

RAY'S MATHEMATICAL SERIES.

RAY'S SERIES

SURVEYING

AND

Higher Arithmetic.

Sew Elementary Algebra.

NAVIGATION,

Geometry and Trigonometry, by En

BY DELON Description Parase Press

Ray's Arithmetical Koy (To Environments) Rey to Ray's Higher Arithmetics

WITH A PRELIMINARY TREATISE ON

TRIGONOMETRY AND MENSURATION,

A. SCHUYLER, M. A.,

Elements of Astronomy. Br S H Passon, M. Follow

Professor of Applied Mathematics and Logic in Baldwin University; Author of Higher Arithmetic, Principles of Logic, and Complete Algebra.

Rey to Hay's New Elementary and Migher Algebras,

mation! Text-Boolis, with Prints and other information concerning

VAN ANTWERP, BRAGG & CO., 137 WALNUT STREET, 28 BOND STREET, CINCINNATI. NEW YORK.

RAY'S SERIES,

AND A SALEN PRODUCT TERMER

EMBRACING

A Thorough and Progressive Course in Arithmetic, Algebra, the Higher Mathematics.

Primary Arithmetic. Intellectaal Arithmetic. Rudiments of Arithmetic. Practical Arithmetic. Higher Arithmetic. Test Examples in Arithmetic. New Elementary Algebra. New Higher Algebra.

TA 545

Plane and Solid Geometry. By ELI T. TAPPAN, A.M., Pres't Kenyon College. 12mo, cloth, 276 pp.

Geometry and Trigonometry. By ELI T. TAPPAN, A.M. Ires't Kenyon College. 8vo, sheep, 420 pp.

Analytic Geometry. By GEO. H. HOWISON, A.M., Prof. in Mass. Institute of Technology. Treatise on Analytic Geometry, especially as applied to the Properties of Conics: including the Modern Methods of Abridged Notation.

Elements of Astronomy. By S. H. PEABODY, A.M., Prof. of Physics and Civil Engineering, Amherst College. Handsomely and profusely illustrated. 8vo, sheep, 336 pp.

KEYS.

Ray's Arithmetical Key (To Intellectual and Practical); Key to Ray's Higher Arithmetic; Key to Ray's New Elementary and Higher Algebras. GIFT OF

DV. HORACE IVIE The Publishers furnish Descriptive Circulars of the above Mathematical Text-Books, with Prices and other information concerning them.

EDUCATION DEPT

1000000000000000

Entered according to Act of Congress, in the year 1864, by SARGENT, WILSON & HINKLE, in the Clerk's Office of the District Court of the United States for the Southern District of Ohio.

Nearly twenty years ago the Publishers made the following announcement: "Surveying and Navigation; containing Surveying and Leveling, Navigation, Barometric Heights, etc."

To redeem this promise, the present work now appears.

It is customary to preface works on Surveying by a meager sketch of Plane Trigonometry, but it has been thought best to include in this work a thorough treatment of Plane and Spherical Trigonometry and Mensuration. These subjects have been treated in view of the wants of our best High Schools and Colleges.

Certain modern writers have defined the Trigonometric functions as ratios; for example, in a right triangle, the sine of an angle is the ratio of the opposite side to the hypotenuse, etc.

The historical method of considering the sine, co-sine, tangent, etc., as linear functions of the arc, explains the origin of these terms—avoids the ambiguity of the word *ratio*; explains how the logarithm of the sine, for example, can reach the limit 10, which would be impossible if the limit of the sine itself is 1, and is much more readily apprehended by the student.

The advantages in analytic investigations resulting from defining these functions as ratios have been secured in the principles relating to the Right Triangle, Art. 64.

Each of the circular functions has, in the first place, been considered by itself, and its value traced, for all arcs, from 0° to 360°.

(iii)

Then follows the solution of triangles, right and oblique, the general relations of the circular functions, the functions of the sum or difference of two angles, and a variety of interesting practical applications.

It is hoped that Spherical Trigonometry has been made intelligible to the diligent student. More than ordinary care has been given to the development of Napier's principles, and to the discussion of the species of the parts of both right and oblique spherical triangles, Arts. 126, 129, 145, 148, 151.

Mensuration, a subject at once interesting and practically important, has been discussed at length, and formulas have been developed instead of rules for the solution of the problems.

In the Surveying, the instruments are first represented and described, and the methods of making the adjustments given in detail.

The Author takes this opportunity to express his obligations to Messrs. W. & L. E. Gurley, Manufacturers of Surveying and Engineering Instruments, Troy, N. Y., who have kindly granted him the use of their Manual for the delineation and description of the instruments. In consequence of this courtesy, much better drawings and descriptions have been made than would otherwise have been possible.

The instruments themselves should, however, be accessible to the student, who should study them in connection with the descriptions in the book, and learn to use them in practical work, guided by a competent instructor.

The Rectangular method of surveying the Public lands, now brought to great perfection under the direction of the Government, has been minutely explained, and illustrated by field notes of actual surveys. In this portion of the work, the United States Manual of Surveying Instructions has been taken as authority, and thus the authorized methods, which must form the basis for subsequent surveys, have been made accessible to the student.

The methods of finding the true meridian and the variation of the needle have been given at length; also specific direc-

tions for finding corners, taking bearings, measuring lines, recording field notes, and plotting.

In addition to the ordinary method of finding the area, a new method, developed by E. M. Pogue, of Kentucky, is given in Art. 304. This method has the merit of giving always a uniform result from the same field notes, and thus avoids disputes about the different results of the ordinary method, unavoidably attending the various distribution of errors by different calculators.

The methods of supplying omissions are explained and illustrated by examples.

Laying out and dividing land, operations admitting of an unlimited variety of applications, have been treated in view of the wants of the practical surveyor. The subject is also full of interest to the student, who can not fail to receive from it new views of the resources of mathematical science.

Leveling, the construction of railroad curves, embankments and excavations, the method of making Topographical surveys, with the authorized conventional symbols, Barometric heights, etc., have been explained and illustrated by diagrams and examples.

It has been thought best to give a clear, elementary treatment of Navigation, not only on account of those who may desire to pursue the subject further, but for the sake of gratifying the wishes of intelligent persons who may desire to know something of Navigation. The limits of the work, however, forbid the discussion of Nautical Astronomy. The examples in Navigation have been selected from the English work of J. R. Young.

The tables of Logarithms, Natural and Logarithmic sines, etc., have been carried only to five decimal places, and for the purposes intended will be found practically better than tables to six or seven places.

The Traverse table has been thrown into a new form, at once condensed and convenient.

These tables have been compiled by Mr. Henry H. Vail, and

by him compared with Babbage's and Wittstein's tables, then by the Author with Vega's tables to seven decimal places. It is hoped that by this double comparison perfect accuracy has been attained.

The table of Meridional Parts, taken from "Projection Tables for the use of the United States Navy," prepared by the Bureau of Navigation, and issued from the Government Printing office, was calculated in the Hydrographic office for the terrestrial spheroid, compression 29.5, 152.8. This table, now for the first time published in a text-book, is believed to be more correct than those in general use.

The Author takes pleasure in acknowledging his obligations to Prof. E. H. Warner for critical suggestions and acceptable aid in reading proof and testing the accuracy of the answers.

With the hope that the book will be attractive and useful to the student, teacher, and practical surveyor, it is sent forth to accomplish its work.

A. SCHUYLER.

BALDWIN UNIVERSITY, BEREA, O., June 12, 1873.

INDEX.

TOPININ

Set and the set of the									PAGE
INTRODUCTION	•	•	•	•	•	•	•	•	9
Logarithms		•			•	•	•	•	9
Table of Logarithms		•	•	•		· .	•	•	12
Multiplication by Logarithm	IS	•	• •			344	•	•	18
Division by Logarithms .						•		•	19
Involution by Logarithms .					. 12			•	21
Evolution by Logarithms .						14.6			22
TRIGONOMETRY .	-		•		- 1814	tires w		-	23
Plane Trigonometry									23
Trigonometrical Functions .									27
Table of Natural Functions									41
Table of Logarithmic Funct	ions								43
Right Triangles									47
Oblique Triangles	-	123				. 5			55
Application to Heights and I	Dista	nces							69
Relations of Circular Function	ons								72
Applications									92
SPHERICAL TRIGONOMETR	Y								108
Right Triangles									109
Oblique Triangles									124
Mensuration									150
Mensuration of Surfaces · .									150
Mensuration of Volumes .									174
SURVEYING									185
Instruments									185
Survey of Public Lands .									216
Variation of the Needle .		. 201							265
Field Operations		1							274
Preliminary Calculations .	•								284
Area of Land									296

(vii)

INDEX.

										PAGE
Supplying Omissions								1		308
Laying Out Land										313
Dividing Land .										318
Leveling										340
Surveying Railroads			TIT	-	TI					351
Topographical Surveying	ng				•	•.				369
Barometric Heights				•						375
NAVIGATION									•	381
Preliminaries .				•						381
Plane Sailing .							det .			385
Parallel Sailing .								it and		389
Middle Latitude Sailing	g									390
Mercator's Sailing		1.								393
Current Sailing .					• 00			1		398
Plying to Windward										400
Taking Departures										402
TABLES							1000	in the		405

Mathemation of Sections. Mathemation of Voltanes SELEVENTIO.

1

LOGARITHMS.

1. Definition.

A logarithm of a number is the exponent denoting the power to which a fixed number, called the base, must be raised in order to produce the given number.

Thus, in the equation, $b^x = n$, b is the base of the system, n is the number whose logarithm is to be taken, and x is the logarithm of n to the base b, which may be written: $x = \log_b n$.

Any positive number, except 1, may be assumed as the base, but when assumed, it remains fixed for a system; hence, there may be an infinite number of systems, since there may be an infinite number of bases.

2. Common Logarithms.

Common logarithms are the logarithms of numbers in the system whose base is 10.

$10^{\circ} = 1;$		by def., log	1 = 0.
$10^{1} = 10;$		by def., log	10 = 1.
$10^2 = 100;$	4. • .	by def., log	
$10^3 = 1000;$		by def., log	1000 = 3.
Dia Diana		A.A. CONGRET	Date

Hence, In the common system, the logarithm of an exact power of 10 is the whole number equal to the exponent of the power.

(9)

3. Consequences.

1. If the number is greater than 1 and less than 10, its logarithm is greater than 0 and less than 1, or is 0

100, its logarithm is greater than 10 and less than 10 is 1 + a decimal.

3. In general, if the number is not an exact power of 10, its logarithm, in the common system, will consist of two parts—an entire part and a decimal part.

The entire part is called the *characteristic* and the decimal part is called the *mantissa*.

4. Problem.

To find the laws for the characteristic.

Let (1) $10^{z} = n$; then, by def., log n = x. But (2) $10^{1} = 10$.

(1) \div (2) = (3) $10^{x-1} = \frac{n}{10}$; then, by def., $\log \frac{n}{10} = x - 1$. $\therefore \log \frac{n}{10} = \log n - 1$.

Hence, The logarithm of the quotient of any number by 10 is less by 1 than the logarithm of the number.

Let us now take the number 8979 and its logarithm 3.95323, as given in a table of logarithms, and divide the number successively by 10, and for each division subtract 1 from the logarithm of the dividend, then we have,

Log	8979 = 3.95323.	Log	.8979	=1.95323.
66	897.9 = 2.95323.	"	.08979	$=\overline{2.95323}.$
66	89.79 = 1.95323.	"	.008979	$=\overline{3.95323}.$
66	8.979 = 0.95323.			

The minus sign applies only to the characteristic over which it is placed.

The mantissa is always positive, and is the same for all positions of the decimal point.

An inspection of the above will reveal the following laws:

1. If the number is integral or mixed, the characteristic is positive and is one less than the number of integral figures.

2. If the number is entirely decimal, the characteristic is negative and is one greater, numerically, than the number of O's immediately following the decimal point.

5. Exercises on the Characteristic.

1. What is the characteristic of the logarithm of 7?

2. What is the characteristic of the logarithm of 465?

3. What is the characteristic of the logarithm of 4678?

4. What is the characteristic of the logarithm of 34.75?

5. What is the characteristic of the logarithm of .65?

6. What is the characteristic of the logarithm of .0789?

7. What is the characteristic of the logarithm of .00084?

8. If the characteristic of the logarithm of a number is 2, how many integral places has that number?

9. If the characteristic of the logarithm of a number is 5, how many integral places has that number?

10. If the characteristic of the logarithm of a number is 1, how many integral places has that number?11. If the characteristic of the logarithm of a num-

ber is 0, how many integral places has that number?

12. If the characteristic of the logarithm of a number is negative, is the number integral, decimal, or mixed?

13. If the characteristic of the logarithm of a number is $\overline{4}$, how many 0's immediately follow the decimal point?

14. If the characteristic of the logarithm of a number is $\frac{1}{2}$, how many 0's immediately follow the decimal point?

15. If the characteristic of the logarithm of a number is $\overline{1}$, how many 0's immediately follow the decimal point?

TABLE OF LOGARITHMS.

6. Description of the Table.

The table of logarithms annexed gives the mantissa of the logarithm of every number from 1000 to 10900. The characteristic can be found by the preceding laws.

It follows, from Art. 4, that the mantissa of the logarithm of a number is the same as the mantissa of the logarithm of the product or quotient of that number by any power of 10. Thus:

Log
$$12 = 1.07918$$
.
" $120 = 2.07918$.
" $.012 = \overline{2.07918}$.

Hence, we can determine from the table the logarithm of any number less than 1000. Thus, the mantissa of the logarithm of 8 is the same as that of the logarithm of 8000.

In the table, the first three or four figures of each number are given in the left-hand column, marked N. The next figure is given at the head and foot of one of the columns of mantissas.

TABLE OF LOGARITHMS.

The mantissas, in the column under 0, are given to five decimal places. The first and second decimal figures of this column are understood to be repeated in the spaces below, and to be prefixed, across the page, to the three figures of the remaining columns.

When the third decimal digit changes from 9 to 0, the second is increased by the 1 carried; and the corresponding mantissa, and all to the right, commence with a smaller figure, to indicate that the first two decimal figures, to be prefixed, are to be taken from the line below.

The last column, marked *D*, contains the difference of two successive mantissas, called the *tabular* difference.

7. Problem.

To find the logarithm of a given number.

1. Find the logarithm of 3675.

The characteristic is 3. Opposite 367, in the column headed N, and under the column headed 5, we find 526, to which prefix the two figures, 56, in the column headed 0, and we have for the mantissa .56526.

 $\therefore \log 3675 = 3.56526.$

2. Find the logarithm of 76.

The characteristic is 1, and the mantissa is the same as that of 7600, which is .88081.

 $\therefore \log 76 = 1.88081.$

3. Find the logarithm of .004268.

The characteristic is $\overline{3}$, and the mantissa is the same as that of 4268. Looking opposite 426, and under 8, we find 022, of which the 0 is a small figure. Prefixing

63, from the line below, in the column headed 0, we have for the mantissa .63022.

 \therefore log .004268 = 3.63022.

4. Find the logarithm of 109684.

The characteristic = 5. The mantissa of log 1096 = .03981Tab. diff. is 40; and $40 \times .84 = 34$

 $\log 109684 = 5.04015$

The reason for multiplying the tabular difference by .84 will be apparent from the following:

The difference of the logarithms is 40 hundredthousandths, and the difference of the numbers is 100; but the difference of 109600 and 109684 is 84, which is .84 of 100; hence, the difference of the logarithms of 109600 and 109684 is .84 of 40 hundred-thousandths, which is 40 hundred-thousandths $\times .84 = 34$ hundredthousandths, nearly.

It is assumed that the difference of the logarithms of two numbers is proportional to the difference of the numbers, which is approximately true, especially if the numbers are large.

5. Find the logarithm of 123.613.

The characteristic = 2. The mantissa of log 1236 = .09202 Tab. diff. is 35; and $35 \times .13$ = 5

 \therefore log 123.613 = 2.09207

The tabular difference is .00035, and $.00035 \times .13 =$.0000455. But since the logarithms in this table are taken only to five decimal places, the two last figures,

14

EXAMPLES.

55, are rejected, and 1 is carried to .00004, making .00005 for the correction.

In general, when the left-hand figure of the part rejected exceeds 4, carry 1.

When the tabular difference is large, as in the first part of the table, there may be small errors. Accordingly, for numbers between 10000 and 10900, it will be better to use the last two pages instead of the first page.

8. Rule.

1. If the number, or the product of the number by any power of 10, is found in the table, take the corresponding mantissa from the table, and prefix the proper characteristic.

2. If the number, without reference to the decimal point or O's on the right, is expressed by more than five figures, take from the table the mantissa corresponding to the first four or five figures on the left, multiply the corresponding tabular difference by the number expressed by the remaining figures, considered as a decimal, reject from the product as many figures on the right as are in the multiplier, carrying to the nearest unit, and add the result as so many hundredthousandths to the mantissa before found, and to the sum prefix the proper characteristic.

9. Examples.

1.	What	is	the	logarithm	of	2347 ?	Ans.	3.37051.
2.	What	is	the	logarithm	of	108457?	Ans.	5.03526.
3.	What	is	the	logarithm	of	376542?	Ans.	5.57581.
4.	What	is	the	logarithm	of	229.7052?	Ans.	2.36117.
5.	What	is	the	logarithm	of	1128737?	Ans.	6.05260.
6.	What	is	the	logarithm	of	.30365?	Ans.	1.48237.
7.	What	is	the	logarithm	of	.0042683?	Ans.	3.63025.
8.	What	is	the	logarithm	of	1245400?	Ans.	6.09531.

10. Problem.

To find the number corresponding to a given logarithm.

1. What number corresponds to logarithm $\overline{2.03262}$?

The mantissa is found in the column headed 8, and opposite 107 in the column headed N. Hence, without reference to the decimal point, the number corresponding is 1078; but since the characteristic is $\overline{2}$, the number is entirely decimal, and one 0 immediately follows the decimal point. Hence, the number corresponding is .01078.

2. What number corresponds to logarithm 2.83037?

Since this logarithm can not be found in the table, take the next less, which is 2.83033, and the corresponding number, without reference to the decimal point, which is 6766.

The difference between the given logarithm and the next less is 4, and the tabular difference is 6, which is the difference of the logarithms of the two numbers, 6766 and 6767, whose difference is 1.

If the tabular difference of the logarithms, 6, corresponds to a difference in the numbers of 1, the difference of the logarithms, 4, will correspond to a difference of $\frac{4}{6}$ of 1; which, reduced to a decimal, and annexed to 6766, will give for the number, without reference to the decimal point, 676666. But since the characteristic is 2, there will be three integral places; hence, 676.666 is the number required.

3. What number corresponds to logarithm 2.76398?

The given $\log = 2.76398$. . . number = 580.737 Next less $\log = 2.76395$. . . number = 580.7

Tab. difference = 8)300 = difference.

37 = correction.

It is necessary to write only that part of the next less logarithm which differs from the given logarithm. Conceive 0's annexed to the difference, and divide by the tabular difference; and annex the quotient to the number corresponding to the next less logarithm.

In practical work abbreviate thus: Let l denote the given logarithm; l', the next less logarithm; n and n', the corresponding numbers; t, the tabular difference; d, difference of logarithms; c, the correction.

4. What number corresponds to logarithm $\overline{1.73048}$?

 $\begin{array}{c} l = \overline{1.73048} & \dots & n = .537625 \\ l' = \overline{1.73046} & \dots & n' = .5376 \\ \hline t = 8)2 = d. & n' \text{ is} \\ \hline 25 = c. & n' \end{array}$

n' is found first, then n by annexing c.

11. Rule.

1. If the given mantissa can be found in the table, take the number corresponding, and place the decimal point according to the law for the characteristic.

2. If the given mantissa can not be found in the table, take the next less and the corresponding number. Subtract this mantissa from the given mantissa, annex O's to the remainder, divide the result by the tabular difference, annex the quotient to the number corresponding to the logarithm next less than the given logarithm, and place the decimal point according to the law for the characteristic.

12. Examples.

1. What number corresponds to logarithm 4.55703? Ans. 36060.

2. What number corresponds to logarithm 3.95147? Ans. 8942.8.

3. What number corresponds to logarithm 2.41130? Ans. .025781.

S. N. 2.

4. What number corresponds to logarithm 1.48237? Ans. -30365.

5. What number corresponds to logarithm 3.63025? Ans. .0042683.

MULTIPLICATION BY LOGARITHMS.

13. Proposition.

The logarithm of the product of two numbers is equal to the sum of their logarithms.

Let $\begin{cases} (1) \quad b^{x} = m; \text{ then, by def., log } m = x. \\ (2) \quad b^{y} = n; \text{ then, by def., log } n = y. \end{cases}$ $(1) \times (2) = (3) \quad b^{x+y} = m n; \text{ then, by def., log } m n = x+y. \\ \therefore \quad \log m n = \log m + \log n. \end{cases}$

14. Rule.

1. Find the logarithms of the factors and take their sum, which will be the logarithm of the product.

2. Find the number corresponding which will be their product.

15. Examples.

1. Find the product of 57846 and .003927.

 $\log 57846 = 4.76228$ $\log .003927 = \overline{3.59406}$

log product = 2.35634, ... product = 227.16.

2. Find the product of 37.58 and 75864.

Ans. 2851000.

3. Find the product of .3754 and .00756.

Ans. .002838.

DIVISION BY LOGARITHMS.

4. Find the product of 999.75 and 75.85.

Ans. 75831.667. 5. Find the product of 85, .097, and .125. Ans. 1.03062.

DIVISION BY LOGARITHMS.

16. Proposition.

The logarithm of the quotient of two numbers is equal to the logarithm of the dividend minus the logarithm of the divisor.

Let $\begin{cases} (1) \quad b^{x} = m; \text{ then, by def., } \log m = x. \\ (2) \quad b^{y} = n; \text{ then, by def., } \log n = y. \end{cases}$ $(1) \div (2) = (3) \quad b^{x-y} = \frac{m}{n}; \text{ then, by def., } \log \frac{m}{n} = x - y. \\ \therefore \quad \log \frac{m}{n} = \log m - \log n. \end{cases}$

17. Rule.

1. Find the logarithms of the numbers, subtract the logarithm of the divisor from the logarithm of the dividend, and the remainder will be the logarithm of the quotient.

2. Find the number corresponding which will be the quotient.

18. Examples.

1. Divide 73.125 by .125.

log	73.125 = 1.86407
log	$.125 = \overline{1.09691}$
log	quotient = 2.76716,

2. Divide 7.5 by .000025.

3. Divide 87.9 by ,0345.

4. Divide .34852 by .00789.

5. Divide 85734 by 12,7523.

 $\begin{array}{ccc} \begin{array}{c} & \text{quotient} = 585. \\ & Ans. & 300000. \\ & Ans. & 2547.824. \\ & Ans. & 44.171. \\ & Ans. & 6723. \end{array}$

ARITHMETICAL COMPLEMENT.

19. Definition.

The arithmetical complement of a logarithm is the result obtained by subtracting that logarithm from 10. Thus, denoting the logarithm by l, and its arithmetical complement by a. c. l, we shall have the formula,

a. c. l. = 10 - l.

The arithmetical complement of a logarithm is most readily found by commencing at the left of the logarithm, and subtracting each digit from 9 till we come to the last numeral digit, which must be subtracted from 10.

Thus, to find the *a. c.* of 3.47540, we say: 3 from 9, 6; 4 from 9, 5; 7 from 9, 2; 5 from 9, 4; 4 from 10, 6; 0 from 0, 0.

 \therefore a. c. of 3.47540 = 6.52460.

20. Proposition.

The difference of two logarithms is equal to the minuend, plus the arithmetical complement of the subtrahend, minus 10.

For, l - l' = l + (10 - l') - 10.

It is convenient to use the a. c. in division when either the dividend or the divisor is the indicated product of two or more factors. Thus, let it be required to find x in the proportion:

 $37.5: 678.5:: 27.56: x; \quad \therefore x = \frac{678.5 \times 27.56}{37.5}.$ $\therefore \log x = \log 678.5 + \log 27.56 + a. c. \log 37.5 - 10.$ $\log 678.5 = 2.83155$ $\log 27.56 = 1.44028$ $a. c. \log 37.5 = 8.42597$ $\log x = 2.69780 \quad \therefore x = 498.656.$

21. Examples.

1. Given 125.5 : .0756 :: x : .0034532, to find x. Ans. 5.7325.

2. Given 843 : x :: 732.534 : .759, to find x.

· Ans. .87346.

3. Given x : .034 :: .784 : .00489, to find x. Ans. 5.451125.

4. Given $x = \frac{32.015 \times .874}{.000216 \times 90257}$, to find x. Ans. 1.4353.

5. Given $.753 \times 12.234 : 87.5 \times 3.7547 :: 56.5 : x$, to find x. Ans. 2014.96.

INVOLUTION BY LOGARITHMS.

22. Proposition.

The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

Let (1) $b^x = n$; then, by def., $\log n = x$. (1)^p=(2) $b^{px} = n^p$; then, by def., $\log n^p = px$. $\therefore \log n^p = p \log n$.

23. Rule.

1. Find the logarithm of the number and multiply it by the exponent of the power, and the product will be the logarithm of the power.

2. Find the number corresponding which will be the power.

24. Examples.

1. Find the cube of .034.

(1) $\log .034 = \overline{2.53148}$ (1) $\times 3 = (2) \log .034^3 = \overline{5.59444}$ $\therefore .034^3 = .000039305$. 2. Find the square of 25.7. Ans. 660.47.

3. Find	the	fourth power of .75.	Ans.	.3164.
4. Find	the	cube of 8.07.	Ans.	525.55.
5. Find	the	fifth power of .9.	Ans.	.59047.

EVOLUTION BY LOGARITHMS.

25. Proposition.

The logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.

Let (1) $b^x = n$; then, by def., $\log n = x$.

 $\sqrt[t]{(1)} = (2)$ $b_{\overline{r}}^{\underline{x}} = \sqrt[t]{n}$; then, by def., $\log \sqrt[t]{n} = \frac{x}{n}$.

 \therefore log $\tilde{v} n = \frac{\log n}{r}$.

26. Rule.

1. Find the logarithm of the number, divide it by the index of the root, and the quotient will be the logarithm of the root.

2. Find the number corresponding which will be the root.

27. Examples.

1. Extract the square root of .75.

(1) $\log .75 = \overline{1.87506}$

(1) $\div 2 = (2)$ log $\sqrt{.75} = \overline{1.93753}$ $\therefore \sqrt{.75} = .86602$. Scholium. $\overline{1.87506} \div 2 = (\overline{2} + 1.87506) \div 2 = \overline{1.93753}$.

 2. Extract the cube root of 91125.
 Ans. 45.

 3. Find the value of $\frac{2}{5} \sqrt{5}$.
 Ans. .89443.

 4. Extract the fifth root of .075.
 Ans. .59569.

 5. Find the value of $\sqrt[3]{\frac{37.5 \times (.78)^2}{12.5 \times 5.9}}$.
 Ans. .676317.

PLANE TRIGONOMETRY.

TRIGONOMETRY.

28. Definition and Classification.

Trigonometry is that branch of Mathematics which treats of the solution of triangles.

Trigonometry is divided into two branches -- Plane and Spherical.

PLANE TRIGONOMETRY.

29. Definition.

Plane Trigonometry is that branch of Trigonometry which treats of the solution of plane triangles.

30. Parts of a Triangle.

Every triangle has six parts-three sides and three angles.

If three parts are given, one being a side, the remaining parts can be computed.

If the three angles only are given, the triangle is indeterminate, since an infinite number of similar triangles will satisfy the conditions.

31. Sexagesimal Division of Angles and Arcs.

The horizontal diameter, O P, called the primary diameter, and the vertical diameter, O' P', called the secondary diameter, divide the circumference into four equal parts, called quadrants. P

O O' is the first quadrant, O' P the second, P P' the third, and P' O the fourth.

A degree is one-ninetieth of a right angle, or of a quadrant.

A minute is one-sixtieth of a degree.

A second is one-sixtieth of a minute.

Thus, 25° 34′ 46″ denote 25 degrees, 34 minutes, and 46 seconds.

An angle, whose vertex is at the center, has the same *numerical measure*, or contains the same number of degrees, minutes, and seconds, as the arc of the circumference intercepted by its sides.

32. Centesimal Division of Angles and Arcs.

A grade is one-hundreth of a right-angle, or of a quadrant.

A minute is one-hundreth of a grade.

A second is one-hundreth of a minute.

Thus, 7^g 24' 40" denotes 7 grades, 24 minutes, and 40 seconds.

1°	$=\frac{10^g}{9},$	$1' = \frac{50'}{27},$	$1'' = \frac{250''}{81}$.	
1 ^g	$=\frac{9^{\circ}}{10},$	$1 = \frac{27'}{50},$	$1^{"} = \frac{81''}{250},$	

Let d, m, s, respectively, denote an angle expressed in degrees, sexagesimal minutes and seconds, and let g, μ , σ , respectively, denote the same angle expressed in grades, centesimal minutes and seconds, then expressing the ratio of the angle to a right angle in each kind of units, we shall have:

 $\frac{d}{90} = \frac{g}{100}, \quad \frac{m}{5400} = \frac{\mu}{10000}, \quad \frac{s}{324000} = \frac{\sigma}{1000000}.$ $\therefore \quad d = \frac{9}{10}g, \quad m = \frac{27}{50}\mu, \quad s = \frac{81}{250}\sigma,$ $\therefore \quad g = \frac{10}{9}d, \quad \mu = \frac{50}{27}m, \quad \sigma = \frac{250}{81}s.$

24

ide, the re-

Let *r* denote the radius, and $\pi = 3.14159265358979...$

 $\pi r = a$ semi-circumference $= 180^{\circ} = 200^{\circ} = two$ right angles.

 $\frac{\pi}{2}r = a$ quadrant = 90° = 100⁹ = one right angle.

 $2 \pi r = a$ circumference $= 360^{\circ} = 400^{g} = four$ right angles.

If r = 1, the above expressions become, respectively, $\pi, \frac{\pi}{2}, 2\pi$.

33. Unit of Circular Measure.

The unit of circular measure is that angle at the center whose intercepted arc is equal in length to the radius.

Let u denote the unit of circular measure, and r the radius.

Then, since $\pi r =$ the semi-circumference, $\pi u = 180^{\circ} = 200^{\circ}$.

 $u = \frac{180^{\circ}}{\pi} = 57^{\circ}.\ 29577951... = \frac{200^{g}}{\pi} = 63^{g}.\ 6619772...$

Let d, g, c, respectively, denote the number of degrees, grades, and units of circular measure in an angle; then,

$$d = \frac{180}{\pi}c, \quad g = \frac{200}{\pi}c, \quad c = \frac{\pi}{180}d, \quad c = \frac{\pi}{200}g.$$

34. Origin, Termini and Situation of Arcs.

The origin of an arc is the extremity at which it begins.

The primary origin of arcs is at the right extremity of the primary diameter.

The secondary origin of arcs is at the upper extremity of the vertical diameter.

S. N. 3.

The terminus of an arc is the extremity at which it ends.

An arc is said to be situated in that quadrant in which its terminus is situated, thus:

The arc OT is in the first quadrant.

The arc OO'T' is in the second quadrant.

The arc OPT" is in the third quadrant.

The arc OPT" is in the fourth quadrant.

35. Positive and Negative Arcs.

Positive arcs are those which are estimated in the direction contrary to that of the motion of the hands of a watch.

Negative arcs are those which are estimated in the same direction as that of the motion of the hands of a watch.

Thus, OT, OT', OT'', OT''', estimated to the left, are positive, and OT''', OT'', OT', OT, estimated to the right, are negative.

36. The Complement of an Arc.

The complement of an arc or angle is 90° minus that arc or angle.

If the arc or angle is less than 90°, its complement is *positive*.

If the arc or angle is greater than 90°, its complement is *negative*.

The complement of an arc, geometrically considered, is the arc estimated from the terminus of the given arc to the secondary origin. Therefore, by the preceding article, the complement of an arc will be positive

FUNCTIONS.

or negative, according as the arc is less or greater than 90° .

TO' is the complement of OT, and is positive.

T'O' is the complement of OT', and is negative.

T"O' is the complement of OT", and is negative.

T'''O' is the complement of OT''', and is negative.

37. The Supplement of an Arc.

The supplement of an arc or angle is 180° minus that arc or angle.

If the arc or angle is less than 180°, its supplement is *positive*.

If the arc or angle is greater than 180°, its supplement is *negative*.

The supplement of an arc, geometrically considered, is the arc estimated from the terminus of the given arc to the left-hand extremity of the primary diameter. Therefore, by article 35, the supplement of an arc will be positive or negative, according as the arc is less or greater than 180°.

TP is the supplement of OT, and is positive. T'P is the supplement of OT', and is positive. T''P is the supplement of OT'', and is negative. T'''P is the supplement of OT''', and is negative.

TRIGONOMETRICAL FUNCTIONS.

38. Preliminary Definitions and Remarks.

1. A function of a quantity is a quantity whose value depends on the given quantity.

2. The trigonometrical functions, called also *circular* functions, are auxiliary lines, which are functions of an arc or of the angle which has the same measure as that arc.

3. These functions are eight in number, and are called the sine, co-sine, versed-sine, co-versed-sine, tangent, co-tangent, secant and co-secant, which are abbreviated thus, sin, cos, vers, covers, tan, cot, sec, cosec.

4. The solution of triangles is accomplished by the aid of these functions, since they enable us to ascertain the relations which exist between the sides and angles of triangles.

5. The primary origin will be taken as the common origin of the arcs, unless the contrary is stated.

6. The origin of any arc, wherever situated, may be considered the primary origin of that arc; and its secondary origin is a quadrant's distance from the primary origin, in the direction of the positive or negative arcs, according as the given arc is positive or negative.

7. An arc will be considered positive unless the contrary is stated.

8. The primary diameter passes through the primary origin; and the secondary diameter; through the secondary origin.

9. Lines estimated upward, toward the right, or from the center toward the terminus of the arc, are considered positive.

10. Lines estimated downward, toward the left, or from the center and the terminus of the arc, are considered negative.

11. The limiting values of the circular functions are their values for the arcs 0°, 90°, 180°, 270°, 360°.

12. The sign of a varying quantity, up to a limit, is its sign at the limit.

13. Point out positive arcs in the following diagram, and the origin and terminus of each.

14. Point out negative arcs, the origin, terminus and primary diameter of each.

15. Point out the positive lines, also the negative.

FUNCTIONS.

39. The Sine of an Arc.

The sine of an arc is the perpendicular distance of its terminus from the primary diameter.

MT is the sine of the arc OT. M'T' is the sine of the arc OT'. M'T'' is the sine of the arc OT''. MT'''' is the sine of the arc OT'''. By the arcs OT'' and OT''', we are to understand the *positive* arcs, and not the negative arcs designated by the same letters.

The sine of an arc is the sine of the angle measured by that arc.

Thus, MT, the sine of the arc OT, is the sine of the angle OCT, which is measured by the arc OT; and similarly for the other arcs and angles.

The arcs OT and OT' are in the first and second quadrants, respectively, and their sines MT and M'T' are estimated *upward*, and are therefore *positive*; hence,

The sine of an arc in the first or second quadrant is positive.

The arcs OT'' and OT''' are in the third and fourth quadrants, respectively, and their sines, M'T''and MT''', are estimated *downward*, and are therefore *negative*; hence,

The sine of an arc in the third or fourth quadrant is negative.

Let the chord TT' be parallel to the primary diameter OP, then will M'T' be equal to MT, and the arc OT will be equal to the arc T'P; but the arc T'Pis the supplement of the arc OT'; therefore, the arc OT is the supplement of the arc OT'; but M'T', the sine of the arc OT', is equal to MT, the sine of the arc OT, the supplement of OT'; hence,

The sine of an arc is equal to the sine of its supplement.

The sine of 0° is 0. As the arc increases from 0° to 90° , the sine increases from 0 to +1. As the arc increases from 90° to 180° , the sine decreases from +1 to +0. As the arc increases from 180° to 270° , the sine passes through 0, changes its sign from + to -, and increases numerically, but decreases algebraically from -0 to -1. As the arc increases from 270° to 360° , the sine decreases numerically, but increases algebraically from -1 to -0.

Hence, for the limiting values of the sine, we have $\sin 0^\circ = 0$, $\sin 90^\circ = +1$, $\sin 180^\circ = +0$, $\sin 270^\circ = -1$, $\sin 360^\circ = -0$.

40. The Co-sine of an Arc.

The co-sine of an arc is the perpendicular distance of its terminus from the secondary diameter.

NT is the co-sine of the arc OT. NT' is the co-sine of the arc OT'. N'T'' is the co-sine of the arc OT''. N'T''' is the co-sine of the arc OT'''. The arcs OT and OT''' are in the first and fourth quadrants, respectively, and their co-sines NT and N'T'''

are estimated toward the *right*, and are therefore *positive;* hence,

The co-sine of an arc in the first or fourth quadrant is positive.

The arcs OT' and OT'' are in the second and third quadrants, respectively, and their co-sines, NT' and N'T'', are estimated toward the *left*, and are therefore *negative*; hence,

FUNCTIONS.

The co-sine of an arc in the second or third quadrant is negative.

The word *co-sine* is an abbreviation of *complementi* sinus, the sine of the complement. In fact, NT, the co-sine of OT, is the sine of O'T, the complement of OT; hence,

The co-sine of an arc is the sine of its complement.

MT, the sine of OT, is the co-sine of O'T, the complement of OT; hence,

The sine of an arc is the co-sine of its complement.

Since the radius CO' is perpendicular to the chord TT', NT and NT' are numerically equal; but since NT is estimated toward the right, and NT' toward the left, they have contrary signs; hence, NT = -NT'; but NT is the co-sine of OT, and NT' is the co-sine of OT; hence,

The co-sine of an arc is equal to minus the co-sine of its supplement.

It is evident that CN is equal to the sine of OT, or of OT', and that CN' is equal to the sine of OT'', or of OT'''; hence,

The sine of an arc is equal to that part of the secondary diameter from the center to the foot of the co-sine.

It is evident that CM is equal to the co-sine of OT, or of OT''', and that CM' is equal to the co-sine of OT' or of OT''; hence,

The co-sine of an arc is equal to that part of the primary diameter from the center to the foot of the sine.

The co-sine of 0° is +1. As the arc increases from 0° to 90° , the co-sine decreases from +1 to +0. As the arc increases from 90° to 180° , the co-sine passes through 0, changes its sign from + to -, and increases numerically, but decreases algebraically from -0 to -1. As the arc increases from 180° to 270° , the co-sine decreases numerically, but increases algebraically

from -1 to -0. As the arc increases from 270° to 360°, the co-sine passes through 0, changes its sign from - to +, and increases from +0 to +1.

Hence, for the limiting values of the co-sine, we have $\cos 0^\circ = +1$, $\cos 90^\circ = +0$, $\cos 180^\circ = -1$, $\cos 270^\circ = -0$, $\cos 360^\circ = +1$.

41. The Versed-Sine of an Arc.

The versed-sine of an arc is the perpendicular distance of the primary origin from the sine. $T' \stackrel{O'}{\longrightarrow} T$

MO is the versed-sine of the arc OT, and of the arc OT'''.

M'O is the versed-sine of the arc OT', and of the arc OT''.

The versed-sine of an arc, in any quadrant, is estimated to the *right*, and is therefore *positive*; hence,

The versed-sine is always positive.

The versed-sine of 0° is 0. As the arc increases from 0° to 90° , the versed-sine increases from 0 to +1. As the arc increases from 90° to 180° , the versed-sine increases from +1 to +2. As the arc increases from 180° to 270° , the versed-sine decreases from +2 to +1. As the arc increases from 270° to 360° , the versed-sine decreases from +1 to +0.

Hence, the limiting values of the versed-sine are vers $0^{\circ} = 0$, vers $90^{\circ} = +1$, vers $180^{\circ} = +2$, vers $270^{\circ} = +1$, vers $360^{\circ} = +0$.

What are the least and greatest values of the sine, and what are the corresponding arcs?

What are the least and greatest values of the co-sine, and what are the corresponding arcs?

What are the least and greatest values of the versedsine, and what are the corresponding arcs?

FUNCTIONS.

42. The Co-versed-sine of an Arc.

The co-versed-sine of an arc is the perpendicular distance of the secondary origin from the co-sine.

Thus, see diagram of the last article, NO' is the coversed-sine of the arc OT, and of the arc OT'; N'O'is the co-versed-sine of the arc OT'', and of the arc OT''.

The co-versed-sine of an arc in any quadrant is estimated *upward*, and is therefore *positive*; hence,

The co-versed-sine is always positive.

The word co-versed-sine is an abbreviation of complementi versatus sinus, the versed or turned sine of the complement. In fact, NO', the co-versed-sine of OT, is the versed-sine of O'T, the complement of OT; hence,

The co-versed-sine of an arc is the versed-sine of its complement.

MO, the versed-sine of OT, is the co-versed-sine of O'T, the complement of OT; hence,

The versed-sine of an arc is the co-versed-sine of its complement.

The co-versed-sine of 0° is 1. As the arc increases from 0° to 90° , the co-versed-sine decreases from +1 to +0. As the arc increases from 90° to 180° , the coversed-sine increases from +0 to +1. As the arc increases from 180° to 270° , the co-versed-sine increases from +1 to +2. As the are increases from 270° to 360° , the co-versed-sine decreases from +2 to +1. Hence, the limiting values of the co-versed-sine are, covers $0^{\circ} = +1$, covers $90^{\circ} = +0$, covers $180^{\circ} = +1$, covers $270^{\circ} = +2$, covers $360^{\circ} = +1$.

What are the least and greatest values of the coversed-sine, and what are the corresponding arcs?

Trace the arcs from 0° to 360° , and the changing functions.

43. The Tangent of an Arc.

The tangent of an arc is the perpendicular to the primary diameter, produced from the primary origin, till it meets the prolongation of the diameter through the terminus of the arc.

OR is the tangent of the arcs OT and OT''.

OR' is the tangent of the arcs OT'' and OT'''.

The arcs OT and OT'' are in the first and third quadrants, respectively,

first and third quadrants, respectively, $\nabla \mathbf{r}'$ and their tangent, OR, is estimated *upward*, and is therefore *positive*; hence,

The tangent of an arc in the first or third quadrant is positive.

The arcs OT' and OT''' are in the second and fourth quadrants, respectively, and their tangent, OR', is estimated downward, and is therefore negative; hence,

The tangent of an arc in the second or fourth quadrant is negative.

Let the arc OT be equal to the arc T'P. Then, since T'P is the supplement of OT', OT will be the supplement of OT'; but the arc T'''O is the supplement of OT'; hence, OT = T'''O, and the angle OCT is equal to the angle OCT'''. The angle CORis equal to the angle COR', since each is a right angle. Hence, the two triangles COR and COR' have two angles, and the included side of the one equal to two angles and the included side of the other, each to each, and are therefore equal in all their parts. Hence, OR, opposite the angle OCR'. Since OR is estimated upward, and OR' downward, they have contrary signs; hence, OR = -OR'. But OR is the tangent

FUNCTIONS.

of the arc OT, and OR' is the tangent of the arc OT', the supplement of OT; hence,

The tangent of an arc is equal to minus the tangent of its supplement.

The tangent of 0° is 0. As the arc increases from 0° to 90° , the tangent increases from 0 to $+\infty$. As the arc increases from 90° to 180° , the tangent passes through ∞ , changes its sign from + to -, and decreases numerically, but increases algebraically from $-\infty$ to -0. As the arc increases from 180° to 270° , the tangent passes through 0, changes its sign from - to +, and increases from +0 to $+\infty$. As the arc increases from 270° , the tangent passes through 0, changes its sign from - to +, and increases from +0 to $+\infty$. As the arc increases from 270° to 360° , the tangent passes through ∞ , changes its sign from + to -, and decreases numerically, but increases algebraically from $-\infty$ to -0. Hence, for the limiting values of the tangent we have tan $0^{\circ} = 0$, tan $90^{\circ} = +\infty$, tan $180^{\circ} = -0$, tan $270^{\circ} = +\infty$, tan $360^{\circ} = -0$.

44. The Co-tangent of an Arc.

The po-tangent of an arc is the perpendicular to the secondary diameter, produced from the secondary origin, till it meets the prolongation of the diameter through the terminus of the arc.

O'S is the co-tangent of OT and OT''.

O'S' is the co-tangent of OT' and OT''.

The arcs OT and OT'' are in the first and third quadrants, respectively, and their co-tangent, O'S, is estimated to the *right*, and is therefore *positive*; hence,

The co-tangent of an arc in the first or third quadrant is positive.

The arcs OT' and OT''' are in the second and fourth quadrants, respectively, and their co-tangent, O'S', is estimated to the *left*, and is therefore *negative*; hence,

The co-tangent of an arc in the second or fourth quadrant is negative.

The word *co-tangent* is an abbreviation of *complementi* tangens, the tangent of the complement. In fact, O'S, the co-tangent of OT, is the tangent of O'T, the complement of OT; hence,

The co-tangent of an arc is the tangent of its complement.

OR, the tangent of OT, is the co-tangent of O'T, the complement of OT; hence,

The tangent of an arc is the co-tangent of its complement.

Let the arcs OT and T'P be equal. Then, since T'P is the supplement of OT', OT will be the supplement of OT'.

The arcs O'T and O'T' are equal, since they are complements of the equal arcs OT and T'P; hence, the angles O'CT and O'CT', measured by these equal arcs, are equal. The angles CO'S and CO'S' are equal, since each is a right angle. Hence, the two triangles CO'S and CO'S' have the common side CO', and the two adjacent angles equal, and are therefore equal in all their parts; and O'S, opposite the angle O'CS, is equal to O'S', opposite the equal angle O'CS'.

Since O'S is estimated to the *right*, and O'S' to the *left*, they have contrary signs; hence, O'S = -O'S'. But O'S is the co-tangent of OT, and O'S' is the co-tangent of OT', the supplement of OT; hence,

The co-tangent of an arc is equal to minus the co-tangent of its supplement.

The co-tangent of 0° is $+\infty$. As the arc increases from 0° to 90° , the co-tangent decreases from $+\infty$ to +0. As the arc increases from 90° to 180° , the cotangent passes through 0, changes its sign from + to -, and increases numerically, but decreases algebraically from -0 to $-\infty$. As the arc increases from 180° to 270° , the co-tangent passes through ∞ , changes its sign from — to +, and decreases from $+\infty$ to +0. As the arc increases from 270° to 360°, the co-tangent passes through 0, changes its sign from + to -, and increases numerically, but decreases algebraically from -0 to $-\infty$.

Hence, the limiting values of the co-tangent are $\cot 0^\circ = +\infty$, $\cot 90^\circ = +0$, $\cot 180^\circ = -\infty$, $\cot 270^\circ = +0$, $\cot 360^\circ = -\infty$.

45. The Secant of an Arc.

The secant of an arc is the line drawn from the center of the circle to the terminus of the tangent. $s' o' s_T^R$

CR is the secant of OT and OT''.

CR' is the secant of OT' and OT'''. P The arcs OT and OT''' are in the

first and fourth quadrants, respectively, and their secants, CR and CR' are estimated from the content of

CR' are estimated from the center toward the termini of the arcs, and are therefore positive; hence,

The secant of an arc in the first or fourth quadrant is positive.

The arcs OT' and OT'' are in the second and third quadrants, respectively, and their secants, CR' and CR, are estimated from the center, from the termini of the arcs, and are therefore *negative*; hence,

The secant of an arc in the second or third quadrant is negative.

Let the arcs OT and T'P be equal. Then, since T'P is the supplement of OT', OT is the supplement of OT'; but T'''O is the supplement of OT'; therefore, T'''O is equal to OT, and the angle T'''CO, measured by T'''O, is equal to the angle OCT, measured by the equal arc OT. The right angles COR and COR' are

equal. Hence, in the triangles having the common side CO, and the two adjacent angles equal, CR is equal to CR'; but CR, the secant of OT, is positive; and CR', the secant of OT', the supplement of OT, is negative; hence, CR = -CR'; hence,

The secant of an arc is equal to minus the secant of its supplement.

The secant of 0° is +1. As the arc increases from 0° to 90° , the secant increases from +1 to $+\infty$. As the arc increases from 90° to 180° , the secant passes through ∞ , changes its sign from + to -, and decreases numerically, but increases algebraically from $-\infty$ to -1. As the arc increases from 180° to 270° , the secant increases numerically, but decreases algebraically from 270° to 360° , the secant passes through ∞ , changes its sign from -1 to $-\infty$. As the arc increases from 270° to 360° , the secant passes through ∞ , changes its sign from - to +, and decreases from $+\infty$ to +1. Hence, for the limiting values of the secant we have sec $0^{\circ} = +1$, sec $90^{\circ} = +\infty$, sec $180^{\circ} = -1$, sec $270^{\circ} = -\infty$, sec $360^{\circ} = +1$.

46. The Co-secant of an Arc.

The co-secant of an arc is the line drawn from the center of the circle to the terminus of the co-tangent. s' = o' = s r

P

0

p'

CS is the co-secant of OT and OT''.

CS' is the co-secant of OT' and OT'''.

The arcs OT and OT' are in the first and second quadrants, respectively, and their co-secants CS and CS'

are estimated from the center toward the termini of the arcs, and are therefore *positive;* hence,

The co-secant of an arc in the first or second quadrant is positive.

FUNCTIONS.

The arcs OT'' and OT''' are in the third and fourth quadrants, respectively, and their co-secants, CS and CS', are estimated from the center and the termini of the arcs, and are therefore *negative*; hence,

The co-secant of an arc in the third or fourth quadrant is negative.

The word *co-secant* is an abbreviation of *complementi* secans, the secant of the complement. In fact, CS, the co-secant of OT, is the secant of O'T, the complement of OT; hence,

The co-secant of an arc is the secant of its complement.

CR, the secant of OT, is the co-secant of O'T, the complement of OT; hence,

The secant of an arc is the co-secant of its complement.

Let the arcs OT and T'P be equal. Then, since T'P is the supplement of OT', OT will be the supplement of OT'. O'T = O'T', since they are complements of equal arcs. Hence, the angle O'CT, measured by the arc O'T, is equal to the angle O'CT', measured by the equal arc O'T'. The right angles, CO'S and CO'S', are equal.

Hence, in the triangles having the common side CO', and the two adjacent angles equal, CS is equal to CS'; but CS is the co-secant of OT, and positive, and CS' is the co-secant of OT', and positive; hence,

The co-secant of an arc is equal to the co-secant of its supplement.

The co-secant of 0° is $+\infty$. As the arc increases from 0° to 90° , the co-secant decreases from $+\infty$ to +1. As the arc increases from 90° to 180° , the co-secant increases from +1 to $+\infty$. As the arc increases from 180° to 270° , the co-secant passes through ∞ , changes its sign from + to -, and decreases numerically, but increases algebraically from $-\infty$ to -1. As the arc increases from 270° to 360° , the co-secant increases

numerically, but decreases algebraically from -1 to $-\infty$. Hence, the limiting values of the co-secant are cosec $0^\circ = +\infty$, cosec $90^\circ = +1$, cosec $180^\circ = +\infty$, cosec $270^\circ = -1$, cosec $360^\circ = -\infty$.

To aid the memory, and for convenience of reference, we give the following tabular summaries:

Functions.	1st q.	2d q.	3d q.	4th q.
sine.	+	+	to to be	alla tto
co-sine.	Sin the S	NIN TT NIN	anta la	+
versed-sine.	ine tod	Porting 1	+	+
co-versed-sine.	11+10	+ 10 ⁻¹	+	+
tangent.	+	barta men	+	in the second
co-tangent.	the torre	a me	+	ALC TANK
secant.	tion	ada di	Lions Pal	+
co-secant.	on the of	t att	Extone .	hin tenna

47. Signs of the Circular Functions.

48. Limiting Values of the Circular Functions.

0°	90°	180°	270°	360°
$\sin = +0$	$\sin =+1$	$\sin = +0$	$\sin = -1$	$\sin = -0$
$\cos = +1$	$\cos =+0$	$\cos = -1$	$\cos = -\theta$	$\cos =+1$
vsin = +0	vsin = +1	vsin=+2	vsin=+1	vsin = +0
cvs = +1	cvs = +0	cvs = +1	evs = +2	cvs = +1
$\tan = +0$	$\tan = +\infty$	$\tan = -0$	$\tan = +\infty$	$\tan = -0$
$\cot = +\infty$	$\cot =+0$	$\cot = -\infty$	$\cot =+0$	$\cot = -\infty$
$\sec = \pm 1$	$\sec = +\infty$	sec = -1	$\sec = -\infty$	sec =+1
$\cos e = +\infty$	$\cos = +1$	$cose = +\infty$	$\cos = -1$	$\cos e = -\infty$

40

NATURAL FUNCTIONS.

49. Problem.

To find any function of an angle to the radius R, in terms of the corresponding function of the same angle to the radius 1, and the reverse.

Let sin C_1 denote sin C to the radius CT = 1, and sin C_R denote sin C to the radius CT' = R.

From similar triangles,

CT : CT' :: MT : M'T',or 1 : R :: sin C_1 : sin C_R .

 $\therefore (1) \quad \sin C_R = \sin C_1 \times R. \quad \therefore (2) \quad \sin C_1 = \frac{\sin C_R}{R}.$

Let formulas for other functions be deduced; hence,

1. Any function of an angle to the radius R is equal to the corresponding function of the same angle to the radius 1, multiplied by R.

2. Any function of an angle to the radius 1 is equal to the corresponding function of the same angle to the radius R, divided by R.

TABLE OF NATURAL FUNCTIONS.

50. Description of the Table.

This table gives, to the radius 1, the values of the sine, co-sine, tangent, and co-tangent, to five decimal places, for every 10' from 0° to 90° .

For sines and tangents, the degrees are given in the left column, and the minutes at the top.

For co-sines and co-tangents, the degrees are given in the right-hand column, and the minutes at the bottom. S. N. 4.

51. Problem.

To find the natural sine, co-sine, tangent, or co-tangent of a given arc or angle.

Let us find the natural sine of 35° 42' 24".

The difference between the natural sines of $35^{\circ} 40'$ and $35^{\circ} 50'$, as given in the table, is .00236. Now 2' 24'' = .24 of 10', which is found thus: $\begin{array}{c} 60 \\ 24 \\ 10 \end{array} \begin{array}{c} 24 \\ 2.4 \end{array}$

.24

Then take Nat sin $35^{\circ} 40' = .58307$ Correction for 2' $24'' = .00236 \times .24 = .00057$ \therefore Nat sin $35^{\circ} 42' 24'' = .58364$

In case of co-sine or co-tangent, the correction must be subtracted, since, between 0° and 90° , the greater the angle, the less the co-sine and co-tangent.

52. Examples.

1. Find the natural sine of 75° 45' 30".

2. Find the natural co-sine of 15° 36' 12". Ans. .96315.

3. Find the natural tangent of 43° 33' 18".

Ans. .95079.

Ans. .96927.

4. Find the natural co-tangent of 84° 28' 30". Ans. .09673.

53. Problem.

To find the angle corresponding to a given natural sine, co-sine, tangent, or co-tangent.

1. Find the angle corresponding to the natural sine .50754.

Looking in the table we find the angle 30° 30'.

LOGARITHMIC FUNCTIONS.

2. Find the angle whose natural sine = .82468. The next less sine, sin $55^{\circ} 30' = .82413$. Difference = 55 Difference corresponding to 10' = 164

:. Correction =
$$10' \times \frac{55}{164} = 3' 21''$$
.

... Angle = $55^{\circ} 30' + 3' 21'' = 55^{\circ} 33' 21''$.

In case of co-sine and co-tangent, the angular difference must be subtracted, since the greater the co-sine or co-tangent, the less the angle, for values between 0° and 90° .

54. Examples.

 Find the angle whose sine is .75684. *Ans.* 49° 11' 13".
 Find the angle whose co-sine is .67898. *Ans.* 47° 14' 10".
 Find the angle whose tangent is 1.34567. *Ans.* 53° 22' 59".
 Find the angle whose co-tangent is .98765.' *Ans.* 45° 21' 22".

TABLE OF LOGARITHMIC FUNCTIONS.

55. Description of the Table.

The table of logarithmic functions gives to the radius 10,000,000,000 the logarithm of the sine, co-sine, tangent, and co-tangent, for every minute, from 0° to 90°.

The expression, logarithmic sine, tangent, etc., is equivalent to the logarithm of the sine, of the tangent, etc.

For sines and tangents, the degrees are given at the top of the page, and the minutes in the left-hand column. For co-sines and co-tangents, the degrees are given at the bottom of the page, and the minutes in the righthand column.

The columns marked D 1" contain the difference for 1".

56. Problem.

Find the logarithmic sine of 48° 25' 30".

D 1"=.19. ... Correc. for $30''=.19\times 30=6$... log sin 48° 25' 30''=9.87396

In case of co-sine or co-tangent, the correction must be subtracted, since between 0° and 90°, the greater the angle, the less the co-sine and co-tangent.

57. Examples.

1. Find the logarithmic sine of 75° 35'.

Ans. 9.98610. 2. Find the logarithmic sine of 25° 40′ 24″. Ans. 9.63673.

3. Find the logarithmic co-sine of 29° 55′ 55″. Ans. 9.93782.

4. Find the logarithmic tangent of 50° 50' 50". Ans. 10.08927.

5. Find the logarithmic co-tangent of 65° 45' 30". Ans. 9.65349.

58. Problem.

To find the angle corresponding to a given logarithmic sine, co-sine, tangent, or co-tangent.

LOGARITHMIC FUNCTIONS.

Find the angle whose logarithmic sine = 9.84567For next less we have sin $44^{\circ} 30' = 9.84566$ D 1'' = .21 ... Correc. = $1'' \times \frac{1}{.21} = 5''$, .21)1.00(5. ... Angle = $44^{\circ} 30' 05''$.

In case of co-sine and co-tangent, the correction for seconds must be subtracted, since the greater the cosine or co-tangent, and consequently the greater the logarithm, the less the angle for values between 0° and 90° .

59. Examples.

 Find the angle whose logarithmic sine is 9.98437. Ans. 74° 43' 17".
 Find the angle whose logarithmic co-sine is 9.78456. Ans. 52° 29' 19".
 Find the angle whose logarith. tangent is 10.12346. Ans. 53° 02' 11".
 Find the angle whose logarith. co-tangent is 9.99999. Ans. 45° 00' 03".

60. Problem.

Given any natural function, to find the corresponding logarithmic function.

1st Solution.

Find from the natural function the corresponding angle; then, from the angle, the corresponding logarithmic function.

2d SOLUTION.

Let a denote any arc or angle, $f(a)_1$ any function of a to the radius 1, and $f(a)_R$ the corresponding.

function of a to the radius R. Then, by article 49 we have,

 $f(a)_{R} = f(a)_{1} \times R.$

Substituting the value of R in the second meruber,

$$f(a)_{R} = f(a)_{1} \times 10,000,000,000$$

$$\log f(a)_{R} = \log f(a)_{1} + 10.$$

Hence, Add 10 to the logarithm of the natural function.

61. Examples.

 1. Given nat. sin a = .98457, required a and log sin a.

 $Ans. a = 79^{\circ} 55' 25''$, $\log \sin a = 9.99325$.

 2. Given nat. cos a = .63878, required a and log cos a.

 $Ans. a = 50^{\circ} 17' 52''$, $\log \cos a = 9.80536$.

 3. Given nat. tan a = 1.68685, required a and log tan a.

 $Ans. a = 59^{\circ} 20 \ 23''$, $\log \tan a = 10.22708$.

 4. Given nat. cot a = 1.41987, required a and log cot a.

62. Problem.

Given any logarithmic function, to find the corresponding natural function.

1st Solution.

Find from the logarithmic function the corresponding angle; then, from the angle, the corresponding natural function.

2d SOLUTION.

From article 49 we have,

$$f(a)_1 = \frac{f(a)_R}{R} \cdot \log f(a)_1 = \log f(a)_R - 10.$$

46

RIGHT TRIANGLES.

Hence, Subtract 10 from the logarithmic function, and find the number corresponding to the resulting logarithm.

63. Examples.

 1. Given log sin a = 9.87654, required a and nat.

 sin a.
 Ans. $a = 48^{\circ} 48' 44''$, nat. sin a = .75255.

 2. Given log cos a = 9.84877, required a and nat.

 cos a.
 Ans. $a = 45^{\circ} 05' 41''$, nat. cos a = .70595.

 3. Given log tan a = 10.22708, required a and nat.

 tan a.
 Ans. $a = 59^{\circ} 20' 23''$, nat. tan a = 1.68685.

4. Given log cot a = 10.15225, required a and nat. cot a. Ans. $a = 35^{\circ} 09' 24''$, nat. cot a = 1.41987.

RIGHT TRIANGLES.

64. Principles.

PB : PK :: HB : MK,or $h : 1 :: p : \sin P.$ BP : ER :: HP : SR,or $h : 1 :: b : \sin B.$ P = MN = b

 $\therefore (1) \left\{ \begin{array}{c} p = h \sin P, \\ \\ b = h \sin B, \end{array} \right\} \quad \therefore (2) \left\{ \begin{array}{c} \sin P = \frac{p}{h} \\ \\ \sin B = \frac{b}{h} \end{array} \right\}$

1. Either side adjacent to the right angle is equal to the sine of the opposite angle multiplied by the hypotenuse.

2. The sine of either acute angle is equal to the opposite side divided by the hypotenuse.

p

Ir

Since the angles P and B are complements of each other, sin $P = \cos B$, and sin $B = \cos P$; ... (1) and (2) become,

(3)
$$\begin{cases} p = h \cos B, \\ b = h \cos P, \end{cases} \text{ and } (4) \begin{cases} \cos B = \frac{p}{h}, \\ \cos P = \frac{b}{h}. \end{cases}$$

3. Either side adjacent to the right angle is equal to the co-sine of the adjacent acute angle multiplied by the hypot-enuse.

4. The co-sine of either acute angle is equal to the adjacent side divided by the hypotenuse.

(5)
$$\begin{cases} p = b \tan P, \\ b = p \tan B, \end{cases}$$
 (6)
$$\begin{cases} \tan P = \frac{p}{b}, \\ \tan B = \frac{b}{p}, \end{cases}$$

5. Either side adjacent to the right angle is equal to the tangent of the opposite angle multiplied by the other side.

6. The tangent of either acute angle is equal to the opposite side divided by the adjacent side.

Since the angles P and B are complements of each other, tan $P = \cot B$, and tan $B = \cot P$; \therefore (5) and (6) become,

(7)
$$\begin{cases} p = b \text{ cot } B. \\ b = p \text{ cot } P. \end{cases} \text{ and (8) } \begin{cases} \cot B = \frac{p}{b} \\ \cot P = \frac{b}{p} \end{cases}$$

7. Either side adjacent to the right angle is equal to the co-tangent of the adjacent acute angle multiplied by the other side.

48

RIGHT TRIANGLES.

8. The co-tangent of either acute angle is equal to the adjacent side divided by the opposite side.

BH : BT :: BP : BQ, or $p : 1 :: h : \sec B$. PH : PN :: PB : PL, or $b : 1 :: h : \sec P$.

(9)
$$\begin{cases} p = \frac{h}{\sec B} \\ b = \frac{h}{\sec P} \end{cases} \quad (10) \begin{cases} \sec B = \frac{h}{p} \\ \sec P = \frac{h}{b} \end{cases}$$

9. Either side adjacent to the right angle is equal to the hypotenuse divided by the secant of the adjacent acute angle.

10 The secant of either acute angle is equal to the hypotenuse divided by the adjacent side.

Since the angles B and P are complements of each other sec $B = \operatorname{cosec} P$, sec $P = \operatorname{cosec} B$; ... (9) and (10) become,

(11)
$$\begin{cases} p = \frac{h}{\operatorname{cosec} P} \\ b = \frac{h}{\operatorname{cosec} B} \end{cases} \text{ and (12) } \begin{cases} \operatorname{cosec} P = \frac{h}{p} \\ \operatorname{cosec} B = \frac{h}{b} \end{cases}$$

11. Either side adjacent to the right angle is equal to the hypotenuse divided by the co-secant of the angle opposite that side.

12. The co-secant of either acute angle is equal to the hypotenuse divided by the side opposite that angle.

Scholium. By some authors, principles 2, 4, 6, 8, 10, and 12, have been given in the form of definitions.

Introducing radius into these formulas, by substituting for any function to the radius 1, the corresponding function to the radius R divided by R, and reducing, we have:

S. N. 5.

(1)
$$\begin{cases} p = \frac{h \sin P}{R} \\ b = \frac{h \sin B}{R} \end{cases}$$
(2)
$$\begin{cases} \sin P = \frac{Rp}{h} \\ \sin B = \frac{Rb}{h} \end{cases}$$
(3)
$$\begin{cases} p = \frac{h \cos P}{R} \\ b = \frac{h \cos P}{R} \end{cases}$$
(4)
$$\begin{cases} \cos B = \frac{Rp}{h} \\ \cos P = \frac{Rb}{h} \end{cases}$$
(5)
$$\begin{cases} p = \frac{b \tan P}{R} \\ b = \frac{P \tan B}{R} \end{cases}$$
(6)
$$\begin{cases} \tan P = \frac{Rp}{b} \\ \tan B = \frac{Rb}{p} \end{cases}$$
(7)
$$\begin{cases} p = \frac{b \cot B}{R} \\ b = \frac{P \cot P}{R} \end{cases}$$
(8)
$$\begin{cases} \cot B = \frac{Rp}{b} \\ \cot P = \frac{Rb}{p} \end{cases}$$
(9)
$$\begin{cases} p = \frac{Rh}{\sec P} \\ b = \frac{Rh}{\sec P} \end{cases}$$
(10)
$$\begin{cases} \sec B = \frac{Rh}{p} \\ \sec P = \frac{Rh}{b} \end{cases}$$
(11)
$$\begin{cases} p = \frac{Rh}{\csc P} \\ b = \frac{Rh}{\csc P} \end{cases}$$
(12)
$$\begin{cases} \csc P = \frac{Rh}{b} \\ \csc P = \frac{Rh}{b} \end{cases}$$
Applying logarithms to these formulas, we have :

(1)
$$\begin{cases} \log p = \log h + \log \sin P - 10.\\ \log b = \log h + \log \sin B - 10. \end{cases}$$

(2)
$$\begin{cases} \log \sin P = 10 + \log p - \log h.\\ \log \sin B = 10 + \log b - \log h. \end{cases}$$

(3)
$$\begin{cases} \log p = \log h + \log \cos B - 10.\\ \log b = \log h + \log \cos P - 10. \end{cases}$$

RIGHT TRIANGLES.

(4)	$\left\{\begin{array}{ll} \log\ \cos\ B = 10 + \log\ p - \log\ h.\\ \log\ \cos\ P = 10 + \log\ b - \log\ h.\end{array}\right\}$
.(5)	$\left\{\begin{array}{ll} \log p = \log b + \log \tan P - 10.\\ \log b = \log p + \log \tan B - 10.\end{array}\right\}$
(6)	(low top D 10 low n 1 1)
(7)	$\left\{\begin{array}{ll} \log \ p = \log \ b + \log \ \cot \ B - 10.\\ \log \ b = \log \ p + \log \ \cot \ P - 10.\end{array}\right\}$
	$\left\{\begin{array}{ll} \log \ \cot \ B = 10 + \log \ p - \log \ b.\\ \log \ \cot \ P = 10 + \log \ b - \log \ p.\end{array}\right\}$
	$\left\{\begin{array}{ll} \log p = 10 + \log h - \log \sec B, \\ \log b = 10 + \log h - \log \sec P. \end{array}\right\}$
	$\left\{\begin{array}{ll} \log \sec B = 10 + \log h - \log p.\\ \log \sec P = 10 + \log h - \log b.\end{array}\right\}$
	$\left\{\begin{array}{ll} \log p = 10 + \log h - \log \operatorname{cosec} P \\ \log b = 10 + \log h - \log \operatorname{cosec} B \end{array}\right\}$
(12)	$ \left\{ \begin{array}{ll} \log \operatorname{cosec} P = 10 + \log & h - \log & p. \\ \log \operatorname{cosec} B = 10 + \log & h - \log & b. \end{array} \right\} $

65. Case I.

Given the hypotenuse and one acute angle, required the remaining parts.

1. Given
$$\left\{ \begin{array}{c} h = 365. \\ P = 33^{\circ} 12'. \end{array} \right\}$$
 Requir. $\left\{ \begin{array}{c} B. \\ p. \\ b. \end{array} \right\}_{H}$

 $B = 90^{\circ} - P = 90^{\circ} - 33^{\circ} \ 12' = 56^{\circ} \ 48'.$

Either side adjacent to the right angle is equal to the sine of the opposite angle, multiplied by the hypotenuse.

 $p = h \sin P$

Introducing radius, we have, $p = \frac{h \sin P}{R}$.

Applying logarithms, we have,

$$\log p = \log h + \log \sin P - 10.$$

$$\log h (365) = 2.56229$$

$$\log \sin P (33^{\circ} 12') = 9.73843$$

$$\log p = 2.30072 \quad \therefore \quad p = 199.85.$$

In like manner, from either formula, $b = h \sin B$, or $b = h \cos P$, we find b = 305.41.

2. Given
$$\left\{ \begin{array}{l} h = 73.26. \\ B = 49^{\circ} \ 12' \ 20''. \end{array} \right\}$$
 Requir. $\left\{ \begin{array}{l} P = 40^{\circ} \ 47' \ 40''. \\ b = 55.4625. \\ p = 47.8644. \end{array} \right.$
3. Given $\left\{ \begin{array}{l} h = 2195. \\ P = 27^{\circ} \ 38' \ 50''. \end{array} \right\}$ Requir. $\left\{ \begin{array}{l} B = 62^{\circ} \ 21' \ 10''. \\ p = 1018.512. \\ b = 1944.364. \end{array} \right\}$

66. Case II.

Given the hypotenuse and one side adjacent to the right angle, required the remaining parts.

The sine of either acute angle is equal to the opposite side divided by the hypotenuse.

$$\therefore \sin P = \frac{p}{h}$$

Introducing radius, and multiplying by R, we have,

$$\sin P = \frac{Rp}{h}.$$

52

RIGHT TRIANGLES.

Applying logarithms, we have,

 $\log \sin P = 10 + \log p - \log h.$ $\log p \quad (97) = 1.98677$ $\log h \quad (112) = 2.04922$ $\log \sin P = 9.93755 \quad \therefore \quad P = 60^{\circ} \ 00' \ 17''.$ $B = 90^{\circ} - P = 90^{\circ} - 60^{\circ} \ 00' \ 17'' = 29^{\circ} \ 59' \ 43''.$ $b = h \ \sin B, \ \text{or} \ b = h \ \cos P, \ \therefore \ b = 55.991.$ We can also find b as follows: $b = \sqrt{h^2 - p^2} = \sqrt{(h + p) \ (h - p)}.$ $\log b = \frac{1}{2} [\log \ (h + p) + \log \ (h - p)].$

2. Given $\left\{ \begin{array}{l} h = 7269.\\ b = 3162. \end{array} \right\}$ Required $\left\{ \begin{array}{l} B = 25^{\circ} \ 47' \ 07''.\\ P = 64^{\circ} \ 12' \ 53''.\\ p = 6545. \end{array} \right.$

3. Given $\begin{cases} h = 444.4 \\ p = 150. \end{cases}$ Required $\begin{cases} P = 19^{\circ} 43' 36''. \\ B = 70^{\circ} 16' 24''. \\ b = 418.33. \end{cases}$

67. Case III.

Given one side adjacent to the right angle and one acute angle, required the remaining parts.

1. Given
$$\left\{ \begin{array}{c} b = 152.67. \\ P = 50^{\circ} \ 18' \ 32''. \end{array} \right\}$$
 Requir. $\left\{ \begin{array}{c} B. \\ p. \\ h. \\ p \end{array} \right\}_{H}$

 $B = 90^{\circ} - P = 90^{\circ} - 50^{\circ} 18' 32'' = 39^{\circ} 41' 28''.$

Either side adjacent to the right angle is equal to the tangent of the opposite angle multiplied by the other side.

 $\therefore p = b \tan P.$

Introducing radius and applying logarithms, as in the preceding cases, we find p = 183.95.

Either side adjacent to the right angle is equal to the co-sine of the adjacent acute angle multiplied by the hypotenuse.

 $\therefore b = h \cos P; \quad \therefore h = \frac{b}{\cos P}$

Introducing radius and applying logarithms, as above, we shall find h = 239.05.

2. Given $\begin{cases} p = 3963.35 \text{ miles} = \text{the earth's radius.} \\ P = 57' 2.3'' = \text{the moon's horizontal parallax.} \end{cases}$

Required h, the distance of the moon from the earth. Ans. h = 238889 miles.

3. Given $\begin{cases}
p = 3963.35 \text{ miles} = \text{the earth's radius.} \\
P = 8.9'' = \text{the sun's horizontal parallax.} \end{cases}$

Required h, the distance of the sun from the earth. Ans. h = 91852000 miles.

Scholium. Sin $8.9'' = \sin 1' \times \frac{8.9}{60}$.

. $\log \sin 8.9'' = \log \sin 1' + \log 8.9 + a.c. \log 60 - 10.$

68. Case IV.

Given the two sides adjacent to the right angle, required the remaining parts.

1. Given
$$\left\{ \begin{array}{l} p = 29.37.\\ b = 37.29. \end{array} \right\}$$
 Requir. $\left\{ \begin{array}{l} P.\\ B.\\ h. \end{array} \right.$

OBLIQUE TRIANGLES.

The tangent of either acute angle is equal to the opposite side divided by the adjacent side.

$$\therefore$$
 tan $P = \frac{p}{b}$

Introducing radius and applying logarithms, we shall find that $P = 38^{\circ} 13' 28''$.

$$B = 90^{\circ} - P = 90^{\circ} - 38^{\circ} 13' 28'' = 51^{\circ} 46' 32''$$

Either side adjacent to the right angle is equal to the sine of the opposite angle multiplied by the hypotenuse.

$$\therefore p = h \sin P. \qquad \therefore h = \frac{p}{\sin P}.$$

Introducing radius and applying logarithms, we find h = 47.466.

2. Given
$$\left\{ \begin{array}{l} p = 694.73.\\ b = 8372.1. \end{array} \right\}$$
 Required $\left\{ \begin{array}{l} P = 4^{\circ} \ 44^{\circ} \ 37^{\prime\prime}.\\ B = 85^{\circ} \ 15^{\prime} \ 23^{\prime\prime}.\\ h = 8401. \end{array} \right\}$
3. Given $\left\{ \begin{array}{l} p = 101.\\ b = 103. \end{array} \right\}$ Required $\left\{ \begin{array}{l} P = 44^{\circ} \ 26^{\prime} \ 17^{\prime\prime}.\\ B = 45^{\circ} \ 33^{\prime} \ 43^{\prime\prime}.\\ h = 144.253. \end{array} \right\}$
4. Given $\left\{ \begin{array}{l} p = 1728.\\ b = 1575. \end{array} \right\}$ Required $\left\{ \begin{array}{l} P = 47^{\circ} \ 39^{\prime} \ 07^{\prime\prime}.\\ B = 42^{\circ} \ 20^{\prime} \ 53^{\prime\prime}.\\ h = 2338.1. \end{array} \right\}$

OBLIQUE TRIANGLES.

69. Case I.

Given one side and two angles, required the remaining parts.

Let ABC be an oblique triangle, and let the sides opposite the angles A, B, and C be denoted respectively by a, b and c.

Let the angles A and B and the side a be given, and the angle C and the sides b and c be required.

We find C from the formula,

 $C = 180^{\circ} - (A + B).$

Draw the perpendicular p from the vertex C to the side c, thus forming two right triangles. There are two cases:

1st. When the perpendicular falls on the side c.

From the principles of the right triangle we have,

 $p=b \sin A$ and $p=a \sin B$.

 $\therefore b \sin A = a \sin B.$

... (1) $\sin A : \sin B :: a : b$.

2d. When the perpendicular falls on c produced.

 $p = b \sin A$ and $p = a \sin CBD$.

p

But CBD is the supplement of CBA, or B of the triangle. Since the sine of an angle is equal to the sine of its supplement,

 $\sin CBD = \sin B; \therefore p \doteq a \sin B.$

 \therefore $b \sin A = a \sin B$.

... (1) $\sin A : \sin B :: a : b$.

In like manner we may find,

(2) $\sin A : \sin C :: a : c$.

Hence, The sine of the angle opposite the given side is to the sine of the angle opposite the required side as the given side is to the required side.

Introducing radius by substituting for the function to the radius 1, the corresponding function to the

OBLIQUE TRIANGLES.

radius R divided by R, and reducing, the proportions (1) and (2) will be of the same form as before substitution, and hence are true for any radius.

From proportions (1) and (2), we find,

(3)
$$b = \frac{a \sin B}{\sin A}$$
, (4) $c = \frac{a \sin C}{\sin A}$.

Applying logarithms to (3) and (4), we have,

(5) $\log b = \log a + \log \sin B + a. c. \log \sin A - 10.$

(6) $\log c = \log a + \log \sin C + a. c. \log \sin A - 10.$

70. Examples.

1. Given
$$\begin{cases} A = 35^{\circ} 45'. \\ B = 45^{\circ} 28'. \\ a = 7985. \end{cases}$$
 Req. $\begin{cases} C. \\ b. \\ c. \\ A \end{cases}$

 $C = 180^{\circ} - (A + B) = 180^{\circ} - 81^{\circ} 13' = 98^{\circ} 47'.$

Since the sine of the angle opposite the given side is to the sine of the angle opposite the required side as the given side is to the required side, we have the proportion,

 $\sin A : \sin B :: a : b, \quad \therefore \ b = \frac{a \sin B}{b}.$ $\sin A$

 $\log b = \log a + \log \sin B + a. c. \log \sin A - 10.$

log a (7985) = 3.90227

 $\log \sin B (45^{\circ} 28') = 9.85299$

a. c. $\log \sin A (35^{\circ} 45') = 0.23340$

 $=\overline{3.98866}$... b=9742.25. $\log b$

In like manner we have the proportion,

 $\sin A : \sin C :: a : c, \quad \cdots \quad c = \frac{a \sin C}{\sin A}.$

 $\begin{array}{rl} \ddots & \log \ c = \log \ a + \log \ \sin \ C + a . \ c . \ \log \ \sin \ A - 10. \\ & \log \ a \ (7985) &= 3.90227 \\ & \log \ \sin \ C \ (98^{\circ} \ 47') = 9.99488 \\ a. \ c. \ \log \ \sin \ A \ (35^{\circ} \ 45') = \underline{0.23340} \\ & \log \ c &= \underline{4.13055} \quad \ddots \ c = 13506.88. \end{array}$

In finding log sin 98° 47', take the supplement of 98° 47, which is 81° 13', and find log sin 81° 13'.

 $\begin{array}{l} \text{2. Given} \left\{ \begin{matrix} A = 50^{\circ} \ 30' \ 40''. \\ B = 70^{\circ} \ 45' \ 30''. \\ a = 478.35 \ yd. \end{matrix} \right\} \quad \text{Req.} \left\{ \begin{matrix} C = 58^{\circ} \ 43' \ 50''. \\ b = 585.2 \ yd. \\ c = 529.8 \ yd. \end{matrix} \right. \\ \text{3. Given} \left\{ \begin{matrix} B = 65^{\circ} \ 25' \ 35''. \\ C = 60^{\circ} \ 28' \ 34''. \\ b = 12.25 \ \text{miles.} \end{matrix} \right\} \quad \text{Req.} \left\{ \begin{matrix} A = 54^{\circ} \ 05' \ 51''. \\ c = 11.72 \ \text{miles.} \\ a = 10.91 \ \text{miles.} \end{matrix} \right. \end{array} \right.$

71. Case II.

Given two sides and an angle opposite one of them, required the remaining parts.

1. WHEN THE GIVEN ANGLE IS ACUTE.

Let the sides a and b and the angle A be given, and the remaining parts be required.

Let the perpendicular p be drawn from C to the opposite side. Then we shall have,

$$p=b \sin A$$
.

1st. If a > p and a < b, there will be two solutions.

For, if with C as a center and a as radius a circumference be described, it will intersect the side opposite C in two points, B and B', and either triangle, ABC or AB'C will fulfill the conditions of the problem, since it will have two sides and an angle opposite one of them the same as those given. Hence, there will be two solutions if a has any value between the limits p and b.

2d. If a = p, there will be but one solution.

For, as a diminishes and approaches A^{-1} p, the two points B and B' approach;

and if a = p, B and B' will unite, the arc will be tangent to c, and the two triangles will become one, and there will be one solution.

3d. If a = b, there will be but one solution.

For, as a increases and approaches b, the points B and B' separate, the

triangle ABC increases, and the triangle AB'C decreases; and when a becomes equal to b, the triangle AB'C vanishes, and there remains but one triangle, or there is but one solution.

4th. If a > b, there will be but one solution.

For, although there are two triangles ABC and AB'C, the latter is excluded by the condition that the given angle A is acute, since CAB' is obtuse, and there remains but one triangle ABC which satisfies the conditions, or there is but one solution.

5th. If a < p, there will be no solution.

2. WHEN THE GIVEN ANGLE IS OBTUSE.

1st. If a > b there will be but one solution.

For, although there are two triangles ABC and AB'C, the latter is excluded by the conditions of the problem, since the angle CAB' is acute while the given angle is obtuse. There remains but one triangle, ABC, which satisfies all the conditions of the problem, or there is but one possible solution.

2d. If a = b there will be no solution.

For as a diminishes and approaches b, B will approach A; and when a becomes equal to b, B will unite with A, and the triangle ABC will vanish. The triangle ABC will remain, but will be excluded by the conditions of the problem, since the angle CAB' is acute while the given angle is obtuse.

3d. If a < b there will be no solution; for then,

If a > p there will be two triangles, AB'C and AB''C, but both are excluded by the condition that the given angle is obtuse.

If a = p the two triangles reduce to one, right-angled at B, which is excluded by the condition that the given angle is obtuse.

If a < p no triangle can be constructed with the given parts, and there will be no solution.

OBLIQUE TRIANGLES.

72. Summary of Results.

1. When $A < 90^{\circ}$.

Two Solutions, If a > p and a < b.

One Solution, $\begin{cases} 1st. \text{ If } a = p. \\ 2d. \text{ If } a = b. \\ 3d. \text{ If } a > b. \end{cases}$

No Solution, If a < p.

2. When $A > 90^{\circ}$.

One Solution, If a > b.

No Solution, $\begin{cases} 1st. \text{ If } a = b. \\ 2d. \text{ If } a < b. \end{cases}$

73. Method of Computation.

Reversing the order of the couplets of the proportion in Case I, we have

(1) $a:b::\sin A:\sin B$.

Hence, The side opposite the given angle is to the side opposite the required angle, as the sine of the given angle is to the sine of the required angle.

(1) gives (2) $\sin B = \frac{b \sin A}{a}$.

... (3) $\log \sin B = \log b + \log \sin A + a. c. \log a - 10.$

If there is but one solution, take from the table the angle B corresponding to log sin B; if there are two solutions, take B and its supplement B', for both correspond to log sin B.

We find C from the formula,

. $C = 180^{\circ} - (A + B)$ or $C = 180^{\circ} - (A + B')$.

We find c from the proportion,

$$\sin A : \sin C :: a : c, \quad \therefore c = \frac{a \sin C}{\sin A}.$$

 $\therefore \log c = \log a + \log \sin C + a. c. \log \sin A - 10.$

74. Examples.

1. Giv.
$$\begin{cases} a = 9.25. \\ b = 12.56. \\ A = 30^{\circ} \ 25'. \end{cases}$$
 Req. $\begin{cases} B. \\ C. \\ c. \\ A = B' \end{cases}$

 $p = b \sin A$.

Introducing R and applying logarithms, we have

 $\log p = \log b + \log \sin A - 10.$

Since a > p and a < b, there are two solutions.

Since the side opposite the given angle is to the side opposite the required angle as the sine of the given angle is to the sine of the required angle, we have the proportion,

 $a: b:: \sin A: \sin B, \quad \therefore \sin B = \frac{b \sin A}{a}$

 $\log \sin B = \log b + \log \sin A + a. c. \log a - 10.$

	log b (12.56)	=1.09899	hand after see holes
	$\log \sin A (30^{\circ}$	25') = 9.70439	
a. c.	log a (9.25)	= 9.03386	and a month of the state
	$\log \sin B$	$=\overline{9.83724}$	$ \therefore \begin{cases} B = 43^{\circ} 25' 41''. \\ B' = 136^{\circ} 34' 19''. \end{cases} $
	A A A A		$(B'=136^{\circ} 34' 19''.$

OBLIQUE TRIANGLES.

 $C = 180^{\circ} - (A + B) = 106^{\circ} 9' 19'',$ $C' = 180^{\circ} - (A + B') = 13^{\circ} 0' 41''.$ $\sin A : \sin C :: a : c, \quad \therefore \ c = \frac{a \sin C}{\sin A}.$ $\log c = \log a + \log \sin C + a. c. \log \sin A - 10.$ Taking the value of C, we have, = 0.96614 $\log a$ (9.25) $\log \sin C (106^{\circ} 9' 19'') = 9.98250$ a. c. $\log \sin A (30^{\circ} 25') = 0.29561$ = 1.24425 ... c = 17.549. $-\log c$ Taking the value of C', we have, = 0.96614 $\log a$ (9.25) $\log \sin C' (13^{\circ} 0' 41'') = 9.35246$ a. c. $\log \sin A (30^{\circ} 25') = 0.29561$ = 0.61421 ... c = 4.1135. $\log c$ 2. Given $\begin{cases} a = 20.35. \\ b = 20.35. \\ A = 52^{\circ} 35' 27''. \end{cases}$ Req. $\begin{cases} B = 52^{\circ} 35' 27''. \\ C = 74^{\circ} 49' 06''. \\ c = 24.725. \end{cases}$ 3. Given $\left\{ \begin{array}{l} a = 645.8. \\ b = 234.5. \\ A = 48^{\circ} \ 35'. \end{array} \right\}$ Req. $\left\{ \begin{array}{l} B = 15^{\circ} \ 48' \ 04''. \\ C = 115^{\circ} \ 36' \ 56''. \\ c = 776.53. \end{array} \right\}$ 4. Given $\begin{cases} a = 17. \\ b = 40.25. \\ A = 27^{\circ} \ 43' \ 15''. \end{cases}$ Req. $\begin{cases} B. \\ C. \\ c. \end{cases}$ No Solution. 5. Given $\left\{ \begin{array}{l} a = 94.26. \\ b = 126.72. \\ A = 27^{\circ} 50'. \end{array} \right\}$ Req. $\left\{ \begin{array}{l} B = \left\{ \begin{array}{l} 38^{\circ} 52' 46''. \\ 141^{\circ} 7' 14''. \\ C = \left\{ \begin{array}{l} 113^{\circ} 17' 14''. \\ 11^{\circ} 2' 46''. \\ c = \left\{ \begin{array}{l} 185.439. \\ 38.682. \end{array} \right\} \right\}$

6. Given $\begin{cases} a = 1800.\\ b = 2000.\\ B = 111^{\circ} 15'. \end{cases}$ Req. $\begin{cases} A = 57^{\circ} 0' 50''.\\ C = 11^{\circ} 44' 10''.\\ c = 436.49. \end{cases}$

75. Case III.

Given two sides and their included angle, required the remaining parts.

Let ABC be a triangle, and let the sides opposite the angles A, B, C, be denoted, respectively, by a, b, c. Let a and b, and their

included angle C, be given, and the remaining parts, A, B, and c, required.

The sum of the angles A and B is found from the formula,

$$A + B = 180^{\circ} - C.$$

With C as a center, and b, the shorter of the two given sides, as a radius, describe a circumference cutting a in D, a produced in E, and c in H. Draw AE, AD, CH, and DF parallel to AE. The angle DAE is a right angle, since it is inscribed in a semi-circle; hence, its alternate angle, ADF, is also a right angle.

The angle ACE being exterior to the triangle ABC, is equal to A + B. But ACE having its vertex at the center, is measured by the intercepted arc AE. The inscribed angle ADE is measured by one-half the arc AE; hence, $ADE = \frac{1}{2}ACE = \frac{1}{2}(A + B)$.

CH = CA, since they are radii of the same circle; hence, the angle CHA = A. The angle CHA being exterior to the triangle CHB is equal to HCB + B; hence,

HCB + B = A. \therefore HCB = A - B.

64

OBLIQUE TRIANGLES.

But *HCB*, having its vertex at the center, is measured by the intercepted arc *DH*; and *DAF*, being an inscribed angle, is measured by one-half the arc *DH*; hence, $DAF = \frac{1}{2}HCB = \frac{1}{2}(A-B)$.

In the right triangles ADE and ADF we have

$$AE = AD \tan ADE = AD \tan \frac{1}{2}(A+B).$$

 $DF = AD \tan DAF = AD \tan \frac{1}{2}(A - B).$

From the similar triangles, ABE and FBD, we have

BE: BD:: AE: DF.

Since CE = CA, BE = BC + CA = a + b. Since CD = CA, BD = BC - CA = a - b.

Substituting the values of BE, BD, AE, and DF in the above proportion, and omitting the common factor AD in the second couplet, we have

 $a+b: a-b:: \tan \frac{1}{2}(A+B): \tan \frac{1}{2}(A-B).$

Hence, In any plane triangle, the sum of the sides including an angle is to their difference as the tangent of half the sum of the other two angles is to the tangent of half their difference.

We find from the proportion, the equation

$$\tan \frac{1}{2}(A-B) = \frac{(a-b)\tan \frac{1}{2}(A+B)}{a+b}.$$

... $\log \tan \frac{1}{2}(A-B) = \log (a-b) + \log \tan \frac{1}{2}(A+B) + a. c. \log (a+b) - 10.$

We have now found $\frac{1}{2}(A+B)$ and $\frac{1}{2}(A-B)$. $A = \frac{1}{2}(A+B) + \frac{1}{2}(A-B), \quad B = \frac{1}{2}(A+B) - \frac{1}{2}(A-B).$ $\sin A : \sin C :: a : c, \quad \therefore c = \frac{a \sin C}{\sin A}.$ $\therefore \log c = \log a + \log \sin C + a. c. \log \sin A - 10.$

S. N. 6.

76. Examples.

1. Given
$$\begin{cases} a = 37.56. \\ b = 23.75. \\ C = 68^{\circ} 25'. \end{cases}$$
 Req. $\begin{cases} A. \\ B. \\ c. \\ A \end{cases}$

 $A + B = 180^{\circ} - C = 111^{\circ} 35'$.

 $a+b: a-b:: \tan \frac{1}{2}(A+B): \tan \frac{1}{2}(A-B).$

:.
$$\tan \frac{1}{2}(A-B) = \frac{(a-b)\tan \frac{1}{2}(A+B)}{a+b}$$

log tan $\frac{1}{2}(A-B) = \log (a-b) + \log \tan \frac{1}{2}(A+B)$ + a. c. log (a+b) - 10.

$\log (a-b) (13.81)$	= 1.14019
$\log \tan \frac{1}{2}(A+B) (55^{\circ} 4)$	$(47' \ 30'') = 10.16761$
a. c. $\log (a+b) (61.31)$	= 8.21247
$\log \tan \frac{1}{2}(A-B)$	= 9.52027
	$\therefore \frac{1}{2}(A-B) = 18^{\circ} 19' 55''.$

 $A = \frac{1}{2}(A+B) + \frac{1}{2}(A-B) = 74^{\circ}$ 7' 25".

 $B = \frac{1}{2}(A + B) - \frac{1}{2}(A - B) = 37^{\circ} 27' 35''.$

 $\sin A : \sin C :: a : c, \quad . \quad c = \frac{a \sin C}{\sin A}.$

 $\log c = \log a + \log \sin C + a. c. \log \sin A - 10.$

2.

	log	a (37.56)	= 1.57473	
	log	sin C (68° 25')	= 9.96843	
a. c.	log	sin A (74° 7' 25")	= 0.01689	
	log	с.	1.56005,	. c = 36.312

2. Given $\begin{cases} a = 996.63.\\ b = 712.83.\\ C = 72^{\circ} \ 29' \ 48''. \end{cases} \quad \text{Req.} \begin{cases} A = 66^{\circ} \ 30' \ 37''.\\ B = 40^{\circ} \ 59' \ 35''.\\ c = 1036.35. \end{cases}$

OBLIQUE TRIANGLES.

 $3. \text{ Given} \left\{ \begin{array}{l} b = 776.525. \\ c = 234.5. \\ A = 48^{\circ} \ 35'. \end{array} \right\} \quad \text{Req.} \left\{ \begin{array}{l} B = 115^{\circ} \ 36' \ 56''. \\ C = 15^{\circ} \ 48' \ 04''. \\ a = 645.8. \end{array} \right.$ $4. \text{ Given} \left\{ \begin{array}{l} a = 11.7209. \\ c = 10.9232. \\ B = 65^{\circ} \ 25' \ 35''. \end{array} \right\} \quad \text{Req.} \left\{ \begin{array}{l} A = 60^{\circ} \ 25' \ 34''. \\ C = 54^{\circ} \ 08' \ 51''. \\ b = 12.256 \end{array} \right.$

77. Case IV.

Given the three sides of a triangle, required the angles.

Let ABC be a triangle, take the longest side for the base, and draw the perpendicular p from the vertex B to the base.

Denote the segments of the base by s and s' respectively.

Then, (1) $c^2 - s'^2 = p^2$, and (2) $a^2 - s^2 = p^2$.

... (3) $c^2 - s'^2 = a^2 - s^2$, ... (4) $s^2 - s'^2 = a^2 - c^2$.

$$(5) (s+s') (s-s') = (a+c) (a-c).$$

. . (6) s + s' : a + c :: a - c : s - s'.

Hence, The sum of the segments of the base is to the sum of the other sides as the difference of those sides is to the difference of the segments.

(6) gives (7)
$$s - s' = \frac{(a+c)(a-c)}{s+s'}$$
.

... (8)
$$\log (s-s') = \log (a+c) + \log (a-c) + a. c. \log (s+s') - 10.$$

In case the sides of the triangle are small, find s-s' from (7); otherwise, it will be more convenient to employ (8).

Having s+s' and s-s', we find s and s' thus, (9) $s = \frac{1}{2}(s+s') + \frac{1}{2}(s-s')$, (10) $s' = \frac{1}{2}(s+s') - \frac{1}{2}(s-s')$. (11) $\cos A = \frac{s'}{c}$, (12) $\cos C = \frac{s}{a}$. Introducing R, reducing, and applying logarithms,

(13)
$$\log \cos A = 10 + \log s' - \log c$$
.

(14)
$$\log \cos C = 10 + \log s - \log a$$
.

From which we find A and C.

Then, (15) $B = 180^{\circ} - (A + C)$.

78. Examples.

T to the las

1. Given
$$\begin{cases} a = 125. \\ b = 150. \\ c = 100. \end{cases}$$
 Req.
$$\begin{cases} A. \\ B. \\ C. \\ A \end{cases}$$

s+s': a+c:: a-c: s-s'

$$s - s' = \frac{(a+c)(a-c)}{s+s'} = \frac{225 \times 25}{150} = 37.5.$$

$$s = \frac{1}{2}(s+s') + \frac{1}{2}(s-s') = 75 + 18.75 = 93.75.$$

$$s' = \frac{1}{2}(s+s') - \frac{1}{2}(s-s') = 75 - 18.75 = 56.25.$$

$$\cos A = \frac{s'}{c}, \text{ or introducing } R, \cos A = \frac{Rs'}{c}$$

$$\log \cos A = 10 + \log s' - \log c$$

 $\log s'(56.25) = 1.75012$ $\log c (100) = 2.00000$ $\log \cos A = 9.75012$... $A = 55^{\circ} 46' 18''$. $\cos C = \frac{s}{a}$, or introducing R, $\cos C = \frac{Rs}{a}$.

HEIGHTS AND DISTANCES.

 $\therefore \log \cos C = 10 + \log s - \log a$.

 $log \ s \ (93.75) = 1.97197$ $log \ a \ (125) = \underline{2.09691}$ $log \ cos \ C = \underline{9.87506} \quad \therefore \ C = 41^{\circ} \ 24' \ 34''.$

$$B = 180 - (A + C) = 82^{\circ} 49' 08''.$$

2. Given $\begin{cases} a = 332.21. \\ b = 345.46. \\ c = 237.61. \end{cases}$ Required $\begin{cases} A = 66^{\circ} 30' 35''. \\ B = 72^{\circ} 29' 53''. \\ C = 40^{\circ} 59' 32''. \end{cases}$

3. Given $\begin{cases} a = 864. \\ b = 1308. \\ c = 1086. \end{cases}$ Required $\begin{cases} A = 41^{\circ} \ 00' \ 38''. \\ B = 83^{\circ} \ 25' \ 14''. \\ C = 55^{\circ} \ 34' \ 08''. \end{cases}$

4. Given
$$\begin{cases} a = 251.25. \\ b = 302.5. \\ c = 342. \end{cases}$$
 Required
$$\begin{cases} A = 45^{\circ} \ 22' \ 41''. \\ B = 58^{\circ} \ 58' \ 20''. \\ C = 75^{\circ} \ 38' \ 59''. \end{cases}$$

APPLICATION TO HEIGHTS AND DISTANCES.

79. Definitions.

1. A horizontal plane is a plane parallel to the horizon.

2. A vertical plane is a plane perpendicular to a horizontal plane.

3. A horizontal line is a line parallel to a horizontal plane.

4. A vertical line is a line perpendicular to a horizontal plane.

5. A horizontal angle is an angle whose plane is horizontal.

6. A vertical angle is an angle whose plane is vertical.

7. An angle of elevation is a verticle angle, one of whose sides is horizontal, and the inclined side above the horizontal side. Thus, *BAC*.

8. An angle of depression is a vertical angle, one of whose sides is horizontal, and the inclined side below the horizontal side. Thus, *DCA*.

80. Problems.

1. Wishing to know the height of a tree standing on a horizontal plane, I measured from the tree the horizontal line BA, 150 ft., and found the angle of elevation, BAC, to the top of the tree to be 35° 20'. Required the height of the tree.

Ans. 106.335 ft.

2. In surveying a tract of land, I found it impracticable to measure the side AB

on account of thick brushwood lying between A and B. I therefore measured AE, 7.50 ch., and EB, 8.70 ch., and

found the angle $AEB = 38^{\circ}$ 46'. Required AB. Ans. 5.494 ch.

3. One side of a triangular field is double another, their included angle is 60°, and the third side is 15 ch. Required the longest side.

Ans. 17.32 ch.

70

HEIGHTS AND DISTANCES.

4. Wishing to know the width of a river, from the

point A on one bank to the point C on the other bank, I measure the distance AB, 75 yd., and find the angle $BAC = 87^{\circ} 28' 30''$, and the angle $ABC = 47^{\circ} 38' 25''$. Required AC, the width of the river. Ans. 78.53 yd.

5. I find the angle of elevation, BAC, from the foot . of a hill to the top to be 46° 25' 30". Measuring back

from the hill, AD = 500 ft., I find the angle of elevation $ADC = 25^{\circ} 38' 40''$. Required BC, the vertical height of the \vec{n} hill. Ans. 441.87 ft.

6. From the foot of a tower standing at the top of a declivity, I measured AB=45 ft., and the angle $ABD = 50^{\circ}$ 15'. I also measured, in a straight line with AB, BC = 68 ft., and the angle $BCD = 30^{\circ}$ 45'. Required AD, the height of the tower. Ans. 82.94 ft.

7. Wishing to know the height of a tower standing on a hill, I find the angle of elevation,

BAC, to the top of the hill to be 44° 35', and the angle of elevation to the top of the tower to be 59° 48'. Measuring the

horizontal line AE, 275 ft., I find the angle of eleva-

B

tion to the top of the tower to be 46° 25'. Required the height of the tower. Ans. 317.143 ft.

D

Required AB = 38.61 ch.

9. Given AB = 800 yd., AC = 600 yd., BC = 400 yd., $ADC = 33^{\circ} 45', BDC = 22^{\circ} 30'.$ Required DA, DC, DB.

Ans. DA = 710.15 yd., DC = 1042.5vd., DB = 934.28 vd.

Remark .- Describing the circumference through A, B, D, and drawing AE and BE, EAB = BDC, EBA = ADC.

RELATIONS OF CIRCULAR FUNCTIONS.

81. Fundamental Formulas.

Let a = the angle OCT = the arc OT, and CO = CT= 1. Then, we have $MT = CN = \sin t$ a, $NT = CM = \cos a$, $MO = \operatorname{vers} a$, $NO' = covers \ a, \ OR = tan \ a, \ O'S =$ $\cot a, CR = \sec a, CS = \csc a.$ n C M

By articles 39-46, sin $(90^{\circ}-a) =$ $\cos a$, $\cos (90^\circ - a) = \sin a$, etc.

From the diagram we have

$\overline{MT}^2 + \overline{CM}^2 = \overline{CT}^2.$

Substituting the values of MT, CM, and CT, we have

(1) $\sin^2 a + \cos^2 a = 1$.

72

Hence, The square of the sine of any arc plus the square of its co-sine is equal to 1.

From (1) we have, by transposition,

(2) $\sin^2 a = 1 - \cos^2 a$,

(3) $\cos^2 a = 1 - \sin^2 a$. Hence,

1. The square of the sine of any arc is equal to 1 minus the square of its co-sine.

2. The square of the co-sine of any arc is equal to 1 minus the square of its sine.

From the diagram we have

$$MO = CO - CM.$$

Substituting the values of MO, CO, and CM, we have

(4) vers $a = 1 - \cos a$.

Hence, The versed-sine of any arc is equal to 1 minus its co-sine.

. vers
$$(90^{\circ} - a) = 1 - \cos(90^{\circ} - a)$$
.

 \therefore (5) covers $a = 1 - \sin a$.

Hence, The co-versed-sine of any arc is equal to 1 minus its sine.

From the diagram we have

CM : CO :: MT : OR,

or $\cos a$: 1 :: $\sin a$: $\tan a$.

(6)
$$\tan a = \frac{\sin a}{\cos a}$$

Hence, The tangent of any arc is equal to its sine divided by its co-sine.

S. N. 7.

· · .

. •

$$\therefore \quad \tan (90^\circ - a) = \frac{\sin (90^\circ - a)}{\cos (90^\circ - a)}$$
$$\therefore \quad (7) \quad \cot \ a = \frac{\cos a}{\sin a} \cdot$$

Hence, The co-tangent of any arc is equal to its co-sine divided by its sine.

 $(6) \times (7) = (8)$ tan *a* cot *a* = 1.

Hence, The tangent of any arc into its co-tangent is equal to 1.

$$(8) \div \cot a = (9) \quad \tan a = \frac{1}{\cot a}$$

Hence, The tangent of any arc is equal to the reciprocal of its co-tangent.

$$(8) \div \tan a = (10) \quad \cot a = \frac{1}{\tan a}.$$

Hence, The co-tangent of any arc is equal to the reciprocal of its tangent.

$$CM : CO :: CT : CR$$
, or cos $a : 1 :: 1 : sec a$.

$$\therefore (11) \quad \sec a = \frac{1}{\cos a}$$

Hence, The secant of any arc is equal to the reciprocal of its co-sine.

$$\therefore \quad \sec (90^{\circ} - a) = \frac{1}{\cos (90^{\circ} - a)}$$
$$\therefore \quad (12) \quad \csc \ a = \frac{1}{\sin a}$$

Hence, The co-secant of any arc is equal to the reciprocal of its sine.

$$\overline{CR}^2 = \overline{CO}^2 + \overline{OR}^2,$$

... (13) $\sec^2 a = 1 + \tan^2 a$.

Hence, The square of the secant of any arc is equal to 1, plus the square of its tangent.

$$\sec^2(90^\circ - a) = 1 + \tan^2(90^\circ - a).$$

:. (14)
$$\operatorname{cosec}^2 a = 1 + \cot^2 a$$
.

. .

Hence, The square of the co-secant is equal to 1, plus the square of the co-tangent.

82. Summary of Fundamental Formulas.

1. $\sin^2 a + \cos^2 a = 1$.	9. $\tan a = \frac{1}{\cot a}$.
2. $\sin^2 a = 1 - \cos^2 a$.	10. $\cot a = \frac{1}{\tan a}$.
3. $\cos^2 a = 1 - \sin^2 a$.	
4. vers $a = 1 - \cos a$.	11. sec $a = \frac{1}{\cos a}$.
5. covers $a = 1 - \sin a$.	12. cosec $a = \frac{1}{\sin a}$.
6. $\tan a = \frac{\sin a}{\cos a}$.	Shirt
7. $\cot a = \frac{\cos a}{\sin a}$.	13. $\sec^2 a = 1 + \tan^2 a$.
$r \cos a = \frac{1}{\sin a}$	
8. $\tan a \cot a = 1$.	14. $\csc^2 a = 1 + \cot^2 a$.

83. Problems.

1. Prove that the above formulas become homogeneous by the introduction of R.

2. Deduce formulas (5), (7), (12) and (14) from the diagram.

3. Prove that the above formulas are true if a is in the second, third, or fourth quadrant.

84. Each Function in Terms of the Others.

$$\begin{aligned} \sin a = \sqrt{1 - \cos^2 a}, & \text{vers } a = 1 - \sqrt{1 - \sin^2 a}, \\ \sin a = \sqrt{2 \text{ vers } a - \text{vers}^2 a}, & \text{vers } a = 1 - \cos a, \\ \sin a = 1 - \cos a, & \text{vers } a = 1 - \cos a, \\ \sin a = \frac{1 - \cos a}{\sqrt{1 + \tan^2 a}}, & \text{vers } a = 1 - \sqrt{2 \cos a - \cos^2 a}, \\ \sin a = \frac{1}{\sqrt{1 + \tan^2 a}}, & \text{vers } a = 1 - \frac{1}{\sqrt{1 + \tan^2 a}}, \\ \sin a = \frac{1}{\sqrt{1 + \cot^2 a}}, & \text{vers } a = 1 - \frac{\cot a}{\sqrt{1 + \cot^2 a}}, \\ \sin a = \frac{1}{\sqrt{1 + \cot^2 a}}, & \text{vers } a = 1 - \frac{\cot a}{\sqrt{1 + \cot^2 a}}, \\ \sin a = \frac{1}{\cos ec a}, & \text{vers } a = \frac{1 - \sqrt{\cos ec^2 a - 1}}{\cos e a}, \\ \sin a = \frac{1}{\cos ec a}, & \text{vers } a = \frac{1 - \sqrt{2 \cos ec^2 a - 1}}{\cos e a}, \\ \cos a = \sqrt{1 - \sin^2 a}, & \text{covers } a = 1 - \sqrt{1 - \cos^2 a}, \\ \cos a = \sqrt{1 - \sin^2 a}, & \text{covers } a = 1 - \sqrt{1 - \cos^2 a}, \\ \cos a = \sqrt{2 \cos a - \cos^2 a}, & \text{covers } a = 1 - \sqrt{1 - \cos^2 a}, \\ \cos a = \frac{1}{\sqrt{1 + \tan^2 a}}, & \text{covers } a = 1 - \sqrt{1 - \cos^2 a}, \\ \cos a = \frac{1}{\sqrt{1 + \cot^2 a}}, & \text{covers } a = 1 - \frac{1}{\sqrt{1 + \cot^2 a}}, \\ \cos a = \frac{1}{\sqrt{1 + \cot^2 a}}, & \text{covers } a = 1 - \frac{1}{\sqrt{1 + \cot^2 a}}, \\ \cos a = \frac{1}{\sec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\sec a}, \\ \cos a = \frac{1}{\sec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\sec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\sqrt{1 + \cot^2 a}}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\sqrt{1 + \cot^2 a}}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\sqrt{1 + \cot^2 a}}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\sec^2 a - 1}}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = 1 - \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos ec^2 a - 1}}{\cos ec a}, & \text{covers } a = \frac{\cos a - 1}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos^2 a - 1}}{\cos ec a}, & \text{covers } a = \frac{\cos a - 1}{\cos ec a}, \\ \cos a = \frac{\sqrt{\cos^2 a - 1}}{\cos ec a}, & \text{covers } a = \frac{\cos a - 1}{\cos ec a}, \\ \cos a = \frac{\cos^2 a - 1}{\cos^2 a - 1}, & \text{covers } a = \frac{\cos^2 a - 1}{\cos ec a}, \\ \cos a$$

76

84. Each Function in Terms of the Others.

$$\begin{aligned} \tan a &= \frac{\sin a}{\sqrt{1 - \sin^2 a}} \\ \tan a &= \frac{\sqrt{1 - \cos^2 a}}{\cos a} \\ \tan a &= \frac{\sqrt{2 \cos a - \cos^2 a}}{1 - \cos a} \\ \tan a &= \frac{1 - \cos a}{1 - \cos a} \\ \tan a &= \frac{1 - \cos a}{\sqrt{2 \cos a - \cos^2 a}} \\ \tan a &= \frac{1 - \cos a}{\sqrt{2 \cos a - \cos^2 a}} \\ \tan a &= \frac{1}{\sqrt{2 \cos a - \cos^2 a}} \\ \tan a &= \frac{1}{\sqrt{2 \cos^2 a - 1}} \\ \tan a &= \sqrt{\sec^2 a - 1} \\ \tan a &= \sqrt{\sec^2 a - 1} \\ \tan a &= \frac{1}{\sqrt{\cos^2 a - 1}} \\ \cot a &= \frac{\sqrt{1 - \sin^2 a}}{\sin a} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{\sqrt{1 - \cos^2 a}} \\ \cot a &= \frac{1 - \cos a}{1 - \cos a} \\ \cot$$

85. Functions of Negative Arcs.

We first find the sine and co-sine of -a, in terms of the functions of afrom the diagram. Then, dividing the sine by the co-sine, the cosine by the sine, taking the reciprocal of the cosine and the reciprocal of the sine, we have

$\sin (-a) = -\sin a,$	$\cos (-a) = \cos a,$
$\tan (-a) = -\tan a,$	$\cot (-a) = -\cot a,$
$\sec(-a) = \sec a$,	$\operatorname{cosec}(-a) = -\operatorname{cosec} a.$

86. Functions of $(n \ 90^\circ \mp a)$.

1. Let n be 1 and a be negative.

From the figure of the last article, and by similar processes,

$\sin (90^\circ - a) = \cos a,$	$\cos (90^\circ - a) = \sin a,$
$\tan (90^\circ - a) = \cot a,$	$\cot (90^\circ - a) = \tan a,$
$\sec (90^\circ - a) = \csc a,$	$\operatorname{cosec} (90^{\circ} - a) = \operatorname{sec} a.$

These relations have already been found, articles 39-46.

2. Let n be 1 and a be positive.

 $\sin (90^\circ + a) = \cos a, \qquad \cos (90^\circ + a) = -\sin a,$ $\tan (90^\circ + a) = -\cot a, \qquad \cot (90^\circ + a) = -\tan a,$ $\sec (90^\circ + a) = -\csc a, \qquad \csc (90^\circ + a) = -\tan a.$

3. Let n be 2, and a be negative.

 $\sin (180^\circ - a) = \sin a$, $\cos (180^\circ - a) = -\cos a$, $\tan (180^\circ - a) = -\tan a$, $\cot (180^\circ - a) = -\cot a$, $\sec (180^\circ - a) = -\sec a$, $\csc (180^\circ - a) = \csc a$.

4. Let n be 2, and a be positive.

 $\sin (180^{\circ} + a) = -\sin a, \ \cos (180^{\circ} + a) = -\cos a, \\ \tan (180^{\circ} + a) = \tan a, \ \cot (180^{\circ} + a) = \cot a, \\ \sec (180^{\circ} + a) = -\sec a, \ \csc (180^{\circ} + a) = -\csc a.$

5. Let n be 3, and a be negative.

 $\sin (270^{\circ} - a) = -\cos a, \quad \cos \quad (270^{\circ} - a) = -\sin a, \\ \tan (270^{\circ} - a) = \cot a, \quad \cot \quad (270^{\circ} - a) = \tan a, \\ \sec (270^{\circ} - a) = -\csc a, \quad \csc (270^{\circ} - a) = -\sec a.$

6. Let n be 3, and a be positive.

 $\sin (270^{\circ} + a) = -\cos a, \quad \cos (270^{\circ} + a) = \sin a, \\ \tan (270^{\circ} + a) = -\cot a, \quad \cot (270^{\circ} + a) = -\tan a, \\ \sec (270^{\circ} + a) = \cos c a, \quad \csc (270^{\circ} + a) = -\sec a.$

7. Let n be 4, and a be negative.

 $\sin (360^{\circ} - a) = -\sin a, \quad \cos (360^{\circ} - a) = \cos a, \\ \tan (360^{\circ} - a) = -\tan a, \quad \cot (360^{\circ} - a) = -\cot a, \\ \sec (360^{\circ} - a) = \sec a, \quad \csc (360^{\circ} - a) = -\cot a.$

8. Let n be 4, and a be positive.

 $\sin (360^{\circ} + a) = \sin a, \quad \cos (360^{\circ} + a) = \cos a, \\ \tan (360^{\circ} + a) = \tan a, \quad \cot (360^{\circ} + a) = \cot a, \\ \sec (360^{\circ} + a) = \sec a, \quad \csc (360^{\circ} + a) = \csc a.$

It will be observed that when n is *even*, the functions in the two members of the equations have the same name; and that when n is odd, they have contrary names. The algebraic sign attributed to the second member is determined by the quadrant in which the arc is situated.

Let this article be reviewed, and these principles applied in determining the names and algebraic signs of the second members. Hence, functions of arcs greater than 90° can be found in terms of functions of arcs less than 90°. Thus,

- 1. $\sin 120^\circ = \sin (90^\circ + 30^\circ) = \cos 30^\circ$.
- 2. $\cos 290^\circ = \cos (270^\circ + 20^\circ) = \sin 20^\circ$.
- 3. $\tan 165^\circ = \tan (180^\circ 15^\circ) = -\tan 15^\circ$.

