bend a little, and allow that part to fubfide. If any part of the arch is obferved to open its jnints on the under fide, the wedges below that part are allowed to fand after the reft have been flackened. By this procers, the whole comes down gradually, and as flowly as we pleafe, and the defects of every part of the arch may be attended to. Indeed the caution and moderation of our builders have commonly been fuch, that few defects have been allowed to flew themfelves. We are but little acquainted with joints opening to the extent of two inches, and in fuch a cafe would probably

C E N [245] C E N

$\underbrace{\text { Center, }}$
lift every fone of the arch again (B). We have not employed truffed centerings in much perhaps as we fhould have done; nor do we fee their advantage (fpeaking as mere builders) over centres fupported all over, and unchangeable in their form. Such centres mult bend a little, and require loading on the middle to keep them in fhape. Their compreflion and their elafticity are very troublefome in the friking of the centres in Mr Perronet's manner. The elafticity is indeed of ufe when the centres are flruck in the way now defcribed.

Thefe obfervations on the management of the internal movements of a great arch, will enable the reader to appreciate all the merit of Mr Mylne's very ingenious contruction. We proceed therefore to complete our defcription.

The gradual enlargement of the bafe of the piers of Blackfriars bridge enabled the architeft to place a feries of five pofts c, c, c, c, c, one on each ftap of the pier ;
at once, fo that the defcent of the trufs would be too rapid. However, to be certain of the operation, he had prepared an abondant force in a very ingenious manner. A heavy beam of oak, armed at the end with iron, was fufpended from two points of the centre like a battering ram, to be ufed in the fame manner. Nothing could be more fimple in its flructure, more powerful in its operation, or more eafy in its management. Accordingly the fuccefs was to his wifh. The wedge did not flip back of itfelf; and very moderate blows of the ram drove it back with the greatefl eafe. The whole operation was over in a very few minutes. The fpectators had fufpected, that the fpace allowed for the receis of the wedge was not fufficient for the fettlement of the arch; but the architect trufted to the precautions he had taken in its condrustion. The reader, by turning to the article Arch in this Supplement, will fee, that there was only the arch LY which could be expected to fettle: accordingly, the recefs of the wedge was found to be much more than was neceffary. However, had this not been the cafe, it was only neceflary to take out the pieces between the pofts below the feat, and then to drive back the heads of the ftruts; but this was not needed (we believe) in any of the arches. We are well aflured that none of the arches funk an inch and a half. The great arch of 100 feet fpan did not fink one inch at the crown. It could hardly be perceived whether the arch quitted the centering gradually or not, fo fmall had been the changes of thape.

We have no hefitation in faying, that (if we except The great fome walte of great timber by noncommon joggling) the fuperiority whole of this performance is the mott perfect of any of the crnthat has come to our knowledge. We doubt not but by himed that feveral have equalled it, or may have excelled it; by him. but we do not know of them: and we think, that the bringing forward fuch performances is no lefs ferviceable to the public than it is honourable to the inventor. Nor do we fuppofe that any views of intereft can be fo powerful as to prevent an ingenious architect from communicating to the public fuch honourable feecimens of his own talents. We fhould be happy to communicate more of this kind ; for we confider it as a very important article of practical mechanics, and think that it is of confequence to the nation that it fhould be very generally undertood. In every corner of the couniry bridges are to be built-we have everywhere good mafons, who are fully able to execute any practicable project, but too little acquainted with principle to invent, or to accommodate even what they know to local circumptances, and are very apt to be duped hy appearances of ingenuity, or milled by erroneous notions of the flrains which are excited. We profefs more fcience, and to treat the fubject with the affiftance of accurate principles: But while we are certain that every circumflance is fufceptible of the moft accurate determination, we muft acknowledge that we have by no means attained an accurate knowledge of all the ftrains which are

K k
produced
(B) The writer of this article can only fay, that, after much inquiry, he has no information of any arch being received from the builder as fufficient that had fuffered half the change of thape mentioned by Mr Perronet. The arch of Dublin bridge, built by an exrellent, but a very private, mafon, Mr Steven, is rog feet wide, with only 22 feet of rife. It was erefted (but not on a tuffed centering) without changing one full inch in its elevation; and when the centering was removed, it funk only $1 \frac{3}{7}$ th inches, and about half an inch mose when the parapets were added and the bridge completely finiflied.

C $\mathrm{E} N \mathrm{~N} \quad[246] \quad \mathrm{E} \quad \mathrm{N}$

Center. produced and excited in a frame of carpentry, which is fettling and changing its thape, even thourg it be not very complicated; far lefs are we poffeffed of a clear view of what happens in a mafs of mafonry in fimilar conditions. Therefore, though we fpeak with the frong belief of our being right, we fpeak with a fenfe of our fallibility, and with great deference to the judgment of eminent and experienced architects and engineers. We fhould confider their free and candid criticifins as the higheft favour; and we even folicit them, with affurances of thanks, and that we will take fome opportunity, before the clofe of this work, to acknowledge and correet our miftakes. We even prefume to hope, that the liberal minded artift will be pleafed with this opportunity which we give him of increafing the national ftock of knowledge. Let mutual jealoufy and rivalihip reign in the brealts, and prompt the exertions, of our reftlefs neighbours on the continent-let them think that the dignity of man confilts in perpetual warfare, in which every individual feels himfelf indebted only to himfelf, freed from all the fweet ties of domeltic partiality, of fiendthip, and of patriotic attachment. We hope that the hearts of Britons will long continue to be warmed and fortified by the thoughts of mutual affitance, mutual co-operation, mutual attachment, and a patriotic preference of their countrymen to all other men. While thefe fentiments are regulated by unfhaken honefty, by candour, and by Chriftian charity, we fhall be fecured from the errors of partial attachments, and yet enjoy all the pleafures of unfophifticated nature. Families will ftill be bound together by the affectionate ties of blood; and the whole frame of Britifh fociety will be in harmony with the bonds which connect the members of each family, by their endlefs croffings and intermixings. In this tate, the ftate of focial nature, the man of talents will not lock up all the fruits of his exertions in his own breaft, but will feel a pleafure in imparting them to a fociety that is dear to him, and on which he depends for all his belt enjoyments. Nothing will hold the good man back when this is in his power, but the virtuous ufe which he can make of his fuperiority in the difcharge of his own little circle of duties. This is all that is required of true patriotifm; and it is not too much to be expected from Britons, who feel a pleafure in viewing their country as the great fchool of the arts, under the patronage of a fovereign who has done more for their improvement than all the other princes of Europe, and who (we are well affured) is now meditating a plan which mutt be highly gratifying to every eminent profelfor of the arts. ject of this clofely conneted with the conftruction of wouden article con- bridges. Thefe are not always conftueted on the fole
nectedwith principles of equilibrium, by means of mutual abut-
the con-

The fubject which we have been confidering is very ment. They are ftiff frames of carpentry, where, by a proper difpofition, beams are put into a fate of extenfion, as well as of compreffion, fo as to fand in place of folid bodies as big as the fpaces which the beams inclofe; and thus we are enabled to couple two, three, or four of thefe tegether, and fet them in abutment with each other like mighty archfones. We fhall clofe this article, therefore, with two or three fpecimens of wonden bridges, difpofed in a feries of progreflive compoti-
cion, fo as to ferve as a fort of introduction to the art in general, and furnifh a principle which will enable the intelligent and cautious artift to puth it with confidence as far as it can go.

The general problem is this. Suppofe that a bridge Plate XVI. is to be thrown over the fpace AB (fig. 9.), and that this is too wide for the ftrength of the fize of timber which is at our command; how may this beam $A B$ be fupported with fufficient effect? There are but two ways in which the middle point C (where the greatelt ftrain is) can befupported : 1. It may be fuspended by two ropes, iron rods, or woodenties, DC, EC, made faft to two firm points D, E, above it ; or it may reft on the ridge of two rafters $d \mathrm{C}, e \mathrm{C}$, which reft on two firm points d, e below it. 2. It may be fupported by connecting it with a point fo fupported; and this connection may be formed either by fufpending it from this point, or by a polt refting on it. Thus it may luang, by means of a rod or a king-poft FC, from the ridge F of two rafters $A F, B F$; or it may reft on the Itrut C f, whofe lower extremity f is carried by the ropes, rods, or wooden ties $\mathbf{A} f, \mathrm{~B} f$.

Whichfoever of thefe methods we employ, it follows, from the principles of carpentry, that the fupport given to the point C is fo much the nore powerful, as we make the angle DCE , or $d \mathrm{C} e$, or the equivalent angles $A F B$, or $A f B$, more acute.

Each of thefe methods may be fuppofed equally ftrong. Our choice will depend chiefly on the facility of finding the proper points of fupport $\mathrm{D}, \mathrm{E}, d, e$: except in the fecond cafe, where we require no fixed points but A and B. The fimple forms of the firlt cafe require a great extent of figure. Very rarely can we he urual quire a great ext. fulpend it from points fituated as D and E. It is even method of feldom that we have depth enough of bank to allow the fupport of the rafters $\& \mathrm{C}, e \mathrm{C}$; but we can always find room for the fimple trufs AFB. This therefore is the moft ufually practifed.

In the conltruction, we mult follow the maxims and ditections preferibed in the article Carpentry of this volume, and the article Roof of the Encycl. The beams FA, FB mult be mortifed into $A B$, in the firmeft manner, and there fecured with ftraps and bolts; and the middle muft liang by a ftrap attached to the king poft FC, or to the iron rod that is ufed for a king poft. No mortifing in the point C mult be employed; it is unneceffary, and it is hurtful, becaufe it weakens the beam, and becaufe it lodges water, and foon decays hy rot. The beft practice is not to fufpend the beam immediately by this Itrap, but to let it rett, as in fig. 10. on a beam C, which croffes the bridge below, and has its other end fupported in the fame manner by the other trufs.

It is evident that the length of the king polt has no effect on the fupport of C. We may therefore contract every thing, and preferve the fame frength of fupport, by finding two points a and b (fig. 1t.) in the banks, at a moderate diftance below A and B, and fetting up the rafters $a \mathrm{~F}, b \mathrm{~F}$, and futpending C from the thortened king polt. In this conitrution, when the beam AB relts on a crofs bearer, as is drawn here, the ftruts a F, $b \mathrm{~F}$ are kept clear of it. No connection between them is neceffary, and it may be hurtful, by inducing crofs flrains on both. It will, however, greatly in-

C E N [247$]$ C E N

Center.

creafe the fiffnefs of the whole. This contruction may fafely be loaded with ten times the weight that AB can carry alone.

Suppofe this done, and that the feantling of $A B$ is too weak for carrying the weight which may be brought on the parts AC, CB. We may now trufs up each half, as in fig. 12. and then the whole will form a handfome bridge, of the fimplelt conftruction potible. The interfections of the fecondaly braces with thofe of the main trufs will form a liand-rail of agreeable figure.

We are not confined to the employment of an entire piece AIb, nor to a rectilineal form. We may frame the bridge as in fig. I3. and in this form we diffiade from allowing any connection with the middle points of the main braces. This conftruction alfo may be followed till each beam $A C$ and $C B$ is loaded to ten times what it can fafely bear without the fecondary truffing.

There is another way by which a bridge of one beam may be fupposted beyond the power of the firt and fimpleft conftruction. This is reprefented in fig. 14. and fig. 15. The trufs beam FG thould occupy onethird of AB. The advantage of this conftruction is very confiderable. The great elevation of the braces (which is a principal element of the ftrength) is preferved, and the braces are greatly fhortened.

This method may be puthed till further, as in fig. 38
Thefe mehods com- And all thefe methods may be combined, by joining bined. fig. 16 .

In all of them there is much room for the difplay of fill, in the proper adjultment of the feantling of the timber, and the obliquity of the braces to the lengths of the different bearings. A very oblique ftrut, or a flender one, will fuffice for a fmall load, and may of ten given an opportunity to increafe the general frength ; while the great timbers and upright fupports are referved for the main prefures. Nothing will im. prove the compofition fo much as reflecting progreffively, and in the order of there examples, on the whole. This alone can prefelve the great principle in its fimplicity and full energy.
39
The elements of all be done in the art of building wooden bridges, and are that can be to be found more or lefs obvioutly and diftinctly in all done in this art. attempts of this kind. We may affert, that the more obvioully they appear, the more perfect the bridge will be. It is aftonifhing to what extent the principle may be carried. We have feen a bridge of 42 feet fpan formed of two oak trulfes, the biggeft timber of which did not exceed fix inches fquare, bearing with perfect fteadinefs and fafety a waggon loaded with more than iwo tons, drawn by four ftout horfes. It was framed as fig. 16. nearly, with the addition of the dotted lines, and was near thirty ycars old ; protected, however, from the weather by a wooden roof, as many bridges in Germany are.

We recollect another in the neighbourhood of Stettin, which fecmed conftructed with great judgment and fpisit. It had a carriage road in the middle about 20 feet (we think) wide, and on each fide a foot way about five feet wide. The fpan was not lefs than 60 feet, and
the greatef feantling did not appear to exceed 10 Center. inclies by 6 .

This bridge confifted of four trulfes, two of which formed the outfide of the bridge, and the other two made the feparation between the cartiage road and the two foot ways. We noticed the conlluation of the truffes very particularly, and found it fimilar to the laft, except in the middle divifion of the upper trufs, which, being very long, was double trufled, as in fig. 17.

The reader will find in that volume of Leupold's Theatrum MTachinarum, which he calls Theal, um Pomificum, many fpecimens of wooden bridges, which are very frequent in the champain parts of Germany. They are not, in general, models of mechanic art ; but the reflecting reader, who confiders them curcfully, will pick up here and there fubordinate hints, which are ingenious, and may fometimes be ufeful.

What we have now exhibited are not to be confidered as models of conftruction, but as elementary examples and lelions. for leading the reader fytematically into a thorcuch conception of the fubjeet.

We cannot quit the fubject without taking notice of A woudera very wonderful bridge at Witingen in Switzerland, ful bridge flightly defcribed by Mr Coxe (Travels, vol. I. 132.) in SwitzerIt is of a conftruction more fimple ftill than the bridges we have been defcribing. The fpan is 230 feet, and it rifes only 25. The fketch (fig. 18.) will make it fufficiently intelligible. ABC is one of two great arches, appraching to a Catenarean thape, built up of feven courfes of folid logs of oak, in lengths of 12 or 14 feet, and 16 inches or more in thicknefs. Thefe are all picked of a natural thape, fuited to the intended curve; fo that the wood is nowhere cut acrois the grain to trim it into thape. Thefe logs are laid above each other, fo that their abutting joints are altes nate, like thofe of a brick wall; and it is indeed a wooden wall, fimply built up, by laying the pieces uponeach other, taking care to make the abutting joints as clofe as poffible. They are not fattened together by pins or bolts, or by fcarfings of any kind. They are, however, held together by iron fraps, which furround them, at the diftance of five feet from each other, where they are faftened by bolts and keys.

Thefe two arches having been erected (by the help, we prefume, of pillars, or a centering of fome kind), and well butted againtt the rock on each fide, were freed from their fupports, and allowed to dettle. They are fo placed, that the intended road $a b c$ interfects them about the middle of their height. The roadway is fupported by crofs joifts, which reft on a long horizon. tal fummer beam. This is connected with the arches on each fide by uprights bolted into them. The whole is covered with a roof, which projects over the arches on each fide to defend them from the weather. Three of the fpaces between thefe uprights have ftruts or bra. ces, which give the upper work a fort of trufling in that part.

This conftruction is fimple and artlefs; and appears, by the attempt to trufs the ends, to be the performance of a perfon ignorant of principle, who has taken the whole notion from a ftone arch. It is, however, of a frength much more than adequate to any load that can be laid on it. Mr Coxe fays, but does not explain K k 2

C E N [248] C E N

Center. how, that it is fo contrived that any part of it can be repaired independent of the relt. It was the laft work of one Ulrich Grubenhamm of Tuffen, in the canton of Appenzel, a carpenter without education, but celebrated for feveral works of the fame kind; particularly the bridge over the Rhine at Schaflatufen, confifting of two arches, one of 172 and the other of 193 feet fpan, both refting on a fmall rock near the middle of the river.

While writing this article, we got an account of a wooden bridge erected in Nurth America, in which this fimple notion of Grubenhamm's is mightily improved. The fpan of the arch was faid to exceed 250 feet, and its rife exceedingly fmall. The defcription we got is very gereral, but fufficient, we think, to make it perfcetly intelligible.
41
North
America. Ho g. 9 . DD, EE, FF, are ppoled to be three beams of the arch. They confilt of logs of timber of fuall lengths, fuppofe of 10 or 12 -feet, fuch as can be found of a curvature fuited to its place in the arch 6 - without trimming it acrofs the grain- Each beam is double, confifting of two logs applied to each other, fide to tide, and breaking joint, as the workmèn term it. They are kept together by wedges and keys driven through them at fhort intervals, as at $\mathrm{K}, \mathrm{L}, \mathrm{\& c}$. $\varepsilon=$

The manner of joining and Atrongly binding the two $1-$ fide pieces of each beam is thewn in fig. 20 . The mortife $a i c b$ and $d c i o$, which is cut in each half beam, is confiderably longer on the outfide than on the infide, where the two mortifes meet. Two keys, BB and $C C$, are formed, each with a notch $l c d$, or a $i o$, on its fide; which notch fits one end of the mortife. The inner fide of the key is ftraight, but fo formed, that when both keys are in their places, they leave a fpace between them wider at one end than at the other. A wedge AA, having the fame taper as the face jult mentioned, is put into it and driven hard. It is evident that this muft hold the two logs firmly together. This is a way of uniting timber not mentioned in the article Carpentry; and it has fome peculiarities worthy of notice. In the firf place, it may be employ. ed to as to produce a very frong lateral connection, and would then co-operate finely with the other artificial methods of farting and tabling that we defcribed in the article referred to. But it requires nice attention to fome circumftances of conftruction to fecure this effect. If the joints are accurately formed to each other, as if the whole had been one piece divided by an infinitely thin faw, this manner of joining, will, keep them all in their places. But no driving of the wedge AA will make them firmer, or caufe one piece to prels hard on the other." "If the abutment of two parts of the half beam is already clofe, it will remain fo; but if open in the'rmalleft degree, driving of the wedge will not make it tighter. In this refpect, therefore, it is not fo proper as the forms defcribed in Carpentry. (ll

In order that the method now defcribed may have the effect of drawing the halves of the beams together, and of keeping them hard fqueezed on each other, the joints muft be nade fo as not to correfpond exactly. The prominent angle aio (fig. 21.), formed by the ends of the two half mortifes, muft be made a little more obtule than the angle af o of the notch of the key which this prominence is intended to fill up. Moreover, the oppofite fide et of this key fhould not be quite ftraight, but
a very little convex. With thefe precautions, it is eafy to fee that, by driving the wedge $A A$, we caufe the notch a fo to take hold, firft at the two points a and o, and then, by continuing to drive the wedge, the fides a $f, 0 f$, of the notch gradually comprefs the wood of the half beams, and prefs them on each other. By continuing to drive the wedge, the musual compreffion of the key and the beam fqueezes all together, and the fpace a fo i is completely filled up. We may fee, from this procefs, that the mutual compreffion and drawing together of the timber will be greater in proportion as we make the angle $a i o$ more prominent, and its correfponding angle a fo more deep; always taking care that the key fhall be thick enough not to break in the narrow part.

- This adjuftment of the keys to the mortife is neceffary on another account. Suppofing the joints to fit each other exactly before driving the wedge, and that the whole fhrinks a little by drying-by this the angle a io will- become more prominent, and the angle afo will become more fhallow; the joint will open at a and o, and the mutual compreffure will be at an end.

We may alfo obferve, that this method will not give any additional firmnefs to the abutments of the different lengths employed to piece out the arch-beam; in which refpect it differs materially from the other modes of joining timber.

Having fhown how each beam is pieced together, we mult now thow how a number of them are united, fo as to compore an arch of any-thicknefs. This is done in the very fame way. The beams have other mortifes worked out of theirinner fides, half-out of each half of the beam. The ends of the mortifes are formed in the fame way with thofe already defcribed. Long keys BB, CC, (fig. Ig.) are made to fit them properly, the notches being placed to as to keep the beams at a proper diftance from each other. It is now plain that driv. ing in a long wedge AA will bind all cogether.

In this manner may an arch be extended to any fpan, and madc of any thicknets of arching. The bridge over Portfmouth river, in North America, was more than 250 feet in length, and confifted of feveral parallel arches of beams. -The inventor (Mr Blodget) faid that he found the ftrength fo great, that he could with-perfect confidence make one of four times the fpan.

We admire the ingenuity of this conftruction, and think it very effectual for bringing the timbers into firm and uniform abutment ; but we imagine that it requires equilibration, becanfe it is extremely flexible. There is nothing to keep it from bending, by an inequality of load, but the tranfverfe ftrength of the beams. The keys and wedges can have very little power to prevent this bending. The diftance between the beams will alfo contribute little or nothing to the fliffnefs; nay, we imagine that a great diflance between them will make the frame more flexible. Could the beams be placed fo near each other that they could be fomehow joggled on each other, the whole would be fiffer; but at prefent they will bend like the plates of a coachfpring. But nothing hinders us from adding diagonal pieces to this conftruction, which will give it any degree of ftiffnefs, and will enable it to bear any ineguality of loading. When compleied in-this manner, ree imagine that it will be at leaft cqual to any conftruc-

Fig. 9.
Fig. 11.

Fig. 22.

Fig. 18.

Center. tion that has yet been thought of. One advantage it poffeffes that is very precious: Any piece that fails may be taken out, and replaced by another, without difturbing the reft, and without the fmalleft rifk. On the whole, we think it a very valuable addition to Britifh carpentry. The method here practifed, both for joining the parts of one beam and for framing the different beams together, fuggefts the moft firm and light contructions for dome-roofs that can be conceived; incomparably fuperior to any that have yet been ereeted. The whole may be framed, without a nail or a fpike, into one net-like fhell that cannot even be pulled in pieces. We may perhaps confider this in another article; at prefent we return to the confideration of truffed bridges.

When the width of the river exceeds what is thought practicable by a fingle trufs, we mult then combine, either by fimple addition, or by compofition, different truffes together. We compofe a bridge by fimple addition when we make a frame of carpentry of an unchangeable and proper thape, to ferve as one of the archftones of a bridge of mafonry. This may eafily be comprehended by looking at fig. 22. Each of the frames A, B, C, D, mutt be confidered as a feparate body, and all are fupported by their mutual abutment. The nature of the thing is not changed, although we fuppofe that the rails of the frame B, inftead of being mortifed into an uptight $b^{\prime} b^{\prime}$, unconnected with the frame C, is mortiled into the upright $c c$ of that frame, the direstion and intenfity of the mutual preffures of the two frames are the fame in both cafes; accordingly this is a very common form of fmall wooden bridges. It is ufual, iudeed, to put diagonal battens into each : but we believe that this is more frequently done to pleafe the eye than to produce an unalterable thape of each frame.

To an unfkilful carpenter this bridge does not feem effentially different from the centering of Mr Hupeau for the bridge of Orleans; and indeed, in many cafes, it requires reflection, and fometimes very minute reflec. tion, to diftinguifh between a conltruetion which is only an addition of frame to frame till the width be covered, from a conftruction where one frame works on the ad-

Eridges

 combin by fimple by compofition.joining one tranfuesfely, puffing it in one part, and drawing it in another. The ready way for an unlettered artift to form a jult notion of this point, is to examine whether he may faw through the connecting piece $b^{\prime} b^{\prime}$ from one end to the other, and make them two feparate frames. Whenever this cannot be done without that patt opening, it is a confiruction by compofition. Some of the beams are on the ftretch; and iron Atraps, extending alung both pieces, are neceflary for fecuring the joint. The bridge is no longer a piece of mafonry, but a pelformance of pure carpentry, depending on principles peculiar to that art. Equilibration is necelfary in the firft conftruction; but, in the fecond, any inequality of loading is made ineffectual for hurting the edifice, by means of the fretch that is made to operate on fome other piece. We are of opinion, that this moft fimple employment of the diftineruifhing principle of carpentry, by which the beams are made to act as ties, will give the moft petfeet conltuction of a wide bridge. Une polygon alone thould contain the whole of the abutments; and one other polygon fhould confilt entirely of ties; and the beams which form the radii, connecting the angles of the two poly.

249]
 C E N

gons, complete the whole. By confining the attention to thefe two fimple objects, the abutments of the outer polygon, and the joints of the inner one, may be formed in the moik fimple and efficient manner, without any collateral connections and dependencies, which divide the attention, increafe the complication, and commonly produce unexpected and hurtful Atrains. It was for this reafon that we have fo frequently recommended the centering of the bridge of Or\}eans. Its office will be completely performed by a trufs of the form of fig. 23. ; where the polygon $A B C D E F$, confifting of two layers of beams (if one is not fufficient), contains the whole abutments, and the other AbcdeF is nothing but an iron rod. In this cunftruction, the obtufenefs of the angles of the lower polygon is rather an advantage. The braces $G c, G d$, which are wanted for trufing the middle of the outer beams, will effectually fe. cure the angles of the exterior polygon againt all rifk of change. The reader mult perceive that we have The beft now terminated ia the conftruction of the Norman roof. general We indeed think it the beft general form, when fome moderate declivity is not an infuperable objection. When this is the cafe, we recommend the general plan of the centering of the bridge of Orleans. We would make the bridge (we fpeak of a great bridge) conlift of four truffes; two to ferve as the outfides of the bridge, and two inner truffes, feparating the carriage-way from the foot-paths. The road fhoufd follow the courfe of the lower polygon, and the main trufs fhould form the rails. It might look flrange; but we are here rpeaking of Arength ; and evident, but not unwieldy flrength, when once it becomes familiar, is the furelt lource of beanty in all works of this kind.

Centre of Friftion, is that point in the bafe of a body on which it revolves; into which, if the whole furface of the bafe, and the mafs of the body, were collected, and made to revolve about the centre of the bafe of the given body, the angular velocity deftroyed by its friction would be equal to the angular velocity deftroyed in the given body by its friction in the fame time. See Fricrion in this Supplement.

Cfantre of Gyration, is that point in which, if the whole mafs be collected, the fame angular velocity will be generated in the fame time, by a given force aeting at any place, as in the body or fytem itfelt. This point differs from the centre of ofcillation, in as much as in this latter cafe the motion of the body is produced by the gravity of its own particles; but, in the cafe of the centre of gyration, the body is put in motion by fome other force acting at one place only.

Centre of Ofcillation, is that point in the axis or line of fifpenfion of a vibrating body, or fyttem of hodies, in which, if the whole matter or weight be collected, the vibrations will llill be performed in the fame time, and with the fame angular velocity, as before. Hence, in a compound pendulum, its diflance from the point of fufpention is equal to the length of a dimple pendulum whofe ofcillations are ifochronal with thofe of the compound one.

Centre of Prefure, of a fluid againft a plane, is that point againlt which a force being applied equal and contraty to the whole preffure, it will jutt fuftain it, fo as that the body prefled on will not incline to either fide. - This is the fame as the centre of percuffion, fuppoling the axis of motion to be at the interfection of

$\mathrm{C} H$ A 250] H A

Centrcxille this plane with the furface of the fluid; and the centre of pieflure upon a plane parallel to the horizon, or upon any plare where the prellure is nniform, is the fame as the cenire of gravity of that plane.

CENTFEVILIE, the chicf town of Queen Ann's co. and on the Li. Fide of Chefapeak bay in Maryland. It lies be'ween the forks of Confica creek, which muns irco chetter River and has been lately laid out: 18 miles S. of Chafier: 3+S. E. by E. of Batimore, and 95 S. W. by S. of Philadelplia. N. lat. 34 . 6.-Norse.

EENTROBARICO, the fame as centre of gruvity.
CENTLROBAKIC METHOD, is a method of determining the quantity of a furface or folid, by means of the generating line of plane and its centre of gravity. The duct:ine is chiefly comprifed in this theorem:

Evety figure, whether fupetticial or folid, generated by the motion of a line or plane, is equal to the produck of the generating magnitude and the path of its centre of gravity, or the line which its centre of gravity defrribes.

CERUDE, or WHite-LEAD, is a fnbftance fo much ured in painting, and for other purpufes, that numerous modes have been employed for the preparation of it. Of the molt common of thefe, a fitficient account has been given in the Encyclorredia (fee Ceruse, and the fame word Chemistry-Index); but Lord Dundonald has dicovered a more expeditious and facile method than any of them, which becomes the more ufelul, as the fubftance with which it is effected has been hitherto rejected by the chenicitl world as a caput mortutum.

His lordfhip directs common lead to be reduced to a calx, but not too fine, and to have a proportion of fivefixth parts thereof, intimately mised with muriate, or folution of potafs. In this fate, he directs it to be frequently ftirred, in order to have the new furfaces of the mixture expofed to the carbonic acid of atmofpheric air ; as his lordfhip obferves, that the effects of the carbonic acid on the alkali exifting in the prefent late of the mixture is effencially neceffary, in order to effect the interded purpofe. In this fate, it is to be frequently iprinkled with water; and, after the calx has been long enough inmmerfed with the muriate to be fufficiently operated upon, the muriate is to be levigated by commin water from the calx, and to be concentrated by evaporation, in order to be made ufe of at a future pefind with cther calk. The calx is to be afterwards gruund, levigated, and dried for ufe.

For this difcovery, his lerdflip obtained a patent on the 18 th of Augut 1,97 ; and the fuccels which has attended the former patents of this fientific nobleman leads us to conclude, that the prefent difcovery is entitled to the artention of the pubilic.

CHACTAWS, or flat heads, are a powerful, har$d y$, fubtile and intrepid race of Indians, who inhabit a very fine and extenfive tract of hilly country, with large and ferthle plains intervening, between the Aldbama and Miffifinpi rivers, and in the weftern part of the fate of Georgia. This nation had, not many" years ago, 43 towns and villages, in three divifions, containing 12,123 fouls, of which 4,041 were fighting men. They are called by the traders Flatheads, all the males having the fore and hind part of their Roulls artificially flattened when young. Thefe men, unlike the Mufcogulges, are flovenly and negli-
gent in cvery part of their drefs, but otherwifo are faid Chatawo to be ingenious, fenfible, and virtuous men, bold and intrepid, yet quiet and peaceable. Some late travellers, however, have obfcrved that they pay little attention to the moft neceffary rules of moral conduct, at leaft that unnatural crimes were too frequent among them. D.fferent from molt of the Indian nations bordering on the United States, they have large plantations or country fatms, where they employ much of their time in agriculturd improvements, afier the manner of the white people. Although their territories are not $\frac{1}{f}$ th fo large as thofe of the Mufcogulge confederacy, the rumber of iahabitants is greater. The Chattaws and Creeks are inveterate enemies to each other.-Morse.

CHAGRE, a river and town in Terra Firma, S. America. The river opens to the N. Sea, and was formerly called Lagortas, from the number of ailiga. ters in it; has its fource in the montains near Cuces, and its mouth is in N. lat. 9. where there is a ftrong fort, built on a feep rock, on the E. fide, near the fea fhore. This fort has a commandint, and lieutenant, and the garrifon is draughted from l'snama, to which you go by this river, landing at Cruces, about 5 leagues from Panama, and thence one travels by land to tbat city. Oppofite to fort Chagre is the royal cuftom houfe. Here the river is broadelt, being 120 toifes over; whereas, at Cruces, where it begins to be navigable, it is only 20 toifes wide; from the town of Chagre, to the month of the siver, is 21 miles N. W. by W. but meafuring by water is 43 miles. There is at Cruces an alcalde, who lives at the cultom-houfe, and takes an account of all goods on the river. Chagre fort was taken by admiral Veınon, in 1740.-ib.

CHAMBERS (Sir William), the celebrated architect, was defcended of the ancient family of Chalmers in Scothand, barons of Tartas, in France. His grandfather fuffered confiderably in hi, fortune by fupplying Charles XII. of Sweden with money, \&c. which that monarch repaid in bafe coin. Sir William's father refided feveral years in Sweden to recover his claims; and there Sir Willian was born, and, at eighteen years of age, appointed fupercargo to the Swedifh Ealt India company. From a voyage which he made to China, he brought home the Afiatic ityle of ornament, in tents, temples, mofques, and pagodas. Thefe ornaments (through the interelt of lord Bute) he was enabled to apply in the gardens at Kew. Patronifed by the princefs dowager and the king, Mr Chimbers had much of the fanionable bufinefs of the day. Under Burke's reform, he was appeinted furveyor-general of the board of works. Somerfet-houfe was worth to him at leaf $£ .2000$ a year. His Chef decurres are his Ataircafes, particularly thofe at Lord Beborough's, Lord Gower's, and the Royal and Antiquarian Sncieties. 'I'he terrace behind Sumerfet houle is a bold effort of conception. His defigns for interior arrangements were excellent. His Treatife on Civil Architecture alone will immortalize his name. In private life, Sir William was hof. pitable, kind, and amiable. His fon married Mifs Rodney; Mr Cotton, Mr Innis, and Mr Harward, married his beautiful daughters. Having been abftemious in his youth, Sir Willian's conftitution did not begin to break till he was feventy years of age. For the latt three years, be was kept alive by wine and oxygenated air; and died on the 5 th of March 1796 . His celebuity

C H A [251] C H A

Chamberf- celebrity will be lafting in the works which he has left; burg Champlain. and, as he was equally fkilled in the theory and practice of the arts which he profefied, his precepts are as valuable as his works. At his death, he was fellow of the Royal and Antiquarian Societies, treafurer of the Royal Academy, furveyor-gener.ll of the board of works, and knight of the Swedifh order of the Polar Star.
CHAMBERSBURG, a poft town, in Pennfylvania, and the chief of Franklin co. It is fituated on the eaftern branch of Conogocheague creek, a water of Potowmac River in a rich and highly cultivated country, and healthy fituation.-Here are about 200 houfes, 2 Prefyterian churches, a fone gaol, a bandfome court-houfe, built of brick, a paper and merchant mill. It is 58 miles E. by S. of Bedford, in N. W. of Shippenburg, and 157 W. of Philadelphia. N. lat. 39. 53. W. long. 77. 30-Morse.

CHAMBLEE River or Sorell, a water of the St Lawrence, iffuing from lake Champlain, 300 gards Yide when loweft. It is floal in dry feafons; but of fufficient breadth for rafting lumber, \&c. fpring and fall. It was called both Sorell and Richlicu when the French held Canada.-i b.

Chamblee Fort, is handfome and well built, on the margin of the river of the fame name, about 12 or 15 miles S. W. from Montreal, and N. of St John's fort. It was taken by the Americans, Oet. 20, 1775, and retaken by the Britilh, Jan. 18, 1776 . N. lat. 45. 45.-ib.

CHAMFER, or Champeret, an ornament, in architecture, confifting of half a fcotia; being a kind of fmall furrow or gutter on a column.

CHAMPLAIN, a lake next in fize to lake Ontatario, and lies E. N. E. from it, forming a part of the dividing line between the ftates of New.York and Vermont. It took its name from a French governor, who was drowned in it. It was before called Corlaer's Lake. Reckoning its length from Fairhaven to St John's, a courfe nearly N. it is about 200 miles; its breadth is from 1 to 18 miles, being very different in different places; the mean width is abnut 5 miles; and it occupies about 500,000 acres. Its depth is fufficient for the largef veffels. There ate in it above fixty iflands of different fizes; the moft confiderable are North and Snuth Hero, and Motte ifland. North Hero, or Grand Iffe, is 24 miles long and from 2 to 4 wide. It receives at Ticonderoga the waters of Lake George from the S.S. W. which is faid to be 100 feet higher than the waters of this lake. Half the rivers and ftreams which rife in Vermont fall ine it. There are feveral which come to it from New-York ftate and fome from Canada; to which latt it fends its own waters, a N. courfe, through Sorell or Chamblee river, into the St Lawrence. This lake is well hored with fith ; particularly falmon, falmon-trout, Alurgeon and pickerel; and the land on its borders, and on the banks of its rivers, is grod.
The recks in feveral places appear to be marked, and ftained, with the former furface of the lake, many feet higher than it has been fince its difcovery in 1608. The waters generally tife from about the $20 t h$ of April, to the 20 th of June, from 4 to 6 feet; the greateft variation is not more than 8 feet. It is feldom entirely thut up with ice, until the middie of January.

Between the Gth and 15 th of April the ice generally Champlain goes off; and it is not uncommon for many fquare miles of it to difappear in one day.-Morse.
Champlain, a townhip the moft northerly in Clinton co. New-York, which takes its name from the lake on which it lies. It was granted to fome Canadian and Nova-Scotia refugees, who were either in the fervice of the United States, during the war, or fled to them for protection. The indigence or ill habits of thefe people occafioned the breaking up of the fettlement ; and a better fet of inhabitants have now taken their place. The lands are fertile; and two rivers run through it, well fored with fith. It has 575 inhabitants, and 3 flaves. By the ftate cenfus of 1796,76 of the inhabitants are electors.-ib.
CHAPPE (Jean d'Auteroche), a French aftronomer, was born at Mauriac, in Auvergue, March 2. 1728. A tafte for drawing and mathem ttics appeared in him at a very tender age; and he owed to Dom Germain a knowledge of the firt elements of mathematics and aftronomy. M. Caffini, after affuring himfelf of the genius of this young man, undertook to improve it. He employed him upon the map of France, and the tranflation of Halley's tables, to which he made confiderable additions. The king charged him in 1753 with drawing the plan of the county of Bitche, in Lorraine, all the elements of which he determined geographically. He occupied himfelf greatly with the two comets of 1760 ; and the fruit of his labour was his elementary treatife on the theory of thofe comets, enriched with obfervations on the zodiacal light, and on the aurora borealis. He foon after went to Tobolfk, in Siberia, to obferve the tranfit of Venus over the fun; a journey which greatly impaired his health. Alter two years abferce he returned to France in 1762, where he occupied himfelf for fome time in putting in order the great quantity of obfervations he had made. M. Chappe alio went to obferve the next tranfit of Venus, viz. that of 1769 , at Califurnia, on the weft fide of North America, where he died of a dangerous epidemic difeafe, the ift of Augult 1769 . He had been named adjunct aftronomer to the academy the 17 th of January 1759.

The publihed works of M. Chappe, are, I. The Aftronomical 'Tables of Dr Halley, with Obfervations and Additions, in 8vo, 1754. 2. Vnyage to California, to Obferve the Traufit of Venus over the Sun, the 3 d of June 1769 ; in 4 to, 177^{2}. 3. He had a confiderable number of papers inferted in the Memoirs of the Academy, for the years $1760,1761,1764,1765$. ${ }_{17} 66,1767$, and $1_{7} 68$; chie Hy relating to attronomical matters.
CHAPPEL-HILL, a poft town in Orange co. N. Carolina, fituated on a branch of Newhope creek, which empties into the N. W. branch of Cafe Fear Rivcr. This is the fpot chofen for the feat of the Univerfity of North-Carolina. Few houfes are as yet erected; but a part of the public buildings were in fuch forwardnefs, that ftudents were admitted, and education commenced in Jan. 1796. The beautiful and elevated fcite of this town commands a pleafing and extenfive riew of the furrounding commery; 12 miles S. by E. of Hillfborough, and 472 S. W. of Philadelphia. N. lat. 35. 40. W. long. 79. 6-ib.

Universal CHARACTERS, could they be intro-

Charatery. duced, would contribute fo much to the dififion of ufeful knowledge, that every attempt to make fuch a fcheme fimple and practicable is at leaft entitled to notice. Accordingly, in the Encyclopadia, under the word Character, a fhort account is given of the principal plans of univerfal characters which had then fallen under our obfivation; but fince that article was publifh. ed, a new method of writing, by which the various nations of the earth may communicate their ientiments to each other, has been propofed by Thomas Northmore, Efq; of Queen-ftreet, Mayfair. It bears forme refemblance to that which we have given from the Yournal Lileraire, 1720 , but it is not the fame; and of the two, Mr Nouthmore's is perlaps the melt ingenious. The ground work of the fuperflructure differs not in. deed from that of the journalift, being this in both, "That if the fame numerical figure be imade to reprefent the fane word in the various languages upon earth, an univerfal character is immediately obtained." The only objection which our author or his friends fuw to fuch a plan, originates in the diverfity of idinms; but, as he truly obferves, every fchoolboy has this difficulty to encounter as often as he conftrues Terence.

Such then was Mr Northmore's original plan : but he foon perceived that it was capable of confiderable improvement; for, inftead of ufing a figure for every word, it will be neceffary to apply one only to every ${ }^{u / f} f_{f} l$ word; and we all know how few words are abfolutely neceffary to the communication of our thoughts. Even thefe may be much abbreviated by the adoption of certain uniform fixed figns (not amounting to above 20), for the various cafes, numbers, genders, degrees of comparifon, of nouns, tenfes, and moods, of verbs, \&ec. All words of negation, too, may be expreffed by a prefixed fign. A few inltances will beft explain the author's meaning.

Suppofe the number 5 to reprefent the word fee,

6	-	-
7	-	a man, happy, never,
8	-	-
9	-	

"I would then (fays he) exprefs the tenfes, genders, cafes, axc. in all languages, in fome fuch uniform manner as following:

$$
\begin{array}{rlrl}
(15) \frac{\mu}{7} & =\text { fuberlative, } \\
\frac{7}{7} & =\text { as above, } \mathrm{N}^{0} 6 & \text { happieft } \\
(16)-7 & =\text { negation, }-\quad \text { uappinefs, } \\
\text { unhappy }
\end{array}
$$

"From the above fpecimen, I fhould find no dificulty in comprehending the following fentence, though it were written in the language of the Hottentots: $9,8, .5,-\frac{\wedge}{7}, \overline{6}$. I never faw a more unthappy woman.
"Thofe languages which do nct ufe the pronoun prefixed to the verb, as the Greek and Roman, \&c. may apply it, in a fmall character, fimply to denominate the perfon; thus, inftead of $9,8, .5, I$ never faze ; they may write, $8,0.5$, which will Gignify that the verb is in the firf perfon, and will fill have the fame mean. ing."

Our author feems confident that, according to this fcheme of an univerfal character, about 20 figns, and lefs than ro,000 chofen words (fynonyms being fet afide), would anfiver all the ends propofed; and that foreigners, by referring to their numerical diftionary, would eafily comprehend each other. He proceeds next to fhew how appropriate founds may be given to his figns, and an univerfal living language formed from the univerfal charaters.

To attain this end, he propofes to diffinguifh the ten numerals by ten monofyllabic names of eafy pronunciation, and fuch as may run without difficulty into one another. To illuftrate his fcheme, however, he calls them for the prefent, by their common Englifh names; but would pronounce each number made ufe of by uttering feparately its component parts, after the manner of accountants. Thus let the number 6943 reprefent the word horfe, he would not, in the univerfal language, call a horfe fix thoufand nine bundred and forly three, but $f_{i x}$, nine, four, three, and fo on for all the words of a fentence, making the proper flop at the end of each. In the fame manner, a diftinct appellation mult be appropriated to each of the prefixed figns, to be pronounced immediately after the numetal to which it is an appendage. Thus if p / u be the appellation or the fign of the plural number, fix, nine, four, three, plu will be borfes.
"Thus (fays our author), I hope, it is evident that about 30 or 40 diffinct fyllables are fufficient for the above purpofe; but I am much mittaken if elceen only will not anfwer the fame end. This is to be done by fubttituting the firf 20 or 30 numerals fur the figns, and faying, as in algebra, that a term is in the power of fuch a number, which may be expreffed by the fimple word under. Ex.gr. Let 6943 reprefent the word borfe; and fuppofe 4 to be the fign of the plural number, I would write the word thus, $\mathrm{\sigma}^{4}+3$; and promounce it, fix, nine, four, three, in the power of or under four. By thefe means eleven diftinct appellations would be fufficient, and time and ufe would much abbrcviate the pronunciation."

To refufe the praife of insenuity to this contrivance for an univerial language would be very unjnlt; but elocution in this manner would be fo very tedious, that furely the author himfelf, when he thinks more coolly on the fubject, will perceive, that in the living fpeech its defects would more than balance its advantages. A pangraph, as he calls his univerial character, would in-

C H A [253] C. H A

Chatles deed be ufeful, and is certainly practicable; a panles (if we may form fuch a word) would not be very uleful, unlefs it were much more perfet than it could be made according to the plan before us.

CHARLES River in Maflachufetts, called anciently \mathcal{Q} inobeguin, is a confiderable Atream, the priucipal branch of which rifes from a pond bordering on Hopkinton. It paffes through Hollitton and Bellingham, and divides Medway from Medfield, Wrentham, and Franklin, and thence into Dedham, where, by a curious bend, it forms a peninfula of 900 acres of land. A Atrean called Mother Brook, runs out of this river in this town, and falls into Neponfit River, forming a natural canal, uniting the two rivers, and affording a number of excellent mill-feats. From Dediam the courfe of the river is northerly, dividing Newton from Needham, Wefton, and Waltham, paffing over romantic falls; it then bends to the N. E. and E. through Watertown and Cambridge, and paffing into Bofton harbor, mingles with the waters of Myttic River at the point of the peninfula of Charleftown. It is navigable for boats to Watertown, 7 miles. The molt remarkable bridges on this river are thofe which connect Bofton with Charleftown and Cambridge. There are 7 paper mills on this river, befides other mills. -Morse.

Charles Co. on the weftern fhore of Maryland, lies between Potowmack and Patuxent rivers. Its chief town is Port Tobacco, on the river of that name. Its extreme length is 28 miles, its breadth 34 , and it contains 20,613 inhabitants, including 10,005 flaves. The country has few hills, is generally low and fandy, and produces tobacco, Indian corn, fweet potatoes, \&c. -ib.

Charles City Co. in Virginia, lies between Chickahominy and James rivers. It contained formerly part of what now forms Prince George's co. It has 5588 inhabitants, including 3141 flaves.-ib.

Charles, a cape of Virginia, in about N. lat. 37. 15. It is on the N. fide of the mouth of Chefapeak bay, having Cape Henry oppofite to it.-ib.

Charles, a cape on the S. W. part of the Arait entering into Hudfon Bay. N. lat. 62. 40. W. long. 75. 15.-ib.

CHARLESTON, a diftrig in the Lower country of S. Carolina, fubdivided into 14 parifhes. This large diftrict, of which the city of Charlefton is the chief town, lies between Santee and Combahee rivers. It pays $£_{\mathrm{E}}$ 21,473-14-6 ferling taxes. It fends to the llate legiflature 48 reprefentatives and 13 fenators, and 1 member to Congrefs. It contains 66986 inhabitants, of whom, only 16352 are free.-ib.

Charleston, the metrnpolis of S. Carolina, is the moft confiderable town in the flate; fituated in the diftrict of the fame name, and on the tongue of land formed by the confluent ftrcams of Afhley and Cooper, which are fhort rivers, but large and navigable. Thefe waters unite immediately below the city, and form a fpacious and convenient harloor; which communicates with the ocean juft below Sullivan's Ifland; which it leaves on the N. 7 miles S. E. of Charleiton. In thefe rivers the tide rifes, in common, about $6 \frac{1}{2}$ feet; but uniformly rifes 10 or 12 inches more during a nighttide. The fact is certain ; the caufe unknown. The continual agitation which the tides occafion in the wa-

Suppl. Vol. I.
ters which almof furround Charlefton-the refrefling CharleAnn. fea-breezes which are regularly felt, and the fmoke arifing from fo many chimneys, render this city more healthy than any part of the low country in the fouthern frates. On this account it is the refort of great numhers of gentlemen, invalids from the W. India iflands, and of the rich planters from the country, who come here to fpend the fickly months, as they are called, in queft of health and of the focial enjoyments which the city affords. And in no part of America are the focial bleffings enjoyed more rationally and liberally than here. Unaffected hofpitality-affability-eafe of manners and addrefs-and a difpofition to make their guefts welcome, eafy and pleated with themfelves, are characteriftics of the refpectable people of Charlefon. In fpeaking of the capital, it ought to be obferved, for the honour of the people of Carolina in general, that when in common with the other colonies, in the conteft with Britain, they refolved againft the ufe of certain luxuries, and even necelfaries of life; thofe articles, which improve the mind, enlarge the underfanding, and correct the tafte, were excepted; the importation of books was permitted as formerly.

The land on which the town is built, is flat and low, and the water brackifh and unwholefome. The ftreets are pretty regularly cut, and open beautiful profpects, and have fubterranean drains to carry off filth and keep the city clean and healchy; but are too narrow for fo large a place and fo warm a climate. Their general breadth is from 35 to 66 feet. The houfes which have been lately built, are brick, with tiled roofs. The buildings in general are elegant, and moft of them are neat, airy and well furnifhed. The public buildings are, an exchange, a ftate-houfe, an armoury, a poorhoufe, and an orphan's houfe. Here are feveral refpectable academies. Part of the old barracks has been handfomely fitted up, and converted into a college, and there are a number of Itudents; but it can only be called as yet a refpectable academy. Here are two banks-a branch of the national bank, and the S. Carolina bank, eftablifhed in 1792. The houfes for public woithip are two epifcopal churches, two for Independents, one for Scotch Prefoyterians, one for Baptifts, one for German Lutherans, two for Methodiths, one for French Protefants, a meeting-honfe for Quakers, a Roman Catholic chapel, and a Jewifh fyagogue.

Little attention is paid to the public markets; a great proportion of the molt wealthy inhabitants having plantations from which they receive fupplies of almolt every article of living. The country abounds with poultry and wild ducks. Their beef, mutton and veal are not generally of the beft kind; and few filh are found in the market.

In 1787 , it was computed that there were 1600 houfes in this city, and $\mathrm{I}, 000$ inhabitants, including 5,400 flaves; and wl at evinces the healthinels of the plaee, upwards of 200 of the white inhabitants were above 60 years of age. In 1791, there were 16,359 inhabitants, of whom 7684 were laves. This city has often fuffered much by fire, the laft and molt deltructive happened as late as June, ${ }^{1796}$.

Charlefton was incorporated in 1783 , and divided into three wards, which chofe as miny wardens, from among whom the citizens clect in intendant of the city. The intendant and wardens form the city-counL 1

C H A [254$] \quad \mathrm{C}$ H A

Charlefton cil, who have power to make and enforce bye-laws for the regulation of the city.

The value of exports from this port, in the year ending Nov. 1787, amounted to $£ .505,279 \cdot 19-5$ fterling.

The number of veffels cleared from the cuftom-houfe the fame year, was 947 , meafuring 62,1 is tons; 735 of thefe, meafuring 41,531 tons, were American; the others belonged to Great-Britain, Ireland, Spain, France, and the United Netherlands. In the year 1794, the value of exports amounted to $3,846,392$ dollars. It is 60 miles S. W. by S. of Georgetown; 150 E. by S. of Auguta; 497 S. by W. of Richmond; 630 S . W. by S. of Wafhington city; 763 S . W. by S. of Philadeiphia ; and IIIOS. W. of Bofton. The light-houfe lies in N. lat. 32.41. 52. White Point at the S. end of the town, N. lat. $32 \cdot 44 \cdot 30$. W. long. 80. 39. 45 .

Knoxville, the capital of the ftate of Tenneflee, is much nearer to this than to any fea-port-town on the Atlantic Ocean. A waggon road of only $1 ;$ miles is wanted to open the communication; and the plan is about to be executes by the flate.-ib.

CHAKLESTOWN, a poft-town in Cecil co. Maryland, near the head of Chefapeak bay; 6 miles E. N. E. from the mouth of Sufquehannah River ; 1o W. S. W. from Elkton, and 50 S. W. by W. from Philadclphia. Here are about 20 houfes, chiefly inhabited by filhermen employed in the herring fifhery. N. lat. 39. 34 - - .

Charlestown, a townfhip in Montgomery co. New-Ynrk, on the S. fide of Mohawk river, about 32 miles W. of Schenectady. By the ftate cenfus of 1796 , 456 of the inhabitants are electors.-ib.

Charlestown, a townflip in Mafon co. Kentucky; fituated on the Ohio at the mouth of Lauren's creek. It contains but few houfes, and is 6 miles N . of Wafliington, and 60 N . E. of Lexington. N. lat. $3^{\overline{3}} .43$. - b.

Charlestown, a townhip in Chefter co. Pennfyl-vania.-ib.

Charlestown, a polt-town in Chefhire co. New. Hampfhire, on the E. fide of Connecticut River 30 miles S. of Dartmourh College; upwards of 70 N . of Northampton, it 6 N . of W. of Bulton, 80 W. by N. of Portfmouth, and 341 N. N. E. of Philadelphia. It was incorpotated in 1753 , and contains 90 or 100 houfes, a Congregrational church, a court-houfe and an academy. The road from Botton to Quebec palfes through this town. N. lat. 43. 16. W. long. 72. 19. A imall internal trade is carried on here.-ib.

Charlestown, the principal town in Middlefex co. Maltachufetts, called Mifowoun by the aboriginal inhabitants, lies N. of Bofton, with which it is connected by Charles-River Bridge. The town, properly fo call. ed, is built on a peninfula, formed by Myftic River on the E. and a bay, feting up from Charles-River, on the W. It is very advantageouny fituated for health, navigation, trade, and manufactures of almoft all the various kinds. A dam acrofs the mouth of the bay, v:lich fets up frgm Charles-River, would afford a great number of mill-feats for manufactures. Bunker's, Breed's, and Cobble (now Barrell's) hills, are celebrated in the hiftory of the American Revolution. The fecond hill bas upon its fummit a monument erected to the memory of major gen. Warren, near the fpot
where he fell, among the firft facrifices to American Charlefliberty. I'he brow of the hill begins to be ornament- town ed with elegant houfes. All thefe hills afford elegant and delightful profpects of Bofton, and its charmingly variegated harbor, of Cambridge and its colleges, and of an extenfive tract of highly cultivated countrs. It contains within the neck or parifh abnot 250 houfes, and about 2000 inhabitants. The only public buildings of confequence are a handfome Congregational church, with an elegant fleeple and clock, and an alms-houfe, very commodious and pleafantly fituated.

Before the deftruction of this town by the Britifl in 1775, feveral branches of manufactures were carried on to great advantage, fome of which have been fince revived; particularly the manufacture of pot and pearl afhes, hip-building, rum, leather in all its branches, filver, tin, brafs, and pewter. Three rope-walks have lately been erected in this town, and the increafe of its houfes, population, trade, and navigation, have been very great within a few years patt. This town is a port of entry in conjunction with Bolton. At the head of the neck there is a bridge over Myltic River which connects Charleftown with Malden.-ib.

Charlestown, a village in Berkley co. Virginia, fituated on the great road leading from Pbiladelphia to Winchefter; 8 miles from Shepherditown, and 20 from Winchefter.

Charlestown, a townfhip in Wafhingtonco. RhodeIfland ftate, having the Atlantic ocean on the fouthward, and feparated from Richmond on the northward by Charles-river, a water of Pawcatuck. Some of its ponds empty into Pawcatuck River, others into the fea. It is 19 miles N. W. of Newport, and contains 2022 inhabitants, including 12 flaves.

A few years ago there were about 500 Indians in the fate; the greater part of them refided in this townShip. They are peaceable and well difpofed to government, and fpeak the Englifh language.-ib.

Charlestown, the only town in the ifland of Nevis, one of the Caribbees, belonging to Great-Britain. In it are large houfes and well furnifhed fhops, and it is defended by Charles fort. In the parifh of St John, on the S. fide of the town, is a large fpot of fulphureous ground, at the upper end of a deep chafm in the earth, commonly called Sulphur Gut, which is fo hot as to be felt through the foles of one's thoes. A frmall hot river, called the Bath, is thought to proceed from the faid gut; and after running half a mile, lofes itfelf in the fands of the fea. Black-Rock pond, about a quarter of a mile N. from the town, is milk-warm, owing to the misture of hot and cold fprings, yet it yields excellent fifh ; particularly fine eels, tilver fib, and flim guts. A prodigious piece of Nevis mountain falling down in an earthquake, feveral years ago, left a large vacuity, which is ftill to be feen. The altitude of this mountain, taken by a quadrant from Charleftown bay, is faid to be a mile and a half perpendicular; and from the faid bay to the top, four miles. The declivity from this mauntain to the town is very Iteep half way, but afterwards eafy of afcent. N. lat. 16. 55. W. long. 62. 42.-ib.

Charlestown, or Offins, one of the fuut principal towns in the illand of Barbadoes.-ib.

CHARLETON Ifland, or Cbarles Ifland, is fituated at the bottom of James's bay, in New South Wales,

C H A [255] C H A

Charlctoh on the coatt of Labrador, and yields a beantiful profpect, in fpring, to thofe who are near it, after a voyage of 3 or q months in the mof uncomfortable feas on the globe, and that by the vaft mountains of ice in Hudfon bay and ftraits. The whole ifland, fpread with trees and branches, exhibits, as it were, a beantiful green tuft. The air even at the bottom of the bay, though in 51 degrees, a latitude nearer the fiun than London, is exceffively cold for nine monthe, and very hot the other three, except on the blowing of a N. W. wind. The foil on the E. fide, as well as the iW. bears all kinds of grain; and fome fruits, goofeberries, Arawberries, and dewberies, grow about Rupert's bay. N. lat. 52. 30. W. long. 82.-ib.

Chakleton, a townlhip in Saratoga co. New-York. By the ftate cenfus of 1796,268 of its inhabitants were electors.-il.

Charleton, a townfhip in Worcefter co. Maffachufetts, incorporated in 1754 , and until then, formed the welterly part of Oxford. It is 60 miles S. W. of Bofton, 15 S . W. of Worceler, and contains 1965 inhabitants. Quincbangh River forms fome of its rich intervale lands, and furnilhes excellent mill feats for this, and many adjacent towns.-ib.

CHARLOTTE Fort, in S. Carolina, is fituated on the point of land where Tugeloo and Broad rivers, uniting their waters, form $S_{d v a n n a l ~ R i v e r . ~ A c c o r-~}^{\text {d }}$ ding to Bartram, it is one mile below Fort James, Dartmouth. N. lat. 34. W. long. 82.35.-ib.

Charlotte Haven, lies at the mouth of Charlotte River in E. Florida; having Carlos bay on the S. and Rock Poinr on the northward. N. lat. 27 . W. long. S2. 4o. Charlotte River is fed by Spiritu Santo Litgoon, which communicates, by Delaware River with Chatham or Punjo bay, which is 90 miles S. E. from Charlotte Haven.-ib.

Charlotte, a confiderable townhip on the E. fide of Lake Champlain, and the S. wefternmolt in Chittenden co. Vermont. Shelburne on the N. feparates this town from Burlington. It contains 635 inhabitants. Split Rock, in Lake Champlain, lies off this town:

Charlotte Co. in Virginia, lies S. W. of Richmond, on the head waters of Staunton River, and contains 10,078 inhabitants, including 4,816 flaves. The court-houte is 21 miles S. S. W. of Prince Edward courthoufe, and 379 , about the fame courfe, from Priladelphia.-ib.

Charlotteburg, a town in Brunfwick co. N. Carolina, It flands on an illand, and has an inlet and found of the fame name, a little S. of it.-ib.

Charlotte, or Charlotefefille, a polt-town in Salifbury diftrict, N. Carolind, and chief town of Mecklenburg co. fituated on Steel creek, which joins the Sugaw, and falls into Catabaw River about 10 miles N . of the S. Carolina boundary, and 44 S. of Salitbury. Here are about 40 houfes, a courthoufe and gaol.一ib.

Charlottesvilie, the capital of Albemarle co. in Virginita, lies on the polt road from Richmond to Danville, in Kentucky, 86 miles W. N. W. of the former, and 557 ealt ward of the latter, and 40 S. E. by E. of Staunton. It contains about 45 houfes, a court houfe and a goal, fituated about hadf a mile N. from a water of Rivanna river.-ib.

Charlotte Town, the capital of the ifland of St

John's, in the gulf of St Lawrence. Alf, the name of a town on the S . W. lide of the ifland of Drminica, in the W. Indies; and fituated on the S. fide of a dcep bay.-ib.
CHARLOTIA, a town on the E. fhore of St Jnhn's River, Eaf Florida, where that river is about half a mile wide. It was founded by Den. Rolle, Efq. and is fituated on a high bluff, 15 or 20 feet perpendicular from the river ; and is in length half a mile, or more. The aborigines of America had a very great town in this place, as appears from the great tumuli and conical mounts of earth and thells, and other traces of a fettement which yet remain. The river, for near 12 miles above Charlotia, is divided into many channels hy a number of iflands.-ib.
CHARTRES, a fort which was built by the French, on the eattern fide of the Miffifippi, 3 miles northerly of La Praire du Rocher, or the Rock Meadows, and 12 miles northerly of St Genevieve, on the wettern fide of that river. It was abandoned in 1772 , being untenable by the contant wafhings of the Mifillippi in high floods. The village fouthward of the fort wats very inconfiderable in $\mathrm{r}_{77} \mathrm{~s}$. A mile above this is a village fettled by 170 warriors of the Piorias and Mitchigamias tribes of Illinois Indians, who are idfe and debauched.-ib.

CHATHAM, a maritime townhip in Barntable co. Maflachufets, fituated on the exterior extremity of the elbow of Cape Cod, conveniently for the fifhery ; in which they have ufually about 40 veffels employed. It has 1140 ibhabitants, and lies 95 miles S. E. of Bolton- -ib.

Chatham, a townfhip in Grafton co. New-Hampfhire. It was incorporated in 1767 , and in 1790 contained 58 inhabitants. -ib.

Chathan, a flourilhing townflip in Middlefex co. Connecticur, on the eaftern bank of Connecticut River and oppofite Middleton city. It was a part of the townflip of Middleton till 1757 - $i b$.

Chatham, a townhip in Elfes co. N. Jerfey, is fituated on Paffaic River, 13 miles W. of Elizabethtown, and nearly the fame from Newark.-ib.

Chatham, a townhip in Columbia co. New-York. By the Aate cenfus of $\mathbf{1 7 9 6}, 380$ of its inhabitants were electors.-ib.

Chatham Co. in Hillforough diftrict, N. Carolina, about the centre of the fate. It contains 9221 inhalbitants, of whom 1632 are flaves. Chief town, Pittfburg. The court-houfe is a few miles W. of Raleigh, on a branch of Cape Fear river.-ib.

Chatham, a town of S. Carolina, in Cheraws diftrict, fituated in Cheflerfield co. on the W. fide of Great Pedee River. Its fituation, in a highly cultivated and rich country, and at the head of a navigable river, bids fair to render it a place of grcat importance. At prefent it has only about 30 houles, lately built.-ib.

Chathan Co. in the lower diftrict of Georgia, lies in the N. E. comer of the Itate, having the Atlantic ocean E. and Savannah river N. E. It contains 10,769 inhabitants, including 8,201 flaves. The chief town is Savannah, the former capital of the ftate.-ib.

Chathan, or Punjolay, a large bay on the W. fide of the S. end of the promontory of E. Florida. It receives North and Delaware rivers.-ib.

L 12
Сhatham

C H A

Chatham Chatham Houfe, in the territory of the Hudfon bay $\|$ company, N. lat. 55.23.40. W. long. from Green. Chaumette. wich 98.-ib.

CHATA-HATCHI, or Hatchi, is the largef river which falls into St Rofe's bay in W. Florida. It is alfo called Pea river, and runsfrom N. E. entering the bottom of the bay through feveral mouths; but fo thal that only a fmall boat or cance can pafs them. Mr Hutchins afcended this river about 25 leagues, where there was a fmall fettlement of Couffac Indians. The foil and timber on the banks of the river refemble very much thofe of Efambia.

CHATAUCHE, or Chatahuthe, a river in Georgia. The northern past of Appalachicola river bears this name. It is about 30 rods wide, very rapid, and full of fhoals. The lands on its banks are light and fandy, and the clay of a bright red. The Lower Creeks are fettled in fcattering clans and villages from the head to the mouth of this river. Their huts and cabins, from the high colour of the clay, refemble clufters of new-burned brick kilns. The diftance from this river to the Talapoofe River is about 70 miles, by the warpath, which croffes at the falls, jult above the town of the Tuckabatches.-ib.

CHATAUGHQUE Lake, in Ontario co. NewYork, is about 18 miles long, and 3 broad. Cone. wango River which runs a S. S. E. courfe, conneas it with Alleghany River. This lake is conveniently fituated for a communication between lake Erie and the Ohio; there being water enough for boats from fort Franklin on the Alleghany to the N. W. corner of this lake; from thence there is a portage of 9 miles to Chataughque harbor on lake Erie, over ground capable of being made a good waggon road. This communication was once ufed by the French.-ib.

CHAUMETTE (Pierre Gafparine), though a man of talents and an author, would hardly have deferved a place in this work, did not his life and the manner of his death hold out an awful warning againft thofe principles which produced the cverthrow of focial order in France.

He was a native of the town of Nevers, in the Orleanois; and as he rofe to the office of recorder in Paris, few men excited more attention in France for a tinze, or had a more hateful takk to perform, during the moft tragical part of the revolution, than Chaumette. He had been bred to the fea; but not relifhing that life, and failing to obtain expected preferment therein, he quitted it, and lived by the ufe of his pen, which he certainly knew how to manage more to his profit than the compafs. He could, however, fpeak better, and more fluently, than he could write. He had alfo been employed as a librarian and amanuenfis to a dignitary of the church, in the diocefe of Nivernois; but at the commencement of the troubles in France, he was actually a clerk to an attorney, and occalionally wrote for the newfpapers, as well as trifles for the fage. He was one of the chief difciples of Camille Defmoulins, and among the firt who put the tri-coloured cockade in his hat jof before the taking of the Baftille. He greatly out-ran that apoftle in zeal for the new faith; for when Camille was compofing the firlt number of his Vieur Cordclier, with the hope of tranquillifing the overheated imaginations of the leaders of that great event, and tem-
pering the public rage againt the real or fuppofed ene. Chaunette, mies of the new order of things, Chaumette was titl farther inflaming it, and directing it in vengeance againft particular individuals. It was Chaumette that infligated the commune of Paris to demand the trial of the queen, and he was of the committee which prepared the charges and regulated the evidence againt that ill-fated we man. He was himfelt a vitncfs too againlt her at the revolutionary tribnnal, and undertook to reprimand M. la Tour Dupin, lately war minifter to Louis XVI. for not expofing thofe parts of Antoinette's conduct, which, it was infilted on, he was privy to or acquainted with.

The moit infamous part of Chaumette's conduct on that occafion was his accufing the queen of an inceftuous connection with her fin. Even the horrid tribunal was fhocked at this inlinuation, of which the author became inftantly the object of almoft univerfal abhorrence ; and Robefpierre himfelf, under whele aulpices Chaumette was believed to act, grew outrageous when he was told of a charge fo fcandaloufly abfurd. "The fool (exclaimed he) was it not enough that he had proved her a Meffalina, but he mult make her an Agrippina too!" Of proof indeed there was not much; and the feverell enemy of the beautiful Antoinette, if his mind be not wholly warped by prejudice, will admit, that by thefe brethren in iniquity the was murdered under the form of a revolutionary trial.

Robefpierre had fenfe enough to fee that this abominable conduct of Chaumette would hurt the canfe in which they were both embarked; and for that reafon he never forgave him, though he allowed the zeal to continue to operate on inferior objects, till it whelmed the zealot himfelf in ruin. Chaumette had credit now with none but the very fcum of the revolution; and fuch recrementitious matter will always be thrown off in national ebullitions of this kind.

Robefpierte was at this time in the very zenith of his power, yet Chaumette moved fuch a propofition in the full commune, as gave reafon to many to believe that he would fet up as his rival in the city. This daring motion was for uniting all the heads of the 48 fections of Paris in one council; a meafure that would have fuperfeded the force of the legiflature itfelf, if not its authority. This was a project, conceived in common with the famous Hebert, Momora, and Mazuel, and would have been aided in its execution by the daring Roufin, who at that time commanded a body of the armeé revolutionaire.

How far Robefpierre was apprifed of or approved the fcheme, does not appear ; many fhrewd oblervers of what was paffing, feemed fatisfied that it was to have been only a prelude "to the fwelling act" that was to follow, when the hero of the piece was to have been in full play. The majority of the convention faw through the veil which covered the workings of the plot, and anticipated their own danger, fhould it be carried into effect. They, therefore, without lofs of time, annulled the proceedings already had in it, and declared all to be rebels who fhould perfift therein. Chaumette appeared to put a good face on the correction. He told the commune, on its next meeting, that his propofition muft be relinquilhed; for that the convention, with a voice paternal, though fevere, had famped with

Chaumette nullity their former refolution, and that it became them, like dutiful children, to fubmit. Hebert, Momora, and Mazuel, were foon after accufed as traitors, imprifoned, tried, and executed; but Chaumette furvived a fhort time longer, as his enemies thought it fafer to wear away by degrees the remaining popular partiality for him, before he fhould be ftruck at. He was taken up, however, on the 26 th of March 1794, under a charge of confiring, with the foregoing men, againt the government, and guillotined on the $13^{\text {th }}$ of April following, without the imalleft effort on the part of Robefpierre, to fave him. Such is the gratitude and fuch the friendfhip of minds filled with univerfal philanthropy and the rights of man! That Chaumette and Robefpierre were clofely linked together, is known to all who are not llangers to the trandactions of that time; but when the latter had rien to dictatorial power on the fhoulders of the former, he kicked him, like an ufelefs fcaffold, from under his feet.

Chamette faid at the place of execution, that the revolution had inflamed his imagination, and at times intoxicated his brain, from the too free gratification of his vengeance for the perfonal injuries he had received. He faid alfo, that thiee inftances had come to light of his ariftocratic and inveterate enemies attempting his life; and that a defire of reprifal, in which he conceived the fafety of the commonwealth in a meafure involved, made him feek all occafions for arrogating power ; but that he never cherithed an idea of polfetling any perma. nent authority, not even of a fecondary or fubordinate nature. That the revolution intoxicated his brain, is doubtlefs true; iut that he never afpired to permanent authority, is an infamous falfehood.

CHAUSETRAPPES. See Crow's Feet, Encycl.
CHEAT River, rifes in Randoiph co. Virginia, and after purfuing a N. N. W. courie, juins Monongahela River, 3 or 4 miles within the Pennfylvania line. It is 200 yards wide at its mouth, and 100 yards at the Dunkards fettlement, 50 miles higher, and is naviga-
ble for boats except in dry feafons. There is a port- Chegomeage of 37 miles from this River to the Potowmack at the month of Savage river.-Morse.

CHEGOMEGAN, a point of land about 60 miles in length, on the S. fide of lake Superine. About 100 miles W. of this cape, a confiderable River falls into the lake; upon its banks abundance of virgin copper is found.-ib.

CHELMSFORD, a townfhip in Middlefex co. Maffachufetts, fituated on the S. fide of Merrimack River 26 miles N. wefterly from Bofton, and contains 1144 inhabitants. There is an ingenioufly conltructed bridge over the River at Pawtucket Falls, which comneds this town with Dracut. The route of the Middlefex canal, defigned to conneet the waters of Merrimack with thofe of Bofton harbor, will be foutherly through the E. part of Chelmsford.-ib.

CHELSEA, called by the ancient natives Winnifimet, a town in Suffolk co. Maifachufetts, containing 472 inhabitants. Before its incorporation, in 1738 , it was a ward of the town of Bolton. It is fituated northeafterly of the metropolis, and feparated from it by the ferry acrofs the harbor, called Winnilimet. -ib.

Chelsea, a townihip in Orange co. Vermont, having 239 inhabitants.-ib.

Chelsea, the name of a parifh in the city of Norwich (Connecticut) called the Landing, fituated at the head of the river Thames, 14 miles N. of New-London, on a point of land formed by the junction of Shetucket and Norwich, or Little rivers, whofe united waters conftitute the Thames. It is a bufy, commercial, thriving, romantic, and agreeable place, of about 150 houfes, afcending one above another in tiers, on artificial foundations, on the fouth point of a high, rocky hill.-ib.

CHEMIN des Ronds, in fortification, the way of the rounds, or a fpace between the rampart and the low parapet under it, for the rounds to go about.it.

C H E M I S T R Y,

$\stackrel{1}{\text { finition. }}$

IS a fcience, the object of which is to afcertain the ingredients that enter into the compofition of bodies, to examine the nature of thete ingredients, the manner in which they combine, and the properties refulting from their combination.

As an art, it has been in fome meafure coeval with the human race; for many of the moft important branches of manutactures could not have been conducted without at le if come knowledge of chemical combinations. As a ference, it can hardly be dated farther back than the middle of the 17 th century; but lince that time it has advanced with a rapidity altogether unprecedented in the annals of philoiophy. Newton laid its foundation; and lince his days an almolt incredible number of the moft dittinguifhed names in Europe have enlifted under its banners. So rapid has this progrefs been, that though the article Chemistry in the Encyclopedia was written only about ten years ago, the language and reafoning of chemiltry have been fo greatly improved, and the number of facts have accu-
mulated fo much, that we find ourfelves under the neceflity of tracing over again the very elements of the fcience.

Indeed, if we confider the importance of chemitry, Importance we thall not be fo much furprifed at the ardour with of chemiswhich it has been cultivated. As a fcience, it is inti- try. mately connected with all the phenomena of nature ; the caufes of rain, fnow, hail, dew, wind, earthquakes; even the changes of the featons can never be explored with any chance of fuccefs while we are ignorant of chemiltry ; and the vegetation of plants, and fome of the molt important functions of animals, have received all ther illuftration from the fame fource. No fudy can give us more exalted ide.ts of the wifdom and grodnefs of the Great Firlt Caufe than this, which thews us everywhere the molt aftomithag effects produced by the moit fimple though adequate means, and difplays to our view the gieat care which has ever) where been taken to fecure the comfret and harpinef, of every living creature. As an art, it is intimately comeered

With all our manufatures: The glafs-blower, the pot-
ter, the fmith, and every other worker in metals, the tanner, the foap-maker, the djcr, the bleacher, are really practical chemilts; and the moftefential improvements have been introduced into all thefe arts by the progrefs which chemillry has made as a fcience. Agriculture can only be improved rationally, and certainly by calling in the alfiftance of chemiltry; and the advantages which medicine has derived from the fame fource are too obvious to be pointed out.

It is evident from the defiution of chemilty that it mult confint in a hiftory of the fimple fubtances which enter into the compofition of bodies, in an inveligation of the manner in which thede fubitances combine, and in a defcription of the properties of the compounds which they form. And this is the arrangement which we mean to purfie; referving to ourielves, however, the liverty of deviating a little from it, whenever it may appear neceffary for the fake of pelficuity. All our clafifications are in fait artificial ; nature does not know them, and will nut fubmit to them. They are uliful, however, as they enable us to learn a fcience fooner, and to remember it better; but if we mean to derive thefe
advantages from them, we muft renounce à rigid a wherence to arbitrary definitions, which nature diclaims.

We fhall begin by an account of the fimpleft bodies, and proceed gradually to thofe which are more compound. By fimple todies, we do not mean what the ancient philofophers called the elemtents of badies, but mërely fuhitances, which have not yet been decompounded. Very pofibly the bodies which we reckon fimple may be real compounds; but till this has actually been proved, we have no right to fuppofe it. Were we acquainted with all the elements of bodies, and with all tha combinations of which thefe elements are capable, the fcience of chemiltry would be as perfect as polifible; but at prefent this is very far from being the cafe.

We thall divide this article into four parts. The firft part th tll treat of thofe bodies which are at prefent confidered as fimple; the fiond, of thofe bodies which are formed by the union of two fimple bodies, and which for want of a better word we thall call compound bodies ; the third, of thofe bodies which are formed by the union of two compound bodies; and the fourth, of bodies fuch as they are prefented to us by"nature in the minsral, vegetable, and animal kingdoms.

Part I. Of Simple bodiEs. (1)

ALL the bodies which are at prefent reckoned fimple, becaufe they have never been decompounded, may be reduced into fix claffes.

1. Oxygen,
2. Simple combuftibles,
3. Metals,
4. Earths,
5. Caloric,
6. Light.

Thefe fhall form the fubjects of the fix following chapters.

Chap. I. Of Oxygen.

Plate.
XVIII.

Method of procuring oxygen.

Take a quantity of nitre, or faltpetre as it is alfo called, and put it into a gun barrel A (fig. r.), the touch-hule of which has been previoully closed up with metal. This barrel is to be bent in fuch a manner, that while the clofe end, in which the nitre lies, is put into the fire E, the open end may be plunged telow the furface of the water, with which the vefiel B is filled. At the fame time, the glafs jar, D, previoufly filled with water, is placed on the fupport C, lying at the bottom of the vellel of water B, fo as to be exactly over the open end of the gua barrel A. As foon as the nitre becomes hot, it emits a quantity of air, which iffuing from the end of the gun barrel, afcends to the top of the glafo jar D , and gradually difplaces all the water. The glafi jar I) then appears to be empty, but is in fact filled with air. It may then be removed in the follow. ing manner; Slide it away a little from the gun barrel and the fupport, and then dipping any flat difl into the water below it, raife it on it, and bear it away. The difh mult be allowed to retain a quantity of water in it,
(fee fig. 2.) Another jar may then be filled with air in the fame manner; and this procefs may be continued either till the nitre ceales to give out air, or till as many jarfuls have been obtained as are tequired. This method of obtaining and corfining air was firl invented by Dr Mayow, and afterwards much improved by Dr Hales. All the airs obtaived by this'or tiny other procefs, or, to fpeak more properly, all-he airs differing from the air of the atmofphere, have, in order to dilinguifh them from it, been cailed gafos, and this name we fhall afterwards enploy.

6 The gas which we have obtained by the above pro- Difcovered cefs was difcovered by Dr Priefley on the 1 f of Au-by Priefley guft 1774, and called by him dephlogificated air. Mr andScheete. Scineete of Sweden difcovered it in 1775, without any previous knowledge of what Dr Pricitley had done: he gave it the name of empyreal air. Condorcet, fo conIpicuous during the French revolution, gave it firlt the name of vital air ; and Mr Lavoifier àterwards calied it onygen gas; a name which is now generally received, and which we flall adopt.

Oxygen gas may be obtained likewife by the follow. ing process:
D (in fig. 3.) reprefents a wooden trough, the infide of which is lined with lcad or tinned copper. $A B$ is a thelf running along the infide of it, about inree inches from the top. C is the cavity of the trough, which Anothe ought to be a foot deep. It is to be filled with water method. at leatt an inch above the fhelf $A B$ In the body of the trough, which may be called the cifern, the jars deftined to hold gas are to ba filled wi:h water, and then to be lifted, and placed inverted upon the fhelf at B,
with
(1) The writer of the notes figned T. P. S. confiders himfelf refponfible for no other errors contained in this ff:tum of chemiftry than thofe contained in his own notes. From a number of circumfances he was under the necelifty of reading this work fo curforily, that probably many deductions which on more mature confuderation he might have objected to, may have paffed unnoliced.
T. P. S.
with theit edges a little over it. This trough, which was invented by Dr Prieftley, has been called by the French chemilts the pneumato chemical, or fimply fneumatic apparatus, and is extremely ufeful in all experiments in which gafes are concerned. Into the glafs veffel E put a quantity of the black oxyd (A) of manganefe in powder, and pour over it as much of that liquid which in commerce is called oil of vitriol, and in chemiftry fulphuric acid, as will fomewhat more than cover it. Then infert into the mouth of the veffel the glafs tube F, fo clofely that no air can efcape except through the tube. This may be done by covering the joining with a pafte made of wheat H our and water, or any other lute, as fubftances uled for fimilar purpefes are called. The end of the tube C is then to be plunged into the pneunatic apparatus D and the jar G, previonfly filled with water, to be placed over it on the fhelf. The whole apparatus being fixed in that fituation, the glafs vefiel E is to be heated by means of a lamp or a candle. A great quantity of oxygen gas rufhes along the tube F, and fills the jar G. As foon as the jar is filled, it may be flid to another part of the Melf, and other jars fubttituted in its place, till as much gas has becu obtained as is wanted.

1. Oxygen gas is colourlefs, and invifible like common air. Like it too, it is elaftic, and capable of indefinite expanfion and comprefion.
2. If a lighted taper be let down into a jar of oxygen gas, it bums with fuch plendor that the eye can farcely bear the glare of light, and at the fame time produces a much greater heat than when burning in common air. It is well known that a candle put into is well clofed jar filled with common air is extinguifhed in a few feconds. This is the cafe alfo with a candie inclofed in oxygen gas; but it burns much longer in an equal quantity of that gas than of common air.
3. It was proved long ago by Dojle, that animals cannot live without air, and by Mayow that they cannot breathe the farne air for any length of time without - fuffocatign. Dr Prieftley and feveral other philofophers have fheson us, that animals live much longer in the fame quantity of oxygen gas than of common air. Count Murozzo placed a number of forrows, one after another, in a glafs bell filled with common air, and in. verted over water.
H. M.

The fird fparrow lived	-	-	3	0	
The fecond	-	-	-	0	3
The third	-	-	-	0	1

He filled the fame glafs with oxygen gas, and repeated the experiment.

			H. M.			
The firt fparrow lived	-	-	5	23		
The fecond	-	-	-	-	2	10
The third	-	-	-	-	1	30
The fourth	-	-	-	-	1	10
The fifth	-	-	-	-	0	30
The fixth	-	-	-	-	0	47
The leventh	-	-	-	-	0	27
The eighth	-	-	-	-	0	30
The ninth	-	-	-	-	0	22
The tenth	-	-	-	-	0	21

He then put in two torether; the one died in 20 mirutes, but the other lived an hour longe:.
4. Atmofpherical ar contains about 27 parts in the Exifts in hundred of oxygen gas. This was fuft difcovered by the atmof Scheele. It has been proved by a great nunber of ex- phere. periments, that no fubtance will burn in common air previoully deprived of all the oxygen gas which it contained; but combufibles burn with great fplendor in oxygen gas, or in other gafes to which oxygen gas has been added. Oxygen gas, then, is abfolutely neceffaty for combultion.
5. It has been proved alf, by many experiments, that no breathing animal can live for a moment in any air or gas which does not contain oxygen mixed with it. Onygen gas then is abrolutely neceifary for refpiration.
6. When fubftances are burnt in oxygen gas, or in any other gas containing oxygen, if the air be examined after the combullion, a great part of the oxygen will be found to have difappeared. If charcoal, for inflance, be burnt in oxygen gas, there will be found, inttead of part of the onygen, another very different gas, known by the name of carbonic acid gas. Exactly the fame thing takes place when air is refpired by animals; part oi the oxygen gas dilappears, and its place is occupied by fubftances poffeffed of very different properties. Oxygengas then undergoes fome change during combuftion, as well as the bodies which have been burnt; and the fame obfervation applies alfo to refpiration (B).
7. The fepcific gravity of oxygen gas, as determined Its fpecific by Mr Kirwan*, is 0,00135 , that of water being gravity. 1,0000 , as is always the cale when fpecific gravity is "On Phiomentioned abrolutely. It is therefore 740 times lighter gifon, fea.i. than the fame bulk of yater. Its weight to atmofphelical air is as 1103 to 1000 : 116 cubic inches of oxygen gas weigh 39,03 grains troy, 116 cubic inches of ct mmon air, 35,38 grains.
8. Oxygen is capable of combining with a great num- Aprity exber of bodies, and forming compounds. As the com- plained. bination of boclies is of the utmoft importance in chemiftry,
(A.) This fubftance fall be afterwards defcribed. It is now very well known in Britain, as it is in common ufe with bleachers and feveral other manufafturers.
(r) Mayow had in the laft century made confiderable progrefs towards the difovery of oxygen gas. He kncw that only a pat of the air fopported combultion: This pat he called pariculue ${ }_{3}$ uco aerca. He knew that this part was contained in nitre : Pars nitri aerea nihil aliud quam particulx ejus igneo-aerex eft." He adde, "At non eff effimandum pabulum ignco-aercum ipfum aerem sffe, fed tantum partem ejus majus activam fubtilemgue. Quippe lucerna vitro incha expirat cum tamen copia aeris fais nmpla in eodem continctur." He knew alfo that it was this part of the ai= which was ufeful in refpiration. Affe: mentioning feveral experiments to prove this, he adds, "Ex dictis certn conllat animalia refpirando particulas quariam vitales eafque elalticas ab aere haurire." See his Traffatus quinque Meclico-Phyfici, p. 12. and 106 . He knew alfo that this part of the air was neceffary to combution: "Et tamen cesto conitat, particulas nitru-aercas non minus quam fulpliureas ad ignem coniandum necefineas cire." Ilil. p. 26.
milly, before proceeding farther we hall attempt to explain it. When common falt is thrown into a veffel of pure water, it melts, and very foon fpreads itfelf thsulth the whole of the liquid, as any one may convince himelf by the talte. In this cafe the falt is combined with the water, and cannot atterwards be feparated by filtration or any other method merely mechanical. It may, howevêr, by a very fimple procef : Pour into the folution a quantity of fpirit of wine and the whole of the falt inttantly falls to the bottom.

Why did the falt diffolve in water, and why did it fall to the bottom on pouring in fpirit of wine? Thefe queftions were firft anfwered by Sir Ihaac Newton. There is a certain altraction between the particles of common falt and thofe of water, which caufes them to unite together whenever they are prefented to one another. There is an attraction alfo between the particles of water and of fpirit of wine, which equally difpofes them to unite, and this attraction is greater than that between the water and falt; the water therefore leaves the falt to unite with the fpirit of wine, and the falt, being now unfupported, falls to the ground by its gravity. This power, which difpofes the particles of different bodies to unite, was cailed by Newton attration, by Bergman, elefive attraEion, and by many of the Gernian and French chemilfs, affinity; and this laft term we fhall employ, becaufe the other two are rather general. All fubflances which are capable of combining together are faid to have an affuity for (c) each other : thofe fubfances, on the contrary, which do not unite, are faid to have no affinity for each other. Thus there is no affinity between water and oil. It appears from the inftance of the common falt and firit of wine, that fubftances differ in the degree of their affinity for other fubfances, fince the firit of wine difplaced the falt and united with the water. Spirit of wine therefore has a Atronger affinity for water than common falt has.

In 1719 Geoffroi invented a method of reprefenting the different degrees of affinities in tables, which he called tables of affinity. His method confifted in placing the fublances whofe affinities were to be afeertained at the top of a column, and the fubfances with which it united below it, each in the order of its affinity ; the fubfance which had the frongel affinity next it, and that which had the weakerf fartheft diftant, and fo of the 1 eft. According to this method, the affinity of water for fipit of wine and common falt would be marked as follows :

$$
\begin{aligned}
& \text { Water, } \\
& \begin{array}{l}
\text { Spirit of wine, } \\
\text { Common falt, }
\end{array}
\end{aligned}
$$ This method has been univerfally adopted, and has con14 tributed very much to the rapid progrefs of chemillty. Affinities of We fhall proceed therefore to give a table of the af. orygen. finities of oxygen.

Oxyern,
Carbon,
Zinc,
Iron,
Manganefe,
Hydrogen,
Azor,
Sulphur,
Phofphorus,
Cobalt,
Nickel,
Lead,
Tin,
Phofphorous acid,
Copper,
Bifmuth,
Antimony,
Mercury,
Silver,
Arfenic,
Sulphurous acid,
Oil,
Nitrous gas,
Gold,
White oryd of arfenic,
Muriatic acid,
Oxyd of tin,
White oxyd of lead!
Nitrous acid,
White oxyd of manganefe,
Water.

Oxygen
$\underbrace{\text { sulphus. }}$

The reafon of this order will appear when we treat of thefe various fubfances.

Chap. II. Of Simple Combustible Bodies.

By combuffibles, we mean fubtances capable of com- Five fimple bultion; and by fimple combuffibles, bodies of that na. combutiture which have not yet been decompounded.(2) Thefe bles. are only five in number, Sulphur, Phosphorus, Carbon, Hydrogen, and Azot. Were we to adhere flrictly to our definition indeed, we fhould add all the metals; for they are alfo combultible, and have not yet been decompounded: But lor the reafons formerly given, we thall venture to deviate a little from flrict logic, and confider them afterwards as a diftinet clafs of fublances.

Sect. I. Of Sulphur.

Sulphur, ditinguifhed alio in Englifh by the name of brimpone, was known in the earlieft ages. As it is found native in many parts of the world, it could not fail very foon to attract the attention of mankind. It was ufed by the ancients in medicine, and its fumes were employed in bleaching wool.*

Sulphur lib. Pliny,
Sulphur lib. xurv.
(c) We are not certain that the phrafe affinity for is warranted by clafical authority; we have ventured, however, to ufe it, becaufe, as the word affrity in this article fignafies a fpecies of attracton, we thought it would be more perficuons to put after it the prepolition for, which ufually folluws the word attralion, than to or with, which come after affinity when ufed in its ordinary acceptation.
(2) A more correct definition of combuftibles, according to our prefent knowledge relative to this clafs of bodies, would be, a fubftance which has a ftronger affinity for oxygen than light and caloric have. T. P. S.

Part I.

Sulphur is a hard brittle fubftance, commonly of a sellow colour, without any fmell, and of a weak though 16 perceptible talte.
Properties
of fulphur. It is a non-conductor of electricity, and of courfe becomes eleftric by friction.

If a confiderable piece of fulphur be expofed to a fudden though gentle heat, by holding it in the hand,

+ Fourcroy. for inftance, it breaks to pieces with a crackling noifet. Its fpecific gravity is 1,990 .
When heated to the temperature of 185° of Fahrenheit, it melts and becomes very lluid. If the temperature be flill farther increafed, the fluidity diminifnes; but when the fulphur is then carried from the fire and al. lowed to cool, it becomes as fluid as ever before it con\ddagger Dr Black. geals \ddagger.

When fulphur is heated to the temperature of 170°, it rifes up in the form of a fine powder, which may be 17 eafily collected in a proper velfel. This powder is callFlowers of ed fowers of fulphur. When fubftances ly off in this fulphur. manner on the application of a moderate leat, they are called vola ile; and the procefs itfelf, by which they are raifed, is called volatiitzation.

Sulphar undergoes no change by being allowed to remain expofed to the open air.

When thrown into water, it does not melt, as common falt does, but falls to the bottom, and remains there unchanged ; it is therefore infoluble in water. If, however, it be poured, while in a tate of fufion, into water, it affinmes a red colour, and retains fuch a degree of foftuefs, that it may be kneaded between the fingers; - Fourcroy. but it lofes this property in a few days**

There are a great many bodies which, after being diffolved in water or melted by heat, are capable of affuming certain regular figures. If a quantity of common falt, for infance, be diffolved in water, and that fluid, by the application of a moderate heat, be made to fly off in the form of feam; or, in other words, if the water be flowly evaporated, the falt will fall to the bottom of the veffel in cubes. Thefe regular figures are called cryfals. Now fulphur is capable of cryftallizings If it be melted, and as foon as its furface begins to congeal, the liquid fulphur beneath be poured out, the internal cavity will exhibit long needle-fhaped crytals of an octahedral figure. This method of cryftallizing fulphur
19 was contrived by Rouelle.
Converted
When fulphur is heared to the temperature of 302° by combut- in the open air, it takes fire fpontaneoufly, and burns tion into an with a pale blue flame, and at the fame time emits a acid. great quantity of fumes of a very frong fuffncating
facts, that it was in a very fhort time adopted with admiration by all the philofophic world, and contributed not a little to raife chemiftry to that rank among the fciences from which the ridiculous pretenfiuns of the early chemilts had excluded it.

According to Stabl, there is only one fubftance in 520 nature capable of combuftion, which therefore he called planation $P_{\text {hlogiston }}$ and all thofe bodies which can be fet of this on fire contain lefs or more of it. Combultion is merely the feparation of this fubflance. Thofe bodies which contain none of it are of courfe incombultible. All combuftibles, except thofe which confilt of pure phlogitton (if there be any fuch), are compofed of an incombuftible body and phlogifton united together. During combuftion the phlogiton flies off, and the incombuftible body remains behind. Now when fulphur is burnt, the fubftance which remains is fulphuric acid, an incombuntible body. Sulphur therefore is compofed of fulphuric acid and phlogitton.

To eftablifh this theory completely, it was neceffary
to fhew that fulphur could be actually made by combining fulphuric acid and phlogiton; and this alfo Stahl
undertook to perform. Sulplat of potafs is a fubitance ing fulphuric acid and phlogiton; and this alfo Stalhl
undertook to perform. Sulphat of potafs is a fubitance compofed of fulphuric acid and potafs (D), and charcoal
is a combuttible body, and therefore, according to the compofed of fulphuric acid and potafs (D), and charcoal
is a combuttible body, and therefore, according to the theory of Stahl, contains phlogiton: when burnt, it leaves a very inconfiderable refidunm, and confequently
contains hardly any thing elfe than phlogiton. He leaves a very inconfiderable refidumm, and confequently
contains hardly any thing elfe than phlogittn. He melted together in a crucible a mixture of pora/s and fulphat of potafs, Atirred into it one-fourth part by weight
of pounded charcoal, covered the crucible with another phat of potafs, Atirred into it one-fourth part by weight
of pounded charcoal, covered the crucible with another inverted over it, and applied a flrong heat to it. He then allowed it to cool, and examined its contents. The
charcoal had difappeared, and there only remained in then allowed it to cool, and examined its contents. The
charcoal had difappeared, and there only remained in the crucible a mixture of potafs and fulphur combined together, and of a darker colour than ufual, from the refidum of the charcoal. Now there were only three refiduum of the charcoal. Now there were only three
fubftances in the crucible at firt, potafs, fulphuric acid, and charcoal: two of thefe have difappeared, and fulplour has been found in their place. Sulphur then mutt have been formed by the combination of thefe two. But charcoal confifts of phlogifton and a very fmall refiduum, which is fill found in the crucible. The fulphur then muft have been formed by the combination of fulphuric acid and phlogifton. This fimple and lu-
minous explanation appeared fo fatisfactory, that the of fulphuric acid and phlogifton. This fimple and lu-
minous explanation appeared fo fatisfactory; that the compofition of fulphur was long confidered as one of the beft demonfrated truths in chemiftry.
There are two facts, however, which Siahl either did Unfat ${ }^{2}$ not know or did not fufficiently attend to, neither of tory. which were accounted for by his theory. The firft is, that folphur will not burn if air be completely excluded; the fecond, that fulphuric acid is heavier than the fulphur from which it was produced.

To account for thefe, or facts fimilar to thefe, focceeding chemifts refined upon the theory of Stahl, deprived his phlogitton of gravily, and even alligned it a principle of levity. Still, however, the necelfity of the contact of air remained unexplained. At laft Mr Lavoifier, who had already diftinguithed himielf by the extenfivenefs of his views, the accuracy of his experiments,
\qquad

5正 $-$

\qquad I

M m
and -
 odour. When leated to the temperature of 570°, or a little higher, it burns with a bright white flame, and at the fame time emits a valt quantity of fumes. If the heat be continued long enougb, the filphur burns all away without leaving any athes or refuluum. If the fumes be collected, they are found to confilt entirely of fulpburic acid. By combulition, then, fulphur is converted into an acid. This fuct was known feveral centuries ago, but no intelligible explanation was given of it till the time of Stahl. That chemilt undertook the tafk; and founded on his experiments a theory fo eaceedingly ingenious, and fupported by fuch a vaft number of Suppl. Vol. I.
(D) The nature of potafs thall afterwards be explained. It is the pota乃 well known in commerce in a fate of purity.
and the precifion of his reafoning, undertook the examination of this fubjent, and his experiments were publifhed in the Memoirs of the Academy of Sciences for 1777. He put a quantity of fulphur into a large glafs velfel filled with air, which he inverted into another veffel containing mercury, and then fet fire to the fulphur by means of a burning glafs. It emitted a blue flame, and gave out thick vapours, but was very foon extiaguifhed, and could not be again kindled. There was, however, a litule fulphuric acid formed, which was a good deal heavier than the fulphur which had difappeared; there was alfo a diminution in the air of the veffel proportional to this increate of weight. The filphur, therefore, during its converfion into an acid, muft have abforbed part of the air. He then put a quantity of fulphuret of iron, which confifts of fulphur and iron combined together, into a glafs veffel full of air, which he inverted over water (E). The quantity of air in the veffel continued diminifhing for eighteen days, as was evident from the afcent of the water to occupy the fpace which it had left; but after that period no farther diminution took place. On examining the fulphuret, it was found fomewhat heavier than when firlt introduced into the veliel, and the air of the veffel wanted precifely the fame weight. Now this air had loft all its oxygen; all the oxygen of the air in the veffel muft therefore have entered into the fulphuret. Part of the fulphur was converted into fulphuric acid; and as all the reft of the fulphuret was unchanged, the whole of the increafe of weight mult have been owing to fomething which lad entered into that part of the fulphur which was converted into acid. This fomething we know was oxygen. Sulphaic acid therefore mult be compofcd of fulphur and osygen; for as the original weight of the whole contents of the veifel remained exactly the fame, there was not the fmallelt reafon to fuppofe that any fubitance had left the fulphur.

It is impolible, then, that fulphur can be compofed of fulphunic acid and phlogifon, as Stahl fuppofed; fince fulphur itfelf enters as a part into the conipofition of that acid. There muit therefore have been fome want of accuracy in the experiment by which Stahl froved the compofition of fulphur, or at leaft fome fallacy in his reafonings; for it is impoflible that two contradictory facts can both be true. Upon examining the potafs and fulphur produced by Stahl's experiment, we find them to be confiderably lighter than the charcoal, fulphuic acid, and potafs originally employed. Something therefore lias made its efcape during the application of the heat. And if the experiment be conducted in a clofe vellel, with a pnemmatic apparatus attached to it, a quamtity of gas will be ub:aned exactly equal to the weight which the fublances operated on have Ioll ; and this weight confiderably exceeds that of all the cha:coal emplojed. This gas is carbonic acid gas, which is compofed of charcoal and oxygen, as will afterwards appear. We now perceive what palfes in this c. periment: Charcoil has a ftronger affinity for oxygen at a high temperature than fulphur has. When charcoal therefore is pretented to fulphuric acid in that temperature, the oxygen of the acid combines with it,
they fly off in the form of carbonic acid gas, and the Sulphur fulphur is left behind.

The combuftion of fulphur, then, is nothing elfe than the act of its combination with oxygen; and, for any thing which we know to the contrary, it is a fimple fubltance.

23
The affinities of fulphur, according to Bergman, are Affinities of as follows:
$\underbrace{\text { Phorphorus }}$
Lead,
Tin,
Silver,
Mercury,
Arfenic,
Antimony,
Iron,
Fixed alkalies,
Ammonia,
Barytes,
Lime,
Magnefia,
Phofphorus?
Oils,
Ether,
Alcohol.

Sect. II. Of Phofphorus.
Let a quantity of bones be burnt, or, as it is term. Production ed in chemitry, calcined, till they ceafe to fmoke, or of phofphoto give out any odour, and let them afterwards be re. rus. duced to a fine powder. Put this powder into a glafs veffel, and pour fulpharic acid on it by little at a time, till farther additions do not caufe any extrication of air bubbles (F). Dilute the mixture with a good deal of water, agitate it well, and keep it hot for fome hours; then palis it through a filtre. Evaporate the liquid flowly till a quantity of white powder falls to the bottom. This powder mult be feparated by filtration, and thrown away. The evaporation is then to be refumed; and whenever any white powder appears, the filtration mult be repeated in order to feparate it. During the whole procefs, what remains on the filtre mult be waflued with pure water, and this water added to the liquor. The evaporation is to be continued till all the moifture difappears, and nothing but a dry mafs remains. Put this mafs into a crucible, and keep it melted in the fire till it ceafes to exhale fulphureous odours; then pour it uut. When cold it aflumes the appearance of a brittle glafs. Pound this glafs in a mortar, and mix it with one-third by weight of charcoal dult. Put this mixture into an earthen ware retort, and apply a receiver containing a little water. Put the retoit into a fand bath, and increafe the fire till it becomes red hot. A fubltance then palfes into the receiver, which has the appearance of melted wax, and which congeals as it falls into the water of the receiver. This fubtance is phorphorus.

It was difcovered by Brandt, a chemift of Hamburgh, Its difionabout the year 1667 , while he was enmployed in attempt- very. ing to extract from human urine, a liquid capable of converting filver into gold.*

Kunkel, another German chemilt, hearing of the dif- Melanter de covery, was anxious to find out the procefs, and for Berlizo.
(E) This experiment was firft made by Scheele, but with a different view.
(i) The copious miflion of air bubbles is calied in chemiftry effervefonce.

Part I.

C H E M I S T R Y.

Phofphorus that purpofe affociated himfelf with a friend of his naned Kraft. But the latter procured the fecret from the difcoverer ; and expecting by means of it to acquire a fortune, refufed to give any information to his affociate. Vexed at this treachery, Kunkel refolved to attempt the difouvery himfelf; and though he knew only that phofphorus was obtained from urine, profecuted the inquiry with fo much zeal, that he fucceeded, and has been defervedly confidered as one of the difco-
f Stabl's
Three Hun- Foyle likewife difcovered phofphorus. Leibnitz inc'red Experi- deed affirms that Kraft taught Boyle the whole proments. cefs, and Iraft declared the fitmething to Stahl. But furely the affertion of a dealer in fecrets, and one who had deceived his own friend, on which the whole of this ftory is founded, cannnt be put in competition with the affirmation of a man like Boyle, who was one of the honetieft men, as well as greatelt phildophers, of his age; and he pofitively affures us that he made the difcovery, whthout being previoufly acquainted with the

\& Boyle A - procefs \ddagger.

bridged by Gabn, a Swedifh chemit, difcovered, in 1769 , that Sbure', iii.
174.
|| Bergman' phofphorus was contained in bones\|, and Scheele (G) very foon after invented a procefs for obtaining it from them. Phofphorus is now generally procured in that manner. The procefs defcribed in the beginning of this fection is that of the Dijon academicians : it differs from that of Scheele only in a fingle particular.
Its proper- Phofphorus, when pure, is of a clear, tranfparent, ties. yellowith colour; but when kept fome time in water, it becomes opaque, and then lias a great refemblance to white wax. Its confiftence is nearly that of wax : it may be cut with a knife, or twilted to pieces with the fingers. It is infoluble in water. Its fpecific gravity is $1,714$.

It meles at the temperature of 99°, and even at $67^{\circ *}$

- Pelletier, Fournal de Pby/fque, xxxv. 380. that is to fay, it fuffers a llow combuftion: fo that it can only be prevented from taking fire by keeping it in a very low temperature, or by allowing it to remain al. ways plunged in water. If air be excluded, it evapo. + Ibid. 381 . rates at 219°, and boils at $554^{\circ}+$. When heated to $27122^{\circ}(\mathrm{H})$, it burns with a very bright flame, and gives has fome refemblance to that of garlic. It leaves no refiduum ; but when the white fmoke is collected, it is found to be an acid. Stahl confidered this acid as the muriatic (I). According to him, phofphorus was compoled of muriatic acid and phlogifton, and the combuftion of it was merely the feparation of phlogitton. He cven declared, that to make phofphorus, nothing more was necelfiry, than to combine muriatic acid and phlogifton ; and that this compofition was as eafily accom-
\ddagger Tbree Hume plilied as that of fulphur itfelff. dred Experiments.

Thefe affettions gained implicit credit; and the cem. lhofphorus polition and nature of phofphorus were confidered as completely underltood, till Margraf of Berlin publified his experiments in the ycar 1743 . That great man, one of thofe illultrions philofophers who have contributed fo muclu to the rapid increafe of the fcience, dillinguithed cqually for the ingenuity of his experiments and the clearnefs of his reafoning, attempted to produce phofphorus by combining together phlogiton and muriatic acid; but though he varicd his pincefs a thoo:fand ways, prefented the acid in many different flates, and emplojed a variety of fubltances to furnifh plilogifton, all his attempts failed, and he kas obliged to give up the combination as impracticable. On examining Into phofthe acid produced during the combuftion of phofpho phoric acid, rus, he found that its properties were very different fiom thofe of muriatic acid. It was therefore a diftinct fubftance. The name of phofphoric acill was given to it ; and it was concluded that phofphorus wias compofed of this acid united to phlogifton.

But it was obferved in 1772 by Mnrveau*, that - Iigrefs. phofphoric acid was heavier than the phofphorus from Acalimm which it was produced (K); and Boyle had long before p. 253° Thewn that phofphorus would not burn except when in contact with air. Thefe facts were fufficient to prove the inaccuracy of the theory concerning the compofition of phofphorus; but they remained themfelves unaccounted for, till Lavoilier publuhed thofe celebrated experiments, which threw fo much light on the nature and compofition of acids.

He exhaulted a glafs globe of air by means of an air pump ; and after weighing it accurately, he filled it with oxsgen gas, and introduced into it 100 grains of phofphorus. The globe was furnifhed with a ftopcock, by which oxygen gas could be admitted at p!ea. fure. He fet fire to the phofphoms by means of a burning glafs. The combuftion was extremely rapid, accompanied by a hright flame and much heat. Large quantities of white flakes attiched themfelves to the inner furface of the globe, and rendered it opaque; and thefe at laft became fo abundant, that notwithftanding the conitant fupply of oxygen gas, the phofphorus was extinguifhed. The globe, after being allowed to cool, was again weighed before it was opened. The quantity of oxygen employed during the experiment was afcertained, and the phofphorus, which fill remained unchanged, accurately weighed. The white flakes, which were nothing elfe than pure phofphoric acid, were found exactly equal to the weights of the phofphorus and oxygen which had difappeared during the procefs. Phofphoric acid thercfore mult lave been formed by the combination of thefe two bodies; for the abfolute weight of all the fubitances together was the fame be fore and after the procefs*. It is impolible then that phofphorus can be compofed of photphoric acid and $\mathrm{M} \mathrm{m}_{2}$ phlogifton,

29
Which is phofphorus combined with oxygen. * Lavoificr's Chemiflry Part 1.
(G) Crell, in his life of Scheele, informs us, that Scheele was himfelf the difoverer of the fact. This, he fays, clcarly a ppears from a printed letter of Scheele to Gahn, who was before looked upon as the difcoverer. See Crell's Annals, Englifh 'Tranf. I. 17.
(н) Morveau, Enc. Nethod. Chimie, art. Afinilé-According to Nicholfon at 160°. Sce his Tranhation of Clontal.
(1) This acid flall be afterwards defcribed.
(κ) The famc obfervation had been made by Margraf, but no attention was paid to it.

Phofphorus phlogiton, as phofphorus itfelf enters into the compo. Carbon.

30 light.
Phofphorus Phofphorus combines readily with fulphur, as Marcombines with fulphur. fition of that acid(L).

Thus the combuftion of phofphorus like that of fulphur, is nothing elfe than its combination with oxygen: for during the procefs no new fubltance appears except the acid, accompanied indeed with much heat and graf difcovered during his experiments on phofphorus. This combination was afterwards examined by Mr Pelletier. The two fubftances are capable of being mixed

+ Pelletier,
Fourn. de Pbyf. xxxv. 382. in different proportions. Seventy-two grains of phofphorus and nine of fulphur, when heated in about four ounces of water, melt with a gentle heat. The compound remains fluid till it be cooled down to 77°, and then becomes folid. Thefe fubftances were combined in the fame manner in the following proportions:
\(\left.\begin{array}{lll}72 \& Phofphor.

18 \& Sulphur

72 \& Phofphor.

36 \& Sulphur

72 \& Phofphor.

72 \& Sulphur

72 \& Phofphor.

216 \& Sulphur at\end{array}\right\}\)| | 59° | |
| :--- | :--- | :--- |
| | at | 50° |
| | at | 41° |
| | at | 99° |

Phofphorus and fulphur may be combined alfo by melting them together without any water ; but the combination takes place fo rapidly that they are apt to ruth out of the veffel if the heat be not exceedingly moderate. \dagger

Plofphorus is capable of combining allo with many other bodies : the compounds produccd are called phofphurets.

The affinities of phofphorus have not yet been afcertained.

Sect. III. Of Carbon.

If a piece of wood be put into a crucible, well covered with fand, and kept red hot for fome time, it is converted into a black fhining brittle fubltance, without either tafte or fmell, well known under the name of charcoal. This fubltance contains always mixed with it feveral earthy and faline particles. When freed from thefe impurities it is called carbon.
Properties of carbon.

Charcoal is infoluble in water ; it is not affected (provided that all air be excluded) by the moft violent heat which can be applied, excepting only that it is rendered much larder.

New made charcoal abforbs moitture with avidity. When heated to a certain temperature, it abforbs air copioufly. La Metherie plunged a piece of burning charcoal into mercury, in order to extinguifh it, and introduced it immediately after into a glafs veffel filled with common air. The charcoal abforbed fot.r times
its bulk of air. On plunging the charcoal in water, one-fifth of this air was difengaged. This air, on being examined, was found to contain a much fmaller quantity of oxygen than atmofpherical air does. He extinguithed another piece of charcoal in the fame manner, and then introduced it into a veffel filled with oxygen gas. The quantity of oxygen gas abforbed amounted to eight times the buik of the charcoal; a fourth part of it was difengaged on plunging the charcoal into water*. It appears from the experiments of Sennebier, * 7ourn. de that charcoal, when expofed to the atmofphere abforbs Pby. xux. oxygen gas in preference to $a z o t \dagger$, as the other portion 309 of common air is called.

When heated to the temperature of $370^{\circ} \ddagger$, it takes fire, and provided it has been previoufly freed from the earths and falts which it generally contains, it burns without leaving any refiduum. If this combuftion be performed in clofe veffels filled with oxygen gas inftead of common air, part of the charcoal and oxygen difappear, and in their room is found a particular gas exactly equal to them in weight. This gas has the properties cid. of an acid, and is therefore called carbonic acid gas. Mr Lavoifier, to whom we are indebted for this difcovery, afcertained, by a number of very accurate experiments, that this gas was compofed of about 28 parts of carbon and 72 of oxygenll.
 it is called diamond. The figure of the diamond varies p. 448. confiderably; but moft commonly it is a hexagonal prifm terminated by a fix-fided pyramid. When pure it is colourlefs and tranfparent. Its fpecific gravity is from of cryftalli3,44 to 3,55 . It is one of the hardelt fubftances in nature; and as it is not affected by a confiderable heat, it was for many ages confidered as incombultible. Sir Iface Newton, obferving that combuttibles refracted light more powerfully than other bodies, and that the diamond poffelfed this property in great perfection, fufpected, from that circumftance, that it was capable of combution. (3) This fingular conjocture was verified in 1694 by the Florentine academicians, in the prefence of Colmo III. grand duke of Tufcany. By means of a burning-glafs, they dettroyed feveral diamonds. Francis I. emperor of Germany, afterwards witneffed the defiruction of feveral more in the heat of a furnace. Thefe experiments were repeated by Rouelle, Macquer, and D'Arcet, who proved that the diamond was not merely evaporated, but actually burnt, and that if air was excluded it underwent no change.

No attempt, however, was made to afcertain the produet, till Lavoifier undertook a feries of experiments for that purpore in 1772 . He obtained carbonic acid gas. It might be concluded from thefe experiments, that the diamond contains carbon; but it was referved for Mr Tennant to fhow that it confifted entirely of that fub. ftance.

Into
(L) The quantity of phofphorus confumed was 45 grains The quantity of oxygen gas

Weight of the Phofphoric acid produced 114,375
Phofphoric acid therefore is compofed of 100 parts phofphorus, and 154 oxygen.
(3) It were to be wifhed that fome perfon provided with the proper apparatus would experiment on the refradive power of the gafes, and afcertain if, according to Newton's theory, it bears any relation to their affinity for oxygen.
T. P. S.

Hydrogen.

 36 quantity of frelh iron filings, quite free from rult. Lute Merhod of into one of thefe mouths the end of a crooked glafs procuring tube. Infert the other end of this tube below a glafs hydrugen. jar filled with water, and inverted into a pneumatic apparatus. Then pour upon the iron filings a quantity of fulphuric acid, diluted with twice its own weight of water, and clofe up the mouth of the veffel. Immediately the iron filings and acid effervefee with violence, a valt quantity of gas is produced, which ruthes through the tube and fills the jar. This gas is called bydrogen gas.(N)It was obtained by Dr. Nayow and by Dr H ties from various fubftances, and had been known long before in mines under the name of the fire damp. Mr Cavendifl * was the firft who examined its properties with * Pbit. attention. They were afterwards more fully inveftiga. Tran. 1766 . ted by Prieftley, Scheele, and Fontana.

Hydrogen, like air, is invifible and elaftic, and ca- Its properpable of indefinite compreffion and dilatation. ties.

Its fpecific gravity differs according to its purity. Kirwan found it o,00010†; Lavoifier 0,000094 \ddagger, or $+0 n P b l o-$ about 12 times lighter than common air.

All burning fubftances are immediately extinguifhed ${ }^{\text {Ift }}$ by being plunged into this gas. It is incapable therefore of fupporting combuftion.

Animals, when they are obliged to breathe it, die almoft inftantaneoufly. Scheele indeed found that he could breathe it for fome time without inconvenience \ddagger; \ddagger Scbecte on but Fontana, who repeated the experiment, difcovered Fire. that this was owing to the quantity of common air contained in the lungs when he began to breathe; for on expiring as ftrongly as poffible before drawing in the hydrogen gas, he could only make three refpirations, and even thefe three produced extreme feeblenefs and oppreftion about the breaft \S.
If a phial be filled with hydrogen gas, and a lighted Pby. xv. candle be brought to its mouth, the gas will take file, 99and burn gradually till it is all confumed. If hydrogen and oxygen gas be mixed together and kindled, they burn initantaneonfly, and produce an explofion like gunpowder. The fame effect follows when a mixture of hydrogen gas and atmofpherical air is kindled, but the explotion is lefs violent. Hydrogen gas will not burn except in contact with oxygen gas, nor will it burn cven in contact with oxygen gas, unlefs a red heat be applied to it. If 85 parts by weight of oxygen gas, and 15 of hydrogen gas, be mixed together, and fet on fire in a clofe veffel, they difappear, and in their place there is found a quantity of water exactly equal to them in weight. This water mult be com- Compofiripofed of thefe two gafes; for it did not previonfly on of waexift in the veffil, and no other fubftance except the ter. gafes was introduced. Water then is compofed of oxygen and hydrogen; and the combultion of hydro-
(m) Nitre is compofed of potafs and nitric acid; and nitric acid contains a great quantity of oxygen, which is eafily feparated by heat. Diamond, when mixed with nitre, burns at a much lower heat chan by any other procefs.
(N) It was formerly called inflammable air, and by fome chemilts phlogifono
 gen is nothing elfe but the act of its combination with
oxygen (o).

It had been fuppnfed, in confequence of the experiment of 1)r Priefley and feveral other philofophers, that when hydrogen gas was allowed to remain in contact with water, it was gradually decompned, and con-

* Encycl. Metbod.
Cbim. i. 75 \dagger Ann. de Cb:ms. i. 192 Four. de Pky. xxxvi. 4 Y 2.

39
Compounds of hydrogen gas.

40
Sulphurated hyirogen gas.

* Kiruan
on Pblacrija fect. Int. vertel into another gas; but Mr de Murveau,* Mr Haldenfratz, \dagger and Mi Libes, \ddagger have thewn, that it undergoes no ch:ange, provided rufficient care be taken to exclude every other $\mathrm{g}^{4 s}$.
Hydromen gas diffives fulphur, phrf forus, and carbon. The compounds are calied fulpourated, fobjphorated, and carbonated bydrogen gas.

1. Sulphurated hydrogen gas was firf examined with attention by Scheele, whe, together with Bergman, difcovered many of its properties. Mr Kirwan likewife publithed a very valuable paper on the fame fubject. If equal parts (ffulphur and potafs be melted together in a covered crucible, they combine together, and form a compound known oy the name of fulphuret of pota/s, but formesly called, from its red colour, bepar fulphuris, or liver of fugbur. When this fubftance is moiltened with water, it gives out a quantity of fulphurated hy drogen gas; hence this gas was at fird called bepatic gas.

Mr Gengembre enclofed a bit of iulphur in a glafs veffel filled with hydrogen gas, and melted the fulphur by means of a burning glajs. A quantity of it difap. peared, and the hydrogen allumed all the properties of befatic gas. Hence it follows that this gas is merely fulpher diffolved in hydrogen gas.

The eafient method of obtaining it is to pour an acid, the muriatic for in!tance, on a quantity of the lillphuret reduced to powder. An efferveicence takes place, the gas is extricated, and may be collected by means of a pneumatic apparatus. The theory of this emillion is obvious. The fulphur is gradually converted into fulphuric acid, by decompoling the water, which is always united with acids, and leizing its oxygen: the bydrogen of the water is thus fet at liberty ; it affumes the gafoous form, and at the fame time diffolves part of the remaining fulphur, for which it has a conliderable affinity.

The fpecific gravity of fulphurated hydrogen gas is
fet on fire, in contar with cxjgen gas, it burns with a light blue fame, without explocing, and at the fame time a quantity of fulphur is depolited. The enmbuftion of this gas, then, is melely the union of its hydrogen, and perhaps part of its fulphur, with oxygen.

This gas turns fyrup of viclets to a green colour.* It dres not feem capable of exiting in atmofpherical air withont decompolition ; for the moment it comes into contad with oxygen gas, fulphur is depneted.t
2. Phofphorated hydrogen gas was difoovered by Mr Gengembre in 1783 , and by Mr. Kirwan fome time after, before he became acq̧uainted with the experiments of that gentieman. It may be procured by mixing phofphorns with potafs diffolved in water, and applying a boiling heat to the folution. The phofphorus is gradually converted into an acid by decompofing the water, and uniting with its oxygen. The hydrogen affumes the form of a gas, and flies off after diffulving a little of the phofphorlas. 'This gas may be collected by means of a pneumatic apparatus.

I'holphorated hydrogen gas has a fmell refembling that of putrid fifh. When mixed with oxygen gas or common air, it becomes luminous; and on the applica. tion of the fmalleft heat, it burns with aftonithing rapidity. \ddagger The products are water and phofphoric acid. I Kirwan. The combuftion of this gas therefore is nothing elfe than the union of its phofphorus and hydrogen with oxygen, attended by an emifion of heat and light.

Phofphorated hydrogen gas may alfo be formed by introducing a bit of phofphorus into a jar containing hydrogen gas; but care mult be taken to make this gas as dry as poffible; for its affinity with phofphorus is weakened in proportion to its moifture.\|
3. Carbonated hydrogen gas arifes fpontanecully in li, Nichothot weather from marfhes, but always mixed with feve. fon's Fourral other gafes. Several fpecies of it have been lately ${ }^{\text {nal, } 1.445 \text {. }}$ difcovered by the affociated Dutch chemilts Bondt, Dieman, Van Trooltwyck, and Lauwerenbers § When § Ann. de 75 parts of fulphuric acid and 25 of fpirit of wine are Chim. xxis mixed together, a gas is extricated which fuffers no al. 48. teration from flanding over water. Its foecific gravity is $0,0011 \mathrm{t}$, or it is to common air as 909 to 1000. It Carbonated has it fetid odour, and burns with a itrong compact hydrogen flame. When paffed through fulphur it is converted in- gas. to fulphurated hydrogen gas, and at the fame time a quantity of carbon is depolited in the form of a fine powder ; it mult therefore be compofed of carbon and hydrogen gas. When burnt, the product is carbonic
(o) The hiftery of this great difcovery, and the objections which have been made to it, we referve for the chapter which treats of Water, where they will be better underfood than they could be at prefent. This fubftance was called bjdrogen by the French chemifts, becaufe it enters into the compofition of water, from vowp water, and givo μ at I amborn. Objections have been made to the propriety of the name, into which we fhall not enter. It ought never to be forgotten, that Newton had long before, with a fagacity almoll greater than human, conjectured, from its great refrasting power, that water contuined a combufitule fubfonce. (4)
(+) That Newton a-priori from its reftactive power thould have determined the diamond to be a combuftible fubftance may refleet the highelt credit on his genius. His determination of water containing an iatlammable fubftance can however be confidered but as a lucky bit. He afcribed this inflammable principle to it on account of its great refractive power in proportion to its ipecific gravity, the fine of the angle of incidence being to the fine of the angle of refraction in rock cryftal 1.5620 to I . and its gravity being 2.650 whereas in rain water whofe fpecific gravity is but 1 . they bear the propotion of 1.3358 to 1 . Had Newton applied this method of determining whether a fubftance contained an inflummable frincip'e to other combinations of oxyscn he would have fallen into grofs errors, in fulpburic acid, for inftance, whofe fpecilic gravity is 2.125 the fine of the angle of incidence is to that of refraction but as 1.4285 to 1 . Hence he would have concluded that it contains no inflammable fubftance.
T. P. S.

Mydrogen. acid gas and water.* By making ether (P) pafs thro' a red hot glat's tube, another carbonated hydrogen gas was formed, the fircific gravity of which was 0,00086 . Spirit of wine, paffed in the fame manner, afforded a gas, the fpecific gravity of which was 0,00053 , and which burned with a paler flame than the other two. Thefe gafes were found to contain from 80 to 74 . parts of carbon, and from 20 to 26 of hydrogen. 'The firft fpecies was found to contain moft carbon, and the lalt to contain leaft \dagger.

The affinity of hydrogen gas for thefe three combuf. tibles is as follows:

> Sulphur,
> Carbon,
> Phofphorus ($)$.

Dr Auftin found, that by repeatedly pafling electric explofions through a fmall quantity of carbonated hydrogen gas, it was permancolly dilated to more than twice its original bulk. He rightly concluded, that this remarkable expanfion could only be owing to the

44
Attempt to decompore carbon evolution of hydrogen gas. On burning air thus expanded, he found that it required a greater quantity of oxygen than the fame quantity of gas not dilated by electricity: An addition therefore had been made to the combultible matter; for the quantity of oxygen neceffary to complete the combuftion of any body, is always proportional to the quantity of that body. He concluded from thefe experiments, that he had decompofed the carbon which had been diffolved in the bydrogen gas; and that carbon was compofed of hydrogen and azot (R), fome of which was always found in the veffel after the dilated gas had been burnt by means of oxygen \ddagger. If this conclufion be fairly drawn, we muft expunge carbon from the lift of fimple fubftances, and henceforth confider it as a compound.

There was one circumftance which ought to have prevented Dr Auftis from drawing this conclufion, at lealt till warranted by more decilive experiments. The quantity of combuftible matter had been increafed. Now, if the expanfion of the catbonated bydrogen gas was owing merely to the decompofition of carbon, no fuch increafe ought to have taken place, but rather the contrars; for the carbon, which was itfelf a combultible fubftance, was refolved into two ingredients, liydrogen and azot, only the firtt of which burnt on the addition
of oxygen and the application of heat. Dr Auftin's experiments have bcen lately repeated by Mr Wi!liam *Pbi\%. Henry with a great deal of accuracy. He found, Tran. 1797 that the dilatation which Dr Aultin defcribes actually part 2 C . took place, but that it could not be carried beyond a certain degree, a little more than twice the original bulk of the gas. Upon burning feparately by means of oxygen, two equal portions of carbonated hydrogen gas, one of which had been expanded by electricity to double its original bulk, the other not, he found that each of them produced precifely the fame quantity of carbonic acid gras. Both therefore contained the fame quantity of carbon; confequently no carbon had been decompounded by the electric Thocks.

Mr Henry then fufpected that the dilatation was ow. And fourd ing to the water which every gas contains in a larger unfuctefo or fmaller quantity. To afcertain this, he cndcavoured ful. to deprive the carbonated hydrogen gas of as much water as pollible, by making it pals over very dry potaf, which attracts water with avidity. Gas treated in this manner could only be expanded one-fixth of its bulk; but on admitting a drop or two of water, the expanfion went on as ufual. The fubftance decompounded by the electricity, then, was not the carbon, but the water in the carbonated liydrogen gas. Nor is it difficult to fee in what manner this decompefition is effected. Catbon at a high temperature has a greater afinity for oxygen than hydrogen bas; for if the fteam of water bo made to pafs over red hot charcoal, it is docompofed, and carbonic acid and hydrogen gas are formed. The electric explofion fupplies the proper temperature; the carbon unites with the oxygen of the water, and forms carbonic acid; and the hydrogen, thus fet at liberty, occafions the dilation. Carbonic acid gas is abforbed with avidity by water: and when water was admitted into 709 meafures of gas thus dilated, 100 meafures were abforbed; a proof that carbonic acid gas was aftually prefent. As to the azot which Dr Aultin found in his dilated gas, it evidently proceeded fiom the admiffion of fome atmofpheric air, about 73 parts of which in the 100 confift of this gas: for Dr Auftin's gas had Itood long over water ; and Drs Priefley and Higgins have thewn that air in fuch a tituation always bccomes im. pregnated with azot. (5.)

The
(p) Ether is a very volatile and fragrant liquid, obtained by mixing fpirit of wine and acids, and diftlling. It Thall be afterwards defcribed.
(e) Sulphur decompofes carbonated hydrogen gas; therefore its affinity is greater than that of carbon. The Dutch chemifts melted phofphorus in carhonated hydrogen gas, but no change was produced; therefore the affinity of phofphorus is inferior to that of carbon.
(R) See next Section.--His theory was, that carbonated hydrogen gas was compofed of hydrogen, and azot, and carbon of azot, and carbonated hydronen gas, which comes nearly to the fame thing with regard to the elements of carbon. It is fingular enourh, that though Dr Auftin would not allow the prefence of carbon in car bonated hydrogen gas, he actually decompofed it by melting fulphur in it : the fulphor cembined with the hy. drogen gas, and a quantity of carbon was precip:tated. This experiment be relates without making any remarks upon it, and feems indeed not to liave paid any attention to it.
(5) The decompofition of the water held in folution by the carbonated bydrogen gas by means of the carbon uniting to the oxygen, and forming carbonic acid gas while the hydrogen is fet at liberty, perfectly accounts for its increafed bulk. But I think it by no means acenunts for the increaled confingtion of oxygen on fring it. It: is true that there is an addition to the hydrogen in the refervoir; but then we nuft secollect all the oxygen with which it was united, is now in union with the carbon; that therefore this carbon on the combufion takieg place will combine with jutt fo much the lets of the oxygen added, and the additional bydogen will require no more oxygen to reconvert it into water than it parted with to the carbon. I cannot fee then with what this extra quantity is to unite. Is it not pofible Dr Auftin may have been deccived in an experiment which requires fomuch accuracy?
'E. I. S.

Azot. 47 Affinities of hydrogen.

48 Method of procuring azut. Difcuvery of azot.

The affinities of hydrogen have not yet been afcertained, but perhaps they ate as follows:

Oxygen,
Carbon,
Azot,
Sect. V. Of Azot.
If a quantity of iron filings and fulphur, mixed roge. ther and moiftened with water, be put into a glafs veffel full of air, it will aoforb all the oxygen in the courfe of a few days; but a confiderable refiduum of air ftill remains incapable of any farther diminution. This refiduum has obtained the appellation of azotic gas.

It was difcovered in 1772 by Dr Rutherford, now profeffor of botany in the univerfity of Ediaburgh (s). Scliecle procured it by the above procefs as early as 1776 , and proved that it was a diftinct fluid. Mr La. voifier afterwards proved the fame thing, without any previous knowledge of Scheele's difcoveries.

The air of the atmofphere contains about, 73 parts of azotic gas; almoll all the reft is oxygen gas. 'I'ise eadicft method of procuring azotic gas is to put fome fulphuret of potafs into a glafs veffel filled with air, and accurately clofed, and then to apply heat to the fulphuret. All the oxygen is abforbed almolt inftantly.

This method was firlt pointed out by Morveau.*

Mr Kirwan examined the fpecific gravity of azotic gas obtained by Scheele's procefs; it was 0,00120: it is therefore fomewhat lighter than the atmofpheric air, it is to atmofpheric air as 985 to $1000 \|$.

It tinges delicate blue colours flightly with green \ddagger. It is exceedingly noxious to animals; if they are obliged to refpire it, they drop down dead almolt inftant. ly (τ). No combultible will burn in it. This is the reafon that a candle is extinguifhed in atmofpherical air as foon as the oxygen near it is confumed. Mr Goettling, indeed, publifhed, in 1794, that phofphorus fhone, and was converted into phopphoric acid, in pure azoric gas. Were this the cafe, it would not be true that no combultible burns in this gas; for the converfion of phofphorus into an acid, and even its fhining, is an actual though flow combultion. Mr Goettling's experiments were foon after repeated by Drs Scherer and Jaeger, who found, that phofphorus does not fhine in azotic gas when it is perfectly pure; and that therefore the gas on which Mr Goetting's experiments were made had contained a mixture of oxygen gas, owing
principally to its having been only confined by water. Thefe refults were afterwards confirmed by Profeffor Lampadius and Profeffor Hildebrandt. It is therefore proved beyond a doubt, that phofphorus does not burn in azotic gas, and that whenever it appears to do fo, there is always fome oxygen gas prefent \dagger.

Azotic gas is capable of difiolving phofphorus, as has been proved by the experiments of Fourcioy and 8. Vauquelin.

It diffolves alfo a little carbon; for azotic gas ob. tained from animal fubitances, which contain a great deal of azot, when confined long in jars, depolits on the fides of them a black matter which has the properties of carbon $\|$.

II Fourcroy's,
Thefe two folutions the properties of which have not $A_{n n}$. d e yet been accurately examined, are called phofphorated Cbim. i. 45 . and carbonated azotic gas.

Azotic gas is capable of combuftion. Take a glafs Production tube, the diameter of which is about the fixth part of of nitric an inch; fhut one of its ends with a cork, through the ${ }^{\text {acid. }}$ middle of which paffes a fmall wire with a ball of metal at each end. Fill the tube with mercury, and then plunge its open end into a bafon of that fluid. Throw up into the tube as much of a mixture, compofed of 13 parts of azotic and 87 parts of oxygen gas, as will fill 3 inches. Through this gas make, by means of the wire in the cork, a number of eleftric explofions pafs. The volame of gas gradually diminifhes, and in its place there is found a quantity of mitrous acid. This acid, therefore, is compofed of azot and oxygen: and thefe two fubftances are capable of combining or, which is the fame thing, azotic gas is capable of combultion in the temperature produced by elearicity, which we know to be pretty high. The combultibility of azotic gas, and the nature of the product, was firit difcovered by Mr Cavendilh, and communicated to the Royal Society on the 2 d of June 1785 (u).

The affinties of azot are ftill unknuwn. It has never Attempts yet been decompounded, and muft therefore, in the pre- to decomfent itate of our knowledge, be confidered as a fimple pofe azot. fubltance. Dr Prieftley, who obtained azotic gas at a very early period of his experiments, confidered it as a compound of oxygen gas and phlogifon, and for that reafon gave it the name of phlogificated air. According to the theory of Stahl, which was then univerfally prevalent, he confidered combultion as merely the feparation of phlogition from the burning body. To
(s) See his thefis D_{e} Aere Mephitico, publifhed in 1772 .-" "Sed aer falubris et purus refpiratione animalinon modo ex parte fit mephiticus fed et aliam indolis fua mutationem inde patitur. Poltquam enim omnis aer mephiticus (carbonic acid gas) ex en, ope lixivii caultici fecretus et abdućtus fuerir, qui tamer reflat nullo modo dalubrior inde evadit; nam quanvis nullam ex aqua calcis procipitationem faciat haud minus quam antea et fammam ot vitam extinguit. Page 17.
"Aer qui per carbones ignitos folle adactus fuit, atque deinde ab omni aere mephitico (carbonic acid gas) expurgatus, malignus tamen adhuc reperitur et omnino limslis eft ei qui refpiratione inquinatur. lmmu ab experimentis patet, hanc folam elfe aeris mutationem qua inflammationi adicribi poteft. Si enim accenditur materies quxlibet quæ ex phlogiffo et bafi fixa atque fimplici conftat, aer inde natus ne minimam aeris mephitici quantitatem in fe continere videtur. Sic aer in quo fulphur aut phofphorus urinæ combutlus fuit, licet maxime malignus, calcem ta. men ex aqua minime precipitat. Interdum quidem fi ex phofphoro natus fuerit, nubeculam aqux calcis inducit fed tenuifimam, nec aeri mephitico attribuendam, fed potus acido illi quod in phofphoro inelf, et quod, ut experimenta docuerunt, hoc fingulari dote pollet." Page 19.
(x) Hence the name $a \approx o t$, given it by the French chemits, which fignifies defluative to life, from α and $\zeta a n$.
(u) It is remarkable enough, that the acidity of nitric acid was afcribed by Mayow, in 1674, to the prefence of oxygen. Indoles caufica jpiritus nitri (fays he) a particulis ejus igneo-aercis provenit. Tract. p. 19.
this theory he made the following addition: Phlogifton is feparated during combuftion by means of chemical affinity: Air (that is, o:yygen gas) has a firong affinity for plilogifton: Its precence is neceffary during combufion, becaufe it combines with the phlogiton as it Jeparates from the combuftible; and it even contributes by its affinity to produce that feparation: The moment the air has combined with as much phlogifton as it can receive, or, to ufe a chemical term, the moment it is faturated with phlogiton, combultion necelfarily fops, becaule no more phlogifon can leave the combultiole (v) : Air futurated with phlogifon is azo. tic gas. Ihhis was a very ingenious theory, and when Dr Prieftley publifhed it, exceedingly plaufitle. A great number of the mof eminent chemifts accordingly embraced it: But it was fon after difonvesed, that during combuftion the quantity of air, inflead of increafing, as it ought to have done, had phiogilon been adced to it, actually diminifhed both in vilume and weight. There was no proof therefore, that during combultion, any fubfance whatever combined with air, but rather the contrary. It was difcovered alfo, that a quantity of air combined with the burning fubtance during combultion, as we have feen was the cafe with fulphur, phofphorus, carbon, and hydrogen; and that this air had the properties of oxygen gras. Thefe difcoveries entirely overthrew the evidenice on which Dr Prieftey's theory was founded: acenrdingly, as no attempt to decompound azot has fucceeded, it has been given up by almof every chemift except Dr Prieftey himfelf. Atmo!pheric air, as Scheele firtt proved, is com. poffed of abrut 27 parts of oxygen, and 73 of azotic gas. During combuftion, the oxygen is abftracted and the azntic gas remains behind.

La Metherie made an attempt in prove that azot was compofed of oxygen and carbon(w). He took a bit of burning charcoal, extinguifled it in mercury, and then planged it while hot into oxygen gas. On being plunged into water, one-fourth of the gas was difengaged, and part of it was found to confift of azotic gas. From this he concluded that he lad formed azotic gas by combining oxygen and carbon: Eut it was proved by Mr Lavoilier, beyond the poffibility of doubt, that oxygen and carbon form carbonic acid gas. They cannot then certainly form azot; for two contradictory fasts cannot both be tuue. There muft then have been fomething overlooked in the experiment. Indeed the experiment itfelf does not warrant the conclution which De La Metherie drew from it. He did not afcerta:n whetler the weight of the charcoal was diminithed; and belidec, there was azot mixed with the oxygen gas which he empioyed, as he himfelf has irformed $u \overline{5}$: Ald how was it p. liible for him to admit the charcoal into water widhout, at the fame time, admitting fome atmofiderical air?

Wre have now defcribed all the combutibles which Suppl. Vol. I.
are at prefent reckoned fimple, except the metals. We have found, that durng combuftion, all of them combine with oxygen ; that no part of them is difengaged, no part of them loft: we have therefore concluded, that the combultion of thefe futhances is nothing elfe but the act of their uniting, with oxygen. We have feen, however, that none of theni, except phefphorti; was capable of uniting with onygen at the conamm temperature of the atuofphere; wat, in order to produce the union, heat was neceffary, and ulat the degree of this heat was different for each. Hydrogen required a red heat, and azot a ftill greater (6). We have feen, too, that during thefe cunlbinations a quansity of heat and light efcaped. Now why is heat neceffary fnr there combinations? and whence come the heat and the liglt which we perceive daring the combultion of thefe bodies ? Thefe queftions are of the highel importance, and can only be anfwered by a particular inveftigation of the nature and properties of heat and light. This inveftigation we fhall attempt as foon as we have defcribed the mutals and earths, which form the fubject of the two following chapters.

Chap. III. Of Metals.

Metals may be confidered as the great imRruments 1 of all our improvements : Without them many of the of metils auts and fciences could hardly have exifted. So ientible were the ancients of their great importance, that they raifed thofe perfons who firt difcovered the art of working them to the rauk of deities. In cheniftry, they have always filled a confpictious flation : at one period the whole fcience was confined to them ; and it may be faid to have owed its very exifence to a rage for making and tranfmuting metals.

1. One of the moft confpicuous properties of the metals is a particular brilliancy which they poffefs, and which has been called the metallic luffre. This proceeds from their reflecting much more light than any other body; a property which feems to depend partly on the clofenefs of their texturc. This renders thent paculiarly proper for mirrers, of which they always form the balis.
2. They are abfolutely opaque, or impervious to light, even after they have been reduced to very thin plates. Silver leaf, for inflance, rofore of an itah thick, does not peimit the imallefi ray of light to pifis through it. Gold, however, may be rendered tranfparent; for gold leaf, $\frac{1}{\Sigma 8 \sigma} \sigma=0$ on an inch thick, tranimits light of a lively green culou:*. And it is not improbable that all the other metils, as Sir Ifaac Newton fuppofed, would become trampanent, if they could be restaced to a fufficient degree of thinmers. It is to this opaciey that a part of the excellence of the metals, as mirrors, is owing; their brillimey alune would not qualify them for that pupote.
3. They may be melted by the application of heat, Fufibility. and even then till ret ain their opacity. Tris propercy $\mathrm{N} n \quad$ evables

55
Luilte.

56
opacity.
(v) This ingenicus theory was firlt conceived by Dr. Rutherford, as appears from the following palf ire of his thefis. "Ex iifdem etiatn deducere licct quod aer ille malignus (azotic gas) componitur ex aure atmofpherico cum thlogifo zuito et quafi futurato. Atque idem confirmatur ev, quad aer qui metallorum calcinationi jatn inderviit, et phlogilton ab iis aluripuit ejufdem plane fit indnlis." De aere Mepbitico, p. 20.
(w) Or rather of lydrogen, for he confldered catbon itfelf as a compound.
(6) If this be true, from whence comes the nitric acid in thofe calcareous caves in which there is neither animal nor vergetable putrefaction, but in which nitue is formed?
enables us to caf them in moulds, and then to give them any fhape we pleafe. In this manner many elegant iron utenfils are formed.
4. Their fpecific gravity is greater than that of any other body hitlserto difcovered.
5. They are better conductors of electricits than any other body.
6. But one of their moft important properties is molle:dility, by which is meant the capacity of being extended and flattened when ftruck with a hammer. This pruperty enables us to give the metallic body any form we think proper, and thus renders it eafy for us t) convert them into the various inftruments for which we lave occaîon. All matals do not poffefs this property; but it is remarkaole that almof all thofe which were known to the ancients have it. Heat increafes this property confiderably.
i. Another property which is alfo wanting in many of the metals, is ductility; by which we mean the capaciry of being dyam cut into wire, by being forced through holes of varrious diamsters. This property has b) fome been called tenarity; and it doubtlefs depends upon the enacity of the various metals.
8. When expofed to the action of heat and air, molt of the metals lofe their lufte, and are converted into earthy-like fowders of different colours and properties, accoruing to the metal, and the degree of heat employed. Several of the metals even take fire when expofed to a ftrong enough heat ; and after combultion the refrdum is found to be the very fame eathy-like fubthance. If any of thefe calcos, as they are called, be mixed with charcoal-powder, and expofed to a ftrong heat in a proper veffel, it is changed again to the metal
0.2 from which it was produced. From thefe phenomena

Stalit's theory of the compofitions of metals

Stahl concluded that metals were compofed of earth and phlogijlorn. He was of opinion that there was only one primitive earth, which not only formed the bafis of all thofe fubtances known by the name of earths, but the bafis alio of all the metals. He found, however, that it was impofible to combine any mere earth with phiogifton; and concluded, therefore, with Beccher, that there wats amother priaciple befides earth and phlogitton which entered into the compofition of the metals. To this principle Beccher gave the name of mercurial earth, becaufe accoroing to him, it exifed mof abundantly in mercury. This principle was fuppofed to be very volatile, and therefore to fly off during calcination: and fome chemifts even affirmed that it might be ohtirined in the f ot of thore chimneys under whish metals have been calcined.

A friking defect was foon perceired in this theory. The original metal may be again produced by heating its calx along with fome other fubtance which contains phiogifon: now, it the mercurial earth flies off during combution, it cannot be necellary for the formation of complete metals, for they may be produced without it : if, on the contrary, it adheres always to the calx, there is no pronf of its exiftence at all. Chemilts, in confequence of thefe obrervations, found themfelves oblized to difcard the mercurial principle altogether, and to conclude that metals were conmpofed of earth only, united to phlogifton. But if this be really the cate,
how comes it that thefe two fubitances cannot be uni- Nietals. ted by art ? Henkel was the firft who attempted to folve this difficulty. According to him, earth and Improved phlogifon are fubftances of fo oppolite a nature, that by Henkel. it is exceedingly difficult, or rather it has been hitherto impolfible for us to commence their union; but after it has been once begun by nature, it is an eafy matter to complete it. No calcination has hitherto deprived the metals of all their phlogiton; fome ftill adheres to the calces. It is this remainder of phlogiton which renders it fo eafy to reftore them to their metallic fate. Were the calcination to be continued long enough to deprive them altogether of phlogifon, they would be reduced to the flate of other carths; and then it would be equally difficult to convert them into metals, or, to ufe a chemical term, to reduce them. Accordingly we find, that the more completely a calx has been cilcined, the more difficult is its reduction. This explanation was favourably received. But after the characteriftic Farther insproperties of the various earths had been afcertained, proved. and the calces of metals were accurately examined, it was perceived that the calces differed in many particu. lars from all the earths, and from one another. To call them all the fame fubftance, then, was to go much farther than either cxperiment or obfervation would wa:rant, or, rather, it was to declare open war againft both experiment and obfervation. It was concluded, therefore, that each of the metals was compoied of a pecu. liar eartby fulyfance combined with phlogiton. For this great improvement in accuracy, chemifty is chiefy indebted to Bergman.

But there were feveral phenomena of calcination Still imper: which had all this time been unaccountably overlooked. fea. The calces are all confiderably heavier than the metals from which they are obtained. Boyle had obferved this circumitance, and lad afcribed it to a quantity of fire which, according to him, became fixed in the metal during the procelif. But fucceeding chemifts paid \ddagger Fire amd little attention to it, or to the action of air, till Mr La-fame zeeirbroifier publifhed his celebrated experiments on calcina-ed. tion, in the memoirs of the Paris Academy for 1774 . He put eight ounces of tin into a large glafis retort, the point of which was drawn out into a very flender tube to admit of eafy fulion. This retort was heated 月owly till the tin began to melt, and then fealed hermetically: This heat was applied to expel fome of the air from the retort; without which precaution it would have expanded and burft the veitel. The retort, which was caprable of containing 250 cubic inches, was then weighed accurately, and placed again upon the fre. The tin 67 foon melted, and a pellicle formed on its top, which Refuted by was gradually converted into a grey powder that funk Lavoifer. by a little agitation, to the bottom of the liquid metal: in floor, the tin was parily converted into a calk. This procefs went on for tincee hours; after which the calcination Atopped, and no farther change could be produced on the metal. The retort was then taken from the fire, and found to be precifely of the fame weight as before the operation. It is evident, then, that no new fubiance had been introduced, and that therefore the increafed weight of calces, cannot, as Boyle fuppofed, be owing to the fixation of fire (x).

Whes
(x) This experiment had been performed by Boyle with the fame fuccefs. He had drawn a wrong conclufion from not attending to the fate of the air of the vifiel. SLarw's Boyle, II. $39+$.

When the point of the retort was broken, the air ruthed in with a hiffing noife, and the weight of the rctort was increafed by ten grains. Ten grains of air, therefore, murt have entered, and, confequently, precifely that quantity mult have difappeared during the calcination. The metal and its calx being weighed, were found juft ten grains heavier than bofore : therefore, the air which difappeared was abforbed by the metal : and ds that part of the tin which remained in a metallic fate was unchanged, it is evident that this air mult have united with the calx. The increate of weight, then, which metals experience during calcination, is owing to their uniting with air (r). But all the air in the veffel was not abrorbed, and yet the calcination would not go on. It is not the whole, then, but fome particular part of the air which unites with the calces of metals. By the fubfequent difoveries of Priefley, Scheele, and Lavoifier himfelf, it was afcertained, that the refiduum of the air, after calcination has been performed in it, is always pure azotic gas: It follows, therefore, that it is only the oxygen which eombines with calces; and that a metallic calx is not a frmple fubftance, but a compound. Mr Lavoifier obferved, that the weight of the calx was always equal to that of the metal employed, together with that of the oxygen ablobed. It became a queftion, then, Whether metals, during calcination, lof any fubftance, and, confequently, whether they contained any phlogifton? Mr Lavoifier accordingly propofed this queftion; and he anfwered it himfelf by a number of accurate experiments and ingenious obfervations. Metals cannot be calcined, excepting in contad with oxygen, and in proportion as they combine with it. Confequently they not only abforb oxygen during their calcination, but that abforption is abiolutely neceffary to their affuming the form of a calx. If the calx of mercury be heated in a retort, to which a pneumatic apparatus is attached, to the temperature of 1200°, it is converted into pure mercury; and, at the fame time, a quantity of oxygen feparates from it in a gafenus form. As this procefs was performed in a clofe veffel, no new fubftance could enter: The cals of mercury, then, was reduced to a metallic ftate without-phlogifton. The weights of the metal, and the oxygen gas, are together juft equal to that of the calx; the calx of mercury, therefore, muft be compofed of mercury and oxygen; confequently,
there is no reafon whatever to fuppofe that mercury contains phlogillon. lts calcination is merely the act of uniting it with axygen (z). The calces of lead, filver, and gold, may le decompofed exafly in the fame manner ; and Nr Vin Marum, by means of his geat elcêrical machine, decompoted alfo thofe of tin, zinc, and antimony, and refolved them into their refpeetive metals and oxygen\|. The fame conclufions, therefore, \| your. os mult be drawn with refiect to thele nuetals. All the Pby. ${ }^{1785}{ }^{\circ}$ metallic calces may be decompofed by prefenting to them fubftances which have a gleater affinity for oxygen than they have. This is the reafon that charcoalpowder is fo efficacions in reducing them : and if they are mixed with it, and heated in a proper veffel, furnifled with a pneumatic apparatus, it will be ealy to difcover what patles. During the reduction, a great deal of carbonic acid gas comes over, which, together with the metal, is equal to the weight of the calx and the charcoal: it mult therefore contain all the ingredients; and we know that carbonic acid gas is compofed of carbon and oxygen. During the procefs, then, the oxygen of the calx combined with the charcoal and the metal remained behind. It camot be doubted, theeefore, that all the metallic calces are comp fed of the entire metals combined with oxygen; and that calcination, like combultion, is merely the act of this combination. All motals, then, in the prefent flate of chemiftry, mult be confidered as fimple fubftances; for they have never yet been decompounded.

The words calo and calination are evidently impro. Oxyd and per, as they convey fallie ideas; we flall thercfose af oxydation terwards employ, in fead of them, the words oxyd and what. oxydation, which were invented by the French chemifts. A metallic oxyd fignifies a metal united with oxygen; and o.xydation implies the act of that union.

Metals are capable of uniting wilh oxygen in different proportions, and, confequently, of forming cach of them different oxyds. Thefe are diftinguithed from one another by their colour. One of the oxyds of iron, for inftance, is of a green colour; it is therefore called the green oxyd; the other, which is brown, is called the brown oxyd.

The metals at prefent amount to 21 ; only 11 of Number of which were known before the year 1730 . Their namcs nuctals are gold, filver, platinum, mercury, copper, iron, tin, lead, zinc, antimony, bifmuth, arfenic, cobalt, nickel,
(y) It is remarkable that John Rey, a phyfician of Perigord, had afcribed it to this very caufe as far back as the year 1630: But his writings had excited little attention, and had funk into oblivion, till after his opinion had been incontentibly proved by Lavoifier. Mayow alfo, in the year 1674, afcribed the increafe of weight to the combination of metals with oxygen. Quippe vix concipi potef (fays he), unde uugmentum illud antimonii (culcinati)
 tam a fulphuris ejus externi affimptione, quam pariculis nitro-aereis, quibus flumma nilri abundut, EI inflxis provenire videatur. Ibid. p. 29.
(z) 'l'his experiment was performed by Mr Bayen in 1774. This philofopher perceived, earlier than Lavoifier, that all metals did not contain phlogiton. "Ces experiences (fayshe) yont nous detromper. Je ne tiendrai plus le language des difciples de Stahl, qui feront forcés de reftreindre la docrrine fur le phlogillique, ou d'avouer que les precipités mercurials, dont je parle, ne font pas des chaux metalliques, ou enfin qu'il y a des chaux qui peuvent fe redure fans le concours du phlogitique. Lees experiences que j'ai faites me force de conclure que dans la chaux mercuriale dont je parle, le mercure doit fon etat calcaire, non ì la perte du pblogifhque qu'il nà pas effuyćc, mais a fa combinaifont intime avec le fuide eloffigue, dont le poids ajouté a celui du mercure eft la feconde caufe de l’agmentation de pefanteur qu'on oblerve dans les precipites que j'ai foumis a l'examen." Jour. de Play. 177, pages 288, 295. It was in confequence of hearing Baycn's paper read that Lavoifier was induced to turn his attention to the fubject.
manganefe, tungfen, moly blenum, uranium, tillurium, (itarium, chomum.

The hift eight of thefe were formerly called metals by way of eminence, becaule they are ponened either of malleabolity or ductlity, of of both properties together; the reft ware calle3 forminiku's, becaufe they are brittle. Dut this ditinction is now pretty genetally laid afide ; and, as Bergman oblerves, it ought to be fo alongether, as it is founded on a falte lypothefis, and conveys very entone us idear to the mind. The firlt four metals were formenly called rotbe or perfea metals, becaule their oxyds ate reduciole by the mere application of heat ; the next four were imprefea meals, be. caufe their oxyd= were thought nor reciucible without the addition of fome combultible fubtance; but this diltmetion alio is now very propely exploded.

Sect. I. Of Gold.

Gold feems to have been known from the very begimning of the world. Its properties and its fearcity have ievdered it more valuable than any other metal.

It is of an orange red, or reddifh yellow colour, and has no perceprible tafte or fmell.

No other lubstance can be compared with it in ductility ard malleabulity. It may be beaten out into leaves fo thin, that one grain of gold will cover $56 \frac{3}{4}$ fquare inches. Thefe leaves are only $\overline{2} \frac{8}{20} 00$ of an inch thick. lout the grold leaf with which filver wire is covered has only ${ }^{\frac{T}{T}}$ E of that thicknefs. An ounce of gold, upon filver wire, is capable of being extended more than 1300 miles in length.

Its tenacity is fuch, that a gold wire $\frac{5}{50}$ of an inch in diameter, is capable of fupporting a weight of 500 pounds without breaking \ddagger.

Its hardnefs is 6 (A); its fpecific gravity 19.3. It melts at 3° of Wedgewood's pyrometer (B). When melted, it affumes a bright bluith gieen colour. It expands in the act of fulion, and confequently contracts while becoming folid more than mott metals; a circumfance which renders it lefs proper for cafting into moulds.

It requares a very violent heat to volatilize it ; it is therefore, to ufe a chemical term, exceedingly frxed. Doyle and Kunkel kept it for fome months in a glafs-

I S T R Y.
houfe furnace, and yet it und rivent no change; nor
did it lrfe any perceptible weight, after being expofed
for fome hours to the uimoft lieat of Mir Parker's lens*. *Rirwan's Mr Lavoifier, however, obferved, that a piece of filver, Miner.i.9z。 held over gold melted by a fire blown by uxygen gas, which produces a much reater heat than common air, was fentibly gilt: Part of the metal, then, mult lave been volatilized.

After fulion, it is capable of afunding a cryftaline form. Tillet and Mongez obtanned it in thort quadrangul ir pyramidal cryttals.
7π
It is capable of combining with orygen, and form-Oxydation ing an oxych of gold. There ate tiv) m thods of produ- of gold. cing this combination, the application of leat, and folution in acids. When it is expoted to a very violent heat in contact with air, gld abforbs oxygen. But the temperature muft be very high; fo high, indeed, that hardly any certain method of oxydating gold by heat is known, except by electricity. When the electric explofion is tranfinited through gold leaf placed between two plates of glafs, or when a ftrong charge is made to fall on a gidded furface-in both cafes the metal is oxydated, and aflumes a purple colonr. It has been faid alfo, that the fame effect has been produced by a very violent hire ; but few of the inftances which have been adduced are well authenticated.

The other method of oxydating gold is much eafier. For this purpofe, equal parts of nitric and muriatic acids are mixed together (c), and poured upon gnld; an effervefcence takes place, the gold is gradually diffolved, and the liquid aflumes a yellow colour. It is eafy to fee in what manner this folution is produced. No metal is foluble in acids till it has been reduced to the fate of an oxyd, There is a flrong affinity between the oxyd of gold and muriatic acid. The nitric acid furnifacs oxygen to the gold, and the muriatic acid diffolves the oxyd as it forms (7). When nitric acid is deprived of the greater part of its oxygen, it afumes a gafeous form, and is then called nitrous gas. It is the emition of this which caufes the effervefcence. The oxyd of sold may be precipitated from the nitro-muriatic acid, by pouring in a little potafs diffolved in water, or, which is much better, a little lime, both of which have a flronger affinity for muriatic acid
(a) We have borrowed from Mr Kirwan the method of deneting the different degrees of hardnefs by figures, which we think a great improvement. Thefe figures will be underltood by Mr Kirwan's own explanation, which we here fubjoin.

3, Denctes the hardnefs of chalk.
4, A fuperior hardnefs, but yet what yields to the nail.
5, What will not yield to the nail, but eafily, and without grittinefs, to the knife.
6, That which yields more difficultly to the knife.
7 , That which farcely yields to the knife.
S. That which cannot be fcraped by a knife, but does not give fire with feel.

9, That which gives a few feeble fp.rks with fteel.
10. That which gives plentiful lively fparks. Kirwan's Miniralogy, I. 3 S.
(B) According to the calculation of the Dijon academicians, it meits at 1298° Fahr.; according to Bergman, at 1301°.
(c) This mixture, from its property of diffolving gold, was formerly called aqua regia (for gold, among the alchy mifts, was the king of metals) ; it is now called nitro-muriatic acid.
(7) I would rather, from the late experiments of the French chemifts, confider it as decompofition of the oxygenated muriatic acid which is formed on our mixing nitric and muriatic acids : part of its oxygen uniting to the gole, thus oxyding $i t$, and the oxygenated acid paling to the fate of muriatic acid, which dilfolves the cxyd of gold.
T. P. S.
acid than the oxyd has. This oxyd is of a yellow colour.

It is probable that gold is capable of two different degrees of onydation, and of toning two different oxyds, the yellow and the purple: But neither the guantitty of oxygen contained in there uxyds, nor the diffferences between them, have been accurately afcertained. The exyds of gold may be deconupofed in clone veftels by the application of heat. The gold remains fixed, and the oxygen aftumes the gatecus form. 'They way be decomposed, too, by all the fublances which have a Itronger affinity with oxygen than gold has. The at-
\uparrow Bergman
on Elective Attractions, Opufc. t. 3 .

$$
\begin{aligned}
& \text { Muriatic acid, } \\
& \text { Nitromuriatic, } \\
& \text { Nitric, } \\
& \text { Sulphuric, } \\
& \text { Arsenic, } \\
& \text { Fluoric, } \\
& \text { Tartarous, } \\
& \text { Phosphoric, } \\
& \text { Sebacic, } \\
& \text { Prulic, } \\
& \text { Fixed alkali (D), } \\
& \text { Ammonia, }
\end{aligned}
$$

Gold is not changed either by air or water. It does not fem capable of combining either with fulphur or carbon. Mr Pelletier combined it with phofphorus, by melting together in a crucible half an ounce of gold and an ounce of phosphoric rials (E), furrounded with Phofphuret charcoal. The pholphuret of gold thus produced was of gold. brittle, whiter than gold, and had a cryltallized appearance. It was compoled of 23 parts of gold and \dagger Ann. de one of phofphorus \dagger. He formed the fame compound Chin. i. 7 r. by dropping fall pieces of phofphorus into gold in \ddagger Ibid. xiii. fufion \ddagger.

Gold is aldo capable of combining with molt of the metals. Its affinities are placed, by Bergman, in the following os der:
Mercury,
Copper,
Silver,
Lead,
Bifmath,
Tin,
Antimony,
Iron,
Platinum,
Zinc,
Nickel,
Arfenic,
Cobalt,
Manganefe,
Phofphorus?
Sulphurets of alkalies.

Sect. II. of Sizer.
Silver appears to have been known almond as eat by Properties as gold. It is a metal of a flinging white colour, with- of fiver. out either tate or fuel.

It is the mot malleable and caustic of all metals exsept gild, and perhaps platinum. It can be reduced to leaves about тб₹ठо才 of an inch thick, and drawn into wire much finer than a human hair.

Its tenacity is foch, that a wite of filer, $x^{\frac{1}{0}}$ of an inch in diameter, is capable of fultaining 270 pounds without breaking $g \|$.

Its hardness is 6,5.* I is Specific gravity, before Dict. hammering, is 10,474; after hammering, $10,510 \pm$: Kirman. $f(r$ it is remarkable that the fpecific gravity of almond all the metals is increased by hammering.

It continues melted at 28° Wedgewood (F), but requires a greater heat to bring it to fulton \dagger.

The experiments of the French academicians have Mineral. ii. proved that it may be volatilized, but that it requires 107 . a very violent heat.

When cooled lowly, it affumes a crystalline form, Filet and Mungez obtained it in quadrangular pr amodal cryttals, both inflated and in groups.

Silver may be combined will oxygen, and converted 74 into an oxyd by expofure to a very violent heat. By fiver. this method Junker partly converted it into a glass; and Masquer, by expofing it 20 times fucceffively on the heat of a porcelain furnace, obtained a glass (G) of an olive green colour \ddagger. The oxyd of filer may alfo \ddagger Macg.ai's be formed by difolving the metal in an acid, and pere- Dice. cipitating it from its folution by potaf, lime, \&c: for, during its folution, the metal becomes oxydated. Litthe is known at prefent concerning the oxyds of silver, nor whether there be more than two, the black and the blue. From the experiments of Wenzel and Bergman, it follows, that one oxyd of fiver is comported of about 90 parts of metal and 10 of oxygen $\|$. 'The affinities $\|$ Kirrtan's of the oxyds, according to Bergman, are as follows: Miser. ii. Muriatic acid,
493.

Sebacic,
Oxalic,
Sulphuric,
Saecholactic,
Phosphoric,
Sulphurous,
Nitric,
Arfenic,
Fluoric,
Tartaric,
Citric,
Formic,
Lactic,
Acetone,
Succinic,
Pruffic,
(D) Have the alkalis any affinity for the yellow oxyd? Is not their affinity confined to the purple oxyd alone? And does not this oxyd act as an acid?
(E) Phe-iphoric acid evaporated to dryness and then fufed.
(F) According to the Dijon academicians, it melts at 1044° Fahr.; according to Bergman, at 1000°.
(G) Metallic oxyds, after fufion, are called glafs, becaufe they acquire a good deal of refemblance, in some particulars, to common glans.

274
Silver.
When filver is mel'ed with fulphur in a low red heat, it combines with it and forms fulplourct of fitier. It is very dificult to determine the pioportion of the ingre. dients whith enter into the compofition of this fub. finnce, becaufe there is an afinity between filver and its fulphuret, which diepofes them to combine together. The greatef quantity of fulphur which at given quanlity of filver is capable of taking $u p$ is, according to
 very deep violet colour, brittle and much more fufible than filver. If fufficient heat be applied, the fulphur is volatilized, and the metal remains behind in a ftate of 76 puity.
Phofphuret If one ounce of filver, one ounce of phofphoric glafs, of filver.
\div Pellcticr,
Ann. $d e$ Cbim. i . 73.
\& Ibid. xiii. 110.

77
Alloys of nlver.

Carbonir,
Ammoni and two drams of charcoal, be mixed together, and beated in a crucible, phofphuret of fiver is lormed. It is of a white colour, and appears granulated, or as it were cryftallized. It breaks muder the hammer, but may be cut with a knife. It is compofed of four patts of filver and one of phofphorus. Heat decompofes it by feparating the phofphorus中. Pelletier has obferved, that fifver in fufion is capable of cumbining with more phofphorus than folid filver : for when phofohuret of filver is formed by projesting phofphorus into melted filver, after the crucible is taken from the firc a quantity of phofphorus is emitted the moment the metal congeals \ddagger.
Silver does not feem capable of combining with carbon.

Silver is capable of combining with gold, and forming an aloy (H) compofed of one part of filver and five of gold. That this is the propottion of the ingredients, was difcovered by Homberg. He kept equal parts of gold and filver in gentle fulion for a quarter of an hour, and found, on breaking the crucible, two maffes, the uppermof of which was pure filver, the undermof the whole gold combined with $\frac{5}{\circ}$ of filver. Silver, however, may be mixed with gold in alnolt any proportion. But there is a great difference between the mixture of two fubftances and their chemical combination. Mietals which melt nearly at the fame temperature, may be nixed from that very circumfance in any proportion; but fubftances can combine chemically only in

I S T R Y.
onc proportion. This obfervation, which is certainly of importance, was firt made, as far as we know, by Mr Keir $\|$. The alloy of filver and gold is of it greenith colour, but its properties have net yet been accu. ratcly examined.

Silver is not affected by water, non by expofure to the air; but irir Prouft has semarked, that when long expored in places frequented by men, as in churches, becomes theatres, \&c. it acquires a covering of a ri let colnur, tarnifhed which deprives it of its luttre and malleability. This by expocovering, which forms a thin layer, can only be detach- fure. ed from the filver by bending it, or breaking it in pieces viih a hammer. It was examined by Mr Pronft, and found to be fulpburet of flour. He accounts for this tranfition of the filver into a fu'pharei, by fuppofing that at quantity of fulphur is confantiy formed and exh.iled by living bodie..*

The affinities of filver, according to Bergman, are $A m n$. d_{c} as follows :

> Lead,
> Copper,
> Mercury, Birmuth, Tin, Gold, Antimany, Iron, Manganefe, Zinc,
> Arfenic,
> Nickel, Platinum, Sulphurets of alkalies, Sulphur, Phofphorus.

Sect. III. Of Phtinum.

THE metals hitherto defcribed have been known to mankind from the earlieft ages, and have been always in high eftimation on account of their beauty, fearcity, ductility, and indeftructibility. But platinum, though perhaps inferior to them in none of theic qualities, and certainly far fuperior in others, was unknown, as a dirtinct metal, before the gear 1752 (1).

It has been found only in America, in Choco in Difcovery Peru, of plati-
(н) Metals combined together are called alloys or allays.
(1) Father Cortinovis, indeed, has atiempted tn prove, that this metal was the electrum of the ancients. See the Chemical Annals of Brugnatelli, 1790. That the electrum of the ancients was a metal, and a very valuable one, is evident from many of the ancient writers, particularly Homer. The following lines of Claudian are alone fufficient to prove it :

> Atria cinxit elur, trabibus folidatur abenis
> Culuen et in celfas furgunt eleatra columnas. L. I. v. $1 \sigma_{4}$.

Pliny gives us an account of it in his Natural Hiftory. He informs us that it was a compofition of filver and gold; and that by candle light it fhone with more fplendor than filver. The ancients made cups, ftatues, and columns of it. Now, had it been our platinum, is it not rather extraordinary that no traces of a metal, which mult have been pretty abundant, fhould be perceptible in any part of the old continent?

As the paffage of Pliny contains the fulleft account of electrum to be found in any ancient author, we fhall give it in his own words, that every one may have it in his power to judge whether or not the defciption will apply to the platinum of the moderns.
" Omni auro inelt argentum vario pondere.-Ubicunque quinta argenti portio eft, elearrom vocatur. Scrobes ex reperiuntur in Canalienfi. Fit et cura electrum argento addito. Quod fí quintam portionem exceffit, incudi-

Platinum. Peru, and in the mine of Santa Fe , near Carthagena. The workmen of thefe mines mult no doubt have been early acquainted with it; but they feem to have paid very little attention to it. It was unknown in Europe till Mr Wood brought fome of it from Jamaica in 1771. Soon alter it was noticed by Don Antonio de Uiloa, a Spanith mathematician, who had accompanied the Frencla academicians to Pero in their voyage to meafure a degre of the meridian. In the year 1752, it was examined by Scheffer of Sweden, and difcovered by him to be a new metal, approaching very much to the nature of gold, and therefore called by him aurant alum, white gold. Soon after it was examined by Lewis, Margraf, Nacquer and Beaumé, Morveau, Bergman, and many other illuftrious chemilts. but not fo bright (K). It has no tate nor fmell.

It is both ductile and malleable; but the precife degree has not yei been afcertained. It has been drawn into a wire of $\frac{\sigma^{7} \ddagger 万 \text { of an inch in diameter. This wire }}{}$ admitted of leing flattened, and had more ftrength \ddagger Witbering. than a wise of filter or gold of the fame fizef.

It is exceedingly difficult to fufe it. Macquer and Beaumé fucceeded by means of a powerful bumningghafs. It melts more eaflly when mixed with other fubfances. Its fixity is Atill greater than its infufibility. If the ftrongeft fires camot melt it, much lefs can they volatilize it.

Its hardnefs is $7,5 \|$. Its fpecific gravity, after being hammered, is 23,000 ; fo that it is by far the heavieft body known.

Some of the experiments which have been made on platinum feem to prove that it may be oxyclated by the application of a violent heat. The oxyd of this metal may be eafly formed by diffolving plarinum in nitromuriatic acid, and precipitating it by means of an earth or potafs. The various oxyds of platinum have nover yet been examined with accuracy. The one at prefent belt known poffeffes, as Mr Eerthollet has proved, the properties of an acid.
82 The fulphuret of platinum is unknown.
Phorphuret By mixing tngether an ounce of platinum, an ounce of plati- of phofphoric glats, and a dram of powdered charcoal, suns. and applying a heat of about $32^{\circ} \mathrm{Wed}$ gewood, Mr Pelletter formed a plofpburct of platinum weighing more than an ounce. It was partly in the form of a button, and partly in cubic cryflals. It was covered above by a blickifh glafs. It was of a filver white colour, very brittle, and hard enough to ftrike fire with Atee]. When expoled to a fire ftrong enough to melt it, the phofChimo. i. ir. He found a? $^{\text {Pr, that when phofphorns was projected }}$ on red hot platinum, the metal intantly fufed, and formed a phofphuret. As heat expels the phofphorus, Mr Pelletier has propofed this as an eafy method of * Ibid. xiii. purifying platinum**

Platinum does not feem capable of combining with Platinum carbon.

It is not in the leaf affected by the action of water or air.
r. When gold and Platinum are expofed to a flrong Alloys of heat, they combine, and form an alloy of a much whi- platinuns. ter colour, but nearly as ductile as gold. The proportions of the ingredients are not known. When ${ }^{\frac{1}{7}} \mathrm{O}$ only of the alloy is platinum, the gold is farcely altered in colour.
2. Whether filver and platinum combine chemically has not yet been properly afcertained. When fufed together (for which a very Itrong heat is neceffary), they form a mixture not fo ductile as lifver, but harder and lef white. The two metals are feparated by keeping them for fome time in the ftate of fulion; the pldtinum finking to the bottom from its weight. This circumftance would induce no to fuppofe that there is very listle affinity between them.

Sect. IV. Of Mercury.

Mfrcury, called alfo quickjiver, was known to the ancients, and feems to have been employed by them in gilding.

It is of a white colnur, exactly like that of polifhed Propertics filver. It has no tant, but acquires a nlight odour of mercurya when rubbed between the hands.

Its 反pecific gravity is 13.568 . . \quad Briforo
It differs from all other metals in always exiting, at the common temperature of the atmofphere, in a ftate of fluidity. It freezes at $39^{0 *}$; or, which is the fame thing, it ceafes to be a folid, and melts whenever it is placed in a temperature above 39°. It boils at the temperature of 600°.

See Muc= nab's Experiments Pbito. Tranf.
From the experiments made on frozen mercury in Rumfa, Hudfon's Bay, and Britain, we know that this metal, whon fulid, is malleable; but the extreme difficulty of examining it in that fate on account of the lownefs of the temperature, has rendered it hitherto impofible to afcertain the precife degree either of its malleability, duetility, or hardnefs.

Mercury is capable of combining with oxygen, and it forms of forming oxyds, differing from each other in the quan- three oxtity of oxygen which they contain. The oxyds of mercu- yds: ry, at prefent known, are the black, the yeliow, and the red. 86

1. When mercury is agitated for fome time in con- The black tad with oxygen gas, or atmolpheric air, it is partly axyd, converted into a greyihh-black powder, and at the fame lime part of the oxygen difappears. This is the blach oxyd of mercury. It is not known how muh nxygen it contains, nor even whether the whole of the mercury which compofes it be actually conbined with oxygen.
2. The beft wisy of forming the yellow oxyd is to Yollow difiolve marcury, either in boiling fuphuric acid or in oxyd, cold nitric acid. During its folution, it deprives thefe acids of jult as much oxygen as is neceffary to convent
bus non reftitit. Et eleĉtro auctoritas, Homero teft, qui Menelai regiam auro, electro, argentn, ebore fulgere tradit. Ifinervæ templum habet Lindos infinx Rhodiormm in quo Helena facravit calicem ex elcetro.-Eledrimatura of ad lucernarum lumina clarius argento fplendere. Qnod eft nativum, et venena deprehendit. Nimaue dib. currunt in calicibus arcus colefibus fmmiles cunigneo dridore, et gemina ratione predicunt."-Lib. xxxiii. caso. ir.
(k) To this colour it owes its name. Plata, in Spanith, is frver ; and flatiza, little filver, was the name firt given to the nietal. Bergman changed that mame into flummm, that the Latin names of all the motals might have the fame termination and gender. It was, however, finf called plutinaza by Lionams.

- Kirwan's

Miner. ii.
489.

88
And red oxyd.
it into a yellow oxyd; and if potafs or lime be afterwards added to the folution, it precipitates, and may be obtained pure by walaing it with water. It is a bright yellow coloured porder, which acts very powerfully as an emetic. From the obfervations of Bergman, it appars that it is compofed of about 96,8 parts of mercury, and 3,2 of oxygen*.
3. The red oxyd of mercury may be prepared, either by diftilling nitric acid off the metal repeatedly, or by keeping mercury for a long time expofed to a heat fufficient to evaporate it while it is in contact with air. When formed by the firft procefs it was formerly called red precipitate; when by the lalt, precipitate per fe. It is a beautiful red powder, or rather fmall red cryitals, which have fomeefcharotic qualities. When prepared by the fecond procefs, the heat muft not be much below 600°, nor much above 800°, otherwife no union would take place; and it mult be continued for tome weeks. Fiom the experiments of Mr Kirwan, it appears to contain 92,6 parts of mercury, and $7,+$ of oxy+ Kirzvan's gen*.
Miner. ii. Thefe oxyds may be decompofed by the applica489.

89
Their affi-
nuties. tion of a heat anounting to 1200°. The oxygen flies off in the form of gas, and running mercury renains behind.

The affinities of the oxyds of mercury, according to Dergman, are as follows: mercury.

91
Red fulphuret.

Sebacic acid,
Muriatic,
Oxalic,
Succinic,
Atfenic,
lhofphoric,
Sulphuric,
Benzoic(L)? Saccholactic, Tattarous, Citric,
Sulphurous,
Nitric, Fluoric, Zoonic(m)?
Acetous, Boracic, Prulfic, Carbonic.
When two parts of mercury and three parts of flowers of fulphur are triturated for fome time together, or when equal parts of mercury and melted fulphur are mixed to gether, they combine, and form a black powder, formerly called eifisps mineral, and now black fulphuret of mercury.

When 300 grains of mercury, and 68 of fulphur, with a few drops of folution of potafs to moiften them, are titurated for fome time in a porcelain cup, by means of a glafs peftle, black oxyd of mercury is pro. duced. Add to this 160 grains of potals, diffolved in as much water. Heat the veffe! containing the in-
gredients over the flame of a candle, and continue the trituration without interruption during the heating. In proportion as the liquid evaporates, add clear water from time to time, fo that the oxyd may be conllantly covered to the depth of near an inch. The trituration. muft be continued about two hours; at the end of which time the mixture begins to change from its original black colour to a brown, which ulually happens when a large part of the fluid is evaporated. It then palles very rapidly to a ted. No more water is to be added; but the trituration is to be continued without interruption. When the mafs has acquired the confiftence of a jelly, the red colour becomes more and more bright, with ata incredible degree of quicknefs. The inftant the colour has acquired its utmoit beauty, the heat muft be withdrawn, otherwife the red paffes to a dirty brown. This red powder is the red fulphuret of mercury, called formerly cinnabar, and, when reduced to a fine pow-der, vermilion(N). The procefs above defcribed, has been lately difcovered by $\mathrm{Mr} \mathrm{Kir}-$ choff, and is by far the fimpleft and cheapelt mode of forming red fulphuret with which we are acquainted*. *Nichalfon's Count De Moufin Poufchin has difovered, that its fourn.ii. 1. pafling to a brown colour may be prevented by taking it from the fire as foon as it has acquired a red colour, and placing it for two or three days in a gentle heat, taking care to add a few drops of water, and to agitate the mixture from time to time. During this expofure, the red colour gradually improves, and at latt becomes excellent. He difcovered alfo, that when this fulphuret is expofed to a Atrong heat, it becomes inftantly brown, and then paffes into a dark violet; when taken from the fire, it paffes inflantly to a beautiful carmine red \dagger.

The difference between thefe two fulphurets has never yet been afcertained. One would be apt to fufpect at firf that the black fulphuret confifts of the real fulphuret of mercury combined with fulphur ; the red, of the fulphuret of mercury combined with mercury, and that the real fulphuret of mercury was not yet accurately known. But it cannot be doubted that, during the formation of the red fulphuret, accotding to Kirchoff's proceis, there is an abicrption of oxygen. The phenomena above defcribed point out that almoft inconteftibly ; and we obferved, on attempting to repeat the experiment, that the black fulphuret, during its trituration, emitted fulphurated hydrogen gas. Perhaps, then, the mercury may be oxydated. We fufpeced at firft that part of the fulphur might be converted into an acid; but on attempting an alteration of the procefs in confeguence of that fuppofition, we could not fucceed.

The red fulphuret of mercury is found naturally in feveral parts of the world. It ufed to be prepared by forming a black fulphuret with three parts of fulphur and one of mercury, and then fetting fire to it. Part of the fulphur is burnt, and there emains behind a violet coloured body, which is powdered and put into a glafs veffel, to the bottom of which a red heat is applied.

A reddilk
(1) Benzoat of mercury is decompofed by fulphuric acid. Trommflorf Ann. de Chim, xi. 316.
(m) Zoonic acid decompofes the acetite of mercury. Bertbolle!.
(N) The word vsrmilion, is derived from the French word vermeil, which comes from vermiculus or vermiculum, nannes given in the middle ages to the kermes, or cocus ilicis, well knownas a red dye. Vermilion originally fig. nified the red dje of the kerines. See Beckmann's Hill. of Difoceries, II. 18 c .

Mercury. ~

92

Phofinuret of mercury.

A reddifh brown fubtance fublimes, which is red fal.
phoret of mercury; but its colour is not nearly cqual to that which is prepared by Ferchoft's procefs. form phofphuret of mercury, at laft fucceeded by diftilling a misture of red oxyd of mercury and phofphosus. Part of the phofphorus combined with the osygen of the oxyd, and was converted into an acid; the reft cumbined with the mercury.

Phofphuret of mercury is of a black colour, of a pretty folid confiltence, and capable of being cut with a knife. When expoled to the air, it exhaled vapours
$\|$ Aur. de Cbim. xiii. 122.

93
Its amalgams.
† Keir's
Notes on NTacquer's Dicz. art. Amalgam. of phofphorus\|.

Mercury does not feem capable of combining with carbon.

The combinations of mercury with the other metals are called amalgams.

1. The amalgam of gold forms very readily, becaufe there is a very ftrong allinity between the two metals. It a bit of gold be dipped into mercury, its furface, by combining with mercury, becomes as white as dilver. The ealieft way of forming this amalgam is to throw fnall pieces of red hot gold into mercury. The pro. portions of the ingredients are not ea $\sqrt{3} y_{y}$ determined, becaure the amalgam has an aftinity both for the gold and the mercury; in confequence of which they appear to combine in any proportion. Molt probably it is compofed of two patts of gold and one of mercury. The combination is formed moll readily in thefe proportions; and if too much mercury be added, it may be feparated by filtration. The analgam is of a white colour, and of the confiftence of butter \dagger. This ama!gam cryitallizes in quadrangular prifms; which cryItals, according to the Dijon academicians, are compnfed of fix parts of mercury and one of gold. It is much ufed in gilding.
2. The amalgam of filver is made in the fame manner. It forms dendritical crytals, which, according to the Dijon academicians, contain eight parts of mercury and one of filver. Gellert was the firft who remarked that its fpecific gravity was greater than that of mere cury, though that of filver be lefs.
3. Dr Lewis attempted to form an amalgam of platinum, but hardly fucceeded, after a labour which lalted for feveral weeks. Mr Morveau fucceeded by means of
\dagger Ann. de beat \dagger. But a much more expeditious method has Clim. xxiv. been lately difovered by Count Mouflin Poufchin. He 205. took a dram of the orange-coloured falt, compofed of oxyd of platinum and cmmonia (o), and triturated it with an equal weight of mercury in a mortar of chalcedony. In a few minutes the falt bsame brown, and afterwards acquired a greenith thade. The matter was reduced to a very fine powder. Another dram of mercury was added, and the trituration continued: The matter became grey. A third dram of mercury begran to form an amalgam; and fix dıams made the amalgam perfeck. The whole operation fearce lated 20 minutes. Mercury was added till it amounted to nine tinses the weight of the falt, and yet the amalgam coninued very tenacious. It was eafily fpread out under the pefle ; it received the imprefion of the moot delicate feals, and Suppl. Vol. I.

Ind a very clofe and billiant grain. Ihis anialgam is decompofed, and the mercury paffes to the thate of black oxyd by the limple contact of feveral of the metals and a great number of animal matters. This effect even takes place on rubbing it between the fingers*. * Ibid.

The affinities of mercury, as afcertaned by the expe- 92 riments of Morveau (P), are as follow: :

Gold,

Silver,
'Tin,
Lead,
Bifmuth,
Ziue,
Cupper,
Antimony,
Arfenic (c),
Iron.

Sect. V. Of Copfer.

Except gold and Gilver, copper feems to have heen more eally known than any other metal. In the firfe ages of the world, before the method of working iron was difcovered, copper was a principal ingredieut in all domellic utenfils and inftruments of war. Even during the Trojan war, as we learn from Homer, the combatints liad no other armour but what was made of bronze, which is a mixture of copper anl tin. The word copper is derived from the ifland of Cyprus, where it was firlt difcovered, or at lealt wrought to any extent, by the Greeks.

Copper is of a pale red colour with a thade of yel-Properties low. Its tafte is Ayptic and namfous ; and when rub- of copper. bed it emits a difugreeable fmell. It poffeffes a confiderable degree of malleability, though defs than filver. Its tenacity is fuch, that a wire of $\frac{1}{10}$ of an inch in dia. meter can fuftain a weight of $299 \frac{1}{4}$ pounds without breaking \dagger.
lis hardnefs is $8 \ddagger$. Its fpecific gravity, when not Diaz. hammered, is 7,788 ; when wire-drawn, $8,878 \|$. 'The \ddagger Kirwan's fpecific gravity of Japan copper is $9,000^{\text {mo }}$; that of Miner. ${ }^{127}$. Swedifh copper, $9,3^{2}+3 \dagger$.

It melts at 27° Wedgewood; according to the calculation of the Djon academicians, at 1449° Fabrenheit. When allowed to conl flowly, it affumes a cryflalline form. 'i'he Abbé Munger, to whom we owe many valuable experiments on the cryitallization of metals, informs us, that thefe cryfals are quadrangular pyramids, frequently inferted into one another.

When copper is heated red hot in contact with air, 9^{6} it is foon covered with a brown earthy cruit, which may oxyd of be eafly feparated by hammering or by planging the me- copper. t.al into water. If the beat be contimed, anmer foale of the fame kind foon forms; and by continning the procefs the whole metal may be converted into an edr-thy-like cruft, which is mercly a conbination of copper and oxygen, and is therefore called brozun oxyl of onppers. It is compofed of about 84 parts of copper and 16 of cxygent. cipitated by means of lime, it talls in the torm of a blue- 48% coloured powder, which is the blue oxyd of copper. If $\begin{gathered}97 \\ \text { O } 0\end{gathered}$ this green
gid O -
this green oxy d s.
(o) Ammonia is an a!kali hereafter to be defcribed. It is often called, in Englift, barthorno
(p) We thall have occafion to confider thefe celebrated experiments afterwards.
(e) Thefe two are added from Jergman. Bergman places had befure tin, and ziac before bifmuth.
this oxyd of copper be dried in the open air, it affumes a green colour, and is then called the green oxyd of copper. This laft oxyd may alfo be produced by diftilling a fufficient quantity of nitric acid off copper. Little fatisfactory is yet known with refpect to thefe oxyds; it has not even been afcertained whether the blue and green be really two different oxyds, or whether the difference in colour be owing to fome other caufe. It is probable, however, that the green oxyd contains more oxygen than the blue; becaufe the blue oxyd alfumes a green colour when expofed for fome time to the open air, during which it may be fuppofed to abforb oxygen. An experiment of Fourcroy proves inconteftibly, that the brozun oxyd contains lefs oxygen than the green. He converted the green oxyd into the brown by applying $\|$ Fourcroy, beat; and during the diftillation obtained oxygen gas\|. iii. ror. The affinities of the oxyds of copper, according to 98
Their afl-
rities.

- Sibrickel.

Bergman, are as follows:
Pyromucous acid*,
Oxalic,
Tartarous,
Muriatic,
Sulphuric,
Saccholactic,
Nitric,
Sebacic,
Arfenic,
Phofphoric,
Succinic,
Fluoric,
Citric,
Formic,
Lactic,
Acetous,
Boracic,
Pruffic,
Carbonic,
Fixed alkalies,
Ammonia,
Fixed oils.

When copper is long expofed to the air, its furface becomes covered over with a green cruft, which is green oxyd of copper. This oxydation never penetrates beyond the furface.

Copper is not attacked by water at the boiling temperature; but if cold water be allowed to remain long on its furface, the metal becomes partly oxydated.

Sulphur mixes readily with copper. The combination may be formed by mixing the ingredients together and applying a pretty ltrong heat. Sulphuret of copper is brittle, fofter than copper, of a black colour externally, and within of a leadengrey. It is compofed, according to Kirwan's experiments, of 8I parts of copper and 19 of fulphur*.

Mr Pelletier formed phoppturet of copper by melting together one ounce of copper, one ounce of phofphoric glafs, and one dram of charcoal. It was of a white colour. On expofure to the air, it loft its luftre and became blackilh \ddagger. Margraf was the firlt perfon that formed this phofphuret. His method was to diftil phofphorus and brown oxyd of copper together. It is formed moft eafly by projecting phofphorus into red hot copper. According to l'elletier, it contains 20

> Ibid. xiii. 3. parts of phofphorus and 80 of copper*. This phof. phuret is harder than iron: It is not ductile, and yet can-
not eafily be pulverifed. Its fpecific gravity is 7,1220 . It cryltallizes in tetrahedral prifms \ddagger.
I. Copper combines readily with gold when the two metals are melted together. The compound is of a reddih colour, more fulible than gold, but lefs ductile. The proportions of the ingredients which form this alloy are not known; nor would it be eafy to afcertain them, as the two metals are almof equally fufible. Ths dilloys of current gold of this country is compned of in parts of coppes. gold and one part of copper.
2. The alloy of copper and filver is made as eafily as that of gold, and the properties are equally unknown. It is harder and more fonorons than filver. The current filver coin of Britain is compored of 15 parts of filver and one of copper.
3. Platinum combines readily with copper. The alloy is much more fufible than platinum ; it is ductile, hard, takes a fine polifh, and is not liable to tarnifh. This alloy has been employed with advantage for compofing the mirrors of reflecting telefcopes.
4. The amalgam of copper cannot be formed by fimply mixing that metal with mercury, nor even by the application of heat ; becaufe the heat neceffary to melt copper fublimes mercury. Dr Lewis has given us feveral proceffes for forming this amalgam. One of the fimpleft is to triturate mercury with a quantity of com. mon falt and verdigrife ; a fuiftance compofed of oxyd of copper and vinegar. The theory of this procefs is not very obvious.

102
The affinities of copper are, according to Bergman, Itsafinitieso as follows :

$$
\begin{aligned}
& \text { Gold, } \\
& \text { Silver, } \\
& \text { Arfenic, } \\
& \text { Iron, } \\
& \text { Manganefe, } \\
& \text { Zinc, } \\
& \text { Antimuny, } \\
& \text { Platinum, } \\
& \text { Tin, } \\
& \text { Lead, } \\
& \text { Nickel, } \\
& \text { Bifmuth, } \\
& \text { Cobalt, } \\
& \text { Mercury, } \\
& \text { Sulphuret of alkali, } \\
& \text { Sulphur, } \\
& \text { Phofphorus. }
\end{aligned}
$$

Sect. VI. Of Iron.
$I_{\text {ron, }}$ the moft abundant and moft ufeful of all the Difcovery metals, was neither known fo early, nor wrought fo of ison. eafily, as gold, filver, and copper. For its difcovery we muft have recourfe to the nations of the eaft, among whom, indeed, almolt all the arts and fciences firlt fprung up. The writings of Mofes (who was born about 1635 years before Chrift) furnifh us with the \ddagger Deut. iv. ampleft proof at how early a period it was known in 20 . ampleit proof at how early a period it was known in * Ibid. viii.
Egypt and Phonicia. He mentions furnaces for work- g. ing iron \ddagger, ores from which it was extracted* and $\|$ Numb. tells us, that fwords $\|$, knives $\%$, axest, and tools fur xxxv. 16. cutting \{tones§, were then made of that metal. How I Levir. i. many ages before the birth of Mofes iron muft have ${ }^{17}$.號 been dilcovered in thete countries, we may perhaps con- xviii. 5 .
ceive, if we reflect, that the knowledge of iron was $\$ 16$ id. xavu.

Part I.

C H E M

Iron. brought over from Phrggia to Greece by the Dactyli*,
$-H_{1}$ frod, as quoted by
Pliny, .
lib, vii.
c. 57 .
properties.

Dic.

105
Forms two
oxyds.
\dagger Ann. de Cbinn. xxini. 85. and Nicholfon's Journal, i. 453. \ddagger Mem. A cad. Par. 1782.

It has a fiyptic tafle, and emits a fmell when rubbed.

It is malleable and ductile in every temperature; and its malleability is increafed in proportion as the temperature augments. Its teracity is fuch, that an iron wire $\frac{1}{T_{0}}$ of an inch in diameter futains a weight of 450 *Mucquer's pounds without breaking.*
who fettled in Crete during the reign of Minos I. about 143^{1} years before Chrift; yet during the Trojan war, which happened 200 years after that period, iron was in fuch ligh eftimation, that Achilles propofed a ball of it as one of his prizes during the games which he celebrated in honour of Patroclus (R). At that period none of their weapons were formed of iron. Now if the Greeks in 200 years had made fo little progrefs in an art which they learned from others, bow long muft it have taken the Egyptians, Phrygians, Chalybes, or whatever nation firft difonvered the art of working iron, to hare made that progrefs in it which we find they had done in the days of Mofes?

Iron, when frefh broken, is of a bluifh grey colour.

Its hardnefs is fuch, that it may be eafily reduced to powder by the application of a file. Its fpecific gravity is 7,788 . It is infufible in the ftrongef beats hitherto produced.

It is attracted by the magnet or loadftone, and is itrelf capable of becoming magnetic; but it retains this property only for a very fhort time.

It is not hardened by being plunged into liquids while hot, nor foftened by being cooled flowly.

Iron combines with oxygen very readily. When kindled in oxygen gas, it burns with great rapidity and fplendor, and is in this manner converted into an oxyd. It is converted into an oxyd alfo when furrounded by moilt air, or when plunged in water; becaufe it has a flronger affinity for oxygen than hydrogen has, and is therefore capable of decompofing water.
Mr Pronf has lately proved, that there are only two oxyds of iron, the green, and the brown or red, and that all the other fuppofed oxyds are merely mixtures of there two in various proportions \dagger.
The green oxyd may be obtained by diffolving iron in fulphuric acid, and then precipitating it by potafs. It is a light, green-coloured, earthy-like fubfance, compofed, as Mr Lavoifier has thewn, of 27 parts of oxygen, and 73 of iron \ddagger. When this oxyd is expofed to the air, it quickly abforbs more oxygen, and is converted into a brown powder, which is the brown oxyd. Mr Prouft has proved that it contains 52 parts of iron and 48 of orygen. This oxyd is well known under the name of rufl of iron, which is generally, however, or perhaps always, combined with carbonic acid gas. The affinities of thefe oxyds, according to Bergman, are as follows:

S TR Y.

Gallic acid?
Oxalic acid,
Tartarous,
Camphoric," "LaGrange
Sulphuric, Succholactic, Muriatic, Pyromucous \ddagger, \ddagger Scbrike\% Nitric, Sebacic, Plofphoric, Arfenic, Fluoric, Succinic, Citric, Formic, Lactic, Acetous, Boracic, Prutlic,
Calbonic.
Iron unites readily with fulphur. Sulphuret of iron, Sulphuret, formerly called pyrites, is found ready formed in many parts of the world. It is not eafy to determine the proportions of its ingredients, becaure it is capable of combining both with iron and fulphur, and confequently, if there happens to be any excefs of either during its formation, it takes it up. Perhaps the proportions are not far from equal parts of fulphur and of iron. It is of a pale yellow or brownifh colour, and is capable of afluming a cryftalline form. Its fpecific gravity is about 4,000 . When placed upon the fire, it precipitates; and at a red heat lofes its yellow colour, and becomes of an iron grey, excepting its furface, which is of a bright red. It melts at 102° Wedgewood in a covered crucible into a bluifh flag, fomewhat porous internally. \ddagger When expofed to air and moifture, the \ddagger Kirsarn's fulphur, as happens in all fulplurets, gradually abforbs Mincro ii. oxygen, and is converted into an acid.

If iron filings and fulphur be mixed together, and formed into a palte with water, the fulphur deconmpofes the water, and abforbs oxygen fo rapidly that the mixture takes fire, even though it be buried under ground. This phenomenon was firt difcovered by Homberg; and it is confidered as affording an explanation of the origin of volcannes. The native fulphuret of iron has been obferved more than once to take fire on being fud. denly moiftened with water.

Iron combines readily with phofphorus, and forms Phofphu* phofphuret of iron; to which Bergman, who firft dif- ret, covered it, gave the name of fiderum.

There is a particular kind of iron, known by the name of cold floort iron, becaufe it is brittle when cold, though it be malleable when hot. Bergman was em-
(R) Autap Пидвions ankeg adoov autoxowiov,

ployed at Upf:l in examining the caue of this property, while Meyer was nccupied at Stetin with the fame inveftigation; and boh of them difcovered, nearly at the fame time, that, by means of fulphuric acid, a white powder could be feparated from this kind of iscn, which by the ufual procefs they converted into a metal of a diurk feel grey, exceedingly brittle, and not very foluble in acids. Its specific gravity was 6,700 ; it was not fo fofilile as copper; and when combined with iron rendesed it colld fiort. Both of them concluded that this fubflance was a new metal; and Bergman gave it the name of fiderum. Bist Khiproth foon after recolleating that the alt compored of phofphotic acid and iron bore a great refemblance to the white powder obtained from cold fhote iron, folpested the prefence of phofphoric acid in this new metal. To decide the point, be combined fhofphoric acid and iron, and obtained, by heating it in a cruc ble along with charcoal powder (s), a fublance exactly refembling the new metal. Meyer, when Klaproth conimunicated to him this difcovery, informed him that he had already fatisfied himiclf, by a more accurate examination, that fiderum contained plofphoric acid. Soon after this, Scheele actually decompnfed the white powder obtained from cold thort iron, and thertby denionftrated, that it was compofed of phofphoric acid and iron. The fiderum of Bergman, however, is compofed of phofphorus and ion, the phof horic acid being deprived of its oxygen during the reduction; or it is phofphuret of iron. It may be formed by fufing in a crucible an ounce of phof. phoric glafi, an ounce of iron, and half a dram of charcoal powder. It is very brittle, and appears white when broken. When expofed to a ftrong heat, it melts, and the phofphorus is diffipated.* It may be formed alfo by melting together cqual parts of phofphoric glafs and irm-bilings. Part of the iron combines with the oxygen of the phofphoric glafs, and is vitrified; the reft torms the pholphuret, which finks to the bottom of the crucible. It may be formed alio by dropping fmall bits of phofphorus into iron-filings heated red hott. The proportions of the ingredients of this phofphuret have not yet been determined.
Iron likewife combines with carbon, and forms a carburet. Canburet of iron has been long known and ufed in the arts under the names of plumbago and llack lead. It is of a dark iron grey or blue colour, and has fomething of a metallic luttre. It has a greafy feel, and blackens the fingers, or any other fubftance to which it is applied. It is found in many parts of the wor!d, efpecially in England, where it is manufactured into pencils. It is not affected by the moft violent heat as lung as air is excluded, nor is it in the leat altered by fimple expofire to the air, or to water. Its nature was firft inveftigated by Scheele; who proved, by a very ingea, inus anaby fis, that it could be converted almott wholly into carbuic acid gas, and that the frall refiduum was iron. It fullows from this analyfis, that it is compofed of carben and iron; for the carbon during its combuf. tion had been converted into carbonic acid gas. By the fubfequent experiments of Pelletier and other French chenifte, it has been thewn to confift nearly of nine
itts difinguifh by particular names; but all of them may be ieduced under one or other of the three following flates: IV'rousht iron (or fimply iron), feed, and caft or raze irom.

Wrought Irov is the fubftance which we have been wrought hitherto delcribing. As it has never set been decom. iron. pounded, we contider it when pure as a fimple body; but it has feldom or never been found without fome fmall mixture of foreign fubllances. Thefe fubfances are either fome of the other metals, or cxygen, carbon, or phofphorus.

Steel is diltinguihed from iron by the following properties.

It is fo hard as to be unmalleable while cold, or at leaft it acquires this property by being immerfed while ignited into a cold liquid: for this immerlion, though it has no effect upon iron, adds greatly to the h.rdnels of Acel.

It is brittle, refits the file, cuts glafs, affords fparks with flint, and retains the magnetic virtue for any length of time.

It lofes this lardnefs by being ignited and cooled very flowly.

It melts at above 130° Wedgewond. It is malleable when red hot, but fcarcely fo when raifed to a white heat.

It may be hammered out into much thinner plates than iron. It is more fonorous; and its fpecific gravity, when hammered, is greater than that of iron.
By being repeatedly ignited in an open veffel, and hammered, it becomes zuroughlit iron \dagger.

Cast Iron is diftinguithed by the following properties:

It is fcarcely malleable at any temperature. It is generally fo hard as to refift the file. It can neither be hardened nor foftened as fteel can by ignition and cooling. It is exceedingly brittle. It melts at 30° Wedgewood. It is more foncrous than fteel.**
Caft iron is converted inio wrought iron by expoling it for a confiderable time in a furnace to a heat fufficiently frong to melt it. During the procefs it is conAantly ftirred by a workman, that every part of it may be equally expofed to the air. In about an honr the hoteft part of the mafs begins to heave and fiell, and to emit a lambent blue flame. This continues nearly an hour; and by that time the converfion is completed. The heaving is evidently produced by the emiffion of an elaftie fluid \ddagger.

Wrought iron may be converted into feel by being Pbil. Tranfo kept for fome hours in a iltong red heat, furrounded with charcoal powder in a covered crucible. By this procefs, which is called comeritation, the iron gains fome weight.

Thefe different kinds of iron lave been long known, Caufe of and the converting of them into each other has been thefe vapracififd in very remote ages. Many attempts have rictics. been inade to explain the manner in which this convertion is accomplifhed. According to Pliny, Atel owes its peculiar properties chiefly to the water into which it is plunged in order to be cooled§. Beccher fuppofed § Plixy, that fire was the only agent ; that it entered into the l. xxxiv. 34 . iron, and converted it into fteel. Reaumur was the firth who attended accurately to the procers; and his numerous experiments have certainly contributed to elucidate the fubject. He fuppofed that iron was converted in-

Part 1.

C H E M
to ftecl by combining with faline and oily or fulphureous particles, and chat thefe were introduced by the fire. But it was the analy fis of Bergman, poblifhed in 1781 , that firf paved the way to the explanation of the alature of thefe duferent fpecies of iron.

By diffolving in diluted fulpherec acid 100 parts of caft iron, he obtained 40 ounce meafures of hydrozen; from 100 parts of theel he obtained 48 ounce meafures; and from 100 parts of wrought iron, 50 ource meafures. Now as the hydrogen is produced by the property which iron has of decompofing water and uniting with its oxygen, it is evidens that the greater the quantity of hy drogen obtained, with the more uxygen does the inn combine. But the quantities of iron wete equal; they ought therefore to have combined with equal quantities of oxygen. But it is evident, from the quantities of hydrogen obtained, that the calt iron received lefs oxygen than either of the other two: calt irn therefore mult contain already fome oxygen, fince it requires lefs than the other two fpecies in order to be faturated. Here then is one difference between calt iton and the other two kinds ; it contains oxygen. Steel, on the contrary, does nut appear to contain any oxygen. The difference between the quantity of hydrugen produced during its foistion and that of wrought iron, which contains no oxygen, is exceedingly fmall, and it has been found to diminifh in proportion to the purity of the fteel.

From 100 parts of calt iron Bergman obtained 2,2 of plumbagn, or $\frac{1}{45}$; from 100 parts of Ateel, 0,5 , or $\frac{1}{2} \frac{1}{2}$; and from 100 parts of wrought iron, 0,12 , or 9\%. Now plumbago is compofed of ? $\frac{1}{0}$ ths of carbon ; cat iron therefore contains a confiderable quantity of carbon, fteel a fmaller quantity, and wrought iron a very minute portion, which diminifhes according to its purity, and would vanifh altoget her it iron could be obtained perfectly pure. Mr Grignon, in his notes on this analyfis, endeavoured to prove, that plumbago was not effentially a part of caft iron and theel, but that it was merely aceidentally prefent. But Bergman, after confidening his objections, wrute to Morveau on the Isth Nevember 1783 . "I will acknowledge my miftake whenever Mr Grignon fends me a fingle bit of call iron or theel which does not contain plumbago; and I beg of you, my dear fiend, to endeavour to difeover fome fuch, and to fend then to me; for if I am wrong, - Mforveau, I wifh to be undeceived as foon as poflible."* This Encyd. . Mi- was almoft the laft action of the illuftrious Bergman.
thod. C bithod. Chi-

He died a few months after at the age of 49 , leaving be. hind him a mof brilliant reputation, which no manever more defervedly acouired. His indullry, his indefitigable, his aftonithing induftry, would alone bave contributed much to eftablith his name; his extenfive knowledge would alone have attracted the attention of philofophers; his irgenuity, penetration, and accurate judgment, would alone have fecured the applaule; and his candour and love of truth precured hum the confidence and the efteem of the world-But all thefe qualities were united in Bergman, and confpired to form one of the greateft men and nobleft charaters chat ever adorned humen nature.

The experiments of Bergman were fully confirmed by thofe of Moiveau, Vandermonde, Monge, and Berthollet, who have likewnde thrown a great deal of addi-

I S T' R Y.
tional light on the fu'ject. From all thefe eaperinacuts the following deductions may be made.

I'rongbe iron is a fimple fultance, and if perfectly pure would contain nothing but iron.

Stee! is iron combined with carbon. The proportion of this laft ingredient has not yet been afectained; Dr Pearfon fixes it at $\frac{1}{3} \sigma^{-h} h$ part at a mediom. Steel, in confequence of its compolition, has been called by fome chemits carburet of iron; but before affigning it that name, which has been alfo given to planbargo, it ought to be determined what are the proportions of carbon and iron which faturate each other. Is it the propor. tion in which thefe two fubfances exift in fleel, or that which forms plumbago? In the firlt cafe, plumbago is carburet of iron combined wilh carbon; in the fecond, fleel is carburet combined with iron. Or is it fome intermediate proportion? Till thefe points be determined, Fethaps it would be better to continue the old names than to rifk the impofiry of lalfe ones.

Caft iron is iron contaminated with various foreign fubfances, the proportions of which vary according to circumftances. Thefe fubltances are chielly oxyd of iron and carbon, and fometimes filica (T).

Bergman found a quantity of manganefe in the irnn and fteel which he examined; hut it appeats from the experiments of Vauquelin, that his method of determining the prefence of that metal was not accurate.

Mr Vauquelin* has lately analyfed four kinds of fteel with great care, and contrived his proceffes with much ingenuity. The refult of his analy fis is as follows:
Firlt tteel, compofed of $\left\{\begin{array}{lll}\text { Carbon, } & - & 0,00789 \\ \text { Silica, } & - & 0,00315 \\ \text { Phofphorus, } & 0,00345 \\ \text { Iron, } & 0,98551 \\ \hline\end{array}\right.$

It cannot be concluded from thefe experiments, that all feel contains phofphorus and filica; far le's that thefe fubfances enter neceffarily into the compofition of feel. This may be the cale, and former analyfes may nothave been nice enough to detcet it; but before it can be admitted, it mult be thewn that thefe fubfances ate always prefent in fteel, and that it lofes its ettential properties when depived of then.

Ir=1
(x) An earth which frali be defribed in the next chapter.

116
Alloys of izon.

- Ann. de

Chim. vi.
39.

117
Jtsaffinities.

Iron combines with mof metals.
I. The alloy of gold and iron is very hard, and might, aecorling to Dr Lewis who examined it, be employed with advantage in forming cutting inftrments.

2 That iron combines with filver is certain, but hardly any thing is known about the nature of the compound.
3. Platinum is ufually found alloyed with irnn. Dr Lewis did not fucceed in his attempts to unite thefe metals by fofion, but he melted together calt iron and platinum. The alloy was exceflively hard, and poffeffed ductility.
4. There is very little affinity between iron and mercury; they cannot therefore be amalgamated by fimple mixture, even with the affiftance of heat. Vogel affirms that he has produced an analgam of iron by the following procefs; lound one part of iron filings and two parts of alum in a mortar to a fine powder; then pour in two or three parts of mercury, and triturate till the fubfances be thoroughly mixed. Pour on a little water, and continne the trituration for about an hour. If then no particles of iron can be diftinguifhed, pour on a little more water to walh out the alum, and then dry the amalgam. If particles of iron be perceptible, the trituration mult be continued till they difappear.*
5. Iron may be united to copper by fution, but not without confiderable difficulty. The alloy has been applied to no ule.

The affinities of iron, according to Bergman, are as follows:

Nickel,
 Cobalt,
 Manganefe,
 Arfenic,
 Copper,
 Gold,
 Silver,
 Tin,
 Antimony,
 Platinum,
 Bifmuth,
 Mercury,
 Sulphuret of alkali,
 Carbon?
 Phofphorus?
 Sulphur?

Sect. VII. Of Tin.
The Phenicians were the firlt of thofe nations which make a figure in ancient hiftory that were acquainted
*Pliny, 1.
4. c. 34.
and 1. 34. c
47.

+ Numbers xxxi. 22.

118
Properties of tin: with tin. "They procured it from Spain* and from Britain, with which nations they carred on a very lucra. tive commerce. At how early a period they imported this metal we may eafily conceive, if we recollect that it was in common ufe in the time of $\mathrm{Mofes} \dagger$.

Tin is of a greyifh white colour; it has a Atrong difagreeable tate, and emits a peculiar fimell when rubbed.

It is very malleable; tin leaf, or tinfoil as it is called, is about $\frac{1}{100}$ th part of an inch thick, and it might be beat out into leaves as thin again if fuch were wanted for the purpofes of art. Its ductility, however, is ex. ceedingly imperfect ; for a tin wire $\frac{x}{8}$ th of an inch in diameter, is capable of fupporting only 49 pounds
without breaking \ddagger. It is very flexible, and produces a crackling noife when bended.

Its hardncfs is $6+$. Its fpecific gravity is 7,01 \ddagger Macquer's after hammering, $7,299 \|$.
; Dictionary.
It melts at the temperatuse 410°, according to Dr Minser. ii. Lewis; according to the Dijon academicians, at 419°. 195.
When heated red hot in clofe veftels it fublimes. It *P Brifiono. cryfallizes in the form of a rhomboidal prifm.*

Your. de
Tin unites very readily with oxygen. When leated Plyy. in contact with air, its furface foon beccmes covered xxxviii. 52 . with a grey pellicle; when this is taken off, another $\begin{gathered}119 \\ \text { Oxyds, }\end{gathered}$ appears fon after; and in this manner the whole meOxyds, tal may be converted into a dirty grey powder, which is the grey oxyd of tin. It is compofed, according to Fourcroy, of 90 parts of t in and 10 of oxygen.

When tin is heated red hot in contact with air, it takes fire \dagger, and burns with a very lively white flame, \dagger Geoffrsy. and is gradually fublimed. If the fublimate be ex. amined, it is found to confift of a white powder; it is the subile oxyd of tin. The white oxyd is perhaps never obtained quite pure by this procefs; it feems always to contain a misture of grey oxyd: but it may be ob. tained pure by pouring nitric acid upon tin, and then drying it. That metal having a much flronger attraction for oxygen than azot has, decompoles the acid with the greateft rapidity, and aflumes the appearance of a white powder, which is the white oxyd. This oxyd poffefles many of the properties of an acid, and is therefore often called flamnic acic. It feems to confilt of about 77 parts of tin and 23 of oxygen \ddagger.

The affinities of the grey oxyd of tin, according to Miner. ii. Bergman, are as follows:

Pyromucous acid,** Schrickel.
Sebacic acid,
Tartaric,
Muriatic,
Sulphuric,
Oxalic,
Arfenic,
Phofphoric,
Nitric,
Suecinic,
Fluoric,
Sacchol:ıctic,
Citric,
Formic,
Lactic,
Acetous,
Boracic,
Prulfic.
120
Tin combines readily with fulphur. This fulphuret Sulphurets, may be formed by fufing the two ingredients together. It is brittle, heavier than tin, and not fo fufible. It is of a bluih colour and lamellated ftrueture, and is capable of crytallizing. According to Bergman, it is compifed of 80 parts of tin and 20 of fulphur; according to Pelletier, of 85 parts of tin and 15 of fulphur.* Anmo de

Sulphur likewife combines with the white oxyd of Chim. xiii. tin, by mixing them together, and applying a gentle 287 .
heat. \dagger This compound has been called aurum mu/ivumt. \dagger Pelletier. It is a mafs confiting of beautiful gold coloured flakes, IVid. p. 297* and is ufed as a paint. It is compoled of about 40 parts of fulphur and 60 of white oxyd of tin \ddagger. The procefs \ddagger IVid. 293 . for making this fubitance was formerly very complicated. Pelletier firft demonftrated its real compofition,

Part I.

 C H E MTin. || Sec his Mcmoire, Ann. de Cbim. yiii. 280.

T2I
Phorphuret,

* Ann. de

Cbim. xiii.
116.

122
Alloys,
and was hence enabled to make many important improvements in the manner of manufacturing it \|.

Phofphorus is eafily combined with tin, by melting in a crucible equal parts of filings of tin and phofphoric glafe. Tin has a greater affinity for oxygen than phofphorus has. Part of the metal therefore combines with the oxygen of the glafs during the fufion, and flies off in the ftate of an oxyd, and the reft of the tin combines with the phofphorus. The phofphuret of tin may be cut with a knife; it extends under the hammer, but feparates in laminx. When newly cut it has the colour of filver; its filings refemble there of lead. When thefe filings are thrown on burning coals, the phofphorus takes fire. This phofphuret may likewife be formed by dropping phofphorus gradually into melted tin. According to Pelletier, to whofe experiments we are indebted for the knowledge of all the phofphurets, it is compofed of about 85 parts of tin, and 15 of phofphorus*: Margraf alfo formed this phofphuret, but he was ignorant of its compofition.

Tin does not feem capable of combining with carbon. It is capable of combining with molt of the me. tals.

1. It mixes readily with gold by fufinn; but the proportions in which thefe metals combine chemically are Itill unknown. When one part of tin, and twelve of gold are melted together, the alloy is brittle, hard, and bad coloured. Twenty-four parts of gold and one of tin , produce a pale colnured alloy, harder than gold, but poffeffed of confiderable ductility. Goln alloyed with no more than ${ }_{j} \mathrm{~m}^{\text {th }}$ of tin is farcely altered in its \dagger Alchorne, properties, according to Mr Alchornet; but Mr Tillet,
Phil. Tranf. who has lately examined this alloy, found that whenever it was heated, it broke into a number of pieces.
2. The alloy of filver and tin is hardly known. According to Gellert and fucceeding chemifts, it is exceedingly brittle.
3. The alloy of platinum and tin is very fufible and brittle, at lealt when thefe metals are mixed in equal
\& Dr Lewis. proportions \ddagger.
4. Mercury diffolves tin very readily, by being poured on it when melted. This amalgam cryftallizes in the form of cubes, according to Daubenton ; but according to Sage, in grey brilliant fquare plates, thin towards the edges, and attached to each other fo that the cavities between them are polygonal. It is compofed of three parts of mercurv and one of tin. The amalgam of tin is ufed to filver the backs of glafs mirrors.
5. Tin unites very readily with copper, and forms alloys known thy the names of bronze and bell-metal. The proportions of the ingredients cannot eafily be affigned, perhaps becaule the alloy has an afinity both for copper and tin. The fpecific gravity of the alloy in all proportions is greater than the mean fpecific gravity of the two metals feparately. When the quantity of tin is fmall compared to that of the copper, $\frac{2}{8}$ th for inftance, the alloy is called bronse: it is brittle, yellow, and much heavier than copper; much more furible, and lefs liable to be altered by expofure to the air. It was this alloy which the ancients ufed for tharp edged inltruments before the method of working iron was brought to perfection. The χ aracs of the Greeks, and perhaps the es of the Romans, was nothing elfe. Even their copper coins contain a mixture of tin*.
6. Tin feems capable of being united to iron by fu-

I S T R Y.

fion. That there is an affinity between thefe metals is evident from their adhefion when iron is dipt into melted tin. This is the method of making tinplate.

The affinities of tin, according to Bergman, are as

Tin
 II
 Lead.
 123
 And affini-

ties of tin.

> Zinc,
> Mercury,
> Copper,
> Antimony,
> Gold,
> Silver,
> Lead,
> Iron,
> Manganefe,
> Nickel,
> Arfenic,
> Platinum,
> Bifmuth,
> Cobalt,
> Sulphuret of alkali,
> Oxygen?
> Sulphur?
> Phofphorus ?

Sect. VliII. of Lead.

Lead appears to have been very early known. It is mentioned feveral times by Mofes. The ancients feem to have confidered it as nearly related to tin.

Lead is of a bluifh white colour, fomewhat darker Properticg than tin. When newly melted it is very bright, but of lead. foon becomes tarnifhed by expofure to the air. It has fcarcely any tafte, but emits on friction a peculiar fmell.

It is very malleable, and may be reduced to thin plates by the hammer; but its duetility is very imperfect : a wire of lead $\frac{1}{T}$ th of an inchin diameter is only capable of fupporting a weight of $29 \pm$ pounds.**

Its hardnefs is $5 t$; its fpecific gravity is $11,3523 \ddagger$ Its fpecific gravity is not increafed by hammering, neither does it become harder, as is the cafe with other metals: a proof that the hardnefs which metals aflume under the hammer is in confequence of an increafe of denfiry.

It melts, according to Dr Lewis, at 540° Farenheit; according to the Dijon academicians, at 549°. When expofed to a violent heat, it evaporates completely.

When cooled flowly, after being fufed, it cryfallizes. The Abbé Mongez obtained it in quadrangular pyramids lying on one of their fides. Each pyramid was compofed as it were of three layers. Pajot obtained it in the form of a polyhedron with 32 fides, formed by the concourfe of fix quadrangular pyramids \dagger.

Lead ftains paper or the fingers of a bluifh black colour.

There is aftrong affinity between this metal and oxygen. When nitric acid is poured upon it, an effervef-

* Macquer's

Dictionary.

+ Kirzoan's Miner. ii.

202.

 cence enfues, owing to the decompotition of the acid: the lead feizes oxygen from it, and is converted into a white powder, which may be obtained pure by evaporating it to drynefs, and then wafhing it in pure water. This is the mbite oxyd of lead. It is compofed of about 95 parts of lead, and five of oxygen \ddagger. The affinities $\$$ Kirwanº of this oxyd are, according to Bergman, as follows : Miner. ii, Sulphuric acid, 499.

Sebacic,
Saccholactic,
Oxalic,

Arfenic, 'Tatarous, Phofphoric, MInriatic, Benzoic (U) ?
Sulphurous,
Suberic ? $\}$
Loonic?
Nitric,
Pyromucous (v)?
lluoric,
Citric,
Formic,
Lactic,
Acetous,
Boracic,
Pruffic,
Carbonic,
Fixed alkali.
When lead is expofed to heat in contact with air, its furface is fon covered with a grey pellicle; when this is taken off, another foon forms: and in this manner, the whole lead may foon be converted into a dirty grey powder, which feems to be the white oxyd mixed with a little lead. When this powder is heated red hot, it afdumes a deep yellow colour. This is the yellow oxyd of lead, Cormerly called maficot. If the heat be continued, the colonr is gradually changed to a beautiful red. This is the red oxyd of bead, formerly called minium. It is compofed, as Lavoilier has fhewn, of 88 parts of lead and 122 of oxygen*.
Thle manner in which thefe changes are brought about is evident; the metal gradually abforbs oxygen from the atmofphere. This has been actually proved by experiment. Thefe oxyds (if they really differ in the proportion of oxygen) refemble acids in feveral of their properties. They are very eafly converted into glafs by fufion. Scheele has fhewn that there is alfo a brown oxyd of lead, which contains more oxygen than any of the others.
Sulphur unites eafily to lead by fufion. The fulphuret of lead is brittle, of a deep grey colour, and much lefs fulible than lead. Thefe two fubflances are often found naturally eombined; the compound is then called galena. Sulphuret of lead is compored, according to the experiments of Wenzel, of 868 parts of lead, and 132 of fulphur \ddagger.
Phofphuret of lead may be formed by mixing together equal parts of filings of lead and phofiphoric glafs, and futing them in a crucible. It may be cut with a knife, but feparates intu plates when hammered. It is of a filver white colour with a thade of blue, but it foon tarnilhes when expofed to the air. This phof phuret may alfo be formed by dropping phofphorus into melted lead. It is compofed of about 12 parts of phofphorus and 88 of lead \ddagger.

C H E M I S T R Y.

Lead combines with mot of the cther metals.

1. Little is known concerning the alloy of lead and gold. It is faid to be brittle.
2. The alloy of filver and lead is very fufible, and neither elaftic nor fonorous.
3. Platinum and lead unite in a flong heat : the alloy is brittle, of a purplith colour, and foon changes on expofure to the ais $\$$.
4. Mercury, when poured upon melted lead, diffolves it readily. The amalgam is white and brilliant, and affumes a folid forn:. It is capable of cryltallizing. The cryftals are compofed of one part of leal and one and a half of mercury. $\|$
\| $D_{\text {ijen }} A-$
5. Copper and lead combine eafily by fufion; but cademicians. the alloy has not been applied to any ufe.
6. Iron does not unite with lead.
7. Lead and tin may be combined by fufion. The alloy in the proportion of two parts of lead, and one of tin, is more foluble than either of the metals feparatel 5 . It is accordingly ufed by plumbers as a folder.

Lead, when taken internally, acts as a poifn. Its Affnities. affinities, according to Bergman, are as follows:
Gold,
Silver,
Copper,
Mercury,
Bifmuth,
Tin,
Antimony,
Platinum,
Arfenic,
Zinc,
Nickel,
Iron,
Sulphuret of alkali,
Sulphur,
Phofphorus?

The ancients gave to the feven metals laft defribed Names and (omitting platinum, which they did not know) the marks names of the planets, and denoted each of them by given to particular marks, which reprefented both the planet and by the and
the metal.
cients.

It fecms moft probable that thefe names were fir given to the planets; and that the feven metals, the only ones then known, were fuppofed to have fome relation to the planets or to the gods that inhabited them, as the number of both happened to be the fame. It appears from a paflage in Origen, that theie names firt arofe among the Perfians (w). Why each particular
(v) Benzoat of lead is decompofed by muriatic acid. Trommfdorf, Ann. de Clim. xi. 317.
(v) Suberic acid decompofes nitrat of lead. See Fan:efon's Mineralogy, p. 16U. Zoonic acid produces the fame effect, as Berthollet has obrerved.
(v) Schrikel places it after the three mineral acids.
(w) Conira Celfum, lib. vi. 22.-"Celfus de quiburdam Pcrfarum my feriis fermonem facit. Harum rerum, inquit, aliquod rcperitur in Perfarum doहtina Mithracifque eorum myfteriis veftigium. In illis enim dux coeleftes converfiones, alia ftcllatum fixarum, errantium alia, et animre per eas tranfitus quodam fymbolo reprafentantur,

Part I.

Lead.
$r_{3} 1$
Origin of thefe mark according to the afrologers ;
metal was denominated by a particular planet it is not
eafy to fee. Many conjectures have been made, but fcarcely any of them are fatisfactory.

As to the characters by which thefe metals were expreffed, aftrologers feem to have confidered them as the attributes of the deities of the fame name. Tne circle in the earlieft periods among the Egyptians was the fymbl of divinity and perfection; and feems with great propriety to have been clofen by them as the character of the fun, efpecially as, when furrounded by fmall ftrokes projecting from its circumference, it may form fome reprefentation of the emilfion of rays. The femicircle is, in like manner, the image of the moon; the only one of the heavenly bodics that appears under that form to the naked eye. The characert is fuppofed to reprefent the fcythe of Saturn; 4 the thunderbolts of Jupiter; δ the lance of Mars, together with his fhield; I the looking-glafs of Venus; and \wp the caduccus or wand of Mercury.
132

According

 to the alchemifts. count of thefe fymbols. Gold was the moft perfect metal , and was therefore denoted by a circle. Silver approached neareft it ; but as it was inferior, it was denoted only by a femicircle. In the character $\begin{gathered}\text { the thepts }\end{gathered}$ difcovered gold with a filver colour. The crofs at the botom expreffed the prefence of a myfterions fomething, without which mercury would be filver or gold. This fomething is combined alfo with copper; the poffible change ot which into gold is expreffed by the character Q. The character of declares the like honourable affinity alfo ; though the femicircle is applied in a more concealed manner : for, according to the proper eft mode of writing, the point is wanting at the top, or the upright line ought only to touch the horizontal, and not to interfect it. Philofophical gold is concealed in fteel; and on this account it produces fuch valuable medicines. Of tin, one half is filver, and the other confifts of the unknown fomething; for this reafon the crofs with the half moon appears in 4 . In lead this fomething is predominant, and a fimilitude is obferved in it to filver. Hence in its claracter J_{2} the crofs flands at the top, and the filver character is only fufpended on the right hand behind it.The fact, however, according to Profeffor Beckmann, from whom moft of the above remarks have been taken, feems to be, that thefe charaiters are mere abbreviations of the old names of the planets. "The character of Mars (he ohferves*), according to the oldelt mode of

Suppl. Vol. I.
reprefenting it, is evidently an abbreviation of the wond Ooupos, under which the Greek mathematicians underflood that deity; or, in other words, the firlt letter θ, with the laft letter s placed above it. The charager of Jupiter was originally the initial letter of z sue; and in the oldelt manufcripts of the mathematical and aftrological works of Julius Firmicus, the capital Z only is ufed, to which the laft letter s was afterwards added at the bottom, to render the abbreviation more diflinct. The fuppofed looking-glafs of Venus is nothing elfe than the initial letter diftorted a little of the word Φ eso \varnothing opos, which was the name of that goddcfis. The imaginary icy the of Saturn has been gradually formed froni the two firl letters of his name Kpooos, which tranicribers, for the fake of difpatch, made always more convenient for ufe, but at the fame time lefs perceptible. To difcover in the pretended caducens of Mercury the initial letter of his Greek name $\Sigma \tau \lambda \lambda E \operatorname{cov}$, one needs only look at the abbreviations in the oldelt manuicripts, where they will find that the \leq was once written as C ; they will remark alfo that tranfcribers, to dittinguith this abbreviation from the reft fill more, placed the C thus U, and added under it the next letter τ. If thofe to whom this deduction appears improbable will only take the trouble to look at other Greek abbreviations, they will find many that differ ftill farther from the original letters they exprefs than the prefent character $\not \underset{\text { from the }}{ } \mathrm{C}$ and τ united. It is poffible alfo th thater tranicribere, to whom the origin of this abbreviation was not known, may have endeavoured to give it a greater refemblance to the caduceus of Mercury. In fhort, it cannot be denied that many other altronomical charaters are real Cymbols, or a kind of proper hieroglyphics, that reprefent certain attributes or circumftances, like the characters of Aries, Leo, and others quoted by Saumife."

Sect. IX. Of Zinc.

The ancients were acquainted with a mineral to which they gave the name of Cadmea, from Cadmus, who fir taught the Greeks to ufe it. They knew that when melted with copper it formed bra/s; and that when Difcovery burnt, a white fpongy kind of afhes was volatilifed, which of zinc. they ufed in medieine*. This mineral contained a good "Plizy, 1. deal of zinc; and yet there is no proof remaining that 34 .c. 2. and the ancients were acquainted with that metal (x). It ${ }^{10}$ is firft mentioned in the writings of Albertus Magnus, who died in 1280; but wherlher he had feen it is not fo clear, as he gives it the name of marcafite of gold, which
quod hujufmodi eft. Scala altas portas habens, in fumma autem octava porta. Prima portarum plumbea, altera

 alteram Veneri, quam referunt, ut ipfi quidem putant ftanni fplendor et mollities; tertiam Jovi, aheneam illam quidem et folidam : quartam Mercurio, quia Mercurius et ferrum, uterque operum onnium tolerantes, ad mercaturam utiles, laborum paticntiffmi. Marti quintam, inæqualem illam et variam propter mixturam. Sextant, qux argentea eft, lunx; feptimam auream foli tribuunt, quia folis et luns colores hxe dun metalla referunt."

Borrichius fufpects, with a good deal of probability, that the mames of the gods in this paffage have been tran fpofed by tranferibers, either through ignorance or defign. He arranges them as follows: "Secundam poriam faciunt Jovis, comparantes ei ftanni fplendorem et mollitiem ; tertiam Vencris xratam et folidam ; quartam Mdftis, eft enim laborum patiens, æque ac ferrum, celebratus hominibus; quintam Mercurii propter mifuram inxqualemac variam, et quia negotiator eft ; fextam Lunæ argenteam; feptimam Solis auream." Ol. Borrichius de ortu et progreffu chemia. Hafnix, 1668, 4to. p. 29.
(x) Grignon indeed fays, that fomething like it was difcovered in the ruins of an ancient Roman city in Champagne; but the fubftance which he took for it was not examined with any accuracy. It is impoffible -berefore to draw any inference whatever from his affertion. Bulletin des fouilles d'une ville Romaine. p. 15.

Zinc.
\qquad

+ See Fol. 6. of bis Works in 4tc.
\ddagger Bergman, ii. 309 .

135
Properties
of zinc.
\oint Sage.

* Kirzuan's

Mincr. ii.
232.

+ Brifon.
+ Kirzoun,
ibid.
§ Bergman.
*MLongez.
I36
its oxyds,
\dagger Morvean,
Airzvan's
Miner. ii.
489:
implies, one would think, that it had a yellowechour (x). The word aine occurs firlt in the writings of Paracelfus, who died in 1541. He informs us very gravely, that it is a metal, and not a metal, and that it conlifts chielly of the athes of coppert. This metal has alfo been called fpetter.

Zinc lias never been found in Europe in a Itate of purity, and it was long before a method was difcovered of extranting it from its ore (z). Henkel pointed out one in 1721 , and Yon Swab obraired it by ditillation in 1742, and Margraf publifhed a procefs in the Berlin Memoirs in $1746 \ddagger$.

It is of a bluifh white colour, fomewhat lighter than lead. It has neither talte nor fmell.

It has fome degree of malleability ; for by compreffion it may be reduced into thin plates ; but it cannot be drawn out into wire. It is more brittle when hot than when cold.

Its hardnefs is 6^{*}. Its fpecific gravity, when compreffed, is $7,1908 \dagger$; in its ufual ftate, 6,862f. It melts at about 699° Fahrenheit \oint.

When allowed to cool flowly, it cryftallizes in fmall bundles of quadrangular prifms, difpofed in all directions. If they are expofed to the air while hot, they alfume a blue changeable colour*.

When zinc is kept melted in contact with air, it becomes covered with a grey pellicle, which gradually aflumes a yellowifh tint. By removing this pellicle from time to time, the whole of the metal may be reduced into a grey powder. This is the grey oxyd of ainc. This oxyd is probably compoled of about 85 parts of zinc and 15 of oxygent. When zinc is violently heated, it burns with a bright white flame, and at the fame time a quantity of very light white flakes are fublimed. Thefe flakes are the white oxyd of aine, which contains a good deal more oxygen than the grey oxyd (A).

Zinc may alfo be oxydated by folution in acids, particularly the nitric acid. Whether the oxyd obtained by precipitating zinc from its folution in that acid, or by diftilling that acid off zinc, be really different fiom the white exyd, has not yet been properly afcertained;
but one would be apt to fufpect, from the experiments mentioned by Mr Kirwan, that it contained a good deal more oxygen\|.

The affinities of the oxyds, or rather of the white ii. Miner oxyd of zinc, are, according to Bergman, as follows:

Oxalic acid,
Sulphuric,
Pyromucous*, *Schrickel.
Muriatic,
Saccholadic,
Nitric,
Sebacic,
Tartaric,
Phofphoric,
Citric,
Succinic,
Fluoric,
Arfenic,
Fornic,
Lactic,
Acetous,
Boracic,
Pruffic, Carbonic, Ammonia.
There is an affinity between fulphur and zinc, as is $\mathbf{1 3 7}_{37}$ evident from thefe two fubstances being often found united; but it is very difficult to form the fulphuret of zinc artificially, on aceount of the rapid oxydation and confequent volatilization of the zinc. Murveau, however, fucceeded in forming it.

Zinc may be combined with phofphorus, by dropping 138 fmall bits of phof fmall bits of phofphorus into it while in a flate of fu- rets, fion. Pelletier, to whom we are indebted for the experiment, added alfo a little refin, to prevent the oxydation of the zinc. Yhofphuret of zinc is of a white colour, a metallic fplendor, but refembles lead more than zinc. It is fomesinat malleable. When hammered or filed, it emits the adour of phofphorus. When expofed to a Itrong heat, it burns like zinc*.

Phofphorus *Aun. de
Phofphorus Cbim. xiii, $12 g$.
(v) The paffages in which he mentions it are as follows :-De Mineral. lib. ii. cap. 11. "Marchafita, five marchafida ut quidam dicunt, eft lapis in fubltantia, et habet multas fpecies, quare colorem accipit cujuflibet metalli, et fic dicitur marchafita argentea et aurea, et fic dicitur aliis. Metallum tamen quod colorat eum non diftillat ab ipfo, fed evaporat in ignem, et fic relinquitur cinis inutilis, et hic lapis notus eft apud alchimicos, et in multis locis veniuntur.

Lib. iii. chap. 10. " As autem invenitur in venis lapidis, et quod eft apud locum qui dicitur Gofelaria eft puriffimum et optimum, et toti fubstantix lapidis incorporatum, ita quod totus lapis eff ficut marchafita aurea, et profundatum eft melius ex eo quod purius.

Lib. v. rap. 5. "Dicimus igitur quod marchafita duplicem habet in fui creatione fubfantiam, argentivivi fcilicet mortificati, et ad fixionem approximautis, et fulphuris adurentis. Ipfam habere fulphureitatem comperimus manifefta experientia. Nam cum fublimatur, ex illa emanat fubftantia fulphurea manifefta comburens. Et fine fublimatione fimiliter perpenditur illius fulphureitas.
"Nam fi ponatur ad ignitionem, non fufcipitillam priufquam inflammatione fulphuris inflammefur, et ardeat. Ipfam vero argenti vivi fubltıntiam manifeftatur habere fenfibiliter. Nam albedinem praftat Veneri meri argenti, quemadmodum et ipfum argentum vivun, et colorem in ipfus fublimatione cæleftium præftare, et luciditatem manifeftam metallicam habere videmns, quas certum reddunc artificem Alchimire, illam has fubfantias continere in radice fua."
(z) The real difcoveret of this method appears to have been Dr Ifaae I.awfon. See Pott, III. diff. 7. and Watfun's Chemical E/fiys.
(A) Putt obferved, that it was $\frac{x}{T}$ th heavier than the zinc from which it was obtained; and Mr Boyle had long before afcertained the fame fact.-Shaw's Boyle, II. 391, 394.

This oxyd of zinc was well known to the ancients. Diofcorides deferibes the method of preparing it. The ancients called it pomplibyx, the early chemitts gave it the name of lana philofospica. Diofcorides compares it to

Phofphorus combines alfo with the oxyd of zinc, a compound which Margraf had obtained during his experiments on phofphorus. When 12 paits of oxyd of zinc, 12 parts of phofphoric glafs, and two parts of charcoal powder, are difilled in an earthen ware setort, and a ftrong heat applied, a metallic fubflance fublimes of a filver-white colour, which when broken has a vitreons appearance. This, according to Pelletier, is phofphuret of oxyd of zinc. When heated by the blowpipe, the phofphorns burns, and leaves behind a glafs tranparent while in fufion, but opaque after cooling \dagger.

Zinc alfo combines with carbon, and forms carburet of zinc. The French chemilts have thewn that zinc gonerally contains fome carbon.

Zinc combines with moft of the metals :

1. It mixes with gold in any proportion. The alloy is the whiter and the more brittle the greater quantity of zinc it contains. An alloy, confilting of equal parts of thefe metals, is very hard and white, receives a fine polifh, and does not tarnifh readily. It has therefore been propofed by Mr Malouin \ddagger as very proper for the fpecula of telefcopes. One part of zinc is faid to deftroy the ductility of 100 parts of gold $\|$.
2. The alloy of filver and zinc is ealily produced by fufion. It is brittle.
3. Platinum combines very readily with zinc. The alloy is brittle, pretty hard, very fufible, of a bluifh *Dr Lewis. white colour, not fo clear as that of zinc.*
4. Zinc may be combined with mercury by fution. The amalgam is folid. It cryftallizes when melted and cooled flowly into lamellated hexagonal figures, with cavities between them. They are compoted of
\dagger Elemens de Chim. Dijon, t. 3 . is uled to rub on eleotrical machines, in order to excite electricity.
5. Zinc combines very readily with copper. This alloy, which is called brafs, was known to the ancients. They ufed an ore of zinc to form it which they called cadinia. This alloy was very much valued by the ancients. Dr Watfon has proved that it was to brafs

* Manchefier Tranf. vol. ii.
which they gave the name of orichalcum.* Their ces was copper or rather bronze (B). Brafs is compofed of about three parts of copper and one of zinc. It is of a beautiful yellow colour, more fufible than copper, and not fo apt to tarnifh. It is malleable, and fo ductile that it may be drawn out into wire. When the alloy contains three parts of zinc and four of copper, it affumes a colour nearly the fame with gold, but it is not fo malleable as brafs. It is then called pincbbeck, prince's metal or Prince Rupert's metal.

6. The alloy of iron and zinc has fcarcely been examined: but Malouin has fhewn that zinc may be ufed
inftead of tin to enver iron plates; a proof that there is Antimony. an affinity between the two metals \ddagger.
7. Tin and zinc combine eafily. The alloy is harder Par. y/42. thantin. This alloy is often the principal ingredient in the compound called feavter.
8. Mr Gmelin has fucceeded in forming an allos of zine and lead by finfon. He put fome fuet into the mixture, and covered the crucible, in order to prevent the evaporation of the zinc. When the zinc exceeded the lead very much, the alloy was malleable, and much harder than lead. A mixture of two parts of zinc and one of lead formed an alloy more ductile and harder than the laft. A mixture of equal parts of zinc and lead formed an alloy differing little in ductility and colour from lead; but it was harder, and more fufceptible of polifh, and much more funorous. When the mixture contained a fmaller quantity of zinc, it Aill approached nearer the ductility and colour of lead, but it continued harder, more fonorous, and fufceptible of polifh, till the proportions approached to one of zinc and 16 of lead, when the alloy differed from the laft metal only in being fomewhat harder.*

The affinities of zinc, according to Bergman, are as Chimo ix. follow6:

Copper,	And affini-
Antimony,	Bies
ITin,	
Mercury,	
Silver,	
Gold,	
Cobalt,	
Arfenic,	
Platinum,	
Bifmuth,	
Lead,	
Nickel,	
Iron.	

Sect. X. Of Antimony.

The ancients were acquainted with an oxyd of antimony to which they gave the names of $\sigma \tau \mu \mu$, and fibiam. Pliny* informs us, that it was found in filver :Pbiny, 1. ore; and we know that at prefent there are filver ores \dagger xxiii. c. 6 . in which it is contained. It was ufed as an external \dagger Kirwurn's application to fore eyes; and Pliny gives us the method Mincr. ii. of preparing it \ddagger. Galen fuppofes that the rirpaz wor \ddagger Pliny, ifid. of Hippocrates was a preparation of antimony; but Pliny, this wants proof. It does not appear, however, that Difcovery the ancients confidered this fubftance as a metal, or that of antimothey knew antimony in a late of purity (c). Who firf ny. extracked it from its ore we do not know ; but $B_{d i l}$ lil Va . lentine, a chemift of the 1 Gth century, is the firf who

P P^{2}
defcribes
(B) The ancients do not feem to have known accurately the difference between copper, brafs, and bronze. Hence the confution obfervable in their names. They confidered brafs as only a more valuable kind of copper, and therefore often uicd the word as indifferently to denote cither. It was not till a late perind that mineralogifts began to make the diftinction. They called copper es cyprium, and afteswards only cygrium, which in procefs of time was converted into cuprum. Trinen thefe changes took place is not known accurately. Pliny ufes cyprium, lib. xxxvi. c. 26. The word cuprum occurs firt in Spartian, who lived about the year 2gc. He fays in his life of Caracalla, cancelli ex ere vel cupro.
(c) Mr Roux indeed, who at the requelt of Count Caylus analyfed an ancient mirror, found it compofed of copper, lead and antimony. This would go fir to convince us that the ancients knew this metal, provided it could be proved that the mirror was rcally an ancient one; but this point ippears to be extremely doubtful.
$\underbrace{\text { Antimony: }}$ defcribes the procef. To him indeed we are indebted for our acquaintance with many of the properties of this metal.

Antimony is of a white colour, with a fhade of grey.
If Fourcroy. It has a Senfible tafte, but no fmell $\|$.
143. It is neither malleable nor ductile, but exceedingly

Propertics
of antimo-
ny.
§ Kirzuan's
Miner. ii.
244.
© Bergman. 6,702; according to Bergman, 6,860. Its hardnefs is $6,5 \$$. It melts at 809° Fahrenheit $\%$. If after this the beat be increafed, the metal evaporates. On cooling it alfumes the form of oblong crytals, perpendicular to the internal furface of the veffel in which it cools. It is to this ciyftallization that the laminated fructure which antimony always affumes is ouing.
144
Its oxyds,
Neither air nor water have much effect on this metal.
When antimony is beat to powder, and expofed for fome time to a gentle heat, it abforbs oxygen, and is converted into a grey powder. Th's is the grey oxyd of antimony. When this metal is kept for fome time melted in contact with air, it fublimes in the form of a white powder, formenly called frow or white flowers of antimony. This is the white oxyd of anlimony. This oxyd may be procured alfo by pouring nitric acid on antimony, and then evaporating to drynefs. Antimo. ny attrants the oxygen from the acid, and thus paffes rery rapidly into the fate of an ozyd. This oxyd feems to confitt of about 77 parts of antimony and 23 of oxygen.* 'The nature of thefe oxyds has never yet been accurately inquired into. It is not even known at prefent whether the white oxyd obtained by heat and that obtained by nitric acid contain the fame quantity of oxygen. The experiments mentioned by Mr Kirwan
\dagger Ibid. make the contrary probable \dagger; and yet thefe oxyds have too many qualities in common to render thefe experiments conclufive. The white oxyd of antimony is \pm Routle. foluble in water \ddagger; and when fufel, is converted into a tranfpatent glafs. The white oxyd obtained by nitric acid feems to polfefs many of the properties of an acid.

The affinities of the grey oxyd of antimony are, according to Bergman, as follows:

Sebacic acid,
Muriatic,
Benzoic (n)?
Oxalic,
Sulphuric,

145
Sulphurets,

Pyromucous §,
Nitric,
Tartarous,
Saccholactic,
Phofphoric,
Citric,
Succinic,
Fluoric,
Arfenic,
Formic,
Lactic,
Acetous,
Boracic,
Pruffic,
Carbonic.
Sulphur combines readily with antimony. This comfound is often found native : it was formerly called an.
timony, and the pure metal was then called regulus of antimony. Sulphuret of antimony is eafily melted by a moderate heat: if the heat be continued, the fulphur fublimes, and at the fame time the antimony abforbs oxygen, and is converted into a grey oxyd. This fulphuret is compofed of 74 paits of antimony and 26 of filphur.*

The grey oxyd of antimony is alfo capable of combi ning with about $\frac{4}{\pi} \frac{4}{0}$ of fulphur. This compound, by fufion, may be converted into glafs. It was formerly ufed in medicine under the name of $g l a / s$ of antimony.

When equal parts of antimony and phofphoric glats are mixed together with a little charcoal powder, and melted in a crucible, phofphuret of antimony is produced. It is of a white colour, britile, appeass laminated when broken, and at the fracture there appear a num. ber of fmall cubic facettes. When melted it emits a gieen flame, and then fublimes in the form of a white powder. Phofphuret of antimony may likewife be prepared by fuling equal pasts of antimony and phofphoric glafs, or by dropping phofphorus into melted antimony \dagger.

Antimony is capable of combining with mott of the metals.

1. Gold may be alloyed with antimeny by fufing them together. The antimony is afterwards feparable by an intenfe heat. This alloy is little known, and has never been applied to any ule.
2. The alloy of filver and antimony is brittle, and its fpecific gravity, as Gellert has obferved, is greater than intermediate between the fpecific gravitios of the two metals which enter into it.
3. Platinum eafily combines with antimony. The alloy is brittle, and much lighter than platinum.* The *Dr Lezuis. antimony cannot afterwards be completely feparated by heat.
4. Mercury does not eafily combine with antimony. Mr Gellert fucceeded in amalgamating this metal by putting it into hot mercury, and covering the whole with water.
5. Copper combines readily with antimony by fufion. The alloy is of a beautiful violet colour, and its fecific gravity is greater than intermediate \dagger.

+ Gellert.

6. Iron combines with antimony, and forms a brittle hard alloy, the fpecific gravity of which is lefs than intermediate. The magnetic quality of iron is much more diminifhed by being alloyed with antimony than with any other metal \ddagger.
7. The alloy of tin and antimony is white and brittle; its 〔pecific gravity is lefs than intermediate \oint.
8. Wben equal quantities of lead and antimony are fufed, the alloy is porous and brittle: three parts of lead and one of antimony form a compact alloy, malleable, and much harder than lead: 12 parts of lead and one of antimony form an alloy very malleable, and a good deal harder than lead: 16 parts of lead and one of antimony form an alloy which does not differ from lead except in hardnefs \mathbb{T}. This alloy forms $\$$ Gmelin, printers types.
9. Zinc and antimony form a brittle alloy, the fpecific gravity of which is lefs than intermediate.* The ${ }^{3}$ r alloys of antimony are little known. Gellert is almoft Gcllert.
the only perfon who has examined them. It would require a great number of experiments to be able to $\mathrm{Kix}_{\mathrm{x}}$ the proportions of their ingredients.

The affinities of antimony are, according to Dergman, as follows:
Iron,
Copper,
Tin,
Lead,
Nickel,
Silver,
Bifmutl,
Zinc,
Gold,
Platinum,
Mercury,
Arfenic,
Cobalt,
Sulphuret of arfenic,
Sulphur,
Phofphorus ?

Sect. XI. Of Bifmuth.

The ancients appear to have known nothing of bifmuth, nor do we know who difocovered it ; but it is firft mentioned by George Agricola, who was born
148 about the end of the 15 th century.
Properties Bifmuth is of a yellowifh or reddifl white colour, of bifmuth, and almof deftitute both of tafte and fmell.

+ Brifon. vity is $2,8227 \ddagger$. It melts at 460° Fahrenheit \ddagger.
Levuis. When heated in clofe veffels it fublimes. When allowed to cool flowly after fufion it ctydtallizes.

Bifmuth is not altered by water. When expofed to the air it foon tarnifhes.

When hifmuth is kept fufed in contant with air, it is gradually oxydated. When heated red hot, it emits a very faint blue flame, and its oxyd evaporates in the form of a yellowith fmoke. When this fmoke is collect. ed, it is found to confift of a brown coloured powder. This is the lrown oxyd of bifmuth. It is compored of - Kirwan's about 94 parts of bifmuth, and 6 of oxygen*. Bifmuth Miner. ii. decompofes nitric acid with great rapidity, by attract489.
\dagger Ibid. ing its oxygen. If the quantity of acid be confiderable, it diffolves the oxyd as it forms; but the greater part of it may be precipitated by diluting the acid with water. This precipitate, which is a white powder, is white oxyd of bifmuth. It is compored of about 8_{4} parts birmuth, and 16 of oxygent.

The affinities of the oxyds of bifmuthare, according to Bergman, as follows :
Oxalic acid,
Arfenic,
Tartarous,
Phofphoric,
Sulphuric,
Sebacic,
Muriatic,
Benzoic (E)?
Nitric,
Flueric,
Saccholactic,
Succinic,
\qquad
\qquad,
two parts of id, thre af and bilmuth, form an alloy which melts at the heat of boiling water, which is 212°.

The affinities of bifmuth, according to Bergman, are And affinin as follow's:

$$
\begin{aligned}
& \text { Lead, } \\
& \text { Silver, } \\
& \text { Gold, } \\
& \text { Mercury, }
\end{aligned}
$$

* Ann. de

Ann. de
Cbim. xiii.
I30.
152
Alloys,

+ Keir,
y Marquer's of both thefe is greater than intermediate \ddagger. Diq.

3. The alloy of bifmuth and platinum is alfo very \ddagger IVido brittle. When expofed to the air, it affumes a purple, violet, or blue colour. The bifmuth may be feparated by heat $\$$.
4. Mercury diffolves bifmuth very eafily. The amalgam is more fluid than pure mercury, and has the property of diffolving lead and rendering it alfo fluid\|. \| Cramer.
It is capable, however, of cryftallizing. The cryftals are either oftahedrons, lamellated triangles, or hexagons. They are compofed of one part of bifmuth and two of mercury \ddagger.
5. The alloy of copper and bifmuth is not fo red as jon, i. 3 . copper.
6. Nothing is known concerning the alloy of iron and bilmuth.
7. Bifmuth and tin unite readily. A fmall portion of bifmuth increafes the brightnefs, hardnefs, and fonoroufnefs of tin: It often therefore enters into the compofition of the eompound called perwter. Equal parts of tin and bifmuth form an alloy that melts at 280° : eight parts of tin, and one of bifmuth, melt at 390° : two parts of tin, and one of birmuth, at $330^{\circ} \mathrm{\delta}$. . The a colour, a clofe grain, but very brittle.
8. Bifmuth does not combine with zinc.
9. The alloy of antimony and bifmuth is unknown.

Bifmuth likewife enters into triple compounds with
metals: Two parts of lead, three of tin, and five of

Lead,

$$
\begin{aligned}
& \text { Antimony, } \\
& \text { Tin, }
\end{aligned}
$$ Copper, Platinum, Nickel, Iron, Sulphuret of alkali, Sulphur, Phofphorus?

Sect. XII. Of Arfenic.
The word at fenic (apatixxoy) occurs firt in the works of Diofcorides, and of fome other authors who wrote about the beginning of the Chriftian era. It denotes in their works the fame fubitance which Ariftotle had called oxisapaxn (F), and his difciple Theophraftus apperixey, which is a reddith coloured mineral, compofed of arfenic and fulphur, ufed by the ancients in painting, and as a medicine.

The white oxyd of arfinic, or what is known in commerce by the name of arfenic, is mentioned by Avicenna in the IIth century ; but at what period the metal called arfenic was firlt extracted from that oxyd is unknown. Paracelfus feems to have known it. It is mentioned by Schroeder in his Pharmacopoia publifhed

- Bergman,
ii. 278 .

154
Properties
of Arfenic, \dagger Kirzyan's
Miner. ii.
254.
\ddagger Bergman,
ii. 278.
§ 1 bid.
155
Its oxyds, || Habneman, Сbim. Ann. 5788, i. 182. in $16 .+9^{*}$.

Artenic when pure is of a bluith white colour. It is exceedingly brittle. Its hardnefs is $7 \boldsymbol{7}$. Its fpecific gravity 8,310.士.

When expofed to the temperature of 354° in clofe veifels it fublimesf, and cryftallizes in regular tetrakedrons.

It is not much altered by water. Boiling water, however, is capable of difolving and retaining rofooth of arfenic ; but that part of the metal is no doubt reduced to the ftate of an oxyd $\|$.
When arfenic is expofed to the open air, it very foon lofes its luftre, and is gradually converted into a greyifh black fubfance by combining with oxygen. This is called the grey oxyd of arjenic.

When expofed to a moderate heat in contact with air, it fublimes in the form of a white powder, and at the fame time emits a fmell refembling garlic. If the heat be increafed, it burns with an obfcure bluifh flame. This fublimate is white oxyd of arfenic, which is compo-- Kirzvan's fed of 93 parts of arfenic and 7 of oxygen T.

Mineral. ii. It is of a fharp acrid tafte, which at laft leaves an im. 490.
§ Bergman,
ii. 278 .

+ Brandt,
AEf. Upfal. 1733 .
\& Bergman,
ii. 278.
preffion of fweetnefs, and is one of the molt virulent poifons known. It has an aliacious fmell. It is foluble in 80 parts of water at the temperature of 60°, and in 15 parts of boiling watert. Wher this folution is evaporated, the oxyd cryflallizes. \dagger When heated to 283°, it fublimes: if beat be applied in clofe veffels, it becomes pellucid like glafs, but when expofed to the air, it foon recovers its former appearance. The fpecific gravity of this glafs is 5,000 ; that of the white oxyd, $3,706 \ddagger$. This oxyd is capable of combining with moft of the metals, and in general renders them brittle. Its affinities, according to Dergman, are as follows :

Muriatic acid,
Oxalic,
Sulphuric,
Nitric,
Sebacic,
Tartarous, Phofphoric, Fluoric, Saccholactic, Succinic, Citric, Formic, Lactic, Arfenic, Acetous, Pruffic, Ammonia, Water, Alcohol ?
Arfenic, or rather the white oxyd of arfenic, is capable of combining with an additional dofe of oxygen. The compound produced is arfenic acil, firf difcovered by Scheele, which contains 91 parts of arfenic and 9 of oxygen*.

Arfenic combines readily with fulphur. When heat Kirvevan's is applied to a mixture of white oxyd of arfenic and Mincr. ii. fulphur, the oxyd is decompofed, part of the fulphur 490. combines with its oxygen, and the remainder unites with the reduced metal. The fulphuret of arfenic produced by this procefs is of a yellow colour, and was formerly called orpiment. It is compofed, according to Weftrum, of 20 parts of arfenic, and 80 of fulphur \dagger. It is often found native. If a Atronger \dagger Kirwen's heat be applied, fo as to melt the fulphuret, it alfumes Minero ii. a fcarlet colour, and is much lefs volatile than former- 492.
ly. This new compound was formerly called realgar. It is compofed, according to Weftrum, of so parts of arfenic, and 20 of fulphur \ddagger. The difference, there- $\$$ Ibid. fore, between it and orpiment is evident. During the fufion, part of the fulphur without doubt fublimes. It might be called red fulpburet of arfenic.

156

Sulphuret,

$$
157
$$

Arfenic combines readily with phofphorus. The Phofphuphofphuret of arfenic may be formed by diftilling equal ret, parts of its ingredients over a moderate fire. It is black and brilliant, and ought to be preferved in water. It may be formed likewife by puting equal parts of phofphorus and arfenic into a fufficient quantity of water, and keeping the misture moderately hot for fome timeई.

Arfenic unites with moft metals, and in general rea. Ann. de ders them more brittle and more fufible.

Cbim. xiii.

1. Melted gold takes up $\frac{1}{60}$ th of arfenic\|. The al- ${ }^{2} 39$. loy is brittle and pale.
 alloy is brittle.
2. The alloy of platinum and arienic is brittle and very fufible. It was firf formed by Scheffer. The arfenic may be feparated by heat.
3. The amalgam of arfenic is compofed of five parts of mercury and one of arfenic \oint.
Sonner Fid.
4. Copper
(f) Pliny feems to make a dilinction between fandaracha and arfenic. See Lib. xaxiv. c. is.

Cobalt.

+ Gellert.

5. Copper takes up $\frac{5}{6}$ th s of arfenic \dagger. This alloy is white; and when the quantity of arsenic contained in it is fall, both ductile and malleable t. It is called white tombac.
6. Iron is capable of combining with more than its

5 Bergman, own weight of arfenic \int. This alloy is white, brittle,
Ann. de
C him. xiii.
139 .
${ }^{4}$ Kirman's
Miner. ii. 256.

T Bergman,
ibid.

- Ibid.

159 And affineties. and capable of cryftallizing. It is found native $\|$.
7. The alloy of tin and arfenic is harder and more fonorous than tin, and has much refemblance externally to zinc. Tin often contains a fall quantity of arfenic.
8. Lead takes up $\frac{1}{6}$ th of arfenic \boldsymbol{q}. The alloy is britthe and dark coloured.
9. Zinc takes up $\frac{1}{5}$ th of arfenic, antimony $\frac{1}{8}$ th, and bifmuth $\frac{1}{7}$ th.*

The affinities of arfenic, according to Bergman, are as follows :
Nickel,
Cobalt,
Copper,
Iron,
Silver,
Tin,
Gold,
Platinum,
Zinc,
Antimony,
Sulphuret of alkali,
Sulphur,
Phofphorus.

Sect. XIII. Of Cobalt.

A mineral called cobalt (G), of a grey colour, and very heavy, has been ufed in different parts of Europe fince the 15 th century to tinge $g l a f$ of a blue colour. From this mineral Brandt obtained in 1733 a new me\dagger Ac. U_{p} - tall, to which he gave the name of cobalt \dagger.
fab. 193. Cobalt is of a white colour, inclining to a bluish or

Properties of cobalt, \ddagger Leonbardi. § Kirman's as call iron, which melts at 130° Wedgewood. No Miner. ii. 268.

11 Bergman, iv: feel grey. When pure, it is fomewhat malleable while red hot t. Its hardness is 85 . Its specific gravity is heat has been produced great enough to volatilize it \mid.
Cobalt, when pure, does not feem to be affected by air or water.

It is attracted by the magnet.

It is not oxydated by heat without very great diffcults; but it has the property of decompofing nitric 161 re, great rapidity.
The exyd of cobalt is of fo deep a blue as to appear black. The oxyd procured by heat is comported of 88 parts of cobalt and 12 of oxygen; that by nitric acid contains about 77 parts of cobalt and 23 of oxygen. * - Kirman's Its affinities, according to Bergman, are as follows: Miner. ii. Oxalic acid, 268. 490. Muriatic, Sulphuric, Tartarous, Nitric, Sebacic, Phofphoric, Fluoric, Saccholatic, Succinic, Citric, Formic, Lactic, Acetous, Arsenic, Boracic, Pruffic, Carbonic, Ammonia.
The fulphuret of cobalt is not formed without diff- Sulphuret, cutty. It is fcarcely known.

Phofphuret of cobalt may be formed by heating the Phofphumetal red hot, and then gradually dropping in mall bits ret, of phofphorus. It contains about $\frac{1}{15}$ th of phofphorus. It is white and brittle, and when expofed to the air food lopes its metallic lute. The phofphorus is feparated by heat, and the cobalt is at the fame time oxydated. This phofphuret is much more fufible than pure cobalt \dagger.

The com been very little examined into.

1. The alloy of gold and cobalt is not known. 134
2. Cobalt does not combine with filer by fufin \ddagger; but, according to Gellert, the alloy of filer and cobalt \ddagger Bergnocrn's may be formed: it is brittle and of a grey colour g. Ekes. At-
3. The alloy of platinum and cobalt is unknown.
(c) The word cobalt feems to be derived from cobalus, which was the name of a fpirit that, according to the fupertitious notions of the times, haunted mines, deftroyed the labours of the miners, and often gave them a great deal of unneceffary trouble. The miners probably gave this name to the mineral out of joke, because it thwarted them as much as the fuppofed fpirit, by exciting false hopes, and rendering their labour often fruitleft; for as it was not known at firft to what ufe the mineral could be applied, it was thrown afide as ufelefs. It was once cultomary in Germany to introduce into the church-fervice a prayer that God would preferve miners and their works from kobalts and Spirits. See Beckmann's Hifory of Inventions, II. 362.

Mathefius, in his tenth fermon, where he freaks of cadmia folfilis (probably cobalt ore), fays, "Ye miners call it kobolt; the Germans call the black devil and the old devil's whores and hags, old and black kobeh, which by their witchcraft do injury to people and to their cattle."

Lehmann, Paw, Delaval, and Several other philofophers, have fuppofed that frat (oxyd of cobalt melted with glans and pounded) was known to the ancients, and unfed to tinge the beautiful blue glafs Rill vifible in forme of their works; but we learn from Gmelin, who analysed forme of there pieces of glafs, that they owed their blue colour, not to the prefence of cobalt but of iron.

According to Lehmann, cobalt ore was furl unfed to tinge glads blue by Chrifopher Schurer, a glafs-maker at Plattan, about the year 1540 .
(н) Berg. Il. 23I. According to Brifion, $\boldsymbol{\imath}, 8119$.
4. Mercury does not appear to amalgamate with cubalt.
5. The alloy of copper and cobalt is fcarcely known.
6. The alloy of iron and cobalt is very hard, and not eafily bioken. Cobalt generally coutains fome iron, from which it is with great difficulty feparated.
7. The alloy of tin and crbalt is of a light violet celour.
8. Cobalt does not combine with lead by fufion.
9. The alloy of zinc and cobalt is not formed without difficulty.
10. The alloy of antimony and cobalt is unknown.
11. Cobalt does not combine with bilmuth by fu-

- Baumé. fion.*

12. Arfenic combines very readily with cobalt. The alloy is brittle, much more fulible, and more eafily + Bergman, oxydated than pure cobalt \dagger.
iv. ${ }_{165}$ And affinitics.

The affinities of cobalt are as follows:
Iron,
Nickel, Arfenic, Copper, Gold, Platinum, Tin, Antimony, Zinc, Sulphuret of alkali, Sulphur, Phofphorus?

Sect. XIV. Of Nickel.

A heavy mineral of a red colour is met with in feveral parts of Germany, which bears a flrong refemblance to an ore of copper; but none of that metal can

166 be extracted from it : for this reafon the Germans called it kupfer nickel (devil's copper.) Hierne mentioned it in $169+$. Cronltedt was the firlt chemilt who examined it with accuracy. He concluded from his experiments, which were publifhed in the Stockholm Tranfactions for 1751 and $175+$ that it contained a new metal, to which he gave the name of nickel.

Some chemifts, particularly Mr Sage, affirmed, that it contained no new metal, but merely a compound of various known metals, which could be feparated from each other by the ufual proceffes. Thefe affertions induced Bergman to undertake a very laborious courfe of experiments, in order if poffible to obtain nickel in a ftate of purity: for Cronftedt had not been able to feparate a quantity of arfenic, cobalt, and iron, which adhered to it with much obflinacy. Thefe experiments have been very fully detailed in the article Chemistry in the Encycl. to which we beg leave to refer. Bergman has thewn, that nickel poffeffes peculiar properties, and that it can neither be reduced to any other metal, nor formed artificially by any combination of metals. It molt therefore be confidered as a peculiar metal. It may poffibly be a compound, and fo may likewife many other metals; but we muft admit every thing to be a peculiar body which has peculiar properties, and we mult admit every body to be fimple till fome proof be astually produced that it is a compound; otherwife we forlake the road of fcience, and get into the regions of fancy and romance.

Nickel is of a greyifh white colcur, and when lefs pure inclines a little to red.

It is both ductile and malleable. Its hardrefs is 8^{*} Its fpecific gravity 9,000 \dagger. It requires for fufion a ties temperature at lealt equal to 150° Wedgewood \ddagger. *Kirwa

It is powerfully attracted by the magner, and is even Miner. ii. pofferfed of the property of attracting iron. This in ${ }^{281}$. duced Bergman to fuppofe that nickel, when pureft, \dagger Bergman, was fill contaminated with about one-third of iron: \ddagger Ibid. but as this is the only proof of its containing iron, Klaproth, with reafon, deems it an infufficient one, and confiders attraction by the inagnet as a property of nickel§.

When expofed to a Itrong heat, nickel is oxydated Cbim, i. flowly. Its oxyd is of a brown colour ; if impure, it 170. is greenifh. The oxyd of nickel, according to Klaproth, ${ }^{668}$ is compofed of 77 parts of nickel and 33 of oxygen If. Oxyds, Kirvan's
Its affinities, according to Bergman, are as follows: ATiner. ii. Oxalic acid,
Muriatic,
Sulphuric,
Tartarous,
Nitric,
Sebacic, Yhofphoric, Fluoric, Saccholactic, Succinic, Citric, Formic, Lactic, Acetous, Arfenic, Boracic, Pruffic, Carbonic, Ammonia, Putals? Soda? 169 Crontedt found that nickel combined readily with sulphuret, fulphur by fufion. The fulphuret which he obtained was yellow and hard, with finall fparkling facets; but the nickel which he employed was impure.

Nickel combines very readily with phofphorus, either Phofphum by fufing it along with phofphoric glafs, or by drop-ret, ping phofphorus into it while red hot. The phofphu. ret of nickel is of a white colour, and when broke exhibits the appearance of very flender prifms collected together. When heated, the phofphorus burns, and the metal is oxydated. It is compoied of 83 parts of nickel and 17 of phorphorus*. The nickel, however, on "Pelletier, which this experiment was made, was not pure.

Little is known concerning the alloys of nickel with Chim. xiii. other metals. Equal parts of filver and nickel form a 135 . white ductile alloy. Equal parts of copper and nickel form a red ductile alloy. The compounds which this metal forms with tin and zinc are brittle. It does not combine with mercury \dagger. It has a very flrong affinity + Bergman. for iron, cobalt, and arfenic, and is fearcely ever found ii. 23 r. except combined with fome of them.

172
Its affinities, according to Bergman, are as follows:
Iron,
And affinities.
Cobalt,
Arfenic,

I7I Alloys,

Part I. Kanganet

Copper, Gold, Tin, Antimony, Platinum, Bifmuth,
Lead, Silver, Zinc, Sulphuret of alkali, Sulphur, Ploofphorus?.
Sect. XV. Of Manganefe.
The dark grey mineral called manganefe, in Latin magnefia (according to Boyle, from its reiemblance to the nagnet), has been long known and ufed in making glafs. A mine of it was difoovered in England by Mr Boyle. It was long fuppoted to be an ore of iron; but Pott and Cronftedt having demonftrated that it contained very little of that metal, the latter referred it in his Mineralogy to a diftinet order of earths, which he called torra magnefia. Bergman, from its fpecific gravity, and feveral other qualities, fufpected that it was a metallic oxyd: he accordingly made feveral attempts to reduce it, but without fuccei's ; the whole mafs either affuming the form of fcorix, or yielding only fmall feparate globules attracted by the magnet. This difficulty of fufion led him to fufped that the metal he was in queft of hore a ftrong analogy to platinum. In the mean time, Dr Gahn, who was making experiments on the fame mineral, actually fucceeded in reducing it by the following procefs: He lined a crucible with charcoal powder moilfened with water, put into it fome of the mineral formed into a ball by means of oil, then filled up the crucible with charcoal powder, luted another crucible over it, and expofed the whole for about an hour to a very intenfe heat. At the bottom of the crucible was found a metallic button, or rather a number of fmall metallic globules, equal in weight to onethird of the mineral employed*. It is ealy to fee by what means this reduction was accomplifhed. The charcoal attracted the oxygen from the oxyd, and the metal remained behind. This metal is called manganefe.

Manganefe is of a greyth white colour. It is not malleable, and yet not fo brittle as to be eafily broken.

Its hardnefs is $8 \dagger$. Its fpecific gravity is $7,000 \ddagger$. Its fufion requires fo great a heat, that it has been very feldom accomplifhed.

When reduced to powder, it is attracted by the magnet.

When expofed to the air, it very foon tarnifhes, and affumes a darker colour, till at laft it becomes black and friable. This change is produced by the abforption of oxygen. li takes place much more rapidly if heat be applied to the metal. The fubftance thus obtained is the black oxyd of manganefe. This oxyd is found in great abundance in nature, though fcarcely ever in a flate of purity. It is compofed of 75 parts of manganefe, and 25 of oxygen*.

Suppl. Vol. I.

I S T R Y.
If a quantity of muriatic acid be poured upon this Manganefe oxyd, and heat applied, part of the acid combines with fome of the oxygen of the oxyd, and flics off in yellow fumes. The oxyd is diffolved in the reft. If potafs be added to this folution, a white powder is precipitated. This is the white oxyd of manganefe. It contions, according to Bergman, about 80 parts of manganere and 20 of oxygen. It foon attracts more oxygen when ex. pofed to the air, and is converted into black oxyd.
The affinities of the white oxyd, according to Bergman, are as follows:

Oxalic acid,
Citric,
Phofphoric, 'Tartarous, Fluoric, Muriatic, Sulphuric, Nitric, Saccholactic, Succinic, Sebacic, Tartaric, Formic, Laftic, Acetous, Pruffic, Carbonic.
The fulphuret of manganefe is unknown. $\quad 976$
Phofphorus may be combined with manganefe by Phofphumelting together equal parts of the metal and of phof. ret, phoric glafs; or by dropping phofphorus upon red hot manganefe. The phofphuret of manganefe is of a white colour, brittle, granulated, difpofed to cryflallize, not altered by expofine to the air, and more fufible than manganefe. When heated the phofphorus burns and the metal becomes oxydated \dagger.
\dagger Pellctier,

Manganefe combines readily with carbon by fufion(1).

Little is known concerning the alloys of manganefe. It combines readily with copper. The compound, according to Bergman, is very malleable, its colour is red, and it fometimes becomes green by age. Gmelin made a number of experiments to fee whether this alloy could be formed by futing the black oxyd of manganefe along with copper. He partly fucceeded, and propofed to fubftitute this alloy inftead of the alloy of copper and arfenic, which is ufed in the arts \ddagger. We believe, how- \ddagger Amm. de ever, that upon trial, the new alloy has been found not Chim. i. to anfwer.

Manganefe combines readily with iron; indeed it has fcarcely ever been found quite free from fome mixture of that metal. It combines alfo very eafily with arfenic and tin, not eafily with zinc, and not at all with mercury 5 .

The affinities of manganefe, according to Bergman, ii. 2 III. are as follows:

$$
{ }^{179}
$$

Copper,
And affini-
tic.
Iron,
137.

177
arbaret,
178
Alloys,
五

-
©

Gold,
Qq Silver,
(1) Bergman, III. 379.-Snmctimes manganefe is very fpeedily $n x y d a t e d$ by expofure to the air ; fometimes fcarcely altered by it, as Klaproth and Pelletier have obferved. Mr Kirwan fuppofes, that the manganefe which is foon altered contains carbon, and that this is the caufe of the difference. See Miner. II. 283.

Tin,
Sulphuret of alkali, Phofphorus?
Carbon?
The three metals, cobal, nickel, and manganefe, refemble iron in feveral particulars: Like it they are magnetic, very hard, and very difficult to fufe: but they differ from it in fpecific gravity, malleability, and in the properties of all their combinations with other fubflances; the oxyds, for inflance of iron, cobalt, nickel, and manganefe, polfefs very different qualities.

Sect. XVI. Of Tungflen.

There is a mineral found in Sweden of an opaque

Difcovery of tungSten, white colour, and great weight; from which laft circumftance it got the name of tungfen, or ponderous fone. Some mineralogits confidered it as an ore of tin, others fuppofed that it contained iron. Scheele analyfed it in 1781 , and found that it was compofed of lime and a peculiar earthy-like fubftance, which he called from its properties tungfic acid. Bergman conjectured that the batis of this acid was a metal; and this conjecture was foon after fully confirmed by the experiments of Mefirs D'Elhuyart, who obtained the fame fubtance from a mineral of a brownifh black colour, called by the Germans wolfraw, which is fometimes found in tin mines. This mineral they found to contain $\frac{65}{80}$ of tungftic acid; the reft of it confifted of inanganefe, iron and tin. This acid fubftance they mixed with charcoal powder, and heated violently in a crucible On opening the crucible after it had cooled, they found in it a button of metal of a dark brown colour, which crumbled to powder between the fingers. On viewing it with a glaf's, they found it to confit of a congeries of metallic globules, fome of which were as large as a pin head. The metal thus obtained is called tungften. The manner in which it was produced is evident ; tungftic acid is compofed of oxygen and tungften : the oxygen combined with the carbon, and left the inetal in a tate of purity.
Tungiten is externally of a brown colour, internally of a fteel grey*.

Its fpecific gravity is $17,600 \neq$. It is more infufible than manganefell.

When heat is applied to tungften it is converted into a yellow powder, compofed of 80 parts of tungften
$\dagger I d$. and 20 of oxygen \dagger. This is the yellow oxyd of tunglen or tungfic acid.

The fulpburet of tungten is of a bluifh black colour, hard, and capable of cryftallizing.
§ Pelletier,
Ann. de
Cbim. xiii. 337.

Phofphorus is capable of combining with tungten§.
Of the alloys of tungften we know nothing, except from the experiments of Elhuyarts, which have been tranfcribed into the article chemiftry in the Encyclopedia; to which, therefore, we beg leave to refer.

Sect. XVII. Of Molybdenum.

The Greek word molybdena, and its Latin trandation plunbago, feem to have been employed by the ancients to denote various oxyds of lead; bit by the moderns they were applied indiferiminately to all fubtances poffeffed of the following properties : Light, friable, and

I S T R Y.
foft, of a dark colour and greafy fecl, and which lesve Molybdea ftain upon the fingers. Scheele firft examined thefe minerals with attention. He found, that two very different fubflances had been confounded together. To one of thefe, which is compofed of carbon and iron, and which has been already defcribed, he appropriated the word plumbago; the other he called molybdena.

Molybdena is compofed of fcaly particles adhering flightly to each other. Its colour is bluifh, very much refembling that of lead. Scheele analyled it, and obtained fulphur and a whitifh powder, which poffeffed the properties of an acid, and which, therefore, he called acid of molybdena. Bergman firft fufpected that the bafis of this acid was a metal. It was at the requeft of Bergman and Scheele that Mr Hielm began the laborious courfe of experiments by which he fucceeded in obtaining a metal from this acid. His method was to form it into a pafte with linfeed oil, and then to apply a very flrong heat. This procefs he repeated feveral times fucceffively. Klaproth and Pelletier alfo attempted to reduce it, and with equal fuccefs. The metal is molybdenum(K).

Molybdenum is extermally of whith rellow colour 183 but its fractare is a whitifh grey.
Hitherto it has only been procured in fmall grains, agglutinated together in brittle maffes.

Its fpecific gravity is 7,500 . It is almof infufible in our fires.

When expofed to a frong heat, it is gradually converted into a whitifh-coloured oxyd \ddagger. When aitric \ddagger Pelleticr acid is poured upon it, molybdenum attracts oxygen, Yourn. ae and is converted into a white exyd, which pofieffes the $P b y . x>85$. properties of an acid \dagger. This is the molybdic acid. \dagger Ibid.
Molybdenum combines readily with fulphur; and the compound has exactly the properties of molybdena, the fubftance which Scheele decompounded \S. Molybdena § IVis. is therefore fulpburet of molybdenum. The reafon that Schecle obtained from it molybdic acid was, that the metal combined with oxygen during his procefs.

Molybdenum is alfo capable of combining with phofphorus*.

Few of the alloys of this metal have been hitherto Ann Pelter examined.

Cbim. xiii.
It feems capable of uniting with gold. The alloy is 137 . probably of a white colourt.

It combines readily with platinum while in the fate \ddagger Run. de rebt, of an oxyd. The compound is fufible. Its fpecific Cbim. viii. gravity is $20,00 \oint$.

The alloys of molybdenum with filver, iron and copper, are metallic and friable; thofe with lead and tin are powders which cannot be fufed*.

Sect. XVIII. Of Uranium.

8.

${ }_{\text {Ann. }} \mathrm{de}$ e tin are powders which cannot be fured*. I\%

* Pelletiar,

Fournal de
There is a mineral found in the George Wagsfort Debyfue, mine at Johann-Georgentadt in Saxony, partly in a Dec. 1848 pure or unmised ftate, and partly Itratifed with other Difcovery kinds of ftones and earths. The firf variety is of a of uraniblackifh colour inclining to a dark iron grey, of a mo- om. derate fplendor, a clofe texture, and when broken prefent a fomewhat uneven, and, in the fmallett particles, a conchoidal furface. It is quite opaque, tolerably hard, and on being pounded yields a black powder. Its $f_{\text {pecific gravity is about } 7,500 \text {. The fecond fort is }}$ diftinguilhed
diftinguifhed by a finer black colour, with here and there a reddifh caft; by a Itronger luftre, not unlike that of pitcoal ; by an inferior hardnefs ; and by a fhade of green, which tinges its black colour when it is reduced to powder.*

This follile was called pechblende; and mineralogifts, milled by the name (L), had taken it for an ore of zinc, till the celcbrated Werner, convinced from its texture, hardnefs, and fpecific gravity, that it was not a blende, placed it among the ores of iron. Afterwards he fuffected that it contained tungflen; and this conjecture was feemingly confirmed by the experiments of tome German mineralogitts, publifhed in the Miners Journal \ddagger. But Klaproth, whofe analyfes always difplay the moft confummate filll, joined with the molt rigid accuracy, examined this mineral about the year 1789, and found that it confilted chiefly of fulphur combined with a peculiar metal, to which he gave the name of uranium (m).

Uranium is of a dark grey colour; intermally it is fomewhat inclined to brown \ddagger.
Its malleability is unknown. Its hardnefs is about 6. It requires a ftronger heat for fufion than manganefe. Indeed Klaproth only obtained it in very fmall conglutinated metallic grains, forming altogether a porous and fpongy mafs.-Its fpecific gravity is $6,440 \mathrm{\|}$.

When expoied for fome time to a red heat, it fuffers no change. By means of nitric acid, however, it may be converted into a yellow powder. This is the yellow oxyd of uranium. This oxyd is found native mixed with the mineral above defcribed. Its affinities have not yet been determined.

Uranium is capable of combining with fulphut. The mineral from which Mr Klaproth firt obtained it is a native fulphuret of uranium.

Nuthing is known concerning the alloys or affinities of uranium.

Sect. XIX. Of Titanium.

There is a mineral found in Hungary which, from its external appeatance, has been called red floorl; but Klaproth, who examined it about the year 1795 , dif. covered that it conlifted chiefly of a peculiar metal, to which he gave the name of tilanium.

Titanium is of a brownifh red colour, and confiderable luftre. It is brittle. Its hardnefs is 9 ; its fpecific gravity 4,18 .

When expofed to a ftrong heat in a clay crucible, it fuffered no alteration, except that its colour became browner ; but in a coal crucible it lof its lultre and broke to pieces.

It is found naturally cryftallized in right-angled quadrangular prifms, longitudinally furrowed, and about $\frac{1}{2}$ inch in length.

No acid had any effect in oxydating it ; but when mixed with five times its weight of potafs, and heated in a porcclain furnace, it melted, and formed when
cold a denfe grejifh mafs, the furface of which was Telluriun. cryftallized. When dutfolved in boiling water, it foon let fall a white powder, weighing about onethird more than the titanium employed. This is the oxyd of 18 . sanium. Fifty gtains of it were reduced by ignition to 38. While hot it was yellowifh, but, like oxyd of zinc, became white as it cooled. When leated on charcoal, it affumes firlt a rofy red, and afterwards a flaie blue colour, and at lalt melts into an imperfeet bead with a finely ftriated furface. Mr Klaproth did not fucceed in reducing it to the metallic ftate.
'I'itanium does not feem to have any affinity for fulphur \dagger.
 in the valley of Menachan in Cornwall, and herice Menachacalled menachanite. Upon this fubltance Mr M Gregor nite. made a very interelting fet of experiments, which were publified in the Journal de Phyfique for 1791. He fufpected it to contain a new metal. From its ptoperties, Mr Kirwan conjectured that it was the fame with titanium;* and this conjecture has been very lately * ATinerz?. confirmed by Mr Klaproth, who analyfed menachanite, ii. $\mathbf{3 j r}$. and found it to be an ore of that metal.

Sect. XX. Of Tellurium.

IN the mountains of Fatzbay, near Zaletha in Tran- Difoovery Sylvania, there is a miue called Mariabilf; the ore of of telluwhich is wrought for the gold that it contains. Mr rium. Muller of Reichenftein examined it in 1782, and fufpected that it contained a new metal ; and Bergman, to whom he had fent fome of the ore, was of the lame opinion: but the quantity of the mineral which thefe chemitts had examined was too inconfiderable to enable them to decide with certainty. Klaproth analyfed a larger quantity of it about the year 1797, and found that 1000 parts of it confifted of 72 parts of iron, 2,5 of gold, and 225,5 of a new metal, to which he has given the name ot tellurium (N).

Tellurium is of a white colour like tin, approaching 190 fomewhat to the grey colour of lead.*

It is very brittle and friable. Its fracture is lami- * Nlaprots, nated. Its fpecific gravity is 6,115 .

It is as eafily melted as lead. When fuffered to cool Magazine, quietly and ga adually, it readily affumes a cryftallized furface \dagger.
\dagger Mulder.
When heated by the blowpipe upon charcoal, it burns with a very lively flame of a blue colour, inclining at the edges to green. It is fo volatile as to rife entirely in a whitifh grey fmoke; at the fame time it exhales a difagreeable odour like that of radifhes. This fmoke is the white oxyd of tellurium, which may be formed alfo by diffolving the metal in nitro-muriatic acid, and pour. ing into the faturated folution a quantity of water: a white powder precipitates, which is the oxyd \ddagger. \quad. K'laprotho melts, and appears, after cooling, of a yellow fraw colour, having acquired a fort of radiated texture. When

Qq2 formed
(L) Biende is the name given to ores of zinc.
(M) From Uranus (Ouparos), the name given by Mr Bode to the new planet difcovered by Herfchel; which name the German aftionomers have adopted. Mr Klaprotlicalled the metal at firft uranitc; but he afterwards changed that name for uranium.
(N) Mr Kirwan, in the new edition of his Mineralogy, which was publifhed before Mr Klaproth's experiments were known, gives this metal the name of Sylvanitc.-Tellurium exifts in feveral other mines in the fame mountains.
red heat, orilliant metallic drops are obferved to cover the upper part of the retort, which at intervals fall to the bottom of the veffel, and are immediately replaced by others. Afier cooling, metallic fixed drops are found adhering to the fides and at the bottom of the veffel; the remainder of the metal is reduced. Its furface is brilliant and almoft always cryftallized. When this oxyd is expofed to heat on charcoal, it is reduced

- Slaprotb. with a rapidity that refembles detonation.*

Tellurium combines with fulphur. The fulphuret of this metal is of a grey colour and radiated ftructure.

When placed on red hot charcoal, the metal burns as Telluriume well as the fulphur with a blue fiame.

Tellurium amalgamates with mercury by fimple tri-
turation \oint. - The other properties of this metal are un- \oint Mulier. known.

A new metal has lately been difcovered by Vauquelin Chromum. in the red lead ore of Siberia. It is grey, very hard, brittle, and eafily cryftallizes in fmall needles \dagger. He \dagger Nicbolfot's has given it the name of chromum (o).

Fournal, ii. 146.

We have now defcribed all the metals at prefent
known. The following table will exhibit in one view

Metals.	Colour.	Hardnefs.	Specific Gravity.	Fufing Point.	$\begin{gathered} \text { Mallea- } \\ \text { bility. } \end{gathered}$	Ductility	
Gold.	Yellow.	6	19,300	$\begin{gathered} 32 \mathrm{~V} .(\mathrm{P}) \\ \mathrm{I} 298 \mathrm{~F} . \end{gathered}$	282000	500	
Silver.	White.	$6 \frac{1}{2}$	10,510	$\begin{aligned} & 28 \mathrm{~W} . \\ & \text { IO44 F. } \end{aligned}$	160000	270	
Platinum.	White.	$7^{\frac{1}{2}}$	23,000	150 W.?		above 500	
Mercury.	White.		${ }^{13,568}$	-39 F.			
Copper.	Red.	8	8,870	$\begin{aligned} & { }^{27} \mathrm{~W} . \\ & \mathrm{I} 449 \mathrm{~F} . \end{aligned}$		$299 \frac{1}{4}$	
Iron.	Blue-grey.	9	7,788	$\left\|\begin{array}{c} 150 \mathrm{~W} \\ 20577 \mathrm{~F} \end{array}\right\|$		450	Magnetic.
Tin.	White.	6	7,299	410 F	2000	49	
Lead.	Blue-white.	5	11,352	540 F .		$29 \frac{1}{4}$	
Zinc.	White.	6	7,190	700 F.		\bigcirc	
Antimony.	Grey.	$6 \frac{1}{2}$	6,860	700 F.	-	\bigcirc	
Bifmuth.	Yellow-white.	6	9,822	460 F.	\bigcirc	\bigcirc	
Arenic.	White.	7	8,310	400 F. ?	\bigcirc	-	
Cobalt.	White.	8	8,150	$\left\|\begin{array}{c} \text { I } 30 \mathrm{~W} \\ \mathrm{I} 7977 \mathrm{~F} \end{array}\right\|$			Magnetic.
Nickel.	White.	8	9,000	$\left\lvert\, \begin{gathered} 150 \mathrm{~W} . \\ 20577 \mathrm{~F} . \end{gathered}\right.$			Magnetic.
Manganefe.	White.	8	7,000	$\begin{gathered} \mathrm{I} 50 \mathrm{~W} \\ 20577 \mathrm{~F} . \end{gathered}$	0	\bigcirc	Magnetic.
Tungften.	Brown.	6	17,600		-	-	
Molybdenum.	Grey.	,	7,500		\bigcirc	\bigcirc	
Uranium.	Grey.	6	6,440				
Citanium.	Red.	9	4,180		0	-	
Tellurium.	White.		6,115	540 F	\bigcirc	\bigcirc	
Chromum.	Grey.				\bigcirc	\bigcirc	

192
General table of the properties of the metals.
(o) From xpaus, becaufe it poffeffes the property of giving colour to other bodies in a remarkable degree.
(r) W. Wedgewood's pyrometer. F. Falarenheit's thermometer.

We have feen that all the metals are capable of combining with oxygen; that dimolt every one forms various oxyds, containing different quantities of oxygen, and varying in colour and other properties according to the proportion of oxygen which they contain. No part of chemaltry has more engaged the attention of philn. fophersthan the metallic oxyds; and yet fuch is the dificulty of the fubject, that fearcely any part of chemiltry is more imperfectly underltond.

We neither know how many oxyds every particular metal is capable of forming, nor the manner in which they are formed: neither have the differences between oxyds of the fame metallic bafe been enquired into; though there cannot be a doubt that they differ, not only in their affinities, but in many of their other pro. perties. The whbite oxyd of manganefe, for inftance, combines readily with acids, but the black is incapable of uniting with any.
Mr Prouf, in a very valuable paper which he lately

- Ann. de

Cbim. Exiii
85 - -Ni-
cbolfon's
Journ. i.
453. publifhed concerning the oxyds of iron*, hints that metals are only capable of two degrees of oxydation, or, which is the fame thing, that only two different oxyds can be produced from the fame metal. We think he has proved this completely as far as iron is concerned; and probably the obfervation holds good with refpect to many other metals. Arienic, copper, tin, molybdenum, and perhaps even mercury, feem to be capable of only two degrees of oxydation ; but it would require a very numerous and accurate fet of experiments to be able to deternine the matter, or even to form a probable conjecture. Analogy is certainly againt the fuppofition; for it has been demonitrated that fome fubftances at leaft are capsble of combinng with three different dofes of oxygen (Q), and why may not this be the cafe alfo with the metals? (11).

There is onc oblervation, however, which we owe to Mr Prouft, the truth of which cannot be doubted, and which is certainly of the highelt importance-that metals are not capable of indefinite degrees of oxpdation, but only of a certain number; and that every particular oxyd confifts of a determinate quantity of the metal and of oxygen chemically combined. Iron, for inftance, is not capable, as has been fuppofed, of uniting with oxygen in all the intermediate degrees between $\frac{7 y}{200}$ and rob, and confequently of forming 20 or 30 different oxyds; it can only combine with precifely $\frac{27}{10} 0$ parts, or $\frac{48}{800}$ parts, and with no other proportions; and therefore is only capable of forming two oxyds, the green and the brown. In like manner, every other metal com. bines with certain proportions of oxygen, and forms either two oxyds or more according to its nature. To talk therefore of oxydating a metal indefinitely is not accurate, except it be intended to fignify the combining of part of it with oxygen, while the reft remains in its natural ftate. If iron be oxydated at all, it mult be
combined with $\frac{27}{150}$ of oxygen; if it be oxydated more Tellurium. than this, it mult be combined with $\frac{48}{80}$ of oxygen.

We beg leave to add another obfervation, which we conlider as of no leis importance, and which will ferve in fome meafure to modify and explain what has been juft now faid. Oxygen is capable of uniting with metals, or with any other fubftance for which it has an affinity, only in one determinate pr portion. Iron, for in. flance, and oxygen can only combine in the proportion of 73 parts of iron and 27 of oxygen. Thefe two quantities faturate each other, and form a compound which is incapable of receiving into it any more oxygen or iron: this compound is the green oxyd of iron. How comes it then, it will be alked, that there is another oxyd of iron, the brown oxyl, which contains 52 parts of iron and 48 of oxygen, proportions certainly very different from 73 and 27 ? We anfwer, there is an affinity between the green oxyd of iron and oxygen; they are capable of combining together, and of faturating each other in the proportion of about 71,5 parts of green oxyd and 28,5 of oxygen; and the compound which they form is the brown noyd, which of courfe contains 52 parts of irun and 48 of oxygen: But then it is not formed by the combination of thefe two fubflances directly, but by the combination of the green oxyd and oxygen. In like manner, the arfenic acid is not compofed of arfenic and oxygen combined dirently, but of white oxyd of arfenic combined with oxygen. The very fame thing takes place in all the other metals. We cannot at prefent prove the truth of this obfervation in a fatisfactory manner, becaufe it would be neceffary to draw our proofs from combinations which are yet undefcribed; but we will have occafion to confider it afterwards (12).

We have feen, that all the metals hitherto tried are capable of combining with fulphur, except gold and titanium ; that all of them on which the experiments have been made can be united with phofyhorus; and that three of them, iron, zinc, and manganefe, united with earbon; and perhaps many more of them may hereafter be found capable of affuming the form of carburets.

We have feen, too, that they are capable of uniting with one another and forming alloys. This was long reckoned peculiar to metals, and it is at prefent one of the beft criterions for determining the metallic nature of any fubflance. Much is wanting to render the chemiltry of alloys complete. Many of them have never been examined; and the proportions of almolt all of them are unknuwn. Neither has any accurate method been yet ditcovered of determining the affinities of metals for each orher. The order of affinities which we have given for each metal was determined by Bergman; but he acknowledged himfelf that he wanted the proper data to enfure accuracy.

Chap.
(e) We fhall fee afterwards that azot is one of thefe.
(11) When we oxyd any metal in a low temperature, it goes regularly on, combining with frefl portions of oxygen untul it is faturated. How can we make this fat accord with the theory of each of the metals being capable of exifting in but two degrees of oxydation? Will it be fufficient to fay that the frefh portions of oxygen unite to frefh portions of the metal? Or would this account for the various colours fome metals affume in the courfe of oxydation?
(12) A shis fanciful theory is founded on deductirns from "combinations which are yet undefcribed," we fhall wait till we meet with them before we enter on its examination.
T. P. S.

The word earth, in common language, has two meanings; it fometimes fignifies the globe which we inhabit, and fome imes the mould on which vegetables grow, Chemifts have examined this mould, and have found that it confins of a variety of fuibitances mixed together without order or regularity. The greatelt part of it, however, as well as of the flones, which form apparently fo large a proportion of the globe, covifits of a fmall number of bodies, which have a variety of common properties. Thefe bodies chemifts have agrced to clafs together, and to denuminate earths.

Every body which poffelies the following properties

1. Infoluble in water, or nearly fo; or at leaft becoming infoluble when combined with carbonic acid.
2. Little or no tafe or fimell; at leaft when combined with carbonic acid.
3. Incombuftible, and incapable while pure of being altered by the fire.
4. A fpecific gravity not exceeding 4,9.
5. When pure, capable of affuming the form of a white powder.

The earths at prefent known amount to eight ; the names of which are, lime, magnefia, barytes, ftrontites, alumina, filica, jargonia, glucina.

Every one of the above characteriftics is not perhaps rigoroully applicable to each of thefe bodies; but all of them poffers a fufficient number of common properties to render it ufeful to arrange them under one clafs.

Sect. I. Of Lime.

Lime has been known from the earlieft ages. The ancients emploged it in medicine: it was the chief in. gredient in their mortar; and they ufed it as a manure

195 to fertilize their fields.
It abnunds in many parts of the world, or perhaps we fhould rather fay, that there is no part of the world where it does not exill. It is found pureft in limeftones, and marbles and chalk. None of thefe fubftances, however, is, Atrifly fpeaking, lime; but they are all capable of becoming lime by a well-known procefs, by keeping them for fome time in a white heat : this procefs is called the lurning of lime; the product is denominat-

I'ure lime is of a white colour, moderately hard, but eafily reduced to a powder.

It has a hot burning talle, and in fome meafure corrodes and deftroys the texture of thofe animal bodies to which it is applied. It has no fmell. Its fpecific gravity is $2,3^{*}$ -

- Kirzuan's
poured on newls burnt lime, it fwells and falls to pieces, and is foon reduced to a very fine powder. In the mean time, fo much heat is produced, that part of the water flies off in vapour. If the quantity of lime flacked (as this procefs is termed) be great, the heat produced is fufficient to fet fire to combultibles. In this manner, veffels loaded with lime have fometimes been burnt. When great quantities of lime are flacked in a dark place, not only heat, but light alfo is emitted,
$\|$ Your. de as Mr Pelletier has obferved \oint. When flacked lime is
Phy. t .22 . weizhed, it is found to

This additional weight is owing to the combination of part of the water with the lime; which water may be

I S T R Y.
feparated again by the application of a red heat ; and by this procefs the lime becomes juft what it was before being flacked\|.

Six hundred parts of water, at the temperature of 60°, diffolve about one part of lime ; boiling ho: water diffolves about double that quantits*. This folution is called lime.water. It is lim-id, has an acrid tafte, Kirzuan's and changes vegetable blue colours to green. One ounce troy of lime-water contains about one grain of lime.

One thoufand parts of lime are capable of abforbing, and retaining, at a heat of $600^{\circ}, 228$ parts of water §. § Lavojifer.

Lime has never yet been obtained in the flate of cryftals.

It is incapable of being fufed by the moft violent heat that can be produced in furnaces, or even by the moft powerful burning glaffes.

Lime unites readily with fulphur, and forms fulphuret Sulphuret, of lime. This compound may be obtained by mixing unflacked lime and flowers of fulphur togerher, and adding a little water. The heat produced by the flacking of the lime is fufficient to make the fulphur and the lime unite. This fulphuret is of a red colour. When water is poured on it, fulphurated hydrogen gas is emitted. The fulphur is gradually converted into fulphuric acid by uniting with the oxygen of the water, the hydrogen of which fies off in the form of gas, difolving at the famc time a part of the fulphur.

It is capable alfo of combining with phofphorus.199
 ance of a moderate hed, and gives out phofphurated hydrogen gas.

Limeftone and chalk, though they are capable of be. Caufe of ing converted into lime by lurning, poffefs hardly any the diffeof the properties of that active fubltance. They are rence betaftelefs, fearcely foluble in water, and do not percep- ftome and tibly aft on animal bodies. Now, to what are the new lime, properties of lime owing? What alteration does it undergo in the fire ?

It had been long known, that limertone lofes a good deal of weight by being burned or calcined. It was natural to fuppofe, therefore, that fomething was feparated fromit during calcination. Accordingly, Van Helmont, Ludovicus, and Macquer, made experiments in fucceffion, in order to difcover what that fumething was; and they concluded from them that it was pure suater, which the lime recovered again when expofed to the atmofphere. As the new properties of lime could hardly be afcribed to this lofs, but to fome other caufe, According Stahl's opinion, like all the other cliemical theories of ${ }^{\text {to Stahl }}$; that wonderful man, was generally acceded to. He fuppofed that the new properties, which lime acquired by calcination, were owing encirely to the more minute divifion of its particles by the action of the fire. Boyle indeed had endeavoured to prove, that thefe properties were owing to the fixation of fre in the lime; a theory which was embraced by Newton and illuftrated by Hales, and which Meyer new modelled, and explained with fo much ingenuity and acutenefs as to draw the attention of the mof diltinguifhed chemifts. But while Meyer was thus employed in Germany, Dr Black of Edinburg publifhed thofe celebrated experiments which form fo brilliant an era in the hiftory of chemitry.
He firft afcertained that the quantity of water fepa- Explained rated from limentone during its calcination was not near- byDrblack

Lime. ly equal to the weight which it loft. He concluded in confequeace, that it mult have loft fomething elfe than mere water. What this could be, he was at firf at a lofs to conceive; but recollecting that Dr Hales had proved, that limeftone, during its folution in acids, emitted a great quantity of air, he conjectured that this might probably be what it loft during calcination. He calcined it accordingly, and applied a pneumatic apparatus to receive the product. He found his conjecture verified; and that the air and the water which feparated from the lime, were together precifely equal to the lofs of weight whichit had fuftained. Lime therefore owes its new properties to the lofs of air ; and limeltone differs from lime merely in being combined with a celtain quantity of air: for he found that, by reftoring again the fame quantity of air to lime, it was converted into limeftone. This air, becaufe it exifted in lime in a fixed Itate, he called fixed air. It was afterwards examined by Dr Priefley and other philofophers, found to poffefs peculiar properties, and to be that fpecies of gas now known by the name of carbonic acid gas. Lime then is a fimple fubftance, that is to $f_{\lambda} y$, it has never yet been decompounded; and limeftone is compored of carbonic acid and lime. Heat feparates the carbonic acid, and leaves the lime in a fate of purity.
The affinities of lime, according to Bergman, are as follows:

> Oxalic acid,
> Suberic (R) ?
> Sulphuric,
> Tartarous,
> Succinic,
> Phofphoric,
> Saccholactic,
> Nitric,
> Muriatic,
> Sebacic,
> Fluoric,
> Arfenic,
> Formic,
> Lactic,
> Citric,
> Benzoic,
> Sulphurous,
> Acetous,
> Boracic,
> Nitrous,
> Carbonic,
> Pruffic,
> Sulphur,
> Phofphorus,
> Water,
> Fixed oil.

Sect. Il. Of Maznefia.
Difcovery About the beginning of the eighteenth century, a of magne- Roman canon expoficd a white powder to fale at Rome sia.
as a cure for all difeafes. This powder he called magnefia alba. He kept the manner of preparing it a profound fecret ; but in 1707 Valentini informed the public that it might be obtained oy calcining the lixivium which remains after the preparation of nitre; and two years after, Slevogt difcovered that it might be precipitated by potafs from the mother ley (s) of common. lalt. This powder was generally fuppofed to be lime, till Frederic Hoffman obferved that it formed very different combinations with other bodies.* But little •Bergman, was known concerning its nature till Dr Black publifh. i. 365° ed his celebrated experiments in 1755 . Margraf publithed a diflertation on it in 1759, and Bergman another in 1775 , in which he collected the obfervations of thefe two philofophers, and which lie enriched allo with many additions of his own.

As magnefia has never yet been found native in a Method of flate of purity, it may be prepared in the following procuring manner : Sulpbat of magnefia, a falt compofed of this it. earth and fulphuric acid, exifts in fea water, and in many fprings, particularly fome about Epfom, from, which circumftance it was formerly called Epfom falt. This falt is to be diffolved in water, and half its weight of potafs added. The magnefia is immediately precipitated, becaufe potafs has a ftronger affinity for fulphuric acid. It is then to be walhed with a fufficient quantity of water, and dried.

Magnefia thus obtained is a very foft white powder, Its proper-. which has very little tafte, and is totally deftitute of ties.
fmell.-Its fpecific gravity is about $2,3 \oint$.
It is foluble in about 7900 times its own weight of Miner. i. 8 . water at the temperature of $60^{\circ} \|$.

Even when combined with carbonic acid (for which it has a ltrong affinity) it is capable of abforbing and retaining $1 \frac{1}{2}$ times its own weight of water, without letting go a drop; but on expofure to the air, this water evaporates, though more flowly than it would froma. lime.

Magnefia has never yet been obtained in a cryftal. lized form.

It tinges vegetable blues of an exceedingly flight green.

It is not melted by the frongeit heat which it has. been pofitible to apply; but Mr D'Arcet obferved that, in a very high temperature, it became fomewhat agglutinated.

When magnefia and fulphur are put into a velfel of water, and kept for fome time expoled to a moderate heat, they combine, and form fulphuret of magnefia; which, according to Fourcroy, is capable of cryftallizing.

The phofpliuret of magnefia has never been ex-Effec of amined.

Equal parts of lime and magnefia mixed together, and expofed by Lavoifier to a very violent heat, did not melt; neither did they melt when Mr Kirwan placed them in the temperature of 150° Wedgewood.-The following
(R) The affinity of this acid for lime is inferior to the oxalic, which decompofes the fuberat of lime. Jamefor's Mineral. of Shetland and Arran, p. 168.
(s) The mother ley is the liquid that remains after as much as pofible of any falt has been obtained from it. Common falt, for infance, is obtained by evaporating fea water. After as much fill has been extracted: from a quantity of fea water as will cryftallize, there is ftill a portion of liquid remaining. This portion is the mother ley.
$\underbrace{\text { Magnefia, following table, drawn up by } \mathrm{Mr} \text { Kirwan from his own }}$ $\underbrace{\text { experiments, fhew's the effeet of heat on thefe two earths }}$ mixed together in different proportions,

Froportions.	Heat.	Effect.
80 Lime 20 Mag.	150° Wedg.	Went through the crucible.
75 Lime ${ }_{25} \mathrm{Mag}$.	160	Went through the crucible.
$\begin{aligned} & 66 \text { Lime } \\ & 33 \text { Mag. } \end{aligned}$		Went through the crucible.
$\begin{aligned} & 20 \text { Lime } \\ & 80 \text { Mag. } \end{aligned}$	165	Did not melt.
$\begin{aligned} & 3.3 \text { Lime } \\ & 66 \mathrm{Mag} . \end{aligned}$	138	Did not melt.
30 Lime 10 Mag.	156	Melted into a fine greenifh yellow glafs; but the crucible was corroded throughout.

The affinities of magnefia, according to Bergman, magnefia. are as follows:

Oxalic acid,
Phofphoric,
Sulphuric,
Fluoric,
Sebacic,
Arfenic,
Saccholactic,
Succinic,
Nitric,
Muriatic,
Tartarous,
Citric,
Formic,
Lactic,
Benzoic,
Acetous,
Boracic,
Sulphurous,
Nitrous,
Carbonic,
Pruffic,
Sulphur,
Phofphorus?
Water.

Sect. III. Of Barytes.
209 A very heavy mineral is found in Sweden, Germaof barytes. ny, and Britain, which Margraf confidered as a compound of fulphuric acid and lime. But Scheele and Gahn analyfed it in 1774, and found that it confifted of fulphuric acid combined with a peculiar fpecies of earth. This analy fis was fuon after confirmed and ex-
tended by Bergman. The earth was at firt called terra ponderofa, beavy earth, on account of the great fpecific gravity of the fubstance from which it was obtained. Morveau called it barote (from Gapus, heavy), which Bergman changed into barytes; and this lalt term is now univerfally adopted.

210
Barytes is generally found combined either with ful- Method of phuric or carbonic acid. From the firft of thefe com-obtaining pounds, which is by far the moft common, it may be ${ }^{\text {it. }}$ obtained by the following procefs :

Reduce the mineral to a powder, and mix it with $2 \frac{1}{2}$, its weight of carbonat of foda (τ), previoully deprived of all its water. Expofe the mixture to a red heat for an hour and a half, avciding fufion, and a double decompolition takes place; the fulphuric acid unites with the foda, while the carbonic acid combines with the barytes. Wafh it in a fufficient quantity of water to diffolve the compound of fulphuric acid and foda, the carbonat of barytes, which is almoft infoluble, remains behind. Leit it fhould be mixed with fome other earths, which is generally the cafe, boil it for three hours in ten times its weight of diltilled vinegar, the fpecific gravity of which is 1,033 ; by which the barytes will be diffolved, and likewife the lime and magnefia, if there happen to be any; but every other earth (u) remains untouched. Pour off the folution, and add to it fulphuric acid as long as any precipitate is formed. This precipitate confifts of the whole barytes and the lime (if there be any) combined with fulphuric acid. Wafh it in 50 times its weight of water, and all the lime will be diffolved. There will now remain nothing but barytes combined with fulphuric acid, which may be decompofed as before by carbonat of foda $\$$. $\$$ Afsueliuss, The carbonic acid may then be feparated by applying a very violent heat \dagger; or, what is better, nitric acid may be poured upon it, which will feparate the carbonic acid and combine with the barytes; and then the nitric acid may be driven off by a moderate heat $\$$.

Barytes thus obtained is a light fpongy, porous, body , which may be very eafily reduced to powder. It kin , Ann. de has a harfh and more cauftic tafte than lime; and cbim. xxi. when taken into the flomach, proves a molt violent ${ }^{276}$. poifon. It has no perceptible fmell.

Its fpecific gravity has not yet been afcertained.

Its proper-

tie.
Ann. de
Cbim. iii.

+ Hope,
Edin. Tranf. iv. 36.
§ Fourcroy

Cism. 276.

215

It imbibes water with a hiffing noife, but, according
to Dr Hope, without fwelling or fpliting as lime does $\|$. However, when expoled to the air, as Four- $\|$ Edin. croy and Vauquelin inform us, it efflorefes, cracks, Tranf. ibid. burfts, fwells up, heats and becomes white, by ablorbing moifture \oint.

Cold water diffolves about $\frac{2}{2}$ part of its weight of Chim. de barytes, and boiling water more than half its weight. and Nicboo. As the water cools, the barytes is depofited in cryftals, fon's fouro the fhape of which varies according to the rapidity with which they have been formed. When molt regular, they are flat hexagonal prifms, having two broad fides, with two intervening narrow ones, and terminated at each end by a four-fided pyramid, which in fome in. Aances conititutes the larger part of the cryftal. When formed flowly, they ate diftinct and large; but when
(т) Soda is an alkali ; which thall be afterwards defcribed. Carbonat of foda is foda combined with carbonic acid, the common tlate in which it is obtained; potafs might alfo be ufed.
(u) Except ftrontites, which Pelletier has detected in this mineral.

Barytes. the watcr is faturated with barytes, they are depolited rapidly, and are generally more flender and delicate. Then, too, they are attached to one another in fuch a manner as to allume a beautiful foliacious appearance, ¢ H ope, ibid. not unlike the leaf of a fern \boldsymbol{q}.

Thefe ciyftals are tranfparent and colourlefs, and appear to be compofed of about 53 parts of water and 47 of barytes. When expofed to the heat of boiling water, they undergo the watery fufon, or, which is the fanne thing, they melt without lofing any of the water which they contain. A Atronger heat makes the water fly off. When expoied to the air, they attratt carbonic acid, and crumble into dult. They are folubie in $17 \frac{1}{2}$ parts of water at the temperature of 60°; but boiling water diffolves any quantity whatever: the reafon of which is evident; at that temperature their own water of cryftallization is fufficient to keep them in folutions.

Water faturated with barytes is called barytic zvater. It has the property of converting vegetable blues to a green.

When barytes is expofed to the blow-pipe on a piece of charcoal, it fufes, bubbles up, and runs into globules, which quickly penetrate the chatcoal \ddagger. This is probably in confequence of containing water; for Lavoifier found barytes not affected by the llrongell heat which he could produce.

Barytes combines readily with fulphur. The eafieft way of forming fulphuret of barytes is to mix eight parts of fulphuret of barytes with one part of pounded charcoal, and to apply a ftrong heat. Thie charcoal combines with the oxygen of the fulphuric acid, and the compound flies off in the form of carbonic acid gas: There remains behind fulphur combined with barytes. Sulphuret of barytes is foluble in water: It is of a yellow colour. It is capable of cryftallizing; and then
\& Lavofirit, beell poflible to applys.
Acad. Par. The affinities of barytes, according to Bergman, are 1782. as follows :

It5 affinitics.
Sulphuric acid,
Oxalic,
Sucinic,
Fluoric,
Phofphoric,
Saccholactic,
Suberic (r)?
Nitric,
Muriatic,
Sebacic,
Citric,
Tartarous,
Arfenic,
Fluoric,
Lattic,
Renzoic,
Acetous,
Boracic,
Sulphurous,
Nitrous,

Suppl. Vol. I.

Carbonic, Prufic,

Sect. IV. Of Stronlites.

Abour the year 1787 , a mineral was brought to Difovery Edinburgll by a dealer in foffils, from the lead mine of of fronStrontian in Argylefbire, where it is found imbedded in tites. the ore, mixed with feveral other fubftances. It is fometimes tranfpatent and colourlefs, but generally has a tinge of yellow or green. Its hardnefs is 5 . Its fpecific gravity varies from 3,4 to 3,736 . Its texture is generally fibrous; and fometimes it is found cryftallized in flender prifmatic columns of various lengths \ddagger. \ddagger Hore, $F-$

This mineral was generally confidered as a car bonat din. Trauf. of bargtes; but Dr Crawford having obferved fome ${ }^{\text {iv. }} 44$. differences between its folution in muriatic acid and that of barytes, mentioned in his treatife on muriat of bary= tes, publithed in 1790 , that it probably contained a new earth, and fent a feecimen to Mr Kirwan that he might examine its properties. Dr Hope had alio fufpected that its bafis differed from barytes; and accordingly he made a fet of experiments on it in 1791, which were read to the Royal Society of Edinburgh in 1792. Thefe experiments fully proved that it contained a peculiar earth. Mr Kirwan likewife analyfed the frontian mineral, and drew precifely the fame conclufions. It has been analyfed alfo by Mr Klaproth of Berlin, and Mr Pelletier of Paris. It confifts of carbonic acid combined with a peculiar earth, to which Dr Hope gave the name of flothtites. This appellation we thall adope.

The carbonic acid may be feparated by a heat of 140° Wedgewood, and then the ffrontites remains behind** Kirevan's

Strontites has been found in Arggleflire in Scot- Miner. i. land, near Briftol in England, and in Pennfylvaniat. It 332. has been found alfo in France and in Sicily. It is of a ${ }_{\text {ii }}$ Klaprotb, white colour. It has a pungent acrid tafte. When in fect. 39. pounded in a mortar, the powder that rifes is offenfive Its properto the nofrils and lungs.f. It is not poifonous||.

One hundred and fixty-two parts of water, at the Hope, ithi. temperature of 60°, diffolve nearly one part of it. The folution is clear and tranfparent, and converts regetable blues to a green. Hot water diffolves it in much larger quantities; and as it cools the firontites is depofited in colourlefs tranfparent cryftals. Thefe are in the form of thin quadrangular plates, generally parallelograms, the largeft of which feldom exceeds one-fourth of an inch in length. Sometimes their edges are plain, but they oftener confint of two facets, meeting together and forming an angle like the roof of a houfe. Thefe cryftals generally adhere to each other in fuch a manner as to form a thin plate of an inch or more in length and half an inch in breadth. Sometimes they allume a cubic form. They contain about 68 parts in 100 of water. They are foluble in 51,4 parts of water, at the temperature of 60°. Roiling water diffolves nearly half its weight of them. When expofed to the air, they lofe their water, attract carbonic acid, and fall into powder ${ }^{*}$.
When frontites is thrown into water, it attrads it R r
uith
$\underbrace{\text { silica. }}_{-}$ + 14 !

$$
\ddagger u
$$

216
It infinit:cs.

217
Alethod of obtainin:g gйса.
with a hiffirg noiic, much heat is produced, and it falls into powder much mose rapidly than limet.

It combines with fulphur either by fufion in a crucille, or by beirg boiled with it in water. The fulphuret is of a dark yellowilh brown colour. It is tofuhle in watert.

The affinitics of Rrontitos, as afcertilincal by Dr Hope, are :s follows :

> Sulpiluric acis,
> Oralic,
> 'Tirtarous,
> Flumic,
> Nieric,
> Muniat'c,
> Siuccinic,
> Phofphoric,
> Acetous,
> Alfenic,
> Boracic,
> Carbonic.

Sect. V. Of Silica.
pronereither talte or fimell.

Its fpecific gravity is $2,66^{*}$.
sifinir.i.ro. It is infoluhle in water except when newly precipitated from the liquor filicum, and then one part of it is t Mis. foluble in 1000 parts of water \dagger. It las no effect on vegetable colours.

It is capable of abforbing about one-fourth of its weight of water without letting any drop from it; but on expofue to the air, the water evaporates very readily \ddagger.

Silica may be formed into a pafte with a fmall quantity of water: this patte has not the fmalleft ductility, and when dried, forms a loofe, friable and incoherent 3 Sibeelc. mafs \oint.

Silica is capable of affuming a cryftalline form. CryAtals of it are found in many parts of the world. They are known by the name of rock cryfal. When pure they are tranfparent and colourlefs like glais: they affume various forms; the moft ufual is a hexagonal prim, furmounted with hexagonal pyramids on one or both ends, the angles of the prifm correfponding with
thofe of the pyramids. Their hardnefs is very great, amnunting to elcren. Their pecific gravity is $2,653^{*}$.

There are two methods of art. The firft method was difcovered by Bergman. He diffolved filica in fluoric asid, the only acid in which it is foluble, and allowed the folution to remain undifurbcd for two years. A number of cryftals were then fuund at the bottom of the veffel, mofly of irregular figures, but fome of them cubes with their angles truncrted. They were hard, but not to be compared in this refpect with rock cryftal*.

The other method was difcovered by accident. Pro- ii. 32 . feffor Seigling of Erfurt had prepared a liquor filicum, which was more than ufually diluted with water, and contained a luperabundance of alkali. It lay undifturbcd for cight years in a glafs veffel, the mouth of which was only covered with paper. Happening to look to it by accident, he obferved it to contain a number of cryftals, on which be fent it to Mr Trommfdorf, pro. feffor of chemiftry at Erfurt, who examined it. The liquor remaining amounted to about two ounces. Its furface was covered by a tranfparent crult fo ftrong that the veffel might be inverted without fpilling any of the liquid. At the bottom of the veffel were a num. ber of cryttals, which proved on examination to be ful. phat of potafs and carbonat of potafs (w). The cruft on the top confifted partly of carbonat of potafs, partly of crytallized filica. There laft cryftals had affumed the form of tetrahedral pyramids in groups; they were perfectly tranfparent, and fo hard that they fruck fixe with feel. \dagger

Silica end + Nicholṭion.
fon's jour. io
It feems incapable of combining with fulphur or phofphorus.

1. The effect of heat upon lime and filica, mixed in Effect of various proportions, will appear from the following experiments of Mr Kirwan \ddagger.

Proportions.	Heat:	Effect.
50 Lime		
50 Silica	150° Wedg.	Melted into a mafs of a white eolour, fenitranfparent at the edges, and friking fre, tho feebly, with feel : it was fome- what between porcelain and enamel.
80 Lime 20 Silica	156	A yellowifh white loofe pow- der.
20 Lime	156	Not melted, formed a brittle mafs.

2. Equal parts of magnefia and filica melt with great Maguefia difficulty into a white enamel when expofed to the mof and filica: violent heat which can be produced*. They are infu- "Lavoifer, fible in inferior hears in whatever proportion they are Mem. Par. mixed \dagger.
3. The effect of heat on various mixtures of barytes \dagger Acbard, and filica will appear from the following experiments Mirm. Berlof Mr Kirwant.

4. The effect of heat on,mixtures of flontites and 225 graf.

its proper-

ties.

t Kirquan's
Miner. i. 9.

Drssolve alum in hot water, and add to the folu-
tion potafs as long as any precipitate is formed. De-
cant off the fluid part, and wanh the precipitate in a
fufficient quantity of water, and then allow it to dry.
The fubltance thus obtained is called alumina. Its pro-
perties were firt afcertained with accuracy by Mar-
Dissolve alum in hot water, and add to the folu-
tion potafs as long as any precipitate is formed. De-
cant of the fluid part, and walh the precipitate in a
fufficient quantity of water, and then allow it to dry.
The fubttance thus obtained is called alumina. Its pro-
perties were firft afcertained with accuracy by Mar-
Dissolve alum in hot water, and add to the folu-
tion potafs as long as any precipitate is formed. De-
cant of the fluid part, and walh the precipitate in a
fufficient quantity of water, and then allow it to dry.
The fubttance thus obtained is called alumina. Its pro-
perties were firft afcertained with accuracy by Mar-
Dissolve alum in hot water, and add to the folu-
tion potaf as long as any precipitate is formed. De-
cant off the fluid part, and walh the precipitate in a
fufficient quantity of water, and then allow it to dry.
The fubltance thus obtained is called alumina. Its pro-
perties were firft afcertained with accuracy by Mar-
Drssolve alum in hot water, and add to the folur-
tion potafs as long as any precipitate is formed. De-
cant of the fluid part, and wath the precipitate in a
fufficient quantity of water, and then allow it to dry.
The fubtlance thus otained is called alumina. Its pro-
perties were firlt afcertained with accuracy by Mar-

Alumina thus obtained is a very white fpongy powder, without any fmell or tafte.
Its fepcific gravity is $2,00 \dagger$. It is fcarcely foluble in water, but may be diffufed through it with great facility. filica is not known.
5. It follows from the experiments of Achard, that equal parts of lime, magnefia, and filica, may be melted into a greenifh coloured glafs, hard enough to Itrike fire with teel; that when the magnefia exceeds either of the other two, the mixture will not melt; that when the filica exceeds, the mixture feldom melts, only indeed with him in the following proportions; three filica, two lime, one magnefia, which formed a porcelain; and that when the lime exceeds, the mixture is generally fufible.*

The affinities of filica are as follows:
Fluoric acid,
Fixed alkali.
Sect. VI. Of Alumina.

With a fmall quantity of water it forms a very tongh Alumina. ducile pafte, and does not readily mix with more.

In its ufud ltate of deynefs it is capable of abiorb. ing $2 \frac{1}{2}$ times its wight of water, without fuffering any to drop out. It retains this water more obfinately than any of the earths hitherto defaibed. In a freezing cold it contracts more, and parts with more of its water than any other earth ; a circumftance which is of fome im. portance in agriculture.*

Alumina has never yet heen ohtained in a cryfallized form. It has no effet whatever on vegerable colours.

The mof intenfe heat does not fufe it, but it has the fingular property of diminifing in bulk in proportion to the intenfity of the fire to which it is expofed. It becomes at the fame time exceedingly hard: Mr Lavoifier rendered it capable of cutting giafs; and Mr Boyle had long before done the fame thing.*

Wedgewood tonk advantage of this property of alu. mina, and by means of it conltrusted an inftrument for 422.020 meafuring high degrees of heat. It confifts of pieces wedgeof clay of a determinate fize, and an apparatus for mea- woods fuing their bulk with accuracy: One of thefe pieces is thermoput into the fire, and the temperature is ellimated by metcr. the contraction of the piece. For a more complete defeription of this importiant inftrument, we refer to the article Thermometer in the Eincycl.
Alumina is hardly fufceptible of combining with fulphur or phofphorus; but from the experiments of La Grange, it appears to have an affinity for carbon \ddagger.

1. The effect of heat on various mixtures of lime and alumina will appear from the following table §.

Proportions.	Heat.	Effect.
75 Lime 25 Alumina	$150^{\circ} \mathrm{Wedg}$.	Not melted.
$\begin{aligned} & 66 \text { Lime } \\ & 33 \text { Alumina } \end{aligned}$	150	Remained a powder.
33 Lime 66 Alumina	(x)	Melted.
25 Lime 75 Alumina	(x)	Melted.
20 Lime So Alumina	(x)	Melted.

\ddagger Nickotfon's Four. ii. 101. § Kirzvan, i. 56 .

Effect of
heat on mixtures of
lime and alumina;
2. Magnefia and alumina have no action whateror Magnclia on each other, even when expofed to a heat of 150° and alumiWelgewood.*
 and alumina will appear from the following experinients Barytes and of Mr Kirwant.

R r2 Proportions. 1
(x) Thefe three experiments were made by Ehrman: The heat was produced by diresing a fream of oxy- gen gas on burning charcoal, and is the molt intenfe which it has been hitherto polfible to producc.

304 Alumina.

Proportions.	Heat.	Effect.
So Alumina 20 Barytes	$150^{\circ} \mathrm{Wedg}$.	Scarcely hardened.
75 Alumina 25 Barytes	156	No fign of fufion, a loofe powder.
66 Alumina 33 Barytes	152	As the former.
so Alumina 50 Barytes	150	As the former.
20 Alumina So Barytes	148	Somewhat harder, but no fign of fufion.
25 Alumina 75 Barytes	150	Harder, but no fign of fufion.

4. Nothing is known concerning the effect of heat

230
Alumina and filica; * Kirzean's Min. i. 58

231
Lime, magnefia, and alumina : on mixtures of Atrontites and alumina.
5. Equal parts of alumina and filica harden in the temperature of 160° Wedgewood, but do not fufe. Achard found them infufible in all proportions in a heat probably little inferior to 1.50° Wedgewood. Mixtures of thefe two earths in various proportions, form clays, but thefe are feldom uncontaminated with fome other ingredients.
6. From the experiments of Achard, it appears that no mixture of lime, magnefia, and alumina, in which the lime predominates, is vitrifiable, except they be nearly in the proportions of thrce lime, two magnefia, one alumina ; that no mixture in which magnefia predominates will melt in a heat below 166°; that mixtures in which the alumina exceeds are generally fufible, as will appear
\dagger Ibid. i. 7 • from the following table \dagger :

$\begin{array}{ll} 3 & \text { Alumina } \\ 2 & \text { Lime } \\ 1 \text { Magnefia } \end{array}$	A porcelain.
$\begin{array}{ll}3 & \text { Alumina } \\ \text { I } & \text { Lime } \\ 2 & \text { Magnefia }\end{array}$	A porcelain.
3 Alumina 1 Lime 3 Magnefia	Porous porcelain.
3 Alumina 2 Lime 3 Magnefia	Porous porcelain.
$\begin{array}{ll} 3 & \text { Alumina } \\ 2 & \text { Lime } \\ 2 & \text { Magnefia } \end{array}$	Porcelain.

Lime, fili- \quad. From the fame experiments, and thofe of Kirwan, ca, and alu-we learn, that, in mixtures of lime, filica, and alumina, mina; when the lime exceeds, the mixture is generally fufible

I S T R Y.

Part I.
cither into a glafs or a porcelain, according to the pro- Alumina. portions. The only infufible proportions were,

2	3	Lime
1	1	Silica
2	2	Alumina

That if the filica exceeds, the mixture is frequently fufible into an enamel or porcelain, and perhaps a glafs; and that when the alumina exceeds, a porcelain may often be attained, but not a glafs \ddagger.
| Ibid. i. 73.
8. As to mixtures of magnefia, filica, and alumina, when the magncfia excecds, no fufion takes place at 150°. When the filica exceeds, a porcelain may often be attained; and three parts filica, two magnefia, and one alumina, formed a glafs. When the alumina exceeds, nothing more than a porcelain can be produced.*

233
Magnefia, filica, and alumina; 9. Achard found that equal parts of lime, magnefia, filica, and alumina, melted into a glafs. They fured alfo in various other proportions, efpecially when the filica predominated.

The affinities of alumina are as follows:
Sulphuric acid,
Nitric,
Muriatic,
Oxalic,
Arfenic,
Flunric,
Sebacic,
Tartarous,
Succinic,
Saccholactic,
Citric,
Phofphoric,
Formic,
Lactic,
Benzoic,
Acetous,
Boracic,
Sulphurous,
Nitrous,
Carbonic,
Pruffic.

Sect. VII. Of Fargonia.

Among the precious fones which come from the Difcorery inand of Ceylon, there is one called jargon, which is of jargonia. poffeffed of the following properties.

Its colour is various, grey, greenifh white, yellowifh, reddifh brown, and violet. It is often cryftallized, either in right angular quadrangular prifms furmounted with pyramids, or octahedrals confifting of double quadrangular pyramids. It has generally 2 good deal of luftre, at leaft internally. It is moftly femitranfparent. Its hardnefs is from 10 to 16 : Its fpecific gravity from 4,416 to 4,7.*

It lofes fearcely any of its weight in 2 melting heat ; 333 .
for Klaproth found that 300 grains, after remaining init for an hour and a half, were only one-fourth of a grain lighter than at firft. Neither was it attacked either + four. de by muriatic or fulphuric acid, even when affifted by heat. $P b_{b y} \cdot{ }_{36}$. At laf, by calcining it with a large quantity of foda, 18 c . he diflolved it in muriatic acid, and found that 100 parts. of it contained 31,5 of fllica, five of a mixture of nick-

Adamanta. el and iron, and 68 of an earth poffeffed of peculiar $\underbrace{}_{237} p$ is propersies.

Jirgonia has a Atrong refemblance to alumina. It is of a white colour. Its fpecific gravity probably exceeds 4,000.

It differs from alumina in the compounds which it forms with other bodies, in being infoluble in a hoiling folution of pure potafs or foda, and in being infufible by heat when mixed with thefe fubftances in a Alate of

- Kirvan's diynefst.

Mineral.
i. p. 14.

238
Difocovery
of adaman12.

No more of its properties are yet known.

Sect. VIII. Of Adamanta.

There is a fone found in China and in the Eaft Indies near Bembay, which from its hardnefs has been called adamastine fpar. Mr Greville firft received fome fpecimens of it, and made it known to feveral French and Englifh naturalifts.

The variety which comes from China is crytallised in hexagonal prifms. It is of a grey colour. The en. tire pieces are opaque, but thin plates of it are tranfparent. It is fo hard, that it not only cuts glafs as ealily as the diamond, but even foratches rock cryftal and many other very hard ftones. Its fpecific gravity is 3,710 The variety which comes from Bombay, and which is - Kluproth, whiter than the other, is called corundum*.

Mr Greville fent forme fpecimens of this ftone to Mr Klaproth, that he might analyfe it : a tafk which he found very difficult to perform, for the common proceffes had no effect upon it. At latt he fucceeded by fufing it 12 times in a filver crucible with 15 parts of foda, and expofing it each time for five hours to the ftrongef heat which the crucible could endure. After each fufion he foftened the mafs with boiling water, precipitating by acids the earth which the foda had diffolved. He digefted alfo different times the undecompofed part in boiling acids. By this procefs lie decompofed it, and found that it was compofed of two parts of alnmina, and one of a peculiar earth which has been called adamanta.

This earth he at firf took for filica; but it differs from it in not being infufible when mixed with potafs or foda. Its fpecific gravity probably exceeds $3,00 \dagger$. Nothing more is known concerning its properties.

Anew earth has lately been difcovered by Mr Vauquelin in the beryl, to which he has given the name of glucina. His account of its properties we lave not hitherto been able to procure: we mult therefore referve our defcription of it till we come in the order of the alphabet to the word Guverna.

Thefe are all the fimple earths hitherto difcovered; for Sidncia (y), which was announced by Mr Wedgewood as a peculiar earth, has lately been proved by Mr Hatchet* to be morely a mixture of feveral earths which have been long known.

The firlt four earths have a great many common properties: thes tinge vegetable blues green, they have a
with andity for carbonic acid, and readily with all acids. They have fometimes been called alkulime carths.

There is a frong refemblance between filica and ad.amanta, and between alumina and jargonia.

None of the earths have been hitherto decompounded, nor has the frnalleft proof ever been brought that they are compounds. We mult therefore, in the prefent fate of chemiltry, conider them as fimple bodies. Many attempts, indeed, have been made to thew that there was but one earth in nature, and that all others were derived from it. 'The earth generally made choice of as the fimplelt was filica(z). But none of thefe attempts, notwithfanding the ingenuity of feveral of the authors, has been attended with the fmalleft fhadow of fuccefs.

We have mentioned formerly that it was almof the univerfal opinion of chemifts that metals were compofed of fome of the earths united to phlogitton ; but of laie. an attempt has been made to prove that all the earths. are metallic oxyds, and that they can actually be reduced to the flate of metals.