If n is integral and positive, prove the following:

- 4. $\sin [n \ 180^\circ + (-1)^n \ a] = \sin a$.
- 5. $\cos (n \ 360^{\circ} \pm a) = \cos a$.
- 6. $\tan(n \ 180^\circ + a) = \tan a$.

7. Any function of $(n \ 360^\circ + a) =$ the same function of a, whatever be the value of a.

87. Values of Functions of Particular Arcs.

1. To find the functions of 30°.

Since 60° is one-sixth of the circumference, the chord of 60° is equal to one side of a regular inscribed hexagon, which is equal to the radius or 1. But the sine of 30° is equal to one-half the chord of 60° .

... (1) $\sin 30^\circ = \frac{1}{2}$, ... (2) $\cos 30^\circ = \sqrt{1 - \frac{1}{4}} = \frac{1}{2}\sqrt{3}$.

Dividing (1) by (2), then (2) by (1), taking the reciprocals of (2) and (1), we have

(3) $\tan 30^\circ = \frac{1}{\sqrt{3}}$, (4) $\cot 30^\circ = \sqrt{3}$. (5) $\sec 30^\circ = \frac{2}{\sqrt{3}}$, (6) $\csc 30^\circ = 2$.

2. To find the functions of 60°.

From article 40, $\sin 60^\circ = \sin (90^\circ - 30^\circ) = \cos 30^\circ$, $\cos 60^\circ = \cos (90^\circ - 30^\circ) = \sin 30^\circ$. Hence,

(1)
$$\sin 60^\circ = \frac{1}{2}\sqrt{3}$$
, (2) $\cos 60^\circ = \frac{1}{2}$,
(3) $\tan 60^\circ = \sqrt{3}$, (4) $\cot 60^\circ = \frac{1}{\sqrt{3}}$,
(5) $\sec 60^\circ = 2$, (6) $\csc 60^\circ = \frac{2}{\sqrt{3}}$.

3. To find the functions of 45°.

From Art. 40, $\sin 45^\circ = \sin (90^\circ - 45^\circ) = \cos 45^\circ$; but $\sin^2 45^\circ + \cos^2 45^\circ = 1$;

•.	$2 \sin^2 45^\circ = 1, \ldots$	sin ²	$45^{\circ} = \frac{1}{2}$. Hence,
	(1) $\sin 45^\circ = \frac{1}{2}\sqrt{2},$	(2)	$\cos 45^\circ = \frac{1}{2}\sqrt{2},$
	(3) $\tan 45^\circ = 1$,	(4)	$\cot 45^{\circ} = 1,$
	(5) sec $45^{\circ} = \sqrt{2}$,	(6)	$\operatorname{cosec} 45^\circ = V \overline{2.}$

Prove the following:

1.	sec $120^{\circ} = -2$.	5. cosec $210^\circ = -2$.
2.	$\cos 135^\circ = -\frac{1}{2}\sqrt{2.}$	6. cot $240^{\circ} = \frac{1}{\sqrt{3}}$.
3.	$\sin 300^\circ = -\frac{1}{2} \sqrt{3.}$	7. $\sin 390^\circ = \frac{1}{2}$.
4.	$\tan 225^{\circ} = 1.$	8. $\cos(-120^\circ) = -\frac{1}{2}$.
9.	Construct an angle wh	ose tangent is — 1.
10.	Construct an angle wh	ose sine is $-\frac{1}{2}$.

11. Find all the functions of 150°.

88. Inverse Trigonometric Functions.

If $x = \sin a$, then a is the angle or arc whose sine is x, which is written $a = \sin^{-1} x$, and read a equals the arc whose sine is x.

It must not be supposed that $^{-1}$ is an exponent, and that $\sin^{-1} x = \frac{1}{\sin x}$; this would be a grievous error.

Let the following be read:

 $\frac{\cos^{-1}x, \tan^{-1}x, \sec^{-1}x, \csc^{-1}x, \sin^{-1}(\cos x), \sin(\sin^{-1}x),}{\sin^{-1}x = \csc^{-1}\frac{1}{x}, \cos^{-1}x = \sec^{-1}\frac{1}{x}, \tan^{-1}x = \cot^{-1}\frac{1}{x}.$

The above notation is not altogether arbitrary; for let f(x) be any function of x, and let f[f(x)], or, more briefly, let $f^2(x)$ be the same function of f(x), which notation denotes, not the square of f(x), that is, not $[f(x)]^2$, but that the same function is taken of f(x) as of x. Thus, if $f(x) = \sin x$, $f[f(x)] = \sin (\sin x)$, then, in general,

(1) $f^m f^n(x) = f^{m+n}(x)$.

If n = 0, (1) becomes,

(2) $f^{m} f^{0}(x) = f^{m}(x)$ (3) $f^{0}(x) = x$.

If m = 1, and n = -1, (1) becomes,

(4)
$$ff^{-1}(x) = f^{0}(x) = x.$$

1008 ora

Hence, $f^{-1}(x)$ denotes a quantity whose like function is x.

Hence, if $y = \sin^{-1}x$, $\sin y = \sin (\sin^{-1}x) = x$; that is, y or $\sin^{-1}x$ is an arc whose sine is x.

It would follow from the above that $\sin^2 a$ ought to signify sin (sin a), and not (sin a)²; but since we rarely have sin (sin a), it is customary to write $\sin^2 a$ for (sin a)², as we are thus saved the trouble of writing the parenthesis.

It would not, of course, do to write $\sin a^2$ for $(\sin a)^2$, for then we should have the sine of the square of an arc for the square of the sine of an arc.

Let the following equations be proved:

1.	$\sin^{-1}\frac{\sqrt{3}}{2} = \cos^{-1}\frac{1}{2}.$	4. $\cos^{-1}\frac{1}{2} = 2 \cot^{-1}\sqrt{3}$.
2.	$\sin^{-1}\frac{1}{2} = \frac{1}{2}\tan^{-1}\sqrt{3}.$	5. $\sin^{-1} 1 = 2 \tan^{-1} 1$.
		6. $\sec^{-1}2 = \frac{1}{2} \sec^{-1}(-2)$.

89. Problem.

To find the sine and co-sine of the sum of two angles.

Let a = the angle OCA, and b = the angle ACB. Draw BL perpendicular to CA, BP and LM perpendicular to CO, and LN parallel to CO.

The triangles NBL and MCL are similar, since their sides are respectively

perpendicular; hence, the angle NBL opposite the side NL equals the angle MCL opposite the homologous side ML. But MCL = a; hence NBL = a.

From the diagram we find the following relations:

- (1) $LB = \sin b$.
- (2) $CL = \cos b$.
- (3) PB = ML + NB.
- (4) $PB = \sin OCB = \sin (a + b)$.
- (5) $ML = \sin MCL \times CL = \sin a \cos b$.
- (6) $NB = \cos NBL \times LB = \cos a \sin b$.

Substituting the values of PB, ML, and NB, found in (4), (5), and (6), in (3), and denoting the formula by (a), we have

(a) $\sin (a+b) = \sin a \cos b + \cos a \sin b$.

Hence, The sine of the sum of two angles is equal to the sine of the first into the co-sine of the second, plus the cosine of the first into the sine of the second.

From the diagram we find the following relations:

- (1) CP = CM NL.
- (2) $CP = \cos OCB = \cos (a + b).$
- (3) $CM = \cos MCL \times CL = \cos a \cos b.$

C P M

(4) $NL = \sin NBL \times LB = \sin a \sin b$.

Substituting the values of CP, CM, and NL, found in (2), (3), and (4), in (1), we have

(b) $\cos (a+b) = \cos a \cos b - \sin a \sin b$.

Hence, The co-sine of the sum of two angles is equal to the product of their co-sines minus the product of their sines.

90. Problems.

1. Prove that formulas (a) and (b) become homogeneous by introducing R.

2. Prove that formulas (a) and (b) are true when (a + b) is in the second quadrant.

3. Prove that formulas (a) and (b) are true when (a + b) is in the third quadrant.

4. Prove that formulas (a) and (b) are true when (a+b) is in the fourth quadrant.

5. Deduce formula (b) from formula (a) by substituting $90^{\circ} - a$ for a, and -b for b, and reducing by articles 85-86.

6. Develop sin $(45^{\circ} + 30^{\circ})$ by formula (a).

7. Develop $\cos 105^{\circ}$ by formula (b).

91. Problem.

To find the sine and co-sine of the difference of two angles.

Let a = the angle OCA, and b = the angle BCA.

Draw BL perpendicular to CA, LP and BM perpendicular to CO, and BN parallel to CO.

The triangles *NLB* and *PCL* are similar, since their sides are respectively

perpendicular; hence, the angle NLB, opposite the side NB, equals the angle PCL opposite the homologous side PL. But the angle PCL = a; hence, the angle NLB = a. Then we shall have

(1) $LB = \sin b$. (2) $CL = \cos b$. (3) MB = PL - NL. (4) $MB = \sin OCB = \sin (a - b)$.

(5) $PL = \sin PCL \times CL = \sin a \cos b$.

(6) $NL = \cos NLB \times LB = \cos a \sin b$.

Substituting the values of MB, PL, and NL, found in (4), (5), and (6), in (3), we have

(c) $\sin (a-b) = \sin a \cos b - \cos a \sin b$.

Hence, The sine of the difference of two angles is equal to the sine of the first into the co-sine of the second, minus the co-sine of the first into the sine of the second.

From the diagram we find the following relations:

- (1) CM = CP + NB.
- (2) $CM = \cos OCB = \cos (a b).$
- (3) $CP = \cos PCL \times CL = \cos a \cos b.$

(4) $NB = \sin NLB \times LB = \sin a \sin b$.

Substituting in (1) the values of CM, CP, and NB found in (2), (3), and (4), we have

(d) $\cos (a-b) = \cos a \cos b + \sin a \sin b$.

Hence, The co-sine of the difference of two angles is equal to the product of their co-sines, plus the product of their sines.

92. Problems.

1. Prove that formulas (c) and (d) become homogeneous by introducing R.

2. Deduce formulas (c) and (d) from (a) and (b), respectively, by substituting -b for b, and reducing by article 85.

3. Prove that formulas (c) and (d) are true when (a-b) is in the second quadrant.

4. Prove that formulas (c) and (d) are true when (a-b) is in the third quadrant.

5. Prove that formulas (c) and (d) are true when (a-b) is in the fourth quadrant.

93. Problem.

To find the tangent and co-tangent of the sum or difference of two angles.

Dividing (a) by (b), we have

 $\frac{\sin (a+b)}{\cos (a+b)} = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}$

Dividing both terms of the fraction in the second member by $\cos a \cos b$, reducing, and recollecting that

the sine of an arc divided by its co-sine is equal to its tangent, we have

(e)
$$\tan (a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Hence, The tangent of the sum of two angles is equal to the sum of their tangents, divided by 1 minus the product of their tangents.

Dividing (b) by (a), and reducing, we have

(f)
$$\cot (a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}$$

Hence, The co-tangent of the sum of two angles is equal to the product of their co-tangents, minus 1, divided by the sum of their co-tangents.

Dividing (c) by (d), and reducing, we have

(g) $\tan (a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$

Hence, The tangent of the difference of two angles is equal to the tangent of the first minus the tangent of the second, divided by 1 plus the product of their tangents.

Dividing (d) by (c), and reducing, we have

(h) $\cot (a-b) = \frac{\cot a \cot b + 1}{\cot b - \cot a}$.

Hence, The co-tangent of the difference of two angles is equal to the product of their co-tangents, plus 1, divided by the cotangent of the second, minus the co-tangent of the first.

94. Problems.

1. Prove that (e), (f), (g), (h) become homogeneous by introducing R.

2. Deduce (g) from (e) by substituting -b for b.

3. Deduce (h) from (f) by substituting -b for b.

4. Deduce (f) from (e) by taking the reciprocal of each member, substituting $\frac{1}{\cot a}$ for $\tan a$, $\frac{1}{\cot b}$ for $\tan b$, and reducing.

5. Deduce, in like manner, (h) from (g).

6. Find the value of sin (a + b + c) by substituting b + c for b in (a).

7. Find the value of $\cos (a + b + c)$ by substituting b + c for b in (b).

8. Find the value of $\tan (a + b + c)$ by substituting b + c for b in (e).

9. Find the value of $\cot (a + b + c)$ by substituting b + c for b in (f).

95. Functions of Double and Half Angles.

Making b = a in (a), (b), (e), and (f), we have

(1) $\sin 2a = 2\sin a \cos a$.

(2)
$$\cos 2a = \cos^2 a - \sin^2 a$$
.

(3) $\tan 2a = \frac{2 \tan a}{1 - \tan^2 a}$

(4)
$$\cot 2a = \frac{\cot^2 a - 1}{2 \cot a}$$

Substituting $\frac{1}{2}a$ for a in (1), (2), (3), (4), we have

(5)
$$\sin a = 2 \sin \frac{1}{2} a \cos \frac{1}{2} a$$
.

(6) $\cos a = \cos^2 \frac{1}{2}a - \sin^2 \frac{1}{2}a$.

(7)
$$\tan a = \frac{2 \tan \frac{1}{2}a}{1 - \tan^2 \frac{1}{2}a}$$

(8) $\cot a = \frac{\cot^2 \frac{1}{2}a - 1}{2 \cot \frac{1}{2}a}$

Substituting $1 - \sin^2 \frac{1}{2}a$ for $\cos^2 \frac{1}{2}a$, then $1 - \cos^2 \frac{1}{2}a$ for $\sin^2 \frac{1}{2}a$, in (6), and reducing, we have

(9)
$$1 - \cos a = 2 \sin^2 \frac{1}{2} a$$
.

(10)
$$1 + \cos a = 2 \cos^2 \frac{1}{2}a$$
.

(11)
$$\sin \frac{1}{2}a = \sqrt{\frac{1 - \cos a}{2}}$$
.
(12) $\cos \frac{1}{2}a = \sqrt{\frac{1 + \cos a}{2}}$.

Dividing (11) by (12), then (12) by (11), we have

(13)
$$\tan \frac{1}{2}a = \sqrt{\frac{1 - \cos a}{1 + \cos a}}$$

(14) $\cot \frac{1}{2}a = \sqrt{\frac{1 + \cos a}{1 - \cos a}}$

Dividing (5) first by (10), then by (9), and transposing, we have

(15)
$$\tan \frac{1}{2}a = \frac{\sin a}{1 + \cos a}$$

(16) $\cot \frac{1}{2}a = \frac{\sin a}{1 - \cos a}$

Taking the reciprocal of (16), then of (15), we have

Diething and one

(17)
$$\tan \frac{1}{2}a = \frac{1 - \cos a}{\sin a}$$
.
(18) $\cot \frac{1}{2}a = \frac{1 + \cos a}{\sin a}$.

Let the formulas of this article be expressed in words.

S. N. 8.

96. Consequences of (a), (b), (c), (d).

Taking the sum and difference of (a) and (c), (d) and (b), we have

- (1) $\sin (a+b) + \sin (a-b) = 2 \sin a \cos b$.
- (2) $\sin (a+b) \sin (a-b) = 2 \cos a \sin b$.
- (3) $\cos (a + b) + \cos (a b) = 2 \cos a \cos b$.
- (4) $\cos (a-b) \cos (a+b) = 2 \sin a \sin b$.

Let
$$\begin{cases} a+b=s, \\ a-b=d, \end{cases}$$
 then $\begin{cases} a=\frac{1}{2}(s+d). \\ b=\frac{1}{2}(s-d). \end{cases}$

Substituting the values of a + b, a - b, a, and b, in (1), (2), (3), and (4), we have

- (5) $\sin s + \sin d = 2 \sin \frac{1}{2} (s + d) \cos \frac{1}{2} (s d).$
- (6) $\sin s \sin d = 2 \cos \frac{1}{2} (s + d) \sin \frac{1}{2} (s d).$
- (7) $\cos s + \cos d = 2 \cos \frac{1}{2} (s + d) \cos \frac{1}{2} (s d).$
- (8) $\cos d \cos s = 2 \sin \frac{1}{2} (s+d) \sin \frac{1}{2} (s-d).$

By formula (5) of the preceding article we have

- (9) $\sin (s+d) = 2 \sin \frac{1}{2} (s+d) \cos \frac{1}{2} (s+d)$.
- (10) $\sin (s-d) = 2 \sin \frac{1}{2}(s-d) \cos \frac{1}{2}(s-d)$.

Dividing each of these formulas by each of the following, we have

 $(11) \quad \frac{\sin s + \sin d}{\sin s - \sin d} = \frac{\sin \frac{1}{2}(s+d) \cos \frac{1}{2}(s-d)}{\cos \frac{1}{2}(s+d) \sin \frac{1}{2}(s-d)} = \frac{\tan \frac{1}{2}(s+d)}{\tan \frac{1}{2}(s-d)}.$ $(12) \quad \frac{\sin s + \sin d}{\cos s + \cos d} = \frac{\sin \frac{1}{2}(s+d)}{\cos \frac{1}{2}(s+d)} = \tan \frac{1}{2}(s+d).$ $(13) \quad \frac{\sin s + \sin d}{\cos d - \cos s} = \frac{\cos \frac{1}{2}(s-d)}{\sin \frac{1}{2}(s-d)} = \cot \frac{1}{2}(s-d).$ $(14) \quad \frac{\sin s + \sin d}{\sin (s+d)} = \frac{\cos \frac{1}{2}(s-d)}{\cos \frac{1}{2}(s+d)}.$

(15)	$\frac{\sin s + \sin d}{\sin (s - d)} =$	$= \frac{\sin \frac{1}{2} (s+d)}{\sin \frac{1}{2} (s-d)}.$
(16)	$\frac{\sin s - \sin d}{\cos s + \cos d} =$	$=\frac{\sin\frac{1}{2}(s-d)}{\cos\frac{1}{2}(s-d)}=\tan\frac{1}{2}(s-d).$
(17)	$\frac{\sin s - \sin d}{\cos d - \cos s} =$	$= \frac{\cos \frac{1}{2}(s+d)}{\sin \frac{1}{2}(s+d)} = \cot \frac{1}{2}(s+d).$
(18)	$\frac{\sin s - \sin d}{\sin (s+d)} =$	$\frac{\sin \frac{1}{2} (s-d)}{\sin \frac{1}{2} (s+d)}.$
(19)	$\frac{\sin s - \sin d}{\sin (s - d)} =$	$= \frac{\cos \frac{1}{2}(s+d)}{\cos \frac{1}{2}(s-d)}.$
(20)	$\frac{\cos s + \cos d}{\cos d - \cos s} =$	$=\frac{\cot\frac{1}{2}(s+d)}{\tan\frac{1}{2}(s-d)}.$
(21)	$\frac{\cos s + \cos d}{\sin (s+d)} =$	$= \frac{\cos \frac{1}{2}(s-d)}{\sin \frac{1}{2}(s+d)}.$
(22)	$\frac{\cos s + \cos d}{\sin (s - d)} =$	$= \frac{\cos \frac{1}{2}(s+d)}{\sin \frac{1}{2}(s-d)}.$
(23)	$\frac{\cos d - \cos s}{\sin (s+d)} =$	$= \frac{\sin \frac{1}{2}(s-d)}{\cos \frac{1}{2}(s+d)}.$
(24)	$\frac{\cos d - \cos s}{\sin (s - d)} =$	$= \frac{\sin \frac{1}{2}(s+d)}{\cos \frac{1}{2}(s-d)} \cdot \frac{1}{2} \cdot \frac{1}{2$
(25)	$\frac{\sin(s+d)}{\sin(s-d)} =$	$=\frac{\sin\frac{1}{2}(s+d)\cos\frac{1}{2}(s+d)}{\sin\frac{1}{2}(s-d)\cos\frac{1}{2}(s-d)}$

Formula (11) gives the proportion,

 $\sin s + \sin d : \sin s - \sin d :: \tan \frac{1}{2}(s+d) : \tan \frac{1}{2}(s-d).$

Hence, The sum of the sines of two angles is to their difference as the tangent of one-half the sum of the angles is to the tangent of one-half their difference.

Let us apply this principle in solving triangles when two sides and their included angle are given. Article 75.

 $a:b::\sin A:\sin B.$

$$\begin{array}{ccc} & a+b:a-b::\sin A+\\ & \sin B:\sin A-\sin B \end{array}$$

 $\sin A + \sin B : \sin A - \sin B :: \tan \frac{1}{2}(A+B) : \tan \frac{1}{2}(A-B).$

 $a + b : a - b :: \tan \frac{1}{2}(A + B) : \tan \frac{1}{2}(A - B).$

97. Theorem.

The square of any side of a triangle is equal to the sum of the squares of the other sides, minus twice their product into the co-sine of their included angle.

1st. When the angle is acute.

(1) m = b - n. (1)² = (2) $m^2 = b^2 + n^2 - 2 bn$.

(3) $p^2 = p^2$.

 $(2)+(3)=(4) \quad m^2+p^2=b^2+n^2+p^2-2 \ bn.$

But $\dot{m}^2 + p^2 = a^2$ and $n^2 + p^2 = c^2$, ... (4) becomes

(5)
$$a^2 = b^2 + c^2 - 2 bn$$
.

But $n = c \cos A$, which substituted in (5) gives

(6)
$$a^2 = b^2 + c^2 - 2 bc \cos A$$
.

2d. When the angle is obtuse.

(1) m = b + n.(1)²=(2) $m^2 = b^2 + n^2 + 2 bn.$ (3) $p^2 = p^2.$

(2) + (3) = (4) $m^2 + p^2 = b^2 + n^2 + p^2 + 2 bn.$

But $m^2 + p^2 = a^2$ and $n^2 + p^2 = c^2$, ... (4) becomes (5) $a^2 = b^2 + c^2 + 2 bn$.

But $n = c \cos BAD = -c \cos BAC = -c \cos A$.

... (6) $a^2 = b^2 + c^2 - 2 bc \cos A$.

98. Problem.

To find the angles of a triangle when the sides are given.

From either formula (6) of the last article we have

(1) $\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$.

Hence, The co-sine of any angle of a triangle is equal to the sum of the squares of the adjacent sides, minus the square of the opposite side, divided by twice the rectangle of the adjacent sides.

Formula (1) gives the natural co-sine of A; hence, A can be found. But it is best to place the formula under such a form as to adapt it to logarithmic computation.

Adding 1 to both members of (1) we have

(2)
$$1 + \cos A = \frac{(b+c)^2 - a^2}{2bc} = \frac{(a+b+c)(b+c-a)}{2bc}$$

But $1 + \cos A = 2 \cos^2 \frac{1}{2} A$. Article 95, (10).

141026 98

Let
$$a+b+c = p$$
, then $\frac{(a+b+c)(b+c-a)}{2 bc} = \frac{p(p-2a)}{2 bc}$.

Substituting these values in (2), and dividing by 2, we have

(3)
$$\cos^2 \frac{1}{2}A = \frac{\frac{1}{2}p(\frac{1}{2}p-a)}{bc}$$
.
(3) $= (4) \cos \frac{1}{2}A = \sqrt{\frac{\frac{1}{2}p(\frac{1}{2}p-a)}{bc}}$

or of the

In like manner, (5) $\cos \frac{1}{2} B = \sqrt{\frac{\frac{1}{2} p (\frac{1}{2} p - b)}{ac}}.$ Also, (6) $\cos \frac{1}{2} C = \sqrt{\frac{\frac{1}{2} p (\frac{1}{2} p - c)}{ab}}.$

Introducing R, applying logarithms, and reducing, (4) becomes

 $\log \cos \frac{1}{2}A = \frac{1}{2} [\log \frac{1}{2}p + \log (\frac{1}{2}p - a) + a.c. \log b + a.c. \log c].$

In like manner introduce R and apply logarithms to (5) and (6).

By subtracting both members of (1) from 1 and reducing we find

(7)
$$\sin \frac{1}{2} A = \sqrt{\frac{(\frac{1}{2}p - b)(\frac{1}{2}p - c)}{bc}}.$$

(8) $\sin \frac{1}{2} B = \sqrt{\frac{(\frac{1}{2}p - a)(\frac{1}{2}p - c)}{ac}}.$
(9) $\sin \frac{1}{2} C = \sqrt{\frac{(\frac{1}{2}p - a)(\frac{1}{2}p - b)}{ab}}.$
(7) $\div (4) = (10)$ $\tan \frac{1}{2} A = \sqrt{\frac{(\frac{1}{2}p - a)(\frac{1}{2}p - c)}{\frac{1}{2}p(\frac{1}{2}p - a)}}.$
(8) $\div (5) = (11)$ $\tan \frac{1}{2} B = \sqrt{\frac{(\frac{1}{2}p - a)(\frac{1}{2}p - c)}{\frac{1}{2}p(\frac{1}{2}p - b)}}.$
(9) $\div (6) = (12)$ $\tan \frac{1}{2} C = \sqrt{\frac{(\frac{1}{2}p - a)(\frac{1}{2}p - b)}{\frac{1}{2}p(\frac{1}{2}p - c)}}.$

99. Examples.

1. Given $\begin{cases} a = 125. \\ b = 150. \\ c = 100. \end{cases}$ Required $\begin{cases} A = 55^{\circ} 46' 18''. \\ B = 82^{\circ} 49' 08''. \\ C = 41^{\circ} 24' 34''. \\ C = 41^{\circ} 24' 34''. \end{cases}$ 2. Given $\begin{cases} a = 864. \\ b = 1308. \\ c = 1086. \end{cases}$ Required $\begin{cases} A = 41^{\circ} 00' 38''. \\ B = 83^{\circ} 25' 14''. \\ C = 55^{\circ} 34' 08''. \end{cases}$

94

100. Problem.

To find the area of a triangle when two sides and their included angle are given.

Let k denote the area of the triangle ABC, of which the two sides b and c and their included angle A are given.

Introducing R, and applying logarithms, we have

 $\log (2 k) = \log b + \log c + \log \sin A - 10.$

101. Examples.

1. Two sides of a triangle are 345.6 and 485, respectively, and their included angle is $38^{\circ} 45' 40''$; what is the area? Ans. 52468.

2. Two sides of a triangle are 784.25 and 1095.8, respectively, and their included angle is 85° 40' 20"; what is the area. Ans. 428470.

102. Problem.

To find the area of a triangle when the three sides are given.

By the last problem we find

(1) $k = \frac{1}{2} bc \sin A$,

(2) $\sin A = 2 \sin \frac{1}{2} A \cos \frac{1}{2} A$. Article 95, (5).

(3)
$$\sin \frac{1}{2}A = \sqrt{\frac{(\frac{1}{2}p-b)(\frac{1}{2}p-c)}{bc}}$$
. Article 98, (7).

(4)
$$\cos \frac{1}{2}A = \sqrt{\frac{\frac{1}{2}p(\frac{1}{2}p-a)}{bc}}$$
. Article 98, (4).

(5) sin
$$A = \frac{2 \sqrt{\frac{1}{2} p (\frac{1}{2} p - a) (\frac{1}{2} p - b) (\frac{1}{2} p - c)}}{bc}$$
.

. (6)
$$k = \sqrt{\frac{1}{2}}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c).$$

103. Examples.

1. The sides of a triangle are 40, 45, 55, required the area. Ans. 887.412.

2. The sides of a triangle are 467, 845, 756, required the area. Ans. 175508.

104. Problem.

Given the perimeter and angles of a triangle, required the sides.

(1)
$$\frac{b}{a} = \frac{\sin B}{\sin A}$$
 (2) $\frac{c}{a} = \frac{\sin C}{\sin A}$

Adding and reducing by Articles 96, (5) and 95, (5), we have

(3)
$$\frac{b+c}{a} = \frac{\sin \frac{1}{2}(B+C)\cos \frac{1}{2}(B-C)}{\sin \frac{1}{2}A\cos \frac{1}{2}A}$$

 $\sin \frac{1}{2}(B+C) = \cos \frac{1}{2}A$, and $\sin \frac{1}{2}A = \cos \frac{1}{2}(B+C)$.

$$(3) \quad \frac{b+c}{a} = \frac{\cos \frac{1}{2}(B-C)}{\cos \frac{1}{2}(B+C)}$$

. •

Adding 1 to both members, we have

(4)
$$\frac{a+b+c}{a} = \frac{\cos\frac{1}{2}(B+C) + \cos\frac{1}{2}(B-C)}{\cos\frac{1}{2}(B+C)}$$

Let p = a + b + c, and reduce by 96, (7), we have

(5)
$$\frac{p}{a} = \frac{2 \cos \frac{1}{2}B \cos \frac{1}{2}C}{\sin \frac{1}{2}A}$$

(6) $a = \frac{\frac{1}{2}p \sin \frac{1}{2}A}{\cos \frac{1}{2}B \cos \frac{1}{2}C}$

96

Introducing R and applying logarithms, we have

$$\log a = \log \frac{1}{2}p + \log \sin \frac{1}{2}A + a.c. \log \cos \frac{1}{2}B + a.c. \log \cos \frac{1}{2}C - 10.$$

Similar formulas can be found for b and c. But, after a is found, b and c can be more readily found by article 69.

105. Examples.

1. Given p = 150, $A = 70^{\circ}$, $B = 60^{\circ}$, $C = 50^{\circ}$, required a, b, c.

Ans. a = 54.81, b = 50.51, c = 44.68.

2. Given p = 31234.36, $A = 35^{\circ} 45'$, $B = 45^{\circ} 28'$, $C = 98^{\circ} 47'$, required a, b, c.

Ans. a = 7985, b = 9742.5, c = 13506.86.

3. Given p = 375, $A = 55^{\circ} 46' 18''$, $B = 82^{\circ} 49' 08''$, $C = 41^{\circ} 24' 34''$, required a, b, c.

Ans. a = 125, b = 150, c = 100.

106. Problem.

Given the three sides of a triangle, to find the radius of the inscribed circle.

(1) BOC + AOC + AOB = ABC.

(2) $BOC = \frac{1}{2}ar$.

- $(3) \quad AOC = \frac{1}{2} br.$
 - (4) $AOB = \frac{1}{2}cr$.

... (5) $BOC + AOC + AOB = \frac{1}{2} (a + b + c) r = \frac{1}{2} pr.$

But (6) $ABC = \sqrt{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c)}$. S. N. 9.

$$\therefore (7) \quad \frac{1}{2} pr = \sqrt{\frac{1}{2} p (\frac{1}{2} p - a) (\frac{1}{2} p - b) (\frac{1}{2} p - c)}.$$

$$\therefore (8) \quad r = \sqrt{\frac{(\frac{1}{2} p - a) (\frac{1}{2} p - b) (\frac{1}{2} p - c)}{\frac{1}{2} p}} = \frac{k}{\frac{1}{2} p}.$$

107. Examples.

1. The three sides of a triangle are 20, 30, 40, respectively, required the radius of the inscribed circle. Ans. 6.455.

2. The three sides of a triangle are 100, 150, 200, respectively, required the radius of the inscribed circle. Ans. 32.275.

108. Problem.

Given the three sides of a triangle to find the radius of the circumscribed circle.

Let O be the center of the circle, and R the radius.

Let *OD* be perpendicular to *b*, then $AD = \frac{b}{2}.$

(1)
$$AD = \frac{b}{2} = AO \sin O = R \sin B.$$

(2) $R = \frac{b}{2 \sin B}.$

 $\sin B = 2 \sin \frac{1}{2}B \cos \frac{1}{2}B = \frac{2\sqrt{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c)}}{ac}.$ $\therefore (3) \quad R = \frac{abc}{4\sqrt{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c)}} = \frac{abc}{4k}.$

Prove that the formula will be the same if the center is without the triangle.

109. Examples.

1. The sides of a triangle are 7, 9, 10, respectively, required the radius of the circumscribed circle. Ans. 5.148.

2. The sides of a triangle are 50, 60, 70, respectively, required the radius of the circumscribed circle.

Ans. 35.72.

B

110. Theorem.

The perpendicular let fall on either side of a triangle from the vertex of the opposite angle is equal to that side into the product of the sines of the adjacent angles divided by the sine of the sum of those angles.

(1)
$$p = c \sin A$$
.

(2) $\sin B : \sin C :: b : c, \quad \therefore \quad c = \frac{b \sin C}{\sin B}$.

$$(3) \quad p = \frac{b \sin A \sin C}{\sin B}$$

(4) $\sin B = \sin [180^\circ - (A+C)] = \sin (A+C).$

$$\therefore (5) \quad p = \frac{b \sin A \sin C}{\sin (A+C)}$$

111. Problem.

Given the three sides of a triangle to find the radii of the escribed circles.

The escribed circles are the three circles external to the triangle, each tangent to one side and to the prolongation of the other sides.

- TRIGONOMETRY.-

The centers of the escribed circles are the points of

intersection of the lines bisecting the external angles.

The radii r', r'', r''', of the escribed circles, will be the perpendiculars let fall from their centers O', O'', O''', respectively, on the three sides a, b, c.

Hence, by the last article,

(1)
$$r' = \frac{a \sin (90^\circ - \frac{1}{2}B) \sin (90^\circ - \frac{1}{2}C)}{\sin [180^\circ - \frac{1}{2}(B+C)]}$$

 $\therefore (2) \quad r' = \frac{a \, \cos \, \frac{1}{2} \, B \, \cos \, \frac{1}{2} C}{\cos \, \frac{1}{2} A} = \frac{1}{2} p \, \tan \, \frac{1}{2} A. \quad \text{Art. 104.}$

Substituting the value of $\tan \frac{1}{2}A$, article 98, we have

$$(3) \quad r' = \sqrt{\frac{\frac{1}{2}p(\frac{1}{2}p-b)(\frac{1}{2}p-c)}{\frac{1}{2}p-a}} = \frac{k}{\frac{1}{2}p-a}.$$

$$(4) \quad r'' = \sqrt{\frac{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-c)}{\frac{1}{2}p-b}} = \frac{k}{\frac{1}{2}p-b}.$$

$$(5) \quad r''' = \sqrt{\frac{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)}{\frac{1}{2}p-c}} = \frac{k}{\frac{1}{2}p-c}.$$

112. Examples.

1. Given the sides of a triangle, 6, 9, 11, required the radii of the three escribed circles.

Ans. 3.854, 6.745, 13.49.

2. Given p = 100, $A = 55^{\circ}$, $B = 60^{\circ}$, $C = 65^{\circ}$, required the radii of the three escribed circles.

[See (2), Art. 111.] Ans. 26.028, 28.867, 31.854.

100

113. Theorem.

The product of the radius of the inscribed circle and the radii of the three escribed circles is equal to the square of the area of the triangle.

The product of (8), article 106, and (3), (4), (5), article 111, gives

$$r r' r'' r''' = \frac{k^4}{\frac{1}{2} p \left(\frac{1}{2} p - a\right) \left(\frac{1}{2} p - b\right) \left(\frac{1}{2} p + b\right)} = \frac{k^4}{k^2} = k^2$$

114. Theorem.

A bos diber bi

The reciprocal of the radius of the inscribed circle, the sum of the reciprocals of the radii of the escribed circles, and the sum of the reciprocals of the perpendiculars let fall from the vertices of the three angles on the opposite sides of a triangle are equal to each other.

Taking the reciprocal of (8), article 106, we have

(1)
$$\frac{1}{r} = \frac{p}{2k}$$
.

Taking the sum of the reciprocals of (3), (4), (5), article 111,

(2)
$$\frac{1}{r'} + \frac{1}{r''} + \frac{1}{r''} = \frac{p-2a}{2k} + \frac{p-2b}{2k} + \frac{p-2c}{2k} = \frac{p}{2k}$$

Let p', p'', p''', respectively, be the perpendiculars let fall from the vertices of the three angles on the sides a, b, and c. Then we have

$$a p' = 2 k$$
. $\therefore \frac{1}{p'} = \frac{a}{2k}$.

In like manner, $\frac{1}{p''} = \frac{b}{2k}$. Also, $\frac{1}{p'''} = \frac{c}{2k}$.

(3)
$$\frac{1}{p'} + \frac{1}{p''} + \frac{1}{p'''} = \frac{a+b+c}{2k} = \frac{p}{2k}$$
.
(4) $\frac{1}{r} = \frac{1}{r'} + \frac{1}{r''} + \frac{1}{r'''} = \frac{1}{p'} + \frac{1}{p''} + \frac{1}{p'''}$.

115. Problem.

To find the distance between the centers of the circumscribed and inscribed circles of a triangle.

Let B and r be the radii, and Pand O the centers of the circles, and let D = OP.

Draw PE perpendicular to AC. The angle APE = B, since each is meas-

ured by one-half the arc AC; but $PAE = 90^{\circ} - APE$, $\therefore PAE = 90^{\circ} - B$. $OAC = \frac{1}{2}A$. PAO = PAE - OAC.

$$\therefore PAO = 90^{\circ} - B - \frac{1}{2}A = \frac{1}{2}(C - B). \quad AO = \frac{r}{\sin \frac{1}{2}A}.$$

(1) $\overline{OP}^2 = \overline{AP}^2 + \overline{AO}^2 - 2 \ AP \times AO \ \cos PAO.$ Art. 97.

Substituting the values of OP, AP, AO, and PAO, we have

(2)
$$D^2 = R^2 + \frac{r^2}{\sin^2 \frac{1}{2}A} - \frac{2 Rr \cos \frac{1}{2}(C-B)}{\sin \frac{1}{2}A}$$

(3)
$$R = \frac{b}{2 \sin B} = \frac{b}{4 \sin \frac{1}{2}B \cos \frac{1}{2}B}$$
. Arts. $\begin{cases} 108, (2).\\ 95, (5). \end{cases}$

(4)
$$r = \frac{b \sin \frac{1}{2}A \sin \frac{1}{2}C}{\sin \frac{1}{2}(A+C)} = \frac{b \sin \frac{1}{2}A \sin \frac{1}{2}C}{\cos \frac{1}{2}B}$$
 Art. 110.

(5)
$$\frac{r^2}{\sin^2 \frac{1}{2}A} = \frac{4 Rr \sin \frac{1}{2}B \sin \frac{1}{2}C}{\sin \frac{1}{2}A}$$

. • .

102

CIRCULAR FUNCTIONS.

Substituting in (2), and reducing by article 91, (d), and 89, (b), we have

(6) $D^2 = R^2 - \frac{2 Rr \cos \frac{1}{2}(B+C)}{\sin \frac{1}{2}A} = R^2 - 2 Rr.$ \therefore (7) $D = \sqrt{R^2 - 2 Rr}.$

116. Examples.

1. The sides of a triangle are 12, 13, 15; required the distance between the centers of the circumscribed and inscribed circles. Ans. 1.616.

2. Two sides of a triangle are 35 and 37, and their included angle is 50° ; required the distance between the centers of the circumscribed and inscribed circles. Ans. 3.266.

3. The perimeter of a triangle is 120, the angles are 40° , 60° , and 80° , respectively; required the distance between the centers of the circumscribed and inscribed circles. Ans. 8.353.

117. Problem.

To find the distance between the centers of the circumscribed and escribed circles.

Let r', r'', r''' be the radii of the escribed circles, and D', D'', D''', be the distances of their centers, O', O'', O''', respectively, from P, the center of the circumscribed circle, whose radius is R.

As in the last Problem, we find

(1)
$$D'^2 = R^2 + \frac{r'^2}{\sin^2 \frac{1}{2}A} - \frac{2 Rr' \cos \frac{1}{2}(C-B)}{\sin \frac{1}{2}A}$$
.

(2)
$$R = \frac{a}{2 \sin A} = \frac{a}{4 \sin \frac{1}{2} A \cos \frac{1}{2} A}$$
 Arts. $\begin{cases} 108, (2), \\ 95, (5), \end{cases}$

(3)
$$r' = \frac{a \cos \frac{1}{2}B \cos \frac{1}{2}C}{\cos \frac{1}{2}A}$$
. Art. 111, (2).

(4)
$$\frac{r'^2}{\sin^2 \frac{1}{2}A} = \frac{4 Rr' \cos \frac{1}{2}B \cos \frac{1}{2}C}{\sin \frac{1}{2}A}$$
, by (2) and (3).

Substituting (4) in (1), and reducing by (d) and (b), we have

(5)
$$D'^2 = R^2 + \frac{2 Rr' \cos \frac{1}{2}(B+C)}{\sin \frac{1}{2}A} = R^2 + 2 Rr'.$$

 \therefore (6) $D' = \sqrt{R^2 + 2 Rr'}.$
 \therefore (7) $D'' = \sqrt{R^2 + 2 Rr''}.$
 \therefore (8) $D''' = \sqrt{R^2 + 2 Rr'''}.$

118. Examples.

1. The three sides of a triangle are 21, 23, 26; required the distances from the center of the circumscribed circle to the centers of the three escribed circles. Ans. 25.19, 26.64, 29.73.

2. The angles of a triangle are 56° , 60° , 64° , the greatest side is 25; required the distances from the center of the circumscribed circle to the centers of the three escribed circles. Ans. 26.96, 27.80, 28.65.

3. Given p = 100, $A = 55^{\circ}$, $B = 60^{\circ}$, $C = 65^{\circ}$, required D', D'', D'''. Ans. 37.10, 38.55, 40.01.

104

CIRCULAR FUNCTIONS.

119. Problem.

To find the distance between the centers of the inscribed and escribed circles.

Let D_1 , D_2 , D_3 , be the distances.

In the triangle OO'E, we have

$$(1) \quad D_1 = \frac{r' - r}{\sin \frac{1}{2}A} \cdot$$

Substituting the values of r', r, and $\sin \frac{1}{2}A$, we have

(2)
$$D_1 = \frac{a}{\sqrt{\frac{1}{2}p(\frac{1}{2}p-a)}}$$

(3) $D_2 = \frac{b}{\sqrt{\frac{1}{2}p(\frac{1}{2}p-b)}}$
(4) $D_3 = \frac{c}{\sqrt{\frac{1}{2}p(\frac{1}{2}p-c)}}$

120. Examples.

1. The three sides of a triangle are 30, 50, 60; required the distances between the centers of the inscribed and escribed circles. Ans. 31.05, 56.69, 87.83.

2. The sides of a triangle are 500, 600, 700; required the sides of the triangle formed by joining the centers of the inscribed and circumscribed circles and the center of the escribed circle, tangent to the sides 600 and 700 produced. Ans. 540.06, 104.58, 624.58.

121. Miscellaneous Exercises.

1. Prove that $\sin 15^{\circ} = \frac{\sqrt{3}-1}{2\sqrt{2}}, \ \cos 15^{\circ} = \frac{\sqrt{3}+1}{2\sqrt{2}},$ $\tan 15^{\circ} = 2 - \sqrt{3}, \ \cot 15^{\circ} = 2 + \sqrt{3}, \ \sec 15^{\circ} = \frac{2\sqrt{2}}{\sqrt{3}+1}, \ \csc = \frac{2\sqrt{2}}{\sqrt{3}-1}.$

2. Find the sine and co-sine of 75°.

Ans. $\sin 75^\circ = \frac{\sqrt{3}+1}{2\sqrt{2}}, \ \cos 75^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}.$

3. Why is $\sin 75^\circ = \cos 15^\circ$, and $\cos 75^\circ = \sin 15^\circ$?

4. How may the values of tangent, co-tangent, secant, and co-secant of 75° be found from the values of the sine and co-sine?

5. Find the functions of 150°.

Ans. $\sin 150^\circ = \frac{1}{2}, \cos 150^\circ = -\frac{\sqrt{3}}{2}, \cdots$

6. Given sin $a + \cos a = \sqrt{2}$, to find a.

Ans. 45°, or $45^{\circ} + 360^{\circ}$; or, in general, $\frac{\pi}{4} + 2 \pi n$.

7. Given sin 2 $a = \cos a$, to find a.

Ans. $\frac{\pi}{6} + 2 \pi n$, or $\frac{5}{6} \pi + 2 \pi n$.

8. Prove that the sum of the tangents of the three angles of a plane triangle is equal to their product.

9. Prove that the sum of the co-tangents of one-half the angles of a plane triangle is equal to their product.

10. Prove that ABC is isosceles if $\cos A = \frac{\sin B}{2 \sin C}$

11. Prove that the sum of the diameters of the inscribed and circumscribed eircles of any plane triangle ABC is

 $a \cot A + b \cot B + c \cot C.$

CIRCULAR FUNCTIONS.

12. If b is the base of the triangle *ABC*, p, the perpendicular to the base from the vertex of the opposite angle, and ε , the sum of the sides a and c, prove that

$$\tan \frac{1}{2}B = \frac{2 bp}{(s+b) (s-b)}.$$

13. If b is the base of the triangle *ABC*, p, the perpendicular to the base from the vertex of the opposite angle, and d, the difference of the sides a and c, prove that

$$\tan \frac{1}{2}B = \frac{(b+d)(b-d)}{2 bp}$$
.

14. If a, b, and c be the sides of the triangle ABC, s, the sum of the sides a and c, and r, the radius of the inscribed circle, prove that

$$\tan \frac{1}{2}B = \frac{2 r}{s-b}.$$

122. Computation of Natural Functions.

Dividing the length of the semi-circumference to the radius 1, which is $\pi = 3.141592653589793...$ by 1080, the number of minutes in 180', the quotient, which is .0002908882..., will be the length of the arc 1', and will differ insensibly from its sine.

 $(1) \sin 1' = .0002908882.$

... (2) $\cos 1' = \sqrt{1 - \sin^2 1'} = .9999999577.$

Adding (a) and (c), then (b) and (d), articles 89, 91, and transposing,

(3) $\sin (a+b) = 2 \sin a \cos b - \sin (a-b)$.

(4) $\cos (a+b) = 2 \cos a \cos b - \cos (a-b)$.

If in (3) and (4) b=1, a=1, 2, 3..., in succession, we have

 $\sin 2' = 2 \cos 1' \sin 1' - \sin 0' = .0005817764.$ $\sin 3' = 2 \cos 1' \sin 2' - \sin 1' = .0008726646.$ $\sin 4' = 2 \cos 1' \sin 3' - \sin 2' = .0011635526.$ $\cos 2' = 2 \cos 1' \cos 1' - \cos 0' = .9999998308.$ $\cos 3' = 2 \cos 1' \cos 2' - \cos 1' = .9999996193.$

To facilitate computation, for $2 \cos 1' = 1.9999999154$, use its equal, 2 - .0000000846. Then we have

 $\sin 2' = 2 \sin 1' - .000000846 \sin 1' - \sin 0'.$ $\sin 3' = 2 \sin 2' - .000000846 \sin 2' - \sin 1'.$

After finding the sines and co-sines, the tangents and co-tangents can be calculated from the formulas:

(5) $\tan a = \frac{\sin a}{\cos a}$. (6) $\cot a = \frac{\cos a}{\sin a}$.

It is not necessary to carry the computation beyond 45° , since sin $a = \cos (90^{\circ} - a)$, etc.

The logarithmic functions can be found from the corresponding natural functions by the method of article 60.

SPHERICAL TRIGONOMETRY.

123. Definition and Remarks.

Spherical Trigonometry is that branch of Trigonometry which treats of the solution of spherical triangles.

If any three of the six parts of a spherical triangle are given, the remaining parts can be computed.

The radius of the sphere is taken equal to 1, and

RIGHT TRIANGLES.

each side has the same numerical measure as the subtended angle whose vertex is at the center of the sphere. Thus,

a = BOC, b = AOC, c = AOB.

An angle of a spherical triangle is the angle included by the planes of its sides which is measured by the angle included by two lines, one line in one plane, the other in the other, both perpendicular to the common intersection of the planes at the same point.

Thus, if BE, in the plane AOB, is perpendicular to OA, and if ED, in the plane AOC, is perpendicular to OA, then the angle BED will measure the inclination of the planes AOB and AOC, and will be equal to the angle A of the spherical triangle.

RIGHT TRIANGLES.

124. Napier's Circular Parts.

Napier's circular parts are the two sides adjacent to the right angle, the complements of their opposite angles, and the complement of the hypotenuse.

Thus, if HBP is a spherical triangle, right-angled at H, the circular parts are b, p, $90^{\circ} - B$, $90^{\circ} - P$, and $90^{\circ} - h$.

Adjacent parts are those which are not separated by an intervening circular part.

Thus, b and $90^{\circ} - P$, $90^{\circ} - P$ and $90^{\circ} - h$, $90^{\circ} - h$ and $90^{\circ} - B$, $90^{\circ} - B$ and p, p and b are adjacent parts.

The right angle H is not regarded as a circular part, nor as separating the parts b and p.

90°- B

Opposite parts are those which are separated by an intervening circular part.

Thus, b and $90^{\circ} - h$, $90^{\circ} - P$ and $90^{\circ} - B$, $90^{\circ} - h$ and p, $90^{\circ} - B$ and b, p and $90^{\circ} - P$ are opposite parts.

Any one of these five circular parts is adjacent to two of the remaining parts, and opposite the other two parts.

Of any three circular parts, one part is either adjacent to both the others or opposite both.

A middle part is that which is adjacent to two other parts, or opposite two other parts.

125. Exercises.

Tell which is the middle part, and whether the other parts are adjacent to, or opposite, the middle in the following:

1. $90^{\circ}-B$, $90^{\circ}-P$, $90^{\circ}-h$.	6. $90^{\circ} - P$, $90^{\circ} - h$, p.
2. $b, 90^{\circ}-h, p.$	7. b, 90°—P, p.
3. $90^{\circ} - h$, $90^{\circ} - B$, p.	8. 90° —B, 90° —h, b.
4. 90° — <i>P</i> , 90° — <i>B</i> , <i>b</i> .	9. 90°—h, 90°—P, b.
5. b, 90°—B, p.	10. 90° — <i>P</i> , 90° — <i>B</i> , <i>p</i> .

126. Napier's Principles.

1. The sine of the middle part is equal to the product of the tangents of the adjacent parts.

Draw *BD* and *DE*, respectively perpendicular to *OH* and *OP*, and draw *BE*. *BDE* is a right.angle, since the plane *BOH* is perpendicular to the plane *POH*, and *BD* is perpendicular to *OH*. The angle *BED* is equal to *P*.

110

RIGHT TRIANGLES.

 $EB = \sin h, \ OE = \cos h, \ DB = \sin p, \ \text{and} \ OD = \cos p.$ $\frac{ED}{EB} = \frac{OE}{EB} \times \frac{ED}{OE}, \ \text{or} \ \cos P = \cot h \ \tan b.$ $\therefore \quad (1) \ \sin (90^\circ - P) = \tan (90^\circ - h) \ \tan b.$ $\frac{ED}{OD} = \frac{DB}{OD} \times \frac{ED}{DB}, \ \text{or} \ \sin b = \tan p \ \cot P.$ $\therefore \quad (2) \ \sin b = \tan p \ \tan (90^\circ - P).$

By changing P, b, p into B, p, b, (1) and (2) become

(3) $\sin (90^{\circ} - B) = \tan (90^{\circ} - h) \tan p$.

(4) $\sin p = \tan b \tan (90^\circ - B).$

Multiplying (2) by (4), member by member, we have $\sin b \sin p = \tan b \tan p \tan (90^\circ - B) \tan (90^\circ - P).$

Dividing by $\tan b \tan p$, and reducing, we have

 $\cos b \cos p = \tan (90^{\circ} - B) \tan (90^{\circ} - P).$

 $\cos b \cos p = \cos EOD \times OD = OE = \cos h = \sin (90^{\circ} - h).$

... (5) $\sin (90^{\circ} - h) = \tan (90^{\circ} - B) \tan (90^{\circ} - P)$.

2. The sine of the middle part is equal to the product of the co-sines of the opposite parts.

 $OE = \cos EOD \times OD$, or $\cos h = \cos b \cos p$.

... (6) $\sin (90^\circ - h) = \cos b \cos p$.

 $DB = EB \sin DEB$, or $\sin p = \sin h \sin P$.

. (7)
$$\sin p = \cos (90^\circ - h) \cos (90^\circ - P)$$
.

(3) gives $\sin (90^{\circ} - B) = \frac{\sin (90^{\circ} - h) \sin p}{\cos (90^{\circ} - h) \cos p}$

This, by substituting $\cos b \cos p$ for $\sin (90^\circ - h)$, $\cos (90^\circ - h) \cos (90^\circ - P)$ for $\sin p$, and reducing, gives

(8) $\sin (90^{\circ} - B) = \cos b \cos (90^{\circ} - P).$

By changing p, P, B, b into b, B, P, p, (7) and (8) become

(9) $\sin b = \cos (90^{\circ} - h) \cos (90^{\circ} - B).$

(10) $\sin (90^{\circ} - P) = \cos p \cos (90^{\circ} - B).$

These ten formulas are thus reduced to two principles, from which the formulas can be written.

The memory will be further aided by observing the common vowel a in the first syllables of the words tangent and adjacent of the first principle, and the common vowel o in the first syllables of the words co-sine and opposite of the second principle; that is, we take the product of the tangents of the parts adjacent to the middle, and the product of the co-sines of the parts opposite the middle.

127. Mauduit's Principles.

cos h cos p = ten (9

If we take, as circular parts, the complements of the two sides adjacent to the right angles, their opposite angles, and the hypotenuse, we can readily deduce from the diagram, or from Napier's principles, the following principles:

1. The co-sine of the middle part is equal to the product of the co-tangents of the adjacent parts.

2. The co-sine of the middle part is equal to the product of the sines of the opposite parts.

Let the ten formulas be written and compared with those of the last article.

128. Analogies of Plane and Spherical Triangles.

The formulas which demonstrate Napier's principles may be placed under forms which will exhibit the analogies existing between Plane and Spherical Triangles, as in the subjoined table.

Plane Right Triangles.	Spherical Right Triangles.
1. sin $P = \frac{p}{h}$.	1. sin $P = \frac{\sin p}{\sin h}$.
2. $\sin B = \frac{b}{h}$.	2. $\sin B = \frac{\sin b}{\sin h}$.
3. $\cos P = \frac{b}{h}$.	3. $\cos P = \frac{\tan b}{\tan h}$.
4. $\cos B = \frac{p}{h}$.	4. $\cos B = \frac{\tan p}{\tan h}$.
5. $\tan P = \frac{p}{b}$.	5. $\tan P = \frac{\tan p}{\sin b}$.
6. $\tan B = \frac{b}{p}$.	6. $\tan B = \frac{\tan b}{\sin p}$.
7. $\sin P = \cos B$.	7. sin $P = \frac{\cos B}{\cos b}$.
8. $\sin B = \cos P$.	8. $\sin B = \frac{\cos P}{\cos p}$.
9. $h^2 = b^2 + p^2$.	9. $\cos h = \cos b \cos p$.
10. $1 = \cot B \cot P$.	10. $\cos h = \cot B \cot P$.

These formulas can be committed and applied instead of Napier's principles by those who prefer to do so. The analogies will assist the memory.... S. N. 10.

129. Species of the Parts.

Two parts of a spherical triangle are of the same species when both are less than 90° or both greater than 90° .

Two parts of a spherical triangle are of *different* species when one part is less than 90° and the other part greater than 90° .

We shall, at present, consider those triangles only whose parts do not exceed 180°.

Let it be remembered that the sine is positive from 0° to 180° , and that the co-sine, the tangent, and the co-tangent are positive from 0° to 90° , and negative from 90° to 180° . Hence, if the co-sines, tangents, or co-tangents of two parts have like signs, these parts will be of the same species; if they have unlike signs, these parts will be of different species.

 $\sin P = \frac{\cos B}{\cos b}$ and $\sin B = \frac{\cos P}{\cos p}$. Art. 128, 7, 8.

Since neither P nor B exceeds 180°, sin P and sin B are both positive; hence, cos B and cos b have like signs, so also have cos P and cos p. Therefore, B and b are of the same species; so also are P and p.

Hence, The sides adjacent to the right angle are of the same species as their opposite angles.

 $\cos h = \cos b \cos p$. Art. 128, 9.

If $h < 90^{\circ}$, cos h is positive; hence, cos b cos p is positive; \dots cos b and cos p have like signs; \dots b and p are of the same species; \dots B and P are of the same species.

Hence, If the hypotenuse is less than 90°, the two sides adjacent to the right angle are of the same species; so also are their opposite angles. If $h > 90^{\circ}$, $\cos h$ is negative; hence, $\cos b \cos p$ is negative; $\therefore \cos b$ and $\cos p$ have unlike signs; $\therefore b$ and p are of different species; $\therefore B$ and P are of different species.

Hence, If the hypotenuse is greater than 90° , the two sides adjacent to the right angle are of different species; so also are their opposite angles.

Let us now investigate the case in which a side adjacent to the right angle and its opposite angle are given.

Let p and P be given. Produce the sides PH and PB till they meet in P'. The angles P and P' are equal, since each is the angle included by the plane of the arcs PHP' and PBP'. Take P'H' = PH = b and P'B' = PB = h. The two triangles, PHB and P'H'B', have the two sides PH and PB and the included angle P of the one, equal to P'H' and P'B' and the included angle P' of the other; hence, they are equal in all their corresponding parts; \dots H' = H, B' = B, and H'B' = HB. But H is a right angle; \dots H' is a right angle. Hence, either triangle, PHB or PH'B', will answer to the given conditions.

Since P'H' and PH are equal, and P'H' and PH'are supplements of each other, PH and PH' are supplements of each other. In like manner it can be shown that PB and PB' are supplements of each other.

When, therefore, a side adjacent to the right angle and an opposite angle are given, there are apparently two solutions. The conditions of the problem, however, may be such as to render the two solutions possible, reduce them to one, or render any solution impossible.

Let us now proceed to investigate these conditions.

B

1. When $P < 90^{\circ}$ and p < P.

We have from Napier's principles,

 $\sin b = \tan p \tan (90^\circ - P)$, or $\sin b = \tan p \cot P$.

Since $P < 90^{\circ}$ and p < P, $\tan p < \tan P$; but we have $\tan P \cot P = 1$; \cdots $\tan p \cot P < 1$; hence, $\sin b < 1$; then $b < 90^{\circ}$ or $b > 90^{\circ}$; hence, b may be either of the supplementary arcs PH or PH' which have the same sine equal to $\tan p \cot P$.

If $b < 90^{\circ}$, since $p < 90^{\circ}$, $h < 90^{\circ}$; if $b > 90^{\circ}$, since $p < 90^{\circ}$, $h > 90^{\circ}$. Hence, if $P < 90^{\circ}$ and p < P, either triangle, *PHB* or *PH'B'*, will satisfy the conditions, and there will be two solutions.

2. When $P < 90^{\circ}$ and p = P. We have sin $b = \tan p$ cot P, as before.

Since p = P, tan $p \cot P = \tan P \cot P = 1$; therefore, sin b = 1; $\therefore b = 90^{\circ}$, or $PH = 90^{\circ}$.

From Napier's principles, we have

 $\sin (90^\circ - h) = \cos b \cos p$, or $\cos h = \cos b \cos p$.

Since $b = 90^\circ$, $\cos b = 0$; $\therefore \cos b \cos p = 0$; hence, $\cos h = 0$; $\therefore h = 90^\circ$, or $PB = 90^\circ$.

sin $(90^\circ - B) = \tan p \tan (90^\circ - h)$, which reduces to $\cos B = \tan p \cot h$.

Since $h = 90^\circ$, cot h = 0; \cdots tan p cot h = 0; \cdots cos B = 0; \cdots $B = 90^\circ$.

 $PH' = 180^{\circ} - PH = 90^{\circ}; \dots PH' = PH.$ $PB' = 180^{\circ} - PB = 90^{\circ}; \dots PB' = PB.$

RIGHT. TRIANGLES.

Hence, if $P < 90^{\circ}$ and p = P, $b = 90^{\circ}$, $h = 90^{\circ}$, $B = 90^{\circ}$, the two triangles reduce to the bi-rectangular triangle *PHB*, and there is but one solution.

3. When $P < 90^{\circ}$ and p > P.

As before, we have $\sin b = \tan p \cot P$. Since p and P are of the same species, $p < 90^{\circ}$. Then, if p > P, $\tan p > \tan P$; but $\tan P \cot P = 1$; $\therefore \tan p \cot P > 1$; $\therefore \sin b > 1$, which is impossible. Hence, if $P < 90^{\circ}$ and p > P, no solution is possible.

4. When $P > 90^{\circ}$ and p > P.

We have $\sin b = \tan p \cot P$, as before. $\tan p$ and $\cot P$ are

both negative, and $\tan p < \tan P$, numerically; but tan $P \cot P = 1$; \therefore tan $p \cot P < 1$; hence, sin b < 1; \therefore $b < 90^{\circ}$, or $b > 90^{\circ}$; hence, b may be either of the supplementary arcs PH or PH' which have the common sine equal to tan $p \cot P$.

If $b < 90^{\circ}$, since $p > 90^{\circ}$, $h > 90^{\circ}$; if $b > 90^{\circ}$, since $p > 90^{\circ}$, $h < 90^{\circ}$.

Hence, if $P > 90^{\circ}$ and p > P, either triangle, *PHB* or *PH'B'* will satisfy the conditions, and there will be two solutions.

5. When $P > 90^{\circ}$ and p = P.

We have $\sin b = \tan p \cot P$, as before.

 \therefore sin $b = \tan P \cot P = 1; \therefore b = 90^{\circ}.$

 $\therefore \cos b = 0; \therefore \cos h = \cos b \cos p = 0; \therefore h = 90^{\circ}.$

 \therefore cot h=0; \therefore cos $B=\tan p \cot h=0$; $\therefore B=90^{\circ}$.

Hence, if $P > 90^{\circ}$ and p = P, $b = 90^{\circ}$, $h = 90^{\circ}$, $B = 90^{\circ}$, the two triangles reduce to the bi-rectangular *PHB*, and there is but one solution.

6. When $P > 90^{\circ}$ and p < P.

As before, we have $\sin b = \tan p \cot P$.

Since p and P are of the same species, and since $P > 90^{\circ}$, $p > 90^{\circ}$; hence, tan p, cot P are both negative, and tan $p > \tan P$, numerically; but since tan P cot P = 1, tan p cot P > 1; \therefore sin b > 1, which is impossible.

Hence, if $P > 90^{\circ}$ and p < P, there is no solution.

7. When $P = 90^{\circ}$.

 $\tan p = \frac{\sin b}{\cot P} = \frac{\sin b}{0} = \infty; \quad \therefore \quad p = 90^{\circ}.$

 $cos p = 0; cos h = cos b cos p = 0; cos h = 90^{\circ}.$ $sin b = tan p cot P = \infty \times 0; cos h = indeterminate.$ $sin B = \frac{cos P}{cos p} = \frac{0}{0}; cos h = indeterminate.$

Hence, if P = 90, then $p = 90^{\circ}$, $h = 90^{\circ}$, b and B are indeterminate; the triangle is bi-rectangular, and there is an infinite number of solutions.

1. 28-

Hence, the following results:

A City - its Da	p < P,	Two solutions.
$P < 90^{\circ}$ and \langle	p = P,	One solution.
$P < 90^{\circ}$ and $\left\{ \right.$	p > P,	No solution.
$P > 90^{\circ}$ and $\left\{ \right.$	p > P,	Two solutions.
$P > 90^{\circ}$ and \langle	p = P,	One solution.
1	p < P	No solution.

RIGHT TRIANGLES.

	$p = 90^\circ,$	
$P = 90^{\circ}$ then $\begin{cases} h\\b \end{cases}$	$h = 90^{\circ},$	Infinite number
	b indeterminate,	of solutions.
	B indeterminate,	10H=#1

By a comparison of these results, we find,

1. If p differs more from 90' than P, there will be two solutions.

2. If p = P, and $P < 90^{\circ}$ or $P > 90^{\circ}$, there will be one solution.

3. If $p = P = 90^{\circ}$, there will be an infinite number of solutions.

4. If p differs less from 90° than P, there will be no solution.

130. Remarks.

1. Napier's principles render it unnecessary to divide the subject of right-angled spherical triangles into cases.

2. Two parts will be given, and three required.

3. These parts or their complements will be circular parts.

4. Take the two given parts, if they are circular parts, otherwise their complements, and any one part required, if it is a circular part, otherwise its complement, and observe which is the middle part, and whether the other parts are adjacent to, or opposite, the middle part: if adjacent, the first of Napier's principles will give the formula; if opposite, the second.

5. Introduce R and apply logarithms.

6. Apply the principles which determine the species of the required part.

on al a aco

131. Examples.

90°- B

1. Giv.
$$\begin{cases} h = 110^{\circ} \ 30'. \\ p = 50^{\circ} \ 45'. \end{cases}$$
 Req. $\begin{cases} b. \\ B. \\ P. \\ p. \end{cases}$

CODI

1. To find b.

From the second of Napier's principles, we have

 $\sin (90^{\circ} - h) = \cos b \cos p, \text{ or } \cos h = \cos b \cos p.$

Finding $\cos b$ and introducing R, we have

$$\cos b = \frac{R \cos h}{\cos p}$$

 $\therefore \log \cos b = 10 + \log \cos h - \log \cos p.$

 $\begin{array}{ll} \log \ \cos \ h \ (110^{\circ} \ 30') = 9.54433 \ - \\ \log \ \cos \ p \ (\ 50^{\circ} \ 45') = 9.80120 \ + \\ \log \ \cos \ b \qquad \qquad = 9.74313 \ - \ \cdots \ b = 123^{\circ} \ 36' \ 31''. \end{array}$

Since the hypotenuse is greater than 90°, the sides b and p are of different species; but $p < 90^\circ$; $\therefore b > 90^\circ$. But log cos b corresponds to 56° 23' 29", and to its supplement 123° 36' 31" which must be taken, since $b > 90^\circ$.

The species of b can also be determined by the formula,

$$\cos b = \frac{\cos h}{\cos p}$$

Since $h > 90^\circ$, cos h is negative, and since $p < 90^\circ$, cos p is positive; \dots cos b is negative; \dots $b > 90^\circ$. The signs of the functions may be conveniently indicated by placing the signs after their logarithms.

Infinite number

2. To find B.

 $\sin (90^{\circ} - B) = \tan p \tan (90^{\circ} - h),$

$$\cos B = \frac{\tan p \cot h}{R}$$

... $\log \cos B = \log \tan p + \log \cot h - 10.$ $\log \tan p (50° 45') = 10.08776 +$

 $\log \cot h \ (110^{\circ} \ 30') = 9.57274 -$

. .

 $\log \cos B = 9.66050 - ... B = 117^{\circ} 14'.$

Since b and B are of the same species, and since $b > 90^{\circ}$, $B > 90^{\circ}$. The species of B can also be determined from the sign of cos B.

3. To find P.

 $\sin p = \cos (90^\circ - h) \cos (90^\circ - P), \text{ or } \sin p = \sin h \sin P.$

 $\therefore \sin P = \frac{R \sin p}{\sin h};$

 \therefore log sin $P = 10 + \log \sin p - \log \sin h$.

log sin p (50° 45′) = 9.88896 + log sin h (110° 30′) = 9.97159 + log sin P = 9.91737 + $\therefore P = 55^{\circ} 45' 57''$.

P is of the same species as *p*, and since $p < 90^{\circ}$, $P < 90^{\circ}$. The species of *P* can not be determined by the sign of sin *P*, since the sign of sin *P* is plus from 0° to 180° .

2. Given $\left\{ \begin{array}{l} h = 94^{\circ} \ 05'.\\ p = 100^{\circ} \ 45'. \end{array} \right\}$ Req. $\left\{ \begin{array}{l} b = 67^{\circ} \ 33' \ 27''.\\ B = 67^{\circ} \ 54' \ 47''.\\ P = 99^{\circ} \ 57' \ 35''. \end{array} \right\}$ 3. Given $\left\{ \begin{array}{l} h = 110^{\circ} \ 46' \ 26''.\\ B = \ 80^{\circ} \ 10' \ 36''. \end{array} \right\}$ Req. $\left\{ \begin{array}{l} b = 67^{\circ} \ 06' \ 44''.\\ p = 155^{\circ} \ 47' \ 05''.\\ P = 153^{\circ} \ 58' \ 45''. \end{array} \right\}$ 5. N. 11.

4. Given
$$\begin{cases} b = 29^{\circ} 46' 08''. \\ P = 137^{\circ} 24' 21''. \end{cases}$$
 Req. $\begin{cases} B = 54^{\circ} 01' 15''. \\ h = 142^{\circ} 09' 12''. \\ p = 155^{\circ} 27' 55''. \end{cases}$
5. Given $\begin{cases} b = 63^{\circ} 15'. \\ p = 55^{\circ} 28'. \end{cases}$ Req. $\begin{cases} h = 75^{\circ} 13' 01''. \\ B = 67^{\circ} 27' 01''. \\ P = 58^{\circ} 25' 45''. \end{cases}$
6. Given $\begin{cases} B = 52^{\circ} 32' 55''. \\ P = 66^{\circ} 20' 40''. \end{cases}$ Req. $\begin{cases} h = 70^{\circ} 23' 41''. \\ b = 48^{\circ} 24' 18''. \\ p = 59^{\circ} 38' 27'. \end{cases}$
7. Giv. $\begin{cases} P = 75^{\circ} 30'. \\ p = 50^{\circ} 15'. \end{cases}$ $\stackrel{\frown}{\cong}$ $\begin{cases} b = 18^{\circ} 07' 02'' \text{ or } 161^{\circ} 52' 58'. \\ h = 52^{\circ} 34' 31'' \text{ or } 127^{\circ} 25' 29'. \\ B = 23^{\circ} 03' 06'' \text{ or } 156^{\circ} 56' 54''. \end{cases}$

8. If a line make an angle of 40° with a fixed plane, and a plane embracing this line be perpendicular to the fixed plane, how many degrees from its first position must the plane embracing the line revolve about it in order that it may make an angle of 45° with the fixed plane? Ans. $67^{\circ} 22' 44''$ or $112^{\circ} 37' 16''$.

132. Polar Triangles.

The polar triangle of a given triangle is the triangle formed by the intersection of three arcs of great circles described about the vertices of the given triangle as poles.

If one triangle is the polar of another, the second is the polar of the first.

Thus, if A'B'C' is the polar of the triangle ABC, then ABC is the polar of A'B'C'.

Each angle in one of two polar triangles is the supplement of the side lying opposite to it in the other;

RIGHT TRIANGLES.

and each side is the supplement of the angle lying opposite to it in the other. Thus,

$$\begin{array}{ll} A = 180^{\circ} - a', & B = 180^{\circ} - b', & C = 180^{\circ} - c', \\ a = 180^{\circ} - A', & b = 180^{\circ} - B', & c = 180^{\circ} - C', \\ A' = 180^{\circ} - a, & B' = 180^{\circ} - b, & C' = 180^{\circ} - c, \\ a' = 180^{\circ} - A, & b' = 180^{\circ} - B, & c' = 180^{\circ} - C, \end{array}$$

Cor.—If $a' = 90^{\circ}$, $A = 90^{\circ}$; hence, if one side of a triangle is 90°, one angle of its polar triangle is 90°.

133. Quadrantal Triangles.

A quadrantal triangle is a triangle one side of which is 90°.

By the corollary of the last article, it follows that the polar of a quadrantal triangle is a right-angled triangle.

A quadrantal triangle is solved by passing to its polar triangle, which is solved as a right-angled triangle, then by passing back to the quadrantal triangle, which is the polar of the right-angled triangle.

134. Examples.

1. Given $\begin{cases} h' = 90^{\circ}.\\ P' = 129^{\circ} \ 15'.\\ b' = 62^{\circ} \ 46' \ 01''. \end{cases} \quad \text{Req.} \begin{cases} H' = 69^{\circ} \ 30'.\\ B' = 56^{\circ} \ 23' \ 30''.\\ p' = 124^{\circ} \ 14' \ 03''. \end{cases}$

Passing to the polar triangle, which is right-angled, we have

Given $\begin{cases} H = 90^{\circ}.\\ p = 50^{\circ} 45'.\\ B = 117^{\circ} 13' 59''. \end{cases} \quad \cdots \quad \begin{cases} h = 110^{\circ} 30'.\\ b = 123^{\circ} 36' 30''.\\ P = 55^{\circ} 45' 57''. \end{cases}$

. . .

Passing back to the quadrantal triangle, we find H', B', p'.

2. Given $\begin{cases} a' = 90^{\circ}.\\ c' = 99^{\circ} 20'.\\ B' = 30^{\circ} 12' 23''. \end{cases}$ Req. $\begin{cases} A' = 74^{\circ} 26'.\\ C' = 108^{\circ} 05' 26''.\\ b' = 31^{\circ} 29' 14''. \end{cases}$

OBLIQUE TRIANGLES.

135. Proposition I.

The sines of the sides of a spherical triangle are proportional to the sines of their opposite angles.

Let ABC be a spherical triangle. From C draw p, the arc of a great circle perpendicular to the opposite side or to the opposite side produced.

In the first case we have, by Napier's principles,.

 $\sin p = \cos (90^\circ - a) \cos (90^\circ - B) = \sin a \sin B.$

 $\sin p = \cos (90^{\circ} - b) \cos (90^{\circ} - A) = \sin b \sin A.$

 \therefore sin a sin $B = \sin b \sin A$.

 \therefore sin a : sin b :: sin A : sin B.

In the second case we have, by Napier's principles,

 $\sin p = \cos (90^\circ - a) \cos (90^\circ - B') = A \xrightarrow{B}_{e}$ $\sin a \sin B' = \sin a \sin B.$

 $\sin p = \cos (90^\circ - b) \cos (90^\circ - A) = \sin b \sin A.$

 \therefore sin a sin $B = \sin b \sin A$.

 \therefore sin a : sin b :: sin A : sin B.

In like manner other proportions may be deduced, giving the group,

(1) $\sin a : \sin b :: \sin A : \sin B$.

- (2) $\sin a : \sin c :: \sin A : \sin C$.
- (3) $\sin b : \sin c :: \sin B : \sin C$.

136. Proposition II.

The co-sine of any side of a spherical triangle is equal to the product of the co-sines of the other sides, plus the product of their sines into the co-sine of their included angle.

Let ABC be a spherical triangle, and O the center of the sphere.

Let CM be perpendicular to the plane AOB. Draw MD and ME, respectively perpendicular to OB and OA, and

draw CD and CE, which will be respectively perpendicular to OB and OA; hence, the angle CEM = A, and CDM = B. Draw EF perpendicular to OB, and MN perpendicular to EF. Each of the angles MEN and EOF is the complement of OEF; \therefore MEN=EOF=c.

$$OD = OF + NM.$$

 $OD = \cos a$.

 $OF = OE \cos EOF = \cos b \cos c.$

 $NM = EM \sin MEN = \sin b \cos A \sin c.$

Substituting the values of OD, OF, and NM, we have

 $\cos a = \cos b \cos c + \sin b \sin c \cos A.$

In like manner other formulas may be deduced, giving the group,

(1) $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

- (2) $\cos b = \cos a \cos c + \sin a \sin c \cos B$.
- (3) $\cos c = \cos a \cos b + \sin a \sin b \cos C$.

137. Proposition III.

The co-sine of any angle of a spherical triangle is equal to the product of the sines of the other angles into the co-sine of their included side, minus the product of the co-sines of these angles.

The formulas for passing to the polar triangle are,

 $a = 180^{\circ} - A', \quad b = 180^{\circ} - B', \quad c = 180^{\circ} - C'.$ $A = 180^{\circ} - a', \quad B = 180^{\circ} - b', \quad C = 180^{\circ} - c'.$

Substituting these values in the formulas of the preceding article and reducing, we have

 $-\cos A' = \cos B' \cos C' - \sin B' \sin C' \cos a'.$ $-\cos B' = \cos A' \cos C' - \sin A' \sin C' \cos b'.$ $-\cos C' = \cos A' \cos B' - \sin A' \sin B' \cos c'.$

Changing the signs and omitting the accents, since the formulas are true for any triangle, we have

(1) $\cos A = \sin B \sin C \cos a - \cos B \cos C$.

(2) $\cos B = \sin A \sin C \cos b - \cos A \cos C$.

(3) $\cos C = \sin A \sin B \cos c - \cos A \cos B$.

138. Proposition IV.

The co-sine of one-half of any angle of a spherical triangle is equal to the square root of the quotient obtained by

126

OBLIQUE TRIANGLES.

dividing the sine of one-half the sum of the sides into the sine of one-half the sum minus the side opposite the angle, by the product of the sines of the adjacent sides.

The first formula of article 136 gives

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

Adding 1 to both members, we have

$$1 + \cos A = \frac{\cos a + \sin b \sin c - \cos b \cos c}{\sin b \sin c}.$$

 $1 + \cos A = 2 \cos^2 \frac{1}{2} A$. Article 95, (10).

 $\sin b \sin c - \cos b \cos c = -\cos (b + c)$. Art. 89, (b).

.
$$2 \cos^2 \frac{1}{2}A = \frac{\cos a - \cos (b + c)}{\sin b \sin c}$$

But by article 96, (8), we have $\cos a - \cos (b + c) = 2 \sin \frac{1}{2}(a + b + c) \sin \frac{1}{2}(b + c - a).$

Substituting and dividing by 2, we have

$$\cos^{2} \frac{1}{2}A = \frac{\sin \frac{1}{2}(a+b+c) \cdot \sin \frac{1}{2}(b+c-a)}{\sin b \sin c}$$

Let s = a + b + c, then will $\frac{1}{2}s = \frac{1}{2}(a + b + c)$, $\frac{1}{2}s - a = \frac{1}{2}(b + c - a)$.

Substituting in the value of $\cos^2 \frac{1}{2}A$, and in the similar values for $\cos^2 \frac{1}{2}B$ and $\cos^2 \frac{1}{2}C$, and extracting the square root, we have

(1)
$$\cos \frac{1}{2}A = \sqrt{\frac{\sin \frac{1}{2}s \sin (\frac{1}{2}s - a)}{\sin b \sin c}}.$$

(2) $\cos \frac{1}{2}B = \sqrt{\frac{\sin \frac{1}{2}s \sin (\frac{1}{2}s - b)}{\sin a \sin c}}.$
(3) $\cos \frac{1}{2}C = \sqrt{\frac{\sin \frac{1}{2}s \sin (\frac{1}{2}s - c)}{\sin a \sin b}}.$

Lastine Last

139. Proposition V.

The sine of one-half of any side of a spherical triangle is equal to the square root of the quotient obtained by dividing minus the co-sine of one-half the sum of the angles into the co-sine of one-half the sum minus the angle opposite the side, by the product of the sines of the adjacent angles.

Taking the formulas of the last article, passing to the polar triangle, making S = A' + B' + C', substituting in these formulas, reducing, and omitting the accents, we have

(1)
$$\sin \frac{1}{2}a = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - A)}{\sin B}\sin C}$$

(2) $\sin \frac{1}{2}b = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - B)}{\sin A}\sin C}$
(3) $\sin \frac{1}{2}c = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - C)}{\sin A}\sin B}$

140. Proposition VI.

The sine of one-half of any angle of a spherical triangle is equal to the square root of the quotient obtained by dividing the sine of one-half the sum of the sides minus one adjacent side into the sine of one-half the sum minus the other adjacent side, by the product of the sines of the adjacent sides.

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$
 Article 136, (1).

Subtracting both members from 1, we have

$$1 - \cos A = \frac{\cos b \, \cos c + \sin b \, \sin c - \cos a}{\sin b \, \sin c}$$

 $1 - \cos A = 2 \sin^2 \frac{1}{2}A$. Article 95, (9).

OBLIQUE TRIANGLES.

 $\cos b \cos c + \sin b \sin c = \cos (b - c)$. Article 91, (d).

2.
$$2 \sin^2 \frac{1}{2}A = \frac{\cos (b-c) - \cos a}{\sin b \sin c}$$

But by article 96, (8), we have $\cos (b-c) - \cos a = 2 \sin \frac{1}{2}(a+c-b) \sin \frac{1}{2}(a+b-c).$

Substituting and dividing by 2, we have

$$\sin^2 \frac{1}{2}A = \frac{\sin \frac{1}{2}(a+c-b) \sin \frac{1}{2}(a+b-c)}{\sin b \sin c}$$

But $\frac{1}{2}(a+c-b) = \frac{1}{2}s-b$ and $\frac{1}{2}(a+b-c) = \frac{1}{2}s-c$.

Substituting in the value of $\sin^2 \frac{1}{2}A$, and in the similar values for $\sin^2 \frac{1}{2}B$ and $\sin^2 \frac{1}{2}C$, and extracting the square root, we have

(1)
$$\sin \frac{1}{2}A = \sqrt{\frac{\sin \left(\frac{1}{2}s - b\right) \sin \left(\frac{1}{2}s - c\right)}{\sin b \sin c}}$$

(2) $\sin \frac{1}{2}B = \sqrt{\frac{\sin \left(\frac{1}{2}s - a\right) \sin \left(\frac{1}{2}s - c\right)}{\sin a \sin c}}$
(3) $\sin \frac{1}{2}C = \sqrt{\frac{\sin \left(\frac{1}{2}s - a\right) \sin \left(\frac{1}{2}s - b\right)}{\sin a \sin b}}$

141. Proposition VII.

The co-sine of one-half of any side of a spherical triangle is equal to the square root of the quotient obtained by dividing the co-sine of one-half the sum of the angles minus one adjacent angle into the co-sine of half the sum minus the other adjacent angle, by the product of the sines of the adjacent angles.

129

Taking the formulas of the last article, passing to the polar triangle, making S = A' + B' + C', substituting, reducing, and omitting the accents, we have

(1)
$$\cos \frac{1}{2}a = \sqrt{\frac{\cos (\frac{1}{2}S - B) \cos (\frac{1}{2}S - C)}{\sin B \sin C}}$$

(2) $\cos \frac{1}{2}b = \sqrt{\frac{\cos (\frac{1}{2}S - A) \cos (\frac{1}{2}S - C)}{\sin A \sin C}}$
(3) $\cos \frac{1}{2}c = \sqrt{\frac{\cos (\frac{1}{2}S - A) \cos (\frac{1}{2}S - B)}{\sin A \sin B}}$

142. Proposition VIII.

The tangent of one-half of any angle of a spherical triangle is equal to the square root of the quotient obtained by dividing the sine of one-half the sum of the sides minus one adjacent side into the sine of one-half the sum minus the other adjacent side, by the sine of one-half the sum of the sides into the sine of one-half the sum minus the opposite side.

Dividing (1), (2), (3), article 140, respectively, by (1), (2), (3), article 138, we have

(1)
$$\tan \frac{1}{2}A = \sqrt{\frac{\sin \left(\frac{1}{2}s - b\right) \sin \left(\frac{1}{2}s - c\right)}{\sin \frac{1}{2}s \sin \left(\frac{1}{2}s - a\right)}}.$$

(2) $\tan \frac{1}{2}B = \sqrt{\frac{\sin \left(\frac{1}{2}s - a\right) \sin \left(\frac{1}{2}s - c\right)}{\sin \frac{1}{2}s \sin \left(\frac{1}{2}s - b\right)}}.$
(3) $\tan \frac{1}{2}C = \sqrt{\frac{\sin \left(\frac{1}{2}s - a\right) \sin \left(\frac{1}{2}s - b\right)}{\sin \frac{1}{2}s \sin \left(\frac{1}{2}s - c\right)}}.$

143. Proposition IX.

The tangent of one-half of any side of a spherical triangle is equal to the square root of the quotient obtained by dividing minus the co-sine of one-half the sum of the angles into the co-sine of one-half the sum minus the angle opposite the side, by the co-sine of one-half the sum of the angles minus one adjacent angle into the co-sine of one-half the sum minus the other adjacent angle.

Dividing (1), (2), (3), article 139, respectively, by (1), (2), (3), article 141, we have

(1)
$$\tan \frac{1}{2}a = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - A)}{\cos(\frac{1}{2}S - B)\cos(\frac{1}{2}S - C)}}$$

(2) $\tan \frac{1}{2}b = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - B)}{\cos(\frac{1}{2}S - A)\cos(\frac{1}{2}S - C)}}$
(3) $\tan \frac{1}{2}c = \sqrt{\frac{-\cos \frac{1}{2}S\cos(\frac{1}{2}S - C)}{\cos(\frac{1}{2}S - A)\cos(\frac{1}{2}S - B)}}$

The reciprocals of (1), (2), (3), articles 142, 143, will give formulas for co-tangents, which may be written and expressed in words.

144. Napier's Analogies.

Dividing (1), article 142, by (2), we have

$$\frac{\tan \frac{1}{2}A}{\tan \frac{1}{2}B} = \frac{\sin \left(\frac{1}{2}s - b\right)}{\sin \left(\frac{1}{2}s - a\right)}$$

This, as a proportion taken by composition and division, gives

$\frac{\tan\frac{1}{2}A + \tan\frac{1}{2}B}{\tan\frac{1}{2}A - \tan\frac{1}{2}B} =$	$\frac{\sin\left(\frac{1}{2}s-b\right)+\sin\left(\frac{1}{2}s-a\right)}{\sin\left(\frac{1}{2}s-b\right)-\sin\left(\frac{1}{2}s-a\right)}.$
$\frac{\tan\frac{1}{2}A + \tan\frac{1}{2}B}{\tan\frac{1}{2}A - \tan\frac{1}{2}B} =$	$\frac{\frac{\sin\frac{1}{2}A}{\cos\frac{1}{2}A} + \frac{\sin\frac{1}{2}B}{\cos\frac{1}{2}B}}{\frac{\sin\frac{1}{2}A}{\cos\frac{1}{2}A} - \frac{\sin\frac{1}{2}B}{\cos\frac{1}{2}B}}$

Multiplying both terms of the second member $y \cos \frac{1}{2}A \cos \frac{1}{2}B$,

 $\frac{\tan\frac{1}{2}A + \tan\frac{1}{2}B}{\tan\frac{1}{2}A - \tan\frac{1}{2}B} = \frac{\sin\frac{1}{2}A\cos\frac{1}{2}B + \cos\frac{1}{2}A\sin\frac{1}{2}B}{\sin\frac{1}{2}A\cos\frac{1}{2}B - \cos\frac{1}{2}A\sin\frac{1}{2}B}$

Reducing the second member by articles 89, (a), and 91, (c),

$$\frac{\tan \frac{1}{2}A + \tan \frac{1}{2}B}{\tan \frac{1}{2}A - \tan \frac{1}{2}B} = \frac{\sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)}$$

 $\frac{\sin(\frac{1}{2}s-b) + \sin(\frac{1}{2}s-a)}{\sin(\frac{1}{2}s-b) - \sin(\frac{1}{2}s-a)} = \frac{\tan\frac{1}{2}c}{\tan\frac{1}{2}(a-b)} \cdot \text{Art. 96, (11).}$

$$\frac{\sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)} = \frac{\tan \frac{1}{2}c}{\tan \frac{1}{2}(a-b)}$$

:. (1) $\sin \frac{1}{2}(A+B) : \sin \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a-b).$

The reciprocal of $(1) \times (2)$, article 142, gives

$$\frac{1}{\tan \frac{1}{2}A \tan \frac{1}{2}B} = \frac{\sin \frac{1}{2}s}{\sin (\frac{1}{2}s - c)}.$$

By division and composition, we have

$$\frac{1 - \tan \frac{1}{2}A \tan \frac{1}{2}B}{1 + \tan \frac{1}{2}A \tan \frac{1}{2}B} = \frac{\sin \frac{1}{2}s - \sin (\frac{1}{2}s - c)}{\sin \frac{1}{2}s + \sin (\frac{1}{2}s - c)}.$$

Reducing both members as before, we have

$$\frac{\cos\frac{1}{2}(A+B)}{\cos\frac{1}{2}(A-B)} = \frac{\tan\frac{1}{2}c}{\tan\frac{1}{2}(a+b)}$$

... (2) $\cos \frac{1}{2}(A+B) : \cos \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a+b).$

Passing from (1) and (2) to the polar triangle, we have

(3) $\sin \frac{1}{2}(a+b) : \sin \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A-B).$

(4) $\cos \frac{1}{2}(a+b) : \cos \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A+B).$

145. Proposition.

In a right-angled spherical triangle, as b increases from 0° to 90°, from 90° to 180°, from 180° to 270°, and from 270° to 360°, if p < 90°, h increases from p to 90°, from 90° to 180° — p, decreases from 180° — p to 90°, and from 90° to p; if p > 90°, h decreases from p to 90°, from 90° to 180° — p, increases from 180° — p to 90°, and from 90° to p; if p = 90°, h = 90° for all values of b.

1. $p < 90^\circ$; $\therefore \cos p$ is positive.

 $\cos h = \cos b \cos p.$ If b = 0, $\cos b = 1$; therefore, $\cos h = \cos p; \quad \therefore h = p.$

As b increases from 0° to 90° , cos b is positive, and diminishes from 1 to 0; \therefore cos h is positive, and diminishes from cos p to 0; \therefore h increases from p to 90° .

As b increases from 90° to 180°, $\cos b$ is negative, and increases numerically from 0 to -1; $\therefore \cos h$ is negative, and increases numerically from 0 to $-\cos p$; $\therefore h$ increases from 90° to 180° -p, and the triangle becomes the lune HH'.

As b increases from 180° to 270° , cos b is negative, and decreases numerically from -1 to 0; \therefore cos h is negative, and decreases numerically from $-\cos p$ to 0; \therefore h decreases from $180^{\circ} - p$ to 90° .

As b increases from 270° to 360° , cos b is positive, and increases from 0 to 1; \dots cos h is positive, and increases from 0 to cos $p; \dots h$ decreases from 90° to p, and the triangle becomes the hemisphere. 2. $p > 90^\circ$; $\dots \cos p$ is negative.

 $\cos h = \cos b \cos p$.

If b = 0, $\cos b = 1$; therefore, $\frac{\mathbf{H}}{\mathbf{b}} = \frac{\mathbf{h}}{\mathbf{p}}$.

As b increases from 0° to 90° , cos b is positive, and decreases from 1 to 0; \dots cos h is negative, and decreases numerically from cos p to 0; \dots h decreases from p to 90° .

As b increases from 90° to 180°, $\cos b$ is negative, and increases numerically from 0 to -1; $\therefore \cos h$ is positive, and increases from 0 to $-\cos p$; $\therefore h$ decreases from 90° to 180° -p, and the triangle becomes the lune HH'.

As b increases from 180° to 270° , cos b is negative, and decreases numerically from -1 to 0; \therefore cos h is positive, and decreases from $-\cos p$ to 0; \therefore h increases from $180^{\circ} - p$ to 90° .

As b increases from 270° to 360° , $\cos b$ is positive, and increases from 0 to 1; \dots $\cos h$ is negative, and increases numerically from 0 to $\cos p$; \dots h increases from 90° to p, and the triangle becomes the hemisphere.

3.
$$p = 90^{\circ}$$
; $\therefore \cos p = 0$.

 $\therefore \cos h = \cos b \cos p = 0; \therefore h = 90^{\circ}.$

Cor.—Since B and b are of the same species, B may be substituted for b in the preceding proposition.

In the application of these principles to the discussion of Case I, in which two sides and an angle opposite one of them are given, a corresponds to h, and HB to b.

146. Case I.

Given two sides of a spherical triangle, and the angle opposite one of them; required the remaining parts.

Let a and b be the given sides and A the given angle.

> I. $A < 90^{\circ}$; $\therefore p < 90^{\circ}$. $\sin p = \sin b \sin A$.

1.
$$a = p$$
.

B coincides with H, and the triangle ABC becomes the right triangle AHC.

2.
$$a < 90^{\circ}$$
 and $a > p$.

By the last proposition the point B lies in the first or fourth quadrant, estimated from H.

3. $a = 90^{\circ}$.

 $HB = 90^{\circ}$ or 270°, and $HCB = 90^{\circ}$ or 270°.

4.
$$a > 90^{\circ}$$
 and $a < 180^{\circ} - p$.

B lies in the second or third quadrant from H.

5.
$$a = 180^{\circ} - p$$
.

 $HB = 180^{\circ}$, and $ABC = AHC + \frac{1}{2}$ the hemisphere.

6.
$$a = 180^{\circ} - b$$
.

HB = HA' or $360^{\circ} - HA'$, and then the first triangle becomes the lune AA'.

7.
$$a = b$$
.

HB = AH or $360^{\circ} - AH$, and the second triangle becomes the hemisphere.

8. a < p or $a > 180^{\circ} - p$.

The triangle is impossible, since p is the least, and $180^{\circ} - p$ is the greatest value of a.

II.
$$A > 90^\circ$$
; $\therefore p > 90^\circ$.
 $\sin p = \sin b \sin A$.

B coincides with H, and ABC becomes AHC.

2. $a > 90^{\circ}$ and a < p.

B lies in the first or fourth quadrant from H.

3. $a = 90^{\circ}$.

 $HB = 90^{\circ}$ or 270°, and $HCB = 90^{\circ}$ or 270°.

4. $a < 90^{\circ}$ and $a > 180^{\circ} - p$. B lies in the second or third quadrant from H.

5.
$$a = 180^{\circ} - p$$

 $HB = 180^{\circ}$, and $ABC = AHC + \frac{1}{2}$ the hemisphere.

6. $a = 180^{\circ} - b$.

HB = HA' or $360^{\circ} - HA'$, and the first triangle becomes the lune AA'.

7.
$$a = b$$
.

HB = AH or $360^{\circ} - AH$, and the second triangle becomes the hemisphere.

8. a > p or $a < 180^{\circ} - p$.

The triangle is impossible, since p is the greatest, and $180^{\circ} - p$ is the least value of a.

III.
$$A = 90^{\circ}$$
.

The triangle is right-angled, and is solved as in article 131.

OBLIQUE TRIANGLES.

147. Examples.

 $A < 90^{\circ}; \therefore p < 90^{\circ}.$

 $\sin p = \sin b \sin A$, $\therefore p = 37^{\circ} 48' 26''$.

Since a > p and $a < 180^{\circ} - p$, the triangle is possible.

Since a < b and $a < 180^{\circ} - b$, B lies between H and A or H and A'.

 $\sin p = \sin a \sin B, \quad \therefore \quad B = 44^{\circ} 52' \ 05''.$ $\cos HCB = \tan p \ \cot a, \quad \therefore \quad HCB = 63^{\circ} \ 46' \ 18''.$ $\cos a = \cos p \ \cos \ HB, \quad \therefore \quad HB = 51^{\circ} \ 12' \ 41''.$ $\cos ACH = \tan p \ \cot b, \qquad \therefore \quad ACH = 82^{\circ} \ 36' \ 25''.$ $\cos b = \cos p \ \cos \ AH, \qquad \therefore \quad AH = 78^{\circ} \ 02' \ 54''.$ $C = ACH \pm HCB = 146^{\circ} \ 22' \ 43'' \ \text{or} \ 18^{\circ} \ 50' \ 07''.$ $c = AH \ \pm HB \ = 129^{\circ} \ 15' \ 35'' \ \text{or} \ 26^{\circ} \ 50' \ 13''.$ $\text{In } ACB, \ ABC \ = 180^{\circ} - HBC = 135^{\circ} \ 07' \ 55''.$ $\text{We can also find } B \ \text{from the proportion,}$

 $\sin a : \sin b :: \sin A : \sin B.$

C and c can be found from the proportions, $\sin \frac{1}{2}(b+a) : \sin \frac{1}{2}(b-a) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(B-A).$ $\sin A : \sin C :: \sin a : \sin c.$

2. Given.

Required.

 $\left\{\begin{array}{l} a = 63^{\circ} 50'.\\ b = 80^{\circ} 19'.\\ A = 51^{\circ} 30'.\\ \text{S. N. 12.} \end{array}\right\} \left\{\begin{array}{l} B = 59^{\circ} 16' \ 00'' \ \text{or} \ 120^{\circ} 44' \ 00''.\\ C = 131^{\circ} 29' \ 42'' \ \text{or} \ 24^{\circ} 37' \ 30''.\\ c = 120^{\circ} 47' \ 50'' \ \text{or} \ 28^{\circ} \ 32' \ 44''. \end{array}\right.$

3. Given.	Required.					
$\left\{\begin{array}{l} a = 75^{\circ} \ 38'. \\ b = 104^{\circ} \ 22'. \\ A = \ 65^{\circ} \ 28'. \end{array}\right\}$	$B = 65^{\circ}$	28'	or	114°	32'.	
$\{ b = 104^{\circ} 22'. \}$	$C = 180^{\circ}$		or	57°	03'	32".
$(A = 65^{\circ} 28'.)$	$c = 180^{\circ}$		or	63°	20'	18".
4. Given.		equired.				
$ \left\{ \begin{matrix} a = 99^{\circ} \ 40' \ 48''. \\ b = 64^{\circ} \ 23' \ 15''. \\ A = 95^{\circ} \ 38' \ 04''. \end{matrix} \right\}$	$(B = 114^{\circ})$	26' 50"	or	65°	33'	10″.
$\left\{ b = 64^{\circ} \ 23' \ 15''. \right\}$	$C = 236^{\circ}$	51' 27"	or	97°	27'	13".
$(A = 95^{\circ} 38' 04''.)$	$lc = 236^{\circ}$	01' 51"	or	100°	49'	49".
5. Given. Required.						
$(a = 100^{\circ}.)$	$B = 50^{\circ}$	47' 41"	or	129°	12'	19″.
$\{ b = 85^{\circ}. \}$	$\begin{cases} B = 50^{\circ} \\ C = 186^{\circ} \\ c = 187^{\circ} \end{cases}$	05' 16"	or	342°	03'	12".
$ \begin{cases} a = 100^{\circ}. \\ b = 85^{\circ}. \\ A = 50^{\circ}. \end{cases} $	$c = 187^{\circ}$	50' 09"	or	336°	39'	45".
	A STATE OF STATE OF STATE			5		- 2.5.

6. If $A < 90^{\circ}$, what is the relation of a to p, or to $180^{\circ} - p$, when there is no solution?

7. If $A > 90^{\circ}$, what is the relation of a to p, or to $180^{\circ} - p$, when there is no solution?

148. Proposition.

In a right-angled spherical triangle, as B increases from 0° to 90° , from 90° to 180° , from 180° to 270° , and from 270° to 360° ; if $p < 90^{\circ}$, P decreases from 90° to p, increases from p to 90° , increases from 90° to $180^{\circ} - p$, and decreases from $180^{\circ} - p$ to 90° ; if $p > 90^{\circ}$, P increases from 90° to p, decreases from 90° to p, decreases from 90° to $180^{\circ} - p$, and $180^{\circ} - p$, and increases from $180^{\circ} - p$ to 90° ; if $p = 90^{\circ}$, $P = 90^{\circ}$, for all values of B.

1. $p < 90^\circ$; \dots cos p is positive.

 $\cos P = \cos p \sin B.$

If $B = 0^{\circ}$, sin B = 0; $\therefore \cos P = 0$; $\therefore P = 90^{\circ}$.

H

As B increases from 0° to 90° , sin B is positive, and increases from 0 to 1; \therefore cos P is positive, and increases from 0 to cos p; \therefore P decreases from 90° to p.

As B increases from 90° to 180°, sin B is positive, and decreases from 1 to 0; \therefore cos P is positive, and decreases from cos p to 0; \therefore P increases from p to 90°, and the triangle becomes the lune HH'.

As B increases from 180° to 270° , sin B is negative, and increases numerically from 0 to -1; \cdots cos P is negative, and increases numerically from 0 to $-\cos p$; $\cdots P$ increases from 90° to $180^{\circ} - p$.

As B increases from 270° to 360° sin B is negative, and decreases numerically from -1 to 0; \cdots cos P is negative, and decreases numerically from $-\cos p$ to 0; $\cdots P$ decreases from $180^{\circ} - p$ to 90° , and the triangle becomes the hemisphere.

2. $p > 90^\circ$; $\therefore \cos p$ is negative.

 $\cos P = \cos p \sin B.$

If $B = 0^{\circ}$, sin B = 0; $\therefore \cos P = 0$; $\therefore P = 90^{\circ}$.

As B increases from 0° to 90°, sin B is positive, and increases from 0 to 1; \therefore cos P is negative, and increases numerically from 0 to cos p; \therefore P increases from 90° to p.

As B increases from 90° to 180°, sin B is positive, and decreases from 1 to 0; \therefore cos P is negative, and decreases numerically from cos p to 0; \therefore P decreases from p to 90°, and the triangle becomes the lune.

As B increases from 180° to 270° , sin B is negative, and increases numerically from 0 to -1; \therefore cos P is positive, and increases from 0 to $-\cos p$; \therefore P decreases from 90° to $180^{\circ} - p$.

TRIGONOMETRY.

As B increases from 270° to 360° , sin B is negative, and decreases numerically from -1 to 0; \therefore cos P is positive, and decreases numerically from $-\cos p$ to 0; $\therefore P$ increases from $180^{\circ} - p$ to 90° , and the triangle becomes the hemisphere.

3.
$$p = 90^{\circ}$$
; $\therefore \cos p = 0$.

 $\therefore \cos P = \cos p \sin B = 0; \therefore P = 90^{\circ}.$

Cor.—Since b and B are of the same species, b may be substituted for B in the preceding proposition.

149. Case II.

Given two angles of a spherical triangle and the side opposite one of them; required the remaining parts.

Let A and B be the given angles, and b the given side.

I. $A < 90^{\circ}$; $\therefore p < 90^{\circ}$.

 $\sin p = \sin b \sin A.$

1. B > p and $B < 90^{\circ}$.

By the last proposition, the point B lies in the first or second quadrant estimated from H as origin.

2. B = p.

The angle $HCB = 90^{\circ}$, and the arc $HB = 90^{\circ}$.

3. $B < 180^{\circ} - p$, and $B > 90^{\circ}$.

B lies in the third or fourth quadrant from H.

4. $B = 180^{\circ} - p$.

The angle $HCB = 270^{\circ}$, and the arc $HB = 270^{\circ}$.

5. $B = 90^{\circ}$.

 $HB = 0^{\circ}$, 180°, or 360°, and the triangle becomes ACH, $ACH + \frac{1}{2}$ of a hemisphere, or a hemisphere + ACH.

6.
$$B = A$$
.

B lies in the first or second quadrant from H, and one of the triangles becomes the lune AA'.

7.
$$B = 180^{\circ} - A$$
.

B lies in the third or fourth quadrant from H, and one of the triangles becomes the hemisphere.

8. B < p or $B > 180^{\circ} - p$.

The triangle is impossible, since p is the least, and $180^{\circ} - p$ is the greatest value of B.

II. $A > 90^{\circ}$; $\therefore p > 90^{\circ}$.

 $\sin p = \sin b \sin A.$

1. B < p and $B > 90^{\circ}$.

B lies in the first or second quadrant from H.

2.
$$B = p$$
.

The angle $HCB = 90^{\circ}$, and the arc $HB = 90^{\circ}$.

3.
$$B > 180^{\circ} - p$$
 and $B < 90^{\circ}$.

B lies in the third or fourth quadrant from H.

4. $B = 180^{\circ} - p$.

The angle $HCB = 270^{\circ}$, and the arc $HB = 270^{\circ}$.

5.
$$B = 90^{\circ}$$
.

 $HB = 0^{\circ}$, 180°, or 360°, and the triangle becomes ACH, $ACH + \frac{1}{2}$ of a hemisphere, or a hemisphere + ACH.

TRIGONOMETRY.

6. B = A.

B lies in the first or second quadrant from H, and one of the triangles becomes the lune AA'.

7.
$$B = 180^{\circ} - A$$
.

B lies in the third or fourth quadrant from H, and one of the triangles becomes the hemisphere.

8.
$$B > p$$
 or $B < 180^{\circ} - p$.

The triangle is impossible, since p is the greatest, and $180^{\circ} - p$ is the least value of B.

III. $A = 90^{\circ}$.

The triangle is right-angled, and is solved as in article 131.

150. Examples.

1. Giv.
$$\begin{cases} A = 75^{\circ} \ 30'. \\ B = 80^{\circ} \ 40'. \\ b = 70^{\circ} \ 50'. \end{cases} \text{ Req.} \begin{cases} a. \\ C. \\ c. \end{cases} \xrightarrow{b}_{H \neq pa}^{b}$$

 $A < 90^{\circ}; \therefore p < 90^{\circ}.$

 $\sin p = \sin b \sin A; \quad \therefore p = 66^{\circ} \quad 07' \quad 56''.$

B

Since B > p and $< 180^{\circ} - p$, the triangle is possible.

Since $B < 90^{\circ}$ and > p, B lies in the first or second quadrant from H.

$$\sin p = \sin a \sin B, \quad \therefore a = \begin{cases} 67^{\circ} 56'.\\ 112^{\circ} 04'. \end{cases}$$

The second value of a, the supplement of the first, is taken when B lies in the second quadrant from H.

OBLIQUE TRIANGLES.

 $\cos B = \cos p \sin HCB, \ \therefore \ HCB = \begin{cases} 23^{\circ} \ 37' \ 44''. \\ 156^{\circ} \ 22' \ 16''. \end{cases}$ sin $HB = \tan p \cot B$, $\therefore HB = \begin{cases} 21^{\circ} 48' 19''. \\ 158^{\circ} 11' 41''. \end{cases}$ $\cos ACH = \tan p \cot b$, $\therefore ACH = 38^{\circ} 13' 36'$. $\cos b = \cos p \cos AH$, $\therefore AH = 35^{\circ} 46'$. $C = ACH + HCB = 61^{\circ} 51' 20'' \text{ or } 194^{\circ} 35' 52''.$ $c = AH + HB = 57^{\circ} 34' 19'' \text{ or } 193^{\circ} 57' 41''.$

We can find a, c, and C from the proportions,

 $\sin B : \sin A :: \sin b : \sin a$.

 $\sin \frac{1}{2}(B+A) : \sin \frac{1}{2}(B-A) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(b-a).$ $\sin b$: $\sin c$:: $\sin B$: $\sin C$.

2. Given.

Required.

 $\begin{cases} A = 33^{\circ} 15'. \\ B = 31^{\circ} 34' 38''. \\ b = 70^{\circ} 10' 30''. \end{cases} \begin{cases} a = 80^{\circ} 03' 25'' \text{ or } 99^{\circ} 56' 35''. \\ C = 161^{\circ} 24' 52'' \text{ or } 173^{\circ} 30' 52''. \\ c = 145^{\circ} 03' 13'' \text{ or } 168^{\circ} 18' 23''. \end{cases}$

3. Given.

Required.

4. Given.	Required.			
$b = 127^{\circ} 30'.$	$c = 162^{\circ}$	20' 55" or	100° 07'	25".
$\begin{cases} A = 132^{\circ} \ 16'. \\ B = 139^{\circ} \ 44'. \\ b = 127^{\circ} \ 30'. \end{cases}$	$\left\{\begin{array}{l}a = 65^{\circ}\\C = 165^{\circ}\\c = 162^{\circ}\end{array}\right.$	41' 46" or	126° 40'	44".
$(A = 132^{\circ} 16'.$	$a = 65^{\circ}$	' 16' 30" or	114° 43'	30".

$(A = 48^{\circ} 50'.$	$a = 75^{\circ} 48'$	or 104° 12'.
$\begin{cases} A = 48^{\circ} 50'. \\ B = 131^{\circ} 10'. \\ b = 75^{\circ} 48'. \end{cases}$	$\left\{ \begin{array}{l} a = 75^{\circ} 48' \\ C = 360^{\circ} \\ c = 360^{\circ} \end{array} \right.$	or 328° 39′ 28″.
$b = 75^{\circ} 48'.$) ($c = 360^{\circ}$	or 317° 56′ 42″.

Scholium.-In the two preceding cases some of the parts are found to be greater than 180°; but the corresponding triangles conform to the conditions of the problem, and are therefore true solutions.

TRIGONOMETRY.

Parts greater than 180° are usually excluded, in which case the principles of the following article will aid in determining the species of the parts.

The principles established in Geometry are given without demonstration.

151. Principles.

1. Each part of a spherical triangle is less than 180°.

2. The greater side is opposite the greater angle, and conversely.

3. Each side is less than the sum of the other sides.

4. The sum of the sides is less than 360°.

5. The sum of the angles is greater than 180° , and less than 540° .

6. Each angle is greater than the difference between 180° and the sum of the other angles.

For, $A + B + C > 180^{\circ}$. Principle 5. $\therefore A > 180^{\circ} - (B + C)$.

The last formula is always algebraically true; but in case $B + C > 180^{\circ}$, it might be doubted whether it is numerically true.

Passing to the polar triangle, we have, by principle 3,

a' < b' + c'.or $180^{\circ} - A < 180^{\circ} - B + 180^{\circ} - C.$ or $-A < 180^{\circ} - (B + C).$ $\therefore A > B + C - 180^{\circ}.$

7. A side differing more from 90° than another side is of the same species as its opposite angle.

OBLIQUE TRIANGLES.

By article 136, we have

ing perpen

 $\cos a = \cos b \cos c + \sin b \sin c \cos A.$

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

But sin b sin c is positive, since b and c are each less than 180° .

If a differs, more from 90° than b or c, then we shall have

 $\cos a > \cos b$, or $\cos a > \cos c$, numerically; and since neither $\cos b$ nor $\cos c$ exceeds 1, we have

 $\cos a > \cos b \cos c$.

 \therefore cos A and cos a have the same sign, \therefore A and a are of the same species.

8. An angle differing more from 90° than another angle is of the same species as its opposite side.

By article 137, we have

 $\cos A = \sin B \sin C \cos a - \cos B \cos C.$ $\therefore \quad \cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C}.$

If A differs more from 90° than B or C, then, as before, $\cos A$ and $\cos a$ have the same sign, or A and a are of the same species.

9. Two sides, at least, are of the same species as their opposite angles, and conversely.

If each of two sides differs more from 90° than the remaining side, they will be of the same species as their opposite angles, as is evident from principle 7.

If the triangle is isosceles, and the equal sides less than 90°, the perpendicular from the vertex to the third side will be less than 90°, since one-half the S. N. 13.

TRIGONOMETRY.

third side is less than 90° , and the angles opposite this perpendicular will be less than 90° , article 129, or of the same species as their opposite sides.

If the equal sides are greater than 90°, the perpendicular will be greater than 90°, since one-half the third side is less than 90°, and the angles opposite the perpendicular will be greater than 90°, article 129, or of the same species as their opposite sides.

If one side exceeds 90° by as much as 90° exceeds another side, and the third side is greater or less than each of the other sides, this third side is of the same species as its opposite angle by principle 7.

If the greater of the two sides is of the same species as its opposite angle, then we shall have two sides of the same species as their opposite angles.

If the greater of the two sides is not of the same species as its opposite angle, this angle will be of the same species as the other side, or less than 90° ; but the angle opposite this other side is less than the angle opposite the greater side, and hence less than 90° , or of the same species as its opposite side, and again we have two sides of the same species as their opposite angles.

10. The sum of two sides is greater than, equal to, or less than, 180°, according as the sum of their opposite angles is greater than, equal to, or less than, 180°.

 $\tan \frac{1}{2}(a+b) \cos \frac{1}{2}(A+B) = \tan \frac{1}{2}c \cos \frac{1}{2}(A-B)$. Art. 144.

But $c < 180^{\circ}$, $\therefore \frac{1}{2}c < 90^{\circ}$, $\tan \frac{1}{2}c > 0$, and $A - B < 180^{\circ}$, $\therefore \frac{1}{2}(A - B) < 90^{\circ}$, $\cos \frac{1}{2}(A - B) > 0$. $\therefore \tan \frac{1}{2}c \cos \frac{1}{2}(A - B) \ge 0$, $\tan \frac{1}{2}(a + b) \cos \frac{1}{2}(A + B) > 0$. $\therefore \tan \frac{1}{2}(a + b)$ and $\cos \frac{1}{2}(A + B)$ have like signs.

OBLIQUE TRIANGLES.

... If $\frac{1}{2}(A+B) >$, = or < 90°, $\frac{1}{2}(a+b) >$, = or < 90°. ... If A+B >, = or < 180°, a+b >, = or < 180°.

Given two angles and the included side of a spherical

152. Case III.

triangle; required the remaining parts.

Given two sides and the included angle of a spherical triangle; required the remaining parts.

1. Given $\begin{cases} a = 85^{\circ} 30'. \\ b = 65^{\circ} 40'. \\ C = 95^{\circ} 50'. \end{cases}$ Req. $\begin{cases} A. \\ B. \\ C. \end{cases}$

We have, article 144, $\cos \frac{1}{2}(a+b) : \cos \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A+B).$ $\sin \frac{1}{2}(a+b) : \sin \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A-B).$

 $\therefore \begin{cases} \frac{1}{2} (A+B) = 74^{\circ} \ 21' \ 49''. \\ \frac{1}{2} (A-B) = 9^{\circ} \ 07' \ 21''. \end{cases} \qquad \therefore \qquad \begin{cases} A = 83^{\circ} \ 29' \ 10'. \\ B = 65^{\circ} \ 14' \ 28''. \end{cases}$

We also have, article 144, $\sin \frac{1}{2}(A+B) : \sin \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a-b).$ $\therefore \frac{1}{2}c = 46^{\circ} 43' 09'', \therefore c = 93^{\circ} 26' 14''.$

We can also find c from the proportion,

 $\sin A : \sin C :: \sin a : \sin c.$

But the species of c is more readily determined from the proportion employed; for if we take the supplement of 46° 43' 09", then c would be greater than 180°.

Again, all the known terms of the proportion are positive; hence, $\tan \frac{1}{2}c$ is positive, $\therefore \frac{1}{2}c < 90^{\circ}$.

2. Given $\begin{cases} a = 120^{\circ} 30' 30''. \\ b = -70^{\circ} 20' 20''. \\ C = -50^{\circ} 10' 10''. \end{cases}$ Req. $\begin{cases} A = 135^{\circ} 05' 29''. \\ B = -50^{\circ} 30' 09''. \\ c = -69^{\circ} 34' 58''. \end{cases}$

TRIGONOMETRY.