Baron had long ago fufpected that alumina liad fomewhat of a metallic nature ; and Bergman had been induced by its great weight, and feveral other appearances, to conjecture that barytes was a metallic oxyd: But the firtt chemift who ventured to hint that all earths might be metallic oxyds was Mr Lavoifier*. Cbimifiryn Abont the year 1790 , fonn after the publication of Mr p. 217. Lavoifier's book, Mr Tondi and Profeffor Ruprecht, Englifh both of Schemnitz, announced that they had obtained tranf. from barytes, by the application of a ftrong heat, a metal of the colour of iron, and attracted by the magnet, which they called borbonium; from magnefia another, which they called auftrum; a third from lime, alro called anffrum; and a fourth from alumina, which they denominated spulum. Their method of proceeding was to apply a violent heat to the earths, which were furrounded with charcoal in a Heffian crucible, and covered with calcined bones in powder.

But their experiments were foon after repeated by Klraprath, Savorefi, and Tihaulki ; and thefe accurate chemilts foon proved, that the pretended metals were all of them phoppurets of iron. The iron, by the violence of the heat had been extrakted from the crucible, and the phofphorus from the bones. The earths therefore mult fill continue a diftinct clafs of bodies: and, as Klaproth has obferved, their properties are fo exceedingly different from thofe of metallic oxyds, that the fuppofition of their being compofed of the fame ingredients is contrary to every fact, and to every analo gy witb whicb we are acquainted.

Chap. V. Of Caloric.

Nothing is more familiar to us than beat; to attempt to define it therefore would be unneceffary. When we fay that a perfon feels beat, that a flone is loot, the expreffions
(x) This fubfance was contained in a mineral brought from Sidney Cove in New-Holland. Wedgewood's analyfis was publifhed in $\mathbf{1} 790$. Klaproth afterwards analyfed it without finding the new earth which it had been fuppofed to contain. But doubts were entertained concerning the identity of the minerals examined by: thefe two philofophers. Thele doubts have becn remuved by Mr Hatchet.
(z) Mr Sage, however, pitched upon lime.
exprefions caufe no dificulty; cevery one underfands them peffectly: yet in each of thefepropofitions the word heat has a diftint meaning. In the one it fignifies the ferfation of heat: in the other, the caufe of that fenfation. This ambiguity, though of litte confequence in common life, leads unavoiddbly in philofophical difcuffons to confufion and perplexity. It was to prevent this that the French chemifts made choice of the word caleric to fignify the caufe of beat. When I put my hand on a hot Aone, I experience a certain fenfation, which I call the fonfation of heat; the caufe of this fen-

Coacerning the nature of caloric, there are two opinions which have divided philofophers ever fince they turned their attention to the fulpeet. Some tuppofe that caloric, like gravity, is merely a property of matter, and that it confills, fome how or other, in a peculiar vibration of its particles; others, on the contrary, think that it is a difind fubftance. Each of the!e opinions has been fupported by the greatert pliiofophers; and the obfcurity of the fubject is fuch that both dides have been able to produce exceedingly plaufible and forcible arguments (13). The recent difcoveries, however, in this branch of chemiftry, have rendered the latter opinion much more probable than the former. Indeed we do not fee how it is pofible to account for many of the phenomena of nature, unlefs caloric be confidered as a fubtance, as we trult fhall appear from the inveltigation into which we are about to enter. We mean, then, with the generality of modern chemits, to take it for granted, that caloric is a fubltance, with-
out pretending to be able to demonftrate the truth of our opinion, but merely becaufe we confider it as infiritely more plaufible than the other. If the receiver of an air-pump, while it contains a thermometer, be fuddenly exhauthed of air, the thermometer fiuks feveral degrees, and then gradually rifes again to its former height. Now if heat be owing to vibration, how comes it that the fmall quantity of matter remaining in the receiver is firt infufficient, and afterwards fufficient to maintain the temperature? Is it not more probable that part of the caloric was carried off with the air, and that it gradually returned through the glats, which it is capable of pervading, though with difficulty*. When air *see Picis let into an exhaufted receiver, the thermometer, as tet fir $l e$ Lambert firft obferved, rifes feveral degrees. Is not Feu, ch. It this owing to an additional quantity of caloric introduced by the air? The thermometer then finks flowly. Is not this becaufe the fuperabundant caloric gradually pervades the glafs and flies off? Taking it for granted then, that caloric is a fubitance, we proceed to examine its properties.

1. When bodies become hot, or which is the fame Caloricesthing, when caloric enters into them, they expand in: pands boevery direction; and this expanfion is proportional to dies. the accumulation of caloric. The firft and moft obvious property of caloric then is the power of expanding bodies. It does not, however, expand all fubftances equally, and we are fill ignorant of the law which it follows. All that can be done therefore is to collect faets till this law be difcovered. A number of thefe may be feen in the following table:

Table of the Expanfon of various Bodies at different Temperatures.

Temperature.	Water*.	Mercury.	Linfeed Oilt.	Alcohol*.	Temperature.	Water*.	Mercury*	Linfeed Oil \dagger.	11 cohol ${ }^{\text {c }}$.
30°	-	-	-	100000	100	100908	100711,8	-	104162
32	-	100000,0	100000	-	105	-	100762,7		
35	120000	100030,0	-	100267	110	-	100813,6		
40	99997	100081,0	-	100539	120	101404	100915,4		
45	100005	100131,9	-	101818	130	-	101017,2		
50	100023	100182,8	-	101105	140	-	101119,0		
55	100053	100253,7	-	101401	150	102017	101220,8		
60	100091	100304,6	-	101688	160	-	101322,6		
65	100141	100355,5	-	101984	167	102753	-		
70	100197	100406,4	-	102281	170	-	101424,4		.
75	100261	100457,3	-	102583	180	-	101526,2		
80	100332	100508,2	-	102890	190	${ }_{103617}$	101628,0		
85	100411	100559, I	-	103202	200		101729,8		
90	100694	100610,0	-	103517	212	104577	101835,0	107250	
95	100790	100660,9	102560	103840	403	-	-	115160	

* Blagden. \dagger Newiton.
(13) How can the fupporters of the doarine of heat heing but a vibration of the particles of bodies, reconcile their hypothefis with the well eftablifhed faet of a hot body communicating its heat to the furrounding bodies when fufpended in a Torricellian vacuum? Will it be fufficient for them to fay, that it is never perfectly free from air, and that the fmallch portion is fufficient to communicate this vibration?
Part I.
C H E M I S T' R Y.

Table of the Expanfion of various Bodies at diferent Temperatures continued.

Temperature.	Sulph. acid. *	Nitric acid.*	Glafi. \dagger	Air.	$\begin{gathered} \text { Oxygen } \\ \text { gas.§ } \end{gathered}$	Azotic gas.§	Hydrogen gas.§	Nitrous gas.s	Carb. acid gas. ${ }^{5}$	Amnoniacal gras. ${ }^{2}$	
32° 40	-	-	100000 -	100000	100000	100000	100000	100000	100000	100000	Mic'lod.art. . 2 ir.
45	-	100005	-	-							
50	100149	100149	-	$10+140$							
55	100263	101074	100006	-							
60	100382	101389	-	106560							
65	100615	101767	-	-							
70	100751	102096	-	108950							
75			100014								
77 80	-	-	-	111300	104520	103400	108390	106520	II 1050	127910	
90	-	-	-	113590							
100	-	-	100023								
110	-	-	-	117580							
122	-	-	100033	-	124830	121860	122830	117630	130660	184870	
130	-	-	-	121870							
150	-	-		126030							
167	-	-	100056	-	190180	176640	137420	144370	173850	358780	
170	-	-	-	$13 \operatorname{cogo}$							
190	-	-	100069	133970							
212	-	-	100083	134890	$547670 \ddagger$	$69+120$	139120ł	1602907	2009407	680090ł (A)	

Table of the Expanfion of Metals from 3^{20} to 2122°. \dagger

\dagger Smectun,
Pbil. Tranf. slviii. 6I 2.

* Riman,

F:om
(1) This mark \ddagger implies, that, owing to fome inaccuracy in making the experiments, the numbers to which it is attached are not to be depended on.
(B) The metal whofe expanfion is here given was an alloy compofed of three parts of copper and one of tin. The figures in fome of the preceding columns are to be undertood in the fame manner. Thus in the laft columa but two, the metal confilted of two parts of brafs alloyed with one of zinc.

From this table, it arpears that the aafes are more expanded by caloric than fluids, and fliids more than folids ; and that the expartion of all bodies bitherto examined, mercury alone excepted, goes on in an increafing feries. To the expanding power of caloric there is ore fingular exception : From 30° to 42° Fahrenbeit, ceater, intlead of being expanded, fufers a remarkable contraction, as is cricient from the following table of its bulk for every degree between 30° and 40 . Bulk.

```
30%... 100cit
31 ... 1000;0
32 ... 100c66
33 ... 100063
3+ ... 100060
3; ... 100053
35 . . - 1000;6
37 ... 100055
3S ... 100054
39 ... 10co54
40 . . - 100054.*
```

From $\ddagger 0^{\circ}$ it expands like other fuoflances on being heared (B).

The expanfion of bodies by caloric has furnifhed us with an inltrument for meafuring the various degrees of it in dififent fubftances, we mean the thermometer; and as mercury is the only fluid which expands equably, it is cbvioully the only proper one for thermometers (i+). The thermometer uniformly ufed in this article is that of Fahretheit, except when fome other is parti2:7 cularly mentioned.
2. By means of the ihermometer, we learn that there is no body which does not contain caloric, becaule there
is none fo cold that it cannot be made colder: and is none fo cold that it cannor be made colder: and cooling a body is nothing elfe but abfracting a part of the caloric which it contains.
3. Caloric carnot be confined in any body while thofe in its neighbourhood are colder, but continues to rufh out till every thing is reduced to the fame temperaiure. This does not proceed from the attraction of the colder bodies, but from the tendency of caloric to exit everywhere in an equal degree of tenfion: For when hot bodies are placed in the exhaulted receiver of \dagger Sor i Fesu, an air-pump, as we leam from Mr Pitter t, or in the chap. vi. Torricellian vacuum, as Count Rumford has thewn
peraturc of the furrounding bodies. This frcferty has been called the equilitrium of caloric. The only way therefore to confine or accumulate this fubfance in a body, is to furround it with bodies which are botter than itfelf.
4. The equilibrium of caloric feems evidently to prove that its particles repel each other (15). This repulfion will caufe them when accumulated in any place to fly off in every direction, and to continue to fepara:e till they are oppofed by ealoric in other bodies of the fame relative denfity with themfelres, which, by repelling them in its turn, compels them to continue where they are. The calcric in bodies therefore is in what has been called by Mr Pitet a tate of $t=n f i m i(c)$. Its particles are actuated by a force which would nidhe them feparate to an indefinite dillance, were they not confined by the oppofite force of the caloric which furrounds them. The equilibriunt therefore depends on the balancing of two oppofite forces; the repulfion between the particles of caloric in the body, which tends to dimirifh the temperature; and the repulfion between the caloric of the body and the furrounding caloric, which tends to raife the temperature. When the firl ferce is greater than the fecond, as is the cafe when the temperature of a body is higher than that of the furrounding bodies, the caloric flies off, and the body becomes colder. When the lat force is Atronger than the firt, as is the cafe when a bedy is colder than thofe which are around it, the particles of its caloric are obliged to approach nearer each other, new caloric enters to occupy the Space which they had left, and the bndy becomes hotter. When the two forces are equal, the bodies are faid to be of the fame temperature, and no change takes place.*

It is the action of thefe oppofite forces which makes $\boldsymbol{z e t} f u r / b$. the thermometer a meafure of temperature. When ap. Feu, ch. i. plied to any body, it continues to rife or fall till the caloric in it and in the body to which it is applied are of the fame tention, and then it remains ftationary. The thermometer therefore merely indicates that the remperature of the body to which it is applied is equal to its own. It is obvious that, in order to obtain the real temperature of bodies, the thermometer fhould be fo fmall that the quantity of caloric, which enters or leares it, may not materially affect the refult.

This property of caloric feems to be the caule of the elafticity of the gafes, in which, as we fhall thew afterwards,
(8) There was a curious fat cencerning dilatation obferved by Mr de Luc. A brafs rod which he ufed as a thermometer became in fummer babitually longer; that is to fay, that after being for fome time lengthened by heat, it did net contract by the application of cold to its old length, but cortinued fomewhat longer. In winter the contraty phenomenon trok place. After being contracted lor fome time by cold, it did not return to its old length on the application of heat, but kept fomewhat fhorter. A leaden rod thewed thefe effects in a greater degree. Glafs has not this quality. De Luc filpeets that this property is inverfely as the claticity of bodies. Glafs is perfecely elaftic, and lead is lefs elaftic than brats. - Journ. de Phy. xviii. 369.
(1_{4}) Mercurs does not expand regularly even according to the tables juft given. For every five degrees it there appears that, in molt inftances, it expands 50.9 , but betwixt 35° and 40° it expands 5 I. and between 50° and 55° it even expands 70.9 , although betwixt 55° and 60° it expands again but 50.9 . But this is rot the only irregularity the thermometer is liable to. Glafs is very irregular inl its exparfion. The tube and bulb therefore in which the mercury is contaned mult by their irregular expanfions and contractions render this inftrument inaccurate.
T. P. S.
(15) Why need we confider caloric as a frinciple of refulfon when we can otherwife cxplain all its phenomena.
(c) The phrafe was firf ufed by Mr Volta.

Caloric. wards, it exifts in great quantities. Perhaps it is the caufe of elalticity in general; for we have no demonftrative evidence that the particles of elaltic bodies repel each other (D), and we are certain that all of them contain caloric. Perhaps alfo it is owing to this repul. five property of caloric that the particles of no body actually touch each other; for the lefs caloric we leave in a body, the nearer its particles approach to one another. The expanfion of bodies by caloric feems alfo to depend on the fame property. The particles of caloric uniting with thofe of the body, endeavour to drag them along when they recede from each other. The expanfion of bodies therefore ought to be inverfely as their cobefion, and directly as the tenfion of the caloric which they contain. This property of caloric feems likewife to afford an explanation of a very curious fact, which was firt, we believe, mentioned by De Luc in his Treatife on the Modifications of the Atmofphere, and afterwards Bodies be- afcertained by Dr George Fordyce, that bodies become come light- abfolutely lighter by being heated. He took a glafs er by being globe three inches in diameter, with a fhort neck, and weighing 451 grains; poured into it 1700 grains of water from the New river, London, and then fealed it hermetically. The whole weighed $2150 \frac{13}{12}$ grains at the temperature of 32°. It was put for twenty minutes into a freezing mixture of fnow and falt till fome of it was frozen; it was then, after being wiped firft with a dry linen cloth, next with clean wahed dry leather, immediately weighed, and found to be $\frac{x}{\text { soth }}$ of a grain heavier than before. This was repeated exactly in the fame manner five different times. At each, more of the water was frozen and more weight gained. When the whole water was frozen, it was $\frac{3}{1}$ b ths of a grain heavier than it had been when fluid. A thermometer applied to the globe flood at 10°. When allowed to remain till the thermometer rofe to 3°, it weighed $\bar{I}^{2}{ }^{2}$ hhs of a grain more than it did at the fame temperature when fluid. We thall fhew afterwards that ice contains lefs caloric than water of the fame temperature with it. The balance ufed was nice enough to mark $\frac{\mathrm{t}}{\frac{1}{6 \delta 0} \text { ih part of a grain*. Morveau too found, much }}$

- Pbil.

Tranf. 1;85, Part II. \dagger Yourn. de Pby. r 785 , oà. about the fame time, that water put into veffels hermetically fealed weighed more when frozen than when fluist : and Mr Chauffer found, that two pounds of fulphuric acid ware three grains heavier when frozen than after they had recovered their fluidity \ddagger. Now if the particles of caloric repel each other, bodies which contain it in great quantities mult be fomewhat repelled by each other. The more replete therefore that any body is with caloric, the more it will be repclled by the earth, which always contains a great quantity; and this Suppl. Vol. I.
repulfion muft in fome degree counteract its gravitation. This explanation was firft fuggefted, we believe, by Dr Black (16).

The fame property explains another curious fatt difcovered by Mr Pidtet of Genera, that caloric moses more readily vertically upwards than downwards. He took a tube of timplate, two inches in diameter and 44 in length, and inclofed in it a bar of copper four lines in diameter and 33 inches in length, which was placed and fixed exactly in its axis. This tube was exhaufted of air, by means of an air-pump, till the manometer* *ee s.tiftood at the height of four lines. It was inclufed in ano. rometer in ther tube of pafteboard, except about wo inches, ex. this Suppl. adty in the middle, to which place the fun's rays were directed for half an hour by means of a concave mirror. The ends of the copper bar were fcnoped out into corcave hemifpheres; and into each of thefe the bu:b of a very fenfible thermometer was fixed. The tube was placed vertically. The highelt thermomeier, which we thall call A, rofe to 95°, a hundred and one feconds befure the lowelt B. The thernometer B rofe no higher than 95°; but the thermometer A reached $101,75^{\circ}$. To fee whether this difference was owing to the thermometers, the tube was inserted, and confequen:ly the higheft thermometer in the former esperiment was loweft in this. The thermometer B now rofe from 49° to $97,25^{\circ}$ in $2810^{\prime \prime}$; the thermometer A in $2763^{\prime \prime}$, or $47^{\prime \prime}$ fooner than B. It was evident from this refult, that the thermometer A was more fenfible than the thermometer B by $47^{\prime \prime}$. If this be fubtracted from $101^{\prime \prime}$, the former difference, it will leave $54^{\prime \prime}$, as the difference refulting from pofition. Thefe experiments were repeated with only this difference, that round the ends of che bar and the bulbs of the thermometers (but without touching the bulbs) fome folds of oiled paper were wrapped to confine the caloric. The fuperior thermometer A rofe from 50° to $106,25^{\circ}$ in 34 minutes, which was $93^{\prime \prime}$ fooner than the inferior B : it rofe to $110,75^{\circ}$, the thermometer B only to $106,25^{\circ}$. The tube being reverfed, the thermometer A, which was now loweft, roie from 46° to il $5,25^{\circ}$ in $40^{\prime} 30^{\prime}$, or forty feconds fooner than the thermometer B. This fubtracted from $93^{\prime \prime}$, as formerly, leaves 53^{\prime} for the difference of fituation. The fuperior thermometer mounted after the burning glafs was removed $0,45^{\circ}$, remained fationary for 801 , and after five minutes had only defcend $0,45^{\circ}$: the other did not afcend at all; in one minute it defcended $0,225^{\circ}$, and in $6^{\prime} 8^{\prime \prime}$ it defcended 2,47. In 22'50' the inferior defcended $63,725^{\circ}$, the fuperior $61,475^{\circ}$. . pige From thefe experiments, it is obvious that the particles fur te Fsiu, of caloric move fomewhat faiter, and in fomewhat great- chap. -. S 5 e:
(D) We acknowledge that Ceveral philofophers of the firt rank, Epinus for inftance, and Bofcovich, have fuppofed, that the particles of all bodies both attract and repel each other; but we cannot help thinking it rather improbable (if it be poflible) that two fuch oppofite properties fhould exif together.
(16) We may, I think, explain thefe experiments withow the aid of fuppofing caloric to poffefs abfolute leaity. While there gentlemen were weighing their veffels of frozen fluids, the caloric of the furrounding air kept conttantly pafing in, and thus it became condenfed; this air would of confequence fall through the more rarified air below it and would be followed by a frefh quantity from above, which would be condenfed in its turn, thus a conftant fream of air would pafs down on the cold body which would be fufficient to give it the fmall additional tendency of ${ }^{2}$ ths of a grain downwards. Neither do thefe gentlemen appear to have paid any attention to the water which would be depofited, by the air, when it loft part of its caloric, on the veffels.
er quantity, upwards than downwards; owing, doubtlefs, to the repulfive power of the caloric in the earth. The fanall quantity of air that remined in the tube, nala perhaps be fuppofed fufficient to account for the difference, without allowing any fuch tendency upwards in caloric. But it is evident from the experiments of the Flosentine academicians on the fame fubject, with tubes full of air, that even when in great abundance, that fluid hardly affected the riling of the fuperior thermometer: furely then its effect nuft lie altogether imperceptible when fo little of it remained; and in the third and fourth experiments the oiled paper prevented any of the heated air from approacling the thermometer (17).
5. If we take a bar of iron and a piece of fone of equal dimenfinns, and patting onic end of each into the fi.e, apply either thermmeters or our hadids to the oher, we flall find the extremity of the irm fenfibly loot long before that of the thoue. Caloric therefore does net pafs through all bodies with the fame celerity and eafe. The power that bodies have to allow it a palfase through them is called their conduring porver ; thofe then allow it to pafs with facility, are called good combeiors; thofe thongh which it patles with difficulty, are called bal conduars; and thofe which do not allow it to pafs at all, non-conductors.

It is probabie that all filids condurt heat in fome degree, at lealt this is the caie with every one at prefent known. Wood and charcoal are exceeding bad con- duetors of caloric (E). Count Rumford informs us, that a piece of green oak plank was employed to fir the melted metal of which cannons were founding at Munich, and it was often allowed to remain a conliderable time in the furnace; yet the caloric had penetrated to fo inconfiderable a depth, that at the diftance of $\frac{1}{2}$ th of an inch helow the furface, the wood did not feem to have been the leaft affected by it; the colour remained unchanged, and it did not ajpear to have loft even its moifure*.

Gla.s is alfo a very bad conductor; and this is the reafon that it is fo apt to crack on being heated or cooled fuddenly; one part of it receiving or parting with its caloric before the rell, expands or contracts, and deltroys the cohefion.
Metals are the belt conductors of caloric of all the
folids hitherto examined. The condusting powers of all, however, are not equal. Dr Ingenhoutiz procured cy linders of feveral metals exactly of the fame fize, an 1 having coated them with wax, he planged their ends into hot w:ater, and judged of the conducting pnwer of each by the leng!h of wax-coating meited. From there experiments he concluded, that the conduating powers of the metals which he examined were in the following order*:

Next to metals flones feem to be the beft conductors ; but this property varies confiderably in different fones. Bricks are much worfe conductors than moft liones. All folids capable of being melted become non conductors the moment they are heated to the meiting point : the caloric enters them eafily enough, but it remams in them.
All fluids hithertn examined are non conlutiors of cialuric. They can receive it indeed from other fubfances, and they can give it out to other fubftances; but one particle can neither receive it nor give it out to another particle. Before a fluid therefore can either be heated or cooled, every particle mult go individually to the fubftance from which it receives or to which it gives ont caloric. For this very inportant diforery the world is indebted to Count Rumford. Before the pullication of his effays it had not even been fufpected; fo far from it, that fluids had been ranked among the beft conduators of caloric.
In a fet of experiments on the communication of How this heat, he made ufe of thermometers of an uncommon was difcofize. Having expofed one of thefe (the bulb of which vered. was near four inches in diameter) filled with alcohol to as great a heat as it could fupport, he placed it in a window to cool where the fun happened to be fhining. Some particles of duf had by accident been mixed with the alcohol : thefe being illuminated by the fun, became perfectly vifible, and difcovered that the whole liquid in

259
Of ftories and folids capable of melting.

258
All fluids din-concaloric.
\qquad

* Yourn. de

Piy. rif89,
p. 68. the
(17) Thefe experiments of Mr Pictet are undoubtedly ingenious, but by no means conclufive. There fill remained a conliderable quantity of air in the tube. This air became rarified jut in the centre of the tube where the mirror converged the fun's rays. Hence this air would rife up to the top of the tube, and part with its extra quantum of heat to the upper thermometer. This air would be replaced from above, and thu's a contant fiream of warm air towards the upper thermometer would be produced. Thus might we account for the rife of the upper thermometer wilhout the aid of a principle of levity. That the lower thermometer fhould rife but dlowly is not furprifing when we confider the experiments of Count Rumford on the conducting powers of air, which, at leaf, prove it to be a very bal conductor of caloric. The oiled paper not preventing the thermometer viling is no proof that it is not this ftream of warm air which caufes the upper thermometer to rife, unilefs it be proved that it is a non-conductor of caloric, and if it were I do not fee how the caloric is to ger through to the thermometer eafier if it poffeffes abfolute levity than if it be a gravitating fluid. All, I think, thefe experiments prove is, that the fpecific gravity of caloric is lefs than that of the imperfect vacuum Mr Pittet made ufe oif.
T. P. S.
(E) This fag morits the attention of chemifs. It is obvinus, that when metallic oxyds are furrounded with charcoal powder, their temperature cannot be raifed near fo high as it otherwife would be. It is not unlikely that fome part of the difficulty which las been experienced in attempting to reduce and fufe feveral metallic fubfances may have been owing to this caufe.
the tube of the thermometer was in a moft rapid motion, running fwiftly in oppofite directions upwards and downwards at the fame time. 'The afcending current occupied the axis, the defoending current the fides of the tube. When the fides of the tube were cooled by means of ice, the velocity of both currents was accelerated. It diminilhed as the liquid cooled; and when it had acquired the temperature of the room, the motion ceafed altogether. 'This experiment was repeated with lin. feed oil, and the refult was precifely the fame. Thefe currents were evidently produced by the particles of the liquid going individually to the fides of the tube, and giving out their caloric. The moment they did fo, their fpecific gravity being increated, they fell to the bottom, and of courle purhed up the warmer part of the fluid, which was thus forced to afcend along the axis of the tube. Having reached the top of the tube, the particles gave out part of their caloric, became jpecifically lieavier, and tumbled in their turn to the bottom.

As thefe internal motions of fluids can only be difcovered by mixing with them bodies of the fame fpecific gravity with themfelves, and as there is hardly any fubtance of the fame fpecific gravity with water which is not foluble in it, Count Rumford had recourfe to the following ingenious method of afcertaining whether that fluid alfo followed the fame law. The fpecific gravity of water is increafed confiderably by diffolving any falt in it; he added, therefore, potafs to water till its fpecific gravity was exaetly equal to that of amber, a fubftance but very little heavier than pure water. A number of fmall pieces of amber were then mixed with this folution, and the whole put into a glafs globe with a long neck, which, on being heated and expofed to cool, exhibited exactly the fame phenomena with the other fluids. A change of temperature, amounting only to a very few degrees, was fufficient to fet the currents a-flowing; and a motion might at any time be produced by applying a hot or a cold body to any part of the veffel. When a hot body was applied, that part of the fluid neareft it afcended; but it defcended on the application of a cold body.

If caloric pafs through water only by the internal motion of its particles, as this experiment feems to prove, it is evident that every thing which embarraffes thefe motions muft retard its tranfmiffion: and accord. ingly Count Rumford found this to be the cale. He took a large linfeed-oil thermometer with a copper bulb and glafs tube : the bulb was placed exattly in the centre of a brafs cylinder, fo that there vias a void fpace between them all around 0,25175 of an inch thick. The thermometer was kept in its place by means of four wooden pins projecting from the fides and bottom of the cylinder, and by the rube of it pafling through the cork ftopper of the cylinder. This cylinder was filled with pure water, then held in melting fnow till the thermometer fell to $3^{2^{\circ}}$, and immediately plunged into a veffel of boiling water. The thermometer rofe from 32° to 200° in $597^{\prime \prime}$. It is obvious that all the caloric which ferved to raite the thermometer mult have made its way through the water in the cylinder. The experiment was repeated exaclly in the fame manner, but the water in the cylinder, which amounted 102276 gr . had 192 gr . of farch boiled in it , which rendered it much lefs fluid. The thormometer now took 1109"
to rife from 32° to 200°. The fame experiment was again repeated with the fame quantity of pure water, having $19^{2} \mathrm{gr}$. of eilerdown mixed with it, which would merely tend to embariads the motion of the particles. A quantity of flewed apples were alfo in another experiment put into the cylinder. The following tables exhibit the refuit of all thefe experiments.

Time the Caloriz evas in pufing into the Thernometer.

'Temperature.	Through the Water and Starch	Thro' the Water and Eiderdown	Thrcugh ftewed Apples	Through pure Water
'rhe	Seconds.	Scconds,	Scconds.	Seconds.
$200^{\circ} \mathrm{in}$	1109	949	$1096 \frac{1}{2}$	597
Therm. refe 80°, viz from 80° to I 60°, in	341	269	335	172

Time the Caloric was in pafing out of the Thsrmometcr.

Temperature.	Through the $W_{\text {ater }}$ and Starch	Thro' the liater and Eiderdown.	Through flewed Apples.	Through pure Water
Therm. fell	Scconds.	Seconds.	Seconds.	Seconds.
to 40° in	1548	1541	1 $74.9{ }^{\frac{1}{2}}$	1032
Therm. fell				
$\begin{aligned} & 80^{\circ}, \text { vix. } \\ & \text { from } 160^{\circ} \end{aligned}$	468	460	520	277

Now, neither the flarch nor the eiderdovin could produce any alteration in the water except impeding its internal motions: confequently whatever impedes thefe motions diminifles the conduding power of water. But this could not happen unlefs every individual particle adually went from the cylinder to the thermometer.

Only oue proof more was wanting to remove every doubt; and this proof alfo Count Kumford has given us. If water be a noneonductor, it is evident that no caloric can pafs downwards when the heat is applied to the furface ; for as the particles of water become fpecifically lighter by being beated, they canot fink to the bottom. Accordingly Count Rumford found, that water might be made actually to boil near the tup of a glafs tube, while that at the bottom was not fenfibly warmed. Owing to the law already montioned, indeed, that water, after being cooled duwn to 40°, expands intead of contracting when its temperature is loweres', a mafs of water may be raifed th 40° by applying the heat to its upper furface; becaufe water at 40° is heavier than at any degre below it, and will therefore fink to the bottom ; but its temperature cannot be raifed any ligher. This Count Rumford proved, by thewing that water of the temperature of 40°, placed above ice, will

Caloric. melt as much of it in the fame time as water at any higher temperature whatever, even boiling hot.
Into a cylindrical glafs jar 4,7 inches in diameter and ${ }_{1}, 3,8$ inclucs high, he put 43,87 cubic inches, or 1 lb . $11 \frac{1}{7} \mathrm{oz}$. troy of water, and placing the jar in a freezing mixture compofed of pounded ice and common fea alt, lie froze the water into one compact mafs. The jar was then put into a mixture of pounded ice and pure water, reaching exactly to the top of the ice in it, and fuffered to remain there four hours, that the ice might come to the temperature of 32°; then boiling water was cautioufly poured on it, and the jar fill allowed to ftand in the ice and water. He foon found that a conliderable quantity of ice was melted at the very beginning of the experiment, owing to the agitation into which the water was thrown by the act of pouring it into the velfel. To prevent this as much as poffible, he covered the ice with a fmall quantity of ice cold water, upon which he placed a flat fhallow difh of light wood $4^{\frac{1}{2}}$ inches in diameter, and about one-fourth of an inch thick at the botton. This veffel was perforated by feveral hundred very fmall holes. The hot water was poured into this difh through a long wooden tube, the bottom of which was flopped up, and the water made to iffiue through fmall holes in the fide at the lower end. As this difh always floated on the furface of the water, and as the fluid paffing through it by a number of fmall holes was not projected with force, it is evident that a confiderable part of thefe violent motions was prevented. The following is the rcfult of three experiments made in this manner.

Number of Experiments.	Time the was on the Ice.	Temperature of the hot Water one inch below its furface.		Quantity of Ise melted.
		At the beginning.	At the end	
1	$\begin{gathered} \text { Minates. } \\ 10 \end{gathered}$	19^{20}	182°	$\begin{gathered} \text { Grains. } \\ 580 \end{gathered}$
2	30	190°	165°	914
3	180	190°	95°	3200

From thefe experiments he determined the quansity of ice melted in the act of pouring the water into the jar, fuppoling equal quantities to be melted in equal times. If 3200 grains were melted in 180^{\prime}, fubtracting 580 , the quantity melted in 10^{\prime}, there remains 2620 gr. for the quantity melted in 170', in every ten of which 154 gr. mult have been melted; for $170: 10:: 2620$: 154 nearly. Subtracting 154 from 580, the quantity melted in the firft ten minutes, there remains 426 gr . for the quantity melted in pouring the water into the jar. From the fecond experiment it follows, by a fimilar calculation, that 159 gr . were melted every 10 minutes; which fhows that the motions produced by pouring in the water had not ceafed in 30 minutes. It will be nearer the truth, therefore, if we endeavour to difcover the quantity melted every ten minutes by comparing the fecond and third experiments. By a fimilar calcu-
lation to the above, it comes out to be 152 gr . The following table exhibits the refults of feveral experiments, made exactly in the fame manner, but with water at a much lower temperature.

Number of Experiments.	Temper. of the Water in the Jar one inch below its furface.		Temper. of the Air.	Time the Water remained on the Ice.	Quantity of lee melted.
	Before.	After.			
1	41^{0}	40°	4°	10^{\prime}	203 gr .
2	41	40	41	10	220
3	41	40	41	10	237
4	41	40	41	10	228
5	41	38	41	30	617
6	41	3^{8}	41	30	585

From thefe experiments it appears that the quantity of ice melted in 10^{\prime} by water at the temperature of 41° was 222 gr . while boiling water melted only 152 gr . in the fame time. To difcover whether any of this was melted in the att of pouring in the water; Irom a mean of the two laft experiments it appears, that 601 grains were melted in 30^{\prime} : if from this 222 grains (the mean of the four firft) be deducted, there will remain 379 grains for the quantity melted in 20^{\prime}, confequently $189 \frac{1}{2}$ grains is what muft have been melted in the ordinary courfe of the procefs; a quantity confiderably above 152 grains. Therefore water at 41° melts more ice in the fame time than boiling water. This Count Rumford accounts for by fuppofing, that in the hot water the defcending current from the top of the veffel, and afcending one from theice, meeting one another in that part of the veffel where the temperature is 40°, retard each others motions, and thus prevent the melting procefs from going on fo rapidly as when there is no defcending current. And he found accordingly, that when the cooling of the water above was retarded by wrapping up the jar in a warm covering, the ice melted fafter; and when the cooling above was accelerated, it melted flower. It is evident, that in the one cafe the velocity of the defcending current was diminifhed, in the other accelerated.

Thus it has been completely proved, that water is a non-conductor of caloric. But is this the cafe alfo with other liquids?

When water was frozen in a glafs jar by means of a oil and freezing mixture, Count Rumford obferved, that the ice mereury; firft began to be formed at the fides, and gradually increafed in thicknefs; and that the water on the axis of the veffel, which retained its fluidity longeft, being compreffed by the expanfion of the ice, was forced upwards, and when completely frozen formed a pointed projection or nipple, which was fometimes half an inch higher than the reft of the icc. Upon ice frozen in this manner, he pourcd olive oil, previounly cooled down to 32°, till it food at the height of three inches above the

Caloric. ice. The velfel was furrounded as high as the ice with a mixture of pounded ice and water. A fulid cylinder of wrought i:on, $1 \frac{1}{4}$ th inch in diameter and 12 inches long, provided with a hollow cylindrical theath of thick paper, was heated to the temperature of 210° in builing water; and being fuddenly introduced into its theath, was fufpended from the ceiling of the room, and very gradually let down into the oil, until the middle of the flat furfuce of the hot iron, which was direetly above the point of conical projection of the ice, was dittant from it only $\frac{2}{30}$ ths of an inch. The end of the theath defeended $\frac{8}{20}$ th of an inch lower than the end of the hot metallic cylinder. Now it is evident, that if olive oil was a conduetor, caloric would pafs down through it from the iron and melt the ice. None of the ice, however, was melted; and when mercury was fubftitu* Rumford, ted for oil, the refult was jult the fame;** confequęntly Efay vii. it follows, that neither oil nor mescury is a conductor of
Part ii. Part ii. heat. We may conclude, therefore, with Count Rumchap. I. ford, that this is the cafe with liquids in general.
${ }^{262}$ Air;
Sennebier obferved fome time agn, that air was a very bad conductor of caloric, and that it reflited every * Journ. de change of temperature very much.* But it was refervPby. 1788 . ed for Count Rumford to prove, that it conducted it at all only by the internal motions of its particles, or that it was in fact a non-conducior, exactly in the fenfe that liquids are non-conductors.* 'This he eftablifhed by fhewing, that whatever tended to obftruct or impede the internal motions of its particles, diminifhed its conducting power. By mixing with a quantity of air $\int_{5}^{\frac{x}{6}}$ th of its bulk of eiderdown, he diminilhed its conducting power more than one half. The warmth of furs and feathers and filk depends on a very ftrong attraction between them and air, which is therefore confined in their interfices, and thus the caloric prevented from paffing out of the body. A fingle metallic cover to a boiler in a hort time grew fo hot that it could not be touched, while another of exactly the fame form, but double, with a quantity of air confined in the middle, fearcely felt hot \ddagger. There can be no doubt that all the gafes are alfo non-conductors; and Count Rumford has proved the fame thing of feam by the following experiment, which we flall relate in his own words + :
\dagger Yiid.
p. 61 . "A large globular bottle being provided, of very
263 thin and very tranparent glafs, with a narrow neck, And feam. and its bottom drawn inward fo as to form a hollow hemifphere about 6 inches in diameter ; this bottle, which was about 8 inches in diameter externally, being filled with cold water, was placed in a lhallow difh, or rather plate, about to inches in diameter, with a flat bottom formed of very thin theet brafs, and raifed upon a tripod, and which contained a fmall quantity (about $\frac{2}{\text { To }}$ ths of an inch in depth) of water; a fpirit lamp being then placed under the middle of this plite, in a very few mimutes the water in the plate began to boil, and the hollow formed by the bottom of the bottle was filled with clouds of fleam, which, after circulating in it with furprifing rapidity 4 or 5 minutes, and after forcing out a good deal of air from under the bottle, began gradually to clear up. At the end of 8 or 10 minutes (when, as I fuppofed, the air remaining with the feam in the hollow cavity formed by the bottom of the bottle had acquired nearly the fame temperature as that of the Iteam) thefe clouds totally difappeared; and though
the water continued to boil with the utmoft violence, the contents of this hollow cavity became fo perfectly invifible, and fo little appearance was there of fleam, that, had it not been for the ftreams of water which were continually running down its fides, I fhould almoft have been tempted to doubt whether any feam was actually generated.
"Upon lifting up for an inßtant one fide of the bottle, and letting in a fmaller quantity of cold air, the clouds inftantly returned, and continued circulating feveral minntes with great rapidity, and then gradually difappeared as before. 'This experiment was repeated feveral times, and always with the fame refult; the feam always becoming vifible when cold air was mixed with it, and afterwards recovering its tranfparency when, part of this air being expelled, that which remained had acquired the temperature of the ftcam.
"Finding that cold air introduced under the bottle caufed the fleam to be partially condenfed, and clouds to be formed, I was defirous of feeing what vifible effects would be produced by introducing a cold folid body under the bottle. I imagined that if Iteam was a conductor of heat, fome part of the heat in the feam palfing out of it into the cold body, clouds would of courfe be formed; but I thought if fteam was a nonconductor of heat, that is to fay, if one particle of feam could not communicate any part of its heat to its neighbouring particles, in that cafe, as the cold body could only affect the particles of fteam actually in contact with it, no cloud would appear, and the refult of the experiment fhewed that fteam is in fact a non-conductor of heat ; for, notwithtanding the cold body ufed in this experiment was very large and very cold, being a folid lump of ice nearly as large as an hen's egg, placed in the middle of the hollow cavity under the bottle, upon a fmall tisod or ftand made of iron wire; yet as foon as the clouds which were formed in confequence of the unavoidable introduction of cold air in lifting up the bottle to introduce the ice, were difipated, which foon happened, the fteam became fo perfectly tranfparent and invilible, that not the fmalleft appearance of cloudinefs was to be feen anywhere, not even about the ice, which, as it went on to melt, appeared as clear and as tranfparent as a piece of the fineft rock cryftal." Thus, then, it appears, that all elaftic fluids are non-conductors as well as liquids.
6. If equal quantities of water and of mercury be placed at the fame diftance from a fire, the mercury will become hot much fooner than the water. After a fuf- Specific caficient interval, however both of them acquire the loric of bofame temperature. Now caloric flows into ali bodies dics, what. while they continue of a lower temperature than thofe around them, and it flows with equal rapidity into all bodies of the fame conducting powers, as is the cafe with thefe two fluids: But if equal quantities of caloric were conitantly flowing into the mercury and the water, and yet the water took a longer time to become hot than the mercury, it mult require a greater quantity of caloric to raife water to a given temperature than it does to raife mercury. Bodies that require a greater quantity of caloric to raife them to a particular temperature than other bodies require, are faid to have a greater c.zpacity for caloric. That the capacity for caloric is different in different bodies, was firlt obferved by Dr Black.

Crawford publifhed a great number of experiments on it in his Treatife on Heat. Profeffor Wilcke of Stockholm, alfo difcovered the fame property of bodies. He called the quantity of caloric neceflary to raife the tem. perature of fubftances a given number of degrees, their Jpecific caluric; a term which we thall allo employ, becaule the phrafe capacity for caloric is liable to a great deal of ambiguity, and has intioduced confufion into this fubject (F). If two fubllances of unequal temperatures, as water at 100° and alcohol at 50°, be mixed tngether, the mixture will be of a temperature different both from that of the water and the alcohol, the water will become colder and the alcohol hotter: the water will give out caloric to the alcohol till both are reduced to the fame temperature. Now if it requires juft as much caloric to raife alcohol a certain number of degrees as it does to raife water the fame number, that is, if thefe two fluids are of the fame fpecific caloric, it is evident that the temperature of the mixture will be jut 75°; for as fonn as the water has given out 25° of caloric, the alcohol has acquired 25°, confequently both will be reduced to the fame temperature, and will remain ftationary; but if the fecific caloric of the water be greater than that of the alcohol, the temperature of the mixture will be higher than 75° : for 25° of ealoric in that cafe would raife alcolol more than 25°. If the fpecific caloric of water be fo much greater than that of alcohol, that what raifes water 20° will raife alcohol 30°; then the temperature after mixture will be 80°, hecaufe, when the water has given out 20°, the alcohol will have rifen 30°, and of courfe both will be of the fame temperature. On the contrary, if the fpecific caloric of alcohol were greater than that of water, the temperature of the mixture would be under 75°. If the fame quantity of caloric that raifed alcohol 20°, raifed water 30°, then the temperature of the mixture would be 70°. Thas the ratios of the fpecific caloric of bodies may be difcovered by mixing them together at different temperatures (18).

The firf fet of experiments on this fubject, in point of time, were probably thofe of Mr Wilcke. 'They were firl publithed in the Stockholm Tranfactions for 1781, bur had been made long before. The manner in which they were condufted is exceedingly ingenicus, and they furnith us with the fpecific caloric of many of the metals. The metal on which the experiment was
to be made was firft weighed accurately (generally one pound was taken), and then being fufpended by a thread, was plunged into a large veffel of tinplate, filled with boiling water, and kept there till it acquired a certain temperature, which was afcertained by a thermometer. Into another fmall box of tinplate exactly as much water at 32° was put as equalled the weight of the metal. Into this veffel the metal was plunged, and fufpended in it fo as not to touch its fides or bottom; and the degree of heat, the moment the metal and vaater were reduced to the fame temperature, was marked by a very accurate thermometer. He then calculated what the temperature would have been if a quantity of water equal in zueight to the metal, and of the fame temperature with it, had been added to the ice-cold water inftead of the metal.

Let M be a quantity of water at the temperature C, m another quantity at the temperature c, and let their common temperature after mixture be x; according to a rule demonfrated long ago by Richman, $x=\frac{M C+m c}{M+m}$. In the prefent cafe the quantities of water are equal, therefore M and m are eacl $=1 ; C$, the temperature of the ice-cold water $=32$: therefore $\frac{\mathrm{MC}+m c}{\mathrm{M}+m}$. $=32+c$. Now c is the temperature of the metal. 2
Therefore if 32 be added to the temperature of the metal, and the whole be divided by 2 , the quotient will exprefs the temperature of the mixture, if an equal weight of water with the metal, and of the fame tomperature with it, had been added to the ice-cold water inftead of the metal.

He then calcnlated what the temperature of the mixture would have been if, inftead of the metal, a quantity of water of the fame temperature with it, and equal to the metal in bulk, had been added to the ice-cold water. As the weights of the ice-cold water and the metal are equal, their volumes are inverfely as their fpecific gravities. Therefore the volume of ice-cold water is to a quantity of hot water equal in volume to the metal; as the fpecific gravity of the metal to that of the water. Let $\mathrm{M}=$ volume of cold water, $m=$ volume of hot water, $g=$ fecific gravity of the metal, $1=$ f pecific gravity of water; then $m: M:: 1: g$; hence
(E) The term fpecific caloric has been ufed in a different fenfe by Seguin. He ufed it for the whole caloric which a body contains.
(8) This appears to me to be by no means a jut method of judging of the fpecific caloric of bodies even when it can be pratifed. The very foundation is error. It is confidering the properties of the conflituent principles by that of the compound. This never can be done with certainty and in this particular cafe facts prove it to be peculiarly erroneous. According to the principles of this tef, if any two fubllances were mixed together at the fame temperature the compound would be of the fame temperature as each of them would have a fuficiency of caloric to madintain them juit at that temperature. Let us combine fulpluric acid and water, and water and muriat of ammoniac, at equal temperatures, and oblerve what takes place. In the firft cafe the temperature is much encreafed and in the other decrafed. Why do thefe changes take place? Becaufe the compound is nnt of a mean frecific caloric to the conftituent principles. No inference from its temperature therefore can be drawn as to the fpecific caloric of thofe principles.
T. P. S.
$\underbrace{\text { C.loric. }} m=\frac{M}{g}=(\mathrm{M}$ buing majc $=1) \frac{1}{g} . \quad$ Subhituiir g this value of m in the formula, $\frac{M C^{s}+m c}{M+m}=x$, in Which $\mathrm{M}=1$ and $\mathrm{C}=32, x$ will be $=\frac{32 g+c}{g+1}$. Therefore if the fpecific gravity of the metal be multiplied by 3^{2}, and the temperature of the metal be added, and the fum be divided by the fpecific gravity of the metal +1 , the quotient will exprefs the temperature to which the ice-cold water would be raifed by adding to it a volume of water equal to that of the metal, and f the fame temperature with it.

He then calculated how much water at the temperature of the metal it would take to raife the ice-cold water the fame number of degrees which the metal had raifed it. Let the temperature to which the metal had raifed the ice-cold water be $=\mathrm{N}$, if in the formula $\frac{\mathrm{MC}+m c}{\mathrm{M}+m}=x, \kappa$ be made $=\mathrm{N}, \mathrm{M}=1, \mathrm{C}=32$, ${ }_{n}$ will be $=\frac{\mathrm{N}-32}{\mathrm{c}-\mathrm{N}}$. Therefure if from the tempcrature to which the ice-cold water was raifed by the metal 3^{2} be fubtracted, and if from the temperature of the meral be fubtracted the temperature to which it raifed the water and the firft remainder be divided by the laft, the quotient will exprefs the quantity of water of the temperature of the metal which would have raifed the ice-cold water the fame number of degrees that the metal did.
Now $\frac{N-32}{-N}$ expreffes the fpecific caloric of the metal, that of water being $\because \mathrm{I}$. For (neglecting the frall difference occafioned by the difference of temperature) the weight and volume of the ice-cold water are to the weight and volume of the hot water as I to $\frac{\mathrm{N}=-\frac{32}{\mathrm{~N}} \text {, and the number of particles of water in each }}{}$ are in the fame proportion. But the metal is equal in weight to the ice-cold water; it mult therefore contain as many particles of matter; therefore the quantity of matter in the metal mult be to that in the hot water, as Ito $\frac{N-3^{2}}{c-N}$. But they give out the fame quantity of caloric ; which, being divided equally among their particles, gives to each particle a quantity of caloric inverfely as the bulks of the metal and water; that is, the fecific caloric of the water is to that of the metal as 1 to $\frac{\mathrm{N}-32}{\mathrm{c}-\mathrm{N}}$ (c).

We thall now ${ }^{\text {cive }}$ a fpecimen or two of his experiments, and the calculations founded on them, as above defcribed.

Gold. Sferific Gravity 19,040.

Num-expe$\underset{\substack{\text { ri- } \\ \text { ment }}}{\text {. }}$ ments	Temperature of tal.		Temper.to wilich it would have been raifed -lya quant dy of water equal in weight and heat to the netala.		 tor being r .
1	$163,4^{\circ}$	$3^{8,3}{ }^{\circ}$	$97,7^{\circ}$	$3^{8,555}{ }^{\circ}$	19,857
2	144.5	37,4	88,25	37,58	19,833
3	127,4	36,5	79,7	36,68	20,500
4	118,4	36,05	75,2	36,15	20,333
5	103,1	35,6	65,75	35,42	18,750
6	95	34.45	63,5	35,06	19,000

Mean 10,712
Lead. Specific Gravity 11,456.

Number of experiments	Temperature of the metal.	Temperature to which the netal raifed the water at 32°.	Temperature to which the waterwould have been raifcd by n quantity of water equal in weigh and beat to the metal.	Tempera- ture to which the $\|$	Denominator of the fraction $\frac{\frac{1}{c-N}}{\mathrm{~N}-32}$
1	186,8	$3^{8,3}$	109,4	44,425	23,571
2	181,40	37,85	106,7	43,473	24,538
3	165,2	37,4	98,6	42,692	23,665
4	163	37,4	97,7	$4^{2,548}$	23,333
5	136,4	36	8.4,2	40,344	22,200
6	13^{1}	36,05	81,5	39,947	$2+, 7 \mathrm{CO}$
7	126,5	36,05	79,25	39,585	22,533
8	107,6	35,15	69,8	38,339	23,000
9	9.4.1	34.7	C2,05	. 88	22.00

Wlean 23,515
(c) We have altered all thefe formulas to make them correfpond with Fahrenheit's thermometer. They are a good deal fimpler when the experiments are made with Celfius's bermomerer as Mr Wilcke did. In it the freczing point is zero; and confequently inflead of 3^{2} in the formula, o is always fubftituted.

It is needlefs to add, that the laft column marks the denominator of the fpecific caloric of the metal; the numerator being always 1 , and the fpecific caloric of water being 1. Thus the fpecific caloric of gold is $\frac{1}{19,712}$. In exactly the fame manner, and by taking a mean of a number of experiments at different temperatures, did Mr Wilcke afcertain the fpecific caloric of a number of other bodics. He afcertained at the fame time, that the fpecific caloric of a body did not vary with the temperature, but continued always the fame. This will appear evident from the experiments on gold and lead above exhibited.

Next, in point of time, and not inferior in ingenious contrivances to enfure accuracy, were the experiments of Dr Crawford, made by mixing together bodies of different temperatures. Thefe were publifhed in his Treatife on Heat.

Several experiments on the fecific caloric of bodies were made alfo by Lavoifier and De la Place, which, from the well-known accuracy of thefe philofophers, cannot but be very valuable.

Their method was exceedingly fimple and ingenious; it was firft fuggefted by De la Place. An inftrument was contrived, to which Lavoifier gave the name of calorimeter. It confifts of three circular veffels nearly infcribed into each other, fo as to form three different appartments, one within the other. Thefe three we fhall call the interior, middle, and external cavities. The interior cavity $f f f f$ (fee fection of the inftrument fig. 4.), into which the fubftances fubmitted to experiment are put, is compofed of a grating or cage of iron wire, fupported by feveral iron bars. Its opening or mouth LM is covered by the lid HG, which is compofed of the fame materials. The middle cavity $b b b b$ is filled with ice. This ice is fupported by the grate $m m$, and under the grate is placed a fieve. The external cavity a a a a is alfo filled with ice. We have mentioned already, that no caloric can pals through ice. It can enter ice, indeed, but it remains in it, and is employed in melting it. The quantity of ice melted, then, is a meafure of the caloric which has entered into the ice. The exterior and middle cavities being filled with ice, all the water is allowed to drain away, and the temperature of the interior cavity to come down to 32°. Then the
fubftance, the fpecific caloric of which is to be afcertained, is heated a certain number of degrees, fuppole to 212°, and then put into the interior cavity inclofed. in a thin veffel. As it cools, it melts the ice in the middle cavity. In proportion as it melts, the water runs through the grate and fieve, and falls through the conical funnel $c c d$ and the tube $x y$ into a veifel placed below to receive it. The external cavity is filled with ice, in order to prevent the external air from approaching the ice in the middle cavity and melting part of it. The water produced from it is carried off through the pipe ST. The external air ought never to be below 32°, nor above 41°. In the firt cafe, the ice in the middle cavity might be cooled too low; in the latt, a current of air flows through the machine and carries off fome of the caloric. By putting various fubftances at the fame temperature into this machine, and obferving how much ice each of them melted in cooling down to 32°, it was eafy to afcertain the fpecific calo. ric of each. Thus, if water, in cooling from 212 to 32, melted one pound of ice, and mercury, 029 of a pound; the fpecific caloric of water was one, and that of mercury,029. This appears by far the fimpleit method of making experiments on this fubject; and mult alfo be the moft accurate, provided we can be certain that all the melted fnow flows into the receiver. But from an experiment of Mr Wedge wood, one would be apt to conclude that this does not happen. He found that the melted ice, fo far from flowing out, actually froze again, and choaked up the paflage.

A table of the fpecific caloric of various bodies was And Kir likewife drawn np by Mr Kirwan, and publifhed by wan. Magellan in his Treatife on Heat.

From all thefe fources we liave drawn up the follow- Refult of ing table, which exhibits at one view the fecific calo- thefe exp" = ric of thofe bodies on which experiments have hitherto ments.
been made.
We have added to it a column, exprefling the fpecific caloric of equal bulks of the fame bodies; which feems to be a more accurate way of confidering this fubject, and indeed the only way in which the phrafe caracity for caloric is intelligible. This column was formed by multiplying the fpecific caloric of equal weights of the various fublanecs into their refpective fpecific gravities.

Table of the Specific Calyric of Various Bodies, that of Caloric. Waler being $=1,0000$, continu.d. (H)

Eodies.	Specific Gravity.	of equal Weight.	$\begin{gathered} \text { c Caloric } \\ \text { of equal } \\ \text { Volumes. } \end{gathered}$	Bodies.	Specific Gravity.	$\begin{aligned} & \text { Specifio } \\ & \text { of equal } \\ & \text { Weight. } \end{aligned}$	$\begin{aligned} & \text { Caloric } \\ & \text { of equal } \\ & \text { Voluntes. } \end{aligned}$
I. Gases.*				III. Solids.			
Hydrogen gas	0,000094	21,4000	0,002 14	Ire \dagger		0.9000	
Oxygen gas	0,0034	4,7490	$0,006+11$	Ox-hide with the hair*		0,787	
Common air -	0,00122	1,7900	0,002183	Lungs of a fheep*		0,769	
Carbonic acid gas	0,00183	1,0459	0,001930	Lean of ox.beef*		0,7400	
Steam - -		1,5500		Rice* - -		0,5050	
Azotic gas	0,00120	0,7036	0,000952	Horfe beans** -		0,5020	
Il. Lieuids.				Duft of the pine tree*		0,5000	
Water -	1,0000	1,0000	1,0000	Peale ${ }^{\text {Wheat }}$		0,4920	
Carbnnat of ammonia \dagger		1.851		Barley* .		$\begin{aligned} & 0,4770 \\ & 0,4210 \end{aligned}$	
Arterial blond* - -		1,030		Oats* - -		0,4160	
Cows milk* -	1,0324	0,9999	1,0322	Pitcoal**		0,2777	
Sulphuret of ammonia \dagger	0,818	0,9940	0,8130	Charcoal* - -		0,2631	
Venous blaod* - -		0,8928		Chalk* - -		0,2564	
Solution of brown fugar \dagger		0,8600		Ruft of iron*		0,2500	
Nitric acid \ddagger - -- Sulphat of magnefia		0,8.4+		White oxyd of antimony wathed*			
$\left.\begin{array}{l}\text { Sulphat of magnefia } \\ \text { Water } \\ 8\end{array}\right\} \dagger$		0,844		Oxyd of copper:- nearly		0,2270	
Common falt $17+$				freed from air* -		0,2272	
Water 8$\}$				Quicklime (c) - .-		0,2199	
Nitre 1$\} \ddagger$.		0,8167		Stonc-ware \dagger - -		0.195	
Water 8$\}+$ - -		0,8167		Agate** - -	2,648	0,195	0.517
Muriat of ammonid I $\}+$		0,779		$\underset{\text { Cryital }}{\ddagger} \ddagger$ - - -	3,189 ?	0,1929	0,6151
Water , 1,5 ${ }^{\text {Tartar }}$				Cinders*-- ${ }_{\text {Swedifh }}{ }^{\text {- }}$		0,1923	
$\left.\begin{array}{ll} \text { Tartar } \\ \text { Water } & 2 \\ 237,3 \end{array}\right\} \dagger=$		0,765		Swedifh glafs** Alhes of cinders*	2,386	0,187	$0,44^{8}$
Solution of potais \dagger	1,3+6	0,759	1,2216	Sulphur \dagger -	1,99	0,183	0,3680
Sulphat of iron 1				Flint glafs \dagger - - -	3,3293	0,174	0,5792
Water $2,5{ }^{\dagger}$		0,734		Rult of iron nearly frced			
Sulphat of foda 1				from air* - -		0,1666	
Water 2,9$\}^{\dagger}$				White oxyd of antimo.			
Oil of olives \dagger	0,9153	0,710	0,6498	ny ditto** -		0,1666	
Ammonia \dagger -	0,997	0,7080	0,7041	Athes of the elm* ${ }^{*}$		0,1402	
Muriatic acid \dagger	1,122	0,6800	0,763	Oxyd of zinc nearly free			
$\left.\begin{array}{ll}\text { Sulphuric acid } & 4 \\ \text { Water } & 5\end{array}\right\} \ddagger$		0,6631			7,8,6	0,1369 0,1264	
Alum 1 , ${ }^{5}{ }^{5}$				Brais (${ }^{\text {d }}$)	8,358	0,114i	0,971
Water 4,45 ${ }^{\text {d }}$				Copper (d) - .	3,78+	0,1121	1,027
Nitric acid $\left.9 \frac{1}{\frac{1}{3}}\right\} \ddagger$		0,6181		Sheet iron \ddagger--		0,1099	
Lime ${ }^{1} 5$				Oxyd of lead and tin*		0,102	
$\left.\begin{array}{ll}\text { Nitrc } \\ \text { Water } & 1\end{array}\right\} \dagger$		0,646		Gun metal $\mid 1$ - -		0,1100	
Water ${ }^{\text {a }}$	0,8371	0,602 1	0,4993	White oxyd of tin near ly free from air*		c,0970	
Sulphuric acids	1,8,40	0.5968	1,120	Zinc (${ }^{\text {a }}$) - -	7,154	0,0981	0,735
Nitrous acid \dagger	1.355	0,575	0,780	A ${ }^{\text {A }}$ (${ }^{\text {a }}$ of charcoal*		0,0909	
Linfeed nil \uparrow -	0,9+43	0,528	0,4964	Silver** - -	10,001	0,082	0,833
Spermaceti oil* -		0,5000		Yellow oxyd of lead near			
Oil of turpentine +	0,9910	0.472	0:4132	ly freed from air*		0,0680	
Vinegar \dagger		0,3870	- 3966	1'in (c)-	7,380	0,0661	0,4+4
Lime 9 \} \ddagger		0,3346		Antimony (d) - -	6,107	0,0637	0,390
Water 16$\}$				Gold** - - -	19,040	0,050	0,966
Mercury f - -	13568	0,31c0	4,123	Lead (e) - - -	11,456	0,012+	0,487
1iltilled vinegar \dagger. Eurpl. Vol.		0,1030	0,1039	\|Bifmuth** - - ${ }^{\text {T }}$	9,861	0,043	0,427

(H) The fpecific caloric of the fubtances marked* was afcertained by D_{t} Crawford, thofe marked \dagger by Mr Kirwan, \ddagger by Lavoifier and Lad Place,** by Wilcke, \|l by Count Rumford. § Is the mean of Crawford, Kirwan, and Lavoifier; If mean of Lavnifier and Kirwan; (c) mean of Crawtord and Lavoifier; (d) mean of Wilcke and Crawford; (c) mean of Wilcke, Crawford, and Kirwan.
7. If a quantity of ice, at a low temperature, fupprfe at 20°, be fulpended in a warm room, it will become gradually lefs cold, as may be difcovered by mear.s of a the mometer, till it reaches the temperature of 32°; but there it ftops. The ice, however, diffolves flowly; and at the end of feveral hours, when it is all jutt melted, the thermometer till flands at 32°. AItor this it begins to rife, and foon reaches the temperature of the room. Here the ice continues for feveral hours colder than the air around it. Caloric muft then be continually flowing into it ; yet it does not become hetter ; it is changed, however, into water. Ice therefore is converted into water by a quantity of caloric uniting with it. This caloric has been called latent caloric, becaufe its prefence is not indicated by the thermometer. It night, perhaps with more propriety, as Profefior Pictet obtervest, be called caloric of fundity; fors there are other cafes in which caloric exifts in bodies withnut raifing their temperature. This very important difcovery was made by Dr Black as early as 1757, and feems to have led the way to all the fubfequent difcoveries in this part of chemiftry, which have almof completely changed the appearance of the fcience: for the difonvery that caloric may exilt in bodies while the thermometer cannot indicate its prefence, is one of the flrongelt luks in the chain of fatts by which the nature of combuttion was afcestained.

The caloric which unites with ice, and renders it fluid, appears again during the act of freezing. If a quantity of water be catried into a room where the temperature is below the freezing point, fuppofe at 20° it cools gradually down to 32°; but it becomes no colder till it is all frozen, which takes up fome time. The moment it is all converted into ice, it begins again to cool, and foon reaches the temperature of the room. In this cafe the water is furrounded by a colder atmofphere; it muft therefore be giving out caloric conftantly; yet it does not become colder till it is all frozen, that is to fay, till it has loft all its coloric of fuidiy.
Dr Black proved, by a very accurate experiment, that the quantity of caloric of fuidity is fufficient to raiie the fame quantity of water 140°.
All folids become fluid by abforbing a quantity of caloric. Laudriani proved that this is the cafe with fulphur, alum, nitre, and feveral of the mecals \ddagger and it has been found to be the cafe with every fublance hitherto examined. Fluidity, therefore, is owing to a union between the folid, and a certain quantity of caloric.

The late Dr Irvine of Glafgow advanced a thenry on this fubject different from that of Dr Black. The fpecific caloric of water being greater than that of ice, it requires a greater quantity of caloric to raife it to a given temperature than it does to raife ice. The caloric does not therefore become latent; it only feems to do fo from the greater fpecific caloric of water. This theory was zealoufly adopted by Dr Crawford. Dr Black obierved very juftly that it did not account for
the production of fluidity at al!. The fpecific caloric of water is indeed greater than that of ice; but how is the ice converted into water? This is an objection which the advocates for Dr Irsine's, or Dr Crawford's theory (as it has been impropetly called) will not eafily anfwer. Let us now examine uhether this theory accounts for the apparent lofs of caloric. It follows from Mr Kirwan's experiments, that the fpecific caloric of water is to that of ice as 10 to 9 (1). Dr Black proved that as much calicic entered the ice as would have raifed it, had it been water, 140°. Let us fuppofe that it would only have raifed the ice 140°; in that cafe the melted ice ought to have been of the tem. perature of 158°, for $10: 9:: 140: 126$; but it was only 32° : Therefore 126° of caloric have difappeared, and cannot be accounted for by the change of fpecific caloric, nor can the accuracy of Dr Black's experiment be fufpected : it has been repeated in every part of the world, and varied in every polfible way. We cannot doubt, therefore, that caloric unites with fubtances, and caufes them to become fluid, or that there is in fack a caloric of fusidity different from Jpecific caloric.

Water alfo is converted into feam by uniting with Caloric of caloric. Dr Black put an iron veffel, containing four evaporacunces of water at the temperature of 53°, upona caft- tion. iron table which was red hot. The water role to the boiling point in three minutes; but it did not afterwards become any hotter. It evaporated, however, in 18 minutes; and the fteam was precifely at the temperature of 212°. During the firft three minutes, it received 159° of caloric, and as much mult have been entering it during every three minutes vahile the evaporation continued, as the temperature was always much lower than that of the table. This caloric, intead of raifing the temperature of the water, was employed in converting it into Iteam. These is alfo, therefore, a quantity of latent caloric in fteam. It might, as Mr Pictet oblerves, be called, with propriety, caloric of evaporation. This caloric appears again if the tream be condenfed. If it be made to pafs, for inftance, through a pipe furrounded with cold water, it is condenfed in the pipe, and drops out from it in the form of water. The calosic of the fteam enters into the water around the pipe, and the quantity of it in degrees may be difcovered by the number of degrees which it taifes that water. By an experiment of this kind, it was proved, that the caloric of evaporation would be fufficient to heat water red hot, were it employed only in railing its temperature, inftead of converting it into fteam. It is thercfore at leatt equal to 800°. Mr Watt fhewed afterwards that it was 920°.

Even fpontanenus evaporation, as Dr Black firt obferved, is owing to the fame caufe. And this explains why bodies cool when water is evaporated from their funface; a fact which has long been known, and which has been employed in warm countries to diminith the temperature of liquids, and even to convert them into
\qquad ice
(1) We do not know how this was afcertained : Not by mising water and ice furely; becaufe that would be taking for granted the thing to be proved; becaufe it would give a very different refult, and what is ftill worfe, the fpecific caloric in that cafe would differ according to the temperature, and the quantity of water. To give
"Ans. de
Cbim. xi. 27. an inftance : Mr Gadolin concludes, from 180 experiments made by mixing hot water and ice, that the fpecific caloric of ice is to that of water only as 1 to 2^{*}; and had he varied the quantities and the temperatures, he might have obtained feveral other ratios.
ice (k). That water is evaporated by uniting with caloric, and not by folution in air, has been proved very completely by De Luc in his Treatife on Meteorology.

The evaporation of alcohol, ether, and every other fubflance on which experiments have been made, has been found owing to the fame caufe. Bodies, there-
$2 \% 4$
Irvine's
for what reafon, been afcribed by feveral writers to Mr Kirwan. He took it for granted, and the fact is proved by all the experiments hitherto made) that the fipecific caloric of bodies continued the fame in every degree of temperature, as long as they remained in the tame fate, that is to fay, as long as they continued cither folid or fluid, or in a flate of vapour: but that the fpecific caloric of the fame body while folid was lefs than while fluid, and lefs while fluid than while in a ftate of vapour. He took it for granted too, that the 140 degrees of caloric which entered ice during its folation without raifing its temperature, entered merely in confequence of the increafed $\mathrm{r}_{\mathrm{p}} \mathrm{ec}$ fie caloric of the water, and that they were exactly proportional to this increafed fpecific caloric. He took it for granted, like. wife, that the fecific caloric of bodies was proportional to their abfolute caloric, or to all the caloric which exitted in each.

On thefe data he reafoned in the following manner: Let A be a lody in a fate of fluidity; B the fame body in a flate of folidity. If the fpecific caloric of A and of B be known, and if it be known how many degrees T 12
the
(5) Galen informs us, that the ancient Egyptians were accuftomed to put water previounfy biled into earthen jars, and expofe them all night on the upper part of their houfes to the air. Before finnife thefe velfels were put into the ground moiltened on the outfide with water, and then furrounded with frefh plants; by which means the water was preferved cool during the whole day. Comment. in lib. vi. Hippoc. de morbis valgar. 4. ro. p. 396.

By a fimilar procefs, water, in the Eaft Indies, is converted into ice.
The following fingular palfage, which has been pointed out to us by the ingenious Dr Barclay, lecturer on anatoms in Edinburgh, furnifhes a friking proof that the aneients were led, by a very different method of reafoning, to deduce from their philofophical theory of the four elements, conclufions concerning the nature of heat, not very different from thofe of the inoderns.
"Sic enim res fe habet, ut omnia, qux alantur, et qux crefeant, contincant in fe vim caloris; fine qua neque ali poffent nec crefcere. Nam omne, quod eft calidum et igneum, cietur et agitur motu fuo: quod autem alitur et crefcit, motu quedam utitur certo et æquabili; qui quandin remanet in nobis, tamdiu fenfus et vita remanet : refrigerato autem et extincto calore, occidimus ipfi et extinguimur. Qund quidem Cleanthes his etiam argumentis docet, quanta vis infit caloris in omni corpure: negat enim ullum effe cibum tam gravem, quin is nocte et die concoquatur ; cujus etiam in reliquiis inelt calor his quas natura refpuerit. Jam vero venz et arterix micare non definunt, quafi quodam igneo motu; animadverfumque fxpe eft, cùm cor animantis alicujus crolfum ita mobiliter palpitaret, ut imitaretur igneam celerit:tem. Omne igitur quod vivit, five animal five terra editum, id vivit propter inclufum in eo calorem. Es quo intellegidebet, eam caloris naturam, vim habere in fe vitalem per omnem mundum pertinentem. Atque id faciliùs cernemus, toto genere hoc igneo, quod tranat omnia, fubtilius explicato. Omnes igitur partes mundi (tangam autem maxumas) calore fultæ fuftinentur. Quod prinuim in terrend natura perficici potef. Nam et lapidum confictu atque tritu elici ignem videmus; et recenti foffione
-terram fumare catentem;
atque ctiam ex puteis jugibus aquam calidam trahi, et id maxume fieri temporibus hibernis quòd magna vis caloris, terra contineatur cavernis; eaque hieme fit denfior ; ob eamque caulfam, calorem incitum in terris contineat arctiùs.
"Longa eft oratio, multxque rationes, quibus doceri pofit omnia, qux terra concipiat, femina, quaque ipfaca fe generata firpibus infixa contineat, ea temperatione caloris et criri et angefcere. Atque aqux etiam admixtum effe calorem primùm ipfe liquor, tum aqua declarat effulio: quæ neque conglaciaret frigoribus, nequa nive pruinaque concıefceret, nifi eadem fe admixto calore liquefacta et dilapfa diffunderet. It.aque ct aquilonibus reliquifque frigoribus durefcit humor: et idem vicillim mollitur tepefacus et tabefcit calore. Atque etiam maria agitata ventis ita tepefeunt, ut intellegifacile poffit, in tantis illis humoribus effe inclufun calorem. Nec enimille externus et adventicius habendus eft tepor, fed ex intimis maris partibus agitatione excitatus: quod nofris quoque corporibus contingit, cùm motu atque exercitatione recalefcunt. Ipfe serò aër, qui natura eft maxnmè frigidos, minime eft expers caloris. He verò et multo quidem calore admixtus eft : ipfe enin oritur cx refpiratione aquarum : earum enim quafi vapor quidam ac̈r habendus eft. Is antem exiftit motu ejus ealoris, qui :quis continetur. Quarn fimiiitudinem eernere polfumus in his aquis, qua eflervefeunt fubditis ignibus. Jan verò reliqua quarta pars mundi, ea et ipfa tota natura fervida eft, et ceteris naturis omibus faluarem inpertit ct vitalen calorem. Ex que concluditur, cùm omnes mundi partes fuftineantur calos c, mundum ctiam ipfum fimili parique natura in tanta diuturnitate fervari: enque magis quad intellegi debet caliさum illud atque igneum ita in omnifufum effe natura, ut in eo infit procreandi vis et caufa gignendi, à quo et animantia ormia, et ca quorum firpes terra coa. tinentur, et nafci fit neceffe et augefcere. Cicero de natura Diorun, lib ii. c. 9, at 10.

Caioriz. $\underbrace{\text { Caitic. }}$
the caloric, difengaged during the change of B into A, would raife the temperature of A, it may be found by an eafy procefs how many degrees all the caloric contained in B would raife the tentperature of A ; and the fum of thefe two numbers will reprefent in degrees the whole quantity of caloric in \mathcal{A} : for the quantity of caloric in A muft be juft equill to the caloric in B , together with what entered into it in palling from the llate of B to that of A. Let the fpecific caloric of A be 6 , that of B 1 ; and let the quantity of caloric difengaged during the change of A into B he fufficient to raife the temperature of $A 500^{\circ}$. If the \{pecific caloric be proportional to the abtolute caloric, it matt contan exaetly 6 cimes as much caloric as 13 The 500° which entered into A when it changed its fate, mult be juft 5 times as great as all the caloric of B ; becaule when added to the caloric of B , it formed the caloric in A, which is jult 6 times as great as the calonic in B. Therefore to difcover the calotic in D , we have only to divide 500 by 5 , or, which is the fame thing, to fate this proportion 6-1:500::1:100. The caloric in B, therefore, in this cale is jult as much as would raife the temperature of $\mathrm{A} 100^{\circ}$. Thesefore, if to 100°, the calonic of B, be added $500^{\circ},=$ caloric difengaged in the palfige of A to B, this will give $600^{\circ},=t o$ all the caloric in A. Therefore, in ali cafes, the difference between the numbers exprefling the fpecitic caloric of the folid and fuid, is to the number exprefling the fpecific caloric of the folid, as the quantity of caloric difengaged during the paffage of the fluid into a folid is to the quantity of caloric in the fluid.

Dr Crawfordembraced this theorem; and concluded, from a number of experiments made on purpole to afcertain the fact, that the real zero was 1268° below o, or 1300° below the freezing puint.

This fubjeer deferves to be confidered with attention. If this theorem in fat fumifhes us with the real zero, it is one of the molt important difcoveries which has ever been made in chemiftry; but if it proceeds on eronenus principles, it will only involve us in endlefs mazes of error and abiurdity.

In the firf place, if the real zero has any meaning at all, it mult fignify the degree to which the thermometer (fuppofing it could be ufed) would fink on being applied to a body which contained no heat. It mult :lierefore be a fixed point ; and were the thenrem which we are examining well founded, experiments upon every different lubftance, if conducted with accuracy, would lead to the fame efult. Let us fee whether this be the cafe.

From Dr Crawford's experiments, it follows, as we have feen, that the real zero is 1263° below o.

Mr Kirwan, from comparing the ípecific caloric of water and ice, fixed the real ecero at 104° belnw o.

From the experiments of Lavoifier and La Place on a mixture of water and quickline, in the proportion of 9 to $\mathbf{1 6}$, it follows, that the eal zero is 2736° below o.

From their experiments on a mixture of 4 parts of filphuric acid and 3 parts of water, it follows, that the r al zero is $5803,4^{\circ}$ below o.

Their experiments on a mixture of 4 parts of fulphuric acid and 5 of water, place it at $2073,3^{\circ}$ below 0 .

Their experiments on $9 \frac{\frac{3}{3}}{3}$ parts of nitric acid and 1 of lime, place it at $\frac{188 y}{-0,01783}$ beiow $32^{\circ *}$.

Thefe refults differ trom one another fin enormoufly, dc Cbim. vii and the laft of them, which makes the real zero a negative quantity, is folabfurd, that they are alone fufficient to convince us that the data on which they are founded are not trie. Should it be faid that their difference is not nwing to any defeef in the thenrem, but to inaccuracies in making the experiments-we anfwer, that the theorem itfelf is founded on fimilar exferiments; and if experinients of chis nature, even in the hands of the mont accurate chemifts, cannot be fiee 4 from fuch enormous error:, how call we depend on any confequences defuced from them? and where, then, is our cvidence for the truth of the theorem ?

But, farther, there is no pronf whatever that the fpecific caloric of bodies is proportional to their absiolute caloric. The fpecific caloric of iron is greater than that of water, or even azotic gas; yet furely it is very improbable that iron centains more abflute caloric than either of thefe fubitances.

If the fecific caloric of hodies has any meaning at all, it can only be, that the fume quantity of chloric raifes the temperature of one body a greater number of degrees than it does annther. When we fay that the fpecific caloric of A is $=6$, and that of $B=1$, what do we mean, unlefs that the quantity of caloric which raifes $\mathrm{B} 6^{\circ}$ raifes A only 1°, or that what raifes $\mathrm{B} 60^{\circ}$ or $6 n 0^{\circ}$, raifes A only 10° or 100° ? When we fay that the Specific caloric of water is so, and that of ice 9 , to we not mean, that the quantity of caloric which raifes the ice 10° or 100°, raifes water only 9° or 90° ? Yet during the change of ice into water, 140° of caloric enter it without raiiing its temperature; a quantity greater than what can be accounted for by the difference of fpecific caloric by 126°. The quantity that difappears, therefore, is not proportional to the difference of ipecific caloric; and therefore any theory which depends on that fuppolition cannot be well founded. When water is cunverted into feam, 800° of caloric difappear; yet the fpecific calonic of fleam is to that of water, according to Dr Crawford's nwn experiments, noly as 155 to 100 : fo that no lefs than 283° dilappear, which cannot be accounted for according to this theory.
D) Irvine's theorem, therefore, is infufficient for af a 276 certaining the real zeto; and hitherto no method has infufficient. been difcovered which can filue this problem (19).
9. If there be no body without caloric, if it exills in caloric exdifferent quantities in difierent bodies, even when their ins in botemperatures are the fame, and while the thermometer dies cannot indicate its prefence-in what llate does it exift in them? We cannot furely fuppofe that it is contained by them juft as water is contained by a velfel of wood or metal, or that they are filled with it in the fame manner that a hollow globe of tin-plate perforated with holes is filled with water when it is plunged into a quantity of that liquid; or that bodies are filled with caloric merely becaule they are immerfed in an ncean of caloric. Were that the cafe, the fpecific and abrolute caloric of bodies would always be proportional; and
(19) He attempted to compute the real zero as much without data, as a mathematician who Gould attempt to compute the length of a line by knowing that part of it was an inch long, without knowing the proportion of that part to the whole.
'I'. P. S.
they would of neceffity be inverfely as the fpecific gravits of the refpeatire bodies; bectufe the lefs the fpecific gravity, the more soum would be Ieft for the particles of caluric. But this is by no means the cafe: the iperificgravity ot iron, for intiance, is greater than that of tie, yer the fipecific caloric of iron is more than double that of tin: the ipecific gravity of oxygen gas is greater than that of common air, yet the fpecific caIrric of the firfe of theie inbflances is more than three times as great as that of the cother. There mult be fomething, therefore, in bodies themfelves quite different from, and unconneatd with the vacuities between their particles, which difores tome to admit more caloric than others. And what can that be but a difpofition in diffierent bodies to unite with a greater or a fmaller quantity of caloric, and to retain it with more or lefs firmnefs according to their afinizy for it? Dr Black pointed out, long agn, by difiovering latent heat, that caluric unites with bodies; and this feems to be the only real key for unfolding the actions of this extraondinary fubftance. If caloric be matter, can it he

278

In a fate of

 chemical combination.279
Proved to be the cafe in liquids, vapours,

280

And gafes; . pours in almolt all their properties : thefe are the gafes. Like them, they are invifible and elatic, and capable of indefinite expanlion. Is it not probable, then, that the gafes alfo, as well as the vapours, owe their properties to caloric? that they alio confith of their refpective bafes combined with that fubtile fubfance? This probability has been reduced to certainty by an experiment of Lavoiner. Dy adding two tubes to the calorimeter formerly defribed, he enntrived to make known quantities of air to pafis through the interior cavity, and to fupport combufion. He found, that when a pound of oxygen gas was made to combine in this manner with phofphorus, as n:uch caloric was difengaged as - Lavoifire, melted $87 \frac{1}{2}$ prunds of ice ${ }^{\hbar}$. Now every pound of ice f. i. ch. 9. alforbs as much caloric in the act of melting as is fufficient to raife a pound of water 140°. Therelore the whole caloric difenyaged was lufficient to raife a pound of water 12250°. All his could not have come fron the phofpliorus, becaufe it had been converted into a liquid, and mult therefore have abforbed in!tead of parted with caloric, and becaufe the quantity of caloric dif. engaged in all cafes of combuftion is proportional, not
to the combuftible, but to the nxygen atforbed. Oxym gen gas, then, is compofed of oxygen and caloric: and if this be the cafe with one gas, why not with all?

We may conclude, thenefore, that the gafes, as well as liquids and vapours, nue their form to the caloric which they contain. The only difference between them and vapours is, that the latter return to their liquid fate by the mere astion of colla; whicreas molt of the gafes relitt the lowelt temperature which it has been polibible to apply. It was natural to expect, ther if caloric combined chemically with bodies, its alfinity would be different for different fubfances, and that its affinity for fome bodies would be fo great that it would not leave them to combine with any other. It was natural to expeat this, becaufe it is the cafe with every orther fubftance with "hich we are acquanted. The difference, then, betwen the gales and vapours is not furprifing. The aftanity of the former for calcric is not only much gre:ter than that of the latter, but mach greater tha: that of any other fubtances.

It is owing to this Arong affinity between oxygen, And to bs hydrogen, and azot and caloric, that they cannot be the caufe of ottained except in a gafeors form : and we flall defribe feveral other fubftances afterwards exaity in the lame circumfances. Hid we any fubftance poffefied of a greater affinity for caloric than they have, we thould be able, by prefenting it, to deprive them of their gafenus form. Doublefs there is a difference in the afinity between thefe hodies themfelves and caloric ; but as all of them are already faturated, this difference cannot be difeovered. If we could obtain them uncombined with caloric, that is to fay, in a concrete flate, it would be eafy to afcertain this point. Suppofe, for inflance, that hydrogen had the flonngefl affinity for caloric, and that we poffefled it in a concrete ftate-it would be ealy, by prefenting it to the othar gafes, to deprive their bafes of the caloric with which they are united, and thus to obtain them alfo uncombined with any other fubfarice.

But though we are acquainted with no fubftance that why calohas a greater affinity for caluric than the bafes of the ric appears gafes, there are many fubltances which have a greater affinty for thefe bafes than calnric has. When any fuch fubfance is prefented, the baife combinics with it, and the caloric is left at liberty. Thus, when photphorus is prefented to oxygen gas, the phof phorus and oxygen unite together, and the caloric fies off. We ate now, therefore, ahle to anfwer one of the queftions propofed at the end of the fecond chapter. Whence comes the caloric which appears during combuftion? It is feparated from the oxygen, whichleates it in order to enter into a new combination.

The caloric alfo, which fometimes appears when two And ${ }^{283}$ during bodies combine tongether, is let at lherty exastly in the nany chefame manner. When fulphuric acid and water, for in. mical comftance, are mixed togethes, a very conliderable leat is biations. proluced ; a good deal of caloric, therefore, becomes fonfible. In this cafe, the water combines with the acis, and at the fame time lets gn the caloric with which it was formerly combines, and beenmes denfer. In the fame mannet, to give another infance, when water is poured upon quicklime, a very great quantity of caloric becomes manifeit. The water in this cafe combires with the quicklime, and affumes: concrete form, and of courfe lets 30 the caloric with which it was previcully united.

Caloric. 284 Why cer1 ain mixeures produce sold.
10. It is no uncommon thing in nature to obferve two bodies, after combining together, manifefting a much ftronger affinity for a third body than either of them had while ieparate. Thus, filver has no perceptifle afinity for fulphuric acid, neither has oxygen : but onice them together, and they combine with that acid very readily. A great many infances of the fame kind might be produced. Were there fubfances, then, which, after combining togecher, have a greater affinity for caloric than any of them had while feparate, this ought not to furprife us, becaufe the fame phenomenon is often ooperved in other bodies. Now this is actually the cafe with regard to caloric. Mix together, for inflance, common ialt and frox, the mixture inllantly becomes liquid, and fo cold, that it finks the thermometer dowo to zero. In this cafe, the fnow and falt united have a much itronger affinity for caloric than either of them had while feparate; they attrad it therefore from other bodies with which they happen to be in contact, till they have obtained a dofe fufficient for their faturation; and this faturation they manifeft by becoming Iquid. It is for this reafon that all falts produce cold during their folution in water, when the freezing point of the folution formed is below that of water. All finch folutions have a ftrong affinity for caloric ; they therefore attract it till they are faturated, which appears by their becoming fluid. A number of experiments bave been lately made in order to procure artificial cold by means of fuch combinations. The moft complete fet of experiments of that nature with which we are acquainted, is thofe of Mr Walker, publifhed in the Philofophical Tranfactions for 1795 . We fhall prefent the refult of his experiments in the following table:

Thble of Freezing Mixtures.

Mixtures.		Thernometer Ginks.
Muriat of ammonia Nitre Water	$\begin{aligned} & 5 \text { parts. } \\ & 5 \\ & t 6 \end{aligned}$	From 50° to 10°.
Muriat of ammonia Nitre Sulphat of foda Water	$\begin{array}{r} 5 \\ 5 \\ 8 \\ 16 \end{array}$	From 50 to 4.
Nitrat of ammonia Water	$\begin{aligned} & 1 \\ & I \end{aligned}$	From 50 to 4.
Nitrat of ammonia Carbonat of foda Water	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	From 50 to $7 \cdot$
Sulphat of fodd Diluted nitric acid	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	From 50 to 3.
Sulphat of fuda Muriat of ammonia Nitre Diluted nitric acid	$\begin{aligned} & 6 \\ & 4 \\ & 2 \\ & 4 \end{aligned}$	From 50 to 10.
Sulphat of foda Nitiat of ammoria Diluted nitric acid	$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	From 50 to 14.
Phofphat of foda Diluted nitric acid	4	From 50 to 12.

S T R Y.

In order to produce thefe effects, the falts employed mult be frefh cryftallized, and newly reduced to a very fine powder. The veffels in which the freezing mixture is made fhould be very thin, and juft large enough to hold it, and the materials fhould be mixed together as quickly as poffible. The materials to be employed in order to produce great cold ought to be firft reduced to the temperature marked in the table, by placing them in fome of the other freezing mixtures; and then they are to be mixed together in a fimilar freezing mixture. If, for inflance, we wilh to produce a cold $=-46$, the fnow and diluted nitric acid ought to be cooled down to o, by putting the veffel which contains each of them into the 12 th freezing mixtire in the above table hefore they are mixed together. If a fill greater cold is required, the materials to produce it are to be brought to the proper temperature by being previoufly placed in the fecond freezing mixture. This procefs is to be continued till the required degree of cold has been procured \dagger.
11. From the facts already known we may conclude, that the particles of caloric have two properties, that of repelling each other, and of attracting and being attracted by other fubftances. As there is no body in nature which does not contain caloric, we may fafely conclude that there is no body in nature which has not caloric. an affinity for it. When it unites with bodies, though the repulfion of its particles may be overcome by their attraction for the particles of the body, and by the attraction
traction of thefe particles for each other-we cannot fuppore it annihilated: It mult therefore be the more powerful the greater the quantity of caloric combined in any body is. Probably, then, there is molt caloric combined with gafes, lef's with fluids, and leatt with $\int 0-$ lids. It does not follow, however, from this that the quantity of caloric combined with any body is proportional to the diftance between its particles, becaufe that may depend on other caufes. Thus, though hydrogen gas is much rarer than oxygen gas, it does not follow that hydrogen is combined whith more caloric than oxygen, becaufe the rarity may be owing to the fmaller cohelive force of the particles of hydrogen allowing a finaller quantity of caloric to produce a greater effeê.

If caloric unites only chemically with bodies, there - ought to be a certain point of faturation between it and the fubfances with which it combines, becaufe this takes place in all other chemical combinations. Oxygen gas, for infance, confifts of a certain quantity of oxygen united with caloric. Now if this gas be a chemical compound, the two ingredients ought to fiturate each other in fuch a manner, that no more of either could be admitted. But it cannot be denied, that more caloric can fill be added to $n x y g e n$ gas, for its temperature may be raifed at pleafure as high as we think proper. This, at firft fight, feems to be an infuperable objection to the theory that caloric only combines chemically with bodies. It ought to be remembered, however, that caloric is not fingular in this refpect. There are other bodies in nature, and bodis too which certainly combine with other fubfances only by affinity, which exhibit the very fame phenomenon. Water is capable of combining with fulphuric acid and many other falts almolt in any proportion, at lealt no limits have hitherto been obferved. Oxygen, too, combines with almoft every body in various proportions: We have feen, that with almof every metal it forms at lealt two different oxyds. Why then may not caloric be capable of uniting in the fame manner ? Allowing, therelore, that it were impoffible to explain why bodies are capable of combining with caloric after faturation, this could be no objection to the theory that it only unites chemical. ly with bodies, becaufe the fame phenomenon is exhibited by other bodies which it cannot be doubted combine only by means of affinity.

The manner in which thefe other combinations are formed, has been already hinted, and fhall he confidered more fully afterwards; at prefent we fhdl only attempt to explain the action of caloric. Let us fuppofe, then, that caloric is prefented to oxygen; that they combine together in a certain proportion, and faturate cach other. The produet of this combination is oxygen gas; a fub. ftance poffeffed of properties very different from thofe of caloric or ozygen in a concrete flate; it is incapable of being decompofed by any merely mechanical method, and exhibits all the appearances of a fimple fubftance. Let us therefore confider this compound for a moment as a fimple fubflance. May it not ftill have an affinity for caloric? and will it not, in that cafe, unite with it? Oxygen gas and caloric have an affinity for each other; accordingly, when prefented to one another they combine in a certain proportion, and form a new enmpound, differing from oxygen gas, properly fo called, in elafticity, fpecific gravity, and feveral other particulars. The afinity, however, between oxygen gas and caloric is
much feebler than that between oxygen and caloric ; for the new compound is caflly broken, and the caloric ab. forbed by many other fubfances. We can even conceive this new compound till to have an affinity for citloric, to urite with it, and to form another compourd, the affinity between the ingredients of which is fill feebler. And in this manner may the indefinite increafe of temperature be accounted for.

Subtances may be conceived to be conductors of ca. Caufe of loric inverfely as their affinity for it. Good condustors the diffemay have very little affinity for caloric ; and for that rent conreafon it may be eafily forced through them by the rcpullion of its own particles. But thofe fubtances pullion of its own particles. But thofe fubfances dowers of
which have a great aftinity for caloric, combine with it hodies. the moment it is prefented to them : and confequently it cannot pafs through them. Thus, when it is prefenced to ice the affinity botween the two fubfances is fo great, that the caloric unites with the very firlt particles of ice which it meets with. The particles behind thefe cannot receive any caloric except by attracting it from the particles with which it has already combined. But the affinity of one particle of ice for caloric cannot be greater than that of another particle of ice, and the union of two bodies cannot be broken by a force not greater than that which unites them; therefore the calo. ric cannot pafs from one particle to another. Confequently, fuppofing all the particles to keep their places, no new caloric could enter. Juft as when a piece of marble is put into fulphuric acid, the crult of fulphat of lime which very foon covers it prevents the acid from getting to the particles of marble within. But as foon as a particle of ice unites with caloric, water, the new compound, leaves its Itation, and allows the caloric a paffage to the other particles.

In the fame manner, when caloric is prefented to water, it combines with the outermof ftratum of particles, and forms with them a compound which cannot be decompofed by the other particles of the water, becaufe their atinity for caloric is no greater than that of the particles alrcady united with it. No more caloric, then, could gain admifion, were it nnt that (the Specific gravity of the new compound being inferior to that of the uncombined water) it immediately clidnges its place, and allows another fratum of particles to occupy its room. Thefe unite with caluric, and are difplaced in their turn. And in this manner the procels goes on, till all the particles have combined with caloric, or, which is the fame thing, till the whole of the water is heated.

But fuppofing the firft Aratum of particles to remain How heat in their place after their union with caloric, we can paffes thro conceive an affinity ftill to fubfif between the new com- folids. pound thas formed, and caloric. In that cafe the new compound which we fhall call A, would combine with an additional dofe of caluric, and form a fecond compound B, differing in feveral refpents from the firft. We can conceive alfo the affinity hetween the firft compound A and caloric to be inferior to that between water and caloric. In that cafe, the fecond Atratum of particles of water would feparate the additional dofe with which the firff fratum had united. In this manner would two Itratnms of particles combine with caloric. The firlt Itratum of particles would combine with another dofe of caloric, and form a fecond compound B as before. But this compound could not

Caloric. - ~
now be decompofed by the fecind firatum of particles, hecaufe they had alrendy united with a dofe of caloric; and therefore their allinity for a new dofe could be no greater than that of the firf Aratum of perticles. The procefs of heating could go on no farther. But we can conceive the fecond compound B , into which the firf Aratum has en ered, Aill to lave an affinity for caluric, to combine with a dofe (f it, and to form with it a third compound C . We can conceive, at the fame time, the affinity between the fecond compound B and calosic to be lefs than that between the firf compound A and caloric. In that cate, the fecond fratum of particles would take this latl dofe from the firt Iratum, and form with it a fecond compound B. The third fratum of particles, which is fill uncombined with caloric, would now attract this new dofe from the fecond ftratum, and combine with it. And, fuppofing the caloric fill flowing towards the water, the firlt fratum would again form the third compound C, by uniting with a frefh dofe: this new dofe would he again attrafted by the fecond fratum, and the firf tratum would again form the third compound C , by uniting with another dofe of caloric. Thus three flratums of partictes would be com'ined with caloric; the firli fratum would contain three dofes, the fecond fratum two, and the third one. The procefs of heating would again llop; becaufe now the affinity of the lecond Aratum is no greater than that of the firft, nor the affinity of the third Aratum greater than that of the fecond, nor that of the fourth than that of the third. But we can conceive an affinity fill to fublift between caloric and the third compound C , into which the firf Atratum has entered, and this affinity at the fame time weaker than that between the fccond compound B and caloric. In that cafe they would combine and form a fourth compound D. '1his new dofe would be attracted by the fecond fratum of particies, which would combine with it and form the third compound C ; the third flratum would attract it from the fecond, and form with it the fecond compound B; and the fourth fratum would attrach it from the third, and enter into the firt com. pound A. The firt ftratum would again enter into the fourth compound D ; which would be again decompoled by the fecond fratum; and the compound formed by the fecond Rratum, by the third fratum. The fourth compound D would be again formed by the firl firatum, and again decompofed by the fecond Ifratum. It would be formed a third time, and could not now be decompofed. Four fratums of particles would now have combined with caloric : the firlt flatum with four dufes; the fecond, with three dofes; the third, with two; and the fourth, with one. We can conceive this procefs to go on exactly in the fame manner, till all the particles of water have combined with a dofe of caloric. In that cafe, the quantity of calotic combined with every ilratum of particles would form a regular decreaf. ing leries from that part of the water at which the caloric enters to that part which is fartheft diflant from it. The procefs of heating would go on very flowly; and the heat of that part of the water which is farthert dif. tant from the fource of caloric could never be nearly equal to that if the part which is neareft to that fource. This feems in faft to be the manner in which all thofe folids arc heated which are bad conductors of calnric: in all probability it is the way in which all folids are heated.

That caloric combines with bolies meee! by means of affinity, feems at fr尺 fight contrary to fact; for there is no fubftance whatever which may not be cooled 290 indefuitely merely by furounding it with other bodies each other which are culder than itfelf. Place a piece of hot iron, reciprocalfor infance, in cold water, it is very fuon cooled down ly, to the temperature of that liquid. This feems plain enough; the attraction of water for caloric is greater than that of iron: but reverfe the experiment; put hot water within cold ircn, and the water is cooled in its turn down to the temperature of the iron: fo that the iron alfo has a greater affinity for caloric, as well as the water; which is abfurd.

But it cught to be remembered, that caloric not on. And why. ly poffefles affinity, but that it has another property alfo, of which every other fecies of matter, except perhap; light, feems to be dellitute, a repulfion between its own purticles. It is neceffary for all organifed bodies, and probably for all bodies, that they lhould pofiefs a certain quantity of caloric; and on this account the greatelt care has been taken to fecure is equal diftribution. This feems to be one ufe at leaf of its repulfive power; a power which is never deffroyed, however clofely caloric is united with other bodies. We have fhewn already, that this power is increafed by diminifhing the quantity of furrounding caloric; and when thus increafed to a certain degree, it may at laft equal, and even exceed, the affinity between the caloric and the bodies to which it is united; and in that cafe part of the caloric would neceffarily fly off. It feems to be in this manner that bodies reciprocally cool each other, and that they have always a tendency to an equilibrium of temperature. Thus fteam by cold is converted into water, and water into ice. And the affinity between bodics and that caloric which is employed in regulating the temperature feems to be fo weak, that the repulfion between the particles of caloric eafily overcomes it, and reftores the equilibitum. But the afinity between fome fubftances and caloric is fo great, that no diminution of temperature has been found fufficient to overcome it. This is the cafe, as we have alteady feen, with oxygen gas.

The fpecific caluric of bodies feems to depend on Caufe of two things; their affuity for calonic, and the diftance the diffebetween their particles. For what is temperature but rence in the difpolition of a body to part with caloric? The the fpecific more caloric a body is difpofed to part with, we call its caloric or temperature the higher; the lefs it parts with when a colder body is applied, its temperature is faid to be the lower. If oxygen gas parts with no calotic to a thermometer which llands at - 10°, we fay its temperature is -10°; yet we know that even then it contains, in all probability, much more caloric than the mercury in the thermometer does. Now the fronger the affinity between any fubfance and caloric, the greater quantity of calnric will be required before the repultion between its particles is fufficient to overcome this attraction ; coniequently the more caloric is neceffary to raife it a given number of degrees. And the farther diltant the particles of bodies are, the farther from one another muf the particles of caloric be to which they are united; and confequently the weaker mult be the sepulion between them.

We cannot deny how new this thenry of the action of caloric will appear to thofe who have been accuftom-
ed to look upon Dr Crawford's opinions on this fubject as fully proved; nor do we pretend that it can be reconciled with there opinions. But this, we hope, is no proof of its falfehood. We think it can be fairly deduced from Dr Black's doctrine of latent heat: we know, too, that Bergman believed caloric capable of combining chemically with bodies: and Morveau loas not only embraced the fame opinion, but feems to affirm, that all the combinations into which caloric enters are chemical*. And were this queftion to be decided by authority, we appeal to all the world, whether other three men could be produced to whofe decifions one would more willingly fubmit (1). We do not, how. ever, mean to reft its evidence on authority; let it be compared with facts, and put to the teft of experiment; and by its correfponclence with thefe let it fand or fall.
12. Caloric both haftens the folution of falts in water, and increafes the folvent power of the water; for water diffolves a much greater quantity of almoft every falt when hot than when cold. The reafon that calo. ric produces thefe effects is obvious from thofe properties of it which have been defcribed. It hattens folution by putting the particles of the fluid in motion, and thus bringing all of them in theis turn into contact with the falt : for only thofe particles can act as folvents which are in contact with the falt. It increafes the folvent power of the fluid by combining with it, and forming a compound which has a greater affinity for the falt, and which therefore diffolves more of it than the fluid alone would have done. This new compound is deftroyed by cooling ; and then the additional dofe of the falt which had been diffolved is precipitated.
13. We fhould come now to the conlideration of the two remaining queftions propofed at the end of the fecond chapter. Why do bodies combine with oxygen at one temperature and not at another? And why is caloric neceffary to produce this union? But as the difficulty of thefe queftions is not inferior to their importance, we fhall delay any attempt to anfwer thein till
294
obtaining 14. It now only remains to confider the methods by caloric.
of the oxygen, and, without any of the ufual phenomena which attend combution, is converted into pholphoric acid. Strictly fpeaking, then, combuftion is nothing elfe but the combination of oxygen with the burning body, and the term might therefore be ufed in every cafe where fuch an union takes place; and in this fenfe indeed it is now employed by feveral writers. But the term combuffion is in common language confined to thofe cafes where the oxygen was previoufly combined with caloric, and where a quantity of heat and light become fenfible; and perhaps it would be better, in order to prevent ambiguity, never to employ it in any other fenfe. We are not yet abfolutely certain that caloric and light may not become fenfible in other combinations befides thofe into which oxygen enters. There are other fubftances befides oxygen capable of combining with caloric ; for inftance, hydrogen and azot: and unlefs their affinity for caloric be greater than for any other fubftance, they may be capable of combining with other fubftances, and feparating from caloric, at lealt the impolfibility of this has never yet been demonitrated. It is improper, therefore, to appropriate the word combuftion to the combinations of oxygen, till it can be thewn that the phenomena ufually denoted by that name are never owing to any other caufe. There is even one cafe in which thefe phenomena prefent themfelves, in which we are next to certain that oxygen has no thare. There is an affinity between fulphur and iron, and a high temperature promotes their union. When thefe fubftances are mixed together, and heated till they jult begin to appear red hot, they combine together, and at the fame time, as the Dutch chemifts firit obferved, a good deal of caloric and light is evolved. The very fame phenomena appear in a vacuum, or in any kind of air whatever. The explanation of them is very fimple and obvious. The fulphur or the iron, or perhaps both, had previoufly been combined with a quantity of caloric; and when they united together, this caloric of courfe feparated from them.

The theory of combution adopted by the earlier chemifts was very different from the preceding. Stahl, as has been already explained, confidered combuftion in every infance as owing to the feparation of phlogif. ton; and this opinion foon became univerfal. He confidered phlogition as the fame thing with the element of fire; which was capable both of becoming fixed in bodies, and of exifting in a ftate of liberty. Two of its properties in this laft ftate were heat and light. The heat and the light, then, which became fenfible during combultion, were nothing elfe, according to Stahl, but two properties of phlogiton or the element of fire. Macquer, 298 Macquer, to whore illuftrious abours feveral of the molt Improved important branches of chemiltry owe their exifence, by Macwas, we believe, the firft perfon who perceived a frik. quer, ing defect in this theory of Stahl. Sir Ifaac Newton had proved that light is a body; it was abfird, therefore, to make it a mere propetty of phlogiton or the element of fire. Macquer accordingly confidered phlogifton as nothing elfe but light fixed in bodies. This opinion was embraced by a great number of the moft
$\mathrm{U} u \quad$ dittin-
(1) The fame opinion has been embraced by Seguin, Pistet, Gadolin, and feveral other philofophers. We did not mention them, becaufe the theory given above differs in a few particulars from theirs. But we have derived much inftruction from their ingenious writings; and many of the facts, which we have given, were obtained from them
diflinguifhed chemifs；and many ingenious arguments were brought forward to prove its truth．But if phlo－ gilton be only light fixed in bodies，whence comes the leet that manifells itself during combuttion？Is this heat merely a property of light？Dr Black proved that heat is capable of combining with，or becoming fixed in bodies which are not combultible，as in ice and water ：and concluded of courle，that it is not a property but a body．From that time beat or caloric was confidered by the greatelt number of chemilts as a diftinct fubitance from phlogiton．

Soon after this，a phenomenon，which had been ob－ ferved from the earlieft ages，and which probably，for that very reafon，had been neglected，began to be at－ tended to ；that combustibles would not burn except in contain with air．Dr Priefley observed，that the air in which combullibles had been fuffered to burn till they were extinguifhed，had undergone a very remarkable change；for no combuftible would afterwards burn in it，and no animal could breathe it without fuffoca－ ion（ π ）．He concluded，as Dr Rutherford had done before him，that this change was owing to phlogif－ ton；that the air lad combined with that fubitance； and that air was neceffary to combuftion，by at－ tracing the phlogifton，for which it had a Along af－ finite．If fo，phlogifon could not be light any more than caloric；for if it separated from the combustible merely by combining with air，it could not finely dif－ play itself in the form of light．The queftion then re－ cared with double force，What is phlogifon？Dr Crawford，of whole ingenious experiments on the fee－ deific caloric of bodies we have already given an account， without attempting to answer this queftion，made a con－ fiderable improvement in the theory of combuftion，by fuppofing that the phlogiton of the combuftible com－ bine with the air，and at the fame time feparated the caloric and light with which that fluid had been previ－ only united．The heat and the light，then，which appeased during combination，cxifted previnuly in the air．This theory wats vary different from Stahl＇s，and certainly a great deal more fatisfaconve．But fill the queftion，What is phogiton？remained to be an－ fwered．Mr Kirwan，who had already railed himfelf to the firlt rank among chemical philofophers by many
important difcoveries，and many ingenious inveltiga－ tons of forme of the mol difficult parts of chemiftry， attempted to anfwer this question，and to prove that phlogiston was the fame with hydrogen．＊＇the rub－ jest was now brought to a fate capable of the mot complete decifion．Does hydrogen actually exit in all combuRible fubtances？and is it feparated from them during every combustion？The French chemifts who anfwered his treatife，fhewed that this is by no means the cafe；and that therefore there was no proof what－ ever of the identity of phlogitton and hydrogen．And Mr Kirman in confequence，with that candour which difinguifhes fuperior minds，gave up his opinion as untenable．

Mr Lavoifier had already put the queftion，What Exiftence proof is there of the exiftence of phlogitton at all？of phlogif． There is only this fingle proof，that fubtances after ${ }^{\text {ton difpro－}}$ combultion are different from what they formerly were． That this difference takes place is certainly true；but it is owing，not to the feparation of any fubfance，but to the combination of one．It follows，therefore，that there is no proof whatever of the existence of any fuck fubfance as phlogifon in nature；and of courfe we mut conclude，that no foch fubltance exits（ L ）．

15．It is well known，that heat is produced by the Production perculfion of hard bodies againft each other．When a of caloric piece of iron is fmartly and quickly truck with a ham－by percuss－ men，it becomes red hot；and the production of forks by the collifion of flint and Iteel is too familiar a fact to require being mentioned．No heat，however，has ever been observed to follow the percullion of liquids，nor of fort bodies which eafily yield to the Aroke．

It has long been known，that hammering increafes the denfity of metals．The fpecific gravity of iron be－ fore hammering is 7,788 ；after being hammered 7,840 ：that of platinum before hammering is 19.50 ； after it，23，00．Now condenfation diminifhes the fee－ cufic caloric of bodies．After one of the clay pieces unfed in Wedgewood＇s thermometer has been heated to 120° ，it is reduced to one half of its former bulk，though it has loft only two grains of its weight，and its fecific caloric is at the lame time diminifined one－third．＊But＊T．W．⿰㇒⿻土一⿰丿𠃌⿱⿰㇒一乂心， we cannot conceive the specific caloric of a body to be quod，Phil diminithed without its giving out at the fame time a quantity

Caloric．
$\underbrace{\text { Caloric．}}$
fin，

Part I.

C H E M I S T R Y.
$\underbrace{\text { Calnic. }}$
quantity of caloric; and we know for certain that caloric is evolved during condenfation. A thermometer placed within a condenfer rifes feveral degrees every

+ Darzin, Pbil. Tranf.

1788. fime air is thrown in \dagger. We can even fee a reafon fur this. When the particles of a body are forced nearer each other, the repulfive power of the calosic conibined with them is inciealed, and confequently a part of it will be apt to fy off. Now, after a bar of iron has been heated by the hammer, it is much harder and bit. tler than before. It mult then have become denfer, and confequently muth have parted with caloric. It is an additional contirmation of this, that the fame bar cannct be heated a fecond time by percufion antil it has been expofed for fome time to a red heat. It is too brittle, and flies to pieces under the hammer. Now britlenefs feems in moft cafes owing to the abfence of the ufual quantity of caloric. Glatis unanmealerd, or, which is the fame thing, that has been cooled very quickly, is always extremely brittle. When glafs is in a flate of fufion, there is a valf quantity of caloric accumulated in it, the repulfion between the particles of which mull of courfe be very great; fo great indeed, that they would be difpofed to ly off in every direation with ineonceivable velocity, were they not cunfined by an unufually great quantity of calorie in the furrounding bodies: conferquently if this furrounding caloric be removed, the calorie of the glafs flies off at once, and more caloric will leave the glafs than otherwife would leave it, becaufe the velocity of the particles mult be greatly increafed. Probably then the brittlenefs of glafs is owing to the deficiency of calnric; and we can farce. ly doubt that the brittlenefs of iron is owing to the fame caufe, if we recolleet that it is removed by the applica. tion of new caloric. Part theretore of the caloric which appears in confequence of percuffion feems to proceed from the body ftruck; and this is doubtlefs the reafon why thofe bodies, the denfity of which is not increafed by percuflion, as liquids and foft fubitances, are 306 not heated at all.
And partly We fay part of the caloric, becaufe, often at leat, to combuf- part of it is probably owing to another caufe. By contion.
denfation, as much caloric is evolved as is fufficient to raife the temperature of fome of the particles of the body high enough to enable it to combine with the oxygen of the atmofphere. The combination actually takes place, and a great quantity of additional caloric is feparated by the decompofition of the gas. That this happens during the collifion of flint and fteel cannot be doubted: for the foarks produced are merely fmall pieces of iron heated red hot by uniting with oxygen during their paffage through the air, as any one may
convince himfelf by actually examining them. Mr Lane has fhewn that iron produces no farks in the vacuum of an air-pump; but Mr Kirwan has cbferved that they are produced under enmmon f_{f} ring water ; and we know that iron at a certain temferature is capable of decompoling water.

When quartz, rock cryftal (M), or otlier very hard fones, are fruck againf one another, hey emit fporks. If they be often made to enit fparks above a fheet of white paper, there are found upen it a number of imall black bodies, not very unlike the eggs of fies. Thefe bodies are hard but friable, and when rubbed on the paper leave a black Itain. When viewed with a microfenpe, they feem to have been melted. Muriatic acid changes their colour to a green, as it does that of lavas.* Thefefubttances evidently produced the fparks by being heated red hot. Lamanon (s) fuppofes that they are particles of quartz combined with oxygen. Werc that the cafe, the phenomenon would be precifely fimilar to that which is produced by the collifion of flint and feel. That they are pasticles of quartz cannot be doub!ed ; but to fuppofe them combined with oxygen is contrary to all experience: for thefe flones never thew any difpofition to combine with oxjgen even when expofed to the mof violent heat. La Mctherie made expcriments on purpofe to fee whether Lamanon's opinion was well founded; but they all turned out unfavourable to it. And Monge afeertained, that the particles defcribed by Lamanom were pure cryftal unaliered, with a quantity of black powder adhering to them. He concludes accordingly, that thefe fragneents had been raifed to fo high a temperature during their pa!: fage through the air, that they fet fire to all the minute bodies that came in their way \dagger. We mult therefore either fuppofe that all the caloric was produced by mere condenfation, which is not probable, or acknowledge that we cannct explain the phenomenon.
16. Caloric is not only produced by percuffion, but
alfo by friction. Fires ate often kindled by rubbing pieces of dry wood fmartly againt one another. It is well known that heavy loaded carts fometimes take fire by the friction between the axle-tree and the whel. Now in what manner is the caloric coolved or accumu. lated by friftion? Not by increafing the denfity of the bodies rubbed againft each other, as happens in cafes of percuffion; for heat is produced by rubbing feft bodies againft each other, the denfity of which thereforc cannot be increafed by that means, as any one may convince himfelf by rubbing his hand fmartly againt his coat. It is true, indeed, that heat is not produced by the friction of liquise, hut then they are too yielding Un 2
(n) Thefe ftones are compofed of almont pure filica.
(n) This ingenious and unfortunate young man, to whom we are indebted fur thefe facts, fell a victim to his ardour for knowledge. He accompanied La l'eyroufe in his laft voyage, and was murdered with the molt farage cruelty, together with Li Langle and feveral others, by the natives of the illand of Maouna. When a man of genius, anxious to acquare honeit fame, and a man too fo nobly difinterelked as Lamanon, thas falls prematurelybefore he has attained the ubject ot his wifhes,

> "Cut off from nature's and from glory's courfe! "Which never mortal was fo fond to run,"
who can withold the tibutc of regret and admiration, when they

> -" conjecture what he might have proved,
"And think life only wanting to his fame."

Caloric.

loric,

\dagger Nicholfon's
to be fiojected to Arong friction. It is not owing to the fpecific caloric of the rubbed bodies decreafing ; for Count Rumford found, that there was no fenfible decreafe \dagger : nor, if there were a decreafe, would it be fufficient to account for the valt quantity of heat which is fometimes produced by friction.

Count Rumford took a cannon caft folid and rough as it came from the foundery; he caufed its extremity to be cut off, and formed, in that part, a folid cylinder attached to the cannon, $7 \frac{3}{4}$ inches in diameter, and $98^{\frac{3}{0}}$ inches long. It remained joined to the reit of the metal by a imall cylindrical neck. In this cylinder a hole was bored 3,7 inches in diameter, and 7,2 inches in length. Into this hole was put a blunt feel borer, which by means of horfes was made to rub againit its bottom ; at the fame time a fmall hole was made in the cylinder perpendicular to the bore, and ending in the folid part a little beyond the end of the bore. This was for introducing a thermometer to meafure the heat of the cylinder. The cylinder was wrapt round with flannel to keep in the heat. The borer preffed againit the bottom of the hole with a force equal to about $10,000 \mathrm{lb}$. avoirdupois, and the cylinder was turned round at the rate of 3^{2} times in a minute. At the beginning of the experiment the temperature of the cy linder was 60°; at the end of 30 minutes, when it had made 960 revolutions, its temperature was 130°. The quantity of metallic dult or fcales produced by this friction amounted to 837 grains. Now, if we were to fuppofe that all the caloric was evolved from thefe fcales, as they amounted to jult $\frac{1}{948}$ part of the cylinder, they mult have given out 94° to raife the cylinder 1°, and confequently 66360° to raife it 70° or to 130°, which is certainly incredible \dagger.

Neither is the caloric evolved during friction, owing to the combination of oxygen with the bodies themfelves or any part of them. By means of a piece of clockwork, Mr Piftet made fmall cups (fised on the axis of one of the wheels) to move round with confiderable rapidity, and he made various fubltances rub againft the outfides of thefe cups, while the bulb of a very delicate thermometer placed within them marked the heat produced. The whole machine was of a fize fufficiently fmall to be introduced into the receiver of an air pump. By means of this machine a piece of adamantine fpar was made to rub againft a fteel cup in air: fparks were produced in great abundance during the whole time, but the thermometer did not rife. The fame experinent was repeated in the exhautted receiver of an air pump (the manometer ftanding at four lines) ; no fparks were produced, but a kind of phofphoric light was vifible in the dark. The thermometer did not rife. A piece of brafs being made to rub in the fame manner againft a much fmaller brafs cup in air, the thermometer (which almoft filled the cup) rofe $0,3^{\circ}$, but did not begin to rife till the friction was over. This fhews us that the motion produced in the air carried off the caloric as it was evoived. In the exhaufted receiver it began to rife the moment the friction began, and rofe in all $1,2^{\circ}$ When a bit of wood was made to rub againft the brafs cup in the air, the thermometer rofe $0,7^{\circ}$, and on fubftituting alfo a wooden cup it rofe $2,1^{\circ}$, and in the exhaufted receiver $2,4^{\circ}$, and in air condenfed to $1 \frac{3}{4}$ atmof-- piefet fur pheresit rofe $0,5^{\circ}$.
$L_{0} \mathrm{Feu}, \mathrm{ch} .9$. If thefe experiments be not thought conclufive, we
have others to relate which will not leave a doubt that the heat produced by friction is not connected with the decompofition of oxygen gas. Count Rumford contrived, with his ufual ingenuity, to inclofe the cylinder above defcribed in a wooden box filled with water, which effectually excluded all air, as the cylinder itfelf and the borer were furrounded with water, and at the fame time did not impede the motion of the inftrument. The quantity of water amounted to $18,77 \mathrm{lbs}$. avoirdupsis, and at the beginning of the experiment was at the temperature of 60°. After the cylinder had revolved for an hour at the rate of 32 times in a minute, the temperature of the water was 107°; in 30 minutes more it was 178°; and in 2 hours and 30 minutes after the experiment began, the water actually boiled. According to the computation of Count Rumford, the calotic produced would have been fufficient to heat $26,58 \mathrm{lbs}$. avoirdupois of ice-cold water boiling hot ; and it would have required 9 wax candles of a moderate fize, burning with a clear flame all the time the experiment lafted, to have produced as much heat. In this experiment all accefs of water into the hole in the cylinder where the fiction took place was prevented. But in another experiment the refult of which was precifely the fame, the water was allowed free accelis \dagger.

The caloric, then, which appears in confequence of ib friction, is neither produced by an increafe of the denfity, nor by an alteration in the fecific caloric of the fubftances expored to friction, nor is it owing to the decompofition of the oxygen of the atmofphere-Whence it prefent compulition of the oxygen of the atmofphere-Whence inexplica-
then is it derived? This quellion we are altogether un- ble. able to anfwer. We cannot, however, think, that the conclufion which Count Rumford is difpofed to draw from his experiments is warranted by the premifes. He fup-This no pofes, that becaure we cannot explain the manner that proof that caloric is accumulated by friction, there is no fuch fub- caloric is fance as caloric at all, but that it is merely a peculiar kind of motion. We would beg leave to afk, how the facts mentioned in the former part of this chapter, many of which were furnithed by this ingenious philofopher himfelf, and all of which combine to render the exiftence of caloric as a fubftance probable, can be deItroyed and fet afide, merely becaufe there are other phenomena in nature connected with caloric which cannot be accounted for? Were it poffible to prove that the accumulation of caloric by friction is incompatible with its being a fubftance, in that cafe Count Rumford's conclufion would be a fair one ; but this furely has not been done. We are certainly not yet fufficiently acquainted with the laws of the motion of caloric (allowing it to be a fubftance) to be able to affirm with certainty that friction could not caufe it to accurgate in the bodies rubbed. This we know at leat whe the cafe with eleetricity. Nobody has been bitherto able to demonfrate in what manner it is accumulated by fristion; and yet this has not been thought a fufficient reafon to deny its exiftence.

Indeed there feems to be a very clofe analogy between a 315 caloric and electric matter. Both of them tend to diffufe between themfelves equally, both of them dilate bodies, both of caloric. and them fufe metals, and both of them kindle combuftible electricity. fubftances. Mr Achard has proved, that electricity can be fubftituted for caloric even in thofe cafes where its agency feems peculiarly neceffary; for he found that, by conftantly fupplying a certain quantity of the elec. tric fuid, eggs could hatched jult as when they are
kept at the temperature of 103°. An accident indeed kept at the temperature of 103°. An accident indeed
prevented the chickens from actually coming out; but they were formed and living, and within two days of burfting their thell. Eleftricity has alfo a great deal of influence on the heating and cooling of bodies. Mr Piftet exhautted a glafs globe, the capacity of which was 1200,199 cubic inches, till the manometer within it food at $\mathrm{t}, 75$ lines. In the middle of this globe was fufpended a thermometer, which hung from the top of a glafs rod, fixed at the bottom of the globe, and going almoft to its top. Oppofite to the bulb of this thermometer, two lighted candles were placed, the rays of which, by means of two concave mirrors, were concentrated on the bulb. The candles and the globe were placed on the fame board, which was fupported by a non-conductor of electricity. Two feet and a half from the globe there was an eledrifying machine, which communicated with a brafs ring at the mouth of the globe by means of a metallic conductor. This machine was kept working during the whole time of the experiment; and confequently a quantity of electric matter was conftantly pafling into the globe, which formed an atmorphere, not only within it, but at fome diftance round, as was evident, from the imperfect manner in which the candles burned. When the experiment began, the thermometer flood at $49,8^{\circ}$. It rofe to $70,2^{\circ}$ in $732^{\prime \prime}$. The fame experiment was repeated, but no electric matter thrown in ; the thermometer rofe from $49,8^{\circ}$ to $70,2^{\circ}$ in $1050^{\prime \prime}$; fo that the electricity haftened the heating almolt a tnird. In the firfe experiment the thermometer rofe only to $7 \mathrm{I}, 3^{\circ}$, but in the fecond it rofe to 77°. This difference was doubtlefs owing to the candles burning better in the fecond than the firt experiment ; for in other two experiments made exactly in the fame manner, the maximum was equal both when there was and was not electric matter prefent. Thefe experiments were repeated with this difference, that the candles were now infulated, by placing their candleRticks in difhes of varnifhed glafs. The thermometer rofe in the electrical vacuum from $52,2^{\circ}$ to $74,7^{\circ}$ in $1050^{\prime \prime}$ in the limple vacuum of $965^{\prime \prime}$. In the electrical vacuum the thermometer rofe to 77°; in the fimple vacuum to 86°. It follows from thefe experiments, that when the globe and the candles communicated with each other, electricity haftened the heating of the thermometer; but that when they were infulated - Pirat fur feparately, it retarded it*. One would be apt to fuf" F_{e}, ch.6. peet the agency of elefricity in the following experiment of Mr Pictet: Into one of the brafs cups formerly defribed, a fmall quantity of cotton was put to prevent the bulb of the thermometer from being broken. As the cup turned round, two or three fibres of the cotton rubbed againft the lulb, and without any other friction, the thermometer rofe five or fix degrees. A greater quantity of cotton being made to rub againft \dagger Ibid.ch.9. the bulb, the thermometer rofe 15 degrees \dagger.

316 We do not mean to draw any other conclufion from Electricity thele facts, than that electricity is very often concerned
may be an $\mathrm{mag}_{\text {agent in the }}$ in the heating of bodies, and that probably fome fuch agent in the
heating of agent is employed in accumulating the heat produced budies by fristion.
by friction. Suppofing that electricity is actually a fubftance, and taking it for granted that it is different from caloric, does it not in all probability contain caloric as well as all other bodies? Has it not a tendency to accumulate in all bodies on friction, whether conductors or non-condustors? Wiay it not then be accumulated in thofe bodies which are rubled againft one another? or if they are good conductors, may it not pafs through them during the friction in great quantities? May it not part with fome of its caloric to thefe bodies, either on account of their greater affinity, or fome other caule ? And may not this be the fource of the caloric which appears during frition ?

Chap. VI. Of Light.

By meane of light bodies are rendered vifible. Light Newtonian has been confidered as a fubflance compofed of fmall theory of particles moving in ftraight lines from luminous bodies light. with inconceivable rapidity. The difcoveries of Newton eftablifhed this opinion on the firm bafis of mathematical demonftration ; and fince his time it has been generally embraced. Huyghens, indeed, and Euler, advanced another. 0). They confidered light as a fubtile fluid, filling all fpace, which rendered bodies vifible by its undulations. But they fupported their hypothefis rather by flarting objections to the theory of Newton, than by bringing forward direet proofs. Their objections, even if valid, inftead of eftablifhing their own opinions, would prove only that the phenomena of light are not completely underfood; a truth which no man will refufe to acknowledge, whatever fide of the queftion he adopts. Newton and his difciples, on the contrary, have thewn that the known phenomena of light are inconffient with the undulations of a fluid, and have brought forward a great number of direct arguments, which it has been impoffible to anfiver, in fupport of their theory. It can hardly be doubted, therefore, that the Newtonian theory of light is the true one.
Dr Bradley, who, by a number of very accurate ex. velocity of periments, and a procefs of reafoning peculidrly ingeni- light. nus, difcovered the aberration of light of the fixed itars, has flewn from it that the velocity of light is to that of the earth in its orbit as $103 \mathrm{I} 3^{\text {to }} \mathrm{I}$. Light therefore moves at the rate of 195218 miles in a fecond.

Light, by means of a prifm, may be feparated into Divifible feven rays, diflering from each other in colour ; red, into feven orange, yellow, green, blue, indigo, violet. None of rays, thefe are capable of farther decompofition. Marat, indeed, pretended that he had reduced them to three; but his experiments are now known to have been merely philofophical frauds.

When light paffes obliquely into a denfer medium, it Differing is refrated towards the perpendicular ; when into a ra- in refrangirer, fion the perpendicular. Sir If aiac Newton difco bility, vered that the rays differed in their refrangibility in the order in which they have been named, the red being the leaft, the violet the moft refrangible. Mr Blair has obferved, that the ratios of the refrangibility of the different rays, thougln not their order, vary fomevihat in different mediums \dagger.
(o) Dr Franklin did rhe fame, without taking any notice of thefe philofophers, of whofe opinions perhaps he was ignorant. See Tranf. Plitad. III. 5.

Light.
When light parfes within a certain diRance of a body", parallel to which it is moving, it is bent towards it; when it pafles at a greater dillance, it is bent from it. The firft of thefe properties is called inflecion, the fecond dtficction. Now the rays differ in thefe properties in the order in which they were named; the red being mof , the violet lerf l inflexible and deflexible. This was fufpette 1 by Divid Ritienhoufe,* but was firf demonftrated by the ingenious experiments of Mr Brougham \dagger.

When light falls upon a vifible body, fome of it is reflected back; and the more polifhed or the whiter any furface is, the more light it reflects. The rays of light differ alfo in effexity (fee Refletity, Suppl.), the red being the moft, the violet the leaft reflexible. This difcovery we owe to the fame ingenious gentleman \ddagger.
Thete properties of light conflitute the fubject of Optics; to which we refer thofe who wifh to fee them inveftigated. We mention them here becaufe they prove that light is acted on by other bodies, that it is fubjected to the laws of attration, anj, confequently , that it poifelles gravily.
2. The particles of light feem alfo, like thofe of caloric, to pulfefs the property of repelling one another; at lealt their rapid motion, in all directions, from luminous budies, feems to be owing to fome fuch property.
3. Light is capable of entering into bodies, and re. maining in them, and of being afterwards extricated without any alteration. Father Beccaria, and feveral other philofophers, have fhown us by their experiments, that there are a great many fubttances which become luminous after being expofed to the light. This property was difonvered by carrying them inflantly from the light into a dark place, or by darkening the chamber in which they were expofed. Moll of thefe fubitances, indeed, lofe this property in a very fhort time, but they recover it again on being expoled to the light; and this may be repeated as often as we pleare. We are indebted to Mr Canton for fome very interefling experiments on this fubject, and for difcovering a compofition which poifelfes this property in a rentarkable degree. He calcined fome common oylter fhells in a good coal fire fur half an hour, and then pounded and fifted the pureft part of them. Three parts of this powder were mixed with one part of the flowers of fulphur, and rammed into a crucible which was kept red hot for an hour. The trighteft parts of the misture were then fcraped off, and kept for ufe in a dry phial well fopped. When this compofition is expuled for a few feconds to the light, it becomes fufficiently luminous to enable a perfon to diftinguilh the hour on a watch by it. After fome time it ceafes to hine, but recovers this property on being again expofed to the light. Light then is not only acted upon by otter bodies, but it is capable of uniting with them, and afterwards leaving them without any change.

It is well known that light is emitted during combultion; and it has been objected to this conclufion, that thefe bodies are luminous only from a llow and imperceptiole combuftion. But furely combuftion cannot be fufpected in many of Father Beccaria's experiments, when we refiect that one of the bodies on which they were made was his own hand, and that many of the others were altogether incombuftible; and the pleenomena obferved by Mr Canton are alfo incompatible
with the notion of combution. His pyrophorus fhone only in confequence of being expofed to light, and lof that property by being kept in the dark. It is not expofure to light which caufes fubltances capable of combuftion at the temperatuie of the atmorphere to become luminous, bit expofire to air. If the fame temperature continues, they do not ceafe to thine till they are confumed; and if they ceare, it is not the applicacation of light, but of caluric, which renders them again luminous: but Canton's pyrophorus, on the contrary, when it had lolt its property of Chining, did not rccover it by the application of heat, except it was accompdnied by light. The only effect which heat had was to increafe the feparation of light from the pyrophorus, and of courfe to thorten the duration of its luminoufnefs. T'wo glafs globes, hermetically fealed, containing each fome of this pyrnphorus, were expuled to the light and carried into a dark room. One of them, on being immerfed in a bafon of boiling water, became much brighter than the other, but in ten minutes it ceafed to give out light: the other remained vifible for more than two hours. After having been kept in the dark for two days, they were both plunged into a bafon of hot water; the pyrophorus which had been in the water formerly did not thine, but the other became laminous, and continued to give out light for a confiderable time. Neither of them afterwards hone by the application of hot water; hut when brought near to an iron heated fo as fcarcely to be vifible in the dark, they fuddenly gave out their remaining light, and never fhone more by the fame treatment : but when expofed a fecond time to the light, they exhibited over again precifely the fame phenomena; even a lighted candle and elentricity communicated fome light to them. Surcly thefe facts are altogether incompatible with combuftion, and fully fufficient to convince us that light alone was the agent, and that it had actually entered into the luminous bodies.

It has been queftioned, indeed, whether the light emitted by pyrophori be the fame with that to which they are expofed. Mr Wilfon has proved, that in many cares at lealt it is different, and in paricular that on many pyrophori the blue rays have a greater effect than any ocher, and that they catufe an extrication of red light. Mr de Groffer has thewn the fame thing with regard to the diamond, which is a natural pyro. phorus \ddagger. Still, however, it cannot be queftioned that \ddagger Four. de the luminouliefs of thefe bodies is owing to expofure Pby. xx. to light, and that the phenomenon is not conneeded 270. with combution.

But light appears capable, not only of entering into And of bebodies, but of combining with them chemically. The ing combiphenomena of the phofphori feem to be infances of ned with this, and a great many fais concur to prove that light them. enters into the compofition of oxygen gas. When ve. getables grow in the light, they give out oxygen gas; but no oxygen is extricated in the dark, even though heat be applied \dagger. From this it is evident, that the fe- \dagger Priefly paration of this gas from plants, or perbaps the cecom-and Ingenpofition of the water which they contain, depends upon boufz. the adion of light; and that as this decompofition is chemical, the light to produce it mult either combine with the oxygen or the hydrogen, or at leall contribute to the combination of fome other fubfance with one or other of them. When the oxyds of gold or filver are

Light.

expored to light, they are reduced to the metallic ftate,* and at the fame time a quantity of oxygen gas is extricated. \ddagger In this cafe, it is evident that the light muft either combine with the oxygen or the metals. If a quantity of nitric acid be expofed for fome time to the light, it becomes yellow, as is well known, and a quantity of oxygen gas is found floating on its top. If it be now carried to a dark place, the oxygen is gradually abforbed, and the acid becomes colourlefs. In this cafe, nitric acid is decompofed by means of light, and refolved into zitrous acid and oxygen gas. The light mult therefore have combined either with the nitrous acid or the oxygen. But no change whatever appears to have been produced in the nitrous acid; for if it be obtained in the dark by any other procefs, it has precifely the fame properties. The oxygen, on the contrary, is converted into a gas. It is more probable, then, that the light has combined with the oxygen than with the acid. Hence there is reafon to fufpeet that light makes one of the ingredients of oxygen gas. Caloric has already been thewn to make another ingredient.

During combuftion, a quantity of light as well as caloric is almoft alwiys evolved. We mult conclude, therefore, that light makes a part of the compofition either of the combuftibles themfelves, or of the oxygen gas with which they unite. We have already fhewn, that oxygen gas probably contains light; and this probability is confirmed by another fact. Subitarices may be combined with oxygen without the emiffon of any light, provided the oxygen be not in the Itate of a gas. It phofphorus, for inftance, be put into nitric acid, it attraets oxygen, and is converted into phofphoric acid without the emiffion of any light. Now if the light which appears during combution had been combined with the combuttibie, it ought to appear in all cafes when that combuftible is united with oxygen, whether the oxygen has previounly been in the fate of a gas or not. But as this is not the cafe, we may certainly infer, that the light which appears during combuftion is extricated, not from the combultible, but from the oxygen gas. And this feems at prefent to be the opinion of the greater number of philofophers.

But we mu!t acknowledge, that this conclufion is not without its difficulties, and difficulties, too, which, in the prefent flate of chemiftry, it does not feem pof-

In the firlt place, it is evident, that light may be produced during combution, though the oxygen be not in the ftate of a gas: For if nitric acid be poured upon oil of turpentine, the cil takes fire, and burns with the greateft rapidity, and a great deal of light is emitted. This combultion is occafioned by the oxygen of the acid combining with the ingredients of the oil. It follows, therefore, if the light emitted was previoufly combined with the oxygen, that oxygen muft contain light when not in the flate of a gas. Mr Prouft has fhown that a great variety of fimuldr combuntions may be produced. But what is very remarkable, by proper cant tion the very fame combinations may be made to take place without the vifidle emiffion of any light. In that cafe they take place very flowly, as happens alfo when phofphorus decompofes nitric acid; fo that the emilfion or non-emiffion of light feems to depend ant upon lie ीate ol the oxygen, fo much as upon the rapidity or flownefs of the combination. lt is true, indeed, as
the late Dr Hutton of Edinburgh obferved, that light may be emitted in thefe flow combinations though it be not vifible: and this is very probably the cafe; but then the proof is deftroyed that light exifts in oxyrgen gas, from its not appearing during combinations in which the oxygen did not exift previounly in a gafoous Itate.

In the fccond place, the colour of the light emitted during combultion differs almolt always according to the combuftible. During the combution of phofphorus, tin, and zinc, the light emitted is white; during that of fulphur and bifmuth, blue. Now if this light were united with the oxygen, why does it not appear always of the fame colour, whatever be the com. butible?

In the lat place, the phenomena of phofphori fhew that light is capable of entering into other bodies as well as oxygen gas; and the emillion of light on the collifion of two flint tones, when no oxygen gas can be decompofed, is a proof of the fame kind, which cannot be got over.

In the prefent fate of chemiftry, therefore, it cannot be concluded, that the light emitted during combuttion dues not exif in the combuftibles as well as in the oxygen.
4. Light has the property of heating bodies. All light heats bodies, however, are not heated by it. Thofe which bo iics. are perfectly tranfparent, or which allow all the light to pafs throngh them, fuffer no alteration in their temperature. Thus light may be concentrated upon water or glafs without producing any effect. Neither does it produce much change upon thofe bodies (mirrors for inftance) that reflect all or nearly all the light which falls upon them. And the fmallners of the alteration of temperature is always proportional to the fine$n \in f$ of the polith, n, which is the fame thing, to the quantity of light which is reflected. So that we have reafon to conclude, that if a fubfance could be procured which reflected all the light that fell upon it, the temperature of fuch a fubitance would not be at all affected by light falling upon it. Dr Franklin expofed upon fnow pieces of cloth of different colours (white, red, blue, black), to the light of the fun, and found that they fank deeper, and confequently acquired heat, in proportion to the darknefs of their colour. Now it is well known that dark-coloured bodies, even when equally expored to the light, refleet lefs of it than thofe which are light-coloured. But fince the fame quantity falls upon each, it is evident that dark coloured bodies mult abforb and retain more of it than thofe which are light-coloured. That fuch an abforption actually takes place is evident from the following experiment. Mr Thomas Wedge wood placed two lump; of luminous or phofphorefcent marble on a piece of iron heated juit under rednefs. One of the lumps of marble whick was blackened over gave out no light; the other gave out a great deal. On being expofed a lecond time in the fame manner, a faint light was feen to proceed from the clean marble, but none at all could be perceived to come from the other. The black was now wiped off, and both the lumps of marble were again placed on the hot iron: The one that had been blackened gave out jult as little light as the other \oint. In this cafe, the $\$$ Pbir. light whicl ought to have proceeded from the lumi- Tran. 5782. nous marble difappeared : it mult therefore have been
fopped
flopped in its paffage out, and retained by the black paint. Now black fubfances are thoie which abforb the mof light, and they are the bodies which are moft heated ly expofure to light Cavallo obferved, that a thermometer with its bulb blackened ftands higher than one which bas its bulb clean, when expofed to the light of the fun, the light of day, or the light of a lamp*. Mr Pistet made the fame obfervation ; and took care to afcertais, that when the two thermometers were allowed to remain for fome time in a dark place, they acquired precifely the fame height. He obferved, too, that when both thermometers bad been raifed a certain number of degrees, the clean one fell a good deal fafter than the o:her \ddagger. But it is not a fmall degree of heat alone which can be produced by means of light. When its rays are concentrated by a burning glais, they are capable of fetting fire to combulibles with eafe, and even of producing a temperature at leaft as great, if not greater, than what can be procured by the moft violent and beft condueted fires. In order to produce this ef. fect, however, they muft be directed upon fome budy capable of abforbing and retaining them; for when they are concentrated upon tranfpareni bodies, or upon fluids, mere air for inftance, they produce little or no effect whatever. We may conclude, therefore, in general, that in all cafes when light produces heat it is abforbed.
5. All bodies become luminous when their temperature is raifed a certain number of degrees. No fact is more familiar than this; fo well known indeed is it, that little attention has been paid to it. When a body becomes luminous by being heated in a fire, it is faid in common language to be red hot. It follows from all the experiments hitherto rade, that the temperature at which they become red hot is nearly the fame in all bodies. It feems to be pretty near 800° A red hot body continues to fline for fome time after it has been taken from the fire and put into a dark place. The conttaut accelfion, then, either of light or heat is not necelfiary for the flining of bodies: but if a red hot body be blown upon by a ftrong current of § τ. Wedge- air, it ceafes to fhine immediatels δ. Confequently the reoot, Pbil. moment the temperature of a body is diminifhed by a Tran. 1792. certain number of degrees, it ceafes to be luminous.

Whenever a body reaches the proper temperature, it becomes luminous, independent of any contact of air; for a piece of iron wire becomes red hot while immerf. ed in melted lead \dagger.

To this general law there is one remarkable exception. It does not appear that the gafes become lu. minous even at a much higher temperature. The following ingenious experiment of Mr T. Wedgewood feems to fet the truth of this exception in a very clear point of view. He took an earthen ware tube B (fig. 5.), bent fo in the middle that it could be funk, and make feveral turns in the large crucible \mathbf{C}, which was
filled with fand. To one end of this tube was fixed the pair of bellows A; at the other end was the globular velfel D, in which was the paffage F, furnifhed with a vaive to allow air to pafs out, but none to enter. There was another opening in this globular veffel filled with glafs, that one might fee what was going on within. The crucible was put into a fire; and after the fand had become red hot, air was blown through the earthen tube by means of the bellows. This air, after pafling through the red-hot fand, came into the globular velfel. It did not hine; but when a piece of gold wire E was hung at that part of the veffel where the earthen ware tube entered, it became faintly luminous. A proof, that though the air was not luminous, it had been hot enough to raife other bodies to the thining temperature.
6. Thus it appears that light and heat reciprocaliy produce each other; that the fisation of light in bodies always produces heat, and that the application of a fufficiently Arong heat always occafions the extrication of light. Are heat and light, then, owing to the fame caufe? Does light become caloric merely by being fixed in bodies? and does caloric affume the appearance of light whenever it is extricated from them? In fhort, are caloric and light merely names for the fame fubflance, called caloric when it is fixed in bodies, and light when in a ftate of liberty?

To thefe queltions it may be anfwered, That if caloric and light were one and the fame fubltance, they ought to produce precifely the fame effects. Now this is not the cafe: a black body is not heated fooner by mere caloric than any other, though the contrary takes place when both are expofed to the light.* Heat "T.Wedgecannot make growing vegetables exhale oxygen gas, zuod, Pbill though light does it almof inftantaneoufly. When Tran.1792. oxy-muriatic acid (a compound of oxygen and muriatic acid) is expofed to the light, a quantity of osygen gas flies off, and nothing remains but common muriatic acid. Light then decompofes this acid; for if you wrap up a bottle in black cloth, fo as to exclude light, and then expofe it equally to the fun, no fuch decompofition takes place. Now this decompolition cannot be produced by mere caloric. If the acid be heated, it fimply evaporates without being altered. Chaptal has proved (P), that the rays of light direfted on certain parts of glafles, containing folutions of falts, caufe them to cryftallize in that part in preference to any other \dagger. Thefe obfervations have been confirmed and + Mem. extended by Mr Dorthes \ddagger. Now caluric produces no Touloure, iiio fuch effects, nor has the temperature any influence on $\ddagger A n n$. de the phenomenon.
There facts are fufficient to thew that light and caloric, even when they have entered into bodies, produce different effects, and that therefore they have different properties (Q). But if the only difference between them were, that the one is in a fate of liberty, the other in that
(p) Petit made the fame obfervations in 1722. See Memoirs of the Academy of Sciences for that year, P. 95. and 33^{1}.
(e) We mult acknowledge, however, that the following ingenious experiments of Profeffor Pictet might be adduced, to prove that light and caloric polfers at leaft one property in common, that of moving in Araight lines.

He placed two concave mirrors of tin, of nine inches focus, at the diffance of twelve feet two inches from one another. In the focus of one of them he placed a ball of iron two inches in diameter, heated fo as not to be vifible

Part I.

C H E M I
that of combination, the moment light entered a body it ought to be no longer light but caloric, and confequently ought to produce precifely the fame effects with caloric: And fince this is not the cale, we are warranted furely to conclude that light and caloric are not the fame, but different fubfances. How then does calaric occafion the appearance of light, and light that of caloric?

We have feen already, that there is no body in nature which does not contain caloric ; and light has fuch an influence upon every thing, it produces fuch important changes upon the animal and vegetable kingdoms, it can be extricated from fuch a valt number of bodies, that in all probability we may conclude, with regard to it alfo, that it exifts in all, or in almolt all, the bodies in nature. We have no means of afcertaining either the quantity of light or of caloric that exilts in bodies ; but if we were to judge from the quantity which appears during combuftion, we muft reckon it very confiderable. Now, may there not exift a repulfion between the particles of caloric and light? It is not eafy, at leaft, to fee why light flies off during combuftion with fuch rapidity, if this be not the cale. If fuch a repulfron actually exifts, it will follow that caloric and light cannot be accumulated in the fame body beyond a certain proportion. If the caloric exceed, it will tend to drive off the light; if the light, on the contrary, hap. pens to prevail, it will difplace the caloric.

Suppl. Vol. I.

S T R Y.
If caloric and light actually exit in all bodies, there muft be an affinity between them and all other bodies; and this affinity muft be fo great, as to render ineffectual the repulfion which exitts between light and caloric. Let us fuppofe now, that thefe two firbftances exif in all bodies in certain proportions, it will follow, that the more either of caloric or light is added to any body, the fronger mufl the repulfion between their particles become; and if the accumulation be ftill going on, this repullion will fnon become great enough to balance their affinity for the body in which they exift, and confequently will difpote them to fly off. If caluric, for inltance, be added to a body, whenever the body arrives at a certain temperature it becomes laminous, becaufe part of the light which was formerly combined with it is driven off. This temperature muft depend partly upon the affinity between the body and caloric, and partly upon its affinity for light. Pyrophori, for infance, the aflinity between which and light does not feems to be very great, become luminous at a very moderate temperature. This is the cafe with the pyrophn. rus of Canton. A great many hard bodies become luminous when they are eapofed to a moderate heat; fluor, for inftance, carbonat of barytes, fpar, feat fhells, and a great many others, which are cnumerated by Mr Thomas Wedgewood.*

- Pbil.

The fame ingenious gentleman his obferved, that Tranf. gold, filver, copper, and iron, become luminous when $1792, \mathrm{p}$. i. X x heated
vifible in the dark; in the other was placed the bulb of a thermometer. In fix minutes the thermometer rofe from 4° to 14° (Reaumur). A lighted candle, which was fubflituted for the ball of irnn, made the thermometer rife in one experiment from $4,6^{\circ}$ to 14°; in another, from $4,2^{\circ}$ to $14,3^{\circ}$. In this cafe both light and heat appeared to act. In order to feparate them, he interpofed between the two mirrors a plate of clear glafs. Before the interpofition of the glafs, the thermometer had rifen from 2° to 12°, where it was flationary. After the interpofition of the glafs it funk in nine minutes to $5,7^{\circ}$; and when the glafs was again removed it rofe in feven minutes to $\mathrm{r}, \mathrm{r}^{\circ}$; yet the light which fell on the thermometer did not feem at all diminifled by the glafs. Mr Piftet therefore concluded, that the caloric had been reflected by the mirror, and that it had been the caufe of the rife of the thermometer. In another experiment, a glafs matrafs was fubftituted for the iron ball, nearly of the fame diameter with it, and containing 2044 grains of boiling water. Two minutes after a thick fereen of filk, which had been interpofed between the two mirrors, was removed, a Fahrenheit's thermometer, which was in the other focus, rofe from 47° to $50 \frac{\pi}{8}$; and the moment the matrafs was removed from the focus the thermometer again defcended. On repeating the experiment, with this variation, that the bulb of the thermometer was blackened, it rofe from $5 \frac{1}{6}$ to $55 \frac{\mathrm{r}}{4}$.

The mirrors of tin were now placed at the diftance of 90 inches from each other; the matrafs with the boil. ing water in one of the foci, and a very fenfible air thermometer in the other, every degree of which was equal to $\frac{1}{2}$ th of a degree of Reaumur. Exactly in the middlefpace between the two mirrors there was placed a very thin common glafs mirror, fufpended in fuch a manner that either fide could be turned towards the matrafs. When the polifhed fide of this mirror was turned to the matrafs, the thermometer rofe only $0,5^{\circ}$; but when the fide covered with tinfoil, and which had been blackened with ink and fmoke, was turned toward the matrafs, the thermometer rofe $3,5^{\circ}$. In another experiment, when the polifhed fide of the mirror was turned to the matrafs, the thermometer rofe 3°, when the other fide $9,2^{\circ}$. On rubbing off the tinfoil, and repeating the experiment, the thermometer rofe 18°. On fubftituting for the glafs mirror a piece of thin white pafteboard of the fame dimenfions with it, the thermometer rofe 10°. On putting a matrafs full of fnow into one of the foci (the mirrors in this experiment were $10 \frac{1}{2}$ feet diftant from each other), the air thermometer funk feveral degrees, and rofe again when the matrafs was removed. When nitric acid was poured on the frow, the thermometer funk 5° or 60 lower.

Taking it for granted that thefe experiments proved the motion of caloric in fraight lines like light, Mr Pictet endeavoured to difcover the velocity of its motion. For this purpofe he placed two concave mirrors at the difance of 69 feet from each other; the one of tin as before, the other of plafter gilt, and $x S$ inches in diameter. Into the focus of this laft mirror he put the air thermometer, and the bullet of iron heated as before into that of the other. A few inches from the face of the tin mirrur there was placed a thick fereen, which was removed as foon as the bullet reached the focus. The thermometer rofe she inftant the foreen was removed without any perceptible interval: bence he concluded, that the time caloric takes in moving 69 feet is too fhort to be meafured. See Picfet fur le Feu, chap. iii.

Light. heated in times inverfely proportional to their fpecific are in the following order :

> Iron,
> Copper,
> Silver,
> Gold.

They become luminous, therefore, when expofed to the fame degree of heat, in the following order:
Gold,

Silver, Copper, Iron.
Now the fmaller the fecific caloric of any body is, the lefs mult be the quantity of caloric neceffary to raife it a given number of degrees; the fooner therefore mult it arrive at the temperature at which it gives out light. It was natural to expect, then, if the emulifion of light from a body by the application of heat be owing to the repulfion between caloric and light, that thofe bodies fhould become luminous fonneft in which that repulfion increafes with the greateft rapidity; and this we fee is precifely the cafe. The only quetion to be determined before drawing this conclufion is, Whether the fame quantity of caloric entered all of them? That depends upon their conduating power, which, according to Ingenhoufz, is in the following order:

> Silver,
> Gold, Copper, Iron.

We fee, then, that this conducting power is nearly in the order in which thefe metals become luminous; fo that the greatef quantity of caloric would enter thofe which become fooneft luminous. Now this is juft what ought to happen, provided the expultion of light from a luminous body, by the application of heat, be owing to the repulfion between the particles of caloric and light.

The repulfion between the different rays of light and caloric does not feem to be equal : the repultion between the blue rays and caloric feems to be greater than that between the red rays and caloric; and the repulfion between all the rays and caloric feems to be direally as their refrangibility: accordingly, when beat is applied to a body, the blue rays efcape fooner, and at a lower temperature, than the red rays and others which are moft refrangible. When fulphur, for inftance, is burnt at a low temperature, the colour of the flame is blue; and when examined by the prifm it is found to confift of the violer, indigo, blue, and fometimes of a fmall quantity of the green rays;* but when this fub. * Morgan, flance is burnt at a high temperature the colour of the Pbil. Tranf. flame is white, all the rays feparating together. When ${ }^{5785}$.

We mutt obferve, with regard to thefe experiments, that the idea that caloric can be reflected, and that it can move in ftraight lines like light, or that there is fuch a thing as radiant beat, to ufe the phrafe of Lambert and Scheele, is directly contrary to the experiments of Count Rumford, formerly defcribed; by which he fhewed the incapacity of various bodies to conduet heat ; for if caloric could move in Atraight lines chrough tranfparent mediums, it would be abfurd to fay that either air, or water, or oil, was a non-conductor of it. But thefe bodies have in fact been found to be con-condufors; and therefore it muft follow unavoidably, that there is no fuch thing as radiant caloric. Confequently, if the experiments of Mr Pictet can be explained, on the fuppoftion that light and not caloric was the agent, that alone will be fufficient to exclude them from ranking as proofs of the identity of heat and light. Now this has been done with a great deal of ingenuity by the late Dr James Hutton of Edinburgh, in his treatife on the Philofoplyy of Light, Heat, and Fire.

He had previoufly convinced bimfelf, by a number of experiments, that the diferent fpecies of light poffefled very different degrees of intenfity when meafured by the eye and the thermometer. He rendered light of different colours equally intenfe to the cye, by varying the difance from the luminous body till he conld juft read by the light of it. In this way he compared the red light from a fire of coals with the white light of fame, and found, that when they were equally powerful in affording vifion, the red was by far the molt powerful in producing heat. When a body is heated to incandefcence, it enits firft the white or compound light; but as it cools, the light which it emits becomes of the red fpecies, and this is the latt which difappears. As the body cools, therefore, the power of its light to produce heat does not diminith fofaft as its power to produce vilion; confequently, when this lat ceafes entirely, the other may ftill io a certain degree remin. We may fuppofe, therefore, that the iron ball in Mr Pitet's experiments, after it had loft all light to the eye, continued till to emit rays, which, though they made no impreffion on that organ, had power to produce heat, and that it was thefe rays collected by the mirrors that raifed the thermometer. What confirms this is, that when the bulb of the thermometer was blackened it rofe higher than at other times; for caloric, as has been already mentioned, would have produced no fuch effect. As to the effect of the matrais of water, it is explained, by fuppofing that all bodies, raifed to a certain temperature, emit rays of light, whether they lave been heated red hot or not.

As to the effect of the fnow in lowering the thermometer, which was certainly a very fingular and unlooked for effect, Dr Hutton explains it, by fuppoling that all bodies emit rays of light, whatever their tempe:ature is, and that this irradiation diminifhes as their temperature diminifhes. On that fuppofition, it is evident that the remperature of the thermometer, like that of all other bodies, is maintained partly by the irradiation of invifible light from the furrounding bodies - It muft therefore, fince it is placed in the focus of one of the mirrors, be affected by whatever body is placed in the focus of the other. If that body be colder than the furrounding bodies, lefs light will be irradiated from it and thrown upon the thermometer; confequently the thermometer will be depretied till the deficiency is fupplied by fome other channel.

Such is the ingenious hypothcfis by which Dr Hutton has explained the experiments of Mr Piftet; and the explanation, though it is not without very confiderable difficulties, muit be allowed at leaft to be the moft plaufible which has hitherio been given, and to be highly deferving of being put to the teft of experiment.

Part I.

 C H E M I S T R Y.Light.
bodies have contintied to burn for fome time, they may be fuppofed to have loft the greater part of the molt re. frangible rays; hence the red appearance of bodies, charcoal for inllance, that have burnt for fome time, the only rays which remain to feparate being the orange, \dagger Morgan, yellow, and red \dagger.
Phil. Trunf. The blue rays feem not only to repel caloric with 1785. greater force, but likewife to have a greater affinity for other bodies than the red rays have; for they deenmpofe the oxyd of filver (or rather the muriat of filver) much fonner, and to a greater extent, than the red
\& Senncbier. rays \ddagger : hence we fee the reafon why the application of the blue rays to Mr Wilfon's pyrophori and to the diamond caufes an extrication of red rays.

We have feen already, that the gafes are not heated red hot by the application of heat. It would follow from this, that the gafes do not enntain light : but the contrary is cettain; for light is actually extricated durring the combultion of hydrogen, and mult therefore have exifted either in the oxygen or hydrogen gas, or in both. Probably therefore the reafon that heat does not extricate light from the gafes is, that the affinity between their bafes and light is exceedingly ftrong: it would therefore require a more than unial temperature to produce its extrication; and on account of the great dilatability of thefe gafes, which always tends to diminifh the repulfion between the caloric and light, this remperature cannot be applied. It is eafy to fee, upon the fuppofition that there exifts a repulfion hetween caloric and light, why the accumulation of light thould produce heat, and why light only occafions heat in thofe bodies that abforb it.

Such is the theory of the caufe of the reciprocal ex. trication of light and caloric by the application of thefe fubftances refpectively to bedies, which has been propofed by feveral ingenious chemifts (K) ; and we acknowledge frankly, that it appears to ns by far the moft plaufible of all the explanations of this phenomenon with which we are acquainted.

It is not, however, beyond the reach of objections, and objections too, we are afraid, altogether incompatible with its truth. Were the repulfion between caloric and light the only caufe of the luminoufnes of hot bodies, the continual application of heat would furely in time feparate the whole of the light which was combined with the body, and then it would ceafe to be luminous altogether; but we have no reaton to fuppofe
that hodies ever ceafe to become luminous by the continued application of heat. Clavens kept melted, and confequently red hot, goid for months in a furnace; but he does not faty that its luminoufnefs was diminifhed, far lefs deftruyed; and had fuch a remarkable pheno. menon taken place, certainly he would not have faile 1 to inform us; but fo far from that, he exprefsly fays that it fuffered no alteration (s)f.

Whether light would eontinue to extricate a great deal of ealoric during fo long a time has never been tried : but we have no reafon for fuppoling that its power co produce that effect is ever exhaulted; for bodies, after being expofed to the fun for years, and even for ages, are jult as much heated by it as cver. But thele effects, far from being inexhaultible, ought, according to the theory, to come very fpeedily to an end. It is certainly probable, then, as other plilofophers have fuppofed, that though light and caloric are not precifely one and the fame fubdance, they are fome how or other intimately connefed, and are either compofed of different proportions of the fame ingredients, or the one enters into the compofition of the other.

One of the fitt theories of this kind (for the opinion of Stahl has been already difcufed) was formed by Mr Scheele ${ }^{*}$, one of the moft extraordinary men and greateft philofophers that ever exifted. Without the afift. ance of education or of wealth, his genius burlt forth with aflonifhing luftre; and at an age when moft pliilofophers are only rifing into notice, he had finithed a caree: of difcoveries which have no parallel in the annals of chemiltry. Whoever wifhes to behold ingennity combined with fimplicity, whoever wifhes to fee the inexhauftible refources of chemical analyfis, whoever wifhes for a model in chemical refearches-has only to perufe and to ftudy the works of Scheele (r). After a valt number of experiments, conducted with aftonifhing ingenuity, he concluded, that caloric was compoled of a certain quantity of oxygen combined with phiogifon; that radiant heat, a fubtance which he finpored capable of being propagated in Itraight lines like light, and not capable of combining with air, was compoled of oxygen united with a greater quantity of phlogifton, and light of oxygen united with aftill greater quantity. He fuppofed, too, that the diference between the ray's depended upon the quantity of phlogifton: the red, according to him, contained the leatt ; the violet, the moft phlogifon. By phligifion Mr Scheele leems to $\mathrm{X} \times 2$
have
(R) Particularly by Dr Parr, who is faid to be the author of a paper on this fubjec, publifned in the E:reter Memoirs.
(s) A gentleman, to whom we mentioned this objection, obferved, that in the cafe of bodies long expofed to heat, the light, which appears to proceed from them, might, in fact, be extricated from the atmofphere by the caloric communicated to it from the heated body. This thought is new and ingeninus, and might eafily be put to the teft of experiment. Some of the facts mentioned in the text are rather holtile to it; but flould it prove well founded, it would go far to remove moft of the difficulties in which the theory of light is at preferin involved.
(r) This Newton of chemiltry died in 1786, at the age of 44. His moral chardeter, according in Mr Erhart and others, who were the companions of his youth, and Meffrs Gadolia, Efpling, and thofe who knew him in his latter days, was irreproachable and praife-worthy. His outward appearance was not expreffive of the great mind which lay concealed as it were under a veil. He feldom joined in the ufual converfations and amufenents of fociety, having as little leifure as inclination to do fo; for what little time he had to fpare from the burry of his profeffion (an apothecary), was conflantly filled up in the profecution of experiments. It was only when he received vilits from his friends, with whom he could converfe upon his favourite fcience, that he indulged limfelf in a little relaxation. For fuch friends he had a fincere affection, as he had alfo, for thofe that lived at a diftance, and even fur fuch as were not pelfonally known to him. He kept up a regular correfpondence with Meflrs Erhart, Mejer, Kirwan, Crell, and feveral other chemíts. See Crell's Lifo of Scheele.

Light.
have meant bydrogen. It is needlefs therefore to examine his theory, as it is now known that the combination of hydrogen and oxygen forms not caloric but water (U). The whole fabric therefore has tumbled to the ground ; but the importance of the materials will always be admired, and the ruins of the ftructure fhall remain eternal monuments of the genius of the bailder.

Mr de Luc, fo well known for his important meteorological labours, has advanced another theory*. According to him, light is a body which moves contautly in fraight lizes, with fuch rapidity that its gravitation towards other fubtances bears no fenfible proportion to its motion. Light has the property of combining with another unknown fubftance, and the compound formed is caloric, which poffeffes very different properties from light. Caloric is conftantly defcribing helicoidal curves round an axis, which accounts for the flownefs of its apparent motion. Light produces or increafes heat, partly by increafing the expantive power of caloric, and partly by combining with the unknown fubfance, and forming new caloric; caloric, on the other hand, is always decompoled when bodies become luminous. This theory is certainly ingenious, and would remove many of the difficulties which we at prefent labour under in attempting to explain the phenomena of caloric and light. It is, however, liable to other dificulties, which could not be eafily furmounted. But it is needlefs to examine thefe, as the theory itfelf is fupported by no evidence whatever, and cannot therefore be admitted. Another theory has been advanced by the late Dr Hutton of Edinburgh (v) ; a man of undoubted genius,
but of rather too fecculative a turn of mind, and who fometimes involved himfelf in difficulties from his very ingenuity. All his writings difplay evident marks of the profuund philofopher: they contain much infruction; and even bis miltakes are ant without their ufe: but unfortunately his manner is fo peculiar, that it is fcarcely more difficult to procure the fecrets of fcience from Nature berfelf, than to dig them from the writings of this philofopher. He fuppofes that there are two kinds of matter, gravitating matter and light; the laft of which wants gravity, and confequently neither poffeffes magnitude (w) nor momentum. Light bas the power of being fixed in bodies; and then it becomes either caloric or phlogifton, which differs in fome particulars from caloric, but in what, the Doctor does not precifely tell us.

Part of this theory we have examined already when we attempted to prove that light and caloric were different fubflances. The other part of the theory feems to involve a contradiction; for how could light become fixed in a body, unlefs it were attracted by it? and if light poffeffes attraction, it furely cannot be deflitute of gravity; for what is gravity but attraction (x)?

Thus, notwithlanding the ingenuity of the philofophers who have attempted to inveltigate this part of chemifry, the connection between light and caloric is fill unknown. We mut content ourfelves, therefore, with confidering them at prefent as diftinct fubftances, and leave the folution of the many difficulties which at prefent perplex us to the more happy labours of future enquirers.

Part II. Of COMPOUND BODIES.

TO thofe bodies, which are compofed of two fimple fabfances combined together, for want of a better name we have given the appellation of compound bodics. They may be reduced under five claffes:

1. Water ;
2. Alcohol;
3. Oils;
4. Alkalies;
5. Acids.

Thefe fiall be the fubject of the five following chapters; and we fhall finilh this part of the article with fome obfervations on Afinity.

Chap. I. Of Water.

Water is a well-known liquid, found in abundance in every part of the world, and abfolutely neceffary for the exiftence of animals and vegetables.

When pure, in which flate it can be obtained only
by diftillation, it is tranfparent, and deftitute of colour tatte, and fmell.

A cubic toot of water, at the temperature of 55°, weight of weighs, according to the experiments of Profeffor Ro-water.
bifon of Edinburgh (fee Sprcific Gravity, Encycl.), 998,74 aveirdupois ounces, of 437,5 grains troy each, or only 1,26 ounces lefs than 1000 avoirdupois ounces: fo that rain water, at the fame temperature, will weigh pretty nearly roco ounces. The fpecific gravity of water is always fuppofed $=1,000$, and it is made the meafure of the fpecific gravity of every other body.

When water is cooled down to 32°, it affumes the form of ice. If this procefs goes on very flowly, the ice affumes the form of cryftalline needles, croffing each other at angles either of 60° or 120°, as Mrde Mairan has remarked; and it las been often obferved in large cryltals of determinate figures. Ice, while kept at a temperature confiderably below 3°, is very hard, and may be pounded into the finend duf. It is elatic. Its fpecific gravity is lefs than that of water.

When
(u) This candid philofopher afterwards acknowledged, that the proofs for the compofition of water were complete; but we do not know exactly how he attempted to reconcile his theory of heat with the belief that water was compofed of oxygen and hydrogen ; two opinions which are certainly incompatible.
(v) See his differtations on different fubjects of natural philofophy.
(w) Indeed Dr Hutton refufed this property to gravitating matter alio; following, in this particular, the
eory of the celebrated Bofcovich. theory of the celebrated Bofcovich.
(x) We hope not to be accufed of difputing merely about the meaning of a word, till what is faid on this fubject in the chapter of the prefent article, which treats of Afinity, has been esamined.

When water is heated to the temperature of $2: 2^{\circ}$, it boils, and is gradually converted into fteam. Steam is an invifible fluid like air, but of a lefs fpecifie gravity. It occupies about 1200 times the fpace that water does. Its elafticity is fo great, that it produces the mof violent explofions when contined. It is upon this principle that the fteam.engine has been conftructed. See Steam and Ste\&m-Engine, Encycl.

The phenomena of boiling are owing entirely to the rapid formation of tteam at the bottom of the velfel. The boiling point of water varies according to tlue preffure of the atmofphere. In a vacuum water boils at 90°; and when water is confined in Papin's digefter, it may be almoft heated red hot without boiling. The misture of various falts with water affect its boiling
point confiderably. Mr Achard made a number of ex periments on that fubjee : the refult of which may be feen ir the following tablest. which nourifues and fupports plants and animals. That water was an unchangeable element continued to be believed till the time of Van Helmont, who made

Class I. Salls which do not affell the Boiling Point.
Sulphat of copper.
Cuass II. Salts which raife the Boiling Point.

号	

This augmentation varies with the quantity of falt diffolved. In general, it is the greater the nearer the fulution approaches to faturation.

Class IlI. Salis which lower the Boiling Point.

Class lV.

Class IV.
Muriat of Small quantity of, lowers the boilMumat of
ammo $\left\{\begin{array}{cc}\text { ing point, } & - \\ \text { Saturated folution of, raifes do. } & 0,45 \\ \text { Cat }\end{array}\right.$ Carbonat $\{$ Small quantity of, lowers do. - 0,45 of potars, $\{$ Saturated folution of, raifes do. 11,2

Water was once fuppofed to be incompreffible ; but the contrary has been demonfrated by Mr Canton. The Abbé Mongez made a number of experiments, long after that philofopher, on the fame fubject, and obtained fimilar refults.

Water was believed by the ancients to be one of the four elements of which every other body is compofed; and, according to Hippocrates, it was the fubftance

Class II. Salks which raife the Boiling Poim.
plants grow for a long time in pure water: From which experiment it was concluded, that water was con. vertible into all the fublances found in vegetables. Mr Boyle having digefted pure water in a glafs veffed hermetically fealed for above a year, obtained a quantity of earthy fcales; and concluded, in confequence, that he had converted it partly into an earth.* He * Shazv's obtained the fame earth by diftlling water in a tall glafs Boyk, iii. velfel over a flow fiet. Margraf repeated the experiment with the fame refult, and accordingly drew the fame conclufion. But the opinion of thefe philofophers was never very generally received. The laf perfon who embraced it was probably Mr Wafelton, who publifhed his experiments on the fubject in the Journal de Phyfique for 1780 . Mr Lavoifier had proved, as early as 1773 , that the glafs veffels in which the diltil. lation was performed loft a weight exactly equal to the earth obtained. Hence it follows irrefiftibly, that the appearance of the earth, which was filica, proceeded from the decompofition of the veffels; for glafs contains a large proportion of filica. It has been fince thown by Dr Prieflley, that water always decompofes glafs when applied to its furface for a long time in a high temperature.

We have formerly mentioned, that water is com. pofed of oxygen and hydrogen. This great difcovery has contributed more perhaps than any other to the ad. vancement of the fcience of chemiftry, by furnifhing a key for the explanation of a prodigious number of phenomena. The evidence, therefore, on which it relts, and the objections which have been made to it, deferve to be examined with peeuliar attention.

The firft perfon probably who attempted to difco. ver what was produced by burning hydrogen gas was Scheele. He concluded, that during the combultion oxygen and hydrogen combined, and that the product was caloric.
In 1776 Macquer, affifted by Sigaud de la Fond, fet fire to a bottle full of hydrogen gas, and placed a faucer above the flame, in order to fee whether any fuliginons fmoke would be produced. The faucer remained perfectly clean; but it was moiftened with drops of a clear liquid, which they found to be pure water \ddagger.

Next year \ddagger Macquer's Next year Bucquet and Lavoifier exploded oxygen Diefionary.
and hydrogen gas, and made an attempt to difeover art. Gas inwhat was the product ; about the nature of which they had formed different conjectures. Buequet had fuppofed that it would be carbonic acid gas; L.avoifier, on the contrary, fufpected that it would be fulphuric or fulphurous acid. What the product was they did not difcover; but they proved that no earbonic acid gas was formed, and confequently that Mr Bucquet's hypothefis was ill founded $\|$.

In the beginning of the year 178 s , Mr Warltire, at Par. 1781. the requeft of Dr Priefley, fired a mixture of thefe two gafes contained in a copper velfel; and obferved, that after the experiment the weight of the whole was diminithed. Dr Priefley had previounly, in the prefence of Mr Warltire, performed the fame experiment in a glafs veffel. This veffel became moift in the infide, and was covered with a footy fubftance \oint, which § Priefley, Dr Priefley afterwards fuppofed to be a part of the mercury ufed in filling the veffel.

In the fummer of $1781, \mathrm{Mr}$ Henry Cavendith, who had been informed of the experiments of Priefley and

Warltire,

6\%. $\xrightarrow{\sim}$
\qquad

\qquad
\qquad

[^7]

The proofs that water is a compound are of two kinds; it has been actually compofed, and it has been decompoled.

With recurd to Proofs of late the celebrated experiment made by Laveifier and fition of Meufnier in the month of February 1785 , in the pre- water. fence of a numerous depirtation from the academy of fciences, and fo many other fpectators, that it may be 345
Expericonfidered as having been performed in public. Every nent of precaution was avory Lavoriner preanion wales had and Meuf been prepared with care, and held for fome time over a nier. folution of potais, in order to deprive them of any acidity which they might accidentally contain; and before entering into the glafs glube where they were to be burnt, they were made to pals over newly calcined potafs, to deprive them of the water which they might happen to retain in folution. The hydrogen gas had been obtained by paffing feam through iron at a white heat; the oxyrgen gas was procured from the red oxyd of nercurs. The combuttion took place in a large glafs globe, into which the gafes were admitted by means of tubes furnithed with ftop-cocks; and the molt ingenious contrivances were employed to afcertain exaftly the quantities of each which were confumed (x). The whole machine is defcribed at large by Mr Meufnier in the Memoires of the Academy of Sciences for 1782.

The quantities of gas employed, after deducting the 43^{2} grains of refiduum which were not confumed, were 2794,76 grains of oxyeren gas, and 471,125 of hydrogen gas. After taking from the fe 32,25 grains, $=$ the humidity of which the oxygen gas was deprived by the calcined potais, and $4 \neq 25$ grains, $=$ the weight which the hydrogen loft by the fame procefs, there remains alrogether 3188,4 grains of gas.

The quantity of water obtained amounted to 3219 grains; the fpecific gravity of which was to diftilled water as 1,0051 to 1 . This quantity was 30 grains more thari the gas employed. The difference, no donbt, was owing to a fmall error in eftimating the weight of the gafes; which indeed it is extremely difficult to avoid, as the weight is altered by the fmalleft difference of temperature. This water had a flight fmell, and a tafte fenfibly acid; it reddened flightly blue paper, and effervefced with the carbonat of potafs. 1152 grains of that water being faturated with potafs, and evaporated to drynefs, left 20 grains of a falt which melted on the fire like nitre. It follows from this experiment, that the quantity of acid contained in the whole water would not have been quite fufficient to have formed 56 grains of nitre.

The refiduum weighed, as has been already cblerved, 432 grains; its volume was equal to 444 grains of oxygen gas; it was diminifhed by nitious gas (z) precifely as gas would be which contained $0,2+$ parts of oxygen ; it rendered lime water fomewhat turbid, which indicated the prefence of carbonic acid gas.

From the comparifon of the weights, and volumes of the gafes confumed, it was concluded that water confifts all their toct of gates was wafted, and obtained about 295 grains of water, which, after the molt rigid examination, appeared to be perfectly pure. From this experiment Litvoifier concloded, that water was compofed of oxygen and hydrogen. Mr Monge foon after performed the fame experiment, and obtained a fimilar refult: and it was foon after repeated again by Lavoifier and Meufnier on a fcale fufficiently large to put the fact beyond doubt.*
(x) A variety of inftruments have been invented by the French chenifts for that purpofe. Thefe inftruments they have den minated Gazometers.
(z) This gas thall be afterwards defcribed. It has the property of abforbing almoft inftantaneoufly the oxygen gas with which it comes into contadt. It is therefore often ufed, in order to difcover how much oxjgen gas exilts in any mixture.

Part II. C H \quad E M I S T R Y.

Water. fifts of 0,85 parts, by weight, of oxygen, and 0,15 of 346 hydrngen.
Experiment of Le Fevre de Gincau. prefence of a a great number of ipectators. It continued for no lefs than 12 days, and was performed with the molt rigorous exactnefs of which experiments of that

- Gourn. de nature will admit.*

Pby. 1788, The oxygen gas employed, which had been procup. 45% red from the black oxyd of manganefe, occupied the fpace of 35085 , 1 cubic inches, and weighed $18298,5 \mathrm{gr}$.

The hydrogen gas was obtained by diffolving iron in diluted fulphuric acid. Its volume was $7496,7 \mathrm{cu}-$ bic inches, and its weight 4756,3 grains. Grains. The two gafes, therefore, amounted to - 23054,8 From which taking the reliduum after combuftion, which amounted to

2831 , 0
There remains for the quantity confumed, - 20223,8 The water found in the glafs globe after the combuftion amounted to - - 20139,0 And there were carried off by the refiduum, - 54,0

$$
\text { In all, } \quad-\quad 20193,0
$$

Which is jult 30 grains lefs than the weight of the gales which difappeared, or $\frac{\mathrm{r}}{65}$ part of their weight. This difference arofe from the fame difficulties which attended the experiment of Lavoifier. As the errors are on different fides, we are warranted to conclude that this was the cafe, and that it was not owing to any real difference between the gafes and the product.

The water was examined in the prefence of Meffrs Lavoifier, le Roi, Monge, Berthollet, Bayen, and Pelletier. Its fpecific gravity was to that of diftilled water as 1,001025 to 1 . It contained no fulphuric nor muriatic acids; yet it had an acid tafte, and converted vegetable blues to a red. 6606 grains of it required for faturation 3^{6} grains of carbonat of potafs, and furnifhed by evaporation 26,5 grains of cryftals of nitre. The whole water, therefore, would have required 109,7 grains of carbonat of potafs for faturation.

This water affected lime water a little; and it was found, that the refiduum of the gas contained fome carbonic acid g ds. This refiduum formed a ninerecnth part of the volume of the two gafes employed, and an eighth of their weight. It contained 462 grains of carbonic acid gas, or about $\frac{7}{6}$ p.rrt ; the reft was azotic gas, with about $\frac{1}{T E}$ of oxygen.

This experiment gave the proportions of oxygen and hydrogen in water as follows:

$$
\begin{array}{llll}
\text { Oxygen, } \\
\text { Hydrogen, }
\end{array} \quad . \quad . \quad-\quad, \quad, 848
$$

This is fo near the determination of Mr Lavoifier, that

The hydrogen gas was procured by diffolving zinc in fulphuric acid diluted with 7 parts of water. The oxggen gas was obtained by difilling oxy-muriat of potafs (A).

The quantity of hydrogen gas employed amounted to 862,178 grains troy. The quantity of oxygen gas amounted to 13475,198 cubic inches (French). Its purity was fuch, that it contained three cubic inches of azotic gas in the 100 . The whole gas, therefore, contained 404,256 cubic inches. There were likewife in the glais veffel in which the combultion tonk place 15 cubic inches (French) of atmofpheric air, which confilted of ix cubic inches of arotic and four of oxygen gas. So that the whole oxygen gas employed amounted to $13074,9+2$ cubic inches; and it contained befides 415,256 cubic inches of azotic gas. They afcertained by experiment, that a cubic inch of this oxygen gas, thus diluted with $\frac{3}{3} 0$ of azot, weighed, 4040 of a grain troy. Now, according to the experiments of Lavoifier, a cubic inch (French) of azotic gas weighs only , 3646 of a giain truy. Confequently the weight of pure oxygen gas is greater than, 4040; and by calculation they thewed it to amount to, 405 I of a grain troy. The weight of the whole oxygen gas employed, therefore, was 5296,659 grains troy; and that of the azotic gas mixed with it 151,402 grains troy.

The combution continued 185 hours; and during all that time our philofophers never quitted the laboratory. The flame was exceedingly fmall, and the heat produced by no means great. This was owing to the very fmall ftream of hydrogen, which was conftantly flowing into the velfel.

The water obtained amounted to 5943,798 grains troy, or 12 oz .7 dwts. and 15,798 grains. It exhibited $n \mathrm{n}$ mark of acidity, and appeared in every refpect to be pure water. Its fpecific gravity was to that of difilled water as 18671 to 18670 ; or nearly as 1,000053 to 1.

The refiduum of gas in the veffel after combultion amounted to 9^{87} cubic inches (Frencli) ; and on being examined, was found to confilt of the following quantities of gafes:

(4) A falt compofed of oxy-muriatic acid and potals.

Watcr.

- Ann. de

Cbim. viii. 25 .
mult have been owing to common air remaining in the tubes and ocher parts of the apparatus, in fpite of all the precautions that were taken to prevent it ; if it did not rather proceed from unavoidable errers in their valuations. Gr. Troy. The quantity of azotic gas introduced was $151,1,78$ The quantity found in the refiduum was r70,258.

There was therefore a furplus of . . $19,080 \mathrm{gr}$.
As fufficient prectautions had been taken to prevent the introduction of carbonic acid gas, the quantity found in the refiduum mult have been formed during the procefs. There muit tberefore have been a frnall quantity of carbon introduced. Nowzinc of en contains earbon, and hydrogen has the property of diffolving carbon : probably, then, the carbon was inkroduced in this manner. The carbonic acid found in the refiduum amounted to 23,306 grains, which, aconrding to Lavoifier's calculation, is compofed of \& 958 grains of carbon, and 14,348 grains of oxygen.

Subftracting thefe 8,958 grains of carbon, and the ,530. of a grain of hydrogen, which remained in the vef. fel, from the total of bydrogen introduced, there will remain $352,69 \rho$ grains for the hydrogen that difap. peared.

Subtracting the $14,34^{8}$ grains of oxygen which en. tered into the compofition of the carbanic acid, and the refiduum of oxygen, which amounted to $188,37 t$ grains, the quantity of oxygen that difappeared will amount to 5093,940 grains.

Which is lefs than the gafes confumed by

2,832 grains,*.
Such are the principal experiments upon which the opinion is founded that water is a compound. Let us examine them, and fee whether they are fufficient to eftablifh that opinion. The circumftances which chiefly claim our attention, and which bave been chiefly infifted on, are there :

1. The whole of the gafes was not confumed.
2. In the refiduum were fonnd feveral fublances which were not introduced, and which muft therefore have been formed during the combution.
3. The water obtained was feldom perfectly pure. It generally contained fome nitric acid.
4. As only part of the gafes were confumed, and as all gafes contain water in them, might not the gas which difappeared have been employed in forming the other fubitances found in the reflduum ? and might not the water obtained have been merely what was formerly diffolved in the gafes, and which had been precipitated during the experiment?

That the whole of the gafes was not confumed, will not furprife us, if we.recollect that it is impolfible for that to take place, allowing them to be perfectly pure, except they be mixed in precifely the proper propor-
tions, and not even then, except everp particle of them could be raifed to the proper temperature. Now how: can this be done in experiments of that nature?

But how is it poffible to procure a large quantity of gas completely pure? and fuppofing it were poffible, how can every particle of atmofpheric air be excluded? In the laft experiment, notwithltanding every precattion, 15 cubic inches (French) were admitted; and there is reafon to believe, from the refults, that the quantity was even confiderably greater than this. But if any atmofpheric air be admitted, there muft be a refiduum of azotic gas.

In the firlt experiment it had been previounly afcertained that the oxygen gas employed contained $\mathrm{r}^{\frac{1}{2}}$ th of azotic, or about 233,05 grains; and the refiduum contained at moft 329,1 grains, or 96,05 grains more than what had for certain pre-exifted in the gafes.

In the fecond experiment, the azot in the refiduum, ampunted at moft to $\frac{x}{6}$ the of the oxygea gas employed. But the oxygen was procured from the black oxyd of manganele, which always yields a quantity of azot as well as of carbonic, acid. It has been afcertained, that the azot, mixed with oxygen gas procured in that manner, often exceeds $\frac{1}{8}$ th.

In the third experiment, the azotic gas found in the refiduum amounted to 570,258 grains; and the quantity contained in the gales before combuftion amounted to 151,178 grains: the furplus, therefore, amounted to 1008 grains.

Now, is it not much more prohable that thefe incon. fiderable quantities of azot, which, in the laft experiment amounted to no more than $\frac{1}{3} \pi \mathrm{t}$ part by weight of the whole gas employed, pre-exifted in the gales before the combuftion began, though their extreme minutenes prevented them from being difcovered, than that they were formed during the experiment? a fup. pofition which is directly contradiated by a great number of well afcertained facts.

As to the carbonic acid gas, which in the fecond ex. periment amounted to $\frac{1}{4}$ th of the gafes employed, it was evidently derived from the manganefe, which almof conftantly contains it. And when carbonic acid is once mixed with oxygen, it is difficult to feparate it by means of lime water, except a large quantity be ufed, as Mr Cavendifh has well obferved. The reaton is that oxygen gas has the property of diffolving carbonic acid, as Mr Welter has remarked \dagger. Mr le Fevre de Gi. \dagger Ann. de neau alcertained by experiment that 1870 cubic-inches Cbim. iii. of oxygen gas which did not affect lime water, loft be. 9 r. tween $\frac{8}{3}$ th and ${ }^{\frac{3}{0}}$ th of its weight, when wafhed in wilk of lime (B$)$.

In a fecond experiment, he previoully wathed the two gafes in milk of lime, and the refiduum after combuition contained no carbonic acid gas. In a third experiment he wafhed only the oxygen, and obtained products equilly free from carbonic, acid. It is certain, then, that the carbonic aciel is but an accidental mixture. As to the carbonic acid of the third experimentabove related, which amounted only to $\frac{x}{3 / 2}$ part of the gafes employed, the fource of it has been already point. ed out.

Part II.

 C H E MAs to the nitric acid, the quantity of nitre obtained in Mr Lavoifier's experiment, was 56 grains; which, according to Mr Kirwan's calculation, contain 30,156 grains of nitric acıd, a quantity confiderably leis than Toth part of the gafes which difappeared. In the fecond experiment, the nitre obtained amounted to 80,7 gran ; whıh according to Kirwan, contain, 43,456 grains of nitric acid, or lefs than $\frac{{ }^{\frac{1}{5}}{ }^{\frac{1}{5}} \text { th part of the gafes }}{}$ confumed. Nuw, as nittic acid is compofed of oxygen and azot, both of which were prefent in the veffel, it is eafy to fee how it was produced. And that its production is merely accidental, and not neceffary, is evident from the laft experiment in which no nitric acid was furmed. It has been afcertained, indeed, that the formation of this acid during thefe experiments is quite arbitrary. It never is formed when the combultion goes on fo llowly as to produce but little heat, as Se-

* Ann.de

Cbsm. ix. 48.

+ Pbil.

Tranf.
guin has afcertained*; becanfe oxygen and azot do not combine, except at a high temperature. Nor is it formed even at a high temperature, as Mr Cavendifh has proved, except there be a deficiency of hydrogen; becaufe hydregen has a itronger affinity for oxygen than azot has.

The quantity of water obtained in the firf experiment was jult 30 grains more than the weight of the gafes which had diffippeared: the water obtained in the fecond, was precitely 30 grains lefs than the gafes confumed: and in the third experiment the diference was only 16 grains. The quanticies of gas operated upon were ldrge; in all of the experiments ieveral thoufand grains, and in one of them above 20 thoufand. Now, how is it poffible that the water produced thould correfpond fo ex cetly with the gates confumed (for the differences are fo fimall as not to merit any attention), unlefs the water had been formed by the combination of there gafes?

Dr Priefley, however, who made a great many ex. periments on this fubject, drew from them a very different conclufion ; and thought he had proved, that during the combuttion the two gafes combined, and that the combination was nitric acid. This theory was adopted, or rather it was fuggefted by Mr Keir, who has fupported it with a great deal of ingenuity \dagger.

Let us examine thefe experiments of Dr Priefley*, and fee whether they warrant the conclufions he has drawn from them. The gafes were exploded in veffels of copper. He found that the quantity of water obtained was always le/s than that of the gafes which be had ufed. He obtained alfo a conliderable quantity of nitric acid. In the experiment made on the largeft quantity of the gafes, and from which he draws his conclutions, the quantity of liquid ubtained a mounted to 44^{2} grains. This liquid was examined by Mr Keir. Suppl. Vol. I.

I S T R Y.

It was of a green colour, 7^{2} grains of brown oxyd of copper were depofited in it, and it contained a folution of nitrat of copper (copper combined with nitric acid). Mr Keir analyfed this liquor: It confifted of pure water and nitrat of copper; and Mr Keir concluded that the nitric acid formed amounted to $\frac{1}{2}$ th th oxygen gas employed. Mr Berthollet, however, has fhewn, tbat it could not have amounted to more than $\frac{1}{4} \frac{1}{4}$ part $\$$. Let us fuppoie, however, that it amounted to $\frac{1}{2}$. A quantity of oxygen and hydrogen gas has difappeared : What is become of them? They have combined, fays Dr Priefley, and formed nitric acid. This nitric acid is only $\frac{\mathrm{I}}{\mathrm{T}} \mathrm{O}$ of their weight: Dr Priefley fuppofes, however, that it contains the whole oxygen and hydrogen that exitted in thefe gafes, and that all the relt of the weight of thefe gafes was owing to a quantity of water which they had held in folution. Oxygen gas, then, (for we thall neglect the hydrogen, which Dr Prieftley was not able to bring into view at all) is compofed of one part of oxygen, and ig of water. Where is the proof of this? Dr Priettley informs uc, that he afcertained by experinent, that half the weight of carbonic acid gas was pure water. Suppofing the experiment accurate (c), what can be concluded from it? Surely to bring it forward in proof, that oxygen gas confifts of $\frac{10}{20}$ parts, or almoft wholly of water, is dowuright trifing. It is impolfible, therefore, from Dr Prieflley's experiments, allowing his fuppofitions and conjectures their utmoft force, to account for the difappearing of the two gafes, or the appearance of the water, without admitting that this liquid was actually compofed of oxygen and hydrogen. If we add to this, that no oxygen gas has hitherto (as far as we know at leaft) been procired abfolutely free from fume admixture of azot, and that his oxygen was always procured either from red oxyd of lead, or from black oxyd of rnanganefe, or red oxyd of mercury, all of which fubftances yield a confiderable proportion of azot; that in one experiment in which he obferves that his oxygen was very pure, as it had been obtained from red oxyd of mercury, Mr Berthollet (D) afcertained by actually making the experiment, that part of the very fume oxyd which Dr Priettley had employed yielded a gas, $\frac{x}{3} \mathrm{~d}$ of which was azot*; if we add, that it has been proved beyond *Ann.de the poffibility of doubt, and to Dr Priefley's own fa. Cbim. iii. tisfaction, that nitric acid is compofed of oxygen and 94. azot-we fhall find it no difficult matter to explain the origin of that acid in Dr Prieftley's experiments : and if we recollect that in Seguin's experiment, upon a much larger fcale indeed than Dr Priefley's, no nitric acid at all was formed, it will be impolifle for us to believe for a moment that the compound formed by oxygen and hydrogen is nitric acid. Thus Dr PrieftY 8 ley's
(c) He informs us that the carbonat of barytes does not yield its carbonic acid by means of heat (this Dr Hope has fhewn to be a miftake) ; but that, when the vap urs of water are paffed over it, the gas is difengaged: and he determines by the water miffing how much has combined with the gas. According to him, 60 grains of water enter into the compofition of 147 grains of gas. But, befides affigning too fmall a weight to the gas, lie forgot that its temperature was bigh, and that therefore it was capable of combining with much more water than in its ufual fate: nor did he afcertain whether more of this water was depofited on the veffels; and yet, by neglecting this precantion, Morveau has fhewn that Mr Kirwan, in a fimilar experiment, obtained a refult nine times greater than it ought to have been. Encycl. Method. Chim. art. Air.
(D) Mr Berthollet had fupplicd Dr Prielley uith the oxyd. He had received two ounces of it from Mr Le Blanc, one of which he fent to Dr Prieltey, and the other he referved.
leg's experiments rather confirm than deftroy the theory of the compofition of water. We obtain from them, however, one curious piece of information, that the prefence of copper increafes the quantity of nitric acid formed. This curious fact, with a variety of others of a fimilar nature, will perhaps afterwards claim our attention; but at prefent we mult confider another theory which this phenomenon fuggetted, and which was firf propufed, we believe, by Mr de la Metherie (E).

Had the French chemits, it has been faid, employed corper veffels in their experiments, they would have obtained three times the quantity of nitric acid. 'This acid, therefore, mult in their experiments have been decompofed, after hasing been formed, for want of a bafe to ccmbinc with; and the azot which appeared in the reliduum was owing to this decompofition. Hydrogen and oxygen, therefore, do not form water, but azot (F). Let us examine the experiment of Mr Le Fevre by this theory, as the quantity of azot was accurately afcertained. The nirric acid obtained amounted to 43,456 grains; three times that quantity is 130,368 grains, into which 23054 grains of gas were converted; which is impoflible. Or even fuppoting that the decompotition had been going on during the whole experiment, which is directly ccntrary to Dr Priefley's experiments, and which there is no reafon whatever to tup. pofe, but every reafon againft-ftill the whole azot amounted only to $\frac{1}{5}$ h of the quantity of gas employed, allowing this gas to have contained no azot, which was evidently not the cafe. It appears, then, that this hypothefis, even if it could be admitted, would be totally inadequate to account for the phenomena. But if we were to examine it by Mr Seguin's experiment, its abfurdity would be fill more glaring. In that experiment the azotic gas amounted to only 19 grains, and the quantity of gas which dilappeared was $59+6$ grains: fo that were the hypothefis true, oxygen and hydrogen gas would conlift of one part of oxygen and hydrogen and 312 parts of water; a fuppofition fo enormoully abfurd, that it is impoffible for any perfon even to adrance it.

It is impofible, therefore, for the phenomena which attend the combuftion of oxygen and hydrogen gas to be accounted for in any way confiftent with common
or imaller diftances from the firft wire. By means of thefe wires, they made a great number of electrical explofions pars through the water. Bubbles of air appeared at every explofion, and collected at the top of the tube. When eleatric Sparks were paffed through this air, it exploded and difappeared almoft completely. It mult therefore have confifted of a mixture of oxygen and hydrogen gas, and this gas mult have been formed by the decompolition of the water: for they had taken care to deprive the water before hand of all its air, and they wled every precaution to prevent the accefs of atmorpherical air; and, befides, the quantity of gas produced did not diminifh, but rather increaled, by continuing to operate a number of times upon the fame water, which could not have been the cafe had it been merely air diffolved in water: nor would atmolpherical air have exploded and left only a very fmall refiduum, not more than $\frac{8}{80}$ th part. They had taken care alfo to prove that the eledric fpark did not contribute to form hydrogen gas; for on palling it through fulphuric and nitric acids, the product was not hydrogen, but oxygen gas \dagger.
 Pearfon, affifted by Mr Cuthbertion. He produced, 369. by means of electricity, quantities of gas from water, amounting to 56,5488 cubes of $\frac{1}{1}$ th of an inch each; on nitrous gas being added to which, it fuffered a diminution of bulk, and nitrous acid appeared to have been formed; It mult therefore have contained oxygen gas. When oxygen gas was added to the remainder, and an electric tpark paffed through it, a diminution tock place precifely as when oxygen and hydrogen gas are mixed: It mult therefore have contained hydrogen. When an clectric fpark was paffed through the gas thus produced from water, the gas difappeared, being no doubt converted into water*. $\underbrace{\text { Water. }}$ * Nitbolof water is afcertained; and we do not believe that any nal, i. 342 . phylical fact whatever can be produced which is fupported by more complete evidence.

But what becomes of the caloric which was previoufy combined with thefe gafes? It paffes through the veffel and is loft, and its weight is too inconfiderable to make any fenfible variation in the quantity of the produc. If we were to judge from analogy, we would conclude, that the oxygen and hydrogen, while in the Atate of gas, are probably fomewhat lighter than after they are condenfed into water; but the difference, if it exifts, can fcarcely be fenfible.

Water is capable of combining with a valt number of combinafubftances: all bodies, indeed, which are foluble in wa- tion and ter furm a chemical union with it. we have no method of alcertaining this difference, ex-
(E) Another favomite theory of La Metherie was, that gafes themfelves are deftitute of gravity, and that they owe their whole weight to the water with which they are combined: that during combuftion the water of the two gafes is depolited; and that the gafes themfelves efcape throngh the veffel and are loft. He complains bitterly that this theory had never been noticed by his antagonifts; as if it were neceffary to refu:e a hypothelis which is not fupported by any proof whatever, and as if it had not been proved that oxygen increales the weight of metals, and confequently poffeffes gravity.
(F) This, as has been formerly explained, was the original opinion of Dr Prieftley; to which, though he does not explain himfelf fully, he evidently fill adheres. There is then no difference between his theory and this, except. what relates to the decompofition of the sitric acid.

Part II.

Alcohol.

 cept in thofe bodies which have no affinity, or but a very fmall aflinity, for cach other; and it is only in a few even of thefe that this difference can be afcertained. If muriat of barjtes be poured into lime water, the lime is precipitated, owing, no doubt, to the fuperior affinity of the muriat for water. Several very curious inftances of the affinity of different falts for water have been mentioned by Mr Quatremere Dijonval. When the folutions of nitrat of lime and nitrat of magnefia in water are mixed together, the nitrat of magnefia is precipitated. Muriat of magnefia is alfo precipitated by muriat of lime, and fulphat of magnefia by fulphat of lime: fo that it would feem that the fillts which have magnefia for their bafis, have a lefs afinity \$ Yourn. de for water than thofe whofe bafis is limet.Pisy. xvii. Witer has the property of diffolving oyygen gas. If a quantity of common air be confined for fome time above water, the whole of the oxygen is abtorbed, and nothing but the azotic gas remains. This fact was hirit obferved by Mr Scheele.

Chap. II. Of Alcohol.

35^{1}
Difcovery

- alcohol.

Wine has been known from the earlielt ages. The Scriptures inform us, that Noah planted a vineyard and drank wine; and the heathen writers are unanimous in atcribing the invention of this liquor to their earlict kings and heroes. Beer, too, feems to have been difcovered at a very remete period. It was in common ufe

* Lib. ii. n. 77.
+ De Morib. Germ. ch. xxiii. in Egypt in the time of Herodotus*. Tacitus informs us, that it was the drink of the Germans \dagger. Whecher the ancients had any method of procuring ardent fpirits from thefe or any other liquors, does not appear. The Grecks and Romans feem to have been ignorant of ardent fpirits altogether, at lealt we can difcover no traces of any fuch liquor in their writings. But among the northern nations of Europe, intoxicating liquors were in ufe from the carlieft ages. Whether thefe liquors refemble the beer of the Germans, we do not know. It is certain at leaft, that the method of procuring ardent fpirits by diftillation was known in the dark ages; and it is more than probable that it was practifed in the north of Europe much earlier. They are men. tioned exprefsly by Thaddxus, Villanovanus, and Lully \ddagger 。
\ddagger Berg. 4th.
art. ii. 4.
35^{2}
Method of procuring it.

Ardent fpirits, fuch as brandy, for inftance, rum, and whifky, confift almolt entirely of three ingredients, water, alcobol or fpirit of wine, to which they owe their Atrength, and a small quantity of a peculiar oil, to which they owe their flavour.

The alcohol may be feparated from the water by the following proceis. Into the whifky or other ardent fipirit a quantity of potafs is to be put, which has jult immediately before been expofed for about half an hour in a crucible to a red heat, in order to deprive it of moitture. Potats in this flate has a ftrong attraction for water ; it accordingly combines with the water of the fpirit, and the folution of potafs thus furmed finks to the bottom of the veffel, and the alcohol, which is lighter, fwims over it, and may eafily be decanted off; or, what is perhaps better, the folution of petafs may be drawn off from below it by means of a Mop-cock placed at the bottom of the velfel. It is impoflible to fix the quantity of potafs which ought to be ufed, becaufe that mult depend entirely on the frength of the fipirit; but it is of no con-
feguence though the potafs employed be a litile more than enough. The alcohol thus obtained contains a little potafs diffolved, which may be feparated by difil. ling it in a water bath with a very fmall heat. 'The alcohol paffes over, and leaves the potafs bchind. It is proper not to diftil to drynefs. This procefs is lirft mentioned by Lully. Alcohol may be obtained in the fame manner from wine and from beer; which liquids owe their ftrength entirely to the quantity of that fub. fance which they contain.

Alcohol is a tranfparent liquor, colourlefs like water, Its proper. of a pleafant fmell, and a firong penetrating agreeable tics. tafte.

It is exceedingly fluid, and has never been frozen, thongh it has been expofed to a cold fo great that the thermmeter fond at $-69^{\circ *}$.

Its ipecific gravity when pure is about 0,800 . Son's bay.
It is exceedingly volatile, boiling at the temperature of 176°; in which heat it alfumes the form of an elaftic fluid, capable of rifiting the preflure of the atmofphere, but which condenfes again into alcolol when that tem. perature is reduced. In a vacuum it boils at 56°, and exhibits the fame phenomena: fo that were it not for the preffure of the atmofphere, alcohol would always exit in the form of an elaftic fluid, as tranfparent and invifible as common air. This fubject was firft examined with attention by Mr Lavoiliert. The faet, + Yourn. de however, lad been known long before.

Alcohol has a ftrong affinity for water, and is mifcible with it in all proportions. The fpecific gravity of all the different mixtures, in every proportion, and in all the different degrees of temperature, from 32 to 100°, has been lately afcertained with great accuracy by Sir Charles Blagden and Mr Gilpin. But as a very full account of thefe interefting experiments has been given in the Encyclopædia in the article Spirituous Liguors, we do not think ourlelves at liberty to repeat it here.

If alcohol be fet on fire, it burns all away with opinions a blue flame, without leaving any refiduum. Boerhaave concerning obferved, that when the vapour which efcapes during its compothis combultion is collected in proper velfels, it is found fition. to confift of nothing but water. Junker had made the fame remark: and Dr Black fufpected, from his own obfervations, that the quantity of water obtained, if properly collected, exceeded the weight of the alcohol confumed. This obferration was confirmed by Lavoifier; who found that the water produced during the combution of alcohol exceeded the alcohol confumed by about $\frac{1}{7}$ th part*.

Different opinions were entertained by chemifts about Par. 1781。 the natuse of alcohol. Stahl thought that it was com- P. 493. pofed of a very light oil, united by means of an acid to a quantity of water. According to Junker, it was compofed of phlogifton, combined with water by means of an acid. Cartheufer, on the other hand, affirmed, that it contained no acid, and that it was nothing elfe than pure phlogifon and water. But thefe hypothefes were mere affertions fupported by no proof whatever. Lavoifier was the firf who attempted to analyfe it.

He fet fire to a 355 by means of to a quiny of alcohol in clole vellels, Lavirer's is a veffel of marble filled with mercury. A is a frong glafs veflel placed over it, filled with common air, and capable of containing about 15 pints (French). Into this velfel is put the lamp R filled with alcohol, the Y y 2
weight
\square

weight of which las been exactly determined. On the wick of the lamp is put a fmall particle of phofphorus. The mercury is drawn up by fuction to the lieight IH. This glafs communicates by means of the pipe LK with another glafs veffel S filled with oxygen gas, and placed over a veffel of water T'. This communication may be thut up at pleafure by means of the Atop-cock M .

Things being thus difpofed, a crooked red hot iron wire is thruft up through the mercury, and made to touch the phofphorus. This intantly kindles the wick, and the alcohol burns. As foon as the flame begins to grow dim, the ftop-cock is turned, and a communication opened between the veffels S and A; a quantity of oxygen gas rulhes in, and reftores the brightnefs of the flame. By repeating this occafionally, the alcohol may be kept burning for fome time. It goes out, however, at laft, notwithftanding the admiffion of oxygen gas.

The refilt of this experiment, which Mr Lavoilier repeated a great number of times, was as follows:

The quantity of alcohol confumed amounted to 76,7083 grains troy.

The oxygen gas confumed amounted to $266,82 \mathrm{cu}$ bic inches, and weighed 90.506 grains tray.

The whole weight of the fubfances confumed, therefore, amounted to 167,2143 grains.

After the combuftion, there were found in the glafs veffel 115,41 cubic inches of carbonic acid gas, the weight of which was 78,1192 grains troy. There was likewife found a confiderable quantity of water in the velfel, but it was not poffible to collect and weigh it. Mr Lavoifier, however, eftimated its weight at 89,095 I grains: as he concluded, with reafon, that the whole of the fubfances employed were fill in the veffel. Now the whole contents of the veflel confifted of carbonic acid gas and water; therefore the carbonic acid gas and water together mult be equal to the oxygen gas and alcohol which had been confumed.

But 78,1192 grains of carbonic acid gas contain,

+ Tren. according to Mr Lavoifier's calculationt, 55,279 grains
Par. 178 I . of oxygen : 90,506 grains, however, of oxygen gas had difappeared; therefore 35,227 grains mult have been employed in forming water.

35,227 grains of oxygen gas require, in order to form water, 6,038 grains of hydrngen gas; and the quantity of water formed by this combination is 41,265 grains. But there were found 89,095 grains of water in the glafs veffel ; therefore 47,83 grains of water mult have exifted ready formed in the alcohol.

It follows from all thefe data, that the 76,7083 grains of alcohol, confumed during the combution, were compofed of

> | 22,840 Carbon, |
| :--- |
| 6,038 Hydrogen, |
| 47,830 Water. |
| $76,7^{*}$. |

difference of weight in the lamp before and after combultion; and that therefore a quantity might have evaporated without combuftion, which, however, would be taken into the fum of the alcohol confumed. But this error could not have been great ; for if a confiderable quantity of alcohol had exifted in the tate of vapour in the veffel, an explofion would certainly have taken place. The other fource of error was, that the quantity of water was not known by actual weight, but by calculation.

To this we may add, that Mr Lavoifier was not war- Ingredien ranted to conclude from his experiment, that the water of alcohol. found in the veffel, which had not been formed by the oxygen gas ufed, had exifted in the alcohol in the ftate of water: he was intitled to conclude from his data, that the ingredients of that water exifted in the alcohol before combuftion; but not that they were actually combined in the itate of water, becaufe that combination might have taken place, and in all probability did partly take place, during the combultion. It follow's, therefore, from Mr Lavoifier's experiments, that alcohol, fuppofing he ufed it perfectly pure, which is not pro. bable, is compofed of

> 0,2988 parts carbon,
> 0,1840 parts hydrugen,
> 0,5172 parts oxygen.

1,0000

But it gives us no information whatever of the manner in which thefe ingredients are combined. That alcohol contains oxygen, has been proved by a very ingenious fet of experiments perfrmed by Meffrs Fourcroy and Vauquelin. When equal parts of alcohol and fulphuric acid are mixed together, a quantity of caloric is difengaged, fufficient to elevate the temperature of the mixture to 190°. Bubbles of air are emitted, the liquor becomes turbid, alfumes an opal colour, and at the end of a few days a deep red. When examined, the fulphuric acid is found to have fuffered no change; but the alcohol is decompofed, part'y converted into water and partly into ether, a fubftance which we fhall defcribe immediately. Now, it is evident that the alcohol could not have been converted into water unlefs it had contained oxygen*.

- Nichol-

When equal parts of fulphuric acid and alcohol are fon's fourmixed together and heat applied, the mixture boils at nal, i. 391 . 208°, and a liquid equal to balt the weight of the alcohol comes over into the receiver. This liquid is ether.

Ether is obfcurely hinted at in fome of the older che- Ether. mical authors, but little attention was paid to it till a paper appeared in the Philofophical Tranfactions for 1730 , written by a German, who called himfelf Frobemius (G), containing a number of experiments on it. In this paper it filt received the name of etber.

Ether is limpid and colourlefs, of a very fragrant 1 is 358 fmell, and a hot pungent tafte. Its fpecific gravity is ties 0,7394 . It is exceedingly volatile, boiling in the open air at 98° and in a vacuum at - 20°. Were it not therefore for the preffure of the atmofphere, it would always exilt in a gafeous ftate. Ether unites with water in the proportion of ten parts of the latter to one of
(c) The name was fuppofed to have been feigned.

Alcohol.
*Count de
the former.* It is exceedingly in flammable, and when Count de kindled in the fate of vapour burns with rapidity
Laurguais. rather explodes, if it be mixed with oxygen gas.
$\begin{array}{r}359 \\ \hline\end{array}$ Theory of Cliemits entertained various opinions reppeting the its formation. ature of ether. Macquer fuppoled, that it was merely alcoliol deprived by the acid of all its water. But it was generally believed that the acis entered partly into
its compolition. Since the nature of acids has become better known, a great number of philofophers have fuppoled that ether is merely alcohol combined with a quantity of oxygen furnifhed by the acid. The real compofition of this fingular fubftance has been lately afcer. tained by the experiments of Fourcroy and Vatquelin.
"A combination (fay they) of two parts of fulphuric acid and one part of alcohol elevates the temperature to 201°, becomes immediately of a deep red colour, which changes to black a few days afterwards, and emits a fmell perceptibly ethereal.
"When we carefully obferve what happens in the combination of equal parts of alcohol and concentrated fulphuric acid expofed to the action ol caloric in a proper apparatus, the following phenomena are feen:
" 1 . When the temperature is elevated to 208°, the fuid boils, and enits a vapour which becomes conden. fed by cold into a colourlels, light, and odorant liquor, which from its properties has received the name of ether. If the operation be properly conducted, no permanent gas is difengaged until about half the alcohol has palted over in the form of ether. Until this period there palfes abfolutely wothing but ether and a fmall portion of water, without mixture of fulphurous or of carbonic acid.
"2. If the receiver be changed as foon as the fulplarrous acid manifelts itfelf, it is obferved that no more ether is formed, but the fweet oil of wine, water, and acetous acid, without the dilengagement hitherto of a fingle bubble of carbonic acid gas. When the fulphurie acid conftitutes about four-fifths of the mafs which remains in the retort, an inflammable gas is difengaged, which has the finell of ether, and burns with a white oily fame. This is what the Dutch chemilts have called carbonated bydrogen gas, or olefiant gas, becaule when mixed with the oxy-muriatic acid it forms oil. At this period the temperature of the fluid contained in the retort is elevated to 230° or 234°.
" 3 When the freet oil of wine ceafes to Now, if the receiver be again changed, it is found that nothing more paffes hut fulphurous acid, water, carbonic acid gas; and that the refiduum in the retort is a black mafs, confitting for the molt part of fulphuric acid thickened by carbon.
" The feries of phenomena here expofed will juftify the following general inductions:
" 1. A fmall quantity of ether is formed fpontaneounly and without the affiftance of heat, by the combination of two parts of concentrated fulphuric acid and nne part of alcohol.
"2. As foon as ether is formed, there is a production of water at the fame time; and while the firit of thefe compofitions takes place, the fulphuric acid undergoes no change in its intimate nature.
"3. As foon as the fulphurous acid appears, no more ether is formed, or at leatl very little; but then there paffes the fweet oil of wine, together with water and acetous acid.
"4. The fweet oil of wine having ceafed to come
over, nothing further is obtained but the fulphurous and carbonic acids, and at laft fulphur, if the diftillation be carried to drynefs.
"The operation of ether is therefore naturally divided into three periods: the firil, in which a fmall quantity of ether and water are formed without the affiftance of heat ; the fecond, in which the whole of the ether which can be obtained is difengaged without the accompaniment of fulphurous acid; and the third, in which the fweet oil of wine, the acetous acid, the fulphurous acid, and the carbonic acid, are afforded. The three flages have no circumftance common to all, but the continual formation of water, which takes place during the whole of the operation.
"The ether which is formed without the affiltance of caloric, and the carbon which is feparated without decompotition of the fulphuric acid, prove that this acid acts on alcohol in a manner totally different from what has hitherto been fuppofed. It cannot, in fact, be affirmed, that the acid is altered by the carbon, becaufe daily experience fhews that no fenfible attraction takes place between thefe two bodies in the cold; neither can it be affected by the hydrogen; for in that cafe fulphurous acid would have been formed, of which it is known that no trace is exhibited during this firlt period. We mult therefore have recourfe to another feecies of action, namely, the powerful attraction exercifed by the fulphuric acid upon water. It is this which determines the union of the principles which exift in the alcohol, and with which the concentrated acid is in contalt : but this action is very limited if the acid be fmall in quantity; for an equation of affinity is foon eftablifhed, the effect of which is to maintain the mixture in a flate of repofe.
"Since it is proved that ether is formed in the cold by the mixture of any quantities of alcohol and fulphuric acid, it is evident that a mals of alcohol might be completely changed into ether and vegetable acid by uling a fufficient abundance of fulphusic acid. It is equally evident that the fulphuric acid would not by this means undergo any other change than that of being diluted with a certain quantity of water. This obfervation proves, that alcohol contains oxygen, beciule water cannot exif without this principle, which muft be afforded by the alcohol only, fince the fulphuric acid fuffers no decompofition.
"We muft not, however, imagine, from thefe facts, that ether is alcohol minus oxygen and hydregen. Its properties alone would contradiet this; for a quantity of carbon proportiunally greater than that of the hydrogen is at the fame time feparated. It may, in fact, be conceived, that the oxygen, which in this cafe combines with the hydrogen to form water, not only faturated that hydrogen in the alcohol, but likewife the carbon. So that, inttead of conlidering ether as alcohol minus hydrogen and oxygen, we mull, by keeping an account of the precipitared carbon and the fmall quantity of hydrogen contained in the water which is formed, regard it as alcohol plus hydrogen and oxygen.
"The foregoing are the effects produced by a combination of alcohol and fulplaric acid, fpontaneoully produced without foreign heat. Let us in the next place, obferve, how this combination is effected when caloric is added. The phenomena are then very different, though fome of the refults are the fame.
"In the firft place we muft obferve that a combination of felphuric acid and alcolol in equal parts does not boil at lefs than 207 degrees of temperature, while that of alcohol alone boils.at 176 . Now fince ebullition does not take place till the higher temperature, it is clear that the alcohol is retained by the affinity of the futphuric acid, which fixes it more confiderably. Let us alfo confider, that organic bodies, or their immediate products, expofed to a lively brifk heat, without the puliibility of efcaping fpeedily enough from its action, fuffer a partial or tutal decompofition, according to the degree of temperature. Alcohol undergoes this laft alteration when paffed through an ignited tube of porcelain. By this fudden decompofition it is converted into water, carbonic acid and carbon. The reafon, therefore, why alcuhol is not decompofed when it is fubmitted alone to lieat in the ordinary apparatus for difillation, is, that the temperature at which it rifes in vapours is not capable of effecting the feparation of its principles; but when it is fixed by the fulphuric acid or any other body, the elevated remperature it undergoes, without tire poffibility of difengagement from its combination, is futficient to effect at commencement of decompofition, in which cther and water are formed, and carbon is depofited. Nothing more therefore happens to the alcohol in thefe circumfances than what takes place in the diftillation of every other vegetable matter in which water, oil, acid and coal are afforded.
"Hence it may be conceived that the nature of the products of the decompofition of alcohol mult vary according to the different degrees of heat; and this explains why at a certain period no more ether is formed but the fweet oil of wine and atcetous acid. In fact, when the greateft quantity of the alcohol has been clanged into ether, the mixture becomes more denfe, and the heat which it acquires previous to ebullition is more confiderable. The affinity of the acid for alcohol being increafed, the principles of this acid become feparated; fo that, on the one hand, its oxygen feizes the bydrogen and forms much water, whicli is gradually volatilized; while, on the other, the ether retaining a greater quantity of catbon, with which at that temperature it can riie, affords the fweet oil of wine. This laft ought therefore to be confidered as an ether containing an extraordinary portion of carbon, which gives it more denfity, lefs volatility, and a lemon yellow colour.
"During the formation of the fweet oil of wine, the quantity of carbon which is precipitated is no longer in the fame proportion as during the formation of ether.
"What we have here ftated concerning the manner in which ether is formed by the fimultaneous action of the fulphuric acid and beat, appears fo conformable to truth, that nearly the fame effects may be produced by a cauftic fixed alkali. In this cafe alfo a kind of ether and a fweet oil of wine are volatilized, and coal is precipitated. It is therefore only by fixing the alcohol that the fulphuric acid permits the caloric to operate a fort of decompofition. It may alfo be urged as a proof of this affertion, that the fulphuric acid, which has ferved to make ether as far as the period at which the fweet oil of wine begins to appear, is capable of faturating the fame quantity of alkali as before its mixture with the alcohol \ddagger."
Ether may alfo be obtained by means of feveral other
acids. The different liquids thus formed are difin. guihed by pretixing the name of the acid ufed in the procefs. Thus the ether above deferibed is called fulphuric ether ; that obtained by means of nitric acid, nitric ether, and fo on. There are feveral minute fhades of difference between thefe various ethers, which have not yet been properly enquired into.

Alcuhol is capable of diffolving a great many bodies. A confiderable number of theif, with the quartities foluble, is exhibited is the following tables.

360
Subftances foluble in alcohol,
I. Sutfances diffolved in large quantilies.

Names of the Subfances.	Temperature.	2.40 parts of alcohol diffolve.
	$54,5^{\circ}$ 51,5 54.5 180,5	$\begin{aligned} & 240 \text { parts } \\ & 249 \\ & 240 \\ & 694 \end{aligned}$
Muriat of zinc alumina .	54,5	240 240
magnefia	18C,5	1313
iron	180,5	240.
copper	180,5	240
Acetite of lead copper*	${ }^{1} 13$	
Benzoic acid -	1 35,5	
Sulphat of magnefia		
Nitnat of zinc decompofed		
bifmuth decompored	pofed	

*Witbering Pbil. Tranf. 1xxii. 336 .
II. Subflances diffilved in fimall Quantities.

Names of the Subftances.	240 parts of alcohol at the boiling temperature diffolve
Muriat of lime -	240 parts
Nitrat of ammonia	214
Oxy-muriat of mercury	212
Succinic acid -	177
Acetite of foda	112
Nitrat of filver	100
Refined fugar - -	59
Boracic acid	48
Nitrat of foda	23
Acetite of copper -	18
Muriat of ammonia	17
Arfeniat of potafs - -	9
Acidulated oxalat of potafs	7
Nitrat of potafs -	5
Muriat of potafs -	5
Arfeniat of foda -	4
Barytes	
Strontites	
White oxyd of arfenic	3
lartat of potafs -	1
Phofphorus	
Nitrat of lead**	
lime*	
Muriat of mercury \dagger	

[^8]III.
III. Subfances infoluble with Alcohol.

Sugar of milk, Borax, Cartar, Alum, Sulphat of ammonia, lime, barytes*, iron(green), copper, filver, mercury, zinc, potals,	Sulphat of foda, margnefia, Sulphite of foda, Tartite of foda and potals, Phofphoric acid, Nitrat of lead, mercury, Muriat of le.id, filver \ddagger, Common falt, Carbonat of porals, focde.

Thefe have been chiefly borrowed from tables which Mr de Morveau publihed in the Gouraal de Pbyyifue July ${ }^{1785}$, and which were drawn up for the moft part from the experiments deferibed in Wenzel's Treatife on Affinities.
Itsaffinities. The affinities of alcohol are very imperfectly known. Thofe ftated by Bergman are as follows:

Water,

Ether,
Volatile oil,
Sulphurets of alkalies.

Chap. III. Of Oils.

362
Difcovery of oil.

* Gen. xv. 17.
+ Herodot. feem to have been ignorant of the method of procuring light by means of lamps till after the fiege of Troy; at leaft Homer never mentions them, and cunftantly deferibes his lieroes as lighted by torches of wood.

Oils are divided into two claffes, Fixed and Volatile;
363
rixed oils.
OtL, which is of fuch extenfine utility in the arts, was known at a very remote period. It is mentioned in Genefis, and during the time of Abraham was even uhed in lamps . The nive was very cally cilwated, and oil extrafted from it in Egypt. Ceerops brought it from Sais, a town in Lower Egypt, where it had been cultivated from time immemorial, and taught the Athenians to extract oil from it. In this manner the
ufe of oil became known in Europe. But the Greeks each of which is diftinguifhed by peculiar properties.
I. The fixed oils, called alfo fitt or exprefferd oils, arenumerous, and are obtained, partly from animals and partly from vegetables by fimple expreffion. As inftances, we fhall mention whate oil or train oil, obtained from the blubber of the whale; olive nil, obtained from the fruit of the olive; lintfeed oil, and almond sil, rbtained from lintreed and almond kernels. Fixed cils may alfo be obtained from poppy feeds, hemp feed, beech matt, and many other vegetable fubtances.

All thefe oils differ from each other in feveral particulars, but they alfo poffers many patticulars in com. mon. Whether the oily principle in all the fixed oils is the fame, and whether they owe their differences to accidental ingredients, is not yet completely afeertained, as no proper analyfis has liitherto been made; but it is exceedingly probable, as all the oils hitherto tried have been found to yield the fame products. In the prefent flate of our knowledge, it would be ufelefs to give a particular defcription of all the fixed oils, as the diffe-
rences between them have not even been accurately afcertained. We fhall content ourfelves, therefore, with giving the characters which dillinguifl fixed oils in general, and an analylis of one nil, by way of fpecimen.

Fixed oils are infoluble in alcohol, which diltineruifh- 364 es them from volatile oils. They are aifo infoluble in pertics. water.

They have an unctuous feel, are tranfparent while fluid, are deftitute of fmell, and have a mild infipid kind of tafte.

They are all fufceptible of becoming folid by expofure to a fufficient degree of cold. Olive oil and al. mond oil freeze at rox $\frac{1}{2}$ degrees \ddagger.
They are capable of being converted into vapour by heat : but require for that purpofe a temperature confiderably fuperior to that of boiling water. Olive oil boils at 600°, and moft of the fixed oils hitherto tried require nearly the fame degree of heat.

When in the fate of vapour, they take fire on the apprach of an ignited body, and burn with a yellowifh white flame. It is upon this principle that candles and lamps burn. The tallow or oil is firft converted into the flate of vapour in the wick, it then takes fire, and fupplies a fufficient quantity of heat to convert more oil into vapour, and this procefs goes on while any oil remains. The wick is neceflary to prefent a fufficiently fimall quantity of oil at once for the heat to af upon. If the heat were fufficicntly great to keep the whole oil at the temperature of 600°, no wick would be neceffary, as is obvious from oil catching fire fontaneonfly when it has been raifed to that temperature.

Mr Lavoifier analyfed olive oil, by burning it in pre 365 cifely the fame apparatus as that which he cmployed for olive oil. analy fing alcohol.
The quantity of oil confumed amounted to 15,79 grains troy.
The quantity of oxygen gas amounted to $50,86 \mathrm{gr}$. troy. The whole amount therefore of the fubitances confumed during the combution is 66,65 grains troy.
The earbonic acid obtained amomited to 44.50 gr . There was alfo a confiderable quantity of water, the weight of which could not be accurately afeertained: but as the whole of the fubfances confinaed vere converted into carbonic acid gas and water, it is evident, that if the weight of the carbonic acid be fubtraited from it the weight of the cartonic acid be fuftracted from
the weight of thefe fubtances, there mutt remain precifely the weight of the water. Mr Lavoifier, accordingly concluded, by calculation, that the weight of the
water was 22,15 grains. Now the quantity of oxygen ingly concluded, by calculation, that the weight of the
water was 22,15 grains. Now the quantity of oxygen in 44,50 grains of carbonic acid gas is $3^{2,0,4}$ grains, and the nygen in 22,15 grains of water is 88,82 grains:
both of which taken together amount to 50,86 grains, both of which taken together amount to 50,86 grains, precifely the weight of the naxgen gas employed. There does not appear therefore to be any oxygen in olive oil.
The quantity of carbon in $4+50$ grains of carbonic acid gas is 12,47 grains; and the quantity of hydrogen in 22,15 grains of water is 3,32 grains; both of gen in 22,15 grains of water is 3,32 grains; both_of
which, when taken together, amount to 15,79 grains, which is the wisght of the oil confumed.

It follows, therefore, from this analyfis, that 15,59 grains of olive oil are compofed of

$$
\begin{aligned}
& \text { 12,47 Carbon, } \\
& \text { 3,32 Hydrogch. }
\end{aligned}
$$

 $\underbrace{\text { Oils. }}$
\qquad -

\qquad
\qquad
\qquad
\qquad
 1 -
\qquad
\qquad

pofes all the mucilage : they feem alfo to lofe part of their hydrogen \ddagger.

Fixed ouls are capable of diffolving fulphur at their boiling temperature. The folution is very fetid, owing to a partial deconpofition of the oil. Hydrogen gas flies off, having a quantity of fulphur diffolved in it. phur. When the foiution cools, the fulphur cryfrallizes.

Fixed oils diffolve phofphorus. The folution is lu. And phorminous, from the flow combultion of the phofphorus. phorus.

Fixed oils are capable of combining with many of the metallic oxyds. The compounds are called netallic joaps. Several of the oxyds are decompoled by being buled in oils.

Fixed oils combine alfo with the alkaline earths and with alumina. The compounds are called earily foaps.

The affinities of the oils are as follows.

Lime,
Barytes,
Fixed alkalies,
Mignefia,
Ammonia,
Oxyd of mercury,
Other metallic oxyds (H),
Alumina.

Nitric acid, Muriatic, Sulphurous, Sulphuric,
Acetons, Sulphur, Phofphorus (1)

370 Their afilnitice.
obtained from vegetables. They have a ftrong aroma- oile. tic fimell, and a pungent acrid tafte. They are fo volatile, that they may be difilled by the heat of boiling water. They are foluble in alcohol, but not in water. They evaporate on the application of heat, without leaving any faain behind them, which is not the cafe with the fixed oils. By this telt, accordingly, it is eafy to difcover whether they have been adulterated with any of the fixed oils. Let a drop of the volatile oil fall upon a fheet of writing paper, and then apply a gentle heat to it. If it evaporates withour leaving any ftain upon the paper, the oil is pure; but if it leaves a ftain, it has been contaminated with rome fixed oil or other.

Volatile oils are very numerous, and differ from one another, in fluidity and weight, in their freezing point, and in feveral other particulars. Little attention has been paid to the greatell part of them, becaufe few of them have been found of any ule. The principal quality for which they are valued is their odour. Some of them are obtained by expreffion, as oil of hergamot, lem ns, oranges; others by diftillation, as oil of pepper-mint, thyme, lavender, \&c. It would be ufelefs, even if it were poffible, to give a particular defrription of all the volatile oils.
 quality which they owe to their volatility. As far perties. as experiments have hitherto been made, they feem to confift of carbon and hydrogen; but nothing is known concerning the proportions of thefe ingredients. They thicken when expofed to the air, probably by combining wilh orygen, and form refins (k).

When
(н) Their order not well afcertained.
(1) The firft column was afcertained by Bertholiet. The laft is to be confidered as unconnected with the firf. On account of the affinity of thefe two claffes of bodies for each other, it has not been poffible to dilcover which of them has the greateft affinity for oil.
(k) Refins are concrete vegetable juices; the difinguifhing property of which is infolubility in water and folubility in alcohol. Common refin, or rofin, fiom which they derive their name, is one of them, and fealing wax confifts almoft entirely of another.

When expofed to cold, or when kept for a long tirne, rome of them depofite cryftals refembling the acid of benzoin (L).

They diffolve fulphur, and form what have been called balfams of fulphur.

They are capable of combining with mof of the fubftances that unite with fixed oils. Their affinities, which certainly differ from thofe of fixed oils, have not yet been properly afcertained.

Chap. IV. Of Alkalies.

373
Propertics
Substances poffered of the following properties are called alkalies :

1. Incombuftible.
2. Capable of converting vegetable blues to a green.
3. A hot caultic talte.
4. Very foluble in water, even when combined with carbonic acid.
There are threc aikalies, potafs, foda, and ammonia. The two firlt are called fixed alkalies, becaufe a very violent heat is neceffary to volatilize them; the lat is called volatile alkali, becaufe it very eafily affumes a gafeous form, and is confequently diffipated by a very moderate degrec of heat.

Sect. I. Of Polafs.

If a fufficient quantity of wood be burnt to afhes, procuring and thefc athes be afterwards wathed repeatedly with potafs.

This procefs, hawever, mult be performed in clofe veffels; for there is a little carbonic acid gas in the atmo. Sphere, which would again combine with the potals if it were allowed to fland expofed to the air.

It is then to be evaporated till a thick pellicle appears on its furface, and afterwards allowed to cool; and all the cryftals which have formed are to be feparated, for they confitt of foreign falts. The evaporation is then to be continued in an iron pot; and, during the procefs, the pellicle which forms on the furface is to be carefully taken off with an iron fkimmer. When no more pellicle appears, and when the matter ceafes to boil, it is to be taken off the fire, and mult be conlantly agitated while cooling with an irou fpatula. It is then to be diffolved in double its own weight of cold water. This folution is to be filtered and evaporated in a glafs retort till it begins to depofite regular cryftals. If the mafs confolidates ever folittle by cooling, a fmall quansity of water is to be added, and it moft be heated again. When a fufficient number of cryßtals have been formed, the liquor which fwims over them, and which has affumed a very brown colour, mult be decanted off, and kept in a well-clofed bottle till the brown matier has fubfided, and then it may be evaporated as before, and more cryftals obtained. The cryftals may then be diffolved in pure water. By this procefs, which was invented by Mr Lowitz of Peterburgh,* potafs may be obtained in a flate of the greateft purity. The Thape of its cryfals is very different, according to the way in which they have been produced. When allow. ed to form in the cold, they are octahedrons in groups, and contain 0.43 of water: When formed by evaporation on the fire, they affume the figure of very thin tranfparent blades of extraordinary magnitude, which, by an affemblage of lines croffing each other in prodigious numbers, prefent an aggregate of cells or cavities, commonly fo very clofe, that the velfel may be inverted without lofing one drop of the liquid which it contains \dagger.

Pure potafs is fo exceedingly corrofive, that when applied to any part of the body, it deftroys it almoft inttantaneoully. On account of this properiy, it has been called caufic, and is often ufed by furgeons under the name of the potential coulery, to open abiceffes, and deftroy ufelefs or hurtful excrefcences.

As potafs is never obtained at firt in a flate of pu. rity, but always combined with carbonic acid, it was
long before chemilts underfood to what the changes produced upon it by lime were owing. Acoording to fome, it was deprived of a quantity of muci'age, in which it had formerly been enveloped; while, accord. ing to others, it was rendered more atuve by being more comminuted. At laft, in $\mathbf{1} 756$, Dt Black puolifhed the celebrated experiments which we have fo often mentioned; in which he proved, by the mot irgenious and fatisfactory analyfis, that the potafs which the
world had confidered as a fimple fubitance, was really a
world had confidered as a fimple fubitance, was really a
$\mathrm{Z} \mathrm{z}_{\mathrm{z}}$
compound,

Alisalies. $\underbrace{\text { Akalos. }}$ water till it comes off free from any talle, and if this liquid be filtrated and evaporated to drynefs, the fubftance which remains behind is potafs; not, however, in a fate of purity, for it is contaminated with feveral other fubfances ; but fufficiently pure to exhibit many of its properties. In this ftate, it occurs in commerce under the name of potafl. It may be purified confiderably, by putting it in a crucible, keeping it red hot for fome time; then diffolving it in water, filtrating it, and evaporating it again to drynefs. By the following method it may be obtained nearly pure: Mix together equal quantities of nitre and carbon, and put them by little and little into a red hot crucible. They burn with a vivid flame, and leave behind them a quantity of potafs. This is to be diffolved in water, filtrated, and evaporated to drynefs. Or potafs may be obtained by burning tartar wrapt up in brown paper and placed in a crucible (m).

The potafs procured by thefe laft proceffes is exceedingly white; is it not, however, quitc pure; for it is combined with a fubftance which blunts all its properties confiderably. This fubtance is carbonic acid gas; from which it may be feparated by difolving it, and mixing with it an equal quantity of lime made into a pafte with water. The lime has a greater affinity for carbonic acid gas, and therefore combines with it; and the pure putafs remains diffulved in the water, and may be feparated from the lime by filtrating the mixture. Suppl. Vol. I.
(1) See a paper by Margueron on this fubject, Ann. de Chim. xxi. 174 .
(m) That potafs was known to the ancient Gatis and Germans, cannot be doubted, as they were the inventors of foap, which, Pliny informs us, they compofed of afhes and tallow. Thefe afhes (for he mentions the afhes of the beech tree particularly) were nothing elfe but potafs; not, however, in a fate of purity. Plinii, lib. xviii. c. 5 r. The xovia, too, mentioned by Arifophanes and Plato, appears to have been a ley made of the fame kind of afmes.

Alkalics. compound, confifting of potafs and carbonic acid; that lime deprived it of this acid; and that it became more astive by becoming more fimple.

Meyer's
theory.

While Dr Black was thus occupied in Scotland, Mr Meyer was employed in Germany in the fame refearches; from which, however, he irew very different conclufions. His Eliays on Lime appeared in 1764 . Pouring into lime water a folution of potafs (carbonat of po$t a j_{j}$), he obtained a precipitate, which he found not to differ from lime-ftone. The alkali had therefore deprived the lime of its caulticity and its active properties; and thefe very properties it had itfelf acquired. From which he concluded, that the cauflicity of lime was owing to a particular acid with which it had combined during its calcination. The alkali deprived the lime of this acid, and therefore had a fironger affinity for it. To this acid he gave the name of acidum pingue or cauf. ticum. It was, according to him, a fubtile elaftic mixt, analogous to fulphur, approaching very nearly to the nature of fire, and actually compofed of an acid principle and fire. It was expanfible, comprelible, volatile, altringent, capable of penetrating all veffels, and was the caufe of caufticity in lime, alkalies, and metals. This theory was exceedingly ingenious, and it was fupported by a vall number of new and important facts. But notwithfanding the reputation and acknowledged genius and merit of its author, it never gained many followers; becaufe the true theory of caulticity, which had been already publifhed by Dr Black, foon became known on the continent; and, notwithftanding fome oppofition at firlt, foon carried conviction into every unprejudiced mind. Even Mr Meyer himfelf readily acknowledged its truth and importance, though he did not at firf, on that account, give up his own theory.

When potafs is expofed to the action of fire, it firf becomes foft, and melts into a tranfparent liquid at the commencement of ignition.
When expofed to the air, it attracts moitture very faft, and is foon converted into a liquid. It attracts, at the fame time, carbonic acid gas, for which it has a very ftrong affinity. It is impoffible, then, to keep

Sulfhuret
of potas. potafs in a flate of purity, except in very clofe veffels.
It unites readily with fulphur, and forms fulphuret of potafs. This compound may be formed two ways; either by melting the ingredients together, or by boiling them in water, and then filtrating the folution. Sulphuret of potafs when dry, in which fate it is obtained by the firf procefs, is of a brown colour. It is foluble in water, and very foon attracts moifure.

While dry it produces no change upon the air of the atmofphere, as Mcffrs Dieman, Van Trooftwyck,
Ans. $d e$
C.bim. xiv.
294. Nieuwland, and Bondt, afcertained by experiment*. But when moiftened with water, it very foon abforbs all the oxygen gas which happens to be in the velfel in which it is inclofed, and leaves nothing but azotic gas. This fact was firf obferved by Scheele, and induced hin to ufe fulpharet of potafs for an eudiometer, or in. frument to mealure the quantity of oxygen contained in any given portion of atmofpheric air.

If fulphuret of potafs be allowed to remain moint, and in contact with the atmofphere, it is gradually convented into fulphat of potafs by the fulphur combining with oxygen, and forming fulphuric acid. At the fame time the fulphuret emits a fetid fmell, which is known to be the odour of fulphurated hydiogen gas.

The fulphuret then decompofes the water with which it is mixed. Very little fulphurated hydrogen gas,

Alkalies.

 however, is emitted, except an acid (the fulphuric, for inflance) be poured upon the mixtare, and then it is given out very copioufly. The reafon of this is, that there is an affinity between the potafs and this gas. Accordingly it is retained by the potais after it is formed. But as the acids have a much ftronger affinity for potafs, as foon as any of them is poured in, the gas is obliged to feparate \ddagger.If liquid fulphuret of potafs be kept in clofe veffels, it is not decompofed except in part; becaufe as foon as the alkali is faturated with the fulphurated hydrogen gas, the action of the fulphur on the water is at an end ${ }^{*}$. Poid. The explanation of the action of this fulphuret on the atmofphere, which the Dutch chemifts above-mentioned give from thefe data, is as follows:

Sulphuret of potafs decompofes water ; fulphurated hydrogen gas is formed, and abforbed by the alkali. This gas has a frong affinity for oxygen, which it abiorbs from the atmofphere : the hydrogen combines with this oxygen, and forms water; and the fulphur is again precipitated, or rather left combined with the potafs. Water is again decompofed by the attraction of the fulphur for oxygen; new fulphurated hydrogen gas is again formed; again abforbed; again attracts oxygen gas; and is again decompofed. And this procefs goes on till the whole of the fulphur has combined with oxygen, and confequently till the fulphuret is converted into a fulphatt.-The only part of this theory which requires confirmation is the action of fulphurated hydrogen gas on oxygen gas, and the confequent formation of water. And this they have rendered not improbable, by fhewing that fulphurated hydrogen gas combined with alkali has the property of abforbing oxygen gas from the atmofphere \ddagger.

Potafs unites with phe \ddagger Jod. p .
Potafs und forms 305 .
a phofphuret of potafs. Little is known concerning its properties, except that it produces phofphurated hydrogen gas.

Potafs feems alfo capable of combining with carbon.
Potafs does not combine with the metals; but it unites with many of their oxyds.

When a folution of potafs is boiled upon filica recently procured, it diffleses part of it. As the folution cools, it affumes the appearance of a jelly, even though previoully diluted with I 7 times its own weight of water*.
When equal parts of filica and potafs are melted to- ii. 32 .
gether, they combine and form gla/s. A fubflance which, whether we conflider its hardnefs, beauty, and traniparency, its amazing ductility while hot, or the difficulty of decompofing it, munt be allowed to be one of the moft ufeful compounds ever invented by man.
When the quantity of potafs is double or triple that of the filica, the glafs is foluble in water, and forms what is called liquor filicum.
Potafs feems alfo capable of combining in the fame manner with barytes, lime, magnctia, and alumina; but thefe combinations have never been examined with attention. Lime, however, is often added to the materials for making glafs, and is fuppofed to increafe its hardnefs and folidity.
The metallic oxyds have the propenty of rendering glafs more fufible, and of communicating various co-

Part II.

Alkalies. lours to it ; they accordingly very often make a part of its compofition. The colours communicated by thefe oxyds will appear from the following table:

380
Soap.
381
Potafs, whether a compound.

Potafs combines readily with fixed oils, and forms the compound known by the name of fiap.

Potafs has never yet been decompoted. Several chemifts, indeed, have conjectured, that it was a compound of lime and azot ; and fome perfons have even endeavoured to prove this by experiment ; but none of their proofs are at all fatisfactory: We ought, therefore, in drick propriety, to have atligned it a place in the firft part of this article: but this would have feparated the alkalies from each other, and would have introduced a confulion into the article, which would have more than counterbalanced the logical exactnefs of the arrangement. Belides, we are certain, from a variety of facts, that all the alkalies are compounds: One of them has actually been decompounded; and the other two have been detected in the act of formation, though the ingredients which compofe them have not hitherto been difcovered.

Whether potafs contains lime is a different queftion. Were we to judge from analogy, we thould fuppofe, that the four alkalinc earths, and the three alkalies, polfefs one common principle. They have a great number of commun properties, and perhaps ought to be claffed altogether under the name of alkalies.

That azot enters into the compofition of all thefe bodies, as Fourcroy has conjectured, is far from improbable. One alkali, as we thall foon fee, actually contains azot. But no conclufion can be drawn till future difcoveries have lifted off the veil which at prefent obflructs our view.
${ }^{382}$
Itsaftinitics. The affinities of potafs are as follows:
Sulphuric acid,
Nitric,
Muriatic,
Sebacic,
Fluoric,
Phofphoric,

Oxalic,
Tartarous,
$\underbrace{\text { Alkalies. }}$, Arfenic, Succinic, Citric, Formic, Lactic, Benzoic, Sulphurous, Acetous, Saccholactic, Boracic, Nitrous, Carbonic, Pruffic, Oil, Sulphur, Phofphorus, Water.
The place of the metallic oxyds has not get been afcertained.

Sect. II. Of Soda.

SCDA, called mineralalkali, becaufe it is found in the earth, was known to the ancients under the names of virpor and nitrum (p). It was long confounded with potars : and perhaps was never properly ditinguifhed from it till Du Hamel publifhed a paper on the fubjest in 1736.

Its properties, while pure, are precifely the fame Propertie with thofe of potafs, excepting only that its affinity for of foda. other bodies is not fo ftrong; it does not, therefore, require any particular defcription. We ought to mention, however, that it differs from potals in one particu. lar ; potafs attracts moifture in the air, but foda parts with it, and when expofed to the atmofphere, foon crumbles down into a dry powder.

It is capable of combining with all the fubitances with which potafs unites; but it forms compounds poffeffed, in general, of very different properties from thole of the compounds into which potafs enters.

It is reckoned more proper than potafs for forming glafs and foap.

Some chemifts have fuppofed that it is compofed of magnefia and azot; but their proofs are infufficient.

The order of its affinities is the fame with that of potals.

Sect. III. Of Ammonia.

Ammonia (e), volatile alkali, or bart/forn, as it is Difievery called in commerce, is mentioned as carly as the 15 th of ammo. century. Both Bafil Valentine and Kaymond Lully nia. deferibed the methods of procuring it. Dr Black was the firlt who diftinguifhed pure ammonia from the carbonat of ammonia, or ammonia combined with carbonic acid ; and Dr Prieftley firt difcovered the method of obtaining it in a flate of complete purity.

To obtain pure ammonia, mix common fal ammoniac with three parts of flacked lime ; apply heat; and re-
(N) If the glafs be made with foda.
(o) But reddifh if the glafs be formed of foda. Klaproth.
(p) The pitpor of the Athenians was evidently the fame fubftance; and fo was the 7 g of the Hebrews.
(e) We have adopted this word, which is Dr Black's, becaufe we think it preferable to ammoniac or anme. niaca, the words propofed and ufed by the French chemilts.
$\underbrace{\text { Alkalics. }}$ ceive the product in a velfel filled with mercury, ftand-
\cdots - Prigfly oar is pure ammonia*. This gas is tranfparent like comAir, iii. 371 mon air, and is not condenfed by cold.

385
procer-
Its proper-
ties.
Its fpecific gravity is 0,000732 . It is to common
\dagger Kirvean on
Pblor. p. 28 mal cas a very trong hut not unpleafnt fmell. AmiPblor. p. 28 mals cannot breathe it without death. When a lighted candle is let down into this gas it goes out three or four times fuccelively; but at each time the flame is confiderably enlarged by the addition of another flame of a pale $\}$ ell w colour, and at laft this flame deicends

\& Pighly, from the top of the veffel to the botomi.

ii. 38 .

Water abforbs this gas with avidity. It difappears almatt infantly on the introduction of a little water. From an experiment of Dr Prietlley, it appears that water faturated with this gas is of the fecific gravity $1,1+35 \|$.

This water acquires the fmell of ammonia. It has a very ftrong difagreeable tatie, and converts vegetable colours to a green.

Ammonia in the flate fig gas has no effect upon fulphur or phofphorns. Carbon abforbs it; probably becanfe it contains water. Neither hydrogen nor azot produceany alieration on it q :

Alcohol and ether abforl, it in confiderable quantity*.
Dr Prieftley difenvercd, that when electric explofions were made to pals through this gas, its bulk was gradudlly augmented to thrice the face which it formerly occupied. It was then molly converted into hydrogen gas. He difcovered too that heat produced the
\dagger Ibid. 389 . very fame effedi \dagger. Thefe experiments prove that hydrogen enters as an ingredient into the compofition of ammonia.

Mr Scleele obferved, that when ammonia was treated with the oxyds of manganefe, gold, or mercury, the oxyds were reduced ; the ammonia difappeared; and nothing remained but a quantity of azotic gas. Thefe facts induced Bergman to conjecture, that ammonia was compocd of hydrogen and azot : a conjecture which has been fully confirmed by the experiments of Berthollet.
This ingenious chemift obierved, that if oxy-muriatic acid and ammonia be mixed, an effervefcence takes place ; azot is difengaged, a quantity of water formed, and the oxy muriatic acid is converted into common muriatic acid. Now the fubftances mixed were ammonia and oxy-muriatic acid, which is compofed of oxygen and muriatic acid; the products were, muriatic acid, azot, and water, which is compored of oxygen and hydrogen. The oxygen of the water was furnithed by the acid; the other products mult have been furniffed by the ammonia which has difappeared. Ammonia, therefore, mult be compofed of azot and hydrogen. Mr Berthollet proved, that ammonia was compoied of thefe ingredients by a number of other experiments. For inltance, if the oxyd of copper be heated in contad with ammoniacal gas, it is refored to the metallic Atate; the ammonia difappears, a quantity of water is formed, and azotic gas is difengaged. It follows from Mr Berthollet's experiments, that ammonia is compofed
1 Mem. Par. of 121 parts of azot, and 29 of hydrogen \ddagger. Accord-
${ }^{1785 .}$ ing to Dr Auftin it is compofed of 121 parts of azot,

Trun.1788. After the compofition of ammonia had been thus afcertained, it became a queltion of fome confequence,

Whether it could be formed artificially? Dr Auttur accordingly mixed hydrogen and azotic gas together in the proper proportions, and endeavored to make them combine by the application of heat by electricity, and by cold: but he found, that while thefe two fub- nia Atances were in a gafeous fate, they could not be combined by any method which he could devife. It could not be doubted, however, that the combination often takes place when thefe bodies are prefented to each other in a different form. Dr Prieftley \dagger and Mr Kirwan \ddagger had \dagger On Air, iiactually produced it, even before its compofition was 41. known. Accordingly he found, that when tin is moilen- \ddagger on H_{t} ed with nitric acid, and after being allowed to digeft for a minute or two, a little potafs or lime is alded, ammonia is immediately exhaled*. In that cafe, the nitric * Dr Auf= acid, and the water which it containsare decompofed; the tim. oxygen of eath unites with the tin, and reduces it to the fate of an oxyd; and at the fame time the hydrogen of the water combines with the azot of the acid, and forms ammonia, which is driven off by the ftronger afinity of the potafs or lime. Dr Auftin fucceeded alio in furming ammonia by feveralother methods. He incroduced into a glafs tube filled with mercury a little azotic gas, and then put into the gas fome iron filings moiftened with water. The iron decompofes the water and combines with its oxygen, and the bydrogen, meeting with azot at the moment of its admifion, comhines with it, and forms ammonia. This experiment fhews, that the gafeous flate of the azot does not prevent its combination with hydrogen.

A mmonia may be combined with fulphur by mixing suppluret together two parts of muriat of ammonia (ammonia of ammocombined with muriatic acid), two parts of lime, and nia.
one part of fulphur, and diftilling; a yellow liquor is obtaimed which contains fulphuret of ammonia. It is capable of cryttallizing.

The phofphuret of ammonia is unknown.
Ammonia is capable of combining with feveral of the metaliic oxyds, particularly copper.

It combines with fixed oils, and forms foap.
The order of its affinities is precifely the fame with that of the fixed alkalies.

Chap. V. Of Acids.

Substances puffeffed of the following properties are denominated acids.

1. When applied to the tongue, they excite that fen fation which is called four, or acid.
2. They change the blue colours of vegetables to a red. The vegetable blues employed for this purpofe are generally tincture of litmus and fyrup of violets or of radifhes, which have obtained the name of reagents or tefls. If thefe colours have been previoufly converted to a green by alkalies, the acids reftore them again.
3. They unite with water in almoft any proportion.
4. They combine with all the alkalies, and moft of the metallic nxyds and earths, and form with them thofe compounds which are called neutral falts.

It mult be remarked, however, that every acid does. not poffefs all thefe properties; but all of them poffefs a fufficient number of them to diftinguifh them from other fubftances. And this is the only purpofe which artificial definition is meant to anfwer.

Paracelfus believed that there was only one acid principle

Part II.

Acids. 39° Theories about the acid principle.

391 ingenious and accurate experiments, proved, that feveral combuftible fubitances when urited with oxygen, form acids; that a great number of acids contain oxygen; and that when this principle is feparated from them, they lofe their acid properties. He conclud. ed, therefore, that the acidilying principle is oxygen, and that acids ate nothing elfe but combultible fubfances combined with oxygen, and differing from one another, according to the nature of the combullible bafe. This conclofion has been confirmed by every fubfequent obfervation. All the acids bitherto analyfed contain oxygen, one, pethaps excepted, the Pruffic acid, which poffefles properties fo different from the reft, that it inight, without great impropriety, be placed in a diflinet clafs. It is probable, therefore, that thole acids which it has not yet been poffible to decompore confilt of oxygen combined with a combultible bale : but till this analy fis has actually been accomplithed, the theory of Mr Lavoifier cannot be confidered as completely de. monirated (R).

The acids at prefent known amount to about 39, moft of which have been examined within thefe 3° years. Their names are as follows :

1. Sulphuric acid,	8. Phofphorous,
2. Sulphurous,	9. Boracic,
3. Nitric,	10. Fluoric,
4. Nitrous,	11. Carbnnic,
5. Muriatic,	12. Acetic,
6. Oxy-muriatic,	13. Acetous,
7. Phosphoric,	14. Oxalic,

1. Sulphuric acid,
2. Sulpharous,
3. Nitric,
4. Nitrous,
5. Muriatic, 7. Phofphoric,
6. T'artarous,
7. Citric,
8. Malic,
9. Lactic,
10. Saccholactic,
11. Gallic,
12. Benzoic,
13. Succinic,
14. Camphoric,
15. Suberic,
16. Laccic, 26. Pyromicous, 27. Pyrolygnous,

Thefe acids fhall form the fubject of the following fections.

Sect. I. Of Sulphuric Acid.

SUlpher combines with two different quantities of oxygen: with the fmaller quantity it forms fulphurous acid; with the larger, fulphuric acid. The latt of thefe is the fubject of the prefent fection.

The ancients were acquainted with fome of the com. pounds into which fulphuric acid enters; alunt, for inftance, and green vitriol: but they appear to have been
39.3

Difcovery of fulphuric acid. ignorant of the acid itfelf. It is firft mentioned in the works of Bafil Valentine, which were publifhed about the end of the 1 gth century.

It was for a long time obtained by diftilling green vi. triol, a falt compofed of fulphuric acid, and green oxyd of iron; hence it was called oil of vitriol, and afterwards witriolic acid. Another method of obtaining it was by burning fulphur under a glafs bell; hence it was called alfo oleu:n fulphuris fer campanam. The French chemifts, in 1787 , when they formed a new chemical nomenclature, gave it the name of fulphuric acid.
At prefent it is generally procured by burning a Method of mixture of fulphur and nitre in chambers lined with procuricg lead. The theory of this procefs requires no explana. it. tion. The nitre fupplies a quantity of oxygen to the fulphur, and the air of the atmofphere furnithes the reft. The acid thus obtained is not quite pure, containing a little potals, fome lead, and perhaps alfo nitric and finh. phurous acids. Thefe acids may be driven of by applying for fome time a gentle heat, and afterwards the fulphuic acid itfelf may be diftilled over pure.

It appears from an experiment of Mr Berthollet, Its compothat fulphuric acid contains $6_{3,2}$ patts of filphur, and nent partso. 36,8 of oxygen. He afcertained, in the firit place*, Ment. that nitre is totally decompofed hy being heated with Par. 178 I_{a} $\frac{x}{4}$ th of fulphur. He theu mixed together 288 grains of 232 . nitre, and 72 of fulphur; and after expoling them to a fufficient heat, he found 12 grains of fulphur fublimed, and 228 grains of fulphat of poiafs \dagger. Wut the $t M_{e n}$. fum of the ingredients was 360 grains; confequently Par. 1; 9 \& 120 gr ains had been difipated. All this lofs mult have 603 . been fuffered by the acid of the nitre, for the heat was too fmall to feparate any of the alkali. According to Mr Kırwan 288 grains of nitre contain 132,96 of alkali,
(R) This theory has been carried fo far by fome chemifts, that they have confidered it as a conclufive proof, that oxygen did not enter into the compofition of a body, if they could fhew that the body was not an acid. Thus, according to them, water cannot contain oxygen, becaufe water is not an acid.-But furely no theory, however ingenious and fatisfactory, can for a moment be put in competition with experiment. The ways of Nature are not as our ways, nor her thoughts as our thoughts.
kali, and 155,04 of acid. $155,0+-120=35,04=$ quantity of oxygen furnithed by the nitre to convert 60 grains of fulphar into acid.

Sulphuric acid is a liquid, fomewhat of an oily confifence, tranfparent and colourlefs as water, without any fmell, and of a very ftrong acid tatte. When applied to animal or vegetable fubfances, it very foon deftroys their texture.

It always contains a quantity of water ; part of which, however, may be driven off by the application of a moderate heat. This is called concentrating the acid. When as much concentrated as poffible, its fpecific gravity is 2,000 .

It changes all vegetable blues to a red, except indigo. According to Erxleben, it boils at 54°; according to ljergman, at 572°.

When expofed to a fufficient degree of cold it cryftallizes or freezes; and after this has once taken place, it freezes again by the application of a much inferior cold. Morveau froze it at -4°; it affumed the appearance of frozen fnow. After the procefs began it went on in a cold not nearly fo intenfe. The acid melted flouly at $27,5^{\circ}$; but it froze again at the fame temperature, and took five days to melt in the temperature of $43^{\circ} \ddagger$. Chaptal, who manufactured this acid, once obferved a large glafs vefiel full of it cryttallized at the temperature of 48°. Thefe cryltals were in groups, and conlifted of flat hexahedral prifms, terminated by a fix-fi 3ed pyramid. They felt hotter than the furrounding bodies, and melted on being handled.* Chaptal has obferved, that fulphuric acid, in order to cryftallize, mult not be too concentrated. This obfervation has been extended a good deal further by Mr Keir. He found, that fulphuric acid, of the fpecific gravity of 1,780 , froze at 45°; but if it was either much more or much lefs concentrated, it required a much greater cold for congelation + .

Sulphuric acid has a very ftrong attraction for water, Neumann found, that when expoled to the atmofphere it attracted 6,25 times its own weight. Mr Gould found, that 180 grains of acid, when expofed to the atmofphere, attracted 68 grains of water the firft day, 58 the fecond, 39 the third, 23 the fourth, 18 the fifth, and at laft only $5,4,3,4,3$, \&c. The 2 sth day the augmentation was only half a grain.* The
affinity therefore between fulphuric acid and water, as is the cafe in general with other fubltances, becomes weaker the nearer they approach to faturation. He does not ipecify the fpecific gravity of his acid; but as it only attracted 3,166 times its own weight, it could not have been very concentrated.

When fulphuric acid is mixed with water, a great quantity of caloric is evolved. A mixture of equal parts of thefe liquids caufes a heat almolt equal to that of boiling water. Lavoifier and De la Place found, that when 2,625 lbs troy of fulphuric acid, of the fpe. cific gravity 1,87058 , was mixed with $1,969 \mathrm{lbs}$. troy of water, as much caloric was evolved as melted 4,1226 pounds troy of ice, or as much caloric as the acid and water would have given out had they been heated without mixture to $155,9^{\circ} \dagger$. This caloric is owing chief- + Mern. ly, if not folel 5 , to the increafe of denfity in the water; $P_{a r .} 1780$. for when equal quantities of fulphuric acid and water are mixed together, the fpecific gravity is much greater than the mean; and it has been formerly fhewn, that whenever bodies become denfer they give out caloric.

Since there is fuch a Atrong affinity between fulphus. Strength or ric acid and water, and fince the denfity of the mixture fulphuric is different from the mean denfity of the ingredients, it ${ }^{\text {acid of va- }}$ becomes a problem of the greatelt importance to deter. mine how much of the ftrongel fulphuric acid that can be prepared exifts in any given quantity of fulphuric acid of inferior fpecific gravity, and whiclı confequently confifts of a determinate quantity of this frong acid diluted with water.

This problem bas been folved by Mr Kirwan \ddagger. He \ddagger Irifo took fulphuric acid of the fpecific gravity 2,000 , which Tranf. iv. is the ftrongeft that can be procured, for his tandard, and the point was to determine how much of this ftandard acid exifted in a given quantity of acid of inferior denfity.

He concluded, from a number of experiments with fulphuric acid, of the fpecific gravities $1,88+6,1,8689$, $1,8042,1,7500$ (for he could not procure an acid of the fpecific gravity 2,000 at the temperature of 60°, in which his expcriments were performed), that when equal parts of ftandard acid and water are mixed, the denfity is increafed by $\frac{1}{5}$ th part of the whole mixture. Then, by applying a formula given by Mr Poujet (s), he calculated, that the increafe of denfity, on mixing different
(s) Mr Ponjet undertook the examination of the fpecific gravity of alcohol mixed with different quantities of water. He took for his fandard alcohol whofe fpecific gravity was $0,8: 99$, at the temperature of $65,75^{\circ}$. He then formed ten mixtures ; the firt containing nine meafures of alcohol and one of water, the fecond eight meafures of alcohol and two of water, and fo on till the laft contained only one meafure of alcohol and nine of water. He took care that each of thefe meafures frould contain equal bulks, which he afcertained by weight, obferving that a meafure of water was to a meafure of alcohol as 1 to 0,8199 . Thus 10000 gtains of water and $\$ 190$ of alcohol formed a mixture containing equal bulks of each. From the fpecific gravicy of each of thefe mixtures he difcovered how much they had diminifhed in bulk in confequence of mixture, by the following method.

Calling A the real fpecific gravity of any of the mixtures; B its fpecific gravity found by calculation, fuppofing no diminution of bulk; n the number of meafures compofing the whole mafs; $n-x$ the number to which it is reduced in confequence of mutual penetration-it is evident, lince the increafe of denfity does not diminilh the weight of the whole mafs, that $n \mathrm{~B}=\overline{n-x} \times \mathrm{A}$. Therefore $x=\frac{\mathrm{A}-\mathrm{B}}{\mathrm{A}} \times n$, or $($ making $n=1)=$ $\frac{A-B}{A} \cdot \frac{A-B}{A}$ is therefore the diminution of volume produced by the mixture.

Part II.

Sulphuric different quantities of ftandard acid and water, was as Acid. in the following table:

Number of parts of water.	Number of parts of fan- dard acid.	Augmenta- ion of den- fity.
5	95	0,0252
10	90	0,0479
15	85	0,0679
20	80	0,0856
25	75	0,0699
30	70	0,1119
35	65	0,1113
40	60	0,1279
45	55	0,1319
50	50	0,1333

The firft 50 numbers of the following table were formed by adding thefe augmentations to the fpecific gravity of the above mixture found by calculation, and taking the arithinetical mean for the intermediate quantities. The remaining numbers were formed from actual obfervation. He found by the firlt part of the table, that 100 parts of acid, of the fpecific gravity

1,8472, contained 83,5 parts Ptandard, confequently Sulphuric 400 grains of this acid contain 354 grains Itandard. He took fix portions of this acid, each containing 400 grains, and added to them as much water as made them contain refpectively $4^{8}, 4^{6}, 44,4^{2}, 40,3^{8}$ grains ftandard. The quantity of water to be added in order to produce this effect, he found by the following method. Suppofe $x=$ the quantity of water to be added to 400 parts of acid, that the mixture may contain 48 per cent, of Itandard acid. Then $400+x: 354:: 100: \psi^{8}$, and confequently $x=337,5$. After finding the fpecific gravity of thefe, the half of each was taken out, and as much water added; and thus the fpecific gravities, correfponding to $24,23,22,2 \mathrm{I}, 20,19$, were found. Then fix more portions, of 400 grains cach, were taken, of the fpecific gravity 1,8393 , and the proper quantity of water added to make them contain 36,34 , 32, $30,28,26$ per cent. of ftandard. Their fpecific gravities were found, the half of them taken out, and as much water added; and thus the fpecific gravity of $18,17,16,15,14$, and 13 found. Care was taken, after every addution of water, to allow the ingredient fufficient time to unite.

The laft in numbers were only found by analogy ; obferving the feries of decrement of the four lan numbers before them.

Table

The following table contains the refult of Mr Poujet's experiments, calculated according to that formula ; the whole volume or n being $=1$.

Meafures of Water. 1	Diminution of the whole vo- lume = I by experiment.	By calculation.	
9	0,0109	0,0103	
2	8	0,0187	0,0184
3	7	0,0242	0,0242
4	6	0,0268	0,0276
5	5	0,0288	
6	4	0,0266	0,0276
7	3	0,0207	0,0242
8	2	0,0123	0,0184
9	1	0,0044	0,0103

It is evident, from this table, that the diminution of the bulk of the mixture follows a regular progrefion. It is greateft when the meafures of water and alcohol are equal, and diminifhes as it approaches both ends of the feries. Mr Poujet accounts for this by conceiving the alcolol to be diffolved in the water, which retains a part of it in its pores, or abforbs it. The quantity abforbed ought to be in the ratio of that of the folvent and of the body diffolved, and each meafure of water will retain a quantity of alcohol proportional to the number of meafures of alcohol in the mixure. Thus in a mixture formed of nine meafures of alcohol and one of water, the water will contain a quantity of alcohol $=9$; in one of eight meafures of alcohol and two of watcr, the water will contain a quantity of alcohol $=8$. Therefore the diminution of bulk in each mixture is in a ratio compounded of the meafures of alcohol and water which form it ; in the above table, as $1 \times 9,2 \times 8,3 \times 7,4 \times 6$, \&c. And in general, taking the diminution of bulk when the meafures of both liquids are equal for a conftant ģuantity, and calling it, c, calling the number of mafures n, the number of meafures of alcolol x, the increafe of

Sulpheric Acid.

Tasle of the Quantity of Staniard Sulphuric Acid, Specific Gravity 2.000 in Sulppuric Acid of inferior D.nfity, Temperature 60 .

100 parts, at the f p cific gravity	Contain of ftandard acid	100 parts, at the fpecific gravity	Cortain ol ftandard acid	\| 100 parts, at the fpccific gravity	Contain of ftandard acid
2.000	100	1,6217	67	1,2847	34
1,9859	99	1,6122	66	1,2757	33
1,9719	98	1,6027	65	1,2668	32
1,9579	97	1,5932	64	1,2589	3 I
1,9439	96	1,5840	63	1,2510	30
1,9299	95	1,5748	62	1,2415	29
1,9168	94	1,56,6	61	1,2320	28
1,9041	93	1,5564	60	1,2210	27
1,8914	9^{2}	1,5473	59	1,2101	26
г,8787	91	1,5385	53	1,2009	25
1,8660	90	1,5292	57	1,1918	$2+$
1,8542	89	1,5202	56	1,1836	23
1, $\mathrm{S}_{4} 24$	88	1,5112	55	1,1746	22
1,8506	87	1,5022	54	1,1678	21
1,8188	86	1,4933	53	1,1614	20
1,8070	85	1,4844	52	I, 1531	19
1,7959	84	1,4755	51	1,1398	18
1,7849	83	1,4666	50	1,1309	17
1,7738	82	1,4427	49	1,1208	16
1,7629	81	1,4189	48	1, 1129	15
1,7519	80	1,4099	47	1,1011	14
1,7416	79	1,4010	46	1,0955	13
1,7312	78	1,3875	45	1,0896	12
1,7208	77	1,3741	44	1,0833	11
1,7104	76	1,3663	43	1,0780	10
1,7000	75	1,3586	42	1,0725	8
1,6899	74	1,3473	41	1,0666	8
1,6800	73	1,3360	40	1,0610	
1,6701	72	1,3254	39	1,0555	6
1,6602	71	1,3149	38	1,0492	5
1,6503	70	1,3102	37	1,0450	4
1,6407	69	1,3056	36	1,039 6	3
1,63:2	68	1,295 1	35	1,0343	2

But we have no rearon to fuppofe that fulphiaric acid, sulphuric at the denfity 2,000 , is fiee from all mizture of water; fo far from that, we know for certain that it contains a confiderable proportion ; for when it is combined with 0400 other bodies, barytes, for inltarse, or potafs, there is a of real acid confiderable quantity of water which remains behind, in frong and does not enter into the combination. Now, is it fulphuric polfible to determine what would be the denfity of ful. phuric acid, fuppofing it to be deprived of all water, n: at leaft of all water except what is neceffary for its exitence as an acid? or to determine, how much real acid exifts in a given quantity of flandard acid?

Homberg firlt attempted to anfwer this queltinn. It was afterwards undertaken by Bergman, and Wenze?, and Wiegleb. They do not inform us of the quantity of water contained in a given weight of acid, but they put it in our power to find it, by informing us hovr much real acid is neceffary to faturate a given quantity of potafs. Their refpective experiments give the following numbers:

100 parts of pot- $\}$
afs require $\}$

$$
\text { Hom. } \mid \text { Berg. } \mid \text { Wenzel.. } \mid \text { Wiegleb. }
$$

Homberg ufed carbonat of potafs, and did not take into confideration the carbonic acid driven off by the fulphuric. When this is taken in, his number flould be 54 inftead of 38,3 .

Now to difcover the quantity of real acid in any ful. phuric acid mixture, we have only to find out how much potafs it would require for faturation. The differences between the above refults are fo great, that there was reafon to fufpect their accuracy. Mr Kirwan therefore attempted to afcertain the denfity of pure fulphuric acid by another method, and he rated it at 4,226 . As this method has been already defcribed in the article Chemistry (Encycl.), we cannot enter upon it herc. At any rate, it would be unneceflary, as many of the principles upon which Mr Kirwan went were erroneous, as Mr Morveau* and Mr Keir \ddagger have fufficiently fhewn; " Encycl. and Mr Kirwan with his ufual candour has accord- Metbod.art. ingly abandoned it, and adopted another method which Affinitco is not liable to the fame exceptians. He diffolved 5523,5 Difianary,
grains art. Acid.
denfity or diminution of bulk z; we fhall bave $c: z:: \frac{n}{2} \times \frac{n}{2}: \overline{n-x} \times x$, and $z=\frac{4 c}{n^{2}} \times \overline{n x-x^{2}}$, or (making $n=1)=4 c x-4 c x^{2}$.

The diminution of bulk, calculated according to this formula, make the laft column of the above table. They correfpond very well with experiment, while the meafures of alcohol are more than thofe of water, but not when the reverfe is the cafe. This Mr Poujet thinks is owing to the aturaction which exifts between the particles of water, and which, when the water is confiderable compared with the alcohol, refills the union of the water with the alcohol.
By the formula $z=\frac{4 c n x-4 c x^{2}}{n^{2}}$, the quantity of alcohol of the flandard may be determined in any mixture where the alcohol exceeds the water.

Let the number of meafures, or the whole mafs
The meafures of alcohol
The diminution of bulk at equal meafures
The diminution of bulk of a mixture containing x meafures of alcohol
The fecific gravity of water
The feceific gravity of the alcohol
The fecific gravity of the unknown misture

Patt II.

C I E M I S T R Y.

Sulphurous grains of pure carbonat of potafs, dried in a red heat, in Arid. diftilled witer. The whole weighed 4570 grains. He
took 360 grains of this mixture, which contained 120 grains of carbonat of potafs, and faturated it with pure fulphuric acid of the fecific gravity 1,565 , which, according to the above table, contained 61 per cent. of ftandard acid. The acid required for faturating the folution of potais amounted to 130 grains , and contained therefore 79 of ftandard. The carbonic acid difengaged was $3+$ grains, and confequently the quantity of al. kali was 120--34 $=86$ grains. The folution being turbid, was diluted with 3238 grains of water. Its feecific gravity was then 1,013 at the temperature of 60°. The weight of the whole was $369+$ grains. Forty. five grains of fulphat of potals (potafs combined with fulphuric acid) diffolved in 1017 grains of diftilled water, have the fame fuecific gravity at the fame temperature; from whence it follows, that the proportion of falt in each was equal. But in the laft folution the quantity of falt was $\frac{1}{23,6}$ of the whole ; therefore the quantity of falt in the firf was $\frac{369 t}{23,6}=159,52$ grs. Now of this weight 86 grains were alkali; the remainder, therefore, which amounts to 70,52 grains, mult be acid. But the quantity of flandard acid employed was 79 grains; of this there were $8 \frac{1}{2}$ grains, which did not enter into the combination, and which mult have been pure water: 79 parts of Itandard acid, therefore, contain at leaft 8,5 parts of water, and confequently 100 parts of ftandard acid contain 10,75 parts of water. It only remains now to confider how much water fulphat of potafs contains. Mr Kirwan thinks it contains none, becaufe it lofes no weight in any degree of heat below ignition, and even when expofed to a red heat for half an hour it hardly lofes a grain. This is certainly fufficient to prove, at lealt, that it contains very little water; and confequently we may conclude, with Mr Kirwan, that 100 parts of fulphuric acid, of the fpecific gravity 2,000 , are compofed pretty nearly of 89,25 of pure acid and 10,75 of water. This method ufed by Mr Kirwan is nearly the fame with that propofed by

- Keir's Mr Keir*.

Diaionary, art. Acid.

It feems even poffible to obtain fulphuric acid free from all the water that may noi be neceffary to its acid ftate. When it is procured by diftillation from green vitriol, if the receiver be changed after the procefis has gone on fur fome timc, a quantity of acid is obtained in a Suppl. Vol. I.
fulid form, or cryfallized. This, as Morveat has fiswn, Sulphurnuwis fulphuric acid deprived of the water with which it is ufually combined. When this glacial acid, as it has been called, is expofed to the air, it sifes in white fumes, and is foon diffipated. This dingular effect is produced by its violent attraction for the water which exifts in atmofpheric air. When thrown into water, it feizes it wi h violence; a great deal of caloric is evolved, fufficient, if the quantity of water be not too great, to elevate the whole in vapours \dagger.

Sulphuric acid is capable of decompofing alcohol and oils; and when affited by lieat, it decompoles alfo fome of the metallic oxyds which contain the greatelt quantity of oxygen ; as red oxyd of lead, black oxyd of manganefe. It decompofes likewife all the fu!phurets and phofphurets which have an alkaline or earthy bafis.

It oxydates iron, zinc, and manganefe, in the cold. By the aflifance of heat it oxydaies filver, mercury, copper, antimony, bifmuth, atfenic, tin, and tellurium. At a boiling heat it oxydates lead, cobalt, nickel, molybdenum. It does not act upon gold, platinum, tungten, nor titanium.
It unites readily with all the alkalies, the alkaline earths, alumina, and jargonia, and with moft of the metallic oxyds, and forms falts denominated fulphats. Thus the combination of fulphuric acid and foda is called $\mathrm{fu} /-$ pbat of foda; the compound of fulphuric acid and lime, fulphat of lime, and fo on. It does not act upon filica nor adamanta:

402
The affinities of fulphuric acid are as follows \ddagger : Barytes,

Strontites*,Potafs,	
Soda,	
Magnefia,	
Alumina,	
Oxyd of zinc,iron,	
	nickel,
	lead,
	opper
	copper,

$3 \mathrm{~A} \quad$ Oxyd

+ Encye\%.
Methot.
Cbim. i. 590. 401 Action of his Acid on other bodies. Acid. -
 r-1
\qquad
\qquad

五

403 Component parts of fulphurous acid.

404 Its difcovery.
with mercury. It was fulphurous acid fiee from all Sulphuro fupelfluous water, and in a gafeols form.
In this itate it is colourlefs and invilible like com. mon air. It is incapable of maintaining combultion; Its proper. nor can animals breathe it without death. It has a ties.
ftrong and fuffocating odour. It is this odour which burning fulphur exhales. Its fpecific gravity, according to Bergman is $0,00246 \dagger$; according to Lavoifier, \dagger On Elce$0,00251 \ddagger$. Cloutet and Monge found, that by the ap- tive Attract. plication of extreme cold it is converted into a liquid.

Dr Prieftley difcovered, that when a ftrong heat is applied to this acid in clofe velfels, a quantity of ful.
Sulpherous acid is compofed of fulphur and oxygen combined: the proportions have not teen afcertained; but the fact ilfelf, and that the quantity of oxygen is lefs than what enters into fulphuic acid, has been proved beyrnd the pombility of doubr. Neither can it be doubted, though the fat has nut been attend. ed to, that in this acid the fulphur and oxygen mutually faturate each other, and that fulphuric acid is not compofed of fulphur and oxygen, but of fulplurous acid and oxygen. Phofphorts is capable of decompaling fulphuric acid, by the alliftance of heat, of feizing a quantity of its oxygen, and converting it into ful. phurous acid; but upon fulphurous acid it has no effect whatever*. The affinity of phofphorus, there. fore, for oxygen is lefs than that of fulphur ; yet it is capable of taking oxygen from fulphuric acid. Is it not evident from this, that fulphuric acid is compored of fulphurous acid and oxygen? and that fulphur has a fronger affinity for oxygen than fulphurous acid has? Fior if both the acids were compofed directly of fulphur and oxygen, it would follow from experiment, that the afinily of phofphorus for oxygen was both ftronger and weaker than that of fulphur, which would be abfurd (20).

Sulphurous acid has been known fince the time of Stahl. Scheele firf difcovered the method of obtain. ing it in quantities ; and Dr Prieftley firft procured it in a ftate of purity; for Scheele's acid was difolved in water.

Stahl's method of procuring fulphurous acid was to burn fu!phur at a low temperature, and expofe to its flames cloth dipped in a folution of potafs. By this method he obtained a combination of potafs and fulphurous acid: for at a low temperature fulphur forms by combution only fulphurous acid. On this falt Scheele poured a quantity of tartarous acid, and then applied a gentle heat. The fulphurous acid is in this manner difplaced, becaufe its affinity for potafs is not fo ftrong as that of tartarous acid; and it comes over into the receiver diffolved in water. It is now commonly procured by mixing with fulphuric acid, oil, greafe, metals, or any other fubtance that has a ftronger affinity for oxygen than fulphurous acid, and appiying a heat fufficient to diftil over the fulphurous acid as it forms. Mr Berthollet has found, that fugar is the beft fubitance to employ for this purpofe.

Dr Prieftley poured a little oil on fulphuric acid, ap. plied heat, and received the product in a glafs jar filled
phur is precipitated, and the acid is converted into fulphuric*. Berthollct obtained the fame refult: but * On Air, Fourcroy and Vauquelin could not fucceedt. ii. 330.

Water abforbs this acid with avidity. According f Nicholto Dr Prielley, 1000 grains of water at the tempera- fon's fourture $54,5^{\circ}$, abforb 39,6 grains of this acid. The fpecific gravity of water faturated with fulphurous acid is $1,040 \ddagger$. Water in the Sate of ice abforbs it very ra- \ddagger Bertbollef, pidly, and is inftantly melted. Water faturated with this acid can be frozen without parting with any of it. When water, which has been faturated with this acid at the freezing temperature, is expofed to the heat of $65,25^{\circ}$, it is filled with a valt number of bubbles, which continually increafe and rife to the furface. Thefe bubbles are a part of the acid feparating frum it. It freezes a few degrees below $3^{\circ} \| 1$.

Sulphuric acid abforbs it at zeto; but allows great part of it to efcape at $32^{\circ \%}$.

It reddens tindture of turnfole; but deftroys the co. ${ }^{\text {cbolfon, Ibid. }}$ lour of fyrup of violets.

It is decompofed by hydrogen and carbon, and ful. phurated hydrogen gas, when affifted by heat \dagger.

Oxygen gas gradually converts itinto fulphuric acid;
but this change does not take place unlefs water be prefent.

It does not feem capable of oxydating any of the metals except iron, zinc, and manganefe.

When in the flate of gas it is abforbed by oils and ether.

When glafs tubes, filled with fulphurous acid in the ftate of gas, are expofed to a ftrong heat, a quantity of fulphur precipitates, and the rell of the acid is converted into the fulphuric.

It combines with the alkalies, alkaline earths, and Its combialumina, and many of the metallic oxyds, and forms nations, neutral falts, known by the name of fulphites.

Its affinities, as far as they have been inveftigated, And affinin are as follows:
Barytes,
Lime,
Potafs,
Soda,
Magnefia,
Ammonia,
Alumina.
\ddagger Ibid.

Jargonia*?

(21) Might we not with greater propriety explain thefe phenomena by the well known principle, that in propoition to the faturation of any chemical agent with another to which it bas an affinity does the farce of that affinity leffen. The phofpherus then might liave a greater affinity for oxygen than the fulphur has when faturated beyond a certain degree, and would of confequence deprive it of oxygen till it reduced to this point, but after this it could deprive it of no more.
T. P. S.

Part II.
Nitric - Acid. - Vauquclin, Ann. de Сbiл. x xii. 208.

409 Difcovery of mitric acid.

Jargnnia*? Metalic oxyds, Water.
Sect. III. Of Nitric Acid.
There arc threc different fubfances compofed of azot and oxygen, nitric acid, nitrous acid, and nitrous gas. The firft contains mof nxygen, the laft contains lealt.
Nituic acid feems to have been firll obtained in a feparate flate by Raymond Lully, who was born at Majorca in 1235 . He procured it by diftilling a mixture of nitre and clay. Bafil Valentine, who lived in the 15 th century, defcribes the procefs minutely, and calls the acid quater of nitre. It was afterwards denominated aqua fortis, and fpisit of nitre. The name nitric acid 410 was firf given it in 1787 by the French chemifts.
Mehod of Nitric acid is generally obtained in large manufactoprocuring ries by diftilling a misture of nitre (T) and clay; but the acid procured by this procers is weak and impure. Chemits generally prepare it by diftilling three parts of nitre and one of fulphuric acid in a glafs retort. This method was firft ufed by Glauber. When obtained in this manner it contains fome nitrous acid which may

- Schscle. be expelled by the application of a very gentle heat $\$$.

Nitric acid is one of the mof important inftruments of analytis which the chemift pofferfes; nor is it of inferior confequence when confidered in a political or commercial view, as it forms one of the mof effential ingredients of gunpowder. Its nature and compolition accordingly have long occupied the attention of philofophers. We fhall endeavour to trace the various 4 II feps by which its component parts were difcovered.

As nitre is often produced upon the furface of the earth, and never except in places which have a communication with atmofpheric air, it was natural to fuppofe that air, or fome part of the air, entered into the com. pofition of nitric acid. Mayow having obferved, that nitre and atmorpherical air were both poffefled of the property of giving a red colour to the blood, and that air was deprived of this propetty by combuttion, and refpiration-concluded that nitre contained that part of the air wubich fupporicd combuftion, and was neceffary for refpiration.

Dr Hales, by applying heat to nituic acid, and what he called Walton mineral, obtained a quantity of air pof. fefled of fungular properties. When atmofpherical air was let into the jar which contained it, a seddith turbid fume appeared, a quantity of air was abforbed, and the

- Veget.

Statics,
ii. 284 .
remainder became tranfparent again*. Dr Priefley difcovered that this air could only be obtained from nitric (v) acid; and therefore called it nitrous air. He found, that when this gas was mixed with oxygen gas, nitrous acid was reproduced. Here, then, we find, that oxygen is a part of the nitric acid, and confequently that Mayow's affirmation is verified.

Dr Priefley, how'ever, explained this fact in a different manner. According to him, nitrous gas is compofed of nitrous acid and phlogifton. When oxygen
is added, it feparates this phlogiton, and the acid of courfe is precipitated. This lypothefis was adputct by Macquer and Fontan:1; and thefe three philofoplers endeavoured to fupprert it with their ufual ingenuity. But these was one difficulty which they were unable to furmount. When the two gafes are mixed in proper proportions, almof the whole affumes the form of nitric acid; and the fnall refiduum ($\frac{8}{4}$ th part), in all probability, or rather certainly, depends on fome accidental impurits in the oxygen gas. What then beenmes of the oxygen and phlogitton? Dr Prieftley fuppoled that they formed carbonic acid gas: but Mr Cavendilh proved, that when proper precautions are taken, no fuch acid appearst.

D: Prieftley luad procured his nitrous gas by difiolving 'Tranf. metals in nitric acid; during the folution of which a ${ }^{\text {7 }} 4$. great deal of nitrous gas efcapes. He fuppofed that nitrous gas contained phlogifton, becaufe the metal was oxydated (and confequently, according to the then received theory, mult have loft phlogilton) during its formation. Mr Lavoifier proved, that this fuppofition was ill-founded, by the following celebratcd experiment \ddagger. \ddagger Men. To 945 grains of nitric acid (fpecific gr. 1,316) be Par. 1776 , added 1104 grains of mercury. During the folution 5. 673. 273:234 cubic inches of nitrous gas were produced. He then diftilled the folt, (oxyd of mercury), which had heen formed to drynefs. As foon as it becamered hot it emitted oxygen gas, and continued to do fo till almoft the whole of the merctury was revived: The quantity of oxygen emitted was 287,742 cubic inches. All that had happened, therefore, during the folution of the mercury, was the feparatinn of the acid into two parts; nitrous gas which flew off, and oxygen, which united with the metal (x).

Mr Lavoifier concladed, therefore, that the whole of the nitrous gas was derived from the nitric acid: that ritric acid is compofed of oxygen and nitrous gas ; and that the proportions are nearly 64 parts by weight of nitrous gas, and 36 of oxygen gas.

But there was one difficulty which Mr Lavaifier acknowledged he could not remove. The quantits of oxygen obtained by decompoling nitric acid was often much greater than what was necelfay in faturate the nitrous gas. Mr de Morveau attempted to account for this, but without fuccefs§. Nitrons gas itfelf was § Encyth. evidently a compound: but the difficulty was to difco- Actibod. ver the ingredients. Mr Lavoifier concluded from an experiment made by decompofing nitre by ineans of charcoal, that it contained azot: and feveral of Dr Priefley's experiments led to the fame refult. But what was the other ingredient?

Mr Cavendifl had obferved, while he was making experiments on the compofition of water, that fome nitric acid was formed during the combuftion of oxygen and hydrogen gas, and that its quantity was illcreafed by adding a little azot to the two gafes before the explofion. Hence he concluded, that the formation of the acid was owing to the accidental prefence 3 A 2 of
(T) Nitre is compofed of nitric acid and potafs.
(u) Or nitrous acid: for at the period of Dr Priefley's difcovery (1772) they were not accurately diftinguifhed.
(x) We have already mentioned, in a preceding note, that this experiment was firf made by Mr Bayen. See Part I. chap. iii. of this Articlc.

Nitric $\underbrace{\text { Acid. }}$
of azotic gas. To verify this conjecture, he paffed an elearical hock through a quantity of common air enclofed in a glafs tube: the air was diminifhed, and fome nitric acid tormed. He repeated the experiment, by mixing together oxygen and azotic gas; and found, that when they bore a certain proportion to each other, they were totally convertible into nitric acid. In one experiment, the proportion of azot to oxygen (in bulk) was

Thefe experiments were immediately repeated by Meffrs Van Marum and Van Trooftyk, and with near- ly the fame refult.

The moft convenient method of performing them is the following: Take a glafs tube, the diamcter of which is about the fixth part of an inch, through the cork that fhuts one end of which let a fmall metallic conductor pafs with a ball at each end. Fill this tube with mercury, and plunge its open end into a bafon of mercury: then put into it a mixture of 0,13 of azotic and 0,87 of oxygen gas, till it occupies three inches of the tube; and introduce a folution of potafs till it fill half an inch more. Then, by means of the conductor, make eleftical explofions (from a very powerful machine) to pafs through the tube till the air is as much diminifhed as poflible. Part of the potafs will be found converted into mitre. Mr Cavendifh actually faturated the potafs with this acid. Mr Van Marum did not, though a good deal more gas had difappeared than in the experiments of Mr Cavendill. This difference evidently depends on the quantity of potafs contained in a given weight of the folution. The folution which Mr Van Marum ufed was no doubt ftronger than that which Mr Cavendifh employed.

Dr Priefley had obferved feveral years before thefe experiments were made, that atmof pherical air was diminifhed by the electric ©park, and that during the diminution, the infution of turnfole became sed ; but he concluded merely, that he had precipitated the acid of the air. Landriani, who thought, on the contrary, that carbonic acid gas was formed, enounced the alteration of lime-water by it as a proof of his opinion. It was to refute this notion that Mr Cavendifh undertook his experiments. He has fince that time repeated them with the fame fuccefs $\$$.

It cannot be doubted, then, that nitric acid is com. pofed of azot and oxygen; for the objections of Dr Prieftley have been confidered while we were treating of water. Confequently nitrous gas muft alfo be compofed of the fame ingredients. According to Lavoifier, nitric acid is compofed of four patts, by weight, of uxygen and one part of azot.
Nitric acid is liquid, colourlef, and tranfparent ; but the affinity between its compnent parts is io weak, that the action of light is fufficient to drive off a part of its oxygen in the form of gas; and thus, by converting it partly into nitrous acid, to make it aflume a yellow colour. Its tafte is exceedingly acid and peculiar. It is very corrofive, and tinges the ain of a yellow colour, which does not difappear till the epidermis comes off.

It has a ftrong aflinity for water, and has never yet been obtained except mixed with that liquid. When concentrated, it atratis moilture from the a:mofphere, but not fo powerfully as fulphuric acid. It alio produces heat when mixed with water, owing evidently to the concentration of the water.

I S T R Y.
The fpecific gravity of the Atrongeft nitric acid that can be procured is, according to Rouelle, 1,583; but at the temperature of $60^{\circ} \mathrm{Mr}$ Kiswan could not procure it Aronger than 1,5543 .

Taking this acid for the ftandard, Mr Kirwan has calculated how much of it exifts in nitric acid of inferior denfity. His determination may be feen in the following table, which was formed precifely in the fame manner as that formerly given of the Itrength of fulphuric acid.

Nitric

Acid.
413 Its ftrength at different fpecificgravities.

$\left\lvert\, \begin{gathered} 100 \text { parts } \\ \text { at the fpe- } \\ \text { cific gra- } \\ \text { vity } \end{gathered}\right.$	contain of ftandard acid	$\mid 100$ parts at the fpecific gravity	contain of ftandard acid	1100 parts at the fpccific gravity	contain of ftandard acid
I, 5543	100	1,4018	70	1,2586	44
1,5295	95	1,3975	69	1,2525	43
1,5183	94	1,3925	68	1,2464	42
1,5070	93	1,3875	67	1,2419	41
1,4957	92	1,3825	66	1,2374	40
1,48,44	91	1,3775	65	1,2291	39
1,4731	90	1,3721	64	1,2209	38
1,4719	89	1,3571	63	1,2180	37
1,4707	88	1,3621	62	1,2152	36
1,4695	87	1,3571	61	1,2033	35
1,4683	86	1.3521	60	1,2015	34
1,4671	85	1,3468	59	1,1963	33
1,4640	84	1,3417	58	1,2911	32
1,4611	83	1,3366	57	1,1845	31
1,4582	82	1,3315	56	1,1779	30
1,4553	81	1,3264	55	1,1704	29
1,4524	80	1,3212	54	1,1639	28
1,4471	79	1,3160	53	1,1581	27
1,4422	78	1,3108	52	1,1524	26
1,4373	77	1,3056	51	1,142I	25
1,4324	76	1,3004	50	1,1319	2.4
1,4275	75	1,2911	49	1,1284	23
1,4222	74	1,2812	48	1,1241	22
1,4171	73	1,2795	47	1,1165	21
1,4120	72	1,2779	46	1, II I 1	20
1,4069	71	1,2687	45	1,1040	19

Now, how much water does nitric acid contain, the denfity of which is $1,55+3$?
Mr Kirwan ditied a quantity of cryftallized carbonat Quantity of foda in a red heat, and difflwed it in water in fuch a of real acid of foda in a red heat, and diflwed it in water in fuch a
proportion, that 367 grains of the folution contained 50,05 of alkali. He futurated 367 grains of this fo$50,0 \%$ of alkali. He haturated 367 grains of this 10- trated niof which was 1,2754 , and which therefore by the preceding table contained 45,7 fer cent. of acid flandard. The carbonic acid driven of amounted to it grains. The carbonic acid driven of amounted to it grains.
On adding 939 grains of water, the fpecific gravity of the folution at the temperature of $58,5^{\circ}$, was $1: 0401$. By comparing this with a folution of nitrat of foda, of By companing this with a fiution of nitrat of fame denlity, precifely in the manner defcribed for-
the merly under fulphuric acid, he found, that the falt contained in it amounted to $\frac{1}{16,901}$ of the whole. There was an excefs of acid of about two grains. The weight
of the whole was 1439 grains: The quantity of falt was an excefs of acid of about two grains. The weight
of the whole was 1439 grains: The quantity of falt coufequently was $\frac{1439}{16,901}=85,142$ grains. The quantity of alkali was $50,05-14=36,05$. The quantity

Nitric of ftandard acid cmployed was 66,7 . The whole of Acid.
which amounted to 102,75 grains; but as only 85,142 grains entered into the compofition of the falt, the remaining 17,608 muft have been pure water mixed with the nitric acid. But if 66,7 of Ptandard acid contain 17,608 of water, 100 parts of the fame acid muit contain 26,38*.

Onehundred parts of ftandard nitric acid, therefore, is compofed of 73,62 parts of pure nitric acid and 26,38 of water. But as Mr Kirwan has not proved that nitrat of foda contains no water, perhaps the proportion of water may be greater. He has rendered it probable, however, that nitrat of foda contains very little water.

Nitric acid is decompofed by a great variety of fubAtances. When poured upon oils, it fets them on fire. This is occafioned by a decompofition both of the acid and oil. The oxygen of the acid combines with the carbon, and with the hydrogen of the oils, and at the fame time lets go a quantity of caloric. Hence we fee that the oxygen which enters into the compofition of the nitric acid ftill contains a great deal of caloric; a fas which is confirmed by a great number of other phenomena. The combultion of oils by this acid was birlt taken notice of by Borrichius and Slare; but it is probable that Hombergr communicated it to Slare. In order to fet fire to the fired oils, it mult be mixed with fome fulphursc acid; the reafon of which feems to be, that thefe oils contain water, which mult be previonly removed. 'The fulphuric acid combines with this water, and allows the nitric acid, or rather the oil and nitric acid together, to act. The drying vils do not require any fulphuric acid : they have been boiled, and confequently deprived of all moiture. It fets fire alio to charcoal, provided it be perfeetly dry. This fact was firft obferved by l'roult, and afierwards confirmed by the Dijon academicians. It fets fire alfo to zinc, bifmuth and tin, if it be poured on them in fufion, and to filings of iron, if they be perfectly dry \ddagger. In all thefe cafes, the acid is decompoled. Sulphurated hydrogen gas alfo takes fire, and burns with a flrong flame by nieans of this acid \dagger.

It is capable of oxydating all the metals except gold, platinum (x), and titanium. It appears, from the experiments of Scheffer, Bergman, Sage, and Tillet, that nitric acid is capable of dillolving (and confequently of oxydating) a very minute quantity, even of gold.

Nitric acid combines with alkates, alkaline earths, alumina and jargonia, and with the oxyds of metals, and forms compounds which are callied nitrats. It does not act upon filica nor adanaanta.

The order of its affinities is as fullows:

$$
\begin{aligned}
& \text { Barytes, } \\
& \text { Potafs, } \\
& \text { Sodd, }
\end{aligned}
$$

Strontites*,
Lime,
Magnefra,
Ammonia, Alumina,
Jargoniat? +Vauquelin,

Metallic oxyds, in the fame order as for fulphuric acid. Water.

Sect. IV. Of Nitrous Acill.

IF oxygen gas be mixed with nitrous gas, a quanti- Compoty of red fumes appear, which are readily abforbed by nent parts water. Thefe red fumes are nitrous acid.

If a glafs veffel containing nitric acid be inverted into another veffel containing the fame acid, and expofed to the light, the inverted glafs will become partly full of oxygen gas, and at the fame time part of the nitric acid is converted into nitrous acid*. It follows, from * Scbele, this experiment, that nitrous acid contains lefs oxygen Crell's A_{n-} than nitric acid. Lavoifier has calculated that it con- ${ }^{\text {nals }} 1786$. tains fomewhat lefs than three parts of oxygen to one of azot.

Nitrous acid is of a brown or red colour exceeding. It 419 ly volatile, and emitting a very fuffocating, and fcarcely ties. tolerable odour. When to this acid concentrated, a fourth part by weight of water is added, the colour is clanged from red to a fine green; and when equal parts of water are added, it becomes biue \dagger. Dr Prieft- \dagger Bergmanm ley obferved, that water impregnated uith this acid in the flate of vapour, became firit blue, then green, and lafly yellow. A green nitrous acid became orangecoloured while hot, and retained a yellow tinge when cold. A blue acid became yellow on being heated in a tube hermetically fealed. An orange-coloured acid, by long keeping became green, and afterwards of a deep blue; and when expofed to air refumed its original colour. Thefe colours feem to depend upon the concentration of the acid.

Dr Prieftley found that water abforbed great quantities of this acid in the ltate of vapour, and that when faturated, its bulk was increafed one-third.

In the ftate of vapour, it is abforbed rapidly by oils. Whate oil, by abforbing it, became green, thick and heavier. It gradually decompored the acid, retained the oxygen, and emitted the azot in the fate of gas $\ddagger \cdot \neq$ Priegley,

It is abforbed by fulphuric acid, but feemingly with. iii. IIn. out producing any change; for when water is poured into the mixture, the heat produced expels it in the ufual form of red fumes \oint. The only fingular circum- § Itid. Atance attending this impregnation is, that it difpofes p . I44. the fulphuric acid to cryftallize** This fact, firft ob- "Iuid. ferved by Dr Priefley in 1777 (y), was afterwards p. 156. confirmed by Mr Cornette.

Nitrous
(x) Nitre however åts upon platinum, as Mr Tennant has proved. Phil. Tranf. 1797. Morveau had made the fanse obfervation in the Elemens de Chimie de l'Academie de Dijon.
(v) Bernhardt, however, relates, in $176 j$, that once, when he was diftilling a mixture of ten pounds of nitre with an equal quantity of calcined vitriol, which he had put into a retort, to which was fitted an adapter between the returt and the receiver, which contained a quantity of water-heobferved a confiderable quantity of a white cryfalline falt formed in the adapter, while t!e liquid acid paffed as ufual into the receiver. This falt was very volatile, fmoked ftrongly when it was expofed to the air, and exhaled a red vapour ; it burnt, to a black coal, wood, fathers or linen, as fulphuric acid does; and where a piece of it fell, it evaporated in form of a blooded vapour till the whele of it deppeared. Half an ounce of thefe cryftals diffolved in water with fpurt.

Nitrons Acid.

Nitrous acid appears capable of combining with melt of the bodies with which nitric acid unites. The falts which it forms are called mitrites.

Its affinities have never been accurately examined. Bergman fuppofes them the lame with thofe of aitric acid.
Of Nitrous Gas.

420
Difcovery
of nitrous ${ }_{5}{ }^{35}$.

421
1 ts propertics.
$\ddagger{ }^{\dagger} \mathrm{n}$ Phbogiffon, P. 28.
$\$$ Prisfley,
I. 365 .

+ Ibis. p . 40%.
* Nicbol-

IVitrous gas was finf obtained by Dr Hales, but its properties were difervered by Dr Priefley. It mas be procured by diffolving metals in nitric or nitrons acid, and catching the product by means of a pneumatic apparatus.

As nitrous acid is formed bs combining nitrous gas and oxygen, it is evident that nitrons gas contains lefs oxygen than mitrous acid. According to Lavoifier, it is compoled of two parts of oxygen and one of azct.

Nitrous gas is elaftic, and invifible like common air. It extinguifhes light, and inftantly kills ath thote animals that are obliged to breathe it. Its fpecific gravity, according to Mr Kirwan, is $0,00145^{8} \ddagger$.

Dr l'rieftley found that water was capable of abforlwing about one-tenth of nitrous gas, and that by the abforption it acquired ans aflringent taite \oint. Water parts with all the nitrous gas it has imbibed on being frozen \dagger.

Neither phofphorus nor fulphar feem capable of decompofing nitrous gas.

Mr Linck, profeffor at Roltoc, found, that three parts of nitrous gas and two of hydrogen gas, obtained by fulphuric acid and iron, are fcarcely, or not at all, diminifhed when expofed to day-light over water. Common air is not more diminilhed by this admixture kept a long time: but the mixture itfelf of thefe two gafes is diminifhed by the addition of new portions of nitrous gas. Mr Linck concludes, from this obfervation, that part of the oxygen of the nitrous gas combined with the hydrogen and formed water, and that the remaining oxygen and azot formed a mixture fimilar to the air of the atmofphere. Mr Vauquelin lad previoully made the lame obfervation. 'The affinity of hydrogen, therefore, for oxygen is greater than that of azot.*

Oils imbibe nitrous gas with avidity, and decompofe it.

Nitric acid abforbs a vaft quantity of it, and is by that means converted into nitrous acid.-Sulphuris acid alfo abforbs it.

The mof important property of nitrous gas is that of combining inftantly with oxygen gas, and forming nitrous acid, which is inftantly abforbed by water. This property induced Dr Priefley to ufe nitrous gas as a telt of the purity of commonair. He mixed together equal bulks of thefe fubftances, and judged of the pusity of the air by the diminution of bulk. The appa.
422 ratus ufed for this purpofe, which coniflts of a gradua-
The eudio-
meter. ted tube, has been called a sudiometer. This eudiometer has been greatly improved by Fontana, but it is fill liable to uncertainty in its application. Perhaps the beft eudiometer is fulphuret of potafs, which, as Mor-
veau has difoovered, abforbs, on the application of heat, the whole oxygen in a given bulk of air almolt inftantaneoufly.

Dr Priefley found, that nitrous gas was decompofed by palling electric explofions through it.

Let us now confider in what manner oxygen and azot are combined in the threc fubftances which have been jult defcribed.

It can hardly be conceived that azot is capable of combining with three different proportions of oxygen, and of being faturated with each: it is furely much more probable, that in nitrous gas the oxygen and azot faturate each other direnly and completely; that nitrous acid is compofed of nitrous gas and oxygen, and nitric acid of nitrous acid and oxygen. And this fuppofition is confirmed by confidering that the ftrength of affinity by which the oxygen is retained in each of thefe fubitances is very different. Some fubfances, as light, are capable of decompoling nitric acid, by feizing fome of its oxygen, and of converting it into nitrous acid; but they have no effect whatever upou nitrous acid or nitrous gas. Others, as bifmuth, copper, phofphorus, and fulphur, are capable of decompofing both nitric and nitrous acids, but are incapable of altering mitrous gas: And others, again, as carbon, zinc, and irnn, are capable of decompofing all the three. Every body which is capable of decompofing nitrous acid is capable alfo of decompofing nitric acid; and every body that decompofes nitrous gas is capable alfo of decompofing the other two. But the reverfe of this is not true. The affinity of oxygen, then, for azot, nitrous gas, and nitrous acid, is different: oxygen has a fronger affinity for azot than it has for nitrous gas, and a Itronger affinity for nitrous gas than for nitrous acid. But if all thefe bodies were direct combinations of azot and oxygen, how could this difference of affinity take place? Is it reafonable to fuppofe, that a fubltance has a flronger affinity for one proportion of any other body than for another proportion? or that, if fuch a difference exifted, the ftrongeft affinity fhould not always prevail? Mix together nitric acid and nitrous gas in proper proportions, and the whole mixture is converted into nitrous acid: but mix nitrous and nitric acids together, and no change whatever is produced. In the frit cafe, is it not evident that the affinity of nitrous gas for oxygen is greater than that of nitrous acid; that therefore it decompores the nitric acid, deprives it of oxygen, and leaves it in the ftate of nitrous acid? But, in the fecond cafe, no change can take place, becaufe nitric acid is compofed of nitrous acid and oxygen; and it would be abfurd to fuppofe, that nitrous acid has a Atronger affinity for osygen than nitrous acid has. But were azot and oxygen capable of uniting in various proportions, why fhould not a mixture of nitric and nitrous acids, or of nitrous gas and nitrous acid, form new fubftances? And why are the only fubftances which appear in decompofitions nitrous acid and nitrous gas ? Surely thefe reafons are fufficient to finew us, that thefe bodies are combined in the following manner :

Azot
ing and hiffing, like that of a red hot iron dipped in water, and formed a green nitrous acid. Some of this falt being put into a bottle which was not well fopped, entirely vanifhed. Thefe cryftals were evidently the fame with Dr Priefley's. See Keir's Diftionary.

Azot and Oxygen Nitrous gas and oxygen $\left.\begin{array}{l}\text { Nitrous acid } \\ \text { and oxygen }\end{array}\right\}$ form nitric acid. (22)
Perhaps there may be even more links in the chain than we are aware of. The dephlogifticated nitrous air of Dr Priefley, which Dieman and Van Trooftwyck have lately proved to be compofed of 37 parts of oxygen and 63 of azot, and of which little more is known than that it fupports flame, is noxious to animals, abforbed by water, and only obtained by means of fubAances capable of decompofing nitrous gas-perhaps this air is compofed directly of oxygen and azot, nitrous gas of this air and oxygen, and fo on. There may be even links fill farther back than that.

Sect. V. Of Muriatic Acid.

Difcovery Muriatic acid appears to have been known to Bazil of muriatic Valentine ; but Glauber was the firt who extracted it acid. from common falt by means of fulphuric acid. Common falt is compofed of muriatic acid and foda, for which laft fubfance fulphuric acid has a ttronger afinity. This acid was firft called foirit of falt, afterwards \ddagger From mw- marine acid, and now, pretty generally, muriatic acid \ddagger. ria.

Ory-muri- how moch pure acis is cortained in a given quantity of atic Acid. liquid muriatic acid of any particular denfity.

425 Now the fpecific rgravity of the pureft muriatic acid Quartity of that can cafily be procured and preferved, is $\mathbf{1 , 1 9 6}$; it it comaincd would be needlefs, therefore, to examine the purity of in acids of any murivic acid of fuperior denfits. Mr hirwan calvarious denfities. culared that muriatic acid, of the denfity 1,196, contains $\frac{79}{700}$ parts of acid of the denfity 1,500 , which he took for the fiandard; then, by means of experiments, he formed the following table:

ion parts, at the fpecific gravity	contuin of frathdard acid	100 perts, at the fpecific gravity	contain of ftandard acid	Ico parts, at the fpecific gravity	contain of ftandard acid
1,196	49	1,147	37	1,1036	26
1,191	4^{8}	1,1414	36	1,0984	25
1,187	47	1,1396	35	1,0942	24
1,183	45	1,1358	34	1,0910	23
2,179	45	1,1320	33	1,0868	22
1,175	44	1,1282	32	1,0826	21
1,171	43	1,1244	31	1,0784	20
1,167	42	1,1206	3°	1,0742	19
1, 163	41	1,1:68	29	1,0630	16
1,159	40	1, 1120	28	1,0345	10
1,155	39	:,1078	27	1,0169	5
1,151	38				

Muriatic acid (for this folution of the acid in water is always called by that name) is generally of a pale yellow colour, owing, as Dr Priefley fuppofed, to fome carthy matter diffolved in it ; but much more probably to its having abforbed a quantity of oxygen, for which it lias a ferong affinity. Indeed, that this is the caufe appears evidently from Dr Priefley's own obfervations; for it was deflroyed only by thofe bodies which had a Atronger affinity for oxygen. It is very volatile, as might he expected, conitantly emitting white fumes of

Muriatic acid is capable, by the affiftance of heat, of oxydating the following metals: lron, tin, lead, zinc, bifmu:h, cobait, nickel, manganefe, antimony, arfenic. Several of thefe, as iron, for inflance, it oxydates even withont the affiftance of heat.

At a boiling heat, it oxydates filver and copper. It has no action on gold, platinum, mercury, tungfen, molybdenum, tellurium, titanium. Its action on uranium has not been tried.

In the tate of gas, it appears to decompofe alcohol - Prieples, and oils by its affinity for water.*

It is capable of diflilving a little fulphat and fluat \dagger of lime, and arfeniat of mercury.

It combines with the alkalies, alkaline earths, alumina, and jargonia, and with moft of the metallic oxyds, and forms neutral falts, known by the name of muriats.

Morveau firt hewed, that this acid, in the Aate of gas, neuiralized putsid miafmata, and by that means deftroyed their bad effects. In 1773, the cathedral of Dijon was fo infected by putridexhilatiors, that it was Dijon was fo infected by putrid exhalatiors, that it was Defiroys
deierted, after feveral unfuccesfful attempts to purify it. Purrid miaApplication was made to Mr Morveau to fee whether finata. he knew any method of deltroying thefe exhalations. He pnuted two pounds of fulphuric acid on fix pounds of common falt, contained in a glaf, capfule, which had been placed on a few live coals in the midule of the church. He withdrew precipitately, and fhat all the doors. The muriatic acid gas foon filled the whole cathedral, and could even be perceived at the door. Atter 12 hours, the doors were thrown open, and a current of air made to pafs through to remove the gas. This deftrofed completely every putrid odour \ddagger.

The aftinities of muriatic acid are as follows:
Barytes,
Putafs,
Soda,
Strontites \ddagger,
Lime,
Mag nefia,
Anmonia,
Alumina,
Jargonia,**
Metallic osyds as in fulphuric acid, Water.
Sect. VI. Of Oxy-muriatic Acid.
Put into a glafs retort one part of the black oxyd of manganefe and three parts of muriatic acid; place it in a fand-bath in fuch a manner that the liquor which rifes up into the neck of the retort may fall back again into the veffel; and apply a fmall receiver, with a little water in it, luted to the retort merely by a fillet of brown paper. In about a quarter of an hour the receiver will appear filled with a yellow-coloured gas; it is then to be removed, and others applied fucceffively till the operation be finifhed.

This gas is oxy-muriatic acid, firf difcovered by Scheele, while he was making experiments on manganefe, and called by him depblagificated muriatic acid, becaufe he thought it muriatic acid deprived of phlo. gifton. The French chemifts called it oxygenated muriatic acid, which Dr Pearfon contrated into oxy-muriatic acid; and this laft name we have adopted, becaure it is fhorter and equally diftinct.
The true theory of the formation and compofition Irs compoof this acid, which was firf given by Berthollet, will fition. appear from the following fatts: The black oxyd of manganefe is, during the procefs, converted into zwbite oxyd, and muft therefore have given out a quantity of oxygen. When oxy-muriatic acid diffolved in water is prefented to the light in a veffel half empty, oxygen gas is difengaged and floats above, and the acid is converted
condenfed muriatic acid gas, we have from the above equation $l=\frac{m+m^{\prime}-l^{\prime} \mathrm{D}}{\mathrm{D}}=\frac{5}{1,5}=3,3$; and $d=$ $\frac{m}{l}=\frac{10}{3,3}=3,03$. See Irijb Tranfacions, vol. iv.

This calculation, however, is formed upon the fuppofition that the water fuffers no condenfation at all-a fuppofition certainly contradifted by every analogy, and which, as Mr Keir has fhewn, the experiments mentioned in Mr Kirwan's firt paper are infufficient to prove.

Part II.

C H E M

Oxy-muri- veated into common muriatic acid: Confequently oxyatic Acid. Me:bod.
Climic 1. 251.

It renders vegetable colours white, and not red, as other acids do; and the colour thus deftroyed can neither be reltored by acids nor alkalies. It has the fame effects on yellow wax. If the quantity of vegetable colours to which it is applied be fufficiently grear, it is found reduced to the ftate of common muriatic acid. Hence it is evident, that it deftroys thefe colours by communicating oxygen. This property has rendered communicating oxygen. This property has rendered ing.

Nitrous gas, liydrogen, fulphur, fulphurous acid, and phofphorus, decompofe this acid, by depriving it of its oxygen, and leaving the muriatic acid in a feparate ftate. Phofphorus, however, does not produce this effect fo - Morvesu, readily, except when affilted by heat*.

Encyct. When muriatic acid is mixed with nitric acid, the muriatic acid is compofed of muriatic acid and oxygen. Black oxyd of manganefe is compofed of white oxyd and oxygen; muriatic acid has a Itronger affinity for oxygen than the white oxyd; during the diftilation the black oxyd is decompofed, the oxygen combines with mutiatic acid, and the product is oxy-muriatic acid gas.

Oxy-muriatic acid gas is of a yellow colour. It fupports tlame, but cannot be breathed withont proving noxious. The death of the ingenious and indultrious Pclletier, to whom we have fo otten referred, was occdfioned by his attempting to refpire it. A confumption was the confequence of this attempt, which, in a fllort time, proved fatal.

It does not unite readily with water. Scheele found, that after flanding 12 hours over water, ${ }_{5}^{4}$ ths of the gas were abforbed: the remainder was common air, which no doubt had been contained in the veffel before the operation. Berthollet furrounded feveral bottles containing it with ice: as foon as the water in thefe bottles was faturated, the gas became concrete, and funk to the bottom of the veifels; but the fmalleft heat made it rife in bubbles, and endeavour to efcape in the form of gas*: Weftrum obferved that it became folid when expofed in large veffels to the temperature of 40°; and that then it exhibited a kind of cryftallizationt. The fpecific gravity of water faturated with this gas at the temperature of 43°, is $1,003 \ddagger$. Water impregnated with it has not an acid, but an aultere talte \oint, unlike

It ren acids do: and colours white, and not red, as
compound has precifely the imell and the qualities of oxy-muriatic. It can fcarcely be doubted, therefore, that as far as it aets as an acid, different from the muriatic and the nitric, it is nothing elfe but oxy-mutiatie acid.

This mixture of the two acids was formerly called agua regia; but at prefent it is called by the French chemilts nitromuriatic acid. It is firlt mentioned by Ifac the Hullander, and feems to have been known before the muriatic acid itfelf. It was prepared by pouring nitric acid on common falt. The nitric acid de-

Suppl. Vol. I.

I S T R Y.
compofes the fatt, and part of it unites with the muri. Oxy-nuriatic acid thus fet at liberty.

Oxy-muriatic acid oxydates all the metals (except, $\underbrace{\text { ancas. }}$ perhaps, titanium) without the alfitance of hes

It decompofes : ed fulphuret of mercury, or inn its action It acompercury, or cinnabde, on other which neither fulphuric nor nitric acid is able to ac bodics. complifit.

All the fubitances placed before muriatic acid in the table of the affulities of oxygen, are capable of decompofing this acid. Many of them, when planged into it while in the flate of gas, adually take fire. Wefrum obferw. ed, for inflance, that when pieces of wood were plunged into this gas, they tool: fire; that arfenic burned with a blus and green flame; bifmuth, with a livelp blaifh flame; nickel, with a white flame, Lordering on yellow; cobalt, with a white flame, approathing to blue; zinc, with a lively white flame; tin, with a feeble bluifh flame; lead, with a fparkling white flame; copper and inon, with a red flame: that powdered charcoal took fire in it at the temperature of 90°, and that ammonia produced with it a loud detonation f.

With alkalies, eaths, and metallic oxyd., it is capable of combining and forming neutral falts, which have been called oxy-muriats.

The affinities of this acid, according to Lavoifier, Itsafinities, are as follows:

(в) According to Tromflorf, oxy-muriatic acid is incapable of combining with magnefia. Aun. de Chim. xxii. 2 I 8 .
(c) This is the order of the affinities of nitro-muriatic acid. Many facts (fome of which fhall appear afterwards) concur to prove that the affinities of the oxy-muriatic acid are the fame, and indeed that they are the fame acids.

O:y-muli- and obtained a quantity of oxygen and hydrogen gas. atic _tcid. Ent a feperition of thefe experimants thewed, that the gafes were owing, not to the decompotition of the acid, fiut to that of the water with which the acid was consbined.

The expesiments of Mr Lambe (D) have lately opened a new and unexpected path, which feems to lead directIy to the difcovery of the component parts of this acid. He found, that when iron was acted upon by fulphurated hydrngen asas, a fubtance was produced which poftelied all the properties of oxy-maitat of in on (oxypuriatic acid combined with iron). The fulphrated hed:cgen gas which he uied was obtained from fillphuret of iron, firned by fung equal parts of iron and flowers of fulphur ; ard it was extricated by diluted fulphuric acid. In a folution of this gas in diftilled water, he digelled iror. filnge, previoufly putified by repeated walhityes with difilited water. The bottie was filled whth the folution, and corked. The iton was prefently ated upun; numerous bubbles arofe, : hich drove the enrk out of the b tile; they were frongly inflammable, and probably, lierefore, pure hydrogen gas. The liquor gradually lof its odour of iulphurated hydrogen gas, and after fome days fmelled very much like tagnant rain water. As the bubbles ceafed to be produced, it rec vered its tranfparency. On evaporating a fmall quantity of this folution in a watch-glafs to drynefs, a buter deliquefent falt was left behind. On this falt a little fulphuric acid was dropped, and paper mointened with ammonia was held over the glafs; white vapours were immediately formed over the glafs; and confequently fome volatile acid was feparated by the finphuric acid. Mr Lambe evaporated about eight onnce-meafures of the fame liquor, and, as before, dropped a litule fulphuric acis on the relidumm; a ftrong effervefcence was excised, very pungent acid fumes arofe, which, from their fmell, were readlly known to be muriutic. The fane truth was eftablithed beyond a doubt, by holding a bit of paper moiltened with water, which mate the vapours vifible in the form of a grey fmoke; a diftinguithing characterific, as Bergman has oblerved, of the muliatic acid. - When manganefe and mercury were difolved int fulphurated bydrogen gas, the filts formed gave the fame unequivocal marks of the prefence of inuriatic acid \dagger.

Shall we conclude from thefe facts, that the bafis of muriatic acid is fulphurated hydrogen; that mariatic acid is fulphurated hydrogen combined with oxygen ; that this combination takes place during the folution of the iron; and that the efcape of hydrogen is owing to the decompofition of the water? (23)

Paosphorus is capable of forming combinations with two different quantities of nxygen; with the larger it furms phof pizoric ; and with the fmaller phofphorus acid.
Phofphoric acid was unknown till after the dicovery of phophorus. Boyle is perhaps the firt perfon who mentions it: he difovered it by allowing pho'phorus to barn flowly in common air. But liargraf ras the firt perfon who examined its pioperties, and difecvered is to be a peculiar acid.

It may be procured by expofing phofpho: us to a moderate heat: the fhofphorus takes fire, combines with oxygen, and is comverted into an acid.

It may alfo he prepared by expofing phofphorus Method of during fome weeks to the ordinary temperature of the preparing atmofphere, even in winter; when the phofphorus un. ${ }^{\text {it. }}$ dergoes a flow combultion, and is gradually changed into a liquid acid. F'or this purpote, it is ufual to put frall pieces of phofphorus on the inclined lide of a glafs funnel, through which the liquor which is formed drops into the bottle placed to receive it. From one ounce of phofphorus about three ounces of acid liquor may be thus prepared, called phofphoric acid by deliquefcence.

Scheele has contrived another mole of obtaining the phorphoric acid from pholphorus without combultion, by the mere action of the nitric acid on phofphorus \ddagger. \ddagger On Fire, Mr Lavoifier has repeated and deferibed this piocefs§. § lxxvii. He put two pounds of nitric acid, the fpecific gravity $\S M M_{c m}$. of which was 1,29895 , into a retort, the contents of Aiad. 1780 . which were equal to fix or feven French pints, and to which a balloon was fitted. Having placed this retort in a fand-bath, and bronght the heat of the acic contained in it to $133 \frac{1}{4}$ deg. he added fucceffively fmall quantities of phofphorus, about ten or twelve grains at a time, until he had diffolved $2 \frac{3}{4}$ th oz. At firlt the effervefcence was great, but at laft he was obliged to apply heat to effect the folution. The operation lafted 17 or 18 hours. A good deal of nitrous acid had paffed in= in the receiver. He then poured the contents of the retort into a fmaller retort, and evaporated by means of a fronger heat, until the phofphoric acid begran to diftil in white vapours. The remaining acid was fo thick, that he could not pour it out of the retort, and therefore could not afcertain its quantity; but he fuppofes it might be eight or nine ounces, in which he thinks there were about $2 \frac{1}{2}$ ounces of phofphorus; the remaining $\frac{1}{4}$ ounce being fuppofed to have evaporated. The quantity of oxyyen imbibed he reckons it $3^{\frac{\pi}{2}}$ ounces, and the quantity of water at about 2 ounces.

Lavoifier
(D) Analyfis of the waters of two mineral forings at Leminton Priors. Manchefer Memoirs, vol. V. part ift. (23) If thele experiments be colrect, and muratic acid is really compofed of fulphurated hydroren and oxygen, it would enable us to explain many phanomena which have heretofore been inexplicable. The immenfe guatutites of fulphurated hydrnen which we excrete would no longer be a myftery, as the muriatic acid we take in would be a fufficient fource to derive it from. The action of fulphurets on moft metals might be accounted for, and even the folution of gold in the fulphuret of potafh or hepar fulphuris might at lealt receive a plaufible explanation. Thefe and various other phxnomena in chemiftry which are at prefent inexplicable might be accounted for upnn this compofition of muriatic acid; but it is wafte of time to form explanations which mult reft on a foundation fo Iighty laid.
T. P. S.

lart II.

C H E M I S T K Y.

Pl.ofphoric Acid.
439
ts proper
its I ?

Livoiifer computes, that phofphoric acid contains 100 parts of phofphorus and 154 of oxygen.

The colour of this acid is white; it has no fmell, has an acidtafte, but is not corrofive(E.)

It is exceedingly fixed. When expofed to the fire in a matrafs with a long neck, it lofes at firf the greater part of its water ; then an ndour of garlic is Celt, owinfr to fome phofphon from which it is exceedingly difticult to clear it entirely ; there is likewife at fmall quantity of the acid volatilized along with the water. The liquor then becomes thick and milky: Small luminous decrepitations take place from time to time, and they continue for fome time after the vellel is taken from the fire. If the matter be then put into a cus. cible and placed among burning coals, it firft boils violently, and gives out a vapour which tinges Hanae gleen, and is at latt converted to a white tranparent glais, infoluble in water.

The fpecifo gravity of this acid in a ftate of dry+ Bergnom. nefs is $2,687 \dagger$, that of pholphoric acid by deliquef-
Morvear. cence $1.4^{17^{ *}}$. It is capaisle of cryftallizing; its cryflals are quadrangular prifms terminated by quadrangular pyramids.

Phofphoric acid obiained by deliquefcence, when mixed with an equal quantity of difilled water, acquirell fo litte beat as to raife the thermometer only one degree, as Mr sage obferved.

Mr Lavoifier raifed Reaumur's thermometer from 8° to 14° or 15° by mixing phofphoric acid boiled to the confiftence of a fyrup, with an equal quantity of water; and from 8° to 32° or 33° when the acid was as thick as turpentine*.

Phofphoric acid is capable of oxydating iron, tin, lead, zinc, antimony, bilmuth, mangancfe. When fufed witl, feveral of thefe metals, as tin, lead, iron, and zinc, it is converted into phofphorus; a proot that they have a ftronger afinity for oxygen.

It does not act upon gold, platinum, filver, copper, mercury, arfenic, cobalt, nickel. It appears, however, to have fome action on gold in the dry quay, as it is called; for when fufed with gold-leaf, it affumes a purple colour; a proof that the gold has been oxydated.

It is capable of combining with alkalies, alkaline earths, alumina, and metallic oxyds ; and of forming talts, known by the name of phojplats.

Phofphoric acid, by the aliifance of heat, is capable of decompofing glafs.
temperature of the atmefobere; lut it zradully absombs more oxygen, and is converted into phoplonic acid.

Concering phofphorous acid, nothing of ary cnufequence is at prefent knowin, excest that it cotalios lefe cxygen than ploffohoric acid.

Sect. Ville Joiadic Ais.

The word borav firlt occurs in the works of Geber, an Arabian chenaift of the tenth century. J : is a name given to a fpecies of white lialt much ucal by val rious artifts. Its nfe in follesing metals ajpeate to have heen known to Agricola.

Borax is found mixed with other fubfances in Thi. bet. It feems to exift in fome lands adjacerit on lakes, firm which it is extracied by water, and dep:fited m thole lakes: whence in fummer, when the water is flablow, it is extracted and carried of in large lamps. Sometimes the water in thefe lakes is admintod intu refervoirs, at the botom of which, when the water is enhaled by the fummor's heat, this falt is found.Hence it is carried to the Eall-Indies, where it is in fome meafure purified and cryfallized: in this fate it comes to Europe, and is called titial. In other parts of 'rhibet, it feems, by accounts recsived fiom Chin:i, they dig it out of the ground at the depth of about two yaros, where they find it in fmall cryftalline mafe-, called by the Chinefe mi poun, boui poun, and fin foun; and the errth or ore is called pounas*.

Though borax has been in conmon ofe for nearly three centuries, it was only in 1702 that Honberg, by diftilling a mixture of borax and green vitriol, difeovered the boracic acid. He called it vercotic or fedative folt, from a notion of his that it pofielled the properties indicated by thefe names. In hisopision, it was merely a product of the vitriol which he had ufed ; but Le. mery the Younger foon after difcovered, that it could likewife be obtained from borax by means of the nitric and muriatic acids. Geoffroi afterwards difcovered, that borax contained foda; and at lalt Baren preved, by a number of experiments, that borax was compefed of boracic acid and foda; that it might be seprodnced by combining thefe two fubfunces-and that therefore the boracic acid was not formed during the decompofition of borax as former chemifts had imagined, but was a peculiar fubitance which precsifted in that falt.

This conclufion has been called in queltion by Mr sitempts Cadet*; who affrmed, that it was compofed of fod, to 1 rove the viarifable earth of copper, another unknown metrot, and that it docs muriatio acid. But thi atfertion has never been con- berax; dirmed by a fingle proof; Mr Cadet has only pro- 'Fourn. de ved, that boracic acid fometimes contains erpper ; and Poys. r:8z. Beaumés experiments are fufficient soconvince us, that this metal is merely accidentally prefent, and that it is probably derived from the veffels employed in ersfallizing borax: That boracic acid generdiy contains a little of the acid employed to feparate it from the focta, with which it is combined in burax: And that crude borax contains a quantity of eath imperfectly faturated with boracic acid: - 1 Whl which noity be very true; but they are altogether infulficient to prove that bord$3 \mathrm{~B}_{2}$
cic
(E) We have obferved, however, that when very much concentrated it diffroyed the texture of vegetable fubfances, paper, for inftance, very completely.

Borasic Acid.

And to prove that is in phofphoricacid. bitterifh conling impreflion, and at laft leaves an agreeable fwestnels. Its cryftals have fome refemblance to fpermaceti, and it has the fame kind of feel.

It changes vegetable blues to red; it has no fmell ;
bnt when fulphuric acid is poured on it, a tranfient odour of mulk is produced*. The air produces no De Sale Sce change on it.
dat. 1778. According to Revfs, it is foluble in 20 parts of cold water, eight parts of warm water, and 2,5 of boiling water. According to Wenzel, 960 grains of boiling water, diffilve 434 of this acid. According to Morveau, one prund of boiling water diffolves only 183 grains.

It is exceedingly fised when not combined with wa. ter. When expoled to a violent fire it is converted into a white tranfparent glafs ; which, however, is fuluble in water, and produces the acid again by evaporation.

Boracic acid is alfo foluble in alcohol ; and alcohol containing it burns with a green flame.

Its fecific gravity is $1,479 \dagger$.
TKiracmis
Miner.ii.4. Paper dipped into a folution of boracic acid burns with a green flame.

Though mixed with fine porder of charcoal, it is neverthelefs capable of vitritication; and with foot it melts into a black bitumen-like mafs, which is, however, foluble in water, and cannot be eafly calcined to athes,
cic acil is not a peculiar fubfance, fince it difplays properties different from every other body.
Meifrs Exfchaquet and Struve have endeavoured, on the other hand, to prove, that the phofphoric and boracic acids are the fame. But their experiments merely fhew, that thefe acids refemble one another in feveral particulars; and though they add confiderably to our knowledge of the properties of the phofphoric acid, they are quite inadequate to eltablifh the principle which thefe chemifts had in view; fince it is not fufficient to frove the identity of the two acids, to fhew us a redemblance in a few particulars, while they differ in rany others. Boracic acid mull therefore be conlidered as a diftinct fubtance, the component parts of which are entirely unknown.

The eafieft method of procuring boracic acid is the following one: Difilue borax in hot water, and filter the flution; then add fulphusic acid, by little and little, till the liquer be rather more than faturated. Lay ic afide to cool, and a great number of fmall, fhining, laminated cryltals will form. Thefe are the boracicacid. They are to be wafhed with cold water, and drained upnn brown paper.

This acid has a fourifh tafte at firt, then makes a 1 and that it was compofed chiefly of lime and a particular acid which has been called fluoric acid.

To obtain it, put eight ounces of finely powdered Method of fuor into a retort, and pour on it an equal quantity of ostaining. fulphuric acid, and lute to the retort as exactly as pof- ${ }^{\text {it. }}$ fible, a receiver containing eight ounces of water. Vapours immediately afpear and darken the infide of the veffel: Thefe are the acid in the ftate of gas. The dit: tillation is to be condusted with a very moderate heat, not only to allow the gas to condenfe, but alio to prevent the fluor itfelf from fubliming. After the procefs, a cruft of white earth is found in the receiver, which has all the properties of filica.

Scheele fuppofed, that the filica produced was form. ed of fluoric acid and water; and Bergman adopted the fame opinion. But Wiegleb and Buccholz fhewed, that the quantity of filica was exadly equal to what the retort loit in weight; and Meyer completed the proof that it was derived from the glars, by the following experiment : He put into each of three equal cylindrical tin veffels a mixture of three oz. of fulphuric acid and one oz. of fluor, which had been pulverized in a mortar of metal. Into the firft he put one oz. of pounded glafs; into the fecond, the fame quantity of quartz in powder; and into the third, nothing. A. bove each of the veffels he hung a fponge moiftened with water; and having covered them, he expofed them to a moderate heat. The fponge in the firt cylinder was covered with the eruft in half an hour ; the fponge in the fecond in two hours; but no cruft was formed in the third, though it was expofed feveral days. In confequence of this decifive experiment, Bergman gave up his opinion, and wrote an account of

Meyer's

Part II.

 C H E M I S T R Y.Fhoric Meyer's experiment to Morveau, who was emplayed in Acid. tranflating his works, to enable him to correkt the mif-$\underbrace{-r}$ take in his notes.

Soon after the difoovery of this acid, difficulties and doubts concerning its exiftence as a peculiar acid were Atarted by fome French chemifts, difguifed under the name of Boulanger, and afterwards by Mr Achard and Mr Monnct. To remove the he objections, Mr Scheele infituted and publifhed a new let of experiments: which not only completely eftablifhed the peculiar nature of the floric acid, but once more difplayed the unrivalled abilities of the illutrious difonverer. Thefe important particulars we pals over thas ilizhtly, becaule they have been partly treated of already in the article Chemistry Refuted by (Encycl.) One experiment, however, we cannot omit, Scheele, becaule it is fufficient of itfelf to deftroy almolt all the objections of his antagonifts, which confifted in attempting to prove, that the Huoric acid was merely a modification of the acid employed to extract it. We fhall give it in Mr Scheele's own words.
"I meltal rogether (fays he) in a crucible two ounces of finely pulverized fluor fpar with four ounces of potals. As foon as they were melted, I poured out the mafs, rubbed it, when it was become cold, to a pow. der, and extracted the alkali from it again by lixivia. tion with water. I evaporated the lixivium to drynets; and threw away the remaining undifulved powder (which was only one of the component parts of the fuor, and which diffolved readily, and with effervefence, in acids) from its folution, in which it may be precipitated by fulphuric acid in the form of felenite (fulphat of lime). Upon a little of the dried alkali, put into a fmall retort, I poured fome fulphuric acid, fitted to it a receiver containing fome water; and even before the retort was become hot, I obferved this water to be covered over with a pellicle of filiceous earth: a certain proof that the alkali had extracted the acid from the fluor during its expofure to the fire with it. Should Mr Achard, agreeably to the opinion which he has adopted, conclude from this experiment, that the alkalifeparated the volatile earth from the fluor (F) ; fill he mult certainly allow this earth of his to be of an acid nature, fince the alkali is capable of difengaging it from the calcareous eath.-The remaining portion of the dried alkali I diffulved again in water, and faturated the fuperfluous alkali with pure nitic acid. After expelling from this faturated folution, by means of heat, the carbonic acid gas, which in fuch cafes is always retained in the liquor, I dropped fome of it into lime-water ; whereupon I obtained a white precipitate, which was a regenerated fluor. I now diffolved fome axyd of lead in vinegar, and continued to add to the ley, which lad been faturated with nitric acid, as much of this folution as was requifite, till all precipitation ceafed. Thus 1 transferred the fluor acid from the alkali to the oxyd of lead. After wathing the precipitate in cold water, and drying it, I dropped upon a imall quantity of it is few drops of fulphuic acid: a frothing up immediately enfued, accompanied with an extuication of fluor acid vapours. But perhaps, in this cafe, the volatile carth
of fluor unites with the fulphuric acid, and converts this fixed, or almoft sxed acid into acid gas. I can eafily make allowance to Dr Priefley for being inclined to draw fuch a conclufion, fince this celebrated philofopher does not pretend to be a chemift (G). Dieing defirous of feeing whether heat alone was capable of expelling this acid from the oxyd of lead, I put a little of this flunrated oxyd into a fmall retort, the receiver to which contained fome water. The oxyd was melted; but I could not perceive any acid. 'The bottom of the retort uas moreover quite cormded and difolved, fo that the whole ran inio the fire. Thus the oxyd ne lead retains this acid in the fire, and will nor part with it, unlefs the oxyd is enmbined with fome other fubftance. I therefore rubbed the remainder of my fluorated oxyd of lead with an equal quantity of charcoal powder, and diftilled the mixture in an open fire in a fmall glafs retort, to which was adapted a receiver containing fome water. As foon as the reducton of the oxyd of lead took place, the neck of the retort became incrufted with a white fublimate, and a filiceous peilicl* appeared upan the water. The frblimate had a font tafte, becaule the filiceous earth of which it confits is penetrated with fluoric acid; and the acid water in the receiver let fall, on the addition of volatile alkali, at fili. ceous earth \dagger."

Sorry are we to add, that fince the death of this ad. mirable man, to ufe the words of Mr Kirwanf, a man as eminent in the chemical as Newton in the mathematical branch of natural philofophy, Mr Monnet \oint has \ddagger Aineralothought proper to renew his attacks in a ftyle of haugh- gy, I. 126. tinets and acrimony that infpires infiuite difgutt. The ${ }_{P}^{5}$ Yourn. $d x$ fallacy of his reafoning is finficiently exfofed by Mr Leonhardi, in the 6th volume of his date learned edition of Macquer's Dictionary.

Fluoric acid may be obtained in the form of gas, by applying a moderate heat to fulphuric acid and fluor fpar, and receiving the product over mercury.

This gas is the acid in a Itate of puriiy. It is invi- Its 456 fible and elaftic like air; it does not maintain combuf. ties. tion, nor can animals breathe it without death. It has a pungent fmell, not unlike that of muriatic acid.

It is heavier than common air. It corrodes the fkin almolt inftantly. It combines rapidly with water; and if it has been obtained by means of glafs velfels, it depolits at the fame time a quantity of filica.

Water impregnated with this gas does not freeze at a higher temperature than 23°.

In the fate of gas this acid does not act upon nitrous ii. 362 . gas nor fulphur. Alcohol and ether abforb it, but it Its 457 does not alter their qualities \dagger.

It is capable of oxydating iron, zinc, copper, and bodice. arfenic.

It does not act upan gnld, platinum, filver, mercury, lead, tin, antimony, cobalt.

It combines with alkalies, alkaline earths, and alumina, and metallic oxyds, and forms compounds denominated fiuats.

It is capable, as we have feen, of diffolving filica, which is infoluble in every other acid; accordingly it
corrodes.
(n.) Mr Achard affirmed, that fuor was compofed of a pecnliar volatile earth.
(G) Dr Priefley at firft advanced this hypothefis; but he afterwards gave it up.

- Mr inoso
\dagger Lazaifer.
\ddagger 「arqu:
Lin, Ann. de
Cbin. xxii. 208.

Jtsafinities. 'IVedinities of fuovic arid are as foilows:
corrodes g^{3} es. This property has induced feveralingenious men to attempt, by means of it, to engrave, of rat?er cect, upon glats.

Lime, Burjtes, Sirmotices*, Marnefia, Potars, Soúa, Ammonia, Oxyd of zme,

Sect. X. Of Carbonic Acid.

Carbonsc acid is compofed of cabbon and oxygen. According to Lavoifier's experiments, the proportions are 28 parts of carbon and 72 of oxygen. Mr Proult informs us, that there is alfo a carlonous acid (H) ; but with this acid we are not at prefent acquainted, and cannot therefore defribe it.

Paracelfus and Van Helmont were acquainted with the fact, that air is extricated from folid bodies during certain procefles, and the latter gave to air thus produced the name of gas. Boyle called thefe kinds of air artificial airs, and fufpected that they might be dif. ferent from the air of the atmofphere. Hales afcertained the quantity of air that could be extricated from a great variety of bodies, and thewed that it formel an elfential part of their compofition. Dr Black proved, that the fubitances then called limae, magnchac, and alkizlies, are compounds, conlifing of a peculiar fpecies of air, and pure lime, magnelia, and alkali. 'To this feecies of air he gave the name of fixed air, becaule it exifted in the fe bodies in a fixed tate. This air or gas was afterwards inveftigated by Dr Prieftley, and a great number of its properties afcertained. From thefe properties Mr Keirt firf concluded that it was an acid; and this opinion was foun contirmed by the experiments of Bergman, Fontana, Sc. Dr Prieftley at firft fuf- petted that this acid entered as an element into the com-
pofition of atmoferical air; and Eergman adopting the fame opinion, gave it the name of aet in! acid. Mr Bewdly called it mephitic acil, becatié it could not be refpired without occafonief death; and this name was allo adopted by Morveau. Mr Keir called it calcareous acidt and at lat Mr Lavoilier, after difcovering its conpofition, gave it the name of carbonic aci! gas.

The opinions of clemifts concerning the compgition Theories of carbonic acil have underacene as many revolutiuns as about its its name. Dr Priefley and Bergman feem at firf to compofihave confdered it as an element ; and feveral celebrated tion. chemifts maintained that it was the acidifying principle. Afterwards it was difcovered that it was a compound, and that oxygen gas was one of its component parts. Upon this difcovery the prevalent opinion of chemits was, that it confifted of oxygen and phlogifon; and when hydrogen and phlogitton came (according to Mr Kirwan's theory) to fignify the fame thing, it was of coure maintained that carbonic acid was compofed of oxygen and hydrogen : and though Mr Lavoifier demonftrated, that it was formed by the combination of carbon and oxygen, this chid not prevent the old theory from being maintained; becaufe carbon was itfelf confidered as a compound, into which a very great quantity of hydrogen entered. But after Mr Lavoifier had demontrated, that the weight of the carbonic acid pro. duced was precifely equal to the carbon and oxygen employed: after Mr Cavendifi had difovered that oxygen and hydrogen when combined did not form carbonic acid, but water-it was no longer poffide to hefitate that this acid was compofed of carbon and oxygen. Accordingly all farther difpute about it feems now at an end. At any rate, as we have already examined the objections that have been made to this conclufton, it would be improper to enter upon them here.

If any thing was fill wanting to put this conclu. Its analyfia, fion beyond the reach of doubt, it was to decompound carbonic acid, and thus to exhibit its component parts by analyfis as well as fynthefis. This has been actually dons by the ingenious Mr Tennant. Into a tube of glafs he introduced a bit of phofphorus and fome carbonat of lime. He then fealed the tube hermetically, and applied heat. Phofphat of lime was formed, and a quantity of carbon depofited. Now phofphat of lime is compofed of phofphoric acid and lime; and phofphoric acid is compofed of phofphorus and oxygen. The fubstances introduced into the tube were phofphorus, lime and carbonic acid; and the fubAtances found in it were phofphorus, lime, oxygen, and carbon. The carbonic acid, therefore, muft have been decompofed, and it mult have confifted of oxygen and carbon. This experiment was repeated by Dr Pearfon, who afcertained that the weight of the oxygen and carbon were together equal to that of the carbonic acid which had been introduced; and in order to fhew that it was the carbonic acid which had been decompored, he introduced pure lime and phofphorus; and infead of obtaining phorphat of lime and carbon, he grot nothing but
(н) When there are two acids having the fame bafe, but containing different quantities of oxygen, they are diltinguifhed by their termination. The name of that which contains moft oxygen ends in ic, the other in ous. Thus fulphuric and fulphurous acids, nitric and nitrous, phoipho-ic and phofphorous, carbonic and carbonous.

Carbonic but phofphuret of lime．Thefe experiments were alio Acid．confirmed by Meflis Foutcroy，Vauquelin，Sylveftre，
204.

and Broigniart（1）中．

Carbonic acid may be obtained by pouring fulphuric acid upon chalk，and receiving the product in a pneu－ matic apparatus．
It is invifible and elaftic like commonair．It extin－ guifhes a candle，and is unfit for refpiration． fimell．

Its Specific gravity is $0.0018+$ ；but this varies ac－ cording to its drynels or moilure．

It reddens the tincture of turnfoil，but no other ve－ getable colour＊．

Asmofpheric air contains about ryo part of this gas（k）．

Water abforbs it by agitation，or by allowing it to remain long in contact whit it．At the temperature of 41° water ablorbs its own bulk of this gas．The fpe－ cific gravity of water fitturated with it is 1,0015 ．This water at the temperature of 35° ，has little athe；but if it be left a tew hours in the temperature of 38° ，it alfumes an agreeable acidity，and a fparkling afpearance \dagger ．

Ice abfobs no carbonic acid；and if water contain－ ing it be fio\％en，the whole feparates in the act of free－ zing \ddagger ：

This gas alfo feparates from water at the boiling temperaturell．

Alcohol and oil of turpentine abforb double their weiglte of this gas；olive oil its own bulk．Ether mixes with it in the trate of gasf．

Phof horus fuffers no change in this gas except it containsa mixture of oxygen gase．It has an affinity for common air．Bergman left a bottle of it uncorked， and found that in a few days it contained nothing but common air．Common air，indeed，has foftrong an affinity for this gas，that it ateracts it from water，as Mr Welter has obferved＊．

It is abforbed by red hot charcoal，as Morozzo and La Metherie have thewn．

It is capable of combining with alkalies，alkaline earths，and alumina，and feveral metallic oxyds，and of forming compounds known by the name of carlonats． It has no affinity for jargonia，according to lilraproth＊； but according to Vauquelin，it hast．

Its affinities，as arrarged by Bergman，are as follows：

> Barytes,

Lime，
Strontites +
l＇otafs，
S•를，
Magnefia，
Alumina，
Metallic oxyds，as in fulpharic acid， Oxygen gas $\|$ ，
Water，
Alcohol．

S T R Y．
Sect. XI. Of A. atous Auibl.

Acfotos acij or vinegar was known muny ages be． fore the difovery of any other acij，thode only excepted vihich exifl ready formed in regetables．It is menticn－ ed by Morea，and indeed feemis to have been in com－ mon ufe among the litaclites ath other eatern mations at a very ealy period．
＇The methods of procuting，purifying and concen－ trating this acid have been already given in the articles Chemistry，Fermentation，and Vinegaz（Eincycl．） and camot therefore he repeated in this plice．

It has been afcertained beyond a doubr，that this acid is compofed of carbon，hydrogen，and oxygen； but weither the manner in which thefe fuoftances a：c combined，nor their propurtions，have been accurately afcertained．

Acetons acid，as commonly prepared，is very fluid， has a pleafant fmell and an acid tafte．It redjens ve－ gretable colcurs．In this fate it is mixed with a great proportion of water ；but Mr Lowitz of Peterfburg has difcovered that it may be obtained in a folid crytallized form．Of this curious and inftuctive procefs we fhall tranferibe his own account＊．
＂I huve＂Crell＇s concentrated vinegar by congelation in the following i．242．Eng： manner：I freeze a whole barrel of vinegar as much as poffible，then diftil the remaining unfrozen vinegat in a water－bath；by which means I at firf efpecially collect the fpirituous etherial part；the vinegar，which next comes over，I frceze again as much as pomble，and after－ wards purify it by ditilling it again with three or four pounds of charcoal powder．Thus I never fail to get a very pure fweet－fmelling，highly concentrated vinegar； the agreeable odour of which，however，may be Atill further improved by the addition of a proper quantity of the etherial liquor collected at the beginaing of the firlt ditillation，but which mult be previoufly dephleg－ mated by two or three rectifications．
＂After the diftillation in the water－bath was over， that no sinegar might be loft，I ufed to move the retort， with the charcoal powder which remained in it，to a fand－bath ；and thus I obtained by means of a Arong firc，a few ounces more of a remarkably concentiated vinegar，which was of a yellow colour．
＂Having co！lected about tell ounces of this concen－ trated vinegar，I expofed it latf winter in the month of December to a cold equal to－ $\mathbf{2 2 ^ { \circ }}$ ；in which fituation it thot into cryals from every part．I let what re－ mained tluid drop away from the cryfals into a balon placed underneath，finf in the cold air，and afterwards at the window within doors．There remained in the bottle finow－white finely foliated cryfals，clofely accu－ mulated onc upon the other，and which I at hirt tonk to be nothin but ice．On placing thens upon the watm fove，lley difiolved into a fluid which was perfectly as limpid
（1）Count Moufin－Poufchin having boiled a folution of carbonat of potafs or．purified phofphorus，witained earbon．This be confidered as an infance of the decompofition of carbonic acid，and as a confirmation of the experiments related in the text．See Am，de Chim．xxv． 105.
（к）At leaft near the furface of the earth．Lamanon，Monges，and the uther unfortunate philofuphers who accompanied La Pcyroufe in his laft voyage，have rendered it not improbable that at great heights the quantity of this gas is much fmaller．They could detect none in the atmophere at the fummit of the Pead of Tenerifie Sce Lamanon＇s Mcmoir at tbe cnd of La Peroule＇s Vojage．

Ace:ous Acid.
limp:d as water, had an uncommonly ftrong, highly pungent, and almolt fuffocating acetous imell, and in the temperature of $-37^{\circ} \mathrm{immediately}$ congealed into a folid white cryftallized mafs, refembling camphor.
"After Ihad obferved that vinegar in this ftate is of fuch an extraordinazy frength and purity as to be in its higheft degree of perfection, I took all polible pains to find out a method of obtaining ali the acetous acid in the flate of glacial vinegar.
"T'o a void circumlocution, I fhall denote the Atength of each fort of vinegar which it was neceflary for me to know in my experiments, by degrees, which I afcertain in the following manner: viz. to one drachm of vinegrar I add, drop by drop, a clear folution of equal perts of casbonat of potafs and water, till all at once a cloudinefs or precipitation appears. Although, on the appearance of this tign, the acid is already fuperfaturated with the alkali, yet it feems to me to be a more accurate teft for afcertaining its Arength than the cefliation of effervefcence; for as the point of faturation approaches, the effervefcence becomes fo imperceptible, that it is almol impoflible to determine with precifion when it is really at an end. Now, every five drops of the alkaline folution, which I find it neceffary to add to the vinegar till the precipitation takes place, I reckon as one degree. Thus, for example, if a determinate quantity of vinegar requires 25 drops for that effect, I denute its ftrength by five degrees. This is about the tlrengrh of good diftilled vinegar.
"I call that vinegar which, in confequence of its concentration, is capable of eryftallizing in a great de. gree of cold, crylallizable vinegar ; the cryftals of vinegar, feparated after the cryftallization is completed from the remaining fluid portion, I call glacial vinegar ; and, laftly, to the fluid refiduum I give the name of motherley of vinegar.
"From a great number of experiments, I have found that vinegar mult have at lealt 24 degrees of concentration before it can be brought to cryftallize by expofure to the moft intenfe cold. Vinegar mult be of the ftrength of 42 degrees at leaft in order to become glacial vinegar; vis. in this flate of concentration it has the property of cryRallizing in a degree of cold not exceeding that in which water begins to freeze.

I have found that charcoal, on being diftilled with vinegar in a water bath, poffeffes the fingular and hitherto unknown property of imbibing a certain quantity of the acetous acid in a very concentrated ftate, and of retaining it fo Atrongly, that the acid cannot be feparated from it again, but by the application of a confiderably greater degree of heat than that of boiling water. Upon this circumbance is founded the new method which I have difcovered of concentrating vinegar, fo as to obtain all its acid in the pureft ftate, vis. that of a glacial vinegar.
"Let a barrel of vinegar be concentrated by freezing in the manner above defoibed, and let the concentrated vinegar thus obtained, free frons all inflammable or fpirituous parts, be put into two retorts: Add to each of them five pounds of good charcolal reduced to a fine fowder, and fubject them to diftillation in a water bath. When no more drops of vinegar come over, put the diftilled l quor into two freth retorts; and after adding five pounds of charcodl powder to each, proceed as before to the diftillation in a water bath. In the mean
while, the two firlt retorts are to be placed in a fandbath, that by means of a brick fire, the ciyttallizable vinegar, which is retained in the apparently dry charcoal powder, may be expelled from it. The heat mutt be ftrong enough to make the drops follow one another every two feconds; and when, in this degree of heat, 20 feconds intervene between each drop, the vinegrar which has been collected mult be removed; for what follows, is hardly any thing elfe but mere water. In this manner about fix ounces and a half of cryfallizable vinegar, which is gencrally of the ftrength of between 3^{6} and 40 degrees, may be collected from each retort. As foon as the diftillation by the water bath in the two retorts is over, the diftilled liquor is to be poured back again into the firlt retorts upon the charcoal powder, which remains in them, and which las been already whed ; and from each of thefe retorts the remaining cryflallizable vinegar (which generally amounts to as much as the firft quantity) is to be ableracted by diftillation in a fand bath. Thefe operations may be alternately repeated till all the acid of the vinegar which had been concentrated by freezing is converted into cryftallizable vinegar ; or until the ditilled liquor, conftantly becoming weaker and weaker at every repetition of the difillation, comes over at length in the itate of mere water, which, with the above mentioned quantity of charcoal powder, generally happens at the fourtlı or fifth diftillation. Now, in order to obtain the greateft part of the pure acid contained in the cryltallizable vinegar in the form of glacial vinegar, it mult be fet to cryltallize in a great degree of cold; and the mother. ley mult be afterwards thoroughly drained from the glacial vinegar, by letting it drop from the cryftals, firt in the cold, and then in the room before the window. The mother ley may be rendered further cryttallizable, by diftilling it with a little charcoal powder; the weaker part, which comes over firlt, being put afide. But if a perfon wifhes to keep the cryftallizable vinegar for other purpofes, and without feparating any glacial vinegar from it, he mult diftil the whole of it again with charcoal powder in a fand-bath.
"I have found by accurate experiments, that, by means of this curious procefs, ten pounds of vinegar concentrated by freezing to the goth degree, may be made to yield 38 ounces of cryftallizable vinegar, from which 20 ounces of glacial vinegar may be obtained.
"What conftitutes the excellence of this method is, that the concentration and purification are effected by one and the fame medium, viz. the charcoal powder; in confequence of which, both intentions arc fulfilled at the fame tine.
"Laft year, after much reflection, I was fo happy as to find out another very effectual method of feparating the acetous acid from the other fubtances combined with it, fo as 10 obtain it at once in the fate of a glacial vinegar of the greatell poffible ftrength. The feparating medium which I thought of is fulphat of potafs fuperfaturated with fulphuric acid: a falt in which, conformably to my purpofe, the fulpharic acid exits in a perfectly dry and dephlegmated fate.
"By means of this falt a highly concentrated glacial vinegar may be obtained in the following mamer:
" Let three parts of acetated foda, prepared with vinegar diltilled over charcoal, and evaporated to perfect drynels, be melted in a ftrong heat; then pour it out,
and

Sect. XII. Of Acetic Acid.

If acetite of copper be diftilled, an acid comes over of a more pungent fmell than acetous acid, capable of cryftallizing, and having a flronger affinity for other bodies than acetous acid. It is called acetic acid, and is fuppofed to contain a larger proportion of oxygen than acetous acid. This additional dofe it is fuppofed to receive from the oxyd of copper, which during the procefs is reduced to the metallic ftate. It can hardly be doubted that the glacial vinegar of Lowitz, defcribed in the preceding fection, is really acetic acid, though it would perhaps he difficult to explain its formation. Its affinitics are the fame with thofe of the acetous acid.

Sect. XIII. Of Oxalic Acid.

Sugar, a well-known fubftance extracted from the fugar-cane, appears to have been ufed in the Eaft at a Suppl. Vol. I.

It does not act upon gold, filver, platinum, mercury, bifmuth, crbalt, antimony, arfenic.

It combines with alkalies, alkaline earths, and alumina, and metallic oxyds, and forms compounds known by the name of acctites.

Its affinities are as follows:
 very accurately with eight parts of fuperfaturated ful. phat of potafs that has been previounly well dried, and in like manner reduced to a fine powder ; put the whole into a retort, and diftil with a gentle heat, in fuch manner, that along with the drops fome vapours alfo may be perceived to come out of the neck of the retort; but by no means fo that the receiver flall be filled with thefe vapours. Notwithttanding the moderate heat, the vinegar comes over very faft, and the quantity of glacial vinegar, of the ftrength of 54 degrees, which is thus obtained, amounts to nearly two p:irts."

Barytes,

very early period; but it made its way wefluard very nowly. As a medicine, it is mentioned by Diofcorides; but it was not in common ufe in Europe till after the 14 th century.

It has been proved that fugar is compofed of oxygen, Compoficarbon, and hydrogen. Lavoifier concluded, fiom a tion of frlong feries of delicate experiments, that it confilts of δ gar. parts of hydrogen, 64 of oxygen, and $2 S$ of carbon.

From fugar, by a particular procefs, an acid has been Difcovery obtained called oxalic acid, becaufe it cxifts ready form. of ozalic ed, as Scheele has proved, in the oxalis acciofelha, or asid. wood forrel. At firft, however, it was called the acid of fugar, or the faccharine acid.

As the earlieft and beft account of the nxalic acid was publifhed by Bergman, he was for a long time reckoned the difcoverer of it; but Mr Ehrhart, one of Scheele's intimate friend,, informs us, that the world is indebted for its knowledge of this acid to that illuftrious chemill,* and Hermftadt and Weftrum affign the dif- "Efacer: covery to the fame authort. The affertions of thefe Magrzine gentlemen, who had the beft opportunity of obtaining for Apoileaccurate information, are certainly fufficient to eftablifh earics, 1785 , the fact, that Scheele was the real difcoverer of oxalic + Keirts. acid.

Bergman gives us the following procefs for obtaining this acid. "Put one ounce of white fugar powdered into a tubulated retort, with three ounces of ftrong nitric acid, the fpecific gravity of which is to that of water as 1,567 . When the folution is over, during which many fumes of the nitrous acid efcape, let a receiver be fitted, and the liquor made to boil, by which abundance of nitrous gas is expelled. When the liquor in the retort acquires a reddilh brown colour, add three ounces more of nitric acid, and continue the boiling till the fumes ceafe, and the colour of the liquor vanifles. Then let the contents of the retort be emp. tied into a wide veffel; and, upon cooling, a cryftallization will take flace of llender, quadrilateral prifms, which are often affixed to each other at an angle of 45°. Thefe cryftals, collected and dried on blotting paper, will be found to weigh $1 \frac{1}{2} \mathrm{dr}$. 19 gr . By boiling the remaining lixivium with two ounces of nitric acid in the retort, till the red fumes almof difappear, and by repeating the cryftallization as before, $\frac{7}{2} \mathrm{dr} .13 \mathrm{gr}$. of folid acid will be obtained. If the procefs be repeated once more upon the refiduum, which has now a glutinous confiftence, with the fucceffive additions of fmall quantities of nitric acid, amounting in all to two ounces, a faline brown deliquefcent mafs will be formed, weighing half a dram, of which about a half will be loft by a farther purification. The cryftals obtained thus at different times may be purified by folution and cryftallization, and by digefting the laft lixivium with fome nitric acid, and evaporation with the heat of the fun."

By the fame procefs Bergman obtained it from gum arabic, alcohol, and honey; Scheele, Hermitadt, Weltrum, Hoffman, \&c. fiom a great variety of other vegetable productions; and Bcrthollet from a great number of animal fubftances.

It is of great confequence not to ufe too much nitric acid, otherwife the quantity of oxalic acid will be diminifhed; and if a very great quantity of nitric acid be ufed, no oxalic acid will be obtained at all.* On the * Bergrans contrary, if too finall a quantity of nitric acid be ufed, 3 C the

Oxalic Acid. \dagger Hermfadt
the acid obtaircd will not be the osalic, but the tartarous t. We think we have obferved, that a confiderably larger proportion of oxalic acid may be obtained by pouring nitric acid on fugar, and allowing thefe fubftances to act tipon each other while cold. When the procefs is conducted in that manner, bardly any

671

Its proper-
ties. thing feparates but nitrous gas.
Oxalic acid is capable of cryltallization, or rather it is generally obtained in that ftate. Its cryftals are quadrilateral prifms, the ends of which often terminate in \ddagger Bergman, ridges \ddagger.
i. 255.

They are foluble in their own weight of boiling water: water at the temperature of $65,7^{\circ}$ dififolves half its weight of them. The fpecific gravity of the folution
|| Ibid. is $1,0593 \|$. One hundred parts of boiling alcohol diffolves 56 parts of thefe cryftals; but at a mean tempe-
§ Ibid. rature only 40 paris \oint. They are not eafily foluble in ether. Fixed and volatile oils diffolve them, and they may be again obtained by gentle evaporation. Too violent a heat would fublime the acid itfelf.

Oxalic acid has a very acrid tafte when it is concentrated, but a very agreeable acid tafte when fufficiently diluted with water 9 .

It changes all vegetable blues except indigo to a red. One grain of cryftallized acid, diffolved in 1920 grains of water, reddens the blue paper with which fugar loaves are wrapt : one grain of it, diffolved in 3600 gr . of water, reddens paper ftained with turnfole.* A.ccording to Morveau, one part of the cryftallized acid is fufficient to communicate a fenfible acidity to 2633 parts of water \dagger.

Its fixity is fuch, that none of it is fublimed when water containing it in folution is raifed to the boiling temperature.

When this cryfallized acid is expofed to heat in an open veffel, there arifes a fm ke from it, which affects difagreeably the nofe and lungs. The refiduum is a powder of a much whiter colour than the acid had been. By this procefs it lofes $\frac{3}{7}$ the of its weight; but fonn recovers them again on expofure to the air. When dilalled, it firt lofes its water of cryltallization, then liquifies and becomes brown; a little phlegm pafes over, a white faline cruft fublimes, fome part of which paffes into the receiver; but the greateft part of the acid is dellonyed, leaving in the reiort a mals ${ }_{5}^{5}$ th of the whole, which has an empyreumatic fmell, blackens fulphuric acid, renders nitric acid yellow, and diffolves in muriatic acid without alteration. That part of the acid which fublimes is unaltered. When this acid is diftilled a fecond time, it gives out a white fmoke, which, condenfing in the receiver, produces a colourlets uncryAtallizable acid, and a dark coloured matter remains behind.* During all this diftillation a valt quantity of elaftic vapour makes its efcape. From 279 grains of oxalic acid, Bergman obtained 109 cubic inches of gas, half of which was carbonic acid and half hydrogen. Fontana from an ounce of it obtained 430 cubic inches of gas, onc-third of which was carbonic acid, the reft hydrogen. From thefe facts, it is evident that oxalic acid is compofed of noxygen, hydrogen, and carbon; but the propnrtions are fill unknown.

When nitric acid is frequently diftilled off oxalic * Wefirumr acid, acetous acid is produced.* The fulphuric acid, when concentrated, feems to produce the fame effect.

$\begin{array}{lllll}\mathrm{I} & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{Y} .\end{array}$

Muriatic and acetous acids diffolve oxalic acid, but Tartarous without altering it \dagger.

Oxalic acid is capable of oxydating lead, copper, iron, $\underbrace{\text {. }}_{\text {Bergman. }}$ tin, bifmuth, nickel, cobalt, zinc, manganefe.

It does not act upon gold, filver, platinum, mercury, Its action arfenic?

Oxalic acid combines with alkalies, alkaline earths, bodies. and alumina, and metallic oxyds, and forms falts known by the name of oxaluts.

Its affinities, according to Bergman, are as fol-Itsaffinities. lows:

> Lime,

Barytes,		
Strontites \ddagger,	\ddagger Dr Hope,	
Magnefia,	Tranf. Edino	
Potafs,	iv.	
Soda,		
Ammonia,		
Alumina,		
Jargonia \|	?	Metallic oxyds as in fulphuric acid, Ann. de
Melin,		
Water,	Cbim. xxii.	
Alcohol.		

Sect. XIV. Of Tartarows Acid.

Tartar, or cream of tartar as it is commonly called Difcovery when pure, has occupied the attention of chemifts for of tartarous feveral centuries. Duhamel and Groffe, and after them ${ }^{\text {acid. }}$ Margraf and Rouelle the Younger, proved, that it was compofed of an acid united to potafs; but Scheele was the firf who obtained this acid in a feparate ftate. He communicated his procefs for obtaining it to Retzitus, who publifhed it in the Stockholm Tranfactions for 1770. It confifted in boiling tartar with lime, and in decompofing the tartrite of lime thus formed by means of fulphuric acid.

This acid, by a gentle evaporation, yields cryftals fo Its proper irregular in their figure, that every chemift who has ties. treated of this fubject has given a different defcription of them. According to Bergman, they generally confift of divaricating lamellæ; * according to Van Pack- *Bergman, en, they aflume ofteneft the form of long pointed iii. 368 . prifms \dagger; Spielman and Corvinus \ddagger obtained them in \dagger De Sale groupes, fome of them lance-fhaped, others needle form- Efent. acide ed, others pyramidal. Morvean obtained them needleform $\$$. They do not experience any change in the air \ddagger Anale $87 x$ heat decompore them. In the Open fre Tartaro. nat decompores them. In the open fire they burn § Encycl. without leaving any other refiduum than a coal, which Metbod. generally contains a little lime\|. In clofe vefels, the Cbim. i. prodnct is carbonic acid and hydrogen gas $\|$. If the ${ }^{323}$. proper quantity of nitric acid be ditilled off the cry ftals, "Bbidgman, they are converted into oxalic acid, and the nitric acid, ii. 465 . as ufual, paffes into the nitrous acid.* Hence it is evi- of Spielman dent that tartarous acid alfo, like the four former, is and Corvicompofed of oxygen, hydrogen, and carbon; but the ins, ibid. proportions are equally unafcertained.

This acid, when in cryftals, diffolves readily in wa- $\frac{\text { and }}{}$ rum. ter. Bergman obtained a folution, the fpecific gravity \dagger Bergman, of which was $1,230 \dagger$. Morveau obferved, however, $i, 250$. that cryftals formed fpontaneoully in a folution, the fpecific gravity of which was 1,084 .

476
It has a very fharp acid tafte, and reddens vegetable Its action blues.

Citric Acid. $\underbrace{\text { Acid. }}$

Tartarons acid does not oxydat gold, filiver, platinum, lead, bifmuth, nor tin, and hardly antimony and nickel.

It combines with alkalies, alkaline earths, and alumina, and metallic oxyds, and forms falts known by the name of tartrites.

The order of its affinities is the fame as that given for oxalic acids; except that, according to Lavoifier, the oxyd of filver comes before that of mercury.

Sгct. XV. Of Citric Acid.

478
Mcthod of obtaining citric acid.

Chemists have always confidered the juice of oranges and lemons as a peculiar acid. This juice contains a quantity of mucilage and water, which render the acid impure, and fubjes to fpontaneous decompofition. Mr Georgius took the following method to feparate the mucilage. He filled a bottle entirely with leman-juice, corked it, and placed it in a cellar: in four years the liquid was become as limpid as water, a quantity of mucilage had fallen to the bottom in the form of flakes, and a thick cruft had formed under the cork. He expofed this acid to a cold of 23°, which froze a great part of the water, and left behind aftrong and pretty

* Stockbolm Tranf. 1774.

```
\bullet
``` pure acid*. It was Scheele, however, that firlt pointed ont a method of obtaining this acid perfectly pure. He faturated lemon-juice with lime, edulcorated the precipitate, which confifted of citric acid and lime, feparated the lime from it by diluted fulphuric acid, cleared it from the fulphat of lime by repeated filtrations and evaporation ; then evaporated it to the confiftence of a Cyrup, and fet it by in a cool place: a quantity of cry+ Scheele's ftals formed, which were pure citnic acid \(\dagger\). It exilts E \(\iint_{x y}\). ready formed alfo in the juices of the following berries: Vaccinium occicoccos, vaccinium vitis idea, prunus padus, \(\ddagger\) Scbele, folanum dulcamara, rofa canina \(\ddagger\), cherries \(\oint\).

Schcele advifes the ufe of an excefs of fulpharic acid, in order to infure the feparation of all the lime; but, according to Dizé, this excef's is neceffary for another purpofel. A quantity of mucilage fill adheres to the citric acid in its combination with lime, and fulphuric acid is neceffary to decompofe this mucilage, which, as Fourcroy and Vauquelin have proved, it is capable of doing. His proof of the prefence of mucilage is, that when the folution of citric acid in water, which he had obtained, was fufficiently concentrated by evaporation, it affumed a brown colour, and even became black towards the end of the evaporation. The cryftals alfo were black. By repeated folutions and evaporations, this black matter was feparated, and found to be carbon. Hence he concluded that mucilage bad been prefent; for mucilage is compofed of carbon, lyydrogen, and oxygen; fulphuric acid caufes the hydrogen and oxygen to combine and form water, and the carbon remains behind. It is not certain, however, as Mr Ni \(\dagger\) Nicbolfon, cholfon remarks very juftly \(\dagger\), that the fulphuric acid ibid. may not act upon the citric acid itfelf, and that the carbon may not proceed from the decompolition of it ; at leaft the experiments of Mr Dize are infufficient to prove the contrary. In that cafe, the fmaller the excefs of fulphuric acid ufed the better.

The cryltals of citric acid are rhomboidal prifms, the fides of which are inclined to each other in angles of
about 120 and 60 degrecs, terminated at each end by four trapezoidal faces, which include the folid angles \(\ddagger\). They are not altered by expofure to the air.

An ounce of diftilled water, at the temperature of ibid. the atmofphere, difolves one ounce and two drams of cryftallized citric acid; and during the fulution the temperature is lowered \(29,75^{\circ}\). Boiling water diffolves twice its weight of this acids.

Citric acid has a very acid tafte; it turns vegetable blues to a red.

It is capable of oxydating iron, zinc, tin. It does Its actim not act upon gold, filver, platinum, mercury, bifinuth, on other antimony, arfenic.

It combines with alkalies, alkaline earths, and alumina, and metallic oxyds, and forms falts known by the name of citrats.

Fire decompofes this acid, converting it into an acidulous phlegm, carbonic acid gas, and carbonated hydrogen gas. lts folution in water is alfo gradually decompofed, if accefs of air be permitted. It is evident, therefore, that this acid is alio compofed of oxygen, hydrogen, and carbon.

Scheele faid that be could not convert it into oxalic acid by means of nitric acid, as he had done feveral other acids; but Weftrum affirms, that this converfion may be effected; and thinks that Scheele had probably failed from having ufed too large a quantity of nitric acid, by which he had proceeded beyond the con. verfion into oxalic acid, and had changed the citric acid into vinegar; and in fupport of his opinion, he quotes his own experiments : from which it appeared that, by treating fixty grains of citron acid with different quantities of nitric acid, his products were very different. Thus with 200 grains of nitric acid he got 30 grains of oxalic acid; with 300 grains of nitric acid he obtained only 15 grains of the oxalic acid; and with 600 grains of nitric acid no veltige appeared of the oxalic acid. On diftilling the products of thefe experiments, efpecially of the laft, he obtained vinegar mired with nitric acid.

The affinities of this acid are as follows* :

Soda, Ammonia, Oxyd of zinc,

* Squediz

Tranf. and Crell's Arnals for
1785.
+ Ibis.
vulgaris, the fambucus nigra, the prunus
If nitric acid be diftilled with an equal quantity of
fugar, till the mixture affumes a brown colour (which is a fign that all the nitric acid has been abfracted from it), this fubitance will be found of an acid talte; and it), this fubtance will be found of an acid talte; and
after all the oxalic acid which may have been formed is feparated by lime.water, there remains another acid,
which may be obtained by the following procefs: Sais feparated by lime water, there remains another acid,
which may be obtained by the following procefs: Sa. turate it with lime, and filter the folution; then pour upon it a quantity of alcohol, and coagulation takes place. This coagulum is the acid combined with lime. Separate it by filtration, and ednlcorate it with frefh alcohol; then diffolve it in diftilled water, and pour in acetite of lead till no more precipitation enfues. The precipitate is the acid combined with lead, from which it may be feparated by diluted fulphuric acid. It pofferfes all the properties of malic acid \(\ddagger\). This acid, therefore, may be obtained from fugar; and it may be converted into oxalic acid, by diftilling off it the
§. Herrifudt, proper quantity of nitric acid \(f\).
Phys. Ehem. This acid bears a ftrong refensblance to the citric, but \(P b y y\). Chem. This acid bears a ftrong refentance to th
\(\stackrel{48+}{\text { Froper- }^{\text {roper }}}\)
r. The citric acid fhoots into fine cryftals, but this Its properties. behind pure malic acid**
This acid is contained in the berries of the barberis vulgaris, the famblucus nigra, the prunus fpinofa, the

Scherle diforered a peculiar acid in the juices of feveral fruits, which, becaufe it is found molt abundantly in apples, has been called malic acid.
He obtained it by the following procefs. Saturate the juice of apples with potafs, and add to the folution acetite of lead till no more precipitation enfues. Wafh the precipitate carefully with a fufficient quantity of water; then pour upon it diluted fulphuric acid till the mixture has a perfectly acid talle, without any of that fweetnefs which is perceptible as long as any lead remains diffolved in it ; then feparate the fulphat of lead, which has precipitated, by filtration, and there remains acid refembling the tattarous, then an empyreumatic oil mixed with more of the fame acid, and laftly carbonic Its properacid and hydrogen gas-there remains behind a fmall quantity of coal \(\ddagger\).

The combinations which this acid forms with alkalies, earths, and metallic oxyds, are called laffuts.

Its affinities, according to Bergman, are as follows:
\[
\begin{aligned}
& \text { Barytes, } \\
& \text { Potafs, } \\
& \text { Soda, } \\
& \text { Ammonia, } \\
& \text { Lime, } \\
& \text { Magnefia, } \\
& \text { Alumina, } \\
& \text { Jarginas ? } \\
& \text { Metallic oxyds as in fulpluric acid. } \\
& \text { Water, } \\
& \text { Alcohol. }
\end{aligned}
\]

487
- Scbecle, StockBolma Tranf. 1780. Tris.
+ Ibid. \(\ddagger\) Ibid.

488
Combinations,

\section*{Sect. XVIII. Of Saccholaaic Acid.}

If a quantity of frefh whey of milk be filtrated, and Sugar of then evaporated bs a gentle fire till it is of the confitt- nilk. ence of honey, and afterwards allowed to cool, a folid mafs is obtained. If this be diffolved in water, clarified with the white of eggs, filtrated and evaporated, to the confiftence of a fyrup, it depofits on cooling a number of brilliant white cubic cryftals which have a fweet talte, and for that reafon have beer called fugar of milk. Fabricius Bartholet, an Italian, was the firlt European who mentioned this fogar. He defcribed it in his Encyclopredia Hermetico dosmatica, publifhed at Boulognia in 1619; but it feems to have been known in India long before that period.

49I
After Mr Schecle had obtained oxalic acid from fu-Method of gar, he wifhed to cxamine whether the fugar of milk obtaining would furnifh the fame product. Upon four ounces faccholacof purs fugar of milk, finely powdered, he poured \(12^{\text {tic acid. }}\)

Its affinities have not yet been afcertained,

If milk be kept for fome time it becomes four. The
Sect. XVII. of Lagic Acid. of milk, and mucilage. All thefe muft be feparated before the acid can be examined. Scheele accomplifhed this by the following procefs:

486
ehod of and then filtrate it : this feparates the cheefy part. Sa. obtaining turate the liquid with lime-water, and the phofphat of lactic acid. lime precipitates. Filtrate again, and dilute the liquid with three times its own bulk of water; then let fall into it oxalic acid, drop by drop, to precipitate the lime which it has diffolved from the lime-water : then add a very fnall quantity of lime water, to fee whether too much oxalic acid has been added. If there has, oxalat of lime inmediately precipitates. Evaporate the folution to the confiftence of honey, pour in a fufficient quantity of alcuhol, and filtrate again ; the acid paffes through diffolved in the alcohol, but the fugar of milk and every other fubftance remains behind. Add to the folution a fmall quantity of water, and diftil with a fmall heat, the alcohol paffes over, and leaves behind the lactic acid diffolved in water*.
This acid is incapable of cryftallizing: when evapo rated to drynefs, it deliquefces again in the air \(\dagger\).
When diftilled, water comes over firt, then a weak Its affinities, accord 3. from the nitrous acid, and alfo the folution of gold when diluted with water; whereas citric acid does not alter any of thefe folutions.
4. Malic acid feems to have a lefs affinity than citiic acid for lime; for when a folution of lime in the former acid is boiled one minute with a falt formed from volatile alkali and citric acid, a decomporition takes place, and the latter acid combines with the lime
acid which then appears in it was firf examined by Scheele, and found by him to have peculiar properties. It is called lactic acid. In the whey of milk this acid is mixed with a little curd, fome phofphat of lime, fugar

Laslic
Acid.

Saccholac\(\underbrace{\text { tic Acid. }}\) and diluted nitric acid, and put the mixtore in a large glafs retort, which he placed in a fand bath. A violent effervefence enfuing, he was obliged to remove the retort from the fand bath till the commotion cealed. He then continued the diftillation till the mixture became yellow. As no cryftals appeared in the liquos remaining in the retort, after ftanding two days he repeated the diflillation as before, with the addition of eight ounces of nitric acid, and continued the operation till the yellow colour, which had difappeared on addition of the nitrous acid, returned. The liquor in the retort contained a white powder, and when cold was obferved to be thick. Eight ounces of water were added to dilute this liquor, which was then filtrated, by which the white powder was feparated; which being edulcorated and dried weighed \(7 \frac{1}{2}\) dr. The filcrated folution was evaporated to the confiftence of a fyrup, and again fubjected to diftillation, with four ounces of nitric acid as before; after which, the liquor, when cold, was obferved to contain many fmall, oblong, four cryftals, together with fome white powder. This powder being feparated, the liquor was again diftilled with more nitric acid as before; by which means the liquor was rendered capable of yielding crytals again, and by one diftillation more with more nitrous acid, the whole of the liquor was converted into cryftals. Thefe cryltalc, added together, weighed five drams; and were found, upon trial, to have the properties of the oxalic acid.

Mr Scheele next examined the properties of the white powder, and found it to be an acid of a peculiar nature; he therefore called it the acid of fugar of milt.. It is now called the faccholagic acid.

According to Scheele it is foluble in 60 parts of its weight of boiling water ; but Meffrs Hermftadt* and Morveau found, that boiling water only diffolved \(\frac{8}{8}\) th part. It depofited about \(\frac{1}{4}\) th part on cooling in the form of cryitals \(\ddagger\).

The folution has an acid talte, and reddens the infin. fion of turnfole§. Its \{pecific gravity at the temperature of \(53,7^{\circ}\), is \(1,0015 \%\).
When diftilled, it melts very readily, becomes black, and frothes; a brown falt fublimes into the neck of the retort, which has the odour of a mixture of amber and benzoin, having an acid tafte, eafily foluble in alcohol, with greater difficulty in water, and burning in the fire with a flame. There paffes into the receiver a brown li. quid having fome of this falt diffolved in it: There remains behind a coald, which Hermftadt found to contain a fmall qiantity of lime. Concentrated fulphuric acid difilled on this falt becomes black, frothes and decompofes it*.

Mr Hermitadt of Derlin had made fimilar experiments on fugar of milk at the fame time with Scieele, and with fimilar refults; but he concluded, tbat the white powder which he obtained was nothing elfe than oxalat of lime with excefs of acid, as indeed Scheele him- felf did at firft. After he became acquainted with

Scheele's conclufions, he publifhed a paper in defence of his own opinion; but his proofs are very far from eltablifhing it, or even rendering its truth probable. He acknowledges himfelf, that he has not been able to dccompofe this fuppofed falt : he allows that it poffeffes properties diftinct from the oz:alic acid, but he afcribes this difference to the lime which it contains; yet all the lime which he could difcover in 240 grains of this falt was only 20 grains; and if the alkali which he employed was a carbonat (as it probably was), thefe 20 munt be reduced to 1 t . Now Morvean has fhewn, that oxalic acid, containing the fame quantity of lime, exhibits very different properties. Belides, this acid, whatever it is when united with lime, is feparated by the oxalic, and mut therefore be different from it, as it would be abfurd to fuppofe that an acid could difplace itfelf*. The faccholactic acid mult therefore be confidered as :a diftinet acid, as it poffeffes pecnliar properties.

Its compounds with alkalies, earths, and metallic oxyds, are denominated fuccholats.

Its affinities, according to Bergman, are as follows: Lime,
Barytes,
Magnefia,
Potals,
Soda,
Ammonia,
Alumina,
Jargoniat? tVouqueîn,
Metallic oxyds as in fulpburic acid, Water,
Alcohol.
Sect. XIX. Of Gullic Acid.
Ann. de
Cbim. xxii. 208.

There is an excrefcence known by the name of nut Nut galls gall, which grows on fome fpecies of oaks. This fub. itance contains a peculiar acid, called from that circumItance gallic acid, the properties of which were firt examined with attention by the commifioners of the academy of \(\mathrm{D}_{\mathrm{ij}}\) on ; and the refult of their experiments was publithed in 1777, in the third volume of their Elements of Chemiftry. In thefe experiments, however, they employed the infufion of galls, in which the acid is combined with the taming principle(\(M\)). It was referved for Scheele to obtain it in a flate of parity.

He obferved, in infuron of galls made with 496 water, a fedment which proved on examination to of gallic as have a cryfalline form, and an acid talte. By letting cid. an infufion of galls remain a long time expofed to the air, and removing now and then the monldy fkin which formed on its furtice, a large quantity of this fediment was ohtained, which being edulcorated with cold water, rediffived in hot water, filtrated and evaporated very flowly, yielded an acid falt in cryltals as finc as fand*.

There is a fhorter methed of obtaining this acid in a fill purer flate than Scheele ubtaized it.
(m) A fubtance lately difcovered by French chemifts, which exifts alfo in nak-bark, and every other body which may be fubllituted for that bark in the operation of tanning. It refembles the refins in many properties; but its diftinguifhing property is that of forming with glue a compound infoluble in water. When a little of the decoction of glue is dropped into an infufion of nut-galls, a white curdy precipitate is inftantly feen: This is the tanning principle combined with glue. The name sanning principle has been applied to it, becaufe baznirgs confuts in combining this principle with fins, by which they are converted into leather.

Pour fulpharic ether on a quantity of powdered galls, and allow it to remain a few hours; by which time it becomes coloured. Put this tincture into a retort, and diftil off the ether with a fimall heat. The refiduum poffeffes the colour and brittlenefs of a refin, and has all the characters of Rouell's refiduous-extract; it does not attract moifture from the atmolphere. Diffolve it in its own weight of water, and add fulphuric acid, drop by drop, till the liquor has become of a manifeitly acid talle. It caules a white precipitate, which becomes coloured, and is immediately rediffolved. At the end of fome hours a refinous matter will have precipitated. Decant off the fluid, dilute it with half its weight of water, filtrate and evaporate it to \(\frac{3}{4}\) ths in a moderate heat ; add pure barytes, till the liquor is no longer capable of decompofing muriat of barytes; then filtrate it again : and on evaporation in a moderate heat fmall white prifmatic cryltals of gallic acid are formed on the fides of the veffelt.

It appears from the experiments of Deyeux, that the fubltance extracted from nut-galls by ether does not dif. fer much from the extract by water \(\ddagger\). Probably, then, the only reafon for employing ether is the fmall heat neceffary for evaporating it.

There is ftill another method of obtaining this acid. Dillil nut-galls in a ftrong heat, a white fubftance fublimes, which cryftallizes in the form of needles: This is gallic acid. If the cryftals are impure, they may be purified by a fecond fublimation: but the heat muft not be too violent, otherwife the cryitals will melt in. to a brown mafs*. This procefs was difcovered by Scheele.

Eut the moft elegant method of obtaining gallic acid is that of Mr Prouft. When a folution of muriat of tin is poured into an infufion of nut-galls, a copious yellow precipitate is inttantly formed, confilting of the tanning principle, combined with the oxyd of tin. After diluting the liquid with a fufficient quantity of water to feparate any portion of this precipitate which the acids might hold in folution, the precipitate is to be feparated by filtration. The liquid contains gallic acid, muriatic acid, and muriat of tin. To feparate the tin, a quantity of fulphurated hydrogen gas is to be mixed with the liquid. Sulphuret of oxyd of tin is precipitated under the form of a brown powder. The liquid is then to be expofed for fome days to the light, covered with paper, till the fuperfluous fulphurated liydrogen gas exhales. After this, it is to be evaporated to the proper degree of concentration, and put by to cool. Cryftals of gallic acid are depofited. Thefe are to be feparated by filtration, and wathed with a little cold water. The evaporation of the reft of the liquid is to be repeated till all the gallic acid is obtained from it \(\dagger\).

The gallic acid thus obtained has a very acid tatte, and reddens vegetable colours. It is foluble in \(1 \frac{1}{2}\) parts of boiling water, and in 12 parts of water at the temperature of the atmolphere. Alcohol difolres onefourth of its weight of this acid at the temperature of the atmofphere. When boiling hot it diflolves a quanticy equal to its own weight.

When placed upon burning coals, gallic acid takes fire, ard at the fame time diffules a very ftrong odour, which has fomething aromatic in it. When ftrongly heated, it melts, boils, becomes black, is deffipated, and leaves a quantity of charcoal behind it. When diftill.
quor is found in the receiver, with fome gallic acid, not decompofed, and there remains in the retors a quantity of carbon. If what has palled into the receiver be again diPtilled, more oxygen gas is obtained, fome gallic acid Atill fublimes, and a quantity of carbon remains in the retort. By repeated diftillations, the whole of the acid may be decompofed. This decompofition may be more eafily accomplithed by diftilling repeatedly a folution of gallic acid in water. The produts are oxygen gas, charcoal, and an acid liquor.

From thefe experiments, Mr Dejeux, who perform. Its compeed them, has concluded, that gallic acid is compofed of fition. oxygen, and a much larger proportion of carbon than enters into the compofition of carbonic acid. But this conclufion is not warranted by the analyfis; for Mr Deycux did not find that the quantity of oxygen gas and carbon obtained was equal ta that of the gallic acid decompored : and in the acid liquor which came over, there evidently exifted a quantity of water, which doubtlefs was formed during the diftillation. Scheele, by treating gallic acid with nitric acid in the ufual manner, converted it into oxalic acid. Now it is certain, that oxalic acid contains hydrogen as well as carbon. It cannot be doubted, then, that gallic acid is compofed of oxygen, hydrogen, and carbon, in proportions not yet afcertained. But Mr Deyeux has proved, that the quantity of carbon is very great, compared with that of the hydrogen.

Gallic acid combines with alkalies, earths, and metallic osyds, and forms compounds, known by the name of gallats.

Its affinities have not yet been determined; but oxyd of iron feems to have a ftronger affinity for it than for any other fubftance; for gallic acid is capable of taking it from every other acid. In confequence of this property, the infufion of galls is employed to detect the prefence of iron in any liquid. As foon as it is poured in, if iron be prefent, a black or purple colour is produced.

Sect. XX. Of Benzoic Acid.
Benzoin or benjamin (as it is fometimes called) is a Benzoin. kind of refin brought from the Ealt Indies; obtained, according to Dr Dryander, from the ftyrax benzoe, a tree which grows in the inland of Sumatra. This fubftance confifts partly of a peculiar acid, defcribed as long ago as 1608 by Blaife de Vigenere, in his Treatife on Fire and Salt, under the name of flowers of benzoin, becaufe it was obtained by fublimation. This acid, which is now called the benzoic acid, may be fu. blimed from benzoin by heat ; or it may be obtained by Scheele's procefs, which has been defcribed in the article Chemistry (Encycl.)

Benzoic 502 Denzoic acid has little or noze of the peculiar odour Propertic which diftinguifhes benzoin. Its tafte is not acid, but of benzoic fweetifh and very pungent*. It hardly affecs the infulion of violets; but it reddens that of tuinfole, efpe * Morveas, cially if that infufion be hot \(\dagger\). Heat volatilizes this Encyct. acid, and nakes it give out a ftrong odour, which ex-Cbimie, i. cites coughing. When expofed to the heat of the 44 . blow-pipe in a filver fpoon, it melts, becomes as fluid \(\dagger\) Licktenas water, and evaporates without taking fire. It only fiin. burns when in contact with flame, and then it leaves

500

\begin{abstract}
-
\end{abstract}
 1
 duced.

\footnotetext{

}

 s

Prof benzoic acid. Encycl. Meibod. + Lick
Acin. no

\section*{Part II.}

C \(\quad \mathrm{H} \quad \mathrm{E}\) M I S T R Y.
Succinic no refiduum behind. When thrown upon burning coals, \(\underbrace{\text { Acid. }}\) it rifes in a white fmoke. When allowed to cool after being melted, it hardens, and a radiated cruft forms on \(\ddagger\) Idem. its furfaceł.

It fuffers no other alteration in the air than lofing the little of the odour of benzoin which remained to - Morveau, it*.
ibid.
Cold water diffolves no fenfible quantity of it ; but it is foluble enough in hot water : \(4^{80}\) grains of boiling water diffulve 20 grains of it; 19 of thete are depofited, when the water cools, in long, flender, flat,
+ Licbien- feather like cryftals \(\dagger\).
Rcin.
Concentrated fulphuric acid diffolves it without heat or any other clange, except becoming fomewhat brown: when water is poured into the folution, the benzoic acid feparates and coagulates on the furface without any alteration \(\ddagger\). Nitric acid prefents precifely the fame phenomena, and alfo the fulphurous and nitrous acids. Neither the muriatic, the oxy-muriatic, nor the phofphoric acids diffolve it. The acetous, formic, and febacic acids, when hot, diffolve it precifely as water
\$Id. does; but it cryftallizes again when thefe acids cool \(\|\).
Alcohol diffolves it copiounly, and lets it fall on the
- Id. addition of water*.

Little is known refpecting its bafe. nations and and forms falts, known by the name of benzoats.

Its affinities, from the experiments of Trommfdorf, appear to be as follows:
White oxyd of arfenic,
Potafs,
Soda,
Ammonia,
Barytes,
Lime,
Magnefia,
Alumina,
Jargonia \(\ddagger\) ?
Water,
Alcohol.

Sect. XXI. Of Succinic Acid.
\(\ddagger\) Vaugure
lin, Ann. de
Cbim. xxii. 208.

504
Amber.
Amber is a well-known brown, tranfparent, inflammable body, pretty hard, and fufceptible of polifh, found at fome depth in the earth, and on the fea-coalt of feveral countrics. It was in high eftimation among the ancients both as an ornament and a medicine.When this fubftance is diftilled, a volatile falt is obtained, which is mentioned by Agricola under the name of falt of amber; but its nature was long unknown. Boyle - Boyle \(a\) - was the firt who difcovered that it was an acid*. From Gridged by fuccinum, the Latin name of amber, this acid has received the appellation of fuccinic acid.

It is obtained by the following procefs: Fill a retort half way with powdered amber, and cover the pow. der with a quantity of dry fand; lute on a receiver, and diftil in a fand-bath without employing too much heat. There paffes over firft an infipid phlegm; then a weak acid, which, according to Scheele, is the acetoust; then the fuccinic acid attaches itfelf to the neck of the retort; and if the diftillation be continued, there comes over at laft a thick brown oil, which has an acid tafte.

The fuccinic acid is at firf mixed with a quantity of
oil. Perhaps the beft method of purifying it is that recommended by Pott, to dililolve it in hot water, and to put upon the filter a little cotton, previoufly moiftened with oil of amber; this fubftance retains moft of the nil, and allows the folution to pafs clear. The acid is then to be cryftallized by a gentle evaporation. And this procefs is to be repeated till the acid be quite pure. The cryftals are white, fhining, and Its prob of a foliated triangular prifmatic form : they have an ties, acid talte, but are not corrofive: they redden tineture of turnfule; but have little effect on that of violets.

They fublime when expofed to a confiderable heat, but not at the heat of a water-bath. In a fand-bath they melt, and then fublime and condenfe in the upper part of the vefiel ; but the coal which remains thews that they are partly decompofed*.

One part of this acid diffolves in \(9^{6}\) parts of water at the temperature of \(50^{\circ}\), according to Spislman \(\ddagger\), Inf. CLenn. in 24 parts at the temperature of \(52^{\circ}\), and in 2 parts \(\S\) xii.
of water at the temperature of \(212^{\circ}\), according to
Stockar de Neuforn \(\dagger\); but the greatelt part cryftal. \(\dagger\) De Succilizes as the water cools. According to Roux, how. no.
ever, it ftill retains more of the acidthan cold water is capable of diffolving \(\ddagger\).

240 grains of boiling alcohol diffolve 177 of this acid; \({ }^{\text {ibid, p. } 72 .}\)
but cryttals again fhoot as the folution cools*. *Wenzet.
The combinations of this acid are called fuccinats.
Its component parts are fill unknown.
Its affinities, according to Morveau, are as follows : ions and
Barytes,
Lime,
Potafs,
Soda,
Ammonia,
Magnefia,
Alumina,
Jargonia \(\dagger\) ? \(\dagger\) VauqueMetalic oxyds, as in fulphuric acid, lin, Ahm. de Water, Cbim. xxii. Alcohol.

Sect. XXII. Of Camphuric Acid.
CAMPhor is a well-known white cryftalline fuhftance, Camphor. of a ftrong tafte and fmell, obtained from a pecies of laurel in the Ealt Indies; and Mr Proult has fhown that feveral volatile oils contain a confiderable quantity of it*. It is fo volatile, that it cannot be melted in open veffels, and fo inflammable, that it burnseven on the furface of water.

When camphor is fet on fire in contact with oxygen gas, it burns with a very brilliant Hame ; much caloric is difengaged, water is formed, the inner furface of the veffel is covered with a black matter, which is undoubtedly carbon, and a quantity of carbonic acid gas is alfo produced. \(\dagger\) Hence it follows, that it is compofed of + LaGrange, hydrogen and carbon, at lealt principally. Ann. del

If one part of camplior and fix parts of pulverifed Clim. xaiikclay be mixed together, by means of alcohol, in a mor- \({ }^{153 .}\) tar, the mixture made up into balls, and when dry put into a retort, and diftilled by a moderate heat-a quantity of oil comes over, and there remains in the retort a black fubitance, which confifts of the clay insimately mixed with a quantity of carbon. If the fire be not cautioully managed, a quantity of camphor alfo frb-

Camploric limes. Ly uis procefs, camplor is decompounded, Acid.
and feparated into oil and carbon.

122,248 parts of camphor produced 45,856 parts of oil and 30,571 of carbon.

Total 76,427
\[
\text { Lois } 45,82 \mathrm{I}
\]

Carbonated hydrogen gas and carbonic acid were alfo formed \(\ddagger\).

The oil obtained has the following properties:
It has a fharp cataftic tafte, and leaves upon the tongue a fenfe of coldnefs. It has an aromatic odour, approaching to that of thyme or rofemary. Its colour is a golden yellow.

When expofed to the air, it partly evaporates, and there remains a thick brown matter with a tharp bitterifh talte, which at laft alfo evaporates.

With alkalies, it forms a foap, which poffeffes all the characters of foaps made with volatile nils.

Alcohol diffolves it entirely ; and when water is added to the folution it becomes milky, but no precipitate is produced \(\ddagger\).

Thefe properties fhow that this is a volatile oil, and confequently it is probable that camphor is compofed of volatile oil and carbon.
Mr Kofegarten, by diftilling nitnic acid off camphor eight times fucceffively, obtained an acid in cryftals*, to which the name of camphoric acid has been given.

His experiments have been repeated by Mr Bouillon La Grange. He mised together 122,28 + parts of campher with 489,136 parts of nitric acid of the fpecific gravity 1,33 , and dililled them. Much nitrous and carbonic acid gas were difengaged, and part of the cam. phor was fublimed; hut part was converted into an acid. He returned the fublimed camphor into the re. tort, poured on it the fame quantity of nitric acid as at firft, and diftilled again. 'This procefs he repeated till the whole camphor was acidified \(t\). The quantity of camphoric acid obtained amounted to 53,498 . The quantity of nitric acid was 2114,538 .

Camphoric acid thus ebtained is in fnow-white cryfals, of the form of parallelopipedons*.

Thefe cryftals efflorefce in the ais \(\ddagger\).
Cimphoric acid has a nlightly acid bitter talte, and a frnell like that of iaffron.

It reddens vegetable colours.
It is foluble in 200 parts of cold water, according to Iofegarten ; in 96 parts of water at the temperature of \(60^{\circ}\), according to La Grange. Boiling water diffolves \(\frac{x^{3}}{2}\) th of its weighe \(\oint\).

According to Kegarten, it is infoluble in alcohol; according to La Grange, alcohol diffolves it, and when the folution is left in contaft with the air of the atmof. phere, the acid cryitallizes. It is not precipitated from its folution in alcohol by the addition of water*.

When this acid is placed on ignited coals, it emits a denfe aromatic fume, and is entirely dilfipated. By a gentler heat, it melts, and is jublimed. If it be put into a heated porcelain tube, and oxygen gas be palfed through it, the acid does not undergo any change, but is fublimed.

By mere diftillation, it firf melts and then fublimes; by which procefs its properties are in fome refpect changed. It no longer reddens the tineture of turnfol,
but acquires a brik aromatic fmeli; its tafte becomes lefs penetrating, and it is no longer foluble either in water or the fulphuric and moriatic acids. Heated ni- tric acid turns it yellow and diffolves it. Alcchol likewife diffolves it ; and if this folution be left in contact with the air of the atmofphere, it cryftallizes.

Camphoric acid does not produce any change in fulphur ; alcohol and the mineral acids totally dilfolve it ; and fo likewife do the volatile and the fat oils.

Camphoric acid does not precipitate lime from limewater. It produces no change on the fulution of indigo in fulphuric acid.

It forms combinations with the alkalies, earths, and Its combimetallic oxyds, which are called camphorats.

Its affinities, as far as afcertained by La Grange, are
as follows*
\[
\begin{aligned}
& \text { Lime, } \\
& \text { Potafs, } \\
& \text { Soda, } \\
& \text { Barytes, } \\
& \text { Ammonia, } \\
& \text { Alumina, } \\
& \text { Magnefia. }
\end{aligned}
\]
* Ann. de

Cbim. xxvii.
21.

\section*{Cork, a fubftance too well known to require any Difcovery} defcription, is the bark of a tree which bears the fame of fuberic name. By means of nitric acid, Brugnatelli converted \({ }^{\text {acid. }}\) it into an acidt, which has been called the fuberic acid, \(\dagger\) Crells from Suber, the Latin name of the cork tree. Several Annols, chemifts affirmed that this acid was the oxalic, becaufe \(\mathbf{1 7 8 7}\) it poffeffed feveral properties in common with it. Thefe affertions induced Buillon La Grange to undertake a fet of experiments on fuberic acid. Thefe experiments, which have been publithed in the 23 d volume of the Annales de Cbimie, completely eftablith the peculiar na. ture of fuberic acid, by thewing that it poffeffes properties different from thofe of every other acid.

To prepare it, a quantity of found cork grated down Method of fmall is to be put into a retort, fix times its weight of preparing nitric acid of the fpecific gravity 1,261 ponred upon \({ }^{\text {it. }}\) it, and the mixture diftilled by means of a gentle heat. Red vapours are immediately difcharged; the cork fuells up and becomes yellor, and as the diltillation advances, it finks to the bottom, and its furface remains frothy. If that froth does not form properly, it is a proof that fome past of the cork has efcaped the action of the acid. In that cafe, after the diftillation is pretty far advanced, the acid which has palfed into the receiver is to be poured back into the retort, and the diftillation continued till no more red vapours can be perceived; and then the retort is to be immediately taken out of the fand.bath, otherwife its contents would become black and adhere to it. While the matter contained in the retort is hot, it is to be poured into a glafs velfel, placed upon a fand-bath over a gentle fire, and conftantly firred with a glafs rod. By this means it becomes gradually thick. As foon as white vapours, exciting a tickling in the throat, begin to difengage therafelves, the veffel is removed from the bath, and the mafs continually ltirred till it is almolt cold.

By this means an orange coloured mafs is obtained of the confiftence of honey, of a ftrong and fharp odour while hot, but having a peculiar aromatic fmell when cold.

On this mafs twice its weight of boiling water is to be poured, and heat applied till it becomes liquid; and then that part of it which is infoluble in water is to be feparated by filtration (N). The filtred liquor becomes muddy ; on cooling it depofits a powdery fediment, and a thin pellicle forms on its furface. The fediment is to be feparated by filtration, and the liquor reduced to a dry mafs by evaporating in a gentle heat. This mafs is fubcric acid. It is ftill a little coloured, owing to fome accidental mixture, from which it may be purified either by faturating it with potafs and pre. cipitating it by means of an acid, or by boiling it along
prop its proper ries. with charcoal powder.
Suberic acid thas oltained is not cryftallizable, but when precipitated from potais by an acid it alfumes the form of a powder ; when obtained by evaporation it forms thin irregnlar pellicles.

Its tatte is acid and flightly bitter ; and when diffolved in a fmall quantity of boiling water it aets upon the throat, and excites coughing.

It reddens vegetable blues; and when dropped into a folution of indigo in fulphuric acid (liquid blue, as it is called in this country), it changes the colour of the folution, and renders it green.

Water at the temperature of \(60^{\circ}\) or even \(70^{\circ}\) diffolves only \(\frac{1}{57,6}\) part of its weight of fuberic acid, and if the acid be very pure, only \(\frac{x}{47}\) th part: boiling water, on the contrary, diffolves half its weight of it.

Suppl. Vor. I.
When expofed to the air, it attracts moifture, efpe cially if it be impure.

When expofed to the light of day, it becomes at lait brown: and this effect is produced much fooner by the direst rays of the fun.

When heated in a matrafs, the acid fublimes, and the infide of the glafs is furrounded with zones of different colours. If the fublimation be fopped at the proper time, the acid is obtained on the fides of the veffel in fmall points formed of concentric circles. When expofed to the heat of the blow-pipe on a fpoon of pla. tinum, it firft melte, then becomes pulverulent, and at laft fublimes entirely with a fmell refembling that of febacic acid (0).

It is not altered by oxygen gas:-the other acids do not diffolve it completely. Alcohol developes an aromatic odour, and an ether may be obtained by means of this acid.

It converts the blue colour of nitrat of copper to a green; the fulphat of copper alfo to a green; green fulphat of iron to a deep yellow ; and lulphat of zinc to a golden yellow (\(p\)).

It has no action either on platinum, gold, or nickel ; but it oxydates filver, mercury, copper, lead, tin, iron, bifmuth, arfenic, cobalt, zinc, antimony, manganefe, and molybdenum.

With alkalies, carths, and metallic oxyds, it forms compounds known by the name of fuberats.

Its affinities are as follows \((e)\) :

516
Its action on ocher bodies.

517 Itsaffinities.
(N) When this fubftance is put into a matrafs, water poured on it, and heat applied, it melts; and when the reffel is taken from the fire and allowed to cool, one part of it, which is of the confiftence of wax, fwims on the furface of the water, and another part precipitates to the bottom of the veffel, and affinmes the appearance of a whitifh magma. When this magma is feparated by filtration, and wafhed and dried, a white taftelefs powder is obtained, mixed with ligneous threads, foluble in acids and alkalies.
(o) An acid which thall be afterwards defcribed.
(\(p\)) Owing perhaps to the prefence of a little iron in the fulphat.
(Q) The place which the fuberic acid occupies in the affinities of the alkalies, earths, and metallic oxyds, as far as this fubjeet has been inventigated by Bouillon La Grange, will appear by the following tables :

Potass.
Sulphuric acid
Nitric,
Muriatic,
Suberic,
Alumina.
Sulphuric \(_{*}^{*}\) acid.
Oxalic,
Suberic,
Otyd of Mercury.
Sebacic acid,
Nitric,
Suberic.

Soda.
Sulphuric acid,
Nitric,
Muriatic,
Suberic.
Oxyd of Tin.

Muriatic,
Suberic.
Oxyd of Lead.
* * *

Muriatic, Suberic.

Barytes.

Oxalic,
Muriatic,
Suberic.
Oxyd of Silver.
Muriatic,
Sulphuric,
Suberic.
Oxyd of Copper.

Sulphuric, Suberic.
Oxydof Bismuth.

Muriatic,
Suberic.

Lime.
Oxalic acid, Sulphuric,

Muriatic, Suberic. Magnesia as lime.

Oxyd of Molybdenum.
Suberic acid.
Oxpd of Antimony.
* * *

Muriatic,
Suberic,
Manganese the fame.

Oxyd of Iron.

Sulphuric, Suberic.

Oxyd of Arsenic.

\footnotetext{
* * *

Nitric acid,
Suberic,
}

Barytes, Potafs, Sod.s, Lime, Ammonia, Magnefia, Alumina.*
Mr Buiilon La Grange, to whom we are indebted for all the facts relative to this acid, fuppofes that it is compofed of oxygen, lydrogen, and carbon: but Mr Jumefon, in confequence of the refult of a feries of exferimests which be made on charcoal, has been led to dulpeet that it confifts entirely of carbon and oxygen. He found that, by the aftion of nitric acid upon charcoal, a brown, bitter, deliquefeent mafs was formed, rolubie in water, alcohol, and alkalies, and which emitted, particularly when heated, a very fragrant odour. This matter was more or lefs fuluble in water according to the time that it had been expofed to the action of the acid. When the nitric acidufed was concentrated, and confiderable in quantity, part of the charcoal wats converted into an acid, which poffeffed the characters of the fuberic \(\dagger\).

Thefe facts are curious, and may extend our knowledge of the nature of vegetable acids, but they are infufficient to prove the abfence of hydrogen in fuberic acid, becaufe charcoal cannot eafly be procured perfectly free from hydrogen, and becaufe feveral of the properties of fuberic acid indicate the prefence of hydrogen in it, its becoming brown, 10 inflance, when expuled to the light. Mr Jamefon has obferved, that the acid which exilts ready formed in peat poffelles the properties of fuberic acid.

\section*{Sect. XXIV. Of Laccic Acid.}

Aeout the year t 7 S6, Dr Anderf in of Madras mentimned in a letter to the governor and council of that place, that nelts of infects, refembling finall cowry fhells, had been brought to him from the woods lyy the natives, who eat them with avidity. Thefe fuppofed nefts he foon afterwards difonvered to be the coverings of the females of an undefcribed fecies of coccus, which he thurtly found moans to propagate with great facility on feveral of the trees and fhrubs growing in his neighbourhood (R).

On examining this fubitance, which he called rubite lic, be obferved in it a very cunfiderable refeniblance to bees wax; he noticed alfo, that the animal which ferretes it provides itfelf by fome means or nther with a fmall quantity of honey, refembling that produced by sur bees; and in one of his letters he complains, that the children whom he employed to gather it were tempted by its fweetnefs to eat fo much of it as matebi.al'y to reduce the produce of his crop. Small quantities of this matier vere fent into Europe in 1789 ,
both in its natural ftate and melted intocakes; and in \({ }^{1793}\) Dr Pearfon, at the requelt of Sir Jofeph Banks, undertook a chemical examination of its qualities, and his experiments were publithed in the Philofophical Tranfactions for 1794 .

A piece of white lac, from 3 to 15 grains in weight, Its analyfis. is probably produced by each infert. Thefe pieces are of a grey colour, opaque, rough, and roundifh. When white lac was purified by being frained through mans. lin, it was of a brown colour, brittle, hard, and laad a bitterifh tafte. It melted in alcohol, and in water of the temperature of \(145^{\circ}\). In many of its properties it refembles bees wax, though it differs in others; and Dr Pearfon fuppofes that both fubfances are compofed of the fame ingredients, but in different proportions.
'Iwo thouland grains of white lac were expofed in fuch a degree of heat as was juft fufficient to melt them. As they grew foft and fluid, there oozed out 550 grains of a reddifh watery liquid, which fmelled like newly baken bread (s). 'To this liquid, Dr Pearfon has given the name of lacsic acidt.

It polleffes the following properties:
It turns paper ftained with turnfole to a red colour.
After being filtered, it has a flightly faltifh tafte with bitternefs, but is not at all four.

When heated, it fmells precifely like newly baken hot bread.

On ftanding, it grows fomewhat turbid, and depo. acid. fits a fmall quantity of fediment.

Its fpecific gravity at the temperature of \(60^{\circ}\) is 1,025.

A little of it having been evaporated till it grew very turbid, afforded on ftanding fmall needle fhaped cryftals in mucilaginous matter.

Two hundred and fifty grains of it were poured in. to a very fmall retort and ditilled. As the liqunr grew warm, mucilage like clouds appeared; but as the heat increafed they difappeared again. At the temperature of \(200^{\circ}\), the liquor diftilled over very faft: A fmall quantity of extractive matter remained behind. The diftilled liquer while hot fmelled like newly baken bread, and was perfectly tranfparent and yellowith. A fhred of paper itained with turnfole, which had been put into the receiver, was not reddened; nor did another which had been immerfed in a folution of fulphat of iron, and alfo placed in the receiver, turn to a blue colour upon being moiltened with the folution of potafs (\(T\)).

A bout one hundred grains of this dillilled liquid being evaporated till it grew turbid, after being fet by for a night, afforded acicular cryftals, which under a lens appeared in a group not unlike the umbel of pari. ley. The whole of them did not amount to the quas. ter of a grain. They talted only bitterifh.

Another ico grains being evaporated to drynefs in a very low temperature, a blackifh matter was left behind, which did not entirely difappear on heating the fpoon
(R) The Chinefe colleat a kind of wax, which they call pc.la, from a coccus, depofited fir the purpofe of breeding on feveral flurubs, and manage it exactly as the Mexicans manage the cochineal infect. It was the knowledge of this that induced \(\operatorname{Dr}\) Anderfon to attempt to propagate his infect.
(s) The fame liquid appears on preffing the crude lac between the fingers; and we are told, that when newly gathered it is replete with juice.
(v) A proof that the acid was not the pruffic.

Laccic Acid.
fpoon containing it very hot in the naked fire; but on heating oxalic acid to a much lefs degree, it evaporated and left not a trace behind.

Carbonat of lime diffolved in this diftilled liquor with effervefence. The folution tafted bitterifh, did not turn paper faired with turnfole red, and on adding to it carbonat of potafs a copious precipitation enfued. A little of this folution of lime and of alkali being evaporated to drynefs, and the refiduum made red hot, nothing remained but carbonat of lime and carbonat of potaf.
This liquid did not render nitrat of lime turbid, but it produced turbidneis in nitrat and muriat of barytes.

To five hundred grains of the reddifh-coloured liquor obtained by melung white lac, carbonat of foda was added till the effervefcence cealed, and the mixture was neutralifed ; for which purpofe three grains of the carbonat were necellary. During this combination a quantity of mucilaginous matter, with a little carbonat of lime, was precipitated. The faturated folution being filtrated and evaperated to the due degree, afforded on thanding deliquefcent cryftals, which on expofure to fire left only a refiduum of carbonat of foda.

Lime-water being added to this reddifh-coloured liquor produced a light purple turbid appearance ; and on flanding there were clouds jut perceptible.

Sulphuret of lime occafioned a white precipitation, but no fulphurated hydrogen gas was perceptible by the fmell.

Tinclure of galls produced a green precipitation.
Sulphat of iron produced a purplifh colour, but no precipitation; nor was any precipitate formed by the addition firf of a little vinegar, and then of a little potafs, to the mixture.
Acerite of lead occafioned a reddifh precipitation, which rediffolved on adding a little nitric acid.

Nitrat of mercury produced a whitifn turbid liquor.
Oxalic acid produced immediately the precipitation of white acicular cryftals, owing probably to the prefence of a little lime in the liquid.

Tartrite of potafs produced a precipitation not unlike what takes place on adding tattarous acid to tartrite of potafs \((\mathrm{U})\); but it did not diffolve again on adding potafs.

Such were the properties of this acid difcovered by Dr Pearfon. Its deftructibility by fire, and its affording carbon, diftinguifh it from all the acids defcribed in this article before the acetous; and its peculiar fmell when heated, its precipitating tartrite of potafs without forming tartar, its bitterifh tafte, and its being converted into vapour at the temperature of \(200^{\circ}\), diftin-
- Pbil. guith it from all the acids hitherto examined*.
Tran. I794.
P. 383 .

522
Method of obtaining pyromucous acid.

\section*{Sect. XXV. Of Pyromucous Acid.}

Pyromucous (v) acid is frocured by diflilling fugar or any of the fweet juices. As they toan very much, the retort thould be large, and feven-eighths of it empty. A prodigious quantity of carbonic acid and cabbonated
hydrogen gas is difengaged: A very thin light coal re- pyronumains behind in the retort. Morveau found the gliffs cucs Acid. of the retort attacked. The quantity of fugar ciftilled was 2304 grains; the coal weighed 982 grains. There were 428 grains of a brown liquor in the receiver, confilting mofly of an acid phlegm. This redifilled gave 3.13 grains of a liquor almon limpid, the fpecific gravity of which was \(r, 0115\) at the temperature of \(77^{\circ}\). It reddened blue paper. This acid may be concentra. ted by freezing, or by combining it with fome bafe, potafs for inftance, and decompofing the compound by a flronger acid, as, for example, the fulphuric.

It has a very hlarp talte. When expofed to heat in Its properopen veffels it evaporates, leaving a brown fpot. Dif- ties, tilled in clofe veffels, it leaves charcoal behind it.

It does not diffolve gold as Schrickel and Lemery and feveral other chemifts affirmed.

It does not attack filver nor mercury, nor even their oxydst. It corrodes lead, and forms fty ptic and long + Sobrickect. cryftals. Copper forms with it a green folution: With iron it forms green cryftals; with antimony and zinc greenifh folutions.

524
The compounds which it forms are called pyronucites. Combins-
Its affinities, according to Morvealu, are as fullows: tions and
Potafs,
Soda,
Barytes,
Lime,
Magnefia,
Ammonia,
Alumina,
Jargonia \(\dagger\),
Metallic oxyds as in fulph. acid, Water, Alcohol.

Sect. XXVI. Of Pyro-ligrous Acid.
IT is well known that the fmoke of burning wood is Mcthod of exceedingly offenfive to the eyes: And chemitts bave obtaining long ago obferved, that an acid might be obtained by pyroligdititling wood.

It is to Mr Goettiing, however, and to the Dijon academicians, who repeated his experiment, that we are indebted for what knowledge we poffefs of the peculiar properties of this acid, which, becaufe it is obtained from wood by means of fire, hiss been called the pyrolignous acid (w). It appears to be the fame from whatever kind of wood it is obtained.
Mr Goettling filled an iron retnrt with pieces of birch tree bark, and obtained by difillation a thick, brown, very empyreumatic acid liquor. This liquor he allowed to remain att reff for three months, and then feparated from it a quantity of oil which had rifen to the top. By diftilling this liquor again, and then faturating it with potafs, and evaporating it to drynefs, he obtained a brown filine mafs; which, by being rediffolved in water, and evaporated, yielded greyifh white crytals: Thefe cryfals were compofed of pyro-lignous
\[
3 \mathrm{D} 2
\]
acid
(v) On this addition, tartar, or acidulated tartrite of potafs, is formed, which precipitates, becaufe it is very little foluble in water. The addition of potafs diflolves it again.
(v) Morveau called this acid /yrupous acid.
(w) Gcettling called it lignesus aciul.
\(+\mathrm{Crell}^{\prime} \mathrm{s}\)
Gournal, 1779.
acid and potafs. He poured upon them, by little and little, a quantity of fulphuric acid; and by applying a gentle beat, the pyro-lignons acid came over in confiderable purity \(\dagger\).

The Dijon academicians obtained this acid from beech wood: by diftilling 55 ounces, they procured 17 ounces of acid; which, when rectified by a fecond ditillation, was of the fpecific gravity 1,02083 .
526 its properties, combinations, and
afinities.
It reddens vegetable colours: when expofed to a frong beat, it takes fire and is deftroyed. It unites very well with alcohol.
Its compounds are called pyro-lignites.

Its atfinties, as fixed by Mr Eloy Bourfier de Clervaux and Mr de Morvean, are as follows:

\# Vauqua-
in, Ans.de Chim. xxii. 208.

527
Properties of pyro-tar-

\section*{Sect. XXVII. Of Pyro-lartarous Acid.}

An acid may alfo be obtained by diftilling tartar ; it is called fyro-tartarous acid.
It has an empyreumatic tatte and odour, reddens the tincture of turufole ; but has no effect on that of violets.
Little is known concerning this acid, except that many of its properties are the fame with thofe of the pyro-lignous; and Morveau conjectures, that, if properly purified, it would probably be difoovered to be the fame with it.

The compounds which it forms are called pyro-tartrites.

Its affinities are unknown. Morveau fuppofes that they are the fame with thofe of the pyro-lignons acid.

The is preceding acids are all (except the lactic and faccholactic) denominated vegelable acids, becaufe they are obtained from vegetable fobitances. We have placed the lactic and faccholactic acids in the fame clafs; becaufe they bear a ftrong refemblance to vegetable acids, and becaufe they are evidently compofed of the fame ingredients with them.
Vegetable acids are diftinguifhed from all the acids
defcribed in the beginning of this chapter, by their de- Vegetable Atructibility by fire.
'There is no circumftance in chemiftry which has attracted greater attention than the poffibility of converting the various vegetable acids into each other by meavs ible into of different procefles. To explain what palfes during each other. thefe proceffes, it would be neceffary to know exactly the component parts of every vegetable acid, the manner in which thefe acids are combined, and the affinities which exift between each of their ingredients. This, however, is very far from being the cafe at prefent. Though a valt number of experiments have been made on purpofe to throw light on this very point, the difficulties which were to be encountered hatve been fogreat, that no accurate refults have yet been obtained.

It follows from thefe experiments that all the vege- Enquiry intable acids are compofed chielly, at lealt, of nxygen, hy. to the prodrogen, and carbon; but that the proportions differ in portions of every individual acid. We fay chiefly, becanfe it has theiringrebeen fufpected from fome phenomena, that one or two of thefe acids contain befides a little azot. Let us take a view of what is at prefent known of the compofition of thefe acids in their order.
1. As to carbonic acid, its compofition has been afcertained with tolerable accuracy; it confilts of about 28 parts of carbon, and 72 of oxygen.
2. By diftlling 7680 grains of acerite of potaifs, Dr Higgens obtained the following product:*: *Higgins on

Carbonated hydrogen gas, - 1047,6018
Refiduum, confilting of carbon, 78,0000
\begin{tabular}{ll}
Oil, - . . . \\
Warer, \\
380,0000 \\
\hline
\end{tabular}
Deficiency (x), - 726,9402
This deficiency Dr Higgens found to be owing to a quantity of water and oil which is carried off by the elaftic fluids, and afterwards depofited by them. He calculated it, in the prefent cafe, at 700 grains of water and 26,9,402 grains of oil. Now, fince acetite of potafs is compofed of acetsus acid and potafs, and fince the whole of the potafs remained unaltered, it follows that the acetons acid was converted into carbonic acid gas, carbonated liydrogen gas, carbon, oil and water; all of which are compofed of oxygen, hydrogen and carbon.

Now \(147,3,564 \mathrm{gr}\). of carbonic acid gas are compofed of \(1060,966 \mathrm{gr}\). of oxygen, and \(415,598 \mathrm{gr}\). of carbon. 1047,6018 grains of carbonated hydrogen gas, from a comparifon of the experiments of Dr Higgens and Lavoifier, mas be fuppofed to confift of about \(7 \mathbf{1 4 , 6 0 0 8}\) grains of carbon, and 333,0010 of hydrngen.

2009402 grains of oil contain 163,4828 grains of carbon, and 43,4574 grains of hydrogen.

1040 grains of water contain 884 grains of oxygen and 156 grains of hydrogen.

Therefore \(3^{817.006}\) grains of acetons acid are compofed of \(1944,966-29: 1=1915,866\) grains of oxygen, \(53^{2,458}+\) grains of hydrogen, and 1368,6816 grains of carbor. Confequently 100 parts of acetous
acid are compofed of
50,19
(x) For 29,1 grains of oxygen gas had alfo difappeared from the air of the veffels.

Part II.
Vegcrable Acids.
\(\underbrace{\text { Acids. }}\)

\section*{C H E M I S T R Y.}

Weftrum converted it into oxalic acid by means of nitric acid.
7. Malic acid was converted into oxalic by means of nitric acid by Scheele. It has been fuppofed to contain more oxygen than oxalic acid. Some of it is always formed during the common pracefs of converting fugar into nxalic acid. Were we to judge from an experiment, which, however, was not performed with iufficient accuracy, we would conclude that the bafe of malic acid is gum; for by difilling two parts of weak nitric acid off one part of gum in a very fmall heat, we obtained a quantity of acid more in weight than the gum, which exhibited feveral of the diftinguifhing properties of malic acid. It was exceedingly light, white, and fpong', and attra\&ted water very quickly from the atmofphere, and conld not afterwards be brought by evaporation to its former itate.
8. Scheele converted lactic acid into acetous by mere expoliure to the atmofphere, and found that a quanuity of carbonic acij was difengaged. Hence this acid is merely the acetous with a fmaller proportion of carbon.
9. The gallic acid, we have feen, contains more carbon than any of the others.
10. Nothing is known concerning the compofition of the benzoic and fuccinic acids. Hermfadt lays he converted benzoic acid to oxalia by means of nitric acid: but Morveau did not obferve that any change was produced.
11. The bife of camphoric is probably camphor.

Though thefe eightecn are the only acids which have hitherto been examined with attention, it cannot be doubted that the number of vegetable acids, either exifting naturally, or at lealt capable of being formed by art, is confiderably greater. Morve:w had lately afcertained, that the red colours of fowers are owing to acids : 'This had already been conjertured by Linnzus.

\section*{Secr. XXVIII. Of Praffic Aci.I.}

About the beginning of the prefent century, Dicf- Difcovery bach, a chemilt of Berlin, wilhing to precipitate a folu- of Pruffan tion of cochineal mixed with a little alum and fulphat bluc. of iron, borrowed from Dippel fume potafs, from which that chemift had dy/lilled feveral times his animal oil. On pouring in the prats, Dieflach was furprized to fee, inftead of the red precipitate which he had expected, a beautiful blue powder falling to the bottom of the veffel. By refleating on the materials which he had employed, he eafily difiovered the method of procuring the blue powder at plealiure*. 'This powder was called Prufinn "Stabl's, blue, from the place where it was difcovered. 1t was 300 Expco announced in the Berlin Memuirs for 1710 ; but the riments. procefs was concealed, becaufe it had become a lucrative article of commerce. A method of preparing it, Method however, was publihed by Wooduard in the Philofo- preparing phical Trandagions for \({ }^{1724}\), which he faid he had got in. from one of his friends in Germany. This method was as follows: Detonate together 4 ounces of nitre and as much tartar, in order to procure an extemporaneous alkali; then add 4 ounces of dried bullock's blood, mix the ingredients well together, and put them into a crucible covered with a lid, in which there is a farall hole; calcine with a moderate fire till the blood emits no more fmoke or tlame capable of blackening any white body

Prutic Acid.
expofed to it : increafe the fire towards the end, fo that the whole matter contained in the crucible flatl be moderately but fenfibly red. In this thate throw it into two pints of water, and boil it for half an hour. Dc. cant off this water, and continue to pour on more till it come off infipid. Add all there liquids together, and buil them down to two pints. Diffolve two ounces of tilphat of iron and eight ounces of alum in two pints of boiling water; mix this with the former liquor while both are hot. An effervefence takes place, and a powder is precipitated of a green colour mixed witis blue. Separate this precipitate by filtration, and pour muriatic acid upon it till it heoomes of a beautiful blue; then wall it with water and dry it.

Different explanations were given of the nature of this precipitate by different cheniifs. All of them acknowiedged that it contained iron, but to account for the colour was the dificult point. Brown and Geoffroy, and Neumarn, difcovered in fuccefien, that a great many other animal fubtances befides blood communicated to alkalies the property of forming Pruftian blue. Macquer undertock an cxamination of this fublance, and publifted the refult of his experiments in the Memoirs of the French Academy for 1752.

He obferved, that when alkali is added to a folu. tion of iron in any acid, the iron is precipitated of a yellow colour, and foluble in acids; but if iron be precipitated from an acid by an alkali prepared as above defcribed, by calcination with blood (which has been called a Pruffan alkali), it is of a green colour. Acids diffolve only a part of this precipitate, and leave behind an infoluble powder which is of an intenfe blue colour. The green precipitate therefore is compufed of two different fubfances, one of which is Pruflian blue; the other, as lie afcertained by experiment, is the brown or yellow osyd of iron ; and the green colour is owing to the misture of the blue and yellow fubllances. When heat is applied to the infoluble precipitate, its blue colour is deftroyed, and it becomes exactly fimilar to common oxyd of iron. It is compofed therefore of iron and fome other fubtance, which heat has the property of driving off. If this infoluble precipitate be boiled with a very pure alkali, it lofes its blue colour alfo, and at the fame time the alkali acquires the property of precipitating of a blue colour folutions of iron in acids, or it has become precifely the fame with the Pruffian alkali. Prufian blue, therefore, is compofed of iron and fomething which a pure alkali can feparate from it, fomething which has a greater affinity for alkali than for iron. By boiling a quantity of alkali with Pruffian blue, it may be completely faturated with this fornething, which we fhall call colouring matter, and then it has lon all its alkaline properties. No acid can feparate this colouring matter from iron after it is once united with it. When irnn diffolved in an acid is mixed with an alkali faturated with the colouring matter, a double decompofition takes place, the acid unites with the alkali, and the colouring matter with the iron, and forms Pruffian blue. The reafon that, in the common method of preparing Prufian blue, a quantity of yellow oxyd is precipitated, is, that there is not a fufficient quantity of colouring matter (for the alkali is never faturated with it) to faturate alit the iron difplaced by the alkali; a part of it therefore is mixed with Prulfian blue. Muriatic acid diffolvcs this oxyd, carries it off,
and leaves the blue in a fate of purity. Such were the conclufions which Macquer drew from his expcriments; experiments which not only difcovered the compofition of Pruflian blue, but threw a ray of light on the nature of affinitics, which has contributed much towards the advancement of that inopertant branch of chemifry.

The nature of the colouring matter, however, was Aill unknown. Macquer himfelf fuppofed, that it was pure phlogitton; but the opinion was untenable. He had thewn that it poffefied the property of forming neutral falts, and therefore Bergman and Motveau fufpected that it was an acid.

Scheele undertook the tafk of examining its nature, and publithed the refult of his experiments in the Stockholm Tranfactions for 1782.

He obferved, that the Prufian alkali, after being expofed for fome time to the air, loft the property of forming Pruffian blue; the colouring matter muft therefore have left it.

He put a fmall quantity of it into a large glafs globe, Dec35 corked it up, and kept it fome time ; but no change fed by was produced either in the air or the Pruffian alkali. Scheele. Something mult therefore difplace the colouting matter when the alkali is expofed to the open air, which is not prefent in a glafis vefiel. Was it carbonic acid gas? To afcertain this, he put a quantity of Pruffian alkali into a glafs globe filled with that gas, and in 24 hours the alkali was incapalle of producing Pruffian blue. It is therefore carbonic acid gas which difplaces the colouring matter. He repeated this experiment with this difference, that he hung in the globe a bit of paper which had been previonfly dipped into a folution of fulphat of iron, and on which he had let fall two drops of an alkaline lixivium, in order to precipitate the iron. This paper was taken out in two hours, and became covered with a fine blue on adding a little muriatic acid. Carbonic acid, then, has the property of feparating the colouring matter from alkali without decompofing it.
He found alfo that other acids produced the fame ef. The colourfeat. The colouring matter then may be obtained per- ing matter haps in a feparate fate. He accordingly made a num- feparated. ber of attempts to procure it, and at laf difcovered the following procefs: He boiled together for fome minutes two ounces of Pruffian blue in powder, one ounce of the red oxyd of metcury, and fix ounces of water; then palfed the whole through a filter, and wathed the refiduum with two ounces of boiling water. The oxyd of mercury has a greater affinity for the colouring matter than the oxyd of iron; it therefore unites with it, and forms with it a falt foluble in water. The iron remains behind upon the filter, and the liquid is a folution of the colonring matter combined with mercury. He poured this folution upon half an ounce of pure iron-filings, and added at the f.me time three grains of fulphuric acid. The iron feparates the oxygen from the mercury, in order to combine with the fulphuric acid ; the mercury is precipitated in its motallic flate, and leaves behind it a quantity of fulphat of iron and of colouring matter diffolved in water, but not combined, as the colouring matter is unable to feparate the iron from the acid*.
He then difilled in a gentle heat; the colouring mat. Ann. de ter came over by the tinie that one fourth of the liquor Cbinie, io had paffed into the receiver. It was mixed, however, \({ }^{30}\) with a fmall quantity of fulphuric acid; from which he
feparated

Pruflic feparated it by diftilling a fecond time over a quantity \(\underbrace{\text { Acid. of carbonat of lime. The Lulphuric acid combines }}\) with the lime and remains behind, which the colouring matter cannot do, becanie carbonic acid has a Aronger aftinity for lime than it has. Thus he obtaitsed the 537 colouring matter in a flate of purity.

\section*{Its compo- It remained now to difcover its component parts.}
nent parts. He formed a very pure Pruffian blue, which he diftilled, and increafed the fire till the veffel became red. 'The fmall quantity of water which he had put into the receiver contained a portion of the blue colouring natter and of ammonia; and the air of the teceiver confifted of azot, carbonic acid gas, and the colouring matter. He concleded from this cxperiment, that the colouring matter was compofed of ammonia and carbon. He mixed together equal quantities of pounded charcoal and potals, put the mixture into a crucible, and kept it red hot for a quarter of an bour: he then added a quantity of fal ammoniac in fimall pieces, which he puthed to the bottom of the melted misture, kept it in the fire for two minutes till it had cealed to give ollt vapours of ammonia, and then threw it into a quantity of water. The folution poffeffed all the properties of the Pruffian alkali. Thus Mr Scheele fucceeded in forming the colouring matter; and it was confidered as proved that it was compofed of ammonia and carbon.

But after the publication of Scheele's experiments, it was difcovered that ammonia itlelf is compofed of azot and hydrogen. It became therefore a queltion, whether ammonia entered into the compolition of this fubltance, or merely its ingredients? whether it was compofed of ammonia and caibon, or of azot, hydrogen, and carbon combined in a different manner? This point has been decided by the following experiments. Mr Clouet made a quantity of ammoniacal gas pals through a sed hot porcelain tube filled with charcoal, and by this procefs formed a quantity of the colouring matter.* Here the temperature was fo high, that the ammonia mult have been decompoled; and the colouring matter cannot be formed by combining ammonia and charcoal except at a temperature equally high. There is reafon therefore to Juppoie that the ammonia is decompofed. When oxy-muriatic acid is mixed with the colouring matter, it communicates to it a quantity of oxygen, and caufes it in confequence to affume very different properties. When a fixed alkali or lime is added to it in this ftate, it is immediately de. compoled, and converted into ammonia and carbonic acid gas. The colouring matter in this ftate contains all the ingredients neceffary to form theie two fubftances, namely, azot, hydrogen, carbon, oxygen; but in order to induce the ingredients to form thele two compounds, the affitance of an alhali or lime to combine with the carbonic acid is neceffary; juft as fulphur comhines more eafily with oxygen when united with an al-- Berthollet, kali or with iron than when feparate.*

\section*{Ann. de} Cbim. i.
'l'he colouring matter, then, which we fhall henceforth call the Pruffic acid, is compofed of azot, hydrogen, and carbon; but the proportions of thete ingre-
dients have not yet been determined. It is conlidered as an acid, though the prefence of oxygen has not been proved, becaufe it has the property if forming neutral falts with the fame bafes as other acids.

The Pruffic acid is exceedingly volatile, and evident- Froperties ly capable of exifing in a gafeous ftate. It h is a pecu. of Prufic liar odnur, not difagreeable, and which has been com- acid. pared to the fiowers of the peach. It has a fweetifh and fomewhat hot tatle, and excites cough \(\dagger\).

It has no affinity for alumina nor for alcohel \(\ddagger\).
'This fubtance differs exceedingly in its action fiom all other acids.

It is capable of cominin like them, with 539 It is capable of combining, like them, with earths, Its action which have been denominated Pruffats. Wut it en- bodies. ters much more readily into thiple compounds with alkalies or earths, and metallic oxyds, than intu combinations with carths or alkalies feparately; and though its affinity appears to be greater for alkalies and earths than for metallic oxyds, yet when in a free or gafeous ftate it does not enter into combinations with earths or alkalies without difficulty, and it is feparated from them much more eafily than from metallic oxyds. Mere expofure to the light of the fun, or to a heat of \(110^{\circ}\), is fufficient for that purpofe.

Its affinities are fuppofed to be as follows ;

\section*{Sect. XXIX. Of Formic Acid.}

In the 15 th century feveral botanifts obferved with Difcovery aftonithment, that the fower of fuccory, when thrown of formic into an ant-hill, became as red as blosd: But it was acid. Mr S. Fiher who firtt difcovered that ants poffeffed a pecoliar acid, which l.c obtained by dittilling thefe animals. His experiments were publifhed in the Philofophical Tranfactiuns for 1670 . Though Hoffmanafterwards repeated his procels, little was known concerning the nature of this acid till Mergraf undortook its ex:amination,
(y) We fufpect that this is not the real order of the aftinities of this acid; the metallic oxyds ought prabably to be placed before the alkaiies and eaths, and the metallic Prolfiats ought to occupy the place which is at prefent filled by the metallic oxyds. The reafons for this conjecture will appear aftcriwards. Siee Purt III. chap. ii. fect. 23. of this article.

Fornic mination, and publifued his experiments in the Berlin Acid. Memoirs for 1749.

The fpecies of ants from which the formic acid is obtained is the formica rufu, which reflde molt commonly in woods, or at lealt in elevated and dry places. They have hern foum to contain the greatef quantity of acid in the months of June and Jul). If at that feafon no of there animals be prefled upon paper tinged with curnfole, it changes the colour of it to a molt hively red; they even fumatimes faim it merely by 542 crawling over it.
Method of There are two methods of obtaining the formic acid, obtuining it.
* Difcre. on the ficid of Ants, 1777, in Bualdiager's Nesu Mogrzine for Arts. + Encycl. Metliod. i. 65.
\(\ddagger\) Ardvifon and Ochrn, ibid.

This acid has a ftrong but not unpleafant fmell, a cauftic talle, and when much diluted a pleafant acidity. When moft concentrated, its fpecific gravity

One part of this acid, mixed with 75 parts of water, gives a taint red to fyrup of violets; mixed with \(43^{\circ}\) parts of water, it reddens paper coloured with turnfole; mixed with 1300 parts of water, it produces no \(\ddagger\) Morveau, effect on the infufion of turnfole \(\ddagger\). It mixes readily p. 62. thus rectified is \(1,0011 \ddagger\).

Hermitadt employed a third method. He expreffed the juice of dry :nts, and by this means obtained from 2 lbs. of there animals 210 z .2 dr . of juice, which on dillillation yielded a clear pure acid, equal in Atrength to very concentrated vinegar.*

This acid feems to be capable of affuming a gafeous form; at leaft Hermitadt obferved, that when he put fome of it into a bottle with a glafs ftopper, the flopper was frequently raifed by an elaftic fluid making its efcape, and that after fome days it had loft its with alcohol. dillulhaton and lixiviation.
When the firft method is to be employed, the ants are to be wafted clean, dried whin a gentle heat, put into a retort, and diftilled with a moderate heat, gradually increafed till all the acid has come over. It is mixed with an empyreunatic oil, from which it is feparated by pating it through a frainer previonfy moiitened with water. By thas procels MelTrs Ardvilion and Oehrn obtained from a pound of ants \(7^{\frac{1}{2}}\) ounces of acid, the fpecific gravity of which, at the temperature of \(60^{\circ}\), was 1,0075.* Morveau obtained from 49 ounces of ants 23 ounces of pretty itrong acid \(\dagger\). Margraf added a quantity of warer, but it is evident that this ferves merely to weaken the acid.

When the other method is preferred, the ants are to be walhed in cold water, put upon a clean linen cloth, and boiling water poured on them repeatedly till it can extract no morc acid. 'lhe linen is then to be fqueezed, and the feveral liquors mixed and filtrated. This method was firft ufed by Ardvifion and Ochan: they obtained from a pound of ants an acid liquor which had more fpecific gravity than common vinegar. It is to be purified fiom the oil which adheres to it by repeated diftllations. After four diftillations the empyrenmatic cil ltill manifelts its prefence by its fmell, but this fmell vanilles if the acid be expofed for fome time to the air ; a quantity of effential oil, however, ftill remains, which cannot be feparated. The fpecific gravity of the acid

It unites readily with the other acids. When boiled
with fulphuric acid, it becomes black. White acriü vapours rife when the mixture becomes hot; and when it boils, a gas rifes which unites with difficulty to water and lime-water ; the formic acid is again obtained, but Acid.

Sect. XXX. Of Bombyc Acid.
Mr Boissier de Sauvages obferved, that the juice Mr Boissier de Sauvages obferved, that the juice Difoovery
of bombye
of the filkworm, in the difeafe called in France mufca. acid. dine, was acid; and Chauflier remarked, that the lilkworm, after being converted into a butterfly, gives out
its quartity is diminifhed \(\delta\). Nitric acid decempofes it altogether, and is itfelf converted intonitrons acid. Muriatic acid does not alter it. Oxy-muriatic acts like nitric acid.*

\author{
* Mid.
}

544
Its crmp unds are called formiats.
Its affinities are the fame with thofe given above for the Pruffic acid.

\section*{its com-} pounds and affinities.

\section*{Sect. XXX. Of Sebacic Acid.}

Chemists had long furpected that an acil could be obtained from tallow, on account of the acrid nature of the fumes which it emitted at a high temperature ; but it was M. Grutzmacher who firf demonftrated this acid in a diflertation Dc Offium Medullu, publifhed in \(174^{8} \ddagger\). M. Rliodes mentioned it in 1753 , and Segner \(\ddagger\) Leonsardipublifhed a differtation on it in 1754 , and Crell examined its properties very fully in two differtations publifhed in the Phil. Tranf. for 1780 and 1782 . It was called at firlt acid of fat, and afterwards febacic acid.

It may be procured by heating together a mixture of fuet and lime. Sebat of lime is formed, which may be purified by rolution in water. It is then to be put into a retort, and filphuric acid poured on it. Sebacic acid paffes over on the application of heat.

Sebacic acid has an acid, harp, bitterifh talte, and a very pangent fimell. It reddens tincture of litmus.

Heat caufes it to affume a yellow colour.
It oxydates filver, mercury, copper, iron, lead, tin, zinc, antimony, manganefe.

It does not act upon bifmuth, cobalt, nickel. When
mixed with nitric acid it diffolves gold.
Its compounds are called febats.
Its affinities, according to Morveau, are as follows : Com- \({ }^{547}\)
\begin{tabular}{|c|c|}
\hline Barytes, & pounds, and affi- \\
\hline Potafs, & nities. \\
\hline Soda, & \\
\hline Lime, & \\
\hline Magnefia, & \\
\hline Ammonia, & \\
\hline Alumina, & \\
\hline Jargonia \(\dagger\), & \(t\) Fauquelin Am. de \\
\hline Oxyd of zinc, & Cbim. \(x\) \\
\hline \(\ldots\) manganefe, & 208! \\
\hline -_-iron, & \\
\hline -_- lead, & \\
\hline ---tin, & \\
\hline -- cobalt, & \\
\hline - copper, & \\
\hline -nickel, & \\
\hline - - arfenic, & \\
\hline - bifmoth, & \\
\hline - mercury, & \\
\hline -- antimony, & \\
\hline - filver, & \\
\hline
\end{tabular}

545
Difcovery febacic acid,

§ Ibid.
\(\qquad\)
-

\author{

}

\author{
\(\qquad\)
} 546
Its properties, Its afinite, ac

548 acid.

\section*{Part II.}

C H I M I S T R Y.
Zoonic a liqucr which turns vegetable blues to a red. He found, Acid. that during the time that the animal was forming its cocun, the acid was depofited in a refervoir near the anus. By means of a pair of iciffars be collected fome which reddened bluc paper, united with alkalies with ef. fervefrence, and even attacked the fiffars. He afterwards collected it by infufing the ehryfalids in alcohol, which diffolved the acid, but left the impurities untouched.

This acid has never been examined with attention; fo that almof all its properties are unknown.

\section*{Sect. XXXI. Of Zoonic Acid.}

549
Method of obtaining zoonic acid.
\(\dagger\) Ann. de Chins. xxvi. 86.

550
Hs proper-
rice.

Mr Berthollet has obtained a peculiar acid by difilling vegetable and animal fubftances, to which he has given the name of the zarnic acidf. He procured it by ditilling the ginten of wheat, the yeft of beer, bones, and woollen rags; and concludes, therefore, that it may be produced by the diftillation of all animal fubtances.

To obtain this acid pure, he mixed lime with the difilled liquid, after having feparated the oil, which it always contains (for the product of the diftillation of animal fubftances is chiefly oil and carbonat of ammonia). He boiled this mixture till the carbonat of ammonia was exhaled : he then filtered it, added a little more lime, and boiled it again till the fmell of the ammonia had gone off entirely. The liquor, which now contained only zoonat of lime, he filtered again, and then added a little water impregnated with carbonic acid, in order to precipitate any lime which might hap. pen to be diffolved in the liquid without being combined with the zoonic acid.

After concentrating the zoonat of lime, he mixed it with phofphoric acid, and diftilled it in a retort. At a heat nearly equal to that of boiling water, the zoonic acid paffes over in a flate of purity.

The zoonic acid has an odour like that of meat when frying, and it is actually formed duting that procefs. It has an auftere tafte.

It gives a red colour to paper tinged with turnfole.
With alkalies and earths it produces falts, which do not appear capable of cryftallizing.

It forms a white precipitate in the folutions of acetite of lead and nitrat of mercury.

Part of the zoonic acid feems to be deftroyed by the astion of heat during the diftillation of the zoonat of lime with phofphoric acid: for the liquor, which is in ebullition, becomes brown, and grows black at the end of the operation ; hence Mr Berthollet concludes that the zoonic acid contains carbon. The zoonat of filver, when kept, becomes gradually brown; bence he concludes that the acid contains hydrngen. Thefe conclufions he draws from a very ingenious theory of his, which has heen already defctibed in the article Bleach-
- Bertollolet, in \(\operatorname{cin}\) ihis Supplement*.

Ann. dic
Chim. xxvi.
55 r
Animal
acids.

The five preceding acids have obtained the name of animal acids, becaufe they are all obtained from the animal king dum. It can feariely be doubted that a more accurate examination of animal fubftances will add confiderably to the number of thefe acids.

\section*{Sect. XXXII. of Arfenic Acid.}

Arsenic acid, which was firft difcovered by Scheele, may be produced by fimply mixing the white oxyd Suppl. Vol. I.
of arfenic with oxy-muriatic acid, and applying a heat fufficient to fublime the muriatic acid. The theory of this operation is evident : the white oxyd has a greater affinity for oxygen than muriatic acid has; of courfe it combines with it, and is thus converted into arfenic acid, and the muriatic acid is eafily fubli. med by applying heat.

Landriani has informed us, that this acid may be alfo formed by fibliming feveral times fuccefiively the white oxyd of arfenie, and taking care every time to renew the air. This procefs is equally fimple; the oxyd combines at a high temperature with the oxygen of the atmofphere.

Tlais acid is exceedingly fixed. When expofed to lts proper the air it attracts humidity, and at laft becomes li. ties. quid. At the temperature of \(60^{\circ}\) it difolves in two. thirds of its weight of water. Its folution may be evaporated to drynefs, and even converted into a glafs, which attracts moifture from the air, and aets powerfully on the crucible.

It is poifonous as well as the white oxyd of arfenie*.

When expofed to a red heat, it is partly decompofed and converted into white oxyd of arfenic \(\dagger\).

It does not act upon gold, platinum, filver, mercury.

It oxydates copper, iron, lead, tin, zinc, bifmuth, antimony, cobalt, nickel, manganefe, and arfenic, and in a very ftrong heat mercury and filver.

According to Berthollet's experiments, arfenic acid is compofed of eight parts of white oxyd of arfenic, and one part of oxygen.

Its compounds are called arfeniats.
Its affinities are as follows:

Cbim. xxii. 208.

Tungstic acid, or oxyd of tungften, was firn dif- Propertics covered by Scheele; but the acid which he examined of turgftic was not pure, being compofed, as Mr Liyart has fhewn, acid. of nitric acid, ammonia, and tungtic acid. The real acid is infoluble in water, tafteleis, and incapable of turning vegetable blues rcd till it has been firft rendered

3 E
foluble
Sect. XXXIII. Of Tung fic Acid.

\(\square\)

\[
+I 1
\]

* Rimar.

556
It3 com-
pounds and affinities.
- Layorts.
+ Vauquelin,
Ann. de
Chim. xxii. 208.

557
Properties of molybdic acid.
* Brrgnian.
foluble by being partly combined with ammonia. It is of a beautiful yellow colour, which becomes blue when expofed to the light, or heated violently in clofe veffels. It does not recover its yellow colour, except by calcination in the open air, and then increafes in weight. When put into muriatic acid along with tin, zinc, or iron, the liquor becumes blue*. Treated with acetous acid, it becomes blue. When reduced to a glafs with phorrhat of roda, the blue colour appears and difap. pears, according as the blue or yeliow part of the flame is dirested to it, as happens to manganefe. Probably this blue fubftance is an oxyd of tungiten will a fmaller quantity of oxygen.

Its compounds are called tungffats.
Its affinities are as follows*:
\[
\begin{aligned}
& \text { Lime, } \\
& \text { liarytes, } \\
& \text { Mignefia, } \\
& \text { Potafs, } \\
& \text { Soda, } \\
& \text { Ammonia, } \\
& \text { Alumina, } \\
& \text { Jargoniaf? } \\
& \text { Sect. XXXIV. Of Molybdic Acill. }
\end{aligned}
\]

Concrete molsbdic acid, firit difcovered by Scheele, is white, and has an acid but metallic talte. Its fpecific gravity is \(3,75^{*}\). It is not altered in the air. When heated in a crucible till it is beginning to melt, it experiences no alteration. It remains fixedeven in a great fire as long as the crucible is covered; but the moment it is uncovered, the acid rifes unaltered in a white fmoke. It diffolves in 570 parts of water. The folution reddens turnfole ; nitric acid dnes not affect it, but fulphuric and muriatic acids diffolve it by the affitance of heat.

It may be prepared by treating the ore of molybdenum with nitric acid, and wafhing the acid when formed in water.
When combined with potafs, it forms a colourlefs falt.

Mixed with filings of tin and muriatic acid, it immedi.tely becomes blue, and precipitates flakes of the fame culour, which difappear after fome time, if an excefs of muriatic acid has been added, and the liquor atfumes a brownith colour.

With the folution of nitrat of lead it forms a white precipitate, foluble in nitric acid.

When mixed with a little alcohol and nitric acid, it does not change its colour.

With a folution of nitrat of mercury, or of nitrat of filver, it gives a white flaky precipitate.

With the nitrat of copper it forms a greenifh precipitate.

With folutions of fulphat of zine, muriat of bifmuth, muriat of antimony, nitrat of nickel, muriats of gold and platinum, it produces white precipitates when thefe folutions do not contain an excefs of acid.

When melted with borax, it gives it a bluifh colour.

Paper dipt in this acid becomes in the fun of a beau-

Sulue colour*.
Sulphur is capable of partly decompofing it by heat. Its compounds are called nooljblats.
Its afficities are unknown.

\section*{Sect. XXXV. Of Cliromic Acid.}

Is the year \(177^{\circ}\), Mr Pallas difcovered, in the gold mine of Berefof, near Ekaterimbourg in Siberia. a mi- Analy fif of neral of a red colour, with a thade of yellow cryftallized the red leas in fmall acute angled quadrangular prifms, fometimes of Siberia, fmnoth, fometimes longitudinally Itreaked, and often hollow. Mr Macquait, profeflor of medicine at Paris, who in 1783 had been fent to the north by the French government in order to collect mineralngical information, brought with him a quantity of this mineral, which has been dittinguithed by the name of red lead ore of Siberaa, and in 1789 analy fed four ounces of it along with Mr Vauquelin. They found it to contain,
\begin{tabular}{|c|c|c|}
\hline Lead & & 36\% \\
\hline Oxygen & - & \(37 \frac{5}{8}\) \\
\hline Iren - & - & 24\% \\
\hline Alumina & - & 2 \\
\hline
\end{tabular}
and a little filver*.
- Ann. 2

Mr Bindheim of Mofow analyfed it foon after, and Clim. i. found it to contain,
\begin{tabular}{|c|c|}
\hline Lead & 60 \\
\hline Molybdic acid & 11,66 \\
\hline Nickel & - 5,66 \\
\hline Oxyd of iron, & 1 \\
\hline Air and water, & 6 \\
\hline Silica & 4,5 \\
\hline & 87,82 \\
\hline
\end{tabular}
and a little copper and cobalt \(\dagger\).
\(\dagger\) Berr.
Vauquelin examined it again in 1797, and found Beob. ip. that all the former analyfes were inaccurate. 2913.

A hundred parts of this mineral reduced to a fine powder were mixed with 300 parts of the faturated carbonat of potafs, and atout 4000 parts of water; and this mixture was expofed for an hour to a boiling beat. He obferved, in, that when thefe matters began to act upon each other there was produced a flrong effervefcence, which continued a long time; 2 d , that the orange colour of the lead became a brick red; 3 d, that at a certain perind the whole matter feemed to diffolve; \(4^{\text {th }}\), that in proportion as the effervefience advanced the matter reappeared under the form of a granulated powder of a dirty vellow colour; 5 th, that the liquor affumed a beauiful golden yellow colour. When the effervefcence had entirely fubfided, and appeared to have no longer any action on the fubftances, the liquor way filtered, and the metallic dutt collected on the paper. After being wafhed and dried it weighed no more than 78 parts: the potafs, therefore, had takenfrom it 22 parts.
He poured upon the 78 parts juft mentioned fone of the nitric acid, diluted in 12 parts of water, which produced a brifk effervefcence. The greater part of the matter was diffolved : the liquor aftumed no colour, and there remained only a fmall quantity of powder of an orange-yellow colour. The liquor of the refiduum was feparated by the help of a fyphon, the matter wathed feveral times, and the walhings united with the firtt liquor. This refidunm dried, weighed no more than 14 parts : from which it follows, that the nitric acid had diffolved \(6_{4}\).
He again mixed thefe 14 parts with 42 parts of the carbonat of potafs and the neceflary quantity of water,

\section*{Part II.}

\section*{C H I M I S \(\quad\) 1' R \(\quad\) Y.}

Chromic and then treated them as before, and the phenomena were the fam:. The liquor, after being filtered, was united to the former; and the refiduum, walhed and dried, weighed no more than two parts, which were fill red leat, and therefore thrown away.

The two nitric folutions, united and evaporated, pro. duced 92 parts of nitrat of lead, cryftallized in octahedra, perfectly white and tranfparent. Thefe 92 parts of nitrat of lead, diffolved in water, were precipitated by a Colution of the fulphat of foda. This produced 81 parts of the filphat of lead, which were equivalent to
55956,68 of metallic lead.
And difoo- The alkaline liquors were found to contain a falt very of chronic acid. compofed of potafs combined with a peculiar acid, which Mr Vauquelin afterwards called chromic acid.

Thefe liquors, libjected to evaporation until a faline pellicle was formed on their furfacc, produced, on cooling, yellow cryftals; among which there was carbonat of potafs, not decompofed. Thefe cryftals diffolved in water, and the folution united with the mother water, the whole was mixed with weak nitric acid until the carbonat of potafs was faturated. The liquor then had a very dark orange-red colour. Being united with a folution of the muriat of tin, newly made, it firt affumed a brown colour, which afterwards became greenith. Mixed with a folution of the nitrat of lead, it immediately produced the red lead. Lafly, evaporated fpontaneoully, it produced ruby-red cryftals, mixed with cryitais of the nitrat of potafs. Ninety-eight parts of this mineral, decompofed as above mentioned, having produced 81 parts of the fulphat of lead, roo parts would have given 82,65 , which are equivalent to 57,1 of metallic lead. "But admitting, as experiment proves (fays Mr Vauquelin), that 100 parts of lead abiorb, in combining with acids, 12 parts of ozygen, the 57,1 of metallic lead ought to contain in the red lead 6,86 , of this principle, and we ought to have for the mineraliz. ing acid 36,4.
Its proper. Chromic acid cryttallizes in the form of elongated *es. prifms of a ruby colour.

When mixed with flings of tin and the muriatic acid, it becomes at firft yellowifh brown, and afterwards alfumes a beautiful green colour.

When mixed with a little alcohol and nitric acid, it immediately affumes a bluifh green colour, which preferves the fame thade even after deficcation. Ether alone gives it the fame colour.

With a folution of nitrat of mercury, it gives a precipitate of a dark cinnabar colour.

With a folution of nitrat of filver, it gives a precipitate, which, the moment it is formed, appears of a beautifill carmine colour, but becomes purple by expofore to the light. This combination, expofed to the heat of the blow-pipe, melts before the charcoal is inflamed. It affumes a blackifh and metalic appearance. If it be then pulverifed, the powder is ftill purple; but after the blue flame of the lamp is brought in contact with this matter, it affumes a green colour, and the filver appears in globules difeminated throughout its fub. ftance.

With nitrat of copper, it gives a chefnut red precipitate.

With the folutions of fulphat of zine, muriat of bifmuth, muriat of antimony, nitrat of nickel, and muriat of platinum, it produces yellowifh precipitates when
thefe folutions do not contain excef; of acid. With muriat of gold, it produces a greenith precipitate.

Chromic
When melted with borax or glafs, it communicites to them a beautiful emerald green colnur.

Paper impregnated with chromic acid alfumes in the light a greenifla colour.

When mixed with muristic acid, the mixture was capable of diffolving gold like aqua regia; when this mixture of the two acids is dillilled, oxy-muriatic acid is difengaged, and the liquor affumes a very beautiful green colour.

Sulphuric acid, while cold, produces no effect upon it ; but when warmed, it makes it affume a bluith green co. lour, probably by favouring the difengagement of oxygen.

When this acid is heated along with charcoal, it is reduced to the metal called chromum. It is therefore compored of this metal and oxygen. Frons Vituquelin's experiments, it appears to contain one part of chronium and two parts of oxygen.

Such are the properties of this acid, as far as they have hitherto been difcovered. Vauquelin is the only chemilt who has examined it; and from his memoir the above account has been taken*.
- Ann. \&

Cbim. xxv.
The four laft defcribed acids are called metalic acids, \(\begin{aligned} & \text { r94. and } \\ & \text { Pbilofopbical }\end{aligned}\) becaufe they are compofed of metals and oxygen.

It is believed, that moft of the metals, we would ra- Magazine, ther fay of the metallic oxyds, are capable of being 36 I . converted into acids by being combined with oxygen. 56 r It is certain that this is the cafe with platinum ; and Metalle Hermftadt, by diftilling nitric acid off tin, converted acids. it into a white mafs, foluble in three parts of water, which has been called flannic acid \(\dagger\). Several more of \(\dagger\) Amn. de the metallic oxyds adt the part of acids: But no com. Cbim. ir. plete fet of experiments on this impurtant fubject has 162 . yet appeared.

\section*{Chap. VI. Of Affinity.}

The meaning of the word affinity has been already Importance explained; and it mult appear evident, from the ule of afinity. which has been made of it in this article, that the confideration of the nature of aflinity is the moft important part of chemiltry. While its laws are unknown, chemittry is not a fcience, but a wildernefs of faits without beauty or regularity: every thing is equally perplexing and incomprehenfible. The chemit, inltead of being able to trace the operations of Nature, is loft in an endlefs maze of uncertainty, without a guide to conduet him, or a ray of light to illuminate his fteps. It is the knowledge of affinity which difpels the dark. nefs, removes the confufion, fhews us the order which fubfilts in all the phenomena of nature, points out their dependence on one another, and enables us to direct them as we think proper, to make them fubfervient to the improvement of the arts, and thus to rencter them the minifters of our comforts and enjoyments.
1. When two bodies are united together by affinity, It unites how fmall a portion foever of the compound we exa-bodies parmine, we thall always find it to contain both of the in ticle to pargredients. From this it is cvident, that affinity com- ticle. bines bodies, particle with particle.

By parlicles we do not meall what philofophers have called atoms, or the fmalleft parts into which it is poffille to divide matter; but the fmalleft parts which
make an integrant of any fubltance. Water, for inHance, confilts of oxygen and hydrogen ; but when we fpeak of a particle of water, we do not mean the oxygen or the hydrogen feparately, but the fmalleit polfible quantity of thefe combined in fuch a manner as to form water. It is the integrant particles of bodies which are united by affinity. Thus fulphuric acid is compoied of fulphur and oxygen combined together; and ammonia, of hydrogen and azot combined in the fame manner. Now when fulphuric acid and ammonia combine, it is not their elements, fulphur, oxygen, azot, and hydrogen, which unite together, paticle with particle, but the particles of the acid and the alkali as integrants. This is evident; becaufe if thefe fubftances be feparated from each other by means of a fronger affinity, they are found precifely in the fame tate as before they entered into combination. When the fubftances which combine are fimple, the ultimate and integrant particles are the fame : But we are not certain that any of the bodies with which we are acquainted
\({ }_{5} 64\) Opinions of the olitcr chemifts about afī nity.

565
It is an aturaction beI ween the particles of bodies.
is fimple, in the ftrict and proper fenfe of the word.
2. What is this affinity which unites bodies together ? The older chemitts thought that all folvents, or fubftances capable of diffolving others, were compofed of particles which had the form of wedges or hooks; that folution confifted in the infinuation of thefe wedges or hooks between the particles of the bodies to be diffolved; and that chenical combination was merely the linking of the different particles together by means of holes in one fet of particles, into which the hooks or the wedges of the other fet were thrult. Such explanations, abfurd as they may appear, were falhionable among chemical philofophers till the days of Sir lface Newton, who firt afcribed the chemical uninn of bodies to an attraction between the particles themfelves. This explanation, after a violent Atruggle on the part of the chemifts, has been at laft unanimoufly adopted.

Affinity, then, is an attrafion between the particles of different bodies, by which they are drawn towards one another, and kept united. This we take for granted, and confider as a fat, without pretending to explain how they come to be polfeffed of this power, or horv they exert it; both of which are evidently beyond the reach of the human undertanding.

But though we cannot difcover the manner in which affinity acts, we can fee, at leaf, that it tollows certain laws, and that they are invariable; for fimilar phenomena always occur when the circumflances are the fame. Now what are the laws which afinity follows? There is a fpecies of attraction which natter poffefies, called gravitation, the laws of which were inveltigated by Sir Ifaac Newton. Is affinity the fame with gravitation, or does it follow different laws?

Upon a flight view of thefe two attractions, their phenomena appear very differnt. Gravitation acts at very great diftances; affinity not until the bodies are mixed together: Gravitation acts on the whole mafs; affinity unly on the patticles: Bodies gravitate to one another direclly as their maffes. and inverfely as the fquares of their diftances. But how can affinity follow thefe law's, when it does not adt till the bodies are ap-
parently in contact ? or fuppoling that it does act, how can they account for the phenomena of affinity? If barytes be prefented to a compound of fulphuric acid and potafs, the acid immediately leaves the alkali and combines with the earth: But had gravitation been the only power acting, ought not the barytes to have united with the fulphat of potafs without producing any decompolition?
Thefe ftriking differences have convinced many philofophers, as they feem to have done Newton himfelf, that gravitation and affinity are different fpecies of attraction. Let as not, however, embrace this conclufion vaguely, or without affixing a precife meaning to our words.
Gravitation and chemical affinity are faid to be diffe- No pofitive rent fpecies of attraction. But what is attraction? It is proof that merely a general fuit, or that tendency which is olferved among all the portions of matter towards each other, but which exhibits very different appearances under different circumiftances. The tendency of matter towards matter at fenfible diftances is called gravitation, and its laws have been completely inveftigated; but neither that tendency, nor thefe laws, have been, or can be, flewn to be eflntial to the exiffence of matter. Chemical affinity is the tendency of particles towards each other at infenfible diftances, or when thefe particles are mixed together; and this tendency appears to be regulated by laws different from thofe of gravitation. Like gravitation, it is merely an olferved fart; and however different thefe facts may appear to be, they are probably both brought about by the fame forces. It is indeed true, that gravitation is direaly as the maffes of matter, and inveriely as the fquares of the diftances of thefe maffes; while the attraction, which is called chemical affinity, feems tn obferve very different rules. But we have fhewn cliewhere (fee Optics, n \({ }^{0}\) 62-68, Encycl.; and Boscovich in this Suppl.), that the fame forces repel at one diftance and attract at another ; and that they may produce all the various phenomena of chemical affinity.
The difficulties to be accounted for in chemical affinities are their intenfity, their different degrees of Atrength, and their being elective, or, which is the fame thing, the capacity which one body has of difplacing another.
How come affinities, it may be afked, to differ in intenfity? Perhaps we might with propriety refer this querift to the fludy of Bufcovich's curve; but as our modern chemifts are not generally verfant in fuch ftudies, we beg leave to obferve, in this place, that we have no proof whatever of abiolute contact between bodies. On the contrary, it is highly probable, we had almolt faid demonftrable, that particles are in every inliance at fome diftance from one another. For, on the fuppofition that two bodies were in actual contact, their attraction for each other would not only be as great as porfible, but as great as the attraction of any other body for cither of them could pofibly be: Confequently, it neceffarily follows, that, tince bodies chemically combined can be feparated, they are not in aftual centan (A); but if they are not in contact, their diftance from one
another
(A) Perhaps the following demonfration, which we borrow from the ingeninus Mr Brougham, will render this more evident. In fig. 7. let the body \(A\) have for \(P\) an attraction which at the difance of AP is prop \(r\) rxyili. another may vary in different cafes, and the force of affinity will vary with the diftance. Here then is a reafon why the affinity of different bodies varies in flength. Sulphuicic acid, for inftance, has a fironger affinity for barytes than for lime ; becaufe when the combinations are furmed, the difance between the acid and barytes is not fo great as that between the acid and lime.

But why do the diffances differ? If affinity be the fame with gravitation it muft tend to bring the particles nearer one ancther : and what then prevents the lime from approacling as near the acid as the barytes does? We reply, the figure of its particles. This anfwer was firft given to the queltion by Buffon, and it is fully adequate to folve the difficulty. The particles of bodies, indeed, are a great deal too minute for us to difcover their figure by actual infpetion; but the phenomena of cryfallization fhow us that this difference actually exifts.

The cryflals of every body aflume a peculiar figure. Now as thefe cryftals are all formed in the fame manner, and by the fame law, it is ins. poffible to conceive any other reafon for their variety, but the difference in the form of the particles which compore them.

But why does one body difplace another? When a particle of barytes is brought within a certain difance of a pasticle of fulphuric acid and lime combined together, aflinity ais, and draws them nearer to one another; and the barytes, from its figure, approaches nearer the acid than the lime could, and forms with it a compound, the figure of which is fuch, relatively to that of the lime, that they cannot approacl within a fmall enough diftance of each other to counteract the attraction of the earth. Accordingly, no compound is formed ; for all that is meant by two particles having formed a compound is, that their attraction for each other is greater than the attraction of the furrounding bodies for either.
Having thus feen that none of the phenomena of af. finity are inconliftent with their refilting from the forces which bring about the phenomena of gravitation, we have a right to concluce that it is at lealt highly probable, that all the motions of the corporeal world are produced by the fame power which, though not effential to matter, was impreffed upon every atom of it by the Great Creator when he formed this univerfe; and that as the effeets of this power are modified according to the fituation of the bodies on which it acte, they are known by the different names of gravity, adbefion, cobefion, and affinity.

Gravity is the attraction between bodies fo difant, that the mafles alone influence the refult, and that the
power may be confidered as placed in the centre of the attraaling bodies.

Adhesion fuppofes a difance ton fmall for our fenfes. It las been demonlfrated to be proportional to the number of tnuching points, which depends upon the figure of the particles that form the bodies.

Cohesion takes place only between particles of the fame nature. Thefe, inflead of tonching only in onefuperficies, as in adhefion, touch in every point where their figure will allow contakt : confequently the force of cohefion alfo muft depend upon the figure of the particles.

Affinity unites bodies of a different nature, not merely by one fuperficies, as adhefion does, but particle to particle, like cobofion; and the moft perfect contad is. formed that the figure of the particles will admit. Therefore, in this cafe alfo, the intenfity depends upon the figure of the particles.
3. If we make the attempt, we fhall find that water Sauration will not diffolve any quantity of common falt that we explained. pleafe. Water which refufes to take up any more is faid to be faturated with falt. Neither can we combine any quantity of potafs with a given portion of fulphuric acid: we may add as much of it as we pleafe, indeed; but if we evaporate the liquid, in order to obtain the falt in cryitals, we fhall find that only part of the potafs has uniced with the acid, and that the refh has cryftallized feparately. From thefe examples, it mult appear evident, that bodies combine with one another by affinity, only in certain proportions; or, which is the fame thing, that a determined number of particles of each of the ingredients goes to the formationof an integrant particle of the compound, and that into this integrant no additional particles of either ingredient can be admitted. Let us fuppofe, for inftance, that the Particles of fulphuric acid are tetrahedrons, and that the particles of potafs are of fuch a form, that one of them can attach itfelf to each of the fides of the acid particle: In that cafe, an integrant particle of fulphat of potafs would be compofed of fire particles, one of acid and four of alkali; for it is evident, that jull four particles of potafs would combine with every particle of acid, and that the acid would then be faturated, or, which is the fame thing, would be incapable of receiving any more alkaline particles into combination with it. Let us fuppofe, now, that there is jult as much potafs as faturates the acid; if more acid be poured in, it cannot enter into combination with the potafs, becaufe all the potafs is already combined with acid.

Thus it appears evident, from the nature of affinity, that the ingredients in every combination mult mutual, ly faturate each other, and that no more of either can
tional to \(\mathrm{P}^{\prime} \mathrm{M}\); then let P move towards A , fo as to come to the fituation \(\mathrm{P}^{\prime}\), and let the attraction here be \(\mathrm{P}^{\prime} \mathrm{M}^{\prime}\); as it is continual during the motion of P to \(\mathrm{P}^{\prime}, \mathrm{M}^{\prime} \mathrm{M}^{\prime}\) is a curve line. Now in the cafe of the attraction of bodies for one another, PM is lefs than \(\mathrm{P}^{\prime} \mathrm{M}^{\prime}\); and confequently \(\mathrm{MM}^{\prime}\) does not ever return into iticlf, and therefore it mult go ad infinitum, having its arc between \(A B\) and \(A C\), to which it approaches as afymptotes, the abfiffa always reprefenting the difance, and the ordinate the attraction at that diftance. Let \(\mathrm{P}^{\prime}\) now continue its motion to \(\mathrm{P}^{\prime \prime}\) and \(\mathrm{M}^{\prime}\) will move \(\mathrm{M}^{\prime \prime}\); and if \(\mathrm{P}^{\prime \prime \prime}\) meets A , or the bodies come into perfect contact, \(\mathrm{P}^{\prime \prime} \mathrm{M}^{\prime}\) will be infinite; fo that the attraction being changed into colvefion will be infinite, and the bodies infeparalle, conerary to univerfal experience; fo that P can never come nearer to A than a given difance. Nicholfon's Yournal, I. 555.
be admitted into the compound than what is neceffary to produce this faturation. It fullows equally, that there can be no union without faturation, except there be a deficiency in fome one of the ingredients: for fuppofing that there is a fufficient number of particles of potafs, and that every particle of fulphuric acid requires four of them, as before, for faturation, the very fame caufe that produces the union of one, two or three particles of putafs with a particle of acid, mult produce the union of all the four.

Even when there is a deficiency of one of the ingradients, faturation mult equally take place; for thofe particles of acid that happen to be nearefl the alkali mult Atill be faturated ; becaufe the affinity of all the acid particles for aikali was originally equal, and the difference of the diftance mult give the fuperiority to thofe that are neareft; and thofe particles of acid that are once faturated with potafs cannot be deprived of it by any of the other particles, other wife the affinity of fome particles of fulphuric acid for potals would be greater than that of others, which is abfurd.

It will no doubt be objected to all this, that there are innumerable inflauces of additional portions of fome one of the ingredients being received into a compound after faturation, and that fome fubftances feem to be equally well faturated with different dofes of another. Oxygen, for inflance, combines with azot in three different proportions, and forms nitrous gas, nitrous acid, and nitric acid. The netals, too, form in the fame manner, different oxyds, and a great many inftances of the fame kind occur among the neutral falts.

But it ought to be remembered, that the conclufions againit which thefe objections are urged, are confequences deduced, we think fairly, from a propofition which we confider as demonftrated, that affinity is a fpecies of atiralion(B). Thefe phenomena canmot theretore be admitted as valid objections, except it can be Shewn that they are really incompatible with thefe conclufions. Now that this is not the cafe, bas been fhewn,
in the moft fatisfactory manner by Morveaut. Thefe apparent exceptions are owing to an affinity which exifts between the compound as an integrant and one of its ingredients, and are not inflances of various degrees of faturation, but of the formation of new compounds. According to this very ingeniousidea, which we belie ve firt originated with Bergman, and was firf feen in its full extent by Morveau, we have formerly explained in what manner the various metallic oxyds are formed: the firft oxyd is a compound of the metal and oxygen; the fecond, of the firft oxyd and oxygen : the third, of the fecond oxyd and oxygen; and fo on. In the fame manner we have explaned the various combinations of azot and oxygen; and the explanation may eafily be extended to every other cafe. Thefe apparent objections, then, are not incompatible with the above con-
clufions, hut perfecily confitent with them, and confe. quently they cannot be admitted as of any force.

There is one phenomenon, indeed, which proves, independent of theie conclufions, that thefe combinations are actually formed in the manner we have fuppofed, and which therefore merits particular attention. The phenomenon is, that the affinity between the two fimple fubfances is aimof always grater than that between the compound and any of its ingredients. The affinity, for inftance, between azot and oxygen is greater than that between nitrous gas and oyygen; and the affinity between nitrons gas and oxyzen greater than that between nitrous acid and oxygen: For if nitrous gas be mixed with nitric acid, the whole is converted into nitrous acid ; but no change whatever is produced, when nitric and nitrous acids, or nitrous gas and nitrous acid, are mixed : and every fubftance which is capable of decompoling nitrous \(g\) as, is capable alfo of decompofing nitrous and nitric acids; but many lubftances are capable of decompofing nitrous and nitric acids which have no effect upon nitrous gas; in the fame manner, the affinity between fulphur and oxygen is greater than that betwcen fulphurous acid and nxygen; for when fulphur is mixed with fulphuric acid, the whole is converted into fulphurous acid; but no change takes place when fuiphur and fulphorous acid, or fulphurous and fulphuric acids are mixed together. A great many inftances of the fame kind might eatily be produced, if thefe were not fufficient to eftablith the point. This curious fact affords a very flrong proof that the bafes, as well as the quantity of oxygen, is different in almoft all the vegetable acids. Did the tartarous, oxalic, and acetous acids, for inftance, confift of the fame bafe with various dofes of oxygen; were the tartarous compofed of the bate and oxygen; the oxalic of tartarous acid and oxygen ; the acetous of oxalic acid and oxygen-in that caie, a mixture of acctous and tartarous acids ought to form oxalic acid: but that this does not happen, any one may convince himfelf by attual experiment.

We do not mean to affirm that this fact, though it is certainly very often true, holds in all cafes; in fome perhaps, the reveric may be true, though we do not recollect at prefent any inflance of that kind.
4. Since the affinity of almoft every two bodies for of the each other differs in fircngtb from that between every ftrength other two, it becomes an important problem to diter- of affinity. mine the firsngth of every affinity in numbers. The folution of this problem would give a clearnefs and precifion to chemiftry equal th that of any other branch of natural philofophy whatever, and enable it to advance with a degree of rapidity hitherto thought unattainable. No wonder, then, that this problem has occupied the attention of fome of the moft eminent pbilofophers who lave dedicated their time to chemiftry.

If the obfervations formerly made, in order to fhew attemipte that to afoertaia
(B) Were any farther proof of this propofition required, we would obferve, that cotefinn acts as an antagonift to affinity, and may be often rendered foltrong as to prevent affinity from acting with efficacy. Thus alumina and jargonia, when fufficiently heated, become infoluble in acids without undergoing any other alteration than that of an increafe of coheiion by their particles being brought nearer each other; for deftrny this cohefion, and they become as foluble as ever. Now it follows from this, that if cohefion be attration, fo muft affity. The experiments of Morveau, to be afterwards mentioned, demonftrate, that adbefion and affitity are produced by the fame caufe: Confequently, if adhefion be attraction, fo mult affinity.

\section*{Part II.}

\section*{C H E M}
that the difference in the ftrength of affinities depends mofphere. This conclufion induced Morvean to exaupon the different forms of the particles which have an afinity for each other, be concluftee, it is evident, that the certain method of learning the Itrength of affinities would be to difcover the forms of the particles of all bodies. But no method has hitherto been difonvered by which it is polfible of becoming acquainted with the figure of the particles of bodies. The experiments indeed of the Abbe Hauy (afterwards to be defcribed) point out a method by which the primary figure of cryftals may be inveltigated with a goud deal of plaufibility; but this leaves the knowledge of the figure of the pat ticles which compofe thefe cryitals ilill uncertain.

As nobody, therefore, has attempted to take this road, in order to calculate the frength of affuities, let us at prefent confider the different methods which have been propofed for that purpofe, that we may fee whether any of them will anfwer the end intended.

Wenzel fuppofed, that the time taken by one body
572 to diffolve annther is a meafure of the affinity which Dy wenzel, fubfitts between them. But the hypothefis of that ingenious philofopher will not bear the teft of examina. tion; for the time of folution evidently depends upon circumfances unconnecled with affinity. The cohefion of the body to be diffolved, and the nature of the compound formed, mult occafion very great differences in the time of bolution of different bodies, even on the fuppofition that their affinities were all the fame.

Fourcroy propofed to meafure the affinity of bodies
573 by the difficulty of leparating them after they are comTourcroy, bined: but we have no method for meafuring this difficulty. Lavoikier and De la Place, indeed, propofed. caloric for this purpofe; but there are many compounds. which caloric cannot feparate, and it never produces a feparation except by means of its affinity for one or other of the ingredients of the compound. Before caloric, therefore, could be employed as a meafure, it would be neceffary to know exactly the ftrength of its. own affinity for every other fubltance; which is jult a cale of the problem to be :efulved.

Macquer fuppofed, that the affinity of bodies for one 574 another was in the compound ratio of the facility of Macquer, their union, and the difficulty of their feparation: But as we are in poffelfion of no methed of afcertaining either of thefe, it is evident that this theory, even allowing it to be juf (which it certainiy is not), could be of no ufe for alliting us to calculate the force of affi. nities.

Another method has been propofed by the diftin.
395 guithed philofophical chemilt Mr de Morveau (c).
In orveau, InI3, Dr Brook Taylor made fome experiments on the adhefion of furfaces; and concluded from them, that the force of adhefinn might be determined by the weight neceffary to produce a feparation. But in 1772 , Meffrs La Grange and Cigna, obferving that the furfaces of water and oil adhere logether, and taking it for granted that thefe two liqu ds refel eath other, concluded, in conlequence, that their adhefion was not owing to atiration; and hence inferred, that adhefion, in general, is always owing to the preflure of the at-
mine the fubject : he found, that adhefron was not affected by the prelfure of the atmofphere; for it required the fame weight to feparate a difk of glafs (30 lines in diameter) from the furface of mercury in the open air, and under an exhaunted receiver. He obferved, that the fame difk adhered to water with a force of 258 grains, and to the folution of potafs, though denfer, only with a force of 2 Io. This refult not only proved that adhefion was owing to attraction, but made him conceive the poffibility of applying this method to the calculation of affinities; For the force of adhefion being necelfarily proportional to the points of contact, and this being the cafe alfo with affinity, it is evident, that the adheion and the affinity between lhe fame fubflances are proportional, and that therefore the knowledge of the one would furnifh us with the ratio of the other.

Struck with this idea, he confructed cylinders of different metals, perfectly round, an inch in diameter and the fame in thicknefs, and having a fmall ring in their upper furface, by which they might be hung exactly in equilibrium. He fufpended theie cylinders, one after another, to the beam of a balance ; and after counterpoifing them exaEtly, applied them to a quantity of mercury placed about two lines below them, making them flide along its furface, to prevent any air from lodging between them and the mescury. He then marked exactly the weight necelfary to overcome their adhefion, taking care to change the mercury alter every experiment. The table of the refults is as follows:

The differences of thefe refults cannot be owing to the preffure of the air, which was the fame in all; nor do they correfiond to the denfities of the metals; nor can they be owing to accidental differences in the polith of the cylinders, for a plate of rough iron atheres more ftrongly to meacury than one of the fame diameter exquifitely polithed;-but they follow precifely the order of affinity, and therefore may be confidered as the meafure of the ftrength of the affinity between thefe different metals and mercury. They furnifh us alfo with a convincing proof, that affinity is atiraçion, and the fame fpecies of attraction with acibefion; and that therefore, if the one be veducible to gravitation, fo muft the other.

Mr Achard, convinced of the importance of Mr Morveau's obfervations, made a treat many experiments on adbefion, and publifhed the sefult of them in 1780 . He
proved,
(c) Now Mr Guyton: we have ufed the old name all along in the text to avoid ambiguity.
proved, that the force of adhefion was not affected by alterations in the height of the barometer, but that its force became weaker as the heat of the fluid increafed (D) ; and that the temperature semaining the fame, the force of adhefion increafed in the fame ratio with the furfaces of the adhering bodics. He made about 600 experiments on the adhefion of different folids and fuids, proved that the force of adhefion did not depend on the denfities of the adhering bodies, nor on the different cohefive force of the fluids; and, after a laborious calculation, concluded, that it depended on the figure of the particles of the adhering lluid and folid.

Thefe experiments and calculations of Mr Achard are certainly of importance; and we would have given them here, had not the objeats of them been fubtances which can furnifh but few data for calculating the force of affinities.

This method of meafuring the force of affinities feems to be an accurate one, and if it could be applied to every cafe of affinity, wonld, in all probability, enable us to folve the problem which we are now confidering : But unfortunately, its application is very limited, being confined to thofe cates alone in which one of the bodies can be prefented in a fluid, and the other in a folid ftate. Nor can it be applied indicriminately to all thofe cafcs; for whenever the cohefion of any li. quid is much inferior to the furce of its adhefion to any folid, the feparation takes place in the particles of the liquid itfelf, and confequently we do not obtain the meafure of its adhefion to the folid, but of its own cohefion, and that, too, imperfectly. Thus, for inftance, Mr Aclard found, that fealing-wax adhered to water with a force of 92 grains, and to alcohol only with a force of \(53 \frac{3}{7}\) ths ; yet we know that fealing-wax has a greater affinity for alcohol than for water; becaufe alcohol diffolves it, which water is incapable of doing. The difference in the refult in this inflance was evidently owing to the fmaller cohefion of alcohol. Mr Morveau's method mult therefore be confined to thofe cafes in which the cohefion of the liquid is flronger than its adhefion to the folid, which mas be known by the furface of the folid not being mointened; and to thofe in which the cohefion is not much inferior to the adhefion; for then, oit is evident, that the force of cohefion will be increafed as the force of adhefion. Let us fuppofe, for inflance, that two folids, A and B, are made to adhere to the furface of a liquid, and that A can only form an adhefion with 50 particles of the liquid, whilg B adheres to 100 ; it is evident, that a much fmaller force will deftroy the cohefion of the 50 particles to which A adheres with the reft of the liquid, than what will be required to deltroy the cohefion of the 100 particles united to B with the fame * Morvera, liquid.*

Encyct. Mc- The method of Mr Morveau, then, may be applied tbo.i. Chim. with accuracy in both cafes; and when they occur can art. \(A d b c=\) fict.
no gas is extricated when the adhefion takes place, an accurate judgment cannot be formed of the force of adhefion. When marble (carbonat of lime), for inflance, is applied to the furface of fulphuric acid, there is an extrication of gas, which very foon deftroys the adhefion, and prevents an accurate refult. Were it poffible to employ quicklime inflead of marble, this wonld be prevented; or if this cannot be accomplifhed, why might not lime be employed, united with fome acid that would not affume a gafeous form, and at the fame time has a weaker affinity than fulphuric acid for lime? Why might not the phofphat of lime, for inftance, be ufed, which may be reduced to a ftate of hardnefs fufficiently great for the purpofe? The extrication of gas, during the application of metals to the furfaces of acids, might he prevented by oxydating their furfaces. It is true, indeed, this could not be done with all the metals, on account of the nature of the oxyd, butit might with feveral ; copper, for intance, and filver. It cannot be doubted, that by thefe methods, and other contrivances that might be fallen upon, a fufficient number of refults might be obtained to render this method of the greateft importance. It is rather furptifing, thes efore, that it has never been profecuted.

Mr Kirwan has propofed another method of folving And Kirthe problem. While he was engaged in his experi- wan. ments on the ftrength of acids, he obferved that the quantity of real acid neceffary to fiturate a given quantity of each of the bafes was inverfely as the affinity between the refpective bafes and the acid; and that the quantity of each of the bafes neceffary to faturate a given quantity of acid was direclly as the affinity between the bafe and the acid. Thus 100 grains of each of the acids require more alkali for faturation than lime, and more lime than magnefia, as may be feen in the following table :
\begin{tabular}{lccccccc}
100 grains of & Potafs. & Soda. Lime. Amm. Mag. Alum. \\
Sulphuric acid & 215 & 165 & 110 & 90 & 80 & 75 \\
Nitric acid & 215 & 165 & 96 & 87 & 75 & 65 \\
Muriatic acid & 215 & 158 & 89 & 79 & 71 & 55
\end{tabular}

He concluded, therefore, that the affinity between acids and their bafes may be eftimated by the quantity of bafes neceffary for faturation. Thus the affinity between potafs and fulphuric acid is 215 , and that between nitric acid and lime 96.*

We have mentioned formerly, that the principle on Tran. 1783 which Mr Kirwan calculated the frength of the acids was founded on a miftake. It muft follow of courfe, therefore, that the numbers which refult from it muft alfo be wrong. This Mr Kirwan has acknowledged, and feems to have given up all thoughts of afcertaining the Arength of affinities by this method. But before it be abandoned altogether, we wifh the following obfervations were confidered.

Bergman long ago eftabiifhed as a principle, under Attempt to the name of a chemical paradox, that the flronger any remedy the falt was, the lefs of any other it required for faturation, defects of Thus, according to him,

100 parts of potafs require 78,5 Sulphuric acid,
\(6+\) Nitric;
51,5 Muriatic,
42 Carbonic,
100 parts of foda - - 177 Sulphuric,
135,5 Nitric,
125 Muriatic,
80 Carbonic.
This propofition, which has been admirably illuftra.
ted by Morveaut, evidently refolves itfelf into the two Affinity. following :
I. A bafe requires the more of an acid for faturation tbe flonger its affinity for that acid is.
an Chim.
2. An acid requires the more of any bafe for fatura- \(597^{\circ}\) tion the greater affinity it has for that bafe.

In order to judge of the truth of the firft of thefe propofitions, let us examine the following table, drawn up from the experiments of Bergman, Wenzel, and Kirwan.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Bergman.} & \multicolumn{3}{|c|}{Weazel.} & \multicolumn{3}{|c|}{Kirwan.} \\
\hline 100 parts of & Sulphuric. & Nitric. & Muriatic. & Sulphuric. & Nitric. & Muriatic. & Sulphuric. & Nitric. & Muriatic. \\
\hline Barstes & 15,4 & & 30,8 & & & & & & \\
\hline Potafs & 78,6 & 64 & 51,5 & 82,4 & 107,7 & 54 & 81,8 & 87,1 & 78,2 \\
\hline Soda & 175 & I 35,5 & 125 & 125,8 & 1 66,6 & 83 & 129,4 & 136, 1 & 114,2 \\
\hline Lime & 143,7 & 134,4 & 70,45 & 147,74 & 195,6 & 103,6 & 141 & 180 & 86 \\
\hline Magnefia & 173,67 & 159,25 & 82,92 & 181,8 & 257,15 & 122,27 & 170,5 & 255 & 104,275 \\
\hline Ammonia & & & & 142,42 & 201,22 & 96,25 & 187,5 & 233 & 116 \\
\hline Alumina & 211,II & & 220,2 & 77,7 & 68,7 & 38,6 & & & \\
\hline
\end{tabular}

It is evident at firf fight, that Bergman's experiments correfpond exactly with the propofition. To faturate, according to him, 100 parts of potafs, requires 78,6 of fulphuric acid, 64 of nitric, and 51,5 of muriatic acid. There is only one deviation from the propofition in the whole table, and this regards barytes, which, according to him, is faturated with 15,4 of fulphuric and 30,8 of muriatic acid. But Mr Morveau has thewn, by feveral accurate experiments, that barytes requires much more fulphuric acid for faturation 100 parts of barytes require 49,2 of ftrong fulphuric acid for faturation*. And Dr Withering's calculatrion \(\dagger\) agrees almoft exactly with this; nor does that of Fourcroy differ much from it \(\ddagger\). Inftead of 15,4 of fulphuric acid, thercfore, which, according to Bergman, are neceflary to faturate 100 of barytes, it fhould be 42,8 .

The firlt and laft columns of Wenzel and Kirwan's experiments agree equally well with the propofition,
but the fecond deviates from it completely. Wenzel probably might have been mifled by the manner of performing his experiments; but the fame objection does not feem to lie againft thofe of Kirwan.

It can fcarcely be doubted, however, to whatever caufe the error is to be imputed, that the numbers in the fecond column of Mr Kirwan's table are too large. The follow:ng experiment of Morveau is fufficient to thew this.

According to Mr Kirwan's experiments, the proportions of acid and alkali in the four following falts are as under:
\[
\text { Sulphat of potafs } \begin{cases}\text { Acid } & 100 \\ \text { Potafs } & 108,\end{cases}
\]

Suppl. Vol, I.
\begin{tabular}{lll}
Sulphat of lime & \(\left\{\begin{array}{lc}\text { Acid } & 100 \\
\text { Lime } & 80,6\end{array}\right.\) \\
Nitrat of potafs & \(\left\{\begin{array}{lc}\text { Acid } & 100 \\
\text { Potafs } & 83,33\end{array}\right.\) \\
Nitrat of lime & \begin{tabular}{ll}
Acid & 100 \\
Lime & 34,4
\end{tabular}
\end{tabular}

Now when fulphat of potafs and nitrat of lime are mixed together, a double decompofition takes place, and fulphat of lime and nitrat of potafs are formed. Let there two falts be mixed together; let the quantity of fulphat of potafs be fuch, that the acid contained in it amounts to 100 ; and let a more than fufficient quantity of nitrat of lime be added, to faturate the fulphuric acid with lime. It is evident that for that purpofe 80,6 of lime mult be prefent; and the quantity of nitric acid combined with thefe 80,6 mult be 234,4 . This quantity would require for faturation 195,32 of potafs, but there are only 108,7 in the mixture; confequently there ought to exif in the mixture, after the mutual decompofition of the falts, 64,87 of nitric acid in a fate of liberty. Such would be the refult, provided Mr Kirwan's numbers were accurate; but the fact is, that no fuch excefs of acid exitts in the mixture*; and confe-"Annode quently the quantity of nitric acid contained in nitrat of Chim. xuro lime is fiated too ligh by Mr Kirwan. Although 295 therefore Mr Kirwan's tables do not coincide with the propofition which we are confidering, this is not to be confidered as a proof of its falfchood; as there is reafon, from the experiment above defcribed, to fufpect fome error in the data from which Mr Kirwan calculated the frength of the acids.

The truth of the fecond propofition may be judged of by the following tables:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\frac{100 \text { parts of }}{3 \mathrm{ulp} . \text { acid }}
\]} & & \multicolumn{6}{|l|}{According to Wenzel.} \\
\hline & Baryt. & Putas. & \(\xrightarrow{\text { Soda. }}\) & Lime. & Magn. & Amm. & Alum. \\
\hline & & ,8 & , 16 & 67,2 & 55 & 70,2 & 128 \\
\hline Nitr. acid & & 92,7 & 60 & 51,1 & 38,8 & 49,7 & 147,8 \\
\hline Mar. acid & & 183, & 9,2 & \(9^{6,5}\) & 81 & 10 & 25 \\
\hline
\end{tabular}

According to Kirman.

It appears that all the table of Bergman agrees with the propofition except the numbers which correfpond to fulphat of foda, fulphat of alumina, nitrat of lime, and muriat of foda, which the late experiments of Mr Kirwan have fufficiently thewn to be inaccurate.

Wenzel's table correfponds exactly, except the columns under ammonia and alumina, which Murveau has proved to be inaccurate.

Kirwan's table correfponds exactly, except with regard to the quantity of ammonia neceffary to faturate muriatic acid, which does not appeur to have been accurately determined by experiment.

Let us therefore take the truth of thefe two propofitions for granted, and let us confider every deviation from them as an error; and let us fee whether they will enable us to ditcover the abfolute affinity of fulphuric, nitric, and muriatic acids, for their tefpeciive bafes.

Table II. 2uantity of Acid neceffary to Saturate 100 Affinity: Parts of the fix Bafes.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{c|}{ Ioo parts } & Sulph. acid. & Nitric acid. & Mur. Acid. \\
\hline Barytes & 42,8 & 38,7 & 30,8 \\
\hline Potafs & 81 & 64 & 52,9 \\
\hline Soda & 126,7 & 101,4 & 79 \\
\hline Lime & 145,7 & 134,4 & 87,5 \\
\hline Magnefia & 176,2 & 159,25 & 105,4 \\
\hline Ammonia & 202,6 & 182,4 & 127,25 \\
\hline
\end{tabular}

The firft of thefe tables reprefents the affinity between the fame acid and its various bafes; and the fecond that of the bafes for the different acids. If it were required to know the ratios of the affinity which different bafes have for any particular acid, the firft table, fuppofing it accurate, would give it exactly. In like manner, if it were required to know the ratios of the affinity of the acids for the various bafes, we would find them in the fecond table.

But if we wifhed to know what was the affinity be- Andtocortween one acid and bafe, compared with that between fruct tables another acid and a different bafe; or if we wanted to of affinityhave not the relative but the abfolute affinity between two bodies-it is plain that we could not find it in either of the tables; for the abfolute affinity muft confift of two things, the affinity which the acid has for the bafe, and the affinity which the bafe has for the acid. Now the firft table gives us the one of thefe, and the fecond the other; fo that in order to reprefent affinity in abfolute numbers, the two tables muft be multiplied into one another. This was the miltake into which Mr Kirwan fell. His method conlifted merely in conftucting a tabie like our firf, which (fuppofing the numbers accurate) gave only the affinity between the bafes and the fame acid, but left out the affinity between the different acids and the fame bafe; confequently the different columns could not be compared with each other.

It is evident, however, that if the tables were multiplied sogether in their prefent flate, they could not poffibly give an accurate table of affinities. For that purpofe, it is neceffary to put the fame number in the firtt column of each table, and then to fubftitute other numbers in the remaining columns, having the fame ratia to one another with the numbers in the original columns. This is done in the following tables.

Table I. Quantity of Bafe neceflary to Saturate 100 Parts of the three Acills.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 100 parts & Barytes & Potars. & Soda. & Lime. & Magn. & Ama. \\
\hline Sulph.acid & 233,3 & 123,3 & 78,7 & 68,3 & 56,8 & 49.3 \\
\hline Nitric acid & 253,4 & 148 & 95 & & 6 & 54,8 \\
\hline Muri.acid & 324,7 & 188,8 & 26,1 & 116,7 & 97,3 & 78,5 \\
\hline
\end{tabular}

Table I. Ratios of the Affinity of \(f i x\) Bafes for three Acids.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Barytes. & Potafs. & Soda. & Lime. & Magn. \({ }^{\text {a }}\) & Amm. \\
\hline Sulp. acid & 100,00 & 52,85 & 33,73 & 29,27 & 24,34 & 21,12 \\
\hline Nitric acid & 100,00 & 57,43 & 36,9 & 28,77 & 24,28 & 19,59 \\
\hline Mur. acid & 100,00 & 53,11 & 38,81 & 35,70 & 29,94 & +,15 \\
\hline
\end{tabular}

\section*{Part II. \\ }
silinity, Table II. Ralios of the Affinity of thres Acids for fiv Bajes.
\begin{tabular}{|l|l|l|l|}
\hline & Sulp. acid & Nitr. aciul Mur. acid \\
\hline Barytes & 100,00 & \(90,4^{2}\) & 74,54 \\
\hline Potals & 100,00 & 79,01 & 65,30 \\
\hline Soda & 100,00 & 80,03 & 62,35 \\
\hline Lime & 100,00 & 92,24 & 60,05 \\
\hline Magnefia & 100,00 & 90,34 & 59,68 \\
\hline Anımonia & 100,00 & 90,02 & 62,77 \\
\hline
\end{tabular}

T:ible 1II. Affinity between thrce Aids and fix Bafes in Alyolute Numbers.
\begin{tabular}{|l|c|c|c|}
\hline & Su'p. acid & Nitr. acid & Mur. acic \\
\hline Barytes & 10000 & \(904^{2}\) & 7454 \\
\hline Potafs & 5285 & 4537 & 3794 \\
\hline Soda & 3373 & 2969 & 2419 \\
\hline Lime & 2927 & 2653 & 2143 \\
\hline Magnelia & 2434 & 2193 & 1786 \\
\hline Ammonia & 2112 & 1763 & 1515 \\
\hline
\end{tabular}

On the fuppofition that the two propofitions mentioned above were frictly true, and that the numbers whick we fixed upon were precifely the quantities of acid and bafe necelfary to faturate each other reciprocally, this laft table would reprefent accurately in numbers the llaength of the affinities of the three acids for each of the fix bafes refpedively.

We muft acknowledge, however, that the truth of thefe propofitions has not hitherto by any means been fufficiently proved; but a great number of fads concur to render them exceedingly probable, and highly worthy of the attention of chemical philofophers. And we hope that the method propoted by Morveau, and which had been previoully practited by Richter, of verifying theoretical calculations of the compofition of the falts, by mixing together two falts which mutually decompofe each other, and afcertaining whether the refult correfponds with calculation, will be followed out, and that it will be the means of enfuring more accuracy than it has hitherto been poffible to obtain.

No one will fufpect that any thing which has here been taid is meant as a reflection on the ingenious chemifts who have attempted to folve this molt difficult of all chemical problems, the proportion of the ingredients which enter into the compafition of the falts. Mr Kirwan, in particular, is entitled to the greateft praile for the pericucring indultry with which he has profecuted
the fubjea, for the candour which he has difplayed, and for the new route which he has opened to the chemical philofopher. Though this problem has not hitherto been folved, and though the difficulties which furround it are alnolt infurmumable, we may hope much from the general fenfe which is at prefent entertained of its importance, and from the zeal and abilitics of thofe philof fephers who have patticularly turned their attention to it.

In the mean time, the following table of the frength of affinities by Morvean, though the numbers be arbitrary, will be found of very great ufe \(\dagger\).
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \begin{tabular}{c}
Sulph. \\
acid.
\end{tabular} & \begin{tabular}{c}
Nitric \\
acid.
\end{tabular} & \begin{tabular}{c}
Muriat \\
acid.
\end{tabular} & \begin{tabular}{c}
Acet. Carbo. \\
acid.
\end{tabular} & \begin{tabular}{l}
acid.
\end{tabular} \\
\hline Barytes & 66 & 62 & 36 & 28 & 14 \\
\hline Potais & 62 & 58 & 32 & 26 & 9 \\
\hline Soda & 58 & 50 & 31 & 25 & 8 \\
\hline Lime & 54 & 44 & 24 & 19 & 12 \\
\hline Ammonia & 46 & 38 & 21 & 20 & 4 \\
\hline Magnefia & 50 & 40 & 22 & 17 & 6 \\
\hline Alumina & 40 & 36 & 18 & 15 & \(2(\mathrm{p})\) \\
\hline
\end{tabular}
5. Although every chemical combination is produced by the fame general law, yet as their phenomena vary fomewhat according to circumftances, affinities have,

The firft clafs, comprehends all thofe cafes in which only truo bodies combine together; as, for inftance, fulphunic acid and potafs, oxygen and carbon. The affinities which belong to this clafs are known by the name of fimple or fingle affinities. Although one of the fubftances to be combined happens to be already united with another body, the combination is nill reckoned a cafe of fingle affinity. Thus fuppofe the fulphuric acid previoufly combined with magnetia, and forming with it the falt called fulphat of magnefia, as foon as potais is prefented, the acid lcaves the earth (which is precipitated), and unites with the alkali. Even when three bodies combine, it often happens that the union is produced merely by fingle affinity. Thus, when fome potafs is dropped into tartarous acid, part of the acid unites with the alkali, and forms tartrite of potafs; after this the remainder of the acid combines with the tartrite juft formed, and compofes a new falt known by the name of acidulous tartrite of potafs, or tartar. This is evidently notling elfe than two inflances of fimple affinity immediately following each other.

When more than three bodies are mixed, decompo 582 fitions and new combinations often take place, which affni-y, \(3 \mathrm{~F}_{2}\) could
(D) This table, however, does not correfpond quite accurately to all the phenomena. For intance, according to it, fulphat of barytes is not decompofed by carbonat of foda, although the contrary takes place in fact.

Affinity. \(\underbrace{\text { Aninity. }}\) could not have been produced had the bodies been pre-
fented in a different flate. If, for inflance, into a 0 lution of fulphat of potafs there be poured nitric acid, no decompolition is produced, becaufe the fulphuric acid has a ftronger affinity for potafs than nitric acid has. For the very fame reafon, ammonia may be poured into the folution without producing any change. But if nitrat of ammonia be poured in, a decompolition inftantly takes place, and two new bodies, fulpbat of ammonia and nitrat of potafs, are formed. Such cafes of decompofition form the fecond clafs of affinities. They were called by Bergman cafes of double elective attraction; a name which is exceedingly proper when there are only four bodies concerned. But as there are often more than four, it is neceflary, as Mr Morveau has obferved, to employ fome more comprehenfive term. We fhall therefore call the affinities belonging to this clafs couvpound affinities (E); and comprehend under the term all cafes where niore than three bodies are prefent, and produce combinations whicl would not have been formed without their united action. In thefe cafes the affinity of all the various bodies for each other adts, and the refulting combination is produced by the action of thofe affinities which are ftrongef. The manner in which thefe combinations and decompofitions take place, was firt clearly explained by Dr Black. Let the affinity between potass and fulphuric acid be \(=62\); that between nitric acid and ammonia \(=38\); that between the fame acid and potals \(=58\); and that between the fulphuric acid and ammonia \(=46\). Now, let us fuppofe that all thefe forces are placed fo as to draw the ends of two cylinders crofiing one another, and fixed in the middle in this manner,

(100

It is evident, that as 58 and \(46=104\), are greater than \(62+3^{8}=100\), they would overcome the other forces and fhut the cylinders. Juft fo the affinity between potais and nitric acid, together with that between fulphuric acid and ammonia, overcomes the affinity between potafs and fulphuric acid, and that between nitric acid and ammonia, and produces new combinations.
ln all cafes of compound affinity, there are two kinds of affinities to be confidered; \(1 /\), Thofe affinities which tend to preferve the old compound, thefe Mr Kirwan has called quifGent affinities; and thore which tend to deftroy them, which he has called divellent affinities.

Thus, in the inftance above given, the affinity between potafs and fulphuric acid, and that between nitric acid and ammonia, are quiefcent affinities, which endeavour to preferve the old compound; and if they are Atrongelt, it is evident that no new compound can take place. On the contrary, the affinity between potais
and nitric acid, and that between fulphuric acid and ammonia, are divellent affinities; and as they are in this cafe ftrongeft, they actually deftroy the former combinations and form new ones.

Bergman, who pablifhed a great many cafes of compound affinities, employed to explain them a method fomewhat different from this. He would have reprefented the above cafe in the following manner:

Sulphat of Ammonia.
At the four corners of an imaginary fquare are placed the four fubtances, fo that one acid flall be diagonally oppofite to another. On the right and left fide of the fquare are placed the old compounds, each on the fide of its own ingredients, and above and below are placed the new compounds.

Mr Elliot improved this method of Bergman, by adding numbers expreffive of the affinity of the various fubitances. It is in cafes of compound affinity that the ratios of affinities, if we were poffefled of them, would be peculiarly ufeful. For it is evident, that if we knew the Itrength of affinities in abfolute numbers, we would be able to determine before hand all the cafes of compound affinity.

If we knew, for inflance, that the affinity between the muriatic acid and barytes were \(=36\); that between the fame acid and potafi \(=32\); the affinity between potafs and carbonic acid \(=9\); and that between the fame acid and barytes \(=14\);-we would be certain, previous even to experiment, that when muriat of barytes and carbonat of potafs are mixed, a double decompofition would take place; which we know from experiment to be actually the care.

Muriat of Potafs.

Another inflance of decompofition by compound affinities.
(s\()\) Morveau called them affinite par concours.
\(\underset{\substack{\text { Sulphat } \\
\text { of } \\
\text { Ammonia, }}}{\text { Sulph.acid, } 54}\) Lime. \(\left\{\begin{array}{ll}46 \\
\text { Ammonia, } \frac{38}{9^{2}} & \begin{array}{l}\text { Nitric } \\
\text { acid. }\end{array}\end{array}\right\}\)\begin{tabular}{l}
Nitrat \\
of \\
Lime.
\end{tabular}

Suppofing Morveau's numbers exact, it follows alfo, even prior to experiment, that no decompofition takes place when fulphat of lime and muriat of potals are mixed ;

for the quiefcent affinities are 86 and the divellent only 82 .

Nor when acetite of lime and muriat of foda are mixed;
Acetite
of
Lime, \(\left\{\begin{array}{ccc}\text { Acetous acid, } & 25 & \text { Soda. } \\
19 & 28(47 \\
\text { Lime, } & \frac{20}{45} & \begin{array}{c}\text { Muriatic } \\
\text { acid. }\end{array}\end{array}\right\}\)\begin{tabular}{c}
Muriat \\
of \\
Soda.
\end{tabular}
becaufe the quiefcent affinities are 47 , and the divellent only 45. Thefe cafes where no decompofition takes place, have been called by Morveau cafes of inverfe compound affinity.
Morveau has propofed the following improvements in reprefenting thefe cafes of compound affinities \(\ddagger:\)

When decompofition does not take place, nothing is to be written above and below the fquare, as in the two laft examples. When a new compound remains diffolved, a ftraight line is to be placed between it and the fquare, as in the following fcheme.

When a new compound is precipitated, a line bent downwards in the middle is to be placed between it and the fquare, as in the following fcheme :

Sulphat of Potafs.

Carbonat of Barytes.
When a new compound is fublimed, the line between it and the fquare is to be pointed upwards in the middle, thus_-_C_C.
When a new compound is partly diffolved and partly precipitated, the line placed between it and the fquare is to affume the following fhape : \(\qquad\)
When it is partly diffolved and partly fublimed, the following is the line to be ufed: .
The third clafs of affinities has been called by Mr AndiifpofMorveau difpofing affitities, becaufe they difpofe fub-ing affinity. ftances to combine that would not otherwife have done it. Suppofe, for inftance, that fulphur is prefented to oxygen gas, it does not manifeft any affinity for it; but combine it previounly with potafs, and it unites with oxygen with avidity. Its previous union with potafs, in this cafe, difpofed it to unite with oxygen. The caufe of this curious affinity is not yet well underflood. If we confider what it was that prevented the fulphur and oxygen from combining, we fhall find, that it can only be its own attraction of colefion, and the affinity between the oxygen and caloric which are combined. Whatever then diminifhes this attraction of cohefion, or of aggregution as it has been called, mull facilitate the union
of the fulphur with oxy gcn . This is done in forne meafure by the potafs. Befides, if afinity depends upon the fogure of particles, it is evident, that there muft be an affinity between the new compound and oxygen; but the moment the oxygen approaches within a certain diftance of the fulphur, it unites with it, as its affinity is much greater for that fubtance than for the eompound.

The following is ancther inftance of this curious affinity: Sugar, as Laroifier has proved, is compofed of oxygen, hydrogen and catbon: Now if concentrated fulphuric acid be poured upon fugar, the oxyeren and hydrogen combine and form water, which unites with the acid, and the carbon is precipitated. In this cafe the prefence of the acid difpofed the oxygen and hydrogen to combine. In what manner this new combination is produced it would not be eafy to explain: not by weakening the attraction of cohefion; fur we do not fee how the acid could produce that effect. The only explanation that can be given, is to fuppofe that the fulphuric acid, when it approaches within a certain dif. tance of the oxygen and hydrogen, attrafs them; and that this attraction, together with the afinity between the oxygen and hydrogen, is greater than that which produces the combination between the ingredients of the fingar themielves: the confequence of which mult be decompofition.

584 Why bodics require different temperaturesto wnite,
6. We come now to one of the mort difficult queftions in chemiftry - Why do bodies require different temperatures in order to unite? and why does the prefence of caloric in many cafes favour, or rather produce union, while it prevents or deftroys it in others?

Thefe queftions were propofed at the end of the fecond charter of this anticle; and we referved them for this place, not becaufe we hoped to be able to anfwer them in a fatisfaciory manner, but becaufe no intelligible anfwer could be given till the nature of affinity had been previoully confidered. Some fubtances, phofphorus, for infance, combine with oxygen at the common temperature of the atmofphere; others, as carbon, require a higher temperature ; and othcrs, as hydrogen and azotic gas, do not combine except at a very high temperature. To what are thefe differences owing?

In anfwer to this quettion we obferve that the attraction of cohefion evidently oppoies that of affinity. Thofe bodies which we prefent to combine together are generally aggregates, or, which is the fame thing, confift of many fimilar particles united by cohefion: for we have no method of feparating bodies into their integrant particles except affinity. Now we can conceive the attraction of coheinon between the particles of a body to be fo great as to prevent them altogether from obeying the impulfe of affinity. That this actually happens in fome eafes cannot be doubted; for if pure alumina be formed into a patte, and heated fufficiently, it becomes fo hard that no acio can act upon it ; yet its nature is not in the leaft changed: by proper trituration it may be again rendered foluble; and when precipitated from this new folution it has recovered all its original properties. The effect of the fire, then, was merely to inereafe the cohetion, by feparating all the water, and allowing the particles to approach nearer each other.

It is evident, that whatever diminifhes the cohefion which exilts between the particles of any body, mult tend to faoilitate their chemical union with the particles
of other bodies: this is the reafon that bodies combine more eafily when held in folution by water, or when they have been previoufiy reduced to a fine powder. Now caloric poffeffes the property of dimininhing cohefion. And one reafon why fome bodies require a high temperature to caute them to combine is, that at a low temperature the attraction of cobcfion is in them fuperior to that of affinity; accordingly, it becomes neceffary to weaken that attration by caloric till it becomes inferior to that of affinity. The quantity of caloric nccelfary for this purpofe mult vary according to the frength of the cohetion and of the affinity ; it mult be inverfely as the afinity, and directly as the cohefion. Wherefore, if we knew precifely the force of the cohefion betwecn the particles of any body, and of the affinity between the particles of that body and of any other, we could eafily reduce the temperature neceffary to calculation.

That caloric or temperature acis in this manner cannot be doubted, if we confider, that other methods of diminifthing the attradion of cohetion may be fubtituted for it with fuccefs. A large lump of chareoal, for inflance, will not unite with oxygen at fo low a temperature as the fame charcoal will do when reduced to a very fine powder; and charcosl will combine with oxygen at a flill lower temperature, if it be reduced to its integrant particles by precipitating it from alcohol, as Dr Priefley did by paffing the alcohol through red hot copper. And to fhew that there is nothing in the nature of oxygen and carbon which renders a ligh temperature neceffary for their union, if they be prefented to each other in different circumftances, they combine at the common temperature of the atinofpiere; for if nitric acid, at the temperature of \(60^{\circ}\), be poured upon charcoal powder, well dried, in a clofe crucible, the charcoal takes fire, owing to its combining with the oxygen of the acid*: And in fome other fituations, *Prouf and carbon is fo completely divided, that it is capable of Morveau, conbining with the oxygen of the atmofphere, or, Encycl. Mcwhich is the fame thing, of catching fire at the com. mon temperature: this feems to be the cafe with it in thofe pyrophori that are formed by diftilling to drynefs, feveral of the neutral falts which contain acetous acid \(\ddagger\). Thefe obfervations are fufficient to fhew, that + Morvow, caloric is in many cafes necelfary in order to diminifh ibid. the attraction of coliefion.

But there is a dififulty ftill remaining, How comes it that certain bodies will combine with oxygen without the affitance of any foreign heat, provided the combination be once begun, though a quantity of caloric is neceffary to begin the combination? and that other bodies require to be furrounded by a great quantity of caloric during the whole time of their combining with oxygen ? Alcohol, for inftance, if once kindled, burns till it is quite confumed: and this is the cafe with oils alfo, provided they be furnihed with a wick.

We mult obferve in the firt place, that we would err very much were we to fuppote that a high temperature is not as neceflary to thefe fubftances during the whole of their combultion as at the conmencement of it; for Mr Monge found, on making the trial, that a candle would not burn after the temperature of the air around it was reduced below a certain point.
All fubfances which continue to burn after being once kindled are volatile, and they burn the eafier in propertion
\(\underbrace{\text { Afinity. }}_{n}\) proportion to that volatility. The application of a cer- traction of cohefion, not only fupcrior to gravitatain quantity of caloric to alcohol volatilizes part of it ; ton, but actually overcoming an external force*. MMorveau, that is to fay, diminithes the attraction of its cohefion fo much that it combines with oxygen. 'The oxygen which enters into this combination gives cut as much heat as volatilizes another portion of the alcohol; which combines with oxygen in itsturn; more heat is given out; and thus the procefs goes on. Oils and tallow exhibit the very fame phenomena; only as they are lefs volatile, it is neceffary to afift the procefs by means of the capillary attraction of the wick, which confines the action of the caloric evolved to a fmall quantity of oil, and thus enables it to produce the proper effect. In Chort, then, every fubfance which is capable of continuing to burn after being once kindled, is volatile, or capable of being converted into vapour by the degree of heat at firt applied. The reafon that a live coal will not burn when furpended infulated in the air, is not, as Dr Hut-
5 On Light ton fuppofed \(\oint\), becaufe its light is difipated, but becaufe and Heat. the coal cannot be converted into vapour by the degree of heat whicli it contains, and becaufe the cohetion of its particles is too great to allow it to combine with oxygen without fome fuch change. There are fome coals, however, which contain fuch a quantity of bitumen, that they will burn even in the fituation lup. pofed by Dr Hutton, and continue to burn, provided they be furnithed with any thing to act as a wick. It is needlefs to add, that bitumen, like oil, is eafily converted into vapour.

But this explanation, in!tead of removing our diflicultics, has only ferved to increafe them: For if caloric only afts by diminifhing the attraction of cohefion, and converting thefe fubltances into vapour, why do not all elaflic fluids combine at once without any additional calnic? why do not oxygen and hydrogen, when mixed together in the ftate of gas, unite at once and form water? and why do not oxygen and azot, which are conitantly in contact in the atmofphere, unite alfo and form nitrous gas? Surely it cannot be the attraction of cohefion that prevents this union. And if it be afcribed to their being already combined with caloric, how comes it that an additional dofe of one of the ingredients of a compound decompofes it? Surely, as Mr Monge has obterved, this is contrary to all the other operations in chemiftry.

That the particles of fluids are not deflitute of an attraction for each other, is evident from numberlefs facts. The particles of water draw one another after them in cafes of capillary attraction, which is probahly owing to the attraction of cohefion. It is owing to the attraction of cobefion, tho, that fmall quantities of water form themfelves into fpheres: Nor is this attraction fo weak as not to be perceptible. If a tmall plate of glafs be laid upon a flobule of mercury, the slobule, notwithfanding the fieflure, continues to prederve its round figure. It the plate be gradually charged with weights one after anuther, the mercury becomes thitner and thinner, and extends itfelf in the form of a plate; but as foon as the weights are removed, it recovers its gloiular figure agkin, and pufhes up tie glafs beflez it. Here we fee the at-

And if the workman, after charging his plate of Afruito glafs with weights, when he is forming mirrors, hap- p. 543 . pen to remove thefe weights, the mercury which had been forced from under the ghrs, and was going to feparate, is drawn back to its place, and the glafs again pufhed up. Nor is the attraction of cohefion confined to folids and liquids; it cannot \(b=\) doubted, that it exifts alto in gafes; at leaft it is evident that there fubfilts an attraction between gafes of a diferent kind: for although oxygen and azotic gas are of differen gravities, and ought therefore to occupy different parts of the atmofphere, we find them always mixed together; and this can only be afcribed to an attraction. And were we to allow, with Humbolt and feveral other chemifts, that thefe two gafes are chemically combined in atmofpherical air, an opinion contradicted by a late experiment in France (F); fill the exiflence of carbonic acid gas in every part of the atmofpherc can only be afcribed (if the inaccuracy of the expreflion may be tolerated) to a kind of cohefion. And whoever has been accuftomed to pneumatic experiments mult have obferved, that finall portions of air, as well as water, form themfelves into fpheres, and that the attraction of cohefion is fo ftrong in gafes, that large globoles of them often adhere by a lingle point to the bottom of velfels filled with heavy fluids; whereas, had there been no attraction of cohefion, every part of the globule ought to have afcended to the furface of the fluid, except the particles immediately in contact with the velfel. Allowing, then, that there is an attraction of cohefion between the particles of gafes, let us fee vihether that will not affift us in removing the difficulty.

It reems evident, in the firft place, that the affinity Explained. between the baifes of the gafes under confideration and oxvgen is greater than their affinity for that dofe of caloric which produces their elaftic form; for when they are combined with oxygen, the fame dofe will not feparate them again. Let us take hydrogen for an infance: the affinity of hydrogen is greater for oxygen than for the caloric which gives it its gafeous form ; but the oxygen is alfo combined with caloric, and there exifts an attraction of cohefion between the particles of the hydrogen gas; the fame attraction fublifts between thofe of oxygen gas. Now the fum of all thefe affinities, namely, the affinity between hydrogen and caloric, the afinity between oxygen and caloric, the cohefion of the patticles of the hydrogen, and the colefion of the particles of oxygen-is greater than the aftinity between the hydrogen and oxygen; and therefore no decompofition can take place. Let the afinity between
\begin{tabular}{lllll}
Oxygen and caloric be & - & - & 50 \\
Hydrogen and caloric & - & - & 50 \\
Crhefion of oxygen & - & - & - & - \\
Cohefion of hydrogen & - & - & - & 2 \\
\\
Sum of quiefcent affinities, & & & - & - \\
The afinity of oxygen and hydrogen, & 106 \\
\hline
\end{tabular} The quiffent affinities bsing greater than the divellont atinities, no decompolition can take place.
(F) Air brought by means of a balloon from a great height in the atmolphere was found to contain lefs oxysen gas than the fame quantity of air r.car the ground.

C H E M
Let now a quantity of caloric be added to the oxygen and hydrogen gas, it has the property of expanding them, and of courfe of diminifhing their cohefion; while its affinity for them is fo fmall that it may be neglected. Let us fuppofe that it diminifhes the cohefion of the oxygen I , and of the hydrogen alfo 1 , their cohefion will be now 3 and \(I\); and the quiefeent affinities being only 104, while the divellent are 105, decompofition would of courfe take place, and a quantity of caloric would thus be fet at liberty to produce the fame effects upon the neighbouring particles.
Thus, then, caloric acts only by diminilhing cohefion: And the reafon that it is required fo much in gafeous fubtances, and in thofe combinations into which oxygen enters, is the flrong affinity of oxygen and the other bafes of the gafes for caloric ; for, owing to the repulfion which exilts between the particles of that fubtile fubtance, an effect is produced by adding large dofes of it contrary to what happens in other cafes. The more of it is accumulated, the ftronger is the repulfion between its particles; and therefore the more powerful is its tendency to fly off: and as this tendency is oppofed by its affinity for the body and the cohefion of its particles, it mult dininifh both thefe attractions.

Though we have thus attempted to explain what has been always confidered as one of the moft difficult problems in chemiftry, we are far from fuppofing that we have removed every dificulty. Much Atill remains to be done before the action of light and caloric can be fully underfood: and there may be other agents, of whofe exiftence we have not yet even conceived the iden.

One difficulty ftill remains to be examined. Heat not only produces the combination of fome bodies, but alfo occafions the decompofition of others. How does 586 it act in thefe cafes?
How heat That many of thefe decompofitions are produced by deconpofes chemical affinity, will be evident from the following exbodies. amples.

When fulphur and arfenic acid are expofed to heat, ful\(\dagger\) Pelletier. phuret of arfenic is formed \(\dagger\) evidently by a kind of compound affinity.

In the fame manner when nitrat of potafs and boracic acid are expofed to heat, the nitric acid is volatilized, and borat of potafs is left behind.

S T R Y.
Nitric Acid in Vapour.

Borat of Potafs.
By the fame compound affinity boracic acid and heat decompofe muriat of foda.

Borat of Soda.
In the fame manner it would be eafy to explain how all the decompofitions by the dry way, as it is called, are produced.

But how comes caloric to decompofe water after ha. ving produced the union of oxygen and hydrogen? The union, we have feen, was probably brought about by the play of oppofite affinities; but in the feparation, caloric feems to att by its peculiar power, or the repulfion which exitts between its particles. When caloric combines with an integrant particle of water, this repulfion muft feparate the component parts fomewhat from one another; confequently it muft weaken their affinity ; for every increafe of diftance produces that effect. Now let us fuppofe that the affinity between oxygen and hydrogen is 10 , and that the affinity between caloric and each of thefe bodies is 50: as foon as the particles of oxygen and hydrogen are fo far feparated from each other that their affinity is lefs than 100 , they will unite with caloric in preference, becaufe the fum of their affinities for caloric is equal to 100 ; confequently, whenever that takes place, water will be decompofed. Hence we fee the reafon why mure heat is always neceffary to produce the decompofition of bodies than what produced their union.

Caloric poffeffes another fingular property, that of changing the compound affinities of bodies, even when

\section*{\(\underbrace{\text { Affinity. }}\)}
it docs not appear to enter as an ingredient. What amples:
\(\left.\begin{array}{l}\text { Muriat of ammonia, } \\ \text { Carbonat of magnefia, }\end{array}\right\}\) decompofe each other at the ordinary temperature of the atmofphere, and form muriat of magnefia and carborat of ammonia: but, on the contrary,

Muriat of magnefia, and \(\}\)
Carbonat of ammonia, \(\}\) decompofe each other at a high temperature; for inftance, at \(212^{\circ}\). The pro-
duets are muriat of ammonia and carbonat of magnefia*.
-W Wfrum, Ann. ds Cibim. ii. 118.

4 Subecte and Gren, Апn. de Chins. sxiii.
\(\ddagger\) Fourcroy,
Ann. de
Clism. ii.
291.
finity.
opinion re- duced to fufpect that this fubtile fluid is the only agent fpecting af- by which they are produced.

Again, if muriat of foda and fulphat of magnefia be mixed together at a low temperature, for inflance, at zero, they decompnfe each other, and muriat of magnefia and fulphat of foda are formed; but no decompofition takes place at a temperature above \(32^{\circ}\). -Mu riat of foda, and fulphat of alumina, exhibit precifely the fame phenomenat.

Lafty, fulphat of magnefia and carbonat of ammonia decompofe each other at the or dinary temperature ; but at \(212^{\circ}\) the carbonic acid flics off, and the remaining fubfances form a triple falt \(\ddagger\).

The laft of thefe phenomena appears owing to the affinity between carbonic acid and caloric, and the two firf to the affinity between muriat of ammonia and caloric, for that falt is volatilized.

It would not be fo eafy to explain the mutual decompofition of muriat of foda and fulphat of magnefia at a low temperature. It is probably conneted with the alterations in the diffance of the ingredients of chemical compounds, which are produced by the prefence and abfence of caloric.

From the important part which caloric acts in chemical combinations, Count Rumford has been lately inThat caloric is a necefary agent in all chemical de-
compofitions and now combinations, we very readily ailow; becaufe we know no other caufe except caloric to prevent the particles of bodies from acual contact; in which cafe decompofition would be impofible: and if this be the fenfe in which that ingenious philofopher afcribes chemical combinations to caloric, vas very readily agree with him ; but if he fuppofes that caloric is the agent by which the particles of bodies are brought near each other, and the force by which they adhere to one another, we cannot help thinking that he is miftaken: For that bodies, chemically combined, are kept near each other by fome force, cannot poflibly be denied. Now, what is that force? We have faid, after Newton, an attraction letzucen the particles themfelves: acknowledging, at the fame time, that we are unable to explain what that is.

Count Rumford feems to fuppofe that there is no fuch thing as attraction between the particles themfelves, but that caloric is the agent which keeps them together. If fo, how does caluric perform this office? For our part, we do not pretend to underfland it any more than the nature of attraction; nor do we fee that it is poffible to render it more intelligible. But there is another queftion of Rill greater importance, What are the proofs that caloric is the only agent in all cafes of chemical combinations? For our part, we can think of no proof that can render this opinion in the fmalleft degree plaufible.

Has this celebrated and candid philofopher confidered this fubject with his ufual accuracy? If heat be a body, it cannot furely be the caufe of affinity unlefs it be poffeffed of properties which, fo far from being proved, have not even been fufpected. On the contrary, if it be a property of matter, what property is it? If it be a peculiar motion, as Count Rumford fufpects, we would afk if it be poffible for any motion whatever, independent of attraction, to produce the permanent union of two bodies?

\section*{Part III. Of DOUbly COMPOUND BODIES.}

THE bodies which confift of combinations of thofe fubfances that have been denominated compound, and which, for that reafon, we have ventured to call doubly compound bodies, may be reduced to three claffes: Soaps, Neutral falts, Hydrofulphurets.
Thefe fhall form the fubject of the three following chapters; and we fhall finifh this part of the article with fome obfervations on cryfallization.

\section*{Chap. I. Of Soars.}

The compounds into which oils enter without decompofition have been denominated foaps.

Oils are capable of combining with alkalies, earths, nnd metallic oxyds; they are capable alfo of combining with feveral of the acids. There are therefore two claffes of foaps; r. Alkaline, earthy, and metallic fraps, which for the fake of brevity we flall call alkaline foaps; and,

Suppl. Vol. I.
2. Acid foaps. Thefe two claffes form the fubject of the two following fections.

\section*{Sect. I. Of Alkaline Soaps.}

As there are a great number of oils, all or molt of which are capable of combining with alkalies, earths, and oxyds, it is natural to fuppofe that there are as many genera of alkaline foaps as there are oils. That there are differences in the nature of foaps correfponding to the oil which enters into their compofition, is certain; but thefe differences are not of fufficient importance to require very particular defcription. We fhall therefore defcribe all the alkaline foaps together, and notice, as we go along, fome of the mof important differences refulting from the oily ingredients.
I. Soap of foda, or common foap. The word foap Common 588 (fipo, \(\sigma \alpha \pi a v\)) firf occurs in the works of Pliny and Ga- hard foak. len, and is evidently derived from the old German word fepe (G). Pliny informs us, that foap was firf difco. vered by the Gauls; that it was compofed of tallow
3 G
(G) Beckmann's Hifory of Inventions, III. 239.-A fimilar word is ftill ufed by the common people of Scotland.

Alkaline and afmes; and that the German foap was reckoned Soips.
-Pliny,
lib. xviii.
c. 3 r .

589
Method of
forming it. the bert.*

Goap may be prepared by the following procefs. A quantity of the foda of commerce, which is a carbonat of foda, and which is often called barilla from the name of a plant, by burning which it is procured in great quantities in Spain, is ponnded and mixed in a wonden veflel, with about a fifth part of its weight of lime, flacked and paffed through a fieve immediately before. Upon this mixture a quantity of water is poured, confiderably more than what was fufficient to cover it, and allowed to remain on it for feveral hours. The lime attracts the carbmic acid from the foda, and the water becomes Arongly impregnated with the pure alkali. This water is then drawn off by means of a ftnp-cock, and called the firfley. Its fpecilic gravity thould be about 1,200 .

Another quantity of water is then to be poured upon the foda, which, after flanding two or three hours, is alfo to be drawn off by means of the ftop-cock, and called the fecond ley.

Another portion of water is poured on; and after fanding a fufficient time, is drawn off like the other two, and called the third ley.

Another portion of watcr may fill be poured on, in order to be certain that the whole of the foda is dif. folved; and this weak ley may be put afide, and employed afterwards in forming the fult ley in fubfequent operations.

A quantity of oil, equal to fix times the weight of the foda ufed, is then to be put into the boiler, together with a portion of the third or weakefl ley, and the mixture mult be kept boiling and agitated conftantly by means of a wooden initiument. The who?e of the third ley is to be added at intervals to the mixture; and after it is confumed, the fecont loy muft be added in the fame manner. The oil becomes milky, combines with the alkali, and after fome hours it begins to acquire coniftence. A little of the firfl ley is then to be added, not forgeting to agitate the mixture confantly. Purtions of the firf ley are to be added at intervals; the fo:my fubfance acquires gradually greater confiftency, and at laft it begins to feparate from the watery part of the mixture. A quantity of common falt is then to be added, which renders the feparation much more complete. The boiling is to be continued fill for two hours, and then the fire mult be withurawn, and the liquor mult be no longer agitated. After fome hours repofe the foap feparates completely frum the watery part, and fwims upon the furface of the liquor. The watery part is then to be drawn off; and as it contains a quantity of carbonat of foda, it ought to be referved for future ufe.

The fire is then to be kindled again; and, in order to facilitate the melting of the foap, a little water, or rather weak ley, is to be added to it. As fonn as it hoils, the remainder of the firit ley is to be added to it at intervals. When the foap has been brought to the proper confifence, which is judged of by t.aking out fmall portions of it and allowing it to cool, it is to be withdrawn from the fire, and the watery part feparated from it as before. It is then to be heated again, and a
little water mixed with it, that it may form a proper palte. It is then to be poured into the veffels proper for cooling it; in the bottom of which there ought to be a little chalk in powder, to prevent the foap from attaching itfelf to it. In a few days the foap will have acquired fufficient confiftence to be taken out, and formed into proper cakes (H).

The ufe of the common falt in the above procefs is to feparate the water from the foap; for common falt has a ftronger affinity for water than foap has.

Olive oil has been found to anfwer beft for making foap, and next to it perhaps tallow may be placed: bust a great variety of other oils may be employed for that purpore, as appears from the experiments of the French chemifts above quoted. They found, however, that lintfeed oil and whale oil were not proper for making hard foaps, though they might be employed with advantage in the manufacture of foft foups. Whale oil has been long uled by the Dutch for this latt purpofe.

Soap may alfo be made without the affiltance of heat ; but in that cafe a much longer time and a larger proportinn of alkali is neceffary.

Manufacturers have coutrived various methods of fo- Its 590 phificating foap, or of adding ingredients which in- cation. creafe its weight without increafing its value. The moft common fubtance ufed for that purpofe is water; which may be added in ennfiderable quantities, efpecially to forap made with tallow (the ingredient ufed in this country), without diminithing its confittency. This fraud may be eaflly detected, by allowing the foap to lie for fome time expured to the air. The water will evaporate trom it, and its quantity will be difcovered by the diminution of the weight of the foap. As foap fophifticated in this manner would lofe its water by being kept, manufacturer:, in order to prevent that, keep therr foap in faturated folutions of common falt; which do not dillolve the foap, and at the fame time, by preventing all evaporation, preferve, ur rather increafe, the weight of the loap. Meffrs Darcet, Lelievre, and Pel. letier, took twn pieces equal in weight of foap fophiticated in this manner, and placed the one in a dry place in the open air, and the other in a taturated folution of common falt. After a montl, the firf had loft \({ }^{56} 60\) of its weight, the other had gained about \(\div \frac{10}{\circ}\) parts. * Ann. \& Varions other methods have been fallen upon to fophif. Chim. xix. ricate foap; but as they are not, we hope, generally 336 . known, it would be doing an injury to the public to defcribe them here.

Different chemifts have analy fed foap, in order to afcertain the proportions of its ingredients; but the re- of inortios fult of ther expriments is \(v\). fult of their experiments is various, becaufe they ufed dients.
foap containing various quantities of water. From the experiments of Darcet, Lelievre, and Pelletier, it appears that foap newly made and expofed to fale contains
\[
\begin{aligned}
& \text { 9,75 Oil, } \\
& 1,37 \text { Alkali, } \\
& 4,87 \text { Water. }
\end{aligned}
\]

Soap is foluble both in water and in alcohol. Its propertics as a detergent are too well known to require any defcription.

\(\qquad\)
\(\qquad\)

\author{
\author{
Alkaline
} \\ Soaps. \\ fophiftis \\ - \\ \\ \(\qquad\) \\ \(\underbrace{\text { Soaps. }}\)
 Ai \\
} tains

\begin{abstract}

\end{abstract}
its ingrot Chim. xix.
336 .

\(-\) .
\[
\begin{aligned}
& \text { both in water } \\
& \text { etergent are too }
\end{aligned}
\] It

Alkaline Soaps.
522
Suft foap.
- Ann. de

Chim. xix. シ22.
\(\dagger 4 \pi n\). de CLin. xxi. 27.

It is decompofed by lime, and by comporand affinity (1) by fulphat of lime, nitrat of lime, muriat of lime, and probably all the falts which contain lime.
2. Soap of potafs. Potafs m.is be fubftiteted for foda in making foap, and in that cafe precifely the fame procefs is to be followed. It is remarkable, that when potafs is wed, the foap does not affume a folid form ; its confillence is never greater than that of hog's lard. This is what in this country is called foft foap. Its properties as a detergent do not differ materially from thofe of hard foap, but it is not nearly fo convenient for ufe. The alkali employed by the ancient Gauls and Germans in the formation of foap was potafs; hence we fee the reafon that it is defcribed by the Romans as an unguent.

Some perfons have affirmed that they knew a method of making hard foap with potafs. Their method is this: After forming the foap in the manner above defcribed they add to it a large quantity of common falt, boil it for fome time, and the foap becomes folid when cooled in the ufual way. That this method may be practifed with fuccefs has been afcertained by Meffrs Darcet, Lelievre and Pelletier ; but then the hard foap thus formed does not contain potafs but foda : for when the common falt (muriat of foda) is added, the potafs of the foap decompofes it, and combines with its muriatic acid, while at the fame time the foda of the falt combines with the oil and forms hard foap: and the muriat of potafs formed by this double deconpefition is diffolved in the water and drawn off along with it \({ }^{\text {* }}\).

Chaptal has lately propofed to fubfitute wool in place of oil in the making of foap. The ley is formed in the ufual manner and made boiling hot, and fhreds of woollen cloth of any kind are gradually thrown into it ; they are foon diffolved. New portions are to be added fparingly, and the mixture is to be conftantly agitated. When no more cloth can be diffolved, the foap is madet. This foap is faid to have been tried with fuccefs. It might doubtlefs be fublituted for foap with advantage in feveral manufactories, provided it can be obtained at a cheaper rate than the foaps at prefent employed.
Fifh, too, have been lately fublituted for oil with equal fuccefs. The only difadvantage which foap made in this manner is liable to, is a difagreeable fmell, from which it cannot eafily be freed.
3. Soap of ammonia. This foap was firf particularIy attended to by Mr Berthollet. It may be formed by pouring carbonat of ammonia on foap of lime. A double decompofition takes place, and the foap of ammonia fwims upon the furface of the liquor in the form of an nil ; or it may be formed with ftill greater eafe by pouring a folution of muriat of ammonia into common foap diffolved in water. We have formed it often by *Berlbclelet, mixing caultic ammonia and oil*.

It has a more pungent talle than common foap. Water diffolves a very fmall quantity of it ; but it is eafily diffolved in alcolool. When expofed to the air, it is gradually decompofed.
4. Soap of lime. This foap may be formed by pouring lime-water into a folution of common foap. It is
infoluble both is trater and alcohol. Curbonat of fixed alkali decompofes it by compound affinity \(\dagger\). It melts with difficulty, and requires a ftrong heat.
5. Soap of magrefi?. This foap may be formed by mixing together folutions of common foap and fulphat of magnefia.

It is exceedingly white. It is untuous, dries with difficulcy, and preferves its whitenefs after deficcation. It is infoluble in boiling water. Alcohol and fixed oil diffolve it in confiderable quantity. Water renders its folution in alcohol milky. A moderate heat melts it; a tranfparent mafs is formed, flightly fcllow, and very brittle*.
6. Soap of alumina. This foap may be formed by ibito mixing together folutions of tium and of common foap. It is a flexible foft fubfance, which retains its fupplenefs and tenacity when dry. It is infoluble in alcohol, water and oil. Heat eafily melts it, and reduces it to a beautiful tranfparent yellowilh mafst.
7. Soap of barytes refembles shnoft exatly the foap of limet.
8. Soap of mercury-This foap may be formed by miving together a flution of commou foap and of cor \(59^{\circ}\) moxivg together a melution of common fap and of cor- of mercuaz
rofive muriat of mercury. The liquor becomes milky; ry, and the foap of mercury is gradually precipitated. This foap is vifcid, not eafly dried, lofes its white colour when expofed to the air, and acquires a thate colour, which gradually becomes deeper, efpecially if ex. pofed to the fun or to heat. It diffolves very well in oil, but fparingly in alcohol. It readily becomes foft and fluid when heated*.
9. Soap of zinc.-This foap may be formed by mixing together a folution of fulphat of zinc and of foap. It is of a white colour, inclining to yellow. It dries fpeedily, and becomes friablet.
10. Soap of cobalt. - This foap made by mixing nitrat of cobalt and common foap is of a dull leadea co. lour, and dries with difficuity, though its parts are not connected.

Mr Berthollet cbferved, that towards the end of the of nickel, precipitation there fell down fome green coagula, much more confiftent th.in foap of cobalt. Thefe he fuppofed to be a foap of nickel, which is generally mixed with cobaltt.
11. Soap of tin. - It may be formed by mising common foap with a folution of tin in nitro-muriatic acid. It is white. Heat does not fufe it like other metallic foaps, but decompofes it ||.
12. Soap of iron-Formed by means of fulphat of iron. It is of a reddifh brown colour, tenacious, and eafily fufible. When fpread upon wood, it finks in and dries. It is eafily folluble in oil, efpecially of curpentine. Berthollet propofes it as a varnillic.
13. Snap of copper-Formed by means of fulphat 604 of copper. It is of a green colour, has the feel of a of copper, refin, and becomes dry and brittle. Hot alcohol renders its colour deeper, but farcely diffilves it. Ether difolves it, liquifies it, and renders its colour deeper and more leautitul. Is is very foluble in oils, and gives them a pleafant green coloun \(\oint\).

\footnotetext{

}

\(\qquad\)
```

* Butbullf

```

596 Of alumina,

\footnotetext{

}

\author{
\(\qquad\)
}
\(\qquad\)
```Of iron,
```of copper,
14. Soap of lead.-It niay be formed by means of 605 \(3 \mathrm{G}_{2}\) acetite of lead,
(1) In this and the following chapter, compound affinity is not taken always in its fri\& and proper fenfe, but is applied to all thofe decompofitions in which the aflinities of more than three bodics ati.

Alkaline acetite of lead. It is white, tenacious, and very adhe-
\(\qquad\)
- Bertact! ibid.

606
Of filver,
\(\dagger\) FBic.
607
Of gold,
\(\ddagger\) Ihid.
608
And of
manganefe.

609 zaize
Soap of tur- 18. Soap of turpentine and potafs. 576 grains of pentive and turpentine were diffolved in 9216 grains of alcohol, and putafs. then 576 grains of potafs were added. The alcohol was dittilled off at a boiling water heat. There remained in the retort 648 grains of a brownifh foapy matter, which when fpread on glafs appeared tranfparent. There remained alio nearly the fame quantity of potafs diffolved in water. This foap was put in a veffel for lis weeks; during which time 72 graius of folution of potafs feparated from it. It had affumed the confillence of honey. Its colour was browner. It was completely foluble in water: The folution was milky. It diffolved alro in alcohol. It had no difagreeable
tro talte. Vinegar decompofed it.
19. Soap of benzoin and potafs.-By treating 9216 grains of alcohol, 1728 grains of benzoin, and 576 grains of potafs, as above, \(1 \% 28\) grains of a foap were obtained, browner than that of turpentine, of an odour a little aromatic. When left in a cellar for fix weeks, it became folid. Its folution in water was yellowifh. Vinegar decompofed it. This compound is the fame
61 with Starkeys foap.
of balm of 20. Soap of balm of Peru and potafs.- 1152 grains
Peris. of balm, 2304 grains of potafs, and 9216 grains of alcohol, produced a foap of a reddifh colour, and pretty GI2 confiftent.
Of guaiac,
21. Siap of guaiac and potafs.- \(\mathbf{1 7 2 8} \mathrm{gr}\). of guaiac were diffolved in 18648 grains of alcohol and the folution filtered, and to this 1728 grains of potafs were added, and the foap obtained as above. It was folid, of a brown colour at filt, which afterwards became green on the furface, bat remained unaltered within. Its folution in water was greenith. It had no difagreeable tafte. It diffolved in alcohol, and formed a green tincture. Vinegar decompofed it.
Aod of 22. Soap of fcammony and potafs. - By the above fcammong. procefs a foap was obtained with fcammony pretty confiftent, of a brown colour, foluble in water, and not decompofed by the water of pits from which felenites is obtained. It has no difagreeable tafte. Its fulution in
Yourn. de alcohol is of a deep amber colour \(\ddagger\).
Pby. xy.
\(44 \%\).
614
Method of
forming
acid foaps.

\section*{Sect. Il. Of Acid Soaps.}

Sulphuric acid may be combined with oils in the following manner: Put two ounces of it into a glafs mortar, and add, by little and little, three ounces of the
oil, nearly boiling hot, triturating it conflantly. A fubftance is obtained of the contiftence of turpentine. Diffolve it in about fix ounces of boiling water, and the foap will unite into a mafs as the water cools. If it fill contain an excefs of acid, diffolve it again in boiling water, and continue this procefs till the foap is perfectly neutralifed.
1. Soap of fulphuric acid and lintfeed oil.-It dif- Acid foap folves entirely in water. The folution is opaque, of a of linifeed bluifh white colour, vifcid, and frothes when agitated. oil. Alcohol diffolves it. The folution is tranfparent and brown. Potafs decompofes it, forming fulphat of potafs. The oil fwims on the top, of the confiftence of wax. Ammonia decompofes it; and if too much be added it forms foap of ammonia. Magnefia, lime, nitric acid, and muriatic acid, alfo decompofe it. Difkilled, it yielded a few drops of water and an oil, which coagulated, and was of the confiftence of wax.
2. Soap of fulphuric acid and oil of almonds.-So. or \({ }^{616}\) luble in water; folution milky.-Frothes.-Soluble in oil. alcohol ; folution brown and tranfparent. Potafs, lime, nitric acid, muriatic acid, fulphurous acid (the oil feparated affumed the confiftence of turpentine), tartar, acidulous oxalat of potafs, fal ammoniac, muriat of lead and zinc decompofe it. It is not decompofed by vinegar, boracic acid, acetite of ammonia, borax, copper, tin nor lead. When dittilled, there paffed over a little water and an oil, which coagulated and fmelt very rancid : there remained belind a coal.
3. Soap of fulphuric acid and olive oil.-It is brown, of olive oil, and of the confiftence of wax. Solution in hot water white, opaque, vifcid; frothes. Solution in alcohol traniparent and brown. Potafs, ammonia, magnefid, nitric acid, muriatic acid, vinegar, nitre, \(\mathfrak{f}_{A} 1\) ammoniac, acetite of lead, and white oxyd of lead decompofe it.
4. Soap of fulphuric acid and butter of cocao.-It is of butter hard, and marbled like Venice foap. Solution in water of cocao, grey, opaque, vifcid ; frothes. Solution in alcohol yellow and tranfparent. Potafs, ammonia, nitric, muriatic, and acetous acids, tartar, fal ammoniac, tartrite of potafs, acetite of lead, and zinc in powder, decompofe it. When diftilled, there came over water, an oil that coagulated, and a few drops of a black oil, which alfo congealed : both were rancid.
5. Soap of filphuric acid and wax.-It is white, and becomes very hard. Its folution in water is white, and opaque, and frothes: Its folution in alcohol is yellow and traniparent. Potafs, ammonia, nitric and muriatic acills decompofe it. bewn brown. It diffolves in water : the folution is milky, ceti, vifcid, and frothes on agitation. It diffolves in alcohol; the folution is tranfparent and yellow. It is decompofed by as much alkali as faturates the acid: if more be added, it unites with the oil and forms a new foap. Lime and magnefia decompofe it. The oil is alfo feparated, and appears in the form of a coagulum on adding to the folution nitric acid, muriatic acid, tartar, nitre, nitrat of foda, common falt, and zinc in powder ; but not on adding vinegar, tin, lead.
7. Soap of fulphuric acid and oil of eggs. -Itsfolution of oil in water is white, opaque, vifcid; frothes: that in alco- egys. hol yellow and tranfparent. Alkalies decompore it; but if too much be added a new forap is formed. Nitric and muriatic acids feparate the oil of the confiftence of

\section*{Part III.}

Neurral wax, the firf yellow, the laft a deep brown. Nitre, \(\underbrace{\text { Salts. }}\) fal ammoniac, acetite of lad, iron filings, zinc powder, decompofe it ; vinegar, borax, filings of lead do not.
'Io unite this acid with the effential cils, three ounces were put into a glafs mortar, and four ounces of the oil were added, drop by drop, and care taken to prevent its becoming hot : equal parts of water were then poured on, and the whole heated flowly nearly to the temperature of boiling water : on cooling, the foap united into a brown mafs.
Of turpen- 8. Soap of fulphuric acid and turpentine. It is brown, tine, and of the confiltence of foft wax. Its folution in water is grey, opaque, vifcid; frothes: Its folution in al. cohol is brown and tranfparent. Alkalies decompofe it : with 100 much it forms at the boiling heat a new foap.

Nittic and muriatic acids feparated the oil thickened, as did alfo white oxyd of lead, meriat of lead, nuriat of foda, and ison filings; but acetous acid, boracic acid, tartrite of potafs, and tin filings, produced no fuch 623 effect.
And of am- 9. Soap of fulphuric acid and amber oil.-Its folution ber oil. in water and alcuhol as in the laft foap. Alkalies, magnefia, and lime, decompofed it. Nitric and muriatic acids feparated the oil of the confiftence of wax. 'Tartar, fal ammoniac, muriat of antimony, acetite of lead, iron filings, decompofed it ; vinegar, acetite of ammonia, and lead did not. fourn. de Mr Achard, to whom we owe thefe foapst, could
Pby. avi. not fucceed in his attempts to form foaps with nitric. 409. and muriatic acids.

\section*{Chap. II. Of Neutral Salts.}

The word falt has been ufed in chemiftry in a very extenfive, and not very definite fenfe. Every body which is fapid, eafily melted, foluble in water, and nut combultible, has been called a falt.

Salts were confidered by the older chemifts as a clafs of bodies intermediate between earths and water. Many difputes arofe about what bodies ought to be comprehended under this clafs, and what ought to be excluded from it. Acids and alkalies were allowed by all to be falts; but the difficulty was to determine concerning earth and metals. Several of the earths poffefs all the properties which have been afcribed to falts; and the metals are capable of entering into combinations which peffefs faline propertiec. It is needlefs for us to enter into this difpute at prefent, as we have taken the liberty, in imitation of fome of the beft modern chemifts, to expunge the clafs of falts altogether, and to arrange thofe fubordinate claffes, which are ufually referred to 625 it, under diflinct heads.
Neutral falt The word neutral falt was originally applied excluoxplaincd. fively to combinations of acids and alkalies, which were confidered as fubftances poffelling neither the properties of acids nor alkalies, but propertics intermediate between the two. But the word is now always raken in a more cxtenfive fenfe, and fignifies all compounds formed by the combination of acids with alkalies, earths, or metallic oxyds. In thele compounds, the earth, alkali, or oxyd, is denominated the bafe. Each order of falts is
denominated after the acid which enters into its compofition; and every individual falt is diftinguifhed by fub. joining the name of its bafe. Thus all the falts into which fulphuric acid enters are called fulphats, and the falt formed by the combination of fulphuric acid and potafs is called fulphat of pota/s.

It is evicient, then, that there muft be as many orders of neutral falts as there are acids; and as many falts in each order as there are alkalies, earths, and metallic oxyds, fuppofing every acid capable of combining with every one of thefe fubfances. But befides thefe fimple combinations of one acid and one bafe, there are others more complex, compofed of two acids combined with one bafe, or two bafes combined with one acid, or a neutral falt combined with an acid or a bafe. Thefe combinations have been called triple falts; and they increafe the number of neutral falts very confiderably.

In the following fections we fhail take a thort view of the properties of the principal neutral falts at prefent known; for this wide and important region of chasmiftry is fill very far from being completely explured.

\section*{Sect. I. Of Sulphals.}

Sulpheric acid is capable of combining with all the alkalies, with alkaline earths, alumina, jargonia, and the greater number of the metallic oxydo. The principal nentral falts which it forms are as follows:
1. Sulphat of potafs.- This falt may be formed by sul. 626 faturating diluted potafs with fulphuric acid, and then pocafs. evaporating the folution gently till cryftals are formed. It feems to have been known at a very early period by chemilts, and a great variety of names were given to it, according to the manner of forming it, or the fancy of the operator. Some of thefe names were, Specificun purgans, nitrum fivum, arcanum duplicatum, panacea bolfutica, fal de duobus, fal palychreft glaferi, \&c.; but it was commonly known by the name of vitriolated tartar till the French chemifts called it fulpbat of potufs, when they formed their new nomenclature in 1787 (x\()\).
When the folution of fulphat of potafs is fufficiently diluted, it affords by evaporation hexabedral pyramids, ties or fholt hexangular prifms, terminated by one or more hexangular pyramids. But thefe cryftals vary much in their figure, according to the care with which they are prepared.
It has a very difagreeable bitter tafte. Its fpecific gravity is \(2,29^{\xi} 3^{*}\).
It is foluble in the temperature of \(60^{\circ}\) in 16 times its weight of water; in a boiling heat, it is \{oluble in 5 times its weight \(\dagger\).
According to Bergman, it is enmpofed of 40 parts of acid, 52 parts of alkali, and 8 of water ; but according to Kirwan, whofe experiment has been already defrribed, it is compofed of 45 parts of acid and 55 of alkali.
It fuffers no alteration in the air.
When placed upon burning coals, it breaks into pieces with a noife refembling a number of fmall explofions fuccceding each other at fhort intervals (L), but fuffers no other alteration. In a red heat it melts.
It has hitherto been applied to little ure. It is a purgative,

Sulphats.
purgative, but i's difagreeable tafte prevents it from being much empioged for that purpofe.

It often has an excefs of acid, owing, as Mr Bergman and Morveat have very ingenioufly explained, to an affinty which exifts between this falt and fulphuric acid.

It is decompofed by compound affinity by the fel. lowing falts:

It is fometimes luminous in the dark, as Mr Giobert has obferved*.
2. Sulphat of foda.-This falt was firf difcovered by Glauber a German chemilt, ard for that reafon was loug known by the name of Glauber's falb. He himfelf called it fal mirabile. It may be prepared by faturating foda with fulphuric acid, but is more ufually obtained by decompofing common falt in order to procure muriatic acid.

Its cryftals are tranfparent, and when formed by flow evaporation, are fis-fided prifms terminated by di. hedral fummits.

Its tafte at firft has fome refemblance to that of common falt, but foon becomes very difagreeably bitter.

It is foluble in 2,67 times its weight of water at the temperature of \(60^{\circ}\), and in 0,8 of boiling water.

It is compofed, according to Bergman, of 27 parts of acid, 15 of alkali, and \(; 8\) of water; but, according to the experiments of Kirwan, of 22 parts of acid, 17 of alkali, and 6I of water.

When expofed to the air, it lofes great part of its water, and falls into a white powder (N).

When expofed to heat it frit undergoes the watery fufion (0), then its water is evaporated, it is reduced to a white powder, and at laft in a red heat it melts. Mr Kirwan has obferved, that part of the acid, as well as the water, is driven off by the application of a ftrong heatt.

This falt is med as a purgative.
It often combines with an excefs of acid.
It is decompofed by compound affinity by the following fubftances.

\section*{Acetite of barytes, \\ _—_ potafs, lime, \\ Carbonat of barytes, -_---potals,}
3. Sulphat of ammonia.--This falt was difoovered by Glauber, and called by him fecret fal anmoniac. It was alfo called vittiolated ammoniac. It may be prepar- ed by faturating ammonia with fulphuric acid.

Its cryftals are generally fmall fix-fided prifms, whofe planes' are unequal, terminated by fix-fided pyramids.

S T R Y.
It has a fharp bitter tafte.
It is roluble in twice its own weight of water at the
temperature of \(60^{\circ}\), and in its own weight of boiling vater.

According to Mr Kirwan, it is compofed of \(\mathbf{2 9 , 7}\) of alkali, 55,7 of fulphoric acid, and 14,16 of water \(\|\). ITrifo

When expofed to the air, it nowly attracts moitture. Trang. ibico
When heated, it firl decrepitates, then melts, and in clofe velfels fublinnes, but with fome lofs of its alkali \(\dagger\). f Rirzoan's

It has not hitherto been applied to any ufe. Mineral.
It is apt to contain an excefs of acid.
ii. \(1 x\).

It is decompofed by compound affinity by the following falts:
\begin{tabular}{l}
\begin{tabular}{l}
Nitrat of lime, \\
\hline magnefia, \\
mercury
\end{tabular} \\
\hline Muriat of potaf, \\
\hline\(—\) foda, \\
\hline\(—\) barytes, \\
\hline\(—\) magnefia. \\
\hline\(-\quad\) mercury
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Acetite of foda,
\(\qquad\) barytes,
\(\qquad\) lime,
\(\qquad\) magnelia, \\
Carbonat of potafs,
\(\qquad\) foda,
\(\qquad\) barytes,
\(\qquad\) lime,
\(\qquad\) magnefia, *
\end{tabular} \\
\hline
\end{tabular}

Acetite of potafs, Phofplat of limet. \(\dagger\) Delkefkanip
4 Sulphat of barytes. This fubftance was firf dif- Ann. de covered by Scheele. It abounds in nature. It is ge- Chim. vi. nerally in the form of a hard very heavy tone. 37 .

It is fometimes found cryftallized; but the variety of Sulphat of forms is fo great that they bafle all defcription. barytes.

It is foluble in 43,000 times its weight of water at the temperature of the atmofphere*.
* Kirwan's

Sulphuric acid diffolves it when concentrated and Mineralogy boiling, but it is precipitated by the addition of wa- i. \(\mathrm{r}_{3} 6\). ter.

When expofed to heat it melts, and, if the heat be very frong, gradually diflipates.
\(63 \overline{1}\)
After being heated red hot, it has the property of Bologna being luminous in the dark. This was firft obferved tone. in a variety of this fubftance known by the name of Bo\(\operatorname{logna}\) ftone. Lemery informs us, that this property was firf difcovered by an Italian fhoemaker named Vincenzn Cafciarolo. This man found a Bologna fone at the foot of Mount Paterno, and its brightnefs and gravity made him fuppore that it contained filver. Having expofed it to the tire, doubtlefs in order to extract from it the precious metal, he obferved that it was luminous in the dark. Struck with the difcovery, be repeated the experiment, and it conftantly fucceeded with him.

From an experiment of Mr Klaproth, it appears to be compored of 33 parts of acid and 77 of barytes.

It is decompofed by compound affiaity by the following falts:
\begin{tabular}{ll}
Nitrat of foda, & \begin{tabular}{l}
Nitrat of magnefia, \\
Carbonat of potafs,
\end{tabular} \\
\hline lime, & ammonia, \\
\end{tabular}
5. Sulphat of lime. This fubfance was well known to the ancients under the name of oryfum; but the compofition of gypfum was not known till Margraf and Macquer analyfed it, and proved that it was compofed of fulphuric acid and lime. The artificial compound
(m) Moft of thefe double decompofitions in this and the following feations are inferted on the authority of Mor veau. See his table of Afinity, page 399 of this article.
(n) This is called efforefcing.
(o) When fubfances melt by means of the water they contain on the application of heat, they are faid to undergo the watery fulion.

\section*{Part III.}

Sulphats. pound formed by the union of thefe two bodies was \(\underbrace{}_{\text {formerly called felenite. }}\)

It is found cryltallized in various forms, fometimes tranfparent and fometimes opaque; and when pure it is of a white colour.

It has a flightly naufeous tafte, fcarcely perceptible except by drinking a glads of water impregnated with - Macquer. it.*

It is foluble in 500 parts of water at the temperature of \(60^{\circ}\), but much more foluble in boiling water.

It is compofed, according to Bergman, of 46 parts of acid, 32 of earth, and 22 of water; :iccording to the late experimonts of Mr Kirwan, when fo far dried as ftill to retan its glafly appearance, it contains 48 of acid, 34 of earth, and 18 of water; which differs very little from the determination of Bergman.

It is not alfected by expolure to the air.
It is foluble in fulphuric acid.
When expofed to heat, it undergoes a kind of watery fufion, but afterwards it cannot be melted by the frongeft heat. In a clay crucible indced it fufes at \(130^{\circ}\) Wedgewood, owing evidently to the prefence of

When heated red hot and cooled, it is called plafer of Paris; a fubftance fo ufeful for cafting moulds, \&c. on account of its property of becoming folid almort immediately when reduced into a paite with water.

By compound affinity it is decompofed by the following fubltances:
\[
\begin{array}{ll}
\text { Acetite of barytes, } & \text { Carbonat of potafs, } \\
\text { Carbonat of baryses, } & \text { foda, }
\end{array}
\]
*Bergman. 634 Sulphat of ftrontites.
6. Sulphat of frontites. This falt, firlt formed by Dr Hope, is a white powder deflitute of tafte. It is foluble in 3840 parts of boiling water. Sulphuric acid dilli,lves it readily when affifted by heat, but it is preci, pitated by the addition of water to the folution \(\dagger\).
\(\dagger\) Dr Hope,
7. Sulphat of magnefia. This falt was firft obferved Tranf. Edin.
iv. ro. Sulphat of magnefia. in the fprings at Epfom in England by Grew in 1675 ;
\({ }^{635}\) but Dr Black was the firf who accurately afcertained Sulphat of magnefiz. its compofition. It has been called Epfom falt, fal catharlicus annarus, and Seydier falt.

It cryitallizes in quadrangular prifins, whofe plains are equal, furmounted by quadrangular pyramids.

It has an exceffively bitter tafte.
At the temperature of \(60^{\circ}\) it is foluble in its own weight of water, and in \(\frac{3}{4}\) ths of its weight of boiling water. The volume of water is increafed \(\frac{3}{4}\) th by
\(\ddagger\) Bergman, adding the falt \(\ddagger\) :
It is infoluble in alcohol.
It is compoied, according to Bergman, of 19 parts of earth, 33 of acid, and 48 of water; according to Mr Kirwan, of \({ }^{17}\) parts of earth, 29,46 of acid, and 53,54 of water.

When expofed to the air it eflurefces, and is reduced to powder.

When expofed to heat it undergoes the watery fufion, and by increafing the temperature its water is eva.

I S T R Y.
porated, but it cannot be decompofed by mears of sulphats. beat.

It is fometimes employed as a cathartic, but its chief ufe is to furnifh magnefia by its decompofition.

It is decompofed by compound affinity by the following falts.
\[
\begin{array}{ll}
\text { Muriat of potafs, } & \begin{array}{l}
\text { Acetite of lime, } \\
\text { Coda }(\mathrm{p}),
\end{array} \\
\begin{array}{l}
\text { Carbonat of barytes, }
\end{array} \\
\text { Acetite of barytes, } & \text { - potals, }
\end{array}
\]
S. Sulphat of ammonia and magnefia. This triple Sulphat of falt was difcovered by Mír Fourcroy. Into the folution ammonia of 100 parts of lulphat of magneflia in 500 parts of wa. and magter, 12 parts of ammonia being poured, a very fmall nefia. quantity of magnetia was precipitated, and a confiderable quantity more on the addition of another dofe of ammonia; but fatther additions had no effect. From the magnefia precipitated, it appeared that 38 parts of the fulphat had been decompofed. There temained, therefore, 62 parts in folution, mixed with a large quantity of ammonia. By cvaporation, 92 parts of a white tranfparent rhomboidal falt were obtained, evidently compofed of fulphuric acid, ammonia, and magnefia, in the proportions that would have formed 62 parts of fulphat of magnefia and 30 of fulphat of ammonia, and probably confifting of a combination of theie two fulphats \(\dagger\).
9. Sulphat of alumina. This falt may be formed by Chim. iv. diffolving alumina in fulphuric acid. It has an aftrin- 2 rr . gent tafte, is very foluble in water, and cryftallizes in thin plates which have very litrle confiftence.* Little attention las hitherto been paid to this falt, which was never properly dillinguifhed from alum till two memoirs, one by Vauquelin and another by Chaptal, on the nature of alum, made their appearance in the 22 d volume of the Annales de Chimie. This falt generally contains an excefs of acid, and is not ncutralized without confiderable difficulty \(\dagger\).
10. Sulphat of alumina and potafs, or alum. The oтuттnpra of the Greeks, and the alumen of the Romans, was a native fubftance, which appears to have been nearly related to green vitroil or fulphat of iron; and which confequently was very different from what we at prefent denominate alum. From the refearches of Profeffor Beckmann, it appears that we owe the difcovery of alum to the Aliatics; but at what period, or by what means, the difcovery was made, is altogether unknown.

It continued to be imported from the Eaft till the \(15^{\text {th }}\) century, when a number of alum works were eftablilhed in Italy. In the 1 oth century it was manufactured in Germany and Spain ; and during Qneen Elizabeth's reign an alum work was eftablifhed in England by Thomas Chalomer.

The alum of commerce is ufually obtained from earths containing fulphur and clay, or fulphuric acid ant clay.
The co 639
The compofition of alum lais been but lately under- Its compofood fition,
food with accuracy. It has been long known, indeed, that one of its ingredients is fulphuric acid (R\()\); and the experiments of Geoffroy, Heliot, Pott, Margraf, and Macquer, proved inconteftibly that alumina is another ingredient. But fulphuric acid and alumina are incapable of forming alum : Manufacturerskrew, that the addition of a quantity of potafs, or of ammonia, or of fome fubflance containing thefe alkalies, is almont always necelfary; and it was proved, that in every cafe in which fuch additions are unneceffary, the earch from which the alum is obtained contained already a quantity of potals. Various conjectures were made about the part whicl potafs acts in this cafe ; tut Chaptal and Vatiquelin appear to have been the firt chemifts that afeertained by decifive experiments that alum was a triple falt, compored of tulphat of alumina and of po-

640 And properties.
* Neumann and Cbaptal. \(\dagger\) Kirzuan and Cbaptal. \(\ddagger\) Bergman. tafs unised together (s).

Alum crytallizes in large oetahedrons, compofed of two tetrahedral pyramids, applied to each other at their bafes.

It has a fweetifh and aftringent talte, and always reddens the tinfture of turnfol.
It is foluble at the temperature of \(60^{\circ}\), in from \(10^{*}\) to \(15 \dagger\) times its own weight of water, according to its purity ; pure alum being mont infoluble. Seventy-five parts of boiling water diffolve 100 of alum \(\neq\)

A hundred parts of alum contain, according to Kirwan, 17,62 parts of acid, 18 of earth (and alkali), and \(\|\) Kirrean's \(6,4,3\) of water \(\|\).
Min. ii. I4. When expofed to the air it efllorefees nightly.
When expofed to a gentle heat it undergoes the watery fufion. A ftrong heat caufes it to fivell and foam, and to lofe about 44 per cent. of its weight, confiting
§ Itid. chiefly of water of crytallization §. What remains is called calcined or burnt alum, and is fometimes ufed as a corrofive.

Alum is of great importance as a mordant in dyeing, and is ufed alfo in feveral other arts.

By compound affinity it is decompoled by the following falts.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Nitrat of foda, \\
_——lime, \\
__ ammonia, \\
__- magnefia, \\
Muriat of barytes,
\(\qquad\) potafs,
\(\qquad\) foda,
\(\qquad\) lime,
\(\qquad\) ammonia,
\(\qquad\) magnefia. \\
Acetite of barytes,
\end{tabular} & \begin{tabular}{l}
Acetite of potafs, \\
————foda, \\
-__ lime, \\
___mamonia, \\
__- magnefia, \\
Carbonat of barytes, \\
———— potafs,
\(\qquad\) foda,
\(\qquad\) lime,
\(\qquad\) ammonia,
\(\qquad\) magnefia.
\end{tabular} \\
\hline
\end{tabular}

641
melted together in an iron ladle, and the mixture dried till it becomes blackifh and ceafes to fwell; if it be then pounded fmall, put into a glafs phial, and placed in a fand-bath till a blue flame iflues from the mouth of the phial, and after burning for a minute or two be allowed to cool (T), a fubfance is obtained known by the name of Honberg's pyrophorus, which has the property of catcling fire whenever it is expofed to the open air, efpecially if the air be moit.

This fubftance was accidentally difcovered by Homberg about the beginning of the 1 Sth century, while he was engaged in his experiments on the human freces. He had difilled a mixture of human freces and alum till he could obtain nothing more from it by means of heat ; and four or five days after, while he was taking the refiduum nut of the retort, he was furprifed to fee it take fire foontaneounly. Soon after Lemery the Younger difovered that honey, fugar, flour, or almoft any animal or vegetable matter, could be fubfituted for human fæces; and afterwards Mr Lejoy de Suvigny fhewed that feveral other falts containing fulphuric acid might be fubltituted for alum.* Scheele proved, * See Mam that alum deprived of potafs was incapable of forming quer's Dia. pyrophorus, and that fulphat of potas might be fubtituted for alum \(\dagger\). And Mr Prouft has thewn, that a + Scbecte or number of neutral falts, comprfed of vegetable acids Fire, and on and alkalies, or earths, when diftilled by a Arong fire in Pyropberus. a retort, left a refiduum which took fire fontaneoully on expofure to the air.

Thefe facts have thrown a great deal of light on the nature of Homberg's pyrophorus, and enabled us in fome meafure to account for its fpontaneous inflammation. It has been afcertained, that part of the fulphuric acid is decompofed during the formation of the pyrophorus, and of courfe a part of the alkaline bafe becomes uncombined with acid, and the carbon, which gives it its black cclour, is evidently divided into very minute particles. It has been afcertained, that during the combuftion of the pyrophorus a quantity of oxygen is abforbed. The inflammation feems to be owing to a dijpofing affinity. Part of the carbon and of the fulphur attract oxygen from the atmofphere, in order to combine with the potafs, and the caloric difengaged produces a temperature fufficiently high to kindle the reft of the carbon.

Alum is capable of combining with alumina, and of forming what has been called alum faturated with its eatth, which is an infoluble, taftelefs, earthy-like fubStance.

It is capable alfo, as Chaptal informs ns, of combining with feveral other bafes, and of forming many triple falts, which have never yet been examined with attention.*
- Aman de
11. Cbimic, \(x x \bar{n}\). 293.
(R) Some chemits have thought proper to call the fulphuric acid, obtained by ditilling alum, fpirit of aium.
(s) This they did in the two memoirs above quoted, and which were firt publifhed in the 22 d volume of the Annales de Chimie. An account of Vauquelin's memoir has been already given under the article Alum in this Supplement. Chaptal's memoir is no lefs interelting. This celebrated chemift appears, from the fadts flated in the 23 d volume of the Amnales, p. 222. to have made his difcovery before Vauquelin; who, however, was ignorant of what Chaptal had done, as he informs us in the Ann. de Chim. xxv. 107. that his paper was read to the Inflitute a fortnight before that of Chaptal's came to Paris. He informs us, too, that Defcroifilles had long before made the fame difcovery, and that he had publifhed it in Berthollet's Art de la Teinfure.
(T) Care muft be taken not to keep it too long expofed to the heat.

\section*{Part III.}

\section*{C H E M I S T R Y.}
11. Sulphat of jargonia (v). In order to combine jargonia with acids, they thould be poured upon it of its folvents; for after it is dry, acids do not act upon it without difficulty. By this method fulphat of jargonia is eafily formed. It is white, and without fenfible tafte. Heat expels the acid from it, and the jargonia remains in a ftate of purity. At a high temperature charcoal converts it into a fulphuret, which is foluble in water, and which, by evaporation, furnifhes cryftals of
+ Vaugue-
lin, Ann. de
Cbint, xxii.

\section*{199.}
\(t\) Fourn. de
Phyf. xxavi. 187.

643
Green ful phat ofiron.

Klaproth informs us, that with excefs of acid fulphat of jargonia forms tranfparent Itelliform cryltals, folnble in water, and having an aitringent tafte \(\dagger\).
12. Sulphat of iron. There are two fulphats of iron, which were firft accurately ditingnifhed by Mr Proutt. The one contains the green oxyd, the other the red oxyd of iron. We fliall, in imitation of Mr Prouft, denominate them from their colours. pofed of fulphuric acid and green oxyd of iron, is found native, and was known to the ancients. It is mention-
"Lib.xxxiv. ed by Pliny under the names of mify, fory, calchantum.*
c. 12. It was formerly called green virriol.

It is generally prepared by expofing native fulphuret of iron, a very abundant mineral, to air and moifture.

Its cryftals are of a light green colour, and in the form of rhomboidal parallelopipeds.

It has a tharp aftringent talte.
It is foluble in fix times its weight of water at the temperature of \(60^{\circ}\), and in \(\frac{3}{4}\) ths of its weight of boil-
\(\dagger\) Bergman. ing water \(\dagger\).
It is infoluble in alcohol.
According to Bergman, it is compofed of 39 parts
Supri. Voz. I.
of acid, 23 of oxyd, and \(3^{8}\) of water; but according to Mr Kirwan, of 26 parts of acid, 28 (u) of o..jd, and 46 of water.

When expofed to the air, it efflorefces; but if it he moiftened, it is gradually converted into red fulplidt of iron.

When heated, it finf affumes a yellow colour, lofes its water and its acid; if the heat be increafed, nothing remains but a jellow powder.

The Prufic alkali precipitates from the folution of this falt a white powder, which gradually becomes blue by attracting oxygen \(\oint\).

It is ufed in dyeing, and in making ink, \&c.
It is decompored by compound affinity, by
Nitrat of filver,
Muriat of foda.*
The red fulphat of iron may be formed by expofing a folution of green fulphat to the air, or by treating it with nitric acid. It was formerly called mother water of vitriol.

Little is known of its properties, except that it is Redfulphat deliquefcent, incryftallizable, and foluble in alcohol. of iron.

It was firft accurately examined by Mr Prouft.
The green fulphat of iron generally contains fome of it, which may be feparated by means of alcohol.

It is alone capable of forming Pruflian blue with the Pruffic acid, and of ftriking a black colour with the gallic acid \(\dagger\).

W t. \(t\) See We lave obferved, that when it is diluted with wa. Prouff pow ter, and an exceis of fulphuric acid is poured in, it is per, Nicbolo again flowly converted into green fulphat.
13. Sulphat of zinc.-This falt, according to the \({ }^{n u l}, \mathrm{i}_{45} 453\). beft accounts, was difcovered at Rammelfberg in Ger- Sulphat of many, about the middle of the 1 6th century. Manyzinc.

3 H afcribe
(v) Jargonia, or, as the French chemilts call it, zirconia, has been difcovered in great abundance in France by Morveau, who found that the hyacinths of Expailly contained more than half their weight of it. From Vau. quelin's analyfis they appear to be compofed of
\[
\begin{aligned}
& 32 \text { parts of filica, } \\
& 6_{4}
\end{aligned}
\]
\[
2, \quad \text { oxyd of iron. }
\]

Jargonia has been examined with great care by thefe two philofophers, the experiments of Klaproth have been confirmed, and feveral new properties of it have been difcovered. Perhaps a more detailed account than we have hitherto given of this new earth may not be unacceptable to our readers.

Jargonia is a white powder, its fecific gravity is confiderable, it has a feel refembling that of filica, it has no tafte, and is infoluble in water. When feparated from its folutions by pure alkalies, it retains, when expofed to the air to dry, a pretty confiderable quantity of water, which renders it tranfparent, and gives it a refemblance to gum arabic both in its colour and fracture.

When expofed to the heat of the blow-pipe it does not melt ; but Vauquelin melted it by expofing it furrounded with charcoal in a porcelain crucible to an intenfe heat for an hour and a half. Its fecific gravity was then 4,35 , its colour was grey, and its hardnefs fuch that it was capable of feratching glafs. It melts with borax, and forms a tranfparent and colourlefs glafs; but phofphat of foda and the fixed alkalies do not attack it.

It is infoluble in the fixed alkalies, has very little aflinity for carbonic acid, and is precipitated from its folu. tions together with iron by the Pruffic alkali.

Its affinities, as far is they have been alcertained by Vauquelin, are as follows:
Vegetable acids, order unknown,
Sulphuric acid,
Muriatic,
Nitric.
See upon this fubject the Memoirs of Morveau and Vauquelin, Arn. de Chim. xxi. 72, and xxii. 179.
(r) There curious falts form the fubject of the next chapter.
(u) Perhaps the quantity of oxyd is fomewhat over.rated here; for before it was examined by Mr lirwan, it had aftumed a red colour: it mult therefore have been converted into the brown or red oxyd by attracting oxygen from the atmofphere.
rev
afcribe the invention to Juiins Duke of Branfwict. Ennkel and Newmann were the firt chemilts who proved that it contained zinc; and Brandt firft afcer-
\(\ddagger B\) ochmann's tained its compolition completely \(\ddagger\). It is generally
Hif. of \(1 n-\) formed for commercial purpofes from fulphuret of zine
acrations, art.
Zinc. or blence, as it is called. This falt is called alfo wwite vitrio!.
It is of a white colour, and its cryftals are rhomboiddl prifms, terminated by quadrangulas pyramids: there is generally a flight defet in two of the oppofite angles ef the prifm, which produces a quadrangular
\$ Bergman, rection §. Its fpecific gravity is 2,000 .
ii. 327. It has a fharp ftyptic talle.

It is foluble in 2,28 parts of water at the temperature of \(60^{\circ}\); but in a much fmaller quantity of boiling
* Iuid.

646
Sulphat of manganefo.
-Scbeck.
\(\ddagger\) Id.
647
Sulphat of
nickel.
\(\dagger\) Bergman,
ii. 268.

648
Sulphat of cobalt.

649
Sulphat of
lead. water.*

It is compofed, according to Bergman, of 40 (\(v\)) parts of acid, 20 of oxyd, and 40 of water: Kirwan fuppofes, that it is compofed of 12 parts of acid, 26,4 of zine, 20 of oxjd, 41,6 of water (w).

According to Bergman, this fat is not altered in the air; others affirm that it \(\epsilon\) florefces. This, no doubt, depends upon the place where it is kept.

Heat decompofes this falt.
It. Sulphat of mangane\{e. - This falt was firft obtained by Scheele (\(x\)): It is compored of fulphuric acid and white oxyd of munganere.

Its crytals are oblique parallelopipeds; they are of a white colour, and very bitter.*

Thefe cryftals are decompofed by a Atrong red heat, and the fulphuric is converted into fulphurous acid by the oxyd attracting its oxygen, and being changed into black oxyd \(\ddagger\).
15. Sulphat of nickel.-This falt, which is compofed of fulphuric acid and oxyd of nickel, was firit deforibed by Bergman. Its cryftals are in the form of decahedruns, compored of two quadrangular truncated pyramids; they are of a green colour \(\dagger\).
16. Sulphat of cobalt. - This falt was firt mentioned by Mr Brandt. Its cry\{tals are of a reddih colour; but if any nickel be prefent, they are green.
17. Sulphat of ledd.-This falt has been long known: it is compofed of fulphuric acid and white oxyd of lead. The cryltals are white, fmall, and moft commonly needle- Maped: according to Sage, they are tetralixdral prifms. It is foluble in IS parts of water.
Heat decompofes ir.-It is very cautic.
18. Sulphat of tin.-Nothing is known concerning this falt, except that it cryftallizes in fine needies inter§ Monnet. laced with one another \(\$\).

650
19. Sulphat of copper.-This falt appears to have been known to the ancients. It is generally obtained by evaporating thofe waters which naturally contain it. It is called alfo lue vitriol.

Its cryftals are of a deep blue colour; they are in the form of oblong rhomboids. It fpecific gravity is 2,230.

It has a very ftrong flyptic tafte; and indeed is emplojed as a caultic.

It is foluble in four parts of water at the tempera-
ture of \(60^{\circ}\); but in a much fmaller quantity of boiling Sulphats. water.*

It is compofed, according to Bergman, of 46 parts
* Bcrgman. of acid, 26 of nxyd of copper, and 28 of water. Kirwan fuppofes it to contain 27,68 of acid, 35 of oxyd, and 37,32 of water + .
\(\ddagger\) Miner, ii.
When expofed to the air, it efflorefces, and is cover- 23.
ed with a yellowifl grey powder.
It requires a very ftrong heat to decompofe it.
It has the property of communicating a green colour to flame.

It is uled in the preparation of feveral paints, and for a variety of other purpofes.

It is decompofed by compound affinity, by acetite of lead.
\(65 x\)
20. Sulphat of bifmuth.-Little is known of this Sulphat of falt, except that it is with difficulty cryfallized, and is bifnuth, very deliquefcent.

\section*{652}

2t. Sulphat of antimony. -This falt does not cry- Antimony, ftallize. It is eafily decompofed by heat.
22. Sulphat of arfenic. - This falt is fcarcely known. It does not appear to be cryftallizable. It is decompofed by water.
23. White fulphat of mercury.-This falt may be white fuiformed by boiling together two parts of mercury and phat of three of concentrated fulphuric acid, and Itopping the mercury* procefs whenever the mercury is converted into a white mafs. This mafs, in order to remove the excefs of acid, is to be walhed repeatedly with fmall portions of water, till it ceafes to redden turnfole. The fulphat of mercury, thus obtained, is very white. Its cryftals are either fmall plates or prifms. Its tafte is not very cauftic. It is foluble in 500 parts of water at the temperature of \(55^{\circ}\), and in \(287^{\text {p }}\) parts of boiling water. It is compofed of 83 parts of white oxyd of mercury, 12 of lulphuric acid, and 5 of water.* It is not altered * Fourcrogs by expofure to the air. Heat decompofes it.

This fulphat is capable of combining with a new portion of acid: It was in that fate before it was wafl- 299 . ed with water. This falt, which may be called acidulous rwhite fulplat of mercury, has a very caultic talte, and is corrolive. It reddens vegetable blues. It is foluble in 157 parts of water at the temperature of \(55^{\circ}\), and in 33 parts of boiling water \(\dagger\).

\section*{Ann. de} Clim. \(\mathbf{x}\).
24. Yellow fulphat or mercury.-This falt may be ibid.
obtarned by continuing to boil the preceding mixture of
mercury and fulphuric acid till the mercury affumes a yellow colour. It appears to be compofed of yellow oxy phat of of mercury and a fmall portion of fulphuric acid. It is foluble in 2000 parts of water at the temperature of \(55^{\circ}\), and in 600 parts of boiling water. The folution is colourlefs. It was formerly called turbith mineral \(\ddagger\). \(\ddagger\) Fourcroy
25. Sulphat of ammonia and mercury. - This triple ilid. falt may be formed by pouring ammonia into a folution of fulphat of mercury. If only a fmall quantity of am. monia be ufed, a copions blackifh precipitate takes

656 Sulphat o ammonia place, part of which is converted into running mercury ry.
by expofure to light ; and confequently is black oxyd of mercurs* ; the remaining part is the triple falt. If a large quantity of ammonia be ufed, only the black oxyd
\(\underbrace{\text { Sulphats. }}\) is precipitated; for the triple falt is rendered much more foluble hy an excefs of ammonia. As this excefs evaporates, the falt cryftallizes. The cryftals are polygrons, very brilliant and hard. It has a harp, auttere, metallic tafte. It has no peculiar odour. It is frarcely foluble, except with excefs of ammonia. It is compor. ed, according to Fourcroy's analylis, of 18 parts of fulphuric acid, 33 of ammonia, and 39 of oxyd of mercury. Heat decompofes it. The products obtained by diftilling it are, a little ammonia, azotic gas, a little pure mercury, fome ful bite of ammonia; and there re. - Fiurcroy, mains yellow fulphat of mercury.*

This triple falt may be formed alfo by pouring ammonia upon acidulous fulphat of mercury, or on yellow
fulphat of mercury \(\dagger\).
26. Sulphat of filver.-This falt is formed by pour-
\(\dagger\) Thid
657 Sulphat of ing fulphuric acid on oxyd of filver. Its crytals are fraall needles. It melts when expofed to a frong heat, but does not fublime.
\(\ddagger\) Bergman.
It is decompofed by muriat of lead \(\ddagger\).
27. Sulphat of gold.-This falt is unknown.
28. Sulphat of platinum.-Unknown.
29. Sulphat of tung!len.-Probably no fuch combination is poffible.
658 30. Sulphat of molybdenum.-Probably impofible. sulphat of 3 i. Sulphat of uranium. -This falt was firll formuranium, ed by Mr Klaproth. He formed it by pouring filphuric acid on the oxyd of uranium. Nothing farther is known of it, except that its cryfals are fmall, and of
659 a yellow colour.
Titanium, 32. Sulphat of titanium.-This falt was frif formed by \(\mathrm{Mr} \mathrm{M}^{\prime}\) Gregor. It does not appear, from Klaproth's 660 experiments, to be cryftallizable.
Tellurium. 33. Sulphat of tellurium.- When one part of telluriunn is mixed cold in a well Aopped veffel with an hundred parts of concentrated fulphuric acid, the latter gradually alfiumes a beautiful crimfon red colour: when a fmall quantity of water is added, drop by drop, the colour difappears, and the metal is precipitated in the form of black flakes. The folution is deftroyed by heat, the colour difappears, and the metal feparates in the flate of a white oxyd. When fulphuric acid is diluted with two or three parts of water, and a fmall quantity of nitric acid is added, it diffolves a confiderble quantity of tellurium. The folution is tranfpa. rent and colourlefs, and is not decompofed by the ad-
\(\ddagger\) Klaproth, dition of a larger quantity of water \(\ddagger\).
Sect. II. Of Sulpbites.
Salts compofed of fulphurous acid united refpec-
66 r Thofe hitherto examined are the following :
Sulphite of I. Sulphite of potafs. - This falt was firft formed potafs. by Stahl; but was firf accurately defcribed by Berthollet, Fourcroy, and Vauquelin.

It may be formed by paffing fulphurous acid into a faturated folution of carbonat of potafs till all effervef. cence ceafes. The folution becomes hot, and cryfal-
Fourcroy, - lizes by cooling.
and \(V\) auque- Its cryftals arc white and tranfparent ; their figure
Lin, Niccol-
that of rloomboidal plates. Its crytallization often prefents fmall needles diverging from a common centret.

Its tafte is penetrating and fulphurous. At thic common temperature of the atmofphere, it is foluble in its own weight of water, but much more foluble in boiling water.

When expofed to the air, it efflorefces, becomes opaque and hard, and is gradually converted into fulphat of potafs by abforbing oxygen.

When expofed to a fudden heat, it decrepitates, lofes its water : at a red heat fome fulphurons vapours are emitted; at lalt a portion of fulphur feparates, and the refiduum is fulphat of potafs, with a flight excefs of alkali.

Nitric and oxy-muriatic acids convert it into fulphat of potais by imparting oxygen.
It decompofes the oxyds of gold, filver, mercury, the red oxyd of lead, the black oxyd of manganefe, and the brown oxyd of iron. When the green oxyd of iron and the white oxyd of iron are boiled with it in water, and an acid added, a precipitate takes place of thefe bodies united to fome fulphur, and the falt is converted into a fulphat: at the fame time fulphurated hydrogen gas is emitted.

By compound affinity it is decompofed by
All falts with bafe of foda, except the borat and carbonat;

All metallic falts except carbonats ;
All neutral falts whofe acid has a Aronger affinity for potafs than fulphurous acid hast.
2. Sulphite of foda. - This falt was firf accurately defcribed by Fourcroy and Vauquelin.
It is white and perfectly tranfparent. Its cryfals are four-fided prifms, with two very broad fides and two very narrow ones, terminated by dihedral pyramids.
Its tafte is cool and fulphurous.
It is foluble in four times its weight of cold water, but it is more foluble in hot water.

It is compofed of 18,8 parts of foda, 31,2 of acid, and 50 of water.

By expofure to air, it efflorefces, and is flowly converted into a fulphat.
When expofed to hear, it undergoes the watery fufion, and afterwards exhibits precifely the fame phenomena as the fulphite of potafs.
Metallic oxyds and falts affect it precifly as they do fulphite of potars.

It is decompofed by compound affinity by carbonat of potafs, and the other falts which decompofe fulphite of putafs.|l.
3. Sulphite of ammonia.-This falt was firf defcrib. ed by Fourcroy and Vauqueling.
It crytallizes in fix-fided prims terminated by fix. fided pyramids.

It is foluble in its own weight of cold water. Its folubility is increafed by heat.

It is compofed of 29,07 parts of ammonia, 60,06 of acid, and 10,87 of water.

When expofed to the air, it attracts moilure, and is foon converted into a fulphat.

Heat volatilizes it without decompnfition.
Its habitudes with metallic oxyds and falts are nearly \(\dagger\) Tbit.
the fame with thofe of the above deferibed fulphites, 66.4 only it is capable of forming with feveral of them triple Sulphite of faltst.
 by Berthollet \(\ddagger\).

\section*{\(\mid\) Ilid.}

665 Sulph
lime.
lime.
Cbin, ibid.
- Fourcroy and Vauguelin.

It is compofed of 59 parts of barytes, 39 parts of acid, and 2 of water.

It does not eafily change into a fulphat by expofure to air; but heat produces this effect \(\ddagger\).
5. Sulphite of lime.-This falt was firt defcribed by Berthollet|l.
Its cryfals are fix-fided prifms, terminated each by a very long pysamid*.

It has farcely any tafte; however, when kept long in the mouth, it communicates to the tongue a tafte which is manifeftly fulphurous.

It is very faringly foluble in water, except with ex. cefs of acid.

It is compofed of 47 parts of lime, 48 of fulphurous acid, and 5 of water.

By contact of air it is converted into a fulphat, but very flowly.

Heat converts it into a fulphat by depriving it of a portion of fulphur.

It is decomp fed by compound affinity by
Carbonats of alkalies, Fluats of alkalies,
- Ibid. Phofphats of alkalies, Moft metallic falts*.

666 6. Sulphite of magnefia.-This falt was firt defcrib-
Sulphite of
magnefia.
ed by Fourcroy and Vauquelin.
Its cryftals are white and tranfparent, and in the form of depretfed tetrahedrons.

Its talte is mild and earthy at firft, and afterwards fulphurous.

It is faringly foluble in water, except when there is an excefs of acid.

It is compofed of 16 parts of magnefia, 39 of acid, and 45 of water.

It becomes opake when expofed to the air ; is very duwily converted into a fulphat.

By expofure to heat, it foftens, fwells up, and becomes ductile like gum; a ftrong heat decompofes it altogether.

It is decompofed by
Alkaline falte,
+ Fourcroy und Touque lin. 667
 Earthy falts, except thofe of aluminat.
7. Sulphite of alumina.- Firit formed by Berthollet. It does not cryftallize, but is converted into a foft ductile mafs. It is nut foluble in water, but becomes abundantly fo when there is an excefs of acid.

It is compofed of 44 part; of alumina, 32 of acid, and 24 of water.
\& Fourcroy Heat decompofes it If.
sud Vaugue-
8. Sulphite of iron.-It was firft formed by Berthollino let.
\({ }^{6} 68\) Its cryftals are white, and have but very little of the Sulftite of Ityptic tafte of iron falts*.
iron.
\({ }^{\text {ir }}\) An. \({ }^{2}\) n. de Cbim.ii. 58. but he has not defcribed them.

\section*{Sect. III. Of Nitrats.}

Those falts, in the compofition of which the nitric acid forms one ingredient, are called nitrats.
Nitre.
1. Nitrat of potafs, nitre, or faltpetre.-As this falt is produced naturally in confiderable quantities, particularly in Egypt, it is highly probable that the ancients were acquainted with it ; but fcarcely any thing certain can be collected from their writings. If Pliny mentions it at all, he confounds it with foda, which was known by the names of nitron and nitrum. It is certain, however, that it has been known in the ealt from
time immemorial. Roger Bacon mentions this falt in the \(13^{\text {th }}\) century under the name of nitre.

It cryftallizes in flender oblong hexagonal prifms, often Atriated, terminated by hexagonal pyramids obliquely truncated. Its fpecific gravity is 1,920 .

Its tatte is Charp, bitterith, and cooling.
It is foluble in feven times its weight of water at the temperature of \(60^{\circ}\), and in nearly its own weight of boiling water \(\dagger\).

According to Bergman, it is compofed of 31 parts of acid, 61 of potafs, and 8 of water; but this proportion of acid is undoubtedly too fmall. According to Mr Kirwan, it is compofed of 41,2 of acid, 46,15 of alkali, and \(\mathrm{Iz}, 65\) of water \(\ddagger\).

It is not altered by expofure to the air.
When expofed to a ftrong heat, it melts ; and congeals by cooling into an opake mafs, which has been called mineral crypal. If the heat be continued, the acid is gradually decompored and driven off. When the folution of nitre is expofed to a boiling heat, part of the falt is evaporated along with the water, as Wallerius, Kirwan, and Lavoifier, obferved fuccelfively. When nitre is expofed to heat along with many combultible fubftances, its acid is decompofed; the combuftible feizes the oxygen, and at the fame time a lively white flame appears, attended with a decrepitation: this is called the detonation of nitre.

Nitre mixed with charcoal and fulphur in proper proportions forms gunpowder.

Nitre is decompofed by compound affinities by
Acetite of barytes.
No phenomenon has excited the attention of chemi- Reproduccal philofophers more than the continual reproduction tion of niof nitre in certain places after it had been extracted from tre.
them. Prodigious quantities of this falt are neceffary for the purpofes of war ; and as Nature has not laid up great magazines of it as the has of fome other falts, this annual reproduction is the only fource from which it can be procured. It became, therefore, of the utmolt confequence, if polfible, to difoover the means which Nature employed in forming it, in order to enable us to imitate her proceffes by art, or at leaft to accelerate and facilitate them at pleafure. Numerous attempts accordingly have been made to explain and to imitate thele proceffes.

Stahl, fetting out on the principle that there is only one acid in nature, fuppored that nitric acid is merely fulphuric acid combined with phlogifton; and that this combination is produced by putrefaction: he affirmed accordingly, that nitre is compofed by uniting together potafs, fulphuric acid, and phlogifon. But this opinion, which was merely fupported by very far-fetched analogies, could not ftand the telt of a rigo. rous examination.

Lemery the Younger accordingly advanced another ; affirming, that all the nitre obtained exilts previoufly in animals and vegetables, and that it is formed in thefe fubftances by the proceffes of vegetation and animalization. But it was fon difcovered that nitre exitts, and is actually formed, in many places where no animal nor vegetable fubftance had been decompofed; and confequently this theory was as untenable as the former. So far indeed is it from being true that nitre is formed alone by thefe procefles, that the quan. tity of nitre in plants has been found to depend entirely on the foil in which they grow*.

At laft by the numerous experiments of feveral French philofophers, particularly by thofe of Thouvenel, it was difcovered that nothing elfe is neceflary for the production of nitre but a bafis of lime, heat, and an open, but not too free communication with dry atmofpheric air. When thefe circumftances combine, the acid is firft formed, and afterwards the alkali makes its appearance. How the air furnifhes materials for this prodution is eafily explained, now that the component parts of the nitric acid are known to be oxygen and azor. But how lime contributes to their union it is not fo eafy to fee. It is a difpofing aflinity, which, like moll others referred to that fingular clafs, our prefent knowledge of the nature of affinity does not enable us to explain. The appearance of the potals is equally extraordinary. If any thing can give countenance to the hypothefis, that potafs is compored of lime and azot, it is this fingular fact.
2. Nitrat of foda. This falt was called formerly culic nitre.

It forms rhomboidal cryftals. Its feccific gravity is 1,870.
It has a cool fharp tafte, and is fomewhat more bitter than nitre.
It is foluble in about three parts of water at the temperature of \(60^{\circ}\), and is fcarcely more foluble in boiling water.

It is compofed, according to Bergman, of 43 parts of acid, 32 of foda, and 25 of water. From an experiment formerly defcribed, Mr Kirwan concludes, that it contains 57,65 of acid, and 42,35 of alkali ; but perhaps the proportion of acid may be fomewhat over-rated, as no dired proof has been brought that the falt contains no water.

When expofed to the air it rather attracts moifure.
Its phenomena in the fire are the fame with thofe of nitre, only it dues not melt fo eafily.

It is decompofed by compound affinity by the following falts:
\begin{tabular}{|c|c|}
\hline & A \\
\hline \begin{tabular}{l}
- potafs, \\
- alumina,
\end{tabular} & Acetite of barytes, \\
\hline Muriat of barytes, & Carbonat of baryt \\
\hline -- potafs, & - pot \\
\hline
\end{tabular}
3. Nitrat of ammonia. This falt cryftallizes with difficulty into regular needles. It was formerly called nitrum femivelatile, and nitrum flammans.

It has a fharp, acrid, fomewhat urinous tafte.
It is foluble in about half its weight of boiling water.

It is compofed of 58 parts of acid, about 26 of al.
- Kirzvan. kali, and 16 of water*.

When expofed to the air it deliquefces.
When expofed to heat, it firft undergoes the watery fufion, afterwards detonates, and is completely decompofed. Berthollet has thewn, that this phenomeno is owing to the hydrogen of the alkali entering into combination with the oxygen of the acid, and forming water, while the acid flies off in a gafeous form.

By compound affinity it is decompofed by the following fubtances:

Sulphat of barytes, \(\begin{aligned} & \text { Acetite of barytes, } \\ & \text { potafs, } \\ & \text { alumina, }\end{aligned}\) potafs,

672
itrat
.

4. Nitrat of barytes. This falt may be formed into Nitrat of hexagonal cryftals, but it requires great addrefs to pro. barytes. duce them.

It attracts moifture from the atmofphere.
Heat decompofes it and leaves purc barytes. The decompofition of this falt by heat is the moll convenient method of procuring pure barytes yet known. It was firf propofed by Mr Vauquelin.

By compound affinity it is decompofed by

> Alkaline carbonats,

Oxalat of ammonia*. *Bergmano
5. Nitrat of linue. This falt forms by cryftallization \({ }^{674}\) fixfided prifins, terminated by dihedral pyramids, but Nitrat of more conmonly fmall regular octahedral needles.

It has a fharp bitterifh talte.
It is foluble in two parts of cold water, and in its own weight of boiling watcr.
Boiling alcohol dillolves its own weight of it \(\dagger\). \(\dagger\) Bergman.
According to Bergman it is compofed of 43 parts
of acid, 32 of lime, and 25 of water. Kirwan has
found, that 100 parts of lime require for faturation 180 parts of acid \(\ddagger\).

Nitrat of lime deliquefces when expofed to the air. 29 .
Heat decompofes it like all other nitrats.
By compound affinity it is decompofed by
Sulphat of barytes, Acetite of potafs,
 Acetite of barytes, Tungfat of ammonia \(\oint\)
6. Nitrat of frontites. This falt, firlt formed by Dr Hope, cryftallizes readily, but the crylals are very irregular in their flape; fometimes they are hexagonal truncated pyramids; fometimes octahedrons, confifting of two four-fided pyramids united at their bafes.

It is foluble in its own weight of water at the temperature of \(60^{\circ}\), and in little more than half its weight of boiling water. It has a ftrong pangent tafte.

In a dry air it efflorefces, but in a moilt air it deliquefces.

It deflagrates on hot coals. Subjected to heat in a crucible, it decrepitates gently, and then melts. In 2 red heat it boils, and the acid is diflipated. If a combuftible fubtance be at this time brought into contact with it, a deflagration with a very vivid red flame is produced*.
7. Nitrat of magnefia. The compofition of this falt Trarf. Edizo was firft afcertained by Dr Black.

Its cryftals are quadrangular prifms. It has a very Nitrat of bitter talle. It is very foluble in water. Alcohol dif- magnefia. folves \(\frac{1}{9}\) th of its own weight of it \(\dagger\).

One hundred parts of magnefia require 255 of nitric ii. 38 r acid for faturation \(\ddagger\).
\(\dagger\) Kirwato
It deliquefces in the air, according to Bergman; but Dijonval afirms, that he has procured it in cryftals which rather efflorefce.
§ \(S_{c b e e l}\).
675 Nitrat of itrontites.

It is decompored by heat.
By compound affinity it is decompofed by Sulphat of barytes, Muriat of lime,

8. Nitrat of ammoni: and magrefia. This triple f.alt was difeovered by Mr Fourcroy. Into a jaturated folution of nitrat of magnefia, containing 73 grains of magnelia, he poured ammonia as long as any precipitate could be obtained. Tventy-one grains of magnefia were precipitated, 52 grains remained combined with the acid and the ammonia. He found that 52 grains of magnefia produced, when faturated with nitric acid, 288 grains of nitrat ; and that the quantity of nitric acid neceffary to faturate 21 grains of magnefia, when faturated wilh ammoniz, produced 84 grains of nitrat of ammoria. He concludes, therefore, though the data are not quite fatistactory, that the tiple falt is compofed of 288 grains of nitrat of magnefia, and 84 of nitrat of ammonia*.
9. Nitrat of alumina. This feems to have been firf attended to by Baumé.

Its cryttals are pyramidal. It has a very aftringent tafte. It is folubic in water, and deliquefces in the air.
10. Nitrat of jargonia. This falt may be eafily formed by pouring nitric acid on newly precipitated jargonia.

It always contains an cxcefs of acid. By evaporation a yellowifh trinfparent matter is obtained, exceedingly tenacious and vifcid, and which dries with dificulty. It has an aftringent tafte, and leaves on the tongue a vifcid matter, owing to its being decompored by the faliva. It is only very fparingly foluble in water ; the greateft part remains under the form of gelatinous and tranfparent flakes. Like all the other falts into which jargonia enters, it is decompofed by heat. It is decompored alio by fulphuric acid, which occafions a white precipitate, foluble in excefs of acid; by carbonat of ammonia, which produces a precipitate foluble by adding more carbonat; and by an infulion of nut galls in alcohol, which produces a white precipitate foluble in an excefs of the infufion, unlefs the jargonia contains iron, in which cafe the precipitate is a greyin blue, and part of it remains infoluble, giving the liquor a blue colour. This liquor, mixed with carbonat of ammonia, produces a matter purple by tranfmitted light, but violet by reflected light. Gallic acid alfo precipitates nitrat of jargonia of a greyifh blue, but the colour is not fo fine. Mof of the other vegetable acids decompofe this falt, and form combinations infoluble in
\(+V\) anguelin, water \(\dagger\).
Asn. de
Chim, xxii. 199.

680
Nitrat of iron.

68 t Nitrat of zinc.
11. Nitrat of iron. The green oxyd of iron decompofes, but dnes not combine with nitric acid. The brown oxyd forms with it a red or brown folution, which by evaporation may be reduced to a jelly, but will not crytailize.
12. Nitrat of zinc. The oxyd of zinc combines with nitric acid, and forms with it a falt which cryftal. lizes in compreffed and Itriated tetrahedral prifms, terminated by four-fided pyramids.

Its folution is exceedingly cauftic. When placed

\author{
Nitrats.
} on burning coals, it melis and detonates as it dries. It can farcely be dried without being in fome meafure decompored.

It deliquefces in the air*.
- Fourcroy.

682
13. Nitrat of manganefe. This falt, compofed of oxyd of manganefe and nitric acid, was firft examined by Scheele. Its cryflals are fmall and hining, of a very bitter tafte, and foluble in watert.

7 Schecle on
14. Nitrat of cobait. It is of a pale red colour, and Nanganefo. cryftallizes in needles. It deliquefces when expofed to 683 the air. Heat decompofes it. When nickel is prefent, Nitrat of this falt affumes a green colour.
cobalt,
15. Nitrat of nickel. Its crytals are of a green co- of nickel, lour, and in the form of rhomboidal cuber. They are deliquefcent, and are gradually decompofed when expofed to the air, the acid leaving them \(\ddagger\).
16. Nitiat of Icad. Nitric acid combines with the ii. 268. white oxyd of lead. The cry ftals of this falt are of a of lead white colour; their form an irregular ofagon, or rather truncated hexahedral pyramid.: When expofed to heat it decrepitates, and melts with a yellowilh flame. By compound affinity it is decompofed by
Muriat of potafs,
\begin{tabular}{l}
foda, \\
Carbonat of fodasia,
\end{tabular}
17. Nitrat of tin. Tin is converted into an acid by nitric acid. It is not probable, therefore, that any per. of tin, manent nitrat of tin can be formed.
18. Nitrat of copper. This falt appears to have of copper, been firft obtained by Macquer.

Its form, when properly cryftallized, is an oblong pa-
rallelogram. It is of a fine blue colour. It is exceedingly cauflic. It melts at \(77^{\circ}\) ๆI:
It is deliquefcent in a moif air, but in a dry place is covered with a greeneflorefcence. It is very ioluble in water. Heat decompofes it.
19. Nitrat of bifmuth. This falt cryftallizes in va- of bifmuth, rious forms. Fourcroy obtained it in flattened rhomboids. It efflorefces in the air. Water decompofes it. It detonates in the fire.
20. Nitrat of antimony. Little is known concern- Of antimoing this falt, except that it is very deliquefcent, and is ny, decompored by heat. nitric acid forms a falt which cryftallizes. It is very deliquefcent. It does not detonate.
22. Nitrat of mercury. This falt may be formed by of mercudiffolving mercury in nitric acid. It cryftallizes in the ry, cold in regular flat 1 -fided figures; but their form differs according to the manner in which the crytallization has been performed.

It is folubie in water.
This falt is exceedingly cauftic. It detonates on coals. When heated in a crucible it melts, and is decompofed. The oxyd atirats oxygen from the acid, which flies off in the form of nitrous gas, and red oxyd of mercury remains behind.
It is flowly decompofedalfo in the air. It is decompofea by compound affinity by

Sulphat of copper, and a great many other fulphats, Phofphat of foda,

\section*{Borax.}
23. Nitrat of ammonia and mercury. This triple
falt may be formed by pouring ammonia into a folution
\(\underbrace{\text { Muriats. of nitrat of mercury. If only enough of ammonia to }}\) faturate the acid be ufed, the triple falt precipitates in the form of a white powder; but with an excets of ammonis it remains diffolved, and forms by evaporation very bright polyhedral cryitals.

It has a very tharp tafte. It is foluble in 1200 parts of water at the temperature of \(55^{\circ}\). Hot water feparates a little ammonia which renders it till more inColuble. It turns vegetable blues green. Muriatic acid diffolves it.

According to Fourcroy's analyfis, it is compofed of 68,20 parts of oxyd of mercury, 16 of ammonia, and 15,80 of nitric acid and water.

When diftulled it yields ammonia, azotic gas, oxygen
- Fourcroy,

Ann. de
Cbim. xiv. 37.

693
Nitrat of
filver, gas, yellow oxyd of mercury, and pure mercury.*
24. Nitrat of filver. This falt may be formed by diffolving filver in nitric acid.
It forms flat tranfparent cryfals compofed of needles. It is exceedingly caultic. When melted it forms a grey mafs called lapis infernulis, from its great corrofivenefs.

It is very foluble in water. It is not altered by expofure to the air. Light decompofes it.

By compound afinity it is decompofed by
The fulphats,

The murizts.
694
Nitrat of uranium,
\(\dagger\) Klaproth, inch in length and \(\frac{x}{4}\) th in breadth \(\dagger\).
Fourn. de
Pbyf.xaxvii.
158.

695
Titanium,
696
Tellurium.
\(\ddagger\) Klaproth, Pbil. Mag.
i. 80 .
25. Nitrat of uranium. This falt was firl formed by Klaproth. Its cryftals are hexagonal plates of a greenifh yellow colour. The largeft were \(\frac{3}{4}\) ths of an
26. Nitrat of titanium. It is capable of cryfallizing. 27. Nitrat of tellurium. The folution of telluriam in nitric acid is tranfparent and colourlefs. When concentrated, it produces in time fmall white light cryftals in the foim of needles, which exhibit a dendritic aggregation \(\ddagger\).

\section*{Sect. IV. Of Nitrites.}

The falts which the nitrous acid forms with alkalies, earths, and metallic oxyds, are'denominated nitrites. Very few of them have been cxamined; we fhall not therefore attemipt a defcription of them.

\section*{Sect. V. Of Muriats.}
\(S_{\text {alts }}\) into which the muriatic acid enters are called

697
Muriat of potafs. 1. Muriat of potals. This falt was formerly called
febrifuge or digeftive falt of Sylviats, and regenerated fea falt. Its cryftals are cubes, but rather irregular.
It has a difagreeable bitter talte. Its lpecific gravi5 Kirwan. ty is \(1,836 \$\).

It is foluble in three times its weight of water at the remperature of \(60^{\circ}\), and in double its weight of boiling § Bergman. water If.

It is compofed, according to Bergman, of \(3^{1}\) parts of acid, 61 of potafs, and 8 of water. - Kirwan has found it to comtain 36 of acid, 46 of alkali, and 18 of
\| Kirwan's water ||.
ii. 30 .

Mineral. It fuffers little alteration from expofure to the air.
When expofed to heat, it fir \(\hat{l}\) decrepitates, then melts, and at lat is volatilized, but without decompofition.
The following falts decompore it by compound affinity: Sulphat of foda,
ammonia,
Nitrat of fomina,
foda,

Nitrat of ammonia,
-_ magnefia,
alumina,
- lead.
2. Muriat of foda, common or fea fait. This falt has been known, and in conmon ufe, from the earlieft ages. It is fometimes called alfo fal gem.

Muriats.
Muriat of
Its cry ीalls are cubes, but, they often affume other foda.
forms. Its fpecific gravity ís 2,120.*
Its tafle is univerflly know, and is what is Arialy fpeaking denominated fat.
It is coluble in \(2_{5}^{\frac{1}{5}} \frac{1}{7}\) times its weight of water at the temperature of \(60^{\circ}\), and in \(2 \frac{13}{1} \frac{3}{7}\) is weight of boiling water \(\dagger\).

According to Bergman, it is compofed of 52 parts of acid, \(4^{2}\) of alkalt, and 6 of water. According to the hate experiments of Mr Kirwan, of 40 parts of acid, 35 of alkali, and 25 of water.
It is not afteled by expofure to the air. It nught to he obfervec, however, that the muriat of foda in common ofe contains, befides other impurities, a quantity of muriat of magnefia, which renders it deliquetcent.

When heated it decrepitates. Heat volatilizes, but does not decompofe it.

The following falts decompofe it by compound affi-
nity :
\begin{tabular}{|c|c|}
\hline Sulphat of ammonia, & Nitrat of filver \(\}\), \\
\hline - alumina, & Acetite of barytes, \\
\hline potafs, & Pyrolignite of baryte \\
\hline trat of ammonia, & Carbonat \\
\hline - magnefia, & Alum (b), \\
\hline alumina, & Red oxyd of lead (\\
\hline
\end{tabular}

That the red oxyd of lead decompofes this falt is a Chimo sis. well known fact, and it has been confidered as contrary to the laws of affinity. Mr Haffenfratz endeavoured to account for it by. fuppofing that the oxyd is combined with carbonic acid, and that therefore it is a cafe of compound affinity. Mr Curaudau has proved that carbonic acid, inlead of promoting, impedes the decompofition; and that, in fact, carbonat of lead is incapable of decompoing muriat of foda. He concludes, therefore, that the phenomenon cannot be accounted for by the commonly received laws of affinity.* Wc cannot, however, think, that the phenomenon is fo unaccountable as Mr Curaudau fuppofes; for muriatic acid is capable of decompoling the red oxyd of lead, of combining with part of its oxygen, and of being converted into oxy-muriatic acid. Now if oxy-muriatic and nitro-muriatic acids be marely the fame fubfance in a different form, as there is the flrongelt reafon for fip. pofing, the white oxyd of lead has a fronger affinity for it than foda has, and ought therefore to decompole it.
3. Muriat of ammonia, or fal ammoniac. This falt Muriat of was known to the ancients, and was called by then fal ammonia.
ammoniac, becaufe it was found in great quantities near the temple of Jupiter Ammon in Africa.*

It aflumes the form of plumofe cryfats. The individual crytals are long hexahedral pyramids. Its ipecific gravity is \(1,420 \dagger\).

It has an acrid, poignant, urinous tafte. niac, Encyc.
It diftulves in abouthree times inewno at the temperaturc of \(60^{\circ}\), and in a much fmaller quantity of boiling water.

It is compofed, according to Kirwan, of 35 parts of acid, 30 of alkali, and 45 of water \(\ddagger\).

In its common form (which is an opague mafs) it is not affeged by the air, but its cryfals are liable to deliquefce.
- Fucbs,

Ann. de.
Cbim. vi.
29.
, \(\dagger\) Bullen,
ibil. xi.
320.
\(\ddagger\) Morveau.
§ Bergnaza.
il Morvocus. 109. (a) Bergman (b) Crell,

Amu. de
Cbim. xxvi.
297.

C99 Schelo. How de. compored by red oxyd of lead. - Ann. ore Clim. xiv. 15.
- Storr, Crell's Nezv mifooveries, \&c. P'art ii p. 41. 701
Muriat of barytes,
* Dr Pcarfon 702 Muriat of ammonia and barytes,
+ Ann. de Cbim. iv. 8.

703 Muriat of lime,
nity:

When this falt is fublimed with gold leaf, there is found in the neck of the retort an amethy foloured matter, boudering on purple, foluble in water, and furming a purple folution. When filtered there remains behind a purple powder. This falt feems from

Heat volatilizes without decompofing it.
The following falts decompofe it by compound aff.
 this to be capable of oxydating gold.*
4. Muriat of barytes. This falt was firft deferibed by Bergman, but it has been moft particularly attended to by Dr Crawford.

It affords oblong fquare cryftals.
It has an unpleafant aftringent tafte.
It is not very foluble in water. It is foluble in alcohol.

It is not altered by expofure to the air, nor does heat in all probability decompre it.

Dr Crawford wrote a treatife on it in 1790 , in which he recommended its ufe internally for ferofulous complaints. Care ought to be taken not to give it in too large quantities, as, like the other compounds of barytes, it is poifonous.

The following falts decompofe it by compound aff. nity (\(z\)):

5. Muriat of ammonia and barytes. This triple falt was firt difcovered by Fourcroy. It may be formed by pouring a carbonat of ammonia into a folution of muriat of baryres. It is eafily decompofed by heat, but none of the alkalies nor their carbonats are capable of altering it \(\dagger\).
6. Muriat of lime. This falt was formerly called fixed ammoniac, becaufe it was commonly obtained by decompofing fal ammoniac by means of lime.

Its cryftals are four-fided Oriated prifms, terminated by a very fharp pyramid; but it is not eafily cryftallized.

Its talte is very bitter.
It is foluble in about \(\mathrm{I}_{\frac{1}{2}}\) parts of cold water, and in lefs than its own weight of boiling water. Alcolol diffolves its own weight of it.

According to Bergman, it is compofed of 3 I parts of acid, 44 of lime, and 25 of water. According to Kirwan, 100 parts of lime require for faturation 86 parts of muriatic acid.

It very fecedily deliquefces when expofed to the air. Muriats.
By heat it melts into a very hard vitreform fubftance.

The following falts decompofe it by compound affinity:

7. Muriat of ftrontites. This falt was firft formed Muriat of by Dr Hope. Its cryftals are very long, flender, hexa-ftontites, gonal prifms. It has a peculiar, flarp, penetrating talte.

Three parts of the fe cryftals are foluble in two parts of water at the temperature of \(60^{\circ}\). Boiling water diffolves any quantity of them whatever.

They contain \(4^{2}\) per cent. of water of cryftallization.

They fuffer no change when expofed to the air except it be very moift ; in which cafe they deliquefce.

When laeated, they firf undergo the watery fufion, and are then reduced to a white powder. A very vio. lent heat decompofes this falt.

Muriatic acid precipitates this falt from its folution in water. That acid, therefore, has a fronger affinity for water than the falt has.*
8. Muriat of magnefia. This falt abounds in fea Tranf.Edin* water.
iv. 12.

It is not eafily cryftallized. Bergman's method was Muriat of to evaporate it by a confiderable heat to the proper de- magnefie, gree of concentration, and then to expofe it to a fudden cold. By this method he obtained it in fmall needles \(\dagger\). \(\dagger\) Bergman,

It has a very bitter tafte. It is foluble in its own \({ }^{\text {ii. }} 383\). weight of water \(\ddagger\), and in five parts of alcohol \(\oint\). \(\ddagger\) Fourcroy.

A faturated folution of it quickly forms a jelly ; on \$Bergman, which if hot water be poured, fpongy maffes are form. \({ }^{\text {ii. }} 383\). ed not even foluble in muriatic acid.*
- Bergman,

It is compofed, according to Bergman, of 34 parts \({ }^{\text {ibid. }}\)
of acid, 41 of earth, and 25 of water. According to
Kirwan, 100 parts of magnefia require for faturation
104,275 of acid \(t\).
+ Iriß
It deliquefces very fpeedily when expofed to the Tranf. iv. air.

A Arong heat decompofes it. When dried in a high
temperature, it is very caullic \(\ddagger\). \(\ddagger\) Wefrum,
The following fubftances decompofe it by compound \(\begin{gathered}\mathrm{Ann} \text {. de } \\ \mathrm{Cbim} \text {, ii }\end{gathered}\) affinity :

(y) Only at the common temperature. At a high temperature cas bonat of ammonia decompofes muriat of magnefia. See Weflrum, Ann. de Chim. ii. 118.
(\(z\)) Bergman affirmed, that this falt decompofed all the fulphats, and propofed it therefore as a certain means of difcovering the prefence of fulphuric acid, however combined in any folution; for the fulphat of barytes is almoft entirely infoluble in water. But Mr Piffis has obferved, that it does not decompofe fulphat of lime nor of potafs. See Ann de Chim. xv. \(31 \%\). ammonia and magnefia,
\(+A n s \cdot d c\) Chint. iv. £ 22 .

707
Musiat of alumina,

708
Muriat of jargonia,

\section*{Carbonat of barytes, Carbonat of foda, \\ ———potafs, -- ammonia (y)} 9. Wiuriat of ammonia and magnefia. This triple falt was firft mentioned, we believe, by Bergman. It may be formed by pouring ammonia into a tolution of muriat of magnefia. Part of the marnefia is precipitated, but great part of it remains diffolved, and com. bined with the acid and the ammonia. This triple falt is compofed according to Fourcroy, of 73 parts of mu1 iat of magnefia and 27 of wuriat of a mmoniat.
10. Muriat of alumina. This falt cryllallizes with difficulty. It has an aftringent tatte. Its folution is gelatinous, and carnot be filtrated without much dilution in water. It is deliquefcent. When cvaporated to drynefs, it forms a gumniy mafs: in a flrong heat it is decompofed.

The following falts decompofe it by compound affinity :

> \begin{tabular}{l} Nitrat of ammonia, \\ Acetite of barytcs, \\ -- potafis, \\ \hline \end{tabular}
11. Muriat of jargonia.-This falt is ealily formed by pouring muriatic acid on newly precipitated jargonia. It is colourlefs; its tafte is very aftringent: by evaporation it furnifhes fmall tranfparent cryfals in ncedles, which lofe their tranfparence in the air. Muriat of jargonia is very foluble in water and in alcohol ; to the flame of which it does not communicate any particular colour. Heat decompofes it; and it is decompofed likewife by the faliva when taken into the month.

When muriat of jargonia contains a little filica, it forms cubic cryftals without confiftence, and refembling a jelly. Thefe cryftals, when expofed to the air, gradually lofe their tranfparency, and diminifh in volume, and there are formed in the middle of the falt whit: filky meedle-flaped cryftals.

Muriat of jargonia is decompofed by fulphuric acid ; part of the fulphat precipitates, and part remains diffolved in the muriatic acid. When this acid is driven off by heat, the remainder of the fulphat is gradually depofited: if the evaporation be flopped before the mafs be reduced to drynefs, it forms a kind of jelly when cold. It is alfo decompofed by the phofphoric, citric, tartarous, oxalic and faccholastic acids, which form with jargonia infoluble compounds that precipitate in white flakes.

The gallic acid poured into muriat of jargonia produces a white precipitate; but a green, bordering on grey, if the jargonia contain iron; and this laft precipitate becomes, when dry, of a bright black colour, and refembles China ink. 'The liquid preferves a greenifl colour; new portions of gallic acid produce no farth:er precipitation ; but carbonat of ammonia feparates in great abundance a flaky matter of a purplifh colour, not unlike that of the leys of wine. From thefe experiments it follows, that gallic acid has a greater affinity for jargonia than muriatic acid has; and that the gallats of jargonia and iron are foluble in muriatic acid.

Carbonat of potafs decompofes muriat of jargonia, Suppl. Vol. I.
and part of the carbonic acid combines with he carth,
Muriats. and renders it eafily foluble in acids though dited.
Carbonat of a mmonia occafions a precipitate, which is moftly diffolved by adding more carbonat.

Prufiat of mercury produces an abundant precipitate, which is foluble in muriatic acid ; and which confequently is not muriat of mercurs.

A plute of zine, introduced into a folution of muriat of jargonia, cccations a flight effervefence; the liquor becomes milky, and in a few days becones a white fenitranfparent jelly.

Alumina decompofes muriat of jargonia with the affittance of a flight heat: the alumina diffolves, the liquor becones milky, and affumes the form of a jelly. When the muriat contains iron, it remains in the folution, and the precipitated jargonia is quite pure. Here, then, is a method of freeing jurgonia from iron.* "Verquelin,
12. Muriat of iron.- Muriatic acid forms with the \(A n n\). \(d z\) green oxyd of iron a falt which cryftallizes in flat needles. When expofed to the air, they deliquefce, \({ }^{20 r}{ }^{2}\) and the green oxyd attracts oxygen, and is gradually Muriat of converted into a brown oxyd. Heat dicompofes this iron, falt.
13. Muriat of zinc. This falt, procured by diffolv- Muriat of ing zinc or its oxyd in muriatic acid, does not cryllal-zinc,
lize. Its folution is colourlefs. When heated, it becomes of a blackifh brown. by ditillation, a part of the acid is feparated, and muriat of zinc remains behind of a milk white colour, folid, and formed of fmall radiated needles. It attracts moifture in the air.
14. Muriat of manganefe. Muriatic acid diffolves Muriat of the white oxyd of manganefe. Its folution aflords by manganefe, evaporation angular fhining cryftalst: They are deli- \(t\) Scheck on quefcent and foluble in alcolol \(\ddagger\).
15. Muriat of cobalt. The folution of oxyd of cobalt in muriatic acid is of a pale red, except it be contaminated with nickel or iron, when it is greenifh. It cryltallizes in fmall needles, which are very deliqueicent. Heat decompofes it.
16. Muriat of nickel. This falt is deliquefcent, and lofes its acid when expofed to the air \(q\).

Mang anefe.
17. Muriat of lead Muriatic acid combines with Eergman,
oxyd of lead eafily enough : but this falt is more readi- 714 ly procured by pouring muriatic acid into a folution of Lead, nitrat of lead; the muriat immediately precipitates in the form of a white powder. It is foluble in 30 times its weight of boiling water; and the folution yields by evaporation fmall, flender, brilliant needles in bundles.

It is fome what deliquefcent. When expofed to heat, it melts into a brown mafs, formenly called corneous lead.

It is decompofed by compound affinity by Sulphat of filver*, Carbonat of foda.
18. Muriat of tin. This falt may be formed by dif-

This falt has a frong affinity for oxygen. It decompofes oxy-muriatic, nitric, fulphurous, arfenic, molybdic and tungflic acids, the red oxyd of mercury, black oxyd of manganefe, oxyd of antimory, zinc, fil3 I

712
Cobalt,
513
Nickel,

Muriats. \(\underbrace{\sim}\)
* Pellcticr, Ann. do Chim. xii. 225.

716
Muriat of cupper,
\(\dagger\) Bergmaz.
717
Muriat of
bifnuth,
718
Antimony,
719
Arfenic,
\(\ddagger\) Bergman,
ii. 293.

720
Mercusy,
- Bermman.

721
Muriat of
anmmonia
and ner-
cury,
ver, and gold ; and bs that means is converted into oxymuriat of tin. It even abforbs oxygen when expofed to the air*. Thefe compolitions are doubtlefs produced by difpofing affinity.
19. Muriat of copper. This falt may be formed by diffolving copper or its oxyd in muriatic acid.

Its cryftals are prifmatic. It is of a beantiful grafs green colour. It has a very aftringent and cauftic tafte. It deliquefces when expofed to the air. A noderate heat is fuficient to melt it; and when cooled it congeals into a mafs. It requires a Arong heat to volatilize it. It is decompofed by nitrat of filvert.
20. Muriat of bifmuth. This falt cryftallizes with difficulty. By fublimation it forms a foft fufible fub\&ance, formerly called butter of bifnuth.

2I. Muriat of antimony. This falt is found native. It cryftallizes in prifms. When heated, it evaporates. 22. Murist of arfenic. This falt cryftallizes; it is very volatile, and not very foluble, in waterf.
23. Muriat of me:cury. This falt may be prepared by pouring diluted muriatic acid into a diluted folution of nitrat of mercury: the muriat of mercury is immediately precipitated in the form of a white powder. Common falt may be ufed inftead of muriatic acid. This falt was formerly called white mercurial precipitate and calomel.

It cryftallizes; but the form of the cryftals, which are very fmall, has not been determined.

It has little tafte. It is almoft infoluble in water. It is ufed as a medicine.

It is decompofed by fulphat of ammonia.*
24. Muriat of ammonia and mercury. This triple falt was firf difcovered by Fourcroy. It may be formed by pouring ammonia into a folution of corrofive muriat of mercury. It has the appearance of a white powder. Its tafte is at firft earthy, afterwards metallic. It is nearly infoluble in water. According to Fourcroy's analyfis, it is compofed of 81 parts of oxyd of mercury, 16 of muriatic acid, and 3 of ammonia.

Heat decompofes it; producing ammonia, azotic gas, and muriat of mercury.

Sulphuric, nitric, and muriatic acids decompofe it \(\dagger\).
f Fourcroy,
Ann. de
Cbin. xiv. 47.

722
Muriat of
filser,
25. Muriat of filver. This falt may be formed by diffolving oxyd of filver in muriatic acid, or, which is better, by pouring muriatic acid into nitrat of filver; muriat of filver immediately precipitates. It is very little foluble in water; according to Monnet, one part of it requires 3072 parts of water.

When expofed to a fmall heat, it melts into a grey femitranfparent mafs, not unlike horn; hence it was tormerly called luna cornea. A long continued heat decompofes it. This falt is very cauftic: it is employed as an efcharotic under the name of Junar caufic.
26. Muriat of titanium has been formed by Mr Klaproth.

\section*{Sect. VI. Of Oxy-muriats.}

Those falts, into which the oxy-muriatic acid enters as an ingredient, are called ony-muriats. As we confider the nitro-muriatic acid to be precifely the fame with the oxy-muriatic, its combinations of courfe muft receive the fame name.

\section*{S R Y.}
J. Oxy-muriat of potafs. This fingular falt was dif- Oxy-mucovered by Mr Berthollet in \(\mathbf{1 7 8 6}\). It may be formed by faturating a folution of potafs with oxy-muriatic acid gas. By evaporating this folution in the dark, common muriat of potafs is firlt obtained: When it is feparated, and the liquor allowed to cool, oxy-muriat \({ }^{\text {afs, }}\) of potafs cryftallizes.

Its cryitals are rbomboids, of a filvery brilliancy.
It has an infipid cooling tafte, refembling that of nitre. It is foluble in 17 parts of water at the temperature of 60 , and in \(2 \frac{1}{2}\) parts of boiling water \(\mathbb{T}\). It does not Hoyle, deliquefee in the air; but light converts it into com- Nicholfon's mon muriat by feparating oxygen. When heated, it Fournal, ii. meits, and gives out oxygen gas; and this is the beft method hitherto difcovered of obtaining that gas in a ftate of purity. According to Mr Hoyle, it contains about half its weight of concrete oxygen.*
When mixed with charcoal, iron, and many other combutibles, and heated, it detonates with aftonifhing violence. This property induced the French chemilts to propofe it as a firbtitute for nitre in the preparation of gunpowder. The attempt was made at Elfons in 1788 ; but no fooner had the workmen begun to triturate the mixture of charcoal, fulphur and oxy-muriat, than it exploded with violence, and proved fatal to Mr Letors and Mademoifelle Chevraud. The force of this gunpowder when it is prepared is much greater than that of the common fort of powder; but the danger of preparing it, and even of ufing it after it is prepared, is fo great, that it can hardly ever be fubftituted with advantage for common gunpowder.

Fourcroy and Vauquelin afcertained by experiment, that this falt exploded when triturated with fulphur, charcoal, antimony, arfenic, cinnabar, fugar, gums, oils, alcohol, ether, and fulphuret of iron. When thefe fub. ftances were mixed, and ftruck with a hammer, the explofion took place. The theory of thefe explofions was firft pointed out by Mr Berthollet. The oxygen of the oxy-muriatic acid combines with the comburtible, and at the fame time lets go a quantity of caloric ; and trituration or percuffion acts merely by bringing the particles which combine within the fphere of each others attraction.
2. Oxy-muriat of foda. This falt was difcovered at Oxy-muthe fame time by Mr Bertholler. Its properties are riat of foda the fame with the laft, except that it is too deliquef. cent to be ufed.
3. Oxy-muriat of ammonia. This conmbination is impoffible. The oxy-muriatic acid and ammonia decompofe each other.
4. Oxy-muriat of barytes. \(7^{\text {Thefe falts were dif- Oxy-mu- }} \begin{array}{r}726 \\ \text { and }\end{array}\)
 fefs the property of detonating with combuftibles, and magnefia, of being reduced by that means to the ftate of common muriats. Mr Tennant has lately propofed the oxymuriat of lime as a fubftitute for the other fubftances formerly ufed in the new mode of bleaching; particularly for bleaching printed cottons: And, as far as we can learn, it anfwers the purpofe remarkably well (\(z\)).
7. Oxy-muriat of mercury. This falt was formerly Oxy -mu-
called corrofive fublimate, and afterwards corrofive muriat riat of merof \({ }^{\text {cury, }}\)
(z) We have been informed, that this falt had been ufed by bleachers in Scotland fome years before Mr Tennant propofed it.

Part III,
Oxy-mu- of mercury. Berthollet firit pointed out the nature of \(\underbrace{\text { riats. }}\) its compofition.

This falt was mentioned by Rhafes in the 1oth century. And it feems to have been known in the eaft at a much earlier period \((\mathrm{A})\). The methods of preparing it ufed by the older chemifts, were numerous, complicated, and generally concealed as fecrets. We fhall not attempt, therefore, to give any account of them; and the methods ufed by later chemifts have heen defcribed at confiderable length in the article Chemistry (Encycl. \(n^{\circ} 815\)).
It may be prepared by diffolving mercury in a fufficient quantity of oxy-muriatic acid, or by difolving red oxyd of mercury in common muriatic acid.

When carefully cryftallized, this falt affumes the form of cubes or oblique parallelopipeds, or rather quadrangular prifms, with lides alternately narrower and terminated by two inclined planes meeting together.

It has an exceedingly difagreeable metallic tafte.
It is foluble in 19 times its weight of water at the
| Spidiman. temperature of \(50^{\circ} \ddagger\). Boiling water, according to Macquer, diffolves half its weight of it. Alcohol, at the temperature of \(70^{\circ}\), diffolves \(\frac{3}{8}\) ths of its weight of this
"Marguer. falt.*
It does not attrad moilture from the air.
It is folnble in fulphuric, nitric and muriatic acids.
When triturated with \(\frac{3}{4}\) ths of its weight of mercury and a little water, and then fublimed, it forms a white infipid falt, called formerly calonel or fweet mercury: This, as Scheele bas proved, is precifely the fame with common muriat of mercury.

The theory of thefe two preparations is now pretty obvious. The experiments of Adet and Pelletier have fhewn that oxy-muriatic acid may be obtained from
- Aan. de Chim. i. . 1. and xii. 225. corrofive muriat of mercury 4 . We may conclude, therefore, with confidence, that the falt is an oxy-muriat. It cannot be prepared by means of common muriatic acid, except with red oxyd of mercury, or fome other fubflance from which it may abforb oxygen. When pure mercury is added to oxy-muriat, it feizes the oxygen from the oxy-muriat, and the whole is converred into common muriat.

It is decompofed by

> Tartar,
> Moft metals.
8. Oxy-muriat of tin. When an amalgam of tin is triturated with its own weight of corrofive muriat of mercury, and the misture is diftilled in a glafs retort by means of a very gentle heat, there paffes over a thick white fmoke, which condenfes into a colourlefs liquor that emits copious fumes, and has been called, in confequence, fmoking liquor of Libavius. This liquor was examined by Mr Adet. He found, that when about \(\frac{3}{3} \mathrm{~d}\) part of water was added to this liquor, it ceafed to fume, and affumed a cryftalline form ; that then it might be even made red hot without fubliming. It therefore owes its volatility to want of water, or rather to a Atrong attraction for water. He found that this fubftance was capable of diffolving, and therefore of oxydating more tin, without the emiflion of any hydrogen, and confequently without the decompofition of
water; he concluded from this, that it was compofed Phofphate. of oxy-muriatic acid and ring. This has been com. \(\|\) Annode pletely proved by Mr Pelletier, who found, that when Chimn. i . 3 . oxyd of tin was combined with oxy-muriatic acid, it formed a compound precifely the fame with the fmoking liquor of Libavius*.
* Ann. 4

This falt may be prepared, as Pelletier has proved, Chimo itio. by difolving tin in muriatic acid, and then faturating it 225 . with oxy-muriatic acid gas.

It is ufed in dyeing.
9. Oxy-muriat of iron. This falt is deliquefcent ; \(\begin{aligned} \mathbf{O} y-\text { mul }\end{aligned}\) colourlefs; of a pure bitter talte, without any of the rizt of iron. fweet altringency of the common falts of iron\|.

Few of the other oxy-muriats have been hitherto ex. Mazacheficr amined with attention. Many of the metals, indeed, Mem. \({ }^{\text {r. }}\) have been diffolved in aqua-regia; but in moft of thefé \(p\). Ifolutions the falt produced is a common muriat. The nitric acid fupplies oxygen, and the muriatic acid diffolves the oxyd.
Sect. ViI. of Pbofplats.

Those falts, into which phofphoric acid enters as an ingredient, are called phofphats. This clafs of falts was firft difcovered by Margraf.
1. Phofphat of potafs. This falt cryftallizes in fhort Phofphat tetrahædral prifms, terminated by quadrangular pyra- of potafo, mids.

It is very foluble in cold water, and fill more fo in hot water.

It decrepitates on ignited coals like common falt. When a very frong heat is applied, it melts into an opaque vitreous mafs, till foluble in water.

The following falts decompofe it by compound affinity :

> Sulphat of lime, \(\quad\) Muriat of mercury, Nitrat of mercury, Acetiee of lead.
2. Phofphat of foda.-Dr Pearfon, who firlt formed Phofphat this falt, gives the following procefs for preparing it: of foda,

Diffolve in a long-necked matrafs 1400 grains of cryftallized carbonat of foda in 2100 grains of water at the temperature of \(150^{\circ}\). Add gradually 500 grains of phofphoric acid of the fpecific gravity 1,85 . Boil the liquor for fome minutes; and while it is boiling hot, filtrate it and pour it into a fhallow veffel. Let it remain in a cool place, and cryftals will continue to form for feveral days. From the above quantities of materials, he has obtained from 1450 to 1550 grains of cryftals.

Its cryftals are rhomboidal prifms, of which the acute angles are \(60^{\circ}\), and the obtufe angles \(120^{\circ}\), terminated by a three-fided pyramid.

Its talte is almoft the fame with that of common falt.
It is foluble in water. When expofed to the air it efforefces.
This falt has been introduced into medicine as a purgative, and on account of its pleafant taffe has of late been much ufed. It is ufually taken in broth, which it is employed to feafon inftead of common falt.

Hellot remarked a particular falt in urine, different from thofe that had ufually been obferved, in \(1737^{\circ}\) Haupt defcribed it in \(17+0\) under the name of fal mi312 rabile

\footnotetext{
(A) If we liften to Juncker, the ancients applied the name mercurium to this falt ; mercury they called argentum vivum.
}

Fhofpbats. rabile perlutum, er econdorful periuted falt. It was call-
- Delkefam? phofphoric acid.

Ann. de It is decompofed by fulphat of ammonia*.

Cbim, vi.
37.
† Bergтaд. \(\ddagger\) I. .

335
Of fror-
tites,
- Hope,

Tr.anf:
Edin. iv.
I6.
736
Of magne-
fia,
+ Bergman,
ii. 390.
- Wenzel.
737.

Of aluni-
na,
1.10.

739
Of zinc,
\(\ddagger 13\).
740
Of manga-
wefe,
74 T
Of nickel,
Of nickel,
- Eergman
ii. 263 . ed ferlated from the grey, opaque, pearl-like colour which it alfumed when melted by the blow-pipe. Margraff deferibed it in 1745 , and found it would not yield Fhofphorus when treated with charcoal, as the other falts of urine did. Rouelle the Younger analyfed it in 1776 , and concluded from his experiments that it was a compound of phofphoric acid and foda; but Mr Prcult, being unable to obtain phofphorus from it, concluded that it did not contain phofphoric acid, but another acid analogous to the boracic. To this fubftance, which Mr Prouft actually obtained, Bergman gave the name of perlated acid, and Morveau afterwards called it ouretic acid. But Mr Klaproth foon afterwards analyfed it, and proved that it confifted of foda foperfaturated with phofphoric acid. Scheele foon after made the fame discovery. This acid of Mr Prout, then, is merely pho!phat of foda, combined with phofphoric acid or acidulous phofphat of fodu.
3. Plofphat of ammonia. - This falt forms oblongpointed crytals, or, as Mr Lavoificr affirms, crytals refembling thote of alum.

It is folnble in water. Hear evaporates it fo eafily, that it is difficult to obtain it in cryltals, except by adding an excefs of alkali.

Micrucofmic falt, or falt of urine, is merely a misture of thefe two latt defcribed falts.
4. Phofphat of barytes. - This falt is infoluble in waser \(\dagger\).
5. Plofphat of lime.-This falt is taftelefs, and almolt perfectly infoluble in water. It forms the balis of bones, and is therefore often called earth of bones. Wenzel obferved it cryftallize when held in folution by Carbonat of potafs \(\dagger\), -_——fodat.
6. Phofphat of Arontites.-This falt was firft formed by Dr Hupe. It is a white powder, foluble in 1920 parts of boiling water*.
7. Phofphat if magnefia.-This falt does not cryftallize except with excefs of acid, and then the cryRtals are very fmall. Somewhat longer crytals may be formed by dropoing phofphoric acid into acetite of magnefa. It molt commonly forms by evaporation a gummy mats. It is fuluble in alcohol \(\dagger\).

It is infoluble in nitric acid. It melts by a ftrong heat into a porcelain-like fubltance**
8. Pionfhat of alumina. -This is a faline powder, infoluble in water. Difnlved in phofphoric acid, it yields a gritty powder, and a gummy folution, which by heat is converted into a traniparent glafs.
9. Phofphat of iron.-This falt is merely a dry ad. hefive mafs, infoluble in water, but folubie in acids. With excefs of acid it forms cryftals which do not deliquefe, and by heat are converted into a garnet coloured grafs \({ }^{\text {g }}\).
10. Phofphat of zinc.- It does not cryftallize, but when evaporated becomes a gummy mafs, which may be melied into a tranfparent glafs \(\ddagger\).
II. Phofphat of manganefe.-The folution of the exyd of manganefe in phofphoric acid is reddifh, but becomes white on expolure to the air.
12. Phofphat of nickel.-It is greenifh, and does not cryfallize*。
13. Phofphat of arfenic.-It cryftallizes in fmall grains, hardly foluble in wate: \(\dagger\).
14. Phof 742 roth It dof roth. It does not cryीtallize, but affumes the appear- + Bergman, ance of yellowith white flakes, difficultly foluble in ii. 296. water.

743
15. Phofphat of antimony and lime.-Dr Pearfon of urahas difcovered that the well known medicine called nium, 744 Fames's pozuder, is a triple falt, compofed of phofphoric James's acid, oxyd of antimony, and lime. It is very infoluble powder. in water.

The remaining phofphats are fcarcely known.

\section*{Sect. VIII. Of Borats.}

The compounds into which the boracic acid enters are called borats.
1. Borat of potafs. - This falt, formed by combining Borat of boracic acid and potais, is very little known. Baron potais, firt formed it. Borat of potafs cryftallizes, is foluble in water, and may be melted into a vitreous mafs, foluble in water.
2. Borat of foda or borax.- This falt is brcught from the Eaft Indies in an impure ltate under the name of tinkal. When purified in Europe, it takes the name of borax.

Its cryftals are hexangular prifms, of which two fides are much broader than the remainder, terminated by triangular pyramids. It is of a white colour. Its fpecific gravity is 1,740 .

Its tafte is ftyptic and alkaline.
It is foluble in 18 times its weight of water of the temperature of \(60^{\circ}\), and 6 times its weight of boiling water.

It is compofed, according to Bergman, of 17 parts of foda, 39 of acid, and 44 of water.

When expofed to the air, it efflorefces flowly and fightity.

When heated it fwells, Jofes about four-tentles of its weight, becomes ropy, and then aftumes the form of a light, porous, and very friable mafs, known by the name of calcined borax; it then melts into a tranfparent glafs, fill foluble in water.

By compound affinity it is decompofed by
Nitrat of mercury*. Bergmasio

When two pieces of borax are ftruck together in the dark, a flath of light is emitted \(\dagger\).

Borax has the property of facilitating the fufion of Nicholfon's. a great number of bodies. This property renders it Fournal, iio. ufeful in glafs making, in affaying ores, and in foldering metals.

Boraxturns fyrup of violets greaz; it appears therefore to be fuperfaturated with alkali.

The real borat of foda, or the falt in which boracie acid and foda faturate each other has not yet been examined with attention. According to Dr Withering, foda requires twice its weight of boracic acid to daturate it.

\section*{3. Borat of ammonia. - This falt has been examined} only by Mr Fourcroy.

\section*{Its cryftals are polyhedral pyramids.}

It has a poignant uninous talte, and turns fyrup of violets green. It diffolves readily enough in water. \(f\) Fourcroy's When expofed to the air it gravlually lofes its cryatal. Cbemifiry, line form, and becomes brownt.
4. Borat \({ }^{\text {ch. } 4 .}\)
4. Burat of barctes.-Unknown.
5. Borat of lime-It is difficultiy foluble in water, and did not cry fallize with Beaumé.
6. Borat of frontites.- This falt was firft formed by Dr Hope - It is a white powder, foluble in about 130 parts of boiling water. The folution turns the fyrup of violets green*.
7. Borat of magnefia. -It aflumes the appearance of fmall irregular cryitals. It is foluble in acetous and formic acids. Alcohol decompofes it. It molts eafily in the fire without being decompofed \(f\).
8. Borat of alumina. - It does not cryftallize, and is fearcely foluble in water.
9. Borat of iron.-Its cryftals are of a yellow colour, but the fait has never been examined with attention.
ro. Borat of zinc. - This falt does not appear to be capable of cryftallizing.-By heat, it melts into a light green infuluble flag 9 .
11. Borat of cobalt. When oxgd of cobalt is melted with boracic aciu, a bluill grey lldg is produced. This, by lixiviation and evaporation, yields cryftals of a reddilh white colour and ramified forms.
12. Borat of nickel. - A faline fublance difficultly foluble*。
13. Dorat of lead.- When boracic acid and red oxyd of lead are melted together, the product is a fine greenith yellow, tranfparent, hard, infoluble glafs \(\ddagger\).
14. Borat of tin. - When equal parts of boracic acid and tin flings are melted together, the product diffolved.in water yields by evapuration tranfparent white
758 polygonous cryftals.
15. Borat of copper. When borax is poured into a folution of fulphat of copper, borat of copper is precipitated in the form of a pale light green jelly, which when dried is with great difficulty foluble in water. It earily
- Bergman. melts into a dark red vitreous fubftance*. According to l'alm, by long trituration of flings of copper and boracic acid in water, and then digelting the mixture, it diffolves, and cryftals may be obtained from it.
16. Borat of bifmuth.-A white powder, which melts into a white tranfparent permanent glafs \(\dagger\).
17. Borat of arfenic. - White oxyd of arfenic and boracic acid form a falt foluble in water and cryfallizable*.

\section*{Sect. IX. Of Fluais.}

Those falts into which flooric acid enters are called
76 r fluats. They were firlt formed by Scheele.
Fluat of
potafs,
f Sicleetco on
Fisur.
\(7_{62}\)
Soda,
\(\dagger\) Ibid.
763
Ammonia,
- Wieglib.

764
Baryen
- Burgmar.

765
Lime,
1. Fluat of potaf3. It forms a gelatinous mafs almoit without tafie.

It diflolves readily in water. When expofed to the fire it melts without any ebulition \(f\).
2. Fluat of fioda. This falt relembles cxactíy the fluat of potafs \(\dagger\).
3. Fluat of ammonia. It cryftalizes in fma!! prifms.

It is deliquefent, and is pattly decompored by heat*.
It is decompofed by
\[
\begin{aligned}
& \text { Nitrat of mercury, } \\
& \text { - filver, }
\end{aligned}
\]
--- lead.
4. Fhuat of barytes. A powder which requires a latge quantity of water to dilfolve it*.
5. Fluat of lime. This falt abounds in nature. It is known by the name of fluor fpar.

It cryfallizes mof commonly in the form of cubes.

I \(\mathrm{S} \quad \mathrm{T} \quad \mathrm{R} \quad \mathrm{Y}\).
It is taftelefs and nearly infoluble in water.
It is not altered by the air. Its fpecific gravity is about 3,1.

When expofed to a fudden heat it decrepitates. A very violent heat melts it into a white opaque mafs.

When reduced to powder and heated it becomes pher. phorefcent; but it lofes this quality altogether if it be heated red hot.
6. Fluat of frontites. This falt was formed by Dr Hope : but its properties have not been examined.
7. Fluat of magnefia. It is not foluble in water ex. Mugnelie, cept there be an excefs of acid. In that cafe, by fpontaneous evaporation, it forms hexagonal prifme, terminated by a low pyramid compofed of three rhomboidal fides.

Thefe cryhals are hardly foluble in water. Alcohel difolves a fmall portion of them. Heat docs not decompofe themt.
S. Fluat of alumina. A faline m.ffs; which is fives: ifh, clammy, and gelatinous.
9. Fluat of filica. Little is known concerning this fingular combination, except that it can exift in a gafeous form, and that it depofites filica in cryftals afier a certain time.
10. Fluat of filica and potafs or foda. This tripie falt may be formed by pouring fixed alkali into a folution of Ruat of filica. It contains an excefs of acid. On evaporation it yields a kind of jeily, which when dry feparates into gritty particles like fand. It is foluble in \(9^{6}\) parts of hot water. In the fire it readily melts into a white mals. If the heat be continued the acid feparates, and there remains a tranfparent glafs, which is foluble in water, and forms a liguor filicum \(\dot{\ddagger}\). \(\ddagger\) Schech,
11. Fluat of iron. It is incryftallizable; but when Crell's fourevaporated leaves a hard mafs.
12. Fluat of zinc. It refembles that of iron. nal, i. 207.
13. Fluat of manganefe. It may be formed by pour. 769 3. Hluat ing that of ammonia into a folution of oxyd of zinc in fluats. any of the three mincral acids. It crydtllizes.

1+. Fluat of cobalt. A yellow gelatinous mafs.
15. Fluat of nickel. It affords green cryftals.
16. Fluat of lead. A fiweet talted powder.
17. Fluat of tin. A natufeous tafted jelly.
18. Fluat of copper. Blue cryftals; fome of them oblong, others cubic.
19. Fluat of arfenic. Small cryftals.
20. Fluat of mercury. A powder. Before the blow-
pipe it melts into a ycllow glafs, mort of which evap.)rates by a continued heat \(\}\).

\section*{Sect. X. Of Carbonats.}

The compounds into which the carbonic acid enters are called carionais. They were firit analyfed by Dr Black.
\[
670
\]
1. Carbonat of potafs. This falt is formed by îtu- Carbonat rating potafs with carbonic acid, which is beft done by of potaiso expoling a folution of potafs for a conliderable time to carbonic acid gas.

It cryfallizes, according to Bergman, in quadrang:1lar prifms; the apexcs of which are compoled of two inverted triangles, converging like the roof a houfe *. *Borsmaza According to Pelleticr they are tetrahedral rhomhoidal prifms, with dihedral fummits. The complete cryital has eight faces, two hexagens, two rcetangles, and four + Anns. de rhombst.

It has an alkaline, but not a cauftic tafte.
It is foluble at the common temperature in about four times its weight of waterf. Boiling water diffolves \(\frac{5}{6}\) ths of its weight \(\oint\). Alcohol, even when hot, does not diffolve above \(\frac{1}{\frac{1}{2} \sigma \circ}\) parts of it.

According to Bergman, it is compofed of 48 parts of potafs, 20 of acid, and 32 of water. According to Pelletier, of 43 parts of acid, 40 of potafs, and 17 of water. Bergman under-rated the quantity of acid from not obferving that the falt lofes part of its acid when heated. Even folution in hot water produces a feparation of fome acid \(\dagger\).

It is not altered by expofure to the air.
Heat deprives it of its water and part of its acid, but does not decompofe it completely. The following falts decompore it by compound affinity :

Nitrat of lime,
When potafs is faturated with carbonic acid it always lets fall a quantity of filica. Mr Pelletier has propofed this faturation as the beft method of purifying
771
Carbonat
of foda,
* Bergman.
II 14.
\(\| \mathrm{IL} \mathrm{b}^{\circ}\) potafs from that earth.
2. Carbenat of foda. This falt may be formed in the fame manner with carbonat of potafs.

Its cryftals are five-fided prifms, with one of the angles frequently truncated, furmounted by dihedral pyramids with rhomboidal faces.

Its talte is precifely the fame with that of carbonat of potafs.

It is foluble in double its weight of cold water.
It is compofed, according to Bergman, of 16 parts of acid, 20 of alkali, and 64 of water.

It efflorefes when expofed to the air. Heat is inca.
The following faits decompofe it by compound affi-
\[
\ddagger \text { Bergman. }
\]
\(+7 \%\)
- Id.
nity :

3. Carbonat of ammonia. This falt forms octahedral cryitals, having for the molt part their two oppofite apexes truncated \(\ddagger\).

Its tafte and imell, though much weaker, are the fame with thofe of pure ammonia. Like all the alkaline carbonats it converts vegetable blues to green, precifely as pure alkalies do.

It is foluble in rather less than twice its weight of
cold water. Hot water diffolves its own weight of it. Carbonats.
According to Eergman it is compofed of 43 parts of alkali, 45 of acid, and 12 of water.

When expofed to the air it becomes fomewhat moit.
The fmalleft heat is fufficient to evaporate it.
The following falts decompole it by compound affinity:
\begin{tabular}{l}
Sulphat of alumina, \begin{tabular}{l}
Acetite of barytes, \\
Nitrat of lime, \\
Muriat of lime,
\end{tabular} lime, \(\quad\) magnefia, \\
\hline
\end{tabular}

\section*{-——alumina,}

773
4. Carbunat of barytes. This falt has been found Carbonat native.
Its cryftals have been obferved to affume four different forms; double fix.fided and double four-fided pyramids, fix-fided columns terminated by a pyramid with the fame number of faces, and fmall radiated cryftals \(\frac{1}{2}\) an inch in length, and very thin, appearing to be hexagonal prifms, rounded towards the point.
Cold water diffoives \(\frac{\pi}{2307}\) part of this falt. Water faturated with carbonic acid diffolves \(\frac{1}{3}\) th part*.

According to Dr Withering, who firt difcovered it native, it is compofed of \(8 \circ\) parts of barytes and 20 of acid. Bergman informs us, that artificial carbonat is compofed of 7 parts of acid, 28 of water, and 65 of earth \(\dagger\).
lt is not altered by expofure to the air.
It is decompofed by the application of a very violent heat 9 .

I Dr Hope.
By compound affinity it is decompofed by the fol. lowing falts:

5. Carbonat of lime. This fubflance, under the Carbonat names of marble, chalk, lime-ftone, \&c. exifts in great of lime. abundance in nature, varioully mixed with other bodies.

When pure, it is of a white colour, and has very little tafte.

It is infoluble in pure water: but water faturated with carbonic acid diffolves \(\frac{1}{550}\) part of it ; from this folution it gradually precipitates as the acid leaves it in the form of fmall rhomboidal cryltals*. *errgmans

It is compofed, according to Bergman, of 34 parts i. 21. of acid, \({ }^{11}\) of water, and 55 of lime.

It fuffers little or no alteration by being expofed to the air.

When expofed to heat, it firf lofes its water, and afterwards its acid feparates as the heat is increafed: But to feparate the acid completely, a very ftrong heat is required.
The following falts decompofe it by compound affinity :
\[
\begin{aligned}
& \text { Sulphat of alumina, }
\end{aligned}
\]
6. Carbonat of Arontites. This falt, which was firf Carbonat examined by Dr Hope, is infipid, and foluble in 1536 of fron-

\section*{Part III.}

\section*{C H E M}

Carbonars. pasts of boiling water. It is compofed of 30,2 parts of HHope, acid, 69,8 of frontites. A violent heat deconpofes it \(\dagger\). Trany. Bdin. 7. Carbonat of magnefia. This falt may be formiv. 5 . ed by faturating the common magnefia of the fhops 776 with carbonic acid gas.
Carbonat of It diffolves in water faturated with carbonic acid; magnefia. and forms by evaporation cryftals, which are iranfparent hexagonal prifms, terminated by a hexagonal plame; thefe are partly in groups and partly folitary:
\(\ddagger\) Butini fur their length is about fix lines, their breadth two \(\ddagger\).
ba Magnchie. 'llhey were difcovered by Mr Butini of Geneva.
Water at the temperature of 50 diffolves \(\frac{1}{8}\) part of * Fourcroy, its weight of this falt.* When in the ftate of powder, Ann. de and of courfe deprived of its water of cryltallization, it Clim. ii. is much more infoluble; and what is very remarkable, 293.
\(\ddagger\) Butini. ted with carbonic acid \(\ddagger\)
It is compofed, according to Fourcroy, of 50 parts of acid, 25 of magnefia, and 25 of water.

When expofed to the air, it efflorefces, and falls in-
- Fourcroy, to powder \(\mathbb{T}\).
ibid. When heated, it decrepitates, falls into powder, and \(\ddagger\) Id. ilid. is decompofed \(\ddagger\).

The following falto decompofe it by compound affinity
\[
\begin{array}{ll}
\text { Sulphat of lime, } & \text { Nitrat of lime, } \\
\text { - ammonia, } & \text { Muriat of lime, }, \\
\text { Acetite of lime. }
\end{array}
\]

Carbonat of 8. Carbonat of alumina. Carbonic acid is capable of alumina. diffolving alumina; for if alum be decompofed by an alkaline carbonat, fome alumina remains diffolved in the liquor, and may be precipitated by a heat fufficient to *Bergman, drive off the carbonic acid." It cannot be doubted, i. 21 . then, that there may be produced a carbonat of alumi-
778 na; but the falt has never been examined with accuracy.
Metallic \(\quad 9\). Carbonat of iron. Water faturated with carbo. carbonats. nic acid diffolves \(\frac{1 \pi}{500}\) part of its weight of iron, Bergman, which gradually precipitates by expofure to the air \(\mathbb{I}\). i. 33. Ruft of iron is a kind of carbonat, at leaft it always contains carbonic acid.
10. Carbonat of zinc. Zinc is copioufly diffolved
\(\ddagger\) Iid. by water faturated with carbonic acid \(\ddagger\). As the me- tallic oxyds, when faturated with carbonic acid, do not differ materially in their appearance from pure oxyds, we fhall not attempt to defcribe any of the metallic carbonats. We fhall, however, prefent our readers with the following table, exhibiting a view of the weight

\begin{tabular}{|c|c|c|}
\hline 100 parts of & Carb. of Soda. Weight. & Carb. of Potafs. Weight. \\
\hline Oxyd of zinc, & 100,930 & 100,774 \\
\hline iron, & 100,250 & 100,863 \\
\hline manganefe, & 100,8co & \\
\hline cobalt, & 100,600 & \\
\hline nickel, & 100,350 & \\
\hline lead, & 100,320 & 100,304 \\
\hline tin, & 100,310 & 100,345 \\
\hline copper, & 100,940 & 100,884 \\
\hline bifmuth, & 100,300 & 100,22.4 \\
\hline antimony, & 100,400 & 100,395 \\
\hline mercury, & - 100,100 & 100,062 \\
\hline filver, & - 100,290 & 100,288 \\
\hline gold, - & - 100,060 & 100,326 \\
\hline
\end{tabular}

I S T R Y.
Quantity of lofs by driving off the gas by folution Acetites. according to Wenzel :
\begin{tabular}{lllll}
Zinc, & - & - & - & - \\
Iron, & 0,137 \\
Cobll, & - & - & - & - \\
0,009 \\
Lead, & - & - & - & - \\
Tin, & 0,352 \\
Copper, & - & - & - & - \\
Bimuth, & - & - & - & 0,174 \\
Antimony & - & - & - & 0,056 \\
Mercury, & - & - & - & 0,000 \\
Silver, & 0,033 \\
Guld, & - & - & - & 0,158 \\
G & - & - & - & 0,144
\end{tabular}

Thefe determinations differ too widely from each other to be exact. It is obvious that part of the weight mult be owing to adhering water, and very probably triple falts are formed, which muft render the determination fill more erroneous.

\section*{Sect. XI. Of Acetites.}

The compounds which the acetons acid forms are called acetites.
1. Acetite of potafs. Pliny is fuppofed, but pro- Actite of bably without any reafon, to have been acquainted with potafs. this falt, becaufe he recommends a mixture of vinegar and vine afhes as a cure for a particular fpecies of tumor.* It was firft clearly defcribed by Raymond *Plinit, I. Lully. It has received a great number of names; as, xxiii. prafor inftance, arcanum tartari, fecret foliated carth of tar. winm.
tar, eflential falt of wine, regenerated tartar, diuretic falt, digeftive falt of Sylvius.

Its cryftals are very white, and affume the form of thin plates.

It has a fharp warm tafte.
It is foluble in about ten times its weight of water at the temperature of \(60^{\circ} \|\). It is foluble alfo in alcohol. \(\|\) Bergman,

According to Wenzel, 240 parts of acetous acid re- v. 78. quire for faturation \(241 \frac{4}{8}\) ths of potafs. And from the experiments of Dr Higgins, it appears that acetite of potafs is compofed of 61,5 parts of alkali and 38,5 of acetous acid and water \(\ddagger\).

When expofed to the air it is very deliquefcent.-Acid, p. 8. When heated, it melts as readily as wax; and if a very ftrong heat be applied, the acid is decompofed.

The following falts decompofe it by compound aff. nity :

Sulphat of foda,
——— ammenia,
-_-_ magnefia,
-_ alumina,

Nitrat of Soda,
- lime,
2. Acetite of foda. This falt was firft defribed by Acetize of Mr Baron.

Its cryftals are friated prifms, not unlike thofe of fulphat of foda.

It has a fharp tafte, approaching to bitter.
It is foluble in 2,86 parts of water at the temperature of \(60^{\circ} \ddagger\).

According to W EBrgmam, quire for fitturation \(157^{\frac{3}{7}}\) ths of finda.

It is not affected by expofure to the air.
When hated, it firft lofes its water of cryftallization ;
Nitrat of ammonia,
— magnefia,
alumina,
Birmuth,
Muriat of ammononia, foda.
\(\qquad\)

Acetites. in a frong heat it meits; anc in a finl fronger, its acid is delloyed. This falt can only be cotained in cryftals when there is an cacefs of alkali in the folution.
The following falts decompufe it by compound afiniiy:

> S slphat of ammonia, Nitrat of amminina,

881 - magnefia,
Nitrat of alumina, Mifriat of lime
———— ammonia, -_magnefia.
This falt was formerly call-

Acetite of amm:onia.
3. Acetite of ammonia.
\(\mathrm{S} \quad \mathrm{T} R \mathrm{Y}\).
Part III.
According to Wenzel, \(24^{2}\) parts of acetous acid re- Acestites. quire for faturation 125 of lime: according to Maret, 100 parts of acetite of lime contain 50 of lime.t From + Encych. the experiments of Dr Higgins, it follows, that ace- Matbot. tite of lime is compofed of 35,7 parts of lime and 64,3 Chimet. i. 9 . of acetous acid and water \(\ddagger\).
\(\ddagger \mathrm{On}_{\mathrm{n}}\) Acetous
It is not altered by cxpofure to the air ; at lealt \(A \operatorname{did}\), 1. 4i.
Morveau kept fome of it for a while year metely co-
vered with paper, and even quite uncovered for a month, without its undergoing any alleration \(\|\).
\(\|\) IVid. F:n-
Heat decompofes it, and at the fame time faitly de- cycl. Mrecompofes its acid.
The following falts decompofe it by compound affinity:

6. Acetite of ftroncites. This falt was firf formed Acetite of by Dr Hope. It forns fmall cryRals, which are not ftomtites. affected by expofure to the atmofphere. 49 patts of it are foluble in 120 parts of boiling water: It feems to be nearly as foluble in cold water. It renders vegetable colours green.* *Dr Hope,
7. A cetite of magnefia. This falt was firft mention. Tranf. Edire ed by Mr Wenzel.

It is not cryftallizable ; but forms by evaporation a 985
vilcid mafs \(\ddagger\).
Acetite of
It has a fweetifl tate ; leaving however, a fenfe of t Bgefia.
bitternefs \(\dagger\).
It is very foluble both in water and alcohol.* \(\dagger\) Morveau,
According to Wenzel, 240 parts of acetous acid re-
quire for faturation \(123^{\frac{3}{4}}\) ths of magnefia.
When expofed to the air, it deliquefees. Heat de-
compofes it.
The following falts decompofe it by compound affi-
nity:
\begin{tabular}{ll}
\begin{tabular}{l}
Sulphat of ammonia, \\
alumina,
\end{tabular} & \begin{tabular}{c}
Carbonat of barytes, \\
Nitrat of ammonia, \\
alumina, \\
Muriat of ammonia,
\end{tabular} \\
\hline foda, \\
Mammonia, \\
&
\end{tabular}
- - alumina,
8. Acetite of alumina. This falt can only be form- Acetite of ed by digefting acetous acid on alumina recently pre. alumina. cipitated.
By evaporation necdle fhaped cryftals are obtained,
which are very deliquefcent. According to Wenzel,
240 parts of acetous acid require \(20 \frac{5}{7}\) ths of alumina for faturation.
This falt is decompofed by compound affinity by the following falts:

Nitrat of ammonia,
Muriat of ammonia,
Carbonat of barytes,
Carbonat of potafs,
9. Acetite of jargonia. This falt may be formed by Acctite pouring acetous acid on newly precipitated jargonia. jargonia.
It has an aftringent tafte. It does not cryflallize; but
when evaporated to drynefs, it forms a powder, which does not attract moifture from the air as acetite of alu- \(\dagger\) Klapratb, mina does \(\dagger\). It is very foluble in water and in alco. \(P h_{x}\). xxxvi hol. 388.

Acetites. hol. It is not fo eafily decompoled by heat as nitrat - of jargenia, probably becaule it docs not adhere fo - Vauque Itrongly to water*.

Jin, slun. de Chim, uxii. 206.

788 Acetle of iron. \(\ddagger\) Wentel. 6. f
10. Acetite of iron. This falt was mentioned by Schrojer and Juncker. It is compofed of acetous acid and brown oxyd of iron.

Its folution forms by gentle evaporation imall oblong cryltals. But the greatelt part of the falt alfumes the orm of a gelatinnus mafs \(\ddagger\).
It has a fweetilh Ityptic tatle.
According to Wenzel, 240 parts of acetous acid require for faturation \(186 \frac{1}{2}\) of iron.

Heat decompofes this falt ; and it feems alfo to be 789 gradually decompofed by expofure to the air.
Acetite of II. Acetite of zinc. This falt was firlt mentioned zinc. by Glauber.

Its cryftals are rlomboidal, and fometimes hexagonal plates of a white colour, and the appearance of talk.

It is foluble in water. According to Wenzel, 240 parts of acetous acid require for faturation \(195 \frac{5}{6}\) has of zinc.

It is not altered by expofure to the air. Heat decompofes it. When thrown upon burning coals, it explodes with a blue flame.
12. Acetite of manganefe. This falt is not cryftallizable; and when evaporated to drynefs, it deliquefces. Is it not an acetat?