153. Case IV.

Given two angles and the included side of a spherical triangle; required the remaining parts.

1. Giv.
$$\begin{cases} A = 62^{\circ} 54'. \\ B = 48^{\circ} 30'. \\ c = 114^{\circ} 29' 58''. \end{cases} \operatorname{Req.} \begin{cases} a. \\ b. \\ C. \end{cases}$$

We have, article 144,

 $\cos \frac{1}{2}(A+B) : \cos \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a+b).$ $\sin \frac{1}{2}(A+B) : \sin \frac{1}{2}(A-B) :: \tan \frac{1}{2}c : \tan \frac{1}{2}(a-b).$ $\therefore \left\{ \begin{array}{l} \frac{1}{2} \left(a + b \right) = 69^{\circ} \ 55' \ 48''. \\ \frac{1}{2} \left(a - b \right) = 13^{\circ} \ 16' \ 18''. \\ \end{array} \right\} \quad \therefore \quad \left\{ \begin{array}{l} a = 83^{\circ} \ 12' \ 06''. \\ b = 56^{\circ} \ 39' \ 30''. \\ \end{array} \right.$

We also have, article 144,

 $\sin \frac{1}{2}(a+b) : \sin \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A-B).$ $\therefore \frac{1}{2}C = 62^{\circ} 40', \quad \therefore C = 125^{\circ} 20'.$

2. Given $\begin{cases} A = 126^{\circ} \ 35' \ 02''. \\ B = 61^{\circ} \ 43' \ 58''. \\ c = 57^{\circ} \ 30'. \end{cases}$ Req. $\begin{cases} a = 115^{\circ} \ 19' \ 57''. \\ b = 82^{\circ} \ 27' \ 59''. \\ C = 48^{\circ} \ 31' \ 38''. \end{cases}$

154. Case V.

Given the three sides of a spherical triangle; required the angles.

1. Giv.
$$\begin{cases} a = 100^{\circ} 49' 30''. \\ b = 99^{\circ} 40' 48''. \\ c = 64^{\circ} 23' 15''. \end{cases}$$
 Req.
$$\begin{cases} A. \\ B. \\ C. \\ A \end{cases}$$

B

By article 138, we have

$$\cos \frac{1}{2}A = \sqrt{\frac{\sin \frac{1}{2}s \sin \left(\frac{1}{2}s - a\right)}{\sin b \sin c}}$$

OBLIQUE TRIANGLES.

Introducing R and applying logarithms, we have $\log \cos \frac{1}{2}A = \frac{1}{2} [\log \sin \frac{1}{2}s + \log \sin (\frac{1}{2}s - a) + a.c. \log \sin b + a.c. \log \sin c].$

 $\therefore \frac{1}{2}A = 48^{\circ} \ 43' \ 14'', \qquad \therefore A = 97^{\circ} \ 26' \ 28''.$ In like manner we find $\begin{cases} B = 95^{\circ} \ 38' \ 00''. \\ C = 65^{\circ} \ 33' \ 04''. \end{cases}$

2. Given $\left\{\begin{array}{l} a = 85^{\circ} \ 30'.\\ b = 65^{\circ} \ 40'.\\ c = 93^{\circ} \ 26' \ 18''. \end{array}\right\}$ Req. $\left\{\begin{array}{l} A = 83^{\circ} \ 29' \ 08''.\\ B = 65^{\circ} \ 14' \ 20''.\\ C = 95^{\circ} \ 50'. \end{array}\right.$

155. Case VI.

Given the three angles of a spherical triangle; required the sides.

1. Given
$$\begin{cases} A = 119^{\circ} 15'. \\ B = 70^{\circ} 39'. \\ C = 48^{\circ} 36'. \end{cases}$$
 Req. $\begin{cases} a. \\ b. \\ c. \end{cases}$

By article 139, we have

$$\cos \frac{1}{2}a = \sqrt{\frac{\cos \left(\frac{1}{2}S - B\right)\cos \left(\frac{1}{2}S - C\right)}{\sin B \sin C}}$$

Introducing R and applying logarithms, we have $\log \cos \frac{1}{2}a = \frac{1}{2} [\log \cos (\frac{1}{2}S - B) + \log \cos (\frac{1}{2}S - C) + a.c. \log \sin B + a.c. \log \sin C].$

$$\therefore \frac{1}{2}a = 56^{\circ} 11' 31'', \qquad \therefore a = 112^{\circ} 23' 02''.$$

In like manner we find
$$\begin{cases} b = 89^{\circ} 16' 54''. \\ c = 52^{\circ} 39' 00''. \end{cases}$$

2. Given $\begin{cases} A = 121^{\circ} \ 36' \ 24''.\\ B = \ 42^{\circ} \ 15' \ 13''.\\ C = \ 34^{\circ} \ 15' \ 03''. \end{cases}$ Req. $\begin{cases} a = 76^{\circ} \ 36' \ 00''.\\ b = \ 50^{\circ} \ 10' \ 40''.\\ c = \ 40^{\circ} \ 00' \ 20''. \end{cases}$

156. Definition and Classification.

Mensuration is the art of calculating the values of geometrical magnitudes.

Mensuration is divided into two branches — Mensuration of surfaces and Mensuration of volumes.

MENSURATION OF SURFACES.

157. Unit of Superficial Measure.

A unit of superficial measure is a square each side of which is a linear unit.

Thus, according to the object to be accomplished, a square inch, a square foot, a square yard, an acre, etc., is the superficial unit taken.

158. Problem. " All statute willing

To find the area of a rectangle.

Let k denote the area, b the base, and a the altitude of a rectangle.

There are a rows of b superficial units each.

TE* 89 (80)

Since there are b superficial units in one row, in a such rows there will be a times b or ab superficial units.

. (1)
$$k = ab$$
.

The above demonstration applies only in case the base and altitude are commensurable, or have a common unit

SURFACES,

If the base and altitude are incommensurable, denote the area by k', the base by b', and the altitude by a'. Then, since by Geometry any two rectangles are to each other as the products of their bases and altitudes, we have

k : k' :: ab : a'b'.But k = ab, $\therefore k' = a'b'$.

159. Problem.

To find the area of a parallelogram.

1. When the base and altitude are given.

Let k denote the area, b the base, and a the altitude of a parallelogram.

Since a parallelogram is equal to a rectangle, having the same base and

altitude, and since the area of the rectangle is equal to the product of its base and altitude, the area of the parallelogram is equal to the product of its base and altitude.

$$(1) \ k = ab.$$

2. When two sides and their c/a included angle are given.

 $a = c \sin^{\circ} A$ (2) $k = bc \sin A$.

160. Problem.

To find the area of a triangle.

1. When the base and altitude are given.

Since a triangle is one-half the parallelogram having the same base and altitude, we have for the tri- \angle angle,

(1)
$$k = \frac{1}{2}ab$$
.

2. When two sides and their included angle are given.

Since a triangle is one-half the parallelogram, having an equal angle and equal adjacent sides, we have for the triangle,

$$(2) \quad k = \frac{1}{2}bc \, \sin \, A.$$

3. When two angles and a side are given.

The third angle is equal to 180° minus the sum of the given angles.

Let, then, the angles and the side b be given.

By the last case, we have

$$k = \frac{1}{2}bc \sin A.$$

But $\sin B : \sin C :: b : c$, $\therefore c = \frac{b \sin C}{\sin B}$.

Substituting this value of c, we have

(3)
$$k = \frac{b^2 \sin A \sin C}{2 \sin B}$$
.

4. When two sides and an angle opposite one of them are given.

Let a and c be the given sides, and A the given angle.

In case of one or two solutions determined by article 72, find the value or values of C and B from the formulas,

sin
$$C = \frac{c \sin A}{a}$$
, and $B = 180^{\circ} - (A + C)$.

Then, by (2), we have

(4) $k = \frac{1}{2} ac \sin B$.

SURFACES.

5. When the three sides are given. Let p = the perimeter = a + b + c. Then, by article 102, we have

(5)
$$k = \sqrt{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c)}.$$

6. When the perimeter and angles are given.

Let p be the perimeter, and A, B, and C the angles.

By article 98, (10), (11), (12),

 $\frac{1}{4}p^2 \tan \frac{1}{2}A \tan \frac{1}{2}B \tan \frac{1}{2}C = \sqrt{\frac{1}{2}p(\frac{1}{2}p-a)(\frac{1}{2}p-b)(\frac{1}{2}p-c)}.$

(6)
$$k = \frac{1}{4}p^2 \tan \frac{1}{2}A \tan \frac{1}{2}B \tan \frac{1}{2}C$$
.

7. When the perimeter and radius of the inscribed circle are given.

Let p = a + b + c, and r be the radius of the inscribed circle.

ABC = BOC + AOC + AOB.

$$ABC = k$$
, $BOC = \frac{1}{2}ar$, $AOC = \frac{1}{2}br$, $AOB = \frac{1}{2}cr$.

:.
$$k = \frac{1}{2}(a + b + c) r$$
; but $a + b + c = p$.

(7) $k = \frac{1}{2} pr$.

161. Examples.

1. Find the area of a triangle whose base is 75 ft., and altitude is 24 ft. Ans. 900 sq. ft.

2. Two sides of a triangle are 25 yds. and 30 yds., respectively, and their included angle is 50° ; required the area. Ans. 287.2665 sq. yds.

Ъ

B

3. In a triangle, b = 100 ft., $A = 50^{\circ}$, $C = 60^{\circ}$; required the area. Ans. 3529.9 sq. ft.

4. In a triangle, a = 40 yds., c = 50 yds., $A = 40^{\circ}$; required the area. Ans. 998.18, or 232.83 sq. yds.

5. In a triangle, a = 12 ft., b = 15 ft., c = 17 ft.; required k. Ans. 87.75 sq. ft.

6. In a triangle the perimeter is 20 ft., and the angles are 50°, 60°, and 70°, respectively; required the area. Ans. 18.85 sq. ft.

7. In a triangle the perimeter is 60 ft., and the radius of the inscribed circle is 5 ft.; required the area. Ans. 150 sq. ft.

162. Problem.

To find the area of a quadrilateral.

1. When two opposite sides and the perpendiculars to these sides from the vertices of the angles at the extremities of a diagonal are given.

Let b and b' be two opposite sides, and a and a' the perpendiculars to these sides from the vertices of the A^{A} angles D and B.

ABCD = ABD + DCB. $ABCD = k, ABD = \frac{1}{2}ab, DCB = \frac{1}{2}a'b'.$

... (1) $k = \frac{1}{2}ab + \frac{1}{2}a'b'$.

Corollary 1.—If b' is parallel to b, the quadrilateral becomes a trapezoid, a' = a, and (1) becomes

(2) $k = \frac{1}{2}a (b + b').$

SURFACES.

Corollary 2. — If b' = b, the trapezoid becomes a parallelogram, and (2) becomes

(3)
$$k = ab$$
.

Corollary 3.— If b' = 0, the trapezoid becomes a triangle, and (2) becomes

(4)
$$k = \frac{1}{2}ab.$$

2. When a diagonal and the perpendiculars to the diagonal from the vertices of the opposite angles are given.

Let d denote the diagonal, and pand p' the perpendiculars.

$$ABCD = ABC + ADC.$$

ABCD = k, $ABC = \frac{1}{2}dp$, $ADC = \frac{1}{2}dp'$.

:. (5)
$$k = \frac{1}{2}d(p+p').$$

3. When the sides and a diagonal are given.

Let the areas of the triangles be denoted by k' and k'', which are found by article 160, (5).

. (6)
$$k = k' + k''$$
.

4. When the sides and one angle are given.

Draw the diagonal opposite the given angle, and call the areas of the triangles k' and k''.

In one triangle we have two sides and their included angle, from which we find the area and the diagonal.

Then, in the other triangle, we have the three sides, from which we find the area.

:. (7)
$$k = k' + k''$$
.

5. When the diagonals and their included angle are given.

Let d and d' denote the diagonals p and q, r and s their segments, and A their included angle.

The angles at A are equal or supplementary; hence their sines are equal.

$$BCDE = BAC + CAD + DAE + EAB.$$

BCDE = k, $BAC = \frac{1}{2}ps \sin A$, $CAD = \frac{1}{2}qs \sin A$.

 $DAE = \frac{1}{2}qr \sin A$, $EAB = \frac{1}{2}pr \sin A$.

:. $k = \frac{1}{2}(ps + qs + qr + pr) \sin A$.

But ps + qs + qr + pr = (p + q).(r + s) = dd'.

... (8) $k = \frac{1}{2} dd' \sin A$.

6. When the angles and two opposite sides are given.

Let a = BC, and b = AD. $E = 180^{\circ} - (B + C)$.

The angles at A being supplementary, their sines are equal. The same is true of the angles at D.

$$ABCD = BCE - ADE, ABCD = k.$$

 $BCE = \frac{a^2 \sin B \sin C}{2 \sin E}, \quad ADE = \frac{b^2 \sin A \sin D}{2 \sin E}.$

(9) $k = \frac{a^2 \sin B \sin C}{2 \sin E} - \frac{b^2 \sin A \sin D}{2 \sin E}.$

SURFACES.

7. When three sides and their included angles are given.

Let a, b, and c be the given sides, and A and B their included angles.

ABCD = ABD + DBC.

ABCD = k, $ABD = \frac{1}{2}ab \sin A$.

Find B' and d, B'' = B - B', $DBC = \frac{1}{2}cd \sin B''$.

... (10) $k = \frac{1}{2}ab \sin A + \frac{1}{2}cd \sin B''$.

8. When the sides of a quadrilateral inscribed in a circle are given.

Let a, b, c, d be the given sides.

ACBD = ACB + ADB.

ACBD = k, $ACB = \frac{1}{2}ab \sin C$.

 $ADB = \frac{1}{2} cd \sin D = \frac{1}{2} cd \sin C,$ since $D = 180^\circ - C.$

 $\therefore k = \frac{1}{2}(ab + cd) \sin C.$

 $\overline{AB}^2 = a^2 + b^2 - 2 \ ab \ \cos \ C, \ \text{article 97.}$

 $\overline{AB}^2 = c_r^2 + d^2 - 2 \ cd \ \cos D = c^2 + d^2 + 2 \ cd \ \cos C.$. $c^2 + d^2 + 2 \ cd \ \cos C = a^2 + b^2 - 2 \ ab \ \cos C.$

$$\cos C = \frac{a^2 + b^2 - c^2 - d^2}{2 \ (ab + cd)}.$$

sin $C = \sqrt{1 - \cos^2 C}$, Let s = a + b + c + d.

:.
$$\sin C = \frac{2\sqrt{(\frac{1}{2}s-a)(\frac{1}{2}s-b)(\frac{1}{2}s-c)(\frac{1}{2}s-d)}}{ab+cd}$$

. (11)
$$k = \sqrt{(\frac{1}{2}s-a)(\frac{1}{2}s-b)(\frac{1}{2}s-c)(\frac{1}{2}s-d)}$$

12/2 12

163. Examples.

1. Two opposite sides of a quadrilateral are 35 rds. and 25 rds., and the perpendiculars to these sides from the extremities of the diagonal are, respectively, 12 rds. and 16 rds.; required the area.

Ans. 410 sq. rds.

2. Find the area of a trapezoid whose bases are 15 rds, and 20 rds., and whose altitude is 18 rds.

Ans. 315 sq. rds.

3. Two adjacent sides of a parallelogram are 30 rds. and 40 rds., and their included angle is 30°; required the area. Ans. 600 sq. rds.

4. The diagonal of a quadrilateral is 40 rds., and the two perpendiculars to the diagonal from the vertices of the opposite angles are 10 rds. and 15 rds., respectively; required the area. Ans. 500 sq. rds.

5. The sides of a quadrilateral are 30 rds., 40 rds., 50 rds., and 60 rds., and the diagonal drawn from the intersection of the sides, whose lengths are 30 rds. and 40 rds., is 70 rds.; required the area.

Ans. 1874.22 sq. rds.

6. The sides of a quadrilateral are 25 rds., 35 rds., 45 rds., 55 rds., and the angle included by the sides, whose lengths are 35 rds. and 45 rds., is 50° ; required the area. Ans. 927.47 sq. rds.

7. The diagonals of a quadrilateral are 30 rds. and 40 rds., and their included angle is 30° ; required the area. Ans. 300 sq. rds.

8. The angles of a quadrilateral are 80°, 110°, 88°, 82°, the side included by the first and second of these angles is 25 rds., and the side included by the third and fourth angles is 45 rds.; required the area.

Ans. 4105.08 sq. rds. .

SURFACES.

9. Three sides of a quadrilateral are 20 rds., 30 rds., 40 rds., the angle included by the first and second is 60°, and between the second and third, 80°; required the area. Ans. 593.58 sq. rds.

10. The sides of a quadrilateral inscribed in a circle are 40 rds., 50 rds., 60 rds., 70 rds.; required the area. Ans. 2898.28 sq. rds.

11. The area of a parallelogram is 47.055 sq. ft., the sides are 6 ft. and 8 ft.; required the diagonal.

Ans. 9 ft., or 10.906 ft.

12. If the adjacent sides of a parallelogram are b and c, and their included angle A, find A and k when k is a maximum. Ans. $A = 90^{\circ}$, k = bc.

13. The sides and angles being expressed as in the last example, find A and k when k is a minimum.

Ans. $A = 0^{\circ}$ or 180° , k = 0.

k

7ć

14. If only two adjacent sides, b and c, of a parallelogram be given, prove that k is indeterminate between the limits 0 and bc.

15. Prove that the diagonals of a parallelogram divide it into four equal triangles.

164. Problem.

To find the area of an irregular polygon.

1. When the sides and diagonals from the same vertex are given.

The diagonals divide the polygon into triangles whose sides are given.

The areas of these triangles, k', k'', k''', ... are found by article 160, (5).

.:. (1) $k = k' + k'' + k''' + \dots$

2. When the diagonals from the same vertex, and the perpendiculars to these diagonals from the opposite vertices are given.

(2) $k = \frac{1}{2}dp + \frac{1}{2}d'p' + \frac{1}{2}d'p'' + \frac{1}{2}d'p' + \frac{1}{2}d'$

3. When the perpendiculars to a diagonal from the vertices of the opposite angles and the segments of the diagonal made by these perpendiculars are given.

The polygon is divided into right triangles and trapezoids, whose areas k', k'', k''', are found by article 162, (2), (4).

(3)
$$k = k' + k'' + k''' + \dots$$

4. When one side of a figure is a straight line, and the opposite side is an irregular curve or broken line.

Let the straight line be divided into the parts $a, a', a'', \ldots, and p$ let the perpendiculars be p, q, r, \ldots a " " dividing the figure into parts which may be considered trapezoids.

. (4)
$$k = \frac{1}{2}a(p+q) + \frac{1}{2}a'(q+r) + \frac{1}{2}a''(r+s).$$

If a' = a and a'' = a, (4) becomes,

(5) $k = \frac{1}{2}a(p+2q+2r+s).$

165. Examples.

1. Find the area of the annexed polygon if p = 10 rds., q = 6 rds., r = 6 rds., s = 7 rds., t = 15 rds., d = 14 rds., d' = 16 rds. Ans. 119.86 sq. rds.

a

1!

. •

2. Find the area of the annexed polygon if p = 3 rds., d = 9 rds., p' = 4 rds., d' = 12 rds., and p'' = 5 rds. Ans. 67.5 sq. rds.

3. Find the area of the annexed polygon if p = 3 ft., p' = 5 ft., p'' = 4 ft., a = 5 ft., b = 6 ft., c = 6 ft., d = 9 ft., e = 8 ft. Ans. 80.5 sq. ft.

4. Find the area of the annexed figure. p = 2 rds., q = 3 rds., r = p p = 2 rds., a = a' = a'' = 5 rds.

Ans. 47.5 sq. rds.

166. Problem.

To find the area of a regular polygon.

1. When the perimeter and apothegm are given.

Let p be the perimeter, a the apothem, and s one side of the polygon.

$$k = \frac{1}{2}as + \frac{1}{2}as + \frac{1}{2}as + \frac{1}{2}as + \dots$$

$$k = \frac{1}{2}a(s + s + s + s + \dots)$$

(1)
$$k = \frac{1}{2}ap$$
.

2. When the value of each side and the number of sides are given.

Let s be one side, n the number of sides, a the apothem, and p the perimeter.

$$p = ns.$$
 $DOB = \frac{360^{\circ}}{2 n} = \frac{180^{\circ}}{n}$

OD = DB cot DOB, or $a = \frac{1}{2}s \text{ cot } \frac{180}{n}$ S. N. 14.

... (2)
$$k = \frac{1}{4} ns^2 \cot \frac{180^\circ}{n}$$
.
 $s = 1$, then (3) $k = \frac{1}{4} n \cot \frac{180^\circ}{n}$.

From (3) calculate the areas of the regular polygons each of whose sides is 1, as given in the table subjoined

167. Table.

Triangle $= 0.4330127.$	Octagon = 4.8284271.
Square $= 1.0000000.$	Enneagon $= 6.1818242.$
Pentagon = 1.7204774.	Decagon $= 7.6942088.$
Hexagon $= 2.5980762.$	Hendecagon= 9.3656399.
Heptagon = 3.6339124.	Dodecagon $= 11.1961524.$

168. Application of the Table.

L When the perimeter and

Denoting the area of a regular polygon whose side is s by k, and the area of a similar polygon whose side is 1, as given in the table by k', and applying the principle that the areas of similar polygons are to each other as the squares of the homologous sides, we have the proportion,

 $k: k':: s^2: 1^2$. $k = k's^2$.

169. Examples.

1. What is the area of a regular hexagon each of whose sides is 6? Ans. 93.5307432.

2. What is the area of a regular pentagon each of whose sides is 10? Ans. 172.04774.

162

Tf

3. What is the area of a regular decagon each of whose sides is 20? Ans. 3077.68352.

4. What is the area of a regular dodecagon each of whose sides is 100? Ans. 111961.524.

5. What is the area of a regular enneagon each of whose sides is 30? Ans. 5563.64178.

170. Formulas for the Circle.

Let r be the radius, d the diameter, c the circumference, and k the area of a circle, then, by Geometry, we_have

$$d = 2 r, c = \pi d, k = \frac{1}{2}rc$$

From which verify the following table of formulas:

1. $r = \frac{1}{2}d$. 2. $r = \frac{c}{2\pi}$. 3. $r = \sqrt{\frac{k}{\pi}}$. 4. d = 2r. 5. $d = \frac{c}{\pi}$. 6. $d = 2\sqrt{\frac{k}{\pi}}$. 7. $c = 2\pi$. 8. $c = \pi d$. 9. $c = 2\sqrt{k\pi}$. 10. $k = \pi r^2$. 11. $k = \frac{1}{4}\pi d^2$. 12. $k = \frac{c^2}{4\pi}$.

171. Examples.

1. Given the radius of a circle = 10 rds.; required d, c, and k.

2. Given the diameter of a circle = 20 rds.; required r, c, and k.

3. Given the circumference of a circle = 150 rds.; required r, d, and k.

4. Given the area of a circle = 1000 sq. rds.; required r, d, and c.

5. Find the diameter of a circle whose area is equal to that of a regular decagon, each side of which is 10 ft. Ans. 31.3.

6. The radius of a circle is 10 ft., the diagonals of an equal parallelogram are 24 ft. and 30 ft.; required their included angle. Ans. 60° 46' 17".

7. The radii of two concentric circles are r and r'; find the area of the ring included by their circumferences. Ans. $\pi (r + r') (r - r')$.

172. Problem.

To find the area of a sector of a circle.

Let a be the arc of a sector, d the degrees in the arc, r the radius, and k the area.

By Geometry, (1) $k = \frac{1}{2}ra$.

 $\pi r =$ the semi-circumference,

 $\frac{\pi r}{180} = \text{the arc of } 1^{\circ}. \quad \ddots \quad \frac{d\pi r}{180} = \text{the arc of } d^{\circ}.$ $\therefore \quad (2) \quad a = \frac{d\pi r}{180} \cdot \quad \ddots \quad (3) \quad k = \frac{d\pi r^2}{360} \cdot$

173. Examples.

1. Find the area of a sector whose arc is 40° andradius is 10 ft.Ans. 34.907 sq. ft.

2. Find the area of a sector whose arc is 60° 24' 30" and radius is 100 rds. Ans. 5271 64 sq. rds.

164

3. The area of a sector is 345 sq. ft., the radius is 20 ft.; required the arc. Ans. 98° 50′ 06″.

4. The area of a sector is 1000 sq. rds., the arc is 30° 45'; required the radius. Ans. 61.04 rds.

174. Problem.

To find the area of a segment of a circle.

Let d be the degrees in the arc of the segment, r the radius, and k the area.

By the last problem,

 $\frac{d\pi r^2}{360} = \text{the area of the sector.}$ $\frac{1}{2}r^2 \sin d = \text{the area of the triangle.}$ $\therefore \quad k = \frac{d\pi r^2}{360} - \frac{1}{2}r^2 \sin d.$

If d is greater than 180, sin d is negative, and the second term in the value of k becomes positive, as it should, since, in this case, the segment is equal to the corresponding sector plus the triangle.

175. Examples.

1. Find the area of the segment of a circle whose arc is 36° and radius 10 ft. Ans. 2.027 sq. ft.

2. Find the area of a segment whose chord is 36 ft. and radius 30 ft. Ans. 147.30 sq. ft.

3. Find the area of a segment whose altitude is 36 rds. and radius 50 rds. Ans. 2545.85 sq. rds.

4. The area of a segment is 2545.85 sq. rds., the radius is 50 rds.; required the number of degrees in the arc.

176. Problem.

To find the area of an ellipse.

Let a be the semi-major axis, and b the semi-minor axis.

Then, Ray's Analytic Geometry, article 446,

 $k = \pi ab.$

177. Examples.

1. The semi-axes of an ellipse are 10 in. and 7 in.; required the area. Ans. 219.912 sq. in.

2. The area of an ellipse is 125 sq. rds.; find the axes if they are to each other as 3 is to 2.

Ans. 15.45; 10.30.

45% required the radius.

at large at transform. Problem. at anot brooks

If d is creater than 180, sin d is negative, and the

To find the area of the entire surface of a right prism.

Let p be the perimeter of the base, a the altitude, s one side of the base, k' the area of a polygon similar to the base, each side of which is unity, article 167, and k the area of the entire surface.

ap =the convex surface.

 $2 k's^2 =$ the areas of the bases. Article 168.

 $k = ap + 2 k's^2$.

SURFACES.

179. Examples.

1. What is the entire surface of a right prism whose altitude is 20 ft., and base a regular octagon each side of which is 10 ft.? Ans. 2565.68542 sq. ft.

2. What is the entire surface of a right hexagonal prism whose altitude is 12 ft., and each side of the base is 6 ft.? Ans. 619.0614864 sq. ft.

3. What is the entire surface of a right prism whose altitude is 15 in., and base a regular triangle each side of which is 3 in.? Ans. 142.7942286 sq. in.

180. Problem.

To find the area of the surface of a regular pyramid.

Let p be the perimeter of the base, athe slant height, s one side of the base, k' and k as in the last problem.

 $\frac{1}{2}ap =$ the convex surface.

 $k's^2$ = the area of the base.

 $\therefore \quad k = \frac{1}{2}ap + k's^2.$

181. Examples.

1. What is the entire surface of a regular pyramid whose slant height is 12 ft., and base a regular triangle each side of which is 5 ft.?

Ans. 100.82532 sq. ft.

2. What is the entire surface of a right pyramid whose slant height is 100 ft., and base a regular decagon each-side of which is 20 ft.?

Ans. 13077.68352 sq. ft.

182. Problem.

To find the entire surface of a frustum of a right pyramid.

Let p be the perimeter of the lower base, p' the perimeter of the upper base, a the slant height, s one side of the lower base, s' one side of the upper base, k' and k as in Art. 178.

 $\frac{1}{2}a(p+p') =$ the convex surface.

 $k's^2$ = the area of lower base. $k's'^2$ = the area of upper base.

 $\therefore k = \frac{1}{2}a(p+p') + k'(s^2 + s'^2).$

183. Examples.

1. What is the entire surface of a frustum of a pyramid whose slant height is 12 ft., and the bases regular decagons whose sides are 8 ft. and 5 ft., respectively? Ans. 1464.78458 sq. ft.

2. What is the entire surface of a frustum of a pyramid whose slant height is 15 ft., and the bases regular hexagons whose sides are 10 ft. and 6 ft., respectively? Ans. 1073.338 sq. ft.

184. Problem.

To find the area of the entire surface of a cylinder.

Let r be the radius of the cylinder, a its altitude, and k the area of the entire surface.

 $2 \pi ra =$ the convex surface.

 $2 \pi r^2$ = the area of the bases.

 $k = 2 \pi r (a + r).$

SURFACES.

185. Examples.

1. What is the entire surface of a cylinder whose altitude is 6 ft. and radius 2 ft.?

Ans. 100.5312 sq. ft.

2. What is the entire surface of a cylinder whose altitude is 100 ft. and radius 20 ft.?

Ans. 15079.68 sq. ft.

186. Problem.

189. Examples.

To find the area of the entire surface of a cone.

Let r be the radius of the base of the cone, a the slant height, and k the area of the entire surface.

 $\pi ra =$ the convex surface.

 πr^2 = the area of the base.

. $k = \pi r (a + r)$.

187. Examples.

1. What is the entire surface of a cone whose slant height is 10 ft. and radius 5 ft.? Ans. 235.62 sq. ft.

2. What is the entire surface of a cone whose altitude is 100 ft. and radius 25 ft.?

Ans. 10059.1675 sq. ft.

188. Problem.

To find the area of the entire surface of the frustum of a cone.

Let r be the radius of the lower base, r' be the S. N. 15.

radius of the upper base, a the slant height, and k the area of the entire surface.

 $\pi a (r + r') =$ the convex surface.

 πr^2 = the area of the lower base.

 $\pi r'^2$ = the area of the upper base.

 $k = \pi [a(r+r') + r^2 + r'^2]$.

189. Examples.

1. Find the entire surface of the frustum of a cone of which the radius of the lower base is 10 ft., the radius of the upper base is 6 ft., and slant height is 20 ft. Ans. 1432.5696 sq. ft.

2. Find the entire surface of the frustum of a cone of which the radius of the lower base is 25 in., the radius of the upper base 12 in., and the slant height 36 in. Ans. 45.8368 sq. ft.

190. Problem.

To find the area of the surface of a sphere.

Let r be the radius, d the diameter, c the circumference, and k the area. Then, by Geometry,

(1) $k = 4 \pi r^2$. (2) $k = \pi d^2$. (3) $k = \frac{c^2}{\pi}$. (4) k = cd.

191. Examples.

1. The radius of a sphere is 10 ft.; required the area. Ans. 1256.64 sq. ft.

2. The diameter of a sphere is 25 ft.; required the area. Ans. 1963.5 sq. ft.

- 3. The circumference of a sphere is 100 in.; required Ans. 3183.0914 sq. in. the area.

4. The circumference of a sphere is 62.832, and diameter 20; required the area. Ans. 1256.64.

192. Problem.

To find the area of a zone.

By Geometry, the area of a zone is equal to the circumference of a great circle multiplied by the altitude of the zone.

Let a denote the altitude of the zone, r the radius of the sphere, and k the area of the zone.

 $\pi t = 2 \pi ra.$

193. Examples.

1. What is the area of the torrid zone, calling its width 46° 56', and the earth a perfect sphere whose radius is 3956.5 mi.? Ans. 78333333. sq. mi.

2. What is the area of the two frigid zones if the polar circles are 23° 28' from the poles?

Ans. 16270370. sq. mi.

3. What is the area of the two temperate zones? Ans. 102109933. sq. mi.

194. Problem.

To find the area of a spherical triangle.

Let s = A + B + C, and $\frac{1}{2}\pi r^2 =$ the tri-rectangular triangle.

Then, by Geometry,

on is 120°, the

 $k = \frac{1}{2}\pi r^2 \left(\frac{s}{90^\circ} - 2\right).$

In this formula, $\frac{8}{90^{\circ}} - 2$ is to be regarded as an abstract number. Minutes and seconds are to be reduced to the decimal of a degree.

195. Examples.

1. Find the area of the spherical triangle whose angles are 60°, 80°, 100°, and the radius 3956.5 mi. Ans. 16392592 sq. mi.

2. Find the area of a spherical triangle whose sides are 70°, 90°, 100°, respectively, and radius 100 in.

Ans. 10942.1928 sq. in.

196. Problem.

193. Examples

To find the area of a spherical polygon.

Let s be the sum of the angles, n the number of sides, k the area of the polygon, and r the radius of the sphere.

Then, by Geometry,

sti sone calling its

$$k = \frac{1}{2} \pi r^2 \left[\frac{8}{90^\circ} - 2 \left(n - 2 \right) \right].$$

197. Examples.

1. The sum of the angles of a spherical hexagon is 800°, the radius is 100 ft.; required the area.

Ans. 13963. sq. ft.

2. Each angle of a spherical pentagon is 120°, the radius is 50 ft.; required the area. Ans. 2618. sq. ft.

SURFACES.

3. The angles of a spherical polygon are 90° , 100° , 110° , 150° , respectively, the radius is 10 ft.; required the area. Ans. 157.08 sq. ft.

4. Each angle of a spherical decagon is 150°, the radius is 1 ft.; required the area. Ans. 1.0472 ft.

198. Problem.

To find the area of the surface of a regular polyhedron.

Let e be one edge, n the number of faces, k' the area of a polygon whose side is 1, and similar to one face, and k the area of the entire surface.

 $k'e^2 =$ the area of one face. Article 168.

 $\therefore k = nk'e^2$.

199. Examples.

1. What is the area of the entire surface of a tetrahedron whose edge is 10 ft.? Ans. 173.20508 sq. ft.

2. What is the area of the entire surface of a hexahedron whose edge is 5 ft.? Ans. 150 sq. ft.

3. What is the area of the entire surface of an octahedron whose edge is 20 ft.? Ans. 1385.64064 sq. ft.

4. What is the area of the entire surface of a dodeca ahedron whose edge is 15 in.? Ans. 32.25895 sq. ft.

5. What is the area of the entire surface of an icosahedron whose edge is 100 in.? Ans. 601.4065 sq. ft.

MENSURATION OF VOLUMES.

200. Problem.

To find the volume of a prism.

Let k be the area of the base, a the altitude, and v the volume. Then, by Geometry,

v = ak.

201. Examples.

1. What is the volume of a regular hexagonal prism whose altitude is 20 ft., and each side of the base 10 ft.? Ans. 5196.1524 cu. ft.

2. What is the volume of a triangular prism whose altitude is 6 ft., and the sides of its base 3 ft., 4 ft., and 5 ft., respectively? Ans. 36 cu. ft.

3. What is the volume of a regular octagonal prism whose altitude is 120 ft., and each side of the base 20 ft.? Ans. 231764.5008 cu. ft.

202. Problem.

To find the volume of a pyramid.

Let k be the area of the base, a the altitude, and v the volume.

 $v = \frac{1}{3}ak.$

203. Examples.

helton whose edge is 20 f

 What is the volume of a pyramid whose altitude is 15 ft., and whose base is a regular heptagon each side of which is 5 ft.? Ans. 454.23905 cu. ft.
 What is the volume of a pyramid whose altitude

2. What is the volume of a pyramid whose altitude is 21 in., and whose base is a triangle each side of which is 30 in.? Ans. 2727.98 cu. in.

· VOLUMES.

204. Problem.

To find the volume of the frustum of a pyramid.

Let k and k_1 be the areas of the bases, a the altitude, and v the volume. Then, by Geometry,

(1)
$$v = \frac{1}{3} a (k + k_1 + V k k_1).$$

If the bases are regular polygons whose sides are s and s', we shall have, by article 168, $k = k's^2$, and $k_1 = k's'^2$, in which k' is given in the table of article 167, and (1) becomes

(2) $v = \frac{1}{3} a (s^2 + s'^2 + ss') k'.$

205. Examples.

1. What is the volume of the frustum of a pyramid whose altitude is 9 ft., and whose bases are regular triangles, one side of the lower being 8 ft., and one side of upper, 5 ft.? Ans. 167.576 cu. ft.

2. What is the volume of the frustum of a pyramid whose altitude is 27 in., and the bases regular hexagons, the sides of which are 10 in. and 6 in., respectively? Ans. 4583.0064 cu. in.

206. Problem.

frusterse of an cope

To find the volume of a cylinder.

Let r represent the radius, a the altitude, and v the volume. $v = a\pi r^2$.

207. Examples.

1. What is the volume of a cylinder whose altitude is 50 in., and radius 15 in.? Ans. 20.453 cu. ft.

2. What is the volume of a cylinder whose altitude is 25 ft., and radius 4 ft.? Ans. 1256.64 cu. ft.

MENSURATION.

208. Problem.

To find the volume of a cone.

Let r be the radius of the base, a the altitude, and v the volume. $v = \frac{1}{3} a \pi r^2.$

209. Examples.

1. What is the volume of a cone whose altitude is 21 in., and radius 10 in.? Ans. 2199.12 cu. in.

2. What is the volume of a cone whose altitude is 30 ft., and radius is 10 ft.? Ans. 31416. cu. ft.

210. Problem.

To find the volume of the frustum of a cone.

Let r and r' be the radii of the bases, a the altitude, and v the volume.

 $v = \frac{1}{3} a \pi (r^2 + r'^2 + rr').$

211. Examples.

1. What is the volume of the frustum of a cone whose altitude is 15 ft., and the radii of whose bases are 9 ft. and 4 ft, respectively? Ans. 2089.164 cu. ft.

2. How many barrels will that cistern contain whose altitude is 8 ft., the diameter at the bottom 4 ft., and at the top 6 ft.? Ans. 37.8 bbl.

212. Formulas for the Sphere.

Let r be the radius, d the diameter, c the circumference, k the area of the surface, and v the volume

VOLUMES.

of a sphere, then, by Geometry, we have

$$d = 2 r, c = \pi d, k = 4 \pi r^2, v = \frac{1}{3} rk.$$

From which verify the following table of formulas:

1.	$r=\frac{1}{2}d.$	11. $c = \sqrt{\pi k}$
2.	$r = \frac{c}{2\pi}$	12. $c = \sqrt[3]{6 v \pi^2}$.
3.	$r=rac{1}{2}\sqrt{rac{k}{\pi}}.$	13. $k = 4 \pi r^2$.
4.	$r = \frac{1}{2} \sqrt[3]{\frac{6v}{\pi}}.$	$14. k = \pi d^2.$
5.	d=2r.	15. $k = \frac{c^2}{\pi}$.
6.	$d = \frac{c}{\pi}$.	16. $k = t^{3/36} \pi v^2$.
7.	$d=\sqrt{rac{k}{\pi}}$.	17. $v = \frac{4}{3}\pi r^3$.
8.	$d=\sqrt[3]{rac{6v}{\pi}}.$	18. $v = \frac{1}{6} \pi d^3$.
9.	$c = 2 \pi r.$	$19. v = \frac{c^3}{6 \pi^2}.$
10.	$c = \pi d.$	$20. v = \frac{k}{6}\sqrt{\frac{k}{\pi}}.$

213. Examples.

1. Calling the diameter of the earth 7913 mi., and the diameter of the sun 856,000, find the ratio of their surfaces, also the ratio of their volumes.

2. What is the volume of the shell of a hollow sphere whose radius is 8 ft. 4 in., and the thickness of the shell 3 ft. 6 in.? Ans. 1951.1081 cu. ft.

MENSURATION.

214. Problem.

To find the volume of a spherical sector.

n

C

TĐ

F

G

C

E

A spherical sector is the volume generated by the revolution of any circular sector, ABC, about any diameter, DE. By Geometry, the volume of a spherical sector is equal to the zone which forms its base, multiplied by one-third of the radius.

Let a be the altitude of the zone, and r the radius.

215. Examples.

 $v = \frac{2}{3}\pi r^2 a.$

1. The altitude of the zone which forms the base of a sector is 6 ft., the radius is 12 ft.; required the volume. Ans. 1809.5616 cu. ft.

2. The angle BCD, in the diagram of last article, is 20°, ACB is 35°, r = 20 ft.; required the volume. Ans. 6134.25 cu. ft.

216. Problem.

To find the volume of a spherical segment.

A spherical segment is the portion of a sphere included between two parallel planes.

Let r' = BF perpendicular to DE, and r'' = AG perpendicular to DE.

r = the radius, d' = CF, and d'' = CG.

v = the vol. generated by ABFG.

v' = the vol. generated by $ABC = \frac{2}{3}\pi r^2 a$.

VOLUMES.

v'' = the vol. generated by $BFC = \frac{1}{3}d'\pi r'^2$.

v''= the vol. generated by $AGC=\frac{1}{3}d''\pi r''^2$.

 $v = v' + v'' \mp v'''.$

The sign of v''' is — or + according as AG is on the same or opposite side of the center as BF. $\therefore v = \frac{1}{3}\pi (2 ar^2 + d'r'^2 \mp d''r''^2).$

217. Examples.

1. r = 12 in., r' = 3 in., r'' = 10 in.; required v. 2. Two parallel planes divide a sphere whose diameter is 36 in. into three equal segments; required the altitude of each. Ans. 13.93 in.; 8.14 in.; 13.93 in.

218. Problem.

To find the volume generated by the revolution of a circular segment about a diameter exterior to it.

Let v = vol. generated by ADB. v' = vol. generated by ADBC. v'' = vol. generated by ABC. v = v' - v''.

Let a = FG, c = AB, p = CI, perpendicular to AB. $v' = \frac{2}{3} \pi a r^2$, $v'' = \frac{2}{3} \pi a p^2$. \cdots $v' - v'' = \frac{2}{3} \pi a (r^2 - p^2) = \frac{1}{6} \pi a c^2$.

 $v = \frac{1}{2}\pi ac^2$.

219. Examples.

1. a = 5 in., c = 8 in.; find v. Ans. 167.552 cu. in.

2. A sphere 6 in. in diameter is bored through the center with a 3-inch auger; required the volume remaining. Ans. 73.457 cu. in.

MENSURATION.

3. Prove that the volume generated by the segment whose altitude is a and chord c is to the sphere whose diameter is c as a : c.

4. Prove that if c is parallel to the diameter about which it is revolved, the volume generated by the segment is equal to the volume of a sphere whose diameter is c.

220. Problem.

-accel and To find the volume of a wedge.

The base is a rectangle, the sides are trapezoids, the ends, triangles.

Let e be the edge, l the length of base, b the breadth of base, and a the altitude.

tor us gaan in

Passing planes through the *t* extremities of the edge perpendicular to the base, we have a triangular prism and two pyramids. These pyramids may fall within or without the wedge, or one or both of the pyramids may vanish.

Ъ

But in all cases the formula is the same.

 $\frac{1}{2}abe =$ the volume of the prism.

 $\frac{1}{3}a(l-e)b =$ the volume of the pyramids.

 $v = \frac{1}{6}ab(2l+e).$

221. Examples.

1. The edge of a wedge is 6 in., the altitude 12 in., the length of base 9 in., and the breadth of base 5 in.; what is the volume? Ans. 240 cu. in.

Sett hart

VOLUMES.

2. The edge of a wedge is 20 ft., the altitude 24 ft., the length of base 15 ft., the breadth of base 10 ft.; what is the volume? Ans. 2000 cu. ft.

222. Problem.

To find the volume of a rectangular prismoid.

The bases are parallel rectangles, the other faces are trapezoids.

Let l and b be the length and breadth of the lower base, l' and b' the length and breadth of the upper base, and a the altitude.

Passing the plane as indicated, the prismoid is divided into two wedges.

 $\frac{1}{6}ab(2\ l+l') = the vol. of wedge whose base is bl.$ $\frac{1}{6}ab'(2\ l'+l) = the vol. of wedge whose base is b'l'.$ $\therefore v = \frac{1}{6}a[b(2\ l+l') + b'(2\ l'+l)].$

223. Examples.

1. The length and breadth of the lower base of a rectangular prismoid are 25 ft. and 20 ft., the length and breadth of the upper base are 15 ft. and 10 ft., and the altitude is 18 ft.; what is the volume?

Ans. 5550 cu. ft.

2. The length and breadth of the lower base of a rectangular prismoid are 15 yds. and 10 yds., the length and breadth of the upper base are 9 yds. and 6 yds., and the altitude is 18 yds.; what is the volume? Ans. 1764 cu. yds.

MENSURATION.

224. Problem.

To find the dihedral angle included by the faces of a regular polyhedron.

Conceive a sphere whose radius is 1 so placed that its center shall be at any vertex of the polyhedron.

The faces of the polyhedral angle will intersect the surface of the sphere in a regular polygon, whose sides measure the plane angles that include the polyhedral angle, and whose angles are each equal to the required dihedral angle.

Let ABCD be such a polygon, Pthe pole of a small circle passing through A, B, C, D, E. Join P with the vertices and with the middle of AB by arcs of great circles.

Let *n* denote the number of sides of the polygon, s =one side, and A =a dihedral angle.

:.
$$APQ = \frac{360^{\circ}}{2 n} = \frac{180^{\circ}}{n}$$
, and $AQ = \frac{1}{2}s$.

By Napier's circular parts, we have

$$\sin (90^{\circ} - APQ) = \cos AQ \cos (90^{\circ} - PAQ)$$

or
$$\sin (90^{\circ} - \frac{180^{\circ}}{n}) = \cos \frac{1}{2}s \cos (90^{\circ} - \frac{1}{2}A).$$

or
$$\cos \frac{180^{\circ}}{n} = \cos \frac{1}{2}s \sin \frac{1}{2}A.$$

$$\cos \frac{1}{2}s$$

In the Tetrahedron, n = 3, and $s = 60^{\circ}$,

:. $\sin \frac{1}{2}A = \frac{\cos 60^{\circ}}{\cos 30^{\circ}}$... $A = 70^{\circ} 31' 42''$.

VOLUMES.

In the Hexahedron, n = 3, and $s = 90^{\circ}$, $\therefore \sin \frac{1}{2}A = \frac{\cos 60^{\circ}}{\cos 45^{\circ}} \cdot \cdot \cdot A = 90^{\circ}$, In the Octahedron, n = 4, and $s = 60^{\circ}$, $\therefore \sin \frac{1}{2}A = \frac{\cos 45^{\circ}}{\cos 30^{\circ}} \cdot \cdot \cdot A = 109^{\circ} 28' 18''.$ In the Dodecahedron, n = 3, and $s = 108^{\circ}$, $\therefore \sin \frac{1}{2}A = \frac{\cos 60^{\circ}}{\cos 54^{\circ}} \cdot \cdot \cdot A = 116^{\circ} 33' 54''.$ In the Icosahedron, n = 5, and $s = 60^{\circ}$, $\therefore \sin \frac{1}{2}A = \frac{\cos 36^{\circ}}{\cos 30^{\circ}} \cdot \cdot \cdot A = 138^{\circ} 11' 23''.$

225. Problem.

To find the volume of a regular polyhedron.

If planes be passed through the edges of the polyhedron and the center, they will bisect the dihedral angles and divide the polyhedron into as many pyramids as it has faces. The faces will be the bases of the pyramids, the center will be their common vertex, the line drawn from the center of the polyhedron to the center of any base will be perpendicular to the base, and will be the altitude of the pyramid.

From the foot of the perpendicular draw a perpendicular to one side of the base, and join the foot of this perpendicular with the center. We thus have a right triangle whose perpendicular is the altitude of the pyramid, the base the apothem of one face of the polyhedron, the angle opposite the perpendicular onehalf the dihedral angle of the polyhedron.

183

MENSURATION.

Let p be the perpendicular, a the apothem of one face, $\frac{1}{2}A$ one-half of a dihedral angle, n' the number of sides of one face, and e one edge.

 $p = a \tan \frac{1}{2}A, \quad a = \frac{1}{2}e \cot \frac{1}{n}180^{\circ}.$ Article 166. $\therefore \quad p = \frac{1}{2}e \cot \frac{1}{n}180^{\circ} \tan \frac{1}{2}A.$

Let k', n, and k be the same as in article 198.

Then, $\frac{1}{3}pk$ = the volume of the polyhedron.

... $v = \frac{1}{6} nk'e^3 \cot \frac{1}{n'} 180^\circ \tan \frac{1}{2} A.$

Let e = 1, and verify the table subjoined:

Names.	Surfaces.	Volume.
Tetrahedron	1.7320508	0.1178513
Hexahedron	6.0000000	1.0000000
Octahedron	3.4641016	0.4714045
Dodecahedron	20.6457288	7.6631189
Icosahedron	8.6602540	2.1816950

226. Table.

227. Application of the Table.

Let v' and v denote similar regular polyhedrons whose edges are 1 and e, respectively. Then we have

 $v': v:: 1^3: e^3$. $v = v'e^3$.

228. Examples.

1. What is the volume of a tetrahedron whose edge is 10 ft.? Ans. 117.8513 cu. ft.

2. The volume of a hexahedron is 134217728 cu. in.; what is its surface? Ans. 1572864 sq. in.

229. Definition and Classification.

Surveying is the art of laying out, measuring, and dividing land, and of representing on paper its boundaries and peculiarities of surface.

There are three branches—Plane, Geodesic, and Topographical.

Plane surveying is that branch in which the portion surveyed is regarded as a plane, as is the case in small surveys.

Geodesic surveying is that branch in which the curvature of the surface of the earth is taken into consideration, as is the case in all extensive surveying.

Topographical surveying is that branch in which the slope and irregularities of the surface, the course of streams, the position and form of lakes and ponds, the situation of trees, marshes, rocks, buildings, etc., are considered and delineated.

INSTRUMENTS.

230. Classification.

The instruments employed in surveying may be classed as *Field instruments* and *Plotting instruments*.

The principal field instruments are the *chain* and tally pins, marking tools, field-book and pencil, the magnetic S. N. 16. (185)

compass, the solar compass, the transit compass, the level, and the theodolite.

The principal plotting instruments are the dividers, the ruler and triangle, parallel rulers, the diagonal scale, the semicircular protractor.

231. The Chain and Tally Pins.

STRVEYIN

The chain is 4 rods or 66 feet in length, and is divided into 100 links, each equal to 7.92 inches.

After every tenth link from each end is a piece of brass, notched so as to indicate the number of links from the end of the chain, thus facilitating the counting of the links.

A half-chain of 50 links is sometimes used, especially in rough or hilly districts.

The tally pins are made of iron or steel, about 12 inches in length and one-eighth of an inch in thickness, heavier toward the point, with a ring at the top in which is fastened a piece of cloth of some conspicuous color.

These pins are conveniently carried by stringing them on an iron ring attached to a belt which is passed over the right shoulder, leaving the pins suspended at the left side.

In Government surveys eleven tally pins are used.

232. Marking Tools.

A surveying party will need an *ax* for cutting notches, cutting and driving stakes and posts; *a spade* or *mattock* for planting or finding corners; *knives*, or other tools, for cutting letters or figures; and a *file* and *whetstone* for keeping the tools in order.

233. Field-Book and Pencil.

In ordinary practice one field-book will be sufficient; but in surveying the public lands, four different books are required—one for meridian and base lines, another for standard parallels or correction lines, another for exterior or township lines, and another for subdivision or section lines, as designated on the title-page.

A good pencil, number 2 or 3, well sharpened, should be used, so that the notes may be legible.

A temporary book may be used on the ground, and the notes taken with a pencil. These notes can then be carefully transcribed with pen and ink into the permanent field-book.

234. The Magnetic Compass.

The vernier magnetic compass is exhibited in the drawing on page 189.

The needle turns freely on a pivot at the center, and settles in the magnetic meridian.

The compass circle is divided, on its upper surface, to half-degrees, numbered from 0° to 90° each side of the line of zeros.

The sight standards are firmly fastened at right angles to the plate by screws, and have slits cut through nearly their whole length, terminated at intervals by apertures through which the object toward which the sights are directed can be readily found.

Two spirit levels at right angles to each other are attached to the plate.

Tangent scales are scales on the right and left edges of the north sight standard, the one on the right be-

ing used in taking angles of elevation, and the one on the left in taking angles of depression.

Eye-pieces are placed on the right and left sides of the south sight standard — the one on the right near the bottom, the one on the left near the top — each on a level, when the compass is level, with the zero of its tangent scale. These eye-pieces are centers of arcs tangent to the tangent scales at the zero point.

The vernier is a scale movable by the side of another scale, and divided into parts each a little greater or a little less than a part of the other, and having a known ratio to it. In the drawing the vernier is represented on the plate near the south sight.

The needle lifter is a concealed spring, moved from beneath the main plate, by which the needle may be lifted to avoid blunting the point of the pivot in transporting the instrument.

The out-keeper is a small dial plate, having an index turned by a milled head, and is used in keeping tally in chaining.

The ball spindle is a small shaft, slightly conical, to which the compass is fitted, having on its lower end a ball confined in a socket by a light pressure, so that the ball can be moved in any direction in leveling the instrument.

The clamp screw is a screw in the side of the hollow cylinder or socket, which fits to the ball spindle, by which the compass may be clamped to the spindle in any position.

A spring catch, fitted to the socket, slips into a groove when the instrument is set on the spindle, and secures it from slipping from the spindle when carried.

posted degrees of Hold, the modile in the same direct

The Jacob staff is a single staff to support the compass, about $5\frac{1}{2}$ feet long, having at the upper end the ball and socket joint, and terminating at the lower end in a sharp steel point, so as to be set firmly in the ground.

The tripod is a three-legged support sometimes used instead of the Jacob staff.

235. Adjustments of the Compass.

1. To adjust the level.— Bring the bubbles to the center of the tubes by pressing the plates so as to turn the ball slightly in its sockets. Turn the compass halfway round, and if either bubble runs to one end of its tube, that end is the higher. Loose the screw under the lower end, and tighten the one at the higher end till the bubble is brought half-way back. Level the plate again, and repeat the operation till the bubble will remain in the center during an entire revolution of the compass.

2. To adjust the sights.— Observe through the slits a fine thread made plumb by a weight. If both sights do not exactly range with the thread, file a little off the under surface of the highest side.

3. To adjust the needle.— Bring the eye nearly in the same plane with the graduated circle, move with a splinter one end of the needle to any division of the circle, and observe whether the other end corresponds with the division 180° from the first; if so, the needle is said to cut opposite degrees; if not, bend the center pin with a small wrench about one-eighth of an inch below the point, till the ends of the needle cut opposite degrees. Hold the needle in the same direction, turn the compass half-way round, and again see

(981 K

whether the needle cuts opposite degrees; if not, correct half the error by bending the needle, and the remainder by bending the center pin, and repeat the operation till perfect reversion is secured in the first position. many become out dody there out of " basw

Try the needle in another quarter, and correct by bending the center pin only, since the needle was straightened by the previous operation, and repeat the operation in different quarters.

The adjustments are made by the maker of the instrument, but the instrument can be re-adjusted by the surveyor when necessary.

236. Nature of the Vernier.

Let the arc or limb

degrees or 30', numbered each way from 0 at the middle: and let the vernier CD, attached to the compass box, which is movable around the main plute, be so graduated that 30 spaces of the vernier shall be equal to 31 spaces of the limb, that is, equal to $31 \times 30'$; then 1 space of the vernier will be equal to 31', and the difference between one space of the vernier and one space of the limb will be 31' - 30' = 1'.

The vernier is numbered in two series: the lower, nearer the spectator, who is supposed to stand at the south end of the instrument, is numbered 5, 10, 15, each way from 0; the upper series has 30 above the 0, from the observer, and 20 each way above the 10 of the lower series.

Let, now, the 0 points of the vernier and limb coincide; then, if the vernier be moved forward 1' to

the right, which is done by means of a tangent screw, the first division line of the vernier at the left of its 0 will coincide with the first division line of the limb at the left of its 0; if the vernier be moved forward 2' to the right, then the second division line of the vernier at the left of its 0 will coincide with the second division line of the limb at the left of its 0.

If the vernier be moved to the right so that its fifteenth division line at the left of its 0 shall coincide with the fifteenth division line of the limb at the left of its 0, the vernier will have moved forward 15'.

If the vernier be moved more than 15', the excess over 15' is found by reading the division line, in the vernier, which coincides with a division line of the limb, from the upper row of figures on the vernier, on the other side of 0, and so on, up to 30', when the 0 of the vernier will coincide with the first division line from the 0 of the limb.

If the vernier is moved more than 30', the excess over 30', up to 15' and then to 30' is found as before.

If the 0 of the vernier coincides with a division line of the limb, the reading of the division line of the limb will be the true reading.

If the 0 of the vernier has passed one or more division lines of the limb, and does not coincide with any, read the limb from its 0 point up to its division next preceding the 0 of the vernier; to this add the reading of the vernier, and the sum will be the true reading.

If the vernier be moved to the left, the minutes must be read off on the vernier scale to the right.

Sometimes the spaces of the vernier are less than the spaces of the limb; then if the vernier be moved

either way, the minutes must be read off the same way from the 0 of the vernier. Verniers may be so graduated as to read to any appreciable angle; but the graduation which reads to minutes is the most common.

237. Uses of the Vernier.

1. To turn off the variation.— Let the instrument be placed on some definite line of an old survey, and the tangent screw be turned till the needle indicates the same bearing for the line as that given in the field notes of the original survey.

Then will the reading of the limb and vernier indicate the variation.

2. To retrace an old survey. — Turn off the variation as above, and screw up the clamping nut beneath, then old lines can be retraced from the original notes without further change of the vernier.

3. To run a true meridian.—The absolute variation of the needle being known, not simply its change since a given date, move the vernier to the right or left, according as the variation is west or east, till the given variation is turned off, screw up the clamping nut beneath, and turn the compass till the needle is made to cut zeros, then will the line of sights indicate a true meridian.

Such a change in the position of the vernier is necessary in subdividing the public lands, after the principal lines have been truly run with the solar compass.

4. To read the needle to minutes. — Note the degrees given by the needle, then turn back the compass circle, with the tangent screw, till the nearest whole degree mark coincides with the point of the needle; the space S. N. 17.

passed over by the vernier will be the minutes which, added to the degrees, will give the reading of the needle to minutes.

This operation is simplified when the 0 of the vernier is first made to coincide with the 0 of the limb; otherwise the difference of the two readings of the vernier must be taken.

238. Uses of the Compass.

1. To take the bearing of a line. — Place the compass on the line, turn the north end in the direction of the course, and, standing at the south end, direct the sights to some well-defined object, as a flag-staff, in the course. Read the bearing from the north end of the needle, which can be done accurately to quarter-degrees by observing the position of the point of the needle, since the compass circle is divided into half-degrees.

It will be observed that the letters E and W, on the face of the compass, are reversed from their true position. This is as it should be; for if the sights are turned toward the west, the north end of the needle is turned toward the letter W. If the north end of the needle is turned toward E, the sights will be turned toward the east. If the north end of the needle point exactly to either letter E or W, the sights will range east or west.

In general, to guard against error, let the surveyor turn the letter S toward himself, and read the arc cut off by the north end of the needle from the nearest zero of the compass circle. If, for example, the nearest 0 is at S, and the north end of the needle is turned toward E, cutting off 25° from this 0, then the course is S 25° E.

194

If it is desired to find the bearing to minutes, the vernier must be used.

2. To run from a given point a line having a given bearing.— Place the compass over the point, and turn it so that the reading of the needle shall be the given bearing; the line of sights observed from the south end of the compass will be the required line.

3. To take angles of elevation. — Level the compass, bring the south end toward you, place the eye at the eye-piece on the right side of the south sight, and, with the hand, fix a card on the front surface of the north sight, so that its top edge shall be at right angles to the divided edge and coincide with the zero mark; then, sighting over the top of the card, note upon a flag-staff the height cut by the line of sight, move the staff up the elevation, and carry the card along the sight until the line of sight again cuts the same height on the staff; read off the degrees and half-degrees passed over by the card, and the result will be the angle required.

4. To take angles of depression. — Proceed in the same manner, using the eye-piece and scale on the opposite sides of the sights, and reading from the top of the standard.

239. Surveyor's Transit.

The Surveyor's transit exhibited in the drawing on page 197 is, in fact, a *transit theodolite*, combining the advantages of the ordinary transit and the theodolite.

The vernier plate, carrying two horizontal verniers, two spirit levels at right angles, the telescope and attachments, moves around a circle graduated to halfdegrees, so that, by the vernier, horizontal angles can be taken to minutes, and any variation turned off.

The telescope and its attachments, the clamp and tangent, the vertical circle, the level, and the sights, give to this instrument a great advantage over the ordinary compass.

The cross wires, two fine fibers of spider's web, extending across the tube at right angles, intersect in a point which, when the wires are adjusted, determines^{*} the optical axis or line of collimation of the telescope, and enables the surveyor to fix it upon an object with great precision.

The clamp and tangent screw consist of a ring encircling the axis of the telescope, having two projecting arms—the one above, slit through the middle, holding the clamp screw; the other, longer, connected below with the tangent screw.

The ring is brought firmly around the axis by means of the clamp screw, and the telescope can be moved up or down by turning the tangent screw.

The vertical circle, graduated to half-degrees, is attached to the axis of the telescope, and, in connection with the vernier, gives the means of measuring vertical angles to minutes with great facility.

The level attached to the telescope enables the surveyor to run horizontal lines, or to find the difference of level between two points.

Sights on the telescope are useful in taking backsights without turning the telescope, and in sighting through bushes or woods.

Sights for right angles attached to the plate of the instrument, or to the standards supporting the telescope, afford the means of laying off right angles, or running out offsets without changing the position of the instrument.

seate us flang the indominant in the million stores

240. Adjustments.

1. The levels are adjusted in the same manner as those of the compass, and when adjusted should keep their position if the two plates are clamped together and turned on a common socket.

2. The needle is adjusted as in the compass.

3. The line of the collimation is adjusted by bringing the intersection of the wires into the optical axis of the telescope, which is accomplished as follows:

Set the instrument firmly on the ground and level it carefully, then, having brought the wires into the focus of the eye-piece, adjust the object glass on some well defined object, as the edge of a chimney, at a distance of from two to five hundred feet. Determine whether the vertical wire is plumb by clamping the instrument firmly to the spindle, and applying the wire to the vertical edge of a building, or observing if it will move parallel to a point a little to one side; if it does not, loosen the cross-wire screws, and, by the pressure of the hand on the head outside the tube, move the ring within the tube, to which the wires are attached, gently around till the error is corrected.

The wires being thus made respectively horizontal and vertical, fix their point of intersection on the object selected, clamp the instrument to the spindle, and, having revolved the telescope, find or place some object in the opposite direction, at about the same distance from the instrument as the first object.

Great care should be taken in turning the telescope not to disturb the position of the instrument upon the spindle.

Having found an object which the vertical wire bisects, unclamp the instrument, turn it half-way round,

and direct the telescope to the first object selected, and having bisected this with the wires, again clamp the instrument, revolve the telescope and note if the vertical wire bisects the second object observed; if so, the wires are adjusted, and the points bisected are, with the center of the instrument, in the same straight line.

If the vertical wire does not bisect the second point, the space which separates this wire from that point is double the distance of that point from a straight line drawn through the first point and the center of the instrument, as is shown thus:

B

Let A represent the center of the instrument, BC the line on whose extremities, B and C, the line of collimation is to be adjusted, B the first object, and Dthe point which the wires bisected after the telescope was made to revolve on its axis. The side of the telescope which was up when the object glass was directed to B, is down when the object glass is turned toward D. When the telescope is unclamped from its spindle and turned half-way round its vertical axis, and again directed to B, the side of its tube which was down when the object glass was first directed to B will now be up. Then clamping the instrument, and revolving the telescope about its axis, and directing it toward D, the side of its tube which was down when the object glass was first turned toward D will now be up, or the telescope will virtually have revolved about its optical axis, and the vertical wire will appear at E as far on one side of C as D is on the other side.

E

To move the vertical wire to its true position, turn the capstan head screws on the sides of the telescope, remembering that the eye-piece inverts the position of the wire, and, therefore, that in loosening one of the screws and in tightening the other the operator must proceed as if to increase the error. Having moved back the vertical wire, as nearly as can be judged, so as to bisect the space ED, unclamp the instrument, direct the telescope as at first, so that the cross wires bisect B, proceed as before, and continue the operation till the two points D and E coincide at C.

4. The standards must be of the same height, in order that the wires may trace a vertical line when the telescope is turned up or down. To ascertain this, and to make the correction, proceed as follows:

Having the line of collimation previously adjusted, set the instrument in a position where points of observation, such as the point and base of a lofty spire, can be selected, giving a long range in a vertical direction.

Level the instrument, fix the wires on the top of the object, and clamp to the spindle; then bring the telescope down till the wires bisect some good point, either found or marked at the base; turn the instrument half around, fix the wires on the lower point, clamp to the spindle, and raise the telescope to the highest object, and if the wires bisect it, the vertical adjustment is effected.

If the wires are thrown to one side, the standard opposite that side is higher than the other.

The correction is made by turning a screw underneath the sliding piece of the bearing of the movable axis.

5. The vertical circle is adjusted thus: First carefully level the instrument, bring the zeros of the wheel and vernier into line, and find or place some well defined point which is cut by the horizontal wire; then turn the instrument half-way around, revolve the telescope, fix the wire on the same point as before, note if the zeros are again in line.

If not, loosen the screws, move the zero over half the error, and again bring the zeros into coincidence, and proceed as before till the error is corrected.

6. The level on the telescope can be adjusted thus: First level the instrument carefully, and with the clamp and tangent movement to the axis make the telescope horizontal as nearly as possible with the eye. Then, having the line of collimation previously adjusted, drive a stake at a distance of from one to two hundred feet, and note the height cut by the horizontal wire upon a staff set on the top of the stake.

Fix another stake in the opposite direction, at the same distance from the instrument, and, without disturbing the telescope, turn the instrument upon its spindle, set the staff upon the stake and drive in the ground till the same height is indicated as in the first observation.

The top of the two stakes will then be in the same horizontal line, whether the telescope is level or not.

Now remove the instrument to a point on the same side of both stakes, in a line with them, and from fifty to one hundred feet from the nearest one; again level the instrument, clamp the telescope as nearly horizontal as possible, and note the heights indicated on the staff placed first on the nearest, then on the more distant stake. If both agree, the telescope is level; if they do not agree, then with the tangent screw move the wire over nearly the whole error, as shown at the distant stake, and repeat the operation just described till the horizontal wire will indicate the same height at both stakes, when the telescope will be level. Bring the bubble into the center by the leveling nuts at the end, taking care not to disturb the position of the telescope, and the adjustment will be completed.

The adjustments above described are always made by the maker of the instrument, but the instrument may need re-adjusting.

241. Uses of the Transit.

1. The transit may be used for all the purposes for which the compass is employed, and, in general, with much greater precision.

2. Horizontal angles can be taken by the needle, or without reference to the needle, as follows: Level the plate, set the limb at zero, direct the telescope so that the intersection of the wires shall fall upon one of the objects selected, clamp the instrument firmly to the spindle, unclamp the vernier plate, turn it with the hand till the intersection of the wires is nearly upon the second object; then clamp to the limb, and with the tangent screw fix the intersection of the wires precisely upon the second object. The reading of the vernier will give the angle whose vertex is at the center of the instrument, and whose sides pass through the objects respectively.

3. Vertical angles can be measured thus: Level the instrument, fix the zeros of the vertical circle and vernier in a line, note the height cut upon the staff

by the horizontal wire, carry the staff up the elevation or down the depression, fix the wire again upon the same point, and the angle will be read off by the vernier. Sometimes, of course, it will be impossible to carry the staff up the elevation, as in taking the angle of elevation of the top of a steeple from a given point in a horizontal plane.

4. Horizontal lines can be run, or the difference of level easily found, by means of the level attached to the telescope.

242. The Solar Compass.

Burt's solar compass, represented in the drawing on page 205, includes the essential parts of the magnetic compass, together with the solar apparatus, which consists mainly of three arcs of circles by which the latitude of the place, the declination of the sun, and the hour of the day can be set off.

The latitude arc, a, graduated to quarter-degrees and read to minutes by a vernier, has its center of motion in two pivots, one of which is seen at d, and is moved by the tangent screw, f, up or down a fixed arc of similar curvature through a range of about 35° .

The declination arc, b, having a range of about 24°, is graduated to quarter-degrees and read to minutes by the vernier, r, fixed to the movable arm, h, which has its center of motion in the center of the declination arc at g. The vernier may be set to any reading by the tangent screw, k, and the arm clamped in any position by a screw concealed in the engraving.

A solar lens, set in a rectangular block of brass at each end of the arm, h, has its focus at the inside of

the opposite block on the surface of a silver plate on which are drawn certain lines, as shown in the annexed figure. The lines bb, called hour lines, and the

lines *cc*, called equatorial lines, intersect each other at right angles. The rectangular space between the lines is just sufficient to include the circular

image of the sun formed by the solar lens on the opposite end of the arm.

The three other lines below the equatorial lines are five minutes apart, and are used in making allowance for refraction.

An equatorial sight, used in adjusting the solar apparatus, is placed on the top of each rectangular block by a small milled head screw, so as to be detached at pleasure.

The hour arc, c, supported by the pivots of the latitude arc, and connected with that arc by a curved arm, has a range of 120°, graduated to half-degrees and figured in two series, designating both the hours and the degrees; the middle division being marked 12 and 90 on either side of the graduated lines.

The polar axis, p, consists of a hollow socket containing the spindle of the declination arc, around which this arc can be moved over the hour arc, which is read by the lower edge of the graduated side of the declination arc. The declination arc may be turned half round, if required, and the hour arc read by a point below g.

The needle box, n, with an arc of 36°, graduated to half-degrees, and numbered from the center as zero, is attached by a projecting arm to a tangent screw, t, by which it is moved about its center, and its needle

204

set to any variation which may be read to minutes by the vernier at the end of the arm.

The levels are similar to those of the ordinary compass.

Lines of refraction are drawn on the inside faces of the sights, graduated and figured to indicate the amount allowed for refraction when the sun is near the horizon.

The adjuster is an arm used in adjusting the instrument. It is not attached to the instrument, and is laid aside in the box when the adjustment is effected.

243. Adjustments.

1. The levels are adjusted by bringing the bubbles into the center of the tubes by the leveling screws of the tripod, reversing the instrument on the spindle, raising or lowering the ends of the tubes till the bubbles will remain in the center during a complete revolution.

2. The equatorial lines and solar lenses are adjusted as follows: First detach the arm, h, from the declination arc by withdrawing the screws shown in the drawing from the ends of the posts of the tangent screw, k, and also the clamp screw, and the conical pivot with its small screws by which the arm and declination arc are connected.

Attach the adjuster in the place of the arm, h, by replacing the conical pivot and screws, and insert the clamp screw so as to clamp the adjuster at any point on the declination arc.

Now level the instrument, place the arm, h, on the adjuster, with the same side resting against the surface of the declination arc as before it was detached,

206

turn the instrument on its spindle, so as to bring the solar lens to be adjusted in the direction of the sun, raise or lower the adjuster on the declination arc till it can be clamped in such a position as to bring the sun's image, as near as may be, between the equatorial lines on the opposite silver plate, and bring the image precisely into position by the tangent of the latitude arc, or the leveling screws of the tripod. Then carefully turn the arm half-way over, till it rests upon the adjuster by the opposite faces of the rectangular blocks, and again observe the position of the sun's image.

If it remains between the lines as before, the lens and plate are in adjustment; if not, loosen the three screws which confine the plate to the block, and move the plate under their heads till one-half the error in the position of the sun's image is removed.

Again bring the image between the lines, and repeat the operation till it will remain in the same situation in both portions of the arm, when the adjustment will be complete.

To adjust the other lens and plate, reverse the arm, end for end, on the adjuster, and proceed as in the former case.

Remove the adjuster, and replace the arm, h, with its attachments.

In tightening the screws over the silver plate, care must be taken not to move the plate.

3. The vernier of the declination arc is adjusted asfollows: Having leveled the instrument, and turned its lens in the direction of the sun, clamp to the spindle, and set the vernier, v, of the declination arc at zero, by means of the tangent screw, k, and clamp to the arc. See that the spindle moves easily and truly in the socket, or polar axis, and raise or lower the latitude are by turning the tangent screw, f, till the sun's image is brought between the equatorial lines on one of the plates; clamp the latitude arc by the screw, and bring the image precisely into position by the leveling screws of the tripod or socket, and without disturbing the instrument carefully revolve the arm, h, till the opposite lens and plate are brought in the direction of the sun, and note if the sun's image comes between the lines as before.

If the sun's image comes between the lines, there is no index error of the declination arc; if not, then with the tangent screw, k, move the arm till the sun's image passes over half the error, and again bring the image between the lines, and repeat the operation as before till the image will occupy the same position on both plates.

We shall now find that the zero marks on the arc and the vernier do not correspond; and to remedy this error, the little flat-head screws above the vernier must be loosened till it can be moved so as to make the zeros coincide, when the operation will be complete.

4. The solar apparatus is adjusted to the sights as follows: First level the instrument, then with the clamp and tangent screws set the main plate at 90° by the verniers and horizontal limb. Then remove the clamp screw, and raise the latitude arc till the polar axis is by estimation very nearly horizontal, and, if necessary, tighten the screws on the pivots of the arc so as to retain it in this position.

Fix the vernier of the declination arc at zero, and direct the equatorial sights to some distant and well-

marked object, and observe the same through the compass sights. If the same object is seen through both, and the verniers read to 90° on the limb, the adjustment is complete; if not, the correction must be made by moving the sights or changing the position of the verniers.

The adjustments are all made by the maker of the instrument, and, ordinarily, need not concern the surveyor, as the instrument is very little liable to derangement.

244. Use of the Solar Compass.

The declination of the sun, or its angular distance from the celestial equator, must be set off on the declination arc.

The declination of the sun for apparent noon at Greenwich, England, is given from year to year in the Nautical Almanac.

To determine the declination for another place and hour, allowance must be made for the difference of time arising from longitude, and for the change of declination from hour to hour.

The longitude of the place can be determined with sufficient accuracy by reference to that of given prominent places which are situated nearly on the same meridian.

The difference of longitude, divided by 15, will, by changing degrees, minutes, and seconds into hours, minutes, and seconds, give the difference of time, which is usually taken to the nearest hour, as it will be sufficiently accurate.

In practice, surveyors in states just east of the Mississippi allow a difference of 6 hours for longitude; S. N. 18.

7 hours for about the longitude of Santa Fé; 8 hours for California and Oregon; 5 hours for the eastern portions of the United States.

Having found the hour at any place from its longitude when it is noon at Greenwich, the declination for noon at Greenwich will be the declination for the determined hour at the given place.

To find the declination for the following hours of the day, add or subtract, for each succeeding hour, the difference of declination for 1 hour, as given in the almanac.

Thus, let it be required to find the declination of the sun for the different hours of May 20th, 1873. W. lon. 95° . $95^{\circ} = 6$ h. 20 m., practically 6 h.

Sun's dec., Greenwich, noon $= 20^{\circ} 3' 14''.6$	
 Sun's dec., lon. 95°, 6 A. M. = $20^{\circ} 3' 14''.6$	
Add difference for 1 h. $=$ 31".03	
Sun's dec. 7 A. M. = 20° 3' 45".63	
Add difference for 1 h. $=$ 31".03	
Sun's dec. 8 A. M. = 20° 4' 16".66	

In like manner proceed for the remaining hours.

Such a calculation should be made before beginning the work of the day.

Refraction, or the bending of the sun's rays as they pass obliquely through the atmosphere, affects its declination by increasing its apparent altitude.

The amount of refraction depends upon the altitude, being less as the altitude is greater. At the horizon the refraction is 35'; at the altitude of 45° , 1'; at the zenith, 0.

Meridional refraction, by increasing the apparent altitude of the sun, when on the meridian, increases or

210

diminishes its apparent declination according as it is north or south of the equator.

To find the amount of meridional refraction, we must first find the meridional altitude of the sun for the given latitude, which is equal to the complement of the latitude, plus or minus the declination, according as the sun is north or south of the equator.

The meridional altitude of the sun being given, the tables will give the refraction.

The meridional refraction, being quite small, may be disregarded in practice except when great accuracy is required, as in running great standard meridians or base lines.

Incidental refraction, as affected by the hour of the day and the state of the atmosphere, can not, in practice, be determined by a precise calculation.

It will about compensate for incidental refraction to keep the image of the sun square between the equinoctial lines for the middle of the day, but toward morning or evening, to run the image, which is then hazy round the edge, so that the hazy edge shall overlap one or two lines of the spaces below.

To set off the latitude, find the declination of the sun for the given day at noon, and set it off on the declination arc, and clamp the arm firmly to the arc.

Find in the almanac the equation of time for the given day, in order to ascertain the time when the sun will reach the meridian.

About twenty minutes before noon, set up the instrument, level it carefully, fix the divided surface of the declination arc at 12 on the hour circle, and turn the instrument on its spindle till the solar lens is brought into the direction of the sun.

Loosen the clamp screw of the latitude arc, raise or lower this arc with the tangent screw till the image of the sun is brought precisely between the equatorial lines, and turn the instrument so as to keep the image between the hour lines on the plate.

As the sun ascends, in approaching the meridian, its image will move below the lines, and the arc must be moved to follow it. Keep the image between the two sets of lines till it begins to pass above the equatorial, which is the moment after it passes the meridian.

Read off the vernier of the arc, and we have the latitude of the place which is to be set off on the latitude arc.

To run lines with the solar compass.—Having adjusted the instrument and set off the declination and latitude, the surveyor places the instrument over the station, levels it carefully, clamps the plates at zero on the horizontal limb, and directs the sights north and south, approximately, by the needle.

The solar lens is then turned toward the sun, and with one hand on the instrument, and the other on the revolving arm, both are moved from side to side till the image of the sun is made to appear on the silver plate, and is brought precisely within the equatorial lines, when the line of sights will indicate the true meridian.

In running an east and west line, the verniers of the horizontal limb are set at 90°, and the sun's image kept between the equatorial lines.

The needle is made to indicate zero on the arc of the compass box by turning the tangent screw. Lines can then be run by the needle in the temporary disappearance of the sun. The variation of the needle, which should be noted at every station, is read off to minutes on the arc along the edge of which the vernier of the needle box moves.

- Since the limb must be clamped at 0 when the sun's image is in position, in order that the sights may indicate the meridian, it is evident that the bearing of any line may be found by the solar compass, as well as by the compass or transit.

In running long lines, allowance must be made for the curvature of the earth. Thus, in running north or south the latitude changes 1' for 92.30 ch.; and six miles, or one side of a township, requires a change of 5' 12" on the latitude arc.

In running east and west lines, the sights are set at 90° on the limb, and the line run at right angles to the meridian; but this line, if sufficiently produced, would cross the equator. Hence, at the next station, a backsight is taken, and one-half the error is set off for the next foresight on the side toward the pole.

The most favorable season for using the solar compass is the summer; and the most favorable time of day, between 8 and 11 A. M., and 1 and 5 P. M.

A solar telescope compass is sometimes used; and, in this case, the telescope is placed at one side of the center. All error from this position of the telescope is avoided by an offset from the flag-staff.

The solar compass, while indispensable in the survey of public lands, can be used, in common practice, with considerable advantage over ordinary needle instruments, since lines can be run by it without regard to the variation of the needle or local attraction, and the bearings being taken from the true meridian will remain constant for all time.

245. Dividers and Pens.

1. Dividers with lead-pencil.

2. Hair dividers with one leg movable by screw.

a, b. Lengthening bar and pen which may be inserted together or the pen alone instead of pencil leg.

3. Bow pen with spring and adjusting screw.

- 4. Spacing dividers.
- 5. Drawing pen.

Parallel ruler for drawing parallel lines.
 Sliding parallel ruler with scales.

INSTRUMENTS.

247. Diagonal Scale.

Let de be .1, then the distance from ad to ae on the first line above ab is .01, on the second line .02, etc.

Let it be required to lay off on AB 4.63.

Place one foot of the dividers at the intersection of the diagonal line, 6, and the horizontal line, 3. Extend the other foot till the horizontal line, 3, intersects the vertical line, 4, then will the distance from one point of the dividers to the other be 4.63.

Now place one foot of the dividers at A, and the other at B, then AB will be 4.63.

248. Protractors.

These protractors are used in laying off or measuring angles. The vertex of the angle is at the center, and one side is made to coincide with the horizontal line passing through the center; then, counting the degrees from the horizontal line round the circumference till the required degree is reached, and drawing

a line from this degree to the center, we shall have the angle required.

The first of these protractors will give angles to quarter-degrees; and the second, by means of a vernier, to 3'.

Instruments may be multiplied indefinitely, but the manner of using them will be readily discovered by the ingenious operator.

SURVEY OF PUBLIC LANDS.

249. Division into Townships.

In the rectangular system of surveying the public lands, adopted by the government, two principal lines —an east and west line, called a *base line*, and a north and south line, called a *principal meridian*—are established before the survey of the townships.

Six miles to the north of the base line another east and west line is run, and six miles to the north of this another, and so on.

Every fifth parallel from the base is called a *standard* parallel, or correction line.

Six miles to the west of the principal meridian, measured on the base line, another north and south line is run to the first standard parallel, and six miles to the west of this another, and so on.

The intersection of the east and west with the north and south lines divides the tract into *townships*, which would be exactly six miles square were it not for the convergence of the meridians.

To preserve as nearly as possible the form and size of the townships, the standard parallels before men-

216

tioned are established, which serve as base lines for the townships north up to the next standard parallel.

Tiers of townships north and south are called *ranges*, and are numbered east or west, as the case may be, from the principal meridian.

Lines running north and south, bounding the townships on the east and west, are called *range lines*.

Lines running east and west, bounding the townships on the north and south, are called *township lines*.

A township marked thus, T. 5 N., R. 4 W., read township five north, range four west, would be in the fifth tier north of the base line, and in the fourth tier west of the principal meridian.

Townships are divided into sections, or square miles, containing 640 acres; each section into four quarter sections, each quarter section into two half-quarter sections, and each half-quarter section into two quarterquarter sections. These are called legal subdivisions, and are the only divisions recognized by the government, except pieces made fractional by water-courses or other natural agencies.

On base lines and standard parallels two sets of corners are established.

1. Standard corners, established when these lines are run, embracing township, section, and quarter-section corners, common to two townships, sections, or quarter sections north of the base line or standard parallels.

2. Closing corners, established when exterior and subdivision lines close on them from the south, embracing township and section corners, common to two townships or sections south of the standard parallels.

In consequence of the convergence of the meridians, the north and south lines, produced to the standard S. N. 19. parallels, will not close on the standard corners previously established, but will strike the standard parallels to the east or west of the standard corners, making the closing corners east or west of the standard corners, according as the field of operation is west or east of the principal meridian.

The following diagram will illustrate the subject:

AB is the base line.

AC, the principal meridian.

A'B', a standard parallel.

ab, *cd*, etc., township lines.

ij, kl, etc., range lines.

s, u, w, etc., standard corners.

j, l, n, etc., closing cor- \mathbf{B}_{q} , \mathbf

The distances *js*, *lu*, etc., are measured and recorded in the field book.

The details of running lines will be given after describing the methods of perpetuating corners, the process of chaining, and the method of marking lines.

Burt's improved solar compass is used in surveying standard and township lines, but the ordinary compass may be used in subdividing.

250. Methods of Perpetuating Corners.

1. Corner trees.—A sound tree, five inches or more in diameter, standing exactly at a corner, is the best monument.

2. Corner stones.—A stone, at least 14 inches long and 6 inches square, set from two-thirds to threefourths in the ground, is preferred to other monuments, except a tree.

3. Posts and witness trees.—In the absence of corner trees and stones, when trees are near, a post may be planted and witnessed by taking the bearing and distance of two or more trees in different directions from the corner. These trees are marked by a blaze in which is marked the number of the township, range, and section. A notch is cut in the lower end of the blaze, under which another blaze is made in which are cut the letters *B. T.*, signifying bearing tree.

4. Posts, mounds, and witness pits.—When neither corner trees, stones, nor witness trees are available, corners may be marked by posts, mounds, and witness pits. The posts are planted 12 inches in the ground, and at the lower end, on the north or west side, according as the course is north or west, a marked stone, a small quantity of charcoal, or a charred stake must be deposited. Four pits are dug, 6 feet from the post, on opposite sides, 2 feet square and 1 foot deep, and the excavated earth packed round the post within 1 foot of the top. If sod is to be had, it is to be used in covering the mounds.

The method of marking the corner is to be carefully noted in the field book.

251. Township Corners.

1. Posts used in marking township corners must be 4 feet in length, and 5 inches, at least, in diameter. These posts are to be set 2 feet in the ground, and

the upper part squared to receive the marks to be cut on them.

If the corner is common to four townships, the post is set so as to present the angles in the direction of the line; and the number of the township, range, and section must be marked on the side facing, and six notches cut on each of the four edges.

T. 2 N.	T. 2 N.
R. 4 W.	R. 3 W.
S. 36.	S. 31.
estate be	<u> </u>
TIN	TIN
T. 1 N.	T. 1 N.
T. 1 N. R. 4 W.	T. 1 N. R. 3 W.
	190 941

If the township corner is on a base line or standard parallel, unless it is also on the principal meridian, it will be common to two townships only; and if these are on the north, the corner will be a standard corner. In this case, six notches are cut on the east, north, and west edges, but not on the south edge, and the letters S. C., signifying standard corner, cut on the flat surface.

If the corner is common to two townships on the south, but not on the north, it will be a closing corner, and six notches are cut on the east, south, and west edges, but not on the north edge, and the letters C. C, signifying closing corner, cut on the flat surface.

2. Township corner stones should be inserted at least 10 inches in the ground, with their sides facing the cardinal points of the compass, and small mounds of stones heaped against them.

These corner stones are notched in the same manner as posts in similar circumstances, but are not otherwise marked.

3. A tree of proper size on the corner is marked in the same manner as a post.

The mounds, when made round the posts, must be 5 feet in diameter at the base, and $2\frac{1}{2}$ feet high. The posts, therefore, must be $4\frac{1}{2}$ feet long, so as to be 1 foot in the ground and 1 foot above the top of the mound.

Witness pits for township corners must be 2 feet long, $1\frac{1}{2}$ feet wide, and 1 foot deep. If the corner is common to four townships, there will be four pits placed lengthwise on the lines; but if the corner is common to only two townships, only three pits are dug, and are placed lengthwise on the lines. Thus the kind of township corners are readily distinguished.

These pits are made only in the absence of witness trees, which are to be selected, if possible, one from each township.

252. Section Corners.

Section corners are established at intervals of 80 chains or 1 mile, and are perpetuated by the following methods:

1. Section corner posts are 4 feet in length, and at least 4 inches in diameter. They are planted 2 feet in the ground, and the part above the ground squared to receive the marks.

If the corner is common to four sections, the post is set cornerwise to the lines, the number of the section is marked on the side facing it, and the number of the township and range on the north-east face.

Mile-posts on township lines have as many notches on the corresponding edges as they are miles from the respective township corners.

Section posts within a township have as many notches on the south and east edges as they are miles from the south and east boundaries of the township; but no notches are cut on the north and west edges.

Section posts must be witnessed by trees, one in each section, or, in the absence of trees, by pits 18 inches square and 12 inches deep.

2. Section corner mounds are $4\frac{1}{2}$ feet in diameter at the base, and 2 feet high. The post must be 4 feet long, 1 foot in the ground, and 1 foot high above the mound, and at least 3 inches square.

At corners common to four sections, the edges are in the direction of the cardinal points; but at corners common only to two sections, the flattened sides face the cardinal points.

Section posts in mounds are to be marked and witnessed in the same manner as the post without the mound.

3. Stones used to mark section corners on township lines are set with their edges in the direction of the line; but for interior sections they face the north. They are witnessed in the same manner as posts, but are not marked except by notches.

4. Section corner trees are marked and witnessed the same as posts.

253. Quarter Section Corners.

Quarter section corners are established at intervals of 40 chains or half a mile, except in the north or west tiers of sections of a township.

In subdividing these sections, the quarter post is placed 40 chains from the interior section corner, so that the excess or deficiency shall fall in the last half mile.

Quarter section corners are not required to be estabished on base or standard parallel lines on the north.

The methods of perpetuating these corners are the following:

1. Quarter section posts, 4 feet in length and 4 inches in diameter, are planted or driven 2 feet into the ground, and the part above the ground squared and marked $\frac{1}{4}$ S., signifying quarter section. These corners are witnessed by two bearing trees.

2. Quarter section mounds are, like section mounds, packed round the posts, and pits may be used in the absence of witness trees.

3. Quarter section stones have $\frac{1}{4}$ cut on the west side of north and south lines, and on the north side of east and west lines, and are witnessed by two bearing trees or pits.

4. A quarter section tree is marked and witnessed in the same manner as a post.

254. Meander Corners.

Meander corners are the intersections of township or section lines with the banks of lakes, bayous, or navigable rivers.

These corners are marked by the following methods:

1. Meander posts of the same size as section posts, are planted firmly in the ground, and witnessed by two bearing trees or pits, but are not marked.

2. Mounds of the same size as those for section corners are, in the absence of witness trees, formed round

the posts, and a pit dug exactly on the line, 8 links further from the water than the mound.

3. Stones or trees, witnessed in the same manner as posts, may be employed.

255. Chaining.

Eleven tally pins are employed, ten of which are taken by the fore chainman, or leader, and the remaining one by the hind chainman, or follower, who sticks it at the beginning of the course, and against it brings the handle at one end of the chain.

The leader, holding the other handle of the chain and one pin in his right hand, draws out the chain to its full length in the direction of the course; both taking care that the chain is free from kinks.

The leader standing to the left of the line, so as not to obstruct the range, with his right arm extended, draws the chain tight, brings the pin into line according to the order "right" or "left," from the follower, sticks it at the order "down" by pressing his left hand on the top of the pin, and replies "down."

The follower then withdraws his pin, and both advance, the leader drawing the chain in the direction of the course, but a little to one side to avoid dragging out the pin, till the follower comes up to the pin, against which he brings the handle at his end of the chain, and directs the sticking of another pin, as before, and so on.

When the leader has stuck his last pin, he cries "tally," which is repeated by the other, and each registers the tally by slipping a ring on a belt.

The follower then comes forward, and counting in presence of his fellow, to avoid mistake, the pins taken

up, takes the foreward end of the chain and proceeds, as the leader, for another tally.

If a whole chain is employed, a tally is ten chains; and accordingly four tallies make half a mile, and eight tallies a mile.

If a half-chain is employed, a tally is five chains, eight tallies are half a mile, and sixteeen tallies a mile.

In measuring up or down a hill, the chain must be kept horizontal, so that it is often necessary to use but a portion of the chain.

The chain employed in the field must be compared, from day to day, with a *standard chain* furnished by the Surveyor-General, and any variation promptly corrected.

256. Marking Lines.

Line trees, called also "station trees," or "sight trees," are marked by two notches on each side of the tree, in the direction of the line.

The line is marked, so as to be easily followed, by blazing a sufficient number of trees near the line on two sides quartering toward the line.

Saplings near the line are cut partly off by a blow from the ax, at the usual height of blazes, and bent at right angles to the line.

Random lines are not marked by blazing trees; but to enable the surveyor to retrace the line on his return, bushes are lopped and bent in the direction of the line, and stakes are driven every ten chains, which are pulled up when the true line is established.

Insuperable objects, such as ponds, marshes, etc., are passed by making right-angled offsets, or by trigono-

metrical operations, a complete record of which must be made in the field book.

257. Initial Point and Principal Lines.

1. The initial point, which is usually some permanent natural object, as the confluence of two rivers, or an isolated mountain, is first selected.

2. Principal meridians are run from the initial points due north or due south, and the quarter section, section, and township corners on these lines are accurately located and perpetuated.

The following are the principal meridians already established :

1st. The first runs north from the mouth of the Great Miami river, between Ohio and Indiana, to the south line of Michigan.

2d. The second runs north from the mouth of the Little Blue river through the center of Indiana to its north line.

3d. The third runs north from the mouth of the Ohio river through Illinois to its north line.

4th. The fourth runs north from the Illinois river through the western part of Illinois and the center of Wisconsin to Lake Superior.

5th. The fifth runs north from the mouth of the Arkansas river through the eastern portion of Arkansas, Missouri, and Iowa, and regulates the surveys in Minnesota west of the Mississippi river, and the surveys in Dakota east of the Missouri river.

6th. The sixth commences on the Arkansas river, in Kansas, and runs north through the eastern part of Kansas and Nebraska to the Missouri river.

226

7th. Independent meridians.—These are the Independent meridian of New Mexico, the Salt Lake meridian in Utah, the Willamette meridian of Oregon and Washington, and the Humboldt meridian, the Mt. Diablo meridian, and the St. Bernardino meridian of California.

3. Base lines are run from the initial points due east or due west, and the quarter section, section, and township corners, for the land north of the line, are accurately located, at full measure, and perpetuated.

4. Standard parallels are also run due east or due west thirty miles north of the base line or other standard parallel, and the corners located and perpetuated as on the base line.

5. Range lines are run between the ranges of townships due north from a base line or standard parallel to the next standard parallel.

258. Exterior or Township Lines.

In the above diagram let P denote the initial point, PM the principal meridian, BL the base line, SP' the

first standard parallel north, and let the squares denote townships.

1. For townships west of the meridian, begin at the first pre-established township corner on the base line west of the meridian. This is the S. W. corner of T. 1 N., R. 1 W., and is marked 1 in the diagram.

Measure thence due north 480 chains, establishing the quarter section and section corners, to 2, at which point establish the corner common to T.'s 1 and 2 N. and R.'s 1 and 2 W.; thence east on a random line, setting temporary quarter section and section stakes to 3.

If the random line should overrun, or fall short, or intersect the meridian north or south of the true corner, more than 3.50 chains, a material error has been committed, and the lines must be retraced.

If the random line should terminate within 3.50 chains of the corner, measure the distance at which the meridian is intersected north or south of the corner, calculate a course which will run a true line back from the corner to the point from which the random line started, measure westward to 4, which is the same point as 2, establish the permanent corners, obliterate the temporary corners on the random line, and throw the excess or defect, if any, on the west end of the line.

In like manner, measure from 4 to 5, from 5 to 6, from 6 to 7, and so on to 14, on the standard parallel, throwing the excess or deficiency on the last half mile. At the intersection with the standard parallel, establish the township closing corner, measuring and recording the distance to the nearest standard corner on said standard parallel.

If from any cause the standard parallel has not been run, the surveyor will plant the corner of the

228

township in place, subject to removal north or south when the standard parallel shall have been run.

The surveyor then proceeds to the S. W. corner of T. 1 N., R. 2 W., on the base line at 15, and proceeds in a similar manner with another range of townships, and so on.

2. For townships east of the meridian, begin at the S. E. corner of T. 1 N., R. 1 E., at 1 on the base line, and proceed as on the west of the meridian, except that the random lines are run west and the true lines east, throwing the excess over 480 chains, or the deficiency, on the west end of the line in measuring the first quarter section boundary on the north, the remaining distances will be exact half-miles and miles.

With the field notes of the exterior or township lines, a plot of the lines, run on a scale of 2 inches to the mile, must be submitted, on which are noted all objects of topography, which will illustrate the notes, as the direction of streams, by arrow-heads pointing down stream, the intersection of the lines by lakes, streams, ponds, marshes, swamps, ravines, mountains, etc.

259. Subdivision or Section Lines.

The deputy employed to run the exterior lines of a township is not allowed to subdivide it, but another is employed to do this work, that the one may be a check to the other, thus securing greater accuracy.

Before subdividing a township, the surveyor must ascertain and note the change in the variation of the needle which has taken place since the township lines were run, and adjust his compass to a variation which will retrace the eastern boundary of the township.

He must also compare his own chaining with the original by remeasuring the first mile both of the south and east lines of the township, and note the discrepancies, if any.

The following is a diagram of a township:

-			-					-				-					
			95			68			51			34			17		
19	6			5		14	4			3		in and	2			1	
			94			67	30	-	50	1	11	33		-	16	and a	-
93		92	90	15 10	91	65	000	66	48		49	31	100	32	14		15
	7			8		100	9			10			П			12	
1			89			64			47			30			13		
38	TUN	87	85	111	86	62	11	63	45	DIG	46	28	1.14	29	11	RA	12
14	18			17			16		1	15		1	14			13	
10	1	18	84	145		61	511	11	44	167	Fri	27	110	12-	10		
83		82	80		81	59		60	42		43	25		26	8		9
14	19			20			21			22		-	23			24	
	1		79			58			41	-		24	10		7		
78		77	75		76	56		57	39		40	22		23	5		6
oda	30			29		1	28		1	27		÷.,	26		12.4	25	
-	U.L.		74		-	55	1.2.5		38			21			4		
73	dP	72	70		71	53		54.	36		37	19		20	2		3
ini	31			32		ż	33	101		34		18	35		10	36	
	-	-	69	1		52			35	Jung ?		18	100		1	a la	

The sections are designated by beginning at the N. E. corner and numbering west, 1, 2, 3, 4, 5, 6, then east on the next tier, 7, 8, ..., then west, and so on.

In running the subdivision lines, begin on the south line of the township, at the first section corner west of the east line, numbered 1 in the diagram, and common to sections 35 and 36.

Measure thence due north 40 chains, at which point establish a quarter section corner; thence due north another 40 chains to 2, where establish a section corner common to sections 25, 26, 35, and 36.

230

Run a random line from 2 due east to the township line, setting up a temporary quarter section stake 40 chains from 2.

If the random line intersect the township line precisely at the pre-established section corner at 3, it may be established as the true line by blazing back and making the quarter section corner permanent.

If the random line intersect the township line either north or south of the section corner, measure and note the distance of the intersection from said corner, and calculate a course which will run a true line from the corner back to 4, where the random line started.

Let A correspond to section corner 2, B to 3, and C to the intersection of the township and random lines,

and north, for example, of B the section corner.

Then,
$$\tan A = \frac{BC}{AB}$$
.

Let l = the number of links in *BC*, and *m* the number of minutes in *A*. Then, practically, we shall have,

If $AB = \frac{1}{2}$ mile,	$m = l - \frac{1}{7}l.$
If $AB = 1$ mile,	$m = \frac{1}{2}l - \frac{1}{14}l.$
If $AB = 3$ miles,	$m = \frac{1}{7}l.$
If $AB = 6$ miles,	$m = \frac{1}{7} \text{ of } \frac{1}{2} l.$

Let us suppose that we have found $A = 10\frac{1}{2}$.

Now, as CA is west by the compass, BA is N. 89° $49\frac{1}{2}' W$. Run this line and establish the quarter section at a point equidistant from the two section corners, which will be, with sufficient accuracy, one-half the length of the random line from 2. Pull up the temporary quarter section stake on the random line.

Proceed from 4 to 5, then on a random line to 6, and back on a true line to 7, and so on to 16.

From 16-run due north on a random line to the north line of the township, setting up a temporary quarter section stake at 40 chains.

If the random line intersect the north line of the township at the pre-established section corner, the random line will be the true line, and is made permanent by blazing back, and making the quarter section corner permanent.

If the random line does not close exactly on the pre-established section corner, measure and note the distance of the intersection from said corner, calculate a course that will run a true line southward from the corner to 16, run this line, and establish the quarter section corner on it just 40 chains from 16, throwing the excess or deficiency, if any, on the last half mile.

If the north township line is a base line or standard parallel, no random line is run, but a true line due north, on which a quarter section post is established 40 chains from 16; and at the intersection with said base line or standard parallel, establish a closing corner, measuring and noting its distance from the corresponding standard corner.

Pass from 17 to 18, and survey the second tier of sections in the same manner as the first, closing on the interior section corners before established as upon those on the east line of the township.

In running the line between the fifth and sixth tiers of sections, not only is a random line run east as before, but one is run west to the range line, and a true line run back, and the permanent quarter section corner established on it just 40 chains from the interior corner, throwing the excess or deficiency on the west half mile.

The Surveyor-General furnishes the outline of the diagram, and the deputy fills it out, and makes the appropriate topographical sketches.

260. Meandering.

Navigable rivers, lakes, and bayous, being public highways, are meandered and separated from the adjoining land.

Standing with the face down stream, the bank on the right hand is called the *right bank;* the bank on the left, the *left bank*.

. If a river is navigable, both banks are meandered, care being taken not to mistake, in high water, the border of bottom-land for the true bank.

Commence at a meander corner of the township line, take the bearing along the bank of the river, and measure the distance of the longest possible straight course to the nearest chain, if the distance exceeds 10 chains; otherwise, to the nearest ten links; and so on to the next meander corner on another boundary line of the township.

Enter in the field book, after the township notes, keeping the notes separate through each fractional section, the date, the point of beginning, the bearings and distances in order, the intersections with all intermediate meander corners, the height of falls, the length of rapids, the location and width at the mouth of streams running into the water you are meandering, the location of springs on the banks, the nature of their waters, the location of islands, the elevation of banks, etc.

S. N. 20.

If the river is not navigable, meander the right bank, unless it presents formidable obstacles not found on the left bank; but the crossing of the stream, in meandering, must be made from a pre-established meander corner on one bank to the corner on the other bank, and the width of the river between the corners computed trigonometrically.

Wide flats, whose area is more than 40 acres, permanently covered with water, along rivers not navigable, are meandered on both banks.

The position of islands in rivers is determined by measuring, on or near the bank, a base line, connected with the surveyed lines, and taking the proper bearings to a flag or other object on the island, and computing the distance from the meander corners of the river to points on the bank of the island. The island can be meandered from such points.

In meandering lakes, ponds, or bayous, commence at a meander corner of the township line, and proceed as in case of a river. If, however, the body of water is entirely within a township, begin at a meander corner established in subdividing.

In meandering a pond lying entirely within the boundaries of a section, run to the pond two lines from the nearest section or quarter section corners, on opposite sides of the pond, giving their bearings and distances, and at the intersection of these lines with the bank of the pond establish witness points by planting posts, witnessed by bearing trees or mounds and pits, then commence to meander at one of these points, and proceed around to the other, and thence to the point of beginning.

No blazes or marks are made on meander lines between established corners.

261. Swamp Lands.

By the act of Congress approved Sept. 28th, 1850, swamp and overflowed lands, unfit for cultivation, are granted to the state in which they are situated.

If the larger part of the smallest legal subdivision is swamp, it goes to the state; if not, it is retained by the Government.

In order to determine what lands fall to the state under the swamp act, it is required that the field notes, beside other things required to be noted, should indicate the points where the public lines enter and leave all such land.

The aforesaid grant does not embrace lands subject to casual inundation, but those only where the overflow would prevent the raising of crops without artificial aid, such as levees, etc. The surveyor should therefore state whether such lands are continually and permanently wet, or subject to overflow so frequently as to render them totally unfit for cultivation.

The depth of inundation is to be stated, as determined from indications on the trees, and the frequency of inundation should be given as accurately as possible, from the nature of the case or reliable testimony.

The character of the timber, shrubs, plants, etc., growing on such lands, and on the land near rivers, lakes, or other bodies of water, should be stated.

The words "unfit for cultivation" should be employed, in connection with the usual phraseology, in the notes, on entering or leaving such lands.

If the margin of bottoms, swamps, or marshes, in which such uncultivable land exists, is not identical with the body of land unfit for cultivation, a separate entry must be made opposite the marginal distance.

In case the land is overflowed by artificial means, such as dams for milling, logging, etc., such overflow will not be officially regarded, but the lines of the public surveys will be continued across the same without setting meander posts, stating particularly in the notes the depth of the water, and how the overflow was caused.

262. Field Books.

The field books are the original and official records of the location and boundaries of the public lands, and afford the elements from which the plots are constructed.

They should, therefore, contain an accurate record of every thing officially done by the surveyor, pursuant to instructions in running, measuring, and marking lines, and establishing corners, and should present a full topographical description of the tract surveyed.

There are four distinct field books.

1. A field book for the *meridian* and *base lines*, exhibiting the establishment of the township, section, and quarter section corners on these lines, the crossing of streams, ravines, hills, and mountains, the character of the soil, timber, minerals, etc.

2. A field book for standard parallels or correction lines, showing the township, section, and quarter section corners on the lines, and the topography of the country through which the lines pass.

3. A field book for *exterior* or *township lines*, showing the establishment of corners on the lines, and the topography.

4. A field book for subdivision or section lines, giving the corners and topography as aforesaid.

The variations of the needle must be stated in a separate line, preceding the notes of measurement, which must be recorded in the order in which the work is done, and the date must immediately follow the notes of each day's work.

The exhibition of every mile surveyed must be complete in itself, and be separated from the preceding and following notes by a line drawn across the paper.

The topographical description must follow the notes for each mile, and not be mixed up with them.

No abbreviations are allowed, except for words constantly occurring, as *sec.* for section, *ch.* for chains, *ft.* for feet, $\frac{1}{4}$ sec. cor. for quarter section corner.

Proper names are never to be abbreviated.

The field books must be so kept as to show the amount of work done in each fiscal year.

The notes should be expressed in clear and precise language, and the writing legible.

No record is to be obliterated, or leaf mutilated or taken out.

The title-page of each book should designate the kind of lines run, giving prominently the name of the state or territory and surveyor, the dates of contract, and of commencing and completing the work.

The second page should contain the names and duties of assistants; and whenever a new assistant is employed, or the duties of any of them changed, such facts, with the reason, should be stated in an appropriate entry, immediately preceding the notes taken under such changed arrangements.

An index, in the form of a diagram or plot of the survey, with number on each line, referring to the page of the field notes on which is found the description of the line, must accompany the notes.

263. Records in the Field Book.

1. General heading of the pages.—The number of the township and range, and the name of the principal meridian of reference, stand at the head of each page.

2. Heading for each mile.—The bearing, location, and kind of line run, whether random or true, must be stated in a line; and the variation of the needle, in a separate line on the page at the head of the notes, for each mile run.

3. Courses and distances. — The course and length of each line run, noting all necessary offsets therefrom, with the reason and mode thereof.

4. The method of perpetuating corners.—If a tree, note the kind and diameter; if a stone, its dimensions, as factors in the order of length, breadth, and thickness; if a post, its dimensions, the kind of timber, the kind of memorial, if any, buried by its side, and if surrounded by a mound, the material of which the mound is constructed, whether of stones or earth; the course and distance of the pits from the center of the mound where a necessity exists for deviating from the general rule of witness trees.

5. Bearing trees.—The kind and diameter of all bearing trees, with the course and distance of the same from their respective corners, and the precise relative position of the witness corners with respect to the true corners.

6. Line trees.—The kind, diameter, and distance on the line, from the corner, of all trees which the line intersects.

7. Intersection of land objects.—The distance at which the line first intersects and then leaves every settler's claim and improvement, prairie, bottom-land, swamp,

marsh, grove, or windfall, with the course of the same at both points of intersection; the distance at which a line begins to ascend, arrives at the top, or reaches the foot of all remarkable hills and ridges, with their courses and estimated height above the surrounding country.

8. Intersection of water objects. — The distance at which the line intersects rivers, creeks, or other bodies of water, the width of navigable streams, and small lakes or ponds between the meander corners, the height of banks, the depth and nature of the water.

9. Surface.-Level, rolling, broken, or hilly.

10. Soil.—First, second, or third-rate; clay, sand, loam, or gravel.

11. Timber. - Kind, in order of abundance, and undergrowth.

12. Bottom-lands. —Wet or dry; whether subject to inundation, and to what depth.

13. Springs.—Fresh, saline, or mineral; and course of their streams.

• 14. Improvements.— Towns and villages, Indian villages and wigwams, houses and cabins, fields, fences, sugar-tree groves, mill-seats, forges or factories.

15. Coal beds. — Note the quality of coal beds, and their extent to the nearest legal subdivision.

16. Roads and trails.—Whence, whither, and direction.

17. Rapids, cascades. — Length of rapids, height of falls in feet.

18. Precipices. — Describe precipices, caves, ravines, sink-holes.

19. Quarries.—Whether marble, granite, lime-stone or cand-stone.

20. Natural curiosities. — Interesting fossils, ancient works, as mounds, fortifications, embankments, etc.

21. Change of variation.—Any material change in the variation of the needle must be noted, and the exact points where such variation occurs.

22. Dates. — State the date of each day's work in a separate line, immediately after the notes for that day.

23. General description.—At the conclusion of the notes for the subdivisional work, taken on the line, the deputy must subjoin a general description of the township in the aggregate, in reference to the face of the country, its soil, timber, geological features, etc.

24. Verification of Deputy Surveyor.—The deputy must append to each separate book of field notes his affidavit that all the lines therein described have been run, and all the corners established and perpetuated according to the instructions and laws, and that the foregoing notes are the true and original field notes of such survey.

25. Verification of Assistants.—The compassman, flagman, chainmen, and axman must also attest, under oath, that they assisted said deputy in executing said surveys, and that, to the best of their knowledge and belief, the work has been strictly performed according to the instructions furnished by the Surveyor-General.

26. Approval and certificate of the Surveyor-General.— The Surveyor-General will attach his official approval to each of the original field books, and affix his official certificate to the copies of the field notes transmitted to the general land office, that they are true copies of the originals on file in his office.

The following specimen pages of field notes, taken from the United States Manual of Surveying Instructions, will illustrate the subject:

FIELD NOTES

and the second all and build all and a

OF THE

Exterior and Subdivision Lines

OF TOWNSHIP 25 NORTH, RANGE 2 WEST,

WILLAMETTE MERIDIAN,

OREGON.

Surveyed by Robert Acres, Deputy Surveyor,

Under his contract, dated —, 18-.

Survey commenced ------.

and h winds water a grant to make the

Survey completed -----

264. Index.

Referring the lines to the pages of the field notes.

The lines numbered are described in the notes on the pages indicated by the numbers.

NAMES OF SURVEYOR AND ASSISTANTS.

Robert Acres, Surveyor.	George Sharp, Axman.
Peter Long, Chainman.	Adam Dull, Axman.
John Short, Chainman	Henry Flagg, Compassman.

物、社场

242

265. Field Notes.

South Boundary, T. 25 N., R. 2 W., Willamette Meridian.

Chains.

Begin at the post, the established corner to Townships 24 and 25 North, in Ranges 2 and 3 West. The witness trees all standing, and agree with the description furnished me by the office, viz:

A Black Oak, 20 in. dia., N. 37° E. 27 links,

A Burr-oak, 24 in. dia., N. 43° W. 35 links,

A Maple, 18 in. dia., S. 27° W. 39 links,

A White Oak, 15 in. dia., S. 47° E. 41 links. East on a random line on the South Boundaries of sections 31, 32, 33, 34, 35, and 36.

Variation by Burt's improved solar compass, 18° 41' E.

I set temporary half-mile and mile posts at every 40 and 80 chains, and at 5 miles, 74 chains 53 links, to a point 2 chains and 20 links north of the corner to Townships 24 and 25 North, Ranges 1 and 2 W.

(Therefore, the correction will be 5 chains, 47 links West, and 37 links South per mile.)

I find the corner post standing and the witness trees to agree with the description furnished me by the Surveyor-General's office, viz:

A Burr-oak, 17 in. dia., bears N. 44° E. 31 links,

A White Oak, 16 in. dia., bears N. 26° W. 21 links,

A Linden, 20 in. dia., bears S. 42° W. 15 lks., A Black Oak, 24 in. dia., bears S. 27° E. 14 links.

(2)

South Boundary, T. 25 N., R. 2 W., Willamette Meridian.

Chains.	From the corner to Townships 24 and 25
1 Store	N., Ranges 1 and 2 W., I run (at a variation
NAMESON DA	of 18° 41' East) [See Arts. 258, 289.]
segments	N. 89° 44' W., on a true line along the
40.00	South Boundary of section 36, set a post for
ally Markey	quarter section corner, from which
	A Beech, 24 in. dia., bears N. 11° E. 38
	links dist.
Carl Int	A Beech, 9 in. dia., bears S. 9° E. 17 links
Constant in	dist.
62.50	A Brook, 6 links wide, runs North.
80.00	Set a post for corner to sections 35 and 36,
And the second	1 and 2, from which
	A Beech, 9 in. dia., bears N. 22° E. 16 links
An Detrante	dist.
-	A Beech, 8 in. dia., bears N. 19° W. 14
18 600	links dist.
a winds	A White Oak, 10 in. dia., bears S. 52° W.
	7 links dist.
Junited S	A Black Oak, 14 in. dia., bears S. 46° E.
The Linkline	8 links dist.
wit ber	Land —level, good soil, fit for cultivation.
terdinit e	Timber — Beech, various kinds of Oak, Ash,
Strand	Hickory.
RES	N. 89° 44' W., on a true line along the South
12.3	Boundary of section 35, Variation 18° 41' E.
40.00	Set a post for quarter section corner, from
1971-496	which the state of
Parate 2	A Beech, 8 in. dia., bears N. 20° E. 8 links
at st	dist.
El 3 44	No other tree convenient; made a trench
	around post.

South Boundary, T. 25 N., R. 2 W., Willamette Meridian.

Chains.	Shuthe N. She 44 W. on a realine along
65.00	Begin to ascend a moderate hill; bears N.
	and S.
80.00	Set a post with trench, for corner of sections
	34 and 35, 2 and 3, from which
H "62	A Beech, 10 in. dia., bears N. 56° W. 9
	links dist.
H 132 H	A Beech, 10 in. dia., bears S. 51° E. 13
	links dist.
W.S. Imp	No other tree convenient to mark.
AND AND	Land-level, or gently rolling, and good
	for farming.
a se y	Timber-Beech, Oak, Ash, and Hickory;
	some Walnut and Poplar.
	N. 89° 44' W. on a true line along the South
WE arro.	Boundary of section 34, Variation 18° 41' E.
40.00	Set a quarter section post with trench,
Som la	from which
	A Black Oak, 10 in. dia., bears N. 2° E. 635
	links dist.
	No other tree convenient to mark.
80.00	To point for corner sections 33, 34, 3 and 4.
	Drove charred stakes, raised mounds with
41.75	trenches, as per instructions, from which
	A Burr-oak, 16 in. dia., bears N. 31° E. 344
	links.
	A Hickory, 12 in. dia., bears S. 43° W. 231
1. 17 ×1	links.
	No other tree convenient to mark.
2 77 -0;	Land—level, rich, and good for farming.
	Timber — some scattering Oak and Walnut.