790
13. Acetite of cobalt. This falt is deliquefcent. Its folution is of a fine red colour while cold; but becomes blue by being heated, and it recovers its former colour on cooling. According to Wenzel, 240 parts of acetous acid require for faturation \(241 \frac{5}{9}\) ths of cobalt.
14. Acetite of nickcl. This falt forms rhomboidal cubes of a green colour\|. They are not deliquefcent: Their tafte is fweet*.
15. Acetite of lead. This falt is mentioned by Ifaac Hollandus and Raymond Lully. It is compofed of acetous acid and white ozyd of lead.

It was formerly called fugar of lead, fugar of Saturn, Salt of Saturn, vinegar of Saturn, extract of Saturn, \&c.

Its cryftals are flat parallelopipeds, terminated by two inclined planes approaching cach other.

It has a fweet and fomewhat aftringent tafte.
It is not very foluble in water; but acetous acid dif. folves it abundantly.

According to Wenzel, \(24^{\circ}\) parts of acetous acid require for faturation 503 of lead.

When expofed to the air it becomes yellow, but undergoes no other alteration.

Heat decompofes it by deftroying the acid. When diftilled, the refiduum takes fire fpontaneoufly on expofure to the air. Paper dipped into acetite of lead forms excellent matches, which are not fubject to go out, and which burn very flowly.

The following falts decompofe it by compound affinity :

Muriat of ammonia, Phofphat of ammonia,
Sulphat of copper, Oxalat of potafs \(\|\),
Phofphat of foda, Malat of potafs \(\dagger\).
16. Acetite of tin. This falt was firlt deferibed by Lemery.

Its cryftals are prifmatic needles in groups \(\ddagger\). According to Wenzel 240 farts of acetous acid require for faturation \(3 r^{5}\) of tin.

Suppl. Vol.I.
17. Acetite of copper. This falt whs known to the Arctites. ancients, and various ways of preparing it atre delcribed An by Pliny f. It was formerly known by the names of Acenite of coyduls of Venus and verdigrife.

It is of a deep green colour. Its cryfals are rhom. ILibxxxiv. boids.

It has a difagreeable coppery tatte.
It is foluble in water and in alcohol.
According to Wenzel 240 parts of acetous acid require \(16 \frac{1}{8}\) of copper for faturation.

It efflorefces when expofed to the air. Heat decompofes it. It is ufed in painting.
18. Acetite of bifmuth. 'This falt feems to have been Acette of firft mentioned by Geoffroi. He called it fugar of lifmuth. bifinuth.

It is moft eafily procured by mixing together the fo-
lutions of nitrat of bifmuth and acetite of potafs. It
forms brilliant, talky, filvery cry-tals.
It has a fweetifh tafte. According to Wenzel, 210 parts of acctous acid require for fituration \(15 \frac{5}{y}\) of bif. muth.

It does not deliquefce when expofed to the air. Heat decompores it.
19. Acctite of antimony. It yields with difficulty Acetite of fmall cryltaist. According to Werzel, 240 parts of antimony. acetous acid require for faturation \(1 \frac{8}{3}\) of antimony. + Wcnz\%
20. Acetite of arfenic. This falt forms fmall cryftals
in grains, hardly foluble in water*.
21. Acetite of mercury. This falt is mention arfenic. Schræder.

Its cryftals are fmall thin plates. Acetite of
It has a difagreeable tafte, and excites coughing.
It is hardly foluble in water. According to Wen-
zel, 2 , 0 parts of acetous acid require for faturation \(240 \frac{3}{7}\) of mercury.

When expofed to the air it becomes black, owing to the reduction of the oxyd of mercury. Heat deconipofes it.
22. Acetite of filver. This falt was perlaps firf Acetite of defrribed by Margraf. filver.
It is beft formed by dropping acetite of foda or pot-
afs into a faturated folution of nitrat of filvert.

It forms imall oblong cryftals, eafily diffolved in wa. \(\dagger\) ibio.
ter \(\ddagger\). It has a fharp talte.
According to Wenzel, 240 parts of acetous acid re. quire for faturation \(101 \frac{4}{9}\) of filver.

Heat decompofes it. It is decompofed by muriat of magnefiat.
23. Acetite of gold. This falt is mentioned by Schræder and Juncker. Acetite of
24. Acetite of uranium. This falt was firf formed sold. by Klaproth.

Its cryftals are regular four-fided nlender prifms, ter. minated at both ends by regular quadrilateral pyramids:
they are tranfparent, and of a beautiful topaz yellow colour.

Heat decompofesthem: and what is fingular, if they be heated gradually red hot, the oxyd which remains retains nearly the form of the cryflals*.

The compounds into which the acetic acid enters, are "Klaprots called acetats. They are fo imperfectly known ar pre- 802 fent, that we fhall not attempt a defcription of them. Acetat.

\section*{Sect. XII. Of Oxalats.}

THE compounds of which oxalic acid forms a part
3 K w
ibit.
\(\qquad\)

are
\(\underbrace{\text { Oxalats. }}_{803}\) Oxalat of potafs.
\(\dagger\) Bersman, i. 262.

804
Acidulous oxalat of potafs.
†D: Lifle.

805

806
Oxalat of ammonia.
\(\ddagger\) Bergman.
- Birgman, jid.

807
T:arthy oz-
alats.
\(\dagger\) Bergman,
ib:d.
if \(B(r g m a)\), ifid.

T Hope, by deftroying the acid \(\mathbf{q}_{\text {. }}\) Trus. Edin.
Tronf. Edit. iv. 14.

\section*{\(\ddagger\) Berman,} ibid. and ii. 387. an acidulous oxalat. redden the infufion of turnfole. water. Heat decompofes it \(\ddagger\).
are known by the name of o:xalats. They were firft defcribed by Bergman.
1. Oxalat of potafs. This falt cryftallizes with difficulty. It is very foluble in water. When heated it falls to powdert.
2. Acidulous oxalat of potafs. The oxalic acid is alfo capable of combining with potafs in excefs, and forming another falt, called acidulous oxalat from its acid tafte: or, to fpeak more accurately, this falt is formed by the combination of oxalat of potafs with oxalic acid. This falt exifts ready formed in oxalis acto oflla or woodforrel ; from which it is extracted in fome parts of Europe in great quantities. Hence it was formerly called falt of wood forrel. It is mentioned by Duclos in the Memoirs of the French Academy for 1668. Margraf firlt proved that it contained potafs; and Scheele difcovered that its acid is the oxalic. A great many interefting experiments had been previoully made on it by Wenzel and Wiegleb.

It may be formed, as Scheele has fhown, by dropping potais very gradually into a faturated folution of oxalic acid in water : as foon as the proper quantity of alkali is added, acidulous oxalat is precipitated. But care mult be taken not to add too much alkali, otherwife no precipitation will take place at all.
Its cryftals are fmall opaque parallelopipeds \(\ddagger\).
It has an acid, poignant, bitterifh, talte.
It is foluble in about ten times its weight of boiling water, but much lefs foluble in cold water.

It is not altered by expofure to the air. Heat decompores it.

This falt is fold in this country under the name of efintial falt of lemons.
3. Oxalat of fodd. This falt agrees very much with oxalat of potafs. Its cryftals are fmall, and foluble in water.
From Bergman's defcription, oxalic acid appears alfo capable of combining in excefs with foda, and forming
4. Oxalat of ammonia. Its cryfals are four-fided prifms, generally diverging from various points. They

They are eafily foluble in water, but not in alcohol \(\ddagger\).
It is decompofed by nitrat of barstes \(\Phi\).
5. Oxalat of barytes. This falt does not cryftallize except with excefs of acid. The addition of potafs, or even of water, deprives it of this excefs, and then it crumbles into powder. It is infoluble in watert.
6. Oxalat of lime. This falt does not crytallize, It is infoluble in water, but fomewhat foluble in acids. It is compofed of \(4^{8}\) parts of acid, \(4^{6}\) of lime, and 6 of
7. Oxalat of Strontites. This falt was firf formed by Dr Hope. It is a white infipid powder; foluble in ty20 parts of boiling water. Heat decompofes it
8. Oxalat of magnetia. This falt is in the form of a white powder. It is fcarcely foluble either in water or alcolol. It is compored of 35 parts of magnefia and 65 of acid and water. Heat decompofes it \(\ddagger\).
9. Oxalat of alumina. It is uncryftallizable ; but furnifhes on evaporation a yellowith pellucid mafs. It is fparingly foluble in alcohol. It has a fweet aftingent tafte. It is compofed of 44 parts of alumina and \({ }^{5} 6\) of acid aud water.

\section*{S T R Y.}

Part III.
When expofed to the air it deliquefees; and if it has Oxalats. been previoufly well dried, its weight is increafed by \(\frac{2}{3}\). It reddensturnfole.
10. Oxalat of iron. This falt forms piifmatic cry. ibid. Bergman, ftals of a yellowih.green colour.

808
It has an aftringent and fweet tafte. It is very fo. Metallic luble in water.

It is compofed of 45 parts of green oxyd, and 55 of acid and water. When expofed to heat it falls to powder \(\dagger\).
From Bergman's defcription, the brown oxyd of iron appears alfo capable of combining with oxalic acid. The compound does not cryftallize, and is nearly infoluble in watert.
11. Oxalat of zinc. It is hardly foluble in water.

It is compofed of 75 parts of oxyd and 25 of acid.
12. Oxalat of manganefe. It is compored of oxalic acid, and white oxyd of manganefe. It appears capable of cryftallizing 9 .
13. Oxalat of cobalt. This is a rofe-coloured powder, infoluble in water, but foluble in oxalic acid; and capable, by that means, of cryftallizing \(\ddagger\).
14. Oxalat of nickel. This is a green coloured powder, hardly foluble in water. It is compofed of two parts of acid, and one of oxyd If.
15. Oxalat of lead. It forms fmall cryftalline grains. They are infoluble in alcohol, and nearly infoluble in water. They contain 55 parts of oxyd and 45 of acidll.
16. Oxalat of tin. This falt forms prifmatic cryftals. It has an auftere tafte. If the folution of this falt be quickly evaporated, it affords a mals refembling horn, and foluble in water \(\ddagger\).
17. Oxalat of copper. This falt is uncryfallizable. It is a bluifh powder, infoluble in water, except with excefs of acid. It is compofed of 21 parts of copper, and 29 of acid \(\|\).
18. Oxalat of bifmuth. This falt may be formed by dropping oxalic acid into a folution of nitrat of bifmuth. It forms pellucid polygonous cryftals. When oxyd of bifmuth is diffolved by oxalic acid, the refult is a white powder, fcarcely foluble in water*.
19. Oxalat of antimony. This falt forms cry falline grains, with difficulty foluble in watert.
20. Oxalat of arfenic. This falt is compofed of oxalic acid and white oxyd of arfenic. Its cryttals are prifms very foluble in water and alcohol. It reddens turnfole.
Heat fublimes it ; and by a frong heat it may be decompofed \(\dagger\).
21. Oxalat of mercury. A white powder, hardly foluble in water, except with excefs of acid \(\ddagger\).
22. Oxalat of filver. This falt may be formed by pouring oxalic acid into a folution of nitrat of filver. It is a white powder, fcarcely foluble in water, and not at all in alcoliol; but foluble in nitric acid. It becomes black by being expoled to the air, owing to the reduction of the exyd.l.
23. Oxalat of platinum. This falt affords yellow cryftals.

\section*{Sect. XIII. Of Tartrites.}

The falts into which tartarous acid enters as an ingredient are known by the name of tartrites.
I. Acidulous oxalat of potafs or tartar. This falt, which is compored of potafs and an excefs of tartarous acid, or rather of tartrite of potafs and tartarous acid,

has been long known. It is obtained in a flate of impurity at the bottom, and adhering to the fides of cafks in which wine has fermented. It is called tartar, fays Paracelfus, becaufe it produces the oil, water, limeftone, and falt, which burn the patient as Holl does. According to him, it was the principle of every difeafe and every remedy, and all things contain the germ of it.

Margraf and Rouelle firlt demonftrated that it contained potals ready formed: and Scheele firft obtained tartarous acid from it in a flate of purity.

Its cry@als are very fmall and irregular. According to Montet, they are prifms, fomewhat flat, and mofly with fix fides. It has a flrong acid tafte. It is foluble
I Wonzel. in about 30 times its weight of boiling water If. According to Bergman, it contains 23 parts of alkali and 77 of acid.
It is not altered by expefire to the air. Heat decompofes it, and at the fame time deftroys the acid. It
810 is capable of forming a great many compounds.
Tartrite of 2. Tartrite of potafs. This falt may be formed by potafis. faturating the laft defcribed falt with potafs. It was formerly called foluble tartar, becaufe it is much more foluble in water than the acidulous tartrite of potafs. It cryftallizes mof readily when there is a fnall excefs of alkali in the folution. Its cryftals are fmall oblongs.
It has an unpleafant bitter tafte. It is foluble in 4 parts of water, at the temperature of \(40^{\circ}\).
3. Tartrite of foda. This falt has never been accu-

8 rir rately examined.
Tartrite of 4. Tartrite of potais and foda. This triple falt, potafs and formerly known by the name of falt of Seignette, becaufe firl formed by Mr Seignette apethecary at Rochelle, is made by faturating tartar with foda.

Its cryftals are prifms of eight or ten unequal fides, having their ends truncated at right angles. They are generally divided into two in the direction of their axes, and the bafe on which they fand is marked with two diagonal lines, fo as to divide it into four triangles.

It has a bitter tafte. It is almolt as fuluble as tartrite of potals.

It eflorefces when expofed to the air. Heat de812 compofesit.
Tartrite of 4. Tartrite of ammonia. The cryftals of this falt ammonia. are polygonous prifms, not unlike thofe of the laft defcribed falt.
It has a cooling bitter tafte like that of nitre. It is eafily foluble in water. Heat decompofes it.
5. Acidulous tartrite of ammonia. This falt may be formed by pouring tartarous acid into a folution of tartrite of ammonia. Like acidulous tartrite of potafs it is very infoluble in water.
6. Tartrite of potafs and ammonia. This triple falt may be formed by pouring ammonia into acidulous tartrite of potafs.

Its cryftals, according to Macquer, are prifms wih four, five, or fix fides: according to the Dijon academicians, parallelopipeds, with two alternate floping fides.

It has a cooling tafte. It is foluble enough in water. It cfllorefces in the air. Heat decompofes it.
\(\begin{array}{cl}{ }^{81} 3 & \text { 7. Tartite of barytes. Unknown. } \\ \text { Earthy tar- } & \text { 8. Tartrite of lime. This falt, fitf formed by Scheele, }\end{array}\) trites. is a tafclefs and almof infoluble powder. By heat the acid is decompofed, and the pure lime remains belind.
9. Tartrite of fronties. This falt was firít formed by Dr Hope. Its cryffals ate fmaill regular triangular tables, having the edges and angles fharp and well de-
fined. It is infipid. ing water.

It is not altered by expofure to the air. Heat decompores it by deflroying the acid.*
10. Tartrite of magnefia. This falt is infoluble is water except there be an excefs of acid prefent. It then affords by evaporation fmall cryftals in the form of hexangular truncated prifms \(\uparrow\).
It has a more faline tafte, and is more fufible than tartrite of limeł.

Heat firlt melts and afterwards decompofes it.
11. Tartrite of alumina. This falt does not cryfallize, but forms by evaporation a clear tranfparent gummy mafs. Its talle is afringent. It is foluble in water. It does not deliquefce in the air.*
12. Tartrite of potafs and alumina. This triple falt \({ }^{k} n\).
is formed by faturating tartar with alumina. It bears a very friking refemblance to the laft defcribed falt.
13. Tartice of iron. This is a grey powder. When Mris tartarous acid is poured into a folution of fulphat of tastrites. iron, fcaly cryfals aue formed by evaporation. Thefe crytals are doublefs compofed of tartarous acid combined with fulphat of iron. This triple falt might be called tartro-fulphat of iron.
14. Tartrite of potafs and iron. This triple falt was formerly called tartarijed tindure of Mars, chalybeated tartar, and tartarijed iron. It may be formed by boiling two parts of tartar and one of iron filings, previoufly made up into a pafte, in a proper quantity of water. The liquor by evaporation depofits crytals, which form the falt wanted.
15. Tartrite of zinc. This falt is not eafily foluble in water.
16. Tartrite of potafs and zinc. This triple falt, formed by combining tartar and oxyd of zinc, is very foluble in water \(\ddagger\).
17. Tartrite of lead. This falt, which is compofed do Cbim. of tartarous acid and white oxyd of lead, is almoft \(D_{\text {ijono }}\) infoluble in water. Nitric acid diffolves it.
18. Tartrite of potafs and lead. This falt, formed by combining white oxyd of lead with tartar, is very foluble in water.*
19. Tartrite of tin. Unknown. The tartrite of potafs and tin, compofed of tartar and oxyd of tin, is capable of cryftallizing.
20. Tartrite of copper. This falt is bell formed by pouring tartarous acid into the folutions of muriat or fulphat of copper; it precipitates in the form of blue cryfals 9 .
This falt forms the beft kind of the pigment called Brunfruick grecn \(\ddagger\).

2I. Tartrite of potafs and copper. This triple falt is alfo in the form of blue cryftals.
22. Tartrite of bifmuth. Small cryltalline grains \(\|\cdot\|\) Bergmant,
23. Tartrite of antimony. This falt has never been examined with attention.
24. Tartrite of potafs and antimony, or tartar emetic. To this falt, which is perhaps the moft powerful emetic known, a great deal of attention has been paid, and a valt number of methods have been tried to prepare it. Thefe methods have been already defcribed in the Encycloprdia. It appears from the experiments of Mr Bindheim, that if this falt be carefully prepared, the difference that refults from the ufe of different oxyds is not fo great as might have been expected \(\dagger\). It was firlt made known by Adrian in 1631 . It is a Chim. xiiio.
triple falt, compofed of tartar and white oxyd of antimozy.

It is of a white colour and tranfparent. Its cryftals are trihedral pyramids.

It diffolves in 60 parts of cold water, and in a fmaller proportion of hot water. It is decompofed by lime and alkalies, iron, sxc. Care ought therefure to be taken to ufe unly diftilled water when it is adminiftered as a medicine.
25. Thrtrite of arfenic. This falt forms prifmatic - Bergmar, cryltals very like thofe of oxalt of arfenic \(\frac{\sigma}{}\).
ii. 295. 26. Tartrite of mercury. A yellow powder.
27. Tartrite of potafs and mercury. This triple
\| Momet. falt cryftallizes \(\dagger\).

\section*{Sect. XIV. Of Citrats.}

The compounds into which the citric acid enters have been denominated citrats.

Thefe fal's are at prefent very imperfectly known.
- Four. de

Pby. 1794 .
Supplement.
Alkaline citrats. \& Dr Donatd MTonro,
Pbil. Tranf. 3. Citrat of ammonia. This falt cryptallizes in thin \(\ddagger\) Doffon. needles. It has a cooling and moderately faline tafte \(\ddagger\).
\(\ddagger\) Datfon.
Scbecle.
Earthy ci-
trats.
\(\dagger\) Id.
\(11 d\).
\(\$ 12\).
817
Metallic
cituats.
+ Dien The ammonia is feparated by the application of heat.*

4 Citrat of barytes. This falt is fcarcely foluble in water. It aflumes the form of a vhite powder \(\dagger\). It is foluble in citric acid.
5. Citrat of lime. This is a white powder, fcarcely foluble in water 1 .
6. Citrat of magnefia. Does not cryftallize. It orms a gummy faline mafs very foluble in waterf.
7. Citrat of alumina. This falt is fcarcely foluble in water.
8. Citrat of iron. A folution of a brown colour.
9. Citrat of copper. A green gummy mafs.
10. Citrat of mercury. This falt may be formed by pouring citric acid into nitrat or acetite of mercury. It is a flaky falt, of a brick-dult colour, more or lefs red \(\dagger\).

\section*{Sect. XV. Of Malats.}

THE compounds into which the malic acid enters are called malats. This clafs of falts was firft difcovered by Scheele. They are no better known than the citrats.

\section*{1. Malat of potafs. \\ 2. Malat of foda. \\ 3. Malat of ammonia.}
4. Malat of lime. Small irregular cryftals. They require a large quantity of boiling water for their folution. With excefs of acid they are readily foluble in cold water \(\oint\). They are infoluble in alcohol \(\|\) :
5. Malat of barytes. The properties of this falt refemble pretty much thofe of malat of lime I.
6. Malat of magnefia. Deliquefcent \(\ddagger\).
7. Malat of iron. A brown folution, not cryftal-
- 14. lizable \(\dagger\).
8. Malat of zinc. This falt forms beautiful \(\mathrm{cr} 5-\) ftals

\section*{S T R Y.}

Sect. XVI. Of Laflats.
THE neutral falts formed by the combination of the 819 lactic acid with varions bafes are called lacals. They were firt difcovered by Schecle.
1. Lactat of potafs. A deliquefcent falt, foluble in aicoholf.
2. Lactat of foda. This falt does not cryftallize. Milk.

It is foluble in alcohol \(\dagger\).
+ Ibid.
3. Lactat of ammonia. Cryftals which deliquefce.

Heat feparates a great part of the ammonia before de-
ftroying the acid.
4. Lactat of barytes. 2Thefe falts deliquefce§. The § Thid.
5. Lactat of lime. flactat of lime is fuluble in al-
6. Lactat of alumina. Scohol \(\ddagger\).
\(\ddagger\) Ibid.
7. Lastat of magnefia. Small deliquefcent cryftals \(\|\). \(H\) Ibid.
8. Lactat of iron. A brown folution.
9. Lactat of zinc. Cryftals.* \({ }^{*}\) Ibid.

Thefe falts have a very firong refemblance to malats.
The only difference which Scheele obferved was, that the malat of lime was infoluble in alcohol, while alcohol diffolved lactat of lime.

\section*{Sect. XVII. Of Saccholats.}

820
The compounds into which the faccholaetic acid Saccholats enters are called faccholats. They alfo were firlt dif. covered by Scheele.
1. Saccholat of potafs. Small cryftals, foluble in eight times their weight of boiling water.* *cbeele on
2. Saccholat of loda. The fame; foluble in five Sugar of times their weight of boiling waters.
3. Saccholat of ammonia. A falt which has a fourifh
talte. Heat feparates the ammonia \(\dagger\). \(\dagger\) Ibid.
§ Ibid.
4. Saccholat of barytes.
5. Saccholat of lime.

Thefe falts are infolu-
6. Saccholat of magnefia. \(\}\) ble in water 9 .
§ Ibid.
7. Saccholat of alumina.

\section*{Sect. XVIII. Of Gallats.}

THE compounds into which the gallic acid enters are Gallitso denominated gallats. They vere firft attended to by the Dijon academicians and by Scheele.
1. Gallat of potas. 7 We only know that there
2. Gallat of foda. \}compofitions are poflible,
3. Gallat of ammonia. \(J\) and that their properties are different from thofe of all other falts.
4. Gallat of barytes.? Thefe falts are foluble in
5. Gallat of lime. \(\int\) water, efpecially when there is excefs of acid.
6. Gallat of magnefia. This falt is a yellow powder, foluble in water and in alcohol \(\|\).
|| Bartboldit,
7. Gallat of alumina. This falt, according to Bar- Ann. de tholdi, exifts ready formed in nut galls. It is very \(\frac{\text { chim. }}{305}\). foluble in water.
8. Gallat of iron. This falt, which Mr Prouft has difcovered to be formed of gallic acid and brown oxyd of iron, is of a black colour, and does not feem capable of cryftallizing. It is foluble in the three mineral acids, and by that means is deprived of its black colour. It is to this falt that ink partly owes its black colour. Gallat of iron is decompofed by alkalies.

We fhall not attempt any farther account of this clafs of faits, Scarcely any addition has yet been made to

Benzoats. the experiments of Scheele which have been given al-
 ready in the article Chemistry, Encyol.

\section*{Sect. XIX. Of Bcazoats.}

Alkaline
benzoats.
- Keir's

Dikionary.
\(\dagger\) Ybid.
\(\ddagger\) Tbid.
823
Earthy
benzoats.
§ Ilid.
HI Ibid.
824
Metalline benzoats.
\(\dagger\) Tromfiorf, Ann. de
Clim. xi.
314.
\(\ddagger\) Id. ibis.

IId. ibid.
高 1 d . ibis.

IId. ilid.
§ Y \%. ibid.
† Id. ibis.
- Id. ibid.

1 1R. ibid.

The compounds into which the benzoic acid enters have been called benzoats.
t. Benzoat of porals. This falt forms pointed feathery cryftals. It has a faline fharp tafte. It is very foluble in water. It deliquefces when expofed to the air 9 .
2. Benzoat of foda. The cryftals of this falt are larger, but its tafte is the fame with that of benzoat of potafs. It is allo very foluble in water. It efflorefces in the airt.
3. Benzoat of ammonia. This falt cryfallizes with difficulty. Its cryitals are feather-fhaped. It deliquefes \(\ddagger\).
4. Benzoat of lime. This falt forms white, fhining, pointed cryftals, of a fweetilh tafte, and not eafily foluble in water \(\oint\).
5. Benzoat of magnefia. Feather-fhaped cryftals, of a fharp bitter talte, and eafily foluble in water \(\|\).
6. Benzoat of alumina. An aftringent falt.
7. Benzoat of iron. This falt forms yeliow cryftals. It has a fweet tafte. It is foluble in water and alcohol. It eflorefces in the air. Heat difengages the acid \(\dagger\).
8. Benzoat of zinc. This falt forms arborefcent cryfals. It is foluble in water and alcohol. When expofed to the air it is difflipated. Heat decompofes it \(\ddagger\).
9. Benzoat of manganefe. This falt, which is formed of benzoic acid and white oxyd of manganefe, cryftallizes in fmall fcales. It diffolves readily in water, with difficulty in alcohol. It is not altered by expofure to the air \(\quad\) I.
10. Benzoat of cobalt. Flat cryftals \(\ddagger\).
11. Benzoat of lead. Very white cryitals, foluble in water and alcohol. They are not altered by expofure to the air. Heat difengages the acid\|.
12. Benzodt of tin. This falt may be formed by pouring benzoat of potafs into a folution of tin in the nitro muriatic acid. The benzoat of tin is precipitated. It is foluble in hot water, but indoluble in alcololol. Heat decompofes ity.
13. Benzoat of copper. Small cryflals of a deep green colour. They are with difficulty foluble in water, and not at all in alcoholt.
14. Benzoat of bifinuth. This falt forms white needle-fhaped cryftals. They are foluble in water and in a very fmall proportion in alcohol. They are not altered by expoture to the air. Heat dccompofes themp.
15. Benzoat of antimony. Crytals which efflorefe in the air, and are decompofed by heatll.
16. Benzuat of arfenic. Small ieather-fhaped cryftals. It is foluble in hot water, but cryfallizes in the cooling. A moderate heat fublimes it ; a frong heat decompofes it. Sulphur decompofes it. It is not decomp fed by alkalies \(\ddagger\).
17. Benzoat of mercury. A white powder. It is inf luble in water, but diffolves in a imall quantity in alcohol., It is not altered by expofute to the air. A fmall heat fublimes it; a greater decompofes it. It is decompofed by iulphurt.
18. Benzoat of filver. This falt is foluble in water
and alfo in a very fmall proportion in alcohol. It is not altered by expofure to the air, but the rays of the fun render it brown. Heat diiengages its acid\|.
|| Id. ilid.
19. Benzuat of gold. Sinall irrergular crytals, not eafily foluble in water; infoluble in alcohol. It is not altered by expofure to the air. Heat decompofes itq. II IJ. ilid.
20. Benzoat of platinum. This falt forms fmall brownifh cryftals, with dificulty foluble in water; not foluble in alcohol. When expofed to heat, it is decompofed, and there remains behind a brown powder§. \$ Id. ibid.

\section*{Sect. XX. Of Succinats.}

The neutral falts, formed by the combination of the fuccinic acid with various bafes, have been called fuccinats.
We fhall not defrribe thefe falts, as we could not add much to the account given in the Appendix to the article Chemistry in the Encyclopadia. That account was taken from Mr Keir's Chemical Dictionary, and that gentleman borrowed it from Leouhardi.

\section*{Sect. XXI. Of Camphorats.}

The neutral falts into the compofition of which camphoric acid enters, have been denominated camphorats. The only chemilt who has hitherto examined them is Bouillon la Grange : his experiments have been publifhed in the 27 h volume of the Annales de Chimie.
1. Camphorat of potafs. To prepare this falt car- Canphorat bonat of potafs is to be diffolved in water, and the folu- of potafs. tion faturated with camphoric acid. When the effervefcence is over, the liquor is to be evaporated by a gentle heat to the proper confifence, and cryftals of camphorat of potafs will be depofited when the liquor cools.

Camphorat of potafs is white and tranfparent; its cryftais are regular hexagons. Its tafte is bitterifh and flightly aromatic.
 of its weight of this falt; boiling water diffolves \(\frac{1}{4}\) th part of its weight.

It is foluble in alcohol, and the folution burns with a deep blue flame.

When expofed to moif air, it lofes a little of its tranfparency, but in dry air it fuffers no change.

When expofed to heat it melts, fivells, and the acid is volatilized in a thick fmoke, which has an aromatic odour. Before the blow-pipe it burns with a blue flame, and the potafs remains behind in a flate of purity.

By compound affinity this falt is decompofed by
Nitrat of barytes,
All the falts whofe bafe is lime,
Nitrat of filver,
Sulphat of iron,
Muriat of tin, lead*.
- Bouillar
2. Camphorat of foda. This falt may be formed La Grange, precifely in the fame manner with the camphorat of \(A\) Ane de potafs.

Cbim. xxvii.
It is white and tranfparent; its tafte is fomewhat \({ }^{24}\)
bitter ; its cryitals are irreguldr.
Water at the tem erature of \(60^{\circ}\) diffolves lefs than of foda. \(\frac{-1}{2} \frac{1}{30}\) th part of its weight of this falt; boiling water diffolves \(\frac{t}{8}\) th of its weight.

It is aifo foluble in alechol.
When expofed to the air it lofes its tranfparency, and

\section*{Camphe-} \(\underbrace{\text { sats. }}\)
* Bouilion Lad Grange, Ann. dz Сbinn. xxvii 26.

827 Camphorat
of amnienia.
tallic bafes*.
3. Camphorat of ammonia. This falt may be prepared by difolving carbonat of ammonia in hot water, and adding camphoric acid flowly till the alkali is faturated. It mult then be evaporated with a very moderate heat, to prevent the difengaging of ammonia.

It is very difficult to obtain this falt in regular cryfals. When evaporated to drynefs, there is obtained a folid opaque mafs of a tharp and bitterifh talte.

Water at the temperature of abont \(60^{\circ}\) diffolves nearly \({ }_{1} \frac{1}{0}\) th part of its weight of this falt; boiling water diffolves \(\frac{1}{3} d\) of its weight: But this and the two falts above defcribed are a good deal more foluble when there is excefs of bafe.

It is entirely foluble in alcohol.
When expofed to the air it attrasts moifture, but not in fufficient quantity to enable it to affume a liquid form.

When expofed to heat it fwells, melts and is converted into vapour; before the blow-pipe it burns with a blue and red flame, and is entirely volatilized.

Moft of the calcareous falts form triple falts with camphorat of ammonia.

It decompores in part all the aluminous falts except
efliorefces Alightly, but is never completely reduced to powder.

Heat produces the fame effect upon it as on camphorat of potals: the acid burns with a blue flame, which becomes reddifh towards the end.

By compound affinity it is decompofed by
Nitrat of lime,

Muriat of lime,
- iron,

Sulphat of alumina,
ny iroa; and ma-
The mixture is then to be made boiling hot, paffed through a filter, and evaporated to about \(\frac{3}{4}\) ths of its volume. On cooling camphorat of lime is depofited.

It has no regular fhape; but if the evaporation has been properly couducted, it is in plates lying one above another. It is of a white colour, and has a talte llightly bitter.

Water at the temperature of \(60^{\circ}\) diffolves very little of this falt; boiling water is capable of diflolving about \(\frac{5}{2} \frac{8}{0}\) th part of its weight of it. It is infoluble in alcohol.

It is compofed of 43 parts of lime, 50 of acid, and 7 of water.

When expofed to the air it dries and falls into powder.

When expofed to a moderate heat it melts and fivell; up: when placed on burning coals, or when heated in clofe veffels, the acid is decompofed and volatilized, and the lime remains pure.

When fulphuric acid is poured into a folution of this falt, it produces an infoluble precipitate; nitric and muriatic acids precipitate the camphoric acid.

It is decompofed by compound affinity by
Carbonat of potass,
Nitrat of barytes,
Muriat of alumina,
Sulpbat of alumina, Phorphat of roda*.
6. Camphorat of magnefia. This falt may be pre- La Grange,
pared by pouring water on carbonat of magnefia, and then adding cryftallized camphoric acid: heat is then applied, the folution is filtrated, and evaporated to drynets. The falt obtained is diffolved in hot water, pafted thre through a filter, and evaporated by means of a mode- of magnerate heat till a pellicle forms on the furface of the folu. fia. tion. On cooling the falt is depofited in thin plates. The fecond folution is to remove any excefs of magne. Ga that may happen to be prefent.

This falt does not cryItallize. It is white, opaque, and has a bitter talte.

It is fearcely more foluble in water than camphorat of lime.

Alcuhol has no action on it while cold, but when hot it diffolves the acid and leaves the magnefia; and the acid precipitates again as the alcohol cools.

When cxpofed to the air it dries and becomes covered with a little powder; but this effect is produced dlowly, and only in a warm place.

When this falt is placed on burning coals, the acid is volatilized, and the magnefia remains pure. Before the blow.pipe it burns like the other camphorats with a blue flame.

The nitrats, muriats, and fulphats, do not completely decompofe this falt, if we except the nitrat of lime and muriat of alumina*.
7. Camphorat of alumina. To prepare this falt, alumina, precipitated by means of ammonia, and well wafhed, is to be mised with water, and cryflals of camphoric acid added. The misture is then to be heated, filtered, and concentrated by evaporation.

This falt is a white powder, of an acid bitterifh talte, leaving to the tongue, like moft of the aluminous falts, a fenfation of aftringency.

Water at the temperature of \(60^{\circ}\) diffolves about \(\frac{5}{2} \frac{0}{0}\) th part of its weight of this falt. Boiling water diffolves
the fulphat of alumina \(\psi\).
4. Camphorat of barytes. In order to prepare this falt, barytes is to be difolved in water, and camphoric acid added to the folution; the mixture is then to be boiled, and afterwards filtered and evaporated to drythefs.

Camphorat of barytes does not cryftallize; when the evaporation is conjucted flowly, the falt is depofited in thin plates one above another, which appear tranfparent while immerfed in the liquor, but become opaque whenever they come into contakt with the air.

It has very little taite, though it leaves at laft upon the tongue a flight impreflion of acidity mixed with bitterneĺs.

Water diffolves only a very fmall quantity of this falt: boiling water being capable of taking up only - 0 th part of it.

It is not altered by expofure to the air.
When expofed to heat it melts eafily, and the acid is volatilized. When the heat is confiderable, the acid burns with a lively blue flame, which becomes red and at laft white.

It is decompofed by
Nitritt of potafs, foda, lime, ammonia, and magnefia. Muriat of lime, potafs, alumina, and magnefia.
All the fulphats.
Carbonat of potafs and foda.
Phofplat of potafs, foda, and ammonia*.
5. Camphorat of lime. This falt may be prepared by dropping into lime-water cryftallized camphoric acid.

\section*{Campho.} rats. \(\overbrace{\text { rats. }}^{\text {ren }}\)
20.aty
\(\qquad\)
\(\qquad\)

\(\square\)
Part III.
C H E M I S T R Y.

Suberats. it in confiderable quantities; but it precipitates again as \(\sim_{\text {the folution cools. }}^{\sim}\)

Alcobob, while cold, diffolves it very faringly; but when hot it difolves a confiderable quantity of it, which precipitates alfo as the folution cools.

This falt undergoes very little alteration in the air ; but it rather patts with than attracts moilture.

Heat volatilizes the acid; and when the falt is thrown on burning coals it burns with a blue flame.

It is decompofed by the nitrats of lime and ba-
- Eouillon rytes.*

La Grange,
Ann. dc:
Cbim. xxvii. 34.

832
Suberat of
potafs.
\(\dagger\) Id. ibid.
yxiii. 52 .
833
Suberat of roda.
\({ }_{+}^{2}\) Id. ilid. P. 53.
\({ }^{3} 34\)
Suberat of ammonia.
§ \(7 d . i b i d\).
P. 55 .

835
Suberat of
barytes.
\# Id. ibid. p. 52. 836 Suberat of lime.

TId. ibid.

\section*{Secer. XXII. Of Sulerats.}

The falts formed by the fuberic acid have obtained the appellation of fuberats. They have hitherto been examined only by Bouillon la Grange.
1. Suberat of potafs. This falt ought to be formed by means of cryftallized carbonat of potafs.

It cryftallizes in prifms, having four unequal fides. It has a bitter faltifh tafte, and it reddens vegetable blues. It is very foluble in water. Caloric melts it, and at laft volatilizes the acid.

It is decompored by molt of the metallic falts, and by fulplat of alumina, muriat of alumina, and of lime; nitrat of alumina and of lime : and phofphat of alumina \(\dagger\).
2. Suberat of foda. This falt does not cryftallize. It reddens the tincture of turnfole. Its talte is flightly bitter. It is very foluble in water and in alcohol. It attracts moifure from the air. Caloric produces the fame effect on it that it does on fuberat of potafs.

It is decompofed by the calcareous, aluminous, and magneftan falts \(\ddagger\).
3. Suberat of ammonia. This falt cryftallizes in parallelopipeds. Its tafte is faltifh, and it leares an impreffion of bitternefs: It reddens vegetable blues.

It is very foluble in water. It attracts moiftare from the air. When placed upon burning coals, it lofes its water of cryftallization, and fwells up; and before the blow-pipe it evaporates entirely.

It is decompofed by the aluminous and magnefian falts \(\oint\).
4. Suberat of barytes. This falt does not cryftallize. Heat makes it fwell up, and melts it. It is fearcely foluble in water except there be an excefs of acid.

It is decompofed by moit of the neutral falts except the barytic falts and the fluat of lime \(\|\).
5. Suberat of lime. This falt does not cryftallize. It is perfectly white: it has a faltifh tafte: it does not redden the tincture of turnfole.

It is very faringly foluble in water except when hot; and as the folution cools moft of the fait precipitates again.

When placed upon burning coals it fwells up, the acid is decompofed, and there remains only the lime in the fate of powder.

It is decompofed by
The muriat of alumina,
The carbonats of potafs and foda,
The fluat of magnefia,
The phorplats of alumina and foda,
The horat of potals,
All the metallic folutions \(T\).
6. Sulserat of magnefia. This falt is in the form of
powder: it reddegs the tincture of turufole. It has a
bitter tafte: it is fuluble in water, and attrads fome Prufiats. moiture when expofed to the air.

When heated it fwells up and melts: before the blow-pipe the acid is decompofed, and the magnefia remains in a Itate of purity.

It is decompofed by
Muriat of alumina,
Nitrat of lime and alumina,
Borat of potafs,
Fluat of foda,
Phofphat of alumina.*
- Bouillon
7. Suberat of alumina. This falt does not cryftalliee. La Grange, When its folution is evaporated by a moderate heat in Ann. de a wide veffel, the falt obtained is of a yellow colour, Cbim. xxiii. tranfparent, having a fyptic tafte, and leaving an im- \({ }^{5}\) preflion of bitternefs on the tongue. When too much heat is employed it melts and blackens. It reddens the alumina tincture of turnfole, and attracts moifture from the air. Before the blow-pipe it fwells up, the acid is volatilized and decompofed, and nothing remains but the alumina.

It is decompofed by
The carbonats of potafs and foda,
The fulphat of iron,
The muriat of iron,
The nitrats of filver, mercury, and lead. \(\dagger+\) Ij. ilid.
Suberic acid forms alfo compounds with the oxyds of
filver, mercury, lead, copper, tin, iron, bifmuit, arfe-
nic, cobalt, zinc, antimony, manganefe, and molybde-
num; moft of which are incryftallizable, and have an excefs of acid \(\ddagger\).
\(\ddagger\) Id. itid.

\section*{Sect. XXIII. Of Pruffats.}

The compounds into which the pruffic acid enters are called Pruffats.

Thefe fubfances, the mof important of which are. triple falts, have fomething very peculiar in their affinities. The pruffic acid appears to have a ftronger affinity for alkalies and earths than for metals, at lealt thefe fubftances are capable of decompoling metallic pruffiats; yet acids fcarcely decompofe the metallic pruffiats, while the weakeft acid known decompofes the pruffats of alkalies and earths. Thefe phenomena have not yet been fatisfactorily accounted for.

\section*{1. Prufiat of potafs.? \\ 2. Prufliat of foda.}
fats were firt ob. Alkaline tained pure by Mr Scheele. They are foluble in water; but they are of little ufe, as mere expofure to the air decompofes them.
3. Prufiat of ammonia. This falt has the fmell of ammonia. It is very volatile and as eafily decompored as the other two.
4. Pauflat of lime. This falt is foluble in water. Earthy

It is alfo decompofed by expofure to the air. prufiatis.
5. Prufiat of barytes. \(\}\) Thefe falts are alfo fo-
luble in water, and decompofed by all acids.
Pruflic acid does not combine with alumina, 84 I
7. Prudiat of iron, or l'ruflian blue. This fubfance Prufian is compofed, as Mr Prouft has fhewn, of the prufic blue. acid and brown oxyd of irnn. With the green oxyd the prulic acid forms a white compound, which, however, becomes gradinally bluc when expofed to the atmofphere, becaufe the oxyd abforbs oxygen and is converted into brown oxyd \(\|\).

Prufliat of iron is a deep blue coloured powder. is compofed, according to the molt accurate experiments hitherto made, of equal parts of oxyd of iron and pruffic acid. It is not affected by expofure to the air. Heat decompofes it by defroying the acid, and the oxyd of iron remains behind.

The Pruffian blue of commerce, befides other impurities, contains mixed with it a great quantity of alumina. Its ufe as a pigment, and the attempts which have been made to introduce it as a dye, are well known.

Prufiat of iron may allo exift in another fate: It may have a fuperabundance of oxyd ; its colour is then more or lefs yellow. To this ftate it may be reduced by digefting it with alkalies or any of the alkaline earths. Thefe fubflances deprive it of part of its acid, but not of the whole.
842
This yellow pruftiat is foluble in acids.
Affinities
of the pruf.
fic acid explained.

Were we to attempt an explanation of this, and the other phenomena which the prulific acid dilplays in its combinations, we would conjecture, that this yellow profitiat is the fubftance formed by the dired combina- tion of brown oxyd of iron and pruffic acid, and that the blue prufiat is formed of the yellow prafliat combined as an integrant with prufic acid: That the affinity between the pruffic acid and oxyd of irnn is much Itronger than that between yellow pruffiat of iron and pruflis acid: that therefore alkalies and earths have a fironger affinity for pruffic acid than the yellow pruffiat has, but a much weaker affinity than oxyd of iron, and perhap; every other oxyd;-hence the apparent fuperiority of alkalies and earths in fome cafes, while in others they appear very inferior. We would fuppofe, then, that the pruffic acid has a much Atronger affinity for oxyd of iron, and perhaps for all other oxyds, than for other bndies; that the pruffiats, thus formed, are capable of combining with pruffic acid; but that their affinity for it is much lefs than that of the alkalies and earths. This conjecture is fupported by all the phenomena at prefent known; it would remove all the apparent anomalies which the combinations of this fingular acid prefent, and reduce the whole of them under

Properties 8. Pruffiat of potafs end iron, commenly called Prufof Pruffian fian alkali, or Pruffian tefl. This fu'ttance is a triple alkali, falt, compofed of pruffic acid, pntafs, and oxyd of iron combined together. To chemifts and mineralogits it is one of the moft important inftruments ever invented; as, when properly prepared, it is capable of indicating whether any metallic fubitance (platinum excepted) be prefent in any folution whatever, and even of pointing out the particular metal, and of afcertaining its quantity: This it does by means of a compound affinity, which, after what has been faid above, may be eafily underitond. The Prufian alkali may be conceived to be a combination of two fubftances, pruffiat of potais and blue pruffiat of iron. Now every metallic oxyd has a fironger affinity for profic acid than potafs has (and, in fact, feems to have a ftronger affinity for it than for any other fubftance). If, therefore, there happen to be any oxyd in the folution, it immediately feizes the pruffic acid with which the potafs is combined, and by that means decompofes the triple falt. A prufliat of the particular metal is formed, and, as mof pruffiats of metals are infoluble, it is precipitated ; and it indicates by its colour the particular metal, and by
its weight the quantity of metal that happens to be prefent. At the fame time, the blue prufitat of iron is alfo precipitated, and its weight mult be deducted from the quantity of the precipitate.

In order to be certain of the accuracy of thefe refulte, it is neceffary to have a Pruflian alkali perfectly pure, and to be certain before hand of the quantity, or rather of the proportions of its ingredients. To obtain a telt of this kind has been the object of chemifts ever fince the difcoveries of Macquer peninted out its importance. It is to the ufe of impure teits that a great part of the contradictory refults of mineral gical analyfes by different chemits is to be'afcribed.

There are two \(\ddagger\) ways in which this teft may be ren \(\ddagger\) See Kirdered impure, betides the introduction of foreign in- zoan's Mir. gredients, which we do not mention, becaufe it is ob. i. 487. vious that it mult be guarded againft. I. There may be a fuperabundance of alkali prefent, or, which is the fame thing, there may be mixed with the Pruffian telt
a quantity of pure alkali; or, 2 . There may be containfame thing, there may be mixed with the Pruffian telt ed in it a quantity of yellow pruffiat of iron, for which prutiat of potafs has alfo a confiderable affinity.

If the Pruffian teft contain a fuperabundance of al-
kali, two inconveniences follow. This fuperabundant quantity will precipitate thofe earthy falts which are liable to contain an excefs of acid, and which are only foluble by that excefs: Hence alumina and barytes will be precipitated. It is to the uie of impure tells of this kind that we owe the opinion, that barytes and alumina are precipitated by the Prullian alkali, and the confequent theories of the metallic nature of thefe earths. This miltake was firf corrected, we believe, by Mr Klaproth.

Another inconvenience arifing from the fuperabin-
dance of alkali in the Pruffian teft is, that it gradually decompofes the blue pruffiat which the tef contains, decompoles the blue pruflat which the tent contains,
and converts it into yellow prufliat. In what manner it does this will be underftood, after what has been faid, without any explanation.
On the other hand, when the Prufian alkali contains a quantity of yellow pruffiat of iron, as great inconveniences follow. This yellow prulfiat has an affinity for pruffic acid, which, though inferior to that of the pot. afs, is ftill confiderable; and, on the other hand, the potafs has a flronger affinity for every other acid chan for the pruffic. When, therefore, the telt is expofed to the air, the carbonic acid, which the atmofphere always contains, affifted by the affinity bet ween the yel-
low pruffiat and the pruffic acid, decompofes the prufways contains, affifed by the affinity between the yel-
low pruffiat and the pruffic acid, decompofes the pruffiat of potafs in the telt ; and the sellow pruffiat is precipitated in the form of Pruflian blue: And every other acid produces the fame effect. A teft of this kind, therefore, would indicate the prefence of iron in every
mixture which contains an acid (for a precipitation of therefore, would indicate the prefence of iron in every
mixture which contains an acid (for a precipitation of Pruffian blue would appear) ; and could not, therefore, be trufted to with any confidence.

We will not attempt to defcribe the various methods Klaproth's which different chemilts have adopted of preparing this method of which different chemilts have adopted of preparing this method of
telt; but fhall fatisfy ourfelves with defcribing the forming is. method of Klaproth, which anfwers the purpofe com. pletely. This we fhall do nearly in the words of Mr Kirwan.

Prepare a pure potafs, by gradually projecting into 2 large crucible heated to whitenels a mixture of equal parts of purified nitre aud cryftals of tartar; when the whole

\footnotetext{
\(\qquad\)
}

\footnotetext{

}

\(\square\) - See Kir844
Liable to Liable to
impurities. of purified nitre and crytals or tartar, when the is

Iruffiats. is injected, let it be kept at a white heat for half an hour, to burn off the coal.
1)etacls the alkali thus obtained from the crucible, reduce it to powder, fpread it on a muffe, and expofe it to a white heat for half an hour.

Diffolve it in fix times its weight of water, and filter the folution while warm.
I'our this folution into a glafs receiver placed in a fand furnace, heated to \(170^{\circ}\) or \(180^{\circ}\), and then gradually add the beft Prultian blue in powder, injecting new portions according as the former becomes grey, and fupplying water as faft as it evaporates; continue until the added portions are no longer difcoloured, then increafe the heat to \(212^{\circ}\) for half an hour.

Filter the ley thus obtained, and faturate it with fulphurie acid moderately diluted; a precipitate will ap. pear; when this ceafes, filter off the whole, and wath the precipitate.

Evaporate the filtered liquor to about one quarter, and fet it by to cryfallize: atter a few days, yellowith cryftals of a cubic or quadrangular form will be found mixed with fome fulphat of potals and oxyd of iron ; pick out the yellowifh cryfals, lay them on blotting paper, and rediffolve them in four times their weight of cold water, to exclude the fulphat of potafs.
7. Eflay a few drops of this folution with barytic water, to fee whether it contains any fulphuric acid, and add fome barytic water to the remainder if neceffary : filter off the folution from the fulphat of barytes, which will have precipitated, and fet it by to cryltallize for a few days; that the barytes, if any fhould remain, may be precipitated. If the cryftals now obtained be of a pale yellow colour, and difcover no bluith freaks when fprinkled over with muriatic acid, they are fit for ufe; but if they ftill difcover bluith or green freaks, the folutions and cryltallizations mult be repeated.

Thefe cryftals muft be kept in a well flopped bottle, which to preferve them from the air fhould be filied with alcohol, as they are infoluble in it.

Before they are ufed, the quantity of iron they contain thould be afeertained, by heating 100 grains to rednefs for half an hour in an ofen crucible : the pruf. fic acid will be confumed, and the iton will remain in the flate of a reddifh brown magnetic osyd, which thould be weighed and noted: This oxyd is half the weight of the Prufian blue afforded by the Prulfian alkali; its weight mult therefore be fubtracted from that of metallic precipitates formed by this telt. Hence the weight of the cry!lals in a given quantity of the folution, lhould be noted, that the quanity enploged in precipitation may be known. Care mut be taken to continue the cal. cination till the oxyd of iron becomes brown; for while Sirswan's it is black, it weighs conliderably more than it fhould \(\ddagger\).
inineral. 9. Pitufiat of foda and iron. The only difcen nible dif-
494. ference berween this falt and the laft is, that it crytalBerthollet. lizes differently ||.
846 'ruffiat of nmonia nd iron.
10. Pruffiat of ammonia and iron. This triple falt has alfo been employed as a telt ; but it is not fo cafy to obtain it in a flate of purity as the other two. It was difcovered by Macquer, and firft recommended by Meyer.

It forms flat hexangular cryftals, foluble in water, and deliqueces in the air. Heat decompofes it like the other Prulfiats".

We thall not give any defcription of the triple falts
Suppl. Vol. 1.
formed by digefling the alkaline earths on prufiat of set, tse iron; they are fuficienty known, and are not of any ufe except as tefts; and in that refpeet they are inferior to that above defribed. They are all foloble in water, and are moot of then capable of cry tallizing.
11. Pruffiat of mercury. This falt, which was firt Prufiat of formed by Scheele, is compled of the prulic acid mactery. combined with the red oxyd of mercury. It may be formed by bolling the red oxyd of mercury with Prut: fian blue. It cryitallizes in tetrahedral prifms, terrninated by quadranguldr pyramids, the fides of which correfpond with the angles of the prifm.
This falt is capable of combining with fulphuric and muriatic acids, and forming tiple falts, which have nnt jet been examined \(\oint\).

Sect. XXIV. Of Formats.
The compounds into which the formic acid enters are called formats. We fhall not defcribe them, as little has been added to the account already given in the \(A_{p}\) pendix to the article Chemistry in the Encyclopadia.

\section*{Sect. XXV. Of Sebaits.}

Thecompounds into which the febacic acid enters are called febats. For our knowledge of this clafs of filcs we are chiefly indebted to the celebrated Crell, who publifhed a differtation on the febacic acid and its combinations in the Philefophical Tranfations for 1780 and 1782 .
1. Sebat of potafs. This falt is of a white colour. Alkaline Its cryflals are quadrangular pyramids, of which two febats. oppofite fides are narrower than the others. It has a fharp faline tafte like muriat of ammonia, but milder. It is foluble in water, infoluble in alcohol, and does not deliquefce when expofed to the air. Heat decompores it.
2. Sebat of foda. This falt is white. Its cryftals are pyramids, with threc or four fides: a very moderate heat melts them.
3. Sebat of ammonia. This falt in tafe and folubility refembles muriat of amnonia, itut it differs from it in not being capable of fubliming iron.
4. Sebat of lime. The ciynals of this falt are hex-Earty's eoagons, terminated by a plane furlace: they bave a harp lata.
acrid tate: are very foluble in water, but act in aiso-
hol : they do not deliqueice.
5. Sebat of magnefia. A gummy, faline, uncryftallizable mals.
6. Sebat of alumina. A gummy, faline mafs, whiclit does not cryftalize, and has an auftere aftringent tafte. a,50 7. Sebat of iron. Needle-fhaped cryflals which de- Mertilicico liquefce.
8. Sebat of lead. Neeule-haped cryftule, wery folu-
ble in water.
9. Sebat of tin. A white deliqucfent falt.
10. Sebat of copper. This \(\mathcal{A}_{\mathrm{d}} \mathrm{l}\) is capabie of cry \(\mathrm{R}_{\mathrm{d}}\) l-
lizing, but is very deliquefcent.
2t. Sebat of antimony. A cryftalizable falt, which
docs not deliquefce.
12. Scbat of arfenic. Small cryfuls.
13. Seluat of mercury. A white powder, very dini-
culty foluble in water.
14. Sebat of gold. Yellow cryfale.
15. Sebat of platinum. Browning yellow cryfals.

The bombats or compounds which the bombic acia
furms are fill unknown.

Sect. XXVI. Of Arjenials.
The compounds formed by the combination of the arfenic acid with bafes are called arfeniats. This clafs of falts was firf difcovered by Macquer ; but little accurate was known concerning it till Scheele made known the arfenic acid.

An abftract of Scheele's experiments has been given in the article Chemistry, Encycl.

To his defcription of arfeniats feveral additions might be made, but not of fufficient confequence to warrant a repetition of what has been given in that article; and without fuch a repetition thele additions would fcarcely be intelligible.

\section*{Sect. XXVII. Of Metallic Acid Salls.}

It has been conjectured that all metals may be converted into acids by combining them with a fufficient quantity of oxygen. This conjecture has been verified in a confiderable number of inflances. We have feen the arfenic acid, the tungfic acid, the molybdic acid, and the new metallic acid of Vauquelin. Berthollet has difcovered that platinum becomes an acid; and the fame thing las been afcertained with regard to tin. Even thofe metallic oxyds which do not poffers many of the characters of acids are capable of combining with alkalies and earths, and of forming peculiar neutral falts. Thefe oxyds, therefore, perform the office of acids; and confequently mult be confidered as partaking of their nature, or rather as a kind of intermediate fubftances between acids and thofe bodies which unite only with acids.

Some of thefe neutral falts we Mall proceed to enu-
1. Aurat of ammonia, or fulminating gold. This falt is compofed of the oxyd of gold and ammonia. This compound may be formed by precipitating gold from nitro-muriatic acid by ammonia. The precipitate is fulminating gold. Bergman was the firt who clearly demonftrated that this powder is compofed of oxyd of gold and ammonia. When heated a little above the boiling temperature it explodes with aftonifhing violence. Chemifts had made many attempts to explain the caufe of this phenomenon, but without fuccefs, till Mr Berthollet difcovered the compofition of ammonia. After making that difcovery, he proved, by a number of delicate and hazardous experiments, that during the fulmination the ammonia is decompofed, that its hydrogen combines with the oxygen of the oxyd, and forms water, while the azot flies off in a gafeous form, and occafions the explofinn.
2. Argentat of ammonia, or fulminating filver. This fubtance was difcovered by Mr Berthollet. It may be formed by diffolving oxyd of filver in ammonia. It is a black powder. It poffeffes the fulminating property much more powerfully than the laft defcribed fubflance. The nighteft friction makes it explode with I Bertbollt, violence. This property, as Mr Berthollet has proved q ,
Ann. de
Clim. i .
is owing to the fame decompofition of ammonia and formation of water that caules the explofion of fulmimating gold.

If a frmall returt be filled with the liquor from which the fulminating filver has been precipitateu, and be made to boil, fome azot is difengaged, and fmall opaque cryflals are formed, confifting of the fame fubftance; which explode when touched, though they be covered with

I S T R Y.
Part III.
water. Nitrat and muriat of barytes precipitate filver Hydrofulfrom this falt.
3. Mercuriat of lime. Oxyd of mercury boiled with lime-water, forms, by evaporation, fmall, tranfparent yellow cryftalsł.
4. Mercuriat of ammonia. Oxyd of mercury diffolves in ammonia in large quantity, and by evaporation furnifhes a white falt \(\dagger\).
5. Cuprat of ammonia. Oxyd of copper diffolves in ammonia. Mr Sage has defcribed its cryftallization. It is decompofed by lime and potafs, and cuprat of lime and potafs are formed.
6. Stannat of gold. When gold is precipitated by tin it unites with it. Vogel and Beaumé firt obferved that the precipitate, which is purple, contained tin.

7 Plumbat flime Lime water biled on the 856 7. Mumbat of lime. Lime-water boiled on the red Plumbat
oxyd of lead difolved it. This folution evaporated in of lime. a retort, gave very fmall tranfparent cryftals, forming prifmatic colours, and not more foluble in water than lime. It is decompofed by all the fulphats of alkalies and by fulphurated hydrogen gas. The fulphuric and muriatic acids precipitate the lead. It blackens wool, the nails, hair, the white of eggs; but it does not affect the colour of filk, the fkin, the yoke of egg, nor animal oil. It is the lead which is precipitated on there coloured fubftances in the ftate of oxyd ; for all acids can diffolve it. The fimple mixture of lime and oxyd - Bertocote of lead blackens thefe fubfances; a proof that the falt Ann. de is eafily formed*.
8. Zincat of ammonia, De Caffone has publifhed a great number of experiments on the property which ammonia has of difiulving oxyd of zinc. Lime water and potafs alfo diffolve it \(\dagger\).
9. Antimoniat of potafs. When antimony is detonated with nitre in a crucible, part of its oxyd unites with the potafs of the nitre \(\ddagger\).

\section*{Chap. III. Of Hydrosulphurets.}

Sulphurated hydrogen gas, which has been deferibed in the firt part of this article, poffeffes almoft all the properties of acids. It combines with water, and the folution gives a red colour to vegetable blues. It decompofes foaps and fulphurets, and is capable of com. bining with alkalies, earths and metallic oxyds, and of forming compounds, to which Mr Berthollet, to whom we are indebted for difcovering them, has given the name of bydrofulpburets*.

Before giving any account of thefe compounds, which we fhall do from the paper of Berthollet juft quoted, \({ }^{333}\). we beg leave to make a few previous obfervations, in order to rectify fome inaccuracies into which we have fallen from not being acquainted with the experiments of that philofopher.

Sulphur is capable of combining with alkalies, earths, Remarks metals, and metallic oxyds, and forming the compounds on fulphorknown by the name of fulpburets. The alkaline, earthy, rets. and even fome of the metallic fulphurets, can only exif in a flate of drynefs: the inftant they are moiltened with water, a quantity of fulphurated hydrogen gas is furmed, which combines with the fulphuret, and forms a new compound. To thefe triple compounds Mr Berthollet has given the name of hydrogenous fulpbiurets. All folutions of fulphurets in water are in tact hydrogenous fulphurets. Were it not for the formation and combination of fulphurated hydrogen, the alkaline fulphurets

Hydrofut would be completels decompofed by water, and their phurese.
fulphur precipitated; for water has a ftronger affinity for the alkalies than fulphur has. This Berthollet proved by the following experiment : To a folution of fulphuret of potafs in water (that is, to hydrogenous fulphuret of potafs) a quartity of oxy-muriatic acid fuperfaturated with potafs was added, and the fulphur was immediately precipitated. In this experiment the fulphurated hydrogen was deftroyed by the oxygen of the oxy-muriatic acid; and the precipitation of the ful. phur thews that its affinity for potafs was not fufficient to keep it diffolved, or, which is the fame thing, that its affinity for potals was inferior to that of water.

The fubttance which we deferibed in Part I, chap. iii. fect. 4. of this article, under the name of Black Sulphuret of Mercury, is a hydrogenous fulphuret of mercury, and therefore differs from the red fulphuret of mercury or cinnabar, by containing a quantity of fulphurated hydrogen. Potafs has a Itronger afinity for this laft fubftance than the fu!phuret; potafs therefore, by the affiftance of heat, deprives the black or hydrogenous fulphuret of its fulphurated hydrogen, and reduces it to the ftate of red fulphuret. This explains the method of forming cinnabar defcribed in the fection above referred to, and points out a much eafier procefs for obtaining that ufeful pigment.

We fhall now proceed to the method of forming the hydrofulphurets. Berthollet obtained fulphurated hydrogen gas from fulphuret of iron in the ufual manner, by means of fulphuric acid. It was made to pars thro' a veffel filled with water before it entered that in which the combination was to take place. By this method a folution of potafs was impregnated with fulphurated hydrogen; and in order to be certain of faturating the alkali completely, the gas was added in excefs, and the excefs was afterwards driven off by means of heat. By this method hydrofulphurets of potafs, foda, and ammonia, may be formed.

In order to form hydrofulphuret of lime, that earth was mixed with diftilled water, and fulphurated hydrogen gas paffed into this mixture till a fufficient quantity of hydrofulphuret was judged to be formed; the liquid, which contained it in folution, was poured off the undiffolved lime, and faturated to excefs with fulphurated hydrogen, and this excefs was afterwards driven off by means of heat.

Hydrofulphuret of magnefia may be formed by diffolving magnefia in water impregnated with fulphurated hydrogen gas.

If a folution of fulphurct of barytes in water, or, more properly, if hydrogenous fulphuret of barytes be evaporated, a great number of confufed cryltals are formed; if thefe be reparated quickly by filtration, and placed upon blotting paper to dry, a white cryftalline fubftance is obtained, which is lyydrofulphuret of barytes.
The affinities of the alkalies and earths for fulphura. ted hydrogen appear from the experiments of Berthollet to be as follows:

> Barytes,
> Potafs,
> Soda,
> Lime,
> Ammonia,

Almont all the metallic oxyds have a ftronger affinity for fulphurated hydrogen than the earths have.

861
When the hydrolulphurets are prepared with the na Propertics collary precautions to prevent the contact of atmofphe. of hydsorical air, they are colourlets, but the action of the air fulphurets. renders them yellow.

If they be decompofed while they are colourlefs, by pouring upon them fulphuric acid, muriatic acid, of any other acid which does not act upon hydrogen, the fulphurated hydrogen gas exhales without the depofition of a fingle particle of fulpher ; but if the hydrofulphuret has become yellow, forne fulphur is always depolited during its decompofition, and the quantity of fulphur is proportional to the deepnefs of the colour.

The yellow colour, therefore, which hydrofulphurets acquire by expofure to the atmofphere is owing to a commencement of decompofition. Part of the hydrogen of the fulphurated hydrogen abandons the fulphur, combines with the oxygen of the atmofphere, and forms water. By degrees, however, a portion of the fulphur is alfo converted into an acid; and when the proportion of fulphurated hydrogen is diminifhed, and that of the fulphur increafed to a certain point, the fulphur and the hydrogen combine equally with oxygen.

If fulphuric or muriatic acids be poured upon a by. drofulphuret after it has been for fome time expofed to the air, a quantity of fulphurated hydrogen gas exliales, fulphur is depofited, and after an interval of time ful. phurous acid is difengaged. It is therefore fulphurous, and not fulphuric acid, which is formed while the hydrofulphuret fpontaneoufly abrorbs oxygen. This acid, however, is not perceptible till after a certain interval of time when feparated from the hydrofulphuret by means of an acid; becanfe as long as it meets with fulphurated hydrogen a reciprocal decompofition takes place. The oxygen of the acid combines with the hydrogen of the gas, and the fulphur of both is precipitated.

Sulphurated hydrogen is capable of combining with Metalline feveral of the metals, mercury, for inftance, and filver : hydroful. it combines with the greater number of the metallic ox- phurets. yds, and forms hydrofulphurets, on which the alkalies have no action at the temperature of the atmofphere: But concentrated acids combine with the oxyds of thefe hydrofulphurets, and feparate the fulphurated hydrogen in the form of gas.

In the greater number of thefe metallic oxyd hydro. fulphurets, the tendency which oxygen and hydrogen have to combine occafions a partial decompofition of the fulphurated hydrogen, and brings the oxyds nearer to the metallic flate. In fome of thefe hydrofulphurets part of the fulphur alfo combines with oxygen, and forms fulphuric acid.

The alkaline hydrofulphurets precipitate all the metals from their combination with acids; they are therefore very valuable tefts of the prefence of metals in any folution, as they do not precipitate any of the earths except alumina and jargonia. The following table exhibits a view of the effest of hydrofulphuret of potafs, hydrogenous fulphuret of potafs, and water impregnated with fulphurated hydrogen gas, upon various metallic folutions.

Hydronulphurets.
\begin{tabular}{|c|c|c|c|}
\hline Metallie Solutions. & Solution of Hydrogenous Sulphuret of Potals. & Water impregnated with Sulphurated Hydrogen Gas. & Hydrofulphuret of Potafs. \\
\hline Green fulphat of iron. & A black precipitate, which becomes yellow by the contad of the air. & & A black precipitate. The potafs feparated. \\
\hline Red oxyd of iron. & & Becomes black. The liquor remains very deep coloured if there be an excefs of fulphurated hydrogen. & Becomes black. \\
\hline Sulphat of zine. & A white precipitate. & A white precipitate. & A white precipitate. \\
\hline Acetite of lead. & A white precipitate, which by an addition becomes black. & A black precipitate. & A black precipitate. \\
\hline Red oxyd of lead. & & Becomes black. & The potafs feparated. \\
\hline Nitrat of bifmuth. & & A black precipitate. & A black precipitate. \\
\hline Oxyd of bifmuth. & & Becomes black. & \\
\hline Nitrat of filver. & A black precipiate. & A black precipitate. & A black precipitate. \\
\hline Sulphat of copper. & A brown precipitate. & A black precipitate. & A black precipitate. \\
\hline Green oxyd of cop. per. & & Becomes black. & Separation of the potafs. \\
\hline Nitrat of mercury. & In a great deal of water, a brown colour. & A brownih black precipitate. & A brownifh black precipitate. \\
\hline Oxy-muriat of mercury. & A white precipitate, which becomcs black by addition. & A white precipitate, beco ming black by an addition. & White becomes black by addition. \\
\hline Rcd oxyd of mercu. ry. & & Blackif. & A heat produced which cau fed the hydrofulphuret to boil The alkali feparated (A). \\
\hline Muriat of tin. & & & A black precipitate. \\
\hline Oxy-muriat of tin. & A precipitation of fulphur, and of the oxyd. & No change. & A precipitate of white oxyd of tin, and a difengagement of fulphurated hydrogen gas. \\
\hline White oxyd of tin. & & No change. & Difengagement of fulphurated hydrogen gas. \\
\hline Sulphat of mangainere. & & No change. & A white precipitate. \\
\hline Black oxyd of man. tganefe. & & The odour difappears. An excefs of the water diffolves the oxyd. & Ammonia difengaged. Heat. The liquor boils (A). \\
\hline Nitrat of antimony. & & & A reddifh orange precipitate. \\
\hline Tartrite of antimony. & A yellow orange precipitate. & An orange colour, but no precipitate. & An orange red precipitate, rediflolved by an excefs of hydrofulphuret. \\
\hline White oxyd of antimony. & & Becomes yellow after fome fe conds. & The liquor lofssits colour(A). \\
\hline
\end{tabular}

\title{
Part III.
} C H E M I S T R Y.

Table continued.
\begin{tabular}{|c|c|c|c|}
\hline Metallic Solutions. & Solution of Hydrogenous Sulphuret of Potafu. & Water imgregnated with Sulphurated Hydrogen Gas. & Hydrofulphuret of Potafs. \\
\hline Oxyd of antimony tublimed. & & Scarcely changes colour. & \\
\hline Solution of oxyd of arfenic. & Su! phuret decompored asby an acid. & Becomes fomewhat muddy, and of a yellow colour. & A yellow coldur, but no precipitate. \\
\hline Sulphat of titanium. & & & A precipitate of a deepgreen، \\
\hline Molybdic acid. & & A brown precipitate. & A brown precipitate. \\
\hline
\end{tabular}

Cryftals The word Cryffal in its Atrict and proper fenfe figrifics a tranfparent body poffeffed of a regular figare. But it is now ufed to denote a body which has alfumed a regular figure whether it be tranfparent or not. Giry. Rallization is the at by which this regular figure is formed.

As the greater number of cryftals belong to the clafs of neutral falts, it may not be improper before we cunclude this part of the article to make a few obfervations on the phenomena of cryltallization.

As cryfallization is confeffedly nothing elfe than the regular arrangement of the particles of bodies, it is evident that before it can take place the particles of the body to be cryftallized muft be at fome diftance from each other, and that they muff be at liberty to obey the laws of attraction. They may be put into this fituation by thrce methods, folution, fufpenfion and fufion.
I. Solution is the common method of cryftallizing falts. They are diffolved in water: The water is flow-
ly evaporated, the faline particles gradually approach each other, combine together, and form fruaill cryitals; which become conflantly larger by the addition of other particles till at laft they fall by their gravity to the botrom of the velfel. It ought to be remarked, however, that there are two kinds of folntion, each of which prefentsdifferent phenomena of cryitallization. Some falts diffolve in very fmall proportions in cold water, but are very foluble in loot water; that is to fay, water at the common temperature has li:ttle effect tupon them, but water combined with caloric difiolves them readily. When hot water faturated with any of thefe falts cools, it becomes incapable of holding them in folution: the confequence of which is, that the faline particles gradually approacheach oher and cryftallize. Sulphat of foda is a falt of this kind. To cryfallize fuch falts nothing more is neceffary than to faturate hot water with them, and fot it by to coul. But were we to attempt to cryfallize them by evaporating the hot water, we fhould not fucceed; nothing would procured but a flareclefs mals. Many of the falts which follow this law of cryilallization combine with a great deal of widter: or, which is the fune thing, many cryftals formed in this manner contain a great deal of water of cryfallization.

Thcre are other rats again which are neariy equally foluble in hoiand cold water; common falt forinflance. It is evident that fuch falts cannot be cryftallized by cool-
ing; but they cryftallize very well by evaporating their folution while hot. Thefe falts generally contain but little water of cryfallization.
2. It appears, too, that fome fubfances are capable Sufpalion, of affuming a cryftalline form merely ty having their patticles fufpended in water, without any regular folution; at leaft it is not eafy, on any other fuppofition, to explain the cryftallizations of carbonat of lime fometimes depofited by waters that run over quantities of that mineral.
3. There are many fubltances, however, neither folu- And fuble in water, nor capable of being fo minutely divided fion. as to continue long fufpended in that fluid; and which, notwithflanding, are capable of affuming a cryfalline form. This is the cale with the metals, with glafi, and fome other bodics. The method employed to cryftallize them is fuf:on, which is a folution thy means of caloric. By this method the particles are feparated from one another; and if the cooling goes on gradually, they are at liberty to arrange themfelves in regular crytals. There are many fubfances, however, which it has been hitherto impofiible to reduce to a cry falline form, either by thefe or any other method. Whether this be owing to the nature of thefe bodies themfelves, or to our ig. norance of the laws by which cryftals ate formed as is much more likely, cannot be determined.

The phenomena of cryftallization feem to have attracted but little of the attention of the ancient philofuphers. Their theory indeed, that the elements of bodies poffefs certain regular geometrical figues, may have been fuggefled by thefe phenomena; but we are ignorant of their having made any regular attempt to explain them. The fchoolmen afcribed the regular figure of cryftals to their fubftantial fotms, without giving themfelves much trouble about explaining the meaning of the term. This notion was attacked by Boyle; who proved, that cryitals were formed by the mere aggregation of paticlest. But it alill remained to explain, + Treatife on why that aggregation took [lace? and why the parii- the origne of cles united ir: luch a manner as to form segular figures? Forms and Thefe queftions wcre anfwered by Newton. Accord. \({ }^{2}\) ualitis. ing to him, the aggregation is produced by the attraction whict he liad proved to exift between the particles of all bodies, and which acts as fonu as thefe particles are brought within a certain difance of each other by the evaporation of the liquid in which they are diffolved. The regularity of their figures be explained by fuppofing, that while in a fate of folution, they were arranged in the liquid in regular rank and fte; the con-

Cry falhizution.
5. 365 :

Fequence of which, as they are acted upon by a power which at equal diftances is equal, at unequal diltances unequal, will be crytals of determinate figures \(\ddagger\)

This explanation, which is worthy of Newton, is now univerfally admitted as the truc one, and has contributed much towards elucidating this important part of chemiltry.

Still, however, there remain various phenomena rclating to cryllallization which it is no ealy matter to ex-
871
Salts do not eufily cryflallize in clore velicls, plain.

It has been obferved, that thofe falts which cryfallize upon cooling, do not allume a cryttalline form fo readily if they are allowed to cool in clote veffels. If a faturated folution of fulphat of foda, for inftance, in lint water be put into a phial, corked up clofely, and allowed to cool without being moved, no cryftals are formed at all ; but the moment the glafs is opened, the falt ciyflallizes with fuch rapidity that the whole of the folution in a manner becomes folid. This phenomenon has been explained by fuppofing, that there is an affinity between the falt and caloric, and that while the caloric continues combined with it the falt does not cryftallize ; that the caloric does not leave the falt fo readily when external air is not admitted, as glafs receives it very flowly, and parts with it very flowly. In fhort, the atmofpherical air feems to be the agent employed to carry off the caloric; a takk for which it is remarkably well fitted, on account of the change of denfity which it undergoes by every addition of caloric. This is confirmed by the quantity of caloric which always makes its appearance during thefe fudden cryftallizations. This explanation might be put to the teft of experiment, by putting two folutions of fulphat of foda in hot water in two fimilar veffels; one of glafs, the other of metal, and both clofed in the
fame manner. If the falt contained in the metallic veffel cryftallized, which ought to be the cafe on account of the great conducting power of metals, while that in the glafs veffel remained liquid, this would be a confirmation of the theory, amounting almof to demonftration. On the contrary, if both folutions remained liquid, it would be a proof that the phenomenon was fill incompletely underftood.

Not only falts but water itfelf, which commonly cryfiallizes at \(32^{\circ}\), may be made to exhibit the fame phenomenon: it may be cooled much lower than 32 without freezing. This, as Dr Black has completely proved, depends entirely upon the retention of caloric.

If the regular form of cryftals depends upon the aggregation of particles, and if during ail cryltallizations this aggregation goes on in the fame manner, why have not all cryftals the fame form? Some have afcribed thefe differences to a certain polarity which the particles of bodies are fuppofed to poffefs, and which difpoles each kind of particles to arrange themfelves according to a certain law. Sir Iidac Newton appears rather tohave afcribed it to the forms of the particlesthemfelves \(\ddagger\); and this feems to be the real folution of the problem. For fuppofing that all particles have the fame form, they muft of courfe polfeis the fame polarity; and therefore every cryltal muft have the fame form. It is impoffible, then, to account for the different forms of cryftals without fuppofing that the particles which compofe them have alio different forms. And if the particles of bodies have different forms, their regular
aggregation muft produce cryftals of various fhapes; Cryftalliand therefore their polarity, which is merely a fuppofition founded on this difference in the appearance of cryftals, cannot be admitted. Suppofe, for inftance, that eight cubic particles were regularly arranged in water, and that by the gradual evaporation of the liquid were to approach, and at laft to combine, it is evident that the cryftal which they would produce would be a cube. Eight fix-fided prifms would allo produce a fix-fided prifm: and eight tetrahedrons would form a very different figure.

But it will be afked, if the figure of cryftals depends entirely upon the form of the particles that compofe them, how comes it that the fame fubfance does not always cryftallize in the fame way, but prefents often fuch a variety of forms that it is fcarcely poffible to reckon them? We anfiver, that thefe various furms are fometimes owing to variations in the ingredients which compofe the integrant particles of any particular body. Alum, for inftance, cryftallizes in otahedrons; but when a quantity of alumina is added, it cryftallizes in cubes; and when thereis an excefs of alumina it does not cryftallize at all. If the proportion of alumina varies between that which produces octahedrons and what produces cubic cryftals, the cryltals become figures with fourteen fides; fix of which are parallel to thofe of the cube and eight to thofe of the octahedron ; and according as the proportions approach nearer to thofe which form cubes or octahedrons, the cryftals affume more or lefs of the form of cubes or oftabedrons. What is Atill more, if a cubic cryftal of alum be put into a folution that would afford octahedral cryltals, it paffes into an octahedron : and on the other hand, an octahedral cryftal put into a folution that would afford cubic cryftals, becomes itfelf a cube \(I\). Now, how difficult I Le Blanc, a matter it is to proportion the different ingredients with abfolute exactnefs, mint appear evident to all.

Another circumftance which contributes much to vary the form of cryftals, is the different degree of concertration to which their folntion has been reduced, and the rapidity or flownefs with which they are formed. For it is too evident to require illuftration, that when cryftals are depofited very rapidly they muft obftruct one another, and mix together fo as very much to obfcure the natural regularity of their form.

Even the nature of the veffel in which the crydallization is performed, is not without fome influence

But, independent of thefe accidental circumltances, Mr Hauy has fhewn that every particular fpecies of cryftals has a primitive figure, and that the variations are owing to the different ways in which the particles arrange themfelves. Of this theory, which is certainly exceedingly ingenious, and even fatisfactory, we fhall attempt to give a fhort view.

Happening to take up a hexangular prifm of calcare. ous fpar, or carbonat of lime, which had been detached from a group of the fame kind of cryftals, he obferved that a fmall portion of the cryftal was wanting, and that the fracture prefented a very fmooth furface. Let \(a b c d e\) \(f g b\) (fig. 8.) be the cryftal; the fracture lay obliquely as the trapezium \(p s u t\), and made an angle of \(135^{\circ}\), both with the remainder of the bafe \(a b c s p b\) and with \(t u e f\), the remainder of the fide inef. Obferving that the fegment \(p s\) ut \(i n\) thus cut off had for its vertex \(i n\), one of the edges of the bafe \(a b c n i h\) of the prim, he attempted to detach

874
Hauy'stheory of cryftals.

Ann. de
149.

Cryfalli- a fimilar fegment in the part to which the next edge \(\underbrace{\text { zation. }}\) \(c n\) belonged, employed for that purpofe the blade of a knife directed in the fame degree of obliquity as the urapezium \(p s u t\), and affifted by the frokes of a hammer. He could not fucceed: But upon masing the attempt upon the next edge \(b c\), he detached another fegment precifely fimilar to the firft, and which had for its vertex the edge \(b c\). He could produce no effect on the next edge \(a b\); but from the next following, \(a b\), he cut a fegment fimilar to the other two. The fixth edge likewife proved refractory. He then went to the other bafe of the prifm \(d e f g h r\), and found, that the edges which admitted fections, fimilar to the preceding ones were not the edges \(e f, d r, g k\), correfponding with thofe which had been found divifible at the oppofite bafe, but the intermediate cdges \(d e, k r, g f\). The trapezium \(l q y v\) reprefents the fection of the fegment, which had \(k r\) for its vertex. This fection was evidently parallel to the fection \(p s u t\); and the other four fections were alfo parallel two and two. Thefe fections were, without doubt, the natural joinings of the layers of the cryftal. And he eafily fucceeded in making others parallel to them, without its being poflible for him to divide the cryital in any other direction. In this manner he detached layer after layer, approaching always nearer and nearer the axis of the pritim, till at laft the bafes difappeared altogether, and the prifm was converted into a folid OX (tig. 9.) terminated by twelve pentagons, parallel two and two; of which thofe at the extremities, that is to fay, ASRIO, IG EDO, BAODC at one end, and FKNPQ, MNPXU, ZQPXY at the other, were the refults of mechanical divifion, and lad their common vertices \(O, P\) fituated at the centre of the bafes of the original prifm. The fix lateral pentagons RSUXY,ZYRIG, \&c. were the remains of the fix fides of the original prifm.

By continuing fections parallel to the former ones, the lateral pentagons diminifhed in length; and at laft the points \(R, G\) coinciding with the points \(Y, Z\), the points \(S, R\) with the points \(U, Y, \& c\). there remain. ed nothing of the lateral pentagons but the triangles YIZ, UXY, \&c. (fig. 10.). By continuing the fame fections, thefe triangles at laft difappeared, and the prifm was converted into the rhomboid a \(\because\) : (fig. r1.).

So unexpected a refult induced him to make the fame attempt upon more of thefe cryftals; and he found that all of them could be reduced to limilar rhomboids. He found alfo, that the cryftals of other fubfances could be reduced in the fame manner to certain primitive forms; always the fame in the fame fubltances, but every fubftance having its own peculiar form. The primitive form of fluat of lime, for inftance, was an octahedron; of fulphat of baryles, a prifm with rhomboidal bafes; of field fpath, an oblique angled parallelopiped, but not rhomboidal ; of adamantine fpar, a rhom. boid, fomewhat acute; of blende, a dodecabedron, with shomboidal fides, and fo on.

Thefe muft be confidered as the real primitive forms of the cryftals; the other forms which they often afsume may be called fecondary forms.

The primitive cryitals ohtained by the ahove procefs may be divided by fections parallel totheir different fides: all the matter which furrounded this primitive cryftal
may alfo be divided by fections parallel to the fides of the primitive cryftal. It follows from this, that the parts detached by means of thefe fections are fimilar, and differ from one another only in fize, which diminifhes in proportion to the length that the divifion is carried. But the divifion of the cryftals into fimilar folids has a term, beyond which we fhould come to the fmalleft particles of the body, which could not be divided without chemical decompofition. It is probable, therefore, that the form of the integrant particles of a body is the fame with the primitive form of its cryftals. Here, then, we have a method of difcovering the form of the particles of bodies; and if this method conld be applied to all fubftances whatever, it would enable us to afcertain the affinity of all bodies for each other by accurate calculation. It muft be allowed, that feveral objectionsmight be made to the conclufions of Mr Hauy; but his theory is, on the whole, fo plaufible, that it would certainly be worth while to extend it, and apply it to the calculation of affinities as far as it is fufceptible of the application. If the cryftals obtained by the above proceis be the primitive forms, it becomes a queftion of fome confequence to determine in what manner the fecondary forms are produced.

According to Hauy, all the parts fuperadded to the primitive cryft \({ }_{d}\) s, in order to form the fecondary cryAtal, confilt of plates, which decreafe regularly by the fubtraction of one or more rows of integrant particles, in fuch a manner, that the number of thefe ranks, and confequently the form of the fecondary cryftal, may be determined by theory (c).

To explain this, let us fuppofe that EP (fig. 12.) reprefents a dodecahedron, terminated by equal and fimilar rhombs; that this dodecahedron is a fecondary cry@al, the primitive form of which is a cube: the fituation of this cube in the dodecaliedron may be conceived from fig. 13. The fmaller diagonals DC, CG, GF, FD, of four lides of the dodecahedron, united round the fame folid angle L, form the fquare CDFG. Now there are fix folid angles, compofed of four plains, towit, the angles \(L, O, E, N, R, P\) (fig. 12.) ; and confequently, by making fections throughthefmaller diagonals of the fides that form thefe angles, fix fquares will be made apparent, which are the fix fides of the primitive cube, three of which are reprefented in fig. 13. CDFG, \(\mathrm{ABCD}, \mathrm{BCGH}\).

This cube being compofed of cubic integrant particles, each of the pyramids, LCDFG for inttance (fig. \({ }^{13}\).) which repofe upon its fides, mutt alfo, according to the theory, be compofed of fimilar cubic particles. To make this appear, let us fuppore that ABFG (fig. 14.) is a cube compofed of 729 fmall cubes: Each of its fides will confift of 81 fquares, being the external fides of as many cubic particles, which together conflitute the cube. Upon ABCD , one of the fides of this cube, let us apply a fquare lamina, compofed of cubes equal to thole of which the primitive cryftal confilts, but which has on each fide a row of cubes lefs than the outermoft layer of the primitive cube. It will of courfe be compofed of 49 cubes, 7 on each fide; io that its lower bafe on \(f\) (fig. 15.) will fall exactly on the fquare marked with the fame letters in fig. I4.

A bove this lamina let us apply a fecond \(l m p u\) (fig. 16.)/2
(c) The explanation of Bergman is not very diferent. See his Opufc. vol. ii. diff. . .

Cry?talli- 16.), rompored of \(2 ;\) cules; it will be fitwated exacily 2 ation. above the fquare marked with the fame letters (fig. 14). Upon this fecond let us apply a third lamina of \(x z\) (fig. 17.) enntiting only of 9 cubes: fo that its bafe thall reft upon the leters \(v x y \approx\) (fig. 14.). Lattiy, on the middle fquare \(r\) let us place the fmall cube \(r\) (fig. 18.) which will reprefent the laft lamina.

It is evident, that by this proces's a quadrangular pyramid has been formed upon the face ABCD (fig. 14.), the bafe of which is this face, and the vertex the cube \(r\) (fig. 18.). By continuing the fame operation on the other five fides of the cube, as many fimilar pyramids will be formed; which will envelope the cube on every fide.

It is evident, however, that the fides of thefe pyramids will not form continned planes, but that, owing to the gradual diminution of the laminx of the cubes which compore them, thefe fides will refemble the fteps of a fair. We can fuppofe, however (what muft certainly be the cafe), that the cubes of which the nucleus is formed are exceedingly fmall, almof impercepible; that thesefore a valt number of laminx are required to form the pyramids, and confequently that the channels which they form are imperceptible. Now DCBE (fig. 19.) being the pyramid refting upon the face \(A B C D\) (fig. 14.), and CBOG (fig. 19.) the pyramid applied to the next face BCGH (fig. 14.) if we confider that every thing is uniform from E to O (fig. 19.) in the matner in which the edges of the lamine of fuferpofiticn (as the A bbé Hauy calls the lamine which compufe the pyramids) mutually project beyond each other, it will readily be conceived, that the face CED of the firft pyramid ought to be exactly in the fame plane with the face COB of the adjacent pyramid; and that therefore the two faces together will form one thomb ECOB. But all the fides of the fix pyramids amount to \(2+\) triangles fimilar to CEB; confequently they will form 12 rhombs, and the figure of the whole crytal will be a dodecahedron, fimilar to that reprefented in fig. 12 and 13.

If the decreafe of the lamirx of fuperpofition took place according to a more rapid law, if eacis lamina had on its circumference, two, three or four rows of cubes lefs than the inferior lamina-in that cafe, the pyramids produced being lower, their adjacent faces would no longcr form one plane; and therefore the furface of the fecondary cryftal would confint of 24 ifofceles triangles, all inclined towards each other.

In this manner Mr Hauy has flewn, that a variety of fecondary cryftals are formed, and that their forms vary by means of flight variations in the ratio of the decrenient. Dodecahedral fulphuret of iron, for inflance, is formed from a cubic nucleus, by the addition of la\(\min x\), decreating, as in the example given above, with this difference, that from every lamina laid upon the face ABCD (fig. 14.) only one row of cubes are fub. tracted at the fides AD and BC relpectively; whereas two 10 ws are fubtracted at each of the tides \(A B\) and CD. The confequence of this more rapid decrement on two parallel fides than on the other two will be, that the pyramid raifed on the face \(A B C D\) (fig. 14), inltead of terminating in a fingle cube as in the example givell above, will terminate in a range of cubes; or (fuppofing the cubes infinitely fimall) infead of terminating in a point, it will terminate in a ridge. The pyramid will therefore have for its two fides, contiguous to AB and DC , two tiapeziums, and for its fides,
connizuous to AD and BC , two triangles. Let us Cryflallifuppofe alfo, that with regard to the lamine of fuper- zation. poftion which arife on the face BCGH (fig. 14), the decrements follow the fame law, and that each lamina decreafes by two rows of cubes towards the lines BC and HG, and only by one row cowards the lines CG, BH: The pyramid, in that cafe, will be placed in a direction oppofite to the pyramid on ABCD , the ritye at the vertes of it rumning parallel to BC : the vertex of the pyramid raifed upon CDFG mul be farallel to CG: the pyramids on the three other fides of the cube ought to ftand each like that which arifes on the oppolite face.

The fides of all the fix pyramids thus formed amount to twelve trapeziums and twelve triangles. Every triangle is cvidently contiguous and in the fame plane with a trapezium of the neareft pyramid; confequently the fecondary cryftal thus formed confifts of twelve fides, each of which is a pentagon.

Several other examples have been given by Mr Hauy; but thele are fufficient to fhew in what manner the various fecondary forms of cryftals are conftructed, according to the thenry of that ingenious philofopher.

In lis refearches on this fubject, Mr Hauy perceived, that fome cryftals affumed fecondary forms which could not be accounted for by any decrement whatever along the edges. Thus, for inflance, fome bodies, the primary form of which is cubic, are fometimes found cryftallized in regular octagons. Mr Hauy explains the formation of thefe fecondary cryfals, by fuppofing that the decrement took phace parailel, not to the edges, but to the diagonals of the faces of the primary cubes.

In order to comprehend this, let us fuppofe ABCD (fig. 20.) to be the furface of a lamina compofed of fmall cubes, the bafes of which are reprefented by the little fquares in the figure. It is evident, that the cubes \(a, b, c, d, e, f, g, h, i\), are in the direction of the diagonal of the fquarc ABCD ; that the row of cubes \(q, v\), \(k, u, x, y, z\), is parallel to the diagonal ; as alfo the row \(n, t, l, m, p, 0, r, s\); and that the whole figure might be divided into rows of fquares, each of which would be parallel either to the diagonal AC or DB .

Now we may conceive that the lamina of fuperpofition, inttead of decreafing by rows of cubes parallef to the edges \(A B, A D\), decreafe by rows parallel to the diagonals.

Let it be propofed to conftrust around the cube AB GF (fig. 21.), conlidered as a nucleus, a fecondary folid, in which the laminx of fuperpofition fhall decreafe on all fides by fingle rows of cubes, but in a direction parallel to the diagonals. Let ABCD (fig. 22.), the fuperior bate of the nucleus, be divided into 81 fquares, reprefenting the faces of the fmall cubes of which it is compofed. Figure 23. reprefents the fuperior furface of the firt lanine of fuperpofition; which mult be placed above ABCD (fig. 22.), in fuch a manner that the points \(a,^{\prime} b^{\prime}, c^{\prime}, d^{\prime}\), (fig..23.) anfwer to the points \(a, b, c, d,(f i g .22\).). By this difpofition the fquares \(\mathrm{A} a, \mathrm{~B} b, \mathrm{C} c, \mathrm{D} d\) (fig. 22.) which compofe the four outermolt rows of fquales parallel to the diagonals AC , BD, remain uncovered. It is evident alfo, that the borders QV, ON, IL, GF (fig. 23.), projeat by one range beyund the burders \(\mathrm{AB}, \mathrm{AD}, \mathrm{CD}, \mathrm{BC}\) (fig. 22.), which is neceffary, that the nucleus may be enveloped towaro's thefe edges: For if this were not the

Cryftalli- care, re-entering angles would be formed towards the parts \(A B, B C, C D, D A\), of the crytal; which angles appear to be excluded by the laws which determine the formation of fimple cryltals, or, which comes to the fanme thing, no fuch angles are ever obferved in any cryf.ul. The folid muft increafe, then, in tliofe parts to which the decrement does not extend. But as this decrement is alone fifficient to determine the form of the fecondary crytlal, we may fet afide all the other variations which intervene only in a Subfudiary manner, except when it is wifhed, as in the prefent cale, to confruct artificially a folid reprefentation of a cryftal, and to exhibit all the details which relate to its ftructure.

The fuperior face of the fecond lamina will be \(A^{\prime}\) \(\mathrm{G}^{\prime} \mathrm{L}^{\prime} \mathrm{K}^{\prime}\) (fig. 2t.). It mult he placed fo that the points \(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}, d^{\prime \prime}\), correfp nd to the points \(a^{\prime} b^{\prime} c^{\prime} d^{\prime}\) (lig. 23.), which will leave uncovered a fecond row ol cubes at each angle, parallel to the diagnnals AC and BD . 'The folid itill increafes to:vards the fides. The large faces of the lamine of fuperpolition, which in fis. 23. were oitagons, in fig. \(2^{2}\). atrive at that of a fquare; and when they pafs that teim they decreafe on all fides; fo that the next lamina has for its fuperion face the fquare \(\mathrm{B}^{\prime} \mathrm{M}^{\prime} \mathrm{L}^{\prime} \mathrm{S}^{\prime}\) (ig. 25.) lefs by one range in every diredion than the preceding lamina (fig. 2t.). This fquare mult be placed fo that the points \(e^{\prime}, f^{\prime}, g^{\prime}, b^{\prime}\), (fig. 25.) correlpond to the points \(e, f, g, b\) (fig. 24 .). Figures 26,27, 28, and 29, reprefent the fout lamine which ought to rife fucceffively above the preceding; the manner of placing them being pointed out by correfponding letters, as was done with refpect to the three firf laminx. The lat lamine \(z^{\prime}(\) fig 30 .) is a fingle cube which ought to be placed upon the fquare z (fis 29.).

The lamine of fuperpoftion, thus applied upon the fide ABCD (fig. 22) evidently produce lour faces, which correfpond to the points \(A, B, C, D\), and form a pyramid. Thefe faces, having been formed by laminx, which began ty increafing, and alterwards decreafed, mult be quatrilaterals of the figure reprefented in fig. 3 x. ; in which the infetior angle \(C\) is the fame point with the angle C of the nucleus (fig. 21 and 22) ; and the diagonal LO reprefents \(\mathrm{L}^{\prime} \mathrm{G}^{\prime}\) of the lamina \(A^{\prime} G^{\prime} L^{\prime} K^{\prime}\) (fig. 2!). And äs the number of laninx compnling the traugle L () C (fig: 3t.) is much fnaller than that of the limine forming the triangle \(Z \mathrm{LQ}\), it is evident that the later tiangle will have a much greater heisht than the former.

The furface, then, of the lecondary cryftal thas produced, muft evidently confitt of \(2+\) quadrihaterals (for pyramids are raifed in the other 5 fides of the primary cube exactly in the fame manner), dilpufed 3 and 3 atound each folid ant le of the nucleus. But in confequence of the decrement by one range, the three quaditatarals which belong to cach folid angle, as C (tig. 21.) will be in the fume plane, and will fom an equildteial triangle ZIN (fig. 32.). The 24 quadrilaterals, then, will produce 8 equilateral triangles ; and confequently the fecondary cryftal will be a regnlar octagon. This is the flructure of the octahedral fulphuret of lead and of muriat of foda.
1) crements wisich take place in this manner have been called by Mr Hany decrements on the angles.

There are certain crythals in which the decrements on the angles do not take place in lines parallel to the dingonals, but parallel to lines lituated between the diaSupre. Voz. I.
gonals and the edges. This is the cale when the fub. tradions are made by ranges of double, triple, \&ic. moleculæ. Fig. 33. exhibits an inflance of the fub. tractions in queflion; and it is feen that the molecula which compofe the range reprefented by that figure are afforted in fuch a manner, as if of two there were formicd only one; fo that we need only to conceive the cryftal compofed of parallelopipedons having their bures equal to the imall reotangles \(a b c d\), edf \(g\), \(b g i l\), \(\& c\). to reduce this cafe under that of the consmon decrements on the angles. To this particular kind of decrement Mr Hauy has given the name of inster mediate.

In other cryftals, the decrements, either on the edges or on the angles, vary according to laws, the proportion of which cannot be expreffed but by the fraction \(\frac{2}{3}\) or \(\frac{3}{4}\). It nay happen, for example, that each lamina exceeds the following by two ranges parallel to the edges, and that it may at the fame time have an altitude triple that of a fimple molecule. Figure \(3+\) reprefents a vertical geometrical fection of one of the kinds of pyramids which would refult from this decrement ; the effect of whichmay be readily conceived, by confidering that \(A B\) is a horizontal line taken on the upper bafe of the nucleus, \(b a z r\) the fection of the firt lamina of fuperpofition, gfen that of the fecond, \&ic. Thefe decrements Mr Hauy has called snixed.
'l'hefe cwo late fpecies of decrements occur but rarely; Mr Hany found them only in certainmetallic fubftances.

All the metanorphofes to which cryftals are fubjected depend, according to Mr Hamy, on the laws of fltucture juft explained, and orhers of the like kind. Sometimes the decrements tike place at the fame time on dll the edges; as in the dudecahedron having rhombufes for its flanes, as before mentioned; or on all the angles, as in the oftahedron originating from a cube. Sometimes they take place only on certain edges or certain angles. Sometimes there is an unif rmity between then ; fo that it is one fingle law by one, two, three ranges, \&c. Which afts on the different edges, or the different angles. Sumetimes the law varies from one edge to the other, or from one angle to the other; and this happens above all when the nucleus has not a fymmetrical form ; for example, when it is a parallelopipedon, the faces of which differ by their refpective inclinations, or by the neafure of their angles. In certain cafes the decrements on the edges concur with the decrements on the angles to produce the rame cryfalline form. It happens alfo fometimes that the fame edge, or the fame angle, is fubjected to feveral laws of decrement that fucceed each other. In thort, there are cafes where the fecondary cryीal has faces parallel to thole of the primitive form, and which combine with the faces produced by the decrements to modify the figure of the cryttal.
'lise cryflats arifing from a fingle law of decrement have been called hy Mr LIauy fimple fecomdary forms; thofe which arife from feveral fimultaneous laws of decrement he lids called compound ficondary forms.
" If amidt this diverfity of laws (he oblerves), fometimes infulated, fometimes united by combinations macre or lefs complex, the number of the ranges lubracted were iticlf extremely variable; for example, were thefe decrenzents by twelve, twenty, thirty or forty ranges, or more, as might abrolutely be poffible, the multitude

Cryithli. of the forms which might exift in each kind of mineral zation. \(\xrightarrow{\sim}\) would be immenfe, and exceed what could be imagined.

But the power which effects the firbtrations feems to have a very limited allion. Thefe fubtrations, for the mof part, take place by one or two ranges of molecules. I have found none which exceeded four ranges, except in a variety of calcareous fpar, forming part of the colleftion of C. Gillet Laumont, the fructure of which depends on a decrement by fix ranges; fo that if there exift laws which exceed the decrements by four ranges, there is reafon to believe that they rarely take place in nature. Yet, notwithfanding thefe narrow limits by which the laws of cryllallization are circumfcribed, Ihave found, by confining myfelf to two of the fimpleft laws, that is to fay, thofe which produce fubtractions by one or two ranges, that calcareons fpar is fufceptible of two thoufand and forty-four different forms: a number which exceeds more than fifty times that of the forms already known; and if we admit into the combination decrements by three and four ranges, calculation will give \(3,388,604\) poffible formsia regard to the fame fubfance. This number may be fill very much augmented in confequence of decrements either mixed or intermediary.
"The Atrix remarked on the furface of a multitude of crytals afford a new proof in favour of theory, as they alvays have directions parallel to the projecting edges of the laminx of fuperpufition, which mutually go beyond each other, unlefs they aile from fome pardicular want of regularity. Not that the inequalities refulting from the decrenients inuft be always fenfible, fuppofing the form of the cry tala had always that degree of finifhing of which it is fufceptible; for, on account of the extreme minutenefs of the molecules, the furface would appear of a beautiful polifh, and the ftriz would elude our feifes. There are therefore fecondary cryftals where they are not at all obferved, while they are very vifible in other cryftals of the fame nature and form. In the latter cafe, the action of the caufes which produce cryfallization not having fully enjoyed all the conditions neceffary for perfecting that fo delicate operation of nature, there have been flarts and interruptions in their progrefs, fo that, the law of continui.y not having been exacily obferved, there have remained on the furface of the cryital vacancies apparent \(t 0\) our eyes. Thefe fmall deviations are attended with this advantage, that they point out the direction according to which the frix are arranged in lines on the perfect forms where they efcape our organs, and thus contribute to unfold to us the real mechanifm of the frudure.
"The fimall vacuities which the edges of the lamina of fuperpofition leave on the furface of even the moft perfedt fecondary ciyftals, by their re-entering and falient angles, thus afford a fatisfactory folution of the dificuliy a listle before mentioned; which is, that the fragments obtained by divifion, the external fides of which form part of the faces of the fecondary cryftal, are not like thofe drawn from the interior part. For this diverlity, which is orly apparent, arifes from the fides in queftion being compofed of a multitude of fmall planes, really inclined to one another, but which, on account of their fmallnefs, prefent the appearance of one plane; fo that if the divifion could reach its utmoft bounds, all thefe fragments would be refolved into molecules fimilar to each other, and to thofe fituated towards the centre.
"The fecundity of the laws on which the variations of crytalline forms depend, is not confined to the producing of a multitude of very different forms with the fame moleculcs. It often happens alfo, that molecules of different figures arrange themfelves in fuch a manner as gives rife to like polylhedra in different kinds of minerals. Thus the dodecahedron with rhombufes for its planes, which we obtained by combining cubic molecules, exitts in the granite with a Aruature compofed of fmall tetrahedra, having ifofeles triangular faces, and I have found it in fparry fluor (fluat of lime), where there is alfo an affemblage of tetrahedra, but regular : that is to fay, the faces of which are equilateral triangles. Nay more, it is pofiible that fimilar molecules may produce the fame crytalline form by different laws of decrement. In fhort, calculation has conducted me to another refult, which appeared to me fill more remarkable, which is, that, in confequence of a fimple law of decrement, there may exit a cryfal which externally has a perfen refemblance to the nucleus, that is to fay, to a lolid that does not arife from any law of decrement*."

Such is a fhort view of the theory by which \(\mathrm{Mr}^{225}\) Hauy explains the various cryftalline forms of the fame fubfance. We would with pleafure have entered mone into detail, had not moit of his examples been deduced from fubltances which belong rather to mineralogy than to the eiements of chemiftry. This theory, to fay no more of it, is, in point of ingenuity, inferior to few ; and the mathematical fill and induftry of its author are inticled to the greateft applaufe.

But what we confider as the moft important part of that philofopher's labours, is the method which they point out of difcovering the figure of the integrant particles of cryftals; becaufe it may pave the way for calculating the affinities of bodies, which is certainly by far the moft important part of chemiftry. This part of the fubject, therefore, deferves to be inveftigated with the greatel care.
Mr Hauy has found, that the primitive form of all the cryftals which he has examined may be reduced to fix ; t . The parallelopipedon in general, comprehending the cube, the rhomboid, and all folids terminated by fix fides parallel two and two: 2. The regular tetrahedron; 3. The octahedron with triangular fides; 4. The hexagonal prifm ; 5. The dodecahearon bounded by rhombs; 6. The dodecahedron bounded by ifofceles triangles. Were we to fuppofe that thefe primitive forms are exactly fimilar to the form of the integrant particles which compofe them, it would follow, that the integrant particles of all the cryitals hisherto formed have only fix different forms. This fuppofition, however, is not probable; becaure the fame nucleus has been difonvered in different fpecies of minerals, and becaufe we can eafily conceive integrant particles of different forms combining in fuch a manner as to compofe nuclei of the fame figure, jult as we have feen that dif. ferent primitive forms are capable of producing the fame fecondary form. Still, therefore, in endeavouring todifcover the integrant particles of bodies, there are difficulties to remove, which hitherto, at leafl, have been unfurmountable. But the theory of Mr Hauy may be confidered as a firt flep towards the difcovery, and a fep in refearches of fo difficult a nature is of very great confequence.

\[
\cdot \cdot \circ \cdot \cdots
\]

Coaclufion. We have now finifhed the three firft parts of this ar\(\underbrace{\text { ticle, which comprebend ail the elementary part of che- }}\) miltry. We ought now to proceed to the fourth part, which was to contit of a chemical examination of fub. fances as they exift in nature in the mineral, vegetable, and animal kingloms; but this, for various reafons we thall defer till we come to the words Mineralogi, and Animal and Vegelable Substances.

We fhall finith this article with a few remarks upon the chemical nomenclature, which for fome time paft

875 Remarks on the che mical nunenclature has been an object of ferious attention.
Chemiftry was unfortunately firf cultivated by a fet of ignorant men, filled with the highelt notions of their own importance, and buoyed up with the mighty feats which they were to peiform by theirart. The little which they did know they were anxious to conceal; and their anxiety was no lefs to infipire the world with high ideas of their knowledge and power. The confequence of this was, that they loaded chemiftry with the molt ridiculous and whimfical names that can well be conceived. Liver of fu'thur, mercury of life, borned moon, butter of antionony, the double fecret, the corraline ficret, the fecres of vitrial, the wonderful falt, the fecret falt, the fall with many vi tues, the falt of two ing redients, the foliated earth of tartar, were the names by which they diftinguifhed fome of the moll familiar preparations; and, were it worth while, a great many more names of the fame itamp might eafily be added.
As foon as chemitry had attracted the attention of men of fcience, the abfurdity of its nomenclature was felt, and feveral partidl improvements were at different times made in it. Macquer, in particular, difcarded many of the ancient names, and fubfituted others lefs exceptionable in their place.

But foon after the putlication of the firft edition of his Dictionary, an evil began to be felt feverely, which never could have occurred to the earlier chemilts. Hitherto the number of objects which had engaged the attention of thofe who cultivated the fcience had been very limited; the acids amounted only to five; the earths to four, the metals to 12 or 14 , and the neutral falts fearcely exceeded 20 or 30 . To remember names for fo fmall a number of bodies, however ridiculous they happened to be, was no very difficult matter. But about that time, in confequence chielly of the difcovery of fixed air by Dr Black, which laid the foundation of pneumatic chemitry, the fcience began to extend itfelf, and to enlarge its boundaries with inconceivable rapidity. The number of bodies connected with it, and which it had to defcribe, foon became immenfe; and if every one of them reccived names not dependant upon one another, the mof reten:ive memory could not have remombered the thoufandth part of them.

The difficulty of Audying chemiltry from that time till the year 1782 muf have been very great : it was even perceived and complained of by the matters of the frience. In \({ }_{1} 782 \mathrm{Mr}\) de Mnrveat, who had undertaken the chemical part of the Encyclopeclie Methodinue, publifhed in the Gournal de Pbyfique a new chenical no. monclature, and at the fame thme invited all thofe perfons who were fond of chemiltry, and interelled in its progrefs, to propofe chjections and improvements.

This new nomenclature was formed agreeably to the Give following rules:
1. Every fubltance oughi to hafe a name, and net to Cunchanan be denoted by a phrafe.
2. Names ought to be as much as poffible conformable to the nature of the thing; fignified by them.
3. When the charater of a fubfance is not well enough known to determine the denurnination, a name which has no meaning is preferable to one which conveys a falfe idea.
4. In the choice of new words, thofe ought to be preforred which have their roots in the dead languages mof generally known, that the word may be eafily fug. gefted by the fenfe, and the fenfe by the word.
5. The new words ought to be as fuitable as poflible to the genius of the languages for which they are formed.

This nomenclature was approved of by Macquer, and by Bergman, who had himfelf propofed one apon a plaa not very different (D). He u rote to Morveau, and exhorted him to prolecute his undertaking with courage. "Do not ipare (fays he) a fingle improper denomina. tion; thofe that are already learned will be always fo, 3 in 2 occa-
and thofe that are not will learn the fooner*."

This nomenclature was adopted by feveral chemift, and it was ufed in the greatelt part of the firl volume of the chemical part of the Encyclopedie Metbolique ; face but the new difcoveries in chemiltry had produced a more accurate method of reafoning, and had enabled Lavoifier to explain the plrenomena of the fcience without the affiltance of the hypothetical principle of phlogitton, which had hitherto been necelfary. As the language, even in its improved Rate, was accommoda'ed to this principle, and prefuppofed its exiftence, new changes became evidently neceflary, in order that, according to Morveau's rule, the wardismight dente the molt elinential properties of the thines iutendel w! e fignified. Accordingly, when Morveau was in P tis in \({ }_{17} 787\), Lavoifier, Berthollet, and Fuurcioy, agreed to labour in concert with him to bring the chicmical nosmenclature fill nearer to perfection. Theie philowphers, affited by the mathematicians of the Roy.l Act. demy and by feveral chemits, formed a new nomen liture, which they made public in 1787 .

For fome time little attention was paid to this nomenclature by foreign chemilts, and it feemed generally to be difapproved. The adherents of the phlogitic fy fem in France, who were exceedingly numerous, viewed it as an engine artfully formed to undermine and deftroy their favourite theory. They refolved, therefore, unanimoully, to cruft, if poffible, this new infrument, which they confidered as
\[
\begin{aligned}
& \text { infperura domos, venturaque defuper urli. }
\end{aligned}
\]

And for this purpofe they exerted themfelves with a vigour, which was only equalled by the zeal and indefatigable exertions of their antagonilks. A kind of civil war was thus kindled in the republic of letters, which was carried on with great animofity: And pofterity will fee, with regret, men of undoubted genius at times divelting themfelves of the armour of truth and of candour, and endeavouring to ferve their party, and fab their adverfaries with darts feeped in the poifon of calumny and falfehood*. This contelt, however, which * See the was not confined to France, was productive of good ef. Four. de fects, which infinitely furpafled all the bad ones. It Pbyff for

\footnotetext{

}

1

\section*{Concluifon.} occafioned an accumulation of facts, produced arigidexamination of the theories and opinions, introduced an accuracy into chemical experiments which has been of the moft effential fervice, and gave that tone and vigour to the cultivators of chemiftry which have brought to light the moit fublime and unlooked for cruths. It deferves attention, and the fact is no inconfiderable evidence in favour of the antiphlogiftic theory, that almof all the illuftious chemilts who at prefent adhere to it declared originally againft it. Berthollet, Morveau, Black, Kirwan, and many other chemilts, who are now its able!t defenders, were at firt its molt powerful ofponents. "This fyliem had hardly been publifhed in France (fays Dr Pieftley, who ftill continues to adhere to the doctrine of phligifton) before the principal philofophers and chemifts of England, notwithltanding the rivalhip which has long fubfited between the two countries, eiagerly adopted it. Dr Black, in Edinburgh, and as far as I hear, all the Scots, have declared themfelves conrerts, and, what is more, the fame has been done by Mr Kirwan, who wrote a pretty large treatife in oppofition to it. The Englifin reviewers of books, I perceive, univerfally favour the mew doctrine. In America, allo, I hear of nothing elfe. It is taught, I believe, in all the fchools on this continent, and the old fyftem is entirely exploded. And now that Dr Crawford is dead, I hardly know of any perfon except my friends of the Lunar Society at Birningham, who adhere to the doctrine of phlogifon; and what may now be the cafe with then in this aye of revolutions, philofophical as well as civid, I will not at this diftance anfwer for.
"It is no doubt time, and of courfe opportunity of examination and difumfion, that gives fability to any principles. But this new theory has not only kept its ground, but has been confanriy and uniformly advancing in reputation more than ten years, which, as the attention of fo many perfons, the beft judges of every thing relating to the fubject, has been unremittingly given to it, is no inconfiderable period. Every jear of the laft twenty or thirty has been of more importance to fcience, and efpecially to chemiftry, than any ten in
the preceding centuryt."

We have endeavoured in the preceding article to fate the different theories which have fucceffively made their appearance in chemiffry with as much fairnef's as poflible. If we have fucceeded, the reader will be enabled to judge for himfelf which of thefe theories is the moft confiftent with truth; or rather, if we have fucceeded, he will join with us in thinking that the theory of Lavoifier is in mof points an accurate account of what takes place in nature.

This we confider as a fufticient reafon for having adopted the new nomenclature ; for as Morveau long ago obferved, moft of the objections that were mave to it were rather levelled at the doctrine of thofe who formed it, than at the nomenclature itfelf. Its fuperiority to every other nomencliture cannot be difputed for an inftant; and the vall facility which it has ad-
ded to the acquifition of chemittry, mu\{t be acknow. Conclufion. ledged by every one who knows any thing about the fcience. The table of the new nomenclature will not be expected here, as it bas been already given in the Appendix to the article Chemistry in the Encyclopedia. At any rate, it wwuld have been unneceffary, as we have ufed the new names all along; and therefre our readers mult by this time be well acquainted with them.

Upon the almolt infinite number of criticifms which have been made on the new nomenclature, and the many new terms which fince its publication have been fuccelively propofed, we do not mean to enter. Few of thefe terms can bear a comp.rif n with the French nomenclature, and ftill fewer have any claim to be preferred to it ; and the philofophers who perfif in thefe velelts innovations, are more probably actuated by the defite of appearing to have a fhare in the great revolution which chemifty has undergone, than by any hopes of being able to improve the accuracy or the elegance of its language. How few have difplayed the magnanimity of an illuftrinus philofopher of our own country, who, though he had invented a new nomenclature himfelf, exhorted his pupils not to ufe it, but to adopt that of the French chemifts, which was likely foon to come into univerfal ufe.

Even the etymologicalremarks which have been made on the new nomenclature, we confider as either of little confequence or as ill-founded. The philofophers who formed it have difplayed a fagacity and a moderation which could not be excelled, and have, upon the whole, formed a language much more fyltematic, and much more perfect, than could have been expected; and whoever compares it with the nomenclature propofed in 1782 by Morvean, will fee how great a hare of it is due to that illumtious and candid philofopher.

Notwithltanding what we have here faid, we would not be underfood to confider the new nomenclature as already arrived at altate of fuch abolute perfection, that no alteration whatever can be made in it except for the worfe. Such perfection belongs not to the works of man ; nor if it did, could it be expected in this cafe, if we confider for a moment the prefent thate of chemiftry. New difcoveries nuft occafion additions and alterations in the nomenclature ; but the authors of the new nomen. clature have given us the rules by which changes and additions are to be made; and if they are adhered to, we may expent with confidence that the language of chemiltry will in its advancement to perfection keep pace with the fcience. We have in the preceding article ventured in an inftance or two to adopt little im. provements that have been fuggelled by later vriters. We have taken the liberty, ton, f cloofing, from the variety which the Britifh chemifts have prop.f:d, that mode of fpelling each of the terms which appetred to us moft agreeable to the Englith idiom, mind not conformable to analogy : Whether or not we have made 2 proper choice mult be left for oihers to determine.

In page 305. dile the whole account of Adamanta, the exiftence of which as a pecnliar earth has been deflroyed by the fubfequent experiment of Klagroth. It may be proper to mention, that in that feation, \(n^{\circ} 239\). line 2. infugble ought to be fugfole.

INDEX.

\section*{I N D E X.}

\(A^{C}\)CETATS, \(\mathrm{n}^{\circ} 802\). Acetites, 466.
Actic acid, Part II. chap. v. fect. 12.
Acetous acid, Part II. chap. v. fect.in.
Acid principle, 390.
Acid, real, in fulphuric acid, 400.
in nitric acid, 412.
Acid foaps, part III. chap. i.
fect. 2.
Acids, Part II. chap. V.
Acids, animal, 551.
metallic, 561.
vegetable, 528.
Acidunt pingue, 376.
Aldamantine \{par, 238 .
Adhefion explained, 568.
experiments on, 575 .
Aerial acid, 459.
Rs, meaning of the word, p. 287 , note.
Afrivity explained, \(n^{\circ} 13\), and
- Part II, chap, vi.

AJinity, compound, 582 . difpuling, 583 . fimple, 581.
Air, a non-conductor of caloric, 262.
artificial, 459 .
Alcohol, Part II. ch. ii. analyfis of, 355
fubftances foluble in, 360.

Alkalies, Part II. ch. iv.
Alkali, vegetable vitriolatum, 626, note.
Alkaline foaps, Part III. ch. i. fect. 1.
Alloy explained, 77 note.
Alum, \(\mathrm{n}^{\circ} \sigma_{3} 8\). fpirit of, \(\sigma_{39}\) note.
Alumen, n \(^{\circ} 63\) S.
Alaminat, Part I. ch. iv. feet. 6. acetite of, 786 . benzoat of, 823 . borat of, 751 camphorat of, 83 I. carbonat of, 777. citrat of, 816. fluat of, 767. lictat of, 819. mus iat cf, 707. nitrat of, 678. oxalat of, \(80 \%\). photphat ot, 737. faccholat of, \(\$ 20\).

Aluxina, febat of, \(\mathrm{n}^{\circ} 849\). foap of, 596.
fuberat of, \(8_{3} 8\). fulphat of, 629 .
fulphite of, 667 . tartrite of, \(\mathrm{S}_{13}\).
Amalgam, what, 93.
Arber, 504.
Ainmonia, Part II. ch. iv. fect. 3. acetite of, 781. aurat of, 85 I .
benzoat of, 822 .
borat of, \(7+7\).
camphurat of, 827.
carbonat of, 772.
citrat of, 815.
cuprat of, 854 .
fluat of, 763 .
lactat of, 819.
malat of, 818 .
mercuriat ot, 853 .
muriat of, 700 .
nitrat of, 672 .
oxalat of, 806 .
phof phat (f, 732.
prulliat of, 839 .
faccholat of, 820.
febat of, 848 .
foap of, 593 .
fuberat ot, 834 .
fulphat of, 629 .
fulphite of, 663 .
tartrite of, 812 .
zinc:at of, 857
Animal acids, 551.
Autiniony, Part l.ch.iii.fect. Io. acetite of, 796.
benzoat of, 824 .
murat of, 7 I 8.
nitrat (f, 689.
oxalat of, 808 .
febat if, 850.
fulphat of, 652 .
tartrite of, 814 .
Antiphlogijlic theory, Г. 326. note.
Ants, acid of, Patt II. ch. v. lect. 29.
Apulum, \(1^{\circ} 24^{2}\).
Aquajortis, 409.
Alqua regia, p. 272. note.
Arcanum dıjplica'um, \(\mathrm{n}^{0} 625\). thtarl, 779.
Arfeniats, 554, and Part III. ch. ii. leet. 26.
Arecric, l'art I. ch. iii. fect. iz. acetite of, 797.
belızoat oí, 824. borat of, 760 .

Arfenic, fluat of, \(n^{\circ} 769\). muriat of, 719 . nitrat of, 690 . oxalat of, 808. phofphat of, \(74^{2}\). febat of, 850 . fulplat of, 653 . tartrite of, 814. acid, 5.52 .
Atmo/pheric air, compofition of, 53.

Alrum mufivum, 120.
Auffum, \(2 \neq 2\).
Azot, Part I. ch. ii. fect. 5.
how combined with oxy. gen, 423 .

\section*{B}

Balfam of fulphur, 372 .
Balm of Peru, fort of, 611.
Barytes, Part I. clı. iv. fect. 3.
acetite of, 782 .
borat of, 747.
camphorat of, 828.
carbonat of, 773 .
citrat of, \(8,6\).
fluat of, 764 .
lactat of, 819.
malat of, 818 .
muriat of, 701 .
nitrat of, 673 .
oxalat of, 807.
oxymuriat of, 726.
phofphat of, 733.
prufliat of, 840 .
faccholat of, 820 .
foap of, 597.
fuberat of, 835 .
fulphat of, 630 .
fulphite of, 66
Bargtic water, 211.
Beer, when firl known, 35 I .
Bell metal, 122.
Benzats, 503 , and Part III.
ch. II. .têt. ig.
Benzoic acid, Part II. ch. v. fect. 20.
Benzoin, 501.
forp of, 610.
Bergman, character cf, 114.
Bifinuth, Part I. ch. iii. fect. I I actite of, 795 .
benzeat of, 824. borat of, 759 . muriat of, 717. nitrat of, 688. oxalat of, \(8<8\). fulphat of, 651 . tartrite of, 814.

Black, \(\mathrm{Dr}_{r}\), difcoverslatentheat, 270.
difcovers the compofition of the carbo. nats, 202, 375 .
Black bodies foonelt heated by light, 327.
lead, 109.
Blende, P. 295, note.
Blue, liquid, \(\mathrm{n}^{\circ} 515\).
Boiling point of water, experi-
ments on, \(339,3 \div 0\).
Bologna, fone, 63 I.
Bombyc acid, 54 S.
Boracic acid, Part II. ch.v. fect. 8.
Borats, 449, and part III. ch. ii. feet. 8.
Borax, 443, 746.
Borkonium, 242.
Brafs, 140.
Brittlenefs, to what owing, 305.
Bronze, 122.
Branfwick green, 814.
C.

Cadmea, \({ }^{1} 37\).
Calcareous acid, 459.
Calchantun, \(6+3\).
Calcination, \(6 \mathbf{1}\).
Calomel, 720, 727.
Caloric, Part I. ch.v. whether a fubftance, 243, 314. equilibrium of, 248.
of fluidity, 27 I .
of evaporation, 272 .
methods of obtaining, 294.
whether the fame with. light, 330 .
Calorimeter, 267 .
Calx, 61.
Camplor, 508.
Camplorats, 512 , and P.rrt III. ch.ii. 「ect. 2 I.
Campluoric acid, Part II. ch.v. fect. 22.
Canton's pyropliorus, 323 .
Capacity for caloric explained, 264.

Carbon, Part I. ch. ii. ftel. 3. attemptstodecompole, 44.

Carbonats, 463 , and Fart III. ch. ii. fect. 10.
Carbonated hyirogen gas, 42, and Part III, ch. iii.
Carbonated azotic gas, 50.

Curionic acid, 32, and Partil. ch. v. feet. 10.
Carburets, \(\mathrm{n}^{0} 35\).
Carburet of iron, reg. manganefe, 177. zine, 139.
Cavallo's experiments on light, 327.

Cuvondifh, Henry, difcovers the compofition of water, \(3+3\). and of nitric acid, 411.

Cu:yficum, acidum, 376.
Cementation, 113.
Chalybeated tartar, \(81+\).
Cbarcoal, conducting power of, 254.

Cbemiflry, definition of, 1.
Chronic acid, Patt LI. ch. v. fect. 35.
Chromum, 191.
Cinnatar, 9 I.
Cis-ats, 480 , and Part III. ch. ii. fect. 14.

Citric acid, 478.
Cobalt, Part I. ch. iii. fect. 13. acetite of, 790. benzoat of, 824 . borat of, 754 . fluat of, 769. muriat of, 712. nitrat of, 682. oxalat off 808. foap of, 600 . fulphat of, 648 .
Cohefion, \(57^{2}\).
Cold, method of producing,280. why produced by mixtures, 284 .
Colour affects the heating of bodies by light, 330 .
Colouring matter of Pruffian blue, 537.
Combufion explained, 295 .
Common falt, 698.
Compound affinity, 585.
Compound bodies, Yart II.
Condenfation diminifhes fpecific caloric, 305.
Conduging powers of bodies, 253, 288.
Contaa, no abfolute, 567.
Copper, Part I. ch. iii. fect. 5. acetite of, 794. benzoat of, 824. borat of, 578. citrat of, 817. fluat of, 769 . muriat of, 716. nitrat of, 687. oxalat of, 808 . febat of, 850 . foap of, 6ot. fulphat of, 6ワ1.

Cork, \(\mathrm{In}^{\circ} 5^{1} 3\).
Corrofiee meriat of mercury, 727.
fublimate, 727.
Corundum, 238.
Crazuford, Dr, his experiments on Specific caloric, 266.
his theory of com. buttion, 300 .
Cryfal, rock, 218 .
Cryfallization, Past III.ch.iv.
Cryfals, what, 18, 866.
Cuprum, when firlt wied, page 287, note.

\section*{D}

Decrepitation explained, p. 409. nute.
\(D_{e}\) Luc's theory of light, 334.
\(D_{e n}\) ity, increafed by hammer-
ing, 305.
of different mixtures of acids and water, \(399,4^{13} 3,426\).
Dephlogificated air, 6.
muriatic acid, 430.

Detonation of nitre, 669.
Diamond, \(34^{-}\)
Digefive falt of Silvius, 779 .
Difpofing affini y, 583 .
Diurelic falt, 779.
Ducility, 60.
E
Earths, Part I. ch.iv.
properties of, 194.
combinations witheach other, 207, 219, 227.
remarks on, \(24^{2}\).
Effervefcence, what, page 262, note.
Efflorefcing explained, \(n^{\circ} 628\), and note.
Eges hatclied by electricity, 315.

Eleaive attraction, what, 13 .
Elcaricity, analogy between and caloric, 248.
whetheran agent in producingheat by friction, 316.
Emetic tartar, 8i4.
Empyreal air, 6.
Efforz falt, 635.
Equilibrium of caloric, 248.
Ether, 357.
Ethiops mineral, 90.
Eudiameter, 422.
Euler's theory of light, \(31 \%\).
Expanfion of bodies, table of, 244.

Eatrail of Saturn, 792.
Fat acid of, 545 .

Feathers, why a warm cover. ing, \(n^{\circ} 262\).
Felrifuge falt of Sylvius, 697.
Fire, damp, 36.
Fixed air, 202, 459.
ammonia, 703.
nil, 363 .
Flua's, 457, and Part III. ch. ii. fect. 9 .

Eluids, non-conduciors of caloric, 25 S.
Fluor, \(45^{1}\).
Fluoric acid, Part II. ch. v.. fect. 9.
Formic acid, 53 I.
Formica rufa, 54 I.
Franklin's experiments on the heating of bodies by light, 327.

Friction, caloric produced by, 309, 312.
Fulminating gold, 851.

\section*{filver, \(8_{5}\).}

Furs, in what theirwarmth confifts, 262.
Fafitle fpar, 451.
Fufinn, 869.
Gallats, 500, and Part III. ch. ii. fest. 18.

Galic acid, Part II. ch. v. fect. 19.

Galls, 495.
Gas explained, 5, 459.
Gafeous form of bodies, to what owing, 28 I .
Gcfes, not heated red hot, 329 .
Glafs, 379 .
conducting power of,255. of antimnny, 147.
Glauber's falr, 628.
Glucina, 240 .
Gold, Part I. ch. iii. feet. I.
acted on by nitric acid, 415.
fulminating, 85 I .
acetite of, 800 .
benzoat of, \(8_{24}\).
febat of, 850 .
foap of, 607.
ftannat of. 855.
Guaiac, roap of, 612.
Gunpowder, 669.
Gytsum, 632.

\section*{H}

Hartforn, \(3^{8} 4\).
Hau's theory of cryltallization, 874.

Heat, Part I. ch. v. makes bodies luminous, 328 .
Hepatic gas, 40.
Hot bodies lighter than cold, 250.

Hnui poun, 443.

Hullon's theory of light, 335.
explanation of the apparent reflection of cold, page 334. note.
Hydrogen gas, part I. ch. ii. fect. 4 .
Hydrogencus ful phurets, 860.
Hydrofulphurets, Parc III. ch. iii.

\section*{I}

James's powder, 744.
Fargon, 236.
Fargonia, Part I. ch. iv. fect. I and P. \(4^{13}\), note.
acetite of, \(n^{\circ} 787\). muriat of, 708. nitrat of, 679. fulphat of 642.
Ice, 337.
ffammable air, page 265 .
Iron, Part I. ch. iii. fect. 0.
caft, II3.
cold fhort, 108.
wrought, 111.
acetite of, 788.
benzoat of, 824 .
borat of, 752.
carbonat of, 778 .
citrat of, 817 .
fluat of, 769.
green fulphat of, 643.
jactat of, 819.
malat of, 818 .
muriat of, 709.
nitrat of, 680.
oxalat of, 808.
phofphat of, 738 .
proffiat of, \(8+1\).
red fulphat of, 644.
febat of, 850.
foap of, 603 .
fulphite of, 668.
tartrite of, 814.
Irvine, Dr , his theory of heat, 271.
theorem to difonerthe real zero, 274 .

K
Kirmugn's theory of phlogifon, 501.
experiments on the frength of acids, 499,5 3.

Lac, white, 519.
Laccic acid, Part II. ch.v. fect. 24.

Lacdats, 486, and Part III. ch. ii fect. 16.
LaEic acid, PartII.ch. v. fect. 17.

Lana philofophica, page 286, note.
Latent caloric, \(\mathrm{n}^{0} 271\).

Index.
Lavijfer, and La Place, experiments of on fpecific caloric, \(\mathrm{n}^{0} 267\).
Lead, Part I. ch. iii. fent. 8.
acetite of, 792.
benzoat of, 824 .
borat of, 756 .
fluat of, 769.
muriat of, 714.
nitrat of, 685.
oxalat of, 808 .
febat of, 850 .
foap of, 605.
fulphat of, 649.
Lemozs, effential falt of, 804 .
Light, Part I. ch. vi.
Ligneous acid, 525, note.
Lime, Part I. ch. iv. fect. 1.
acetite of, 783.
benzuat of, 823.
borat of, 748 .
camphorat of, 829 .
citrat of 8 I 6.
fluat of, 765 .
lactat of, 8 I 9.
malat of, 818 .
mercuriat of, 853.
muriat of, 703.
nitrat of, 674 .
oxalat of 807 .
osy-muriat of, 726 .
phofphat of, 734.
plumbat of, 856 .
pruffiat of, 840 .
faccholat of, 820.
febat of, 849 .
foap of, 594.
fuberat of, 836 .
fulphat of, 632 .
fulphite of, 665 .
tartrite of, 813.
Lime-water, 197.
Liquid blue, 515 .
Liquor filicum, \(217,379\).
Lute, what, 7.
M.

Nacquer's opinion about phlogilton, \(29^{S}\).
MIagnefia, l'art I. ch. iv. fec..ii. acetite of, 785 . benzoat of, 823. borat of, 750 . camphorat of, 830 . citrat of, 816.
fluat of, 766 .
lactat of, 819 .
malat of, 818 .
muriat of, 705 .
nitrat of, 676 .
oxalat of, 807 .
oxy-muriat of, 726 .
phofphat of, 736 . prufiat of, 840. faccholat of, 820 . Sebat cf, 849 .

C H E M I S T R Y.
\(45^{1}\)
Magnefu, foap of, \(n^{\circ} 595\). fuberat of, 837 . fulphat of, 635 . fulphice of, 666 . tartrite of, \(\varepsilon_{i} 3\).
Malats, 485 , and part III. ch. ii. fect. 15 .

Malic acid, 482.
Malleability, 59.
Mangazefe, Part I. ch. iii. fect. 15.
benzoat of, 8:4. fluat of, 769 . muriat of, 71 I. nitrat of, 682. oxalat of, 808 . phofphat of, 740. foap of, 608. fulphat of, 646 .
Marrafite of gold, 134.
Marks given to metals by the ancients, 130.
Marine acid, 424.
Maficot, 125.
Menachanite. 188.
Mepbitic acid, 459 .
Mercury, Part l.ch. iii. feet. 4. a nonconductor of caluric. 261 . acetite of, 798. benzoat of, 824 . citrat of, 817. fluat of, 769 . hydrogenous fulphu. ret of, 86i. muriat of, 720. nitrat of, 691. oxalat of, 808.
oxy-muriat of, 727.
prufiat of, 847.
febat of, 850 .
foap of, 598.
taririte of, 8 I 4. white fulphat of, 654 yellowfinlphat of, 655 .
Aecallic acids, 56 m .
MEtals, Part I. ch. iii. expantion of, 244 .
conducting power of, 256.

Mitafmata, how deftroyed, 428.
Microcofmic falt, 732.
Mirzeral crytal, 669.
Minium, 125.
N1i poun, 443 .
Mify, 643.
Moljudena, 182.
Molyldcoum, Part I. ch.iii, fcet. 17.

Molybdats, 557.
Molydic acid, 557.
Motberley explained, page 299, note.
Mariatic acid, Part II. ch. 5. fict. v.

Muriatic acid dephlogiticated, \(n^{\circ} 430\). oxygenated,430. compofition of \(43^{6}\).
Mifuriats, 427 , and Part III. ch. ii. fect. 5 . N
Names given to metals by the ancients, 130 .
Narcotic falt, 444.
Newten's theory of light, 317.
Nickel, Part I. ch. iii. fect. 14. acetite of, 791. borat of, 755. fluat of, 769. muriat of, 713 . nitrat of, 684. oxalat of, 808 . phodphat of, \(7+1\). foap of, 601 . fulphat of, 647 .
Nitrats, 4. 16 , and Part III. ch. ii. fect. 3 .

Nire, 669.
acts on platinum, 415, note.
cubic, 671.
Niiric acid, 51, and Part II. ch.v. fect. 3.
its action on oils, 415 .
Nitrites, 419, and Part III. ch.
ii. fect. 4 .

Nitrous air or gas, 4II, 420, acid, Part II. ch. v. fect. 4.
Nitra-muriatic acid, 4.33.
Nitrum fixum, 626. flammans, 672. femivolatile, 672.

\section*{O}

Oil of vitriol, 393.
Oils, Part II. ch. iii. drying, 367 . nonconductors of heat, 261.

Olive, when firt cultivated in Europe, 362.
Olite oil analyfed, 365.
Orichalcum, what, I40.
Orfiment, 156.
Ourctic acid, \(73^{\text {I. }}\)
Oxalats, 472 , and Part III. ch. ii. fect. 12.

Oxalic acid, Part II.ch. v. fent.
\({ }^{1} 3\).
Oxyd and oxydation, 68.
Oxyls of antimeny, 14. arfenic, 154. bilnuth, 149. cobalt, 160 . copper, 96. gold, 71. iron, 105. lead, 325.

Oxyds of manganefe, \(\mathrm{n}^{\circ}{ }_{175}\) mercury, 85 . molybdenum, 183 . nickel, 167. platinum, 81. filver, 74. tellurium, 190. tin, 119. titanium, 187. tungten, 18 i. uranium, 185. zinc, 136.
metallic, remarks on, 193.

Oxygis, Part I.cl. i.
gascontainslight, 324 .
caloric it gives out, 280.

Oxy-muriats, 434 , and Part III. ch. ii. fect. 6.
Oxy-muriaticacid, Part II. ch. v. fect. 6.

\section*{P}

Panacea holfatica, 626.
Pe-la, 5 19, note.
Percafion produces heat, and why, no 304.
Perlated fall, 731.
- acid, 73 r .

Pezoter, 140, 152.
Phlogifon explained, 297, 20. its exiftence difproved, 303.
Phlogiflic theory, page \(3=6\), note.
Phlogiflicated air, \(\mathrm{n}^{\circ} 52\).
Phogpats, 440, and Part III. ch. ii. fect. 7.
Pbofphorated hydrogen gas, 41 . azotic gas, 50 .
Pbofphoric acid, 28, and Part II. ch. v. fect. 7.

Pho/phorous acid, \(44^{2}\).
Pbofphorus, Part I. ch. ii. fect. 2.
whether an ingre. dient offteel, 115.
Pbofpluret of antimony, i45.
arfenic, is6.
bifinuth, 15 I .
cobalt, 162 .
copper, ICO.
gold, 72.
iron, 108.
lead, 127.
lime, 109.
manganefe, I76.
mercury, 92.
melybdcnum,
183. nichel, 77 I.
platisum, 82.
potafs, 377
filver, 76.
tin, 121 .
\(45^{2}\)
C H E M I S.T R Y.
Index.

Phojplurct of tungten, \(n^{\circ} 181\). zinc, 138.
Pigel'sexperiments onlightand caloric, 327 and \(p\). 332 , note.
Pinchbick, 140.
Pirs porn, \(4+3\).
Plifier of Puris, 633.
Plitinkm, Part I. ch. iit. fect. 3. benzoat (ff, 824 . oxalat of, sos. rebat of, 850.
Piumbiso, 109.
Pucunatic apparatus, \(7 \cdot\)
Pomploolyx, page 286, note.
Potajs, Part II. ch. iv. fect. 1.
acetite of, 779 .
acidulousoxalat of, \(80 \%\).
antimoniat of, 858 .
benzoat of, 822 .
borat of, 745 .
camph rat of, 825 .
carbonar of, 770.
citrat of, 8 I4.
fluat of 76 I .
ldetat of, 8 s 9. malat of, \(8: 8\). muriat of, 697 .
nitrat of, 669.
oxalat of, 803 .
oxy-muriat of, 72 .
phofphat of, 730.
prufiat of, 839 .
faccholat of, 820.
febat of, \(8+8\).
fuberat of, 832 .
fulphat of, \(62+\).
fulphite of, 60I.
tartrite of, 8 Io.
Pounxa, \(4+3\).
Precipitate per fe, 88 .
Prielley's stheory of combultion, 299. experiments on nitrous gas, 415.
Prinee's metal, 140 .
Pruffian blue, 532,841 . alkali, \(53+8+3\).
Prufiats, \(539^{\circ}\)
Pruffic acid, Purt Il. ch. v. \{ect. 28.
aflinities of, \(8+2\).
Pyrolisniles, 5 z6.
Pyrolignous acid, Part II. ch.v. fect. 26.
Pyromuciles, 524.
Pyromucous acid, Part II. ch. v. lect. 25.
Pyrophori, 323.
Pyropharus of Homberg, \(6+1\). Pyrotaritites, 527.
Pyrotartarous acid, Part II. ch. v. fect. 27.

2ricklime, 195.

Quickfliver, Part I. ch. iii. rect. + .

\section*{R}

Rancidity, \(n^{\circ} 366\).
Realgar, 156.
Red heat explained, 328. precipitate, \(n^{\circ} 88\).
Reduction explained, page 280, note.
\(R\) generated tartar, \(n^{\circ} 779\).
Refoduum, what, 19.
Refin explained, p. 348, note.
Rock cryital, 218.
Ru/l of iron, 105.

\section*{S}

Saccharine acid, 460 .
Saccholats, 494, and l'art III. ch. ii. fect. \({ }^{17}\).
Sal ammonide, 700. catharticus amarus, 635. de duobus, 626. gem, 698 . mirabile, 628. perlatum, 73 I. polychre? Glaleri, 626.
Salf of Saturn, 792
Salts, 62 . neutral, 625.
Saturation explained, 569 .
Scammony, foap of, 613 .
Scbeele, account of, 333, and note in page 335.
Sea falt, 698.
Sebats, 546 , and Part III. ch. ii. fect. 25.

Secret foliated earth of tartar,
779.
fal ammoniac, 629.
Selenite, 632.
Semimetsis, 69.
Seydler falt, 635.
Siderum, 108.
Sidneia, \(2+1\).
Silica, Part I. ch. iv. feet. 5. Scheele's theory of the formation of, 454 . fluat of, 768.
Silk, why a warm covering, 262.

Silkruorm contains an acid, \(54 \%\).
Silver, Part I. ch. iii. fect. 2. fulminating, 852. acetite of, 799. benzoat of, 824. muriat of, 722 . nitrat of, 693. oxalat of, 808.
foap of, 606. fulphat of, 657 .
Simple affinity, \(583^{\circ}\).
bodies what, 3 .
Smokingliquor of Libavius, 728 .

Snces of antimony, \(1+4\).
Soap, 3 So.
origin of the term, 588.
method of forming, 589 .
hard, 588.
fnft, 592.
of woul, 592.
of fith, 592.
Soaps, Part III. ch. i.
Sodit, Part lI. ch. iv. feet. 2.
acetite of, 780 .
benzoat of, \(\delta=2\).
borat of, \(7+6\).
campliorat of, 826 .
carbonat of, 771 .
citrat of, 815.
fluat of, 762 .
laktat of, 819.
malat of, 818.
muriat of, 698.
nitrat of, 67 I .
oxalat of, 805.
oxy-muriat of, 725.
phorphat of, 731.
prufliat of, 839 .
faccholat of, 820.
febat rif, 848 .
fuberat of, 833 .
fulphat of, 628 .
fulphite of, 662.
Soluble tartar, 8io.
Solution, 867.

\section*{why haltened by heat, 293.}

Sory, 643 .
Sparks produced by the collifion of quartz, 307.
Specific caloric, what, 264, 292. table of, 268.
Specificuin purgans, 626.
Spelter, 134.
Spirit of Mindererus, 78 I.
nitre, 409 .
falt, 424
Stali's theory of combution, 297.

Steam, \(33^{\text {S. }}\)
a nonconductor of caloric, 263.
Slecl. II2.
Stibium of the ancients, what,
142.

Stoncs, conducting power of, 257.

Strength of acids, 399, 4 J 3.
Strontites, Part I ch. iv. iect. 4 . aretite of, 784 .
carbonat oi, 775. matiat of, ;of. nita of of, 675 . oxalat of, 807 . pholphat ol, 735. fulphat of, 634 . tartrite of, 813 .
Suberats, 5 I6. and Part IIL.
ch. ii. fect. 22.
Suberic acid, Part II. ch. v. fett. 23.
Succinats, \(\mathrm{n}^{0} 507\).
Sucinic aicd, Part II. ch. 5. feet. 21.
Sugar, 467 .
acid of, 469 .
of bifmuth, 795.
of lead, 792 .
of milk, 490 .
of Saturn, 792.
Sulplats, 40 I , and Part III. ch. ii. fect. I.
Sslpbites, 407. and PaIt III. ch. ii. Cect. 2.
Suphur, Part I. ch. ii. fest. I.
Sulpharated hydrogen gas, 40. 859.

Sulpluret of ammonia, 388. antimony, \(1+5\). arfenic, 556. barytes, 212 . bifmuth, 150 . cobalt, 162. copper, 99. iron, 108. lead, 26. lime, igs. magrielia, 205. mercury, 90, 91, 861.
molybdenum, 183. nichel, 169. potals, 377. filver, 75 . tellurium, 190. tin, 120 . tungten, 58 r . uranium, 185. zinc, 137.
Sulphurets, remarks on, 860 .
Sulphuric acid, Part II. ch. v. iect. 1.
Sulphurous acid, Part II. ch. v. fect. 2.
Sylzorite, pare 295, note.
Syruperss acid, page 383 , note.
Tanning principle, 495, n.
Tartar, \(47+809\). enietic, 814.
Tartarized tinclure of Mars, 814.
ir \(\mathrm{n}, 8 \mathrm{~s} 4\).
Tarturous acid, Part II.ch. v. fect. \({ }^{4} 4\).
Tarlitics. +76 , and Part III. ch. ii. fect. 13.
Thllurium, Part I. ch.iii. fest. 20. sulphat of, 660 .
Temperature explained, 292.
Tenn.unt, Smithfon, decompores carbonic acid, 46:.
Tenfion of caloric explained, \(2+9\).

Index.
Terra ponderofa, 209.
Thermometer, 246 .
how a meafure of temperature, 250.
fands ligher when its bulb is blackened, 327.
finks in an ex. haufted receiver, 243. Vedgewood's, 226.

Tin, Part I. ch. iii. fect. 7acetite of, 793. benzoat of, 824 . borat of, 757. fluat of, 769 . muriat of, 715 . nitrat of, 686. oxalat of, 808. oxy-muriat of, 728. febat of, 850 . roap of, 602 fulphat of, 649.
Tinfoil, 119.

C H E M I S T R Y.
Fitriol of potafs, rage 409, n. mother water of, 644 .
Ititriduted ammonia, 629. tartar, 626.
V'itriolic acid, 393.
Volatile and volatilization, what, 17.
\(V\) olutile alkali, 384. oils, 371 .
Uranium, Part I. ch. iii, feet. 18.
acetite of, 801 . phorphat of, 743 . fulphat of, 658 . W
IVater, 3S, Part II. ch. i. weight of, \(33^{6}\). hiftory of its decompofition, 343. proofs of its decompofition. 344 . a nonconductor of heat, 255. of nitre, 409.
Watery fufion explained, 6z8, and note.
Wedgerwood, Thomas, his expe-

453
riments on light, 327,328 , 329, 330.
Wedgervood's thermometer, 226. Wilcke's experiments on \(f_{\Gamma} \mathrm{e}\). cific caloric, 265.
Wine, effential falt of, 779 .
W co. \({ }^{6}\), conducting power of, 254 . Z

Zero, real, attempt to difcover, 273.

Zine, Part I. ch. iii. fect. \(g\). acetite of, 789.
benzoat of, 824 . borat of, 752 . carbonat of, 778 . fluat of, 769 . lactat of, 819. malat of, 818 . muriat of, 710. nitrat of, 681. oxalat of, 808. phofphat of, 739. roap of, 599. fulphat of, 645 . tartrite of, 814.
Zirconia, page 413 , note Zoorsic acid, \(5+9\).

\section*{C H E}

CHEMUNG, is a townfhip in Tioga co. New-York. By the ftate cenfus of 1796,81 of its inhabitants were electors. It has Newton W. and Ofwego E. about 160 miles N. W. from New-York city, meafuring in a ftraight line.

Detween this place and Newton, Gen. Sullivan, in his viftorious expedition againft the Indians, in 1779, had a defperate engagement with the Six Nations, whom he defeated. The Indians were ftrongly intrenched, and it required the utmolt exertions of the American army, with field pieces, to dillodge them; although the former, including 250 tories, amounted only to 800 men, while the Americans were 5000 in number, and well appointed in every refpect.-Morse.

CHENENGO, is a northern branch of Sufquehanna River. Many of the military townfhips are watered by the N. W. branch of this river. The towns of Fayctre, Jerico, Greene, Clinton, and Chenengo, in Tioga co. lie between this river and the E. waters of Suf-quehanna.-ib.

Chenengo, a poit town, and one of the chief in Tioga co. New.York. The fettled part of the town lies about 40 miles N, E. from Tioga point, between Chenengn River and Sufquehanna; has the town of Jerico on the northward. By the flate cenfus of 1796,169 of its inhabitants are electors. It was taken off from Montgomery co. and in 1791, it had only 45 inluabitants. It is 375 miles N. N. W. of Philadelphia.-ib.

CHENESSEE, or Geneffee River rifes in Pennfylvania, near the pot which is the higheft ground in that

Surpl. Vol. I.

\section*{C H E}
fate, where the eafternmoft water of Alleghany river, Chenung and Pine creek, a water of Sulquehannah, and Tisga river rife. Fifty miles from its fource there are fall. Cheneffee. of 40 feet, and 5 from its mouth of 75 feet, and a little above that of 96 feet. Thele falls furnith excellent mill-feats, which are improved by the inhabitants. After a courfe of about 100 miles, moftly N. E. by N. it empties into lake Ontario, \(4^{\frac{x}{2}}\) miles E. of Irondequat or Rundagut bay, and 80 E. from Niagara falls.

The fettlements on Cheneffee river from its mouth upwards, are, Hartford, Ontario, Wadfworth and Williamfburgh. The laft mentioned place, it is probable, will foon be the feat of extenfive conmerce. There will not be a carrying place between New. York city and Williamburgh, when the weftern canals and locl:s fhall be completed. The carrying places at prefent we as follows, viz. Albany to Schenectady 16 miles, from the head of the Mohaw to Wood creek r, Ofwegn falls 2, Cheneffee falls 2 ; fo that there are but 21 miles land carriage neceffary, in order to convey commodities from a tract of country capable of matutaining feveral millions of people. The famous Chenelfee fluts lie on the borders of this river. They are about 20 miles long, and about 4 wide; the foil is remarkably rich, quite clear of trees, producing grais near ten feet high. Thefe flats are eftimated to be worth \(£ .200,000\), as they now he. They are moflly the property of the Indians - ib.
CHEPAWAS, or Chipeways, an Indian nation inhabiting the coalt of lake Superior and the iflands in the lake.

They

\section*{C I E [454\(] \quad\) C H E}

Chepawyan They could, according to Mr Hutchins, furnifh 1000 warriors 20 years ago. Other tribes of this nation inhabit the country round Saguinam or Sagana bay and lake Huron, bay Puan, and a part of lake Michigan. They were lately heftile to the United States, but, by the treaty of Greenville, Auguft 3, 1795, they yielded to them the ifland de Bois Blanc.-ib.

CHEPAWYAN Fort, is fituated on a peninfula at the S. wellern end of Athapefow lake, N. lat. 58. 45. TV. long. IIO. IS.; in the territory of the Hudfon bay company. -ib.

CHEPOOR, a fmall Spanifh town on the ifthmus of Darien and Terra Firma, in S. America, feated on a river of the finne name, 6 leagues from the fea. Lat. 10. 42. long. 77. 50.-ib.

CHEQUETAN, or Segutaneio, on the coalt of Mexico, or New-Spain, lies 7 miles weftward of the rocks of Seguataneio. Between this and Acapulco, to the eaftward, is a beach of fand of 18 leagues extent, againft which the fea breaks fo violently, that it is impollible for boats to land on any part of it ; but there is a good anchorage for hipping at a mile or two from the thore, during the fair feafon. The harbor of Chequetan is very hatd to be traced, and of great imporance to fuch vaffels as cruife in thefe feas, being the moft fecure harbor to be met with in a valt extent of coaft, yielding plenty of wood and water; and the ground near it is able to be defended by a few men. When Lord Anfon touched here, the place was uninhabited. -ib.

CHERA, a river near Colan, in the province of Quito, in Pert, rumning to Amotage : from whence Paita lias its frefh water.

CHERAWS, a diftrict in the upper country of \(S\). Carolina, having N. Carolina on the N. and N. E; Georgetown diftrict on the S. E. and Lynche's creek on the S. W. which feparates it from Camden diftrict. Its length is about 89 miles and its breadth 63 ; and is fubdivided into the counties of Darlington, Chelterfield and Marlborough. By the cenfus of 179 I , there were 10,706 inhabitants, of which 7618 were white inhabitants, the refl flaves. It fends to the fate legiflature 6 reprefentatives and \(z\) fenators; and in conjunction with Georgetown diftrict, one member to Congrels. This diftrict is watered by Great Pedee River and a number of fmaller Atreams, on the banks of which the land is thickly fettled and well cultivated. The chief towns are Greenville and Chatham. The court-houfe in this diftrift is 52 miles from Camden, as far from Lumberton, and 90 from Georgetown. The mail fops at this place.-ib.

CHERIPPE, an inconfiderable village on Terra Firma, from which the market of Panama is furnifhed with provifions weekly.-il.

CHEROKEE, the ancient name of Tenneffee River. The name of 'Tenneffee was formerly confined to the fouthern branch which empties 15 miles above the mouth of Clinch River and I8 below Knoxville.-ib.

CHEROKEES, a celebrated Indian nation, now on the decline. They refide in the northern parts of Georgia, and the fouthern parts of the flate of Tenneffee; having the Apalachian or Cherokee mountains on the E. which feparate them from N. and S. Carolina, and Tenneffee River on the N. and W. and the Creck Indians on the S. The country of the Cherokees, ex-
tending weftward to the Mifflfippi and nothward to Cherokees the Six Nations, was furrendered, by treaty at Weftminfter, 1729 , to the crown of Great-Britain. The prefent line between them and the ftate of Tenneffee is not yet fettled. A line of experiment was drawn in 1792, from Clinch River acrofs Holiton to Chilhowee mountain; but the Cherokee commiffioners not appearing, it is called a line of experiment. The complection of the Cherokees is brighter than that of the neighboring Indians. They are robult and well made, and taller than many of their neighbors; being generally 6 feet high, a few are more, and fome lefs. Their women are tall, flender, and delicate. The talents and morals of the Cherokees are held in great efteem. They were formerly a powerful nation; but by continual wars, in which it has been their deftiny to be engaged, with the northern Indian tribes, and with the whites, they are now reduced to about 1500 warriors; and they are becoming weak and pufillanimous. Some writers eftimate their numbers at 2500 warriors. They have 43 towns now inhabited. - \(i b\).

CHERRY Valley, a poft town in Otfego co. NewYork, at the head of the creek of the fame name, about 12 miles N. E. of Cooperitown, and 18 foutherly of Conajohary, 6I W. of Albany and 336 from Philadelphia. It contains about 30 houfes, and a Prefbyterian church. There is an academy here, which contained in 1796,50 or 60 fcholars. It is a fpacious building, 60 feet by 40. The townthip is very large, and lies along the E. fide of Otfego lake and its outlet to Adiquatangie creek. By the fate cenfus of 1796 , it appears that 629 of its inhabitants are electors. This fettlement fuffered feverely from the Indians in the late war.-ib.

CHERUBIM were emblematical figures: of which an account, a very vague one indeed, has been given in the Encyclopadia. We are far from thinking ourfelves qualified to improve that account, or to explain emblems in the Jewifh wormip which even Jofephus did not underftand; and we certainly fhould not have refumed the lubject but to gratify a numerous clafs of our readers, and to coinply with the requelt of fome highly refpected friends.

The followers of Mr Hutchinfon, who are firmly perfuaded that their mafter brought to light from the writings of the Old Teftament many important doctrines which had lain concealed, from all the piety, all the induftry, and all the learning of 1700 years, believe that, among other things, he and they have been able to afcertain the form and the import of the Hebrew Cherubim. Their difcoveries on this fubject, as we have been told by better judges than we pretend to be, are more clearly fated by Mr Parkhurf in his Hebrew Lexicon, than by any other writer of that fchool. We fhall therefore lay before our readers his doctrine refpecting the form of the artificial cherubs, as well as of their emblematical meaning; and fubjoin a few remarks, which the nature of his reafoning has forced from us.
"Firll, then, as to the form of the artificial cherubs in the tabernacle and temple, Mofes (fays our author) was commanded (Exod. xxv. 18, 19.) " Thou fhalt make two cherubs : of beaten gold thalt thou make them at the two ends of the mercy feat. And thou fhalt make one cherub at the one end, and the other cherub

\section*{\(\mathrm{C} H \mathrm{E} \quad[455] \quad \mathrm{C} H \mathrm{H}\)}

Cherubin，cherub at the other and ：מן out of the mercy－ feat（Margin Eng．T＇ranflar．of the matter of the mer－ cy－feat）fhall ye make the cherubs at the two ends thereof．＇All which was accordingly performed（Exod． \(\mathrm{xxxvii} .7,8\) ．），and thefe cherubs were with the ark pla－ ced in the holy of holies of the tabernacle（Exod．xxvi． 33， \(34 . \times 1.20\) ．）；as thofe made by Solomon were after－ wardsin the holy of holies of the temple（I Kings vii． 23,27 ．）

We may obferve that in Exodus Jehovall §peaks to Mofes of the cherubs as of figures well known；and no wonder，fince they had always been among believers in the holy tabernacle from the beginning．（See Gen．iii． 24．Wird．ix．8．And though mention is made of their faces（Exod．xxv．20． 2 Chron．iii．13．），and of their wings，（Exud．xxy．20．I Kings，viii．7．2 Chron． iii．11，12．）；yet neither in Exodus，Kinge，nor Chro－ nicles have we any particular defctiption of their form． This is however very exactly，and as it were，anxioully fupplied by the prophet Ezehiel，ch．i．5．＇Out of the nidat therecf（i．e．of the fire infolding itfelf，ver．4．） n O the likenefs of four living creatures or animals； － ＇Ihis lat Hebrew expreffion cannot mean that they， i．e．the four animals，had the likenefs of a man，which inierpretation would indeed make the prophet con－ tradict himfelf（comp．ver．10．）；but it imports that the likenefs of a man in glory，called（verfe 26．） ニx and particularly deferibed in that and the following ver－ fes was with them．Ver．6．＇And there were four fa－ ces io one（ \(n\) 그 or fimilitude），and four wings to one， \(\square \boldsymbol{B}^{2}\) to them．＇So there were at leaft two compound fi－ gures．Ver 10．＇And the likenefs of their faces；the face of a man，and the face of a lion，on the right fide， to them four；and the face of an ox to them four；and the face of an eagle to them four．＇Ezekiel knew（ch． x．1－－20．）that thefe were cherubs．Ver．21．＇Four faces 7 7． This text alfo proves that the prophet faw more che－ rubs than one，and that each had four faces and four wings．And we may be certain that the cherubs placed in the holy of holies were of the form here defcribed by the prieit and prophet Ezekiel，becaufe we have already feen from Exodus，i Kings，and 2 Chronicles，that they likewife had faces and wings，and becaufe Ezekiel knew what he faw to be cherubs，and becaufe there were no four－faced cleerubs any where elfe but in the holy of holies；for it is plain，from a comparifon of Exod．xxvi．1，31． 1 Kings vi，29，32，and 2 Chron． iii．14．with Ezekiel xli．18，19，20．that the artificial cherubs on the curtains and vail of the tabernacle，and on the walls，doors，and vail of the temple，had only two faces；namely，thofe of a lion and of a man．
＂For it mull be obferved further，that as the word Is ufed for one compound figure with four faces， and ニー in the plural for feveral fuch compounds（fee Exod．xxv．18，19．xxxvii．8． 1 Kings vi．23－26）， fo is applied to one of the cherubic animals，as to the ox，Ezek．x．14；（compare ch．i．10．）to the coupled cherub or lion－man，Ezek．xli．18．；and \(=\) כרוכי， to feveral of the cherubic animals as to feveral oxen， 1 Kings vii． 36 ，（compare ver．29）to feveral coupled cherubs，Exod．xxvi．1．I Kings vi．32，35．\＆al．I froceed to fhew
＂Seconlly，of what the cherubs were emblems，and Cherubin． with what propriety．
＂That the cherubic figures were emblems or repre． fentatives of fomsthing beyond themfelves is，I think， agreed by all，both Jews and Chriftians．But the queftion is，of what they were emblematical？To which 1 anfwer in a word，Thofe in the holy of holies were emblematical of the ever bleffed Trinity in covenant to redeem man，by uniting the human nature to the Second Perfon；which union was fignified by the union of the faces of the lion and of the man in the cherubic exhibi－ tion，Ezek．i．10．compare Ezek．xli．13，19．The cherubs in the holy of holies were certainly intended to reprefent fome beings in heaven，becaufe St Paul has exprefsly and infallibly determined that the holy of ho－ lies was a figure or type of heaven，even of that heaven where is the peculiar refidence of God（Heb．ix．24）． And therefore thefe cherubs reprefented either the ever bleffed Trinity with the man taken into the eifence，or created fpiritual angels．The following reafons will，I hope，clearly prove them to be emblematical of the former，not of the latter ：
＂ \(1 / f\) ，Not of angels；becaure（not now to infift on other circumftances in the cherubic form）no tolerable reafon can be alfigned why angels fhould be exhibited with four faces apiece．
＂ 2 ally，Becaufe the cherubs in the holy of holies of the tabernacle were，by Jchovah＇s order，＇made out of the matter of the mercy－feat，or beaten out of the fame piece of gold as that was＇（Exod．xxv．18，19．xxxvii． 9．）．Now the mercy－feat made of gold，and crowned， was an emblem of the divinity of Chrif（See Rom．iii． 25．）．The cherubs therefore reprefented not the ange－ lic，but the Divine nature．
＂ 3 dly，The typical blood of Chrilt was fprinkled before them on the great day of atonement（compare Esod．xxxviii．9．Lev．xvi．14．Heb．ix．7，12．）：And this cannot in any fenfe be referred to created angels， but mult be referred to Jehovah only，becaufe，
＂ \(4^{\text {thhly }}\) ，The high prieft＇s entering into the holy of holies on that day，reprefented Chrift＇s entering with his own blood into heaven，＇to appear in the prefence of God for us＇（Heb．ix．7，24．）．And，
＂ 5 thly＇，When God＇raifed Chrift（the humanity） from the dead，he fet him at his own right hand in the heavenly places，far above，rחEPAN \(\Omega\) ，all principality and power，and might，and dominion，and every name that is named，not only in this world，but alfo in that which is to come（Eph．i．21．）．Angels and autho－ rities and powers being made fubject untu him＇（1 Peter iii．22．）
＂Gthly，The prophet Ezekiel faith（ch．x．20．）， －This is the living creature，（which mult mean one compound figure，comp．ver．I4．）that Ifaw＇הח （intead of，a fublitute of＇the Alein of Ifrael．ת．nn， it is granted，may refer either to fituation or fubfitu． tion，（fee Gen．xxx．2．1．19．）as the fenfe requires． Here，notwithfanding what is faid ver．19．the latter fenfe is preferable，becaufe it was the glory of the God of Ifrael，i．e．the God－man in glory，（compare ch．i． 26．）not the Aleim（the Trinity）of Ifrael that were over the cherubim；and the text fays not，thefe were the living creatures，but，this was the living creature， which I law התהת הלהי ישראל．Now the glory was over ． 3 N .2 both

\section*{C HE [\(\left.45^{6}\right] \quad \mathrm{C}\) H E}

Cherubim. both the cherubims, ver. 19. but one compound cherub \(\underbrace{\text { Chern }}\) only was a fubfitute of the Alcim.
"If it thould be here afked, Why, then, were there two compound cherubs in the holy of holies? I anfwer, Had there not in this place been two compound cheaubs, it would have beea naturally impoffile for them to reprefent what was there defigned; for otherwife, all the faces could not have looked inwards toward each other, and down upon the merey-feat, and on the interceding high prief fprinkling the typical blood of Chrift, (fee Exod. xxxvii. 9.) and at the fame time have looked outward toward the termple, \(\because 2\) ל (Vulg. ad. domum exteriorem, to the outer houfe,) 2 Cliron. iii. 13. Or, in other words, the Divine Perfors could not have been reprefented as wi:neffing to each other's volumary engagements for man's redemption, as beholding the filcrifice of Chrit's death, typified in the Jewilh church, and at the fame time as extending their gracious regards to the whole world. (See lia. liv. 5. and Spearman's Enquiry, p. 382. edit. Ediwburgh.)
"The coupled clerub, or lion-man, on the vail, and curtains of the outer tabernacle, and on the vail, doors, and walls of the temple, accompanied with the emolematic palm tree, is fuch a ltriking emblem of the lion of the tribe of Jodah (Rev. v. 5.) united to the man Chrift Jefus, as is ealy to be perceived, but hard to be evaded. Thefe coupled cherubs appropriate the tabernacle or temple and their vails as emblems of Chrift, and exprefs in vifible fymbols what he and his apoftes do in words. See John ii. 19, 21. Heb. viii. 2. ix. II. x. 20. comp. Matt. xsvii. 51. And as the texts jult cited from the New Teftament afford us divine authority for afferting that the outer tabernacle or temple was a type of the body of Chrift, fo they furnith us with an irrefragable argument to prove that the cherubs on their custains or walls could not reprefent an. gels. For did angels dwell in Chrin's body? No fureIy: But 'in him dwelt all the fulnefs of the Godhead bodily.' (Col. ii. 9.)
"I go onto confider the propriety of the animals in the cherubic exhibition reprefenting the Three Perfons in the ever-bleffed Trinity. And here to obviate any undue prejudice which may have been conceived againt the Divine Perfons being fymbolically reprefented under any animal forms whatever, let it be remarked that Jehovalıappeared as three men to Abraham, (Gen. xviii.); that the ferpent of brafs fet up by God's command in the wildenefs was a type or emblem of Chrit, Godman, lifted up on the crofs (comp. Num. xxxi. I-9. with Joln iii. 14. I5.) ; that at Jefus' baptifm the Holy Spisit defcended in a bodily hape, like a dove, upon him (Luke iii. 21, 22) ; that Chrift, as above intimated, is exprefsly called the lion of the tribe of Judah (Rev. v. 5.) ; and continually in that fymbolical book fet before us under the fimiltude of a lamb. All thefe are plain frriptural reprefentations, each of them admirably fuited, as the attentive reader will eafily obfer ve, to the patticular circumftances or fpecific defign of the exhibition. Why then flould it appear a thing incredible, 3 ea why not highly probable, that Jehovah Aleim thould, under the typical Atate, order hiis own Perfons and the union of the manhood with the effence to be reprefented by animal forms in the cherubim of glory? Efpecially if it be confidered that the three animal forms, exclufive of the man (who food for the very
human nature itfelf) are the chief of their refpective Cherubim. genera: the ox or bull, of the tame or graminivorous; the linn of the wild or carnivorous; and the eagle, of the winged kind.-But this is by no means all: For as the great agents in nature, which carry on all its operations, certainly are the fluid of the heavens, or, in other words, the fire at the orb of the fun, the light iffuing from it, and the fisit or grofs air conftantly finpporting, and cuncurring to the actions and effects of the oher two; fo we are told (l'fal. xix. I.) that
 recounting, or particularly exhibuting the glory of God, even his eternal power and godhead, as St Paul fpeals, Rom. i. 20. And accordingly Jehovah hinifelf is fometimes, though rarely (I prefume for fear of minakes)
 Teftament, fee 2 Chron. xxxii. 20. (comp. 2 Kings xix. I4. Ifa. xxxvii. 15.) Dan. iv. 23. or 26.; as he is more fiequently expretled by oupavos heaven in the New. (See Mat. xxi. 25. Mark xi. 30, 3 I. Luke xv. 18, 21. xx. 4, 5. Juhn iii. 27.) Yea not only fo, but we find in the Scriptures both of the Old and New Teftament, that the Perfons of the eternal Three and their economical operations in the fpiritual, are reprefented by the three conditions of the celeltial fluid and their operations in the material world. Thus the peculiar emblem of the Word or Second Perfon is the wew or light, and he is and does that to the fouls or fpirits of men.which the material or natural light is and does to their bodies. (See inter al. 2 Sam, xxiii. 4. Ifa. xlix. 6. Ix. 1. Md. iv. 2. or iii. 20. Luke i. 78. ii. 32. John i. 4-9. viii. 12. xii. \(35,36,46\).) The Third Perfon has no other diftinctive name in fcripture but in in Hebrew, and n\%evea in Greek, (both which words in their pimary fenfe denote the material ipirit or air in motion), to which appellation the epithet ump, árov holy, or one of the names of God, is ulually added: and the actions of the Holy Spirit in the fpiritual fy ftem are defcribed by thofe of the air in the natural. (See John iii. 8. xx. 22. AEts ii. 2.) Thus, then, the Second and Third Perfons of the ever-bleffed Trinity are plainly reprefented by fcripture by the material light and air. But it is further written, Jehovah thy Aleins is a confuming fire, Deut. iv. 24. (Comp. Deur. ix. 23. Heb. xii. 29. l’fal. xxi. 10. lxxviii. 21. Nah. i. 2.) And by fire, derived either immediately or mediately from heaven, were the typical facrifices confumed under the old difpenfation. Since, then, Jehovah is in fcripture reprefented by the material heavens, and even called by their name, and efpecially by that of fire, and fince the Second and Third Perfons are exhibited rcfpectively by the two conditions of light and fpirit, and fince fire is really a condition of the heavenly fluid as much diftinet from the other two as they are from each other, it remains that the peculiar emblem of the Firlt Perfon (as we ufually fpeak) of the eternal Trinity, confidered with refpect to the other two, be the fire.
"Bearing then in mind that the perfonality in Jehovah is in feripture reprefented by the material Trinity of nature; which alfo, like their divine antitype, are of one fubftance, that the primary feriptural type of the Father is fire ; of the Word, light; and of the Holy Ghoft, firit, or air in motion; we fhall eafily perceive the propriety of the cherubic emblems. For the ox or bull, on account of his horns, the curling hair

\section*{C H E [457] C H F}

Cherubim. on his forehead, and his unrelenting fury when provoked (fee Plal. xxii. 13.) is a very proper animal emblem of fire; as the lion from his ufual tawny gold. like colour, his flowing mane, his fhining eyes, his great vigilancy and prodigious frcoigth, is of light; and thus likewife the eagle is of the fpitit or air in action, f:om his being chiet among fowls, from his impetunes motion (fee 2 Sam. i. 23. Job ix. 26. Jer. iv. 13. Lam. iv. 19.), and from his towering and furprifing flights in the air (fee Job xxxix. 27. Prov, xxiii. 5. xxx. 19. If x1. 31. and Bochatt, vol. iii. page 173.) And the lieathen ufed thefe emblematic animats, or the like, fometimes feparate, fometinies joined, in various manners, as reprelentatives of the material 'Trinity of nature, which they adored. Thefe particulars Mr Hutchinfon has proved with a variety of ufeful learning, vol. vii. p. 38 r . \& leq. and any perion who is tolerably acquainted with the heathen mythulngy will be able to increafe his valuable collection with many inftances of the fame kind from modern as well as ancient accounts of the pagan religions.
": Thus, then, the faces of the ox, the lion, and the eagle, reprefenting at fecond hand the Three Pufons of Jehovah, the Father, tle Word, and the Holy Spirit; and the union of the divine light with man being plainly pointed nut by the union of the faces of the lion and the man (fee Ezek. i. Io. xli. 18.), we may fafely affert, that the cher ubim of glory (Heb. ix. 5.) in the holy of holies were divinely intitnted and proper emblems of the Three Eternal Perfons in covenant to redeem man, and of the union of the divine and human natures in the perfon of Chrif. And we find (Gen. iii. 24.) that immediately on Adam's expulion from paradife, and the celfation of the firt or paradifiacal difpenfation of religion, Jehorah Aleim himelf fet up thefe emblems, together with the burning flame תasana rolling upon itfelt, to keep the way to the tree of life; undoubtedly, confidering the fervires performed before them, not to hinder, but to enable, man to pafs through it."

Thus far Mr Parkhurlt ; and to his differtacion where is the man who will deny the merit of erudition, combined with ingenuity? To the latter part of his reitfoning, however, objections obtrude themfelves upon us of fuch force, that we know not how to anfwer them. The reader obferves, that according to this acconnt, the cherubim are only at fecond hand emblematical of the Holy Trinity, and that the primary emblem is that fluid which the author conceives to fill the folar fyitem, and to be one fubltance under the different appearances or modifications of fire, lichot, and grofs air. But unfortunately for this reafoning, we are as certain as we can be of any matter of fact, that fire and air are not one fubftance; that the grofs air itfelf is componnded of very different fubftances : and that even light is a different fubltance from that which caufes in us the fenfation of heat, and to which modern chemills have given the name of caloric (See Chemistry-Index in this Supplement). We admit, that the primary atoms of all matter may be fubfances of the very fame kind, though we do not certainly know that they are: but this makes nothing for our author's hypothefis; becaufe the fun and all the planets moft, in that cafe, be added to his one fubftance, which would nolonger appear under a triple form. Could it indeed be proved, that all men fiom

Adam downuards, who made ufe of che:ubic figures Cherubin. for the very lame purpofe with the ancient Jews, believad that fire, air, and light, are different modifications of the fame fublance, their belief, though erroneous, would be a fofficient foundation for our authos's renfining: but of this n.) proof is attempted, and certainly none that is fatisfactory could be brought.

Our learned author, indeed, takes much for granted without proof. He has not proved, that anywhere the bull was the emblem or hieroglyphie of fire, the lion of light, or the eagle of air. We do not, it muth be owned, know that fuch hieroglyphics were not ufed in Egypt and other countries before the introduction of alphabetical chardeters; but unlefs they were fo ufed by Adam, all that is here faid of the propricy of thefe emblems muit go for nothing: Indeed we fee not their peculiar propricty. The tawny colour, flowing mane, and fiercenefs of the lion, might, for any thing that we can perccive to the contrary, repreient fire ats fitly as the horns, curling hair, and fury of the bull ; and if it be triee, as is generally faid, that the eagle can look feadily on the fion, he feems, of all the three, to be the fitteft emblem of light.

But there are other objections to this interpretation of the word cherubim. The four animals in the Revelation, which were undoubtedly cherubim, as well as the four and twenty elders, fell down before the Lamb, and worfhipped God.* Now, fays Dr Gregory Sharp, * Ch. v. \&. "it is farce to be conceived, if thefe four bealts were re- xix. 4 . prefentatives of the divine perions, that they could with any propriety, or without the greatelt folecifm, be faid and defcribed to fall down before and worfhip other emblematical reprefentations of the fame divine nature and perfections: And therefore, whatever thefe bealts were emblems of, they could not be cherubim in Mr Hutchinfon's fenfe of that word; it being as contrary to the rational explanation of a vilion to fay that nne emblem of the divinity thould worthip another emblem of it, as it is contrary to the reafon of mankind, and to all our notions either of the Godhead or of worlhip, to fay that the Trinity wothipped the Trinity, or any one Perfon in the 'rinity."

This objection is admitted by our learned author to be a very plaufible one. To us it appears unanfwerable. He anfwers it, however, in the following words:
" Let it be carefully obferved, that thefe reprefentations in Rev. ch. v. and xix. are not only vifional but bieroglyphical, and therefore mult be explained according to the amalogy of fuch emblematical exhibitions; and as at ver. 6. 'the lamb, as it had been flain, having feven horns and feven eyes, flanding in the midft of the throne, and of the four animals, and of the four-andtwenty elders,' is evidently fymbolical of the Lami of God now raifed from the dead, and invelted with all knowledge and power both in hedven and in earth; fo 'the four animals falling down before him' (ver. S.), and, as it is expreffed (ch. xix. 4.) 'worthipping God who fat upon the throne,' muft, in all readon, be ex. plained lymbolically likewife, not from any ableract or metaphytical notions we may have framed to ourlelves of worthip in general, but from the ppecific and pecular circumftances of the cafe before us. Thus lakewife, when in I Chron. xxix. 20. 'All the consgregation worthipped Jehovah and the king, namely David, the worihip to both is expreffed by the lame

Cherubin frong phrafe - proltrated themfelves to, LXX. " \(\underbrace{\text { Chefrpeak. }}\) \#for:xumarn; yet furely no one will fay that the people meant to worllip David as God, but only to acknowledge him as king. So Adonijah, who had contefted the crown with Solumon, came, King Solomon, (\(\mathrm{King} \mathrm{S}^{5}\) 1, 53.) not as God doubtlefs, but as king, thereby furrendering his own claim to the throne. However "concrary thertfore it may be to the reafon of mankirc, and to all our notions either of the Godhead or of worfip, to fay that the Trinity wor hipped the Trimity, or any one Perfon of the Trinity," \(i\). e, with divine worthip as a creature worthips his Creater ; yet it is by no means contrary to the rational and feriptural explanation of an emblematic vifion, to fay that the heroglyphical emblems of the whole ever-blefled Trinity fell down and werhipped the hieroglgphical emblem of the God-man, or God who tat upon the throne. Since fuch falling down, profration, or worthipping, was the ofual lymbolical act, as it fill is in the eatt, not only of divine worfhip, but of acknowledging the regal power to be in the perton to wor lhipped; and thee acts of the cherubic animals in Rev. v. 6, xix. 4. meant nothing more than either a ceffion of the adminifration of all divine power to Chilt God-man, or a declaration of the divine Perfons, by their hieroglyphical reprefentatives, that He mult reign till all his enemies were made his foottool. Comp. Mat. xxviii. 18. 1 Cor. xv. 25 ."

With evcry inclination to honour the memory of Mr Parkhurf, who was certainly a fcholar, and, which is of more value, a pious and a good man, we cannot help confidering this anfwer as mere trifling. In the 18 th Pfalm, the Lord is faid to "ride upon a cherub;" and in Erekiel, chap. i. there is faid to have "been over the heads of the chernbim a throne, and upon that throne the likenefs or appearance of a man," whom we take to be the Son of God incarnate. But is there any country in which the regal power of the fovereign is acknowledged by his riding, not upon his fubjects, but upon other co-equal fovereigns? or, in which it is the cultom for the fovereign to place his vicoroy (for fuch our Saviour in his buman nature certainly is) in his throne above himfelf?

We mut therefore confefs, that we know not of what the cherubic figures were emblematical, and that he who labours to eftablith the doctrine of the ever blefled Trinity by fuch criticifms and reatoniags as thofe which we have examined, is either a fecret enemy to that dretrine, or a very injudicious friend.

CHESAPEAK, is one of the largelt and fafen bays in the United States. Its entrance is nearly E. N. E. -and S. S. W. between Cape Charles, lat. 37. 12. and Cape Henry, lat. 37. in Virginia, 12 miles wide, and it extends 270 miles to the northward, dividing Virginia and Maryland. It is frem 7 to 18 miles broad, and genetally as much as 9 fathoms deep; affirding many commodious harbors, and a fafe and eafy napigation. It has many fertile inands, and thele are generally along the F.. fide of the bay, except a few tolitary ones near the weflern fhore. A number of navigable rivers ard other freams empty into it, the chiet of which are Sufquehanna, Patapico, Patusent, Potowmack, Rappahannock, and York, which are all large and navigable. Chefapeat bay affords many excellent finheries of herring and thad. There are alfo
excellent crabs and oyiters. It is the rcfort of fwans, but is more particularly remarkable for a frecies of wild duck, ealled canvafback, whote flefh is entirely free from any fifhy taft, and is admired by epicures, for its richnefs and delicacy. In a commercial point of view, this bay is of immenfe advantage to the neighboring ftates, particularly to Virginia. Of that ftate it has bcen obterved, with fome little exaggeration, however, that "every planter has a river at his door." - Morse.

CHEESADAWD Lake, about 210 miles N. E. by E. of the Canadian houfe, on the E. end of Slave lake, in the Hudfon bay company's territory; is about 35 miles in length and the tame in breadth. Its weftern fhore is mountainoos and rocky.-ib.

CHESHIRE \(C o\), in New-Hamphire, lies in the \(S\). W. part of the Itate, on the E. bank of Connecticut river. It has the flate of Maffachufetis on the fouth, Gration co. on the N. and Hillforough co. E. It has 34 towntlips, of which Charlefown and Keene are the chief, and 28,772 inhabitants, ineluding 16 laves - \(i b\).

Cheshire, a townilhip in Berkthire co. Maffachuetts ; famous lor its good cheefe; 1.10 miles N, wellerly from Bofton.-ib.

Cheshire, a townllip in New-Haven co. Connecticut, 15 miles N. of New-Haven city, and 26 S . W. of Hartford. It centains an Epifcopal church and academy, and 3 Congregational churches.

CHESNUT Hill, a town in Northampton county Penniylvania, ten miles from Philadel phia and two from Germantown, a fine elevated and healthy fituation, commandirg an extenfive aud delightful profpect of the capitial and the furrounding country.

Chesnut Hill, a townfhip in Northampton co. Penil-fylvania.-ib.

Chesnut Creek, a branch of the Great Kanhaway, in Virginia, where it crofles the Carolina line. Here, it is faid, are iron mines.-ib.

Chesnut Ridge. Part of the Alleghany mountains, in Pernfylvania, are thus calied, S. eaftward of Greenf-borough.-ib.

CHESS, the celebrated game, of which a copious account has been given in the Encyclopxdia, is affirmed by Sir William Jones to have been iuvented by the Hindoos. If evidence were required to prove this fast (fays he*), we may le fatistied with the teftimo- * Afatic Reny of the Perlians, who, though as much inclined as fararbes, vol. other nations to appropriate the ingenious inventions of ii. Mem. 9 . a foreign people, unanimouly agree that the game was imported from the weft of India in the fixth century of our era. It feems to have been immemurially known in Hindofan by the name of Cheturantsa, i. e. the four any a's, or members of an army; which are thefe, elephants, borfes, chariots, and foot-foldiers; and in this feure the word is frequently uted by epic: poets in their defcriptions of real armies. By a natural corruption of the pure Sanfcrit word, it was changed by the old Perfians into Chetrang; but the Arabs, who foon after took poffeffion of their conntry had neither the initial nor final letter of that word in their alphaber, and confequently altered it further into Shetranj, which found its way prefently into the modern Perfan, and at length into the dialects of India, where the true derivation of the name is known only to the learned. Thus has a very fignificant word in the facred language of the

Drahmins

Cheefa-

\section*{C H E}
]
with extreme care, fecuring his king above all, and not facrificing a fuperior to keep an inferior piece." Here (fays the Prefident) the commentator on the Purán obferves, that the borfc, who has the choice of cight moves from any central pofition mult be preferred tot he /bis, which has only the choice of four. But the argument would not hold in the common game, where the bifop and tover command a whole line, and where a knight is always of lefs value than a tower in action, or the bithop of that fide on which the attack is begun. "It is by the overbearing power of the elephash, (continues the Purún) that the king fights boldly; let the whole army, therefore, be abandoned, in order to fecure the elephant. The king muft never place one elephant before another, unlefs be be compelled liy want of room, for he would commit a dangerous fault: and if he can 』ay one of two hoftile elephants, he mult dellroy that on his left land."

All that remains of the paffage which was copied for Sir William Jones relates to the feveral modes in which a partial fuccefs or complete vitory may be obtained by any one of the four players; for, as in a difpute be. tween two allies, one of the kings may fometimes affume the command of all the forces, and aim at a feparate conqueft. Firft, "When any one king has placed himelf on the fquare of another king (which advantage is called finhafana or the throne) he wins a Itake, which is doubled if he kill the adverfe monarch when he feizes lis place; and if he can feat himfelf on the throne of his ally, he takes the command of the whole army." Secondly, "If he can occupy fucceffively the thrones of all the three princes, he obtains the viatory, which is named cheturaji; and the ftake is doubled if he kill the laft of the three, jut before he takes poffeffion of his throne; but if he kill him on his throne, the flake is quadrupled. Both in giving the finbafana and the cheturaji the king mult be fupported by the elcshants, or by all the forces united." Thirdly, "When one player has his own king on the board, but the king of his partner has been taken, he may replace his captive ally, if he can feize both the adverfe kings; or, if he cannor effect their capture, he may exchange his king for one of them againft the general rule, and thus redeem the allied prince, who will fupply his place." This advantage laas the name of nripacribta or recovered ly the king. Fourthly, "If a pazun can march to any fquare, on the oppofite extremity of the board, except that of the king or that of the flip, he affumes whatever power belonged to that fquare." Here we find the rule, with a flight exception, concerning the advance. ment of parwas, which often occafions a mof interefing ftruggle at our common chets; but it appears that, in the opinion of one ancient writer on the Indian game, this privilege is not allowable when a player has three pawns on the board; but when only one pawn and one thip remains, the pawn may advance even to the fquare of a king or a fhip, and affume the power of either. Fifthly, According to the people of Lamiè, where the game was invented, "there could be neither vietory or defeat, if a king were left on the plain with. out force; a fituation which they named caciacolin ba." Sixthly, "If three fhips lapper to meet, and the fourth fhip can be brought up to them in the remaining angle, this has the name of vrilannouca; and the player of the fourth feizes all the otbers."

\section*{C H E [460] C H E}

The account of this game in the original Sanferit is in verfe, and there are two or three conplets Aill remaining, fo very dark, either from an error in the manufrupt, or from the antiquity of the language, that Sir William Jones could not underftand the Pandit's explamation of them, and fulpects, that even to him, they rave very indiftinet ideds. It would be eafy, however, he thinks, if it be judged worth while, to play at the game by the preceding rules, and a little practice would perhaps make the whole intelligible.

CHESTER, a townflip in Lunenburg co. NovaScotia, on Malsone bay, fettled originally by a few families from New. England. From hence to Windfor is at road, the diftance of 25 miles.-Morse.

Chester a fmall plantation in Lincoln co. Maine, 9 miles from Titcomb. It has 8 or 9 families.- \(i b\).

Chester, is townfnip in Hamplhire co. Maflachufetts, adjoining Weftfield on the E. and about 20 miles IN. W. uf Sprongfield. It contains 177 houles, and III9 inhabitants.-ib.

Chester, a large, pleafant, and elevated townfhip in Rockingham co. New-Hamphire. It is 21 miles in lengtl ; and on the W. lide is a pretty large lake, which fends its waters to Merrimack River. It was incorporated in 1722, and contains 1902 inhabitants, who are chiefly farmers. It is fituated on the E. fide of Merrimack River, 14 milcs N. W. of Haverhill, as far W. of Exeter, 30 WV . by S. of Portfmouth, 6 northerly of Londonderry, and 306 from Philadelphia. From the compdet part of this town there is a gentle defcent to the fea, which, in a clear day, may be feen from thence. It is a poft town, and contains about 60 houfes and a Congregational church.

Rattlefnake hill, in this townfip, is a great curiofi\(t y\) : it is half a mile in diameter, of a circular form, and 400 feet high. On the S. fide, 10 yards from its bale, is the entrance of a cave, called the Devil's Den, which is a room 15 or 20 feet fquare, and 4 feet lingh, Hoored and circled by a regular rock, from the upper part of which are dependent many excrefcences, nearly in the form and fize of a pear, which, when approached by a torch, throw out a fparkling luftre of almolt every hue. It is a cold, dreary place, of which many frightful tories are told by thofe who delight in the marvelluus.--ib.

Chester, a townlhip in Windfor co. Vermont, W. of Springfield, and II miles W. by S. of Charlettown, in New-Hampfnire, and contains 981 inhabitants.- \(i l\).

Chester, a borough and pofl town in Pennfylvania, and the capital of Delaware co. pleafantly fituated on the W. fide of Delaware River near Marcus Hook, and 13 miles N. E. of Wilmington. It contains about 60 houfes, built on a regular plan, a court-houfe and a gaol. Fiom Chefter to Philadelphia is 20 miles by water, and \(15 \mathrm{~N} . \mathrm{E}\) by land; here the river is narrowed by iflands of marth, which are generally banked, and turned into rich and inmenfely valuable meadows. The firt colonial affembly was convened here, the 4 th of December, 1682. The place affords genteel inns and good entortainment, and is the refort of much company from the metropols, during the fummer feafon. It was incorporated in December, 1795, and is governed by \(=\) burgelles, a contable, a town clerk, and 3 afiftants; whofe power is limited to preferve the peace and order of the place.-ib.

Chester. Co. in Pennfylvania, W. of Delaware co. and S. W. of lhiladelphia; about 45 miles in length, and 30 in bread:h. It contains 33 townhips, of which Well-Chefter is the fhire-town, and 27,937 inhabitants, of whom 145 are flaves. Iron ore is found in the northern parts, which employs 6 forges. Thefe manufacture about 1000 inns of bar iron annually.-ib.

Chester Court-Houfe, in S. Carolina, 22 miles \(S\). of Pinckney court-houfe, and 58 N . W. of Columbia. A poft-office is kept here.--ib.

Chester River, a navigable water of the eaftern Thore of Maryland, which rifes two miles within the line of Delaware Itate, by two fources, Cyprus and Andover creeks, which unite at Bridgetown ; runs nearly S. weltward: after paffing Chefter it runs S. nearly 3 miles, when it receives S. E. creek, and 15 miles farther, in a S. W. direction, it empties into Chefapeak bay, at Love point. It forms an ifland at its mouth, and by a clannel on the E. Gide of Kent Ifland communicates with Eaftern bay. It is propofed to cut a canal, about 11 miles long, from Andover creek, a mile and an half from Bridgetown, to Salifoury, on Upper Duck creek, which falls into Delaware at Hook inand.-ib.

Chester, a fmail town in Slannandoah co. Virginia, fituated on the point of land formed by the junction of Allen's or North River and South River which form the Shannandoah; 16 miles S. by W. of Winchefter. N. lat. 39. 2. W. long. 78. 22.-ib.

Chester Co. in Pinchney dittrict, S. Carolina, lies in the S. E. corner of the ditrict, on Wateree River and contains 6866 inhabitants; of whom 5866 are whites, and 938 flaves. It fends two reprefentatives, but no fenator, to the ftate leginature.-ib.

Chester, a town in Cumberland co. Virginia, fituated on the S. W. bank of James River, 15 miles N. of Blandford, and 6 S . of Richmond.-ib.

CHESTERFIELD, a townthip in Hampfhire co. Maffachufetts, 14 miles W. of Northampton. It contains 180 houfes, and 1183 inhabitants.

Chesterfield, a townthip in Chefhire co. NewHampthire, on the E. bank of Connecticut River, having Weftmoreland N. and Hinfdele S. It was incorporated in 1752, and contains 1905 inhabitants. It lies about 25 miles S. by W. of Charle!town, and about \(g 0\) or 100 W. of Purtfmouth. About the year 1730 , the garrifon of fort Dummer was alarmed with frequent explofions and with columns of fire and fmnke emitted from Welt river mountain, in this townthip, and 4 miles diftant from that fort. The like appearances have been oblerved at various times fince; particularly one in 1752, was the moft fevere of any. There are two places, where the rocks bear marks of having been heated and calcined.-ib.

Chesterfield Co. in S. Carolina, is in Cheraws diftrict, on the N. Carolina line. It is about 30 miles long, and 29 broad.-ib.

Chesterfield Co. in Virginia, is between James and Appamatox rivers. It is about 30 miles long, and 25 broad; and contains \(14,21+\) inhabitants, including 7487 flaves.-ib.

Chesterfield Inlet, on the W. fide of Hudfon bay, in New South Wale:, upwards of 200 miles in length, and from 10 to 30 in breadth-full of inlands.-ib.

CHESTERTOWN, a poft town and the capital of
Kent

Chetimachas \| Chevrette.

15 miles S. W. of Georgetown, 38 E . by S. from B.ltimore, and 81 S. W. of Philadclphia. It contains about 140 houfes, a church, college, court houfe, and gaol. The college was incorporated in 1782 , by the name of \(W\) afjington. It is under the direction of 24 trultees, who are empowered to fupply vacancies and hold eftates, whofe yearly value fhall not exceed £. 6,000 currency. In 1787, it had a permanent tund of \(£ .1,250\) a year fettled upon it by law. N. lat. 39. 12. W. long. 75 57.-ib.

CHETIMACHAS. The Chetimachas fork is an outlet of Miffiffippi River in Louifiana, about 30 leagues above New. Otleans, and after running in a foutherly direction about \(\delta\) leagues from that river, divides into two branches, one of which runs S . wefterly, and the other S. eafterly, to the difance of 7 leagues, when they both empty their waters into the Mexican gulf. On the Chetimachas, 6 leagues from the Mifliffippi, there is a fetticment of Indians of the fame name; and thus far it is uniformly 100 yards broad, and from 2 to 4 fathoms deep, when the water is lowert. Some drifted logs have formed a thoal at its moulh on the Miliffippi; but as the water is deep under them, they could be eafily removed; and the Indians fay there is nothing to impede navigation from their village to the gulf. The banks are more clevated than thofe of the Miffilippi, and in fome places are fo high as never to be overflowed. The natural productions are the fame as on the Miffiflippi, but the foil, from the extraordinary fize and compactnefs of the canes, is fuperior. If meafures were adopted and purfued with a vies to improve this communication, there would foon be, on its banks, the moft profperous and important fettlements in that colony.- \(i b\).

Chetimachas, Grand Lake of, in Louifiana, near the mouth of the Millifippi, is 24 miles long, and 9 broad. Lake de Portage, which is 13 miles long, and \(1 \frac{1}{2}\) broad, communicates with this lake at the northern end, by a frait a quarter of a mile wide. The country bordering on thefe lakes, is low and flat, timbered with cyprefs, live and other kinds of vak; and on the eatern fide, the land between it and the Chafalaya River is divided by innumerable ftreams, which occafion as many iflands. Some of thefefteams are navigable. A little diftance from the S. eaftern thore of the lake Chetimachas, is an ifland wheac perlons paffing that way generally halt as a refling place.

Nearly oppofite this ifland, there is an opening which leads to the fes. It is about 150 yards wide, and has 16 or 17 fathem water.-ib.

CHETTENHAM, a townlhip in Montgomery co. Pennfylvania.-ib.

CHEVRETIE, in artillery, is an engine employed to raife guns or mortars into their caniage. It is formed of two pieces of wood about four feet long, flanding upon a third, which is fquare. The uprights are about a foot afunder, and pierced with holes exactly oppofite to one another, to receive a bolt of iron, which is put in, either higher or lower at pleafure, to ferve as a fupport to a handfpike, by which the gun is raifed up. By the author of the Military Guide, this is faid to be the moft ufeful of all the inventions for raifing guns into their carriages; and it feems thefe inventions have been many.

Suppl. Vol. I.

CHIAMETLAN, a maritime province of Mexico, Chime: in N. America, with a town of the fame name, faid to lan be 37 leagues either way, from N. to S. or from E. to W. It is very fertile, contains mines of frlver, and produces a great ded of honey and wax. The native Indians are well made and warlike. The river St Jago empties into the fed hete, N. W. from the point of S: Blas. The chief town is St Sebaftan.Morse.

CHIAPA, a river and inland province of Mexico or New-Spain, in the audience of Mexico. This province is bounded by Tabafico on the N.; by Yucatan N. E. ; by Soconufco S. E.; and by Vera Piaz on the E. It is 85 leagues from E. to W. and about 30 where narrowell, but fome parts are near 100 . It abounds with great woods of pine, cyprefs, cedar, oak, walnut, wood-vines, aromatic gums, baliems, liquid amber, tacamahaca, copal, and others, that yield pure and fovereign balfams; alfo with corn, cocoa, cotton and wild cochined; pears, apples, quinces, \&c. Fiere they have achotte, which the natives mix with their chocolate to give it a bright color. Chiapa abounds with cattle of all forts; it is famous for a fine breed of \({ }^{\text { }}\) horfes, fo valuable, that they fend their colts to Mexico, though 500 miles off. Beafts of prey are here in abundance, with foxes, rabbits, and wild hogs. In this province there is variety of fnakes, particuldrly in the hilly parts, fome of which are faid to be 20 feet long, others of a curious red color, and Itreaked with white and black, which the Indians tame, and evers put them about their necks. Here are two principal towns called Chiapa. The Chiapefe are of a fair complexion, courteons, great mafters of mufic, painting and Mechanics, and obedient to their fuperior. The principal river is that of Chiapa, which, running from the N. through the country of the Quelenes, at laft falls into the fea at Tabafeo. It is well watered; and by means of Chiapa River, they carry on a pretty bifk trade with the neighboring provinces, which chielly confilts in cochineal and filk; in which laft commodity the Indians employ their wives for making handkerchiefs of all colors, which are bought up by the Spani. ards and fent to Europe. Though the Spaniards reckon this one of their poorell provinces in America, as baving no mines or land of gold, nor any habor on the South Sea, yet in lize it is inferior to none but Guatimala. Betides, it is a place of great inmportance to the Spaniards, becaufe the Itrength of all their cmpire in America depends on it ; and into it is an eafy cntrance by the river Tabafco, Puerto Real, and its vicinity to Yucatan. - \(i b\).

Chiapa, the name of two towns in the above province ; the one is fometmes call-d Ciri iad Real, or the Royal city, and the other Cliapa de los Inior, inhabited by Spaniards. Cividad Real is a bilhop's fee, and the feat of the judicial courts. It is delightfully fituatcd on a plain, firrounded w th mountains, and almoit cqually diftant from the N. and S. feas, and 100 leagues N. W. from Guatimala. The bilhep's revenue is 8000 ducats a ycar. The plare is neither populous nor rich; and the Spanifh gentry here are become a proverb on accoust of their pride, ignorance, and poverty. It has feveral monatleties; and the cathe. dral is an elegant ftructure. This city is governed by maçiftrates chofen among the burgelfes of

\section*{C H I}

Chicspe the town by a particular privilege granted them by the king of Spain. N. lat. 17. W. long. 96.40.

The other town, called Cbiapa de los Indos, that is, as belonging to the Indians, is the largett they have in this country, and lies in a valley near the river Tabalco, which abounds with fifh, and is about 12 leagues N. W. of Chiapa, or Cividad Real. The celebrated Dartholomew de las Cafas, the fiend of mankind, was the firft bifhop of Chiapa; and having complained to the court of Madrid of the cruelties of the Spaniards here, procured the people great privileges, and an ex. emption from llavery. This is a very large and rich place, with many cloifters and churches in it, and no tuwn has fo many Dons of Indian blood as this Chiapa. On the river they have if veral boats, in which they often exhibit fea-fights and fieges. In the environs are feveral farms well focked with cattle, and fume fugar plantations. Wheat is brought here from the Spanifh Chiapa, and of it they make hard bifcuit, which the poorer Spaniards and Indians carry about and exchange for cotton, wool, or fuch little things as they want. There are about 20,000 Indians in this town.-ib.

CHICAPEE, or Ctickabee, a fmall river in Maffachufetts, which rifes from feveral ponds in Worcefter co. and runnirg S. W. unites whh Ware river, and 6 miles further emprics into the Connecticut at Springfield, on the E. bank of that river. - \(i b\).

CHICCAMOGGA, a large creek which runs \(N\). wetterly into Tenneffee river. Its mouth is 6 miles above the Whirl and about 27 S . W. from the mouth of the Hiwalfee. N. Jat. 35.18. The Chiccamogga Indian towns lie on this creek, and on the bank of the Tennefliee.-ib.
\(\mathrm{CHICH} A\), the name given by the natives to the ifland of Jeffo, which lies to the fouth of Oku-Jeflo, or Segalian illand. See Segalian in this Supplement.

CHICHESTER, Upper and Lawer, two townhips in Delaware co. Pennfylvania.-Morse.

Chichester, a fmall townfhip in Rockingham co. New-Hamphire, about 35 miles N. W. of Exeter, and 45 from Portfmouth. It lies on Sunconk River; was incorporated in \(\mathbf{1 7 2 7}\), and contains 491 inhabitants. -ib.

CHICKAHOMINY, a fmall navigable river in Virginia. At its mouth in James river, 37 miles from Point Comfort, in Chefapeak bay, is a bar, on which is only 12 feet water at common flood tide. Velfels pating that, may go 8 miles up the river; thofe of 10 feet ciraught 12 miles; and velfels of 6 tons burden may go 32 miles up the river.- \(i b\).

CHICKAMACOMiCO Creek, in Dorchefter co. Maryland, tuns foutherly between the towns of Middlelown and Vienna, and empties into Filhing bay.-ib.

CHICKASAW Biuff, is on the ealtern bank of the MiNappi, within the territories of the United States, in N. 13t. 35. The Spaniards erected here allrong, flockaded tort, with cannon, and furnifhed it with troops, all in the fpace of \(2+\) hours, in the month of June, 1795. It has fince been given up according to the treaty of \(1796 .-i b\).

Chickasaw, a creek which falls into the Wabafh from the E. a little below Poft St Vincent.-ib.

Chimasaw, a river which empties into the Mifficip. fi, on the E. fide, 104 miles \(N\). from the mouth of

Margot, and 67 S . W. of Mine au fer. The lands here are of an excellent quality, and covered with a vasiety of ufeful timber, canes, \&c. This river may be afcended during high floods upwards of 30 miles with boats of feveral tons burden.-ib.

Chirasaws, a famous nation of Indians, who inhabit the country on the E. fide of the Miflifippi, on the head branches of the Tombigbee, Mobile and Yazoo rivers, in the N. W. corner of the ftate of Georgia, and N. of the country of the Chactaws. Their country is an extenfire plain, tolerably well watered from frings, and of a pretty good foil. They have 7 towns, the central one of which is in N. lat. 34. 23. W. long. So. 30. The number of fouls in this nation has been fornierly reckored at \(\mathbf{7 7 2 5}\), of which 575 were fighting men. There are fome negroes among the Chickalfaws, who either were taken captive in war, or ran away from their mafters, and fought fafety among the Indians.

In 1539 , Ferdinand de Soto, with 900 men, befides feamen, failed from Cuba with a defign to conquer Florida. He travelled northward to the Chickafaw country, about lat. 35 . or 36. ; and 3 years after died, and was buried on the bank of Mifliffippi river.-ib.

CHICOMUZELO, a town in the province of Chiapa, in New-Spain, having a cave very narrow at the entry, but fpacious within, with a Itagnant lake, which is, however, clear, and is 2 fathoms deep towards the banks.-ib.

CHIKAGO River, empties into the S. W. end of lake Michigan, where a fort formerly ftood. Here the Indians have ceded to the United States, by the treaty of Greenville, a tract of land 6 miles fquare.- \(i b\).

CHIGNECTO Channel, the N. weftern arm of the bay of Fundy, into which Petitcodiac River falls. The fpring tides rife here 60 feet.- \(i b\).

CHILAPAN, a town in New-Spain, in the country of the Cohuixcas. Between this and Tcoiltylan is an entire mountain of loaditene.-ib.

CHILCA, a town in the juridiction of Canette in Peru, S. Aınerica, celebrated for its excellent faltpetre, of which gun-powder is made in the metropolis. It abounds with plenty of fifh, fruits, pulfe, and poultry, in which it carries on a very confiderable trade with Lima, 10 leagues diftant. S. Jat. 12. 3 I. W. long. 76. \(5 \cdot-i b\).

CHILHOWEE Nrounain, in the fouth-eaftern part of the Itate of Tenneffee, and between it and the Chero. kee country.-ib.

CHILISQUAQUE, a townlhip on Sufquehanna River in Penniylvana.-ib.

CHILLAKOTHE, an Indian town on the Great Miami, which was deftroyed in 1782 by a body of militia from Kentucky. Gen. Harmar fuppofes this to be the "Englifh Tawixtwi," in Hutchins's map. Here are the ruins of an old fort, and on both fides of the river are extenfive meadows. This name is applied to many different places, in honor of an influential chief, who formerly headed the Shawanoes.-ib.

Chillakothe, Old, is an Indian town deftroyed by the forces of the U. S. in \({ }^{2} 780\). It lies about 3 miles S. of Little Miami River. 'The country in its vicinity is of a rich foil, and is bezutifully chequered with meadows.-ib.

CHILMARK,

\section*{C H I［ 463\(] \quad \mathrm{C}\) H I}

Chilmark CIILLMARK，a rownfhip on Martha＇s Vineyard \(\|\) Ifland，Duke＇s co．Maffachufetts，containing 771 in ． CHILQUES，a jurifdiction of \(\mathbf{S}\) ．America，in Peru， fubjed to the bifhop of Cufco， 8 leagues S ．E．from that city．Its commerce confilts in woollen manufac－ tures，grain of all kinds，cows，theep，\＆xc．－ib．

CHIMBO，a jurifdiction in the province of Zinto， in S．America，in the torrid zone．The capital is alfo called by the fame name，－ib．

CHIMBORAZO，in the province of Qnito，is the higheft point of the Andes，and the highelt mountain as yet known in the world；being，according to Con－ damine， 19,200 feet ；according to others， 20,608 feet， above the level of the fea．It lies nearly under the line， being in 1． 41.40 ．S．lat．yet its tops are covered with ice and frow，and the country adjacent is often pierced with intolerable cold from the winds which blow from the mountain．－ib．

CHIMERE，the upper robe worn hy lifhops in church，and in the Houfe of Peers，to which the lawn Reeves are generally fewed．Before the Reformation， and even after it，till the reign of Queen Elizabeth，the chimere was always of farlet fill．；but bilhop Hooper， fcrupling firtt at the robe itfelf，and then at the colour of it，as too light and gay for the epifcopal gravity，the chimere was afterwards made of black fatin．The ar－ chiepifcopal chimere has a long train．

CHIMNEY，a particular part of a houfe well known， which Profeffor Beckmann has，in our opinion，proved to be an invention comparatively modern．It would be very unfair dealing in us to give even a large abflract of one of the molt curious differtations of a curious book，which has been but lately publifhed，and thereby injure the interef of him to whom the native of Britain is indebted for the pleafure of peruling it in his own tongue．No man，however，can blame us for here fta－ ling，in fupport of our own opinion，the profeffor＇s an－ fwer to the pallage of Ferrari，which we have quoted under the word Chimney in the Encycloprodia．
＂When the triumviri，fays Appian＂，caufed thofe sivil．tib．iv．who had been profcribed by them to be fought for by p． 962 2．edit．the military，fome of them，to avoid the bloody hands Tollii． of their perfecutors，hid themfelves in well，and others， as Ferrarius tranflates the words，in fumaria fub tec？o， qua fiilicet funtus e teclo evolvitur（A）．The true tranf－ lation，however，（fays Mr Beckmann）is fumofa canacula． The principal perfons of Rome endeavoured to conceal themfelves in the fmoky apartments of the upper Rory under the roof，which，in general，were inhabited only by poor people；and this feems to be confirmed by what Juvenalt exprefsly fays，Rarws venit in cerracula miles．
＂Thofe paffares of the ancients which fpeak of fmoke riling up from houfes，have，with equal impro－ priety，been fuppofed to allude to chimneys，as if the fmoke could not make its way through doors and win－
\＃Epif．64．dows．Seneca \(\ddagger\) writes，＇Laft evening I had fome fiends with me，and on that account a ftronger fmoke was rai－ fed；not fuch a fmoke，however，as burlls forth from the kitchens of the great，and which alarms the watch－ men，but fuch a one as fignifies that guefts are arrived．＇

Thofe whole judgments are not already warped by prejudice，will undoubtedly find the true fenfe of thefe words to be，that the fmoke forced its way through the kitchen windows．Had the houfes been builc with chimney－fummels，one cannot conceive why the watch－ men fhould have been alarmed when they o＇served a Atronger fmoke than ufual ariling from tlem；hut as the kitchens had no conveniences of that nature，an if－ prehenfion of fire，when extrandinary entertainments were to be provided in the houfes of the rich for large companies，feeme to have been well founded；and on fuchoccafions people appointed for that porpofe werz Atationed in the neighbourhood to be conftantly on the watch，and to be seady to extinguith the flames in cale a fire thould happen．There are miany other patiages to be found in Roman authors of the like kind，which it is hardly neceffary to mention；fuch as that of Virgil \(\dagger\) ．+ Ecing．is．
＇Et jam fumma procul villarum culmina fumant．＇
and the following words of Plautus，＊defcriptive of a＊Aulutar． mifer ：
＇Quin divum atque hominum clamat continuo fidem，
－Suam rem periiffe，feque eradicarier，
－De fuo tigillo funnus fi qua exit foras．＇
In the \(V_{c f p e}\) of Ariftophanes，referred to in the En． cyclopedia，old Philocleon wifhes to efcape through the kitchen．Some one afks，＂What is that which makes a noife in the chimney！＂＂I am the fmoke （replies the old man），and am endeavouring to get out at the chimney．＂＂This pafiage，however（fays the profeffor）which，according to the ufual trandation， feems to allude to a common chimney，can，＂in thy opi－ nion，efpecially when we confider the illuftration of the fcholafts，be explained alfo by a timple hole in the roof， as Reine has determined；and indeed this apparars to be more probable，as we find mention made of a top or covering \(\ddagger\) with which the hole was clofed．＂
In the Encycloprdia we have faid，that the infances of chimneys remaining among the ruins of ancient build－ ings are few，and that the rules given by Vitruvins for building them are obfcure；but we are now fiti－fied that there are 13 remains of ancient chimneys，and that Vitruvius gives no rules，either obfcure or perfi－ cuous，for building what，in the modern acceptation of the word，deferves the name of a chimney．
＂The ancient mafon－work fill to be found in Itd\} does not determine the queftion．Of the walls of towns， temples，amphitheatres，baths，aqueducts，and bridges， there are fome though very inperfect semans，in which chimneys cannot be expected；but of conmon dwell． ing．halues none are to be fecn，except at Herculaneum， and there no traces of chininess have been difovereth． The paintings and pieces of fiulpture which are pre． ferved，afford us as little information；for nothing can be perceived in them that bears the finalleft refem－ blance to a modern chimney．
＂If there were no funnel；in the houfes of the an－ cients to carny off the fmoke，the directions given by Columella，to make kitchens for high that the roof thould not catch fire，was of the utmof importance．An accident of the kind，which that author feems to have
\(3 \mathrm{O}_{2}\)
apprehended，

\section*{C H I [\(\left.46_{4}\right] \quad \mathrm{C} \mathrm{H}^{`}\) I}

Chimney.
+ Horat.
lib. i. fat. 5.
* Francijci

Marii Gra-
paldide partibus cedium bibri.
- Plutarch.

Sympof.
lib. vi. 7.
p. 672.
+ Fill. Lam
purid. Vitus
Helliogab.
cap. 3 I.
apprehended, had almoft happened at Beneventum, when the landlord who entertained Mreenas and his company was making a ftrung fire in order to get fome birds fooner roatted.
- ___ ubi fedulus hofpees
- Pxne arlit, macros dum turdos verfat in igne;
- Nım vaga per veterem dilapfo firmma culinam
' Vulcano fummum properabat lambere tectum \(\dagger\).'
Had there been chimneys in the Roman houfes, Vitruvius certainly would not have failed to defcribe their conllruction, which is fometimes attended with confiderable difficulties, and which is intimately connected with the regulation of the plan of the whole edifice. He dnes not, however, fay a word on this fubject ; neither dnes Julius Pollux, who has collected with great care the Greek names of every part of a dwelling-houfe ; and Grapaldus, who in later times made a collection of the Latin terms, has not given a Latin word expreflive of a modern chimney."*

Our author admits the derivation of the word chimney to be as we have given it in the Encyclopedia; but (fays he) "Caminus fignified, as far as I have been able to learn, firt a chemical or metallurgic furnace, in which a crucible was placed for melting and refining metals; fecondy, a fmith's forge; and thirdly, a heasth on which portable foves or fire-pans were placed for warming the apartment. In all thefe, however, there appears no trace of a chimney." Herodotus relates (lib. viii. c. 137.), that a king of Libya, when one of his fervants alked for his wages, offered him in jeft the fun, which at that time thone into the houfe through an opening in the roof, under which the fire was perbaps made in the middle of the edifice. If fuch a hole muit be called a chimney, our author admits that chimneys were in ufe among the ancients, efpecially in their kitchens; but it is obvicus that fuch chimneys bore no refemblance to ours, through which the fun could not dart his rays upon the fious of any apartment.
". However imperfect may be the information which can be colletted from the Greek and Roman authors reipecting the manner in which the ancients warmed their apasments, it neverthelefs fhews that they commonly mied for that purpofe a large fire-pan or portable flove, in which they kindled wood, and, when the wond was well lighted, carried it into the room, or which they filled with burning coals. When Alexander the Great was entertained by a friend in winter, as the weather was culd and raw, a finall fire bafon was brought into the apartment to warm it. The prince obferving the tipe of the veffel, and that it contained only a few coals, defired his hoft, in a jeering manner, to bring more wood or frankincenfe; giving him thus to underfand that the fire was fitter for burning perfumes than to produce heat. Anacharis, the Scyihian philofopher, though difpleafed with many of the Grecian cuftoms, praifed the Greeks, however, becaufe they fhat out the imoke and brought orly fire into their houfes.* We are informed by Lampridius, that the extravagant He\(\operatorname{liog}\) itulus cauled to be burned in thefe foves, inftead of wood, Indian fpicerics and coftly perfumest: It is alfin worthy of notice, that coals were found in fome of the apartments of Heiculaneum, as we are told by Winklemann, but neither ftoves nor chimneys."

It is well known to every fcholar, that the ufeful arts
of life were invented in the eat, and that the cuftoms, manners, and furniture of eaftern nations, have remained from time immemorial almolt unchanged. In Perfia, which the late Sir William Jones feems to have confidered as the original country of mankind, the methods employed by the inhabitants for warming themfelves have a great refemblance to thofe employed by the ancient Greeks and Romans for the fame purpofe. According to De la Valle, the Perfians make fires in their apartments, not in chimneys as we dn, but in ftoves in the earth, which they call tennor. "There ltoves conlift of a fquare or round hole, two fpans or a little more in depth, and in fhape not unlike an Italian cafk. That this hole may thow out heat fooner, and with more ftrength, there is placed in it an iron velfel of the fame lize, which is either filled with burning coals, or a hire of wood and other inflammable fubttances is made in it. When this is done, they place over the hole or ftove a wooden top, like a fmall low table, and fpread above it a large coverlet quilted with cotton, which hangs down on all fides to the floor. This covering condenfes the heat, and caufes it to warm the whole aparment. The people who eat or converfe there, and fome who fleep in it, lie down on the floor above the carpet, and lean, with their fhoulders againft the wall, on fquare cufhions, upon which they fometimes alfo fit; for the tennor is conttrueted in a place equally diffant from the walls on both fides. Thofe who are not very cold only put their feet under the table or covering; but thofe who require more heat can put their hands under it, or creep under it altogether. By thefe means the fove diffufes over the whole body, without caufing uneafinefs to the head, fo penetrating and agreeable a warmth, that I never in winter experienced any thing more pleafant. Thofe, however, who require lefs heat let the coverlet hang down on their fide to the floor, and enjoy without any inconvenience from the ftove the moderately heated air of the apartment. They have a method alfo of ftirring up or blowing the fire when neceffary, by means of a fmall pipe united with the tennor or flove under the earth, and made to project above the floor as high as one choofes; fo that the wind, when a perfon blows into it, becaufe it has no other vent, acts immediately upon the fire like a pais of bellows. When there is no longer occafion to ufe this ftove, both holes are clofed up, that is to fay, the mouth of the fove and that of the pipe which conveys the air to it, by a flat flone made for that purpofe. Scatcely any appearance of them is then to be perceived, nor do they occafion inconvenience, efpecially in a country where it is always cuflomary to cover the floor with a carpet, and where the walls are plaftered. In many parts there ovens are ufcd to cook victuals, by placing kettles over them. They are employed alfo to bake bread; and for this purpofe they are covered with a large broad metal plate, on which the cake is laid; but if the bread is thick and requires more heat, it is put into the fove itfelf."

Our learned author having proved, to onr entire fatisfaction, that chimncys, fuch as we have now in every comfortable room, were nnknown to the mot polithed nations of antiquity, fets himfelf to inquire into the era of their invention; and the oldelt account of them which he finds is an infcription at Venice, which relates, that in the year 1347 a great many chimneys were thrown

\section*{C H I \([465] \quad \mathrm{C} \mathrm{H} \mathrm{I}\)}

Chimney. thrown down by an earthquake. It would appear, however, that in fome places they had been in ufe for a confiderable time before that period; for \(D_{e}\) Gataris, in his hiftory of Padua, relates, that Francefco de Carraro, lord of Padua, came to Rome in 1368 , and finding no chimneys in the inn where he lodged, becaule at that time fire was kindled in a hall in the middle of the Hoor, he caufed two chimneys like thofe which had long been ufed at Padua to be conftructed by mafons and carpenters, whom he had brought along with him. Over thefe chimneys, the firft ever feen at Rome, he affixed his arms, which were Itill remaining in the time of De Gataris, who died of the plague in 1405.

Though chimneys have been thus long in ufe, they are yet far enough from being brought to perfection. 'There is hardly a modern houfe, efpecially if highly finifhed, in which there is not one room at leaft liable to he filled with fmoke when it is attempted to be heated by an open fire; and there are many houfes fo infelted with this plague, as to he almoft uninhabitable during the winter months; not to mention other great defects in common climneys, which not being fo obvious have attracted lefs attention. Many ingenious methods have been propofed to cure fmokey chimneys in every fituation (fee Smoкe, Encycl.); but Count Rumford's Erfay on this fubject contains the moft valuable directions that we have feen, not only for removing the inconveniency of fmoke, but likewife for increafing the heat of the room by a diminifhed confumption of fuel.

To thonfe who are at all acquainted with the nature and properties of elaftic fluids, it mult be obvious, that the whole myllery of curing fmokey chimneys conlilts in finding out and removing the accidental caufes which prevent the heated fmoke from being forced up the chimney by the preffure of the cool and therefore heavier air of the room. Though thefe caufes ate various, yet, fays our author, that which will mon commonly be found to operate, is the bad conttruction of the chimney in the neighbou bood of the fire-place. "The great fault of all the upen fire-places or chimneys for burnirg wood or coals in an open fire now in common ufe is, thatt they are much too large; or rather it is the throat of the chinney, or the lower part of ats open canal, in the neighbourbood of the mantle, and immediately over the tire, which is too large."

To this fault, therefore, the attention thould be firt turned in every attempt which is made to improve the conftruction of chinmeys; for however perfeet a fireplace may be in other refpects, if the npening left for the paffage of the finoke is larger than is neceffary for that purpoie, nothing ean prevent the warm air of the room from efcaping through it ; and whenever this happens, there is not only an unneceltary lofs of heat, but the wasm air which leaves the room to go up the chimncy being replaced by cold air from without, drauglats of cold air cannot fatl to be produced in the room, to the great annoyance of thofe who inhabit is. Butaldhough both thefe evils may be effectually reme. died by reducing the throat of the chimney to a proper fize, yet in doing this feveral precautions will be neceffary. And firit of all, the throat of the chimney fhould be in its proper place: that is to fay, in that place in whicis it nught to be, in order that the alcent of the fmoke may be mon facilitated: now as the fmoke and bot vapour which rife frum a fire naturally tend up-
wards, the proper place for the throat of the chimney is evidently perpendicularly over the fire.

But there is another circumitance to be attended to in determining the proper place for the throat of a chimney, and that is, to afeertain its diflance from the fire, or bow far above the buning fuel it ought to be placed. In determining this puint there are many things to be confidered, and feveral advantages and difadvantages to be weighed and balanced.

As the fmoke and vapour which afcend from burning fuel rife in confequence of their being rarehed by heat, and made lighter than the air of the furmunding atmofphere; and as the degree of their rarefaction, and confequently their tendency to rife, is in proportion to the intenfity of their heat; and further, as they are hotter near the fire han at a greater diftance from it-it is clear that the neaser the throat of a chimncy is to the fire, the Aronger will be what is commonly called its draugbt, and the lefs danger there will be of its fmoking. But, on the other hand, when the draught of a chimney is very ltrong, and particularly when this ftrong draught is occafioned by the throat of the chimney being very near the fire, it nay fo happen that the draught of air into the fire may become fo ltrong as to caufe the fuel to be confumed too rapidly. There are likewife feveral other inconveniences which would attend the placing of the throat of a chimney very near the burning fuel.

The pofition of the throat of a chimney being once determined, the next points in he afcertained are its fize and form, and the manner in which it onght to be connected with the fire-place below, and with the open canal of the chimney above. But as thefe inveltigations are intimately connected with thofe which relate to the form proper to be given to the fire-place itfelf, we mult confider them all together.

Now the defign of a chimney fire being timply to narm a room, it is neceffary, firft of all, to contrive matters fo that the room thall be atually warmed; fecondly, that it be warmed with the fmalleft expence of fuel poffible; and, thirdly, that in warming it, the air of the room he preferved perfeaty pure, and fit for re. fpiration, and free from fimoke and all dilagrecable fmells.

To determine in what manner a ronm is heated by an npen chimney fire, it will be neceffary firf of all in find out under wobat form the heat geneated in the combultion of the tuel exilts, and then to fee how it is communicated to thofe bodies which are heated by it.

In regard to the firlt of thefe fubjects of incquiry, it is quite certain that the heat which is generated in the combuttion of the tuel exits under two perfectly dillinet and very different forms. Une part of it is combined with the fmoke, vapour, and heated air which rife from the burning fuel, and goes off with them into the upper regions of the atmofplese; while the other part, which appears to be uncombincd, or, as fome ingeniol s philofo. phers have fuppored, combined only with light, and thacrefore called raifiant beat, is fent off from the fire in rays in all poffible directions.

With refpect to the focose fubject of inquiry, name. ly, how this heat, exilling under thefe two different forms, is commmnicated to other be dies, it is highlv probable that the combined heat can only be communicated to other bodies by allual comakd with the body

\section*{C H I \([466] \quad\) C H I}

Chimney, with which it is combined; and with regrard to the rays which are fent off by burning fuel, it is certain that they commnnicate or generate heat only suben and webere they are liopped or abforbed. In fafling through air, which is trantparent, they certainly do not communicate any heat to it; and it feems highly probable that they do not communicate heat to folid bodies by which they are reflected.

As it is the radiant heat alone which can be employed in warming a room, when fuel is burnt for this purpofe in an open fire-place, it becomes an object of much importance to determine how the greateft quantity of it may be generated in the combuttion of the fuel, and how the greateft proportion poliible of that generated may be brought into the room.

Now the quantity of rad:ant heat generated in the combution of a given quantity of any kind of fuel depends very much upon the management of the fire, or upon the manner in which the fuel is confumed. When the fire burns bright, much radiant heat will be fent off from it; but when it is fmothered \(u p\), very little will be generated, and indeed very little combined heat that can be employed to any ufeful purpofe: mof of the heat produced will be immediately expended in giving elafticity to a thick denfe vapour or inmoke, which will be feen rifing from the fire; and the combultion being vcry incomplete, a great part of the inflammable matter of the fuel being merely rarefied and driven up the chimney without being inflamed, the fuel will be waft. ed to little purpofe. And hence it appears of how much importance it is, whether it be confodered with a view to economy, or to cleanlinefs, comfort, and elegance, to pay due attention to the management of a chimney fire.

Nothing can be more perfectly void of common fenfe, and wateful and flovenly at the fame time, than the manner in which chimney fires, and particularly where coals are burned, are commonly managed by fervants. They throw on a load of coals at once, through which the flame is hours in making its way; and frequently it is not withous much trouble that the fire is prevented from going quite out. Duting this time no heat is communicated to the room ; and what is fill worfe, the throat of the chimney being occupied merely by a heavy denfe vapour, not poffelled of any confiderable degree of heat, and confequently not having much elaticicity, the warm air of the ronm finds lefs difficulty in furcing its way up the chimney and elcaping than when the fire burns bright. And it happens not unfrequently, efpecially in chimneys and fire places illconlructed, that this current of warm air from the room which preffes into the chimney, croffing upon the current of heavy fmoke which rifes nowly from the fire obftructs it in its afcent, and beats it back into the foom ; hence it is that chimneys fo cfien fmoke when tou large a quantity of frefli coals is put upon the fire. So many coals thould never be put on the fire at once as to prevent the free palfage of the flame hetween them. In thort, a fire fhould never be fmothered; and when proper attention is paid to the quantity of coals put on, there will be very little ufe for the poker; and this circumftance will contribute very much to cleanlinefs, and to the prefervation of furniture.

As we have feen what is neceflary to the generation of the greateft quantity of radinnt heat, it remains to be
determined how the greatef proportion of that which is generated and fent off from the fire in all directions may be made to enter the room, and aflift in warming it. 'lluis muft \(b=\) done, firlt, by caufing as many as poffible of the rays, as they are fent off from the fire in Araight lines, to come direaly into the room; which can only be effected by bringing the fire as far forward as polible, and leaving the opening of the fire place as wide and as high as can be done without inconvenience: and, fecondly, by making the fides and back of the fire-place of fuch a form, and conitueting them of fuch materials, as to caufe the direct rays from the fire, which frike againtt them, to be fent into the room by reflestion in the greatelt abundance.

Now it will be found upon examination, that the beft form for the vertical fides of a fire-place, or the covings (as they are called), is that of an upright plane, making an angle with the plane of the back of the fireplace of about 135 degrees.-According to the prefent confruction of chimneys, this angle is fometimes only 90 , and very feldom above 100 or 110 degrees; but it is obvious, that in all thefe cafes the two fides or covings of the fire place are very ill-contrived for throwing into the room by reflection the rays from the fire which fall upon them,

With regard to the materials which hould be em. ployed in the conftruction of fre-places, particularly the backs and covings, it is obvious that thofe are to be preferred which abforb the leaft, and of courfe reficr the greateft quantity of radiant heat. Iron, therefore, and, in general, metals of all kinds, are the very wort materials which can poffbly be employed for the backs and covings of chimneys; whilf fire ftone whitewafhed, or common bricks and mortar, covered with a thin coating of plafter, and white-wafhed, anfwer the purpole extremely well. A white colour fhould, indeed, be always given to the infide of a chimney of whatever materials it be conftrusted; and black, which is at prefent fo common, Thould be carefully avoided, becaufe white reflects the moft, and black, the leaft, radiaut heat. The grate, however, cannot well be made of any thing elfe than iron; but there is no neceffity whatever for that immenfe quantity of iron which furrounds grates as they are commonly fitted up, and which not only renders them very expenfive, but effentially injures the fire-place.

To have only pointed out the faults of the chimneys in ufe, without flewing how thefe faults may be corrected, would have been a work of very little value; but the Count's Treatife is complete, and contains the plaineft directions for the conftruation of fire-places. Thefe directions are introduced by an explanation of fome technical words and expreffions. Thus, by the throat of a chimney, already mentioned, he means the lower extremity of its canal, where it unites with the upper part of its open fire-place. This throat is commonly found about a foot above the level of the lower part of the mantle, and it is fometimes contracted to a fimaller fize than the reft of the canal of the chimney, and fometimes not.

Fig. 1. Thews the fection of a chimney, on the com- Plate XX. mon conftruction, in which \(d e\) is the throat.

Fig. 2. Thews the fention of the fame chimney altered and improved, in which \(d i\) is the reduced throat.

The breaf of a chimney is that part of it which is immediately

\section*{C H I [467] C H I}
\(\underbrace{\text { Chimuey. }}\) forms the entrance from below into the throat of the chimney in front, or towards the room. It is oppofite to the upper extremity of the back of the open fire-place, and parallel to it: in thort, it may be faid to be the back part of the mantle itfelf.- In the figures 5 . and 2. it is marked by the letter \(d\). The width of the throat of the chimney (\(d e\) fig. r. and \(d i\) fig. 2.) is taken from the breaft of the chimney to the back, and its length is taken at right angles to its width, or in a line parallel to the mantle (\(a\) tig. 1 . and 2.)

The bringing forward of the tire into the room, or rather bringing it nearer to the front of the npening of the fire-place, and the diminifhing of the throat of the chimney, being two objects principally had in view in the alterations in fire-places propofed by the Count, it is evident that both thefe may be attained merely by bringing forward the back of the chimney. The only queftion therefore is, How far it fhould be brought forward? The aniwer is fhort, and eafy to be under. nood; bring it forward as far as pillible, without diminifling too much the paliage which moft be left for the fmoke. Now as this paffage, which in its narroweft part he calls the throat of the chimney, nught, for reafons which have been already explained, to be immediately, or perpendicularly over the fire, it is evident that the back of the chimney mult always be built per. fcetly upright. To determine, therefore, the place for the new back, or how far precifely it ought to be brought forward, nothing more is neceffary than to afcertain how wide the thoat of the chimney onght to be left, or what fpace mult be left between the top of the brealt of the chimney where the upright canal of the chimney begins, and the new back of the fire-place carried up perpendicularly to that height.

Numerous experiments have convinced the Count, that, all circumftarces being well confidered, and the advantuges and difadvantages compared and balanced, four inches is the beft width that can be given to the throat of a chimney, whether the fire-place be defined to burn wood, coals, turf, or any other fuel. In very large halls where great fires are kept up, it may fometimes, though very rarely, be proper to increafe this width to four inches and a half, or even to fire inches.

The next thing to be confidered is the width which it will be proper to give to the back of the chimney; and, in molt cafes, this thould be one-third of the width of the opening of the fire-place in front. It is not indeed abfolutely neceffary to conform with rigour to this decifion, ner is it always poffible; but it thould invariably be conformed to as far as circumftances will permit. Where a chimney, fays the Count, is defigned for warming a room of a middling fize, and where the thicknefs of the wall of the chimney in front, meafured from the front of the mantle to the brealt of the chim. ney, is nine inches, I fhould fet off four inclies more for the width of the throat of the chimney, which, fuppo. fing the back of the climney to be built upright, as it always ought to be, will give thirteen inches for the depth of the fire-place, meafured upon the hearth, from the opening of the fire-place in frent to the back. In this cafe, thirteen inches would be a good fizc for the width of the back; and three times thirteen inches, or 39 inches, for the width of the opening of the fire. glace in front; and the angle made by the back of the
fire-place and the fides of it, or covings, would be jult 135 degrees, which is the beft pofition they can have for throwing heat into the room. This pofition, in. deed, it may fometimes be impolible to attain in altering chimneys alrady built; but a deviation from it of \(t\) wo or three degrees will be of no great confequence ; for the points of by much the greateit importance in altering fire-places upon the principles here recommend\(e d\), are the bringing forward the back to its proper place, and making it of the proper width.

Provifion, how ever, mult be made for the patfage of the chimney-fweeper up the chimney; and this may eafily be done in the fullowing manner: In building up the new back of the fire-place; when this wall (which need never be more than the width of a fingle brick in thicknefs) is brought up fo high that there remains no more than about ten or cleven inches hetween what is then the top of it and the infide of the mantle, or lower extremity of the breaf of the chimney, an opening or door-way, eleven or twelve inches wide, mult be begun in the middle of the back, and continued quite to the top of it, which, according to the height to which it will commonly be neceffary to carrs up the back, will make the opening abundantly fufficient to let the chimney-fweeper pafs. When the fire piace is finifhed, this door-way is to be clofed by a tile or fit piece of fone placed in it without mortar, and by means of a rabbit made in the brick-work, confined in its place in fuch a manrer as that it may be eaflly removed when the chimney is to be firepr, and re. Itored to its place when that work is over. Of this contrivance the reader will be able to form a clear conception from fig. 2. which reprefents the fection of : chimney atter it las been properly altered from what is exhibited in fig. \(t\). In this improved chimney \(/ / /\) is the new back of the fire place; \(l i\) the tile or ftone which clofes the door-way for the chimrey-fweeper; \(d i\) the throat of the chimney narrowed to four inches; \(a\) the mantle, and \(b\) the fone placed under the mantle, fuppoled to have been too high, in order to diminift the height of the opening of the fire-place in front.

It has been obferved above, that the new back, which it will always be found neceffary to build in cider to bring the fire fufficiertly forward, in alteing a chimney conftructed on the common principles, reed never be thicker than the width of a common bick. The fame may be faid of the thicknefs neceffary to be given to the new fides or covings of the chimney; or if the new back and covings are conftructed of fone, ore inch and three quaters, or two inches in thichnets, will be fufficient. Care thould be taken in building up thefe new walls to unite the back to the covings in a folid manner.

Whether the new back and covings are confrueted of !tone or built of bricks, the face between them and the old back and covings of the chimney ought to be filled up to give greater folidity to the Hrncture. This mas be done with loofe rubbilh, or pieces of broken bricks or fones, provided the work be itrengthened by a few layers or courfes of bricks laid in mortar ; but it will be indifpenfably neceflary to finifh the work where thefe new walls cnd, that is to fay, at the top of the throat of the chimney, where it ends abruptly in tho open canal of the chimney, by a horizontal courfe of bricks well fecured with mortar. This courfe of bricks

\section*{C H I [468] C H I}

Chimney. cres
will be upon a level with the top of the donr-way left for the chimney.fueeper; and the void behind the donrway mult be covered with a horizontal fone or tile, to te removed at the fame time the door is removed, and for the fume purpole.

From thefe defcriptions it is clear, that where the throat of the chimney has an end, that is to fay, where it enters into the lower part of the ofen canal of the chininey, there the three walls which form the two co. vings and the back of the fire-place all end abruptly. It is of much importance that they thould end in this manner; for wele they to be floped outward, and raifed in fuch a manner as to fivell out the upper cxtremisy of the throat of the chimney in the form of a trum. per, and increale it by degiees to the fize of the canal of the chimrey, this manner of uniting the lower extremity of the canal of the chimney with the throat would tend to affit the winds, which may attempt to blow down the chimney, in forcing their way through the throat, and throwing the fimoke backward iato the room ; but when the throat of the chimney ends abruptly, and the ends of the new walls form a flat horizontal turface, it wiil be much more difficult fur any wind from above to find and force its way through the nar. row patiage of the throat of the chimney.

As the two walls which form the new covings of the chimney are not parallel to each other, but inclined, prefenting an oblique furface towards the front of the chimney, and as they are built perfectly upsight, and quite flat, from the hearth to the top of the throat, where they end, it is evident that an horizontal fection of the throat will not be an oblong fquare; but its deviation from that form is a matter of no confequence ; and no attempts thould ever he made, hy twifting the covings above where they approach the breat of the chimney, to bring it to that form. All twifts, bends, prominences, excavations, and other irregularities of form in the covings of a chimney, never fail to produce eddies in the current of air which is continually pafling into, and through, an open fire-place in which a tire is burning; and all fuch eddies difturb either the fire or the alcending current of fmoke, or both; and not unfrequently caufe the fmoke to be thrown back into the room. Hence it appears, that the covings of chimneys thould never be made circular, or in the form of any other curve, but always quite flat.

For the fame reafon, that is to f:ty, to prevent eddies, the breaft of the chimney, which forms that fide of the throat that is in front or neareft to the room, Thould be neatly cleaned off, and its furface made quite regular and fmooth. 'This may be ealily done by covering it with a coat of platter, which may be made thieker or thinner in different parts, as may be necella. ry in order to bring the breaft of the chimney to be of the proper form.

With regard to the form of the breat of a chimney, this is a matter of very gieat importance, and which ought always to be particularly attended to. The worit form it can have is that of a vertical plane or upright flat ; and next to this the wort form is an inclined plane. Both thefe forms caufe the current of warm air from the room, which will, in fpite of every precaution, fometimes find its way into the chimney, to crofs upon the current of fmoke which rifes from the fire in a manner moft likely to embarrafs it in its afcent, and drive it back.

The current of air which paffing under the mantle, Chimner. gets into the chimney, fhould be made gradually to lemd its courfe upwards; by which means it will unite quietly with the afcending current of fmoke, and will be lefs likely to check it, or force it back into the roons. Now this may be effected with the greateft eafe and certain. ty, merely by rounding off the brealt of the chimney or back part of the mantle, inftead of leaving it flat or full of holes and comers; and this of courfe onght always to be done.

Having thus afcertained the form and polition of the new covings, the ingenious author next turns his attention to the height to which they fould be carried. This will depend not only on the height of the mantle, but allo, and more efpecially, on the height of the brealt of the climney, or of that part of the chimncy where the breaft ends and the upright canal begins. The back and covings mut rife a few inches, five or fix for inlance, higher than this part, otherwife the throd of the chimney will not be properly formed; but no advantage would be gained by carrying them higher.

One important circumftance refpecting chimney fire. places ftill remains to be confidered; and that is the grate. In placing the grate, the thing priacipally to be attended to is, to make the back of it coincide with the back of the fire-place. But as many of the grates now in common ufe will be found to be too large, when the fire-places are aliered and improved, it will be neceffary to diminifh their capacities by filling them up at the back and fides with pieces of fire-ftone. When this is done, it is the front of the flat piece of fire-ftone which is made to form a new back to the grate, which mult be made to coincide with, and make past of the back of the fire-place.- But in diminithing the capacities of grates with pieces of fire-Itone, care mult be taken not to make them too narrow.

The proper width for grates dellined for rooms of a middling fize will be from fix to eight inches, and their length may be diminifhed more or lefs according as the roum is heated with more or lefs difficulty, or as the weather is more or lefs fevere.-But where the width of a grate is not more than five inches it will be very difficult to prevent the fire from going out.

It frequently happens that the iron backs of grates are not vertical, or upright, but inclined backwards When thefe grates are fo much too wide as to render it necelfary to fill them up behind with fire-ftone, the inclination of the back will be of little confequence; for by making the piece of tone with which the width of the grate is to te diminifhed in the form of a wedge, or thicker above than below, the front of this ftone, which in effect will become the back of the grate, may be made perfectly vertical; and the iron back of the grate being hid in the folid work of the back of the fireplace, will produce no effect whatever; but if the grate be already to narrow as not to admit of any diminution of its width, in that cafe it will be beft to take away the iron back of the grate entirely, and fixing the grate firmly in the brick-work, caufe the back of the fireplace to ferve as a back to the grate.

Where grates, which are defigned for rooms of a middiing haze, are longer than 14 or 15 inches, it will always be beit, not merely to diminifh their lengtlis, by filling them up at their two ends with fire-Itone, but, fusming

\section*{}

Chimney, forming the back of the chimney of a proper width, \(\sim\) without paying any regard to the length of the grate, to carry the covings through the two ends of the grate in fuch a manner as to conceal them, or at leaft to conceal the back corners of them in the walls of the covings.

Hid thefe directions been duly attended to by the mafons who in Scotland pretend to alter chimneys on the principles of Count Rumford, we fhould not have obferved fo many of the grates placed by them jutting out beyond the mantle of the chimney; nor of courfe heard fo many complaints of rooms being rendered more fmoky and the confumption of fuel increafed by thefe pretended improvements. But when the grate is not fet in its proper place, when its floping iron back is retained, when no pains have been taken to make its ends coincide with the covings of the fire place, when the mantle, inftead of baving its back rounded off, is a vertical plane of iron cutting the column of fmoke which rifes beneath it, and, above all, when the throat of the chimney, inltead of four, is made, as we often fee, fourteen inches wide ; let it be remtmbered, that not one of Count Rumford's directions has been followed, and that his principles have as little to do with the conftruation of fuch a chimney as with the building of the wall of China or the pyramids of Egypt.

To contribute our aid to prevent thefe blanders for the future, we fhall here fubjoin the Count's directions for laying out the work; not to inftruct mafons and bricklayers, to whom we earneftly recommend the findy of the effay itfelf (\(H\)), which contains much valuable information that we have omitted; but merely to give the country gentleman an opportunity of difcovering whether the workman whon he employs deviates far and needlefsly from the principles which he pretends to follow.

When a chimney is to be altered, after taking away the grate and removing the rubbifh, firft draw a lirait line with chalk, or with a lead pencil, upon the hearth, from one jamb to the other,-even with the front of the jambs. The dotted line A B, fig. 3. may reprefent this line.

From the middle \(c\) of this line, \((A B)\) another line \(c d\), is to be drawn perpendicular to it, acrofs the hearth, to the middle \(d\), of the back of the chimney.

A perfon mult now lland upright in the chimney, with his back to the back of the chimney, and hold a plumb line to the middle of the upper part of the breat of the chimney (\(d\), fig. 1.) , or where the canal of the chimney begins to rile perpendicularly;-taking care to place the line above in fuch a manner that the plumb may fall on the line \(c d\) (fig. 3.), drawn on the hearth from the middle of the opening of the chimney in front to the middle of the back, and an affiftant muft mark the precife place \(e\), on that line where the plumb falls.

This being done, and the perfon in the chimney having quited his ftation, four inches are to be fet off on the line \(c d\), from \(e\), towards \(d\); and the point \(f\), where thefe four inches end, (which muft be marked with chalk, or with a pencil), will how how far the new back is to be brought for ward.

Through \(f\), draw the line \(g\) b parallel to the line A B, and this line \(g h\) will thow the direction of the

Suppl. Vol. I.
new back, or the ground line upon which it is to be built. The line \(c f\) will flow the depth of the new fire platee; and if it mould happen that \(c f\) is equal to about one-tbird of the line A B, and if the grate can be accommodated to the fire place inftead of its being neceffary to accommodate the fire-place to the errate: in that cafe, half the length of the line \(c f\) is to be fet off from \(f\) on the line \(g f h\), on one fide to \(k\), and on the other to \(i\), and the line \(i k\) will thow the ground line of the fore part of the back of the chimney.

In all cafes where the width of the opening of the fire-place in front (AB) happens to be not greater, or not more than two or three inches greater than three times the width of the new back of the chimney (ik), this opening may be left; and lines drawn from \(i\) to \(A\), and from \(k\) to 13 , will fhow the width and pofition of the front of the new covings:-but when the opening of the fire-place in front is thill wider, it mult be reduced; which is to lee done in the following manner:

From \(c\), the middle of the line A B, ca and \(c b\) mult be fet off equal to the width of the back (\(i k\)), added to half its width \((f i)\); and lines drawn 1 rom \(i\) to \(a\), and from \(k\) to \(b\), will thow the ground plan of the fronts of the new covings.

When this is done, nothing more will be neceffary than to build up the back and covings; and if the fireplace is defigned for burning coals, to fix the grate in its proper place, according to the direstions already given.-When the width of the fire-place is reduced, the edges of the covings \(a \mathrm{~A}\) and \(b \mathrm{~B}\) are to make a finifly with the front of the jambs.-And in general it will be belt, not only for the fake of the appearance of the chimney, but for other reafons alfo, to lower the height of the opening of the fire place whenever its width in front is diminifhed.

A front view of the chimney, after it has been thus altered, is exhibited in fig. 4. where the under part of the door-way is reprefented, as clofed by the white dotted lines.

When the wall of the chimney in front, meafured from the upper part of the breaft of the climney to the front of the mantle, is very thin, it may happen, and efpecially in chimneys defigned for burning wrond upon the hearth, or upon dogi, that the depth of the chimney, determining according to the directions here given, may be too fimall.

Thus, for example, fuppofing the wall of the chimney in front, from the upper part of the brealt of the chimney to the fiont of the mantle, to be only four inches, (which is fnmetinues the cale, particularly in rooms fituated near the top of a houlc), in this cafe, if we take four inches for the width of the throat, this will give cight inches ouly for the depth of the fireplace, which would be too little, even were coals to be burnt indead of wood.-In this cale (fays the Count) I thould increafe the depth of the tireplace at the hearth to is or \(t 3\) inches, and fhould buld the back perpendicular to the height of the top of the burning tuel (whether it be wood burnt upon the heanth or cols in a grate) : and then, foping the back by a genthe inclination torward, bring it to its proper place, 3 P that
(B) It colts but two millings; and he mult be a poor bricklayer indeed who cannot afford to pay that fum for inftruetion in the moft important, as well as moft difficult, pait of his bulinefs.

Chimney. that is to ray, ferpendicularly under the lack part of the throat of the chimaney. This flope, (which will bring the back forward four or five inches, or juft as much as the depth of the fire-place is increafed), though it ought not to be too abrupt, yet it ought to be quite finifhed at the height of eight or ten inches above the fire, otherwife it may perhaps caufe the chimney to fmoke; but when it is very near the fire, the heat of the fire will enable the current of rifing fmoke to overcome the obftacle which this flope will oppofe to its afcent, which it could not do fo ealily were the flope fituated at a greater difance from the burning fuel.

Fig. 5, 6, and 7, fhow a plan, elevation, and rection of a fire-place conftructed or altered upon this principle. -The wall of the chimney in front at \(a\), fig. 7. being only four inches thick, four inches more added to it for the width of the throat would have left the depth of the fire-place meafured upon the hearth \(b c\) only eight inches, which would have been too little;-a niche \(c\) and \(e\) was therefore made in the new back of the fireplace for receiving the grate, which niche was fix inches deep in the centre of it, below 13 inches wide, (or equal in width to the grate,) and 23 inches high; finilhing above with a femicircular arch, which, in its higheft part, rofe feven inches above the upper part of the grate.-The door-way for the chimney-fweeper, which begins juft above the top of the niche, may be feen difinetly in both the figures 6 and 7 . -The face marked \(g\), fig. 7 . behind this door-way, may either be filled with loofe bricks, or may be left void. The manner in which the piece of Itone \(f\), fig. 7. which is put under the mantle of the chimney to reduce the beight of the opening of the fire place, is rounded off on the infide in order to give a fair run to the column of fmoke in its afcent through the throat of the chimney, is clearly expreffed in this figure. The plan fig. \(5 \cdot\) and elevation fig. 6. Show how much the width of the opening of the fire-place in front is diminifhed, and how the covings in the new fire-place are formed.

A perfect idea of the form and dimenfion of the fireplace in its original ftate, as alfo after its alteration, may be liad by a careful infpection of thefe figures.

In chimneys, like that reprefented in figure 8, where the jambs \(A\) and \(B\) project far into the room, and where the front edge of the marble flab \(o\), which forms the coving, does not come fo far forward as the front of the jambs, the workmen in conftructing the new covings are very apt to place them,-not in the line \(c A\), which they ought to do,-but in the line \(c 0\), which is a great fault.-The covings of a chimney thould never range bebind the front of the jambs, however thofe jambs may project into the room;-but it is not abfo. lutely neceffary that the covings Thould make a funi/b with the internal front corners of the jambs, or that they thould be continued from the back- \(c\), quite to the front of the jambs at \(A\). - They may finifh in front at \(a\) and \(b\); and fmall corners \(A, 0, a\), may be left for placing the fhovels, tongs, \&c.

Were the new coving to range with the front edge of the old coving \(a\), the obliquity of the new coving would commonly be too great;-or the angle \(d c a\) would exceed I 35 degrecs, which it never flould do,or at leaft never by more than a very few degrees. No inconvenience of any importance will arife from making
the obliquity of the covings \(t e f_{s}\) than what is here re. Chimney. commended; but many cannot fail to be produced by making it much greater.

Thefe extracts, which we have made fo liberally from Count Rumford's effay on chimney fire-places, will be fufficient, we hope, to bring fully within the comprehenfion of thofe who are acquainted with pneumatics and pncumatic chemittry the principles on which chimneys and fire-places thould be conftructed; but fuch as are in a great meafure itrangers to thefe fciences will do well to confult the effay itfelf. With a benevolence which does him honour, the ingenious author has expreffed a wifh that his doctrines on this important fubject may be widely propagated; and to encourage artifts to ftudy them, he has declared to the public in general, that "as he does not intend to take out himfelf, or to fuffer others to take out, any patent for any invention of his which may be of public utility, all perfons are at full liberty to imitate them, and vend them, for their own emolument, when and where, and in any way they may think proper."
\(C_{\text {HIANET }}\)-Swecpers are a clafs of men who earn their fubfitence by clearing chimneys of foot, which occafions them to fmoke. While chimneys continued to be built in fo fimple a manner, and of fuch a width as they are ftill obferved to be in old houfes, they were fo eafily cleaned that this fervice could be performed by a fervant with a wifp of Atraw, or a little brufhwood faftened to a rope; but after the flues, in order to fave room, were made narrower, or when feveral flues were united together, the cleaning of them became fo difficult, that they required boys, or people of fmall fize, accuftomed to that employment. The firft chimney-fweepers in Germany came from Savoy, Piedmont, and the neighbouring territories. Thefe for a long time were the only countries where the cleaning of chimneys was followed as a trade ; and hence Profeffor Beckmann concludes with great probability, that chimneys were invented in Italy. The Lotharingians, however, undertook the bufinefs of chimner-fweeping alfo; on which account the duke of Lotharingia was ityled the imperial fire mafler. The firt Germans who condefeended to clean chimneys were miners; and the chimney-fweepers in that empire fill procure their boys from the foreft of Hartz, where the greateit mines are wrought. Very lately, and perhaps at prefent, the greater part of the chimney-fweepers in Paris wereSavoyards, many of them not above eight years of age, who, for the paltry fum of five fous, which they were obliged to thare with their avaricious mafter, would fcramble, at the hazard of their lives, through a narrow funnel fifty feet in length, and with their befoms clean it from foot and dirt. At what precife period chimney-fweeping became a trade in England and Scotland, we hive not been able to learn; but among us, as well as elfewhere, young boys are employed in this bufinefs, who are faid to be very harffly treated by fellows who ftole them from the doors of cottages in the country. That children have been fometimes kidnapped by chimney-fweepers, we can have no doubt; but that the practice is frequent, we do not believe. We think however that the bufinels might be wholly abolifhed; for a narrow funnel might ceitainly, if not very crooked, be fwept by a bundle of Itraw or brufhwood faftened to a rope, as well as one that is wider: and the bricks which feparate the conti-

\section*{C H I [47I] C H I}

Chimney guous flues we know to be lefs injured by this method of fweeping, when cautioufly gone about, than by fending boys up the chimneys.

On the 4 th of July \({ }^{1796}\), letters patent were granted to Daniel Davis, of the parifh of St Giles Middle. fex, for his invention of a machine, by which he propofes to fweep and cleanfe chimneys, and extinguifh chimneys on fire, without any perfon going up the fame, as is now the practice. The macline confifts of an apparatus of rack work, of various lengths, which, by means of a hand-turn, is made to afcend the chimney. The lengths of the rack-work are joined together by means of mortifes and tenons, with a fpring which holds them faft. In each length is a joint, by which the rack work will accommodate itfelf to angles or turns in the flues. To the fitf or uppermoft length is affised a orufl of hair, or wire, or fpunge, or other elaftic fubftance, as the occafion may require.

This invention is doubtlefs well calculated to anfwer the purpofe intended, and may perhaps be the means of diminifhing the number of thofe objects of mifery, the unfortunate chimney-\{weepers.

CHINA is an empire of fuch antiquity and extent, the laws and cuftoms of the people are fo fingular, and the populonfnefs of the country fo very great-that it has attracted much of the attention of Europeans ever fince it was vifited in the \(13^{\text {th }}\) century by Marco Paulo the Venetian traveller. Of fuch a country it would be unpardonable not to give fome account in a work of this nature ; but we have not, is truth, much to add to what has been faid of China and the Chinefe in the Encyclopadia. Since the article China in that work was publifhed, the court of Pekin has indeed been vifited by an embally from Great Britain, and the origin of the people, as well as the antiquity of their empire, has been inveltigated by Sir William Jones with his ufual diligence; but from his memoir, publifhed in the fecond volume of the Afiatic Refearches, and from Sir George Staunton's account of the embafly, there is not much to be cxtracted which would be either amuling or inllructive to our readers.

We have already obferved, from Grofier and others, that the Chinefe not only lay claim to the higheft antiquity, but even contend that their firft emperor was the firff man. Both thefe pofitions are controverted by Sir William Jones, who, though he allows the Chinefe empire to be very ancient when compared with the oldeft European fate, is yet decidedly of opinion that it was not founded at an earlier period than the 12 th century before the Chritian era; and that the people, fo far from being aborigines, are a mixed race of Tartars and Hindoos. He begins his inveltigation with afking, "Whencecame the fingular people who long had governed China, before they were conquered by the
from the fteeps of Imaus: And a fourth, at leaft as dogmatically pronounced as any of the precediner, is that of the Brabmans, who decidc, without allowing any appeal from their decifion, that the Cbitas (for fo they are named in Sanfcrit) were Hindoos of the military calt, who, abandoning the privileges of their tribe, rambled in different bodics to the north.eaft of Benzal; and forgetting by degrees the rites and the religion of their anceftors, eftablifhed feparate principalities, which were afterwards united in the plains and valleys which are now poflefled by them."

Of there opinions, Sir William having very completely demolifhed the firt three, proceeds to eftablifi the fourth, which he confiders as interefting as well as new in Europe. In the Sapferit inftitutes of civil and religious dutics, revealed, as the Hindoos believe, by Menu the fon of Brahma, we find (fays he) the following curious paffage: ' Many families of the military clafs, having gradually abandoned the ordinances of the Veda, and the company of Brahmans, lived in a fate of degradation; as the people of Pundraca and Odra, thofe of Dravira and Cambia, the Yavanas and Sacas, the Paradas and Pablavas, the Chinas, and fome other nations.' A full comment on this text (continues the prefident) would be fuperfluous; but fince the teltimony of the Indian author, who, though not a divine perfonage, was certaialy a very ancient lawyer, moralift, and hifto rian, is direct and pofitive, difinterefted and unfufpected, it would decide the queftion before us if we could be fure that the word Cbina fignifies a Chinefe." Of this fact Sir William Jones took the very beft methods to be fatisfied. He confulted a number of Pandits feparately, who all affured him that the word China has no other fignification in Sanforit; that the Chinas of Menu fettled in a fine country to the north-eaft of Gaur, and to the eaft of Camarup and Napal; that they had long been, and ftill are, famed as ingenious artificers ; and that they (the Pandits) had themfelves feen old Chinefe idols, which bore a manifeft relation to the primitive religion of India. He then laid before one of the beft informed Pandits a map of Afia; and when his own country was pointed out to him, the Pandit immediately placed his finger on the north-weftern provinces of China, as the place where he faid the Cbinas of Menv firt e!tablifhed themfelves.

In the opinion of Sir William Jones, this is complete evidence that the Chinefe are defcended from an Indian race; but he does not believe that the Chinefe empire, as we now call it, was formed when the laws of Menu were collected; and for lis calling this fact in queftion, he offers reafons, which to us are perfectly fatisfactory. By a diligent and accurate comparifon of ancient Sanferit writings, he has been able to fix the period of the compilation of thofe laws at between 1000 and 1500 years before Chrift ; but by the evidence of Confucius himfelf, he proves, that if the Chinefe empire was formed, it could be only in its cradle in the 12 th cen. tury before our era. In the fecond part of the work, intitled Luin \(1 \ddot{i}\), Confucius declares, that "although he, like other men, could relate, as mere leffons of morality, the hiftories of the firft and fecond imperial houfes, yet, for rvant of evidence, be could give no certain account of them." Now, fays Sir William, if the Chinefe themfelves do not pretend that any hitorical monument exilted in the age of Confucius preceding \(3 P_{2}\)

\section*{C H I [472\(] \quad\) C H}

China.
the sife of their third dynaty, about 1100 years before the Chriftian epoch, we may juftly conclude, that their empire was then in its infancy, and did not grow to maturity till fome ages afterwards. Nay, he is inclined to bring its origin till lower down. "It was not, fays fe, till the eighth century before the birth of our Saviour, that a fniall kingdom was erected in the province of Shen-fi, the capital of which food nearly in the 35 th degree of northern latitude, and about five degrees to the weft of Si-gan. That country and its metropolis were both called Chin ; and the dominion of its princes was gradually extended to the calt and welt. The territory of Chin, fo called by the old Hindoos, by the Perfians, and by the Chinefe, gave its name to a race of emperors, whofe tyranny made their memory fo unpopular, that the modern inhabitants of China hold the word in abhorrence, and fpeak of themfelves as the people of a milder and more virtuous dynafty: but it is highly probable, that the whole nation defcended from the Cbinas of MENU, and mixing with the Tartars, by whom the plains of Honan and the more fouthern provinces were thinly inhabited, formed by degrees the race of men whom we now fee in poffeffion of the nobleft empire in Afia."

In dupport of this opinion, which the accomplifhed author offers as the refult of long and anxious inquiries, he obrerves, that the Chinefe have no ancient monuments from which their origin can be traced, even by plaufible conjecture; that their fciences are wholly exotic; that their mechanic arts have nothing in them which any fet of men, in a country fo highly favoured by nature, might not have difcovered and improved; that their philofophy feems yet in fo rude a ftate as hardly to deferve the appellation; and that their popular religion was imported from India in an age comparatively modern. He then inftitutes a comparifon between the mythology of the Chinefe and that of the Hindoos; of which the refult is, that the former people had an ancient fyftem of ceremonies and fuperfitions which has an apparent affinity with fome parts of the oldell Indian wothip. "They believed in the agency of genii or tutelary fipirts, prefiding over the ftars and the clouds; over lakes and rivers, mountains, valleys, and woods; over centain regions and towns; over all the elements, of which, like the Hindoos, they reckoned five; and particularly over fire, the moft brilliant of them. Tu thofe deities they uffered victims on high places. And the following paifage from one of their facred books, fays Sir William, is very much in the Ay!e of the Brahmans: 'Even they who perform a facrifice with due reverence, cannot petfcetly affure themfelves that the divime fpirits accept their oblations; and far lefs can they, who adore the gods with languor and ofcitancy, clearly perceive their facred illapfes.' Thefe (continues the prefident) are imperfect traces indeed, but they are traces of an affinity betwean the religion of Menu and that of the Chinas, whom he names among the apoftates from it; and befides them, we difcover many other very fingular marks of relation between the Chinefe and the old Hindoos.
"This relation (he thinks) appears in the remarkable period of 432,000 , and the cycle of 60 years; in the predilection for the myftical number nine ; in many fimilar fafts and great feftivals, efpecially at the folltices and equinoxes; in the oblequies, confilting of rice and
fruits offered to the manes of their anceftors; in the dread of dying childlefs, left fuch offerings thould be intermitted; and perhaps in their common abhorrence of red objects, which the Indians carried fo far, that Menu himfelf, where he allows a Brahinan to trade, if he cannot otherwife fupport life, abfolutely forbids his trading in any fort of red cloths, whether linen, or woollen, or made of woven bark. In a word, fays Sir William Jones, all the circumftances which have been mentioned feen to prove (as far as fuch a queftion ad. mits proof), that the Chinefe and Hindoos were originally the fame people; but laving been feparated near 4000 years, they have retained few Arong features of their ancient confanguinity, efpecially as the Hindoos have preferved their old language and ritual, while the Chinefe very foon lof both; and the Hindoos have contantly intermarried among themielves, while the Chinele, by a mixture of Tartarian blood from the time of their firf eftallifhment, have at length formed a race diftinct in appearance both from ludians and Tartars."

Sir George Staunton, who accon:panied the Earl of Macartney on his embalfy to the emperor of China, does not indeed directly controvert this rearoning; but overlooking it altogether, gives to the Chinefe a much higher antiquity than Sir William Jones is inclined to allow them. Taking it for granted that their cycle is their own, and that it is not the offspring of altronomical fcience, but of repeated obfervations, he feems to give implicit credit to thofe annals of the empire which almot every other writer has contidered as fabulous.
"Next to the ftudies which teach the economy of life, the Chinefe (fays he) value moft the hiftory of the events of their own country, which is, to them, the globe; and of the celeftial movements which they had an opportunity of obferving at the fame time." In regard to the former, he tells us, that "from about three centuries before the Chriftian era the tranactions of the Chinefe empire have been regularly, and without any intervening chafm, recorded both in official documents and by private contemporary writers. Nowhere had liftory become fo much an object of public attention, and nowhere more the occupation of learned individuals. Every confiderable town thronghout the empire was a kind of univerfity, in which degrees were conferred on the proficient in the hiftory and government of the ftate. Hiforical works were multiplied throughout. The accounts of recent events were expofed to the correction of the witneffes of the facts, and compilations of former tranfactions to the criticifms of rival writers." In regard to the latter, the movements of the heavenly bodies, he thinks that in no country are there ftronger inducements or better opportunities to watch them than in China; and hence he infers, that the cycle of fixty years is of Chinefe formation. "In a climate (fays he) favourable to aftronomy, the balance of hours beyond the number of days during which the fun appeared to return oppofite to, and to obicure, or to mix among the fome fixed ftars, might be afcertained in a fhort time; and occafioned the addition of a day to every fourth year, in order to maintain regularity in the computation of time, in regard to the return of the feafons; but many ages muf have palt before a period could have been difcovered, in which the unequal returns of the fun and moon were fo accurately adjufted, that at its termina-

\section*{C H I [473] C H I}

China.

\section*{\(\sim \sim\)}
tion the new and full moons fhould return, not only to the fame day, but within an loour and a half of the time they had happened, when the period commenced. The knowledge of fuch a period or cycle could be obrained only by a multiplicity of cdreful and accurate oblervations. Many revolutions of thole great luminaries muft have been completed, and numberlefs conjunctions have paft over, before their returns could be afcertained to happen in the fame day, at the end of nineteen years. The fmall difference of time between the returning periods of this cycle, was partly leffened by the intervention of another of 60 years, or of 720 revolutions of the moon, which, with the fettled intercalation of 22 luna. tions, were at firf fuppofed to bring a perfect coincidence of the relative pofitions of the fur and moon: but even according to this period, every new year was made conftantly to recede, in a very fmall degree, which the Chinefe corrected afterwards from time to time. This cycle antwered a double purpofe, one as an era for chronological reckoning, and the other as a regulating period for a luni-folar year. Each year of the cycle is diftinguifhed by the union of two characters, taken from fuch an arrangement of an unequal number of words placed in oppofite columns, that the fame two characters cannot be found again together for fixty years. The firft column contains a feries of ten words, the other twelve; which laft are, in fact, the fame that denote the twelve hours or divilions of the day, each being double the European hour. The firtt word or character of the firf leries or column of ten words, joined to the firlt word of the fecond feries or column of twelve, marks the firft year of the cycle: and fo on until the firlt feries is exhaufted, when the eleventh word of the fecond feries, combined with the firlt of the firt feries, marks the eleventh year of the cycle; and the twelfth or latt of the fecond feries, joined witis the fecond of the firft feries, ferves for denoting the twelfth year. The third of the firt feries becomes united in regular progrefion with the firft of the fecond feries, to mark the thirteenth year; and proceeding by this rule, the firft claracter in the firft and in the fecond feries cannot come again together for fixty years, or until the firt year of the fecond cycle. The Chriftian year 1797 anfwers to the \(54^{\text {th }}\) year of the \(68 \mathrm{th}_{\mathrm{l}}\) Chinefe cycle, which afcertains its commencement to have been 2277 years before the birth of Chrift ; unlefs it he fup. pofed that the official records and public annals of the empire, which bear teftimony to it, fhould all be falli. fied, and that the cycle when firt eftablithed hould have been antedated; which is indeed as little probable as that the periond, for example, of the Olympiads fhould be afferted to have commenced many ages prior to the firf Olympic games."
This is a very pofitive decifion againft the opinion of a man whofe talents and knowledge of oriental learung were fuch as to give to his opinions on fuch futjeats the greateft weight. If the flatements and reatonings of Sir George Staunton be accurate, the Chinefe empire mult have fublifted at lealt 3000 years before the Chrillian era; for he fays exorefsly, that many ages mult have elapfed before the commencement of that cycle, which, according to him, commenced 2277 years before the birth of Chrift. But furely Confueius was as well acquainted with the ancient annals of his own country, and the credibility which is due to them, as
any man of the prefent age, whether Chinefe or Enropean; and we have feen, that he confidered none of them as authentic which relate events previous to the Ith century before our era. Even this is by much tuo early a period at which to rely upon them with implicit confidence, if it be true, as Sir George informs us, that the tranfactions of the empire have been regularly recorded only from about three centuries before the birth of Chrift. With refpect 10 the cycle, there is every probability that it was derived from India, where we know that aftronomy has been cultivated as a fcience from time inmemorial, and where, we have thewn in another place, that the commencement of the cycle was actually antedated (fee Philosophy, no 9. Encycl.) We have therefore no hefatation in preferring Sir William Jones's opinion of the origin of the Chinefe empire to Sir George Staunton's : not merely becaufe we believe the former of thefe gentlemen to have been more converfant than the latter with Chinefe literature, but becaufe we think his reafoning more confiftent with itfelf, and his conclufion more confonant to that outline of chronology, which, as he obferves, has been fo correctly traced for the laft 2,000 years, that we mult be handy fceptics to call it in queltion.
There is another point very nearly related indeed to this about which thefe two learned men likewife differ. Sir George Staunton informs us, that "no accounts of a general deluge are mentioned in Chinefe hiftory." Sir William Jones, on the other hand, in the difcourfe already quoted, fays, "I may affure yom, af. ter full inquiry and confideration, that the Chinefe, like the Hindoos, believe this earth to have been wholly covered with water, which, in works of undifputed allthenticity, they defcuibe as forwing abundantly, then fubfiding, and Separating the higher from the lower age of mart. kind." To which of thefe authors fhall we give credit? The high antiquity which Sir George Statin. ton affigns to the Chinefe empire rendered it neceffary for the perfons from whom he drew his information to get quit by any me.ns of an univerfal deluge. The fyltem of Sir William Jones left him at liberty to admit or reject that event according to evidence; and in addition to the authentic records to which he appeals, he quotes a mytholngical table of the Chinefe, and another of the Hindoos, which, though he lays not upon them any great ftrefs, appear to us, when compared togrer, not only to corroborate his opinion refpecting the dsfcent of the Chinefe, but likewife to thew that both they and the Hindoos have preferved a traditionary account of the deluge very fimilar to th:t which is given by Mofes. The Chincfe fable is this: "The mother of Forms was the daughter of Heaven, furnamed Flawerloving; and as the nymph was walking alome on the brink of a river with a limilar name, fhe found herfelf on a fudden encircled with a rainhow; foon after which the became pregnant, and at the end of twelve years wats delivered of a lon, radiunt as hee felf, who anmong other titlec, had that of Sui, or the Star of the Fear." In the mythological fy fem of the Hind o., "the ngnuph Ronivi, who prefides over the fourth limar in infion, was the favorite mifirefs of Soma or the MLon, antong whofe numerous epirhets we lind Cumudazáăaca, or delighting in a fecies of water-flower that blofinns at night. The ofispring of Romina and Soma was BudHa, regent of a planet; and he married lis, whotetio -

\footnotetext{

}

\(\qquad\)

\(\qquad\) +

 .

\(\qquad\) . I

 1 - ,
 .

 thics

China.
verfid deluge." The learned prefident hews, that according to the Brahmans, the Chinefe defeended from Budua: and he mentions a divine perfonage connected with the Chinefe account of the birth of FO.Ht, whofe name was Nte-ra. But if all thefe circumftances be laid tngether, it will appear, we think, peetty evident, that the two ancient nations have preferved the fame tradition of an univerfal deluge, and that the Chinefe rainbow and Niu va, with the Indian are, point to the flood of Noat.

To Sir William Jones's derivation of the Clinefe from the Hindoos, the ftate of their written language may occur as an objedion; for fince it is certain that alphabetical characers were in ufe among the Hindoos before the period at which he places the cmigration of the Chinas, how, it may be alked, came thefe people to drop the mode of writing practifed by their anceltors, and to adopt another fo very inconvenient as that which the Chinefe have ufed from the foundation of their em. pire? The force of this objection, however, will vanifh, when it is remembered that the Cbinas were of the military caft ; that they had gradually abandoned the ordinances of the Vedia, and were in confequence degraded; and that they rambled from their native country in fmall bodies. We do not know that the military cait among the Hindoos was ever much devoted to letters; there is the greatelt reafon to believe that a degraded caft would negleet them; and it is certain that fmall bodies of men, wandering in deferts, would have their time and their attention completely occupied in providing for the day that was paffing over them. That the Chines fhould have forgoten the alphabetical characters of the Hindoos is therefore fo far from being an cbjection to Sir Wrilliam Jones's account of their defcent from that pcople, that it is the natural confequence of the manner in which he fays they rambled from Hindoftan to the northern provinces of what now contitutes the Chinefe empire.

Of the origin of the characters which are ufed by this fingular people, the illuftrious prefident of the Affatic Society gives the following account from a Chinefe writer, named \(L_{1}\) Yang \(P_{i n g}\). "The earlieft of them were nothing more than the outlines of vifible objects, earthly and celeftial ; but as things merely intellectual could not be expreffed by thofe figures, the grammarians of China contrived to reprefent the various operations of the mind by metaphors drawn from the produations of nature. Thus the idea of roughneis and of rotundity, of motion and reft, were conveyed to the eye by figns reprefenting a mountain, the fky, a river, and the earth. The figures of the fun, the moon, and the thars, differently combined, food for fmoothnefs and fplendour, for any thing artfully wrought or woven with delicate workmanfhip. Extenfion, growth, increafe, and many other qualities, were painted in characters taken from the clonds, from the firmament, and from the vegetable part of the creation. The different ways of moving, agility and flownefs, idienefs and diligence, were exprefled by various infects, birds, fifhes, and quadrupeds. In this manner paffions and fentiments were traced by the pencil, and ideas not fubject to any fenfe were exhibited to the fight; until by degrees new combinations were invented, new expreffions added, the characters deviated imperceptibly from their
primitive fhape, and the Chinefe language became not only clear and forcible, but rich and elegant in the highelt degree*."

Of this larguage, both as it is fpoken and written, Refcarches, Sir Genrge Staunton has given an account fo clear and fcientific, that it will undoubtedly place him ligh among the moft cminent philologifts of the i 8 th century. As there is nothing relating to the Chinefe more wonderful than their language, which is very little undertood in Europe, we flall lay before our readers a pretty cofious abitract of what he fays on the fubject, referring them for further information to his account of Lord Macattney's Embafly to China.
"In the Chinefe tongue (fays Sir George) the founds of feveral letters in moft alphabets are utterly unknown, and the organs of a native advanced in life cannot pronounce them. In endeavouring to utter the founds of \(\mathrm{B}, \mathrm{D}, \mathrm{R}\), and X , for inftance, he fubflitutes fome other founds to which the fame organ has been accuftomed; Le for R, and, as we have reafon to think from fome exprefions of Sir William Jones's, F for B. The nice diftinctions between the tones and accents of words nearly refembling each other in found, but varying much in fenfe, require a nicety of ear to diftinguifh, and of vocal powers to render them exactly. Synonymous words are therefore frequently introduced in Chinefe dialogue to prevent any doubt about the intended fenfe; and if in an intricate difcuflion any uncertainty fhould Atill remain as to the meaning of a particular expreflion, recourfe is had to the ultimate criterion of tracing with the finger in the air, or otherwife, the form of the charater, and thus afcertaining at once which was meant to be expreffed. In a Chinefe fentence there is no marked ditinction of fublantives, adjectives, or verbs; nor any accordance of gender, number, and cafe. A very few particles denote the paft, the prefent, and the future : nor are thofe auxiliaries emplored when the intended time may be otherwife inferred with certainty. A Chinefe who means to declare his intention of departing to-morrow, never fays that he wuill depart to-morrow; becaufe the expreflion of the morrow is fufficient to afcertain that his departure mult be future. The plural number is marked by the addition of a word, without which the fingular always is im. plied. Neither the memory nor the organs of feech are burthened with the pronunciation of more founds to exprefs ideas than are abfolutely neceffary to mark their difference. The language is entirely monofyllabic. A fingle fyllable always expreffes a complete idea. Each fyllable may be founded by an European confonant preceding a vowel, fometimes followed by a liquid. Such an order of words prevents the harhnefs of fucceeding conforants founding ill together; and renders the language as foft and harmonious as the Italian is felt to be, from the rarity of confonants, and the frequency of its vowel terminations.
"The names or founds, by which men may be firft fuppofed to have diftinguifhed other animals, when occafion offered to defignate them in their abfence, were attempts at an imitation of the founds peculiar to thofe beings; and Atill, in Chinefe, the name, for example, of a cat, is a pretty near refemblance of its ufual cry. It occurred as naturally to endeavour, in fpeaking, to imitate the voice, if practicable, as it was in writing to Retch a rude figure of the object of defcription. It is obfervable,

\section*{C H \(\quad[475] \quad \mathrm{C}\) H I}

Chirs. obfervable, that the radical words of mon languages, feparated from the fervile letters, which mark their infiections, according to their conjugations or declentions, are monofyllabic. A fart of each radical word is rctained in compofition to denote the meaning and etymology of the compound, which thus becomes polyfyllabic ; but the Chinefe grammarians, aware of the inconvenience refulting from the length and complication of founds, confined all their words, however fignificant of combined ideas, to fingle founds; and retained only in writing, fome part at leatt of the form of each character, denoting a fimple idea, in the compound characters conveying complex ideas."

This is a very plaufible, and perhaps the true account of the monofyllabic form of the Chinefe language; but it is proper to ftate the different account which is giren of this peculiarity by Sir William Jones. "It has arifen, according to him, from the fingular habits of the people; for though their common tongue be fo mufically accented as to form a kind of recitative, yet it wants thofe grammatical accents, without which all human tongues would appear monofyllabic. Thus Amit.r, with an accent on the firf fyllable, means, in the Sanfirit language immeafurable, and the natives of Bengal pronounce it Omito; but when the religion of Buddha, the fon of Máyá, was carried into Clina, the people of that country, unable to pronomnce the name of their new god, called him Foe, the fon of Mo-ye; and dirided his epithet Amita into three fyllables O.mi.to, annexing to them certain ideas of their own, and expreffing them in writing by three coitinet fymbols. Hence it is that they have clipped their language into mnnofyllables, even when the ideas expreffed by them, and the written fymbols for thofe idcas, are very complex."
"In the Chinefe language, Sir Genrge Staunton informs us, that there is a certain order, or fettled fyntax, in the fucceffion of words in the fame fentence; a fuccefion fixed by cuftom differently in different languages, but founded on no rule or natural order of ideas, as has been fometimes fuppofed; for though a fentence confifts of feveral ideas, to be rendered by feveral words, thefe ideas all exift and are connected together in the fame inftant; forming a picture or image, every part of which is conceived at once. The formation of Chinefe fentences is often the fimpieft and moft artlefs pofible, and fuch as may naturally have occurred at the origin of fociety. To interrogate, for example, is often at leaft to require the folution of a queftion, whether the fubject of doubt be in a particular way or the contrary ; and accordingly, a Chincie inquising about his friends health, will fometimes fay, bou, poo bou? 'The literal meaning of which words is, "well, not well ?" A fimple character repeated ftands fometimes for more than one of the objects whicll fingly it denotes, and fometimes for a collestive quantity of the fame thing. The chawafter of moo fingly is a tree, repeated is a thicket, and tripled is a foreit.
"In Chinefe there are fearcely fifteen hundred diftinct \(f\) unds. In the written language there are at leaft eighty thouland characters or different forms of letters, which number divided by the firt gives nearly fifty fenfes or characters upom an average to every found exprefled ; a difproportion, however, that gives more
the appearance than the seality of equivocation and uncertainty to the oral languige of the Chinefe.
"The charasters of the Chincfe language were originally traced, in molt infances, with a view to explefs either real images, or the allegorical figns of ideas: a circle, for example, for the fun, and a crefcent for the moon. A man was reprefented by an erect figure, with lines to mark the extremities. It was evident that the difficulty and tedionfinefs of imitation will have occafioned foon a clange to traits more fimple and more quickly traced. Of the entire figure of a man, little more than the lower extremities only continue to be drawn, by two lines forming an angle with each other. A faint refemblance, in fome few inftanees, fill remains of the original forms in the prefent hieroglyphic characters; and the gradation of their clanges is tataced in feveral Chinefe books. Not above half a dozen of the prefent characters confift each of a fingle line ; but moit of them confilt of many, and a few of fo many as feventy different llowes. The form of thofe characters has not been fo flux as the found of words, as appears in the inAtance of almolt all the countries bnrdering on the Chinefe Sea or Eattern Afia, where the Chinefe writien, but not the oral language, is underfood; in like manner, as one form of Arabic figures to denote numbers, and one fet of notes for mulic, are uniform and intelligible throughout Europe, notwithnanding the variety of its languages.
"A certain order or connection is to be perceived in the arrangement of the written characters of the Chinefe; as if it had been formed originally upon a fyftem to take piace at once, and not grown up, as other languages, by llow and diftant intervals. Upwards of two hundred characiers, generally confifting each of a few lines or Atrokes, are made to mark the principal objects of nature, fomewhat in the manner of Bifhop Wilkin's divifions, in his ingenious book on the fubjeet of univerfal language, or real character. Thefe may be confidered as the genera or roots of language, in which every other word or fpecies, in a fyftematic fenfe, is referred to its proper genus. The least is a genus, of which the reprefentation of a curve line approaches fomewhat to the form of the object; and the fpecies referable to it include all the fentiments, paffions, and affections, that agitate the human breatt. Each fpecies is accompanied by fome mark denoting the genus or heart. Under the genus band are arranged moft trades and manual exercifes. Under the genus avord every fort of fpeech, ftudy, writing, underltanding, and dew bate. A horizontal line marks a unit; crolfed by another line it fands for ten, as it does in every natinn which repeats the units after that namber. 'The five elements, of which the Chinefe fuppofe all bodies in nature to be compounded, form fo many gencra, each of vhich comprchends a great number of fpecies under it. As in every compound character or fpecies, the abridged mark of the genus is difcern:ble by a futent of that language, in a little time he is enabled to confult the Chincee distie:nary, in which the compound characters or fpecies are arranged under their proper gencra. The characters of thefe genera are piaced at the beginning of the dictionary, in an order which, like that of the alphabet, is invariable, and foon becomes familiar to the learner. 'The fpecies under each genus

China.
fulow each cther, according to the number of trokes of which each confifts, independenty of the one or few which ierve 10 point out the genus. The fpecies wranted is thus foon found out. Its meaning and pronunciation are given through oiher words in common ule; the firt of which denotes its fignification and the other its found. When no one ermmen word is found to render exactly the lame found, it is communicated by two words with marks, to inform the inquirer that the conPonant of the firlt word and the vowel of the fecond joined together form the precife fonnd wanted.
" The compolition of many of the Chinefe characters often difplays confiderable ingenuity, and ferves alfo to give an infight ino the opinions and mannets of the people. The character expreffive of happinefs in. clude, abridged marks of land, the Cource of their phyfical, and of children that of their moral, enjoyments. This charader, embellifhed in a varicty of ways, is hung up almolt in every houfe. Sometimes written by the hand of the emperor, it is fent by him as a compliment, which is very highly prized, and fuch as be was pleafed to fend to the embalfidor.
"Upon the furmation, changes, and allufions of - mpound chatacters, the Chinefe have publified many thoufand volumes of philological learning. Nowhere does criticifn more abound, or is more ftrict. The introduction or altetatica of a character is a ferious un. dertaking, and feldum fails to meet with oppotition. The molt ancient witings of the Chinefe are flill claflical amongit them. The language feems in no intance to have been derived from or mixed with any other. The writter: feems to have followed the oral language foon after the men who fooke it were formed into a regular fociety. Though it is likely that all hierogly phical languages were originally founded on the principles of imitation, yet in the gradual progrefs towards arbitrary forms and founds, it is probable that every fociety deviated from the originals in a different manner from the others; and thus for every independent fociety there arote a feparate hieroglyphic language. As foon as a communication tuok place between any two of them, each would hear names and founds not common to both; each reciprocally would mark down fuch names in the founds of its own characters, bearing, as hieroglyphics, a different fenfe. In that inftance, confequently, thofe chalacters ceafe to be hieroglsphics, and were mesely marks of found. If the foreign founds could not be expreffed but by the ufe of a part of two lieroglyphics, in the manner mentioned to be ufed fometimes in Chinefe dictionaiies, the two marks joined together become in fact a fyllable. If a frequent intercourfe fhould take place between communities lpeaking different languages, the neceffity of uling hieroglyphics merely as marks of found would frequently recur. The practice would lead imperceptioly to the difovery that, with a few hienglyphics, every fund of the foreign language niglit be expreifed; and the hieroglyphics which anfwered bett thi, purpofe, either as to exictneis of fiund or limplicity of form, would be felected for this particular ute; and ferving as in many letters, would form in fact toget er what is called in alph abet. 'Thus, the paifage from hieroglyphic to alphabetic wriing may naturally be traced, without the neceflity of having 'recourle to divine inftruction, as fome learned men have conjectured, on the ground that the art of
writing by an alphabet is too refined and artificial for untutored reafon.'
"The Chinefe printed character is the fame as is ufed in molt manufcripts, and is chiefly formed of ftraight lines in angular pofitions, as mof letters are in Eaftern tongues, efpecially the Sanferit ; the characters of which, in fome inltances, admit of additions to their original form, producing a modification of the fenfe. A running loand is ufed by the Chinefe only on trivial occations, or for private note 3 , or for the cafe and expedition of the writer; and differs from the other as much as an European manulcript does from print. There are books with alternate columns of buth kinds of writing for their mutual explanation to a learner.
"The principal difficulty in the Itudy of Chinele writings arifes from the general exclufion of the auxiliary particles of colloquial language, that fix the relation between indeclinable words, fuch as are all thofe of the Chinefe language. The judgment mult be conilancly excrifed by the fludent, to fupply the abfence of fuch affifance. That judgment mult be guided by attention to the manners, cultom:, laws, and opinions of the Chinefe, and to the events and local circumftances of the country, to which the allufions of language perpetually refer. If it in general be true, that a language is difficult to be underitood in propartion to the diftance of the country where it is fpoken, and that of him who endeavours to acquire it, becaufe in that proportion the allufions to which language has continually recourfe are lefs known to the learner, fome idea may be conceived of the obftacles which an European may expect to meet in reading Chinefe, not only from the remotenefs of lituation, but from the difference between him and the native of China in all other refpests. The Chinefe characters are in fact fketches or abridged figures, and a fentence is often a Itring of metaphors. The different relations of life are not marked by arbitrary founds, fimply conveying the idea of fuch connection; but the qualities maturally expected to arife out of fuch relations become frequently the name by which they are refpectively known. Kindred, for example, of every degree is thus diltinguifhed with a minutenefs unknown in other languages. That of China bas difinct characters for every modification known by them of objects in the phyfical and intelleetual world. Abftract terms are no otherwile expreffed by the Chinefe than by applying to each the name of the moft prominent objects to which it might be applied, which is likewife indeed generally the cafe of other languages. Among the Latins the abitrad idea of virtue, for cxample, was expreffed under the name of valour of Itrength (Virfus), being the quality mof efleemed among them, as filial piety is confidered to be in China. The words of an alphabetic language being formed of different combinations of letters or elemental parts, each with a diftinet found and name, whoever knows and combines thefe together, may read the words without the leaft knowledge of their meaning; not in hierogly phic language, in which each characitr bas indeed a found anmesed to it, but which bears no certain relation to the unnamed lines or Atrokes of which it is compnfed. Such character is Itudied and belt learned by becomirg acquainted with the idea attached to it; and a dictionary of hierngly. phics is lefs a vocabulary of the terms of one language with the correfpondent terms in another, than an encyclopædia

\section*{}

China. \(\underbrace{C \rightarrow \infty}\)

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

 I

China. \(\sim\)

Chima. \(\underbrace{\text { nima. }}\)
branch of the family, fleeping in different beds, divided only by mats hanging from the ceiling. One common ronan is ufed for eating.

The prevalence of this cuftom of retaining the feveral branches of a family under the fame roof, is attended with important effeets. It renders the younger temperate and orderly in their conduct under the authority and example of the older ; and it enables the whole to fubfilt, like foldiers in a mefs, with more economy and advantage. As the venerable patriurch of each habitation prefides over his defeendants with the authority of a magiltrate; fo the different orders of magiftrates are, in their different diltriets and provinces looked up to with the veneration due from children to their parents, while the emperor is revered as the grand patriarch of the whole empire.

A nother thing which contributes much to the permanency of the government, and the internal quiet of the empire is, that in China there is lefs inequality in the fortunes than in the conditions of men. The ancient annals of the empire teflify, that for a long period of time, the earth, like the other elements of nature, was enjoyed by its inhabitants almolt in common. Their comutry was divided into fmall equal diltricts: every dilhrict was cultivated conjointly by eight labouring families, which compofed each hamlet; and they enjoyed all the profit of their labours, except a certain thare of the produce referved for public expences. It is irue, indeed, that after a revolution, deplored in all the Chinefe hiftories, which happened prior to the Chrittian era, the ufuiper granted all the lands away to the partners of his victories, leaving to the cultivators of the foil a fmall pittance only out of the revenue which it yielded. Property in land alfo became hereditary: but in procefs of time, the moft conliderable domains were fubdivided into very moderate parcels by the fucceffive diftribution of the poffellions of every father equally among all his fons; the daughters being always married without dower. It very rarely happened that there was but an only fon to enjoy the whole property of his deceafed parents; and it could farcely be increafed by collateral fucceffion.

From the operations of all thofe caufes, there was a conftant tendency to level wealh: and few could fucceed to fuch an accumulation of it as to render them independent of any efforts of their own for its increate. Leficies, wealth alone confers in China tut little impurtance, and no power ; nor is property, withour otfice, always perfectly fecure. There is no hereditary dignity, which might accompany, and give it pre-eminence and weight. The delegated authority of \(g\) vernment often leans more heavily on the unprotected rich than on the poor, who are lefs objects of temptation. And it is a common remark among the Chinefe that fortunes, either by being parcelled out to many heirs, or by being loft in commercial fpeculations, gaming, or extravagance, or extorted by oppreflive mandarines, feldom continue to be confiderable in the individuals of the fame family beyond the third generation. To afcend again the ladder of ambition, it is neceffary, by long and laborious ftudy to excel in the learning of the country, which alone qualifies for public employments.

There are properly but three clalfes of men in China: men of letters, from whom the mandarines are taken; cultivators of the ground; and mechanics, including
merchants. In Pekin alone is conferred the highelt de. gree of literature upon thofe who, in public examinations, are found molt able in the fciences of morality and government, as taught in the ancient Chinefe writers, with which fudies the hittory of their country is intimately blended. Among fuch graduates, all the civil effices in the Itate are diftributed by the emperor ; and they compufe all the great tribunals of the empire. The candidates for thofe degrees are fuch as have fucceeded in fimilar examinations in the principal city of each province. Thofe who have becn chofen in the cities of the fecond order, or chief town of every diftrict in the province, are the candidates in the provincial capital. They who fail in the firf and fecond claffes, have fill a claim on fubordinate offices, proportioned to the clafs in which they had fucceeded. Thofe examinations are carried on with great folemnity, and apparent fairnefs. Military rank is likewife given to thofe who are found upon competition to excel in the military art, and in warlike exercifes. This diftribution of offices contributes greatly to the peace of the em. pire; for the people cheerfully fubmit to the authority of thofe whom they believe to be placed over them by merit alone, and luve that conftitution which brings within the reach of the meanelf fubject, who has talents and induftry, the highelf llati n next to the fupreme.
"The great tribunals are fituated, for the fale of convenience, near the fouthern gate of the imperial palace at Pekin. To them accounts of all the tranfactions of the empire are regularly tranfmitted. They are councils of reference from the emperor, to whom they report every bulinefs of moment, with the motives for the advice which they offer on the occafion. There is a body of doctrine compoled from the writings of the earlieft ages of the empire, confirmed by fubfequent lawgivers and fovereigns, and tranfmitted from age to age with increaling veneration, which lerves as rules to guide the judgment of thofe tribunals. This doctrone feems, indeed, founded on the broadelt batis of univerfal juftice, and on the pureft principles of humanity.
"His Imperial majefty generally conforms to the fuggeftions of thofe tribunals. One tribunal is directed to contider the qualifications of the different mandarines for different offices, and to propofe their remuval uhen found incapable or unjult. One has for object the prefervation of the manners or motals of the empire, called by Europeans the tribunal of ceremonies, which it regulates on the maxim, that exterior forms contribute not a little to prevent the breach of moral rules. The moft arduous and critical is the tribunal of cenfors; taking into its confideration the effect of fubfitting laws, the conduct of the other tribunals, of the princes and great officers of ftate, and even of the emperor himfelf. There are feveral fubordinate tribu:ials; fuch as thefe of mathematics, of medicine, of public works, of literature and hiflory. The whole is a regular and confiftent fytem eltablinied at a very early period, continued with little alterations through every dynafty, and revived afier any interruption from the caprice or paftions of particular princes. Whatever deviation has been made by the prefent family on the throme, ariles from the admiffion of as many Tartars as Chinefe into every tribunal." The opinions of the firmer are fuppofed always to preponderate; and many of them are indeed men of contiderable talents and Arength of mind, as
well

\section*{C H I \\ [479\(] \quad \mathrm{C} \mathrm{H}\) I}

\section*{China.}
well as polifed manners. They are, however, in general, fitter for military than civil ollices. The harily education, the rnugh manners, the active fpirit, the wandering difpofition, the loofe principles, and the irregular conduct, of the Tartar, fit him better for the profeflion, practice, and purfuits of war, than the calm, regulated, and domeftic habits of the Chinefe. Warriurs feem naturally the offspring of Tartary, as literati are of China ; and accordingly, the principal military commands are conferred on natives of the former country, as, with many exceptions indeed, the chief civil offices are on thofe of the latter.

A military mandarin, who was much with Lord Macartney, and was himfelf a difinguifhed officer, afferted, that, "including Tartars, the total of the army in the pay of China, amounted to \(1,000,000\) infantry, and 800,000 cavalry. From the oblervations made by the embally in the courfe of their travels through the empire, of the garrifons in the cities of the feverd orders, and of the military polls at fmall diftances from each other, there appeared nothing unlikely in the cal. culation of the infantry ; but they met few cavalry. If the number mentioned really do exilt, a great proportion of them mult have been in Tartary, or on fome fervice diftant from the route of the embally.
"Of the troops, efpecially cavalry, a valt number are Tartars, who have a higher pay than their Chinefe fel-low-foldiers. The principal officers of confidence in the army are Tartars alfo. None of either nation are received into the fervice, but fuch as are healthy, ftrong, and fightly. The pay and allowances of a Chinefe horfeman are three Chinefe ounces, heavier than European ounces, and three-tenths of an ounce, of filver, and fifteen meafures or rations (the weight not mentioned) of rice every lunar munth. A Tartar horfeman, leven fimilar ounces of filver, and 20 meafures of rice for the fame period. A Chinefe foot foldier has one ounce and fix-tenths of an ounce of filver, and ten meafures of rice; and a Tartar of the fame defcription has two ounces of filver, and ten meafures of rice every lunar month. The emperor furnifhes the arms, accoutrements, and the upper garment, to all the foldiers. Befide their ordinary pay and allowances, they alfo receive donations from the emperor on particular occalions; as when they marry, and when they have male children born. On the death of their parents they obtain 'a gift of confolation ;' as do their families when the foldiers themfelves die.
"The public revenues of China Proper are faid to be little lefs than 200,000,000 of onnces of filver, which may be equal to about \(66,000,000\) of pounds fterling; or about three times thofe of France before the late fubverfion. From the produce of the taxes all the civil and military expences, and the incidental and extra. ordinary charges are firlt paid upon the fpot out of the treafuries of the refpective provinces, where fuch expenses are incurred; and the remsinder is remitted to the Imperial treafury at Pekin. 'This furplus amounted, in the year 1792, to the fum of \(36,614,328\) ounces of filver, or \(12,204,776\) pounds fterling, according to an account taken in round numbers. In cafe of infirrections, or other occu:rences requiring extraordinary expences, they are generally levied by additional taxes on the provinces adjacent to the ficne of action, or connexted with the occafion of the expence.
"In the adminitration of the valt revenue of the fate, the opportunities of commitsing abufes are not often neglected; as may be inferred from the frequent confifcation to the emperor, in conlequence of fuch trantgreffions. It is indeed affirmed, that much corruption and opprefion prevail in moft of the public departments, by which confiderable fortunes are acquired, notwithftanding the modicity of the public falaries."

With fuch a ftanding army, and fo vall a revenue, it will no longer appear wonderful that one man thould govern with defpotic fway, even the immenfe multitude of people who inhabit the empire of China, efpecially trained up as thofe people are in habits of flial fubmiffion to their fuperiors. But there are fome circumfances in the fyftem of Chinefe policy, not yet mentioned, which contribute perhaps more than even thefe habits and that power to preferve the flability of the government. The emperor referves to himfelf alone the right of relieving the wants of the poor, produced by famine or any other unforefeen calamity. On fuch occafions he always comes forward. He orders the public granaries to be opened; remits the taxes to thofe who are vilited with misfortune; affords affilance to enable them to retrieve their affairs; and appears to his fubjects as tlanding almof in the place of Providence in their favour. He is perfectly aware by how much a ftronger chain he thus maintains his abfolute dominion, than the mere dread of punithment would afford. The emperor, to whom the Britifh embafly was fent, fhewed himfelf fo jealous of retaining the exclufive privilege of benevolence to his fubjeats, that he not only rejected, but was offended at, a propnfal once made to him by fome confiderable merchants, to contribute towards the relief of a fuffering province; whilit he fcrupled nor, at the fame time, to accept the dnnation of a rich widow towards the expences of a war in which he was engaged.

This veneration, excited towards the emperor by his apparent benevolence, is incretred by an opinion zealoufly infilled into the people, that he has the faculty of predicting future events of the greatelt importance. The Chinefe, given up to the dotages of judicial altro. \(\operatorname{logy}\), are firmly perfuaded that eclipfes of the fun and mnon have a powerful influence on the operations of nature and the tranfactions of mankind; and the periods of their occurrence become, of courfe, objects of attention and folicitude. The gnvernment of the couniry, ever ansious to eftablifh its authority in the general opinion of its fuperior wifdom and conltant care for the weifare of the people, employs the European miffion. aries at Pekin (for it is doubtful if any one of the natives has fo much feience) to calculate eclipfes, and then announces them to the people with that folematy which is fitted to enfure veneration for the fuperintending power whence fuch knowledge is immediately derived to them. Eclipfes of the fun, in particular, are confidered as ominous of fome general calamity; and as great pains are raken to infpire them with a belief that their profperity is owing to the wifdom and virtues of their fovereign, fo they are templed to attribute to fome deficiency on his part whatever they think partentous. To this prejudice the emperor finds it prudent to accommodate his condus. He never ventures on any undertaking of importance at the approach of a folar eclipfe, butaffects to withdraw himielf from the prefence of his courtiers, to examine ftrictly into his

\section*{C H I [480] C H I}

China. late adminiftration of the empire, in order to correct the mufical glaffes at a diftance. The performers any, error, for the commiffion of which the eclipfe may have been an admonition. On thefe occafions he invites his fubjects to give him freely their advice : but it is plain that advice muft be offered with great deference to a being for whofe admonition the motions of the fun and moon are believed to be regulated; and while fuch notions are implicitly admitted, the perfon of the Chinefe emperor, as well as his authority, mult he looked upon by his fubjects as fomething more than human.

This is in fact the cafe. He is not only approached in perfon with teftimonies of the utmoft refpect, but is adured when abfent with all the rites and ceremonies which are ufed by the Chinefe in the worlhip of their divinities. On his birth-day, at the new and full moon, and probably on other feltivals, all the mandarines refident in the neighbourhood of any of his numerous palaces atfemble about noon, and repairing to the palace, folemnly proftrate themfelves nine times before the throne, their foreheads ftriking the floor each time; whilft incenfe is burning on tripods on each fide of it, and offerings are made, on an altar before it, of tea and fruits to the fpirit of the abfent emperor. Over the throne are feen the Chinefe characters of glory and perfection; and the name of the Deity is given to the emperor, who is confidered by his votaries as polfeffing in fome fenfe the attribute of ubiquity. Mr Barrow, one of the gentlemen of the embafly, was prefent at ?uen\(\min -\mathrm{yuen}\), one of the imperial palaces, when thefe idolatrous rites of adoration were performed, and he was affured that they took place on that day in all parts of the empire, the proftraters being every where attentive to turn their faces towards the capital.

That he who claims adoration in his abfence does not appear on his birth-day to receive the compliments of his fubjects, will not furprife the reader. The manner in which that feltival is celebrated at the palace, where the emperor happens to be refident, is thus defcribed by Sir George Staunton, who witneffed this more than augult ceremony at the palace of Zhe-bal in Tartary. "The princes, tributaries, ambaffidors, great officers of Itate, and principal mandarines, were affembled in a valt hall; and upon particular notice, were ineroduced into an inner building, bearing, at leaft, the femblance of a temple. It was chiefly furnifhed with great inftruments of mufic, among which were fets of cylindrical bells, fufpended in a line from ornamented frames of wood, and gradually diminifhing in fize from one extremity to the other, and alfo triangular pieces of metal arranged in the fame order as the bells. To the found of thefe initruments a flow and folemn hymn was fung by eunuchs, who had fuch a command of their voices as to refemble the effect of
were directed, in gliding from one tone to another, by the ftriking of a fhrill and fonorous cymbal; and the judges of mufic among the gentlemen of the embalfy were much pleafed with their execution. The whole had indeed a grand effect. During the performance, and at patticular fignals, nine times repeated, all the perfons proftrated themfelves nine times, except the ambaffador and his fuite, who made a profound obeifance \((A)\). But he whom it was meant to honour, continued, as if it were in imitation of the Deity, invifible the whole time."

That the awful impreffion meant to be made upon the minds of men by this apparent worfhip of a fellowmortal might not be too quickly effaced, all fcenes of fport and gaiety were poltponed to the next day, when a variety of entertainments was exhibited in the prefence of the emperor, furrounded by his court and tributary princes.

Notwithftanding the general veneration of the Chinefe for the perfon and government of their emperor, the mandarines afferted that a fect had for ages fubfitted in the country, whofe chief principles were founded on an antipathy to monarchy, and who nourifhed hopes of at laft fubverting it. Their meetings were held in the utmoft fecrecy, and no man avowed any knowledge of them; but a fort of inquifition was faid to be efta. blifhed in order to find them out, and they who were fufpected of fuch fentiments were cut off, or hunted out of fociety. Should the French declaration of the rights of man, which, through the zeal of its antkors, has been tranllated into one of the languages of India, find its way into China (of which the court is faid to be much afraid), it would indeed be a powerful engine in the hands of this fecret fect to fap the foundations of the ancient government. The minds of many of the Chinefe are far from fatisfied with their condition, which lays both their perfons and their fortunes at the mercy of the mandarines. No private man in China is ex. empted from corporal punifhment, which may be infantly inflicted on him at the nod of a magiftrate; and when he has occafion to ipeak to a great mandarine, he is obliged, by the police of the country, to throw himfelf on his knees, and in that pofture to communicate his bufinefs. The mandarine himfelf, on the other hand, lies under the hardfhip of being frequently refponfible for events which he could not controul. Upon the general principal that it is his duty to watch over the morals of the people, he is in many cafes confidered as a criminal for not preventing crimes which he had not been able to prevent. The mandarines are thus aware of not being guaranteed by good conduct againft difgrace; and feeling the chagrin of infecurity, many of
(A) The Chinefe court, which confiders all other fovereigns as fubordinate to their own, exacts from foreign minifers, as well as from natives of the empire, nine proftrations upon their firf introduction to the emperor. This demand was made, in the laft century, of the Dutch, who inflantly complied with it in hopes of obtaining in return fome lucrative advantages; and the confequence was, that their ambaffador was treated with neglect, and difmiffed without promife of the fmalleft favour. It was likewife made of a Ruffian ambaffador in the prefent century; but he would not comply with it, until a regular agreement was made for its recurn, on a like occafion, to his own fovereign. Lord Macartney, who was repeatedly urged to go through the fame abject ceremony, difplayed fuch firmnefs and addrefs, that after much evafion it was at laft announced to him, that his imperial majefty would be fatisfied with the fame form of refpectful obedience that the Englifh are in the habit of pajing to their own fovereign; and upon thefe terms his lordhip was introduced and gracioully received.

China.
them muft doubtlefs be ripe for a revolt. Fear may keep them quiet during the reign of a fovereign poffelfed of abilities and vigilance; but the maxims which regulate the imperial fucceffion are fuch, that a firm confederacy could hardly fail at the death of an emperor to introduce great changes into the conftitution. The throne of Clina is neither hereditary nor elective. The choice of a fucceffor is left entirely to the reigning prince, who may exclude, as has been inftanced, even his own offspring and family. To prevent commotions and fraud, it is no uncommon practice for the emperor, during his lifetime, to declare his fuccerfor; for when his fucceffion is fettled by a written teftament, the throne is not always filled by him for whom it was deftined. The father of the emperor to whom the Britifh embaffy was fent, is faid to have obtained poffeffion of the throne by fuddenly entering the palace in the laft moments of his predeceffor, and fubftituting his own name in a teftarnent intended for the exaltation of another.

To what has been faid in the Encyclopredia of the religion of the Chinefe, we have here very little to add. Various deities are worfhipped in the empire by very different rites and ceremonies; but there is in China no flate religion. None is paid, preferred, or encouraged by it. The emperor is of one faith; many of the man. darines of another; and the majority of the common people of a third, which is that of Fo. The men of letters venerate rather than adore Confucius; and meet to honour and celebrate his memory in halls of a fimple but neat confruction. The numerous and lower claffes of the people are lefs able than inclined to contribute much towards the erection of large and coftly edifices for public worfhip: their attention is almoft wholly engaged by their houfehold gods; for every houfe has its altar and its deities.
"No people are, in fact, more fuperftitious than the common Chinefe. Befide the liabitual offices of devotion on the part of the priefts and females, the temples are particularly frequented by the difciples of Fo previoully to any undertaking of importance; whether to marry, or go a journey, or conclude a bargain, or change fituation, or for any other material event in life, it is neceffary firt to confult the fuperintendant deity. This is performed by various methods. Some place a parcel of confecrated Iticks, differently marked and numbered, which the confultant, kneeling before the altar, thakes in a hollow bamboo, until one of them falls on the ground; its mark is examined, and referred to a correfpondent mark in a book which the prielt holds open, and fometimes even it is written upon a fheet of paper paited upon the infide of the temple. Polygonal pieces of wood are by others thrown into the air. Each fide has its particular mark; the fide that is uppermof when fallen on the floor is in like manner referred to its correfpondent mark in the book or fheet of fate. If the firlt throw be favourable, the perfon who made it proftrates himfelf in gratitude, and undertakes afterwards with confidence the bufinefs in agitation. But if the throw fhould be adverfe, he tries a fecond time, and the third throw determines, at any rate, the queftion. In other refpects, the people of the prefent day feem to pay little attention to their priefts. The temples are, however, always open for fuch as choofe to confult the decrees of heaven. 'They return thanks
when the oracle proves propitious to their wimes. Yet China. they oftener caft lots to know the iffue of a projected enterprife than fupplicate for its being favourable; and their worfhip confifts more in thankfgiving than in prayer.
"The Chinefe are faid feldom to carry the objects to be obtained by their devotion beyond the benefits of this life. Yet the religion of Fo profeffes the doetrina of the tranfmigration of fouls, and promiles happinefs to the people on conditions, which were no doubt originally intended to confit in the performance of moral duties : but in lieu of which are too frequently fubitituted thofe of contributions towards the erection or repair of temples, the maintenance of priefts, and a Atric attention to particular obfervances. The neglect of thefe is announced as puniffable by the fonls of the defaulters pafling into the bodies of the meaneft animals, in whom the fufferings are to be proportioned to the tranfyreflions committed in the human form."

Though the Chinefe artifts are very ingenious as mere workmen, there is hardly any thing which deferves the name of fcience in the whole empire. So little is the ftudy of mathematics cultivated, that there are few fhopkeepers in China who can perform the ordinary operations of arithmetic; but calt up their accounts by means of an initrument called Swanpan (See Swanpan, Encyel.). Though the compofition of gunpowder was certainly known in China much earlier than in Europe, and though the Chinefe had employed it from the beginning in blalting rocks, and in making a valt variety of fire-works; yet Sir George Staumton feems convinced, that they never thought of the invention of gunstill they were taught by the Europeans to introduce them into their armies.

The tate of phyfic in this vaft country is extremely low, being nowhere taught in public fchools or colleges. "A young man, who wifhes to become a phyfician, has no other way of acquiring medical knowledge than by engaging himfelf to fome practitioner as an apprentice. He has thus the opportunity of feeing his malter's praftice, of vifiting his patients with him, and of learn. ing fuch parts of his knowledge and fecrets as the other choofes to communicate to him. The emoluments of the profeffion feldom exceed the k ill of the practitioner. As many copper coin as fcarcely are equal to fixpence Aterling is faid to be the ufual fee among the people; and perhaps quadruple among the mandarines. Medicine is not divided in China into ditinet branches as in moft parts of Europe. The fame perfon acts as phyfician, furgeon and apothecary. The furgical part of the profeffion is ftill more backward than the others. Amputation, in cafes of compound fracture and gangrene, is utterly unknown; and death is the fpeedy confequence of fuch accidents. The Chinefe method of inoculation, which was introduced into the empire about the beginning of the tenth century of our era, is as follows: When the difeafe breaks out in any diftrict, the phyficians of the place carefully collect a quantity of ripe mater from puitules of the proper fort ; which beiog dried and pulverifed is clofely thut up in a porcelain jar, fo as to exclude from it the atmofpheric air ; and in this manner it will retain its properties for many years. When the patient has been duly prepared by medicines, generally of an aperient kind, and frictly dieted for a flort time, a lucky day is chofen to fprinkle

\section*{C H I \(\left[\begin{array}{lll}482\end{array}\right] \quad \mathrm{C}\) H I}

China. \(\underbrace{\text { Chinas }}\) a little of the variolous powder upon a fmall piece of fine cotton wool, and to infert it into the nottrils of the patient.
"No male phyfician is allowed to attend a pregnant woman, and ftill lefs to practife midwifery ; in the indelicacy of which both leses feem to agree in China. There are books written on that art for the ufe of female practitioners, with drawings of the flate and polition of the infant at different periods of geftation; together with a variety of directions and prefcriptions for every fuppofed cafe that may take place: the whole mixed with a number of fuperfitious obfervances.

Many practitioners of phyfic take the advantage, as elfewhere, of the obfcurity in which that art is involved, and of the ignorance and credulity of the people, to gain money by the fale of noftrums and fecrets of their own. They diftribute hand bills, fetting forth the efficacy of their medicines, with attelited curcs annexed to them. And there is one feet which boldly arrogates to itfelf the poffeffion of a medisal fecret nof to die! To thofe who had all the enjoyments of this life, there remained unaccomplithed no other wifh than that of remaining forever in it. And accordingly feveral fovereigns of China have been known to cherifh the idea of the poflibility of fuch a medicine. They had put themfelves, in full health, under the care of thofe religious empirics, and took large draughts of the boalted beverage of immortality. The compofition did not confift of merely harmlefs ingredients ; but probably of fuch extracts and proportions of the poppy, and of other fubftances and liquors, as occafioning a temporary exaltation of the imagination, pafled for an indication of its vivifying effects. Thus encouraged, they had recourfe to frequent repetitions of the dofe, which brought on quickly languor and debility of fpirits, and the deluded patients often became victims to deceit and folly in the flower of their age.
"There are in China no profeffors of the fciences conneeted with medicine. The human body is never, unlefs privately, diffected there. Books, indeed, with drawings of its internal flructure, are fometimes publifhed; but thefe are extremely imperfect, and confulted, perhaps, oftener to find out the name of the fpirit under whofe protection each particular part is placed, than for obferving its form and fituation.
"It is a matter of doubt whether natural hiftory, natural philofophy, or chemiltry, be, as fciences, much more improved than anatomy in China. There arefeveral treatifes, indeed, on particular fubjects, in each. The Chinefe likewife poffeis a veiy voluminous Encyclopredia, containing many facts and obfervations relative to them; but from the few refearches which the gentlemen of the embatiy had leifure cr opportunity to make during their thort vifit to the country, they perceived \(n n\) traces of any general fyftem or docirine by which feparate facts or obfervatioñs were connefted and compared, or the common properties of bodies afcertained by experiment; or where kindred arts were corducted on timilar views, or rules [ramed, or deductions draton from analogy, or principles laid down to conititute a fience."

Of all people the Chinefe are perhap; the molt eager in their curofity about foreigners coming among them, and the moft indifferent about the couniries of iuch foreigners. They have been always in the habit of con-
fining their ideas to their own country, emplatically ftyled the middle kingdom. No Chinefe ever hinks of quitting it, except a few of defperate fortunes, refiding near the fea coalt, or fea-faring men, who form a clafs, in a great meafure apart from fociety. Even foreign commodities confumed in China remind them only of Canton, whence they receive them, as if produced in it ; and thefe commodities they confider, perhaps properly, as of no real benefit to the empire. Regions out of Afia are fcatcely mentioned in their books, or noticed in their diftorted maps; and the great body of the people would be little gratified with accounts of fuch segions which did not contain tales of wonders not performed at home, or of powers exerted beyond the ordinary boundaries of nature.

CHINCA, a large and pleafant valley in the diocefe of Lima, in Peru. Pizarro defired the king of Spain that this might be the limits of his government on the S. and that the river St Jago fhould bound it on the N. The valley bears good wheat, and Spanifh vines thrive well in it.-Morse.

CHINESE pump. See Pump in this Supplement.
CHINESE wEIGHTS are fo very different in many refpects from thofe in ufe elfewhere, that it will at leaft gratify the curisfity of our readers to take fome notice of them in this Work. Of thefe weights Charles Coquebert has prefented a fecimen to the Philomathema. tical Society in Paris. They are made of copper, and bear a great refemblance in form to the body of a violin. Like that inftrument they are rounded off at the extremities, and indented on the fides to admit the fingers. The faces are flat and parallel, and have Chinefe claracters engraven on the upper furface; They advance in a regular decimal progreffion, of which Coquebert has difcovered four diltinet feries, the units of which are in the proportion of \(1,10,100,1000\). Inflead of employing a combination of one, two, four, and eight units, or after the new fyftem of one, two, and five units, the Chinefe have a diftinet weight for every intermediate number between one and ten. Thus they have weights of \(1,2,3,4,5,6,7,8,9,10,20\), \(30,40,50,60,70,80,90,8 c\). Of courfe, thofe weights which itand related to each other in the proportion of 6 to 7,7 to 8,8 to 9,9 to 10 , differ fo little in fize, that it would be impolfible to diftinguifh them without the help of the charadters which are engraven upon the face. This is confeffedly a defect in the fyttem. Of the four different feries exhibited to the fociety, the higheft bears in China the name of kin, and is neally of equa! value with a pound avoirdupois. The kin contains ten times the number of units of the next inferior weight, which the Chinefe denominate leung or loam, and which the Eurnpeans call tael, taille, or Chinete ounce. This ounce is divided into ten tren, which anfwers nearly to our drachm. The tfien is again fubdivided into ten fen. The Chinefe extend the decimal fubdivifion of their weights confiderably farther. They have dillinet names, which are all monofyllabic, for nine feries below the fen. Suppoling the kin to ftand for unity, they have,

The Chinefe weights, compared with the greateft precifion,

Chinea

\section*{II}

Chinefe.

\section*{C H I \(\left[\begin{array}{ll}483\end{array}\right] \quad \mathrm{C} H \quad \mathrm{O}\)}
precifion, and with the help of the beft inftruments, bear the following proportion to our weights: The \(k\) in is equal to one pround 12 ounces 2 drachms 24 grains; the leang one ounce one drachm 60 grains: the then 70 grains \(\frac{8}{0}\); the fen 7 grains \(\mathrm{r}_{8}^{8} \delta\). Confequently the laft of this feries, the fun, amounts to no more than o grains 00000000708.

Chinese Wheel is an engine emplayed in the province of Kiang-fee, and probably through the whole empire, for railing water from rivers to irrigate plantations of fugar canes, on a fandy foil, confiderably elevated above the level of the river. By Sir George Staunton, who fays that it is ingenious in its contrivance, cheap in its material, eafy in its operation, and effectual to its purpufe, it is thus defcribed:
"Two hard wood polts or uprights are firmly fired in the bed of the river, in a line perpendicular to its bank. Thefe pofts fupport the axis about ten feet in length, of a large and durable wheel, confilting of two unequal rims, the diameter of one of which, clofeft to the bank, being about fifteen inches fhorter than that of the outer rim ; but both dipping in the fream, while the oppofite fegment of the wheel rifes above the elevated bank. This double wheel is connected with the axis, and is fupported by 16 or 18 fpokes obliquely inferted near each extremity of the axis, and crofling each other at about two-thirds of their length. They are there flrengthened by a concentric circle, and faftened afterwards to the rims: she fpokes inferted in the interior extremity of the axis reaching the outer rim, and thofe proceeding from the exterior extremity of the fame axis, eaching the inner and fmaller rim. Between the rims and the croffing of the fpokes is woven a kind of clofe bafket-work, ferving as ladle-boards or floats, which mesting fuccelively the current of the fream, obey its impulfe, and turn round the wheel. To both its rims are attached fmall tubes or fpouts of wood, with an inclination of about 25 degrees to the horizon, or to the axis of the wheel. The tubes are clofed at their outer extremity, and open at the eppolite end. By this pofition, the tubes which happen in the motion of the wheel to be in the Itreans with their mouths or open ends uppermolt, fill with water. As that fegment of the wheel rifes, the mouths of the tubes attach to it, alter their relative inclination, hut not fo much as to let their contents flow out till fuch fegment of the wheel becomes the top. The mouths of thofe tubes are then relatively depreffed, and pour the water into a wide trough placed on poits, from whence it is conveyed as may be wanted among the canes.
"The only materials employed in the conftruction of this water-wheel, except the nave or axis, and the pofts on which it refts, are afforded by the bamboo. The rims, the fpokes, the lidle-boards or foats, and the tubes or fpouts, and even the cords, are made of entire leneths, or fingle joints, or large pieces, or thin Dices of the bambuo. Neither nails, nor pine, nor fcrews, nor any kind of metal enters into its conltuac. tion. The parts are bound together firmly by cord. age, alfo of flit bambon. Ili:us at a very trifling expence, is cunltructed a nachine, which, withour libour or attendance will furvilh, from a confiderable depth, a refervoir with a conftant fupply of water adequate to every agricultural purpofe.
"Thefe wheels are from 20 to 40 feet in diameter,
according to the height of the bank and confequent Chippaway elevation to which the water is to be raifed. Such a wheel is capable of fuftaining with eafe 20 tubes or fpouts, of the length of four feet, and diameter two inches in the clear. The contents of fuch a tube would be equal to fix-tenths of a gallon, and a periphery of 20 tubes, twelve gallons. A Atream of a moderate velocity would be fufficient to turn the wheel at the rate of four revolutions in one minute, by which would be lifted 48 gallons of water in that thort period; in one hour, 2880 gallons ; and 69120 gallons , or upwards of 300 tons of water, in a day."

Sir George, who faw this wheel in motion, thinks it preferable in many refpects to any machine yet in ufe for fimilar purpofes. He obferves, that, while it approaches near to the Perfian wheel, of which a defcrip. tion and figure is given in the article Hydrostatics (Encycl.), it is more fimple than that wheel in its contrivance, and much lefs expenfive. This is indeed true; but the fimpleit engine of the kind, and therefore the belt that has yet been invented, is perhaps that which is employed to throw water into the mofs of Blair Drummond in Perthfhire. See Moss (Encycl.)

CHIPPAWAY, an inconfiderable place near the falls of Niagara, 10 miles from Queentown.-MIorse.

CHIPPEWAY River runs S. weltward into Miffrfippi River in that part where the confluent waters form lake Pepin, in N. lat. 44. W. long. 93. 54 .-ib.

CHISSEL, a fort in the ftate of T'enneffee, 24 miles from Englifh ferry, on New river ; 43 from Abingdon, and 107 from Long ifland, on Holfon.-ib.

CHITIENDEN Co. in Vermont, lies on lake Champlain, between Franklin co. on the N. and Addifon S.; La Moille river palfes through its N. W. corner, and Onion river divides it nearly in the center. Its chief town is Burlington. This county contained, by the cenfus of \(179 \mathrm{r}, 44\) townhips and 7301 inhabitants. Since that time the northern counties have been taken from it, fo that neither its fize or number of inhabitants can now be afcertained.-ib.

Chittenden, a townfhip in Rutland co. Vermont, contains 159 inhabitants. The road over the mountain palfes through this townfhip. It lies 7 miles E. from the fort on Otter creek, in Pittsford, and about 60 N . by E. from Bennington.-ib.

Chittenengo, or Canaferage, a confiderable Aream which runs northerly into lake Oneidat in the ftate of New-York.-ib.

CHOCOLATE Creek, a head-water of Tioga River in New-York, whofe mouth lies to miles S. W. of the Painted Pott.-ib.

CHOCOPE, a town in the jutifdiction of Truxillo, in S. America, in Peru; 14 leagues fouthward of St Pedro. Hereare about 90 or 100 houle, and about 60 or 70 familie, chiefly Spaniards, with finme of the other calts, bur not above 25 Iadian families. It has a church built of brick, both large and decent. The penple here mention a rain that fell in 172 g , whech lafte. 140 nights, beginning confantly at 4 or 5 in the evening, and cedfing at the fame hour next mnining, which lad nowt, f the houles in runs. S. !at. 7.46.-ib.

CHOCORUA, a mountain in Graften cr. NewHampit re, on the N. lue of Staford co. N. of Dam-worth.-ib

CHOCUILO, or rather Chucuito, or Tits Caca, a

H
\(\underbrace{\text { Chocuito. }}\)

Choifeul large lake near Paria, in S. America, and in Pern, into which a great number of rivers empty themfelves. It is 240 miles in circumference, and in fome parts 80 fathoms deep; yet the water cannot be drunk, it is fo very turbid. It abounds in fifh, which they dry and filt, and exchange with the neighboring provinces for brandy, wines, meal, or money. It is faid the ancient Yncas, on the conqueft of Peru, by the Spaniards, threw into this lake, all their riches of gold and filver. It was this lake into which the Ynca Huana Capar, threw the famous clain of gold, the value of which was immenfe. It abounds with flags and rufhes, of which Capac Vupanchi, the fifth Ynca, built a bridge, for tranfporting his army to the other fide.- \(i b\).

CHOISEUL Bay, on the N. W. coalt of the iflands of the Arfacides, W. of Port Praflin. The inhabitants on this bay, like thofe at Port Pradin, have a cuftom of powdering their hair with lime, which burns it and gives it a red appearance.-ib.

CHOPINE, Choppine, or Chopeene, a high fhoe, or rather clog, worn 200 years ago, by the ltalians.

Tom Coryat, in his Crudities 1611, p. 262, calls them chapineys, and gives the following account of them : "There is one thing ufed of the Venetian women and fome others dwelling in the cities and towns fubject to the figniory of Venice, that is not to be obferved, I thinke, amongt any other women in Chriftendome, which is fo common in Venice, that no women whatfoever goeth without it, either in her houfe or abroad, a thing made of wood and covered with leather of fundry colors, fome with white, fome redde, fome yellow. It is called a chapiney, which they wear under their fioes. Many of them are curioully painted; fonse alfo of them I have feen fairly gilt; fo uncomely a thing, in my opinion, that it is pitty this foolifh cuftom is not cleane banifhed and exterminated out of the citie. There are many of thefe chapineys of a great beight, even balf a yard bigh, which maketh many of their women that are very thort feem much taller than the talleft women we have in England. Alfo I have heard it obferved among them, that by how much the nobler a women is, by fo much the higher are her chapineys. All their gentlewomen, and moft of their wives and widows that are of any wealth, are affifted eyther by men or women when they walke abroad, to the end they may not fall. They are borne up moft cummonly by the left arme, otherwife they might quickly take a fall."

CHOPTANK, a large navigable river on the eaft. ern fhore of Maryland, emptying into Chefapeak bay. - Morse.

CHOWAN Co. in Edenton diftrict, N. Carolina, on the N. fide of Albemarle found. It contains 5011 inbabitants, of whom 2588 are flaves. Chief town, Edenton.-ib.

Chowan River, in N. Carolina, falls into the N. W. corner of Albemarle found. It is 3 miles wide at the mouth, but narrows faft as you afcend it. It is formed 5 miles from the Virginia line, by the confluence of Meherrin, Nottaway, and Black rivers, which all rife in Virginia.-ib.

CHOWDRY, in Bengal, the poffefior of feveral Talooks. It is alfo ufed as fynonymous with Talookdar, anciently a collector. See Taloor in this Supplement.

CHRISOM was not, as is faid in the Encyclopredia, a face.cloth or piece of linen laid over the child's head
when it was baptized; but it was a white velture or garment, which, immediately after it was baptized, the prieft put upon it, faying, "Take this white vefture as a token of the innncency which, by God's grace in this holy facrament of baptifm, is given unto thee, and for a fign whereby thou art admonilhed, fo long as thou liveft, to give thyfelf to innocence of living, that after this tranfitory life thou mayeft be partaker of life ever. lafting. Amen."

Asfoon as the prieit had pronounced thefe words, he anointed the infant upon the head, faying, "Almighty God, the Father of our Lord Jefus Chrift, who hath regenerated thee by water and the Holy Gholt, and hath given unto thee the remiffion of all thy fins; he vouchfafe to anoint thee with the unction of his Holy Spirit, and bring thee to the inheritance of everlafting life. Amen."

It was from this anointing or clorifm that the white garment got the name of chrifom, which, after being worn a few days, was offered to the prieft to be kept in the church or velty, in order to be produced as evidence againt the perfon whofe chrifom it was, lhould he afterwards deny the faith in which he had been baptized. Thefe ceremonies were retained, for fome time after the reformation, in the church of England, which ordered the mother of the child (if the child was then alive, to offer, when the was churched, the chrifom and other accuftomed offerings. If the child died before its mother was churched, the chrifom was not given to the prieft, but employed as a fhroud, in which the body was buried; and hence it is that chrifoms are now enumerated, moft abfurdly indeed, in the weekly bills of mortality. We fay abfurdly; becaufe children who die unbaptized are called chrifoms, though the chriform, when it was ufed, was never put on till baptifm. See Whitby on the Book of Common Prayer, Ejc.

CHRIST CHURCH, a parifh in Charlefton diftrict, S. Carolina, containing 2954 inhabitants, ot whom 566 are whites, 2377 laves.-Morse.

CHRISTIANA, a poft town in New-Caftle co Delaware, is fituated on a navigable creek of its name, 12 miles from Eikton, 9 S. W. of Wilmington, and 37 S. W. of Philadelphia. The town, confifting of about 50 houfes, and a prefbyterian church, fands on a declivity which commands a pleafant profpect of the country towards the Delaware. It carries on a brifk trade with Philadelphia in flour. It is the greatelt carrying place between the navigable waters of the Delaware and Chefapeak; which are 13 miles afunder at this place. It was built by the Swedes, in 1640 , and thus called after their queen.-ib.

Christiana Creek, on which the above town is fituated, falls into Delaware river from the S. W. a little below Wilmington.

It is propofed to cut a canal of about 9 miles in length, in a S. wefiern direction from this creek, at the town of Chriftiana (6 miles W. S. W. of New-Caltle) to Elk river in Maryland, about a mile below Elkton.一ib.

Christiana, \(S t\), one of the Marquefa ifles, called by the natives Waitahù, lies under the fame parallel with St Pedro, 3 or 4 leagues more to the weft. Refolution bay, near the middle of the W. fide of the illand, is in lat. 9. 55. 30. S. long. 139. 8. 40. W. from Greenwich; and the W. end of Dominica N. 15.

\section*{C H U}

Chriftianf-W. Capt. Cook gave this bay the name of his hip.
burg Church.

It was called Port Madie de Dios by the Spaniards. Thais illand produzes cotion of a fuperior kind. A fpecimen of it is depofited in the muleum of the Malf. Hit. Socicty.-ib.

CHRISTIANSBURG, the chier town of Montgomery co. Virginia. It con ains very few houfes; has a court-houfe and gaol, fituated nedr a branch of Little river, a water of the Kanhaway. N. 1at. 37.5-ib.

CHRISTIANSTED, the principal town in the illind of Sant. 1 Cru\%, fituated on the \(N\). fide of the ifland, on a fine hatbor. It is the refidence of the Danith govern re, and is defended by a ftrne fortrefs.-ib.

CHRIS"lMAS Ifland, in the Pacific ocean, lies entirely folitary, nearly equa!ly difant from the Sandwich iflunds on the N. and the Marquelas on the S. It was fo named by captain Cook, on acc unt of his firflanding there, on Chriftmas day. Not a drop of frefh water was found by digging. A hip touching at this defolate ine mult expeet mothing but turtle, fith, and a few birds. It is about 15 or 20 leagues in circumference, and bounded by a reef of coral rocks, on the W. fide of which there is a hank of fine fand, estending a mile into the fea, and affording good anchorage. N . lat. 1. 59. W. long. 157 . 3 c . - ib .

Christmas Sounl, in Terra del Fuegn, South America, in N. 1dt. 55.21. W. long. 67.57.-ib.

CHRONOLOGICAL characters are chatacters by which times are diftinguifhed. Of thele fome are natural or altronomical ; others, artificial or hiftorical. The natural chorrafters are fuch as depend on the mo. tions of the fars or luminaries, as eclipfes, folfices, equinoxes, the difierent appeas of the planets, \&x. The artificial characters are thofe that have beerinvented and eflablilhed by men; as the folar cycle, the lunar cycle, Sic. Hiftorical chronological characters are thofe fup. ported by the teftimony of hiforians, when they fix the dates of celtain events to certain periods. Hution's Mathematical DiEionary.

CHRONOSCOPE, a word fometimes ufed to denote a pendulum or machine to mealure time.