(4)

South Boundary, T. 25 N., R. 2 W., Willamette Township.

	,,
Chains.	N. 89° 44' W. on a <i>true</i> line along the South Boundary of section 33, Variation 18° 41' E.
37.51	A Black Oak, 24 in. dia.
40.00	Set a post for quarter section corner, from
	which alw morth a ban 2 68 ban 48
6 W. 3	A Black Oak, 18 in. dia., bears N. 25° E.
al and	32 links dist.
1° E. 18	A White Oak, 15 in. dia., bears N. 43° W.
AN IS	22 links dist.
62.00	To foot of steep hill, bears N. E. and S.W.
80.00	Set a post for corner to sections 32, 33, 4
	and 5, from which
Hickory	A White Oak, 15 in. dia., bears N. 23° E.
	27 links dist.
The second second	A Black Oak, 20 in. dia., bears N. 82° W.
the South	75 links dist.
. H 'IL *	A Burr-oak, 20 in. dia., bears S. 37° W.
douest i	92 links dist.
Mat L	A White Oak, 24 in. dia., bears S. 26° E.
2° E, 635	42 links dist.
CONSTR.	Land — gently rolling; rich farming land.
	Timber-Oak, Hickory, and Ash.
there the	N. 89° 44' W. on a true line along the South
nda with	Boundary of section 32, Variation 18° 41' E.
07.50	The second round round research the sale of the real round
37.50	A Creek, 20 links wide, runs North.
40.00	Set a granite stone, 14 in. long, 10 in. wide,
162 . W. 231	and 4 in. thick, for quarter section corner,
	from which
	A Maple, 20 in. dia., bears N. 41° E. 25
arming.	links dist.
toolaW f	A Birch, 24 in. dia., bears N. 35° W. 22
1	links dist.

(5)

South Boundary, T. 25 N., R. 2 W., Willamette Meridian.

Chains.	Chaines The swamp containes along 15 a
76.00	To S. E. edge of swamp.
X 88 1	As it is impossible to establish permanently
S. CORST	the corner to sections 31, 32, 5 and 6, in the
boog si	swamp, I therefore, at this point, 4.00 chains
	east of the true point for said section corner,
alquell g	raise a witness mound with trench, as per
	instructions, from which ·
	A Black Oak, 20 in. dia., bears N. 51° E.
150200 In	.115 links.
80.00	A point in deep swamp for corner to sec-
BUOTIODE	tions 31, 32, 5 and 6.
al Sile of	Land—rich bottom; west of creek, part wet;
591097010	east of creek, good for farming.
mire to a	Timber-good; Oak, Hickory, and Walnut.
(g) 762	N. 89° 44' W. on a true line along the South
	Boundary of section 31, Variation 18° 41' E.
11.00	Leave swamp and rise bluff 30 feet high,
Star L	bears N. and S.
40.00	Set post for quarter section corner, from
montad	which
Stavine 10	A Sugar tree, 27 in. dia., bears S. 81° W.
Aborada:	42 links dist.
oils no	A Beech, 24 in. dia., bears S. 71° E. 24
Te land	links dist.
54.00	Foot of rocky bluff 30 feet high, bears N. E.
1 = 1051	and S. W. all and the same shall be
57.50	A spring branch comes out at the foot
this 4	of the bluff, 5 links wide; runs N.W. into
S. E. Mark	swamp.
61.00	Enter swamp; bears N. and S.
70.00	Leave swamp; bears N. and S.

(6)

South Bo	nundary, T. 25 N., R. 2 W., Willamette Meridian.
Chains.	The swamp contains about 15 acres, the greater part in section 31.
74.73	The corner to Townships 24 and 25 N., Ranges 2 and 3 W.
	Land – except the swamp, rolling, good,
visiting (rich soil.
599 CR	Timber — Sugar-tree, Beech, Swamp Maple. Jan. 25th, 1854.
111	Between Ranges 2 and 3 West, from corner
	to Townships 24 and 25 N., I run
	North, on the range line between sections
8.56	31 and 36, Variation 18° 56' East. Set a post on the left bank of Chickeeles
0.00	river, for corner to fractional sections 31 and
trainin D.	36, from which
	A Hackberry, 11 in. dia., bears N. 50° E.
	11 links dist.
	A Sycamore, 60 in. dia., bears S. 15° W. 24
	links.dist.
	I now cause a flag to be set on the right
	bank of the river, and in the line between
	sections 31 and 36. I now cross the river,
	and from a point on the right bank thereof, west of the corner just established on the
	left bank, I run North on an offset line, 25
	chains and 94 links, to a point 8 chains and
	56 links west of the flag. I now set a post
Soil and	in the place of the flag, for corner to frac-
ofei .W	tional sections 31 and 36, from which
	A Beech, 10 in. dia., bears N. 2° E. 12
	links dist.

ŝ

(7)

Between Ranges 2 and 3 W., T. 25 N., Willamette Meridian.

Chains.	A Black Oak, 12 in. dia., bears N. 80° W.					
1.1	16 links dist.					
34.50	The corner above described.					
40.00	Set a post for $\frac{1}{4}$ section corner, from which					
stillen we	A Burr-oak, 20 in. dia., bears N. 37° E. 26					
AZ sulties	links dist.					
	A Black Oak, 24 in. dia., bears N. 80° W.					
Det East	16 links dist.					
43.41	A Black Walnut, 30 in. dia.					
80.00	Set a post for corner to sections 30, 31, 25,					
apprairies.	and 36, from which					
	A Beech, 14 in. dia., bears N. 20° E. 14					
of Tanjo	links dist.					
	A Hickory, 9 in. dia., bears N. 25° W. 12					
1936/10.02	links dist. A Beech, 16 in. dia., bears S. 40° W. 16					
aloginai.						
	links dist. A White Oak, 10 in. dia., bears S. 44° E.					
24.						
-280 MP	20 links dist.					
内国的市场	Land—level; rich bottom; not inundated.					
Second Second	Timber-Oak, Hickory, Beech, and Ash.					
	- been and mental the manual first state of the second state of th					

In like manner all the other Township lines are run.

General Description.

This township contains a large amount of first-rate land for farming. It is well timbered with Oak, Hickory, Sugar-tree, Walnut, Beech, and Ash.

Chickeeles river is navigable for small boats in low water, and does not often overflow its banks, which are from ten to fifteen feet high.

The township will admit of a large settlement, and should therefore be subdivided.

(8)

Field Notes of the Subdivision Lines and Meanders of Chickeeles River, in Township 25 N., R. 2 W., Willamette Meridian.

Chains.	To determine the proper adjustment of						
7* E. 28	my compass for subdividing this township,						
	I commence at the corner to Townships 24						
W. 908	and 25 N., R. 1 and 2 W., and run						
	North, on a blank line along the East						
	Boundary of section 36, Variation 17° 51'						
0. \$1. 25.	East, and the second base in the course						
40.05	To a point 5 links west of the quarter						
11 3 9	section corner.						
80.09	To a point 12 links west of the corner to						
91 W. 12	sections 25 and 36.						
	To retrace this line, or run parallel thereto,						
91 W. 16	my compass must be adjusted to a variation						
	of 17° 46' East.						
M. 444 .	Subdivision commenced Feb. 1, 1854.						
(Real of the	From the corner to sections 1, 2, 35, and						
batabaa	36, on the South Boundary of the Township,						
def. h	I run						
	North, between sections 35 and 36, Varia-						
	tion 17° 46' East, the state for the second state of the						
9.19	A Beech, 30 in. dia.						
29.97	A Beech, 30 in. dia.						
40.00	Set a post for quarter section corner, from						
- Abili Si	which beredesid live at 1 and the best birds						
wolf tel	A Beech, 8 in. dia., bears N. 23° W. 45						
2011935	links dist.						
ana doid							
51.00	TIMES GIST.						
and share the state of the stat	A Beech, 18 in. dia.						
76.00	A Sugar-tree, 30 in. dia.						

250

(9)

Township 25 N., Range 2 W., Willamette Meridian.

second se	
Chains.	Chains, show this weather and
80.00	Set a post for corner to sections 25, 26, 35,
irst-tate:	and 36, from which
A PART	A Beech, 28 in. dia., bears N. 60° E. 45
isting a	links dist.
stoms.	A Beech, 24 in. dia., bears N. 62° W. 17
WEV IS	links dist.
	A Poplar, 20 in. dia., bears S. 70° W. 50
- Aster	links dist.
11	· A Poplar, 36 in. dia., bears S. 66° E. 34
	links dist.
3	Land—level, second-rate.
dbida	Timber — Poplar, Beech, Sugar-tree, and
ai n ex	some Oak; undergrowth—same, and Hazel.
	East, on a random line between sections
9. 7 °	25 and 36, Variation 17° 46' East.
9.00	A Brook, 20 links wide, runs north.
15.00	To foot of hills, bears N. and S.
40.00	Set a post for temporary quarter section
	corner.
55.00	To opposite foot of hill, bears N. and S.
72.00	A brook, 15 links wide, runs N.
80.00	Intersected East Boundary at post corner to
	sections 25 and 36, from which corner I run
	West, on a true line between sections 25
	and 36, Variation 17° 46' East.
40.00	Set a post on top of hill, bears N. and S.,
	from which
	A Hickory, 14 in. dia., bears N. 60° E. 27
	links dist.
	A Beech, 15 in. dia., bears S. 74° W. 9
	links dist.

(10)

Township 25 N., Range 2 W., Willamette Meridian.

Chains.	There is a second se
80.00	The corner to sections 25, 26, 35, and 36.
00.00	Land — east and west parts, level, first-rate;
ale and	middle part, broken, third-rate.
	Timber — Beech, Oak, Ash, etc.; under-
	growth—same, and Spice in the bottoms.
11-24-8	growth—same, and spice in the bottoms.
	North, between sections 25 and 26, Vari-
	ation 17° 46' East.
7.00	A Poplar, 40 in. dia.
17.20	A Brook, 25 links wide, runs N. W.
18.05	A Walnut, 30 in. dia.
23.44	A Brook, 25 links wide, runs N. E.
40.00	Set a post for $\frac{1}{4}$ sec. corner, from which
	A Burr-oak, 36 in. dia., bears N. 42° E. 18
	links dist.
	A Beech, 30 in. dia., bears S. 72° W. 9
	links dist.
60.15	A Beech, 30 in. dia.
80.00	Set a post for corner to sections 23, 24, 25,
	26, from which
	A White Oak, 14 in. dia., bears N. 50° E.
	40 links.
	A Sugar-tree, 12 in. dia., bears N. 14° W.
	31 links.
	A White Oak, 13 in. dia., bears S. 38° W.
	32 links.
	A Sugar-tree, 12 in. dia., bears S. 42° E.
	14 links.
	Land-level on the line; high ridge of
	hills through the middle of section 25, run-
	ning N. and S.
	Timber – Beech, Walnut, Ash, Maple, etc.

(11)

Township 25 N., Range 2 W., Willamette Meridian.

Chains.	In like manner other subdivison lines are run.					
	dela del and a superiore del del del del del del del del del de					
	Notes of the Meanders of a Small Lake in					
	Section 26.					
The second	Begin at the $\frac{1}{4}$ sec. cor. on the line between					
	sections 23 and 26, run thence South					
24.00	To the margin of the lake, where set a					
The second	post for meander corner, from which A Beech, 14 in. dia., bears N. 45° E. 10					
	links dist.					
	A Beech, 9 in. dia., bears N. 15° W. 14					
	links dist.					
	Thence meander around the lake as follows:					
	S. 53° E. 17.75. At 75 links, cross outlet					
	to lake 10 links wide, runs N. E.					
	S. 3 ² E. 13.00.					
	S. 30' W. 8.00.					
	S. 65° W. 12.00 to a point previously deter					
	mined 20.30 chains North of the quarter sec-					
tion corner on the line between section and 35.						
						Set post meander corner, Maple, 16 in. dia.,
	bears S. 15° W. 20 links dist. Ash, 12 in. dia., bears S. 21° E. 15 links					
	dist.					
	(In this vicinity we					
	discovered remarkable					
	N. 63° W. 10.00 fossil remains of ani-					
	N. 13° W. 21.00 mals well worth the at-					
	tention of naturalists.					

(12)

Township 25 N., Range 2 W., Willamette Meridian.

Chains.	N. 52° E. 17.30 to the place of beginning.				
	This is a beautiful lake, with well-defined				
	banks from 6 to 10 feet high.				
	Land — first-rate.				

Meanders of the left bank of Chickeeles River.

Begin at the corner to fractional sections 4 and 33, in the North Boundary of the Township, and on the left and S. E. bank of the river, and run thence down the stream with the meanders of the left bank of said river, in fractional section 4, as follows:

Courses.	Dist.	Remarks.
S.76°W.	18.50	A Beech, 9 in dia, bea
S.61°W.	10.00	and the second state and the second second
S.59°W.	8.30	To the corner to fractional sections
	inte, and	4 and 5; thence in section 5,
S.54°W.	10.70	sour obin astail 01 sale of
S.40°W.	5.60	S 8-E 1300
S.50°W.	8.50	N 8 00 W 800
S.37°W.	17.00	suber 16 00 21 . VF 20 8
S.44°W.	22.00	mined 20030 chains work of
S.38°W.	26.72	To the corner to fractional sections
		5 and 8; thence in section 8,
S.21°W.	16.00	The post meander corner,
S.10°W.	13.00	the shift of the off a month
South	8.50	To the head of rapids.
S.9°E.	5.00	together in the state of the state
S.17°E.	20.00	
S.10°E.	12.00	To the foot of rapids.
S.22 ¹ °E.	8.46	To the corner to fractional sections
an island	Quint Hain	8 and 17.
atellaro	ea lo a	Land, along fractional section 8,

(13)

Township 25 N., Range 2 W., Willamette Meridian.

THE REAL						
Courses.	Dist.	Remarks.				
asbia dia	d an ibal	high, rich bottom; not inundated.				
		The rapids are 37.00 chains long;				
		rocky bottom; estimated fall, 10 feet.				
a la sta	ang kabar	Meanders in Section 17.				
S.17°E.	15.00	At 5 chains, discovered a vein of				
N.1.1	10100	coal, which appears to be 5 feet				
		thick, and may be readily worked.				
S.8°E.	12.00	902 Castification				
S.4°W.	22.00	At 3 chains, the ferry across the				
In sweer	ingalos ol	river to Williamsburgh, on the oppo-				
Buryaror	A	site side of the river.				
S.25°W.	17.00	of the public lands of the United St				
S.78°W.	12.00	[ar Territory] of				
S.71°W.	9.55	To the corner to fractional sections				
nd Indai	eruñ "zisoi	17 and 18; thence in section 18,				
S.65°W.	15.00	the said Surveyor-General, I have I				
S734°W.	15.93	To the corner to fractional sections				
	ng Joquit	18 and 19. In the set of the set of the set				
S.65°W.	14.00	In section 19.				
S.60°W.	23.00	the Willemette Maridian. in the				
S.42°W.	10.00	do further solution wear that the				
S.20°W.	10.00	abon in inton Meil Lutigino, ban amit				
$S16\frac{1}{2}^{\circ}W.$	13.83	At 2 chains, cross outlet to				
TOWN TO	ex. A pueber	pond and lake, 50 links wide, to the				
howward		corner to fractional sections 19 and				
	the Pouc	24, on the range line, 32.50 chains				
	to Pysotin	North of the corner to sections 19,				
i line Sto		30, 24, and 25.				

The above selections will serve as specimens of the manner of taking the field notes.

266. General Description.

The quality of the land in this township is considerably above the average. There is a fair proportion of rich bottom-land, chiefly situated on both sides of Chickeeles river, which is navigable, through the township, for steamboats of light draft, except over the rapids in Section 8.

The uplands are generally rolling, good first and second rate land, etc.

267. Certificates.

I, Robert Acres, Deputy Surveyor, do solemnly swear that, in pursuance of a contract with , Surveyor of the public lands of the United States, in the State [or Territory] of , bearing date the day of , 18 , and in strict conformity to the laws of the United States and the instructions furnished by the said Surveyor-General, I have faithfully surveyed the exterior boundaries [or subdivision and meanders, as the case may be] of Township number twenty-five North of the base line of Range number two West of the Willamette Meridian, in the aforesaid; and do further solemnly swear that the foregoing are the true and original field notes of such survey.

ROBERT ACRES,

Deputy Surveyor.

Subscribed by said Robert Acres, Deputy Surveyor, and sworn to before me, a Justice of the Peace for the County, in the State [or Territory] of this day of . 18

HENRY DOOLITTLE,

Justice of the Peace.

We hereby certify that we assisted Robert Acres, Deputy Surveyor, in surveying the exterior boundaries, and subdividing Township number twenty-five North of the base line of Range number two West of the Willamette Meridian, and that said Township has been, in all respects, to the best of our knowledge and belief, well and faithfully surveyed, and the boundary monuments planted according to the instructions furnished by the Surveyor-General.

> PETER LONG, Chainman. JOHN SHORT, Chainman. GEORGE SHARP, Axman. ADAM DULL, Axman. HENRY FLAGG, Compassman.

Subscribed and sworn to by the above named persons, before me, a Justice of the Peace for the county of , in the State [or Territory] of , this day of , 18 .

HENRY DOOLITTLE,

Justice of the Peace.

SURVEYOR'S OFFICE AT, 18The foregoing field notes of the Survey of [here describe the survey], executed by Robert Acres, under hiscontract of theday of, 18, in themonth of, 18, 18, having been critically examined,the necessary corrections and explanations made, thesaid field notes, and the surveys they describe, arehereby approved.A. B.,

Surveyor-General.

To the notes of each Township, in the copies of the field notes transmitted to the seat of government, the Surveyor-General will append the following certificate: S. N. 22.

I certify that the foregoing transcript of the field notes of the Survey of the [here describe the character of the surveys, whether meridian, base line, standard parallel, exterior township lines, or subdivision lines and meanders of a particular township], in the State [or Territory] of , has been correctly copied from the original notes on file in this office. A. B.,

Surveyor-General.

268. Corners and Boundaries Unchangeable.

According to an act of Congress, entitled "An act concerning the mode of Surveying the Public Lands of the United States," approved February 11th, 1805, and still in force,

1st. "All the corners marked in the surveys returned by the Surveyor-General, shall be established as the proper corners of sections or subdivisions of sections which they were intended to designate; and the corners of half and quarter sections, not marked on said surveys, shall be placed, as nearly as possible, equidistant from those two corners which stand on the same line."

2d. "The boundary lines actually run and marked in the surveys returned by the Surveyor-General, shall be established as the proper boundary lines of the sections or subdivisions for which they were intended; and the length of such lines, as returned by the Surveyor-General aforesaid, shall be held and considered as the true length thereof."

If it is afterward found that a post is out of line, or that the line has been unequally subdivided, the general government only has the power of correction, and that only while it holds the title to the lands affected.

258

Such boundaries only as are established by the Surveyor-General, or the deputy, in the performance of his official duties, and in accordance with law, come under the above rules.

269. Restoring Lost Boundaries.

Lost boundaries must be restored in conformity with the laws under which they were originally established.

At an early day, three sets of section corners were established on the range lines; later, two sets on all the township boundaries; at present, the section lines close on previously established corners on township corners, making one set of corners, except on the base lines and standard parallels, where double corners—standard corners and closing corners—are established.

In order to restore lost boundaries correctly, the surveyor must know the manner in which townships were originally subdivided.

In case of three sets of corners on the range lines, one set was planted when the exteriors were run.

Corners on the east and west lines between two townships, belong to the sections of the township north.

From these corners, section lines were run due north, which would not, in general, close on the corners of the township line on the north, thus making two sets of corners on the north and south boundaries of the township.

The east and west lines were run due east and west from the last interior section corner, and new corners established at the intersections with the range lines.

In case of two sets of corners, the subdivisions were made as above, except that the east and west lines

were closed on the corners previously established on the east boundary, but were run due west from the last interior section corner to the range line, and new section corners established at the intersection with the range line.

The method of making but one set of corners, except on the base line and standard parallels, is the one now in vogue, and has been sufficiently considered.

270. Restoring Lost Corners.

Lost corners must be restored, if possible, to their exact original position.

The surveyor should seek to accomplish this, first, by the aid of bearing trees, mounds, etc., described in the original field notes.

If the corner can not be located in this way, good testimony may be taken.

It often happens that in retracing lines, the measurements do not agree with the field notes. When such cases occur, from whatever cause, the surveyor must establish his corners at intervals proportional to those given in the original field notes.

1. To restore a lost corner common to four sections.

Find the distances between the nearest noted line trees or well-defined corners, north and south, and east and west of the lost corner. Establish the corner between them at a point intercepting distances proportional to those given in the original notes.

2. To restore one of a double corner when the other is standing.

First ascertain to which sections the existing corner belongs. Then re-establish the lost corner in the

direction and at the distance stated in the original notes. Verify the work by chaining to noted line trees or corners, having previously compared your chaining with that of the United States deputy by rechaining between corners noted in the original survey, and making all distances proportional.

3. To restore that one of a double corner established in running the township lines when both are missing.

Run a straight line between the nearest noted line trees or corners on the line, and, at the distance given in the notes, establish the corner which will be common to two sections north or west of the line.

Let the accuracy of the result be verified by measuring to the next section corner west or north.

4. To restore that one of a double corner established in subdividing the township when both are missing.

Retrace the section line which closed on the corner, and establish the section post at the intersection with the township line. Verify the result by measuring on the township line to noted objects.

The restored corner will be common to two sections south or east of the line.

5. To restore one of a triple corner, on a range line when one at least remains standing.

The one of the triple corner, established when the range line was run, is not a section corner.

First identify the existing corners, then establish the lost corner, according to the field notes, north or south of the existing corner, on the line, and verify the result.

If the field notes do not give the distances between the triple corners, retrace the section line closing on said corner.

6. To restore a triple corner when all are lost.

Rechain the range line, and retrace the section lines closing on the range line.

7. To restore lost quarter section corners.

1st. Except on those section lines which close on the north or west boundaries of a township, quarter section corners are equidistant between the two section corners. Hence, rechain the section line, then chain back one-half the distance.

2d. On township lines, where there may be double section corners, only one set of quarter section corners are actually marked in the field — those established when the exteriors are run half-way between the section corners established at the same time. These are restored as above.

The same will apply when there are triple corners.

3d. If the section line closes on the north or west boundary of a township, the quarter section corner must be established 40 chains of the original measurement from the last interior section corner.

8. To restore lost township corners.

1st. If the corner is common to four townships, retrace the township and range lines, and establish the corner at their intersection.

2d. If the corner is common only to two townships, as may be the case on the base line or standard parallels, retrace the base line or standard parallel from the

last standing corner, if the lost corner is common to two townships north; but if the lost corner is common to two townships south, retrace also the range line.

9. To restore lost meander corners.

Retrace the lines which close upon the banks in the direction they were originally run.

Fractional section lines closing on Indian boundaries, private grants, etc., should be retraced, and the corners established in the same manner.

Remark.—If, in restoring a lost corner, the original corner is found by some unmistakable trace, it must stand, and the resurvey be made to correspond.

271. Subdividing Sections.

The United States deputy runs only the exterior or section lines, and makes the section and quarter section corners.

Lines joining the opposite quarter section corners divide the section into quarter sections of 160 acres each.

These quarter sections are divisible into half-quarters of 80 acres, and these into quarterquarters of 40 acres.

These are the legal subdivisions of a section, and are exhibited in the annexed diagram.

If private parties wish the subdivision lines traced on the ground, they employ the county surveyor, or a private surveyor, who must be governed by the section and quarter section corners previously established.

40 A. 40 A.	.0.0 80 A. 80 A. 08		
40 A. 40 A.	isty estab		
160 A.	80 A.		
anoth	80 A.		

The following rules will enable the surveyor to subdivide a section in accordance with the laws of the United States:

1. The original section and quarter section corners must stand where they were established by the government surveyor.

2. The quarter-quarter corners must be established equidistant, and on the line between the section and quarter section corners of the exterior lines of the section, and equidistant and on the line between quarter section corners of internal lines of the section.

3. All subdivision lines must run straight from the proper corner in one exterior line of the section to the corresponding corner in the opposite exterior line.

4. In fractional sections, where no opposite corresponding corner has been established, the subdivision line must be run from the given corner due north and south, or east and west, to the exterior boundary of said fractional section.

5. Anomalous sections or sections larger than a mile, sometimes close on a previously established line, in finishing up a public survey.

Quarter section and section corners are established 40 chains and 80 chains, respectively, from the previously established corners, and posts are planted every 20 chains of the remaining distance.

Anomalous sections are subdivided by running straight lines from the corners on the south line to the corresponding corners on the north, and east, and west lines, the same as in regular sections.

264

VARIATION OF THE NEEDLE.

VARIATION OF THE NEEDLE.

272. Definitions and Illustrations.

The variation of the needle is the angle which the magnetic meridian makes with the true meridian.

The variation is *east* or *west*, according as the north end of the needle is east or west of the true meridian.

The variation is different at different places, and it does not remain the same at the same place.

The line of no variation is that line traced through those points on the surface of the earth where the needle points due north.

At all places east of this line, the variation is west; and at all places west of this line, the variation is east.

West variation is designated by the sign *plus*, and east variation by the sign *minus*.

In the year 1840, at a point whose latitude is 40° 53', and longitude 80° 13', being a little S. E. of Cleveland, O., the variation was nothing. The line of no variation passed through this point N. 24° 35' W., and S. 24° 35' E.

273. Changes of Variation.

1. Irregular changes. — The needle is subject to sudden changes coincident, in time, with a thunder storm, an aurora borealis, solar changes, etc.

2. Diurnal changes. In the northern hemisphere, the north end of the needle moves from 10' to 15' west from about 8 A. M. to 2 P. M., and then gradually returns to its former position.

S. N. 23.

3. Annual changes.—The diurnal changes vary with the season, being about twice as great in the summer as in the winter.

4. Secular changes.—In addition to the above changes, there is a change of variation, in the same direction, running with considerable regularity through a period of about 234 years, as is indicated by observations at Paris.

In the United States, the north end of the needle was moving east from the earliest recorded observations till about the year 1810, since which time the movement has been west, at the rate, on an average, of about 5' per annum.

We give the following tables of places, their latitude and longitude, and variation as it was in 1840, and the annual change of variation, from the tables prepared by Professor Loomis for the 39th and 42d volumes of Silliman's Journal:

Lat.	Lon.	Var.	An. Mo.
40° 53'	80° 13′	0° 00′	+ 4'.4
41° 31′	81° 45'	-0° 19'	4'.4
45° 51'	84° 41'	-2°08'	3'.9
39° 02′	78° 30'	+ 0° 19'	3'.7
	40° 53' 41° 31' 45° 51'	40° 53' 80° 13' 41° 31' 81° 45' 45° 51' 84° 41'	40° 53′ 80° 13′ 0° 00′

Places near the Line of no Variation.

Assuming the annual motion uniform, and correctly found for 1840, the variation for any subsequent time can be found by multiplying the annual motion by the number of years since 1840, and taking the algebraic sum of the product and the variation at that date.

VARIATION OF THE NEEDLE.

Places.	Lat.	Lon.	Var.	An. Mo.
Point in Maine.	48° 00′	67° 37′	+19°30′	+ 8'.8
Waterville, Me.	44° 27'	69° 32'	12° 36'	. 5'.7
Montreal.	45° 31'	73° 35′	10° 18′	5'.7
Burlington, Vt.	44° 27'	73° 10′	9° 27'	5'.3
Hanover, N. H.	43° 42'	72° 14'	9° 20′	5'.2
Cambridge, Mass.	42° 22'	71° 08'	9° 12′	5'
Hartford, Conn.	41° 46'	72° 41'	6° 58'	5′.
Newport, R. I. •	41° 28'	71° 21′	7° 45'	5'.
Geneva, N. Y.	42° 52'	77° 03'	4° 18′	4'.1
West Point.	41° 25'	74° 00'	6° 52'	4'.
New York City.	40° 43'	71° 01′	5° 34'	3'.6
Philadelphia.	39° 57'	75° 11'	4° 08'	3'.2
Buffalo, N. Y.	42° 52'	79° 06′	1° 37'	4'.1

Places where the Variation was West.

Places where the Variation was East.

distation in Transformer

Places.	Lat.	Lon.	Var.	An. Mo.
Jacksonville, Ill.	39° 43'	90° 20′	-8° 28'	+2'.5
St. Louis, Mo.	38° 37′ .	90° 17'	8° 37'	2'.3
Nashville, Tenn.	36° 10'	86° 52'	6° 42'	2'.
Louisiana.	29° 40'	94° 00′	8° 41'	1'.4
Mobile, Ala.	30° 42'	88° 16'	7° 05'	1'.4
Tuscaloosa, Ala.	33° 12′	87° 43'	7° 26'	1'.6
Columbus, Ga.	32° 28'	85° 11′	5° 28'	2'.
Milledgeville, Ga.	33° 07′	83° 24'	5° 07'	2'.4
Savannah, Ga.	32° 05′	81° 12'	4° 13'	2'.7
Tallahassee, Fa.	30° 26′	84° 27'	5° 03'	1'.8
Pensacola, Fa.	30° 24'	87° 23'	5° 53'	1′.4
Logansport, Ind.	40° 45'	86° 22'	5° 24'	2'.7
Cincinnati, O.	39° 06′	84° 27′	4° 46'	3.'1

274. Methods of Ascertaining the Variation.

First establish a true meridian, which may be done

1. By means of Burt's Solar Compass.

2. By observation of the North star, when on the meridian.

The north star is about 1° 22' from the true pole, around which it revolves in a siderial day, or 23 h., 56 m., 4 s.

Twice in this period the star will be on the meridian.

The exact moment of its passage can be determined very nearly, from the fact that it reaches the meridian almost at the same instant as Alioth in the tail of the Great Bear, or the first star in the handle of the Dipper.

Suspend a plumb line a few feet in front of the telescope, and place a faint light near the object glass of the telescope, so that the spider lines may be seen.

Just 17 minutes after the plumb line, the North star, and Alioth all fall on the vertical spider line, the North star is on the meridian.

The horizontal limb of the instrument is then firmly clamped, and the telescope is turned down horizontally.

A light, shining through a small aperture in a board, at some distance, say ten rods, is moved by an assistant, according to signals, till it ranges with the intersection of the spider lines.

A stake driven into the ground directly under the light, and another directly under the telescope, will mark, on the ground, the true meridian.

The season of the year may be such that Alioth may be above instead of below the North star, when both are on the meridian at night. With the telescope, the stars can be seen in the day-time.

3. By the azimuth of the North star.

When the North star is farthest from the meridian, east or west, it is said to be at its greatest eastern or western elongation.

The azimuth of a star is the angle which a vertical plane, through the star, makes with the meridian plane.

Let us now find the azimuth of the North star at its greatest elongation.

Let Z be the zenith, P the pole, Sthe North star at its greatest elongation, ZP, ZS, and PS arcs of great circles. Then ZPS will be a spherical triangle, right-angled at S, and the angle Z will be the azimuth, PS the greatest elongation, and ZP the complement of latitude, since the elevation of the pole above the horizon is equal to the latitude.

Now, from Napier's principles, we have

$$\sin e = \cos l \, \cos \, (90^\circ - Z).$$

 $\therefore \sin Z = \frac{\sin e}{\cos l}$

Introducing R and applying logarithms, we have

 $\log \sin Z = 10 + \log \sin e - \log \cos l$.

Hence, the azimuth is readily computed if we know the greatest elongation of the star and the latitude of the place.

Date.	Elongation.	Date.	Elongation.	Date.	Elongation.
1870	1° 23′ 01″.	1880	1° 19' 50".4	1890	1° 16′ 40″.7
1871	1° 22′ 41″.9	1881	1° 19' 31".4	1891	1° 16′ 21″.8
1872	1° 22′ 22″.9	1882	1° 19' 12".5	1892	1° 16′ 03″
1873	1° 22' 03".8	1883	1° 18′ 53″.5	1893	1° 15′ 44″.1
1874	1° 21' 44".8	1884	1° 18′ 34″.5	1894	1° 15′ 25″.3
1875	1° 21′ 25″.7	1885	1° 18′ 15″.5	1895	1° 15′ 06″.4
1876	1° 21′ 06″.6	1886	1° 17′ 56″.6	1896	1° 14' 47".6
1877	1° 20′ 47″.6	1887	1° 17′ 37″.6	1897	1° 14' 28".7
1878	1° 20′ 28″.5	1888	1° 17′ 18″.6	1898	1° 14′ 09″.9
1879	1° 20′ 09″.5	1889	1° 16′ 59″.7	1899	1° 13′ 51″

Greatest Elongation of Polaris.

The elongation in the table is given for the 1st of January of each year; but the elongation for any month of the year can be readily found.

Thus, let us find the elongation for May 1st, 1873.

Jan. 1st	t, 1873	Elongation	=	1°	22'	03".8
Jan. 1st	t, 1874	, Elongation	=	1.º	21'	44".8
Change	for 12	months	=		7. 11	19"
Change	for 4	months	=			6.3"

Then, for May 1st, 1873, we shall have, Elongation = 1° 22' 03".8 - 6".3 = 1° 21' 57".5.

1. Find the azimuth of the North star at its greatest elongation, May 1st, 1873 — latitude 40°. Ans. 1° 47'.

2. Find the azimuth of the North star at its greatest elongation, July 1st, 1875—latitude 42°. Ans. 1° 49¹/₄.

3. Find the azimuth of the North star at its greatest elongation, Sept. 21st, 1880—latitude 45° 45'.

Ans. 1º 541'.

It will be necessary to know the times of the greatest elongation. These times are given in the following tables, for the 1st, 11th, and 21st of each month of the year 1880, which will answer the purpose for the rest of the century, since the change of time is very slow, being only about 16 minutes in 50 years.

Month.	1st day.	11th day.	21st day.	
April.	6h. 40m. A.M.	6h. 01m. A.M.	5h. 22m. A.M.	
May.	4h. 42m. A.M.	4h. 03m. A.M.	3h. 24m. A.M.	
June.	2h. 41m. A.M.	2h. 01m. A.M.	1h. 22m. A.M.	
July.	0h. 43m. A.M.	0h. 00m. A.M.	11h. 21m. P.M.	
August.	10h. 38m. P.M.	9h. 59m. P.M.	9h. 19m. P.M.	
Sept.	8h. 36m. P.M.	7h. 57m. P.M.	7h. 17m. P.M.	

Eastern Elongation.

Western	Elongation.
11 0000110	LIUTOGUCOUTO.

Month.	1st day.	11th day.	21st day.	
Oct.	6h. 31m. A.M.	5h. 52m. A.M.	5h. 13m. A.M.	
Nov.	4h. 30m. A.M.	3h. 50m. A.M.	3h. 11m. A.M.	
Dec.	2h. 31m. A.M.	1h. 52m. A.M.	1h. 13m. A.M.	
Jan.	0h. 28m. A.M.	11h. 44m. P.M.	11h.04m.P.M.	
Feb.	10h. 22m. P.M.	9h. 42m. P.M.	9h. 03m. P.M.	
March.	8h. 31m. P.M.	7h. 52m. P.M.	7h. 13m. P.M.	

About half an hour before the greatest eastern or western elongation, place the transit in a convenient position, and level it carefully.

Paste white paper on a board about one foot square, and perforate the board through the center with a twoinch auger, and, on the lower edge, fix some contrivance for holding a candle.

Let this board be fixed to a vertical staff, so as to slide freely up and down, and let it be placed about one foot in front of the telescope, so that the light reflected from the paper will render the spider lines visible.

Slide the board up or down the staff till the North star is visible through the telescope and orifice in the board, and bring the vertical spider line in range with the star.

As the star approaches its greatest elongation, move the telescope by a tangent screw, so as to keep the vertical line in range with the star. When the star reaches its greatest elongation, it will appear, for some time, to coincide with the spider line, and then leave it in the opposite direction.

Clamp the horizontal limb, and turn the telescope down till it is horizontal.

Let now a staff, with a light on its upper end, be carried ten or fifteen rods distant, toward the star, and placed so as to range, when vertical, with the vertical spider line of the telescope.

Drive a stake at the foot of the staff, and another directly under the instrument, then will the line determined by the stakes make an angle with the true meridian, equal to the azimuth of the North star. The true meridian will lie west or east of the c line of stakes, north of the telescope, according as the elongation was east or west, and may readily be located by the instrument.

The location of the meridian can be verified thus:

Let AB be the line of the stakes produced to a considerable distance, say from 20 to 40

A

VARIATION OF THE NEEDLE.

chains, A the azimuth angle, AC the true meridian, and BC perpendicular to AB.

BC can be found from the formula,

$BC = AB \tan A.$

Then laying off BC on the ground, and driving a stake at C, the stakes A and C will trace the true meridian.

Having found the true meridian, the variation of the needle can be readily determined by turning the telescope or the sights of the compass in the direction AC.

Without finding the true meridian, the bearing of AB being equal to the known azimuth of the North star at its greatest elongation, the variation of the needle can be found by directing the telescope or the sights of the compass in the direction AB.

The following method may be resorted to by the surveyor who does not possess an instrument with a telescope.

Fix a plank, firmly level, east and west, about three feet above the ground; then take a board about six inches square, and having detached one of the compass sights, fix it to the board, at right angles with its upper edge. Drive a nail obliquely a little way into the board, so that it can be tacked to the plank.

About fifteen feet north of the plank suspend a plumb line, from the top of an inclined stake of such height that the North star, when seen through the sight while the board rests on the plank, will appear about one foot below the upper end of the plumb line.

Suspend the plumb in a vessel of water to prevent the line from vibrating, and let an assistant hold a light near it, so that it can be seen through the sight. About half an hour before the time of the greatest elongation of the North star, place the board on the plank, and slide so that the star and plumb line shall range when seen through the sight. As the star approaches its greatest elongation, move the board along the plank in the opposite direction, so as to keep the range.

When the star reaches its greatest elongation, it will appear to keep the range for several minutes, then it will move slowly in the opposite direction.

Tack the board to the plank, taking care not to change its position. Then let a staff with a light on its top be placed about ten rods farther to the north, so as to range, when vertical, through the sight, with the plumb line.

Drive a stake at the foot of the staff, and one directly under the plumb line, then will the line of the stakes make, with the meridian, an angle equal to the azimuth of the North star at its greatest elongation.

The true meridian, and the variation of the compass, can then be found as above.

FIELD OPERATIONS.

275. Finding Corners.

In searching for a corner, first seek for the monument, whether tree, post, stake, or stone, as given and witnessed in the original field notes, which, if found, must be considered decisive in establishing the corner.

If no monument can be found, the corner can often be found by indirect methods, of which the following are the most available: Thus, if a monument can be found at each of the corners A, C, D, but not at B, find the corners E and F, at each of which set up a flagstaff or high pole, and send the flag-man as near to B as possible, and let him stand facing D, so that he can see signals made both at A and C.

The observer at A can, by waving his hand, bring the flag-man in the line AE, and the observer at Ccan bring him in the line CF, and being in both lines, AE and CF, at the same time, he will be at their intersection B, the corner required.

If the corner E can be found, but not F, measure AB the required distance in the line AE. If the distance AB is not known, but it is simply known that AB is equal to DC, first measure DC. If neither E nor F can be found, run AB parallel to DC, and CB parallel to DA, and the intersection of these lines will determine B, if the field is a parallelogram.

If the field is not a parallelogram, retrace one of the lines terminated by known corners, and compare the bearing with the bearing in the original notes, which will give the variation of the needle. Then run the lines AB and CB from the notes, allowing for the variation, and the intersection will determine B.

In like manner two or more lost corners may be found.

If the bearings and distances are given in the original notes, and but one corner can be found, retrace some established line in the neighborhood to find the variation, and, beginning at the known corner, run the lines from the notes, allowing for the variation.

The importance of allowing for the variation may be illustrated thus:

Let the full lines bound the lot.

If the surveyor should run this lot from the original notes, one corner being known, the dotted lines would

mark the boundaries as run, and their intersections the corners, thus encroaching on one side, and leaving gaps on the other, which of course would never do.

276. Finding Bearings and Distances.

After finding the corners, set a stake at each, and, beginning at any corner, place the compass or transit directly over the stake, and send the flag-man to the next corner, who must place the flag-staff on the stake.

Take the bearing, and measure the distance as heretofore directed; and, in like manner, find the bearings and distances of the remaining sides.

If obstacles should prevent the taking of the bearing of any line, measure the same distance from each corner, at right angles to the line, on the same side, so as to secure a line free from obstacles, and take the bearing of this line, which will be the bearing of the required line, since they are parallel.

Lines are measured a little to one side when fences, ponds, or other obstacles, are in the line.

C

E

D

Thus, if the perpendiculars AC and BD are equal,

$$CD = AB.$$

AB can be found by Trigo- Af nometry, if AE and EB and two angles be measured.

277. Offsets.

Offsets are perpendiculars measured from a line to the angles of a neighboring broken line, or to the banks or centers of creeks, rivers, or other bodies of water. Thus, a, b, c.

278. Taking Field Notes.

First Method.

Second Method.

Sta.	Bearings.	Dist.	2 <u>k</u> 3 43 18.09
1	N. 20° E.	15.50	100 111 111
2	E.	18.00	1
3	S. 20° E.	30.00	N. S.
4	W.	25.00	i with a
5	N. 32 ¹ / ₄ ° W.	16.09	\$ 25.00 5 W

The first method is in the proper form for calculation, and may be conveniently employed when it is not important to make a map of the lot surveyed.

The second method, being a random outline with bearings and distances indicated, may be employed when it is desirable for the surveyor to keep before him, while at work, an outline of the lot.

		Third	l Method.
	68.00	194	Station A
The side of	57.60	- And	Orchard fence
() Restanting	42.00		Oatfield fence
al make a la	26.00	ate and the	Meadow fence
11413 - 140 - 140	14.00	died -	S. Bank of Creek
w. allor is	13.20	Sugar	N. Bank of Creek
State & motor	10.80		Pasture fence
Ann Fall &	4.80	1	S. Bank of River
Station E	\triangle	s.	Left Bank of River
A A A	18.40		N. Bank of River
18 19	17.40	9.60	Offset
- 和学生的 (二)	16.40	9.60	Offset
210.000	10.50	1	
Station D	A	S. 32°E.	Left Bank of River
	34.00		Left Bank of River
P	30.00	1	Right Bank of River
6.	26.00	1	Offset
2	16.40	1462 B	Offset
5.60	7.50	1212.12	Offset
	4.80	6.010	N. Line of Road
Station C	\triangle	N. 63°E	. Right Bank of River
and the second	68.00		Road East
	58.00	4.	Woods
	55.20	3.8	Pond
	48.40	4	N. 210 E.
Alexand House	42.00		Pasture fence
	26.00		Cornfield fence
Sectored sectored	10.52		Wheatfield fence
Station B	A	N. Mid	dle of Turnpike
here and the	40.00	1 North	·Lot Line .
	31.20		Meadow fence
BUILD STATE	24.00	1	Grove fence
Standing a	17.20	1	Dooryard fence
· 保護時間142-14	10.08/	-	Orchard fence
Station A	A	W. Mid	ldle of Turnpike
			(278)

(279)

279. Remarks on the Third Method.

The third method should be employed whenever a map, more or less perfect, is to be made. The notes should be placed on a left-hand page of the field book, and the map on the right page, facing.

By referring to the notes and map illustrating this method, it will be observed that the survey began at A, the S. E. corner of the farm, at the middle of the turnpike, and that we commenced to record the notes at the bottom of the page.

This will keep the notes of the objects, at the right or left of each line run, in their natural position on the page, at the right or left of the parallel lines inclosing the distance from the station at the beginning of the line to the objects worthy of record encountered in running the line.

The character \triangle denotes station, at the left of which stands the letter marking its position on the map, and at the right the bearing of the next course.

A prominent object, such as the chimney of the house, a large tree standing in an open field, may be selected, and its bearings from the principal stations be taken. These bearings will serve as checks against errors in drawing the map, and may aid in finding the corners should they be lost. In the present example, a chestnut tree on the top of a hill, in the pasture at the left of the lane, is selected, and its bearing from A, B, and D given.

280. Surveying Creeks and Roads.

1. Creeks may be *meandered* as described under the head of Survey of the Public Lands.

2. They may also be surveyed by running straight lines connecting points on the bank, taking the bearings of these lines, the distances from the origin of these lines to the perpendicular offsets run from the lines to the bank of the river, and the length of the offsets, as exhibited in the following field notes and plot.

Field Notes.

1.80

E

Station C

The name of stations and the left-hand offsets are noted on the left of the parallels, the righthand offsets and bearings on the

right, the distance from the station to the offsets, and the sign for station, between the parallels.

3. In surveying an existing winding road, keep in the road, run straight lines as far as possible, without running out of the road, note the bearing of these lines, the distances to the offsets at different points to the sides of the road, the lengths of these offsets, and make an accurate plot of the road.

4. To survey a new road, find the bearing of the middle line from the origin to the next angle or intersection with another road, measuring the distance S. N. 24.

from the origin to the lines of farms, creeks, etc., which it intersects.

Set temporary stakes at the angles, and at convenient distances along the middle line, to guide in making the road, and plant monuments at a given distance and bearing from the angular points, so that they will not be disturbed in making or working the road. Take notes, and make a correct plot of the road.

281. Surveying Towns.

Commence at the intersection of principal streets, take their bearings, measure their lengths, noting the distances to the streets and alleys crossed, taking offsets to corners of streets and prominent objects, as public buildings, etc., till a prominent cross-street is reached, which survey in the same manner, changing the courses at such stations as will lead back to the original station.

Survey all the streets and alleys enclosed. Then survey an adjoining district, and so on, till the entire town or city has been surveyed.

Take notes, and make an accurate map of the town, on which locate not only the streets and alleys, but public buildings, parks, fountains, monuments, etc.

282. Reverse Bearing.

N

Λ

B

Let AB be a line run from A to B, ANand BS meridians, then will NAB be the bearing of AB, and SBA will be the reverse bearing.

Since the meridians AN and BS may be regarded as parallel, the bearing and reverse

282

bearing are equal. Thus, if the bearing of AB is N. 30° E., the reverse bearing is S. 30° W.

The bearing and reverse bearing agree in the value of the angle, and differ in both the letters which indicate the general direction of the line. In fact, the reverse bearing of a line is the bearing of the line if run in the opposite direction. Thus, SBA, the reverse bearing of the line AB, run from A to B, is the bearing of the line BA, run from B to A.

Of the letters used in bearings, we shall call N and S latitude letters, and E and W departure letters.

To guard against inaccurate observations, and the disturbance of the needle occasioned by local attraction, the reverse bearing should be taken at every station. If the bearing and reverse bearing agree in value, the bearing may be considered as correctly taken; if they differ materially, both should be taken again. If they still differ, the difference may be regarded as occasioned by local attraction.

To ascertain at which station the local attraction exists, place the instrument at a third station, at a considerable distance from each of the doubtful stations, and sight to each, then from these back to the third station. The local attraction may be considered to exist at the station where the bearing of the third station disagrees with its bearing taken at the third station.

If the error occurred in the foresight, correct it before entering the bearing in the field notes, and note the amount of disturbance; if the error occurred in the backsight, the next foresight will be affected, and should be corrected before entered.

PRELIMINARY CALCULATIONS.

283. Angles between Courses.

1. If the latitude letters are alike, also the departure letters, the included angle is equal to the difference of the bearings.

If AB bears N. 40° E., and AC N. 20° E., $BAC = BAN - CAN = 40^{\circ}$ $- 20^{\circ} = 20^{\circ}$.

If AD bears S. 40° W., and AES. 20° W., $DAE = DAS - EAS = 40^{\circ}$ $-20^{\circ} = 20^{\circ}$.

2. If the latitude letters are alike, and the departure letters unlike, the included angle is equal to the sum of the bearings.

If AB bears N. 38° E., and AC N. 18° W., $BAC = BAN + NAC = 38^{\circ} + 18^{\circ} = 56^{\circ}$.

If AD bears S. 38° W., and AE S. 18° E., $DAE = DAS + SAE = 38^{\circ} + 18^{\circ} = 56^{\circ}$.

3. If the latitude letters are unlike, and the departure letters alike, the included angle is equal to 180° minus the sum of the bearings.

If AB bears N. 45° E., and AE S. 30° E., $BAE = 180^{\circ} - (NAB + SAE)$ $= 180^{\circ} - 75^{\circ} = 105^{\circ}$.

If AD bears S. 45° W., and AC N. 30° W., $DAC = 180^{\circ} - (DAS + CAN)$ $= 180^{\circ} - 75^{\circ} = 105^{\circ}$.

Ď

4. If the latitude letters are unlike, also the departure letters, the included angle is equal to 180° minus the difference of the bearings.

If AB bears N. 45° E., and AC S. 15° W., $BAC = 180^{\circ} - (NAB - SAC) = 180^{\circ} - 30^{\circ} = 150^{\circ}$.

If AD bears S. 45° W., and AE N. 15° E., $DAE = 180^{\circ} - (SAD - D)^{\circ}$ $NAE = 180^{\circ} - 30^{\circ} = 150^{\circ}$.

Remark.—These principles apply when both courses run from or toward the vertex; if one runs from the vertex, and the other toward it, reverse the bearing of one side before applying the principles.

284. Examples.

1. Find the angle A, if AB bears N. 78° E., and AC N. 24° E. Ans. 54° .

2. Find the angle A, if BA bears S. 34° E., and AC S. 48° W. Ans. 98° .

3. Find the angle A, if BA bears S. 70° W., and CA N. 25° E. Ans. 135°.

4. Find the angles of the polygon ABCDE, if AB bears N. 30° E.; BC, N. 60° E.; CD, S. 50° E.; DE, S. 40° W.; EA, N. 78° W.

 $A = 72^{\circ}, B = 150^{\circ}, C = 110^{\circ}, D = 90^{\circ}, E = 118^{\circ}.$

285. Problem.

Given the bearings of the sides of a field, to find the bearings if the field be supposed to revolve, so as to cause one of the sides to become a meridian.

In the following diagram let the full lines denote the original position of the sides of the field, a the side that is to become the meridian, and the dotted lines the revolved position of the sides.

a, N. 30° E. N	a',	N.
b, N. 60° E.	b', 1	N. 30° E.
c, N. 10° E. a	·c', 1	N. 20° W.
d, S. 45° E.	d', 8	5. 75° E.
e, S. 75° E.	e', 1	N. 75° E.
f, S. " a h	f', ϵ	5. 30° E.
g, S. 55° W.	g', S	S. 25° W.
h, S. 20° W.	h', 8	5. 10° E.
i, W. j	i', S	8. 60° W.
j, N. 25° W. /*	j', 1	N. 55° W.
k, N. 80° W. s	k', s	8. 70° W.

From the above illustration we derive the following principles:

1. If the letters which indicate the general direction of the side which is to be made a meridian are both alike or both unlike those of another side, then,

1st. If the bearing of the former is less than that of the latter, the difference of the bearings will be the bearing of the latter, the letters remaining the same as before.

2d. If the bearing of the former is greater than that of the latter, the difference of the bearings will be the bearing of the latter, the departure letter being changed.

2. If one of the letters which indicate the general direction of the side which is to be made a meridian is like and the other unlike the corresponding letter of another side, then, 1st. The sum of the bearings, if less than 90°, will be the bearing of that side, the letters remaining the same as before.

2d. If the sum of the bearings is greater than 90° , its supplement will be the bearing of that side, the latitude letter being changed.

286. Examples.

 The bearings of the sides of a field are as follows: 1st, N. 30° E.; 2d, N. 60° E.; 3d, S. 40° E.; 4th, S. 30° W.; 5th, W.; 6th, N. 18^a/₄° W. Find the bearings of the sides if the second side becomes a meridian.

Ans. 1st, N. 30° W.; 2d, N.; 3d, N. 80° E.; 4th, S. 30° E.; 5th, S. 30° W.; 6th, N. $78_4^{3\circ}$ W.

 The bearings of the sides of a field are as follows: 1st, N. 45° W.; 2d, N. 18° E.; 3d, E.; 4th, N. 32° E.; 5th, S. 42½° E.; 6th, S.; 7th, S. 65¼° W. Find the bearings if the first side be made a meridian.

Ans. 1st, N.; 2d, N. 63° E.; 3d, S. 45° E.; 4th, N. 77° E.; 5th, S. 2½° W.; 6th, S. 45° W.; 7th, N. 69¾° W.

 The bearings of the sides of a field are as follows: 1st, N. 20° E.; 2d, N. 70° E.; 3d, E.; 4th, S. 45° E.;
 5th, S.; 6th, S. 45° W.; 7th, W.; 8th, N. 3³/₄° W. Find the bearings if the sixth side be made a meridian.

Ans. 1st, N. 25° W.; 2d, N. 25° E.; 3d, N. 45° E.; 4th, E.; 5th, S. 45° E.; 6th, S.; 7th, S. 45° W.; 8th, N. 48³/₄° W.

287. Latitude and Departure.

The latitude of a course is the distance between the two parallels of latitude passing through the extremities of the course.

The departure of a course is the distance between the two meridians passing through the extremities of the course.

Let AB be a course, AD and BC parallels of latitude, and AC and BD meridians. Then will AC or DB be the latitude of the course, and CB or AD its departure.

> But $AC = AB \times \cos CAB$, and $CB = AB \times \sin CAB$.

Hence, $latitude = course \times cosine$ of bearing, and $departure = course \times sine$ of bearing.

If the line runs due east or west, its latitude is 0. If the line runs due north or south its departure is 0. Latitude north is considered plus; latitude south, minus. Departure east is considered plus; departure west, minus. For brevity let us designate the bearing by b, the course by c, the latitude by l, and departure by d, then

we shall have the cases given in the following article:

	Given.	Req.	Formulas.				
1	b, c,	l, d.	$l = c \cos b$,	$d = c \sin b.$			
	b, l,		$c=rac{l}{\cos b},$	$d = l \tan b.$			
3	b, d,	c, l.	$c = \frac{d}{\sin b},$	$l = \frac{d}{\tan b}.$			
4	c, l,	b, d.	$\cos b = \frac{l}{c},$	$d = \sqrt{c^2 - l^2}.$			
5	<i>c</i> , <i>d</i> ,	b, l.	$\sin b = \frac{d}{c},$	$l = \sqrt{c^2 - d^2}.$			
6	l, d,	b, c.	$\tan b = \frac{d}{l},$	$c = \sqrt{l^2 + d^2}.$			

288. Table of Cases.

PRELIMINARY CALCULATIONS.

289. Examples.

1. Given $b = N.53^{\circ} 20'$ E., and c = 26.50 ch.; required l and d. Ans. l = 15.82 ch. N., d = 21.26 ch. E.

2. Given b = S. 75° 47′ W., and l = 22.04 ch. S.; required c and d. Ans. c = 89.75 ch., d = 87 ch. W.

3. Given b = N. 35° W., and d = 1.55 ch.W.; required c and l. Ans. c = 2.70 ch., l = 2.21 ch. N.

4. Given c = 35.35 ch., and l = 31 ch. N.; required b and d.

Ans. $b = N. 28^{\circ} 44' E. \text{ or } W., d = 16.99 \text{ ch. } E. \text{ or } W.$

5. Given c = 31.30 ch., and d = 22.89 ch.W.; required b and l.

Ans. $b = N. \text{ or } S. 47^{\circ} W.$, and l = 21.35 ch. N. or S.

6. Given l = 7.02 ch. S., and d = 7.14 ch.W.; required b and c. Ans. $b = S. 45^{\circ} 29'$ W., c = 10.01 ch.

290. Traverse Table.

The traverse table affords a ready method of finding the latitude and departure of a course whose distance and bearing are given.

Let us find the l and d of a line whose b is N. 35° 15′ E., and c = 47.85 ch.

Turning to the traverse table, under 35° 15' we find

	c =	40°	gives	l =	32.67,	d	-	23.09.
	c =	7	gives	l =	5.72,	d	=	4.04.
	c =	.8	gives	l =	.65,	d	=	.46.
	c =	.05	gives	l =	.04,	d	_	.03.
-	<i>c</i> ==	47.85	gives	l =	39.08.	d		27.62.

S. N. 25.

The l and d for 40 are found from the l and d of 4, as given in the table, by multiplying by 10, or removing the decimal point one place to the right.

The l and d for the distance 7 are given in the table, but the right hand figure is dropped, and 1 is carried if the figure dropped exceeds 5.

The l and d for the distance .8 are found from the l and d for the distance 8 by removing the decimal point one place to the left, rejecting the figures at the right of the second decimal place, carrying as above.

For the distance .05, remove the decimal point two places to the left, reject and carry as before.

If the bearing exceeds 45° , the *l* and *d* will be found in columns marked at the bottom of the page.

291. Examples.

1. Given b = N. 28° 45′ E., and c = 35.35 ch.; required l and d. Ans. l = 30.98 ch. N., d = 17 ch. E.

2. Given b = S. 36_4^3 ° E., and c = 19.36 ch.; required l and d. Ans. l = 15.51 ch. S., d = 11.59 ch. E.

3. Given b = N. 53° 15' E., c = 11.60 ch.; required l and d. Ans. l = 6.94 ch. N., d = 9.29 ch. E.

4. Given $b = S. 74\frac{1}{2}^{\circ} E.$, c = 30.95 ch.; required l and d. Ans. l = 8.27 ch. S., d = 29.83 ch. E.

5. Given $b = N. 33^{+}_{4}$ ° W., c = 37 ch.; required l and d. Ans. l = 30.94 ch. N., d = 20.29 ch.W.

6. Find the l and d of the sides of a lot of which the following are the field notes: Commencing at the most westerly station, and running thence N. 52° E., 21.28 ch.; thence S. $29\frac{3}{4}^{\circ}$ E., 8.18 ch.; thence S. $31\frac{3}{4}^{\circ}$ W., 15.36 ch.; thence N. 61° W., 14.48 ch., to the point of beginning.

PRELIMINARY CALCULATIONS.

The work is written thus:

Sta.	Bearings.	Dist.	N. Lat.	S. Lat.	E. Dep.	W.Dep.
1	N. 52° E.	21.28	13.10	0LEI	16.77	
2	S. 29 ³ ° E.	8.18	11 4.05	7.11	4.06	EPS H E
3	S. 31 ³ / ₄ °W.	15.36		13.06	18,511.77	8.08
4	N. 61° W.	14.48	7.02			12.67

292. Balancing the Work.

It is evident that in passing around a field to the point of beginning, we have gone just as far north as south, and just as far east as west. Hence, the sum of the northings should be equal to the sum of the southings, and the sum of the eastings to the sum of the westings.

In practice, however, this is seldom the case, owing to the fact that the bearings are taken only to quarter degrees, and that the chaining is not perfectly correct.

It is not a settled point among surveyors how great an error in latitude or departure can be allowed without resurveying the lot. Some would admit an error of 1 link for every 10 chains in the sum of the courses; others, 1 link for every 3 chains. Each surveyor must settle this point for himself by ascertaining, by experience, how nearly he can make his work balance.

When an error is as likely to occur in one course as in another, the errors of latitude and departure are distributed among the courses in proportion to their length.

It will not, in general, be necessary to make all the proportions, for after making one for latitude and one for departure, the remaining corrections can be made by a comparison of distances.

291

Cur

Sta.	Bearings.	Dist.	NLat.	SLat.	EDep.	WDep.	CNL.	CSL.	CED.	CWD.
1	N.52°E.	21.28	13.10		16.77		13.12	12.43	16.74	
2	S.29 ³ °E.	8.18	120-	7.11	4.06	20	6.1	7.10	4.05	Ep-
3	S.31 ³ °W.	15.36		13.06		8.08		13.05	Qué.	8.10
4	N.61°W.	14.48	7.02		S	12.67	7.03			12.69

Let us take example 6 of the last article.

59.30 20.12 20.17 20.83 20.75 20.15 20.15 20.79 20.79

Error in Lat. = 20.17 - 20.12 = .05. Error in Dep. = 20.83 - 20.75 = .08.

Corrections for Latitude. Corrections for Departure.

59.30 : 21.28 :: .05 : .02.	59.30 : 21.28 :: .08 : .03.
59.30 : 8.18 :: .05 : .01.	59.30 : 8.18 :: .08 : .01.
59.30 : 15.36 :: .05 : .01.	59.30 : 15.36 :: .08 : .02.
59.30 : 14.48 :: .05 : .01.	59.30 : 14.48 :: .08 : .02.

The corrections are made to the nearest link or hundredth.

Since the north latitude is too small, and the south latitude too great, add to each north latitude the corresponding correction, and subtract from the south latitude. In a similar manner correct the departure.

If one side is much more difficult to measure than the remaining sides, it is to be presumed that the error occurred chiefly in measuring that side, and the corrections should be made accordingly.

If, in taking one bearing, the object could not be distinctly seen, the error probably occurred in that bearing; then correct mainly in the latitude and departure of that course.

In practice it will not be necessary to make additional columns for the corrected latitude and departure, since they may be written in the same columns, over the others, with different colored ink.

293. Examples.

1. Find the l and d, and balance the work from the following notes:

1st, N. $34\frac{1}{4}^{\circ}$ E., 8.19 ch.; 2d, N. 85° E., 3.84 ch.; 3d, S. $56\frac{3}{4}^{\circ}$ E., 6.60 ch.; 4th, S. $34\frac{1}{4}^{\circ}$ W., 10.59 ch.; 5th, N. 56° W., 9.60 ch.

2. Find the l and d, and balance the work from the following notes:

1st, N. 5° E., 22.50 ch.; 2d, S. 83° E., 12.96 ch.; 3d, N. 50° E., 19.20 ch.; 4th, S. 32° E., 32.76 ch.; 5th, S. 41° W., 12.60 ch.; 6th, W., 16.86 ch.; 7th, N. 79° W., 21.84 ch.

3. Find the balanced l and d of the following:

1st, N. 30° E., 10 ch.; 2d, N. 60° E., 18.18 ch.; 3d, S. 40° E., 20.10 ch.; 4th, S. 30° W., 24.50 ch.; 5th, W, 15 ch.; 6th, N. 18³/₄° W., 19.92 ch.

294. Double Meridian Distance.

The double meridian distance of a course is double the distance of its middle point from a given meridian.

Let AB be a given course, NS the given meridian, P the middle point of AB, PQperpendicular to NS.

Then will 2 QP be the double meridian distance of AB.

In the following illustration we shall assume that the meridian of reference passes through the most westerly station, which we shall call the principal station, that departures *east* are *plus*, and *west*, *minus*, that the lines were **-**run in the direction

Q

ABCD, so as to keep the field on the right.

The following relations can be verified from the diagram:

1.
$$2QP = EB$$

$$2. \ 2TR = 2QP + EB + FC.$$

3.
$$2VU = 2TR + FC + (-GD)$$
.

4. 2XW = 2VU + (-GD) + (-IA) = AI.

1. The double meridian distance of the first course is equal to its departure.

2. The double meridian distance of the second course is equal to the double meridian distance of the first course, plus the departure of the first course, plus the departure of the second course.

3. The double meridian distance of any course is equal to the double meridian distance of the preceding course, plus the departure of that course, plus the departure of the given course.

4. The double meridian distance of the last course is equal to its departure with its sign changed.

Take the example of a preceding article, as balanced.

Sta.	Bearings.	Dist.	NLat.	SLat.	EDep.	WDep.	DMD.
1	N. 52° E.	21.28	13.12	1944	16.74	A LAL	16.74
2	S. 29 ³ / ₄ ° E.	8.18	4.50.53	7.10	4.05	CH S D CH	37.53
3	S.31 ³ °W.	15.36	double	13.05	2.02	8.10	-33.48
4	N. 61° W.	14.48	7.03		- DA	12.69	12.69

Dep. of 1st course = 16.74 = D.M.D. of 1st course. + dep. of 1st course = 16.74+ dep. of 2d course = 4.05

37.53 = D.M.D. of 2d course.

PRELIMINARY CALCULATIONS.

+ dep. of 2d	course =	4.05
		41.58
+ dep. of 3d	course = -	- 8.10
		33.48 = D.M.D. of 3d course.
+ dep. of 3d	course = -	- 8.10
A ALA CARATE Y	7 9120 B 10	25.38
+ dep. of 4th	course = -	- 12.69
K.		12.69 = D.M.D. of 4th course.

The principal or most westerly station is not always the first station in the field notes.

It will be observed that the word *plus*, in the above principles and illustrations, is used in the algebraic sense, that *east* departure is considered *plus* and *west* departure *minus*; that plus, an east departure, is a plus quantity, and plus a west departure a minus quantity; and that the double meridian distance of the last course is equal to its departure with its sign changed, which will serve as a verification of the work.

The first station of the notes, in the preceding example, is the most westerly, and was therefore taken for the principal station.

The most westerly station can readily be determined by inspecting the bearings of the courses as given in the field notes, and should be taken as the principal station, and the corresponding course as the first course in finding the double meridian distances.

295. Examples.

1. Given the following field notes:

1st, N. 30° E., 10 ch.; 2d, N. 60° E., 18.18 ch.; 3d, S. 40° E., 20.10 ch.; 4th, S. 30° W., 24.50 ch.; 5th, W., 15 ch.; 6th, N. 18° 45' W., 19.92 ch.: Required the

latitude and departure; balance the work, and find the double meridian distances.

2. Given the following field notes:

1st, N. 45° W., 20 ch.; 2d, N. 18° E., 12.25 ch.; 3d, E., 12.80 ch.; 4th, N. 32° E., 6.50 ch.; 5th, S. 422° E., 13.20 ch.; 6th, S., 14.75 ch.; 7th, S. 652° W., 16.30 ch.: Required the corrected latitude and departure, and the double meridian distances.

AREA OF LAND.

296. Table of Linear Measure.

Mi.	Ch.	Rds.	Yds.		Ft.		Lks.		In.
1 =	80 =	320 =	1760	=	5280	=	8000	=	63360.
	1 =	4 =	22	=	66	=	100	-	792.
Sec. 1		1 =	$5\frac{1}{2}$	=	$16\frac{1}{2}$	=	25	=	198.
			1	=	3	=	$4_{\frac{6}{11}}$	-	36.
					1	=	$1\frac{17}{33}$	=	12.
							1	=	$7\frac{23}{25}$.

297. Table of Superficial Measure.

Mile.	Acres.	Roods.	Chains.	Perches.	Links.
1 =	640 =	2560 =	6400 =	102400 =	64000000.
	1 =	4 =	10 =	160 =	100000.
		1 =	$2\frac{1}{2} =$	40 =	25000.
			1 =	16 =	10000.
		. soften	新闻 王家	1 =	625.

Note 1.—It should be remembered that in finding the area of a tract of land the inequalities of its surface are not considered, but the tract is treated as a horizontal plane.

AREA OF LAND.

Note 2.—The area of a portion of land can, in a great, variety of cases, be calculated by the rules already given for *Mensuration of Plane Surfaces*.

298. Problem.

To find the area of a tract of land when the length and direction of the bounding lines are given.

It is evident from the diagram that the area of ABCD is equal to the sum of the trapezoids EBCYand YCDH, minus the sum of the triangles AEB and ADH; and that twice the sum of the trapezoids, minus twice the sum of the triangles, is equal to twice ABCD.

The following table will exhibit the general form of operation:

Sta.	Cour.	NLat.	SLat.	DMD.	Triangles.	Trapezoids.
1	AB	AE		2QP	$2QP \times AE$	The state and
2	BC	1.191	EY	2TR		$2TR \times EX$
3	CD	The state	YH	2VU	a transmission	$2VU \times XH$
4	DA	HA	E. Plant	2XW	$2XW \times HA$	CI PRIA

It will be observed that we have taken the most westerly station for the principal station, and have multiplied the double meridian distance of each course by its latitude, and that the product is double the area of a triangle when the latitude is north, and double the area of a trapezoid when the latitude is south.

If we had taken the most easterly station for the principal station, the reverse would be true.

In the above we have supposed that the lines were run in such direction.as to keep the lot at the right.

If the lines were run in the opposite direction, so as to keep the lot at the left, the reverse would be true.

In any case, the sum of the double areas of the trapezoids, minus the sum of the double areas of the triangles, is equal to double the area required.

299. Rule.

Multiply the double meridian distance of each course by its latitude, placing the product in one column when the latitude is north, and in another column when the latitude is south, and divide the difference of the sums of the two columns by 2, and the quotient will be the area required.

Take the example of a preceding article whose D. M. D.'s have been found.

sta.	Bearings.	Dist.	NLat.	SLat.	EDep.	WDep.	DMD.	Triang.	Trap.						
1	N.52°E.	21.28	13.12	TY S	16.74	(in V	16.74	219.6288	P. I.M.						
2	S.29 ³ °E.	8.18		7.10	4.05	122.0	37.53		266.4630						
3	S.314°W.	15.36	-21	13.05	427	8.10	33.48	1 3	436.9140						
4	N.61°W.	14.48	7.03	S	112	12.69	12.69	89.2107	D T T						
Area = 19 A. 2 R. 36 P. 308.8395															
	a faith and		1.5						308.8395						
					-			2)394.5375						
	Trian	~	\$ 1999			apezoi			197.26875						
	4×13.12					7.10 =			19.726875						
12.6	9×7.03	= 89.	.2107.	33.	48×1	3.05 =	436.91	.40.	4						
Ι	Divide d	louble	the	area	by :	2. the	e res	ult	2.907500						
	Divide double the area by 2, the result $\frac{2.90}{2}$ by 10 to reduce the chains to acres, multi-														
									36.300000						
pry	the de	ecima	i by	A 10	real	bly the decimal by 4 to reduce to roods,									

and the next decimal by 40 to reduce to perches.

300. Plotting.

Plotting is the process of representing, to a given scale, the length, direction, and relative position of the bounding lines of a tract of land.

1st Method.-By means of latitudes and departures.

Take the example of the last article.

Let NS represent the meridian passing through the principal station A.

Select a scale whose unit shall represent 1 ch., and take AE =13.12 ch., the lat. of first course.

Through E draw a line perpendicular to NS; take EB = 16.74 ch., the dep. of first course, and draw AB.

Through B draw a meridian, and take BF = 7.10, the lat. of second course.

Through F draw a line perpendicular to BF; take FC = 4.05 ch., the dep. of second course, and draw BC.

Through C draw a meridian, and take CG = 13.05, the lat. of third course.

Through G draw a line perpendicular to CG, and take GD = 8.10 ch., the dep. of third course, and draw CD.

Through D draw a meridian, and take DI = 7.03 ch., the lat. of fourth course.

Through I draw a line perpendicular to DI; take IA = 12.69 ch., the dep. of fourth course, and draw DA.

Remark 1.—If the departure of fourth course terminates at A, the work will be verified.

2. It will be observed that N. lat. is laid off upward, S. lat. downward, E. dep. to the right, and W. dep. to the left.

3. The auxiliary lines can be drawn with a pencil and afterward erased.

4. If every scale in possession of the surveyor should make the diagram too large or too small, all the latitudes and departures can be divided or multiplied by the same number, and the results taken instead of the given latitudes and departures.

2d Method.-By means of bearings and distances.

Take the same example.

Let NS represent the meridian passing through the principal station A.

With a protractor lay off the angle $NAB = 52^{\circ}$, the bearing of first course, and take AB = 21.28 ch., the first course.

Through *B* draw a meridian, ⁸ and lay off $S'BC = 29_4^3^\circ$, the bearing of second course, and take BC = 8.18 ch., the second course.

Through C draw a meridian, and lay off $S''CD = 31\frac{3}{4}^{\circ}$, the bearing of third course, and take CD = 15.36 ch., the third course.

Through D draw a meridian, and lay off $N'DA = 61^{\circ}$, the bearing of fourth course, and take DA = 14.48 ch., the fourth course, which will terminate at A if the work is correct.

Remark 1.—The latitude and departure letters indicate the general direction of the lines, and the degrees the exact direction.

2. Let the examples of the following article be carefully plotted, and the area be found.

3. By a careful inspection of the bearings, the most westerly station can be found, which take for the principal station.

4. The distances are all given in chains.

Sta.	Bearings.	Dist.
1	N. 30° E.	10.
2	N. 60° E.	18.18
3	S. 40° E.	20.10
4	S. 30° W.	24.50
5	W.	15.
6	N. 18 ³ ° W.	19.92
A	ns. 80 A. 1 R	. 25 P.

1

301. Examples.

Sta.	Bearings.	Dist.					
1	N. 47° E.	15.65					
2	S. 57° E.	10.55					
3	S. 28 ³ / ₄ °W.	17.67					
4	S. 29 ¹ / ₄ °W.	1.11					
5	S. 54° W.	1.04					
6	N. $40\frac{1}{2}^{\circ}$ W.	15.90					
An	s. 23 A. 0 R	. 38 P.					

3.

Sta.	Bearings.	Dist.
1	N. 45° W.	20.
2	N. 18° E.	12.25
3	E.	12.80
4	N. 32° E.	6.50
5	S. $42\frac{1}{2}^{\circ}$ E.	13.20
6	S.	14.75
7	S. 65 ¹ / ₄ ° W.	16.30
1.	59 A 2 P	20 P

Ans. 58 A. 3 R. 30 P.

4.

Sta.	Bearings.	Dist.
1	N. 58° E.	12.97
2	S. 27 ³ °E.	3.30
3	S. 85 ¹ °E.	11.65
4	S. 19° E.	15.56
5	S. $66\frac{1}{2}^{\circ}$ W.	14.03
6	N. 64° W.	14.86
7	N. $15\frac{1}{2}^{\circ}W$.	11.23
A	ns. 45 A. 2 H	8.5 P.

2.

error of el 5. e aniwolfor add to estimate 6. de tal e

Sta.	Bearings.	Dist.
1	N. 20° E.	12.20
2	N. 70° E.	15.50
3	E.	18.25
4	S. 45° E.	20.00
5	S.	20.00
6	S. 45° W.	20.00
7	W.	18.25
8	N. $30\frac{3}{4}^{\circ}$ W.	36.66
An	s. 188 A. 3 H	R. 20 P.

Sta.	Bearings.	Dist.
1	S. 34° E.	4.56
2	S. 66 ¹ / ₄ °W.	13.84
3	N. 12 ³ °E.	12.15
4	N. 48 ¹ °W.	12.30
5	N. 58 ³ °E.	9.92
6	N. 39 ¹ / ₂ °E.	5.22
7	S. 45 ¹ ₄ °E.	18.63
8	S. $52\frac{1}{2}^{\circ}$ W.	10.76
A	ns. 32 A. 2 R	. 26 P.

AN AT TRACT

8.

Sec.	QL 1. 1	- E 1 2 -	Sand BL.	80° E. [18	1. 2.
Sta.	Bearings.	Dist.	Sta.	Bearings.	Dist.
1	N. 30° E.	15.	1	S. 76 ¹ / ₂ °E.	6.69
2	N. 60° E.	15.	2	S. 14 ³ °W.	5.96
3	E.	15.	3	S. 38° E.	9.82
4	S. 60° E.	15.	4	N. 30 ¹ ₂ °E.	8.63
5	S. 30° E.	15.	5	S. 73 ¹ ₄ °E.	9.43
6	S.	15.	6	S. 10 ³ °W.	15.70
7	S. 30° W.	15.	7	S. $42\frac{1}{2}^{\circ}$ W.	13.06
8	S. 60° W.	15.	8	N. 64° W.	11.93
9	W	15.	9	S. 79 ¹ ₄ °W.	10.45
10	N. 60° W.	15.	10	N. $22\frac{1}{2}^{\circ}W$.	11.60
11	N. 30° W.	15.	11	N. 37 ¹ °E.	14.37
12	N.	15.	12	N. 22 ³ °E.	10.79
	Ans 251 9	A +		Ans 76 14	A

Ans. 251.9 A.+

Ans. 76.14 A.-

9 08 3 8 · 85 :- 4

302. Problem.

To find the area when offsets are taken.

Find the area of the tract of land bounded by the full lines and middle of the river, as shown in the annexed diagram.

Having run the stationary line *CD*, we have the following notes.

For Offsets.

Sta.	Bearings.	Dist.	Sta.	Dist.	Offsets.
1	N. 20° E.	15.50	1	1 0.00	2.50
2	E.	18.00	2	7.00	6.00
3	S. 20° E.	30.00	3	· 12.20	4.00
4	W.	25.00	4	22.25	7.00
5_	N. 32 ¹ / ₄ °W.	16.09	5	30.00	2.55

Area = 70 A. 1 R. 33 P.+14 A. 3 R. 8 P. = 85 A. 1 R. 1 P.

We find, as in the last article, ABCDE = 70 A. 1 R. 33 P.

To calculate the area included between the stationary line CD and the line passing along the middle of the river, we find Ca = 7, ab = Cb - Ca = 12.20 - 7 =5.20, etc., which gives the altitudes of the trapezoids. The parallel sides are given under the head of offsets.

The altitude of a trapezoid multiplied by the sum of the parallel sides will give twice its area.

The calculation is made as in the subjoined table, the letters, S., S. D., O., I. D., S. O., D. T., heading the

columns of the table, denoting stations, station distances or distances from C, offsets, intercepted distances, sum of offsets, and double trapezoids.

S.	S. D.	0.	I. D.	S. O.	D. T.
1	0.00	2.50		a Canada C	
2	7.00	6.00	7.00	8.50	59.5000
3	12.20	4.00	5.20	10.00	52.0000
4	22.25	7.00	10.05	11.00	110.5500
5	30.00	2.55 .	7.75	9.55	74.0125

Area, 14 A. 3 R. 8 P.

2) 296.0625

8.500000

If the offsets fall within the stationary line, the sum of the trapezoids must be subtracted.

In general, if the lines are run so as to keep the field on the right, the sum of the trapezoids must be added in case of left-hand offsets, and subtracted in case of right-hand offsets.

In case of \cdot navigable rivers, the bank is, in general, the boundary — the first and last offsets become 0, and the first and last trapezoids become triangles, but the form of the computation is the same.

303. Examples.

1. Find the area of the lot of which the following are the field notes, and make a plot of the survey.

1	Rectilinear Are	ea.	L.H. 0	ffsets.*	R.H. O	ffsets.**
Sta.	Bearings.	Dist.	St.Dist.	Offsets.	St.Dist.	Offsets.
1	N. 45° E.	10.00	0.00	1.00	0.00	1.10
2	N.	10.00	6.50	4.25	5.62	4.00
3	N. 45° E.	10.00	12.50	2.43	12.62	5.27
4	E.	10.00	17.50	5.17	17.07	1.13
5*	S.	31.21	26.21	5.83	1. P 28	
6**	W.	17.07	31.21	1.25	9 002 V	
7	N. 45° W.	10.00	15000			

55.774715 A.+12.17075 A.-6.10160 A.=61 A. 3 R. 15 P.

The left-hand offsets were made from the fifth course, as indicated by the single star; and the right-hand offsets from the sixth course, as indicated by the double star.

2. Find the area of the lot of which the following are the field notes, and make a plot of the survey.

1	Rectilinear Are	ea.	L.H. 0	ffsets.*	R.H. Of	fsets.**
Sta.	Bearings.	Dist.	St.Dist.	Offsets.	St.Dist.	Offsets.
1	N. 30° E.	20.	0.00	0.00	0.00	0.00
2	E,	20.	6.00	3.00	6.00	4.00
3*	S. 30° E.	20.	10.00	2.00	14.00	4.00
4**	S. 30° W.	20.	15.00	3.50	20.00	0.00
5	W.	20.	20.00	0.00	-	
6	N. 30° W.	20.	A STATE	in-au	00.0	

Ans. 102 A. 1 R. 36 P.

304. Pogue's Method of Finding the Area.

This method is illustrated by the following example:

Make a plot from the field notes, draw meridians through the most easterly and westerly stations, and parallels of latitude through the most northerly and southerly, thus enclosing the whole figure in a rectangle.

Find, from the traverse table, the latitudes and departures as in diagram.

To find xy, pass from the most westerly station, round the north, to the most easterly, taking the sum of the eastings minus the sum of the westings; and to find zw, pass from the most easterly station, round the south, to the most westerly, taking the sum of the westings minus the sum of the eastings, thus:

 $\begin{array}{r} xy = 8.38 + 15.27 + 23.96 - 10.66 + 22.75 = 59.70\\ zw = 9.03 + 30.21 + 20.44 & = 59.68\\ \hline 2)119.38\\ \hline \frac{1}{2}(xy + zw) = \text{the average base} = 59.69 \end{array}$

To find wx, pass from the most southerly station, round the west, to the most northerly, taking the sum of the northings minus the sum of the southings; and to find yz, pass from the most northerly station, round the east, to the most southerly, taking the sum of the southings minus the sum of the northings, thus:

 $\begin{array}{rl} wx = 27.86 + 23.02 + 16.38 &= 67.26 \\ yz = & 8.72 + 12.70 + 10.60 + 10.03 + 14.20 + 10.99 &= 67.24 \\ \hline & 2)134.50 \\ \hline & \frac{1}{2}(wx + yz) = \text{the average altitude} = 67.25 \end{array}$

Area of rectangle = $59.69 \times 67.25 = 4014.1525$.

From the area of the rectangle we must deduct the area included between wayz and abcdefghi, thus found.

 $abj = \frac{23.02 \times 8.38}{2} = 96.4538$ $bjxc = \frac{8.38 + 8.38 + 15.27}{2} \times 16.38 = 262.3257$ $ckd = \frac{23.96 \times 8.72}{2} = 104.4656$ $del = \frac{12.70 \times 10.66}{2} = 67.6910$ kyml = (8.72 + 12.70) (22.75 - 10.66) = 258.9678 $emf = \frac{22.75 \times 10.60}{2} = 120.5750$ $fnhg = \frac{10.03 + 14.20 + 14.20}{2} \times 9.03 = 173.5114$ $hnzi = \frac{9.03 + 9.03 + 30.21}{2} \times 10.99 = 265.2436$ $iwa = \frac{20.44 \times 27.86}{2} = \frac{284.7292}{1633.9631}$

abcdefghi = 4014.1525 sq. ch. -1633.9631 sq. ch. = 2380.1894 sq. ch. = 238.02 A.

For additional exercises, work the examples of articles 301 and 303, and compare the answers obtained by the two methods.

SUPPLYING OMISSIONS.

305. Case I.

When the bearing and length of one side are wanting.

The wanting side must be such that its latitude and departure will make the work balance. Hence, its latitude must be the difference between the sum of the northings and the sum of the southings of the given sides, and of the same name as the less; and its-departure must be the difference between the sum of the eastings and the sum of the westings of the given sides, and of the same name as the less.

Having found the latitude and departure of the wanting side, construct a right-angle triangle by drawing on the paper, to represent the latitude, a line, up or down, according as the latitude is north or south; and at the terminus of the line, draw, to represent the departure, a horizontal line, to the right or left, according as the departure is east or west, and join the origin of the line representing the latitude with the terminus of the line representing the departure, and this last line will be the hypotenuse which will represent the course or length of the line sought, and the angle which it makes with the vertical line will be the bearing.

Denote the latitude by l, the departure by d, the course by c, and the bearing by b, then we have,

(1) $c = \sqrt{l^2 + d^2}$. (2) $\tan b = \frac{d}{l}$.

Having found the bearing and distance, enter them in the notes and find the area.

SUPPLYING OMISSIONS.

306. Examples.

Supply the omissions in the following field notes, calculate the areas, and plot the surveys.

1.			2.				
Sta.	Bearings.	Dist.	Sta.	. Bearings.	Dist.		
1	N. 18° E.	9.25	1	N. 24° W.	15.50		
2	N. 71° E.	8.33	2	N. 31° E.	17.07		
3	S. 43 ¹ / ₄ °E.	12.37	3	E.	20.		
4	S. 36 ¹ / ₂ °W.	16.00	4	Wanting.	Want'g.		
5	Wanting.	Want'g.	5	S. 56° W.	30.30		
	(N. 43° W.,	14.18 ch.	-	Ans. $\begin{cases} S. 12\frac{1}{2}^{\circ} E., 12.13 \text{ ch} \\ 56 \text{ A. 3 R. 0 P.} \end{cases}$			
Ans. $\begin{cases} N. 43^{\circ} W., 14.18 \text{ ch.} \\ 23 \text{ A. 3 R. } 32 \text{ P.} \end{cases}$ Ans. $\begin{cases} S. 12\frac{1}{2}^{\circ} E., \\ 56 \text{ A. 3 R.} \end{cases}$. 0 P.		

307. Case II.

When the lengths of two sides are wanting.

Revolve the field so that one of the sides whose bearing only is given shall become a meridian, and find, by article 285, the bearings of all the sides in their new position.

The departure of the side made a meridian will then be 0, and the difference of the sums of the columns of the departures will be the departure, in the new position, of the other side whose distance is wanting.

Knowing the bearing and departure of this side, we can find its distance and latitude. Then the difference between the sums of the columns of latitudes will be the length of the side made a meridian.

Revolve the field to its original position, calculate its area, and make a plot of it; or, if the area only

is required after supplying omissions, it may be computed more readily without revolving the field to its original position.

1. 2.						
Sta.	Bearings.	Dist.		Sta.	Bearings.	Dist.
1	N. 30° E.	10.00		1	N. 47° E.	15.65
2	N. 60° E.	18.18		2	S. 57° E.	10.55
3	S. 40° E.	Want'g.	194	3	S. 28 ³ / ₄ °W.	Want'g.
4	S. 30° W.	Want'g.		4	S. 29 ¹ °W.	-1.11
5	W	15.00	3134	5	S. 54° W.	1.04
6	N. $18\frac{3}{4}^{\circ}$ W.	• 19.92		6	N. $40\frac{1}{2}^{\circ}W$.	Want'g.
(3d. 20.08 ch. (3d. 17.69 ch.						
Ans. 4th. 24.52 ch. Ans. 6th. 16.01 ch.						ch.
(80 A. 1 R. 25 P. (23 A. 1 R. 14 P.						

308. Examples.

309. Case III.

When the bearings of two sides are wanting.

If the sides whose bearings are wanting are separated from each other by one or more intervening sides, suppose one of these sides and a side adjacent to the other to change places, so as to bring the sides under consideration together without changing the bearings or lengths of the sides transposed.

Then, throwing these sides out of consideration, find, by Case I, the bearing and length of the line joining the extremities of the sides whose bearings are wanting.

This line with those sides form a triangle whose sides are known, from which the angles can be computed.

Knowing the angles and the bearing of one side, the bearings of the other sides can be found.

SUPPLYING OMISSIONS.

Restore to their original position the sides which have changed places, if such is the fact, calculate the area, and make a plot of the field.

and the al			2.				
Sta.	Bearings.	Dist.	122 - C	Sta.	Bearings.	Dist.	
1	N. 45° W.	20.00		1	N. 58° E.	12.97	
2	N. 18° E.	12.25		2	S. 27 ³ / ₄ °E.	3.30	
3	E.	12.80	1000	3	S. 85 ¹ °E.	11.65	
4	N. 32° E.	6.50		4	S. 19° E.	15.56	
5	S. $42\frac{1}{2}^{\circ}$ E.	13.20		5	Wanting.	14.03	
6	Wanting.	14.75	Sec.	6	N. 64° W.	14.86	
7	Wanting.	16.30		7	Wanting.	11.23	
(6th. S. (5th. S. 66 ¹ / ₂ ° W.							
Ans. $\left\{ 7\text{th. S. } 65\frac{1}{4}^{\circ}\text{ W.} \right\}$ Ans. $\left\{ 7\text{th. N. } 15\frac{1}{2}^{\circ}\text{ W.} \right\}$							
(59 A.				(45 A. 2 R. 5 P.			

310. Examples.

311. Case IV.

When the bearing of one side and the length of another are wanting.

Revolve the field so that the side whose bearing only is given shall become a meridian.

The departure of this side will then be 0, and the difference of the sums of the columns of departures will be the departure, in its new position, of the side whose bearing is wanting.

Knowing the length and departure of this side, its bearing and latitude can be found.

Then the difference of the sums of the columns of latitudes will be the length of the side made a meridian.

. Revolve the field to its original position, compute the area and plot the work.

Remark 1.—In finding the bearing of the side whose distance only is given, though the angle can be readily found, the bearing, and consequently the latitude, may be either north or south, since either will comply with the condition. The length of the side whose bearing only is given will therefore be ambiguous, and there will be two solutions to the problem. If but one solution is admissible, the omission should be supplied by a remeasurement; and if the lost bearing or distance can not be taken directly, auxiliary lines may be run, and the omissions supplied by Trigonometry.

2. From the fact that two omissions can be supplied, the surveyor should not deem it unimportant to find all the measurements on the ground, since thus he can ascertain the correctness of his notes by balancing his work—a test not applicable when omissions are supplied.

Sta.	Bearings.	Dist.	0.000	Sta.	Bearings.	Dist.
1	N. 20° E.	12.20	1000	1	S. 34° E.	4.56
2	N. 70° E.	15.50	1	2	S. 66 ¹ / ₄ °W.	13.84
3	E.	18.25		3	N. 12 ³ ° E.	12.15
4	S. 45° E.	20.00	the s	4	Wanting.	12.30
5	S.	20.00	inte	5	N. 58 ³ °E.	9.92
6	Wanting.	20.00	Ser.	6	N. 39 ¹ / ₂ °E.	5.22
7	W.	Want'g.		7	S. 45 ¹ ₄ °E.	Want'g.
,8	N. 30_4^3 °W.	36.66	the sector	8	S. $52\frac{1}{2}^{\circ}W$.	10.76
(6th. S. 45° W. (4th. N. 48 ¹ / ₄ ° W.						
Ans. { 7th. 18.25. Ans. { 7th. 18.63.						
(188 A. 3 R. 20 P.				(32 A. 2 R. 26 P.		
						a little states a

312. Examples.

9

1.

LAYING OUT LAND.

LAYING OUT LAND.

313. Laying out Squares.

To lay out a given quantity of land in the form of a square. Let a be the area of the square, and x one side.

Then, $x^2 = a$, $\therefore x = \sqrt{a}$.

Reduce the given area to square chains, extract the square root, and the result will be the length of one side.

With the chain and transit lay out the square on the ground.

EXAMPLES.

1. Lay out 12 A. 3 R. 20 P. in the form of a square.

2. Find the side of a square containing 1 A., and lay out the square on the ground.

314. Laying out Rectangles.

1. To lay out a given quantity of land in the form of a rectangle, one side of which is given.

Let a be the area of the rectangle, b the given side, and x an adjacent side.

Then, bx = a, $\therefore x = \frac{a}{b}$.

2. To lay out a given quantity of land in the form of a rectangle whose length is to its breadth in a given ratio.

Let a denote the area of the rectangle, x its length, y its breadth, and m:n the ratio of x to y.

Then,
$$\begin{cases} xy = a. \\ x : y :: m : n. \end{cases}$$
 \cdots $\begin{cases} x = \sqrt{\frac{am}{n}} \\ y = \sqrt{\frac{an}{m}} \end{cases}$

S. N. 27.

3. To lay out a given quantity of land in the form of a rectangle when the sum of its length and breadth is given.

Let a be the area of the rectangle, x the length, y the breadth, and s the sum of x and y.

Then,
$$\begin{cases} x + y = s. \\ xy = a. \end{cases}$$
 \therefore $\begin{cases} x = \frac{1}{2}s + \frac{1}{2}\sqrt{s^2 - 4a.} \\ y = \frac{1}{2}s - \frac{1}{2}\sqrt{s^2 - 4a.} \end{cases}$

4. To lay out a given quantity of land in the form of a rectangle when the difference of the length and breadth is given.

Let a denote the area of the rectangle, x its length, y its breadth, and d the difference of x and y.

Then,
$$\begin{cases} x - y = d. \\ xy = a. \end{cases}$$
 \therefore $\begin{cases} x = \frac{1}{2}\sqrt{d^2 + 4a} + \frac{1}{2}d. \\ y = \frac{1}{2}\sqrt{d^2 + 4a} - \frac{1}{2}d. \end{cases}$

315. Examples.

1. The area of a rectangle is 3 A., one side is 4 ch. Find an adjacent side and lay out the rectangle.

2. The area of a rectangle is 8 A.; the length is to the breadth as 3 is to 2. Find the sides and lay out the rectangle. Ans. 10.95 ch. and 7.30 ch.

3. The area of a rectangle is 4.8 A.; the sum of the length and breadth is 14 ch. Find the sides and lay out the rectangle. Ans. 8 ch. and 6 ch.

4. The area of a rectangle is 18 A.; the difference of the length and breadth is 3 ch. Find the sides and lay out the rectangle. Ans. 15 ch. and 12 ch.

316. Laying out Parallelograms.

1. To lay out a given quantity of land in the form of a parallelogram when the base is given.

LAYING OUT LAND.

Let a be the area, b the base, and x the altitude.

Then bx = a, $\therefore x = \frac{a}{b}$.

Measure the base, from any point of which erect a perpendicular equal to the calculated altitude.

Through the extremity of the perpendicular run a line parallel to the base, any point of which may be taken for one extremity of the upper base, which may then be measured off on this line.

2. When one side and an adjacent angle are given.

Let a be the area, b the given side, A the given angle, and x the other side adjacent to this angle.

Then bx sin
$$A = a$$
, $\therefore x = \frac{a}{b \sin A}$.

3. When two adjacent sides are given.

Let a be the area, b and c the given sides, and x their included angle.

Then $bc \sin x = a$, $\therefore \sin x = \frac{a}{bc}$.

Remark.—If bc = a, then $\sin x = 1$, $x = 90^{\circ}$, and the parallelogram becomes a rectangle.

If bc < a, the solution is impossible.

317. Examples.

1. The area of a parallelogram is 6 A., the base is 6 ch. Find the altitude and lay out the land.

2. The area of a parallelogram is 12 A., one side is 12 ch., and an adjacent angle is 60°. Find the other side adjacent to the given angle and lay out the land.

3. The area of a parallelogram is 8 A., two adjacent sides are 8 ch. and 12 ch. Find their included angle and lay out the land.

318. Laying out Triangles.

1. To lay out a given quantity of land in the form of a triangle when the base is given.

Let a denote the area, b the base, and x the altitude.

Then,
$$\frac{1}{2}bx = a$$
, $\therefore x = \frac{2a}{b}$.

Measure the base, at any point of which erect a perpendicular equal to the calculated altitude.

Through the extremity of this perpendicular draw a line parallel to the base. This parallel will be the *locus* of the vertex, any point of which may be taken for the vertex.

2. When the base is to the altitude in a given ratio.

Let a denote the area, x the base, y the altitude, and m:n the ratio of the base to the altitude.

Then,
$$\left\{ \begin{array}{c} \frac{1}{2}xy = a. \\ x : y :: m : n. \end{array} \right\} \cdots \left\{ \begin{array}{c} x = \sqrt{\frac{2 \, am}{n}} \\ y = \sqrt{\frac{2 \, an}{m}} \end{array} \right\}$$

3. When the triangle is equilateral. Let a denote the area and x one side.

Then, .4330127 $x^2 = a$, $\therefore x = \sqrt{\frac{a}{.4330127}}$.

4. When one side and an adjacent angle are given.

Let a denote the area, b the given side, x the adjacent side, and A the included angle.

Then, $\frac{1}{2}bx \sin A = a$, $\therefore x = \frac{2a}{b \sin A}$.

* 187 1

5. When two sides are given.

Let a denote the area, b and c the given sides, and x their included angle.

Then, $\frac{1}{2}bc \sin x = a$, $\therefore \sin x = \frac{2}{bc} \cdot$

319. Examples.

1. The area of a triangle is 3 A., the base is 5 ch. Find the altitude and lay out the triangle on the ground.

2. The area of a triangle is 12 A., the base is to the altitude as 3 is to 2. Find the base and altitude and lay out the triangle on the ground.

3. The area of an equilateral triangle is 1 A. Find a side and lay out the triangle.

4. The area of a triangle is 1.2 A., one side is 2 ch., an adjacent angle is 45°. Find the other side adjacent to the given angle and lay out the land.

5. The area of a triangle is 2 A., two sides are 6 ch. and 10 ch. Find the included angle and lay out the triangle.

320. Laying out Circles or Regular Polygons.

1. Let a be the area of the circle, and x the radius.

CREAN

Then, 3.1416
$$x^2 = a$$
, $\therefore x = \sqrt{\frac{a}{3.1416}}$

2. Let a be the area of a regular polygon, x one side, y one angle, n the number of sides, and a' the area of a similar polygon whose side is 1. Article 167.

Then,
$$a'x^2 = a$$
, $\therefore x = \sqrt{\frac{a}{a'}} \cdot y = \frac{180^\circ (n-2)}{n}$.

321. Examples.

1. Find the radius of a circle whose area is 1 A. and lay out the circle. $734\mathcal{E}$

2. Find the sides and angles of a regular hexagon containing 1 A. and lay out the hexagon.

• 3. Find the sides and angles of a regular octagon containing 1 A. and lay out the octagon.

DIVIDING LAND.

322. Division of Rectangles or Parallelograms.

1. To cut off a given area by a line parallel to a given side. Let a be the area, b the given side, x the distance to be cut off on the sides adjacent to b, and A the acute angle of the parallelogram.

For the rectangle, bx = a, $\therefore x = \frac{a}{b}$.

For the parallelogram, $bx \sin A = a$, $\therefore x = \frac{a}{b \sin A}$.

2. When the lot is to be divided into parts having a given ratio, by lines parallel to two of the sides, divide the other sides into parts having the same ratio.

323. Examples.

1. The sides of a rectangle are 15 ch. and 10 ch.; cut off 8 A. by a line parallel to the shorter sides.

2. The adjacent sides of a parallelogram are 12 ch. and 20 ch., and their included angle is 65°; cut off 10 A. by a line parallel to the shorter sides.

3. A man willed that his farm, which was 1 mile long and $\frac{1}{2}$ mile wide, be divided among his three

DIVIDING LAND.

sons, A, B, and C, aged 21 yrs., 18 yrs., 15 yrs., respectively, in proportion to their ages, by lines parallel to the shorter sides. Make the divisions.

324. Division of Triangles.

1. To find a point on a given side of a triangle from which a line drawn to the vertex of the opposite angle will 'divide the triangle into parts having a given ratio.

Let b = AC, the given side; D, the required point; x = AD, and ABD : DBC :: m : n. A

By composition we have,

ABC: ABD:: m + n : m; but ABC: ABD:: b : x.

Hence, m + n : m :: b : x, $\dots x = \frac{bm}{m + n}$

2. Two sides of a triangle being given, to divide the triangle into parts having a given ratio by a line parallel to the third side.

Let a = BC, b = AC, the given sides; x = CE, y = CD, and DEC: ABED :: m : n.

By composition we have,

ABC : DEC :: m + n : m;but $ABC : DEC :: a^2 : x^2 :: b^2 : y^2.$

Hence, $\left\{ egin{array}{l} m+n:m::a^2:x^2,\medskip m+n:m::b^2:y^2. \end{array}
ight\}$ \cdot \cdot $\left\{ egin{array}{l} x=a \ \sqrt{rac{m}{m+n}},\medskip y=b \ \sqrt{rac{m}{m+n}}. \end{array}
ight\}$

If, for example, the triangle is to be divided into three equal parts by lines parallel to the third side, then, The distances cut off on a are $a\sqrt{\frac{1}{3}}$, $a\sqrt{\frac{2}{3}}$. The distances cut off on b are $b\sqrt{\frac{1}{3}}$, $b\sqrt{\frac{2}{3}}$.

3. Two sides of a triangle being given, to cut off, by a line intersecting the given sides, an isosceles triangle having a given ratio to the given triangle.

Let b = AC, c = AB, the two given sides; x = AE = AD, and

ADE : ABC :: m : n.But, $ADE : ABC :: x^2 : bc.$ Hence, $m : n :: x^2 : bc, \dots x = \sqrt{\frac{bcm}{n}}$.

4. Two sides of a triangle being given, to cut off a triangle having a given ratio to the given triangle by a line running from a given point in one of the given sides to the other given side.

Let b = AC, c = AB, the given sides; D, the given point; d = AD, x = AE, and AED : ABC :: m : n.

> But, AED : ABC :: dx : bc. Hence, m : n :: dx : bc, \therefore $x = \frac{bcm}{dn}$.

5. The three sides being given, to divide the triangle into three equal parts by lines running from a given point in one of the sides.

Let a, b, c be the sides of the triangle, respectively, opposite the angles A, B, C; p = AD, q = CD, x = AE, and y = CF.

If x, thus found, is greater than c, both lines will intersect a. Then find y as above.

Let x = CE.

Then,
$$3:2::ab:qx, \therefore x = \frac{2a}{2}$$

If y, found above, is greater than a, both lines will intersect c. Then find x as in first case.

Let AF = y.

Then,
$$3:2::bc:py, \therefore y = \frac{2bc}{3m}$$
.

6. To divide a triangle into four equal triangles, join the middle points of the sides.

The lines ED, EF, and DF are, respectively, parallel to BC, AC, and AB.

EBF = EDF, since each is $\frac{1}{2}$ the parallelogram *BD*. ADE = EDF, since each is $\frac{1}{2}$ the parallelogram *AF*. CDF = EDF, since each is $\frac{1}{2}$ the parallelogram *CE*. Hence, the triangles are all equal, and each is $\frac{1}{4}$ *ABC*.

7. The bearing of two sides being given, to cut off a triangle having a given area by a line of a given bearing intersecting the sides whose bearings are given.

Let ADE be the triangle cut off, a the area of ADE; x = AD and y = AE. The angles A, D, E can be determined from the bearings.

Then, $\left\{ \frac{1}{2}xy \sin A = a. \\ \sin E : \sin D :: x : y. \right\} \cdots \left\{ \begin{array}{l} x = \sqrt{\frac{2 a \sin A}{\sin A \sin A}} \\ y = \sqrt{\frac{2 a \sin A}{\sin A}} \end{array} \right\}$

OI

8. To divide a triangle into two equal parts by lines running from a point within.

Let ABC be the given triangle, and P the given point.

Run a line from P to the vertex A, and another from P to D, the middle point of the opposite side BC. Run DE parallel to PA, and run PE. PD and PE will be the dividing lines, and CDPE will be $\frac{1}{2}$ ABC.

For, draw the line AD, then we have,

CDPE = CDE + PED, and ACD = CDE + AED. But PED = AED, $\therefore CDPE = ACD$. But $ACD = \frac{1}{2}ACB$, $\therefore CDPE = \frac{1}{2}ACB$.

9. Through a given point, within a given triangle, to draw a line which shall cut off a triangle having a given ratio to the given triangle.

Let ABC be the given triangle; a, b, c, the sides opposite the angles A, B, C, respectively; D the point given by knowing p = AF = ED, parallel to AC; q = AF, F = H AE = FD, parallel to AB; x = AH, y = AG, and AGH : ABC :: m : n. Then,

$$x: y:: x - p: q. \\ xy: bc:: m: n. \end{cases} \cdot \cdot \begin{cases} x = \frac{bcm \pm \sqrt{b^2 c^2 m^2 - 4 bcmnpq}}{2 nq} \\ y = \frac{2 bcmq}{bcm \pm \sqrt{b^2 c^2 m^2 - 4 bcmnpq}} \end{cases}$$

Remark. — If either x > b or y > c, the line cuts off the triangle from another angle; and the distances cut off from the vertex of this angle can be found in a manner similar to the above.

322

10. To find a point within a triangle from which the lines drawn to the vertices will divide the triangles into three equal triangles.

Let ABC be the triangle. Take $AD = \frac{1}{3}AB$, $CE = \frac{1}{3}CB$, and draw DE. Take $BF = \frac{1}{3}BA$, $CG = \frac{1}{3}CA$, and draw FG.

P, the intersection of these lines, will be the point required.

For AD : AB :: altitude of APC : altitude ABC. But $AD = \frac{1}{3}AB$, $\cdot \cdot$ altitude $APC = \frac{1}{3}$ altitude ABC.

 $\therefore APC = \frac{1}{3}ABC.$

In like manner, $BPC = \frac{1}{3}ABC$. $\therefore APB = \frac{1}{3}ABC$.

Remark. — If APC, BPC, and APB are to be to each other as p, q, r, take $AD = \frac{p}{p+q+r}$ of AB, $CE = \frac{p}{p+q+r}$ of CB, $BF = \frac{q}{p+q+r}$ of BA, $CG = \frac{q}{p+q+r}$ of CA, and draw DE and FG, their intersection will be the point required.

325. Examples.

1. One side of a triangle is 15 ch.; from what point in this side must a line be drawn to the vertex of the opposite angle so as to divide the triangle into two triangles which are to each other as 2 to 3?

Ans. 6 ch. from one extremity.

2. Two sides of a triangle are 10 ch. and 15 ch., respectively; find the distance from the vertex of the

angle included by these sides, cut off on each of these sides by a line parallel to the third side, dividing the triangle into a triangle and a trapezoid, so that the triangle cut off shall be to the trapezoid as 9 to 16.

Ans. 6 ch. and 9 ch.

3. Two sides of a triangle are 4 ch. and 9 ch., respectively; find the distance from the vertex cut off on each of these sides by a line cutting off an isosceles triangle which shall be to the given triangle as 16 to 25. Ans. 4.80 ch.

4. Two sides of a triangle are 7 ch. and 9 ch., respectively. From a point in one side, 5 ch. from the vertex of the angle included by these sides, a line is run to the other given side, cutting off a triangle which is to the given triangle as 5 to 9. How far from the same vertex does this line intersect that side? Ans. 7 ch.

5. The sides of a triangle, ABC, are a = 6 ch., b = 12 ch., and c = 9 ch. From the middle point of b two lines are run, dividing the triangle into three equal parts. To what points of what sides must the lines be run?

Ans. To c, 6 ch. from A, and to a, 4 ch. from C.

6. The sides of a triangle, *ABC*, are a = 10 ch., b = 12 ch., and c = 4 ch. From a point in b, 3 ch. from A, two lines are run, dividing the triangle into three equal parts. To what points of what side must these lines be run?

Ans. To a, 8.89 ch. from C, and to a, 4.44 ch. from C.

7. The sides of a triangle, ABC, are a = 5 ch., b = 18 ch., and c = 15 ch. From a point in b, 12 ch. from A, two lines are run, dividing the triangle into three equal parts. To what points must these lines be run? Ans. To c, 7.50 ch. from A, and to B.

DIVIDING LAND.

8. In the triangle *ABC*, the side *AB* runs N. 50° E., *AC* runs E. *DE*, running N. 10° W., intersects these lines in *D* and *E*, and cuts off $ADE = 10 \ A$. Required *AD* and *AE*. *Ans.* AD = 16.54, AE = 18.81.

9. In the 9th general problem of the last article, b = 10 ch., c = 12 ch., m = 1, n = 4, p = 2 ch., q = 3 ch. Find x and y. Ans. x = 7.24 ch., y = 4.14 ch.

326. Division of Trapezoids.

1. Given the bases and a third side of a trapezoid, to divide it into parts having a given ratio by a line parallel to the bases.

Let ABCD be the trapezoid, b = AB, b' = CD, s = AD, x = AE, y = EF, the dividing line, parallel to the bases, and ABFE : EFCD :: m : n.

Produce AD and BC to G.

Then, $\begin{cases} ABG : DCG :: b^2 : b'^2. \\ EFG : DCG :: y^2 : b'^2. \end{cases}$

These proportions taken by division give,

 $ABCD : DCG :: b^{2} - b'^{2} : b'^{2},$ $EFCD : DCG :: y^{2} - b'^{2} : b'^{2}.$

Since the consequents are the same, we have,

ABCD : EFCD :: $b^2 - b'^2$: $y^2 - b'^2$.

This proportion taken by division gives,

 $ABFE : EFCD :: b^2 - y^2 : y^2 - b'^2,$

But ABFE : EFCD :: m : n.

 $\cdots b^{2} - y^{2} : y^{2} - b'^{2} :: m : n, \quad \cdots y = \sqrt{\frac{b^{2}n + b'^{2}m}{m + n}}.$

Drawing DH parallel to BC, we have,

AH: EI:: AD: ED,

or b - b' : y - b' :: s : s - x, $\therefore x = \frac{s}{b - b'} (b - y)$.

:.
$$x = \frac{s}{b-b'}(b-\sqrt{\frac{b^2n+b'^2m}{m+n}}).$$

2. Given a side and two adjacent angles of a tract of land, to cut off a trapezoid of a given area by a line parallel to the given side.

1st. When the sum of the two angles $< 180^{\circ}$.

Let a = ABCD = the area cut off, b = AB the given side, x = AD, y = BC, z = DC, $E = 180^{\circ} - (A + B)$.

(1) Area
$$ABE = \frac{1}{2}EB \times EA \sin E$$
.

 $\sin E : \sin A :: b : EB, \quad \therefore \quad EB = \frac{b \sin A}{\sin E}$

 $\sin E : \sin B :: b : EA, \therefore EA = \frac{b \sin B}{\sin E}$

Substituting the values of EB and EA in (1), we have,

$$(2) \quad ABE = \frac{b^2 \sin A \sin B}{2 \sin E}$$

$$. (3) \quad DCE = \frac{b^2 \sin A \sin B}{2 \sin E} - a.$$

But $ABE: DCE:: b^2: z^2$.

 $\cdot \cdot \frac{b^2 \sin A \sin B}{2 \sin E} : \frac{b^2 \sin A \sin B}{2 \sin E} - a :: b^2 : z^2.$

 $\therefore z = \sqrt{b^2 - \frac{2 a \sin E}{\sin A \sin B}}.$

DIVIDING LAND.

Draw DF parallel to EB, then ADF = E and DFA = B.

 $\sin E : \sin B :: b - z : x, \therefore x = \frac{(b - z) \sin B}{\sin E}$

In like manner we shall find $y = \frac{(b-z)\sin A}{\sin E}$. Since z is known, x and y are known.

2d. When the sum of the two angles $> 180^{\circ}$.

E and DC lie on opposite sides of AB.

Let a = ABCD = the area to be cut off, b = AB the given side, x = AD, y = BC, z = DC, $E = A + B - 180^{\circ}$.

By a process similar to that employed in first case, we find,

$$z = \sqrt{b^2 + \frac{2 a \sin E}{\sin A \sin B}}$$
$$x = \frac{(z - b) \sin B}{\sin E}$$
$$y = \frac{(z - b) \sin A}{\sin E}$$

3. To divide a trapezoid into proportional parts by a line joining the bases. $D_{\mu} = \frac{F_{\mu}}{F_{\mu}} C_{\mu}$

Let ABCD be the trapezoid, b and b' the bases, a the altitude, m and n the ratio of the parts.

Nicositari 1 -1

Take
$$AE = \frac{mb}{m+n}$$
, then $EB = \frac{nb}{m+n}$,
also $DF = \frac{mb'}{m+n}$, then $FC = \frac{nb'}{m+n}$.

Then,
$$AEFD = \frac{am(b+b')}{2(m+n)}$$
, and $EBCF = \frac{an(b+b')}{2(m+n)}$.
But $\frac{am(b+b')}{2(m+n)} : \frac{an(b+b')}{2(m+n)} :: m : n$.
 $\therefore AEFD : EBCF :: m : n$.

Remark. — If the line is to be drawn from a given point P, in one base, first divide as above; then, if P is on one side of E, take P' as far on the other side of F, and draw PP'.

This change in the dividing line does not affect the altitude of the parts, nor the sum of their bases, since one is increased as much as the other is diminished, nor, consequently, their area.

A similar process can be employed whatever be the number of parts.

327. Examples.

1. A trapezoid whose bases are b = 15 ch. and b' = 12 ch., and third side s = 10 ch., is divided by a line parallel to the bases into two parts, such that the part adjacent to b is to the part adjacent to b' as 3 to 2. Required the length of the dividing line, and the distance from b cut off on s. Ans. 13.28 ch., and 5.73 ch.

2. Given a side 14.30 ch., and the two adjacent angles, 60° and 70° , respectively, of a tract of land from which 10 A. are to be cut off by a line parallel to the given side. Required the length of the dividing line, and the respective distances from the given side cut off on the adjacent sides.

Ans. 4.05 ch., 12.60 ch., and 11.61 ch.

3. Given a side 10 ch., and the two adjacent angles, 120° and 115°, respectively, of a tract of land, from which 15 A. are to be cut off by a line parallel to the

328

DIVIDING LAND.

given side. Required the length of the dividing line, and the respective distances from the given side cut off on the adjacent sides.

Ans. 20.32 ch., 11.42 ch., 10.91 ch.

4. A trapezoid whose parallel sides are AB = 14 ch., and DC = 7 ch., is divided by the line PP' into two parts which are to each other as 3 to 4; AP = 4 ch., find DP'. Ans. 5 ch.

328. Division of Trapeziums.

1. Given a side, two adjacent angles, and the area of a trapezium, to divide it, by a line parallel to the given side, into parts having a given ratio.

Let ABCD be the trapezium; b = AB, the given side; A and B, the given angles; $G = 180^{\circ} - (A + B)$, a = the area of ABCD, x = AE, y = BF, and ABFE : EFCD :: m : n.

 $\therefore \quad ABFE = \frac{ma}{m+n}, \quad EFCD = \frac{na}{m+n},$ $ABG = \frac{1}{2}BG \times AG \times \sin G.$ $BG = \frac{b}{\sin G} \text{ and } AG = \frac{b}{\sin G} \cdot \frac{b}{\sin G} \cdot \frac{b}{\cos G} \cdot \frac{ABG}{2} = \frac{b^2 \sin A \sin B}{2 \sin G},$ $\therefore \quad EFG = \frac{b^2 \sin A \sin B}{2 \sin G} - \frac{ma}{m+n}$

 $ABG : EFG :: \overline{AG}^2 : \overline{EG}^2, ABG : EFG :: \overline{BG}^2 : \overline{FG}^2.$

Substituting, in the proportions, the values of ABG, EFG, AG and BG, find EG and FG, and substituting the values of AG, EG, BG and FG in the equations,

x = AG - EG and y = BG - FG, we have, S. N. 28.