CHUCKIAH, in Bengal, the jusifdition of a Fogedur. See Fogedar in this Supplenient.

CHURCH is a word which has many different fig. nifications, all fufficiently explained in the Encyclopxdia, where there is likewife given a concife bifory of the Chrittian church (fee History, Sect. ii.), defective, indeed, but perhaps not more fo than was to be expected from the limits of the work and the extent of the fubject.

Of the conftitution of the primitive and apofolical church, no mani can have a correft notion who has not taken the trouble to confult the primitive and apofolical writers; for, as we have elfewhere obferved, all modern compilers of eccleffaltical hiftory are more or lefs prcjudiced in behalf of the particular church to which they belong, and wret the language of the original writers fo as to make them bear witnefs to the antiquity of modes of faith and ecclefrafical polity, which are not perhaps a hundred years old.

Suppl. Vol. I.

On this account we fhall not here attempt to correct what we really think the miftakes of him who compiled the fection of ecclefiaftical hifory in the Encyclopædia. Mofneim and Sir Peter King, whom he feems to have implicitly followed, were indeed great men; and it would be filly to deny that the Hi,zory of the former, and the Inquary of the hatter, into the Conftintion of the Primi:ive Church, are works of learning and ingenuity ; but it is not perhaps too much to fay, that both atthors wrote under the influence of prejudice. Our readers will dife seer how clofely either the one or the other has adhercd to truth, by Itudying the ecclefiaftical wri. ters of the firtt four centuries. Such a ltudy will make them acquainted with the doctrines, difcipline, and worflip of the church before it was incorporated with the fare; and we know not that kind of knowledge which is of more importance to the divine, however much it may be deipifed in this age of affected fcience and real ignorance.

Of the principal churches at prefent exiling, a pretty full account is given in the Encyclopxdia, either under their different denominations, or under the titles of thofe tenets by which they are chiefly diftinguifhed; fo that from that Work alone a reader may form a tolerably accurate notion of the faith, worfhip, conftitution, and difcipline of the church of Rome, the churches of Eng. land and Scotland, the Lutheran and Calvinitical churches on the continent of Europe, as well as of the various feet which have arifen in thefe kingdoms during the courfe of the laft and prefent centuries. There is, however, one church which boalts of a very high antiquity, and is certainly fpread over a larger extent of country than all the other churches that we have mentioned, of which the account given in the Encyclopredia is exceedingly defective. Our readers will perceive that the church to which we allude is

The Greek Church, which comprehends in its bo. The Grek fom (A) a confiderable part of Greece, the Grecian church. ifles, Wallachia, Moldavia, Egypr, Abyffinia, Nubia, Lybia, Arabia, Mefopotamia, Syria, Cilicia, and Palefline, which are all under the jurifdiction of the patri. archs of Conftantinople, Alexandria, Antinch, and Jerulalem. If to thefe we add the whole of the Kulfan einpire in Europe, great part of Siberia in Afia, Aftracan, Cafan, and Georgia-it will be evident that the Greek church has a wider extent of territory than the Latin, with all the branches which have fprung from it; and that it is with great impropriety that the church of Rome is called by her members the catholic or univerfal church. That in thete widely diftant countries the profeffors of Chriftianity are agreed in every minute article of belief, it would be rall to affert; but there is certainly fuch an agreement among them with refpest both to faith and to difcipline, that they mutnally bold communion with each other, and are in fact but one church.

As the Greek chuch has no public or eftablifhed articles, like thofe of the churches of England and Scotland, we can collect what is its doetrine only from its creed, from the councils whofe decrees it receives \(3 R\)
(E),
(A) King's Rites and Ceremonies of the Greck Cburch-Bruce's Travels to the Source of the Nile-and Lobo's Voyage to AbyJinia.

Chursh. (B), from the different offices in its liturgies, and from the catechifms which it authorifes to be taught. "The ductrine of the Trinity, and the articles of the Nicene

The faith of that chusch.
\(\dagger\) Dalla-
vuy's Confantinople, Ancient and Modern, and King's Rites and Ce remonies, Er.
and Athanafian creeds, are received by the Greeks in common with other Chriltians. In one particular, indeed, they differ from the other churches of Europe, whether Romifh or reformed. They believe, that the Holy Spirit proceeds from the Father only, and not from the Father and the Son; and in defence of this opinion they appeal to ecclefiaftical hifory, the acts of councils, the writings of the fathers, ancient manufcripts, and efpecially to a crpy of the creed of Conftantinople, engraven on two tables of filver, and hung up in the church of St Peter at Rome by order of Leo III. Of the Nicene or Conftantinopolitan creed, therefore, as it is received by them, the eighth article runs in thefe words; ' 1 believe in the Holy Ghoft, the Lord and Giver of life, who proceedeth from the \(\mathrm{F}_{\mathrm{A}}\). ther, and with the Father and the Son together is worlhipped and glorified:' And the correfponding article of the Athanafian creed is of courfe," The Holy Ghof is of the Father, neither made, nor created, nor begotten, but proceeding \(\dagger\)."

Though the hifhops and clergy of the Greek church abhor the ufe of images, which they pretend to be one caufe of thcir feparation from the fee of Rome, they admit into their churches the piftures of faints to inftruct, they fay, the ignorant, and to animate the devotion of others. This practice they confider as by no means contrary to the fecond commandment of the decalogue, which, according to them, prohibits only the worthipping of fuch idols as the Gentiles believed to be gods; whereas their pictures, being ufed merely as remem. brancers of Chrift and the faints, have written on each of them the name of the perfon whom it is meant to reprefent. Dr King affures us that the more learned of the Ruffian clergy would willingly allow no reprefentation whatever of God the Father; ard that, during the reign of Peter the Great, the fynod not only cenfured the ufe of fuch pictures in churches, but petitioned the emperor that they might be everywhere taken down. Peter, however, though he fully concurred in opinion with the fynod, thought this a meafure for which the minds of his fubjects were not ripe, and dreaded, that if carried into execution it would occafion a general infurrection. Such pifures, therefore, though no: more impious than abfurd, are fill in ufe; and in many churches, as well ancient as modern, the figure of Daniel's Ancient of Days, together with that of Cbrift and a dove, are painted in onc group to fignify the Holy Trinity. Nay, when our author was in St Peterßurg, not thirty years ago, there was in the church of St Nicholas the picture of an old man holding a globe, and furrounded with angels, on which God the Father was inferibed; and we have not heard that the picture has been fince taken down.

In the Greek as well as in the Roman church, the invocation of faints is practifed, but they are not invoked in either as deities, but merely as interceficrs with the Supreme God, "it being more modeft (fay the of faitats. Greeks), as well as more available, to apply to them to intercede with God, than to addrefs ourfelses immediately to the Almighty." Plautible as this reafoning may at firft fight appear, it afcribes to the faints the divine attribute of ubiquity, and is likewifc in dired contradiction to the dogrine of St l'aul, who hath taught us, that as " there is one God, fo there is but one mediator between God and man, the man Chrilt Jefus."
The Greek church, at the celebration of the Lord's Prayers for Supper, commemorates the faithful departed, and even the deado prays for the renifition of their fins; but fhe allows not of purgatory, nor pretends to determine dogmatically concerning the flate or condition of departed fouls. She muft, however, helieve that no final judgment is paffed upon the great body of mankind (c) till the confummation of all things, otherwife fuch prayers could not be offered without abfurdity; and in this part of her doctrine fie is certainly countenanced by all the writers of the primitive church, if not by fome palfages of the facred feriptures.* The practice of praying for * Matt the dead is loudly condemned in every l'roteftant coun- xxv. r9, \(20_{0}\) try, and yet there is no Chriftian who does not in effect -31-34. pray for his departed friends. This may appear a pa- \({ }^{2}\) Tim. i. 18 . radox, but it is an obvious and a certain trath; for where is the man who believes in a general judgment, and does not wi/b that his deceafed wife, or parent, or child, or friend, " may find mercy of the Lord in that day?" Such a wihh is the effence of a prayer; which confifts not of the founds in which our fentiments are cloathed, but in the appirations of a devout heart.

Supererogation, with its confequent indulgencies and 6 difpenfations, which were once fo profitable, and after- indulsem wards fo fatal to the interefts of the court of Rome, are ciet.
utterly difallowed in the Greek church, which likewife lays no claim to the character of infallibility. She is indeed like fome other churches, very inconfiftent on this laft topic; for whilf fhe pretends not to an abfolute exemption from error, her clergy feem to confider their own particular mode of worthip as that which alone is acceptable to God.

Predeftination is a dogma of the Greek Church, Predefinar and a very prevailing opinion amongtt the pcople of tion. Ruflia ; "and I muft do the jultice (fays Dr King) to thofe who have written upon it, efpecially the late!t authors of that country, to fay that they have treated it , as depending on the attribute of prefcience in the divine nature, with a much better kind of logic than that with which fuch points are generally dilcuffed." As our author has not given us the reafoning of the Ruffian doctors on this difficult fubject, we cannot hazard any opinion of our own on the foundnefs of their logic; but from the flate of fcience in that valt empire,
(() In the Greek church feven general councils are received, and nine provincial ones. The feven general councils are, I. The council of Nice, held in the year 325, under Conitantinc. 2. The firf council of Conftantinople, held A. D. 381, under Theodofius the Great. 3. The council of Ephefins, A. D. 431, in the reign of Theodofius Minor. 4. The council of Calcedon, A. D. 451, in the reign of Marcian. 5. The fecond council of Conftantinople, A. D. 553, in the reign of Juftinian. 6. The third council of Conftantinople in Trull, A. D. 680 , in the reign of Conftantine Pagonatus. 7. The fecond council of Nice, A. D. 787.
(c) We fay the great body of mankind, becaufe fhe doubtlefs believes that Enoch, Elias, and thofe faints who rofe with our Saviour, have been already judged, and now enjoy their reward in heaven.

\section*{C H U [487] C H U}

Church. as it wase reprefented to us by an abler judge than he, we doubt of its being entitled to the praife which he

8
Seven fa-
erameats.

9

\section*{Daily fer-} vice of the church,

IO Intricate and tedious,
beftows on it. (See Russia, n \({ }^{\circ}\) 104. Encycl.)

In the Greek church there are feven facraments ; or, as they are there termed, mylteries, viz. baptifm; the chrifm, or baptifmal unction; the eucharif; confeffron; ordination; marriage; and the myftery of the boly oil, or eurbelaion. By the Greeks a myftery is defined to be " a ceremony or aft appointed by God, in which God giveth or fignifieth his grace; and of the feven which they celebrate, four are to be received by all Chriftians, viz. baplifm, the baptifmal unction, the eacharif, and confefliont. Of thefe, bapiifm and the eucharift are deemed the chief; and of the other three none, not even the cuchelaion, is confidered as obligatory upon all.

With refpedt to baptifm, we know not that they hold any peculiar opinions. They confider it indeed as fo abfolutely neceffary to falvation, that in cafes of extremity, when a prieft or deacon cannot be had, it may be adminittered by a midwife or any other perfon, and is not to be repeated on any occafion whatever. In this opinion, as well as in the practice founded on it, they are in perfea harmony with the church of Rome, which, as every perfon knows, has for many ages allowed the validity of lay baptifm in cafes of neceffity. The Portuguefe Jefuits, who in the laft century vifited Abyfinia in the capacity of miflionaries, have maintained that once every year, all grown people are in that country baptized: but Mr Bruce has fhown, by the moft incontrovertible evidence, that this was a mere fiction, invented to throw odium upon what the church of Rome calls the eaftern fchifm, and abhors perhaps more than paganifm itfelf.

The daily fervice of the Greek Church is fo long and fo complicated, that it is impoffible for us to give an adeguate account of it, without fwelling this article far beyond its due proportion. Of this the reader will be convinced, when he is informed that the feveral books containing the church fervice for all the days in the year, amount to more than twenty volumes in folio, belides one large volume called the regulation, which contains the directions how the reft are to be ufed.

The four gofpels make one volume by themfelves; and whenever the gofpel is read in any fervice, the deacon exclaims; "Wirdom, fland up. Let us hear the holy gofpel." The prieft then faith, "The leffon from the gofpel according to St Mathew, St Mark, \&c." The deacon fays again, "Let us ftand." The choir, at the beginning and end of the gofpel, always fays, "Glory be to thee, O Lord, glory be to thee." From the old teftament and the epiftes extracts only are ufed in the fervice, and when they are to be read, the deacon calls out, "Attend."

The fervice of this church, as it now ftands, and was at firlt drawn up in writing, is calculated for the ufe of monafteries; and when it was afterwards applied to parochial churches, many of the offices or forms, which were compofed for different hours of the day and night, were ufed as one fervice, without the flighteft alteration being made to aroid repetitions. Something of this kind las taken place in the church of England, where the matins, the litany, and the communion, which were formerly thrse dittinct fervices, read at different times of the day, are now run into one fervice;
which by thofe not accultomed to it is therefore deemed long, as well as deformed by needlefs repetitions.

\section*{Chorch,}

The lervice of every day, whether it has a vigil or Begins in not, begins in the evening of what we would call the the even. preceding day, as among the Jews; and for the fame ing. reafon, becaufe it is faid in the Mofaic account of the creation, that "the cvening and the morning were the firt day." The feveral fervices, according to the original or monkifh inflitution, are, s. The vefpers, which ufed to be celebrated a litile before fun-fet; 2. The after vefpers, anfwering to the completorum of the Latin church, which ufed to be celebrated after the monks had fupped, and before they went to bed ; 3. The mefouyeciicon, or midnight fervice ; 4. The matins at break of day, anfwering to the laudes of the Romith church; 5. The firf hour of prayer, or prima, at fun-rife ; 6 . The third bour, or tertia, at the third hour of the day; 7. The fixth bour, or fextu, at noon; 8. The ninth bour, or mona, in the afternoon at the ninth hour of the day. Thefe are called the canonical hours; but it is to be oblerved, that the afler-vefpers were not adiled till a late period, before which the reafon afigned for the number of fervices being feven, was, that David faith, "Seven times a day will I praife thee." When all the pfalms and hymns were fung, thefe daily fervices could not poffibly have been performed in lefs than twelve or fourteen hours. In the church of Ruffia, and probably in other branches of the Greek church, there are at prefent but three fervices in the day: the ainth bour, the vefpers, and the after vefpers making one; the mefonyecticon, the matins, and prima, another; and the third and fixth bour, with the communion, the laft. In all the fervices, except the communion, prayers and praifes are offered to fome faint, and to the Virgin Mary, almoit as often as to God; and in fome of the fervices, after every fhort prayer uttered by the deacon or the prieft, the choir chaunts, "Lord have mercy upon us," thirty, forty, or fifty times fucceflively.
'Hough the number of fervices is the fame every day, the fervices themfelves are conftantly varying in fome particular or other, as there is not a day which, in the Greek Church, is not either a falt or a feltival. Befides the faints, whofe feftivals are marked in the calendar, and who are fo very numerous that there are more than one for every day in the year, there are other faints and feftivals, to which fome portion of the fervice for every day of the week is appropriated. Thus, Sunday is dedicated to the refurrection; Monday, to the angels; Tuefday, to St John Baptift; Wednefday, to the virgin and the crofs; Thurfday, to the apoltles; Friday, to the pattion of Chrift ; and Saturday, to the faints and martyis. For thefe days there are particular hymns and fervices, in two volumes folio, to which there is a fupplement, containing fervices for the faints and feftivals, as they occur in the calcndar throughout the year. Thefe different fervices are mixed together, and adjuled by the directions contained in the book of reerulation; and it is the difficulty of this adjuftment which makes the public worthip of the Greek Church fo very intricatc, that, as was faid of the fervice of the Englith church before the Reformation, "there is more bulinefs to find out what fhould be read, than to read it when found out."

We have obferved, that the Greets have no peculiar

\section*{C. H U 488\(]\) C:H.U}

Church.

12
Modeofad. miniftering baptifm.
opinions refpecting the nature of baptifm ; but the rites and ceremonies with which that ordinance is adminiAtered will appear to our unlearned readers very extraordinary. On the day that a woman is delivered, the prielt goes to the houfe, and ufes a form of prayer for her and for her child. On the eighth day the child flould be regularly carried to the church, where the prielt having ligned it with the fign of the crofs on the forchead, on the mouth, and on the breaft, offers up for it a prayer, in which he firft gives it a name, commonly the nanie of the faint for that day in the calendar ; be then takes it from the midwife, and Itanding before the pidure of the bleffed virgin, he makes the fign of the crofs with the infant, attering a kind of hymn in honour of the Virgin, and of Simeon, who held in his bofom the Saviour of our fouls. He then difmilfes the company with an exhortation not to delay the baptizing of the infant thould it appear in danger of death before the regular time for its baptifm.

On the fortieth day after her delivery, the mother flould attend the church to be purified, and carry the child again to be prefented, the perfon who is to be fponfor being prefent. Upon their arrival at the church door, the piieft utters fome pious exclamations; and then, the mother holding the child in her arms and bowing down her head, he makes the fign of the crofs upon her and the child, and laying his hand upon its head, he prays, that the woman may be cleanfed from every fin, and from cvery deflement, and that the child may be fanctified and endued with underftanding, with wiflom, and with gentlenefs of manners. He then figns it again, and again prays for it, for its parents, and for its fponfor; after which, if it has been privately baptized, he takes it in his arms, and makes with it the fign of the crofs before the door of the church, faying, "N. N. the fervant of God, enters into the charch in the name of the Father, and of the Son, and of the Holy Ghoft, now and forever, even unto ages of ages. Amen." He then carries the child into the church, faying, "He thall go into thine houfe, and thall worthip toward thy holy temple ;" and advancing into the middle of the church, he fays, "In the midtt of thy church flatl he praife thee." Then if the child be a boy, he carries hinı within the rails of the altar ; but if a girl, only to the door, and fays, "Nunc dimittis(D);" after which he delivers it to the fiponfor, who makes three reverences, and retires.
This is called the prefentation of the child in the temple, and can only be perfurmed after it has been baptized. In the detail we have given, we have fuppofed that it was baptized privately before the purtication of the mother, which is now indeed commonly the cafe. Such baptifm, however, is net regular, being allowed only in cafes of neceffity, and when it has not taken place, the mother and child are difmifed as foon as the is purified, and return at fome other time, not fixed, in order that the child may be publicly baptized.

Previous to baptilm, the child, though not two months old, mult he folcmnly initiated into the church as a catechumen (See Catbchumen Encycl.). By thofe whofe religion is a reafonable fervice, iuch initia-
cion of an infant will be confidered as a very idle ceremony; and the rites with which it is performed are not well calculated to give it even a fictitions importance. At the door of the church the prieft unties the girdle of the infant ; takes off all his clothes but one loofe gar. ment; turns him towards the ealt with his head uncovered, his feet naked, and his hands held down; blows thrice in his face; figns him thrice with the fign of the crofs on the forehead, and on the brealt, and Jays: his hand upon his head, praying that his "ancient error may be put away from him, that his heart may be filled with faith, hope and charity; and that he may walk in the ways of God's commandments." The prieft then four times exorcifes the infant, commanding Satan in the firft exorcifm to "tremble, depart, and flee from Chrift's creature, nor dare to return again, nor dare to lurk concealed within him, or to meet him or to meditate againf him, either in the evening or the morning, at midnight, or at noon day." In the laft exorcifm he blows thrice upon the child's mouth, upon his forehead, and upon his brealt ; faying, each time, "Drive away from him every evil and unclean fpirit that lurks in him, and hath made itfelf a nelt in his heart." The child is now become a catechumen, and, being turned to the welt uncovered, without thoes, and his hands lifted up, the prieft repeatedly afks him, if he renounces, and has renounced the Devil and all his works? and receiving from the fponfor the proper anfwer, he fays, "blow and fpit upon him ;" and having blown and fpit upon the catechumen, he turns him to the eaft, and holding down his hands, afks him repeatedly if be be joined to Chrift, and if he believes in him? The catechumen or his fponfor replies to each queftion, that he is, and has been, joined to Chritt ; and as a proof of his faith he repeats, from beginning to end, the Nicene creed. After a repetition of the formerly repeated queftions and anfwers, the prieft prays that the catechumen may be called to God's holy fanctification, and receive the grace of God's holy baptifm.

Baptifm may be celebrated immediately after the candidate has been made a catechumen, or on any fubfequent day at no great diftance. In the firft part of the form there is not much that is fingular, or with which every fcholar is not acquainted. After praying that the water may be fanctified, in terms differing little from thofe which are ufed in the moft refpectable Proteltant churches, the prieft dips his fingers in it, figns it thrice with the fign of the crofs; and then blowing upon it, fays three times, "Let every adverfe power be confounded under the fign of the crofs." He then folemnly exorcifes it of the dxmon of darknefs and all evil fipirits; and prays, that "the perfon to be baptized therein may put off the old man, which is corrupt atter the luit of fraud, and may put on the new man after the image of Him that made him." After this, he blows thrice into a veffel of oil of clives held by the deacon, ligns it thrice with the fign of the crofs; and prays fervently, that it may "become to thofe who are ancinted with faith, and are partakers therenf, the unction of incorruption, the armour of righteoufnefs, the renewing of foul and body, for tuming afide all machinations

\footnotetext{
(D) We quote the words of Dr King. Is it poffible that in the Greek Church Latin hymus are ufed, or that Greck hymans have Latin defignations?
}

\section*{C H U [4.89\(] \quad\) C H U}

Church. nations of the devil, and for deliverance from all evil." He then fings altelujah tirice with the people, and pours the oil on the top of the water; and making three crofles with it, fays aloud, "Bleffed be God, who enlighteneth and fanclifieth every man that cometh into the world, now and forever, even unto ages of ages." The perfon to be baptized is then prefented; and the prief, taking fome of the oil with two fingers, and making the fign of the crofs on his forehead, on his breaft, and betwixt his fhoulders, fays, "N the fervant of God is anointed with the oil of gladnefs, in the name of the Father, and of the Son, and of the Holy Ghoft, now and forever, even unto ages of ages. Amen." He then figns bim on the breatt and the middle of the back, faying, "For the healing of his foul and hody;" then on the ears, faying, "For hearing the faith ;" then on the palms of the hands, faying, "Thy hands have made me and fafhioned me;" then on the feet, "That he may walk in the way of thy commandments." After the whole body is thus anointed, the prieft baptizes him, uling the trine immerfion; \(u\) hich is unqueftionably the moft primitive manner. He takes the child in his arms, and holding him upright with his face towards the eaft, he fays, " \(N\) the fervant of God is baptized (dipping him the firf time), in the name of the Father, Amen; in the name of the Son (dipping bim again), Amen ; and of the Holy Ghoot (dipping bim the third time), Amen, now and for ever, even unto ages of ages. Amen." After the baptifm, the prieft wipes his hands, and with the people fings thrice, from beginning to end, the 32 dPfalm ; he then puts upon the baptized perfon a white garment; faying, " N the fervant of God is clothed with the garment of righteoufnefs, in the name of the Father, and of the Son, and of the Holy Ghof, now and for ever, even unto ages of ages (e)." He then prays that he may be delivered from the evil one, and all his inlidions fnares; that he may be confirmed in the true faith; and that he may preferve his foul in purity and righeoufnefs: and proceeds immediately to anoint him with the Holy Cbrifin.
ru, fandarac, whiteft maftic, and Venice turpentins. With this holy mixture the baptized perfon is anointed, the prieft making with it the fign of the crofs on his forehead, on his eyes, his nuftrils, his mouth, both cars, his breaft, his lands, and his feet; fiying at exch part, "The feal of the gilt of the Holy Ghont. Amon." Then with the fpontor and the child he goes thrice round the lont, turning from the right to the left; the choir, in the mean time, finging, "As many of you :is are baptized unto Chrift have put on Chrif, alielujah."

Seven days after this ceremony is performed, the child is again brought to the chuach; when the priett, after praying for him, unties his girdle and linen clothe;, wathes him with clean water, and, fprinkling him, fays, "Thou halt been juftified, enlightened, fanctiñed, in the name of our Lord Jefus Chrift, and with the Spirit of our God." Then taking a new fponge moiftened with water, he wafnes his face, breait, \&c.; faying, "Thou balt been baptized, enlightened, anointed, fanctified, wafhed, in the name of the Father, and of the Son, and of the Holy Ghoft, now and for tever, even unto ages of ages. Amen."

The laft ceremony appended to baptifm is that of The tonthe tonfure, or fhaving the head of tha child in the furc. form of the crofs. At what time this rite crept into the church it would not be eafy to difonver. Some think it received its origin from the religious ceremonies of the Heathen, who certainly rounded the corners of their heads, and marred their beards at a very early period, in honor of their idols (See Theology, no 155. Encycl.) ; and fome pious, but foolilh Chrintians, efteemed it highly commendable to transfer to the true God that worlhip, in a different form, which had been rendered by their anceltors to falfe deities. Others will have the tonfure to typify the dedication of the perfon to the fervice of God; the cutting off of the hair being'always confidered as a mark of fervitude. Be thefe conjectures as they mar, the prient, after the child is baptized, offers up for him leveral prayers, all alluding to the rite to be performed; and then cuts his hair crofs-wife, faying, " \(N\) the fervant of God is thorn, in the name of the Father, and of the Son, and of the Holy Ghoft, now and forever, even unto ages of ages. Amen."

We have given a full arcount of the manner in which the facrament of baptifm is celebrated among the Greeks, that the reader nay have fome notion of the childifh fuperatition of that church, with which certain zedious Proteftants in England were very defirou:, at the beginning of this century, to form a union. There is no occafion for dwelling fo long upon their other offices. Fur the celebration of the Lord's Supper, they TlieGreeks have three liturgies that are occafinnally uled, riza. that have three of St Chryfollom, which is in ordinary daily ufe ; that of St Bafil, ufed on particulir days; and that of the prefancified, as it is called, which is uied on the Wedneflays and Fridays cluring the great fat before Ealler. Between the liturgies of St Chyfoilom and St Bafil there is no effential difference; and the office of the pre. fanctified
(:) The reader will perceive, that many of thefe rites and ceremonies are common to the Greek churchand the church of Rome in the celebration of the facrament of baptilm.
(F) We quote the word, of 1) r Jing, taking it for grarted that our readers will pardon our not giving corfelves mulh trouble to difover, on the prefent occalion, what particulat fipecies or variety of the Roras he means by this defignation. Sec Sityra., Ericych.

\section*{C H U [490] C H U}
the ele-
mento.

Church.
\(\underbrace{\text { Churen. }}\)
fanctified is merely a form of difperifing the commonion with elements which had been confecrated on the preceding Sunday. We would gladly infert the liturgy of St Chryfollom, or at leaft fuch an abftract of it as we have given of the form of adminiftering baptifm; but as our limits will not permit us to do fo, we muft refer fuch of our readers as have any curiofity refpecting fubjects of this nature to Dr King's Rites and Ceremonies of the Greek Church.

It is proper, however, to obferve here, that many fuperltitious ceremonies have been added to the fervice compare his genuine works with the liturgy which now goes under his name, and entertain the fmallelt doubr but that the latter has been greatly, though gradually, corrupted. In the offertory there is a frange ceremo. ny, called the llaying of the Holy Lamb, when the prielt, taking into his lelt hand one of the five loaves which are to be confecrated, thrults a fpear into the right fide of it ; faying, "He was led as a lamb to the dlaughter ;" then into the left fide, adding, "And as a blamelefs lamb before his thearers is dumb, fo he openeth not his mouth :" then into the upper part of the loaf; faying, "In his humiliation his judgment was taken away:" and into the lower part, adding, "And who thall declare his generation ?" He then thrufts the fear obliquely into the loaf, lifting it up, and faying, "For his life was taken away from the earth." After this he lays down the loaf, and cutting it crofswife, fays,
"The Lamb of God, which taketh away the fins of the world, is flain for the life and falvation of the world." All this, and more to the fame purpofe, is unqueftionably modern; but we have no doubt but that the prieft ures the words of Chryfollom himfelf, when, in the confecration of the elements, he fays, "We offer unto thee this reafonable, this unbloody facrifice; and we implore, we pray thee, we humbly befeech thee, to fend down thy Holy Spirit upon us, and thofe oblations prefented unto thee; and make this bread the precious body of thy Chrift; and that which is in this cup the precious blood of thy Chritt, changing them by thy Holy Spirit."

Dr King obferves, that this invocation of the Holy Spirit upon the elements, which in the eaftern church is always ufed after the words of Chrift, "This is my body, this is my blood, \&c." is incenfiftent with the Popifh doctrine of tranfubitantiation : and he is undoubtedly right ; for the church of Rome teaches, that the change is made about the middle of the mafs, when the prieft, taking into his hand firt the bread, and then the wine, pronounces over each feparately the facred words of confecration; i.e. the words of Chrift. "It is the office of the prief, in this and in all other facraments (fays a dignitary of that church), only to perform the outward fenfible part; but the inward invifible effect is the work of the great God, who accordingly
changes the fubftance of the bread and wine into the body and blood of Chrift the very inflant that the facred words of confecration are pronounced by the prieft over them." But if this be fo, it would be impious, and we believe that by the church of Rome it is deemed impious, to pray afterwards that God would fend down his Holy Spirit to change into the body and blood of Chrift elements which he had already changed into that body and blood, in confequence of the prieft's pronouncing over them the all-powerful words of Chrift. Yet is it certain, that in the prefent Greek church tranfubfantiation is as much an article of faith as in the church of Rome; for now every bifhop, at his confecration declares, in the moft folemn manner, that he believes and "underftands that the tranfubftantiation of the body and blood of Chrift, in the holy fupper, is effected by the influence and operation of the Holy Ghof, when the bifhop or prie! invokes God the Fa. ther in thefe words, and make this bread the precious body of thy Chrift, sc." This is indeed a different account from that of the Latin church of the time at which this portentous change is wrought ; but fuch difference is a matter of vers little importance (c). If the change itfelf be admitted, the confequences mult be the fame, whether it be fuppofed to take place when the prieft pronounces the words of inftitution, or after he has invoked the defcent of the Holy Ghoft; in either cafe it leads to idolatry. It may be proper to mention, that in the Greek church it is deemed effential to the validity of this holy facrament, that a little warm water be mixed with the wine; that the napkin, which is fpread over the holy table, and anfwers to the corporale of the church of Rome, be confecrated by a bithop, and that it have fome finall particles of the reliques of a martyr mixed in the web, otherwife the eucharift cannot be adminiftered. In this church children may receive the communion immediately after baptifm; and the lay communicants, of whatever age, receive both the elements together, the bread being fopped in the cup: the clergy receive them feparately.

We have obferved, that one of the feven myfcrics, or Confefimm facraments of the Greek church is confeffion; but among in the the Greeks it is a much more rational and edifying Greek fervice than in the Church of Rome. In the Greek Church. church the end of confcffion is the amendment of the penitent ; in the church of Rome it is to magnify the glory of the prielt. In the former church, the confeffors pretend only to abate or remit the penance, declaring the pardon from God alone; in the latter, they take upon them to forgive the fin itfelf. The Greek church preferibes confeffion four times in the year to all her members; but the laity, for the moft part, confefs only once a year previous to receiving the holy communion; and to this they are in Ruffia obliged by the laws of the empire.
(G) Mr Bruce feems to doubt whether tranfubfantiation be the doatine of the Abyffinian church, and relates 2 converfation which he had on the fubject with a prieft; who folemaly affirmed, that he never believed in the converfion of the fubftance of the bread and wine, into the fubftance of our Saviour's body and blood. It muft be remembered, however, that the prieft had at the time a powerful reafon for wifhing that doctrine not to be true. The Jetuits uniformly atteft, that the Abyflinians believe in the real prefence; though it muft not be forgotten, that Ludulf was of a different opinion, and that no man had itudied the language of Abyfinia more fuccefofully than he.

\section*{\(\mathrm{C} H \mathrm{H} \quad[49 \mathrm{I}] \quad \mathrm{C} H \mathrm{U}\)}

Church: The ceremonies with which matrimony is performed \(\sim_{\text {ar }}\) in the Greek church confift of three diltinct offices, formerly celebrated at different times, after certain in. tervals, which now make but one fervice. Firft there was a folemn fervice when the parties betrothed them felves to each other, by giving and receiving rings or other prefents as pledges of their mutual fidelity and attachment. The ancient ufage was for the man to receive a gold ring, and the woman a filver one, which is ftill alluded to in the rubric, though in the prefent practice, the rings are generally both of gold. At this time the dowry was paid, and certain obligations were entered into, to forfeit fums in propartion to it, if cither of the parties thould refufe to ratify the engagement. At this ceremony, called the \(\mu\) in \(\sigma\) sfpor, or recording of the plediges before witneffes, the prielt gives lighted tapers to the parties to be contracted, makinco the fign of the crofs on the forehead of each with the end of the taper before he deliver it.

The fecond ceremony, which is properly the marriage, is called the office of matrimonial coronation, from a fingular circumftance in it, that of crowning the parties. This is done in token of the triumph of continence; and therefore it has, in fome places, been omitted at fecond marriages. Formerly thefe crowns were gatlands made of flowers or fhrubs; but now there are kept, in moft churches, crowns of filver or fome other metal for the celebration of matrimony. At the putting of them on, the prieft fays, " \(N\), the fervant of God, is crowned for the handmaid of God;" and "N, handmaid of God, is crowned for the fervant of God, in the name of the Father, and of the Son, and of the Holy Ghoft;" adding thrice, "O Lord our God, crown them with glory and honour."

The third ceremony is that of diffolving the crowns on the cighth day ; after which the bride is conducted in the bridegroom's houfe, immediately to enter on the cares of his family.

With refpect to difcipline and government, the Greek
certain education; whereas the feculars are of the nearner fort, and illiterate in the extreme.

In the Greek church there are five orders of clergy \({ }^{2.8}\) promoted by the impofition of hands; but it does not of clergy. appear that the ordination of the reader, or of the fubdeacon, is confidered as a facrament. The forms ufed in the ordination of deacons, preflyters, and bifhops, are ferious and fignificant (H), bearing in themfelves evidence of great antiquity. The candidate for the deaconate or priefthood kneels before the holy table, and the bifhop, laying, his right hand on his head, faith, "The divine grace, which healeth our infirmities, and Form \({ }^{24}\) fupplieth our defects, promoteth N , the molt pious fub- ordination. deacon, to the order of deacon;" or, in the cafe of the priellhood, "The moft pious deacon to the order of a preloyter; let us pray for him, that the grace of the Holy Spirit may come upon lim." It does not ap. pear from Dr King's account of thefe offices, that in the Greek church the attending prefbyters lay on their hands together with the bifhop at the ordination of a prefoyter, as is practifed in the church of England; but feveral bifhops lay on their hands together with the archbifhop at the confecration of a bifhop.

This is indeed a very folemn ceremony. The can. Solems didate for the epifcopate, who is always an archiman- confecradrite or bieromonachus, i. e. an abbot or chief mork in tion of fome monaftery, being named to the vacant fee, and bifhops. the election being confirmed, repairs at the time appointed, to the church where the confecration is to be performed. Being arrived, he is introduced by the proto-pope (1) and proto-deacon to the archbifhop and bifhops, who are arranged in proper order on a temporary theatre or platform, erected in the church for the occalion. He there gives an account of his faith; declares folemnly that he has neither given nor promifed money, or any bribe-worthy fervice, for his dignity; and promifes to adhere fteadily to the traditions and canons of the eaftern church, to vifit his diocefe regularly, and to oppofe ftrenuoufly all innovations and herefies, particularly the errors of the Latin church. This being done, the archbifhop fays, "The grace of the Holy Spirit, through my humility, exalts thee N. archimandrite or hieromonachus, beloved of God, to be bithop of the cities N. N. which God preferve." With much ceremony the bihop-etect is then conducted from the theatre, within the rails of the holy altar, where he kneels down with the other bifhops, who hold open over his head the holy gofpel wish the letters inverted, the archbihop faying aloud, "The divine grace, which always healeth our infirmities, and fupplieth our defcets,
(н) We muft except thofe ufed in the church of Abyffinia, which, according to Mr Bruce, are fhamcfully indecent. "A number of men and children prefent themfelves at a diftance, and there ftand, from humility, not daring to approach the abuna or bithop. He then afks who thefe are? and they tell him that they want to be deacons. On this, with a fmall iron crofs in his hand, after making two or three figns, he blows with his mouth twice or thrice upon them ; faying, Let them bedeacons. I faw once (fays our author) all the army of Begemder made deacons juft returned from thedding the blood of 10,000 men. With thofe were mingled about 1000 women, who contequently having patt of the fame blaft and brandifhment of the crofs, were as good deacons as the reft. In the ordination of priefts a little more ceremony is ufed; for they muft be able to read a chapter of St Mark, which they do in a language of which the abuna undertands not one word. They then give him a brick of falt, to the value perhaps of fixpence, for their ordination; which, on account of this prefent, the Jefuits maintained to be Simoniacal." There is but one bifhop or abuna in Abyflinia, and he is always a foreigner, fubordinate in his jurifdition to the patriarch of Alesandria.
(1) In the Greek church all panifl pric!ts are called fapas or popes; and the proto-pope is an archprefbyter.

\section*{C H U [492] C H U}
by my hand condurte:h thee N . archimandrite or hiernmonachus, behoved of God, bifhop elect of the cities of N. N. which God preferve !-Let us pray thetefore for him, that the grace of the moft Holy Spirit may come upon him." Then the priefts fay thrice, Lord have mercy upon us;" and while the bifhops continue to hold the grafeel, the archbithop figns the newly confecrated bilhop thrice with the fign of the crofs, faying, "In the name of the Father, and of the Son, and of the Holy Ghofr, now and furever, even unto ages of ages. Amen." Then all the bifhops putting their rizht hands on his head, the atchbilhop prays that be may be confirmed in the office of which they have julged him worthy, that his priefthood may be rendered irreproachable, and that he himfelf may be made holy and worthy to be heard of God. After this, one of the affilling bihops reads a fort litany in a low voice, to be heard only by thofe within the altar, and the other bifhops make the refponfes. At the end of the litany the archbifhop, laying his hand again upon the head of the newly confecrated bifhop, prays in very decent and devout terms, that Chrift will render him an imitator of himfelf, the true fhepherd; that he will make him a leader of the blind, a light to thofe who walk in darknefs, and a teacher of infants; that he may fine in the world, and receive at laft the great reward prepared for thofe who contend boldly for the preaching of the gofpel. Afrer this the paftoral flaff is delivered to the new bilhop, with a very proper and folemn exhortation from the archbifhop, to feed the flock of Chrift committed to his care.

The laft facrament of the Greek church is that of the holy oil or euchelaion, which is not confined to perfons periculofe rgrotantibus, et mortis periculo inminnente, like the extreme unction of the Romifh church; but is adminitered, if required, to devout perfons upon the flighteft malady. Though this ordinance is derived from St James, chaf. v. ver. 14, 15. it is by no means deemed neceffary to falvation, or obligatory upon all Chrillians; and it is weli that it is not, for feven priefls are required to adminitter it regularly, and it cannot be adminititered at all by lefs than three. The oil is confecrated with much folemnity; after which each prief, in his turn, takes a twig, and dipping it in the oil now made holy, anoints the fick perfon crofs-wife, on the forehead, on the noftrils, on the paps, the mouth, the breaft, and both fides of the hands, praying that he may be delivered from the bodily infirmity under which
priate; and when the firft gofipel, relating our Saviour's wathing of his difciples feet, begins to be read, the bifhop or patriarch rifes up, and takes of his pontifical veftments, by himfelf without adillance. He then girds himfelf with a towel, and taking a bafon of water in his hand, kneels down and wathes one foot of each prieft, begiming with the youngelt ; and after having wafled it he kilfes it. All this is done as the feveral circumftances are read; and when he comes to the laft prient, who is fuppofed to reprefent Peter, that prieft rifes up and faith, "Lord, dof thnu wath my feet?" \&c. The bifhop anfwers in the words of cur Savinur ; and having finifhed the whole, puts on his gaments again, and fits down; and as the fecond gofpel is read (\(\kappa\)), repeats the words of our Savinur, " Know ye what I have done unto you?" Sc. The office is certainly ancient, and if decently performed muft be affecting.
Under the word Patriarchs (Encycl.) we have The privigiven a fufficient account of the rife of the p.ttriarchates, leges of the as well as of the various degrees of rank and authorit parriarch claimed by the bilhops of feveral other fees in the Greek church. It may be proper to add here, that after the taking of Conflantinople by Mohammed II. he continued to the patriarch of that city the fame prefent which the Greek emperors had been accuftomed to make, a paltoral ftaff, a white horie, and four hundred ducates in gold. To the Greek church and the maintenance of its clergy he left indeed ample revenues, which they have gradually facrificed to their inconftaney, their ambition, and their private jealoufy. Still, however, the patriarch of Conftantinople fills a very lucrative and high office. "Befides the power of nominating the other three patriarchs, and all epifcopal dignitaries (fays Mr Dallaway), he enjoys a molt extenfive jurifdiction, comprifing the churches of Anatolia, Greece, Wallachia, Moldavia, and the iflands of the Archipelago. Since the clofe of the fixteenth century, the Ruffian church has claimed a jurifditaion independent of the fee of Conftantinople; though appeals have been made to that fee in cafes of extraordinary importance. The influence of the patriarch with the Porte is very extenfive, as far as his own nation is concerned. His memorials are never denied; and he can, in fact, command the death, the exile, imprifonment for life, depofition from offices, or pecuniary fine, of any Greck whom he may be inclined to punillh with rigour, or who has treated his authority with contempt. On the death of the patriarch the molt eager competition is exerted to fill the vacant throne ; which, as it is obtained by bribery and intrigue, is of courfe a very unftable feat to the fucceffful candidate, fhould another offer to accept the appointment at a lower falary." For a fuller account of the dostrines, difcipline, and worthip of the Greek church at prefent, we refer the reader to King's Rites and Ceremanies of the Greek Cburch in Rufin, and to Dallaway's Confantinople anvient and modern (publifhed in 1797); from which wo works this abftract has been moltly taken.

CHURCH Creek Town, in Dorchetter co. Mary. land, lies at the head of Church creek, a branch of Hudfon river, 7 miles \(S\). wefterly from Cambridge. -Morse.

CHURCH
(k) The firt gofpel is Joha xiii. 3-12. The fecond gofpel is John xiii. 12-18.

\section*{C H U [493] C I N}

Church CHURCH HILL, a village in Queen Anne's co. Maryland, at the head of S. E. Creek, a branch of Chefter river ; N. W. of Bridgetown, and N. E. of Centreville 8 miles, and 85 S . W. from Philadelphia. N. lat. 40. 9. W. long. 75. 53.-ib.

Church Hill, Fort, in New N. Wales, fands at the mouth of Seal river-on the E. fide of Hudion bay; 120 miles N. N. E. of York fort. N. lat. 48. 58. W. long. 94. 13.-ib.

CHURCHILL River in New South Walee, runs N. eafterly into the W. fide of Hudion bay, at Chu:ch Hill fort, in lat. 58.57-32. N. long. 94. J2.30. W.-ib.

CHURCHTOWN, a village, fo called, in the N . E. part of Lancafter co. Pennfylvania, about 20 miles E. N. E. of Lancalter, and 50 W. N. W. of Philadelphia. It has 12 houres, and an Epiicopal church; and in the environs are two forges, which manufacture about 450 tons of bar iron annually. -ib.

CHUSAN-Islands, a clufter of fmall iflands on the eaft coaft of China, which were vifited by Lord Macartney in his courfe to Pekin. Moft of thefe iflands feem to be hills rifing regularly out of the fea, and rounded at top, as if any points or angles exifting in their original formation had been gradually worn off into a globular and uniform fhape. Many of them, though clofe to each other, are divided by clannels of great depth. They reft upon a foundation of grey or red granite, fome part refembling porphyry, except in bardnefs. They were, certainly, not formed by the fucceflive alluvion from the earth brought into the fea by the great river at whofe mouth they are fituated, like the numerous low and muddy iflands at the mouth of the Po, and many others; but fhould rather be confidered as the remains of part of the continent thus fcooped and furrowed, as it were, into iflands, by the force of violent torrents carrying off, further into the fea, whatever was lefis refiftible than the rocks juft mentioned. Some of them wore a very inviting afpeet; one in particular, called Poo-too, is defcribed as a perfect paradife. This fpot was chofen, no doubt, for its natural beauties, and afterwards embelliihed, by a fet of religious men, who, to the number of three thoufand, pofiefs the whole of it, living there in a ftate of celibacy. It contains four hundred temples, to each of which are annexed dwelling houres and gardens for the accommodation of thofe monks. This large monaftery, as it may be called, is richly endowed, and its fame is fpread throughout the empire.

The Englifh Eaft India Company had once a factory at Chufan, the principal of thefe iflands, from which they were many years ago interdicted. This, according to the account of a Chinefe merchant who remembered the factory, was not occafioned by any offence given by the Englifh, but by the avarice of the officers governing at Canton, who draw large fums from the accumulation of foreign trade in that port. Perhaps, ton, the exceflive jealouly of the Chinefe government might fancy danger in the uareltrained communication between foreigners and the fubjeets of that empire in feveral of its ports at the fame time.
Tung-hai, the chief town of Chufan, refembles Venice, but on a firaller fcale. It is forrounded, as well as interfected, by canals, over which are thrown fleep bridges, afcended by feps like the Rialto. The ftreets are narrow and paved with fquare flat fones; but the

Suppl. Vol. I.
houfes, unlike the Venetian buildings, are low and moft. ly of one ftory. The ornaments of thefe buildings are confined chiefly to the rocfs, on the ridges of which are uncouth figures of animals in clay, fone, or iron. The town is full of thops, containing chiefly articles of clo. thing, food, and furniture, difplayed to full advantage. Even coffins are painted in a variety of lively and contrafting colours. The fmaller quadrupeds, including dogs, intended for food, are expofed alive for falc, as well as poultry, and fifh in tubs of water with ecls in fand. When the gentlemen belonging to the embaify were at Ting-hai, they were flruck with the number of places where tin-leaf and Alicks of odoriferons wood were fold for burning in the temples, which indicated no llight degree of fuperftition in the people. Superftition, however, made thens not idle; for throughout the whole place there was a quick and active indultry. Men paffed bufily through the itreets, while not an individual was feen afking alms; and the women were employed in the fhops. At Chafan, the number of valuable harbours, or places of perfeef fecurity for thips of any burden, is almof equal to the number of iflands. This advantage, together with that of their central fituation, in refpect to the eaftern coaft of China, and the vicinity of Corea, Japan, Leoo-keoo, and Formofa, attract confiderable commerce, efpecially to Ning-poo, a city of great trade in the adjoining province of Chechiang, to which all the Chufan illands are annexed. From one port in that province twelve veffels fail annually for copper to Japan.

According to Brooks, Chufan is in N. Lat. 30. O. and E. Long. 124.0 .

CIACICA, a jurifuiction in S. America, in Peru, fubject to the archbifhop of Plata, and 90 leagues dif. tant from that city; abounding in cocoa, cattle, and fome filver mines.- Iíorse.

CIBOLA, or Civola, the name of a town in, and , alfo the ancient name of, New-Granada, in Terra Firma, South-America. The country here, though not mountainous, is very cool; and the Indians are faid to be the whitef, wittief, mon fincere and orderly of all the aboriginal Americans. When the country was difcovered, they had eacl but one wife, and were exceflively jealous. They worfhipped water, and an old woman that was a magician; and believed the lay hid under one of their lakes.- \(i b\).

CICERO, a military townhip in New-York, on the S. W. fide of Oneida lake; and between it, the Salt lake, and the Salt fprings.-ib.

CINALOA, called by fome Cinoleo, a province in the audience of Galicia, in Old-Mexico, or New-Spain. It has the gुulf of California on the W. the province of Culiacan on the S. and the kingdom of New-Mexico on the N. and E. From S. E. to N. E. it is about 100 leagues; and not above 40 where broadeft. On the E. fide it is bounded by the high craggy mountains, called T'epecfuan, 30 or 40 leagues from the fea. It is well watered, its rivers abound with fith, and the air is ferene and healthful. It abounds with all forts of fruit, and grain, and cotton. The natives are hardy and induftrious, and manufacture cotton cloth, with which they clothe themfelves.-ib.

CINARA, or Cynara, which we tranilate artichoke, is, according to Profeffor Beckmann, the name which was given by the ancients to a plant very diffe-

Chufan-
Iflands
Cillara. ~

\section*{C I R [494] C I R}
rent from the artichoke of our kitchen gardens, though he admits that they belong to the fame genus. The proofs which he adduces for the truth of his opinion are too tedious to be introduced into this Work, efpecially as they appear not to us to be abfolutely conclufive. We mutt therefore refer the reader to his Hittory of Inventions. The cisara, carduus, and foobynus (fee Scolymus in this Supplement), were in his opinion fpecies of the thifle, of which the rosis and young Bhoots, as well as the bottom of the calyx of the laft, were eaten. He has proved indeed, he thinks, that the Greeks and Romans ufed the pulpy bottom of the calyx, and the tenderelt ftalks and young floots of many plants belenging to the thiftle kind, in the fame manner as we ufe artichokes and cardoons, but that there latter were unknown to them.
"It appears probable (fays he) that the ufe of thefe thißles, at leaft in Italy and Europe in general, was in the courfe of time laid afide and forgotten, and that the artichoke, when it was firf brought to Italy from the Levant, was confidered as a new ipecies of food. It is undoubtedly certain that our artichoke was firt known in that country in the 5 th century. Hermolaus Barbarus, who died in 1494, relates that this plant was firf feen at Venice in a garden in 1473, at which time it was very fearce. About the year 1466 , one of the family of Strozza brought the firt artichokes to Florence from Naples. Politian, in a letter in which he defcribes the difhes he found at a grand entertaimment in Italy in 1488, among thefe mentions artichokes. They were introduced into France in the beginning of the oth century, and into England in the reign of Henry VIII."

The original country of the artichote is unknown. Linneus fays that it grew wild in Narbonne, Italy, and Sicily, as the cardoon did in Crete; but our anthor has proved very fufficiently, that with refpect to both thefe facts the great botanif was mifinformed. The artichoke is certainly known in Perfia; but Tavernier fays exprefsly, that it was carried thither, like afparagus and other European vegetables of the kitchen garden, by the Carmelite and other monks: and that it was only in latter times that it became common.

CINCINNATI, a flourifhing town in the territory of the U. S. N. W. of the Ohio, and the prefent feat of government. It ftands on the N . bank of the Ohio, oppofite the mouth of Licking river \(2 \frac{1}{4}\) miles \(S\). W. of Fort Wathington, and about 8 miles wefterly of Columbia. Both thefe towns lie between Great and Little Miami rivers. Cincinnati contains about 200 houfes ; and is 82 miles N. by F. of Frankfort; 90 N. W. of Lexington, and 779 W. by S. of Philadelphia. N. lat. 39. 22. W. Joug. 85.44-Morse.

CINCINNATUS, is the \(S\). eafternmoft of the military townthips of New-York flate. It has Virgil on the W. and Salem, in Herkemer co. on the E. and lies on two branches of Tioughnioga river, a N. weltern branch of the Chenango. The centre of the town lies 53 miles S. W. by W. of Coopertown, and 39 S . E. by S. of the S. E. end of Salt Lake. N. litt. \(4^{2} \cdot 30\).

CInNABAR. See Chemistry in this Supplement, \(n^{0} 91\).

CIRCLE of Curvature, or circle of equicurvature, is that circle which has the fame curvature with a given curve at a certain point; or that circle whofe ra-
dius is equal to the radius of curvature of the given curve at that point.

Circles of Deciination are great circles interfecting each other in the poles of the world.

Circle of Difippation, in optics. See Optics, Encycl. \(\mathrm{n}^{\circ} 253\).

Ctrcle Equant, in the Ptolemic aftronomy, is a circle defcribed on the centre of the equant. Its chicf ufe is to find the var:ation of the firt inequality.

Circles of Excurfion are little circles parallel to the ecliptic, and at fuch a difance from it, as that the excurions of the planets towards the poles of the ecliptic may be included within them; being ufually fixed at about 10 degrees. \({ }^{\circ}\)

Circles of Pofilion, are circles pafing through the common interfections of the horizon and meridian, and through any degree of the ecliptic, or the centre of any far, or other point in the heavens; and are ufed for finding out the fituation or pefition of any flar. Thefe are ufually fix in number, cutting the equinoctiab into 12 equal parts, which the aftrologers call the celef. tial houfes, and hence they are fometimes called circles of the celeftial houfes.

CIRCULAR Lines, a name given by fome authors to fuch Araight lines as are divided by means of the divifions made in the arch of a circle; fuch as the fines, tangents, fecants, \&c.

Circular Parts, called, from the ufe which be firt made of them, Nupier's circular parts, are the five parts of a right-angled or a quadrantal fpherical triangle; they are the two legs, the complement of the hypothenufe, and the complements of the two oblique angles.

Concerning thefe circular parts, Napier gave a general rule in his Logarithmorunt Canonis Defrriptio, which is this; " The rectangle under the radius and the fine of the middle part is equal to the rectangle under the tangents of the adjacent parts, and to the rectangle under the cofines of the oppofite parts. The right angle or quadrantal fide being neglected, the two lides and the complements of the other three natural parts are called the circular purts, as they follow each other as it were in a circular order. Of thefe, any one being fixed upon as the middle part, thofe next it are the adjacent, and thofe fartheft from it the oppofite parts."

This rule contains within itfelf all the particular rujes for the folution of right-angled fpherical triangles, and they were thus brought into one general comprehenfive theorem, for the fake of the memory; as thus, by charging the memory with this one rule alone: All the cafes of right angled fpherical triangles may be refolved, and thofe of oblique ones alfo, by letting fall a perpendicular, excepting the two cafes in which there are Given either the three fides, or the three angles. And for thefe a fimilar expedient has been devifed by Lord Buchan and Dr Minto, which may be thus expreffed: "Of the circular parts of an oblique fpherical triangle, the rectangle under the tangents of half the fum and half the difference of the fegments at the middle part (formed by a perpendicular drawn from an angle to the oppofite fide), is equal to the rectangle under the tangents of half the fum and half the diference of the oppofite parts." By the circular parts of an oblique fpherical triangle are meant its three fides and the fupplements of its three angles. Any of thefe fix being affumed as a middle part, the oppofite parts are thofe

Circulating two of the fame denomination with it, that is, if the middle part is one of the fides, the oppofite parts are the other two, and, if the middle part is the fupple. ment of ons of the angles, the oppofite parts are the fupplements of the other two. Since every plane tiiangle may be confidered as deferibed on the furface of a fphere of an infinite radius, thefe two rules may be applied to plane triangles, provided the middle part be scilrieted to a fide.

Thus it appears that two fimple rules fuffice for the folution of all the pollible cafes of plane and fpherical triangles. Thefe iules, from their neatnefs, and the manner in which they are expreffed, cannot fail of engraving themfelves deeply on the memory of every one who is a little verfed in trigonometry. It is a circumflance worthy of notice, that a perfon of a very weak memory may carry the whole art of trigonometry in luis head.

Circulating Decihals. See Decimals in this Supplement.

CIVIDAD REAL, the capital city of Chiapa, in New-Spain. Chilton, an Englifhman, fays the Indians called it Sacatlan, and that, in 1570 , it contained about 100 Spanifh inhabitants.-Morse.

Cividad Real, is the capital of the province of Guaira, in the E. divifion of Paragıay.-ib.

CLAIR, St, a county in the territory N. W. of the Ohio; was laid off 27th April, I790. Its boundaries are thus officially defcribed: " Beginning at the mouth of the I,ittle Michillimackinack river; running thence foutherly in a ditect line to the mouth of the Little river above fort Malfac, upon the Ohio river; thence with the Ohio to its junction with the Miffinippi ; thence up the Miflifippi to the month of the Illinois river; and up the Illinois to the place of beginning, with all the adjacent iflands of the faid rivers Illinois and Miffif. fippi."-ib.

Clatr, St , a fort in the territory N. W. of the Ohin, is fituated 25 miles N . of fort Hamilton, on a fmall creek which falls into the Great Miami ; and 21 miles S. of fort Jefferfon.-ib.

Clarr, St, Lake, lies about half way between lake Furon and lake Erie, in North America, and is about no miles in circumference. It receives the waters of the three great lakes, Superior, Michigan, and Huron, and difcharges them through the river or Arait, called D'Etroit (which is in French, the Strait) into lake Erie. Its channel, as alfo that of the lake, is fufficiently deep for veffels of very confiderable burden.-il.

CLARE, 2 townflip on St Mary's bay, in Annapolis co. Nova-Scotia. It has about 50 families, and is compofed of woodland and falt marfh.-ib.

CLAREMONT, a townfhip in Chefhire co. NewHamplhire, on the E. fide of Connceticut river, oppofite Afrutney mountain, in Vermont, and on the N. ficle of Sugar river ; 24 miles S. of Daitmonth college, and 82 S . W. by W. of Portfmouth. It was incorporated in 1764 , and contains 1435 inhabitants.-ib.

Claremont Co. in Camdendiftict, S. Carolina, contains 2479 white inhabitants, and 2110 ीaves. Statefburg is the county town.-ib.

CLARENDON Co. the fouthernmon in Camden diftict, S. Carolina, is about 30 miles long and 30 broad, and contains 1790 whites and 602 flaves.-ib.

Clarenton, a townthip neat the centre of Rutland co. Vermont, watcred by Otter Creck and its tributary
ftreams; 14 or 15 miles E. of Fairhaven, and 44 N . E. of Dennington. It contains 1478 inhabitants. On the \(S\). L. fide of a mountain in the wefterly part of Clarendon, or in the edge of Tinmouth, is a curious cave, the mouth of which is not more than \(2 \frac{1}{2}\) feet in diameter. In its defcent, the paffage makes an angle with the horizon of 35 or 40 degrees; but continues of nearly the fame diameter through its whole length, which is \(3 \frac{1}{2}\) feet. At that diftance from the mouth, it opens into a facious room, 20 feet long, \(12 \frac{1}{2}\) wide, and 18 or 20 feet high. Every part of the floor, lides and roof of this room appear to be a folid rock, but very rough and uneven. The water is continually percolating through the top, and has formed falactites of varions forms; many of whicl are conical, and fome have the appearance of mafive columns. From this room there is a communication by a narrow paffage to others equally curious.-ib.

CLARIEE, a new county of Kentucky between the head waters of Kentucky and Licking rivers. Its chief town is Winchetter.-ib.

CLARKSBURG, the chief town of Harrifon co. Virginia. It contains about 40 houfes, a courthoufe, and gaol ; and ftands on the E. fide of Monongahela river, 40 miles S . W. of Morgantown. - ib.

CLA.RKSTOWN, in Orange co. New-York, lies on the WV. fide of the Tappan Sea, 2 miles diftant ; northerly from Tappan townfhip, 6 miles, and from New. York city, 29 miles. By the ftate cenfus of 1796,224 of its inhabitants are electors.-ib.

CLARKSVILLE, the chief town of what was till lately called Tenneffee co. in the fate of Tenneffee, is pleafantly fituated on the E. bank of Cumberland river, and at the mouth of Red river, oppofite the mouth of Muddy Creek. It contains about zo houfes, a court. houfe and gaol, 45 miles N. W. of Nathville ; 220 N . W. by W. of Knoxville, and \(94^{\circ}\) W. by S. of Philadelphia. N. lat. 36. 25 .W.long. 88. 5\%-—ib.

Clarksvilee, a fniall fettlement in the N. W. territory, which contained, in 1791 , about 60 fouls. It is fituated on the northern bank of the Ohio, oppofite Louifville, a mile below the Kapids, and 100 miles \(S\). E. of Poft Vincent. It is frequently flooded, when the river is high, and inhabited by people who cannot, at prefent, find a better fituation.-ib.

CLAVERACK, a poft town in Columbia co. NewYork, pleafantly fituated on a large plain, about \(2 \frac{\pi}{2}\) miles E. of Hudfon city, near a creek of its own name. It contains about 60 houfes, a Dutch Church, a courthoufe, and a gaol. The townfhip, by the cenfus of 1791, contained 3262 inhabitants, including 340 flaves. By the ftate cenfus of 1796 , there appears to be 412 electors. It is 23 I miles from Philadelphia.-ib.

CLERK's Ifes, lie S. W. from, and at the entrance of Behring's Araits, which feparate Afla from America. They rather belong to Afia, being very near, and S. S. W. from the head land which lies between, the Araits and the gulf of Anadir, in Afia. They have their name in honor of that able navigator, Capt. Clerk, the companion of Capt. Cook. In other maps they are called St Andrea Ifles.-ib.

CLERMONT, a poft town in Columbia co. NewYork, 6 miles from Red Hook, 15 from Hudfon, 117 miles N. of New-York, and 212 from Philadelphia. The townhip contains 867 inhabitants, inclufive of 113 flaves.-ib.
\| Cernuse. -

\section*{C I. I}

Clermont

Clermont, a village is miles from Camden, SouthCarolina. In the late war, here was a block-houfe encompafted by an abbatis. It was taken from col. Rugely, of the Britifh militia, in Dee. 178 t , by an ingenious ftratagem of lieut. col. Wathington.-ib.

CLIE, LAKE LE, in Upper Canada, about 38 miles long, and 30 broad; its waters communicate with thofe of Lake Huron. -ib.

CLINCH Mountuin, divides the waters of Holfon and Clinch rivers, in the flate of Tenneffee. In this mountain, Burk's Garden, and Morris's Nob, might be defrribed as curiolities.-ib.

Clinch, or Pelefon, a navigable branch of Tenneffee river, which is equal in length to Holiton river its chief branch, but lefs in width. It rifes in Virginia, and after it enters into the flate of Tenneffee, it receives Powel's, and l'oplar's creek, and Emery's river, befides other Atreams. The courfe of the Clinch is S. W. and S. W. by W. Its mouth, 150 yards wide, lies 35 miles below Knoxville, and 60 above the mouth of the Hiwaffee. It is boatable for upwards of 200 miles; and Powel's river, nearly as large as the main river, is navigable for boats 100 miles.- \(i b\).

CLINTON, the moft northern county of the fate of New York, is bounded N. by Canada, E. by the deepeft waters of Lake Champlain, which line feparates it from Vermont ; and S. by the county of Wafhington. By the ceafus of 1791 , it contained 1614 inhabitants, including 17 flaves. It is divided into 5 townfhips, viz. Plattfurgh, the capital, Crown Puint, Willburough, Champlain, and Peru. The length from N. to S. is about 96 miles, and the breadth from E. to W. including the line upon the lake, is 36 miles. The number of fouls is now (1796,) eftimated to be 6,000 . By the fate cenfus, in Jin. 1796 , there were 624 perfons entitled to be electors. A great proportion of the lands are of an excellent quality, and produce abundance of the various kinds of grain cultivated in other parts of the fate. The people manufacture earthen ware, pot and pearl athes, in large quantities, which they export to New-York or Quebec. Their wool is excellent ; their beef and pork fecond to none; and the price of itdll-fed beef in Montreal, 60 miles from Plattfburg, is fuch as to encourage the farmers to drive their catule to that market. Their forefts fupply them with lugar and molaffes, and the foil is well adapted to the culture of hemp. The land carriage from any part of the country, in tranfporting their produce to New-York, does not exceed 18 miles. The carrying place at Ticonderoga is \(1 \frac{1}{2}\) miles; and from Fort George, at the S. end of the lake of that name, to Fort Edward, is but 14 miles. The fmall obtructions after that are to be removed by the proprieturs of the northern canal. From this country to Quehec, are annually fent large rafts; the rapids at St John's and Chamblee, being the only interruptions in the navigation, and thofe not fo great, but that at fome feafons, batteaux with fixty buthels of falt can afcend them. Salt is fold here at half a dullar a bufhel. Saranac, Sable, and Boquet rivers water Clinton co. The firft is remarkable for the quantity of falmon it produces.-ib.

Clinton, a townthip in Dutehef's co. New-York, above Poughkeeplie. It is large and thriving, and sontains 4607 inhabitants, including 176 flaves. 666 of its inhabitants are electors.-ib.

Cunton, a fettement in Tioga so. New-York,
bounded by Fayette on the N. Warren on the S. Greene on the W. and Franklin in Otfego co. on the E. Unadilla river joins the Sufquehanna at the N. E. corner, and the conftuent fream runs S. W. to Warren.-ib.

Clinton, a plantation in Lincoln co. diftrict of Maine, lies 27 miles from Hallowell. -ib.

Clinton, parifh, in the townihip of Paris, 7 miles from Whitefown, is a wealthy, pleafant, flourifhing fettlement, contaising feveral handfome houfes, a newly erected Prefbyterian meeting houfe, a convenient fchool houfe, and an edifice for an academy delightfully fituated, but not yet finifhed. Between this fettlement and the Indian fettlements at Oneida, a diffance of 12 miles, (in June 1796) was wildernefs, without any inhabitants, excepting a few Indians at the Old Oneida villdige.-ib.

Clinton's Hurbor, on the N. W. coalt ot N. America, has its entrance in N. lat. 52.12. W. long. 136. Capt. Gray named it after gov. Clinton of New. York. -ib.

CLISTINOS, a fierce nation of Indians who inhabit round Hudfon bay.-ib.

CLOCK, a machine for meafuring time, of which a defcription is given in the Encycloprdia. For the fcientific principles of clock and watch making, as well as for a fhort account of the moft valuable conftructions, fee Watch-Making in this Supplement.

CLOSTER, a village in Bergen co. New-Jerfey, nearly 7 miles S. E. of Peramus, and 16 N. of NewYork city.-Morse.

CLYOQUOT, a found or bay on the N. W. coaft of America, wefterly from Berkley's Sound.-ib.

COACH, as we have obferved in the Encyclopxdia, is a very modern invention, if by that word be meant a covered carriage fufpended on fprings. We learn, indeed, from the laborious refearches of Profeffor Beckmann, that coaches of fome kind were known in the beginning of the toth century; but they were ufed only by women of the firlt rank, for the men thought it difgraceful to ride in them. At that period, when the eleftors and princes did not choofe to be prefent at the meetings of the fates, they excufed themfelves by informing the emperor that their healih would not permit them to ride on horfeback, and it was confidered as a point eftablifhed, that it was unbecoming for them to ride like women. It is certain, however, that, about the end of the 15 th century, the emperor, kings, and princes, began to employ covered carriages on journeys, and afterwards on public folemnities.

The wedding carriage of the firt wife of the emperor Leopold, who was a Spanifh princefs, coft, together with the harnefs, \(3^{8,000} \mathrm{fl}\) rins. The coaches ufed by that emperor, are thus deferibed by Kink: "In the imperial coaches no great magnificence was to be feen ; they were covered over with red cloth and black nails. The harnefs was black, and in the whole work there was no gold. The pannels were of glafs, and on this account they were called the Imperial ghafs coaches. On fetivals, the harnefs was ornaniented with red filk fringes. The imperial coaches were diftinguithed only by their having leather traces; but the ladies in the imperial fuite were obliged to be contented with carriages, the traces of which were made of ropes." At the magnificent court of Duke Erneft Augutus of Hanover, there were in the year 1681 fifty gilt coaches with fix horles each. So early did Hanover begin to furpafs other cities in the number of its carriages. The fires
time that ambaffadors appeared in coaches on a public folemnity was at the imperial commifion held at Erfurth in 1613 , refpecting the affair of Juliers.
In the hillory of France we find many proofs that at Paris, in the \(14^{\text {th }}\), 15 th, and even 16 th centuries, the French monarchs rode commonly on horfes, the fervants of the court on mules, and the princeffes, together with the principal ladies, fometimes on affes. Perfons of the firt rank often fat behind their equerry, and the hinfe was often led by fervants. Carriages, however, of fome kind appear to have been uled very early in France. An ordinance of Philip the Fair, iffued in 1294 for fuppreffing luxury, and in which the citizens wives are forbid to ufe carriages (cars), is till preferved. Under Francis I. or rather about 1550 , fomewhat later, there were in Paris for the firlt time only three cuaches.
The oldeft carriages ufed by the ladies in England were known under the now forgotten name of whirlicotes. When Richard II. towards the end of the 14 th century, was obliged to fly before his rebellious fubjects, he and all his followers were on horfeback; his mother only, who was indifpofed, rode in a carriage. This, however, became afterwards fomewhat unfafionable, when that monarch's queen, A nne, the daughter of the Emperor Charles IV. thewed the Englifh ladies how gracefully and conveniently the could ride on a fidefaddle. Whirlicotes were laid afide, therefore, except at coronations and caher public folemnities. Coaches were firlt known in England about the year 1580, and, as Stow fays, were introduced from Germany by Fitzallen, earl of Arundel. In the year 1598, when the Englith ambaflador came to Scothand, he had a coach with him. Anderfon places the period when coaches began to he in common ufe about the year 1605 . The celebrated duke of Buckingham, the unworthy favourite of two kings, was the firft perinn who rode with a coach and fix horfes, in 1619. To tidicule this new pomp, the earl of Northumberland put eight horfes to his carriage.

Refpecting the progrefs of luxury with regard to coaches, the reader will find much curious information in the firit volume of Profeffor Beckmann's Hitiory of Inventions. It is perhaps one of the moll entertaining articles in that very learned work. The author, however, with all his labour, has not been able to afcertain the country in which coaches hung on \{prings were firt ufed; but he feems inclined to give the credit of the invention to Hungary.

COATZACUALCO, a navigable river of Mexico, or New Spain, which empties into the gulf of Mexico, near the country of \(\mathrm{O}_{\mathrm{n}}\) bualco.-Morse.

COBALT (fee Chemistry-Index, in this Supplement), is a valuable article to potters and dyers. To fit it Cor their ufe, it is firlt roalted, and freed from the foreign mineral bodies wih which it is united: it is then well calcined, and \(f\) Id eitber mixed or unmixed with fine fand under the name of zaffer (zaffera); or it is melted with filiceous earth and pot aithes to a kind of blue glafs called /mall, which when ground very fine is known in commerce by the namie of powder blue. All thefe articles, becaufe they are muft durable pigments, and thofe which beft withitand fire, and becaufe one c:an produce with them crery thade of blue, are employed above all for tinging cryltal and for enamelling: for countafeiting opaque and tranfparent precious itones,
and for painting and varnifhing real porcelain and earthen and potters ware. This colour is indifpenfably neceffary to the painter, when he is defirous of imitating the fine azure colour of many butterflies and other matural objêts; and the cheaper kind is employed to give a bluifh tinge to new-wathed linen, which fo readily changes to a dildgreeable yellow, though not without injury to the health, as well as to the linen.

Profeffor Beckmann, in his Hifory of Invenlions, gives the following account of the pint prepared from cobalt. "About the end of the 15 th century cobali appears to have been dug up in great quantity in the mines on the borders of Saxony and Buhemid, difcevered not long before that period. Asit was not known at firf to what uie it could be applied, it was thrown afide as a ufelefs mineral. The miners had an averfion to it, not only becaufe it gave them much fruitlefs labour, but becaufe it often proved prejudicial to their health by the arenical particles with which it was combined; and it appears even that the mineralogical name cobalt then firlt took its rife. At any rate I have never met with it before the beginning of the toth century ; and Mathefius and Agricola feem to have firft ufed it in their writings. Frifch derives it from the Bohemian word kow which fignifies metal ; but the conjecture that it was formed from cobalus, which was the name of a fpirit that, according to the fuperfitious notions of the times, haunted mines, deffroyed the labours of the miners, and often gave them a great deal of unneceffary troable, is more probable ; and there is reafon to think that the latter is borrowed from the Greek. The miners, perhap, gave this name to the mineral out of joke, becanfe it thwarted them as much as the fuppofed fpisit, by exciting falle hopes and rendering their lakour often fiuitlefs. It was once cultomary, therefore, to introduce into the church-fervice a prayer that God would preferve miners and their works from kobolts and rpirits.
"Refpecting the inveution of making an ufeful kind of blue glafs from cobalt, we have no better information than that which Klotzich has publithed from the papers of Chritian Lehmann. The former author of an hiflorical work refpesting the upper dittrict of the mines in Mifnia, and a clergyman at Scheibenberg, coliected with great diligeace every information that refpected the hiftory of the neighbouring country, and died at a great age, in 1683. According to his account, the colourmills at the time when he wrote were about a hundred years old; and as he began firlt to write towards the end of the thirty years war, the invention feems to fall about 1540 or 1560 . He relates the circumitance as folluws, 'Chriftopher Schurer, a glafs-maker at Platten, a place which belongs fill to Bohemia, retired to Neudeck, where he eftablithed his bulinefs. Being once at Sclneeberg, he collected fome of the beaniful coloured pieces of cobalt which were found there, tried then in his furnace; and finding that they melied, he mixed fome cobalt with glafs metal, and nbtained fine blue glats. At fi it he prepared it only for the ufe of the potters; but in the courle if time it was carred as an article of merchandize to Nuremberg, and thence to Holland. As painting on glafs was then mach cultivated in Holland, the atitis there knew better how to appreciate this invention. Some Dutehmen therefore repaired to Neudeck, in order that they might learn the proces.

\footnotetext{
\footnotetext{

}
}
正

\footnotetext{

}

\footnotetext{

}

\footnotetext{

}

\footnotetext{
\footnotetext{

}
}

\(\qquad\)

\footnotetext{

}
precefs ufed in preparing this new paint. By great promifes they perfuadedthe inventor to remove to Magdeburg, where he alfo made glafs from the cobalt of Schneeberg; but he again returned to his former refidence, where he conftrubed a handmill to grind his glafs, and afterwards erefted one driven by water. At that period the colour was worth \(-\frac{1}{2}\) dollars per cwt. and in Holland from 50 to 60 forins. Eight colour-mills of the fame kind, for which roafted cobalt was procured in cafks from Schneeberg, were foon conftructed in Holland ; and it appears that the Dutch mult have been much better acquainted with the art of preparing, and particularly with that of grinding it, than the Suxons; for the Elector, John George fent for two colour-makers from Holland, and gave a thoufand florins towards the enabling them to improve the art. He was induced to make this advance chicfly by a remark of the people of Schneeberg, that the part of the cobalt which dropped down while it was roating contained more colour than the roafted onbalt itfelf. In a little time more colour-mills were erected around Schneeberg. Hans Burghard, a merchant, and chamberlain of Schneeberg, built one, by which the eleven mills at Platten were much injured. Paul Nordhoff, a Frieflander, a man of great ingenuity, who lived at the Zwittermill, made a great many experiments in ordar to improve the colour; by which he was reduced to fo much poverty that he was at length forced to abandon that place, where he had been employed for ten years in the colour-manufactory. He retired to Annaberg, eftablifhed there in 1649 , by the affiftance of a merchant at Leipfic, a colour-manufactory, of which he was appointed the director; and by thefe means rendered the Annaberg cobalt of utility. The confumption of this article, however, mult have decreafed in the courfe of time; for in the year 1659, when there were mills of the fame kind at more of the towns in the neighbourhood of mines, he had on hand above 8000 quintals.' Thus far Leehmann."

Kofsler fays, that the Bolemian cobalt is not fo gond as that of Mifnia, and that its colour is more like that of afhes. We truft, however, that the qualities of foreign cobalt flall foon be a matter of little importance to the britifh artift, as a rich mine of this mineral has lately been difcovered near Penzance in Cornwal.

COBBESECONTE, or Coffecook, which in the Indian language fignifies the land where furgeon are taken, is a fmall river which rifes from ponds in the town of Winthrop, in the diftrict of Maine ; and falls into the Kennebeck within \(\rho\) miles of Nahunkeag Inand, and 15 from Moofe Iflind.- Morse.

COBEQUIT, or Colchefler River, in Nova-Scotia, rifes within 20 miles of Tatamogouche, on the N. E. coaft of Nova-Scotia; from thence it runs foutherly, then S. W. and W. into the E. end of the Bafin of Minas. A.t its mouth there is a fhort bank, but there is a good chanmel on each fide, which veffels of 60 tons hurden may pafs, and gn 40 miles up the river. There are fome fcattered fettlemerits on its banks.-ib.

COBEZA, or Colija, an obfcure port and village in the audience of Los Charcos, in Peru, S. America. The place is inhabited by about 50 Indian families, and is the moft barren foot on the coaft. This is, however, the nearell port to Lipes, where there are filver mines, and alfo to Potofi, which is yct above 100 leagues dif. tant, and that through a defart country.-ib.

COBHAM, a fmall town in Virginia, on the S. bank of James river oppofite Jameftown; 20 miles N. W. of Suffolk, and 8 or 9 S. W. of Williamfourgh.-ib.

Совham Ifle, mentioned by Captain Middeton, in the journal of his voyage for finding a N. E. paffage. Its two extremities bear N. by E. and E. by N. in N. lat. G3. E. long. from Churchill, 3. 40. which he takes to be the Brook Cobham of Fox.-ib.

COBLESKILL, a new town, in the co. of Schoharie, New-York, incorporated March 1797.

COCALICO, a townthip in Lancatter co. Pennfyl-vania.-ib.

COCHECO, a N. W. branch of Pifcataqua river in New-Hampfhire. It rifes in the Blue Hills in Straf. ford co. and its mouth is 5 miles above Hilton's Point. -ib.

COCHABAMBA, a pruvince and juridiction in Pe . ru, 50 leagues from Plata, and 56 from Potofi. Its capital of the fame name is one of the richeft, largeft, and moft populous in Peru, as it is the granary of the archbifhoprick of Plata; and in fome foots filver mines have been difcovered. - \(i b\).

COCKBURNE, a townfhip in the northern part of New-Hampllire, Grafton co. on the E. Bank of Connesticut river, S. of Colebrooke.-ib.

COCKERMOUTH, a town in Grafton co. New. Hamplhire, about 15 miles N. E. of Dartmonth College. It was incorporated in 1766, and in 1775 , contained 118 inhabitants; and in 1790,373 .-ib.

CODORUS, a townhip in York co. Pennfylvania. -ib.

COEYMANS, a townhip in Albany co. NewYork, 12 miles below Albany. By the fate cenfus of 1796,389 of its inhabitants are electors.-ib.

COFFEA, the Coffes.-Tres, is a plant which has becn botanically defcribed in the Encyclopxdia Britannica, where fome account is likewife given of the modes of cultivating it, as well as of the qualities of its fruit. Since that account, however, was publifhed, two works have fallen into our hands, from which we deem it our duty to make fuch extracts as may not only correct fome miftakes which we had committed, but alfo communicate ufeful information to the public.

In our former article we adopted the common opinion, that the coffee produced in Arabia is fo greatly fuperior to that which is raifed everywhere elfe, that it is vain to think of cultivating the plant to any extent in the Weft India iflands. We are happy to find that this is a vulgar error. In the year 1783, when the cultivation of coffee was not fo well underftood in Jamaica as at prefent, fome famples from that indind were pro. duced in London, and pronounced by the dealers to be equal to the very befl brought from the Eaft. "Two of the famples were equal to the beft Mocha coffee, and two more of them fuperior to any coffee to be had at the grocers thops in London, unlefs you will pay the price of picked coffee for it, which is two fhillings per pound more than for that which they call the bef coffee. All the reft of the famples were far from bad coffee, and very little inferior, if at all, to what the grocers call beft coflec*."

If this be fo, it furely hecomes the leginlature of Treatife or Great Britain to encourage the cultivation of coffee in the Wefl Indies, efpecially as it thrives beft in foil which is not fit for the fugar-cane, and may be saifed in con-

Cobham
\(\underbrace{\)\begin{tabular}{c}
\(H\) \\
\text { Coflea. } \\
\hline
\end{tabular}}

\section*{C O F [499\(] \quad\) C O F}
fiderable quantities by thofe who are not able to fock a fugar plantation. The encouraging every article which incteafes the intercourfe with our colonies is increafing our commerce. The payment for all the flaples of the Weft Indies is made in our manufactures; the fale of which mult increafe in proportion to the numbers that are employed in the cultivation of what is bartered for them. Our Weft Inciai iflands, without draining us of fpecie or bullion, can fupply us with many of thofe very articles for which we are drained in other parts of the world, and particularly with coffee.

To give a detailed account of the introduction of the coffe-tree into the Weft Indies, would fwell this article to very little purpofe. According to Boerhaave, a Dutch governor was the firt perfon who procured fref berries from Musha, and planted them in Batavia; and in the year \(16 g 0\) fent a plant from thence to Amfterdam, which came to maturity, and produced thofe berries which bave fince furnifhed all that is now cultivated in the Weft Indies.

In 1714 a plant from the garden of AmRerdans was fent by Mr Pancras, a burgomatter, and director of the botanic garden, as a pretent to Louis XIV. which was placed in the garden at Marly. In 1718 the Dutch began to cultivate coffee in Surinam; in 1721 the French began to cultivate it at Cayenne ; in 1727 at Martinico; and in 1728 the Erglifh began to cultivate it in Jamaica.

As it has been more cultivated in the French WerIndia iflands than in the Britifh, it may be of importance to our colonifts to be made acquainted with the practice of the French planters. Accordingly Dr Laborie, a royalif of St . Domingo, has lately publithed a volume for their inftruction on this fubject ; in which are many judicious obfervations, the refult of long experience, refpecting the foil fit for a coffee-plantation; the various eftablifhments neceffary; the cultivation of the coffee-tree through the feveral fages of its growth and duration; and the management and ufe of the negroes and cattle.

With refpect to foil, it is a fact, fays he, beyond contradision, that low lands, and even the mountains near the champaign country, are lefs proper for the production of coffee, than lands which are high and at a diftance from the fea. The coffee-tree delights in a comparatively cool climate, and in an open and permeable virgin foil ; and is hurt by the parching deftructive air of the fea. The foil on the mountains of St Domingo confits generally of a bed of mould more or lefs deep; but which, for the producion of coffce-trees, ought not to be lefs than four or five feet. If the declivity be gentle, the fofteft and moft friable carth is preferable to all others; but in feep grounds a firm though not clayey foil, mixed with a proportion of gravel or imall fones, through which the water may find an eafy way, is the moft defrable. The colour of the ground is of little confequence, though fuch as is fomewhat reddifh is generally to be preferred. With regard to expofure, the north and weft are the molt eligible in low and hot \(\mathrm{f}_{\mathrm{i}}\) tuations, becaufe thefe expofures are the coulert; and on the higheft mountains the fouth and eaft are to be chofen, becaufe they are the hotteft. On the whole, neither the higheft nor the loweft fituatione are the beft, but thofe which are confiderably above the middle of the mountains.

Whatever be the planter's circumftances in point of fortune, and our author thinks that he ought not to undertake a fettlement without the command of 3000 or 4030 pounds fterling, he ought not to fet out with a great number of negroes. If he cannot command a plentiful fupply of victuals from fome contiguous plantation, fix, or at the mof twelve, male negroes, with one or two women, will be found fufficient to make the Grft effay. After building two huts, one for the mafter or overfeer and the other for the flavef, they are to commence their operations by cutting away the underwond and creeping plants with the bill, and felling the trees. The trees are to be cut as low as pollible, but the roots are to be left in the ground, becaufe they preferve the foil during the firt period of culture; and in burning this mafs of wood and florubs, the only way fometimes of clearing the ground, care muft be taken that the fire be nowhere fo violent as to convert the foil into the confiftence of brick, which it is very apt to do if the fuil be clayey. Amid the coffee-tries, after they are planted may be fown bcans, maize, and all kinds of efculent plants, pot herbs, and roots; but particular care muft be taken to remove from thefe plantations all creeping plants, fuch as melons, yams, potatees, gourds, and muse efpecially tobacco, which multiphies to a valt extent, and exhaufts the ground.

In St Domingo the moft approved method of planting the coffee-t ee is in ftraight rows crofing each other at right angles, and the dillance between the plants is regulated by the quality and expofure of the ground. The richer the foil, the expofures being the fame, and the cooler the expofure, the quality of the foil being the fame, the farther muft the trees be planted afunder. If on the north and weit the ground be grood, plant fill farther; but, on the contrary, if to the ealt or fouth it be light (which it generally is), plant till nearer. 'Thus if it be proper on a fouth or eaft expofure to plant at the diftance of fix feet, it will be neselfary to plant at the diftance of feven on a weft or north expufine, if the ground be of the fame quality as in the other fituations.

Though coffee, like all uther vegetables, grows from
the feed, Dr Laborie advifes, in the forming of large plantations, to make ufe of faplings reared in nurie-
ries; and the fituation firtef for a nurfery is a plain, or plantations, to make ufe of faplings reared in nurle-
ries; and the fituation fittef for a nurfery is a plain, or at leaft a ground of gentle afcent, where the mould is at leaft a ground of gentle afcent, where the mould is
crumbly. In forning a nurfery, fome plant the whole berry; but our author recommends the taking off the Ikin, and wathing the feparated feeds; in which we furpert fkin, and wathing the feparated feeds; in which we fufpert
that he is miftaken, as his practice is certainly a deviation from nature. The narfery muft be kept very clear of weeds, and neither cumn nor any thing clfe fown in it.
The beit feafon for tranfplanting the faplings is dur-
ing the genial rains of April and May, when great at-
The beit feafon for tranfplanting the faplings is dur-
ing the genial rains of April and Nay, when great attention is required, as the trcafures of future harvelts are at Rake. Thofe plants are the fittell for being te-
moved which, in the language of our author, are are at fake. Thore plants are the fittef for being re-
moved which, in the language of our author, are crowned, or have each four little boughs; and, if the feeds were freth and fown in furrows about an inch front
each othor, this perfection is generally attained in the feeds were freth and fown in furrows about an inch front
each othor, this perfection is generally attained in the courfe of a year. The faplings muft not be pulled up by force, but carefully raifed by means of a flat, tharp, iron fhovel, thrult deep under their roots; and the foonor they are plauted, after being taken up, the bettcr. or they are plauted, anter being tiken up, he betto.
\(\xrightarrow{\text { Cuffa }}\) .
 1

 I

\(\qquad\) -

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)

In planting, the firit thing to be done is to thruf into the ground a dibble, or tharp pointed flick, round which a hole is dug frem nine to twelve inches in diameter, and from fifteen to eighteen in depth. Then a quantity of the mould taken out of the hole is thrown back into it, till its deptli be diminifhed about four or fix inches; and the plant being fupported with the left hand, in the middle of the hole, while the end of its ftraight root, which our author calls its pivot, touches lightly the new becl, the furrounding mould is with the right hand thrown in, to the height of fix inches. This being lightly preffed down with both liands, more earth is thrown in and prefied in the fame manner, care being taken not to hurt, or bend, or difplace the fapling, which mult be fet fo deep that its two inferior branches be rather below the level of the ground. On this account three or four inches of the hole are left open, which, by the time that thefe branches rife above its masgin, are filled up by the furrounding earth. The bufinefs is finified by finking the fharp-pointed ftick at the upper margin of the hole, where it ferves as a fmall fence to the infant tree. In hot fituations plantain trees are intermingled with the coffee-trees for the purpofe of thade and coolnefs. They are ufually placed in every fourth or fixth row, as the trees are more or lefs diftant, and the expofure more or lefs hot.

To the bufinefs of planting very foon fucceeds that of weeding; for there is hardly any plant to which weeds are fo pernicious as the coffee-tree : they caufe it to grow yellow, fade, wither, and perith. Where the ground flopes much, efpecially if the foil be foft and friable, the weeds mult be taken up by the hand; for if they be rooted out by the hoe, the foil will be fo loofened that the rains will fweep it away. Some weeds, however, from the depth of their roots mult be dug up; and when that is the cafe the earth mult be carefully returned and preffed down. If, in weeding, any faplings be found withered, others of the fame fize muft be brought from the nurfery and planted in their fiead, with what our author calls their clod, i. e. with the earth of the nurfery adhering to their roots. If any fapling be found broken or twifted, it mult be cut clofe by the ground in a floping direction, the cut furface facing the north, and it will foon put forth fackers, of which the beft only need be preferved. In plantations of eighteen or twenty months old trees are often found with yellow, withered leaves, of which the caufe is fometimes a premature load of fruit, which muft therefore be inftantly removed or the tree will perifh. If, after this, it begin not in a few days to recover, it is probably eaten at the roots by a large white worm refembling a flug. In that cafe the tree muft be removcd, the worm taken out, and before another tree be planted in its ftead, a large hole mult be made in the ground, expofed to the influence of the fun at lealt for a fortnight.

The natural height of the coffee tree is from 15 to 18 feet; and if left to itfelf it would have the form of molt other trees, i.e. a naked trunk and a branchy head. This is prevented by what the planters call fopping; which is performed by cutting off the top of the tree when it has arrived at the proper height, which varies according to circumftances. In the beft foil and moft genial expofure, it is fuffered to grow to the height of tive feet, and in the worit fopped at two ; but under the
fame afpect, and on ground of the fame quality, all the trees ought to be fopped at the fame height. This operation of fopping is very apt to make the trees pur forth fuperfluous branches, which renders them inacceffible to the genial warmth of the fun, and, of courfe, deficient in the powers of fructification. Thefe mult be plucked away while jet tender; for if they be fuffered to grow till it become neceffary to cut them, a number of iprouts fucceed; whereas, when they are pluck. ed, the wound foon cicatrizes, and nothing follows.

The faw and the knife, however, mult fometimes be ufed; for when trees grow old their heads are apt to fpoil; fuperfluous branches may have been left upon them through neglect; a bough may have been broken by accident; or branches may be fpent by too great a load of fruit. In all thefe cafes recourfe mult be had to pruning, which fhould be performed immediately after crop, and in fuch a manner as that the tree, when it puts forth its new branches, may fill have as much as poffible its natural or former appearance. This will be accomplifhed by cutting the withered bough immediately above a knot, whence a good fecondary branch is put forth, which may be eafily trained into the proper Thape. Our author directs the cut to be always made fo as that the floping furface fhall face the north; by which expofure it will efcape the injury which it would otherwife receive from the excellive heat of the fun. This is a good advice; but it would ftill be an improvement on it to treat the wound with Forfyth's or Hit's plafter, which we have defribed elfewhere (See Encycl. Vol. XVIII. page 562). When the tree is completely pruned, the mofs and other excrefcences mult be fcraped from the trunk with a wooden knife, great care being taken not to injure the bark.
After pruning follows what is called nipping. This is nothing more than the removal of thofe fuperfluous fmall twigs which are fent forth from every cut furface in fuch numbers as would foon exhault the tree; and it is called nipping, becaufe they are plucked away by the hand, and not cut by the knife. It is needlefs to add, that when the ground begins to be impoverifhed, it mult be enriched by proper manure. This is known to every hulbandman both in Europe and in the Weit Indies; but it is not perhaps fo generally known that the weedings, and chiefly the red thins of coffee, when gathered into pits, are, in procefs of time, converted into a black mould, which our author fays makes the very beft manure.
" The fruit of the coffee, when perfectly ripe, appears like a fmall oval cherry. Under a red and fhining Nin a whitifh clammy lufcious pulp prefents itfelt, which generally inclofes two feeds. Thefe feeds have one fide flat, the other hemifpherical. The firlt is marked with a longitudinal fiffure, and the flat fides are applied to each other. When the feeds are opened, they are found covered with a white, ligneous, brittle membrane, derominated parchment; on the infide of which is another filver-coloured membrane, exceedingly thin, and feeming to originate from the fiffure of the feeds. Sometimes the cherry has but one feed or grain, which then is in the form of a fmall egg. This is peculiar to old decayed trees, or to the extremities of fome fmall branches."

The bufinefs of preparation confilts in taking the feed from its covering, in drying, and in cleaning it in

\section*{C O F [501] C O F}

Coffea. n
as 10 have every advantage at market. Our author thinks that the belt method of preparing the coffee is to ftrip the feed of its outer fkin immediately on its being pulled, and to dry it in its parchment. The procets has been already defcribed in the Encyclepædia; buc we believe it to be an injudicious one. We have the authority of a very eminent botanilt*, well acquainted with all the vegetable productions of the Weft Indies, to fay, that the improvement which we have there mentioned, as propofed by Mr Miller, is greatly preferable to Dr Laborie's prastice. Indeed he himfelf admits, that coffee dried in the berry is more heavy than when dried in parchment, and that it generally has a higher flavour. Nay, he fays exprefsly, that "if a planter wants to have coffee of the firft quality, either for himfelf or for his friends, he muft fet apart a number of his oldeft trees, and not gather the fruit till it is ripened into drymefs. It is in that manner, he believes, that the Arabans in Yemen make their little harvefts; and he declares, that coffee thus nourithed on the tree to the latt moment, mult have every perfection of which it is capable." His only plaufible objection is, that the trees are foon exhaulted when the fruit is left fo long upon them ; but doubtlefs this exhaultion might be retarded by proper manure.

The chemical analyfis of coffee evinces that it poffeffes a great portion of mildly bitter and lightly aftringent gummous and refinous extract; a confiderable quantity of oil ; a fixed falt; and a volatile falt.-Thefe are its medicinal conllituent principles. The intention of torrefaction is not only to make it deliver thofe principles, and make them foluble in water, but to give it a property it does not polfefs in the natural ftate of the berry. By the action of fire, its leguminous tafte and the aqueous part of its mucilage are deftroyed; its faline properties are created and difengaged, and its oil is tendered empyreumatic.-From thence arifes the pungent fmell, and exhilarating flavour, not found in its natural ftate.

The roalting of the berry to a proper degree requires great nicety: Du Four juftly remarks, that the virtue and agreeablenefs of the drink depend on it, and that both are often injured in the ordinary method. Bernier fays, when he was at Cairo, where it is fo much ufed, he was affured by the beft judges, that there were only two people in that great city, in the public way, who underltood the preparing it in perfection. If it be under-done, its virtues will not be imparted, and in ufe it will load and opprefs the ftomach:-1f it be overdone, it will yield a flat, burnt, and bitter tafte, its virtues will be deftroyed, and in ufe it will heat the body , and act as an aftringent.

Fourteen pounds weight of raw coffee is generally reduced, at the public roafting houfes in London, to eleven pounds by the roafting; for which the dealer pays feven pence half-penny, at the rate of five fhillings for every hundred weight. In l'aris, the fame quantity is reduced to ten pounds and an half. But the roalting ought to be regulated by the age and quality

Suppl. Vol. I.
of the coffee, and by nicer rules than the appearance of the fumes, and fuch as are ufually practited: therefore the reduction muft confequently vars, and no exat ftandard can be afcertaincd. Befides, by mixing different forts of coffee together, that require different dcgrees of heat and roalting, coffee has feldom all the advantages it is capable of receiving to make it delicate, grateful, and pleafant. This indeed can be elfected no way fo well as by people who have it roafted in cheir own houfes, to their own tafte, and frefh as they want it for ufe. The clofer it is confined at the time of roaft. ing, and till ufed, the better will its voldtile pungency, flavour, and virtues, be preferved.

The mode of preparing this beverage for common ufe differs in different conntries, principally is to the additions made to it.-But thongh that is generally underfond, and that talle, conftrution, the quality if the coffee, and the quantity intended to be dmink, naut be confulted, in regard to the proportion of coffee to the water in making it-yet there is one material puint, the importance of which is not well underitood, and which admits of no deviation.

The prefervation of the virtues of coffee, particularly when it is of a fine quality, and exempt from ranknefs, as has been faid, depends on carefully confining it after it has been roafted; and not powdering it until the time of ufing it, that the volatile and æthereal principles, generated by the fire, may not efcape. But all this will tignify nothing, and the beft materi:als will be ufelefs, unlefs the following important admonition is Atrictly attended to; which is, that after the liquor is made, it hould be bright and clear, and entirely exempt from the lealt cloudinefs or foul appearance, from a fufpenfion of any of the particles of the fubltance of the coffee.

There is fearcely any vegetable infufion or decotion whofe effects differ from its grofs origin more than that of which we are fpeaking. Coffee taken in fubtance caufes oppreflion at the ftomach, heat, naufea, and indigeftion : confequently a continued ufe of a preparation of it, in which any quantity of its fubftance is contained, befides being difgufting to the palate, muft tend to produce the fame indifpofitions. The refidnum of the roalted berry, after its virtues are extrakted from it, is little more than an earthy calx, and mult therefore be injurious.

The want of attention to this circumfance has been the caure of many of the complaints againtt coffee, and of the averfion which fome people have to it ; and it is from this confideration that coffee fhould not be prepared with milk inftead of water, nor fhould the milk be added to it on the fire, as is fometimes the cafe, for economical dietetic purpofes, where only a fmall quantity of coffee is ufed, as the tenacity of the milk impedes the precipitation of the grounds, which is neceffary for the purity of the liquor, and therefore neither the milk not the fugar fhould be added until after it is made with water in the ufual way, and the clarification of it is completed (A).-The milk fhould be hot \(3^{\prime}\) '
when
(A) It is not to coffee alone that this reflection is confined; every article we ufe as a diluter demands the fame attention. Malt liquors, particularly fmall beer, which in this refpect is much neglected, ought always to be carefully fined. The fxeculent matter entangled by the mucilage of the malt is hurttul to digellion, and detrimental to health.

\section*{C O H \(\quad[502] \quad\) C O L}

Coffrer

Cohocz.
whe: added to the liquor of the coffee, which fhould alfo be hot, or both fhonld be heated together, in this mode of uling coffee as an article of filtenance.

If a knowledge of the principles of coffee, founded on examination and various experiments, added to ubfervations made on the extenfive and indifriminate ufe of it, cannot authorife us to attribute to it any particular quality unfriendly to the human frame;-if the unerring teft of experience has confirmed its utility, in many countries, not exclufively productive of thofe in. conveniences, habits, and difeafes, for which its peculiar properties feem mof applicable-let thote properties be duly confidered; and let us reflcet on the fate of our atmophere, the food and modes of life of the inliabitants,- and the chronical infirmities which derive their origin from thefe fources, and it will be evident What falutary effects might be expected from the general dietetic ufe of coffee in Great Britain.

COFFER Dams, or Batardeaux, in bridge-building, are inclofures formed for laying the foundation of piers, and for cther works in water, to exclude the furrounding water, and fo prevent it from interrupting the workmen.

COHANZY, or Cafaria, a imall river, which rifes in Stlem co. New- Jerfey, and running through Cumberland co. empties into Delaware river uppoñte the upper end of Bombay Hook. It is about 30 miles in length, and is ravigable for veffels of 100 tons to Bridgetown, 20 miles from its mouth.-Merss.

COHASSET, a townhip in Norfolk co Maffachufetts, which was incorporated in 1770 , and contains 817 inhabitants. It has a congregational church, and 126 houfes, fcattered on different farms. Cohaffet rocks, which have been fo fatal to many veffels, lie off this town, about a league from the fhore. It lies 25 miles S. E. of Bofton ; but in a ftraight line not above half the diftance. - \(i b\).

COHGNAWAGA, a parifh in the townthip of Johntown, Montgomery co. New York, on the W. fide of Mohawk river, 26 miles W. of Schenectady. This place which had been fettled nearly 80 years, and which was the feat of Sir William Johnfon, was moflly deftroyed by the Britifh and Indians, under the command of Sir William, in the year 1780 . In this action, Johnfon evinced a want of feeling which would inave difgraced a favage. The people deftroyed in this expediti n, were his old neighbours, with whom he had formerly lived in the habits of friendfhip. His eftate was among them, and the inhabitants had always contidered him as their friend and neighbour. Thefe unfortunate pecple, after feeing their houfes and property confumed to athes, were hurried, fuch as could walk, into cruel captivity; thofe who could not walk, fell victims to the tomahawk and fcalping knife.-ib.

COHOEZ, or the Falls in Mohawk river between 2 and 3 miles from its mouth, and 10 miles northward of Albany, ate a very great natural curiofity. The river abcve the falls, is about \(3 c 0\) yards wide, and approaches them from the N. W. in a rapid current, between high banks on each fide, and pours tbe whole Lody of its water over a perpendicular rock of about 40 (fome fay more) feet in height, which extends quite acrofs the river, like a mill dam. The banks of the river, immediately below the falls, are about 100 feet
high. A bridge 1100 feet long, and \(2+\) feet wide, refting on 13 piers, was erected, at the expenfe of 12,000 dollars, in 1794, a mile below the falls, from which a feectator may have a grand view of them: but they appear moft romantically from Lanlinburg hill, 5 miles E , of them.- \(i b\).

COHONGORONTO, is the name of Potowmac river before it breaks through the Blue Ridge, in N. lat. 39. 45. Its whole length to the Blue Ridge, may be about 160 miles; from thence it affumes the name of Potozumack.-ill.

COHUIXCAS, a country in New-Spain, in which there is a confiderable mountain of loadfone, between Tcoiltylan and Chilapan.-ib.

COKESBURY COLLEGE, in the town of Abington, in Harford co. Maryland, is an inftitution which bids fair to promore the improvement of fcience, and the cultivation of virtue. It was founded by the Me. thodifts, in 1785 , and has its name in honor of Thomas Coke, and Francis Afbury, the American bifhops of the Methodift Epifcopal church. The edifice is of brick, handfomely built, on a healthy fpot, enjoying a fine air, and a very extenfive profpect. The college was erected, and is wholly fupported by fubfeription and voluntary donations. The ftudents, who are te confilt of the fons of travelling preachers, annual fubferibers, members of the fociety, and orphans, are inftrusted in Englifh, Latin, Greek, logic, rhetoric, hiftory, geography, natural philofophy, and aftronomy; and when the finances of the college will admit, they are to be taught the Hebrew, French and German languages. The rules for the private conduct of the fudents ex. tend to their amufements; and all tend to promote regularity, encourage indultry, and to nip the buds of idlenefs and vice. Their recreations without doors are, walking, gardening, riding, and bathing; within doors they have tools and accommodations for the carpenter's, joiner's, cabinet maker's, or turner's bulinefs. Thefe they are taught to confider as pleafing and healthful recreations, both for the body and mind.-ib.

COLAN, a fmall Indian town, fituated near the South Sea, 2 or 3 leagues to the northward of Payta, inhabited by fifhermen. Here they make large rafts of logs, which will carry 60 or 70 tons of goods; with thefe they make long voyages, even to Panama, 5 or 600 leagnes diftant. They have a maft with a fail faftened to it. They always go before the wind, being unable to ply againft it; and therefore only fit for thefe feas, where the wind is always in a manner the fame, not varying above a point or two all the way from Lima, till they come into the bay of Panama; and there they mult fometimes wait for a change. Their cargo is ufually wine, oil, fugar, Quitn cloth, foap, and dreffed goat ikins. The foat is uiually navigated by 3 or 4 men , who fell their float where they difpofe of their cargo ; and return as paffengers to the port they came from. The Indians go out at night by the help of the land-wind, with fifhing floats, more manageable than the others, though thefe have mafts and fails too, and return again in the day-time with the fea wind.-ib.

COLCHESTER, the chief town in Effex, is defcribed in the Encyclopredia; but the defcription is in many refpects erroneous. The following account of

\section*{C O L [503\(] \quad\) C O L}

Colchenter. it was fent to us by an obliging correfpondent, who is defirous that the place of his nativity may be accurately defcribed in this Supplement.

Colchefter is pleafantly fituated upon an eminence, gradually rifing on the fouth fide of the river Colne. It is the ancient Colonia Camuloidunum, from which word Colonia, both the town and the river Colne, re. ceived their names. The Saxons called it Coineceafler. That it flourifhed under the Romans, feveral buildings full of their bricks, and innumerable quantities of coin dug up in and about it, fully evince. In the year 1763, a curious teffellated or mofaic pavement was found in the garden of the late Mr Barnard, firgeon in the High Street, now the property of Mr John Wallis, about three feet under the furface of the earth. The emperor Confantine the Great was born here, his mother Helen being daughter of Cool, governor or king of this diftritt under the Romans. She is faid to lave found out the crofs of Chrift at Jerufalem ; and on that account the arms of this town are a crofs regulee between three ducal coronets, two in chief and one in bafe, the coronet in bafe paling through the crofs.
The walls wherewith the to wn was encompaffed are fill tolerably entire on the fouth, eaft, and weft fides, but much decayed on the north fide: they are generally about nine feet thick. By a flatute of King Henry VIII. this town was made the fee of a fuffragan bifhop.

This town is the moft noted in England for making of baize; it is alfo of fpecial note for candying the eringo roots, and for oylters.

In the conclufion of the civil war 1648 , this town fuffered a fevere fiege of ten weeks; and the befieged making a very refolute defence, the fiege was turned into a blockade, wherein the garrifon and imhabitants fuffered the utmolt extremity of hunger, being reduced to eat horfe-flefh, dogs, and cats, and were at laft obliged to furrender at difcretion, when their two valiant chief officers, Sir Charles Lucas and Sir George Lifle, were fhot under the cafte walls in cold blood. Col. chefter is a borough by prefcription, and under that right fends two members to parliament, all their charters being filent upon that head. The Charter was renewed in 1763 . The town is now governed by a mayor, recorder, 12 aldermen, 18 affiftants, and 18 common council men. Quarter feflions are held here four times in the year.
The famous abbey gate of St John is fill ftanding, and allowed to be a furprifing, curious, and beautiful piece of Gothic architecture, great numbers of perfons coming from remote parts to fee it. It was built, together with the abbey, in 1097, and Gudo, Ateward to King William Rufus, laid the firft fone.
St Ann's chapel, flanding at the eaft end of the town, is valuable in the efteem of antiquarians as a building of great note in the early days of Cluriftianity, and made no fmall figure in hiftory many centuries paft. It is now pretty entire.

St Botoph's priory was founded by Ernulphus in the reign of Henry I. in the year 1110. It was demolifhed in the wars of Charles I. by the parliament arny under Sir Thomas Fairfax. The ruins Aill exhibit a beautiful fictich of ancient nafonry, much admired by the lovers of antiquities. The caftle is aill pretty entire, and is a magnificent fructure, in which great im-
provements have of late been made. Here is an excel- Colehenter lent and valuable library.

The marhets, which are on Wednefday and Satur. Culebrook. day, are very well fupplied with all kinds of provilions. There are no lefs than fix diffenting meeting houfes in this town. Colchefter is 51 miles from Londun. It had 16 parifh churches, in and out of the valls, but now only 12 are ufed, the rell being damaged at the
fiege in 1648 . fiege in 1648.

Colchester, a townhip in Ulter co. N. York, on the Popachton branch of Delaware river, S. W. of Middletown; and about 50 miles S. W. by S. of Cooperflown. By the flate cenfus of 1796,193 of its in. habitants arc electors.-Morse.

Colchester, a large townhip in New. London co. Connecticut, fettled in 1701 ; about 15 miles weft ward of Norwich, 25 S. E. of Hartford, and 20 N. W. of New-London city. It is in contemplation to have at poll office eftablifhed in this town.-ib.

Colchester, the chief town in Chittenden co. Vermont, is on the E. bank of lake Champlain, at the mouth of Onion river, and N. of Burlington, on Colchefter bay, which fpreads N. of the town.-is.

Colchester, a port town in Faiffax co. Virginia, fituated on the N. E. bank of Ocquoquarn creek, 3 or 4 miles from its confluence with the Potowmack; and is here about 100 yards wide, and navigable for boats. It contains about 40 houfes, and lies 16 miles S.W. of Alexandria, 106 N. by E. of Richmond, and 172 from Philadelphia.-ib.
Cold Spring, in the illand of Jamaica, is a villa, \(\sigma\) miles from the highlands of Ligusnia. The grounds are in a high fate of improvement. Cold fpring is 4200 feet above the level of the fea; and few or none of the tropical fruits will flourifh in fo cold a climate. The general flate of the thermometer is from 55. to 65. ; and even fometimes fo low as 44 .: fo that a fire there, even at noon-day, is not only comfortable, but neceflary a great patt of the year. Many of the Engglifh fruits, as the apple, the peach, and the frawherry, flourifh there in great perfection, with feveral other valuable exotics, as the tea-tree and other criental pro-ductions.-ib.

Cold Spring Cove, near Burlington, Newe Jerfey, is remarkable for its fand and clay, ufed in the manufacture of glafs; from whence the glafs works at Hamil. ton, 10 miles W. of Albany, are fupplied with there articles.-ib.

Colebrook, in the northern part of New-HampThire, in Grafton co. lies on the E. bank of Connecticut river, oppofite the Great Monadnock, in Can an, ftate of Vermont; joining Cockburne on the fouthward and Stuartfown on the northward; 126 miles N. W. by N. from Portfmonth.- il.

Colebrook, a rough, hilly townhip on the N. line of Connerticur, in Litchfield co.; 30 miles N. W. of Hartford city. It was fettled in 1756 . Here are 2 iron works, and feveral mills, on Still river, a N. W. water of Farmington river. In digging a cellar in this town, at the clofe of the year 1796, belonging to Mr John Hulburt, the worknen, at the depth of about 9 or to feet, found three large tuks and two thigh bones of an animal, the latter of which meafured each about 4 feet, 4 inches in lengih, and \(12 \frac{1}{4}\) inches in circumference. When filt difcovered thicy were entire, but
\[
\mathrm{C} O \mathrm{~L} \quad[504] \quad \mathrm{C} O \quad \mathrm{~L}
\]
as foon as they were expofed to the air they mouldered to duft. This adds another to the many facts, which prove that a race of enormous animals, now extinct, once inhabited the United States.- \(i b\).

COLERAIN, a townibip in Lancafter co. Pennfyl. vania.-ib.

Colerain, a town on the N. bank of St Mary's river, Camden co. Georgia, 40 or 50 miles from its mouth. On the 29 :h of June, 1796 , a treaty of peace and friendihip was made and concluded at this place, between the Prefident of the United States, on the one part, in behalf of the United States, and the kings chiefs and warriors of the Creek nation of Indians, on the other. By this treaty, the line between the white people and the Indians, was eftablifhed to run " from the Currahee mountain to the head or fource of the main fouth branch of the Oconee river, called, by the white people, Appalatohee, and by the Indians, Tulapoeka, and dowo the middle of the fame." Liberty was alfo given by the Indians to the Prefident of the United States, to "eftablifl a trading or military poft on the S. fide of Alatamaha, about i mile above Beard's bluff, or any where from thence down the river, on the lands of the Indians;" and the Indians agreed to " annex to faid poit a tract of land of five miles fquare ; and in return for this, and other tokens of friendthip on the part of the Indians, the United States fipulated to give then goads to the value of 6000 dollars, and to furnifh them with two blackfmiths with tools.-ib.

COLRAINE, a townhip in H:mphire co. Maffachufets, which contains 229 houfes, and 1417 inha bit.ints.-ib.

COLIMA, a large and rich town of Mechoacan and New-Spain, on the S. Sea, near the borders of Xalifca, and in the moft pleafant and fruitful valley in all Mexico, producing cocoa, caffia, and other things of value, befides fome gold. Dampier takes notice of a volcano near it, with two fharp peaks, from which fmoke and tlame iffue continually. The famous plant oleacazan grows in the neighbourbeod, which is reckened a catholicon for reltoring decayed ftrength, and a fpecific againlt all forts of poifon. The natives apply the leaves to the parts affected, and judge of the fuccefs of the operation by their flicking or fallung off.-ib.
colours. See Pigments in this Supplement.
Accidental Colours, a name given to a very curious optical phenomenon, which was firt, we believe, attended to by Buffon. That philofopher wrote a fhort paper on ir, which was publithed in the Memuirs of the Academy of Sciences for the year \(17+3\).

If a perfon look ftedfafty and for a confiderable time at a fmall \(r\) ed fquare painted upon zubite paper, he will at laft obferve a kind of green-coloured border furround the red fquare. If he now turn his eyes to fome other part of the paper, he will fee an imaginary fquare of a delicate green bordering on blue, and correfponding exaetly in point of fize with the red fquare. This imaginary fquare contintes vifible for fome time, and indeed does not difappear till the eye has viewed fucceffively a number of new objects. It is to this imaginary fquare that the inproper name of accidental colour bas been given. If the frall fquare be yellozw, the imaginary fquare or accidental colour is blue: the accidental colour of green is red ; of blue, yellow ; of white, black; and on the contraty, that of black is white.

The firit perion, as far as we know, who gave a fa- Colours. tisfactory explanation of thefe phenomena was Profeffor Scherffer of Vienna, whofe differtation, tranflated by Mr Bernouilli, has been pubifhed in the 26 th volume of the Journal de Phyfique.

In order to underfand thefe phenomena, let us recollect, in the firft place, that light confifts of feven rays, namely, red, orange, ycllow, green, blue, indigo, violet; that whitenefs confilts in a mixture of all thefe rays; and that thore bodies which refeet but very little light are black. Thofe bodies that are of any particular colour, reflect a much greater quantity of the rays which conflitute that particular colour than of any other rays. Thus red bodies reflect moft red rays; green bodies, moft green rays, and fo on.

Let us recollect, in the fecond place, that when two impreffions are made at the fame time upon any of our organs of fenfation, one of which is frong and the other weak, we only perceive the former. Thus if we examine by the prifm the rays reflected by a red rofe, we fhall find that they are of four kinds, namely, red, yellow, green, and blue. In this cafe, the impreffion made by the red rays makes that made by the others quite infenfible. For the fame reafou, when a perfon goes from broad day light into an ill-lighted room, it appears to him at firft perfectly dark, the preceding ftrong impreffion rendering him for fome time incapable of feeling the weaker impreffion.

With the affiftance of thefe two remarks, it will not be difficult to explain the phenomena of accidental colours. When a perfon confiders attentively for fome time a white fquare lying on any black fubftance (paper for inftance), it is evident that the part of the retina on which the white fquare is painted, receives a ftronger impreflion than any other part; at lealt the greateft number of rays ftrike upon it. A weaker imprefiion, therefore, will act on it with much lefs force thao upon the reft of the retina. Confequently, when the eye is turned from the white fquare to fome other part of the black paper, a fquare is perceived of the fame fize with the white fquare, and much blacker than any other part of the paper ; this is evidently in confequence of the weaker imprefion made by the rays reflected by the black paper upon that part of the eye previoully fatigued by the copious reflection from the white fquare. For the very fame reafon, if, after looking for a fuffcient time at a white fquare lying on a black ground, we turn our eyes upon a fheet of white paper, we perceive a very well defined black fquare. In this cale, the part of the retina already fatigued is not fo fenlible to the rays reflected by the white paper as the other parts of it which have not been fatigued. The reafon then that black is the accidental colour of white is fufficiently evident.
On the contrary, when we look a fufficient time at a black fquare lying upon a white ground, if we turn our eyes to any other part of the white paper, or even upon blac's paper, we fhall perceive a fmall fquare anfivering to the black fquare, and much brighter than any other part of the paper: evidently becaufe that part of the retina on which the black fquare was painted being lefs fatigued, is more furceptible of impreffions than any other part of the eye. Thus wefee why the accidental colour of black is white, and why that of white on the contrary is black. Thefe facts, indeed, have been long
known,

\section*{C O L [505] C O L}

\section*{Colours.} known, and they have been generally explained in this manner.

When a perfon has looked for a fuficient time at a red fquare placed on a fheet of white paper, and then turns his efes to another part of the paper, that part of the retina on which the red was painted being fatigued, the red rays reflected from the white paper ceafe to make any fenfib'e imprefion on it, and confequently there will be feen upon the white paper a fquare dimilar to the red fquare, and the colour of which is that which would refult from the mixture of all the rays of light except the red. In general, therefore, the accidental colour is the colour which refults from the mixture of all the rays of light, thofe rays excepted which are the fame with the primitive colour.

Now in order to difcover thefe accidental colours, let us recollect the manner which Newton employed to determine the colour which refults from the mixture of feveral others, the fpecies and quantity of which are known. He did it by dividing the circumference of a circle, fo that the arches are to one another in the proportion of a flring fhortened by degrees, in order to found, one after another, the notes of an octave; which is nearly the proportion that the different rays occupy when light is decompofed by means of the prifn. Or Suppofe the circumference of the circle, as ufual, divided into 360 degrees, the different rays, according to Benvenut, hould occupy the following arches:
\begin{tabular}{llllll}
Red, & - & - & - & \(45^{\circ}\). \\
Orange, & - & - & - & 27. \\
Yellow, & - & - & - & 48. \\
Green, & - & - & - & 60. \\
Blue, & - & - & - & 60. \\
Indigo, & - & - & - & 40. \\
Violer, & - & \(\cdot\) & - & 80.
\end{tabular}

Let us now compare the action of culours on one another with that of different weights; and for that purpofe let us fuppofe each colour concentrated in the centre of gravity of its arch. In order to find the colour refulting from any mixture, we have only to find the common centre of gravity of the arches which reprefent the different colours: The colour refulting from the mixture will be that of the arch to which the common centre of gravity approaches neareft. And if that common centre of gravity is not in the ftraight lime which joins the centre of the circle, and the sentre of gravity of the arch to which it is moft contiguous, the refulting colour will approach more or lefs to the colour of the contiguous arch, towards which the line, paffing through the centre of the ciacle, and the common centre of gravity of the arches, falls. And farther, the refulting colour will be more or lefs deep according to the diltance of the common centre of gravity from the centre of the circle.

In the cafe under confideration at prefent, namely, in determine the different accidental colours, the application of this method is remarkably ealy; becaufe only one of the feven primitive colours is excluded, and confequently the fix colours from the mixture of which we wifh to know the refulting coluur are all contiguous. For it is evident, that the fum of the fix arches, reprefenting thefe fix colours, will be divided into two equal parts by the line which paffes througla the centre of the circle and their common centre of gravity; and that if the fame line be produced till it reaches the circumference of the
circle on the other fide, it will alfo divide the arch reprefenting the foventh or omitted colour into two equal parts. Let us fuppofe, for inflance, that the violet is omitted, and that we wanted to know the colour refulting from the mixture of the other fix colours, we have only to bifect the arch reprefenting the violet, and from the point of festion to draw a diametcr to the circle, the arch of the circle oppofite to the violet through which the diameter paffes will indicate the colour of the mixture. The arch reprefenting the violet being \(80^{\circ}\), let us take the half of it which is \(40^{\circ}\), and let us add to it \(45^{\circ}\) for the red, \(27^{\circ}\) for the orange, and \(4^{\circ}\) for the ycllow, we fhall have \(160^{\circ}\), which wants \(20^{\circ}\) of half the circumference of the circle. If now we add the \(60^{\circ}\) for the green, the fum total will be \(220^{\circ}\), confiderably more than half the circumference. Confequently the common centre of gravity is nearelt the green arch; but it falls \(10^{\circ}\) nearer the yellow than the ftraight line which joins the centre of the circle and the centre of gravity of the green arch. Hence we fee that the refulting colour will be green, but that it will have a fhade of yellow.
It is evident, then, that the accidental colour of violet mult be green with a flade of yellow; and this is actually the cafe, as any one may convince himfelf by making the experiment.

Suppofe, now, we wanted to know the accidental culour of green, or which is the fame thing, the colour refulting from the mixture of all the primitive rays except the green. The green arch is \(60^{\circ}\), the half of which is \(30^{\circ}\); if to this we add \(60^{\circ}\) for the blue arch, and \(40^{\circ}\) for the indigo arch, we fhall have \(130^{\circ}\), or \(50^{\circ}\) degrees lefs than a femicircle. If to this we add the violet arch, which is \(80^{\circ}\), we fhall have \(30^{\circ}\) more than the femicircle; confequently the common centre of gravity falls neareft the violet, and it is \(10^{\circ}\) nearer the red arch than is the centre of gravity of the violet arch. Hence we know that the accidental colour of green will be violet or purple, with a fhade of red : And experiment confirms this.
Buffon obferved, that the accidental colour of blue was reddifh and pale. Let us fee whether we fhall obtain the fame refult from our method. Let us fuppofe that Buffon employed a light blue. In that cafe, if to 30, the half of the blue arch, we add 60 for the green, 48 for the yellow, and 27 for the orange, we hall have \(165^{\circ}\), or \(15^{\circ}\) lefs than half the circumference of the circle : Conicquently the common centre will fall neareft the red arch, but within \(15^{\circ}\) of the orange. The accidental colour muft therefore be red, with a thade of orange; or, which is the fame thing, it muft be a pale red.

In the fame mannel we may difcover, that the accital colour of indigo is yellow, melining a good deal to orange, and that the accidental colour of indigo and blue togetber is orange, with a frong flade of red. Borh of which correfpond accurately with experiment.

It would be eafy to indicate in the fame manner, the accidental colour of any primitive colour, if what has been faid were not fufficient to explain the caufe of accidental colours, and to fhow that their phenomena correfpond exactly, both with the Newtonian theory of optics, and with what we know to be laws of our fenfations in other particulars.

From the thary above given, which is that of Piofeffor Scherffer, : be following confequences may bede. duced:

ร. Tho

\section*{C O L [506] C O M}

Culours. -
1. The accidental colour of a red fquare lying upon a white or black ground, ought to be blackifh, if we caft our eyes upon a red coloured furface. 2. If the furface upon which we look at a red fquare be itfelf coloured, if it be yellow, for inftance, the white paper upon which we afterwards caft our eyes, will appear blue, with a green fquare in it correfponding to the original red fquare. And, in general, we ought to perceive the accidental colour of the ground on which the fquare is placed as well as the fquare itfelf. 3. If while we are looking at the little fquare we change the fituation of the eye, fo that its image fhall occupy a different place on the retina, when we turn our eyes to the white paper, we thall fee two fquares, or at lealt one unlike the figure of the original onc. 4. If the white paper on which we look be farther diftant than the little fquare was, the imaginary fquare will appear confiderably larger than the true one. 5. If while we are looking at the little fquare we gradually make the eye approach to it without altering its fituation, the imaginary fquare will appear with a pale border. Thefe and many other confequences that might eafily be deduced, will be found to take place conftantly and accurately, if any one choofes to put them to the teft of expetiment; and therefore may be confidered as a complete confirmation of the theory given above of the caufe of accidental colours.

There is another circumftance refpecting accidental colours which deferves attention. If we continue looking ftedfally at the little fquare longer than is necefla ry, in order to perceive its accidental colour, we fhall at laft fee its border tinged with the accidental colour of the ground on which the fquare is lying. For infance, if a white fquare be placed upon blue paper, its border becomes yellow; if upon red paper it becomes green; and it becomes reddilh upon green. In like manner the border of a jellow fquare becomes greenifh upon a red ground, and that of a red fquare on a green ground becomes purple.

The caule of this phenomenon feems to depend upon the contraction and extenfion of the image of the fquare painted on the retina. We know for certain, that the diameter of the pupil changes during our infpecting the fquare ; at firf it becomes lefs, and after wards increafes. And though we cannot fee what palfes in the bottom of the eye, we can fcarcely doubt that fimilar movements are going on there, if we attend to the changes they are continually taking place in the border of our little fquare ; fometimes it is large, fometimes fmall ; at one time it difappears altogether, and the next moment makes its appearance again.

There is another phenomenon connected with accidental colours, which is not fo eafy to explain, namely, that if we look at thefe little fquares for a very long tume, till the eye is very much fatigued, their accidental colcurs will appear even after we lhut our eyes. The very fame thing takes place if we attempt to look at a very luminous object, as the fun, for inftance. Profeffor Scherffer thinks that this may be partly owing to the light which dill pafies through the eye-lids. That fome light paffes through the eye-lids, is evident, becaufe when we look towards a ftrong light with our eye-lids flut, we fee diftinctly their colour, derived from the blood-veffels with which they are filled; and if we pafs our finger before our eyes, we fee the fhadow of
the finger though our eye-lids be flust, provided our columba eyes be turned towards the window. Bui that this light is not fufficient to explain the phenomenon in queftion is evident from this circumftance, that the fame accidental colours make their appearance, though we go immediately into the darkelt place. Perhaps we have accounted for the phenomenon elfewhere (See Meta. pHYsics, Encycl. n \({ }^{\circ}\) 54.). We pafs over the other conjectures of Profeffor Scherffer, which are exceedingly ingenious, but not fufficiently fupported by facts to be admitted.

COLUMBA Noachi, Noab's dove, a fmall confel. lation in the fouthern hemifphere, confilting of io fars.

COLUMBCA, a iownfhip in Wafhington co, dif. trict of Maine, on Pleafant river, adjoining Machias on the N. E. and was formerly called Plantations No. 12 and 13. It was incorporated in 1796. The town of Machias lies 15 miles to the eaftward. It is 9 miles from Steuben,-Morse.

Columbia County, in New. York, is bounded N. by Renffelaer, S. by Duchefs, E. by the ftate of Malfachufetts, and W. by Hudfon river, which divides it from Albany co. It is 32 miles in length and 2 I in breadth, and is divided into eight towns; of which Hudfon, Claverack, and Kinderhook are the chief. It contained, in \(1790,27,732\) inhabitants, and in 1796,3560 electors.-i \(i b\).

Columbia, a poft town, the capital of Kerfhaw co. and the feat of government of South-Carolina. It is fituated in Camden diftrict, on the E. fide of the Congaree, juf below the confluence of Saluda and Broad rivers. The ftreets are regular, and the town contains upwards of 70 houfes. The public offices have, in fome meafure, been divided, for the accommodation of the inhabitants of the lower counties, and a branch of each retained in Charlefton. It lies 115 miles N . N. W. of Charlefton, 35 S . W. of Camden, 85 from Augufta, in Georgia, and 678 S. W. of Philadelphia. N. lat. 34. 1. W. long. 80. 57.-ib.

Columbia, a flourifhing poft town in Goochland co. Virginia, on the N. fide of James river, at the mouth of the Rivanna. It contains about 40 houfes, and a warehoufe for the infpection of tobacco. It lies 45 miles above Richmond, 35 from Charlotterville, and 328 S. W. of Philadelphia.-ib.

Columbia, a town newly laid out, in Lancafter co. Pennfylvania, on the N. E. bank of Sufquehanna river, at Wright's ferry ; 10 miles W. of Lancalter, and 76 W. by N. of Philadelphia.-ib.

Columbia Co. in the Upper diftrict of Georgia, is bounded by Savannah river on the N. E. and E. which feparates it from the ftate of S. Carolina, N. W. of Richmond co. Its thape is very irregular.-ib.

Columbia, a town in the N. W. territory, on the N , bank of Ohio river, and on the W . fide of the month of Little Miami river; about 6 miles S. E. by E. of Fort Wathington, 8 E. by S. of Cincinnati, and 87 N. by W. of Lexington, in Kentucky. N. lat. 39. 20. -ib.

COMANA, a town and province in the northern divifion of Terra Firma, S. America. It lies on the N. eafternmoft part of the fea coalt.-ib.

COMAR, or Khomar, a Zemindar's demefne of land.

COMARCO, a town of New.Leon, in N. Ameri.

Combahee ca, fituated on the S. fide of Rio Bravo, which empties \(\|\)
Compafs.
\(\underbrace{\text { Compais. }}\) into the gulf nf Mexico on the W. fide.-Morse.

COMBAHEE, a conliderable river of South-Caro. lina, which enters St Helena found between Coofa and Afhepoo rivers.-il.

Combanee Ferry, on the above river, is 17 miles from Jackfonforough, 15 from Pocotaligo and 52 from Charlelton.-ib.

COMBUSTION. See Chemistry in this Supplement, \(\mathrm{n}^{\circ} 293\).

COMFORT, POINT, is the S. eatternmoft part of Elizabeth city co. in Virginia, formed by James river at its mouth in Chefapeak bay. Point Comfort lies 19 miles W. hy N. of Cape Henry. - Morse.

COMMANOES, one of the fmall Virgin ines, in the Weit-Indics, fituated to the N. N. E. of Tortula. N. lat. 18. 25. W. long. 63.-ib.

COMPASS, of Mariner's Steering Compass, is an inftrument of fo great value, that every improvement of it, propofed by men of ficience or of experience, is intitled to notice. We thall therefore lay before our readers fome nbfervations on the defects of the compafs in common ufe which have fallen into our hands fince the article in the Encyclofxdia was publifhed. The firft is by Captain O'Brien Drusy of the royal Navy, and relates entirely to the needle.
"Experience (fays this officer) fhews us, that the needle of a compais, as well as all other magnets, whether artificial or real, perpetually lofes fomething of its magnetic powers, which often produces a difference exceeding a point; and I am well convinced that the great errors in hip-reckonings proceed more frequently from the incorreanefs of the compals than from any other caufe.
"Steele cannot be too highly tempered for the needle of a fea compafs, as the more it is hardened the more permanent is the magnetifm it receives; but to preferve the magnetifm, and confequently the polarity of the needle, I recommend to have the needle cafed with thin, well-polifhed, foft iron; or elfe to have it armed at the poles with a bit of foft iron. I have found, from many exferiments, that the cafed needle preferved its magnetifm in a much more perfect degree than the needle not cafed; and I have fometimes thought that the magnetic power of the cafed needle had increafed, while the magnetic power of the uncaled and unarmed needle always lofes of its polarity."

This is not an opinion taken up at random, but is the refult of what appears to have been a fair and judicious experiment ; for our author placed a cafed nee. dle, an armed needle, and one without either cafe or armour, in a room for three months; each having at that time precifely the fame direction, and nearly the fame degree of force. At the expiration of the three months, he found that the cafed needle and the armed needle had not in the lealt changed their direction; but the other had changed two degrees, and had loft very confiderable of its magnetic power. If there was any change in either of the other needles, it was too inconfiderable to be perceived.

Thefe oblervations feem to be new, and may tend to the improvement of the compafs. But it is not with refpect to the needle only that this inftrument is defec. tive. Mr Bernard Romans of Penfacola well obferves, that, on another account, the heavief brafs compaffes
now in ufe are by no means to be relied on in a hol. low or high fea. This is owing to the box hanging in two brafs rings, confining it to only two motions, both vestical and at right angles with each other; by which confinement of the box, upon any fucceffion, more efpecially fudden ones, the card is always put into too much agitation, and before it can well recover itfelf, another jerk prevents its pointing to the pole; nor is it an extrisordinary thing to fee the card unthipped by the violence of the thip's pitching.

All thefe inconveniences are remedied to the full by giving the box a vertical motion at every degree and minute of the circle, and componnding thefe motions with a horizontal one of the box as well as of the card. By this unconfined difpofition of the box, the effects of the jerks on the card are avoided, and it will always very tleadily point to the pole. "Experience (fays our author) has taught me, that the card not only is not in the fmalleit degree affected by the hollow fea, but that, in all the violent fhocks and whirlings the box can receive, the card lies as Itill as if in a room nnaffected by the leaft motion.
"Lately a compafs was inrented and made in Hol. land, which has all thefe motions. It is of the fize of the common brafs compaffes; the bottom of the brafs box, inftead of being like a bowl, mult be raifed into a hollow cone like the bottom of a common glafs bottle ; the vertex of the cone mult be raifed fo high as to leave but one inch between the card and the glafs; the box muft be of the ordinary depth, and a quantity of lead muit be poured in the bottom of the box, round the bafe of the cone; this fecures it on the Atile whereon it travertes.
"This ftile is firmly fixed in the centre of a fquare wooden box, like the conmon compafs, except that it requires a thicker bottom. The ftile muft be of brafs, about fix inches long, round, and of the thicknefs of one-third of an inch; its head blunt, like the head of a fewing-thimble, but of a good polifh : the file mult fland perpendicular. The inner vertex of the cone mult alfo be well polifhed; the vertical part of the cone ought to be thick: enough to allow of a well-polifhed cavity, fufficient to admit a thort tile, proceeding from the centre of the card whereon it traverfes. The com. pafs I faw was fo conltructed; but I fee to reafon why the ftile might not proceed from the centre of the vertex of the cone, and fo be received by the card the common way. The needle mult be a magnetic bar, blunt at each end; the glafs and cover are put on in the common way."

A compafs of this kind was fubmitted to cur anthor's examination by the captain of a floop of war, who affured him, that in a liard gale, which lalted fome days, there was no other compats of the fmallell fervice. Mr Romans was fatisfied that the officer did not praife the apparatus more than it deferved: and we feel our. felves frongly inclined to be of the fame opinion.

It muit not be concealed, however, that the ingeni. ous Mr Nicholfon feems to think very differently of all fuch contrivances. In a paper publifhed in the ninth number of his valuable Journal, he labours to prove, that the compafs is very little difurbed by tiling the box on one fide, but very much by fudden berizontal changes of place; that a fcientific provifion againft the latter is therefore the chief requilite in a well made in-

\section*{C O M}

Comparis' Armment of this kind; and that no other provifion is

Complement.
requifite, or can eafly be obtained, than good workmanthip according to the common conftruction, and a proper adjuftment of the weight with regard to the centres or axes of fufpenfion. The fame author is of opinion, that it would greatly improve the compafs to make the needle flat and thin, and to fufpend it, not, as is moft commonly done, with its flat fide, but with its edge uppermolt; for it being a well-known fact, that foft tted lofes its magnetifm fooner than hard, it is obvinus, that unlefs both lides of a needle be equally hard (which is almoft impolible if they be diftant from each other), the magnetic powcr will, in procefs of time, deviate towards the harder fide.

The Clinefe Compass has fome advantages over the European compafs, from which it differs with refpect to the length of the needle, and the manuer in which it is fufpended. In the compafs of China, the magnetic needle is feldom above an inch in length, and is lefs than a line in thickuefs. It is poifed with great nicety, and is remarkably fenfible, or, in other words, points fteadily towards the fame portion of the heavens. This feadiaefs is accomplifhed by the following contrivance : "A piece of thin copper is ftrapped round the centre of the neculle. This copper is rivetted by its edges to the upper part of a fmall hemifpherical cup, of the fame metal, turned downwards. The cup fo inverted ferves as a focket to receire a fteel pivot rifing from a cavity made into a round piece of light wood or cork, which thus forms the compafs.box. The furfaces of the focket and pivot, intended to meet each other, are perfectly polifhed, to avoid, as much as poffible, all friction. The cup has a proportionably broad margin, which, befide adding to its weight, tends, from its horizontal pofition, to keep the centre of gravity, in all fituations of the compafs, nearly in coincidence with the centre of fufpenfion. The cavity, in which the needle is thus fufpended, is in form circular, and is little more than fufficient to remove the needle, cup, and pivot. Over this cavity is placed a thin piece of tranfparent talc, which prevents the needle from being affected by any motion of the external air ; but permits the apparent motion of the former to be eafily obferved. The fmall and fhort needle of the Chinefe has a material advantage over thofe of the ufual fize in Europe, with regard to the inclination or dip towards the horizon; which, in the latter, requires that one extremity of the needle thould be made fo much heavier than the other as will counterad the magnetic attrastion. This being different in different parts of the world, the needle can only be accurately true at the place for which it had been contructed. But in fhort and light needles, fufpended after the Chinefe manner, the weight below the point of fufpenfion is more than fufficient to overcome the magnetic power of the dip or inclination in all fituations of the globe; and therefore fuch needles will never deviate from their horizontal pofition.

COMPLEMENT, in general, is what is wanting, or neceffary, to complete fome certain quantity or thing.

Arithmstical Complement, is what a number or logarithm wants of unity or 1 with fome number of \(c y-\) phers. It is beft found by beginning at the left-hand fide, and fubtracting every figure from 9 , except the laft, or right hand figure, which mult be fubtrafted from 10.

So, the arithmet:cal comp. of the log. 95329714 , by fubtracting from 9 's, \&c. is 0.4670286.

The arithmetical complements are much ured in operations by logarithms, to change fubtractions into ad ditions, which are more conveniently performed, efpe. cially when there are more than one of them in the operation.

Complement, in aftronomy, is ufed for the diftance of a flar from the zenith; or the arc contained between the zenith and the place of aftar which is above the horizon. It is the fame as the complement of the altitude, or co-altitude, or the zenith diftance.

Complement of the Courfe, in navigation, is the quantity which the courfe wants of \(90^{\circ}\), or 8 points, viz. a quarter of the compafs.

Complement of the Curtain, in fortification, is that part of the anterior fide of the curtain which makes tho demigorge.

Comflement of the Line of Defence, is the remainder of that line, after the angle of the flank is taken away.
Complements of a Parallelogram, or in a Parallelogram, are the two leffer parallelograms, made by draw. ing two right lines parailel to each fide of the given parallelogram, through the fame point in the diagonal.

Comilempint of Life, a term much ufed, in the doc. trine of life annuities, by De Moivre; and, according to him , it denotes the number of years which a given life wants of 86 , this being the age which he confidered as the utmoft probable extent of life. So 56 is the complement of 30 , and 30 is the complement of 56 .

COMPOSITION of pROPORTION, according to the 15 th definition of the 5 th book of Euclid's Elements, is when, of four proportionals, the fum of the 1 It and 2 d is to the 2 d , as the fum of the 3 d and 4 th is to the \(4^{\text {th. }}\)

Composifton of Ratios, is the adding of ratios together; which is performed by multiplying together their correfponding terms, viz. the antecedents together, and the confequents together, for the antecedent and confequent of the compound ratio; like as the addition of logarithms is the fame thing as the multiplication of their correfponding numbers. Or, if the terms of the ratio be placed fraction-wife, then the addition or compofition of the ratios is performed by multiplying the fractions together.

COMPOSTELLA, a very rich town in New-Spain, and province of Xalifco, built in 1531, fituated near the S. Sea, 400 miles N. W. of Mexico. The foil is barren and the air unhealthful; but it has feveral mines of filver at St Pecaque, in its neighborhood. N. lat. 21. 20. W. long. 109.42.-Morse.

Compound Intirest. See Algebra, Encycl. and Compound INTEKEST in this Supplement.

CANAJOHARY, a polt town, on the S. fide of Mohawk river, New-York, very large, 36 miles above Scheneetady, and 318 from Philadelphia.--Morse.
CONAWANGO, a northern branch of Alleghany river, in Pennfylvania, which rifes from Chataughque lake.-ib.

CONCEPTION, a city of Chili in South America, was vifited in \(\mathbf{1} 786\) by the celebrated, though unfortunate, navigator La Peroufe, who gives an account of fome particulars relating to it very different from what we have given of it under the article Conception, Em-

\section*{C O N \(\quad[509] \quad \mathrm{C} O \quad \mathrm{~N}\)}

Conce- eycl. So far are the Spaniards from living in fecurity \(\underbrace{\text { tiont. }}\) with refpect to the Indians, that, according to him, they are under continual alarms of being altacked by thofe bold and enterprifing favages. "The Indians of Chili (fays he) are no longer thofe Americans who were infpired with terror by European arms. The in. creafe of horfes, which are difperfed through the interior of the immenfe deferts of America, and that of oxen and fheep, which has alfo been very great, have converted thefe people into a nation of Arabs, in every thing refembling thofe who inhabit the deferts of Arabia. Conftantly on horfeback, they confider an excurfion of two hundred leagues as a very thort journey. They march accompanied by their flocks; feed upon their flefh and milk, and fometimes upon their blood; and cover themfelves with their fkins, of which they make helmets, cuiraffes, and buckters. All their old cultoms are laid afide. They no longer feed upon the fame fruits, nor wear the fame drefs; but have a more Ariking refemblance to the Tartars, or to the inhabitants of the banks of the Red Sea, than to their anceftors, who lived two centuries ago. So decifive an influence has the introduction of two domeftic animals had upon the manners of that once timid people. It is eafy to conceive what formidable enemies they mult now be to the Spaniards; for fuppofing them defcated in battle, How is it poffible to follow them in fuch long excurlions? How is it polible to prevens affemblages, which bring together in a fingle point nations fcattered over 400 leagues of country, and thus form armies of 30,000 men ?"

Of thefe people M. Rollin, furgeon major of the frigate la Buflole, gives the following phyfiological particulars: "They are, in general (tays he), of lower ftature, and leis robuft, than Frenchmen, though they endure with great courage the fatigues of war and all its attendant privations. There is a great famenels in the phyfiognomy of moft individuals. 'The face is larger and rounder than that of Europeans. The features are more Itrongly marked. The eyes are fmall, dull, black, and deeply feated. The forehead is low ; the eyebrows black and fhaggy; the nofe thort and flattened; the cheek-bones ligh; the lips thick; the mouth wide; and the chin diminutive. The women are fhort, illmade, and with difgufting countenances. Both men and women bore their nofe and ears, which they adorn with glafs or mother-of-pearl trinkets. The colour of their fkin is a reddith brown: That of their nails is fimilar, but not fo deep. The hair of both is black, coarfe, and very thick. The men have little beard; but their arm-pits and parts of fex are well furnifhed with hair, which parts, in molt of the women, have none."

The military governor of Conception, who was an Irilhman, returned, while M. de la Peroufe was there, from the frontiers of the Spaniflifettlements, where he had jult concluded a glorious peace with the Indians. This peace was highly neceftary to the people of his government, whofe diltant habitations were expofed to the intoads of favage cavalry, whofe pragice it is to malfacre the men and children, and to make the women prifoners. This amiable man, whofe name was Misguias (probably Higgins), had fuccecticd in gaining the good "ill of thele favages, and thereby rendered the mofl fignal fervice to the nation that had adopted

Surfl. Vol. I.
him. For while the Indians and Spaniards are at variance, an alliance with the former by any of the maritime powers of Europe would become fo formidaole to the latter, as to induce them, for fear of their lives, to abandon their fettlements in Chili, and retire to Perv. This was clearly feen by Monneron the engineer on the expedition, who, with the true firit of a Frenchman, pointed out to his government the method of wrelling from its moft faithful all \(\delta\), one of the moft valuable provinces in the Spanifh empire.

La Peroufe defcribes the common penple of Conception as much addicted to thieving, and the women as exceedingly eafy of accef£. "They are a degenerated and mongrel race (fays he) ; but the inhabitants of the firft clafs, the true bred Spaniards, are polite and obliging in the extrome. The bifhop was a man of great Ienfe, of agreeable manners, and of a charity of which the Spanifh prelates afford frequent examples." He was a Creole, and had never been in Europe. Of the monks, onr author gives a very different character. "The misfortune (fays he) of having nothing to do, the want of family ties, the profeflion of celibacy, without being feparated from the world, and their living in the convenient retirement of their cells, has rendered, and could not fail to render, them the greatelt profligates in America. Their effrontery is inconceivable. I have feen fome of them ftay till midnight at a ball; aloof, indeed, from the good company, and feated among the fervants. Thefe fame monks gave our young men more exact information than they could get elfewhere, concerning places with which prielts ought to have been acquainted only in order to interdiet the entrance."
M. de la Peronfe reprefents that part of Chili, which is called ths Bifloprick of Concoption, as one of the molt fertile countries in the univerfe. Corn yields fixty to one; the vineyards are equally productive; and the plains are covered with innumerable flocks, which, tho* left to themfelves, multiply beyond all imagination. Yet this colony is far from making the progrcfs that might be expected from a fituation fo favorable to an increafe of population. The influence of the government inceffantly counteracts the climate and the forl. Prohibitory regulations exift from one end of Chili to the other; and this kingdom, of which the prodactions, if carried to the ligheft pitch, would feed the half of Europe ; of which the wool would fuffice for the manufactures of Great Britain and France, even when manufactures flourifhed in the latter country; and of which the cattle, if falted down, would produce an immende revenue-is entirely deltitute of commerce, and its inhabitants funk in floth and indolence. Unlefs, therefore, Spain change its fyftem entirely, Cbili will never reach that pitch of profperity which might be expected from its fituation and fertility. For the latitude and longitude of Conception, fee Encycl.

Conception, a large bay on the E. fide of Newfoundland inland, whofe entrance is between Cape St Francis on the fouthward, and Flamborough-head on the northward. It runs a great way into the land in a fouthern diresion, having numernus bays on the W. fidc, on which are two fettlements, Carboniere and Havre de Grace. Settlements were made here in 1610, by about 40 planters, under governor John Guy, to whom king James had granted a patent of incorporation.-Morse.

3 U
Concep-
\(\qquad\) .
\(\qquad\)

\section*{C O N [510] C O N}

Conception Conceprion of Salaya a fmall town of N. America, H
Concord. \(\underbrace{\text { Corcord. }}\) in the province of Mechoacan, in Mexico or New-Spain, was built by the Spaniards, as well as the ftations of

St Michael and St Philip, to fecure the road from Mechoacan to the filver mines of Zacateca. They have alfo given this name to feveral boroughs of America; as to that in Hifpaniola iland, and to a fea-port of California, \&c.-ib.

Conception, by the Indians called Penco, a city in Chili, S. America, fituated on the edge of the fea, at the mouth of a river, and at the bottom of a bay of its own name. It lies in about 37 . S. lat. It was leveral times deftroyed by the powelful confederacy of the Indians, and as often repaired. In 1730 it was deAroyed by an earthquake, and fince that, rebuilt. It is within the audience and jurifaistion of St Jago, and is governed by a correflidnre. The Spanith inhabitants here, are the moft warlike and hardy of any in \(S\). A merica; they are all trained to arms from their childhood, to be ready to refitt the attack of the Chilefe Indians, whom they have reafon to confider as a formidable enemy.

The inhubitants, and even the women, excel in horfematiflip; they are very dexterous in managing the lance or noofe; and it is very rare to fee them mifs their aim, though at full fpeed, with the noofe, which they throw 40 or 50 yards, and fo halter the object of their diverfion or revenge. This noofe is made of throngs of cow-hide ; thefe they twift with oil, till rendered fupple and pliant to command; and fo flrong that, when twifted, they will, it is faid, hold a wild bull, which would break a halter of hemp of twice the thicknefs.

The foil here is fruitful, abounding with corn and excellent wine. The fruit trees bear fo luxuriantly here, that they are forced to thin the fruit, otherwife the branches would break, nor could the fruit come to maturity. This city has a church and fix very famous monalteries; but the dwelling houles make no great appearance. Here the women go out in the night to the fhops, to buy fuch necelfaries as they want for their families, it being contrary to the cuftom of this country for women of any character, to go abroad in the daytume on fuch affairs. It is an open town; and the few batteries it has, are kept in very indifferent order. -ib.

CONCHUCOS, a jurifdiction in the empire of Peru, in S . America, under the archibifhop of Lima; it begins 40 leagues N. N. E. of the metropolis, and runs along the center of the Cordillera. It produces fruits, srain, \&c. and affords extenfive patture tor cattle of all kinds. Several branches of the woollen manufactory are carried on here, which conflitute its greateft commerce with the other provinces.- \(-i b\).
CONCORD, a polt town of New.Hamphire, very flourihing, and pleafantly fituated on the W. bank of Merrimack river, in Rockingham co. 8 miles above Hookfer falls. The legillature, of late, bave commonly held their feffions here; and from its central fituation, and a thriving back country, it will probably become the permanent feat of government. Much of the trade of the upper country centers here. A handfome toll bridge acrofs the Merrimack, connects this town with Pembroke. It has 1747 inhabitants, and was incorporated in 1765 . The Indian name was

Penacook. It was granted by Maffachufetts, and call. ed Rumford. The compact part of the town contains abnut 170 houfes, a congregatinnal church, and an academy, which w:as incorporated in 1790 . It is 55 miles W. N. W. of Portimouth, 58 S. W. of Dartmouth college, and 70 northward from Boton. N. lat. 43. 12. W. long. 71. 29.-ib.

Concord, in Effex co. Vermont, lies on Connecticut river, oppofite a part of the 15 mile falls -ib.

Concord, in Maflachufetts, a polt town, one of the mott confiderable towns in Middlefex co. fituated on Concord river, in a healhy and pleafant fper, nealy in the center of the colunty, and 18 miles N. W. of Bofton, and \({ }_{17}\) E. of Lancalter. Its Indian name was Mufquetequid; and it owes its prefent name to the peaceable manner in which it was obiained from the natives. The firft fettlers, among whom were the Rev. Meffrs Buckley and Jones, having fettled the purchafe, obtained an act of incorporation, Sept. 3, 1635 ; and this was the moft diftant fettlement from the feathore of New-England at that time. The fettlers never had any conteft with the Indians; and only three perfons were ever killed by them within the limits of the town. In 1791, there were in this townfhip 225 dwelling houses, and 1590 inhabitants; of the latter there were 80 perfons upwards of 70 years old. For 13 years previous to 1791, the average number of deaths was 17 ; one in four of whom were 70 years old and upwards. The public buildirgs are, a Congregational church, a fpacious fone gaol, the beft in New. England, and a very handfome county court-honfe. The town is accommodated with three convenient bridges over the river; one of which is 208 feet long, and 18 feet wide, fupported by 12 piers, built after the manner of Charles river bridge. This town is famous in the hiftory of the revolution, having been the feat of the provincial congrefs in 1774, and the font where the firft oppolition was made to the Britifh troops, on the me. morable igth of April, 1775. The general court have frequently held their feftions here when contagious difeafes have prevailed in the capital. N. lat. \(4^{2,25}\). -ib.
Concord, a fmall river of Maffachufetts, formed of two branches, which unite near the center of the town of Concord, whence it takes its comie in N. E. and N. direction through Bedford and Billerica, and empties itfelf into Merrimack river at Tewkfoury. Concord river is remarkable for the gentlenefs of its current, which is fearcely perceivable by the eye. At low water mark it is from 100 to 200 feet wide, and from 3 to 12 feet deep. During floods, Concord river is near a mile in breadth; and when viewed from the town of Concord, makes a fine appearance.-ib.

Concord, a townthip in Delaware co. Pennfylvania. -ib.
Concord, a fettement in Georgia, on the E. bank of the Miffifippi, about a mile from the S. line of Tenneffee, 108 miles N. from the mouth of Yazoo river and 218 below the Ohio. N. lat. 33.55. W. long. 91. 25.-ib.

Conde, Fort, or Molile city, is fituated on the W. fide of Mobile bay, in Wefl-Florida, about 40 miles above its mouth in the gulf of Mexico. N. lat. 30. 42. W. long 87. 57.-ib.

CONDECEDO, a cape or promontory of N. America,

\section*{C O N [5 HI] C O N}

Condefuyos rica, in the province of Yucatan, 100 miles W. of gration are fometimes of a nature fo extremely general, Conderecte \({ }^{1}{ }^{\text {. }}\) Merida. N. lat. 20. 50. W. long. 91. 27.-ib.
Condorcet. CONDESUYOS DE AREQUIPA, a jurifdiction under the bifhop of Arequipa, 30 leagues N. of that city, in Peru. Here is cultivated the wild cochineal : the Indians carry on a great trade with this article ; they grind it, and mix four ounces of it with 12 oun. ees of violet-maize, of which they form cakes of 4 ounces each, and fell it for a dollar a pound. Thefe cakes they call magnos. This place abounds alfo with gold and filver mines, which are not so carefully worked as formerly-ib.

CONDORCET (Jean-Antoine Nicholas Caritat de), was born at Ribemont in Picardy, the 17 th of September 1743 , of a noble and very ancient family. At the age of 15 he was fent to Audy philofophy at the college of Navarre, and had the good fortune to fall into the lands of an able profelfor, who has fince diftinguilhed himfelf by his feometrical works. The young Condorcet had no relifl for the bufinefs of the firft courfe, for the quibbles of ontology and pneumatology, and all the wretched appendages of frhool metaphyfics; but in the following year, his fludies, being directed to the mathematical and phyfical fciences, were entirely congenial to his tafte; and rhough there were upwards of \(\mathbf{1 2 0}\) fcholars, he diftinguifhed himfelf above them all. At Eafter he held a public thefis, at which Clairaut, D'Alembert, and Fontaine affifted. He now raturned home, but continued to cultivate geometry. To enjoy more opportunities of improvement, he removed in 1762 to Paris; where he attended the chemical courfe of Maquer, and Beaumé, and frequented the literary focieties which D'Alembert had formed at the houfe of Mademoifelle de Leipinalfe.

In 1765, when only 22 years old, he publifhed a work on the integral Calculus, which difcovered valt extent and originality of views. Condorcet was already numbered with the foremof mathematicians in Europe. " There was not (fays La Lande) above ten of that clafs; one at PeterBurg, one at Berlin, one at Bafle, one at Milan, and five or fix at Paris; England, which had fer fuch an illuftrious example, no longer produced a fingle geometer that could rank with the former." It is mortifying to us to confefs that this remark is but too much founded in trith. We doubt not but there are in Great-Britain at prefent mathematicians equal in profundity and addrefs to any who have exifted fince the illuftrious Newton; but thefe men are not known to the learned of Euiope, becaufe they keep their fcience to themfelves. They have no encouragement, from the tafte of the nation, to publifh any thing in thofe higher departments of genmetry which have fo long occupied the attention of the mathematicians on the continert.

In 1767 Condorcet publifhed his fulution of the problem of three bodies; and in the following year, the firt part of his Analytical Efiays; in which he entered very profoundly into thofe arduous queftions. He was received into the academy on the 8th ot M.rrch, 1769 ; and from that time till 1773 he enriched their annual volumes with memoirs on intinite feries, on partial and finite differences, on equations of condition, and on other objects of importance in the higher calculus. It mult be regretted, that he indulged fpeculation perhaps to excefs; the methods that he propofes for inte.
as to refufe to be accommodated to practice. Profecuting thofe refearches for feveral years longer, he conlpofed an ample Treatife on the Integral Calculus, in five parts, comprizing the doctrines and their applicttion. It was afterwards copied out for the pret's in 1785 by Keralio, formenly governour to the Intant of Parma. Only 128 pages were printed; but the mannfript Atill exifts; as does that of an elementary Treatife on Arithmetic. It is to be hoped that both of thefe will yet be given to the public.

His attention was not, however, entirely abforbed in thofe recondite fludies. He publifhed about this time an anonymous pamphlet, intitled a Letter to a Thechgian ; in which he replied with keen fatire to the attacks made by the author of the Three Centuries of Litierature againft the philofophical fect. "But (fubjoins the prudent La Lande) be pufhed the matter domewhat too far ; for, admitting the jufnefs of his fyftem, it was more prudent to confine within the circle of the initiated, thofe truths which are dangerous for the multitude, who cannot replace, by found principles what they would lofe of fear, of confolation, and of hope." Condorcet was now leagued with the atheifts; and La Laande, who wifhes wel! to the fame fect, cenfures not his principles, but only regrets his rafhecf. He was indeed, as Mr Burk oblerved, a fanatic atheif and furious democratic republican.

On the Ioth of June 1773 he was made fecretary of the academy of fciences; and that important truft he difcharged through the reft of his life with great ability and uncommon reputation. The duties of his office required him to write the lives of the deceafed academicians, which he performed with diligence, judgment, and univerfal applaufe: And what fecies of compofition is capable of being rendered fo extenfively ufeful as biography? In the molt infinuating form it conveys inftrustion; and beffowing vitality and aftion on the rules of conduct and on the leffons of virtue, it fires the breaft with the nobleft emulation. The life of a philofopher mult alfo include a portion of the hiftory of fcience. We there trace the fucceffive Reps which led to difooveries, and learn to eftmate the value of thofe acquifitions by the effouts that were made, and the obftacles that were furmounted. The literati of France have long excelled in the compofition of Eloges : but thofe of Condorcet are of a very fuperior call. Rcplete with information and genuine fcience, they maintain a diguified impartiality, and difplay vigour of imagination with bolduefs and energy of ilyle. The intrepidity (fay his Panegyrills) with which he uttered the fentiments of truth and of freedom, could not have bsen expected from the mouth of an academician under an abfolute monarchy. It could not, indeed, till the prefent eventulage, have been expected under any government whatever; for what he called the fentiments of truth were the dogmas of debafing irreligion which would not have been permitted in the far-fansed republics of Greace and Rome ; and what he dignified with the appeliation of the principles of freedom, experience has thown to have been the immediate fource of anarchy, out of which has iprung a defputifm, the heavieft under which any people have groaned fince the creation of the world.

Befides the cloges, which properly belonged to his province, Condorcet publifhed in a feparate volume the

Condorect. lives of thofe favants, who, having died before the renewal of the academy in 1699 , did not fall in with the plan of Fontenelle. The fuppretion of the hittory of the academy, or the regular abltracts of the printed memoirs which he effected in 1783 , afforded him more leifure. In 1787 appeared, yet without a name, his account of Turgot; an ineftimable piece, which, in developing the beneficial views of a virtuous and enlightened minifter, exhibits the neateft abftract of the principles of political economy that is extant in any langnage. Nearly about the fame time, he compofed that elegant life which is prefixed to the fplendid edition of the works of Voltaire. Condorcet had been elected member of the acadenie Françaije in 1782; and his reputation as a fine writer was fo well eltablifhed, that bookfellers were folicitous to cover their undertakiogs with the fanction of his name. He promifed an additional volume to the tranflation of Euler's Letters to a German princefs ; but it was never finifhed. The part which was printed, amounting to only if 2 pages, con tains the elements of the calculation of probabilities, and a curious plan of a dictionary, in which objects thould be arranged by their qualities merely. A new tranflation of Smith's celebrated Weallh of Nations was likewife announced with the notes of Condorcet, tho' he was never heartily engaged about it. On equally flight grounds his name was lent to the Bibliotheque de \(l\) 'Homme Public; and the facility of his temper laid him but too open, at this period, to fuch difingenuous arts. Indeed difingenuous arts feem to be the natural offspring of the prelent philofophy of France; for the tricks played by Voltaire to his bookfellers, which are well known, would in this country have funk into difgrace the greateft genius that ever lived; and the attempt of Diderot to cheat the late emprefs of Ruffia, by felling to her, at an immenfe price, a library, which he pretended to be one of the moft valuable in Europe, when he poffeffed not perhaps one hundred volumes, was difingenuity ingrafted on impudence. But to return from this fhort digreflion,

Thefe literary purfurts did not entirely feduce Condorcet from more profound fudies. At the infligation of Turgot, he fought in apply analylis to queltions of politics and morality. His firf Memoir on Probabilities was read to the academy in 1781 . He afterward extended his refearches to the confideration of elections, fales, and fucceffions; and digefting thofe remarks and calculations into a fyllematic fhape, he publifhed in 1785 a quadto volume, containing the elements of a new and important fcience.

It is ealy to conceive the interef that Condorcet would take in the fuccefs of the revolution. Aware of the prodigious influerce of newfapers, he contributed largely to the Fournal de Paris, and the Cbronique, which acquired great celebrity \(f_{r}, \mathrm{~m}\) the elegance of his pen; and not very long before his death, he began, in concert with the famous Sieyes, a Journal of Social InAruction. In 1791 he wrote a pamphlet in favour of republican government, which procured him a feat in ilse Legiflative Affembly, and the academy permitted him fitil to retain the office of fecretary. He drew up a manifefto on the fubject of the war menaced by the crowned heads; and a very ample report on public infruction, which has in part been lately adopted by the councils of Frasce. He was an early member of the

Jacobin club, that active inftrument of the revolution : Condoreet. but perceiving the progreflive ferocity of its meafures, he forfook it in March, 1792.

On the \(13^{\text {th }}\) of Augnlt, when the king was conducted to the temple, Condorcet was named by the Affembly to draw up a juftificatory memorial addreffed to all Europe. At the diffolution of that Affembly, he was chofen deputy to the National Convention, and for fome time acted a diftinguifhed part in its deliberations. He was at the head of the committee appointed to prepare the plan of a republican conftitution. But, in the meanwhile, the faction of the Mountain, with a peculiar energy of character, was rapidly acquiring ftrength. The report of the committce was coldly received-was even treated with contempt ; and on the 3 If of May, 1793, Robefpierre completely triumphed. The Briffotins were arrefted, outlawed, difperfed ; and Condorcet, having voted againft the death of the king, was involved in the profeription. For fome months he obtained an afylum at Paris in the houfe of a woman, who was ignorant of his perfon, but commiferated his lot. Nothing, however, could elude the vigilance of the tyrant. Menaces of a ftrict domiciliary vilit compelled him at laft, in March 1794, to quit his concealment. He efcaped the barriers, and pafled the firft night in the plain of Montrouge. On the next morning, he repaired to the houfe of an old friend at Fontenai, who molt unfortunately had gone to Paris, and was not expected to return for two days. In this deplorable flate of fufpenfe did Condorcet pafs one night in a quarry, and another under a tree in the fields. On the third day he haftened to meet his friend; but the meeting was fhort and unfatisfactory. After a halty refrefhment, it was agreed that he fhould depart in the meanwhile, to return again at night after all the fervants were retired to relt. He was therefore obliged to wander about the neighbourheod of Clamar. Exhaufted with hunger and tatigue, and his feet terribly bruifed, nature could hold out no longer. He entered an alehoufe, where his long beard and haggard looks expofed him to fufpicion. A member of the revolutionary committee of Clamar demanded his paffiport, led him away to the committee, and thence transferred him to the diftrict of Bourg. la-Reine. Having arrived too late for interrogation, he was thut up in priton under the name of Pierre Simon, with the intention of being fent to Paris. On the 28th of March he was found dead.

Thus miferably perifhed a molt able philofopher, and one of the finef writers of thofe that have adomed the prefent century. His private character is defcribed by La Lande as eafy, quier, kind, and obliging; but his behaviour to Diderot when dying, difplayed, intead of the milk of human kindnefs, the malignity of a fiend. Neitizer his converfation nor his external deportment befpoke the fire of his genius. D'Alenthert ufed to compare him to a volcano covered with inow. He had a latent wcaknefs, however, of conititution, which of ten made him the dupe of men altogether unworthy of his regard.

It was during the period of his concealment at Pa ris, uncertain of a day's exiltence, that he wrute his Sketch of the Progrels of the Human Mind; a production which undoubtedly difplays genius, though it contains fome of the mof extravagant parajoxes that ever fell froms the pen of a philofopher. Among other wonderful

\section*{C 0 N \\ \(5 \mathrm{I} 3] \quad \mathrm{C} \quad \mathrm{O} \mathrm{N}\)}

Condorcet wonderful things, the author inculcates the poffibility, if not the probability, that the nature of man may be improved to abfolute perfection in body and mind, and his exiftence in this world protrated to immortality. So firmly does he feem to have been perfuaded of the truth of this unphlofophical opinion, that he fet himfelf ferioully to confider how men thould conduct themfelves when the population thould beconse too great for the quantity of food which the earth can produce; and the only way which he could find for counteracting this evil was, to check population by promifcuous concubinage and other practices, with an account of which we will not fully our pages. Yet we are told by La Lan de, that this fketch is "only the outline of a great work, which, had the author lived to complete it, would have been confidered as a monument erested to the bonour of hurnan nature!!!" La Lande, indeed, fpeaks of the author in terms of high refpect : and his abilities are certainly unqueftionable : but what fhall we think of the morals of that man, who firft purfued with malicious reports, and afterwards hired ruffians to
- Your de

PLy. Nov. houfe he had been brought up; by whom he had been 1792. treated as a fon; and at whofe folicitation 'lurgot created for him a lucrative office; and by the power of the court raifed him to all his eminence? There is a living Englith writer, who has laboured hard to prove that gratitude is a crime. Condorcet mult furely have held the fame opinion; and therefore could not blame thofe low born tyrants who put him to death by what we would call an unju/f jentence; for it was in fome degree to his writings that thofe tyrants were indebted tor their power.

About the end of the year 1786, Condorcet married Marie-Louife Sophic de Grouchy, whofe youth, wit, and beauty, were lets attractive in the eyes of a philofopher than the tender and courageous anxiety with which the watched the couch, and afluaged the fufferings, of the fon of the prelident du Paty, who had been bitten by a mad dog. This union, however, we are told, was fatal to his repofe; it tempted him into the dangerous road of ambition; and the idea of providing for a wife and daughter induced him to feek for offices which once he would lave defpifed.

CONDUSKEEG, a fettlement in the difrict of Maine, in Hancock co. containing 567 inhabitants. - Miorse.

CONEGOCHEAGUE Creek, rifes near Mercerfburg, Franklin co. Pennfylvania, runs foutherly in a winding courfe, and after fupplying a number of mills, empties into the Potownack, at William port, in Wathington co. Maryland; 19 miles S. E. of Hancock, and 8 miles S. of the Pennfylvanid line.- \(i b\).

CONEMAUGH River, and Little Conemaugh, are the head waters of Kifkemanitas, in Pemnfylvinia: after palling through Laurel hill and Chefnut ridge, Conemaugh takes that name and empties into the Alleghany, 29 miles N. E. of Pittlburg. It is navigable for boats, and there is a portage of 18 miles between it and the Frankfown branch of Juniata river.-ib.

CONENTES, LAS, a city of La Plata or Paraguay, in \(S\). America, in the diocefe of Buenos \(A\) yres.

CONESTEO, a \(N\). wettern branch of Tioga siver, in New-York.-ib.

CONESTOGA, a townhip in Lancafter co. Pena- Conefloga fylvania.-ib.

CONESUS, a fmall lake in the Geneffee country, Contagion. N. York, which fends its waters N. W. to Geneffee river.- \(i b\).

CONFERVA Jugalis (fee Conferva Encyel.) is introduced here merely on account of a curious circumfance refpecting it, which was communicated, not long ayo, to the Philomatic Society at Paris. Citizens Charles and Romain Coquebert laving collected fome of this Conferva in the neighbnurhood of Paris, afcertained, by means of an excellent microfcope, conftructed by Nairne and Blunt, that, in this fpecies there are male and female filaments, which unitc by an atual copulation; that certain globules contained in the male filaments pafs into the interior part of the female filaments; and that by this union there are formed in the latter feeds, or, if we may ufe the expreffion, fnall ova, which reproduce the fpecies. This is the firf inflance, in the vegerable kingdom, of a reproduction abolutely analogous to that which we find among animals. Philofopbical Magazine, \(\mathrm{n}^{0} 3\).

May this taa be depended on? We queftion not, in the flighteft degree, the veracity of the editor of the very refpectable mifeellany from which we have copied it ; but we confefs ourfelves inclined to admit the phyfological difcoveries of citizen philofophers with great hefitation. The fact, if real, is certainly curious, and may lead to important conclufions; and we therefore recommend an inveltigation of its truth to our botanical readers.

CONGAREE, a confiderable river of S. Carolina, formed by the confluence of Saluda and Broad rivers. The union of the waters of Congaree and Wateree, from the Santee.-Morse.

CONGELATION, fee Chemistry in this Supplement, \(n^{\circ} 284\).

CONHOCTON Creek, in New.York, is the northern head water of Tiuga river. Near its mouth is the fettement called Bath.-Morse.

CONNECTICUT, a fream in Long Illand, N. York, which falls into a bay at the S. fide of the ifland. It lies 2 miles to the fouthward of Rockonkama pond.-ib.
CONTAGION (fee Encycl.) is a fubject on which much has been written to very little purpore. Of all the attempts which have been made to account for it, there is not one that can be thought fatisfactory. This, however, is not perhaps a matier of great importance, if a method could only be difcovered to fop the progrefs of contagion where it is known to have place. Among the many benefits which may be reaped from the late difcoveries in Chemiltry, even this delideratum promifes to be one; and we furcly need not add one of the greatelt. Dr James Carmichael Smyth, phylician extraordinary to his Majefty, fuggented, in the year 1795 or 1796, a procefs for determining the effect of the nitric acid in deltroying contagion; and experiments, according to his directions, were made on board the Union and other flips at Shecruefs.

The Union was an hofpital hip, and the experiment on board her was conducted by Mr Menzies, late furgeon to his Majent's floop Difcovery, and by Mr Bafo fin, furgeon of the Union; and when it is confidered,

\section*{\(\mathrm{C} O \mathrm{~N} \quad[5: 4] \quad \mathrm{C} \quad \mathrm{O} \quad \mathrm{N}\)}

Contarion. that frefla contagion was daily pouring into the hofpital admifion of frelh air. It could plainly be perceived Contagion. from the Ruffian veffels, which were at that time lying in the Downs, and which had bronght with them a fpecies of fever that might in every fenfe of the word be termed an epidemy, it will be allowed, that the fuccefs which attended it was fuch that it cannot be too generally known.

The wards were extremely crowded, and the fick of every detcription lay in cradles, promifcuoufly arranged, to the number of nearly two hundred; of which, about one hundred and fifty were in different ftages of the above malignant fever, which was extremely contagious, as appeared evident from its rapid progrefs and fatal effeets among the attendants on the fick and the thip's company.

The utenfils and materials provided for the procefs were the following: A quantity of fine fand, about two dozen quart earthen pipkins, as many common tea. cups, fome long hips of glafs to be ufed as fpatulas, a quantity of concentrated vitriolic (fulphuric) acid, and a quantity of pure nitre (nitrat of potalh).

The procefs was conducted in the following manner: \(1 / t\), All the ports and fouttles were fhint up; the fand, which had been previoufly heated in iron pots, was then fcooped out into the pipkins by means of an iron ladle; and in this heated fand, in each pipkin, a fmall tea-cup was immerfed, containing about half an ounce of the fulphuric acid, to which, after it had acquired a proper degree of heat, an equal quantity of nitrat of potafh in powder was gradually added, and the mixture firred with a glafs (patula till the vapour arofe from it in confiderable quantity (A). The pipkins were then carried through the wards by the nurfes and convalefcents, who kept walking about with them in their hands, occafionally putting them under the cradles of the fick:, and in every corner where any foul air was fufpected to indge. In this mamer they continued fumigating, until the whole fpace between decks was fore and aft filled with the vapour, which appeared like a thick haze.

The vapour at firlt excited a good deal of coughing among the patients, which gradually ceafed as it became more generally diffufed through the wards: part of this effect, however, was to be attributed to the inattention of thofe who carried the pipkins, in putting them too near the faces of the fick; which caufed them to inhale the frong vapour as it immediately iffeed from the cups.

The body-clothes and bed-clothes of the fick were, as much as pofible, expofed to the nitrons vapour during the fumigation; and all the foul linen removed from them was immediately immerfed in a tub of cold water, afterwards carried on deck, rinfed ont, and hung up till ncarly dry, and then fumigated before it was taken to the wafh-houfe : a precaution extremely neceffary in every cafe of infectiotis diforder. Due attention was alfo paid to cleanlinefs and ventilation.

It teok about three hours to fumigate the fhip. In about an hour after, the vapour having entirely fubfided, the ports and fcuttles were thrown open for the
that ine of air. it cond plainy be perceived contaginn. that the air of the hofpital was greatly fweetened even by this firlt fumigation. The procefs was repeated again next morning; and the people employed, being now better acquainted with it, were more expert, and finifhed the whole in about an hour's time. In an hour afterwards, the vapour having entirely fubfided, the freth air was freely admitted into the hofpital as before. Fewer pipkins were employed for the evening fumigations than for thofe of the mornings, as the frefh air could not be admitted fo freely after the former as the latter.

The pleafing and immediate effec of the fumigation in deftroying the offenfive and difagreeable fmell, arifing from fo many fick crowded together, was now very perceptible, even to the murfes and attendants; the confequence of which was, that they began to place fome degree of confidence in its efficacy; and approached the cradles of the infected with lefs dread of being attacked with the diforder: fo that the fick were better attended, and the duty of the hofpital was more iegularIy and more cheerfully performed. In fhort, a pleafing gleam of hope feemed now to calt its chcering influence over that general defpondency, which was before evidently pictured in every countenance, from the dread and horror each individual naturally entertained of being, perhaps, the next victim to the malignant powers of a virulent contagion.
It is a remarkable fact, that from the 26 th of November 1795, when the fumigation was firlt reforted to, till the 25 th of December, not a perfon on board was attacked with the fever, though, in the three months preceding, more than one-third of all the people in the fhip had bcen feized with the diftemper, and of thefe more than one in four were carried off by it ; and the probability is, that the ficknefs and mortality would have gone on, increafing in proportion to the diffufion of the contagion, and to the increafing defpondency of the people, who confidered themfelves as fo many devoted victims.

The advantage of the fumigation was not felt by the fhip's company and attendants alone, whom it preferved from the baneful effects of the fever: the fick and convalefcents derived almof an equal benefit from it. The fymptoms of the difeafe were meliorated, and loft much of their malignant appearance; and the advantage of a pure air, and free from ftench, to convalefeents, may be readily conceived.

Great confidence is always dangerous. It proved fo on the prefent occation. On the 17th of December they imagined themfelves fo fecure, that they difoontinued the cuftum of fumigating morning and evening, thinking that once a day was fufficient. On the \(2 j\) th, one of the nurfes fuffered a flight attack; and on the 26 h , a marine, who, for a week before, had been in a Itate of intoxication, was feized with the fever, of which he died. Thefe two accidents gave immediate alarm : they returned again to the practice of fumigating twice a day; and from that time to the extermination of the diforder,
(A) That the fumes of the mineral acids poffeffed the property of fopping contagion was proved by Morveau as tar back as the year 1773, who, by means of the fumes of muriatic acid extricated from the muriat of foda (iea falt) by the fulphuric acid, purified the air of the cathedral of Dijon, which had been fo much infected by exhumations that they were obliged to abandon the building. See Chemistay, no \({ }^{\circ} .42\), in this \(S u p p!\) ment.

\section*{C O N [515 C O O}

Coneagion diforder, there was not an inftance of a perfon fuffering froni contagion on board the Thip.

The fuccefs of the experiment was not confined to the Union: the power of the nitrous vapour to deltroy contagion was equaily difplayed on board the Rutian thips in which it was employed. The fatety, too, with which it may be employed, in any fituation, without inconvenience or rifk of fire, is another great recomruendation in its farour.

From the defcription that has been given of the procefs, no perfon can be at any lofs in reforting to the fame kind of fumigation. It is only necelfary to obferve, for the fake of thofe who may not be verfant in chemical purfuits, that the ingredients ought to be pure, and that metal velfels or rods mull not be employed. Any kind of metal getting among the ingredients would caufe the vapour to be very noxious infead of falutary. The fumes that rife fhould be white ; if they are of a red colour, there is reafon to fufpect the purity of the ingredients.

The importance of this difeovery need not be infifted on: it is equally applicable to every fpecies of putrid contagion, even to the plague itfelf. It thould therefore be ufed in all hofpitals and parifh workhoufes; and fould be conftantly reforted to by the proprietors of all large works, on the firft appearance of infecticus difeafe among the people enmployed in them :-indeed, it hould be employed even as a preventive in all fituations where a number of people, frem the nature of their bufinefs, are obliged to be crowded together, or where, from local circumftances, there are reafons for fuppecting that the purity of the air is injured by noxions exhalations or other caufes. If there be any circumftances in which its utility may be called in queftion, it can only be in cafes of inflammatory difeafes; for, in fuch, fuperoxygenation has been found hurtful.

CONTINENTAL Village, was fituated on North river in New-York fate. Before its dellrnction by Sir Henry Clinten, in Oct. 1777, there were here baracks for 2,000 men.-Morse.

CONTRA-Harmonical Proportion, that relation of three terms, in which the difference of the firlt and fecond is to the difference of the fecond and third, as the third is to the firtt. Thus, for inftance, 3,5 , and 6 , are numbers contra-harmonically proportional ; for 2:1::6:3.

Contra-Mure, in fortification, is a littie wall built before another partition wall, to Atrengethen it, fo that it may receive no damage from the adjacent buildings.

CONVERSATION Point, a head land on the S. fide of a bay on the coalt of California. N. lat. 32. 30. W. long. isg.-Morse.

CONWAY, a townlhip in the province of New. Brunfwick, Sudbury co. An the weilem bank of St John's river. It has the bay of Fu dy on the S. and at the wetternmolt point of the townthip there is a pretty good harbor called Mufquafh cove.-il

Conway, a townthip in the N. E. corner of Strafford co. New-Hampfhire, on a bend in Saco river, incorporated in 1765 , and contains 574 inhabitants. It was called Pigzuaket by the Iudians.-ib.

Conway, a thriving townthip in Hamplaire co. Malfachufetts, incorporared in 1767 , and contains 2092 inhabitants. It lies 13 miles N W. of Nurthampton, and 115 N. W. by W. of Boftun.-ib.

CONYA, a river in Surinam, or Dutch Guiana, \(S\). America.-ib.

COOLOOME, an Indian town fituated on the W. 1 \(\underbrace{\text { Conper. }}\) fide of Talaponte river, a branch of the Mobile-ib.

COOK's River, in the N. W. coaft of N. America, lies N. W. of Prince William's found, and 1000 miles N. W. of Nortka found. N. lat. 59. 30. W. long. 153. 12 . and promiles to vie with the molt conlidetable ones already known. It was traced by Capt. Cook for 210 miles from the mourh, as high as N. lat. 61. 30. and fo far as is difcovered, opens a very confiderable inland navigation by its various branches. The inhabitants feemed to be of the fame race with thole of Priace William's found; and like them had glafs beads and Rnives, and were alfo clothed in fine furs.- \(i b\).

COOKHOUSE, on the Cookquago branch of Delaware river is fituated in the townthip of Colchelter, New. York, 18 miles S . of the mouth of Unadilla river. -ib.

COOPER, an artificer who makes coops, calks, tubs, or barrels, i.e. all kinds of wooden veliels bound together by hoops. See Ercucl.

The art of the cooper appears to be of great antiquity, and to have very foon altained to all the perfection which it poffefes at prefent. This being the cale, it is obvious that we can communicate no inltruction to the cooper himfelf, and, on the fubject of his art, very little that could be incerefting to our other readers. In the Encyclopedie Methodique there is a long and verbole account of the tools or influments employed by the cooper ; of the kinds of timber proper for the different kinds of cafks; of the methods of preparing the wood for his various purpofes; of the manner in which he ought to bold the plane when dreffing the ftaves; and of the time when it is proper to put the ftaves together, or, in other words, to mount the cafk. From this detail we fhall extract fuch particulars as appear to us to be lealt generally known, though perhaps of no great importance in.themfelves.

Notwithanding the antiquity of the art of ca/kbuilding, there are jome countries in which even now it is wholly unknown; and others where, though it is fufficiently known, yet, from the farcity of wood or fome other canfe, earthen velfels, and fkins lined with pitch, are preferred to wooden batrels for the holding and :ranfporting of liquors. 'The Latin word dolium, which we tranfate "a calk," was empleyed by the Remans to denote earthen veffels ufed for this purpote; though the word doare, from which it is derived, applies very well to nur calks, which are compoied of teveral pieces of wood hewn from the fame tree, and fitted by planes before they be joined together. We are indeed certain that cafks of the fame kind with wur own were in ufe among the Romans before the Cloriftian era: for both Varro and Columella, in tre ting of the rural economy of their days, fpeak of vefiels formed of feveral faves of wood bound together by circles or hoops. The merit of having invented fuch veffeis is given by Pliny to certain people who lived at the foot of the Alps, and who in his days lined their cafks with pitch.

At what period the fabrication of calks was intreduced in:n Britam is unknown to us, though it is probable that we derived the art from the French, who might have it from the Romans.

We need hardly inform any of our readers, that a cafk has the appearance of two truncated cones joined at their bafes, or that the part where the junction appears to be made being the molt capacious, or that of which the diameter is the largeft, is vulgarly called the belly of the cafk. Thefe cones, however, were they completed, would not be regular, but rather conoids, being formed of pieces of timber, or ftaves, which are not ftraight lines as in the cone, but are curved from the vertex to the bafe.

In chufing his wood, if he can have a clooice, the cooper prefers old and thick and fraight trees, from which he lows thin planks to be formed into ftaves; and in France, where this art is practifed on a large fcale, the winter months are allotted for the preparation of the faves and bottoms, and the fummer for putting them together or mounting the cafk. The author of the article in the Encyclopedie Metbodique directs the cooper, when dreffing the flaves with the plane, to cut the wood always acrofs; a practice which we doubt not is proper, though we think it would not be eafy to allign the reafon of it. Plaining is the moft laborious and difficult part of the work; and there are but few coopers who plane quickly, and at the fame time well. In thops where the work is dillributed into parts, plaining is recknned a great object; and in France, before the revolution, a good plainer gained from three fhillings and threepence fterling to four fhillings and three farthings a day.

In forming the ftaves, it mult never be forgoten that each is to conftitute part of a double conoid; that it muft therefore be broadelt at the middle, becoming gradually, thongh not in Atraight lines, narrower towards the extremities; that the outfide acrofs the wond mult be wrought into the fegment of a circle; and that the fave nult be thickeft near the middle, growing thinner, by very gentle degrees, towards the ends. To adjuft accurately thefe different curves (for even the narrozuing of the ftaves muft be in a curve) to the fize and intended thape of the cafk, would require either great experience, or a larger portion of mathematical fcience than we have reaion to think that many coopers pof fefs. With refpect to the infide of the fave, it is of hitcle confequence whether it be rounded into the fegment of a circle or not, and therefore the cooper very feldom takes that trouble.

The ftaves being all dreffed and ready to be arranged in a circular form, it might be thought neceffary, in order to make the feems tight, to trim the thin edges, which are to be joined together, in fuch a manner as that a ray palling from the outlide of the cafk through a feam to the centre, fhould touch the contiguous flaves from the exterior to the interior fide; in other words, that the thin edges fhould be floped as the architones of a bridge are floped, fo that the contiguous ftaves may be biought into firm contad throughout the whole joint. This, however, is not the practice of the cooper. With gieat propriety he brings the contiguous ltaves into contad at their inner furfaces only; fo that by driving the hoops hard, lee can make the joints much clofer than he could poffibly have done had the euges of the Itaves been fo floped as to permit them to touch each other throughout before being driven together by the comprefion of the hoops. This, together with giving to the ftaves the proper curvature,
feems to be the only part of the cooper's work which deferves the name of art; for the driving of the hoops and the forming of the bottoms could certainly be accomplifted by any carpenter, we had almolt faid by any man, though he had never feen a hoop driven or a bottom formed.

In many parts of Scotland, inftead of ale or beer mugs, they ufe fmall hooped wooden veffels, of which the tlaves are leather-edged or dove-tailed into one ano. ther. This, as the ftaves are of different colours, increafes the beauty of the veffel, and to a fuperficial obferver appears to be an ingenious contrivance; but it adds nothing to the ftrength or tightnefs of the feam, and canmot be attended with the fmalleft difficulty. We think, indeed, that in a large calk or tub it would prove injurious to the feam; for either thefe dove-tails muft be very thin flips raifed from the interior edges of the flaves, which in many cafes could not be done if the wood were thoroughly feafoned; or if they be cat out like inverted wedges, the contiguous ftaves mult be brought into contact from the interior to the exterior fide previous to the driving of the hoops; and in that cafe, as we have feen, the feams could not be made completely tight.

Cooper, a large and navigable river which mingles its waters with Afhley river below Charlefton city in S. Carolina. Thefe form a fpacious and convenient harbor, which communicates with the occan, jult below Sullivan's ifland, which it leaves on the N. 7 miles S. E. of the city. In thefe rivers the tide rifes \(6 \frac{1}{2}\) feet. Cooper river is a mile wide at the ferry, 9 miles above Charlefton.-Morse.

Couper's Ifand, one of the leffer Virgin Illes in the Weft-Indies, fituated S. W. of Ginger Ifland, and uninhabited. It is 5 miles long, and I broad. N. lat. 18. 5. W. long. 62. 57.-ib.

Cooper's Turvr, a poft town and townfhip, in Otfego co. New-York, and is the compact part of the townftip of Otfego, and the chief town of the country round Lake Offego. It is pleafintly fituated at the S. W. end of the lake, on its banks, and thofe of its outlet; 12 miles N. W. of Cherry Valley, and 73 W . of Albany. Here are a court houfe, gaol, and academy. In \(\mathbf{1 7 9 1}\), it contained 292 inhabitints. In 1789 , it had but 3 houfes only; and in the fpring 1795, 50 houfes had been erected, of which above a fourth part wese refpectable 2 ftory dwelling.houfes, with every proportionable improvement, on a plan regularly laid out in fquares. N. lat. 42. 44. W. long. \(7+\) 48.-ib.

Cooper's Town, Pennfylvania, is fituated on the Sufquehanna river. This place in 1785 , was a wilder. nefs. Nine years after, it contained 1800 inhabitants -a large and handfome church, with a Ateeple-a market houle and a bettering houfe-a library of 1200 volunies, and an academy of 64 fcholars. Four hundred and feventy pipes were laid under ground, for the purpofe of bringing water from Weft Mountain, and conducting it to every houfe in cown.-ib.

COOP's Torwn, in Harford co. Maryland, lies 12 miles N. W. of Harford, and 22 N. eafterly of Bdtimore; meafuring in a ftraight line.-ib.

COOS, or Colios, the country called Upper and Lozver Coos, lies on Connecticut river between 20 and 40 miles above Dartmouth college. Upper Coos is the coun-

\section*{Cooper}

\section*{C O P \([517] \quad\) C O P}

Coofadce try S. of Upper Amonoofuck river on John and Ifrael rivers. Lower Coos lies below the town of Haverhill, S. of the Lower Amononfuck. The diftance from Upper Coos, to the tide in Kennebeck river, was meafured in 1793, and was found to be but 90 miles.-ib.

COOSADES, an Indian town on Alabama river, about 60 miles above its mouth, on Mubile river; below M'Gillivray's town, and oppofite the mouth of the Oakfurkee.-ib.

COOSA HATCHEE, or Coofau', a river of S . Carolina, which rifes in Orangeburg diftrict, and running a S. S. W. courfe, empties into Broad river and Whale Branch, which feparate Beaufort ifland from the main land.-ib.

COPERNICUS (Nicolaus), the reltorer, if not the inventor, of the true fyftem of the finn, holds fo confpicuous a place in the republic of ficience, that every man of a liberal education muft be interefted both in the events of his life and in the hiftory of his difcoveries. Accordingly, in the Encyclopædia, we have given a thort 1 ketch of his hiftory, as well as an account of what led him to fuppofe the lin placed in the centre of our fyttem (fee Copernicus, and Astronomy, \(n^{\circ} 22\). Encycl.) Since thefe articles were publifhed, Dr Adam Smith's Effays on Pbilofophical Subjects have been given to the world; and in that which is intitled The Hiloory of Aflronomy, we have an account of Copernicus's difcoveries, fo much more perficuous and fatisfactory than any thing which we have elfewhere feen on the fubject, that we are perfuaded our readers will be pleafed to meet with it here.
"The confulion (fays Dr Smith) in which the old hypothelis reprefented the heavenly bodies, was, as Copernicus himielf tells us, what firlt fuggefted to him the defign of forming a new fyftem, that thefe, the nobleft works of Nature, might no longer appear devoid of that luarmony and proportion which difcover themfelves in her meaneft productions. What moft of all diffatisfied him was, the notion of the equalizing circle, which, by reprefenting the revolutions of the celeltial fpheres as equable only, when furveyed from a point that was different from their centres, introduced a real inequality into their motions; contrary to that molt natural, and indeed fundamental idea, with which all the authors of altronomical fyllems, Plato, Eudoxus, Arifotle, even Hipparchusand Ptolemy thenselves, had hitherto fetcut, that the real motions of fuch beautiful and divine objects muft necelfarily be perfectly regular, and go on, in a manner as agreeable to the imagination as the objects themlelves are to the fenfes. He began to confider, therelore, whether, by fuppoling the heavenly bodies to be arranged in a different order from that in which Ariftotle and Hipparchus had placed them, this fo much fought for uniformity might not be beftowed upon their motions. To difcover this arrangement, he examined all the obfcure traditions delivered down to us, concerning every other hypothefis which the ancients had invented, for the fame purpofe. He found, in Plutarch, that fome old Pythagoreans had reprefented the earth as revolving in the centre of the univerfe, like a wheel round its own axis; and that others, of the fame fect, had removed it from the centre, and reprefented it as revolving in the ecliptic like a tlar round the central fire. By this central tire he fuppofed they meant the fun; and though in this he was very widely mitaken,

Suppl. Vol. I.
it was, it feems, upon this interpretation that he began Cupernies. to confider how fuch an hypothelis might be made to correfpond to the appearances. The fuppofed autho. rity of thofe old philofophers, if it did not originally fuggett to him his fyftem, feems at leaft to have confirn. ed him in an opinion which, it is not improbable, he had before-hand other reafons for embracing, notwith. ftanding what he himfelf would affirm to the contrary.
"It then occurred to him, that if the earth was fup. pofed to revolve every day round its axis, from weft to eaft, all the heavenly bodies would appear to revolve, in a contrary direction, from eaft to weft. The diumal revolution of the heavens, upon this hypothefis, mighe be only apparent ; the firmament, which las no other fenfible motion, might be perfectly at relt, while the fun, the moon, and the five planets, might have no other movement befide that eaflward revolution which is peculiar to themfelves. That, by fuppofing the earth to revolve with the planets round the fun, in all orbit, which comprehended within it the orbits of Venus and Mercury, but was comprehended, within thofe of Mars, Jupiter and Saturn, he could, without the embarrafiment of epicycles, connect together the apparent annual revolutions of the linn, and the direct, retrograde and fationary appearances of the planets; that while the earth really revolved round the fun, on one fide of the heavens, the fun wauld appear to revolve round the earth on the other; that while the really advanced in her annual courfe, he would appear to advance ealtward in that movement which is peculiar to himfelf. That, by fuppofing the axis of the earth to be always parallel to itfeif, not to be quite perpendicular, but fomen hat inclined to the plane of her orbit, and confequently to prefent to the fun, the one pole when on the one fide of him, and the other when on the other, he would account for the obliquity of the ecliptic, the fun's feemingly alternate progreffion from north to fouth, and from louth to north, the confequent change of the feafons, and different lengths of days and nights in the difierent feafons.
"If this new hypochefis thus connened together all thefe appearances as happily as that of Itolemy, there were others which it connected together much better. The three fuperior planets, when nearly in conjunction with the fun, appear always at the greateft diftance from the earth, are fmallelt, and lealt fenfible to the eye, and feem to revolve forward in their direct motion with the greatelt rapidity. On the contrary, when in oppolition to the fun, that is, when in their meridian about midnight, they appear neareft the earth, are largelt, and molt denfible to the eye, and feem to revolve backwarda in their retrograde motion. To explain thefe appearances, the fyttem of Ptolemy fuppofed each of thefe planets to be at the upper part of their feveral epicycles in the one cale, and at the lower in the other. But it afforded no fitisfactory principle of comection, which could lead the mind eafly to conceive how the epicycles of thofe planets, whole ipheres were fo ditant from the fphere of the fun, thould thus, if one may fay fo, keep time to his motion. The fytem of Copernicus afforded this eafily, and like a nore limple machine, without the alillance of epicycles, connected together, by fewer movements, the complex appearances of the hearens. When the fuperior plancts appear nearly in

3 X conjunation

\section*{C \(O P\)}
\(\underbrace{\text { Coperrnicus. conjunction with the fun, they are then in the fide of }}\) their orbits which is almolt oppofite to, and molt difiant from, the earth, and therefore appears fmalleft and leaft fenfible to the eye. But as they then revolve in a direction which is almoft contrary to that of the earth, they appear to advance forward with double velocity; as a thip that fails in a contrary direction to another; appears from that other to fail both with its own velocity and the velocity of that from which it is feen. On the contrary, when thofe planets are in oppofition to the fun, they are on the fame fide of the fun with the earth, are neareft it, mofl fenfible to the eye, and revolve in the fame direation with it; but as their revolutions rcund the fun are flower than that of the earth, they are neceflarily left behind by it, and therefore feem to revolve backwards; as a fhip which fails flower than another, though it fails in the fame direc. tion, appears from that other to fail backwards. After the fame manner, by the fame annual revolution of the earth, he connected together the ditect and retrograde motions of the two inferior planets, as well as the ftationary appearances of all the five.
"Thus far did this new account of things render the appearances of the heavens more completely coherent than had been done by any of the former fy tems. It did this, too, by a more fimple and intelligible, as well as more beautiful machinery. It reprefented the fun, the great enlightener of the univerfe, whofe body was alone larger than all the planets taken togeiher, as eflablifhed immoveable in the centre, fhedding light and heat on all the worlds that circulated around him in one uniform direction, but in longer or fhorter periods, according to their different diftances. It took away the diurnal revolution of the firmament, whofe rapidity, upon the old hypothefis, was beyond what even thought could conceive. It not only delivered the imagination from the embarrafment of epicycles, but from the diff. culty of conceiving thefe two oppofite motions going on at the fame time, which the fyitem of Ptolemy and Ariftotle beftowed upon all the planets; I mean, their diurnal weftward, and periodical eattward revolutions. The earth's revolution round its own axis took away the necefirty for fuppofing the firt, and the fecond was eafily conceived when by itfelf. The five planets, which feem, upon all other fytems, to be objeats of a fpecies by themfelves, unlike to every thing to which the ima. gination has been accultomed, when fuppofed to revolve along with the earth round the fun, were naturally apprehended to be objects of the fame kind with the earth, habitable, opaque, and enlightened only by the rays of the fun. And thus this hypothefis, by clafing them in the fande fpecies of things, with an objee that is of all others the muft familiar to us, took off that wonder and uncertainty which the frangenefs and fingularity of their appearance had excited; and thus far, too, better anfwered the great end of philofophy.
" Neither did the beauty and Gmplicity of this fyRem alone recommend it to the imagination; the novelty and unexpectednefs of that view of nature which it opened to the fancy, excited more wonder and furprife than the ftrangelt of thofe appearances, which it had been invented to render natural and familiar, and there fentiments fill more endeared it. For though it is the end of philofophy to allay that wonder which either the unufual or feemingly disjointed appearances of nature
excite, yet fhe never triumphs fo much as when, in or. Copernicus der to connect together a few, in themfelves perhaps inconfiderable objects, the has, if I may fay fo, created another conftitution of things, mnre natural indeed, and fuch as the imagination can more eafily attend to, but more new, more contrary to common opinion and expectation, than any of thofe appearances themfelves. As in the inflance before us, in order to conneft together forme feeming irregularities in the motions of the planets, the moll inconfiderable oljects in the heavens, and of which the greater part of mankind have no occafion to take any notice during the whole courfe of their lives, The has, to talk in the hyperbolical language of Tycho Brahé, moved the earth from its founcations, fopt the revolution of the firmament, made the fun Itand fill, and fubverted the whole order of the univerfe.
"Such were the advantages of this new hypothefis, as they appeared to its author when he firf invented it. But though that love of paradox, fo natural to the learned, and that pleafure which they are fo apt to take in exciting, by the novelty of their fuppofed difcoveries, the amazement of mankind, may, notwithfanding what one of his difciples tells us to the contrary, have had its weight in promp:ing Copernicus to adopt this fyftem ; yet when he had completed his Treatife of Revolutions, and began coolly to confider what a frange doarine he was about to offer to the world, he fo mich dreaded the prejudice of mankind againll it, that, by a fpecies of continence, of all others the mort difficult to a philofopher, he detained it in his clofet for thirty years together. At laft, in the extremity of old age, he allowed it to be extorted from him, but died as foon as it was printed, and before it was publifhed."

This noble theory, however, being repugnant to the prejudices of habit and education, was at firlt coldly received, or ntterly rejected, by every clafs of men. The aftronomers alone favoured it with their notice, though rather as a convenient hypothefis than an important truth. By the vulgar it was confidered as a chimera, belied by the cleareit evidence of our fenfes; while the learned beheld it with difdain, becaufe it militated againt the fanciful diftinctions and the vague erroneous tenets of the Peripatetic philofophy, which no one had: ventured to call in queftion. And it is amufing to obferve witb what dexterity the Copernicans, fill ufing the fame weapons, endeavoured to parry the blows of their antagonifts. Its real merits and blemifhes appear to have been overlooked by both parties. Brahé framed a furt of intermediate fyftem ; but this Danifh alfronomer was more remarkable for his parience and dkill in oblerving the heavens, than for his talents of philofophical inveltigation. Towards the commencement of the 16 th century, a new order of things emerged. The fy fem of Copernicus becamegenerally known and daily made coriverts. Its reception alarmed the ever-watchful authority of the church, roufed her jealonfy, and at length provoked her vindictive artillery. The altima ratio theologorum was pointed at the head of the illuftrious Galileo, whofe elegant genius difonvered the laws of motion, extended the fcience of mechanics, and added luftre and folidity to the true fyftem of the univerfe. From the forms of perfecution Copernicus himidf had been exempted only by a timely death.

COPPER, one of the metals; for the properties of which, fee Chemistry-Index in this Supplement.

\section*{C O Q [519\(] \quad \mathrm{C}\) O R}

The Chinefe have a metal which they call perturg, but which Sir George Staunton denominates
Whbile Copper. This metal has a beautiful filverlike appearance and a very clofe grain. It takes a fine polifh, and many articles of neat workmanhhip, in imitation of filver, are made of it. An accurate analy fis has determined it to confitt of copper, zinc, a little filver; and in fume fecimens a few particles of iron and of nickel have been found. From this account it would appear that white copper is not an artificiad mixture of metals, but is found native in the mine. Yet in the very fame page and paragraph Sir George proceeds to fay that Dr Gillan was informed at Canton, that the artilts, in making their pe-tung, reduce the copper into as thin theets or lamina, as poffible, which they make red hot, and increafe the fire to fuch a pitch as to foften in fome degree the haminx, and to render them ready almolt to flow. In this flate they are furpended over the vapour of their pureft tu-te nag, or zine, placed in a fubliming veffel over a brikk fire. The vapour thus penetrates the heated laminx of the copper, fo as to remain fixed with it, and not to be eafily diffipated or calcined by the fucceeding fution it has to undergo. The whole is fuffered to cool gradually, and is then found to be of a brighter colour, and of a clofer grain, than when prepared in the European way. Surely this is not the white copper which confifts of copper, zinc, filver, iron and nickel.

Copper Mine, a large river of New-Britain, reckoned to be the moll northern in North-America. Taking a notherly courfe it falls into the fea in lat. 72. N. and about 119. W. long. from Greenwich. The accounts brought by the Indians of this river to the Britifh ports in Hudfon bay, and the fpecimens of copper produced by them, induced Mr Hearne to fet out from Fort Prince of Wales in Dec. 1770 , on a journey of difcovery. He reached the river on the 14 th Jul 5 , at 40 miles diftance from the fea, and found it all the way incumbered with fhoals and falls, and emptying itfelf into it over a dry flat of the fhore, the tide being then out, which feemed by the edges of the ice to rife about 12 or 14 feet. This rife, on account of the falls, will carry it but a very fmall way within the river's mouth; fo that the water in it has not the lealt brackifh tafte. Mr Hearne had the moft extenlive view of the fea, which bore N. W. by W. and N. E.; when he was about 8 miles up the river. The fea at the river's mouth, was full of iflands and hoals; but the ice was only thawed away about \(\frac{3}{7}\) ths of a mile from the fhore, on the 17th of July. The Efquimaux had a quantity of whale bone and feal fkins at their tents on the fhore.-Morse.

COQUIMBO, a town of St Jago, or Chili Proper, in S. America, fitnated at the lower end of the vale, bearing the fame name, on a gently rifing ground. The river of Coquimbo gives name to the agreeable valley though which it rolls to the fea; and the bay at its mouth is a very fine one, where fhips lie fafely and commodinufly, though the coaft is rocky, fome iflands lying fo as to keep off the winds. The town is properly called La Serena, frum the agreeablenefs of the climate; being continually ferene and pleafant. The ftreets are wclllaid out, and there are 5 or 6 convents; but the houfes are not handfome. The foil is fruilful in corn, wine, and oil, and the brooks bring
down quantities of gold duft after heavy rains. Hace are no gold mines, but plenty of copper; one of which, 5 leagues N. from the city on Mount Cerro Verde, or Green Hill, is high, and fhaped like a fugar loaf; fo that it may ferve as a land mark to the port. It lies 260 miles N. of St Jago, and juttly boafts of one of the fineft fituations in the world; but the arbitrary government of Spain renders it a place of little ims-portance.-ib.

CORAL River, in New Mexico, runs a courfe W. by S. and empties into the head of the gulf of California, clofe by the month of Collerado river.-ib.

CORAM, a poft town in Suffolk co. Long Ithand, New-York. It has about 60 houfes, and lies 62 miles ealtward of New.York city, and 10 from Smitlı-town.-ib.
CORCAS, or Grund Corcar, an ifland almolt in the form of a crefcent, \(N\). of St D omingo, in the windward paffage, about 7 leagues W. of Turk's Ifland, and about 20 E. of Little Inagua, or Heneagud. N. lat. 21. 55. W. long. 70. 55 -ib.

CORDOVA, DE LA NUEVA ANDALUSIA, a city of Peru, in S. America, in the jurifdiction of Charcac, 80 leagues S. of Santiago del Eltero. Here is the Epifcopal church of Tucuman, with fome monafteries, and a convent. It is fruitful in grain, honey, wax, fruits, cotton, and fugar. It abounds with faltpits, and has luxuriant paftures for mules. It drives a great trade with Buenos Ayres. The inhabitants are Spaniards, who are farmers and manufacturers of cotton cloth, which they fend to Potofi. S. lat. 31.30. W. long. 63. 30. In Cordova, in the Tucuman, there has been found the greatelt inftance of longevity fince the days of the patriarchs. From indifputable evidence, a negrefs, named Louifa Truxo, was alive in 1774, aged one bundred and feventy five years.-ib.

CORE Sound, on the coalt of North Carolina, lies S. of, and communicates with Pamlico.-ib.

CORIENTES, a cape of Mexico, or New-Spain, on the N. Pacific ocean. N. lat. 21. W. long. rog. 30. Alfo, the name of the S . wefterumolt point of the illand of Cuba.-ib.

Corientes, Los, a fmall city within the govern. ment of Buenos Ayres, in S. America, was built by the Spaniards on the confluence of the Parana and Paraguay, 80 leagues higher than Santa Fe , on the Rio de la Plata.-ib.

CORINTH, a townfhip in Orange co. Vermont, W. of Bradford, containing 578 inhabitants.-ib.

CORK is the exterior bark of a tree which has been defcribed in the Encycloprdia. When the tree is about 15 years old it is fit to be barked, and this can be done fucceflively for eight years. The bark always grows up again, and its quality improves as the age of the tree increates. It is commonly finged a little over a ftrong fire or glowing coals, or laid to foak a certain time in water, after which it is placed under fones in order to be preffed ftraight. We were wont to procure the greater part of our cork from the Dutch, who brought it principally from France; but they imported fome alfo from Purtugal and Spain.

This tree, as well as the ufes to which its bark is put, was known to the Greeks and the Romans; by the furmer of whom it was called \(\phi \in \lambda \lambda o s\), and by the latter fuber. By the Romans, as we learn from Pliny, \(3 X_{2}\)

Cornih it was even employed to Itnp velfels of every kind; but its application to this ufe feems not to have been very common till the invention of glafs bottles, of which

Profefor Beckmann finds no mention before the \(15^{\text {th }}\) century.

In later times, fome other vegetable producions have been found which can be employed inttead of cork for the laft mentioned purpofe. Among thefe is the wood of a tree common in South America, particularly in moilt places, which is called there monbin or monbain, and by botanifts fpondias lutea. This wood is brought to England in great abundance for that ufe. The fpongy root of a North American tree, known by the name of nyfa, is alfo ufed for the fame end, as are the roots of liquorice, which on that account is much cultivated in Sclavonia, and exported to other countries.

CORNISH, a townfhip in Chefhire co. New-Hampfhire, on the E. bank of Cunnecticut river, between Claremont and Plainfield, about 15 miles N. of Chatlef. town, and 16 S . of Dartmouth College. It was incorporated in 1763 . In 1775 , it contained 309 , and in \(1790-982\) inhabitants.-Morse.

CORNUA Ammonis, in natural hiftory, are foffl Shells, of which apretty full account is given in the Encyclopredia. See Cornu Anmonis and SnakeSiones. It was obferved, in the latt of thefe articles, that few, if any, of thefe fhells are known in their recent ftate, or as occupied by the living animal; but fome authors have afferted on the authority of Linrious, that ammonites, with fhells, fimilar to all the varieties of the foflil ones, are yet found alive in the depth of the fea. We are much inclined to embrace this opinion; but it has been controverted by \(M\). de Lamanon, who accompanied La Peroufe on his voyage of difcovevery, by fuch argirnents as we know not how to anfiver. This unfortunate naturalift (fee Lamanon in this Supplement) allows that there are fill in the fea living cornua ammonis ; but he thinks that they ase in very fmall numbers, and materially different from the greater part of the foflil ones. According to him, thefe laft ought to be confidered as a race, formerly the mof numerous of all, of which, either there are no defcerdants, or thofe defcendants are reduced to a feu- degenerate individuals. That there are no living animals with fhells of the very fame kind with come of the foilil cornua ammonis, the following obfer vations he confiders as a fufficient proof.
"The foffil thells are very light and thin, whereas the fhells of thofe animals that live in very deep water are always thick and ponderous; befides, the form of the fofil cornua ammonis points out to \(u s\), in fome mea. fure, the organization of the animal which inhabited it. The celebrated Juffien proved, in \(\mathbf{1 7 2 1}\), that there ex. ifed a very clole analogy between the ammonite and mautilus (A). It is well known that the nautilus, by filling or emptying a part of its fhell, has the power of remaining ftationary in any depth it pleafes: the fame was doubtlefs the cafe with the ammonite; and if this fpecies ftill abounds in the fea, it would furely be occafionally difcovered by failors.
"The waves alfo would throw fragments of it on the fhore; fifhermen might fometimes entangle it in their nets; or, a lealt, there would be fragments ficking to the lead of the founding line when afcertaining great depths. It may alfo be added, that if the ammonites never quitted the aby fs of the fea, thofe which are found petrified would not be conftantly met with on the fame level, and in the fame bed, as thofe fhell filh that only inhabit the thallows. There are, however, found in Normandy, Province, Touraine, and a multitude of other places, ammonites mixed with turbines, buccina (whelks), and other littoral thells. They are found, hefides, at every degree of elevation from below the level of the fea to the funimits of the lighelt mountains. Analugy alfo lead us to fuppofe, that Nature, who has given eyes to the natilus, has not refufed them to the ammonite; now what ufe could thele be of if they remained confined to thofe depths which the light is unable to penetrate ?
"The extinction of the ancient race of ammonites is therefore an eftablifhed lact, which no ratonal fuppofition can deftroy; and this fact is undoubtedly the mof furprifing of any that is prefented to us in the hiftory of aquatic animals. The difcovery of a few living fpecies of cornua ammonis does not deftrny the truth of this, for thefe ammonites are very different from thofe which are found pctrified. They are extremely rare, and cannot be looked up to as the reprefentatives of the old ammonites, fo varied in their fpecies, and the number of which in the ancient ocean was probably far more confiderable than that of all the other fhells befides."

To every univalve fhell, rolled in a fpiral, fo as that a horizontal plane will divide it into two equal parts, formed of united fpirals, and bearing a certain proportion to each other, our author gives the name of an ammonite. "I thought it abfolutely neceffary (fass he) to afcertain the precife meaning of the term ammonite, previous to defcribing that which I found during our voyage round the world. The form of this is almolt orbicular, the long diumeter being to the fhort one as three lines to two lines and three quarters. The firft fpire is by far the largelt, occupying nearly half of the longitudinal diameter. The fummir is placed at the dittance of about two-thirds of this diameter ; it is terminated on the right fide by a very fmall knob vifible only through a magnifier, thus differing from the am. monite of Rimini, which befides is microfcopical and celled, the infide of this which we are now fpeaking of being entirely plain. The number of firal circumvolutions is four and a half; they are equally convex on both fides, and are fixed on a plane, dividing the flell into two equal parts: there is on each fide a kind of bofs formed by the increafe of the perpendicular diameter of the fpires, in proportion as they recede from the centre. The furface is fmooth; the back is armed with a flat, even, brittle creft, as thin as paper, furrounding it on every fide like a ruff; it is about half a line broad, extends over the fummit of the fpires, and ferves to join them together. The mouth of the fhell
(A) There are, however, fome friking internal differences : firt, the partitions in the fhell of the nautilus are more curved than thofe of the ammonite: fecondly, the ammonite wants the fmall hole which communicates from one cell to the other.

\section*{\(\mathrm{C} O \mathrm{R} \quad\left[\begin{array}{lll}521\end{array}\right] \quad \mathrm{C} O \quad \mathrm{R}\)}

Cornua is nearly triangular ; its edges project in the form of lips, and are rounded at the border. I lave often found this ammonite encloted in the Itomach of the bonetta (fcomber pelamis, Linn.), caught in the South Sea, between the tropics, where no bottom was found with a line of more than two hundred fathoms. Thefe fhells were covered with a black clayey mud. Their fize varies from one to four lines acrofs; they are confequently the largef living ammonites that have yet been diicovered."

It is well known for what purpofe the modern philofophers of France have been to indefatigable in the ftudy of natural liftory; and there can be littie doubt but that it is to lerve the fame purpofe that Lamanon thus reafons for the deftruction of the ancient race of anmontes in fome unverfal convalfion of the world. But fuppofing his arguments conclutive, they affect not the truth \(f\) the Jewill and Chritian ferptures. It is nowhere laid in the Bible, that the matter of this globe wa, brought into being at the moment when Moles repretents the Creator as begimning to reduce the chaos into order; and it is mere than infinuated that there will be a new earth after the prefent lyllem of things fhall be diffolved. That new earth will certainly be fored with fome kind of inhabitants; and could it be demoniltrated that there was an old earth, previous to the era of the Mofaic cofmogony, inhabited by creatures rati nal and irrational, and that the foflil cornua ammonis make part of the wreck of that fyitem, the caufe of revelation would remain minjured. "Mofes, as a roal - Profflor philofopher* has well obferved, writes the hiftory, not Robinfor of of this globe through all its revolutions, but of the race Edinhurgb. of Adam."

This fecret attack, therefore, made by Lamanon againgt that religion of which he once profeffed to difcharge the duties of a pricft, is nothing more than telum imbelle fine icfu. Yet it may be worth fome naturalift's while to enquire, whether, though feeble, it has been fairly made. We confefs that our own fulpicions of unfair dealing are ftrong; for when a man of icience contradicts himielf in the courfe of iwo pages, the blunder mutt be attibuted to fome other fource than mere inadvertency. M. de Lamanon wifhes to prove, among other things, that the ancient ammonites did not inha. bit great depths of the fea ; and that Limneus was mif. taken when he fuppofed that in great depths they may fill be found. Yet he himfelf tells us, that he frequently caught ammonites in the South Sea, where no bottom was to be found with a line of more than 200 fa thoms ; and to put it beyond a doubt that the animals had been at that bottom, he informs us, that their hells were covered with a black clayey mud. It is true theie ammonites were but fmall; while of 300 varieties of fofil ammonites which he mentions, fome, he fays, have been found ten feet in circumference. But is it certain that thefe large thells were real cornua ammonis? If they agree not exactly with our author's defcription of the thell of the ammonite (a fact into which we have had no opportunity of inquiring), his arguments for the extinction of the ancient race are grois fophifms, unworthy of a man etther of feience or of candour.

CORNU ALL, a townflip in Addifon co. Vermont, E. of Bridport, on Lake Champlain, containing 826 inhabitants.-MCorse.

Cornwall, New, a townfhip in Orange co. New. Cornwall. York, of whafe inhabitants, 350 are electors.-ib.

Cornwall, a townhip in Litchfield co. Connecticut, about 9 miles N. of Litchfield, \(1_{1} \mathrm{~S}\). of Salifbury, and about 40 W. by N. of Hartford city. - ib.

Connwale, a finall town in Upper Canada, on the bank of Iroquois river near Lake St Francis, between Kingiton and Quebec, containing a fmall church, and abont 30 or 40 houfes.-ib.

CORNWALLIS. a town in King's co. in the province of New-Brunfwick, fituated on the S. W. fide of the Batin of Minas; 18 miles N. W. of Falmouth, and \(55 \mathrm{~N} . \mathrm{W}\). of Annapolis.
Alfo, a river in the fame province, navigable for vefiels of 100 tons 5 miles; for veffels of 50 tons 10 miles.- \(i b\).

CORO, a town of S. America, in Terra Firma, at the bottom of the gulf of Venezuela, 60 miles W. of La Guaira. N. lat. 11. W. long. \(70-\)-ib.

COROPA, a province of S. America, fituated between the river Amazon and the lake Parime. - ib.

CORRECTION-house is a prifon where idle vagrants are compelled to work, and where perfons guity of certain crimes fuffer punifhment and make reparation to the public. Of the former kind of correalion-houfes, perhaps enough has been faid in the Encyclopædia under the title Work-Honfe; but of the latter very little will be found in that work under the titles Dridewell and Idleness.

Perhaps houfes of correction, as means of punifhment, are not, in this country, employed fo frequently as juftice and expediency feem to require. In the opinion of Dr Paley, whofe opinions are always worthy of attention, it is one of the greatef defects of the laws of England (and we may fay the fame thing of the laws of Scotland), that "they are not provided with any other punifhment than that of death, fulficiently terrible to keep offenders in awe. Tranfportation, which is the punifhment fecond in the order of feverity, anfwers the purpofe of example very imperfectly; not ouly becaufe exile is in reality a flight punifhment to thofe who have neither pioperty, nor friends, nor regolar means of fubfiftence at home, but becaufe the punilhment, whatever it be, is unobferved and unknown. A tranfported convict may fuffer under his fentence, but his fufferings are removed from the view of his countrymen; his mifery is unfeen ; his condition flrikes no terror into the minds of thole for whofe warning and admonition it was intended. This chafm in the fcale of punifhment produces alfo two farther imperfections in the adminiliration of penal jultice; of which the firt is, that the fame puniflment is extended to crimes of very different charaters and malignancy; and the fecond, that punifhments, feparated by a great interval, are afligned to crimes hardly diftinguilhable in their guilt and mifchief."

Periaps this chafm mipht be properly filled up by houfes of c rresti, n under judicious management, which might likewife promote another important purpufe, better than the pun fhments in common ufe.

The end it punilhment is twofold, amendment and exaniple. In the fit of theie, the reformation of criminals, little has ever been effected, and little indeed feems prarticable by the punifhments known to the laws

\section*{C O R [522] C O R}

Correction. of Britain. From every fpecies of punihmment inflicted among us, from imprifonment and exile, from pain and infamy, malefactors return more hardened in their crimes, and more intructed. The cafe we think would often be different when they returned to the world from a weil regulated houfe of correction. As experience is the only fafe guide in ratters of legiflation and police, we thall lay before our readers M. Thouin's account of the houfe of correction at Amiterd:um, which feems to corroborate our opinino.
The Amfterdam conection houfe, from the employment of the prifoners confined in it, is called the rafping1:oufe, and is deftined to the reception of thofe malefactors whofe crimas do not amount to a capital offence. Their punifhment cannot fo properly be denominated folitary confinement as a fequeftration from fociety during a limited term of years. The building is fituated in a part of the fuburbs to the north eaft of the city. The exterior has nothing remarkable, either with refpest to form or extent. It is detached from the freet by a ipacious court, which contains the keeper's lodge, together with apartments for the different fervants belonging to the eftablihment. Over the gate, which opens from this court into the prifon, are placed two ftatues, as large as life, reprefenting two men in the a\&t of fawing a piece of logwood.
The inner court is in the form of a fquare, round which are arranged the apartments of the prifoners, to gether with the neceffary warehoufes. One part of the ground flory is divided into difierent chambers; the other ferves as a depot for the logwood, and the implements empioyed in its preparation.
The kesper, whofe countenance, contrary to the general cuftom of perfons of his profeffion, was Atrongly indicative of urbanity and gentlenefs, introduced M. Thovin into an apartment where two prifoners were at work in fawing a large log of Campeachy wood. The \(f_{A} w\) is compofed of four blades joined together, with very ftrong, large, and fharp teech, which make a fciffure in the wood of nearly two inches in breadth. The operation is repeated, till the pieces become too fmall to undergo the faw, when they are ground in mills peculiarly confructed for this purpofe.

This employment requires an extraordinary exertion of Itrength, and is at firlt a fevere penance even to robult perfons; but habit, addrefs, and prattice, foon render it eafy; and the prifoners in a fhort time become competent to furnifh, without painful evertion, their weekly contingent of 200 lb . weight of fawed pieces. After completing this tak, they even find time to fabricate a variety of little articles in wood and ftraw, which they fell to thofe who vifit the prifon, or difpofe of, by means of ayents, in the town.
M. Thouin next infpected three apartments of different dimenfions, which opened into the inner court. The one was inhabited by four, the fecond by fix, and the third by ten prifoners. The furniture of the rooms confited in hammocks, with a matrafs, a blanket, and a coverlid to each, tables, chairs, and ftools, glafs, \&c. earthen veffels, and various other articles of convenience. Every thing in thefe apartments was diflinguilhed by neatnefs and propriety; and notwithfanding the number of inhabitants allotted to each, was fully adequate to the dimenfions of the rooms; the fenfes were not offended with any difagreeable feent, and the air was in
every refpect as pure and wholefome as the furrounding Correnien. atmofphere.
In an obfcure part of the building are a number of cells, in which formerly thofe prifoners who revolted againft the proper fubordination of the place, or ill. treated their comrades, were confined for a few days. But the keeper aflured M. Thouin that thefe cells had not been made ufe of for upwards of 10 years. They are dark gloomy dungeons, with only a fmall aperture for the admifion of light and air. The fuppreffion of this barbarous and coercive punifmment does honour to the humanity of government.

The flore-rooms are filled with various kinds of wood for the purpofes of dyeing ; as the haemotoxylum campechianum, the morus tinctoria, the caefalpinia fappan, \&c. They are all exotics, with the exception of the Evnnymus Europzus. The warehoufes were not of fufficient extent to contain the quantity of wood, which was depofited in piles in different parts of the court.
The prifoners, amounting to 76 in number, were uniformly habited in coarfe woollens; wear very good ftockings, large leather fhoes, white fhirts, and caps or hats. They are, by the rules of the houfe, obliged to frequent ablutions, which greatly 6 ontribute to the prefervation of their health. There was only one fick perfon among them ; and, what is not a little remarkable, almoft all the prifoners had formerly lived in large commercial towns; very few villagers were amongit them. They had all been fentenced to imprifonment for theft; but it depends upon themfelves, by reforma. tion and good behaviour, to thorten the term of their confinement, which many of them frequently do.
The keeper, whofe humanity to the unfortunate perfons committed to his care inticles him rather to the title of their protector than their gaoler (and M. Thouin informs us, that the prifoners generally called him by no other name than father), affits them with his counfels and friendly admonitions. He regillers every week, in a book appropriated to this purpofe, both the inAtances of good and bad behaviour, which is annually fubmitted to the examination of the magiftracy, who, from this report, abridge or prolong the term of confinement according to the degree of indulgence which each prifoner appeirs to merit. Cafes frequertly happen, where a malefactor, condemned to an imprifoniment of eight years, by his good behaviour procures his enlargement at the expiration of four ; and fo in proportion for a thorter term. But great attention is paid to difcriminate between actual reform and hypocritical artifice.
The reward of gnod behaviour is nnt, however, confined to, or withheld till, the period of actual liberation. Their reftoration to fociety is preceded by a progref. five amelioration of their lot. Their work is हुadually rendered lefs laborious, they are accommodated with feparate apartments, and employed in the fervices of domeltic economy. The keeper even entrufts them with commifions beyond the precinets of the prifon; and fcarce a fingle inftance has occurred of their abufing this indulgence. By this prudent management, a confiderable faving is effected in the cxpence of the eltabliflıment, at the fame time that it tends to wear away prejudice, and to initiate the prifoners, by gradual advances, into the reciprocal duties of focial life.
M. Thouin made particular inguiries whether it was cufomary

Correcion. cultomary for perfons after their difcharge to be con-
fined a fecond and third time, as is but too often the cafe in many countries, for a repetition of their offence. He was informed, that fuch inftances very rarely occur ; but the caie is not without precedent, as he obicrved in the perfon of a young Jew, who was then in the rafp-ing-houfe for the third time. The cafe of this man is fomewhat extraordinary. During the period of his detention, he always conforms, with the mott forepulous obfervance, to the rules of the place, and gives general fatisfation by his exemplary conduct. But fuch, as he himfelf avowed to our traveller, is his conftitutional propenfity to thieving, that no fooner is the term of his imprifonment elapfed, than he returns with redoubled ardour to his lawlefs courfes. It is not fo much for the fake of plunder as to gratify his irrefiftible impulfe, that he follows this vicious life; and M. Thouin adds, that he recounted his different exploits with as much exultation and triumph, as a veteran difplass when rehearfing his warlike atctievements.

Another falutary regulation in this inftitution, from which the beft confequences refult, is the indulgence granted to the prifonets of receiving the vifits of their wives and miftrefles twice every week. Proper care, however, is taken to guard againt the introduction of difeafe; and the ladies, in one fenfe, purchafe their admition by giving a trifling fum of money at the gate, which becomes the perquilite of the aged prifoners, whofe wants are of a different nature from their youthfal comrades. Thus the pleafures of one clafs contribute to the comforts of the other; and the entrance money, trifling as it is, keeps away a crowd of idle vagabonds, who have no acquaintance with the prifoners. The ladies at their vifits are permitted to eat and drink with their lovers; and when the converfation becomes too animated for a chird perfon to be prefent, the reft of the company obligingly take the hint, and leave them to enjoy a tete-a-tete.- By this prudent regulation, many hurtiful confequences attendant on a total feclufion from female fociety are guarded againft.
M. Thonin concludes his account with obferving, that the rafping-houfe at Amfterdam bears a greater refemblance to a well-ordered manufactory than to a prifon. It were to be wifhed that all fimilar infitutions were conducted upen a fimilar plan (A).

So fays our author: But though we have admitted experience to be the only fafe guide in regulating inftitutions of this kind, we camot belp thinking that the plan is fufceptible of improvement. We do not fee the propriety of locking up four, fix or ten thieves in the Lame apartment. The uncommon attention to cleanlineif, which diftinguifhes all ranks among the Dutch, may indeed prevent the room fiom having an offenfive fcent; but what can prevent fuch a number of unprincipled perfons trom corrupring each other in Holland, as we know that they do in Great Blitain? The introduction of females of loofe character to felons fuffering punifhment for their ofences in a prifon, is a practice which we trut will be approved only by philofophers of the French fchool. The Eritifi philo:opher,
whom we have already quoted with approbation, is of Currection opiaion, and we heartily agree with him, that "of reforming punifhments, none promifes fo much fuccers as that of folitary imprifonment, or the confinement of criminals in feparate apartments. This improvement of the Amfterdam houfe of correction would augment the terror of the punifhment, would feclude the criminal from the fociety of his fellow prifoners, in which focicty the worlt are fure to corrupt the better ; would wean him from the knowledge of his companions, and from the love of that turbuleat pernicious life in which his vices had engaged him; would raife up in him reflections on the folly of his clonice, and difpofe his mind to fuch bitter and continual penitence, as might produce a lafting alteration in the principles of his conduct."

In fome houfes of correction the prifoncrs are fubjected to the difcipline of flagellation at fated intervals. We will not take it upon us to fay that this punithment is never proper ; but we are fully convinced that it is not often fo; and that flagellation, if it can at all produce any good effect, mult be adminiltered in private. It is obferved by Fielding, who well underftood human nature, that fafting is the proper puniflment of protligacy, not any punifhment that, like flagellation, is attended with thame. Punilhment (fays he) that deprives a man of all fenfe of honour, never will contribute to make him virtuous; and we believe it is generally admitted by the gentlemen of the atmy, that a foldier who has fuffered the punifhment of whipping feldom proves geod for any thing.

CORTLAND' , a townfhip in the northern part of the county of Weft Chefter, on the E. bank of Hudfon river, New-York, containing 1932 inhabitants, of whom 66 are flaves. Of its inhabitants, in 1796,305 were elefors.- Aorse.

COSTA RICA, or the Rich Coaft, as its name fignifies, is fo called from its rich mines of gold and filver, thofe of Tinfigal being prcferred by the Spaniards to the mines of Potofi; but in other refpees, it is mountainous and barren. It is fituated in the audience of Guatimala, in New.Spain, bounded by the province of Veragua on the S. E. and that of Nicaragua on the N. E. It reaches from the IN. to the S. fea, about 90 leagues from E. to W . and is 50 where broadet, from N. to S. It has much the fame pro. ductions as its neighbouring provinces; and in fome places the foil is good, and it produces coco:t. On the N. fea it has two convenient bays, the moft welterly called St Jerom's, and that near the frontiers of Veragua, called Caribaco; and on the S. fea it has fe. veral bays, capes, and convenient places for anchorage. Chief town Nycoya.--ib.

COTABAMBO, a jusifuiction in Pera, S. America, fubject to the bifhop of \(C u f(0\), and lies zo leagnes \(S\). W. of that city. It abounds in grain, fruis, and cattle. Its rich mines are now almof exhaufted.-ib.

COTEAUX, LES, a town on the ruad from Tiburon to Port Salut, on the \(S\). fide of the \(S\). peninfula of the ifland of St Domingo, \(13 \frac{1}{2}\) leagues E. by S. of
(a) We do not know that M. Thouin's journal of his travels has been yet publifled. Estracts from it have been inferted into the Decade, a periodical publication at Paris, whence this account of the Amperdan houfs of correciion was firlt copied into the Monthly Magazine for Junc 1798.

\section*{C \(\mathrm{O} \quad \mathrm{U}\)}

\section*{C R A}

Cotopari the fornier, and 4 N. W. of the latter. N. lat. 18. H 12. .-ib. Coupeé. COTOPAXI, a large volcano near Lataacungo, an afliento or dependence on the province of Quito, in Peru, S. America. It lies nearly under the line, yet the tops of it are generally covered with ice and fnow. It firlt Thewed itfelf in 1553 , when Sebaftian de Belacazar firft entered thefe countries, which erup. tion proved favourable to his enterprife, as it coincided with a prediction of the Indian priefts, that the country fhould be invaded on the burfting of this volcano; and accordingly it fo happened; for before 1559 he had fubdued all the country.-ib.

COTUY, a canton and town in the Spanifh part of the illand of St Domingo, bounded E. by the bay of Samana, N. by the chain of mountains called MonteChrifti, W. by the territory of la Vega, and S. by the chain of mountains called Sévico. In 1505 , the gold mines were worked here. In the mountain of Meymon, whence comes the river of the fame name, there is a copper mine, fo rich, that when refined will produce 8 per cenr. of gold. Here are alfo found excellent lapis-lazuli, a ftreaked chalk, that fome painters prefer to bole for guilding; loadtone, emeralds, and ion. The iron is of the beft quality, and might be conveyed from the chain of Sévico by means of the river Yuna. The foil here is excellent, and the plantanes produced here are of fuch fuperior quality, that this manna of the Antilles is called at St Domingo Sunday plantanes. The people cultivate tobacco, but are chiefly employed in breeding fwine. The inhabitants are called clownifh, and of an unfociable charac. ter.

The town is fituated half a league from the S. W. bank of the Yuna, which becomes unnavigable near this place, about 13 leagues from its mouth in the bay of Samana. It contains 160 fcattered houfes, in the middle of a little favanna, and furrounded with woods, 30 leagues northerly of St Domingo, and 12 S. E. of St Yago. N. lat. 19. if. W. long. from Paris 72. 27 - -ib.
COUDRAS, a finall inand in St. Lawrence river, about 45 miles N. E. of Quebec.-ib.

COUNTRY Harbor, fo called, is about 20 leagues to the eaftward of Halifax, in Nova-Scotia.-ib.

COUPEE', or Cut Point, a flort turn in the river Mifilippi, about 35 miles above Mantchac fort, at the gut of Ibberville, and 259 from the mouth of the river. Charlevoix rclates that the river formerly made a great turn here, and fome Canadians, by deepening the channel of a fmall brook, diverted the waters of the river into it, in the year 1722 . The impetuofity of the ftream was fuch, and the foil of forich and loofe a quality, that in a fhort time the point was entirely cut through, and the old channel left dry, except in inundations: by which travellers fave it leagues of their voyage. The new channel has been founded with a line of 30 fathoms, without finding bottom.

The Spanifh fettlements of Point Coupeć, extend 20 miles on the W. fide of the Miffifippi, and there are fome plantations back, on the fide of La Faufe Riviere, through which the Millifippi paffed about 70 years ago. The fort at Point Coupeć is a fquare figure, with four baftions, built with fockades. There were, fome years fince, about 2000 white inhabitants
and 7000 flaves. They cultivate Indian corn, tobacco, and indigo; raife valt quantities of poultry, which they fend to New-Orleans. They alfo fend to that city fquared timber, flaves, \&c.-ib.

COURTESEY of Scotland. See Law (Encycl.), Part III. fect ix \(\$ 23\).

COVENTRY, a townfhip in Tolland co. Connecticut, 20 miles E. of Hartford city. It was fettled in 1709, being purchafed by a number of Hartford gentlemen of one Jofhua, an Indian.-Morse.

Coventry, in Rhode-Ifland fate, is the N. eafternmoft townhip in Kent co. It contains 2477 inhabi-tants.-ib.

Coventry, a townfhip in the northern part of New-Hamphire, in Grafton co. It was incorporated in 1764 , and contains 80 inlabitants. -ib.

Coventry, a townfhip in Orleans co. Vermont. It lies in the N. part of the ftate, at the S. end of Lake Memphremagog. Black river paffes through this town in its courfe to Memphremagog.-ib.

Coventry, a townhip in Chefter co. Pennfylvania. -ib.

COWE', is the capital town of the Cherokee Indians, fituated on the foot of the hills, on both fides of the river Tenneffee. Here terminates the great vale of Cowé, exhibiting one of the molt charming, natural, mountainous landfeapes that can be feen. The vale is clofed at Cowe by a ridge of high hills, called the Jore mountains. The town contains about 100 inhabitants.

In the conftitution of the flate of Tenneffee, Cowe is defcribed as near the line which feparates Tenneffee from Virginia, and is divided from Old-Chota, another Indian town, by that part of the Great Iron or Smoaky mountain, called Unicoi, or Unaca moun-tain.-ib.

COWETAS, or Kozwetas, a town of the Lower Creeks, in Eafl-Florida, called the Bloody-town. It lies on the W. bank of Chata-Uche river and contains 280 men.- \(i b\).

COWPENS, a place fo called, in S. Carolina, between Pacolet river and the head branch of Broad river. This is the fpot where Gen. Morgan gained a complete victory over lieut. col. Tarleton, Jan. it, 178 I , having only 12 men killed and 60 wounded. The Britifh had 39 commiffioned officers killed, wounded and taken prifoners; 100 rank and file killed, 200 wounded, and 500 prifoners. They left behind 2 pieces of artillery, 2 Atandards, 800 mukkets, 35 bag. gage-waggons, and 100 dragoon horfes, which fcll into the hands of the Americans. The field of battle was in an open wood.-ib.

COWRY'Shells, the loweft money in fome parts of the Ealt. See Money (Encycl.), where they are called karis.

COXHALL, a townhip in York co. diffrict of Maine, containing 775 inhabitants.-Morse.

COXSAKIE, a townflip in the weftern part of Albany co. New-York, containing 3406 inhabitants, of whom 302 are flaves. Of the citizens 613 are electors.-ib.
COYAU, a fettlement on Tenneffec river, 30 niles below Knoxville - ib.

CRAB-ORCHARD, a poft town, on Dick's river, in Kentucky, 8 miles from Cumberland river, and 25 miles

\section*{C R A [525] C R A}

Cranberry miles S. E. of Danville. The road to Virginia paffes through this place.-ib.

CRANBERRY, a thriving town in Middlefex co. New-Jerfey, 9 miles E. of Princeton, and 16 S. S. W. of Brunfiwick. It contains a handfome Preflyterian church, and a variety of manufactures are carried on by its indultrious inhabitants. The ftage from New-York to Philadelphia paffes through Amboy, this town, and thence to Bordentown.- ib.

Cranberry I/ands, on the coalt of the diltrict of Maine.-ib.
CRANE, in mechanics, a machine ufed for raifing or lowering great weights. For the principles on which thefe machines act, fee Dynamics in this Supplement, and likewife Mechanics, Encycl. where defícriptions are given of feveral very powerful cranes.

The crane in common ufe is employed with fome danger to thofe who work it ; and therefore a machine of this kind, acting upon a fimple and certain principle, by which the men walking in the wheel can lower goods with fafety as well as expedition, has long been confidered as a great defideratum in mechanics. Repeated premiums have been offered by the Society for the Encouragement of Arts, to induce ingenious men to attempt the invention of fuch a machine; and various have been the contrivances for accomplifhing fo defirable a purpofe. A clergyman, who fubfcribes E. C. we fuppofe as the initials of his name, propofes, through the medium of the Repertnry of Arts, to accomplifh it merely by introducing the action of a worm or fcrew into the crane.

Whenever a worm of two threads is introduced into 2 machine, all retrograde motion is fopped, unlefs that worm receive its reaction from the firl moving force; for, powerfully as a worm acts upon a wheel, a wheel has no power upon a worm, whatever force mas be applied to it. Suppofe, then, the firf motion in 2 crane were given by a worm upon the axis of the wheel in which the man walks, the man would have perfect command of the machine, to raife or lower the goods at pleafure, with the remoteft poffibility of being overpowered by the defcending weight.
"Were I to conftruct (fays the author) a crane upon this principle, I would have the axis of the wheel in which the man walks, and the axis of the worm, in feparate parts, and occafionally united by a coupling-box, When goods were to be raifed, the two axes fhould be connected; when lowered, they might be difunited, and the worm turned by a winch, which would be done much more expeditioully that way than by the wheel. For the reafons before fuggefted, the defcent of the weight could be accelerated or flopped at pleafure, at the difcretion of the perfonturning the winch.
" This contrivance might be not inconveniently applied to a crane already erceted upon the common principle: Let there be a wheel put upon any convenient axis in the machine as it now feands; upon this let there lie a worm that can be thrown in or out of gear at pleafure; and let the lever by which it is done lie within reach of the man's hand in the wheel. The goods being fattened to the crane, and raifed off the floor of the warehoufe ready for letting down, the man puts the worm into gear, leaves the wheel, and lets the goods down by the winch. Provided it can be conveniently done, it would be advifable to throw the wheel in which the man walks out of gear, when the winch is

Suppl. Vol. I.
made ufe of: this, however, I hould apprehend, would not be a matter of abfolute neceffity."

Our author is avare of two objections which may be urged againft the introduction of a worm into a crane in the manner which he propofes. The firl arifes from the flownefs of the motion produced by the turning of a frew which he confiders as unworthy of regard; becaufe the neceffary fpeed is to be gained by the firft pair of wheels, and the diameter of the barrel of the windlafs.

To the fecond, arifing from the fuppofed greater friction between a worm and wheel, he replies, that as the fricion between the tecth of two wheels (if not formed on the true epicycloidal principle) mult, while it lafts, be greater than between a worm and wheel for the fame fpace of time, it feems no unreafonable fuppofition that the aggregate of friction will, in the two cafes, nearly balance each other; efpecially if it be taken into the account, that to obtain the power of one worm and wheel, there will be, in molt cafes, required two pair of wheels, and two additional axes-all which will add to the friction. But granting the balance of friction to be againft the action of the worm, the power to overcome it is greater in proportion than to overcome the friction of two wheels.

Mr James Whyte of Chevening, in the county of Kent, whofe improvement in the conlluction of pullies, has with due refpect been noticed elfewhere*, gives, * See Mce in the Tranfalions of the Society for the Encouragenent of chanis, \(\mathrm{n}^{\circ}\) Arts, \&c. the following defcription of a new crane for \({ }^{27}\). Encysf. wharfs:

A (fig. I.), a circular inclined plane, moving on a plate Xx. pivot underneath it, and carrying round with it the axis \(E\). A perfon walking on this plane, and preffing againf the lever B , throws off the gripe D , by means of an iron rod C ; and thus admits the plane and its axis to move freely, and raife the weight G by the coiling of the rope \(F\) round the axis \(E\).

To fhew more clearly the conffruction and action of the lever and gripe, a plan of the circular inclined plane, with the lever and gripe, is added (fee fig. 2.), where B reprefents the lever, D the fpring or gripe. In this plan, when the lever \(B\) is in the fituation in which it now appears, the fpring or gripe \(\mathrm{D}^{\mathrm{D}}\) preffes againlt the periphery of the plane, as thewn by the double line, and the machine cannot move; but when the lever B is preffed out to the dotted line H , the gripe is alfo thrown off to the dotted line I , and the whole machine left at liberty to move. One end of a rope or cord, of a proper length, is fixed near the end of the lever \(B\), and the other end made lalt to one of the uprights, ferving to prevent the lever moving too far when preffed by the man.
The properties of this crane, for which the premium of 40 guineas was adjudged by the fociety to the in. ventor, are as follows:
1. It is fimple, confiling merely of a wheel and axle. 2. It has comparatively little friction, as is obvious from the bare infpection of the figure. 3. It is durable, as is evident from the two properties above-mentioned. 4. It is fafe; for it cannot move but during the pleafure of the man, and while he is actually preffing on the gripe-lever. 5. This crane admits of an almolt infinite variety of different powers, and this variation is obtained without the lcaft alteration of any part of the
machine.
machine. If, in unloading a veffel, there fhould be found gonds of every weight, from a few hundreds to a ton and upwards, the man that does the work will be able fo to adapt his ftrength to each as to raife it in a fpace of time proportonate to its weight ; he walking always with the fame velocity as nature and his greatelt eafe may teach him.

It is a great difadvantage in fome cranes, that they take as long time to raife the imalleft as the largeft we:ght, unlefs the man who works them turn or walk with fuch velocity as muft foon tire him. lu other cranes, perhaps, two or three different powers may be procured ; to obtain which, fome pinion must be fhiftcd , or frefh handle applied or reforted to. In this crane, on the contrary, if the labourer find his load fo heavy as to permit him to afcend the wheel without its turning, let him only move a ftep or two toward the circumference, and he will be fully equal to the ta!k. Again, if the load be fo light as fcarcely to refilt the action of his feet, and thes to oblige him to run through fo much face as to tire him beyond necelfity, let him move laterally towards the centre, and he will foon feel the place where his frength will fuffer the leaft fatigue by raifing the load in queftion. One man's weight ap. plied to the extremity of the wheel would raife upwards of a ton; and it need not be added, that a fingletheaved block would double that power. Suffice it to fay, that the fize may be varied in any required ratio; and that this wheel will give as great advantage at any point of its plane as a common walking-wheel of equal diameter, as the inclination can be varied at pleafure, as far as expediency may require. It may be neceffary to obferve, that what in the figure is the frame, and feems to form a part of the crane, mult be confidered as a part of the houfe in which it is placed; fince it would be moftly unneceffary thould fuch cranes be erected in houfes already built. With refpect to the horizontal part, by walking on which the man who attends the gib occafionally affits in raifing the load, it is not an elfential part of this invention, where the crane is not immediately contiguous to the gib, although, where it is, it would be certainly very couvenient and economical.

Crane is alfo a popular name for a fyphon, employed in drawing off liquors.

CRANEY, a fmall ifland, on the S. fide of James river, in Virginia, at the mouth of Elizabeth river, and 5 miles S. W. uf Fort George, on Point Comfurt. It commands the entrance of both rivers.-Morse.

CRANSTON, is the fouth-eafternmoft townfhip of Providence co. Rhode-Ifland, fituated on the W. bank of Providence siver, 5 miles S. of the town of Providence. The compact part of the town contains 50 or 60 houfes, a Baptift meeting.houfe, handfome fchoolhoufe, a difillery, and a number of faw and grift mills, and is called Pawtuxet, from the river, on both fides of whofe mouth it ftands, and over which is a bridge, connecting the two parts of the town. It makes a pretty appearance as you pafs it on the river. The whole townthip contains 1877 inhabitants.-ib.

CRAVEN Cio in Newbern diftrict, N. Carolina, is bounded N. by Pitt, and S. by Carteret and Onflow counties. Its chief town is Newbern. It contains 10,469 inhabitants, of whom 3658 are flaves.-ib.

CREE INDIANS, They inhabit weit of little lake

Winnipeg, arnand fort Dauphin, in Upper Canała. Creeger's -ib.

CREEGER's Town, in Frederick co. Maryland, \(\qquad\)
Crofs-itaff. lies on the W. fide of Monococy river, between Owing's and Hunting creeks, which fall into that river; 9 miles foutherly of Ermmtfburgh, near the Pennfylvania line, and about is northerly of Fredericktown.-il.

CREEKS Crofling Place, on Tenneffee river, is about 40 miles E. S. E. of the mouth of Elk river at the Mufcle hools, and 36 S . W. of Nickajack, in the Georgia weftern territory.-ib.

CROIX, ST, a fmall navigable river in NovaScotia, which runs into the Avon, or Pigiguit.-ib.

Croix, St, a river which forms part of the boundary line berween the United States and the Britifh province of New-Brunfiwick, and empties into P.!Tamaquoddy bay. Which is the true St Croix is undetermined. Commilfioners are appointed by bath countries, in conformity to the late treaty, to decide this point.-ib.

Croix, St, a river in the N. W. territory, which empries into the Mifilfippi from the N. N. E. about 50 miles below the falls of St Anthony,-ib.

Croix, St, or Santa Cruz, an ifland in the WeftIndies, belonging to the king of Denmark, lying about 5 leagues S. E. of St Thomas, and as far E. by S. of Crab ifland, which lies on the E. end of Porto Rico. It is about 30 miles in length, and 8 where it is broadelt, and is rather unhealthy. It is faid ro produce 30,000 or 40,000 hhds. of fugar, annually, and other Weft-India commodities in tolerable plenty. It is in a high ftate of cultivation, and has about 3000 white inhabitants, and 30,000 flaves. A great proportion of the negroes of this ifland have embraced chriftianity, under the Moravian miftionaries, whofe influence has been greatly promotive of the profperity of this inland. N. lat. 17.50. W. long. 6+. 30.-ib.

CROOKED Ifand, one of the Bahama or Lucayo iflands, in the Weft.Indies. The middle of the ifland lies in N. lat. 23. W. long. 73. 30.-ib.

Croozed Lake, in the Geneflee country, communicates in an E. by N. direction with Seneea lake.-ib.

Crooked Lake, one of the chain of fmall lakes which connects the lake of the Woods with lake Superior, on the boundary line between the United States and Upper Canada, remarkable for its rugged cliffs, in the cracks of which are a number of arrows tick-ing.-ib.

Crooked River, in Camden co. Georgin, empties into the fea cppolite Cumberland iffand, 12 or 14 miles N. from the mouth of St Jifary's. Its banks are well timbered, anci its courie is E. by N.-ib.

CROSS, in furvering, is an inftrument confifing of a brafs circle, divided into four equal parts by two lires creffing each other in the centre. At each extremity of thefe lines is fixed a perpendicular fight, with imall holes below each flit, for the better difoovering of diftant objects. The crofs is mounted on a faff or ftand, to fix it in the ground, and is very uefol for meafuring fmall pieces of land, and taking offsets, \&c.

CRoss faff, or Fore-flaff, is a mathematical in@rument of box or pear-tree, confifting of a fquare flatf of about three feet long, having each of its faces divided like a line of tangents, and having four crofs picces of unequal lengths to fit on the ftaff, the halves of thefe being.

\section*{\(\mathrm{C} R \mathrm{O} \quad\left[\begin{array}{lll}527\end{array}\right] \quad \mathrm{C} \quad \mathrm{R} \quad \mathrm{U}\)}
as the radii to the tangent lines on the faces of the ftaff.-The inllrument was ufed in taking the altitudes of the celellial bodies at fea.

Cross Cape, in Upper Canada, projects from the N. E. fide of St Mary's river, at the outlet of lake Superior, oppofite the falls, in N. lat. 46. 30. W. long. 84. 50.-Morse.

Cross-Creek, a townhip in Wahhington county, Pennfylvanis.-il.

Cross-Roads, the name of a place in Nort'l Carolind, near Duplin courthoufe, 23 miles fiom Sampfon court-houfe, and 23 from Sonth. Wafhington.-ib.

Cross-Roaos, a village in Kent co. Maryland, fituated 2 miles \(S\). of Georgetown, on Saffafras river, and is thus named from 4 roads which meet and crois each other in the village.-ib.

Cross-Roaos, a villisge in Chefter co. Pennfylvania, where 6 diffetent roads meet. It is 27 miles \(\mathbb{S}\). E. of Lancafter; 11 N. by W. of Elkton, in Maryland, and about \(18 \mathrm{~W} . \mathrm{N}\). W. of Wilmington in Delaware.一ib.

CROSSWICKS, a village in Burlington co. NewJerfey; through which the line of Rages palles from New. York to Philadelphis. It has at refpectable Quaker meeting-houfe; 4 miles S. W. of Allen Town, 8 S. E. of Trenton, and 14 S. W. of Burlington.-ib.

CROTON River, a N. ealtern water of Hudfon river, rifes in the town of New. Fairfield, in Connectieut, and running through Dutchefs co. entpies into Tappan bay. Croton bridge is thrown over this river 3 miles from its mouth, on the great road to Albans. This is a folid fubltantial bridge, 1400 feet long, the road narrow, piercing through a flate hill. It is fupported by 16 ftone pillars. Here is an admirable view of Croton Falls, where the water precipitates itfelf between 60 and 70 feet perpendicular ; high nate banks, in fome places 100 feet ; the river ipreading into three Atreams, as it enters the Hudfon.- ib.

CROW Creek, falls into the Tenneffee, from the N. W. oppofite the Crow Town, 15 miles below Nicka. jack Town.-ib.

CROWN, in aftronomy, a name given to two confellations, the fouthern and the northern.

Crows, in geometry, a plane ring included between two parallel or concentric peripheries of unequal circles.

CRown-Pof, is a polt in fome buildings ftanding upright in the middle between two principal rafters; and from which proceed ftruts or braces to the middle of each rafter. It is otherwife called a king poff, or king'spiece, or jozgle-picee.

Crown Point, is the moft foutherly townhip in Clinton co. New-York, fo called from the eelebrated fortrefs, which is in it, and whieh was garrifoncd by Pri:ifh troops, from the time of its reduction by gen. A mherf in 1759, till the late revolution. It was taken by the Americans the 14th of May 1775, and retaken by the Britifh the year alter. The point upon which it was erected, by the French in 173 s , extends N. into lake Champlain. It was called K'run Punt, or Scalp Point, by the Dutch, and by the French, Pointe à la Cheve'cure. The fortrefs they named Fort St Frederick. After it was repaired by the Britifh, it was the mof regular and expenfive of any conitructed by them in America. The walls are of wood and earth, about 16 feet lrigh and about 20 fee: tlick, nearly 150 yards
fquare, and furrounded by a deep and broad ditch, dug out of the folid rock. The only gate opened on the N . towards the lake, where was a draw-bitige and a covert-way, to fecure a communication with the waters of the lake, in cale of a fiege. On the right and left, as you enter the fort, is a row of ftone barracks, not inelegantly built, which are capable of containing 2000 troops. There were formerly feveral out-works, which are now in ruins, as is indeed the cafe with the principal fort, except the walls of the barracks. The famous fortification called Ticonderoga is 15 miles \(S\). of this; but that fortrefs is alio fo much demolifhed, that a franger would farcely form an idea of its original confluction. The town of Crown Point has no rivers; a few Areams, however, iffue from the mountains, which antwer for mills and common ufes. In the mountains, which extend the whole length of lake George, and part of the length of lake Champlain, are plenty of moofe, deer, and almolt all the other inhabitants of the foreft. In 1790, the town contained 203 inhabitants. By the ltate cenfus of 1796 , it appears there are 126 electors. The fortrefs lies in N. lat. 44. 20. W. long. 73. 36.-MTorse.

CROWS Meadons, a river in the N. W. territors, which runs \(N\). weftward into Illinois river oppofite to whieh are fine meadows. Its mouth is 20 yards wide, and 240 miles from the Minflippi. It is navigable be. tween 15 and 18 miles.-i \(i 6\).

CROYDEN, a townhip in Chefhire co. New.HampThire, adjoining Cornith, and about 18 miles N. E. of Charleftown. It was ineorporated in 1763 . In 1775 , it contained 143, and in 1790, 537 inhabitants.-ib.

CRUCES, a town of 'Terra Firma, S. America, 5 leagues from Panama, and fituated on Chagre river. -ib.
L.A CRUZ, an excellent harbour on the north-welt coalt of America, difcovered by the Spaniards in 1779. They were introduced into it by a pallage which they calied Bucarelli's entrance, and which they placed in \(55^{\circ}\) \(18^{\prime} \mathrm{N}\). Lat. and \(139^{\circ} 15^{\prime} \mathrm{W}\). Long. from the meridian of Paris. There is no good reafin to queftion the exactnefs of the latitude of this paffage as laid down by the Spaniards ; but the editor of Peroufe's voyage jultly concludes, from the furvey made by our celebrated navigator Captain Cook on the coalts adjacent to the entrance of Bucarelli, that this entrance is about \(135^{\circ}\) \(20^{\prime}\) to the welt of Paris, or very nearly \(133^{\circ}\) welt of Greenwich.

The Spaniards were not long in the harbour of La Cruz before they received a vifit from the inhabitants in its neighbourhood. Bartering took place. 'The Indians gave their peltry, and various tifles, for glafs beads, bits of old iron, \&e. By this traffic the Spaniards were enabled to gain a futiciently exact knowledge of their genius, of their offentive and defenfive arms, of their manufactures, \&c.

Their colour is a clear olive; many among them have, however, a pesfectly white \(1 k i n\) : their counte. nance is well propotioned in all its parts. They are robult, courageons, arrogant, and warlike.

They clothe themfelves in one or two undreffed fkins (with the fur apparently) ; thefe are the fkins of otters, of feawolves, of benades (a fpecies of deer), of bears, or other animals, which they take in hunting. Thefe dreffes cover them from the neck to the middle of the

La Cruz. leg; there are, however, many among them who wear boots of fmooth k in, refembling Englifh boots, only that thofe of the Indians open before, and are laced tight with a Aring. They wear hats woven from the fine bark of trees, the form of which refembles that of a funnel or a cone. At the writs they have bracelets of copper or iron, or for want of thefe metals the fins of whales; and round the neck, necklaces of fmall fragments of bones of fifhes and other animals, and even copper collars of the bignefs of two fingers. They wear in their ears pendants of mother of pearl, or flat pieces of copper, on which is emboffed a relin of a topaz colour, and which are acconspanied with jet beads. Their hair is long and thick, and they make ufe of a comb to hold it tngether in a fmall queue from the middle to the extremity ; a narrow tibbon of coarfe linen, woven for this purpofe, ferves as a ligament. They wear alfo as a covering a kind of fcarf, woven in a particular manner, fomething more than a yard and a half long, and about half a yard broad, round which hangs a fringe fomething more than haif a quarter of a yard deep, of which the thread is regularly twifted.

The women give proofs of their modelty and decency by their drefs. Their phyfiognomy is agreeable, their colour frefh, their cheeks vermilioned, and their hair long; they plait it together in one long trefs. They wear a long robe of a fmooth fkin tied round the loins, like that of a nun; it covers them from the neck as low as the feet ; the fleeves reach down to the wrifts. Upon this robe they put divers fkins of otters or other animals to defend themfelves from the inclemency of the veather. Better dreffed, many of them might difpute charms with the mof handfome Spanifh women; but diffatisfied with their natural charms, they have recourfe to art, not to embellifh, but to disfigure themfelves. All the married women have a large opening in the under lip, and this opening or orifice is filled up by a piece of wood cut in an oval hape, of which the frmalleft diameter is almoit an inch; the more a woman is advanced in years the more this curious ornament is axtended: it renders them frightful, the old women efpecially, whofe lip, deprived of its wonted fpring, and dragged by the weight of this extraordinary jewel, neceffarily hangs in a very difagreeable manner. The gitls wear only a copper needle, which croffes the lip in the place where the ornament is intended hereafter to be placed.

Thefe Indians in war make ufe of cuiraffes and noulder pieces of a mannfacture like that of the whalebone ftays among the Europeans. Narrow boards or fcantlings form, in fome fort, the woof of the texture, and threads are the warp: in this manner the whole is very flexible, and leaves a free ufe to the arms for the handling of weapons. They wear round the neck a coarfe and large gorget which covers them as high as below the eyes, and their head is defended by a morion, or \(\{k n l]\) piece, ufually made of the head of fome ferocious animal. From the waif downwards, they wear a kind of apron, of the fame contexture as their cuirafs. Laftly, a fine fkin hangs from their fhoulders down to the knee. With this armour, they are invulnerable to the arrows of their enemies ; but thus armed they cannot change pofition with fo much agility as if they were lefs burdened.

Their offenfive arms are arrows; bows, of which the
frings are woven like the large cords of our beft mufical infruments; lances four yards in length, tongued with iron; knives of the fame metal, longer than European bayonets, a weapon however not very common among them; little axes of fint, or of a green ftone, fo hard that they cleave the moft compact wood without injury to their edge.

The pronunciation of their language is extremely difficult ; they fpeak from the throat, with a movement of the tongue againft the palate; the little ufe the women make of the inferior lip greatly injures the diftinctivenel's of their language; the Spaniards could neither pronounce nor write the words which they heard.

From the vivacity of fpirit in thefe Indians, and from their attention amply to furnifh the market eftablifhed in the harbour, it may be concluded that they are pretty laborious. They continually brought ftuffs well woven and fhaded by various colours, the ikins of land and fea wolves, of otters, bears, and other fmaller animals; of thefe fome were raw, and others dreffed. There were to be found at this market alfo coverlets of coarfe cloth, fhaded with white and brown colours, very well woven, but in fmall quantities: large ribbons of the fame linen which might match with that of the Spanifh officers mattreffes; fkeins of thread fuch as this cloth was made of; wooden plates or bowls neatly worked; fmall boats or canoes painted in various colours, the figures of which reprefented heads with all their parts; frogs in wood nicely imitated, which opened like tobacco boxes, and which they employed to keep their trinkets in : boxes made of fmall planks, of a cubical form, being three quarters of a yard on each fide, with figures well drawn, or carved on the outfide, reprefenting various animals; the covers fabricated like Flanders etwees, with rabbeted edges, formed fo as to Thut into the body of the box; animals in wood, as well thofe of the earth as of the air: figures of men of the fame material, with fkull-caps reprefenting the heads of various fierce animals; fnares and nets for fifhing; copper collars for the neck, and bracelets of iron for the wrift, but which they would not part with except at a very high price; beak-like inftruments, from which they drew founds as from a German flute. The principal officers took fuch of thefe merchandizes as were moft agreeable to them, and left the remainder to the flips crews.

As the Indians difcovered that the Spaniards were very dainty in their fifh, they did nut let them want for choice: the greatelt abundance was in falmon, and a fpecies of fole or turbot three yards and a quarter long, broad and thick in proportion; cod and pilchards were alfo brought to market, and fifhes refembling trout. From all this it may he inferred that this gulf is full of filh ; the banks too are covered with flells.

The quantity of mother-of-pearl that thefe Indians cut to pieces for making ear-rings awakened the curiofity of the Spaniards : they tried to difcover whether thefe people had not in their poffeffion, or whether their country did not produce pearls, or fome precious ftones : their refearches were fruitlefs, they only found fome Itones which they judged to be metallic, and which they carried on board, not having the neceflary means for extracting the metal they might contain.

Thefe Indians feed upon fifh, frefh or dry, boiled or roalted; herbs and roots which their mountains yielded

\section*{C R U \(\quad\left[\begin{array}{lll}529\end{array}\right] \quad \mathrm{C} \quad \mathrm{U} \quad \mathrm{L}\)}
\(\mathrm{La}_{\mathrm{a}}\) Cruz them, and particularly that which in Spain is called fea parfley; and, laftly, upon the flefh of animals which they take in hunting : the productions of the chafe are undoubtedly abundant, feeing the number of dogs they keep for this purpofe.

Thefe Indians appeared to the Spaniards to worfhip the fun, the earlieft and molt natural of all idolatrous worlhip; and they paid a decent refpect to the remains of their dead. Don Maurelle, one of the Spanifl officers, in an expedition round the gulf, found in two iflands three dead bodies laid in boxes of a fimilar form to thole which have been defcribed above, though confiderably larger, and decked in their furs. Thefe biers were placed in a little hut upon a platform, or raifed floor, made of the branches of trees.

The country is very hilly, the mountains are lofty, and their flope extends almoft every where to the fea. The foil, lime-\{tone; it is neverthelefs covered with an impenetrable foreft of tall fir trees, very large and very ftrait. As thefe trees cannot Itike very deep into the earth, the violence of the wind often tears them up by the roots: they rot and become a light mould, upon which grows a bufhy thicket; and in this are found nettles, camomile, wild celery, anife, a fpecies of cabbage, celandine, elder, wormwood, forrel; and without doubt there are other plants along the rivers.

The Spaniards faw ducks, gulls, divers, kites, ravens, geefe, ftorks, gold-finches, and other little birds unknown to them.

The commerce between the Spaniards and the Indians was quite undifurbed; and fo defirous were the latter to obtain iron, cloth, and other Ruffs, that they fold their children for broken iron hoops and other wares. The Spaniards in this manner bought three young lads, one from five to tix years old, another of four, and the third from nine to ten, not to make flaves, but Chriftians of them; they hoped befides to derive ufeful information from them as to the nature of the country and its inhabitants. Thefe youths were fo contented in being with the Spaniards, that they hid themfelves when their parents came on board, from the apprehention of being again reftored to them. Two young girls were alfo purchafed with the fame view; one very ugly, feven years of age; the other younger, better made, but fickly, and almont at the gates of death.

At the full and change of the moon, the fea rifes in the harbour of La Cruz feventeen feet three inches Englith; it is then high water at a quarter after 12 at noon: the loweft tides are fourteen feet three inches: the night tides exceed by one foot nine inches thofe of the day.

Cruz, Santa, a confiderable town on the N. coalt of the ifland of Cuba, about 30 miles E . by N. of the Havannah, and \({ }_{1} 15\) N. W. by N. of Cadiz.-Alfo the chief town of Cuzumel iftand.-Morse.

Cruz, Santa, a town of Mexico, or New-Spain, about 75 miles N. by E. of St Salvadore, on the Pacific ocean. It is fituated on the gulf of Dulce, which communicates with the fea of Honduras.-ib.

Cruz, Santa, De la Sierra, a government and generallhip, alfo a jurifdiction and bilhoprick, under the bifhop of Cliarcas, 90 leagues E. of Plata, in Peru.-ib.

CRYSTAİ,
CRYSTALLIZATION, Rock Chrestal. CUBAGUA, an ifland in this Supplement. tween that of Margaretta and Terra Firma, fubject to Spain, and is about 8 miles long. There are a num. ber of pearls got here, but not of the largelt fize. N. lat. 10. 15.W. long. 54-30.-Morse.

CUBIC Hyperbola, is a figure expreffed by the equation \(y^{2}=a\), having two afymptotes, and confinting of two hyperbolas, lying in the adjoining angles of the afymptotes, and not in the oppofite angles, like the Apollonian hyperbola; being otherwife called by New. ton, in his Enumeratio Linearum Tertii Ordinis, an hyperbolifmus of a parabola; and is the 65 h fpecies of thofe lines according to him.

Cubic Parabola, a curve of the fecond order, having two infinite legs tending contrary ways. The curve of this parabola cannot be rectified even by means of the conic fections.

CUENCA, or Bamba, a city and confiderable jurif. diction in the province of Quito, in Peru, under the torrid zone; lying in 25.3.49. S. lat. The town is computed to contain 20 , or 30,000 people; and the weaving of baize, cottons, \&c. is carried on by the women, the men being averfe to labour, and prone to all manner of profligacy. It is fituated on the river Curary, or St Jago; which, after many windings from W. to E. falls at laft into the river Amazon. The town ftands at the foot of the Cordillera mountains. It has two convents, and lies about 170 miles S . of Quito.-Morse.

CUEYTE, a river in the illand of Cuba, which abounds with alligators.-ib.

CULIACAN, a province of Guadalaxara, in the audience of New-Galicia, in Mexico or New-Spain. It has Cinaloa on the N. New-Bifcay and the Zacatecas on the E. Chiametlan on the S. and the gulf of California on the W. It is 60 or 70 leagrues long and 50 broad. It abounds with all forts of fruit. The great river La Sal in this country is well inhabited on each fide. According to Dampier, it is a falt lake, or bay, in which is good anchorage, though it has a narrow entrance, and runs 12 leagues E . and parallel with the fhore. There are feveral Spanifh farms, and falt ponds about it; and 5 leagues from it are two rich mines, worked by flaves belonging to the citizens of Compoftella. Here alfo is another great river, whofe banks are full of woods and paltures. On this river, Guzman, who difcovered the country, built a town, which he called St Michacl.-ib.

CULLEN (Dr William) was a man to whom phyfical fience is fo deeply indebted, that it has often fruck us with wonder that no account of him has yet been given to the public, which deferves to be claffed with Britifl biography. We know indeed that a life of him has been written by an eminent phyfician well qualified and Atrongly inclincd to do jultice to the merits of his revered preceptor; but that life has been with. held from us by him who has certainly the beft right to confider himfelf as the guardian of the Doctor's fame, and who, we have been told, is to enlarge and publith it himfelf. In this ftate of things our reaa

\section*{C U L [530] C U L}

Cullen. ders mult pardon us for laying before them a very imperfect account of this eminent man, to whom we were ourfelves almoft ftrangers. There is a character of him in the periodical publication called The Lee, which we thall appropriate to our own ufe, we are perfuaded, wib the entire approbation of its author, though fometimes we may exprefs our fufpicions that his praife is exaggerated.

Dr William Cullen was born in Lanatkfine, in the weft of Scolland, 1 ith December 1712. His father was for fome time chief magiltrate of the town of Hamilton; but though a very refpectable man, his circumftances were not fuch as to permit him to lay out much money on the education of his fon. William therefore, after ferving an apprenticeflip to a furgeon apothecary in Glafgow; went feveral voyages to the Welt Indies as a furgeon in a trading veffel from London: but of this employment he tired, and fettled himfelf, at an e crly period of life, as a country furgeon in the parifh of Shotts; where he fadid a thort tume practifing a. mong the farmers and country people, and then went to Hamilton with a view to practice as a phyfician, having never been fond of operating as a furgeon.

While be refided near Shotts, it chanced that Archibald Duke of Argyle, who at that time bore the chief political iway in Scotland, made a vifit to a gentleman of rank in that neighbourhood. The Duke was fond of literary purfuits, and was then particularly engaged in fome chomical refearches, which required to be elucidated by experiment. Eager in thefe purfuits, his Grace, while on this vifit, found himfelf much at a lofs for the want of fome fmall chemical apparatus, which his landlord could not furnifh : but happily recollecting young Cullen in the neighbourhood, he mentioned him to the Duke as a perfon who could probably furnifh it. -He was accordingly invited to dine; was introduced to his Grace,-who was fo much pleafed with his knowledge, his politenefs and addrefs, that he formed an acquaintance which laid the foundation of all Doctor Cullen's future advancement.

The name of Cullen by this time became familiar at every table in that neighbourhond; and thus he came to be known, by charater, to the Duke of Hamilton, who then rcfided, for a thort time, in that part of the country : and that nobleman having been fuddenly taken ill; the affiftance of young Cullen was called in ; which proved a fortunate circumftance in ferving to promote his advancement to a flation in life more fuited to his talents than that in which he had hitherto moved.

The character of the Douglaffes, of which name the family of Hamilton now forms a principal branch, has always been fomewhat of the fame flamp with that of the riing Cullen. Genius, benevolence, franknefs, and conviviality of difpofit:on, have been, with them in general very prominent features: and if to that be added
a fpirit of frolic and diffipation, thefe will be accounted as only natural confequences of thofe youthful indulgences that fpring from an excefs of wealth at an early period of life, and the licence allowed to people of elevated rank. The Duke was therefore highly delighted with the fprightly character and ingenious converfa. tion of his new asquaintance. Receiving inftuction from him in a much more pleafing, and an infinitely eafier way than he had ever before obtained, the converfation of Cullen proved highly interefling to his Grace- No wonder then that he foon found means to get his fawourite Dotior, who was already the eftecm. ed acquaintance of the man through whofe hands all preferments in Scotland were obliged to pafs, appointed to a place in the univerfity of Glafgow, where bis fingular talents for difcharging the duties of the fation he now occupied foon became very contpicuous (A).

During his refidence in the country, however, feveral important incidents occurred, that ought not to be paffed over in filence. It was during this time that was formed a connection in bufinefs in a very humble line between two men, who became after wards eminently confpicuous in much more exalted fations. William, afterwards Doctor, Hunter, the famous lecturer on anatomy in London, was a native of the fame part of the country; and not being in affluent circumftances more than Cuilen, thefe two young men, fimulated by the impulfe of genius to profecute their medical Itudies with ardour, but thwarted by the narrownefs of their fortune, entered into a copartnery bufinefs as furgeons and apothecaries in the country. The chief end of their contract being to furnilh the parties with the means of profecuting their medical fudies, which they could not feparately fo well enjoy, it was Stipulated, that one of them alternately fhould be allowed to fudy in what college he inclined, during the winter, while the other fhould carry on the bulinefs in the country for their common advantage. In confequence of this agreement, Cullen was firft allowed to ftudy in the Univerfity of Edinburgh for one winter; but when it canse to Hunter's turn next winter, he, preferring London to Edinburgh, went thither. There his fingular neatnefs in diffecting, and uncommon dexterity in making anatomical preparations, his afflduity in Itudy, his mildnefs of manner, and pliability of temper, foon recommended him to the notice of Dr Douglafs, who then read lequres upon anatomy and midwitery there ; who engaged Hunter as an affifant, and whofe chair he afterwards filled with to much honour to himielf and fatisfaction to the public.

Thus was difolved, in a premature manner, a copartnery perhaps of as fingular a kind as is to be found in the annals of literature: nor was Cullen a man of that difpofition to let any engagement with him prove a bar to his partner's advancement in life. The articles were freely departed from by him ; and Cullen and Hunter
ever
(A) It was not, however, folely to the favour of thefe two great men that Cullen owed his literary fame. He tras recommended to the notice of men of fcience in a way ftill more honourable to himfelf. The difeafe of the Duke of Hamilton having refited the effect of the firt applications, Dr Clarke was fent for from Edinburgh; and he was fo much pleafed with every thing that Cullen had done, that he became his eulogif upon every occafion. Cullen never forgot this; and when Clarke died, gave a public oration in his praife in the Univerfity of Edinburgh ; which, it is believed, was the firlt of the kind in this country.

Cullen. ever after kept up a very cordial and friendly correfpondence; though, it is believed, they never from that time had a perfonal interview.

During the time that Cullen practifed as a country furgeon and apothecary, he formed another connection of a more permanent kind, which, happily for him, was not diffolved till a very late perind of his life. With the ardour of difpofition he poffeffed, it cannot be fuppofed be beheld the fair fex with indifference. Very early in life he took a ftrong attachment to an amiable woman, a Mifs Johntom, daughter to a clergyman in that neighbourhood, nearly of his ownage, who was prevailed on to join with him in the facred bonds of wedlock, at a time when he had nothing elfe to recommend him to ber except his perfon and difpofitions; for as to riches and pofieffions he had little of thefe to boalt of. She was beautiful, had great good fenfe, equanimity of temper, an amiable difpolition, and elegance of manners, and brought with her a little money, which, though it would be accounted nothing now, was fomething in thofe days to one in his fituation in life. After giving to him a numerous family, and participating with him the changes of fortune which he experienced, the peacefully departed this life in fummer 1786.

In the-year 1746, Cullen, who had now taken the degree of doctor in phyfic, was appointed a lecturer in chamiftry in the Univerfity of Glafgow: and in the month of October began his lectures in that fience. His fingular talents for arrangement, his diftinetnefs of enunciation, his vivacity of manner, and his knowledge of the fcience he taught, rendered his lectures interefting to the fuderts to a degree that had been till then unknown at that univerlity. He became, therefore, in fome meafure, adored by the Itudents. The former profefiors were eclipfed by the brilliancy of his reputation; and he had to experience all thofe little rubs that envy and difappointed ambition naturally threw in his way. Regardlefs, however, of thefe fecret chagreens, he prefied forward with ardour in his literary career; and, fupported by the favour of the public, he confoled himfelf for the contumely he met with from a few individuals. His practice as a phyfician increafed from day to day; and a vacancy having occurred in the year 1751, he tras then appointed by the king profeffor of medicine in that univerlity. This new appointment ferved only to call forth his powers, and to bring to light talents that it was not formerly known he polfeffed; fo that his fame continued to increafe.

As, at that period, the patrons of the univerfity of Edinburgh were confantly on the watch for the moft eminent medical men to fupport the rifing fame of the collere, their attention was foon directed towards Cullen; who on the death of Dr Plumber, profefior of chemitty, was, in 1756 unanimoully invited to accept the vacant chair. This invitation he accepted : and having refigned all his employ ments in Glafgow, he began his academical career in Edinburgh in the month of Ottober of that year, and there he refided till his death.

If the admifion of Cullen into the univerfity of Glafgow gave great firit to the exertions of the fudents, this was fill, if poflibic, more frongly felt in Edinburgh. Ch:mifty, which had been till that time of fmall account in that univerify, and wats attended to by very few of the fudcats, inflantly became a favourite

Audy; and the lectures upon that fcience were more frequented than any others in the univerfity, anatomy alone excepted. The fudents, in general, fpoke of Cullen with the rapturous ardour that is natural to youth when they are highly pleafed. Thefe enlogiums appeired extravagant to moderate men, and could not fail to prove difguting to his colleagues. A party was formed among the Itudents for oppofing this new favourite of the public ; and thefe Itudents by mifreprefenting the doctrines of Cullen to others who could not have an opportunity of hearing thefe doctrines themfelves, made even fome of the moll intelligent men in the univerfity think it their duty publicly to oppofe thefe imaginary tenets. The ferment was thus augmented; and it was fome time before the profeffors difcovered the arts by which they had been impofed upon, and univerfal harmony reftored.

During this time of public ferment Cullen went Ateadily forward, without taking any part himfelf in thefe difputes. He never gave ear to any tales tefpede ing his colleagues, nor took any notice of the doctines they taught: That fome of their unguarded frictures might at times come to bis knowledge, is not impofible; but if they did, they feemed to make no impreflion on his mind.

Thefe attempts of a party of fudents to lower the character of Cullen on his filt outfet in the coiverlity of Edinburgh having proved fruitlefs, his fame as a profefor, and his reputation as a phyfician, became more and more refpected every day. Nor could it well be otherwife: Cullen's profeflional knowledge was always great, and his manner of lecturing fingularly clear and intelligible, lively and entertaining ; and to his patients, his conduet in general as a phyfician was fo pleatirg, his addrefs fo affable and eng*ging, andhis manner fo open, fokind, and fo little regulated by pecuniary confiderations, that it was impofible for thofe who had occafion to call once for his medical affifance, ever to be fatisfied on any future occafion without it. He became the friend and companion of every family he vifited ; and \(\therefore\) is future acquaintance could not be difpenfed with.

But if Dr Cullen in his public capacity deferved to be admirel, in his private capacity by his fludents he deferved to be adored. His conduct to them was fo attentive, and the intereft he took in the private concens of all thofe fudents who applied to him for advice, was fo cordial and fo warm, that it was impoflible for any one who had a heart fufceptible of gencrous emotions, not to be enraptured with a conduet fo uncommon and fo kind. Among ingenuous youth, gratitude calily degenerates into rapture-into refpeat nearly allied to adoration. Thofe whon advert to this natural conftructinn of the human mind, will be at no lofs to account for that popularity that Cullen enjoyed-a prpularity, that thofe who attempt to weigh every occurrence by the cool fandatd of ecafon alone, will be inclined to think exceffive. It is forturatc, however, that the bulk of mankind will ever be influenced in their judgment not lefs by icelings and affections than by the cold and phlegmatic dictates of reafon. The adoration which genernus conduct excites, is the reward which nature hath appropriated exclufively to difinterefed beacficence. This was the fecret charm lhat Cullen ever carried about with him, which fufcinated fuch numbers of thofe who had intimate accefs to him.

This

Cullen.
\(\underbrace{\text { Cullent }}\)

Cullen. This was the power, which his envious opponents never could have an opportunity of feeling.

The general conduct of Cullen to his fudents was thus. With all fuch as he obferved to be attentive and diligent, he formed an early acquaintance, by inviting them by twos, by threes, or by fours at a time, to fup with him, converling with them on thefe occafons with the moft engaging eale, and freely entering with them on the fubjects of their Atudies, their amufements, their difficulties, their bopes, and future profpects. In this way, he ufually invited the whole of his numerous clafs, till he made himfelf acquainted with their abilities, their private character, and their objects of purfuit. Thofe among them whom he found moft alfiduous, beft difpofed, or the moft friendlefs, he invited the moft frequently, till an intimacy was gradually formed, which proved highly beneficial to them. Their doubts, with regard to their objects of ftudy, he liftened to with atrention, and folved with the molt obliging condefcenfion. His libeary, which confifted of an ercellent affortment of the belt books, efpecially on medical fubjects, was at all times open for their accommodation; and his advice in every cafe of difficulty to them they always had it in their power moft readily to obtain. They feemed to be his family ; and few perfons of diftinguifhed merit have left the univerfity of Edinburgh in his time with whom he did not keep up a correfpondence till they were fairly eftablifhed in bufinefs. By thefe means he came to have a molt accurate knowledge of the flate of every country, with refpect to pracitioners in the medical line; the only ufe he made of which knowledge, was to direct the fudents in their choice of places where they might have an opportunity of engaging in bufinefs with a reafonable profpect of fuccefs. Many, very many, able men has he thus put into a good line of bufinefs where they never could have thought of it themfelves, and they are now reaping the fruits of this beneficent forefight on his part.

Nor was it in th:s way only that he befriended the fludents at the univerfity at Edinburgh. Poffeling a benevolence of mind that made him ever think firft of the wants of others, and recollecting the difficu!ties that he himfelf had had to ftruggle with in his younger days, he was at all times fingularly attentive to their pecuniary concerns. From his general acquaintance among the fudents, and the friendly habits he was on with many of them, he found no difficulty in difcovering thofe among them who were rather in hampered circumftances, without being obliged to hurt their delicacy in any degree. To juch perfons, when their habits of fudy admitted of it, he was peruliarly attentive. They were more frequently invited to his houfe than others; they were treated with more than ufual kindnefs and familiarity ; they were conducted to his library, and encouraged by the molt delicate addrefs to borrow from it freely whatever books he thought they had occafion for; and as perfons in thefe circumftances were ufually more thy in this refpect than others, books were fometimes preffed upon them as a fort of conftraint, by the Doctor infifting to have their opinion of fuch or fuch paliages they had not read, and defiring them to carry the brok home for that purpofe. He, in fhort, behaved to them rather as if he courted their company, and frood \(1: n\) need of their acquaintance than they of his. He thus raifed them in the opinion of
their acquaintance to a much higher degree of eltimation than they could otherwife have obtained; which, to people whofe minds were deprefled by penury, and whofe fenfe of konour was fharpened by the confciouf. nefs of an inferiority of a certain kind, was fingularly engaging. Thus they were infpired with a fecret fenfe of dignity, which elevated their minds, and excited an uncommon ardour of purfuit, inftead of that melancho. ly inactivity which is fo natural in fuch circumftances, and which too often leads to defpair. Nor was he lef; delicate in the manner of fupplying their wants, than attentive to difcover them. He often found out fome polite excufe for refufing to take payment for a firft courfe, and never was at a lofs for one to an after courfe. Before they could have an opportunity of applying for a ticket, he would fometimes lead the converfation to fome fubject that occurred in the courfe of his lectures; and as his lectures were never put in writing by himfelf, he would fornetimes beg the favour to fee their notes, if he knew they had been taken with attention, under a pretext of affilling his memory. Sometimes he would exprefs a wifh to have their opinion of a particular part of his courfe, and prefented them with a ticket for that purpofe; and fometimes he refufed to take payment, under the pretext that they had not received his full courfe the preceding year, fome part of it having been neceffarily omitted for want of time, which he meant to include in this courfe. By fuch delicate addrefs in which he greatly excelled, he took care to foretun their wants. Thus he not only gave them the benefit of his own lectures, but by refufing to take their money, he alfo enabled them to attend thofe of others that were neceffary to complete their courfe of ftudies. Thefe were particular devices he adopted to individuals to whom economy was neceffary; but it was a general rule with him never to take money from any ftudent for more than two courfes of the fame fet of lectures, permitting him to attend thefe lectures as many years longer as he pleafed gratis.

He introduced another general rule into the univer. fity, that was dietated by the fame principle of difin. terefted beneficence, that ought not to be here paffed over in filence. Before he came to Edinburgh, it was the cuftom of medical profeffors to accept of fees for their medical affitance when wanted, even from medical ftudents themfelves, who were perhaps attending the profeffor's nwn lectures at the time. But Cullen never would take fees as a phyfician from any ftudent at the univerfity, though he attended them, when called in as a phyfician, with the fame atifuity and care as if they had been perfons of the firft rank, who paid him mof liberally. This gradually induced others to adopt a fimilar practice ; fo that it is now become a general rule for medical profeffors to decline taking any fees when their affifance is neceffary to a ftudent. For this ufeful reform, with many others, the ftudents of the univerfity of Edinburgh are folely indebted to the liberality of Dr Cullen.

The firt lectures which Cullen delivered in Edinburgh were on chemiftry ; and for many years he alfo gave clinical lectures on the cafes which occurred in the royal intirmary. In the month of February, 1763, Dr Allton died, after having begun his ufual courfe of lectures on the materia medica; and the magiftrates of Edinburgh, as patrons of that profefforfhip in the uni-

\section*{C U L [533] C U L}

Cullen.
verfity, appointed Dr Cullen to that chair, requefting that he would finifh the courfe of lectures that had been begun for that feafon; this he agroed to do; and though he was under a neceflity of going on with the courfe in a few days after he was nominated, he did not once think of reading the lectures of his predeceffor, but refolved to deliver a new courfe entirely his own. The popularity of Cullen at this time may be guefled at by the increafe of new ftudents who came to attend his courfe in addition to the eight or ten who had entered to Dr Allton. The new fudents exceeded 100. An imperfect copy of thefe lectures thus fabricated in halte, having been publifhed, the Doctor thought it necefliary to give a more correct edition of them in the latter part of his life. But his faculties being then much impaired, his friends looked in vain for thofe Itriking beauties that characterized his literary exertions in the prime of life.

Some years afterwards, on the death of Dr White, the magittrates once more appointed Dr Cullen to give lectures on the theory of plyyfic in his Read. And it was on that occafion Dr Cullen thought it expedient to refign the chemical chair in favour of Dr Black, his former pupil, whofetalentsin that department of fcience were then well known, and who has filled the chair ever fince with great fatisfaction to the public. Soun after, on the death of Dr Rutherford, who for many years had given lectures with applaufe on the practice of phyfic, Dr John Gregury, (whofe name can never be mentioned by any one whinhad the pleafure of his acquaintance, without the warme!t tribute of a grateful refpect) having become a candidate for this placealong with D : Cullen, a fort of compromife took place between them, by which they agreed each to give lectures alternately on the theory and on the pradice of phyfic during their joint lives, the longet furvivor being allowed to hold either of the claffes he fhould incline. In confequence of this agreement Dr Cullen delivered the fir \(\ell\) courfe of lectures on the practice of phyfic in winter 1766, and Dr Gregory fucceeded him in that branch the following year. Never perlaps did a literary arrangement take place that could have proved more beneficial to the fudents than this. Both thefe men poffeffed great talents, though of a kind extremely difimilar. Both of them had certain failings or defects, which the other was aware of, and counteracted. Each of them knew and refpected the talents of the other. They co-operated, therefore, in the happieft manner, to enlarge the underfanding, and to forward the purfuits of their pupils. Unfortunately this arrangement was foon deftroyed by the unexpected death of Dr Gregory, who was cut off in the flower of life by a fudden and unforefeell event. After this time, Cullen continued to give lectures on the practice of phyfic till a few months before his death, which happencd on the 5 th of lebruary 1790 , in the 77 th year of his age.

In drawing the character of Dr Cullen, Dr Ander. ron, to whom we are indebted for this 1 ketch, obferves, that in fcientific purfuits men may be arranged into two grand claffes, which, though greatly diferent from each other in their extremes, yet approximate at times fo near as to be blended indifcriminately together; thofe who polfefs a talent for detail, and thofe who are endowed with the faculty of arrangement. The firt may be faid to vicw objects individually as through a

Suppl. Vol. I.
microfcope. The field of vifion is confined; but the objects included within that field, which mult ufually be confidered fingly and apart from all others, are feen with a wondrous degree of accuracy and diftinctnefs. The other takes a fweeping view of the univerfe at large, confiders every objeat he perceives, not individtally, but as a part of one harmonious whole: His mind is therefore not fo much employed in examining the fcparate parts of this individual object, as in tracing it* relations, connections, and dependencies, on thofe around it.-Such was the turn of Cullen's mind. T'he talent for arrangement was that which peculiarly diftinguifhed him from the ordinary clafs of mortals; and this talent he poffeffed perhaps in a more diftinguifhed degree than any other perfon of the age in which he lived. Many perfons exceeded him in the minute knowledge of particular departments, who, knowing this naturally looked upon him as their inferior; but poffeffing not at the fame time that glorious faculty, which, " with an eye wide roaming, glances from the earth to heavens" or the charms which this talent can infufe into congenial minds, felt difguft at the pre-eminence he obtained, and aftonifhment at the means by which he obtained it. An Ariftotle and a Bacon have had their talents in like manner apprecinted; and many are the perfons who can neither be exalted to fublime ideas with Homer, nor ravifhed with the natural touches of a Shakefpeare. Such things are wifely ordered, that every department in the univerfe may be properly filled by thofe who have talents exactly fuited to the tafk afligned them by heaven.

Had Cullen, however, poffeffed the talents for arrangement alone, fmall would have been his tirle to that high degree of applaufe he has attained. Without a knowledge of facts, a talent for arrangement produces nothing but chimeras; without materials to work upon, the ftructures which an over-heated imagination may rear up are merely "the bafelefs fabric of a vifion." No man was more fenfible of the jultnefs of this remark than Dr Cullen, and few were at greater pains to avoid it. His whole life, indeed, was employed, almoft without interruption, in collecting facts. Whether he was reading, or walking, or converfing, thefe were continu. ally falling into his way. With the keen perception of an eagle, he marked them at the firf glance; and without flopping at the time to examine them, they were Itored up in his memory, to be drawn forth as occalion required, to be confronted with other facts that had been obtained after the fame manner, and to have their truch afcertained, or their falfity proved, by the evidence which thould appear when carefilly examined at the impartial bar of jultice. Without a memory retentive in a fingular degree, this could not have been done; but fo very extraordinary was Dr Cullen's memory', that till towards the very decline of life, there was farcely a faet that had ever occurred to him which he could not readily recollect, with all its concomitant circumltances, whenever he had occafion to refer to it. It was this faculty which fo much abridged his labour in Itudy, and enabled him fo happily to avail himfelf of the labour of nthers in all his literary fpeculations. He often reaped more by the converfation of an hour than another man would liave done in whole weeks of laborious ftudy.

In his prelections, Dr Cullen never attempted to
read.

Cullen, -

\section*{C U L [534] C U L}

Cullen.
read. His lectures were delivered wiva voce, without having been previouly put into writing, or thrown in. to any particular arrangement. The vigour of his mind was fuch, that nothing more was neceffary than a few fhort notes before him, merely to prevent him from varging from the general order he had been accuftomed to oblerve. This gave to his difcourfes an eafe, a vivacity, a variety, and a force, that are rarely to be met with in academical difcourfes. His lectures, by confequence, upon the fame fubject were never exactly the fame. Their general tenor indeed was not much varied; bur the particular illuftrations were always new, well fuited to the circumftances that attracted the general attention of the day, and were delivered in the palticular way that accorded with the cat of mind the prelector found himfelf in at the time. To thefe circumfances mult be afcribed that energetic artlefs elocution, which rendered his lectures fo generally captivating to his hearers. Even thofe who could not follow him in thofe extenfive views his penetrating mind glanced at, or who were not able to underfand thofe apt allufions to collateral objects which he could only rapidly point at as he went along, could not help being warmed in fome meafure by the vivacity of his manner. But to thofe who could follow him in his rapid career, the ideas he fuggefted were fo numerous, the views he laid open were in extenfive, and the objects to be attained were fo important-that every active faculty of the mind was roufed; and fuch an ardour of enthufiafm was excited in the profecution of fudy, as appeared to be perfealy inexplicable to thofe who were merely unconcerned fpectators. In confequence of this unfhackled freedom in the compofition and delivery of his lecturcs, every circumftance was in the niceft unifon with the tone of voice and expreffion of countenance, which the particular caft of mind he was in at the time infpired. Was he joyous, all the figures introduced for itinfration were fitted to excite hilarity and good humour: was he grave, the objects brought under view were of a nature more folemn and grand: and was he peevif, there was a peculiarity of manner in thought, in word, and in action, which produced a molf ftriking and interefting effect. The languor of a nervelefs unilormity was never experienced, nor did an abortive attempt to excite emotions that the fpeaker himfelf could not at the time feel, ever produce thofe difcordant ideas which prove difgufting and unpleafing.
It wrould leena as if Dr Cullen had confidered the proper bufinefs of a preceptor to be that of putting his pupils into a proper train of fudy, fo as to enable them to profecute thofe fludies at a future period, and to carry them on much farcher than the flort time allowed for academical prelections would admit. He did nor, therefore, fo much frive to make thofe who attended his lectures deeply verfed in the particular details of objects, as to give them a general view of the whole fubject; to fhew what had been already attained reipecting it ; to point out what remained yet to be difcovered; and to put them into a train of fudy that fiould enable them, at a future period, to remove thofe difficulties that had hitherto obftrutted our progrefs; and thus to advance of themfelves to farther and farther degrees of perfection. If thefe were his views, nothing could be more happily adapted to them than the mode he invariably purfued. He firt drew, with the ftribing toucbes of a mafter, a rapid and general out-
line of the fubject, by which the whole figure was feen at once to fart boldly from the canvas, ditind in all its parts, and unmixed with any other object. He then began anev to retrace the picture, to touch up the lef. fer parts, and to finith the whole in as perfect a manner as the flate of our knowledge at the time would permit. Where materials were wantine, the picture there continued to remain imperfect. The wants were thus rendered obvious; and the means of fupplying thefe were pointed out with the molt careful difcrimination. The fludent, whenever he looked back to the fubject, perceived the defects; and his hopes being awakened, he felt an irrefifible impulfe to explore that hitherto untrodden path which had been pointed out to him, and fill up the chafm which till remained. Thus were the active faculties of the mind moft powerfully excited; and in?lead of labouring himfelf to fupply deficiencies that far exceeded the power of any one man to accomplifh, he fet thoufands at work to fulfil the tafk, and put them into a train of going on with it, when he himfelf fhould be gone to that country "from whofe dread bourne no traveller returns."

It was to thefe talents, and to this mode of applying them, that Dr Cullen owed his celebrity as a profeffor; and it was in this manner that he has perhaps done more towards the advancement of fcience than any other man of his time, though many individuals might perhaps be found who were more deeply verfed in the particular departments he taught than he himfelf was. Chemiftry, which was before his time a moft difgulting purfuit, was by him rendered a ftudy fo pleafing, fo eafy, and fo attractive, that it is now profecured by numbers as an agreeable recreation, who but for the lights that were thrown upon it by Cullen and his pupils, would never have thought of engaging in it at all; though perhaps they never heard of Cullen's name, nor have at this time the moft diflant idea that they owe any obligations to him; and the fame may be faid of the other branches of fcience which he taught.

According to a man who knew him well, there are three things which eminently dittinguifhed Cullen as a profeffor. "The energy of his mind, by which he viewed every fubject with ardour, and combined it in. mediately with the wbole of his knowledge.
"The ficientific arrangement which he gave to his fubject, by which there was a lucidus ordo to the dullent fcholar. He was the firl perfon in this country who made chemiftry ceafe to be a chaos.
"A wonderful art of intereating the Audents in every thing which he taught, and of raifing an emulative enthutiafm among them."

We are well aware that this character will by many be deemed an extravagant panegyric; but having no opportunity of judging for ourfelves, we would rather adopt from others an extravagant panegyric than an unmerited cenfure. Dr Anderfon himfelf admits that Cullen's character was far from perfect ; and, in the opinion of moft other men with whom we have convcrfed on the futject, and who were at the fame time qualified to form an eflimate of his mental powers, his imagination was not balanced by his judgment. Hence the common remark in the univergity of Edinburgh, that Dr Cullen was more fucceffful in demolifhing the theories of others than in giving flability to thofe which were reared by himfelf.

Dr Culler's external appearance, though friking and

\section*{C U M}

Culpepper not unpleafing, was not elegant. His countenance II
Cumberland. was expreffive, and his eye in particular remarkably lively, and at times wonderfully penetrating. In his perfon he was tall and thin, ftooping very much about
the fhoulders. When he walked, he had a contemplative look, and did not feem much to regard the objeets around him.

CULPEPPER, a county in Virginia, between the Blue Ridge and the tide waters, which contain 22,105 inhabitants, of whom 8226 are flaves. The courthoufe of this county is 45 miles from Frederickßurg, and 95 from Charluttefville.-Morse.

CUMANA, or Comana, the capital of New-Andalufia, a province of Terra Firma, S. America. It fometimes gives its name to the province. The Spaniards built this city in 1520 , and it is defended by a ftrong caltle. This town, fays Dampier, flands near the mouth of a great lake, or branch of the fea, called Laguna de Carriaco, about which are feveral rich towns; but its mouth is fo fhallow that no fhips of burden can enter it. It is fituated 3 leagues \(S\). of the N. Sea, and to the S. W. of Margaretta, in about 10 . 20. N. lat. and in 64. 20. W. long. -ib.

CUMANAGATE, a fmall town in a bay on the coalt of Terra Firma, in the province of Cumana or Andalufia. It is fituated on a low flat hore, which abounds with pearl nyters.- \(i b\).

CUMBERLAND, a harbour in the ifland of Juan Fernandes.-ib.

Cumbrrland, a harbour on the S. E. part of the ifland of Cuba, and one of the fneft in the Wefl-In. dies, capable of theltering any number of Chips. N. lat. 20. 30. W. long. 76. 50. It is 20 leagues E. from St Jago de Cuba.-ib.

Cumberland, an ifland on the coaft of Camden co. Georgia, between Prince William's found at the S. end, and the mouth of Great Satilla liver at its N. end, and 20 miles S. of the town of Frederica. Before the revolution there were two forts, called William and St Andrews, on this inland. The former, at the S. end, commanded the inlet of Amelia's found, was frongly pallifadoed and defended by 8 pieces of cannon, and had barracks for 200 men, forre-houfes, \&c.; within the pallifadoes were fine fprings of water.-ib.

Cumberland, a harbour on the E. fide of Wafhington's ifles, on the N. W. coatt of N. America. It lies S. of Skitikifs, and N. of Cummafhawaa.-ib.

Cumberland, a bay in the mof northern part of America; its mouth lies under the polar circle, and runs to the N. W. and W. and is thought to communicate with Baffin's bay on the N.-ib.

Cumberland Houfe, one of the Hudfon bay com. pany's factories, is fituated in New South Wales in North America, 158 miles E. N. E. of Hudfon's houfe, on the S. fide of Pine-Illand lake. N. lat. 53. 56. 4 I. W. long. 102. 13.-ib.

Cumberland, a fort in New-Brunfwick, fituated at the head of the bay of Fundy, on the E. fide of its northern branch. It is capable of accommodating 300 men. -ib.
Cumberland, a county of New-Brunfwick, which comprehends the lands at the head of the bay of Fundy , on the bafon called Chebecton, and the rivers which empty into it. It has feveral townthips; thofe which are fetted are Cumberland, Sackville, Amherf,

Hilliborough, and Hopewell. It is satered by the Cumberrivers Au Lac, Mifliqualh, Napan, Macon, Memramcook, Petcoudia, Chepodice, and Herbert. The 3 firft rivers are navigable 3 or 4 miles for veffels of 5 tons. The Napan and Macon are fhoal rivers; the Herbert is navigable to its head, 12 miles, in boats; the other; are navigable 4 or 5 miles.-ib.

Cumberland, a town of New-Brunfwick, in the county of its own name. Here are coal mines.- ib.

Cumberland Co. in the diffrict of Maine, lies between York and Lincoln counties; has the Atlantic ocean on the S. and Canada on the N. Its fea coall, formed into numerous bays and lined with a multitude of fruitful iflands, is nearly 40 miles in extent in \(\Rightarrow\) flraight line. Saco river, which runs S. eafterly into the ocean, is the dividing lime between this county and York on the S. W. Cape Elizabeth and Cafco bay are in this county. Cumberland is divided into 24 townfhips, of which Portland is the chief. It contains 25,450 inhabitants.-ib.

Cumberland Co. in New.Jerfey, is bounded S. by Delaware bay, N. by Gloucetter co. S. E. by Cape May, and W. by Salem co. It is divided into 7 townThips, of which Fairfield and Greenwich are the chief; and contains 8248 inhabitants, of whom 120 are flaves.-ib.

Cumberland, the N. eafternmon townfhip of the flate of Rhode-Ifland, Providence co. Pawtucket bridge and falls, in this town, are 4 miles N. E. of Providence. It contains 1964 inhabitants, and is the only town in the fate which has no flaves.- \(i b\).

Cumberland Co. in Pennfylvania, is bounded N. and N. W. by Mifflin ; E. and N. E. by Sufuuehanna river which divides it from Dauphin; S. by York, and S. W. by Franklin co. It is 47 miles in length and 42 in brcadth, and has io townhips, of which Catlifle is the chief. The county is generally mountainous; but between North and South mountain, on each fide of Conedngwinet creek, there is an extenfive, rich, and well cultivated valley. It contains \(\mathbf{1 8 , 2 4 3}\) inhabitants, of whom 223 are flaves.- \(i b\).

Cumberland, a townfhip in York co. Pennfylvania.
Alfo the name of a townihip in Wafhington co. in the fame flate.-ib.

Cumberland Co. in Fayette diftrict, N. Carolina, contains 8671 inhabitants, of whom 2181 are flaves. Chief town Fayetteville.-ib.

Cumberland, a townfhip of the above county, in N. Carolina.-ib.

Cumberland, a poft town and the chief townithip of Alleghany co. Maryland, lies on the N. bank of a great bend of Potowmack river, and on both fides of the mouth of Will's creek. It is 148 miles W. by N. of Baltimore, 109 meafured miles above Georgetown, and about 105 N . W. of Wafhington city. Fort Cumberland flood formerly at the W. fide of the mouth of Will's creek.-ib.

Cumberland Co. in Virginia, on the N. fide of Appamatox river, which divides it from Prince Edward. It contains 8153 inhabitants, of whom 4434 are flaves. The court-houfe is 28 miles from Powhatan court-houfe, and 52 from Richmond.-ib.

Cumberland Mountain, occupies a part of the uninhabited country of the flate of Tenneffee, between the diltricts of Waflington and Hamilton and Mero \(3 Z 2\)
diftriat;

Cumber
land. \(\underbrace{\text { land. }}\)

\section*{\(\mathrm{C} U \mathrm{R} \quad\left[\begin{array}{lll}536\end{array}\right] \quad \mathrm{C}\) U R}

Cumber- diftrict ; and between the two firft named diftricts and land 11 Curfeu\(\underbrace{\text { Eell. }}\) the fate of Kentucky. The ridge is about 30 miles broad, and extends from Crow creek, on Tenneffee river from S. W. to N. E. The place where the Tenneffee breaks through the Gieat ridge, called the Whirl or Suck, is 250 miles above the Mufcle thoals. Limefone is found on both fides the mountain. The mountain contits of the molt ftupendous piles of crasgy rocks of any mountain in the weftern country. In ieveral parts of it, it is inacceffible for miles, even to the Indians on foot. In one place particularly, near the fummit of the mountain, there is a moft remarkable ledge of rocks of about 30 miles in length, and 200 feet thick, fhewing a perpendicular face to the S. E. more noble and grand than any artificial fortification in the known world, and apparently equal in point of regularity,-ib.

Cumberland River, called by the Indians" Shawanee," and by the French "Shavanon," falls into the Ohio to miles above the mouth of Tenneffee river, and about 24 miles due E . from fort Maffac, and 1113 below PittBurg. It is navigable for large veffels to Nathville in Tennefiee, and from thence to the mouth of Obed's or Obas river. The Caney fork, Harpeth, Stones, Red, and Obed's, are its chief branches; fome of them are navigable to a great diftance.

The Cumberland mountains in Virginia feparate the head waters of this river from thofe of Clinch river. It runs \(S\). W . till it comes near the S . line of Kentucky, when its courfe is wefterly, in general, through Lincoln co. receiving many fireams from each fide; thence it flows S. W. into the thate of Tenneffee, where it takes a winding courfe, inclofing Sumner, Davidfon, and Tenneffee counties; afterwards it takes a N . weftern direction and re-enters the flate of Kentucky; and from thence it preferves nearly an uniform diftance from Teaneffee river to its mouth, where it is 300 yards wide. It is 200 yards broad at Nafhville, and its whole length is computed to be above 450 miles.-ib.

Cumberland-River, a place fo called, where a poft office is kept, in Tenneffee, 13 miles from Cumberland mountain, and 80 from the Crab-Orchard in Kentucky,-ib.

CUMMASHAWAS, or Cumma/bazwaa, a found and village on the \(E\). fide of Wahington ifland, on the N. WV. coaft of N. America. The port is capacious and fafe, and its month lies in 53.2.30. N. lat. and in 228. 22. W. long. In this port Capt. Ingraham remained fome time; and he obferves, in his journal, that here, in direct oppofition to moft other parts of the world, the women maintained a precedency to the men in every point; infomuch that a man dares nor thade without the concurrence of his wife; and that he has often been witnefs to men's being abufed for parting with flsins before their approbation was obtained : and this precedency often occafioned much difturhance.--ib.

CUMMINGTON, a townhip in Hamphire co. Malfachufetts, having 873 inhabitants; lying about 20 miles N. W. of Northampton, and 120 N. W. by W. of Bofton. It was incorporated in 1779.- \(i b\).

CURFEU-Bell (fee Curfew, Encycl.), called in the law Latin of the middle ages ignitegium or pyritegium, and in French, cuvre-feu \(\rightarrow\) was a fignal for all
perfons to extinguifh their fires at a eertain hour. In thofe ages people made fires in their houfes in a hole or pit in the centre of the floor, under an opening formed in the roof; and when the fire was burnt out, or the family went to bed, the hole was thut by a cover of wood or of earth. This practice ftill prevails among the cottagers in fome pasts of Scotland, and we doubt not of other countries. In the dark ages, when all ranks of pcople were turbulent, a law was almof everywhere eftablifhed, that the fire floould be extinguifhed at a certain time in the evening; that the cover fhould be put over the fire-place; and that all the family thould retire to reft, ir at leaft keep within doors. The time when this ought to be done was tignified by the ringing of a bell, called therefore the curfeu-bell or ignilegium. The law of William the Conqueror, which introduced this practice into England, as has been mentioned in the Encyclupædia, was abolithed by Henry 1 , in 1 too.

The ringing of the curfeu-bell gave rife to the prayer bell, as it is called, which is ftill retained in fome Proteftant countries. Pope John XXIII, with a view 10 avert certain apprehended misfortunes, which rendered his life uncomfortable, gave orders, that every perfon, on hearing the ignitegium fhould repeat the Ave Maria three times. When the appearance of a comet, and a dread of the Turks, afterwards alarmed all Chriftendom, Pope Calixtus III. increafed thefe periodical times of prayer, by ordering the prayer-bell to be rung alfo at noon. Beckmann's Hifiory of Inventions.

CURRITUCK \(C o\). is fituated on the fea coaft of Edenton diftrif, N. Carolina, and forms the N. E. corner of the ftate; being bounded \(E\). by Currituck found, N. by the ftate of Virginia, S. by Albemarle found, and W. by Camden co.; containing 5219 in habitants, of whom 1103 are flaves. Difmal fwamp lies in this county, on the S. fide of Albemarle found, and is now fuppofed to contain one of the moft valua. ble rice eftates in America. In the midft of this Difmal, which contains upwards of 350,000 acres, is a lake of about II miles long and 7 miles broad. A navigable canal, 20 feet wide and \(5 \frac{1}{2}\) miles long, connects the waters of the lake with the head of Skuppernong river. About 500 yards from the lake, the proprietors have erected feveral law mills: and as the water of the lake is higher than the banks of the canal, the company can at any time lay under water about 10,000 acres of rich fwamp, which proves admirably fitted for rice.-Morse.

Currituck, or Caratunk, a townhip in the diftrict of Maine, 28 miles above Norridgewalk. In 1792 this was the uppermoft fettlement on Kennebeck river, and then confifted of about 20 families.-mib.

CURVE of Equagle Approach. It was firt propoled by Leibnitz, namely, to find a curve, down which a body defcending by the force of gravity thall make equal approaches to the horizon in equal portions of time. It has been found by Bernoulli and others, that the curve is the fecond cubical parabola, placed with its vertex uppermoft, and which the deficending body muft enter with a certain determinate velocity. Varignon rendered the queftion general for any law of gravity, by which a body may approach towards a given point by equal fpaces in equal times. And Maupertuis alfo refolved the problem in the cafe of a boday
defeending

\section*{C U S [537] C Y C}

Cufowilla defcending in a medium which refifts as the fquare of the velr city.
CUSCOWILLA, in Eeaft-Florida, is the capital of the Alachua tribe of Indians, and fands in the mof pleafant fituation that could be defired in an in. land country; upun a high, fwelling ridge of fand hills, within 300 or 400 yards of a large and beantiful lake, abu unding with fith and wild fowl. The lake is termated on one fide by extenfive furefts, confifting of orange groves, overtopped with grand magnolias, palms, puplar, thla, live-oaks, \&c.; on the other fide by exten| ve green plains and meadows. The town confirts of 30 habrtations, each of which confifts of 2 houfes, neally of the fame fize, large and convenient, and covered clofe with the bark of the cyprefs tree. Each has a little garden fpot, containing corn, beans, tcbacco, and other vegetables. In the great Alachua favenna, about 2 miles diftant, is an inclofed plantation, which is worked and tended by the whole community, yet every fanily has its particular part. Each family gathers and depofits in its granary its proper fhare, letting apart a fmall contribution for the public granary, which flands in the mida of the plantation. -Morse.

CUSHAI, a fmall river which empties into Albemarle frund, between Chowan and the Roanoke, in North Carolina.-ib.

CUSHING, a townhip in Lincoln co. diftrict of Maine, feparated from Warren and Thomation by St George's river. It was incorporated in 1789 , cuntains 942 inhabitants, and lies 216 miles W. by N. of Bofton.-ib.

CUSSENS, a fmall river in Cumberland co. Maine, which runs a S. E. courfe to Cafco-bay, between the town of Freeport and North Yarmouth.-ib.

CUSSEWAGA, a fettlement in Pennfylvania.-ib.
CUSSO, or Banksia Abyssinica, is a beautiful and ufful tree, indigenous to the highi country of Abyffinid. At leaft Mr Bruce, who has given of it the only defcription which we have feen, fays, that he never faw it in any other part of Afia or Africa. It feldom grows above twenty feet high, very rarely ftraight, generally crouked or inclined. Its leaf, which is of a deep unvarnithed green, having the fore part covered with foft hair or d wn , is about \(2 \frac{1}{4}\) inches long, divided by a ftrong rib into two unequal divifions, of which the upper is broader and larger than the lower. It is nure indented than even the nettle leaf, which it in fome meature refembles, only the leaf of the Ciuffo is narrower and longer.

Thofe leaves grow two and two upon a branch, having between each two the rudiments of two pair of leaves, which probably are deciduous; but the branch is terminated with a fingle leaf or fipula at the print. The end of this Atalk is broad and Atrong, like that of a palm branch. It is not folid like the gerid of the date tree, but opens in the part that is without leaves about an inch and a half from the bottom, and out of this aperture proceeds the flower. There is a round ftalk, bare for about an inch and a quarter, from which proceed crooked branches with fingle flowers attached to their ends; the ftalk that carries thefe proceeds out of every crook or geniculation. The whole clufter of flowers has very much the thape of a clutter of grapes ; the ftalks which fupport it refomble the ftalks of the
\(\underbrace{\mathrm{Cu}_{u}{ }^{\prime \prime} \mathrm{f}_{\mathrm{o}} \text {. }}\)
grape; and a very few fmall leaves are fcattered through the clufter of flowers.
"The calyx or flower cup is of a greeni/h colour, tinged with purple; when fully blown it is altogether of a deep red or purple; the corolla is white, and confifts of tive petals ; in the midt is a fhort pittil, with a round head, furrounded by eight Itamina of the fame form, loaded with yellow farina. The cup confits of five petals, which much refemble another flower; they are rounded at the top, and nearly of an equal breadth every way. The leed is very imall, fmaller than even the femen fantonicum, and being likewife very bitter, it is ufed in Abyfinia as a vermifuge. From its fmallnefs, however, and its being very eafily fhed, no great quantity of it is ever gathered, and therefore the flower is often fubitituted in its fead. The Abyfinians, fays our author, of both fexes, and at all ages, are tinubled with the fort of worm called afcarides, of which every individual evacuates a large quantity once a-month The method of promating thefe evacuations is by infufing at handful of dry cuffo fowers in about two Englifh quarts of bouza, or the beer they make of teff (See Tepf Encycl.), and after it has been fleeped all night, the nest morning it is fit for ufe.
"The bark of the tree is fmooth, of a yellowifh white, interfperfed with brown freaks which pafs through the whole body of the tree. It is not firm or hard, but rather ftringy and reedy. On the upper part, before the firit branch of leaves fet out, are rings round the trunk, of fmall filaments, of the contiftence of horfe hair : thefe are generally fourteen or fixteen in number, and are a very remarkable charateriftic belonging to the tree."

From this defcription, which, it muft be confeffed, is not remarkable for perficuity, and from an infpection of the figure which Mr Bruce has given of the cuffo, we are inclined to rank it with the palms, as a new genus neareft to the caryota.

CUVETTE, or Cunetre, in fortification, is a kind of ditch within a ditch, being a pretty deep trench, about four fathoms broad, fink, and running along the middle of the great dry ditch to hold water ; ferving buth to keep off the enemy, and to prevent him from mining.

CUYA, or Cutio, a province of Chili, in S. America, and in the government of Santa Cruz, in the Sierra. The principal commodities are honey and wax. The clief town is St John de Frontiera.-Morse.

CUZUMEL, an ifland in the province of Yucatan, and audience i, Mexicn, fituated in the bay of Honduras; 15 leagues long and 5 broad; its principal town i- Santa Cruz. N. lat. 19. long. 87.-ib.

CYCLE of Indiction, is a ieries of 15 years, returning conftantly around like the other cycles, and commenced from the third year before Chrift; whence it happens that it 3 be added to any given year of Chrift, and the fum be divided by 15 , what remains is the year of the indiation

CYCLOID fee Encycl.) is a curve which is thus generated: Suppofe a wheel or circle to roll along a firaight line till it has completed juf one revolution; a nail or point in that part of the circumference of the circle, which at the beginning of the motion touches the ftraight line, will at the end of the revolution, have defcribed on a vertical plane a cycloid.

\footnotetext{
\footnotetext{
\(\qquad\)
}
}

\section*{D A 1}

DAGELET, the name given by La Peroufe, the celebrated though unfortunate navigator, to an ifland on the coalt of Corea (See Corea Encycl.) which he difcovered in the year \({ }^{17} 87\). It is little more than three leagues in circumference; and our author almoft made its circuit at the diflance of a mile without finding bottom. This fmall fpot is very fteep, but covered with the fineft trees from the fea-fhore to the fummit. A rampart of bare rock, like a wall, encircles the whole outline of it, with the exception of feven little fandy creeks where it is poffible to land. In thefe creeks the Frenchmen faw upon the flochs fome boats of a conftruction altogether Chinefe; but the fight of their fhips frightened the workmen, who fled from their dock-yard into the wood, which was not more than fifiy paces ditant. As a few huts were feen, but neither villages nor cultivation, La Peroufe concluded that the ifland is without inhabitants, and that the men whom he faw at work were Corean carpenters, who during the fummer months go with provifion to Dagelet for the purpofe of bullding boats, which they fell upon the contineur. He places the north ealt point of this ifland in N. Lat. \(37^{\circ} \cdot 25^{\prime}\) and E. Long. \(129^{\circ} \cdot 2^{\prime}\). from Paris.

DAGSBOROUGH, a poft town in Suffex co. Delaware, fituated on the N. W. bank of Peper's creek, a branch of Indian river, and contains about 40 houfes. It is 19 miles from Broad hill, or Clowes', and 127 S. from Philadelphia.-Morse.

DAIRY is a word which fignifies fometimes the art of making varions kinds of food from milk; fometimes the place where milk is manufactured; and fometimes the management of a milk-farm. On the dairy, in the firlt and feeond of thefe fenfes, enough has been faid in the Encyclopadia under the titles Butrer, Cheese, and DAIRY; on the management of a milk-farm that work contains nothing.

When a dairy is eftablifhed, the undertaker may fometimes think it his intereft to obtain the greatelt poffible quantity of produce; fometimes it may be more beneficial for him to have it of the fineft quality; and at other times it may be neceffary to have both thefe objects in view, the one or the other in a greater or lefs proportion; it is therefore of importance that he fhould know how he may accomplifh the one or the other of there purpofes in the eafieft and moft direet manner.

To be able to convert his milk to the highelt poffible profit in every cafe, he ought to be fuily acquainted with every circumfance refpecting the manufacture both of butter and of cheefe: as it may in fome cafes happen, that a certain portion of that milk may be more advantageoully converted into butter than into cheefe, while another portion of it would return more profit if made into cheefe.

The firt thing to be adverted to in an undertaking of this nature is to choofe cows of a proper fort. A. mong this clais of animals, it is found by experience, that fome kinds give milk of a much thicker confiftence, and richer quality, than others ; nor is this richnefs of quality neceffatily connected with the fmallinefs of the quantity yielded by cows of nearly an equal fize; it therefore behoves the owner of a dairy to be peculiarly attentive to this circumtance. In judging of the value of a cow, it ought rather to be the quantity and the quality of the cream produced from the milk of the cow, in a given time, than the quantity of the milk itfelf : this is a circumlance that will be fhewn hereafter to be of more importance than is generally imagined. The fmall cows of the Alderney breed afford the richeft milk hitherto known; but individual cows in every country may be found, by a careful felection, that afford much thicker milk than others; thefe therefore ought to be fearched for with care, and their breed reared with attention as being peculiarly valuable.

Few perfons, who have had any experience at all in the dairy, can be ignorant, however, that in comparing the milk of two cows, to judge of their refpective qualities, particular attention mult be paid to the time that has elapfed fince their calving; for the milk of the fame cow is always thinner foon after calving than it is afterwards ; as it gradually becomes thicker, though generally lefs in quantity in proportion to the time fince the cow has calved. The colour of the milk foon after calving is richer than it is afterwards; but this, efpecially for the firft two weeks, is a faulty colour, that ought not to be coveted.

To make the cows give abundance of milk, and of a good quality, they muft at all times have plenty of food. Grafs is the beft food yet known for this purpofe, and that kind of grafs which fprings up fpontaneoully on rich dry foils is the beft of all. If the temperature of the climate be fuch as to permit the cows to graze at eafe throughout the day, they fhould be fuffered to range on fuch patures at freedom; but if the cows are fo much incommoded by the heat as to be prevented from eating through the day, they ought in that cafe to be taken into cool thades for protection ; where, after allowing them a proper time to ruminate, they thould be fupplied with abmindance of green food frelh cut for the purpofe, and given to them by hand frequently, in fmall quantities frefh and frefh, fo as to induce them to eat it with pleafure. When the heat of the day is over, and they can remain abroad with eafe, they may be again turned into the pafture, where they thould be allowed to range with freedom all night, during the mild weather of fummer.
Cows, if abundantly fed, fhould be milked three times a-d.ly during the whole of the fummer feafon (1); in
(1) If cows be milked only twice in the day (\(2+\) hours), while they have abundance of fucculent food, they will yield a much fmaller quantity of milk, in the fame time, than if they be milked three times. Some atten-

\section*{DA I [539\(] \quad\) D A I}
the morning early, at noon, and in the evening, jul before night. fall. In the choice of perfons for milking the cows, great caution fhould be employed; for if that operation be not carefully and properly performed, not only the quantity of the produce of the dairy will be greatly diminithed, but its quality also will be very much debated; for if all the milk be not thoroughly drawn from a cow when the is milked, that portion of milk which is left in the udder feems to be gradually absorbed into the fytem, and Nature generates no more than to fupply the waite of what has been taken away. If this leffened quantity be not again thoroughly drawn off, it occafions a yet farther diminution of the quadtit of milk generated ; and thus it may be made to proceed in perpetual progrefition from little to left, till none at all is produced. In fort, this is the practice in all cafes followed, when it is meant to allow a cow's milk to dry up entirely, without doing her hurt. In this manner, therefore, the profits of a dairy might be wonderfully diminished; fo that it much behoves the owner of it to be extremely attentive to this circumStance, if he withes to avoid ruin. It ought to be a rule without an exception, never to allow this important department to be entrufted, without controul, to the management of hired fervants (B). Its importance will be fill more manifeft from what follows.

It is to Dr James Anderfon that we ate indebted for there judicious observations, as well as for the following aphorifms which though they may be in part known to attentive houfewives, he has reafon to believe are not commonly adverted to as their importance deferves.
Aphorifn
"Of the milk that is drawn from any cow at one time, that which comes off at the fire is always thinner, and of a much worfe quality, than that which comes afterwards; and the richnefs goes on continually increating to the very lat drop that can be drawn from the udder at that time."

Few perfons are ignorant that the milk which is la ft of all taken from the cow at milking (in this country called froakings) is richer than the reft of the milk; but fewer fill are aware of the greatness of the difproportion between the quality of the firn and the lat drawn milk, from the fame cow, at one milking. 'The following facts (fays our author) reflecting this circumfrance were afcertained by me many years ago, and have been confirmed by many fubfequent experiments and obfervations.

Having taken feveral large tea-cups, exactly of the fame fire and chape, one of there teacups was filled at the beginning of the milking, and the others at regular intervals, till the lat, which was filled with the dregs of the ftroakings. Thefe cups were then weighed, the
weight of each laving been fettle, fo as to afcertain that the quantity of milk in each was precifely the fame; and from a great number of experiments, ferequently repeated with many different cows; the refult was in all cafes as follows:

The quantity of cream obtained from the first drawn cup was, in every cafe, much faller than from that which was lat drawn; and those between afforded leis or more as they were nearer the beginning or the end. It is unneceffary here to fpecify thee intermediate proportions; but it is proper the reader should be informed, that the quantity of cream obtained from the la ltdrawn cup, from tome cows, exceeded that from the firn in the proportion of fixteen to one. In other cows, however, and in particular circumftances, the diffproportion was not quite fo great ; but in no cafe did it fall thor of the rate of eight to one. Probably, upon an average of a great many cows, it might be found to run as ten or twelve to one.

Secondly, The difference in the quality of the cream, however, obtained from there two cups, was much greater than the difference in the quantity. In the frt cup, the cream was a thin tough film, thinner, and perhops whiter, than writing paper; in the lat, the cream was of a thick butyrous confittence, and of a glowing riclmefs of colour that no other kind of cream is ever found to poffefs.

Thirdly, The difference in the quality of the milk that remained, after the cream was feparated, was perhops fill greater than either in refpect to the quantity or the quality of the cream. The milk in the frt cup was a thin bluifh liquid, as if a very large proportion of water had been mixed with ordinary milk; that in the lat cup was of a thick confiftence, and yellow colour, more refembling cream than milk both in tate and appearance.

From this important experiment, it appears that the perfon who, by bad milking of his cows, lofes but half a pint of his milk, lofes in fact about as much cream as would be afforded by fix or eight pints at the beginming, and lofes, befides, that part of the cream which alone can give richnefs and high flavour to his butter.
"If milk be put into a difh, and allowed to ftand till it throws up cream, that portion of cream which rifer firth to the furface is richer in quality, and greater in quantity, than what rife in a fecond equal face of time; and the cream that rifes in the fecond interval of time is greater in quantity, and richer in quality, than that which rife in a third equal face of time; that of the third than the fourth, and fo on; the cream that rife decreafing in quantity, and declining in quality, continually, as long as any rifest to the furface." e\(\underbrace{\text { Dairy. }}\)

\section*{D A 1 [540] D A I}

Our ingenious author confelfes, that his experiments not having been made with fo much accuracy in this cafe as in the forner, he was not enabled to afcertain the difference in the proportion that takes place in equal portions of time; but they have been fo ofien repeated as not to leave any room to doubt the fact, and it will be allowed to be a fact of no fmall importance in the management of the dairy. It is not certain, however, but that a greater quantity of cream may, upon the whole, be obtained from the milk by taking it away at different times; but the procefs is fo troublefome as not to be counterbalanced by the increafed quantity obtained, if indeed an increafed quantity be thus obtained, which is not as yet quite certain.
"Thick milk always throws up a fmaller proportion of the cream it actually contains, to the furface, than milk that is thinner ; but that cream is of a richer quality. If water be added to that thick milk, it will afford a confiderably greater quantity of cream than it wotuld have done if allowed to remain pure, but its quality is, at the fame time, greatly debafed."

This is a fact that every perfon attentive to a dairy mult have remarked; but I have never (fays ourauthor) heard of any experiment that could afcertain, either the precife amount of the increafed quantity of cream that might thus be obtained, or of the ratio in the decreafe of its quality. The effects of mixing water with the milk in a dairy are at leaft afcertained; and the know. ledge of this fact will enable attentive perfons to follow that prastice which they think will beft promote their own interef.
" Milk which is put into a bucket or other proper veffel, and carried in it to any confiderable diftance, fo as to be much agitated, and in part cooled, before it be put into the milk-pans to fettle for cream, never throws up fo much, nor fo rich cream, as if the fame milk had been put into the milk.pans directly afterit was milked."

In this cafe, it is believed the lofs of cream will be nearly in proportion to the time that has elapfed, and the agitation the milk has fultained, after being drawn from the cow. But Dr Anderfon fays that he is not yet in poffeflion of any experiments which fufficiently afcertain how much is to be afcribed to the time, and the agitation, taken feparately. On every branch of agriculture we find experiments wanting, at each Itep we advance in our enquiries; and it is the duty of every enquirer to point out, as he goes along where they are wanted, fince the labours of no one man can pofibly complete the whole.

From the above facts, the following corollaries feem to be clearly deducible:

Firf. It is of importance that the cows fhould be always milked as near the dairy as poffible, to prevent the neceflity of carrying and cooling the milk before it is put into the difhes; and as cows are much hurt by far diving, it mult be a great advantage in a dairyfarm to bave the principal grafs fields as near the dairy or homeltead as pofible.

Secondly. The practice of putting the milk of all the cows of a large dairy into one veffel, as it is milked, there to remain till the whole milking is tinilhed, before any part of it is put into the milk-pans-feems to be highly injudicious; not only on accerurit of the lofs that is fuftained by agitation and cooling, but alin, more efpecially, becaute it prevents the owner of the dairy
from diftinguifhing the good from the bad cow's milk, fo as to feparate thefe from each other, where it is neceflary. He may thus have the whole of his dairy product greatly debafed by the milk of one bad cow, for years together, without being able to difcover it. A. better practice, therefore, would be, to have the milk drawa from each cow put feparatcly into the creamingpans as foon as it is milked, without being ever mixed with any other. Thus would the careful manager of the dairy be able on all occafrons to cbferve the particular quality of each individual cow's milk, as well as its quantity, and to know with precifion which of his cows it was his interelt to difpofe of and which of them he ought to keep and breed from.

Thirdly. If it be intended to make butter of a very fine quality, it will be advifable in all cafes to keep the milk that is firft drawn feparate from that which comes laft ; as it is obvious, that if this be not done, the quality of the butter will be greatly debafed, without much angmenting its quantity. It is alio obvious, that if this is done, the quality of the butter will be improved in proportion to the fmallnefs of the quantity of the laftdrawn milk that is retained; fo that thofe who wifh to be fingulanly nice in this refpect, will do well to retain only a very fmall portion of the laft-drawn milk.

To thofe owners of dairies who have profit only in view, it muft ever be a matter of trial and calculation, bow far it is expedient for them to carry the improving of the quality of their butter at the expence of dimi. nithing its quantity. In different fituations prudence will point out different kinds of practice as moft eligible; and all perfons mult be left, after making accurate trials, to determine for themfelves. It is likewife a confideration of no fmall importance, to determine in what way the inferior nilk, that is thus to be fet apart where fine butter is wanted, can be employed with the greateft profit. In the Highlands of Scotland they have adopted, without thinking of the improvement of their butter, a very fimple and economical practice in this refpect. As the rearing of calves is there a principal object with the farmer, every cow is allowed to fuckle her own calf with a part of her milk, the remainder only being employed in the dairy. To give the calf its portion regularly, it is feparated from the cow, and kept in an inclofure, with all the other calves belonging to the fame farm. At regular times, the cows are driven to the door of the inclofure, where the young calves fail not to meet them. Each calf is then feparately let out, and runs directly to its mother, where it fucks till the dairy-maid judges it has had enough; the then orders it to be driven away, having previoully fhackled the hinder legs of the mother, by a very fimple contrivance, to oblige her to ftand ftill. Boys drive away the calf with fwitches, and return it to the inclofure, while the dairy-maid milks off what was left by the calf; thus they proceed till the whole of the cows are milked. They obtain only a fmall quantity of milk, it is true, but that milk is of an exceeding rich quality; which, in the hands of fuch of the inhabitants as know how to manage \(i t\), is manufactured into the richeft marrowy butter that can be anywhere met with. This richnefs of the Highland butter is univerfally a fcribed to the old grafs the cows feed upon in their remote glens; but it is in fact chiefly to be attributed to the practice here defcribed, which has long prevailed

\section*{DA I [54I] DA I}
in thole regions. Whether a fimilar practice could be economically adopted elfewhere, our author takes not upon him to fay; but doubtless other fecondary uses might be found for the milk of inferior quality. On forme occafions, it might be converted into butter of an inferior quality; on other occafions, it might be fold fret, where the fituation of the farm was within reach of a market-town ; and on others, it might be converted into cheefes, which, by being made of sweet milk, would be of a very fine quality if carefully made (c). Still other uses might be deviled for its application; of which the following is worthy of notice. Take common fkimmed milk, when it has begun to turn four, put it into an upright fard churn, or a barrel with one of its ends out, or any other convenient veffel. Heat forme water, and pour it into a tub that is large enough to contain with ease the veffel in which the milk was put. Set the veffiel containing the milk into the hot water, and let it remain there for the face of one night. In the morning it will be found that the milk has separated into two parts; a thick cream-like fubfrance, which occupies the upper part of the veffel, and a thin watery part, that remains at the bottom. Draw off the thin part, (called in Scotland zig) by opening a ftop-cock, placed for that purpose clone above the bottom, and referve the cream for use. Not much left than half of the milk is thus converted into a fort of cream, which, when well made, feems to be as rich and fat as real cream itself, and is only diftinguifhable from it by its fournefs. It is eaten with fugar, and efteemed a great delicacy, and ufually fells at double the price of frefh unfkimmed milk. It requires practice, however, to be able to make this nicely. The degree of the heat of the water, and many other circumftances, greatly affeting the operation.