C

F

в

$$x = \frac{b \sin B}{\sin G} - \sqrt{\frac{b^2 \sin^2 B}{\sin^2 G} - \frac{2 \max B}{(m+n) \sin A \sin G}}$$
$$y = \frac{b \sin A}{\sin G} - \sqrt{\frac{b^2 \sin^2 A}{\sin^2 G} - \frac{2 \max A}{(m+n) \sin B \sin G}}.$$

2. Given the bearings of three adjacent sides of a tract of land, and the length of the middle side, to cut off, by a line running a given course, a trapezium of a given area.

Let a = ABCD, the area cut off; b = AB, the given side; x = AD, y = BC, z = CD.

From the given bearings, find the angles A, B, C, D, E.

$$BE = \frac{b \sin A}{\sin E}$$
 and $AE = \frac{b \sin B}{\sin E}$.

C

$$ABE = \frac{1}{2} BE \times AE \times \sin E = \frac{b^2 \sin A \sin B}{2 \sin E}$$

$$\therefore DCE = \frac{b^2 \sin A \sin B}{2 \sin E} - a.$$

$$DE = \frac{z \sin C}{\sin E}$$
 and $CE = \frac{z \sin D}{\sin E}$.

 $DCE = \frac{1}{2} DE \times CE \times \sin E = \frac{z^2 \sin C \sin D}{2 \sin E}.$

$$\frac{z^2 \sin C \sin D}{2 \sin E} = \frac{b^2 \sin A \sin B}{2 \sin E} - a.$$

 $z = \sqrt{\frac{b^2 \sin A \sin B}{\sin C \sin D}} - \frac{2 a \sin E}{\sin C \sin D}$

Substituting the value of z in the values of DE and CE, then the values of AE, DE, BE and CE in the equations,

DIVIDING LAND.

x	= AE - DE, and $y = BE - CE$, we find,
x	$= \frac{b \sin B}{\sin E} - \sqrt{\frac{b^2 \sin A \sin B \sin C}{\sin^2 E \sin D} - \frac{2 a \sin C}{\sin D \sin E}}.$
y	$= \frac{b \sin A}{\sin E} - \sqrt{\frac{b^2 \sin A \sin B \sin D}{\sin^2 E \sin C}} - \frac{2 a \sin D}{\sin C \sin E}.$
	Remark.—If $A+B > 180^\circ$, the values of x and y are
	$= \sqrt{\frac{b^2 \sin A \sin B \sin C}{\sin^2 E \sin D} + \frac{2 a \sin C}{\sin D \sin E}} - \frac{b \sin B}{\sin E}.$
y	$=\sqrt{\frac{b^2 \sin A \sin B \sin D}{\sin^2 E \sin C} + \frac{2 a \sin D}{\sin C \sin E}} - \frac{b \sin A}{\sin E}.$

3. The bearings of several adjacent sides of a tract of land being given, and the length of each, except the first and last, to cut off a given area by a line of given bearing intersecting the first and last sides.

Let the bearings and distances of AK, KL, LM, MN, NB be given, and the bearings of AD and BC; and let a be the area cut off by CD.

Draw AB; then, in the polygon, ABNMLK, the bearings and distances of all the sides are known,

except AB, which can be computed, and the area of ABNMLK found. Subtract the area thus found from the area to be cut off by CD, and the remainder will be the area of ABCD.

Then, by the last case; find AD and BC.

4. The bearings of the sides of any quadrilateral tract of land and the distances of two opposite sides being given, to divide it into parts having a given ratio by a line of a given course intersecting the other sides.

Let $b = AB$, $c = CD$,
x = AE, y = BF, z = EF,
and $ABFE$: $EFCD$:: m : n .
Find the angles A, B, C, D, E, F, G.
$BG = rac{b \sin A}{\sin G}, AG = rac{b \sin B}{\sin G}, DG = rac{c \sin C}{\sin G},$
$CG = \frac{c \sin D}{\sin G}, FG = \frac{z \sin E}{\sin G}, EG = \frac{z \sin F}{\sin G}.$
the second s
$ABFE = \frac{m \left(b^2 \sin A \sin B - c^2 \sin C \sin D\right)}{2 \left(m+n\right) \sin G}.$
$2 (m+n) \sin G$
$ABFE = \frac{b^2 \sin A \sin B - z^2 \sin E \sin F}{2 \sin G}.$
$ADFE = 2 \sin G$
Equating these values of ABFE, we find,
$\sqrt{nb^2 \sin A \sin B + mc^2 \sin C \sin D}$
$z = \sqrt{\frac{nb^2 \sin A \sin B + mc^2 \sin C \sin D}{(m+n) \sin E \sin F}}.$
Substituting this value of z in the values of FG and
EG; then the values of AG, EG, BG and FG in
x = AG - EG, and $y = BG - FG$, we have,
h sin B sin F [mh ² sin $A \sin B + mc^2 \sin C \sin D$]

 $\frac{b\sin B}{\sin G} - \frac{\sin F}{\sin G} \sqrt{\frac{nb^2 \sin A \sin B + mc^2 \sin C \sin D}{(m+n) \sin E \sin F}}$ $(m+n)\sin E\sin F$ $y = \frac{b \sin A}{\sin G} - \frac{\sin E}{\sin G} \sqrt{\frac{nb^2 \sin A \sin B + mc^2 \sin C \sin D}{(m+n) \sin E \sin F}}$

5. The bearings and distances of the sides of any quadrilateral tract of land being given, to divide it into parts having a given ratio by a line dividing two opposite sides proportionally.

b = AB, c = CD, d = AD,e = BC, x = AE, y = BF,ABFE : EFCD :: m : n, $x:d-x::y:e-y, \quad \therefore y=$

DIVIDING LAND.

From the bearings find the angles A, B, C, D, G.

$$BG = \frac{b \sin A}{\sin G} = p, \text{ and } AG = \frac{b \sin B}{\sin G} = q.$$

$$ABFE = \frac{m (b^2 \sin A \sin B - c^2 \sin C \sin D)}{2 (m + n) \sin G}.$$

$$EFG = \frac{b^2 \sin A \sin B}{2 \sin G} - \frac{m (b^2 \sin A \sin B - c^2 \sin C \sin D)}{2 (m + n) \sin G}.$$

$$\therefore EFG = \frac{nb^2 \sin A \sin B + mc^2 \sin C \sin D}{2 (m + n) \sin G} = s.$$
But $EFG = \frac{1}{2} (q - x) (p - \frac{ex}{d}) \sin G.$

$$\therefore \frac{1}{2} (q - x) (p - \frac{ex}{d}) \sin G = s.$$

$$\therefore x = \frac{dp + eq \pm \sqrt{(dp - eq)^2 + \frac{8des}{\sin G}}}{2e}.$$

6. The bearings and distances of the sides of a quadrilateral being given, to cut off a given area by a line running through a point whose bearing and distance from the vertex of one of the angles are given.

Let a be the area of ABFE, cut off by EF through P.

$$b = AB$$
, $c = CD$, $u = EG$,
 $v = FG$, $x = AE$, $y = BF$.

The bearings give the angles A, B, C, D, PCQ, PCD.

$$BG = \frac{b \sin A}{\sin G}, \quad AG = \frac{b \sin B}{\sin G}, \quad ABG = \frac{b^2 \sin A \sin B}{2 \sin G},$$
$$EFG = \frac{b^2 \sin A \sin B}{2 \sin G} - a = a'.$$

In the triangle DCP we have given CD, CP, and DCP; hence CDP and DP can be found; then PDR =CDR - CDP.

$$PR = DP \sin PDR = p$$
, and $PQ = CP \sin PCQ = q$.

 $EPG = \frac{1}{2}pu$, and $FPG = \frac{1}{2}qv$.

 $\frac{1}{2} \frac{1}{2} u + \frac{1}{2} q v = a'. \\ But \frac{1}{2} uv \sin G = a'. \\ v = \frac{a'}{q} \pm \sqrt{\left(\frac{a'}{p}\right)^2 - \frac{2 a' q}{p \sin G}} \\ v = \frac{a'}{q} \pm \sqrt{\left(\frac{a'}{q}\right)^2 - \frac{2 a' p}{q \sin G}}$ $\therefore \begin{cases} x = \frac{b \sin B}{\sin G} - \frac{a'}{p} \mp \sqrt{\left(\frac{a'}{p}\right)^2 - \frac{2 a' q}{p \sin G}}, \\ y = \frac{b \sin A}{\sin G} - \frac{a'}{q} \mp \sqrt{\left(\frac{a'}{q}\right)^2 - \frac{2 a' p}{q \sin G}}. \end{cases}$

7. The bearings and distances of the sides of a quadrilateral being given, to divide it into four equal parts by two lines intersecting the pairs of opposite sides, respectively, one line being parallel to one side.

Let EF, parallel to AB, and MN, parallel to BC, each divide ABCD into two equal parts; and PQ, parallel to FC, divide EFCD into two equal parts.

Find AE, BF, BM, CN, CP, and FQ, by problem 1 of this article.

 $EF = AB - AE \cos A - BF \cos B.$

Likewise find MN and PQ. NP = CN - CP.

Produce MQ to I, draw NH parallel to IM, and draw HI; then will EF and HI be the lines required.

The line EF is evidently one of the required lines. We are now to prove that HI is the other.

The two triangles, HNI and HNM, are equal, since they have a common base, HN, and a common altitude, their vertices being in IM, parallel to the base.

To each of these equal triangles add AHND, and we have $AHID = AMND = \frac{1}{2}ABCD$.

We are now to prove that HI divides EFCD, and also ABFE into two equal parts.

 $IMH : IQL :: \overline{IM}^2 : \overline{IQ}^2.$ $IMN : IQP :: \overline{IM}^2 : \overline{IQ}^2.$ $. \cdot . IMH : IQL :: IMN : IQP.$ But $IMH = IMN. \quad . \cdot \quad IQL = IQP.$

To each add QFCI, and we shall have,

 $LFCI = QFCP = \frac{1}{2} EFCD.$

Again, HBCI = AHID and LFCI = ELID.

Subtracting the second from the first, member from member, we have,

HBFL = AHLE.

Hence, HI is the other division line required.

Let us now find the situation of the points H and I, on the lines AB and CD, respectively.

$$\begin{split} NM: PQ &:: NP + PI : PI. \\ \therefore NM \times PI &= PQ \times NP + PQ \times PI. \\ (NM - PQ) PI &= PQ \times NP. \\ \therefore PI &= \frac{PQ \times NP}{NM - PQ} \\ \end{split}$$
 Then, CI = CP - PI.

The bearing and length of IM, and the area of ICBM, can be found by Art. 305. IMH = ICBH - ICBM.

If p be the perpendicular from I to AB, $p = IM \sin IMB$. $MH = \frac{2 IMH}{p}$. BH = BM + MH.

329. Examples.

1. A trapezium, one side of which is 20 ch., the adjacent angles 60° and 80° , respectively, and the area 10 A., is divided into two equal parts by a line parallel to the given side. Required the distance from the given side cut off on the adjacent sides.

Ans. 3.04 ch., and 2.68 ch.

2. From a tract of land, the bearings of three of whose adjacent sides are S. 20° W., E, and N. 10° W., and the distance of the middle side is 10 ch., 5 A. are cut off by a line running S. 70° W, and intersecting the first and third of the above mentioned sides. Required the distances cut off on these sides from the middle side. Ans. 4.91 ch., and 7.29 ch.

3. From a tract of land, the bearings of whose sides are S. 38° E., S. 29_4^3 ° E., S. 31_4^3 ° W., N. 61° W., and N. 10° W., respectively, and the distance of the second, third, and fourth sides are 8.18 ch., 15.36 ch., and 14.48 ch., respectively, 39 A. 2 R. 36 P., are cut off by a line running N. 80° E., and intersecting the first and last sides. Required the distances cut off on these sides respectively. Ans. 7.01 ch., 16.19 ch.

4. A tract of land, the bearing and distances of whose sides are AB, E. 22.21 ch.; BC, N.; CD, N. $56\frac{1}{2}^{\circ}$ W., 12. ch.; DA, S. 24° W., is cut by EF running S. $76\frac{1}{2}^{\circ}$ E., intersecting AD and BC, and dividing the field so that ABFE : EFCD :: 5 : 3. Required AE and BF. Ans. AE = 16.50. ch., BF = 11.34 ch.

5. A trapezium whose sides are AB = 20.45 ch., BC = 21.73 ch., CD = 13.98 ch., DA = 13.32 ch., and whose angles are $A = 974^{\circ}$, $B = 64^{\circ}$, $C = 894^{\circ}$, $D = 109^{\circ}$, is divided into two equal parts by the line EF, dividing AD and BC proportionally. Required AE and BF. Ans. AE = 6.22 ch., BF = 10.15 ch.

6. Within a tract of land whose sides are -1st. E. 45.58 ch.; 2d. N. $13\frac{1}{2}^{\circ}$ W., 40.86 ch.; 3d. S. 82° W., 30.40 ch., 4th. S. $9\frac{1}{2}^{\circ}$ W., 36 ch. — there is a spring whose bearing and distance from the 3d corner is S. 21° W., 15.80 ch. It is required to cut off 40 A. from the north side of this tract by a line running through the spring and intersecting the 2d and 4th sides. Required the distance from the 1st corner to the point of intersection on the 4th side. Ans. 26.73 ch.

7. A tract of land whose boundaries are—1st. E. 23.24 ch.; 2d. N. $11\frac{1}{4}^{\circ}$ W., 15.25 ch.; 3d. N. $51\frac{1}{2}^{\circ}$ W., 11.50 ch.; 4th. S. 27° W., 24.82 ch.— is to be divided into four equal parts by two lines, one parallel to the first side, the other intersecting the first and third sides. Required the distances cut off by the parallel from the first and second corners, measured on the fourth and second sides, respectively; also the distances cut off by the other line from the first and fourth corners, measured on the first and third sides, respectively.

Ans. 8.57 ch., 7.79 ch., 10.66 ch., 3.15 ch.

330. Division of Polygons.

1. From a given point in the boundary of a tract of land, the bearings and distances of whose sides are given, to run a line which shall cut off a given area.

Let A be the point, and suppose it probable that the dividing line will terminate on DE. Suppose the closing line AD to be run, the bearing and distance of which can be found on the

S. N. 29.

ground by observation and measurement, or, as in supplying omissions, from the bearings and distances of AB, BC, and CD. Compute the area of ABCD, which, if less than the area to be cut off, subtract from that area, which gives the addition, a, to ABCD. The bearings of AD and DE give the angle ADE.

The perpendicular, $AG = AD \sin ADG$.

Then, if AP is the dividing line, $DP = \frac{a}{\frac{1}{2}AG}$.

If DP > DE, run another closing line AE, and proceed as before.

If ABCD is greater than the area to be cut off, subtract the area to be cut off from ABCD and divide the difference by one-half the perpendicular from A to CD, and the quotient, if less than DC, will be the distance from D to the point on DC to which the division line is to be drawn.

If the quotient is greater than DC, run another closing line, AC, and proceed as before.

2. Through a given point within a tract of land, the bearings and distances of whose sides are given, to run a line which shall cut off a given area.

Let P be the given point. Run a trial line, AB, and calculate the area which it cuts off.

Let d be the difference between this area, which we will suppose too small, and the area to be cut off.

Let CD be the division line required.

d = APC - BPD.

338

Let m = AP, and n = PB, which measure; find the angle PAC, also PBD. We are to find the angle P.

$$C = 180^{\circ} - (A + P) \text{ and } D = 180^{\circ} - (B + P).$$

$$\therefore \text{ sin } C = \sin (A + P) \text{ and } \sin D = \sin (B + P).$$

$$PC = \frac{m \sin A}{\sin (A + P)}, \quad AC = \frac{m \sin P}{\sin (A + P)},$$

$$\therefore APC = \frac{m^2 \sin A \sin P}{2 \sin (A + P)}.$$

$$PD = \frac{n \sin B}{\sin (B + P)}, \quad BD = \frac{n \sin P}{\sin (B + P)},$$

$$\therefore BPD = \frac{n^2 \sin B \sin P}{2 \sin (B + P)}.$$

$$d = \frac{m^2 \sin A \sin P}{2 \sin (A + P)} - \frac{n^2 \sin B \sin P}{2 \sin (B + P)}.$$

$$\therefore 2d = \frac{m^2}{\cot P + \cot A} - \frac{n^2}{\cot P + \cot B}.$$

Use natural co-tangents, find cot P, and then P.

331. Examples.

1. The boundaries of a tract of land are: AB, W. 25 ch.; BC, N. $32\frac{1}{4}^{\circ}$ W., 16.09 ch.; CD, N. 20° E., 15.50 ch.; DE, E. 25 ch.; EF, S. 30° E.; and FA, S. 25° W., to the point of beginning. A line is run from A, cuttingoff 70 A. 1 R. 33 P. from the west side. Required the second point in which this line cuts the boundary.

Ans. The side DE, 18 ch. East of D.

2. It is required to run a line through a point, P, within a field, so as to cut off 10 A. A guess line through P, intersecting opposite sides in A and B, cuts off 9 A. Required the angle which the true division line, CD, makes with AB, if AP = 12 ch., PB = 4 ch., $PAC = 90^{\circ}$, $PBD = 60^{\circ}$. Ans. 8° 48'.

LEVELING.

332. The Y Level.

The Y level, so called from the form of the supports in which the telescope rests, is exhibited in the arnexed engraving.

The telescope is inclosed in rings, by which it can be revolved in the Y's or clamped in any position.

The Y's have each two nuts, adjustable with the steel pin, and the rings are clamped in the Y's by bringing the clips firmly on them by means of tapering Y pins.

The interior construction of the telescope is exhibited in the following figure.

The rack and pinion, AA and CC, are contrivances, the first for centering the eye-piece, and the second for insuring the accurate projection of the object-glass in a straight line.

The level is a ground bubble tube, attached to the under side of the telescope, and furnished at each end with arrangements for the usual movements in both horizontal and vertical directions.

The tripod head is similar to that in the transit.

333. Adjustments.

1. To adjust the line of collimation, set the tripod firmly, remove the Y pins from the clips, so that the telescope shall turn freely, clamp the instrument to

the tripod head, and by means of the leveling and tangent screws, bring either of the wires to bear on a clearly marked edge of an object, distant from two to five hundred feet.

Turn the telescope half-way round, so that the same wire is brought to bear on the same object.

Should the wire not range with the object, bring it half-way back by moving the capstan head screws, BB, at right angles to it, in the opposite direction, on account of the inverting property of the eye-piece, and repeat the operation till it will reverse correctly.

Proceed in like manner with the other wire.

Should both wires be much out, adjust the second after having nearly completed the adjustment of the first, then complete the adjustment of the first.

To bring the intersection of the wires into the center of the field of view, slip off the covering of the eyepiece centering screws, shown at AA, and move, with a small screw-driver, each pair in succession, with a direct motion, as the inversion of the eye-piece does not affect this operation, till the wires are brought, as nearly as can be judged, into the required position.

Test the correctness of the centering by revolving the telescope and observing whether it appears to shift the position of an object.

If the position of the object is shifted by revolving the telescope, the centering is not perfectly accomplished.

Continue the operation till the centering is perfect.

2. To adjust the level bubble, clamp the instrument over either pair of leveling screws, and bring the bubble to the middle.

Revolve the telescope in the Y's so as to bring the level tube on either side of the center of the level bar.

LEVELING.

Should the bubble run to one end, rectify the error by bringing it, as nearly as can be estimated, half-way back with the capstan screws in the level holder.

Again bring the level over the center of the bar, and bring the bubble to the center; turn the level to one side, and, if necessary, repeat the operation till the bubble will keep its position when the tube is turned to either side of the center of the bar.

Now bring the bubble to the center with the leveling screws, and reverse the telescope in the Y's without jarring the instrument. Should the bubble run to either end, lower that end, or raise the other by turning small adjusting nuts at one end of the level till, by estimation, half the correction is made.

Again bring the bubble to the middle, and repeat the operation till the reversion can be made without causing any change in the bubble.

3. To adjust the Y's, or to bring the level into a position at right angles with the vertical axis, so that the bubble will remain in the center during an entire revolution of the instrument, bring the level tube directly over the center of the bar, and elamp the telescope in the Y's, placing it, as before, over two of the leveling screws, unclamp the socket, level the bubble, and turn the instrument half-way around, so that the level bar may occupy the same position with respect to the leveling screws beneath.

Should the bubble run to either end, bring it halfway back by the Y nuts on either end of the bar.

Now move the telescope over the other set of leveling screws, bring the bubble again into the center, and proceed as before, changing to each pair of screws, successively, till the adjustment is nearly completed, which may now be done over a single pair of screws.

334. The Use of the Level.

Set the legs firmly in the ground, test the adjustments, making corrections if necessary.

Bring the wires precisely in the focus, and the object distinctly in view, so that the spider lines will appear fastened to the surface of the object, and will not change in position however the eye be moved.

The bubble resting in the middle, the intersection of the spider lines will indicate the line of apparent level.

335. Leveling Rod.

The New York Leveling Rod, represented in the engraving with a piece cut out of the middle, so that both ends may be exhibited, consists of two pieces, one sliding from the other.

The graduation commences at the lower end, which is to rest on the ground, and is made to tenths and hundredths of a foot.

A circular target, divided into quadrants of different colors, so as to be easily seen, moves on the front surface of the rod, which reads to six and one-half feet.

If a greater height is required, the horizontal line of the target is fixed at $6\frac{1}{2}$ feet, on the front surface, and the upper part of the rod, which carries the target, is run out of the lower, and the reading is obtained on the graduated side up to an elevation of twelve ft.

A clamp screw on the back is used to fasten the rods together in any position.

LEVELING.

336. Definitions.

A level surface is the surface of still water, or any surface parallel to that of still water.

Such a surface is convex, and conforms to the spheroidal form of the earth.

A level line is a line in a level surface.

The difference of level of two places is the distance of one above or below the level surface passing through the other.

Leveling is the art of ascertaining the difference of level of two places.

The apparent level of any place is the horizontal plane tangent to the level surface at that place.

The line of apparent level of any place is a horizontal line, tangent to a level line at that place.

The Y Level indicates the line of apparent level and not the true level, which is a curved line.

The correction for curvature is the amount of deviation for a given distance of the line of apparent level from the line of true level to which it is tangent at the point from which the distance is measured.

337. Problem.

To compute the correction for curvature.

Let t denote the tangent, c the correction for curvature, d the diameter of the earth.

Then, by Geometry, we have,

$$(d+c) c = t^2, \quad \therefore c = \frac{t^2}{d+c}$$

Since c is very small compared with d, it can be dropped from the denominator without sensibly affecting the result.

$$\cdot \quad c = \frac{t^2}{d} \cdot$$

The arc, which is the distance measured, will not differ perceptibly from the tangent, for all distances at which observations are made, and may be substituted for it.

Calling another distance, t', and the corresponding correction, c', we have,

$$c' = \frac{t'^2}{d} \cdot \qquad \cdots \quad c : c' :: t^2 : t'^2.$$

1. The correction for curvature, for a given distance, is equal to the square of the distance divided by the diameter of the earth.

2. The corrections for different distances are to each other as the squares of the distances.

Let us find the correction for the distance 100 chains, calling the diameter of the earth 7920 miles.

$$c = \frac{100^2 \times 66 \times 12}{7920 \times 80} = 12.5$$
 inches.

The correction for any other distance, for example, 5 ch., can be found from the proportion.

 $100^2 : 5^2 :: 12.5 : c, \dots c = .031$ inches. For 1 mile, $100^2 : 80^2 :: 12.5 : c, \dots c = 8$ inches. For m miles, $1^2 : m^2 :: 8 : c, \dots c = 8 m^2$ in.

A correction for refraction is sometimes made by diminishing the correction for curvature by $\frac{1}{6}$ of itself.

If the leveling instrument is placed midway between the two places whose difference of level is to be found, the curvature and refraction on the two sides of the

346

LEVELING.

instrument balance, and the difference of apparent level will be the difference of true level.

338. Problem.

To find the difference of level of two places visible from a point midway between them or from each other, when the difference of level does not exceed twelve feet.

Let A and B be the two places, and C the place midway from which both are visible.

Place the level at C, and let the rod-man set up the leveling rod at A, and slide the vane till he learns, by signals from the surveyor at the level, that its horizontal line is in the line of apparent level. Let the height be accurately observed and noted, and the rod be transferred to B, and the height observed and noted as before.

The difference of these heights will be the difference of level.

If a gully intervene, so that the line of apparent level, from the intermediate station, would not cut the rod, place the instrument at one station, and take the height on the staff at the other station marked by the vane when in the line of apparent level, from which subtract the height of the instrument, and the difference corrected for curvature and refraction will be the difference of level required.

339. Problem.

To find the difference of level of two places which differ considerably in level, or which can not be seen from each other.

Let A and D be the places whose difference of level is required.

Place the level at the station L, midway between two convenient points, A and B. Take the backsight to A, and note the height of E. Send the rod to B, and note the height of the foresight at F. Remove the level to M, note the height of the backsight at G and the foresight at H. Remove the level to N, note the height of the backsight at I, and the foresight at J.

Then will the difference of the sum of the backsights and the sum of the foresights be the difference of level of A and D.

For, we find for the sum of the backsights,

AE + BG + CI = AE + BF + FG + CI.

And, we find for the sum of the foresights,

BF + CH + DJ = BF + CI + IH + DJ= BF + CI + PG.

The sum of the backsights, minus the sum of the foresights, = AE + FG - PG = -AK = difference of level, which in the field notes is denoted by *D*. *L*. If the sum of the foresights exceeds the sum of the backsights, the point D is below A; if the reverse were true, the point D would be above A, as indicated by the sign.

It is not essential that the intermediate stations be directly between the places.

Stations.	Backsights.	Foresights.
1.001.00.00	5.40	1.50
2	3.12	5.25
3	2.40	8.16
Sums	10.92 14.91	14.91
D. L. =	= - 3.99	

340. Field Notes.

341. Leveling for Section.

Leveling for Section is leveling for the purpose of obtaining a section or profile of the surface along a given line.

A Bench-mark is made to indicate the beginning of the line by drilling a rock or driving a nail into the upper end of a post. Such marks should be made at different points along the line, to serve as checks in case of a new survey.

It is necessary also to measure the distance between the stations. The bearings of the lines should be taken in case a map or plot is to be made, representing the horizontal surface.

In the following table of specimen field notes, S. denotes stations; B., bearings; D., distances; B. S., back-sights; F. S., foresights; B. S. -F. S., backsights minus foresights; T. D. L., total difference of level; R., remarks, and B. M., bench-mark.

The numbers in the column headed B. S. - F. S. are obtained by subtracting each foresight from the corresponding backsight, observing to write the proper sign.

The numbers in the column headed T. D. L. are obtained by continued additions of the numbers in the column B. S. -F. S, each being the sum of the backsights minus the sum of the foresights, up to a given point, expresses the distance of that point above or below the bench-mark at the beginning of the line.

The minus sign of a result indicates that the sum of the foresights exceeds the sum of the backsights, and hence, that the corresponding station is below the first station; the plus sign indicates the reverse.

In order to bring out prominently the difference of level, the vertical distances are usually plotted on a much larger scale than the horizontal.

Let us suppose the numbers in the column D. express chains, and that the numbers in the following columns express feet.

In the following profile section the horizontal distances are plotted to the scale of 20 chains to an inch, and the vertical distances to the scale of 20 feet to an inch.

The profile of the section is therefore distorted, the vertical distances being 66 times too great to exhibit their true proportion to the horizontal distances.

The horizontal line, AG, through the point of beginning is called the *datum line*.

350

RAILROADS.

342.	Fie	14	No	tes.
UTA.	T. 10	JIU	NU	103.

S.	<i>B</i> .	D.	B. S.	F. S.	BSFS.	T.D. L.	R.
1	N.	10.00	3.25	11.63	- 8.38	- 8.38	BM. on post.
2	N.	14.00	4.80	10.20	- 5.40	-13.78	
3	N.	8.25	12.00	1.40	+10.60	- 3.18	BM. on rock.
4	N.10°E.	12.00	10.80	2.30	+ 8.50	+ 5.32	Negota bui
5	N.10°E.	10.75	1.18	12.00	- 10.82	- 5.50	and so in the
6	N.	10.00	2.15	8.40	- 6.25	-11.75	BM. on oak.

343. Profile of Section.

SURVEYING RAILROADS.

344. General Plan.

The surveys for the construction of railroads, applicable also to canals, graded pikes, dikes, etc., are made in the following order.

1. The reconnoissance, to locate the route. The termini being agreed upon, sometimes several routes are examined, so that an approximate judgment can be formed in reference to the economy of construction and purchasing the right of way, the amount of stock taken at different towns along the route, and the profits from local business.

2. The transit survey, to determine definitely the

middle line along the surface, after the route has been decided upon by the preliminary reconnoissance.

3. The section leveling, to determine the profile of the middle line along the surface.

4. The cross-section work, to determine the position and slopes of the sides, so that the amount of earth to be removed or filled can be estimated.

345. Section Leveling.

Section leveling is simply an application, with slight modifications, of leveling for section, before described.

The first bench-mark is assumed at some convenient point near the beginning of the line, and its location described in the column of remarks.

The datum line is generally assumed at such a depth below the first bench-mark—for example, at mean high-tide water, in case one end of the route is in the vicinity of tide-water—that its whole length shall be below the section line at the surface.

The engineer's chain, 100 feet in length, is usually employed in taking the horizontal distance.

A turning-point is a hard point chosen as far in advance as possible, but not necessarily in exact line, upon which the rod rests while a careful reading is taken just before it is necessary to change the position of the instrument, whose exact height above the datum line thus becomes known in the new position.

The difference between a *turning-point* and a *bench* is this:

A turning-point is merely a temporary point, neither marked nor recorded, used to determine the height of

352

RAILROADS.

the instrument in a new position. A bench is both marked and noted, and thus made permanent.

If, however, it is thought best to make a turningpoint permanent, it is marked and recorded, and becomes a bench.

In order that a bench be not destroyed in constructing the road, it should be a little removed from the line surveyed. The location of the benches should be carefully noted, so that they may be readily found from the field notes.

The plus sights are the first readings of the rod, made after each new position of the instrument, as the rod stands on a bench or turning-point, and are taken to thousandths of a foot.

The minus sights are the other readings, and are taken to tenths, except the last minus sight, before the position of the instrument is changed, which, being taken as the rod stands on a turning-point or bench, is taken to thousandths.

The height of the instrument above the datum line is equal to a plus sight, plus the height of the corresponding bench or turning-point.

The height of the surface above the datum line, at any position of the rod, is equal to the height of the instrument, minus the corresponding backsight.

These heights are taken at intervals of 1 chain, and at intermediate points where the irregularity of the surface is deemed sufficient to render it important.

In the following field notes D. denotes distance; B., bench; T. P., turning-point; +S., plus sight; H. I., height of instrument; -S, minus sight; S. H., surface height; G. H., grade height; C., cut; F., fill; R., remarks.

S. N. 30.

D.	+ S.	H. I.	— <i>S</i> .	S. H.	G. H.	С.	F.	R.
B	2.911	32.911		30.				B. 50 ft.
0.		NOVE THE	3.4	29.5	29.5			E. of
1.	No. 22	制产生	4.9	28.0	26.5	1.5		0 stake.
2.	and di	annapi	12.7	20.2	23.5	10.25	3.3	all se
3.	1.516	Sales and	4.1	28.8	20.5	8.3		No. P. Line
T. P.	2.243	23.755	11.399	21.512	19.2	2.3		1 All Charles
4.			2.0	21.8	17.5	4.3		
5.			12.5	11.3	14.5		3.2	
5.6	Altre -	graps -	4.6	19.2	12.7	6.5	SF SE	op and the
6.		Ser Hu	12.3	11.5	11.5			

346. Field Notes.

The numbers in the horizontal column, *T. P.*, are found thus: The -S., 11.399, is obtained from the first position of the instrument by the reading of the rod on *T. P.* 21.512 = 32.911 - 11.399. The + *S.*, 2.243, is the reading of the rod from the new position of the instrument. 23.775 = 21.512 + 2.243. The cutting or filling is the difference of *S. H.* and *G. H.*

347. Profile of Section and Grade.

RAILROADS.

348. Remarks.

1. The grade height at 0, minus the grade at 6, which is 29.5 - 11.5 = 18 = the descent from 0 to 6. $18 \div 6 = 3 =$ the descent for 1 chain, 29.5 - 3 = 26.5 =*G. H.* at 1; 26.5 - 3 = 23.5 = G. *H.* at 2, etc.

2. The establishment of the grade is influenced by the object of the work, economy, the balance of cuttings and fillings, the points desirable for termini, etc.

3. The method exhibited above may be extended to any distance.

349. Example.

Fill out the notes of the following table, and make a profile of section and grade from S. H. at 0 to S. H. at 5.

D.	+ <i>S</i> .	H. I.	— <i>S</i> .	S. H.	G. H.	<i>C</i> .	F.	R.
<i>B</i> .	6.248	36.248		30	20.9	av ed	S mark	B. 20 ft.
0	11 Stal	le cash	5.3	30,1	2122	1 246	11.51	S. of 0.
1	Weither,	Perchat	9.8	26,4	312	moñ.	Bont	Bails an!
2	Sector	Ten Sal	2.3	53,	31.14	and the	and a start	Mature
T. P.	10.718	33.142	11.814	24.42	32+0		Sala.	
3	19, TH 19		7.6	27.2	3219			
4	S. R. R.	R. M.	12.0	23.1	32,50		日本電	PERSONAL PROPERTY.
5			2.1	33.	33 00			Same I

350. Cross-Section Work.

Excavations and embankments are constructed with sloping sides, in order to prevent the sliding of earth down the surface.

The ratio of slope is the vertical distance divided by the horizontal, and is therefore the tangent of the angle which the sloping surface makes with a horizontal plane.

The usual ratio of slope is $\frac{2}{3}$, and the angle 33° 41'.

Slope stakes are driven to mark where the sloping sides, whether of cutting or filling, will intersect the surface, and thus indicate the boundaries of the work.

The rod used in cross-section leveling is 15 feet long, graded and plainly marked to feet and tenths, and is read by the leveler at the instruments.

The assistants of the leveler are the rodman, axman, and two tapemen.

The Field book is ruled into four columns, headed D. for distance; L. for left; C. C. for center-cut; R. for right.

The numbers in the columns *D*. and *C*. *C*. are, respectively, the distance and the corresponding cut, or fill marked minus cut, taken from the field book for section leveling.

The fractions in the columns L and R have for their numerators the vertical distances of the cross-section, and for their denominators, the corresponding horizontal distances, from the center or from the vertex of the angle of slope, according as the vertical distance is taken within or without the limits of the horizontal portion of the road.

351. Cross-Section Excavations.

We give the following profile of cross-section, the method of performing the field operations and recording the notes.

Let us suppose the cross-section to be taken at the distance 3 of the field notes of article 343, where the center cut is 8.3; that the road bed is 20 feet wide, that the ratio of slope is $\frac{2}{3}$, and that both horizontal and vertical distances are plotted to the scale of 20 feet to 1 inch.

Take AA' for the datum line, and suppose the reading at the center stake to be 7.4. The height of the instrument above the datum line is therefore 8.3 +7.4 = 15.7.

The reading of the rod at the depression F, between the center and the angle A, is 8.5; hence, the cut is 15.7 - 8.5 = 7.2. The horizontal distance, CF, is 4 feet; hence, the record in the field notes, as seen in the next article in the column L, is $\frac{7.2}{4}$.

The reading of the rod, at the temporary stake *E*, is 7.4; hence, the cut is 15.7 - 7.4 = 8.3, and the entry, $\frac{8.3}{4}$.

The point S, where the slope intersects the surface, is found by trial. Since the vertical distance of the slope is $\frac{2}{3}$ of the horizontal, then ES, if horizontal, would be $\frac{3}{2}$ of EA, which is 12.4; but, on account of the inclination of the surface, ES will be less, say 10 feet. Setting the rod 10 feet out from E, the reading is 8.3, and hence the cut = 15.7 - 8.3 = 7.4. Now, $\frac{3}{2}$ of 7.4 is 11.1; hence, the assumed distance, 10 feet, is too small.

For a second trial, take 11 feet out from E, at which the reading of the rod is 8.4, and the cut 7.3. Now, $\frac{3}{2}$ of 7.3 = 10.9, which lacks but .1 of 11, and is sufficiently accurate. The record for the slope stake, in the column L, is $\frac{7.3}{10.9}$.

The reading of the rod at the stake D is 6.9; hence, the cut is 8.8, and the record in the column R is $\frac{8.8}{4'}$.

The reading at the elevation G is 5.1; hence, the cut is 10.6. The horizontal distance, DG, is 9 feet; hence, the record is $\frac{10.6}{9}$.

To find S' where the slope intersects the surface, since, on account of the rising of the surface, it is more than $\frac{3}{2}$ of 8.8, which is 13.2, take, for a first trial, 18 feet out from D, at which point the reading of the rod is 4.5, and hence the cut 15.7 - 4.5 = 11.2. Now, $\frac{3}{2}$ of 11.2 = 16.8; hence, 18 feet is too far out.

For a second trial, take 17 feet out from *D*. The reading of the rod is 4.3, and the cut 15.7 - 4.3 = 11.4. Now, $\frac{3}{2}$ of 11.4 = 17.1, which is sufficiently accurate; hence, the record for the slope stake *S'*, in the column *R*, is $\frac{11.4}{17.1}$.

352. Field Notes.

<i>D</i> .	1949, 18	L.	d titler i	C. C.	<i>R</i> .·	
3	$\frac{7.3}{10.9}$	$\frac{8.3}{A}$	$\frac{7.2}{4}$	8.3	$\frac{8.8}{A'} \frac{10.6}{9} \frac{11.4}{17.1}$	

353. Cross-Section Embankments.

The following is the profile of the cross section drawn to a scale of 20 feet to 1 inch, taken at the distance 5 of the field notes of article 346, where the filling is 3.2, now called a minus cut, and written -3.2.

Take AA', which is the horizontal top of the embankment 20 feet wide, for the datum line.

The ratio of slope, in case of embankments, is $-\frac{2}{3}$.

The reading of the rod at the center stake is 6.6, and the height of the instrument, with reference to the datum line, is the algebraic sum of the reading of the rod and the minus cut, which is 6.6 - 3.2 = 3.4.

If the instrument should be below the datum line, the reading of the rod would be numerically less than the minus cut, and the height of the instrument would be negative.

The readings of the other points along the surface SS, subtracted from the height of the instrument, will give the corresponding minus cuts.

The reading at A is 7.4, the cut, -4, and the record, $\frac{-4}{4}$.

The reading at G is 12.4, the cut, -9, the horizontal distance FG, 6.3, and the record, $\frac{-9}{6.3}$.

To find the position of the slope stake S, take for the first trial 20 feet out from F, where the reading is 16, and the cut, -12.6. Now, $-12.6 \times -\frac{3}{2} = 18.9$; hence, 20 feet is too far out.

Next try 18 feet out, where the reading is 15.5, and the cut, -12.1. Now, $-12.1 \times -\frac{3}{2} = 18.1$, which is sufficiently accurate; hence, the record for the slope stake S is $\frac{-12.1}{181}$.

The reading at A' is 6.4, the cut, -3, and the record, $\frac{-3}{A'}$.

To find the position of the slope stake S', take for the first trial 5 feet out from D, where the reading is 6.2, and the cut, -2.8. Now, $-2.8 \times -\frac{3}{2} = 4.2$; hence, 5 feet is too far out.

Next take 4 feet out, where the reading is 6.1, and the cut, -2.7. Now, $-2.7 \times -\frac{3}{2} = 4$; hence, the record for the slope stake S' is $\frac{-2.7}{4}$.

354. Field Notes.

<i>D</i> .	L.	<i>C. C.</i>	R.
5	$\frac{-12.1}{18.1} \frac{-9}{6.3} \frac{-4}{A}$	-3.2	$\frac{-3}{A'} \frac{-2.7}{4}$

355. Remark.

It sometimes occurs that an excavation will be required on one side, and an embankment on the other. Guided by the stakes and field notes, the excavations and embankments can be correctly made.

356. Computation of Earth-work.

The computation of earth-work is the determination of the volume of excavation or embankment.

The cross-sections, being taken, wherever necessary, at every 100 feet or less, divide the excavations or embankments into blocks, which may be regarded as frustums of pyramids.

RAILROADS.

Denoting the areas of the sections regarded as bases of the frustum by b and b', respectively, the length by l, and the volume by v, we have the formula,

$$v = \frac{1}{3}l(b + b' + V bb').$$

357. Examples.

1. The length of an excavation is 100 feet; find the volume, the two ends being thus represented :

The area required, in each case, is the area of the whole figure, regarded as a trapezoid, which is one-half the altitude multiplied by the sum of the parallel bases, minus the sum of the two triangles; hence,

$$b = 28 \times 24 - (24 \times 8 + 12 \times 4) = 432.$$

$$b' = 19 \times 12 - (12 \times 4 + 6 \times 2) = 168.$$

$$v = \frac{1}{3} \times 100 (432 + 168 + \sqrt{432 \times 168}).$$

$$v = 28980 \text{ cubic feet} = 1073 \text{ cubic yards}.$$

2. Compute the volume of the embankment whose horizontal breadth at the top is 16 feet, from the following field notes:

S. N. 31.

D.	L.	<i>C. C.</i>	R.
5	$-\frac{11.6}{17.4}$ $-\frac{10.5}{A}$	-10	$\frac{-9.5}{A'}$ $\frac{-8.6}{13}$
6	$\frac{-17.4}{26.1}$ $\frac{-15.5}{A}$	- 15	$\frac{-14.2}{A'}$ $\frac{-13}{19.5}$

Ans. 1607 cu. yds.

358. Remarks.

1. The above method of computing earth-work is called by engineers *The mean average method*.

2. The method known as *The arithmetical mean method* is easier than the above, though less accurate.

The following is the formula:

$$v = \frac{1}{2}l(b+b').$$

3. The volume can also be computed as a rectangular prismoid.

4. Irregularities in the cross-section surface line, as elevations, depressions, or a curvature of this line, must be considered.

Thus, the elevation may be regarded as a triangle, its area computed and added to

the trapezoid before the area of the two triangles at the right and left be deducted.

359. Railroad Curves.

In the preliminary survey of a railroad, any change in direction is made by an angle which must, in the final survey, be replaced by a curve, to which the sides of the angle are tangents.

RAILROADS.

Let the annexed diagram represent such an angle and curve.

Run out one of the tangents, as BA, to E, and let A denote the external angle EAD.

Then we shall have C = A, since each is the supplement of BAD, the angles B and D being right angles.

Let r = BC, the radius of curvature, and t = AB, the tangent.

Then, (1) $t = r \tan \frac{1}{2}A$, (2) $r = \frac{t}{\tan \frac{1}{2}A}$

The degree of curvature is the number of degrees in an arc whose length is 1 chain or 100 feet.

360. Problem.

Given the degree of curvature, to find the radius; and, conversely, given the radius of curvature, to find the degree.

 $2 \pi r = \text{the circumference,}$ $\frac{2 \pi r}{360} = \frac{\pi r}{180} = 1^{\circ} \text{ of circumference,}$ $\frac{d \pi r}{180} = d^{\circ} \text{ of circumference.}$ Hence, $\frac{d \pi r}{180} = 100. \quad \cdots \quad \begin{cases} (1) \quad r = \frac{18000}{d\pi} \\ (2) \quad d = \frac{18000}{\pi r} \end{cases}$

Having found the radius of curvature, we can find t, the tangent, or the distance from the vertex of the angle to the point where the curve begins by formula (1) of the preceding article.

361. Examples.

1. Find r of 1° of curvature and t, if $A = 40^{\circ}$. Ans. r = 5729.58 ft., t = 2087.4 ft.

2. Find r of 2° of curvature and t, if $A = 40^{\circ}$. Ans. r = 2864.79 ft., t = 1043.7 ft.

3. Find r of 3° of curvature and t, if $A = 50^{\circ}$. Ans. r = 1909.86 ft., t = 890.6 ft.

4. Find r and d, if $A = 35^{\circ}$ and t = 1000 ft. Ans. r = 3171.6 ft., $d = 1^{\circ} 48' 23''$.

5. Find r and d, if $A = 100^{\circ}$ and t = 1 mile.

Ans. r = 4430.4 ft., $d = 1^{\circ} 17' 35''$.

362. Location of the Curve.

First Method.

Let each of the arcs, Bp, pq, qr, ... be 1 chain, then

will the number of degrees in each, or in the corresponding angle at the center, be equal to d, the degree of curvature.

The angle ABp, formed by a tangent and a chord, is measured by one-half the arc Bp, and is therefore equal to $\frac{1}{2}d$.

Each of the inscribed angles, c pBq, qBr, is measured by one-half the intercepted arc, and is therefore equal to $\frac{1}{2}d$.

Having determined the point B, where the curve begins, the transitman sets his instrument at this point, and directs it to A. He then turns it an angle equal to $\frac{1}{2}d$, on the side toward the curve.

RAILROADS.

The chainmen then take the chain, the follower placing his end at B, and the leader drawing out the chain at full length toward A, is directed by the transitman into line so as to locate the point p, at which the axman drives a stake.

The transitman again turns his instrument an angle equal to $\frac{1}{2}d$, the chainmen advance, the follower placing his end of the chain at p, the leader again drawing out the chain at full length, is directed by the transitman so as to locate the point q, at which the axman drives a stake, and so on.

The last distance will usually not be 1 chain; but if *n* be the number of preceding deflections, the last angle of deflection, since the sum of all the deflections is equal to $\frac{1}{2}C = \frac{1}{2}A$, will be equal to

 $\frac{1}{2}A - \frac{1}{2}dn.$

It is to be observed that the chord is made equal to 1 chain instead of the arc; but as the radius is much greater than the chord, the arc and chord will not differ materially, and no appreciable error arises in practice.

Second Method.

Points on the curve may be located by the use of two transits, without the use of the chain, as may be desirable, in case the curve is to be located in marshy ground or shallow water.

Let one transit be placed at B and another at D, the extremities of the curve.

Direct the transit at B to A, the one at D to B, then turn each to the right an angle equal to $\frac{1}{2}d^{\circ}$.

The intersection of the lines will determine p, where the axman, directed by both transitmen, drives a stake.

In like manner other points can be located.

If A is visible from D, but not B, direct the transit at D to A; then, to locate p, turn it to the left an angle equal to $\frac{1}{2}A^{\circ} - \frac{1}{2}d^{\circ}$.

To locate q, turn the transit at D from p to the right an angle equal to $\frac{1}{2}d^{\circ}$, or from A to the left an angle equal to $\frac{1}{2}A^{\circ} - d^{\circ}$, and the transit at B to the right from p an angle equal to $\frac{1}{2}d^{\circ}$, or to the right from A an angle equal to d° , and so on.

Third Method.

Let B be the point where the curve begins. Take Bm equal to 1 chain. Then,

to find the length of the offset mp, complete the circle, draw the diameter BE, let fall the perpendicular pn to BE, and draw pE.

In the right triangle BpE, Bp is a mean proportional between BE and Bn; hence, $BE \times Bn = \overline{Bp}^2$; but BE = 2r, Bp = 1, and Bn = mp, $\therefore mp = \frac{1}{2r}$.

To find q, produce Bp till ps = 1 chain, and draw tv, tangent to the curve at p.

Then,
$$spv = tpB = mBp = vpq$$
,

For the first and second are vertical, and all the rest are included between tangents and equal chords.

RAILROADS.

 \therefore spq = 2 mBp, \therefore the arc sq = 2 arc mp,

Or, the arcs being small, do not differ materially from their chords,

$$sq = 2 mp = \frac{1}{r} \cdot$$

Hence, to locate a curve by this method without the transit, commence at B, where the curve is to begin, take Bm = 1 chain in the direction of the straight track, make the offset $mp = \frac{1}{2r}$, produce Bp till ps = 1 chain, make the offset sq equal to twice the first offset, produce pq till the produced part = 1 chain, make an offset equal to the last, and so on.

Fourth Method.

It is evident from the diagram that

mp = BC - nC.

But BC = r, and $nC = \sqrt{r^2 - t^2}$.

 $\therefore mp = r - \sqrt{r^2 - t^2}.$

By giving to t different values, other points of the curve can be determined.

It is evident from the diagram that

mp = mC - Cp.

But $mC = 1\sqrt{r^2 + t^2}$, and Cp = r.

 $\therefore mp = \sqrt{r^2 + t^2} - r.$

P

The preceding methods apply to points of the curve 1 chain or 100 feet from each other, which will be sufficient for the excavations or embankments.

Before laying the track, stakes are driven at points on the curve, distant from each other about 10 feet.

363. Problem.

To locate intermediate points on the curve.

Let the diameter in the diagram be parallel to the

chord, which is equal to 1 chain = 100 feet, the ordinates a, b, c, d, e, f, e, d, c, b, abe 10 feet from each other, and v, w, x, y, z, y, x, w, v be offsets from the chord to the

curve, corresponding to the ordinates b, c, d, e, f, e, d, c, b.

The square of an ordinate is equal to the rectangle of the segments into which it divides the diameter.

$$\begin{array}{ll} a^2 = & (r-50) \; (r+50), & a = \sqrt{(r-50) \; (r+50)}, \\ b = \sqrt{(r-40) \; (r+40)}, & v = b-a, \\ c = \sqrt{(r-30) \; (r+30)}, & w = c-a, \\ d = \sqrt{(r-20) \; (r+20)}, & x = d-a, \\ e = \sqrt{(r-10) \; (r+10)}, & y = e-a, \\ f = r, & z = f-a, \end{array}$$

364. Example.

Find the radius of a 1° curvature, and the offsets from the chord of 100 feet to the curve.

Ans.
$$\begin{cases} r = 5729.58 \text{ ft., } v = .08 \text{ ft., } w = .14 \text{ ft.} \\ x = .19 \text{ ft., } y = .21 \text{ ft., } z = .22 \text{ ft.} \end{cases}$$

TOPOGRAPHICAL SURVEYING.

365. Definition and Method.

Topographical surveying is that branch in which the form of the surface, the situation of ponds, streams, marshes, rocks, trees, buildings, etc., are considered and delineated.

The surface is supposed to be intersected by horizontal planes equally distant from each other, and the curves formed by the intersection of the planes and the surface projected on a horizontal plane.

These projections will be nearer together or farther apart, according as the slope of the surface approaches a vertical or a horizontal position.

The operations are of two kinds — *field operations* and *plotting*.

366. Field Operations.

Field operations consist in finding and recording points of the curves of intersection of the surface and the horizontal planes, the course of streams, and the situation of noteworthy objects on the surface.

Range with the level, or transit theodolite, which is more convenient in topographical operations, stakes marked as in the annexed diagram, and cause them to be driven into the ground, at a horizontal distance from each other of 100 feet or less, varying with the inequality of the surface and the degree of accuracy with which it is desirable that the work be executed.

Find by the eye, or by the instrument if necessary, the lowest point in the field, at which make a *permanent bench-mark*, and assume for the plane of reference the

horizontal plane passing through this point, which we will suppose to be C_1 .

Place the instrument at some convenient station, S, from which take the reading of the rod at C_1 , which suppose to be 10.378, and enter this as a backsight in the field notes.

Take the readings of the rod at as many stakes as

possible from the station S. Suppose these readings to be C_2 , 6.481; C_3 , 1.214; D_1 , 8.235; D_2 , 6.378; D_3 , 4.102; D_4 , 2.304, and enter these readings in the field notes as foresights, placing the smallest reading, C_3 , last.

At C_3 drive a small stake for a check.

Subtract the foresight C_2 6.481 from the backsight 10.378, and enter the difference in the column of difference, headed D_{ij} also in the column of total difference of level above C_1 , headed T. D. L.

Subtract each of the remaining foresights from the next preceding one, and enter the results, with their proper signs, in the column D.

Add each result to the previous total difference of level, and enter the results in the column T. D. L.

The total difference of level for C_3 is also found by subtracting the foresight of C_3 from the backsight of C_1 , which, compared with the result before found, will serve as a *check*.

Move the instrument to S', and take a backsight to the check stake C_3 , and the foresights to as many of the remaining stakes as possible, suppose all of them and enter the readings in the field notes as before.

Subtract the first of these foresights from the backsight C_3 , and add the result to the total difference of level for C_3 , and enter the sum in the column *T. D. L.*

Subtract each of the following foresights from the next preceding foresight, and enter the result, with its proper sign, in the column D, and add it to the next preceding difference of level, and enter the sum in the column T. D. L.

As a check, subtract the foresight of B_3 from the backsight C_3 ; the difference will be the height of B_3 above C_3 , which add to the former check number, which is the difference of level of C_3 and C_1 , and the sum will be the total difference of level of B_3 and C_1 .

Compare the explanations of this article with the field notes of the following article.

F							
12	B. S.		F. S.	D.	T	D. L.	R.
		13-31		NSH SIZ		0.000	
C_1	10.378	C_2	6.481	+ 3.897	C_2	3.897	
	10.00	D_1	8.235	- 1.754	D_1	2.143	
	Sec. 20	D_2	6.378	+1.857	D_2	4.000	
	·	D_3	4.102	+2.276	D_3	6.276	and the second
2	Project 1	D_4	2.304	+1.798	D_4	8.074	
1990		C_3	1.214	+ 1.090	C_3	9.164	Check 9.164
	9.687	C_4	12.000	- 2.313	C_4	6.851	shires sola
		B_1	11.845	+0.155	B_1	7.006	Mesonin 24
1		B_2	5.184	+ 6.661	B_2	13.667	in summer and
		B_4	8.314	- 3.130	B_4	10.537	an energy
-	No. of the second	A_1	12.000	- 3.686	A_1	6.851	
EX12	a tratisti	A_2	11.321	+0.679	A2	7.530	
Faity	are the	A_3	10.987	+0.334	A_3	7.864	
his	and a los	A_4	7.125	+3.862	A_4	11.726	
1.120		B_3	0.132	+ 6.993	B_3	18.719	Check 9.555
10.0	in the second	-	and to be				18.719

367. Field Notes.

368. Plotting.

Let the annexed diagram be a plot of the ground on which is written, with red ink, the height to tenths, taken from the field notes, of the surface, at each stake, above the plane of reference passing through C_1 .

Let us suppose that the horizontal planes intersecting the surface are 4 feet apart.

The intersection of the surface and the plane 4 feet above the plane of reference crosses the line $A_1 D_1$ between the points $B_1 C_1$, at a point 4 feet above C_1 .

To determine this point, observe that the rise from C_1 to B_1 is 7 feet. Then the distance on this line from C_1 to the point where the height above C_1 is 4 feet is found by the proportion,

 $7:4::100:x, \therefore x=57.1.$

This method assumes the ascent to be uniform between B_1 and C_1 ; but this point can be tested and other points of the curve found as follows: Set up the instrument at S, and make the backsight to C_1 10.378, the same as before; then depress the vane on the rod 4 feet — that is, to the reading 6.378.

Now let the rodman set up the rod at the point between C_1 and B_1 determined from the proportion, and let the surveyor observe whether the horizontal wire of the telescope ranges with the horizontal line of the vane; if not, let the rod be moved a little toward B_1 or

TOPOGRAPHICAL.

 C_1 till they do range, and at the point thus determined let a stake marked 4 be driven by the axman.

An inspection of the plot will show that the curve passes between B_2 and C_2 at a distance from C_2 found from the proportion,

$9.8:.1::100:x, \therefore x=1.$

Let the rodman advance toward this point, pausing at one or two intermediate points, and at this point, whose positions are definitely determined and marked.

In a similar manner determine where the curve crosses C_2 C_3 and trace it to D_2 .

In like manner, trace the curves of intersection of the surface and planes, 8 feet, 12 feet, and 16 feet above the plane of reference, and let these curves be marked on the ground by stakes numbered 8, 12, and 16, respectively.

The horizontal distance of each stake from two sides of a square can be measured and recorded. From this record the surveyor can draw the curves on the plot as exhibited above.

369. Shading.

The slopes may be represented to the eye by short lines drawn perpendicular to the curves, marking the intersection of the surface with the horizontal planes. These lines are heaviest and closest where the slopes are steepest, and lighter where the slopes are less abrupt.

370. Conventional Signs.

The following conventional, though not altogether arbitrary signs, are used to indicate objects worthy of note:

BAROMETRIC HEIGHTS.

371. Finishing a Map.

The points of compass are indicated as is usual, the top of the map denoting the north, etc., etc.

The meridian, both true and magnetic, should be drawn, and the variation of the needle indicated.

The lettering should be executed with care, after printed models of various styles.

The border may be made by a heavy line, relieved by a light parallel.

The title, in ornamental letters, should occupy one corner of the map, with the name of the locality, the dates of the survey and drawing, and the names of the surveyor and draughtsman.

The scale of horizontal distances, for finding and comparing distances on the map, and *the scale of construction*, used in the smallest measurements required in projecting dimensions in the drawing, should be accurately drawn in some convenient position within the border.

Parallels of latitudes and meridians, in extended surveys, should be drawn in their true position.

BAROMETRIC HEIGHTS.

372. Preliminary Remarks.

The barometer affords an approximative method for finding the difference of level of two stations.

To attain to as great a degree of accuracy as possible, it is important to employ two good barometers, one at the lower and the other at the upper station.

Before using the barometers, they should be carefully compared by frequent trials, and the variation ascertained, which is to be allowed for in the observations. Increased accuracy is attained by making repeated observations, and taking the mean of the results.

To guard against varying local conditions of the atmosphere affecting pressure, beside difference of elevation, the stations should not be distant from each other more than four or five miles; and the observations should be made when there is no wind.

373. Bailey's Formula.

The subjoined formula requires a knowledge, at both stations, of the height of the column of mercury, its temperature as indicated by an attached thermometer, the temperature of the air as indicated by a detached thermometer, and the latitude of the locality.

Let d denote the difference of level in feet;

l, the latitude of the place in degrees;

h, T, t, respectively, the height of the barometer, the temperature of the mercury, and the temperature of the air at the lower station;

h', T', t', respectively, the same at the upper station.

Then, d = 60345.51 [1 + .001111 (t + t' - 64)]

 $\times (1 + .002695 \cos 2l) \times \log \frac{h}{h' [1 + .0001 (T - T')]}$

Let $A = \log \{60345.51 [1 + .001111 (t + t' - 64)]\},\$

 $B = \log (1 + .002695 \cos 2 l),$

 $C = \log [1 + .0001 (T - T')],$

 $D = \log h - (\log h' + C).$

$$\therefore \log d = A + B + \log D.$$

This formula is applied by the aid of the tables:

BAROMETRIC HEIGHTS.

374. Howlet's Tables.

	t+t'	А.	t+t'	<i>A</i> .	t+t'	<i>A</i> .	t+t'	<i>A</i> .
	1°	4.74914	46°	4.77187	91°	4.79348	136°	4.81407
1	20	.74966	47°	.77236	92°	.79395	137°	.81452
	30	.75017	48°	.77285	93°	.79442	138°	.81496
	4°	.75069	49°	.77335	94°	.79489	139°	.81541
	5°	.75120	50°	.77384	95°	.79535	140°	.81585
	6°	.75172	51°	.77433	96°	.79582	141°	.81630
	7°	.75223	52°	.77482	97°	.79628	142°	.81674
-	8°	.75274	53°	.77530	98°	.79675	143°	.81719
	9°	.75326	54°	.77579	99°	.79721	144°	.81763
	10°	.75377	55°	.77628	100°	.79768	145°	.81807
	11°	.75428	56°	.77677	101°	.79814	146°	.81851
	12°	.75479	57°	.77725	102°	.79861	147°	.81896
	13°	.75531	58°	.77774	103°	.79907	148°	.81940
-	14°	.75582	. 59°	.77823	104°	.79953	149°	.81984
	15°	.75633	60°	.77871	105°	.79999	150°	.82028
	16°	.75684	61°	.77919	106°	.80045	151°	.82072
	17°	.75735	62° 63°	.77968	107°	.80091	152°.	.82116
	18° 19°	.75786	64°	.78016	108° 109°	.80137	153°	.82160 .82204
-	19 ⁻ 20°	.75837	65°	.78065	109°	.80183	154° 155°	.82204
-	20° 21°	.75888	66°	.78113 .78161	110 111°	.80229	156°	.82248
	41 22°	.75989	67°	.78209	111 112°	.80321	150 157°	.82335
	23°	.76039	68°	.78257	112°	.80367	157 158°	.82379
	24°	.76090	69°	.78305	114°	.80413	159°	.82423
	25°	.76140	70°	.78353	115°	.80458	160°	.82466
	26°	.76190	71°	.78401	116°	.80504	161°	.82510
	27°	.76241	720	.78449	117°	.80550	162°	.82553
1	28°	.76291	73°	.78497	118°	.80595	163°	.82597
	29°	.76342	74°	.78544	119°	.80641	164°	.82640
	30°	.76392	75°	.78592	120°	.80686	. 165°	.82684
-	31°	.76442	76°	.78640	121°	.80731	166°	.82727
	32°	.76492	77°	.78687	1222	.80777	167°	.82770
	33°	.76542	78°	.78735	123°	.80822	168°	.82814
1	34°	.76592	79°	.78782	124°	.80867	169°	.82857
1	35°	.76642	80°	.78830	125°	.80913	170°	.82900
-	36°	.76692	81°	.78877	126°	.80958	171°	.82943
	37°	.76742	82°	.78925	127°	.81003	172°	.82986
-	38°	.76792	83°	.78972	128°	.81048	173°	.83029
	39°	.76842	84°	.79019	129°	.81093	174°	.83072
	40°	.76891	85° 86°	.79066	130° 131°	.81138 .81183	175° 176°	.83115 .83158
-	41° 42°	$.76940 \\ .76990$	80° 87°	.79113 .79160	131° 132°	.81183	176° 177°	.83158
1	42° 43°	.76990	88°	.79160	132° 133°	.81228	178°	.83201
1	43 ⁻ 44 ^o	.77089	89°	.79207	135 134°	.81273	178° 179°	.83244
	44 45°	.77138	90°	.79301	134 135°	.81362	179 180°	.83329
1	10	.11100	00	.19001	100	.01002	100	.00029

Table A, for Detached Thermometer.

l.	B.	l.	<i>B</i> .	ι.	· B.	1.	<i>B</i> .
0°	0.00117	27°	0.00069	50°	1.99980	59°	1.99945
3°	.00116	30°	.00058	51°	.99976	60°	.99941
6°	.00114	33°	.00048	52°	.99972	63°	.99931
9°	.00111	36°	.00036	53°	.99968	66°	.99922
12°	.00107	392	.00024	54°	.99964	69°	.99913
15°	.00101	42°	.00012	55°	.99960	75°	.99899
18°	.00095	45°	.00000	56°	.99956	80°	.99890
21°	.00087	482	1.99988	57°	.99952	85°	.99885
24°	.00078	492	.99984	58°	.99949	90°	.99883

Table B, for Latitude.

Table C, for an Attached Thermometer.

T	С.	T T'	С.	T	С.	T	С.
0°	0.00000	12°	0.00052	24°	0.00104	36°	0.00156
1°	.00004	13°	.00056	25°	.00108	37°	.00161
2°	.00009	14°	.00061	26°	.00113	38°	.00165
30	.00013	15°	.00065	27°	.00117	39°	.00169
4°	.00017	16°	.00069	28°	.00121	40°	.00174
5°	.00022	172	.00074	29°	.00126	41°	.00178
6°	.00026	18°	.00078	30°	.00130	42°	.00182
7°	.00030	19°	.00082	31°	.00134	43°	.00187
8°	.00035	20°	.00087	32°	.00139	44°	.00191
9°	.00039	21°	.00091	33°	.00143	45°	.00195
10°	.00043	22°	.00095	34°	.00148	46°	.00200
11°	.00048	23°	.00100	35°	.00152	47°	.00204

375. Examples.

1. At the mountain Guanaxuato, in Mexico, lat. 21°, Humboldt made the following observations:

	Lower Station.	Upper Station.
Barometric column,	h=30.05,	h' = 23.66.
Attached thermometer,	, $T = 77^{\circ}.6$,	$T' = 70^{\circ}.4.$
Detached thermometer	$, t = 77^{\circ}.6,$	$t' = 70^{\circ}.4.$

 $\log d = A + B + \log D.$

$\log h (30.05) = 1.47784$	A = 4.81940
$\log h'(23.66) = \overline{1.37402}$	B = 0.00087
Table C gives $C = 0.00031$	log. $D = \overline{1.01498}$
$\log h' + C = 1.37433$	log. $d = 3.83525$
$D = \log h - (\log h' + C) = 0.10351$	d = 6843 ft.

2. Find the difference of level of two stations, lat. 42°, from the following data:

 $h = 30, T = 75^{\circ}.5, t = 75^{\circ}.$ $h' = 25, T' = 70^{\circ}.3, t' = 70^{\circ}.$ Ans. 5195. ft.

3. Find the difference of level of two stations, lat. 45°, from the following data:

 $h = 29.2, T = 80^{\circ}.3, t = 80^{\circ}.$ $h' = 27.1, T' = 77^{\circ}.4, t' = 77^{\circ}.$ Ans. 2149.9 ft.

4. Find d, lat. 50°, from the following data:

 $h = 29, T = 60^{\circ}.1, t = 60^{\circ}.$ $h' = 28, T' = 59^{\circ}.1, t' = 59^{\circ}.1.$ Ans: 973.8 ft.

376. Leveling with one Barometer.

Take the observations at the lower station, then proceed to the upper station and take the observations there, and note the interval of time which has intervened, then go back to the lower station and at the expiration of an equal interval repeat the observations.

Reduce the mercurial column of the second observation at the lower station to what it would have been at the temperature of the first observation, on the principle that mercury expands or contracts .0001 of its volume for each degree of increase or diminution of temperature.

Then take the arithmetical mean of this reduced height and the first observed height for the height at the lower station, the mean of the temperature denoted

by the detached thermometer at the lower station for the temperature of the air at that station, and the temperature denoted by the attached thermometer at the first observation for the temperature of the mercury, then proceed as if the observations had been taken with two barometers.

377. Examples.

1. $\begin{cases}
\text{Lower sta.} \\
\text{Lat. 41°.4; upper sta., } h = 29.62, T = 56°.5, t = 56°.\\
\text{2d obv., } h = 29.63, T = 63°, t = 61°.\\
\text{T'= 57°.5, } t' = 57°.
\end{cases}$ Reducing h of 2d obv. from $T = 63^{\circ}$ to $T = 56^{\circ}.5$, we have, Reduced $h = 29.63 (1 - 6.5 \times .0001) = 29.611$ Mean $h = \frac{29.62 + 29.611}{2} = 29.6155.$ Mean $t = \frac{56^\circ + 61^\circ}{2} = 58^\circ.5.$ $\therefore t + t' = 58^{\circ}.5 + 57^{\circ} = 115^{\circ}.5.$ and $T - T' = 56^{\circ}.5 - 57^{\circ}.5 = -1^{\circ}$. $\log h (29.6155) = 1.47152 \qquad A = 4.80481$ $\log h'(28.94) = 1.46150 \quad B = 0.00014$ $C = -0.00004 \log D = 2.00260$ $\log h' + C = 1.46146 \log d = 2.80755$ $D = \log h - (\log h' + C) = 0.01006$ $\therefore d = 642$ feet. 2. $\begin{cases} \text{Lower sta.} & \begin{cases} 1 \text{st obv., } h = 29.7, & T = 60^{\circ}, t = 60^{\circ}. \\ 2 \text{d obv., } h = 29.75, T = 66^{\circ}, t = 66^{\circ}. \\ \text{Lat. 40^{\circ}; upper sta.} & h' = 28.6, T' = 62^{\circ}, t' = 62^{\circ}. \end{cases}$ Ans. d = 1077 ft. 3. $\begin{cases} \text{Lower sta.} & \begin{cases} 1 \text{st obv.}, \ h = 29.6, & T = 50^{\circ}, \ t = 50^{\circ}, \\ 2d \text{ obv.}, \ h = 29.65, & T = 46^{\circ}, \ t = 46^{\circ}. \end{cases} \\ \text{Lat. 50^{\circ}; upper sta.} \quad h' = 27.6, & T' = 45^{\circ}, \ t' = 45^{\circ}. \end{cases}$ Ans. d = 1909 ft.

NAVIGATION.

PRELIMINARIES.

378. Definition and Classification.

Navigation is the art of ascertaining the place of a ship at sea, and of conducting it from port to port.

There are two methods of finding the place of a ship:

1. By dead reckoning; that is, by tracing from the record the courses and distances sailed.

2. By Nautical Astronomy; that is, by deducing the latitude and longitude of the place of the ship from celestial observations.

The first method is subdivided into the following:

Plane sailing, parallel sailing, middle latitude sailing, Mercator's sailing, and current sailing.

379. The Mariner's Compass.

The magnetic needle rests on a pivot, so as to turn freely.

The compass box is suspended by gimbals or rings, turning on axes at right angles to each other, thus securing a horizontal position notwithstanding the rolling motion of the ship.

A circular card, whose circumference is divided into thirty-two equal parts, called *points*, each of which is (381)

NAVIGATION.

subdivided into four equal parts, called *quarter points*, rests upon the needle, with which it turns freely.

N. b. E. is read north by east; N. N. E., north northeast, etc.

380.	Table	of	Point	s and	Angles.
------	-------	----	-------	-------	---------

0	No	rth.	Sou	Angles.	
1	N.b.E.	N.b.W.	S.b.E.	S.b.W.	11° 15′
2	N.N.E.	N.N.W.	S.S.E.	S.S.W.	22° 30′
3	N.E.b.N.	N.W.b.N.	S.E.b.S.	S.W.b.S.	33° 45′
4	N.E.	N.W.	S.E.	S.W.	45° 0′
5	N.E.b.E.	N.W.b.W.	S.E.b.E.	S.W.b.W.	56° 15'
6	E.N.E.	W.N.W.	E.S.E.	W.S.W.	67° 30′
7	E.b.N.	W.b.N.	E.b.S.	W.b.S.	78° 45'
8	E.	W.	E.	W.	90° 0′

Note $1 - \frac{1}{4}$ point $= 2^{\circ} 48' \frac{3}{4}, \frac{1}{2}$ point $= 5^{\circ} 37' \frac{1}{2}, \frac{3}{4}$ point $= 8^{\circ} 26' \frac{1}{4}.$

Note 2.— The compass is placed near the helm, at the stern, and the line from the center of the compass to the ship's head indicates the track of the ship.

381. Variation and Deviation of the Compass.

The variation of the compass is the angle included between the magnetic meridian and the true meridian.

The amount of variation is ascertained by Nautical Astronomy.

The deviation of the compass is the deflection of the needle from the magnetic meridian, caused by the iron in the ship.

The amount of deviation is ascertained by special experiments.

382. Course, Leeway, Rhumb Line.

The compass course of a ship, at any point, is the angle which her track makes with the magnetic meridian at that point.

The true course of a ship, at any point, is the angle which her track makes with the true meridian at that point.

In the compass course, the deviation is supposed to be ascertained and allowed for, but not the variation; but in the true course, both the deviation and variation.

The leeway is the oblique motion of the ship, caused by a side wind driving the ship along a track oblique to the fore-and-aft line, and therefore not indicated by the compass.

The amount of leeway, under a wind of a given obliquity and velocity, for each ship with a given freight, is best found by trial.

A rhumb line is the track of a ship which continues to make the same angle with the meridians. It is also called a *loxodromic curve*.

NAVIGATION.

Since the meridians converge, the rhumb line is a spiral curve.

In what follows we shall suppose that proper allowances have been made for the variation and deviation of the compass, and, therefore, that the courses given are the true courses.

383. The Log and Log Line.

The log, a drawing of which is annexed, is a board in the form of a quadrant whose radius is about six inches, the circular part of which is loaded with lead, sufficient to give it a vertical position and to cause it to sink so that the vertex shall be just above the surface.

The log line is a line about 120 fathoms in length, and so attached to the log as to keep its face toward the ship, that it may, by the resistance it encounters from the water, unwind the line from a reel as the vessel advances.

The log line is divided into equal parts called *knots*, each knot being $\frac{1}{120}$ of a nautical mile, or 50²/₃ feet.

The time is measured by a sand glass, through which the sand passes in $\frac{1}{120}$ of an hour, or in $\frac{1}{2}$ of a minute.

Since the number of knots in a nautical mile is equal to the number of half-minutes in an hour, it follows that the number of knots run off in half a minute is equal to the number of miles the ship is sailing an hour.

The divisions of the line are marked by strings passing through the line and knotted, the number of knots in the string indicating the number of parts between

PLANE SAILING.

it and that point of the line where the divisions commence at that end of the line next to the log.

The stray line is about 10 fathoms of the end of the line from the log to the point where the divisions begin. This portion allows the log to settle in the water, clear of the ship, before the measurement of the rate begins.

The termination of the stray line is marked by a piece of red cloth.

The sand glass is turned the instant this cloth passes the reel, which is stopped the moment the sand has run out.

The number of knots on the string which marks the last division run from the reel, indicates the rate of sailing.

PLANE SAILING.

384. Single Courses.

Let P be the pole of the earth; RQ, the equator; AD, a rhumb line divided into AB, BC, CD, etc., parts so small that we may regard them as straight lines; and the triangles ABE, BCF, CDG, plane triangles and similar, which give the continued proportions:

AB : AE :: BC : BF :: CD : CG.

AB : EB :: BC : FC :: CD : GD.

Since the sum of the antecedents is to the sum of the consequents as one antecedent is to its consequent, we have,

AD : AE + BF + CG :: AB : AE.AD : EB + FC + GD :: AB : EB.

S. N. 33.

NAVIGATION.

Now let a right triangle, ABC, be constructed, in which C is the course or the angle which the rhumb line makes with the meridian. r = CB = AD, the rhumb line of the first figure; l = CA = AE +BF + CG = difference of latitude; d =

AB = EB + FC + GD = the sum of the elementary departures.

We may now, without supposing the ship to sail on a plane, replace the surface on which it actually sails by a plane surface, and hence the name *plane sailing*.

	Given.	Req.	Formulas.			
1	r, C,	l, d.	$l = r \cos C, d = r \sin C.$			
	r, l,		$\cos C = \frac{l}{r}, \qquad d = \sqrt{r^2 - l^2}.$			
3	r, d,	C, l.	$\sin C = \frac{d}{r}, \qquad l = \sqrt{r^2 - d^2}.$			
4	C, l,	r, d.	$r = rac{l}{\cos C}, \qquad d = l \tan C.$			
5	C, d,	r, l.	$r = rac{d}{\sin C}, \qquad l = rac{d}{\tan C}.$			
6	<i>l</i> , <i>d</i> ,	r, C.	$r = \sqrt{l^2 + d^2}, \ \tan C = \frac{d}{l}$			

385. Table of Cases.

Note 1 - l in miles may be reduced to degrees by dividing by 60.

Note 2. — Examples in case I. may be solved by the Traverse table.

PLANE SAILING.

386. Examples.

1. A ship sails 105 miles N. E. by N., from latitude 50° ; required the latitude in which the ship then is, and the departure made.

Ans. 51° 27'.3 N., d = 58.34 mi.

2. A ship sailed between S. and W. 148 miles, making the difference of latitude 114.4; required the course and the departure made.

Ans. $3\frac{1}{2}$ pts. W. of S., d = 93.9 mi.

3. A ship in latitude $3^{\circ} 52'$ S. sails between N. and W. 1065 miles, making a departure of 939 miles; required the course and the latitude in which she then is. Ans. N. W. b. W. $\frac{1}{2}$ W., lat. $4^{\circ} 30'$ N.

4. A ship ran from latitude $38^{\circ} 32'$ N. to latitude $36^{\circ} 56'$ N. on a course S. E. by S. $\frac{3}{4}$ E.; required the distance sailed and the departure made.

Ans. r = 129.56 mi., d = 87.009 mi.

5. A ship sailed S. 56° 47′ E. from latitude 50° 13′ N. till her departure was 82 miles; required r and latitude in. Ans. r = 98 mi., lat. 49° 19′ N.

6. A ship from latitude 36° 12' N. sails between S. and W. till she is in latitude 35° 1' N., having made 76 miles of departure; required r and C.

Ans. r = 104 mi., $C = S. 46^{\circ} 57'$ W.

387. Compound Courses.

A compound course or traverse is the zigzag course which a ship usually takes in a voyage of considerable length.

Working the traverse is the computation of a single course and distance from the place of departure to the place of destination.

NAVIGATION.

To do this, find by the Traverse.table the latitude and departure of each course. The difference of the sum of the northings and the sum of the southings will be the latitude of the single course required, and the difference of the sum of the eastings and the sum of the westings will be the departure, both of the name of the greater. Then proceed as in last article.

388. Examples.

1. A ship sailed from latitude 51° 24' N. as follows: S. E. 40 miles, N. E. 28 miles, S. W. by W. 52 miles, N. W. by W. 30 miles, S. S. E. 36 miles, S. E. by E. 58 miles; required the latitude in, and the single equivalent course and distance.

Courses.	Dist.	N. L.	S. L.	<i>E. D.</i>	W. D.
S. E.	40		28.3	28.3	
N. E.	28	19.8		19.8	43.2
S. W. b. W.	52		28.9		24.9
N.W. b. W.	30	16.7			100
S. S. E.	36	1.89.20	33.3	13.8	1.1
S. E. b. E.	58	7.10	32.2	· 48.2	12201
the mark of the	36.5	122.7	110.1	68.1	
			36.5	68.1	
	(initial)	kinni	86.2	42	

Solution.

 $\tan C = \frac{d}{l} = \frac{42}{86.2}$. . . $C = 25^{\circ} 59'$.

r = 1 $l^2 + d^2 = 95.87$ mi.

 $l = 86.2 \text{ mi.} = 1^{\circ} 26'. \quad \therefore \quad 51^{\circ} 24' - 1^{\circ} 26' = 49^{\circ} 58' \text{ N}.$

2. Given the following courses and distances: S. W. ²/₄ W. 62 miles, S. by W. 16 miles, W. ¹/₄ S. 40 miles, S.W.

 $\frac{3}{4}$ W. 29 miles, S. by E. 30 miles, S. $\frac{3}{4}$ E. 14 miles; required l, C, and r.

Ans. $l = 1^{\circ} 55' \text{ S.}, C = \text{S.} 43^{\circ} 14' \text{ W.}, r = 158 \text{ mi.}$

3. A ship, from latitude 1° 12' S., has sailed as follows: E. by N. $\frac{1}{2}$ N. 56 miles, N. $\frac{1}{4}$ E. 80 miles, S. by E. $\frac{1}{2}$ E. 96 miles, N. $\frac{1}{4}$ E. 68 miles, E. S. E. 40 miles, N. N. W. $\frac{1}{2}$ W. 86 miles, E. by S. 65 miles; required the latitude in, C, and r.

Ans. Lat. in, 0° 48' N., $C = 51^{\circ} 47' \text{ E.}, r = 193.8 \text{ mi.}$

PARALLEL SAILING.

389. Definition and Principles.

Parallel sailing is that case of sailing in which the track is on a parallel of latitude.

Let EFQ be the equator; GAB, the parallel of the track; r = AB = the distance sailed; L = FQ = the difference of longitude; l = QB = the latitude of the track.

(1) DB : CQ :: AB : FQ.

Consider the radius CQ as the unit of the first couplet, then DB will be the natural co-sine of latitude; and take 1 mile as the unit in the second couplet, put r for AB, L for FQ, then (1) becomes,

(2) $\cos l : 1 :: r : L$, ... (3) $L = \frac{r}{\cos l}$.

We can compute L in (3) by taking nat. $\cos l$, or by introducing R and taking log. $\cos l$. In either case L will be found in miles, since r is given in miles; but L can be reduced to degrees by dividing by 60.

NAVIGATION.

Let r and r', measured on the parallels whose latitudes are l and l', respectively, be the distances between two meridians whose difference of longitude is L.

 $\begin{array}{c} \cos l : 1 :: r : L, \\ \cos l' : 1 :: r' : L, \end{array} \quad \therefore \quad \cos l : \cos l' :: r : r'.$

Hence, The distances between two meridians, measured on different parallels, are as the co-sines of the latitudes of those parallels.

To find the length of a degree of longitude on any parallel, observe that at the equator 1° of lon. = 60 nautical miles, and that $\cos l = 1$, then we shall have,

1 : $\cos l'$:: 60 : r', $\cdot \cdot \cdot r' = 60 \cos l'$.

390. Examples.

1. A ship in latitude 49° 32' N., and longitude 10°16' W., sails due W. 118 miles; required the longitudearrived at.Ans. 13° 18' W.

2. A ship in latitude 53° 36' N., and longitude 10° 18' E., sails due W. 236 miles; required the longitude arrived at. Ans. 3° 40' E.

3. A ship in latitude 32° N. sails 6° 24' due W.; required d. Ans. d = 325.6 mi.

4. A ship sails 310 miles from longitude 81° 36' W. to longitude 91° 50' W.; required the latitude of the track. Ans. 59° 41'.

MIDDLE LATITUDE SAILING.

391. Definition and Principles.

Middle latitude sailing is a combination of plane sailing and parallel sailing, on the supposition that the departure in plane sailing is equal to the distance

between the meridians passing through the extreme points of the rhumb line, measured on the middle parallel between these points.

Let AD be a rhumb line; IK, the middle parallel; m, the latitude of IK; then d = EB + FC + GD = IK.

For r, formula (3), parallel sailing, substitude d or its value as found in plane sailing; and for $\cos l$ substitute $\cos m$, then we shall have,

Ľ.	<i>d</i>	$= \frac{r \sin C}{c}$	 $1 r^2 - l^2$	$l \tan C$.
-	$\cos m$	$\cos m$	$\cos m$	$\cos m$

Note 1. — Remember that in these formulas l denotes the difference of latitude; L, the difference of longitude in miles; d, the departure; r, the distance run or the rhumb line; C, the course, and m, the middle latitude.

Note 2. — The middle latitude is the half sum of the extreme latitudes; or the less latitude, plus the half difference of latitude; or the greater latitude, minus the half difference of latitude.

Note 3.—That the departure is not strictly equal to the middle-latitude distance between the meridians, through the extremities of the rhumb line, is thus shown :

Suppose a ship to sail on this middle latitude from one of the meridians to the other, then the distance sailed will be the departure; but if a second ship were to sail from a lower latitude on the first meridian, and a third ship, from a higher, to the same place, the departure of the second would be greater, and the departure of the third would be less than that of the first.

It is necessary, therefore, to make the correction for middle latitude as found in the table for such corrections.

NAVIGATION.

The following is the rule for correcting the middle latitude:

Add to the uncorrected middle latitude the correction found in the table under the difference of latitude, and opposite the middle latitude — the sum m' is the corrected middle latitude.

 $\therefore \ L = \frac{d}{\cos m'} = \frac{r \sin C}{\cos m'} = \frac{\sqrt{r^2 - l^2}}{\cos m'} = \frac{l \tan C}{\cos m'}$

392. Examples.

1. A ship from latitude 51° 18' N., longitude 9° 50' W., sails S. 33° 8' W. 1024 miles; required the latitude and longitude in.

 $l = r \cos C$, ... l = 857.4 mi. = 14° 17′.

 51° 18' - 14° 17' = 37° 1', the lat. in.

 $\frac{1}{2}(51^{\circ}\ 18'+37^{\circ}\ 1') = 44^{\circ}\ 9\frac{1}{2}' = \text{mid. lat., correction} = 27'.$

44° $9\frac{1}{2}' + 27' = 44° 36\frac{1}{2}' = m' = corrected mid. lat.$

 $L = \frac{r \sin C}{\cos m'}$, $\therefore L = 786.3 \text{ mi.} = 13^{\circ} 6'.$

9° 50′ + 13° 6′ = 22° 56′ W., the lon. in.

2. A ship, from latitude 52° 6' N., and longitude 35° 6' W., sails N. W. by W. 229 miles; required the latitude and longitude arrived at.

Ans. Lat. 54° 13' N. and Ion. 40° 23' W.

3. A ship from latitude 49° 57' N., and longitude 5° 11' W., sails between S. and W. till she is in latitude 38° 27' N., when she has made 440 miles departure; required *C*, *r*, and the longitude in.

Ans. C = S. 32° 32′ W.; r = 818 mi.; lon. in, 15° 28′ W.
4. A ship from latitude 37° N., longitude 22° 56′ W.,

sails N. 33° 19' E. till she is in latitude 51° 18' N. What longitude is she in? Ans. 9° 45' W.

5. A ship from latitude 40° 41' N., longitude 16° 37' W., sails between N. and E. till she is in latitude 43° 57' N., and finds that she has made 248 miles departure; required C, r, and longitude in.

Ans. $C = 51^{\circ} 41' \text{ E.}; r = 316 \text{ mi.}; \text{ lon. in, } 11^{\circ} \text{ W.}$

MERCATOR'S SAILING.

393. Definitions and Principles.

Mercator's chart, so called from its originator, Gerrard Mercator, a Fleming, who first published it in 1556, is a representation of the surface of the earth on the supposition that the earth is a cylinder.

The meridians are thus represented parallel and every-where too far apart except at the equator.

To guard as much as possible against distortion, the distances between the parallels are proportionally increased.

The surface is thus relatively magnified more and more toward the poles.

Mercator's sailing is the method of computing the difference of longitude from the principle on which Mercator's chart is projected.

The mathematical theory of this method was developed, and the *Table of Meridional Parts*, necessary to its application, computed by Edward Wright, an Englishman, in 1599.

Let CA and AB, respectively, be the difference of latitude and departure corresponding to the rhumb line CB, and let CA be produced to A' till A'B', the corresponding departure, is equal to the differc

NAVIGATION.

ence of longitude of C and B. CA' is called the meridional difference of latitude, which is simply the proper difference of latitude increased till the corresponding departure is equal to the difference of longitude corresponding to the proper departure.

To find the meridional difference of latitude, let Cb, bd, df, ... be indefinitely small portions of the rhumb line CB. Ca, bc, de, ... corresponding differences of latitude; ab, cd, ef, ... corresponding differences of departure; Ca', bc', de', ... corresponding meridional differences of latitude; a'b', c'd',

e'f', ... differences of longitude corresponding to the departures *ab*, *cd*, *ef*, ... whose latitudes are *l*, *l'*, *l''*, ... Then, as found in Parallel sailing,

 $ab : a'b' :: \cos l : 1.$ but ab : a'b' :: Ca : Ca'. $\therefore \cos l : 1 :: Ca : Ca', \quad \therefore \quad Ca' = \frac{Ca}{\cos l}$ but $\frac{1}{\cos l} = \sec l, \quad \therefore \quad Ca' = Ca \sec l.$ In like manner, $bc' = bc \sec l',$ $de' = de \sec l''.$

But CA' = Ca' + bc' + de' + ...

Substituting the values of Ca', bc', de', \ldots and making $Ca = bc = de = \ldots = 1'$, we have,

.

$$CA' = \sec l + \sec l' + \sec l'' + \dots$$

Commencing at the equator, and putting m. p. for meridional parts, and taking natural secants, we have,

m. p. of $1' = \sec 1'$. m. p. of $2' = \sec 1' + \sec 2'$.

m. p. of 4' = 3.0000006 + 1.0000007 = 4.0000013

.

The accuracy of the result is increased by taking the parts still smaller, as $\frac{1}{2}$.

Having found the meridional latitude corresponding to C, and also to A, their difference will be the meridional difference of latitude found from the table; and the corresponding departure, A'B', will be the difference of longitude.

Denoting the proper difference of latitude CA by l, the meridional difference of latitude by l', the departure AB by d, and the difference of longitude A'B' by L, the triangles CAB and CA'B' give,

> 1 : tan C :: l' : L, \therefore L = l' tan C. l : d :: l' : L, \therefore $L = \frac{l'd}{l}$.

394. Examples in Single Courses.

1. A ship from latitude 52° 6' N., and longitude 35° 6' W., sails N. W. by W. 229 miles; required the latitude and longitude in.

$$l = r \cos C = 229 \cos 56^{\circ} 15', \quad \therefore \ l = 127.3 \text{ mi.} = 2^{\circ} 7'.$$

lat. in = 52° 6' N. + 2° 7' N. = 54° 13' N.

. . . lon. in = 35° 6' W. + 5° 16' W. = 40° 22' W.

2. A ship from latitude 51° 18' N., and longitude 9° 50' W., sails S. 33° 8' W. 1024 miles; required the latitude and longitude in.

Ans. Lat. in 37° 1' N.; lon. in 22° 50' W.

3. Required the course and distance from Ushant, latitude 48° 28' N., longitude 5° 3' W., to St. Michael's, latitude 37° 44' N., longitude 25° 40' W.

Ans. S. 54° 30' W., r = 1106 mi.

4. A ship from latitude 51° 9′ N. sails S. W. b. W. 216 miles; required the latitude in, and the difference of longitude made. Ans. Lat. 49° 9′ N., L=4° 39′.

5. A ship sails from latitude 37° N., longitude 22° 56' W., on the course N. 33° 19' E., till she arrives at latitude 51° 18' N.; required the distance sailed and the longitude arrived at. Ans. 1027 mi., lon. 9° 47' W.

6. A ship sails N. E. b. E. from latitude $42^{\circ} 25'$ N., and longitude $15^{\circ} 6'$ W., till she finds herself in latitude $46^{\circ} 20'$ N.; required the distance sailed and the longitude in. Ans. Dist., 423 mi.; lon. $6^{\circ} 55'$ W.

395. Examples in Compound Courses.

A ship from latitude 60° 9' N., and longitude 1°
 7' W., sailed as follows: N. E. b. N., 69 miles; N. N. E., 48 miles; N. b. W. ½W., 78 miles; N. E., 108 miles;
 S. E. b. E., 50 miles; required the latitude and longitude in, and the direct course and distance.

MERCATOR'S SAILING.

Courses.	Dist.	N. L.	S. L.	Lat.	m. p.	m.d.l.	<i>E. L.</i>	W. L.					
N. E. b. N.	69	57.4	Tech.	60°9′	4525	11 - TT - 11							
N. N. E.	48	44.4		61°6′	4641	116	77.5						
N.b.W.1W.	78	74.6		61°50′	4733	92	38.1	1112					
N. E.	108	76.4		63°5′	4895	162	99.24	49.					
S. E. b. E.	50	112.0	27.8	64°21′	5067	172	172.0	1201					
1	252.8 63°53′ 5003 64 95.8												
27.8													
Dif lat $= l = 225$ mi $- 3^{\circ}45'$ N 3834													

49.

 Dif. lon. = L = 334.4 mi. =

 Lat. Left = 60° 9' N.
 Dif. lon. = 5° 34' E.

 Dif. Lat. = 3° 45' N.
 Lon. left = 1° 7' W.

 Lat. in = 63° 54' N.
 Lon. in = 4° 27' E.

 m. p. of lat. in (63° 54') = 5005..

 m. p. of lat. left (60° 9') = 4525.

 Meridional dif. lat. = l' = 480.

 $\tan C = \frac{L}{l'} = \frac{334.4}{480}, \quad \therefore \quad C = \text{N. } 34^{\circ} \; 53' \text{ E.}$ $r = \frac{l}{\cos C} = \frac{225}{\cos 34^{\circ} \; 53'}, \quad \therefore \; r = 273 \text{ mi.}$

2. A ship from latitude 38° 14' N., and longitude 25° 56' W., has sailed the following courses: N. E. b. N. 4E., 56 miles; N. N. W., 38 miles; N. W. b. W., 46 miles; S. S. E., 30 miles; S. b. W., 20 miles; N. E. b. N., 60 miles; required the latitude and longitude in, and the direct single course and distance.

Ans Lat. in, 40° 2′. 3 N.; lon. in, 25° 30′ W.; $C = N. 10^{\circ} 33' E., r = 110.2 mi.$

396. Correction for Middle Latitude.

We are now prepared to understand how the correction for middle latitude, before used, is found.

NAVIGATION. .

l denotes the proper difference of latitude; l', the meridional difference of latitude; L, the difference of longitude; m, the middle latitude uncorrected; c, the correction; m', the middle latitude corrected.

Then, by Plane, Middle latitude, and Mercator's sailing,

 $\tan C = \frac{d}{l} = \frac{L \cos m'}{l} = \frac{L}{l'}, \quad \therefore \cos m' = \frac{l}{l'}.$ From which m' is readily found.

Then, c = m' - m. ... m' = m + c.

CURRENT SAILING.

397. Definition and Principles.

Current sailing is the sailing of a ship as affected by a current.

Irrespective of the current the ship would move, in a certain time, a certain course and distance.

The current aloné would carry the ship, in the same time, a certain other course and distance.

The actual track of the ship, which is the resultant of the two, will bring her to the same position as if she had sailed separately the two tracks.

Current sailing may therefore be treated as Plane sailing, compound courses.

The set of the current is its direction.

The drift of the current is its velocity.

The set and drift of a current may be ascertained by taking, a short distance from the ship, a boat, which is kept from being carried by the current by letting

CURRENT SAILING.

down, to a considerable depth, a heavy weight, which . is attached by a rope to the stern of the boat.

The log being thrown from the boat into the current, the direction in which it is carried, or set of the current, is determined by the boat compass, and the rate at which it is carried, or drift of the current, by the number of knots of the log line run out in half a minute.

398. Examples.

1. A ship sails N. W. a distance, by the log, of 60 miles, in a current that sets S. S.W., drifting 25 miles in the same time; required the course and distance.

Courses.	Dist.	N. L.	S. L.	<i>E. D.</i>	<i>W</i> . <i>D</i> .						
N.W.	$\begin{array}{c} 60\\ 25 \end{array}$	42.4	23.1		42.4 9.6						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											

tan $C = \frac{d}{l} = \frac{52}{19.3}$, $\therefore C = N.$ 69° 38′ W.

 $r = \sqrt{l^2 + d^2} = \sqrt{(19.3)^2 + (52)^2} = 55.5.$

2. A ship, sailing 7 knots an hour, is bound to a port bearing S. 52° W., through a current S. S. E., 2 miles an hour; required the course.

Let AB be the direction of the port.

AE, the direction of the current, = 2.

AD, the required direction, = 7.

Complete the parallelogram, DBA

 $= BAE = 52^{\circ} + 22^{\circ} 30' = 74^{\circ} 30'$. Then we have,

NAVIGATION.

 $AD: DB::: \sin DBA: \sin DAB.$

 $\therefore \quad \sin DAB = \frac{2 \sin DBA}{7}.$

 $\therefore DAB = 15^{\circ} 59'$. $\therefore C = 15^{\circ} 59' + 52^{\circ} = 67^{\circ} 59'$.

3. A ship runs N. E. by N. 18 miles in 3 hours, in a current W. by S. 2 miles an hour; required the course and distance. Ans. C = N. b. E. $\frac{1}{2}E$, r = 14 mi.

4. In a current S. E. by S. $1\frac{1}{2}$ miles an hour, a ship sails 24 hours as follows: S.W., 40 miles; W. S.W., 27 miles; S. by E., 47 miles; required the direct course and the distance. Ans. C = S. 11° 50′ W., r = 117 mi.

5. The port bears due E., the current sets S. W. by S. 3 knots an hour, the rate of sailing is 4 knots an hour; required the course steered. Ans. N. 51° E.

6. A ship sailing in a current has, by her reckoning, run S. by E. 42 miles, and, by observations, is found to have made 55 miles of difference of latitude, and 18 miles of departure; required the set and drift of the current. Ans. Set, S. 62° 12' W.; whole drift. 30 mi.

PLYING TO WINDWARD.

399. Definitions.

Plying to windward is the zigzag course which a ship makes by tacking when she encounters a foul wind.

Starboard signifies the right side.

Larboard signifies the left side.

The starboard tacks are aboard when a ship plies with the wind on the right.

The larboard tacks are aboard when a ship plies with the wind on the left.

PLYING TO WINDWARD.

A ship is said to be close-hauled when she sails as nearly as possible toward the point from which the wind is blowing.

400. Examples.

1. Being within sight of my port bearing N. by E. $\frac{1}{2}$ E., distant 18 miles, a fresh gale sprung up from the N. E. With my larboard tacks aboard, and close-hauled within six points of the wind, how far must I run before tacking about, and what will be my distance from the port on the second board?

Let A be the place of the ship; P, the port; AB, the distance of the first board; BP, that of the second; WA or W'B, the direction of the wind.

Then, WAB = W'BC = W'BP =6 points.

ABP = 16 points - 12 points = 4 points.

- PAW = NAW NAP = 4 points $-\frac{11}{2}$ points $= 2\frac{1}{2}$ points ..
- $PAB = PAW + WAB = 2\frac{1}{2}$ points + 6 points = $8\frac{1}{2}$ points.

APB = 16 points $-(PAB + ABP) = 3\frac{1}{2}$ points. $\sin ABP$: $\sin APB$:: AP: AB, $\therefore AB = 16.15$ mi. $\sin ABP : \sin BAP :: AP : BP,$ $\therefore BP = 25.23$ mi.

2. If a ship can lie within 6 points of the wind on the larboard tack, and within 5½ points on the starboard tack; required her course and distance on each. tack to reach a port lying S. by E. 22 miles, the wind being at S. W.

Ans. { Starboard tack, S. b. E. <u>1</u>E. 23.66 mi. Larboard tack, W. N. W. 2.79 mi.

S. N. 34.

NAVIGATION.

3. A ship is bound to a port 80 miles distant, and directly to windward, which is N. E. by N. $\frac{1}{2}$ E., and proposes to reach her port at two boards, each within 6 points of the wind, and to lead with the starboard tack; required her course and distance on each tack.

Ans. { Starboard tack, N. N.W. $\frac{1}{2}$ W., 104.5 mi. Larboard tack, E. S. E. $\frac{1}{2}$ E., 104.5 mi.

4. Wishing to reach a point bearing N. N. W. 15 miles, but the wind being at W. by N., I was obliged to ply to windward—the ship, close-hauled, could make way within 6 points of the wind; required the course and distance on each tack.

Ans. { Larboard tack, N. b. W. 17.65 mi. Starboard tack, S. W. b. S. 4.138 mi.

TAKING DEPARTURES.

401. Explanation.

Before losing sight of land, at the beginning of a voyage, the bearing and distance of some well-known object, as a light-house or headland, is taken, the reverse bearing and distance of which are entered as the first course and distance on the log board.

The bearing is taken by the compass; but the distance is sometimes estimated by the eye, as can be done with considerable accuracy by navigators of experience.

A more correct method of taking a departure is by means of data, obtained by taking the bearing at two different positions of the ship, the distance between these positions being measured by the log.

402. Examples.

1. Sailing down the channel, the Eddystone bore N.W. by N., and after running W. S. W. 18 miles, it bore N. by E.; required the course and distance from the Eddystone to the place of the last observation.

E = NAE + N'BE = 4 points. A = 16 points -(NAE + BAS) = 7 pts. $\sin E : \sin A :: AB : BE$, $\therefore BE = 24.97$.

2. At 3 o'clock P. M. the Lizard bore N. by W. $\frac{1}{2}$ W., and after sailing 7 knots an hour, W. by N. $\frac{1}{4}$ N., till 6 o'clock, the Lizard bore N. E. $\frac{3}{4}$ E.; required the course and distance from the Lizard to the place of the last observation. Ans. S.W. $\frac{3}{4}$ W., 19.35 mi.

3. In order to get a departure, I observe a headland of known latitude and longitude to bear N. E. by N., and after sailing E. by N. 15 miles, the same headland bore W. N. W.; required my distance from the headland at each place of observation.

Ans. 8.5 mi. and 10.8 mi.

Remark.—To find the latitude and longitude of a ship by means of celestial observations, requires a knowledge of Nautical Astronomy; but a thorough discussion of this subject would require an amount of space far exceeding our limits.

TABLES.

				PAG	£.,
I.	LOGARITHMS OF NUMBERS,		•		
II.	NATURAL SINES AND CO-SINES,			. 2	24
III.	NATURAL TANGENTS AND CO-TANGENTS,			. 2	26
IV.	LOGARITHMIC SINES AND TANGENTS, .	140.00		. 2	28
v.	TRAVERSE TABLE,	1.	1	. 7	3
VI.	MISCELLANEOUS TABLE,			. 8	34
VII.	MERIDIONAL PARTS,			. 8	35
III.	CORRECTIONS TO MIDDLE LATITUDES, .			. 8	37

Logarithms of Numbers to 100.

8

37

and the second				_					
1	0 00000	21	1.32222	41	1 61278	61	1.78533	81	1.90849
2	0.30103	22	1.34242	42	1.62325	62	1 79239	82	1.91381
3	0 47712	23	1.36173	43	1.63347	63	1.79934	83	1.91908
4	0.60206	24	1.38021	44	1.64345	64	1.80618	84	1.92428
5	0.69897	25	1.39794	45	1.65321	65	1.81291	85	1.92942
6	0.77815	26	1.41497	46	1.66276	66	1.81954	86	1.93450
7	0.84510	27	1.43136	47	1.67210	67	1.82607	87	1.93952
8	0.90309	28	1.44716	48	1.68124	68	1.83251	88	1.94448
9	0.95424	29	1.46240	49	1.69020	69	1 83885	89	1.94939
10	1.00000	30	1.47712	50	1.69897	70	1.84510	90	1.95424
11	1.04139	31	1.49136	51	1.70757	71 .	1.85126	91	1.95904
12	1.07918	32	1.50515	52	1 71600	72	1.85733	92	1.96379
13	1.11394	33	1.51851	53	1.72428_	73	1.86332	93	1.96848
14	1.14613	34	1.53148	54	1.73239	74	1.86923	94	1.97313
15	1.17609	35	1.54407	55	1.74036	75	1.87506	95	1.97772
16	1.20412	36-	1.55630	56	1.74819	76	1.88081	96	1.98227
17	1.23045	37	1.56820	57	1.75587	77	1.88649	97	1.98677
18	1.25527	38	1.57978	58	1.76343	78	1.89209	98	1.99123
19	1.27875	39	1.59106	59	1.77085	79	1.89763	.99	1.99564
20	1.30103	40	1.60206	60	1.77815	80	1.90309	100	2.00000
Sec. 1	C. Bull	19.5	R. R.	-		0	a transiti	1 2	

(1)

LOGARITHMS.

00000-16107

_							1.2				
N.	0	1	2	3	4	5	6	7	8	9	D.
100 101	00000 432	043 475	087 518	130 561	$\begin{array}{c} 173 \\ 604 \end{array}$	217 647	260 689	303 732	$\frac{346}{775}$	389 817	43 43
101	860	903	945	988	030	072	115	157	199	242	42
103	01284	326	368	410	452	494	536	578	620	662	42
104	703	745	787	828	870	912	953	995	036	078	42
105	02119	160	202	243	284	325	366	407	449	490	41
106	531	572	612	653	694	735	776	816	857	898	41
107	938 03342	979 383	019 423	060 463	100 503	141 543	181	222 623	262	302	40
108 109	743	303 782	425	862	902	941	981	025	003	703	$ \begin{array}{c} 40 \\ 40 \end{array} $
Carl Star	04139	179	218	258	297	336	376	415	454	2484	39
110	532	571	610	650	689	727	766	805	844	493 883	39
112	922	961	999	038	077	115	154	192	231	269	39
113	05308	346	385	423	461	500	538	576	614	652	38
114	690	729	767	805	843	881	918	956	994	032	38
115	06070	108	145	183	221	258	296	333	371	408	38
116	446	483	521	558	595	633	670	707	744	781	37
117	819	856	893	930	967	004	041	078	115	151	37
118	07188	225	262	298	335	372	408	445	482	518	37
119	555	591	628	664	700	737	773	809	846	882	36
120	918	954	990	027	063	099	135	171	207	243	36
121	08279	314.	350	386	422	458	493	529	565	600	36
122	636 991	672	707 061	743 096	778	814	849	884	920	955	35
$\begin{array}{c} 123 \\ 124 \end{array}$	09342	026 377	412	447	132 482	517	202 552	237 587	272 621	307 656	35 35
125	691	726	760	795	830	864	899	934	968	003	35
120	10037	072	106	140	175	209	243	278	312	346	34
127	380	415	449	483	517	551	585	619	653	687	34
128	721	755	789	823	857	890	924	958	992	025	34
129	11059	093	126	160	193	227	261	294	327	361	34
130	394	428	461	494	528	561	594	628	661	694	33
131	727	760	793	826	860	893	926	959	992	024	33
132	12057	090	123	156	189	222	254	287	320	352	33
133 134	385 710	418 743	450 775	483 808	516 840	548 872	581 905	613 937	646 969	678 001	$\frac{33}{32}$
120300	1 C ALL	P D.Car	098	1 Sec. 0. 2	a state of the	The second	6-6-6-6	to as be	Land - Land	1.69	32
135 136	$\begin{array}{r}13033\\354\end{array}$	066 ⁻ 386	098 418	$\begin{array}{c}130\\450\end{array}$	$\frac{162}{481}$	194 513	$\begin{array}{c} 226 \\ 545 \end{array}$	258 577	290 609	$\begin{array}{c} 322 \\ 640 \end{array}$	32 32
130	672	500 704	735	767	799	830	862	893	925	956	32
138	988	019	051	082	114	145	176	208	239	270	31
139	14301	333	364	395	426	457	489	520	551	582	31
140	613	644	675	706	737	768	799	829	860	891	31
141	922	953	983	014	045	076	106	137	168	198	31
142	15229	259	290	320	351	381	412	442	473	503	31
143	534	564	594	625	655	685	715	746	776	806	30
144	836	866	897	927	957	987	017	047	077	107	30
N.	0	1	2	3	4	5	6	7	8	9	D,
	and a state of the		And the second second	and the second second			-			and a second	

LOGARITHMS.

16137-27852

N.	0	1	2	3 *	4	Б	6	7	8	9	D.
145 146	$\begin{array}{r}16137\\435\end{array}$	$ \begin{array}{r} 167 \\ 465 \end{array} $	$\begin{array}{c} 197\\ 495 \end{array}$	$227 \\ 524$	$\begin{array}{c} 256\\ 554 \end{array}$	$\frac{286}{584}$	$\begin{array}{c} 316\\ 613 \end{array}$	$\begin{array}{c} 346\\ 643 \end{array}$	$\begin{array}{c} 376\\ 673 \end{array}$	406 702	30 30
147	732	761	791	820	850	879	909	938	967	997	29
148 149	$\begin{array}{r}17026\\319\end{array}$	$\frac{056}{348}$	085 377	$114 \\ 406$	$\frac{143}{435}$	$\begin{array}{c}173\\464\end{array}$	$\begin{array}{c} 202 \\ 493 \end{array}$	$231 \\ 522$	$\begin{array}{c} 260\\ 551 \end{array}$	289 580	29 29
10000		and As	667	696	725	754	782	811	840	869	29
$150 \cdot 151$	$\begin{array}{c} 609 \\ 898 \end{array}$	638 926	955	984	013	041	070	099	127	156	29
152	18184	213	241	270	298	327	355	384	412	441	29
153 154	$ 469 \\ 752 $	498 780	526 808	554 837	$\frac{583}{865}$	611 893	639 921	667 949	696 977	724	28 28
	19033	100 100	089	117	145	173	201	229	257	285	28
155 156	19055	$\begin{array}{c} 061\\ 340 \end{array}$	368	396	424	451	479	229 507	535	562	28
157	590	618	645	673	700	728	756	783	811	838	28
158	$\frac{866}{20140}$	893	921 194	$\frac{948}{222}$	$976 \\ 249$	003 276	o30 303	058 330	085 358	$112 \\ 385$	27 27
159	412	167	466	493	249 520	548	575	550 602	558 629	555 656	27
160 161	683	439 710	400	495 763	$\frac{520}{790}$	817	844	871	898	925	27
162	952	978	_005	032	059	085	112	139	165	192	27
163	$21219 \\ 484$	245	$272 \\ 537$	$299 \\ -564$	$\frac{325}{590}$	$\begin{array}{c} 352\\617\end{array}$	$378 \\ 643$	$\begin{array}{c} 405 \\ 669 \end{array}$	431 696	458 722	27 26
164		511		Fellul 1	854		1.2.2	932	958	985	20
165^{-1}	$748 \\ 22011$	775 037	801 063	827 089	894 115	880 141	906 167	932 194	958 220	985 246	20 26
167	272	298	324	350	376	401	427	453	479	505	26
168	531	557	583	608	634	660	686	712	737	763	$\begin{array}{c} 26 \\ 26 \end{array}$
169	789	814	840	866	891	917	943	968	994	019	12 12 1
170	$23045 \\ 300$	$\begin{array}{c} 070\\ 325 \end{array}$	096 350	$\frac{121}{376}$	$ \begin{array}{r} 147 \\ 401 \end{array} $	$\begin{array}{c}172\\426\end{array}$	$\begin{array}{c} 198 \\ 452 \end{array}$	223 477	249 502	274 528	$\begin{array}{c} 25\\ 25\end{array}$
172	553	578	603	629	654	679	704	729	754	779	25
173	805	830	855	880	905	930	955	980	005	030	25
174	24055	080	105	130	155	180	204	229	254	279	25
175	$304 \\ 551$	329 576	353 601	$\begin{array}{c} 378\\625\end{array}$	$\begin{array}{c} 403 \\ 650 \end{array}$	$\begin{array}{c} 428 \\ 674 \end{array}$	452 699	477 724	$502 \\ 748$	527 773	$\begin{array}{c} 25\\ 25\end{array}$
177	797	822	846	871	895	920	944	969	993	018	25
178	25042	066	091	115	139	164	188	212	237	261	.24
179	285	310	334	358	382	406	431	455	479	503	24
180 181	527 768	551 792	575 816	600 840	$\begin{array}{c} 624 \\ 864 \end{array}$	648 888	672 912	696 935	720 959	744 983	24 24
181	26007	031	055	079	102	126	150	174	198	221	24
183	245	269	293	316	340	364	387	411	435	458	24
184	482	505	529	553	576	600	623	647	670	694	24
185 186	717 951	741 975	764 998	788 021	811	834 068	858 091	881	905 138	928 161	$\begin{array}{c} 23 \\ 23 \end{array}$
180	27184	207	231	254	277	300	323	346	370	393	23
188	416	439	462	485	508	531	554	577	600	623	23
189	646	669	692	715	738	761	784	807	830	852	23
N.	0	1	2	3	4	5	6	7	8	9	D.

LOGARITHMS.

27875-37088

			-	19052					-		
N.	0	1	2	3	4	5	6	7	8	9	D.
190 191	$27875 \\ 28103$	898 126	921 149	944 171	967 194	989 217	012 240	035 262	058 285	081 307	23 23
$ \begin{array}{c c} 192 \\ 193 \\ 194 \end{array} $	$ \begin{array}{r} 330 \\ 556 \\ 780 \end{array} $	353 578 803	$375 \\ 601 \\ 825$	398 623 847	421 646 870	$ \begin{array}{r} 443 \\ 668 \\ 892 \end{array} $	466 691 914	488 713 937	511 735 959	533 758 981	$23 \\ 22 \\ 22 \\ 22$
195	29003	026	048	070	092	115	137	159	181	203	22
196 197 198	$ \begin{array}{c c} 226 \\ 447 \\ 667 \end{array} $	248 469 688	270 491 710	292 513 732	314 535 754	336 557 776	358 579 798	$380 \\ 601 \\ 820$	403 623 842	$425 \\ 645 \\ 863$	$22 \\ 22 \\ 22 \\ 22$
199	885	907	929	951	973	994	016	038	060	081	22
$ \begin{array}{r} 200 \\ 201 \\ 202 \end{array} $	$ \begin{array}{r} 30103 \\ 320 \\ 535 \end{array} $	$ \begin{array}{r} 125 \\ 341 \\ 557 \end{array} $	$146 \\ 363 \\ 578$	$ 168 \\ 384 \\ 600 $	$ \begin{array}{r} 190 \\ 406 \\ 621 \end{array} $	$211 \\ 428 \\ 643$	$233 \\ 449 \\ 664$	$255 \\ 471 \\ 685$	$276 \\ 492 \\ 707$	298 514 728	$22 \\ 22 \\ 21$
203 204	750 963	771 984	792 006	814 027	835 048	856 069	878 091	899 112	920 133	942 154	21 21 21
$205 \\ 206$	31175 387	197 408	218 429	239 450	260 471	281 492	302 513	323 534	345 555	366 576	21 21
207 208	597 806	618 827	639 848	660 869	681 890	702 911	723 931	744 952	765 973	785 994	21 21
209 210	32015 222	035 243	056 263	077 284	098 305	118 325	139 346	160 366	181 387	201 408	21 21
$ \begin{array}{c c} 211 \\ 212 \\ 213 \end{array} $	428 634 838	449 654 858	469 675 879	490 695 899	510 715 919	$531 \\ 736 \\ 940$	$552 \\ 756 \\ 960$	572 777 980	593 797 001	613 818 021	$\begin{vmatrix} 20 \\ 20 \\ 20 \end{vmatrix}$
214	33041	062	082	102	122	143	163	183	203	224	20
$\begin{array}{c c} 215 \\ 216 \\ 217 \end{array}$	$\begin{array}{r} 244\\ 445\\ 646\end{array}$	$264 \\ 465 \\ 666$	$284 \\ 486 \\ 686$	$304 \\ 506 \\ 706$	$325 \\ 526 \\ 726$	$345 \\ 546 \\ 746$	$365 \\ 566 \\ 766$	385 - 586 - 786	405 606 806	$425 \\ 626 \\ 826$	$ \begin{array}{c} 20 \\ 20 \\ 20 \end{array} $
218 219	846 34044	866 064	885 084	905 104	925 124	945 - 143		985 183	005 203	025 223	
220 221	242 439	$\begin{array}{c} 262\\ 459 \end{array}$	282 479	301 498	321 518	341 537	361 557	380 577	400 596	420 616	20 20
222 223	635 830	655 850	674 869	694 889	713 908	733 928	753 947	772 967	792 986	811	19 19
224 225	35025 218	044 238 ·	064 257	083 276	102 295	122 315	141 334	160 353	180 372	199 392	19 19
$ \begin{array}{c c} 226 \\ 227 \\ 228 \end{array} $	$-\frac{411}{603}$ 793	430 622 813	449 641 832	468 660 851	488 679 870	507 698 889	526 717 908	545 736 927	564 755 946	583 774 965	19 19 19
229	984	003	021	o40 229	059 248	078 267	097 286	116 305	135 324	303 154 342	19 19 19
230 231 232	$36173 \\ 361 \\ 549$	$ \begin{array}{r} 192 \\ 380 \\ 568 \end{array} $	211 399 586	229 418 605	$ \frac{248}{436} $ 624	$ \begin{array}{r} 207 \\ 455 \\ 642 \end{array} $	280 474 661	305 493 680	511 698	530 717	19 19 19
233 234	736 922	754 940	773 959	791 977	810 996	829 014	847 033	866 051	884 070	903 088	19 18
N.	0	1	2	3	4	Б	6	7	8	9	D.