Fourthly. If the quality of the butter be the chief object attended to, it will be neceffary, not only to feparate the frt from the daft drawn milk, but also to take nothing but the cream that is frt Separated from the belt milk, as it is this firft rifing cream alone that is of the prime quality. The remainder of the milk,

Suppl. Vol. I.
which will be fill feet, may be either employed for the purpole of making fweet milk cheefes, or may be allowed to fund, to throw up cream for making butter of an inferior quality, as circumftances may direct.

Fifthly. From the above facts, we are enabled to perceive, that butter of the very belt poffible quality can only be obtained from a dairy of confiderable extent, judiciously managed; for when only a mall potLion of each cow's milk can be fer apart for throwing up cream, and when only a fall proportion of that cream can be referved, of the prime quality, it follows (the quantity of milk being upon the whole very inconfiderable), that the quantity of prime cream produce would be fo fall as to be fcarcely worth manifactoring feparately.

Sixthly. From there premifes we are alpo led to draw another conclufion, extremely different from the opinon that is commonly entertained on this fubject, viz. That it feems probable, that the very belt butter could be made with economy in thole dairies only where the manufacture of cheefe is the principal object. The renaCons are obvious: If only a fall portion of milk fhould be fer apart for butter, all the reft may be made into cheefe, while it is yet warm from the cow, and perfectby feet; and if only that portion of cream which riffs during the frt three or four hours after milking is to be referved for butter, the rich milk, which is left after that cream is Separated being fill perfectly feet, may be converted into cheefe with as great advantage nearly as the newly milked milk itfelf.

But as it is not probable that many perfons could be found who would be willing to purchate the very fineft butter, made in the manner above pointed out, at a price that would be fufficient to indemnify the farmer for his trouble in making it, there hints are thrown out merely to thew the curious in what way butter polerfig this fuperior degree of excellence may be obtained, if they choofe to be at the expence; but for an ordinary market, Dr Anderfon is fatisfied, from experience and attentive observation, that if in general about the first drawn half of the milk be feparated at each milk-

4 A
ing,

Dairy.
\(\underbrace{\text { Dairy. }}\)

\section*{D A H [542] D A H}

Dahatac. ing, and the remainder only fet up for producing cream, and if that milk be allowed to fland to throw up the whole of its cream (even till it begins fenfibly to tafte fourih), and that cream be afterwards carefuliy managed, the butter thus obtained will be of a quality greatly fuperior to what ean ufually be procured at market, and its quantity not confiderably lefs, than if the whole of the miik had been treated alike. This, therefore, is the practice that our atithor thinks molt likely to fuit the frugal farmer, as his butter, though of a fuperior quality, could be afforded at a price that would always enfure it a 1 apid fale.

Dr Anderfon throws out many other ingenious and ufeful obfervations on this important branch of rural economy. In particular, he points out, in the plaineft manner, the requifites of a good nilk-houfe, which, as he truly obferves, thould be cool in fummer and warm in winter, fo as to preferve a temperature nearly the fame throughout the year. But we have treated of this part of the fulject elfewhere, and muft therefore refer fuch as are defirous to know the doctor's fentiments on it, to the Letters and Papers of the Batb and I'Efl of Enfland Socity for the encouragement of agriculture, \&ec. or to the eighth volume of the Reperiory of Arts and Manafaftures.

DAHALAC, the largef ifland in the Red Sea, is thus deicribed by Mr Bruce. It is low and even, the foil fixed gravel and white fand, mixed with thells and ohler marine produations. It is deftitute of all forts of herbage, at lealt in fummer, unlefs a fmall quantity of bent grafs, juft fufficient to fued the few antelopes and goats that are on the ifland. There is a very beautiful ipecies of this laft animal found here, finall, fhort-haired, with thin black fharp horns, having ings upon them, and they are very fwift of foot.

This illand is, in many places, covered with large plantations of acacia trees, which grow to no height, ficldom above eight feet, but fpread wide, and turn flat at tup, probably by the influence of the wind from the fea. Though in tie neiglibourhood of Abyflinia, DaF.alac does not partake of its feafons, no rain falis here from the end of March to the beginning of OAtober; but in the intermediate months, efpecially December, Ianuary and February, there are violent fhowers fur 12 hours at a time, which deluge the inand, and fill the -cifterns fo as to ferve all next fummer, for there are no hills nor mounrains in Dahalae, and confequently no fiprings. Thefe cifterns alone pieferve the water, and of them there yet remain 370 , all hewn out of the folid ruck. They fay thefe were the works of the Perfians; it is more probable they were thofe of the firft litolemies. But whoever were the contructors of thefe magnificent refervoirs, they were a very different people from thofe that now pofiefs them, who have not induftry enough to keep oue of the 370 clear for the ufe of man. All of them are open to every fort of animal, and half full of the filth they leave there, after drinking and wathing in them; yet one of thefe cifterns, cleaned and thut up with a dour might afford them wholefome fweet water all the year over.

After the rains fall, a prodigicus quantity of grafs immediately fprings up; and the goats give the inhabitants milk, which in winter is the principal part of their fubfiftence; for they neither plow nor fow; all their employment is to work the vefels which trade to
the different parts of the coaft. One half of the inhabitants is confantly on the Arabian fide, and by their labour is enabled to furnifh with dora (millet or Indian corn) and other provifions the other half who flay at home ; and when their time is expired, they are relieved by the other half, and fupplied with neceffaries in their turn. But the fultenance of the poorer fort is entirely hell and other fifh. Their wives and daughters are very bold and expert fifher-women. Several of them, entirely naked, fwam off to the veffel before it came to an anchor, begging handfuls of wheat, rice, or dora. They are very importunate and Aurdy beggars, and not eafily put off with denials. Thefe miferable penple, who live in the villages not frequented by barks from Arabia, are fometimes a whole jear without tafting bread. Yet fuch is the attaehment to their place of nativity, they prefer living in chis bare, barren, parched fpot, almoft in want of neceflaries of every kind, efpecially of thefe effenti.1 ones, bread and water, to thofe pleafant and plentiful countries on both fides of them.

There are in Duhalac twelve villages or towns, of which each has a plantation of doomtrees round it, which furnifh the only manufacture in the inand. The leaves of this tree, when dried, are of a glofly white, which might very eafily be mitaken for fattin : of thefe they make baikets of furprifing beatuty and nearnefs, ftaining part of the leaves with red or black, and working them into figures very artificially. Our author knew fome of thefe refembling fraw bankets, continue full of water for \(2+\) hours, without one drop coming through. They fell there at Loheia and Jidda, the largelt of them for four commeth, or fixpence. This is the employment, or rather amufement, of the men who ftay at home; for they work but vely moderately at it, and all of them indeed take fpecial care not to prejudice their health by any kind of fatigue from induftry.

People of the better fort, fuch as the Shekh and his relations, men privileged to be idle, and never expofed to the fun, are of a brovin complexion. But the common fort employed in finiaz, and thofe who go conPantly to fea, are not indeed black but red, and little darker than the colour of new mahogany.

The inhabitarts of Dahalac feemed to be a fimple, feat ful and inoffenfive people. It is the only part of Africa or Arabia (call it which you pleafe) where you fee no one carry arms of any kind; neither gun, knife, nor fword, is to be feen in the hands of any one. Whereas, at Loheia, and on all the coaft of Arabia, and more particularly at Yambo, every perfon goes armed; even the porters, naked, and groaning under the weight of their burden and heat of the day, have yet a leather belt, in which they carry a crooked knife, fo monfrounfy long, that it needs a particnlar motion and addefo in walking not to lame the bearer. This was not almays the cale at Dahalac; feveral of the Portuguefe, on their firlt arrival here, were murdered, and the ifland often treated ill in revenge by the armaments of that nation. The men feemed healthy. They told our author they had no difeates among them, unlefs fometimes in fipring, when the boats of Yemen and Jidda bring the frall-pox among thein, and very few efeape with life that are infected. He did not obferve among them a man that feemed to be fixty years ofd; from which he inferred that they are not long livers, though the air flould be healthy, as being near the channel,

Dahalac. clannel, and as they bave the north wind all fummer, which moderates the leat.

Dahalac, like all the other iflands in the Red Sea, depends upon Mafuah. The revenue of its governor confits in a goat brought to him monthly by each of the twelve villages. Every velfel that puts in there for Mafuah pays lim alfo a pound of coffee, and every one from Arabia a dollar or pataía. No fort of fmall money is current at Dahalac, excepting Venetian glafs. beads, old and new of all fizes and colours, broken and whole.

Alchough this is the miferable fate of Dahalac at prefent, matters were nidely different in former times. The pearl fihery flourithed greatly here under the Prolemies, and even long after, in the time of the caliphs, it produced a great reventre, and till the fovercigns of Cairo, of the prefent miferab'c race of flaves, began to withdraw themfelves from their dependency on the port, Dihalac was the principal inland that furnifhed the pearl fifhers or divers. It was, indeed, the chief port for the fifhery, on the fouthern part of the Red Sea, as Suakem was on the notth; and the batha of Mafuah paffed part of every fummer here, to avoid the heat at his place of refidence on the continent.

The filhery extended from Dahalac and its iflands nearly to lat. \(20^{\circ}\). The inhabited inlands furnifhed each a bark and fo many divers, and they were paid in wheat, flour, \&c. fuch a portion to each bark for their ufe, and fo much to leave with their family for their fubfiltence; fo that a few montlis employment furnifhed them with every thing neceffary for the reft of the year. The filhery was rented in later times to the batha of Suakem; but there was a place between Suakem and the fuppofed river Frat, in lat. \(21^{\circ} 28^{\prime}\) north, called Gusgunnab, which was relerved to the grand fignior in particular, and a fpecial officer was appointed to receive the peatls on the fpot, and fend them to Conftantinople. 'The pearls found there were of the largeit fize, and inferior to none in water or roundnefs. Tradition fitys, that this was exclufively the property of the Pharaohs; by which is meant, in Arabian manuferipts, the old kings of Egypt before Mahomet.

In the fame extent, between Dahalac and Suakem, was another very valuable filhery, that of tortoifes, from which the fineft fhells of that kind were produced, and a great trade was carried on with the Eaft Indies (China efpecially) at little expence, and with very confiderable profits. But the immenfe treafures in the bottom of the Red Sea, have now been abandoned for near 200 yeas, though they ncver were richer in all probability than at prelent. No nation can now turn them to any profit but the Englifh Eaft Iodia Company, more intent on multiplying the number of their enemies, and weakening themfelves by fpreading their inconfiderable force over new conquells, than creating additional pro. fit by engaging in new articles of commerce. A fettlement upon the river Frat, which never yet has belong. ed to any one but wandering Arabs, would open them a market both for coarfe and fine goods from the fouth. ern fronticıs of Morocro, to Congo and Angola, and fet the commerce of pearls and tortoife mell on foot again. All this fection of the gulf from Suez, as we are told, is in their charter, and twenty thips might be employed on the Red Sea, without any violation of territorid claims. The myrrh, the frankincenfe, fome
cinnamon, and variety of drugs, are all in the polfer- narymore finn of the weak king of Adel; an ufurper, tyrant, and Pagan, without protection, and willing to trade with any fuperior power that only would fecure him a miferable livelihood.

There are ncither horfes, doge, fleep, cows, nor any fort of quadruped, but goats, alfes, a few half-farved carnels and antelopes, at D.halac, which laft are very numerous. The inhabitants have no knowledge of lirearms, and there are no dogs nor beafts of prey in the illand to kill them; they catch indeed fome few of them in traps.

The language at Dahalac is that of the thepherds, though Arabic, too, is fputen by molt of them. Our author ftates the latitude of Dahalac to lie between \(15^{\circ}\) \(27^{\prime} 30^{\prime \prime}\), and \(15^{\circ} 54^{\prime} 30^{\prime \prime}\) north.

DALRYMPLE (Sir David), was born in Edin. burgh on the 28th of October (N.S.) 1725. His father was Sir James Dalrymple of Hailes, Bart. and his mother Lady Chrittian Hamilton, a daughter of the Earl of Hadinton. His grandfather Sir David Dalrymple was the youngett fon of the firt Lord Stair, and is faid to have been the ableft of that family, fo much diftinguifhed for ability. He was Lord Advacate for Scotland in the reign of George I. and his fon Sir James had the auditorlhip of the exchequer for life.

The fubject of this memoir was educated at Eton fchool, where he was diftinguifhed as a fcholar, and long temembered as a virtuous aind orderly youth. In that juftly celebrated feminary he acquired a clafical tafte, which, though it was once prevalent in Scotland, has in that councry been long on the decline ; and formed, befides, friendfhips to perlons, and aitachments to things, which accompanied him through life. Hence probably fprung his partiality to Englifh manners and culloms, which marked both his public conduet and private converfation, and was the fource of much of his dignity, and fome of his littleneffes.

From Econ he returned to Edinburgh, whence, after the ufual courfe of a gentleman's fudies in that univerfity, he went to Utrecht to ftesdy the civil law ; and remained there till after the rebellion in 1746 . Upon his return to his native country, fo promifing were his parts, and fuch his induitry and fobernefs of mind, that very fanguine expectations were entertained of his future eminence; and in fome refpects thefe expeftations were not frultrated. To his intimate friends it was well known, that if left to follow the bent of his own inclinations, he would have devoted his time and his talents to the fudy of antiquities and the belles lettres; in both which departments of literature he was eminently qualified to excel. On the death of his father, however, he found his affairs fo very much encumbered, that in order to retrieve them, and to provide for his brothers and fifters, he refolved to follow the law as a profeflion, in which fome of his anceftors had made a dif. tinguifhed figure.

He was called to the Scotch bar in 1748 , where, notwithitanding the elegant propriety of the cafes which he drew, it muft be confeffed, that his fuccefs did not anfwer the expectations which had been formed of him. This was not owing either to want of fcience or to want of indultry, but to certain peculiarities, which, if not inherent in his nature, were the refult of early and
d'cep-

\section*{D A L \([544] \quad \mathrm{D} A \mathrm{~L}\)}

Dairynyple. deep-rooted habits. He poffeffed on all occafions a fovereign contempt, not only for verbal antithefis, but for well rounded periods, and every thing which had the femblance of declamation; and indeed he was wholly unfitted, by an ill-toned voice and ungraceful elocution, for thining as an orator. No wonder, then, that his pleadings, which were never addreffed to the paffions, did not rival thofe of fome of his opponents, who, poffefled of great rhetorical powers, did not, like him, employ frokes of irony too fine to be perceived by the bulk of any audience, but expreffed themfelves in full, clear and harmonious periods. Even his memorials, though claffically written, and often replete with valuable matter, did not on every occafion pleafe the court; for they were always brief, and fometimes, as it was faid, indicated more attention to the minute of forms than to the merits of the caufe. Yet on points which touched his own feelings, or the interefts of truth and virtue, his language was animated, his arguments forcible, and his ferupulous regard to form thrown afide.

He was fometimes employed as a depute advocate, which gave him opportunities at the circuits of difplaying that candour and tendernefs of difpofition which fo well becomes the public profecutor in a criminal court. Of this the following inftance may be worth relating. On the firt day of the court at Stirling, he was once accofted by another advocate in thefe wards: "Sir David, why is there not a trial this forenoon? I would be getting on." "There are (replied he) fome unhappy culprits to be tried for their lives; and therefore it is proper that they have time to confer with their men of law." "That is of little confequence (faid the other). Laft year 1 came to vifit Lord Kames when he was here on the circuit, and he appointed me counfel for a man accufed of a rape. Though I had very little time to prepare, yet I made a decent fpeech." "Pray, Sir, (faid Sir David), was your client acquitted or condemned." "O (replied the other) molt unjuftly condemned." "That, Sir (faid the depute advocate) is no good argument for hurrying on trials."

To return from this digreffion, if it be confidered as fuch, it is furely to the honour of Sir David Dalrymple that whatever men thought of his fingularities, his detractors concurred with his admirers in believing him incapable of mifleading the judge by a falfe ftatement of facts; or his clients, by holding out to them fallacious grounds of hope.

His high fenfe of honour, and his inflexible integrity, were indeed univerfally admitted; and it was with the warmeft approbation of the public that in 1766 he was appointed one of the judges of the court of fellion, the higheft civil tribunal in Scotland. He took his feat on the bench, according to the ufage of that court, by the title of Lord Hailes, the defignation by which he is generally known among the learned of Europe; and the expectations entertained of him were again fanguine. His unwearied affiduity in fifting dark and intricate matters to the bottom was well known; his elegant and concife manner of exprefling his fentiments
was admirably fuited to the character of a jucige ; and Dalrymple. his legal opinions had been generally found. Yet it muft be confeffed, that ás a judge he was neither fo ufeful nor fo highly revered as he ought to have been from the extent of his knowledge, and his unqueftioned integrity. The fame minute attention to forms, which had in fome degree obttructed his rife at the bar, accompanied him to the bench, and brought upon him the ridicule of the wits about the court (A) : and we all know that the character even of Socrates hinfelf was not able to refin the torrent of ridicule. In extenuation of this foible, it may be obferved, that by fome of the judges of the court of feffion perhaps too little regard has been paid to form; and that forms, even apparenuly trifling, cannot in legal proceedings be wholly dilregarded without involving in danger truth and juftice. Be this as it may, fuch was the opinion which the other judges entertained of Lord Hailes's accuracy, diligence, and dignified manners, that, in the abfence of the prefident, they generally voted him into the vacant chair.

In May 1776 he was appointed one of the lords commiffioners of jufticiary; and in that Itation he commanded the refpect of all mankind. Fully impreffed with a deep fenfe of the importance of his office, he feemed, in the criminal court, to lay afide his fingularities. So far from throwing his whole weight into the fcale of the crown, a charge which has been fometimes brought, we believe unjuflly againft the Scotch judges, Lord Hailes, like the judges of England, was always counfel for the prifoner when the king's counfel appeared too Arong for their opponents, or when there was any particular intricacy in the cafe. In adminiftering the oath to the witneffes, he had none of that indecorum which we have elfewhere cenfured in fome of his brethren (fee Oarh Encycl.) ; but rifing folemnly frem his feat, he repeated the words in fo ferious a manner, as left no doubt in the moft profligate mind but that he was himfelf impreffed with a fenfe of the immediate prefence of the Supreme Being, and with the firm belief of a future judgment. When the witnefs appeared to be young or ignorant, we have beheld, with the utmof love and veneration, the pious pains which his Lordhip took to difcover whether he was duly acquainted with the nature and obligation of an oath before he admitted him to fwear; and though it is perhaps impoffible for human vigilance and fagacity to pre-vent perjury altogecher in courts of jultice, he mult furely have been a villain uncommonly hardened and artful who could perjure himfelf in the prefence of Lord Hailes. In doubtful cares his Lordfhip inclined always to the fide of mercy; but when it became his duty to pafs fentence of death upon convicted criminals, he addreffed them in a ftrain of fuch piety and conmiferation, as to draw tears from the eyes of every beholder, and was calculated to make a deep and proper impreffion on the unhappy perfon himfelf. In the difcharge of this painful duty we never faw him furpaffed, and have feldom leen him equalled.

Had
(A) In a fatirical ballad on the court of feffion, Mr Bufwell, alluding to Lord Hailes's fondnefs for verbal criticifm, makes him addrefs the prefident in the following words:
'To judge of this matter I cannot pretend,
For jultice, my Lord, wants an \& at the end.

Dalrymple. Had Lord Hailes been confpicuous only as a found lawyer, and an able and upright judge, we thould nill have thought his life intitled to a place in this Work; buthe was no lefs eminent as a man of general erudition, and as a voluminous author. His fkill in claflical learning, the belles lettres, aild hiltorical antiquities, efpecially thofe of his own country, is univerfally admitted ; but it cannot be denied, that the fanme faftidioufnefs, and the fame microfcopic attention to minutix, which characterifed him as a barrifter, prevented him from rifing to that rank in the republic of letters to which his learning and genius would otherwife have infallibly carried him. But if he was not one of the moft celebrated writers of the age, he was unqueltionably one of the molt virtuous; if his publications were not always edifying, they were at lealt innocent and ingenious; and fome of them are in the highelt degree valuable. In proof of this affertion, we need inftance only his Annals of Scotland, and his Inquiry into the Secondary Caufes wubich Mr Gibbon has afligued for the Rapid Progrefs of Chriflianity. Of the former of thefe works though little calculated to pleafe the common herd of readers, it may with truth be faid, that in refearch and ingenuity it ftands unrivalled among the writings of Scotch antiquaries; and of the latter, it is furely not too much to fay that it difplays uncommon accumen, clofenefs of reatoming, and zeal fer the caufe of truth, without the ufual rancour of theological controverfy.

His talle for retirement, which the fate of his affairs rendered for a while neceflary, grew upon him as he advanced in years. His conftitution, of which he was very careful, as well as his principles and habits, rendered him averfe from diffipation of every kind. After he was made a judge, he confidered abfiraction from the gay and falhionable world as connected with the duty of one whofe time was no longer his own; and when he chofe to unbend his mind, it was in the fociety of a few eafy friends, whom he felected as much for their worth and good humour as for their genius or their learning. He had indeed occafionally much converfation with that conilellation of wits and men of fcience who flourifhed in Edinburgh at the fame period with himfelf; but it was impoffible for friendfhip or intimacy to fubfift between men who thonght fo differently as he and they thought on the moft important of all fubjects. Though an old-fafhioned whig, zealoufly attached to the conflitution, he formed to take any fhare in the civil or ecclefiaftical broils in which fome of his brother judges were warmly engaged for the firlt 20 years of the prefent reign; for he looked on thefe as either frivolous or mifchievous.

Although his Lordfhip's conftitution had been long in an enfeebled flate he profecuted his fludies, and attended his duty on the bench, till within three days of his death, which happened on the 29th of November 1792 , in the 66th year of his age.
His Lordfhip was twice marricd; by his firl wife Anne Brown, only daughter of Lord Coalton, one of the judges of the court of felfion, he left iffue one daughter, who inherits the family eflate. His fecond marriage (of which allo there is iffue one daughter) was to Helen Fergufon, youngeft daughter of Lord Kilkerran, who has the affliction to furvive him. Leaving no male iffue, the title of Laronst defcends to his aepliew.

Though the church of Scotland does not much en- Dairymple. courage luneral difcourfes, a very laudable endeavour was made to render the talents and virtues of Lord Hailes a theme of initruction to mankind, in a fermon preached foon after his death in the church of Invereth, by his learned friend, and venerable paftor, Dr Carlyle; from which we flall tranfcribe a fummary view of his character as a judge, a fcholar, a Chriftian, and a citizen.
"His knowledge of the laws was accurate and profound, and he applied it in judgment with the moft fcrupulous integrity. In his proceedings in the criminal court, the fatisfaction he gave to the public could not be furpaifed. His abhorrence of crimes, his tendernefs for the criminals, his refpect for the laws, and his reverential awe of the Omnifient Judge, inlpired him on fome occafions with a commanding fublimity of thought, and a feeling folemnity of exprefion, that made condemnation feem juft as the doom of Providence to the criminals themfelves, and raifed a falutary horror of crimes in the breaft of the audience.
"Confcious of the dignity and importance of the high office he held, he never departed from the decorums that becomes that reverend character; which indeed it coft him no effort to fupport, becaufe he acted from principle and fentiment, both public and private. Af. fectionate to his family and relations, fimple and mild in his manners, pure and confcientious in his morals, enlightened and entertaining in his converfation; he lefs fociety only to regret, that, devoted as he was to more important employments, he had fo little tine to fpare for intercourfe with them.
"He was well known to be of high rank in the republic of letters, and his lofs will be deeply felt through many of her departments. His labours in illuftration of the hiflory of his country, and many other works of profound erndition, remain as monuments of his accurate and faithful refearch for materials, and his found judgment in the felection of them. Of his unfeigned piety and devotion, you have very often been witncffes where we now are. I mult add, however, that his attendance on religious ordinances was not merely out of refpect to the laws and for the fake of example (motives which fhould never fail to have influence on perfons of fuperior rank, for the mof obvious reafons), but from principle and conviction, and the mof confcien. tions regard to his duty; for he not only practifed all the virtues and charities in proof of his faith, but he demonfrated the fincerity of his zeal by the uncommon pains he took to illolrate primitive Chriftianity, and by his elaborate and able defences of it againft its enemies.
" His profound refearches into hiftory, and his thorough knowledge of the laws, made him perfealy acquainted with the progrefs of the conflitution of Britain, from the firf dawn of liberty in the common law of the land, and the trial by jury which precede all written recurds, and afterwards in the origin and eftablifhment of parliaments, through all its viciflitudes and dangers, till at laft, by the bleffing of divine Providence, which brought many wonderful events to concur to the fame end, it was renewed, frengthened, and finally confirmed by the Revolution.
"It was this goodly and venerable fabric of the Britifh conflitution which the deceafed molt refpectable character

\section*{D A L [546] D A L}

Diryaple. character contemplated with admiration and delight (of late, indeed, with a mixture of anxiety and fear), as the remple of piety, as the genuine fource of greater happinef's and freedom, to a larger portion of mankind than ever flowed from any govermment upnn earth.
"Ill indeed can the times bear the lufs of fuch an affectionate patriot and the guardian of the law's of his country. But we mult not murmur at the will of Providence, which in its mercy 'may have withdrawn the guod man from the evil to come.' In mercy, I fay, to him, whofe righteous fpirit was fo deeply grieved when'he faw the wicked rage, and the people imagine a vain thing."

Such is the memorial which, in the hour of recent for row, followed this excellent man to the grave; and we believe it will yet be allowed to be juft by all who had the happinets of his Lordthip's acquaintance, and are what he was, friends to the belt interells of mankind.

This fetch of the life of Lord Hailes would be more imperfect than even it is, if we could not fubjoin to it a catalogue of his publications, of which the greater purt are exceedingly curious. We call them publications, becaule he employed almolt as much of his time in republifhing old and ufeful books as in preparing for the prefs his own valuable works.

Befides his effays in the papers called The World and The Mirror, which are well known and univerfally admired, his Lordhip publifhed the following works:

Sacred Poems, or a Collection of Tramfations and Paraphrafes from the Holy Scriptures; by various authors, Edinburgh, 1751, I2mo. Dedicated to Charles Lord Hope, with a preface of ten pages.

The Wifdom of Solomon, Wifdom of Jefus the Son of Sirach, or Ecclefialticus, 12 mo, Edin. 1755.

Select Difcourfes (in number nine), by John Smith, late Fellow of Queen's College, Cambridge, 12 mo , 291 pages. Edin. 1756 ; with a preface of five pages, " many quotations from the learned languages tranhated, -and notes added, containing allutions to ancient mytholigy, and to the ermeous philofophy which prevailed in the days of the author,-various inaccuracies of ttyle have been corrected, and harth expreffions foftened."

A Difceurfe of the unnatural and vile Confpiracy attempted by John Earl of Gowry and his Brother, agdialt his Majeity's perfon, at St Johnitoun, upon the 5 th of Aug. 1600. No date of the republication, but the edition and notes fuppofed by Lord Hailes, 12 mo, 1757.

A Sermon, which might have been preached in Eaft Lothian upon the 25 th day of October 176 t , on Acts xxvii. 1, 2. "The barbarous people thewed us no little kindnefs." Edin. 1761 , pp. 25, 12 mc . "Occafioned by the country people pillaging the wreck of two veffels, viz. the Betfy, Cunningham, and the Leith Packet, Pitcairn, from London to Leith, calt away on the fhore between Dunbar and North Berwick. All the paffengers on board the former, in number 17 , perifhed; five on board the latter, October 16.1761."A moft affecting difcourfe, admirably calculated to convince the offenders!

Memorials and Letters relating to the Hillory of Britain, in the reign of James I. publifhed from the originals, Clafgow, 1762 . -Addreffed to Philip Yurke,

Vifcount Rnyfon, pp. 15I. "From a collection in Dadrymple. the advocate's library, by Balfour of Denmyln." The prefice of four pages, figned Div. Dalrympla.

The Works of the ever memorable Mr John Hailes of Eaton, now firf collected together in 3 vols, Glafgow, 1765; preface of three pages. Dedicated to William (Warburton), Bifhop of Gloucefter. "The edition faid to be undertaken with his approbution; obfolete words altered, with corrections in fpelling and punctuation."

A fpecimen of a book intitled "Ane Compendious Booke of Godly and Spiritual Sings, colle?tit out of fundrie parts of the Scripture, with fundrie of other Ballates changed out of prophaine Sanges, for avoyding of Sin and Fiallotrie, with augmentation of fundry Ginde and Godly Ballates, not contained in the firit edition. Edinburgh, printed by Andro Hart," i2mo. Edin. 1765 , pp. 42 ; with a Gloffary of four pages.

Memorials and Letters relating to the Hiltory of Britain in the reign of Charles I. publifhed from the originals, G!afgow, 1766, pp. 189. Preface of fix pages, ligned Dav. Dalrymple, chiefly collected by Mr Wodrow, author of the Hiftory of the Church of Scotland. Infcribed to Robert Dundas of Arnifton, Lord Prefident of the Court of Seffion.

An account of the prefervation of Charles II. after the Battle of Worceter, dsawn up by himfelf; to which are added, his Letters to feveral perfons. Glafgow, \({ }^{17} 66\), pp. 190, from the MSS. of Mr Pepys, dictated to him by the king himfelf, and communicated by Dr Sindby, maiter of Magdalen College. The letters are collected from various books; fome of them now firt publifhed, communicated by the tutors of the Duke of Hamiton, by the Earl of Dundonald, \&c. The preface of four pages, figned Dav. Dalrymple, dedicated to Thomas Holles, Duke of Newcatte, chancellor of the univerfity of Cambridge.

The Secret Correfpondence betwcen Sit Robert Cecil and James VI. I \(2 \mathrm{mc}, 1766\).

A Catalogue of the Lords of Seffion, from the Inftitution of the College of Juftice in the year 1532, with Hiftorical Notes. Suum cuique-rependet pofieritas. Edin. 1767,4 to, pp. 26.

The Private Correfpondence of Dr Francis Atterbury, Bifhop of Rochefter, and his friends, in 1725 , never before publifhed. Printed in 1768 , to. Advertifement, pp. 2. Letters, pp. 10. A fac fimile of the firft from Bihop Atterbuty to John Cameron of Lochiel, to prove their authenticity.

An Examination of fome of the Arguments for the High Antiquity of Regianz Maje/atem; and an In:quiry into the authenticity of the Leges Malcolmi; by Sir David Dalrymple, 4to, pp. 52 . Edin. 1769.

Hiftorical Memoirs concerning the Provincial Councils of the Scottifh Clergy, from the earlieit Accounts to the AEra of the Reformation; by Sir David Dalrymple. Edinburgh, 1769, 4 to, pp. \(41 .-\) Nota, Having no high opinion of the pupularity of his writings, he prefixes to this work the following motto. "Si delectamur quum fcribimus quis ett tam invijus quiab oe nos abducat? fin laboramus quis ct qui alienx modum ftatuat indultriæ."-Cicero.

Canons of the Church of Scotland, drawn up in the Provincial councils held at Perth, A. D. 1242, and 1269. Edinburgh, \(1769,4^{\text {to, }}\) pp. 48.
 face fix pages; Poems pp. 221 ; very curious notes pp. \(9^{2}\); gloffary and lifts of paffages and words not undertood, pp. 14.

The additional Cafe of Elizabeth, claiming the tille and dignity of Countefs of Sutherland ; by her Guardians. Wherein the facts and arguments in fupport of her claim are more fully fated, and the errors in the additional cafes for the other clamants are detected, 4 th. - This fingularly learned and able cafe was fubfrribed by Alexander Wedderburn (prefent Lord Chancellor), and Sir Adam Ferguifon, but is the well-known work of Lord Hailes. It ought not to be regarded merely as a law paper of great ability, but as a treatife of profound refearch into the hiftory and antiquity of many important and general points of facceffion and family hiftory. Introduction, Pp. 21 ; the firt fur chapters, Pp. 70 ; the fifth and fixth chapters, pp. 177.
Remarks on the Hiftory of Scotland, by Sir David Dalrymple.-" Utinam tam facile vera invenire poffenı quam falfa convincere." Cicero.-Edin. 1773, infcribcd to George Lord Lyttleton, in nine chapters, pp. 284. 12 mo .

Huberti Langucti Epifolw ad Philippum Sydneium Equitem Anglum, accurante D. Dalrymple de Hailes, Eq. Edinburgh, \(1776,8 v o\). Infcribed to Lord Chief Baron Smythe.-Virorum Eruditorum Teltimonia de Langueto, pp. 7. Epifolx, pp. 289. Index Nominum, [f. 41.

Annals of Scotland, from the Acceffion of Malcolm III. furnamed Canmore, to the Acceffion of Robert I. by Sir David Dalrymple. Edin. 1776, pp. 3 1. Appendix, pp. 5 I.

Tables of the Succeffion of the Kings of Scotland, from Malcolm III. to Robert I. their marriages, children, and time of their death ; and alfo of the Kings of England and France, and of the Popes who were their contemporaries.

Chronological Abridgement of the Vclume, pp. 30. The Appendix contains eight differtations: I. Of the law of Evenus and Mercheta Mulierum, pp. 17. 2. A commentary on the 22d flatute of William the Lion, pp. 8. 3. Of the 18 th Statute of Alexander 1II. pp. 5. 4. Bull of Pope Innocent IV. pp. 6. 5. Of Walter Stewart, Earl of Menteeth, 1296, pp. 7. 6. Of M•Duff, flain at Falkirk, in 1298, pp. 3. 7. Of the death of John Comyn, 1oth February, 1305, pp 4. 8. Of the origin of the houfe of Stuart, pp. 6.

Annals of Scotland from the accefion of Robert I. firnamed Bruce, to the Accefion of the Houre of Stuart; by Sir David Dalrymple, Eidin. 1779, 4 to, pp. 27\%. Appendir, pp. 54, containing, 1. Of the manner of the dcath of Marjory, daughter of Robert I. pp. 7. 2. Journal of the campaign of Edward III. 1327 pp .9 .3 . Of the genealozy of the family of Seion in the i4th century. 4. Lift of the Scottifh commanders at the battle of Hallidon, inth July, \(13^{8} 3\), FP. 11. 5. Whether Edward 3 d put to death the fon of Sir Alexander Seton, pp. 8. 6. Lift of the Scottifl commanders killed or made prifoners at the hattle of Durhan, 5p. 8. 7. Table of kings, p. 1. 8. Corrections and additions to volume i, pp. 16. Cluenoingicsl abridgement of the volume, pp. 39 .

Account of the Martyrs of Smyrna and Lyenc, in
the 2d century, 12 mn , with explanatory notes, Edin. Dalrymple. 1776. Dedicated to Bifhop Hurd, pp. 68. Notes and illuftrations, pp. 142. This is a new and corted verfion of two moft ancient epifles, the one from the church at Smyrna to the church at Philadelphia. The other from the Chriftians at Vienna and Lyons to thofe in A fia ard Phrygia-their antiquity and authenticity are undubted. Great part of both is extraated from Eufebius's Ecclefiaftical Hifto:y. The former was filt completely edited by Archbihap Uther. The author of the notes fays of them, with his ufual and fingular: modefty, "That they will afford little neve or interefing to men of erudition, though they may prove of fome benefit to the unlearned reader." But the erudition he poffefled in thefe branches is fo tare, that this notice is unneceflary. They difplay much ufefu! learning and ingenious criticifm, and breathe the moft ardent zeal, connected with an exemplary knowledge of ChriAtianity. N. B. This is the firlt volume of the remains of Chriftian Ant:quity.
Remains of Chriftian Antiquity, with explanatory notes, vol. ii. Edin. 1778, 12mo. Dedicated to Dr Newton bifhop of Briftol. Preface, pp. 7. This volume contains the trial of Juftin Martyr and his companions, pp. 8. Epiftle of Dionyfus bifhop of Alcxandria, to Fabius bifhop of Antioch, pp. 16. The tiala and execution of Cyprian bihhop of Carthage, pp. 8. The trial and execution of Fructuofus bilhop of Tarracona in Spain, and of his two deacnns, A \(\operatorname{l}\) gurius and Eulogius, pp. 8. The Maiden of Antiocl!, pp 2. Thefe are all newly tranflated by Lord Hailes from Ruinart, Eufebius, Ambrofe, \&c. The notes and illaftrations of this volume extend from p. 47 to 165 , and difplay a mof intimate acquaintance with antiquity, great critical acumen, both in elucidating the fenfe, and deteating interpolations; and above all, a fervent and enlightened zeal, in vindicating fuch fentiments and conduct as are conformable to the word of God againtt the malicious farcafms of Mr Gibbon. To this volume is added an appendix of pp. 22, correcting and viadicating certain parts of vol. i.

Remains of Chriftian Antiquity, vol. iii. Edin. r-80. Dedicated to Thomas Balguy, D. D. Preface, pp. 2. It contains the Hifory of the martyrs of Paleftine in the 3 d century, tranlated from Eufebius, pp. \(9+\) Notes and illullrations, Pp. 135, in which Mr Gibbon again comes, and more frequently, under review.The partiality and mifreprefentations of this popular writcr are here expofed in the calmeft and moft fatisfactory manner.

Pity it is that Lord Hailes fould have printed and publified thefe valuable volumes, and indeed nool of his other works, at his own expence; and difperfed them fo liberally to his friends, that they have been little circulated among any other.
Octavius, a Dialogue, by Marcus Minucius Felix. Edin. 1781, pp. 16. Preface.-The fpeakers are, Cocilius a Heathen, Oduvius a Chriftian; whofe arguments prevail with his friend to rennunce Paganifm and become a Chaitian profelyte. Notes and illuiltations, pp. 120.

Of the manner in which the Perfecutors Died; a Treatife by L. C. F. Lactantius, Edin. 1782 . In. fcribed to Dr Portcons bifhop of Chefler (prefent bithop of London). Preface, BP. 37. in which it is proved

Dedrymple, proved that Lavantius is the author. Text, pp. 125. Notes and illifitations, pp. rog.
L. C. F. Lafantii Divinarum Inftutionum Liber Quintus feu de Juftitia, 1777.
Difquilitions concerning the Antiquity of the Chriftian Church. Glargow, 1783. Inferibed to Di Halifax, bithop of Gloucefter, pp. 194.-This fmall original and moft ercellent work, confifts of fix chapters. Chap. i. A commentary on the conduct and character of Gallio. Afts xviii. 5, 12, 17.-Chap. 2. Of the time at which the Chriftian religion became publicly known at Rome-Chap. 3. Caufe of the perfecution of the Chrilitians under Nero. In this the hypothefis of Mr Gibbon, vol. i. 4 to, p. 641 , is examined. Chap. 4. Of the eminent Heathen writers who are faid (by Gibbon) to have difregarded or contemned Chritianity, viz. Seneca, Pliny fen. Tacitus, Pliny jun. Galen, Epictetus, Plutarch, Marcus Antonius. To the admirers of Heathen philofophers, and to thofe efpecially who flate between them and the Chriftian doctrine any confanguinity, this chapter is earnefly recom-mended.-Chap. 5. Illuftration of a ennjefture by Gibbon, refpecting the filence of Dio Caffius concerning the Chriltians. In this chapter, with extreme impartiality, he amplifies and fupports an idea of Mr Gibbon on this head. Chap. 6. Of the circumftances refpecting Chriftianity that are to be found in the Auguftan hillory.

It feems very probable that the clofe attention which Lord Hailes appears to bave given to fuch fubjects, was in fome meafure the effect of the miftakes and partiality of Gibbon. In no one work, from 1776, the date of Mr Gibbon's firt publication, has he omitted to trace this unfair and infinuating author; but in 1786 he came forth of fet purpofe with the moft able and formidable reply, which he has received, intitled, "An Inquiry into the Secondary Caufes which Mr Gibbon has affigned for the rapid growth of Chriftianity ; by Sir David Dalrymple." Edin. 1786 ; gratefully and affectionately afribed to Richard (Hurd) bilhop of Worcefter, 4 to, pp. 213 . In five chapters.

Sketch of the Life of John Barclay, 4to, 1786.
Sketch of the Life of John Hamilton, a Secular Prieft, 4 to (one of the molt favage and bigotted adherents of Popery, who lived about A. D. 1600.)

Sketch of the Life of Sir James Ramfay, a general officer in the arnies of Gultavus Adolphus king of Sweden, with a head.

Life of George Leflic (an eminent capuchin friar in the early part of the 17 th century), 4 to, pp. 24.

Sketch of the Life of Mark Alex. Boyd, 4 to.
Thefe lives were written and publifhed as a feecimen of the manner in which a Biograpbia Scotica might be executed ; and it is likely that Lord Hailes felected purpofely the leaf interefting.

The Opinions of Sarah Duchefs Dowager of Marlborough, publifhed from her original MSS. 1788 , 12 mo , pp. 120 . (with a few foot notes by Lord Hailes, in which he correds the fplenetic partiality of her Grace)

The Addrefs of \(Q\). Sept. Tertullian to Scapula Ter-
tullus, Proconful of Africa, tranfated by Sir David Dalrympte Dalrymple, 12 mo . Edin. 1790 , infribed to Dr John Butier, bifhop of Hereford; preface, pp. 4; tranfla. tion pp. 18; original, pp. 13; notes and illuftrations, pp. 135.

This addrefs contains many particulars relating to the church after the third century. The tranflator has rejected all words and phrales of French origin, and written entirely in the Anglo Saxon dialect. In the courfe of the notes many obfcurities of the original, not adverted to by other commentators, are explained. Some Atrange inaccuracies of Mr Gibbon are alfo deteded, not included in the mifreprefentations of his two famous chapters.

This was the laft work of this truly learned, refpectable and ufeful man. Whether he left behind him any thing elfe finifhed for the prefs, is known only to his friends. We have repeatedly heard that he was engaged in examining che authenticity of the books of the New Teflament, and that, with the exception of two or three, he found every verfe contained in it in the writings of the firf three centuries. This feems indeed to have been an object in all his works; for, at the end of each of his tranflations and editions of the primitive Chrillian writers. A table is given of paffages quoted or mentioned by them. If his Lordfhip completed any work of this kind, it thould not be withheld from the public. We may indeed be told that its utility in a great meafure fuperceded by the laborious collection of Lardner (\(B\)), and the more elegant work of Paley (c) ; but not to mention the prejudices generally entertained againft Lardner on account of his evident bias to Unitarianifm, it would furely be proper, in the prefent age of wild opinions, to hew the multitude, who are guided by authority, how important a fubjeet the Chriltian religion was deemed by this learned and accomplifhed layman.

DALTON, a fine townhip in Berkfhire co. Maffachufetts, having Pittsfield on the W. and contains 554 inhabitants. The Atage road from Bofton to Albany, runs through it. Dalton was incorporated in 1784 , and lies \(\sqrt{3} 5\) miles W. by N. of Botton, and about 35 the fame courfe, from Northampton.-MTorse.

Dalton, a townfhip in Grafton co. New-Hampfhire, firt called Apthorpe, was incorporated in 1784 , and has only 14 inhabitants. It lies on the E. bank of Connesticut river at the 15 mile falls, oppofite Concord, in Effex co. Vermont.-ib.

DAMIENS (Robert Français), as he poffeffed neither literature nor fcience, is not, Arictly fpeaking, intitled to notice in this Work. His character, however, was fo extraordinary, and the noife which he made in the world fo great, that a fhort account of his life will probably be acceptable to a numerous clafs of our readers.

He was born in 1714, in the fuburbs of Arras, called St Catharines. His infancy announced wbat he would one day become; for fuch were his wickednefs and knaveries, that they procured to him the appellation of Rolert the Devil.

He ferved in the army, was at feveral engagements,

\section*{D A M [549\(] \quad \mathrm{D}\) A M}

Damiens. and at the fiege of Plilipfburgh. On his return to France, he entered in quality of a domeftic into the college of Jefuits at Paris, whick he left in 1738 to be married.

After having ferved different mafters in the capital, and poifoned one of them by a glyfter, he committed a robbery of 240 louis d'ors; which being difcovered obliged him to abicond. He lurked, therefore, about five months in the neighbourhood of St Omer, Dunkirk, and Bruffels, holding always the moft abfurd purpofes with regard to the difputes which at that time divided France. At Poperinguc, a fmall town near Ypres, he was heard to fay: "If I return to FranceYes, I will return, I will die there, and the greatef man on earth fhall die likewife, and you thall hear news of me!"
It was in the month of Augurt, 1756, that he uttered thefe extravagant fentiments. On the 21 ft of December, in the fame year, being at Falefque near Arras, at the houfe of one of his relations, he talked in the fame frain, affirming, "That the kingdom, his wife, and daughter were all ruined!" His blood, his heart, and his head, were at this time in a dreadful fate of effervefcence; and in this flate of mind he fet out for Paris, at which he arrived on the 3 ift day of the fame month. Having appeared at Verfailles on the firft day of the year 1757, he took opium for two or three days, probably with a view to invigorate his mind for the hortid purpofe, which he executed on the 5th of January, about three quarters of an hour after five in the evening.

This execrable parricide fruck Louis XV. with a knife in the right fide, as that monarch, furrounded by his courtiers, was entering a carriage to go to Trianon. He was feized upon the fpot; and after having undergone fome interrogatories at Verfailles, was fent to Paris to the tower of Montgommeri, where a room was prepared for him, above that which Ravaillac had formerly occupied. The king charged the great court of parliament to inftitute his procefs; but notwithflanding the moft cruel tortures, which he fupported with unparalleled firmnefs, they could not get from him a fingle confefion which could lead then to fufpeet that he had any accomplices. This miferable wretch protefted, that if he had been blooded as copioufly as he wifhed, he would never have committed the crime. After being cruelly tortured to no purpofe, he was condemned to die by the fame puniflament as the infamous affaffin of Henry IV.

The fame year, on the 28th of March, which was the day of his execution, he arrived at the Place de Greve at a quatter paft three, looking with a tearlefs eye and a firm countenance on the place and the inftruments of his punilhment. They firft burued his right hand, afterwards tore his flefh with red hot pincers, and poured melted lead, wax and pitch, into the wounds. They then proceeded to quarter him, the four hor fes trying in vain for 50 minutes to difmember his body. At the end of that time, Damiens being ftill alive, the executioners cut with knives the flefh and tendinous joinings of his legs and atms; which they had formerly been obliged to do to Ravaillac. They began with his legs ; and even after they were cut, he continued to breathe till his arms were cut in like manner. His punilhment, from the time he was put upon - Suppl. Vol. I.
the fcaffold to the moment of his death lanted about an hour and an half; during the greater part of which he retained his recollection, and raifed his head feven or eight times to view the horfes and his mangled and burned limbs. In the middle of the moft violent of the tortures, he even let fome jokes efcape him.

That the crime of Damiens was of the deepeft die, every man but an affafin like himfelf, will readily acknowledge; but the cruel and lingering punifment which was inflicted on him, was fuch as we think no human being intitled to inflia on another. It was likewife impolitic as well as cruel. We can conceive no reafon for lengthening out any punifhment, or accompanying it with circumfances of horror, but to infpire the fpectators with a deteftation of the crime; but a punihnuent too fevere produces a contrary effect, by withdrawing the attention from the crime to the criminal, and exciting compaffion for his fufferings, and indignation againt the authors of them. Such at leaft would be its effect in this country; but the minds of Frenchmen feem to be differently conftituted from thofe of others.

Damiens was rather above the middle fize; he had a long face, a bold and piercing countenance, and his mouth was a little funk. He had contracted a kind of convulfive motion, by a cuftom he had of feaking to himfelf. He was full of vanity, defirous of fignalizing himfelf, curious of novelty, a flickler againft government, though filent ; converfing with himfelf internally; obftinate in profecuting whatever he projected; bold to put it into execution; full of effrontery, and a liar ; by turns religious and wicked; committing faults at one time, and immediately after repenting of them, and continually agitated by violent impulfes. "His crime (fays a writer of genius) coft us as many groans as improbable projetts of his came to light."
How, it has been afked, could a nation fo mild and fo polithed as France, or an age which was called philofophic, produce an affaffin of a king fo much beloved by his people?
To this queftion the French author, whofe work we have tranflated, anfwers, That at all times there have been wretches who have taken neither of their age nor their country. A man, from the dregs of the people, accuftomed to crimes, ineated by the propofals of fome turbulent fpirits, in the time of contelts which agitate both the church and the fate-will end in a parricide. His brain is heated; he puts himfelf into a ferment of defpair, produced by mifery, by the fear of the punifhment his robberies deferve, and by feditious difcourfes. Agitated more and more by the contradictory movements which his mind experiences, and meditating on a project of this nature, his mind goes aAtray as far as it can, and in the height of his frantic delirium, he perpetrates the crime juft as a mad dog precipitates himfelf upon the firt objeet he meets.
This is perhaps the beft account which could te given, at the time it was written, of the conduct of Damiens; but fubfequent events have fhewn that he did not in fact deviate fo much as was fuppofed from the principles of his age and country, though that age was philofophic, and that country highly polifhed. We have feen a defendant of Louis XV. pofferfed of ten times his virtues, and entitled to the love and gratitude of the whole nation, murdered openly in
\[
+3
\]
the

\section*{D A N [\(55^{\circ}\)] D A N}

Dab
the midt of his capital, under the forms of juntice, and with circumftances of atrocity at which the mind of Damiens would perhaps have recoiled. The guilt of an infane affdfin, who commits a murder in a fit of frenzy, finks into infignificance when compared with that of legiflators, who coolly departed, not only from every principle of juftice, but alfo from the very letter of that law which conferred authority on themfelves, to cut off their innocent, their amiable fovereign.

DAN, a confiderable river of N. Carolina, which unites with the Staunton, and forms the Roanoke. In May, 1795 , a boat 53 feet long, and about 7 tons burden, palied from Upper Saura town to Halifax, about 200 miles above Halifax, under the direction of Mr Jeremiah Wade. She brought about 9 hhds. from the above place, 6 of which fhe difcharged at St Taminy, 40 miles above Halifax; to which place the river has been cleared by the donations of individuals. From St Taminy to Halifax, fhe brought about 5000 weight through the falls, which hitherto had been deemed impattable. Mr Wade thiuks, fafe navigation fur boats of a larger burden may be made at a fmall expenfe. The famous Burfed hill ftands on the bank of the Dan, in Virginia, near the borders of N. Carolina. It appears to have been an ancient volcano. There are large rocks of the lava, or melted matter, from 1000 to 1500 weight, lying on the fummit of the hill. The crater is partly filled, and covered with large trees.-Morse.

DANBURY, a poft town in the co. of Fairfield, in Connesticur. It was feuled in 1687, and the compast part of the town contains 2 churches, a court-houfe, and about 60 dwelling-houfes. On its fmall Areams are iron works, and feveral mills. Mr Lazarus Beach prefented to the mufeum in New-York city, a quire of paper, made of the afbeftos, at his paper mill in Danbury, March, 1792, which the hoteft fire would not confume. It lies about 70 miles N. E. of New-York city, and 33 N. W. by W. of New-Haven. This town, with a large quantity of military fores, was burnt by the Britilh on the 26 th of April, 1777.-ib.

DANBY, a townfhip in Rutland co. Vermont, E. of Pawlet, and contains 1206 inhabitants. It lies about 32 miles N. of Bennington.-ib.

DANGEAU (Louis Courcillon de), member of the French academy, Abbe of Fontaine Daniel and of Clermont, was born at Paris in January, 1643 , and died there the if of January 1723, aged 80 . Few people of family have given fo much time to the belles lettres, or paid fuch attention to rendering the ftudy of them eafy and agreeable. He devifed feveral methods for rendering of more eafy acquifition the knowledge of hiftory, painting, geograply, genealogy, the interefts of princes, and French grammar. He publifhed fome tracts upon each of thefe fubjects. 1. A new Merhod of Hiftorical Geography, 1706,2 vols. folio; 2. The Principles of Paincing, in 4 plates, 1715,4 to. ; 3. An Hiftorical Play of the Kings of France, which is played like that of Oie, with a fmatl book explaining the method; 4. Reflections on all the Parts of Grammar, 1684, 12 mo. 5. On the Election of the Emperor, \(1738,8 v 0\). The firt of thefe, however, is his principal work, and a part of the tenth dialogue on the immortality of the foul, commonly attributed to the Abbe Choifi, is likewife his. That book is very common;
but his other productions are very rare, becaufe he Dangeam only threw off a few copies for the ufe of his friends.
Dangeau was matter of many languages; Greek, Latin, Italian, Spanith, Dutch, and almoft all the languages which depend upon thefe. His virtues were equal to his learning. "Full of humanity for the unfortunate (fays \(M\) d'Alembert), he diftributed fuccour to the indigent, and had the virtue to conceal bis good actions. His heart was formed for friendfhip. If he had any faults, they were perhaps too great indulgence for the faults and failings of mankind; a fault which, from its rarity may be called a virtue, and for which few people have any reafon to reproach themfelves, even towards their friends. He poffeffed, in a ligh degree, that knowledge of men and the world which neither books nor genius alone can give when one has neglected to live with his equals. Rejoicing in the elteem and confidence which he poffeffed in a great degree in France, there could be no better counfellor than he in the molt important concerns. Yet his noble foul, delicate and honourable, was ignorant of deceit; and his prudence was too evident to be taken for fineffe. Pleafant and agreeable in converfation, but preferring truth in all cafes, he never difputed unlefs there was occation to defend \(i t\), which he did in fuch a firm manner as to give fome people an idea that he was obftinate in difputing, which is feldomer found among men than a cool and culpable indifference."

Dangeau (Philippe de Courcillon Marquis de), brother to the former, was born in 1638 . The elegance of his wit and perfon advanced him at the court of Louis XIV. and his decided tafte for letters procured him a place in the French academy, and in that of fciences. He died at Paris in 1520 , at the age of 82 . chevalier of the order of the king, and grand matter of the royal and military orders of our lady of Mont Carmel and of St Lazarus of Jerufalem. When he was invefted with this lafl dignity, he paid more attention than was formeily done to the choofing of chevaliers; he renewed the ancient pomp of their admifion, which the public, always malicious, ridiculed. But that which fhould have fcreened him from ridicule was, that it procured him the foundation of 25 commanderies, and he employed the revenues to bring up 12 young men of the beft nobility in France. Even envy then excufed hiselevation. At the court (fays Fontenelle), where credit is never given to probity and vittue, he held always a fair and unblemifhed reputation. His converfation, his manners were all regulated by a politenefs, which was not the confequence merely of his affociating with good company, but the offspring of an obliging and benevolent heart. We flould pafs over in him, on account of his honourable manners, the defire he had to be a great lord. Madame de Montefpan, who did not believe he could play this part, ufed to fay, in a malicious manner, that one could not help loving and defpifing him at the fame time. He maried, firlt Françoife Morin, fifter to the Marechal d'Eftrées, and afterwards the Countefs de Leuvefein, of a very noble houfe, but not opulent.

There are extant manufript memoirs by the Marquis Dangeau, in which there are feveral curinus anecdotes of Voltaire, Henault, and Beaumelle. Dangeau, however, did not always write thefe memoirs; which, according to the author of the age of Louis XIV. were compiled by an old valet de chambre, who inferted in

\section*{D A R [\(\left.55^{\mathrm{I}}\right] \quad \mathrm{D} A \mathrm{R}\)}

Danvers them without order, every ridiculous thing which he heard in the antichamber, or read in the gazettes. There fill remains a fmall work of Dangeau's, which paints, in an interefting manner, Louis the XIV. as he was in the midft of his court.

DANVERS, a townfhip in Effex co. Maffachufetts, adjoining Salem on the \(N\). W. in which it was formerly comprehended by the name of Salem village. It confilts of two parifhes, and contains 2425 inhabitants, and was incorporated in 1757. The molt confiderable and compact fettlement in \(1 t\), is formed by a continuation of the principal Itreet of Salem, which extends more than two miles toward the country, having many work fhops of mechanics, and feveral for retailing goods. Large quantitics of bricks and coarfe earthen ware are manufachured here. Another pleafant and thriving fettlement is at the head of Beverly river, called New-Mills; where a few veffels are built and owned. The town of Danvers receives an annual compenfation of \(£ .10\) from the proprietors of Effex bridge, for the obltruction of the river.-Morse.

DANVILLE, a thriving poft town in Mercer co. and formerly the metropolis of Kentucky, pleafantly fituated in a large, fertile plane, on the S. W. fide of Dick's river, 35 miles S. S. W. of Lexington. It confifts of about 50 houfes, and a Prefbegterian church. From Leelburg to Danville, the country, for the firft 20 miles, is of an inferior rate for lands in this country; but sound Lexington, and from Leefburgh to Lexington and Boonfborough, is the richeft land in the country. It is 40 miles S. by E. of Frankfort, 83 from Louifville, 201 from Hawkins in Tenneffee, and 830 from Philadelphia. N. lat. \(37 \cdot 30\). W. long. \(85 \cdot\) 30.-ib.

Danville, a very thriving townfhip in Caledonia co. Vermont. It was a wildernefs, without fo much as a fingle family, a few years ago, and now contains 574 inhabitants. It lies 8 miles N. W. of Barnet.-ib.

DAREX, a fmall town in Delaware co. Pennfylvaria, on the E. fide of Darby Creek. It contains about 50 houfes, and a Quaker meeting-honfe, and lies 7 miles S. W. by W. of Philadelplia. There are two townhips of this name, in the county, called Upper and Lower, from their relative fituation.-ib.

DA KCY (Couns), an ingenious philofopher and mithematician, was born in Ireland in the year 1725 ; but his friends being, like manyother great and good families at that period, attached to the houfe of Stuart, he was at 14 years of age fent to France, where he fpent the relt of his life. Giving early indications of a genius for fcience, he was put under the care of the celebrated Clairaut (fee Clalraut, Encyel.) under whofe tuition he improved fo rapidly in the mathematics, that at 17 years of age, he gave a new folution of the problem concern. ing the curve of equal preffure in a refifting medium. This was followed the year after by a detcrmination of the curve defcribed by a heavy body, lliding by its own weight along a moveable plane, at the fame time that the preffure of the body caufes a horizontal motion in the plane.

Though Darcy ferved in the war of 1744 , he found leifure, during the bullle of a military life, to fend two memois to the academy : the fitt of thefe contained a general principle in mechanics, that of the prefervation of the rotatery motion; a principle which be again
brought forward in 1750 , by the name of the principle of the prefervation of action. He was taken prifoner in this war by the Englifh: and fuch was either the refpect paid to fcience, or the mercy of the cabinet of St James's, that he was treated, not as an Irifh rebel, but as a French fubject fighting for his king and his country.

In 1760, Darcy publithed An Eflay on Artillery, containing fome curious experiments on the charges of gunpowder, \&c. \&c. and improvements on there of the ingenious Robbins; a kind of experiments which our au. thor carried on occafionally to the end of his life. In 1765, he gave to the public the moft ingenious of all his works his Memoir on the Duration of the Senfation of Sight, in which he endeavours to prove, and indeed completely proves, that a body may fometimes pafs by our eyes without producing a fenfation attended with confcioufnefs, or marking its prefence, otherwife than by weakening the brightnefs of the object which it may chance to cover in its paffage. If in this work he fhall be thought to have taken hints from Dr Harcley, it is not perhaps too much to fay, that fome of our moft celebrated writers on vition have fince been beholden to D.ırcy. No man indeed has caufe to be afhamed of being indebted to him; for all his works difplay in an eminent degree the union of genius and philofophy; but as he meafured every thing upon the largeft fcale, and required extreme accuracy in experiment, seither his time, fortune, nor avocations, allow. ed him to execute more than a very fmall part of what he projected.

In his difpofition, Darcy was amiable, fpirited, lively, and a lover of independence; a paffion to which he nobly facrificed, even in the midit of literaty fociety. He died of a cholera morbus in 1779 , at 54 years of age. He was admitted of the Fiench academy in 1749 , and was made penfioner-geometrician in 1770. His effays printed in the Memoirs of the Academy of Sciences, are various and very ingenious, and are contained in the volumes for the jears \(1742,1747,1749\), 1750, 1751, 1752, 1753, 1754, 1758, 1759, 1760, 1765 , and in tom 1 . of the Savans Etrangers.

DARIEN, Gulf of, raris \(S\). eafterly into Terta Firma. On the eaftern fide of its mouth, is the town of St Sebaftian.-AIorse.

Darien, a town in Liberty co. Georgja, by the beights of which glides the N. channel of Alatamaha river, about 20 miles above Sapelo Ifland, and io below Fort Barrington. It lies 47 miles S. S. W. of Savannal. N. lat. 3 I. 23. W. long. 80. 14--ib.

DARLINGTON, the molt fouthern county of Cheraws diftrict, S. Carolina; bounded S. and S. W. by Lynch's creek. It is about 35 miles long, and 21 broad.-ib.

DARTMOUTH, a town in Grafton co. NewHampfhire, north weft of the foot of the White Mountains; 33 miles N. E. of Haverhill, New-Hampfbire, and 87 N . wefterly of Portfmouth. It contains 111 inhabitants, and was incorporated in 1772.—ib.

Dartmouth, a thriving fea-port town in Briftol co. Maifachufetts, fituated on the W. fide of Acculhnet river, 70 miles foutherly of Bofton. It was incorporated in \(166_{4}\), and contains 2499 inhabitants. N. lat. 41. 37. W. long. 70. 52. -ib.

Dartmouth, a town in Elbert co. Georgia, fituated on the peninfula formed by the confluence of Broad

Darcy
Dart-
moutl.

\section*{D A U [\(\left.55^{2}\right] \quad\) D A U}

Data
and Savannah rivers, 2 miles from Fort James Dartmouth, which is a mile below Charlotte Fort. The town and fort derive their rames from James, earl of Dartmouth, whofe influence in the Britilh councils obtained from the king, a grant and powers to the Indian trading company in Georgia to treat with the Creeks, for the territory called the New Purcisafe, ceded in difcharge of debts due to the traders. ' Mhis tract contains about 2,000,0co of acres, lying upon the head of the Great Ogechee, between the banks of the Savannah and Aldamaha, touching on the Oconee, in. cluding all the waters of Broad and Litle rivers. This territory comprehends a body of excellent, fertile land, well watered by innumerable rivers, creeks and brooks. -ib.

DATA of Euclid, the firt in order of the books that have been written by the ancient genmetricians, to facilitate and promote the merhod of 1 efolution or analyfis. In general, a thing is fatd to be given which is either actually exhihited, cran be found out, that is, which is either known by hypothefis, or that can be demonitrated to be known: and the propufitions in the book of Euclid's data, fhew what things can be found out or known, from thofe that by hypothefis are already known : fo that in the analyfis or inveftigation of a problem, from the things that are laid down as given or known, by the help of thefe propofitions, it is demoultated that other things are given, and from thefe laft that others again are given, and fo on, till it is demonltrated that that which was propofed to be found out in the problem is given; and when this is done, the problem is folved, and its compolition is made and derived from the compotitions of the data which were em. ployed in the analyfis. And thos the data of Enclid are of the molt general and necelfary ufe in the folution of problems of every kind.

Marinus, at the end of his preface to the data, is miftaken in afferting that Euclid has not uled the fyn. thetical, but the analylical method in delivering them: for though in the analyfis of a theorem, the thing to be demontrated is affumed in the analyfis; yet in the demonfrations of the datd, the thing to be demonftrared, which is, that fomething is given, is never once affumed in the demonftration; from which it is manifeft, that every one of them is demonfrated fynthetically: though indeed if a propofition of the data be turned into a problem, the demonftration of the propofition becomes the analyfis of the problem. Simplon's Preface to his edition of the Data.

DAUBENTON (William), who made fo much noife ealy in this century, was born at Auxerre. He followed King Philip V. whofe confelfor he was, into Spain. He had the greateft influence with that prince until the courtiers, jealous of his power, prevailed upon the king to fend him from court in 1706 . By dint of folicitations, however, he was recalled in 1716 , reinflated in his office, and then enjoyed more power than beforc. It is faid, that when Philip V. difgulted with his throne, wifhed to abdicate it, he confided his defign to Daubenton; that the latter, fearing that he thould be obliged to follow him to his retreat, difcover ed this fecret to the Duke of Orleans, regent of France, who was at that time projecting the double marriage of Mademoifelle de Montpenfier his daughter, with the Prince of the Afturias, and that of Louis the XV.
with the infanta, five years of age. It is added, that the Jefuit believed it would be for the intereft of the Duke of Orleans to diffuade Philip from his purpofe : that the Duke of Orleans fent the confeffor's letter to the king, who fhewed it to Daubenton, without faying a fingle word; that the confeffor put a very different confluction upon it; that an apoplexy feized him on going out of the chamber; and that he died a fhort time after in 1723 ; in the \(75^{\text {th }}\) year of his age. This flory (for the truth of which we will avouch ftill the lefs, that it is not mentioned by the Marfhal de Noailles in his memoirs) is related by the anthor of the Age of Louis XV. who quotes the civil hiftory of Bellado, page 306, Part IV. It is only clear from the memoirs of Noalles, that Daubenton oppofed the abdicatimn of the King of Spain. The Abbe Grofier, in a letter inferted in the Annee Litteraire (\(1777, \mathrm{~N}^{\circ} 18\)), denies, 1 mo, That Datubenton had revealed to the regent any fecret entrufted to him by Philip V. in corfeftion. \(2 d 0\), That this Jefuit died, as Voltaire makes him from the autherity of Bellando, an inaccurate hift,rian, whofe works were fuppreffed in Spain. \(3^{\text {tio }}, \mathrm{He}\) pretends that Daubenton, far froms being a man of intrigue, an ambitiuus monh, and capable of oppofing the abdication of Philip, in order to prevent himfelf from being removed from court, had folicited peimilfion to leave it feveral years before. We refer the reader to that letter, which deferves to be read for the found criticifm which it contains. This Jefuit had preached with fome luccefs. There are extant fome tolerable funeral orations of his, and a life of St. Francois Regis, 12 mo .

DAUPHIN, Fort, a jurifdition, fort and reaport town in the N. part of the ifland of St Domingo. This divifion contains 5 parithes. Its exports from Jan. 1, 1789 to Dec. 31 of the fame year, confilted of fugar, coffee, cotton, indigo, fpirits, molaffes, and tanned hides, in value 35,252 dolls. 13 cents. The town of Fort Dattphin is remarkable for a fountain conltructed by the orders of M. de Marbois, which colt 10,678 dollars. N. lat. 19. 41 --MTorse.

Dafphin, an ifland about 10 miles long, in the mouth of Mobile bay, 5 miles from Malfacre Inland, with a fhoal all the way between them. Thefe are fuppofed formerly to have been but one, and went by the general name of Maffacre, fo called by Monf. d'Ibberville, from a large heap of human bones found thereon at his landing. It was afterwards called Dauphin Ifland. The W. end, a diftance of between 3 and 4 miles, is a narrow flip of land with fome dead trees; the reft is covered with thick pines, which come clofe to the water's edge on the E. iide, forming a large bluff. There is the remains of an old French polt on the S. fide of the ifland, and of fome old houres of the natives. N. lat. 30. 10. W. long. 88. 7. -ib.

Dauphin, a fort in the ifland of Cape Breten, round which the French had their principal fettement, before they built Lovifourg.-ib.

Dauphin Co. in Pennfylvania, was formerly contained in that of Lancafter, until erected into a feparate county, March 4, 1785 . Its form is triangular ; its contents 586.400 acres, and is furrounded by the counties of Mifflin, Cumberland, York, Berks, and Northumberland. It is divided into 9 townhips, the

\section*{D E A \(\quad[553] \quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{E}\)}

Davidfon Deadham
chief of which is Harrifburg ; the number of its inhabitants 18,177. Nearly one half of the land is under cultivation; but the nothern part is very rough and mountainons. In feveral of the mountains is found abundance of iron ore of the filt quality; a furnace and forge have beell erected which carry on brikly the manulature of pig, bar iron, \&ce. The firf fettlers here were Irifh emigrants, who were afterwards joined by a number of Germans. In the town of Derry, on the bank of Swatara ceek is a remarkable cavern; its entrance is under a high bank, and ncarly 20 feet wide, and about 8 or 10 feet in height. It defcends gradually nearly to a level with the creek. Its ap.artments are numerous, of different lizes, and adorned with Italactues curioufy diverlified in lize and colour. Near the foot of Biue mombtain is a mineral fipring, much celebrated by the country perple for its efficacy in removing theumatic and other chronic diforders.-ib.

DAVIDson, a county in Mero diftrict in Tenneffee, bounded N. by the ftate of Kentucky, E. by Sumner, and S. by the Indian tervitory. Its clief town Nafhville, lies on the great bend of Cumberland river.-ib.

DAVID's Town, on the Affanpink river, Hunterdon co. New-Jelfey, 10 or 12 miles from Trenton. Between thefe towns a boat navigation has lately been opened by the means of three locks, erected at a confiderable expenfe. It is propofed to render this river boatable 10 or 15 miles further, in which diftance, no locks will be neceffary.-ib.

DAVIS's Strait, a narrow fea, lying between the N. main of America, and the weftern coaft of Greenland; running N. W. from Cape Farewell, lat. 60. N. to Baffin's Bay in So. It lad its name from Mr John Davis, who firt difcovered it. It extends in W. long. 75. Where it communicates with Baffin's Bay, which lies to the N. of this Atrait, and of the North Main, or James's Inland. - \(i b\).

DAWFUSKEE, an ifland on the coaft of S. Carolina, which forms the N. E. fide of the entrance of Savannah river, and S W. fide of the entrance of Broad river, and admits of an inland communication between the two rivers.-ib.

DAXABON, Dajubon, or Dababon, which the French call Laxabon, is a town and fettement of Spaniards on the line between the Fiench and Spanifh divifions of the ifland of St Domingo. It wa fettled to prevent fmaggling when the Spaniards had their thare of the ifland. It is bounded E. by the ternitury of St Yago, N. by the extremity of the bea of the Great Yaqui, and the bay of Mancenilla, W. by the river and little inland of Mafficre. It contains about 4000 perfons. The town itands 400 fath ims from the E. bank of Maffacre river, more than 80 leagues N. W. of St Domingo, and 28 W . of St Yago. N. lat. 19. 32. W. long. from Paris 74.9.-ib.

DAY's Point, on Janes river in Virginia. There is a plantation here of abnut a 1000 acres, which at a diftance appears as if covered with fnow; occafioned by a bed of clam flells, which by repeated ploughing have become fine, and mixed with the earth -ib.

DEAD CHE.ST Iland, one of the fmaller Virgin ifles, fitured uear the E. end of Peter's ifland, and W. of that of Cooper's.-i ib.

DEADHAM, a poft town, and the capital of Nor-
folk co. Maffachufetts, called by the aboriginals Tiot, Deadman's and by the firl fetters, Clapboard Trees. The townfhip was incorporated in 1637 , is 7 miles in length, and 6 in breadth, and contains 1659 inhabitants. Its public buildings are 3 congregational churches, an epifcopal church, and a court-houfe. It is pleafantly fituated, 11 miles S. W. of Bolton, on Charles river. A finall Atream furnifhes water molt part of the year to 2 grift mills, 2 faw mills, 2 fulling mills and a leather mill, all in the fpace of three quarters of a mile, and joms Neponfit river on the borders of Milton. A wire manufactory is erected here, for the ufe of the fith-hook and card manofacturers in Bofton.-ib.

DEADMAN's Bay, on the E. fide of Newfoundland ifland, lies S. of St John's harbuur, and N. W. of Cape Spear.—ib.
1)EAL, in Monmouth co. New-Jerfey, about 7 miles fouthward of Shrewfory. This place is the refort of great numbers of people from Philadelphia, in fummer, for health and pleafure-ib.

DE BOIS BLANC, an itland belonging to the N. W. territoty, a voluntary gift of the Chipeway nation to the United States, at the treaty of peace concluded by gen. Wayne at Greenville, in 1795. -ib.

Circulating DecimaLs, called alfo recurring or repeating decimals, are thofe in which a figure or feveral figures are continually repeated. They are diltinguifhed into fingle and multiple, and thefe again into pure and mixed.

A pure fingle circulate is that in which one figure only is repeated; as \(\mathbf{2 2 2} \& \mathrm{\& c}\). and is marked thus \(\cdot 2\).

A pure muliople circulate is that in which feveral fi. gures are continually repeated; as \(\cdot 232323\) \&c. marked .23 ; and 524524 \&c. marked \(\cdot 524\).

A mixed fingle circulate is that which confilts of a terminate part, and a fingle repeating firgure; as 4.222 \(\& c\). or \(40^{\circ}\). And

A mixed multiple circulate is that which contains a terminate part with feveral repeating figures; as \(45 \circ 52 \dot{4}\).

That part of the circulate which repeats is called the repetend; and the whole repented, fuppoled infinitely continued, is equal to a vulgar fraction, whofe numerattor is the repeating number or figures, and its denominator the fame number of nines: \(\mathrm{fo} \cdot \dot{2}\) is \(=\frac{2}{9}\); and \(\cdot \ddot{2}\) is \(=\frac{23}{98}\); and \(\cdot 5^{2}+\dot{+}\) is \(=\frac{5}{9}=\frac{4}{9}\).

It teems it was Dr Wallis who firt difinetly conf1dered or treated of infinite circulating decimals: as he himielf informs us in his Treatife of Intinites. Since his time many other authors have treated on this part of anthmetic; the principal of thefe, however, to whom the art is moflly indebted, are Meffrs Erown, Cum, Martin, Emerfon, Malcolm, Domn, and Henry Clarke; in whofe writings the nature and prafice of this art may be fully feen, efpecially in the latt mention. ed ingenious author.

DEEP Spring, in the flate of New-Yorl, is a curiofity, and lies abont 9 miles \(S\). of Oneida lake, at the head of Chittenengo creek, and ro miles S. W. of On ida caltle.-Morse.

Defp River, in North Carolina, rifes in Wachoria, and unites with Haw river and forms the N. W. branch of Cape Fear river.-il.

DEERFIELD, a townfhip in Cumberland co. New-Jerley.-ib.

Deerfield Rivir, or the Pocomitic, rifes in Stratton,

\section*{D E J [554\(] \quad \mathrm{D}\) E L}

Deeffich in Bennington co. Vermont, and after receiving a Dej:ction. number of Itreams from the adjoining towns, unite on cntering Maflachuletts; thence winding in an E. direction, it receives North river and empties into Connecticut river, between the townhips of Greenfield and Decrfield, where it is about 15 rods wide. Excellent tracts of meadow ground lie on its banks.-ib.

Deerfield, a very plearant town in Hampftire co. Maffachufetts, on the W. bank of Connecticut river, from which the compact part of the town is feparated by a chain of high hills. It is in the midt of a fertile country, and has a fmall inland trade. The compact part of the town has from 60 to \(r 00\) houfes, principally on one ftreet, and a handfome congregational church. It was incorporated in 1681, and contains 1330 imhabitants; 87 miles N. of Northampton, and rog N. by W. of Bofton.

The houfe in which the Rev. Mr Williams and his family were captivated by the Indians in the early fettlement of this town, is ftill ftanding, and the hole in the door, cut by the Indians with their hatchets, is ftill thewn as a curiofity. An academy, incorporated in 1797, by the name of "The Deerfield Academy," is eftablifhed in this town.-ib.

Deerfield, a well fettled agricultural town in Rockingham co. New-Hampthire, and was a part of the lownfhip of Nottingham, 19 miles S. E. of Concord, and 35 N . W. of Portfmouth. It contains 1619 inhabitants, and was incorporated in 1766. -ib.

DEER I/land, an ifland and townhip in Penobfcot bay, in Hancock co. diftrict of Maine, containing 682 inhabitants. It was incorporated in 1789 , and lies 305 miles N. E. of Bofton.- \(\boldsymbol{H}\).

DEERING, a townfhip in Hillborough co. NewHampfhire, incorporated in 1774 . It contains 928 inhabitants, and lies 15 miles S. W. of Concord, and 54 miles IV. of Portfmouth.- ib.

DEFERENS, or Deferent, in the ancient aftronomy, an imaginary circle, which, as it were, carries about the body of a planet, and is the fame with the eccentric; being invented to account for the eccentricity, perigee, and apogee of the planets.

DEFIANCE, a fort in the N. weftern territory, fituated on the point of land formed by the confluence of the rivers of Au Glaize, and the Miami of the lake, nearly half way between Fort Wayne on the Miami, and lake Erie. N. lat. 41. 4i. W. long. 84. 43. - Morse.

DEFLECTION, the turning any thing afide from its former courfe by fome advencitious or external caufe. The word is often applied to the tendency of a thip from her true courfe by reafon of currents, \&c. which turn her out of her right way. It is likewife applied by aftronomers to the tendency of the planets from the line of their projection, or the tangent of their orbit. See Astronomy in this Supplement.

DEJECTION, in altrology, is applied to the planets when in their detriment, as attrologers fpeat, i. e. when they have loft their force or influence, as is pretended, by reafon of their being in oppofition to fome others which check and counterakt them. Or it is ufed when a planet is in a fign oppofite to that in which it has its greateft effect or influence, which is called its exaltation. Thus, the fign Aries being the cxaltation of the firo, the oppofite firn Libra is its dejection.

DE LA MARCH, a weitern water of Illinois river in the N. W. territory. It is 30 yards wide, and navigable 8 or 9 miles.-Morse.

DE LA WAR, a town in King William's co. Virginia, fituated on the broad peninfula formed by the confluence of the Pamunky and Mattapony. The united Aream thence affumes the name of York river. It lies 20 miles N. by W. of Williamfurg in N. lat. 37. 31. W.-ib.

DELAWARE Bay and River. The bay is 60 miles long, from the cape to the entrance of the river, at Bombay Hook; and cccupies a fpace of about 630,000 acres; and is fo wide in fome parts, as that a fhip, in the middle of it, cannot be feen from the land. It opens into the Atlantic N. W. and S. E. between Cape Henlopen on the right, and Cape May on the left. Thefe capes are 18 or 20 miles apart.

Delaware river was called Chihohocki by the aboriginals, and in an old Nurenberg map is named Zuydt river. It rifes by two principal branches in New. York Itate. The northernmolt of which, called the Mohawk's or Cookqugo branch, rifes in lake Ultayantho, lat. 42. 25. and takes a S. W. courfe, and turning S. eaftwardly, it croffes the Pennfylvania line in lat. 42 .; about 7 miles from thence, it receives the Popachton branch from the N. E. which rifes in the Kaats Kill mountains. Thence it runs fouthwardly, until it frikes the N. W. corner of New-Jerfey, in lat. 41.24 ; and then paffes off to fea throngh Delaware bay; having New. Jerfey E. and Pennfylvania and Delaware W. The bay and river are navigable from the fea up to the great or lower falls at Trenton, 855 miles; and are accommodated with buoys and piers for the direction and fafety of fhips. A 74 gun hip may go up to Philadelphia, 120 miles by the thip channel from the fea. The diftance acrofs the land, in a S. E. courfe, to New-Jerfey coalt, is but 6 c miles. Sloops go 35 miles above Pbiladelphia, to Trentonfalls; boats that carry 8 or 9 tons, 100 miles farther, and Indian canoes 150 miles, except feveral fmall falls or portages.

It is in contemplation to connect the waters of Chefapeak bay with thofe of Delaware river by 4 different canals, viz. Elk river with Chriftiana creek-Broad creek, another branch with Red Lion creek-_ Bohemia, a third branch of the Elk, with Apoquiremy creek; and Chefter river with Duck creek.-ib.

Delaware, a fmail river of Eaft Florida--is.
Delaware Co. in Pennfylvania, is S. W. of Philadelphia co. on Delaware river. It is about 21 miles in length, and 15 in breadth, containing 115,200 acres, and fubdivided into 19 townithips; the cliref of which is Chefter. The number of inhabitants is 9,483 . The lands bordering on the Delaware are low, and afford excellent meadow and pafturage; and are guarded from inundations by mounds of earth or dykes, which are fometimes broken down in extraordinary frefles in the river. If this happens before cutting the grafs, the crop of hay is lolt for that featon, and the reparation of the breaches is expenfive to the proprietors. Great numbers of cattle are brought here from the wettern parts of Virginia, and North-Carolina, to be fattened for fupplying the Philadelphia market.-ib.

Delaware, a new county in the fate of New-York, on the head waters of Delaware river, taken from Otego county.-ib.

Dfla.

De l.a March I Delaware. \(\rightarrow\) -

\section*{D E M [555] D E N}

Deliwares DELAWARES, an Indian nation formerly numer-
\|
Demerara. ous and powerful, and who pofieffed part of Pennfylvania, New-Jerfey and New-York. This name was doubtlefs given them by the Europeans; for they call themfelves Lenailenape, that is, Indian men; ur Woapanachky, which fignifies a people living towards the rifing fun. They now relide about half way between lake Erie and Ohio river. They are an ingenious and intelligent people; and like the Six Nations, are celebrated for their courage, peaceable difpofition, and powerful alliances. Almoft all the neighbouring nations are in league with them, efpecially the Mahikan, Swawanves, Cherokees, Twichtwees, Wawiachtanos, Kikapus, Mofhkos, Tuckachihas, Chippeways, Ottawas, Putewoatamies, and Kaikatkias. The Delawares were lately hoftile, but made peace with the United States in 1795, and ceded forme lands. The United States, on the other hand, have engaged to pay them in goods, to the value of 1000 dullars a year forever. Twenty years ago, the Delawares could furnith 600 warriors ; but their number is confiderably decreafed by war fince that time.- \(i b\).
dELiACAL Problem, a celebrated problem among the ancients, concerning the duplication of the cube.

DELIVERANCE, Cape, is the S. E. point of the land of Louifiade. Bougainville was here, and named it in 1768. Morse.

DEL REY, a captaioflip in the fouthern divifion of Brazil, whofe chief town is St Salvadore-ib.

DEL SPIRITU SANTO, a tiver which falls into the gulf of Mexico, at the N. W. end of the peninfula of Fiorida- - \(i b\).

DEMERARA, a river in Dutch Guiana, in S. America, is about two miles wide at its mouth, oppofite the fort, on the E. bank of the river, and about 45 miles diftant from Abary creek. It is fcarcely a mile wide, 12 miles above the fort; and its courfe is from S. to N. It is navigable upwards of 200 miles for veffels which can pafs the bar at its mourh, which is a mud bank, not having above 24 feet at the highert tides. The difference between high and low water mark, is from 10 to 12 feet. The fort, if properly fupplied with men and ammunition, is able effectually to guard its entrance. Staebroeck, the feat of government, Aands on the E. lide of the river \(1 \frac{1}{2}\) miles above the fort.-ib.

Demerara, a diftrict in Duteli Guiana, which, together with Effequebo, form one government, and have the fame count of police, but each has a feparate court of jultice. The two dittrists contain abeut 3,000 whites and 40,000 flaves. Demerara river which gives name to the diftriet, paffes through it, and is ulually vifited by 40 or 50 large fhips from Holland, who often make two voyages in a year, befides upwards of 250 fmaller veffels, under the Dutch and other flags. The plantations are regulaily laid out in lots along the fea-thore, called façades, about a quarter of a mile wide, and extending \(\frac{3}{4}\) ths of a mile back into the country. Each lot contains about 250 acres each; and when fully cultivated, the proprietor may obtain a fruilar tract back of the fir ft , and fo on in progrefion. Each lot will contain 120,000 cutton trees, averaging ufually lalf a pound a tree. Such a plantation is recdoned well flocked to lave 120 negroes. The fhores
of the rivers and creeks are chiefly planted with coffee, to the diltance of about 30 miles from the fea; thence 30 miles further up, the foil becomes clayey and more fit for fugar canes. Beyond this, the fineft kinds of wood, for building, furniture, \&c. are cut.-ib.

DEMI-Bastion, in fortification, a baftion that has only one face and one flank.

DEMI-QUIAN, a river, fwamp and lake on the weftern fide of llinois river in the N. W. territoryThe river runs a S. S. E. courfe, is navigable 120 miles, and has the fwamp of its name on the northern bank near its mouth; which laft is 50 yards wide, 32 miles above Sagamond, and 165 miles above the Miffiffippi. The lake is of a circular form, 200 yards W. of the river, is 6 miles acrofs, and empties into the Illinois by a fmall paffage + feet deep, 171 miles from the Miffilippi.-Morse.

DENDROMETER, in its ufual acceptation, is the name of an inftrument for meafuring trees, of which the reader will find a defeription in the Encycloprdia. The fame name has been lately given, by William Pitt, Efq; of Pendeford, near Wolverhampton, to an inftrument propofed by him for meafuring dilances by one obfervation.

The idea of fuch an inflrument is not new. It las been frequently difcuffed, both in converfation and upon paper; but has been generally treated by found mathematicians with contempt, on the fuppofition of its being founded on falfe principles. Of all this our author is fully aware ; but he, notwithtanding, frongly recommends it to the attention of the ingenious mathematical infrument-maker.

To determine diflances by one obfervation, two methods may be propofed, founded on different principles; the one on the fuppofition of the obferver being in the centre, and the otject in the circumference, of a circle; the other, on the contrary fuppofition, of the obferver being in the circumference, and the object in the centre.
To determine the diftance of any object on the firt fuppofition, the bulk or dimenfions of fuch objeat mut be known, either by meafure or eftimation, and the angle formed by lines drawn to its estremities being taken by an accurate inftrument, the diftance is eafily calculated; and fuch calculations may be facilitated by tables or theorems adapted to that purpofe. For this method our prefent inftruments, with a nonius, and the whole very accurately divided, are fufficient; the only improvement wanting feems to be the application of a micrometer to fuch inllruments, to enable the obferver to read his angle with more minute accuracy, by afcertaining, not only the degrees and parts of a degree, but alfo the minutes and parts of a minute.

As in this method the bulk of inaccelible objeats can only be eftimated, the crror in diftance will be exactly in the proportion of the error in fuch eftimation; little dependence can therefore be placed on diftances thus afcertained. For the purpofes of furveying, indecd, a faff of known length may be held by an alliftant; and the angle from the eye of the obferver to its two ends being meafured by an accurate inftrument, with a micrometer fitted to afcertain minutes and parts of a minute, diftances may be thus determined with great accuracy ; the application of a micrometer to the theodolite, if it could be depended upon, for thus deter-

Demibaftion II Dendrome-
\(\qquad\) \(\underbrace{\text { tcr. }}\)

\section*{D E N [556\(] \quad\) D E N}

Dendrome-mining the ninute parts of a degree, in fmall angles, is \(\xrightarrow{\text { ter. }}\) very much a delideratum with the practical furveyor.

This method of sneafuring diftances, though plain and limple enough, our author illultrates by an example: Suppore A, fig. i. (fee Plate XXI.) the place of the inftrument ; BC the affitant's faff, with a perpendicular pin at \(D\), to cnable the affiftant to hold it in its right pofition; now, if the angle BAC could, by the help of a micrometer, be afcertained to parts of a minute, the diftance from \(A\) to \(B\), or to \(C\), might be eafily calculated by the sules of plane Trigonometry; for which fee that article in the Encyclopredia.

But this method of afcertaining diftances cannot be applied to inacceffible objects, and it is moreover fubject to the inconvenience of an affiftant being obliged to go to the object whofe diftance is required (an inconvenience almof equal to the trouble of actual admeafurment); therefore the perfection of the fecond method propofed, if attainable, is principally to be defired; namely, that of conceiving the obfervation made on the circumference of a circle, whofe centre is in the object whofe diffance is to be afcertained; and, none of our infruments now in ufe being adapted to this mode of obfervation, a new conftruction of a mathematical infrument is therefore propofed, the name intended for which is the dendrometer.

Our author admits, that this name is not now ufed for the firf time, thongh he thinks that the principle has never been applied in practice, for the familiar purpofe of afcertaining terreftrial ditances, in furveying, or otherwife, though the fame principle bas been fo generally and fuccefstully applied in determining the diftance of the heavenly bodies by means of their parallax.

The following principles of conftruction are propofed, which may perhaps be otherwife varied and improved. O, fig. 2. the objest of whofe diftance is required: ABCDE the inftrument in plano; BC a telefcope, placed exacly parallel to the fide AE; CE an arch of a circle, whofe centre is at A, accurately divided from E in degrees, \& E ; AD an index, moveable on the centre A , with a nonius feale at the end D , graduated to apply to the divifions of the arch; alfo with a telefcope, to enable the obferver to difcriminate the object, or any particular part or fide thereof, the more accurately. The whole fhould be mounted on three legs, in the manner of a plain table or theodolite, and furnifhed with fpirit-tubes to adjuf it to an horizontal pofition. The infrument being placed in fuch polition, the telefcope BC muft be brought upon the object \(O\), or rather upon fome particular point or fide thereof; when, being there faftened, the index AD moft be moved till its telefcope exacly frikes the fame point of the object ; then the divifions on the arch ED mark out the angle DAE, which will be exactly equal to the angle BOA, as is demonftrated in the XV. and XXIX. propofitions of Euclid, Book I. ; and the fide BA, as well as the angles ABO, and BAO, being already known, the diftance BO or AO may be eafily determined.

As the perfection of this infrument depends altogether upon its accuracy in taking fimall angles, fo that accuracy muft depend, not only upon the infrument's being properly fitted with a micrometer, but alfo in fome meafure upon the length of the line BA in the figure. That line, therefure might be extended, by
the inftrument being conftructed to fold or flide out to Dendrome: a greater length when in ufe; upon which principle, connected with the application of a micrometer, an accurate and ufeful inftrument might certainly be conftructed. To adjuft fuch inftrument for ufe, let a flaff be held up at a diftance, in the manner of fig. 1. exactly equal in length to the diflance of the two telefcopes, and the index AD being brought exaclly upon the fide AE, if the two telefcopes accurately frike either end of the Itaff, the inftrument is properly adjufted.

The conftruction of a fimilar inftrument on the principles of Hadley's quadrant, for naval obfervations, would alfo doubtlefs be an acceptable object in navigation, by enabling the mariner to afcertain the diftances of thips, capes, and other objects, at a fingle obfervation; and that, perhaps, with greater accuracy than can be done by any method now in ufe.

For this purpofe, the following conflruction is propofed: ABCDE, fig. 3. the inltrument in plano; O the object whofe diftance is required; at \(A\), at \(C\), at E , and at 3 , are to be fixed fpeculums properly framed and fitted, that at 3 having only its lower part quick filvered, the upper part being left traniparent to view the object, the fpeculum at A being fixed obliquely, fo that a line A I, drawn perpendicular to its furface, may bifect the angle BAC in equal parts; that at C being perpendicular to the line C 2 ; thofe at E at 3 being perpendicular to the index E 3, and that at E being furnifhed with a fight; the atch DC to be divided from \(D\) in the manner of H.adley's quadrant: the movement of the index to be meafured as before by a micrometer; and as the length of the line AE would tend to the perfection of the infirument, it may be conftructed to fold up in the middle, on the line \(\mathrm{C}_{2}\), into lefs compafs when not in ufe. The inftrument may be adjufted for ufe by holding up a ftaff at a diftance, as before propofed, whofe length is exactly equal to the line \(A E\).

To make an obfervation by this inftrument, it being previounly properly adjufted, the eye is to be applied at the fight in the fipeculum E, and the face turned towards the object; when the object being reeeived on the fpeculum A , is reflected into that at C , and again into that at E , and that at 3 on the index; the index being then moved till the reflected object in the fpeculum at 3 exactly coincides with the real object in the tranfparent part of the glafs, the divifions on the arch \(\mathrm{D}_{3}\), fubdivided by the micrometer, will determine the angle \(\mathrm{DE}_{3}=\) the angle AOE ; from which the diftance \(O\) may be determined as before.

DENNEY's River, diffrict of Maine, 22 miles E. of Machias. The country between this river and Machias, in 1794, was a wildernefs. The banks of the river were at this time thinly fettled by a regular and well difpofed people.-Morse.
DENNIS, a part of Yarmouth in Barnfable co. Malfachufetts, which was incorpurated into a townfhip in 1793.-ib.

DENOMINATOR of a Ratio is the quotient arifing from the divifion of the antecedent by the confequent. Thus 6 is the denominator of the ratio 30 to 5 , becaufe 30 divided by 5 gives 6 . It is otherwife called the exponent of the ratio.

DENTON, the chief town of Caroline co. in Maryland; fituated on the E. fide of Choptank creek, the
E. main

D E S
E. main branch of Choptank river. It is laid out re. gularly, and has a few houfes, and lies 7 miles \(S\). of Greenfuorough, and 37 S. S. E. of Chefter.-Miorse.

DEPRESSION OF A STAR, or Of the Sum, is its diftance below the horizon, and is meafured by an are of a vertical circle, intercepted between the horizon and the place of the far.

Depression of the Vifible Horizon, or Dip of the Horizon, denotes its finking or dipping below the true horizontal plane, by the obferver's eye being raifed above the furface of the fea; in confequence of which, the obrerved altitude of an object is by fo much too great.
DERBY, a townflip in Orleans co. Vermont, on the N. line of the fate, on the E. thore of like Mem-phremagog.-Morse.

Derby, a town in New-Haven co. Connceticut, on the point of land formed by the confluence of Naugatuck and Houfatonick rivers. This town was fetled in 1665 , under New-Haven jurifdiation, and is now divided into two parifhes, and has an acadenry in its infancy. It has a confiderable trade with the WeftIndies for fo frmall a town, and a number of mills on the falls of Naugatuck, and Atreams which fall into it, and iron and other works on Eight-mile river which falls into the Stratford. The Stratford or Houfatoniek river is navigable 12 miles to this town.一ib.

DEROOBUST, in Bengal, Entire; as an entire diftrict, oppofed to Kısmut, which fee.

DERRY, a townfhip in Dauphin co. Pennfylvania, fituated on the E. fide of Swatara creek, 2 miles above its confluence with the Sufqueliannah, and celebrated for its curious cave.-Morse.

Derry, a townhhip on Sufquehannah river in Pennfylvania. There are two other townhips of the fame name in Pennfylvania; the one in Mifflin co. the other in that of Weflmoreland.-ib.

DERRYFIFLD, a townfhip in New.Hampfhire, on the E. bank of Merrimack river Hillborough co. containing 362 inhabitants, and was incorporated in 1751 ; the foil is but indifferent. It is 42 miles W. of Portfmouth.- \(i l\).

DESAQUADERO, a river in Peru, S. America, ever which the Ynca Huana Capac built a bridge of flags and rufhes, to tranfport his army to the other fide, and which remained a few years fince.-ib.

DESAULT (Peter Jofeph), furgeon in chief to the Hofpital of Humanity, formerly the Hotel.Dieu, at Paris, was born on the 6th of February, 1744 at Magny Vernois, a village in the neighbourhood of Lure, in the department of Haut Saone (formerly the pro. vince of Franche Comté) His father and mother were in that fituation of life which is removed from want, and yet does not difpenfe with labour; he himfelf was the youngett child of a numerous family.

At Lure, under the direstion of a private inftructor, he was taught the firf rudiments of the Latin tongue; his parents afterwards confided him to the care of the Jefuits, then almolt exclufively entrufted with the education of youth in the public fchools. This celebrated fociety, prompt in difcovering, as expert at developing, and adroit in appropriating talents, foon diftinguifhed the young fudent from the crowd; and he in his turn, was not difpleafed with the life he led in one of their feminaries.

Suppl. Voz. I.

On the exmpletion of his fudies his father, who had deflined him for the church, intimated a wif that he fould apply himelf to theologs; but his genius had taken a different direction, and he was averfe to the profefion of an ecclefialtic: in fhort, young Default declared that he was determined to betake limedf to the fudy of the healing art, and, after a long and ineffectual reffitance on the part of his family, be was fert to Béfort, in order to ferve an apprentice/bip, as it was then termed, in the military hofpital of that place. He accordingly fent three years there, during which he acquired fome knowledge of anatomy, attended to the drefling of the patients, and endeavoured to fupply, by his own obfervations, what was wanting in his inftuction.
In the midt of thefe profefional labours, his mind frequently rambled towards another fcience but little connected with furgery: this was mathematics, the elements of which he had acquired among the Jefuit 4. His progrefs in this favourite fudy was rapid; but he fell into one of the many errors fo common among the phyficians of that day : this conlifted in a falfe application of the rules of geometry to the laws of the animal economs.

He not only perufed with avidity the treatife of Borelli De Motu Animalium, but actually trarflated the whole of it, and even added a commentary fill more abundant in calculation than that of the celebrated profeffor of Naples.

His fuccefs in a branch of phyfiology fo much cultivated at that time, attracted the attention of one of his fuperiors, a zealous partizan of the dofrine of the mechanicians who withed to attach him to his perfon ; but his defire of fame required a more extenfive theatre, and his love of fudy made him folicitous of better means of infruction. Paris prefented both thefe advantages, and he accordingly repaired thither in \(17 \sigma_{4}\), at the age of nineteen, in fearch of them.

Surgery at that period foarifhed in the capital under the aurpices of a Lafaye, a Morand, an Andonillet, and a Louis. The fight of fuch great mafters excited the genius of thofe who afpired to emulate them: young Default deemed himfelf worthy of equalling men whom other ftudents were content with only admiring. Animated by this fentiment, he entirely refigned himfelf to his ardour; anatomy became the fpecial object of his labours, and his difections were not confined to the human body; for he inveftigated by means of his knife, a prodigious number of animals of all kinds : at firt, from a difficulty of procuring human fubjects, and afterwards on account of the advantages which he experienced from this general method. In order to become intimately acquainted with our own organization, it is neceffary to compare with it whatever has a refemblance to it in other bodies.

He accordingly fpent the grcater part of the day in the amphitheatres. The hours flolen from his favourite labours were emploged in attending the hofpitals; he was the firf at the bed of the patient where an operation was to be performed, and was fure to be prefent at the dreflings on purpofe to examine the refult. The infirmities of mankind, ferile in refpect to the vulgar, ferved him as the beft treatife for curing them; and the great furgeons of all nations have formed their mode of pratice by contemplating the fame book.

But he reckoned too much on a robuft and vigorous temperament ; for, after two years clofe and afliduous application, he fell into a cachectical habit of body, which had nearly proved mortal, and which confined him for almoft twelve months to his bed ; but at length, owing partly to the vigour of his youth, and partly to the attention of his young friend Chopart, his infeparable companion in his operations, who attended him alfo during his lant illnefs, and only furvived him a few days, he was fo fortunate as to recover.

Reftored to life, he forgot that an excefs of attention had conducted him to the very gates of death; a new career opened to his view, and required new efforts on his part. In the winter of 1766 he commenced a courfe of anatomy, and foon reckoned 300 pupils, moft of them older than himfelf, who were attracted by the clearnefs of his demonftrations, the methodical arrangement of his defcriptions, and, above all, by his indefatigable zeal in the fcience of inftruction.

His fuccefs infpired the privileged profeffors, whofe fchools became deferted, with jealoufy and revenge ; they employed the authority of the corporation againf him, and would have nipped his efforts in the bud, had it not been for the protection of Louis and Lamartiniere, who were zealous of protecting a youth of talents, whofe fole reproach was that he had not wealth enough to purchafe certain franchifes, after all, had it not been for the permifion he obtained of borrowing the name of a celebrated phyfician, he mult have actually defifted from his lectures.

Default's reputation now begun to be buzzed about, and a multitude of patients claimed his affifance ; but he conflantly refufed to practife, until he fhould be placed at the head of fome great eftablithment.

At length, at the repeated folicitations of his friends, he prefented himfelf as a candidate to the corporation of furgeons: and they, much to their honour, admitted him in 1776 , on condition of paying the ufual fees when convenient. The following is the title of his thefis: "De calculo vefice urinaria, eoque extrabendo, prasiâ fetione, ope infrumenti Haukenfiani emendati."

His public lectures were accompanied with as much celebrity as his private ones. Brilliant difcoveries were not the object of his anatomical labours which were always connected with the art of healing: he was, however, the firlt man in France who taught furgical anatomy.

After becoming firft a fimple member, and then a counfellor, of the perpetual committee of the academy of furgery, he was appointed chief furgeon to the hofpital of the college, and confulting furgeon to that of St Sulpice: neither of there added any thing to his fortune, but they gave him a clear infight into practice, and enabled him to judge of cafes by the inductions arifing from his own experience.

In 1779 he invented the bandage now in ufe for Default. fractures ; by means of which, the fragments being kept in a ftate of perpetual contact, become confolidated, without the leaf appearance of deformity, an almof inevitable confequence of the former mode.

On his appointment to the place of furgeon major to the horpital de la Charite, in 1782, he introduced a new method of treatment in oblique frattures of the thigh bone; and he alfo healed, by means of a methodical compreffion thofe various ulcers whofe cure had hitherto been attended with great difficulty. In addition to this, he fubdituted new bandages in fractures of the humerus and clavicle, and adopted a new mode of treating the hare lip fuperior to that ufed by Louis. He never recurred to amputation but in extreme cales, when there was a certainty that diffolution would have followed a neglect of the operation.

When a premature death carried off Ferrand, chief furgeon of the Hotel-Dieu in Paris, Default was confidered as the moft proper perfon to fucceed him; and, on the demife of Moreau, the whole charge of the hofpital devolved on him. After three years of folicitations and difputes, he at length in \({ }_{17} 88\) proceeded in hislong-projected fcheme of eftablifhing a clinical fchool; and a fpacious amphitheatre was accordingly erected for that purpofe. Scarcely had his firft (s) courfe commenced, when the number of pupils who flocked around him was really aftonifhing. Foreigners repaired from all parts, and feveral of the neighbouring fates fent fudents to Paris exprefsly for the purpofe of affiting at his demonftrations. More than 600 auditors conftantly attended, in order to learn a new fyitem, confiling of a fimple mode of treatment difengaged from ancient prejudices, and a complex incoherent practice.

A few of his improvements are here fecified.
1. The method of ligature employed by the ancients in the cure of umbilical hernias of children, having been generally omitted in the practice of the moderns, he again introduced and perfected this mode, and demonftrated by his fuccefs, its fuperiority over compreffive bandages.
2. He was one of the firft men in France to extract the loofe cartilages (cartilages flottans) in joints.
3. He employed a new treatment, that of methodical comprefion, in refpect to fchirrofities of the rectum ; in order to which he introduced a candle or bougie, the fize of which he gradually augmented.
4. He fimplified, and rendered more commodious, the reduation of luxations of the humerus.
5. Fatal experience having pointed out the danger of employing the trepan in wounds of the head, he fubftituted another method of treatment (l'ufage de l'emitique) now adopted by many praditioners.
6. He made feveral very ufful improvements on chirurgical inftruments; fuch as thofe emploged in the cales
(A) The bufinefs of the day was conducted in the following routine: 1. A public confultation concerning the indigent out-patients. 2. The young practitioners belonging to the hofpital read a detailed account of all the interefling cafes of fuch patients as were to be difcharged that day. 3. The operations: each of thefe was preceded by a differtation on the ftate of the patient, who was then carried to the amphitheatre, where-Default, attended by his affiflants, performed the operation in prefence of all the pupils. 4. Argumentative details, by the profeffor, either on the dangerous maladies exifting in the hofpital, or on the fituation of the patients on whom operations had been performed during the preceding day. 5. The difection of fubjects. And 6. A lecture on fome particular branch of pathology.
\(\underbrace{\text { Befault. }}\) gaine polypus in the womb and nontils la pince for cutting through obftructions in the different cavities(le kiotome); and for the fflula in ano. In cafes of incifion he introduced the ufe of the inftrument (le gorgeret invented by Marchetti, well known among forcigners, but almoft totally neglected in France before this period.

He at the fame time retrenched the ufe of a great number of fuperfluous ones, and banifhed all practices attended with greater pains than utility. Avoiding cvery thing that was complex, he proved that the art of healing, in imitation of nature, ought to be fimple in its means, and fruitful in its refources.

In 1791 he publifhed his Fournal de Chirurgerie, which was edited by his pupils, and deftined to defcribe the molt interefting occurrences in his fchool, and alfo extracts from his lectures, which were then dedicated to the inveltigation of the maladies incident to the urinary paffages. The treatment of thefe difeafes, hitherto the reproach of pratitioners, had been much improved by the afliftance of the artill Bernard. The elaftic probes (les fondes elafiques), on their firft appearance, fixed the attention of all profeflional men; but none knew better than Default how to appretiate their advantages. By means of them, he introduced a novel mode of cure in contractions of the urethra, which faved a great number of lives every year in the Hotel-Dieu. But he did not confine their ufe to the difeafes of the urethra alone, for he cmployed them to remove the divers obftacles that impede deglutition or refpiration.

In the midtt of fuch a multiplicity of labours, and although he was obliged to attend 400 fick twice aday, Default neverthelefs employed more than four hours of his time in viliting private patients.

Few furgeons ever enjoyed fuch an exclufive fhare of public confidence; few ever poffeffed fimilar means of enricling themfelves; and yet be neglected for a long time to take advantage of this. Had he been lefs ardent for glory, he would have been more favoured by fortune; but he facrificed all interefted views to the noble ambition of advancing his art. His clinical and anatomical courfes were gratuitoully opened by him to the world after the year 1790 ; and while the public fchools languifhed in the midit of troubles, infeparable perhaps from a mighty revoiution, he was forming the greater part of thofe furgeons employed at this prefent moment in the numerous armies of the republic. Confidered under this point of view alone, the fervices which he rendered to humanity are incalculable : too happy if perfecution had not been his fole reward!

While out of mere attachment to the public weal, he added io his various functions that of a member of the council of health, conferred on him in 1792 by the miniter Servan, he was denounced in the popular focieties as an egotij, an indifferent, \&c. and became one of the frit viatims of that profeription which, under Robefipierre, extended to nearly every man of talents.

Chaumette accufed him to the fections as having ne. glected the brave men wounded on the roth of Auguft, while they themfelves were lavilhing their bleffings at the Hotel-Dieu on their faviour. T'wice was he brought to the bar of a commune; defirous of difcovering a pretext for perfecution, the clamours of the people were
unremittingly excited againh him. He was at length carried away from his amphitheatre, while in the very act of haranguing his pupils; and, in confequence of a mandat d'arrêt from the revolutionary committee, con. ducted by a body of armed men to the Luxembourg. From this horrid prifon few ever departed but to meet their fate ; luckily, however, his name was not yet entered on that bloody lift, in which thofe of Malefherbes and Lavoifier wcre inferted. On the contrary, at the end of three days he was liberated, and inftantly refumed all his functions.

On the eftablifhment of L'Ecole de Santé, Default was appointed clinical profeffor ; and for external, maladies he foon after obtained from the government the converfion of the Eveche' into an hofpital for furgical operations.
In the midlt of thefe plans, the troubles that occurred in the month of May unfortunately affected his mind, and made him dread left the days of profeription fhould return. It was in vain that his friends attempted to fouthe his fufferings ; for on the night of the 29th of May, a malignant fever made its appearance, and a nearly continual delirium enfued until his death, which occurred on the if of June J 795 , on which day be breathcd his laft, in the arms of his pupils, at the age of 5 r .

The populace were perfuaded that he was poifoned. This ridiculous opinion originated in confequence of the epoch of his death, which preceded but a fhort time that of the fon of Louis XVI. whom he had vifited during his illnefs in the prifon of the Temple. It is pretended that he fell a victim to his conftant refufal to yield to the criminal views entertained againlt the life of that child.

Default was of a middling fature. He was well proportioned, and poffeffed an open countenance. His temperament, naturally robuft, had been fortified by his early education, and was never fapped by an excefs of pleafures, for to them his heart was always indifferent. His ruling pafion was the love of glory; his favourite purfuit, the practice and advancement of his art. He was warm, nay fometimes violent; and his fcholars were not always inclined to praife the fweetnefs of his temper. On the other hand, his mind was noble, elevated, and great, even to excels.

The French Republic, eager to pay homage to his memory, has prefented his widow with a pention of 2000 livres per annum. A fon, Alexis Mathias Default, was the fole frnit of his marriage; and he has left but one work behind him, in which the name of his friend Chopart is joined with his own. It is entitled Traité des Maludies Chirurgicales et des Opepations qui leur conviennent, 2 vols 8 vo.

IESEADA, Defirada or Defiderada, the firto of the Caribbee iflands, difcovered by Columbus in his fecond voyage, anno 1494, when he gave it that name. It is fituated E. of Guadaloupe, and fubject to the French ; and is of little confequence except in time of war, when it is the refort of a number of privateers. It is 10 miles long and 5 broad, and looks at a diftance like a galley, with a low point at the N. W. end. The Spaniards make this in their way to America, as well as Guadaloupe. N. lat. 16. 40. W. long. 6I. 20.Morse.

Deseada, or Cape Defire, the fouthern point of the \({ }_{4} \mathrm{C} 2\)
fraits

Defcada.

Defert
ftraits of Magellan, in S. America, at the cntrance of the South Sea. S.lat. 53.4. long. 74. 18. W.-ib.

DESERT ISLAND, MOUNT, on the coal of the diftrict of Maine, Maffachufetts, contains about 200 families, divided into two different fettlements, about 15 miles apart.-ib.

DETERMINATE PROELEM, is that which lias but one folution, or a certain limited number of folutions; in contradifinstion to an indeterminate problem, which admits of infinite folutions.

Determinate Scaiton, the name of a tract or general problem written by the ancient geometrician Apollonius. None of this work has come down to us, excepting fome extrafts and an account of it by Pappus, in the Preface to the 7 th book of his Mathematical Collections. He there fays that the general problem was, "To cut an infinite right line in one point fo, that, of the fegments contained between the point of feation fought, and given points in the faid line, either the fquare on one of them, or the rectangle contained by two of them, may have a given ratio, either to the rectangle contained by one of them and a given line, or to the rectangle contained by two of them."

DETONATION (fee that word Enćycl.). The aftonifhing violence with which the oxy-muriat of potafs , when mixed with various fubftances, detonates, has been already noticed in this Supplement under the article Chemistry, \(n^{0} 724\), where the theory of thefe explofions is likewife given. But as feveral chemits feem to think that this falt, which decrepitates by friction, and fpontaneoully takes fire when mixed with fulphur, contains in itfelf the elements and phenomena of thunder, it will not probably be unacceptable to our readers to find, in this place, a diftinet account of the various mixtures which produce its detonations. The follnwing are the principal which have been difcovered by Fourcroy and Vauquelin.
1. Three parts of the oxy-muriat of potafs, and one part of powdered fulphur, rubbed together in a metal mortar, produce numerous fucceffive explefions, refem. bling the fmacking of a whip, or even as loud as the report of a piftol or a munket, according to the rapidity of the motion, and the force of the preffure made ufe of. A few grains of the fame mixture, by being flack fmartly upon an anvil with a hammer, occafion a report equal to that of a mufket; and torrents of purpiifh light are feen about the anvil. If this mixture be thrown into concentrated fulphuric acid, it inftantiy takes fire, and burns, without noife, with a flame of a dazzling whitenefs.
2. A mixture of three parts of this falt, half a part of fulphur, and half a part of charcoal, caufes fronger explofions than the preceding when rubbed in a mortar, and a louder noife when fruck upon an anvil. Its Alame alfo, when the misture is made to explode, or when it is thrown into fulphoric acid, is more rapid, more lively, and of a redder colour, than that of the preceding.
3. A mixture of equal parts of nxy-muriat of potals and antimony in powder explodes with noife by percution; but produces only reddilh farks when thrown into fulphuric acid. If zinc be fublituted in the place of antimony, a fimilar explofion takes place, accompanied with a white flame. Sulphuric acid has oo effect upon this lalt mixtures.
4. With regulus of arfenic, this falt explodes very violently by the ftroke of a hammer ; it inflames, with fingular rapidity and brilliancy, by the contact of fulphuric acid. In this lalt experiment there arifes a imoke, which in the air takes the form of a crown in the fame manner as phofphorated hydrogenous gas does when it inflames fpontaneoufly in a fill atmofphere.
5. Sulphuret of iron or martial pyrites inflames rapidly, but without noife, when rubbed in a metal mortar with oxy-muriat of potafs. This mixture, when ftruck upon an anvil, explodes violently, and with a red flame.
6. The red fulphuret of mercury or cinnabar, and the fulphurated calces of antimony, explode with the oxy-muriat of potafs by percuffion, but they do not inflame by fulphuric acid. The fame thing happens when charcoal alone is mixed with this falt.

Any of the following fubtances, namely, fugar, gums, oils (both fixed and volatile), alcohol, ether, when mixed with oxy-muriat of potafs, have the property of exploding very violently by the ftroke of a hammer, and all of them fend forth a brifk flame at the time of their explofion. The liquid combultible fubftances above-mentioned are to be mixed with the falt in fuch a manner as to form a kind of pafte. None of thefe mixtures explode or inflame by being rubbed in a mortar ; but fome of them inflame by being mixed with concentrated fulphuric acid, their combuftion being flow and progreffive.
8. All the fubtances above-mentioned, which, being mixed with the oxy-muriat of potafs, take fire and burn inftantly, and with confiderable noife, by the quick preffure of the frokes of a hammer, produce a much flronger explofion when they are fo clofely wrapped up in paper, two or three times doubled, as to be thereby comprefed before they are Aruck.
9. An electric lhock from a battery of large furface, charged by a ftrong electric machine, caufes all the fore-mentioned mistures to explode in the fame manner as perculfion, and their explofion is alfo accompanied by a bright light.

To the above-mentioned facts, the authors add, that it was already well known, that gunpowder would explode by a violent blow, or very Atrong preffure; but they obferve, that the Itroke which is neceffary for that purpofe mult be much itronger than that which fuffices to produce an explofion in the above-mentioned mixtures of combuftible fubftances with the oxy-muriat of potafs; and that its explofion is by no means fo remarkable as that which is produced by the help of this new falt.

DETOUR DES ANGLOIS, or Ezzg/i/h Turn, is a circular direction of the river Mifliflippi, fo very confiderable, that veifels cannot pals it with the fane wind that condueted them to it, and mult eisher wait for a favourable wind, or make falt to the bank, and haul clofe; there being fufficient depth of water for any veffel that can enter the river. The two forts and batteries at this place on both ficies the river, are more than fifficient to ftop the progrefs of any veffel whatever. Dr. Cox, of New-Jerfey, afcended the Miffiffippi to this place, anno \(169^{8}\), took polfeflion and called the country Carolina. It lies 18 miles beluw NewOrleans, and 87 above the Balize. The banks of the river are fettled and well cultivated from this to NewOrleans, and there is a good road for carriages all the w:y.-Morse.

D'ETROIT,

\section*{D E V [56i \(] \quad \mathrm{D}\) I C}

D'Etroit D'ETROIT, one of the principal towns, and befl fortified, in the N. W. territory; fituated on the weftern bank of the Atrait St Clair, or D'Etroit river between lake Erie and lake St Clair ; 18 miles N. of the W. end of the former, and 9 miles below the latter. Fort D'Etroit is of an oblong figure, built with ftock. ades, and advantagenufly fituated, with one entire fide commanding the river. It is near a mile in circumference, and enclofes about 300 wooden houfes and a Roman Catholic church; built in a regular manner, with parallel ftreets, croffing each other at right angles. Its fituation is delightful, and in the centre of a pleafant and fruitful country. For 8 miles below, and the fame diftance above Fort D'Etroit, on both fides of the river, the country is divided iato regulir and well cultivated plantations; and from the contiguity of the farmers houfes to each other, they appear as two long extended villages. The inhabitants, who were moftly French, were about 2000 in number in 1778 , 500 of whom were as good markfmen as the Indians themfelves; and as well accuftomed to the woods. They raife large ftocks of black cattle, and great quantities of corn, which they grind by wind mills, and manufacture into excellent flour. The chief trade of \(D^{\prime} E\) troit confilts in a barter of coarfe European goods with the natives for furs, deer fkins, tallow, \&c.

By the treaty of Greenville, Aug. 3, 1795, the Indians have ceded to the United States the poft of D'Etroit, and all the land to the N . the Wr. and the S. of it, of which the Indian title has been extinguifhed by gifts or grants to the French or Englifh governments, and fo much more land is to be annexed to D'Etroit as thall be comprehended between Rofine river on the S. ; lake St Clair on the N. ; and a line the general courfe whereof thall be 6 miles from the \(W\). end of lake Erie and D'Erroit river. The fort, Exc. was delivered up by the Britifh in July 1796, according to treaty. It lies 18 miles N. of lake Erie, 724 N. W. by W. from Philadelphia. N. lat. 42 . 40. W. long. 82. 56.-ib.

D'Etroit River, or Strait of St Clair, flows from lake St Clair into the W. end of lake Erie, forming part of the boundary between the United States and Upper Canada. In afcending it, its entrance is more than 3 miles wide, but it perceptibly diminithes; fo that oppofite the fort, 18 miles from lake Erie, it does not exceed half a mile in width; from thence to lake St Clair it widens to more than a mile. The channel of the Arait is gentle, and wide and deep enough for fhipping of great burden, although it is incommoded by feveral illands, cne of which is more than feven miles in length. Thefe iflands are of a fertile foil, and from their fituation afford a very agrceable appearance. The length of the river is 28 miles; and feveral freams fall into it chiefly from the N. W. viz. Bauche, Clura, Curriere, D'Etroit, and Huron rivers.-ib.

DEVIL's Mouth, a name given by failors to a frightful velcano, near Leon Nicaraguay, in New. Spain, feated near the lake. N. lat. 13.10. W. long. 65. 10.-ib.

Devil's Nofe, a promontory on the S. fide of lake Ontaio, 16 miles E. of Fifhing bay, and 23 N. W. of the mouth of Geneffee river.-ib.

Devil's Ifland, on the F.. fide of Chefapeak bay, is in Somerfet co. Maryland, between Filhing bay and Nanokia river.-ib.

DEWAN, under the Mogul government, the receiver general and civic governor of a province : in private life a fteward.

DEWANNY, the revenue department of a province.

DEWEE, an ifland in South-Carolina, which forms one of the three harbors of Charlefton city.-Morse.

DIABETES Mellitus (fee Medicine, no 318 , \&c. Encycl.), is fo formidable a difcafe, though not very frequent, that it would be unpardonable in us not to mention every methed of treating it fuccefsfully which has come to our knowledge. Since our article Medicine was publifhed, Dr Rollo, furgeon general to the royal artillery, has fuggefted a method of treating this difeafe, which in various inftances has been crowned with fuccefs.

The Doctor fuppofes, that in this complaint the vegetable matter taken into the fromach has not, from fome defect in this organ, undergone a fufficient change to form proper chyle : that in confequence of this, much faccharine matter is evolved, which, when caried into the circulation, proves a general ftimulus, producing head-aches and quichnefs of pulfe, but that it asts more remarkably on the kidneys, occafioning a contant and copious fecretion of fweet urine. From this hypothefis he was naturally led to adopt a glan of cure, which has proved completely fuccefsful. The indication he lays down are: 1. To prevent the formation of faccharine matter in the Aomach; and, 2. To remove the morbidly increafed action of this organ, and reftore it to a healthful condition. Thefe indications are to be anfwered by a complete diet of animal food, and by the ufe of fuch medicines as thall diminilh the asion of the fomach, and at the fame time counteract the formation of faccharine matter. The remedies employed for this purpofe have been emetics, kali fulphuratum, limewater, hepatized ammonia, and vegetable narcotics. But the principal dependence is to be placed on a total abftinence from all vegetable matter, which alone can fupply the faccharine principle. By a segular perfeverance in this plan, the firft of two patients was completely cured in four wecks, althoug? the difeafe had been of feven months continuance. The urine, which at the commencement of the treatment was fweet, and amounted to 24 pints daily, was ar laft reduced to \(1 \frac{x}{2}\) pint, being at the fame time free from any faccharine impregration. 'The fecond patient, from his age and other circumfances, although relieved from the diabo tic affection, did not regain his wonted tate of health ; but even in this cafe, the effects produced by the treatment, when properly attended to, were moft decidedly in confirmation of this plan of care.

The Doctor has received feveral communications in confequence of the difperfion of the printed notes on the firft care. The molt important are the refult of two cafes treated in this way by Dr Cleghorn of Glafgow, and one by Drs Curie and Gerard at Liverpool; all of which afford the ftrongeft corroboration of the efficacy of this mode of treatment.

DIAMOND, the molt precious of all the sems ; for the nature of which fee Cremistry, no 33, \& c . in this Supplement.

DICK's River in Fientucky, is a branch of Kentucky river which it joins in a N. W. direction. It is about 50 miles long, and 45 yards wide at the month, and ,

Diderot. has a number of ercellent mill feats, and runs through a body of firlt rate land.- Morse.

DIDEROT (Dionyfius) of the academy of Berlin, the fon of a cutler, was born at Langres in 1713 . The Jefuits, with whom he went through a courfe of ftudy, were defirous of having him in their order ; and one of his uncles, defigning him for a canonry which he had in his gift, prevailed upon him to take the tonfure.

His father feems to have known him better; for perceiving that he was not inclined to be a Jefuit, nor fit to be a canon, he fent him to Paris to profecute the fludy of the law. To the law, however, he paid very little attention, but devoted his time to fcience and general literature; which fo offended his father, that he ftopped the remittance of his peeuniary allowance, and feemed for fome time to have abandoned him.

The talents of young Diderot Cupplied him with a maintenance, and drew him from obfcurity. According to his friends, his capacious mind embraced phyfics, geometry, metaphyfics, ethics, and the belles lettres, from the time that he began to read with reflection; and it is certain that he afpired at being a mafter in all thefe departments of literature. His bold and elevated imagination feemed to give him likewife a turn for poetry; but he neglected it for the fciences. He fettled at an early period at Paris, where the natural eloquence which animated his converfation procured him friends and patrons. What firft drew the attention of the public to him as an author, and gave him a high reputation among a certain clafs of readers, was a fmall volume written againft the Chriftian religion, and intitled Penfées Philofopbiques; which was reprinted afterwards under the title of Etrennes aux Efprits-forts.

This book appeared in 1746 , 12 mo . The adepts of the new philofophy compared it, for perfpicuity, ele. gance, and force of diction, to the Penfées de Pafcal. But the aim of the two authors was widely different; Pafcal employed his talents and his erudition, which was profound and various, to fupportand illuftrate the great truths of our holy religion, which Diderot attacked by all the difngenuous arts of an unprincipled fopluitt. The Penfées Pbilofophiques, however, became popular. It contributed to promote the objes of that confpiracy which had been for fome time formed againft every thing which ennobles human nature (fee Jaco. bins in this Supplement). It was therefore applauded by Voltaire and D'Alembert, and read, of courfe, by every man and woman of talte in Paris.

Our author was more ufually employed in 1746, when, together with Meffrs Eidous and Touifont, he publifhed a general Distionary of Medicine, in fix volumes folio. This work, it muft be confelfed, has confiderable merit; for though there are in it feveral arricles fitperticial and erroneous, there are many others or fuch deep and accurate difquifition, as defervedly recommend it to men of feience.

It was about this time that an intimacy was formed between Diderot and D'Alembert, and that, under the direction of Voltaire, they formed the idea of a Diftionaire Encycloperlique. The great objects which they had in view when they entered upon this work are now univerfally known. D'Alembert was a profound mathematician, Diderot had conliderable knowledge in the phylical fciences, more cfpecially mechanical philofophy, and Voltaire was a malter of the belles bettres.

It is not to be fuppofed that fuch men would pub. lifh any thing very defective irt thefe departments of fcience; but an Encyclopedie muft treat of religion; and to every kind of religion they were all fworn enemies. They engaged, however, a very worthy, though not very acute, clergyman, to furnifh the theological articles; and for other branches of knowledge, they were promifed the afliftance of feveral men of letters, and of a variety of artift.

Diderot took upon himfelf the defcription of arts and trades; one of the moft important departments of the work, and the molt acceptable to the public. To the particulars of the feveral proceffes of the workmen he fometimes added reflections, fpeculations, and principles, adapted to their elucidation. But befides his own department, he furnifhed articles on almolt every other fubject.

By thofe who knew not the great aim of the undertakers of this work, it has been regretted that Diderot was not lefs verbofe, lefs of the differtator, and lefs inclined to digreffions. He has alfo been cenfared for employing needlefsly a fcientific language, and for having recourfe to metaphyfical doctrines, frequently unintelligible, which occafioned him to be called the Lycophron of philofophy; for having introduced a number of definitions incapable of enlightening the ignorant, and which the philofopher feems to have invented for no other purpofe than to have it thought that he had great conceptions; while, in fact, he had not the art of exprefling perfpicuoufly and fimply the ideas of others. But thefe complaints arife from mifaking entirely the purpofe for which he wrote.

It has been completely proved, that one great ob. ject for which the philofophers, as they called themfelves, undertook the compilation of the Encyclopedie was to fap the foundation of all religion. This was to be attempted, not direetly and avowedly; for bare-faced atheifm would not then have been fuffered in France. A cloak, therefore, was to be worn, and the poifoned dagger to be concealed underit. Whilft the well meaning divine was fupporting, by the beft arguments which he could devife, the religion of his country, Diderot and D'Alembert were overturning thofe arguments under titles which properly allowed of no fuch difquifi. tions. This necelfarily produced digreffions; for the greateft genius on earth could nor, when writing on the laws of motion, attack the myfteries of Chriftianity without wandering from his fubject: but that the object of thefe digrefions might not pafs unnoticed by any clafs of readers, care was taken to refer to them from the articles where the quellion was difulfed by the divine. That when employed in this way, Diderot feems to write obfcurely, is indeed true; but the obfcurity is not his. His atheifm was fo plain, that for the mof part D'Alembert, or fome other leader of the gang, had to retouch his articles, and throw a mift over them, to render their intention the lefs obvious.

Even with all this care and ftudied obfcurity, the defign of the Encyclopedie was too palpable not to be fecn, and too wicked not to give offence. Certain wild pofitions on government and on religion occafioned the impreffion to be fußpended in 1752 . At that time there were no more than two volumes of the dicionary publifhed; and the prohibition of the fucceeding ones was only taken off at the end of 1753. Five new volumes

\section*{D I D \([563] \quad D \quad 1 \quad D\)}

Diderot. lumes then fucceffively appeared. But in 1757 a new form arofe, and the book was fuppreffed. The remainder did not appear till about ten years after; and was then for a while only privately diftributed; fome copies having been feized by government, and the printers fhut up in the baftile. The merit, however, of fome of the articles is confeffedly great; and the firft edition was quickly fold off.

Thus was this great work in the prefs from 1751 to 1767 ; during which period, Diderot and D'Alembert were accuftomed to frequent the coffee-houfes of Paris, and to enter with keennefs into religious difputes: the former attacking Chriftianity; and the latter, under the mafk of piety, defending it ; but always yielding to the arguments of his npponent. This practice was put a ftop to by the police; and Diderot, when reproached by the lieutenant witll preaching atheifm, replied, "Cela eft vrai, je fuis athée, \& m'en fai gloire."

Finding his impious converfations interrupted, and the publication of the Encyclopedie rendered tedious by the vigilance of government, he thought of propagating his notions by other vehicles. Alternately ferious and \({ }^{\text {rportive, }}\), folid and frivolous, he publifhed, at the very time he was working on the Dietionary of Sciences, feveral productions, which could fcarcely have been expected from a man fo completely employed. His Bijoux Indifcrets, 2 vols 12 mo , are of this number-a difgufting work, even to thofe young people who are unhappily too eager for following atter licentious romances. Even here a certain philofophical pedantry appears in the very pallages where it is molt mifplaced, and never is the author more aukward than where he intends to difplay a gracetul eafe.
The Fils Naturel, and the Pere de Fanille, two comedies in profe, which appeared in 1757 and \(175^{8}\), are not of the fame kind with the Bijoux Indifcrets. They are moral and affecting dramas, where we fee at once a nervous Ityle and pathetic fentiments. The former piece is a picture of the trials of virtue, a conflict between interefts and paffions, wherein love and friendfhip play important parts. It has been faid, that Diderot borrowed it from Goldoni: but if that be the cafe, the copy does honour to the original; and, with the exception of a fmall number of ficenes, where the author mises his philofophical jargon with the fentiments of the heart, and fome fentences out of place, the Ityle is affecting and natural enough. In the fecond comedy, a tender, virtuous, and humane father appears, whole tranquillity is difturbed by the parential folicitudes, infpired by the lively and impetuous paffions of his children. This philofophical, moral, and almoft tragical comedy, has produced confiderable effets on feveral theatres of Europe. The dedication, to the princefs of Naffau Saarbuck, is a little moral tract of a fingular turn, without deviating from nature. This piece, written with a true dignity of fyle, proves that the author poffeffed a great fund of moral fentiments and philofophical ideas. At the end of there two pieces, publifh ed together under the titic of Theatre de M. Diderot, are dialogues, containing profound reflections and novel views of the dramatic art. In his plays he has endeavoured to unitc the claracters of Ariltophanes and Plato; and in his reflections he fometimes difplays the genius of Ariftotle.

This fpirit of criticifm is exlibited, but with too
much licence, in two other works, which made a great Diderot. noife. The former appeared in \(\mathbf{1 7 4 9}, \mathbf{1 2 m o}\). intitled Letters on the Blind for the Ufe of thole nubo See. The free notions of the author in this work coft him his liberty. He underwent a fix months imprifonment at Viorcennes. Having naturally frong paffions and a haughty fpirit, and finding bimfelf on a fudden deprived of liberty and of all intercourfe with human beings, he was threatened with the lofs of his reafon. The danger was great ; and to prevent it, they were obliged to allow him to leave his room, to take frequent walks, and to receive the vifits of a few literary men; among whom J. J. Rouffeau, at that time his friend, went and adminiffered confolation to him, which he ought not to have forgotten.

The letter on the Blind was followed by another On the Deaf and Dumb, for the Ufe of thoge whbo can Hear and Speak; 1751,2 vols, 12 mo. Under this title the author delivered rellegions on metaphyfics, on poetry, on eloquence, on mufic, \&c. In this eflay there are fome good things, among others abfurd and imperfect. Though he ftrives to be perfpicuous, yet he is not always underfood; and this is more his fault than that of his readers. Of what he has compofed on aboltract fubjects, it has been faid that it is a chaos on which the light thines only at intervals. The other productions of Diderot betray the fame defeet of clearnefs and precifion, and the fame uncouth emphafis, for which he has always been blamed.
The principal of them are, \(\mathbf{1}\). Principles of Moral Philofophy, \(17+5,12 \mathrm{mo}\); of which the Abbé de Fontaine fpeaks well, though it met with no great fuccefs. It was our philofopher's fate to write a great deal, and not to leave a good book, or at leatt a book well compofed. 2. Hiftory of Greece, tranflated from the Englifh of Stanyan, 3 vols, 12 mo ; an indifferent tranlation of an indifferent book. 3. Pieces on feveral Mathematical Subjects, 1748, 8vo. 4. Reflections on the Interpretation of Nature, \(1754,12 \mathrm{mo}\). This interpreter is very obfcure. 5. The Code of Nature, 1755, 12 mo ; which is certainly not the code of Chriftianity. 6. The Sixth Senfe, 752 , 12 mo. 7 . Of public E: ducation; one of that fwarm of publications prodnced by the appearance of Emilius, and the abolition of the Jefuits. Though all the ideas of this author could not be adopted, yet fome of them are very judicious, and would be highly ufeful in the execution. S. Panegyric on Richardlon. Full of nerve and animation. 9. Life of Seneca. This is the lat work which he acknowledged; and it is one of thoie by Diderot that is perufed with molt pleafure, even in reatifying the judgments he paffes on Seneca and other celebrated men. The Abbé Barruel fays, that he was the author of Syfene de la Nature, which is ufually given to Robinet; and it is certain, that if he was not the author, he furnithed hints, and revifed the whole. Yet the junto of atheifts were themfelves afhamed of the firf edition of that work ; and after all Diderot's care to improve it, the fubfequent editions are, notwithltanding his boafted knowledge of the laws of nature, contenptible in the eyes of a real mechanical philofopher.
When a new cdition of the Encylopedic was refolved on, Didcrot, the editor of the former edition, thus addrefles the bookfellers who had undertaken to republifh it. "The imperfections (fays he) of this work origio

\section*{\(\mathrm{D} I \mathrm{D} \quad[564] \quad \mathrm{D} I \mathrm{~F}\)}

Dideror. sated in a great variety of caufes. We had not time to be very ficrupulous in the choice of our coadjutors. Among fome excellent perfons, there were others weak, indifferent, and altozether bad. Hence that motley appearance of the work, where we fee the rude attempt of the fchool boy by the fide of a piece from the hand of a mafter; a piece of nonfenfe next neighbour to a fublime perfornance ; fome working for no pay, foon loft their firft fervour; others, badly recompenfed, ferved us ac. cordingly. The Encyclopedie was a gulpb into which all kinds of fcribblers promifcuoully threw their contributions; their pieces ill conceived, and worfe digefted, good, bad, contemptible, true, falfe, uncertain, and al ways incoherent and unequal; the reference, that belonged to the very parts affigned to a perfon, never filled up by him. A refutation is often found where we fhould naturally expect a proof. 'There was no exact correfpondence between the text and the plates. To remedy this defect, recourfe was had to long explications. But how many unintelligible machines, for want of letters to denote the plates !" To this confeffion Diderot added particular details on various parts; fuch as proved that there were in the Encyclopertie fubjects to be not only retouched, but to be compofed afrefh : and this was what a new compiny of literati and artilts fet themfelves to work upon in the Encyclopedie Methodique.

This immenfe work is not yet completed; and there. fore we cannot โpeak of it as a whole; but it it is furely not lefs verbofe than the former edition, nor do the aims of its editors appear to be purer. That it contains much valuable information in chemifry, and indeed in every department of phyfical fcience, no candid man will controvert : but its articles on abltrast philofophy are prolix and obfcure ; and it betrays the fame impiety, the fame eager defire to corrupt the principles of the rifing generation, and the fame contempt for every thing which can make mankind happy here or hereafter, with the former edition.

Notwithftanding his numerous nublications, Diderot was never rich. Soon after the publication of the laft volumes of the Encyclopedie, upon which he had been employed for upwards of twenty years, his circumftances were fo ftraitened, that an expedient was to be devifed for their improvement. He had long correfponded with the late Emprefs of Ruffia, whom he perfuaded to confider hiur as the greatef, or one of the greatef cconomits in France. In the courfe of the correfpondence he had mentioned his own library as one of the molt valuable in Europe; and when Catharine wanted to purchafe it and make him librarian, le faid that his conftitution could not fupport the cold climate of St Peterfburg. She offered to let hins keep it during his lifetime in Paris; and the library was fold for an immenfe price. When her ambaffador wanted to fee it, after a year or two's payments, and the vifitation could be no longer put off, Diderot was obliged to run in a husry through all the bookfellers thops in Germany to fill his empty fhelves with old volumes. He had the good fortune to fave appearances; but the trick took air, becaufe he had been niggardly in his attention to the ambaffador's fecretary. This, however, did not hinder him from vifiting his imperial pupil, to whom he told a poor Itory, in hopes of getting his daughter married with parade, and patronized by her majeity ; but it was feen through, and he was difappointed.

In the year \(15 S_{+}\)Diderot's health began viliLhy to decline, and one of his domeftics, perceiving that his death was at no great diftance, acquainted him with bis apprehenfions, and addreffed him on the importance of preparing for another world. He beard the man with attention, thanked him kindly, acknowledged that his fituation required ferioufnefs, and promifed to weigh well what he had faid. Some time after this converfation he defired that a prieft might be brought; and the fame domeftic introduced to him M. de Farfac, Curé de St Sulpice. Diderot faw this ecclefiaftic feveral times, and was preparing to make a public recantation of his errors. Condorcet and the other adepts now crowded about him, perfuaded him that he was cheated, that his cafe was not fo dangerous as it was faid to be, and that he only wanted the country air to reitore lim to health. For fome time he refifed their attempts to bring him back to atheifm, but was at laft prevailed upon to try the effect of the country air. His departure was kept fecret, and he was concealed in the country cill the 2 d of July, when he died. His dead body was fecretly brought back to Paris, and a report was fpread and believed, that he died fuddenly on sifing from the table, without remorfe, and wish his atheifm unfhaken.

To draw a formal character of this wretch is furely fuperfluous. His friends extol his franknefs, his difintereftednefs, and his integrity ; but except his grofs a vowal of atheifm, which may in France be called franknefs, this character is belied by every tranfaction of his life. He married, and had a daughter, as has been al. ready mentinned. M. Bauzé, referred to by Abbė Barruel, coming one day into Diderot's houfe, found him explaining to this daughter a chapter of the gerpel. When he expreffed fome furprife at this conduct, Diderot faid: "J'entends ce que vous voulez dire; mais au fond, quelles meilleures leçons pourrois-je lui donner, ou trouverai-je mieux?" It was a common aflertion of Diderot's, that between him and his dog "il n'y avoit de difference que habit." In uttering this fentiment, he refembled not Pope's Indian with untutored mind,
"Who thinks, admitted to that equal \(\mathbb{H} \%\),
"His faithful dog thall bear him company."
The Indian hopes to carry his dog with him to heaven; but Diderot hoped to die like a dog, and to be as if he had never been.

DIFFERENTIAL METHOD, is the art of working with the differences of quantities. By this method any term of a feries may be found from the feveral orders of differences being given; or vice verfa, any difference may be found from having the terms of the feries given: it likewife fhews how to find the fum of fuch a feries. And it gives rules to find by interpolation any intermediate term, which is not expreffed in the feries, by having its place or pofition given.

When any feries of quantities is propofed, take the firt term from the fecond, the fecond from the third, the third from the fourth, \&c. then all thefe remainders make a new feries, called the firforder of diffirences. In this new feries take the firft term from the fecond, the fecond from the third, the third from the fourth, \&c. as before; and thefe remainders make another feries, called the fooond order of differences. In like manner, in this feries, take the firft term from the fecond, the

Cecond

Diderot
Diffiren tial.

\section*{D I F}

Differential fecond from the third, \&c.; and thefe will make a feries Method. called the third order of differtices; and after this manner you may proceed as far as you will. Thus in the following propolition \(\mathrm{A}, b, c, d, c, \& c\). is the feries; \(\mathrm{B}, \mathrm{B}^{2}, \mathrm{~B}^{3}, \mathrm{~B}^{4}\), \&cc. the firit order of differences; C , \(\mathrm{C}^{2}, \mathrm{C}^{3}\), \& c . the fecond order of differences \(; \mathrm{D}, \mathrm{D}^{2}\), \& c . the third order; E, \&c. the fourth order, and fo on. But the firt terms of thefe feveral orders of differences, as \(B, C, D, E\), \&c. are thofe that are principally made ufe of in calculations by this method.

Prop. I. If there be any feries, \(\mathrm{A}, l, c, d, c, \& c\). and if there be taken the firlt differences \(B, B^{2}, B^{3}\), \&c. the fecond differences \(C, C^{\lambda}, C^{3}, \& c\). the third differen\(\operatorname{ces} \mathrm{D}, \mathrm{D}^{2}, \mathrm{D}^{3}, \& \mathrm{c}\). and fo on .

Then if T' ftand for the firlt term of the \(n\)th differences, \(\mp \mathrm{T}=\mathrm{A}-n b+n \times \frac{n-1}{2} c-n \times \frac{n-1}{2}\) \(\times \frac{n-2}{3} d+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} e-\& c\). that is, \(+T\), when \(n\) is even, and - T when \(n\) is odd.

The feveral orders of differences being taken as before directed, will fland thus. Then,

feries \(\mathrm{A}, \mathrm{b}, \mathrm{c}, d, \quad, \quad\), \&c. If diff. \(b-\mathrm{A}, c-b, d-c, e-d, \& c\). 2 d diff. \(\quad c-2 b+\mathrm{A}, d-2 c+b, e-2 d+c, \& c\).
3 diff. \(\quad d-3 c+3 b-\mathrm{A}, c-3 d+3 c-b\), \& \(c\).
\(4^{\text {th }}\) diff. \(\quad c-4 d+6 c-4 b+A, \& c\).
That is, \(\mathrm{B}=b-\mathrm{A}, \mathrm{C}=c-2 b+\mathrm{A}, \mathrm{D}=d-3 c+3^{b}\) \(-\mathrm{A}, \mathrm{E}=e-4^{d}+6 c-4 b+\mathrm{A}, \& \mathrm{c}\). or \(-\mathrm{B}=\mathrm{A}-b\), \(+\mathrm{C}=\mathrm{A}-2 b+c,-\mathrm{D}=\mathrm{A}-3^{b}+3 c-d,+\mathrm{E}=\mathrm{A}\) \(-4 b+6 c-4 d+c, \& c\). where, putring T fincceflively equal to \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \%\). and \(n=1,2,3,4\), \&c. the prop. will be evident.

Cor. Hence
\(\mathrm{A}=\mathrm{A}\), the firlt term.
\(B=-A+b\), the firt difference.
\(\mathrm{C}=\mathrm{A}-2 b+c\), the 2 d difference.
\(\mathrm{D}=-\mathrm{A}+3^{b-3 c+d}\), the \(3^{\mathrm{d}}\) difference.
\(\mathrm{E}=\mathrm{A}-4^{b}+6 c-4 d+e\), the \(4^{\text {th }}\) difference.
\(\mathrm{F}=-\mathrm{A}+5^{b}-10 c+1 \mathrm{c}-5 c+f\), the 5 th difference, \&c.
\(\mathrm{P}_{\mathrm{r} \cap \mathrm{p}}\). II. If \(\mathrm{A}, b, c, d, c, \& c\). be any feries, and there be taken B, C, D, E, \&c. the firf of the feveral orders of differences;
Then, the \(n\)th term of the ferics will be \(=A\) \(+\frac{n-1}{1} \mathrm{~B}+\frac{n-1}{1} \times \frac{n-2}{2} \mathrm{C}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n-3}{3}\) \(\mathrm{D}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n-3}{3} \times \frac{n-4}{4} \mathrm{E}+\), \&c.

For from the equations in the laft Prop. viz. \(\mathrm{B}=b\) - \(\mathrm{A}, \mathrm{C}=c-2 \dot{b}+\mathrm{A}\), \&c. we have, by tranfpofing, \(b=\mathrm{A}+\mathrm{B},=-\mathrm{A}+2 b+\mathrm{C}=-\mathrm{A}+2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}\) (expunging b) ; that is,
\(c=\mathrm{A}+2 \mathrm{~B}+\mathrm{C}, d=\mathrm{A}-3^{b}+3^{c}+\mathrm{D}=\mathrm{A}-3^{\mathrm{A}}-3 \mathrm{~B}\) \(+3 A+6 B+3 C+D\) (expunging \(b\) and \(c\)) ; that is, \(d=A+3 B+3 C+D\). Alfo \(c=-A+4 b-6 i c-4 d\) \(+\mathrm{E}=\left(\right.\) expunging \(\left.b, c, a^{\prime}\right)-\mathrm{A}+4 \mathrm{~A}+4 \mathrm{~B}-6 \mathrm{~A}\) Suprl. Vol. I.
\(-12 B-6 C+4 A+12 B+12 C+4 D\)
\(c=A+4 B+6 C+4 D+E, 2 c\).
Then puting \(\mathrm{A}, b, c, d, \& c\). for the \(n\)th term, and \(n\) fucceffively \(=1,2,3,4\), \&c. the feries will be evident.

Cor. I. If \(d^{\prime \prime}, d^{\prime \prime}, d^{\prime \prime \prime}, \& \varepsilon c\). be the firft of the firft, fecond, third order, \&c. of differences; then

The \(n\)th term of the feries \(\mathrm{A}, \ell, c, d, \& c\). will be \(=\mathrm{A}+\frac{n-1}{1} d^{\prime}+\frac{n-1}{1} \times \frac{n-2}{2} d^{\prime}+\frac{n-1}{1} \times \frac{n-2}{2}\)
\[
=A+\frac{1}{1} d^{\prime}+\frac{1}{1} \times \frac{-}{2} d+\frac{1}{2}
\] \(+\frac{n-3}{3} d^{\prime \prime \prime}+\frac{n-1}{1} \times \frac{n-2}{2} \times \frac{n-3}{3} \times \frac{n-4}{4} d^{\prime \prime \prime \prime}+\) \&c.

For \(\mathrm{B}=d^{\prime \prime}, \mathrm{C}=d^{\prime \prime}, \mathrm{D}=d^{\prime \prime \prime}, \& \mathrm{c}\). And the coefficients are the uncire of the \(\overline{n-1}\) th power.

Cor. 2. Hence alfo'it follows, that any term of a given feries may be accurately determined, if the differences of any order happen at lalt to be equal.

Cor. 3 Hence
\(A=A\), the firfeterm.
\(l=A+B\), the \(2 d\) term.
\(c=A+2 B+C\), the 3 d term.
\(d=\mathrm{A}+3^{\mathrm{B}}+3 \mathrm{C}+\mathrm{D}\), the 4 th term.
\(c=\mathrm{A}+4 \mathrm{~B}+6 \mathrm{C}+4^{\mathrm{D}}+\mathrm{E}\), the \(5^{\text {th }}\) term.
\(f=\mathrm{A}+5 \mathrm{~B}+10 \mathrm{C}+10 \mathrm{D}+5 \mathrm{E}+\mathrm{F}\), the 6th term.
\(g=\mathrm{A}+6 \mathrm{~B}+15 \mathrm{C}+20 \mathrm{D}+15 \mathrm{E}+6 \mathrm{~F}+\mathrm{G}\), the 7 th term, \&c.
Prop. III. If \(a, b, c, d, e, \& c c\). be any feries, and \(d^{\prime \prime}\) \(d^{\prime \prime}, d^{\prime \prime \prime}, \& c\). the firt of the feveral orders of differences ; then

The fum of \(n\) terms of the feries is \(=n a+n\) \(\times \frac{n-1}{2} d^{\prime}+n \times \frac{n-1}{2} \times \frac{n-2}{3} d^{\prime \prime}+n \times \frac{n-1}{2} \times \frac{n-2}{3}\) \(\times \frac{n-3}{4} d^{\prime \prime \prime}+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5} d^{\prime \prime \prime \prime}\) ,\(+ \& c\).

For in the feries of quantities,
\[
\begin{aligned}
& \text { Ift diff. are } a, a, a+b, a+b+c, a+b+c+d, \& c \text {. } \\
& \text { 2d dif. } \\
& \text { 3d diff. } \\
& d^{\prime}, d^{\prime} 2, d^{\prime}, d^{\prime}, d, \& c c .
\end{aligned}
\]

Therefore (by Cor. 1. Prop. II.) the \(n+1\) th term of the feries \(0, a, a+b, a+b+c, a+b+c+d, \&<c\). or the \(\bar{n}\) th term of the feries, \(a, a+b, a,+b+c, a+b+c\) \(+d, \& \mathrm{c}\). is \(=0+n a+n \times \frac{n-1}{2} d^{\prime}+n \times \frac{n-1}{2}\)
\(\times \frac{n-2}{3} d^{\prime \prime}+\) \&cc. But the \(n\)th term of the feries \(a\), \(a+b, a+b+c, \& c\). is the fum of \(n\) terms of the feries, \(a, b, c, d, s c c\). and therefore equal to \(n a+n X\) \(\frac{n-1}{2} d^{\prime \prime}+n \times \frac{n-1}{2} \times \frac{n-2}{3} d^{\prime \prime}+8 c\).
For a fuller account of this method and its application to curves, we refer the reader to Emerfon's works, from which thefe three propofitions are taken.

DIFFRACTION, a term firl ufed by Grimaldi, to denote that property of the rays of light, which others have called inflection ; the difcovery of which is attributed by fome to Grimaldi, and by othes to Dr Honk.
DlGBY, fituated on the S. E. fide of Annapolis bay, 18 miles S. W. of Annapolis, and 53 N. by E. + D
\[
4^{\text {th diff. }} d^{\text {din }} \text {, \&c. }
\]

\[
[11
\]
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```

```
=
```






#### Abstract




## D I G [ 566 ] D I R

Digres. of Yarmouth, is one of the moft confiderable of the new fettlements in Nova-Scotia.-Morse.

DIGGES (Leonard), an eminent mathematician of the 16 th century, was defeended from an ancient family, and born at Digges-court, in the parifh of Barham in Kent ; but we know not in what year. He was fent to Univerfity-college in Oxford, where he laid a good foundation of learning and fcience, and retiring thence without a degree, profecuted his fudies, and compoled the following works: I. "Tectonicum : briefly fhewing the exact Meafuring, and fpeedy Reckoning of all manner of Lands, Squares, Timber, Stones, Steeples, \&c. 1556," 4to. Augmented and publifhed again by his fon Thomas Digges, 1592,4 to, and reprinted in $1547,4 t 0.2$. "A geometrical practical Treatife, named Pantometria, in three books." This he left in manufcript; but after his death his fon fupplied fuch parts of it as were obfcure and imperfect, and publifhed it in 1591 , folio; fubjoining, "A Difcourfe geometrical of the five regular and platonical bodies, containing fundry theoretical and practical propofitions, arifing by mutual conference of thefe folids, infription, circumpertion, and transformation." 3. "Prognoflication everlafting of right good Effect : or, Choice Rules to judge the Weather by the Sun, Moon, and Stars, \&c." 1555,1556 , and $1564,4 t 0$, corrected and augmented by his fon, with divers general tables, and many compendious rules, $159^{2}, 4^{\text {to }}$. He died about 1574.

Digges (Thomas), only fon of Leonard Digges, after a liberal fchool education, went and ftudied for fome time at Oxford; and by the improvements which he made there, and the inftructions of his learned father, became one of the greateft mathematicians of his age. When Queen Elizabeth fent fome forces to affift the eppreffed inhabitants of the Netherlands, Digges was appointed mufter mafter-general of them ; by which he had an opportunity of becoming fkilled in the art of war. Befides reviling, correcting, and enlarging fome pieces of his father's already mentioned, he wrote and publifhed the following learned works himfelf, namely, 1. "Ala five fiale Nathenatica; or, Mathematical Wings or Ladders, 1573 ," 4 to. This book contains feveral demon?trations for finding the parallaxes of any comet or other celeltial body; with a correction of the errors in the ufe of the radius afronomicus. 2. "An arithmetical military Treatife, containing fo much of Arithmetic as is neceflary towards military Difcipline, 1579," 4to. 3. "A geometrical Treatife, named Stra, fioticos, requifite for the perfection of foldiers, 1579 ," 4to. This was begun by his father, but finifhed by himfelf. They were both reprintecl together in 1590 , with feveral amendments and additions under this title, "An arithmetical warlike Treatife, named Stratioticos, compendioully teaching the fcience of numbers, as well in fragions as integers, and fo much of the rules and equations algebraical, and art of numbers coeffical, as are requifite for the profetion of a fouldier. Together with the moderne militarie difcipline, offices, lawes, and orders in every well-governed campe and armie, inviolably to be obferved." At the end of this work there are two pieces; the firft intitled, "A briefe and true report of the procecdings of the Earle of Leycefler, for the reliefe of the towne of Sluce, from his arrival at Vlifhing, about the end of June 1587 , untill the fur-
rendrie thercof 26 Julii next enfuing. Whereby it flall plainelie appear, his Excellencie was not in anie fault for the loffe of that towne"- The fecond, "A briefe difcourfe what orders were beft for repulling of foraine forces, if at any time they fhould invade us by fea in Kent, or elfewhere." 4. "A perfect defcription of the celeftial orbs, according to the mof ancient doatrine of the Pythagoreans, \&c." This was placed at the end of his father's "Prognoftication everlafting, \&c." printed in 1592, 4to. 5. "A humble motive for affociation to maintain the religion eftabiifhed, rGor," 8 vo . To which is added, his "Letter to the fame purpofe to the Archbihhops and Bifhops of England." 6. "Eng. land's Defence: or, a Treatife concerning Invafion." This is a tract of the fame nature with that printed at the end of his Stratioticos, and called, "A briefe Difcourfe, \&c." It was written in 5599 , but not publifhed till 1686. 7. "A Letter printed before Dr John Dee's Parallaticic Commentationis praxeofque nucleus quidam, 1573," 4to. Befides thefe and his Nova Corpora, he had by him feveral mathematical treatifes ready for the prefs; which, by reafon of law-fuits and other avocations he was hindered from publifhing. He died in 1595, but we know not at what age.

DIGHTON, a polt town in Briftol co. Maflachufetts, 7 miles from Taunton, and 20 from Warren, in Rhode-Ifland. There are 236 houfes in the townhip, and 1793 inhabitants.-Morse.

DIMINUTION, in mufic, is the abating fomething of the full value or quantity of any note.

DINWIDDIE, a co. in Virginia, S. of Appamattox river, which divides it from Chefterfield. It is about 30 miles long, and 20 broad, and its chief town is Petcriburg.-Morse.

DIOPHANTUS, a celebrated mathematician of Alexandria, has been reputed to be the inventor of algebra; at leait his is the earlieft work extant on that fcience. It is not certain when Diophantus lived. Some have placed him before Chrift, and fome after, in the reigns of Nero and the Antonines; but all with equal uncertainty. It feems he is the fame Diophantus who wrote the Canon Aftronomicus, which Suidas fays was commented on by the celebrated Hypatia, daughter of Theon of Alexandria. His reputation mult have been very high among the ancients, fince they ranked him with Pythagoras and Euclid in ma. thematical learning. Bachet in his notes upon the 5 th book De Arithmeticis, has collected, from Diophantus's epitaph in the Anthologia, the following circumfances of his life, namely, that he was married when he was 33 years old, and had a fon born five years atter; that this fon died when he was 42 years of age, and that his father did not furvive him above four years; from which it appears that Diophantus was 84 years old when he died.

DIOPTER or Dioptra, the fame with the index or alhidade of an aftrolabe or other fuch initrument.

Dioptra was an infrument invented by Hipparchus, which ferved for feveral ufes; as, to level water-courfes; to take the height of towers, or places at a diftance; to determine the places, magnitudes, and diftances of the planets, \&c.

DIRECT, in arithmetic, is when the proportion of any terms, or quantities, is in the natural or direct order in which they fland ; being the oppofite to inverfe which

## $\mathrm{D} \mathrm{S} \quad[567] \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{T}$

Direction which confiders the proportion in the inverted order of
II
Difinal. the terms. So, $3: 4: 6: 8$ direally; or $3: 4:: 8: 6$ inverfely.
DIRECTION, in Aftronomy, the motion and other phenomena of a planet when direct.

Direction, in altrology, is a kind of calculus, by which they pretend to find the time in which any notable accident fhall befal the perfon whofe horofcope is drawn.
DISCRETE Quantity, is fuch as is not continued and joined together. Such, for inftance, is any number.
DISMAL, a fwamp in the townhip of Milton, Lincoln co. diftrist of Maine. - Morse.

Dismal Szuant, called the Great Difmal, to diftinguifh it from another fwamp called Difmal, in Currituck co. is a very large bog extending from N. to S. near 30 miles, and from E . to W . at a medium about 10 miles: partly in Virginia, and partly in NorthCarolina. No lefs than 5 navigable rivers, befides creeks, rife out of it; whereof two run into Virginia, viz. the S. branch of Elizabeth, and the S. branch of Nanfemond river, and 3 into North-Carolina, namely, North river, North-Weft river and Perquimons. All thefe hide their heads, properly fpeaking, in the Difmal, there being no figns of them above ground. For this reafon there mull be plentiful fubterraneous ftores of water to feed fo many rivers, or elie the foil is fo replete with this element, drained from the highlands that furround it, that it can abundantly afford there fupplies. This is molt probable, as the ground of the fwamp is a mere quagmire, trembling under the feet of thofe that walk upon it, and every impreflion is inftantly filled with water. The fkirts of the fwamp, towards the E . are overgrown with reeds, 10 or 12 feet high, interfpcrfed every where with ftrong bamboo briers. Among thefe grow here and there a cyprefs or white cedar, which laft is commonly mittaken for the juniper. Towards the $S$. end of it is a large tract of reeds, which being conflantly green, and waving in the wind, is called the green fea. In many parts, efpecially on the borders, grows an ever green fhrub, very plentifully, called the gall bufh. It bears a berry which dies a black color like the gall of an oak, whence it has its name. Near the middle of the Difmal the trees grow much thicker, both cyprefs and cedar. Thefe being always green, and loaded with very large tops, are much expofed to the wind and eafily blown down, the boggy ground affording but a nender hold to the roots. Neither beaft, bird, infect or reptile, approach the heart of this horrible defert; perhaps deterred by the everlating fhade, occafioned by the thick fhrubs and bufhes, which the fun can never penetrate, to warm the earth : nor indeed do any birds care to fly over it, any more than they are faid to do over the lake Avernus, for fear of the noifome exhalations that rife from this valt body of filth and naftinefs. Thefe noxious vapours infect the air round about, giving agues and other diftempers to the neighboring inhabitants. On the wellern border of the Difmal is a pine fwamp, above a mile in breadth, great part of which is covered with water knee deep; the bottom, however, is firm, and the pines grow very tall, and are not eafily blown down by the wind.

With all thefe difadvantages, the Difmal is, in many places, pleafing to the eye, though difagreeable to the other fenfes.
This dreadful fwamp was judged impalfabie, till the line, dividing Virginia from N. Carolina, was carried through it, in N. lat. 36.28. in the year 1728 , by order of king George II. Although it happened then to be a very dry feafon, the men who were employed in pufling the line wcre not altogether free from apprehentions of being farved; it being 10 whole days before the work was accomplifined, though they proceeded with all polible diligence and refolution, and befides had no difafter to retard them.
This fwamp is chiefly owned by two companies. The Virginia company, of which General Wafhington is one, owns 100,000 acres: the North-Carclina company owns 40,000 acres. In the midit of the fwamp is a lake, about 7 miles long, called Drummond's pond, whofe waters difcharge themfelves to the $S$. into Pafquotank river, which empties into Albemarle found; on the N. into Elizabeih and Nanfemond rivers, which fall into James river. A navigable canal is now digging to connect the navigable waters of the Pafquotank and Elizabeth rivers. The diftance abont it miles. This canal will pafs about a mile E. of Drummond's pond, and will receive water from it. The Canal company are incorporated by the concurring laws of Virginia and North-Carolina. This canal, when finifhed, will open an inland navigation from the head of Cherapeak bay, including all the rivers in Virginia, to Georgetown in South.Carolina; and when the thore canal from Elk river to Chriftiana creek is opened, the communication will extend to Philadelphia and the other ports connefted with Delaware river. Such an extenfive inland communication muft be beneficial in time of peace, and in time of war will be effentially ferviceable- i .

DITTON (Humphry) an eminent mathematician, was born at Salifbury, May 29, 1675. Being an only fon, and his father obferving in him an extraordinary good capacity, determined to cultivate it with a good education. For this purpofe he placed him in a reputable private academy, upon quitting of which he, at the defire of his father, though againft his own inclination, engaged in the profeffion of divinity, and began to exercife his function at Tunbridge in the county of Kent, where he continued to preach fome years; during which time he married a lady of that place.
But a weak confitution, and the death of his father, induced Mr Ditton to quit that profeffion. And at the perfuafion of Dr Harris and Mr Whiton, both eminent mathematicians, he engaged in the fudy of mathematics; a fcience to which he had always a ftrong inclination. In the profecution of this fcience, he was much encouraged by the fuccefs and applaufe he received : being greatly efteemed by the chief profeffors of it, and particularly by Sir Ifazc Newton, by whofe interell and recommendation he was elected mafter of the new mathematical fchool in Chift's Hofpital; where he continued till his death, which happened in 1715, in the foth year of his age, much regretted by the philofophical world, who expected many ufeful and ingenious difcoveries from his alduity, learning, and penetrating genius.

4 D 2


## D I V [ 568 ] D I V

Dittor Mr Ditton publifhed feveral mathematical and other iracts, as below.-1. Of the Tangents of Curves, \&c. Philof. T'ranf. vol. 23.
2. A Treatife on Spherical Catoptrics, publifhed in the Philof. Tranf. for 1705 ; from whence it was copied and reprinted in the A气ta Eruditorum 1707, and alfo in the Memoirs of the Academy of Sciences at Paris.
3. General Laws of Nature and Motion ; 8vo, 1705. Wolfius mentions this work, and fays that it illultrates and rerders eafy, the writings of Galileo, Huygens, and the Pincipia of Newton. It is alfo noticed by La Roche in the Memoirs de Literature, vol. 8. page 4 .
4. An Inftitution of Fluxions, containing the firft Priaciples, Operations and Applications, of that admirable Method, as invented by Sir Ifaac Newton, 8 vo, 1706. This work, with additions and alterations, was again publifhed by Mir Jolen Clarke, in the year 1726.
5. In 1709 he publifhed the Synopfis Algebraica of John Alexander, with many additions and corrections.
6. His Treatife on Perfective was publifhed in 1712. In this work he explained the principles of that art mathematically; and befides teaching the methods then generally practifed, gave the firlt hints of the new method, afterwards enlarged upon and improved by Dr Brook Taylor; and which was publifhed in the year 1715.
7. In I7I4, Mr Ditton publifhed feveral pieces both theological and mathematical; particularly his Difcourfe on the Refurtcation of Jefus Chritt ; and The New Law of Fluids, or a Difcourfe concerning the Afcent of Liquids, in exact Geometrical Figures, between two nearly contiguous Surfaces. To this was annexed a trad, to demonltrate the impollibility of thinking or perception being the refult of any combination of the parts of matter and motion: a fubject much agitated about that time. To this work allo was added an advertifemert from him, and Mr Whifon concerning a method $\mathrm{f} \subset \mathrm{r}$ difcovering the longitude, which it feems the; had publithed about half it year before. This at. tempt probably colt our author his life ; for although it was approved and countenanced by Sir Ifaac Newton, before it wat prefented to the Board of Longitude, and the method has been fuccefsfully put in practice in finding the longitude between Paris and Vienna; yet that board then determined againfl it : fo that the difappointment, together with iome public ridicule (particularly in a poem written by Dean Swift), aifected his health fo that he died the enfuing year, 1715 .

In an account of Mr Ditton, pretixed to the German iranilation of his Difcourfe on the Refurrection, it is faid that he had publithed, in his own name only, another method for fincling the longitude; but which Mr Whitton denied. However, Raphael Levi, a learned Jew, who had ftudied under Leibnitz, informed the German editor, that he well knew that Ditton and Leibuitz had correfponded upon the fubject ; and that Ditton had fent in Leibnita a delineation of a machine he had invented for that purpofe; which was a piece of mechanifin conftrueted with many wheels like a clock, and which Leibnitz highly approved of for land ufe ; but doubted whether it would anfwer on fhip-board, on account of the motion of the flip.

DIVING Belt has been alieady defcribed in the

Encyclopedia; but in that work was given no account of its antiquity or its invention. In the works of Ariftotle we read of a kind of kettle ufed by divers to enable them to remain for fome time under water; but the manner in which thofe kettles were emple yed is not clearly defcribed. "The oldeft information (lays Profeffor Beckmann) which we have of the ufe of the diving bell in Europe, is that of John Talfnier, who was born at Hainault in 1509, had a place at court under Charles V. whom he attended on his voyage to Africa. He relates in what manner he faw at Toledo, in the prefence of the emperor and feveral thoufand fpectators, t wo Greeks let themfelves down under water, in a large inverted kettle with a burning ligh, and rife up again without being wet. It appears that this art was then new to the emperor and the Spaniards, and that the Greeks were caufed to make the experiment in order to prove the poffibility of it."

When the Englifh, in 1588, difperfed the Spanillt fleet, called the Invincible Armada, part of the dhips went to the bottom near the ifle of Mull, on the weltern coaft of Scotland; and fome of thefe, according to the account of the Spanifh prifoners, contained great riches. This information excited, from time to time, the avarice of fpeculators, and gave rife to feveral attempts to procure part of the loft treafure. In the year 1665 , a perfon was fo fortunate as to bring up fome camon, which, howerer, were not fufficient to defray the expences. Of thefe attempts, and the kind of diving bell ufed in them, the reader will find an ac. count in a work printed at Rotterdam, in 1609 , and entitled G. Sinilari Ars nova et magna gravitutis et levilatis. In the year 1680, William Phipps, a native of America, formed a project for fearching and unloading a rich. Spanith thip funk on the coalt of Hifpaniola; and reprefented lis plan in fuch a planfible manner, that King Charles II. gave him a fhip, and furnified him with every thing necefiary for the undertaking. He fet fail in the year 1683 , but being unfucce[sful, returned agrain in great poverty, though with a firm conviction of the poffibility of his fcheme. Hy a fubfcription promoted chiefly by the Duke of Albomarle, the fon of the celebrated Monk, Phipps was enabled, in 1687 to try his fortune once more, having previoully engaged to divide the prefit according to the twenty flatres of which the fubicription confilled. At firlt all his labour proved fruitlefs; but at latl, when his patience was almolt entirely exhaufted, he was fo lucky as to bring up from the depth of fix or feven fathoms, fo much treafure, that he returned to England with the value of two hundred thoufand pounds Aterling. Of, this fom he limfelf got about fixteen, others fay twenty thoufand, and the duke ninety thoufand pounds. After he came back fome perfons endeavoured to perfuade the king to feize both the thip and the cargo, under a pretence, that Phipps, when he folicited for his majeity's permifinn, had not given accurate information refpeating the bufinefs. But the ling aniwered, with much greatnefs of mind, that he knew. Phipps to be an honeft man, and that he and his friends thould flate the whole among them had he returned with double the value.: His majefty even conferred upon him the ho nour of knighthood, to thew how much he was fatisfied with his conduct. We know not the conftruction of Phipps's apparatus; but of the old figures of a diving machine,

## $\mathrm{D} O \quad \mathrm{M} \quad[569] \quad \mathrm{D} O \mathrm{M}$

Dixon's machine, that which approaches neareft to the divingbell is in a book on fortification by Lorini; who defcribes a fquare box bound round with iron, which is furnifhed with "indows, and has a fool affixed to it for the diver. This ingenious contrivance appears, however, to be older than that Italian; at leaft he does not pietend to be the inventor of it.

In the year $\mathbf{1 6 1 7}$, Francis Kefsler gave a defcription of his water-armour intended alfo for diving, but which cannot really be uled for that purpofe. In the geur 1671, Witfen taught, in a better manner than any of his predereffors, the conitruction and ufe of the diving. bell; but he is much miftaken when he fays that it was invented at Amllerdam. In 1679 appeared, for the firt time, Borelli's well known work de motu animalium, in which he not only defcribed the diving-bell, but alfo propofed another, the impracticability of which was fhewn by James Bernoulli. When Sturm publifled his Collogium curiofum in 1678 , he propofed fome hints for the improvement of this machme, on which remarks were made in the Fournal des fçavans. To him fucceeded Dr Halley, whofe bell is well known.

DIXON's Sound, on the N. W. coalt of N. America , is the paffage into the found between the main land and Waihington's or Queen Cbarlotte's iflands, from the N. W. This feems to be what is called in America Barrell's Sound.-Morse.

DOBB's Ferry, on Hudion river, is 26 miles above New-York city -ib.

Dobs's Co. in Newbern diftriat, N. Carolina, has been divided into two counties, viz. Glafgow and Lenoir, fince the cenfins of $\mathbf{1 7 9 0}$, and the name no longer exifts. It contained 6893 inhabitants, of whom 1915 were flaves.-ib.

DODECATEMORY, the 12 houfes or pats of the zodiac of the primum mobile. Alfo the 12 figns of tbe zodiac are fonstimes fo called, becaufe they contain each the 32 th part of the zodiac.

DOG-RIBBED Indians, inhabit round lake Edlande, in the N. W. part of N. America They are often at war with the Arathanefcow Indians Both thefe tribes are among the molt favage of the human race. They trade with the Hudion bay company's fettlements. Ealande lake lies N. of the Arathapefcow fea, or lake, and near the aretic ciccle.-Morse.

DOME, See Arck in this Supplement.
DOMingo, or St Domingo. See Hispaniola, both in Eneych and in this Supplement.
Domingo, St, an ifland in the Atlantic ocean, at the entrance of the gulf of Mexicin, is one of the four great Antiles, the largeft of them all, except the ifland of Cuba, and proved the cradle of European power in the new world. Chiitopher Columbus handed on it the 6th of Dec. 1492. The natives called it Hayti, fignilying high or mnuntaiuous land. Charlevoix fays it was called $\mathcal{Q u i j q u e y a , ~ t h a t ~ i s , ~ g r e a t ~ c o u n t r y , ~ o f ~ m o - ~}$ ther of countries. Others fay it had the name of Bobio, which means, a country full of habitations and villages. Collumbus called it Itipaniola, or Little Spain, wh: ich name the Spaniards till retain, thugh St Domingo is the name commonly ufed by other nations; fo called from St Domingo, the capital of the Spanifh part ; which was hus named by Columbus in honor of his (ather. St Doming:, is fituated between $\mathbf{7} 7.55$. and 20. N. latitude, and between 71. and 77. W.
longitude from Paris. It lies 45 learues E. N. E. of Domingo. Jamaica, 22 S. E. of Cuba, and 20 N. W. by W. of Portn Rico; and is, not including the fmall dependent iflands that furround it, 160 leagues long from E. 10 W. and from 60 to 70 brotd from N. to S. When the Spaniards difcovered the ifland, there were on it at lealt a million of happy inhabitants, and Bartholomew de las Cafas fays there were three millions. Such, howevcr, were the cruelties of the Spaniards, and to fuch an infomous height did they carry their oppreffion of the poor natives, that they were reduced to 60,000 in the thort fpace of 15 years! It formed five kingdoms, each groverned by fovereigns called ca. ciques. The names of theie kingdoms were Minun, Marien, Higuay, Maguant, and Xaraguay. The Spaniards had poffition of the whole of the ifland for 120 years. At latt, about the year 1630 , a handful of Englifh, French, and other Europeans, came and forced them to fight in its defence, and after repeared wars for 50 years, they were forced to divide the ifland with the French. Thefe latter, being the only fulvivors of the firt free-booters or buccaniers, or having infenfibly acquired an afcendancy ameng them, had, fo eatly as 1640, formed this affembly of individuals, born under the domination of almoft all the powers of Eurnpe, into a French colony, under the direction of the general government, firlt eltablifhed at St Chriftophers, and afterwards at Martinicn. The Spanilh part is by far the molt extenfive and the moft fertile ; that of the French the belt cultivated. The whole ifland now belongs to the French republic, the Spaniards having ceded their part of it to that power in the treaty of 1795.

The Spaniards, however ungrateful to the difcoverer of the new world during his life, would not leave his dult out of their territories. The remains of Co lumbus, who died the 20th of $M_{14}$, 1506, were firlt depofited in Seville, afterwards removed to the cathedral in the city of St Domingo, and laftly convered to the Havannah in a 74 gun thip; and on the sgth of January, 1796 , all that was mortal of that great man, was committed to the earth the third tinie, with great parade and ceremony.

The tollowing particulars relating to this famons ifland are founded on the beft authonity, and many circumfances require a feparate view of the two artificial divifions of the ifland, viz. the French and Spamilh territories, hefore they were united under one hcitd. They are both alike in poffeffing the various productinns common to the W. Indies. The European cattle are fo multiplied here that they run wild in the woods; lew of thefe are in the French part in comparifon with the Spanilh.

The two great chains of mountains, which extend from E. to W. and their namerous fpurs, give the iflund an afpe?, at a difance, not fo favourible as it deferves. They are, however, the caufe of the fertility of the ifland. They give fource to innumerable rivers, repel the vinlence of the winds, vary the temperature of the air, and multiply the refources of human induftry. They abound with excellent timber, and mines of iron, lead, copper, lilver, gold, fome precions Atones, and even mercury. With refped to the vegetable clats in this ifland, it would be dificult, even in a work devoied to the fubject, to exprefs or raint all

## $\mathrm{D} 0 \mathrm{M} \quad\left[\begin{array}{llllll}\circ & 57^{\circ}\end{array}\right] \quad \mathrm{D} \quad \mathrm{O} \quad \mathrm{M}$

Dominisa. ~ー
their majeft: Here are the mountains of Cibaro, Selle, and Hotre, reckoned 1000 fathoms above the level of the fea. In the bowels of the firft, the cruel Spaniards condemned thoufands of the natives, to facrifice their lives, in fearch of gold. The mines are not now worked, although Valverde thinks they might be to adrantarge. In the plains, in the Spanifh part, the heat is nearly uniform, but vanies in proportion to their dillance from the mountains. In the plains, the thermometer is fometimes at 99 . In the mountains it rarely raifes above 72. or 77. There the nights are cool enough to render a blanket not unwelcome; and there are mountains where even a fire is a very agreeable companion in fome evenings. The contralt of violent heats and heavy rains renders St Domingo humid; hence the tarnifhed appearance of almoft all metals, however brilliant the polilh they may originally have had. This is particularly obfervable on the fea thore, which is mote unhealthy than the interior parts of the illdad. The fouthern part of the ifland is pretty much fubject to hurricanes, called here fouthern gales, becaule they are not attended with fuch dreadful confequences as the hurricanes in the windward iflands.

The Spanifl part is computed to contain about 90 learues in its grcateft length from E. to W. 60 leagues in its greatelt breadth; having a furface of about 3,200 fquare leagues. About 400 fquare leagues of this furface is in mountains, which are generally more capable of cultivation than thofe in the French part, and have fometimes a foil that difputes the preference with that of the valleys. There remains therefore a fine fertile furface of more than 2,700 fquare leagues, dirided into valleys and plains of various lengths and breadths.

Many circumftances confpired to render this ifland a place of importance to the Spaniards. It was a key to the guif of Mexico, a convenient place for their fhipping to touch at, an excellent rendezvous for their fquadrons and fleets, and an important hold for naval operations of all forts; but from the impolitic meafures of the government, and the reftraints on commerce, it proved rather a burden than an advantage to the mo. ther country.

The cantons or jurifdictions, begimning at the wefternmolt point of the Spanifh frontiers, on the fouthern coalt or narrows, are, Babaruco, (poffifed by the brigands or fugitive Spanifh and French negroes, who inhabit the mountain of Bahoruco), Neybe, Azua, Bani or Vani, the city of St Domingo, and territory dependent thereon, St Laurent des Mines, Samana, Cotuy, La Yega, St Yugo, Daxabon, St Rapbael, Hinche, Banique, and St Join of Maruana. Over the whole of the Spanith part of the ifland, mountains and plains, are fpread 125,000 inhabitants; of whom 110,000 are free, and 15,000 tlaves; which does not amount to 40 individuals to one fquare league. The Spanifh creoles are infenfible of all the treafures which furround them, and pafs their lives without wifhing to change their lot; while the French portion furnilhes three fifths of the produce of all the French Weft-India colonies put together; or more than 10 millions ferling. The drefs and mode of living of the Spanilh creoles indicate pride, lazinefs, and poverty. A capital, which of itfelf indicates decay, little infignificant towns here and there, a
few colonial fettlements, for which the nanie of manu. Dominge. factories would be too great an honor, immenfe polfelfions called Hatles, where bealts and cattle are raifed with little care, in different grades of domeftication; as the domeftic, the gentle, and the fhy. Thofe called wild or mountaineers, as alfo the fly, colt the herdfmen, called pioneers and lancers, immenfe labor and danger in the chafe. The hattes are the moft numerous fort of Spanifh fettlements, and of an extent far difproportioned to their utility. Some are feveral fquare leagues, and do not contain above 500 head of cattle, great and fmall. Some are called horfe hattes, others cattle-hattes, according to the name of the animals they contain; others ufed in breeding pigs are called corails. A fmall piece of woodland, called venerie, frequentl: ferves as a boundary between the hates, common to thofe on both fides of it, and alfo fhelters the cattle from the heat of the fun. The woodland likewife attrafts the wild animals, and lefens the labors of the huntfman. In thefe hattes, the people lodge miferably, and have but poor fisbfitence. The fmall provifion farms called Conacos, fall generally to the lot of the poorer colonifts, or moft commonly pcople of color, or freed people.

The fupply of horned cattle to the Frencla part of the ifland cannot be eflimated at lefs than 15,000 head annually; of which the Spaniards furnifh four fifths. 'Ihele at 30 dollars a head, and bringing them by the Spaniards, cannot be lefs than 450,000 dollars. This forms three quarters of the produce of the colony; and the impoft paid to government is 10 per cent. The number of 200,000 head of cattle is the number in the general cenfus taken by order of the prefident in 1780, and if we count the cattle exempted from the tribute, they may amount to 250,000 ; without comprehending horfes, mules and affes, which, with an augmentation eftimated fince 1780 , would make a flock of 300,000 head, and an annual production of 60,000 ; and fuppofe a fifth part of the young ones perifh accidentally, there Itill remains 48,000 . The refources of the colonifts are very confined, and their few eltablifhments are all below mediocrity. There are but 22 fugar manufactories of any confequence; the relt being not worth naming; and even thefe 22 have altogether but about 600 negroes. Of thefe 6 produce firmp, and fome fugar; but the others, which are called trapachies, where animals are employed to turn the mills and prefs the canes, without fhelter, in the open air, make nothing but firup. The whole of which produce is generally ufed in the colony; fmall quantities are fometimes fent to Porto Rico, or to Old Spain; and the goodnefs of the fugar has proved that of the foil, but nothing in favor of the manufacturer. The coffee raifed here is excellent; each tree in a ftate of bearing will produce on an average a pound weight, and is fometimes of a quality equal to that of Mocha, yet chocolate is preferred to it. Cotton grows naturally at St Domingo, of an excellent quality, even without care, in ftony land, and in the crevices of the rocks. The numerous roots of indigo are only obftacles to the feeble cultivation of the fields, where it grows fpontaneoully. All thefe valuable pro. ductions have fhared the fate of depopulation. Tobacco, fays Valverde, has here a larger leaf than in any other part of America; it grows every where, and equals fometimes that of Cuba or the Havan-

Dosingo. nah. It is as much efteemed as this latter, in the manufactures of Scvelle, and is even preferable to it in fegars. Its cultivation has lately becone more ge. neral. The kernel of the cocoa nut of St Domingo is more acidulated than that of the cocoa nut of Venezuela and Caraca, to which it is not inferior ; and ex. perience proves, that the chocolate made of the two cocoas has a more delicate flavor than that made of the cocoa of Caraca alone. Achiote, ginger, and caffia have fhared the fate of the other productions.

The population of the Spanifh part is compofed of whites, freed people, and flaves. There are alio a few creoles refembling the Indians, having long, Araight and black hair, who pretend to be defcendants of the ancient natives. They are, however, thought to be defcended from a misture of the aborigines and the Spaniards. There were, however, in 1744 , feveral Indians at Banique, who proved their defcent from the fubjects of the unfortunate cacique Henri; although hiforical authority affirms that the whole race was extcrminated.

The freed people are few in number, if compared with the whites, but confiderable in proportion to the number of flaves. The people of color are excluded from almoft all employments, civil as well as military, as long as the color of the flin betrays its origin; but the political conllitution of the country adnits of no diftinction between the civil rights of a white inhabitant and thofe of a free perfon. Indeed the major part of the Spanifh colonilts are of a mixed race : this an African feature, and fometimes more than one, often betrays; but its fiequency las filenced a prejudice that would otherwife be a troublefome remembrancer. People oi color are admitted to the priefthood without difficulty ; but the Spaniards have not yet brought themfelves to make negro priefts and biftops like the Portuguefe. Slaves are treated with extreme milduefs, and are ufually fed as well as their matlers. A religious principle and an illicit affection tend to their emancipation. A flave can redeem himfelf at a price fixed by law. Thus the fate of the flave is foftened by the hope of freedom, and the authority of the mafter by the habit of being confounded, in fome fort, with thofe who were the other day in flavery. The laws againt flaves are much neglected; thofe in their favor are very exacily obferved.

Few of the creoles can either read or write; hence the want of focial intercourfe, which is alfo augmented by the badnefs of the roads. The road; are nothing but paths paliable only on foot and on horieback; and 8 leagnes a day is very great work, in which fpace the traveller often does not meet with a fingle habitation, and muft confequently carry with him every neceffiry for nourifhment and lodging. Such is the low fate of commerce in the Spanifh part, that Don Antonio de Valverde, a native creole, goes fo far as to affert, in his account of the territory, that the commerce in cattle, with the Prench part, is its only fupport.

The whole ifland is in general well watered by rivers and brooks without number, but certain fpaces are deprived of this advantage. From the formation of the ifland, their courfes are but fhort, and few of them navigable to any diflance. It is generally impoffible to conceive, from the tranquil afpest that thefe rivers ufually wear, what they become when they overflow
their banks. A river that but now hardly covered the Domingo. pebbles on its bed, or wet the foot of the traveller, is changed by one tempelluous fhower into a flood, menacing all that it approaches; and fhould its banks give way, it fpreads its watery devaftation over the plains. Many of there are infefted with alligators. The only lakes or ponds worth notice are thofe of Henriquelle and Salt pond; the former is a great curiofity.

The chief of the iflands which furround St Domingn, part of which belonged to the Spanifh part, are A1tavele, Saone, Beate, St Catherine, on the S. fide, from W. to E. Mone, and Monique on the S. E. Caymite, and Gonave on the W. between the two peninfulas, and La Tortue, on the N. fide, towards the W. end of the ifland, and that of Avache on the S. fide of the fouthern peninfula.

The ancient divifion line which feparated the French from the Spanifn part of the ifland extended from the river des Anfes a Pitre or Pedernales, on the S. fide, to that of Maffacre, on the N . fide, at the head of the bay of Mancenille, which, together with the large bay which fets up from the welt ward, between Cape St Nicholas and Cape Dame Marie, S. W. of the former, and 43 leagues apart, moulds this divifion of the inand into fuch a figure, as can be beft comprelended by a view of the map; fuffice it to fay, that it contains 2,500,000 acres of land, of an extremely fertile foil, prefenting an agreeable variety of hills, vallies, woods and Itreams.

The French part of St Domingo, containing 2,500,000 acres, of which $1,500,000$ were under high cultivation in 1789 , was then divided into 10 jurifdistions, which were fubdivided into 52 parithes. Weft jurifdistions, Port au Prince, St Mark, Le Pctit Goave, and Jeremie-in the north, Cape François, Fort Dauphin, and Port de Paix-thofe in the fouth, Les Cayes, St Louis, and Jacmel. Before the late revolution, there were in thefe parifhes about 42,000 white people, 44,000 free people of color, and 600,000 flaves. Other accounts make them confiderably lefs; the above, however, is from good authority. The number of deathi, during ${ }_{7} 89$, according to the bills of mortality, 7121 -the number of births the fame year, 4232 . The excefs of deaths, 2889, will be the lefs atonifling, when it is confidered, that in the year 1787, and 1788 , there had been imported into the colony nearly 60,000 new negroes. The exports from Jan. 1, 1789 , to Dec. 31 , of the fame year, were $47,516,531 \mathrm{lbs}$. white fugar, $93,573,300$ brown fingar; 76,835,219 lbs. coffee; 7,004,27+lbs. cotton ; $758,623 \mathrm{lbs}$. indigo; and other articles, as tanned hides, molafles, fpitits, \&c. to the value of 40,873 livres. The total value of duties on the above exportations, amounted to 770,801 dollars, 3 cents. Port an Prince is the feat of the French government in this inand, in time of peace, and a place of confiderable trade. Cape François exceeds Port an Prince in the value of its productions, the elegance of its buildings, and the advantageous fruation of its port. It is the governor's refidence in time of war. The Mole, though inferior to thefe in other refpecis, is the firll port in the illand for fafety in tinse of war, being by nature and art itrongly fortified. The other towns and ports of any note, are Fort Dauphin, St Mark, Leogane, Petit Guave, Jeremic, Les Cayes, St Louis, and Jacmel.

Dominem.
The molt ancient town in this illand, and in all America, built by Europeans, is St Domingo: of which an account is given below. To thefe particular obfervations, we add the following, of a more general nature: The fugar and indigo plantations were in the flat, the cofice in the mountainous lands. The plantations were for the moft part enclofed with live hedges, llaight and well drelfed; the dwelling and manufactory houfes were built and laid ont with great neatneis and talte; evers habitation poflefled a private hofpital for the accommodation of it, fick negroes, who were parentally dealt with; the roads werc excellent ; and from the general hofpitality and cheerfulnels of its former inhabitants, it was confidered as one of the molt enviable fpots on earth. Such was the French part of St Domingn in 1589 ; but, alas! it is nn more : the deflructive ravages of an unrelenting infurcetion, of frightful malfacres and conflagrations, have laid wafte all thofe beantiful fettements, reduced the boildings to athes, and laid low in dult or fcattered in exile, its wretched inhabitants.

The firf interference of the National Affembly, in the affairs of the colonies, was by a decree of the Sth of March, 1790 , which cleclared, "That all free perfons, who were proprietors and refidents of two years ftanding, and who contributed to the exigencies of the flate, thould exercife the rights of voting, which conflitute the quality of French citizens." This decree, though in faet it gave no new rights to the people of color, was regarded with a jealous eye by the white planters; whofe pride and refentment dictated to them to repel the people of culor from their alfemblies. This feems to be the true fource of their calamities; to develope which, and the dreadiol confequences, beiong to the profeffed hiforian.-Morse.

Domingo, $\mathrm{S}_{\mathrm{t}}$, the capital of the Spanifh part of the inlard of St Domingo or Hifpaniola, is fituated on the W. bank of the Ozama, a league below the month of Ifabella river, in which diftance it is $2+$ feet dsep, having a bottom of mud or foft land, and banks 20 feet perpendicular height; but N. of the city this height is reduced to 4 feet. The Ozama is navigable for 9 or 10 leagues, and has feveral fugar manufactories, tile kilns, and provifion farms on its banks. The road before the mouth of the Ozama is very indif. ferent, and lies expofed from W. S. W. to E. It is impotible to anchor in it in the time of the fouth winds; and the north winds drive the veffels from their moorings out into the fea, which here runs extremely high. The port of St Domingo is magnificent in every refpect ; a real natural bafon, with a great num. ber of careenings for the veffels that can get at them. There is a rock at the entrance, which will only admit velfels drawing 18 or 20 feet water; which it is afferted might be removed without great difficuly.

The city of St Domingo was originally fuunded on the E. fide of the Ozama, in 1494, by Bartholomew Columbus, who gave it the name of New-Ifabells. Authors affert that Chrifopher Columbus gave it the name of his father, and that the inhabitants of Ifanella on the N. coalt of the ifland, founded by Chilt pher Columbus in 1493, removed to New. Ifabella in 1496. Lin 1502 a hurricane dellroyed moft of its building:, which induced Ovando to remove the inhabitants to the W. fide of the river. The new city was foon built,
and that with a grandeur of defign not unworthy of Doming. the firlt metropolis of the New World. The plan of the city is a trapezium of about 540 fathoms on the E. fide, along the Ozama; near 500 fathoms on the $S$. bordering on the fea; and of about 1800 fathoms in circnmference. To the W. and to the N. of the city, the land is rough and rocky for about half a loague, but after that it becomes good, and the country delightful. Towards the rea the fcite of the city lies very high, which forms an infurmountable dyke againt the fury of the waves. It is furrounded with a rampart $s$ Seet in diameter, and about 10 feet high. There is a great deal of ordnance at St Domingo, particularly calt ordnance, but the fortifications are not ftrong; and the height of the Ileignes commands it entirely; and its crown is not more than 250 fathoms from the ditch. The ftreets are facious, and fraight as a line, which gives it a pleafing appearance. Ten of thefe ftreets run from N. to S. and 10 others from E. to W. The greatell part of the houfes, firlt built, are of a fort of marble found in the vicinity, and in the Iyle of the ancient towns of Spain and Italy: thofe of a more recent conftuction are of tapia, a fort of pife. To erect thefe buildings, a cafe is made of planks, between pillars of mafonry: this cafe is filled by degrees with a reddifh clay, which is rammed down as it is thrown in, until it forms a folid, or fort of wall, be. tween the pillars. The clay thus preffed together, acquires an amazing bardnefs, and the walls are fometimes ro folid and frong, that the pilars of mafonry. are ufelefs. The haufes of St Domingo are tolerably handfome, in a fimple fyle, and nearly uniform. A confiderable part of thefe, built within thefe 15 years, are of wood, covered with the leves or taches of palm trees. The roofs are generally platformed, being Shaped fo as to conduet the rain-water to the cifterns. The climate of the capital is, happily, very temperate. The nights of thofe months which anfwer to the winter in Europe, are even found to be cold.

Among a number of public edifices that merit attention, in this declining city, we may reckon the ruins of the houfe that Diego, fon of Chriftopher Columbus, had begun, entirely of hewed ftone. The walls are yet remaining, and fome of the fculpture round the windows. The ronf and ceilings are fallen in, the lower fioor is become a pen for cattle; and a Latin infcription over the portal, is now hidden by the hut of a berdfman. The cathedral, of the fame fort of fone as the houfe of Diego Columbus, ftands on the S. E. Oppofite its entrance is a fine fpacious oblong fquare, at the S. W. end of which is the town houfe. The cathedral is a noble Guthic pile begun in 1512 , and finithed in 1540 , and was conftructed after the model of a church at Rame. It merits admiration on account of the boldnefs of its vault, which, notwithftanding the ravages of earthquakes in its neighbourhood, has never, till within thefe 15 or 20 years, had a fingle flaw. The duft of Columbus relted within this pile until the year 1796, when it was removed. Here are 3 convents for men; which have increafed in importance lince $1782 ; 2$ nunneries, 3 hofpitals, a college, and a gaol. The convent of the Cirdeliers was built by Ovando in 1503 , on a little hill containing a mine of mercury. All the 3 parochial churches of St Domingo, are beantiful, sich in ornaments, in
vafes

## $\mathrm{D} O \quad \mathrm{M} \quad\left[\begin{array}{ll}573\end{array}\right]$

Bonning vafes of gold and filver fet with precious ftones, in
inica. pictures, in fatues of inarble and of metat ; but the Dominica. cathedral furpaifes the others in every refpect. The population of the city of St Domingo is not very condiderable; yet it is extraordinarily augmented fince the year 1780 . The cenfus lately taken, amounted to 20,000 , of every age and fex. But this is far below the exact number. The cenfus is taken by the Spanith priefts or vicars, and who go from luafe to houfe to verify thofe who do not perform their pafchal duties. This lift does no: comprehend children under 7 years of age, nor heads of families abfent from their home or from the city. But the principal caufe of the inexatnefs, is, one half of the parochial territory of the city is on the outfide of the walls.

This territory comprehends the part called the Plains, a great part of the Monte-de-Plate, and again as well to the E. as to the W. of the city, a very confiderabie number of country feats and provifion habitations, where there are a great many families of blacks, of people of color, and white cultivators; fo that there are always 5 or 6000 not included in the cenfus.

Notwithtanding the declining fituation of the Spanifh territory of the ifland, it is far more profperous than it was 60 years ago. A cenfus even of 1737 fhows, that the total population at that time did not furpafs 6000 fouls, and the capital contained hardly 500.

The Spanifh capital is 70 leagues E. by S. of Port au Prince, the road runs half the way along the fea coall, through Bany, Azua, and Neybe, and thence by the lake, Henriquelle and Brackilh-pond. In this route fou have to crofs two large rivers, Nifai and Neybe, befides 11 fmaller ftreams. It is 90 leagues S. E. of Cape François, going by the road through St Raphael, Azua, \&c.; and about 100 leagues by that of Dahabon, St Yague, and La Vega. N. lat. 18. 19. 3̄o. W. long. from l’aris 72. 37.-ib.

DOMINICA, the laft of the leeward Charaibee or Caribbee iflands, taking them from N. W. to S. E.; but the Spaniards call it the latt of the windward illands. It is fituated about half way betwixt Guadaloupe on the N. W. and Martinico on the S. E. 15 leagues from each, between 15.20 and 15.44 .30 . N. lat. and between 61. 17. and 61. 30. W. long. being about 29 miles in length from Crab-Point S. to the N. W. cape of Agulla bay on the N.; and nearly 16 miles broad from Raymond bay E. to Coulihant on the W. ; and contains 186,436 acres of land, and is divided into 10 parifhes, viz. St Joln, St Andrew, St Peter, St Jofeph, St Paul, St David, St George, St Patrick, St Luke, and St Martin. The ifland contains many high and rugged mountains, interiperfed with fertile vallies, and is watered by upwards of 30 rivers, befide a number of rivulets. Several of the mountains contain unextinguifhed volcanoes, which frequently difcharge valt quantitics of burning fulphur. Horc are feveral het fprings, ef teemed efficacious in removing tropical diforders. Some of the waters are faid to be hot enough to coagulate an egg. Here are vaft fwarms of bees, which produce a gleat geantity of wax and honey; they hive in the trees, and are thought to have been tranfported from Europe : the nativc bee of the Weft-Indies being

Suppl. Vol. I.
a fmaller fpecies, unprovided with fings, and very different in its manners from the European. The forefts afiord an inexlauntible quantity of rofe wood, fo elteemed by cabinct ronkers. The fruits and other productions are fimilar to thofe in the neighboring iflands; but the foil being generally thin, is more adapted to the rearing of cotton than fuyar. 'The beit eye-flones that are known, are found on the fhores of this ifland. They have their name from the ufe which is made of them, for clearing the eyes of any dirt. They are flaped like a lentil, fmooth and fleek, but much fmaller, and of a grey color. The value of exports, according to the current London prices in 1788 , amounted to $f \cdot 302,987-15$ therling including exports to the American llates, value $£ .7,164-5$. The cargoes, in 162 veflels, confifted of $71,302 \mathrm{cwt}$ I gr. 21 lbs . of fugar-63,392 gall. of rum-16,503 gall. molaffes-1,194 cwit. 3 qrs. 2lbs. cacao- $18,149 \mathrm{cwt}$. 3 qrs. 6lbs. coffec- 11,250 lbs. indigo- $970,8161 \mathrm{bs}$. cotton-I6I cwt. ginger, belides hides, dying woods, \&c. The number of inlabitants, in the fame year, appears to have been 1236 whites -445 free negroes, \&ec. and 14,967 nlaves. There are alio about $30 \mathrm{rd}_{\mathrm{d}}$ milies of Charaibes, the remains of the ancient natives. The only towns here of any note are Charlotie town, the capital and the feat of government, formerly called Roffeau, on the S. W. fide of the illand, and Portfmouth, fituated at the head of Prince Rupert's bay.

Dominica, from its local fituation, between Martinico and Guadaloupe, is the belt calculated of all the Britifl pofleffions in that part of the world, for fecuring to her the dominion of the Charaibbean fea. A few thips of war in Prince Rupert's bay would effectually Itop all intercourfe of the French fettlements with each other, as not a velfel can pafs but is liable to capture, by fhips cruifing off that bay, and to windward of the ifland. It is a feparate government and a free port. The anchorage is good all round the coalt of Dominica; but it has no port or bay for retiring into; but the veffels have the advantage of fhelter behind many of its capes.

It was difcovered by Chriftopher Columbus, Nov. 3, ${ }^{1} 493$; and had its name from being difcovered on a Sunday. It was taken by the French in the late war, and reftored to Britain at the peace of 1783 --ib.

Dominica, La, one of the Marquefa iflands, called by the natives Heevarca, is the largeft of them all, ex. by the natives Heevarca, is the largeft of them all, ex-
tending E. and W. 6 leagues; is about 16 leagues in circuit, full of rugged hills, and of a barren alpect;
but is inhabited. S. lat. 9.44. The long. of the W. circuit, full of rugged hills, and of a barren afpect;
but is inhabited. S. lat. 9.44. The long. of the W. end from Greenwich is 139.13 . W.-ib.

DON CHPISTOPHER's Cove, lies on the N. Gide of the intind of Jamaica, having St Anne's bay on the W. and Mammee bay on the S. E. It is remarkable for having given fhelter to the difcoverer of America, during a form, in 1503 , and for being the fcite of the old town of Sevilla de Nueva.-ib.
don Martin de Mayorga, the name given by
the Spaniards to a clufter of illands in the South Sea, difcovered on the 27 th of February 1781 , by Don F. A. Maurelle, it celebrated pilot of that nation.

Thofe iflands are defcribed by him as abounding with tropical fruits and roots, as lighly cultivated, and as inhabited by a people confiderably polithed. The fer-

4 E
tility

Dominiv:
Don Martin de Mr$\underbrace{\text { yorga. }}$ $\underbrace{\text { yorga. }}$ II -,

$\qquad$ I
 -


$\qquad$

$\qquad$







$\qquad$




Don Mar- tility of the land, fays he, is fuch, that its cultivation tin de Mam yorga il

## Dondon.

 whot fail to promile a favourahle harvent. Every where are feen an cndlefs number of cocoa-nut trees, beautiful banana trees, ranged in lines with the greateft order, and numerous plantations of potatoes, of which he defcribes fome as fifteen feet in length, and of the thickners of a man's thigh. He admired the order with which every thing was difpofed. No weeds were fuffered to grow between the plants; and their roads were kept in repair with a diligence deferving imitation by the mot civilized nations.Their government appears from his account to be defpotic. The fovereign, who is called the Tubou, is held in the highelt veneration by his fubjects, whofe lives and properties are at his difpofal. Under him there is an order of nobles called Equis, who, though they frink into infignificance in the prefence of the Tubou, have great authority over the people. Thefe people are faid by Maurelle to be of great mufcular Arength and large ftature, the ordinary height of the men being fix feet or fix feet four inches, while many of them are much taller. It would ap pear, too, that they delight in gymnaftic exercifes; for when the Tulort, by whom he had been treated with great hofpitality, wifhed to amufe him and his thip's company, he exhibited to them feats of wretting and boxing, and that as well by the women as by the men.

Though thefe pecple put the greatelt confidence in the Spaniards, and frequently faid whole nights on board the frigate, they had yet the common inclination of favages to fteal. "Every time they came on board (fays our author), clothes, iron-work, whatever fell in their way, they confidered as lawful prize. They drew out through the port holes, or the windows, whatever was within their reach. They thieved even to the very chain of the rudder. I made my complaints to the king; he gave me permiffion to kill whomioever I fhould detect in the act ; and I was affured he had himfelf difcovered and punifhed with death the authors of the complained of theft. Our vigilance was neceffarily cal. led into action. We furprifed the iflanders ftriving to ear away the new rudder chains; we fired a piftol at them, one of them fell dead on the occafion, and this was an awful leffon for thofe who were either on board or alongfide of the frigate; they faid to themfelves, or to one inother chito (robber) fama (death)."

They make of the bark of trees a kind of cloth not unlike that which has been brought from other illands in the South Sea; and our author defcribes the women as being peculiarly neat both in their drefs and in their perfons. They had their mantles or loofe garments adjufted in neat plaits and folds, and becomingly attached by a knot over the left fhoulder. They wore garlands or wreaths on the head, and chaplets of large glafs beads round their necks; the hair was pleafingly difpofed in treffes, and the whole perfon perfumed with an oil of an agreeable odour ; above all, the fkin was fo exquifitely clean, that they would not have fuffered the imallelt particle of duft to remain upon it a moment.

In this archipelago Don Maurelle found a fafe harbour, to which he gave the name of El Refugio, and which he places in South Lat. $1^{\circ} \cdot 36^{\prime}$. and W. Lon. ${ }^{4} 77^{\circ} \cdot 47^{\prime} \cdot 45^{\prime \prime}$. of Greenwich.

DONDON, an interior fettlement in the French
part of the illand of St Domingo, 3 leagues N. W. of Donegal St Raphael in the Spanifh part, and 13 leagues E. by N. of Les Gonaives.-Morse.

DONEGAL. There are 3 townfhips in Pennfylvania of this name; the one in Lancafter co. the other in that of Weltmoreland, and the third in Waftington co.-ib.

DOOBOUNT Lake, newly difcovered, about 60 or 70 miles long, and 20 or 30 broad; lies fouth-eaft of the head of Chefterfield inlet, in New South Wales. —ib.

DORCHESTER, a townhip in Grafton co. NewHamplhire, incorporated in 176 s . In 1790 it contained 175 inhabitants. It lies N. E. of Dartmouth College about 17 miles.-ib.

Dorchester, an ancient and thriving townhip in Norfolk co. Maffachufetts, fettled as early as 1630 . A number of towns have been taken off from it fince its firlt fettlement. It is fituated 2 miles S. by E. of Bofton, and is now about 6 miles long and $3^{\frac{1}{2}}$ broad. The chief manufactures here are paper, chocolate, fnuff, leather, and fhoes of various forts. It has a handfome church, 256 houfes, and 1722 inhabitants. The N. E. point of the peninfula, called Dorchelter neck, approaches within half a mile of Caftle inland, and its N. W. point within half a mile of the S. part of Bofton. Forts were erected on the heights in the late war ; and this town and its vicinity fuffered much during the early part of the war.-ib.

Dorchester, in Cumberland co. New-Jerfey, lies on the E. fide of Morris river, about 5 miles fromits mouth in the bay, and 17 ealtward of Fairfield.-ib.

Dorchester Co. in Maryland, lies on the E. fide of Chefapeak bay ; on the S. fide of Choptank river, which feparates it from T'albot co. It has feveral inlands on its coalt. The chief of there, from the mouth of Hudfon river, are, James, Taylor's, Barren, Hooper's, and Goldfborough's, which lalt lies between Hungary river and Fifhing bay. The length of the county from E. to W. is about 33 miles, and its breadth from N. to S. 27 miles. The number of its inhabitants 15,875 , of whom 5337 are flaves. The lands in the northern parts are comewhat elevated, but in the fouthern parts low and marlhy, particularly along Fifhing bay, and up its waters, Tranfquaking, Blackwater, and Fearim creek, and along Hungary river an arm of the Chefapeak. The produce is chiefly wheat, corn and lumber. Its chief town is Cambridge.-il.

Dorchester, a fmall town of Charlefton diftrien, South-Carolina, feated on the N. E. bank of Afhley river, is miles W. N. W. of Charlefton city.-This place was fettled and named as early as 1700 , by a colony from Dorchefter and its vicinity in Maflachufetts; and a part of its inhabitants, about the year 1750, left it and fettled Midway, in Georgia.-ib.

DORLACH, a townthip in Otfego co. New-York. By the ftate cenfus of 1796,433 of its inhabitants are electors.-ib.

DORSET, a townfhip in Bennington co. Vermont, having Rupert W. Manchefter S. and Danby N. ; and contains 958 inhabitants, 27 miles N. by E. of Ben-nington.-ib.

DOUGLASS, a townthip, the fouthernmof in Worce!ter co. Maffachufetts, having the ftate of RhodeIfland on the S. and that of Connegticut on the S. W.

## $\mathrm{D} O \mathrm{~V} \quad\left[\begin{array}{ll}575\end{array}\right] \quad \mathrm{D} \mathrm{R}$ A

Douglafs and throngh it paffes the middle road from Bofton to New-York. It is a very rocky townfhip, and contains 1080 inhabitants. It lies 16 miles S. of Worcefter, and 47 S . W. of Bolton. It was incorporated anno 1746 , and received its name in honor of William Douglats, M. D. of Bofton, a native of Scotland, and a confiderathle benefactor to the town.-ib.

Douglass, a townhip in Montgomery co. Pennfyl. vania.-ib.

Douglass, a cape on the N. W. coaft of N. America, which forms the W. fide of the entrance into Cook's river, oppofite Point Bede, whici forms the E.fide. It is a very lofty promontory, whofe elevated fummit appears above the clouds, farming two exceeding high mountains. Lat. 58.56 . N. long. 206. 10. E.-ib.

DOUTY's Falls, in York co. Maine, a place where a poft office is kept; 7 miles from Berwick, and 8 from Sanford.-ib.

DOVER, a townthip in Norfolk co. Maffachufetts, incorporated anno 1650 . It contains 485 inhabitants, and lies 15 niles fouthward of Boflon.-ib.

Dover, a coniidcrable townhip in Strafford co. NewHampfaite, and the fhire town of the county ; fituated on the fouthern fide of Cochecho river, about 4 miles above its junction with Salmon Fall river, which together form the Pifcataqua; 10 miles S. by E. of Rochefter, 6 from Berwick, in Maine, and 12 N. W. by N. from Portfmouth. The Indians named it Winichahanat and Cochecho ; by the firt fettlers, it was called Northam. It was incorporated in 1633 , and contains 1998 inhabitants. The public buildings are a Congregational church, court-houfe and gaol. At Dover is a high neck of land, between the main branch of Pifcataqua and Back river, about two miles long, and half a mile wide, rifing gently alonga fine road and declining on each fide, like a fhip's deck. It com. mands an extenfive and variegated profpect of the rivers, bays, adjacent fhores, and diftant mountains. It has often been admired by travellers as an elegant fituation for a city, and by military gentlemen for a fortrefs. The firlt fetters pitched here, but the trade has lnng fince been removed to Cochecho falls; and this beautiful fot is almolt deferted of inhabitaits. N. lat. 43. 1 I . W. long. 70. 50.-is.

Dover, a townhip in Monmouth co. New-Jerfey, between Shrewfory and New-Stafford, and extends from the fea to the county line. Although a large townflip, it contains only 910 inhabitants, who live molly upon the fea-hore. There is but one church, the property of a generous and benevolent individual; who givcs liberty to minifers of all denominations to preach in it whenever they pleafe.- $i b$.

Dover, the metropolis of Delaware flate, in Kent co. on the S. W. fide of Jones creek, about $4 \frac{1}{2}$ miles N. W. from its mouth, in the Delaware; 12 miles from Duck creek, 48 from Wilmington, and 76 S . S. IV. of Philadelphia. It contains about Ioo houfes, built principally of brick. There are + ftreets, which interfect each other at right angles, in the centre of the town. The area included within thefe interfections extends into a tpacious parade ; on the E. fide of which is an elegant tiate houfe. The town has a lively ap. pearance, and drives on a confiderable trade with Philadelphia, chiclly in flour. N. lat. 39. 10. W. long. $75 \cdot 34$ - - -16 .

Dover, a town in York co. Pennfylvania, on Fox Run, which falls into Conewago creek, near its mouth, in the Sufquehanna. It contains a German Lutheran and Calvinif church, united; and about 40 houfes.-i3.

DOWNE, or Dozuns, a townthip in Cumberland co. New-Jerfey.-ib.

DOWNINGS, a poit town of Pemfylvania, in Chefter co. on the E. fide of 13randywine creck; 33 miles W. by N. of Philadelphia, and near 7 N. W. of Wcttcheftcr.--ib.

DOYLSTOWN, a :illage in Bucks co. Pennfylrania, to miles S. W. of Howell's ferry, on Delawate river, ${ }_{5} 5 \mathrm{~N} . \mathrm{W}$. of Newton, and 33 W . by N. of Pai-ladelphia.-ib.

Draccena Draco (fee Dracoena, Encyci.), is a native of Madeira, though it is there becoming fearce. The following account of it is by La Martiniere, naturalift in the latt voyage of difcovery by La Peroufe. "The idea of the dracona draco (fass he) given by the fhabby fecimens cultivated in our hot-houles, is far inferior to that we entertain of it when we have an opportunity of feeing it in its native foil. I met with three in paticular, of which the trunk was fix or feven feet high, and four and a haif or five in diameter. The principal branches, 12 or 15 in number, and as thick as a man's body, fhont out a little obliquely. dividing themfelves generally into two, and now and then into three, to the height of 40 or 50 feet including the feven feet of the trunk. The leaves are a!l at the extremity of the branches, where they are placed in alternate order, and form a clufter. This tree prefents the noof perfect regularity to the ese, and tempts the feetator to think, that the mof Riiful gardener makes it the object of his daily care."

DRACUT, a townhip in the northernmoft part of Middlefex co. on the northern bank of Merrimack rives oppofite Patucket Falls. It contains 1217 inhabitants, and lies 30 miles N. by W. of Bohon, and 28 S . W. of Exeter, in New-Hampfhire.-Morse.

DRAINS. Under this word in the Encyclopedia we publifhed Mr Bayley of Hope's method of draining land; and by a letter from the author, we have fince learned, that experience, the bett guide, has fully proved the ufefulnefs and durability of his drains. With a candour, however, worthy of a man who writes not for fame, but for the good of the public, he informs us of a miftake into which he had led us; and requefts us to correct it in this Supplement.
"I wifh (fays he) that, in the Supplement to the Encyclopredia, duc notice may be taken of a very great error into which I was led in my fcheme of making the main drains. I conjectured, that where the bottom of the trench was of a hard or folid body, as clay or marl, it might not be necefliary to lay it with bricks or ftones; but in this I was quite wrong. By the uuns of water, the alternate changes from wet to dry, and the accefs of air, thefe hard bottoms have been rendered friable; they have crumbled away, and let in all my drains which were not fupported by a bottom laid will brick or flone." For this information we requeft the author to accept of our thanks, and we are perfuaded we may add, the thanks of the public.

As the draining of land is a matter of great importance in agriculture, and as the fubject has been again brought before us, we imagine that our agricultural $4 \mathrm{E}_{2}$


## D R A [ 576$] \quad$ D R A

Drains. readcrs will be glad to find here the fubftance of a paper on this fubject, for which the author received the filver medal of the Society inftituted for the encouragement of Arts, Manufactures, and Commerce. That all thor is Mr John Wedge, of Bickenhill near Coventry, who is not only a great farmer himfelf, but had likewife been employed by the Earl of Alesford in the management of feveral eftates. Encouraged by his lordthip's liberality, Mr Wedge informs the fociety, that he had been employed for fome years in draining large portions of land, of which part vias in the Earl's occupation, and patt in his own, as tenant to his lordlhip. The frinciples upon which he proceeded, as well as his mode of procedure, he ftates in the following terms:

In every country there are large portions of land that, it wet feafons, have always what may be called a dry furface, and other portions of land thathave always a moill or rwet furface; the former of thefe admiting all the water which falls upon them to fink freely through their pores to various depths, till falling on clay, or fome other unctuous earth, whofe pores will not permit it to pais through, it is there held up to a height proportioned to the quantity of water which comes upon it, and the facility with which that water is difcharged. Thus, held up to various heights, it ferves as a fountain to diftribute its water (either by veins of fand, pebbles or rock), according to the formation of the different under ftrata on the neighbouring lands, and there forms bogs and other varieties of wet furface, on a balis that will be always found to confilt of marl, or clay, or fome mixture thereof. The effect of water thus diftriouted may be divided into two claffes. The firft clafs, where the water is thrown out by a body of marl or clay, \&c. upon the furface of defcending ground, and in the valley (there held up by clay atio) forms bogs or fwamps. The fecond clafs, where the water is held up by marl or clay, as before, having above that marl or clay a fratum of fand, or pebbles, through which the water pafies; and above thofe fands or pebbles another Atratum of marl or clay, through the weakelt parts of which, the water, by a continual preflure from its fountain, forces a paflage upwards; and thus, through the weake? parts of the marl or alay, furnifhes a continual fupply of water on the furface, for the formation or growth of bogs, \&c. in proportion as this water is more or lefs abundantly fupplied by its fountain or head, namely, the higher lands, into which raio-water freely paffes, as before defcribed. There are alfo different foils under different circumtances, which may form a third clafs of land for draining; fuch as ftrong deep foils, or open light foils, having near the furface a body of marl or clay. In either of thefe caies, the water which falls on the furface mult, for reafons which are felf evident, keep fuch lands, in rainy feafons, conftantly wet and cold; and it frould be obferved, that a mixture of all the three before-defcribed clafes of wet land fometimes occur in one field, by fud. den alterations of the under Arata, and thereby ferplex the operator, by requiring all the different modes of draining in the fame field.

If it be admitted that bogs are thus formed and fed, their cure may be effected with certainty. The firft clafe, by cutting through the ftratum (be it fand, pebbles, or rock,) that conveys the water to the bog, and carrying off that water by a clofe drain to fome proper
place, where the level admits of its difcharge. The fecond clafs, by finking a drain to any conrenient depth in the upper clay; and then digging or boring with a large auger, at a fmall diltance on one fide of this drain, through the remaining part, be it (the upper clay) ever fo deep, into the under ftratum of fand, pebbles, or rock, through which the water palles; which will then rufly up into the drain fo made, with a velocity proportioned to the height of the land or fountain wherse it is fupplied. As this drain advances through the land, holes mult be dug or bored, as before, every feven yards, or at fuch diftance as the frength of the Iprings may require; and the whole of the water thus brought up by tapping the fprings, is carried off by the drain made in the upper clay, which mult be a clofe one, to its proper level, and there difcharged.

By bnth thefe methods of draining, large tracts of land, under favourable circumftances, may be cured with one drain. The beft place for fixing thefe drains is where the ftratum that conveys the water comes nearelt to the furface; and the beft method of afcertaining that, is to bore or dig in different parts through the different under frata.

The third clafs may be eafily cured by clofe drains, at fuch diltances and depths as will beft carry off the furface-water. It may not be improper to obferve that where the different Itrata or meafures cropout, that is, become gradually more and more thallow in fome certain direction (as is often the cafe, till, one after the other, they all prefent themfelves in fincceffion on the furface of the earth ), draining may often be much more eafily and better effected by crclling with the drain the different Atrata or meafures where the levels and other circumftances will admit.

Some of the land drained was part of a common, in the parith of Church Bickenhill, in the county of Warwick; part of it was covered with mofs and ling, had a peaty furface about fix inches deep, and produced little or no grafs: in all wet feafons it was filled quite to the furface, and often overflowed, with water. Some of the land was much more unfound, deeper of peat, and covered with mols, in moft parts nine inches long; annther part was an abfolute bog in all feafons.

Having dug or bored with a large auger into feveral parts of the land, Mr Wedge found peat, gravel, and fand mixed, and a quick fand almof uniformly. The quick-find in every part, after getting an inch or two into it, feemed almnit as fluid as water. Judging from this, that no materials for a drain could be laid in the quick-fand, but what it would immediately bury, he dug a trench almoft to the quick-fand, leaving gravel, Sic. of fufficient ftrengili to bear up the materials for a hollow drain; thefe materials were two fides and a co. verer of Aone, with a peat-turf on the top to keep out the foil. At every feven yards forward, by the fide of this drain, he dug a hole in the quick-fand as deep as it would permit. From thefe holes the water rofe freeiy into the hollow drain, and was by it difcharged at a proper level. It may be proper to remark, that the Fone made ufe for this drain, and all others here mentioned, was a red fand and rag. Atone, which eafily fplit into proper fizes for the purpofe, and is very durable; it colt about fixpence per ton getting, exclufive of carriage. The drain thus formed ran on the whole rather freely, and made the land dry for a few yards on

## $D R A \quad[577] D R A$

Drains each fide thereof, but was far from having the cfieft he improperly expected; for it cvidently appears that the drain could only take a very fmall portion of the water from fo large a quick-fand, which it did not penetrate more than two inches; and that it could drain only to its own depth, or at moff, to that depth in the fountain which fupplied the quick-fand. His purpore was then defeated; and his motive for mentioning this error cannot, he hopes, be miltaken.

He now did what he fays he nught to have done before, that is, examined the different Itrata to a greater depth, particularly on the bog, and at the upper edges thereof, and found the bog to be what has been deferibed under the firft clarfs. He therefore determined to attempt the cure in the manner before prefcribed for that clafs, namely, to cut through the whole of the flratum (in this inflance, of quick-fand), through which he found the water pafs. 'Jhis he efferted as follows: The fummer being dry, and favourable for the purpofe, and having previouly made his main open drain, he began his main clofe drain the firf week in June 1791, three feet wide, on the declivity near the edge of the great bog. In the firlt operation he dug through the peat, the hard fand, and gravel, and one fpade's grait (about nine iuches deep, and feven inches wide) into the quick-fand the whole length of this drain, which was 73 perches, of eight yards to the perch, in length. The drain thus dug ran copionfy, not lefs than 60 gallons per minute. In this thate he left it about nine days: the effect of it was rapid, both above the drain and oa the bog below. Upon examination, he now found about three inches on the top of the fpade's graft, which had been made into the quick-fand, perfeftly dry. He then dug out thefe three inches of dry fand, to nearly the whole width of the drain, three feet; and at the fame time dug out, as before, another fade's graft from the top of the quick-find, as near the middle of the drain as poffible. This was left to run a few days, as before, and had the fame effect, namely, three or four inclies more of the top of the quick-fand became dry and hard. The fame operation was repeated again and again with the fame effect, till the purpofe of getting through this quick-fand was completed, fo far at leaft as the level of the main open Srain would permit. The fream of water continued increafing during the whole operation; the bog below the drain was quite dry, and the land above perfesly fo. The drain which was firf made, and continued running for fome time during the progrefs of the main clole drain, became gradually dry ; and has not, fince that drain was finithed, difcharged one fingle drop of water. Great care was neceffary; in making the main clofe drain, to keep the fream of watar in the middle of it, otherwife the cur rent would have undermined the fides, as it fometimes had done, and cauled them to fall in. For this reafon it was neceffary, when the dry fand was taken from the top of the quick-Cand, immediately to take out a fpade's graft from the middle thereof, in order to divert the current from the fides.

The main clofe drain thus made was three feat wide at top, about nine feet deep on the average, and, bevel-
ling a little from the top, it was about one foot ten inches wide at the bottom. The fone and other materials were put into this drain in the following manner:

Where the drain went through the quiek-fand inio the itratum of clay below it, as in molt places it did, the bottom, and in fome inftances the fides, wanted no particular fecurity ( $A$ ) ; but where it did not go quite through the quick-find, which the level of his main open drain in fome places would not adait, the bottom of the drain was covered half an inch thick with ling ; then peat-turfs, one foot wide and three or four inches thick, were cut in convenient lengths, and placed on their edges on each fide of the botum of the drain, forming two fides of a trough of peat; then fide ftones about eight inches high, and a fone coverer, were put in upon the ling between the peat-turfs; a large peatturf, near two feet wide and four inches thick, was then cut and firmly placed over the whole; this left in the bottom of the drain an open fpace, of more than fix inches fquare, for the water to pafs. The whole was then completed by filling in the upper purt of the drain.

In this way the author drained, for about L. So, thirty acres of land, which, from being of no value whatever, became worth at leaft 14 fillings per acre of yearly rent. He likewife hollow drained nine acres by the method preferibed for the third clafs of wet land. Thefe drains were made a few yards below that part of each field where the dry and wet land feparate, about 22 inches deep, with fides and a coverer of fone, and ling on the top of it, to keep the earth from running in. The length of thefe drains was 880 yards, and the expence of labour and materials three halfpence per yard. The drains, in wet weather, difcharge a large quantity of water; and will, he has no doubt, anfwer the intended purpofe. Thus far relates to land in his own occupation.

Nine acres of the land in the earl of Aylesford's occupation was almof an entire pulp. This bog was of the fecond clafs, namely, water paffing throegh a quickfand, and confined by a ftratum of ciay below, and another ftratum of clay above it. The water thus confined, being preffed by its fountain, and forced up thro' the weakeft parts of the clay, had formed a bog of irregular thicknefs on the furface, in fome places fix feet deep, in others not more than two. As there is a confiderable fall in this land from eaft to weft, he thought it expedient to put two drains into it; and this appears to him to have been neceflary, from a confideration that both thefe drains continue to run in the fame proportions as when firt opened. The manner in which thefe drains were executed was, by digging through the different upper frrata, and as decp into the clay as the main open drain would admit ; then digging or boring through the remaining part of that clay into the quickfand, at the diftance of about fix yards, in a progrefinve manner.

The water rifing rapidly thoough there holes into the clofe drains, has effeted a complete cure of this land, every part of which will now bear a horfe to gailop uponit. Thefe drains difcharge 3660 gallons an hour; which
(A) He will probably find in time that he was under the fame miftake with Mr Bayley, and we hope that with Mr Bayley's candour he will acknowledge it.

Drans which is much lefs than they didat firt, as muft be the
che in all bogs. 'This land will be worth twenty thillinge per acre. The draining colt twenty-five pounds;
and the length of the under-ground drains is eight hunched and fourteen jards.
$\mathrm{Mr}_{0}$ Wredge luad jult finified (January 1792) draining another piece of land, about forty-three acres. As this was intended to anfiver two putpofes, one, to drain the land, the other, to give an additional fupply of water to a mill-pool, and as a circumftance arcfe in the execution of the work which frequently happens in drainng land, namely, a fudden alteration in the pofition of the under flrata-a defeription therenf will not, we hope, be thought tedious. This draining was begun at the level of a mill pool, and continued, without ang great difficulty, to the diftance of about thirtytwo chains, in the manner before defcribed as a cure for the fecond clafs of boggy land; but at or near that place the under ftrata altered their pofition; the quict. fand which conveyed the water now became of twice its former thicknefs; and the clay, which had hitherto been above that quick-tand, for fome diltance difap. peared. From the quick-fand thus becoming fo much deeper, he could not, with the level of the mill-ponl, cut through it; nor indeed, from the wetnefs of the featon, weuld fuch an operation have been proper. He therefore continued a thallow drain to fome diftance, making fide-holes into the quick-fand, which ran freely ; but as this could not cure the whole of the bog below, he branched out another drain (which was made by the method defcribed for curing the fecond clafs of wet or boggy land), by finking a clofe drain through the upper lleata into the upper clay, and then, at a fmall diftance on one fide of this clofe drain, boring a hole with an augcr through the remaining part of that clay into the quick-fand; and at every eight yards, as this clofe crain advanced, fill boring other holes, in the manner before defcribed: through many of thefe holes the water ruthed with great rapidity. The water difcharged by thefe drains into the mill-pool is 168 gallons per minute, or 3780 hog theads in a day; which is alter the rate of $1,379,700$ hogfheads in a year.

About fix acres of this land were always found; abont twelve acres on the north fide were an abfolute pulp, and the remaining twenty-fix acres very unfound. 'The whole is now found, and will when cultivated be worth lixteen fhillings per acre. This land would have been drained at a much lefs expence into the main open drain; but then the water, which was much wanted for the mill, would have been loft. Thefe clofe drains are in length 1452 yards, and colt L. 100, of which about L. 30 ought to be charged to the mill.

Important as this fubject is, we mult not enlarge this article, or we fhould make large extracts from Dr Anderfon's Pradical Treatife on Draining Bogs and Swamfy Grounds, lately publithed. It is proper, however, to inform the public, that the author puts in his claim for being the firit difcoverer of that mode of draining for which Mr Elkington has obtained from parlament a premium of L. 1000 ; and the reader who thill turn to the article $\mathrm{D}_{\mathrm{rains}}$ in the Encyclopædia, will perceive that his claim is well-founded.

DRAKE, a harbour in California, fo called after the celebrated Sir Francis Drake, who difcovered and took poffeffion of the peninfula of California, for his
miftrefs, Queen Elizabeth. N. lat. 28. 15. W. long. III. 39.-Morse.

Drake, Sir Francis, or Drake's Bay, a bafon in the middle of the Virgin ifles; in the Welt-Indies, 3 or 4 leagnes broad, and 6 or 7 long, the finet that can be imagined; and in which fhips may anchor, landlocked, and fheltered from all winds.-ib.

DRESDEN, a townthip in Lincoln co. diftrict of Maine, fituated 9 miles from Wifcaflet Point, 15 from Fort IWefton, at Hallowell, and 180 N. by E. of Bofton. Swan Ifland is in this townfhip.-ib.

DROMORE, a townfhip in Lancafter co. Penn-fylvania.-ib.

DROSSERA Anglicana, or the Sundew (fee Drossera, Encycl.), is a very minute villous plant, ufually growing eniangled with mofs on peat bogs; the leaves are cuioufly fringed with numerous Arong reddifh hairs, terminated by fmall pellucid globules of vifcous liquor, which occafion, by the reflection of the fun, that peculiar lullre from which its name is derived. It is in thefe hairs that the effential properties of the plant relide ; for if a fmall infect fhould fix itfelf on nne of the leaves, thefe hairs immediately begin to clofe, one by one, till the infect is wholly environed by them, and then the leaf in which it is imprifoned gradually bends invards, fo as to reach the bafe : in this ftate the infect is killed by the operation of the acrimonious juice exuding from the ends of the hairs. Rothius (as quoted by Withering, in his Arrangement of Britif Plants, ) nentions the effects of this fingular plant, occafioned by the irritation of an ant, which he placed on the centre of one of the leaves with a pair of pincers. The ant, in endeavouring to efcape, was held falt by the vifcous juice of the fmaller hairs till the large ones, together with the edges of the leaf, clofed in and imprifoned it. The ant died in fifteen minutes; but he obferves, that the effects followed fooner or later, in dif. ferent experiments, according to the flate of the weather. Dr Withering has publifhed a fimilar account of the fenfitive properties of the Sundew, which was communicated to him by two of his botanical friends, and which he has made very entertaining and interefting. The fame thing is confirmed by a writer in the Monthly Magazine for Auguf 1797 ; who fays, that whenever he made experiments on the droffera with ants and other diminutive infects, he commonly found them perifh in a thorter time than fifteen minutes. His experiments were made on the droffera rotundifolia. Rothius, however, obferves, that the longifolia produces the fame effects, but with greater rapidity. In concluding his account, Dr Withering fuggeft this enquiry: "Whether this deftruction of infects be not neceflary to the welfare of the plant?" And it is furely worth fome botanif's while to take fome pains to anfwer the queftion.

DRUGS (fee Encycl.) are fo commonly counterfeited, or at lealt adulterated, that in London, the royal college of phyficians, it is well known, has long ago appointed a court of examiners to inveltigate the goodnefs of drugs and medicines in the different chemifts and apothecaries fhops. The counterfeit, however, is made up with fuch dexterity, that not only the merchant and drug-broker, but even the man of fkill is fometimes deceived: and indeed nothing can deted this impofition but a practical knowledge of chemifty. We therefore recommend it to every father of a family

## D U M [ 579 ] D U R

Diumnond to fudy our Supplementary aticle Chemistry with Its public edifices are an Epifcopal church, a courtthis view, if with no other; for whatever be the faults of that article, we have lof much labour if it be not fufficienty perfpicuous to enable every man not an abfolute franger to phyfical fcience in all its branches, to deteet the common impofures of drugfellers.

DRUMMOND, or Accomac court-houfe, in Virginia, is on the polt road from Philadelphia to Norfolk, 20 miles from Belhaven, and 194 from Philadel-phia.-Morse.

DRYDEN, a military townfhip in the flate of New. York, having Ulyffes W. and Virgil on the E. ; and on the S. the town of Owego, in Thioga co. The centre of the town lies 8 miles E. of the S . end of Cayuga Lake.-ib.

DUANESBURGH, a townfhip in Albany co. NewYork, containing 1470 inhabitants; of whom 260 are electors, and 5 flaves.-ib.

DUBLIN, a townfhip in Che?hire co. New. Hamp. fire, on a branch of Afhuclot river, and N. of the Great Monadnock, containing 901 inhabitants. It is 28 miles S. E. of Charleftown, and 63 W . of Portfmouth. Incorporated in the year 1771.-il.

Dublin, a pleafant town in Philadelphia co. Pennfylvani:, 10 miles N. E. of Philadelphia, and as far S. W. of Briftol. Alfo a townfhip in Huntingdon co. in Pennfylvania.-ib.

DUCK, a river in Tenneffee, which rifes on the N. W. fide of the Cumberland mountain. It rums 2 N. W. courfe, and empries into the Tenneflee in N. lat. 36 . W. It is 200 yards wide 5 miles from its mouth, which is 57 miles wetterly of Nahnville ; and is boatable 90 miles.-ib.

Duck-Creek-Cross.Roads, or Salifoury, a confiderable and thriving poft town in the ीtate of Delaware, fituated on Duck-Creek, which in part divides Kent and Newcafle counties. It contains about go houfes in one ftreet, and carries on a confiderable trade with Philadelphia, and is one of the largeft wheat markets in the ft:ate. It lies 12 miles N. by W. of Dover, and 36 from Wilmington.-ib.

Ducktrap, a village in the diftrict of Maine, where a poft office is kept, in Hancock co. ; containing 278 inhabitants; 12 miles from Belfalt and 32 from Penob-fcot.-ib.
DUDLEY, a townhip in Worcefer co. Maffachufetts, containing 1114 inhabitants. It is 18 miles fouthward of Worcefter, and 55 miles S. W. of Bohon. $-i b$.

DUFTER, in Bengal, an office or department.
Dufrer-Cana, the place where the office is kept.
DUKE's Co. in Maffachufetts, comprehends Martha's Vineyard inand, Chabaquiddick inand, Noman's ifland, and the Elizabeth iflands; fituated on the S. E. coaft of the ftate. The number of inhabitants is 3265 . They fend 3 reprefentatives, and, in conjunction with Nam rucket ifland, one fenator to the General Court. Thefe iflands are defribed feparately. Chief town, Edgar-ton.-Morse.

DUMFRIES, a part of entry and poft town in Virginia, and chief town of Prince William co. It lies on the N. fide of Quantico creek, 4 miles above its cntrance into the Potownack, and 10 miles from Colchefter.
houfe and gaol. The exports from this port for one year ending the 30 th of Sept. 1794, amounted in value to 85,635 dollars. It lies 28 miles N. by E. of Frede. rickfburg, and 185 S . W. of Philadelphia.-il.

DUMMER Fort, is fituated on Connecticut river in the town of Chelterfield, New-Hamplhire - $i b$.

Dummer, a townfhip in Grafton co. New-Hamp. Thire, incorporated 1773. It is to the S. W. of lake Umbagog, on the waters of Upper Amonoofcuk and of Androfonggin rivers.-ib.

DUMMERSTON, a townfhip in Windham co. Vermont, N. of Bratcleborough, containing 1501 inhabit. ants.-ib.

DUNBARTON, a townflip in Hilliborough co. New-Hampfire, incorporated in 1765 , and containing 917 inhabitants; 9. miles S. of Concord, and 36 W . of Portfmouth.-ib.

DUNCANSBOROUGH, a townfhip of Vermont, on the W. fide of lake Memphremagog.-ib.

DUNCARD's Bottom, a tract of fine lands on the E. fide of Cheat river in Virginia, about 22 miles from its mouth, and 49 W. S. W. from Fort Cumberland. -ib.

DUNDERBERG, in Englifh, Thunder bill, is fituated on the W. fide of Hudfon river, at the S. E. entrance of the high-lands, oppofite Peek's Hill; and is remarkable for its echoes.-ib.

DUNLOPE, a fort on the W. bank of Little Miama river, about 12 miles above Columbia, in the N. W. territory.-il.

DUNSTABLE, a townfhip in Hillforough co. New-Hamplhire, on the W. fide of Merrimack river below the cown of Merrimack, and feparated by the fate line from Pepperel and Dunftable in Middlefex co. Maffachufetts. It was incorporated in $17+6$, contains 632 inhabitants, and lies about 40 miles $N$. W. of Bolton.-ib.

Dunstable, a townhip of Maffachufctts, in the northern part of Middlefex co. and on the fouthern bank of Merrimack river. It contains 380 inhabitants, and lies 37 miles $N$. wefterly of Borton.-ib.

DUPAGE, a circular lake on the S. E. fide of Plein_river, or rather an enlargement of the channel of that river, 5 miles from its mouth. Plein and Theakiki there form the Illinois.-ib

DUPLIN Co. in Wilmington diftrict, North-Carolina, is bounded E. by Onflow, and S. W. by Samp. fon. The number of inhabitantants is 5662, of whom ${ }_{1}{ }^{8} 3$ are flaves. The chief town is Sarecto, on the N. E. branch of Cape Fear.-ib.

DURANGO, a town in the province of Zacatecas, and audience of Guadalaxara, in New-Spain, 10 leagues from Nombre de Dios, and is a bihop's fee, at the confluence of feveral rivers which render it convenient for trade. - $b$.

DURHAM, a townfhip in Cumbersand co. diftrict of Mraine, on the S. W. bank of Audrotcogerin river which feparates it from Bowdoin on the N. E. It was incorporated in 1789 , contains 724 inhabitants, and lies ${ }_{1} 45$ miles N. eafterly of Bofton. N. lat. 43.55. $-i b$.

Durham, a polt town in Strafford co. New. Hamphaire on Oyfter river, near where it joins she Pifcatagna ;

## D U T

 [580 $]$ D W AFurhana 12 miles W. of Portfmouth. It vas incorporated in 1633, and con:airs ${ }^{2} 297$ inhabitants. It was formerly a part of Dover, which adjcins it on the N. and was called Oyter river. On the top of a hill in this town is a rock, computed to weigh 60 or 70 :ons, fo exastly poifed on another rock as to be eafily moved by one's finger. Its fituation appears to be natural. -ib.

Durfarl, a townhip in New.Haven co. Connecti. cut, fettled from Guildford in 1698 , and incorporated in 1708. It is about 22 miles S. W. of Hartford and I8 niles N. E. of New.Haven. It was called Churgingrharue by the Indians; which nane a fmall river that chiefly rifes here, R:ill bears.-ib.

Durfam, a townhip in Bucks co. Pennfylvania. -ib.

DUTCHESS Co. in New-York, is on the E.fide of Hudfon river. It has the flate of C nnecticut on the E. Weft-Chelter on the S. and Columbia co. on the N. It is about $4^{9}$ miles long and 23 broad, and contains 15 townhlips, of which Poughkeepfle and Fifh-Kill are the chief. It cuntains 45,266 inlabitants; of thefe 6013 are qualified to be electors, and 1856 ate flaves. Dutchefs co. Fends 7 reprefentatives to the affembly of the flate. In the year 1792, a remarkable cavern was difcovered in this county, at a place called by the Indians Sepafcot, at Rhynbeck. A lad, by chance, paling near its entrance, which lies between two huge rocks, on the declivity of a lleep hill, on prying into the gloomy recefs, faw the top of a ladder, by which he defcended about io feet, and found himfelf in a fubterraneous apartment, more capacious than he chofe to inveltigate. He found, however, that it had been the abode of perfons, who probably during the war, had taken fhelter here, as bits of cloth and pieces of leather were fcattered about its floor. It fince appears to be divided by a narrow paffage into two apartments; the firt being about 17 feet in length, and fo low that a child of eight years old could but jult walk upright in it; the breadth is about 8 or 10 fect. The fecond between 12 and 14 feet in length, but much higher and broader than the firt. Like many other caverns in the United States, it pofferes a petrifying quality ; and the water, which is conftantly percolating through the roofs of its apartments, has formed a variety of tranfparent and beauliful halactites. They have the appearance of icicles, and may be breken off by the hand, if not more than two inches in circumference.

But what is moft to be admired is the fkeleton of a large fnake, turned into folid ©one by the petifying quality of the water before-metioned. It was with fome difficuly torn up with an axe from the rock it lay upon, and is now in poffefliun of the gentleman who explored the cavern. A want of free air was expcrienced in the inmolt receffes of the cavern, by a difficult refpiration, though the candles burat very clear. The air was alfo very warm.-ib.

DUTCHMAN's Point, a point of land on the Vermont fide of lake Champlain, about I 6 miles S . of the Canada line. The Britifh beld a tlockaded hut here, garrifoned by fix foldiers, fince the peace of 1783 . It has fince been delivered up to the United States. $-i$

DUXBOROUGH, a maritime towńhip in Ply. mouth co. Mafachufetts, incorporated in 1637. 20 veficls, the greater part from 60 to 90 tons, are owned here. It is a healthy town, and contains 1460 inhabitants; not a greater number than it contained 50 years ago. It lies S. by E. of Plymouth, 3 miles acrofs Plymouth bay by water, and 8 round by land, and 38 S . E. by S. of Bofton. Within the harbour are Clarke's inard conffiting of about 100 acres of excellent land, and Sauquifh ifland which was formerly joined to the Gurner, by a narrow piece of land; but the water has irfulated it. The Gurnet is an eminence at the fouthern extremity of the beach, on which is a dight-houfe built by the ftate. The Indian name of the town was Mattakeefet, or Namakeefet. It was fettled by capt. Standith and his alfociates. The captain came to Plymouth with the firl fettlers in 16 for.-ib.

DUXBURY, a townflip in Hilliborough co. NewHampflire, incorporated in 1763; firf cailed Dantzick, joined with Sutton in the enumeration of 1775 . It has only i 69 inhabitants. $-i b$.

Duxbury, a townihip in Chittendenco. Vermont, about 20 miles S. E. of Burlington, and contains 39 inhabitants.-ib.

DWARFING of Vegetables, an art invented by the Chinefe, to which the attention of Sir George Staunton was actracted on the following occalion:
When the embafly was at Chufan (See Chusan in this Supplement) the gentlemen who went on fhore were introduced to the governor in his hall of audience, where on feveral tables were placed, in frames filled with e.rth, dwarf pines, oaks, and orange trees, bearing fruit. None of them exceeded in height two feet. Some of thofe dwarfs bore all the marks of decay from age : and upon the furface of the foil were interiperfed fmall heaps of 位es, which, in proportion to the adjoining dwarfs might be termed rocks. Thefe were honey-combed and mofs-grown, as if untouched for ages, which ferved to maintain the illution, and ro give an antique appearance to the whole. This kind of Aunted vegetation feemed to be much relilhed by the curious in China, and fpecimens of it were to be found in every confiderable dwelling. To produce them formed part of the gardener's k ill, and was an art invented in that country. Befide the mere merit of overcoming a difficulty, it had that of introducing vegetables into common apartments, from which their natural fize muft otherwife have excluded them.
The general method of obtaining vegetable dwarfs is faid to be the following : A quantity of clay or mould is applied to the upper part of the trunk of a tree, from which a dwarf is intended to be taken, and clofe to its divifion into branches. The mold is to be confined to the foot by coarfe hempen or cotton cloth, and to be carefully kept moift by water. In confequence of this application, continued fometimes above a twelvemonth, finall tender fibres fhoot down like roots from the wood in:o the mould. The part of the trunk emitting thofe new fibses, together with the branch rifing immediately above it, is then to be carefully feparated from the reft of the tree, and planted in new earth, in which the fibres beonme new roots, while the former branch is now the flem of the verstable thus transformed in fome meafure. This operation does not deftroy or alter the
productice

Duxban

## D Y N <br> [ 581 ] <br> D Y N

Dwarfug produstive faculty which thofe parts enjoyed before their
1 feparation from their parent root. That which, while a branch of the original tree bore flowers and fruit, continues to produce the fame, though no longer fupported upon any flock. The terminal buds of fuch branches of trees as are meant to become dwarfs are torn off; which circumfance prevents the further elongation of thofe branches, and forces other buds and branchlets from the fides. Thefe branchlets are bent by wires to whatever form the operator wifhes: and when the appearance of age and decay is meant to be given to a dwarf tree, it is repeatedly fmeared with treacle or molaffes, which attracts multitudes of ants, who, in purfuit of thofe fweet juices, attack the bark, and, by a gradual corrofion of it, produce the defired effeet. Thefe different proceffes are fometimes attempted to be kept fecret by the gardeners, and they vary defignedly in the mode of carrying them on ; but the principle on which they are founded is fufficiently apparent from what is related here, and the contrivance argues ingenuity and perfeverance, rather than the practice does true tafte, which confifts in affifing nature in its moft favourite works-not in counteracting its operations or diftorting its productions.
DYEING is an art, into which, fince the article in the Encyclopxdia was publifhed, improvements have
been introduced of fuch importance, that it would be unpardonable not to notice them in this Supplement. We accordingly agreed for a new article with a teacher of chemitry, itrongly recommended to us as a man who had long directed his attention to that fubjeet ; and he folemnly engaged to have the article ready for the prefs before the if of November 1798. It is now the 20th of February 1799; and after amufing us from week to week, and from day to day, till our patience is quite exhaufted, he finds himfelf unable (for we will not attribute his conduct to a worfe motive) to fulfil his engagement. In this flate of things what are we to do? The fubject mult not be relinquifhed, and our numerous preftes can no longer fland unemployed. It is fortunate that, by following the arrangement of Chaptal, fo well known for the clearnefs of his method, we have yet an opportunity of treating of dyeing under the article Animal and Vegetable Substances referred to from Chemistay. Such of our readers as are acquainted with the bufinefs of the prefs will deem this fhort narrative a fufficient apology for our conduct; and even thofe of them who are in a great meafure Arangers to that bufinefs, will not think us, circumftanced as we are, deferving of much cenfure for delaying a fubject, which we pledge ourfelves not to omit under the article to which we have referred.

## $\begin{array}{llllllll}\mathrm{D} & \mathrm{Y} & \mathrm{N} & \mathrm{A} & \mathrm{M} & \mathrm{I} & \mathrm{C} & \mathrm{S} .\end{array}$

I
Definitiox.

THIS name marks that department of phyficonathematical fcience which contains the abltract doatrine of moving forces; that is, whatever neceffarily refults from the relations of our ideas of motion, and of the immediate caufes of its production and changes.

All changes of motion are confidered by us as the indications, the characteriftics, and the meafures of changing caufes. This is a phyfical law' of human thought. and therefore a principle to which we may refer, and from which we mult derive all our knowledge of thofe caufes. When we appeal to our own thoughts or feelings, we do not find in ourfelves any difpolition to refer mere exiftence to any caufe, although the beginning of exiftence certainly produces this reference in an inflant. Had we always obferved the univerfe in motion, it does not appear that we fhould have afcribed it to a caufe, till the obfervation of relative refl, or fomething leading to it, had enabled us to feparate, by abfraction, the notion of matter from that of motion. We might then perceive, that reft is not incompatible with matter ; and we might even obferve, by means of relative motions, that abfolute reft might be produced by the concourfe of equal and oppofite motions. Butall this requires reflection and realoning; whereas we are now fpeaking of the frft fuggeftions of our minds.
We camot have any notion of motion in abfrafa, without confidering it as a fate or condition of exifence, which would remain if not changed by fone caufe. It is from changes alone, therefore, that we infer any agency in nature; and it is in thefe that we are to find all that we know of their caufes.

Suppl. Vol. I.

Object of dynamics change of that condition of a thing which we call its motion.

When we look around us, we cannot but obferve, Mechanithat the motions of bodies have, in moft cafes, if not cal relation, always, fome relation to the fituation, the diftance, and what. the difcriminating qualities of other bodies. The motions of the moon have a palpable relation to the earth; the motions of the tides have as evident a relation to the moon; the motions of a piece of iron have a palpable dependence on a magnet. The vicinity of the one feems to be the occafion at leaft of the motions of the other. The caufes of thefe motions have an evident connestion with or dependence on the other body. We are cven difpofed to imagine that they are inherent in that body, and that it poffeffes certain qualities which are the caufes of thofe modifications of motion in other bodies. Thefe ferve to diftinguifh fome bodies from others, and may therefore be called properties; and, fince the condition of other bodies fo evidently depends on them, thefe properties exprefs very interelting relations of bodies, and are chiefly attended to in the cnumeration of the circum?tances which afcertain what we call the nature of any thing. We do not mean to fay, that thefe inferences are always jult; nay, we know that many of them are ill-founded : but they are real, and they ferve abundantly for informing us what we may expert from any propofed fituation of things. It is enough for us to know that when a piece of iron is fo and fo fituated in relation to a magnet, it will move in a certain manner.

This mutual relation of bodies is differently confidered , according to the intereft that we chance to take in the phenomenon. The caufe of the approach of the iron to a magnet is generally afcribed to the magnet, 4 F which

## D. Y N A M I C S.

Force and Alction are figurative ter mis when ufed in me chanifn;
which is faid to attract the iron, becaufe we commonly employ the magnet in order that thefe motions may take place. The fimilar approach of a ftone to the earth is afcribed to the ftone, and we fay that it tends to the earth. In all probability, the procedure of nature is the fame in both; for they are obferved, in every inftance, to be mutual between the related bodies. As iron approaches a magnet, fo the magnet approaches the iron. The fame thing is obferved in the motions of electrified bodies ; alfo in the cafe of the fone and the earth. Therefore the caufe of the motions may be conceived as inherent in either, or in both.

The qualities thus inherent in bodies, conftituting their mechanical relations, have been called the mecaanical affections of matter. But they are more commonly named powers or forces; and the event which indicates their prefence, is confidered as the effect and mark of their agency. The magnet is faid to $A C T$ on the iron, the earth is faid to $\mathbf{\Delta C T}$ on the fone; and the iron and the fone are faid to ACr on the magnet and on the earth.

All this is figurative or metaphorical language. All languages have begun with focial union, and have improved alnng with it. The firt collections of words exprefled the moft familiar and the moft interefting notions. In the procefs of focial improvement the number of words did not increafe in the fame proportion with the notions that became interefting and familiar in their turn : for it often happened that relations of certain ideas fo much refembled the relations of certain other ideas, that the word expreffing one of them ferved very well for expreffing the other; becaufe the diffimilar circumflances of the two cafes prevented all chance of miftake. Thus we are faid to furmount a difficulty, without attaching to the word the notion of getting over a fteep hill. Languages are thus filled with figurative expreflions.

Powfr, Force, and Action, are words which mult have appeared in the language of the molt fimple people; becaufe the notions of perfonal ability, ftrength, and exertion, are at once the moft familiar and the moft interelting that can lave a place in the human mind. Thefe terms, when ufed in their pure primitive fenfe, exprefs the notions of the power, force and action of a fentient, active, being. Such a being only is an agent. The exertion of his power or force is (exclufively) action: But the relation of caufe and effect fo much refembles in its refults the relation between this force and the work performed, that the fame term may be very intelligibly employed for both. Perhaps the only cafe of pure unfigurative action is that of the mind on the body. But as this is always with the defign of producing fome change on external bodies, we think only of them; the inftrument or tool is overlooked, and we fay that we act on the external body. Our real action therefore is but the firt movement in a long train of fuccefiive events, and is but the remote caule of the interefting event. The refemblance to fuch actions is very ftrong indeed in many cafes of mechanical phenomena. A man throws a ball by the motion of his arm. A fpring impels a ball in the fame manner by unbending. Thefe two events refemble eacl other in every circumftance but the action of the mind on the corporeal organ-the reft of it is a train of pure mechanifm. In general, becaufe the ultimate
refults of the mutual inflaence of bodies on each other greatly refemble the ultimate refults of our actions on bodies, we have not invented appropriated terms, but have contented ourfelves with thofe already employed for exprefling our own actions, the exertions of our own powers or forces. The relation of phyfical caufe and effect is expreffed metaphorically in the words which belong properly to the relation of agent and action. This has been attended by the ufual confequences of poverty of language, namely, ambiguity, and fometimes mifake, both in our reflections, (which are generally carried on by mental difcourfe), our reafonings, and our conclufions. It is neceffary to be on our guard againft fucb iniftakes; for they frequently amount to the confounding of things totally different. Many philofophers of great reputation, on no better foundation than this metaphorical language, have confounded the relations of activity and of caufation, and even denied that there is any difference; and they have affirmed, that there is the fame invariable relation between the determinations of the will and the inducements that prompt them, as there is between any phyfical power and its effect. Others have maintained, that the firft mover in the mechanical operations, and indeed through the whole train of any complicated event, is a percipient and intending principle in the fame manner as in our actions. According to thefe philofophers, a particle of gravitating matter perceives its relation to every other particle in the univerfe, and determines its own motion according to fixed laws, in exact conformity to its fituation. But the language, and even the actions of all men fhew, that they have a notion of the relation of an agent to the action, eafily diftinguifhable (becaufe all diftinguifh it) from the relation between the phyfical caufe and its effect. The proofs of this fact have been adduced in other parts of the Encyclopædia, as, for example, in the article Philosophy, $n^{\circ} 42$. and in this Supplement in the article Action.

Thefe remarks are not made in this place for any philological purpofe, fuch as the mere improvement of language, but becaufe this metaphorical language has affected the doctrines of mechanical philofophy, and has produced a difpute about fome of its firft principles; and becaufe we find, that the only way to decide this difpute is to avoid, moft fcrupuloufly, all metaphorical language, though at the expence of much circumlocution.

When we fpeak of powers or forces as refiding in a body, and the effect as produced by their exertion, the body, confidered as polfeffing the power, is faid to Act on the other. A magnet is faid to act on a piece of iron; a billjard ball in motion is faid to act on one that is hit by it : but if we attempt to fix our attention on this action, as diftinct both from the agent and the thing acted on, we find no object of contem-plation.- The exertion or procedure of nature in produ. cing the effect does not come under our view. When we $\mathfrak{p e a k}$ of the action as diftinct from the agent, we find that it is not the action, properly fpeaking, but the act that we fpeak of. In like manner, the action of a mechanical power can be conceived only in the effect
produced.

A man is not faid to act unlefs he produces fome effect. Thought is the act of the thinking principle; motion of the limb is the act of the mind on it. In
mechanics,

6
Direations for the fafe employment of thi analogy.
mechanics, alfo, there is action only in fo far as there is mechanical effest produced. I mult act violently in order to begin motion on a flide: I muft exert force, and this force exerted produces motion. I conceive the production of motion, in all cales, as the exertion of force; but it requires no exertion to continue the motion aloug the flide; I am confcious of none, therefore 1 ought to infer that no force is neceffary for the continuation of any motion. The continuation of motion is not the production of any new effect, but the permanency of an effect already produced. We indeed confider motion as the effect of an action; but there would be no effect if the body were not moving. Motion is not the action, but the effect of the action.
${ }^{8}$, puffion. two heads: they are either Pressures or Impul SIONS. They are generally confidered as of different kinds; the exertions of different powers. Pressure is fuppofed to differ effentially from Impulse.

Inflead of attempting to define, or defcribe, there two kinds of forces and actions, we thall juft mention fome inflances. This will give us all the knowledge of their difinctions that we can acquire.
Examples When a ball lies on a table, and I prefs it gently on of preffion. one fide, it moves toward the other fide of the table. If I follow it with my finger, continuing my preffure, it accelerates continually in its motion. In like manner, when I prefs on the handle of a common kitchen jack, the fly begins to move. If I continue to urge or prefs round the handle, the fly accelerates continually, and may be brought into a fate of very rapid motion. Thefe motions are the effects of genuine preffure. The ball would be urged along the table in the fame manner, and with a motion continually accelerated, by the unbending of a fpring. Alfo, a fpring coiled up round the axis of the handle of the jack would, by uncoiling itfelf, urge round the fly with a motion accelerating in the fame way. The more I reflect on the preffure of my finger on the ball, and compare it with the effect of the fipring on it, the more clearly do I fee the perfect fimilarity ; and I call thefc influences, exertions, or actions, by one name, pressure, tasen from the moft familiar inftance of them.

Again, the very fame motion may be produced in the ball or fly, by pulling the ball or the machine by means of a thread, to which a weight is fufpended. As both are motions accelerated in the fame manner, I call the influence or action of the thread on the ball or machine by the fame name pressure, and weighr is confidered as a preffing power. Indeed I feel the fame compreflion from the real preffure of a man on my fhoulders that I would feel from a load laid on them. But the weight in our example is acting by the intervention of the thread. By its prefine is is pulling at that part of the thread to which it is faftened; this part is pulling at the next by means of the force of colefion; and this pulls at a third, and fo on, till the moft remote pulls at the ball or the machine. Thus may elafticity, weight, cohefion, and other forces, penform the office of a genuine power ; and fince their refult is always a motion beginning from nothing, and accelerating by perceptible degrees to any velocity, this refemblance makes us call them by one familiar name.

But farther, I fee that if the thread be cut, the weight will fall with an accelerated motion, which will
increafe to any degree if the fall be great enough. I afcribe this alfo to a preffing power ating on the weight. Nay, after a very little refinement, I confider this power as the caufe of the body's weight; which word is but a diftinguifhing name for this particular inflance of preffing power. Gravitation is therefore added to the litt of preffures; and for fimilar reafons, the attractions and repulfions of magnets or electric bodies may be added to the lift. For they produce anual compreflions of bodies placed between them, and they produce motions gradually accelerated, precifely as gravitation does. Therefore all thefe powers may be dittinguifhed by this defcriptive name prefures, which, in friot language, belongs to one of them only.

Several writers, however, fubdivide this great clafs Gravity, 2tinto preflions and folicitations. Gravity is a folicitation ab extra, by which a body is urged downward. In like manner, the forces of magnetifm and electricity, tractions, and repulfions, are confidered as prefions. and a vaft variety of other attrattions and repulfions,
are called folicitations. We fee little ufe for this diftinction, and the term is too like an affection of mind.

Impulsion is exhibited when a ball in motion puts Examples auother ball into motion by hitting, or (to fpeak meta* of inpulphorically) by ftriking it. The appearances here are fion. very different. The body that is ftruck acquires, in the infant of impulfe a fenfible quantity of motion, and fometimes a very rapid motion. This motion is neither accelerated nor retarded after the ftroke, unlefs it be affeited by fome other force. It is alfo remarked, that the rapidity of the motion depends, inter alia on the previous velocity of the Arriking body; for inflance, if a clay ball, moving with any velocity, frike anether equal ball which is at reft, the Aruck ball moves with half the velocity of the other. And it is farther remarkable, that the friking body always lofes as much motion as the Atruck body gains. This univerfal and remarkable fact feems to have given rife to a confufed or indiftinct notion of a fort of transference of motion fram one body to another. The phrafeology in general ufe on this fubject expreffes this in the moft precife terms. The one ball is not faid to caule or produce motion in the other, but to communicate motion to it ; and the whole phenomenon is called the communication of motion. We call this an indifinat notion; for furely no one will fay that he has any clear conception of it. We can form the molt diftinet notion of the communication of heat, or of the caufe of heat ; of the communication of faltnefs, fweetnefs, and a thoufand other things; but we cannot conceive how part of that identical motion which was formerly in A , is now infufed into B , being given up by A . It is in our attempt to form this notion that we find that motion is not a thing, not a fublance which can exifindependently, and is fufceptible of actual transference. It appears in this cafe to be a ftate, or condition, or mode of exittence, of which bodies are fufceptible, which is producible, or (to fpeak without metaphor) caufable in bodies, and which is the efficet and charaderific of certain natural qualities, properties or powers. We are anxious to have our readers impreffed with clear and precife notions on this fubject, bcing confident that fuch, and only fuch, will carry thens through fome intricate paths of mechanical and philofophical refearch. that a rapid motion, which requires for the effecting it charaterof

Communication of motion, not a good expreffion.
the aftion of a prefling power, continued for a fenfible, and frequently a long time, feems to be effected in an inftant by impulion. This has tended much to fupport the notion of the actual transference of fomething formerly polfeffed exclufively by the friking body, inhering in it, but feparable, and now transfufed, into the body fricken. And now room is found for the employment of metaphor, both in thought and language. The friking body affects the body which it thus impels: It therefore poifefles the power of impulion, that is, of communicating motion. It poffefes it only while it is in motion. This power, therefore, is the efficient diftinguifhing caufe of its motion, and its only office muft be the continuation of this motion. It is therefore called the inherent force, the force inherent in a moving body vis insita corpori moto. This forse is transfufed into the body impeiled, and therefore the transference is inftantaneous, and the impelled body continues its motion till it is changed by fome other action. All this is at firlt fight very plaulible; but a fcrupuluns attention to thofe feelings which have given rife to this metaphorical conception, fhould have produced very different notions. I am conicious of exertion, in order to begin motion on a flide; but if the ice be very fmooth, I am confcious of no exertion in order to flide along. My power is felt only while I am confcious of exerting it: Therefore I have no primitive feeling or notion of power while I am fliding along. I am certain that no exertion of power is neceffary here. Nay, I find that I cannot think of my moving forward without effort otherwife than as a certain mode of my exiftence. Yet we imagine that the partifans of this opinion did really deduce it in fome fhape from their feelings. We mult continue the exertion of walking in order to walk on; our power of walking muft be continually exerted, otherwife we flall fop. But this is a very imperfeat, incomplete, and carelefs obfervation. Walking is much more than mere continuance in progreflive motion. It is a continually repeated lifting our body up a fmall height, and allowing it to come down again. This renewed afcent requires repeated exertion.
And frid to be infinitely greater ${ }^{\text {than }}$ prefo fon.

We have other obfervations of importance yet to make on this force of moving bodies, but this is not the moft proper occafion. Meanwhile we mult remark, that the inflantaneous produation of rapid motion by impulfe has induced the firlt mechanicians of Europe to maintain, that the power or force of impulfe is unfufceptible of any comparifon with a preffing power. They have afferted, that impulfe is infinitely great when comparcd with preffure; not recollecting that they held them to be things totally difparate, that have no proportion more than weight and fweetnefs. But thefe gentlemen are perpetually enticed away from their creed by the fimilarity of the ultimate refults of preffure and impulfe. No perfon can find any difference between the motion of two balls moving equally fwift, in the fame direction, one of which is defcending by gravity and the other has derived its motion from a blow. This ftruggle of the mind to maintain its faith, and yet accommodate its doctrines to what we fee, has occafioned fome other curious forms of expreffion. Preffure is confidered as an efort to produce motion. When a ball lies on a table, its weight, which they call a porver, continually and repeatedly endeavours (mark the meta-
phorical word and thought) to move the ball downo ward. But thefe effurts are ineffectual. They fay that this ineffectual power is dead, and call it a vis mortua: but the force of impulfion is called a vis viva, a living force. But this is very whimfical and very inaccurate. If the impelling ball falls perpendicularly on the other lying on the table, it will produce no motion any more than gravity will; and if the table be annihilated, gravity becomes a vis viva.

We mult now add, that in order to prove that Arguments impulfe is infinitely greater than preflure, thefe mecha- indifina nicians turn our attention to many familiar facts which plead Arongly in their favour. A carpenter will drive a nail into a board with a very moderate blow of his hammer. This will require a preffure which feems many hundred times greater than the impelling effort of the carpenter. A very moderate blow will hiver into pieces a diamond which would carry the weight of a mountain. Seeing this prodigious fuperiority in the impulfe, how fhall they account for the production of motion by means of preffure? for this motion of the hammer might have been acquired by its falling from a height; nay, it is actually acquired by means of the continued prefure of the carpenter's arm. They confider it as the aggregate of an infinity of fucceeding preffures in every infant of its continuaoce; fo that the infignificant fmallnefs of each effort is compenfated by their inconceiveable number.

On the whole, we do not think that there is clear No diffeevidence that there are two kinds of mechanical force rence beeffentially different in their nature. It is virtually giv- tween prefen up by thofe who fay that impulfe is infinitely greater than preffure. Nor is there any confiderable advautage to be obtained by arranging the phenomenon un. der thofe two heads. We may perhaps find fome method of explaining fatisfactorily the remarkable difference that is really obferved in the two modes of producing motion : namely, the gradual production of mo tion by acknowledged preffure, and the inflantaneous production of it by impulfe. Indeed, we hould not have taken up fo much of our readers attention with this fubject, had it not been for fome inferences that have been made from thefe premifes, which meet us in our very entry on the confideration of firf principles, and that are of extenfive influence on the whole fcience of mechanical philofophy, and, indeed, on the whole fudy of nature.

Mechanicians are greatly divided in their opinion Is impulabout the nature of the fole moving force in nature. fion the fole Thofe whom we are now fpeaking of, feem to think caufe of
motiour? that all motion is produced by preffure: For when they confider impulfe as cquivalent to the aggregate of an infinity of repeated preflures, they undoubtedly fuppofe any preffure, however infignificant, as a moving force. But there is a party, both numerous and refipectable, who maintain that impulfion is the fole caufe of motion. We fee bodies in mation, fay they, and we fee them impel others; and we fee that this production of motion is regulated by fuch laws, that there is but one abfolute quantily of motion in the univerfe which remains unalterably the fame. It mult therefore be transfufed in the aets of collifion. We alfo fee, with clear evidence, in fome cafes, that motion can produce preffure. Euler adduces fome very whimfical and complicated cafes, in which an ation, precifely fimilar

How does it produce proffure?

## Incompa-

## tible with

 the rules of philofophi§ng.13
Others
maintain that prefsure is the fole moving furce.
to preffure, may be produced by motion. Thus, two balls conneeted by a thread, may be fo ftruck that they fhall move forward, and at the fame time wheel round. In this cafe the connecting thread will be ftretched between them. Now, fay the philofophers, fince we fee motion, and fee that preffure may be produced by motion, it is prepoferous to imagine that it is any thing elfe than a refult of certain motions; and it is the bufinefs of a philofopher to inquire and difcover what motions produce the preffures that we obferve.

They then proceed to account for thofe prefing powers, or folicitations to motion, which we obferve in the acceleration of falling bodies, the attractions of magnetifm and electricity, and many other phenomena of this kind, where bodies are put in motion by the vicinity of other bodies, or (in the popular language) by the action of other bodies at a diftance. To fay that a magnet can act on a piece of remote iron, is to fay that it can act where it is not; which is as abfurd as to fay, that it can act when it is not. Nibil movitur, fays Euler, nifr a contiguo et moto.

The bulk of thefe philofophers are not very anxious about the way in which thefe motions are produced, nor do they fall upon fuch ingenious methods of producing preffure as the one already mentioned, which was adduced by Euler. The piece of iron, fay they, is put in motion when brought into the neighbourhood of a magnet, becaufe there is a ftream of tluid iffuing from one pole of the magnet, which circles round the magnet, and enters at the other pole: This ftream impels the iron, and arranges it in certain determined pofitions, jufl as a Itream of water would arrange the flote grafs. In the fame manner, there is a ftream of fluid continually moving towards the centre of the earth, which impels all bodies in lines perpendicular to the furface; and fo on with regard to other like phenomena. Thefe motions are thus reduced to very fim. ple cafes by impulfion.

It is unneceflary to refute this doctrine at prefent; it is enough that it is contrary to all the dictates of common fenfe. To fuppofe an agent that we do not fee, and for whofe exiftence we have not the fmalleft argument; with equal propriety we might fuppofe miniftering fpirits, or any thing that we pleafe.

Other philofophers are fo diffatisfied with this notion of the production of preffure, that they, on the other hand, affirm that preflure is the only moving force in nature; not according to the popular notion of preffure, by the mutual contact of folid bodies, but that kind of preffure which has been called folicitation; fuch as the power of gravity. 'Ihey aftirm, that there is no fuch thing as contad on inftantaneous communication of motion by real collifion. They fay (and they prove it by very convincing facts (fee Oprics, $n^{\circ} 63-68$. Encych.), that the pasticles of folid bodies exert very ftrong repulfions to a fmall diftance; and therefore, when they are brought by motion fufficiently near to another body, they repel it, and are equally repelled by it. Thus is motion produced in the other body, and their own motion is diminifhed. And they then fhew, by a fcrupalous confideration of the ftate of the bodies while the one is advancing and the other retiring, in what manner the two bodies attain a common velocity, fo that the quantity of motion before collifion remains uncbanged, the one body gaining as much as the other
lofes. They alfo mew cafes of fuch mutual action between bodies, where it is evident that they have never come into contact ; and yet the refult has been precifely fimilar to thofe cafes where the motion appeared to be changed in an inftant. Therefore they conclude, that there is no fuch thing as inftantancous communication, or transfufion of motion, by coneact in collifion or impulfe. The reafon why previous motion of the impelling body is neceffary, is not that it may have a vis infita corpori moto, a force inherent in it by its being in motion, hut that it may continue to follow the impelited and retiring body, and exert on it a force inherent in itfelf, whether in motion or at ref.- According to thefe pliilofophers, therefore, all moving forces are of that Kind which has been named folicitation; fuch as gravity. We flall know it afterwards by the more familiar and defcriptive name of Accelerating or Retard. ing force.

The exertions of mecluanical forces are differently ABion, ${ }^{14}$. termed, according to the reference that we make to the $\sqrt{i f f a n o e}, R_{\text {su }}$ refult. If, in boxing or wreftling, I Arike, or endea- aßion. vour to throw my antagonif. I am faid to act; but if I only parry his blows, or prevent him from throwing me, I am faid to resist. 'thlis diftinction is applied to the exertions of mechanical powers. When one bo. dy A clanges the motion of another $B$, we may conf:der the change in the motion of B either as the indication and meafure of A's power of producing motion. or as the indication and meafure of A's refiftance to the being brought to reft, or having its motion any how changed. The diftinction is not in the thing itfelf, out only in the reference that we are difpofed, by other confiderations, to make of its effect. They may be diftinguifhed in the following manner : If a change of motion follow when one of the powers ceafes to be ex.erted, that power is conceived as having refifted. The whole language on this fubject is metaplorical. Reo fiftance, effort, endeavour, \&ec. are words which cannot be employed in mechanical difcuffions without figure, becaufe they all exprefs notions which relate to fentient beings; and the unguarded indulgence of this figurative language has fo much affected the imagination of philofophers, that many have almoft animated all mat. ter. Perhaps the word Reaction, introduced (we think) by Newton, is the belt term for exprelling that mutual force which is perceived in all the operations of nature that we have inveltigated with fuccefs. As the magnet attracts iron, and in fo doing is faid to act on it ; fo the iron attracts the magnct, and may be faid to readt on it.

With refpect to the difficulty that has been objected We need to the opinion of thole who maintain that all the me- not fappofe chanical phenomena are produced by the argency of at- action at a tracting or repelling forces; namely, that this fuppofes dinance. the bodies to act on each orher at a diftance, however Tendray. fmall thofe diftances may be, which is thought to be abfurd, we may obferve, that we may afcribe the mutual approaches or receffes to tendencies to or from each other. What we call the attration of the magnet may be confidered as a tendency of the iron to the magnet, fomewhat fimilar to the gravitation of a ftone coward the earth. We furely (at leat the unlearned) can and do conceive the iron to be affected by the magnet, without thinking of any intermedium. The thing is not therefore inconceivable; which is all that we knows
know aboutt abfurdity: and we do not know any thing about the nature or effence of matter which renders this tendency to the magnet impoffible. That we do not fee intuitively any reafon why the iron fhould approach the magnet, mult be granted ; but this is not enough to intitle us to fay, that fuch a thing is impoffible or inconfiftent with the nature of matter. It appears, therefore, to be very hafty and unwarrantable, to fuppofe the impulfe of an invifible fuid, of which we know nothing, and of the exiftence of which we have no proof. Nay, if it be true that bodies do not come into contact, even when one ball hits another, and drives it before it, this invifible fluid will not folve the dificulty; becaufe the fame difficulty occurs in the action of any particle of the fluid on the body. We are obliged to fay, that the production of motion without any obferved contact, is a much more familiar phenomenon than the production of motion by impulfion. More motion has been produced in this way by the gravitation of a fmall fream of water, running ever fince the creation, than by all the impulfes in the world twice told. We do not mean by this to fay, that the giving to this obferved mutual relation between iron and a loadfone the name tendency makes it lefs abfurd, than when we fay that the loaditone attracts the iron; it only makes it more conceivable: It fuggefts a very familiar analogy; but both are equally figurative exprefions; at lealt as the word tendency is ufed at prefent. In the language of ancient Rome, there was no metaphor when Virgil's hero faid, Tendinus in Latium. Tendere versus folem means, in plain Latin to approach the fun. The fafe way of conceiving the whole is to fay, that the condition of the iron depends on the vicinity of the magnet.

When the exertions of a mechanical power are obferved to be always diretted toward a body, that body is faid to attract. But when the other body always moves off from it, it is faid to repel. Thefe alfo are metaphorical exprefions. I attraa a boat when I pull it toward me by a rope; this is purely Aptraction: and it is pure, unfigurative Repulsion, when I pufh any body from me. The fame words are applied to the mcchanical phenomena, merely becaufe they refemble the refults of real attraction or repulfion. We mult be much on our guard to avoid metaphor in our conceptions, and never allow thofe words to fuggelt to our mind any opinion about the manner in which the mechanical forces produce their cffects. It is plain, that if the opinion of thofe who maintain the exifence and action of the above-mentioned invifible fluid be jult, there is nothing like attraction or repulfion in the univerfe. We muft alvays recur to the fimple phenomenon, the motion to or from the attracting or repelling body; for this is all we fee, and ge-
lines or of two minutes: we can conceive them apart, and perceive their boundaries common to both, where one ends and the other begins. We cannot conceive thus of two forces combined; yet we cannot fay, that: two equal forces are not double of one of them. We meafure them by the effects which they are known to produce. Yet there are not wanting many cales where the action of two men, equally frong, does not produce a double motion.

In like manner, we conceive all mechanical forces as How men] meafurable by their effects; and thus they are made fured. the fubjects of mathematical difcuffion. We talk of the proportions of gravity, magnetifm, electricity, \&\&.; nay, we talk of the proportion of gravity to magnetifm : Yet thefe confidered in themfelves, are difparate, and do not admit of any proportion; but they produce effects, fome of which are meafurable, and whofe affumed meafures are fufceptible of comparifon, being quantities of the fame kind. Thus, one of the effects of gravity is the acceleration of motion in a falling body: magnetifm will alfo accelerate the motion of a piece of iron; thefe two accelerations are comparable. But we cannot compare magnetifm with heat; becaufe we do not know any meafurable effects of magnetifm that are of the fame kind with any effects of leat.

When we fay, that the gravitation of the moon is the By their $3600 t h$ part of the gravitation at the fea fhore, we effeat. mean that the fall of a fone in a fecond is 3600 times greater than the fall of the moon in the fame time. But we alfo mean (and this expreffes the proportion of the tendency of gravitation more purely), that if a fone, when hung on a Spring fteelyard, draw out the rod of the ftelyard to the mark 3600, the fame flone, taken up to the diftance of the moon, will dravs it out no further than the mark 1. We alfo mean, that if the fone at the fea fhore draw out the rod to any mark, it will require 3600 fuch flones to draw it out to that mark, when the trial is made at the diffance of the moon. It is not, therefore, in confequence of any immediate perception of the proportion of the gravitation at the moon to that at the furface of the earth that we make fuch an affertion; but thefe motions, which we confider as its effects in thefe fituations being magnitudes of the fame kind, are fufceptible of comparifon, and have a proportion which can be afcertained by obfervation. It is thefe proportions that we contemplate; although we fpeak of the proportions of the unfeen caufes, the forces or endeavours to defcend. It will be of material fervice to the reader to perufe the judicious and acute differtation on quantity in the $45^{\text {th }}$ volume of the Philofophical Tranfactions; or he may fudy the articłe Quantity in the Encyclopedia, where, we trult, he will fee clearly how force, velocity, denficy, and many other magnitudes of very frequent occurrence in mechanical philofophy, may be made the fubjects of mathematical difculfion, by means of fome of thofe proper quantities, meafurable by their own parts, which are to be affumed as their meafures. Preflures are meafurable only by preflures. When we confider them as moving powers, we fhould be able to meafure them by any moving powers, otherwife we cannot compare them; therefore it is not as preflures that we then meafure thern. This obfervation is momentous.

One circumftance muft be carcfully attended to.

## D $\quad$ Y $N$ A M I C

That thofe affumed meafures may be accurate, they muft be invariably connected with the magnitudes which they are employed to meafure, and fo connected, that the degrees of the one mult change in the fame manner with the degrees of the other. This is evident, and is granted by all. But we muft alfo know this of the meafure we employ; we mult fee this conftant and precife relation. How can we know this? We do not perceive force as a feparate exiftence, fo as to fee its proportions, and to fee that thefe are the fame with the proportions of the meafures, in the fame manner that Euclid fees the proportions of triangles and thore of their bafes, and that thefe proportions are the fame, when the triangles are of equal altitudes. How do we difcover that to every magnitude which we call force is invariably attached a correfponding magnitude of acceleration or deflection?-Clearly. In fact, the very exiftence of the force is an inference that we make from the obferved acceleration; and the degree of the force is, in like manner, an inference from the obferved magnitude of the acceleration. Our meafures are therefore neceffarily conneded with the magnitudes which they meafure, and their proportions are the fame; becaufe the one is always an inference from the other, both in'fpecies and degree.

It is now evident, that thefe difquifions are fufceptible of mathematical accuracy. Having felected our meafures, and obferved certain mathematical relations of thofe meafures, every inference that we can draw from the mathematical relations of the proportions of thofe reprefentations is true of the proportions of the motions, and therefore of the proportions of the forces. And thus dynamics becomes a demonfrative fcience, one of the difcipline accurate.

But moving forces are confidered as differing alfo in kind ; that is in direction. We affign to the force the direction of the obferved change of motion ; which is not only the indication, but alfo the characteriftic, of the changing force. We call it an accelerating, retarding, deffecting, force, according as we obferve the motion to be accelerated, retarded or deflected.

Thefe denominations fhew us inconteftibly that we have no knowledge of the forces different from our knowledge of the effects. The denominations are all either defriptive of the effects, as when we call them accelerating, penetrating, protrufive, attractive, or repulfive forces; or they are names of reference to the fubflances in which the accelerating, protrufive, \&c. forces, are fuppofed to be inherent, as when we call them
20 magnetifn, elefricity, corpufcular, \&c.

When I Itruggle with another, and feel, that in order to prevent being thrown, I muft exert force, I lean that my antagonift is exerting force. This notion is transferred to matter; and when a moving power which is known to operate produces no motion, we cunceive it to be oppofed by another equal force; the exiftence, agency, and intenfity of which is detected and meafured by thefe means. The quiefcent fate of the body is confidered as a change on the flate of things that would have been exhibited in confequence of the known action of one power, had this other power not acted; and this change is confidered as the indication, charactrriftic, and meafure, of another power, detected in this way. Thus forces are recognifed not only by the changes of motion which they produce, but allo by
the changes of motion which they prevent. The co- Firft Law hefion of matter in a fring is inferred not only by its of Motion. giving motion to a ball which I pull toward me by its intervention, but alfo by its fufpending that ball, and hindering it from falling. I know that gravity is acting on the ball, whicl, however, does not fall. The folidity of a board is equally inferred from its fopping the ball which Atrikes it, and from the motion of the ball which it drives before it. In this way we learn that the particles of tangible matter cohere by means of moving forces, and that they refift compreffion with force; and in making this inference we find that this corpufcular force exerted between the particles is mutual, oppofite and equal: for we mult apply force equally to $a$ or to $b$, in order to produce a feparation or a compreflion. We learn their equality, by obferving that no motion enfues while thefe mutual forces are known to act on the particles; that is, each is oppofed by another force, which is neither inferior nor fuperior to it.

Of the Laws of Motion.
Such, then, being our notions of mechanical fotces, the caufes of the fenfible changes of motion, there will refult certain confequences from them, which may be called axioms or laws of motion. Some of thefe may be intuitive, offering themfelves to the mind as foon as the notions which they involve are prefented to it. Others may be as neceflary refults from the relations of thefe notions, but may not readily offer themfelves without the mediation of axioms of the firlt clafs. We fhall felect thofe which are intuitive, and may be taken for the firft principles of all difculions in mechanical philofophy.

## First Law of Motion.

## Every body continues in a fate of reft, or of uniform rectilineal motion, unlefs affected by fome mechanical force.

This is a propofition, on the truth of which the whole fcience of mechanical philofophy ultimately depends. It is therefore to be eftablifhed on the firmeft foundation ; and a folicitude on this head is the more jultifiable, becaufe the opinions of philofophers have been, and ftill are, extremely different, both with refpect to the truth of this law, and with refpect to the foundation on which it is built. Thefe opinions are, in general, very obfcure and unfatisfactory; and, as is natural, they influence the difcuftions of thofe by whom they are held through the whole fcience. Although of contradictory opinions one only can be juft, and it may appear fufficient that this one be eftablifhed and unifurmly applied; yet a fhort expofition, at leaft, of the reft is neceffary, that the greatelt part of the writings of the philofophers may be intelligible, and that we may avail ourfelves of much valuable information contained in them, by being able to perceive the truth in the midft of their imperfect or erroneous conceptions of it.
It is not only the popular opinion that reft is the Does cofo natural ftate of body, and that motion is fomething fo- tinued moreign to it, but it has been ferioufly maintained by the tion indigreateft part of thofe who ate efteemed philofophers. cate contio They readily grant, that matter will continue at reft, nucd ac unlefs fome moving force act upon it. Nothing feems neceflary for matter's remaining where it is, but its

Firf law continuing to exitt. But it is far ocherwife, fay they, of Motion. with refpect to matter in motion. Here the body is continually changing its relations to other things; therefore the continual agency of a changing caufe is necelfary (by the fundamental principle of all philofophical difcofion), for there is here the continual production of an effect. They fay that this metaphyfical argument receives complete confirmation (if confirmation of an intuitive truth be nece( (fary) from the molt familiar obfervation. We fee that all motions, however violent, terminte in reft, and that the continval exertion of fome force is neceflary for their continuance.

Thefe philofophers thercfore aifert, that the continual action of the moving caufe is efentially neceffary for the continuance of the motion : but they differ among themfelves in their notions and opirions about this caure. Some maintain, that all the motions in the univerfe are produced and continued by the immediate agency of Deity; others affirm, that in every particle of matter there is inherent a fort of mind, the quar and iorepquzu of Aritotle, wnich they call an ELE. nental Mind, which is the caufe of all its motions and changes. An overweaning reverence for Greek learning has had a great influence in reviving this doctrine of Arittotle. The Greek and Roman languages are affirmed to be more accurate exprefions of human thought than the modern languages are. In thofe ancient languages, the verbs which exprefs motion are employed both in the aftive and paffive voice; whereas we have only the active verb to move, for expreffing both the ftate of motion and the ast of putting in mo. tion. "The fone moves down the flope, and moves all the pebbles which lie in its way $;$ " but in the ancient hanguages, the mere ftate of motion is always expreffed by the pative or middle voice. The accurate conception of the fpeakers is therefore extolled. The Atate of motion is exprefled as it ought to be, as the refult of a continual action." кiverat, movetur, is equivalent to "it is moved." According to thefe philofophers, every thing which moves is mind, and every thing that is moved is body.

The argument is futile, and it is falfe; for the modern languages are, in general, equally accurate in this inAtance : "fe mouvoir," in French; "fich bervegen," in German; "dvigatif," in Slavonic; are all paffive or reflected. And the ancients faid, that "rain falls, water runs, fmoke rifes," juft as we do. The ingenious author of Ancient Metapbyfics has taken much pains to give us, at length, the procedures of thofe elementary minds in producing the oftenfible phenomena of local motion; but it feems to be merely an abufe of language, and a very frivolous abufe. This elemental mind is known and characterifed only by the effect which we afcribe to its action; that is, by the motions or changes of motions. Uniform and unexcepted experience fhews us that thefe are regulated by laws as precife as thofe of mathematical truth. We confider nothing as more fixed and determined than the common laws of mechanifm. There is nothing here that indicates any thing like fontaneity, intention, purpofe; none of thofe marks by which mind was firf brought into view ; but they are very like the effects Which we produce by the exertions of our corporeal forces, and we have accordingly given the name of force to the caures of motion. It is furely much more ap-
pofite than the name mind, and conveys with much Firf law more readinefs and perfpicuity the very notions that we of Motion wifh to convey.

We now wifh to know what reafon we have to think Aation not that the continual action of fome caufe is neceffary for necefiary continuing matter in motion, or for thinking that reft for the is its natural ftate; if we pretend to draw any argu- conctinument from the nature of matter, that matter mult be motion. known, as far as is neceffary, for being the foundation of argument. Its very exiftence is known only from obfervation; all our knowledge of it muf therefore be derived from the fame fource.

If we take this way to come at the origin of this opinion, we fhall find that experience gives us no authority for faying that reft is the natural condition of matter. We cannot fay that we have ever feen a body at reft ; this is evident to every perion who allows the validity of the Newtonian philofophy, and the truth of the Copernican fyltem of the fun and planets; all the parts of this fytem are in motion. Nay, it appears from many obfervations, that the fun, with his attending planets, is carried in a certain direstion, with a velocity which is very great. We have no unqueftionable authrity for faying that any one of the flars is abfolutely fixed. But we are certain that many of them are in motion. Relt is therefore fo rare a condition of body, that we cannot fay, from any experience, that it is its natural fate.

It is eafy, however, to fee, that it is from obfervation that this opinion has been derived; but the obfervation inas been limited and carelefs. Our experiments in this fublunary world do indeed always require continued action of fome moving force to continue the motion; and if this be not employed, we fee the motions nacken every minute, and terminate in reft after no long period. Our firlt notions of fublunary bodies are indicated by their operation in cafes where we have fome interelt. Perpetually feeing our own exertions neceflary, we are led to confider matter as fomething not only naturally quiefcent and inert, but fluggifh, averfe from motion, and prone to relt (we mult be pardoned this metaphorical language, becaufe we can find no other term). What is expreffed by it, on this occafion, is precifely one of the erroneous or inadequate conceptions that are fuggefted to our thoughts by reafon of the poverty of language. We animate matter in order to give it motion, and then we endow it with a fort of moral claracter in order to explain the appearance of thofe motions.

But more extended obfervation has made men gradually defert their finf opinions, and at laft allow that matter has no peculiar aptitude to reft. All the retarUations that we obferve have been difcovered, one after another, to have a difinet reference to fome external circumiltances. The diminution of motion is always obferved to be accompanied by the removal of obfacles, as when a ball moves through fand, or water, or air ; or it is owing to oppofite motions which are defroyed; or it is owing to roughnefs of the path, or to friction, \&c. We find that the more we can keep thofe things out of the way, the lefs are the motions diminifhed. A pendulum will vibrate but a fhort while in water; much longer in air; and in the exhaufted receiver it will vibrate a whole day. We know that we cannot remove all obftacles; but we are led by fuch ob-

Firr Law fervations to conclude that, if they could be completely $\underbrace{\text { of Motion. }}$

This opinion illfounded.

## tion from

 the want of a determin. ing caufe.removed, our motions would continue forever. And this conclufion is almof demonftrated by the motions of the heavenly bodies, to which we know of no obftacles, and which we really obferve to setain their motions for many thoufand years without the fmalleft fenfible diminution.

A nother fet of philofophers maintain an opinion directly oppofite to that of the inactivity of matter, and affert, that it is effentially active, and continually changing its flate. Faint traces of this are to be found in the writings of Plato, Arifotle, and their commentators. Mr Leibnitz is the perfon who has treated this queftion moft fyftematically and fully. He fuppofes every particle of matter to have a principle of individuality, which he therefore calls a Monad. This monad has a fort of perception of its fituation in the univerfe, and of its relation to every other part of this univerfe. Laftly, he fays that the monad acts on the material particle, much in the fame way that the foul of man acts on his body. It modifies the motion of the material atom (in conformity, however, to unalterable laws), producing all thofe modifications of motion that we obferve. Matter, therefore, or, at leaft, particles of matter, are continually active, and continually changing their fituation.

It is quite unneceffary to enter on a formal confutation of Mr Leibnitz's fyftem of monads, which differs very little from the fyftem of elemental minds, and is equally whimfical and frivolous; becaufe it only makes the unlearned reader fare, without giving him any information. Should it even be granted, it would not, any more than the action of animals, invalidate the general propofition which we are endeavouring to ellablifh as the fundamental dw of motion. Thofe powers of the monads or of the elemental minds, are the caufes of all the changes of motion ; but the mere material particle is fubject to the law, and requires the exertion of the monad in order to exhibit a change of motion.

A third fect of philofophers, at the head of which we may place Sir Ifaac Newton, maintain the doctrine enounced in the propofition. But they differ much in refpect of the foundation on which it is built.

Some affert that its truth flows from the nature of the thing. If a body be at reft, and you affert that it will not remain at reft, it muft move in fome one direction. If it be in motion in any direction, and with any velocity, and do not continue its equable rectilineal, motion, it muft either be accelerated or retarded ; it mult turn either to one fide or to fome other fide. The event, whatever it be, is individual and determinate; but no caufe which can determinc it is fuppofed : therefore the determination cannot take place, and no change will happen in the condition of the body with refpect to motion. It will continue at reft, or perfevere in its rectilineal and equable motion.

But confiderable objeftions may he made to this argument of fufficient reafon, as it is called. In the immenfity and perfect uniformity of fpace and time, there is no deter mining caufe why the vifible univerfe fhould exift in the place in which we fee it rather than in another, ot at this time rather than at another. Nay, the argument feems to beg the queftion. A caufe of determination is required as effentially neceffary-a deter.
mination may be without a caufe, as well as a motion without a caufe.

Other philofophers, who maintain this doctrine, confider it merely as an experimal truth ; and proofs of 29 its univerfality are innumerable.

When a fone is thrown from the hand, we prefs if from es forward while in the hand, and let it go when the hand perience. has acquired the greatef rapidity of motion that we can give it. The fone continues in that fate of motion which it acquired gradually along with the hand. We can throw a fone much farther by means of a fing ; becaufe, by a very moderate motion of the hand, we can whirl the fone round till it acquire a very great velocity, and then we let go one of the ftrings, and the flone efcapes, by continuing its rapid motion. We fee it Atill more diftinctly in thonting an arrow from a bow. The Atring preffes hard on the notch of the arrow, and it yields to this preffure and goes forward. The ftring alone would go fafter forward. It thereforc continues to prefs the arrow forward, and accelerates its motion. This goes on till the bow is as much unbent as the Atring will allow. But the Aring is now a fraight line. It came into this pofition with an accelerated motion, and it therefore goes a little beyond this pofition, but with a retarded motion, being checked by the bow. But there is nothing to check the arrow ; therefore the arrow quits the fling, and flies away.

Thefe are fimple cafes of perfeverance in a flate of motion, where the procedure of nature is fo eafily traced that we perceive it almof intuitively. It is no lefs clear in other plsenomena which are more complicated; but it requires a little reflection to trace the procefs. We have often feen an equeltrian flowman ride a horfe at a gallop, ftanding on the faddle, and fepping fromit to the back of another horfe that gallops along. fide at the fame rate; and he does this feemingly with as much eafe as if the horfes were ftanding fill. The man has the fame velocity with the horfe that gallops under him, and keeps this velocity while he fleps to the back of the other. If that other were flanding fill, the man would fly over his head. And if a man fhould flep from the back of a horfe that is flanding fill to the back of another that gallops paft him, he would be left behind. In the fame manner, a flack wire dancer toffes oranges from hand to hand while the wire is in full fwing. The orange, fwinging along with the hand, retains the velocity; and when in the air follows the hand, and falls into it when it is in the oppofite extremity of its fiving. A ball, dropped from the malt-head of a thip that is dailing brikly forward, falls at the foot of the maft. It retains the motion which it had while in the hand of the perfon who dropped it, and follows the mafl during the whole of its fall.
We alfo have familiar inflances of the perfeverance of a body in a thate of reft. When a velfel filled with water is drawn fuddenly along the fonr, the water dafhes over the pofterior fide of the veffel. It is lett behind. In the fame manner, when a coach or boat is dragged forward, the perfons in it find themfelves ftrike againlt the hinder part of the carriage or boat. Properly fpeaking, it is the carriage that Itrikes on them. In like manner, if we lay a card on the tip of the fin. ger, and a piece of money on the card, we may nick a way the card by hitting it neatly on its edge; but the piece of money will be left behisd, lying on the tip

Suppl. Vol. I.

Firf Law of the finger. A ball will go through a wall and fi of Motion. onward; but the wall is left behind. Buildings are thrown down by earthquakes ; fometimes by being toffed from their foundations, but more generally by the ground on which they fand being haftily drawn fide-

But common experience feems infufficient for eflablifhing this fundamental propofition of mechanical phiInfophy. We muft, on the faith of the Copernican fyAtem, grant that we never faw a body at relt, or in uniform rectilineal motion; yet this feems abfolutely neceffary before we can fay that we have eftablifhed this prop fition experimentally.

What we imagine, in our experiments, to be putting a body, formerly at reft, into motion, is, in fact, only changing a moft rapid motion, not lefs, and probably much greater, than 90,000 feet per fecond. Suppofe a cannon pointed eatt, and the bullet difcharged at noon day with 60 times greater velocity than we have ever been able to give it. It would appear to fet out with this unmeafurable velocity to the eaftward; to be gradually retarded by the refiftance of the air, and at latt brought to rell by hitting the ground. But, by reafon of the earth's motion round the fun, the fact is quite the reverfe. Immediately before the difcharge, the ball was moving to the, weftward with the velocity of 90,000 feet per fecond nearly. By the explofion of the powder, and its preffure on the ball, fome of this motion is deftroyed, and at the muzzle of the gun, the ball is moving flower, and the cannon is hurried away from it to the weftward. The air, which is alfo moving to the weftward 90,000 feet in a fecond, gradually communicates motion to the ball, in the fame manner as a hurricane would do. At laft (the ball dropping all the while) fome part of the ground hits the ball, and carries it along with it.

Other obfervations muft therefore be reforted to, in order to obtain an experimental proof of this propofition. And fuch are to be found. Although we cannet meafure the abfolute motions of bodies, we can obferve and meafure accurately their relative mutions, which are the differences of their abfolute motions. Nuw, if wre can fhew experimentally, that bodies hew equal tendencies to refift the augmentation and the diminution of their relative motions, they, ipfo facto, fhew equal tendencies to refilt the augmentation or diminution of their abfolute motions. Therefore let two bodies, A and B , be put into fuch a fituation, that they cannot (by reafon of their impenetrability, or the actions of their mutual powers) perfevere in their relative motions. The change produced on A is the effect and the meafure of B's tendency to perfevere in its former ftate; and therefore the proportion of thefe changes will fhew the proportion of their tendencies to maintain their former flates. Therefore let the following experiment be made at noon.

Let A, apparently moving weftward three feet per chers ments pro-
fer for the yurpose.
fecond, hit the equal body B apparently at relt. Sup. pofe, $1 / f$, That A impels B forward, without any diminution of its own velocity. This refult would fhew that $B$ manifefts $n o$ cendency to maintain its motion unchanged, but that A retains its motion undiminifhed.

2 dly, Suppofe that A fops, and that B remains at ref. This would fhew that $A$ does not refift a diminu-
tion of motion, but that $B$ retains its motion unaugmented.

Firf law
3dy, Suppofe that both move weltward with the velocity of one foot per fecond. The change on $A$ is a diminution of velocity, amounting to two feet per fecond. This is the effet and the meafure of E's tendency to maintain its velocity usaugmented. The change on $\mathbf{B}$ is an augmentation of one foot per fecond made on its velocity; and this is the meafure of A's tendency to maintain its velocity undiminifned. This tendency is but half of the former; and this refult rould fhew, that the refiftance to a diminution of velocity is but half of the refiftance to augmentation. It is perhaps but one quarter; for the change on B has produced a double change on $A$.

4thly, Suppofe that both move weftward at the rate of $1 \frac{1}{2}$ feet per fecond. It is evident that their tendencies to maintain their tates unchanged are now equal.

5 thly, Suppofe $A=-2$ B, and that buth move, after the collifion, two feet per fecond, B has received an addition of two feet per fecond to its former velocity. This is the effect and the meafure of A's whole tendency to retain its motion undiminifhed. Half of this change on B meafures the perievering tendency of the half of A; but A, which formerly moved with the apparent or relative velocity three, now moves (by the fuppofition) with the velocity two, baving loft a velocity of one foot per fecond. Each half of A therefore has lof this velocity, and the whole lofs of motion is two. Now this is the meafure of B's tendency to maintain its former ftate unaugmented; and this is the fame with the meafure of A's tendency to maintain its own former tate undiminifhed. The conclufion from fuch a refult would therefore be, that bodies have equal tendencies to maintain their former ftates of motion without augmentation and without diminution.

What is fuppofed in the $4^{\text {th }}$ and $5^{\text {th }}$ cafes is really the refult of all the experiments which have been tried; and this law regulates all the changes of motion which are produced by the mutual actions of bodies in impulfions. This affertion is true without exception or qualification. Therefore it appears that bodies have no preferable tendency to reft, and that no faet can be adduced which flould make us fuppofe that a motion once begun fhould fuffer any diminution without the action of a changing caufe.

But we mult now obferve, that this way of eftablifh- But expeing the firft law of motion is very imperfect, and alto- rience is gether unfit for rendering it the fundamental principle net the proof a whole and extenfive fcience. It is fubjeat to all per foundathe inaccuracy that is to be found in our belt experi- axiom. ments; and it cannat be applied to cafes where ferupulous accuracy is wanted, and where no experiment can be made.

Let us therefore examine the propofition by means of the general principles adopted in the article Phizosophy, Encycl. which contain the foundation of all our knowledge of active nature. Thefe principles will, we imagine, give a decifion of this queftion that is ipeedy and accurate; thewing the propufition to be an axiom or intuitive confequence of the relations of thofe ideas which we have of motion, and of the caufes of its production and changes.

## D Y N A M I C S.

Firl Law diate objects of our perception. Their very exiftence, of Motion. their kind, and their degree, are inftinctive inferences from the motions which we obferve and clafs. It evidently follows from this experimental and univerfal truth, $I f$, That where no change of motion is obferved, no fuch inference is made; that is, no power is fuppofid to act. But whenever any change of motion is ob.erved, the inference is made ; that is, a power or force is fuppofed to have acted.

In the fame form of logical conclufion, we mutf fay that, 2 dly, When no change of motion is fuppofed or thought of, no force is fuppofed; and that whenever we fuppole a change of motion, we, in fact, though not in terms, fuppofe a changing force. And, on the other hand, whenever we fuppofe the action of a changing furce, we fuppofe the change of motion; for the action of this foree, and the change of motion, is one and the fame thing. We cannot think of the action without thinking of the indication of that action; that is, the change of motion. - In the fame manner, when we do not thitk of a changing force, or fuppofe that there is no action of a changing force, we, in fact, though not in terms, fuppofe that there is no indication of this changing force; that is, that there is no change.

It is a lave of human thought,

Whenever, therefore, we fuppofe that no mechanical force is acting on a body, we, in fact, fuppofe that the body continues in its former condition with refpect to motion. If we fuppofe that nothing accelerates, or retards, or deflects the motion, we fuppofe that it is not accelerated, nor retarded, nor deflected. Hence follows the propoition in exprefs terms-We fuppofe that the lody continues in its former fate of refo or motion, unlefs aue fuppofe that it is changed by fome mechanical force.

Thus it appears, that this propofition is not a matter of experience or contingency, depending on the properties which it has pleafed the Author of Nature to befow on body: it is, to us, a neceffary truch. The propofition does not fo much exprefs any thing with regard to body, as it does the operations of our mind xhen contcmplating body. It may perhaps be effential to body to move in fome particular direction. It may be effential to body to fop as foon as the moving caufe lias ceafed to act ; or it may be effential to body to diminih its motion gradually, and finally come to reft. But this will not invalidate the truth of this propofition. Thefe circumflances in the nature of body, which render thofe modifications of motion effentially necelfary, are the caufes of thofe modifications; and, in our fudy of nature, they will be confidered by us as changing forces, and will be known and called by that name. And if we thould ever fec a particle of matter in fuch a fituation that it is affeced by thofe effential properties alone, we fhall, from obfervation of its mo. tion, difcover what thofe effential properties are.
And almort This law turns out at laft to be little more than a an identical tautological propofition: But mechanical philofophy, propofition as we have defined it, requires no other fenfe of it; for, even if we fhould fuppofe that body, of its own nature, is capable of changing its fate, this change muft be performed according to fome law which characterifes the nature of body; and the knowledge of the law can te had in no other way than hy obferving the deviations from uniform tectilineal motion. It is therefore indifferent whelher thofe chages are derived from
the nature of the thing, or from external caufes: for in order to confider the various motions of bodies, we mult firf confider this nature of matter as a mechanical affection of matter, operating in every infance; and thus we are brought back to the law enounced in this propofition. This becomes more certain when twe reflect that the external caufes (fuch as gravity or magnetifm,) which are acknowledged to operate changes of motion, are equally unknown to us with this effential original property of matter, and are, like it, nothing but inferences from the phenomena.

The above very diffufe difculfions may appear fuperfloous to many readers, and even cumberfome; but we truft that the philofophical reader will excufe our ansieis on this head, when he refleats on the complicated, indiftinct, and inaccurate notions commonly had of the fubject; and more efpecially when he obferves, that of thofe who maintain the truth of this fundamental propofition, as we have enouriced it, many (and they too of the firt eminence ), reject it in fact, by combining it with other opinions which are inconflitent with it, nay, which contradiat it in exprefs terms. We may evea include Sir Ifaac Newton in the number of thofe who have at leaft introduced modes of exprefion which millead the minds of incautious perfons, and fuggeft inadequate notions, incompatible with the pure doetrine of the propofition. Although, in words, they difclaim the doctrine that reft is the natural Itate of body, and that force is neceffary for the continuation of its motion, yet in words they (and moft of them in thought) likewife abet that doctrine: for they fay, that there refides in a moving body a power or force, by which it perfeveres in its motion. They call it the vis insita, the inherent force of a moving body. This is furely giving up the queftion: for if the motion is fuppofed to be continued in confequence of a force, that force is fuppofed to be exerted; and it is fuppofed, that if it were not exerted, the motion would ceafe; and therefore the propofition muft be falle. Indeed it is fometimes exprefied fo as feemingly to ward off this objection. It is faid; that the body continues in uniform rectilineal motion, unlefs affected by fome external caufe. But this way of fpeaking obliges us, at firt fetting out in natural philofophy, to affert that gravity, magnetifm, electricity, and a thoufand other mechanical powers, are external to the matter which they put in motion. This is quite improper: It is the bufinefs of philofophy to difcover whether they be external or not ; and if we affert that they are, we have no principles of argumentation with thofe who deny it. It is this one thing that has filled the fudy of nature with all the jargen of xthers and other invifible intangible fluids, which has difgraced philofophy, and greatly retarded its progrefs.

We mult obferve, that the terms vis infita, inherent $V_{i s}$ ingith, force, are very improper. There is no difpute among philofophers in calling every thing a force that produces a change of motion, and in inferring the action of fuch a force whenever we obferve a change of motion. It is furely incengruous to give the fame name to what has not this quality of producing a change, or tion. to infer (or rather to fuppofe) the energy of a force when no charge of motion is obferved. This is one among many infances of the danger of miftake when we indulge in analogical difculfions. All our lan-
guage
Firf Law of Motion. $\underbrace{\text { Motion. }}$

Firf Lav guage, at leaft, on this fubject is analogous. I feel, of Motion. that in order to oppofe animal force, I muft exert force. But I mull exert force in order to oppofe a body in motion: Therefore I imagine that the moving body poffefies force. A bent fpring will drive a body forward by unbending: Thercfore I fay that the fpring exerts force. A moving body impels the body which it hits: Therefore I fay, that the impelling body poffeffes and exerts force. I imagine farther, that it poffeffes force only by being in motion, or becaufe it is in motion; becaufe I do not find that a quiefeent body will put another into motion by touching it. But we fhall foon find this to be falle in many, if not in all cafes, and that the communication of motion depends on the mere vicinity, and not on the motion, of the impelling body; yet we afrribe the exertion of the vis infita to the circumnance of the continued motion. We therefore conceive the force as arifing from, or as confifting in, the impelling body's being in motion; and, with a very obfcure and indiftinct conception of the whole matter, we call it the force by nubich the body preferves itfelf in motion. Thus, taking it for granted that a force refides in the body, and being obliged to give it fome office, this is the only one that we can think of.

But philofophers imagine that they perceive the neceffity of the exertion of a force in order to the continuation of a motion. Motion (fay they) is a continued action; the body is every inflant in a new fituation; there is the continual production of an effect, therefore the continual action of a caufe.

But this is a very inaccurate way of thinking. We have a diftinct conception of motion; and we conceive that there is fuch a thing as a moving caufe, which we diftinguifh from all other caufes by the name force. It produces motion. If it does this, it produces the cha1 racter of motion, which is a continual change of place. Motion is not action, but the effect of an action; and this action is as complete in the inflant immediately fucceeding the beginning of the motion as it is a minute after. The fubfequent change of place is the continuation of an effect already produced. The immediate effect of the moving force is a determination, by which, if not hindered, the body would go on forever from place to place. It is in this determination only that the flate or condition of the body can differ from a flate of reft; for in any inflant, the body does not defribe any face, but has a determination, by which it will defcribe a certain fpace uniformly in a certain time. Motion is a condition, a ftate, or mode, of exiftence, and no more requires the continued agency of the moving caufe than yellownefs or roundneis does. It requires fome chemical agency to change the yellownefs to greennefs; and it requires a mechanical caufe or a force to change this motion into reft. When we fee a moving body fop fhort in an inftant, or be gra. dually, but quickly, brought to reft, we never fail to fpeculate about a caufe of this ceffation or retardation. The cafe is no way different in itfelf although the retardation flould be extremely flow. We fhould always attribute it to a caufe. It requires a caufe to put a body out of motion as much as to put it into motion. This caufe, if not external, mult be found in the body itfelf; and it muf have a felf-determining power, and may as well be able to put iffelf into motion as out of it .

## M I C S.

If this realoning be not admitted, we do not fee how Firf Law any effect can be produced by any caufe. Every effect of Motion. fuppofes fomething done; and any thing done implies that the thing done mas remain till it be undone by fome other caufe. Without this, it would have no exiftence. If a moving caufe did not produce continued motion by its inftantaneous action, it conld not produce it by any continuance of that ation ; becaufe in no inftant of that action does it produce continued motion.

We nuft therefore give up the opinion, that there refides in a moving body a force by which it is kept in motion ; and we muft find fome other way of explaining that remarkable difference between a moving body and a body at reft, by which the firft caufes other bodies to move by hitting them, while the other does not do this by merely tonching them. We thall fee, with the cleareft evidence, that motion is neceflary in the impelling body, in order that it may permit the forces inherent in one or both bodies to continue this preffure long enough for producing a fenfible or confiderable motion. But thefe moving forces are inherent in bodies, whetlier they are in motion or at reft.

The foregoing obfervations fhew us the impropriety of the phrafe communication of motion. By thus reflecting on the notions that are involved in the general conception of one body being made to move by the impulfe of another, we perceive that there is nothing in-

$$
\begin{gathered}
34 \\
04
\end{gathered}
$$ dividual transferred from the one body to the other. The determination to motion, indeed, exifted only in the impelling body before collifion; whereas, afterwards, both bodies are fo conditioned or determined. But we can form no notion of the thing transferred. With the fame metaphylical impropriety, we fpeak of the communication of joy, of fever.

Kepler introduced a term inertia vis inertia, So is vis into mechanical philofophy; and it is now in conftant inertiz. ufe. But writers are very carelefs and vague in the notions which they affix to thefe terms. Kepler and Newton feem generally to employ it for exprefling the fact, the perfeverance of the body in its prefent tate of motion or reft: but they alfo frequently exprefs by it fomething like an indifference to motion or reft, manifeffed ly its requising the fame quantity of force to make an augmentation of its motion as to make an equal diminution of it. The popular notion is like that which we have of actual refiftance; and it always implies the notion of force excrted by the refilting body. We fuppofe this to be the exertion of the vis inffita, or the inberent force of a body in motion. But we have the fame notion of refiftance from a body at reft which we fet in motion. Now furely it is in direct contradiation to the common ufe of the word force, when we fuppofe refiftance from a body at reft; yet wis inertic, is a very common expreffion. Nor is it more abfurd (and it is very abfurd) to fay, that a body maintains its fate of reft by the exertion of a vis inertia, than to fay, that it maintains its ftate of motion by the exertion of an inberent force. We fhould avoid all fuch meraphorical expreffions as refifance, indiffirence, Augsi/bnefs, or pronenefs to reft (which fome exprefs by inertia), becaufe they feldom fail to make us indulge in metaphorical notions, and thus lead us to mifconceive the modus operandi, or procedure of nature.

There is no refiflance rwhatevcr obferved in thefe phenomena;

Firf Law nomena; for the force employed always produces its of Motion. that I have employed no more force than was fufficient to throw down a fimilar and equal mafs of dead matter, I know by this that he bas not refifed ; but I conclude that he has refifted, if I have been obliged to employ much more force. There is therefore no refintance, properly fo called, when the exerted force is obferved to produce its full effect. To fay that there is refiltance, is therefore a real mifconception of the way in which mechanical forces have operated in the collifion of bodies. There is no more refiftance in thefe cafes than in any other natural changes of condition. We are guilty, however, of the fame impropriety of language in ohher cafes, where the caufe of it is more evident. We fay that colours in grain refif the action of foap and of the fun, but that Pruffian blue does not. We all perceive, that in this expreffion the word refiftance is entirely figurative : and we fhould fay that Prufian blue reffls foap, if we are right in faying that a body refitts any force emplojed to change its ftate of motion; for foap mult be employed to difcharge or change the colour; and it does change it. Force muft be employed to change a motion; and it does change it. The impropriety, both of thought and language, is plain in the one cafe, and it is no lefs real in the other. Both of the terms, inberent force and inertia, may be ufed with fafety for abbreviating language, if we be careful to employ them only for cxpreffing, either the fimple faiz of perfevering in the former flate, or the neceffity of entploying a certain determinate force, in order to change that fate, and if we avoid all thought of refiflance.
Deviations From the whole of this dilculfion, we learn, that the from uni- deviatians from uniform motions are the indications of form recti- the exiltence and agency of mechanical forces, and that
lineal mo- they are the only indications. The indication is very tion are the only indications of force. they are the only indications. The indication is very fimple, mere change of place; it can therefore indicate nothing but what is very fimple, the fomething competent to the prodution of the very motion that we obferve. And when two changes of motion are precifely fimilar, they indicate the fame thing. Suppofe a mariner's compafs on the table, and that by a fmall tap witl my finger I caufe the needle to turn off from its quiefcent pofition 10 degrees. I can do the fame thing by bringing a magnet near it; or by bringing an electrified body nearit; or by the unbending of a fine fpring prefling it afide; or by a puff of wind; or by feveral other methods. In all thefe cafes, the indication is the fame; therefore the thing indicated is the fame, namely, a certain intenfity and direction of a moving power. How it operates, or in what manner it exifts and exerts itfelf in thefe infances, outwardly fo different, is not under confideration at prefent. Impulfivenefs, intenfity, and direstion, are all the circumitances of refemblance by which the affections of matter are to be charanerifed; and it is to the difcovery and determination of thefe alone that our attention is now to be direfted. We are directed in this refearch by the

## Second Law of Motion.

Every change of notion is proportional to the force impreffect, and is made in the direction of that force.
This law alfo may almof be confidered as an identical propofition; for it is cquivalent to faying, that the changing force is to be meafured by the change which
it produces, and that the direction of this foree is the SecondLaw direction of the change. Of this there can be no doubt, of Motion. when we confider the force in no other fenfe than that of the caufe of motion, paying no attention to the form or manner of its exertion. Thus, when a pellet of tow is fhot from a pip-gun by the expanfion of the air comprefied by the rammer, or where it is fhot from a toy piftol by the unbending of the coiled wire, or when it is nicked away by the thumb like a marble-if, in all there cafes, it moves off in the fame direction, and with the fame velocity, we cannot confider or think of the force, or at leatt of its exertion, as any how different. Nay, when it is driven forward by the inftantaneous percuffion of a fmart Atroke, although the manner of producing this effect (if poffible) is effentially different from what is conceived in the other cafes, we mult fill think that the propelling force, confidered as a propelling force, is one and the fame. In fhort, this law of motion, as thus expreffed by Sir Ifaac Newton, is equivalent to faying, "That we take the changes of motion as the meafures of the changing forces, and the direstion of the change for the indication of the direc. tion of the forces:" For no reflecting perfon can pretend to fay, that it is a deduction from the acknowledged principle, that effects are proportional to their caules. We do not affirm this law, from having obferved the proportion of the forces and the proportion of the changes, and that thefe proportions are the fame; and from having obferved that this has obtained through the whole extent of our ftudy of nature. This would indeed eftablifh it as a phyfical law, an univerfal fact; and it is, in fact, fo eftablifhed. But this does not eftablifh it as a law of motion, according to our definition of that term; as a law of human thought, the refult of the relations of our ideas, as an intuitive truth. The injudicious attemps of philofophers to prove it as a matter of obfervation, have occalioned the only difpute that has arifen in mechanical philofophy. It is well known, that a bullet, moving with double velocity, penetrates forr times as far. Many other fimilar facts corroborate this: and the philofophers obferve, that four times the force has been expended to generate this double velocity in the bullet ; it requires four times as much powder. In all the examples of this kind, it would feem that the ratio of the forces employed has been very accurately afcertained; yet this is the invariable refult. Philofophers, therefore, have concluded, that moving forces are not proportiond to the velocities which they produce, but to the fquares of thofe velocities. It is a flrong confirmation, to fee that the bodies in motion feem to polfefs forces in this very proportion, and produce effects in this proportion ; penetrating four times as deep when the velocity is only twice as great, \&c.

But if this be a juft eftimation, we cannot reconcile it to the conceffion of the fame philof ciphers, who grant that the velocity is proportional to the force imprelfed, in the cafes where we have no previous obfervation of the ratio of the forces, and of its equality to the ratio of the velocities. This is the cafe with gravity, which thefe philofophers always meafure by its accelerating power, or the velocity which it generates in a given time. And this cannot be refufed by them; for cafes occur, where the force can be meafured, in the moft natual manner, by the attual prefliuse which it exerts.

SecondLaw Gravity is thus meafurcal by the preffure which a fone $\underbrace{\text { of Motion. }}$ exerts on its fupports. A weight which at Quito will pull out the rod of a fpring feelyard to the mark 312, will poll it to 313 at Spitzbergen. And it is a fact, that a body will tall 313 inches at Spitzbergen in the fame time that it falls 312 at Quito. Gravitation is the caufe both of the preffure and the fall ; and it is a matter of unexcepted obfervation, that they have always the fame ratio. The philofophers who have fo Atrenuonfy maintained the other meafure of forces, are ameng the molt eminent of thofe who have examined the motions produced by gravity, magnetifm, electricity, \&:c.; and they never think of meafuring thofe forces any other way than by the velocity. It is in this way that the whole of the celeftial phenomena are explained in perfect uniformity with obfervation, and that the Newtonian philofophy is confidered as a demonftrative fcience.

There mult, therefore, be fome defeet in the principle on which the other meafurement of forces is built, or in the meihod of applying it. Preflure is undoubtedly the immediate and natural meafure of force; yet we know that four fprings, or a bow four times as ftrong, sive only a double velocity to an arrow.
The truth of our law refts on this only, that we affume the changes of motion as the meafore of the changing furces; or, at lealt, as the meafures of their exertions in producing motion. In fact, they are the meafures only of a cettain circumftance, in which the actions of very different natural powers may refemble each other; namely, the competency to produce motion. They do not, perhaps, meafure their competency to produce heat, or even to bend fprings. We can furely confider this apart from all other circumftances; and it is worthy of feparate confideration. Let us fee what can be, and what ought to be, deduced from this way of treating the fubject.

The moticn of a body may certainly remain unchanged. If the direction and velocity remain the fame, we perceive no circumftance in which its condition, with refpect to motion, differs. Its change of place or fituation can make no difference; for this is implied in the sery circumfance of the bodies being in motion.

But if either the velocity or direation change, then furely is its mechanical condition no longer the fame; a furce has acted on it, either intrintic or from without, either accelerating, or retarding, or deflecting it. Suppofing the direation to remain the fame, its difference of condition can confint in nothing bot its difference of velocity. This is the only circumftance in which its condition can differ, as it palfes through two different points of its rectilineal p.ith. It is this determination by which the body will deícribe a certain determinate fpace uniformly in a given time, which defines its condition as a moving body: the changes of this determination are the meafures of their own caufes;--and to thofe caufes we have given the name force. Thofe caufes may refide in other bodies, which may have other properties, charafterifed and meafured by other effects. Preffure may be one of thofe properties, and may have its own meafures; thefe may, or may not, have the fame proportion with that property which is the caufe of a change of velocity: and therefore changes of velocity may not the a mealure of preffure. This is a queftion of fack, and requires otfervation and experience; but,
in the mean time, velocity, and the change of velocity, secondian is the mcafure of moving force and of changing force. of Motion When therefore the change of velocity is the fame, whatever the previous velocity may be, the changing force moll be confidered as the fame: therefore, final1 y , if the previous velocity is nothing, and confequently the change on that body is the very velocity or motion that it acquires, we mult fay, that the force which produces a certain change in the velocity of a moving body, is the fame with the force which would impart to a body at refl a velocity equal to this change or difference of velocity produced on the body already in motion.

This manner of eftimating force is in perfect conformity to our moft familiar notions on thefe futjects. We conceive the weight or downward preffure of a body as the caufe of its motion downwards; and we conceive it as belonging to the body at all times, and in all places, whether falling, or rifing upwards, or defcribing a parabola, or lying on a table; and, accordingly, we obferve, that in every flate of motion it receives equal changes of velocity in the fame, or an equal time, and all in the direction of its preffure.
All that we have now faid of a change of velocity might be repeated of a change of direction. It is furely poffible that the fame change of direction may be made on any two motions. Let one of the motions be confidered as growing continually flower, and term:nating in reft. In every inflant of this motion it is poffible to make one and the fame change on it. The fame change may therefore be made at the very inftant that the motion is at an end. In this cafe, the change is the very motion which the body acquires from the changing force. Therefore, in this cafe alfo, we muft fay, that a change of motion is itfelf a motion, and that it is the motion which the force would produce in a body that was previoufly at reft.

The refult of thefe obfervations is evidently th:s, that we mont afcertain, in every inflance what is the change of motion, and mark it by characters that are conficuous and diftinguifling; and this mark and meafure of change malt be a motion: Then we mult fas, that the changing force is that which would produce this motion in a body previoufly at refl. We mult fee how this is manifelt, as a motion, in the difference between the former motion and the new motion; and, on the other hand, we muft fee how the motion produceable in a quiefect body may be fo combined with a motion already exifting: as to cxhibit a new motion, in which the agency of the changing force may appear.

Suppofe a thip at anchor in a Aream ; while one man walks forward on the quarter deck at the rate of two miles per hour, another walks from flem to fem at the fame rate, a third walks athwart hip, and a fourth Atands fill. Let the thip be fuppofed to cut or part her cable, and float down the ftream at the rate of three miles per hour. We cannot conceive any difference in the change made on each man's motion in abfolute fpace; but their motions are now exceedingly diferent from what they were: the firt man, whom we may fuppofe to have been walking weftward, is now moving eaftward one mile per hour ; the fecond is moving eat:ward four miles per hour; and the third is moving in an ubiique direction, about three points north or fouth of due eila. All have fuffered the fame change of con-
ditio:
econdLaw dition with the man who had been flanding ftill. IIe f Morion. has now got a motion eaftward three miles per hour. In this inflance, we fee aery well the circomilance of famenefs that obtains in the change of thefe four conditions. It is the motion of the fhip, which is blended with the other motions. But this circumflance is equally prefent whenever the fame previous motions are changed into the fame new motions. We mut learn to expifcate this; which we fhall do, by confidering the manner in which the motion of the fhip is blended with each of the mens motions.
This kind of combination has been called the Сомposition of notion; becaufe, in every point of the
motion really purfued, the two motions are to be found.

The fundamental theorem on this fubject is this:Two uniform motions in the fides of a parallelogram compofe an uniform motion in the diagnal.
Plate XXI. Suppofe that a point A (fig. 1.) defcribes AB uniformly in fome given time, while the line $A B$ is carried uniformly along $A C$ in the fame time, keeping always parallel to its firft pofition $A B$. The point $A$, by the combination of thefe motions, will defcribe AD , the diagonal of the parallelogram ABDC , uniformly in the fame time.

For it is plain, that the velocities in $A B$ and $A C$ ase proportional to $A B$ and $A C$, becaufe they are uniformly defribed in the fame time. When the point has got to E , the middle of AB , the line AB has got into the fituation GH , half way between AB and CD , and the point E is in the place $e$, the middle of GH . Draw $\mathrm{E} e \mathrm{~L}$ parailel to AC . It is plain, that the parallelograms ABDC and $\mathrm{AE} e \mathrm{G}$ are fimilar; becanfe $A E$ and $A G$ are the balves of $A B$ and $A C$, and the angle at $A$ is common to both. Therefore, by a propofition in the elements, they are about the fame diagonal, and the point $e$ is in the diagonal of AD. In like manner, it may be fhewn, that when A has defribed AF, $\frac{3}{4}$ chs of AB , the line AB will be in the fituation IK, fo that AI is $\frac{3}{4}$ hs of $A C$, and the point $f$, in which $A$ is now found, is in the diagonal AD. It will be the fame in whatever point of $A B$ the defrribing point A be fuppofed to be found. The line $A B$ will be on a fimilar point of $A C$, and the defcribing point will be in the diagonal AD.

Moreover, the motion in AD is uniform: for $\mathrm{A} e$ is defcribed in the time of defcribing AE; that is, in half the time of defcribing AB , or in half the time of defcribing AD. In like manner, Af is defcribed in $\frac{3}{4}$ ths of the time of defcribing $A D$, \&c. \&e.

Lafty, the velocity in the diagonal AD is to the velocity in either of the fides as AD is to that fide. This is evident, becaufe they are uniformly defcribed in the fome time.

This is junly called a compofition of the motions $A B$ and AC , as will appear by confidering it in the fullow. ing manner: Let the lines $A B A C$ be conceived as two material lines like wires. Let AB move uniformly from the fituation $A B$ ints the fituation $C D$, while AC moves uniformly into the fituation BD . It is phin, that their interfection will always be found on AD. The point $e$, for example, is a point common to both lives. Confidered as a point of EL, it is then moving in the dirention $e \mathrm{H}$ or AB ; and, confidered as a point of GH , it is moving in the direction L .

Both of thefe motions are therefore blended in the mo-scondLaw tion of the interfection along AD. We can conceive $\underbrace{}_{\underbrace{\text { of }} \text { Motion. }}$ a fmall ring at $e$, embracing loofely both of the wire i. This material ring will move in the diagonal, and will roally partake of both motions.
Thus we fee how the motion of the flip is actually blended with the motions of the three men; and the circumftance of famenefs which is to be found in the four changes of mution is this motion of the hip, or of the man who was ftanding fill. Dy compofition with each of the three former motions, it produces each of the three new motions. New, when each of two primitive motions is the fame, and each of the new motions is the fame, the change is furely the fame. If cne of the changes has been brought about by the actual compofition of motions, we know precifely what that change is; and this informs us what the other is, in whatever way it was produced. Hence we infer, that,

When a motion is any bow chang d, the change is that tis mark motion which, suben compounded with the former motion, and meazuill produce the new mo!i:n. Now, bccanfe we aftume fure. the change as the meafure and characierific of the changing force, we mult do fo in the prefent inflance; and we mult fay,
That the changing force is that wubich quill produce in Chaarging a quicficent boily the motion which, by compoffion with the forcc. former motion of a body, vuill produce the new motion.

And, on the niher hand,
When the motion of a body is changed by the alion of Its effec. any force, the new molion is that which is compounded of the former motion, and of the motion whlich the force suould produce in a quiefient boly.

When a furce changes the direction of a motion, we Defuring fee that its direction is tranfverfe in fome angle BAC; frrce. becaufe a diagonal AD always fuppofes two lides. As we have dilinguithed any change of direation by the term deflection, we may call the traniverfe force a deflecting force.

In this way of eftimating a change of motion, all the characters of both motions are preferved, and it expreffes every circumftance of the clange; the mere change of direction, or the angle BAD, is not enough, becaufe the fame force will make different angles of deflection, according to the velocity of the former mo. tion, or according to its direction: but in this eftima. tion, the full effect of the deflecting force is feen; it is feen as a motion; for when half of the time is elapfed, the dody is at $e$ infeat of $E$; when three fourths are elapfed, it is at $f$ inflead of $F$; and at the end of the time it is at D inttead of B . In fhort, the body has moved uniformly away from the points at which it would have atiived independent of the change; and this motion has been in the fame direction, and at the fame rate, as if it had moved from $A$ to $C$ by the changing force alone. Each force has produced its full effeat; for when lue body is at $D$, it is as far from AC as if the force AC had not acted on it; and it is as far from $A B$ as it wonld have been by the action of AC alone.

For all there reamm, therefore, it is evident, that if we are to abide by our meafure and character of forse as a mere producer of motion, we have felected the proper charaterific and meafure of a changing force: and our deferiptions, in conformity to this felection, mult be agreeable to the phenomena of nature, and rc-

ScondLaw tain the accuracy of geometrical procedure; becaufe, of Morion. on the other hand, the refults which we deduce from the fuppofed influence of thofe forces are formed in the fame mould. It is not even requifite that the real exertions of the natural forces, fuch as preflure of various kinds, \&c. कhall follow thefe rules; for their deviations will be confidercd as new forces, although they are only indications of the differences of the real forces from our hypothefis. We have obtained the precious udvantage of mathenatical inveftigation, by which we can examise the law of exertion which characterifes every force in nature.

On there principles we eftablifh the following fundamental elementary propofition, of continual and indifpenfable ufe in all mechanical enquiries.
Fundamen. If a body or material particle be Jubjecied at the fame time tal theorem to the alion of two moving forces, each of rubich zould feparately caufe it to defcribe the fide of a parallilagram uniformly in a given time, the bolly will, de. forile the diagonal uniformily in the fame time.
For the body, whofe motion $A B$ was changed into AD, had gotten its motion by the action of fome force. It was moving along NAB ; and, when it reached the point $A$, the force $A C$ atted on it. The primitive motion is the fame, or the body is in the fame condition in every inftant of the primitive motion. It may have acquired this motion when it was in N , or when at O , or any other point of NA. In all thefe cafes, if $A C$ act on it when it is in $A$, it will always defcribe $A D$; therefore it will deforibe $A D$ when it acquires the primitive motion alfo in $A$; that is, if the two forces act on it at one and the fame inflant. The demonftration may be neatly exprefied thus: The change induced by each force on the motion produced by the other, is the motion which it wnuld produce in the body if previcufly at ref. Therefore the motion refulting from joint action is the motion which is compounded of thefe two motions; or it is a motion in the dia. gonal of the parallelogram, of which thefe motions are the fides.
Compofition
This is called the Composition of Forces. The of forces.

46 forces which produce the motions along the fides of the parallelogram are called the Simple Forces, or the Constiuent Forces; and the force which would alone produce the motion along the diagonal is called the Compound Force, the Resulting Force, the Equivalent Force.

On the other hand, the force which produces a motion along any line whatever, may be conceived as refulting from the combined :ction of two or more forces. We nay know or obferve it to be fo; as when we ree a lighter dragged along a canal by two horfes, one on each fide. Each pulls the boat directly toward limfelf in the direction of the track-rope ; the boat cannot go both ways, and its real motion, whatever it is, refults from this combined action. This might be produced by a fingle force; for example, if the lighter be dragged along the canal by a rope from another lighter which precedes it, being dragged by one horfe, aided by the heln of the foremof lighter. Here the real force is not the refulting, or the compound, but the equivalent force.
Refolution of forces.