4 ...

LOGARITHMS.

37107-44700

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N.	0	1	2	3	4	5	6	7 (8	9	D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	236 237 238	291 475 658	310 493 676	$328 \\ 511 \\ 694$	346 530 712	365 548 731	$383 \\ 566 \\ 749$	401 585 767	420 603 785	438 621 803	457 639 822	18 18 18 18 18 18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$240 \\ 241 \\ 242 \\ 243$	38021 202 382 561	039 220 399 578	057 238 417 596	$075 \\ 256 \\ 435 \\ 614$	$\begin{array}{c} 093 \\ 274 \\ 453 \\ 632 \end{array}$	$112 \\ 292 \\ 471 \\ 650$	130 310 489 668	148 328 507 686	$166 \\ 346 \\ 525 \\ 703$	184 364 543 721	18 18 18 18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$245 \\ 246 \\ 247 \\ 248$	$917 \\ 39094 \\ 270 \\ 445$	934 111 287 463	952 129 305 480	970 146 322 498	987 164 340 515	005 182 358 533	023 199 375 550	041 217 393 568	058 235 410 585	076 252 428 602	18 18 18 18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$250 \\ 251 \\ 252 \\ 253 \\$	794 967 40140 312	811 985 157 329	829 002 175 346	846 019 192 364	863 037 209 381	881 054 226 398	898 071 243 415	915 088 261 432	933 106 278 449	950 123 295 466	17 17 17 17 17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	255 256 257 258	$\begin{array}{r} 654 \\ 824 \\ 993 \\ 41162 \end{array}$	671 841 010 179	688. 858 027 196	705 875 044 212	722 892 061 229	739 909 078 246	756 926 095 263	773 943 111 280	790 960 128 296	807 976 145 313	17 17 17 17 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	260 261 262 263	497 664 830 996	514 681 847 012	531 697 863 029	547 714 880 045	564 731 896 062	581 747 913 078	597 764 929 095	614 780 946 -111	631 797 963 127	647 814 979 144	17 17 16 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	265 266 267 268	$325 \\ 488 \\ 651 \\ 813$	341 504 667 839	$357 \\ 521 \\ 684 \\ 846$	374 537 700	390 553 716	406 570 732	423 586 749 911	439 602 765 927	455 619 781 943	472 635 797 959	16 16 16 16 16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$270 \\ 271 \\ 272$	43136 297 457	152 313 473	169 329 489	185 345 505	201 361 521	217 377 537	233 393 553	$249 \\ 409 \\ 569$	$265 \\ 425 \\ 584$	281 441 600	16 16 16 16 16
<u>279</u> <u>560</u> <u>576</u> <u>592</u> <u>607</u> <u>623</u> <u>638</u> <u>654</u> <u>669</u> <u>685</u> <u>700</u> <u>16</u>	274 275 276 277	775 933 44091 248	791 949 107 264	807 965 122 279	823 981 138 295	838 996 154 311	854 012 170 326	870 028 185 342	886 044 201 358	902 059 217 373	917 075 232 389	16 16 16 16
N. 0 1 2 3 4 5 6 7 8 9 D.												16 16 D.

S. N. 35.

LOGARITHMS.

47716-51175

	1	1	1	1			-			1	
N.	0	1	2	3	4	5	6	7	8	9	D.
280 281	44716 871	731 886	747 902	762 917	778 932	793 948	809 963	824 979	840 994	855	15
$\frac{281}{282}$	45025	040	056	071	952 086	102	905	133	994 148	o10 163	15 15
$\begin{array}{c} 283 \\ 284 \end{array}$	$\begin{array}{c} 179\\ 332 \end{array}$	$194 \\ 347$	$\begin{array}{c} 209 \\ 362 \end{array}$	$225 \\ 378$	$240 \\ 393$	$ \begin{array}{c} 255 \\ 408 \end{array} $	$271 \\ 423$	$ \begin{array}{r} 286 \\ 439 \end{array} $	301 454	317 469	15 15
285	484	500	515	530	545	561	576	591	606	621	15
286	637	652	667	682	697	712	728	743	758	773	15
$287 \\ 288$	$\begin{array}{c} 788 \\ 939 \end{array}$	803 954	818. 969	834 984	849 000	864 015	879 030	894	909 060	924 075	15 15
289	46090	105	120	135	150	165	180	195	210	225	15
290	240	255	270	285	300	315	330	345	359	374	15
291 292	389 538	404 553	419 568	434 583	449 598	464 613	479 627	494 642	509 657	523 672	15 15
293	687	702	716	731	746	761	776	790	805	820	15
294 295	835 982	850 997	864 012	879 026	894 041	909 056	923 070	938 085	953 100	967 114	15 15
295 296	47129	997 144	012 159	020 173	041 188	000 202	217	080 232	$\frac{100}{246}$	114 261	$15 \\ 15$
$\frac{297}{298}$	$\begin{array}{c} 276 \\ 422 \end{array}$	$\frac{290}{436}$	$\frac{305}{451}$	$319 \\ 465$	$334 \\ 480$	349 494	363 509	$378 \\ 524$	392 538	407 553	15 15
298	422 567	582	491 596	611	625	640	654	669	683	698	15
300	712	727	741	756	770	784	799	813	828	842	14
$\frac{301}{302}$	857 48001	871 015	885 029	900 044	914 058	929 073	943 087	958 101	972 116	986 130	14 14
303	144.	159	173	187	202	216	230	244	259	273	14
304	287	302	316	330	344	359	373	387	401	416	14
$305 \\ 306$	$\begin{array}{r} 430 \\ 572 \end{array}$	444 586	458 601	473 615	487 629	$\begin{array}{c} 501 \\ 643 \end{array}$	515 657	$530 \\ 671$	544 686	558 700	14 14
307	714	728	742	756	770	785	799	813	827	841	14
308 309	855 996	869 010	883 024	897 038	911 052	926 066	940 080	954 094	968 108	982 122	14 14
310	49136	150	164	178	192	206	220	234	248	262	14
311 312	$\begin{array}{r} 276 \\ 415 \end{array}$	$\frac{290}{429}$	304 443	318 457	332 471	$\frac{346}{485}$	$\frac{360}{499}$	374 513	388 527	402 541	14 14
312	554	429 568	582	596	610	624	638	651	665	679	14
314	693	707	721	734	748	762	776	790	803	817	14
$\begin{array}{c} 315\\ 316 \end{array}$	831 969	845 982	859 996	872 010	886 024	900 037	914 051	927 065	941 079	955 092	14 14
317	50106	120	133	147	161	174	188	202	215	229	14
318 319	$\begin{array}{r} 243 \\ 379 \end{array}$	$256 \\ 393$	$\frac{270}{406}$	$284 \\ 420$	297 433	$311 \\ 447$	$\frac{325}{461}$	338 474	352 488	$\begin{array}{c} 365\\ 501 \end{array}$	14 14
320	515	529	542	556	569	583	596	610	623	637	14
321	651	664	678	691 896	705 840	718 853	$\begin{array}{c} 732\\ 866 \end{array}$	745 880	759 893	772 907	14 13
$322 \\ 323$	786 920	799 934	813 947	826 961	840 974	893 987	001	014	028	041	13
324	51055	068	081	095	108	121	135	148	162	175	13
N.	0	1 ·	2	3	4	5	6	7	8	9	°D,

LOGARITHMS.

51188-56808

_												
N.	0	1	2	3	4	5	6	7	8	9	D,	
325 326 327 328 329	51188 322 455 587 720	$ \begin{array}{r} 202 \\ 335 \\ 468 \\ 601 \\ 733 \end{array} $	$ \begin{array}{r} 215 \\ 348 \\ 481 \\ 614 \\ 746 \end{array} $	228 362 495 627 759	$\begin{array}{r} 242 \\ 375 \\ 508 \\ 640 \\ 772 \end{array}$	$ \begin{array}{r} 255 \\ 388 \\ 521 \\ 654 \\ 786 \end{array} $	$ \begin{array}{r} 268 \\ 402 \\ 534 \\ 667 \\ 799 \end{array} $	$ \begin{array}{r} 282 \\ 415 \\ 548 \\ 680 \\ 812 \end{array} $	$ \begin{array}{r} 295 \\ 428 \\ 561 \\ 693 \\ 825 \end{array} $	308 441 574 706 838	13 13 13 13 13 -13	
330 331 332 333 334	$\begin{array}{c c} 851 \\ 983 \\ 52114 \\ 244 \\ 375 \end{array}$	865 996 127 257 388	878 009 140 270 401	891 022 153 284 414	904 035 166 297 427	917 048 179 310 440	930 061 192 323 453	943 075 205 336 466	957 088 218 349 479	970 101 231 362 492	13 13 13 13 13 13	
335 336 337 338 339	504 634 763 892 53020	517 647 776 905 033	530 660 789 917 046	543 673 802 930 058	556 686 815 943 071	569 699 827 956 084	582 711 840 969 097	595 724 853 982 110	608 737 866 994 122	621 750 879 007 135	13 13 13 13 13 13	
340 341 342 343 344	$ \begin{array}{r} 148 \\ 275 \\ 403 \\ 529 \\ 656 \end{array} $	$161 \\ 288 \\ 415 \\ 542 \\ 668$	173 301 428 555 681	186 314 441 567 694	199 326 453 580 706	212 339 466 593 719	224 352 479 605 732	$\begin{array}{r} 237 \\ 364 \\ 491 \\ 618 \\ 744 \end{array}$	250 377 504 631 757	263 390 517 643 769	13 13 13 13 13	
345 346 347 348 349	$782 \\908 \\54033 \\158 \\283$	794 920 045 170 295	807 933 058 183 307	820 945 070 195 320	832 958 083 208 332	845 970 095 220 345	857 983 108 233 357	870 995 120 245 370	882 008 133 258 382	895 020 145 270 394	$ \begin{array}{r} 13 \\ 13 \\ 13 \\ 12 \\ 12 \\ 12 \end{array} $	
350 351 352 353 354	407 531 654 777 900	419 543 667 790 913	432 555 679 802 925	444 568 691 814 937	456 580 704 827 949	469 593 716 839 962	481 605 728 851 974	494 617 741 864 986	506 630 753 876 998	518 642 765 888 011	$ \begin{array}{r} 12 \\$	
355 356 357 358 359	55023 145 267 388 509	$\begin{array}{c} 035 \\ 157 \\ 279 \\ 400 \\ 522 \end{array}$	047 169 291 413 534	$\begin{array}{c} 060 \\ 182 \\ 303 \\ 425 \\ 546 \end{array}$	072 194 315 437 558	084 206 328 449 570	096 218 340 461 582	108 230 352 473 594	$121 \\ 242 \\ 364 \\ 485 \\ 606$	133 255 376 497 618	$ \begin{array}{r} 12 \\$	
360 361 362 363 364	630 751 871 991 56110	642 763 883 003 122	654 775 895 015 134	666 787 907 027 146	678 799 919 038 158	691 811 931 050 170	703 823 943 062 182	715 835 955 074 194	727 847 967 086 205	739 859 979 098 217	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	
365 366 367 368 369	229 348 467 585 703	241 360 478 597 714	$\begin{array}{c} 253 \\ 372 \\ 490 \\ 608 \\ 726 \end{array}$	265 384 502 620 738	$277 \\ 396 \\ 514 \\ 632 \\ 750$	$\begin{array}{r} 289 \\ 407 \\ 526 \\ 644 \\ 761 \end{array}$	301 419 538 656 773	$312 \\ 431 \\ 549 \\ 667 \\ 785$	$324 \\ 443 \\ 561 \\ 679 \\ 797$	336 455 573 691 808	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	
N.°	0	1	2	3	4	5	6	7	8	9	D,	

LOGARITHMS.

56820-61794

N.	0	1	2	3	4	5	6	7	8	9	D.
				855	867	879					12
370 371	$\begin{array}{r} 56820\\937\end{array}$	832 949	844 961	855 972	807 984 -	996	891 008	902 019	914 031	926 043	$12 \\ 12$
372	57054	066	078	089	101	113	124	136	148	159	12
373	171	$\frac{183}{299}$	194 310	$206 \\ 322$	217 334	$229 \\ 345$	$241 \\ 357$	$252 \\ 368$	264 380	276 392	$\begin{array}{c c} 12 \\ 12 \end{array}$
374	287	5 1 4 1 4	11 200	11/2	the state	1.800	Tank	1.	10.0		
375 376	403 519	415 530	426 542	438 553	449 565	461 576	473 588	484 600	496 611	507 623	$\begin{array}{c c} 12\\ 12 \end{array}$
377	634	646	657	669	680	692	703	715	726	738	11
378	749	761	772	784	795	807	818	830	841	852	11
379	864	875	887	898	910	921	933	944	955	967	11
380 381	978 58092	990 104	001 115	013 127	024 138	035 149	047	058 172	070 184	081 195	11 11
382	206	218	229	240	252	263	274	286	297	309	11
383	320	331	343	354	365	377	388	399	410	422	11
384	433	444	456	467	478	490	501	512	524	535	11
385	546	557	569	580	591	602	614	625	636	647	11
386 387	659 771	670 782	681 794	692 805	704 816	715 827	726 838	737 850	749 861	760 872	11 11
388	883	894	906	917	928	939	950	961	973	984	11
389	995	006	017	028	040	051	062	073	084	095	11
390	59106	118	129	140	151	162	173	184	195	207	11
391 392	$218 \\ 329$	229 340	240 351	251 362	$ \begin{array}{c} 262 \\ 373 \end{array} $	$273 \\ 384$	284 395	295 406	306 417	318 428	11 11
392	439	450	461	472	483	494	506	517	528	539	11
394	550	561	572	583	594	605	616	627	638	649	11
395	660	671	682	693	704	715	726	737	748	759	11
396	770	780 890	791	802 912	813 923	824 934	835 945	846 956	857 966	868 977	11 11
397 398	879 988	999	901 010	021	032	043	054	065	076	086	11
399	60097	108	119	130	141	152	-163	173	184	195	11
400	206	217	228	239	249	260	271	282	293	304	11
401	314	325	336	347	358	369	379	390	401	412	11 11
402 403	423 531	433 541	444 552	455 563	466 574	477 584	487 595	498 606	509 617	$520 \\ 627$	11
404	638	649	660	670	681	692	703	713	724	735	11
405	746	756	767	778	788	799	810	821	831	842	11
.406	853	863	874	885	895	906	917	927	938	949	11
407 408	959 61066	970	981 087	991 098	002 109	013 119	023 130	o34 140	045 151	055 162	11 11
408	172	183	194	204	215	225	236	247	257	268	11
410	278	289	300	310	321	331	342	352	363	374	11
411	384	395	405	416	426	437	448	458	469	479	11
412	490	500	511 616	521 627	$\begin{array}{c} 532\\ 637\end{array}$	542 648	553 658	563 669	574 679	584 690	11 11
413	595	606	721	731	742	048 752	763	773	784	794	10
							6	7	8		D.
N.	0	1	2	3	4	5	0	1	0	9	D.

LOGARITHMS.

61805-66266

· N.	0	1	2	3	4	5	6	7	8	9	D.
415 416	61805 909	815 920	826 930	836 941	847 951	857 962	868 972	878 982	888 993	899 003	$\frac{10}{10}$
417 418	62014 118	024 128	$\begin{array}{c} 034\\ 138 \end{array}$	$\begin{array}{c} 045\\ 149 \end{array}$	$\begin{array}{c} 055\\ 159 \end{array}$	066 170	076 180	086 190	097 201	107 211	$\begin{array}{c} 10 \\ 10 \end{array}$
419 420	221 325	232 335	242 346	252 356	$263 \\ 366$	273 377	284 387	294 397	304 408	315 418	10 10
420 421 422	428 531	439 542	449 552	459 562	$ 469 \\ 572 $	480 583	490 593	500 603	511 613	521 624	10 10 10 10 10 10 10 10
423 424	634 737	644 747	655 757	665 767	675 778	685 788	696 798	706 808	716 818	726 829	$ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $
425	839	849	859	870	880	890	900	910	921	931	10
426 427	941 63043	951 053	961 063	972 073	982 083	992 094	002 104	o12 114	022 124	033	10 10
428 429	144 246	$\frac{155}{256}$	$\frac{165}{266}$	$\frac{175}{276}$	$\frac{185}{286}$	195 296	·205 306	$215 \\ 317$	225 327	236 337	10 10
430 431	347 448	357 458	367 468	377 478	387 488	397 498	407 508	417 518	428 528	438 538	10 10
432 433	548 649	558 659	568 669	579 679	589 689	599 699	609 709	619 719	629 729	639 739	10 10
434 435	749 849	759 859	769 869	779 879	789 889	799 899	809 909	819 919	829 929	839 939	10 10
436 437	949 64048	959 058	969 068	979 078	988 088	998 098	008 108	018 118	028 128	038 137	10 10 10 10
438	147 246	157 256	$ 167 \\ 266 $	$177 \\ 276$	187 286	197 296	$ \begin{array}{r} 100 \\ 207 \\ 306 \end{array} $	$ \begin{array}{c} 217 \\ 316 \end{array} $	227 326	237 335	10 10
440	345	355	365	375	385	395	404	414	424	434	10
441	444 542	454 552	464 562	473 572	483 582	493 591	503 601	513 611 700	523 621	532 631 790	10 10
443 444	640 738	650 748	660 758	670 768	.680 777	689 787	699 797	709 807	719 816	729 826	10 10
445 446	836 933	846 943	856 953	865 963	875 972	885 982	895 992	904 002	914 011	924 021	10 10
447 448	65031 128	040 137	050 147	060 157	$\begin{array}{c} 070\\ 167\end{array}$	079 176	089 186	099 196	108 205	118 215	10 10
449 450	225 321	234 331	244 341	254 350	263 360	273 369	283 379	292 389	.302 398	312 408	10 10
451 452	418 514	427 523	437 533	447 543		466 562	475 571	485 581	495 591	504 600	$\begin{array}{c}10\\10\\10\end{array}$
452 453 454	610 706	525 619 715	535 629 725	639 734	648 744	658 753	667 763	677 772	686 782	696 792	$\begin{array}{c}10\\10\\9\end{array}$
455	801	811	820	830	839	849	858	868	877	887	9
456 457	896 992	906 001	916 011	925 020	935 030	944 039	954 049	963 058	973 068	982 077	. 9
458 459	66087 181	096 191	$\begin{array}{c c}106\\200\end{array}$	$\begin{array}{c}115\\210\end{array}$	124 219	134 229	143 238	153 247	$\begin{array}{c} 162 \\ 257 \end{array}$	$\begin{array}{c} 172\\ 266 \end{array}$	9 9
N.	0	1	2	3	4	5	6	- 7	8	9	D.

LOGARITHMS.

66276-70321

		1	1	1	1	1	-	1			
N.	0	1	2	3	4	5	6	7	8	9	D.
460	66276	285	295	304	314	323	332	342	351	361	9
461 462	370 464	380 474	389 483	398 492	408 502	417 511	427 521	436 530	445 539	455 549	99
463	558	567	577	586	596	605	614	624	633	642	9
464	652	661	671	680	689	699	708	717	727	736	9
465	745	755	764	773	783	792	801	811	820	829	9
466	839	848	857	867	876	885	894	904	913	922	9
$\frac{467}{468}$	932 67025	941 034	950 043	$960 \\ 052$	969 062	978	987 080	997 089	006	015 108	99
408	117	127	136	145	154	164	173	182	191	201	9
470	210	219	228	237	247	256	265	274	284	293	9
471	302	311	321	330	339	348	357	367	376	385	9
472	394	403	413	422	431	440	449	459	468	477	9
473	486 578	495	504 596	514 605	523 614	532 624	541 633	550	$ \frac{560}{651} $	569 660	99
474		587	0.000		014 706	E LLSS					9
475 476	669 761	679 770	688 779	697 788	706 797	715 806	724 815	733 825	742 834	752 843	9
477	852	861	870	879	888	897	906	916	925	934	9
478	943	952	961	970	979	988	997	006	015	024	9
479	68034	043	052	061	070	079	088	097	106	115	9
480	124	133	142	151	160	169	178	187	196	205	9
481 482	$\begin{array}{c} 215\\ 305 \end{array}$	$\begin{array}{c} 224\\ 314 \end{array}$	$\begin{array}{c} 233\\ 323 \end{array}$	$\begin{array}{c} 242 \\ 332 \end{array}$	251 341	$\begin{array}{r} 260 \\ 350 \end{array}$	269 359	278	287	296 386	9 9
482	395	404	323 413	422	431	440	449	458	467	476	9
484	485	494	502	511	520	529	538	547	556	565	9
485	574	583	592	601	610	619	628	637	646	655	9
486	664	673	681	690	699	708	717	726	735	744	9
487 488	$\begin{array}{c} 753 \\ 842 \end{array}$	$\frac{762}{851}$	771 860	780 869	789 878	797 886	806 895	815 904	824 913	833	99
488	931	831 940	949	958	966	975	984	904	002	011	9
490	69020	028	037	046	055	064	073	082	090	099	9
491	108	117	126	135	144	152	161	170	179	188	9
492	197	205	214	223	232	241	249	258	267	276	9
493	285 373	294 381	302 390	311 399	320 408	$329 \\ 417$	$338 \\ 425$	346 434	355 443	364 452	9
494	Construction of the local data	Sector 1	1.201-	5.35.4	1.1		19-22.2	522			12001
495 496	461 548	469 557	$\begin{array}{c} 478 \\ 566 \end{array}$	487 574	496 583	$504 \\ 592$	513 601	522 609	531 618	539 627	9 9
490	636	644	653	662	671	679	688	697	705	714	9
498	723	732	740	749	758	767	775	784	793	801	9
499	810	819	827	836	845	854	862	871	880	888	9
500	897	906	914	923	932	940	949	958	966	975	9
$\begin{array}{c} 501 \\ 502 \end{array}$	984 70070	992 079	001 088	o10 096	018 105	027 114	036 122	044 131	053 140	062 148	9 9
502	157	165	174	183	10.5	200	209	217	226	234	9
504	243	252	260	269	278	286	295	303	312	321	9
N.	0	1	2	3	4	5	6	7	8	9	D.

LOGARITHMS.

70329-74028

	1	-				1				1	
N.	0	1	2	3	4	5	6	7	8	9	D.
505	70329	338	346	355	364	372	381	389	398	406	9
506	415	424	432 518	441 526	449 535	458 544	$ \begin{array}{r} 467 \\ 552 \end{array} $	475 561	484 569	492 578	9
507 508	501 586	509 595	603	520 612	621	629	638	646	655	663	9
509	672	680	689	697	706	714	723	731	740	749	9
510	757	766	774	783	791	800	808	817	825	834	9
511	842	851	859	868	876	885	893	902	910	919	9
512	927	935	944	952	961	969	978	986	995	003	9
513	71012	020	029	037	-046	054	063	071	079	088	8
514	096	105	113	122	130	139	147	155	164	172	8
515	181	189	198	206	214	223	231	240	248	257	8
516 517	$265 \\ 349$	$273 \\ 357$	282	$\frac{290}{374}$	$299 \\ 383$	307 391	315 399	324 408	332 416	$ \begin{array}{r} 341 \\ 425 \end{array} $	8
518	433	441	450	458	466	475	483	492	500	508	8
519	517	525	533	542	.550	559	567	575	584	592	8
520	600	609	617	625.	634	642	650	659	667	675	8
521	684	692	700	709	717	725	734	742	750	759	8
522	767	775	784	792	800	809	817	825	834	842	8
523	850	858	867	875	883	892	900	908	917	925	8
524	933	941	950	958	966	975	983	991	999	.008	8.
525	72016	024	032	041	049	057	066	074	082	090	8
$526 \\ 527$	099 181	107 189	115 198	$\frac{123}{206}$	$\frac{132}{214}$	140 222	$ \begin{array}{c} 148 \\ 230 \end{array} $	$ \begin{array}{c} 156 \\ 239 \end{array} $	$165 \\ 247$	$173 \\ 255$	88
528	263	272	280	288	296	304	313	321	329	337	8
529	346	354	362	370	378	387	395	403	411	419	8
530	428	436	444	452	460	469	477	485	493	501	8
531	509	518	526	534	542	550	558	567	575	583	8
532	591	599	607	616	624	632	640	648	656	665	8
533 534	$\begin{array}{c} 673\\754\end{array}$	681 762	689 770	697 779	705 787	713 795	722 803	730 811	738 819	746 827	88
2010	and the second second		24	1 1 1 1		1112	1.41.24			100	1 Tables
$535 \\ 536$	835 916	843 925	$852 \\ 933$	860 941	868 949	876 957	884 965	892 973	900 981	908 989	8 8
537	910	006	014	022	030	038	046	054	062	070	8
538	73078	086	094	102	111	.119	127	135	143	151	8
539	159	167	175	183	191	199	207	215	223	231	8
540	239	247	255	263	272	280	288	296	304	312	8
541	320	328	336	344	352	360	368	376	384	392	8
$542 \\ 543$	400	408	$416 \\ 496$	424 504	432 512	440	448	456	464	472	8
544 544	$\begin{array}{r} 480 \\ 560 \end{array}$	488 568	490 576	584	$512 \\ 592$	$520 \\ 600$	$528 \\ 608$	536 616	544 624	$\begin{array}{c} 552 \\ 632 \end{array}$	8 8
545	640	648	656	664	672	679	687	695	703	711	8
546	719	727	735	743	751	759	767	095 775	783	791	8
547	799	807	815	823	830	838	846	854	862	870	. 8
548	878	886	894	902	910	918	926	933	941	949	8
549	957	965	973	981	989	997	005	013	020	028	8
N.	0	1	2	3	4	5	6	7	8	9	D.
									1		-

LOGARITHMS.

74036-77444

								123			
N.	0	1	2	3	4	5	6	7	8	9	D.
550 551 552 553	$74036 \\ 115 \\ 194 \\ 273$	$\begin{array}{c} 044 \\ 123 \\ 202 \\ 280 \\ \end{array}$	$\begin{array}{c} 052 \\ 131 \\ 210 \\ 288 \\ 227 \end{array}$	$\begin{array}{c} 060\\ 139\\ 218\\ 296\\ 274 \end{array}$	068 147 225 304	076 155 233 312	$\begin{array}{c} 084 \\ 162 \\ 241 \\ 320 \\ 202 \end{array}$	092 170 249 327	099 178 257 335	$ \begin{array}{r} 107 \\ 186 \\ 265 \\ 343 \end{array} $	8888
554 555 556 557 558	351 429 507 586 663	359 437 515 593 671	367 445 523 601 679	374 453 531 609 687	382 461 539 617 695	390 468 547 624 702	398 476 554 632 710	406 484 562 640 718	414 492 570 648 726	421 500 578 656 733	8 8 8 8 8
559 560 561 562 563	741 819 896 974 75051	749 827 904 981 059	757 834 912 989 066	764 842 920 997 074	772 850 927 005 082	780 858 935 012 089	788 865 943 020 097	796 873 950 028 105	803 881 958 035 113	811 889 966 043 120	8 8 8 8 8 8
564 565 566 567 568	128 205 282 358 435 511	136 213 289 366 442 519	143 220 297 374 450 596	151 228 305 381 458 594	159 236 312 389 465 549	166 243 320 397 473 540	174 251 328 404 481	182 259 335 412 488 565	189 266 343 420 496 579	197 274 351 427 504	8 8 8 8 8 8
569 570 571 572 573	511 587 664 740 815	519 595 671 747 823	526 603 679 755 831	534 610 686 762 838	542 618 694 770 846	549 626 702 778 853	557 633 709 785 861	565 641 717 793 868	572 648 724 800 876	580 656 732 808 884	8 8 8 8 8
574 575 576 577 578	891 967 76042 118 193	899 974 050 125 200	906 982 057 133 208	914 989 065 140 215	921 997 072 148 223	929 005 080 155 230 205	937 012 087 163 238	944 020 095 170 245 220	952 027 103 178 253	959 035 110 185 260	8 8 8 8 8 8
579 580 581 582 583	268 343 418 492 567	275 350 425 500 574	283 358 433 507 582	290 365 440 515 589	298 373 448 522 597	305 380 455 530 604	 313 388 462 537 612 	320 395 470 545 619	328 403 477 552 626	 335 410 485 559 634 	8 87 77 7
584 585 586 587 588	641 716 790 864 938	649 723 797 871 945	656 730 805 879 953	664 738 812 886 960	671 745 819 893 967	678 753 827 901 975	686 760 834 908 982	693 768 842 916 989	701 775 849 923 997	708 782 856 930 004	77777
589 590 591 592 593	77012 085 159 232 305	019 093 166 240 313	026 100 173 247 320	034 107 181 254 327	041 115 188 262 335	048 122 195 269 342	056 129 203 276 349	063 137 210 283 357	070 144 217 291 364	078 151 225 298 371	7 7 7 7 7 7
594 	379 0	386	393	401	408	415	422 6	430	437 8	444	7 D,

LOGARITHMS.

77452-80611

N.	0	1	2	3	4	5	6	7	8	9	D.
595 596	$77452 \\ 525$	459 532	466 539	474 546	481 554	488 561	495 568	503 576	510 583	517 590	7 7
597	597	605	612	619	627	634	641	648	656	663	7
598 599	$\begin{array}{r} 670 \\ 743 \end{array}$	677 750	685 757	$\begin{array}{c} 692 \\ 764 \end{array}$	699 772	706 779	714 786	721 793	728 801	735 808	7 7 7
600	815	822	830	837	844	851	859	866	873	880	7
601	887	895	902	909	916	924	931	938	945	952	7
602	960	967	974	981	988	996	003	010	017	o25 097	7 7
603 604	$78032\\104$	039 111	046 118	$ \begin{array}{c} 053 \\ 125 \end{array} $	$\begin{array}{c} 061 \\ 132 \end{array}$	068 140	075 147	082 154	089 161	168	7
605	176	183	190	197	204	211	219	226	233	240	7
606	247	254	262	269	276	283	290	297	305	312	7
607 608	319 390	$\frac{326}{398}$	$\frac{333}{405}$	$\frac{340}{412}$.347 419	$355 \\ 426$	362 433	369 440	$376 \\ 447$	$\frac{383}{455}$	7 7
609	462	469	476	483	490	497	504	512	519	526	7
610	533	540	547	554	561	569	576	583	590	597	77
611	604	611	618	625	$\begin{array}{c} 633\\704 \end{array}$	640 711	647 718	654 725	661 732	668 739	7
612 613	$\begin{array}{c} 675\\746\end{array}$	$\begin{array}{c} 682 \\ 753 \end{array}$	689 760	696 767	774	781	789	796	803	810	77
614	817	824	831	838	845	852	859	866	873	880	7
615	888	895	902	909	916	923	930	937	944	951	7
616 617	958 79029	965 036	972 043	979 050	986 057	993 064	000	007 078	014 085	o21 092	777
618	099	106	113	120	127	134	141	148	155	162	7
619	169	176	183	190	197	204	211	218	225	232	7
620	239	246	253	260	267	274	281 351	288 358	295 365	302 372	777
621 622	309 379	316 386	$\frac{323}{393}$	$\frac{330}{400}$	337 407	344 414	421	428	435	442	
623	449	456	463	470	477	484	491	498	505	511	77
624	518	525	532	539	546	553	560	567	574	581	7
625 626	588 657	595 664	602 671	609 678	616 685	623 692	630 699	637 706	644 713	650 720	77
627	727.	734	741	748	754	761	768	775	782	789	7
628	796	803	810	817	824	831	837	844	851	858	777
629	865	872	879	886	893	900	906	913	920	927	7
630 631	934 80003	941 010	948 017	955 024	962 030	969 037	975 044	982 051	989 058	996 065	7
632	072	079	085	092	099	106	113	120	127	134	77
633	140	147	154 223	161 229	168 236	175 243	182 250	188 257	195 264	202 271	77
634	209 277	216 284	223	229	305	312	318	325	332	339	57 N. 6
635 636	346	353	359	366	373	380	387	393	400	407	7777
637	414	421	428	434	441	448	455	462	468	475	7
638 639	482 550	489 557	496 564	502 570	509 577	516 584	523 591	530 598	536 604	543 611	7
										9	 D,
N.	0	1	2	3	4	5	6	7	8	8	D,

LOGARITHMS.

80618-83563

-											
N.	0	1	2	3	4	5	6	7	8	9	D.
$ \begin{array}{r} 640 \\ 641 \\ 642 \\ 643 \\ 644 \end{array} $	80618 686 754 821 889	625 693 760 828 895	632 699 767 835 902	638 706 774 841 909	645 713 781 848 916	652 720 787 855 922	$ \begin{array}{r} 659 \\ 726 \\ 794 \\ 862 \\ 929 \end{array} $	665 733 801 868 936	$\begin{array}{c} 672 \\ 740 \\ 808 \\ 875 \\ 943 \end{array}$	679 747 814 882 949	7 7 7 7 7 7
645 646 647 648 649	956 81023 090 158 224	963 030 097 164 231	969 037 104 171 238	$976 \\ 043 \\ 111 \\ 178 \\ 245$	983 050 117 184 251	990 057 124 191 258	996 064 131 198 265	003 070 137 204 271	010 077 144 211 278	017 084 151 218 285	7 7 7 7 7 7
650 651 652 653 654	291 358 425 491 558	$298 \\ 365 \\ 431 \\ 498 \\ 564$	305 371 438 505 571	311 378 445 511 578	318 385 451 518 584	$325 \\ 391 \\ 458 \\ 525 \\ 591$	331 398 465 531 598	338 405 471 538 604	345 411 478 544 611	351 418 485 551 617	7 7 7 7 7
655 656 657 658 659	624 690 757 823 889	631 697 763 829 895	637 704 770 836 902	644 710 776 842 908	651 717 783 849 915	657 723 790 856 921	664 730 796 862 928	671 737 803 869 935	677 743 809 875 941	684 750 816 882 948	7 7 7 7 7
660 661 662 663 664	954 82020 086 151 217	961 027 092 158 223	968 033 099 164 230	974 040 105 171 236	981 046 112 178 243	987 053 119 184 249	994 060 125 191 256	000 066 132 197 263	007 073 138 204 269	014 079 145 210 276	7 7 7 7 7 7
665 666 667 668 669	$282 \\ 347 \\ 413 \\ 478 \\ 543$	$289 \\ 354 \\ 419 \\ 484 \\ 549$	$\begin{array}{r} 295 \\ 360 \\ 426 \\ 491 \\ 556 \end{array}$	$302 \\ 367 \\ 432 \\ 497 \\ 562$	308 373 439 504 569	315 380 445 510 575	321 387 452 517 582	328 393 458 523 588	334 400 465 530 595	*341 406 471 536 601	777777
670 671 672 673 674	607 672 737 802 866	614 679 743 808 872	620 685 750 814 879	627 692 756 821 885	633 698 763 827 892	640 705 769 834 898	646 711 776 840 905	653 718 782 847 911	659 724 789 853 918	666 730 795 860 924	7 6 6 6 6
675 676 677 678 679	930 995 83059 123 187	937 001 065 129 193	943 008 072 136 200	950 014 078 142 206	956 020 085 149 213	963 027 091 155 219	969 033 097 161 225	975 040 104 168 232	982 046 110 174 238	988 052 117 181 245	6 6 6 6
680 681 682 683 684	$\begin{array}{r} 251 \\ 315 \\ 378 \\ 442 \\ 506 \end{array}$	257 321 385 448 512	264 327 391 455 518	$\begin{array}{c} 270 \\ 334 \\ 398 \\ 461 \\ 525 \end{array}$	$276 \\ 340 \\ 404 \\ 467 \\ 531$	$283 \\ 347 \\ 410 \\ 474 \\ 537$	289 353 417 480 544	296 359 423 487 550	302 366 429 493 556	308 372 436 499 563	6 6 6 6
N.	0	1	2	3	4	5	6	7	8	9	D,

LOGARITHMS.

83569-86325

		1				1	1				
N.	0	1	2	3	4	5	6	7	8	9	D.
685	83569	575	582	588 651	594	601 664	607 670	613 677	620 683	626 689	$\begin{array}{c} 6\\ 6\end{array}$
686 687	$\begin{array}{r} 632\\ 696\end{array}$	639 702	645 708	715	658 721	727	734	740	746	753	6
688	759	765	771	778	784	790	797	803	809	816	6
689 690	822 885	828 891	835 897	841 904	847 910	853 916	860 923	866 929	872 935	879 942	6 6
690	885 948	954	960	904 967	973	979	925	929	998	004	6
692	84011	017	023	029	036 098	$ \begin{array}{c} 042 \\ 105 \end{array} $	048	055	$ \begin{array}{c} 061 \\ 123 \end{array} $	067	6 6
$\begin{array}{c} 693 \\ 694 \end{array}$	$\begin{array}{c} 073 \\ 136 \end{array}$	$\begin{array}{c} 080 \\ 142 \end{array}$	-086 148	$\begin{array}{c} 092 \\ 155 \end{array}$	161	165	$ \begin{array}{c} 111 \\ 173 \end{array} $	117 180	125	$ \begin{array}{c c} 130 \\ 192 \end{array} $	6
695	198	205	211	217	223	230	236	242	248	255	6
696 697	$261 \\ .323$	$267 \\ 330$	$273 \\ 336$	$\frac{280}{342}$	$\frac{286}{348}$	$292 \\ 354$	298 361	$305 \\ 367$	311 373	317 379	
698	386	392	398	404	410	417	423	429	435	442	6
699	448	454	460	466	473	479	485	491	497	504	6
$700 \\ 701$	$\begin{array}{c} 510\\572 \end{array}$	516 578	$522 \\ 584$	528 590	535 597	541 603	547 609	553 615	559 621	566 628	6 6
702	634	640	646	652	658	665	671	677	683	689	6
$\begin{array}{c} 703 \\ 704 \end{array}$	$\begin{array}{c} 696 \\ 757 \end{array}$	$702 \\ 763$	708 770	714 776	$\frac{720}{782}$	726 788	$\begin{array}{c} 733 \\ 794 \end{array}$	739 800	745 807	751 813	6 6
705	819	825	831	837	844	850	856	862	868	874	6
706	880	887	893	899	.905	911	917	924	930	936	6
707 708	$\begin{array}{r} 942 \\ 85003 \end{array}$	948 009	954 016	$960 \\ 022$	967 028	973 034	979 040	985 046	991 052	997 058	
709	065	071	077	083	028	095	101	107	114	120	6
710	126	132	138	144	150	156	163	169	175	181	6
$711 \\ 712$	$\frac{187}{248}$	$\frac{193}{254}$	$199 \\ 260$	$\frac{205}{266}$	$\frac{211}{272}$	$217 \\ 278$	$\frac{224}{285}$	$230 \\ 291$	$236 \\ 297$	$242 \\ 303$	$\begin{array}{c} 6\\ 6\end{array}$
713	309	315	321	327	333	339	345	352	358	364	6
714	370	376	382	388	394	400	406	412	418	425	6
715 716	431 491	$437 \\ 497$	443 503	449 509	$\begin{array}{c} 455\\516\end{array}$	$ 461 \\ 522 $	$\begin{array}{c} 467\\528\end{array}$	$473 \\ 534$	479 540	485 546	$\begin{array}{c} 6\\ 6\end{array}$
717	552	558	564	570	576	582	588	594	600	606	6
718 719	$\begin{array}{c} 612\\ 673\end{array}$	618 679	$\begin{array}{c} 625 \\ 685 \end{array}$	631 691	637 697	$\begin{array}{c} 643 \\ 703 \end{array}$	649 709	655 715	661 721	667 727	$\begin{array}{c} 6\\ 6\end{array}$
720	733	739	745	751	757	763	769	775	781	788	6
721	794	800	806	812	818	824	830	836	842	848	6
722 723	854 914	860 920	866 926	872 932	878 938	884 944	890 950	896 956	902 962	908 968	$\begin{array}{c} 6\\ 6\end{array}$
724	974	980	986	992	998	004	010	016	022	028	6
725	86034	040	046	052	058	064	070	076	082	088	6
$726 \\ 727$	$\begin{array}{c} 094 \\ 153 \end{array}$	$100 \\ 159$	$106 \\ 165$	$112 \\ 171$	$\frac{118}{177}$	$124 \\ 183$	130 189	$136 \\ 195$	141 201	$\frac{147}{207}$	6
728	213	219	225	231	237	243	249	255	261	267	6
729	273	279	285	291	297	303	308	314	320	326	6
N.	0	1	2	3	4	Б	6	7	8	9	D,

LOGARITHMS.

86332-88925

-	N 0 1 0 2 4 5 8 7 8 0 T										
N.	0	1	2	. 3	4	5	6	7	8	9	D.
730	86332	338	344	350	356	362	368	374	380	386	6
731 732	$ 392 \\ 451 $	398 457	404 463	410 469	415 475	421 481	427 487	433 493	439 499	445 504	6 6
733	510	516	522	528	534	540	546	552	558	564	6
734	570	576	581	587	593	599	605	611	617	623	6
735	629 688	635 694	641 700	646 705	652 711	658 717	664 723	$\begin{array}{c} 670 \\ 729 \end{array}$	676. 735	682 741	6 6
737	747	753	759	764	770	776	782	788	794	800	6
738	806	812	817	823	829	835	841	847	853	859	6
739	864	870	876	882	888	894	900	.906	911	917	6
740 741	923 982	929 988	935 994	941 999	947 005	953 011	958 017	964 .023	970 029	976 035	6 6
742	87040	046	052	058	064	070	075	081	087	093	6
743	099	105	111	$\frac{116}{175}$	$\frac{122}{181}$	128	134	140 198	146	151	6 6
744	157	163	169		181 239	186	192		204	210	1.50
745 746	$\begin{array}{c} 216\\ 274 \end{array}$	$221 \\ 280$	227 286	$\frac{233}{291}$	239 297	$\begin{array}{c} 245\\ 303 \end{array}$	251 309	256 315	$\begin{array}{c} 262 \\ 320 \end{array}$	268 326	$\begin{array}{c} 6\\ 6\end{array}$
747	332	338	344	349	355	361	367	373	379	384	6
748 749	$\begin{array}{r} 390 \\ 448 \end{array}$	396 454	$ \frac{402}{460} $	408 466	413 471	419 477	425 483	431 489	437 495	442 500	6 6
	N STELL	16.157	518	400 523	529	535	541	547	552	558	6
750 751	$\begin{array}{r} 506 \\ 564 \end{array}$	512 570	576	581	529 587	593	599	604	610	616	6
752	622	628	633	639	645	651	656	662	668	674	6
753 754	679 737	685 743	691 749	697 754	703 760	708 766	714 772	720	726 783	731 789	6 6
755	795	800	806	812	818	823	829	835	841	846	6
756	852	858	864	869	875	881	887	892	898	904	6
757	910	915	921	927	933	938	944	950 007	955 013	961 018	6 6
758 759	967 88024	973 030	978 036	984 - 041	990 047	996 053	001	064	010	076	6
760	081	087	093	098	104	110	116	121	127	133	6
761	138	144	150	156	161	167	173	178	184	190	6
$\begin{array}{c} 762 \\ 763 \end{array}$	$\frac{195}{252}$	$201 \\ 258$	$\frac{207}{264}$	$\frac{213}{270}$	$218 \\ 275$	$224 \\ 281$	$230 \\ 287$	$235 \\ 292$	241 298	$247 \\ 304$	$\begin{array}{c} 6\\ 6\end{array}$
764	309	315	321	326	332	338	343	349	355	360	6
765	366	372	377	383	389	395	400	406	412	417	6
766	423	429	434	440	446	451	457	463	468	474 530	6
767	480 536	485 542	491 547	497 553	$502 \\ 559$	$508 \\ 564$	513 570	519 576	525 581	530 587	
769	593	598	604	610	615	621	627	632	638	643	6
770	649	655	660	666	672	677	683	689	694	700	6
771	705	711	717	722	728 784	734 790	739 795	745 801	750 807	756 812	
772	762 818	767 824	773 829	779 835	840	846	195 852	857	863	868	6
774	874	880	885	891	897	902	908	913	919	925	6
N.	0	1	2	3	4	Б	6	7	8	9	D,
	1.000	1	1								

LOGARITHMS.

88930-91376

N.	0	1	2	3	4	5	6	7	8	9	D,
775	88930	936	941	947	953	958	964	969	975	981	6
776	986	992	997	003	009	014	020	025	031	037	6
777	89042	048	053	059	064	070	076	081	087	092	6
778	098	104	109	115	120	126	131	137	143	148	6
779	154	159	165	170	176	182	187	193	198	204	6
780	209	215	221	226	232	237	243	248	254	260	6
781	265	271	276	282	287	293	298	304	310	315	6
782	321	326	332	337	343	348	354	360	365	371	6
783	376	382	387	393	398	404	409	415	421	426	6
784	432	437	443	448	454	459	465	470	476	481	6
785	487	492	498	504	509	515	520	526	531	537	6
786	542	548	553	559	564	570	575	581	586	592	6
787	597	603	609	614	620	625	631	636	642	647	6
788	653	658	664	669	675	680	686	691	697	702	66
789	708	713	719	724	730	735	741	746	752	757	
790	763	768	774	779	785	790	796	801	807	812	5
791	818	823	829	834	840	845	851	856	862	867	5
792	873	878	883	889	894	900	905	911	916 971	922 977	5 5
793 794	927 982	933 988	938 993	944 998	949 004	955 009	960 . 015	966 020	026	031	5
-			0 4 22			100			1111111111	1.2.2.1	
795	90037	042	048	053	059	064	069	075	080	086	5
796	091	097	102	108	113	119	124	129	135	140	5 5
797	146	151	$ 157 \\ 211 $	$\frac{162}{217}$	$\frac{168}{222}$	$173 \\ 227$	179 233	184 238	189 244	195 249	5
798 799	$\begin{array}{c} 200 \\ 255 \end{array}$	$\begin{array}{c} 206 \\ 260 \end{array}$	266	271	276	282	233	293	298	304	5
1000		1.00	1.1.1.1	10 1000				121121		128	1000
800	309	314	320	325	331	336	342	347	352	358	5 5
801	363	369	374	380 434	$\frac{385}{439}$	³⁹⁰ 445	396 450	401 455	407 461	412 466	5
802 803	$\begin{array}{c} 417\\ 472 \end{array}$	423 477	428 482	434 488	493	445	504	509	515	520	5
804	526	531	536	542	547	553	558	563	569	574	5
						1000	612	617	623	628	5
805 806	580 634	585 639	590 644	596 650	601 655	607 660	666	671	677	682	5
800	687	693	698	703	709	714	720	725	730	736	5
808	741	747	752	757	763	768	773	779	784	789	5
809	795	800	806	811	816	822	827	832	838	843	5
810	849	854	859	865	870	875	881	886	891	897	5
811	902	907	913	918	924	929	934	940	945	950	5
812	956	961	966	972	977	982	988	993	998	004	5
813	91009	014	020	025	030	036	041	046	052	057	5
814	062	068	073	078	084	089	094	100	105	110	5
815	116	121	126	132	137	142	148	153	158	164	5
816	169	174	180	185	190	196	201	206	212	217	5
817	222	228	233	238	243	249	254	259	265	270.	5
818	275	281	286	291	297	302	307	312	318	323	5
819	328	334	339	344	350	355	360	365	371	376	5
N.	0	1	2	3	4	Б	6	7	8	9	D.
The second	1000 2								-		

820-864.

LOGARITHMS.

91381-93697.

.

N.	0	1	2	3	4	Б	6	7	8	9	D.
820 821 822 823 823 824	91381 434 487 540 593	387 440 492 545 598	392 445 498 551 603	$ \begin{array}{r} 397 \\ 450 \\ 503 \\ 556 \\ 609 \end{array} $	403 455 508 561 614	408 461 514 566 619	$\begin{array}{r} 413 \\ 466 \\ 519 \\ 572 \\ 624 \end{array}$	418 471 524 577 630	$ \begin{array}{r} 424 \\ 477 \\ 529 \\ 582 \\ 635 \end{array} $	429 482 535 587 640	5 5 5 5 5 5 5 5
825 826 827 828 829	645 698 751 803 855	651 703 756 808 861	656 709 761 814 866	661 714 766 819 871	666 719 772 824 876	672 724 777 829 882	677 730 782 834 887	682 735 787 840 892	687 740 793 845 897	693 745 798 850 903	5 5 5 5 5 5 5
830 831 832 833 834	908 960 92012 .065 117	913 965 018 070 122	918 971 023 075 127	924 976 028 080 132	929 981 033 085 137	934 986 038 091 143	939 991 044 096 148	944 997 049 101 153	950 002 054 106 158	955 007 059 111 163	5 5 5 5 5 5 5 5
835 836 837 838 838 839	169 221 273 324 376	174 226 278 330 381	179 231 283 335 387	184 236 288 340 392	189 241 293 345 397	$195 \\ 247 \\ 298 \\ 350 \\ 402$	$200 \\ 252 \\ 304 \\ 355 \\ 407$	$\begin{array}{c} 205 \\ 257 \\ 309 \\ 361 \\ 412 \end{array}$	210 262 314 366 418	$215 \\ 267 \\ 319 \\ 371 \\ 423$	5 5 5 5 5 5 5
840 841 842 843 844	428 480 531 583 634	433 485 536 588 639	438 490 542 593 645	443 495 547 598 650	449 500 552 603 655	$\begin{array}{r} 454 \\ 505 \\ 557 \\ 609 \\ . \ 660 \end{array}$	$\begin{array}{r} 459 \\ 511 \\ 562 \\ 614 \\ 665 \end{array}$	464 516 567 619 670	469 521 572 624 675	474 526 578 629 681	55555 555
845 846 847 848 849	686 737 788 840 891	691 742 793 845 896	696 747 799 850 901	701 752 804 855 906	706 758 809 860 911	711 763 814 865 916	716 768 819 870 921	722 773 824 875 927	727 778 829 881 932	732 783 834 886 937	55555
850 851 852 853 854	$942 \\993 \\93044 \\095 \\146$	947 998 049 100 151	952 003 054 105 156	957 008 059 110 161	962 013 064 115 166	967 018 069 120 171	973 024 075 125 176	978 029 080 131 181	983 034 085 136 186	988 039 090 141 192	55555 555
855 856 857 858 859	197 247 298 349 399	$\begin{array}{c} 202 \\ 252 \\ 303 \\ 354 \\ 404 \end{array}$	207 258 308 359 409	$\begin{array}{c} 212 \\ 263 \\ 313 \\ 364 \\ 414 \end{array}$	$217 \\ 268 \\ 318 \\ 369 \\ 420$	$\begin{array}{c} 222 \\ 273 \\ 323 \\ 374 \\ 425 \end{array}$	227 278 328 379 430	232 283 334 384 435	$\begin{array}{c} 237 \\ 288 \\ 339 \\ 389 \\ 440 \end{array}$	242 293 344 394 445	5 5 5 5 5 5
860 861 862 863 864	$\begin{array}{r} 450 \\ 500 \\ 551 \\ 601 \\ 651 \end{array}$	$\begin{array}{r} 455 \\ 505 \\ 556 \\ 606 \\ 656 \end{array}$	460 510 561 611 661	$\begin{array}{r} 465 \\ 515 \\ 566 \\ 616 \\ 666 \end{array}$	$\begin{array}{r} 470 \\ 520 \\ 571 \\ 621 \\ 671 \end{array}$	$\begin{array}{r} 475 \\ 526 \\ 576 \\ 626 \\ 676 \end{array}$	480 531 581 631 682	485 536 586 636 687	490 541 591 641 692	495 546 596 646 697	55555
N.	0	1	2	3	4	Б	6	7	8	9	D,

LOGARITHMS.

93702-95899

N. 0 1 2 3 4 5 6 7 8 9 D. 865 93702 707 712 717 722 732 737 742 747 5 866 752 757 762 767 772 777 782 787 792 797 5 867 802 857 862 867 872 877 882 887 892 997 5 869 902 907 912 917 922 927 932 937 942 947 5 870 952 957 962 967 972 977 982 987 992 997 5 871 94002 007 012 017 022 027 032 037 942 947 5 873 101 106 111 116 121 126 131 136		1	1	1 8.50	1	1	1		1	1		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N.	0	1	2	3	4	5	6	7	8	9	D
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										842		5
87095295796296797297798298799299758719400200701201702202703203704204758720520570620670720770820860910965873101106111116121126131136141146587415115616116617117618118619119658762502552602652702752802852902955877300305310315320325330335340345879399404409414419424429433438443588044845345846346847347848348849358814985035075125175225275325375425883596601606616616616630635640588464565065566066567067568068568958856946997047097147197247297347385886743748753758763768 </th <th></th> <th>5</th>												5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.		101 339	in terms	111			1000	1.1.1.1.2	a state of the	1100	1.1.1.1.1.1.1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												5
												5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	874	151	156	161	166		1000	181	186	191	196	1000000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							226					5
8783493543593643693743793843893945879399404409414419424429433438443588044845345846346847347848348849358814985035075125175525275325375425882547552557562567571576581586591588359660160661161662162663063564058846456506556606656706756806856895885694699704709714719724729734738588674374875375876376877377878378758877927978028078128178228278328365889890895900905910915919924929934589093994495495996396897397898358919889939980020070120170226276325893085090095100105109 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>275</th> <th>280</th> <th>285</th> <th></th> <th></th> <th>5</th>							275	280	285			5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Property AL				463	468	473	1.000				102.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	881				512		522	527	532			5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Same and the same	and the second					And the other	201				1. 1. 2. 2.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$) 5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				900	905	910	915					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	890		944	949	954		963	968	973	978	983	5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.988										5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12182 - L	12 12 24	131		10-10	S INT	10181				1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		279	284	289			303	308	313			5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					121-11				C. LL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	905	' 665	670	674	679	684	689	694	698	703.	708	5
<u>909</u> <u>856</u> <u>861</u> <u>866</u> <u>871</u> <u>875</u> <u>880</u> <u>885</u> <u>890</u> <u>895</u> <u>899</u> <u>5</u>		713	718	722			737			751		5
<u>909</u> <u>856</u> <u>861</u> <u>866</u> <u>871</u> <u>875</u> <u>880</u> <u>885</u> <u>890</u> <u>895</u> <u>899</u> <u>5</u>												5
N. 0 1 2 3 4 5 6 7 8 9 D.												
	N.	0	1	2	3	4	.5	6	7	8	9	D,

910-954.

LOGARITHMS.

95904-97996.

N.	0	1	2	3	4	б	6	7	8	9	D.
910 911 912 913 914	95904 952 999 96047 095	909 957 004 052 099	914 961 009 057 104	918 966 014 061 109	923 971 019 066 114	928 976 023 071 118	933 980 028 076 123	938 985 033 080 128	942 990 038 085 133	947 995 042 090 137	55555
915 916 917 918 919	$142 \\ 190 \\ 237 \\ 284 \\ 332$	$147 \\194 \\242 \\289 \\336$	152 199 246 294 341	$ \begin{array}{r} 156 \\ 204 \\ 251 \\ 298 \\ 346 \end{array} $	$ \begin{array}{r} 161 \\ 209 \\ 256 \\ 303 \\ 350 \end{array} $	166 213 261 308 355	171 218 265 313 360	$175 \\ 223 \\ 270 \\ 317 \\ 365$	180 227 275 322 369	185 232 280 327 374	55555
920 921 922 923 924	379 426 473 520 567	384 431 478 525 572	388 435 483 530 577	393 440 487 534 581	398 445 492 539 586	402 450 497 544 591	407 454 501 548 595	$\begin{array}{r} 412 \\ 459 \\ 506 \\ 553 \\ 600 \end{array}$	417 464 511 558 605	$\begin{array}{r} 421 \\ 468 \\ 515 \\ 562 \\ 609 \end{array}$	55555
925 926 927 928 929	614 661 708 755 802	619 666 713 759 806	624 670 717 764 811	628 675 722 769 816	633 680 727 774 820	638 685 731 778 825	642 689 736 783 830	647 694 741 788 834	652 699 745 792 839	656 703 750 797 844	55555
930 931 932 933 933 934	848 895 942 988 97035	853 900 946 993 039	858 904 951 997 044	862 909 956 002 049	867 914 960 007 053	872 918 965 011 058	876 923 970 016 063	881 928 974 021 067	886 932 979 025 072	890 937 984 030 077	55555
935 936 937 938 939	$\begin{array}{r} 081 \\ 128 \\ 174 \\ 220 \\ 267 \end{array}$	086 132 179 225 271	090 137 183 230 276	095 142 188 234 280	100 146 192 239 285	104 151 197 243 290	109 155 202 248 294	114 160 206 253 299	118 165 211 257 304	$123 \\ 169 \\ 216 \\ 262 \\ 308$	55555
940 941 942 943 944	313 359 405 451 497	317 364 410 456 502	$322 \\ 368 \\ 414 \\ 460 \\ 506$	327 373 419 465 511	$331 \\ 377 \\ 424 \\ 470 \\ 516$	336 -382 428 474 520	340 387 433 479 525	345 391 437 483 529	350 396 442 488 534	354 400 447 493 539	55555
945 946 947 948 949	543 589 635 681 727	548 594 640 685 731	552 598 644 690 736	557 603 649 695 740	$562 \\ 607 \\ 653 \\ 699 \\ 745$	566 612 658 704 749	571 617 663 708 754	575 621 667 713 759	580 626 672 717 763	585 630 676 722 768	5 5 5 5 5 5
950 951 952 953 954	772 818 864 909 955	777 823 868 914 959	782 827 873 918 964	786 832 877 923 968	791 836 882 928 973	795 841 886 932 978	800 845 891 937 982	804 850 896 941 987	809 855 900 946 991	813 859 905 950 996	55555
N.	0	1	2	3	4	5	6	7	8	9	D,

LOGARITHMS.

98000-99996

N.	0	1	2	3	4	5	6	7	8	9	D.
955 956	98000 046	005	009 055	014 059	019 064	023 068	028 073	032	037 082	041 087	5
957	040	096	100	105	109	114	118	123	127	132	- 5
958	137	141	146	150	155	159	164	168	173	177	5 5 5
959	182	186	191	195	200	204	209	214	218	223	
960	227	232	236	241	245	250	254	259	263	268	5
961 962	272 318	$277 \\ 322$	281 327	286 331	290 336	$\frac{295}{340}$	299 345	304 349	308 354	313 358	555
963	363	367	372	376	381	385	390	394	399	403	5
964	408	412	417	421	426	430	435	439	444	448	5
965	453	457	462	466	471	475	480	484	489	493	4
966	498	502	507	511	516	520	525	529	534	538	4
967 968	-543 588	547 592	552 597	556 601	561 605	565 610	570 614	574 619	579 623	583 628	44
969	632	637	641	646.	650	655	659	664	668	673	4
970	677	682	686	691	695	700	704	709	713	717	4
971	722	726	731	735	740	744	749	753	758	762	4
972	767	771	776	780	784	789	793	798	802	807	4
973 974	$\begin{array}{c} 811\\ 856\end{array}$	816 860	820 865	825 869	829 874	834 878	838 883	843 887	847 892	851 896	44
and the second	and the state		2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.	1000		and the second		-	1.5 2.6 5
975 976	900 945	905 949	909 954	914 958	918 963	923 967	927 972	932 976	936 981	941 985	4
977	989	994	998	003	007	012	016	021	025	029	4
978	99034	038	043	047	052	056	061	065	069	074	4
979	078	083	087	092	096	100	105	109	114	118	4
980	123	127	131	136	140	145	149	154	158	162	4
981 982	$\frac{167}{211}$	171 216	176 220	$ \frac{180}{224} $	$\frac{185}{229}$	189 233	193 238	$\frac{198}{242}$	$\frac{202}{247}$	$\begin{array}{c} 207\\ 251 \end{array}$	4 4
983	255	260	264	269	273	277	282	286	291	295	4
984	300	304	308	313	317	322	326	330	335	339	. 4
985	344	348	352	357	361	366	370	374	379	383	4
986	388	392	396	401	405	410	414	419	423	427	4
987 988	432 476	436 480	441 484	445 489	449 493	454 498	458 502	463 506	467 511	471 515	4 4
989	520	524	528	533	537	542	546	550	555	559	4
990	564	568	572	577	581	585	590	594	599	603	4
991	607	612	616	621	625	629	634	638	642	647	4
992	651	656	660	664	669	673	977	682	686	691	4
993 994	695 739	699 743	704 747	708 752	712 756	717 760	7 21 765	726 769	730 774	734 778	4 4
995	782	787	791	795	800	804	808	813	817	822	4
995	826	830	835	839	843	848	852	856	861	865	4
997	870	874	878	883	887	891	896	900	904	909	- 4
998 999	913 957	917 961	922 965	926 970	930 974	935 978	939 983	944 987	948 991	952 996	4
9.99		901		510	514	510	900	901	991	990	4
N.	0	1	2	3	4	5	6	7	8	9	D.

S. N. 36.

LOGARITHMS.

00000-01907

N.	0	1	2	3	4	Б	6	7	8	9	D,
$ \begin{array}{r} 1000 \\ 1001 \\ 1002 \\ 1003 \\ 1004 \end{array} $	00000 043 087 130 173	004 048 091 134 178	009 052 095 139 182	013 056 100 143 186	017 061 104 147 191	$\begin{array}{c} 022 \\ 065 \\ 108 \\ 152 \\ 195 \end{array}$	026 069 113 156 199	030 074 117 160 204	035 078 121 165 208	039 082 126 169 212	4 4 4 4 4
1005 1006 1007 1008 1009	$217 \\ 260 \\ 303 \\ 346 \\ 389$	$\begin{array}{c} 221 \\ 264 \\ 307 \\ 350 \\ 393 \end{array}$	$\begin{array}{c} 225 \\ 268 \\ 312 \\ 355 \\ 398 \end{array}$	$\begin{array}{c} 230 \\ 273 \\ 316 \\ 359 \\ 402 \end{array}$	$234 \\ 277 \\ 320 \\ 363 \\ 406$	238 281 325 368 411	243 286 329 372 415	247 290 333 376 419	251 294 337 381 424	255 299 342 385 428	4 4 4 4 4
1010 1011 1012 1013 1014	$\begin{array}{r} 432 \\ 475 \\ 518 \\ 561 \\ 604 \end{array}$	436 479 522 565 608	441 484 527 570 612	445 488 531 574 617	449. 492 535 578 621	454 497 540 582 625	458 501 544 587 629	462 505 548 591 634	467 509 552 595 638	$\begin{array}{r} 471 \\ 514 \\ 557 \\ 600 \\ 642 \end{array}$	4 4 4 4 4
1015 1016 1017 1018 1019	647 689 732 775 817	651 694 736 779 822	655 698 741 783 826	659 702 745 788 830	664 706 749 792 834	668 711 753 796 839	672 715 758 800 843	677 719 762 805 847	681 724 766 809 852	685 728 771 813 856	4 4 4 4 4
$1020 \\ 1021 \\ 1022 \\ 1023 \\ 1024$	860 903 945 988 01030	864 907 949 992 034	869 911 954 996 038	873 915 958 000 043	877 920 962 005 047	881 924 966 009 051	886 928 971 013 055	890 932 975 017 060	894 937 979 022 064	898 941 983 026 068	4 4 4 4 4
1025 1026 1027 1028 1029	$\begin{array}{c} 072 \\ 115 \\ 157 \\ 199 \\ 242 \end{array}$	$\begin{array}{c} 077 \\ 119 \\ 161 \\ 204 \\ 246 \end{array}$	081 123 166 208 250	$\begin{array}{c} 085 \\ 127 \\ 170 \\ 212 \\ 254 \end{array}$	089 132 174 216 258	094 136 178 220 263	098 140 182 225 267	$102 \\ 144 \\ 187 \\ 229 \\ 271$	106 149 191 233 275	$ \begin{array}{r} 111 \\ 153 \\ 195 \\ 237 \\ 280 \end{array} $	4 4 4 4 4
1030 1031 1032 1033 1034	$284 \\ 326 \\ 368 \\ 410 \\ 452$	$288 \\ 330 \\ 372 \\ 414 \\ 456$	$\begin{array}{r} 292 \\ 334 \\ 376 \\ 418 \\ 460 \end{array}$	296 339 381 423 465	$301 \\ 343 \\ 385 \\ 427 \\ 469$	305 347 389 431 473	309 351 393 435 477	313 355 397 439 481	$\begin{array}{r} 317\\ 360\\ 402\\ 444\\ 486\end{array}$	$322 \\ 364 \\ 406 \\ 448 \\ 490$	4 4 4 4 4
1035 1036 1037 1038 4039	494 536 578 620 662	$\begin{array}{r} 498 \\ 540 \\ 582 \\ 624 \\ 666 \end{array}$	$502 \\ 544 \\ 586 \\ 628 \\ 670 \\$	$507 \\ 549 \\ 590 \\ 632 \\ 674$	511 553 595 636 678	515 557 599 641 682	519 561 603 645 687	$523 \\ 565 \\ 607 \\ 649 \\ 691$	528 569 611 653 695	532 574 616 657 699	4 4 4 4 4
$1040 \\ 1041 \\ 1042 \\ 1043 \\ 1044$	703 745 787 828 870	708 749 791 833 874	712 753 795 837 878	716 758 799 841 883	720 762 803 845 887	724 766 808 849 891	728 770 812 853 895	733 774 816 858 899	737 778 820 862 903	741 783 824 866 907	4 4 4 4 4
N.	0	1	2	3	4	Б	6	7	8	9	D,

1045-1089

LOGARITHMS.

01912-03739

N.	0	1	2	3	4	Б	6	7	8	9	D.
$ \begin{array}{r} 1045 \\ 1046 \\ 1047 \\ 1048 \end{array} $	$\begin{array}{c} 01912 \\ 953 \\ 995 \\ 02036 \end{array}$	916 957 999 040	920 961 003 044	924 966 007 049	928 970 011 053	932 974 015 057	937 978 020 061	941 982 024 065	945 986 028 069	949 991 032 073	4 4 4 4
1049 1050 1051 1052	078 119 160 202	082 123 164 206	086 127 169 210 251	$\begin{array}{c} 090 \\ 131 \\ 173 \\ 214 \\ 055 \end{array}$	094 135 177 218	098 140 181 222	102 144 185 226	$ \begin{array}{r} 107 \\ 148 \\ 189 \\ 230 \\ 272 \end{array} $	$ \begin{array}{r} 111 \\ 152 \\ 193 \\ 235 \\ 252 \end{array} $	115 156 197 239	4 4 4 4
$ \begin{array}{r} 1053 \\ 1054 \\ 1055 \\ 1056 \\ 1057 \\ \end{array} $	$243 \\ 284 \\ 325 \\ 366 \\ 407 \\$	247 288 329 371 412	291 292 333 375 416	$255 \\ 296 \\ 338 \\ 379 \\ 420 $	259 301 342 383 424	263 305 346 387 428	268 309 350 391 432	212 313 354 395 436	276 317 358 399 440	$280 \\ 321 \\ 362 \\ 403 \\ 444$	4 4 4 4 4
1058 1059 1060 1061	449 490 531 572	453 494 535 576	457 498 539 580	461 502 543 584	465 506 547 588	469 510 551 592	473 514 555 596	477 518 559 600	481 522 563 604	485 526 567 608	4 4 4 4
1062 1063 1064 1065	612 653 694 735	617 657 698 739	621 661 702 743	625 666 706 747	629 670 710 751	633 674 715 755	637 678 719 759	641 682 723 763	645 686 727 768	649 690 731 772	4 4 4 4
1066 1067 1068 1069	776 816 857 898	780 821 861 902	784 825 865 906	788 829 869 910	792 833 873 914	796 837 877 918	800 841 882 922	804 845 886 926	808 849 890 930	812 853 894 934	4 4 4 4
$ \begin{array}{r} 1070 \\ 1071 \\ 1072 \\ 1073 \\ 1074 \end{array} $	938 979 03019 060 100	942 983 024 064 104	946 987 028 068 109	951 991 032 072 113	955 995 036 076 117	959 999 040 080 121	$963 \\ 003 \\ 044 \\ 084 \\ 125$	967 007 048 088 129	971 011 052 092 133	975 015 056 096 137	4 4 4 4
1075 1076 1077 1078 1079	$ \begin{array}{r} 141 \\ 181 \\ 222 \\ 262 \\ 302 \end{array} $	$ \begin{array}{r} 145 \\ 185 \\ 226 \\ 266 \\ 306 \end{array} $	149 189 230 270 310	$153 \\ 193 \\ 234 \\ 274 \\ 314$	157 197 238 278 318	161 201 242 282 322	165 205 246 286 326	169 209 250 290 330	$173 \\ 214 \\ 254 \\ 294 \\ 334$	177 218 258 298 338	4 4 4 4 4
1080 1081 1082 1083 1084	342 383 423 463 503	346 387 427 467 507	350 391 431 471 511	$354 \\ 395 \\ 435 \\ 475 \\ 515$	358 399 439 479 519	$362 \\ 403 \\ 443 \\ 483 \\ 523$	366 407 447 487 527	371 411 451 491 531	375 415 455 495 535	379 419 459 499 539	4 4 4 4 4
1085 1086 1087 1088	543 583 623 663	547 587 627 667	551 591 631 671	555 595 635 675	559 599 639 679	563 603 643 683	567 607 647 687	571 611 651 691	575 615 655 695	579 619 659 699	4 4 4 4
1089 N.	703 0	707 1	2	715	719 4	723 5	727 6	731 7	735	739 9	4 D.

II. NATURAL SINES.

Deg.	0′	10'	20'	30′	`40'	50'	a.t	Deg.
$ \begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array} $	00000 01745 03490 05234 06976	$\begin{array}{c} 00291 \\ 02036 \\ 03781 \\ 05524 \\ 07266 \end{array}$	$\begin{array}{c} 00582\\ 02327\\ 04071\\ 05814\\ 07556 \end{array}$	00873 02618 04362 06105 07846	01164 02908 04653 06395 08136	$\begin{array}{c} 01454\\ 03199\\ 04943\\ 06685\\ 08426\end{array}$	01745 03490 05234 06976 08716	89 88 87 86 85
5 6 7 8 9	08716 10453 12187 13917 15643	$\begin{array}{c} 09005\\ 10742\\ 12476\\ 14205\\ 15931 \end{array}$	$\begin{array}{c} 09295\\ 11031\\ 12764\\ 14493\\ 16218\\ \end{array}$	$\begin{array}{c} 09585\\ 11320\\ 13053\\ 14781\\ 16505 \end{array}$	$\begin{array}{c} 09874 \\ 11609 \\ 13341 \\ 15069 \\ 16792 \end{array}$	$\begin{array}{c} 10164 \\ 11898 \\ 13629 \\ 15356 \\ 17078 \end{array}$	$\begin{array}{c} 10453 \\ 12187 \\ 13917 \\ 15643 \\ 17365 \end{array}$	84 83 82 81 80
$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array} $	$\begin{array}{c} 17365\\ 19081\\ 20791\\ 22495\\ 24192 \end{array}$	$\begin{array}{r} 17651 \\ 19366 \\ 21076 \\ 22778 \\ 24474 \end{array}$	$\begin{array}{r} 17937 \\ 19652 \\ 21360 \\ 23062 \\ 24756 \end{array}$	$\begin{array}{c} 18224\\ 19937\\ 21644\\ 23345\\ 25038 \end{array}$	18509 20222 21928 23627 25320	18795 20507 22212 23910 25601	$\begin{array}{r} 19081 \\ 20791 \\ 22495 \\ 24192 \\ 25882 \end{array}$	79 78 77 76 75
15 16 17 18 19	25882 27564 29237 30902 32557	26163 27843 29515 31178 32832	26443 28123 29793 31454 33106	26724 28402 30071 31730 33381	$\begin{array}{r} 27004 \\ 28680 \\ 30348 \\ 32006 \\ 33655 \end{array}$	27284 28959 30625 32282 33929	27564 29237 30902 32557 34202	74 73 72 71 70
20 21 22 23 24	34202 35837 37461 39073 40674	34475 36108 37730 39341 40939	34748 36379 37999 39608 41204	$\begin{array}{r} 35021 \\ 36650 \\ 38268 \\ 39875 \\ 41469 \end{array}$	35293 36921 38537 40141 41734	35565 37191 38805 40408 41998	$\begin{array}{r} 35837\\ 37461\\ 39073\\ 40674\\ 42262\end{array}$	69 68 67 66 65
25 26 27 28 29	42262 43837 45399 46947 48481	42525 44098 45658 47204 48735	42788 44359 45917 47460 48989	$\begin{array}{r} 43051\\ 44620\\ 46175\\ 47716\\ 49242 \end{array}$	43313 44880 46433 47971 49495	$\begin{array}{r} 43575\\ 45140\\ 46690\\ 48226\\ 49748\end{array}$	$\begin{array}{r} 43837\\ 45399\\ 46947\\ 48481\\ 50000\\ \end{array}$	64 63 62 61 60
30 31 32 33 34	50000 51504 52992 54464 55919	50252 51753 53238 54708 56160	$50503 \\ 52002 \\ 53484 \\ 54951 \\ 56401$	50754 52250 53730 55194 56641	51004 52498 53975 55436 56880	51254 52745 54220 55678 57119	51504 52992 54464 55919 57358	59 58 57 56 55
35 36 37 38 39	57358 58779 60182 61566 62932	57596 59014 60414 61795 63158	$57833 \\ 59248 \\ 60645 \\ 62024 \\ 63383$	$\begin{array}{c} 58070\\ 59482\\ 60876\\ 62251\\ 63608 \end{array}$	$\begin{array}{c} 58307\\ 59716\\ 61107\\ 62479\\ 63832 \end{array}$	58543 59949 61337 62706 64056	58779 60182 61566 62932 64279	54 53 52 51 50
40 41 42 43 44	64279 65606 66913 68200 69466	$\begin{array}{c} 64501 \\ 65825 \\ 67129 \\ 68412 \\ 69675 \end{array}$	$\begin{array}{c} 64723\\ 66044\\ 67344\\ 68624\\ 69883\end{array}$	64945 66262 67559 68835 70091	65166 66480 67773 69046 70298	65386 66697 67987 69256 70505	65606 66913 68200 69466 70711	49 48 47 46 45
Deg.		50'	40'	30′	20'	10'	0'	. Deg.
			NATUI	RAL CO	SINES.		24	

II. NATURAL SINES.

Deg.	0'	10'	20'	30′	40'	50′	No.	Deg.
45	70711	70916	71121	71325	71529	71732	71934	44
46	71934	72136	72337	72537	72737	72937	73135	43
47 48	73135	73333 74509	73531 74703	73728	73924 75088	74120 75280	74314	42
40							75471	41
1.1.2.1	75471	75661	75851	76041	76229	76417	76604	40
50	76604	76791	76977	77162	77347	77531	77715	39
$51 \\ 52$	77715	77897	78079	78261	78442	78622	78801	38
53	78801 79864	78980	79158	79335	79512	79688	79864	37
54	80902	80038	$80212 \\ 81242$	80386	80558	80730	80902	36
94		81072	81242	81412	81580	81748	81915	35
55	81915	82082	82248	82413	82577	82741	82904	34
56	82904	83066	83228	83389	83549	83708	83867	33
57	83867	84025	84182	84339	84495	84650	84805	32
58	84805	84959	85112	85264	85416	85567	85717	31
59	85717	85866	86015	86163	86310	86457	86603	30
60	86603	86748	86892	87036	87178	87321	87462	29
61	87462	87603	87743	87882	88020	88158	88295	28
62	88295	88431	88566	88701	88835	88968	89101	27
63	89101	89232	89363	89493	89623	89752	89879	26
64	89879	90007	90133	90259	90383	90507	90631	25
65	90631	90753	90875	90996	91116	91236	91355	24
66	91355	91472	91590	91706	91822	91936	92050	23
67	92050	92164	92276	92388	92499	92609	92718	22
68	92718	92827	92935	93042	93148	93253	93358	21
69	93358	93462	93565	93667	93769	93869	93969	20
70	93969	94068	94167	94264	94361	94457	94552	19
71	94552	94646	94740	94832	94924	95015	95106	18
72	95106	95195	95284	95372	95459	95545	95630	17
73	95630	95715	95799	95882	95964	96046	96126	16
74	96126	95206	96285	96363	96440	96517	96593	15
75	96593	96667	96742	96815	96887	96959	97030	14
76	97030	97100	97169	97237	97304	97371	97437	13
77	97437	97502	97566	97630	97692	97754	97815	12
78	97815	97875	97934	97992	98050	98107	98163	11
79	98163	98218	98272	98325	98378	98430	98481	10
80	98481	98531	98580	98629	98676	98723	98769	9
81	98769	98814	98858	98902	98944	98986	99027	8
82	99027	99067	99106	99144	99182	99219	99255	7
83	99255	99290	99324	99357	99390	99421	99452	6
84	99452	99482	99511	99540	99567	99594	99619	5
85	99619	99644	99668	99692	99714	99736	99756	4
86	99756	99776	99795	99813	99831	99847	99863	3
87	99863	99878	99892	99905	99917	99929	99939	-2
88	99939	99949	99958	99966	99973	99979	99985	1
89	99985	99989	99993	99996	99998	99999	1.0000	0
Deg.	07	50'	40'	30'	20'	10'	0'	Deg.

25

NATURAL COSINES.

NATURAL COTANGENTS.

26

								0
0	00000	00291	00582	00873	01164	01455	01746	89
1	01746	02036	02328	02619	02910	03201	03492	88
2	03492	03783	04075	04366	04658	04949	05241	87
3	05241	05533	05824	06116	06408	06700	06993	86
4	06993	07285	07578	07870	08163	08456	08749	85
	0.000	00040	00005	00000		10010		1 - C - L - L - L
5	08749	09042	09335	09629	09923	10216	10510	84
6	10510	10805	11099	11394	11688	11983	12278	83
7	12278	12574	12869	13165	13461	13758	14054	82
8	14054	14351	14648	14945	15243	15540	15838	81
9	15838	16137	16435	16734	17033	17333	17633	80
J	19090	10137	10400	10104	11000	11000	11039	00
10	17633	17933	18233	18534	18835	19136	19438	79
11	19438	19740	20042	20345	20648	20952	21256	78
10			21864					
12	21256	21560		22169	22475	22781	23087	77
13	23087	23393	23700	24008	24316	24624	24933	76
14	24933	25242	25552	25862	26172	26483	26795	75
7.0	ACTOR	07107	07/10	07500	00040	00000		
15	26795	27107	27419	27732	28046	28360	28675	74
16	28675	28990	29305	29621	29938	30255	30573	73
17	30573	30891	31210	31530	31850	32171	32492	72
18	32492	32814	33136	33460	33783	34108	34433	71
19	34433	34758	35085	35412	35740	36068	36397	70
10			0.000	00414	01140	30000	00091	10
20	36397	36727	37057	37388	37720	38053	38386	69
21	38386	38721	39055	39391	39727	40065	40403	68
22	40403	40741	41081	41421	41763	42105	42447	67
23	42447	42791	43136	43481	43828	44175	44523	66
24	44523	44872	45222	45573	45924	46277	46631	65
25	46631	46985	47341	47698	48055	48414	48773	64
26	48773	49134	49495	49858	50222	50587	50953	63
27	50953	51319	51688	52057	52427	52798	53171	62
28	53171	53545	53920	54296	54673	55051	55431	61
29	55431	55812	56194	56577	56962	57348	57735	60
Cart Road		CONTRACTOR OF	1 1 1 1 1 1	1997 S. 19	and the second	102005	and the second second	
30	57735	58124	58513	58905	59297	59691	60086	59
31	60086	60483	60881	61280	61681	62083	62487	58
32	62487	62892	63299	63707	64117	64528	64941	57
33	64941	65355	65771	66189	66608	67028	67451	56
34	67451	67875	68301	68728	69157	69588	70021	55
94	01401	01010	00301	00120	09191	09000	10021	55
35	70021	70455	.70891	71329	71769	72211	72654	54
36	72654	73100	73547	73996	74447	74900	75355	53
37	75355	75812	76272	76733				52
					77196	77661	78129	
38	78129	78598	79070	79544	80020	80498	80978	51
39	80978	81461	81946	82434	82923	83415	83910	50
40	83910	84407	84906	85408	85912	86419	86929	49
41	86929	87441	87955	88473	88992	89515	90040	48
42	90040	90569	91099	91633	92170	92709	93252	47
43	93252	93797	94345	94896	95451	96008	96569	46
44	96569	97133	97700	98270	98843	99420	1.00000	45
Deg.	The state	50'	40'	30'	20'	10'	0'	Deg.
- 8.		00	10	00	1 20 .	1 10		

III.-NATURAL TANGENTS.

30'

40'

50'

Deg.

10'

20'

Deg.

0'

III.—NATURAL TANGENTS.

				1	1	I	1	
Deg.	0′	10′	20'	30′	40′	50′		Deg.
45	1.00000	1.00583		1.01761	$\frac{1.02355}{1.05994}$	$\frac{1.02952}{1.06613}$	$\frac{1.03553}{1.07237}$	44
46 47	1.03553 1.07237	1.04158 1.07864	1.04766 1.08496	$\frac{1.05378}{1.09131}$	1.09770	1.10414	1.11061	43 42
48	1.11061	1.11713	$1.12369 \\ 1.16398$	$\frac{1.13029}{1.17085}$	1.13694	$1.14363 \\ 1.18474$	$\frac{1.15037}{1.19175}$	41 40
49	1.15037	1.15715 1.19882	1.20593	1.21310	1.22031	1.22758	1.23490	40 39
50 51	$1.19175 \\ 1.23490$	1.19882 1.24227	1.20393	1.21310	1.26471	1.27230	1.27994	38
52 53	$1.27994 \\ 1.32704$	$1.28764 \\ 1.33511$	$\frac{1.29541}{1.34323}$	$1.30323 \\ 1.35142$	$1.31110 \\ 1.35968$	$1.31904 \\ 1.36800$	$1.32704 \\ 1.37638$	37 36
54	1.37638	1.38484	1.39336	1.40195	1.41061	1.41934	1.42815	35
55	1.42815	1.43703	1.44598	1.45501	1.46411	1.47330	1.48256	34
$\begin{array}{c} 56 \\ 57 \end{array}$	1.48256 1.53987	$1.49190 \\ 1.54972$	1.50133 1.55966	1.51084 1.56969	1.52043 1.57981	$\frac{1.53010}{1.59002}$	1.53987 1.60033	33
58	1.60033	1.61074	1.62125	1.63185	1.64256	1.65337	1.66428	31
59	1.66428	1.67530	1.68643	1.69766	1.70901	1.72047	1.73205	30
60 61	1.73205 1.80405	1.74375 1.81649	1.75556 1.82906	1.76749 1.84177	1.77955 1.85462	1.79174 1.86760	1.80405 1.88073	29 28
62	1.88073	1.89400 1.97680	1.90741 1.99116	1.92098 2.00569	1.93470 2.02039	1.94858 2.03526	1.96261 2.05030	27 26
63 64	1.96261 2.05030	2.06553	2.08094	2.00505 2.09654	2.11233	2.12832	2.14451	25
65	2.14451	2.16090	2.17749	2.19430	2.21132	2.22857	2.24604	24
66 67	2.24604 2.35585	2.26374 2.37504	2.28167 2.39449	2.29984 2.41421	2.31826 2.43422		2.35585 2.47509	$\begin{array}{c c} 23\\ 22 \end{array}$
68	2.47509	2.49597	2.51715	2.53865	2.56046	2.58261	2.60509	21
69	2.60509	2.62791	2.65109	2.67462	2.69853	2.72281	2.74748	20
70	2.74748 2.90421	2.77254 2.93189	2.79802 2.96004	2.82391 2.98868	2.85023 3.01783	2.87700 3.04749	2.90421 3.07768	19 18
72	3.07768	3.10842	3.13972	3.17159			3.27085	17
73 74	3.27085 3.48741	$3.30521 \\ 3.52609$	3.34023 3.56557	$\begin{vmatrix} 3.37594 \\ 3.60588 \end{vmatrix}$			3.48741 3.73205	16 15
75	3.73205	3.77595	3.82083	3.86671			4.01078	
76	4.01078	4.06107	4.11256	$\begin{array}{ } 4.16530 \\ 4.51071 \end{array}$			$4.33148 \\ 4.70463$	
78	4.70463	4.77286	4.84300	4.91516	4.98940	5.06584	5.14455	11
79	5.14455	5.22566	5.30928	5.39552	ALL FLORE	1579.45		1.200
80 81	5.67128 6.31375	5.76937	5.87080 6.56055	5.97576 6.69116			6.31375 7.11537	8
82	7.11537	7.26873	7.42871	7.59575	7.77035	7.95302	8.14435	7
83 84	8.14435 9.51436	8.34496 9.78817	8.55555	8.77689			9.51436 11.4301	6 5
85	11.4301	11.8262	12.2505	12.7062	13.1969		14.3007	4
86 87	14.3007	14.9244 20.2056	15.6048 21.4704			$\begin{array}{c} 18.0750 \\ 26.4316 \end{array}$		32
88	28.6363	31.2416	34.3678	38.1885	42.9641	49.1039	57.2900	1
89	57.2900	68.7501	85.9398	114.589	171.885	343.774	00	0
Deg		50'	40'	30′	20'	10'	0′	Deg.

27

NATURAL COTANGENTS.

TABLE IV.-LOGARITHMIC

1º

M.	Sine.	DI"	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	D1"	M.]
0	- 00		- 00		60	0	8.24186		8.24192		60
1	6.46373		6.46373		59	1	24903	12.0	24910	12.0	59
2	76476	502	76476	502	58	2	25609	11.8	25616	11.8	58
3	94085	293	94085	293 208	57	3	26304	11.6 11.4	26312	11.6	57
4	7.06579	208 162	7.06579	162	56	4	26988	11.4	26996	11.4	56
5	16270	132	16270	132	55	5	27661	11.0	27669	11.0	55
6	24188	112	24188	112	54	6	28324	10.9	28332	10.9	54
7	30882	96.7	- 30882	96.7	53	78	28977	10.7	28986	10.7	53
89	36682	85.2	36682 41797	85.2	52 51	9	29621 30255	10.6	29629 30263	10.6	52 51
10	41797 46373	76.3	41797 46373	76.3	51 50	10	30255	10.4	30203	10.4	50
11	40373	69.0	7.50512	69.0	49	11	8.31495	10.3	8.31505	10.3	49
12	54291	63.0	54291	63.0	48	12	32103	10.1	32112	10.1	48
13	57767	57.9	57767	57.9	47	13	32702	9.98	32711	9.99	47
14	60985	53.6	60986	53.6	46	14	33292	9.85	33302	9.85	46
15	63982	49.9	63982	49.9	45	15	33875	9.71	33886	9.72	45
16	66784	46.7	66785	46.7 43.9	44	16	34450	9.59	34461	9.59	44
17	69417	43.9 41.4	69418	41.4	43	17	35018	9.40	35029	9.47	43
18	71900	41.4 39,1	71900	39.1	42	18	35578	9.22	35590	9.22	42
19	74248	37.1	74248	37.1	41	19	36131	9.10	36143	9.11	41
20	76475	35.3	76476	35.3	40	20	36678	8.99	36689	9.00	40
21 22	7.78594	33.7	7.78595 80615	33.7	39 38	21 22	8.37217 37750	8.88	8.37229 37762	8.88	39 38
.23	80615 82545	32.2	80015	32.2	37	23	38276	8.77	38289	8.78	37
24	84393	30.8	84394	30.8	36	24	38796	8.67	38809	8.67	36
25	86166	29.5	86167	29.5	35	25	39310	8.56	39323	8.57	35
26	87870	28.4	87871	28.4	34	26	39818	8.46	39832	8.47	34
27	89509	27.3	89510	27.3 26.3	33	27	40320	8.37	40334	8.37	33
28	91088	26.3 25.4	91089	20.0	32	28	40816	8.27	40830	8.28	32
29	92612	24.5	92613	24.5	31	29	41307	8.09	41321	8.09	31
30	94084	23.7	94086	23.7	30	30	41792	8.00	41807	8.00	30
31	7.95508	23.0	7.95510	23.0	29	31	8.42272	7.91	8.42287	7.91	29
32	96887	22.3	96889	22.3	28	32 33	42746	7.82	42762	7.83	28
33 34	98223 99520	21.6	98225 99522	21.6	27 26	34	43216	7.74	43232 43696	7.75	27 26
35	8.00779	21.0	8.00781	21.0	25	35	44139	7.66	44156	7.66	25
36	02002	20.4	02004	20.4	24	36	44594	7.58	44611	7.58	24
37	03192	19.8	03194	19.8	23	37	45044	7.50	45061	7.50	23
38	04350	19.3	04353	19.3	22	38	45489	7.42	45507	7.43	22
39	05478	18.8 18.3	05481	18.8 18.3	21	39	45930	7.35	45948	7.35	21
40	06578	17.9	06581	17.9	20	40	46366	7.20	46385	7.21	20
41	8.07650	17.4	8.07653	17.4	19	41	8.46799	7.13	8.46817	7.13	19
42	08696	17.0	08700	17.0	18	42	47226	7.06	47245	7.07	18
43	09718	16.6	09722	16.6	17	43	47650	6.99	47609	7.00	17
44 45	10717	16.3	10720 11696	16.3	16 15	44 45	48069	6.92	48089 48505	6.93	16 15
46	12647	15.9	12651	15.9	13	46	48405	6.86	48917	6.87	14
47	13581	15.6	13585	15.6	13	47	49304	6.79	49325	6.80	13
48	14495	15.2	14500	15.2	12	48	49708	6.73	49729	6.74	12
49	15391	14.9	15395	14.9	11	49	50108	6.67	50130	6.68	11
50	16268	14.6 14.3	16273	14.6	10	50	50504	6.61	50527	6.62	10
51	8.17128	14.0	8.17133	14.0	9	51	8.50897	6.49	8.50920	6.50	9
52	17971	13.8	17976	13.8	8	52	51287	6.43	51310	6.44	8
53	18798	13.5	18804	13.5	7	53	51673	6.37	51696	6.38	7
54 55	19610 20407	13.3	19616 20413	13.3	6 5	54 55	52055 52434	6.32	52079 52459	6.33	6 5
56	20407 21189	13.0	20413	13.0	5 4	55 56	52434	6.26	52835	6.27	9 4
57	21958	12.8	21964	12.8	3	57	53183	6.21	53208	6.22	* 3
58	22713	12.6	22720	12.6	2	58	53552	6.16	53578	6.17	2
59	23456	12.4	23462	12.4	1	59	53919	6.11 6.05	53945	6.11	1
60	24186	12.2	24192	12.2	0	60	54282	0.05	54308	6.06	0
<u>M.</u>	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	D1"	M
000	1										000

89°

SINES AND TANGENTS.

M.	Sine.	D1"	Tang.	DI"	M.	M.	Sine.	D1"	Tang.	D1"	M.
0	8.54282		8.54308		60	0	8.71880		8.71940		0
1	54642	6.00	54669	6.01	59	1	72120	4.01	72181	4.02	59
2	54999	5.95	55027	5.96	58	2	72359	3.98	72420	3.99	58
3	55354	5.91	55382	5.91	57	3	72597	3.96	72659	3.97	57
4	55705		55734		56	4	72834	3.94	72896	3.95	56
5	56054	5.81	56083	5.82	55	5	73069	3.92	73132	3.93	55
6	56400	5.77	56429	5.73	54	6	73303	3.90 3.88	73366	3.91 3.89	54
7	56743	5.67	56773	5.68	53	7	73535	3.86	73600	3.87	53
8	57084	5.63	57114	5.64	52	8	73767	3.84	73832	3.85	52
9	57421	5.59	57452	5.60	51	9	73997	3.82	74063	3.83	51
10	57757	5.54	57788	5.55	50	10	74226	3.80	74292	3.81	50
11	8.58089	5.50	8.58121	5.51	49	11	8.74454	3.78	8.74521	3.79	49
12	58419	5.46	58451	5.47	48	12	74680	3.76	74748	3.77	48
13	58747	5.42	58779	5.43	47	13	74906	3.74	74974	3.75	47
14	59072	5.38	59105	5.39	46	14	75130	3.72	75199	3.73	46
15	59395	5.34	59428	5.35	45	15	75353	3.70	75423	3.71	45
16	59715	5.30	59749	5.31	44	16	75575	3.68	75645	3.69	44
17	60033	5.26	60068	5.27	43	17	75795	3.66	75867	3.67	43
18	60349	5.22	60384	5.23	42	18	76015	3.64	76087	3.65	42
19	60662	5.19	60698	5.19	41	19	76234	3.62	76306	3.64	41
20 21	60973	5.15	61009	5.16	40	20	76451	3.61	76525	3.62	40
21	8.61282	5.11	8.61319	5.12	39	21	8.76667	3.59	8.76742	3.60	39
23	61589 61894	5.08	61626 61931	5.08	38 37	22 23	76883	3.57	76958	3.58	38
24	62196	5.04	62234	5.05	36	23	77097	3.55	77173	3.57	37
25	62497	5.01	62535	5.02	35	24 25	77310	3.53	77387	3.55	36
26	62795	4.97	62834	4.98	34	26	77522	3.52	77600	3.53	35 34
27	63091	4.94	63131	4.95	33	27	77943	3.50	77811 78022	3.51	33
28	63385	4.90	63426	4.91	32	28	78152	3.48	78232	3.50	32
29	63678	4.87	63718	4.88	31	29	78360	3.47	78441	3.48	31
30	63968	4.84	64009	4.85	30	30	78568	3.45	78649	3.46	30
31	8.64256	4.81	8.64298	4.82	29	31	8.78774	3.43	8.78855	3.45	29
32	64543	4.78	64585	4.78	28	32	78979	3.42	79061	3.43	28
33	64827	4.74	64870	4.75	27	33	79183	3.40	79266	3.42	27
34	65110	4.71	65154	4.72	26	34	79386	3.39	79470	3.40	26
35	65391	4.68	65435	4.69	25	35	79588	3.37	79673	3.38	25
38	65670	4.65	65715	4.66	24	36	79789	3.35	79875	3.37	24
37	65947	4.62	65993	4.63	23	37	79990	3.34	80076	3.35	23
38	66223	4.59	66269	4.60	22	38	80189	3.32	80277	3.34	22
39	66497	4.56	66543	4.57	21	39	80388	3.31	80476	3.32	21
40	66769	4.53	66816	$4.54 \\ 4.52$	20	40	80585	3.29	80674	3.31	20
41	8.67039	4.51	8.67087		19	41	8.80782	3.28	8.80872	3.29	19
42	67308	$4.48 \\ 4.45$	67356	4.49	18	42	80978	3.26	81068	3.28	18
43	67575	4.40	67624	4.40	17	43	81173	3.23	81264	3.26	17
44	67841	4.42	67890	4.41	16	44	81367	3.23	81459	3.23	16
45	68104	4.37	68154	4.38	15	45	81560	3.20	81653	3.23	15
46	68367	4.34	68417	4.35	• 14	46	81752	3.19	81846	3.20	.14
47	68627	4.32	68678	4.33	13	47	81944	3.18	82038	3.19	13
48	68886	4.29	68938	4.30	12	48	82134	3.16	82230	3.18	12
49	69144	4.27	69196	4.28	11	49	82324	3.15	82420	3.16	11
50	69400	4.24	69453	4.25	10	50	82513	3.13	82610	3.15	10
51	8.69654	4.22	8.69708	4.23	9	51	8.82701	3.12	8.82799	3.14	9
52	69907	4.19	69962	4.20	8	52	82888	3.11	82987	3.12	8
53 54	70159	4.17	$70214 \\ 70465$	4.18	7	53	83075	3.10	83175	3.11	7
55	70409	4.14	70465	4.15	6	54	83261	3.08	83361	3.10	6
56 56	70905	4.12	70962	4.13	5	55	83446	3.07	83547	3.08	5
57	71151	4.10	71208	4.11	43	56 57	83630	3.06	83732	3.07	4
58	71395	4.07	71205	4.08	3 2	57	83813	3.04	83916	3.06	3
59	71638	4.05	71697	4.06	1	58 59	83996 84177	3.03	84100 84282	3.04	$\frac{2}{1}$
60	71880	4.03	71940	4.04	0	60	84358	3.02	84282 84464	3.03	1
										-	
М.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DJ″	M.

S. N. 37. .

4º

TABLE IV.-LOGARITHMIC

Г	M.	Sine.	DI"	Tang.	D]″	M.	М.	Sine.	D1"	Tang.	Dl"	М.	1
	0	8.84358		8.84464		60	0	8.94030		8.94195		60	
	1	84539	3.01	84646	3.02	59	i	94174	2.40	94340	2.42	59	
	2	84718	2.99	* 84826	3.01	58	2	94317	2.39	94485	2.41	58	
E	3	84897	2.98	85006	3.00	57	3	94461	2.39 2.38	94630	2.41	57	
	4	85075	2.97	85185	$2.98 \\ 2.97$	56	4	94603	2.38	94773	2.40	56	
L	5	85252	2.95	85363	2.96	55	5	94746	2.36	94917	2.39 2.38	55	
	6	85429	2.94	85540	2.95	54	6	94887	2.36	95060	2.37	54	
Ľ	7	85605	2.92	85717	2.93	53	7	95029	2.35	95202	2.37	53	
	8	85780	2.91	. 85893	2.92	52	8	95170	2.34	95344	2.36	52	
L	9	85955	2.90	86069	2.91	51	9	95310	2.33	95486	2.35	51	
	10	86128	2.88	86243	2.90	50	10	95450	2.33	95627	2.34	50	
	11	8.86301	2.87	8.86417	2.89	49	11	8.95589	2.32	8.95767	2.34	49	
L	12	86474	2.86	86591	2.88	48	12	95728	2.31	95908	2.33	48	
E	13	86645	2.85	86763	2.87	47	13	95867	2.30	96047	2.32	47	
	14	86816	2.84	86935	2.85	46	14	96005	2.30	96187	2.31	46	
1	15	86987	2.83	87106	2.84	45	15	96143	2.29	96325	2.31	45	
	16 17	87156 87325	2.82	87277	2.83	44 43	16 17	96280 96417	2.28	96464 96602	2.30	44	
	18	87494	2.81	87447 87616	2.82	43	18	96553	2.27	96739	2.29	43 42	
	18	87494 87661	2.79	87010	2.81	42 41	18	96555	2.27	96877	2.29	42	
	20	87829	2.78	87953	2.80	40	20	96825	2.26	97013	2.28	40	
	21	8.87995	2.77	8.88120	2.79	39	21	8.96960	2.25	8.97150	2.27	39	
	22	88161	2.76	88287	2.78	38	22	97095	2.25	97285	2.26	38	
	23	88326	2.75	88453	2.77	37	23	97229	2.24	97421	2.26	37	
	24	88490	2.74	88618	2.76	36	24	97363	2.23	97556	2.25	36	
	25	88654	2.73	88783	2.75	35	25	97496	2.22	97691	2.24	35	
	26	88817	2.72	88948	2.74	34	26	97629	2.22	97825	2.24	34	
	27	88980	2.71	89111	2.73	33	27	97762	2.21	97959	2.23	33	
	28	89142	2.70	89274	2.72 2.71	32	28	97894	2.21	98092	2.22 2.22	32	
	29	89304	$2.69 \\ 2.68$	89437	2.71	31	29	98026	2.20	98225	2.22	31	
	30	89464	2.68	89598	2.69	30	30	98157	2.19	98358	2.21	30	
L	31	8.89625	2.66	8.89760	2.68	29	31	8.98288	2.18	8.98490	2.20	29	
	32	89784	2.65	89920	2.67	28	32	98419	2.10	98622	2.19	28	
	33	89943	2.64	90080	2.66	27	33	98549	2.16	98753	2.18	27	
	34	90102	2.63	90240	2.65	26	34	98679	2.16	98884	2.18	26	
	35	90260	2.62	90399	2.64	25	35	98808	2.15	99015	2.17	25	
	36	90417	2.61	90557	2.63	24	36	98937	2.14	99145	2.16	24	
	37	90574	2.60	90715	2.62	23	37	99066	2.14	99275	2.16	23	
	38	90730	2.59	90872	2.61	22	38	99194	2.13	99405	2.15	22	
	39	90885	2.58	91029	2.60	21	39	99322	2.13	99534	2.15	21 20	
E	40.	91040	2.58	91185	2.59	20 19	40 41	99450 8.99577	2.12	99662 8.99791	2.14	19	
	41 42	8.91195	2.57	8.91340 91495	2.58	19	41 42	99704	2.11	99919	2.13	19	
	42 43	91349 91502	2.56	91495 91650	2.57	17	42	99704	2.11	99919	2.13	17	
	43	91502 91655	2.55	91803	2.56	16	40	99956	2.10	00174	2.12	16	
	45	91807	2.54	91957	2.56	15	45	9.00082	2.09	00301	2.12	15	
	46	91959	2.53	92110	2.55	14	46	00207	2.09	00427	2.11	14	
	47	92110	2.52	92262	2.54	13	47	00332	2.08	00553	2.10	13	
	48	92261	2.51	92414	2.53	12	48	00456	2.08	00679	2.10	12	
	49	92411	2.50	92565	2.52	11	49	00581	2.07	00805	2.09	11	
	50	92561	2.49	92716	2.51	10	50	00704	2.06	00930	2.08	10	
	51	8.92710	2.49	8.92866	2.50	9	51	9.00828	2.06	9.01055	2.08	9	
+	52	92859	2.48 2.47	93016	2.49	8	52	00951	2.05	01179	2.07	8	
	53	93007		93165	2.49	7	53	01074	2.05	01303	2.07	7	
	54	93154	2.46	93313	2.48	6	54	01196	2.04	01427	2.06	6	
	55	93301	2.40	93462	2.47 2.46	5	55	01318	2.03	01550	2.00	5	
	56	93448	2.44	93609	2.40	4	56	01440	2.03	01673	2.05	4	
	57	93594	2.43	93756	2.43	3	57	01561	2.02	01796	2.03	3	
1	58	93740	2.40	93903	2.44	2	58	01682	2.02	01918	2.04	2	
	59	93885	2.41	94049	2.44	1	59	01803	2.01	02040	2.03	1.	
	60	94030		94195	0.10	0	60	01923	2.01	02162	2.00	0	
	м.	Cosine.	DI"	Cotang.	D1"	M.	M.	Cosine.	DI"	Cotang.	D]"	M .	1
10	50		114			3	0	THE YOR	1	3. 20		81	0

SINES AND TANGENTS.

				DID	and a	inn		unit.				
Г	M.	Sine.	·D1″	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	M.
1	0	9.01923		9.02162		60	0	9.08589	1 171	9.08914	1.7.4	60
1	1	02043	2.00	02283	$2.02 \\ 2.02$	59	1	08692	$1.71 \\ 1.71$	09019	1.74 1.73	59
ł	2	02163	1.99	02404	2.01	58	2	08795	1.70	09123	1.73	58
ł	3	02283	1.98	02525	2.01	57	3	08897	1.70	09227	1.73	57
I	4	02402	1.98	02645	2.00	56	4	08999	1.70	09330	1.72	56
L	5	02520	1.97	02766 02885	1.99	55	5 6	09101 09202	1.69	09434 09537	1.72	55 54
Ŀ	7	02639 02757	1.97	02885	1.99	54 53	7	09202	1.69	09640	1.72	53
ł	8	02874	1.96	03124	1.98	52	8	09405	1.68	09742	1.71	52
ł	9	02992	1.96	03242	1.98	51	9	09506	1.68	09845	1.71	51
ł	10	03109	1.95	03361	1.97	50	10	09606	1.68	09947	1.70	50
1	11	9.03226	1.95 1.94	9.03479	1.97	49	11	9.09707	$1.67 \\ 1.67$	9.10049	$1.70 \\ 1.69$	49
1	12	03342	1.94	03597	1.96	48	12	09807	1.67	10150	1.69	48
1	13	03458	1.93	. 03714	1.95	47	13	09907	1.66	10252	1.69	47
	14	03574	1.93	03832	1.95	46	14	10006	1.66	10353	1.68	46
ł	15 16	03690	1.92	$03948 \\ 04065$	1.94	45 41	15 16	10106 10205	1.65	$10454 \\ 10555$	1.68	45 44
1	17	03920	1.92	04181	1.94	43	17	10205	1.65	10656	1.68	43
1	18	04034	1.91	04297	1.93	42	18	10402	1.64	10756	1.67	42
ł	19	04149	1.91	04413	1.93	41	19	10501	1.64	10856	1.67	.41
1	20	04262	1.90	04528	1.92	40	20	10599	1.64	10956	1.67	40
	21	9.04376	$1.89 \\ 1.89$	9.04643	1.92 1.91	39	21	9.10697	$1.63 \\ 1.63$	9.11056	$1.66 \\ 1.66$	39
1	22	04490	1.89	04758	1.91	38	22	10795	1.63	11155	1.65	38
1	23	04603	1.88	04873	1.90	37	23	10893	1.62	11254	1.65	37
	24	04715	1.87	04987	1.90	36	24	10990	1.62	11353	1.65	36
	$\frac{25}{26}$	04828	1.87	05101 05214	1.89	35 34	$\frac{25}{26}$	11087	1.62	11452 11551	1.64	35 34
	20 27	$04940 \\ 05052$	1.87	05328	1.89	33	20 27	11184	1.61	11551	1.64	33
	28	05164	1.86	05441	1.88	32	28	11377	1.61	11747	1.64	32
	29	05275	1.86	05553	1.88	31	29	11474	1.61	11845	1.63	31
1	30	05386	1.85	05666	1.87	30	30	11570	1.60	11943	1.63	30
	31	9.05497	1.85 1.84	9.05778	$1.87 \\ 1.87$	29	31	9.11666	1.60 1.59	9.12040	$1.62 \\ 1.62$	29
	32	05607	1.84	05890	1.86	28	32	11761	1.59	12138	1.62	28
	33	05717	1.83	06002	1.85	27	. 33	11857	1.59	12235	1.62	27
	34	05827	1.83	06113	1.85	26	34	11952	1.58	12332	1.61	26
	35 36	05937 06046	1.82	06224 06335	1.85	25 24	35 36	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.58	12428 12525	1.61	25 24
	37	06155	1.82	06445	1.84	23	30	12142	1.58	12525	1.60	24 23
	38	06264	1.81	06556	1.84	22	38	12331	1.57	12717	1.60	22
ł	39	06372	1.81	06666	1.83	21	39	12425	1.57	12813	1.60	21
	40	06481	1.80	06775	1.83	20	40	12519	1.57	12909	1.59	20
	41	9.06589	1.80	9.06885	$1.82 \\ 1.82$	19	41	9.12612	1.56 1.56	9.13004	1.59	19
1	42	06696	1.79	06994	$1.82 \\ 1.82$	18	42	12706	1.50	13099	1.59	18
	43	06804	1.79	07103	1.81	17	43	12799	1.55	13194	1.58	17
	44 45	06911 07018	1 78	07211 07320	1.81	16 15	44	12892	1.55	13289	1.58	16 15
	45 46	07018	1.78	07320	1.80	15	45 46	12985 13078	1.55	13384 13478	1.57	10
	47	07231	1.77	07536	1.80	13	47	13171	1.54	13573	1.57	13
	48	07337	1.77	07643	1.79	12	48	13263	1.54	13667	1.57	12
	49	07442	1.76	07751	1.79	11	49	13355	1.53	13761	1.56	11
1	50	07548	1.76	07858	$1.78 \\ 1.78$	10	50	13447	$ 1.53 \\ 1.53 $	13854	1.56	10
1	51	9.07653	1 75	9.07964	1.77	9	51	9.13539	1.53	9.13948	1.55	9
-	52	07758	1 75	08071	1.77	8	52	13630	1.52	14041	1 55	8
	53	07863	1 74	08177	1.77	7	53	13722	1.52	14134	1.55	7
3	54 55	07908	1.74	08285	1.76	6 5	54 55	13813 13904	1.52	14227 14320	1.55	- 6 5
	56	08072	1.73	08495	1.76	4	56	13904	1.51	14320	1.54	4
	57	08280	1.73	08600	1.75	3	57	14085	1.51	14504	1.54	3
	58	08383	1.72	08705	1.75	2	58	14175	1.51	14597	1.54	2
	59	08486		08810	1.75	1	59	14266	1.50	14688	1.53	01
	60	08589	1.14	08914	1.74	0	60	14356	1.50	14780	1.53	0
	M.	Cosine.	DI"	Cotang.	DI"	M .	М.	Cosine.	DI"	Cotang.	DI"	M.

TABLE IV.-LOGARITHMIC

Sine.	Dl″	Tang.	DI"	M.	M.	Sine.	Dl″	Tang.	D1"	М.	1
9.14356		9.14780	ing.	60	0	9.19433		9.19971	A	60	1
14445	1.50	14872	1.53	59	1	19513	1.33	20053	1.36	59	
14535	1.49	14963	1.52	58	2	19592	1.33	20134	1.36	58	1
14624	1.49	15054	1.52	57	3	19672	1.32	20216	1.36	57	1
14714	1.49	15145	1.52	56	4	19751	1.32	20297	1.35	56	
14803	1.48	15236	1.51	55	5	19830	1.32	20378	1.35	55	
14891	1.48	15327	1.51	54	6	19909	1.32	20459	1.35	54	2
14980	1.48	15417	1.51	53	7	19988	1.31	20540	1.35	53	122
15069	1.48	15508	1.50	52	8	20067	1.31	20621	1.35	52	1
15157	1.47	15598	1.50	51	9	20145	1.31	20701	1.34	51	
15245	1.47	15688	1.50	50	10	20223	1.31	20782	1.34	50	
9.15333	1.47	9.15777	1.50	49	11	9.20302	1.30	9.20862	1.34	49	
15421	1.46	15867	1.49	48	12	20380	1.30	20942	1.33	48	
15508	1.46	15956	1.49	47	13	20458	1.30	21022	1.33	47	E .
15596	1.46	16046	1.49	46	14	20535	1.30	21102	1.33	46	
15683	1.45	16135	1.48	45	15	20613	1.29	21182	1.33	45	
15770	1.45	16224	1.48	44	16	20691	1.29	21261	1.33	44	
15857	1.45	16312	1.48	43	17	20768	1.29	21341	1.32	43	
15944	1.45	16401	1.48	42	18	20845	1.29	21420	1.32	42	
16030	1.44	16489	1.47	41	19	20922	1.28	21499	1.32	41	
16116	1.44	16577	1.47	40	20	20999	1.28	21578	1.32	40	
9.16203	1.44	9.16665	1.47	39	21	9.21076	1.28	9.21657	1.32	39	
16289	1.43	16753	1.46	38	22	21153	1.28	21736	1.31	38	
16374	1.43	16841	1.40	37	23	21229	1.27	21814	1.31	37	20
16460	1.43	16928	1.46	36	24	21306	1.27	21893	1.31	36	
16545	1.42	17016	1.46	35	25	21382	1.27	21971	1.31	35	1
16631	1.42	17103	1.45	34	26	21458	1.27	22049	1.30	34	2
16716	1.42	17190	1.45	33	27	21534	1.27	22127	1.30	33	
16801	1.42	17277	1.45	32	28	21610	1.26	22205	1.30	32	10
16886	1.41	17363	1.44	31	29	21685	1.26	22283	1.30	31	11
16970	1.41	17450	1.44	30	30	21761	1.26	9.9261	1.29	30	33
9.17055	1.41	9.17536	1.44	29	31	9.21836	1.26	9.22438	1.29	29	15
17139	1.40	17622	1.44	28	32	21912	1.25	22516	1.29	28	12
17223	1.40	17708	1.43	27	33	21987	1.25	22593	1.29	27	
17307	1.40	17794	1.43	26	34	22062	1.25	22670	1.29	26	
17391	1.40	17880	1.43	25	35	22137	1.25	22747	1.28	25	
17474	1.39	17965	1.42	24	36	22211	1.25	22824	1.28	24	8
17558	1.39	18051	1.42	23	37	22286	1.24	22901	1.28	23	
17641	1.39	18136	1.42	22	38	22361	1.24	22977	1.28	22	
17724	1.39	18221	1.42	21	39	22435	1.24	23054	1.28	21	
17807	1.38	18306	1.42	20	40	22509	1.24	23130	1.27	20	
9.17890	1.38	9.18391	1.41	19	41	9.22583	1.24	9.23206	$1.27 \\ 1.27$	19	
17973	1.38	18475	1.41	18	42	22657	1.23	23283	1.27	18	
18055	1.37	185.60	$1.41 \\ 1.40$	17	43	22731	1.23	23359	1.27	17	15
18137	1.37	18644	1.40	16	44	22805	1.23	23435	1.26	16	
18220	1.37	18728		15	45	22878	1.20	23510	1.26	15	
18302	1.36	18812	$1.40 \\ 1.40$	14	46	22952	1.22	23586	1.26	14	
18383	1.30	18896	1.40	13	47	23025	1.22	23661	1.20	13	
18465		18979	1.39	12	48	23098	1.22	23737	1.25	12	-
18547	$1.36 \\ 1.36$	19063	1.39	11	49	23171	1.22	23812	1.25	11	
18628	1 95	19146	1.39	10	50	23244	1.21	23887	1.25	10	1
9.18709	1 25	9.19229	1.39	9	51	9.23317	1.21	9.23962	1.25	9	
18790	1.35	19312	1.38	8	52	23390	1.21	24037	1.25	8	
18871	1.35	19395	1.38	7	53	23462	1.21	24112	1.24	7	
18952	1 34	19478	1.38	6	54	23535	1.20	24186	1.24	6	
19033	1 94	19561	1.37	5	55	23607	1.20	24261	1.24	5	
19113	1 24	19643	1.37	4	56	23679	1.20	24335	1.24	4	
19193	1 94	19725	1.37	3	57	23752	1.20	24410	1.24	3	
19273	1.33	19807	1.37	2	58	23823	1.20	24484	1.23	2	
19353	1.33	19889	1 26	1	59	23895	1.20	24558	1 09	1	
1 10433	1.00	10071	1.000	0	60	23967		24632		0	

81°

M.

DI"

Cosine.

M.

M.

1.36

Cotang. DI"

DI"

Cosine.

М.

DI"

Cotang.

SINES AND TANGENTS.

ſ			TANK		T.1// 1				1000		DIG	
ł	M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	M.
Ì	0	9.23967	1 10	9.24632	1 00	60	0	9.28060	1 00	9.28865		60
I	1	24039	1.19	24706	1.23	59	1	28125	1.08	28933	1.12	59
I	2	24110	1.19	24779	1.23	58	2	28190	1.08	29000	1.12	58
I	3	24181	1.19	24853	1.23	57	3	28254	1.08	29067	1.12	57
I	4	24253	1.19	24926	1.22	56	4	28319	1.08	29134	1.12	56
I	5	24324	1.18	25000	1.22	55	5	28384	1.08	29201	1.12	55
ł	6	24395	1.18	25073	1.22	54	6	28448	1.07	29268	1.12	54
I	7	24466	1.18	25146	1.22	53	7	28512	1.07	29335	1.11	53
I	8	24536	1.18	25219	1.22	52	8	28577	1.07	29303	1.11	52
I	9	245.50	1.18	25219	1.22	51	9	28641	1.07		1.11	51
1			1.17		1.21				1.07	29468	1.11	
l	10	24677	1.17	25365	1.21	50	10	28705	1.07	29535	1.11	50
I	11	9.24748	1.17	9.25437	1.21	49	11	9.28769	1.06	9.29601	1.11	49
1	12	24818	1.17	25510	1.21	48	12	28833	1.06	29668	1.10	48
ł	13	24888	1.17	25582	1.20	47	13	28896	1.06	29734	1.10	47
ł	14	24958	1.17	25655	1.20	46	14	28960	1.06	29800	1.10	46
I	15	25028	1.16	25727	1.20	45	15	29024	1.06	29866	1.10	45
I	16	25098	1.16	25799	1.20	44	16	29087	1.06	29932	1.10	44
1	17	25168	1.16	25871	1.20	43	17	29150	1.05	29998		43
I	18	25237		25943		42	18	29214		30064	1.10	42
I	19	25307	1.16	26015	1.20	41	19	29277	1.05	30130	1.10	41
	20	25376	1.16	26086	1.19	40	20	29340	1.05	30195	1.09	40
1	21	9.25445	1.15	9.26158	1.19	39	21	9.29403	1.05	9.30261	1.09	39
I	22	25514	1.15	26229	1.19	38	22	29466	1.05	30326	1.09	38
ł	23	25583	1.15	26301	1.19	37	23	29529	1.05	30391	1.09	37
I	24	25652	1.15	26372	1.19	36	24	29591	1.04	30457	1.09	36
I	25	25721	1.15	26443	1.18	35	25	29654	1.04	30522	1.09	35
I	26	25790	1.14	26514	1.18	34	26	29716	1.04	30587	1.08	34
ł	27	25858	1.14	26585	1.18	33	27	29779	1.04		1.08	33
1	28	25927	1.14	26655	1.18	32	28	29841	1.04	30652	1.08	32
I	29	25921	1.14		1.18		29		1.04	30717	1.08	31
I			1.14	26726	1.18	31		29903	1.04	30782	1.08	
I	30	26063	1.13	26797	1.17	30	30	29966	1.03	30846	1.08	30
I	31	9.26131	1.13	9.26867	1.17	29	31	9.30028	1.03	9.30911	1.07	29
I	32	26199	1.13	26937	1.17	28	32	30090	1.03	30975	1.07	28
1	33	26267	1.13	27008	1.17	27	33	30151	1.03	31040	1.07	27
1	34	26335	1.13	27078	1.17	26	34	30213	1.03	31104	1.07	26
ł	35	26403	1.13	27148	1.17	25	35	30275	1.03	31168	1.07	25
I	36	26470	1.12	27218	1.16	24	36	30336	1.03	31233	1.07	24
1	37	26538	1.12	27288	1.10	23	37	30398	1.03	31297		23
1	38	26605	1.12	27357		22	38	30459	1.02	31361	1.07	22
I	39	26672		27427	1.16	21	39	30521		31425	1.07	21
	40	26739	1.12	27496	1.16	20	40	30582	1.02	31489	1.06	20
	41	9.26806	1.12	9.27566	1.16	19	41	9.30643	1.02	9.31552	1.06	19
1	42	26873	1.12	27635	1.15	18	42	30704	1.02	31616	1.06	18
	43	26940	1.11	27704	1.15	17	43	30765	1.02	31679	1.06	17
	44	27007	1.11	27773	1.15	16	44	30826	1.01	31743	1.06	16
l	45	27073	1.11	27842	1.15	15	45	30887	1.01	31806	1.06	15
	46	27140	1.11	27911	1.15	14	46	30947	1.01	31870	1.05	14
	47	27206	1.11	27980	1.15	13	47	31008	1.01	31933	1.05	13
1	48	27273	1.10	28049	1.15	12	48	31068	1.01	31996	1.05	12
1	49	27339	1.10	28045	1.14	11	49	31129	1.01	32059	1.05	11
	49 50	27405	1.10	28117	1.14	10	50	31129	1.01	32039	1.05	10
1	51	9.27471	1.10	9.28254	1.14	9	51	9.31250	1.00	9.32122	1.05	9
	52	27537	1.10		1.14	8	52		1.00		1.05	8
	53		1.10	28323	1.14	7		31310	1.00	32248	1.05	
		27602	1.09	28391	1.13		53	31370	1.00	32311	1.04	7
	54	27668	1.09	28459	1.13	6	54	31430	1.00	32373	1.04	- 6
	55	27734	1.09	28527	1.13	5	55	31490	1.00	32436	1.04	5
	56	27799	1.09	28595	1.13	4	56	31549	1.00	32498	1.04	4
	57	27864	1.09	28662	1.13	3	57	31609	.99	32561	1.04	3
	58	27930	1.09	28730	1.13	2	58	31669	.99	32623	1.04	2
	59	27995	1.08	28798	1.12	1	59	31728	.99	32685	1.04	1
	60	28060	1.00	28865	1.12	0	60	31788	.00	32747	1.04	0
	 M.	Cosine.	DI"	Cotang.	DI"		M.	Cosine.	DI"	Cotang.	DI"	M.
1	MI.	Cosme.	Dr	Cotang.	Dr	m.	ML.	Cosme.	Dr'	Cotang.	Dr	141.

TABLE IV.-LOGARITHMIC

Ŧ	c	5	3	ð
	E	2	Þ	-

			and the second se							-	
M.	Sine.	Di"	Tang.	DI"	M.	М.	Sine.	DI"	Tang.	.DI"	M.
0	9.31788	1257 -	9.32747	140.2	60	0	9.35209	110.0	9.36336	1	60
1	31847	0.99	32810	1.03	59	1	35263	0.91	36394	0.96	59
2	31907	.99	32872	1.03	58	2	35318	.91	36452	.96	58
3	31966	.99	32933	1.03	57	3	35373	.91	36509	.96	
4		.99		1.03	56	4	35427	.91		.96	57
	32025	.98	32995	1.03				.91	36566	.96	56
5	32084	.98	33057	1.03	55	5	35481	.91	36624	.95	55
6	32143	.98	33119	1.03	54	6	35536	.90	36681	.95	54
7	32202	.98	33180	1.03	53	7	35590	.90	36738	.95	53
8	32261	.98	33242	1.02	52	8	35644	.90	36795	.95	52
9	32319	.98	33303	1.02	51	9	35698	.90	36852	.95	51
10	32378	.98	33365	1.02	50	10	35752	.90	36909	.95	50
11	9.32437		9.33426		49	11	9.35806		9.36966	.95	49
12	32495	.97	33487	1.02	48	12	35860	.90	37023		48
13	32553	.97	33548	1.02	47	13	35914	.90	37080	.95	47
14	32612	.97	33609	1.02	46	14	35968	.90	37137	.95	46
15	32670	.97	33670	1.02	45	15	36022	.89	37193	.94	45
16	32728	.97	33731	1.01	44	16	36075	.89	37250	.94	44
17	32786	.97	33792	1.01	43	17	36129	.89	37306	.94	43
18	32844	.97	33853	1.01	42	18	36125	.89	37363	.94	43
19	32902	.97	33913	1.01	41	19	36236	.89	37419	.94	42
20	32902	.96		1.01	41 40	20		.89		.94	
		.96	33974	1.01			36289	.89	37476	.94	40
21	9.33018	.96	9.34034	1.01	39	21	9.36342	.89	9.37532	.94	39
22	33075	.96	34095	1.01	. 38	22	36395	.89	37588	.94	38
23	33133	.96	34155	1.00	37	23	36449	.88	37644	.93	37
24	33190	.96	34215	1.00	36	24	36502	.88	37700	.93	36
25	33248	.96	34276	1.00	.35	25	36555	00	37756	.93	35
26	33305	.95	34336	1.00	34	26	36608	1 00	37812	.93	34
27	33362	.95	34396		33	27	36660	.88	37868	.93	33
28	33420	.95	34456	$1.00 \\ 1.00$	32	28	36713	.88	37924	.93	32
29	33477	.95	34516		31	29	36766		37980		31
30	33534	.95	34576	1.00	30	30	36819	.88	38035	.93	30
31	9.33591		9.34635	1.00	29	31	9.36871	•88	9.38091	.93	29
32	33647	.95	34695	.99	28	32	36924	.99	38147	.93	28
33	33704	.95	34755	.99	27	33	36976	1.81	38202	.92	27
34	33761	.95	34814	.99	26	34	37028	.81	38257	.94	26
35	33818	.94	34874	.99	25	35	37081	.81	38313	.92	25
36	33874	.94	34933	.99	24	36	37133	1.91	38368	.92	24
37 .	33931	.94	34992	.99	23	37	37185		38423		23
38	33987	.94	35051	.99	22	38	37237		38479	:92	23
39		.94	35111	.99	21	39	37289		38534	.92	
	34043	.94		.98						0.0	21
40	34100	.94	35170	.98	20	40	37341	.07	38589	0.9	20
41	9.34156	.93	9.35229	.98	19	41	9.37393	90	9.38644	0.0	19
42	34212	.93	35288	.98	18	42	37445	.86	38699	01	18
43	34268	.93	35347	.98	17	43	37497	00	38754	09	17
44	34324	.93	35405	.98	16	44	37549	99	38808	01	16
45	34380	.93	35464	.98	15	45	37600	86	38863	01	15
46	34436	.93	35523	.98	14	• 46	37652	.86	38918	.91	14
47	34491	.93	35581		13	47	37703		38972		13
48	34547	.93	35640	.98	12	48	37755		39027	.91	12
49	34602	.93	35698	.97	11	49	37806	.80	39082	.91	11
50	34658		35757	.97	10	50	37858	.80	39136	.91	10
51	9.34713	.92	9.35815	.97	9	51	9.37909	.83	9.39190	.91	9
52	34769	.92	35873	.97	8	52	37960	.80	39245	.91	8
53	34824	.92	35931	.97	7	53	38011	.85	39299	.90	7
54	34879	.92	35989	.97	6	54	38062	.85	39353	.90	6
55	34934	.92	36047	.97	5	55	38113	.85	39407	.90	5
56	31989	.92	36105	.97	4	56		.85	39461	.90	4
57	31989	.92		.96			38164	.85		.90	
		.92	36163	.96	3	57	38215	.85	39515	.90	3
58	35099	.91	36221	.96	2	58	38266	.85	39569	.90	2
59	35154	.91	36279	.96	1	59	38317	.85	39623	.90	1
60	35209		36336	1	0	60	38368		39677		0
M.	Cosine.	D1"	Cotang.	DI"	M.	M.	Cosine,	DI"	Cotang.	D1"	M.
	1										

SINES AND TANGENTS.

r								1	1		7. 14	
1	Μ.	Sine.	D1"	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	DI"	<u>M</u> .
1	0	9.38368	0.84	9.39677	0.90	60	0	9.41300	0.79	9.42805	0.84	60
)	1	38418	.84	39731	.90	59	1	41347	.78	42856	.84	59
	2	38469	.84	39785	.89	58	2	41394	.78	42906	.84	58
1	3	38519	.84	39838	.89	57	3	41441	.78	42957	.84	57
	4	38570	.84	39892	.89	56	4	41488	.78	43007	.84	56
	5	38620	.84	39945	.89	55	5	41535	.78	43057	.84	55
	6	38670	.84	39999	.89	54 53	6 7	41582 41628	.78	43108 43158	.84	54 53
	7 8	38721 38771	.84	40052 40106	.89	52	8	41675	.78	43138	.84	52
	9	38821	.84	40100	.89	51	9	41722	.78	43258	.83	51
	10	38871	.83	40212	.89	50	10	41768	.78	43308	.83	50
1	11	9.38921	.83	9.40266	.89	49	11	9.41815	.78	9.43358	.83	49
1	12	38971	.83	40319	.89	48	12	41861	.78	43408	.83	48
	13	39021	.83	40372	.88	47	13	41908	.77	43458	.83	47
	14	39071	.83	40425	.88	46	14	41954	.77	43508	.83	46
	15	39121	.83	40478	.88	45	15	42001	.77	43558	.83	45
	16	39170	.83	40531	.88	44	16	42047	.77	43607	.83	44
	17	39220	.83	40584	.88	43	17	42093	.77	43657	.83	43
	18	39270	.83	40636	.88	42	18	42140	.77	43707	.83	42
	19	39319	.82	40689	.88	41	19	42186	.77	43756	.83	41
-	20	39369	.82	40742	.88	40	20	42232	.77	. 43806	.83	40
	21	9.39418	.82	9.40795	.88	39	21 22	9.42278	.77	9.43855	.82	39
	$\frac{22}{23}$	39467 39517	.82	40847	.88	38 37	22 23	42324 42370	.77	43905 43954	.82	38 37
	23 24	39566	.82	40900	.87	36	23	42370	.76	43934	.82	36
	25	39615	.82	40992	.87	35	25	- 42461	.76	44053	.82	35
	26	39664	.82	41057	.87	34	26	42507	.76	44102	.82	34
8	27	39713	.82	41109	.87	33	27	42553	.76	44151	.82	33
	28	39762	.82	41161	.87	32	28	42599	.76	44201	.82	32
	29	39811	.82	41214	.87	31	29	42644	.76	44250	.82	31
	30	39860	.81	41266	.87	30	30	42690	.76	44299	.82	30
	31	9.39909	.81	9.41318	.87	29	31	9.42735	.76	9.44348	.82	29
	32	39958		41370	.87	28	32	42781	.76	44397	.82	28
	33	40006	01	41422	.87	27	33	42826	.76	44446	.81	27
	34	40055	01	41474	.86	26	34	42872	.76	44495	.81	26
	35	40103	01	41526	.86	25	35	42917	.75	44544	.81	25
2	36	40152	.81	41578	.86	24	36	42962	.75	44592	.81	24
	37	40200	.81	41629	.86	23	37	43008	.75	44641	.81	23
	38 39	40249 40297	.81	41681 41733	.86	22 21	38 39	43053 43098	.75	44690 44738	.81	22 21
	39 40	40297	.81	41735	.86	20	40	43143	.75	44787	.81	20
3	41	9.40394	.80	9.41836	.86	19	41	9.43188	.75	9.44836	.81	19
1	42	40442	.80	41887	.86	18	42	43233	.75	44884	.81	18
	43	40490	.80	41939	.86	17	43	43278	.75	44933	.81	17
	44	40538	.80	41990	.86	16	44	43323	.75	44981	.81	16
	45	40586	.80	42041	.86	15	45	43367	.75	45029	.81	15
	46	40634	.80	42093	.85	14	46	43412	.75	45078	.81 .80	14
	47	40682	.80	42144	.85	13	47	43457	.73	45126	.80	13
	48	40730	.80	42195	.85	12	48	43502	.74	45174	.80	12
	49	40778	.80	42246	.85	11	49	43546	.74	45222	.80	11
	50	40825	.79	42297	.85	10 9	50 51	43591	.74	45271	.80	10 9
	51 52	9.40873 40921	.79	9.42348 42399	.85	8	51 52	9.43635 43680	.74	$9.45319 \\ 45367$.80	8
	53	40921	.79	42399 42450	.85	7	53	43080	.74	45307	.80	7
	54	41016	.19	42400	.85	6	54	43769	.74	45463	.80	- 6
	55	41063	.79	42552	.85	5	55	43813	.74	45511	.80	5
	56	41111	.79	42603	.85	4.	56	43857	.74	45559	.80	4
	57	41158	.79	42653	.85	3	57	43901	.74	45606	.80	3
	58	41205	.79	42704	.84	2	58	43946	.74	45654	.80	2
•	59	41252	.79	42755	.84	1	59	43990	.74	45702	.80	1
	60	41300	.79	42805	.84	0	60	44034	.73	45750	.80	0
-	<u>M.</u>	Cosine.	DI"	Cotang.	D1"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.
	75°	-25 16.05	1.5	-		3	5		1000			74
	-				-				-		-	

TABLE IV.-LOGARITHMIC

	1	-											
		М.	Sine.	DI"	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	DI"	M.
	1	0	9 44034		0 45750	1	60	0	0 18504		0 49594		60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			0.73		0.79				0.69		0.75	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.79				.69		.75	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2		.73		79				.69			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.79							
i i <td></td> <td></td> <td></td> <td></td> <td></td> <td>79</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75</td> <td></td>						79						75	
7 44341 .73 46082 .68 48949 .75 53 7 46082 .68 48949 .75 53 9 9 44425 .73 46130 .79 52 8 46023 .68 48939 .75 53 9 44425 .73 4629 .79 51 9 44664 .73 .79 50 10 47005 .68 48999 .75 50 11 9.44166 .73 46366 .79 48 12 47086 .68 49013 .74 47 14 4464 .72 46366 .79 47 13 47127 .68 49207 .74 45 14 4464 .72 46341 .78 44 14 47209 .68 49207 .74 45 14 4464 .72 46541 .78 41 19 47330 .68 49216 .74 43 17 44776 .72 466418 .78 31				.73		79						75	
8 44385 .73 46130 .79 52 8 40925 .68 4894 .75 55 9 44422 .73 46137 .79 51 9 44064 .68 48939 .75 50 10 44472 .73 46224 .79 50 10 470045 .68 48903 .75 49 12 44550 .73 46319 .79 45 1 47066 66 49073 .75 49 12 44560 .72 46361 .75 47 13 47127 .65 49118 .74 47 14 44649 .72 46601 .78 42 18 47330 .68 49341 .74 42 19 44802 .72 46684 .78 41 19 47371 67 49380 .74 41 20 44905 .72 466737 73						79							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						70			46882		48849		53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l					.70			46923		48894		52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	9			46177	.10	51	9	46964		48939		51
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10	44472		46224	.19	50	10	47005		48984		50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	11	9.44516		9.46271		49	11	9.47045		9.49029	.75	49
	1	12	44559	.73	46319	.19	48	12				.75	
1444646.724413.78461447168.6840163.74461544639.7244500.78451547209.6849207.74451644733.7246507.78441647249.6849252.74451744776.7246504.78421847330.6849341.74421944862.7246649.78421847330.6849341.74422044905.7246684.78402047411.6749385.7440219.44948.7246785.7839219.4742.6749519.74382244992.7246785.78352347533.6749667.74362445077.724683.78352547613.6749652.74352645163.7146925.78342647634.6749667.74332545206.7147092.78342647644.6749622.74332645292.7147084.77312947740.7330304533.7147084.7730947740.7330319.45377.7147		13				.79	47					.74	
1544689.124460.18451547209.6849207.744551644733.7246507.78441647249.6849226.74441744776.7246554431747290.6849226.74431844819.7246648.78411947371.6849335.74412044905.7246648.78411947371.6849335.74412044905.7246788.7839219.47452.6749430.7440219.44948.729.46781.78352247492.6749563.74382345035.7246881.78352547613.6749660.74342445077.7246881.78352547613.6749662.74342545120.7146953.78342647654.6749662.74342745206.7147021.78332747694.6749439.72.73319.4529.7147160.7729319.4774.6749828.73313045334.7147160.7729319.4784.6799960.7328 <td></td> <td></td> <td></td> <td></td> <td></td> <td>.78</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						.78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					.78				.68		.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					.78				.68		.74	
1844819724660178421847330.6849341.74421944805.7246648.7840904711.6749430.74402044905.7246678.7839219.47452.679.49474.7440219.44948.7246788.78382247492.6749563.74392244505.7246881.78362447573.6749563.74362445077.7246881.78362447573.6749667.74362545163.7146928.78342647664.6749664.74462545290.7147021.78332747694.6749784.74332845299.7147168.77303047814.6749822.7330319.45337.719.47207.7729319.47864.6749896.73293245419.7147209.77273347934.6750044.73273445304.7147293.77273347934.6750044.73273445344.7147293.7723374894.6650136.73	1			.72		.78				.68			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.72		.78				.68			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.72		78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			.72		.78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.72		.78						.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				79		78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				71		78							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						78			47613				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				71					47654			.14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			45206			.10		27	47694		49740	.14	33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			45249			- 11		28	47734		49784		32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			45292			- 44		29	47774		49828		31
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		30	45334			-11	30	30	47814		49872		30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		31	9.45377	.71	9.47207		29	31	9.47854		9.49916		29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		32	45419		47253		28	32	47894		49960		28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		33	45462	.71	47299		27	33				.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	34		.71			26					.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1					.77							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	36				.77	24						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			.71		.77						.73	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			.71		.77						.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			.70		.77				.66		.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.70		.77				.66		.73	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1			.70		.77				.66		.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			.70		.77						.73	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.70									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			.70								.73	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1			.70		76							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			.70								72	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			70		76						72	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			70		76						79	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				70								79	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1											72	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												79	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1											79	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.12	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1												
		60	46594	.09	48534	.10	0	60	48998	.03	51178	.14	0
	1	M.	Cosine	DI"	Cotang.	DI"	M	M	Cosine.	DI"	Cotang	DI"	M
	L	1-11								1			19/0

36

SINES AND TANGENTS.

٢	M.	Sine.	DI″	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	М.
l	0	9.48998	0.05	9.51178	0.72	60	0	9.51264	0.61	9.53697	0.68	60
I	1	49037	0.65	51221	0.72	59	1	51301	.61	53738	.68	59
I	2	49076	.65	51264	.71	58	2	51338	.61	53779	.68	58
I	3	49115	.65	51306	.71	57	3	51374	.61	53820	.68	57
ł	4 5	49153	.65	51349 51392	.71	56 55	45	51411 51447	.61	53861 53902	.68	56 55
ł	5 6	49192 49231	.64	51435	.71	54	6	51484	.61	53902	.68	54
I	7	49269	.64	51478	.71	53	7	51520	.61	53984	.68	53
ł	8	49308	.64	51520	.71	52	8	51557	.61	54025	.68	52
L	9	49347	.64	51563	.71	51	9	51593	.61	54065	.68	51
1	10	49385	.64	51606	.71	50	10	51629	.61	54106	.08	50
L	11	9.49424	.64	9.51648	.71	49	11	9.51666	.60	9.54147	.68	49
ł	12	49462	.64	-51691	.71	48	12	51702	.60	54187	.68	48
ł	13	49500	.64	51734	.71	47	13	51738	.60	54228	.68	47
ł	14 15	49539 49577	.64	51776 51819	.71	46 45	14 15	51774 51811	.60	54269 54309	.68	46
I	16	49517	.64	51861	.71	40	16	51847	.60	54350	.68	44
ł	17	49654	.64	51903	.71	43	17	51883	.60	54390	.68	43
ł	18	49692	.64	51946	.71	42	18	51919	.60	54431	.68	42
1	19	49730	.64	51988	.71	41	19	51955	.60	54471	.67	41
	20	49768	.64	52031	.71 .70	40	20	51991	.60	54512	.07	40
ł	21	9.49806	.63	9.52073	.70	39	21	9.52027	.60	9.54552	.67	39
1	22	49844	.63	52115	.70	38	22	52063	60	54593	.67	38
ł	23	49882	.63	52157	.70	37	23 24	52099	00	54633	.67	37
I	24 25	49920 49958	.63	52200 52242	.70	36 35	24 25	52135 52171	60	54673 54714	.67	36 35
L	26	49998	.63	52284	.70	30 34	26	52207	.00	54754	.67	34
t	27	50034	.63	52326	.70	33	27	52242	.00	54794	.67	33
I	28	50072	.63	52368	.70	32	28	52278	.00	54835	.67	32
I	29	50110	.63	52410	.70	31	29	52314	.60	54875	.67	31
ł	30	50148	.63	52452	.70	30	30	52350		54915	.67 .67	30
I	31	9.50185	.63	9.52494	.70	29	31	9.52385	50	9.54955	.67	29
1	32	50223	.63	52536	.70	28	32	52421	50	54995	67	28
ł	33	50261	.63	52578	.70	27	33 34	52456	50	55035	.67	27
1	34 35	50298 50336	.63	52620 52661	.70	26 25	35	52492 52527	50	55075	67	26 25
1	36	50374	.63	52703	.70	23	36	52563	.59	55115	.07	23
4	37	50411	.63	52745	.70	23	37	52598	.09	55195	1.01	23
1	38	50449	.63	52787	.70	22	38	52634	.09	55235	1 .01	22
1	39	. 50486	.62	52829	.70	21	39	52669	.09	55975	.00	21
1	40	50523	.62	52870	.69	20	40	52705		55315		20
1	41	9.50561	.62	9.52912	.69	19	41	9.52740	50	9.00000	6R	19
1	42	50598	.62	52953	.69	18	42	52775	50	1 55395	6R	18
1	43	50635	.62	52995	.69	17	43	52811	50	55434	BR	17
	44 45	50673 50710	.62	53037 53078	.69	16 15	44 45	52846 52881	.59	55514	.66	16 15
	46	50747	.62	53120	.69	15	45	52916	.59	55554	.00	15
1	47	50784	.02	53161	.69	13	47	52951	1.09	55509	.00	13
	48	50821	1.92	52009	.69	12	48	52986	.08	55639	.00	12
	49	50858		53244	.69	11	49	53021	.08	55673	.00	11
	50	50896		53285	.69	10	50	53056	.08	55712	.00 88	10
	51	9.50933	69	9.53327	60	9	51	9.53092	50	19.00102	RR	9
	52	50970	69	0.000	60	8	52	53126	60	991.91	66	8
	53	51007	69	53409	60	7	53	53161	50	00831	60	7
	54 55	51043 51080	.61	52409	60	6 5	54 55	53196	50	99940	RE	65
	56	51117	01		.09	4	56	53231	36.		.00	4
	57	51154	.01	52574	.09		57	53301	.95	55090	.00	
	58	51191	.01	53615	.09		58	53336		56028	.00	32
	59	51227	.01	53656	.08	1	59	53370	36.	56067	.00	1
	60	51264		53697		0	60	53403		56107		Ō
	M.	Cosine.	. DI"	Cotang.	DI"	<u>M.</u>	M.	Cosine.	DI"	Cotang	. DI"	M.
-	210	1		1	-	1	37			1		70
	100	A. 11. 12	-		1 - 1	-		Some :	2.4	1	2.12	

700

TABLE IV.-LOGARITHMIC

M.	Sine.	D1″	Taug.	D."	M.	M.	Sine.	D1"	Taug.	DP'	М.
0	9.53405		9.56107		60	0	9.55433		9.58418		60
1	53440	0.58	56146	0.65	59	1	55466	0.55	58455	0.63	59
2	53475	.58	56185	.65	58	2	55499	.55	58493	.63	58
3	53509	.58	56224	.65	57	3	55532	.55	58531	.63	57
4	53544	.58	5,6264	.65	56	4	55564	.55	58569	.63	56
5	53578	.58	56303	.65	55	5	55597	.55	58606	.63	55
6	53613	.58	56342	.65	54	6	55630	.55	58644	.63	54
7	53647	.58	56381	.65 .65	53	7 .	55663	.55	58681	.63	53
8	53682	.57	56420	.65	52	8	55695	.55	58719	.63	52
9	53716	.57	56459	.65	51	9	55728		58757	.05	51
10	53751	.57	56498	.65	50	10	. 55761	.54	58794	.03	50
11	9.53785	.57	9.56537	.65	49	11.	9.55793	.54	9.58832	.03	49
12	53819	.57	56576	.65	48	12	55826	.54	58869	.62	48
13	53854	.57	56615	.65	47	13	55858	.54	58907	.62	47
14	53888	.57	56654	.65	46	14	55891	.54	58944	.62	46
15	53922	.57	56693	.65	45	15	55923	.54	58981	.62	45
16	53957	.57	56732	.65	44	16	55956	.54	59019	.62	44
17	53991	.57	56771	.65	43	17	55988	.54	59056	.62	43
18	54025	.57	56810	.65	42	18	56021	.54	59094	.62	42
19	54059	.57	56849	.65	41	19	56053	.54	59131	.62	41
20	54093	.57	56887	.65	40	20	56085	.54	59168	.62	40
21	9.54127	.57	9.56926	.65	39	21	9.56118	.54	9.59205	.62	39
22	54161	.57	56965	.65	38	22	56150	.54	59243	.62	38
23	54195	.57	57004	.64	37	23	56182	.54	59280	.62	37
24	54229	.57	57042	.64	36	24	56215	.54	59317	.62	36
25	54263	.57	57081	.64	35	25	56247	.54	59354	.62	35
26	54297	.56	57120	.64	34	26	56279	.54	59391	.62	34
27	54331	.56	57158	.64	33	27	56311	.54	59429	.62	33
28	54365	.56	57197	.64	32	28	56343	.54	59466	.62	32
29 30	54399	.56	57235 57274	.64	31	29	56375	.53	59503	.62	31
. 31	54433 9.54466	.56	9.57312	.64	30 29	30 31	56408 9.56440	.53	59540 9.59577	.62	30 29
32	54500	.56	57351	.64	29 28	32	56472	.53	59614	.62	29 28
33	54534	.56	57389	.64	27	33	56504	.53	59651	.62	27
34	54567	.56	57428	.64	26	30 34	56530	.53	59688	.62	26
35	54601	.56	57466	.64	25	35	56568	.53	59725	.62	25
36	54635	.56	57504	.64	24	36	56599	.53	59762	.62	24
37	54668	.56	57543	.64	23	37	56631	.53	59799	.62	23
38	54702	.56	57581	.64	22	38	56663	.53	59835	.61	22
39	54735	.56	57619	.64	21	39	56695	.53	59872	.61	21
40	54769	.56	57658	.64	20	40	56727	.53	59909	.61	20
41	9.54802	.56	9.57696	.64	19	41 .	9.56759	.53	9.59946	.61	19
42	54836	.56	57734	.64	18	42	56790	.53	59983	.61	18
43	54869	.56	57772	.64	17	43	56822	.53	60019	.61	17
44	54903	.56	57810	.64	16	44	56854	-53	60056	.61	16
45-	54936	.56	57849	.64	15	45	56886	.53	60093	-61	15
46	54969	.50	57887	.64 .63	14	46	56917	.53	60130	.61	14
47	55003	.55	57925	.03	13	47	56949	.53	60166	.61	13
48	55036	.55	57963	.63	12	48	56980	.53	60203	.61 .61	12
49	55069	.55	58001	.03	11	49.	57012	.53	60240	.61	11
50	55102	.55	58039	.03	10	50	57044	.53	60276	.01	10
51	9.55136	.55	9.58077	.63	9	51	9.57075	.53	9.60313	.61	9
52	55169	.55	58115	.63	8	52	57107	.52	60349	.61	8
53	55202	.55	58153	.03	7	53	57138	.52	60386	.61	7
54	55235	.55	58191	.63	6	54	57169	.52	60422	.61	6
55	55268	.55	58229	.63	5	55	57201	.52	60459	.61	5
56	55301	.55	58267	.63	4	56	57232	.52	60495	.61	4
57	55334	.55	58304	.63	3	57	57264	.52	60532	.61	3
58	55367	.55	58342	.63	2	58	57295	.52	60568	.61	2
59	55400	.55	58380	.63	1	59	57326	.52	60605	.61	1
60	55433		58418		0	60	57358		60641		0
M.	Cosine.	D"1	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.
-		-		-	-	- Alleran	and the states	1000			

69%

SINES AND TANGENTS.

~	~			~~~	A TUD	TITI I		TITLE TO:				
Г	M.	Sine.	Di″	Tang.	DI".	M.	M.	Sine.	D1″	Tang.	D."	М.
1	0	9.57358		9.60641		60	0	9.59188	0.50	9.62785	0.50	60
	1	57389	0.52	60677	0.61	59	1	59218	0.50	62820	0.59	59
L	2	57420	.52	60714	.61 .61	58	2	59247	.30	62855	.58	58
1	3	57451	$.52 \\ .52$	60750	.60	57	3	59277	.49	62890	.58	57
1	4	57482	.52	60786	.60	56	4	59307	.49	62926	.58	56
	5	57514	.52	60823	.60	55	5	59336	.49	62961	.58	55
	6	57545	.52	60859	.60	54	6	59366	.49	62996	.58	54
	7	57576	.52	60895	.60	53	7	59396	.49	63031	.58	53
Ł	8	57607	.52	60931	.60	52	8	59425	.49	63066	.58	52
	9	57638	.52	60967	.60	51	9	59455	.49	63101	.58	51
1	10	57669	.52	61004	.60	50	10	59484	.49	63135	.58	50
Ł	11	9.57700	.52	9.61040	.60	49	11	9.59514	.49	9.63170	.58	49
ł.	12	57731	.52	61076	.60	48	12	59543	.49	63205	.58	48
Į.	13	57762	.52	61112	.60	47	13	59573	.49	$63240 \\ 63275$.58	47
	14 15	57793 57824	.51	61148 61184	.60	46 45	14 15	59602 59632	.49	63310	.58	46 45
E	15		.51	61220	.60		16	59661	.49	63345	.58	43
		57855	.51	61220	.60	44 43	17	59690	.49	63379	.58	43
1	17 18	57885 57916	.51	61292	.60	43 42	18	59090	.49	63414	.58	40 42
	18	57910	.51	61328	.60	42 41	10	59749	.49	63449	.58	42 41
	20	57978	.51	61364	.60	41	20	59778	.49	63484	.58	40
1	21	9.58008	.51	9.61400	.60	39	21	9.59808	.49	9.63519	.58	39
	22	58039	.51	61436	.60	38	22	59837	.49	63555	.58	38
	23	58070.	.51	61472	.60	37	23	59866	.49	63588	.58	37
I.	24	58101	.91	61508	.60	36	24	59895	.49	63623	.58	36
	25	58131	.51	61544	.60	35	25	59924	.49	63657	.58	35
	26	58162	.51	61579	.60	34	26	59954	.49	63692	.58	34
	27	58192	.51	61615	.60	33	27	59983	.49	63726	.58	33
	28	58223	.51	61651	.60	32	28	60012	.49	63761	.58	32
	29	58253	.51	61687	.60	31	29	60041	•48 •48	63796	.58	31
	30	58284	.51	61722	.60	30	30	60070	.48	63830	.58 .58	30
	31.	9.58314	.51	9.61758	.00	29	31	9.60099	.48	9.63865	.58	29
	32	58345	.51	61794	.59	28	32	60128	.48	63899	.57	28
	33	58375	.51	61830	.59	27	33	60157	.48	63934	.57	27
	34	58406	.51	61865	.59	26	34	60186	.48	63968	.57	26
	35	58436	.51	61901	.59	25	35	60215	.48	64003	.57	25
	36	58467	.51	61936	.59	24	36	60244	.48	64037	.57	24
	37	58497	.51	61972	.59	23	37	60273	.48	64072	.57	. 23
	38	58527	.50	62008	.59	22	38	60302	.48	64106	.57	22
	39	58557	.50	62043	.59	21	39	60331	.48	64140	.57	21
4	40	58588	.50	62079	.59	20	40	60359	.48	64175	.57	20
	41	9.58618	.50	9.62114	.59	19	41	9.60388	.48	9.64209	.57	19
1	42	58648	.50	62150	.59	18	42	60417	.48	64243	.57	18
1	43 44	58678 58709	.50	62185 62221	.59	17	43 44	60446 60474	.48	64278 64312	.57	17 16
	44 45	58739	.50	62221	.59	16 15	44 45	60503	.48	64346	.51	10
	45	58769	.50	62292	.59	10	40	60503	.48	64381	.57	15
	40	58799	.50	62327	.59	14	40	60552	.48	64415	.57	14 13
	48	58829	.50	62362	.59	12	48	60589	.48	64449	.01	12
	49	58859	.50	62398	.59	11	49	60618	.48	64483	.01	11
	50	58889	.50	62433	.59	10	50	60646	.48	64517	.01	10
	51	9.58919	.50	9.62468	.59	9	51	9.60675	.48	9.64552	.57	9
	52	.58949	.50	62504	.59	8	52	60704	.48	64586	.01	8
	53	58979	.50	62539	.59	7	53	60732	.48	64620	.01	7
	54	59009	.50	62574	.59	6	54	60761	.48	64654	.01	- 6
	55	59039	.50	62609	.59	5	55	60789	.48	64688	.01	5
1	56	59069	.50	62645	.59	4	56	60818	.47	64722	10.	4
1	57	59098	.50	62680	.09	3	57	60846	.41	64756	.01	3
	58	59128	.50	62715	50	. 2	58	60875	17	64790	57	2
	59	59158	.50	62750	.59	1	59	60903	.47	64824	57	1
	60	. 59188		62785	.09	0	60	60931	11.	64858	.01	0
	M.	Cosine.	DI"	Cotang.	D1"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.
L	170		1		1	1	30				-	GG

67°.

TABLE IV.-LOGARITHMIC

25°

1	M.	Sine.	DI″	Tang.	DI"	М.	M.	Sine.	DI"	Tang.	DI"	M.
1	0	9.60931	0.47	9.64858	0.57	60	0	9.62595		9.66867	0.55	60
	1	60960	0.47	64892	0.57	59	1	62622	0.45	66900	0.55	59
1	2	60988	.47	64926	.57	58	2	62649	.45	66933	.55	58
I	3	61016	.47	64960	.57	57	3	62676	.45 .45	66966	.55 .55	57
1	4	61045	.47	64994	.57	56	4	62703	.45	66999	.55	56
1	5	61073	.47	65028	.57	55	5	62730	.45	67032	.55	55
1	6	61101	.47	65062	.56	54	6	62757	.45	67065	.55	54
1	7	61129	.47	65096	.56	53	7	62784	.45	67098	.55	53
1	8	61158	.47	65130	.56	52	8	62811	.45	67131	.55	52
	9	61186	.47	65164	.56	51	9	62838	.45	67163	.55	51
	10	61214	.47	65197	.56	50	10	62865	.45	67196	.55	50
1	11 12	9.61242	.47	9.65231 65265	.56	49 48	11 12	9.62892	.45	9.67229	.55	49 48
1	12	61270 61298	.47	65299	.56	40 47	12	62918 62945	.45	67262 67295	.55	48 47
	13	61326	.47	65333	.56	46	14	62972	.45	67327	.55	46
1	15	61354	.47	65366	.56	45	15	62999	.45	67360	.55	45
1	16	61382	.47	65400	.56	44	16	63026	.45	67393	.55	44
	17	61411	.47	65434	.56	43	17	63052	.45	67426	.55	43
	18	61438	.47	65467	.56	42	18	63079	.45	67458	.55	42
	19	61466	.47	65501	.56	41	19	63106	.45	67491	.54	41
	20	61494	.47	65535	.56	40	20	631,33	.44	67524	.54	40
	21	9.61522	.47	9.65568	.56	39	21	9.63159	.44	9.67556	.54	39
1	22	61550	.47	65602	.56	38	22	63186	.44	67589	.54	38
	23	61578		65636		37	23	63213	.44	67622	.54	37
	24	61606	.46	65669	.56	36	24	63239	.44	67654	.54	36
	25	61634	.40	65703	.56	35	25	63266	.44	67687	.54 .54	35
	26	61662	.40	65736	.56	34	26	63292	.44	67719	.54	34
	27	61689	.40	65770	.56	33	27	63319	.44	67752	.54	33
	28	61717	.46	65803	.56	32	28	63345	.44	67785	.54	32
	29	61745	.46	65837	.56	31	29	63372	.44	67817	.54	31
	30	61773	.46	65870	.56	30	30	63398	.44	67850	.54	30
	31	9.61800	.46	9.65904	.56	29	31	9.63425	.44	9.67882	.54	29
	32	61828	.46	65937	.56	28	32	63451	.44	67915	.54	28
	33	61856	.46	65971	.56	27	33	63478	.44	67947	.54	27
1	34	61883	.46	66004	.56	26	34	63504	.44	67980	.54	26
1	35	61911	.46	66038	.56	25 24	35	63531	.44	68012	.54	25 24
	36 37	61939 61966	.46	66071 66104	.56	24 23	36 37	63557 63583	.44	68044 68077	.54	24 23
	38	61994	.46	66138	.56	22	38	63610	.44	68109	.54	22
	39	62021	.46	66171	.56	21	39	63636	.44	68142	.54	21
	40	62049	.46	66204	.56	20	40	63662	.44	68174	.54	20
	41	9.62076	.46	9.66238	.56	19	41	9.63689	.44	9.68206	.54	19
	42	62104	.46	66271	.55	18	42	63715	.44	68239	.54	18
	43	62131	.46	66304	.55	17	43	63741	.44	68271	.54	17
	44	62159	.46	66337	.55	16	44	63767	.44	68303	.54	16
	45	- 62186	.46	66371	.55	15	45	63794	.44	68336	.54	15
1	46	62214	.40	66404	.55	14	46	63820	.44	68368	.54	14
	47	62241	.40	66437	.55	13	47	63846	.44	68400	.54	13
	48	62268	.40	66470	.55	12	48	63872	.44	68432	.54	12
	49	62296	.46	66503	.55	11	49	63898	.44	68465	.54	11
	50	62323	.45	66537	.55	10	50	63924	.43	68497	.54	10
	51	9.62350	.45	9.66570	.55	9	51	9.63950	.43	9.68529	.54	9
	52	62377	.45	66603	.55	8	52	63976	.43	68561	.54	8
	53	62405	.45	66636	.55	76	53	64002	.43	68593	.54	7 6
	54 55	62432	.45	66669	.55	6 5	54 55	64028	.43	68626 68658	.54	5
	56	62459 62486	.45	66702 66735	.55	3 4	56	64054 64080	.43	68690	.54	4
	57	62513	.45	66768	.55	4 3	57	64030	.43	68722	.54	3
	58	62541	.45	66801	.55	2	58	64132	.43	68754	.53	2
	59	62568	.45	66834	.55	1	59	64158	.43	68786	.53	1
	60	62595	.45	66867	.55	0	60	64184	.43	68818	.53	Ô
					-				-			
	M.	Cosine.	DI"	Cotang.	Dl″	M.	М.	Cosine.	DI"	Cotang.	Dl″	М.
							-					

40

SINES AND TANGENTS.

1	М.	Sine.	DI"	Tang.	Dl″	M.	M.	Sine.	DI"	Tang.	Di"	М.	l
	0	9.64184		9.68818		60	0	9.65705	0.47	9.70717	0.50	60	I
	1	64210	0.43	68850	0.53	59	1	65729	0.41	70748	0.52	59	I
1	2	64236	.43	68882	.53	58	2	65754	.41	70779	.52	58	I
1	3	64262	.43	68914	.53	57	3	65779	.41	70810	.52	57	ļ
1	4	64288	.43	68946	.53	56	4	65804	.41	70841	.52	56	l
	5	64313	.43	68978	.53	55	5	65828	.41	70873	.52	55	I
1	6	64339	.43	69010	.53	54	67	65853	.41	70904	.52	54	I
	78	64365 64391	.43	69042 69074	.53	53 52	8	65878 65902	.41	70935	.52	53 52	I
1	9	64417	.43	69106	.53	51	9	65927	.41	70900	.52	51	I
1	10	64442	.43	69138	.53	50	10	65952	.41	71028	.52	50	I
	11	9.64468	.43	9.69170	.53	49	11	9,65976	.41	9.71059	.52	49	l
1	12	64494	.43	69202	.53	48	12	66001	.41	71090	.52	48	I
1	13	64519	.43	69234	.53	47	13	66025	.41	71121	.52	47	I
1	14	64545	.43	69266	.53	46	14	66050	.41	71153	.52 .52	46	I
1	15	64571	.43	69298	.53	45	15	66075	.41	71184	.52	45	I
1	16	64596	.43	69329	.53	44	16	66099	.41	71215	.52	44	I
	17	64622	.43	69361	.53	43	17	66124	.41	71246	.52	43	۱
	18	64647	.43	69393	.53	42	18	66148	.41	71277	.52	42	I
-	19	64673	.43	69425	.53	41	19	66173	.41	71308	.52	41	I
1	20 21	64698 9.64724	.42	69457 9.69488	.53	40 39	20 21	66197 9.66221	.41	71339 9.71370	.52	40 39	ĺ
	21 22	9.64724 64749	.42	9.69488 69520	.53	39	21 22	66246	.41	71401	.52	39 38	1
	23	64775	.42	69552	.53	37	23	66270	.41	71431	.52	37	I
1	24	64800	.42	69584	.53	36	24	66295	.41	71462	.52	36	I
ł	25	64826	.42	69615	.53	35	25	66319	.41	71493	.52	35	I
1	26	64851	.42	69647	.53	34	26	66343	.41	71524	.51	34	I
1	27	64877	.42	69679	.53 .53	33	27	66368	.41	71555	.51	33	I
1	28	64902	.42	69710	.53	32	28	66392	.40	71586	.51	32	I
1	29	64927	.42	6.9742	.53	31	29	66416	.40	71617	.51	31	I
1	30	64953	.42	69774	.53	30	30	66441	.40	71648	.51	30	l
1	31 32	9.64978	.42	9.69805	.53	29	31	9.66465	.40	9.71679	.51	29	I
1	32	65003 65029	.42	69837 69868	.53	28 27	32 33	66489 66513	.40	71709 71740	.51	28 27	I
1	31	65054	.42	69900	.53	26	34	66537	.40	71771	.51	26	l
1	35	65079	.42	69932	.53	25	35	66562	.40	71802	.51	25	I
	36	65104	.42	69963	.53	24	36	66586	.40	71833	.51	24	ł
	37	65130	.42	69995	.53	23	37	66610	.40	71863	.51	23	l
1	38	65155	.42	70026	.53	22	38	66634	.40	71894	.51 .51	22	I
	39	65180	.42	70058	.53	21	39	66658	.40	71925	.51	21	I
1	40	65205	.42	70089	.52	20	40	66682	.40	71955	.51	20	I
1	41	9.65230	.42	9.70121	.52	19	41	9.66706	.40	9.71986	.51	19	I
	42	65255	.42	70152	.52	18	42	66731	.40	72017	.51	18	I
	43 44	65281 65306	.42	70184	.52	17	43 44	66755 66779	.40	72048	.51	17	I
	44 45	65331	.42	70215 70247	.52	16 15	44 45	66803	.40	72078 72109	.51	16 15	I
	46	65356	.42	70241	.52	15	40	66827	.40	72140	.51	15	1
	47	65381	.42	70309	.52	13	47	66851	.40	72170	.51	13	1
	48	65406	.42	70341	.52	12	48	66875	.40	72201	.51	12	
	49	65431	.42	70372	.52	11	49	66899	.40	72231	.51	11	1
1	50	65456	.42 .42	70404	.52	10	50	66922	.40	72262	.51	10	I
1	51	9.65481	.42	9.70435	.52	9	51	9.66946	.40	9.72293	.51	9	1
1	52	65506	.42	70466	.52	8	52	66970	.40	72323	.51	8	I
1	53	65531	.42	70498	.52	7	53	66994	.40	72354	.51	7	I
-	54 55	65556 65580	.41	70529	.52	6 5	54 55	67018	.40	72384	.51	6	I
1	56	65605	.41	70560 70592	.52	5 4	56	$\begin{array}{r} 67042 \\ 67066 \end{array}$.40	$72415 \\ 72445$.51	5 4	I
	57	65630	.41	70592	.52	4 3	57	67090	.40	72445	.51	43	1
1	58	65655	.41	70654	.52	2	58	67113	.40	72506	.51	2	I
	59	65680	.41	70685	.52	ĩ	59	67137	.40	72537	.51	ĩ	1
1	60	65705	.41	70717	.52	0	60	67161	.40	72567	.51	0	1
1	M.	Cosine.	D!"	Cotang.	DI"	<u>M.</u>	M.	Cosine.	DI"	Cotang.	D1"	<u>M.</u>	1
L		obstite.		Sounds.	DI			costne.	DI	ottang.	DI		1

63°

TABLE IV .- LOGARITHMIC

6	4	n	0

Γ	М.	Sine.	DI"	Tang.	DI"	M.	М.	Sine.	Dl″	Taug.	DI"	М.	1
	0	9.67161	0.40	9.72567	0.51	60	0	9.68557	0.38	9.74375	0.50	60	
	1	67185	.40	72598	.51	59	1	68580	.38	74405	.50	59	ł
ł	2	67208	.40	72628	.51	58	2	68603	.38	74435	.50	58	l
1	3	67232	.39	72659	.51	57	3	68625	.38	74465	.50	57	ł
1	45	67256 67280	.39	72689 72720	.51	56 55	4 5	68648 68671	.38	74494 74524	.50	56 55	l
	6	67303	.39	72750	.51	54	6	68694	.38	74554	.50	54	1
1	7	67327	.39	72780	.51	53	7	68716	.38	74583	.50	53	l
	8	67350	.39	72811	.51	52	8	68739	.38	74613	.50	52	l
	9	67374	.39	72841	51	51	9	68762	.38	74643	.50	51	l
	10	67398	.39	72872	.51 .51	50	10	68784	.38	74673	.49	50	ł
	11	9.67421	.39	9.72902	.51	49	11	9.68807	.38	9.74702	.49	49	ł
	12	67445	.39	72932	.51	48	12	68829	.38	74732	.49	48	1
	13	67468	.39	72963	.51	47	13	68852	.38	74762	.49	47	I
	14	67492	.39	72993	.51	46	14	68875	.38	74791	.49	46	I
	15	67515	.39	73023	.50	45 44	15 16	68897 68920	.38	74821 74851	.49	45 44	I
	16 17	67539 67562	.39	73054 73084	.50	44	17	68942	.38	74880	.49	44 43	1
	18	67586	.39	73114	.50	42	18	68965	.38	74910	.49	42	ł
1	19	67609	.39	73144	.50	41	19	68987	.38	74939	.49	41	I
1	20	67633	.39	73175	.50	40	20	69010	.37	74969	.49	40	1
1	21	9.67656	.39	9.73205	.50	39	21	9.69032	.37	9.74998	.49	39	1
1	22	67680	.39	73235	.50	38	22	69055	.37	75028	.49	38	I
	-23	67703	.39 .39	73265	.50	37	23	69077	.37	75058	.49	37	I
1	24	67726	.39	73295	.50	36	24	69100	.37	75087	.49	36	ł
	25	67750	.39	73326	.50	35	25	69122	.37	75117	.49	35	ł
	26	67773	.39	73356	.50	34	26	69144	.37	75146	.49	34	I
	27	67796	.39	73386	.50	33	27	69167	.37	75176	.49	33	ł
	28 29	67820 67843	.39	73416 73446	.50	32	28 29	69189 69212	.37	75205	.49	32 31	I
1	29 30	67866	.39	73476	.50	30	30	69234	.37	75264	.49	30	1
	31	9.67890	.39	9.73507	.50	29	31	9.69256	.37	9.75294	.49	29	ł
T	32	67913	.39	73537	.50	28	32	69279	.37	75323	.49	28	I
I	33	67936.	.39	73567	.50	27	33	69301	.37	75353	.49	27	1
	34	67959	.39	73597	.50	26	34	69323	,37	75382	.49	26	1
	35	67982	.39	73627	.50	25	35	69345	.37	75411	.49	25	I
	36	68006	.39	73657	.50	24	36	69368	.37	75441	.49	24	I
	37	68029	.39	73687	.50	23	37	69390	.37	75470	.49	23	ł
	38	68052	.39	73717	.50	22	38	69412	.37	75500	.49	22	ł
	39 40	68075 68098	.39	73747	.50	21 20	39 40	69434 69456	.37	75529 75558	.49	21 20	I
	41	9.68121	.38	9.73807	.50	19	41	9.69479	.37	9.75588	.49	19	l
1	42	68144	.38	73837	.50	18	42	69501	.37	75617	.49	18	l
	43	68167	.38	73867	.50	17	43	69523	.37	75647	.49	17	
1	44	68190	.38	73897	.50	16	44	69545	.37	75676	.49	16	
	45	68213	.38 .38	73927	.50	15	45	69567	.37	75705	.49	15	1
	46	68237	.38	73957	.50	14	46	69589	.37	75735	.49	14	
	47	68260	.38	73987	.50	13	47	69611	.37	75764	.49	13	1
	48	68283	.38	74017	.50	12	48	69633	.37	75793	.49	12	1
1	49	68305	.38	74047	.50	11	49 50	69655 69677	.37	75822	.49	11	1
	50 51	68328 9.68351	.38	74077 9.74107	.50	9	51	9.69699	.37	75852 9.75881	.49	9	1
	52	68374	.38	74127	.50	8	52	69721	.37	75910	.49	8	I
	53	68397	.38	74166	.50	7	53	69743	-37	75939	.49	7	1
	54	68420	.38	74196	.50	6	54	69765	.37	75969	.49	6	1
1	55	68443	.38	74226	.50	5	55	69787	.37	75998	.49	5	1
	56	68466	.38 .38	74256	.50	4	56	69809	.37	76027	.49	4	1
1	57	68489	.38	74286	.50	3	57	69831	.37	76056	.49	3	1
	58	68512	.38	74316	.50	2	58	69853	.37	76086	.49	2	
	59 60	68534	.38	74345	.50	1	59	69875 69897	.36	76115	.49	1	1
1		68557					60						1
L	М.	Cosine.	DI"	Cotang.	Dl"	M.	М.	Cosine.	DI"	Cotang.	DI"	M.	
64	0			the second s	-		0	and the set of the set of the	and the second		1	GO	á

42

SINES AND TANGENTS.

М.	Sine.	DI"	Tang.	DI"	M.	M.	Sinc.	DI"	Tang.	D1"	М.
0	9.69897	0.36	9.76144	0.49	60	0	9.71184	0.35	9.77877	0.48	60
1	69919	.36	76173	.49	59	1	71205	.35	77906	.48	59
2	69941	.36	76202	.49	58	2	71226	.35	77935	.48	58
3	69963	.36	76231	.49	57	3	71247	.35	77963	.48	57
4	69984	.36	76261	.49	56	4	71268	.35	77992	.48	56
5	70006	.36	76290	.49	55	5	71289	.35	78020	.48	55
6	70028	.36	76319	.49	54	6	71310	.35	78049	.48	54
7	70050	.36	76348	.48	53	7	71331	.35	78077	.48	53
8	70072	.36	76377	.48	52	8	71352	.35	78106	.48	52
9	70093	.36	76406	.48	51	9	71373	.35	78135	.48	51
10	70115	.36	76435	.48	50	10	71393	.35	78163	.48	50
11	9.70137	.36	9.76464	.48	49	11	9.71414	.35	9.78192	.48	49
12	70159	.36	76493	.48	48	12	71435	.35	78220	.48	48
13	. 70180	.36	76522	.48	47	13	71456	.35	78249	.47	47
14	70202	.36	76551	.48	46	14	- 71477	.35	78277	.47	46
15	70224	.36	76580	.48	45	15	71498	.35	78306	.47	45
16	70245	.36	76609	.48	44	16	71519	.35	78334	.47	44
17	70267	.36	76639	.48	43	17	71539	.35	78363	.47	43 42
18	70288	.36	76668	.48	42	18	71560	.35	78391	.47	
19	70310	.36	76697	.48	41	19 20	71581	.35	78419	.47	41
20 21	70332	.36	76725	.48	40	20	71602	.35	78448	.47	40 39
21 22	9.70353	.36	9.76754	.48	39	21	9.71622	.35	9.78476 78505	.47	38
22	70375	.36	76783	.48	38	22 23	71643	.35		.47	38 37
24	70390	.36	76812 76841	.48	37	23	71664 71685	.35	78533	.47	36
24	70418	.36		.48	36	24 25	71085	.34	78590	.47	35
26	70459	.36	76870	.48	35 34	26	71726	.34	78618	.47	34
20 27	70401	.36	76899 76928	.48	34 33	20 27	71747	.34	78647	.47	33
28	70504	.36	76928	.48		28	71767	.34	78675	.47	32
29	70525	.36	76986	.48	32 31	29	71788	.34	78704	.47	31
30	70547	.36	77015	.48	30	30	71809	.34	78732	.47	30
31	9.70568	.36	9.77044	.48	29	31	9.71829	.34	9.78760	.47	29
32	70590	.36	77073	.48	28	32	71850	.34	78789	.47	28
33	70611	.36	77101	.48	27	33	71870	.34	78817	.47	27
34	70633	.36	77130	.48	26	34	71891	.34	78845	.47	26
35	70654	.36	.77159	.48	25	35	71911	.34	78874	.47	25
36	70675	.36	77188	.48	24	36	71932	.34	78902	.47	24
37	70697	.36	77217	.48	23	37	71952	.34	78930	.47	23
38	70718	.36	77246	.48	22	38	71973	.34	78959	.47	22
39	70739	.36	. 77274	.48	21	39	71994	.34	78987	.47	21
40	70761	.36	77303	.48	20	40	72014	.34	79015	.47	20
41	9.70782	.35	9.77332	.48	19	41	9.72034	.34	9.79043	.47	19
42	70803	.35	77361	.48	19	42	72055	.34	79072	.47	18
43	70824	.35	77390	.48	17	43	72075	.34	79100	.47	17
44	70846	.35	77418	.48	16	44	72096	.34	79128	.47	16
45	70867	.35	77447	.48	15	45	72116	.34	79156	.47	15
46	70888	.35	77476	.48	14	46	72137	.34	79185	.47	14
47	70909	.35	77505	.48	13	47	72157	.34	79213	.47	13
48	70931	.35	77533	.48	12	48	72177	.34	79241	.47	12
49	70952	.35	77562	.48	11	49	72198	.34	79269	.47	11
50	70973	.35	77591	.48	10	50	72218	.34	79297	.47	10
51	9.70994	.35	9.77619	.48	9	51	9.72238	.34	9.79326	.47	9
52	71015	.35	77648	.48	8	52	72259	.34	79354	.47	8
53	71036	.35	77677	.48	7	53	72279	.34	79382	.47	7
54	71058	.35	77706	.48	6	54	72299	.34	79410	.47	- 6
55.	71079	.35	77734	.48	. 5	55	72320		79438	.47 .47	5
56	71100	.35	77763	.48	4	56	72340	.34	79466	.47	4
57	71121	.35	77791	.48 .48	3	57	72360	.34	79495	.47	3
58	71142	.35	77820	.48	2	58	72381	.34	79523	.47	2
59	71163	.35	77849		1	59	72401	.34	79551	.47	1
60	71184		77877	.48	0	60	72421	.04	79579	.11	0
M.	Cosine.	DI"	Cotang.	DI"	M.	<u>M</u> .	Cosine.	DI"	Cotang.	DI"	M.

590

43

580

TABLE IV.-LOGARITHMIC

112	Photo I and		1	1000					and the state		
М.	Sine.	D1"	Tang.	D1″	М.	М.	Sine.	D1"	Tang.	DI″	M.
0	9.72421	0.01	9.79579		60	0	9.73611		9.81252		60
1	72441	0.34	79607	0.47	59	1	73630	0.32	81279	0.46	59
2	72461	.34	79635	.47	58	2	73650	.32	81307	.46	58
3	72482	.34	79663	.47	57	3	73669	.32	81335	.46 .46	57
4	72502	.34	79691	.47	56	4	73689	.32	81362	.40	56
5	72522	.34	79719	.47	55	5	73708	.32	81390	.46	55
6	72542	.34	79747	.47	54	6	73727	.32	81418	.46	54
7	72562	.34	79776	.47	53	7	73747	.32	81445	.46	53
8	72582	.34	79804	.47	52	8	73766	.32	81473	.46	52
9	72602	.33	79832	.47	51	9	73785	.32	81500	.46	51
10	72622	.33	79860	.47	50 49	10 11	73805	.32	81528	.46	50
112	9.72643 72663	.33	9.79888 79916	.47	49	12	73843	.32	9.81556 81583	.46	49 · 48
13	72683	.33	79914	.47	47	13	73863	.32	81611	.46	40
14	72703	.33	79972	.47	46	14	73882	.32	81638	.46	46
15	72723	.33	80000	.47	45	15	73901	.32	81666	.46	45
16	72743	.33	80028	.47	44	16	73921	.32	81693	.46	44
17	72763	.33	80056	.47	43	17	73940	.32	81721	.46	43
18	72783	.33	80084	.47	42	18	73959	.32	81748	.46	42
19	72803	.33	80112	.47	41	19	73978	.32	81776	.46	41
20	72823	.33	80140	.47	40	20	73997	.32	81803	.40	40
21	9.72843	.33	9.80168	.47	39	21	9.74017	99	9.81831	.46	39
22	72863	.33	80195	.47	38	22	74036	29	81858	.46	38
23	72883	.33	80223	47	37	23	74055	29	1 81886	.46	37
24	72902	.33	80251	.47	36	24	74074	.32	81913	.46	36
25 26	72922 72942	.33	80279 80307	.47	35 34	• 25 26	74093	.32	81941 81968	.46	35 34
27	72942	.33	80307	.47	33	27	74113		81908	.46	34
28	72982	.33	80363	.46	32	28	74152	.32	82023	.46	32
29	73002	.33	80391	.46	31	29	74170	.32	82051	•40	31
30	73022	.33	80419	.46	30	30	74189	.32	82078	.46	30
31	9.73041	•33	9.80447	.46	29	31	9.74208	.02	9.82106	.40	29
32	73061	.33	80474	.46	28	32	74227	.32	82133	.40	28
33	73081	·33	80502	.46	27	33	74246	·32 ·32	82161	.46	27
34	73101	.33	80530	.40	26	34	74265	29	82188	16	26
35	73121	.33	80558	.46	25	35	74284	1 29	82215	AR	25
36	73140	.33	80586	.46	24	36	74303	1 99	82243	AR	24
. 37	73160	.33	80614	.46	23	37	74322	.32	82270	18	23
38	73180	.33	80642	.46	22	38	74341	29	82298	10	22
39 40	73200	.33	80669	.46	21	39 40	74360	- 29	82325 82352	16	21
40	73219 9.73239	.33	80697 9.80725	.46	20 19	40 41	74379 9.74398	.32	9.82380		20 19
41 42	73259	.22	80753	.46	19	41 42	9.74398	0.32	82407	.40	19
43	73278	.33	80781	.46	17	43	74436	.32	82435	.40	17
44	73298	030	80808	.46	16	44	74455	.32	82462	.40	16
45	73318	.33	95909	.46	15	45	74474	.32	82489	.40	15
46	73337	.39	DAURA I	.46	14	46	74493	.32	82517	.40	14
47	73357	•33		.46	13	47	74512	.31	82544	.46	13
48	73377	·33 ·33	80313	.46	12	48	74531	.31	82571	.46	12
49	73396	.33	80341	.40	11	49	74549	21	82599	16	11
50	73416	.22	80915	.46	10	50	74568	.31	82626	16	10
51	9.73435	22	19.81003	.46	9	51	9.74587	21	9.82653	.46	9
52	73455	0.0	81030	.46	8	52	74606	91	82681	45	8
53 54		1 .22	81038	.46	7	53 54	74625	21	82708	1 45	7
55	73494		81086	.46	65	55	74644		82735 82762		6 5
56	73513	000		.46	4	56	74681	.31	82790	.40	4
57	73552	0.52	01160	.46	3	57	74700	.31	82817	.45	43
58		•32	Q1106	.46	2	58	74719	.31	82844	.45	2
59	73591	0.32	Q1994	.46	ĩ	59	74737	.31	82871	.45	1
60	73611	.32	81252	.46	Ō	60	74756	.31	82899	.45	Ō
M	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.
	1000110.	1.01	1 cotang.	1 1/1	1		0000110.	1.01	ottang.	1.01	
57°					4	14					56

SINES AND TANGENTS.

М.	Sine.	D1"-	Tang.	Di"	M.	M.	Sine,	DI″	Tang.	DI"	Ы.
0	9.74756	0.01	9.82899	0.45	60	0	9.75859	0.00	9.84523	0.45	60
1	74775	0.31	82926	0.45	59	1	75877	0.30	84550	0.45	59
2	74794	.31	82953	.45	58	2	75895	.30	84576	.45	58
3	74812	.31	82980	.45	57	3	75913	.30	84603	.45	57
4	74831	.31	83008	.45	56	4	75931	.30	84630	.45	56
56	74850	.31	83035 83062	.45	55 54	5 6	75949 75967	.30	84657 84684	.45	55 54
7	74868	.31	83089	.45	53	7	75985	.30	84711	.45	53
8	74906	.31	83117	.45	52	. 8	76003	.30	84738	.45	52
9	74924	.31	83144	.45	51	9	76021	.30	84764	.45	51
10	74943	.31	83171	.45	50	10	76039	.30	84791	.45	50
11	9.74961	.31	9.83198	.45 .45	49	11	9.76057	.30	9.84818	.45 .45	49
12	74980	.31	83225	.45	48	12	76075	.30	84845	.45	48
13	74999	.31	83252	.45	47	13	76093	.30	84872	.45	47
14	75017	.31	83280	.45	46	14	76111	.30	84899	.45	46
15	75036	.31	83307	.45	45 44	15	76129	.30	84925 84952	.45	45 44
16 17	75054 75073	.31	83334 83361	.45	44 43	16 17	76146 76164	.30	84952	.45	43
18	75091	.31	83388	.45	42	18	76182	.30	85006	.45	42
19	75110	.31	83415	.45	41	19	76200	.30	85033	.45	41
20	75128	.31	83442	.45	40	20	76218	.30	85059	.45	40
21	9.75147	.31	9.83470	.45	39	21	9.76236	.30	9.85086	.45 .45	39
22	75165	.31	83497	.40 .45	38	22	76253	.30	85113	.45	38
23	75184	.31	83524	.45	37	23	76271	.30	85140	.45	37
24	75202	.31	83551	.45	36	24	76289	.30	85166	.45	36
25	75221	.31	83578	.45	35	25	76307	.30	85193	.45	35
26	75239	.31	83605	.45	34 33	$\frac{26}{27}$	76324	.30	85220 85247	.45	34 33
27 28	75258	.31	83632	.45	30 32	27 28	76342	.30	85273	.45	32
29	75276	.31	83659 83686	.45	31	28	76378	.30	85300	.45	31
30	75313	.31	83713	.45	30	30	76395	.30	85327	.45	30
31	9.75331	.31	9.83740	.45	29	31	9.76413	.30	9.85354	.45	29
32	75350	.31	83768	.45	28	32	76431	.29	85380	.45	28
33	75368	.31	83795	.45 .45	27	33	76448	.29	85407	.45 .45	27
34	75386	.31	83822	.45	26	34	76466	.29	85434	.44	26
35	75405	.31	83849	.45	25	35	76484	.29	, 85460	.44	25
36	75423	.31	83876	.45	24	36	76501	.29	85487	.44	24
37	75441	.30	83903	.45	23	37	76519	.29	85514	.44	23
38	75459	.30	83930	.45	22 21	38	76537	.29	85540	.44	22 21
39 40	75478 75496	.30	83957 83984	:45	20	39 40	76554	.29	85567 85594	.44	20
40	9.75514	.30	9.84011	.45	19	40	9.76590	.29	9.85620	.44	19
42	75533	.30	84038	.45	18	42	76607	.29	85647	.44	18
43	75551	.30	84065	.45	17	43	76625	.29	85674	.44	17
44	75569	.30	84092	.45	16	44	76642	.29	85700	.44	16
45	75587	.30	84119	.40	15	45	76660	.29 .29	85727	.44	15
46	75605	.30	84146	.45	14	46	76677	.29	85754	.44	14
47	75624	.30	84173	.45	13	47	76695	.29	85780	.44	13
48	75642	.30	84200	.45	12	48	76712	.29	85807	.44	12
49 50	75660	.30	84227 84254	.45	11 10	49 50	76730	.29	85834 85860	.44	11 10
50	75678	.30	9.84234	.45	10	50 51	9.76765	.29	9.85887	.44	9
52	75714	.30	84307	.45	.8	52	76782	.29	85913	.44	8
53	75733	.30	84334	.45	7	53	76800	.29	85940	.44	7
54	75751	.30	84361	.45	6	54	76817	.29	85967	.44	. 6
55	75769	.30	84388	.45	5	55	76835	.29	85993	.44	5
56	75787	.30	84415	.45	4	56	76852	.29	86020	.44	4
57	75805	.30	84442	.45	3	57	76870	.29	86046	.44	3
58	75823	.30	84469	.45	2	58	76887	.29	86073	.44	2
59	75841	.30	84496	.45	1	59	76904	.29	86100	.44	1
60 <u>M</u> .	75859	<u>D</u> ¹	84523		0	<u>60</u>	76922		86126	1.517	
M.	Cosine.	DI	Cotang.	DI	M.	M.	Cosine.	DI"	Cotang.	DI"	М.

55°

S. N. 38.

45

54°

TABLE IV.-LOGARITHMIC

370

-					-			LOT T TT TAT	- 0			
Г	M.	Sine.	Di"	Tang.	DI"	М.	М.	. Sine.	Dl″	Tang.	DI"	M.
	0	9.76922		9.86126	100	60	0	9.77946	Sec. 1	9.87711		60
	1	7.6939	0.29	86153	0.44	59	1	77963	0.28	87738	0.44	59
	2	76957	.29	86179	.44	58	2	77980	.28	87764	.44	58
	3	76974	.29	86206	.44	57	3	77997	.28	87790	.44	57
	4	76991	.29 .29	86232	.44	56	4	78013	.28 .28	87817	.44	56
	5	77009	.29	86259	.44	55	5	78030	.28	87843	.44	55
1	6	77026	.29	86285	.44	54	6	78047	.28	87869	.44	54
H	7	77043	.29	86312	.44	53	7	78063	.28	87895	.44	53
	8	77061	.29	86338	.44	52	8	78080	.28	87922	.44	52
11	9	77078	.29	86365	.44	51	9	78097	.28	87948	.44	51
	10	77095	.29	86392	.44	50	10	78113	.28	87974	.44	50
1	11	9.77112	.29	9.86418	.44	49	11	9.78130	.28	9.88000	.44	49
	12 13	77130	.29	86445	.44	48	12	78147	.28	88027	.44	48
	10	77147	.29	86471	44	47	13	78163	.28	88053	.44	47
	14	77164	.29	86498 86524	.44	46 45	14 15	78180	.28	88079 88105	.44	46
	16	77199	.29	86551	.44	40	15	78213	.28	88131	.44	45
	17	77216	.29	86577	.44	43	17	78230	.28	88158	.44	44 43
	18	77233	.29	86603	.44	4.0	18	78246	.28	88184	.44	43
1	19	77250	.29	86630	.44	41	19	78263	.28	88210	.44	42 41
	20	77268	.29	86656	.44	40	20	78280	.28	88236	.44	40
1	21	9.77285	.29	9.86683	.44	39	21	9.78296	.28	9.88262	.44	39
	22	77302	.29	86709	.44	38	22	78313	.28	88289	.44	38
	23	77319	.29	86736	.44	37	23	78329	.28	88315	.44	37
11	24	77336	.29	86762	.44	36	24	78346	.28	88341	.44	36
H.	25	77353	-29	86789	.44	35	25	78362	.28	88367	.44	35
H.	26	77370	·29 ·29	86815	.44	34	26	78379	.28	88393	.44	34
1.	. 27	77387	.29	86842	.44	33	27	78395	.27	88420	.44	33
1	28	77405	.28	86868	.44	32	28	78412	.27	88446	.44	32
	29	77422	.28	86894	.44	31	29	78428	.27	88472	.44	31
	30	77439	.28	86921	.44	30	30	78445	.27	88498	.44	30
	31	9.77456	.28	9.86947	.44	29	31	9.78461	.27	9.88524	.44	29
	32	77473	.28	86974	.44	28	32	78478	.27	88550	.44	28
11	33	77490	.28	87000	.44	27	33	78494	.27	88577	.41	27
	34 35	77507	.28	87027 87053	.44	26	34 35	78510	.27	88603	.44	26
H	30 36	77524	.28	87053	.44	25 24	30	78543	.27	88629 88655	.44	25 24
	37	77558	.28	87106	.44	23	37	78560	.27	88681	.44	
	38	77575	•28	87132	.44	23 22	38	78576	.27	88707	.44	$\frac{23}{22}$
	39	77592	•28	87158	.44	21	39	78592	.27	88733	.44	21
	40	77609	•28	87185	.44	20	40	78609	.27	88759	.44	20
	41	9.77626	•28	9.87211	.44	19	41	9.78625	.27	9.88786	.44	19
	42	77643	•28	87238	.44	18	42	78642	.27	88812	.44	18 .
	43	77660	.28	87264	.44	17	43	78658	.27	88838	.44	17
	44	77677	•28	87290	.44	16	44	78674	.27	88864	.44	16
	45	77694	•28 •28	87317	.44	15	45	.78691	.27	88890	.43	15
	46	77711	·28	87343	.44	14	46	78707	.27	88916	.43	14
1	47	77728	.28	87369	.41	13	47	78723	.27	88942	.43	13
	48	77744	.28	87396	.44	12	48	78739	.27	88968	.43	12
12	49	77761	.28	87422	.44	11	49	78756	.27	88994	.43	11
1	50	77778	.28	87448	.44	10	50	78772	.27	89020	.43	10
1	51	9.77795	.28	9.87475	.44	9	51	9.78788	.27	9.89046	.43	9
	52 53	77812	.28	87501	.44	87	52 53	78805	.27	89073	.43	8 7
1	53 54	77829	.28	87527 87554	.44	6	53 54	78821 78837	.27	89099 89125	.43	7 6
	55	77862	.28	87554	.44	05	55	78853	.27	89125	.43	0 5
	56	77879	.28	87606	.44	3 4	56	78869	.27	89151	.43	3 4
	57	77896	.28	87633	.44	43	57	78886	.27	89203	.43	43
1	58	77913	.28	87659	.44	2	58	78902	.27	89229	.43	2
1	59	77930	.28	87685	.44	ĩ	59	78918	.27	89255	.43	1
	60	77946	.28	87711	.44	0	60	78934	.27	89281	.43	0
	M.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	 M.
L	314.	cosme.	1.11	ootang.	1 1/1	11.0	1 .n.	cosme.	DI	oorang.	DI.	141.0

• 46

SINES AND TANGENTS.

39°

M.	Sine.	DI"	Tang.	Dr"	М.	M. •	Sine.	DI″	Tang.	D."	М.
0	9.78934	0.07	9.89281	0.49	60	0	9.49887	0.00	9.90837	0.43	60
1	78950	0.27	89307	0.43	59	1	79903	0.26	90863	.43	59
2	78967	.27	89333	.43 .43	58	2	79918	.26	90889	.43	58
3	78983	.27	89359	.43	57	3	79934	.26	90914	.43	57
4	78999	.27	89385	.43	56	4	79950	.26	90940	.43	56
5	79015	.27	89411	.43	55	5	79965	.26	90966	.43	55
6	79031	.27	89437	.43	54	6	79981	.26	90992	.43	54
7	79047	.27	89463	.43	53	7	79996	.26	91018	.43	53
8	79063	.27	89489	.43	52	8	80012	.26	91043	.43	52
9	79079	.27	89515	.43	51	9	80027	.26	91069	.43	51
10	79095	.27	89541	.43	50	10	80043	.26	91095	.43	50
11	9.79111	.27	9.89567	.43	49	11	9.80058	.26	9.91121	.43	49
12	79128	.27	89593	.43	48	12	80074	.26	91147	.43	48
13	79144	.27	89619	.43	47	13	80089	.26	91172	.43	47
14	79160	.27	89645	.43	46	14	80105	.26	91198	.43	46
15	79176	.27	89671	.43	45	15	80120	.26	91224	.43	45
16	79192		89697	.43	44	16	80136	.20	91250	.43	44
17	79208	.27	89723	.43	43	17	80151	.26	91276	.43	43
18	79224	.27	89749	.43	42	18	80166	.26	91301	.43	42
19	79240	.27	89775	.43	41	19	80182	.20	91327	.43	41
20	79256	.27	89801	.43	40	20	80197	.20	91353	.43	40
21	9.79272	.27	9.89827		39	21	9.80213	.20	9.91379	.43	39
22	79288	.27 .27	89853	.43 .43	38	22	80228	.20	91404	.43	38
23	79304		89879		37	23	80244	.20	91430	.43	37
24	79319	.27	89905	.43	36	24	80259	:26	91456	.43	36
25	79335	.27	89931	.43	35	25	80274		91482	.43	35
26	79351	.27	89957	.43	34	26	80290	·26	91507	.43	34
27	79367	.27	89983	.43	33	27	80305		91533	.43	33
28	79383	.26	90009	.43	32	28	80320	.26	91559		32
29	79399	.26	90035	.43	31	29	80336	.26	91585	.43 .43	31
30	79415	.26	90061	.43	30	30	80351	.26	91610		30
31	9.79431	.26	9.90086	43	29	31	9.80366	.26	9.91636	.43 .43	29
32	79447	.26	90112	.43	28	32	80382	.26	91662	.43	28
33	79463	•26	90138	.43	27	33	80397	.25	91.683		27
34	79478	.26	90164	.43	26	34	80412	.25	91713	.43 .43	26
35	79494	.26	90190	.43	25	35	80428	·25	91739	.43	25
36	79510	.26	90216	.43	24	36	80443		91765		24
37	79526	.26	90242	.43	23	37	80458	·25 ·25	91791	.43 .43	23
38	79542	•26	90268	.43	22	38	80473	.25	91816	.43	22
39	79558	.26	90294	.43	21	39	80489		91842		21
40	79573	.26	90320	.43	20	40	80504	.25	91868	.43	20
41	9.79589	•26	9.90346	.43	19	41	9.80519	.25	9.91893	.43	19
42	79605	.26	90371	.43	18	42	80534	.25	91919	.43	18
43	79621	.26	90397	.43	17	43	80550	.25	91945	.43	17
44	79636	.26	90423	.43	16	44	80565	.25	91971	.43 .43	16
45	79652	.26	90449	.43	15	45	80580	.25	91996		15
46	79668	-26	90475	.43	14	46	80595	-25	92022	.43	14
47	79684	.26	90501	.43	13	47	80610	.25	92048	.43	13
48	79699	.26	90527	.43	12	48	80625	·25	92073	.43	12
49	79715	.26	90553	.43	11	49	80641		92099	.43	11
50	79731	.26	90578	.43	10	50	80656	.25	92125	.43	10
51	9.79746	.26	9.90604	.43	9	51	9.80671	.25	9.92150	.43	9
52	79762	.26	90630	.43	8	52	80686	.25	92176	.43	8
53	79778	.26	90656	.43	7	53	80701	.25	92202	.43	7
54	79793	.26	90682	.43	6	54	80716	.25	92227	.43	6
55	79809	.26	90708	.43	5	55	80731	.25	92253	.43	5
56	79825	.26	90734	.43	4	56	80746	-25	92279	.43	4
57	79840	.26	90759	.43	3	57	80762	.25	92304	.43	3
58	79856	.26	90785	.43	2	58	80777	.25	92330	.43	2
59	79872	.26	90811	.43	1	59	80792	.25	92356	.43	1
60	79887	.26	90837	.43	0	60	80807	.25	92381	.43	Ō
00		DI"	Cotang.	DI"	 M.	M.	Cosine.		Cotang,	DI"	<u>.</u>
M.	Cosine.										

TABLE IV.-LOGARITHMIC

ĩ	М.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tuna	111"	М.
				Tang.						Tang.		
	0	9.80807	0.25	9.92381	0.43	60	0	9.81694	6.24	9.93916	0.43	60
	1	80822	.25	92407	.43	59	1	81709	.24	93942	.43	59
	2	80837	.25	92433	.43	58	2	81723	.24	93967	.43	58
	3	80852	.25	92458	.43	57	3	81738	.24	93993	.43	57
1	4	80867	.25	92484	.43	56	4	81752	.24	94018	.43	56
I	5	80882	.25	92510	.43	55	5	81767	.24	94044	.43	55
	6	80897	.25	92535	.43	54	6	81781	.24	94069	.43	54
1	7	80912	.25	92561	.43	53	7	81796	.24	94095	.42	53
1	8	80927	.25	92587	.43	52	8	81810	.24	94120	.42	52
	9	80942	.25	92612	.43	51	9	81825	.24	94146	.42	51
	10	80957	.25	92638	.43	50	10	81839	.24	94171	.42	50
1	11	9.80972	.25	9.92663	.43	49	11	9.81854	.24	9.94197	.42	49
1	12 13	80987 81002	.25	92689 92715	.43	48	$12 \\ 13$	81868	.24	94222 94248	.42	48
1	13	81012	.25	92715	.43	47	1.5	81882	.24		.42	47
t	15	81032	.25	92766	.43	46 45	14	81897 81911	.24	94273 94299	.42	46
ł	16	81032	.25	92700	.43		16	81911	.24	94299	.42	45
	17	81047	.25	92192	.43	44	17	81920	.24	94324	.42	44
1	18	81076	.25	92843	.43	43 42	18	81955	.24	94375	.42	43 42
1	19	81091	.25	92843	.43	42 41	19	81955	.24	94375	.42	42 41
1	20	81106	.25	92808	.43	41	20	81983	.24	94401 94426	.42	41 40
1	20	9.81121	.25	9.92920	.43	39	20	9.81998	.24	9.94452	.42	40 39
1	22	81136	.25	92945	.43	38	22	82012	.24	94477	.42	38
1	23	81151	.25	92971	.43	37	23	82026	.24	94503	.42	37
1	24	81166	.25	92996	.43	36	24	82041	.24	94528	.42	36
ł	25	81180	.25	93022	.43	35	25	82055	.24	94554	.42	35
1	26	81195	.25	93048	.43	34	26	82069	.24	94579	.42	34
1	27	81210	.25	93073	.43	33	27	82084	.24	94604	.42	33
	28	81225	.25	93099	.43	32	28	82098	.24	94630	.42	32
	29	81240	.25	93124	.43	31	29	82112	.24	94655	.42	31
I	30	81254	.25	93150	.43	30	30	82126	.24	94681	.42	30
	31	9.81269	.25	9.93175	.43	29	31	9.82141	.24	9.94706	.42	29
	32	81284	.25 .25	93201	.43	28	32	82155	.24	94732	.42	28
1	33	81299	.25	93227	.43	27	33	82169	.24	94757	.42	27
	34	81314	.25	93252	.43	26	34	82184	.24	94783	.42	26
н	35	81328	.25	93278	.43	25	35	82198	.24	94808	.42 .42	25
	36	81343	.25	93303	.43	24	36	82212	.24	94834	.42	24
	37	81358	.25	93329	.43 .43	23	37	82226	.24	94859	.42	23
ł	38	81372	.25	93354	.43	22	38	82240	.24	94884	.42	22
ł	39	81387	.25	93380	.43	21	39	82255	.24	94910	.42	21
L	40	81402	.25	93406	.43	20	40	82269	.24	94935	.42	20
1	41	9.81417	.24	9.93431	.43	19	41	9.82283	.24	9.94961	.42	19
1	42	81431	.24	93457	.43	18	42	82297	.24	94986	.42	18
1	43	81446	.24	93482	.43	17	43	82311	.24	95012	.42	17
1	44 45	81461	.24	93508	.43	16	44	82326	.24	95037	.42	16
1	40 46	81475	.24	93533	.43	15	45	82340 82354	.24	95062 95088	.42	15
1	40 47	81490 81505	.24	93559	.43	14	46		.24	95088 95113	.42	14
1	41	81505	.24	93584 93610	.43	13 12	47 48	82368 82382	.24	95113	.42	13 12
1	40	81534	.24	93636	.43	12	48 49	82396	.24	95164	.42	12
1	50	81549	.24	93661	.43	10	49 50	82390	.24	95190	.42	10
1	51	9.81563	.24	9.93687	.43	9	51	9.82424	.24	9.95215	.42	9
1	52	81578	.24	93712	.43	8	52	82439	.23	95240	.42	8
1	53	81592	.24	93738	.43	7	53	82453	.23	95266	.42	7
1	54	81607	.24	93763	.43	6	54	82467	.23	95291	.42	6
1	55	81622	.24	93789	.43	5	55	82481	.23	95317	.42	5
1	56	81636	.24	93814	.43	4	56	82495	.23	95342	.42	4
1	57	81651	.24	93840	.43	3	57	82509	.23	95368	.42	3
1	58	81665	.24	93865	.43	2	58	82523	.23	95393	.42	2
1	59	81680	.24	93891	.43	1	59	82537	.23	95418	.42	1
1	60	81694	.24	93916	.43	0	60	82551	.23	95444	.42	0
1		Cosine.	D!"	Cotang.	DI "		M	Cosine.	D!"	Cotang.	DI"	M.
L	M	cosme.	Di	ootang.	Dr		_	Cosme.	DI.	ootang.	DI	11.
1	CAD						9					

490

48

SINES AND TANGENTS.

43°

ſ	M.	Sine.	Dl″	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	DI"	М.	1
1	0	9.82551		9.95444		60	0.	9.83378		9.96966		60	I
1	1	82565	0.23	\$5469	0.42	59	1	83392	0.23	96991	0.42	59	ł
I	2	82579	.23 .23	95495	.42 .42	58	2	83405	.23 .23	97016	$.42 \\ .42$	58	I
I	3	82593	.23	95520	.42	57	3	83419	.23	97042	.42	57	ł
I	4	82607	.23	95545	.42	56	4	83432	.23	97067	.42	56	ł
I	5	82621	.23	95571	.42	55	5	83446	.23	97092	.42	55	I
1	6	82635	.23	95596	.42	54	6	83459	.22	97118	.42	54	I
1	7	82649	.23	95622	.42	53	78	83473	.22	97143	.42	53	ł
1	89	82663 82677	.23	95647 95672	.42	52 51	9	83486 83500	.22	97168 97193	.42	52 51	ł
1	10	82691	.23	95698	.42	50	10	83513	.22	97193	.42	50	1
1	11	9.82705	.23	9.95723	.42	49	11	9.83527	.22	9.97244	.42	49	ł
1	12	82719	.23	95748	.42	48	12	83540	.22	97269	.42	48	I
	13	82733	.23	95774	.42	47	13	83554	.22	97295	.42	47	1
1	14	82747	.23	95799	.42	46	14	83567	.22	97320	.42	46	I
I	15	82761	.23	95825	.42	45	15	83581	.22	97345	.42	45	1
1	16	82775	.23 .23	95850	.42	44	16	83594	.22	97371	.42	44	ł
l	17	82788	.23	95875	$.42 \\ .42$	43	17	83608	.22	97396	.42	43	ł
1	18	82802	.23	95901	.42	42	18	83621	.22	97421	.42	42	1
1	19	82816	.23	95926	.42	41	19	83634	.22	97447	.42	41	
1	20	82830	.23	95952	.42	40	20	83648	.22	97472	.42	40	1
ł	21	9.82844	.23	9.95977	.42	39	21	9.83661	.22	9.97497	.42	39	ł
1	$\begin{array}{c} 22\\ 23 \end{array}$	82858 82872	.23	96002 96028	.42	38 37	$\frac{22}{23}$	83674 83688	.22	97523 97548	.42	38 37	I
	23 24	82885	.23	96028	.42	36	23	83701	.22	97548	.42	36	ł
	24 25	82899	.23	96078	.42	35	25	83715	.22	97598	.42	35	1
I	26	82913	.23	96104	.42	34	26	83728	.22	97624	.42	34	I
I	27	82927	.23	96129	.42	33	27	83741	.22	97649	.42	33	I
I	28	82941	.23	96155	.42	32	28	83755	.22	97674	.42	32	I
1	29	82955	.23	96180	.42	31	29	83768	.22	97700	.42	31	ł
	30	82968	.23 .23	96205	.42	30	30	83781	.22	97725	.42	30	ł
	31	9.82982	·23 ·23	9.96231	.42 .42	29	31	9.83795	.22	9.97750	.42	29	I
ł	32	82996	.23	96256	.42	28	32	83808	.22	97776	.42	28	I
ł	33	83010	.23	96281	.42	27	33	83821	.22	97801	.42	27	I
	34	83023	.23	96307	.42	26	34	83834	.22	97826	.42	26	I
ł	35	83037	.23	96332	.42	25	35	83848	.22	97851	.42	25	1
1	36	83051	.23	96357	.42	24 23	36	83861	.22	97877	.42	24	I
	37 38	83065 83078	.23	96383 96408	.42	23 22	37 38	83874 83887	.22	97902 97927	.42	23 22	I
	39	83092	.23	96433	.42	21	39	83901	.22	97921	.42	21	1
1	40	83106	.23	96459	.42	20	40	83914	.22	97978	.42	20	1
ł	41	9.83120	.23	9.96484	.42	19	41	9.83927	.22	9.98003	.42	19	1
I	42	83133	.23	96510	.42	18	42	83940	.22	98029	.42	18	1
1	43	83147	.23	96535	.42	17	43	83954	.22	98054	.42	17	1
1	44	83161	·23 ·23	96560	.42	16	44	83967	·22 ·22	98079	.42	16	1
1	45	83174	·23	96586	.42	15	45	83980	.22	98104	.42	15	
1	46	83188	.23	96611	.42	14	46	83993	.22	98130	.42	14	1
1	47	83202	.23	96636	.42	13	47	84006	.22	98155	.42	13	
	48	83215	.23	96662	.42	12	48	84020	.22	98180	.42	12	
1	49 50	83229 83242	.23	96687 96712	.42	11 10	49 50	84033	.22	98206	.42	11 10	1
1	51	9.83256	.23	96712	.42	10 9	50 51	84046 9.84059	.22	98231 9.98256	.42	10	1
1	52	9.83230	.23	96763	.42	8	52	84072	.22	9.98250	.42	8	1
	53	83283	.23	96788	.42	7	53	84085	.22	98307	.42	7	
1	54	83297	.23	96814	.42	6	-54	84098	.22	98332	.42	. 6	1
ļ	55	83310	.23	96839	.42	5	55	84112	.22	98357	.42	5	1
1	56	83324	.23	96864	.42	4	56	84125	.22	98383	.42	4	
1	57	83338	.23 .23	96890	.42 .42	3	57	84138	.22	98408	.42	3	1
1	58	83351	.23	96915	.42	2	58	84151	·22 ·22	98433	.42	2	1
1	59	83365	.23	96940	.42	1	59	84164	.22	98458	.42	1	
	60	83378		96966		0	60	84177		98484	.12	0	
	M.	Cosine.	DI"	Cotang.	D1"	М.	M.	Cosine.	DI"	Cotang.	D1"	М.	
L	70					A	0	and the second data and	-			46	1

TABLE IV.-LOGARITHMIC

45°

M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	M.
0	9.84177	0.22	9.98484	0.42	60	0	9.84949	0.21	10.00000	0.42	60
1	84190	.22	98509	.42	59	1	84961	.21	00025	.42	59
2	84203	.22	98534	.42	58	2	84974	.21	00051	.42	58
3	84216	.22	98560	.42	57	3	84986	.21	00076	.42	57
4	84229	.22	98585	.42	56	4	84999	.21	00101	.42	56
5	84242	.22	98610	.42	55	5	85012	.21	00126	.42	55
6.	84255	.22	98635	.42	54	6	85024	.21	00152	.42	54
7	84269	.22	98661	.42	53	7	85037	.21	00177	.42	53
8	84282	.22	98686	.42	52	8	85049	.21	00202	.42	52
9	84295	.22	98711	.42	51	9	85062	.21	00227	.42	51
10	84308	.22	98737	.42	50	10	85074	.21	00253	.42	50
11	9.84321	.22	9.98762	.42	49	11	9.85087	.21	10.00278	.42	49
12	84334	.22	98787	.42	48	12	85100	.21	00303	.42	48
13	84347	.22	98812	.42	47	13	85112	.21	00328	.42	47
14	84360	.22	98838	.42	46	14	85125	.21	00354	.42	46
15	84373		98863	.42	45	15	85137	.21	00379	.42	45
16	84385	.22	98888	.44	44	16	85150		00404		44
17	84398	.22	98913	.42	43	17	85162	.21	00430	.42	43
18	84411	.22	98939	.42	42	18	85175	.21	00455	.42	42
19	84424	.22	98964	.42	41	19	85187	.21	00480	.42	41
20	84437	.22	98989	.42	40	20	85200	.21	00505	.42	40
21	9.84450	.22	9.99015	.42	39	21	9.85212	.21	10.00531	.42	39
22	84463	.22	99040	.42	38	22	85225	.21	00556	.42	38
23	84476	.22	99065	.42	37	23	85237	.21	00581	.42	37
24	84489	.21	99090	.42	36	24	85250	.21	00606	.42	36
25	84502	.21	99116	.42	35	25	85262	.21	00632	.42	35
26	84515	.21	99141	.42	34	26	85274	.21	00657	.42	34
27	84528	.21	99166	.42	33	27	85287	.21	00682	.42	33
28	84540	.21	99191	.42	32	28	85299	.21	00707	.42	32
29	84553	.21	99217	.42	31	29	85312	.21	00733	.42	31
30	84566	.21	99242	.42	30	30	85324	.21	00758	.42	30
31	9.84579	.21	9.99267	.42	29	31	9.85337	.21	10.00783	.42	29
32	84592	.21	99293	.42	28	32	85349	.21	00809	.42	28
33	84605	.21	99318	.42	27	33	85361	.21	00834	.42	27
34	84618	.21	99343	.42	26	34	85374	.21	00859	.42	26
35	84630	.21	99368	.42	20 25	35	85386	.21	00884	.42	25
36	84643	.21	99394	.42	24	36	85399	.21	00910	.42	24
37	84656	.21	99419	.42	24 23	37	85411	.21	00935	.42	23
38	84669	.21	99444	.42	$\frac{23}{22}$	38	85423	.21	00960	.42	22
39	84682	.21	99469	.42	22	39	85436	.21	00985	.42	21
40	84694	.21	99409	.42		40	85448	21	01011	.42	20
		.21		.42	20			.21	10.01036	.42	
41 42	9.84707	.21	9.99520	.42	19	41	9.85460	.21	01061	.42	19 18
	84720	.21	99545	.42	18	42	85473	.21	01087	.42	
43	84733	.21	99570	.42	17	43	85485	.21		.42	17 16
44	84745	.21	99596	.42	16	44	85497	.21	01112 01137	.42	
45	84758	.21	99621	.42	15	45	. 85510	.21		.42	15
46	84771	.21	99646	.42	14	46	85522	.20	01162	.42	14
47	84784	.21	99672	.42	13	47	85534	.20	01188	.42	13
-48	84796	.21	99697	.42	12	48	85547	.20	01213	.42	12
49	84809	.21	99722	.42	11	49	85559	.20	01238	.42	11
50	84822	.21	99747	.42	10	50	85571	.20	01263	.42	10
51	9.84835	.21	9.99773	.42	9	51	9.85583	.20	10.01289	.42	9
52	84847	.21	99798	.42	8	52	85596	20	01314	.42	8
53	84860	.21	99823	.42	7	53	85608	.20	01339	.42	7
54	84873	.21	99848	.42	6	54	85620	.20	01365	.42	6
55	84885	.21	99874	.42	5	55	85632	.20	01390	.42	5
56	84898	.21	99899	.42	4	56	85645	.20	01415	.42	4
57	84911	.21	99924	.42	3	57	85657	.20	01440	.42	3
58	84923	.21	99949	.42	2	58	85669	.20	01466	.42	2
59	84936	.21	99975	.42	1	59	85681	.20	01491	.42	1
60	84949	.21	10.00000	•42	0	60	85693	.20	01516	.14	0
M.	Cosine.	D!"	Cotang.	DI"		M.	Cosine.	D!"	Cotang.	DI"	
-	cosine,	DT.	Cotang.	101-	1000 100	-	Costne.	111	, cotang.	Civi .	
45°					F	0					44

50

SINES AND TANGENTS.

1	M.	Sine.	DI"	Tang.	D1"	M.	М.	Sine.	D1"	Tang.	DI"	М
1	0	9.85693	0.00	10.01516	0.10	60	0	9.86413	0.00	10.03034	0.10	60
1	1	85706	0.20	01542	0.42	59	1	86425	0.20	03060	0.42	59
ł	2	85718	.20	01567	.42	58	2	86436	.20	03085	.42	58
	3	85730	.20	01592	.42	57	3	86448	.20	03110	.42	57
1	4	85742	.20	01617	.42	56	4	86460	.20	03126	.42	56
1	5	85754	.20	01643	.42	55	5	86472	.20 .20	03161	.42	55
1	6	85766	.20	01668	.42	54	6	86483	.20	03186	.42 .42	54
J	7	85779	.20	01693	.42	53	7	86495	.20	03212	.42	53
5	8	85791	.20	01719	.42	52	8	86507	.20	03237	.42	52
	9	85803	.20	01744	.42	51	9	86518	.20	03262	.42	51
	10	85815	.20	01769	.42	50	10	86530	.20	03288	.42	50
1	11	9.85827	.20	10.01794	.42	49	11	9.86542	.20	10.03313	.42	49
1	12	85839	.20	01820	.42	48	12	86554	.19	03338	.42	-48
1	13	85851	.20	01845	.42	47	13	86565	.19	03364	.42	47
1	14	85864	.20	01870	.42	46	14	86577	.19	03389	.42	46
1	15	85876	.20	01896	.42	45	15	86589	.19	03414	.42	45
	16	85888	.20	01921	.42	44	16	86600	.19	03440	.42	44
	17-	85900	.20	01946	.42	43	17	86612	.19	03465	.42	43
	18	85912	.20	01971	.42	42	18	86624	.19	03490	.42	42
	19 20	85924 85936	.20	01997 02022	.42	41 40	19 20	86635	.19	03516 03541	.42	41 40
	20 21	9.85948	.20	10.02047	.42	40 39	20	9.86659	.19	10.03567	.42	40 39
	21 22	85960	.20	02073	.42	38	22	86670	.19	03592	.42	39 38
	23	85972	.20	02098	.42	37	23	86682	.19	03617	.42	37
1	24	85984	.20	02123	.42	36	24	86694	.19	03643	.42	36
	25	85996	.20	02149	.42	35	25	86705	.19	03668	.42	35
1	26	86008	.20	02174	.42	34	26	86717	.19	03693	.42	34
	27	86020	.20	02199	.42	33	27	86728	.19	03719	.42	33
	28	86032	.20	02224	.42	32	28	86740	.19	03744	.42	32
	29	86044	.20	02250	.42	31	29	86752	.19	03769	.42	31
	30	86056	.20	02275	.42	30	30	86763	.19	03795	.42	30
	31	9.86068	.20	10.02300	.42	29	31	9.86775	.19	10.03820	.42	29
H	32	86080	.20	02326	.42	28	32	86786	.19	03845	.42	28
	33	86092	.20	02351	.42	27	33	86798	.19	03871	.42	27
	34	86104	.20	02376	.42 .42	26	34	86809	.19	03896	.42 .42	26
	35	86116	.20	02402	.42	- 25	35	86821	.19	03922	.42	25
1	36	86128	.20	02427	.42	24	36	86832	.19	03947	.42	24
1	37	86140	.20	02452	.42	23	37	86844	.19	03972	.42	23
1	38	86152	.20	02477	.42	22	38	86855	.19	03998	.42	22
ł	39	86164	.20	02503	.42	21	39	86867	.19	04023	.42	21
1	40	86176	.20	02528	.42	20	40	86879	.19	04048	.42	20
	41	9.86188	.20	10.02553	.42	19	41	9.86890	.19	10.04074	.42	19
	42	86200	.20	02579	.42	18	42	86902	.19	04099	.42	18
	43	86211	.20	02604	.42	17	43	86913	.19	04125	.42	17
	44	86223	.20	02629	.42	16	44	86924	.19	04150	.42	16
	45 46	86235 86247	.20	02655	.42	15 14	45	86936	.19	04175 04201	.42	15
			.20	02680	.42	14	46	86947	.19		.42	14
	47 48	86259 86271	.20	02705 02731	.42	1.3	47 48	86959 86970	.19	04226 04252	.42	$ \begin{array}{c} 13 \\ 12 \end{array} $
	48	86283	.20	02756	.42	11	48	86982	.19	04252 04277	.42	12
	49 50	86295	.20	02781	.42	10	49 50	86993	.19	04302	.42	10
	51	9.86306	.20	10.02807	.42	9	51	9.87005	.19	10.04328	.42	9
	52	86318	.20	02832	.42	8	52	87016	.19	04353	.42	8
	53	86330	.20	02857	.42	7	53	87028	.19	04378	.42	7
	54	86342	.20	02882	.42	6	54	87039	.19	04404	.42	6
	55	86354	.20	02908	.42	5	55	87050	.19	04429	.42	-5
	56	86366	.20	02933	.42	4	56	87062	.19	04455	.42	4
	57	86377	.20	02958	.42	3	57	87073	.19	04480	.42	3
	58	86389	.20	02984	.42	2	58	87085	.19	04505	.42	2
	59	86401	.20	03009	.42	1	59	87096	.19	04531	.42	ī
	60	86413	.20	03034	.42	0	60	87107	.19	04556	.42	0
	M.	Cosine,		Cotang.	DI"	M.	M .	Cosine.	DI"	Cotang.	DI"	M.
1	130	oguine.		oorang.				1 coante.	1.1	cotang.	1 201	1 DI.
4	2.0					5						mon(

TABLE IV.-LOGARITHMIC

49°

40.			IADI	ID I	v1	IUUA	AITHM	110			43
N	. Sine.	DI"	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	DI"	М.
-	9.87107		10.04556		60	0	9.87778		10.06084	-	60
1		10.19	04582	0.42	59	1	87789	0.18	06109	0.43	59
1	87130	.19	04607	.42	58	2	87800	.18	06135	.43	58
100	8 87141	.19	04632	.42	57	3	87811	.18 .18	06160	.43	57
	87153	10	04658	.42	56	4	87822	.18	06186	.43 .43	56
	5 87164	1 10	04683	.42	55	5	87833	.18	06211	.43	55
	8 87175	10	04709	.42	54	6	87844	.18	06237	.43	54
	87187	10	04734	.42	53	7	87855	.18	06262	.43	53
	8 87198	1 10	04760	.42	52	8	87866	.18	06288	.43	52
	87209	1 10	04785	.42	51 50	9 10	87877	.18	06313	.43	51
1		.19	04810	.42	30 49	10	87887 9.87898	.18	06339 10.06364	.43	50
1		.19	04861	.42	49	12	87909	.18	06390	.43	49 48
1		.19	04887	.42	47	13	87920	.18	06416	.43	40 47
li		.19	04912	.42	46	14	87931	.18	06441	.43	46
lî		.19	04938	.42	45	15	87942	.18	06467	.43	45
i		.19	04963	.42	41	16	87953	.18	06492	.43	44
1		.19	04988	.42	43	17	87964	.18	06518	.43	43
1	8 87311	.19	05014	.42	42	18	87975	.18	06543	.43	42
1		10	05039	.42	41	19	87985	.18	06569	.43 .43	41
2		10	05065	.42	40	20	87996	.18	06594	.43	40
2		1 10	10.05090	.42	39	21	9.88007	.18	10.06620	.43	39
2		10	05116	.42	38	22	88018	.18	06646	.43	38
2		1 10	05141	.42	37	23	88029	.18	06671	.43	37
2		1 10	05166	.42	36	24	88040	.18	. 06697	.43	36
22		1 10	05192	.42	35 34	25 26	88051 88061	.18	06722	.43	35
2			05217 05243	.42	34	20 27	88072	.18	06748 06773	.43	34
		.19	05268	.42	32	28	88083	.18	06799	.43	33 32
2		1 .19	05294	.42	31	29	88094	.18	06825	.43	31
3		19	05319	.42	30	30	88105	.18	06850	.43	30
3		19	10.05345	.42	29	31	9.88115	.18	10.06876	.43	29
3		.19	05370	.42	28	32	88126	.18	06901	.43	28
3	8 87479	.19	05396	.42	27	33	88137	.18 .18	06927	.43	27
3		10	05421	.42	26	34	88148	.18	06952	.43 .43	26
3		10	05446	.42	25	35	88158	.18	06978	.43	25
3		10	05472	.42	24	36	88169	.18	07004	.43	24
3		10	05497	.42	23	37	88180	.18	07029	.43	23
3		1 10	05523	.42	22	38	88191	.18	07055	.43	22
34			05548 05574	.42	21 20	39	88201 88212	.18	07080	.43	21
4		.19	10.05599	.42	19	40 41	9.88223	.18	07106	.43	20 19
4		.19	05625	.42	18	42	88234	.18	07157	.43	19
4		.18	05650	.42	17	43	88244	.18	07183	.43	17
4		.18	05676	:42	16	44	88255	.18	07208	.43	16
4	5 87613	.18	05701	.42	15	45	88266	.18	07234	.43	15
4	87624	10	05727	.42	14	46	88276	.18	07260	.43 .43	14
4		1 19	05752	.42	13	47	88287	.18	07285	.43	13
4		10	05778	.42	12	48	88298	.18	07311	.43	12
4		10	05803	.42	11	49	88308	.18	07337	.43	11
5		10	05829	.42	10	50	88319	.18	07362	.43	10
55		.18	10.05854	.42	9	51	9.88330	.18	10.07388	.43	9
5		.15	05880	.43	87	52 53	88340 88351	.18	07413 07439	.43	8 7
5		.18	05905	.43	6	54	88362	.18	07439	.43	7 6
5		.18	05956	.43	5	55	88372	.18	07403	.43	5
5		018	05982	.43	4	56	88383	.18	07516	.43	5 4
5		.18	06007	.43	3	57	88394	.18	07542	.43	3
5	8 87756	.18	06033	.43	2	58	88404	.18	07567	.43	3 2
5	87767	1.18	06058	.43	1	59	88415	.18	07593	.43	1
6	87778	.10	06084	.40	0	60	88425	.10	07619	.10	0
D	L. Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	М.

410

SINES AND TANGENTS.

M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	M.
					60						60
0	9.88425 88436	0.18	$ 10.07619 \\ 07644 $	0.43	60 59	01	9.89050 89060	6.17	10.09163 09189	0.43	60 59
2	88447	.18	07670	.43	58	2	89071	.17	09215	.43	58
	88457	.18	07696	.43	57	3	89081	.17	09241	.43	57
4	88468	.18	07721	.43	56	4	89091	.17	09266	.43	56
5	88478	.18	07747	.43	55	5	89101	.17	09292	.43	55
6	88489	.18	07773	.43	54	6	89112	.17	09318	.43	54
7	88499	.18	07798	.43	53	7	89122	.17	09344	.43	53
8	88510	.18	07824	.43	52	8	89132	.17	09370	.43	52
. 9	88521	.18	07850	.43	51	9	89142	.17	09396	.43	51
10	88531	.18	07875	.43	50	10	89152	.17	09422	.43	50
11	9.88542	.18	10.07901	.43	49	11	9.89162	.17	10.09447	.43	49
12 13	88552	.18	07927 07952	.43	48 47	12 13	89173	.17	09473	.43	48 47
13	88563 88573	.18	07952	.43	46	13	89183 89193	.17	09499 09525	.43	46
14	88584	.18	08004	.43	45	14	89203	.17	09551	.43	40
16	88594	.17	08029	.43	44	16	89213	.17	09577	.43	44
17	88605	.17	08055	.43	43	17	89223	.17	09603	.43	43
18	88615	.17	08081	.43	42	18	89233	.17	09629	.43	42
19	88626	.17	08107	.43	41	19	89244	.17	09654	.43	41
20	88636	.17	08132	.43	40	20	89254	.17	09680	.43	40
21	9.88647	.17	10.08158	.43	39	21	9.89264	.17	10.09706	.43	39
22	88657	.17	08184	.43	38	22	89274	.17	09732	.43	38
23	88668	.17	08209	.43	37	23	89284	.17	09758	.43	37
24	88678	.17	08235	.43	36	24	89294	.17	09784	.43	36
25	88688	.17	08261	.43	35	25	89304	.17	09810	.43	35
26 27	88699 88709	.17	08287 08312	.43	34 33	26 27	89314 89324	.17	09836	.43	34 33
28	88720	.17	08338	.43	30 32	28	89334	.17	09862 09888	.43	32
29	88730	.17	08364	.43	31	29	89344	.17	09914	.43	31
30	88741	.17	08390	.43	30	30	89354	.17	09939	.43	30
31	9.88751	.17	10.08415	.43	29	31	9.89364	.17	10.09965	.43	29
32	88761	.17	08441	.43	28	32	89375	.17	09991	.43	28
33	88772	.17	08467	.43	27	33	89385	.17	10017	.43	27
34	88782	.17	08493	.43 .43	26	34	89395	.17	10043	.43 .43	26
35	88793	.17	08518	.43	25	35	89405	.17	10069	.43	25
36	88803	.17	08544	.43	24	36	89415	.17	10095	.43	24
37	88813	.17	08570	.43	23	37	89425	.17	10121	.43	23
38	88824	.17	08596	.43	22	38	89435	.17	10147	.43	22
39 40	88834 88844	.17	08621 08647	.43	21	39	89445	.17	10173	.43	21 20
40	9.88855	.17	10.08673	.43	20 19	40 41	89455 9.89465	.17	10199 10.10225	.43	19
42	88865	.17	08699	.43	19	41 42	9.89405 89475	.17	10.10225	.43	19
43	88875	.17	08724	.43	17	43	89485	.17	10231	.43	17
44	88886	.17	08750	.43	16	44	89495	.17	10303	.43	16
45	88896	.17	08776	.43	15	45	89504	.17	10329	.43	15
46	88906	.17	08802	.43 .43	14	46	89514	.17	10355	.43	14
47	88917	.17	08828	.43	13	47	89524	.17	10381	.43 .43	13
48	88927	.17	08853	.43	12	48	89534	.17	10407	.43	12
49	88937	.17	08879	.43	11	49	89544	.17	10433	.43	11
50	88948	.17	08905	.43	10	50	89554	.17	10459	.43	10
51 52	9.88958 88968	.17	10.08931 08957	.43	9	51	9.89564	.17	10.10485	.43	9
53	88968	.17	08957	.43	87	52 53	89574 89584	.17	10511	.43	87
54	88989	.17	09008	.43	6	54	89584	.17	10537 10563	.43	6
55	88999	.17	09034	.43	5	55	89604	.17	10505	.43	5
56	89009	.17	09060	.43	4	56	89614	.16	10585	.43	4
57	89020	.17	09086	.43	3	57	89624	.16	10641	.43	3
58	89030	.17	09111	.43	2	58	89633	.16	10667	.43	2
59	89040	.17	09137	.43 .43	1	59	89643	.16	10693	.43	1
60	89050		09163		0	60	89653	.16	10719	.43	0
М.	Cosine.	DI"	Cotang:	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	М.