This view of a motion, mechanically produced, is called the Resolution of Forces. The force in the diagonal is faid to be refolved into the two forees,
laving the directions and velocities reprefented by the SecondLart fides. This practice is of the moft extenfive and mul- of Notion. tifareons ufe in all mechanical difquifitions. It may frequently be exceedingly difficult to manage the comjlicaticn of the many real forces which concur in producing a phenomenon; and by fublituting others, whofe combined effects are equivalent, our inveftigation may be much expedited. But more of this afterwards.

We mult carefully remember, that when the motion AD is once begun, ail compofition is at an end, and the motion is a fimple motion. The two determinations, by one of which the body would defcribe AB , and by the other of which it would defcribe $A C$, no longer coexij/ in the body. This was the cafe only in the inflant, in the very act of changing the motion AB into the motion BD ; yet is the motion AD equivalent to a motion which is produced by the allual compofition of two motions $A B$ and $A C$; in which cafe the two motions co-exift in every point of AD.

Accordingly this is the way in which the compofi- Ufual de tion of forces is ufually illuftrated, and thought to be monfrademoonftated. A man is fuppofed (for inftance) to tion incon walk uniformly from A to C on a fheet of ice, while the ice is carried unformly along AB by the fream. The man's real motion is undoubtedly along AD ; but this is by no means a demonftration that the inflantaneous or thort lived action of two fores would produce that motion; the man muft continue to exert force in order to walk, and the ice is dragged along by the fream. Some indeed exprefs this proof in another way, faying, let a body defcribe $A B$, while the face in which this motion is performed is carried along AC. The ice may be carried along, and may, by friction, or otherwife, drag the man along with it; but a fpace cannot be removed from one place to another, nor, if it could, would it take the man with it. Should a fhip fart fuddenly forward while a man is walking acrofs the deck, he would be left behind, and fall toward the ftern. We mult fuppofe a traniverie force, and we mult fuppofe the compofition of this force without proof. This is no demonftration.

We apprehend, that the demonftration given above of this fundamental propofition is unexceptionable, when the terms force and defection are ufed in the abftract fenfe which we have affixed to them; and we hope, by thefe means, to maintain the rigour of mathematical difcuffion in all our future difquifitions on thefe fubjects. The only circumfance in it which can be the fubjest of difcufion is, whether we have felected the proper meafure and characteritic of a change of motion-We never met with any objection to it.
But fome have fill maintained, that it does not evi- objections ${ }^{48}$ dently appear, from thefe principles, that the motion to the dewhich refults from the joint action of two natural powers, whofe known and meafurable intenfities have the fame proportions with AB and BC , and which alfo exert themfelves in thofe directions, will produce a motion, having the direction and proportion of AD. They will not, if the velocities produced by thefe forces are not in the proportion of thofe intenfities, but in the fubduplicate ratio of them. Nay, they fay, that it is not fo. If a body be impelled along AC by one fpring, and along $A B$ by two forings equally ftrong, it will not defcribe the diagonal of a parallelogram, of which the fide AB is double the fide AC . Nay, they

D Y N A iecondiaw add, that an indefinite number of examples can be given of Motion. where a body does not defcribe the diagonal of the parallelogram by the joint action of two forces, which, feparately, would caufe it to defcribe the fides. And, laftly, they fay, that, at any rate, it does not appear evident to the mind, that two incitements to motion, having the directions and the fame proportion of intenfity with that of the fides of a parallelogram, actually generate a third, which is the immediate caufe of the motion in the diagonal. An equivalent force is not the fame with a refuling force.

Yet we fee numberlefs cafes of the compofition of incitements to motion, and they feem as determinate, and as fufceptible of being combined by compofition, as the things called moving forces, which are meafured by the velocities: we fee them acually fo combined in a thoufand intances, as in the example already given of a lighter dragged by two horfes pulling in different directions. Nay, experiment fhews, that this compofition follows precifely the fame rule as the compofition of the forces which are meafured by the velocities; for if the point A (fig. I.) be pulled by a thread, or preffed by a fpring, in the direction AB, and by another in the direction $A C$, and if the preflures are proportional to AB and AC , then it will be withheld from moving, if it be pulled or preffed by a third force, ating in the direction $A d$, oppofite to $A D$, the preffure being alfo proportional to AD. This force, acting in the direction Ad, would certainly withfand an equal force acting in the direction AD ; therefore we mult conclude, that the two preffures AB and AC really generate a force AD. This uniform agreement fhews that the compofition is deducible from fixed pinciples; but it does not appear that it can be held as demonAtrated by the arguments employed in the cafe of motions. A demonitration of the compofition of preffures is fill wanted, in order to tender mechanics a demonftrative fcience.

Accordingly, philofophers of the firft eminence have turned their attention to this problem. It is by no means eafy; being fo nearly allied to firf principles, that it muf be difficult to find axioms of greater fimplicity by which it may be proved.

Mechanicians generally contented themfelves with the folution given by Aritotle; bat this is merely a compofition of motions: indeed he does not give it for any thing elfe, and calls it " ouvesors co" $\phi u$ quv," The firt writer who appears to have confidered it as different from the mere compofition of motions, was the celebrated Dutch engineer Stevinus in his work on Sluices; but his folution is obfcure. It was fufficient, however, to convince Daniel Bernoulli of the neceftity and the difficulty of the problem. He has given the firft complete demonftration of it in the firf volume of the Commentaries of the Imperial Academy of Sciences at St Peterfourgh. It is exiremely ingenious: but it is tedious and intricate, requiring a feries of 15 propofitions to demonfrate that two preffiures, having the directions and magnitudes of the fides of any parallelogram, compofe a third, which has the direction and magnitude of its dagonal. His firt propofition is, that tero equal preflures, ading at right angles, compofe a third, in the diredion of the diagonal of a flyure, and laving to either of the other two the froporticn of the diagonal of a fquare to its fides.

Suppl. Vol. I.

Mr D'Alembert has greatly fimplified and improved Lawsecond this demonftration, by beginning with a cafe that is felf- of Motion. evident; namcly, If three equal forces are inclined to each other in equal anglis of 120 degrees, any one of them reill balance the combined adion of the other two. Surely: for neither of them can prevail. Therffore trvo eqqual forces, inclined in an angle of 120 degrees, produce a third, which has the direction and proportion of the diagonal of the rhombus; for this is equal and oppofite to one of the three above mentioned. He then demonftrates the fame thing of two equal forces inclined in any angle; and by a feries of eigbt propofitions more, demonfrates the general theorem. This differtation is in the Memoirs of the Academy at Paris for 1769. He improves it fill farther in a fulfequent memoir.
Mr Riccati and Mr Fonfenex, in the Commentaries of the Academy of Turin, have given analytical demorArations, which are alfo very ingenious and concife, but require acquaintance with the higher methematics.There is another very ingenious demonftration in the Fournal des $S_{\text {guvans }}$ for June ${ }_{17} 6_{4}$, but too obfcure for an elementary propofition. It is fomewhat fimplified by Belidor in his Insćnieur François. Frifus, in his Cofinographia, has given one, which is perbaps the beft of all thote that are eafily comprehended without acquaintance with the higher mathematics: bat we imagine that, although no one can doubt of the concluficn, it has not that intuitive evidence for every hep of the procefs that feems neceffary.
We here offer another, compofed by blending toge. Compgofition ther the methods of Bernoulli and D'Alembert; and of prefures. we imagine that no objection can be made to any flep of it. We limit it entirely to preffures, and do not at all confider nor employ the motions which they may be fuppofed to produce.
(A) If two equal and oppofite preflures or incitements to motion att at once on a material particle, it fuffers no change of motion; for if it yields in either direction by their joint action, one of the preflures prevails, and they are not equal.

Equal and oppofite preffures are faid to balance each other; and fuch as balance mul be eftermed equal and oppofite.
(B) If $a$ and $b$ are two magnitudes of the fame kind, proportional to the intenfities of two preflures which at in the fame direction, then the magnitude $a+b$ will meafure the intenfity of the preffire, which is equivalent, and may be called equal, to the combined effort of the other two ; for when we try to form a notion of preffure as a meafurable magnitude, diflinct from motion or any other effea of it, we find nothing that we can meafure it by but another preffure. Nor have we any notion of a double or triple preffure different from a preffure that is equivalent to the joint effort of two or three equal preffures. A preflure $a$ is accounted triple of a preflure $b$, if it balances three preffures, each equal to $b$, asting together. Therefore, in all proportions which can be espreffed by numbers, we muft acknowledge the legitimacy of this meafurement; and it would furely be effectation to omit thofe which the mathematicians call inconmenfuralle.
In like manner, the magnitude $a-b$ mult be acknowledged to meafure that preffure which arifes from the joint action of two preffures $a$ and $b$ ading in oppofite direstions, of which a is the greatelt.

SecondLaw
(C) Let $A B C D$ and $A \bar{b} C d$ (fig. A) be two rhom$\underbrace{\text { of Motion. bufes, which have the common diagonal AC. Let the }}$ angles $\operatorname{BAb}$, DAd, be bifected by the ftraight lines $A E$ and AF.

If there be drawn from the points $E$ and $F$ the lines EG, EH, $\mathrm{F}_{\mathrm{g}}, \mathrm{Fh}$, making equal angles on each fide of EA and FA , and if $\mathrm{Gg}, \mathrm{H} b$ be drawn, cutting the diagonal $A C$ in $I$ and $L$ : then $A I+A L$ will be greater or lefs than $A Q$, the half of $A C$, according as the angles $\mathrm{GEH}, \mathrm{gFh}$, are greatcr or lefs than GAH, $g \mathrm{~A} h$.

Draw GH, gh, cutting AE, AF, in O and o, and draw O , cutting AC in K .

Becaufe the angles AEG and EAG are refpectively equal to AEH and EAH , and AE is common to both triangles, the fides $A G, G E$ are refpectively equal to $A \mathrm{H}, \mathrm{HE}$, and GH is perpendicular to AE , and is bifected in O; for the fame reafons, $g h$ is bifected in o. Therefore the lines $\mathrm{G} g, \mathrm{O} 0, \mathrm{H} h$, are parallel, and IL is bifected in K . Therefore $\mathrm{AI}+\mathrm{AL}$ is equal to twice AK. Moreover, if the angle GEH be greater than GAH, AO is greater than $L O$, and $A K$ is greater than KQ. Therefore AI +AL is greater than $A Q$ : and if the angle GEH be lefs than GAH, AI + AL is lefs than AQ.
(D) Two equal prefiures, acting in the directions $A B$ and $A C$ (fig. 2.), at right angles to each other, compofe a preffure in the direction AD, which bifects the right angle ; and its intenfity is to the intenfity of each of the conftituent preffures as the diagonal of a fquare to one of the fides. It is evident, that the direction of the preffure, generated by their joint action, will bifect the angle formed by their directions; becaufe no reafon can be affigned for the direction inclining more to one fide than to the other.

In the next place, fince a force in the direction $A D$ does, in fact, arife from the joint action of the equal preffures $A B$ and $A C$, the preflure $A B$ may be conceived as arifing from the joint action of two equal forces fimilarly inclined and proportioned to it. Draw EAF perpendicular to AD. One of thefe forces mut be directed along $A D$, and the other along AE. In like manner, the preffure $A C$ may arife from the joint action of a preffure in the direction AD, and an equal preffure in the direction AF. It is alfo plain, that the preffures in the directions $A E$ and $A F$, and the two preffures in the direction AD , mult be all equal. And alfo, any one of them muft have the fame proportion to $A B$ or to $A C$, that $A B$ or $A C$, has to the force in the direction $A D$, arifing from their joint action.

Therefore, if it be faid that AD does not meafure the preffure arifing from the joint action of $A B$ and $A C$, let $A d$, greater than $A D$, be its juft meafure, and make $\mathrm{A} d: \mathrm{AB}=\mathrm{AB}: \mathrm{A} g=\mathrm{AB}:$ A e. Then $\mathrm{A}_{\mathrm{g}}$ and $\mathrm{A} s$ have the fame inclination and proportion to $A B$ that $A B$ and $A C$ have to $A d$. We determine, in like manner, two forces $A f$ and $A g$ as conftituents of AC.

Now $A d$ is equivalent to $A B$ and $A C$, and $A B$ is equivalent to $\mathrm{A} e$ and $\mathrm{A} s$; and AC is equivalent to A $f$ and $\mathrm{A} g$. Therefore $\mathrm{A} d$ is equivalent to $\mathrm{A} e$, A $f, A^{g}$, and A $g$. But (A) A $e$ and A $f$ balance each other, or annihilate each other's effect; and there remain only the two forces or preffures A $g, \mathrm{~A}_{g}$. Therefore (B) their meafure is a magnitude equal to

## M I C S.

twice Ag. But if A $d$ be greater than the diagonal Secondlaw $A D$ of the fquare, whofe fides are $A B$ and $A C$; then Ag mult be lefs than AI, the fide of the fquare whofe diagonal is $A B$. But twice $A g$ is lefs than $A D$, and much lefs than $A d$. Therefore the meafure of the eqivalent of AB and AC cannot be a line $\mathrm{A} d$ greater than AD. In like manner, it cannot be a line A of that is lefs than $A D$. Therefore it mult be equal to $A D$, and the propofition is demonflrated.
(E) Cor. Two equal forces $A B, A C$, acting at right angles, will be balanced by a force $A O$, equal and oppofite to AD , the diagonal of the fquare whore fides are $A B$ and $A C$; for $A O$ would balance $A D$, which is the equivalent of $A B$ and $A C$.
(F) Let AECF (fig. 3.) be a rhombus, the acute angle of which EAF is half of a right angle. Two equal preflures, which have the directions and meafures $\mathrm{AE}, \mathrm{AF}$, compofe a preffure, having the direction and meafure $A C$, which is the diagonal of the rhombus.

It is evident, in the firt place, that the compound force has the diregion AC, which bifects the angle EAF . If AC be not is juf meafure, let it be $A P$ lefs than $A C$. Jet $A B C D$ be a fquare difcribed on the fame diagonal, and make AP:AQ=AE:AO, $=A F:$ Ac. Draw KOG, Kog perpendicular to AE, AF; draw GIg, OH o, EG, EK, Fg, Fk, PF, and PE.

The angles $C A B$ and $F A E$ are equal, each being half of a right angle. Alfo the figures AEPF and $A G E K$ are fimilar, becaufe $A P: A Q=A E: A O$. Therefore FA:AP $=\mathrm{KA}: \mathrm{AE}$, and EA: AP $=$ GA: AE. Therefore, in the fame manner that the forces AE, AF are affirmed to compofe Al , the forces $A G$ and AK may compofe the force AE, and the forces Ag and AK may compofe the force AF. Therefore (B) the force AP is equivalent to the four forces AG, $\mathrm{AK}, \mathrm{A} g, \mathrm{AK}$. But (D) AG and Ag are the fides of a fquare, whofe diagonal is equal to twice AI: and the two forces AK, AK are equal to, or are meafured by, twice AK. Therefore the four forces AG, Al5, $\mathrm{A} g$, AK , are equivalent to $2 \mathrm{AI}+2 \mathrm{AK},=4 \mathrm{AH}$.

But becaufe AP was fuppofed lefs than AC, the angle FPE is greater than FAE, and GEK is greater than GAK, AO is greater than OE, and AH is greater than $H O$, and $2 A H$ is greater than $A Q:$ and therefore $4 \mathrm{~A} H$ is greater than $A C$, and much greater than AP. Therefure AP is not the jut meafure of the force compofed of AE and AF.
In like manner, it is fhewn, that $A E$ and $A F$ do not compofe a force whofe meafure is greater than AC. It is therefore equal to AC ; and the propofition is de. monitrated.
(G) By the fame procefs it may be demonftrated, that if BAD be half a right angle, and EAF be the fourth of a right angle, two forces AE, AF will compofe a force meafured by A C. And the proceis may be repeated for a rhombus whofe acute angle is $\frac{x}{8}$ th, $\frac{x^{3}}{x}-t h$, \&ic. of a right angle; that is, any portion of a right angle that is produced by continual bifection. Two forces, forming the fides of fuch a rhombus, compofe a force meafured by the diagonal.
(H) Let ABCD, A bcd (fig. 4.) he two rhombufes formed by two confecutive bifections of a right angle. Let AECF be another rhombus, whofe fides AE and AF bifect the angles BA $b$ and DAd.


Fig. 2.


Hig.3.


## D Y N A

Secondlaw of Motion.

The two forces AE, AF, compofe a force $\Lambda$ C.
Bifect AE and AF in O and o. Draw the perpendiculars GOH, $g \circ b$, and the lines GI $g$, OK $0, \mathrm{HL} b$, and the lines EG, EH, F $g, F / b$.

It is evident, that AGEH and $\mathrm{A} g \mathrm{~F} h$ are rhombufes; becaufe $A O=O E$, and $A \circ=0 F$. It is allo plain, that fince $b \mathrm{~A} d$ is half of BAD, the angle G.AH. is half of $b \mathrm{~A} \mathrm{~d}$. It is therefore formed by a continual bifection of a right angle. Therefore ( $G$ ) the forces $\mathrm{AG}, \mathrm{AH}$, compore a force AE ; and $\mathrm{A}_{s}, \mathrm{~A} b, \mathrm{com}-$ pofe the force AF. Therefore the forces AG, AH, A $g, A b$, acting together, are equivalent to the forces AE, AF acting together. But AG, Ag compofe a force $=2 \mathrm{AI}$; and the forces $\mathrm{AH}, \mathrm{A} b$ compore a force $=2 \mathrm{AL}$. Therefore the four forces acting to. gether are equivalent to $2 \mathrm{AI}+2 \mathrm{AL}$, or to 4 AK . But becaure AO is $\frac{1}{2} \mathrm{AE}$, and the lines $\mathrm{G} g, \mathrm{O}_{0}, \mathrm{H} h$, are evidently paralle, $4, \mathrm{AK}^{-}$is equal to $z \mathrm{AC}$, or to AC ; and the propotition is demonAtrated.
(I) Cor. Let us now fuppofe, that by continual bifection of a right angle we have obtained a very fnall angle $a$ of a rhombus; and let us name the rhombus by the multiple of $a$ which forms its acute angle.

The propefition (G) is true of $a, 2 a, 4 a, \& \in$. The propofition (H) is true of 3 a . In like manner, be caufe (G) is true of $4 a$ and $8 a$, propofition (H) is true of $6 a$; and becaufe it is true of $4 a, 6 a$, and $8 a$, it is true of $5 a$ and $7 a$. And fo on continually till we lave demontrated it of every multiple of a that is lefs than a right angle.
(K) Let RAS (fig. 5.) be perpendicular to AC, and let ABCD be a rhombus, whofe acute angle BAD is fome multiple of $2 a$ that is lefs than a right angle. Let $\mathrm{A} b c d$ be another rhombus, whofe fides $\mathrm{A} b, \mathrm{~A} d$ bifect the angles RAB, SAD). Then the forces $A b$, A d compole a force AC.

Drav $b \mathrm{R}, d$ Sparallel to $\mathrm{BA}, \mathrm{DA}$. It is evident, that AR 6 B and $\mathrm{AS} d \mathrm{D}$ are rhombufes, whofe acute angles are multiples of $a$, that are each lefs than a right angle. Therefore (I) the forces AR and AB compofe the force A $b$, and AS, AD compore A $d$; but AR and AS annihilate each other's effect, and their remains only the forces $\mathrm{AB}, \mathrm{AD}$. Therefore $\mathrm{A} b$ and $\mathrm{A} d$ are equivalent to $A B$ and $A D$, which compofe the force $A C$; and the propofition is demonfrated.
(L.) Cor. Thus is the corrollary of latt propofition extended to every rhombus, whofe angle at $A$ is fome multiple of $a$ lefs than two right angles. And fince $a$ may be taken lefs than any angle that can be named, the propofition may be confidered as demonftrated of every rhombus: and we may fay,
(M) Two equal forces, inclined to cach other in any angle, compofe a force wobich is meafured by the diagonal of the rbombus, wuhofe fides are the meafures of the confituent forces.
(N) Two forces AB, AC (fig. 6.), having the direction and proportion of the fides of a retangle, compofe a force AD, having the direction and proportion of the diagonal.

Draw the other diagonal CB, and draw EAF pa. rallel to it ; draw BE, CF parallel to DA.

AEBG is a rlombus; and therefore the forces AE and AG compofe the force AD. AlCG is alfo a rhom. bus, and the force $A C$ is equivalent to $A F$ and $A G$. Therefore the forces $A D$ and $A C$, acting together, are

M I C S.
equivalent to the forces AE, AF, AG, and AG act. SecondLawo ing together, or to AE, AF, and AD asting toge- of Motion. ther : But AE and AF annihilate each other's attion, being opofite and equal (for each is equal to the half of BC ). Therefore $A B$ and $A C$ ating together, are equivalent to AD , or compofe the force AD .
(O) Two forces, which have the direction and proportions of $\mathrm{AB}, \mathrm{AC}$ (fig. 7.) the fides of any parallelogram, compore a force, having the direction and proportion of the diagonal AD.

Draw AF perpendicular to BD , and BG and DE perpendicular to $A C$.

Then AFBG is a rectangle, as is alfo AFDE; and $A G$ is equal to $C E$. Therefore ( $N$ ) $A B$ is equivalent to AF and AG. Therefore AB and AC aning together, are equivalent to $A F, A G$, and $A C$ acting torecher; that is, to AF and AE acting together; that is (N) to $A D$; or the forces $A B$ and $A C$ compofe the force AD).

Hence arifes the mot general propofition, If a material particle be urged at once ly two preflures Compofior incitements to motion, wubofe intinfities are proportional tion of all to the fides of any parallelogram, and wubich ait in the dis incitements regions of thofe fides, it is afficied in the fawe manner as if it were alled on by a fingle force, rwhofe intenfity is mea. fured by the diagonal of the parallelogrann, and rubich alds in its divecion: Or, two preflures, having the direction and proportion of the Jides of a parallelograin, generate a preflure, having the direciion and proportion of the diagonal.

Thus have we endeavoured to demonftrate frum ab- Seeming Atract principles the perfed fimilatity of the compofition difference of preflures, and the compofition of forces meafured by of the consthe motions which they produce. We cannot help be pofitions of ing of the opinion, that a feparate demonfration is in- of prefure difpenfably neceffary. What may be fairly deduced difappear from the one cafe, cannot always be applied to the when careother. No compofition of preffures can explain the fully exachang produced by a defecting force on a motion al- miued. ready exiting; for the changing preffure is the only one that exifts, and there is none to be compounded with it. And, on the nther hand, our notions and nbfervations of the compofition of motions will not explain the compofition of preflures, unlefs we take it for grant. ed that the preffures are propostional to the velocities; but this is perhaps a gratuitous affumption. At any rate, it is not an intuitive propolition; and we have mentioned fome facts where it feems that they do not follow the fims proportion. The preffure of four equal fprings produces only a double velucity. It would appear, therefore, that there are circumitances wisich oblige us to fay, that the exertion of preflure, as a caufe of motion, is not (always at lealt) propottional to the real meafurable pretture. We are therefore anxious to difcover in what the diference conlifts; and in the mean time muff allow, that the preffiure exerted on a body at teft is different from its exertion in producing motion. We cannot indeed tate any inmediate comparifon between preffure and motion, nor have we any clear conception of the connesion between them. It is only by our fenfations of touch that we have any notion of preffure, and it is experience that teaches us that it always accompanies every caufe of motion. We can, however, obferve the proportions of preflures, and compare them with the proportions of motion. We very often obferve them different; and therefore it was indifpenfably

SecondLaw neceffary to inveftigate the laws of combined preffure of Motion. as we did the laws of combined motion in confequence of preflure. Yet we fhould err, if we baftily alferted that preffures are not proportional to the motions which they produce; all that we are intitled to call in doubt is, whether the preffures in their exertion, while they actually produce motion, or changes of motion, continue to be the fame as when they do not produce motion, being withfood or balanced by oppofite pref. fures. Confidered as caufes of motion, we ought to think that they do not vary while they produce motion, and that the actual prefluse, while it produces a double motion, is really double, although it may be quadruple when the body exerting it is made to at on a body that it cannct move. We are confirmed in this opinion by obferving, that other fats fhew us, that even while producing notion, the preffure which we call quadruple, becaufe we have meafured it by four equal preflures balancing it, is really quadruple, confidered as the caufe of motion, and produces a quadruple motion. A bow which requires four times the force to draw it to ary given extent, will communicate the fame velacity to a bundle of four arrows that a bow four times eafier drawn communicates to one arrow, and will therefore preduce a quadruple motion. Yet it will only produce a double velocity in the arrow that acquired a fimple velocity from a bow having one fourth of the frength.

Thefe difcrepancies thould excite the endeavours of mechanicians to inveftigate the laws obferved in the action of preffures in producing motion. Had this been done with care and with candour, we fhould not have had the great difference of opinion, which fill divides philofophers, about the meafures of moving forces. But a fpirit of party, which had arilen from other caules, gave importance to what was at firft only a difference of expreffion, and made the partiians of Mr Leibnitz avail themfelves of the figurative langnage which has done fo much harm in all the departments of philofophy. Notwithflanding all our caution, it is hardly poffible to avoid metaphorical conceptions when we employ the language of metaphor. The abettors of the Leibnitzian meafure of moving forces, or perhaps, to fpeak more properly, the abettors of the Leibnitzian meafure of that force which is fuppofed to preferve bodies in their condition of motion-infift, that the force which is exerted in producing any change of motion is greater in proportion as the motion changed is greater : and they give a very fpecinus argument for their affertion. They appeal to the exertions which we ourfelves make. Here we are confcious of the fact. Then they give fimilar examples of the adtion of bedies. A clay ball, moving fix feet per fecond, will make the addition of one foot to the velocity of an equal clay ball that is alrcady moving four feet per fecond in the fame direttion. But if this laft ball be already moving ten feet per fecond, we mult follow it with a velocity of twelve feet in order to increafe its velocity one foot. But, without infilting on the numberlefs paralogifms and inconfflencies which this way of conceiving the matter would lead us into, it fuffices to obferve, that the phenomena give us abundant aflurance that there has been the fame exertion in both thefe cafes. This acceleration is always accompanied by a compreffion of the balls, and the compreflion is the fame in both. This comprefion is a very good meafure of the force em-

M I C.
ployed to produce it ; and in the prefent cafe, we need Secondláar not even trouble ourfelves with any rule for its meafure- of Motioni. ment : for furely when the compreffion is not different, but the fame, the force exerted is the fame. This is farthér confirmed by obferving, that it requires the fame force to make the fame pit, or to give the fame motion, to a piece of clay, lying on the table of a fhip's cabin, whether the fhip be failing two miles or ten miles per hour.

Thus we fee that there are frong reafons for believ. ing, that the exertions of preffure in producing motion, or that the preffures afiually exerted, are proportional to the changes of motion obferved, and that they coincide in this refpect with our abflract conceptions of moving forces.

But we have fill better arguments. None of the Leibnitzians think of denjing the equal exertions of gravity, or of any of thofe powers which they call folicitations or accelerating forces. They all admit, that gravity, or any conftant accelerating force, produces equal increments of velocity in equal times, and that a double gravity will produce a double increment in an equal time, and an equal increment in half of the time; and that a quadruple gravity will produce a double velocity in half the time. All thefe things are granted by them, and their writings are full of reafonings from this principle. Now from the fact, acknowledged by the Leibnitzians, that the quadruple force of a bow gives a double velocity to the arrow, in every inftant of its action, it indifputably follows, that it has acted on it only for half the time of the action of the four times weaker bow, which gives the arrow only half the velocity; and thus has the difcrepancy between the effects of preflures and of our abftract moving forces entirely difappeared. For this circumftance of the difference in the time of asting will be found, on ftrict examination, in all the cafes of the change of motion by preffures which we meafure by their effects on a body at reft. When this, and the appreciable changes of actual preflure, during the time of producing the motion, are taken into contideration, all difference vanihes, and the compotirion of preffures is in perfeet harmony with the compofition of motions, or of abftract moving forces. Dynaimes is thus made a demonftrative fcience, and affords the opportunity of inveftigating, by obfervation and experiment, the nature of thofe mechanical powers which refide in bodies, and which appear to us under the form of preffure, inducing us to confider preffure as a caufe of motion.

In this, however, we are rather inaccurate. Preffure is one of the fenfible effects of that property which is alfo the caufe of motion. It is not the preflure of a piece of lead, but its heavinefs, that is the reafon that it gives motion to a kitchen jack. Preffure is meetely a generic name, borrowed from a familiar intlance, and given to moving forces, which have the fame nature, but different names that ferve to mark their connection with certain fubfances, in which they may he fuppofed to refide. Natural philofophy is almoft entirely employed in examining the nature of thefe various preffures or accelerative forces; and the general doctrines of dynamics, by afcertaining what is common to them all, enable nsto mark with precifion what is characteriftic of each.

We have now advanced vers far in this invefligati in: General co:

Scondaw for we have obtained the criterion by which we learn of Motion. the direction and the magnitude of every clanging force: and, on the other hand, we fee how to tate what will be the effect of the exertion of any force that is known or fulpeged to aet. All this we learn by the compofition of torces; and the greatelt part of mechanical difquifition contifs in the application of this doctrine. For fuch realons it merits minute confideration ; and therefore we mult point out fome generd conclufinns from the properties of figure, which will greatly facilitate the ufe of the parallelogram of forces.

1. The conflituent and the realtmg forces, or the fimple and compound forces, act in the fame plane; for the fides and diagonal of a parallelogram are in one plane.
2. The fimple and the complund forces are proportional to the fides of any triangle which are parallel to their direstions. For if any three lines, $a b, b d, a d$, be drawn parallel to $A B, A C$, and $A D$ (ig. 7, $n^{\circ} 2$. , they will form a triangle fimilar to the triangle A BD. For the fame reafons they are proportional to the fides of a triangle $a^{\prime} b^{\prime} d$, which are refpectively perpendicular to their direftions.
3. Therefore each is proportional to the fine of the oppofite angle of this triangle; for the fides of any triangle are proportional to the fines of the oppofite angles.
4. Each is proportional to the fine of the angle contained by the directions of the other two; for $A D$ is to $A B$ as the fine of the angle $A B D$ to the fine of the angle ADB. Now the fine of ABD is the fame with the fine of BAC contained between the directions $A B$ and $A C$, and the fine of $A D B$ is the fame with the fine of $C A D$; alfo $A B$ is to $A C$, or $B D$, as the fine of $A D B$ (or CAD) to the fine of BAD.
We now proceed to the application of this fundaSome fpecial ufes of
the paralthe paral-
lelogram of furces. mental propofition. And we obferve, in the firft place, that fince AD may be the diagonal of an indefmite number of parallelograms, the motion or the preflure AD may refult from the joint action of many pairs of forces. It may be produced by forces which would feparately produce the motions AF and AG. This generally gives us the means of difcovering the forces which concur in its production. If one of them, AB , is known in dircetion and intenfity, the direction AC , parallel to $B D$, and the intenfity, are difeovered. Sometimes we know the direations of both. Then, by drawing the parallelogram or triangle, we learn their propurtions. The force which defiects any motion $A B$ into a motion $A D$, is had by fimply drawing a line from the point B (to which the body would have moved from A, in the time of really nioving from A to D) to the point $\mathbf{D}$. The deflecting force is fuch as would have caufed the body move from B to D in the fame time. And, in the farme manner, we get the compound motion AD, which arifes from any two fimple motions $A B$ and $A C$, by fuppoling both of the motions to be accomplifhed in fucceffion. The final place of the body is the fame, whether it moves along AD or along $A B$ and $B D$ in fucceffion.

This theorem is not limited to the compofition of two motions or two forces only; for fince the combined action of two forces puts the body into the fame Itate as if their equivalent alone had acted on it, we may fuppofe this to have been the cafe, and then
the action of a third force will produce a ehange on secondlaw this equivalent motion. The refulting motion will be of Motion. the fame as if only this third furce and the equivalent of the other two had acted on the body. Thus, in fig. 8. the three forces $\mathrm{AB}, \mathrm{AC}, \mathrm{AE}$, may act at once Patexxin. on a particle of matter. Complete the parallelogran $A B D C$; the diagonal $A D$ is the force which is generated by $A B$ and $A C$. Complete the parallelogram $A E F D$; the diagonal AF is the force refuling from the combined action of the forces $\mathrm{AB}, \mathrm{AC}$, and AE . In like manner, completing the parallelogram AGHF, the diagonal AH is the force refulting from the combined action of $A B, A C, A E$, and $A G$, and fo on of any number of forces.

This refulting force and the refulting motion may be much more expeditioufly determined, in any degree of compofition, by drawing lines in the proportion and direction of the forces in facceffion, each from the end of the preceding. Thus, draw AB, BD, DF, FH, and jnin $\mathrm{AH} ; A H$ is the refulting force. The demonitration is evident.

It is to be noticed here, that in the compofition of more than wo forces, we are not limited to one plane. The force $A D$ is in the fame plane with $A B$ and $A C$; but $A E$ may be elevated above this plane, and $A G$ may lead below it. $A F$ is in the plane of $A D$ and $A E$, and $A H$ is in the plane of $A F$ and $A G$.

Complete the parallelograms ABLE, ACKE, ELFK. It is evident that ABLFKCD is a parallelopiped, and that $A F$ is one of its diagonals. Hence we derive a more general theorem of great ufe.
Three forces having the proportion and diredions of the three fides of a parallelopiped, corrpofe a force baving the proportion and direction of the diagonal.
Any number of forces anting together on ore par. One force ticle of matter are halanced by a force that is equal and nay haoppofite to their refulting force; for this force would balance their refulting force which is equivalent to them in action. When this is duly confidered, we perceive that each force is then in equilibrio with the equivalent of all the others; for a force can balance only what is equal and oppofite to it. It appears very readily by the geometrical conftruction. If, inftead of the circuit $\mathrm{A}, \mathrm{B}$, $\mathrm{D}, \mathrm{F}, \mathrm{H}$, we take $\mathrm{B}, \mathrm{D}, \mathrm{F}, \mathrm{H}, \mathrm{A}$, we have BA for the equivalent of the forces $\mathrm{AC}, \mathrm{AE}, \mathrm{AG}$; but AB is equal and oppofite to $B A$. Therefore the force $A B$ is in equilibrio with the equivalent of all the others.
When any number of forces act on one particle of matter, and are in equilibrio, if they be confidered as actiny in parcels, the equivalemis of thefe parcels are in equilibrio: for let the forces $A B, A C, A E, A G, A b$, be in equilibrio, and let them be confintered in the two parcels $A B, A C$, and $A E, A G, A b$ : then $A D$ is the equivalent of $A D, B D(o r A C)$, and $D A$ is the equivalent of DF, FH, HA (or Ab) : now AD and DA balance each other. This corrollary enables us to fimplify many intricate complications of force; it alfo cuables us to draw accurate conclufions from very imperfect obfervations. In moft of our practical difcuffions we know, or at leaft we attend to, a part only of the forces which are acting on a material particle; and in fuch cafes we reafon as if we faw the whole: yet is our mathematical reafoning good with refpect to the equivalent of all the parcels which we are contemplating, and the equivalents of the fmaller parcels of which it
corgifts;

Secn:idiaw confirts; and il:e nezleaed force, or parcel of forces, $\underbrace{\text { of Motion. }}$
(3) incluces no error on our conclufions.
In the fpontanenus phenomen of nature, the inveftiFaredtions gation and difoovery of nur ultimate object of fearch is ruethads for frequentily very dificult, on acconnt of the multiplicity ohtuining the refluiting motion in consplicated cafes. of dirtcions and intenfities of the operating forces or motions. We may generally tacilitate the procefs, by Lubfituting equivalent forces or motions acting in convenient directions. It is in this way that the naviga-
tor computes the flip's place with very little trouble, by fubtututing equivalent motions in the meridional and equatorial directions for the real oblique courfes of thie thup. Inflead of fetting down tan miles on a coure, S. 36. 52. W. he fuppofes that the thip has friled eight miles due fouth, and fix miles due weit, which brings her near to the fame place. Then, inftead of fuurtcen miles fouth-welt, he fets down ten miles fouth and ten nilles wett ; and he proceeds in the fame way for every other courfe and ditance. He does this expeditioully by means of a traverfe table, in which are seady calculated the meridional and equatoreal lides of right angled thiangles, correfponding to every courfe and diftance. Having done this for the courfe of a whole day, he adds all the fouthings into one fum, and all the wellings into another: he confiders there as furming the fides of a right angled triangle; he looks for them, phired together, in his traverfe table, and then notices what angle and what diftance correfponds to this pair. This gives him the pofition and magnitude of the ftraight line joining the beginnirg and end of his day's work.

The miner proceeds in the fame way when he takes the plan of fubterraneous workings, meafuring, as he goes along, and noticing the bearing of each line by the compafs, and fetting down, from his traverfe table, the northing or fouthing, and the eafting or wefting, for each oblique line : but there is another circumftance which he muft attend to, namely, the flope of the various drifts, galleries, and other workings. This he does by noting the rife or the dip of each floping line. He adds all thefe into two fums, and taking the rifings from the dips, he obtains the whole dif. Thus he learns how far the workings proceed to the noth, how lar to the ealt, and how far to the dip.

The reflecting reader will peaceive that the line joining the two extremities of this progreffion will form the diagonal of a rectangular paralleinpiped; one of whofe fides lies north and fouth, the other lies eaft and weft, and the third is right up and down.

The mechanician proceeds in the very fame way in the inveltigation of the very complicated phenomena which frequently engage his attention. He coufiders every motion as compounded of three motions in fome convenient directions, at right angles to each other. He alfo confiders every force as refulting from the joint action of three forces, at right angles to each other, and takes the fum or difference of thefe in the fame or oppofite direstions. From this procefs he obtains the three fules of a parallelopiped, and from there computes the pofition and magnitude of the diagonal. This is the motion or force refulting from the compofiticn of all the partial ones.
Forcen may This procedure is called the Estimation or Re-
he eftimatpuction of motions and forces.
A motion or forcc AB (fig. 9. ) is faid to be efic.
mated in the direction EF, or to be reduced to this di- secondLaw reation when it is conceived as compounded of the mo- of Motion. tions or forces $\mathrm{AC}, \mathrm{AD}$, one of which AC is paral. 64 lcl to EF, and the other AD is perpendicular to it. Agiven diThis exprelfion is abundantly fignificant ; for it is plain rection, that the motion AD neither promotes nor hinciers the progrels along EF, and that AC expreffes the whole progrefs in this direction.

65
In like mannar, a force $A B$ (fig. Io.) is faid to be Or a given eflimated in or reduced to, a given plane EFGH, when plane. it is conceived as refu!ting from the joint action of two forces $\mathrm{AC}, \mathrm{AD}$, one of which is parallel to a line $a b$ drawn in that plane, and the other AD is perpendicular to it. The pofition of the line $a b$ is determined by letting fall $\mathrm{D} b$ perpendicular to the plane, and drawing $b \mathrm{P}$ to the point P , in which BA meets the plane; then $\mathrm{A} a$ being drawn parallel to $\mathrm{B} b$, will cut off $b a$, which is the reduation of the motion $A B$ to the plane. Drawing AC parallel to $a b$, and completing the parallelogram $A C B D$, it is evident that the motion $A B$ is equiralent to AD and AC , which is parallel to $a b$, and the three forces $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$, are, as they fhould be, in ore plane perpendicular to the plane EG.

If three forces $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ (fig. 1 I .), are in Equilibriequilibrio, and are reduced to any one direction $d \mathrm{~A} l$, um of foror to one plane EFGH, the reduced forces are allo ces fo efin equilibrio.

Firll, Let them be reduced to one direction $d l$ by reduced. drawing the perpendiculars $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d$; make AL equal to AD , and jnin $\mathrm{BL}, \mathrm{CL}$, and draw the perpendiculars $\mathrm{L} /, \mathrm{C} c$; then, becaufe the forces $\mathrm{AB}, \mathrm{AC}$, AD , are in equilibrio, ABLC mult be a parallelogram, and $A L$ is the force equivalent to $A B$ and $A C$ combined; then, becaufe the lines $\mathrm{D} d, \mathrm{~B} b, \mathrm{C} c, \mathrm{~L} l$, are parallel, $d$ A is equal to $\mathrm{A} l$, and $\mathrm{A} b$ to $\mathrm{C} o$, or to $\mathrm{c} l$; therefore $A /$ is equal to the fum of $A b$ and $A c$, which are the reductions of AB and AC ; therefore $d \mathrm{~A}$ is equal to the fame fum, and in equilibrio with them.

Secondly, Let them be reduced to one plane EFGH, and let $\alpha \beta, \alpha x, \alpha \delta$, be the reduced forces. The lines $D \delta$, A $\alpha, B \in C_{x}, L_{\lambda}$, are all parallel, being perpendicular to the plane; therefore the planes AB Band $\mathrm{C} L \lambda$ a are parallel, and $\alpha, 8, x \lambda$, are parallel. For fimilar reafons $\beta \lambda, \alpha x$, are parallel ; therefore $\alpha \beta \lambda x$ is a parallelogram. Alfo, becaufe the lines $\mathrm{D} \delta, \mathrm{A} \alpha, \mathrm{L} \lambda$, are parallel, and DA is equal to AL ; therefore $\delta \alpha$ is equal to $\alpha \lambda$. But becaufe $\alpha \beta \lambda x$ is a parallelogram, the forces $\alpha \beta, \alpha x$, are equivaient to $a \lambda$; and $u \delta$ is equal and oppofite to $\alpha \lambda$, and will balance it ; and therefore will balance $\alpha \beta$ and $\alpha x$, which are the reductions of $A B$ and AC to the plane EFGH, while a $\delta$ is the reduction of AD ; therefore the propofition is demonftrated.

The moft ufual and the molt ufeful mode of redue- The mots tion, is to eltimate all forces in the directions of three uffulmode lines drawn from one point, at right angles to each of reducother, like the three plane angles of a rectangular cheft, forming the length, the breadth, and the depth of the tion to cheft. Thefe are commonly called the three co.ordinates. The refulting force will be the diagonal of this parallelopiped. This procefs occurs in all difquifitions in which the mutual action of folids and fluids is confidered, and when the ofcillation or rotation of detached free bodies is the fulject of difcuftion.

The only other general theorem that remains to be deduced

SecondLaw deduced from this law of motion is, that if a number of Motion. of badies are moving in any manner whatever, and an

67
Relative motions of bodics not afiected by any extraneous equal and parallel force. equal force act on every particle of matter in the fame or parallel direations, their relative motions will fuffer no change; for the motion of any body A (fig. I2.), relative to another body $B$, which is alfo in motion, is compounded of the real motion of $A$, and the oppofite to the real motion of $B$; for let A move uniformly from A to C , while B defcribes BD uniformly, draw $A B$, alfo draw $A E$ equal and parallel to $B D$, join $E C$, DC, ED. The motion of A, selative to B , confifts in its change of polition and diftance. Had A defcribed AE , while B defcribed BD , there would have been no change of relative place or ditance; but A is now at C , and DC is its new dirction and diftance. The relative or apparent motion of $A$ therefore is EC. Complete the parallelogram ACFE; it is plain that the motion EC is compounded ol EF, which is equal and parallel to AC, the real motion of A, and of EA, the equal and oppofite to BD, the real motion of B.

Now let the motions of A and B fuftain the fame change ; let the equal and parallel motions AG, BH, be compounded with the motions AC and BD ; or let forces att at once on A and B , in the parallel directions AG, BH, and with equal intenfities; in either fuppofition, the refulting motions will be $A c, B d$, the diagonals of the parallelograms $\mathrm{A} c \mathrm{C}$, and $\mathrm{BH} d \mathrm{D}$. Conltuct the figure as before, and we fee that the relative motion is now ec, and that it is the fame with EC both in refpect of magnitude and pofition.

Here wa ftill fee the conftant analogy between the compofition of motions and the compolition of forces. In the firte cafe, the relative motions of things are not changed, whatever common motion be compounded with them all; or, as it is ufually, but inaccurately, exprefled, although the fpace in which they move be carried along with any motion whatever. In the iecond cafe, the relative motions and actions are not changed by any external force, however great, when equally exerted on every particle in parallel directions.

Thus it is that the evolutions of a fleet in a uniform current are the fame, and produced by the fame means, as in fill water. Thus it is that we walk about on the furface of this globe in the fame manner as if it neither revolved round the fun, nor turned round its axis. Thus it is that the fame ftrength of a bow will communicate a certain velocity to an arrow, whether it is fhot eaft, or weft, or north, or fouth. Thus it is that the mutual actions of fublunary bodies are the fame, in whatever directions they are exerted, and notwithflanding the vers great changes in their velocities by reafon of the earth's rotation and orbital revolution. The real velocity of a body on the earth's equator is about 3000 feet per fecond greater at midnight than at midday. For at midnight the motion of rotation nearly confpires with the orbital motion, and at midday it nearly oppofes it. The difference between the velocities at the beginning of January and the beginning of July is vally greater. And at other times of the day, and other feafons of the year, both motions of the earth are tranfverfely compounded with the eafterly or wefterly motion of an arrow or cannon bullet. Yet we can obferve nochange in the effets of the mutual adions of bodies.
'This is an important obfervation; becaufe it proves
that forces are to be mealured by no other fcalc than Secondlaw by the motions which they produce. We have had re- of Motion peated occafions to mention the very different eflima. 68 tion of moving forces by Mr Leibnitz ; and have thewn Thisaffords how, by a very partial confideration of the action of a demonthofe natural powers called preffures, he has attempted fration of to prove, that moving forces are proportional to the the proporfyuares of the velocities; and we fhewed briefy, in what moving manner a right confideration of what pales when mo. forces to tion is produced by meafurable preflures, proves that the motions the forces really exerted are as the velocities produced. But the mof copious proof is had from the prefent obfervation, that, in fact, thee mutual actions of bodies depend on their relative motions alone.

The Leibnitzian meafure of moving force is altoge- And is inther incompatible with the univerfal fat now mention- compatible ed, viz. that the relative motions of bodies, reful:ing with their from their mutual actions, are not afiected by any com- - proportionmon motion, or the action of ariy cqual ard parallel fquares of force on both bodies: for this univerfal fact imports, thofe mothat when two bodies are moving with equal velocities tions. in the fame direction, a force applied to one of them, fo as to increafe its velocity, gives it the fame motion relative to the other, as if both bodies had been at reit. Here it is plain, that the fpace defcribed by the body in confeguence of the primitive force, and of the force now added, is the fum of the fpaces which each of them would generate in a body at relt. Therefore the forces are proportional to the velocities or changes of moti $\sim$ n which they produce, and not to the fquares of thofe velocities. This meafure of forces, or the poftion that a force makes the fame change on any velocity whatever, and the independence of the relative motions on any motion that is the fame on all the bodies of a fyftem, are counterparts of each other. Since this independence is a matter of obfervation in all terreftrial bodies, we are intitled to fay, that the powers which the Author of Nature has imparted to natural bodies are no way different from what are competent to matter once called into exittence. And it alfo follows from this, that we mult always remain ignorant of the abfolute motions of bodiesa. The fact, that it has required the unremitted ftudy of ages to difcover even the relative motions of our folar fytem, is an argument to prove that the influence of this mechanical principle catends far beyond the limits of this fublunary world; nor has any phenomenon yet been exhibited which fhould lead us to imagine that it is not univerfal.

When we have made ufe of theie arguments with So Bermoulfome zealous porttizans of Mr Leibnitz's doftrine, they li's defence have anfwered, that if indeed this independence of the of this lant relative motions of terreffrial bodies were obferved to without obtain exaally, it would be a conclufive argument. foric. But the motion with which all is carried along is fo great in comparifon with the motions which we can produce in our experiments, that the fmall additions or diminutions that we can make to the velocity of this common motion mult obferve very nearly the proportions of the additions or diminutions of their fquares. The differences of the fquares of 2,3 , and 4 , are very unequal ; but the differences of the fquares of $9,10,11$, are much nearer to the ratio of equality; and the differences of the fquares of 1000001,1000002 , 1000003 , do not femibly deviate from this ratio. But it is not fact that we cannot produce motions which have a
sccondLaw very fentifle proportion to the common motion. The of Motion. motion of a cannon ball, difcharged with one-third
of its weight of powder, is nearly equal to that of the rotation of the earth's equator. When, therefore, we difcharge the ball ealtward, we double its motion; when to the weftward, we deftroy it. Therefore, according to Leibnitz, the action in the firlt cafe is three times the action in the fecond. In the firlt cafe it changes the fquase of the velocity (which we may call I) from I to 4; and, in the fecond, it changes it from 1 to 0 . But fay the Leibnitzians, the velocity of rotation is but $\frac{2}{03}$ of the orbital velocity of the earth, and our obfervations of the velocities of cannon bullets are not fufficiently exact to enfure us againft an crror of $\frac{1}{31 \frac{1}{2}}$.

But the later obfervations on the peculiar motions of the fixed fars concur in fhewing, that the fun, with his attending planet, are carried along with a very great motion, which, in all probability, has a fenfible ratio to the orbital motion of the earth. This mult make a prodigious change on the earth's abfolute motion, according as her orbital motion confpires with, oppofes, or croffes, this other motion: the earth may even be at abfolute relt in fome points of its orbit. Thus will the compofition with the motions produced in our experiments be fo varied, that cafes mult occur when the difference of the refults of the two meafures of force will be very fenfible.

But, farther, they have not attended to the agreement of our experiments, when the difcharges of cannon are made in a direction tranfverfe to that of the common motion. Here the immenfity of the common motion, and the minutenefs of our experimental velocities, can have no effect in diminilhing the difference of the refults of the two doctrines. This will appear diftinctly to every reader who is much converfant in dif. quifitions of this kind: and it is in thefe more moderate motions that the complete independence of the relative motions on the common motions mof accurately appears. Pendulum clocks and watches have been often executed which do not deviate from perfect equability of motion one part in $86_{q}+0$. This could not be obtained in all directions of the ofcillations, if the forces deviated from the ratio of the velocities one part in 36400 .

On the whole, we may confider it as eftablifhed on the fireft foundation, that the action of thofe powers of natural bodies which we call prefures, fuch as the force of fprings, the exertions of animals, the cohefion of bndies, as well as the attion of thofe other incitements to motion which we call attragions and repulfions, fuch as gravitation, magnetifm and electricity-is proportional to the change of velocity produced by it. And we muit obferve here, that this is not a mere mode of conception, the refult of the laws of homan thought, which cannot conceive a natural power as the caufe of motion otherwife than by its producing motion, and which cannot conceive any degree of moving power different from the degree of the motion. This is the abfract doctrine, and is true whether the preffures are proportional to the velocities, or to the fquares of the velocities. But we fee farther, that whatever is the preflure of a fpring (for example) on a quielicent body, yet the preflure actually exerted in producing a double velocity is only double and not quadruple as our firft imperfect oblervations make us imagine.

Sir Iface Newton has added another propofition to
the number of laws of motion, namels, that every action is accompanied by an equal and contrary reation. But in affrming this to be a law of nature, he only means that it is an univerfal fact ; and he makes this affirmation on the authority of what he conceives to be a law of human thought; namely, that thofe qualities which we find in all bodies on which we can make experiments and obfervations are to be confidered as univerfal qualities of body. But we have limited the term lazw of motions to thofe confequences that necerfarily flow from our notions of motion, of the caures of its production and changes. Now this third Newtonian propofition is not fuclt a refult. A magnet is faid to act on a piece of iron when, and only when, the vicinity of the magnet is obferved to be accompanied hy certain motions of the iron. But it by no means follows from this obfervation, that the prefence of the iron thall be accompanied by any motion, or any change of Pate whatever of the magnet, or any appearance that can fugget the notion that the iron acts on the magnet. When this was obferved, it was accounted a difcovery. Newton difcovered, that the fun acts on the planets, and that the earth aets on the moon; and Kepler difcovered, that the moon reacts on the earth. Newton had obferved, that the iron reatts on the magnet ; that the aations of eleftrified bodies were mutual; and that every action of fublunary bodies was, in fact, accompanied by an equal and contrary reaction. On the authority of his rule of philofophizing he affirmed, that the planets reait on the fun, and that the fun is not at relt, but is continually agitated by a fmall motion round the general centre of gravitation. He pointed out feveral confequences of this reaction. Aftonomers examined the celeftial motions more narrowly, and found that thofe confequences do really obtain, and difturb all the planetary motions. It is now found that this reciprocity of action obtains thrcughout the folar fyftem with the utmof precifion, and that the third Newtonian propofition is really a law of nature, although it is not a law of human thought. It is a difcovery. The contrary involves no abfurdity or contradiation. It would indeed be contrary to experience; but things might have been otherwife. It is conceivable, and polible, that a ball A thall Arike another equal ball B , and carry it along with it, without any diminution of its velocity. The fact, that the velocity of $A$ is reduced to onehalf, is the indication of a force refiding in $B$, which force changes the motion of $A$; and the intenfity of this force is learned from the change which it produces. This is forvid to be equal to the change produced by A on $B$. And thus the reaction of $B$ is difcovered to be equal to the action of A .
It is highly probable, that this univerfality and equa. lity of reaction to ataion is the confequence of fome general principle, which we may in time difcover ; meanwhile we are intitled to fuppofe it univeralal, and Maupertuto reafon from this topic in our difquifitions about the is, Leibnitz, actions of bodies on each other.

Although the celebrated philofophers of Europe philofohave at laft agreed in the reception of the two propofi- entertained tions fo largely difcuffed by us as the laws of motion, very inadethey have differed exceedingly in their opinion about quate opitheir origin and validity : Some afferted that they are nions conentirely matters of experierce; while others affirmed foundation them to be necellary truths. The royal academy of of the laws Berlin of motion.

## D Y N A M I C.

Scondlaw Berlin made this queftion the fubject of their prize dif-
$\underbrace{\text { of Motion. }}$ fertation in the year 1744 . Mr Maupertuis, prefident of the academy, publifhed a differtation; in which he endeavoured to prove that they are neceffary truths, only becaure they are fuch as make the quantity of adion the leaft folible, an economy which is worthy of infinite wifdum; and therefore certainly directs the choice of the Author of Nature. On this account alone are they neceffary truths.

But this is not the way to confider a queftion of this kind. We know too little about infinite wifdom to be able in fay with Meffrs Leibnitz and Manpertuis, that the Deity floonld or fhould not imprefs on bodies laws different from thofe which are effential to matter; and we are nut to inquire whether God could or could not do this. We know from our own experience, that matter, when fubjected to the action of intelligence, may be moved in a way extremely different from what it would follow if left to itfelf, and that its motions may either be regulated by fixed, but contingent, laws, or may be without any conftancy whatever, and vary in every inftance. When we fuppofe the exiftence of matter and motion, a variety of truths are involved in the fuppofition, in the fame manner as all the theorems in the third book of Euclid's Elements are involved in the conception of a circle and a Atraight line. Our tirlt employment hould be to evolve thofe truths. We can do this in no way but by firft noticing the relations of the ideas that we have of the different objects of contemplation, and then following the laws of human thonght in our judgments concerning thofe relations. This procefs of the mind is expreffed in the train of a geometrical demontration. The different parts or argumentations of this train are not the caufes of our conclufions, but the means by which we form our judgment; not the reafons of the truth of our ultimate conclufion, but the Iteps by which we arrive at the knowledge of it. The young geometer generally thinks otherwife: But that this is the matter of fact is plain from this, that more than one demonflration, and often very different, can be given of the fame theorem. We mult proceed in the fame manner in the prefent queltion; and the firit general truths which we find involved in the notions of matter, motion and force, mult be received as neceffary truths. The fteps by which we arrive at the difcovery are the laws of human thonght ; and the expreffion of the difcovery, involving both the truth itfelf, and the manner of conceiving it, is a neceffary law of motion. There may be other facts, perhaps as general as any of thofe neceffary laws, but which do not necellarily refult from the relations of our notions of motion and of force. Thefe are difcovered by obfervation only; and they ferve to characterife the forces which niture prefents to our view. Thele facts are contingent laws of motion.

We apprehend that this method has been followed in treating this article. The firft propofition, tormed a larw of motion, is only a more convenient way of exprefing our contemplation of motion in body as an ef. fedt of the general caule which we term force. 'lhe fe. cond propolition does nothing but exprefs more diftinctly the relation between this caufe and its eflect; it expreffes what we mean by the magnitude and the kind of the caufe. The propofition, ftating the com. pofition of forces, is but another form of the fanc law,

Suppl. Vol. I.
better fuited to the ordinary procedure in geometrical difquifitions.

These propofitions might have completed the doctrines of dynamics; but it appears that, in order to the production of a material univerfe which fhould accomplifh the purpofes of the Creator, it was neceffary that there be certain characteriftic differences betwees the forces inherent in the various collections of matter which compofe this univerfe. The fars or phyfical laws (for the above-mentioned laws are metaphyfical) of motion may be different from thofe which would have been obferved had matter been left entirely to itfelf. 'This difference may have introduced other laws of motion as neceffarily refulting from the nature of the forces. We have occafionilly mentioned fome inAtances where this appears to obtain, but gave good reafons for affirming, that a due examisation of all circumftances which may be olferved in the production or variation of motion by thofe forces, has demonfrated, that there are no fuch deviations from the two laws of motion already determined, but that all the mechanical powers of bodies, when confidered merely as caufes of motion, act agrecably to the fame laws. Careful examination was, however, faid to be neceflary.

This examination mult confift in diftinetly noticing the circumftances that occur in the production of motion by any force whatever. It is by no means enough to Itate fimply the intenfity of the force and the direction of its exertion. If a force continue to act, it continues to vary the motion already produced. Should the force change its intenfity or direction while it is adting, thefe circumftances must induce ftill farther changes in the motion; and it is not till all action has ceafed, that the motion is brought to its oftenfible fate in which it is the object of our attention and our future difcuffions. Inftances of the effects of fuch continued, and fuch varied actions are to be feen in molt of the phenomena of nature or art. The communication of motion by impulfe is perhaps the only inllance (very frequent indeed) that can be produced where this is not neceffary: Nay, we fhall perhaps find reafon to conclude, that this inftance is not an exception, and that even the communication of motion from one billiard ball to another, is brought about by an action continued for fome time, and greatly varied during that time. Much preparation is therefore neceflary before we can apply the general laws of motion to the folution of molt of the queltions which come before us in the courfe even of our elementary difquifions. We mult lay down fome general propofitions which determine the refults of the continued, and perhaps varied, actions of moving forces; and we mult mark the different effects of the fimple continuation of action, and alfo thofe of the variations in this continued action, both in refpect of intenfity and direction. The effect of a mere continuance of action mult be an acceleration of the motion; or a retardation of it, if the force continue to aft in the oppolite direction. The effect of the continued action of a tranfverfe force mult be a continual deflection, that is, a curvelineal motion. Thete mult therefore now occupy our attention in their order.

Of Accelerated and Retarded Motions.
All men can perceive, that a tone dropped from 4 I the

## 606



Of Accel- the hand, or fliding down an uniform flope, has its yated and Retarded Motions.

71
Circum-
fantial expolition of our conception of the condition of a body in refpect to motion. motion continually accelerated, and that the motion of an arrow rifing perpendicularly through the air is continually retarded; and they feel no dificulty in conceiving thefe changes of motion as the effects of the contisual oper ation of their weight or heavinefs. The falling Itome is in a different condition in refpect of motion in the begmning and the end of its fall. In what refpect do thefe tures of the body differ? Only in refpes? to what we call it, velocity. Tus is an aftextion of motion; it is an expreflion of the relation between the two notions or ileas which coricur to furm the idea of motion, amely, the face and the time. Thefe are all the cir- cambances that we oberve in a motion. Time elaples, and during its currency a fpace is deferibed. The term recocily exprelfe, the magnitude of the face whish correfponds to fome unit of time. Thas, the rate of a thip's moit in is determinel, when we fay that it is nine miles in an hour, or nine miles per hour. We fomelines fay (but atikwardly) "The motion is at the rate, or with the velncitr, of a mile in three days." It is moll conveniently exprefed by a number of fome given units of length, which completely make up the line defreribed during thes unit of time. But the mechanicians express it in a way more general by a fraction, of which the numerator is a number of inches, feet, yards, fathoms, or miles, and the denominator is the number of feconds, mirutes, ar hours, employed in moving along this line. This is a very proper expreffion; for when we fpeats of any velocity, and continue to reafon from it, we conceive ourfelves to fpeak of fomething that remains the fame, in the different occafions of ufing the term. Now if the velocity be conflant, it is indifferent how long the line may be; becaule the time of its defetiption will be lengthened in the fame proportion. Thus if $4^{8}$ feet be defcribed in 12 feconds, 36 feet will be defcribed in 9 seconds, 16 feet will be defcribed in + feconds, Sec. Now $\frac{48}{2}, \frac{36}{9}$, and $\frac{16}{4}$, are fractions of equal value, being equal to $\frac{4}{2}$, or 4 , that is, to the velocity of 4 feet per fecond. The value of this fraction, or the quatient of the number of the urits of length, divided by the number of units of time, is the number of thofe units of length defcribed uniformly in one unit of time.
Maraitude of a velocity of which we hive 110 actual meafurc.

But how fhall we determine the velocity in any infant or in any point of a motion that is continusilly changing? Suppofe that a body has fallen 144 feet, and that we would afcertain its velocity in that point of its fall, or the velocity which it has in pafing through that point? In the ne:t fecond the body falls 112 feet futher. This cannot be the meafure of the velocity at the begianing of the fourth or the end of the third fecond. It is two great. The fall during the preceding fecond was 80 feet. This is too fmall. The nean of thefe two, or $\frac{80+112}{2},=\frac{192}{2},=96$, is probably more exat. Due attention to the nature of this motion flews us, that 96 is the proper meafure, or that the motion at that intant is at the rate of 96 feet per fecond. But it is peculiar to this kind of motion that the half fum of the fpaces defcribed in two fucceeding equal moments is the meafure of the velocity in the middle inflant. Therefore this method will not generally give an accurate meafure. Yet it is indifpenfably neceffary to obtain fome accurate meafure; for it is in this par-
ticular alone that the flate of the body differs from its Of Accelsfimilar tate in another inflant. The difference of place rated and makes no diftinction; for if a body continue its motion Retarded unchanged, its condition in every different inftant of time, or point of ipace, is unchanged or the fame. 'The change of place is not a change of motion, but is involved in the very conception of the continuation of the motion. The change of consition conlitts, therefore, in the change of velocity: Therefore the change of velocity is the only indication, and the unly meafure of the action (perhaps accumulated : of the changing force. It is theletore the chief objeet of our fearch; and accu. rate meafures of velocity are abfolutely neceliary.

When the velocity changes contiaualy, there can be no ailual meafure of it. In what then does the magnitude of a relocity conlitt, when there is no actual meafure of it? It is a certain uadefcribable determana. TION; by which, if not changed, a certain face would be uniformly defcribed in a given unit of time. Thus we know, that it, when a ftone has fallen 16 feet, its motinn be directed along a horizontal plane, without diminution, it will move on for ever at the rate of 32 feet per fecond. The fpace which would be thus cefcribed is not the velocity, but the meafure of the velocity. But the proportions of thofe faces, being the proportions of thofe meafures, are the proportions of the velocities themflves. We may difcover thefe proportions in the following manner:

Let ACG (fig. 13.) be a line defcribed by a body with a motion anyhow continually, but gradually, va ried; and let it be required to determine the proportion of the velocity in any point $C$ to the velocity in any other point $F$.
$A \times r o n$. - If $A$ be to $B$ in a ratio that is greater than any ratio lefs than that of C to D , but lefs than any ratio greater than that of $C$ to $D$, then $A$ is to $B$ as $C$ to $D$. Take the Araight line acg to reprefent the time of the body's motion along ACG, fo that the points $a, c$, tions. $f, g$, may reprefent the infants of time in which the body palfes through the points $A, C, F, G$; and the portions ac, cf, $f g$, of the line $a_{g}$, may reprefent the times employed in defcribing the pnrtions $A C, C F$, FG; and therefore $a c$ is to af as the time of defcribing $A C$ to the cime of defcribing $A F$.

Moreover, let $b k n o$ be a line fo related to the Atraight line $a$ cf $g$, by the perpendicular ordinates $a l$, $c k, f n, g o$, that the areas $a c k b, a f n b, a g o b$, may be proportional to the portions $A C, A F, A G$, of the line defcribed by the moving body; and let this rela. tion be true with refpect to every point $\mathrm{B}, \mathrm{D}, \mathrm{E}$, \&c. and the correfpouding points $b, d, e$, \&c.

Thea it is affirmed, that tios velucity in the peint C is to the velocity in the point F as $\subset k$ is to $f \%$

Let the equal lines $b c, c d, e f, f j$, reprefent equal moments of time, and let $B, D, E, G$, be the points through which the body is paling at the inftants $b, d$, $e, g$. Then the areas bikc,ckld, ennf,fnog, will reprefent, and be proportional to, the fraces $B C, C D$, EF, FG, which are defcribed during the moments $b c$, cd, ef,fo.

Draw $t \hat{p}$ parallel to $a g$, fo as to make the rectangle $b t p c$ equal to the trapezium $b i k c$; and draw the lines $g v, u r, s x$, in the fame manner, fo that each reatangle may be equal to its correfponding trapezium.

If the motions had been uniform during the mo-
$\qquad$
 -


[^9]
## D Y N A

of Accelc- merts $b c$ and $f g$, that is, if the fpaces BC and FG had rated and been uniformly defcribed, then the velocity in the point Fetarded Motions. $\underbrace{\text { Notins. }}$ C would have been to the velocity in the point F as $c p$ to $f s$ : For fince the reatangles $b t p c$ and $f s x g$ are re-
fpetavely equal to the trapeziums $b i k c$ and $f n \circ g$; and fince likc is to $f n o g$ as BC is to FG , the rectangle $b t p c$ is to the rectangle $f s x g$ as BC to FG. But becaufe thefe two rectangles have equal altitudes $b c$ and $f g$, they are to each other in the proportion of thcir bafes $c p$ and $g x$, of $c p$ and $f s$. Therefore BC is to FG as $c p$ to $f s$ s. But it BC and FGare uniformly defcribed in equal times, they are proportional to the velocities of thofe uniform motions. Therefore $c p$ is to $f s$ as the velocity with which BC is uniformly de. feribed to the velocity with which FG is uniformly defrribed in an eqqual time.

But the motion expreffed by the figure is not uniform, becaufe the line blo recedes from the axis a $g$, and the areas, cut off by the parallel ordinates, increafe in a greater proportion than the correfponding parts of the axis; that is, the foaces increafe fafer thati the times, for the moments $b c, c d, c f, f o$, being all equal, it is evident that the co:refponding flips of the area continually augment. The motion is fiwifter at the inftan: $c$ than at ine inflant $l$, and the velocity at the inflant $c$ is greater 0he that with which the fpace BC would be unformly cuscribed in the fame time. For the fame reafon, the velccity at the inflant $f$ is lefs than that with which the fpace FG would be uniformly defcribed in the fame time. Therefore the velocity at the infant $c$ is to the velocity at the inftant $f$ in a greater ratio than that of $c p$ to $f s$. In the very fame manncr, it will appear, by comparing the motion during the moment $c d$ with the motion during the moment $o f$, that the velocity at the inftant $c$ is to the velocity at the inftant $f$ in a lefs ratio than that of $c q$ to $f r$.

Therefore the velocity in the point C is to the velocity in the point $F$ in a greater ratio than that of $c p$ to $f s$, but in a lef's ratio than that of $c q$ to $f r$.

But by continually diminifhing the equal moments $b c, c d, e f, f_{s}$, it is evident that $c p$ and $c q$ continually approach to equality with $c k$; and $f r$ and $f s$ continual15 approach to equality with $f n$, that when $c p$ is lefs than $c k, f s$ is creater than $f n$, and when $c q$ is greater than $c h, f r$ is lefs than $f n$.

Therefore the velocity in the point C is to the velocity in the point $F$ in a ratio that is greater than the ratio of any line lcfs than $c k$ to any line greater than $f n$, but which is lefs than the ratio of any line greater than $c k$ to any line lefs than $f n$. Thesetore the ratio of the velocity in C to the velucity in F is greater than any ratio that is lefs than that of $c k$ to $f n$; but it is lefs than any ratio that is greater than that of $c k$ to $f n$. Therefore the velocity in the point C is to the velocity in the print $F$ asc $k$ to $f n$.

This important theorem may be expreffed in more seneral terms as follow's:

If the abjifur a $g$ of a line h k 0 reprefont the tine of ray motion, and if the areas bounded by parallel ordinates be profortional to the fpaces deforibed, the ordinates are proporitional io the velocilies.

Remark. The propriety or aptitud: of exprefing the time by the portions of the axis a $c g$, will, perlaps, arpear more clearly in the following manner.
Let $a c z$ be any fraight line, and let $b k v$ be ano.
$M \quad \mathrm{C} \quad \mathrm{S}$.
ther line, ftraight or curved. Let the Araight line $a b z$, of Acceleperpendicular to ag, be c:irried uniformly down along rated and this line, kecping always perpendicular to it, and there- $\begin{gathered}\text { Retarded } \\ \text { Alotions. }\end{gathered}$ fore always parallel to its firt pofition $a b z$. In its $\underbrace{\text { Motions. }}$ various fituations $c k \approx, c m \approx$, \& c. it will cut off areas ackb, acin $h$, $\hat{\alpha} c$. bounded by the axis by the ordinates $a b$ and $c k$, or by the ordinates $a b$ and $c m$, \&cc. and by the line $b k g$. By this motion the moveable ordinate is faid, in a language of modern geometry, to gencrute the areas ackb, ae $n=1, \& \mathrm{c}$. At the fame time, let a point A move along the line ACG, fetting out from $A$ at the inftant when the line $a \approx$ fets out from $a$; and let the motion of the point $A$ be foreFulated, that the faces $A B, A C, A D, \& c$. generated by this motion, may increafe at the fame rate with the areas $a b, i b, a c k b, a d l b, \delta i c$. or fuch that we fhall have AB to AC as abib to ackb, \&c. It is plain, that the motion along AG is the fame with thit defcrioed in the enunciation of the propofition: for becaufe the motion of the ordinate $a z$, along the axis $a g$, is fuppofed to be uniform, the fpaces $a b, a c, a d, \& c$. are proportional to the times in which they are defcribed, and may therefore be taken to meafure or to reprefent thofe times.

Cor. I. In a motion continually varied, the velocities in the different points of the path are to each other in the limiting or ultimate ratio of the Spaces defribed in cqual times, thofe times being fuppofed to diminilla continually: for it is evident, that if the equal moments $b c, c d, e f, f g$, are fuppofed to diminifh continually, till the intants $b$ and $d$ coalefce with $c$, and the indants $e$ and $g$ coalefce with $f$; then the ratio of $c k$ to $f n$ is the limit of the continually increafing ratio of $c p$ to $f s$, or of the continually diminifling ratio of $c q$ to $f r$. Sir Ifaac Newton calls this the ultimate satio of $c p$ to $f s$, or of $c q$ to $f r$. Now the ratio of $c p$ to $f s$ is, by cinArustion, the fame with the ratio of the rectangle $b t p c$ to the rectangle $f s x g$, and the ratio of $c q$ to $f r$ is the fame with the ratio of the reftangle $c q v d$ to the reaangle eurf. But the ratio of the reetangle $b t p c$ to the rectangle $f s \times g$ is the fame with the ratio of the fpace $b i k c$ to the pace $f$ nog; that is (by hypothefis), the fame with the ratio of the fpace BC to the fpace FG ; and the ratio of the rectangles $c q v d$ and $e$ u $t^{\prime} f$ is the fame with that of the fpaces CD and EF. Therefore the ratio of the velocity at $C$ to the velocity at $F$ is the fame with the nleimate ratio of the finall increments $\mathrm{BC}, \mathrm{FG}$, or CD, EF of the fpaces gentrated in very fmall and equal times.

It is allo evident, that becaufe the ratio of $c k$ to $f n$ is the limit both of the ratio of $c p$ to $f s$ ard of the ratio of $c q$ to $f r$, thefe altimate ratios are the fame, and that we may fay that the velocity in C is to the velocity in F in the ultimate ratio of BC to EF , or in the ultimate ratio of CD to FG.

We alfo can eaffly perceive, that the ratio of the area bikc to the area emnf approteles more near to the ratio of $c k$ to $f n$ as we take the moments $b c$ and ef fimaller. Therefore, in many cafes of pratice, where it may be eaty to meafure the fpaccs defribed in the different fimall mements of the motion, but difficult to afcertain their ultimate ratio, fo as to obtain accurate meafures of the propnrtions of the velocities, we may reduce the errors of meafurement to fomething very infignificant, by taking thefe moments cxtremely fmall; 412
and

Of Accelorated and Retarded Motions.
and we flall diminifh the error aill more, by taking the proportion of the half fum of $B C$ and $C D$ to the half fum of EF and FG for the proportion of the velocities in C and F .
It often happens that we have it not in our power to compare the faces defribed in finall moments which are precifely equal. Still we can find the exact proportion of the velocities, if we can afcertain the ultimate ratio of the increments of the fpaces, and the ultimate ratio of the moments of time in which thefe increments are defrribed: for it is plain, by confidering the gradual apptoath of the points $p$ and $r$ to the points $k$ and $n$, that the ratio of $c k$ to $f n$ is fill the ultimate ratio of the bafes of rectangles equal to the mixtilineal areas, whether the altitudes (reprefenting the moments) are equal or not. Now the bafes of two reAtangles are in the propertion of the rectangles directly, and of their altitudes inverfely. But the ultimate ratio of the altitudes is the ultimate ratio of the moments, and the ultimate ratio of the reatangles is the ultimate ratio of the fpaces defcribed in thofe unequal moments. Therefore, in fuch cafes, we have,

Cor. 2. The velocities are in the ratio compounded of the dircti ultimate ratio of the momentary increments of the jpaces, and the inverfe ulimute ratio of the increments (or moments) of the times in wobich there increments of the fpaces are made.

If $s, v$, and $\ell$, are taken to reprefent the magnitudes of the fpaces, velocities, and times, and if $\dot{s}, \dot{v}$, and $\dot{i}$, are taken always in the limiting or ultimate ratio of their momentary increments, we fhall have $v$ always in the proportion of $s$ directly, and of $i$ inverfely. We exprefs this by the proportional equation $v \doteqdot \frac{s}{i}$, which is equivalent to the analogy $\mathrm{V}: v=\frac{\dot{\mathrm{S}}}{\mathrm{T}}: \frac{\dot{j}}{i}$, or $\mathrm{V}: v$ $=\dot{s} i: \dot{s} \dot{\mathrm{~T}}$.
$N . B$. Here obferve, that this is not the only way of ftating the relation of fpace and time-the abfciffa may be made the time and the ordinate the face; then the velocity $=\frac{-\dot{y}}{\dot{x}}$.

The converfe of this propofition may be thus ex-
preffed.

If the axis a g of the line h k o reprefent the time of a varied motion along the line AG, and if the ordinates a $h$, b i, $\mathrm{c} k, \xi^{\circ} \mathrm{c} . \mathrm{be}$ as the velocities in the inffants $\mathrm{a}, \mathrm{b}, \mathrm{c}$, or in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$; then the areas a bih, a ckh, ad $1 \mathrm{~h}, \mathrm{E}_{\mathrm{c}}$. are proportional to the Spaces $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$, vic.

This may be demonfrated in the fame way with the former ; but the indireft demonftration is more brief, and equally ftrict.

If the fpaces AC, AF, \&c. are not proportional to the areas a $c k b, a f n h, \& c$. they are proportional to fome other areas a $c k b^{\prime}$, a $f n^{\prime} b^{\prime}$, \&c. which are bounded by the fame ordinates, and by another line $b^{\prime}$ k $n^{\prime}$. But becaufe the areas $a c k b^{\prime}, a f n^{\prime} b^{\prime}$, \&c. are always proportional to the fpaces $\mathrm{AC}, \mathrm{AF}, \mathrm{sc}$. defcribed on the line AG, the velocity in the point $C$ is to the velocity in the point F as the ordinate $c k$ is to the ordinate $f n^{\prime}$. But, by hypothefis, the velocity in C is to the velocity in $\mathbf{F}$ as $6 k$ to $f n$ and $f n^{\prime}$ is equal to $f n$;
which is abfurd. Therefore the fpaces AC, AF, are of Accelemnot proportional to any other areas, \&cc.

Cor. The uitimate ratio of the momentary increments of the fpaces is compounded of the ratio of the ve'oci. ties, and the ultimate ratio of the increments of the times: for when the moments $b c$, ef, are equal, it is evident, that the ultimate ratio of the rectangles $b c p t$, ef $r u$ is the fame with the ultimate ratio of the increments of the fpaces. But the ultimate ratio of thefe rect.angles is the fame with that of their bafes $c p$ and $f r$; that is, the ratio of $c k$ to $f n$, that is, the ratio of the velocities, and when the moments are unequal, the ratio of the rectangles is compounded of the ratio of their bafes, and the ratio of their altitudes : that is, compounded of the ratio of the velocities and the ultimate ratio of the moments of time.

We have, therefore, $\dot{S}: \dot{s}=\mathrm{VT}: v i$, and $\dot{s} \doteqdot v i$.
It moft commonly happens, that we can only obferve the accumulated refults of varied motions; and in them we only obferve a fpace putfed over, and a certain portion of time that has eldpfed during the motion. But being able to diftinguifh the portions of the whole face which are defcribed in known portions of the whole time, and having made fuch obfervations in feveral parts of the motion, we difcover the general law that the motion affects, and we affirm this law to hold univerfally, even though we have not oblerved it in every point. We do this with a degree of probability and confidence proportioned to the frequeacy of our oblervation. It is not till we have done this, that we can make ufe of the firf of thefe two propofitions, which enables us to afcertain the velocity of the motion in its different moments. Thus if we obferve, that a flone in falling, defeends one foot in the quarter of a fecond, if feet in a fecond, 64 feet in two feconds, and 144 feet in three feconds; the general law immediately oblerved is, "that the fpaces defcribed are as the fquares of the times;" for 1 is 1016 as the fquare of $\frac{1}{4}$ to the fquare of 1 , Again, 16 is to 64 as $1^{2}$ to $2^{2}$; and 16 is to 144 as $1^{2}$ to $3^{2}$. Hence we infer, with great probability, that the ftore would fall 36 feet in a fecond and a half; for 16 is to 36 , as $1^{2}$ to $1 \frac{1}{2}$; ; and we conclude in the fame way for all other parts of the motion.
This immediate obfervation of the analogy between A grod exthe fpaces and the fquares of the times fingeefts an eafy amplc of determination of the velocity in this particular kind of the geomemotion; and it merits particnlar notice, being very often referred to. We can take ag to reprefent the time; and then, becaufe the areas, which are to reprefent the fpaces defcribed mult be proportioned to the fquares of the portions of ag, we perceive that the line which comes in place of $b k 0$ muft be a ftraight line drawn from $a$. For example, the fraight line $a$ \& 2 . For this is the only boundary which will give areas $a b \&, a c x, a d d$, \&c. proportional to $a b^{2}, a c^{2}, a d^{2}, \& c c$. And we perceive, that any fraight line drawn from $a$ will have this property.

Having thus got our reprefentations of the times and the fpaces, we fay, on the authority of our theorem, that the velocity at the inflane $b$ is to the velocity at the inflant $d$ as $b \beta$ to $d \delta, \& c$. And now we begin to make inferences purely geometrical, and exprefs our difcovery of the velocities in a very general and fimple manner. We remark, that $b \beta$ is to $d \delta$ as $a b$ is to $a d$ :

Of Accele- and we make the fame affirmation concerning the magrated and Retarded Motions. $\underbrace{\infty}$ nitudes reprefented by thefe lines. We fay that the velocity at the inftant $b$ is to the velocity at the inftant $d$ as the time $a b$ is to the time $a d$. We fay, in terms Atill more general, that the velocities are proportional to the times from the beginning of the motion. We moreover perceive, that the fpaces are alio proportional to the fquares of the acquired velocities; or the velocities are as the fquare roots of the fpaces.

We can firther infer, from the properties of the triangle, that the momentary increments of the fpaces are proportionalos the momentary increments of the fquares of the times, or of the fquares of the velacities.

We alfo obferve, that not only the whole acquired velocities are proportional to the whole elapfed times, but that the increments of the velocities are pioportional to the times in which they are acquired; for $\pi$ x is to $p \phi$ as $b c$ to $l f, \& x$. Equal increments of velocity arc therefore acquired in equal times. Therefore fuch a mution may, in grea propriety of langudge, be deno. minated a uniformly accelerated motion; that is, a motion in ruibich we obferve the jpaces proportioned to the fquares of the times, is a motion uniformly accelerated; and $f_{p}$ aces in the duplicate ratio of the times firm the oftenfible characteriftic of an uniformly accelerated motion.

Laftly, if we draw $a$ parallel to the axis $a b$, we perceive that the rectangle $a e_{\varepsilon} \lambda$ is double of the triangle ae\&. Now becaufe a e reprefents the time of the motion, and e e reprefents the acquired velocity, the rec. tangle $a e^{\circ} \lambda$ will reprefent the fpace which would be uniformly defcribed with the velocity $e$ e during the time ae. But the triangle $a c$ o reprefents the face really defcribed with the miformly accelerated motion during the fame time. Hence we infer, that the fpace that is defcribed in any time, with a motion increafing uniformly from nothing, is one half of the fpace which would be uniformly defcribed during the fame time with the final velocity.

Thefe are but a part of the inferences which we may draw from, the geometrical properties of thofe reprefentations which we had felected of the different meafureable affections of motion. We may affirm, with refpest to the motions themfelves, all the inferences which relate to magnitude and proportion, and thus improve our knowledge of the motions.

We took the opportunity of this very fimple and perfpicuous example, to give our young readers a juft conception of the mathematical methoil of profecuting mechanical knowledge, and to make them fenfible of the unqueftionable authority for every theorem deduced in this manner.

One of the mof important is, to difcover the accumulated refult of a motion of which we only obferve the momentary increments. This is to be done by finding the are 1 , or prortions of the area, of the mixtilineal lpace agob; and it is evidently analogous to the inverie method of fuxions, or the integral calculus.

In moft caies, we mult dvail ourfelves of the corollary $\dot{\square}=v i$, and we ohtain the $r$ lution of our queltion only in the cafes where our knowledge of the quantities $s, i$ and $v$ (conlidered as geometrical magnitudes, that is, as lines and furfaces), enables us to difcover $s$ and $t$.

## Of Accelerating and Retarding Forces.

Having thus difcovcred the proportions of the ve. locities in motions varying in any manner whatever, we can obferve the variations which happen in them. Thefe variations are the effects, and the only marks and meafures of the changing forces. 'They are the characteriltics of their kinds (confidered merely as moving forces) ; that is, the indications of the directions in which they att ; for this is the only difference in kind of which they are fulceptible in this general pont of view. If they increafe the velocity, their direction mult be conceived as the fame with that of the previous motion; becaufe the refult of the action of a force is equivalent to the compotition of the motion which that force would produce in a quiefcent body with the motion already exiting ; and an increafe of velocity is equivalent to the cons fition of a motion in the fame direction.

Having no other mark of the force but the accelera. tinn, we have no other name for it in the abltact doctifines of dunamics, and we call it an accelerating force. Had it retarded the motion, we fhould have called it a retarding force.

In like manner, we have no meafure of the magnitude or intenfity of an accelerating force, but the acceleration which it produces. In order therefore to invelligate the powers which produce all the changes of motion, we muft endeavour to obtain meafures of the accelera. tion.

A continual increafe of velocity is the effect of the continued action of accclerating forces. If equal increments of velocity are produced in every fucceeding equal monent of time, we cannot conceive that there is any change in the accelerating force. Therefore a uniformly accelerated motion is the mark of the unvaried action of an accelerating force, that is, of the continued action of a conltant force; of a force whofe intenfity is always the fame. When therefore we obferve a body defcribe fpaces proportional to the fquares of the times, we mult infer that it is urged forward by a force whofe iutenfity does not change; and, on the other hand, a contlant force mull produce a uniformly accelerated motion by its continued action. And if any previous circumftances affure us of this continued action of an invaried force, we may make all the inferences which were mentioned under the article of uniformly accelerated motion. produces a double increment of velocity in the fame anacceleramation of its maguitude. And, in general, accelcrating velucity which they prodluce, by ading uniformly during the fame or equal times.

Suppofing them to at on a body at reft. Then the
velucity produced is itfelf the increment; and we mult fay, that accelerating forces are proportional to the ve-
locities which they gcnerate in a body in equal times. fay, that accelerating forces are proportional to the ve-
locities which they generate in a body in equal times. And becaule we found ( $n^{\circ} 79$.), that the fpace deferibed with a uniformly accelerated motion is lalf the flace which would be uniformly defcribed in the lame time with the fimal velocity, which foce is the direct mealure of this velocity, and becaule halves have the fanse proportion with the wholes-we may fay, that accelcrasing

Of Accels- accelerating forces are proportional to the fpaces through rating and whith they impcl a body from refliag equal times by tídir Retarding Forces. Another meafure. uniform athicn.

This is an important remark; becaufe it gives us an eafy meafure of the force, without the trouble of firtt computing the velocities. It alfo gives us the only di-
ftinet notion that we have of the meafurement of forces by the motions which they produce. When fpeaking of the compofition of forces, we diflinguiked or denominated them by the fides and diagonal of a parallclogram. Thefe lines muft be conceived as proportional to the fpaces through which the forces urge the body uniformly during the fmall and infenfible time of their action, which time is fuppofed to be the fane for boih forces; for the fides of the parallelngram are fuppofed to be feparately defcribed in equal times, and therefore to be proportional to the velocities generated of the confituent forces. If indeed the forces do not att uniformly, nor fimilarly, nor during equal times, we cannot $f_{1 y}$ (without fanther inveligation) what is the proportion of the intenfity of the forces, nor can we infer the compofition of their action. We muft at leale fupfofe, that in every inflant of this very finall time of their joint action, their direction remains unchanged, and that their intenfities are in the fame ratio. We fhall fee by and bye, that with thefe conditions the fides of the parallelogram are fill proportional to the velocities generated. In the mean time, we may take the faces through which a body is uniformly impelled from relt (that is, with a uniformly accelerated motion) as the meafures of the firces; yet thefe fpaces are but the balves of the meafures of the velocities. Then, if a body be moving with the velocity of 32 feet per fecond, and an accelerating force acts on it during a fecond, and if this force be fuch tbat it would impel the body (from a flate of reft) is feet, it will add to the body a velocity of 32 feet per fecond. Accordingly, this is the effect of gravity-the weight of a pound of lead may be confidered as a force which does not vary in its inrenlity. We know that it will caufe the lead to fall 16 feet in a fecond; but if the body bas already fallen 16 feet, we know that it is then moving with the velocity of $3=$ feet per fecond. And the faet is, that it will fall 48 feet farther in the next feennd, and will have acquircd the velocity of 64 feet per fecond. It has therefore received an augmentation of 32 feet of velocity by the a ation of gravity during the fecond fecond; and gravity is in fact a conllant force, canfing equal increments of velocity in equal times, however great the velocities mas be. It does not act like a ftream of fluid, whofe impulfe or ation diminithes as the folid body withdraws from it by yielding.

But fuppofing that we have not compared the increments of velocity uniformly acquired during equal times, in what manner fhall we meafure the accelerating forces? In fuch a cafe, that force mult be accounted double which generates the fame velocity, by acting unifurmly during half the time: for when the force is fuppofed invariable, the changes of velocity which it produces are proportional to the times of its action; therefore if it produces an equal velocity in half the time, it will produce a double velocity in an equal time, and is therefore a donble force. The fame may be faid of every proportion of time in which an equal change of velocity is produced by the uniform action
of an accelerating force. The force munt be accounied of Accelegreater in the fame proportion that the time requireo rating and for the production of a given velocity in a body is lefs. Retarding: Hence we infer, that accelirating forces are inverfity pro. portional to the times in which a siven change of velocity is froduced ly their uriform ation.
By combining thefe two propofitions we eltablifh this general theorem; locity whith they produce in a lody by their uniform accelerataftion direetily, and to the times in wwhich thefe chunges ing force, are $p$ roduced inverfely.
If, therefore, A and $a$ are the forces, $\mathrm{V}^{\prime}$ and $v^{\prime}$ the changes of velocity, and $\mathrm{T}^{\prime}$ and $t^{\prime}$ the portions of time in which they are uniformly produced, we have

$$
\begin{aligned}
& \mathrm{A}: a=\mathrm{V}^{\prime} i^{\prime}: v^{\prime} \mathrm{T}^{\prime},=\frac{\mathrm{V}^{\prime}}{\mathrm{T}^{\prime}}: \frac{v^{\prime}}{t^{\prime}} \\
& \text { And } \mathrm{a} \doteqdot \frac{v^{\prime}}{t^{\prime}} .
\end{aligned}
$$

The formula $a \doteq \frac{v^{\prime}}{t^{\prime}}$ is not reftricted to any particular marnitude of $v^{\prime}$ and $t^{\prime}$. It is true, therefore, when the portion of time is diminifhed without end; for fince the action is fuppofed uniform, the increment of velocity is leffened in the fame proportion, and the value of the fration $\frac{v^{\prime}}{t^{\prime}}$ remains the fame. The charaters or fymbols $v^{\prime}$ and $t^{\prime}$ are commonly ufed to exprefs finite portions of $v$ and $t$. The fymbols $\dot{v}$ and $t$ are ufed by Newton to exprefs the fame things taken in the ultimate or liniting ratio. They are ufually confidered as indefinitely finall portions of vand $t$. We Ihail abide by the formula $a \doteqdot \frac{\dot{v}}{i}$.

It mult always be kept in mind, thate and $t$ areab. Is an alh. fract numbers; and that $v$ refers to fome unit of fpace, frace numfuch as a frot, an inch, a yard; and that $t$ refers to ber. fome unit of time, fuch as an hour, a minute, a fecond; and especially that $a$ is the number of the dame units of fpace, which will be uniformly defribed in one unit of the time with the velocity generated, by the force aating uniformly during that unit. It is twice the fpace aftually defcribed by the body during that unit when impelled from rell by the accelerating firce. it is neceffary to keep hold of thefe clear ideas of the quantities expreffed by the fi mbols.

On the sther hand, when the meafure of the accelea. Meafure of ting force is previoully known, we employ the thenrem a change of a $t^{\prime}=v^{\prime}$; that is, the addition made to the velocity velocity. during the whole, or any part, of the time of the action of the force is obtained by multiplying the acceleration of one unit of time by the number of fuch units contained in $t^{\prime}$.

Thefe are eviden:ly leading thenrems in dynamics; Thefemea. becafe all the mechanical powers of nature come un- fures exdcr the predicament of acceierating or retarding fcrces. prefs the It is the collection of there in any fubject, and the $m$ an. greatent ner in which-tiey accompany, or are inherent in it, partow our which determine the mechanical charagter of that fub- of mechaject ; and therefore the phenomena by which they are nical nabrouglt into view are the characterific phenomena. ${ }^{\text {ture. }}$ Nay, it may cven be queftioned, whether the phenomena bring any thing more into view. This furce, of which
af Accele- we fpeak fo fimiliarly, is no object of diftinet contemraxing and plation; it is merely a fomething that is proportional Retarding $\underbrace{\text { Forces. }}$ to $\frac{\dot{v}}{\dot{i}}$. And when we obferve, that the $\frac{v}{i}$, found in the motions that refult from the vicinity of a body A, is double of the $\frac{v}{i}$, which refults from the vicinity of another body B ; we fay that a force refides in A , and that it is double of the force teliding in B. The asce'erations are the things immediately and truly ex. profled by thefe fymbols. And the whole fcience of denanacs may be completely taught with ut ance employing the worl force, or the concep ion which we imagine that we form of it. It is of tho ute till we come to lludy the mechanical hifory of bodies. Then, indeed, we mut have fume way of exprefing the fact, that an acceleration $=\frac{32 \text { feet }}{1^{\prime \prime}}$ is obferved in every thing on the firface of this globe; and that an acceleration $=$ $\frac{418 \text { feet }}{1^{\prime \prime}}$ is obferved over all the fuiface of the fun. Thefe facts are chardeteriftic of this earth and of the fun ; and we exprefs them footly by faying, that luch and fuch forces retide in the earth and in the fun. It will preferve us from many nilhakes and puzzling doubts, if we refolutely adhere to this meaning of the term force; and this will carry mathematical evidence through the 84 whole of our inveltigations.

As velocity is not an immediate nhject of contemplation, and all that we obferve of motion is a fpace and a time, it may be pinper to give an expreflion of this meafure of accelerating force winch involves no other idea. Suppofing the body to have been previoufly at relt, we have $a \doteqdot \frac{v}{t}$. Multiply both parts of the frastion by $t$, which does not change its value, and we have $a \doteqdot \frac{\pi t}{t^{2}}$. But $v t=s$; and therefore $a$ $\div \frac{s}{t^{2}}$.
The formula $a=\frac{s}{t^{2}}$ is equivalent to the proportion $:^{2}: 1=s: a$; and $a$ would then be the face through which the accelerating force would in pel the body in one unit of the time $t$. But this is only half of the mealure of the velocity which the accelerating force ge. neraes during that unit of time. For this reafm we did not exprefs the accelerating force by an ordinary equation, but ufed the fyn:bol $\doteq$. In this cafe, therefore, of uniform ation, we may exprefs the accelerating force by $a=\frac{25}{2^{2}}$.

The following theorem is of fill morc extenfive ufe ©s in all dynamical difquifitons.
Moly yene- Accelerating forces arc propartional to the momentary in. ral meafure of acceleraling firce.
crements of the fuuares of the vecocizies dircally, and as
the fpuces aiong which they are uniformly acquired inverfcly.
Let $A^{\prime} \mathrm{B}, \mathrm{A}^{\prime} \mathrm{C}$, and AD (fig. 14.), be three lines, defcribed in the fame or equal rimes by the uniform action of accelerating forces; the motions along thefe lines will be uniformly accelerated, and the lines them-
felves will be propart employed as their AD, defcribe the fenicircle ABCD, and apply the Retardiug other two lines $A^{\prime} \mathrm{B}, \mathrm{A}^{\prime} \mathrm{C}$ as chords $\mathrm{AB}, \mathrm{AC}$. Draw EB, FC perpendicular to AD. Take any fmall portions $\mathrm{B} b, \mathrm{C} c$ of AB and AC , and draw be, of perpendicular to AD, and Eb and Fk parallel to AB and AC.
Then, becaufe the triangles DAB and BAE are fimilar, we have $A D: A E=A D^{3}: A B^{2}$. And becaufe $A D$ is th $A B$ as the velocity generated at $D$ is to the velocity generated at 13 (the times being equal), we have $A D$ to $A E$ as the fquare of the velocity at D to the fquare of the velocity at $B$; which we may exprefs than:

$$
A D: A E=V^{2}, D: V^{3}, B
$$

For the fame reaf ins we have alfo

$$
\begin{aligned}
& A D: A F=V^{2}, D: V^{2}, C \text {. Therefore } \\
& A E: A F=V^{2}, B: V^{2}, C .
\end{aligned}
$$

But becaule in any uniformly accelerated motion, the faces are as the fquares of the acquired velocities, we have allo

$$
\begin{aligned}
& \mathrm{AE}: \mathrm{A}_{e}=V^{2}, \mathrm{~B}: \mathrm{V}^{2} l \text {, and } \\
& \mathrm{AF}: \mathrm{A} f=\mathrm{V}^{2}, \mathrm{C}: \mathrm{V}^{2} c \text {. }
\end{aligned}
$$

Therefore $\mathrm{E} e$ is to $\mathrm{F} f$ as the increment of the fquare of the velocity acquired in the motion along $\mathrm{B} b$ to the increment of the tquare of the velocity acquired along $\mathrm{C} c$.

But, by fimilarity of the triangles $A B D$ and Eeh, we have
$\mathrm{AB}: \mathrm{AD}=\mathrm{E} e: \mathrm{E} b ;$ and, in like manner,
$\mathrm{AD}: \mathrm{AC}=\mathrm{F} k: \mathrm{F} f$. Therefore
$\mathrm{AB}: \mathrm{AC}=\mathrm{E} e \times \mathrm{F} k: \mathrm{F} f \times \mathrm{E} b$.

Now $A B$ and $A C$ are proportional to the forces which accelerate the body along the lines $A^{\prime} B$ and $\mathrm{A}^{\prime} \mathrm{C} ; \mathrm{E}_{e}$ and $\mathrm{F} f$ are proportional to the increments of the fquares of the velocities acquired in the motions along the portions $\mathrm{B} b$ and $\mathrm{C} c$; and $\mathrm{E} b$ and $\mathrm{F} k$ are equal to thofe portions refpectively. The ratio of $A B$ 10 AC is compounded of the direat ratio of $\mathrm{E} e$ to $\mathrm{F} f$; and the inverfe ratio of $\mathrm{E} h$ to $\mathrm{F} k$. The propofition is therefore demonfrated.

The proportinn may be expreffed thus:
$\mathrm{AB}: \mathrm{AC}=\frac{\mathrm{E}_{e}}{\mathrm{~Eb}_{b}}: \frac{\mathrm{Ff}}{\mathrm{F} k}$, and may be expreffed by the proportional equation $A B \doteq \frac{\mathrm{Ee}}{\mathrm{E}_{j}}$ or, fymbolical$\mathrm{l} y, a \doteq \frac{\left(v^{2}\right)}{s}$.

Remark. Decaufe the motion along any of thefe $2 \boldsymbol{v}$ is bu: three lines is uniformly accelerated, the relation between one half fpaces, times, and velocities, may be reprefented bs of the inmeans of the triangle $A D C$ (fig. 15 .) ; where $A B$ reprefents the time, BC the velocity, and ABC the fpace. If $B C$ be taken equal to $A B$, the triangle is half of the Iquare ABCF of the velociry BC ; and the triangle ADE is balf ot the fquare ADEG of the velocity DE . Let $\mathrm{D} d$ and $\mathrm{B} b$ be two monerits of time, equal or unequal. Then D $a c \in$ and $B b c \mathrm{C}$ are ha'f the increments of the fquares of the velocities DE and BC , acquired during the moments $\mathrm{D} d$ and Bb . It was derncnfleated, that the ratio of the area D $?_{\text {t }}$ E to the area $\mathrm{B} b_{i} \mathrm{C}$ is compounded of the ratio of DE: to BC , and the ultimate ratio of $\mathrm{D} d$ to B b. But $\mathrm{D} d$
of Accele- and $\mathrm{B} b$ are refpecively equal to se and ac. Thererating and fore $\mathrm{D} d e \mathrm{E}$ is to $\mathrm{B} \dot{\mathrm{c}} \mathrm{C} \mathrm{C}$, in the ratio compounded of Retarding the ratio of DE to BC , and the ultimate ratio of se to $x c$. If we reprefent DE and BC by V and $v$, then se and $x c$ mult be reprefented by $V^{\prime}$ and $V^{\prime}$, the increments of V and $v$; and then the compound ratio will be the ratio of $\mathrm{VV}^{\prime}$ to $v v^{\prime}$; and if we take the ult:mate ratio of the moments, and confequentiy the ultimate ratio of the increments of the velocities, we have the ratio of $V \hat{V}$ to $v \dot{v}$. If, therefore, $V^{3}$ and $v^{2}$ reprefent the fquares of the velocities, $V \dot{V}$ and $v \dot{v}$ will reprefent, not the increments of thofe fquares, but half the increments of them.

We may now reprefent this propofition concerning accelerating forces by the proportional equation $a \stackrel{\text { 为 }}{ }$ $\xrightarrow{q} \underline{\sim}$; and we mult confider this as equivalent with $a=$ $s$
$\frac{V^{2}-v^{2}}{2(\mathrm{~S}-s)}$; keeping always in mind, that $a, \mathrm{~V}$, and $v$, relate to the fame units of time and fpace, and that $a$ is that number of units of the fale on which $S$ and $s$ are meafured, which is run over in one unit of time.
Neafure of This will be morc clearly conceived by taking an gravity confidered as all accelerating förcc.

Thenrems refpecting retarding forces. example. Let us afcertain the accelerative power of gravity, fuppofing it to att uniformly on a body. Let the fpaces be mealured in feet and the time in feconds. It is a matter of obfervation, that when a body has fallen 64 feet, it has acquired a velocity of 64 feet per fecond: and that when it has fallen 144 feet, it has acquired the velocity of 96 feet per fecond. We want to determine what velocity gravity communicated to it by acting on it during one fecond. We have $V^{2}=$ 9216 , and $v^{2}=4096$; and therefore $V^{\prime 2}-v^{2}=5120$. $S=144$, and $s=64$, and $S-s=80$, and 2 ( $S-s$ ) $=160$. Now $a=\frac{5120}{160},=32$. Therefore gravity has generated the velocity 32 feet per fecond by acting uniformly during one fecond.
86
The augmentation of the fquare of the velocity is pro. portional to the force and to the fipace jointly. For, becaufe $a=\frac{q \eta}{\dot{s}}$, we have $a \dot{s}=v \dot{v}$.

Thus we learn, that a given force, acting uniformly on a body along a given fpace, produces the fame increment of the iquare of the velocity, whatever the previous velocity may have been. Alfo, in the fame manner as we formerly found that the augmentation of the velocity was proportioned to the time during which the force has acted, fo the augmentation of the fquare of the velocity is proportional to the fpace along which it has acted.
It is pretty plain, that all that we have faid of the uniform action of an accelerating force may be affimed of a retarding force, taking a diminution or decrement of velocity in place of an increment. A uniformly retarded motion is that in which the decrements of velocity in equal times are equal, and the whole decrements are proportional to the whole times of action. Such a motion is the indication of a conflant or invariable force aeting in a direction oppofite to that of the motion. We conceive this to be the cafe when an arrow is thot perpendicularly upwards; its weight is conceived as a

## M I C S.

force continually preffing it perpendicularly downwards, of AccelcIn fuch motions, however great the initial velocity rating and may be, the body will come to reft; becaufe a certain Retarding determined velocity will be taken from the body in each equal fucceffive moment, and fome multiple of this will exceed the initial velocity. Therefore the velocity will be extinguifhed before the end of a time that is the fame multiple of the time in which the velocity was diminithed by the quancity above mentioned. It is no lefs evident, that the time in which any velocity will be extinguifled by an oppofing or retarding. force is equal to the time in which the fame force would generate this velocity in the body previounly at reft. Therefore,

1. The times in which different initial velocities will be extinguifhed by the fame oppofing force are proportional to the initial velocities.
2. The difances to which the body will go till the extination of its velocity are as the fquares of the initial velocities.
3. They are alfo as the fquares of the times elapfed.
4. The diftance to which a body, projected with any velocity, will go till its motion be extinguifhed by the uniform action of a retarding force, is one half of the fpace which it would defcribe uniformly during the fame time with the initial velocity.

Ir very rarely happens, that the force which accelerates the an rates the body acts uniformly, or with an unvaried in- nerally vatenfity. The attraction of a magnet, for example, in- riable in creafes as the iron approaches it. The preffure of a their intenfpring diminifhes as it unbends. The impulfe of a ftream of water or wind diminifhes as the impelled furface retires from it by yielding. Therefore the effects of accelerating forces are very imperfectly explained, till we have thewn what motions refult from any given variation of force, and how to difcover the variation of force from the obferved motion. This laft queftion is perhaps the moft important in the ftudy of mechanical na. ture. It is only thus that we learn what is ufually called the nature of a mechanical forice. This chiefly confilts in the relation fubfiling between the intenfity of the force and the diflance of the fubftance in which it refides. Thus the nature of that power which produces all the planetary motions, is confidered as afcertained when we have demonfrated that its preffure or intenfity is inverfely as the fquare of the diftance from the body in which it is fuppofed to refide.

Acceleration expreffes fome relation of the velocity and time. This relation may be geometrically expref. fed in a variety of ways. In figure 13 . the uniform acceleration or the unvaried relation between the velocity and the time is very aptly expreffed by the confant ratio of the ordinates and abiciffes of the triangle $a g v$. The ratio of $d \delta$ to $a d$ is the fame with that of $e \in$ to a $e$, or that of $f \phi$ to af, \&c.; or the ratio of the increment of velocity $\pi x$ to the increment of the time $\beta$ or or $b c$, or that of $i \phi$ to $\in i$, \&c. This ratio $x: \beta=$ is equivalent to the fymbol $\frac{i}{i}$.

But when the fpaces defcribed in a varied motion are reprefented by the areas bounded by a curve line $b k o$, we no longer have that conflant ratio of the increments of the ordinates and abfciffes.

Therefore,

Of Accele- Therefore, in order to obtain meafures of the accerating and Retarding Forces.

90
Their mean
fures in
fuch cafes
how ob-
tained?
Theorems of moft cx tenfive ufe. lerating forces, or at leaft of their proportions, lat the abfciffa $a$ eg (fig. 13.) of the line bko again reprefent the time of a motion. Bnt let the areas bounded by parallel ordinates now reprefent the velocities, that is, let the whole area increafe during the time $a \mathrm{~g}$ at the fame rate with the velocities of the motion along the line AG. In this cafe the ordinates $b i, c k, d i$, $\& c$. will be as the accelerations at the inftants $b, c, d$, ezc. or in the points $B, C, D, \& c$.

This is demonitrated in the fame way as the former propofition ( $\mathrm{n}^{\circ} 72$. ). If the accelerating force be fuppofed confant during any two equal moments $b c$ and $f_{g}$, the rechangles $b$ cpt and $f g x s$ would exprefs the increments of velocity uniformly acquired in equal times, and their bafes $c p$ and $f s$ would have the ratio of the accelerations, or of the accelerating forces. But as the velocities expreffed by the figure increafe fafter than the times during every moment, the force at the inftant $c$ is to the force at the inflant $f$ in a greater ratio than that of $c p$ to $f s$; but, for fimilar reafons, it is in a lefs ratio than that of $c q$ to fr ; and therefore (as in the other propofition) the force at the inftant $c$ is to the force at the inftant $f$ as $c k$ to $f n$.

Cor. Becaufe $c p$ is to $f s$ in the ratio compounded of the direct ratio of the rectangle cptb to the rectangle $f s x g$, and the inverfe ratio of the altitude $b c$ to the altitude $f g$; and becaufe thefe rectangles are pro. portional to the increments of velocity, and the altimate ratio of the altitudes is the ultimate ratio of the moments or inctements of the time-we mult fay, that the accelcrating forces (lhat is, their interfities or preflures producing acceleration) are direaly as the increments of velocity, and inverfely as the increments of the times: Which propofition may be expreffed, in regard to two accelerations $A$ and $a$, by this analogy :

$$
\mathrm{A}: a=\frac{\dot{\mathrm{V}}}{\dot{1}}: \frac{\dot{v}}{\dot{t}}
$$

Or by the proportional equation $a \doteqdot \frac{\dot{v}}{\dot{t}}$. Alro a $\dot{t}$ $\doteq \dot{v}$, and $\int a \dot{i}=v^{\prime}$. And thus do thefe theorems extend even to the cafes where there cannot be oblerved an immediate meafure, either of velocity or of acceleration ; becaufe neither the fpace nor the velocity increafes uniformly.
nec Bar- The theorem $Q \doteqdot \frac{v}{i}$ is employed when we would
rowv's Lac. rozv's Lea. Geonetr. difonver the variation in the intenfity of fome natupaflim. ral power. We obferve the motion, and reprefent it by a figure analogous to fig. 13. where the abfilfa reprefents the times, and the area is made to increafe at the fame rate with the fpaces defcribed. Then the ordinates will reprefent the velocities, or have the proportion of the velocities. Then we may draw a fecond curve on the other fide of the fame abfififa, fuch that the areas of this laft curve fhall be proportional to the ordinates of the firtt. The ordinates of this laft curve are proportional to the accelerating forces.

On the other hand, when we know from other circumflances that a force, varying according to fome known law, acts on a body, we can determine its motion. 'The intenfity of the force ix every inflant being Suppl. Vol. I.
known, we can draw a line fo related to another line of Accelereprefenting the time that the ordinates fhall be pro- rating and portional to the forces: The areas will be proportional to the velocities. We can draw another curve to the fame abicifs, fuch that the ordinates of this fhall be pro. portional to the areas of the other, that is, to the velocities of the motion. The areas of this fecond curve will be proportional to the fpaces defcribed.
We mult now obferve, that all that has been faid concerning the effects of accelerating forces continually varying, relates to changes of motion, independent of what the abfolute motions may be. The areas of the line whofe ordinates reprefent the velocities do velocity; not $f$ rily not neceflarily reprefent the faces defcribed, but the means they change made on the finaces defcribed in the fame time; indicate imnot the motions, but the changes of motion. If, in. mediately the deed, the body be fuppofed to be at reft when the for ces begin to act, thefe areas reprefent the very fipaces operation of natural that are paffed over, and the ordinates are the very velocities. In every cafe, however, the accelerations are the real increments of the velocities.

This circumftance gives a great extenfion to our theorems, and enables us to afcertain the difurbances of any fecies of regular motion, apart from the motions themjelves, and thus avoid a complication which would frequently be inextricable in any other way. And this procefs, which is merely mathematical, is perfeetly conformable to mechanical principles. It is in fact an ap. plication of the ductrine of the compofition of motion: a doctrine rigidly demonftrated when we meafure a mechanical force by the change of motion which it praduces. Acceleration is the continual compofition of a new motion with the motion already prouluced.

We may learn from this invaligation of the value of No finite an accelerating force, that no finite change of velocity change of is effected in an inftant by the action of an accelerating force. When the fig. ${ }^{1} 3$. is ufed for the foale of acce ore. inan intaze thens, and acthe line $b k o$, the increment of velocity is reprefented celeratiog by an area, that is, by a flip of the whole area; which furce.
flip muft have fome altitude, or muft occupy fome por. tion of the abrifia which reprefents time. Some portion of time, however fmall it may be, mult elapfe before any meafurable addition can be made to the velo. city. The velocity muft change continually. As no motion can be conceived as inflantaneous, becaufe this would be to conceive, that in one infant the moving particle is in every point of its momentary path; fo no velocity can change, by a finite quantity, in one inftant ; becaufe this would be to conceive, that in that inftant the particle had all the intervening velocities. The inflant of change is at once the laft inftant of the preceding velocity, and the firt of the fucceeding, and therelore muft belong to both. This cannot be conceived, or is abfurd. As a body, in pafling from one part of fpace to another, muft pafs in fucceflion through all the intermediate places; $f 0$, in paffing from one velocity to another, it mult in fuccefinon have all the intermediate velucities. It mult be cortinually accelerated; we mult not fay gradualls, however frnall the neps.

But to return from this digreflion:
The mof frequent cafes which come under examination do not fhew us the relation between the forces and times, but the relation between the forces and fpaces.

4 IK
soming in-
Thus, to vicw.
of Acece- Thus, when a piece of iron is in the neighbourhood of rating and
Retarding Forces. a magnet, or a planet is confidered in the neighbourhood of the fun, a force is a ating on it in every point of its path, and we have difcovered that the intenfity of this force varies in a certain proportion. Thus. a fpring varies in its preflure as it unbends; gunpowder preffes lefs violently as it expands, \&c. \&c.

Our knowledge is generally corfined to fonme fuch effeet as this. We know, that while a body is moving along a line ADE (fig. $\mathbf{1}$.), it is urged forward by a force, of which the intenfity varies in the proportion of the ordinates BF, CG, DH, EI, \&c. of the line FGHI.

To invelligate the motion or change of motion produced by the action of this force, let CD be fuppofed a very fmall portion of the fpace $s$, which se may exprefs by s'. Draw GK perpendicular to DHI. Then, if we fuppofe that the force acts with the unvaried intenfity CG through the whole fpace CD, the rectangle CDKG will exprefs half of the increment of the fquare of the velocity ( $n^{\circ} 85$ ). We may fuppofe that the force acts uniformly along the adjoning frall face $10 r$ with the intenfity DH. The rectangle DH or will in like manner exprefs another half increment of the fquare of the velocity. And in like manner we may obtain a fucceffion of fuch increments. The aggregate or fum of them all will be half the difference between the fquare of the velocity at B and the fquare of the velocity at E .

If we employ $f$ to exprefs the indetermined or variable intenfity of the accelerating force, and $v$ to exprefs the variable velocity, and $v^{\prime}$ its increment uniform$l y$ acquired; then the rectangle CDKG will be expreffed by $f s^{\prime}$. We have feen that this is equal to $v v^{\prime}$. Therefore, in every cafe where we can tell the aggregate of all the quantities $f s$, it is plain that we will nbtain helf the difference between the fquares of the velocities in B and E , on the fuppofition that the intenfity of the force was conftant along each little fpace, and varied by ftarts. Then, by increafing the number, and diminilhing the magnitude, of thofe little portions of the fpace without end, it is evident that we terminate in the expreflion of the real flate of the cafe, $i$. e. of a force varying continually ; and that in this care the aggregate of thefe rectangles occupies the whole area AEIF, and is equivalent to the fluent of $f \dot{s}$, or to the fymbol $\int f ;$, ufed by the foreign mathematicians to exprefs this fluent, which they iadeed conceire as an aggregate of imall rectangles $f s^{\prime}$. And we fee that this area expreffes half of the augmentation of the fquare
of the velocity. Therefure,

If the alfoifa AE (fig. 16.) of a line FGI is the path alsng wulich a body is urged by any accelerating force, and if the ardinates BF, CG, DH, §c. are proportional to the forces aiting in the points $\mathrm{B}, \mathrm{C}, \mathrm{D}$, sic. the intercepted areas BCGF, BEIF, छ'c. are proportional to the cuagmentations of the fquare of the velocity.

Obferve that the areas BCGF and DEIH are alfo proportional to the augmentations made on the fquares of the velocities in $B$ and in $D$.

Obferve alfo, that it is indifferent what may have been the original velocity. The action of the forces reprefented by the ordinates make always the fame addition to its fquare; and chis addition is half the fquare
of the velocity which thofe forces would generate in of Accelethe body by impelling it from reft in the point A. rating and |

Laftly, on this head, obferve, that we can fate what Retarding conflant or variable force will make the fame augmentation of the [quare of the velocity by impelling the body uniformly along the fame fpace BE ; or along what fpace a given force mult impel the body, in order to produce the fame increafe of the fquare of its velocity. In the firlt cafe, we have only to make a rectangle $B E N \varphi$, equal to the area BEIF, and then $B \varphi$ is the intenfity of the conflant force wanted. In the fecond cafe, in which the force EO is given, we mult make the rectangle $\mathrm{A} a \mathrm{OE}$ equal to the area BEIF, and $A E$ is the fpace required.

The converfe of this propofition, viz. If the areas Converfe. are as the increments of the fquare of the velocity, the ordinates are, as the farces, is eafily demonftrated in the fame way; for if the elementary azeas CDKG and EIM e reprefent increments of the fquares of the velocity, the accelerating forces are in the ratio compounded of the direct ratio of thefe rectangles and the inverfe ratio of their altitudes, becaufe thefe altitudes are the increments of the fpace ( $\mathrm{n}^{\circ} 85$ ). Now the bafe CG of the rectangle CDKG, is to the bafe EI of the reClangle EIM $e$ in the fame compounded ratio; therefore the force in C is to the force in E as CG to EI.

The line $b$ bo (fig. 13.) was called by Dr Barrow Scates of (who firt introduced this extenfive employment of motion into geometry), the scale of velocities; and the line FHL (fig. 16) was named by him the fale of acselerations. Hermann, in his Phoronomia, calls it the fcale of forces. We fhall retain this name, and we may call $b k a$ of fig. 13. the fale of accelerations, when the areas reprefent the velocities. Sir Ifaac Newton added another fcale of very great ufe, viz. a fcale of times. It is conltructed as follows.

Let ABE (fig. 16.) be the line along which a body is accelerated, and let FHI be the fcale of forces, that is, having its ordinates FB, HD, IE, \&c. proportional to the forces acting at $\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \& \mathrm{c}$. ; let $f b ;$ be another line fo related to $A B E$, that $C g$ is to $E ;$ in the inverfe fubduplicate ratio of the area BFGC to the area BFIE; or, to exprefs it more generally, let the fquares of the or dinates to the line $f g i$ be inverfely, as the areas of the line FHI intercepted between there ordinates and the firf ordinate drawn through B ; then the times of the bodies moving from a fate of relt in B are as the intercepted areas of the curve $f g i$.

For let CD and E $e$ be two very fmall portions of the fpace defcrined in equal times. They will be ulcimately as the velocities in C and E . The area FBCG is to the area FBEI as the fquare of $\mathrm{E} i$ to the fquare of $\mathrm{C} g$ (by conftrution); but the are: FDCG is to FREI as the fquare of the velocity at $C$ to the〔quare of the velocity at E (by the prop fition); therefore the fquare of the velocity at C is to the, fquare of the velocity at $E$ as the fquare of $E$ ito the fquare of $\mathrm{C}_{g}$; therefore $\mathrm{E} i$ is to $\mathrm{C}_{\delta}$ as the velocity at C to the velocity at E , that is, as CD to $\mathrm{E} e:$ but fince $\mathrm{E} i: \mathrm{C} g=\mathrm{CD}: \mathrm{E} e$, we have E i $\times \mathrm{E} e=\mathrm{C} g \times \mathrm{CD}$, and the elementary rectangles $\mathrm{C} g k \mathrm{D}$ and $\mathrm{E} i m e$ are equal, and may reprefent the equal moments of time in which $C D$ and $E$ were defcribed. Thus the areas of the line $f g /$ will reprefent

Ot Accelc- fent or exprefs the times of defribing the correfpondrating and ing portions of the abfciffa.

Retardirg
Forces. $\underbrace{\text { For cei. }}$

We may exprefs the nature of this fcale more briefly thus. Let BE be the fpace defcribed with any varied motion, and $f g l$ a curve, fuch that its ordinates are inverfely as the velocities in the different points of the abfciffs, then the area will be as the times of defcribing 100 the correfponding portions of the abfciffa.
Examples In all the cafes where our mathematical knowledge of the ap- enables us to alfign the values of the ordinates of the ${ }_{n}{ }^{\circ}$ plication of figure 16 , we can ubtain the law of action of the forces, or the nature of the force; and where we can affign the value of the areas from our knowledge of the prop rtions of the ordinates or forces, we can afcertain the velocities of the motion. We fhall give an example or two, which will fhew the way in which we avail ourfelves of the gee:netrical properties of figure in order to alcertain the effects of mechanical fores.

1. Let the accelerating force which impels the body along the line $A B$ be conftant, and let the body be previoully at reft in B; the line which bounds the ordinates that reprefent the forees muft be fome line $\phi \mathrm{HN}$ parallel to AB . The area BDH o is to the area BEN $\varphi$ as the fquare of the velocity at $D$ to the fquare of the velocity at $E$. Thefe arcas, having equal bafes DH and EN, are as their altitudcs BD and BE. That is, the fpaces defcribed are as the fquares of the acquired velocities. And we fee that this characterific mark of uniformly accelerated motion is included in
the uniform astion of the force DA; and this is dotu- of Accelcble of the triangle DAC; therefore the fquares of thefe rating and velocities are as $I$ and 2, and the velocities are as $\sqrt{ } 1$ and $\sqrt{ } 2$, or as 1 to $\checkmark 2$.

Cor. 3. The time of defcribing $A B$ is to the time of defcribing $A C$ as the arch $A F$ to the quadrant
$A F H$.

For when the arch $\mathrm{F} f$ is diminifhed continually, it is plain that the triangle $f i \mathrm{~F}$ is ultimately fimilar to $C F B$, by reafon of the equal angles $\mathrm{C} i b$ (or CFB) and $f i \mathrm{~F}$, and the right angles CBF and $f \mathrm{~F} i$; therefore the triangles $f g F$ and CBF are alfo fimilar. Morenver, $\mathrm{B} b$ is equal to $\mathrm{F} g, F f$ is equal to $b \mathrm{H}$, which is ultimazely equal to $c \mathrm{C}$; therefore fince the triangles $f g \mathrm{~F}$ and CFB are fimilar, we have $\mathrm{F}_{g}: \mathrm{F} f$ $=\mathrm{FB}: \mathrm{FC},=\mathrm{FB}: \mathrm{HC}$; therefore $\mathrm{B} b$ is $10 c \mathrm{C}$ as FB to HC, that is, as the velocity at $B$ tp the velocity at C ; therefore $\mathrm{B} b$ and $c \mathrm{C}$ are defcribed in equal moments when indefinitely fmall ; therefore equal portions $\mathrm{F} f, b \mathrm{H}$ of the quadrant correfpond to equal moments of the accelerated motion along the radius AC ; and the arches AF, FM, MH, \&c. are proportional to the times of defcribing $\mathrm{AB}, \mathrm{BK}, \mathrm{KC}$, \& c .

Cor. 4. The time of defrribing AC with the mnequally accelerated motion, is to the time of defcribing is uniformly with the final velocity as the quadrantal arch is to the radius of a circle; for if a point move in the quadrantal arch fo as to be in F, f, M, H, \&c. when the body is in $B, b, K, C$, it will be moving uniformly, becaufe the arches are proportional to the times of defcribing thofe portions of AC; and it will be moving with the velocity with which the body arrives at C , becaufe the arch $b \mathrm{H}$ is ultimately $=\mathrm{C} c$. Now if two bodies move uniformly with this velocity, one in the arch AFH , and the other in the radius AC , the times will be proportional to the fpaces uniformly defcribed; but the time of cefcribing AFH is equal to the time of the accelerated motion along AC ; therefore the propofition is manifef.

Cor. 5. If the bady proceed in the line $\mathrm{C} a$, and be retarded in the fame manner that it was accelerated along AC, the time of defcribing AC uniformly with the velocity which it acquires in C is to the time of defribing $\mathrm{AC} a$ with the varied motion, as the diameter of a circle to the circumference; for becaufe the momentary retardations at $K^{\prime}, B^{\prime}$, \&cc. are equal to the accelerations at K and B , sic. the time of defribing $\mathrm{AC} a$ is the fame with that of defribing $\mathrm{AH} a$ uniformly with the greatef velocity. That is, to the time of defcribing AC uniformly as AH a to AC, or as the circumference of a circle to the diameter. Therefore, sec. N. B. In this cafe of retarding forces it is convenient to reprefent them by ordinates $K^{\prime} L, B^{\prime} E$, $a \mathrm{D}^{\prime}$, lying on the other fide of the axis $\mathrm{AC} a$; and to confider the areas bounded by there ordinates as fubtractive from the others. Thus the fquare of the velocity at $\mathrm{K}^{\prime}$ is expreffed by the whole area $\mathrm{DACK}^{\prime} \mathrm{L}^{\prime} \mathrm{D}$, the part C'K'L being negative in refpect of the point DAC. This obfervation is general (fee alfo Optics, ni 125. Encycl.).

Cor. 6. The time of moving along KC, the half of $A C$, by the uniform action of the force at $A$, is to that of defribing AC $a$ by the varicd action of the force directed to C , and proportional to the difance from it, as the diameter of a circle to the circumference; for
$4 \mathrm{~K} 2 \quad$ when

## 616

 D Y N Aof Accele- when the body is uniformly impelled along KC by the rating and contant force $I K$, the fquare of the velocity acquired Retardin\% Forces. $\underbrace{\text { Forcs. }}$ at C is reprefented by half the rectangle 1 KCH , and therefore it is equal to the velocity which the variable
force generates by impelling it along AC (by the way, $2 n$ important obfervation). The body will deferibe AC uniformly with this velocity in the fame time that it is uniformly accelerated along KC. Therefore by Cor. 5. the propofition is manifeit.

Cor. 7. If two bodies deferibe AC and KC by the ation of forces which are every where propotional to the difances from C , their final velocities will be proportional to the diftances run over, and the times will be equal.

For the fquares of the final velocities are proportic nal to the triangles $A D C, L K C$, that is, to $\mathrm{AC}^{2}$ $\mathrm{KC}^{2}$, and therefore the velocities are as $\mathrm{AC}, \mathrm{KC}$. The times of defcribing AC and KC uniformly, with velocities proportional to AC and KC , mult be equal ; and thefe times are in the fame ratio (viz. that of radius to $\frac{1}{4}$ of the circumference) to the times of defcribing AC and KC wich the accelerated motion. Therefore, \&c.

Thus by availing ourfelves of the propenties of the circle, we have difcovered all the properties or charakters of a motion produced by a force always directed to a fised point, and proportional to the diftance from it. Some of thefe are remarkable, fuch as the laft corollary; and they are all important; for there are innumerable cafes where this law of action oldains in Nature. It is nearly the law of action of a bouftring, and of ail elaftic bodies, when their change of figure during their mutual action is moderate; and it has been by the help of this propofition, firft demonftrated in a particular cafe by Lord Brouncker and Mr Huyghens, that we have been able to obtain precife meafures of time, and confequently of actual motions, and confequently of any of the mechanical powers of Nature. It is for this reafon, as well as for the ealy and perficicuous employment of the mathematical method of proceeding that we have felected it.

Intead of giving any more particular cafes, we may obferve in general, that if the intenfity of the force be proportional to any power whofe indes is $n-1$ of the diftance, and if $a$ be the dittance from the fixed point at which the body begins to be accelerated, and $x$ its diftance from that point in any part of the motion, the velocity will be $\doteq \sqrt{a^{n}-x^{n} .}$. This is very plain, becaufe the increment CGHD of the area of fig. 16 . which is alfo the increment of the fquare of the velocity , is $\doteqdot x^{n-\mathrm{r}} \dot{x}$, and the area is $\doteqdot x^{n}$; and the whole area, correfpondin'g to the dittance $a$, is $a^{n}$. Therefore the portion of the area lying beyond the diflance $x$ is $a^{n}-x^{n}$. This is as the fquare of the velocity, and therefore the velocity is as the fquare root $\sqrt{a^{n}-x^{n}}$ of this quantity.

This propofition, $f \dot{j} \doteqdot \dot{v}$, or $f \doteqdot \frac{v v}{j}$, is the $39^{\text {th }}$ of the firt book of Newton's Principia, and is perhaps the moft important in the whole doctrine of dynamics, whether employed for the inveltigation of forces or for the explanation of motions. It furnifhes the molt immediate data for both purpofes, but more efpe-

## M I C S.

cially for the laft. By its help Sir Ifaac Newton was able to point out the numerous difturbances of the pla. netary motions, and to feparate them from each other ; thus unravelling, as it were, that molt intricate motion in which all are blended together. He has given a moft wonderful fecimen of its application in his Lunar Theory.

We now are able to explain all the puzzling facts which were adduced by Leibnitz and his partifans in fupport of their meafure of the forces of bodies in motion. We fee why four frings, equally bent, communicate but a double velocity, and nine fprings but a triple velocity ; why a bullet moving twice as faft will penetrate an earthen rampart to a quadruple depth, \&cc. \&cc.

This thenrem alfo gives a mor perfpicunusexplanation Corfermatio of the famous doctrine called confe.vaiio virium vivarum. virium viWhen perfecly elafticb dies act on each other, it is found varum. that the fum of the maffes multiplied by the fquares of the velocities is always the fame. This has been fubtituted, with great encomiums, by the German philofophers in place of Des Cartes's principle, that the quantity of motion in the univerfe, eftimated in one direction, remains always the fame. They are obliged, however, to acknowledge, that in the actions of perfealy hard bodies, there is always a lofs of vis viva, and therefore have denied the exitence of fuch bodies. But there is the fame lofs in the mutual actions of all foft or duatile, or even imperfectly elatic, bodies; and they are miferably puzzled how to explain the fact: but both the confer vatio and the amifio are neceffary confequences of this theorem.
In the collifion of elaftic bndies, the whole change of motion is produced during the fhort time that the bodies are compreffed, and while they regain their figure. When this is completed, the bodies are at the fame difance from each other as when the mutual adion began. Therefore the preceding body has been accelerated, and the following body has been retarded, along equal fpaces; and in every point of this fpace the accelerating and the retarding force has been equal. Confequently the fame area of fig. 17. expreffes the change made on the fquare of the velocity of both bodies. Therefore, if V and U are the velocities before collifion, and $v$ and $u$ the velocities after collifion, of the two bodies A and B , we muft have $\mathrm{A} \times \overline{\mathrm{V}^{2}-v^{2}}=\mathrm{B} \times \overline{u^{2}-V^{2}}$, and therefore $\mathrm{A} \times \mathrm{V}^{2}+\mathrm{B} \times \mathrm{U}^{2}=\mathrm{A} \times v^{2}+\mathrm{B} \times u^{2}$.

But in the other clafs of bodies, which do not com:pietely regain their figure, but remain compreffed, they are nearer to each nther when their mutual action is ended than when it began. The foremolt body has been accelerated along a thorter pace than that along which the other has been retarded. The mutual forces have, in every inftant, been equal and oppofite. Therefore the area, which expreffes the diminution of the fquare of the velocity, muft exceed the area expreffing the augmentation by quantity that is always the farre when the permanent comprefion is the fame; that is, when the relative motion is the fame. $\mathrm{A} \times \overline{\mathrm{V}^{2}-v^{2}}$ mult exceed $B \times \overline{u^{2}-U^{2}}$, and $A \times V^{2}+B \times U^{2}$ mult exceed $A \times v^{2}+B \times u^{2}$.

This fame theorem is of the molt extenfive ufe in all prafical queltions in mechanic arts: and without it mechanics can go no further than the mere flatement of cquilibrium.

Of Accele. rating and Retarding Forces.
$\underbrace{\text { Forces. }}$

 . 1

Of Accele- Hermann, profeffor of mathematics at Pavia, one of rating and the ornaments of the mathematical clafs of philnfophers, Retarding Forces. Hitory of $11^{\circ} 95$. is curious. las given a pretty demonfration of this valuable propolition in the Aita Eruditorum Lipfla for 1709 ; and fays, that having fearched the writings of the mathematicians with great care, he found himfelf warranted to fay, that Newton was the unduabted author, and boalts
powers of nature. But the employment of them may be greatly expedited and fimplified by noticing two or three general cafes which occur very frequently.

Theje may be called fimilar inftants of time, and fimilar points of Space which divide given purtions of time, and of fpace in the fame ratio. Thus the middle is a fimilar inltant of an hour or of a day, and is the fimilarly fituated point of a foot or of a yard. The beginuing of the 21 tt minute, and of the 9 th hour, are fimilar inltants of an hour and of a day. The beginning of the 5 thinch, and of the $2 d$ foot, are fimilar points of a foot and of a yard. of his own as the firf fynthetical demonftation. The purpofe of this affertion was not very apparent at the time ; but long after, in 1746 , when Hermann's papers, preterved in the town-houle of Pavia, were examincd, in order to determine a difpute between Maupertuis and Koenig about the claim to the difcovery of the principle of leaft artion, letters of Leibnitz's were found, requelting Hermann to learch for any traces of this propofition in the writings of the mathematicians of Europe. Leibnitz was by this time the envious detractor from Newton's reputation; and could not but perceive, that all his contorted arguments $f u r$ his doctrine received a clear explanation by means of this propofition, in perfest conformity to the u[ual meafure of moving forces. Newton had difcovered this theorem long before the publication of the Principia, and even before the difcovery of the chief propofition of that book in 1666 : for in his optical Lectures, the materials of which were in his polfellion in 1664, he makes frequent ufe of a propofition founded on this (fee $n^{\circ} 42$.). We may here remark, that Hermann's demonflration is, in every ftep, the fame with Dr Barrow's demonftration of it as a theorem merely geometrical, without fpeaking of mo. ving forces (fee Led. Grometr. xi. p. 85. edit. 16.), but giving it as an inftance of the transformation of curves, which he calls scales of velocity, of time, of acceleration, \&c. It is very true that Barrow, in thefe mathematical lectures, approached very near to both of Newton's difcoveries, the fluctionary geometry, and the principles of dynamics; and the junto on the continent, who were his continual detractors, charge himn with impudent plagiarifm from Dr Barrow, and even fay that he has added nothing to the difcoveries of his teacher. But furely Dr Barrow was the beft judge of this matter; and fo far from relenting the ufe which Newton has made of what he had taught him, he was charmed with the genius of the juverir fpechutiffimus his fcholar, and of his own accord gave him his profefforibl chair, and ever after lived in the utmof harmony and friendthip with him. Nay, it would even appear, from fome expreflions in thofe very leftures, that Dr Barrow owed to young Newton the firt thought of making fuch exrenfive ute of motion in geomery. We recummend this worb of Barrow's to the ferious pernfal of our readers, Who with to acquire clear notions of the fience of motion, and an elegant tafte in their mechanical difquifitions. After all the cultivation of this fcience by the commentators and followers of Newton, after the $P$ horonomia of Hermann, the Mechanica of Euler, the Dyramique of D'Alembert, and the Mechanique Aualytique of De la Grange, which are und ubtedly works of tranfeendent merit and utility, the Principia of Newton will till remain the mofl pleafing, perficuous, and elegant fpecimen of the application of mathematics to the fcience of univerfal mechanics, or what we call Dynamics.

The two fundamental theorems $f t=\dot{v}$, and $f ;$ $=v \dot{v}$, enable us to folve every queltion of motion ac. celerated or retarded by the action of the mechanical

Forces may be faid to all fimilarly when their inten-- Similar acfities in fimilar infonts of time, or in fintilar points of tions, whats Space, are in a conflant ratio. Thus in Gig. 17. when unc body is impelled towards $C$ from $A$, and another from $K$, each with a force proportional to the diftance of every point of its motion from $C$, thefe forces may be faid to act fimilarly along the fpaces $A C$ and $K C$, or during the times reprefonted by the quadrantal arches AFH, KNO. The following propofitions on fimilar actions will be found very ufeful on many occalions; but we muff premife a genmetrical lemma.

If there be two lines EFGH (fig. 18.), of: $b$, fore lated to their abfilles $\mathrm{AD}, a d$, that the ordinates $I \mathrm{~K}$, $i k$, drawn from fimilar points $I$ and $i$ of the abfcilles, are in the confant ratio of AE to $a \varepsilon$; then the area ADHE is to the area $a d b e$ as the retangle of AD $\times$ AE to the rectangle $a d \times a e$.

For let each abfilia be divided into the fame number of equal and very fmall parts, of which let $C D$ and $c d$ be one in each. Infcribe the rectangles CGID, $c g i d$. Then becaufe the number of palts in each axis is the fame, the lengths of the portions $C D$ and $c d$ will be proportional to the whole abfifies AD and $a \mathrm{~d}$. Aud becaufe $C$ and $c$ are fimilar points, CG is to $c g$ as $A E$ is to ae. Thercfore CD×CC:c $d \times c g=\mathrm{AD}$ A•E : a $d \times a$ e. This is true of each pair of correfponding reftangles; and therefore it is true of their fiums. But when the number of thefe rectangles is increafed, and their breadth diminimed without end, it is evident that the ultimate ratio of the fum of all the rectangles, fuch as CDHG to the fum of all the refangles $c d b{ }_{o}$ is the fame with that of the area ADHE to the area $a d b c$, and the propofition is manifelt.

If two particles of matter are fomilarly impelled during given times, the churnyes of velocity are as the times antl as the forces jointly.

Let the times be reprefented by the Araicht lines $\mathrm{ABC}(f i g .19$.$) and a b c$, and the forces by the ordinates $A D, D E, C F$, and $a d, b e, c f$. Then if B and $b$ are fimilar intants (fuppofe the middles) of the whole times, we have $\mathrm{BE}: b_{e}=\mathrm{AD}: a d$. Therefore, by the lomma, the area ACFD is to a $c f d$ as $\mathrm{AC} \times \mathrm{AD}$ to ac×ad. But thefe, areas are proportional to the velncities ( $n^{\circ} 72$ ), and the propofition is demonitrated. For the fame rafon, the change of velocity during the time $A B$ is to the change during ab as $A B \times A D$ to $a b \times a d$.

Cor. I. If the times and firces are reciprocally proportional, the changes of velocity are equal: and if the forces are inverfely as the times, the changes of velocity are equal.

If two particles be fimilarly urged along given fpaces, the changes made on the fquares of the velocitics are as che forces and fraces ioinlly.

For if AC (fig, 19.) and $a \in$ are the foaces along which

## 618

D Y N A
Of Accele- which the particles are impelled, and the forces are as rating and Retarding Forces. the ordinates AD and $a d$, the areas ACFD, and acf $d$ are as the changes on the fquares of the velocitics. But
thefe areas are as $A C \times A D$, and $a c \times a d$. Therefore, \&sc.

Cor. 2. If the fpaces are inverfely as the forces, the changes of the fquarcs of the velocities are equal; and if thefe are enual, the fpaces are inverfely as the forces.

Cor. 3. If the fpaces, along which the particles have been impelied from a previous tate of reft, are direstly as the forces, the velocities are alfo as the forces. For, becaufe the changes of the fquares of the velocities are as the fpaces and forces jointly, they are in this cafe as the fquares of the forces or of the fpaces; but the changes of the fquares of the velocities are in this cafe the whole fquares of the velocities; therefore the fquares of the velocities are as the Squares of the forces, and the velocities are as the force. N. $B$. This includes the motions reprefented in fig. 17.

If tzuo particles be fimilarly impelled along siven Spaces, from a flate of reff, the fquares of the times are proportional to the jpaces direaly, and to the forcos inverfely.

Let ABC (fig. 19.) a $b c$ be the fpaces defcribed, and $\mathrm{AD}, a d$, the accelerating forces at A and $a$. Let $\mathrm{V}, \mathrm{B}$ exprefs the velocity at B , and $v, b$ the velocity at $b$.

Let GHK and $g b k$ be curves whofe ordinates are inverfely as the velocities at the correfponding points of the abiciffa. Thefe curves are therefore exponents of the times ( $\mathrm{n}^{0} 99$.) Then, becaufe the forces act fimilarly, we have, by the laft theorem, $\mathrm{AC} \times \mathrm{AD}: a c$ $\times a d=\mathrm{V}^{2}, \mathrm{~B}: v^{2}, b,=b b^{2}: \mathrm{HB}^{2}$. Therefore HB $: b b=\overline{\sqrt{a c \times}} d: \sqrt{\mathrm{AC} \times \mathrm{AD}}$ and therefore in a contant ratio. Call this the ratio of $m$ to $n$. But, fince the ordinates of the lines GHK, $g b k$ are inverfely as the velocities, the areas are as the times ( $\mathrm{n}^{\circ} 99$ ); and fince thefe ordinates are in the conftant ratio of $m$ to $n$, the areas are in the ratio of $\mathrm{AC} \times m$ to $a c \times n$. Therefore (calling the times of the motions T and $t$ ), we have

$$
\mathrm{T}: t=n \mathrm{AC}: n a c \text {; and therefore }
$$

$\mathrm{T}^{2}: t^{2}=m^{2} \times \mathrm{AC}^{2}: n^{2} \times a c^{2}$. But
$m^{2}: n^{2}=a c \times a d: \mathrm{AC} \times \mathrm{AD}$. Thercfore
$\mathrm{T}^{2}: t^{2}=a c \times a d \times \mathrm{AC}^{2}: \mathrm{AC} \times \mathrm{AD} \times a c^{2}$,
Or $\mathrm{T}^{2}: t^{2}=a d \times \mathrm{AC}: \mathrm{AD} \times a c$.
Or $\mathrm{T}^{2}: t^{2}=\frac{\mathrm{AC}}{\mathrm{AD}}: \frac{a c}{a d}$.
The attentive reader will obferve that thefe three propofitions give a great extenfion to the theorems which were formerly deduced from the nature of uniformly accelerated motion, or of uniform action of the forces, and were afterwards demonfrated to obtain in the momentary astion of forces any how variable.

The firt of the three propofitions, $\mathrm{V}: v=\mathrm{F} \times \mathrm{T}$ : $f \times t$, is the extenfion of the theorem $f \times i=v$. The fecond, $\mathrm{V}^{2}: v^{2}=\mathrm{F} \times S: f \times s$, is the extenfion of the theorem $f \times \dot{s}=\dot{v} v$. And the third, $\mathrm{T}^{2}: t^{2}=\frac{S}{\mathrm{~F}}: \frac{s}{f}$, is the extenfion of $f=\frac{s}{\left(t^{2}\right)}$, or of $f \times\left(t^{2}\right)=s$. There theorems hold true of all fimilar actions; and only for this reafon, are true of uniformly accelerated motions, or uniform actions.

## M I C S.

There remains one thing more to be faid concerning of Accelcthe action of accelerating forces. Their magnitude is 1 ating and afcertained by their effect. Therefore that is to be confidered as a double force which produces a double quantity of motion. Therefore when a body A contains twice the number of equal atoms of matter, and accuires the fame velocity from the action of the force Fthat another body $a$, containing half the number of fratairy atoms, acquires from the action of a force $f$, we conceive $F$ to be double of $f$. That this is a legitimate inference appears clearly from this, that we conceive the fenfible weight of a bods, or that preffure which it exerts on its fupports, as the aggregate of the equal preffure, of every atom, accumulated perhaps on one point ; as when the body hangs by a thread, and, by its in:ervention, pulls at fome macline. Without inquiring in what manner, or by what intervention, this accumulation of preffure is brought about, we fee clearly that it refults from the equal accelerating force of gravity acting immediately on each atom. When this weight is thus employed to nove another body by the interven. tion of the thread, which is attached to one point perhaps of that body, it puts the whole into motion, generating a cortain velocity $\quad$ in every atom, by acting uniformly during the time $t$. We conceive each atom tohave fuftained the action of an equal accelerating force, whofemeafure is $\frac{v}{t}$ Without confidering how this force is exerted on each atom, or by what it is immediately exerted, or how it is diffufed through the body from the point to which the weight of the other body is applied by means of the thread; we fill confider it as the aggregate of the action of gravity on each atom of that other body. Moreover, attending only to the motion produced by it, and perhaps not knowing the weight of the impelling body, we meafure it, as a moving force, by confidering it as the aggregate of the forces propagated to each atom of the impelled body, and meafured by $\frac{v}{t}$. If we know that the impelled body contains the number in of atoms, the aggregate of forces is $m \frac{v}{t}$, or $\frac{m v}{t}$.

But fince we meafure forces by the quantity of motion which they produce, we mult conceive, that when the fame force is applied to a body, which confits of $n$ particles, and produces the velocity $u$, by acting uniformly during the fame time $t$, the force $n \frac{n}{t}$ is equal to the foree $m \frac{v}{t}$.

Sir Ifaac Newton found it abfolutely neceffary, in Moving the difquifitions of natural philofophy to keep this cir- force, mocumftance of acceleration clear of all notions of quantity of matter, or other confiderations, and to contemplate the affections of motion only. He therefore confidered $\frac{v}{t}$ as the true original meafure of acceierating ive force, vis motrix, as difinguifhed from acceforce, and $m \frac{v}{t}$ as an aggregate. He therefore calls the aggregate a vis motrix, a moving forse, meafured by the quantity of motion that it generates. And he confines the term accelerating force to the quantity $\frac{v}{8}$, meafured

DINAMICS, PLATE NXT:


Oi Defica. by the acceleration or velocity only. It would be con$\underbrace{\text { ing Forces. }}$ venient, therefore, alfo to confine the fymbol $f$ to $m \frac{v}{t}$, and to retain the fymbol a for exprefling the accelerating force $\frac{v}{t}$.

This appellation of motive force is perfectly jult and fimple; for we may conceive it as the fime with the accelerating force which produces the velocity $m$ times $v$ in one particle, by acting on it uniformly during the time $t$. This motion of one particle having the velocity $m v$, is the fame with that of $m$ particles having each the velocity $v$.

If therefore a motive force $f$ act on a body confilting of $m$ particles, the accelerating force $a$ is $=\frac{f}{m} \frac{v}{t}$

Therefore the three laft propofitions concerning the fimilar, the uniform, or the momentary actions of moving forces, when exprelifed in the molt general terms, are,

$$
\begin{aligned}
& v^{\prime} \doteq \frac{f}{m t} \\
& \nabla^{2 \prime} \doteq \frac{f s^{\prime}}{m} \text { or, } v v=\frac{\dot{f} s}{m} \\
& t^{2} \doteq \frac{m s^{\prime}}{f_{0}}
\end{aligned}
$$

## Of Deflecting Forces.

III
Deflectin forces.

Alteration of deflsctions are continual, and produce curvi lineal molions.

When we obferve the direction of a body to change, we unavoidably infer the agency of a force which acts in a direction that does not coincide with that of the body's motion; and we may diftinguith this circumftance by calling it a deflecting force. We have already thewn how to eftimate and meafure this deflecting force, by confidering it as competent to the production of that morion which, when compounded with the former motion, will produce the new notion ( $n^{\circ} 44$.). Now, as all changes of motion are really compofitions of motions or forses, it is evident that we thall explain the action of deflecting forces when we fhew this compofition.

We may almoft venture to fay à priori, that all deflections mult be continual, or exhibit curvilineal motions : for as no finite velocity, or change of velocity, can be produced in an inftant by the action of an accelerating force, no polygonal or angular deflection can be produced ; becaule this is the compofition of a finite velocity produced in an inftant. Deflective motions are all produced by the compofition of the former motion, having a Snite velucity, with a tranfverfe motion continudlly accelerated from a flate of reft. Of this we can form a very diftinkt notion, by taking the fimplett cafe of fuch accelerated motion, namely, an uniformly accelerated motion.

Let a body be moving in the direction AC (fir. 20.) Deternina- with ally conftant velocity, and when it cumes to $A$, tion of the let it be expofed to the action of an accelerating force, paih,
would have defcribed uniformly in the time that it de- Of Dcfectfcribes AD by the action of the accelerating force, and ing Forcet. AC the face which it would have defcribed uniformly while it defcribes AE by the action of the accelerating force-nothing more is wanted for afcertaining the real motion of the body but to compound the uniform motion in the direction $A C$ with the uniformly accelerated motion in the direction AE . AD is to AE as the fquare of the time of defcribing $A D$ to the Square of the time of defcribing AE; that is, as the fquare of the time of deferibing $A B$ the fquare of the time of defcribing $A C$; that is, as $A B^{2}$ to $A C^{2}$ (by reafon of the uniform motion in $A C$ ). This compofition is performed by taking the fimu'taneous points $B, D$, and the fimultaneous points $\mathrm{C}, \mathrm{E}$, and completing the parallelograms ABFD, ACGE. Tlie body will be found in the points $F$ and $G$ in the infants in which it would have been found at $B$ and $C$ by the uniform motion, or in D and E by the accelerated motion. In the fame manner may be $f$ und as many points of the real path as we pleafe. It is plain that thefe points will be in a line $A F G$, fo related to AE that $A D$ : $A E=D F^{2}: E G^{2}$; or for related to the original motion, $A C$, that $A B^{2}: A C^{2}=B F: C G$, \&c. This line is therefore a parabola, of which $A E$ is a diameter, DF and EG are ordinates, and which touches AC in A.

Having thus afcertained the path of the body, we And of the can alio afcertain the motion in that path; that is, the motion in velocity in any point of it. We know, that the velo- this patho city in the point $G$ is to the velocity of the uniform motion in the direction $A C$ as the Tangent TG is to the ordinate E G; becaufe this is the ultimate ratio of the momentary increment of the arch AFG to the momentary increment of the ordinate EG. Thus is the velocity in every point of the curve determined. We have taken it for granted, that the line of projection touches the path, and that the direction in every point is that of the tangent. To fuppofe that the curve, in any portion of it, coincides with the tangent, is to fuppole that the body is not deflected ; that is, is not ac. ted on by a tranfverfe accelerating force: And to fuppole that the tangent makes a fiuite angle with any part of the path, is to fuppofe that the deflection is not continual, but by flarts-both of which are conrrary to the conditions of the cafe. No ftraight line can be drawn between the direction of the body and the fucceeding portion of the path, otherwife we mult again fuppofe that the deflection is fubfultory, and the mo. tion angular.

But while the inveltigation is fo eafy when the direction and intenfity of the deflecting force in every point of the curve are known, the invelligation of the deflecting force from the obferved motion is by no means eaty. The oblerved curvilineal motion always arifes from a compolition of a uniform motion in the tangent with fometranfverte motion. But the fame curvihineal motion may be produced by compounding the uniform motion in the tangent with an infinity of tranfverle motions; and the law of action will be dfferent in thefe tranfverie motions according as their directions differ. We muft learn not only the intenfity of the defleding force and the law of its variation, but alfo its direction in evcry p int of the curve. It is not eafy to find ese-
force;
acting uniformly in any other diredion AE. This alone would caufe the body to defcribe $A E$ with a uniformly accelerated motion, fo that the foaces $A D, A E$ would be as the fquares of the times in which nhey are defcribed. Thercfore, if $A B$ be the fpace which it
of neneat-furce; mof commonly this is indicated by extrinfic cirRing furcet. cumfances. The deflesting force is frequently obferved to refide in, or to accompany fome other body. It may be prefumed, therefore, that it aets in the direction of the line drawn to or from that body; yet even this is uncertain. The moft reneral rule for this inveftigation is to obferve the place of the body at feveral intervals of time before and after its pafing through the point of the curve, where we are interefted to find its precife direstion. We then draw lines, joining thofe places with the places of the tangent where the body would have been by the uniform motion conly. We fall perhaps obferve thefe lines of jundion keep in parallel politions: we may be affured, that the direation of the tranfverfe force is the fame with that of any of thefe lines. This is the cafe in the example jutt now given of a parabulic motion. But when thefe lines change pofition, they will change it gradually; and their pofition in the ptint of contact is that to which their poff. tions on both fides of it gradually approximate.

Dut all this is deltitute of the precifion requifite in philofophical difcuftion. We are indebed to Sir Tfaac Newton for a theorem which afcertains the direction of the traniverfe force with all exafnefs, in the cafes in which we moft of all wifh to attain mathematical accuracy, and which not only opened the accefs to thofe difcover ies which have inmortalifed his name, but alfo pointed out to him the path he was to follow, and even marked his firtt Iteps. It therefore merits a very par-

II4
Newton's fundamental theorem for the direction of $a$ deflecting force.

Areas $\vdots$ to
the times indicate central forces. ticular treatment.

If a body defribes a curve line $A B C, D E F$ (fig. 21.) lying in one plane; and if there be a point $S$ io fituated in this plane that the line joining it with the body defcribes areas ASB, ASC, ASD, \&c. proportional to the times in which the body deferibes the ar. ches $A B, A C, A D, \& \%$. the force which defleats the body from rectilineal motion is continually directed to the fixed point $S$.

Let us firlt fuppofe that the body deferibes the po. lygon ABCDEF, \&c. formed of the chords AB, BC, $\mathrm{CD}, \mathrm{DE}, \mathrm{EF}$, scc. of this curve: and (for greater fimplicity of argument) let us confider areas defcribed in equal fuccefive times; that is, let us fuppofe that the triangles $\mathrm{ASB}, \mathrm{BSC}, \mathrm{C} \mathrm{D}_{\infty}$ \&c. are equal, and defcribed in equal times. Make $\mathrm{B} c=\mathrm{AB}$, and draw $c \mathrm{~S}$. Had the motion $A B$ fuffered no change in the point B , the body would have defcribed $\mathrm{B} c$ in the equal mo-
ment fucceeding the firf: but it defcribes BC. The body has therefore been deflected by an external force; and $B C$ is the diagonal of a paralle logram ( $n^{\circ} 45 \cdot 46$.), of which $\mathrm{B} c$ is one fide, and $c \mathrm{C}$ is another. The deflecting force will be difcovered, both in refpect of direction and intenfity, by completing the parallelogram $\mathrm{B} c \mathrm{C} b . \mathrm{B} b$ is the face which the deflecting force would have caufed the body to defcribe in the time that it defcribes B cor BC . Becaufe $\mathrm{B} c$ is equal to BA , the triangles $\mathrm{BS} c, \mathrm{BSA}$ are equal. But (by the nature of the motion) BSA is equal to BSC. Therefore the triangles BSC and BS $c$ are equal. They are alfo on the fame bafe BS; therefore they lie between the fame parallels, and $\mathrm{C} c$ is parallel to SB . But $c \mathrm{C}$ is parallel to $\mathrm{B} b$. Therefore $\mathrm{B} b$ coincides with BS , and the deffecting force at B is directed toward S . By the fame argument, the defecting force at the angles $D, E, F, \& e$, is directed to $S$.

## M I C S.

Now, let the fides of the polygon be diminihed, and of Denentheir number increafed without end. The demonftra. ing Forces tion remains the fame; and continucs, when the polygon finally coalefees with the curve, and the deflection is continual.

When areas are defcribed proportional to the times, equal areas are defribed in equal times; and therefore the deffection is always directed to S. Q. E. D.

The point $S$ may, with great propriety of language, Centre of be called the Centre of Deflection, or the Cev. defeation. tre of Forces; and forces which are thus continual. Centre of TRE OF Cirected to one fixed point, may be diftinguifhed forces. from other deflecting forces by the name Central fentral

## Forces.

Tine line joining the centre of forces with the body, and which may be conceived as a ftiff line, carry ing the body round, is ulually named the Radius V 'ector.

The converfe of this propofition, viz. that if the de tor. flecting forces be always directed to $s$, the motion is performed in one plane in which $S$ is fituated, and areas are defcribed proportional to the times-is eafily areas prodemoultrated by reverfing the fteps of this demonitra- portionalto tion. The motion will be in the plane of the lines SB the tines. and $\mathrm{B} c$; becaufe the diagonal BC of the parallelogram of forces is in the plane of the fides. Areas are defcribed proportional to the times; for $\mathrm{C} c$ being parallel to SB , the triangles SCB and ScB are equal; and therefore SCB and SAB are equal, \&cc. \&c.

Cor. I. When a body defcribes areas round S pro- Velocity is portional to the times, or when it is continually deflec- inverfely as ted toward S. or acted on by a tranfverfe force directed the perpento $S$, the velocities in the different points $A$ and $E$ of the curve are inverfely proportional to the perpendiculars $S r$ and $S t$, drawn from the centre of forces to the tangents in thofe points; that is, to the perpendiculars from the centre on the momentary directions of the motion: For fince the triangles ASB, ESF are equal, their bafes $A B, E F$ are inverfely as their altitudes $S r$, S t. But there bafes, being defribed in equal limes, are as the velocities; and they ultimately coincide with the tangents at A and E .

Cor. 2. If $\mathrm{B} a$ and F \& be drawn perpendicular to $S A$ and $S E$, we have $S A \times B_{\alpha}=S E \times F_{\varepsilon}$, and $S_{A}: S E=F: B \alpha:$ For $S A \times B$ a is double of the triangle BSA, and $\mathrm{SE} \times \mathrm{F}$ is double of the equal triangle $S F E$.

Cor 3. The ancular velocity 188 Cor. 3. The angular velocity round $S$, that is, the Ansular
magnitude of the angle defribed in equal times by the velocity is radius vector, is inverfely proportional to the fquare of inverfely as the diftance from S. For when the arches AB , EF of the difare diminifhed continually, the perpendiculars $\mathrm{B} \alpha$ and tance from Fe will uitimately coincide with arches defcribed round the centre $S$ with the radii SB and SF. Now the magnitude of of forces. an angle is proportional to the length of the arch which neafures it directly, and to the radins of the arch inverfely. In any circle, an arch of two inches long meafures twice as many degrees as an arch one inchleng; and an arch an inch long contains twice as many degrees of a circle whofe radius is twice as fourt. Therefore, ultimately, the angle ASB is to the angle ESF as $B$ a to $F \&$, and as $S F$ to $S B$ jointly ; that is, as $B$ \& $\times$ SF to $\mathrm{F}: \times \mathrm{SB}$. But $\mathrm{B}: \mathrm{F} ،=\mathrm{SE}: \mathrm{SA}$ (Cor. 2.). Therefore $\mathrm{ASB}: \mathrm{ESF}=\mathrm{SE} \times \mathrm{SF}: \mathrm{SB} \times \mathrm{SA}$, $=$ ultimately $\mathrm{SE}^{2}: \mathrm{SB}_{2}$.

This corollary gives us an oftenfible mark, in many
 ing Forces. being always directed to a fixed point. We are often able to meafure the angular motion when we cannot meature the real velocities.

Having thus difcovered the chief circumfances which enable us to afcertain the direction of the deflecting force, we procecd to inveftigate the quantity of this dellective determination in the different points of a curvilineal motion. This is a more difficult tafk. The momentary effect of the deflecting force is a fmall deviation from the tangent; and this deviation is made with an accelerated motion. The law of this acceleration regulates the curvature of the path, and is to be determined by it. We may be allowed to obferve by the way, that it appears clearly from the form in which Newton has prefented all his dynamical theorems, that we are indebted to thefe problems for the immenfe improvement which he lias made in geometry by his invention of fluxions. The purpofes he had in view fuggelled to his penetrating mind the ineans for attaining them; and the connection between dynamics and geometry is fo intimate, that the fame theorems are in a manner common to both. This is particularly the cafe in all that relates to curvature. Or thall we fay that the geometry of Dr Barrow fuggefted the dynamical theorems to Newton? We have feen how the curvature of a parabola is produced by a force atting uniformly. The momentary action of all finite forces may be confidered as uniform; and therefore the curvature will be that of fome portion of fome parabola; but it will be difficult to determine the precife degree without fome farther help. We are beft acquainted with the properties of the circle, and will have the cleareft notions of the curvature of other curves by comparing them with circles. Meafure of The curvature of a circular arch of given length is Meafure of
curvature. fo much greater as its radius is fhorter; for it will contain fo many more degrees in the fame length; and therefore the change of direction of its extrenuties is fo much greater. Curvatures may always be meafured by the length of the arch directly and the radius in. verfely.
IIg Suppofe a thread made fat at one end of a material and involu- curve ABCD (fig. 22.) and applied to it in its whole tion of length. Taking hold of iis extremity D, unfold it gracurves.
curve $\mathrm{D} b a$ in the point $b$. Moreover, becaufe every of Defeetportion of the curve between $b$ and D is defcribed with ing Fortes. radii that are fhorter than $l \mathrm{~B}$, it mult be more incurvated than any portion of the circle e $b f$. For fimilar reafons, every portion of the curve between $b$ and $a$ mult be lefs incurvated than this circle; therefore the circle has that precife degree of curvature that belongs to the curve in the point $b$; it is therefore called the Equicurve Circle, or the Circle of Curvaturp, and B is called the centre, and $\mathrm{B} b$ the Rapius or Curvature. It is eafy to perceive that no circle can be deferibed which flall touch the curve in $b$, and come between it and the circle e $b f$; for its centre mult be in fome point $i$ of the radius $b \mathrm{~B}$. If is be lefs than $B b$, it muft fall within the curve on both fides of $b$, and if $i b$ is greater than $B b$, the circle mult fall without the curve on both fides of $\mathrm{B} \ell$. The circle e $b f$ lies clofer to the curve, has clofer contact with it, that any other, and has therefore got the whimfical name of Osculating Circle; and this fort of contag was called Osculation.

This view of the genefis of curve lines is of particular ufe in dynamical difcultions. It exbibits to the eye the perfect famenefs of the momentary motion, and therefore of the momentary deflection, in the curve and in the equicurve circle, and leaves the mind without a doubt but that the forces which produce the one will produce the other. A great variety of curves may be defcribed in this way. If perpendiculars be drawn to the curve $\mathrm{D} b a$ in every point, they will interfect each other, each its immediate neighbour, in the circum. ference of the curve DBA; and geometry teaches us how to find the curve DBA which thall produce the curve $\mathrm{D} b a$ by evolution (fee Evolution and Involution, Supplenient).
It is a matter worthy of remark, that the path of a body that is defected from rectilineal motion by a finite force, varying according to any law whatever, may always be defcribed by evolution. This includes almolt every cafe of the action of deflecting forces; none being excepted but when, by the oppofite action of different forces, the body is in equilibrio in one fingle point of its path.

Our tafk is now brought within a very narrow com. pafs, namely, to meafure the deflection in the arch of a circle.

Had the motion reprefented in fig. 21. been polygonal, it is plain that the deflecting force in the point $B$ is to that in the point $E$ as the diagonal $B b$ of the parallelogram $A B C \quad b$ to the diagonal $E$ i of the parallelogram DEF $i$; therefore let $A B C Z Y$ be a circle paffing through the points $A, B$, and $C$, and let the radius voctor BS cut the circumference in 2 ; draw $\mathrm{AZ}, \mathrm{CZ}$, and the diagonal AC , which neceffarily bifects and is bifened by the diagonal B $b$. The triangles $b \mathrm{BC}$ and CBZ are fimilar; for the angle $\mathrm{C} b \mathrm{~B}$ is equal to the alternate angle $A B b$ or $A B Z$, which is equal to the $A C Z$, flanding on the fame chord $A Z$. And the angle CB $l$, or $C B Z$, is equal to $C A Z$, ftanding on the tame chord $\mathrm{C} Z$; therefore the remaining angle $b \mathrm{CB}$ is equal to the remaining angle AZC ; therefore ZA is to AC as BC to $\mathrm{B} l$, and B b $=\frac{A C \times B C}{A Z}$ In like manner $E i=\frac{D F \times E F}{D z}$

Now let the points A and C continually approach,

## $D \quad Y \quad N \quad A \quad M \quad C \quad S$.

Of Defies and ultimately coalefce with $B$; it is evident that the $\underbrace{\text { irgg Foress. circle } A B C Z Y}$ is ultimately the equicurve or coinciding circle at the point $B$, and that AS ultimately coalefees with, and is cqual to, $B S$, and that $A C \times B C$ is ultimately $2 \mathrm{BC}^{2}$; therefore ultimately $\mathrm{B} l: \mathrm{E} i=$ $\frac{2 \mathrm{BC}^{2}}{\mathrm{BZ}}: \frac{2 \mathrm{EF}^{2}}{\mathrm{E} z}$, or $=\frac{\mathrm{BC}^{2}}{\frac{1}{2} \mathrm{BZ}}: \frac{\mathrm{EF}^{2}}{\frac{1}{2} \mathrm{Ez}}$.
Meafure of Now BC and EF, being defcribed in equal times, defleting are as the velocities: $\mathrm{B} b$ and $\mathrm{E} i$ are the meafures of fories. the velocities which the deflective forces at $B$ and $E$
would generate in the time that the body defcribes BC or EF, and are therefore the meafures of thofe forces. They are as the fquares of the velocities direai'y, and inverfly as thafe chords of the equicurve circles suhich bave the directions of the deffection.

Obferve, that $\mathrm{B} b$ or $\mathrm{E} i$ is the third proportional to half of the chord and the arch defcribed; for $\mathrm{B} b: \mathrm{BC}$ $=B C: \frac{B Z}{2}$.

It is evident, that as the arches $A B, B C$, continually diminifh, $A C$ is ultinately parallel to the tangent $\mathrm{B} r$, and BO is equal to the actual deflection from the tangent. The triangles BOC and AOZ are fimilar, and $\mathrm{BO}=\frac{\mathrm{OC}^{2}}{\mathrm{OZ}^{2}}$, or ultimately $=\frac{\mathrm{BC}^{2}}{\mathrm{BZ}}$. Wemay meafure the forces by the actual deflections, becaufe they are the halves of the meafures of the generated 120 velocities; and we may fay that
Meafure of The adual momentary defledion from the tangent is a deflection. third profortional to the deflective chord of the equicurve circle and the arch defcribed during the moment.
Caution.
Either of thefe meafures may be taken, but we munk take care nut to confound them. The firft is the molt proper, becaufe the change produced on the body (which is the immediate effect and meafure of the force) is the determination, left inherent in it, to move with a certain velocity. This is the meafure allo which we obtain by means of the differential or fuxionary calculus; but the other meafure mult be obtained when our immediate object is to mark the actual path of the budy. What is now delivered coincides with what was more briefly Itated in Astronomy, Suppl. n 16. and is repeated in this place, becaufe the Iteps of this demonitration, which is Newton's, fo naturally terminate in the equicurve circle, and give at once the immediate meafure of the defecting force: at the fame time the reader moft perceive that this meafure does not depend on the force being always directed to one centre; it is enough that the two fides of the polygon, in immediate fucceffion, are deferibed in equal times. This is neceffary in order that $A B C b$ may be a parallelogram, and that the diagonals AC and $\mathrm{B} b$ may mutually bifect each other.
'Thus have we obtained a meafure of deflecting force, and, in the moft important cafes, a method of difcovering its direction. It only remains to point out the reiation between the intentity of the force, the curvature of the path, and the velocity of the motion. Thefe three circumitances have a neceffary connection; for we fee that the intenfity is expreffed by certain values of the other two in the formula $f \doteqdot \frac{\text { Arch }^{2}}{\frac{3}{2} \text { Chord }^{\prime}}$, or $f$ $=\frac{2 \mathrm{BC}^{2}}{\mathrm{BZ}}$.

The deflective velocity $B b$ is acquired in
the time that the body defcribes BC; therefore the Of Deflecdeflective velocity is to the velocity in the curve as $\mathrm{B} b$ ing Forces. to BC. The velocity $B b$ is acquired by an accelerated motion along BO; for while, by progreflive motion, the body defcribes BC, it deflects from the tangent through a pace equal to the half of $B b$, becaufe the momentary action of the deflecting force may be confidered as uniform. The progreffive velocity BC may be generated by the fame force, uniformly acting through a fpace greater than $B C$; call this fpace $x$. The faces along which a body mult be uniformly impelled in order to acquire different velocities, are as the fquares of thofe velocities; therefore $\mathrm{B} b^{2}: \mathrm{BC}=$ $\mathrm{Bo}: x$; but $\mathrm{B} b: \mathrm{BC}=\mathrm{BC}: \frac{2}{2} \mathrm{BZ}$; therefore $\mathrm{B} b^{1}$ : $\mathrm{BC}^{2}=\mathrm{B} b: \frac{1}{2} \mathrm{BZ}$, and $\mathrm{B} b: \frac{1}{2} \mathrm{BZ}=\mathrm{B} 0: x$, and $\mathrm{B} b: \mathrm{B}_{0}=\frac{1}{2} \mathrm{BZ}: x$; but Bo is $\frac{1}{2}$ of $\mathrm{B} b$; therefore $x$ is $\frac{x}{4}$ of $B Z$; that is,

The velocity in any point of a curvilineal path, is that aubich the deflecting forces in that point would generate in the body by impelling it uniformly along one fourth part of the deflecive chord of the equicurve circle. If the velocity increafe, the chord of the equicurve circle mult increafe : that is, the path becomes lefs incurvated. If the force be increafed, the curvature will alfo increafe, for the chord of curvature will be lefs.

There is another gencral obfervation to be made on the velocity of a curvilineal motion, which greatly affilts us in our inceltigations.

If a body defcribes a curve by the action of a force Comparialways direded to a fixed point, and varying according to fon of orbiany proportion whatever of the difances from that point, and if another body, allid on by the fame centripetal force, move towurd the centre in araight live, and if approachts in any one cafe of equal difances from the centre of force the two bodies bave cqual velocities, they will have equal velocities in every other safe of equal difances from the contre.

Let one body be impelled from A (fig. 23.) toward C along the Atraight line AVDEC, and let another be deflected along the curve line VIK $k$. A bout the centre C defcribe concentric arches $1 \mathrm{D}, \mathrm{KE}$, very near to each other, and cutting the curve in $I$ and $I$, and the line $A C$ in $D$ and $E$; draw $I C$, cutting $K E$ in $N$, and draw NT perpendicular to the arch 1 K of the curve, and complete the parallelogram ITNO. Let the bodies be fuppofed to have equal velocities at I and at D .

Then, becaule the centripetal forces are fuppofed to be the fame for both bodies when they are at equal diftances, the accelerating forces at D and I may be reprefented by the equal lines DE and $I N$; but the force IN is not wholly employed in accelerating the body along the auch IK, but, acting tranfverfelys it is partly employed in incurvating the path. It is equivalent to the two forces IO and IT, of which only IT accelerates the bodj. Now IKN is a right angled triangle, as is alfo the triangle INT; and they are fimilar; therefore $I N: I T=I K: I N$, or $D E: I T=I K: D E:$ that is, the force which accelerates the body along DE is to the force which accelerates the body along IK as the fpace IK is to the fpace DE; therefore ( $\mathrm{n}^{\circ} 86$. ) the increment of the fquare of the velocity acquired along DE is equal to the increment of the fquare of the velocity acquired along IK. Dut the velocities at $D$ and I were equal, and confequently their fquares
of Defles- were equal; and thefe having received equal increments, ing Forces. therefore the fquares of the velocities at E and K are equal, and the velocities themelves are equal. And fince this is the cafe in all the correfponding points of the fine AC and the curve VIK, the velocities at all equal difances from C will be equal.

It is evident that the conclufion will be the fame, if the borlies, inflead of being accelerated by approaching the centre in the fraight line $A C$, and in the curve VIK, are moving in the oppofite directions from $E$ to A, or from I to V , and are therefore retarded by the centripetal force.

I23
Retarded curvilineal niotion always accompanied by recers from the enntse.

124

Cor. Hence it follows, that if a body be projected from any point, fuch as $V$, of the curve, in a line tending Atraight from the centre, with the velocity which it had in that point of the curve, it would go to a diftance V'A, fuch, that if it were impelied along AV by the centripetal force, it would acquire its former velocity in the point V ; alfo in any point between V and A it will have the fame velocity in its recefs from the centre that it has there in its approach to the centre.
The line BLFG, whofe ordinates are as the intenfities of the centripetal force in $\mathrm{A}, \mathrm{V}, \mathrm{D}, \mathrm{E}$, or in A , Y, I, K, may be called the scale or exponent of force; the areas bounded by the ordinates $A B, V L$, DF, EG, \&c. drawn from any two points of the axis, are as the fquares of the velocity acquired by acceleration along the intercepted part of the axis, or in any curvilineal path, while the body approaches the centre, or whichare lof while the body retires from it. When we can compute thefe areas we obtain the velocities (fee $\mathrm{n}^{\circ}$ 102.).

We are now in a condition to foive the chief problem in the fcience of dynamics, to which the whole of it is, in a great meafure, fubfervient. The problem is this,
Let a body be projefled with a known velocity from a given point and in a given cirection, and let it be un. der the influence of a mechanical force, whofe direction, intenfity, and variation, are all known: it is required to determine its path, and its motion in this path, for any given time?
This problem is fufceptible of three diftinct claffes of conditions, which require different inveftigation.

1. The force may act in one conflant direction; that is, in parallel lines.
2. The force may be always directed to a fixed point.
3. It may be dirested to a point which is continually changing its place.
4. When the force acts in parallel lines, the problem is folved by compounding the reatilineal accelerated motion which the force would produce in its own direction with the uniform motion which the projection alone would have produced. The motion mult be curvilineal, when the accelerating force is tranfverfe, in any degree whatever, to the projectile motion ; and the curvilincal path muft be concave on that fide to which the deflecting force tends; for the force is fuppofed to at inceffantly. The place of the body will be had for any time, by finding where the body would have been at the end of that time by cach force acting alone, and by completing the parallclogram. Thus, fuppofe a body projected alng AB (fig. 20.) while it is continually atted on by a force whofe dircetion is AD. Let 1 )
and B be the places where the body would be at the end of Defectof a given time. Then the body will, at the end of ing Forces. that time, be in F , the oppofite angle of the parallelogram ABFD. But it has not deferibed the diagonal AF, becaufe its motion has been curvilineal, as we thall find by determining its place at other inftants of this time.

The velncity in any point $F$ is found by firt determining the velocity at D , and making DT to DF as the velocity at $D$ to the velocity at $B$ ( that is, the velocity of projection, becaure the motion along AB is uniform). Then draw TF. Then $A B$ is to TF as the conftant velocity of projection to the velocity at F . We have feen already ( $\mathrm{n}^{\circ} 112-119$.) that TF is a tangent to the curve in F. Hence we may determine the velocity at $F$ in another way. Having determined the form of the path in the way already defcribed, by finc. ing its different points, draw the tangent $\mathrm{F} d$, cutting the line DA in $d$. Then the velocity at $A$ is to that at $F$ as AB to $d \mathrm{~F}$. Hence alfo we fee, that the velocities in every point of the curve are proportional to the portion of the tangents at thofe points which are intercepted between any two lines parallel to AD.

Either of thefe methods for afcertaining the velocits, in this cafe of parallel deflections, will in general be eafier than the general method in $n^{\circ} \cdot 121$. by the equicurve circl.

It was thus that Galileodifovered the parabolic motion of heavy bodies.
2. We mult confider the motions of bodies affested Inverfepron by centripetal or centrifugal forces, always tending to blem of one fixed point. This is the celebrated inverfe problenn centripetai of centripetal forces, and is the 42 d propofition of the forces. firft book of Newton's Principia. We flall give the folution after the manner of its illuftrious author; becaufe it is elementary, in the purefl fenfe of the word, keeping in vicw the two leading circumftances, and thefe only, namely, the motion of approach and recefs from the centre, and the motion of revolution. By this judicious procefs, it becomes a pattern by which more refined, and, in fome refpects, better folutions fhould be modelled. At the fame time we fhall fupply fome fleps of the inveftigation which his elcgant concife. nefs has made him omit.

Let a body, which tends to C (fig. 24.) with a force proportional to the ordinates of the exponent BLFG, having the axis CA , be projected from V in the direction VQ, with the velocity which the centripetal force would generate in it by accelerating it along AV. It is required to determine the path or orbit VIKI of the body, and its place I in this orbit, at the end of the affigned time T ?
Suppofe the thing done, and that I is the place of the body. About the centre C, with the diftances CV and Cl , defcribe the circles YV and ID. Draw CIX to the circumference, and draw the ordinate DF of the exponent of forces, producing it toward $x$, and produce the ordinate VL toward $a$. Let V $t$ be the diftance to which the body would so along the tangent YQ in the Time T and join $t \mathrm{C}$. Let this be fuppofed done for every point of the curve. Let $a i k$ and $a \leqslant y$ be two curves fo related to the curve VIK, that the ordinate DF cuts off an area $V$ a $i \mathrm{D}$ equall to the orbital fector VCI , and an area $\mathrm{V} a \times \mathrm{D}$ equal to the circular fector VCX.

Then, becaufe the velocity of projection is given, the diftance $\mathrm{V} t$ is known, and the area of the triangle VC $t$. But this is equal to the area VCI, by the laws of central forces ( $\mathrm{n}^{\circ} 115$.). Therefore the area V a $i \mathrm{D}$ is given. Alfo, becaufe the area VCI increafes in the proportion of the time, the area V a $i \mathrm{D}$ increafes at the fame rate. Therefore, having thefe fubfidiary curves $a i k$, $a \times y$, the problem is folved as follows:

Draw an ordinate $\mathrm{D} i$, cutting off an area V a $i \mathrm{D}$ proportional to the time, and defcribe a circle DIR. Then draw a line CX, cutting off a fetor VCX, equal to the area $\mathrm{V} a x \mathrm{D}$ cut off by the ordinate $\mathrm{D} i x$. This line will cut the circle DR in the point I , which is the point of the orbit that was demanded.

But the chief difficulty of the problem confifts in the defeription of the two fubfidiary curves $a i k$ and $a x y$, into which the lines VIK, and VXY are transformed. We attain this contruction by refolving the motion in the arch of the orbit into two motions, one of which is in the direction of the tranfverfe force, or of the radius vector, and the other is in the direction of revolution, or perpendicular to the radius.

Let Vk and IK be two very fmall arches defcribed in equal moments, and therefore ultimately in the ratio of the velocities in V and I ( $\mathrm{n}^{8} 73$ ). Defcribe the circle KE, cutting IC in N. Draw KC and $k$ C, and an perpendicular to VC.

The element ICK of the orbit is $=\frac{I C \times K N}{2}$, or to $\frac{7}{2} \mathrm{IC} \times \mathrm{KN}$. This is equal to the element $\mathrm{D} i k \mathrm{E}$ of the area V a $i \mathrm{D}$, or to $\mathrm{D} i \times \mathrm{DE}$, or to $\mathrm{D} i \times \mathrm{IN}$. Therefore IN: KN $=\frac{x}{2}$ IC: D $i$, or $2 \mathrm{IN}: \mathrm{KN}=$ $\mathrm{IC}: \mathrm{D} i$, and $\mathrm{D} i=\frac{\mathrm{IC} \times \mathrm{KN}}{2 \mathrm{~N}}$.

Now let A $l f g h$ be the exponent of the velocities, that is ( $\mathrm{n}^{0} 86$.), let $\mathrm{V} l^{2}$ be to $\mathrm{D} f^{2}$ as ABLV to ABFD , or $\mathrm{V} l: \mathrm{D} f=\sqrt{\mathrm{ABLV}}: \sqrt{\mathrm{ABFD}}$. Make $\mathrm{V} v$ and $\mathrm{I} i$ in the tangents refpectively equal to $\mathrm{V} l$ and $\mathrm{D} f$. Draw $v u$ and $i o$ perpendicular to VC and IC, and $v m$ perpendicular to LV produced. Let ${ }_{m} r z$ be an equilateral hyperbola, having VC, ZC, for its afymptotes, and cutting FD produced in $r$. Then the ordinates $\mathrm{V}_{m}, \mathrm{D} r$, are inverfely proportional to $\mathrm{CV}, \mathrm{CD}$, or $\mathrm{V} m: \mathrm{D} r=\mathrm{CD}: \mathrm{CV},=\mathrm{CI}: \mathrm{CV}$. But becaufe the momentary fectors VC $k$ and ICK are equal, $k n: \mathrm{KN}=\mathrm{CI}: \mathrm{CV}$. Therefore,

$$
\mathrm{V}_{n}: \mathrm{D} r=k n: \mathrm{KN}
$$

but $\quad \mathrm{V}_{v}: \mathrm{V}_{m}=\mathrm{V} k: k n$
and $\quad \mathrm{I} i($ or $\mathrm{D} f$ ) $: \mathrm{V} v=\mathrm{IK}: \mathrm{V} k$
therefore $\mathrm{I} i: \mathrm{D} r=\mathrm{IK}: \mathrm{KN}$
but $\mathrm{I} i: \mathrm{i}_{0}=\mathrm{IK}: \mathrm{KN}$, by fim. triang.
Therefore $\mathrm{D} r=i o$, and $i o: \mathrm{V} m=\mathrm{VC}: \mathrm{CI}$.
Alfo, by fimilarity of triangles, $\mathrm{I}_{0}: i_{0}=\mathrm{IN}: \mathrm{KN}$, and $2 I_{0}: i_{0}=2 \mathrm{IN}: \mathrm{KN}$.

Now it was fhewn, that in order that the fpace $\mathrm{D} i k \mathrm{E}$ may be equal to the fpace ICK, we mult have $2 \mathrm{IN}: \mathrm{KN}=\mathrm{IC}: \mathrm{D} i$ or 2Io:io=IC:Di but $\quad i_{0}: \mathrm{V}_{m}=\mathrm{VC}: I \mathrm{C}$ therefore $2 \mathrm{I}_{0}: \mathrm{V} m=\mathrm{VC}: \mathrm{D} i$
and $\mathrm{D} i=\frac{\mathrm{VC} \times \mathrm{V}_{m}}{2 \mathrm{I}}$.
Having obtained $\mathrm{D} i$, we eafily get $\mathrm{D} x$ : for the ul.
timate ratio of ICK to XCY is that of $\mathrm{IC}^{1}$ to $\mathrm{VC}^{2}$. Of DeflectTherefore make

$$
\mathrm{IC}^{2}: \mathrm{VC}^{2}=\mathrm{D} i: \mathrm{D} x
$$

Thus are the points of the two fubfidiary curves a $i k, a x y$, determined.
The rectangle VC $\times \mathrm{V} m$ is a conflant magnitude; and is given, becaufe VC is given, and $\mathrm{V} m$ is the given velocity $\mathrm{V} l$, diminifhed in the ratio of radius to the fine of the given angle CVQ.

But the line $2 I o$ is of variable magnitude, but it is alfo given, by means of known quantities. I $o^{2}$ is $=I i^{2}-i o^{2},=\mathrm{D} f^{2}-\mathrm{D} r^{2}$, and $\mathrm{I} o=\sqrt{D f^{2}-\mathrm{D} r^{2}}$. Moreover, $\mathrm{D} f^{2}=\mathrm{ABFD}$, and $\mathrm{D} r^{2}=\frac{\mathrm{VC}^{2} \times \mathrm{V} m^{2}}{\mathrm{IC}^{2}}$. Therefore $2 I_{0}=2 \sqrt{A B F D-\frac{V^{2} \times V m^{2}}{I C^{2}}}$, exprefled in known quantities, becaufe $A B F D$ is known from the nature of the centripetal force.

Let the indeterminate diftance CI or CD be $=x$, and let the ordinate DF, expreffing the force, be $y$. Let VC be $a$, and $\mathrm{V} m$ be $c$, and let $a b$ be a rectangle equal to the whole area of the exponent of force lying between the ordinate $A B$ and the ordinate $C Z$, fo that $a b-\int_{y} \dot{x}$ may reprefent the indeterminate area ABFD.

$$
\begin{aligned}
& \text { We have } \mathrm{D} i=\frac{a c}{2 \sqrt{a b-\int y \dot{x}-\frac{a^{2} c}{x^{2}}}} \\
& \text { and } \mathrm{D} x=\frac{a^{3} c}{2 x^{2} \sqrt{a b-\int y x-\frac{a}{c^{2}}}}
\end{aligned}
$$

Remark. We have hitherto fuppofed that the velocity of projection is acquired by acceleration along AV. But this was merely for greater fimplicity of argument, and that the final values of $\mathrm{D} i$ and $\mathrm{D} x$ might be eafier conceived. In whatever way the velocity is acquired, it will till be true, that when in any point V we nake $\mathrm{V} l$ to $\mathrm{V} m$ as the momentary increment $\mathrm{V} k$ of the arch is to the perpendicular $k n$ on the radius vector, we fhall have in every other point, fuch as I, the line $\mathrm{D} f$ to the line $\mathrm{D} r$ as the increment IK of the arch to KN . And in the final equation $\mathrm{D} f$ will ftill be expreffed by $\sqrt{a b-\int y \dot{x}}$

Cor. 1. The angle which the path of the projectile makes with the radius vector is determined by this folution; for $I$ is to $i o$ as radius to the fine of this angle; which fine is therefore $=\frac{a c}{x \sqrt{a b-\int y x}}$.

Cor. 2. When the magnitude $\frac{a c}{x}$ is equal to $\sqrt{a b-\int y \dot{x}}$, the path is perpendicular to the radius vec. $\frac{129}{129}$ tor, and the body is a tone of the apfides of its orbit, and ternined;
begins to recede from the centre after having approach188 ed to it, or begins to opproach after having receded. And curva Cor. 3. The curvature of the orbit VIK is alfo de-ture.
termined in every point; for the curvature of any line is inverfely as the radius of the equicurve circle, and this is to the chord which palfes through C as radius to


## D $\quad \mathrm{Y}$ N A M I C S.

Of Deflect- the fine of the angle CI i. Becaufe the velocits in any ing Forces, point I is $=\sqrt{\mathrm{ABFD}}$, and is equal to what the centripetal force at 1 would produce, by impelling the body along $\frac{x}{4}$ th of the deflective chord of the equicurve circle, we have this chord $=4 \frac{\mathrm{ABFD}}{\mathrm{DF}}$. Or we obtain it by taking a thind proportional to the momentary deflection and the momentary arch of the curve, or by other proceffes of the higher geometry, all proceeding on the
129 quantities furnithed in this inveftigation.
Newtonthe Such is the folution of this celebrated problem given inveutor. by Sir Ifaac Newton, who may juftly be called the inventor of the fcience of which it is the chief refult, as well as of the geometry, by belp of which it is profecuted. For we cannot give this glory to Galileo; for his fimple problem of the motion of bodies affected by uniform and parallel gravity, however jult and elegant his folution may be, was peculiar ; and the fame mult be faid of Mr Huyghens's doctrine of centrifugal forces. Befides, thefe theorems had been invefligated by Newton feveral years before, fuil nathefi facem preferente, as corollaries which he could not pafs unnoticed, from his general method. This is proved by letters from Huygens. Newton's inveftigation is extremely, but elegantly, concife, and is one of the beft exertions 130 of his fagacious mind.
Hiftory of Whether we confider this problem as a piece of mere this pro- mathematical fpeculation, or attend to its confequences, blen.

He firf demonfrated the defcription of the logarithraic of Deffectand hyperbolic fpirals, and indicated a variety of curi. ing Forces. ous recurring elliptical fipirals, which would be defcribed by means of this force, and thewing that they are all fulceptible of accurate quadrature. Several of thofe authors affect to confider their folutions as more perfeet than Newton's, and as more immediately indicating the remarkable properties of fuch motions; and alfo affeet to have deduced them from different and original principles. But we cannot help faying, that their claims to fuperiority are very ill founded; there is not a principle made ufe of in their folutions which was not pointed out by Newton, and employed by him. The appearance of originality arifes from their having taken a more particular concern in fome general preperty of curvilineal motions; foch as the curvature, the centrifugal force, \&c. and the making that the leading fep of their procefs. But Newton's is fill the beft ; becaufe it is frietly elcmentary, aiming at the two leading circumfances, the motion to or from the centre, and the motion of revolution round that centre. To thefe two purpofes he adapted his two fubfidiary curves. This procedure became Newton, pater, at rerum inventor, who was teaching the world, and who night fay,

## Avia Pieridunn peragro loca, nullius ante

 Trita pede-Is it not furprifing, that 25 years after the publica- Singular tion of Newton's Principia, a mathematician on the boart of continent flould publifh a folution in the Memoires of John Bcrthe French academy, and boalt that he had given the noulli. firf demonfration of it? Yet John Bernoulli did this in 1710 . Is it not more remarkable that this fhould be precifely the folution given by Newton, beginning from the fame theorem, the 4oth I. Prin. following Newton in every ftep, and ufing the fame fubfidiary lines? Yet fo it is. Bernoulli actually reduces the whole to two functions; namely, $\frac{a c}{\sqrt{a b-\int \Phi \dot{x}-\frac{a^{2} c^{2}}{s^{2}}}}$ and $\frac{a^{2} c}{\sqrt{a b x^{4}-\int \Phi x^{4}-a^{2} c^{2} x^{2}}}$; which laft is
plainly the fame with Newton's $\frac{Q \times C X^{2}}{A^{2} \sqrt{A B D F-Z^{2}}}$; becaufe Newton's $\frac{Q}{A}$ is the fame with $\frac{a c}{\alpha}$, and Newton's $A^{2} \sqrt{A B F D-Z^{2}}$ is the fame with $x^{2} \sqrt{a b-\int \phi \dot{x}}$ $\overline{\overline{-a^{2} c^{2}}} \overline{x^{2}}$, which Bernoulli haschanged (apparently tohide the borrowing) into $\sqrt{a b x^{4}-\int \varphi x^{4} \dot{x}-a^{2} c^{2} x^{2}}$. This publication of Bernoulli is perhaps the moft impudent piece of literary rolbery, for theft is too mild a term, that has ever appeared; and is the more deferving of fevere reprehenfion, becaufe it is full of reflecthous on the fimple and fupremely elegant method of Newton. It is hardly conccivable that a perfon of Bernoulli's confummate mathematical knowledge was fo

## 626

D $\quad$ Y $\quad$ N A M I C
of Defect- much blinded by the mechanical procedure of the fyming Forces. bolical calculus (which indeed is rarely accompanied by any ideas of the fubjest in hand) as not to perceive the perfeet famenefs of his folution. No; be thews, from time to time, that the phyfical ideas of motion and force were prefent to his mind; for he affects to fhem, that all Nerrton's brighteft difcoveries, fuch as the proportionality of the areas and times, $\& c$. flow as corollaries from his procedure.
Bernoulli's chief boalt in this differtation is, that moru philofophers may be affured that the planets will always defcribe conic feations; a truth of which they lad not as yet received any proof: becaufe, fays he, Newtor's argument for it in the corollary of the 13 th propofition is inconclulive, and becaure he had not been able to accommodate his demonftration of the 4 ift and 42 d propofition to the particular cafe of the planetary gravitation. Two affertions that border on infolence. Newton's demonAtration in the corollary of the $3^{\text {th }}$ propofition is juf, founded on the principle on which the very demoniration of the 42 d , adopted by Bernoulli, proceeds, and without which that demonftration is of no force; namely, that a body, in given circumftances of fituation, relocity, direction, and centripetal force, can defcribe no other figure than what it really defcribes. Newton did not accommodate the demonltration of the 42 d propofition to the planetary motions, becaufe he had already demonftrated the nature of theirorbits; but mentions the cafe of a force proportional to the reciprocal of the cubes of the diftance; not as a deduction from the 42 d , but becaufe it quas not a deduction from it, and admitted a very fingular and beautiful inveftigation by methods totally and effentially diferent.

Bernoulli alfo fays, that Newton's folution does not give us the notion of a continuous path, as his own does, but only informs us how to afcertain points of this path. This is the boldelt of all his affertions. Bernoulli ufes the differential calculus. It is the effential character of this calculus that it exhibits, and cay exhbit, nothing but detached points. This is madeniable. And this has been objected to Newton's firft propofition. But Newton's fluxionary geometry, of which the calculus exhibits only elements (being the fame with the differential), fuppofes the continuity of all nagnitudes; and when applied to dynanics, is no fubfitution whatever, but the iffa corport. This geometry offered itfelf to the mind of Newion, the accomplifhed and darling fcholar of Barrow, whofe geometry flathed on Ncwton's mind as the torch which was to thew him the feps of this yet untrodden path.

We truk that our readers will not be difpleafed with our repeated cndeayours to defend our great philofopher from the injurious attacks that have been made on him. During his own illuftrious life, while he was diffufing light and knowledge around him, and never contended for fame, happy in being the inftructor of mankind, he was injured by thote who envied his reputation, while they derived their chief honours from being his belt commentators. Now, fince he has left this world, he has been more grofsly injared by thofe who avail themfelves of that very reputation; and whe, by crude and contemptible inferences from his doctrine of elafic undulations, and grofs mifireprefentations of his notions of an etherial fuid, have pretended to fupport a fyftem of materialifm; and thus have fet Nevion at
the head of the atheifical fest, which he held in abhor- Of Deffect. rence. For our part, we always think with pleafure on ing Forcea, the wonderfnl energy of that great mind; becaufe it gives us a foretafte of thofe pleafures that await the wife and good, when the forrows flowing from the infirmitics, the vices, and the arrogant vanity of man are palt;

$$
\begin{aligned}
& \text { Utque in boc inflici campo, } \\
& \text { Uli luctuus regnatet et pavor, } \\
& \text { Mfortalibus prorfus, non abfit folatium. } \\
& \text { Hujus enim foripta evolvas, } \\
& \text { MIentenque ataztarum rerum capacent } \\
& \text { Corpori caluco fuperfitenn credas. }
\end{aligned}
$$

It cannot be expected that, in the narrow limits pre- Conclufion. fcribed to a work like ours, we can proceed to confider the various departments of this celebrated problem. We are only giving the outlines of the general doctrines of dynamics; and we have beftowed more time on thofe which are purely eiementary than fome readers may think they deferve. We were anxious to give juft conceptions of the fundamental principles of dynamics; becaufe we know that nothing elfe can intitle it to the name of a demonftrative fcience, and becaufe we fee much indifinctnefs and uncertainty, and a general vaguencfs or want of precifion, in feveral elementary works which are put into the hands of perfons entering on the fudy. This leads to errors of more confequence than a perion is apt to think; becaufe they effect our leading thoughts of mechanifm itfelf, and our notions of the intimate nature of the vifible univerfe.

But we muft conclude the article with this great Reafonsfor problem. Many very general ocotrines of dynamics re- omifionom main untouched; all, namely, that relate to the rotative motion of rigid bodies, and all that relate to the mutual action of bodies on each other in the way of impulfe.

The rotative motions, with the doctrine of mechanic momenta, have been confidered at large in the article Rotation of the Encycl. and we propofe to offer fome important confiderations on the fame fubje ot in our fupplement to the articles Machine and Mechanics. In the article Impulsion will be confidered fuch doctrines as are truly general, and independent of the fpecific differences of the bodies. Drnamics profeffes to involve no notions but thofe of force, and its mar's and meafures.
Notwithftanding thefe great omifions, we mult obferve that no new principle remains to be confidered. We have given all that are necelfary ; and there is no queftion that occurs in the cafes omitted, which cannot be completely anfwered by meahs of the propofitions already eftablifhed. We have taught how to difonver the exiftence and agency of a mechanical force, to menfure and characterife it, and then to flate what will be its various effects, according to the circumftances of the cale.
Proceeding by thefe principles, men have difcovered Unizerfal an univerfal fact, that every action of one body on ano- reation is a ther is accompanied by an equal reaction of that law of the other on the firf, in the oppofire direction; that is, to material exprefs it in the language of dynamics, "all the phenomena which make us infer that the body A poffefies a force by which it changes the motion of the body B , thew, at the fame time, that B poffeffes a force by which it makes an equal and oppofite alteration in the

Conalution motion of A." This, hosever, is not a doctrine of abftrat dynamics: it does not flow from our idea of force ; therefore it was not included in our lift of the Laws of Motion. It is a part of the mechanical hiftory of nature, juft as the law of univerfal gravitation is ; and it might be called the law of Universal $R_{\text {e- }}$ Action. Sir llaac Newton has, in our humble apprehemion, deviated from his accuftomed logical accuracy, when he admits, as a third axigm or law of motion, that reaction is always cqual and contrary to action. It is a phyfical law, in as far as it is obferved to obtain through the whole extent of the folar fyftem. But Newton himfelf did not, in the fubfequent part of his noble work, treat it as a logical axiom; that is, as a law of human thought with refpect to motion: for he labours with much folicitude, and with equal fagacity, to prove, by fat and olfervation, that it really outains through the whole extent of the folar fyftem; and it is in this difcovery that his chief claim to unequalled penetration and difcernment appears.

Availing ourfelves of this fact, we, with very little trouble, flate all the laws of impulfion. The body $A$, for example, moving to the weftward at the rate of eight feet per minute, overtakes the double body B , moving at the rate of four feet per minute. What mult be the confequence of their mutual impenetrability, and of the equality and contrariety of action and teaction? Their motions mult be fuch that both fuftain equal and oppofite changes. They mult give, in fome way or other, this indication of poffeffing equal and op. pofite forces. This will be the cafe if, when the changes are completed, $A$ and $B$ move on in contact at the rate of four feet per minute: for here $A$ has produced in each half of B a change of motion two ; and there. fore a totality of clange equal to four. This is the effect, the mark, the meafure, of the impulfive force of A; for it is the whole impulfion. B has produced in A a change of motion four, equal to the former, and in the oppofite dircction. This is the effect, mark, and meafure of the repulfive force of $A$; for it is the whole repulfion. And this is all that we obferve in the collifian of two lumps of clay; and the obfervation is ore of the facts on which the reality of the phyfical law of equal action and reaction is founded: and we can make no farther inference from this fact.

But the event might have been very different. A and B may be two magnets floating on corks on water, with their noth poles fronting each other. We know, by other means, that they really poifefs forces by which they equally repel each other. The dynamical principles already eftablifhed tell us alfo what mult happen in this cafe. 'I'hat both conditions of equal reaction and fenfible repullion may be fulnlled, A mult come to reft, and $B$ mult move forward at the rate of four feet per minutc. 'Ine fame thing muft happen in the meeting of perfectly elafic bodies, fuch as billiard balls. If clafticities are known to be imperfect in any degree, our dynamical principles will fill fate the effect of their collifion, in conformity to the law of equal reaction.

Ir like manner, all the motions of rotation are explained or predicted by means of the fame principles of dynamics applied to the force of cohefron. This is confidered as a moving force, becaufe, when the attraction of a magnet acts on a bit of iron attached to one end
of a long lath foating on water, the whole lath is mov. Conclufion. ed, although the magnet does not act on it at all: fome other force acts on it ; it is its colefion; which is therefore a moving force, and the fubject of dynamical difcuftion.

And thus it appears that thefe fubjects do not come neceffarily, nor, perhaps, with fcientific propriety, under the category of dynamics, but are parts of the mechanical hiltory of nature. Yet, did a work like ours give rcom in this place, the fludy of mechanical nature might be confiderably improved, by giving a fyftem of fuch general doetrines as involve no other notions but thofe of force and its meafures, and the hypothelis of equal reaction. Some very general, nay winiverfal, confequences of this combination might be eftablifhed, which would greatly afift the miechanician in the fo'tution of dificult and complicated problems. Such is the propofition, that the mastual adions of bodies depend on their relative motions only, and require no knowd dge of their real motions. This principle fimplifies in a worderful manner the mof difficult and the mof frequent cafes of aftion which nature prefents to our view ; but at the fame time gives a fevere blow to human vanity, by forcing us to aclinowledge that we know nothing of the real motion of any thing in the univerfe, and never thall know any thing of it, till our intellectual conftitution, ot our opportunitics of obfervation, are completely changed.

Mr D'Alembert has made this principle Rill more ferviceable for extricating ourfelves from the immente complication of attions that oecurs in all the fpontaneons plienomena of nature, by prefenting it to us in a different form, which more ditinctly expreffes what may be called the elements of the actions of budies on each other. His propotition is as follows (See his Dy* namique, page 73.):
" In whatever manner a number of bodies change D'Alemtheir motions, if we fuppofe that the motion which bert's geneeach body would have in the following moment, if it ral princiwere perfectly free, is decompofed into two others, one pleof dynsof which is the motion which it really takes in confequence of their mutual actions, the other will be fuch, that if each body were imprelfed by this force alone (that is, by the force which would produce this motion) the whole fyftem of bodies would be in equilibrio."

This is almof felf-evident; for if thefe lecond conftitutent forces be not fuch as would put the fyltem in equilibrio, the other conftituent motions could not be thofe which the oodies really take by the mutual action, but would be changed by the firlt.

For example, let there be three bodies $P, Q, R$, and let the forces $A, B, C$, act on them, fuch as would give them the velocities $p, q, r$, in any directions whatever, producing the momenta, or quantities of motion, $P \times p, Q \times q, \mathbb{R} \times r$, which we may call $\mathrm{A}, \mathrm{B}, \mathrm{C}$, becaufe they are the proper meafures of the moving force. Let us moreover Luppofe, that, by ftriking each other, or by being any how connected with each other, they cannot take thefe motions $A, \mathrm{~B}$, and C , but really take the motions $a, b$, and $c$. It is plain that we may conccive the motion $A$ impreffed on the body $P$, to be compofed of the motion $a$, which it really takes, and of another motion a. In like manner, $D$ may be refolved into $b$, which it takes, and another $\beta$; and $C$ jnto $c$ and $x$. The motions will be the fame wheiher

Cmelufion. We aft on $p$ with the force $A$, or with the two forces $a$ and $z$; whether we act on $Q$ with the force $B$, or with $b$ and $\beta$; and on R with the force C , or with $c$ and $x$. Now by the fuppofition, the bodies acttrally take the Motions $a, b$, and $c$; thercfore the mosions $\alpha$, $\beta$, and $x$, muft be fuch as will not derange the motions $a, b$, and $c$; that is to fay, that if the bodies had only the motions $y, \varepsilon$, and $x$, impreffed on them, they would deltroy each other, and the fyftem would remain at relt.

Mr $D^{\prime}$ Alembert has applied this propofition with great addrefs and fuccefs to the very difficult queltions that occur in the motions and actions of fluids, and many other moft difficult problems, fuch as the preceffion of the equinoxes, \&c. The caufe of its utility is, that in mof cafes it is not difficult to find what forces will pur a fytem in equilibrio; and, combining thefe with the known extraneous forces whofe cffects we are interefted to difcover, we obtain the motions which really follow the rnutual action of the bodies.

This is not, properly fpeaking, a principle: it is a form in which a general fact may be conceived. In the fame way the celebrated mathematician De la Grange obferved, that a fyftem of bodics, acting on each other in any way, is in equilibrio, if there be imprefled on its parts forces in the inverfe proportion of the velocities which each body takes in confequence of their action or connection; and he expreffes this univerfal fact bs a very fimple formula; and, calling this alfo a principle, he folves every queltion with eafe and neatners, by reducing it to the inveltigation of thofe velocities. In this way he has written a complete fyftem of dynamics, to which he gives the title of Mechanique Analytique, full of the moft ingenious and elegant folutions of very interelting and difficult problems; and all this without drawing a line or figure, but accomplikhing the whole by algebraic operations.
133
Put this is not teaching mechanical philofophy; it is merely employing the reader in algebraic operations, each of which he perfectly underfands in its quality of an algebraic or arithmetical operation, and where he may have the fullent conviction of the juftnefs of his procedure. But all this may be (and, in the hands of an expert algebraif, it generally is, ) without any notions, diftinct or indiftinct, of the things, or the proceffes of reafoning that are reprefented by the fymbols made ufe of. It is precifely like the occupation of a banker's clerk, when he carries lis eye up and down the columns of pounds fhillings and pence, calculates the compound intereft, reverfionary values, \&c.
bifadvantages of the fymbolical method.

It were well if this were all, although it greatly diminifhes the pleafure which an accomplified mathematician might receive ; but this total abfence of ideas expofes even the moft eminent anylif to frequent riks of paralogifm and phyfical abfurdity. Euler, who was perhaps the mof expert algebraif of this century, making ufe of the Newtonian theorem for afcertaining the motion of a body impelled along a Atraight line AC (fig. 24.) by a centripetal force, by comparing it with the motion in an ellipfe, of which the florter axis was diminifhed till it vanifued altogether, expreffes his furprife at finding, that when he computes the place of the body for a time fubfequent to that of its arrival at $C$, the body is back again, and in fome place between $C$ and $A$; in thort, that the body comes back again to $A$, and plays backward and forward. He
fays, that this is fomewhat wonderful, and feems incon- Conclukes. filtent with found reafon: "fed anylifi magis filendum." It mult be fo, and he goes on to another problem.

In like manner Mr Maupertuis, an accomplifhed man, and good philofopher and geometer, finding the fymbol MVS, or the quantity of matter multiplied by the velocity and by the diftance run over during the action, always prefent itfelf to him as a mathematical minimum in the actions of bodies on each other; he was amufed by the oblervation, and prefumed that there was fome reafon for it in the nature of things. Finding that it gave him very neat folutions of many elementary problems in dynamics, he thought of trying whether it would affift him in accounting for the conftant ratio of the fines of incidence and refraction; he found that it gave an immediate and very neat folution. This problem had, before his time, occupied the minds of Des Cartes and Fermat. Each of thele gentlemen folved the problem by faying, that the light did not take the fhortefl way from a point in the air to a point under water, but the eafieft way, in conformity with the acknowledged economy of nature and confummate wifdom of its adorable Author. But how was this the eafielt. way, the courle that economifed the labour of nature? One of thefe gentlemen proved it to be fo, if light move fafter in air than in water; the other proved it to be fo if light move falter in water than in air. Both could not be right. Maupertuis was convinced that he had difcovered what it was that nature was fo chary of, and grudged to walte-it was MVS! Therefore MVS can mean nothing but labour; nothing but natural exertion, mechanical action; therefore MVS is the proper meafure of action. He kept this great difcovery a profound fecret; and, being Prefident of the royal academy of Berlin, he propofed for the annual prize quettion, "Are the laws of motion neceffary or contingent truths?" He could not compete for the prize, by the laws of the academy ; but before the time of decifion, he publifhed at Paris his difertation on the principle of the leaf adion; in which he pointed out the fingular fact of MVS being always a minimum; and therefore, in fact, the object of nature's economical care. He folved a number of problems by making the minimum Aate of $\frac{f v \dot{m}}{m}$ condition of the problems; and, to crown the whole, fhewed that the laws of motion which obtain in the univerfe could not be but what they are, becaufe this economy was worthy of infinite wifdom; and therefore any other laws were impollible. The reputation of Maupertuis was already eftablifhed as a good mathematician and a worthy and amiable man, and he was a favourite of Frederic. The principle of lealt action become a mode ; and it drew attention for fome time, till it went out of fahhion. It is no mechanical principle, but a necelfary mathematical truth, as any perfon munf fee who recollents that $v$ is the fame with $s$, and that $f$ is the fame with $g \dot{2}$.

To avoid fuch paralogifms and fuch whims, we are Great adconvinced that it is prndent to deviate as little as pof- vantages of fible in our difcuffions from the geometrical method the geomeThis has furely the advantage of keeping the real fub. ject of difcultion clofe in view; for motion includes the notion of lines, with all their qualities of magnitude and pofition. It is needlefs to take a reprefentative

## D X N A M I C: S.

Conelufion, when the original itfelf is in our hands, and affords a much more comprelienfible object than one of ics abItra\&t qualities, mere magnitude. Let any pelfon candidly compare the lunar theory by Mayer or Euler with that by its illufrious inventor Sir Ifac Newton, and fay which of the two is mof luminous and molt pleafing to the mind. No perfon will deny that the $f$ later performances are incomparably more adapted to all practical purpores, and lead to corrections which it would be extremely difficult and tedious to inveftigate geometrically; but it muft be acknowledged, at the fame time, that till this be done, we have no idea what. ever of the deviation of the tract which this correction
afcrtains from the path which the moon would follow, Conclufiern. independent of the difurbince exprefied by the correction. In lise manner, Dan. Pernoulli, by mixing ats much as poffible the linear method with the algebaic, in his dilfertations on mufical chords, made the beautiful difonvery of the fecondary trochoids, and demonftrated the co-exifence of the harmonic fonds in a full mufical note. Let the accomplifhed mathematician puft forward our knowledge of dynamics ly the employment of the fymbolical analy fis ; but let him be followed as clofe as poffible by the geometer, that we may not be robbed ol ideas, and that the lludent may have light to direct his feps. But, 一Nazithe e tabulí.

D $\mathrm{Y} \quad \mathrm{N}$
Dynanometer.

DINANOMETER, an inftrument for afcertaining the selative mufcular flrength of men and other animals. That it would be delirable to know our relative llrengths at the different periods of life, and in different flates of health, will hardly be denied; and there can be no doubt but that it would be highly ufeful to have a portable inltrument by which we could afcertain the relative frength of horfes or oxen intended for the plough or the waggon. Such an inftrument was invented, many years ago, by Graham, and improved by Defaguliers ; but being conftructed of wooden work it was ton bulky to be portable, and therefore it was limited in its ufe.
M. Leroy of the Academy of Sciences at ParisconRructed a much more convenient Dynanometer than Graham's, confifting of a metal tube ten or twelve inches in length, placed vertically on a foot like that of a candleftick, and containing in the inflde a fpiral fpring, having above it a graduated fhank terminating in a globe. 'I'his thank, tugether with the fpring, funk into the tube in proportion to the weight acting upon it, and thus pointed in degres the ftrength of the perfon who pretfed on the ball with his hand.

This was a very fimple conftrution, and, we think, a good one; but it did not fatisfy Bufon and Cueneau. Thefe two phifofophers withed not merely to afcertain the mufcular force of a finger or a hand, but to eftimate that of each limb feparately, and of all the parts of the hody. They therefore employed M. Regnier to contrive al new dynanometer; and the account which

- Yournal
de ('E Ecolo
Potytechmique, v. 2. he gives* of his attempts to fulfil their wifhes is calculated to enhance the dificulty of the enterprize. The infrument, however, which he conftrufted is not fuch as appears to us to have required any uncommon fkill in mechanics, or any very great furctch of thought. It confifes chiefly of an elliptical fpring twelve inches in length, rather narrow, and covered with leather that it may not hurt the fingers when compreffed by the hands. This fpring is compofed of the beft feel well welded and-tempered, and afterwards fubjected to a fronger effort than is likely to be cuer applied to it either by men or animals, that it may not lofe any of its chaficity by ufe.

The effedts of this machine are eafily explained. If ${ }^{2}$ perfon compreffes the fpring with his hands, or draws it out lengthwife by pulling the two extremities in con. Suppl. Vol. I.

D I S
trary directions, the lides of the fpring approach to- Dysentery. wards eich other ; and it has an apparatus (we do not think a very fimple one) appended to it, confilting of an index and femicircular plate, by which the degree of approach, and confequently of effort, employed, is afcotained with great accuracy. The author gives a tedious defcription of other appendages, by means of which horfes or oxen may be empluyed to comprefs the fpring. But as any mechanic may devife means for this purpofe, we do not think it worth while to tranfcribe that defcription. The Englifh seader will find a full account of the whole apparatus in the 4 th number of the very valuable mifeellany entitled The Pbilofoptoical Magazine. The principle of the conirivance, confifts in the elliptical fpring, of which we confefs ourfelves unitble to perceive the fuperiority to the fpiral fpring of M. Leroy, though the author fees it very clearly.

DYSENTERY (See Medicine Indix, Encycl.). For the cure of this difeafe we have the following fimple prefcription by Dr Perkins and Dr B. Lynde Otiver, of the fate of Mallachufets in North America.

Saturate any quantity of the beft vinegar with common marine falt; to one large table fpoonful of this folution add four times the quantity of boiling water: let the patient take of this preparation, as hot as it can be fwallowed, one fpoonful once in half a minute until the whole is drank: this for an adult. 'The quantity may be varied according to the age, fize, and conftitution of the patient. If neceffary, repeat the dofe once in fis or eight hours. Confiderable evacuations I conceive (fays Dr Perkins) to be not only unneceffary, but injurious, as they ferve to debilitate and prolong the difeafe. A tea of plantain, or fome other cooling, fimple drink, may be ufetul; and if a thirft for cyder be difcovered, it may be gratified. Carelully avoid keeping this preparation in velfels partaking of the qualities of lead or copper, as the poifon produced by that means may prove dan. gerous.
'The fuccefs of the remeds depends much on preparing and giving the dofe as above directed.-The lim. plicity of this treatment renders it the more valuable, as all perfons have it in then power to avail themfelves of its ufe.

Dr Perkins fays, that he has found it ufeful in aģues, diarrhœas, and the yellow fever.

EARL,

EARL, a townhip in Lancaler co. Pennfylva-nia.-Morse.
EARTH, in chemiftry. See Chemistry-Indes in this Supplement.

Earth, in aftronomy and gengraphy. Sce Encyclopedia.

Earth, in ancicnt philofophy, one of the elements, the fubftance of which this globe is compofed. To afcertain the denfity of that fuoflance many experiments have been made ; but perhaps none more ingenious than thofe of Mr Cavendifh, which are detailed at full leng:h in Part II. of the Tranfations of the Royal Society of London for 1799 . They were projected by the late Rev. John Michell, F. R.S but he did not live to carry them into effect. After his death the apparatus came to the Rev. F. J. H. Wollaton, Jackfonian Profeffor at Cambridge, who transferred them to Mr Cavendilh. The apparatus contrived for making fenfible the attration of fmall quantities of matter, and which has been improved by Mr Cavendifh, is very fimple : it confifts of a wooden arm 6 feet long, fufpended by the middle in an horrizontal pofition by a flender wire 40 inches long; to each extremity is hung a leaden ball about two inches in diameter; and the whole is inclofed in a wooden cale to defend it from the wind.

As no more force is required to turn this balance on its centre than is neceffary to twift the flender fufpending wire, the fmalleft degree of attraction of a leaden weight or weights, a few (eight) inches in diameter, brought near to the fnall fufpended ball or balls of the balance, will be fufficient to move it fenfibiy afide.

To determine from hence the denfity of the earth, all that is neceffiry is, to afcestain what force is required to draw the arm afide through a given fpace, and then to have recourfe to calculation.

To prevent any diflurbance from currents that might be produced within the box that contained the balance, by even the difference of temperature that might be occafioned by heat being communicated by the bodies of the experimenters to one fide of it more than another, it was fupported in the middle of a clofe room; the operators, from adjoining apartments, viewed the operation through holes in the wall by means of telefcopes; and the apparatus had a ftrong light thrown upon its zwo ends (an opening being lelt at each end of the box for the purpofe) by means of two lamps, alfo in the ad. joining apartments, the rays from which were likewife made to pafs through the holes formed in the wall.

The two large bulls were fufpended from a beam near the cieling, which could be moved in an horrizontal direction, by means of a ftring and pulley, fo as to be brought near to the fmall balls of the balance, or made to recede again, withoutrequiring any perfon to be in the room.

From this defcription it will be eafily feen, that on the two large balls being brought near to the two fmall ones, but on oppofite fides of each, that their forces may not counteract each other-the fmall fufpending
wire of the balance muft be twifed by the movements of the arms, occafioned by attraction, which carries the fmall towards the large balls; and that the wire, endeavouring to untwift itfelf, will again in its turn carry the fmall balls away from the large ones. Vibrations are thus occafioned, which would continue a long time before the fmall balls would fettle between the firft point of reft and the large balls: but it is not neceflary to wait for this; an ivory fcale at each end of the balance enables the experimenters, by means of their telefcopes, to fee the two extreme divifions to which the fmall balls move in their vibrations, and thus to determine the middle point. The time neceffary for each vibration is alfo noticed.

A full account of there experiments, and of the calculations founded on them, would be litile interefting to the great majority of our readers. We thall therefore only mention the refult. By a mean of the experiments the denfiry of the earth comes out 5.48 times greater than that of water.

By the experiments made by Dr Makelyne on the attration of the hill Schehallien, the denfity of the earth was computed to be only $4 \frac{1}{2}$ times that of water. The difference of refult, therefore, is almoft one-fifth, which no doubt muft leffen our confidence in either fet of experiments, or in the principle on which they were devifed.

Earth-Worm (fee Lumbricus, Encycl.) is an animal which occafions fuch deflruction in gardens, by gnawing the tender roots of fhrubs and plants, that rarious methods have been propofed for remedying this evil. One of the lateft, and that which promifes to prove the mofl fucceffful, is given by M. Socoloff in the fifth volume of the New Tranfactions of the Imperial Academy of Sciences at Peteriburgh. As the deftructive power of quick-lime, beightened by a fixed alkali, which corrods or diffilves all the tender parts of animals, has been long known, it occurred to our author that this mixture would be the bell means for accomplifhing the object which he had in view. He therefore took three parts of quick-lime, newly made, and two parts of a faturated folution of fixed alkali in water, and thence obtained a fomewhat milky liquor fufficiently caultic, highly hoftile and poifonous to earthworms and other fmall animals; for as foon as it touched any part of their bodies, it occafioned in them violent fymptoms of great uneafinefs. If this liquor be poured into thofe holes in which the earth-worms refide under ground, they immediately throw themelves out as if driven by fome force; and, after various contorfions, either languifh or die. If the leaves of plants or fruit-trees, frequented by the voracious caterpillars, which are fo deflruetive to them, be fprinkled over with this liquor, thefe infects fuddenly contract their bodies and drop to the ground. For though Nature has defended them tolerably well by their hairy ikins from any thing that might injure their delicate bodies, yet as foon as they touch with their feet or mouths leaves
which

Eaftanalle which have been moiftened by this liquer, they become chufetts, about ro miles long, fituated on the peninfula as if it were ftupified, inflantly contract themfelves, and fall down.
With regard to plants or corn, thefe futain no injury from the liquor, becaufe it has no power over the productions of the vegetable kingdom, as our author has fully learned from experience; or if any hurt is to be fufpected, all the danger will be removed by the firft flower that falls. This liquor may be procured in abundance in every place where lime is burnt. It the lime be frefh, one part of it infufed into about feventy parts of common water will produce real lime.water. The want of the fixed alkali may be fupplied by boiling wood ahhes in water, and thickening the ley by evaporation.
This liquor might be employed alfo to kill bugs and other domeftic infects; but on account of its ltrong lixivious fmell, M. Socoloff thinks it could not be ufed with fafety in houfes that are inhabited. Nothing, however, more fpeedily or more effectually deftroys buge, as our author fays lie has repeatedly experienced, than the oily pickle that remains in cafks in which falted herrings have been packed.

EASTANALLE, the north-ealt head branch of Alabama river in Georgia, on which ftands the town of Eaftanallee. - Morse.

EAST BE'THLEHEM, a townlhip in Walhington co. Pennfylvania.-ib.

EAST CHESTER, a townfhip in Wca Chefter co.
New-York, on Long-I lland found, about 8 miles S. W. of Rye, 5 mortherly of Went Chefter, and 17 N. E. of New.York. It contains 740 inlabitants; of whom 106 are electors, and 75 flaves.-ib.

EASTER, an ifle in the Pacific ocean. S. lat. 27. 8. W. long. 109.41. It is barren and has no frefh water.-ib.

EASTERN Ifland on the E. fide of Chefapeak bay, at the mouth of Chefter river.- ib.

EASTERN-PRECINCT, in Somerfet co. New. Jerfey, contains 2068 inhabitants, of whom 468 are flaves.-ib.

EASTERN-RIVER, a fettlement in Hancock co. diftrict of Maine, containing 240 inhabitants.-ib.

EASTERTON, a village in Dauphin co. Pennfylvania, on the E. fide of Sufquehanna river 4 miles N. by W. of Harrifburg, and in N. W. by W. of Philadel-phia.-ib.

EAST GREENWICH, a poit town, and the chief townhip in Kent co. Rhoale-Inand ; 16 miles S. of Providence, and 22 N. N. W. of Newport, and contains 182 inhabitants. The compact part called Greenwich town, has a number of dwelling-houfes, a meetinghouie, and handfome court-houfe; and allhough its commerce is greatly reduced, carries on the fitheries to advantage, and fends fome veffets to the Weft-Indies. It is fituated on the N. W. part of Narraganfet bay. Both this town and Warwick are noted for making good cider; and formely for raifing tobacee fur ex-portation.-il.

EAST HADDAM, a townthip in Middlefex co. Connecticut, fituated on the E. tide of Conncsticut river, oppolite to Haddam, of which it was formenly a part. It was fettled in $17 \mathrm{O}_{4}$, and lies $\mathrm{I}+\mathrm{m}$ miles fouthwardly of Middleton, and 21 N. W. of New-London.-il.

EASTHAM, a townhip in Barnfable co. Maffa-
of Cape Cod, between Chatham and WellHeet, and 95 or 100 miles S. E. of Bofon. It contains 1834 in-habitants.-ib.
EAST HAMPTON, a townhip in Hampfhire co. Maffachufetts, 6 miles S. of Northampton, and 105 W . by S. of Boton. It contains 457 imhabitants, and is divided from the W. bank of Connecticut river by the celebrated mountain called Mount Tom.-il.

East Hampton, a handfome town in Suffolk co. New-York, on the S. E. coaft of Long-Ifland, 12 miles E. N. E. of South Hampton, and 105 E. of New-York city. It has a Prefbyterian church, an academy, and about 80 dwelling-houfes in one Atreet. The townhip contains 1497 inhabitants, of whom 21.4 are electors. Gardner's Illand is annexed to this town.-ib.
EAST HARTFORD, in Hartford co. Conneeticut, lies on the E. bank of Connecticut tiver oppofite to Hartford. The compat part of it lies in one broad Areet a mile and a hall in length. Here are a number of mills on the different Areams which water the town; alfo iron and glafs works.-il.

EAST HAVEN, a townhip in New-Haven co. Connesticut, on the E. fide of New. Haven harbour. There is a fort 2 miles from the mouth of the bay oppofite Smith's point to defend the palfage. The Sontels Captain and other fmall illots and rocks lie on the $S$. fhore.-ib.
East Haven, a townhip in Effex co. Vermont, W. of Maidkone, in miles S. E. of the fouthern end of of Willoughby's lake, and 18 N . by W. of the upper bar of the 15 mile falls on Connecticut river.-il.

EAST IINGSTON, in Rockingham co. NewHamphire, a part of Kingfon. In 1790 it contain. ed 358 inhalitants; and now 906.-il.

EAST MAIN, is that part of New-Britain, or La. brador, in North America, which lies on the E fide of James's bay ; as part of New South Wales on the W. fide of the fame bay is called West-Main.

The Hudion's bay factory called Eaft M.in, is fituated on the S. part of Eall-Main, between Rupert and Slade rivers, both of which run weltward into James's bay.-:b.

EASTON, a poft town of Pennfylvania, and capital of Northampton co. ; pleafantly fituated at the mouth of the Lehigh; and on the W. fide of Delaware river. It is regularly laid out, and contains about 150 dwel ling houles, a church, court-houfe, regiter's office, and an academy. It is 12 miles N. E. of Bethlehem, and 70 N . of Philadelphia.

Easton, the chief town of Talbot co. Maryland, formerly called Talbot Court-Houfe, is on the E. fide of Chefapeak bay, near the forks of Treadhaven river, 12 miles from its junction with Choptank river. It has a handfome court-houfe and market-houfe; about 150 dwelling-houfes, and feveral finres for the fupply of the adjacent country. It is 5 miles S . weftcrly of Wil. liamburg, 37 S . of CheRertown, and 118 S . W. of Philadelphia- - il.

Easton, a townllip in Wahington co. New-York. In 1790 it contained 2539 inhabitants, of whom 48 were llaves. By the fate cenfus of 1796 , it appeais that 347 of its prefent inhalnitants are cleqors.-ib.

Easton, or Eafown, a townlhip important for its $4 \mathrm{M}_{2}$
iron

Eanoin's iron manufactures, fituated in Brifol co. Maffachufetts, was judged could be taken up. This was occafionally

Raynham, and 12 W. of Bridgewater. It contains $1+66$ inhabitants. The heft mill-fans in the fate are made here. The art of making fleel was introduced here by Capt. Eliphalet Leonard, in 1786 . It is made in quantities; and is cheaper than imported fteel, and equal in quality for large work, fuch as plough flares, horiefloes, \&c. which require litrge quantities of hard fteel. Dut for edge tools, in general, it is found to be of inferior quality to what is imported. The manufacture of linfeed oil began here in 1792, and from an annual finck of 3000 buthels of feed, there has been annually produced near 5000 gallons of oil.-ib.

Easton's Beach ard Bay, in the itate of Rhode-Illand, is feparated from Sachueaft beach and bay by Eafton's point. Both lie at the fouthern end of Rhode-Ifand. -ib.

EAST River in the fate of New-York, and the waters of North or Hudfon river, form York I. The communication between North river and Long-Ifiand found is by the Eaf river along the eaftern fide of New-York Inand.-ib.

East or North Haven, or Qimepauge River in Connesticut, rifes in Southington, not far from a bend in Farmington river and patfing through Wallingford and North-Haven, empries into New-Haven harbour. It has been contemplated to conneg the fource of this river with Farmington river.-ib.

EAST-TOWN, in Cheiter co. Pennfylvania,-ib.
EAST-IVHITELAND, a townthip in Chefter co. Pennfylvania-ib.

EAST-WINDSOR, a townhip in Hartford co. Conneaicut: feparated from Windfor by Conncelicut river, and about 7 miles N. E. of Hartford. The compact part of the town lies on one broad freet of about 2 miles in length. In the townibip are 3 Congregational churches. The lands are feitile; and befides thofe articies common to the fate, produce large quan. tities of good tobacco.-ib.

EATON, a fmall town in the northern part of Strafford co. New-Hampflite ; 3 miles N. of the G:eatOlfipee lake, and about 56 N . by W. of Portimouth. It was incorporated in 1766 , and contains 253 inhabi-tants.-ib.

EATONTOWN, improperly called Edentown, a pleafant village in New-Jerfey, about a mile S. of the town of Shrewfoury in the fame townilhip. It is a place of fome bufinefs and thrivigg. -i $\%$.

EAU de Luce, a fragrant alkaline liquor which was fome years ago in great repute, elpecially among the fair fex, and of which the ledding perfection is, that it fhali pofiefs and retain a milky opacity.

Mr Nicholfon, in the fecond number of his valuable journal, tells us, that being informed by a philofophical fitiend, that the ufual recipes for making this componnd (fee Camastry, Eucycl. $\mathrm{n}^{\circ}$. 1037. ) do net fucceed, and that the ufe of mattic in it has hitherro been kept a fecret, he made the following trials to procure a good cau de luce.

One dram of the restified oil of amber was diffolved in four ounces of the frongelt ardent firit of the fhops; its fpecific gravity being 840 at 60 degrees of Fahrenbeit. A portion of the clear fpirit was poured upon a larger quantity of fine powdered maftic than it
agitated without heat; by which means the gum refin was for the moft part gradually diffolved. One part of the oily folution was poured into a phial, and to this was added one part of the folution of maftic. No opacity or other change appeared. Four parts of frong cautic volatile alkali were then poured in, and immediately fhaken. The fluid was of a denfe opake white colour, affording a flight ruddy tinge when the light was feen through a thin portion of it. In a fecond mixture, four parts of the alkali were added to ore of the folution of manaic ; it appeared of a lefs denfe and more fellowith white than the former misture. More of the guna refinous folution was then poured in; but it ftill appeared lefs opake than that mixture. It was ruddy by tranfmitted light. The laft experiment was repeated with the oily folution inflead of that of maftic. The white was much lefs denfe than either of the foregoing compounds, and the requifite opacity was not given by augmentiag the dofe of the oily folution. No ruddinefs nor other remakable appearance was feen by tranimitted light. Thefe mistures were left at repofe for two days; no feparation appeared in either of the compounds containing maftic; the compound confittirg of the oily folution and alkali became paler by the feparation of a cream at the top.
It appears, therefore, that the firt of thefe three mixtures, fubject to variation of the guantity of its ingredisuts, and the odorant additions which may be made, is a good eau de luce.

In a fubfequent number of the fame Journal, we have the following recipe by one of the author's correfpor. dents, who had often proved its value by experience. "Digeft ten or twelve grains of the whiteft pieces of malic, felected for this purpofe and powdered, in two ounces of alcohol; and, when nearly diffolved, add twenty grains of elemi (fee Amyris, Encycl.). When both the retins are diffilved, add tea or fifteen drops of reatified oil of amber, and fifteen or twenty of effence of bergamot: inake the whole well together, and let the faces fubfrde. The folution will be of a pale amber colour. It is to be added in very fmall portions to the bef aqua ammonix furx, until it affumes a milky whitenefs fhakiog the phial well after each adatition, as directed by Macquer. The fltengrb and caunticity of the ammoniac are of moft effential confequence. If, upon the addition of the firlt dinp or two of the tincture, a denfe opake coagulated precipitate is formed, not much unlike that which appears on dropping a folution of fiver into water flightly impregnaied with common falt, it is too ltrong, and muft be dilated with alcohol. A contidc:able proportion of the tinciure, periaps one to four, ought to be requifite to give the liquor the proper degree of opacity."

EAVES-Eoard, or Eaves-Lath, a thick feathereiged board, uftually nailed round the eaves of a houfe fcr the lowermolt tiles, flate, or thingles, to reft upon.

EBENEZER, a polt town, and the capital of Effingham co. Georgia, feated on the S. W. bank of Savannab river, 5 miles from Abercorn, 25 N. N. W. of Savannah, 75 S. E. of Louifville, and 860 S. W. of Philadelphia. It contains but a few heufes; and was fettled in 1735, by a number of Protefants driven out of Saltfourg, in the electorate of Bavaria, by perfecu-tion.-Morsc.

ECLIP.

Edipfateon ECLIPSAREON, an infrument invented by Mr
lif. Fergufon for fhewing the phenomena of eclipfes; as $\underbrace{\text { Edgarton. }}$ their time, quantity, duration, progrefs, \&c.

ECliptic. See Eucyel. both under Ecliptic and in Astronomy-Index. It was obrerved in Astronony, Encych. n ${ }^{\circ}$ 407. that the obliquity of the ecliptic has been found gradually to decreafe. This was obferved, among othcrs, by Lacl Lande, who, in the third edition of his afronomy, reckoned the fecular diminution of this obliquity at 50 feconds. From a new examination, however, of ancient obfervations, he has fince found reaton to eltimate it at only 36 feconds; but whether this be perfectly accurate, is very doublful. The mean obliquity was determined for the 1 ! of January ${ }^{1793}$, with circular inftruments, by Mechain at Barcelon:a, and Piazzi at Palermo, to be $23^{\circ} 27^{\prime} 53^{\prime \prime} \cdot 3$. Yer the obfervation of the fummer folltice of 1796 , by MLechain and Le lirancais, gave 11 feconds more; which was jufly confluered as a perplexing circumftance. But, as one of the ableft of our literary journalints obferves, might nor this difference arife from the uncertainty of our tables of refraction, as affected by the hygrofcopic variations of the atmofphere?

EcLirsic-Botunds, of Limits, ate the greatelt dittances from the nodes at which the fun or moon can be eclip. fed, namely, near 18 degrees for the fun, and 12 degrees for the moon.

EDEN, a tovinhip in Hancock co. dillriat of Maine, incorporated in 1796 , taken from the northerly part of Mount Deiert.-MTorse.

Eden, a townfhip in Orleans co. Vermont, N. IW. of Craftibury, adjoining.-ib.

EDENTON, a diftrit on the fea-coalt of NorthCarolina, bounded N. by the fate of Virginia; E. by the ocean; IV. by Halifax diftrict, and S. by Newhern. It is fubdivided into 9 counties, viz. Chowan, Pafquotank, Perquimins, Gares, Hertfurd, Lertic, and Tyrel. It contains 53,770 inhabitants, of whom 19,198 are flaves. Its chief town is Edenton. The wood is chiefly pine, oak, cyprefs, and juniper ; of ail which there is abundance.-ib.

Edenton, the capital of the above diltrict, is a poit town, and port of entry, at the head of a bay on the $N$. fide of Albemarle found, and at the N. E. fide of the opering of Chowan siver. It contains above 150 indifferent wooden buillings, and a tew handi,me ouss. The public buildings are an ancient brick Epifopal church, a court houfe and gaol. In or near the town lived the proprietary, and the firft of the royal governors. Itsfituation is advantageous for trade, but unhealthy; which doubseis has terded to retard its profperity. Its exports in the yeat endiag September $30,179+$, ampunted to the valie of $50,6 \frac{15}{5}$ dollars. It is 97 miles N . of Newbern, 257 N . N. E. of Wil. mington, 139 S. E. of l'steriburgb, and 440 S. S. W. of Philadelotia. N. lat. 36. 6. W. long. 77. 11.-ib.

EDESTON, a plantation in Hancock co. diftriot of Maine, containing 1 to inhabitants.-ib.

EDGiRTON, aport of entry and poof town of Maflachuretts, and the chief town of Duke's co. fittiated on the E. fide of the intind of Mat tha's Vineyard. The fertile illand of Chabaquidick is within the jurifdition of Edgarton; which has a tmall trade to the Well-Indies. Tlle exports in 1794 for one year end ng Sept. 30 th, amounted to 2,257 dollars value. It liss
about 14 miles $S$. of Barnfable co. on the main, and 94 miles S. S. E. of Bofton. It was incorporated in 167 I , and contains 1352 inhabitants.-ib.
EDGCOMB, a townflip in Lincoln co. difrift of Maine, containing 855 inhabitants. It. was incorporated in 1774, and lies 180 miles N. by E. of Bofton. -ib.

Edgcomb, a county of Halifax difrict, N. Caroiina, bounded S. by Pitr co. S. W. by Wayne co. and Tar river, which affords it communication with feveral counties in the ftate ; W. by Nafh co. and F.. by Martin and Halifaa counties. It contains 10,255 inhabitants, of whom $=, 009$ are ीaves.-ib.

EDGEFIELD Co. in S. Carolina, is the fouthernmoft in the diftiif of Ninety Sx; bounded N. by Saluda river which divides it from Newbury co. ; S. W. by Szvannah river, which feparates it from the fate of Georgia; E. by Orangeburg diftrict, and W. by Abbeville co. The ridge of elevated land, which divides the waters of Saluda from thofe of Savannal river paifes nearly through the middle of the county. Edgefield co. is about 34 miles long and 24 broad, and contains $I_{3}, 289$ inhabitants, of whom 3619 arc llaves. $-i b$.
Edgerield Court. House, in the above county, where is a purt-oflice, is 20 miles from Abbeville courthoufe ; 25 from Augufa, and 60 from Columbia.-ib.

EDGEMONT, a townhip in Dekaware co. Pemn-fylvania.-ib.

EDWARD, a fort in Nova.Scotia, in the town of Windfor, in Hants co. faid to be large enouzh to contain 200 men. It is lituated on Avon river which is navigalle thus far for velfels of 400 tons; thofe of 60 tons can go 2 milcs higher.--ib.

Edward, a fortification in Wafhington co. NewYork, now in ruins. It is fituated on the E. bank of Hudfon river about 14 miles S. by E. of Fort George, on the fouthern eatremity of Lake George, and ig S. bs Wr. of Skenefoorough, on South bay, an arm of lake Champlain, N. lat. 43.7. W. long. 74.一ib.

EDYSTONE Rocrs, fo remarkable for the lighthoure built on then, obtained their nane from the great variety of contrary fets of the tide or current in ther vicinity. They are fituated nearly S. S. W. from the midulle of Piymouti Sound, according to the true meridian. The diflance from the port of Plynnouth is Sintaton's ne.rily 14 miles, and from the promuntory called Ram- Acouna of bead about to milies. They are dimot in the line, bat the Edyfore fomewhat within it, which joins the Start and die Li zard points; and as they lie nearly in the direction of veffels coalting up and down the channei, they were neceffarily, befres the eftabithment of a light houfe, very dangerous, and often fatal to hips under fuch circumfances. Their fituatim, likewife, whih regard to the Bay of Bilcay and Adlantic ocean, is fuch, that tiney lie onen to the fwells of the Bay and cocan :rom all the fouth-weltern prints of the compais: which fwells are generally allowed by mariners to be very great and heavy in thofe feas, and particulatly in the Bay of Bifcay. It is to be oblerved, that the foundings of the fea from the fouth wefward towara the Edyltone are from 80 fathoms to 40 , and everywhere rill you come near the Edyfore the fea is tull $30 \%$... thoms in depth; fo that all the heay feas from the

## E D Y <br> E D Y

Edyfone. fout-hweft come uncontrouled upon the Edyltone rocks, and break on them with the utmoft fury.

The force and height of thefe feas is increafed by the circumftance of the rocks ftretching acrofs the Channel, in a morth and fouth direction, to the length of above 100 fathoms, and by their lying in a floping manner toward the fouth-welt quarter. This 月iving of the rocks, as it is technically called, does not ceafe at low water, but ftill goes on progreffively; fo that, at 50 fathoms weftward, there are 12 fathoms water; nor da they terminate altogether at the diftance of a mile. From this configuration it happens, that the feas are fwelled to fuch a degree in florms and hard galcs of wind, as to break on the rocks with the utmoft violence.

The effect of this flope is likewife fenfibly felt in mo. derate, and even in calm weather; for the libration of the water, caufed in the Bay of Bifcay in hard gales at fouth-weft, continues in thole deep waters for many days, though fucceeded by a calm; infomuch, that when the fea is to all appeararce fmooth and even, and its furface unruffed by the flightelt breeze, yet thofe librations fill continuing, which are called the groundfroell, and meeting the flupe of the rocks, the fea breaks upon them in a frightful manner, fo as not only to obfroct any work being dane on the rock, but even the landing upon it, when, figuratively fpeaking, you might go to fea in a walnut thell. A circumfance which ftill $\hat{f}_{\text {arther }}$ increafes the difficulty of working on the rock is, there being a fudden drop of the furface of the rock, forming a feep of about four and a half, or five feet high; fo that the feas, which in moderate weather come fwelling to this part, meet fo fudden a check that they frequently fly to the height of 30 or 40 feet.

Notwithftanding these difficulties, it is not furpifing that the dangers to which navigators were expofed by the Edyftone rocks fhould make a commercial nation defirous of having a light.houfe on them. The wonder is, that any one thould be found hardy enough to undertake the bulding. Such a man was firlt found in the perfon of Henry W'influnley of Littlehury in Effex, Gent. who, in the year iGg6, was furnifhed by the mafter, wardens, and atifants, of the Trinity-houfe of Depeford Strond with the neceflary powers to carry the defign into execution.

Mr Wintanley had diftinguifhed himfelf in a certain branch of mechanics, the tendency of which is to raiie wonder and fusprife. He had at his houfe at Little. bury a fet of contrivances, fuch as the following: Being taken into one particular room of his houle, and there obferving an old flipper carelefsly lying on the foor; if, as was natural, you gave it a kick with your foot, up Itarted a ghoft before you. If you fat down in a certain chair, a couple of arms would immediately clafp you in, fo as to render it impoffible to difentangle yourfelftill your attendant fet you at liberty. And if you fat down in a certain arbour by the fide of a canal, you were forthwith fent out afloat to the middle of the canal, from whence it was impoffible for you to efcape till the manager returned you to your former place. Whether thofe things were fhewn to ftrangers at his houfe for money, or were done by way of amufement to thofe that came to vifit the place, is uncertain, as Mr Winfanley is faid to have been a man of fome property ; but it is at leaft certain, that he eftablifhed a
place of public exhibition at Hyde Park-corner, called Edytone. Winflanley's zeater-works, which were Thewn at ftated times at one fhilling each perfon. The particulars of thofe water-works are not now known; but, acearding to the tafte of the times, we mult naturally fuppofe a great variety of jets d'eau, \&xc.

Thefe particulars are at prefent of no other impor. tance than that they ferve to give a fketch of the talents and turn of mind of the original undertaker, and to account for the whimfical kind of buildings which he erected on the Edyltone; from the defign of which, it feems as if it were not fufficient for his enterprifing genius to erect a building on the fpot, where, of all others, it was leaft likely to fand unhurt; but that he would alfo give it an elevation, in appearance the moft liable to fubject it ta damage from the violence of the wind and waves.

This ingenious man entered upon his great undertak. ing in 1696 , and completed it in fomething more than four years. The firt fummer was occupied with making 12 holes in the rock, and in faftening 12 great irons, which were to hold the work that was afterwards to be done. The next fummer was fpent in making a folid body, or round pillar, 12 feet high and 14 feet in diameter. In the third year, the atorefaid pillar or work was made gond at the foundation, from the rock, to I 6 feet in diameter; and all the work was raifed, which, to the vane, was 80 feet high. Being all finifh. ed, with the lantern, and all the rooms that were in it, we " ventured (fays Mr Winitanley) to lodge there foon after midfummer, for the greater difpatch of this work: but the firlt night the wearher came bad, and fo continued, that it was eleven days before any boats could come near us again; and not being acquainted with the height of the feas rifing, we were alinoft all the time drowned with wet, and our provifions in as bad a condition, though we worked night and day, as much as pofible, to makc fhelter for ourfelves."

Mr Winflanley, however, fucceeded in fetting up the light on the $14!$ h of November in that year ( 8698 ); but he was detained till within three days of Chrittmas before he could return to fhore, being almolt at the lat extremity for want of provilions.

In the fourth year, obferving the effects that the fea produced on the houfe, burying the lantern at times, although more than 60 feet high. Mr Winftanley encompaffed the aforefaid building early in the fpring with a new work of four feet thicknefs from the foun. dation, making all folid for near 20 feet high; and tak. ing down the upper part of the firlt building, and enlarging every part in its proportion, he rafed it 40 feet ligher than it was at firft : Yet, he obferves, "the fea in times of ftorms, flies in appearance one burdred feet above the vane, and at times doth cover half the fide of the houfe and the lantern as if it were under water."

No material occurrences concerning this building happened till November 1703, when the fabric, needing fome repairs, Mr Winftanley well: down to Plymouth to fuperintend the work. And "we muft not wonder (fays Mr Smeaton), if, from the preceding accounts of the violerice of the feas, and the flructure of the lighthoufe, the cummon fenfe of the public led them to fuppofe this building would not be of long daration. The following is an anecdote which I received to the fame effeet from fo many perfons that I can lave no doubt

## E D Y [ 635 ] E D .Y

Edyfone. of the truth of it: Mr Wintanley being among his friends previous to his going off with his worknen on account of thofe reparations, the danger being intimated to him, and that one day or other the light-houfe would certainly be overfet; he replied, "He was fo very well affured of the ftrength of his building, he fhould only wifh to be there in the greateft ftorm that ever blew under the face of the heavens, that he might fee what effect it would have on the ftructure."-It lappened that Mr Winfanley was but too amply gratified in this wifh: for while he was there with his workmen and light-keepers, that dreadful form began, which raged mot violently on the 26 th of November 1703 , in the night; and of all the accounts of the hird which hitory furnifhes us with, we have none that has exceeded this in Great Britain, or was more injurious or extenfive in its devaftation. The next morning, November 27 th, when the violence of the ftorm was fo much abated that it could be feen whether the lighthoufe had fuffered by it, nothing appeared fanding, but, upon a neater infpeftion, fome of the large irons by which the work was fixed upon the rock; nor were any of the people, or any of the materials of the build ing, ever found afterwards, fave only part of an iron chain, which had got fo faft jambed into a chink of the rock, that it could never atterwards be difengaged till it was cut out in the year 1756 ."

Thus perifhed Mr Winftanley, together with his building: but fo great was the utility of that building while it ftood, that the public could not fail to be defirous of having another in its place. Accordingly, in r706, an act of parliament of the $4^{\text {th }}$ of Queen Anne was paffed, for the better enabling the mafter, acc. of the Trinity-houfe of Deptford ftrond to rebuild the fame. By this act, the duties payable by fhipping paffing the light-houfe were vefted in the corporation of the Trinity-houfe, who were empowered to grant a leafe to fuch undertaker or undertakers as they fhould approve. In confequence, they agreed with a Captain Lovel or Lovet for a term of 99 years, commencing from the day on which a light fhould be exhibited, and continuing fo long as that exhibition thould haft during the faid term. On this foundation Captain Lovet engaged Mr John Rudyerd to be his engineer or architect and fur veyor.

It does not appear that Mr Rudyerd was bred to any mechanical bufnefs or fciensific profefion, being at that time a filk mercer on Ludgate-hill; nor is it known that, in any other inftance, he had diftinguifted himfelf by any mechanical performance before or after. His want of perfonal experience, however, was in a degrce affitted by Mr Smith and Mir Norcutt, both fhipwrights in the ling's yard at Woolwich.

It is not, as Mr Smeaton obferves, very material in what way this gentleman became qualified for the execution of his work; it is fufficient that he directed the performance in a mafterly manner, and fo as perfeetly to anfwer the end for which it was intended. He faw the errors in the former building, and avoided them; inflead of a polygon he chofe a circle for the outline of his building, and carried up the elevation in that form. His principal aim appears to have been $u / \sigma$ and fimplicity; and indeed, in a building fo fituated, the former could laardly be acquired in its full extent without the latter. He feems to have adopted ideas the very re-
verfe of his predeceffor; for all the unwieldy orna- Edyftune. ments at top, the open gallery, the projecting cranes, and other contrivances, more for ornament and pleafure than ufe, Mr Riflyerd laid totally afide. He faw, that how beautiful foever ornaments might be in themfelves, yet when they are improperly applied and out of place, by affecting to thew a talle, they betray igmorance of its firt principle, judgment; for whatever deviates from propriety is crronecus, and at beft infipid.

It is impofible for us to give an accurate account of the conftuction of Mr Rudyerd's light-houfe. We can only ray, in general terms, that it was alrogether built of wood; fur the courles of moorttone, which Mr Rudyerd, adverting to the maxim, that rucight is belt refilted by weight, introduced into the folid part of his building, mut be confidered as being of the nature of ballatt; the weight of thefe amounted to above 270 tons. The main column of the building confifted of one fimple figure, being an elegant fruftum of a cone, unbroken by any projecting ornament, or any thing on which tho violence of the forms could lay hold; meafuring, exclufively of its floping foundation, 22 feet and eight inches on its largeft circular bafe; 61 feet high above that circular bafe; and 14 feet and three inches in diameter at the top: fo that the circular bafe was fomewhat greater than one-third of the total height, and the diameter at the top was lefs than two-thirds of the bafe at the greateft circle. On the flat roof of this main column, as a platform, Mr Rudyerd fixed his lantern, which was an oftagon of ten feet and fix inches diameter externally. The mean height of the windowframes of the lantern above the balcony floor was nearly nine feet; fo that the elevation of the centre of the light above the highert fide of the bafe was jo feet; that is, lower than the centre of Mr Wisfanley's fecond lantern by feven feet, but higher than that of his firlt by 24 feet. The width of Mr Rudyerd's lantern was, however, nearly the fame as that of Mr Wintanley's fecond: but intead of the towering ornaments of ironwork, and a vane that role above the top of the cupola no lefs than 21 feet, Mr Rudyerd judicioufly contented himfelf with finifhing his building with a rcund ball of two feet and three inches diameter, which terminated at thee feet above the top of his cupola. The whole height of Mr Rudyerd's light-houfe, from the loweft fide to the top of the ball, was 92 feet, on a bafe of 23 feet and four inches, taken at a medium between the highelt and lowelt part of the rock that it covered. The whole building was completed in the year 1709 , three years from its commencement.

This great work, after having braved the elements for forty-fix years, was burnt to the ground in 1755 On the 2 d of December of that year, when the light. keeper, then on the watch, went, about two o'clock in the morning, into the lanters, to fnuff the candles according to cuftom, he found it in a fmoke; and in fpite of all that he and his companions could do, the whole edifice was on fire in the compafs of little more than eight hours, and in a few days was burnt to its foundation. The three light-men were with much difficulty got on hore, when one of them immediately ran off, and has never fince been heard of. Another, wholiad been dreadfully burned by melted lead, of which, ac. cording to his own account, he had fwallowed a quan.

## E D $\mathbf{Y} \quad\left[\begin{array}{lll}636\end{array}\right] \quad \mathrm{E} D \mathrm{Y}$

Edynone. tity, lingered in agony for twelve days, and then expired. His fomach being opened, there was fourd in it a folid piece of lead of a flat oval form, which weighed feven ounces and five drachms; and thus was verified an affertion which, to the furgen and others who attended him, appeared altngether incredible, viz. that any human being could live after receiving melted lcad into the ftomach.

On the deftruction of Mr Rudyerd's light-houfe, Mr Smeaton (iee Smbaton in this Supplement) was recommended by Lord Macclesfield, then prefident of the Royal Society, as the fittef perfon in England to build another. It was with fome difficulty that he was able to perfuade the proprietors that a fone building, properly conftrafed, wuld in all efpeets be preferable to one of wood; but having at laft convinced them, he turned his thoughts to the thape which was moit fuitable to a building fo critically fituated. Reflecting on the ftructure of the former buildings, it feemed a material improvement to procure, if pollible, an enlargement of the bafe, without increafing the fize of the ruaifl, or that part of the building which is between the top of the rock and the top of the fulid work. Hence hethought a greater degree of frength and itiffnefs would be gained, accompanied with lefs refiftance to the acting power. On this occation, the natural figure of the waith or bole of a large fpreading oak occurred to Mr Smenton.
"Let us (fays he) confider its particular figure.Connested with its roots, which lie hicl below ground, it rifes from the furface with a large fwelling bafe, which at the height of one diameter is generally reduced by an elegant curve, coneave to the eye, to a diameter lefs by at leaft one third, and fometimes to half its original bafe. From thence, its taper diminilhing mare flowly, its fides by degrees come into a perpendicular, and for fome height form a cylinder. After thar, a preparation of more circumference becomes neceffary, for the ftrong infertion and eftabliftument of the principal boughs, which produces a fwelling of its dia-meter.-Now we can hardly doubt but that every fection of the tree is neanly of an equal ltrength in proportion to what it has to refilt; and were we to lop off its principal boughs, and expofe it in that fate to a rapid current of watcr, we fhould find it as capable of refifing the adtion of the heavier fluid, when divefled of the greater part of its clothing, as it was that of the lighter, when all its freadiog ornaments were ex. poled to the fury of the wind: and hence we may derive an iJea of what the proper fhape of a column of the greateff flability ought to be, to reffit the action of external violence, when the quantity of matter is given of which it is to be compored."

The next thing to be confidered was, how the blocks of flone could be bonded to the rock, and to one another, in fo firm a manner as that not only the whole together, but every individual piece, when connected with what preceded, fhould be proof againft the greatent violence of the fea. For this purpofe, cramping was the firlt idea, but was rejected on account of the great quantity of iron which was neceffary, and from the trouble and lofs of time which would attend that operation. In its place was fubfituted the method of dovetailing. From fome fpecimens which Mr Sineaton had feen in Belidor's defcription of the Aone floor of
the great fluice at Cherburgh, (where the tails of the upright headers are cut into dovetails for their infertion into the mafs of rough mafonry below,) he was led to think, that if the blocks themfelves were, both infide and outfide, formed into large dovetails, they might be managed fo as to lock one anotber together, being primarily engrafted into the rock; and in the round cr entire couries above the top of the rock, they might all proceed from, and be locked to, one large centre fione. Thefe particulars being digefted in his own mind, he explainest his defign by the help of drawings: with which, after mature icliberation, the proprietors were perfectly fatisfied; and declared, that the fcheme wa's not oniy in itfelf pra\&icable, but, as aypeared to them, the only means of doing the bufinefs effectually.

During this time Mr Smeaton had never vifited the rock on which he was to be employed : he therefore refolved to go to Plymouth early in the fpring of 1756 , that he night life no opportunity of viewing it. At Plymouth he met Mr Jofias Jeffep, to whom he was referred for information and afiltance, and who afterwards proved of great fervice : he was not only an approved workman in his branch as a fhipwrighr, but a competent draughtfman and an excellent modeller; ' in which laft (ays the author) he was accurate to a great degree: he therefore appeared to be a very fit perfon to overlook the exact execution of a defign given.' Mr Jeflop, like others, expreffed his doubts that a fone building could fand on the Edyfone: but they were removed by the propofed mode of its conaruction.As Mr Smeaton was impatient to go to the rock, he feized the firf opportunity that feemed to promife any clance of landing on it. On the 2d of April he got within a llone's throw of it, but could not land: on the 5 th he was more fortunate; he now landed, and faid on the rock for two hours and a half. This time was employed in taking a general view of the whole. No remains of the houfe could be perceived either on the rock, or about it, except the greatelt part of the iron branches that had been fixed by Mr Rudyerd; and fome of the moortones were difcerned lying in the bottom of the gut. Such traces were alfo obferved of the fituation of the irons fised by Mr Winftanley, as to render it no very difficult takk to make out his plan, and the pofition of the edifice; whence it appeared very probable, that Mr Winttanley's building was overfet altogether, and that it had torn up a portion of the rock itfelf, as far as the irons had been faltened in it. With regard to the feps, which were faid to have been cut in the rock by Mr Rudyerd, the traces of only five were remaining; thefe were faintly cut, and without much regularity. It was next tried in what degree the rock was workable; and Mr Smeaton had the fatisfation of finding every thing fucceed to his wihes.

Having thus determined that there was no impracticability in fixing a fone building, it became of the greatelt importance to fecure a more fafe and certain landing on the rock; as it would frequently happen, while the veffels were lying off the rock, waiting for a favourable time to enter the gut, that tides might change, ground fwells come on, winds fhift, and Porims arife, which would of courfe make it defirable to return to Plymouth, if pofible, though the purpote of the voyage w'as unperformed. In addition to this,

## E D Y

Ydffone, when veffels had got with fome facility into the gat,
they frequently could not get out again without extreme danger; for as the larger fort had not room to turn in it, they were in reality obliged to go out flern forward; the Sugar loaf rock being fo critically placed, with fhlllow water on both fides of it, that it prohibits a thorught pallage. It was true, indeed, that by the fkill and expertneis of thofe feamen who had frequently attended the icrvice of the Edyltone, not only row boats, but the attendant veffels, after having delivered their cargoes, had been carried quite through, at the top of an high tide, with a fair wind and fmooth water : but this was not an experiment to be commonly repeated. The two voyages which Mr Smeaton had made were in a fmall failing veffel of about ten or twelve tons burthen, which was built for the fervice, and called the Edyltone Boat. It occurred to him, that while the light-houle was ftanding, if the boat had been flaved on the rocks while lying in the gut, there was a poffibility of the men being faved by getting into the houfe, as the light-keepers would have been ready to throw out a rope to their affiltance : but that if any accident of the kind were to happen now that the houfe was down, and no protection nor fhelter to be had, there was little chance of their efcape; -and thele confiderations being likely to calt a damp on every exertion to land, he determined to go out no more wihout another failing boat to attend.
The weather being unfavonrable for vifiting the rock, all exertions were ufed to forward the work on thore; and, firft, a work-yard was chofen in a feld adjacens to Mill Bay, about a mile weft from Plymouth. The next object was to procure moor-ftone, or granite; and with this view the author vifited Finghtone Downs, and obferved the manner of working the fone, which is curious. He next went to Lanlivery, near Fowey harbour, from which place the đonewor's for the late light-houfe had been furnifhed.

During this time he had made five voyages to the rock with little fuccefs: the event of the laft had frongly pointed out, that the much greater tonnage of the fone which mult be neceflary to be carried out and Gred, in cafe of a fone building, than was requifite in the compofitions of his predeceffors, would make the uncertainty and delay which they had defrribed as being attendant on their voyages, in order to fix their work, bear far heavier on the fcheme; and would thus occafion the whole time of the performance to be lengthened. It appeared, therefnere, that had a veffel been fixed within a quarter of a mile, or fome fuch cormpetent diftance from the rocks, and which fhould be capable of lodging the workmen, all their tools and loofe materials, the feveral pieces of wrought ftone only excepted, that then the workmen might, hy means of fmall row boats or yawls, have effected a landing both of themfelves and of their materials, and have been at work ou the rock during the greatell part of thofe days which otherwife as voyagers, they would have lof in fruitlefs endeavours to get to the place of attion. A. greeably to this opinion, it was propofed to build a Itrong and very well found floop of about fifty tons, will iron chains for mooring her on the rocky ground near the Edyllone. A veffel was in fact afterward moored in this fituation: but it was one not buils for the fervice, but orignally intended to have been fation-

Suppl. Vol. I.
ed as a temporary floating light during the rebuilding of the light-houfe.

Mr Smeaton now made a fixth voyage to the rock, on which employed himfelf for nineteen hours in taking fuch © nentions as would enable him to make an accurate moarel of its furface. He likewife attempted a feventh voyage: but being unable to reach the Edyfone, he bore away for Falmouth, in order to examine the moor-flone works at Conlantine in that neighbourhood. From the difficulties which occurred here, as well as at other places, he was convinced that a fufficient quantity of moor-ftone could not be readily and expeditinully procured, in order to complete the whole building ; and that he mult therefore confine the moorfone to the outlide, as being more durable, and content himfelf with the ufe of Portland, or fome other free-working fone, for the infide work. In confequence, after making three more voyages to the rock, and completing all the obfervations which he was defirous of taking there, he vifited the ifle of Portland in bis return to London, and made the neceifary agreements for carrying on his work.
On his arrival in London, Mr Smeaton again met the propristors, from whom he expcrienced the greatef liberality and confidence : they declared, that as he was now apprized of what was to be done, they left both the time and the means of its accomplifhment to him.

- On this occafion (he obferves), I found my felf totally unfettered; and perhaps no refolution of the proprietors ever more conduced to the ultimate fuccefs of the work than this, which fet me fo much at liberty. Had they been of the fame temper and difpofition of by far the greatelt part of thofe who have employed me, both before and fince, their language would have been, Get on, Get on, for God's Cake, get on! the public is in expectation; get ub fomething fpeedily to thew, by which we may gain credit with the public!This, however, was not their tone, which 1 looked upon as a happy earneff from the proprietors in the outfet.'

During his tay in London, be refolved, as an abfolutely neceffary preliminary fep, to form models of the rock, both in its prefent flate and as cut to the intended flape for receiving the building. Connected with the latt was a model of the bulding itfelf, thewing diAtinely how the work was to be adapted to each feparate flep in the afcent of the rock, and particularly ex. hibiting the conftruation of the firf entire courfe after rifing to the level of the upper furface of the rock: to this a folid being fitted, the model fhewed the external form of the whole building, including ha: iantern; while, by a fection on paper, the whole infide work was reprefented. Thefe models, as well, indeed, as moft of the material parts of the bufinefs, were the entire work of Mr Smeaton's own hands. After exhibiting thefe to the Lords of the Admiralty, who exprefled their warmeft approbation, he returned to Plymouth on the 23d of July 1756 .

On his arrival at Plymouth, he found that Mr Jefop had completely fitted up, for prefent fervice, the floop, which had beiore been ufed as an attendant; zs well as the Edyfone boat, and a large yawl, with fuils and ours. Another feaman was now taken into the fervice, which made the number of the crew fix. The Neptunc Bufs, which had been built for the purpofe of exhibiting a temporary light, but which was afterward

## E D $Y$ <br> E D Y

Edyfone. moored near to the rock, was arrived: but as her ditination was not known, all onders for mooring-chains were fufpended, and Mr Smeaton was obliged to content himfelf with preparing cables in the "eft manner that he could for mooring the floop in thiat fituation. As the weather was unfavourable, he had but one op. portunity of viliting the rock; he therefore applied vigoroully to prepare every thing on thore. The firf bulinefs was to eftablith the working companies, which were to confift of two complete fets of hands, to relieve each other by turns; fo that, whenever winds and tides would permit, the work might be puifued by day and night. In his difiribution and management of thefe people he appears to have acted with great judgment. He made choice of, and agreed with, Mr Thomas Richardfon, a mafter mafon of Plymouth, to at as foreman of one of the companies; and alfo with William Hill, who had been fome time foreman to another mafler mafon of the fame place, to aet as the other foreman. He likewife entered three mafons, and nine tinners (Cornifh miners), as a company, to go out with Mr Richardfon to take the firft turn, or week, commencing trom Saturday the 3 If of July. Mr Jeffop was appointed general affiftant. The wages of the foremen, while at fea, were to be 5 s . per day certain; and for every hour fipent on the rock, the farther pre. mium of 2 s .-but when employed in the work-yard or other wife on thore, their wages were to be 35.6 d . per day. The wages of the mafons were to be 25.6 d . per day certain at fea, with a premium of 9 d . per hour ; and the tinners were to have 2 s . per day certain at fea, and 8d. per hour. In the work-yard, or at fhore, the mafons were to have 20 d . and the tinners 18 d . per day, and to be paid for over-time when required to work; -and that the feamen might not want inducemert to do their utmof in landing the workmen at the Edyflone as early as polfible at every opportunity, and in fupplying them with what was necelfary for keeping them at work, over and above their weekly wages, which were fettled at Ss . per week, they were all to receive a premium for every landing on the rock; the mafter feamen having 25.6 d . and the ordinary men 2 s . to make their advantage equivalent to that of the other workmen, in whatever fervice the feamen, who were conftantly on duty, were employed. Mr Jeffop, as general affiftant, was to have ios.6d. per day at fea, atid 5 s . per day on land; and every one was to fupply himafelf with victuals.-Mr Smeaton likewife agreed for half an acre of ground on the well fide of Evill-bay for a work-yard, as before mentioned, which he marked out, and ordered to be fenced with boards. At this time arrived Mr John Harrifon, who was to att as elerk to the Edyltone works, with whom a plan was digefted for keeping the accounts and correfpondence ; and for the difinct noting of fo great a variety of articles, it was found expedient to open fourteen different books.

Matters being thus fettled on fhore, and the weather having become more promifing, Mr Richardfon and his company embarked in the lloop, with her sround tackle on board, atteoded by the author and Mr "Jeffop, and having alfo the yawl properly manned. Having landed on the rock, Mr Smeaton proceeded to fix the centre, and to lay down the lines of the intended work on its furface; and being followed by Mr Richardfon,
he, with tharp picks, left indelible traces of thofe lines, fo as that the workmen might proceed on them whenever they fhculd be able to land. The roughnefs of the fea, however, foon rendered it advifable to return to the floop; and from the fame caufe it was thought unfafe to attempt to moor her that evening. On the next day, the wind continued to blow very frefla: but on the following day they were able to moor the floop; and every one being anxious to make a beginning, the whole company landed on the rock, and immedidtely began the work, which was purfued for about four hours, when they were driven off by the fea. On the following day, all hands landed before fun-rife, and worked, during that tide, for fix hours; and in the afternoon's tide they again landed, and continued the work, by the help of links, till ten o'clock at night. They purfued this courfe for fome time with very little interruption, working, at au average, for about five hours in each tide.

The weather had now been fair from Augult 27th to the 14th of September; and in this Space they had worked for 177 hours on the rock. During this interval, alfo, Mr Jeffop had prevented a Welt Indiaman homeward bund, and a man of war's tender from driving on the recks, to which they were approaching, though they themfelves were not aware of it. On the 16 th, the work on the rock was in the following fituatinn : The lowefl new ftep (the mof difficult to work becaufe the loweft, ), with its dovetails, was quite completed. - The fecond Itep was rough bedded, and all its dovetails fcapelled out.-The third ftep (being the lowelt in Mr Rudyerd's work) was fmooth bedded, and all the dovetails roughed out.-The fourth was in the like fate.-The fifth was rough bedded, and its dovetails were fcapelled out ; and the fixth was fmooth bed. ded, and all the doretails roughed out.-Lally, the top of the rock, the greatelt part of the bulk whereof had been previoufly taken down as luw as it could be done with propriety, was now to be reduced to a level with the upper furface of the fixth ftep; the top of that ftep being neceffarily to form a part of the bed for the feventh or firf regulat courfe: fo that what now remained, was to bring the top of the rock to a regular floor by picks; and from what now appeared (as all the upper parts that had been damaged by the fire were cut off) the new building was likely to reft on a balis even more folid than the former light-houfes had done.

The equinoctial winds that were now reiguing, afforded little profpect of doing much more work on the rock for this foafon: for the ugh a more moderate interval of weather might be expected, yet that mull be employed in weighing the Bufs's moorings. To prevent the neceflity of this, however, it was an object of confideration, whether they could not difpenfe with that operation, and thereby have a little more time for work on the rock. Mit Smeaton's contrirance for this purpofe was admirable; but it was rendered vain by the bad failing of the bufs. After overcoming many dificulties, the buls with Mr Smeaton on board was driven at a great rate towards the bay of Bifcay, in dan. ger every hour of being fwallowed up by the welves, or dathed in pieces on the rocks of Scilly. At latt, on Fuiday morning the 26 th of November, they reached Plymouth Sound, and relinquifhed all thougists of returning to their work on the rock that feafon.

## E D Y [ 639 ] E D Y

Tiytone. The winter therefore of 1756 , and the following fpring, were employed in preparing materials for the outwork: the mafonry particularly required great attention. It was a delirable object to ufe large and heary pieces of ftone in the building ; yet their fize muft neceffarily be limited by the practicability of landing them with fafety. Now fmall veffels only could deliver their cargoes alongfide of this hazardous rock; and thefe could not deliver very large fones, becaufe the fudden rifing and falling of the veffels in the gut amounted frequently to the difference of three or four fect, even in moderate weather ; fo that in cafe after a fone was raifed from the floor of the veffel, her gronvide fhould take a fwing, fo as to bitch under the fone, one of a very large m.gnitude mut, on the velfel's rifing, infallibly fink her. From this confideration, it was determined that fuch fones hould be ufed as did not much exceed at ton weiglt; though occafionally particular pieces might amount to two tons. That they might attain a certainty in putting the work together on the rock, the fones of each courfe were tried together in their real fituation with refpect to each other; and they were fo exafly marked, that every fone, after the courfe was taken afunder, could be replaced in the identical pofition in which it lay on the platform, within the fortieth part of an inch :- nor was this judged fufficient ; for every courfe was not only tried lingly together on the platform and marked, but the courfe above it was put on it, and marked in the fame way; fo that every two contiguous courfes might fit each other on the outfide, and prevent an irregulari$t y$ in the outline. This degree of accuracy might feem fuperfluous: but as the nature of the building required the workmen to be in a condition to refift a florm at every ftep, it became neceffary to fix the centre fone firf, as being leaft expofed to the Atroke of the fea; and in order to have fure means of attaching all the reft to this, and to one another, it was indifpenfahle that the whole of the two courfes fhould be tried together ; in order that, if any defect appeared at the outfide, bv an accumulation of errors from the centre, it might be rectified on the platform.

Another citcumitance, to which Mr Smeaton was particularly attentive, and concerning which his remarks are very valuable, was to afcertain the moft proper compofition for water cements. In making mortar for buildings expofed to water, tarras had been molt efteemed : but ftill there were objections to its ufe. Mr Smeaton was therefore induced to try the terra puzsolana, found in Italy, as a fubltitute for tarras. Fortunately there was a quantity of it in the hands of a meachant at Plymouth, which had been imported as a venture from Civita Vecchia when Weflminfter-bridge was building ; and which he expected to have fold for that wook to a good advantage, but failed in his foeculation; for having found that tarras anfwered their purpofe, neither ermmilioners, engineers, nor contrac. tors, would trouble themfelves to make a trial of the other materi.al. This was found in every refpect equal to tarras, as far as concerned the hardening of watermortar, if not preferable to it; and if made into a mor tar with lime produced from a fone found at Aberthaw, on the coaft of Glamorganflire, it exceeded, in hardnefs, any of the compofitions commonly $u$ fed in dry work; and in wet and dry, or wholly wet, was far fu-
perior to any which Mr Smeaton had feen, infonuch, Fdytume that he did not doubt its making a cement that would equal the beft merchantable Portland ftone in folidity and durability.

Theie preliminary arrangements being fettled, theer proceeded, on the 3 d of June 1757 , to carry out the Neptune bufs, and to begin the work. After getting up the monrings (a work of no fmall difficulty and forme danger), and after fixing the fender pile, the frears, windlafs, $\mathfrak{z c}$. the firft ftone was landed, got to its place, and fixed, on Sunday the 12 th of June; and on the next day the firt courfe was completcu. On the $14^{\text {th }}$, the fecond courfe was begun: but, in confequence of $a$ frefh gale, the workmen were obliged to quit the rock, after fecuring every thing as well as poffible. Such was the violence of the gale, that it was impracicable for the boats in get out of the gut, otherwife than by paiffing the Sugar loaf roct, in which they providentially fucceeded. On the ISth, they were again as fuddenly driven from their work, and feveral pieces of tone were wafhed away by the violence of the fea. In the night of the 6th of Jaly, the watch on the deck of the burs efpied a fail on the rocks, and one of the yawls was fent to her relief, which brought back the whole crew, feveral of whom were in their thirts, and in great diftrefs. It was a fnow of about 130 tons burthen, which was returning in ballaft from Dartmouth ; but not knowing exactly where they were, they had miltaken the rocks for fo many fining boats, till it was too late to clear them; and on the veffel's Ariking, fhe filled fo quickly, that the boat floated on deck bsfore they could gec into it.

Dusing this time, the buiking went on, though its progrefs was retarded by various interruptions and accidents; till, at the latter end of Auguft, when the feventh courfe was nearly finifhed, a violent ftorm arofe, which carried away the fhears and triangles, together with two of the largelt fones which had been left chained on the rock ! yet notwithftanding thefe and various other difficulties, the ninth courfe was completed by the and of september.
"Being now arrived at the eve of October (fays Mr Smeaton), I maturely confidered our fituation; and finding that we had been 18 dags in completing the laft courfe, whereas the former one was begun and finithed in five, though the weather, both on fhore and above head, had remained to all appearance much the fame; I fiom thence concluded it to be very probable, we might not get another courfe completed in the com. pafs of the month of October: So that when I reflected on the many difafters that we had fuffered laf year by continuing out to the month of November, and how little work we in reality did after this time, it appeared to me very problematical whether we might be able, with every poffible exertion, to get another courfe finilhed this feafon; and confudering how very incligible it was to have a courfe lie open during the winter in this fage of the work, and that we had now got three complete courles eftablifhed above the top of the rock, the fum of whofe height was four feet fix inches ; and that we could not leave the work in a more defenfible Itate, whether as relative to the natural violence of the fea, or the poflibility of external injuries-from thefe conficerations, it appeared to me highly proper to put a period to the outwork of the prefent feafon."

## E D Y [ 640 ] E D Y

Edyfone. At the commencement of the following year, 1758 , the weather proved very !empefuous till March; and on vifiting the rock, they difcovered that the great buoy on the noorings had been carried away; nor were the mooring chains, though fought with the greatelt perfeverance, recovered till the middle of May. In confequence of this delay, and from other accidents, the tenth courfe of the building was not completed till the 5 th of July. From this time the progrefs was without anly very material interruption; fo that on the 26 th of September the 25 th courfe, being the firft of the fuperftructure, was finifhed. The work was now fo far advanced, that Mr Smeaton nade a propofal to the Trinity Board and to the proprietors of exhibiting a light during the enfuing winter; and for this purpofe he continued his operations longer than he otherwife would have done, in order to cemplete the firft room, and make it habitable; but foul weather coming on, he was obliged to quit the rock, and returned to Ply. mouth. A form enfued; and, on the next morning, looking out with his telefcope, he could difcern the houfe with the fea brcaking over it, but nothing of the bufs. On the following day, the air being more clear, he had a dittinet view of the building; but the bufs was really gone. This was a day of double regret, as it likewife brought a negative on his propofal for exhibiting a light from the houle during the winter. The bufs had run into Dartmouth harbour ; fhe was brought home; and the work on the rock being fecured againt the winter, the operations of the third feafon were clofed.

During the early part of ${ }_{1759}, \mathrm{Mr}$ Smeaton was employed in London in forming and making out the neceffary defigns for the iron rails of the balcony, the caft iron, the wrought iron, and the copper works for the lantern, together with the plate glafs work. It was not till the $22 d$ of June that he arrived at Plymouth. As the moorings had been again loft, new chains were provided, and the bufs was once more fired in her fimation. On the 5 th of July he landed on the sock, and found every thing perfectly found and firm, withoat the leaft perceptible alteration, escepting that the cement, ufed in the firt year, now in appearance approached the hardnefs of the moor-tone; and that ufed in the laft gear bad the full hardnefs of Portland; but on hauling up the fones for the next circle from the fore-room, where they had been depofited, he had the mortification to find only feven inflead of eight. It was imagined that a body of falling water, making its way through the open ribs of the centre, had wafhed this fone out of the fore-room door, though it weighed between four and five hundred weight.

The progrefs of the work, however, was now fuch, that a whole room, with its vaulted cover, was built complete in feven days.

On the 17 th of Auguft the main column was completed.

On the 27th Mr Richardfon and his company left the Edyfone, and gave an account that they had lived in it fince the 23 d , having found it much more warm than the buls's hold and cabin.

They had now finifhed every thing belonging to the mafonry. The work of the cupola was going on brifkly in the yard at Mill-bay, though it was retarded by the fucceflive illncfles of the two principal copperiniths.

However, by the exertions of Mr Smeaton, who was himfelf ready to work at every bufinefs, all matters were put in fuch forwardnefs, that by the 8th of September there was nothing to prevent the frame of the lantern from being fixed in its place but bad weather, It was not till the 15 th that the weather permitted the boats to deliver their cargoes. The 16 th was remarkably fine; fo that by the evening the whole frame of the lantern was fcrewed together, and fixed in its place. On the 17 th, which was alfo exceedingly fine, the cupola was brought out, and the fhears and tackle were fet up for hoilting it.
"This (fays Mr Smeaton) perhaps may be accounted one of the mof difficult and hazardous operations of the whole undertaking; not fo much on account of its weight, being only about II cwt. as on account of the great height to which it was to be hoited clear of the building, and fo as, if poffible, to avoid fuch blows as might bruife it. It was alio required to be hoifted a confiderable height above the balcony floor; which, though the largeft bafe that we had for the fhears to fand on, was yet but 14 feet within the rails, and therefore narrow in proportion to their height. About noon the whole of our tackle was in readinefs; and in the afternoon the Wefton (boat) was brougbt into the gut, and in lefs rhan half an hour her tronblefome cargo was placed on the top of the lanten without the leaft damage. During the whole of this operation it pleafed God that not a breath of wind difcompofed the furface of the water, and there was the leaff fwell about the rocks I had obferved during the feafon.
"Tuefday, September I8th, in the morning, I had the fatisfaction to perceive the Edyffone boat, on board of which I expected the ball to be; and which being double gilt, I had ordered the carriage of it to be carefully attended to. The wind and tide were both unfavourable to the veffel's getting foon near us; therefore, being defirous to get the ball fcrewed on before the fhears and tackle were taken down, one of the yawls was difpatched to bring it away. This being done, and the ball fixed, the Chears and tackle were taken down, which took up nearly as much time. as was employed in ferting them up; that is, near 12 hours each, in the whole, to do the work of an loour.-I mult obferve, that by choice I fcrewed on the ball with mine own hands, that in cafe any of the ferews had not held quite tight and firm, the circumftance might not have been flipped over without my knowledge; being well aware, that even this part would at times come to a confiderable flrefs of wind and fea, and which could not be replaced without fome dificulty in cafe any thing fhould fail.-It may not be amifs to intimate to thofe who may in future have to perform the fame operation, that the fcaffold on which this was done confifted of four boards only, well nailed together, at fuch diftances as to permit it to be lifted over the ball when done with. It refted on the cupola, encompaffing its neck; and Roger Cornthwaite, one of the mafons, placed himfelf on the oppofite fide upon it, to balance me while I moved round to fis the ficrews."

Refpecting the difpolition of the internal part of the edifice, Mr Smeaton fixed the beds in the uppermoft room, and the fire-place, which conflituted the kitchen, in the room below it; whereas, in the late houfe, the upper room was the kitchen, and the beds were placed

Fdyfone. in one of the rooms below; the confequence of which was, that the beds and bedding were generally in a very damp and difagreeable flate. The prefent difpofition bas perfectly anfwered the end propofed, as nothing can be more completely dry than the two habitable rooms.

On the if of October, every thing being finifhed, and the chandeliers hung, there was nothing to hinder a trial by lighting the candles in the day time. Accordingly 24 candles were put into their proper places, and were continued burning for three hours, during which time it blew a hard gale; and a fire being kept at the fame time in the kitchen, they both operated without any interference ; not any degree of fmoke appearing in the lantern nor in any of the roums; and by opening the rent holes, which had been made in the bottom of the lantern for occafional ufe, it could be kept quite cool; whereas, in the late light-houfe, it ufed to be fo hot, efpecially in the fummer, as to give much trouble by the rumning of the candles.

All being thus in readinefs, and a conductor, in cale of lightning being adapted to the building, notice was given to the Trinity-houfe that the light would be exhibited on the 16th of October 1759. The feafon of the year being now advanced to that which was always very precarious, the Neptune bufs was unmoored, and on the 9th of October flie came to an anchor in Plymouth harbour:-" And thus (fays Mr Smeaton), after iunumerable dificulties and dangers, was a happy period put to this undertaking, without the lofs of life or limb to any one concerned in it, or accident, by which the work could be faid to be materially retarded."

With regard to fubfequent occurrences, it is truly obferved, that the beft account is, that, after a trial of 40 years, which have elapfed fince the finithing of the building, it ftill remains in its original good condition. A few particulars are however interelting. On the 19 th of October Mr Smeaton, with Mr Jeflop, \&c. vilited the honfe, and, landing, found all well. Henry Edwards, one of the light keepers, gave an account that they lighted the houfe as they were directed, and found the lights to burn fleadily, notwithftanding it blew very hard; that they had the greateft feas on the days im. mediately preceding the lighting; and that then the waves broke up fo high, that had they not been thrown off by the cove courfe, they would have endangered breaking the glafs in the lantern: that when the feas broke the higheft, they had experienced a fenfible motion ; but that, as it was barely perceptible, it had occafioned them neither fear nor furprize.

During his itay at Plymouth, in the times of flormy weather, Mr Smeaton took feveral opportunities of viewing the light-houfe with his telefcope from the Hoa; and alfo from the garrifon, both which places were fufficiently elevated to fee the bafe of the building, and the whole of the rock at low water in clear wea. ther ; and though he had many occafions of viewing the unfinifhed building when buried in the waves in a florm at fouth-weft; yet having never before had a view of it under this circumflance in its finifted תtate, he was aftonifhed to find that the account given by Mr Winftanley did not appear to be at all exaggerated. At intervals of a minute, and fometimes of two or three, when a combination happened to produce one over-
grown wave, it would frike the rock and the building conjointly, and fly up in a white column, enwrapping it like a fheet, rifing at leaft to double the height of the houfe, and totally intercepting it from the fight; and this appearance being momentary, both as to its rifirg and falling, he was enabled to judge of the comparative height very nearly by the comparative foaces, alternately occupied by the houfe and by the column of water in the field of the telefonpe.

The year 1759 concluded with fome very ftormy weather; and in January i7óo, Mr Jeffop vifited the houle, but could not land. He got a letter, however, from Henry ledwards, acquanting him that there had been fuch very bad weather that the fea frequently ran over the houfe; fo that for in days together they could not open the door of the lantern nor any other. He faid, "the houfe did thake as if a man had been up in a great tree. The old men were almon frighted out of their lives, winhing they had never feen the place, and curling thofe that firft perfuaded them to go there. The fear feized them in the back; but rubbing them with oil of turpentine gave them relief." He farther mentioned, that on the 5 th of December, at night, they lad a very great form ; fo that the ladder, which was lathed below the entry door, broke loofe, and was wafhed away. Alfo, on the 13 th, there was fo violent a form of wind that be thought the houfe would overfet ; and at midnight the fea broke one pane of glafs in the lantern. They had a very melancholy time of it, having alfo liad a great deal of thunder and lightning.-_" The florms (obferves Mr Smeaton) which the building has now fultained without material damage, convince us, and every one, of the ftability of the ftone light-houfe, except thofe (who were not a few) who had taken a no. tion that nothing but wood could refift the fea upon the Edytone rocks; who faid, that though they allowed it was built very ftrong, yet if fuch a florm as had deftroyed Winftanley's light-houfe was again to happen, they doubted not but it muf fhare the fame fate. The year 1762 was uhhered in with formy weather, and indeed produced a tempeft of the firf magnitude; the rage of which was fo great, that one of thofe who had been ufed to predect its downfall was heard to fay, If the Edyfone light-houfe is ftanding now, it will fand till the day of judgment. And, in reality, from this time, its exiftence has been fo entirely laid out of mens minds, that whatever florms have happened fince, no inquiry has ever been made concerning it."

For the length of this detail we cannot bring ourfelves to make any apology. If there be a few of our readers to whom it may appear tedious, we are perfuaded that there are many more to whom it will be in a high degree interefting; while fuch of them as are engineers will derive inftruttion even from this very abridged hiltory of the Edylone light-houfe.

EEL RIVER Indians, inlabit the lands on Eel river, a head branch of Waball river. They were lately hoftile: but ceded fome land at the mouth of the river to the United States, at the treaty of Greenville, in 1795 ; when government paid them a fum of money, and engaged to pay them in goods, to the value of 500 dollars annually forever.-Morso.

EFFECTION, denotes the geometrical conflruction of a propofition. The term is alfo ufed in reference to problems and pratices, which, when they are deducible

## E G L [ 642 ] E G L

Efingham from, or founded upon, fome general propofitions, are called the rrometrical effection of them.

EFFIN®GHAM, formerly Leavitfown, a townfhip in Strafford co. New-Hampfhire, S. E. of Onipee pond, on Olipee river, incorporited in 1766 , and has 154 insabitants. Morre.

Effingham Co. in the lower diftict of Georgig, is bounded by Savannah river on the N. eaftward, which feparates it from S. Carolina; by Ogeechee river on the S . wellward, which divides it from Liberty co. It contains 2424 inhabitants, including 750 flaves. Chief towns, Ebenezer and Elberton.-ib.

EGG.HARBOUR, a town in Gloucefer co. New. Jerfey, on Great Egg Harbour: famous for the exportation of pine and cedar -ib.

Egg Harbour R. Great and Little. Great Ege Harbour river ifes between Gloucefter and Cumberland counties, in New-Jerfey. After running E. S. E. a few miles it becomes the divifional line between Cape May and Gloucelter counties, and falls into the bay of its own name. The inlet from the Atlantic ocean lies in 39.22 . The river abounds with theepf head, rock-fith, perch, nyRers, clams, Exc. which find a ready market it Philadelphia. This river is navigable 20 miles for veffels of 200 tons.-ib.

Little Egg Harbour Inlet, lies about 17 miles N. E. of Great Egg Harbour Inlet. It receives Mulicus river which rifes in Gloucefter and Burlington counties, and forms part of the divifinnal line a few miles from the bay. It is navigable 20 miles for vefiels of 60 tons. The townhhip of Little Egg Harbour, in Burlington co. confifts of about 23,000 acres; the moll of which being thin and barren, is not under improvement. The compact part of the townfhip is called Clam Torun, where there is a meeting-houfe for Friends, and about a dozen houfes. It has a fmall trade to the Weft-Indies. During the late war captains Fergufon and Collins burnt a number of privatecrs and other veffels in Litule Egg Harbour, ard defirojed the place.-ib.

Eg g Ifland, a imall ifland on the N. E. fide of Delaware bay, in Cumberland co-ib.

EGLANTINE (Fabre de), was born at Chalons in Champagne. He was early educated, by the care of his parente, in polite literature and natural philofophy. From his youth he felt an invincible inclination to court the mufes; and in the year 1786 he publifhed, in a Fiench periodical work, intitled Les Etrennes du Parmafie, a little poem called Chalons fur Marne, in which he drew a very chaming picture of the moral pleafures that were to be found in that place and its neighbourhood. This piece, however, was then confidered as a juvenile comporition, and fell rery fhort of that high degree of celebrity which the author afterwards attained to. In the years 1789 and 1790 he puolithed two well-known comedies, Lee Pbilinte, and L'Intrigue Epif. tolaire. Befrdes his talents for writing comedies, he felt, like Moliere, an inclination to perform parts on the 凡age. He accordirgly acted his own plays in the theatres of Lyons and Nimes.

Being, like the greater part of French wits and philofophers, an avowed enemy to religion and civil fubordination, he was thought to have fufficient merit to be removed from the office of fabricating comedies to that of fabricating conftitutions. Accordingly, in 1792 , he was chofen (we believe by the infuence of the Giron-
dine faction) a deputy to the National Convention. In Eglantine. that affembly, during the winter and the fpring of 1793, he acted a part certainly not very commendable, thonghevery way worthy of the pupil of the economilts. At that period the Girondine party was the molt powerfal; and it was very generally reported among the befl informed penple at Paris, that Fabre contributed, tngether with Danton and Robefpierte, to the famons maffacre of the 3 If of May, when the Girondine faction was overthrown by a popular infurrection. What gives the appearance of authenticity to this report is, that Fabre himfelf fome days afterwards obferved to a friend, that the domineering fpirit of the Girnndines, who had engroffed all power and offce, had induced him and his colleagues, in order to thake off the yoke, to throw themfelves into the hands of the Sanfouloterie; that he could not he!p, however, foreboding dangerous confequences from that day, 3 IR of $M_{4} y$, as the fame mob which they had taught to defpife the legiflature might, at the inligation of another faction, overthrow him in his turn. Thus Fabre appeared to have a prefentiment of his own future deftiny.

On the overthrow of the Girondine party, and the eftablifhment in power of the Sanfculoterie, Fabre began to act a confiderable part. He was appointed member of the Committee of Public Infruction; in which flation, in the month of Auguf I793, he gave his vote for fupprefling all academies and literary corporations which, fron their privileges and arifocratic fpirit, were confidered as unfriendly to a truly republican government. In Oar,ber i793, he fubmitted to the National Convention the plan of a new calendar, which was afterwards adopted.

The reader who will take the trouble to turn to the article Revolution, $n^{\circ} 184$, Encyol may fee that calendar, and he able to judge for himfelf whether it evinces the childifhnefs or the fcience of its author. A jouinalif of our own indeed, who feems to adnire every thing that is new and odd, fays, that the accuracy and regularity with which it was executed, evinced an uncommon degree of knowledge in mathematics and natural philofophy, and failed not to reflect on its aunhor great reputation! Indeed! Had the $S$ infculotes fo foon forgotten their "gnides, philofnphers, and friends," D'Alembert, and Condorcet, as to confider this exploit as fufficient to place its author in the temple of fame among the fons of fience? Our journalif. however, admits, that it gave birth in a pleafint pamphler, intitled Le Légilateur à la Mode; in which it was demonRrated, that the 311 l chapter of the travels of Anaciarfis, by the $A_{1}$ bhe Barnhelemy, where the delicription of the ancient Greek calendar is introduced, hid furnithed no inconliderable part of the plan of the new Fabrino calendar.

The Sanculoterie had now become ton powerful to be tolerated any longer. In the winter of I 794, that faction was divided intn two parts, the Facobins and the Cordeliers, or, in other words, the Rob:Spierrifis and the Dantonifs. Fabre was of the fistion of Danton, and was confined with D anton's adherents in the prifon of the Luxemburg. From that prifon he wrote a number of letters, which were afterwards printed. Thefe letters are highly extolled as beantiful defcriptions of fenfibility and talents in diftreis. After a month's imprifonment, Fabre was, with many others, executed

## E L B

Igmont
Elbert.
Elbert. was unjuft; but death he had more than merited.
executed in the place de la Revolution, in April 1794, in the 35 th jear of his age. His fentence, we believe,

EGMONT, an illand in the South Pacific ocean, difcovered by capt. Carteret. The Spaniards called it Santa Cruz. S. lat. 19. 20. E. long. from Greenwich 164.30--Morse.

EGREMONT, a townhip in Berkfhire co. Maffachufetts, containing 759 inlabitants, incorporated in $1760-15$ miles S. W. of Stockbridge, and $1+5$ W. of Bolton.-ib.

EIGHTEEN.MILE, or Long Beach, on the coall of New-Jerfey, lies between Little Egg Harbour inlet, and that of Barnegat.-ib.

ELASTICITY. In addition to the article in the Encyclopadia, fee, in this Supplenent, the view of Boscovich's theory of natural philofopiny, $\mathrm{n}^{\circ} 26$.

ELBERT, a new county in the upper diftrict of Georgia, on the traet of land between Tugulo and Broad rivers. The S. E. corner of the county is at their confluence, at the town of Peterfburg. On the N. W. it is bounded by Franklin county,-Morse.

## 643 E L E

ELBERTON, the feat of juftice in the above co. is Elbeton 23 miles N. W. of Peterßurg, and 30 S. E. of Franklin court-houfe.-ib.

ELBERTON, a poft town in Effingham co. Georgia, on the N. E. bank of Ogeechee river, containing about 30 houfes. It is about 19 miles W. of Ebenezer, 48 N. W. of Savannah, and 55 S. E. of Louifville. N. lat. 32 18.45. W. long. 80. 30 --ib.

Elections, or Chotce, fignify the feveral different ways of taking any number of things propofed, either feparately, or as combired in pairs, in threes, in fours, \&c.; not as to the order, but only as to the number and variety of then. Thus, of the things $a, b$, $c, d, e, \& c$. the elections of oue thing are (a) $1=2^{1}-1$, two things are $(a, b, a b) 3=,2^{2}-\mathrm{r}$, three things are $(a, b, c, a b, a c, b c, a b c) \quad 7=,2^{3}-\mathrm{I}$, \&c.; and of any number $n$, all the elestions are $2^{n}-1$; that is, one leis than the power of 2 whofe exponent is $n$, the number of fingle things to be chofen, cither feparately or in combination.

## ELECTRICITY.

WE cannot but be fomewhat furprifed that, among the many attempts which have been made by the philofophers of Britain to explain the wonderful phenomena which are claffed under this name, no author of eminence, befides the Hon. Mr Cavendilh and Lord Mahon, have availed themfelves of their fufceptibility of mathematical difcuifion; and our wonder is the greater, becaufe it was by a mathematical view of the fubject, in the phenomena of attraction and repulfion, that the celebrated philofopher Franklin was led to the only knowledge of electricity that deferves the name of fience; for we had fcarcely any leading facts, by which we could clafs the phenomena, till he publifhed his theory of pofitive and negative, or flus and minus eleetricity. This is founded entirely on the phenomena of attraction and repulfion. Thefe furnifh us with all the indications of the prefence of the mighty agent, and the marks of its kind, and the meafures of its force. Mecharical force accompanies every other appearance ; and this accompanyment is regulated in a determinate manner. Many of the effects of eledricity are Atrictly mechanic:al, producing local motion in the fime manner as magnetifrn or gravitation produce it. One fhould have expectel that the countrymen of Newton, prompted by his fuccefs and his fame, would take to this mode of examination, and would have en. deavoured to deduce, from the laws obrerved in the action of this motive force, an explanation of other wonderful phenomena, which are inieparably conneited with thofe of attraction and repulfion.

But this has not been the cafe, if we except the 1.tbours of the two philefophers above mentioned, and a few very obvious pofitions which nult occur to all the invent rs and umprovers of eleetrometers, batteries, and other things of meafurable nature.

This view has, however, been taken of the fubjeat by a plilofopher of unqueftioned merit, Mr Ipinus
of the Imperial Academy of St Peterfburgh. This gentleman, Atruck with the refemblance of the electrical properties of the tourmalin to the properties of a magnet, which have always been confidered as the fub. ject of mathematical difcufion, fortunately remarked a wonderful fimilarity in the whole feries of electrical and magnetical attractions and repulfions, and fet himfelf ferioufly to the clafification of them. Having done this with great fuccefs, and having maturely reflected on Dr Franklin's happy thought of plus and minus electricity, and his confequent theory of the Ley den phial, he at laft hit on a mode of conceiving the whole fubject of magnetifm and electricity, that bids fair for leading us to a full explanation of all the phenomena; in as far, at leaft, as it enables us to clafs them with precifion, and to predia what will be the refult of any propofed treatment. He candidly gives it the modeft name of a hypothefis.

This was publinted at St Peterfurg in 1759, under the title of Theoria Elearitatis et Magnetifni, and is unqueflionably one of the molt ingenious and brilliant performances of this century. It is indeed molt furprifing that it is fo little known in this country. This, we imagine, has been chiefly owing to the very fight and almoft unintelligible account which Dr Priefley has given of it in his hiffory of electricity; a work which profeifes to comprehend every thing that has bcen done by the philofophers of Europe and Anerica for the advancement of this part of natural fcience, and which indeed contains a great deal of infructive information, and, at the fame time, fo many loofe conjectures and infignificant obfervations, that the reader (cfpecially if acquainted with the Dostor's character as in unwearied bookmaker) reafonably believes that he las let nothing flip that was worthy of notice. We do not pretend to account for the manner in which Dr Prielley has mentioned this work, fo much, and fo

## E L E C T R I C I T Y.

defervedly celebrated on the continent. We cannot think that he has read it fo as to comprehend it, and imagine, that feeing fo much algebraic notation in every page, and being at that time a novice in mathemati cal learning, he contented himfelf with a few fattered paragraphs which were free of thofe embarraffiments; and thus could only get a very imperfect notinn of the fyltem. The Hon. Mr Cavendifh has done it more jnftice in the 6 ift volume of the Philofophical Tranfactions, and confiders his own moft excellent differtation only as an extenfion and more accurate application of Epinus's Theory. That we have not an account of this expofition of the Franklinian theory of electuicity in our language, is a material want in Britifh literature ; and we trult, therefore, that our readers will be highly pleafed with having the ingenious difcoveries of the great American philofopher put iuto a form fo nearly approaching to a fyftem of demonftrative fcience.

We propnie, therefore, in this place, to give fuch a brief account of 厄pinus's theory of electricity, as will enable the reader to reduce to a very fimple and eafily remembered law all the phenomena of electricity which have any clofe depeadence on the mechanical effects of this powerful agent of nature; referting for a demonffration of what is purely mathematical to Sir Ifaac Newton's Principia, and the Differtation by Mr Cavendifh already mentioned, except in fuch important articles as we think ourfelves able to prefent in a new, and, we hope, a more familiar forn. We do not mean, in this place, to give a fyttem of philofophical electricity, nor even to narrate and explain the more remarkable phenomena. Of thefe we have already given a valt collection in the article Electricity, Encycl. We confine ourfelves to the phenomena which may be called mechanicol, producing meafurable motion as their immediate effect; and thus giving us a principle for the mathematical examination of the caufe of elestrical phenomena. We fhail confider tise reader as acquainted with the other phyfical effects of electricity, and fall frequently refer to them for proofs.

Moreover, as cur intention is merely to give a fynoptical view of this elaborate and copious performance of Mr Ipinus, hoping that it will excite our countrymen to a careful pernfal of fo valuable a work, we thall omit moft of the algebraic inveltigations contained in it, and prefent the conclufions in a more familiar, and not lefs convincing, form. At the fame time we will infert the valuable additions made by Mr Cavendifh, and many important particulars not noticed by either of thofe gentlemen.

## Hypothesis of 压plnus.

I
Mypothefis The phenomena of eleetricity are produced by a fluid of peculiar nature, and therefore called the electric fluid, having the following properties:

1. Its particles repel each other, with a force decreafing as the diftances increafe.
2. Its particles attract the particles of fome ingredient in all other bodies, with a force decreafing, according to the fame law, with an increafe of diftance; and this attraction is mutual.
3. The elefric fluid is difperfed in the pores of other bodiec, and moves with various degrees of facility through the pores of different kinds of matter. In thofe bodies which we call nonelearics, fuch as water
or metals, it moves without any perceivable obfirustion; but in glafs, rolins, and all bodies called electrics, it moves with very great dificulty, or is altogether im. muveable.
4. The phenomena of electricity are of two kinds; 1. Snch as arice from the actual motion of the fluid from a body containing more into one containing lefs of it. 2. Such as do not immediately ar:fe from this transference, but are inflances of its attraction and repulfion.

Thefe things being fuppofed, certain confequences neceflarily refult from them, which ought to be analogous to the obferved phenomena of electricity, if this hypothefis be complete, or fome farther modification of the affumed properties is neceflary, in order to make the analogy perfect.
Suppofe the body A (fig. 1.) to contain a certain Plate quantity of fluid. Its patticles adjoining to the fur- Xxiv. face, fuch as $P$, are attracted by the particles of common matter in the body, but repelled by the other particles of the fluid. The totality of the attractive forces asing on $P$ may be equal to the totality of the repul. five forces, or may be unequal. If thefe two fums are equal, $P$ is in equilibrio, and has no tendency to change its piace. But there may be fuch a quartity of fluid in the body, that the repullions of the flaid exceed the attractions of the common matter. In this cafe, $\mathbf{P}$ has a tendency to quit the body, or there is an expulfive force acting on it, and it ruill quit the body if it be moveable. Becaufe the fame mult be admitted in refpect of every other particle of moveable fluid, it is plain that there will be an efflux, till the attraction of the common matter for the particles of fluid is equal to the repulfion of the remainirg fluid. On the other hand, if the primitive repulfion of the fluid ading on the particle P be lefs than the attractions of the common matter, there will be the fame, or at leaft a fimilar, fuperiority of attraction acting on the fluid refiding in the circumambient bodies; and there will be an influx from all hands, till an equilibrium be reftored.
Hence it follows, that there may always be affigned to any body fuch a quantity of fluid that there fhall be no tendency either to efllux or influx. But if the quantity be increafed, and nothing prevent the motion, the redundant fluid will flow out; and if the proper quantity be diminifhed, there will be an influx of the furrounding fluid, if not prevented by fome external force. This may be calied the body's natural quantity becaufe the body, when left to itfelf, will always be reduced to this flate.

If two bodies, A and B, contain each its natural quantity, they will not exert any fenfible action on each other: for, becanfe the flid contained in B is united by attraction to the common matter, and is alfo repelled by the fluid in A , it neceflarily follows, that the whole body B is repelled hy the fluid in A. But, on the other hand, the matter in A attracts the fluid in $B$, and coniequently attrads the whole body $B$ : Similar action is exerted by $B$ on $A$. Thefe contrary forces are either equal, and defroy each other, or unequal, and one of them prevails. This eqnality or inequality evidently depends on the quantity of flaid contained in one or both of the bodies ( $\mathrm{n}^{\circ} 7$. ). Now it is known that budies left entirely to themfelves neither attract nor repel; and it follows from the hypothetical properties

## E L E C T R I C I T Y.

perties of the fluid, that if there be either a redundancy or deficiency of fluid, there will be an efflux or influx, till the attractions and repulfions balance each other. Therefore the internal flate of two bodies which neither attract nor repel each other, is that where each contains its natural quantity of electric fluid.

In order, therefore, to conceive diftinctly the flate of a body containing its natural quantity, and to have a diftinct notion of this natural quantity, we mult fup. pofe that the quautity of fuid competent to a particle of matter in A repels the fluid competent to a particle of matter in B , juft as much as it attracts that particle of matter; and alfo, that the fluid belonging to a particle of matter in A, repels the fluid belonging to a particle of matter in B , jult as much as the particle of matter in A attracts it. Thus the whole fluid in the one repels the whole fluid in the other as much as it attracts the whole matter.

Since this muft be conceived of every particle of common matter in a body, we mult admit, that when a body is in its natural ftate, the quantity of electric fluid in it is proportional to the quantity of matter, every particle being united with an equal quantity of fluid. This, however, does not neceffarily require that different kinds of matter, in their natural or faturated fitate, fhall contain the fame proportion of fluid. It is fufficient that each contains fuch a quantity, uniformly diftributed among its particles, that its repulion for the fluid in another body is equal to its attraction for the common matter in it. It is, however, more probable, for reafons to be given afterwards, that the quantity of electric fluid attached, or competent, to a particle of all kinds of matter is the fame.

We fhall now confider more particularly the immediate refults of this hypothefis, in the molt fimple cafes, from which we may derive fome elernentary propofitions.
Eletric phenomen arife from redundan. cy or deficiency in fluid, total or partial.

Since our hypothefis is accommodated to the fact, that bodies in their natural flate, having their natural quantity of electric fluid, are altogether inactive on each other, by making this natural quantity fuch, that its mutual repulion exactly balances its attraction for the common matter-it follows, that we muft deduce all the electric phenomena from a redundancy or deficiency of eleftric fluid. This accordingly is the Franklinian doctrine. The redundant flate of a body is called by Dr Franklin positive or plus electricity, and the deficient fate is called negative or minus electricity.
A body may contain more than its natural quantity, or lefs, in every part, or it may be redundant in one place and deficient in another. Thefe different conditions will exhibit different appearances, which mult be confidered firt of all.
${ }_{11}$

Let the body A (fig. r.) be fuppofed in its natural Rate throughout, which we thall generally exprefs by faying that it is saturated; and let us exprefs the quantity of fluid required for its faturation by the fym. bol Q. Let $P$ be a fuperficial particle of the fluid. It is attracted by the common matter of the body (which we thall in future call fimply the matter), and it is repel. led equally by the fluid. Let us call the attraction $a$, and the repulfinn $r$. Then the force with which the fuperficial particle is attracted by the body, muft be Suppl. Vol. I.
$=a-r$, and $a-r$ mult be $=0$, becaufe $a=r$. Let the quantity $f$ of fluid be added to the body, and uniformly difributed through its fubtance. Then, becaufe we mult admit that the action is in proportion to the quantity of acting fllid, and this is now $Q+f$, we have $Q: Q+f=r: \frac{\overline{Q+f} \times r}{Q}$; and therefore $P$ is repelled by the whole fluid with the force, $\frac{\overline{Q+f} \times r}{Q}$ or $\frac{Q r}{Q}+\frac{f r}{Q}$, or $r+\frac{f r}{Q}$. But it is attracted by the common matter in the fame manner as before, that is, with a force $=a$. Therefore the whole action on P is $=a-r-\frac{f r}{()}$. But $a-r=0$. Therefore the whole action on P is $=-\frac{f r}{Q^{-}}$; that is, P is repelled with the force $\frac{f r}{Q}$.

This will perbaps be as diftinaly conceived by recollecting, that as much of the fluid as was neceffary for faturation, that is, the quantity $Q$, puts the particle $P$ in equilibrio; and therefore we need only confider the action of the redundant fluid $f$. To find the repulfire force of this, fay $Q: f=r: \frac{f r}{Q}$, and prefix the fign - ; becaufe we are to confider attractions as pofitive, and repulfions as negative, quantities.

Unlefs, therefore, the particle $\mathbf{P}$ be withheld by fome States of a other force, it willquit the body, being expelled by a force body cauf$\frac{f r}{\mathrm{Q}}$. And as every fuperficial particle is in a fimilar or ing eflux. fituation, we fee that there will be an efllux from an overcharged body, till all the redundant fluid has quitted it. This efflux will indeed gradually diminifh as the expelling force $\frac{f r}{\mathrm{Q}}$ diminifhes; that is, as $f$ diminifhes, but will never ceafe till $f$ be reduced to nothing. But if there be either an external force acting on the fuperficial fluid in the oppofite direction, or fome internal obftruction to its motion, the efllux will ftop when the remaining expelling force is juft in equilibrio with this external force, or his obltruction.
On the other hand, if the body contains lefs than its natural quantity of fluid, there will be an influx from without; for if there be a deficiency of fuid $=f$, the particle $P$ will be repelled with the force $\frac{\overline{Q-f} \times r}{Q}$ $=r-\frac{f r}{Q}$. It is attracted with the force $a$; and therefore the whele action is $=a-r+\frac{f r}{Q},=+\frac{f r}{Q}$ (be. caufe $a-r=0$ ) ; that is, P is attracted with the force $\frac{f r}{\mathrm{O}}$. Fluid will therefore enter from all quarters, as long as there is any deficiency of the quantity necef. fary for faturation, unlefs it be oppofed by fome external force, or hindered by fome internal obftrution.
When there is a deficiency of fluid, there is a redundancy of matter, fuch that its attractiou for external 40
fluid
fluid is eqtal to the repulfion of a quantity $f$ of flaid. 'I'his confirms the affumption in $n^{\circ} 10$, that the alion of a lofy on the cleitric fluid depends entirely on the redisciant fuid, or the redundunt maiter of the body.

The efllux or inflox may be prevented, either by furrounding the body with fubfances, though the pores of which the fuid cannot move at all, or by the body itfelf being of this conftitution. And thas we fee, that the very circumfance of being impervinus to the fluid, or completely permeable, renders the body capable or incapable of permaneatly exhibicing electrical phenomena, if furrounded by permeable bodies. This circurnflance alone, therefore, is fufficient to conflitute the difference between eletrics per $\mathcal{j}$, and non elearics. Here, then, is a numerons clafs of phenomena, which receive an explanation by this hypothetical conflitution of the ele?tric fluid. All eleärics fer fe are bodies fit for confining eleatricity in bodies which are rendered capable (by whatever means) of producing eleatical phenomena; and no conductor, or fublanee which allows the elefricity to pafs through it, can be mide clectric by any of the means which produce that effect in injalators. And it is well known, that the eleatricity of electrics is vaftly more dur ble that that of non-electrics in fimilar fituations. It is true, indeed, that an electric, which has been excited fon as to exhibit electric phenomena with great vivacity, lofes this power very quickly if plunged into water, or any other condueting body. But this is owing to the redundancy or deficiency being quite fuperficial, fo that the parts which are difpofed to give out or to take in the fluid are in immediate contact with the conducting matter. That the redundancy or deficiercy is fuperficial, follows from this hypothelis; for when the furface is overcharged by the uneans employed for exciting, the impermeability of the ele?ric per fe prevents this redundant fluid from penetrating to any depth; and when the furface has been rendered deficient in fluid, the tame impermea. bility prevents the fluid from expanding from the interior pasts, fo as to contribute to the replenithing the fuperficial Aratum with fluid. If, indeed, we could fall on any way of overcharging the interior parts of a glafs ball, or ol abftracting the natural quanticy from them, it is highly probable, that it would continue to attrat or repel even after it had been planged in water. Althongh the furrounding water would initantly take off the fluid redundant contained in the very furface, the repulion of the fluid in the internal parts would flill be fenfible: nay, if a very fmall permeability be fuppofed, the body would again become overcharged at the furface; juft as we fee, that when we plunge a red-hot ball of iron into water, and take it out again immediately, it is black on the furface, and may be touched with the finger; but in half a minute after, it again becomes red.hot. Perhaps this may be accomplithed with a globe of fealing wax, which is permeable while liquid, by electrifying it in a particular way while in that ftate, and allowing it to freeze. But the reader is not far enough advanced in the hypothefis to underitand the procefs which mult be followed. He cannot but recollect, however, many examples in coated glafs, \&c. where the eleftricity is molt pertinacioully retained by a furface in very clofe contact with conductors.

Let us now fuppole a body NS (fig. 2.), contain-
ing in the half NA a quantity $f$ of redundant fluid, and in the half AS let there be a deficiency $g$ of fluid; Corfequen. that is, let there be a quantity of matter unfaturated, ces of uneand fuch as will attraft fluid as much as the quantity $g$ quable difof fluid would repel it. Let the fluid neceffary for the fluid.r.Acfaturation of each half of NS be Q, as before. Let tion on exthe attraction of the whole matter of NA for a par-temal Luid. ticle of fluid at N be $a$; and let $r$ be the repulfion exerted on the fame particle $N$ by the whole unifurmly diftributed fluid in NA and let $r^{\prime}$ be the repulfion exerted by the fume quansity of fluid in the remote part SA. Then the force with which the particle N or S is attracted by the merely faturated body NS mult be $=a-r-r^{\prime}$. This is evidently $n$. thing, if the body be in its natural ftate. But as NA contains the redundant fluid $f$, and SA is deficient by the quantity $g$, the whole action muft be $a-\frac{\overline{Q+f} \times r}{Q}$ $-\frac{\overline{Q-g} \times r^{\prime}}{Q}$. But becaule $a-r-r^{\prime}=0$, the action becomes $=\frac{g r^{\prime}-f r}{Q}$, or becaufe $r$ is greater than $r^{\prime}$, the particle iv is repelled with the force $\frac{f r-g r^{\prime}}{Q}$. In like manner, the particle $S$ is aitracted with the fore $\frac{g r-f r^{\prime}}{Q}$.

In the mean time, a particle $C$, fituated at the mid- I6 die, mult be in equilibrio, if the body be in its natural 2. Action flate, being equally attracted, and alfo eq ially repelled, on the con on both fides. But as we fuppofe that NA is overchare ${ }^{\text {taincdquis. }}$
ged with the quantity $f, \mathrm{C}$ mult be repelled in the diged with the quantity $f, \mathrm{C}$ mult be repelied in the di-
reftion CS with the forcec $\frac{f r}{\mathrm{Q}}$. And if we alfo fuppore that AS is deficient by the quantity $g, \mathrm{C}$ is attracted in the direction. CS with a force $\frac{g}{Q}$. Therefore, on the
whole, it is urged in rhe direcicn CS with the force the direction. CS with a force $\frac{e^{r}}{2}$. Therefore, on the
whole, it is urged in the direcitan CS with the force $\frac{f r+g r}{Q}$, or $\frac{\overline{f+g} \times r}{Q}$.
Hence we learn, that as long as there is any redundancy in AN, and deficiency in AS, there is a tenden- It will be cy of the redundant fluid to move from N ioward $S$; unifornily and, if the body be altogether permeible by the elec- diffured, tric fluid, we cannot have a permanent hate till the fluid is fimilarly diftributed, and equally divided, between the two halves of NS. Therefore a fate like tween the two halves of NS. Therefore a ftate like
that afiumed in this example cannot be permanent in a conducting body, unlets an external force ast on it ; but it may subfift in a non-conduEtor, and in a leffer degree, in all imperfect conductors.
It is neceffary, in this place, to confider a little the 18 nature of that refflance which mult be affigned to the Nature of motion of the eleatric fluid through the pores of the the obftru:body. If it refemble the refiftance oppofed by a per- tionfect fluid, arifing folely from the inertia of its particles, then there is no inequality of force fo minute but that it will operate a uniform diftribution of the fluid, or at leaft a diftribution which will make the excefs of the mutual attractions and repulfions precifely equal and oppofite to the caternal force which keeps it in any fate unlefs obfructed. in

 of

## E L E C T R I C I

of unequal diftribution. But it may refemble the re. fes the attrastion for a particle at S , and we obtain fiftance to the defeent of a pareel of fmall thot diffeminated among a quantity of grain, or the relifiance to motion through the pores of a plattic or duatile body, fuch as clay or lead. Here, in order that a patticle may change its place, it mult overcome the tenacity of the adjoining particles of the body. Therefore, when an unequal diftribution has been produced by an external force, the removal or alteration of that force will not be followed by an equable diftribution of the fluid. In every part there will remain fuch an inequality of difribution, that the want of equilibrium between the electric attractions or repulions is balanced by the tenacity of the parts.
We learn farther from the foregoing propofitions, that a particle at $N$ is leis repelled than it the part AS were overcharged as $A N$ is : for in that cafe, it would be expelled $\mathrm{by}^{\prime}$ a force $\frac{f \overline{x r+r^{\prime}}}{Q}$, which is much greater than $\frac{f r-g r^{\prime}}{Q}$. And, in like manner, the particle $S$ is attracted with lefs force than it would le if NA were equally undercharged with SA.

The condition of the body now defcribel may be changed by different methods. The redundant fluid in AN may flow into AS, where it is deficient, till the whole be uniformly diftributed; or fluid may efcape from AN, and fluid may enter into AS, till the body be in its natural \&ate. The firft method will be fo much the flower, as the body is lefs permeable, or more remarkably elearic per $f$; and the fecond method will be flower than if the whole body were overcharged or undercharged.
What we have been now faying of a body NS that is overcharged at one end, and undercharged at the other, and capable of retaining this ftate, is applicable, in every particular, to two conducting bodies, NA and $\mathrm{SA}^{\prime}$, having a non-conducting body Z interpofed between them, as in fig. 3. All the formulas or expref. fions of the forces which tend to expel or to draw in fuid, are the fame as before. Perhaps this is the beft way of forming to ourfelves a diftinct notion of the body that is redundant in fluid at one end, and deficient at the other. And we perceive, that the flate of the two bodies, feparated by the eleatric $Z$, will be more permanent when one is overcharged, and the other under-
charged, than if both are either over or undercharged.
It muft be remarked, that the quantities $f$ and $g$ were taken at random. They may be fo taken, that the force with which the fluid tends to efeape at $N$, or to enter at $S$, may be nothing, or may even be clanged to their oppofite. Thus, in order that there may be no tendency to efcape from N , we have only to fuppofe $g r^{\prime}-f r=0$, or $g: f=r: r^{\prime}$, and $g=\frac{f r}{r^{\prime}}$. In this cafe. the particle at N is as much attratted by the redundsnt matter in SA as it is repelled by the redunfor this dant fluid in NA.
When the extremity N is rendered inative in this manner, the condition of the other extremity $S$ is confiderably changed. To dfeover this condition, put
$\frac{f \times \overline{r^{2}-r^{\prime 2}}}{Q r^{\prime}}$
On the other band, we may lave the redundency and deficiency fo balanced, that there thall be no tendency to inflax at S . For this purpre, we muft make $g=\frac{f r^{\prime}}{r}$. When this obtains at S , the ation at N will be had by puting $\frac{f r^{\prime}}{r}$ in place of $g$ in the formuls $\frac{f r-g r^{\prime}}{Q}$, and this will give us $\frac{\overline{f \times r^{\prime 2}}-r^{2}}{Q^{r}}$ for the force repelling a particle at $N$.

When the tendency to efflux or influx is indaced in this manner, by a due proportion of the redundancy and deficiency of ele Stric fluid, the part of the body where this obtains is by no means in its natural fate, and may contain either more or lefs than its natural quanlity. But it neither acts like an overcharged, nor like an undercharged body, and may therefore be called NEU. tral. The reader who is converfant with electrical experiment:, will recolear numberlefs inftances of this, and will alli) recollect that they are important ones. Such, for example, is the care with the plates and covers of the electrophorus. Thefe circumilances, therefore, claim particulat attention.

As the quantities $f$ and $g$ may be fo chofen, that the apparatus fhall be neutral, either at $S$ orat $N$; they may likewife be fo, that either end fhall exhibit either the appearance of redundancy or defciency. Thus, inftead of neutrality at N , we may have repulion, as at the firf, by making $g$ lefs in any degree than $\frac{f r}{r^{\prime}}$. If, on the contraty, $g$ be greater than $\frac{f r}{r^{\prime}}$, the extremity N , though overcharged, will attract fluid. In like manner, if $g$ be lefs than $\frac{f_{r}^{\prime}}{r}$, the extremity $S$, although undercharged, will repel fluid.-We may make the following general remarks.

1. Both extremities N and S cannot be neutral at Both end the fame time: for fince the neutrality arifes from the cannot bs increafed quantity of redundancy or deficiency at the netural at other extremity, fo as to compenfate for its gieater di. once. flance, the attivity of that extremity mult be proportionably greater on the fluid adjoining to its furface, whether externally or internally. When an overcharged extremity is rendered neutral, the other extremity attracts fluid more frongly; and when a deficient extremity is rendered neutral, the other repels fluid more ftrongly. All thefe clementary corollaries will be fuily verified after wards, and give clear explanations of the moll cutious phenomena.
2. We have been fuppofing, that the redundant fluid is uniformly fpread, and that the body is divided into equal portions; but this was merely to fimplify tha procedure and the formule. The exder nuft fee, that the general conclufions are not affeted by this, and that limilar formulx will be ubtained, whatever is the difpofition of the fluid. We cannot tell in what manner the tedundant floid is difpofed, even in a boly of $\frac{f_{r} r}{r^{\prime}}$ in place of $g$ in the formula $\frac{g r-f r^{\prime}}{Q}$, whicle expref. the fimplell form, till we know what is the variation of i. satraction and repulfon by a clange of dill ince; and cven when this has been difcovercd, we find it difficult

## $\begin{array}{lllllllllll}\text { E } & L & E & C & T & R & I & C & 1 & T & Y\end{array}$

in moft cafes, and impofible in many, to afcertain the mode of diftribution. We thall learn it in fome important cafes, by means of various phenomena judicioufly felected.

A body may be confidered in many divifions, in fome of which the fluid is redundant, and in others deficient. We may exprefs the repulfion of the whole of this body in the fame way as we exprefs that of a body confidered in two divifions, uling the letters $f, g, b, \& c$. to exprefs the quantities of redundant or deficient fluid in each portion, while $Q$ expreffes the quantity neceffary for faturating each of them; and the repulfion at different diftances may be expreffed by $r, r^{\prime}, r^{\prime \prime}, r^{\prime \prime \prime}$, \&c. as they are more and more remote; and we may exprefs their action as attractive or repulfive by prefixing the fign + or -. Thus the attrastion may be $\frac{\left(f r-g r^{\prime}+b r^{\prime \prime}-i r^{\prime \prime \prime}\right)}{Q}$, scc.

Having obtained the expreffions of the invifible actions of electrified bodies on the fluid within them, or furrounding them, let us now confider their fenfible actions on other bodies, producing motion, or tendencies to motion.

Here it is obvious, that the mechanical phenomena exhibited are what may be called remote effects of the acting forces. The immediate effects, or the motual actions of the particles are not obferved, but hypothetically inferred. The tangible matter of the body is put in motion, in confequence of its connection with the fluid refiding in the body, which fluid is the only fubject of the action of the other body.

In confidering thefe phenomena, we thall content ourfelves with a more general view of the actions which take place between the fluid or tangible matter of the one body, and the fluid or matter of the other, fo as to gain our purpofe by more fimple formula than thofe hitherto employed. They were premifed, however, because we muft have recourfe to them on many very important particular occafions.

Let there be two bodies, $A$ and $B$, in their natural ftate. Let the tangible matter in $A$ be called $M$, and let the finid neceffary for its faturation be called F , and let $m$ and $f$ be the tangible matter and the fluid in B. Let the mutual action between a fingle particle of fluid and the matter neceffary for its faturation be expreffed by the intermediate fymbol $z$, becaufe it varies by a change of diftance.

The actions are mutnal and equal. Therefore when the motion of $B$ by the action of $A$ is determined, the motion of A is allo afcertained. We thall therefore only confider how $A$ is affected. 1. Every particle of fluid in A. tends toward every particle of matter in B with the force z. The whole tendency of A toward B may therefore be expreffed by $x$, multiplied by the product $F$ and m. 2. Every particle of fluid in A is repelled by every particle of fluid in $B$, with the fame force $\approx$. 3. Every particle of matter in $A$ is attracted by every particle of fluid in $B$, with the fame force. We may exprefs this more purely and briefly thus:

1. F tends toward $n$ with the force $+\mathrm{F} m \approx$
2. F teuds from $f$ with the force $-F f z$
3. M tends toward $f$ with the force $+\mathrm{Mf} \approx$

Therefore the fenfible tendency of $A$ to or from $B$ will
be $=z \times \overline{\mathrm{Fm}+\mathrm{Mf}-\mathrm{Ff}}$. But, bs the hypothefis, the attraction of a particle of the fluid in $A$ for a particle of the matter in $B$, is equal to its repulfion for the particle or parcel of the fluid attached or competent to that particle of matter. Therefore the attraction $F m z$ is balanced by the repulfion $\mathrm{F} f z$. Therefore there remains the attraction of the matter in A for the fluid in $B$ unbalanced, and the body $A$ will rend toward the body $B$ with the force $M f z$, or $B$ attracts $A$ winh the force $\mathrm{M} f \approx$. A muft therefore move toward B . And, by the 3 d law of motion, $B$ mult move toward $A$ with equal force.

But the fact is, that no tendency of any kind is $c b$ ferved between bodies in their natural ftate. The hypothefis, therefore, is not complete. If we abide by it, as far as it is already expreffed, we muft farther fuppofe, that there is fome repulfive force exerted between the bodies to balance the attraction of M for $f$. Mr Æpinus, therefore, fuppofes, that every particle of tangible matter repels another particle as much as it attracts the fluid neceflary for its faturation. The whole action of B on A will now be $=\approx \times \mathrm{F} m-\mathrm{F} f-\mathrm{Mm}+\mathrm{M} f$. $\mathrm{F} m \approx$ is balanced by $\mathrm{F} f z$, and $\mathrm{M} m z$ by $\mathrm{M} f z$, and no excefs remains on either fide.

Epinus acknowledges, that this circumftance appear- Objection ed to himfelf to be hardly admiffible; it feeming incon- anfwered. ceivable, that a particle in A fhall repel a particle in B , or tend from it, electrically, while it attracts it, or tends toward it, by planetary gravitation. We cannot conceive this; but more attentive confideration fhewed him, that there is nothing in it contrary to the obferved analogy of natural opcrations. We mult acknowledge, that we fee innumerable inftances of inherent forces of attraction and repulfion; and nothing hinders us from referring this lately difcovered power to the clafs of primitive and fundamental powers of nature. Nor is there any difficulty in reconciling this repulfion with univerfal gravitation; for while bodies are in their natural fate, the electric attractions and repulfions precifely balance each other, and there is nothing to difturb the phenomena of planetary gravitation; and when bodies are not in their natural electrical ftate, it is a fact that their gravitation is difturbed. Although we cannot conceive a body to have a tendency to another body, and at the fame time a tendency from it, when we derive our notion of thefe tendencies entirely from our own confcioulnefs of effort, endeavour, conatus, nifus accedendi fou recedendi, nothing is more certain than that bodies exhibit at once the appearances which we endeavour to exprefs by thefe words. We can bring the north poles of two magnets near each other, in which cafe they recede from each other; and if this be prevented by fome obftacle, they prefs on this obllacle, and feem to endeavour to feparate. If, while they are in this fate, we electrify one of them, we find that they will now approach each other; and we have a diftinat proof that both tendencies are in actual exertion by va. rying their diftances, fo that one or other force miay prevail ; or by placing a third body, which thall be affected by the one but not by the other, \&c. We do not underftand, nor can conceive in the leaft, how either force, or how gravity, refides in a body; but the effects are paft contradiction. It muit be grauted, therefore, that this additional circumftance of Kexinus's

## E L E C T R I C I T Y.

hypothefis has nothing in it that is repugnant to the oblerved phenomena of nature.
$N$. B. It is not neceffary to fuppofe (althnugh Mr Æpinus does fuppofe it), that every atom of tangible matter repels every other atom. It will equally explain all the phenomena, if we fuppofe that every particle contains an atom or ingredient having this property, and that it is this atom alone which attracts the particles of eleftrical fluid. The material atoms having this property, and their correfponding atoms of fluid, may be very few in comparifon with the number of atoms which compofe the tangible matter. Their mutual fpecific action being very great in comparifon with the attraction of gravitation (as we certainly obferve in the action of light), all the phenomena of electricity will be produced without any lenfible effect on the phenomena of gravitation, even although neither the electric fluid nor its ally, this ingredient of tangible matter, fhould not gravitate. But this fuppofition is by no means necelfary.

Since we call that the natural electrical tate of bodies in which they do not affect each other, and the hypothetical powers of the fluid are accommodated to this condition, we may confider any body that has more than its natural quantity as confifting of a quantity of matter faturated with fluid, and a quantity of redundant fluid fuperadded; and an undercharged body may be confidered as confifting of a quantity of matter fuperadded. The faturated matter of thefetwo bodies will be totally inactive on another body in its natural ftate, and will neither attract nor repel it, nor be attracted nor repelled by it ; therefore the action of the overcharged body will depend entirely on the redandant fluid; and that of the undercharged body will depend entirely on the redundant matter; therefore we need only confider them as confifing of this tedundant fluid or matter, agreeably to what was faid in more vague terms in $n^{\circ}$ 10. and 13. This will free us from the complicated formulx which would atherwife be neceffary for expreffing all the actions of the fluid and tangible matter of two bodies on each other. The refults will be fufficiently particular for difinguilhing the fenfible action of bodies in the chief general cafes; but in fome particular and important cafes, it is abfolutely ne-
ceffary to employ every term.

1. Suppofe two bodies $A$ and B, containing the quantities $F^{\prime}$ and $f^{\prime}$ of redundant fluid, it is plain that their mutual action is expreffed by $F^{\prime} \times f^{\prime}+z$, and that it is a repulfion; for fince every particle of tedundant fluid in A repels every particle of redundant fluid in B with the force $z$; and fince $\mathrm{F}^{\prime}$ and $f^{\prime}$ are the num. bers of fuch particles in each, the whole repulfion mult be exprefled by the product of thefe numbers.
2. In like manner, two bodies $A$ and $B$, containing the redundant matter $\mathrm{M}^{\prime}$ and $\mathrm{m}^{\prime}$, will repel each other with the force $\mathrm{M}^{\prime} m^{\prime} z$.
3. And two bodies $A$ and $B$, one of which $A$ contains the redundant fluid $\mathrm{F}^{\prime}$, and the other B contains the redundant matter $m^{\prime}$, will attract each other with the force $\mathrm{F} m^{\prime} z$.
4. It follows from thefe premifes, that if either of the bodies be in its natural Itate, they will neither attrad nor repel each other; for, in fuch a cafe, one of the factors $\mathrm{F}^{\prime}$, or $f^{\prime}$, or $\mathrm{M}^{\prime}$, or $m^{\prime}$, which is neceffary
for making a product, is wanting. This may be perceived independent of the mathematical formula; for if $A$ contain redundant fluid, and $B$ be in its natural fate, every particle of the redundant fluid in $A$ is as much repelled by the natural fluid in $B$ as it is attracted by the tangible matter.

The three firft propofitions agree perfeally with the Seeming known phenomena of electricity; for bodies repel paradoz. each other, whether both ate pofitively or both are negatively electrified, and bodies always attract each other when the one is pofitively and the other negatively eleatrified. But the fourth cafe feems very inconfiftent with the moft familiar phenomena. Dr Franklin and all his followers affert, on the contrary, that eleGrified bodies, whether politive or negative, always attract, and are attracted, by all bodies which are in their natural flate of electricity. But it will be clearly fhewn prefently, that they are mifaken, and that Franklin's theory neceffarily fuppofes the truth of the fourth propofition, otherwife two bodies in their natural fate could not be neutral or inactive, as any one may perceive on a very flight examination by the Franklinian principles. It will prefently appear, with the fulleft evidence; and, in the inean time, we proceed to explain the action of bodies which are overcharged in fome part, and undercharged in another.

Let the body B (fig. 4.) be overcliarged in the part Acion of $\mathrm{B} n$, and undercharged in the part $\mathrm{B} s$, and let $f^{\prime}$ and a body h3$m^{\prime}$ be the redundant fluid and common matter in thofe parts; let $A$ be overcharged, and contain the redundant fluid $\mathrm{F}^{\prime}$; let $z$ and $z^{\prime}$ exprefs the intenfity of action correfponding with the difances of A from the overcharged and undercharged parts of $B$; the part $\mathrm{B} n$ repels A with the force $\mathrm{F}^{\prime}, f^{\prime} z$, while the partBs attracts it with the force $\mathrm{F}^{\prime} n^{\prime} z$ : A will therefore be attracted or repelled by $B$, according as $F m^{\prime} z^{\prime}$ is greater or lefs than $\mathrm{F}^{\prime} f^{\prime} z^{\prime}$; that is, according as $m^{\prime} z^{\prime}$ is greater or lefs than $f^{\prime} x$. This, again depends on the proportion of $f^{\prime}$ to $m m^{\prime}$, and on the proportion of $z$ to $z^{\prime}$. The firit depends on many external circumftances, which may occafion a greater or lefs redundancy or deficiency of eleftrical fluid; the fecond depends entirely on the law of ele\&ric attraction and repulfion, or the change produced in its intenfity by a change of diflance. As we are, at prefent, only aiming at very general notions, it is enough to recollect, that all the electric phenomena, and indeed the general analogy of nature, concur in fhewing that the intenfity of both forces (attraction and repullion) decreafes by an increafe of diftance; and to combine this with that circumftance of the hypothefis which fates the repulfion to be equal to the attration at the fame diftance; therefore both forces vary by the fame law, and we have $z$ always greater than $z^{\prime}$. The vifible action of $B$ on A (which, by the 3 d law of motion, is accompanied by a fimilar action of $A$ on $B$ ) may be varinus, even with one pofition of $B$, and will be changed by changing this pofition.

1. We may fuppofe that I contains, on the whole, Cafse of its natural quantity, but that part of it is abotracted fencible refrom B s, and is crowded into $\mathrm{B} n$. This is a very pulizon. common cafe, as we fhall fee prefently, and it will be exprefled in our formula by making $f^{\prime}=m^{\prime}$. In this cafe, therefore, we have $\mathrm{F}^{\prime} f^{\prime}$ a greater than $\mathrm{F}^{\prime} m^{\prime} z$, becaufe
 pelled by $B$, and will repel it; and the repulion will be

Of attractim. $I^{\prime \prime} f^{\prime} \times z-z^{\prime}$. will atract each other with the force $F^{\prime} f^{\prime} \times z=z^{\prime}$

It is allo plain, that if $A$ be as much undercharged as we have fuppofed it overcharged, all the appearances will be reverfed; if on the undercharged fiche of $B$, it will be repelled; and if on the overcharged fide of $B$, it will be attracted.
2. If the redundancy and deficiency in the two portions of B be inverfely prepurtional to the forces, fo, that $\mathrm{F}^{\prime}: m^{\prime}=z^{\prime}: z$, we thall have $f^{\prime} \approx=m^{\prime} z^{\prime}$, and $m^{\prime}$ $=\frac{f^{\prime} \approx}{\tilde{z}^{\prime}}$. In this cafe thefe two actions balance each other, and $A$ is neither attracted nor repelled when at this precire diftance from the overcharged fide of $B$. 13 may be faid to be neutral with refpect to $A$, although, $A$ and the adjoining fide of $B$ are both over. charged.
Eodiesucu- But if $A$ be placed at the fame difance on the other tral at oue file of B, the effert will be very different: For benoreactive caufe $m^{\prime}=\frac{f^{\prime} z}{z^{\prime}}$, and $m^{\prime} z^{\prime}$ is now changed into $m^{\prime} z$, and at the uther.
with great eafe, all the curious phenomena of the eles -
trophorus.

42
There is another circumftance to be attended to here, Neutrality which will alfo explain fome electrical appearances that generally feem very puzzling. We limited the inactivity of $B$ to a certain prectfe diftance of the body $A$. This inactivity required that $m^{\prime}$ fhould be $=\frac{f z}{z^{\prime}}$. If A be brought nearer, both $z$ and $z^{\prime}$ are increafed. If they are beth increafed in the fame proportion, the value of limited to a precife dif. tance. Inlportant information obtained from this. $\frac{z}{z^{\prime}}$ will be the fame as before, and the body A will neither be attracted nor repelled at this new diftance. But if $z$ increafe fatter than $z^{\prime}$, we thall have $f^{\prime} z$ greater than $m^{\prime} z^{\prime}$, and A will be repelled; and if $z$ increafes more flowly than $\approx^{\prime}$, A will be attrated by bringing it nearer. The contrary effects will be obferved if $A$ be removed farther from the overcharged end of $B$. This explains many curious phenomena; and thofe phenomena become inftructive, becaufe they enable us to difcover the law of eleatric action, by thewing us the manner in which it diminilhes by a change of di?ance. Electricians cannot but recollect many inflances, in which the motion of the electrometer appeared very capricious. The general faft is, that when an overcharged pith ball is fo fituated near the overcharged fide of the electrophorus as to be neutral, it is repelled when brought nearer, but attracted when removed to a greater diftance. This fhews that $z$ increates fafter than $z^{\prime}$ when A is brought nearer to B . Now, fince the bodies may be again rendered neutral at a greater diftance than before, and the fame appearances are fill obferved, it follows, that the law of action is fuch, that every diminution of dillance caufes $z$ to increafe fafter than $z^{\prime}$. We thall find this to be valuable information.

Let us, in the laft place, inquire into the fenfible ef- Aqion fect on $A$ when it alfo is partly overcharged and partly undercharged. This is a much more complicated cafe, and is fufceptible of great variety of external appeatances, according to the degrees of redundancy and deficiency, and according to the kind of eletricity (po-dies. fitive or negative) of the ends which front each other.

Firlt, then, let the overcharged end of A (fig. 5.) front the undercharged end of $B$, they being overcharged in N and $n$, but undercharged in S and s. Let F and $f$ be the quantity of fluid natural to each; and let $\mathrm{F}^{\prime}$ and $f^{\prime}$ be the redundancy in N and $n$, and $\mathrm{M}^{\prime}$ and $m^{\prime}$ the deficiency in $S$ and s. Moreover, let $Z$ and $Z^{\prime}$ reprefent the intenlity of actions of a particle in N on a particle in $n$ and $s$; and let $z$ and $z^{\prime}$ reprefent the ac. tions of a particle in $S$ on a particle in $n$ and in $s$; or, it other words, let $Z, Z^{\prime}, z, z^{\prime}$, reprefent the intenfity of action between particle and particle, correfponding to the difances $\mathrm{N} s, \mathrm{~N} n, \mathrm{~S}_{s}, \mathrm{~S} n$.

Proceeding in the fame manner as in the former examples, we eafily fee, that the action of B on A is $=$ $\frac{\mathrm{F}^{\prime} m^{\prime} \mathrm{Z}-\mathrm{F}^{\prime} f^{\prime} \mathrm{Z}^{\prime}-\mathrm{M}^{\prime} m^{\prime} z+\mathrm{M}^{\prime} f^{\prime} z^{\prime}}{\mathrm{F}}$; the attrac. tions are confidered as pofitive quantities, having the fign + prefixed to them, and the repultions are negative, having the fign -

This action will be either attractive or repulfive, according as the fum of the firf and laf terms of the numerator exceeds or falls fhort of the fum of the fecond and third: And the value of each term will be greater
or lefs, according to the quantity of redundant fluid and matter, and alfo according to the intenfity of the electric action. It would require feveral piges to flate all thore poffible varieties. We fhall thereforc content ourfelves at prefert with fating the fimpleft cafe; bccaule a clear conception of this will cnable the reader $t o$ form a pretty diftinct notion of the other poffible cafes; and alfo, becaufe this cafe is very frequent, and is the mof ufeful for the explanation of phenomena.

We thall fuppofe, that the redundant part of each body is juft as much overcharged as the deficient part is undercharged ; fo that $\mathrm{F}^{\prime}=\mathrm{M}^{\prime}$, and $f^{\prime}=m^{\prime}$. In this cafe, the formula becomes $\frac{\mathrm{F}^{\prime} f^{\prime}\left(Z-Z^{\prime}-z+z^{\prime}\right)}{\mathrm{F} f}$.

Ufeful re-prcfentation of the mutual
forces by ordinatesto a curve.

Here we fee that the fenfible or external effect on A depends entirely on the law of electric action, or the variation of its intenfity by a change of diflance. If the fum of $Z$ and $z^{\prime}$ exceed the fum of $Z^{\prime}$ and $z$, A will be attrafed: but if $Z+z^{\prime}$ be lefs than $Z^{\prime}+z$, A will be repelled. This circumftance fuggets to us a very perfpicuous method of exprefling thefe actions between particle and particle, fo that the imagination fhall have a ready conception of the circumfance which determines the external complicated effeet of this internal action. This will be obtained by meafuring off from a fised point of a fraight line portions refpectively equal to the diltances $\mathrm{N} s, \mathrm{~N} n, \mathrm{~S} s$, and $\mathrm{S} n$, between the points of the tivn bodies $A$ and $B$, where we fuppofe the forces of the redundant fluid and redundant matter to be concentrated, and ereat ordinates having the proportion of thofe forces. If the law of action be known, even though very imperfectly, we thall fee, with one glance, of which kind the movements or tendencies of the bodies will be. Thus, in fig. 5. drawing the line $\mathrm{C} \approx$, take $\mathrm{C} p=\mathrm{N} s, \mathrm{C} q=\mathrm{N} n, \mathrm{C} r=\mathrm{S} s$, and $\mathrm{C} t=\mathrm{S} n$, and erect the ordinates $\mathrm{P} p, \mathrm{Q} q, \mathrm{R} r$, and T . If the electric action be like all the other attractions and repulfions which we are familiarly acquainted with, decreafing with an increale of diftance, and decreafing more flowly as the diltance, are greater, thefe ordinates will be bounded by a curve PQRTZ, which has its convexity turned toward the axis. We fhall prefently get full proof that this is the cafe here; but we premife this general view of the fubject, that we may avoid the more tedious, but more philofophical, procefs of dedncing the nature of the curve from the phenomena now under confideration.
the firt pair. If the :eader will take the troniuie of confidering thefe fimple confequences with a litte attention, he will have a notion of all the effects that are to be expeated in the mutual :asions of the two bodies, fufficiently precife for our prefent purpofe. We flall give a much more accurate account of thefe mathematical truths in treating the article Miagnetism, where precifion is abfolute!y neceflary, and where it will be attended with the greatelf fuccefs in the explanation of phenomena.

Now let us apply this to our prefent purpofe. Firf, then, When the overcharged end of $A$ is turned toward the undercharged end of $B, A$ mult be attracted; for $\mathrm{P} p+\mathrm{T} t$ is greater than $\mathrm{Q} q+\mathrm{R} r$.

Secondl;, This attration muft increafe by bringing the bodies neater; for this will increale the difference between $\mathrm{P} m$ and R 2.

Thirdly, The attraction will increafe by increafing the length either of $A$ or of $B$ (the diftance $N$ s remaining the fame) ; for by increafing the length of $A$, which is reprefented by $p r$ or $q t, \mathrm{R}^{\mathrm{r}} \mathrm{r}$ is more diminified than $\mathrm{T} t$ is. In like manner, by increafing $B$, whofe length is reprefented by $p q$ or $r t$, we diminith $Q q$ more than $\mathrm{T} t$.

On the other hand, if the overcharged end of B front Uff of this the overcharged end of A, their mutual action will be piclure of

$$
\frac{\bar{F}^{\prime} f^{\prime}(-\mathrm{P} p+Q q+\mathrm{R} \cdot-\mathrm{T} t)}{\mathrm{F} f}
$$

and $A$ will be repelled, and the repulfion will increafe or diminifh, by change of diftance or magnitude, precifely in the fame manner that the attractions did. It is hardly neceflary to obferve, that all the'e confequences will refult equally from bringing an app atatus fimilar to that reprefented in fig. 3 . near 10 ano:her of the fame kind; and that they will be various according to the pofition and the redundancy or deficiency of the two parts of each apparatus.
If the body B of fig. 5 , is not at liberty to approach Curious toward A , nor to tecede from it, and ran only tu:n phenomena ound its centre B , it will arrange itfelf in a certain which determinate pofition with refpect to that of $A$. For fult fron teexample, if the centre 1 (fig. 7.) be placed in the line the hypor pafling through $S$ and $N$ of the body $A, B$ will arrange thefis reitfelf in the fame ftraight line: for if we forcibly give fembling it another pofition, fuch as s $B n, N$ will attraet s and magnetifm. repel $n$, and thefe actions will concur in putting B into the pofition s'B $n^{\prime}$. S, however, will repals and attract $n$; and thefe forces tend to give the contrary pofition. But $S$ being more remote than $N$, the former forces will prevail, and B will take the pofition $s^{\prime} \mathrm{B} n^{\prime}$.

If the centre is be placed fomewhere on the live AD, drawn throngh a certain point of the bidy NAS (which will be determined afterwards), at right angles to NAS, the body $B$ will affume the polition $n^{\prime} 13 s^{\prime}$, parallel to NAS, but fubcontrary. For if we forcibly give it any other pofition $n \mathrm{~B} s$, it is plain that N re. pels $n$ and attracts $s$, while S attracts $n$ ind repels $s$. Thefe four forces evidently cormine to turn the body round its centre, and cannot balance each other till B alfume the pofition $n^{\prime}$ B $s^{\prime}$, where $n^{\prime}$ is next to S , and $s^{\prime}$ is next to N .
If the centre of 13 have any nther fituation, fuch as Form of $B^{\prime}$, the body will arrange itielf in fome fuch pofition the clectric as $n^{\prime} B^{\prime} s^{\prime}$. It may be derrouftrated, that if $B$ be infi. meridiau. nitely fmali, fo that the artion of the end of A on each

## E Llllllllll

of its extremities may be confidered as equal, B will lancing the united aftion of thofe two forces refiding arrange itfelf in the tangent BT of a curve $\mathrm{NB}^{\prime} \mathrm{S}$, fuch that if we draw $\mathrm{NB}^{\prime}, \mathrm{SB}$, and from any point T of the tancent draw TE parallel to BN, and TF parallel to B 'S, we thall have BE to BF , as the force of $S$ to the force of $N$. This arrangement of $B$ will be llill more remarkable and diftinct if N be an overcharged fphere, and $S$ an undercharged one, and bnth be in'ulated. We mult leave it to the reader's reflection to fee the changes which will arife from the inequality of the redundancy and deficiency in $A$ or B , or both, and proceed to confider the confequences of the mobility of the electric fluid. Thefe will remove all the difficulty and paradox that appears in fome of the foregoing propofitions.

Let the budy A (fig. 4.) contain redundant fluid,

Conlequence (fundamental) of the mobili $t y$ of the fluid in the pores of bodies. and let $B$ be in its natural lfate, but let the fluid in $A$ be fixed, and that in B perfectly movenble; it is evident that the redundant Ruid in $A$ will repel the moveable Huid in B , toward its remote extremity $n$, and leave it undercharged in s. 'The fluid will be rarefed in $s$, and conllipated in $n$. We need only confider the mutual actions of the redundant fluid and redundant matter. It is plain that things are now in the fituation defcribed in $n^{\circ}$ 15.: A mult be attracted by B, becaufe $f=m m^{\prime}$, and $\approx$ is greater than $z^{\prime}$. The attractive force is $F^{\prime} f^{\prime} \times\left(z-z^{\prime}\right)$.

Thus we fee that the hypothefis is accommodated to

Bodies containing the natural quantity, in the natural ftate, attract and are atriact erl by electrified bodics,
52
Andchange the flate of thofe bodies, which increafes attrastion. the plenomena in the cafe in which it appeared to differ io widely from it. Had the fluid been immoveable, the mutual actions would have fo balanced each other that no external effects would have appeared. But now the greater vicinity of the redundant matter prevails, A is attracted by B , and, the actions being all mutual, B is attracted by A , and approaches it.

We have fuppofed that the fluid in A is immoveable; but this was for the fake of greater fimplicity. Sup. pofe it moveable. Then, as foon as the uniform diftribution of the fluid in B is changed, and B becomes undercharged at $s$, and overcharged at $n$, there are forces acting on the fluid in A, and tending to change its Itate of diftribution. The redundant matter in S attracts the redundant fluid in A more than the more remo:e redundant fluid in $n$ repels it, becaufe $z^{\prime}$ is lefs than $z$. This tends to conftipate the redundant fluid of A in the nearer parts, and render N more redundant, and $S$ lefs redundant in fluid than before. It is plain, that this muft increafe their mutual action, without changing its nature. It can be flrietly demonfrated, that however fmall the redundancy in A may be, is can never be rendered deficient in its remote extremity by the action of the unequally difpofed fluid in B , if the fluid in B be no more nor lefs than its natural quantity. It is alfo plain, that this change in the difpofition of the fluid in $A$ mult increafe the fimilar change in B. It will be till more rarefied in $s$, and condenfed in $n$; and this will go on in both till all is in equilibrio. When things are in this ftate, a particle of fluid in $\mathbf{B}$ is in equilibrio by the combined action of feveral forces. The particle B is propelled toward $n$ by the action of the redundant fluid in A. But it is urged toward $S$ by the repultion of the redundant fluid on the fide of $n$, and alfo by the attraction of the redundant matter on the fide of $s$; and the repulfion of the redundant fluid in $A$ mult be conceived as ba-

Hence we may conclude, that the denfity of the fluid General in B will increafe gradually from sto $n$. It will be ex- notion of tremely difficult to obtain any more precife idea of its the forced denfity in the different parts of $B$, even although we knew the law of action between fingle particles. of electric

This mult depend very much on the form and dimen. body. fions of $B$; for any individual particle futtains the fenfible action of all the redundant fluid and redundant matter in it, fince we fuppofe it affeted by the more remote fluid in A. All that we can fay of it in general is, that the denfity in the vicinity of $s$ is lefs than the natural denfity; but in the vicinity of $n$ it is greater; and therefore there mult be fome point between s and $n$ where the fluid will have its natural denfity. This point may be called a nev. Neutral tral point. We do not mean by this that a particle point. of fuperficial fuid will neither be attracted nor repelled in this place. This will not always be the cafe (although it will never be greatly otherwife); nor will the variation of the denfity in the different parts of B be proportional to the force of $A$ on thofe parts. Some eminent naturalifts have been of this opinion; and, having made experiments in which it appeared to be otherwife, they have rejected the whole theory. But a little reflection will convince the mathematician, that the fum of the internal forces which tend to urge a particle of fluid from its place, and which are balanced by the action of A, are not proportional to the variations of denfity, although they increafe and decreare together. We Thall take the proper opportunity of explaining thofe experiments; and will alfo conlider fome fimple, but important cafes, where we think the law of diftribution of the fluid afcertained with rolerable precifion.

If we fuppofe, on the other hand, that A is undercharged, the redundant matter in A will attract the moveable fluid in B , and will abltract it from the remote extremity, and crowd it into the adjacent extremity. Moreover, the fluid now becoming redundant in the nearer extremity of B , will act more ftrongly on the moveable fluid in $\hat{A}$ than the more remote redundant matter of B; and thus lluid will be propelled toward the remote fide of $A$, which will become now undercharged in its nearer fide, and lefs undercharged in its remote fide than if B were taken away. This mult in. creare the inequability of diffribution of the fluid in B, and both will be put farther from their natural fate; but A will never become overcharged in its remote extremity. .
Things being in this fate, it is plain that $A$ and $B$ will mutually attract each other in the fame manner, and with the fame force, as when $A$ was as much overcharged as it is now undercharged.
Thus, then, we fee how the attraction obtains, whe- Electric atther A be over or undercharged. A fact which Dr nofphere is Franklin could never explain to his own fatisfaction; nor will it ever be explained confiftently with the acknowledged principles and obferved laws of mechanics by any perfon who employs electric atmofpheres for this purpofe. It is indeed a fufticient objection to the em. na. ployment of fuch electric or other atmofpheres, that the fame extent of attraction and repulfion between the particles of the atmofphere is neceffary, as is employed here hetween the particles of the fluid refiding in the body; and therefore they ceafe to give any explanation,
even althought their fuppofed actions were legitimately deduced from their conftitution. This is by no means the cafe. Let any perfon examine ferioufly the modus operandi of the electric atmofpheres employed by Lord Mahon (the only perfon who has written mathema. tically on the fubject), and he will fee, that the whole is nothing but figurative language, without any diftinct perception of what is meant by thefe atmofpheres, as diftinct from the fluid moveable in the conducting bodies, or any perception how the unequal denfity of thefe atmofpheres protrudes the fluid along the conductor. Befides, it is well known that a conducting wire becomes pofitive at one end, and negative at the other, by the mere vicinity of an overcharged or undercharged body, and this in an inftant, although it be furrounded with fealing-wax, or other nonconductors, to any thicknefs : in this cafe there can be no atmofpheres to operate on the included floid. To this we may add Dr Franklin's judicious experiment of whirling an electrified ball many times round his head, with great rapidity, by means of a fllk line, without any fenfible diminution of its electricity. It is not conceivable that an electric atmofphere could remain attached to the ball; nor could it be inflantaneoufly formed round the ball; in every point of its motion, fo as to be operative the moment he fopped it and tried it ; for this would have exhanfted or greatly diminifhed the electricity of the ball; whereas that fagacious philofopher affirms (and any perfon will find it true), that when the air is dry, he did not obferve the electricity more diminifhed than that of another ball which remained all the white in the fame place.

Let the overcharged body A (fig. 6.) be brought electricity. near the ends of two oblong conductors $B$ and $C$ in their natural fate, and lying parallel to each other; the fluid will be propelled toward their remote ends $N, n$, where it will be condenfed, while it will be rarefied in the ends $S$ and $s$, adjacent to $A$. Both will be attracted by A , and will attract it. But the redundant fluid in NB will repel the redundant Huid in $n \mathrm{C}$; and the redundant matter in SB will repel the redundant matter in $s C$. For this reafon the bodies $B$ and $C$ will repel each other, and will feparate; but SB attracts ${ }_{n} \mathrm{C}$, and NB attracts $s \mathrm{C}$; and on this account the bodies fhould approach : but the diflances of the attratting parts being greater than thofe of the repelling parts, the repulfions mult prevail, and the bodies muft really reparate.

It is equally clear that the very fame fenfible appearance will refult from bringing an undercharged body near the ends of $B$ and $C$, although the internal motions are jof the oppofite to the former.

If another body D , electrified in the fame way with A, be brought near the oppofite ends of B and C, it will prevent or diminifh the internal motions, and it fhould therefore prevent or diminifh the external effects.

If another conducting body be brought near to the end $s$ of $C$ that fronts $A$, it will be affected as $C$ is, and the end $f$ will repel $s$; but if it be brought near the remote end, as is the cafe with the body $\mathbb{F}$, it will attran this remote end. As the body A, containing more or lefs than its natural hare of electric fluid, affects every other body, while they do not (when out of its neighbourhood) affeet cach other, it is uffually faid to be the eleatified body, and the others are faid to be

Suppl. Vol. I.
electrified by it; and fince thefe bodies, when perfeet conductors, cannot retain their power of exhibiting electrical appearances (fee $\mathrm{n}^{\circ} 17$.), it will be convenient to diftinguifh this laft clectrical thate by a particular name. We fhall call it electricity by position, or induced electricity. It is induced by pofition with regard to the permanently electrical body.
We have fuppofed, in thefe laft propontions, that Coniethe fluid was perfeetly moveable in $B$, and, at latt alfo, in A : but let us examine the confequences of fome obfruction to this notion. Without entering into a minute enquiry on this head, we may fate the obftruction as uniform, and fuch that a certain fmall force is neceffary for caufing a particle of fluid to get through be. tween two particles of the common matter, juft as we conceive to happen in tenacious bodies of uniform texture (fee $n^{\circ}$ 18.).

It is evident, that when an overcharged body A (fig. 4. or 5.) is brought near fuch an imperfect conductor B , the fluid cannot be fo copioully propelled to the remote extremity $n$. We may conceive the fitate of dif. tribution by taking a condant quantity from the intenfities of the force of $A$ at every point of $B$. This circumftance alone fhews us, that there will not be fo unequable a diftrilution of the fluid, and therefore there will not be fuch a frong attranion between innterfeat as between perfeit condutors. But befides this, we fee that an incomparacily longer time muft elapfe before things come to a ftate of equilibrium. Each particle of fluid employs time to evercome the obftacle to its motion, and it cannot advance till after the fucceeding ones, each efcaping in its turn, have again come up with the foremoft. An important confequence refults from this. The neutral point, where the fluid is of the natural deafity, will not be fo far from the other body as it would have been without thefe obftructions; and this point will be a confiderable while of advancing along the imperfect conductor. At the firft approach of the overcharged electric, the near extremity of the imperfect conductor becomes a little undercharged, and the neutral point advances from the very extremity a fmall way, the difplaced fluid being crowded a little befcre it, and giving way by degrees as its foremof particles get paft the obftructions. The motion forward takes place over a confiderable extent at the very fint ; namcly, in that part of the conductor where the propelling power of the neighbouring electric is juft able to puif a particle over the obftruation. As the propulfion goes on, the neutral point muft gra. dually advance, and at laft reacla a certain diftance, determined by the degree of the obftruction. It is plain, that the final accumulation at the remote end of the imperfect conductor will be lefs than in a perfect conductor, and the neutral point will be nearer to the other end.

There is another remarkable confequence of the ob- Irreculat firvotion. It nuft always happen that, at the beginning diffrituof the action, the greateft conflipation will not be to- tion. wards the remote extremity, but in a place much nearer to the dilturbing caufe. Beyond this, the conftipation will diminilh. As time elapfes during this operation, this conflipated floid acts on the fluid beyond it by repullion, and may do this with fufficient force to difplace fome of it, and render a part of the imperfect conductor deficient, with a fmall conlapation beyond
it. This may, in like manner, produce a rarefaction farther on, followed by another condenfation: and this may be frequently repeated when the obftruation is very great, and the repulfion of the overcharged body very great alfo. This can be frictiy demonfrated in fome very Cimple cales, but the demonfration is very tedious: As the refult, however, is of the firf inportance in the theory of eleciricity, and fervesto explain fome of the moft abftrufe phenomena, we wifh the reader to have fome ftronger ground of confidence than the above bare affeltion. He may obferve fimilar effects of caufes precifely fimilar. If we dip the end of a flat ruler into water, and if, after allowing the water to become perfealy Ath, we move the ruler gently along in a direction perpendicular to the face, we fhall oblerve a fingle wave heap up before the rulier, and keep before it, all the seft of the vater before it remaining Rill: but if we do the farme thing in a velfel of clanmy fluid, efpecially if the cirmmy part is fwimining on the furface of a more perfeet fluid, like a cream, we thall obferve a feries of fuch waves to curl up before the ruler, and form before it in fuccefion; and if we trave previoufly fpotted the durface of the cream, we fatll fce that it is not the fame individual waves that are puhheci before the ruler, but that they are fucceffively formed out of different parts of the furface, and that the particles which, at one time, form the fummit of a wave, are, immediately after, at the bettom, \&c. In like nanner, when a cannon is fired in clear air, at no great dittance, we hear a fingle fnap; but, in a thick fog, we hear the frap both preceded and followed by a quivering noife, refembling the ruthing of a flutering wind, which lafts perhaps half a fecond. A flight reflection on thefe fatts will thew that they are neceflary refults of the mechanical laws of fuch obftruction.

The confequence of this mode of action muft be,

Screral neutral points. that an imperfect conductor may have more than one neutral point, and more than one overcharged and undercharged portion, fo that its action on ditatat bn. dies may be extremely various. The formula of $n^{\circ} 28$. was accomodated to this cafe, and will be found to hare very curious refults. Another body may be placed in the direction of the axis, and will be attranted at one diflance, repelled when this diftance is increafed, and again attracted when at a fill greater diftance, \&c. \&c.
Suppofe the otfruction not to be confiderable: The immediate operation of the neighbouring overcharged body will be the production of an undercharged part in the adjoining extremity, an overcharged part beyond this, an undercharged portion farther on, Esc. In a little while thefe will thift along the conductor; one after another will difappear at the farther end, and the body will have at laft but one nentral point. A greater obitruetion will leave the body, finally, with more than one nentral point, and their ultimate number wiil be greater in proportion as the obflruction to the fluid's motion is fuppofed greater.

Now, let the overcharged body, the caule of this unequal diffribution, be removed. We have feen, $\mathrm{n}^{\circ} 17$. that when a body contains its natural quantity of fluid, but unequally diftributed, there is a force asting on every particle, and tending to rehore the original equable diltribution; and that fuch a force remains as long as thers is any ineguality in this refpes. If, therefore,
there be no obftruction, the uniform diftribution will take place immediately; for it is well hnown, that the fpeed with which electricity is propagated is immenle. The elafticity, or the attractive and repulive force; mult be very great indeed when compared with ary that we know, excepr, pernaps, the force which impeis the particles of light. The electricity, therefore, of a peifect conductor, that is, its power of asting on other bodies in the fame way that an original electric afs on them, mult be quite momentary, and ceafe as foon as the inducing caufe is removed. The conductor is electrical merely in confequence of its pofition. Hence the propiliety of our denominations. Nothing material is fuppofed in this theory to be communicated from the overcharged body: Nay, this thenry teaches, that the fenfible electricity of the overcharged body is augmented in fome refpects; frit becomes more overcharged in the part nearef to the conducior. Indeed it becomes lefs overcharged on the other end, and will aft lefs furcibly on that fide than if the conductor were away. It may be remarked here (it fhould have been meationed in $n^{\circ} 55$ ), that when $F$ is prefeated in the manner fhewn in fig. 6. the body B becomes more Arongly overcharged at the end remote from $A$, and more flrongly undercharged at the end next to A , than when F is away. The contrary may happen, by prefenting a body in the manner of $E$. We wifh thefe particulars to be kept in mind. In the mean time, all thefe circumftances are neceffary confequences of the fuppofition, that nothing is communicated from $A$ to B or C. The electricity induced on periect conductors is momentary, requiring the continual prefence of a body that is electrified in fome way or other.

But the cafe is quite otherwife in imperfect conductors. When the overcharged, or otherwife elestrical body A is removed, the forces which tend to reftore the uniform diftribution of the fluid immediately operate and mult rellore it in part. They cannot, however, do it completely: For when the force which urges any particle from an overcharged to an undercharged part is juft in equilibrio with the obffruction, it will remain, juft as a number of grains of fmall fhot may lie, uniformly mixed with a mafs of clammy fluid, or, as fuch fluids retain heavy mud, in a ftate of equable or inequable diffufion. If the refintance arife merely from the inertia of the tangible matter, there is no force fo fmall but it will in time reflore the uniform diftribution. But this cannot be the cafe in folld bodies. Their particles exert lateral forces, by which they maintain themfelves in particular fituations : thefe matt be overcome by fuperior forces.

We fhould therefore expect, that imperfeet conductors will retain part of their inequable conflitution; and, in confequence of this, their power of affecting other bodies like electrics; that is, their Eiectricity. For we muit obferve (having neglected to $\mathrm{d} n$ it in the beginning), that the term eleciricily is as often uled to exprefs this power of producing elegrical phenomena as it is ufed for exprefling a fubfance fuppofed to be the original caufe of all thefe appearances. It is neceffary to keep this diffinction in mind ; becaufe there are many phenomena which clearly indicate the transference of this caufe, and they mult not be confounded with others, where the exhibition of elecric phe. nomena is evidently propagated to a diflance. We

## EL E C $\quad$ C R I CI $\quad$ I

mut not al mays fuppofe, that when the electric appear. andes are exhibited in an infant at the far end of a wire $4^{\frac{5}{2}}$ miles long, the fame numerical particles of the alectrice fluid have moved over this face. We mun diftinguifh thole cafes where this mut be granted from thole in which it certainly has not happened. Of the fe there are innumerable inftances.

## Imperfect

 inductors are neceffa rill idoelectrics.We have now to obferve, that by this theory the fingle circumftance of perfect and imperfect conducting power is fufficient for eftablifhing the whole difference between idio-elecrics and non-electrics. The idioelectrics are fufceptible of excitation in various ways, and retain their electricity; and this may be done in any part of them without affecting the reft in any remarkable degree. This cannot be done in perfect condoctors, plainly lecaufe they are perfect cordudors. Any inequality of diftribution of the electric fluid, which is all that is neceffary for rendering them electric, is inmediately deltroyed by its uniform diffufion. We can have no direct proof of their incapability of excitation; but if they can be excited, they cannot thew it. We doubt, however, their excitability; becaufe the appearandes in the excitation of elechics lem to indicate, that oppofite fates of two bodies are necelfary previous to the appearance of electricity. This is impoffible in perfeet conductors. By this theory, therefore, perfect conductors are neceffarily non-electrics; and non-con. ductors are neceifarily (if excitable) idio-electrics.

With reflect to the particular phenomena which may be expected on the removal of the original electric ; it may jut be remarked, that the electric appearances of the imperfect conductor will go off in the contrary order to that of their indication. The accumulation and deficiency will diminiff gradually, and the neutral point or points will gradually approach the end which had fronted the original electric. The imperfect conductor will be finally left with one or more neutral points, according to the magnitude of the obstructions, and the force which lad been employed in its electrification : And their final fate will be fo much the more inequable, and consequently they will retain fo much the greater electric powers, as they are left perfect conduc-
60 Electrics. are only superficially fo.
tors.
The lat observation which we fall make on this head at prefent is, that whether electrified by induc. timon, or by friction, or molt other modes of excitation, the electrification will be nearly fuperficial in bodies which conduct very imperfectly; and bodies which are altogether impervious (if there be any fuel) mut have the accumulation or deficiency altogether at theirfurface. If a glass globe be fuch a body, it will hardly be poffible to electrify it to any depth; and all that we can expect is alternate iata of overcharged and undercharged glass. It the fe frat are once formed, they tend greatly to make the body retain its iuperficial electricity. A fuperficial Atatums of redundant fluid, tending, by the mutual repulfion of its particles, to efeape, is retained by the fritum of redundant matter immediately below it: And the almof infuperable obflruction prevents the fluid of the fratum beyond this from coming up to fupply the vacancy. If we can fall on any contrivance to produce foch deficient litrata within the glass, we hall make it much more retentive, and capable of holding fat a much greater quantity. We have already mentioned fonething of this in $n^{\circ}$ if. and we recom-
mend the cafe to the attentive confideration of the reader.

## $6 I$

Thus have we given a fetch of the leading doctrines of this elegant theory of Mr ※pinus, all legitimately deduced from the circumftances affumed in the hypothetis concerning the mechanical properties of that futfrance which he calls the cedric fluid. Let us now fee with what fuccefs this hypothefis may be applied to account for the phenomena. It would have been more philofoplical to have arranged the phenomena, and from the comparifon to have deduced the hypothefis. But this would have requited much more room than can be afforded in a Work like ours.

We prefume, that many of our readers, namely, all fuch as are already converfant with electrical phenome. na and with electric experiments, have fen, as we wen: along, the perfect agreement of the hypothefis with the various phenomena of attraction and repulsion, and all thofe which are ufually chaffed under the name of eecuric atmofpheres: and we are confident, that when they compare the consequences that could neceflarily refute from foch a fluid with the legitimate confequences of the mechanical action of elaftic atmospheres, they will acknowledge the great fuperiority of this hypothefis in point of fimplicity, perspicuity, and analogy with o. then general operations of nature. To fuck readers it would not be neceffary to fate any farther companion; but there are many who have not yet formed any difftinct fyylematic view of the appearances called elearical. We do not know any way of giving foch a view of them as by means of this hypothefis; and we may ventare to fay, that it will enable the student of Nature to class them all, with hardly a dingle exception. After which, the hypothefis may be thrown afide by the fartidions philofopher; and the useful claffification, and general laws of the electric phenomena, will remain ready foundations for a more perfect theory. For the fake of fuck readers, therefore, we fall take a host review of thole general appearances which are accompanied by attractions and repulfions, and compare then with this刃pinian theory.
We fall not at prefent confider the various modes of excitation, although this theory alpo affords much inftruction on the fubjest, but confine ourselves entirely to the facts which are molt immediately dependent on it, and Chouid be employed to fupport or overturn it ; and we fall fuppofe the reader acquainted with molt parts of the common apparatus; finch as electrometers, inflation, \&c. We alfo presume that he knows, that "hen a foal pith ball has been elefrified by touch. ing a piece of glass which has been excited by rubbings with dry flannel, it will repel another tody fo clecrifi. ed; and that balls, which have received their electricity in this manner from fending wax excited by the fame rubber, aldo repel each other; but that balls, thus alectrified by glare, attract those which are electrified by fealing-wax.

The following simple apparatus will ferve for all the experiments which are neceffary for eflablifhing the theory:

1. Two fender glafs rods A (fig. 8.) having a Apparatus brafs ball B at the end, about a quartics of an inch in acceflary diameter, fufpending a very fall and delicate pith-bill for this electrometer C .
${ }_{4} \mathrm{P}=$
2. Some
$\qquad$


$\qquad$

$\qquad$
$\qquad$

[^10]
## E L E C T R I C I T Y.

2. Some electrometers (fig. 9.), confifting of two pieces of rufls pith, about four inches long, nicely furpended, and langing parallel, and almolt in contact wilh each other. It is proper to have them as fmooth as poffible, and neatly rounded at the ends, to prevent unneceifary diflipation.
3. Some pith-ball electrometers (fig. io.), whofe threads are of filk, about four inches long, and fome with flasen threads moitened with a folution of fome deliquefcent falt, that they may be always in a good conducting fate.
4. Several brafs conductors (fig. 11.), each fupported on an infulating ftalk and foot. They fhould be about an inch and half or two inches long, and about threefourths of an inch in diameter, with round ends, and well polifhed, to prevent all diffipation. The foot muft be fo narrow as to allow them to touch each other at the end.
5. Two laills (fig. 12.), one of glais, and the other of glafs coated with fealing-way, each furnifhed with an infulating handle, the other end of which may be occafionally fuck into a foot or into the fide of a block of wood, which can be flid up or down on a wooden pillar, and fixed at any height. There balls fhould be about three inches in diameter. They mult be excited by rubbing with dry warm flannel.
6. Some little pieces of gilt card (fig. I3.), about two inches long, half an inch broad, and rounded at the ends, and made as fmooth as poffible. Each mult have a dimple fruck in the middle with a polifhed blunt point, fo that it will traverfe freely like a mariner's needle, when fet on a glafs point, rounded in the flame of a lamp. More artificial needles may be made of fome light wood, having fmall cork balls at the ends, all gilt and polifhed, and turning, in like manner, on glafs ftalks : alfo fome fimilar needles made of fealing-wax, one end of each being black, and the other red.

The mechanical phenomena of eleefricity may be expreffed in a few fimple propofitions. The moft general fact that we know, and from which all the reft may be deduced, is the following:

If any body A is eledrified, by any means whatever, and if another body B is brought into its neighbourbood, the latt becomes electrical by pofition.

Set the brafs conductors in a row, touching each other, as reprefented in fig. I1. by A, B, C; and let a pith-ball electrometer, having filk threads, be fet near one end of the conductors. Excite one of the globes, by rubbing it with dry flannel. When this is brought near the end of the conductor, the pith-ball will approach the other end. But the globe mult not be brought fo near as to caufe the pith-ball to Arike againt the other end. On removing the globe, the pith-ball will move off and hang perpendicularly. The fame effect is produced by both globes.

Thus the mere vicinity of the electric renders the condutor electric, and the electricity ceafes on removing the globe. This is perfecily conformable to the theory, whether we fuppofe the fluid to be made redundant or deficient at the remote end of the conductor. If one fhould afcribe the approach of the pithball to the immediate action of the glone, it is fufficient to obferve, that if the ball be fufpended near the fife of Ihe conductor, it will approach the conductor, fhewing that it is affened by the conductor, aud not by the globe.

Let the globe be held in the pofition $D$ (fig. 12.), state of diabout fix inches from the conductor, and a litle above the ftribution line of its axis. Take the glafs rod (fig. 8.), and bring afeertained its knob into contact with the under fide of the remote experimenend $c$ of the conductor. The balls of the elearometer will feparate, fhewing that they are electrified in the fame manner, and repel each other. Slide the brafs knob along the under fide of the conductors, quite to the end $a$. The balls will gradually collapfe as the hnob approaches a point near the middle of the conductors, where they will hang parallel. Palfing this point, they will again feparate, and moft of all when the knob is at $a$. In this fituation they will deviate toward the globe, and will be directed Araight toward ir, if it be held toonear, or in the direction of the axis. This would difturb the experiment, and mult be avoided. Thefe phenomena are conformable to the account given of the difpofition of the fluid in the conducor. The electrometer may be confidered as making a part of the conductor; and when its threads hang parallel, it is in its natural fate, having its fluid of its natural denfity. This, however, cannot be frictly true, according to the theory; becaufe the balls of the electrometer moft be confidered as more remote from the clectric, and their electrical ftate muft correfpond to a point of the conductor more remote than that where the knob of the electrometer touches it. This will be more remarkably the cafe as the threads are longer. Accordingly, an elearometer with very long threads will never collapfe. The place of the neutral point cannot be accuratcly afcertained in this way. Lord Mahon ima- Lord Magined, that its fituation $B$ was determined (in his expe- hon'sdeterriments with a long conductor) to be fuch, that $\bar{D} c_{c}$ mination of was harmonically divided in B and $a$; and he finds this the neurral to be agreeable to the refult of an eiectric atmofphere whofe denfity is inverfely proportional to the fquare of the diftance. But we cannot deduce this from his nar- planation. ration of the experiment. He gives no reafon for his felection of the point D , nor tells us the form and dimenfions of the electric employed, nor takes into account the ation of the fluid in the long condector. It is evident, that no computation can be inftituted, event on his Lordfhip's principles, till all this be done. We have always found, that the neutral point was farther from the electric, in proportion as the conductor was finaller, and when the electricity was ftronger : and that the differences in this refpect were fo very confiderable, that no dependence could be had on this experiment for determining the law of astion. It fhould be fo, both according to Lord Mahon's and Mr Expinus's theory. But to proceed with our examination :

Having touched the end $c$ of the conductor with the knob of the eleftrometer, bring it away. The balls will continue to repel each other, and they are attracted by any body that is in its natural fiate. Touch the fame end with the knob of the other electrometer, and bring it alfo atray; the balls of the two electrometers will be found to repel each other: but if one has touched the condunor at $c$, and the other has touched it at $a$, the electrometers will ftrongly attract each other. All this is quite conformable to the theory. If the fluid has been compreffed at $c$, and therefore the balls of that electrometer are overcharged, they mutt repel each other, and repel any other body elearified in the fame way. They muft attract and be attracted

## E L E. C T R I C I T Y.

by any natural body. But the balls of the other electrometer laving touched the conductor at $a$, inult be undicrcharged, and the redundant fluid of the one mult attract the redundant matter of the other.

If the conductor has been eleftrified by the vicinity of excited glats, the electrometer which touched it in the remote end $c$, will be repelled by a piece of escited glafs, but attracled by excited fealing-wax. The electrometer which touched the conductor in $a$ will be attracted by excited glafs, and repelled by excited fea!-ing-wax. The contrary will be obferved if the conductor has had its electricity induced on it by the vicinity of the globe covered with fealing-wax. This is a complete proof that Mr Dufuy's doctrine of vitroous and refinous eleatricity is unfounded. Both kinds of electricity are produced in a conducting body, without any material communication, by mere juxta-polition to a body poifefied of either the vitreous or the refinous electricity.
Conflant dintinuions dicate whicl of redundancy and deficiency.
tions of the conductor may be feen in another way, which is perlaps more fimple and unexceptionable thin that already narrated. While the globe remains at $D$, take the two extreme pieces A and C afide; or, if only two pieces have bcen ured, draw the remote piece farther away. Now remove the excited globe. When we examine A feparately, we fhall find it wholly negative, or undercharged, frongly repelling a ball electrified by fealing.wax, and attracting a ball electrified by glafs. The other piece $C$ exhibits pofitive electricity, attracting and repelling what $A$ repelled and attracted. If cnly three pieces of the conductor have been employed, the middle piece $B$ is generally pofitive; but this in a very faint degree.

If all the pieces be again joined, they are void of electricity. It, inftead of fuch conductors, a row of metal balls, fufpended by filk lines, are employed, one of them maty generally be found without any fenfible electricity, when feparated from the reft, having been the neutral part of the row while united.

Thele very fimple facts fhew, as completely as can be withed, that if the electric phenomena depend on a fluid moveable in the pores of the body, the conftitution given it by Mr Aipinus is adequate to the explanation. We may now venture to alfert, that every other phenomenon of attration and repulfion will be found in exact conformity with the legitimate confequences of this conftitution of the electric fluid.

That nothing is communicated from the electric will appear ftill more forcibly by the foilowing experiment : Let a conductor be rendered electrical in the way now detcribed, and touch either extremity of it with the little electrometer, and obferve attentively the divergency of its threads. Now approach its remote extremity with another conducting body, fuch as a fingle piece of thofe conductors, it will be rendered electrical; as may be difcovered by a delicate electrometer. Obferve carefully whether the electrometer in contact with the firft conductor be affected:-it will generally be foumd to fpread its threads wider. It will certainly be thus affeted if the other conductor be very long and bulky, or touched by the hand; or if, inftead of this lecond conductor, we approach the firlt with the extended palm of the hand. As the fecond conductor was rendered electrical, fo, undoubtedly, is the hand allo: and its electrification has not deprived the firlt conductor of any of its electric power, but, on the contrary, has increafed it. And this augmertation of its power is equally fenfible at both ends: For an electrometer at the other end will alfo diverge more when the hand!: brought near the remote end. This theroy explains this in the mof fatisfactory manner. The firit conduc. tor rerders the fecond electric, by propelling its fluid to a greater diftance. The fecond conductor now acts on the fluid that is moveable in the fisit, and caufes a greater accumnlation in its end which is fartheft from the electric; that is, renders it more electric.

Suppofe that, inftead of employing an excited globe The forced of glat's, we had made ule of a conducting body, 1lightly difpofition overcharged. Thus if we employ the conductor $A$, of fuid is overcharged, to induce electricity on C ; this will pro- affected by duce the fame general cflect on our fet of conductors. But if we have previoufly examined the force of the redundant body, by furpending a pith-ball near it, and obrerving its deviacion from the perpendicular, we may

65
In the inluction of electricity nothing is communicated. Inherent powers are exciled. fide undermot, the duft, which fettles on it in the courfe of a day or two, will be chiefly colleeted along this line, fomewhat in the form of the fibres of a feather. But if the conductor was rendered electical by the globe covered with fealing-wax, the duft will be collected along this line in littie fpots like a row of beads. The appearances will be reverfed if the mirror has been palfed acrofs the end of the conductor which is neareft to the excited electric. In fhort, in whatever way the drawing point has been electrified, if it repel a ball which has touched excited glafs, the line will be feathered; but it it attract fuch a ball, the line will be fottech. There are many ways of making this appearance nuch more remarkable (fee Electricits, Encyel. Sect. viii. no 48.) than this; but we have mentioned it on this occalion, becaufe the circumbances which occafion the difference, whatever it is, are the molt fimple polible. Nothing is communicated; and thercfore the effect muft arife from the unnatural thate of a fubltance or power refiding in the body. If it be a fubllance fui gencris, the electric action mult ariie from a different ditribution of this fubtance; from a redundancy and deficiency of it in the different portions of the cunductor. Without pretending as yet to fay which is redundant, we hall fuppofe, with Dr Franklin, that the electricity of excited glafs is fo; and we thall ufe the words redundent and pogrive to diftinguilh this electricity from the other. This is merely that we may, on many occafions, con. fiderably abbreviate language.

The different clearrical flates of the cififerent por-
fometimes be led to think, that it has imparted fomething to the other body. For if the other body and the pith-ball be on oppofite fides of the redundant body, the pill-ball will fall a little; indicating, a diminution of electric force. But this fronld bappens according to the theory; for it was thewn, in $n^{\circ} 52$. that the conAtpation in the remote and of the overcharged body will be diminifhed, and along wi.h this, its action on the pith-ball. We flould find the elcatricity of the other end, next the conductor, increafed, could we find an eafy way of examining it ; but an electrometer applied there will be tno mach affected by the conjuctor.
The fime conclufions may be drawn from the fol. lowing facts: Hang up a ruflh-pith clectrometer. Approach it below with a body flightly electrified. The leys of the eletrometer immediately diverge, though attracted by the eleatrified body. Hold the hand above the eleitrometer, and they will diverge Atill more ; touch the top of it, and they fpread yet farcher. Hold the eleatrified body (very weakly electrified) above the electrometer, fo that its legs may diverge a little. Hold the hand above the elecrified body; the legs of the eleftrometer will come nearer each other.

Thefe appearances are obtel ved whether the electric be politive or negative. We need not take up time in explaining this by the theory, its agreement is fo obvion .

Lafly, on this head, if, in place of a fixed conducneedles po- tor, we ufe one of the needles of gilt card, fet on its pivnt, and if we then approach it with another conducting body, in the manner reprefented by E and C
of fig. 6. we thall obferve that end of the needle to :avoid the other body; but if we bring them together, in the manner reprefented by F and B , they will attraft each other. The attraction will be greater when the body F is long; and moft of all when it communicates with the ground. Thefe phenomena are therefure in perfect conformity with the thonry; bur it may fometimes happen that E will attract the end of C that is nearelt to A , and E will be electrilied pofitively if A be pofitive. This feems inconfillent with the theory; and, accordingly, it has been adduced by Volta againft Lord Mahon's account of the electrical thate of a conductor in a fituation fimilar to that of C . But the theory of Epinus thews the pollibility of this cafe. When E is very long, or when it is held in the hand, it is rendered much more undercharged than the adjacent part of C ; and the fluid in the remoter, but not much remoter, part of C is Arongly attracted by the copions redundant matter in the near end of $E$, and is brought back again, and pafies over into $E$, in the way to be defcrioed immediately. The cale is rare, and it will not bappen at any conliderable dittance from the neatral point of $C$. If, indeed, $E$ touch the near end of $C$ before $A$ is bronght near, the approach of $A$ will caufe fluid to pafs into E irımediately, and C will be left undercharged on the whole.

The reader, who is at all converfant with cleatrical experiments, will be fenfible, that the experiments are delicate, requiring the greatelt drynefs of air, and every attention to prevent the difipation of electricity during the pefformance. This, by changing the Itate of the conductors and elearometers, will frequently occafion irregultrities. The cleatrometers aic mot apt to change in this refpect, it being fcarcely ponible to make
them perfectly frooth and free from fharp angles. It may therefore happen, that when the conduors have affected them for fome time, by the action of the difturbing electric, the removal of this eleatric will not caufe the eletrometers to hang perpendicular; they will often he attracted ty the conductors, and often repelled ; but the intelligent experimenter, aware of thefe circumftances, will know what allowances to make.

The theory obtains a Atill more complete fupport Thenomefrom a comparifon with fimilar experiments made with naofimperimperfect conductors. If, in place of the feries $A, B$, fect conC, of metalline conductors, we employ cylinders of glafs or fealing-wax, or even dry wood or marble, and elearometers with filk threads in place of the rufh-pith electrometers, we thall find all the appearances to be fuch as the theory enables us to predict. If, for exampie, we ufe a fingle cylinder A of glafs, we flati find that the neighbourhood of the elcêric D fcarcely induces any electricity on A. The electrometer will hardly exhibit the fmalleft attraction, and its motions will be almot entirely fuch as arife from the immediate influence of the electric body D. A cylinder of very dry wood will be more affected by the electric D ; and a circuntlance of theoretical importance is very diftinetly obferved, namely, the gradual fhifting of the neutral point. It will be found to advance along the cylinder for a very long while, when every circumftance is very favourable, the air very dry, and the wood almolt a nonconductor; and its final fituation will be found much nearer to the electric than in the brafs conductor. Several inftruetive experiments of this kind may be found in a treatife publifhed in 1783 by Dr Thomas Milner at Maidfone in Kient, entitled, "Experiments and Obfervations on EleAricity." The author does not profefs to adrance any new doctrines, but only to exhibit experiments feientifically arranged for forning a fyitem. He fupports the Franklinian fyftem as it was generally underfood at that time; but is much cmbarraffed for the explanation of the repulfion of negative electrics. The Æpinian correation of this theory did not offer itfelf to his mind.

We need not go over the fame ground again with Irregulariimperfect conductors. It is well known that fuch bo- ties. dies are more weakly attracted and repelled; that the balls of an electrometer with linen threads diverge valtly more when an electrified body is held below it, than if the threads are filken: that fuch electrometers frequently exhibit very capricious appearances from the now but real progrefs of the electricity along the threads. Thefe anomalies will be better underitood when we explain the difipation of electricity along imperfect conductors.

A very effential deduction front the theory is, that 69 the elegricity induced on an imperfect condunior mult taredehave fome permanency. This is fully confirmed by imperfea experiment. But the remarkable inflances of this par condufloro ticular cannot be produced till we be better acquainted with the methods of producing great accumulations of fluid. It is enough to obferve at prefent, that a permanent electricity may always be obferved at the junction of the conductors with their infulating falks. The brafs conductor A ceafes to be eledric as foon as the excited globe is removed; but the very top of the glafs falk on which it is fupp etted vill fenfibly affect a delic:te electtometer for a long while after. The follow-
ing petty experiment thews this permaneacy very diftinctly. Set one of the fealing-wax needles on its pivot, and place it between two infulated metal fpheres of ${ }^{\circ}$ confiderable fize, at fuch a diftance from both as not to receive a fpart. Electrify thefe balls moderately, ose of them poftively, and the other negatively, and keep then thus electrified for fome hours by renewing their electrification. The ncedle quickly arranges itfelf in the line adjoining the two fpheres, juf as a magnetic needle will do when placed between two magnets whofe difimilar poles front eacla other. Any gentle force will derange ihe needle; but it will vibrate like a magnetic needle, and finally fettle in its former pofition. When this has been continued forme time, that end of the needle which pointed to the pofitive globe will be found negative, and the other will be tound pofitive, if examined with an electrofope. And now, if the two globes be removed, this little needle will remain electrical for entire days in dry frofty weather, and its ends will approach any body that is bronght near it (taking care not to come too clofe) ; and the end which pointed to the pofitive globe will avoid a piece of rubbed fealing-wax, but will approach a piece of rubbed glafs; but the other end will be affected in the oppofite way. In fhort, it proves an electric needle with a politive and negative pole.

If two fmall infulated balls are moderately electrified. and placed about fis inches afunder, this needle, when carried round them, will arrange itfelf exactly as a magnetic needle does when carried round a magnet of the fime length. If the fame trial be made with the needle of gilt card, it will arrange itifif in the fame manner that a foft iron needle arranges itfelf near a magnet, but either end will turn indifferently to either globe.
2lecqrical meridians.

If a thin glafs plate, coated with red fealing-wax, be fet on the pofitive and negative globes, and we fprinkle (from a confiderable height) a fine powder of black fealing-wax, and then pat the plate genily with a glafs rod fo as to agitate it a little, the particles of wax powder will gradually arrange themfelves into curve lines, diverging from the point over one of the globes, and converging to the point over the other, precifely like the curves formed by iron-filings fprinkled on a paper held over a magnet. Each little rag of wax becomes electrieal by polition, acquires two poles, and the pofitive pole of one attracts the negative pole of another; and they achere in a certain determinate pofition, nearly a tangent to the curve, which was mentioned in $n^{0} 50$, and indicates the law of magnetic action. When in this fate, if a hot brick be held over the plate till the wax foften a little, the patticles of black was will adhere to the red coating, and give us a permanent fpecimen of the astion.
It is well known that liquid fealing-wax is a conductor. The writer of this article filled a glafs tube with powdered fealing-was, and melied it, and then expofed it, in its melted fate, to the influence of a politive and a negative globe, loping to make a powerful and permanent eledric needle, which thond have two poles, and exhibit a fet of phenomena refembling thofe of magnetifn. Accordingly he, in fome meafure, fucceeded, by keeping the globes continually electrified for feveral hours, tll the wax was quite cold. It had two diftinct poles, and preferved this propertr, cven liough plungad in water, and while immerfod is the zuis-
ter; but he was grcatly dilappointed as to the degree of its electricity. It jut affected a tenflibe elechrometer at the dillance of fix inches from either pole. It was confiderably fronger than if it had not been melted during the impregnation, but by mo neans in the degree that he expected. It retained fome electricity for about fis weeks, although lying noglefted among cor:ducting bodies. After its poxer fémed quite extinct, he was melting it again in orda to renew it. Some light fibrous things chaneed to be near it. Whine it was foftening, it hecame very fenfibly elcetrical, caulin: thefe fibres to bend towards it, and even to cling to the tube. We thanll fee by and bje, that he was millaken in expeating more a cromkable appearances, and that the theory, when propenly a!plied, does not promile them. Having thus ellabl (herl (as we think) this theory on fufficient ioundations for making it a very perfpicuous way of explaning the phenomena of induced clectricity, we proceed to compure it with the fecoud general fact in electricits.

Prop. II. When an infulated bady $B$ is brought Ele?tricity very near an eleatrified body $A$, a fpark is obferved to by commo pals between them, accompanied with a noife (which macation. we fhall call the elegric $S^{\mathrm{SNap}}$ ), and B is now eleatri. fied permanently, and the electricity of A is diminifhed.

Alhough this be one of the mott familiar facts in electrieity, it will be proper to confider its attending circumftanees in a way that conneets it with what we have now learned concerning electricity by pofition.

Let the imfulated body A (Gig. 14.) be furnithed with a cosk-ball, hanging by a tilk thread from a glatis italk connected with $A$; let $B$ be fitted up in the fime manner; let A be elearified weakly, and its degree of eleatricity be eltimated by the inclination of the ball towards A : fince B is not electrified, its electroneeier will hang perpendicular; but when it approaches A (keeping the elcatrometers on the remote fides of both), its electrometer will approach it, and the electrometer of A will gradually approach the perpendicular. When the bodies are brought very near, a fpark is feen between them; and, at that inftant, the electrometer of B comes much nearer to it, and that of A drops farther from it. If they be now feparated, their electrometers will retain their new pofitions with very little change, and B will now manileft the fame kind of elearicity with $A$.

Sueh is the appearance when $A$ has been tut weakly elearified. Bringing $B$ near $A$, the fluid in $B$ is drawn to the remote fide, if A be overeharged, or drawn to the fide neaselt to $A$, if A has been undercharged. B adts on its electroneter in confequence of the change made in the difpofition of its fluid. The electrometer is attracted. In the mean time, the change made in the dilpotition of the fluid in B affects the moveable fluid in A. If A was overcharged, the ajacent fide of $B$ becomes undereharged, and its redundant matter, attrasting the fluid in $A$, condenfes it in the adjacent fide, ab!tracting part of the redundant fluid from that dide which is next to the pith-ball. Then the joint action of the who'e redunciant fluid in $\Lambda$ on the pith-ball is diminifhed.

As there is now an attraction in the redundant fluid Mu? hapin A for the redundant matter on the adjacent fide of penalsopite B, ly.

## I. $\quad \mathrm{E}$ C: $\quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{C} \quad 1 \quad \Gamma \quad Y$.

B, it is reafomable to fuppofe, that when this attraction, joined to the repultion of the seclundant fluid belind it, is able to overcone the attration which conneats it with the fuperficial paricles of the matzer, it will then elcape and liy into $B$ : but this will not happen gradually, but at once, as foon as the expelling force has arifen to a very contiderible intenfity. We cannot fay what is the precife augmentation that is necellary; but we can clealy fee, that however great the attration for the adjoining particles may be, while the Farticle is furrounded by them on all fides, it will yield to the fmalleft inequality of force, becaufe the particles before it attrack as much as thole behind it; but when it is jult about to quit the laft or fuperficial particles of $A$, a much greater force is now necellary. It can be ftrictly diemonitrated, that when the mutual tendency is inveriely as the fquare of the difance, the action of a particle placed inmediately without a fiphere of fuch matter is double of its action when fituated in the very fur- the law of electric attraction. We flaill fee other caufes alfo which thould prevent the efcape of redundant fluid, and allo its admifion, till the impelling force is encreared in a certain abrupt degree.

Thefe nbfervations mulf fuffice at prefent to explain the defultory nature of this transference, if there be really a transference. That this has happened, may be confidently inferred from the fudden diminution of the electricity of A, indicated by the fudden fall of its elearometer ; but it is more exprefsly eftablifhed, that there has been a transference by the change produced on B. It is now permanently electrified, and its electricity is of the fame kind with that of $A$, pofitive or negative according as $A$ is pofitive or negative. And now we are enabled to explain the third general fat in eleefricity.

Pror. III. When a body has impartei eleatricity to another, it conftantly repels it, unlefs that other has afterwards imparted all its electricity to other bodies. This fact, from which there is no exception, is an immediate confequence of the theory. Bcfore the transference fuppofed by it, B was in its natural fate: after the eransference, both bodies contaiu redundant fluid, or redundant matter; therefore they muft mutually repel.

We may now take another form of the experiment, which will be much more convineing and inftrusive. Let $A$ be electrified pofitively, or by redundancy, and let its eleetrometer be attached to it by a conducting falk, and have a flaxen thread; let this be the cafe alio with the elearometer of B ; then the appearances fhould happen in the following order: When $A$ is made to approach $B$, the electrometer of $B$ mult gradually rife, diverging from $B$; becaufe the fluid condenied on the fide remote from $A$, and in the elearomeier, will att more flrongly on it than the deferted matter on the other fide of $B$; and when the fudden transference is made, and B is wholly overcharged, its electroneter will imneediately rife much higher, and nult remain at that height, nearly, when A is removed. On the other hand, the elearometer attached to the remote fide of A mult defcend, by reafon of the change made in the difpolition of the fluid in $A$ by the induced electrical Rate of $B$ : and when a confiderable portion of the redundant fluid in A paffes into 13 , the eleetrometer of A
muff fuddenly fink much lower, and remain in that fate when 13 is removed.

Many circumitances of this phenomenon corroborate 'Transferour belief of a real transference of matter. The caufe ence of a of ele ©tric asion refided formerly in A alone; it now peculiar refides allo in $B$. The larger that $B$ is, the greater is fubtance highly prethe diminution of A's electric power, and the fmaller bable: is the power acquired by B . It perfectly refembles, in this refpeet, the communication of faltnefs, fweetnefs, \&c. by mixing a folution of falt or fugar with different quantities of water; and the evidence of a transference of a fubflance, the caufe of electric attractions and repulfions, is at leaft as cogent as the evidence of the transference of heat, when we mis hot water with a quantity of cold, or when a hot folid body is applied to the fide of a cold one. We alforee fo many chemical and other changes produced by this communication of electricity, that we can lardly refure admitting that fome material fubfance paffes from one body to another, and, in its new fituation, exerts its attractions and repulions, and produces all their effects.

We may deduce the following corollaries; all of which are exactly conformable to the phenomena, ferving ftill more to confirm the juftnefs of the theory.

1. A certain quantity of what poffeffes thefe powers Degrees of of attraftion and repulfion is neceffary for giving a de- vivacity termined vivacity to the appearances. Another fpark proportionmult pafs between the bodies, only if they be broughlt fill nearer, and their electrameters muft rife and fall Atill farther. For by the firt transference of eleatric fluid into B , the expelling power of A is diminihhed, and the fuperior attraction of the redundant matter in the adjacent fide of $B$ is alfo counterafted hy the repulfion of the fuid which has entered into it; therefore no more will follow unlefs thefe forces be encreafed, at Jeaft to their former degree. When this addition has been made to $B$, and this abftraction from $A$, their refpective electrometers mult be affecied. All this is in perfect conformity to experience.
2. All the phenomena of communicated elefricity Conimunimult be more remarkable in proportion to the con-cation nont ducting power of the bodies. A very imperfect con- remarkable duetor, fuch as glafs or fealing-wax, will impart or re- in condueceive fluid only between the very neareft parts; whereas a metalline body is intantly affected through its whole extent. This deduction is perfectly agreeable to the whole train of electric experiments. The finger receives a Arong fpark from a large metalline electrified body, which difcharges every part of it of a portion of its eleciricity. But an excited globe, which hews, by its attion on a diltant body, as great a degree of electricity, will give only a very fmall fpark; and it is found not to be aftected at any confiderable difance from the point of its furface from which the transference was made. The whole elefricity of a perfect conduator is difcharged by touching it; but a nonconductor will fuccefively give fparks, if touched in many diferent parts; and it may be feen by a nice eleftroneter, that each contact takes away the eleatricity oniy from a very fmall fpace round it : and it is further highly deferving of notice, that fome time after a fiparl: has been obtained from a particular fpot of the elećrric, a fecond fpark may be obtained from it, the electricity of the neighbouring parts having been gradually diffefed through it.

## E L E C T R I Ci I T Y.

Infulation neceflary for clearic appearances.
3. If an electrified conducting body touch any thing communicating with the ground by perfeet conductors, all its eleetricity mult ditappear, and none can appear in the body touched by it; for the mals of the earth bears fuch an unmeafurable proportion to that of the greateft body that we can electrity, that when the redundancy or deficiency is divided between them, it muft be imperceptible in both.

Hence the neceflity of infulation, as it is called, or the furrounding by non conductors every body which we would have exhibit electric appearances. We mult refer the reader to the article Electricity in the $E_{\text {f }}$ cycl. for all the obfervations on this head, and the reatons of preference given to certain fubltances to be er ployed for infulating fupports. But we mult confider, in its proper place, the manner in which the electric fluid is diffipated by imperfectly infulating fublances; a fubject intimately connected with the theory.
anclectri- 4. Any unelectrified body will be firtt attracted by fied body an electrified body, will touch it, and will then be reattragsand pelled. The neutral body is rendered electrical by inthen repels any unclectrified body. duction. It is, in confequetice of this, attracted, comes near enough to receive a fpark, or even touches it, and is then electrified by communication; and, in conse- quence of this, it is repelled. This is confirmed by an endlefs train of exporiments. It was firf taken notice of (we think) by Sir Ifaac Newton. Otho Guericke, a gentleman of Magdeburgh, to whom we owe the air pump, mentions many inltances of the repulfion, but did not obferve that it was an univerfal law. Newton was fo Atruck with it as to engage in a confiderable train of experiments in the early part of his life, while meditating on the power of gravity ; but even his fa$g^{3 c i o u s ~ m i n d ~ d i d ~ n o t ~ o b f e r v e ~ t h e ~ w h o l e ~ p r o c e f s ~ o f ~ n a-~}$ ture in his experiments. He obferved, that the light bodies which rofe and adhered to the rubbed plate of glals were foon after repelled by it ; but did not obferve, that the fame piece would again rife to the glafs after it had touched the table. This fact is now the foundation of many experiments, which the itinerant electricians vie with each other in rendering very amufrag. We may render them inftuctive. Take awoy the middle conductor B (fig. 1..), and hang in its place a cotk ball by a long filk thread. As foon as the electric body D is brought near to A , the ball is attracted by its remote end, comes into contaet, is repelled by it, and attrasted by the adjacent end of $C$, touches it, is faintly repelled by it, and again attratted by $A$; and the operation is repeated feveral times. When all has ceafed, remove C, and alfo the electric D. $C$ is found to have the fame electricity with $D$, and A has the oppolite electricity. The procefs is too obvious to need any detailed application of the theory. The cork ball was the carrier of fluid from $A$ to $C$ if 1) was electric by redundancy, or from $C$ to $A$ if $D$ was undercharged. If inftead of removing $C$ when the vibrations ot the ball have ceafed, we bring D a little nearer, they will be renewed, and, after fome time, will again ceafe. The reafun is plain. The carrier ball had brought the conducter A into a fta:e of equilibrium with the action of D. But this attion is now increafed, and the effects are renewed. It we now remove 1, the ball will vibrate between A and C with great rapidity for a confiserable tine bcfore the vibralinns come to an end; and we flatll find their number Surpe. Vol, I.
to be the fumz as before. 'The efluie of this is alfor abvious from the theory. We may fuppofe $A$ to tre negative, and $C$ pofitive. One of them will attract the ball into contast, and will repel it, having put it int, an electric Itate oppofite to that of the other conduetor. It now becomes a carrier of fluid from the pofitive to the negative conductor, till it nearly refore both to their primitive ftate of neutrality.

There is frequently a feeming capricioufnefs in thofe Irrectuariattrations and repultions. A pith ball, or a down fea. tics frether, hung by filk, will cling to the conductor, or ther- quentwife electrified body, and will not fly off again, at leatt Why. for a long whilc. This only happens when thofe bodies are fo dry as to be almolt non-conductors. They acquire a pofitive and negative polc, like an iron nail adhering to a magnet, and are not repelled they become almoft whotly potitive or negative. It never happeus with conducting light bodies.
5. It floould follow from the theory, that the ele?ric Electricacattractions and repulfions will not be prevented by the tion, luke intervention of mon-conducting fubltances in their neu. gravitutitral fiate. Arcordingly, it is a fact, that the interpofition of a thin pane of glafs, lat it be ever fo extenfive, does not hinder the elestrometer from being affected. does not hinder the elestrometer from being affected. pofition of
Allo, if an infulated elecnic be covercd with a glafs non-conbell, an eletrometer on the outhide will be affected. dultors. Nay, a metal ball, covered to any thicknefs with fealing. wax, when elcefrified, will atrect an elefrometer in the fame way as when naked. We cannot fee how the fe facts can be explained by the action of electric atmofpheres. It is indeed faid, that the atmofphere on one fide of the glafs produces an atmofphere on the other; but we have no explanation of this production. If the interpofed plate be a non-conductor, how does the onc atmofliere produce the other? It mult produce this effect by acting at adiftance on the particles which are to form this atmofphere. Oif wat we, then, is the atmofphere, even if thofe atmofpheres could effect the obferved motions of the electrometer in conflitency with the laws of mechanics? The atmofpheres only fobltitute millions of atiractions or repulfions in place of one. We mult obferve, however, that the motions of the electrometer are modifed, and fometimes greatiy changed, by the interpofed non-conductirg plate; but this is owing to the electricity induced on the plate. If the electric is pofitive, the adjacent furface of the plate becomes faintly negative, and the fide next the elefrometer fighty pofitive. This affects the electrometer even more than the more remote elentic doss. That this is the caufe of the difference between the ftate of the electrometer when the plate is there and when it is removed, will appear plain!y by breathing gently on the glafs plate to damp it, and give it a fmall conducting power. This will make fome change in the pofition of the electrometer. Continue this more and more, till the phate will no longer infulate. The changes produced on the electrometer's polition will form a regular feries, till it is feen to alfume the very pofition which it would have taken had the plate been brats. Then, confidering thofe changes in a contrary order, and fuppofing the fories continued a little farther, we thall always find that it leads to the pofition which it would have taken when no plate whatever is interpofed. We confider this as an inportant fach, fhewing that the electric action is fimilat to gravitation, and that there

## 

is no more occafion for the intervention of an atmef. other laminated foffls, exhibit very vivid electricity phere for explaining the phenomena of electricity than for explairing thofe of gravitation.
6. Since non-electrics are condusors, and fince electrics may be excited by friation rith a non electric, it follows, that if this non-elearic be infulated, and feparated from the electric, it will exhib:t ligns of electricity ; but when they are together, there mult not appear any
when fplit afunder.
Attention to thcfe particulars enables us to confruct Principles machines for quickly exciting vivid eleatricity on the of the confurface of bodies, and for afterwards exbibiting it with frruetion of continued difpatch. The whirling globe, cylinder, or machines plate, firf employed by Mr Haukfbee, for the folitary purpofe of examining the electricity of the globe, was
marks of it, hosever Atrong the excitation may be. We do not pretend to comprehend diftinctly the manner in which fration, or the osber modes of excitation, operate in changing the conncetion betwcen the particles of the fluid and thofe of the tangible matter; nor is this exphaired in any cleetic theory that we know; but of we are fatisfied with he evidences which we have for the exiftence of a fubtunce, whofe prelence or abfence is the caute of the electric phenomena, we mult grant that its ufual connection with the tangible matter of bodies is changed in the aot uf excitation, by frittion, or by any cther means. In the cafe of friction producing politive eleatricity on the furfuce of the eleatric, ve mult fuppofe that the aft of friction caufes one budy to enit or abfort the fluid more copinufly than the other, or perhaps the one to emit, and the other to abforb. Which ever is the cafe, the adjoining furfaces mult be in oppofite flates, and the one mult be as much overcharged as the other is undercharged. When the bodies (whicia we may fuppofe to have the form of plates) are joined, and the one exactly covers the other, the affemblage mult be inactive; for a particle of moveable fluid, tituated any where on the fide of the overcharged plate, will be as much attracted by the undercharged furface of the remote plate as it is repelled by the overcharged furface of the near plate. The furfaces are equal, and equally electric, and act on either fide with equal intenfity; and they are coincident. Therefore their adions balance. The adion is expreffed by the formula of $\mathrm{n}^{\circ} 43$; namely, $\mathrm{F}^{\prime} m^{\prime} \times \overline{z-z^{\prime}}$; and $z-z^{\prime}$ is $=0$, by reaton of the equal diflances of there furfaces from the particle of exterior fiuid.

But let the plates be feparated. Part, and probably the greatelt part, of the redundant fluid on one of the rubbed furfaces will fly back to the other, being nirged both by the attraction of the redundant matter and the repulion of its own particles. But the elec. iric, being electric becaufe, and only becaufe, it is a non-conductor, mult retain fome, or will remain deprived of fome, in a fratum a little within the furface. Tlie two plates muft therefore be left in oppofite ftates, and the conducting, or non electric plate, if infulated before feparation, munt now exhibit eleftric action.

All this is exactly agreeable to fact. We alfo know, that eleetrics may be excitcal by rubbing on each other; and if of equal extent, and equally rubbed, they exhibit no eledric powers while joined together; but when barted, they are always in oppofite flates. The fame thing happens when fulphur is melted in a metal difl, or when Newton's metal is melted in a glats difh. While joined, they are molt perfectly neutral ; but manifeft very frong oppofite electicitics when they are feparated. This completely difappears when they are joined ayain, and reappears on their feparation, even after being kept for months or yeats in favourable circumfanees. We have obferved the plates of tale, and
$8:$ mof ingen:oully converted by Haufen, a German profeffor, into a rapid collector and difpenfer of elemsicity to other bodies, by placing an infulated prime conductor clofe to that part of the furface of the globe which had been excited by friction. Did our limits give us ronm, we fhould gladly enlarge on this fubject, which is full of mof curious particulars, highly meniting the attention of the fhilofopher. But it might eafily occupy a whole volume; and we have fill before us the moit intereating parts of the mechanical department of elestricitr, and fhall hat dly find roum for what is efentially requifite for a clear and ufeful comprehenfion of it. We mutt, therefore, requeit our readers to have recourfe to the original authors, who have confidered the exciation by frition minutely. And we particularly recommend the very careful perufal of Beccaria's Differtations on it, comparing the phenomena, in every Itep, with this theory of Rpinus. Much valuable information is allo obtained from Mr Nicholfon's Obfervations, of which an abftract is given in the article Electricity Encycl. The Apinian theory will be found to connect many thinge, which, to an ordinary reader, muft appear folitary and accidental.

Seeing tha: this very fimple hypothefis of Repinus Evidences fo perfectly coincides in its legitimate confequences with of the maall the general phenomenai of attraction and repulfion, teriality of and not only with thofe that are fimple, but even fuch the clid. as are compounded of many others-we may lifen, without the imputation of levity, to the other evidences which mity be effered for the materiality and mobility of the caufe of thofe mechanical phenomena. Such evidences are very numerous, and very perfuative. We have faid, that the transference of electricity is defultory, and that the change made in the electric flate of the communicating bodies is always confiderable. It appears to keep fome fettled ratio to the whole electric power of the body. When the form of the parts where the communication takes place, and other circumitanccs, remain the fame, the transference increafes with the fize of the bodies; and all the phenomena are more vivid in proportion. When the condutior is very large, the fark is very oright, and the faap very loud.

1. This fnap alone indicates fome material agent. It Suar, is occafioned by a fonorous undulation of the air, or of fome clattic fluid, which fuddenly expands, and as fud. denly collapfes again. But fuch is the rapidity of the undulation, that when it is made in clofe veffels it does not exilt long enough, in a very expanded fate, to affect the column of water, fupported in a tube by the elalticity of the air, for the purpofe of a delicate thermometer or barometer ; juft as a mufket ball will pafs through a loofe hanging theet of paper without canting any fenfible agitation.
2. The fpark is accompanied by intenfe heat, which spark, and will kincle inflammable bodis:, will melt, explode, and heat. calcine metals.

## E L E C T R I C I 'T Y.

Chicmical effects.

This is thercfore affunted.
3. The fpark produces fome very remarkable chemical effeets. It calcines metals even mader water or oil ; it renders Bolognian phofphorus luminous: It decompofes water, and makes new compofitions and decompofitions of many gaziform fluids ; it affects vegetable colours ; it blackens the calces of bifmuth, lead, tin, luna cornea; it communicates a very feculiar fimell to the air of a room, which is diftinct from all others; and in the calcination of metals, it changes remarkably the fmells with which this operation is ufially accompanied: it afferts the tongue with an acidulous tafte; it agitates the nervous fyitem.-When we compare thefe appearances with fimilar chemical and phyfological phenomena, which nataralits never hefitate in afcribing to the action of material fubtances, transferable from one body, or one flate of combination, to another, we can fee no grcater reafon for hefitating in afcribing the electric phenomena to the action of a material fubflance: which we may call a fuid, on account of its connected mobility, and the electric fuid, on account of its difinguithing effects. We are well aware, that thefe evidences do not amount to demonflration; and that it is polfible that the electric phenomena, as well as many chemical changes, may refult from the mere difference of arrangement, or pofition, of the ultimate particles of bodies, and may be confidered as the refult of a change of modes, and not of things. But in the inflances we have mentioned, this is extremely improbable.

We therefore venture to affume the exittence of this fubftance, which philofophers have called the eletric fuid, as a propofition abundantly demonitrated; and to affirm, on the authority of all the above-mentioned facts, that its mechanical charater is fuch as is expreff. ed in Mr Epinus's hypothefis.

We proceed, therefore, to explain the moft intereft. ing phenomena of electicity from thefe principles.

We have feen that, in a perfect conductor, in its na. tural flate, the electric fluid is uniformly diftributed, and cannot remain in any other condition. We are particularly interelled to know how it is diftributed in an overcharged or undercharged body, and how this is affected by the circumambient non-conduating air. It is evident that moch depends on this. The tendency to cecape, and, particularly, the tendency to transference from one body to another, mult be greatelt where the fluid is moft conflipated. We know that it tends re. markably to dillipate from all protuberances, edges, and long bodies, and that it is impofible to confine it in a body having very acute far-projecting puints; and, what is more paradoxical, it is hardly potible to prevent its entering into a body furnifhed with a fharp point. The finalleft reflection mult fuggeft to our imagination, that a perfectly muveable fluid, whofe particles mutually repel, even at confiderable diftances, and which is confined in a velfel from which it cannot efcape, mut be compreffed :trainft the fides of the veffel, and be denfer there than in the middle of the veffel. But in what proportion its denfity will diminifh as we recede from the walls of the velitl, mult depend on the change of electric repulion by an increafe of diflance. The intenfity varies in the proportion of fonse function of the diftance, and may be exprefed by the ordinates of a curve, on whofe axis the diftances are meafured. But we anc ignorant of this fundion. The mult there-
forc endeavour to difcover it, bs chiscrving a proper fo. Procefo fir lution of phenomena. Having made fome approxima- difcovering tion to this difcovery, fuch as flall give sife to a por. this law. bable conjeciure concerning the function which exprefies the intenfity of electric repulion, mathematics will then enable us to fay how the finid mult be diftributed fat leaft in fome fimple and infiructive cafes) in a perfectly conducting body furrounded by the air, and what will be its action on another body. Thus we fhall obtain oftenfible refulte, which we can compare with experiments. The writer of this article made many experiments with this view above 30 years ago, and flaters himfelf that he has not been unfuccefsful in his at. tempts. Thefe weie conducted in the moft obvious and fimple manner, fuggefed by the reafonings of Mr A:pinus; and it was with fangultr pleafure that, fonse years after, he perufed the excellent differtation of Mr Cavendifh in the Philofophical Tranfactions, vol. 6s. where he obtained a much fuller conviation of the truth of the conclufion which he had drawn, in a ruder wat, from more familiar appearances. Mr Cavendifh has, with fingular fagacity and addrefs, employed his mathematical knowledge in a way that opened the road to a much farther and more fcientific profecution of the difcovery, if it can be called by that name. After this, Mr Coulonsb, a difinguifhed member of the French academy of feiences, engaged in the fame refearch in a way nillmore refined; and fupported his conclufions by fume of the moft valuble experiments that have been offered to the public. We fhall now give a very brief account of this argument : and have premifed thefe hiftorical remarks; becaufe the writer, although he had eftablifhed the general conclufion, and had read an account of his inveltigation in a public fociety in 1769 , in which it was applied to the moft remarkable facts then known in electricity, has no claim to the more elaborate proofs of the fame doarine, which is given in fome of the following paragraphs. Thefe are but an application of Mr Cavendifh's more cautious and general mathematical procedure, to the function which the writer apprehends to be fufficiently ellablifhed by obfervation.
The mof unexceptionable experiments with which we can begin, feem to be the repulions obfervable between two finall fpheres. Whatever be the law of diftribution of the particles in a fphere, the general action of its particles on the particles of another fphere will follow a law which will not differ much from the law of asion between two particles, il the diameters of the fpheres be fuall in proportion to their difance from each other. The inveltigation was tharefore begun with than. But the frlojea required an elearometer fufceptible of comparion with others, and that could exhibit abfolute meatures. The one employed was made in the following manner; and we give it to the public as a valualle philofophical indrument.
Fig. 15. reprefents the elefrometer in front. A is Comparze a polithed brats ball, $\frac{1}{7}$ th of an inch in diameter. It is be electrofised on the point of a needle three inches long, as lien. meter. der as can be haj of that length. The olher end of the needle paffes through a bill of amber or glafs, or other firm non conducting fubfance, about half or thresfourths of an inch in diameter ; but the end mulk not reach quite to the furface, alimugh the bill is completely periorated. From this ball rifes a flender glatis rod FEL, three inches 1 ng g from F to E , where it $+Q^{2}$
bends
beiuds at right angles, and is continued on to L , immediately over the centre of the ball A. At $L$ is fix. ed a picce of amber C , formed into two parallel cheeks, between which hangs the falk DCB of the electrometer. This is formed by dipping a Atrong and dry filk thead, or fine cord, in melted fealing-wax, and holdingr it perpendicular till is remain covered with a thin coating, and be fully penetrated by it. It mult be kept extended, that it may be very fraight; and it mult be rendered fmooth, by holding it before a clear fire. This ftalk is faftened into a fmall cube of amber, perforated on purpofe, and having fine holes drilled in two of its oppofite fides. The cheeks of the piece $C$ are wide enough to allow this cube to move freely between them, round two fine pins, which are thruft thro' the holes in the cheeks, apd reach about half way to the flalk. The lower part of the ftalk is about three inches long, and ter minates in a gilt and burnifhed corkball (or made of thin metal), a quarter of an inch in diameter. The upper part CD is of the fame length, and palfes through (with fome fristion) a fmall corkball. This part of the inftrument is fo proportioned, that when FE is perpendicular to the horizon, and DCB haness freely, the balls $B$ and $A$ juft touch each other. Fig. i6. gives a fide peripective view of the infrument. The ball $F$ is fixed on the end of the glafs rod FI, which pafies perpendicularly through the centre of a graduated circle GHO, and has a knob handle of boxwood on the farther end I. This glafs rod turns llifly, but fmoothly, in the head of the pillar HK, \&c. and has an index NH, which turns sound it. This index is fet parallel to the line LA, drawn through the centre of the fixed ball of the electrometer. The circle is divided into 360 degrees, and o is placed uppermolt, and 90 on the sight hand. Thus the index will point out the angle which LA makes with the vertical. It will be convenient to have another index, turning flifly on the fame axis, and extending a good way beyond the circle.

This initrument is ufed in the following manner: A commection is made with the body whofe electricity is to be examined, by llicking the point of the connecting wite into the hole at $F$, till it touch the end of the needle; or, if we would merely electrify the balls $A$ and B , and then leave them infulated, we have only to touch one of them with an electrified bods. Now, take hold of the handle $I$, and turn it to the right till the index reach 9 . In this pofition, the line LA is horizonta!, and fo is CD ; and the moveable ball B is sefting on $A$, and is carried by it. Now electrify the balls, and gently turn the handle backwards, bringing the index back toward o, \&c. noticing carefully the two balls. It will happen that, in fome particular pofition of the index, they will be obfer ved to feparate. Bring them together again, and again caufe them to feparate, till the exact poifition at feparation is afcertained. This will fhew their repulfive force in contaft, or at the diftance of their centres, equal to the fum of their radii. Having determined this point, turn the inflrument fill more toward the vertical pofition. The balls will now feparate more and more. Let an affiltant turn the long index fo as to make it parallel to the ftalk of the electrometer, by making the one hide the other from his view. The mathematical reader will fee that this eleatrometer has the propertics afcribed to it.

It will give abfolute meafures: for by poizing the ftalk , by laying fome grains weight on the cork-ball D , till it becomes horizontal and perfectly balanced, and computing for the proportional lengths of BC and DC , we snow exactly the number of grains with which the balls mult repel each other (when the ftalk is in a horizontal pofition), in order merely to feparate. Then a very fimple computation will tell us the grains of repulfion when they feparate in any oblique pofition of the falk; and another computation, by the refolution of forces, will hew us the repulfion exerted between them when $A L$ is oblique, and $B C$ makes any given angle with it. All this is too obvious to need any farther explanation. The reafon for giving the connection between A and C fach a circuitous form, was to avoid all astion between the fixed and the moveable part of the electrometer, except what is exerted between the two balls A and B. The needle AF, indeed, may act a little, and might have been avoided, by making the horizontal axis FI to join with $A$ : but as it was wanted to make the infrument of more general ufe, and frequently to conneat it with an electrical machine, a battery, or a large body, no mode of conneaion offered itfelf which would not have been more faulty in this refpect. The neatelt and moft compendious form would have been to attach the axis FI to C, and to make CA and CB ftif metalline wires, in the fame manner as Mr Brookes's electrometer is made. But as the whole of their lengths would have ated, this conftruction would have been very improper in the inveftigation of the law of electric repultion. As it now flands, we imagine that it has conliderable advantages over Mr Brookes's confruetion; and alfo over Mr De Luc's incomparable electrometer, defcribed in his Elfays on Meteorology. It has even advantages over Mr Coulomb's comparably more delicate electrometer, which is fenfible, and can meafure repulfions which do not exceed the 50,000 of a graia; for the inftrument which we have defribed will meafure the attractions of the oppofitely elearified bodies; a thing which Mr Coulomb could not do without a great circuit of experiments. For inftead of making the ball E above A, by inclining the infrument to the right hand, we may incline it to the left ; and then, by electrifying one of the balls pofitively, and the other negatively, when at a great diftance from each other, their mutual attraction will caufe them to approach; CB will deviate from the vertical toward $A$; and we can compute the force by means of this deviation.

Wie mult remind the perfon who would make obfervations with this inftrument, that every part of it mult be fecured againft diffipation as much as peffible, by varnifhing all its parts, by having all angles, points, and roughneffes removed, and by choofing a dry ftate of the air, and a warm room; and, becaufe it is impolible to prevent diffipation allogether, we mufl make a previous courfe of experiments, in a variety of circumflances, in order to determine the diminution per minute correfponding to the circumildances of the experiments that are to be made with further views.
We truft that the reader will accept of this particular account of an inftrument which promifes to be of confiderable fervice to the curious naturalif; and we now proceed with an account of the conclufions which have been drawn from obfervations made with it.

## E L. E C T R I C I T Y.

Here we could give a particular narration of fome of the experinients, and the computations made from them; but we omit this, becaufe it is really unnecelfary. It fuffices to fay, that the writer has made many hundreds, with different inftruments, of different fizes, fome of them with balls of an inch diameter, and radii of 18 inches. Their cuincidence with each other was far beyond his expectation, and he has not one in his notes which deviate from the medium $\frac{1}{8}$ of the whole force, and but few that have deviated $\mathrm{T}^{1}$. The deviations were as frequently in excefs as in defect. His cullom was to mealure all the forces by a linear fcale, and ex. prefs them by Itraight lines eftefed as ordinates to a bafe, on which he fet off the diftances from a fixed point; he then drew the molt regular curve that he could through the fummits of thefe ordinates. This method the w's, in the molt palpable manner, the coincidence or irregularity of the experiments.
The refult of the vihole was, that the mutual repulfion of two fpheres, elecfrified pofitively or negatively, was very nearly in the inverfe proportion of the fquares of the diflances of their centres, or rather in a proportion fomewhat greater, approaching to $\frac{1}{x^{2,106}}$. No dirference was obferved, although one of the fpheres was much larger than the other; and this circumflance enables us to make a confiderable improvement on the electrometer. Let the ball A be made an inch in diameter, while B is but $\frac{1}{5}$ of an inch. This greatly diminifles the proportion of the irregular adtions of the reft of the apparatus to the whole force, and allo diminifhes
87 the diffipation when the general intenfity is the fame.
Andattrat When the experiments were repeated with balls havaccording ing ofpofite electricities, and which therefore attraesto the fane ed each other, the refults were not altogether fo re!aw. gular, and a few irregularities amounted to $\frac{1}{6}$ of the whole; but thefe anomalies were as often on one fide of the medium as on the other. This feries of experiments gave a refult which deviated as little as the former (or rather lefs) from the inverfe duplicate ratio of the diftances; but the deviation was in defeit as the other was in excefs.
We therefore think that it may be concluded, that the action between two fpheres is exactly in the inverfe duplicate ratio of the diftance of their centres, and that this difference between the obferved attractions and repulfions is owing to fome unperceived caufe in the

88
Attrations and repulfions are equal at equal difsazeces.
form of the experiment.

It mult be obferved alfo, that the attractions and repulfions, with the fame denfity and the fame diftances, were, to all fenfe, equal, except in the forementioned anomalous experiments. The nathematical reader will fee, that the above-mentioned irregularities are imperfections of experiment, and that the gradations of this function of the dillances are too great to be much af. fected by fuch fmall anomalies. The indication of the law is precife enough to make it worth while to adopt it, in the mean time, as a bypothefis, and then to felea, with judgment, fome legitimate confequences which will admit of an exact compalifon with experiment, on fo large a fcale, that the unavoidable cirors of obfervation thall bear but an infignificant proportion to the whole quantity. We fhall attempt this: and it is peculiarly fortunate, that this obferved law of action between two fpheres gives the molt eafy accefs to the law of action
between the particles which compofe them; for Sir Ifalac Newton has demonltrated (and it is one of his molt precious theorems), that if the particles of matter att on each other with a force which varies in the inverfe duplicate ratio of the diftances, thea fpheres, confiling of fuch particles, and of equal denfity at equal ditances from the centre, alfo act on each wither with furces varying in the fame proportion of the diltances of their cemtres. He demonftrates the fame thing of hollow fpherical fhells. He demonflrates that they act on each other with the fame lorce as if all their matter were collected in their centres. And, lallly, he demunltrates that if the law of action between the particles be difierent from this, the fenfitie astion of fpheres, or of hollow fpherical flells, will alfo be difierent (fee Princifios, I. Prop. 7t, Sce. alfo Astronoms, Encycl. 307.).

Therefure we may conclude, that the law of electric Electric acattraction and repulfion is fimilar to that of gravitation, tion is inand that each of thore forces dimin thes in the fame pro. verfely as portion that the fquarc of the diflance between the par- the fquare ticles increafe. We have obtained much ufeful informa of the difo tion from this difcovery. We have now full confirmation tance. of the propofitions concerning the mutual action of two bodies, each overcharged at one end and undercharged at the other. Their evidence before given amounted only to a reafonable frobability; but we now fee, that the curve line, whofe ordinates reprefent the furces, is really convex to the abfififa, and that $Z+z^{\prime}$ is alway's greater than $\mathrm{Z}^{\prime}+\approx$; from which circumblance all the reft follows of courfe.
Let us now enquire into the manner in which the Dirpofition redundant fluid, or tedundant matter, is diftributed in of fuch bodies; the proportion in which it fubfilts in bodies fuid when communicating with each other; the tendencies to redurdant efeape; the forces which produce a transference, \&c. $\& \mathrm{c}$.
In the courfe of this enquiry, a continual reference will be made to the following elementary propofition:

Let ABD (fig. 17.) be the bafe of a cone or pyra- Lenma. mid, whofe vertex is P, and axis PC; and let $a b d$ b: another fection of it by a plane parallel to the bafe; let thefe two circles, or fimilar polygons, confilt of matter or fuid of equal and uniform denfity; and let P be a particle of fluid or matter; the attraction or repultion of this particle for the whole matter or fuid in the figure $A B D$ is equal to its attraction or repulion for the whole matter or fluid in $a b d$. For the attraction for a particle in $A B D$ is to the attrdation for a particle firmilarly placed in $a b d$ as $\mathrm{P} c^{2}$ to $\mathrm{PC}^{2}$; and the number of particles in ABD is to that of thofe in abd as $\mathrm{PC}^{2}$ to $\mathrm{P} c^{2}$; therefore the whole attrattion for $A B D$ is to that for $a b d$ as $\mathrm{P} c^{2} \times \mathrm{PC}^{2}$ to $\mathrm{PC}^{2} \times \mathrm{P} c^{2}$, or in the ratio of equality.
Cor. 1. The fame will be true of the action of plates of equal thickneis and equal denlity; or, in genetal, having fuch thicknefs and denlity as 10 contain quantities of matter or fluid proportional to their areas.
2. The action of all fuch fections made by paralle 1 planec, or by planes equally inclined to their axis, are equal.
3. The tendency of a particle P to a plane, or plate of uniform thicknets and derfity, and intinitely extended, or to a portion of it bounded by the fame pyramid, is the fame, at whatever ditance it be placed from the plate, and it is always perfondicular to it.
4. This tendency is proportional to the denfity an 1 thicknefs of the plate or plates jointly.

It is orly in two or three firmp.e cafcs that we can propofe to tate with precition what will be the cifpofition and action of the eletric fluid in bodics; but we thall felect thofe that are mont inftructive, and comented with the mon remariable and important phenomena.

Let Aad D (fiz. 18.) and EebH reprefent the fections of a part of two infinitely extended parallel plates (which we faall call A and E), confining of folid conducting matter, in which the electric fluid can move without any obfruction, but from which it cannot cfeape.

Firl, Let them be both overcharged, A containing the quantity $r$ of redundant fluid, and E containing the quantity $s$, and let $r$ be greater than $s$.

The fluid will be difpofed in the following manner:

1. There will be two frata, A abB and GgbH, adjoining to the remote furfaces, in each of which the quantity $\frac{r+s}{2}$ will be crowded together as clofe as pofible.
2. Adjoining to the interior furface (that is, the furface nearef to E ) of the plate A , there will be a fratum $\mathrm{C} c d \mathrm{D}$, containing the quantity $\frac{r-s}{2}$ crowded to. gether.
3. The adjacent fide of E will have a Aratum E ef F , juf fufficient for containing the quantity $\frac{r-s}{2}$ at its natural denfity. This ftratum will be entirely exhaufted of fluid.
4. The fpaces $\mathrm{B} b c \mathrm{C}$ and Ffg G will be in their natural fate.

For a particle of fluid in the fpace $\mathrm{B} b c \mathrm{C}$ is urged in the direction $a d$ by the force $\frac{r+s}{2}\left(n^{\circ} 91,3.\right)$, and in the direction $d a$ by the force $\frac{r-s}{2}$, therefore it is, on the whole, urged in the direction a $l$ with the force $s$, which will balance the repultion of the redundant fluid in the other plate. A particle of fluid in the face Ffg G is repelled in the direction $b=$ by a force $\frac{r+s}{2}$ by the fluid in $\mathrm{G} g b \mathrm{H}$, and it is attracted in the fame direction by the redundant matter in Eef $F$, with the force $\frac{r-s}{2}$. Thefe make a force $r$ which balances the repultion $r$ of the other plate. No other difpofition will be permanent; for if a particle be taken out from either ifratum $\mathrm{A} a b \mathrm{I}$ or $\mathrm{C} c d \mathrm{D}$ into the fpace between them, the repulfion from that Aratum which it quitted is leffened, and the repulfion of the oppofite ftratum, joined to that of the other plate, will drive it back agan. The fame thing holds with tefpect to the fluid in the other plate.

Cor. 1. If the two plates be eqwally overcharged, all the redundant fluid will be crowded on the remote furfices, and the adj.ucent furfaces will be in the natural 94 Itate.
When they In the fecond place, let the plates be undercharged, are under- and lec $r$ be the fluid wanting in $A$, and $s$ the fluid rharged, wanting in E , and let $s$ be greater than $r$; then,

1. The Arata adjoining to $\mathrm{A} a$ and $\mathrm{H} b$ will be
ter in each will be fuch as would be faturated by $\frac{r+s}{2}$.
2. The Itratums $\mathrm{C} c d \mathrm{D}$ will contain redundant fluid $\frac{s-r}{2}$, crowded clofe.
3. The fratum E ef $F$ will be deprived of fluid, and the quantity abltracted is $\frac{s-r}{2}$.
4. The fpaces $\mathrm{B} b c \mathrm{C}$ and $\mathrm{F} f g \mathrm{G}$ are in the natural iftate.
The demonftration is the fame as in the former cafe.
Thirdly, Let A be overcharged, and E undercharg. ed, A containing the redundant fluid $r$, and E want. are ing the fluid $s$; and let $r$ be greater than $s$. Then, pofite faten
5. The Atrata $\mathrm{A} a b \mathrm{~B}$ and $\mathrm{G}_{g} b \mathrm{H}$ contain the re. dundant fluid $\frac{r-s}{2}$, crowded clofe.
6. The fratum $\mathrm{C} c d \mathrm{D}$ contains the quantity $\frac{r+s}{2}$, crowded clofe.
7. The fratum E ef F is eshaufted, and wants the quantity $\frac{r+s}{2}$.

## 4. The reft is in the natural fate.

- Cor. 2. If the redundant fluid in $A$ be juff fufficient to faturate the redundant matter in E, the two remote furfaces will be in their natural flate, all the redundant fluid in A being crowded into the flratum $\mathrm{C} c d \mathrm{D}$, and all the redundant matter being in EefF.

This difpoftion will be the fame, whatever is the diftance or thicknefs of the plates, unlefs the redundant fluid in A be more than can be contained in the whole of E when crowded clofe.

When the two plates are overcharged, the fluid Preflure preffes their remote furfaces with the force $\frac{\overline{r+s^{2}}}{4}$, and dency to $\begin{aligned} & \text { and ten- } \\ & \text { efcape. }\end{aligned}$
would efcape with that force if a paffage were opened. It would enter the remote furfaces of two undercharged plates with the fame force; and, in either cafe, it would run from the imer furface of one to the adjacent furface of the other, with the force $\frac{r-s^{3}}{4}$.

If one be overcharged and the other undercharged, fluid would efcape from the remote furface with the force $\frac{F_{-s^{2}}^{2}}{4}$, and would rum through a canal between them with the force $\frac{\overline{r+s^{2}}}{4}$.

They repel or attract each other with the force $\overline{r+s^{2}}$, Mutual act according as they are both over or undercharged, or as tions. one is overcharged and the other undercharged.
This example of parallel plates, infinitely extended, is the fimpleft that can be fuppofed. But it cannot obtain under our obfervation; and in all cafes which we can oblerve, the fluid cannot be uniformly fpread in any flratum, but mult be denfer near the edges, or near the contre, as they are overcharged or undercharged.

Let ABD (fig. 19) reprefent a fphcre of perfestly Difpofition conducting matter, overcharged with electric fluid, in a fpherowhich is perfectly moveable in its pores, but cannot efcape from the fphere. Let it be furrounded by con-


## E L E C Tr R I C I T

duting matte: faturated with moveable fluid. It is re- the movements of the electroneter conld be affeted quired to determine the difpofition of the fluid within and without this fplere.

Sir Iface Newton has demonftrated (Princ. I. 7c.) that a particle $p$, placed anywhere within this fphere, is not affected by any matter that is withont the concentric fpherical furface $p q r$ in which itfelf is fituated, therefore not affected by what is between the furfaces ABD and $p q r$. He alfo demonfrates, that the mat. ter within the furface $p q r$ atts on the particle $p$ in the fame manner as if the whole of it wete collead in the centre C.

Hence it follows, that the reJundant fluid will be all conflipated as clofe as poffible within the external furface of the fphere, forming a thell of a certain minute thicknefs, between the ipherical farfaces ADD and $a b d$; and all that is within this (that is, nearer the centre C) will be in its natural fate.

With refpect to the diftribution of the fluid in the furrounding matter, which we fuppofe to be infinitely extended, we mut recollect that this thell of conftipated redundant fluid repels any external particle of fluid in the fame manner as if all were colleged at $C$. Hence it is evident, that the fluid in the furrounding matter will be repelled, and, being moveable, it will recede from this centre; and there will be a pace all round the fphere ABD which is undercharged, forming a thell between the concentric furfaces ABD and $\alpha \beta \delta$. This thell will contain fuch a quantity of redundant matter, that its attraction for a particle of fluid is equal to the repultion of the ilell of fluid crowded internally on the furface ABD. All beyond this furface $\alpha \beta \delta$ will be in its natural fate; for this redundant matter acts on a particle of fuid, fituated farther from the centre, in the fame manner as if all this redundant matter were colleßted in the centre C. So does the redundant fluid in the conflipated fhell. Therefore their actions bslance each other, and there is no force exerted on any particle of guid beyond this deficient fhell. This deficient thell will not affect the fluid in the fphere $a b d$ by Newton's demonfration. No other difpofition will be permanent. But farther: This undercharged thell mult be completely exhautted; for a particle of fluid placed between ABD and a \& will be more repelled by the fluid in the crowded thell within the furface ABD , than it is attrased by the redundant matter of its own thell that is lefs remote from the centre; and it is not affected by what is more remote from the contre. Therefore the fluid without the fphere ABD cannot be in equilibrio, unlefs the thell between $A B D$ and $a \beta$ \& be not only rarefied, butaliogether exhaufted of fluid.

If the fphere be undercharged, the fpace between ABD and $a b d$ will lee entirely exhaulted of fluid, and there will be a fhell $\alpha \beta$ of redundant matter furrounding the fphere. All within $a b d$, and all without $\alpha \beta$, will be in its natural flate. It is unneceflary to repeat the fleps of the fame demonflration.

This valuacle propofition is by the Hon. Mr Caven99 difh
Confequen- This would be the difpofition in and about a glafs ces of this globe filled and furrounded with an ocean of water, difpofition. and haviag redundant fluid within it, on the fuppofition that ghats is impervious to the elefric fluid. But it would not affect an elearometer, even fuppofing that
under water. Suppofe the globe of water to be furrounded with air, and that the fuid is difpofed in both in the manter here defctibed; it will be perfeilly neutral in its aftion on any electrometer fituated in the air. But, by reafon of the almolt total immobiiity of the fluid in pure dry air, this fate caunot foon obtain; and, till it obtain, the conllip.ted thell within the glafs muft repel the fluid in an eledrmmeter more than the partially rarened flell of air, which furtounds the glafs, attrachs it. By the gradual retiring of the fluid in the furrounding air from the globe, the attracion of the deferted mater will come nearer to equality with the repulfion of the conftipated thell wihhin the ghafs, and the ghbe will appear to have lof fluid. Yet it may retain all the redundant luad which it had at the firt. Therefore we are not to imagine that a body fimilar to this globe h..15 no redundant electric fluid, or only a fmall quantity, becaufe we obferve it inactive, or nearly fo.
Thus we fee, as we proceed, that the सpinian theo. ry is adequate to the explanation of the phenomena. But we fee it much more remarkably in a very familiar and amufing experiment, ufually called the electric well. See Electricity, Encyic. Sect. s. 4.

To fee ir in perfection, make a glafs veffel of globular thape, with a narrow month, fufficiently wide, how. ever, to admit an electrometer fufpended to the end of a glafs rod of a crooked form, fo that the eleftrometer can be prefented to any part of the infide. Smear the outlide of the globe with fome tranfarent clammy fluid, fuch as fyrup. Set it on an infulating fland (a wine glafs), and electrify it pofitively. Hold the electrometer near it, anywhere without, and it will be ftrongly affeted. lis deviations from the perpendicular (if the ball of the electrometer has alfo been eleatrified) will indicate a force inverfely as the fquare of the difance from the centre of the globe, pretty exactly, if the thread of the electrometer is of tilk. Now let down the eleatrometer into the infide of the globe. It will not be affected in any fenfible degree, nor approach or avoid any body that is lying within the globe. The electrometer may be held in all parts of the globe, and when brought out again, is perfealy inadive and neutral. But if the balls of the electrometer be touched with a wire, while hanging free within the globe, they will, on withdrawing the wire, repel each other ; and when taken out, they will be found negatively elcetrified. The experiment fucceeds as we!l with a metal globe; nay, even although the mouth be pretty wide; in which cafe, there is not a perieet baldnce of attion in every direction. The electrometer may be made to touch the bottom of the globe, or anywhere not tho near the mouth, without acquiring any fenfible elcetricity; but if we touch the outfide with the electrome. ter, it will inflantly be eiectrified and frongly repelled. Deep cylinders, and all rond velfels with harrow mouths, exhibit the fame faintnef's of eledricity vithin, except near the brims, although frongly elearic without; and even open motal cups have the interior elec. tricity much diminithed.

Refeting on this valuable prepofition of Mr Caven- yleetric difh, we fee cleanly why an nevercharged cleatric is only bodics ire fuperficially fo; and that this will be the cafe even al- only fuperthough we attempt to accumale a great quantity of fically to. eleciticity in it, by melting it ia a thinglug globe, and
eleatrifyirg

## 

elcerrifying it while liquid, and keeping up the accumulating force till it becomes quite cold. The prefent writer, not having confidered the fulject with that judicicus accuracy that Mr Cavendith exerted, had hopes of producing a powerful and permanent electric in this way, and wis mortified and puzzled by the difeppoint incnt, till he faw his mitake on reading Mr Cavendifn's dillertation.

Thefe obfervations alfo point out a thing which

Cautions in perime periments.

Yo:
Flectricity alore ncar $t_{y}$ propor tional to the furface than to the quantity of matler.

Thould be atecnded to in onr experiments for difcovering the elcefricity excited in the fontaneous operations of nature, as in chemical compofition and decompofition, congelation, fution, evaporation, \&c. It has been ufual to put the fubltances into glafs, or other nonconducting vellels, or into veffels which conduct very imperfealy. In this laft cafe efpecially, the very faint elearicity which is produced, inftantly forms a compenfation to itrielf in the fubfance of the veffel, and the apparatus becomes almot neutral, although there may have been a great deal of electricity excited. It will be proper to conlider, whether the nature of the exper.ment will admit of metalline veffels. In the experiments on metalline folutions, the beft method feems to be, to make the veffel itfelf the fubftance that is to be difiolved.

For fimilar reafons we may collent, without a more minute examination, that bodies of all hapes, when overcharged, will have the redundant fluid much denfer near the diurface than in the interior parts; and denfer in all elevations, bumps, projections, angles, and near the ends of oblong bodies; and that, in general, the quantity of redundant fluid, or redundant matter, will be much more nearly proportional to the furfaces of bodies than to their quantities of mater. All this is fully proved by experience. The experiment of the electrified chain is a very beautiful one. Lay a long metal chain in an infulated metal difh furnifhed with an dectrometer. Let one end be held an inch or two : bove the coil by a filk thread. Elefrify the whole, and oblerve the divergency of the eleatrometer; then, gradually drawing up the chain from the coil, the electrometer wiil gradually fall lower, and lowering the chain again will gradually raife it.

We now fee with how little reafon Lord Mahon concluded that the point of his condwion, obferved to be neutral, correfponded with his theory; namely, one of the media of a harmonic divition. We fee no reafon for beginning the computation at the extremity of the prime conductor. It certainly flould not have been from the extremity. Had the prime conductor been a fingle globe, it fhould have begun from the centre of this globe. If it was of the ufual form, with an outftanding wire, terminated by a large ball, the action of the body of the conductor thould certainly have been taken into the account. In thort, almott any point of the long conductor might have becn accommodated to his I.ordfluip's theory.

We might now proceed to invefligate the diftribation of the electric fluid in bodies expofed to the action of others, and particularly in the oblong conductors made ule of in our preparatory propofitions. The problem is determinate, when the length and diameter of cylindric conductors are given; but even when the eleatric employed for inducing the eletricity is in the form of a globe, we muft employ functions of the diftances that
are pretty complex, and oblige us to have recourfe to fecond fluxions. The mutual actions of two oblong conductors, of confiderable diameters, give a problem that will occupy the firf mathematicians; but which is quite improper for this fcanty abftract. Nor is a minute knowledge of the difpoition of the fluid of zery important fervice. We may therefore content ourfelves with a general reprcfentation of the flate of the fluid in the following manner, which will give us a pretty diftinet notion how it will aft in molt cafes :

Let A (fig. 20.) be an overcharged fphere, and BC General rea conduting cylindric or prifmatic body: draw $b$ c pa- prefentarallel to $B C$, and erect perpendiculars $B b, C c, P p$, tion of the \&c. to reprefent the equable denfity of the fluid, when of the fluid. the conductor is in its natural flate; but let $\mathrm{B} d, \mathrm{C} r$, $P_{s, ~ \& i c}$. reprefert the unequasl denfities in its different points, while in the vicinity of the overcharged fphere. Thefe ordinates muft be bounded by a line $d n r$, which will cut the line $b c$ in the point $n$ of the perpendicular, drawn from the neatral point $N$ of the conductor. The whole quantity of 月uid in the conductor is reprefented by the parallelogram $B C c b$; which muft therefore be equal to the face $\mathrm{BC} r n d$ : the redundant fluid in any portion CP or PN is reprefented by the faces crtp, or $t p n$; and the redundant matter, or deficient fluid, in any portion BQ , is reprefented by $b d v q$. The action of this body on any body placed near it, depends entirely on the area contained between this curve line and its axis $b c$. The only circumftance that we can afcertain with refpect to this curve is, that the variations of curvature in every point are proportional to the forces exerted by the fphere A ; and are therefore inverfely as the iquares of the diffances from $A$. This property will be demonfirated by and bye. The place of $n$, and the magnitude of the ordinates, will vary as the diameter of the conducter varies. We thall confider this a little more particularly in fome cafes which will occur afterwards. We may confider the Gimpleft cafe that can occur; namely, when the conductor is, like a wite, of no fenfible diameter, nay, as containing only one row of particles.

Let AE (fig. 2r.) be fuch a flender conducting ca- In a wery nal ; and let B $b, \mathrm{C} c, \mathrm{E}_{e}$, \&sc. reprefent the denfity flender caof the fluid which occupies it, being kept in this flate nal the of inequable denlity by the repulfion for fome overcharged body. A particle in C is impelled in the dicharged body. A particle in Chis infelled in the di- equally di-
rection CE by all the fluid on the fide of $A$, and in the fributed. directicu CA by all the fluid on the fide of E . The moving force, therefore, arifes from the difference of thefe repulfions. When the diameter of the canal is conftant, this arifes only from the difference of denfity. The force of the element adjacent to E may therefore be expreffed by the excefs of $\mathrm{D} d$ above $\mathrm{C} c$, and the action at the difance $C D$ jointly. Therefore, drawing $\beta$ esparallel to $A E$, this force of the element $E$ will be expreffed by $\frac{d \delta}{c^{2}} \dot{x}$, repelling the particle in the direction $C A$. If $C F$ be taken equal to $C D$, the force of the element at F will be expreffed by $\frac{f \varphi}{c p^{2}}: \operatorname{c}, \mathrm{f} \frac{f \phi}{c d^{2}} . \dot{\text {, }}$, alfo impcling the particle in the direction CA . The joint action of thefe two elements therefure is $\frac{d \delta+f \phi}{c f^{2}} \therefore$. If $b$ ce were a ftraight line, we fhould have $d \delta+f \phi$ al-

## E L E C T R I C I T Y.

ways proportional to $c \delta$; and it might be expreffed by $m \times \circ \delta ; m$ being a number expreffing what part of of the fum of $d \delta$ and $f \Phi$ amounts to (perhaps $\frac{1}{10}$ th, or $\frac{1}{20}$ th, or $\frac{1}{10}$ th, \&cc.). But in the cafe expreffed in the figure, $d \delta$ does not increafe fo faft as $c \delta$, and $f \Phi$ increafes fafter than $c \delta$. However, in the immediate neighbourhood of any point C , we may exprefs the accelerating force tending towards $A$ by $\frac{m c d}{c \delta^{2}} \dot{x}$, without any fenfible error ; that is, by $m \frac{x}{x}$; that is, by the fluxion of the area of a hyperbola $\mathrm{HD}^{\prime} \mathrm{G}$, having $\mathrm{CC}^{\prime}$ and CK for its allymptotes; and the whole action of the fluid between F and D , on the particle C , will be expreffed by the area $\mathrm{C}^{\prime} \mathrm{CDD}^{\prime} H$. Hence it follows, that the adion of the fmalleft conceivable portion of the canal immediately adjoining to C on both fides, or the difference of the actions of the two adjoining elements, is equal to the action of all beyond it. This thews, that the Itate of comprefion is hardly affected by any thing that is at a fenfible diftance from C ; and that the denfity of the fluid, in an indefinitely flender canal, is, to all fenfe, uniform. The geometer will alfo fee, that the fecond fluxion of $\mathrm{D} d$ is proportional to the force of the diftant body. We learn, therefore, fo much of the nature of the curve $b c e$.(Coulomb).

We are now in a condition to examine the communication of electricity by means of conducting canals (which is one of the moft important articles of the fudy), having found that the floid, in a very flender ca-
ict
Comnunication and transference by canals. nal, is very nearly of uniform denfity throughout.
There can be no doubt but that, if a body B (fig. 22.) be overcharged or undercharged, any other body C, which communicates with it by a conducting canal, will alfo be overcharged or undercharged. It is as evident, that if a body, in any ftate of electricity, be in the neighbourhood of an overcharged or undercharged body A , while it communicates with C by a canal leading from the fide moll remote from A , fluid will be driven from B into C , or abftracted from C into B .
By crooked It is not, however, fo clear, that when the canal canalis. leads from the fide nearef to A (as in fig. 23.), fluid will be driven from $B$ into $C$. We conceive the fluid to be moveable in the body and in this canal, but not to efcape from it. Its motion, therefore, in this cafe, fhould, in the opinion of Mr Cavendifh, refemble the running of water in a fyphon by the preffure of the air. While the repulfion of the redundant fluid in A allows the bend of the fyphon nearell to A to retain fluid, a current fhould take place from B along the fhort leg, in confequence of the fuperior action on the fluid in the long leg. But if the repulfion of A can drive the fluid out of the bend between E and F , Mr Cavendifh thinks, that it does not appear that fluid will come up from $B$ in oppofition to the repulfion of $A$, and then run along to D . But fluid does not move, in either of thefe cafes, on the principle of a fyphon; becaufe there is nothing to hinder the fluid from expanding in the part EDF. And we are rather difpofed to think, that it will always move from $B$, over the bend, to C : For even if the fluid can be completely driven out of the bend EF, it muft be done by degrees, and the fluid in the long leg will, from the very begimning
suppl. Vol. I.
of the action of $A$, be mose moved from its place than that in the fhort leg; and therefore will yield to the comprefion, which acts tranfverfely, and, by thus yielding more toward $F$ than toward $E$, the flud will tofl through the contrated part, and go into C. We do not fay this with full confidence; but are thus particular, on account of an important ufe that may be made of the experiment. For if the body $A$ be underclarg- Prapofal ed, fluid will certainly be attracted from C, and pafs for difcoover the bend into $B$, however great the action of $A$ vering remay be. Perhaps this may be fo contrived, therefore, dundancy as to decide the long agitated queftion, $W$ hetber the electricity of excited glafs be plus or minus? If it be found that this apparatus, being prefented to the rubber of an electrical machine, diminithes the pofitive eeentricity of $C$, and increafes that of $B$; but that, preienting the fame apparatus to tire prime conductor, makes litt!e clange-we may conclude, that the eleatricity of the prime condugor is pofitive. We have tried the experio ment, paying attention to every circumfance that feemed likely to infure fuccefs; but we have always found hitherto, that the apparatus was equally affected by both elearicities.

We muft now confider the action of electrified bodies on the canals of communication; becaufe this will give us the eafieft method of afcertaining the propertion in which the expelling fluid is diftributed between them. For when two bodies communicate by a canal, and have attained a permanent ftate, we muft conceive that their oppofite actions on the fluid moveable along this canal are in equilibrio, or are equal. This will generally be a much eafier problem than their action on each other, fince we have feen a little a ago, that the fluid in a flender eanal is of uniform denfity very nearly. A very few examples of the moft important of the fimple cafes muft fuffice.

Therefore let AC a (fig. 2t.) reprefent the edge of Action of a a thin conducting circular plate, to which the flender plate on a canal CP is perpendicular in the centre. It is required reailineal to determine the action of the matter or fluid, uniform- canal. ly fpread over this plate, on the fluid moveable in the canal PC?
r. Required the action of a particle in A on the fluid in the whole canal? Join AP; and call CP . , $\mathrm{AP} y$, and $\mathrm{AC} r$; and let $f$ exprefs the intenfity of action at the diftance 1 , or the unit of the fale on which the lines are meafured.
The action of A on P , in the direction AP, is $\frac{f}{y^{2}}$. This, when chimated in the direction CD, is reduced to $\frac{f}{y^{2}} \times \frac{x}{y}$; and is therefore $=f \frac{x}{y^{3}}$. Therefore the fluxion of the action, in the direstion $C P$, on the whole canal, is $f \frac{x}{y^{3}} \dot{x}=f \frac{y y}{y^{3}}$ (becaufe $x: y=\dot{y}$ : $\dot{x})=f \times \frac{j}{y^{2}}$. The variable part of the fluent is $=$ $f \frac{-1}{y}$, and the complete flucnt is $=f\left(\mathrm{C}-\frac{1}{y}\right)$, where C is a conflant quantity, accommodated to the nature of the cafe. Now, the action mult vanih when the canal vanilhes, or when $x=0$, and $y=r$. Therefore $\mathrm{C}-\frac{1}{r}=0$, and $\mathrm{C}=\frac{1}{r}$; and the general ex$4 \mathrm{R}{ }^{r}$ prefion
preffion of the action is $f\left(\frac{1}{r}-\frac{1}{y}\right),=f \frac{y-r}{r y}$, ex. preffing the antion of a particle in the circumference of the plate on the fluid in the whole canal $\mathrm{Cl}^{\text {l }}$.
2. Required the action of the plate, whote diameter Ino is $A$ a, on the particle $P$ ?
s. On a fra- Let $a$ reprefent the area of a circle, whofe diameter gle particle
in the canal $=1$. Then $a r^{2}$ is the area of the plate, and $2 a i r r$ in the canal is the fluxion of this area; becaufe $,: y=\dot{y}: \dot{r}, 2 a$ $r \dot{r}$ is $=2$ a $y \dot{y}$. Therefore the fluxion of the action of the plate on the particle P is $f \times 2 a y j \times \frac{x}{y^{3}},=2 f a$ $x \times \frac{y}{y^{2}}$. The fluent of this has for its variable part $2 f a \times \times \frac{-1}{y}$ (for when the particle $P$ is given, $x$ does not vary). This is $=2 f a \times \frac{-x}{y}$. To complete this fluent, we muft add a conitant quantity, which fhall make the fluent $=0$ when the particle P is at an infinite diftance ; and therefore when $x=y$. Therefore $\frac{y}{y}-\frac{x}{y}=0$, or $1-\frac{x}{y}=0$, or $\mathrm{C}=1$; and the complete fluent for the whole plate is $2 f a\left(1-\frac{x}{y}\right)$.

The meaning of this expreflion may not occur to the reader: For $1-\frac{x}{y}$ is evidently an abltract number; fo is $a$. Therefore the expreffion appears to have no reference to the fize of the plate. But this agrees with the otfervation in $n^{\circ} 91$. where it was fhewn, that provided the angle of the cone or pyramid remained the fame, the magnitude of the bafe made no change in its attraction or repulfion for a particle in the vertex.

It will appear by and bye, that $1-\frac{x}{y}$ is a mea. fure or function of a certain angle of a cone.

Cor. If PC be very fmall in proportion to AC, the action is nearly the fame as if the plate were infinite: For when the plate is infinite, $\frac{x}{y}$ is $=0$, and the action is $=1$, whatever is the diftance (fee $n^{\circ} 9^{1}-93$ ). Therefore, when $x$ is very fmall in comparifon of $r$, and confequently of $y, 1-\frac{x}{y}$ is very nearly $=1$.
3. To find the action of the plate on the whole co. lumn?

The fluxion of this muft be $=2 f a \times\left(1-\frac{x}{y}\right) \dot{x}$, or $2 f a\left(\dot{x}-\frac{\dot{x} x}{y}\right)$, or $2 f a \times(\dot{x}-\dot{y})$; becaufe $y=$ $\frac{x x}{y}$. The fluent of this has for its variable part $2 f a$ $\times(\kappa-y)$. A conflant quantity mult be added, which thall make it $=0$ when the column $=0$; that is, when $y=r$, and $x=0$; that is, $C-r=0$, and $\mathrm{C}=r$. Therefore the complete fluent is $=2 f a(x+$ actions.
fily conftrueted geometrically, fo as to give us a fenfible image of this aation of eafy conception and remembrance. It is as follows: Produce PC till $\mathrm{CK}=\mathrm{CA}$, and about the centre $P$ defrribe the arch AI, cutting CK in I. Then $2 f a \times I K$ is evidently the geometrical exprefion of the attraction or repulfion. This is plainly a cylinder, whofe radius is a unit of the fcale, and whofe height is twice IK.

In like manner, by defcribing the arch $A$ round the centre $p$, we have $2 f a \times i \mathrm{~K}$ for the action of the plate on the fmall column $\mathrm{C} p$; and $2 f a \times \mathrm{I} i$ is the action of the plate on the portion $P^{P} p$.

The general meaning of the exprefficn $2 f a \times$ IK is, that the action of the whole plate on the column PC is the fame as if all the fluid in the cylinder $a \times 2 \mathrm{IK}$, were placed at the diftance $I$ from the acting particle.

From this propofition may be eafily deduced fome very nfeful corollaries by the help of the geometrical conifrustion.
I. If PC be very great in comparion with $A C$, the action is nearly the fame as if the column were infinitely extended; for in this cafe IK is very neally $=\mathrm{CK}$, the difference being to the whole nearly as AC to twice AP.
2. If, in addition to this laft condition, another co- Important lumn $p \mathrm{C}$ be very fmall in comparifon of AC , then the corollary. action on PC is to that on $p \mathrm{C}$ very nearly as $p \mathrm{C}$ to AC. For it will appear thát $i \mathrm{~K}: \mathrm{IK}=p \mathrm{C}: \mathrm{AC}$ very nearly. It is exaally fo when CP:CA = CA : C $p$; and it will always be in a greater proportion than that of $p \mathrm{C}$ to IK .

This will te found to be a very important obfervation.
The redundant fluid has hitherto becn fuppofed to be uniformly fpread over the plate: but this cannot be; becaufe its mutual repulfion will caufe it to be denfer near the circumference. We have not determined, by a formula of eafy application, what will be the variation of denfity. Therefore let us confider the refult of the extreme cafe, and fuppofe the whole redundant fluid to be crowded into the circumference of the plate, as we faw that it mult be on the furface of a globe.

In this cafe the action on the fluid in the canal will be $f a\left(r-\frac{r^{2}}{y}\right)$. For the area of the plate is $a r^{2}$, and the action of a particle in the circumference on the whole canal was fhewn $\left(n^{\circ} 109\right)$ to be $f\left(\frac{\nu-r}{r y}\right)$. Therefore the action of the whole fluid crowded into the circumference is $f$ a $r^{2} \times \frac{y-r}{r y},=f$ a $\frac{y-r}{y}$. It may be reprefented as follows: Defcribe the quadrant $\mathrm{C} b \mathrm{BE}$, cutting AP and $\mathrm{A} p$ in B and $b$. Draw BD and $b d$ parallel to PC. Then $\mathrm{PB}=y-r$, and $\mathrm{DC}=r$ $\frac{y-r}{y}$. Therefore the action is reprefented by $f$ multiplying a cylinder, whofe radius is I and height is DC. In like manner, $d \mathrm{C}$ is the height of the cylinder correfponding to the column $p \mathrm{C}$, and $\mathrm{D} d$ the height correfponding to $P_{p}$.

Cor. I When CP is very great in comparifon with $C A$, the point $D$ is very near to $A$, and $I$ is very near to C , and CD is to 1 K nearly in the ratio of equality.

## 116

 Aftion of a circumferense on a сапа!.114
$\square$

## E L. E C T R I C I $\quad$ C

In this cafe the action of the fluid, uniformiy fpread over the plate, is nearly double of the action of the fame fluid crowded round the circumference; for they are as cylinders, having the fame bafes and heights in the ratio of 2 IK to DC , which is nearly the ratio of 2 to 1. frpherical furface, or fhell, or folide, on the fame ca:al.

A Aion of a Cor. 3. If CNO be a fpherical furface or flacll of
2. On the other hand, when the column $p \mathrm{C}$ is very flort, the action of the fluid fpread uniformly over the plate is to its action, when crowded round the circumference, nearly in the ratio of 4 AC to $p \mathrm{C}$. For thefe actions are in the ratio of $2 f a \times i \mathrm{~K}$ to $\mathrm{f} a \times d \mathrm{C}$, or as $2 i \mathrm{k}$ to $d \mathrm{C}$, or nearly as $2 p \mathrm{C}$ to $d \mathrm{C}$, or more nearly as $2 b d$ to $d \mathrm{C}$. But $\mathrm{C} d: b d=b d: b \mathrm{~A}$ $+\mathrm{A} d$, or nearly $=b d: 2 \mathrm{CA}$. Therefore $\mathrm{C} d: 2 b d$ $=p \mathrm{C}:{ }_{4} \mathrm{CA}$ nearly.

Hence we fee that the action on fhort columns is much more diminilaed by the recefs of the redundant fluid toward the circumference than that on long columns. Therefore, any external electric force which tends to fend fluid along this canal, and from thence to fpread it over the plate, will fend into the place a greater quantity of fluid than if the fluid remained ultimately in a flate of uniform diftribution over its furface; and that the odds will be greater when the canal is fhort.
Lafly, on this fubject, If KLL be taken cqual to AP, or PL be equal to KI, the repulfion which all the fluid in the plate, collected in K , would exert on the fluid in the canal CL, is equal to the repulfion which the fame fluid, conftipated in the circumference, would exert on the column CP. For we have feen that the ation of a particle in A on the whole columa PC, when eftimated in the direction $P C$, is $\frac{y-r}{y r}$; and it is well known that the the action of a particle in K for the column CL is $\frac{1}{\mathrm{KC}}-\frac{1}{\mathrm{KL}}$, or $\frac{1}{r}-\frac{1}{y},=\frac{y-r}{y r}$ Therefore the action of the whole fluid, collected in the circumference, on the column CP is equal to that of the fame fluid, collected in K , on the columns CL.

Cor. I. If the column CP is very long in proportion to AC or KC, the actions of the fluids in thefe two different fituations are very nearly the fame. The action of the fluid collected in K exceeds its action when collected in A only by its action on the fmall and remote column l.P. The action of all the fluid collesed at K on the column CP, is eafily had by taking $\mathrm{C} l=\mathrm{KP}$. It is equal to the action of the fame fluid placed in A on the column $\mathrm{C} /$.

Cor. 2. The action of all the fluid uniformly fpread, exerted on the column CP, is to the action of the fame fluid collected in K , exerted on the column CL , as 2 IK ts CD .

If the column CP is very great in proportion to AC , the half breadth of the plate, the action in the firlt cafe is very nearly double of the action in the other cafe, and is exactly in this proportion if CP is of infinite extent. the fame thicknefs and diameter as the plate $A a$, and containing redundant fluid of the fame uniform denfity, the action of this fluid on the column CL is double of the action of the fluid uniformly fpread over the plate on the column CP, and quadruple of the attion of the flaid collected in the circumference: fur the ataion is
the fame as if all were collected in the centre K , and the furface of the fphere is four times that of the plate, and therefore they are as IK to 2 CD .

Let us now confider the comparative actions of different plates or fpheres on the canals.

If two circular plates, $\mathrm{DE}, d_{e}$ (fig. 25.), or two Acions of fpherical fhellis, ABO, a bo, of equal diameters and two plates, thicknefs with the plates, and containing redundant or two flaid of equal denfity, communicate with infuitely ex- fpheres, are tended Atraight sanals $O P$, op, pafing through their as their diacentres perpendicular to their furfaces, alfo containing meters, fluid uniformly diftributed and of equal denfity-the canal; are repulfions will be as the diameters. For the repulfion infinitely of the spherical furfaces is the fame as if all the fluid long. were collected at their centres; and the repulfion of the fluid uniformly fpread over the furfaces of the plates in double of its repulfion if collected at the centres of thefe fpheres; it follows, that the repultions of the plates are proportional to thofe of the fphere. Eut becaufe the repulfion of a plate whofe radius is $r$ was
fhewn to be $=2 a x r+x-y$, and when the co. lumn is infinitely extended, $x$ is equal to $y$, and $\overline{r+x}-y$ $=r$, it folluws, that the repultions of the plates are as $2 a \times \mathrm{P}$ and $2 a \times r$, or proportional to their siameters. Therefore the repulfions of the fpheres are in the fame proportion.

Cor. I. If the canals are very long in proportion to the diameters of the plates or fipheres, the repulfions are nearly in the fame proportion.

Cor. 2. But as the lengths of the canals diminifh, the repulfions approach to equality; for it was fhewn, that when the canal was very fmall, the repulfion was to that for an infinite column as the length of the canal to the radius of the plate. Therefore if the radius of the greater plate be (for example) double of that of the inaller, and the little columns be $\frac{\varepsilon_{2}^{2}}{2}$ th of the radius, it will bc $\frac{1}{T}$ th of the radius of the fmaller plate. Now $\frac{7}{10}$ th of half the repulfion is equal to $\frac{1}{2} \frac{1}{2}$ th of the double repulfion. Alfo, in the cafe of the fpheres, the repulfion of a particle at the furface is as the quantity of fluid directly, and as the fquare of the radius inverfely ; but when the denfity is the fame in both fhells, the quantity is as the furface, or as the 〔quare of the radius. Therefore the repulfions are equal.

Cor. 3. If the denfity of the fluid in two fpherical fiells be inveriely as the cliameters, the repulfions for an infiniteiy extended column of fluid are equal ; for eacla repels as if all the fuid was collefted in the centre. Therefore, if the denfity, and confequently the quantherefore, if the denity, and confequently the quan- as the diain the fane proportion. The repulions will now be as $\operatorname{CO} \times \frac{1}{\mathrm{CO}}$ to $\operatorname{co} \times \frac{1}{60}$, cr in the ratio of equality.

Cor. 4. When the quantities of redundant fluid in Or if the two fpheres are proportional to their diameters, their quantity of repultions for an infuitiely extended canal are eqqual : radundant for if this redundant fluid is conllipated in the furfaces the dianneof the fpheres, as it always will be when they confift of ters. conducting matter, the denfities are as the diameters inveriely, becaufe the furfaces are as the fquares of the diameters. Therefore, by the laft corollary, their actions on an infinitely extended canal are eçual. Bue in fpheres of $n$ n-conduting matter it may be diferently, difonfed, in concentric fhells of unifurm denfiey.

This makes no change in the action on the flaid that is without the fphere, becaufe eacli fhell acts on it as if it were all colleced in the centre. Therefore the repulions are fill equal.

Cor. 5. Two overcharged fpheres, or fpherical thells, OAB , o ab (fig. 26.), communicating by an infinitely extended canal of conducting matter, contain quantities of redundant fluid proportional to their diameters; for their actions on the fluid in the interjacent canal natt be in equilibrio, and therefore equal. 'This will be the cafe on!y when the quancities of fluid are in the proportion of their diameters.

When the canals ate very long in proportion to the diameters of the fpheres, the proportion of the quantities of redundant fluid will not greatly differ from that of the diameters.

Cor. 6. When the fpheres of conducting matter are thus in equilibtio, the preffures of the fluid on their furfaces are inverfely as their diameters; for the repulfion of a particle at the furface is the fame with the tendency of that particle from the centre of the fphere, the actions being mutual. Now this is proportional to the quantity of redundant fluid directly, and to the fquare of the difance from the centre inverfely, that is, to the diameter directly, and to the fquare of the diameter inverfely, that is, to the diameter inverfely.

Hence it follows, that the tendency to efcape from the fpheres is inveriely as the diameter, all other circumftances being the fame: for ia as far the efcape proceeds from mere electric repulfion, it mult follow this proportion. But there are evident pronfs of the cooperation of other phyfical caufes. We obferve chenical compofitions and decompofitions accompanying the efcape of electric fruid, and its influx into bodies: we are ignorant how far, and in what manner, thefe operations are affected by diftance. Bofcovich fherrs mof convincingly, that the action of a particle (of whatever order of compofition), on external atoms and particles, is furprifingly changed by a change in the ditance and arrangement of its component atoms. A conltipation, therefore, to a certain determined degree and lineal magnitude, may be neceffary for giving occation to fome of thofe chemical operations that accom. pany, and perhaps occafion, the efcape of the elestric fluid. If this be the cafe (and it is demonfrable to be poffible, if the operations of Nature be owing to attractions and repalfions), the efcape muf be defultory. It is actually fo; and this confirms the opinion.

The public is indeited to Mr Cavendifh for the preceding theorems on the action of fpheres and circular plates. He has given them in a more abtract and gemeral form, applicable to any law of electric action which experience may warrant. We have accommodated them to the inverfe duplicate ratio of the diftances, as a point fufficiently eftablifhed; and we hope that we have rendered them more fimple and perfpicuous. We bave availed ourfelves of Mr Coulomb's demonfration of the uniform denfity in the canal, without which the theorems could not have been demonfirated. The minute quantity of the fluid in the canal can have no fenfible effect on the difpofition or proportion of the fluid in the plates or fpheres.

It may be thought that the laft corollary, refpeting the equilibrium of two fpheres, is not agreeable to hy-
droftatical principles, which require the equality of the This proo two forces which balance each other at the crifices of poition the flender cylindric canal; whereas, in that corollary agrees with the forces at the extremities of the canal are inverfely hydroftatias the diameters of the fpheres or plates. This would be a valid objection, if the comprefling forces acted only on the extremities of the canals; but they aet on every particle through their whole length. It is nor, therefore, the preffure at one end of the canal that is in equilibrio with the preffure at the other end, by the interpofition of the fluid. It is the preffiure at one end, together with the fum of all the intermediate preffures in that direction, that is in equilibrio with all the preflure in the oppofite direction. The preffures at the ends are only parts of the whole oppofite preffures; they are the firf in each account. In this manner a flender pipe, having a ball at eash end, may be kept filled with mercury, while lying horizontal, if the air in each ball is of equal denfity. But if it be raifed perpendicular to the horizon, it cannot remain filled from end to end, unlefs the air of the ball below be made fo elaftic by condenfation, that its prelfure on the lower orifice of the pipe exceed the preffure of the air in the upper ball on the other orifice by a force equal to the weight of the mercury, that is, to the aggregate of the action of gravity on each particle of mercury in the pipe. Therefore the repulfions of the fpheres that we are fpeaking of are in equilibrio by the intervention of the fluid in the canal, in perfect confiftency with the laws of hydroftatical preffure.

Mr Cavendifh has purfued this fubject much farther, and has confidered the mutual action of more than two bodies, communicating with each other by canals of moveable fluid uniformly dente. But as we have not room for the whole of his valuable propofitions, we felected thofe which were elementary and leading theorems, or fuch as will enable us to explain the moft important phenomena. They are alio fuch, as that the attentive reader will find no difficulty in the inventigation of thofe which we have omitted.
Mr Cavendifh's mott general propofition is as follows:
When an overcharged body communicates, by a canal of very great length, fraight or crooked, with two or more finilar bodies, alfo at a very great diftance from each other, and all are in electric equalibrium, and confequently each body overcharged in a certain determined proportion, depending on its magnitude, if any two of thefe bodies are made to communicate in the fame manner, their degrees of electricity are fuch, that no fluid will pafs from one to the other, their mutual actions on the fuid in this canal being alfo in equilibrio. He brings out this by induction and combination of the fingle cafes, each of which be demonftrates by means of the following theorem :

The action of an overcharged fphere $\operatorname{ACB}$ (fig. 25.) It is indip on the floid in the whole of a canal $d f \mathrm{P}$ that is ob- ferent whelique tending to impel the fluids in the direction of ther the cathat canal, is equal to its action on the fluid in the nal be whole of the rectilineal canal CP. Let $b i$ be a mi- Araight or nute portion of the Araight canal, and $f d$ the portion ${ }^{\text {chouked. }}$ of the crooked cana! which is equidiftant from the centre C of the fphere; draw the radii $\mathrm{C} f \mathrm{C} d$, and the concentric arches $h f, i d$, cutting $f \mathrm{C}$ ing ; and draw $g$ e perpendicular to $f d$; the force acting on $i b$, impelling it toward $P$, may be reprefented by $b i$. The
fame
$\mathrm{r}_{32}$
General propofition with refpect to the fate of communicating bodies.

## E Llllllllll

I 34
fame force acting on $d f$, in the direction $c f$, mult therefore be expreffed by $g f$. This, when eftimated in the direction of the canal $d f$, is reduced to $e f$; but it is exerted on each particle of $d f$. Now $d f: g f=g f$ : $e f$, and $d f \times e f=g f^{2},=g f \times b i$; therefore the whole force on $d f$, in the direation $d f$, is equal to the force on $i h$, in the direction $i b$. Hence the truth of the propofition is manifert.

We beg the curious reader to apply this to the cafe in hand, and he will finc', that the mont complicated cafes may all be reduced to the fimple ones which we have demontrated to be Arictly true when the bodies are fpheres or plates, and the canals infinitely long and which are very nearly trise when the canals are very long, and the bodies fimilar: And we now proceed to one compound cafe more, which includes all the mont remarkable phenomena of electricity.

Let HK, AB, DF, and LM (fig. 27..) be four parallel and equal circular plates, two of which, HK and $A B$ communicate by a canal $G C$ of indefinite extent, joining their centres, and perpendicular to their planes; let DF and LM be connected in the fame manner, and let the two canals be in one flraight line: let the plate HK be overcharged, and the plate LM jult faturated. It is required to determine the difpofition and proportion of the clectric fluid in the plates which will make this concition of HK and LM poffible and permanent, every thing being in equilibrio?

The plate HK being overcharged, and communicating with $A B, A B$, muft be overcharged in the fame manner, and being allo equal to HK , it muf be overcharged in the fanie degree containing an equal quantity of redundant fluid difpofed in the fame manner. To fimplify the invertigation, we thall firf fuppofe that the redundant fluid is uniformly fpread over the furfaces of beth.

When the plates HK and AB are in this fate, let the plates DF and LM be brought near them, as is reprefented in the figure, CE being the difance of the centres of $A B$ and DF. It is eviden, that the redundant fluid in AB will ack on the natural moveshle fluid in 11F, and drive fome of it along the canal EN, and render LM overcharged. Take off this redundant fluid in LM. This will diminifh or annilhilate the re. pulfion which it was beginning to exert on the canal EN ; therefore more fluid will come out of DF, and again render LM overcharged. The redundant fluid in LM may again be taken off, in lefs quantity than before, as is plain. Do this repeatedly till no more can be taken off. But this will undoubtedly render DF undercharged, and it will now contain redundant matter. This will act on the fluid in the canal GC, and abfract it from $G$; therefore fluid will come out of HK into AB. HK will be lefs overcharged than before, and AB will be more overcharged. But the now increafed quantity of redund.nnt flaid in $A B$ will act more titrongly on the moveable fluid in DF, and drive morcout of it. This will leave more redundant matter in it than before, and this will att as before on the fluid in the canal GC. This will go on, by repeatedly touching LM, till at laft all is in equilibrio. Or this ultimate flate may be produced at once by allowing LM to communicate with the ground. And now, in this permanent tate of things, HK contains a certain quantity of redundant fluid; AB contains a
greater quantity ; DF contains redundant matter ; and LM contains its natural quantity. The demand of the problem therefore is $t o$ determine the proportion of the redundant fluid in HK to that in AB , and the proportion of the redundant fluid in $A B$ to the deficiency of fluid in DE. The dynamical confiderations which determine thefe proportions are, $1 / 2$, the repulfon of the redundant fluid in $A B$, for the fluid in the canal $E N$, mult be precifely equal to the attraction of the redundant matter in DF for the fame fluid in the canal ; for LM being faturated, is neutral. $2 d$ ', 'The repul' fion of the redundant fluid in HK , for the whole fluid in the canal GC, muft balance the excefs of the repul. fion of the redundant fluid in AB above the attraction of the redundent matter in DF for the fame.

Let the redundant fluid in AB be $=f$. the redundant matter in DF $=m$. the redundant fluidin $\mathrm{HK}=\mathrm{F}$.
Becaufe Hli and $A B$ are equal, there can be no doubt but that the flaid in thofe plates would be fimilarly difpofed; and it is highly probable, that if AB be very near $D F$, the redundant fluid in $A B$, and the redundant matter in DF will alfo be dijpofed nearly in the fame manner. This will appear plainly when we confider with attention the forces acting between a very fmall portion of $A B$ and the correfponding partion of DIF. The probability that this is the cafe is fo evident, that we apprehend it unneceflary to detail the proofs. We thall afterwards confider fome circunfances which fhew that the difpofition in the three plates will (though nearly fimilar) be nearer to a flate of uniform ditribution than if only $A B$ and HK had been in action. Affuming therefore this fimilarity of diftribution, it follows, that their actions on the fluid in the canals will be fimilar, and nearly proportional to their quantities.

Therefore let $\mathbf{I}$ be to $n$ as the repulfion of the fluid in $A B$, for the fluid that would occupy $C E$, is to its repultion for the fluid in EN or CG.

Then the action of AB on EN is $f \overline{\times n-1}$, and the action of DF on EN is $m n$; thesefore, becaufe the plate LM is inactive, the actions of $A B$ and $D F$ on EN mult balance each other, and $\int \times \overline{u-1}=m \mathrm{~N}$, and $m=f \times \frac{n-1}{n}$.

The repulfion of $f$ for the fluid in CG is $f n$. The attraction of $m$ for it is $m \times n=1$; and becanie $z$ $=f \times \frac{n-1}{n}$, the attraction of $m$ for the fluid in CG is $f \times \frac{\overline{n-1}}{n} \times \overline{n-1}$. Therefore the repultion of $f$ is to the attraction of $m$ as $f n$ to $f \times \frac{n-1^{2}}{n}$, or as $f n^{2}$ to $f \times n \overline{-I^{2}}$, oras $n^{2}$ to $\overline{n-1^{2}}$. Call the re= pultion of $f r$, and the attraction of $m a$.
We have $r: a=n^{2}: n-1^{2}$
and $r: r-a=n^{2}: n^{2}-(n-1)^{2}=n^{2}: 2 n-1$.
Therefore, becaufe the repultion of $F$ is equal to this excefs of $r$ above $a$, we have $n^{2}: 2 n-1=f: F$, and $I$.
$=f \frac{2 n-1}{n^{2}}$, or $f=\mathrm{F} \frac{n^{2}}{2 n-1}$. Therefore, if $n^{2}$ is much greater than $2 n-1$, the quantity of redundant
fluid in $A B$ will be much greater than the quantity in 135 HK.
Prodigious Now, when the electric action is inverfely as the accumula- fquare of the diltance, and EC is very fmall in compation of re- rifon with $A C$, we have feen ( $n^{\circ} 115$.) that $1: n$ neardlundant fluid; $1 y=C E: C A$, or that $n$ is nearly $\frac{A C}{E C}$. When this is the cafe, and confequently $n z$ is a confiderable number, we may take the number $\frac{n^{2}}{2 n}$ for $\frac{n^{2}}{2 n-1}$ without any great error. In this cafe $f$ is equal to $\mathrm{F} \times \frac{\pi}{2}$ very nearly. Suppofe CA to be fix inches, and CE to be $\frac{3}{2}$ th of an inch; this will give $n=120$, and $f=60 \mathrm{~F}$; or, more exåtly, $F=\frac{n^{2}}{2 n-1}=\frac{14,400}{239} ;=60 \frac{1}{4}$. If, inflead of the plate HK, we employ a globe of the fame diameter, $f$ will be but lialf of this quantity, or $f$ $=F \times \frac{n}{4}\left(n^{0} 123124.\right)$.
And evacuation:

It alfo appears, that when the plates $A B$ and $D F$ are very near to each other, and confequently $n$ a large number, the deficiency in DF is very nearly equal to the redundancy in $A B$. In the example now given, $n$ is $\frac{59}{60}$ of $f$, being $=f \times n-\mathrm{I}$.

Yennovery Yet this great deficiency in DF does not make it fenfille ap- ele:trical on the fide toward LM. It is jutt fo much evacuated, that a particle of fuid at its furface has no tendency to enter or to quit it.

Laftly, this great quantity of fluid collected in $A B$ does not render it more electrical than HK.

In general, things are in the condition treated of in $\mathrm{n}^{0} 22,23$, \&c.

The attentive reader will readily fee, that this account of the apparatus of four plates is only an approximation to the condition that really obtains under our obServation. Our canals are not of indefinite length, nor occupied by fluid that is difributed with perfect uniformity ; nor is the fluid uniformly fpread over the furface of the plates. He will allo fec, that the real fate of things, as they occur in our experiments, tends to diminifh the great difproportion which this imaginary ftatement determines. But when the canals are very long, in comparifon with the diameters of the plates, and $A B$ is very near to DF, the difference from this determination is inconfiderable. We thall note thefe differences when we confider the icmarkable phenomena that are explained by them.

In the mean time, we thall juft mention fome fimple confequences of the prefent combination of plates.
Suppofe AB touched by a body. Elestric fluid will be communicated. But by no means all the redundant fluid contained in AB : only as much will quit it as will reduce it to a neutral fate, if the body which touches it communicates with the ground ; that is, till the attraction of the redundant matter in DF attrafts fluid on the remote fide of $A B$ as much as the redundant fluid left in $A B$ repels it. When this has been done DF is no longer neutral; for the repulfion of $A B$ for the fluid in EN is now diminithed, and thercfore the attration of DF will prevail. If we now touch DF, it may again become neutral with refpect to

EN; but $A B$ will now repel again the fluid in CG, and again be electric on that fide by redund nncy. Touching $A B$ a fecond time takes more fluid from it, and DF again becomes eleeric by drficiency, and attracts fluid on that fide.-And thus, by repeatedly touching $A B$ and $D F$ alternately, the great accumulation of fluid in AB may be exhaufted, and the nearly equal deficiency in DF may be made up.

But this may be done in a much more expeditious 2. All at way. Suppofe a flender conducting canal $a b d$ brought once.
very near to the outfides of the plates, the end $a$ being near to A , and the end $d$ to D . The vicinity of $a$ to A caufes the fluid in $a b$ to recede a little from $a$ by the repulfion of the redundant floid in AB. This will leave redundant matter in $a$, which will ftrongly attract the redundant fluid from $A$, and $a$ may receive a fpark. But the confequence, even of a nearer approach of the fluid to the outward furface of A , will render the correfponding part of DF more attraciive, and the retiring of fluid from $a$ along a $b$ will pufh fome of its natural fluid toward $d$; and thus A becomes more difpofed to give out, and a to take it in, while $d$ is difpofed to emit, and $D$ to attract. Thus, every circumftance favours the paffage of the whole, or almort the whole, redundant fuid to quit AB at A , to go along abd, and to enter into DF at D .

It is plain, that there muft be a ftrong tendency in The plates the fluid in $A B$ to go into DF, and that the plates ftrongly atmult firongly attract each other. A particle of fluid tract each fituated between them tends tovard DF with a force, other. which is to the fole repulfion of AB nearly as twice the redundant fluid in it to what it would contain if electrified to the fame degree while ftanding alone.

Wite this particular and remarkable cafe of induced electricity, we flall conclude our explanation of Mr Epinus's Theory of Elearic Attraction and Repulion. The reader will recollect, that we began the confideration of the difpofition of the electric fluid in bodies, in order to deduce fuch legitimate confequences of the hypothetical law of astion as we could compare with the phenomena.

Thefe comparifons are abundantly fupplied by the Method of preceding parazraphs, particularly by $\mathrm{n}^{\circ} 74,75,76$; exanining by $n$ ? 130 , and by $n^{\circ} 134$.

Let a (mooth metal iphere be electrified pofitivels of this thoin any manner whatever, and then zouch it with a fmall ory. one in its natural fate. The redundant fuid is divided between them in a proportion which the theory determines with accuracy. By the theory alfo the redundant fluid in both acts as if colleited in the centre. Therefore the proportion of the repulfions is determined. Thefe can be examined by our electrometer. But, as this menfuration may be fail to depend on the truth of the theory, we may examine this independent of it. Let the balls be equal. Then the redundant fuid is divided tqually between the bodies, whatever be the law of action. Therefore obferve the electrometer, as it is affected by the electrified body, both before and after the communication. This will give the pofitions of the eleetrometer which correfpond to the quantities 2 and t .

Take off the eledricity of one of the balls by touch- craduation ing it, and then touch the other ball with it. This of eleetrom will metcr.

## E L E C T R I C I T Y.

will reduce to $\frac{1}{2}$ the original quantity $\frac{1}{2}$, and therefore to $\frac{x}{4}$ th of the original quantity. This will determine the value of another poftion of the electrometer. In like manner, we obtain $\frac{7}{8}$ th, $\frac{\frac{7}{1} \text { th }}{}$ th, \&c. \&c. Then, by touching a ball containing 1 with a ball containing $\frac{1}{2}$, we get a pofition for $\frac{3}{2}, \frac{3}{4}, \frac{3}{8}$, \&c. Proceeding in this way, we graduate our electrometer independently of all theory, and can now examine the elearicity of bodies with confifence. The writer of this atticle tonk this method of examining his electrometer, not laving then feen Mr Cavendifu's differtation, which gives another mode of meafurement. He had the fatisfiction of obferving, in the firl place, that the pofitions of the in. ftrument which unqueilinnably indicated $\mathrm{I}, \frac{x}{2}, \frac{x}{4}$, S.c. were precifely thofe which fhould indicate them if electric repulfion be inverfely as the fquares of the diftances. Having thus examined the ele Grometer, it was eafy to give to balls any propofed degree of electricity, and then make a comminication between balls of very different diameters. The Electrometer informed us when the repeated abftractions by a fmall ball reduced the electricity of a large ball to $\frac{x}{2}, \frac{x}{4}, \& c$. This thewed the proportion of electricity contained in balls of different diameters. This was alfo found to be fuch as refulted from an action in the inverfe duplicate ratio of the diftances.

Long after this, Mr Cavendiff's inveftigation pointed out the proportion of the redundant eleatric fluid in balls of different fizes joined by long wires; in $\mathrm{n}^{\circ} 130$, \&c. thefe were examined-and found to be fuch as were fo indicated by the eleftrometer.

And, lafly, the mode of accumulating great quantities of fluid by means of parallel plates, gave a third way of confronting the hypothetical law with experiment. The argument was no lefs fatisfactory in this cafe; but the examination required attention to particulars not yet mentioned, which made the proportions between the fluid in HK and AB (fig. 27.) widely different from thofe mentioned in the preceding paragraphs. Thefe circumflances are among the moft curious and important in the shole fudy, and will be confidered in their place.

The obfervations of Mr Wation on the necelfity of connecting the rubber of an elegrical machine with the ground, might lave fuggetled to philofophers the ductrine of plus and minus electricity, efpecially atter the valuable difcoveries of Mr Symmer and Cigna. A ferious confideration of thefe general facts would have led to the theory of coated glais almolt at its firlt appearance. But the hiftorical fast was otherwife; and a confiderable time elapfed between the firf experiments with changed glafs by Kleif, and the clear and fatisfatory account given by Dr Franklin, of all the effential parts of the apparatus, and the probable procedure of nature in the phenomenon. The impermeability of glafs by the eleatric fluid, and the confequent abftraction of it tron the one fide while it was accumulated on the other, fingetted to his acnte mind the leading principle of electical philofophy; namely, that all the phenomend arife from the redundancy or deficiency of electric fluid, and that a certain quantity of it refides naturally in all bodies in a flate of uniform diftribu. tion, and, in this flate, produces no fenfible effect. This was, in his hands, the inlet to the whole fcience ; and the greateft part of what has been fince added is a more detinct explanation how the redundancy or deficiency of elestric fluid produces the obferved phenomena. Dr Franklin deduced this leading principle from cbferving, that as faft as one fide of a glafs plate was clectrified pofitively, the other fide appeared negative, and that, unlefs the electricity of that fide was communicated to other bodies, the other fide could be no farther electrified. Having formed this opinion, the old obfervations of Watfon, Symmer, and Cigna, were explained at once, and the explanation of the Leyden phial would have come in courfe. It is fur thefe reafons, as much as for the important difcovery of the famenefs of electricity and of thunder, that Dr Franklin ftands fo high in the rank of philofophers, and is julty confidered as the author of this department of natural fcience. Whatever credit may be due to the chemical feeculations of De Luc, Wilcke, Winkler, and many others, who have atiempted to affociate electricity with other operations of nature, by refolving the electric fluid into its conftituent parts, all their expla. nations prefuppofe a mathematical ard mechanical doctrine concerning the mode of action of the ingrediente, which will either account for the total inadivity of the compound, or which will explain, in the very fame manner, the astion of the compound itfelf : yet all feem to content themfelves with a vague and indilinet notion of this preliminary ftep, and have allowed themfelves to feak of elestrical atmofpheres, and fpheres of adivity, and fuch other creatures of the mind, without once taking the trouble of confidering whether thofe a/fumptions aforded any real explanation. How ditferent was Newton's conduet. When he difcovered that the planets attraded each other in the inverfe duplicate ratio of the diftances, and that terreftrial gravity was an inftance of the fame force, and that iberefore the defieation of the erth was the effeat of the accumulated weight of all its parts; he did not rahhly affirn this of the planets, till he examined what would be the effect of the accumulated attraction in the abovementioned proportion.

Mr Epinus has the honcur of firt treading in the fteps of cur illuftrious countryman; and he bas done

We reft therefore with confidence on the truth of the law of electric adion, affumed by us as a principle of explanation, and invefligation. It is quite neediefs and unprofitable to give any detail of the numerous experiments in which we confronted it with the phenomena. The fcrupulous reader will get ample fatisfaation from the excellent expcriments of Mr Coulomb with his delicate eledrometer. He will find them in the Memoirs of the Academy of Sciences of Paris for $17^{8} 4$, 1785, 1786, and 1789 . Some of them are of the fame kind with thofe employed by the writer of this article; others are of a different kind; and many are directed to another object, extremely curious and important in this ीuds, namely, to difoover how the ele?tric fluid is difpoled in bodies; and a third fet are directed to an examination of the manner in which the eleetric fluid is diffipated along imperiect conductors.

But we have already drawn this article to a great length, and muf bring it to an end, by explaining fome very remarkable phenomena, namely, the operation of the Leyden flial, the operation of the electrophorus, and the diffipation of electricity by fharp points and by imperfect conductors.

## 

it winh fingular fuccefs in the explanation of the plienomena of attaction and repulfion, as we have already feen. In no part of the fudy has his fuccefs been fo conficicuous as in the explanation of the curious and important phenomena of the Leyden phial. It only remained for him to account for the accumulation of fuch a prodigious quantity of this agent as was competent to the production of effects which feemed to eaceed the fimilar effects in other cafes, out of all proportion. Indeed, the difproportion is fo great, as to make them appear to be of a different and incomparable nature. Dr Wilfon's experiments in the pantheon are thercfore precious, by fhewing that nothing was wanted for the production of all the effects of the Leyden phial but a furface fufficiently extenfive for containing a vaft quantity of fluid, and fo perfectly conducting as to admit of its fimultaneous and rapid transference. Therefore we affert, that one of the chief merits of $\mathrm{Mr} \mathbb{Æ}$ pinus's theory is the fatisfactory explanation of the accumulation of this valt quantity of fluid in a fmall fpace. We truft, therefore, that our readers will pernfe it with pleafure. But we mút here obferve, that $\mathrm{Mr} \not \approx$ pinus has not exprefsly done this in the work which we have already made fo much ufe of, nor in any other that we know of. He has gone no farther than to point out to the mathematicians, that his hypothefis is adequate to the accounting for any degree of accumulation whatever. This he does in that part of his work which contains the formule of $\mathrm{n}^{\circ} 38,39,40,4 \mathrm{I}$, \&c. And he afterwards fhews, that all the phenomena of attrac. tion and repalfion which are obferved in the charged jar are precifely fuch as are neceflary confequences of

It is to the Hon. Mr Cavendifh that we are indebted for the fatisfactory, the complete (and we may call it the proper), explanation of all the phenomena. Forming to himfelf the fame notion of the mechanical properties of the electric fluid with Mr Epinus, he examined, with the patience, and much of the addrefs, of a Newton, the action of fuch a fluid on the fluid around it, and the fenfible effects on the bodies in which it refided; the difpofition of it in a confiderable varicty of cafes; and particularly its action on the fluid contained in flender canals and in parallel plates;-till he arrived at a fituation of things fimilar to the Leyden phial. And he then pointed out the precife degree of accumulation that was attainable, on different fuppofitions concerning the law of electric action in general. We have given an ablract of this invelligation accommodated to the inverfe duplicate ratio of the diftances.

From this it appears ( $\mathrm{n}^{\circ}{ }^{1} 135$ ), that whatever quantity of electric fluid we can put into a circular plate 12 inches in diameter, by fimple communication with the prime conductor of an electrical machine, we can accumulate 60 times as much in it by bringing the plate within $\frac{x}{20}$ th of an inch of another equal plate which communicates with the ground; and it appears in $n^{\circ}$ 139, that all this accumulated fluid may be transferred in an intant to the other plate (which is fhewn to be almoft equally deprived of fluid), by conneating the two plates by a fmall wire.

Bitt as it was alfo fhewn in that paragraph, that the force with which the accumulated fluid was attracted by the redundant matter in the other plate was exceedingly great, and confequently its tendency to efcape
was proportionably increafed; this accumulation can. not be obtained unlefs we can prevent this fpontaneous transference.

150
Here the non-conducting power of idio-electrics, Incxplicawithout any diminution, the action of the elearric fluid ble by maon fluid or matter on the other fide of them, comes to terialatmioour aid, and we at once think of interpofing a plate of glafs, or wax, or rofin, or any other eleatric, between our conducting plates. Such is the immediate fuggeftion of a perion's mind who entertains the IEpinian notion of the electric fluid; and fuch, we are convinced, is the thought of all who imagine that they underftand the phenomena of the Leyden phial. But thofe who attempt to explain electric action by means of what they call electric atmofpheres of variable deufity or intenfity, are not intitled to make any fuch inference, nor to expect any fuch phenomena as the Leyden phial exhibits. Electricity, they fay, acts by the intervention of atmorpheres: Therefore, whatever allows the propagation of this action (conceive it in any manner whatever), allows the propagation of thefe agents; and whatever dnes not conduct electric action, does not conduct the agents. Interpofed glafs fhould therefore prevent all action on the other plate. This is true, even although it were poffible (which we think it is not) to form a clear notion of the free palfage of this material atmofphere in an inftant, and this without any diminution of its quantity, and confequently of its action, by the difplacement of fo much of it by the folid matter of the body which it penetrates. Yet without this undiminiflied action of the clectrified plate on the fluid, and on the matter, beyond the glafs, and on the canal by which its fluid may be driven off into the general mals- no fuch accumnlation can take place ; and if the phenomena of the Leyden plial are agreeable to the refults of the Repinian hypothefis, all explanation by atmoipheres mult be abandoned. Indeed when the partifans of the atmofpheres attempt to explain their conceptions of them, they do not appear to differ from what are called /pleeres of alivity a phrafe firt ufed by Dr Gilbert of Culcheter, in his celebrated work De Magnete et Corporibus Magneticis): and (pheres of activity will be found nothing more than a figurative expreffion of fome indiftinct conception of asion in every direction. When we ufe the words attracion and repulfion, we do not fpeak a whit more figuratively than when we ufe the general word ation. Thefe terms are all figurative, only attraction and repulfion have the advantage of fpecifying the direction in which we conceive the action to be exerted.

It thercfore becomes fill more interefing to the philofopher to compare the phenomena of Charged giass with the IEpinian theory. They afford an experimentum crucis in the queftion about electric atmofpheres.

Let $G$ (fig. 2S.) reprefent the end of a prime con. Phenomeductor, furnilied with Henley's ele\&trometer. Let AB na of chargreprefent a round plate of tinfoil, patted on a pane of ed glafs cxglafs which exceeds the tintuil about two inches all plaines. round. The pane is fixed in a wooden foot, that it may itand upright and be fhifted to any diftance from the conductor. DF seprefents another plate of the fame dimenfions as $A B$, in the centre of which is a wire EN, having a fmall ball on the end N , to which is attached a Canton's eiectrometer. This wire pafies through the wooden ball O , fallened to the infulating

Fig. 20.


Fig. 21.


## E L E C T R I C I T Y.

fand $P$. The glafs pane mult be very clean, dry, and warm. Connea the conductor $G$ with $A B$ by a wire reaching to the centre C. Turn the cylinder of the cleatrical machine llowly, till the electrometer rife to $30^{\circ}$ or $40^{\circ}$, and note the number of turns. Take off the electricity, and having taken away the connecting wire GC, turn the machine again till the electrometer rife to the fame height. The difference in the number of turns will give fome notion of the expenditure of fluid neceffary for electrifying the plate of tinfoil alone. This will be found to be very trifing when the elesticity is in fo moderate a degree. It is proper, however, to keep to this moderate degree of electrification, becaufe when it is much higher, the difipation from the edges of the plate is very great. Replace the wire, and again raife the electrometer to $30^{\circ}$. Now bring forward the plate DF, keeping it duly oppofite and parallel to AB, and taking care not to touch it. It will produce no fenfible change on the pofition of the clectrometer till it come within four or three inches of the glats pane; and even when we bring it much neater (if a park do not fly from the glafs pane to DF), the eleetrometer HG will fink but two or three degrees, and the electrometer at N will be little affected. Now remove the plate DF again to the diftance of two or three feet, and attach to its ball N a bit of chain, or filver or gold thread, which will trail on the table. Again, raile the electrometer, to $30^{\circ}$, and bring DF gradually forward to AB. The elestrometer HG will gradually fall down, but will rife to its former height, if DF be withdrawn to its finf fiteation. It is fearcely neceffary to flew the conformity of this to the theory contained in $\mathrm{n}^{\circ} 134, \mathrm{I} 35,8 \mathrm{sc}$. As the plate DF approaches, the redundant fluid in $A B$ acis on the fluid in DF, and drives it to the remote end of the wire EN, as was fhewn by the divergency of the balls at $N$; and then an accumulation begins in AB, and the electrometer HG falls, in the fame manner as if part of the fluid in the prime conductor were communicated to AB. When DF communicates with the ground, the electrometer at N cannot thew any electricity, but much more tluid is now driven out of DF, in proportion as it is brought nearer to $A B$. Inftead of conrecting $A B$ immediately with the prime condufor, let the wire GC have a plate at the end $G$, of the fame dimenfions as $A B$, having an electrometer attached to the fide next to AB . Let this apparatus of two plates be electrified any how, and note the divergency of the electrometer at H , before DF, communicating with the ground, is brought near it, and then attend to the changes. We fhall find the divergency of this eleetrometer correfpond with the diftance of DF very nearly as the theory requires.
Seate of the While the plates $A B$ and DF are near each other, roatings. efpecially when DF communicates with the ground, if we hang a pith-ball between them by a filk thread, it will be ftrongly attracted by the plate which is neareft to it, whether DF or AB; and having touched it, it will be brikkly repelled, and attracted by the glatis pane, which will repel it after contact, to be again attrated and repelled by DF ; and thus bandied between the plates till all eleftricity difappear in both, the eleftrometer attached to H defcending gradually all the while.

As all thefe phenomena are more remarkable in pro-
Suppl. VoL. I.
portion as the plates are brouglat nearer, they are mot of all when DF is applied clofe to the ghifs pane. And if, in this fituation, we take any accorate method for meafuring the intenfity of the eleatricity in the plate HG, before the approach of DF, we flall find the diminution, occafioned by its coming into full contact with the pane, confiderably greater than what is pointed out in $n^{\circ}{ }^{135}$. When we employed plates of 12 inches diameter, pated on a pane one fortieth of an inch in thicknef,, we found the diminution not lefs than 199 parts of 200 ; and we fuund that it required at lealt 200 times the revolution of the cylinder to saife the eleatrometer to the fame lueight as before. 'I'his comparifon is not fufceptible of great accuracy, by reafon of many circumfances, which will occur to an electrician. Bat in all the trials we have made, we are certain that the accumulation greatly excceded that pointed nut by the Repinian theory as improved by Mr Cavendith. And we muf here olfferve, that we found this fuperiority more remarkable in fome kinds of glafs than others, and more remarkable in fome other idioelectrics. We think that in general it was moft remarkable in the coarfe kin's of glaf, provided they were unifirmly tranfparent. We found it molt renarkable in fume common glafs which had exfolisted greatly by the weather: but we alfo found that fuch glafles were very apt to be burf by the chargc. The hardelt and befl London crown glafs feenied to accumulate lefs than any nther; and a coloured glafs, which when viewed by refection feemed quite opake, but appeared brown by tranfmitted light, admitted, an accumulation greatly exceeding all that we have tried; but it could not be charged much higher withont the certainty of being burft. This diverinty in the accnmulation, which may be made in different kinds of glafs, hinders us from comparing the abjolute accumulations affigned by the theory with thofe which experiment gives us. But though we cannot make this companifon, we can make others which are equally fatisfactory. We can difcover what proportion there is between the accumulation in glafs of the fame kind, as it may differ in thicknefs and in extent of furface. Ufing mirror glafs, which is of uniform and meafurable thicknefs, and wery flat plates, which come into accurate or equable contact-we found that the accumulation is inverfely as the thicknefs of the plates; but with this exception, that when two plates were ufed inllead of a plate of double thicknefs, the diminution by the increafe of thicknefs was not nearly in the proportion of this increafe. Inflead of being reduced to one-half, it was more than two-thirds; and in the kind called Dutch plate, the diminution was inconfiderable.

The experiments with the Dutch and other double Stroug atplates, fuggefted another inftructive and pretty experi- tration bement. Obferving thefe plates to cohere with confider- tween able force, it was thought worth while to meafure it; them. which was attempted in this manner: Two very flat brals plates AB, DF (fig. 29.), furnifled with wires and balls, were fufpended, about three inches afunder, by filk threads, as reprefented in the fignre. At $G$ was attached a very fine filver wire, which hung very loofe between it and the prime conductir, without conming rear the table. Aonther was attached to N , which tonched the table. A plate of mirror clafs was fet between them, as fhewn by $\cup \mathbb{R}$. When this appa-
ratus was elecurifed, the threads of fufpenfion immediately began to deviate from the perpendicular, and the plates to approach the glafs pane and each other. The pane was carefully fhifted, fo as to be kept in the csact middle between them. This refult thewed very plinly the preffure of the fluid on one of the plates, and the mutual attration of the redundant matter and redundant fluid. This increafed as the accumulation increafed; and it was attempted to compare the attraction with the accumulation, by comparing the deviation of the fufpending threads with that of the electrometer attached to the prime conductor; but we could not reconcile the feries (which, howevcr, was extremely regular) with the liw of electric action. This harmony was probably ditturbed by the force employed in raifing the filver wires. When more flexible filver threads were ufed, much was loft by diffipation from lie roughnefs of the thread. We did not think of employing a fine flasen thread moiltened: but, indeed, an agreement was hardly to be expeeted; becaufe theory teaches us, that the diftribution of the redundant fluid in $A B$ will be extremely different from the diftribution of the redundant matter in DF, till the plates come very near each other. The accumulation in $A B$ depends greatly on the law of diftribution, being lefs (with any degree of redundancy) when the fluid is denfer near the centre of the plate. Other circumfances concurred to difturb this trial; but the theory was abundantly confirmed by the experiment, which fhewed the Arong attraction arrifing from the accumulation. This was fo great, that although the plates were onls three inches in diameter, and the glafs pane was $\frac{1}{3} \frac{1}{2}$ of an inch thick, and the threads deviated about 18 degrees from the perpendicular-it required above an ounce weight, hung on the wire EN, to feparate the plates from the glafs.

The experienced electrician need not be told, that by
bringing the two ends of a bent wire in contad with the two plates (firft touching DF with it) difcharges the apparatus, and caules the plates to drop off from the pane. But he may farther obferve, that if there be attached to each end of the difcharging wire a downy father, and if he firlt bring the end near the plate DF, and obferve the fether to be nat at all, or but a very little, affeced, and if he then bend round the other and toward the plate $A B$, loth feathers will immediately fretch out their fibres to the plates, and cling faft to them, lony before the dicharging fpark is feen. This is a fine pronf of the procefs of difclarge, which begins by the induction of elestricity on the ends of the difcharing wire; firf, negative electricity on the end that approaches $A$, and, in the fame inflant, oppofite cleftricities at $D$ and the adjoining end of the wire.

The following obfervation of Profeffor Richmann of St Peterburgh (the gentleman who fell a facrifice to clectrical fudies by a thunder ftroke from his apparatus) is extremely inftructive and amufing. Let a glafs pane be coated on both fides, and furnifhed with a fmall clectrometer attached to the coatings. It is reprefented as if feen edgewife in fig. 30. Let it be charged pofi. tively (that is, by redundancy) by the coating $A B$, while DF communicates with the ground. The electrometer $\mathrm{A} a$ will fand out from the plate, and $\mathrm{D} d$ will hang down clofe by its coating, as long as DF communicates with the ground. Dut as the electricity
gradually difipates by communication to the contiguous air, the ball a will gradually, but very flowly, tall down. We may judge of the intenfity of the remaining electricity by the deviation of the electrometer, and we may conceive this deviation divided into degrees, indicating, not angles, but intenfities, which we conceive as proportional to the redundancy or deficiency which occafion them.

If we take away the communication with the ground, we fhall obferve the ball a fall down very fpeedily, and then more flowly, till it reach about half of its firf elevation. The ball $d$ will at the fame time rife to nearly the fame height ; the angle between the two electrometers continuing nearly the fame as at firft. When $d$ has ceafed to rife, both balls will very flowly defcend, till the charge is lof by diflipation. If we touch DF during this defcent, $d$ will immediately fall down, and a will as fuddenly rife nearly as much; the angle between the electrometers continuing nearly the fame. Remove the finger from DF, and $a$ will fall, and $d$ will rife, to nearly their former places; and the flow defcent of both will again continue. The fame thing will happen if we touch AB ; a will fall down clofe to the plate, and $d$ will rife, \&c. And this alternate touching of the coatings may be repeated fome hundreds of times before the plate be difcharged. If we fufpend a crooked wire $v, n$, laving two pith-balls $v$ and $w$ from an infulated point $m$ above the plate, it will vibrate with great rapidity, the balls Ariking the coatings alternately; and thas reftoring the equilibrium by fteps. Each Itroke is accompanied by a fpark.

All thefe phenomena are mot onjy confequences of rheory of the theory, but their meafures agree precifely with the it. computations deduced from the formule in $n^{\circ} 22,23$, 24, accommodated to the cafe by means of $n^{\circ} 135$ and 136 , as we have verified by repeated trials. But it would occupy much ronm to trace the agreement here, and would fatigne fuch readers as are not familiarly converfant with fuxionary calculations. The inquifitive reader will get full conviction by perufing Æeinus's Elfay, Appendix i. A very diftinct notion may be conceived of the whole procefs, by fuppofing that in a minute $A B$ lofes $\frac{x}{r}$ th of the unbalanced redundancy actually in it, and confequently diminifhes as much in its action. It will be proved afterwards, that the diffspations in equal times are really in proportion to the fuperficial repulfions then exerted. We may alfo fuppofe, that the action of the redundant fluid, or redundant matter, in either coating, on the external fluid contiguous to $i^{\circ}$, is to its action on the fluid contiguous to the other coating in the conflant proportion of 10 to 9. IVe felect this proportion for the fimplicity of the computation. Then the difference of thefe actions is always $z^{2}$ th of the full action on the fluid contiguous to it. This is alfo an exan fuppofition in fome particular cafe, depending on the breadth of the coating and the thicknefs of the pane.

Now, let the primitive unbalanced repulion between $A B$ and the contiguous fluid of the electrometer be 100 , while DF communicates with the ground. The ball $a$ will ftand at 100 ; the ball $d$ will hang touching DF. Then $a$, by lofing $\frac{1}{8} 0 t h$, retains only 90 , and would fink to $90^{8}$ : Put as this deltroys the equilibrium on the other fide, fluid will cnter into DF , fo as to reduce the deficiency $\frac{5 x}{3} t$ t!. Tnerefore nine degrees of fluid

## E L E C $\quad$ I $\quad$ R $\quad$ I $\quad$ C $\quad$ I $\quad$ T $\quad$ Y.

will enter ; and its action on $a$ will be the fame as if roths of 9 , or 8,1 had been reflored to $A B$. There. fore $a$ will rife from 90 to 98,1 ; or it will fink in one mirute from ico to $9^{8, \mathrm{I}}$.

But if we have cut off the communication of DF with the ground, this quantity of fluid cannot come into DF ; and the quantity which really comes into it from the air will be to that which efcapes from $A$ as the attraction on the fide of DF to the repulfion on the fide of $A B$. By the diminution of the repullinn $\frac{7}{T}$ th, and the want of 9 degres of fluid in DF to balance it, DF acquires an attraction for fluid, which may be called 9 . Therefore, fince $\frac{1}{10}$ th of the primitive repulfion of $A B$ has diffipated ro meafures of fluid in the minute, the attraction of DF will caufe it to acquire $\frac{r}{\text { r }}$ th of 9 , or 0,0 from the air in the fame minute. At the end of the minute, thercfore, there remains an unbalanced attraction for fluid $=8,1$; and confequently an unbalanced repulion between the redundant matter in DF, and that in the ball $d$. Therefore $d$ will rife to $8, \mathrm{r}$. But a cannot now be at $9 \mathrm{~S}, \mathrm{I}$; becaufe DF has not acquired 9 mealures of fluid, but only goths of one meafure. Therefore $a$, inftead of rifing from 90 to $9^{8,1}$, will only rife to $90+\frac{9}{80}$ ths $x$ igths; that is, to $90,8 \mathrm{r}$.

At the clofe of the minute, therefore, $a$ is at $90,8 \mathrm{r}$, and $d$ is at 8,1 , and their diftance is 98,91 . In the next minute, AB will lofe $\frac{1}{\mathrm{t}} \mathrm{t}$ h of the remaining unbalanced electricity of that fide, and DF will now acquire a greater proportion than before; becaufe its former unbalanced attraction gets an addition equal to $\frac{9}{10}$ ths of the lofs of AB. This will make a larger compenfation in the aation on $a$, and $a$ will not fall fo much as before. And becaufe in the fucceeding minules the attraction of DF for fluid is increafing, and the repulfion of $A B$ is diminifhing, the compenfation in the action on $a$, by the increafed attraction of DF, continues to increafe, and the defcent of $a$ grows continually flower; confequently a time mult come, when the repulfion of AB for flud is to the attraction of $D F$ for ir, nearly in the proportion of to to 9 . When this Atate obtains, $d$ will rife no more; becaufe the receipt of fluid by DF, being now roths of the lofs by $A B$, it will exactly compenfate the additional atraction of DF for fluid, occationed by that lofs. The next lofs by $A B$ not being fo great, and the next receipt by DF continuing the fame, by reafon of its undiminifhed attraction, there will be a grcater compenfation in the action on $a$, which will prevent its defcending fo falt; and there will be more than a compenfation for the additional attraction of DF for fluid: that is, the fluid which has now come into DF will render it, and alfo the ball $d$, lefs negative than before; and therefore they will not repel fo itrongly. Therefore $d$ mult now de. fcend. It is evident, that fimilar reatons will fill fuofin for the flow defcent of $a$, and the flower defcent of $d$, till all redundancy and deficiency are at an end.

This maximum of the elevation of $d$ happens when a has defeended about one-half of its elevation; that is, when the unbalanced repulfion of $A B$ is reduced to abnut one half. For if one half of the unbalanced fluid be really taken out of AB , and if DF can get no fupply whatever, it muft acquire an attraction correfponding to ? ? the of this; and if the fupply by the air be
now opened to it, things will go cn in the way alreatiy defcribed, till all is difcharged.
This account of the procefo is only an approsimation; becaufe we have fuppofed the changes to happen in a defultory manner, as in the popular way of explaining the acceleration of gravity. The rife of $i$ is not at an end till the attraction of DF for fluid is to the repulfion of $A B$ as 19 to 20.

But if we interrupt this progrefs in any feriod of it, by touching DF, we immediately render it neutral, and $d$ falls quice down, in confequence of receiving a complete fupply of fluid. But this mutt clange the Atate of $A B$, and caule it to rife sisths of the defeent of d. As $a$ and $d$ were nearly at an equal height before DF was touched, it is plain that a will ife to neanly twice its prefent height; after which, the fame feries of phenomena will be repeated as foon as the finger is ranoved from DF.
If, inftead of teuching DF, we touch AB , the fame things mult harpen; a mult fall down, and $d$ muft rife to nearly twice its prefent height, and all will go on as before, after removing the finger. Lafly, if inftead of allowing either fide to touch the grani alternately, we only touch it with a fmall infulated body, fuch as the wire with the balls $v$ and $u$, the ball attached to the fide touched finks, till the electricity is flared between the coating and the wire with balls. The ball attached to the other coating rifes $\frac{0}{0}$ thes of the finking of the firlt ball. The crooked wire ball is now repelled by the coating which it touched, and the other ball is brought ne.ir to the other coating, and mult be attrafted by it, becaufe the eleftricities are oppofite. This operation evidenily tends to transfer the redundant fluid liy degrees to the tide where it is deficient. It needs no explanation. We thall only mention a thing which we have always obferved, withour being able to account for it. The vibration of the wire acquires a certain rapidity, which continace for a long while, and fuddenly accelerates greatly, and immediately afterwards ceafes altogether.

This pretty experiment of Profefor Richmann will be found very inftrustive; and will emable us to underfland the operation of the electrophorus, and to fee the great miftake of thofe who fay that it is perfecily fimilar to a difcharged glafs plate.

Thus, then, we fee, that all the clafes of phenome. Electricacna, connected with attraction and repulfion, are precife- tion edifazly fuch as would refult from the action of a fluid fo tidemonconflituted. The complete undiminifhed aftion of the frated. caufe of thofe phenomena on the other fide of the interpofed non-conductor of that caure is demonfrated, and all explanation by the mechanical action of material elaftic atmofpheres of variable denfity mut be abandoned, and the infinitely fimpler explanation by the attractive and repulfive forces of the fluid itfelf mutt be preferred.

So happily does the Franklinian theory of pofitive and negative electricity explain the phenomena, when a fuitable notion is formed of the manner of action ot this fluid. We cannot but think that this is attained, when, to the general doctrine of Æpinus, we add the fpecification of the law of action, fo fully verified by the experiments of Mr Conlomb, which are in the hands of the public ; and are of that fimple rature, that
any careful experimentor can convince himfelf of their accuracy (See $n^{\circ}$ It+.). We may therefore proceed with fome confidence, and apply this doetrine even to

158
Franklin miftaken in fuppofing that a charged plate contains its natural quantity of Quid.

159
Niltake of
Wile'se's. cafes where experiment does not offer itfelf for proof.

Dr Franklin affirms that clectric fluid cannot be thrown into one fide of the coated pane unlefs it be abfracted from the other ; and that therefore the charged glafs contains no more than it did before charging. We indeed find, that we cannot charge the infide, if the outfide do not communicate with the ground. He proves it alfo by faying, that if a perfon, when infulated, diftharges a glafs through his own body, he is not found electrified: And lie infers, as a neseffary confequence of this, that a ferics of any number of jars may be charged by the fame turns of a machine, if we make the ouifide of the finf communicate with the infide of the fecond, and the outfide of the fecond with the infide of the third; and fo on; and the outfide of the lalt commonicate with the ground. Having made the trial, and having found that more turns of the machine were neceffary, he attibutes this to diffipation into the air by the communication. But our theory teaches us otherwife. We learn from it, that the redundant matter in the plate DF is lefs than the redundant fluid in $A B$, in the proportion of $n-1$ to $n$; and therefore the redundant fluid in the overcharged fide of the next plate is no greater. The charge or redundancy in the $m$ th jar of the feries will therefore be $\left.\frac{\overline{n-1}}{n}\right|^{n}$. Thus, if $n$, or the charge of the ift jar, be 60 , the charge of the 10 th jar will be nearly 51 . Although a coated plate cannot be charged, unlefs one of the coatings communicate with the ground, it may be clearified as much as one of the coatings can be alone. And this is feen in our attempt to charge it: Fur as foon as we attempt to electrify one fide, the other is eledrified aifo; for it gives a fpark, which ron unelectrified body will do. Alio, when we difcharge a jar by an infulated difcharger, we always leave it elearical in the fame way with the bedy from which it was charged. If a man is not found electrified after having difcharged a jar through lis own body, it is owing to the great furface of his body, which reduces the limple electrification of a fide of the jar to a vcry infignificant and infeofible quantity.

Wilcke (and we believe Franklin before him) maintains, that when the jar has been charged, by connecting one fide with the prime conductor and the other with the rubber, it is neutral and inactive on both fides. But this is not fo; and a flight reflection might have convinced them that it cannot be fo: if it were, the jar could not be difcharged. Each fide, while connested with the machine, mult be in the condition of the part with which it is connected, and in a difpofition to take or give. If the trial be carefully made, it will be found to be equally active on both, fides; and the difcharging rod, having down on its ends, will thew this in an unequivocal manner, and fhew that its condition differs in this refpect from that of a jar charged in the ordinaty way. It is in the maximum ftate of Richmann's plate, defcribed in $n^{\circ} 156$. when $d$ rifes
160 no more.
Charge one In difcharging a jar A, if inftead of the outfide comjar by the municating with the infide by a wire, we make it comdifcharge of municate with the infide of a fecond jar $B$, while the
outfide of $B$ is made to communicate with the infide of $A$, we fhall find $B$ charged by the difcharge of $A$; and that the difcharge of $A$ is not complete, the charge $2^{2}$ always remaining, whatever may have been the magnitude of $n$.

We may infer from this expsriment, that when a Important fhock is given to a number of perions, $a, b, c$, Skc. we infeeeuce. are net to conclude, that the fluid which comes into the deficient fide of the jar is the fame which came ont of the redundant fide. The whole, or perhaps only i patt, of the moveable fluid in the perfon $a$ goes into $b$, replacing as much as lias paffed froin $b$ into $c, \& e$. Indeed, where the canal is a flender wire, we may grant that great part of the individual pasticles of fluid which were accumulated on the infide of the jar bave gone in. to the outlide. Perhaps the quantity transferred, even in what we call a very great difiharge, may be but a fmall proportion of what naturally belongs to a body. This may be the reafon why a charge will not melt more than a certain length of wire. Mr Cavendinh afcribes this to the greater obitruction in a longer wire; but this does not appear fo probable. A greater obftruction would occafion a longer delay of the tranfference; and therefore the action of the fame quantity would be longer continued. He proves, that a metal wire condust many luadred times fatter than water; yet, when water is diflipated by a difcharge, it is fuund to have actually conducted a much greater proportion of the whole charge. We afcribe it chielly to this, that, in a fhort wire, the quantity transferred exceeds the whole quantity belonging to the wire.

It is furely needlefs to prove that the theory of the Leyden Legden phial is the fame with that of the coated pane. phial like a The only difference is, that we are not fo able to tell coated the difpofition of the accumnlated fluid, and the evacu- pane.
ated matter, in every figure. When the phial is of a globular furm, and of uniform thicknefs, with an exceedingly fmall neck, we then know the difpolition more accurately than in a plate. The redundant fluid is then uniformly diftributed. If we could infure the uniformity of thicknefs, fuch a phial would be an excellent unit for meafuring all other clarges by; but we can neither infure this (hy the manner of working glafs,) nor meafure its want of uniformity: whereas we can have mirror plate niade of precifely equal thicknefs, and meafure it. This, therefore, muft be taken as our unit.

And here we remark, that this gives us the mof Excellent ${ }^{163}$ perfect of all methuds for comparing our theory with method for experiment. We muft take two plates, of the fame verifying glafs and the fame thicknefs, but of different dimen. the theoryfions of coated furface. We mutt charge both by very long conducting wires on both fides, and then meafure how often the charge of the one is contained in the other. Mr Cavendifh has given an uncxceptionable metlood of doing this independent of all theory. As it applies equally to jars, however irregular, we fhall take it altogether.

When a jar is charged, obferve the elestrometer con- Meafure of nected with it, and immediately communicate the charge a charge. to another equal jar (the periect equality being previoully afcertained by the methods, which will appear immediately. Again note the electrometer. This will give the elevation, which indicates one half, independent

## E L E C T R I C I T

pendent of alt theory. Now clectrify a jar, or a row of equal jars, to the fame degree with the firlt, and communicate the charge to a coated mirror plate, difcharg. ing the plate after each communication, thll the else. trometer reaches the degree which indicates one-half. This fhews how often the charge of the plate is contained in that of the jar or row of jars.

Let the charge of the plate be to that of the jars as $x$ to I . Then, by each communication, the electricity is diminifled in the proportion of $\overline{1+x}$ to 1 . If $m$ communications have been made, it will be reduced in the proportion of $\overline{1+x^{1 /}}$ to 1 . Therefore $\overline{1+x^{m}}$ $=2$, and $1+x=m \sqrt{2,}$ and $x=m \sqrt{2}-1$.
When $x$ is fmall in proportion to $:$, we fhall be very near the truth, by multiplying the number of communications by 1,444 , and fubtracting 0,5 from the product. The remainder fhews how often the charge of the plate is contained in that of the jars, or $\frac{1}{x}$.

Thus may the perfect equality of two jars be afcertained; and the one which exceeds, on trial, may be reduced to equality by cutting off a little of the coating. An electrician floculd lhave a pair of fmall jars or phials fo adjutted. It will ferve to difcover in a minute or two the mark of one-balf electricity for any elearometer, and for any degree; as alfo for medfuring jars, batteries, flocks, \&c. much more accurately than any other method: becaufe fuch phials, conftructed as we fhall defcribe immediately, may be made fo ncutral, and foretentive, that the quantity which diffipates during the handling becomes quite infignificant in proportion to the quantity remaining; whereas, in all experiments with eleatrometers, conftrufied with the moft curious attention, the diffipations are great in proportion to the whole, and are capricious.

It was chiefly by this method thăt the writer of this article, having reid Mr Cavendifh's paper, compared the meafures given by experiment with thofe which refult from an ation in the inverfe duplicate ratio of the diftance. When the charges were moderate, the coincidence was perfect; when the charges were great, the large plates contained a little more. This is plainly owing to their being lefs difpofed to diffipate from the edges.
Maxims for We may now follow with fome confidence the pracconfruit: ing jars, batteries, \& $c$. tical maxims deducible from the theory for the conitruction of this accumulating apparatus. The theory prefcribes a very condueting coating, in clefe and unin-
and lome rare ones where they are preferable. In the medical exhibition of electucity, where the purpofe intended is fuppofed to require the transfufion of a great quantity of the elcetric fluid, any thing that can diminifl the irritating fmartnefs of the fpark is defirable. This is greatly effected by thofe imperfect coatings. Small flocks, vilich convey the fame quantity of fluid with the fharp pungent and alarming fpark from a large furface, are quite toft and inofferifive, greatly refembling the fafinodic quivering, fometimes felt in the lip or eve-lid, and will not alarm the moft fearful patient. Clofe contact of the metallic coating is obferved to How to increafe the effect of the charge. But it is alfo found, preven the that it greatly increafes the rifk of burfing the glafs burking of by fpuntancous dfcharge through its fubfance. An experienced clectrician (we think it is Mr Brookes of Norwich) fays, that fince he has employed paper covered with tinfoil, with the paper next the glafs, inftead of the foil itfelf, he has never had a jar burft; whereas the accident had been very frequent before. The theory jultifies this obfervation. Paper is an imperfect conductor, even when foake.l with Hour patte; and the trausfufion, though rapid, is not infantanecus nor defultory, but begins faintly, and fivells to a maximum. It operates on the glals, like gradual warming inftead of the fudden application of great heat.

Mr Cuihbertfon, an excellent artift in all electrical ap. Vis 16 paratuz, and inventor of the beftair-pump, has made a ous obfercurious obfervation on this fubject. He fays that he vation hy has uniformly obferved, that jars take a much greater Mr Curhcharge (nearly one third), if the infide be confiderably damped, by blowing into it with a tube reaching to the botom (Nicholfon's Fournal, March 1799). - TVe mule acknowledge, that we can form no dittina conception of what Mr Cothberton calls an urdulation of the clafic atmofpbere. We do not know whether he means that the atmofphere is actuilly undulating as water, or as air in the production of found, its parts being in a reciprocating motion; or whether he only means that this atmofphere confills of quieicent frata, alterrately denfer and rarer. Nor can we form any notion how either of thefe undulations contributes to the explofinn, or prevents it. We are really but very imperfeetly acguainted with that part of the fcience which hould determine the precife accumulation that produces the defultory transference. We mentioned one neceflary confequence of the action invertely as the fquare of the diftance, which has fome relation to this queftion, viz. that a particle, making part of a fpherical furface, is twice as much repel!ed when it has juft quitted the forface as when it made part of it, provided its place he immediately fupplied. And another circumfance has been frequently mentioned, viz. that a greater, and perhaps much greater, force is neceflary for enabling a particle of fluid to quit the laft feries of particles of the folid matter than for producing almont any conflipation. But we are not certain that thefe circumftances are of fufficient influence to explain the whole of the event. Valeant quantum valere poffint. Yet we are of opinion that Mr Cuthbertfon has affigned the true caufe, namely, the imperfect coating of the infide of the glafs. When we come to the explanation of the efcape of electricity along imperfect conductors, we hope that it will appear, that the difpofition to efcape terrupted contast ; It prefcribes an extemive furface, and a thin plate of idio electric fubltance. Accordingly all thefe are in fact attended by a more powerful effeat. Metal is found to be far preferable to water, which was firt employed, having been fuggefted by the original experiments of Gray, Kleil, and Cunxus. A continuous plating is prefcribed, in preference to fome methods commonly practifed; fuch as filling the jar with brafs duft, or gold leaf, or covering its furtace with filings fuck on with gum water, or coating the infide with an amalgam of mercury and ti:l. 'This laft appears, by reflection from the onifide, to give a very continuous coating; but if, we hold the jar between the eye and the light, we may perceive that it is only like the covering with a cobweb. Yet there are cafes where thefe imperfect coatings only are practicable,
the fluid $\delta$, that in no place the conflipation is remark. ab'y greater than in another part very near it, and the denfity changes every where flowly.
Beff fornis With refpect to the form of the coated olafe, the forjars, \&c. theory prefribes tbat which will nccalion fuch a dittribution of the elefric fluid as hall make its repulfion for the fluid in the canal which onnneats it with the prime conduater as little as pofible. In this reffect, it would feem that a plate is the belt, and a gle be the worlt: but if boih are very thin, the diference cannot be confiderable. Our experience, however, feems to indicate the oppefite maxim as the moft prnper. We have uniformly found a globe to be far preferable to a plate of the fame thicknefs, and that a plate was ge. nerally the weakeff form. It mult be owned, that we have not yet been able to afcertain by the theory what is the exact diftribution of the redundant fluid in a plate. In a fphere, it munt be unifrimly fpread over the firface. We mult alfo afctibe part of the inferiority of the plate to its greater tendercy to diflipation from the edges. If a plate be ccatcd in a flar-like form, with flender projecting points, we fhall obferve them luminous in the dark, almont at the beginning of the accumulation; and the plate will difcharge itfelf by thefe points, over the uncoated part, before it has attained any confiderable ftrength. Thofe forms are leatt expofed to this deterioration which have the leaft circumference to the fame quantity of furface. We have always found, that a fquare coating will not receive a more powerful charge without exploding than a circular one of the fame breadth, although it contains a frurth more furface; and this although any vifible efcape from the angles be prevented by covering the outline with fealing-wax. Of all forms, therefore, a globe, with a very narrow, but leng neck, is the moll reten. tive. But it is ycry difficule to coat the infide of fuch a veffel. The balloons uled in chemic $A l$ difillations make excellent jars, and can be eafily coated internally when the neck will admit the hand. The thinnelt of tinfoil may be ufed, by firf paiting it on paper, and then applying it either with the fril or the paper next the glats. It fhould be cnt into guffe's, as in the covaring of terreftrial globes; and they thould be put on overlapping about half an inch. The middle of the bottom is then coated with a circular piece. The great bortles for holding the mineral acids are alro good jars, but inferior to the ballonnc, becaufe they are very thick in the bottom, and for fome diftance from it. A box of balloons contains more effective furface than an equal 160 bnx of jars of the fame diametcr and height of coating. Compendi- The moft compendious hattery may be made in the ousbattery- following manner: Choofe fome very flat and thin panes of the beft crown glafs, coat a circle $(a b c d)$, (fig. 31.) in the middle of both firraces, fo as to leave a fufficient border uncoated for preventing a fpontane. ous difcharge; let each of them have a narrow llip of tinfoil a reaching from the coating to the edge on one fide, and a fimilar llip cleading to the enpofite edge on the other fidc. Lay them on each other, fo that the flips of two adjoining plates may crincide. Conneat all the ends of thefe flips on one fide together by a flip of the fame foil, or a wire which tonches them all. Then, conneaing one of thefe collecting flips with the prime conducfor, and the other with the ground, we may charge and difcharge the whole toge:her. If the
panes be round, or exact fquares, we may employ as few of them together as we pleafe, by fetting the whole in an open frame, like an old fafhored plate-warmer ; and then turning the fet which we would employ together at right angles to the reft. This evidently detaches the two parcels from each other. This battery may be varied in many ways; and if the whole is always to be emplojed together, we may make it extremely retentive, by covering the nasoated border of the plate with melted pitch, and, while it is foft, prefling down its neighbour on it till the metallic coatings touch. For greater variability this may be done in parcels of the whole.

170
On the fame principle, a moft compendious battery Another. may be made by alternate layers of tinfoil and hard varnifh, or by coating plates of very clear and dry Mufcovy glafs. But thefe mult be ufed with caution, left they be burlt by a fpontanenus difcharge; in which cafe we cannot difcover where the flaw has happened. They make a furpiuing accumulation, without thewing any vivid electricity.
We have made a very fine electric phial for carry- portable ing about, hy forming tin-plate (iron plate timed) into jar. fomewhat of a phial thape, with a long neck. We then covered this with a coating of fine fealing.wax, about ${ }^{\frac{1}{3}}{ }^{\text {th}}$ th of an inch thick, quite to the end of the neck, and coated the fealing-wax, all but the neck, with tinfoil. It is plain that the fealing-wax is the coated idio-electric, and that the tin plate phial ferves for an inner coating and wire. The diffipation is almof nothing if the neck be very fmall; and it only requires a little caution to avoid burfting by too high a charge. Even this may be prevented by coating the fealing-wax fo near to the end of the neck, that a fpontaneous difcharge mult happen before the accumulation is too great.

It is well known that the difcharge happens when importance the difcharging balls are at a confiderable diltance from of a clofe each other; therefore only as much is dicharged as difcharge. correfponds to that dillance. This is one caufe of the refiduum of a difcharge which fometimes is pretty confideratle. Some experiments require the very nitmoft force of the charge. It is therefcre proper to make the difcharge as clofe and abrupt as pofible. But the mont rapid approach that we can make of the difilarger is nothing in comparifon with the velocity with which the fluid feems to fly off, and will therefore have but imall influence in making a more infantanenus and complete difcharge. Theny points cut the following method: Let a very thick plate of glafs (half an inch), of feveral inches diameter, be put between the difcharging balls, which fhould, in this cafe, be fmall, and let there balls be ftrongly preffel againft, it by a fpring. While the charge is going on, a very fmail part of the glafs plate, round the points of contact, will receive a weak and ufelefs charge; but this will nnt hinder the battery from acquiring the fame intenfity of charge. When th:s is completed, let the intervening glafs plate be brifkly withdrawn. The difcharge will begin with an intenfity which is unattainable in the ordinary manner of procseding.

Much has been faid of the lateral explofion. It ap- Lateral espears, that in fome of the prodigious transferences of plofion. electricity that have taken place in the difcharge of great furfaces through wires barcly fufficiont to conduct them,
flafhe;

## $\begin{array}{lllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{C} & \mathrm{T} & \mathrm{R} & \mathrm{I} & \mathrm{C} & \mathrm{I} & \mathrm{T} & \mathrm{Y} .\end{array}$

fahacs of light are thrown off laterdly ; but the molt delicate electrometer, it is faid, is not affected. The fakt is not accurately narrated; we bare alwiys obferved a very delicate electrometer to be affcied. The paffage of fuch a quantity of fluid is almot equivalent to the co-exiftence of it in any given fection of the wire; but it remains there for fo thort a time, that, acting as an accelerating force, it cannot projuce a very fenfible motion. It is like the difcharging a piftol ball through a fheet of paper hanging loofely. It goes through it without very fenfibly agitating is.

It has fonetimes appeared to us probable, that, by means of this lateral explufion, the direation of the current may be difcovered. Let the jor $b$ (fig. 32.) be difcharged by a wire acdel, interrupted at $c d$ by the coating of a very thin plate of talc; let the coating alfo be very thin. There mult be fome obftruction to the motion, which muft caufe the fluid to prefs on the fides or furfaces of the co:ating, jaft as the obfruation to the motion of water in a pipe (arifing from frition, or even from material obftacles in the pipe) caules the water to prefs on the fides of the pipe. Thereforc if a wire $x \in$ connect the other coating with the ground, we fhould expect that fluid will be expelled along this wire, and a charge be given to the plate of talc. Now whether the courfe in this a pparatus be from $b$ to $a$, or from $a$ to $b$, if any charge be acquired by $c d$, it will probaly be pofitive in $c d$, and negative in $x \delta$; for it is clectric fluid that is fuppofed to pafs: therefore we fhould always have one fipecies of eleftricity, whether $a$ has been clarged by glats or by fealing-wax: and this fpecies will indicate which is poftive. We have faid "probably"-for it is not impofible that it may be otherwife. If the abfraction at $d$ be fuppofed more powerful than the fupplying force at $c$, the fame obitruction may perhaps keep the plate $c d$ in an abfor ving ftate, juft as water defcending in a vertical pipe, into which it is prefled by a very fmall head of water in the cinern, inftead of prefing the fides of the pipe, rather draw's them inwards, as is well known. This feems, at any rate, an interefting experiment; for we muft acknowledge, that there fill hangs a mylterious curtain before a theory which deduces fo much from the prefence of a fubltance which we have never been able to exhibit alone, and where we do not know when it abounds and when it is deficient. It is like the phlogifton of Stahl, or the caluric of Lavoifer. It will be proper to ufe the thinneit plate of tale to be charged, and to conneft it with another coated plate of balf the diameter, or lef, in order to increafe the accumblation. It feems by no means a defperate cafe.

The theory of coated flafs now explained, might have been treated with more preciion, and the formulw deduced in the beginning of this article might have been employed for fating the fum-total of the asing forces, and thus demonglrating with precifion the trath of the general refult; and indeed it was with fuch a view that they were premifed: but they would have been confiderably complicated in the prefent cafe; for however thin we fuppofe the tinfoil coatings to be, it is evident from $n^{0} 9^{2, ~ S c e}$. that each coating will confift of three flrata; of which the two outermolt ate active, and mult have their forces fated, and the fatement of the force of each tratum would have confifted
of three terms. This would have been very embarraffing to fome readers; and the force of the conclution would not, after all, have been much more convincing than we hope the above more loofe and popular account has been.

We have hitherto confidered the non-electric coat- Does the ings only, and have not attended to what may chance charge reto obtain in the fublance of the coated electrics them. fide in the felves. May not part, at leaft, of the redundant fuid be lodged in one fuperficial Itratum of the glafs? or, if it do not penetrate it, may it not adhere to the furface, and drive off from the other furface, or fratum, a part of what baturally adheres to it? Till Dr Franklin's notions on the fubject became prevalent, no perfon doubed this. The eleEtric was fuppofed to contain or to accumulate in its furface all the elestricity that ve know. But the firf fuggeation of Dr Franklin's experiments certain'y was, that the electric plate or veffel aged merely as an obfacle, preventing the fuid from flying from the body where it was redundant to that where it was deficient. It is therefore an important quelion in the fcience, whether the glafs or electric concerne $d$ in thefe phenomena ferve any other purpore befides the mere prevention of the redundant fluid from flying to the negative plate?

Now it appears, at the very firf, that this is the cafe. It is in the For if a glats be coated only on one lide, and be elec- glafs. trified on that fide, we ob:ain a Arong fpark from the other fide by bringing the knuckle near it: and this may be obtained for fome time from one fpot of that furface; and, after this, we get no more from that Epot, but get fearks, with the fame vivacity, and in the fame number, from any other fpot that is oppofite to the coating on the cher fide. In this manner we can obtain a fucceflion of fparks from every inch of furface oppofite to the coating, and from no other part. But What puts this queftion beyond all doubt is, th.it if we now lay a metal coating on the furface from which the fparks have been drawn in this manner, and make a communication between the two metallic coatings, by means of a bent wire, we obtain a perfect difcharge. To complete the proof, we need only obferve, that this experiment fucceeds whether the glafs has been electrified by excited glafs or by excited fealing-was. Therefore the coated furface may reseive the elearic fluid by the coating, as we fee plainly that it is abdracted by the coating. The u.e of the coatings may be nothing more than to act as condutors tu every part of the furf.te of the elearic. None of thefe thoughts efcaped the penetrating and fugacicus mind of Dr Franklin. Ife immediately put is to the tell of experiment: and, Laying a moveable metallic coating on both furfaces, he found the glafs charge perfealy well. He lifeet off the coatings; which operation was accompanied ty flathes of light between the metallic coverings and the glafs from which he feparated them. Having removed the coatings, he applied others, completed the circles and obtained a perfect difcharge, not diftinguiflable from what he would have obtaiaed from the firl coatings.

Thus was it demon?rated, that the glais plate itel? Charged acquired'by charging a redundant fratum on one fide, grlafs acand a deficient ftratum on the other lide; and we now quires rofee, at once, the reafon why the accumulation turns out dundant sireater than what is determined by the theory. The and defici-
difance between the redundant and deficient fratum is the redundant fluid is lodged in the glafs if the plates leis than the thichnels of the glafo; and this, perkaps, iis an unkncwn proportion.

This precious experiment of Dr Franklin was repeated by every electrician, and varied in a thoufand matys. No philofopher has carried this refearch farsher than Beecaria; and he has given ground for a mot important difeovery in the mechanical theory, namely, that the charged glafs has fereral llrata, of inconceivable thimefs, aliernately redundant and deficient in electric fluid; and that by continuing the electrification, thefe ftrata penetrate deeper into the glafs, and probably increafe in number. We have not room here to give even an account of his cxperiments, and muft refer the philofophical and curinus reader to that part of his valuable Treatife where he treats of what he calls einuibating or recovering e'ectricity; as alfo to a paper by Mr Henley in Phil. Miani. for 1766 , giving account of experiments on Dutch plates by Mr Litne. The general form of the experiment is this. He puts two plates together ; he coats the outer furfaces, and charges and difcharges them as one thick plate. Their inner touching furfaces are found flrongly electrical after the difcharge, having oppofite electricities, and chan. ging thefe electricities, by repeated feparations and replacings, in a way feemingly very capricious at firft fight, but which the attentive reader will find to be according to fixcd laws, and agreeably to the fuppolition that the frata gradually frift their places within the glafs, very much refembling what we obierve on a long glafs rod which we would render electric by induction. In this cafe, as was obferved in $n^{0} 57$. there are obferved more than one neutral point, \&c.

Mr Cavendilh endeavnurs to give us fome notion of the difpofition of the fluid in the fubflance of the glafs in the following manner: Having feparated the coated plate from the machine and from the ground, fuppofe a little of the redundant fluid in B $\beta$ \& D (fig. 33.) equal to the fluid wanting in $E s \phi F$. If we now fuppofe all the redundant fuid to be lodged in $6,3 \delta d$, and $e s \oplus f$ to hold all the redundant matter, and the two coatings to be in their natural tate, a particle $p$, placed in the middle of the furfiace $b d$, will be nearly as much attracted by $\varepsilon e f \phi$ as it is repelled by $b \beta \delta d$ (exaetly fo if the plates were infinitely extended) ; and if the coating be removed, kceping patallel and oppofite to the furface that it quits, there will be very little, if any, tendency to tly from the glafs to the coating: there will rather be fome difpofition in the fluid to quit the coating and fy to the glafs; bec, sute the repulfion of $b \beta \delta d$ is more dimininied than the attraction of $:$ e $f \phi$ ( $\mathrm{n}^{\circ} 4^{2 .}$ ). But the difference will be very fmall indeed. ( $N . B$. the refult would be very different if electric ac. tion followed a different law. Were it as $\frac{1}{l^{1}}$, the coating would be much overcharged; and were it as $\frac{1}{d}$, it would be very much undercharged). Now the fat is, that when the coating is carefully removed, it is poffeffed of very little electricity, not more than may reafonably be fuppofed to run into it by bringing away one part before another. It is impofible to keep it mathematically parallel.

Hence we may conclucie that the greatef part of be thin, and the redundant fluid bear but a fmall proportion to the natural quantity. Similar reafoning thews that the greatef part of the deficiency is in tlie other fide of the glafs; and that therefore the coatings are very nearly in their natural ftate, and merely ferve the purpofe of conducting.

We have employed coatings of confiderable thichnefe, having holes through them, oppofite to which was fome gold leaf of the heavieft furt, and almoft free of cracks. We have examined the fate of the bottom of thofe pits in Mr Coulomb's manner, and always found them void of electricity.

Thus we learn that glafs, and probably all other

## 179

 electrics, acquire redundant and deficient ftrata as well as the moft perfect conductors, at the fame time that they may be impervious to the fluid; and we get fome mode of conceiving how the rupture happens by a ftrong charge. This may very probably happen when the Atrata have formed, in alternate order, fo deep in the glafs, that a Aratum, in which the fluid is crowded clofe together, may become contiguous to one deprived altogether of fluid. We cannot, however, fay with confidence, what /oould be the effeet of this itate of things: or of one conttipated itratum coming in contact with another.This view of the condition of charged glafs explains (we think) Several phenomena which feem not well underitood by eleEtricians.
The refiduum of a difcharge is frequently owing to Several a charge extending beyond the coating, where the ac- phenomens tion is confiderably irregular, or different from what it explained. would be if the plates were infinitely extencled. This outline charge is taken up by the coated part after a very little while, and may again be difcharged. But it alfo frequently arifes from nouther ftratum (much thinner, as it will always be) than the exterior one, coming to the furface fome time after the firt difcharge, and being now in a condition for being difcharged. It explains the fparking that is perceived in fucceffon between the parts of a jar that is coated in fpots, during the clarge, and the very fenfible refiduum of the charge of fuch a veffel. It explains the phenomena of Bec. caria's Eelearricitas Vindex (fce Electricity, Encycl. \$48.), and the great difference that may be found in the different kinds of glafs in this refpeet. It explains the great difference between the fenfation occafioned by a park from a perfectly conducting furface of confids. rable extent, and that occafioned by a thock, which conveys the fame quantity of floid accumulated in a fmall furface of glafs. The difcharge of the firlt is almoft inftantaneous, while that of the laft requires a fmall moment of time, and is therefore lefs defultory and abrupt. The oue is pungent and fartling; but the other is fofter in the firft inflant, and fivells to a maximum. Therefore, in the medical employment of eleatricity, when the purpofe is to be effected by the transfufion of a great quantity of electric fluid, we fhould recommend very fmall thocks from a very large furface of coated glafs, very faintly eleatrified, in place of frong fparks. Patients of irritable conflitutions are frequently alarmed by the quicknefs and pungency of Atrong fparks: but if the balls of Lane's fhock-medfurer be fet fo clofe as to give four or five thocks in each

## E L I C T R I C I T Y.

eaclu turn of a feven inch cylinder, the fhacks are not dilances. When a confiderable Aratum is difinared, even difagreealle. The balls fhould be made of fine cupelled filver: in which cafe, the furface will never the hurt by the greatelt difcharge; whereas the difcharge of four fquare feet of coated glafs will raife fuch n roughnefs on the furface of brafs as will caufe it to fputter, and dettroy entirely the regularity of the expenditure of fluid. The fame confideration fhould make us prefer a jar coated internally with amalgam. This cobweb coating gives a greater iof thefs to the fhock. Laftly, we fee why a powerful and permanent electricity was not produced in the tube filled with melted fealing-wax, and treated as mentioned in $n^{\circ}$ ror. The redundancy and deficiency intended to be produced could only be fuperficial. And becaufe the wax cooled by degrees from the furface to the axis, and the was is a conductor while liquid, it mutt have taken a charge at lat ; and therefore mult appear but faintly electrical.

182

## The quan-

 tity of Huidin a body in a body
may be cymay be c
ceeding sreat.

This account of the ftate of charged glafs promifes us fome affiftance in our attempts to conceive what paffies in the excitation of glafs by friction. It appears from Beccaria's experinients, that the redundant fluid is lodged in the fame manner in both cafes: for by rubbing one fide of a glafs tumbler, while points were prefented to the oppofite furface, and were connected with a wire that communicated with the ground, he gave it a powerful charge.
It is obferved, that when the lamire of a picce of Mufcovy glafs are feparated, by pulling them afunder without inferting any inftrument between them, they are eleatrical when feparated; one being pofitive, and the other negative. Muft we not conclude from this, that when conjoined they were in the ftate of charged glafs? If we take this view of it, a body may contain a prodigious quantity of electric fluid without exhibiting any appearance of it. Mr Nicholfon found, by a very fair computation from his experiments, that a cubic inch of talc, when iplit into plates of 0,oriof an inch in thicknefs, and coated with gold leaf, gave a fhock equal to the emptying 45 condnctors, each feven inches in diameter and three feet long, eleatrified fo that each gave a fpark at nine inches diftance. Now, the whole of this was moveable fluid, and no more than what the talc contains when unelectrified: for no more comes into the pofitive fide than goes out of the negative fide. Nay, there is no probability that the quantity moveable in our experiments bears a coufiderable proportion to the natural quantity. The quantity of moveable fluid in a man's body is therefore very great: and Lord Mahon is well authorifed to $f_{d y} y$, that the fudden dif. placing of this quantity in a returning firoke, which has been occafioned by a difcharge of a clond in a very diftant place, is fully adequate to the production of the moft vinlent effects. But his Lordfhip has not attended to the circumitance, that no luch difplacement can happen. The accumulation that can be made in the hnman body is only fuperficial; and therefore, althongh the whole fluid of a man's body may change its place, it will not clange it with the rapidity that feems ne. reffary for the violent effects of eleatricity, except in the very points of communication with the furrounding bodies.

We have now feen in what fenfe the idio-eledrics may be faid to be impervious to the eledric fluid. It is moved in them only to very fmall and imperceptible Suppl. Vol. I.
the fluid does not come from the extremity of it to the point of difcharge through the glafs, but through the coating. And when aldernate fltata of redund int fluid and redundant matter are formed, the particles in each fhift their places very little, moving perpendicularly to the Aratum.

Even this degree of noftruation has been denied by The imperfome very active electricians, who have multiplied ex- meability periments to prove that the fluid paffes freely through of electrics glafs, and that the theory of coated eledtrics is totally different from what Franklin imacines. Mr Lyons of Dover has publithed a numerous lift of fingular experiments, which he has made with this view, with much trouble, and no fmall expence. They may all be reduced to this: A wire is brought from the nutfide of a phial, charged by the knob, and terminates in a fharp point at a fmall diftance from a thin glafs plate (it is commonly introduced into a glafs tube, having a ball at the end, and the point of the wire reaches to the centre of the ball); and another wire is connected with the difcharging rod, and alio comes very near (and frequently clofe) to the nther fide of che glafs, nopolite to the pointed wire. With this apparatus he obtains a difcharge; and therefore fays, that the glafs is permeable to electricity. But he does not narrate all the circumftances of the experiment. We have repeated all of them that have any real difference (for moft of them are the fame fact in different forms), and we have obtained difcharges: But they were all very incomplete, except when the glafs was perforated, which happened very frequently. The diffharge was never nade with a full, bright, undivided fouk, and loud frap; but wiih fputtering, and trains of flarks, continued for a very fenfible time; and the phial was never deprived of a confiderable part of its charge: and (which Mr Lyons has taken no notice of) the glafs is found to be charged, negative on the fide connected with the pofitive fide of the phial, and poftive on the other. This charge was communicated to the glafs over a pretty confiderable furface round the points immediately oppofite to the wires. This is quite conformable to the experiments of Dr Franklin and Bec. caria, who charged a tumbler by grafping it with the hand, and prefenting the infide to a point electrified by the prime conductor. The whole expetiment is ana logons to the one narrated in $n^{\circ} 176$.

We may conclude nur obfervations on coated glafs Bars touch. with mentioning a curious experiment. A flat fick of ed like fine fealing-wax, warmed till it bent pretty readily, was magnetsfor rendered permanently elearical, with a pofitive and ne- eleatricity. gative polc, in a manner anal gous to the double touch of magnets. A fmall jar was taken, having a hemifphere on the end of its infide wire, and another on the end of a Giff wire projecting from the outer coating, and then turned up parallel to the infide wire; fo that the two hemifpleres Anod equally high, and about threc inclies afunder. This jar was eleet :fied fo wakly, as to tun no rifk of a fpentanenus dilcharge. The flat faces of the two homifpheres were now applied to the flat fide of the fealing-wax, and were moved to and fro along it, necrpaffing both end about an inch with each hemifphere. The experiment was very troublefome ; for the phial eften dilcharged itfelf along the furface of the fcaling-wax, and all was to begin
4.T
again.
again. But, by continuing this operation til! the feal-ing-wax grew quite cold and hard, it acquired a very fenfible electricity, which lafted feveral weeks when kept with care; but fill it was not much more fenfible than that of the fealing-wax, which congealed between tro globes oppolitely electrified.

After this application of the theory to the phenomena of coated glafs, it will not be neceffary to emplny much time in its application to the electrophorus. The general propofitions from $n^{\circ}$ 14. to 25 . and their companions in $n^{\circ} 38-43$. will enable us to fate with precifion (when combined with the law of electric action) the actions of every part of this apparatus ; and conliderable affiltance will be derived from a careful confideration of our analyfis of Profelfor Richmann's experiment in $n^{\circ} 156$. But we muft content ourfelves with a general, popular riew of thefe particulars, which may be fufficient for making us underitand what will be the kind, and fomewhat of the intenfity, of the action of its different parts.

The electrophorus confilts of three parts. The chief part is the cake ABCD ) (fig. 34.) of fome electric ; fuch as gum lac, fealing.wax, pitch, or other refinous compofition. This is melted on fome conducting plate, DCFE, and allowed to congeal ; in which ftate it is found to be negatively electric. Another conducting plate GHBA is laid on it, and may be raifed up by filk lines, or any infulating handle. We thall call ABCD the cake, DCFE the sole, and GHBA the cover.

The general appearances not having been fo fcientifically clafled in the article Electricity as could be wifhed, we fhall here narrate them, very briefly, in a way more fuited to our purpofe. In comparing the theory with oblervation, it will be proper to make all the three parts of confiderable thicknefs, and of no great breadth. Although this diminifhes greatly the moft remarkable of the actions, it leaves them fufficiently vivid, and it greatly increafes the fmaller changes which are inftructive in the comparifon. The general facts are,

1. If the fole has been infulated during the congelation of the electric, till all is cold and hard, the whole is found negatively electric, and the finger draws a fpark from any part of it, efpecially from the fole. If allowed to remain in this fituation, its electricity grows gradually weaker, and at laft difappears : but it may be excited again by rubbing the cake with dry warm flannel, or, which is the beft, with dry and warm cat or hare fur. If the cover be now fet on the cake by its infulating handle, but without touching the cover, and again feparated from the cake, no electricity whatever is obferved in the cover.
2. But if it be touched while on the cake, a fharp fungent fark is obtained from it; and if at the fame time, the fole be touched with the thumb, a very fenflble fhock is felt in the finger and thumb.
3. After this, the electrophorus appears quite inactive, and is faid to be dead; neither fole nor cover griving any fign of electricity. But,
4. When the cover is raifed to fome diftance from the cake (keeping it parallel therewith), if it be touched while in this fituation, a fmart fpark flies, to fome diftance, between it and the finger, more remarkably from the upper fide, and fill more from its edge,
which will even throw off fparks into the air, if it be not rounded off. As this diminifhes the defired effects, it is proper to have the edge fo rounded. This fark is not fo thatp as the former, and refembles that from any electrified conductor.
5. The electricity of the cover, while thus raifed, is of the appofite kind to that of the cale, or is pofitive.
6. The electricity of the cover while lying on the cake is the fame with that of the cake, or negative.
7. The appearances $n^{\circ} 2,3,4$, may be repeated for a very long time without any fenfible diminution of their vivacity. The inftrument has been known to retain its power undiminifhed even for months. This makes it a fort of magazine of electricity, and we can take off the electricity of the cake and of the cover as charges for feparate jars, the cover, when raifed, charging like the prime conductor of an ordinary eleetrical machine; and, when fet on the cabe, charging it like the rubber. This caufed the inventor, Mr Volta, to give it the name of Electrophorys.
8. If the fole be infulated before putting on the cover, the fpark obtained from the cover is not of that cutting-kind it was before: but the fame flock will be felt if both eake and cover be touched together.
9. If the cover be again raifed to a confiderable height, the fole will be found electrical, and its electricity is that of the cake, and oppofite to that of the cover.
10. After touching both cover and fole, if the cover be raifed and again fet down, without touching it while aloft, the whole is again inactive.
11. If both cover and fole be made inative when joined, they fhew opiofite electricities when feparated, the fole having the electricity of the cake.
12. If both cover and fole be made inactive when feparate, they both fhew the oppofite to the electricity of the cake when joined.

Let us now attend to the difpofition of the electrical Difpofition fluid in the different pats of the inftrument in their va- of the fluid rious fituations, and to the forces which operate mutually thereon. between them. $N$. $B$. Experiments for examing this inftrument are belt made by fetting the three plates vertically, fupported on glafs ftaiks, with leaden feet, to fteady them. A very fmall elechrometer may be attached to the outer furfaces of the cover and fole.

If the extent of the plates were incomparably greater than their thicknefs, we may infer from $n^{\circ} 92$, Exc. that the redundant fluid and natter would be difpofed in parallel ftrata, and that the actions would be the fame at all diftances. But fince this is not the cafe, the difpofition of the fluid will be fomewhat different; and whatever it is, the action of any ftratum will be diminifhed by an increafe of diftance. The following defription cannot be very different from the truth :

1. The cake grows negative by cooling ; and if it 188 were alone, it would have a negative fuperficial fratum tion of th; on both fides, of greater thicknefs near the edges; and frimitive the fluid would probably grow denfer by degrees to the fate. middle, where it would have its natural denfity. This dipofition may be inferred from $n^{\circ} 92,93$, and 98 . But it cools in conjunction with the fole, and the attraction of the redundant matter in the cake for the moveable fluid in the fole difurbs its uniform diffufion in the fole, and caufes it to approach the cake. And becaufe this, in all probability, liappens while the cake is ftill a conductor, the difpofition of its fluid will be

## 

different from that defcribed above, and the final difpofition of the fluid in the cake and fole will refemble that defcribed in $n^{\circ} 95$, where the plates $E$ and $A$ reprefent the cake and fole. But becaufe we do not know precifely the gradation of denfity, and aim only at general notions at prefent, it will be fufficient to confider the cake and fole as divided into two ftrata only; one redundant in fluid, and the other deficient, neglecting the neutral Aratum that is interpofed between them in each. The cake then, confilis of a fratum $A B b a A$ containing redundant matter, and a fratum a $b \mathrm{CD}$ containing redundant fluid: and the fole has a fratum DC $n m$ containing redundant fluid: namely, all that belongs naturally to the face DCFE, and a fratum $m n$ FE containing redundant matter. This may be called the primitive state of the cake and fole; and if once changed by communication with unelearified bodies, it can never be recovered again without fome new excitement.
II. If the fole be touched by any body communicating with the ground, fluid will come in, till the repulfion of the redundant fluid in the fole for a fuperficial particle $y$ is equal to the attraction of the redundant matter in the cake for the fame particle. What has been faid concerning infinitely extended plates rendered neutral on one tide, may fuffice to give us a notion of the prefent difpofition of the fluid in the fole. The under furface will be neutral, and the fluid will increafe in denfity toward the furface DC. The fole contains more than its natural quantity of fluid, but is neutral by the balance of oppofite forces. Let it now be infulated. This difpofition of fluid may be called the common fate of the electrophorus.

1II. Let the cover GHBA be laid on it. The particle $z$, at the upper furface of the cover, mult be more attracted by the redundant matter in the fratum ABba than it is repelled by the redundant fluid in the remoter ftrata; for the fluid in the caise is lefs than what belongs to it in its natural Rate, and therefore $z$ is attracted by the cake. The redundant fluid which has come into the remote fide of the fole is lefs than what would faturate the redundant matter of the cake, becaufe it only balances the excefs of the remote action of this matter above the nearer action of the compreffed fluid in the fole; and this fmaller quantity of redundant fluid acts on $z$ at a greater diftance than that of the redundant matter in the cake. On the whole, therefore, the particle $\approx$ lying immediately within the furface GH , is attratted; therefore fome will move toward the cake, and its natural flate of uniform diffution through the cover will be changed into a violent fate, in which it will be compreffed on the furface AB, being abftracted from the furface GH . It will now have a fratum $\mathrm{G}_{g} \neq \mathrm{H}$, containing redundant mater, and another of BA , containing redundant fluid. But this will diftutb the arrangement which bad taken place in the fole, and had rendered it nentral on the under furface. We do not attend to the fluid in the cake, but confider it as immoveable, for any motion which it can get will be fo fmall, that the variations of its action will be altogether infignificant. The particle $y$, fituated in that furface, will be mote repelled by the compreffed fluid in the fratum $g p \mathrm{C} \Lambda$ than it is attrated by the equivalent, but more remote redundant matter in

GH $p, g$. Fluid is therefore difpofed to quit the furface EF, and the fole appears pofitively electric; very little indeed, if the cover be thin. All this may be obferved by attaching a fmall Canton's electrometer to the lower furface of the fole, or by touching the filla with the electroneter of fig. 8, and then trying its elec. tricity by rubbed was or glafs.
IV. A particle of fluid $z$, placed immediately without the furface GH , will be more attracted by the deficient fratum $\mathrm{GH} p g$, and by $\mathrm{AB} b$ a than it is repelled by the redundant frata beyond them, and the cover muft be fenfibly negative. This is the common State of the whole inftrument after fetting on the cover. It is flightly pofitive on the lower furface of the fole, and much more fenfibly negative on the upper furface of the cover. A finart fpark will therefore be feen between it and the finger, fluid will enter, till the attraction of the redundant matter in $A B b a$ is balanced by the repulfion of the redundant fluid in DCFE.
V. A fpark will now be obtained from the fole, be. Deat fatio caufe it was faintly pofitive before, and there bas been added the action of the fluid, which has entered into the cover. The fluid in the fole is therefore difpofed to fly to any body prefented to it. But when this has happened, the equilibrium at the furface GH is deftroyed, and that furface again becomes negative, and will attract fluid, although the cover already contains more than its natural quantity. A fmall fark will therefore be feen between the cover and any condusting body prefented to it. By touching it, the neutrality or equilbrium is refored at GH ; but it is deftroyed again at EF, which will again give a pofitive fark, which, in its turn, again leaves GH negative. 'Ihis will go on forever in a feries of communications contiaually diminifhing, fo as foon to become infenfible, if the three parts of the elegrophorus be thin. This makes it proper to make them otherwife, if the infrument be intended for mluftrating the theory.

At laft the equilibrium is completed at the furfaces GH and EF, and both are neutral in relation to furrounding bodies, although both the cover and fole contains more than their natural fhare of eleftric fluid. We may call this the neutral ordead fate of the electrophorus.

This ftate may be produced at once, inttead of doing Chargcd it by thefe alternate touches of GH and EF. If we futeo. touch at once both thefe furfaces, we have a bright, pungent fparl, and a fmall fhock. If this be the object of the experiment, the fate $\mathrm{N}^{\nu}$ IV. which gives occalion to it, may be called the charged fate of the electrophorus.

When the inftument has thus been rendered neutral in relation to furrounding bodies, is is plain that it may continue in this Aate fur any length of time without any diminution of its capability of producing the other phenomena, provided only that no fluid pafs from the cover to the cake. We do not fully undertand wha: preverts this communication, nor indeed wh.t prevents the rapid elcape from an overcharged body into the air. This caufe, whatever it be, operates bere; and the beft way of preventing the diffipation, or the abforption by the cake, is to keep the electrophorus with its cover on. It will come into this nentral fate by diffipation from the fole, and abforption by the cover,
in no very long time; and after this, will remain neutral, in the common ftate, ther have opponte elenticities, the

194 Ckarging ur acive fuat.

Electrophorus not a magazine of electri-

## city, but a

 collecting machine.the cake and plates are very thin.
VI. If the cover be now removed to a diftance, both parts of the apparatus will fhew frong marks of electricity. "The cover contains much redundint fluid, and moft appear frongly pofitive, and will give a bright fark which may be employed for any purpofe. It may be employed for charging a jar pofitively by the knob, if we juft rouch the cover with the knob. The fole will attract fluid, or be negative, although it contain more thas its natural quantity of fluid, and it will take a fpark. 'The fole therefore, in the abfence of the cover, may be employed to charge a jar negatively by the knob. By touchirg it with the finger, or with the knob of a jar held in the hand, it is reduced to the common ftate defcribed in $\mathrm{N}^{\circ}$ II.; and now all the former experiments may be repeated. We may call this the Active or the charging ftate.

This ftate of the apparatus liascaufedit to get the name Electropborns. Volta, its un joubted inventor, called it $E$ leatroforo perpeizo; for it appears, as has been already ob. ferved, to contain a magazine of electricity. The cover, when removed, will charge a jar held in the hand pofitive$l_{y}$; and having done this Service, it will charge a jar negatively when again fet on the cake. The fole, in the abdence of the cover, will charge athird jarnegatively; and then, when the cover, after being touched, is fet down again, it will charge a fourth jar pofitively. It will not be difficult to contrive a fimple mechanifm, conneeted with the motion of the cover, which fhall connest the joined parts with two jars, and fhall connect them when feparated, with two others; and thus charge all the four with great expedition. All this is done without any new excitation of the electrophorus. But it is by no means a magazixe of electricity which it gradually expends : it is a collector of electricity from the furrounding bodies, which it afterwards imparts to others, and may be employed to dilcharge jars in the lame gradual manner as to charge them.
VII. If tie eltetrophorus is not infulated, a thock may fill be obtained, by firft touching the fole, and then, without removing the finger, touching the cover: but this will not be fo fmart as when the negative cover is touched at the fame time that we touch the fole, more highly pofitive than when it communicates with the ground. The difference mult, however, be almort imperceptible when the picces are thin.
VIII. If the eleftrophorus is not infulated, the cover, when put on, will give a park in the manner already mentioned, and it will be fomewhat fronger than when it is infulated; becaufe the fluid is allowed to efcape from the fole, and does not obituct the entry into the cover. If we then, without removing the finger from the cover, tonch the fole, nothing is felt; but if we firft touch the Sole, and, without removing the finger from it, touch the cover, we obtain a fhock. This is evident from the theory. By this feries of alternate touches, the perind of the elestrophorus is completed. The eleetrophorus is charged or rendered neutral, by touching the plates when joined; then, by touching both when feparated, the whole is reduced to the common fate. When feparated, from being in the neutral fate, they have oppofite electricities, the fole forwing that of the cake. When brought together, each
cover thewing that of the cake.
IX. When, by long expolure to the air without its I cover, the electrophorus has Inf its virtue, it may be may be rebrought again into an astive ttate in a variety of ways. created. Its furface may be rendered regative by friction with dry cat or hare 1 kin , or warm flannel. It may be rendered negative by fetting on it a jur charged negatively on the infide, and then touching the knob with any thing communicating with the ground. This is the mott expeditious method, and will give it a high degree of excitation, if the jar be of fize, and if the electrophorus be covered with a plate of tinfoil which comes into contact all over its furface. This however requires the previous charging of the jar; therefore it will be as expeditious and effectual to connect this furface with the rubber of an electrical machine. We had almont forgotten to remark, that the effects of bringing the cover edgewife to the cake, follow clearly from the theory, as will appear to the attentive reader without further explanation.

The elcetrophorus has been compared to a cliarged It is not fiplate of coated glafs. It is true that it may be brought milar to a into an external flate which very much refembles a charged charged pane, namely, when the cover, in its natural pane. fate, is fet on the electrophorus in its natural Rate; and accordingly it gives a thock, and the two exterior fuifaces become neutral ; but the internal conftitution, and the acting forces, are totally and efentially different. The two coatings of the pane would not, when feparated, exhibit the appearances of the electrophorus; nor when touched in their disjointed flate, will they pro. duce the fame effects when joined. In the operation of coated glals, the conftant or invariable part, the glafs is not the agent, it is merely the occafion of the action, by allowing the accumulation. In the electrophorus, the elsetric, which is the conftant invariable part, is the agent prodacing the accumulation. The electrophorus is an original, and a very ingenious and curious electrical machine. Notning has fo much contributed to fpread foine general, though flight, acquaintance with the mechanical principles of electricity. The numerous dabblers in natural knowledge had been diverted fromz fcientific purfuit by the vasiety of the fingular and amufing effects of electricity, and had really attained very little connefted knowledge. The effests of the electrophorus forced this knowledge on them ; becaufe no ufe can be made of it without a pretty clear conception of the difpofition of the electricity, and the kind and intenfity of the actions. It is therefore molt urgrateful in the experimenters who bave attained better views, to attempt to sob Mr Volta of the real merit of difcovery, by thewing that its effents are fimilas to thofe of Mr Symmer's fockings, or of Cigna's plates, or of Frankliu's charged or dicharged glafs panes. And the attempt deftroys itfelf: for it fhews the ignorance or inattention of its author; for the fimilirity is not real, as will appear clear to any perfon who will examine things minutely and fcientificallf, proceeding in this examination on fuppofitions fimilar to thofe which we employed in the analyfis of Richmann's experiment. It was indeed in fubferviency to this examination that we entered into the detail of that experiment, it being a fimpler cafe. The accurate eramination of Richmann's experiment requires the
fluxionary.

## E L E C T R I C I T Y.

199
Conitenfator of electricity.
fluxionary calculus in its refined form. In the prefent queftion five ading ftrata are to be confidered, which renders the formule very complicated, and indeed intractable, unlefs we make the plates extremely thin; which, fortunately, is the beft form of the inflrument. We have completed this mathematical analyfis; and the popular view here given is the refult of that computation.
The electricians are no lefs obliged to Mr Volta for another machine, or inftrument, from which the Atudy of Nature's operations has derived, or may derive, inimenfe advantages. We mean the condenser, or collector of electricity. We refer to the article Electricity in the Encyclopadia for a defcription of the infrument, and fome account of its effects and properties. The general effect is to render fenfible an accumulation or deficiency of elearic fluid fo flight that it will not affect the moft delicate electrometer; and it produces (at leaft in the opinion of Mr Volta) this effect, by cmploying for the fole of an electrophorus a body which is an imperfect conductor, fuch as a plate of well dried matble, or well dried, but not baked, wood; or even a conducting body, covered with a bit of dry teffety or other filk. Mr Volta, Cavallo, and others, who have written a great deal on the fubjee, have attempted to fhew how thefe fubflances are preferable (and they certainly are preferable in a high de. gree) to more perfect infulators: but not having taken pains to form precife notions of the difpofition and ation of the electric fluid in the fituations afforded by the iaftrument, their reafonings have not been very clear. We think that an adequate conception of the effentials of the propoied inftument may be acquired by means of the following confiderations:

Furnifh the cover of an eleftrophorus with a gra. duated cleefrometer, which indicates the proportional degres of elearicity; elearify it pofitively to any degree, fuppofe fix, while held in the hand, at fome ditlance, right over a metal plate lying on a wine glafs as an infulating fland, but communicating with the ground by a wire. Bring it gradually down toward the plate. Theory teaches, and we ktiow it by experiment, that the elearometer will gradually fubfide, and perhaps will reach to $2^{\circ}$ before the elearicity is com. ntunicated in a fpark. Stop it before this happens. In this flate the attration of the lying plate produces a compenfation of four degrees of the mutual sepulfion of the parts of the cover, by conftipating the fluid on its under furfice, and forming a deficient fratum above. This needs no farther explanation after what has been faid on the charging of coated glafs plates. Now we can fuppofe that the efcape of the fluid from this body into the air begins as foon as elearified to the degree $\sigma$, and that it will fly to the lying plate with the degree 2 , if brought nearer. If we can prevent this communication to the lying plate, by interpofing an electric, we may eleftrify the cover again, while fo near the metal plate, to the degree 6 , before it will Aream off into the air. If it be now removed from the lying plate, the fuid would raife the electrometer to 10, did it not immediately itream off; and an eleetric excite. ment of any kind which could only raife this body to the degree 6 by its intenfity, will, by this apparatus, raife it to the degree 10, if only copious enough in exteat. If we do the fame thing when the vire is taken
away which conneas the Jying plate with the ground, we know that the fame diminution of the electricity of the other plate cannot be produced by bringing it duwa into the neighthourhood of the lying plate (fee $n^{\circ}{ }^{1} 3+$, \&cc. $151, \&$ c.).

Hele we fee the whole theory of Mr Volta's conden. Theory fer. He feems to have obfcured his conceptions of it thercol. by having his thoughts sumning upon the eleatrophorus lately invented by him, and is led into fruillefo attempts to explain the advantages of the imperfect condutur ahovethe per fea infulat(r. But ihe apparatu-is altogeiher different from an eleftrophosus, and is more analogrous in its operations to a coated plate sot charged nor infulated on the oppofite fide; and fuch a coated plate lying on a table is a complate condenfer, if the upper coating be of the fame fize with the plate of the condenfer. All the direftions given by Mir Volta firs the preparation of the imperfect conductors fliew, that the effert produced is to make them as perfer conduators as puffible for any degree of eledricity that exceeds a certain finall intenfity, but fuch as thall not fuffer this very weik clectricity to clear the firt Atep of the conduit. The marble mult be thoroughly died, and even heated in an oven, and either ufod in this warm Aate, or varnifled, fo as to prevent the reabforption of moifture. We know that matble of flender dimenfions, fo as to be completely dried throughout, will not conduct till it has again become moift. A thick piece of marble is rendered fo, fuperficially only, and ftill conduets irternally. It is then in the belt polfibie flate. The fame maty be faid of dry unbaked wood. Varnifhing the upper furface of a piece of marble or wood is equivalent to laying a thin glafs plate on it. Now this methed, or covering the top of the marble, or of a book, or even the table, with a piece of clean dry filk, make; them all the moft perfect condenfators. This juft view of the matter has great advantages. It takes away the my ferious indiftinennefs and obicurity which kept the inftrument a quackifa tool, incapable of improvement. We can now make one incomparably better and more fimple than any propofed by the very ingenious inventor. We need only the fimple moveable plate. Leet this be varnifhed on the under fide with a moderately thick coat of the pureft and hardelt vernis do Martin, or coach-painters varnifl; and we have a complete condenfator by laying this on a table. If it be connedect by a wire witls the fubftance in which the weak and imperceptible elefricity is excited, it will be raifed (provided there be encugh of it of that fmall intenfity) in the proportion of the thicknefs of the varnith to the forrth part of the diameter of the plate. This degree of condenfation will be procurcd by detaching the connesting wire from the infulating bandle of the condenfer, and then railing the condenfer from the table. It will then give fparks, though the original clectricity could not fenfibly affed a flaxen fibe.

It mont be particulanly noted, that it can produce this conienfation only when there is Aluid to condenfe; that is, only when the weak ele fricity is diffufed over a greater face than the plate of the condenfer. It this way it is a mof excellent collector of the weak atmofpheric eleetricity, and of all diff:fed eleftricity. But to derive the fame advantage from it in many very inderefling cafes, fuch as the inquiry into the electricity ex. cited ia many opcrations of Na:ure on fmall quantities
of matter, we mut have condenfers of various fizes, fome not larger than a filver penny. To conftuet theie in perfection, we mult ufe the pueft and hardeft varnith, of a kind not apt to crack, and highly coercive. 'This requires experiment to difcover it. Spirit varnifhes are the moft coercive; but by their difference of contraction by cold from that of metals, they foon appear frofly, and when viewed through a lens, they appear all thivered: They are then ufelefs. Oil varnithes have the requifite toughnefs, but are much inferior in coercion. We have found amber varninin inferior to copal varnifly in this refpect, contrary to our expectation. On the whole, we flould prefer the fineft coach-painters valnith, new from the flop, into which a pencil has never been dipped: and we muft be particularly careful to clear our pencils of moiture and all conducting matter, which never fails to taint the varnifh. We fearcely need remark, that the coat of varnifh on thefe frall con. denfers thould be very thin, otherwife we lofe all the advantage of their fmallnefs.

Mr Cavallo has ingenioufy improved Volta's condenier by connecting the moveable plate, after removal, with a fmaller condenfer. The effect of this is evident from $n^{0} 130$. But the fame thing would have been generally obtained by ufing the fmall condenfer at firft, or by ufing a ftill thinner coat of varnilh.

It will readily occur to the reader, that this inftrument is not inftantaneous in its operation, and that the application mult be continued for fome time, in order to collect the minute electricity which may be excited in the operations of nature. He will alfo be careful that the experiment be fo conducted that no ufelefs accumulation is made anywhere elfe. When we expert elestricity from any chemical mixture, it never fhould be made in a glafs veffel, for this will take a charge, and thas may abforb the whole excited elcefricity, accumulating it in a neutral or infenfible fate. Let the mixture be made in velfels of a conducting fubflance, infulated with as little contaft as poffible with the infulating fupport; for here will alto be fomething like a charge. Sufpend it by filk threads, or let it reft on the tops of three glafs rods, \&c.

After this account of the Leyden phial, eleatrophorus, and condenfer, it is furely unneceffary to employ any time in explaining Mr Bennet's mot ingenious and ufeful inftrument called the doubler of clatricity. The explanation offers itfelf fpontaneoully to any perfon who underflands what has been faid already. Mr Cavallo has with induffry fearched out all its imperfestions, and has done fomething to remove them, by feveral very ingenious conftructions, minutely defcribed in his Theatile on Electricity. Mr Bennet's original inftrument may be freed, we imagine, as far as feems puffible, by ufing a plate of air as the intermedium between the three plates of the doubler. Stick on one of the plates three vcry frall fpherules made from a capilliry tube of glafs, or from a thread of fealing-wax. The other plate being laid on them, refts on mere points, and can farcely receive any friction which will difurb the experiment. Mr Nicholiun's beautiful mechanifm for expediting the multiplication has the inconveniency of bringing the plates towards each other edgewife, which will bring on a fpark or communication fooner than may be defired: but this is no inconvenience whatever in any philofophical refearch; becaufe, before this hap-
pens, the eleatricity has become very diftinguiflable as to its kind, and the degree of multiplication is little more than an amufement. The fpark may even ferve to give an indication of the original intenfity, by means of the number of turns neceffary for producing it. If the fine wires, which form the alternate counections in fo ingenious a manner, could be tipped with little balls to prevent the dififipation, it would be a great improvemont indeed. An alternate motion, like that of a pump handle, might be adopted with advantage. This would aliow the plates to approach each other face to face, and admit a greater multiplication, if thought necelfary.

One of the moft remarkable facts in electricity is the Difipation rapid dillipation by fharp points, and the impoffibility of electriof making any confiderable accumulation in a body city from which has any fuch, projesting beyond other parts of its furface. The diffipation is attended with many remarkable circumfances, which have greatly the appearance of the actual efcape of forme material fubftance. A ftrearn of wind blows from fuch a point, and quick. ly electrifies the air of a room to fuch a degree, that an electrometer in the fartheft corner of the ronm is affected by it. This diffipation in a dark place is, in many inftances, accompanied by a bright train of light diverging fiom the point like a firework. Dr Franklin therefure was very anxious to reconcile this appearance with his theory of plus and minus electricity, but does not exprefs himfelf well fatisfied with any explanation which had occurred to him. From the beginning, he faw that he could not confider the ftream of wind as a proof of the efcape of the eleEtric fluid, becaufe the fame frearm is oblerved to iflue from a tharp negative point ; which, according to his theory, is not difperfing, but abforbing it. Mr Cavendifh has, in our opivion, given the firll fatisfactory account of this phenomenon.

To fee this in its full force, the phenomenon itfelf muft be carefully obferved. The ftream of wind is plainly produced by the efcape of fomething from the point itfelf, which hursics the air along with it; and this draws along with it a great dcal of the furrounding air, efpecially frombehind, in the fame manser as the very flender thread of air from a blow-pipe hurries along with it the furrounding air and flame from a confiderable furface on all fides. It is in this manner that it gathers the whole of a large flame into one mafs, and, at laft, into a very point. If the fmoke of a little rofin thrown on a bit of live coal be made to rife quietly round a point projecting from an electrified body, continually fupplied from an electical machine, the vortices of this fmoke may be obferved to curl in from all fides, along the wire, forming a current of which the wire is the axis, and it goes of completely by the point. But if the wire be made to pafs through a cork fixed in the bottom of a wide glats tube, and if its point project nat beyond the mouth of the tube, the alluy of the air from behind is prevented, and we have no ftream; but if the cork be removed, and the wire fill occupy the axis of the tube, but without touching the fides, we have the Arearn very diftinetly; and fnoke which tifes round the far end of the tube is drawn into it, and goes off at the point of the wire. Now it is cf importance to obferve, that whatever prevents the formation of this fream of wind prevents the dillipation of electricity (for we fhall not fay efcape

## E L E C T R I C I T Y.

of eleatric fluid) from the point. If the point project a quarter of an inch beyond the tube, or if the tube be open belind, the ftream is ftrong, and the diflipation fo rapid, that even a very good machine is not able to raife a Henly's electrometer, flanding on the conductor, a very few degrees. If the tube be flipped forward, io that the point is juft even with its mouth, the diflipation of electricity is next to nothing, and does not exceed what might be produced by fuch air as can be collecied by a fuperficial point. If the tube be made to advance half an inch beyond the point which it furrounds, the diflipation becomes infenfible. All thefe facts put it beyoud a doubt that the air is the caufe, or, at leaft, the occafion of the diffipation, and carties the electricity off with it, in this manner rendering electrical the whole air of a room. The problem is reduced to explain how the air comtiguous to a tharp eleftrified point is electrified and thrown off.

It was demoniltrated in $\mathrm{n}^{\circ}{ }^{1} 30$, that two fpheres, connected by an infinitely extended, but fender conduating canal, are in cleatrical equiliorium, if their furfaces contain fluid in the proportion of their diameters. In this cafe, the fuperficial denfity of the fluid and its tendency to efcape are inverfely as the diameters ( $\mathrm{n}^{\circ}$ 130). Now if, in imagination, we gradually diminifh the diameter of one of the fpheres, the tendency to efcape will increafe in a greater proportion than any that we can name. We know, that when the prime conductor of a powerful table-machine has a wire of a few inches in lengti projecting from its end, and terminating in a ball of half an inch in diameter, we cannot electrify it beyond a certain degree; for when arrived at this degree, the eleetricity flies of in fucceflive burfts from this ball. Being much more oveicharged than any other part of the body, the air furrounding the ball becomes more overcharged by communication, and is repelled, and its place fupplied by other air, not fo much overcharged, which furrounded the other parts of the body, and is preffed forwards into this fpace by the general repulfion of the conductor and the confining preffure of the atmoiphere; othervife, being alfo overcharFed, it would have no tendency to come to this phace. Half a turn of the cylinder is fufficient to accumulate to a degree fufficient for producing one of thefe explofions, and we have two of them for every turn of the cylinder. A point may be compared to an incomparably fmaller ball. The conftipation of the fluid, and its tendency to efcape, muft be greater in the fame numeafurable proportion. This denfity and muttal repulfion camot be diminifhed, and mufteven be increafed, by the matter of the wire forming a cone, of which the point is the apex ; therefore, if there were no other caufe, we mult fee that it is almoft impoffible to confine a collection of particles, mutually repelling, and confti-

206 Electricity unites chenically with air. pated, as thefe are in a fine point.
But the chief caufe feems to be a certain chemical union which takes place between the eleatric fluid and a correfponding ingredient of the air. In this thate of conltipation, aimolt completely furrounded by the air, the little mafs of fluid mult attract and be attracted with very great force, and more readily overcome the force which keeps the electrified fluid attached to the laft feries of particles of the wire. It unites with the air, rendering it electric in the higbeft degree of redundancy. It is therefore ftrongly repelled by the mals of
conflipated fluid which fucceeds it within the point. Thus is the elegrified air continually thrown off, in a ftate of elearification, that mult rapidly diminith the electricity of the condudor. Hence the uninterrupted flow, withome noife or much light, when the pnint is made very fine. When the point is blunt, a little accumulation is neceflary before it attains the degree neceffary for even this minute explofion; but this is foon done, and thefe little explofions fucceed each other :a. pidly, accompanied by $n$ fputtering noife, and trains of bright fparks. The noife is undoubteily owing to the atoms of the highly electrified fluid. Thefe are, in all probability, rarefied of a fudlen, in the act of elesurification, and immediately collapfe again in the an of chemical union, which caufes a fonornus agitation of the air. This elcetrified air is thus thrown off, and its place is immediately fuppiie: by air from behind, not yet elearified, and therefore Atrongly drawn forward to the point, from which they are thrown off in their turn. This rapid expanfion and fublequent collapfing of the air is verified by the experiments of Mr Kinnerfly, related by Dr Franklin, and is feen in numberlefs experiments made with other views in later times, and not attended to. l'erhaps it is produced by the great heat which accompanies, or is generated in the transference of electricity, and it is of the fame kind with what occafions the burfting of fones, fplitiang of trees, exploding of metals, \&\&. by electricity. The expanfinn is either inconfiderable, or it is fucceffively produced in very fmall portions of the fubflance expanded; for when metal is exploded in clofe veffels, or under water, there is hut a minute portion of gazeous matter produced; and in the diflipation by a very fine point, fufficiently great to give full employment to a powerful machine, the ftream of wind is but wery faint, and nine-tenths of this has been dragzed along by the really eleatrifed thread of wind in the middle.

From a collation of all the appearances of elefricity, we mult form the fame conception of the forces which operate round a point that is negatively eleatrified, not difperfing, but drawing in elearic fluid. it is more completely undercharged than any other part of a body, and attracts the fluid in the furrounding air, and the air in which it is retained, with incomparably greater force. It therefore deprives the contiguous air of its fluid, and then repels it, and then produces a fleam like the overcharged point.

If a condutting body be brought near to any part of an overcharged body, the fronting part of the firt is rendered undercharged ; and this increafes the charge of the oppofite part of the overcharged body. It becomes more overcharged in that pait, and fooner attains that degree of conflipation that enables the fluid to quit the fuperficial feries of particles, and to eleEtrily Arongly the contiguous air. The explofion is therefore made in this part in preference to any other; and the air thus exploded is frongly attracted by the fronting part of the other body, and muft fly thither in preference to any other point. If, moreover, the fronting part of A be prominent or pointed, this effed will be produced in a fuperior degree; and the cursent of electrified air, which will begin very early, will increafe this difpofition to transference in this way by rareffing the air; a change which the whole courle of eleatric phenomena dhews to be highly favourable to this trans-
ference;
ference, altlinush we cannot perbaps form any vers ference; therefore the procefs is by no means comoleted aderfate motion how it contributes to this effuct. This feens to be the reafon why a great explofion and inap, with a copicus transference of electricit $y$, is generally preceded by a hifting noile like the ruhning of wind, which fwells to a maximum in the loud inap isfelf.

If two prominences, precifely fimilar, and electrified in the contrary way to the fame degree, are prefented to each other, we cannot fay from which the current thould take its comnencement, or whether it fhould not equally begin from both, and a general difpertion of air laterally be the effect; but fuch a fituation is barely polfible, and mult be infinitely rare. The current will begin from the fide which has fome fuperiority of propelling force. We are difpofed to think that this current of material electrified fubftance mult fuffer great change during its paffage, by mixing with the current in an oppolite electrical fate coming from the other body. Any litile mafs of the one current matt ftrongly atraêt a contiguous mafs of the other, and cerrain clanges ithuld furely arife from this mixture. Thefe may, in their turn, make a great change in the mectha. vical motions of the air; and, inflead of producing a quaqua verfum difperiion of air from between the bodies, as thould refiult from the meeting of opprite flteams, it may even produce a collaping of the air by the mutual lirong attrations of the little maffes. Miny valuable experiments offer themfelves to the curious inquirer. Two little balls may be thus prefented to each other, and a frmoke may be made with rofin to occupy the interval between them. Motions may be obferved which have certain analogies that would afford ufeful iniormation to the mechanical inquirer. There muit be formething of this mixture of currents in all fuch transferences, and the moft nimute differences in the condition of a little parcel of the air may greatly affect the future motions. The moit prumifing form of fuch experiment would be to ufe two points of the finne fubtance, hlape, and fize, and electrited to the fame degree in oppofite fenfes.
After all care has been taken to infure fimilarity, there remains one eifential difiference, that the one current is redunduns in elcaric fuid, and the other deficent. This circumllance muff produce characterilic differences of ap. pearance. And are there not fich differences? Is not the pencil and the flar of light a charaterificic difference? And dues not this well-fupported fact greatly corroborate the opinion of Dr Franklin, that the eleerric phenomena reliult from the redundancy and deficiency of one fubfitance, and not from two dift ind fublances operating in a fimilar manner? For the diftination in appearance is a mechanical ditilution. Motinn, direation, velocity, are perceivalbe in it. Lnennotive forces are concerned in it ; but they are fo implicated wih forces whicl probably refemble chemical affinities, hardly operating beyond conta\&t, that to extricate their effects from the complicated phenomenon feems a defperate problem. There is fome hitherto inexplicable chemical compofition and decumpofition taking place in the transference of eleefricity. , Of this a numerous train of obfervations made fince the dawn of the pneumatic chemilly leaves us no foom to doubr. The emierfion or produation of light and heat is a remarkable fign and proof. Now this takes place along the whole path of trans.
at the point from which the active catufe proceeds; and although there be certain appearances that are pretty regrlar, they are ftill mixed with others of the molt capricious anomaly. The zigzag form of the moit condenfed fark, totally unlike, by its tharp angles, to any motions producible by accelerating forces, which motions are without exception, curvilineal, makes us doubt exceedingly whether the luminous lines which we obferve are fuccefive appearances of the fame matter in different places, or whether they be not rather fimultaneous, or nearly fimmitaneous, corvications of diffesent parcels of matter in different places, indicating chemical compofitions taking place almoft at once; and this becomes more probable, when we rellect on what has been faid already of the jumbling of oppofite currents; fuch mixtures thonld be expected. We have feen a darted flafh of lightning which reached (in a direction nearly parallel to the horizon) above thee miles from right to left; and it \{eemed to us to be co-exiftent ; we conld not lay at which end it began. The thunder began with a Innd crack, and continued with a mon irregular rumbling noife about 15 feconds, and reemed equal on both hands. We imagine that it was really a fimulta. neous fnap, in the whole extent of the fpark, but of diferent ftrength in different places; different portions of the fonorous agitation were propagated to the ear in fuccelion by the fonorous undulations of air, cauling it to feem a lengthened found. Such would be the appearance to a perfon ftanding at one end of a long line of foldiers who difcharge their firelocks at one inftant. It will feem a running fife, of different flrength in different parts of the line, if the mulkets have heen unequally loaded. It is inconceivable that this long zigzag fpark can mark the track of an individual mais of eleenrified air. The velocity and momentum would be enormons, and would fweep of every thing in its way, and its path could not be angular. The fame mult be afterted of the Itteams of light in our experiments. The velocity is to unmeafurable that we cannot tell its direction. There may be very little lncal motion, jult as in the propagation of found, or of a wave on the furface of water. That particular change of mutual fituation among the adjnining atoms which occations chemical folution or precipitation may be produced in an inflant, over a great extent, as we know that a parcel of iron filings, lying at random on the furface of quickfilver, will, in one inflant, be arranged in a certain manner by the mere neighbourhond of a magnet. Is not this like the fimultaneous precipitation of water along the whole path of a difcharge?

But Aill there muft be fome caufe which gives thefe fimultaneous corufcations a fituation with refpect to each other, that has a certain regularity. Now the luminous trains (for they are not uniform lines of light) of almolt continuous fparks which are arranged between a politive and a negative point, feem to us to indicate emanation from the pofitive, and reception by the negative point. The general line has a confiderable refemblance to the path of a bndy projealed from the pofitive point, repelled by it, and attracted by the negative point. This will appear to the mechanician on a very little reflection. If the curve were completely vifible, it would fomewhat refemble thofe drawn between P and N in fig. $35 . \mathrm{PABN}$ overpafles the point N ,

210

2rI

## Diffipation

 of electricity into the air is proportional to the denfity.and comes to it from behind; PabN lics within the nther, and arrives in a direction nearly perpeadicular to the axis; $\mathrm{P} \propto \mathrm{BN}$ defcribes a Araight line, and arrives in the direation PN. As the chemical compolition ad$v$ vances, the light is difengaged or produced, and therefore the appearances are, more rare as we advance farther in the direction in which they are produced; and there would perhaps be no appearance at all at the point where the motion ends, were it not that the few remaining parcels, where the compofitions or decompofitions have not been completed, are crowded together at the negative point, incomparably more than in any other part of the track. We think that thefe cenfiderations offer fome explanation of the appearance of the pencil and Aar, which are fo uniformly charatterittic of the politive and negative elefricities: but we fee many grounds of uncertainty and doubt, and offer it with due diffidence.
The curious figures obferved by Mr Lichtenberg, formed by the dalt which fettes on a line drawn on the face of a mirror by the pofitive and by the negative knobs of a ch.rged jar, are alfo uniformly characteriftic of the two electricities. Thefe are mechanical diftin Sions, indicating certain differences of accelerating forces. We nuft refer the curious reader to Lichtenherg's Difertations in the Goitengen Commentaries; to the Publication of the Haerlem Sociely; to the Gotha Marazine ; to Differtations by Spath at Altdorff, and other German writers.
It only remains for us to take notice of the general laws of the difipation of electricity into the air, and along imperfect infulators. On this fubjeat we have fome valuable experiments of Mr Coulornb, publifhed in the Memoirs of the Academy of Sciences of Paris for 1785.

Thefe experiments were made with the affiftance of an electrometer of a particular confruction, which fhall be defcribed under the article Electrometer.

The general refult of Mr Coulomb's experiments was, that the momentary diflipation of moderate de. grees of electricity is proportional to the degree of electricity at the moment. He found that the diflipation is not fenfibly affected by the flate of the barometer or thermometer; nor is there any fenfible dif. ference in bodies of different fizes or different fubltances, or even different figures, provided that the elearicity is very weak.

But he found the difipation greatly affected by the different ftates of humidity of the air. Saufure's hygrometer has its fcale diftinetly related to the quantity of water diffolved in a cubic foot of the air. The following little table fhews an evident relation to this in the difipation of electricity :

Hygrometer.	Grains water in cubic foot.	Diffipation per ninute.
69	6,197	${ }^{\frac{1}{80}}$
75	7,295	${ }_{\text {\% }}$
80	8,045	
87	9,221	行

Hence it follows, that the diflipation is very neatly in the triplicate ratio of the moifure of the air. Thus if $\frac{6}{4} 9$ be confidered as $=\left.\frac{7,197}{0,180}\right|^{m}$ we have $m=2,764$.
Suppl. Vol. I.


Hence, at a medium, $m=3,40$.
We thould have obferved, that the ingenious author took care to feparate this difilipation by immediate corr tact with the air, from what was occafioned by the imperfeat infulation affurded by the fupports.

It mult alfo be remarked here, that the immediate Diminuobjest of obfervation in the expeliments is the diminu tion of retion of repulfion. This is found to be, in any given pulfinn is Itate of the air, a certain proportion of the whele re- double of pulfion at the moment of diminution : but this is double the cion.
of the proportion of the derfity of the electric fluid; for it mift be recollected, that the repulfions by which we judge of the diflipation are mutual, exerted by every particle of fluid in the bail $t$ of Coulumb's electrometer, on every particle in the ball $a$. It is therefre proportional to the eleatric denfity of each ; and therefore, durung the wholedifipation, the denfities retain their primitive proportion; therefore, the dininution of the repulfion being as the diminution of the products of the denfities, it is as the diminution of the fquares of either. If therefore the denlity be reprefented by $d$, the mutual repulion is reprefentable by $d^{2}$, and its momentary diminution by the fluxion of $d^{2}$; that is, by $2 d \dot{d}$, or $2 \dot{i} \times d$. Now $a d \times d$ is to $d^{2}$ as $2 d$ is to $d$; and therefore the diminution of repullion obferved inour experiment bears to the whole repulfion twice as great a proportion as the diminution of dentity, or the quantity of fluid diffipated, bears to the whole quantity at the moment. For example, if we obferve the repulfion diminifhed $\frac{x^{2}}{7}$, we conclude that $\frac{8}{80}$ of the floid has efcaped.

Mr Coulomb has not examined the proportion between the diffipations from bodies of different fizes. A great and a fmall fphere, communicating by a very long canal, have fuperficial denfities, and tendencies to efcape, inverfely proportional to the diameters. A body of twice the diameter lias four times the furface; and though the tendency to efcape be twice as inail, the furface is four times as great. Perhaps the greater furface may compenfate for the fmaller denfity, and the quantity of fluid actually gone off may be greater in a large fphere. This may be mide the fubjeet of trial.

It muft be kept in mind, that the law of diflipation afcertained by thefe esperiments, rclates to one given dependi on flate of the air, and that it does not follow thiat in the fate of another flate, containing perhaps the fame quantity of water, the diflipation flall be the fame. The air is fuch a heterogeneous and variable compount, that it may have very different afinities with the elcetric fluid. Mr Coulomb thonght that he fhould infer from his numerousexperiments, that the diffipation did not increafe in the ratio of the cube of the water diffolved in the air, unlefs it was ne.arly as much as it could diffle in that temperature. This indeed is conformable to general obfervation : for air is thought dry when it dries quick. ly any thing expofed to it; that is, when not neariy inturated with moifture. Now it is well known, that what is thought dry air, is favourable to clecticity.

The dillipation along imperfect infulatois is brough about in a way fomewhat different from the manner o
its effaping by elefrrifying the contiguous air and going of with it. It feems to be chiefly, if not folely, along the furface of the infulating fupport that the elecnicity is diffufed, and that the diffufion is produced there chielly by the moifture which adheres to it. It is not very ea!y to furm a clear notion of the manner, but Mr Coulomb's explanation feems as fatisfactory as any we have feen.

Water adheres to all bodies, Ricking to their furfaces. This adhefion prevents it from groing of when eleetified; and it is therefore fufeeptible of a higher degree of electrification. If we fuppofe that the particles if moifure are unifomly difpofed along the furface, leaving fpaces between them, the elefricity communicated to ore particle mult attain a certain denfity before it can fly acrofs the infulating interval to the next. Therefure, when fuch an imperfect conductor is electrified at one end, the eleatricity, in paffing to the other, will be weakened at every flep. If we take three adjacent particles $a, b, c$, of this conducting matter, we learn, from $n^{\circ}{ }^{\circ} 105$, that the motion of $b$ is fenfibly affected only by the difference of $a$ and $c$; and therefore that the paflage of electricity from $b$ to $c$ requires that this difference be fuperior or equal to the force neceffary for clearing this ccercive interval. Let a particle pafs over. The electric denfity of the particle $b$ of conducting matter is diminifhed, while the denfity of the particle on the other fide of $a$ re. mains as before. Therefore fome will pafs from $a$ to $b$, and from thep article preceding a to $a$; and fo on, till we come to the electrified end of this imperfect infulator. It is plain from this confideration, that we muft arrive at latt at a particle beyond $c$, where the whole repulfion of the preceding particle is juff fufficient to clear this interval. Sume will cume over, whofe repulfion, now acting in the oppofice direftion, will hinder any fluid from fupplying its place in the particle which it has quitted. Here the transfcrence will fop, and beyond this the infulation is complete. There is therefore a mathematical relation between the infulating power, and the length of the canal, which may be afcertained by our theory; and thus another opportunity obtained for comparing it with obfervation. That this invenigation may be as fimple as ocflable, we may take a very probabie cafe, namely, where the infulating, or, to name it more graphically,
the coercive interval is equal in every part of the canal.

Let $R$ be the coercive power of the infulator; that is, let $R$ be the force neceflary for clearing the coercive inte:val. Lest a ball C (fig. 36) be fufpended by a filk thread $A B$, and let $C$ reprefent the quantity of its redundant fluid; and let the denlity in the different points of the canal be as the ordinates $\mathrm{AD}, \mathrm{P} d, \& \varepsilon$. of forme curve line $\mathrm{D} d \mathrm{~B}$, which cuts the axis in B where the thread begins to infulate completely. Let $P p$ be an element of the axis. Draw the ordinate $p f$, the tangent $d f \mathrm{~F}$, and the normal $d \mathrm{E}$, and $f$ e perpendicular t) $\mathrm{P} d$. Let AC be $=r, \mathrm{AP}=x, \mathrm{P} d=y$. Then $P_{p}=\therefore$ and $d_{e}=-\dot{y}$. We have feen, that the only femfible action on the particle of fluid in $P$ is $\because$ (fee $n^{\circ} 105$ ), when the action of the redundant fluid in the globe on the particle P having the denfity $y_{\text {, }}$ is reprefented by $\frac{C y}{(\mathrm{I}+:)^{2}}$. Therefore we have $\frac{y \dot{y}}{\dot{x}}=$ $R$, the cocrcive power of the thread. This is fuppo.
fed to be contant. Therefore $\frac{\mathrm{P} d \times d e}{\mathrm{P} p}$ is equal to fome conftant line R. But $\mathrm{P} p$, or $f_{c}: d e=\mathrm{P} d$ : PE. Therefore the fubnormal PE is a confant line. But this is the property of the parabola alone; and the curve of denfity $\mathrm{D} d \mathrm{~B}$ is a parabola, of which the parameter is 2 PE , or $2 R$.

Cor. 1. The denfities in different points of an im- variation perfect infulator, are as the fquare ronts of their diftance of denfiry from the point of complete infulation: For $\mathrm{P} d^{2}: \mathrm{AD}^{2}$ in the infti$=B P: B A$.
2. The lengh of caral required for infulating dif- Length neferent denfities of electricity are as the fquares of the ceffary for denfities. For $\mathrm{AB}=\frac{\mathrm{AD}^{2}}{2 P E}$; and PE has been fhewn infulation $\xlongequal{=\text { derfity }{ }^{2}}$ to be a conftant quantity. Indeed we fee in the demonftration, that BP would infulate a ball, whofe electric denfity is $\mathrm{P} d$, and $\mathrm{BA}: \mathrm{BP}=\mathrm{AD}^{2}: \mathrm{P} d^{2}$.
3. The length neceflary for infulation is inverfely as Alfo $-\dot{\dot{H}^{\circ}}$ the coercive force of the canal, and may be reprefented $I^{\circ}$ generally by $\frac{D^{3}}{R}$. For $A B$ is $=\frac{D A^{2}}{2 P E}=\frac{D^{2}}{2 R}$

Mr Coulomb has verified thefe conclufions by a very fatisfactory feries of experiments, by the affitance of his delicate eleAtrometer, which is admirably fuited for this trial. The fubject is fo interefling to every zealous fudent of electricity, that Mr Canton, Dr B. Wilfon, Mr Waitz, Wilcke, and others, have made experiments for eftablilhing fome meafure of the condusting powers of cifferent fubitances. It was one of the firit things that made the writer of this article fuppofe that electric action was in the inverfe duplicate ratio of the diftances: for, as early as 1753 , he had found, that the lengths of capillary tubes neceflary for infulation were as the fquares of the repulions of the ball which they iofulated. The mode of reafoning offers of itfelf, and the fluxionary expreflion of the infulating power, viz. $\frac{d \dot{d}}{\dot{x}}$ led immediately to a force proportional $\operatorname{tn} \frac{1}{x^{2}}$. Numercus experiments were made, which we do not give here becaufe the public are already poffifed of thofe of Mr Coulomb.
This difcuffion explains, in a fatisfactory manner, the Explanaoperation of the condenfer, as defcribed by Mr Volta. tion of the The weak degrees of electricits, which are rendsred fufficiently fenfible by the infulation of the plate of dry marble, are completely infulated by the perhaps thin Itratum that has been fufficiently dried, while the reft conduats with an efficacy fufficient for permituing the accumulation.
When we reflect on the theory now delivered, we fee that the formulx determine the diftribution of the fluid along an imperfect conductor in a certain manner, on the fuppofition that a certain diterminate dore has been impirted to the ball: Becaufe this dofe, by diffufing itfelf from particle to particle of the conducting matter, will d'ffufe itfelf all the way to B , in fach a manner that the repulfion fall every where be in equitibrio with the maxinum of the coercive force of the infulating interval. But it muft be farther noticed, that this refiftence is not ailive, bat coercitive, and we may compare it to friction or vifcidity. Any repulfion of clectric fluid, which falls fhort of this, will not diturb the fability of the fluid foread along the canal, accord-


222
Explanation of a curious and important fact ; and method of increafing a charge.
ing to any law whatever. So that if AD reprefent the electric denfity of the globe, and remain conflant, any curve of denfity will anfwer, if $\frac{d \dot{d}}{\dot{x}}$ be everywhere lefs than R. It is therefore an indeter minate problem to affign, in general, the difpolition of fluid in the canal. The denfity is as the ordinates of a parabola only on the fuppolition that the maximum of $R$ is everywhere the fance. And, in this cafe, the dilance AB is a minimum : for, in other cafes of denfity, we mult have $\frac{d i}{i}$ lefs than R. II, therefore, we vary a fingle cle. ment of the curre $\mathrm{D} d \mathrm{~B}$, in order that the fability of the fluid may not be diflurbed, having $d$ conftant, we muft necefarily have $\dot{x}$ larger, that $\frac{d \dot{d}}{\dot{x}}$ may fill be lefs than $R$; that is, we mult lengthen the axis.

We fee alfo, that to afcertain the dittribution in a conducting canal is a determinate problem; whereas, in imperfect condustors, it is indeterminate, but limited by the fate of the fluid, when it is fo difpofed that in every poirt the asion of the fluid is in equilibrio with the maximum of efiftance. This confideration will be applied to a valuable purpofe in the article Magnetism.

This doctrine gives, in our opinion, a very fatisfactory explanation of the curious obfervations of Mr Brookes and Mr Cuthbertfon, mentioned in $n^{0} 167$. namely, that damping the infide of a cnated jar diminifhes the rifk of explofion, and enables it to hold a higher charge. We learn here, that there is no denfity fo great but that the leaft imperfect conductor will infulate it, if long enough ; and that the coercive quality of an imperfect condutor may be conceived fo contlituted from A towards B , that the denfities thall diminith in any ratio that we pleafe, fo that the variation of denfity (the caufe of motion) may everywhere, even to tho infulating point $B$, be very fmall. However great the conntipation at the edge of the metallic coating may be, an imperfect conductor may be continued outward from that edge, and may be fo conlituted, that the conflipation flall diminifh by fuch gentle gradations, that an explofion thall be impoffible. An uniform dampnefs will not do this, but it will diminill the abruptnefs of the variation of denfity. The llate of denfity beyond the edge of the coating of a charged jar, very clean and dry, may be reprefented by the parabolic arch $\mathrm{D} i a$. This may be changed by damping, or properly dirtying (to ure Mr Brookes's phrafe), to $\mathrm{D} f \mathrm{~B}$; which is evidently preferable. We think it by no mears difficult to contrive fuch a continuation of imperfectly conducting coating. Thus, if gold leaf can be ground to an impalpable powder, it may be mixed with an oil varnifh in various proportions. Zones of this gold varnilh may be drawn parallel to the edge of the coating, decreafing in metal as they recede from the edge. By fuch contrivances it may be polfible to increafe the retentive power to a graat
degree, the fupports may receive a quantity of huid, which may greatly difurb the refults; and this quantity, by exerting but a weak action on the parts of the canal, may continue for a very long time, and not be removed but with great dificulig. In fuch cifes, it will be neceffary to ufe new fupports in every experiment. Not knowing, or not attending to this circumfance, many erroneous npinions have been forms 1 in fome delicate departments of electrical refearch.

Mr Coulomb's experiments on this fubject are chiefly valuble for baving fated the relation between the intenfity of the electricity, or, as he expreffes it, the electric denfity, ard the lengths of fupport necelfary for the completc infulation. But, as the abfolute intenfities have all been meafared by his eleatrometer, and he has not given its particular fcale, we c:nnot make muc! ufe of them till this be done by fome eleatrician.

Mr Coulomb found, that a thread of gum lac was the molt perfeet of all infulators, and is not lefs than ten times better than a filk tilreall as dry as it can be made, if we meafure its excellence by its thortnefs. In a confiderable number of experiments, he found that a thread of gum lac, of 1,5 inches long, infulated as well as a fine filk thread of 15 inches. When the thread of filk was dipped in fine fealing.wax, it was equal to the pure lac, if fix inches long, or four times its length. If we meafure their escellence by the intenfitics with which they infulate, lac is three times better than the dry thread, and iwice as good as the thread dipped in feal. ing wax : fo that a fibre of filk, even when included in the lac, diminifhes its infulating power. We aifo learn, that the diffipation along thefe fubfances is not entirely owing to moitture condenfed or adherent on their furfaces, but to a fmall degree of conducting power. We have repeated many of thefe experiments, and find that the conducting power of filk thread depends greatly on its colour. When of a brilliant white, or if black, its conducting power feems to be the greatef, and a high golden yellow, or a nut brown, feemed to be the beft infulators; doubtiefs the dycing drug is as much concerned as the fibre.
Glafs, even in its dryeff flate, and in fiturtions where moifure could have no acceis to it, viz. in vefils containing cauttic alkali dried by red heat, or holding frefl made quicklime, appeared in our experiments to be confiderably better than filk; and where drawn into a flender thread, and covered with gum las (melted), infulated when three times the length of a thread of lac; but we found at the fame time, that extreme finenefs was necelfary, and that it diflipated in pinportion to the fquare of its diameter. It was remarkably hurt by having a bore, however fine, unlefs the bore could alio be coated with lac. Human hair, when completely freed from every thing that water could wafa out of it, and then dried by lime, and coated with lac, was cqual to filk. Fir, and cedar, and larch, and the rofe-tree, when fplit into filaments, and firlt dried by lime, and alterwards baked in an oven which juft made paper become faintly brown, feemed bardly inferior to gum lac.

The evbite woods, as they are c:illed, and mahogany, were much inferior. Fir baked, and codted with inel?ed late, feems therefore the belt fupport when Atrergth is required. The lac may be rendered lefs brittle by a minute portion of pure turpentine, which has been cleared of water by a little boiling, without fenfibly in$+\mathrm{U}_{2}$ crafing
crafing its conducting power. Lac, or fealing-wax, diffolved in fpirits, is far inferior to its liquid ftate by heat.

Thefe obfcrvations may be of efe for the conftruction of electrical machines of other electrics than glats.

Gensral ye6xétions

We have now given a comparifon of the hypothefis of Mr Aipinus with the chief facts obferved in electricity, diverfified by every circumftance that feemed likely to influence the refult, or which is of importance to be known. We truft that the reader will agree wih us in faying that the agreement is as complete as can be expected in a theory of this kind; and that the application not only feems to explain the fhenomena, but is practically ufeful for directing $u$ s to the procedures which are likely to produce the elfect we wifh. Thus, thould our phyfiological opinions fugeft that copious transference of fluid is proper, our hypothefis points out the moft effectual and the molt convenient methods for producing it. We learn how to conftipate the fluid in a quiefcent ftate, or how to abitract as much of it as poifble from any part of a patient; we can do this even in the internal parts of the body. We had once an opportunity of feeing what we thought the cure of a paralyfis of the gullet. Electricity was tried, firft in the way of fparks, and then fmall fhocks taken acrofs the trachea. Thefe could not be tolerated by the patient. The furgeon wifhed to give a fhock to the cefophagus without affecting the trachea. We recommended a leaden piftol bullet at the end of a Arong wire, the whole dipped in melted fealing-wax. This was introduced a litcle way, we think not more than three inches, into the gullet, which the pally permitted. A very flight charge was given to it in a few feconds; and the firlt frock produced a convultion in the mufcle, and the fecond removed the diforder completely. Here the ball formed the inner, and the gullet the outer, cnating of the little Leyden phial.
The theory Notwithllanding the flattering teftimony given by of Æpinus the great conformity of this doctrine with the phenois ouly a mena, we ftill choofe to prefent it under the title of a hypothefis. hypothefis. We have never feen the electric fluid in a feparate flate; nor have we been able to fay in what cafes it abounds, or when it is deficient. A fter what we have feen in the late experiments of that philanthropic philofopher Count Rumford on the production of heat by friction, we think that we cannot be too calltious on what grounds we admit invifible agents to perform the operations of Nature. We think that all mult acknowledge that thofe experiments tend very much to flagger our belief in the exiftence of a fluid fui generis, a fire, heat, caloric, or what we pleafe to call it ; and all will acknowledge, that no better proofs can be
225 urged for the exiftence of an electric Huid.
The reality Accordingly, many acute and ingenious perfons have of an elec- rejected the notion of the exiftence of an eleftric fluid, tric fluid is and have attempted to fhew that the phenomena pro-
deacd.
ceed, not from the prefence of a peculiar fubftance, but from peculiar modes; as we know that found, and fome concomitant motions and other mechanical appearances, are the refults of the elaftic undulations of air; and as Lord Bacon and others have explained the ef-
fects of fire by elaftic undulations of the integrant particles of tangible matter.

We have feen nothing, however, of this kind that Requifites appears to give any explanation of the metions, pref. for a juft fures, and other meclanical appearances of elcetricity. theory. TVe peremptorily require, that every doetrine which claims the name of an explanation, fhall be perfectly confiftent with the acknowledged laws of mechanifm; and that the explanation fhall confift in pointing out thofe mechanical laws of which the fasts in electricity are particular inftances. It is no difficult matter to prefent an intricate or complex phenomennon to our view, in fuch a form, that it thall have fome refemblance to fome other complex phylical fact, more familiar, perhaps, but not better underfood. The fpecious afpeararce of fimilarity, and the more familiar acquaintance with the other phenomenon, difpofe us to confider the comparifon as a fort of explanation, or, at leaft, an illuftration, and to have a fort of indolent acquiefcence in it as a theory.

But this will not do in the prefent queftion: For we have here felected a particular circumftance, the obferv. ed motions occafioned by electricity, and called attractions and repalfions-a circumftance which admits of the moft accurate examination and comparifon with any explanation that is attempted. In fuch a cafe, a vague picture would fpeedily vanifh into air, and prove to be nothing but figurative expreffions.

Many philofophers, and among them fome refpect. No advan ${ }^{226}$ able mathematicians, have fupported the doctrine of tageisgainDu Fay, Symmer, Cigna, \&c. who employ two fluids as agents in all elestrical operations. It mult be granted that there are fome appearances, where the esplana of two tion by means of two fluids feems, at firit fight, more palpable and eafier conceived. Dut whenever we attempt to obtain meafures, and to fay what will be the precile kind and degree of the action, we find ourfelves obliged to afign to the particles of thofe fluids aguating mechanical forces precifely equivalent to thofe affigned by IEpinus to lis fing!e fluid. Then we have to add fome myfterious unexplained connections, both with each other and with the other particles of tangible matter. If we excep: Mr Prevolt, in his Efui jur les Forces Magnetiques et Eleciriques, we do not recollect an author who has ventured to fubject his fyftem to frict examination, by pointing out to us the lisws of action according to which he conceives the particles influence each other. We fhall lave a proper opportunity, in the article MAGNetism, to give this author's theory the attention it really merits. We venture to fay, that all the chemical theories of electricfty labour under thefe inconveniences, and have acquired their influence merely from the inatrention of their partifans to the laws of mechanical motion, and require, in order to reconcile them with thofe laws, the adoption of powers fimilat to Epinus's attractions and repulfions. Slight refemblances to phennmena, which ftand equally in need of explanation, have contented the partifans of fuch theories, and figurative language and metaphorical conceptions have taken place of precife difculfion. It would be endlefs to examine them all.

The molt fpecious of any that we know was pub. licly read in the univerfity of Edinburgh by the late Mr James Ruffel, Profefor of natural philofophy ; a ser
fon of the moft acnte difcernment, and an excellent rea- ftates; elaric, like air, when entire; and untatic, like
foner. It was delivered to his pupils, not as a theory, but as a conjecture, founded on Lord Kames's theory of fpuntaneuss evaporation, which had obtained a very general reception; a conjecture, faid the Profeffor, founded on fuch refemblances as made a fimilarity of operation very probable, and was an incitement and direction to the philofopher to a proper train of experimental difculion. We fay this on the authority of his pupils in the years 1767,1768, and 1769 , and of fome notes in his own hand writing now in our poffeffion.

Mr Ruffel confidered the electrical phenomena as the refuits of the action of a fubftance which may be called the elearical fuid, which is connected with bodies by attractive and repulfive forces acting at a diftance, and diminifhing as the diftance increafes.

Mr Ruffel fpeaks of the ele Gric fluid as a compound of feveral others; and, particularly, as containing elementary fire, and deriving from it a great elafticity, or mutual repulfion of its particles. This, however, is different from the elafticity or mutual repulfion of the particles of air, becaufe it acts at a diftance; whereas the particles of air at only on the adjoining particles. By this conflitution, bodies containing more electric fluid than the fpaces around them repel each other.

The particles of this eleetric fluid aitrat the particles of other bodies with a force which diminifhes by diftance.

The characteriftic ingredient of this fluid is ELECTRIcort properly fo called. This is united with the elattic fluid by chemical affinity, which Mr Rufel calls cleftive attradion, a term introduced into chemifry by Dr Cullen and Dr Black. This extends to all diftances, but ant precifely by the fame law as the mutual repultion of the particles of the other fluid, and in general, it reprefies the repulfions of that fluid while in this ftate of compofition. This elearicity, moreover, attrads the particles of other bodies, but with certain elections. Non-electric or conducting bodies are attracted by it at all diftances; but eleftrics act on it only at very frmall and infenfible diffances. At fuch diftances its particles alfo attract each other.
By this conflitution, the compound electric fluid repels its own particles at all ennfiderable diftances, but attracts at very fmall diftances. It attracts conducting hodies at all diftances, but non-conductors, only at very frmall diftances. The phenomena of light and heat are confidered as marks of partial decompolition, and as proofs of the prefence of elementary fire in the compound : the fmell peculiar to electricity, and the effect on the organ of tafte, are proofs of decompofition and of the complex nature of the fluid.
Bodies (conductors) containing electric fluid, repel each other at confiderable diftances, but, if forced very near, attrast each other. Electrics can contain it only in confequence of the elearicity in the compound. Part of this elearicity mult be attached to the furface in a non-elaltic ltate; becaufe when it is brought fo near as to be attratted, its particles are within the fpheres of each othet's action, and this redoubled attraction overcomes the repulfion occafioned by its union with the other ingredient; and the elearic fluid is partly decompored, and the elearicity, properly fo called, adheres to the furface of the elearic, as the quater of damp air adheres to a cold pane of glafs in our ruindows. Alfo, by this conflitution, electric lluid may appear in two
water, when partly decompofed by the attraction of eleatrics.

Elearicity may be forced into this unelaftic union by various maans ; by friction, which forces the eleetric fluid contained in the air into clofe contact, and thus occalions this decompefition of the fluid and the union of its clagricity with the furface. This operation is compared by Mr Ruffel to the forcible werting of fome powders, fuch as lycoperdon, which cannot be wetted without fome difficilty and mechanical conprefion ; after which it adheres to water Atrongly. It may be thus united in fome natural operations, as is obferved in the neelting and freezing of rome fubflances in contact with cleatrics; and it may be thus forced into union by means of metallic coatings, into which the elcetric fluid is forced by an artful employment of its mutual repulions. This operation is compared to the condenfation of the moilture of damp air by a cold pane of the window ; and the evacuation of the other fide of the coated pane is compared to the evaporation of the moifture from the ocher fide of the window pane, in confequence of the heat which muft emerge from the condenfed vapour. We find in the Profeffor's notes abovementioned many fuch partial analogies, employed to fhew the fudents that fuch things are feen in the operations of Nature, and that his conjecture merits attention.

The intelligent reader will fee that the general refults of this conflitution of the electric fluid will tally pretty well with the ordinary electrical phenomena; and, aceordingly, this conjecture was received with great fatisfaction. We remember the being much pleafed with it, as we heard it applied by Mr Ruffel's pupils, many of whom will recollect what is here put on record. But the attentive reader will alfo fee, that all this intricate combination of diferent kinds of attraction and repulfion is nothing but mere accommodations of hypothetical forces to the phenomena. How incomparably more beantiful is the fimple hypothefis of Æpinus, which, without any fuch accommodations, tallies fo precifely with all the phenomena that have yet been obferved? Here no diftinction of action is neceffary, and all the varieties are confequences of a circumItance perfectly agreeable to general laws ; namely, that the interval Atructure of fome fubftances may be fuch as obltracts the motion of the elearic fluid through the pores-Nothing is more likely.
Several years after the death of the Scotch Pro- Hypothefis feffor in 1773, a theory very m:ah refembling this of Mr de acquired great authority, being propofed to the phi. Luc. lofophers by the celebrated naturalift Mr de Inc. This gentleman having long cultivated the fudy of meteorology with unwearied afliduity and great fuccefs, and having been fo familiarly converfant with expanfive fuids, and the afinities of their comprunds, was difpofed to fee their operations in almoft all the changes on the furface of this globe. Elearricity was too bury an actor in our atmofphere to efcape his particular notice. While the mechanical philofophers endeavourect to explain its effects by accelerating forces attracting and repelling, Mr de Luc endeavoured to explain thens by means of the expanfive properties of aeriform fluids and yafes, and by their chemical affinities, compofitions, and decompofitions. He had formed to himelf a pe-
culiar epinion concerning the confitution of our atmoThere, and had explained the condenfation of moilture, whethor of feam or of damp acriform fluids, in a way much more refined than the fimple theory of Dr Heoke, viz. folution in air. He conflders the comspound of air and fire as the carrior of the water held in dulution in damp air, and the fire as the general carrier of both the air and the moifture. Even fire is confidered by him as a rupour, of which $i_{0} h t$ is the carriar. When this dampair or fteam is applied to a cold furface, fuch as that of a glafs pane, it is decompofed. The water is attracted by the pane by chemical affinit $y$, and attaches itfelf to the furface. The fire, thus fet at liberty, acts on the pane in another way, producing the equilibrium of temperature, and the expantion of the pane. A Eting in the fame manner on the moikuse which chances to adhere to the other fide, in a proportion fuited to its temperature, it deltroys their union, enters into chemical combination with the moifture, and fits it for oniting with the air on the other fide, or carries it off. Ilaving read Mr Volta's theory of clectric infiuences, by which that philofopher was enabled to gire a fcientific narration and arrangement of the phenomena of the electreplorus newly invented by himfelf, and which is called an explanation of thofe phenomena, Mr de Luc imagined that he faw a clofe analogy between thofe influences on the plates of the electrophorus and the bygrofoofic phenomena of the condenfation and evaporation of moifture. In fhort, he wasftruck with the refemblance between the condenfation of moifture on one fide of a glafs pane, and its evaporation from the other; and the accumulation of elcetric fluid on one fide of a coated pane, and the abftraction of it from the other. Subfequent examination pointed out to him the fame analogy between all other bygrofcopic and electric pheno. mena.

He therefore immediately formed a fimilar opinion concerning the electric operations. It may be expreted brie $\begin{aligned} & \text { y } y \text { as follows: }\end{aligned}$

The electrical phenomena are the operations of an expanfive fubfance, called the electric fluid. This con. filts of two parts: 1. Eleiric matter, which is the gravitatirig part of the compound; and electric defircnt fluid, or carrying fuid, by which alone the electric matter leems to be carried from one body to another. The refemblance between the hygrofcopic and electrical phenomena are affinmed to be*,
I. As watery vapour or fleam is compofed of fire, the deferent luid, and water, the gravitating part, fo cladric fuid is compofed of the eledric deferent fuid, and elcaric matter.
2. As vapours are partly decompofed when too denfe for their remperature, and then their dicfirent fluid becomes free, and thews itfelf as fire; fis clectric fluid that is too denfe is decompofed, and its defiren fluid manifens itfelf in the pboffloric and fury phenomena of claisiety.
3. As fre quits the avater of qapour, to unite itfelf with a body lefs warm ; fo the elictric beferent cquits the elearic matter, in part, to go to other bodies which lave proportionally lefs of it.

In this analogy, however, there is a difinction. Fire, in quitsing the zvater in vapour, remains actuated by nothing but its expanfive force; remains free, and extends itfelf till the equilibrium of temperature is reho-
red; but the electric deforent, when difengaged f:om eleciric matier, in order to reftore its peculiar equilibrium, is actuated by tenlencies to diftinet bodies, and acts by this tendency in thus reftering the elictric equiliuriura; and it is only in confequence of this tendency that it quitied the 1 ciric matter. This tendency is then direted to fome body in the vicinity.
14. As the fire of vapour pervades all bodies, to reAtore the equilibrium of timperature, depofiting the zuater; fo the electric deferent quits the electrie matter, to reltore the eícaric equilitrium in an inftant, and for this pu:pofe pervades all bodies, depofiting on thera the cleario matter which it carried, but differently, according to their ndtares.
5. As fire and weatir, while compefing vapour, retain their tendencies and affinities by which they produce the: bygrofiopic plienomena; fo the ingredients of the e!eari.: fluid, even in their ftate of union, retain their tendencies and affinities, which produce the greatelf part of the e'ectric phenomena.
6. In particular, the e'earic maticr retains its tendincies and afinilies; and farther, the electric afinitios are, like the bygrofcopic, without any choice.

Here, however, there is a farther difinction. The affirities of water refpect only bygrolcopic fubitances; but thofe of eledric matter refpect all fubtances, and therefore refpea the common atmofpheric fluids.
7. When fire quits the water of vapour, to form the equilibrium of tenperature, it remains in the place where vafour molt abounds, but is partly latent, not exerting its powers; fo in the reftoration of the equilibrium of the elearic deferent among neighbouring bodies, thofe which have proportionally molt electric matter alio retain moll defercnt fluid, but in a latent ftate.
8. As two mafles of vapour may be in expanfive equilitrium (which others call balancing each others elafticity) although the vapours contain very different proportions of fire and suater; fo two maffes of electric fluid may be in expanyive equilibrium, although one contains much more clectric matter in the fame bulk, providcd that the clecitic defercnt be alfo more copions.

The chief difinction that mingles with thefe analo gies is, that the aftnity of water to bygrofiopic fu'sflances operates only in contact, whereas eleciric nuz:for tends to diflant bodies; and thefe diftances are very cifferent in regard to different bodics.

Sucla is the refemblance which has appeared fo frong to Mr de Luc. It is evidently the fame which furninied the conjecture to Mr Ruffel, and which he confidered mechanically, in order to explain the phenomena of electric motions to Itudents of mechanical philor phy. The only refemblance feems to us to appear in the condenfation of moifture contained in damp air.

Mr de Luc, led hy the habits of his former fudies, attempts to explain every thing by the relations which were mon familiar to him, affrisies and expanfire forces. Let us attend a little to the manner in which he ex. plains rne or two of the molt general facts.

1. The conditions of condusiors and non-condugors.

This dilinction depends on the differences in the terd.ncy to diftat bodies: there are great differences in thefe difances according to the naiure of the bodies; and from this arife great differences of phenomena, independent of infulation or non-infulation, which are only the fenfible dificctions of thefe claffes of bodies.

Elefric matter tends to cond:adors at great difances; but having reached them, it does not adhere, and remains free to move round them, being dragged by the deferent fuid ; but its tendency to non-conduators is only at fmall and infenfible diftances; and having come into contact, it adheres, and can no longer be dragged by the deferent fuid.

Hence the operation of conluators and non-conduciors; and there is no other foundation for the notion of idio. elcatrics and non electrics, or eledrics by communication. A part of a non-condurior takes as much elearic matter as it can from the fubftance furnifhing it ; but cannot communicate it to another part, except very flowly; therefore, to communicate it to the whole furface, we mult cover it with a conductor (Surely this is a diftinction in the body, independent of the diflance of mutual tendency!).

Hence, too, the property of non-conductors by which the elearic fluid is benumbed (engourdi) or cramped; therefore we can accumulate a great deal in them; and it will remain long, being benumbed; and if it be determined to quit them at once, the current will be much more denfe than when quitting an equal conducting furface.

Since conduators do not fix the elearic fuidl, it muff circulate round them. It is urged to this motion by its axpanfive power, by which it would difperfe from a body with inconceivabie velocity, and perhaps the rapidity of its mution would decompofe it, and caufe fome light to cmerge; but it is at the fame time impelled by its $t \in n$ dincy to bodies. Thus, by thefe two forces, it runs to a condusing body, and muft circulate round it as the planets do round the fun. In this circulation, if it come to any great projedion, it cannot follow the outline, becaufe fo abrupt; it therefore flies off at all points and protuberances. It will be the more difficult to beep to an abrupt outline as the fratum in circulation is more copious or deeper, becaufe a greater mafs is with greater difficulty turned round a harp angle. It is more inclined to efcape if another body bo near, and it immediately becomes a fatellite to that body.

Thus all bodies get a thare of eleftric fluid, circulating round enduchors, and benumbed or cramsed in noncontutars. Bodies of this laft clafs receive their portion by the air as bygrofopic fubfances receive their water by the firc.

All the differences in the tendencies to bodies proceed from the cleiric matter. The deferent fluid follow's other laws; namely, 1. Its tendency to all fubfances is greater than that of the eleatric matter to any one. 2. The tendency (and alfo that of the eictric matier) is a!ways from the body which contains mot of it to that which contains leaft. 3. The body which contains moft of the one alfo contains moft of the nther. 4 . The deferent fuid has a particular afinity (chemicat) with the elctric matter. 5. All thefe tendencies are leffened by an increafe of detatice. 6. the elcitric maiter, when compofing elefrici fuid, has mere or lefs exparyive force as it is united to more or lefs deferent fuid.
Explanation of Charsed Plates.

Mr de Luc fays ( $\$ 286$.), that his System was fuggetted by Vila's Theory of Elearic Infuences. Thefe (fays he) had been pretty well generalifed before, but with little improvement to the fcience, till Ms Vilat dif.
covered a circumfance which, in his opinion, connefied bya general theory many phenomena which had formerly no obferved relation to any thing. This was, that rwben a body clearififed pofritively brings a neighbouring lody communicating with the ground into the nerative flate, its own poffive elearricity is zueakened while it remains in that neighlourbood, but is recavered auben the other body is remored. "Such is the diftinguifhing latr of Mr Volta's theory, which bings all the phenomena of elearic influences under his theors, beginaing with thofe of coa:ed glafs, which were formerly fo obfcure, becaufe they were not referred th their true caufe, \&c.
"My Systen (Mr de Luc fays) concerning the nature of the e.edric fuid explains the laws of Mr Volta's theory; and of confequence explains, like it, all the phenomera which it comprelends: but it reaches much farther, feeing that more general laws comprehend a greater number of phenomena.
"In the phenomena of coated glafs, I plainly far one of the procedures of zwatery vapour. Suppofe a glais pane, moittened on both fides, and having the temperature of the furrounding bodies. Suppofe that warmer vapour comes to one fide. It is condenfed on the furface ; that is, it is decompofed, the zeater ad. heres to the furface, and the fire penetrates the glats, heats it, and increafes the evaporation from the other fide, by entering into combination with the quater, and carrying it off with it. More rapour is condenfid on the fide $A$; more fire reaches the fide $B$, and carries off more awater. But as this happens only becaufe the fire alfo raies the t.mperature of the pane, it is evident that the condenfation on the fide A, and the evaporation from B, muft gradually flacken, and the maximum of accumulation in $A$, and of evaporation from $B$, will take place when the temperature of the pane is the fame with that of the hot rapour.
"The elearical phenomena of coated glafs are perfealy fimilar. The elearic fuid reaches the fide $A$, is decompofed, and the eldaric matter is there tenumbed and fixed. The deferent fuid penetrates the pane, and carries off the eledric nnatter from the fide B . This goss on, but flackens; and the maximum of accumus. lation and evacuation obtains when the fide $A$ has acquired the fame intenfly of elearicity with the charg. ing machine. More is accurnulated in $A$ than is abfracted from B : becaufe B is farther from the fource (he might have added, that part of the fire is expended in raifing the temperature of the pane): but the accumulation is inative, hecaufe the elicfric matter is lenumbed and fixed. Though the elearic matter is much diminifhed in B, yet the el arric fuid in its coa:ing has as much exparfive force as that of the ground; becaufe it has a furplus of defercnt fluid. The alfolute quantity of eledric matter in both fides is fomeuhat augmented."

This explanation of the Leyden phial comprelien's the whole of Mr de Luc's theory; and the conlitution of the electric fluid, and its vatious allinities, ex. panfive powers and tendencies, are all affigned to it in fubferviency to this explanition, or deduced from th fe pheromony. As the author, in all his writings, cluims fome fuperionity over other naturalifs for more genersl and comprehenfive views, and for more fcrupuluas attention to precifion and meafurement, and particularly formare folicitude that no natural agent be omitted
that has any thare in the procedure, -he furely will not $\mathrm{b}=$ offended, although we fould fate fuch difficuhies and ohjections as occur to us in the conlideration of thes System (ashe chowfes tocall it) of eleefricity.

We with that it had heen expreffed in the plain and precife lansuage of mechanical and chemical feience ; for he restons entirely from the nature of exp intive forces, indencies, and affinities. His language will appear to fome readers, as it does to us, rather to exprets the conduet of intelligent beings, adting with choice, and for a purpole, than the laws of lifelet matter. His account would have been lefs agreeable, it is true, but more inftruetive, and lefs apt to be mittaken. Metaphorical language is feldom ufed withont the ritk of metaphorical conceptions; and the teader is very apt to think that he has acquired a notion of the fubject, while he is really thinking of a thing of a different nature. We apprehend that a great deal of this happens in this inftance, and that when the narration is Aripped of its figurative language, it will be found without that connection and analogy which it feems to pollefs.

We alfo with that the explanation had been derived from fome well eftablifhed principle. 'The whole of it is profefectly founded on a relemblance between the phenomena of electricity and fome things faid of watery vapour; but thefe are not the phenomena of watery vapour, but Mr de Luc's bypoihefis (he will pardon us the term, which we piefer to fyfiem) concerning vatery vapours. We do not think it philofophical to explain one hypothelis by another. Our illuf trious countrymen Bacon and Newton, difapproved of this practice; and their rules of philofophifing have ftil] currency among philofophers. Explanation, in our opinion, is the pointing out fome acknowledged general fact in nature, and fhewing that the particular plienomenon is an example of it. We do not fee this in Mr de Lue's explanation; becaufe we do not fee the fals in the cafe of watery vapours to which the phenomena of electricity are faid to have a refemblance. The phenomena we mean are chiefly the motions, and the transferences of the powers producing fuch motions; we do not fpeak of the light, and fome other phenomena, hecaufe Mr de Luc does not fpeak of them in this explanation. We thall even admit the transference as a phenomenon, although we do not fee any fubltance transferred : but we fee a power of producing certain motions, where that power did not formerly appear ; and the ap. pearance of this power is all the authority adduced, even by Mr de Luc, for the transference. We mult now add, that the electric phenomena, which Mr de Luc calls like the phenomena of watery vapour, are all fupfof ions ; and that therefore the explanation is a fyltem of fuppotitions, framed fo as to be like the fyltem of watery vapour. For Mr de Luc will grant, that, on the one hand, we fee nothing like the water in the electric phenomena; and, on the other hand, there is nothing in watery vapour like the notions of the electrometers, which are the only PHENOMENA from which Mr de Luc profefles to reafon.

We alfo fear that the very curious experiments of Count Rumford on the melting of ice, and the propa-
gati n of heat through liqquids, will oblige Nt de Lus to cladage the taiks of the ingredients, both of siapour and of einflric flud. Witir, and not fire, feems to be the carrier or diferent fuid; and we thonk that Jrank. lia and Epinus have made it highly probable that elec. tricity, and not air, is the carrier.

We have alfo great diriculty in conceiving (indeed we cannot concesve) how the deferent furid, from which the eleatric matter has been detached by its fuperior af finity with the fide A, call overcome the fame fuperior afinity of the eleatric mather with the fide $\mathrm{B}(\mathrm{A})$, and carry it off: how the deferent fluid penetrates the non-conducting pane, in order to carry off the clectric matter in the form of fuid; and how it cannot do this, except by means of a conducting canal, into which it is exprefs by faid that it does not penetrate. It mult not be faid that it runs along the furtace of this canal: for the fmallef wire will be a tufficient conductor, covered a foot thick with fealing-wax. This indeed, according to Mr de Lue, allows the deferent fuid to pafs; but it mult alfo, according to him, itrain it pretty clear of all electri: matter. For we cannot help thinking, that the provefs (although purely ideal) has a clofer refemblance to what we fhould obferve in a fream of muddy water poured on a ftrainer, boch fides of which are previoufly foul. If we were difpofed to amufe ourfelves with a figurative hypothefis, we could give one on the principle of filration that is very pretty, and pat to the purpofe, of glafs coated, and charged and difcharged by condusting canals.

With refpect to the fuggeltion of this theory by Volta's theory of electric influences, and the ignorance of naturalits before that time of the true fate of things, we mult obferve, that Mr Rufel propofed the fame analogy to the conlideration of his hearers many years before; and it was very generally known. The electric influences had been fully detailed by Epinus and Wilcke in 1759 , and applied with peculiar addrefs and force of evidence by Mr Cavendifh before 177 I ; and they were defcribed nearly in the fame way by Lane, Lichtenberg, and others.

And with refpect to Mr Volta's general principle, which Mr de Luc prizes fo highly, and by which he explains every thing, we mult obferve, that it is not true as a phenomenon in electricity; but, on the contrary, the politive ßlate of a body is rendered fionger, or more remarkable, by inducing the negative flate on a neigbbouring body. See $n^{\circ}$ 52. and 66. Mr Volta was milled by the appear ances of the electrophorus, which had engaged all his attention, and modelled all his notions on thefe fubjects. His obfervations had been confined to diks; and though thefe are excellent inftruments for producing very fenfible effects, they are quite unfit for examining the general nature of electric influences. Even without much knowledge of dynamics, a perfon muft perceive that the action of their different parts on the electrometer may be very different, by reafon of their different pofitions and diftances from it. Befides the electrometers of the apparatus deferibed by Mr de Lac in feet. $44^{5}$. \& c. did not indicate the real condition of the difks to which they were attached, but the condition of the remote
(A) We may here afk, How comes there to be fuch a quantity of elearic matter already lodged in B ?-Is it benumbed ? or in what thate is it?
remote ends of overcharged conductors of confiderable length. Therefore, although all the electrometers fell lower when the other group of diiks was brought near, the pofitive fate of the nearelt difk was greatly augmented. The mof unexceptionable apparatus for this purpofe would be a row of polifhed balls on infulating flands, placed in contact, the whole charged pofitive; and when another fuch group, or a long body, is brought near, let the balls be feparated at once, and examined apart by a very fmall electrometer, made in the form of our figure 8. We prefume to fay that, if the other group is properly managed, and made to communicate thoroughly with the ground, the pofitive electricity of the balls nearef to it will be found greatly augmented, and that every one of them will be found in that precife fate of electrification that is pointed out by the Æpinian theory. Mr de Luc has made and narrated the experiments with the difks, and the curious figures obferved by Lichtenbergh, with great judgment and fidelity; and they are clafical and valuable experiments for the examination of the theory. We may here mention a very neat way of executing the apparatus of balls, which was practifed by a young friend who was fo kind as to make the experiments for us, when our thoughts were turned to Mr de Luc's theory. Each ball was mounted on a flender glafs rod varnifhed. The lower end of the falk was fixed in a little block of wood which had a fquare hole through it, by which it flided fleadily along a horizontal bar of mahogany, fupported at the ends about an inch from the table. The balls werc made to feparate at once, and equally, from each other, by a chequer-jointed frame, fuch as is feen in the toy-fhops, carrying a company of foot foldiers, who open and clofe their ranks and files by pulling or pufling the ends of the frame. Taking out the pins of the middle joints of this checquered frame-work, and widening the holes for receiving the glafs falks, it is plain, that all the balls will feparate at once, in the very fate of electricity in which they were when in the neighbourhood of the non-infulated group. This apparatus confifted of fix balls. We found the ball next the other group much more ftrongly politive than before bringing that group near, and it was generally the third ball which feemed equally electric in both fituations. We added nine balls more, connecting the whole by a fimilar contrivance, and found it a moft inftructive apparatus for the theory of the diftribution of the electric fluid. We wifh that it had occurred to us when the $\mathrm{n}^{\circ} 62$. \&c. were under confideration.

With refpect to the condition in which the electric matter is faid to be lodged in the fide A of the coated pane, where Mr de Luc fays that it is fixed, (engourdi), in the non conduring furface (which condition Mr de Luc confiders as characieriftic of fuch fubtances), we muft fay that the defription of its flate is by no means agreeable to what we have obferved. The powers of this elearic matter are no more benumbed or enervated (it is a very unphilofophical phrafe), than if it were in a conducting body at the fame difinance from the oppofite coating. If coatings be applied to a block of glafs of two or three inches in thicknefs, and if the clectrification be fo moderate that it would not fly from the one coating to the other when the glafs is removedno fenfible difference will be found between the elec. tricity of the two coatings with or without the glafs.

Suppl. Vol. I.

The electric matter in the fide $A$ has not its powers engourdi; they are balanced by the powers of the lide B. But how will Mr de Luc explain the charging a pane negatively? How will he bring off a quantity of electric matter, greater (according to his own account) than what will be benumbed on the other fide? Nay, we muft afk, where does he find it? Is there a quantity already benumbed there? What is to revive it ?

Let us now confider a little the confitution of the ingredients of this electric fluid, by which all thefe things are brought about. And in doing this, let us banifh, when poffible, all figurative language; and, in the precife and dry phrafeology of dynamics, let us fpeak of the motion of fingle particles of the eleatric fluid, deferent fuid, and electric matter. By exp;anfin* porwer, mult certainly be meant fuch a power as that by which air, gafes, inflamed gunpowder, fteam, and the like, enlarge their bulk, and which is clearly manifetted as a mechanical preffure, by burfing veffels, impelling bullets or piftons, \&cc. as well as by the actual enlargement of the bulk of the fluid. We have no other indications of its being a force; and therefore our notions of its mode of acting mult be derived folely from what we underfand of this power in air or the other fluids. Newton's Principia are our authority for faying, that all that we know of it is, that it acts as a number of corpufcles would act, which repel each other with a force inverfely proportional to their difances; this action not extending beyond the adjoining corpufcle, not even to the fecond. We know a good deal of the propagation of preffure and progreffive motion through fuch a fluid, when it is confined in a veffel or fyftem of veffels, of any form, and fome few fimple circumfances which take place in the elaftic undulations which may be excited and propagated through it. We have but a very indifing notion of the motions which one mafs of fach a fluid will produce in another mafs, when both are at liberty to expand. This is very indiftinet ; but we are certain that it will be like the motion of two maffes of air blown or driven againf each other. Now thefe electric fluids, by their expanfive powers, muft act like thofe others with which we are more familiarly acquainted. And here we venture to fay, that the appearances in electricity are fo far from being like thefe, that we cannot imagine any thing more remarkably different. We fhall mention but one thing. Every mark that we have for the prefence of elearic fuid obliges us to grant, that in an overcharged body it is crowded in. to the external furface, fo that the quantity has little or no relation to the quantity of matter in any body, but merely to its furface. This is quite unlike air, or any other expanfive fluid, which is uniformly diftribu. ted through the whole fpace comprehended by the furface which bounds it. We never faw any thing like freams of this elefric fuid, impelling, or any way act. ing on each other, except in the transference by fparks; and there it was indeed like the motions of air, for it was not elearic fluid, nor eleatric matter, but elearififed air.

Let us next confider the tendencies by which the relations of thefe expanfive fluids to other oodies are produced, and the eleftric motions are faid to be explained. We oblerve that Mr de Luc avoids the ule of the words attrafion and repulfion, fo much cmployed by the Britith philofophers. He confiders thefe tendencies as determinate impulfions, and adopts the dofirine of $L_{e}$. 4 X

Sage

## E L E C T R I C I T Y.

Seg: of Geneva, who has not only laid Newton under great obligations, by a mechanical explanation of gravity, but has alfo explained expanfion, elafticity, chemical afinity, and all fecific tendencies, to the fatiffaction of the molt eminent mathematicians. To fuch only Mr de Luc profefles to addrefs himfelf, who are not contented with a doctrine which fuppofes bodies to at where they are not. But, unfortuately, Mr le Sage has never obliged the world with this explanation. We are not moft eminent mathematicians; but we are aide to prove, that Mr le Sage's favourite theorem, men. tioned by Mr de Luc in 9157,158 , as demonftrated by MI Prevof, the editor of Lucrece Neutonien, is a complate dereliction of the firl principles of Mr le Sage, and is alfo inempatible with mechartical laws. Mr de Luc fhould have given a demoniltration of the theorem on which all his fyttem retted; otherwife it is only re. viving "dixit philofophus, ergo verum.".

But let us lee what thefe tendencies perform. Mr de Luc fays, that the fluid, letting out from a body by its expanfive power, would move in a fraight line with inconceivable velocity, and would inmediately defert even this globe, were it not defected by its tendency to other bodies. We do not fee whence this immenfe velocity is derived. But let it go off; it is deflected from its reailineal courfe by its tendency to fome conducting body, which it reaches, but cannot or does not enter ; and therefore nual cozzinually circulate round it, as the planets circulate round the jun, following its outline, if not too abrupt, but flying off from all points in the direation of the axis of the point, \&c. Here we are at home, for this is a plain dyinamical problem of central forces. All that we fhall fay on this head is, that Mr de Luc las certainly not confidered the planetary motions with attention, when he hazarded this very comprehenfive propofition. If he will take the trouble to do this, he will fee that every part of it is inconfifent with the acknowledged liws of mechanifm, and that the motions are abflutely impolfible. Befides, we know that it will not fly off from a hundred points placed together, which is a till more abrupt outline, if they do not project beyond the brim of a pit in which they fand; yet this pit only makes the outline more abrupt. We farther believe, that no perfon can form to himfelf any ditinct notion of fuch circulations round every condusting body; they will be more numerous, and infnitely moreconfured and jarring, than all the vortices of Des Cates. How can fuch motions take place round a bunch of brafs wire buried in fealing.wax? Yet he muft grant that they really happen there? or what prevents the eleilric fluid from being firained clear of all electric matter in paling thro' the air?

We would alfo afk, why the tendency is always from the lor'y containing mogt if the fluid to that containing lealt? It is not enough to fay that it is fo; this would only be contriving a thing to fuit a purpofe; a reafon fhould be given if we pretend to explain. Now the tendency to a diftant body is to the mater in that body, without any relation to the fluid in it, or in the body from which it came.

On the whole, we cannot think this theory is any thing but telling a Aory of ideal beings, in very figurative language, which gives it fome animation and interen. The different affinities, tendencies, and powers, are only ways of exprefling certain fuppofedevents, and
fuited to thofe events; but it gives no explanation of the objerved mechanical phenomena of electricity, the wing from acknowiedged principles that they mult be fo.

What a difference between this laboured and intricate mech.aniim, and the fimple, perficuous and diftin? theory of Rpinus! Even Mr Ruifel's explanation is more intelligible, and more applicable to the motions which are really obferved. That gentlemans faw the neceflity of confidering them as the fubjects of mechani. cal difcufion, and that all that was wanted was to find out what law of diftant astion would tally with the phenomena. The Scotch philofopher was careful to warn his hearers that he only propofed a conjeçure. The Swede calls his performance Tentamen Theorix, \&ac. and begins and concludes it with exprefly faying, that it is only a bypothofis. The Englifh nobleman calls his diflertation an Altempt to explan fome of the phenomena, \&c. None of thefe philofophers call their works a system, which comprehends all theories, whether th.t of Volta, or of any other fuccelifulinquirer.

We hope to be excufed for treating to largely of this fubject. It Aruck us as a very proper example of the bad confequences of indulging in figurative language. It mult be very feducing, when fo fcrupulons and fo eminent a philofopher as Mr de Luc is led afray by it.

We conclude this long article by obferving, that whatever may be the fatc of Mr Epinus's hypothetical theory, his clafififcation of the facts, and his precile determination of the mechanical plenomena to be expected from any propofed fituation and condition of the fubitances, will ever remain, and be an unerring direction in future experiments; and the whole is an illurtrious feecimen of ingenuity, addrefs and gnod reafoning. We hope to make this fill more evident, when we apply it to the quiet and manageable phenomena of Magnetism

Pondere et nensurus.

## APPENDIX;

CONTAINING AN ABSTRACT OF MR COULOMB'S EXPERIMENTS.
Mr Coulomb in the Mom. del. Acad. de Paris for 1786, relates ieveral experiments made for afcertaining the difpofition or dilltibution of the electric fluid in an overcharged body. Their general refults were,
I. That the fluid is diftributed araong bodies according totheir figure, without any elective affinity to any kind of fubfance.

For when a ball, or body of conduaing matter, and of any thape, is electrified to any particulardegree, as indicated by his electrometer, if it be touched by another equal and fimilar bedy, fimilarly fituated in refpect of the touching points, the electricity is always reduced to $\frac{1}{2}$.
2. In an overcharged conduating body, the fluid diffufes itfelf entirely along the furface, without penetrating into the interior parts.

The conducting body AB (fig. 37.) had pits $a, b$, \&c. made in various parts of its furface. They were half an inch in diameter, and fome of them $\frac{T}{T}$ th, others, $r^{2}$ ths, others $\frac{3}{T_{u}}$ ths, 3 cc . in depth. c reprefents the edge of a fmall circle of gilt paper, $\frac{7}{5}$ th of an inch in diameter, fixed perpendicularly on the end of a fine
thread

## E L E C T R I C I T Y.

thread of gum lac. The body was electrified and touched with this little ele:iroicope, by letting it flat down on the furface. The circle $c$ was then prefented to an eleatrometer which moved 90 degrees by a force not exceeding roredt $^{\text {th }}$ of a French grain. When this contact was made with the even furface of the condusor, it was ftrongly electrified, and particularly when it touched any eminence, or the ends of long cylinders, \&ic. The paper being exccedingly thin, and placed in full contact, it may be fuppofed to bring ofl with it the quantity of fluid correfponding to that part of the furface, or rather a greater quantity. But when it was made to touch the bottom, even of the flallowell of there pits, it did not affee the electrometer in the lealt.

He demoniltrates the following elementary theorem :
The attraction or repulfion being fuppofed to be proportional to the inverfe of any power $m$ of the difance; that is, being as $\frac{1}{x m}$ : if $m$ be greater than 3 , the action of all the maffes of fuid which are at a finite diflance is nothing in comparifon with the alaion in contait ; and therefore the fluid mult be uniformly diffufed, in the fame way as if each particle acted only on the adjoining particles.

But if $m$ be lefs than 3, for example if $m$ be 2 , as feems to be the cafe in electricity, the adion of all the maffes at a finite diftance is not infinitely fmall in comparifon with the action in contak, and the sedundant fluid mult go toward the furface, and no redundant fluid will be retained in the interior parts. The demonftration is to this effect.

Let A a BF (fig. $3^{S}$ ) be a perfectly condueting body of :uny flape, and let $\begin{gathered} \\ \text { a } a\end{gathered}$ be a thin fice feparated from the reil by the plane $d c$; let $d c e$ be ofrecifely equal and fimilar to $d a e$, and let $a b c$ be perpendicular to the feparating plane; then the attion of all the particles in the thin flice a a $e$ ( when eltimated in the direction $a b$ ) on the particle $b$, mult balduce the astion of all the relt of the fluid in the body; for $b$ is fuppofed to be at ref. Now, as the law of continuity will te obferved in any diftribution of the fluid, througb the eviole body, it is plain that, by taking a $b$ fufficiently fmall, the diffictence of denfity at $a$ and at $c$ may be infinitely fmall; therefore the asi- $n$ of the fluid in $d$ a $e$ will be infinitely near to an equiliorium with the action of $d c e$; and the astion of the fleid in the reft of the body on the particle $b$ will be infinitely fmall. This cannot be, when the action of a mafs of fluid at a finie dillance is not infinitely fmall in comparifon with the ation in contad, unlefs we duppofe that the quantity of fluid at a finite diftance is alfo infinitely fmali, or nothing; that is, unlefs the whole redundant fluid is conllipated on the furface, and the interior parts are merely faturated.

The preceding propolitions are quite analogous to propolitions in Mr Cavendifh's differtation in the Philofophical Tranfactions for 1771.

In the Memoirs of the fame Academy for $1787, \mathrm{Mr}$ Coulombendeavours to afcertain the denfity of the fluid in different bodies which touch each other. When the bodies do not differ extremely in magnitude, he determines this by the immediate application of them to the clearometer; but when one is extremely fmall in comparifon with the other, he firit determines the force of the large body, and then tonches it 20 or 40 times with the fmall one, till the force of the large body is re-
duced to $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}$, \&c. The general refult was, that when the furfaces of the fpheres had the proportion espreffed in the firlt column of the following table, then the denfity in the fmill one had the proportion expreffed by the numbers of the fecond column, and never attained the magnitude 2.


This is extremely different from the proportions which obtain when the two fpheres communicate by very long flender canals, which he found exactly conformable to the determinations of the theory: but in Mr Coulomb's experiments the fpheres touched each other, and had no other communication.

He then endeavours to afcertain the denfity of the fluid in the different parts of the furface of thefe touching fipheres, in order to obtain fome experimental knowledge of the diftribution. He tonched them (whule in mutual enntact) with the little paper circle, and examined its electricity by his eleftrometer, and made his eflimation, on the fuppofition that it brouglit off onehalf cf the electricity of the touched part.

When the globes weee equal, he found the denfity to be $o$ in the point of contact, and fearcely fenfible till he took the paper 30 degrees from the point of contact. From this it increafed rapidly to $60^{\circ}$; flow: ly from thence to $90^{\circ}$; and from thence to $180^{\circ}$ it was almol uniform. The denfities were nearly.

0	-	-	at	-	$0^{\circ}$.	
1	-	-	-	-	-	30.
4	-	-	-	-	-	60.
5	-	-	-	-	-	90.
6	-	-	-	-	180.	

He allo found, that the more the globes differed in bulk, the more is the denfity changed in the fmall globe, and it is the more oniform in the great one, increafing rapidly from 0 , at the point of contast, to about $\eta^{\circ}$, and beyond this being fenfibly uniform.
Hence we may conclude, that the eleatricity is diffufed with almoft perfect uniformity in a globe communicating with another at a great diftance by a flender canal (as Mr Cavendifh has denıonilrated) ; while, from the reafoning employed before, it is probable that it is alfo uniformly diffured all along the canal; and therefore, that the quantities in two fuch globes are very nearly as the diameters, and the denfities inverfely ats the diameters, as Mr Cavendifh demonfrated, on the fuppolition that the 月uid in the canal is incompreflible.
He found that a fmall globe, placed between two equally large ones, fhewed electricities of tiae fame kind with that of the other two, when the radius of the great one was not more than five times that of the middle one, but fhewed no elefricity when the difproportion was greater.
When tirree equal globes were in contak, the denfity of fluid in the middle globe was ${ }_{3}, 34$ - of that of the other two. A fimall globe-being removed to a very fmall diftance from an overcharged great one, afier baving been in contai, thewed oppofite electricity in the fronting point ; when a litle farther off, it was neutral; and beyond this, it was overciarged.

## E L E C T R I C I T Y.

The diameters being II and 8, the fronting point of the fmall one was negative till the diftance was I; here it as neutral, and when it was removed farther, it was pofitive. When the diameters were II and 4 , the fmall globe was negative till their diftance was 2 , where it was neutral. When the diameters were 11 and 2 , the dillance which rendered the fmall globe neutral in the fronting point was $2 \frac{2}{2}$.
All thefe facts are perfectls conformable to a mathematical deduction, from the fuppofition that the redundant fluid is fpread over the furface, and that the interior points are neutral. If any fors of doubt thould remain in the minds of thofe who are not converfant in fuch difculfions, it mult be greatly removed by the fact, that it is quite indifferent whether one or both globes be folid, or be an extremely thin fhell.
When an electrified body is touched with a long wire, and by another of equal diameter and length, coated to any thicknefs with lac or fealing-wax, the two wires take off precifely the fame quantity of electricity. This was demonftrated by touching a globe repeatedly till the electricity was reduced to $\frac{1}{2}$.
Hence we mult conclude, that the elearic fuid does not form active atmofpheres around bodies, by the astion of whofe particles in contact (mathematical or
phyfical) the phenomena of attraction and repulfion are produced, but by the action of the fluid in the body, agreeable to the theory of Æpinus.

Such are the obfervations of Mr Coulomb. They are extremely valuable, becaufe they confirm in the completeft manner the legitimate confequences of the theory.

We think that the materiality of that which is transferred from place to place in the exhibition of eleetric phenomena, is greatly confirmed by fome obfefvations of Mr Wilfon's in the Pantheon. When a fpark was taken from the whole of the long wire extended in that valt theatre, the fenfation was fo different from a fpark which conveyed even a much greater quantity of fuid from a pretty large, but compact, furface, that they could hardly be compared. The laft was like the abrupt twitch with the point of a looked pin, as if pulling off a point of the fkin; the fpark from the long wire was more like the forcible piercing with a needle, not very fharp, breaking the fkin, and puthing it inward. We had this account from the Doator in converfation. He afcribed it, with feeming jultice, to the momentum acquired by the fluid accelerated along that great extent of wire.

Animal Electricity. See Galvanism, in this Supplement.

## END OF THE FIRST VOLUME.

## ERRATA.

Page 141. col. 2. laft 5 lines, and 142. col. 1. line 1. dele; and in their place read, "which though Lord "Auchinleck and his fon took the fame fide, they took it with very different degrees of ardour. The judge " faw not the propriety of illuminating his windows, when the caufe was finally decided by the Houfe of "Peers; and to compel him to illuminate, the advocate got poffefion of a Chinefe gong.
Page 228. col. 2. line 53. For "Henry VI." read "Henry II." 301. col. 1. line 30. For fulphuret read fulphat.

Chemistry-Index, page 449. col. i. line 2. After 466 add, " and Part 3. chap. 2. fect. if.
Page 512. col. 2. line 52 . For "Diderot," read "D'Alembert""

## DIRECTIONS for placing the PLATES.



University of California SOUTHERN REGIONAL LIBRARY FACILITY

Return this material to the library from which it was borrowed.


THE LITRRARY


[^0]:    Soprl. Vol. I.

[^1]:    $\qquad$
    

[^2]:    

[^3]:    

[^4]:[^5]:    

[^6]:    - 

[^7]:    

[^8]:    *Td. ibid.
    $\dagger$ Marquer,
    ibid.

[^9]:    
    

[^10]:    