390

S. N. 39.

380

· 52°

TABLE IV.-LOGARITHMIC

М.	Sine.	D1"	Tang.) Dr'	M .	М.	Sine.	Di"	Taug.	101"	Μ.
0	9.89653	0.16	10.10719	0 40	60	0	9.90235	0.16	10.12259	0.44	60
1	89663	.16	10745	0.43	59	1	90244	.16	12315	0.44	59
2	89673	.16	10771	.43	58	2	90254	.16	12341	.44	58
3	89683	.16	10797	.43	57	.3	90263	.16	12367	.44	57
4	89693	.16	10823	.43	56	4	90273	.16	12394	.44	56
5	89702	.16	10849	.43	55	5	90282	.16	12420	.44	55
6	89712	.16	10875	.43	54	6	90292	.16	12446	.44	54
7	89722	.16	10901	.43	53	7	90301	.16	12473	.44	53
8	89732	.16	10927	.43	52	8	90311	.16	12499	.44	52
9	89742	.16	10954	.43	51	9	90320	.16	12525	.44	51
10	89752	.16	10980	.43	50	10	90330	.16	12552	.44	50
11	9.89761	.16	10.11006	.43	49	11	9.90339	.16	10.12578	.44	49
12	89771	.16	11032 11058	.43	48	12 13	90349	.16	12604 12631	.44	48
13	89781	.16	11038	.43	47		90358 90368	.16	12031	.44	47
14	89791	.16	11110	.43	46	14 15	90308	.16	12683	.44	46 45
15 16	89801 89810	.16	11136	.44	45 44	16	90386	.16	12000	.44	40
	89820	.16	11162	.44		17	90396	.16	12736	.44	43
17 18	89830	.16	11188	.44	43 42	18	90405	.16	12762	.44	40 42
19	89340	.16	11214	.44	42	19	90405	.16	12789	.41	41
20	89849	.16	11241	.44	40	20	90424	.16	12815	.44	40
20	9.89859	.16	10.11267	.44	39	21	9.90434	.16	10.12842	.44	39
22	89869	.16	11293	.44	38	22	90443	.16	12868	.44	38
23	89879	.16	11319	.44	37	23	90452	.16	12894	.44	37
24	89888	.16	11345	.44	36	24	90462	.16	12921	.44	36
25	89898	.16	11371	.44	35	25	90471	.16	12947	.44	35
26	89908	.16	11397	.44	34	26	90480	.16	12973	.44	34
27	89918	.16	11423	.44	33	27	90490	.16	13000	.44	33
28	89927	.16	11450	.44	32	28	90499	.16	13026	.44	32
29	89937	.16	11476	.44	31	29	90509	.16	13053		31
30	89947	.16	11502	.44	30	30	90518	.16	13079	.44	30
31	9.89956	.16	10.11528	.44	29	31	9.90527	.16	10.13106	.44	29
32	89966	.16 .16	11554	.44	28	32	90537	.16	13132	.44	28
3.3	89976	.16	11580	.44	27	33	90546	.16	13158	.44	27
34	89985	.16	11607	.44	26	34	90555	.16	13185	.44	26
35	89995	.16	11633	.44	25	35	90565	.16	13211	.44	25
36	90005	.16	11659	.44	24	36	90574	.16	13238	.44	24
37	90014	.16	11685	.44	23	37	90583	.16	13264	.44	23
38	90024	.16	11711	.44	22	38	90592	.15	13291	.44	22
39	90034	.16	11738	.44	21	39	90602	.15	13317	.44	21
40	90043	.16	11764	.44	20	40	90611	.15	13344	.44	20
41	9.90053	.16	10.11790	.44	19	41	9.90620	.15	10.13370 13397	.44	19
42	90063	.16	11816 11842	.44	18	42 43	90630 90639	.15	13423	.44	18 17
43 44	90072 90082	.16	11842	.44	17 16	43	90639	.15	13449	.44	16
44	90082	.16	11809	.44	16 15	44 45	90643	.15	13476	.44	15
45	90091	.16	11095	.44	15	45	90667	.15	13502	.44	14
40	90101	.16	11921	.44	14	40	- 90676	.15	13529	.44	13
48	90120	.16	11973	.44	10	48	90685	.15	13555	.44	12
40	90130	.16	12000	.44	11	49	90694	.15	13582	.44	11
50	90139	.16	12000	.44	10	50	90704	.15	13608	.44	10
51	9.90149	.16	10.12052	.44	9	51	9.90713	.15	10.13635	.44	9
52	90159	.16	12078	.44	8	52	90722	.15	13662	.44	8
53	90168	.16	12105	.44	7	53	90731	.15	13688	.44	7
54	90178	.16	12131	.44	6	54	90741	.15	13715	.44	6
55	90187	.16	12157	.44	5	55	90750	.15	13741	.44	5
56	90197	.16	12183	.44	4	56	90759	.15	13768	.44	4
57	90206	.16	12210	.44	3	57	90768	.15 .15	13794	.44	3
58	90216	.16	12236	.44	2	58	90777		13821	.44	2
59	90225	.16	12262	.44	011	59	90787	.15	13847	.44	1
60	90235	.16	10.12289	.44	0	60	90796		13874		0
М.	Cosine,	DI"	Cotang.	DI"	Μ.	M.	Cosine.	D!"	Cotang.	DW	Μ.

3.0

54

360

· 53°

SINES AND TANGENTS.

	4	-			w111.								40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ſ	M.	Sine.	DI"	Tang.	D1"	M.	M.	Sine.	DI"	Taug.	DI"	M.
1 90300 1.5 1.3000 4.45 0.33 1.5 1.5000 4.45 0.58 3 90823 1.5 1.3980 4.44 57 3 91336 1.5 1.5588 4.55 5 5 90842 1.5 1.4003 4.44 55 5 91381 1.5 1.5688 4.55 5 6 90851 1.5 1.4003 4.44 53 7 91389 1.5 1.5666 4.55 53 9 9087 1.5 1.4087 4.44 53 7 91389 1.5 1.5666 4.55 53 9 9087 1.5 1.40487 4.44 51 9.91416 1.5 1.5773 4.57 4.57 11 9.9086 1.5 1.4140 4.44 15 91469 1.5 1.5874 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54 4.54<		0	9.90796	0.15	10.13874	0.11	60	0	9.91336	0.15	10.15477	0.45	60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l												
3 90523 15 13080 44 57 5 90372 15 13080 44 57 90372 15 13685 545 56 6 90850 15 14003 44 55 5 91389 15 15669 455 54 7 90860 15 14067 44 51 9 91407 15 15669 45 53 9 90878 15 14113 44 51 9 91407 15 15669 45 51 10 90876 15 14113 44 49 11 91423 15 15770 45 51 12 90906 15 14143 44 91 91433 15 15887 45 44 12 90906 15 14220 44 44 16 91457 15 5888 44 45 44 44 44 44 <th>Į</th> <td></td> <td></td> <td>.15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Į			.15									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.15		.45	
6908511.1314080.4453791398.1315639.13547908601.1514060.4452891407.1515666.45539907871.514113.4451991416.1515720.455110908571.514110.44501091425.1515774.454912900601.514193.44481291441.1515827.454714909241.514246.44471391451.1515854.454515909241.514273.44441691477.1515008.454316909241.514380.44411991504.1515085.454316909261.514483.44411991504.1515085.454219900601.514483.44411991504.1516016.453022909071.514466.44382291538.1516016.453022909081.514466.4432291516016.453322909081.514466.4432291516016.45332290907<	l												
1 200809 15 14087 44 52 8 91407 15 15008 45 52 9 90878 15 14113 44 52 9 91407 15 15720 45 50 10 90887 15 14113 444 50 10 91416 15 15720 45 51 11 9.90887 15 14193 444 48 12 91431 15 10.15773 45 49 12 90066 15 14220 444 47 13 91431 15 15854 45 47 15 90132 15 14226 44 44 19 91445 15 15854 45 44 16 90042 15 14333 44 10 91465 15 1588 44 17 90956 15 14433 44 22 91551 160161	ł								91389	.15			
B 00078 115 14103 44 01 91416 15 15020 45 51 10 90087 15 104166 44 90 19 91416 15 15746 45 50 11 900966 15 14193 444 48 12 9:442 15 15600 45 48 13 90016 15 14220 44 47 13 91451 15 15827 45 47 14 90024 15 14246 44 46 14 91469 15 15881 45 16 90023 15 14233 44 42 18 91450 15 15881 45 42 19 90040 15 14333 44 12 18 91501 15 16016 45 40 21 900907 15 14460 44 38 22 91530	I												
9 90087 15 14140 44 50 10 91425 15 15744 45 50 11 9.09886 15 10.14166 444 49 11 9.91425 15 15773 45 49 12 90016 15 14203 444 47 13 91425 15 15827 45 47 14 90024 15 14246 44 46 14 91460 15 15854 45 46 15 90033 15 14273 44 44 16 91477 15 15008 45 44 16 90142 15 14380 444 14 91504 15 15082 45 42 19 90060 15 14380 444 41 19 91504 15 16016 45 40 20 90078 15 161433 44 36 24	Į												
119.908061.510.14166 $\cdot 43$ 49119.914331.510.1577343434912909061.514193.444812914421.515800.454813909151.514226.444713914511.515881.454615909241.514203.444416914771.515908.454416909421.514300.444416914771.515908.454418909601.514338.44421891496.1515989.454120909601.514486.444020915121.510016.453922909661.514466.44382291581.1516016.453823910231.514466.44372391583.1516079.45382391023.1514466.44352591566.1516151.45352691023.1514460.44322991591.1416222.45322891024.1514633.45312991591.1416222.45332791042.1514633.452891591.1416234.45	ł			.15		.44				.15		.45	
1290906.1514193.44481291442.1515800.43481390915.1514220.44461491451.1515827.45471490924.1514246.44461491451.1515824.45451690933.1514236.4444466191477.1515908.45431790951.1514326.44411991504.1515983.45421990960.1514338.44421891495.1515989.45422090978.1510.14433.4439219.91521.1516016.4540219.9096.1514466.4439219.91521.15161616.45332291005.1514466.44382291350.1516107.45372491014.1514456.44322591566.1516174.45362591023.1514506.44322291581.1416225.45322991061.1514620.45322891582.1416225.45322691033.1514606.45322891581.1416225	ł			.15						.15		.45	
13 90915 1.15 14220 .44 47 13 91451 .15 15827 .45 47 14 90924 .15 14246 .44 46 14 91460 .15 15854 .45 46 15 90933 .15 14300 .44 44 16 91477 .15 15908 .45 44 17 90961 .15 14353 .44 42 18 91495 .15 15982 .45 42 19 90960 .15 14338 .44 42 18 91495 .15 1016018 .45 42 20 90967 .15 114466 .44 39 21 9.91521 .15 101607 .45 37 23 91005 .15 14486 .44 37 22 91530 .15 16167 .45 38 23 91002 .15 14433 .44<	I												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ		90915		14220		47		91451		15827		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł			.15						.15			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I									.15			
1899960.1514333.44421891495.1515989.45421999078.1514360.44411991504.1515989.45412099078.1510.14433.4439219.91521.1516016.4540219.9096.1514460.44382291330.1516070.45382391005.1514486.44352591556.1516124.45362491014.1514503.44352591556.1516178.45332691033.1514503.45322891582.1416223.45332891061.1514620.45332791573.1416224.45332991060.1514620.4531991599.1416287.4530319.91078.1510.1700.4529319.91608.1410.16314.45293291087.1514702.45233791634.1416384.45273391096.1514770.45263491634.1416386.45273491075.1514770.452337916651.1416429.4524	İ												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł			.15						.15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l									.15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I											.45	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Į												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Į												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł									.14			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	l												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.15		.45				.14		.45	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.14		.45	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			91221										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ	48	91230		15155		12	48	91755		16775		12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ļ												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.15		.45						.45	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ļ									.14			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ļ	55	91292		15343		5	55	91815		16965		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ļ												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c} 60 \\ 60 \\ \hline 91336 \\ \hline M. \\ \hline \text{Cosine.} \\ Dl'' \\ \hline Dl'' \\ \hline \text{Cotang.} \\ \hline Dl'' \\ \hline \end{array} \begin{array}{c} .45 \\ .45 \\ \hline Dl'' \\ \hline M. \\ \hline Dl'' \\ \hline Dl'' \\ \hline Dl'' \\ \hline \\ \hline Dl'' \\ \hline \\ \hline \\ \hline \\ Dl'' \\ \hline \\$	ļ			.15		.45							
M. Cosine, DI" Cotang, DI" M. M. Cosine, DI" Cotang, DI" M.				.15		.45							
						-				-		-	
			Cosine.	1 101.	Cotang.	1 1)["	1 M.	M.	Cosine.	1 DW	Cotang.	1 Dl.	M.

35°

TABLE IV.-LOGARITHMIC

State .
570
91-

31 1	e	1)//	111	DW	35	37	01	DI		TAUL	3.7
<u>M.</u>	Sine.	<u>DI"</u>	Tang.	<u>DI"</u>	M.	M.	Sine.	<u>DI"</u>	Tang.	<u>DI"</u>	<u>M.</u>
0	9.91857	0.14	10.17101	0.45	60	0	9.92359	0.14	10.18748	0.46	60
1	91866	.14	17129	.45	59	1	92367	.14	18776	.46	59
2	91874	.14	17156	.45	58	2	92376	.14	18804	.46	58
3	91883	.14	17183	.45	57	3	92384	.14	18831	.40	57
4	91891	.14	17210	.45	56	4	92392	.14	18859	.40	56
5	91900	.14	17238	.45	55	5	92400	.14	18887	.40	55
6	91908	.14	17265	.45	54	6	92408	.14	18914	.40	54
7	.91917	.14	17292	.45	53	7	92416	.14	18942	.40	53
8	91925	.14	17319	.46	52	8	92425	.14	18970	.46	52
9	91934	.14	17347	.46	51	9	92433	.14	18997	.40	51
10	91942	.14	17374	.40	50	10	92441	.14	19025	.46	50
11	9.91951	.14	10.17401	.46	49	11	9.92449	.14	10.19053	.40	49
12	91959	.14	17429	.40	48	12	92457		19081		48
13	91968		17456		47	13	92465	.14	19108	.46	47
14	91976	.14	17483	.46	46	14	92473	.14	19136	.46	46
15	91985	.14	17511	.46	45	15	92482	.14	19164	.46	45 -
16	91993	.14	17538	.46	44	16	92490	.14	19192	.46	44
17	92002	.14	17565	.46	43	17	92498	.14	19219	.46	43
18	92010	.14	17593	.46	42	18	92506	.14	19247	.46	42
19	92018	.14	17620	.46	41	19	92514	.14	19275	.46	41
20	92027	.14	17648	.46	40	20	92522	.13	19303	.46	40
21	9.92035	.14	10.17675	.46	39	21	9.92530	.13	10.19331	.46	39
22	92044	.14	17702	.46	38	22	92538	.13	19358	.46	38
23	92052	.14	17730	.46	37	23	92546	.13	19386	.46	37
24	92060	.14	17757	.46	36	24	92555	.13	19414	.46	36
25	92069	.14	17785	.46	35	25	92563	.13	19442	.46	35
26	92077	.14	17812	.46	34.	26	92571	.13	19470	.46	34
27	92086	.14	17839	.46	33	27	92579	.13	19498	.46	33
28	92094	.14	17867	.46	32	28	92587	.13	19526	.46	32
29	92102	.14	17894	.46	31	29	92595	.13	19553	.46	31
30	92111	.14	17922	.46	30	30	92603	.13	19581	.46	30
31	9.92119	.14	10.17949	.46	29	31	9.92611	.13	10.19609	.46	29
32	92127	.14	17977	.46	28	32	92619	.13	19637	.46	28
33	92136	.14	18004	.46	27	33	92627	.13	19665	.47	27
34	92144	.14	18032	.46	26	34	92635	.13	19693	.47	26
35	92144 92152	.14	18052	.46	25	35	92643	.13	19093	.47	20 25
36	92152	.14	18035	.46	24	36	92651	.13	19749	.47	24
37	92169	.14	18114	.46	23	37	92659	.13	19743	.47	23
38	92109	.14	18142	.46	23	38	92667	.13	19805	.47	22
39	92177	.14	18142	.46	21	39	92675	.13	19803	.47	22
39 40	92186	.14	18109	.46	21 20	40	92673	.13	19860	.47	21 20
40	92194	.14	10.18224	.46	19	40	92085	.13	10.19888	.47	19
41 42		.14		.46				1 13	19916	.47	
42 43	92211 92219	.14	18252	.46	18 17	42 43	92699 92707	1 .13	19916	.47	18 17
		.14	18279 18307	.46			92707	.13	19944	.47	16
44	92227	.14		.46	16	44		.13		.47	
45	92235	.14	18334	.46	15	45	92723	.13	20000	.47	15
46	92244	.14	18362	.46	14	46	92731	.13	20028	.47	14
47	92252	.14	18389	.46	13	47	92739	.13	20056	.47	13
48	92260	.14	18417	.46	12	48	92747	12	20084	.47	12
49	92269	.14	18444	.46	11	49	92755	12	20112	.47	11
50	92277	.14	18472	.46	10	50	92763	.13	20140	.47	10
51	9.92285	.14	10.18500	.46	9	51	9.92771	1 19	10.20168	.47	9
52	92293	.14	18527	.46	8	52	92779	.13	20196	.47	8
.53	92302	.14	18555	.46	7	53	92787	.13	20224	.47	7
54	92310	.14	18582	.46	6	51	92795	1 1 2	20253	.47	6
55	92318	.14	18610	.46	5	55	92803	.13	20281	.47	5
56	92326	.14	18638	.46	4	56	92810	12	20309	.47	4
57	92335	.14	18665	.46	3	57	92818	.13	20337	.47	3
58 .	92343	.14	18693	.46	2	58	92826	.13	20365	.47	2
59	92351	.14	18721	.46	1	59	92834	.13	20393	.47	1
60	92359	-14	18748		0	60	92842		20421	-11	0
М.	Cosine.	D!"	Cotang.	DI"	M.	M.	Cosine,	DI"	Cotang.	DI"	M.

SINES AND TANGENTS.

M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	D1"	Tang.	DI"	М.
	0.00040		10.20421		60	0	9.93307		10.22123		60
1	9.92842	0.13	20449	0.47	59	1	93314	0.13	22151	0.48	59
	92850	.13		.47		2	93322	.13	22131	.48	58
23	92858	.13	$20477 \\ 20505$.47	58 57	3	93329	.13	22209	.48	57
	92866	.13		.47		4		.13		.48	56
4	92874	.13	20534	.47	56	45	93337	.13	22237 22266	.48	55
5	92881	.13	20562	.47	55		93344	.13		.48	
6	92889	.13	20590	.47	54	6	93352	.13	22294	.48	54
7	92897	.13	20618	.47	53	7	93360	.13	22323	.48	53
8	92905	.13	20646	.47	52	8.	93367	.13	22352	.48	52
9	92913	.13	20674	.47	51	9	93375	.13	22381	.48	51
10	92921	.13	20703	.47	50	10	93382	.13	22409	.48	50
11	9.92929	.13	10.20731	.47	49	11	9.93390	.13	10.22438	.48	49
12	92936	.13	20759	.47	48	12	93397	.13	22467	.48	48
13	92944		20787		47	13	93405	.1.0	22495	.48	47 .
14	92952	.13	20815	.47	46	14	93412	.13 .13	22524	.40	46
15	92960	.13	20844	.47	45	15	93420	.13	22553		45
16	92968	.13	20872	.47	44	16	93427	.13	22582	.48	44
17	92976	.13	20900	.47	43	17	93435	.13	22610	.48	43
18	92983	.13	20928	.47	42	18	93442	.13	22639	.48	42
19	92991	.13	20957	.47	41	19	93450	.12	22668	.48	41
20	92999	.13	20985	.47	40	20	93457	.12	22697	.48	40
21	9.93007	.13	10.21013	.47	39	21	9.93465	.12	10.22726	.48	39
22	93014	.13	21041	.47	38	22	93472	.12	22754	.48	38
23	93022	.13	21070	.47	37	23	93480	.12	22783	.48	37
24	93030	.13	21098	.47	36	24	93487	.12	22812	.48	36
25		.13	21038	.47	35	25	93495	.12	22841	.48	35
	93038	.13	21120	.47	34	20 26		.12	22841	.48	34
26	93046	.13		.47			93502	.12		.48	
27	93053	.13	21183	.47	33	27	93510	.12	22899	.48	33
28	93061	.13	21211	.47	32	28	93517	.12	22927	.48	32
29	93069	.13	21240	.47	31	29	93525	.12	22956	.48	31
30	93077	.13	21268	.47	30	30	93532	.12	22985	.48	30
31	9.93084	.13	10.21296	.47	29	31	9.93539	.12	10.23014	.48	29
32	93092	.13	21325	.47	28	32	93547	.12	23043	.48	28
33	93100	.13	21353	.47	27	33	93554	.12	23072	.48	27
34	93108	.13	21382	.47	26	34	93562	.12	23101	.48	26
35	93115	.13	21410	.47	25	35	93569	.12	23130	.48	25
36	93123	.13	21438		24	36	93577		23159	.40	24
37	93131	.10	21467	.47 .47	23	37	93584	.12	23188	.40	23
38	93138	.13	21495		22	38	93591	.12	23217	.48	22
39	93146	.13	21524	.47	21	39	93599	.12	23246	.48	21
40	93154	.13	21552	.47	20	40	93606	.12	23275	.48	20
41	9.93161	.13	10.21581	.47	19	41	9.93614	.12	10.23303	.48	19
42	93169	.13	21609	.47	18	42	93621	.12	23332	.48	18
43	93177	.13	21637	.47	17	43	93628	.12	23361	.48	17
44	93184	.13	21666	.47	16	44	93636	.12	23391	.48	16
45	93192	.13	21694	.47	15	45	93643	.12	23420	.48	15
46	93200	.13	21723	.47	14	46	93650	.12	23449	.48	14
47	93207	.13	21751	.47	13	47	93658	.12	23478	.48	13
48	93215	.13	21780	.48	12	48	93665	.12	23507	.48	12
48 49		.13	21/80	.48	11	48 49	93673	.12	23536	.48	11
	93223	.13		.48		49		.12		.48	10
50	93230	.13	21837	.48	10		93680	.12	23565	.48	9
51	9.93238	.13	10.21865	.48	9	51	9.93687	.12	10.23594	.48	
52	93246	12	21894	.48	8	52	93695	.12	23623	.48	8
53	93253	.13	21923	.48	7	53	93702	.12	23652	.49	7
54	93261	.13	21951	.48	6	54	93709	.12	23681	.49	6
55	93269	13	21980	.48	5	55	93717	.12	23710	.49	5
56	93276	13	22008	.48	4	56	93724	.12	23739	.49	4
57	93284	.13	22037	.48	3	57	93731	.12	23769	.49	3
58 .	93291	.13	22065	.48	2	58	93738	.12	23798	.49	2
. 59	93299	.13	22094	.40	1	59	93746	.12	23827	.49	1
.60	93307	.10	22123	.40	0	60	93753	.12	23856	.49	0
	Contin	DW	(Automa	DI"		7.5	Costar	Dill	Cat	DW	
M.	Cosine.	DI"	Ootang.	DI"	M.	M.	Cosine.	DI"	Cotang.	D1"	M.

31°

1

57

300

TABLE IV .-- LOGARITHMIC

M	.	Sine.	Dl"	Tang.	DI"	M. (M.	Sine.	DI"	Tang.	DI"	M.
1		9.93753	- 10	10.23856		60	0	9.94182	0.10	10.25625		60
		93760	0.12	23885	0.49	59	1	94189	0.12	25655	0.50	59
	2	93768	.12 .12	23914	.49 .49	58	2	94196	.12 .12	25684	.50	58
	3	93775	.12	23944	.49	57	3	94203	.12	25714	.50	57
	1	93782	.12	23973	.49	56	4	94210	.12	25744	.50	56
	5	93789	.12	24002	.49	55	5	94217	.12	25774	.50	55
	6	93797	.12	24031	.49	54	6	94224	.12	25804	.50	54
	7	93804	.12	24061	.49	53	7	94231	.12	25834	.50	53
	B	93811	.12	24090	.49	52	8	94238	.12	25863	.50	52
	9	93819	.12	24119	.49	51	9	94245	.12	25893	.50	51
1		93826	.12	24148	.49	50	10	94252	.12	25923	.50	50
1		9.93833	.12	10.24178	.49	49 48	11 12	9.94259	.12	10.25953	.50	49
		93840 93847	.12	24207 24236	.49	40	13	94266 94273	.12	25983 26013	.50	48 47
li		93855	.12	24265	.49	46	14	94279	.12	26013	.50	46
i		93862	.12	24295	.49	45	15	94286	.12	26073	.50	45
lî		93869	.12	24324	.49	44	16	94293	.12	26103	.50	44
lî		93876	.12	24353	.49	43	17	94300	.12	26133	.50	43
li		93884	.12	24383	.49	42	18	94307	.12	26163	.50	42
li		93891	.12	24412	.49	41	19	94314	.12	26193	.50	41
2		93898	.12	24442	.49	40	20	94321	.12	26223	.50	40
2		9.93905	.12	10.24471	.49	39	21	9.94328	.12	10.26253	.50	39
2		93912	.12	24500	.49	38	22	.94335	.11 .11	26283	.50	38
2		93920	.12	24530	.49	37	23	94342	.11	26313	.50	37
2		93927	.12	24559	.49	36	24	94349	.11	26343	.50	36
2		93934	.12	24589	.49	35	25	94355	.11	26373	.50	35
2		93941	.12	24618	.49	34	26	94362	.11	26403	.50	34
2		93948	.12	24647	.49	33	27	94369	.11	26433	.50	33
2		93955	.12	24677	.49	32	28	94376	.11	26463	.50	32
2		93963	.12	24706	.49	31	29	94383	.11	26493	.50	31
3		93970	.12	24736	.49	30	30	94390	.11	26524	.50	30
3		9.93977	.12	10.24765	.49	29	31	9.94397	.11	10.26554	.50	29
3		93984 93991	.12	24795 24824	.49	28 27	32 33	94404	.11	26584 26614	.50	28 27
3		93991	.12	24834	.49	26	34	94410 94417	.11	26644	.50	26
3		93990	.12	2483	.49	25	35	94424	.11	26674	.50	25
3		94012	.12	24913	.49	24	36	94431	.11	26705	.50	24
3		94012	.12	24913	.49	23	37	94438	.11	26735	.50	23
3		94027	.12	24942	.49	22	38	94445	.11	26765	.50	22
3		94034	.12	25002	.49	21	39	94451	.11	26795	.50	21
4		94041	.12	25031	.49	20	40	94458	.11	26825	.50	20
4		9.94048	.12	10.25061	.49	19	41	9.94465	.11	10.26856	.50	19
4	2	94055	.12	25090	.49	18	42	94472	.11	26886	.50	18
4	3	94062	.12	25120	.49	17	43	94479	.11	26916	.50	17
4		94069	.12	25149	.49	16	44	94485	.11	26946	.50	16
4		94076	.12	25179	.49	15	45	94492	.11	26977	.51	15
4		94083	.12	25209	.49	14	46	94499	.11	27007	.51	14
4		94090	.12	25238	.49	13	47	94506	.11	27037	.51	13
4		94098	.12	25268	.49	12	48	94513	.11	27068	51	12
45		94105	.12	25298	.49	11	49	94519	.11	27098	51	11 10
5		94112 9.94119	.12	25327 10.25357	.49	10	50 51	94526 9.94533	.11	27128	.51	10
	2		.12		.50	98	52		.11	27189	.51	8
	3	94126 94133	.12	25387 25417	.50	7	53	94540 94546	.11	27189	10.	7
	4	94140	.12	25446	.50	6	54	94540	.11	27250	.51	6
5		94140	.12	25476	.50	5	55	94560	.11	27280	.51	5
	6	94154	.12	25506	.50	4	56	94567	.11	27311	.51	4
5		94161	.12	25535	.50	3	57	94573	.11	27341	.51	3
	8	94168	.12	25565	.50	2	58	94580	.11	27372	.51	2
5	9	94175	.12	25595	.50	ī	59	94587	.11	27402	.51	1
6	0	94182	.12	25625	.50	0	60	94593	.11	27433	.51	0
17	1.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	D!"	M.
-									-			

29°

58

SINES AND TANGENTS.

63°

			No mart									
M.	Sine.	Di"	Tang.	DI″	М.	M.	Sine.	DI"	Tang.	DI"	M.	
0	9.94593	0.11	10.27433	0.51	60	0	9.94988	0.11	10.29283	0.52	60	
1	94600	0.11	27463	0.51 .51	59	1	94995	.11	29315	.52	59	I
2	94607	.11	27494	.51	58	2	95001	.11	29346	.52	58 57	l
34	94614 94620	.11	27524 27555	.51	57 56	34	95007 95014	.11	29377 29408	.52	56	l
5	94620	.11	27585	.51	55	5	95020	.11	29440	.52	55	l
6	94634	.11	27616	.51	54	6	95027	.11	29471	.52	54	l
7	94640	.11	27646	.51	53	7	95033	.11	29502	.52 .52	53	
8	94647	.11	27677	.51 .51	52	8	95039	.11	29534	.52	52	
9	94654	.11	27707	.51	51	9	95046	.11	29565	.52	51 50	I
10 11	94660 9.94667	.11	27738 10.27769	.51	50 49	10 11	95052 9.95059	.11	29596 10.29628	.52	49	
12	94674	.11	27799	.51	48	12	95065	.11	29659	.52	48	
13	94680	.11	27830	.51	47	13	95071	.11	29691	.52	47	
14	94687	.11	27860	.51	46	14	95078	.11	29722	.52 .52	46	l
15	94694	.11	27891	.51	45	15	95084	.11	29753	.52	45	l
16	94700	.11	27922	.51	44	16	95090	.11	29785	.52	44 43	l
17	94707	.11	27952 27983	.51	43 42	17 18	95097 95103	.11	29816 29848	.52	43	l
18 19	94714 94720	.11	28014	.51	41	10	95110	.11	29879	.52	41	l
20	94727	.11	28045	.51	40	20	95116	.11	29911	.52	40	l
21	9.94734	.11	10.28075	.51	39	21	9.95122	.11	10.29942	.53	39	I
22	94740	.11	* 28106	.51	38	22	95129	.11 .11	29974	.53 .53	38	l
23	94747	.11	28137	.51	37	23	95135	.11	30005	.53	37	l
24	94753	.11	28167	.51	36	24	95141	.11	30037	.53	36	I
25 26	94760	.11	28198 28229	.51	35 34	$\frac{25}{26}$	95148 95154	.11	30068 30100	.53	35 34	I
20 27	94767 94773	.11	28260	.51	33	20 27	95160	.11	30132	.53	33	l
28	94780	.11	28291	.51	32	28	95167	.11	30163	.53	32	ł
29	94786	.11	28321	.51	31	29	95173	.11	30195	.53	31	l
30	94793	.11	28352	.51	30	30	95179	.11	30226	.53	30	l
31	9.94799	.11	10.28383	.51	29	31	9.95185	.10	10.30258	.53	29	
32	94806	.11	28414	.51	28	32	95192	.10	30290	.53	28	I
33	94813	.11	28445	.51	27 26	33	95198	.10	30321	.53	27 26	I
34	94819 94826	.11	28476 28507	.51	20 25	34 35	95204 95211	.10	30353 30385	.53	20 25	I
36	94832	.11	28538	.52	24	36	95217	.10	30416	.53	24	I
37	94839	.11	28569	.52	23	37	95223	.10	30448	.53	23	1
38	94845	.11	28599	.52 .52	22	38	95229	.10	30480	.53 .53	22	I
39	94852	.11	28630	.52	21	39	95236	.10	30512	.53	21	I
40	94858	.11	28661	.52	20	40	95242	.10	30543	.53	20	I
41	9.94865	.11	10.28692	.52	19	41	9.95248 95254	.10	10.30575	.53	19	I
42 43	94871 94878	.11	28723 28754	.52	18 17	42 43	95254	.10	30607 30639	.53	18 17	1
44	94885	.11	28785	.52	16	44	95267	.10	30671	.53	16	
45	94891	.11	28816	.52	15	45	95273	.10	30702	.53	15	1
46	94898	.11	28847	.52	14	46	95279	.10	30734	.53	14	1
47	94904	.11	28879	.52	13	47	95286	.10	30766	.53	13	I
48	94911	.11	28910	.52	12	48	95292	.10	30798	.53	12	
49 50	94917 94923	.11	28941 28972	.52	11 10	49 50	95298 95304	.10	30830 30862	.53	11 10	
51	94923	.11	10.29003	.52	9	51	9.95310	.10	10.30894	.53	9	1
52	94936	.11	29034	.52	8	52	95317	.10	30926	.53	8	1
53	94943	.11	29065	.52	7	53	95323	.10	30958	.53	7	1
54	94949	.11	29096	.52	6	54	95329	.10	30990	.53 .53	- 6	1
55	94956	.11	29127	.52	5	55	95335	.10	31022	.53	5	1
56	94962	.11	29159	.52	4	56	95341	.10	31054	.53	4	۱
57 58	94969 94975	.11	29190 29221	.52	32	57 58	95348 95354	.10	31086	.53	32	I
59	94975	.11	29221	.52	1	59	95360	.10	31118 31150	.53	1	1
60	94988	.11	29283	.52	0	60	95366	.10	31182	.53	0	1
M.	Cosine.	D!"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	<u>M.</u>	
070	1		1. 500000			0	1 000110.		1 Oburike	1.01	1 JL.	1

59

TABLE IV.-LOGARITHMIC

1.1											
М	. Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	D1"	M.
(9.95366	0.10	10.31182	0.50	60	0	9.95728	0.10	10.33133		60
1		.10	31214	0.53	59	1	95733	0.10	33166	0.55	59
2		.10	31246	.53	58	2	95739	.10	33199	.55	58
4		.10	31278 31310	.54	57	34	95745	.10	33232	.55	57
5		.10	31342	.54	56	45	95751 95757	.10	33265 33298	.55	56 55
1 6		.10	31374	.54	54	6	95763	.10	33331	.55	54
1 7	95409	.10	31407	.54	53	7	95769	.10	33364	.55	53
8		.10	31439	.54	52	8	95775	.10	33397	.55 .55	52
1 9		.10	31471	.54	51	9	95780	.10	33430	.55	51
10	95427 9.95434	.10	31503 10.31535	.54	50 49	10 11	95786 9.95792	.10	33463 10.33497	.55	50 49
12	95440	.10	31568	.54	48	12	95798	.10	33530	.55	49
13	95446	.10	31600	.54	47	13	95804	.10	33563	.55	47
14	95452	.10	31632	.54	46	14	95810	.10	33596	.55	46
15	95458	.10	31664	.54	- 45	15	95815	.10	33629	.55 .55	45
16	95464	.10	31697 31729	.54	44	16	95821	.10	33663	.55	44
17	95470	.10	31761	.54	43 42	17 18	95827 95833	.10	33696 33729	.55	43 42
19	95482	.10	31794	.54	41	19	95839	.10	33762	.55	41
20	95488	.10	31826	.54	40	20	95844	.10	33796	.56	40
21	9.95494	.10 .10	10.31858	.54	39	21	9.95850	.10	10.33829	.56 .56	39
22	95500	.10	31891	.54	38	22	95856	.10	33862	.56	38
23 24	95507 95513	.10	31923 31956	.54	.37	23 24	95862	.10	33896 33929	.56	37
25	95519	.10	31988	.54	36 35	24	95868 95873	.10	33962	.56	36 35
26	95525	.10	32020	.54	34	26	95879	.10	33996	.56	34
27	95531	.10	32053	.54	33	27	95885	.10	34029	.56	33
28	95537	.10	32085	.54 .54	32	28	95891	.10	34063	.56	32
29	95543	.10	32118	.54	31	. 29	95897	.10	34096	.56	31
30 31	95549 9.95555	.10	32150 10.32183	.54	30	30 31	95902 9.95908	.10	34130 10.34163	.56	30 29
32	9.95561	.10	32215	.54	29 28	31	95914	.10	34197	.56	29 28
33	95567	.10	32248	.54	27	33	95920	.10	34230	.56	27
34	95573	.10 .10	32281	.54	26	34	95925	.10	34264	.56	26
35	95579	.10	32313	.54	25	35	95931	.10	34297	.56	25
36	95585	.10	32346	.54	24	36	95937	.10	34331	.56	24
37	95591 95597	.10	$32378 \\ 32411$.54	23 22	37 38	95942 95948	.10	34364 34398	.56	23 22
39	95603	.10	32444	.54	21	39	95954	.10	34432	.56	21
40	95609	.10	32476	.54	20	40	95960	.10	34465	.56	20
41	9.95615	.10	10.32509	.54 .54	19	41	9.95965	.10	10.34499	.56	19
42	95621	.10	32542	.55	18	42	95971	.09	34533	.56	18
43	95627 95633	.10	$32574 \\ 32607$.55	17 16	43 44	95977 95982	.09	$34566 \\ 34600$.56	17 16
44	95639	.10	32640	.55	10	44	95988	.09	34634	.56	15
46	95645	.10	32673	.55	14	46	95994	.09	34667	.56	14
47	95651	.10	32705	.55	13	47	96000	.09	34701	.56	13
48	95657	.10	32738	.55	12	48	96005	.09	34735	.56	12
49	95663	.10	32771	.55	11	49	96011	.09	$34769 \\ 34803$.56	11 10
50	95668 9.95674	.10	32804 10.32837	.55	10 9	50 51	96017 9.96022	.09	34803	.56	9
52	95680	.10	32869	.55	8	52	96022	.09	34870	.56	8
53	95686	.10	32902	.55	7	53	96034	.09	34904	.56	7
54	95692	.10 .10	32935	.55	6	54	96039	.09	34938	.56	6 .
55	95698	.10	32968	.55	5	55	96045	.09	34972	.57	5
56	95704 95710	.10	33001	.55	43	56 57	96050 96056	.09	35006 35040	.57	4 3
58	95710	.10	33034 33067	.55	32	58	96050	.09	35040	.57	2
59	95722	.10	33100	.55	1	59	96067	.09	35108	.57	ĩ
60	95728	.10	10.33133	.55	Ô	60	96073	.09	35142	.57	0
M	Cosine.	<u>D</u> !"	Cotang.	D!"	M.	<u>M.</u>	Cosine.	DI"	Cotang.	DP"	<u>M.</u>
030											240

60

SINES AND TANGENTS.

00-			SINI	ED A.	ND	TAN	arvis.				
M.	Sine.	Dl″	Tang.	DI"	M.	M .	Sine.	DI"	Tang.	DI"	M.:
0	9.96073	0.00	10.35142	0.5.0	60	0	9.96403	0.00	10.37215	0.50	60
1	96079	0.09	35176	0.57	59	1	96408	0.09	37250	0.59	. 59
2	96084	.09	35210	.57	58	2	96413	.09	37285	.59	58
3	96090	.09	35244	.57	57	3	96419	.09	37320	.59	57
4	96095	.09	35278	.57	56	4	96424	09	37355	.59	56
5	96101	.09	35312	.57	55	5	96429	.09	37391	.59	55
6	96107	.09	35346	.57	54	6	96435	.09	37426	.59	54
7	96112	.09	35380	.57	53	7	96440	.09	37461	.59	53
8	96118	.09	35414	.57	52	8	96445	.09	37496 37532	.59	52
9	96123	.09	35448	.57	51	9 10	96451 96456	.09	37567	.59	51
10	96129 9.96135	.09	35483 10.35517	.57	50 49	11	9.96461	.09	10.37602	.59	50 49
112	96140	.09	35551	.57	48	12	96467	.09	37638	.59	48
13	96146	.09	35585	.57	47	13	96472	.09	37673	.59	47
14	96151	.09	35619	.57	46	14	96477	.09	37708	.59	46
15	96157	.09	35654	.57	45	15	96483	.09	37744	.59	45
16	96162	.09	35688	.57	44	16	96488	.09	37779	.59	44
17	96168	.09	35722	.57	43	17	96493	.09	37815	.59	43
18	96174	.09	35757	.57	42	18	96498	.09	37850	.59 .59	-42
19	96179	.09	35791	.57	41	19	96504	.09	37886	.59	41
20	96185	.09	35825	.57	40	20	96509	.09	37921	.59	40
21	9.96190	.09	10.35860	.57	39	21	9.96514	.09	10.37957	.59	39
22	96196	.09	35894	.57	38	22	96520	.09	37992	.59	38
23	96201	.09	35928	.57	37	23	96525	.09	38028	.59	37
24	96207	.09	35963	.57	36	24	96530	.09	38064	.59	36
25	96212	.09	35997	.57	35	25 26	96535	.09	38099	.59	35
26	96218	.09	36032 36066	.57	34 33	20 27	96541 96546	.09	38135 38170	.59	34 33
27 28	96223 96229	.09	36101	.58	32	28	96551	.09	38206	.59	32
29	96234	.09	36135	.58	31	29	96556	.09	38242	.60	31
30	96240	.09	36170	.58	30	30	96562	.09	38278	.60	30
31	9.96245	.09	10.36204	.58	29	31	9.96567	.09	10.38313	.60	29
32	96251	.09	36239	.58	28	32	96572	.09	38349	.60	28
33	96256	.09	36274	.58	27	33	96577	.09	38385	.60	27
34	96262	.09	36308	.58	26	34	96582	.09	38421	.60 .60	26
35	96267	.09	36343	.58	25	35	96588	.09	38456	.60	25
36	96273	.09	56377	.58	24	36	96593	.09	38492	.60	24
37	96278	.09	36412	.58	23	37	96598	.09	38528	.60	23
38	96284	.09	36447	.58	22	38	96603	.09	38564	.60	22
39	96289	.09	36481	.58	21	39	96608	.09	38600	.60	21
40	96294	.09	36516	.58	20	40	96614	.09	38636	.60	20
41 42	9.96300 96305	.09	10.36551 36586	.58	19 18	41 42	9.96619 96624	.09	10.38672 38708	.60	19 18
43	96311	.09	36621	.58	17	43	96629	.09	38744	.60	17
44	96316	:09	36655	.58	16	44	96634	.09	38780	.60	16
45	96322	.09	36690	.58	1.15	45	96640	.09	38816	.60	15
46	96327	1.09	36725	.58	14	46	96645	.09	38852	.60	14
47	96333	.09	36760	.58	13	47	96650	.09	38888	.60	13
48	96338	.09	36795	.58	12	48	96655	.09	38924	.60	12
49	96343	00	36830	.58	11	49	96660	.09	38960	.60	11
50	96349	00	36865	.58	10	50	96665	.09	38996	.60	10
51	9.96354	00	10.30899	.58	9	51	9.96670	.09	10.39033	.60	9
52	96360	00	36934	.58	8 7	52	96676	.09	39069	60	8
53	96365	00	30909	50	7	53	96681	.09	39105	.60	7
54	96370	00		1 50	6 5	54 55	96686	.09	39141 39177	.60	65
56	96376 96381	1.09	37074	.58	4	56	96696	.09	39177	.60	34
57	96387	09	27110	.08	3	57	96701	.09	39214	.60	4 3
58	96392	.09	27145	.08	2	58	96706	.09	39286	.61	2
59	96397	08	37180	.58	Ĩ	59	96711	.09	39323	.61	1
60			37215		0	60	96717	.09	39359		Ô
M	Contra	- DI"		DI"	M.	-	Contra	DI"	Coteres	DI"	M.
L	. Cosine.	Dt"	Cotang.	DI'	M.	М.	Cosine.	DP"	Cotang.	1 DI"	1 .

230

61

2:20

67%

TABLE IV .- LOGARITHMIC

-	Ŧ	0

1	М.	Sine.	Dl"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	Dl"	M.
	0	9.96717	0.00	10.39359	0.01	60	0	9.97015		10.41582		60
	1	96722	0.08	39395	0.61	59	1	97020	0.08	41620	0.63	59
	2	96727	.08	39432	.61	58	2	97025	.08	41658	.63	58
	3	96732	.08	39468	.61	57	3	97030	.08	41696	.63	57
	4	96737	.08	39505	.61	56	4	97035	.08	41733	.63	56
	56	96742 96747	.08	39541 39578	.61	55 54	56	97039 97044	.08	41771 41809	.63	55
1	7	96752	.08	39518	.61	53	7	97044	.08	41809	.63	54 53
	8	96757	.08	39651	.61	52	8	97054	.08	41885	.63	52
.	9	96762	.08	39687	.61	51	9	97059	.08	41923	.63	51
•	10	96767	.08	39724	.61	50	10	97063	.08	41961	.63	50
1	11	9.96772	.08	10.39760	.61	49	11	9,97068	.08	10.41999	.63	49
	12	96778	.08	39797	.61	48	12	97073	.08	42037	.63	48
1	13	96783	.08	39834	.61	47	13	97078	.08	42075	.63 .63	47
1	14	96788	.08	39870	.61	46	14	97083	.08	42113	.64	46
1	15	96793	.08	39907	.61	45	15	97087	.08	42151	.64	45
	16	96798	.08	39944	.61	44	16	97092	.08	42190	.64	44
	17 18	96803 96808	.08	39981 40017	.61	43 42	17 18	97097 97102	.08	42228 42266	.64	43
	19	96813	.08	40017	.61	41	19	97102	.08	42200	.64	42
1	20	96818	.08	40091	.61	40	20	97111	.08	42342	.64	40
1	21	9.96823	.08	10.40128	.61	39	21	9.97116	.08	10.42381	.64	39
1	22	96828	.08	40165	.61	38	22	97121	.08	42419	.64	38
	23	96833	.08	40201	.61	37	23	97126	.08	42457	.64	37
	24	96838	.08	40238	.62 .62	36	24	97130	.08	42496	.64 .64	36
	25	96843	.08	40275	.62	35	25	97135	.08	42534	.64	35
1	26	96848	.08	40312	.62	34	26	97140	.08	42572	.64	34
1	27	96853	.08	40349	.62	33	27	97145	.08	42611	.64	33
1	28	96858	.08	40386	.62	32	28	97149	.08	42649	.64	32
1	29 30	96863	.08	40423 40460	.62	31 30	29 30	97154	.08	42688 42726	.64	31
Ŧ	31	96868 9.96873	.08	10.40497	.62	29	31	97159 9.97163	.08	10.42765	.64	30 29
1	32	96878	.08	40534	.62	28	32	97168	.08	42803	.64	28
1	33	96883	.08	40571	.62	27	33	97173	.08	42842	.64	27
	34	96888	.08	40609	.62	26	34	97178	.08	42880	.64	26
1	35	96893	.08	40646	.62	25	35	97182	.08	42919	.64	25
1	36	96898	.08	40683	.62 .62	24	36	97187	.08	42958	.64	24
1	37	96903	.08	40720	.62	23	37	97192	.08	42996	.65	23
	38	96907	.08	40757	.62	22	38	97196	.08	43035	.65	22
1	39	96912	.08	40795	.62	21	39	97201	.08	43074	.65	21
Ŧ	40	96917	.08	40832	.62	20	40	97206	.08	43113	.65	20
T	41 42	9.96922 96927	.08	10.40869 40906	.62	19 18	41 42	9.97210 97215	.08	10.43151 43190	.65	19 18
	44	96932	.08	40900	.62	18	42	97213	.08	43190	.65	18
1	44	96937	.08	40944	.62	16	44	97224	.08	43268	.65	16
	45	96942	.08	41019	.62	15	45	97229	.08	43307	.65	15
1	46	96947	.08	41056	.62	14	46	97234	.08	43346	.65	14
1	47	96952	.08	41093	.62 .62	13	47	97238	.08	43385	.65 .65	13
1	48	96957	.08	41131	.62	12	48	97243	.08	43424	.05	12
1	49	96962	.08	41168	.63	11	49	97248	.08	43463	.65	11
1	50	96966	.08	41206	.63	10	50	97252	.08	43502	.65	10
	51	9.96971	.08	10.41243	.63	9	51	9.97257	.08	10.43541	.65	9 8
	52 53	96976 96981	.08	41281 41319	.63	87	52 53	97262 97266	.08	43580 43619	.65	87
1	50 54	96986	.08	41319	.63	6	54	97260 97271	.08	43658	.65	8
1	55	96991	.08	41394	.63	5	55	97276	.08	43697	.65	5
	56	96996	.08	41431	.63	4	56	97280	.08	43736	.65	4
	57	97001	.08	41469	.63	3	57	97285	.08	43776	.65	3
	58	97005	.08	41507	.63	2	58	97289	.08	43815	.65	2
1	59	97010	.08	41545	.63 .63	1	59	97294	.08	43854	.00	1
1	60	97015	.00	41582	.03	0	60	97299	.10	43893	.00	0
1	M.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	D!"	M.
L	10						9				-	200

SINES AND TANGENTS.

710

			DIN				I G BH I S	1.1			
М.	Sine.	DI"	Tang.	DI″	M.	M.	Sine.	-D1″	Tang.	DI"	М.
0	9.97299		10.43893	0.00	60	0	9.97567		10.46303		60
1	97303	0.08	43933	0.66	59	1	97571	0.07	46344	0.68	59
2	97308	.03	43972	.66	58	2	97576	.07	46385	.08	58
3	97312	.08	44011	.66	57	3	97580	.07	46426	.69	57
45	97317 97322	.08	44051 44090	.66	56 55	45	97584 97589	.07	46467 46508	.69	56 55
6	97326	.08	44030	.66	54	6	97593	.07	46550	.69	54
7	97331	.08	44169	.66	53	7	97597	.07	46591	.69	53
8	97335	.08	44209	.66 .66	52	8	97602	.07	46632	.69	52
9	97340	.08	44248	.00	51	9	97606	.07	46673	.09	51
10	97344	.08	44288	.66	50	10	97610	.07	46715	.69	50
11 12	9.97349 97353	.08	10.44327 44367	.66	49 48	11 12	9.97615 97619	.07	10.46756 46798	.69	49 48
13	97358	.08	44407	.66	40	12	97623	.07	46798	.69	40
14	97363	.08	44446	.66	46	14	97628	.07	46880	.69	46
15	97367	.08	44486	.66	45	15	97632	.07	46922	.69	45
16	97372	.08	44526	.66 .66	44	16	97636	.07	46963	.69 .69	44
17	97376	.08	44566	.66	43	17	97640	.07	47005	.69	43
18	97381 97385	.08	44605 44645	.66	42 41	18 19	97645 97649	.07	47047 47088	.69	42 41
20	97390	.08	44685	.66	40	20	97653	.07	47088	.69	41 40
21	9.97394	.08	10.44725	.66	39	21	9.97657	.07	10.47171	.69	39
22	97399	.08	44765	.67 .67	38	22	97662	.07	47213	.70	38
23	97403	.08	44805	.67	37	23	97666	.07	47255	.70	37
24	97408	.07	44845	.67	36	24	97670	.07	47297	.70	36
25 26	97412 97417	.07	44885 44925	.67	35 34	25 26	97674 97679	.07	47339	.70	35 34
27	97421	.07	44925	.67	33	27	97683	.07	47380 47422	.70	33
28	97426	.07	45005	.67	32	28	97687	.07	47464	.70	32
29	97430	.07	45045	.67	31	29	97691	.07	47506	.70	31
30	97435	.07	45085	.67	30	30	97696	.07	47548	.70	30
31	9.97439	.07	10.45125	.67	29	31	9.97700	.07	10.47590	.70	29
32 33	97444 97448	.07	45165 45206	.67	28 27	32 33	97704 97708	.07	47632 47674	.70	28 27
34	97453	.07	45246	.67	26	30 34	97713	.07	47716	.70	26
35	97457	.07	45286	.67	25	35	97717	.07	47758	.70	25
36	97461	.07	45327	.67 .67	24	36	97721	.07	47800	.70	24
37	97466	.07	45367	.67	23	37	97725	.07	47843	.70 .70	23
38	97470	.07	45407	.67	22	38	97729	.07	47885	.70	22
39 40	97475 97479	.07	45448 45488	.67	21 20	39 40	97734 97738	.07	47927	.70	21 20
41	9.97484	.07	10.45529	.67	19	40	9.97742	.07	47969 10.48012	.71	19
42	97488	.07	45569	.67	18	42	97746	.07	48054	.71	18
43	97492	.07	45610	.68	17	43	97750	.07	48097	.71	17
44	97497	.07	45650	.03	16	44	97754	.07	48139	.71	16
45	97501	.07	45691	.68	15	45	97759	.07	48181	.71	15
40 47	97506 97510	.07	45731 45772	.68	14 13	46	97763 97767	.07	48224	.71	14
48	97515	.07	45772	.68	13	47 48	97771	.07	48266 48309	.71	13 12
49	97519	.07	45853	.68	11	49	97775	.07	48352	.71	11
50	97523	.07	45894	.68 .68	10	50	97779	.07	48394	.71	10
51	9.97528	.07	10.45935	.68	9	51	9.97784	.07	10.48437	.71	9
52	97532	.07	45975	.68	8	52	97788	.07	48480	.71	8
53 54	97536 97541	.07	46016 46057	.68	76	53 54	97792 97796	.07	48522	.71	7
55	97545	.07	46098	.68	5	55	97800	.07	48565 48608	.71	65
56	97550	.07	46139	.68	4	56	97804	.07	48651	.71	4
57	97554	.07	46180	.68 .68	3	57	97808	.07	48694	.71	3
58	97558	.07	46221	.68	2	58	97812	.07	48736	.72 .72	2
59	97563	.07	46262	.68	1	59	97817	.07	48779	.72	1
60	97567		46303	the second	0	60	97821	143	48822	201	0
М.	Cosine.	D1"	Cotang.	DI"	M	М.	Cosine.	D1"	Cotang.	D1"	M.
100		7		-	6	9	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (-			100

19°

63

TABLE IV.-LOGARITHMIC

M.	Sine,	D."	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	Di"	M.
										-	
0	9.97821 97825	0.07	10.48822	0.72	60	0	9.98060	0.06	10.51466	0.75	60
2	97829	.07	48865 48908	72	59 58	$\frac{1}{2}$	98063 98067	.06	51511 51557	.75	59 58
1 3	97833	.07	48952	.72	57	3	98071	.06	51602	.75	57
4	97837	.07	48995	.72	56	4	98075	.06	51647	.76	56
5	97841	.07	49038	.72	55	5	98079	.06	51693	.76	55
6	97845	.07	49081	.72	54	6	98083	.06	51738	.76	54
7	97849	.07	49124	72	53	7	98087	.06	51783	.76	53
89	97853	.07	49167	72	52 51	8	98090	.06	51829	.76	52
10	97857 97861	.07	49211 49254	.72	50	9 10	98094 98098	.06	51874 51920	.76	51 50
111	9.97866	.07	10.49297	.72	49	11	9.98102	.06	10.51965	.76	49
112	97870	.07	49341	.72	48	12	98106	.06	52011	.76	48
13	97874	.07	49384	.72	47	13	98110	.06	52057	.76	47
14	97878	.07	49428	.72	46	14	98113	.06	52103	.76 .76	46
15	97882	.07	49471	.72 .73	45	15	98117	.06	52148	.76	45
16	97886	.07	49515	.73	41	16	98121	.06	52194	.76	44
17	97890	.07	49558	73	43	17	98125	.06	52240	.76	43
18	97894	.07	49602	.73	42	18	98129	.06	52286	.77	42
19 20	97898 97902	.07	49645 49689	73	41 40	19 20	98132 98136	.06	52332 52378	.77	41 40
21	97902	.07	49089	.73	39	20	9.98140	.06	10.52424	.77	40 39
22	97910	.07	49777	.73	38	22	98144	.06	52470	.77	38
23	97914	.07	49820	.73	37	23	98147	.06	52516	.77	37
24	97918	.07	49864	.73 .73	36	24	98151	.06	52562	.77	36
25	97922	.07	49908	.73	35	25	98155	.06	52608	.77	35
26	97926	.07	49952	.73	34	26	98159	.06	52654	.77	34
27	979:30	.07	49996	.73	33	27	98162	.06	52701	.77	33
23	97934	.07	50040	.73	32	28	98166	.06	52747	.77	32
29 30	97938	.07	50084	.73	31	29 30	98170	.06	52793 52840	.77	31
31	97942 9.97946	.07	50128 10.50172	.73	30 29	31	98174 9.98177	.06	10.52886	.77	30 29
32	97950	.07	50216	.74	28	32	98181	.06	52932	.77	28
33	97954	.07	50260	.74	27	33	98185	.06	52979	.77	27
34	97958	.07	50304	.74	26	34	98189	.06	53025	.78 .78	26
35	97962	.07	50348	.74 .74	25	35	98192	.06	53072	.78	25
36	97966	.07	50393	.74	24	36	98196	.06	53119	.78	24
37	97970	.07	50437	.74	23	37	98200	.06	53165	.78	23
38	97974	.07	50481	.74	22	38	98204	.06	53212 53259	.78	22
39 40	97978 97982	.07	50526 50570	.74	21 20	39 40	98207 98211	.06	53306	.78	21 20
40	9,97986	.07	10.50615	.74	19	40	9.98215	.06	10.53352	.78	19
42	97989	.07	50659	.74	18	42	98218	.06	53399	.78	18
43	97993	.07	50704	.74	17	43	98222	.06	53446	.78	17
44	97997	.07	50748	.74	16	44	98226	.06	53493	.78 .78	16
45	98001	.07	50793	.74	15	45	98229	.00	53540	.78	15
46	98005	.07	50837	.74	14	46	98233	.06	53587	.78	14
47	98009	.07	50882	.75	13	47	98237	.06	53634	.79	13
48	98013 98017	.07	50927	.75	12 11	48 49	98240 98244	.06	53681 53729	.79	12 11
49 50	98017	.07	50971 51016	.75	10	49	98244 98248	.06	53776	.79	10
51	9.98025	.07	10.51061	.75	9	51	9.98251	.06	10.53823	.79	9
52	98029	.06	51106	.75	8	52	98255	.06	53870	.79	8
53	98032	.06	51151	.75	7	53	98259	.06	53918	.79 .79	7
54	98036	.06	51196	.75 .75	6	54	98262	.06	53965	.79	6
55	98040	.06	51241	.75	5	55	98266	.06	54013	.79	5
56	98044	.06	51286	.75	4	56	98270	.06	54060	.79	4
57 58	98048	.06	51331	.75	32	57 58	98273 98277	.06	54108 54155	.79	32
58 59	98052 98056	.06	51376 51421	.75	2	58 59	98277 98281	.06	54155	.79	1
60	98060	.06	51466	.75	1	60	98284	.06	54250	.79	0
				DI"				DI"		-D!"	
М.	Cosine.	DI	Cotang.	DI"	M.	M.	Cosine.	DI.	Cotang.	DI.	м.

740

SINES AND TANGENTS.

-												
	M.	Sme.	DI"	Taug.	DI"	M.	M.	· Sine,	DI"	Tang.	DI"	M.
L		0.00001		20 240:0				0.00101		10 57105		
L	0	9.98284	0.06	10.54250	0.80	60	0	9.98494	0.06	10.57195	0.84	60
L	1	98288	.06	54298	.80	59	1	98498	.06	57245	.84	59
i.	2	98291	.06	54346	.80	58	2	98501	.06	57296	.84	58
I.	3	98295	.06	54394	.80	57	3	98505	.06	57347	.85	57
ł.	4	98299	.06	54441		56	4	98508	.06	57397	.85	56
I.	5	98302		54489	.80	55	5	98511	.06	57448	.85	55
I.	6	98306	.06	54537	.80	54	6	98515		57499		54
ł	7	98309	.06	54585	.80	53	7	98518	.06	57550	.85	53
ł	8	98313	.06	54633	.80	52	8	98521	.06	57601	.85	52
T	9	98317	.06	54681	.80	51	9	98525	.06	57652	.85	51
Ł	10	98320	.06	54729	.80	50	10	98528	.06	57703	.85	50
L		9.98324	.06	10,54778	.80	49	11	9.98531	.06	10.57754	.85	49
ł	11		.06		.80			98535	.06	57805	.85	49
L	12	98327	.06	54826	.80	48	12		.06		.85	
ł.	13	98331	.06	54874	.80	47	13	98538	.06	57856	.85	47
ł	14	98334	.06	54922	.81	46	14	98541	.06	57907	.85	46
Ł	15	98338	.06	54971	.81	45	15	98545	.06	57959	.86	45
L	16	98342	.06	55019		44	16	98548	.06	58010	.86	44
ł	17	98345		55067	.81	43	17	98551	.06	58061	.86	43
	18	98349	.06	55116	.81	42	18	98555		58113	.86	42
1	19	98352	.06	55164	.81	41	19	98558	.06	58164	.00	41
1	20	98356	.06	55213	.81	40	20	98561	.06	58216	.86	40
ł	21	9.98359	.06	10.55262	.81	39	21	9,98565	.06	10.58267	.86	39
1	22	98363	.06	55310	.81	38	22	98568	.06	58319	.86	38
I.	23	98366	.06	- 55359	.81	37	23	98571	.05	58371	.86	37
			.06		.81		23	98574	.05	58422	.86	
	24	98370	.06	55408	.81	36		98578	.05		.86	36
	25	98373	.06	55456	.81	35	25		.05	58474	.86	35
	26	98377	.06	55505	.81	34	26	98581	.05	.58526	.87	34
	27	98381	.06	55554	.82	33	27	98584	.05	58578	.87	33
1	28	98384	.06	55603	.82	32	28	98588	.05	58630	.87	32
1	29	98388	.06	55652		31	29	98591	.05	58682	.87	31
	30	98391		55701	.82	30	30	98594		58734		30
1	31	9.98395	.06	10.55750	.82	29	31	9.98597	.05	10.58786	.87	29
	32	98398	.06	55799	.82	28	32	98601	.05	58839	.87	28
	33	98402	.06	55849	.82	27	33	98604	.05	58891	.87	27
1	34	98405	.06	55898	.82	26	34	98607	.05	58943	.87	26
1	35	98409	.06	55947	.82	25	35	98610	.05	58995	.87	25
1	36	93412	.06	55996	.82	24	36	98614	.05	59048	.87	24
1			.06	56046	.82	24 23	37	98617	.05	59100	.87	23
	37	98415	.06		.82	22		98620	.05		.88	20 22
1	38	98419	.06	56095	.82		38		.05	* 59153	.88	
	39	98422	.06	56145	.83	21	39	98623	.05	59205	.88	21
	40	98426	.06	56194	.83	20	40	98627	.05	59258	.88	20
1	41	9.98429	.06	10.56244	.83	19	41	9.98630	.05	10.59311	.88	19
1	42	98433	08	56293	.83	18	42	98633	.05	59364	.88	18
	43	98436	66	56343	.83	17	43	98636	.05	59416	.88	17
	44	98440	.06	56393	.83	16	44	98640	.05	59469	.88	16
	45	98443	.06	56442		15	45	98643	.05	59522	.88	15
	46	98447		56492	.83	14	46	98646		59575		14
1	47	98450	.00	56542	.83	13	47	98649	.05	59628	.88	13
	48	98453	.00	56592	.83	12	48	98652	.00	59681	.88	12
1	49	98457	.00	56649	.83	11	49	98656	.05	59734	.89	11
1	50	98460	.00	56609	.83	10	50	98659	.05	59788	.89	10
	51	9.98464	.00	10 58719	.83	9	51	9.98662	.05	10.59841	.89	9
	52	9.98467	1.00	56709	.84	8	52	98665	.00	. 59894	.89	8
	53		1 06	56842	.84	7	53	98668	.05	59948	.00	7
		98471			.84	6			.05		.89	6
	54	98474	06	20592	.84		54	98671	.05	60001	0.0	
	55	98477	06	00940	01	5	55	98675	05	60055	1. 80	5
	56	98481	06	20233	21	4	56	98678	.05	60108	1 80	4
	57	98484	0.6	01043	9.1	3	57	98681	0:	60162	80	3
	58	98488	06	01094	9.1	2	58	98684	05	60215	00	2
	59	98491	.06	3/144	01	1	59	98687	.05	60269	00	1
	60	98494	.00	57195	.84	0	60	98690	.05	60323	.90	0
			DI					1.	-		DI	
	М.	Cosine.	DI"	Cotang.	D1"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.

150

65 .

•11

75°

TABLE IV.-LOGARITHMIC

M.	Sine.	DI"	Tang.	DI".	M.	M.	Sine.	DI"	Tang.	DI"	M.
0	9.98690		10.60323		60	0	9.98872		10.63664		60
1	98694	0.05	60377	0.90	59	1	98875	0.05	63721	0.96	59
2	98697	.05	60431	.90	58	2	98878	.05	63779	.96	58
3	98700	.05	60485	.90	57	3	98881	.05	63837	.96	57
4	98703	.05	60539	.90	56	4	98884	.05	63895	.90	56
5	98706	.05	60593	.90	55	5	98887	.05	63953	.97	55
6	98709	.05	60647	.90	54	6	98890	.05	64011	.97	54
7	98712	.05	60701	.90	53	7	98893	.05	64069	.97	53
8	98715	.05	60755	.91	52	8	98896	.05	64127	.97	52
9	98719	.05	60810	.91	51	9	98898	.05	64185	.97	51
10 11	98722	.05	60864 10.60918	.91	50 49	10 11	98901	.05	64243 10.64302	.97	50 49
12	9.98725 98728	.05	60973	.91	49	12	9.98904 98907	.05	64360	.97	49 48
13	98731	.05	61028	.91	47	13	98910	.05	64419	.98	47
14	98734	.05	61082	.91	46	14	98913	.05	64477	.98	46
15	98737	.05	61137	.91	45	15	98916	.05	64536	.98	45
16	98740	.05	61192	.91	44	16	98919	.05	64595	.98	44
17	98743	.05	61246	.91	43	17	98921	.05	64653	.98	43
18	98746	.05	61301	.91	42	18	98924	.05	64712	.98	42
19	98750	.05	61356	.92	41	19	98927	.05	64771	.98	41
20	98753	.05	61411	.92	40	20	98930	.05	64830	.98 .98	40
21	9.98756	.05	10.61466	.92	39	21	9.98933	.05	10.64889	.99	39
22	98759	.05	61521	.92	38	22	98936	.05	64949	.99	38
23	98762	.05	61577	.92	37	23	98938	.05	65008	.99	37
24	98765	.05	61632	.92	36	24	98941	.05	65067	.99	36
25	98768	.05	61687	.92	35	25	98944	.05	65126	.99	35
26	98771	.05	61743	.92	34	26	98947	.05	65186	.99	34
27	98774	.05	61798	.93	33	27	98950	.05	65245	.99	33
28 29	98777 98780	.05	61853 61909	.93	32 31	28 29	98953 98955	.05	65305 65365	.99	32 31
30	98783	.05	61965	.93	30	30	98958	.05	65424	1.00	30
31	9.98786	.05	10.62020	.93	29	31	9.98961	.05	10.65484	1.00	29
32	98789	.05	62076	.93	28	32	98964	.05	65544	1.00	28
33	98792	.05	62132	.93	27	33	98967	.05	65604	1.00	27
34	98795	.05	62188	.93	26	34	98969	.05	65664	1.00	26
35	98798	.05	62244	.93	25	35	98972	.05	65724	1.00	25
36	98801	.05	62300	.93	24	36	98975	.05	65785	1.00	24
37	98804	.05	62356	.95	23	37	98978	.05	65845	1.00	23
38	98807	.05	62412	.94	22	38	98980	.05	65905	1.01	22
39	98810	.05	62468	.94	21	39	98983	.05	65966	1.01	21
40	98813	.05	62524	.94	20	40	98986	.05	66026	1.01	20
41	9.98816	.05	10.62581	.94	19	41	9.98989	-05	10.66087	1.01	19
42 43	98819 98822	.05	62637 62694	.94	18 17	42	98991 98994	.05	66147 66208	1.01	18
43	98822	.05	62750	.94	16	43 44	98994 98997	.05	66269	1.01	17 16
45	98828	.05	62807	.94	10	44	99000	.05	66330	1.01	15
46	98831	.05	62863	.94	14	46	99002	.05	66391	1.02	14
47	98834	.05	62920	.95	13	47	99005	.05	66452	1.02	13
48	98837	.05	62977	.95	12	48	99008	.05	66513	1.02	12
49	98840	.05 .05	63034	.95	11	49	99011	.05	66574	1.02	11
50	98843	.05	63091	.95	10	50	99013	.05 .05	66635	$1.02 \\ 1.02$	10
51	9.98846	.05	10.63148	.95	9	51	9.99016	.05	10.66697	1.02	9
52	98849	.05	63205	.95	8	52	99019	.05	66758	1.02	8
53	98852	.05	63262	.95	7	53	99022	.05	66820	1.03	7
54	98855	.05	63319	.95	6	54	99024	.05	66881	1.03	6
55	98858	.05	63376	.96	5	55	99027	.05	66943 67005	1.03	5
56	98861	.05	63434 63491	.96	4	56	99030	.05	67005 67067	1.03	4 3
58	98864 98867	.05	63548	.96	32	57 58	99032 99035	.04	67128	1.03	2
59	98869	.05	63606	.96	1	59	99035	.04	67190	1.03	ĩ
60	98872	.05	63664	.96	0	60	99040	.04	67253	1.03	Ő
M.	Cosine.	Dl"	Cotang.	Dl″	М.	M.	Cosine.	DI"	Cotang.	DI"	М.

SINES AND TANGENTS.

M.	Sine.	Dl″	Tang.	Dl″	M.	M.	Sine.	DI"	Tang.	DI"	M.
0	9.99040	0.04	10.67253	1.04	60	0	9.99195	0.04	10.71135	1 10	60
1	99043	.04	67315	1.04	59	1	99197	.04	71202	$1.13 \\ 1.13$	59
2	99046	.04	67377	1.04	58	2	99200	.04	71270	1.13	58
3	99048	.04	67439	1.04	57	3	99202	.04	71338	1.13	57
4	99051	.04	67502	1.04	56	4	99204	.04	71405	1.13	56
5	99054	.04	67564	1.04	55	5	99207	.04	71473	1.13	55
6	99056	.01	67627	1.04	54	6	99209	.04	71541	1.13	54
7	99059	.04	67689	1.05	53	7	99212	.04	71609	1.14	53
8	99062	.04	67752	1.05	52	8	99214	.04	71677	1.14	52
9	99064	.04	67815	1.05	51	9	99217	.04	71746	1.14	51
10	99067	.04	67878	1.05	50	10	99219	.04	71814	1.14	50
11 12	9.99070	.04	10.67941 68004	1.05	49 48	11 12	9.99221 99224	.04	10.71883	1.14	49 48
12	99072 99075	.04	68067	1.05	40 47	12	99224	.04	71951 72020	1.14	40
14	99078	.04	68130	1.05	46	14	99220	.04	72089	1.15	46
15	99018	.04	68194	1.06	45	15	99223	.04	72158	1.15	45
16	99083	.04	68257	1.06	44	16	99233	.04	72227	1.15	44
17	99086	.04	68321	1.06	43	17	99236	.04	72296	1:15	43
18	99088	.04	68384	1.06	42	18	99238	.04	72365	1.15	42
19	99088	.04	68448	1.06	41	19	99230	.04	72434	1.16	41
20	99093	.04	68511	1.06	40	20	99243	.04	72504	1.16	40
21	9.99096	.04	10.68575	1.06	39	21	9.99245	.04	10.72573	1.16	39
22	99099	.04	68639	1.07	38	22	99248	.04	72643	1:16	38
23	99101	.04	68703	1.07	37	23	99250	.04	72712	1.16	37
24	99104	.04	68767	1.07	36	24	99252	.04	72782	1.16	36
25	99106	.04	68832	1.07	35	25	99255	.04	72852	1.17	35
26	99109	.04	68896	1.07	34	26	99257	.04	72922	1.17	34
27	99112	.04	68960	1.07	33	27	99260	.04	72992	1.17	33
28	99114	.04	69025	1.07	32	28	99262	.04	73063	1.17	32
29	99117	.04	69089	1.08	31	29	99264	.04	73133	1.17	31
30	99119	.04	69154	1.08	30	30	99267	.04	73203	1.17	30
31	9.99122	.04	10.69218	1.08	29	31	9.99269	.04	10.73274	1.18	29
32	99124	.04	69283	1.08 1.08	28	32	99271	.04	73345	1.18 1.18	28
33	99127	.04	69348	1.08	27	33	99274	.04	73415	1.18	27
34	99130	.04	69413	1.08	26	34	99276	.04	73486	1.18	26
35	99132	.04	69478	1.09	25	35	99278	.04	73557	1.19	25
36	99135	.04	69543	1.09	24	36	99281	.04	73628	1.19	24
37	99137	.04	69609	1.09	23	37	99283	.04	73699	1.19	23
38	99140	.04	69674	1.09	22	38	99285	04	73771	1.19	22
39	99142	.04	69739	1.09	21	39	99288	.04	73842	1.19	21
40	99145	.04	69805	1.09	20	40	99290	.04	73914	1.19	20
41	9.99147	.04	10.69870	1.10	19	41	9.99292	.04	10.73985	1.20	19 18
42	99150	.04	69936	1.10	18	42	99294	.04	74057	1.20	
43 44	99152 99155	.04	70002 70068	1.10	17 16	43 44	99297 99299	.04	74129 74201	1.20	17 16
44 45	99155 99157	.04	70068	1.10	10	44 45	99299 99301	.04	74201 74273	1.20	15
40	99157 99160	.04	70134	1.10	13	40 46	99301 99304	.04	74275	1.20	14
40	99162	.04	70266	1.10	14 13	40 47	99304 99306	.04	74343	1.21	13
48	99162	.04	70332	1.10	12	48	99308	.04	74410	1.21	12
49	99167	.04	70399	1.11	11	49	99310	.04	74563	1.21	11
50	99170	.04	70465	1.11	10	50	99313	.04	74635	1.21	10
51	9.99172	.04	10.70532	1.11	9	51	9.99315	.04	10.74708	1.21	9
52	99175	.04	70598	1.11	8	52	99317	.04	74781	1.21	8
53	99177	.04	70665	1.11	7	53	99319	.04	74854	1.22	7
54	99180	.04	70732	1.11	6	54	99322	.04	74927	1.22	6
55	99182	.04	70799	1.12	5	55	99324	.04	75000	1.22	5
56	99185	.04	70866	1.12	4	56	99326	.04	75074	1.22	4
57	99187	.04	70933	1.12	3	57	99325	.04	75147	1.22	3
58	99190	.04	71000	1.12	2	58	99331	.04	75221	$1.23 \\ 1.23$	2
59	99192	.04	71067	1.12	1	59	99333	.04	75294		1
60	99195	.04	71135	1.12	0	60	99335	.04	75368	1.23	0
M.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	<u>M.</u>
_			1	1		-	1				

TABLE IV.-LOGARITHMIC

M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	D1″	Tang.	DI"	M.
0	9.99335		10.75368	1000	60	0	9.99462		10.80029		60
1	99337	0.04	75442	1.23	59	ĩ	99464	0.03	80111	1.36	59
2	•99340	.04	75516	1.23	58	2	99466	.03	80193	1.37	58
3	99342	.04	75590	1.24	57	3	99468	.03	80275	1.37	57
4	99344	.04	75665	1.24	56	4	99470	.03	80357	1.37	56
5	99346	.04	75739	1.24	55	5	99472	.03	80439	$1.37 \\ 1.38$	55
6	99348	.04	75814	1.24	54	6	99474	.03	80522	1.38	54
7	99351	.04	75888	1.24	53	7	99476	.03	80605	1.38	53
8	99353	.04	75963	1.25	52	8	99478	.03	80688	1.38	52
9	99355	.04	76038	1.25	51	9	99480	.03	80771	1.39	51
10	99357	.04	76113	1.25	50	10	99482	.03	80854	1.39	50
11	9.99359	.04	10.76188	1.25	49	11	9.99484	.03	10.80937	1.39	49
12	99362	.04	76263	1.26	48	12	99486	.03	81021	1.39	48
13	99364	.04	76339	1.26	47	13	99488	.03	81104	1.40	47
14	99366	.04	76414	1.26	46 45	14	99490 99492	.03	81188 81272	1.40	46
15	99368 99370	.04	76490 76565	1.26	40	15 16	99492	.03	81272	1.40	45 44
17	99372	.04	76641	1.26	44 43	17	99494	.03	81350	1.40	44 43
18	99372	.04	76717	1.27	40	18	99495	.03	81440	1.41	43 42
19	99377	.04	76794	1.27	41	19	99499	.03	81609	1.41	42
20	99379	.04	76870	1.27	40	20	99501	.03	81694	1.41	40
21	9.99381	.04	10.76946	1.27	39	21	9.99503	.03	10.81779	1.4]	39
22	99383	.04	77023	1.28	38	22	99505	.03	81864	1.42	38
23	99385	.04	77099	1.28	37	23	99507	.03	81949	1.42	37
24	99388	.04	77176	1.28	36	24	99509	.03	82035	1.42	36
25	99390	.04	77253	1.28	35	25	99511	.03	82120	1.43	35
26	99392	.04	77330	1.28	34	26	· 99513	.03	82206	1.43 1.43	34
27	99394	.04	77407	$1.29 \\ 1.29$	33	27	99515	.03	82292	1.43	33
28	99396	.04	77484	1.29	32	28	99517	.03	82378	1.44	32
29	99398	.04	77562	1.29	31	29	99518	.03	82464	1.44	31
30	99400	.04	77639	1.29	30	30	99520	.03	82550	1.44	30
31	9.99402	.04	10.77717	1.30	29	31	9.99522	.03	10.82637	1.44	29
32	99404	.04	77795	1.30	28	32	99524	.03	82723	1.45	28
33	99407	.04	77873	1.30	27	33	99526	.03	82810	1.45	27
34	99409	.03	77951	1.30	26	34	99528	.03	82897	1.45	26
35	99411	.03	78029 78107	1.31	25	35	99530 99532	.03	82984	1.46	25
36 37	99413 99415	.03	78107	1.31	24 23	36 37	99533	.03	83072 83159	1.46	24 23
38	99413	.03	78264	1.31	23 22	38	99535	.03	83247	1.46	23 22
39	99419	.03	78343	1.31	21	39	99537	.03	83335	1.46	21
40	99421	.03	78422	1.31	20	40	99539	.03	83423	1.47	20
41	9.99423	.03	10.78501	1.32	19	41	9.99541	.03	10.83511	1.47	19
42	99425	.03	78580	1.32	18	42	99543	.03	83599	1.47	18
43	99427	.03	78659	1.32	17	43	99545	.03	83688	1.48	17
44	99429	.03	78739	1.32	16	44	99546	.03	83776	$1.48 \\ 1.48$	16
45	99432	.03	78818	$1.33 \\ 1.33$	15	45	99548	.03	83865	1.48	15
46	99434	.03	78898	1.33	14	46	99550	.03	83954	1.48	14
47	99436	.03	78978	1.33	13	47	99552	.03	84044	1.49	13
48	99438	.03	79058	1.34	12	48	99554	.03	84133	1.49	12
49	99440	.03	79138	1.34	11	49	99556	.03	84223	1.50	11
50	99442	.03	79218	1.34	10	50	99557	.03	84312	1.50	10
51	9.99444	.03	10.79299	1.34	9	51	9.99559	.03	10.84402	1.50	9
52	99446	.03	79379	1.34	8	52	99561 00563	.03	84492	1.51	8
53	99448	.03	79460	1.35	7	53	99563 99565	.03	84583	1.51	7
54 55	99450 99452	.03	79541 79622	1.35	6 5	54 55	99565 99566	.03	84673 84764	1.51	6 5
56	99452	.03	79622 79703	1.35	5 4	56	99568	.03	84704	1.51	9 4
57	99456	.03	79703	1.35	4 3	57	99508	.03	84946	1.52	43
58	99458	.03	79866	1.36	2	58	99572	.03	85037	1.52	2
59	99460	.03	79947	1.36	1	59	99574	.03	85128	1.52	ĩ
60	99462	.03	80029	1.36	Ō	60	99575	.03	85220	1.53	õ
M.	Cosine.	DI"	Cotang.	D1"	M.	M.	Cosine.	DI "	Cotang.	D1"	M.

90

68

8?

SINES AND TANGENTS.

M.	Sine,	DI"	Tang.	D1"	M.	M.	Sine.	DI"	Tang.	DI"	M. 1
0	9.99575		10.85220		60	0	9.99675		10.91086		60
1	99577	0.03	85312	1.53	59	1	99677	0.03	91190	1.74	59
2	99579	.03	85403	1.53	58	2	99678	.03	91295	1.75	58
3	99581	.03	85496	1.54	57	3	99680	.03	91400	1.75	57
4	99582	.03	85588	$1.54 \\ 1.54$	56	4	99681	.03 .03	91505	1.76	56
5	99584	.03	85680	1.55	55	5	99683	.03	91611	1.76	55
6	99586	.03	85773	1.55	54	6	99684	.03	91717	1.77	54
7	99588	.03	85866	1.55	53	7	99686	.03	91823	1.77	53
8	99589	.03	85959	1.55	52	8	99687	.03	91929	1.78	52
9 10	99591 99593	.03	86052 86146	1.56	51 50	9 10	99689 99690	.03	92036 92142	1.78	51 50
11	9.99595	.03	10.86239	1.56	49	11	9.99692	.03	10.92249	1.78	49
12	99596	.03	86333	1.56	48	12	99693	.03	92357	1.79	48
13	99598	.03	86427	1.57	47	13	99695	.03	92464	1.79	47
14	99600	.03	86522	1.57	46	14	99696	.03	92572	1.80	46
15	99601	.03	86616	1.57	45	15	99698	.02	92680	1.80	45
16	99603	.03	86711	$1.58 \\ 1.58$	44	16	99699	.02	92789	1.81 1.81	44
17	99605	.03	86806	1.58	43	17	99701	.02	92897	1.81	43
18	99607	.03	86901	1.59	42	18	99702	.02	93006	1.82	42
19	99608	.03	86996	1.59	41	19	99704	.02	93115	1.82	41
20	99610 9.99612	.03	87091	1.59	40 39	20 21	99705	.02	93225	1.83	40
21 22	99613	.03	10.87187 87283	1.60	38	22	9.99707	.02	10.93334 93444	1.83	39 38
23	99615	.03	87379	1.60	37	23	99710	.02	93555	1.84	37
24	99617	.03	87475	1.60	36	-24	99711	.02	93665	1.84	36
25	99618	.03	87572	1.61	35	25	99713	.02	93776	1.85	35
26	99620	.03	87668	1.61	34	26	99714	.02	93887	1.85	34
27	99622	.03	87765	$1.61 \\ 1.62$	33	27	99716	.02	93998	1.86	33
28	99624	.03	87862	1.62	32	28	99717	.02	94110	1.86	32
29	99625	.03	87960	1.63	31	29	99718	.02	94222	1.87	31
30	99627	.03	88057	1.63	30	30	99720	.02	94334	1.87	30
31	9.99629	.03	10.88155	1.63	29	31	9.99721	.02	10.94447	1.88	29
32 33	99630 99632	.03	88253 88351	1.64	28 27	32 33	99723 99724	.02	94559 94672	1.88	28 27
33	99632	.03	88331	1.64	26	33 34	99724	.02	94672 94786	11 00	26
35	99635	.03	88548	1.64	20	35	99720	.02	94780	11.89	20 25
36	99637	.03	88647	1.65	24	36	99728	.02	95013	11.90	24
37	99638	.03	88746	1.65	23	37	99730	.02	95127	1.90	23
38	99640	.03	88845	1.65	22	38	99731	.02	. 95242	1.91	22
39	99642	.03	88944	1.66	21	39	99733	.02	95357	1.91	21
40	99643	.03	89044	$1.66 \\ 1.67$	20	40	99734	.02	95472	1.92	20
41	9.99645	.03	10.89144	1.67	19	41	9.99736	.02	10.95587	1 02	19
42	99647	.03	89244	1.67	18	42	99737	0.9	95703	1.93	18
43	99648	.03	89344	1.68	17	43	99738	.02	95819	1.94	17
44 45	99650	.03	89445	1.68	1d 15	44 45	99740	.02	95935 96052	1.94	16 15
40	99651 99653	.03	89546 89647	1.68	13	45	99741 99742	.02	96168	1.95	13
40	99655	.03	89748	1.69	13	40	99744	.02	96286	11.95	14
48	99656	.03	89850	1.69	12	48	99745	1,02	96403	11.96	12
49	99658	.0.3	89951	1.70	11	49	99747	.02	96521	1.96	11
50	99659		90053	1.70	10	50	99748		96639	1.97	10
51	9.99661	.03	10.90155	1.70	9	51.	9.99749	.02	10.96758	1.97	9
52	99663	.03	90258	1.71	8	52	99751	09	96876	1 00	8
53	99664	.03	90360	1.71	7	53	99752	0.9	96995	1 00	7
54	99666	.03	90463	1.72	6	54	99753	09	97115	9 00	6
55	99667	03	90566	1.72	54	55	99755	1 0.9	97234	19 00	- 5
56	99669 99670	.03	90670 90773	1.73	43	56 57	99756 99757	.02	97355 97475	2.01	43
58	99670	.00	90773	1.73	2	58	99759	,02	97475	2.01	2
59	99674	.03	90981	1.73	1 1	59	99760	.02	97717	2.02	1
60	99675	.03	91086	1.74	Ō	60	99761	.02	97838		0
<u>M.</u>		DI"	Cotona	DI"	M.	M		DI"		DI"	M.
	Cosine.	1 DI"	Cotang.	101"	1 .	M.	Cosine,	101"	Cotang.	DI"	1 1.

S. N. 40.

50

TABLE IV.-LOGARITHMIC

M. Sine. Diff Tang. Diff Tang. Diff Tang. Diff Tang. Diff M. M. M. M. Sine. Diff Tang. Diff Good Sine. Diff Good Good <thg< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thg<>	_											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M.	Sine.	DI"	Tang.	DI"	M.	M.	Sine.	DI"	Tang.	DI"	M.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.00761		10 07090		60	0	0.00094		11 05905		60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.02		2.03				0.02			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.03				.02		2.44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2.45	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
		99768				55		99840				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	99769		98573		54	6	99841		06687		54
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	99771		98697		53	7	99842		06835		53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	99772				52	8	99843		06984		52
	9			98945		51	9	99844		07134		51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
			.02		2.10				.02			
			.02		2.10				.02		2.54	
			.02		2.11				.02		2.55	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2.56	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	99786		00209		41		99855		08660		41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	99787		00338		40	20	99856		08815		40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	9.99788		11.00466		39	21	9.99857		11.08971		39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						38	22					.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.18	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.18				.02		2.66	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.19				.02		2.67	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.68	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		99802						99868				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	99803		02041		27	33	99869		10889		27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	99804				26	34	99870		11052		26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	99806		02309		25	35	99871		11217		25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36						36					24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.02		2.27				.02		2.79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.28							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.29				.02		2.81	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.02			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							100					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							10.00					and the second second
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		99821				12	48	99883		13409		12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	99822				11	49					11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.39							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.40				.01		2.98	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.02		2.41							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.01			
00 99834 03805 0 60 99894 15536 0												
M. Cosine, DI" Cotang, DI" M. M. Cosine, DI" Cotang, DI" M.			-		-				ALL D	10036	PER	
	M.	Cosine.	Dl″	Cotang.	DI"	M.	M.	Cosine.	D1″	Cotang.	DI"	M.

70

85%

SINES AND TANGENTS.

870

20.

-		-									
М.	Sine.	DI"	Tang.	D1″	M.	M.	Sine.	DI"	Tang.	DI"	М.
0	9.99894		11.15536		60	0	9,99940		11.28060		60
1	99895	0.01	15718	3.03	59 -	1	99941	0.01	28303	4.04	59
2	99896	.01	15900	3.04	58	2	99942	.01	28547	4.06	58
3	99897	.01	16084	3.06	57	3	99942	.01	28792	4.09	57
4	99898	.01	16268	3.07	56	4	99943	.01	29038	4.11 4.13	56
5	99898	.01	16453	3.10	55	5	99944	.01	29286	4.15	55
6	99899	.01	16639	3.11	54	6	99944	.01	29535	4.18	54
7	99900	.01	16825	3.12	53	7	99945	.01	29786	4.20	53
8	99901	.01	17013	3.14	52	8	99946	.01	30038	4.23	52
9	99902	.01	17201	3.15	51	9	99946	.01	30292	4.25	51
10	99903	.01	17390	3.16	50	10	99947	.01	30547	4.28	50
11	9.99904	.01	11.17580	3.18	49	11	9.99948	.01	11.30804	4.30	49
12	99904 99905	.01	17770 17962	3.19	48 47	12 13	99948 99949	.01	31062 31322	4.33	48
13	99905	.01	18154	3.21			99949	.01	31583	4.35	47
14	99900	.01	18347	3.22	46	14 15	99949	.01	31365	4.38	46 45
16	99908	.01	18541	3.23	44	16	99951	.01	32110	4.41	40
17	99909	.01	18736	3.25	43	17	99951	.01	32376	4.43	43
18	99909	.01	18932	3.26	42	18	99952	.01	32644	4.46	42
19	99910	.01	19128	3.28	41	19	99952	.01	32913	4.49	41
20	99911	.01	19326	3.29	40	20	99953	.01	33184	4.52	40
21	9.99912	.01	11.19524	3.31	39	21	9.99954	.01	11.33457	4.54	39
22	99913	.01	19723	3.32	38	22	99954	.01	33731	4.57	38
23	99913	.01	19924	$3.34 \\ 3.35$	37	23	99955	.01	34007	4.60	37
24	99914	.01	20125	3.32	36	24	99955	.01	34285	4.63	36
25	99915	.01	20327	3.38	35	25	99956	.01	34565	4.66	35
26	99916	.01	20530	3.40	34	26	99956	.01	34846	4.72	34
27	99917	.01	20734	3.41	33	27	99957	.01	35130	4.75	33
28	99917	.01	20939	3.43	32	28	99958	.01	35415	4.78	32
29	99918	.01	21145	3.45	31	29	99958	.01	35702	4.82	31
30	99919	.01	21351	3.46	30	30	99959	.01	35991	4.85	30
31	9.99920	.01	11.21559	3.48	29	31	9.99959	.01	11.36282	4.88	29
32	99920	.01	21768	3.50	28	32	99960	.01	36574	4.91	28
33	99921 99922	.01	21978 22189	3.51	27 26	33	99960	.01	36869 37166	4.95	27
34 35	99922	.01	22400	3.53	20 25	34 35	99961 99961	.01	37465	4.98	26 25
36	99923	.01	22613	3.55	23	36	99962	.01	37766	5.02	23
37	99924	.01	22827	3.57	23	37	99962	.01	38069	5.05	23
38	99925	.01	23042	3.58	22	38	99963	.01	38374	5.09	22
39	99926	.01	23258	3.60	21	39	99963	.01	38681	5.12	21
40	99926	.01	23475	3.62	20	40	99964	.01	38991	5.16	20
41	9.99927	.01	11.23694	3.64	19	41	9.99964	.01	11.39302	5.19	19
42	99928	.01	23913	3.65	18	42	99965	.01	39616	5.23	18
43	99929	.01	24133	3.67	17	43	99966	.01	39932	5.27	17
44	99929	.01	24355	3.69 3.71	16	44	99966	.01	40251	5.31	16
45	99930	.01	24577	3.73	15	45	99967	.01	40572	5.39	15
46	99931	.01	24801	3.75	14	46	99967	.01	40895	5.43	14
47	99932	.01	25026	3.77	13	47	99967	.01	41221	5.47	13
48	99932	.01	25252	3.79	12	48	99968	.01	41549	5.51	12
49	99933	.01	25479	3.81	11	49	99968	.01	41879	5.55	11
50	99934	.01	25708	3.83	10	50	99969	.01	42212	5.59	10
51 52	9.99934 99935	.01	11.25937 26168	3.85	98	51 52	9.99969 99970	.01	11.42548	5.64	9
53	99935	.01	26400	3.87	87	53	99970	.01	42886	5.68	7
54	99936	.01	26634	3.89	6	54	99970	.01	43227 43571	5.73	6
55	99930	.01	26868	3.91	5	55	99971	.01	43917	5.77	5
56	99938	.01	27104	3.93	4	56	99972	.01	43917	5.82	4
57	99938	.01	27341	3.95	3	57	99972	.01	44618	5.87	3
58	99939	.01	27580	3.97	2	58	99973	.01	44973	5.91	2
59	99940	.01	27819	3.40	1	59	99973	.01	45331	5.96	Ĩ
60	99940	.01	28060	4,02	0	60	99974	.01	45692	6.01	Ō
М.	Cosine.	DI"	Cotang.	DI"	M.	M.	Cosine.	DI"	Cotang.	DI"	M.
30	-				7	1					2
-											

TABLE IV .- SINES AND TANGENTS.

89°

M.	Sine.	DI"	Tang.	DI"	M.	М.	Sine.	DI″	Tang.	DI"	М.
0	9.99974	0.01	11.45692	0.00	60	0	9.99993		11.75808	10.0	60
1	99974	0.01	46055	6.06	59	1	99994	.004	76538	12.2	59
2	99974	.01	46422	6.11	58	2	99994	.004	77280	12.4	58
3	99975	.01	46792	6.16	57	3	99994	.004	78036	12.6	57
4	99975	.01	47165	6.22	56	4	99994	.003	78805	12.8	56
5	99976	.01	47541	6.27	55	5	99994	.003	79587	13.0	55
6	99976	.01	47921	6.33	54	6	99995	.003	80384	13.3	54
7	99977	.01	48304	6.38	53	7	99995	.003	81196	13.5	53
8	99977	.01	48690	6.44	52	8	99995	.003	82024	13.8	52
9	99977	.01	49080	6.50	51	9	99995	.003	82867	14.1	51
10	99978	.01	49473	6.55	50	10	99995	.003	83727	14.3	50
11	9.99978	.01	11.49870	6.61	49	11	9.99996	.003	11.84605	14.6	49
12	99979	.01	50271	6.68	48	12	99996	.003	85500	14.9	48
13	99979	.01	50675	6.74	47	13	99996	.003	86415	15.2	47
14	99979	.01	51083	6.80	46	14	99996	.003	87349	15.6	46
15	99980	.01	51495	6.87	45	15	99996	.003	88304	15.9	45
16	99980	.01	51911	6.93	44	16	99996	.003	89280	16.3	44
17	99981	.01	52331	7.00	43	17	99997	.003	90278	16.6	43
18	99981	.01	52755	7.07	42	18	99997	.003	91300	17.0	42
19	99981	.01	53183	7.14	41	19	99997	.003	92347	17.4	41
20	99982	.01	53615	7.21	40	20	99997	.002	93419	17.9	40
21	9.99982	.01	11.54052	7.28	39	21	9.99997	.002	11.94519	18.3	39
22	99982	.01	54493	7.35	38	22	99997	.002	95647	18.8	38
23	99983	.01	54939	7.43	37	23	99997	.002	96806	19.3	37
24	99983	.01	55389	7.50	36	24	99998	.002	97996	19.8	36
25	99983	.01	55844	7.58	35	25	99998	.002	99219	20.4	35
26	99984	.01	56304	7.66	34	26	99998	.002	12.00478	21.0	34
27	99984	.01	56768	7.75	33	27	99998	.002	01775	21.6	33
28	99984	.01	57238	7.83	32	-28	99998	.002	03111	22.3	32
29	99985	.01	57713	7.91	31	29	99998	.002	04490	23.0	31
30	99985	.01	58193	8.00	30	30	99998	.002	05914	23.7	30
31	9.99985	.01	11.58679	8.09	29	31	9.99998	.002	12.07387	24.5	
32	99986	.01	59170	8.18	29	32	9.99998	.002	08911	25.4	29
33	99986	.01		8.28				.002	10490	26.3	28
34	99986	.01	59666	8.37	27	33	99999	.002	10490	27.3	27
35		.01	60168	8.47	26	34	99999	.002	12129	28.4	26
36	99987	.01	60677	8.57	25	35	99999	.002	15606	29.5	25
	99987	.01	61191	8.67	24	36	99999	.001		30.8	24
37	99987	.01	61711	8.78	23	37	99999	.001	17454	32.2	23
38	99988	.005	62238	8.88	22	38	99999	.001	19385	33.7	22
39	99988	.005	62771	8.99	21	39	99999	.001	21405	35.3	21
40	99988	.005	63311	9.11	20	40	99999	.001	23524	37.1	20
41	9.99989	.005	11.63857	9.22	19	41	9.99999	.001	12.25752	39.1	19
42	99989	.005	64410	9.34	18	42	99999	.001	28100	41.4	18
43	99989	.005	64971	9.46	17	43	99999	100.	30582	43.9	17
44	99989	.005	65539	9.59	16	44	10.00000	.001	33215	46.7	16
45	99990	.005	66114	9.72	15	45	00000	.001	36018	49.9	15
46	99990	.004	66698	9.85	14	46	00000	.001	39014	53.6	14
47	99990	.004	67289	9.99	13	47	00000	.001	42233	57.9	13
48	99990	.004	67888	10.1	12	48	00000	.001	45709	63.0	12
49	99991	.004	68495	10.3	11	49	00000	.001	49488	69.0	11
50	99991	.004	69112	10.4	10	50	00000	.001	53627	76.3	10
51	9.99991	.004	11.69737	10.6	9	51	10.00000	.001	12.58203	85.3	9
52	99992	.004	70371	10.7	8	52	00000	.000	63318	96.7	8
53	99992	.004	71014	10.9	7	53	00000	.000	69118	112	7
54	99992	.004	71668	11.1	6	54	00000	.000	75812	132	6
55	99992	.004	72331	11.2	5	55	00000	.000	83730	162	5
56	99992	.004	73004	11.4	4	56	00000	.000	93421	208	4
57	99993	.004	73688	11.4	3	57	00000	.000	13.05915	294	3
58	99993	.004	74384	11.8	2	58	00000	.000	23524	502	2
59	99993	.004	75090	12.0	1	59	00000	.000	53627	002	1
60	99993	.001	75808	14.0	0	60	00000		Infinite.		0
					-						-
M.	Cosine.	D!"	Cotang.	DI"	M	M.	Cosine,	DI"	Cotang.	D!"	M.

72

0°-3°45'

TRAVERSE TABLES. 86°15'-90°

								2.2	
D.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	· Lat.	Dep.	D.
	0°		0		0	30'	0°	45'	
1	1.000	.000	1.000	.004	1.000	.009	1.000	.013	1
2	2.000	.000	2.000	.009	2.000	.018	2.000	.026	2
3	3.000	.000	3.000	.013	3.000	.026	3.000	.039	3
4	4.000	.000	4.000	.018	4.000	.035	4.000	.052	4
5	5.000	.000	5.000	.022	5.000	.044	5.000	.065	5
ő	6.000	.000	6.000	.026	6.000	.052	5,999	.079	6
7	7.000	.000	7.000	.031.	7.000	.061	6.999	.092	7
8	8.000	.000	8.000	.035	8.000	.070	7.999	.105	8
9	9.000	.000	9.000	.039	9.000	.079	8.999	.118	9
10	10.000	.000	10.000	.044	10.000	.087	9.999	.131	10
-	90°	0'	89°	45'	89°	30'	890	15'	
-	1°	0'	10	15'	1°	30	1°	45'	
1	1.000	.017	1.000	.022	1.000	.026	1.000	.031	1
9	2.000	.035	2.000	.044	1.999	.052	1.999	.061	2
23	3.000	.052	2.999	.065	2.999	.079	2.999	.092	23
4	3.999	.070	3.999	.087	3.999	.105	3.998	.122	4
5	4.999	.087	4.999	.109	4.998	.131	4.998	.153	5
6	5.999	.105.	5.999	.131	5.998	.157	5.997	.183	6
7	6.999	.122	6.998	.153	6.998	.183	6.997	.214	7
8	7.999	.140	7.998	.175	7.997	.209	7.996	.244	8
9	8.999	.157	8.998	.196	8.997	.236	8.996	.275	9
10	9.999	.174	9.998	.218	9.997	.262	9.995	.305	10
	890	0'	880	45'	880	30'	880	15'	
	20	0'	20				20	45'	-
$\overline{1}$.999	.035	.999	.039	<u>2°</u> .999	30' .044	.999	.048	1
2	1.999	.035	1.999	.039	1.998	.044	1.998	.048	2
$\tilde{3}$	2.998	.105	2.998	.118	2.997	.131	2,997	.144	3
4	3.998	.140	3.997	.110	3.996	.131	3.995	.192	4
5	4.997	.174	4.996	.196	4.995	.218	4.994	.132	5
6	5.996	.209	5.995	.130	5.994	.218	5.993	.240	6
7	6.996	.209	6.995	.275	6.993	.305	6.992	.336	7
8	7.995	.279	7.994	.314	7.992	.349	7.991	.384	8
9	8.995	.314	8.993	.353	8.991	.393	8.990	.432	9
10	9.994	.349	9.992	.393	9,990	.333	9.988	.432	10
	. 880	0'	870	45'	87°	30'	870	15'	
-									-
	30		30	and the second s	3	30'	30	-	
1	.999 1.997	.052 .105	.998 1.997	.057	.998 1.996	.061	.998 1.996	.065	1
23	2.996	.105	2.995	.113	2.994		2.994	.131	23
4	2.990	.209	2.995	170 .227		.183		.190 .262	3
45					3.993		3.991		4
$\begin{vmatrix} 3\\6 \end{vmatrix}$	4.993	.262	4.992	.283	4.991	.305	4.989	.327	56
07	5.992		5.990	.340	5.989	.366	5.987	.392	67
8	6.990	.366	6.989	.397	6.987	.427	6.985	.458	
	7.989	.419	7.987	.454	7.985	.488	7.983	.523	8
10	8.988	.471 .523	8.986 9.984	.510	8.983	.549	8.981	.589	9 10
10				.567	9.981	.610	9.979	.654	10
-	87°			45'		30'		15'	-
D.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	D,

4°-7°45'

TRAVERSE TABLES.

82°15′-86°

D.	Lat.	Dep.	Lat.	Dep.	Lat,	Dep.	Lat.	Dep.	D.
	4 °	0'	4 °	15'	40	30'	4 °	45'	
$\overline{1}$.998	.070	.997	.074	.997	.078	.997	.083	$\overline{1}$
$\frac{1}{2}$	1.995	.140	1.995	.148	1.994	.157	1.993	.166	2
$\tilde{3}$	2.993	.209	2.992	.222	2.991	.235	2.990	.248	3
4	3.990	.279	3.989	.296	3.988	.314	3.986	.331	4
5	4.988	.349	4.986	.371	4.985	.392	4.983	.414	5
6	5.986	.418	5.984	.445	5.981	.471	5.979	.497	6
7	6.983	.488	6.981	.519	6.978	.549	6.976	.580	7
8	7.981	.558	7.978	.593	7.975	.628	7.973	.662	8
9	8.978	.628	8.975	.667	8,972	.706	8.969	.745	9
10	9.976	.698	9.973	.741	9.969	.785	9.966	.828	10
10	86°		85°		850	30'	850	15'	
_	80°	0'				30		19.	
	5°	0'	5 °	15'	5 °	30'	5 °	45'	
1	.996	.087	.996	.092	.995	.096	.995	.100	1
2	1.992	.174	1.992	.183	1.991	.192	1.990	.200	2
3	2.989	.261	2.987	.275	2.986	.288	2.985	.301	23
4	3.985	.349	3.983	.366	3.982	.383	3.980	.401	4
5	4.981	.436	4.979	.458	4.977	.479	4.975	.501	5
6	5.977	.523	5.975	.549	5.972	.575	5.970	.601	6
7	6.973	.610	6.971	.641	6.968	.671	6.965	.701	7
8	7.970	.697	7.966	.732	7.963	.767	7.960	.802	8
9	8,966	.784	8.962	.824	8.959	.863	8.955	.902	9
10	9.962	.872.	9.958	.915	9.954	.958	9.950	1.002	10
	85°	0'	84°	45'	840	30'		15'	
-	<u> </u>	0'	<u> </u>	15'	<u> </u>	30'	60	45'	-
1.1	.995	.105	.994	.109	.994	.113	.993	.118	1
2	1.989	.209	1.988	.218	1.987	.226	1.986	.235	2
$\tilde{3}$	2.984	.314	2.982	.327	2.981	.340	2.979	.353	3
4	3.978	.418	3.976	.435	3.974	.453	3.972	.470	4
5	4.973	.523	4.970	.544	4.968	.566	4.965	.588	5
6	5.967	.627	5.964	.653	5.961	.679	5.958	.705	6
7	6.962	.732	6.958	.762	6.955	.792	6.952	.823	7
8	7.956	.836	7.952	.871	7.949	.906	7.945	.940	8
9	8.951	.941	8.947	.980	8.942	1.019	8.938	1.058	9
10	9.945	1.045	9.941	1.089	9.936	1.132	9.931	1.175	10
	84°		830	45'	83°	30'	83°	15'	-
-	70		70	15'	70	30'	70	45'	
	and the second			1					1
1	.993	.122	.992	.126	.991	.131	.991	.135	1
2	1.985	.244	1.984	.252	1.983	.261	1.982	.270	23
3	2.978	.366	2.976	.379	2.974	.392	2.973	.405	3
4	3.970	.487	3.968	.505	3.966	.522	3.963	.539	4
5	4.963	.609	4.960	.631	4.957	.653	4.954	.674	5
6	5.955	.731	5.952	.757	5.949	.783	5.945	.809	6
7	6.948	.853	6.944	.883	6.940	.914	6.936	.944	7
8	7.940	.975	7.936	1.010	7.932	1.044	7.927	1.079	89
9	8.933	1.097	8.928	1.136	8.923	1.175	8.918	1.214	
10	9.925	1.219	9.920	1.262	9.914	1.305	9.909	1.349	10
	830			45'	82°	1	820		_
D.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	D.

74

8°-11°45'

TRAVERSE TABLES.

78°15′-82°

D.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
		0'	80			30'		45'	
1	.990	.139	.990	.143	.989	.148	.988	.152	1
$\hat{2}$	1.981	.278	1.979	.287	1.978	.296	1.977	.304	2
3	2.971	.418	2.969	.431	2.967	.443	2.965	.456	3
4	3.961	.557	3.959	.574	3.956	.591	3.953	.608	4
5	4.951	.696	4.948	.717	4.945	.739	4.942	.761	5
6	5.942	.835	5.938	.861	5.934	.887	5.930	.913	6
7	6.932	.974	6,928	1.004	6,923	1.035	6.919	1.065	7
8	7.922	1.113	7.917	1.148	7.912	1.182	7,907	1.217	8
9	8,912	1.253	8,907	1.291	8.901	1.330	8.895	1.369	9
10	9.903	1.392	9.897	1.435	9.890	1.478	9.884	1.521	10
-	82°	0'	812	45'	81°	30'	81	15'	-
	9 ?	0'	97	15'	97	30'	90	45'	-
1	.988	.156	.987	.161	.986	.165	.986	.169	1
2	1.975	.313	1.974	.321	1.973	.330	1.971	.339	2
3	2.963	.469	2.961	.482	2.959	.495	2.957	.508	3
4	3.951	.626	3.948	.643	3.945	.660	3.942	.677	4
5	4.938	.782	4.935	.804	4.931	.825	4.928	.847	5
6	5.926	.939	5.922	.964	5.918	.990	5.914	1.016	6
7	6.914	1.095	6.909	1.125	6,904	1.155	6.899	1.185	7
8	7.902	1.251	7.896	1.286	7.890	1.320	7.884	1.355	8
9	8.889	1.408	8.883	1.447	8.877	1.485	8.870	1.524	9
10	9.877	1.564	9.870	1.607	9.863	1.650	-9.856	1.693	10
-	812	0'	80	45'	80°	30'	800	15'	
	10°	0'	10°	15'	100	30'	10%	45'	
1	.985	.174	.984	.178	.983	.182	.982	.187	1
2	1.970	.347	1.968	.356	1.967	.364	1.965	.373	2
3	2.954	.521	2.952	.534	2.950	.547	2.947	.560	3
4	3.939	.695	3.936	.712	3.933	.729	3.930	.746	4
5	4.924	.868	4.920	.890	4.916	.911	4.912	.933	5
6	5.909	1.042	5.904	1.068	5.900	1.093	5.895	1.119	6
7	6.894	1.216	6.888	1.246	6.883	1.276	6.877	1.306	7
8	7.878	1.389	7.872	1.424	7.866	1.458	7.860	1.492	8
9	8.863	1.563	8.856	1.601	8.849	1.640	8.842	1.679	9
10	9.848	1.736	9.840	1.779	9.833	1.822	9.825	1.865	10
	80	0.	79	45'	79	30'	790	15	
	110	1	110	1	110		the second se	45'	
I	.982	.191	.981	.195	.980	.199	.979	.204	1
23	1.963	.382	1.962	.390	1.960	.399	1.958	.407	2
3	2.945	.572	2.942	.585	2.940	.598	2.937	.611	3
4	3.927	.763	3.923	.780	3.920	.797	3.916	.815	4
5 6	4.908	.954	4.904	.976	4.900	.997	4.895	1.018	5
6	5.890	1.145	5.885	1.171	5.880	1.196	5.874	1.222	6
7	6.871	1.336	6.866	1.366	6.860	1.396	6.853	1.426	7
8	7.853	1.526	7.846	1.561	7.839	1.595	7.832	1.629	8
9	8.835	1.717	8.827	1.756	8.819	1.794	8.811	1.833	9
10	9.816	1.908	9.808	1.951	9.799	1.994	9.790	2.036	10
	-	0/	900	45'	780	30'	PP0	15'	1000
<u>D.</u>	79 °	Lat.	10	40	10	Lat.	10	10	and the second second

12°-15°45'

TRAVERSE TABLES.

74°15′-78°

	1	1						10000	
D.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
	12°		12°	15'	120	30	12°	45'	
1	.978	.208	.977	.212	.976	.216	.975	.221	1
23	1.956	.416	1.954	.424	1.953	.433	1.951	.441	$\frac{2}{3}$
	2.934	.624	2.932	.637 .849	2.929 3.906	.649	$2.926 \\ 3.901$.662 .883	34
	3.913	.832	3.909	1.061	3.900 4.882	.866 1.082	3.901 4.877	.003	45
56	4.891 5.869	$1.040 \\ 1.247$	$4.886 \\ 5.863$	1.001 1.273	4.002	1.082	4.811	1.105	6
7	6.847	1.455	6.841	1.485	6.834	1.515	6.827	1.545	7
8	7.825	1.663	7.818	1.697	7.810	1.731	7.803	1.766	8
	8.803	1.871	8.795	1.910	8.787	1.948	8.778	1.986	9
10	9.781	2.079	9.772	2.122	9.763	2.164	9.753	2.207	10
-	780		770	45'	770		770	15'	-
-	13°	0'	13°	15'	13°		.13°	45'	
	.974	.225	.973	.229	.972	.233	.971	.238	1
	1.949	.225	1.947	.458	1.945	.235	1.943	.230	2
$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	2.923	.450	2.920	.688	2.917	.407	2.914	.713	3
4	3.897	.900	3.894	.917	3.889	.934	3.885	.951	4
	4.872	1.125	4.867	1.146	4.862	1.167	4.857	1.188	5
6	5.846	1.350	5.840	1.375	5.834	1.401	5.828	1.426	6
7	6.821	1.575	6.814	1.604	6.807	1.634	6.799	1.664	7
8	7.795	1.800	7.787	1.834	7.779	1.868	7.771	1.901	8
9	8.769	2.025	8.760	2.063	8.751	2.101	8.742	2.139	9
10	9.744	2.250	9.734	2.292	9.724	2.334	9.713	2.377	10
	770	0'	76°	45	76°	30'	760	15'	-
1	14°	0'	14°	15'	14°	30'	140	45'	
1	.970	.242	.969	.246	.968	.250	.967	.255	1
2	1.941	.481	1.938	.492	1.936	.501	1.934	.509	2
3	2.911	.726	2.908	.738	2.904	.751	2.901	.764	3
4		.968	3.877	.985	3.873	1.002	3.868	1.018	4
5		1.210	4.846	1.231	4.841	1.252	4.835	1.273	5
6		1.452	5.815	1.477	5.809	1.502	5.802	1.528	6
7		1.693	6.785	1.723	6.777	1.753	6.769	1.782	7
8		1.935	7.754	1.969	7.745	2.003	7.736	2.037	8
$\begin{vmatrix} 9\\10 \end{vmatrix}$		2.177 2.419	8.723 9.692	2.215 2.462	8.713 9.681	2.253 2.504	8.703 9.670	$2.291 \\ 2.546$	9 10
10	76°	0'	75°	45'	75°		750	15'	
-	15°	0'	15°	15'	15°		150	45'	
		.259	.965	263	.964	267	.962		1
2		.209	1.930	.203	.904	.207	1.925	.271	2
3	2.898	.776	2.894	.789	2.891	.802	2.887	.814	3
4		1.035	3.859	1.052	3.855	1.069	3.850	1.086	4
5		1.294	4.824	1.315	4.818	1.336	4.812	1.357	5
6	5.796	1.553	5.789	1.578	5.782	1.603	5.775	1.629	6
17	6.761	1.812	6.754	1.841	6.745	1.871	6.737	1.900	7
8	7.727	2.071	7.718	2.104	7.709	2.138	7.700	2.172	8
9	8.693	2.329	8.683	2.367	8.673	2.405	8.662	2.443	9
10	9.659	2.588	9.648	2.630	9.636	2.672	9.625	2.714	10
Test	75°		710	45'	74°		74°	15'	-
D.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	D.

16°–19°45′ TRAVERSE TABLES.

70°15′-74°

Date Date Date Dep. Dep. Dep. Date Dep. Dep. <thdep.< th=""> Dep. Dep. <th< th=""><th>D.</th><th>Lat.</th><th>Dan</th><th>Lat.</th><th>Dep.</th><th>Lat,</th><th>Dep.</th><th>Lat.</th><th>Dep.</th><th>D.</th></th<></thdep.<>	D.	Lat.	Dan	Lat.	Dep.	Lat,	Dep.	Lat.	Dep.	D.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-D.		Dep.	the second se		and some state of the second second				<u>.</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-									-
3 2.884 8.27 2.880 .839 2.876 .852 2.873 .865 3 4 3.845 1.103 3.840 1.119 3.835 1.136 3.830 1.153 5 4.806 1.378 4.800 1.399 r4.749 1.420 4.788 1.441 5 6 5.768 1.654 5.760 1.679 6.712 1.988 6.703 2.017 7 7 6.709 2.205 7.661 2.306 8 8 9 8.651 2.481 8.640 2.518 8.629 2.556 8.618 2.305 1 7 6' 73' 30' 73' 30' 73'' 30' 73''' 30'' 10''''''''''''''''''''''''''''''''''''										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2									10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1 1 5 3	0
6 5.768 1.654 5.760 1.679 5.753 1.704 5.745 1.729 6 7 6.729 1.929 6.720 1.959 6.712 1.988 6.703 2.017 7 8 7.600 2.239 7.671 2.227 7.661 2.306 8 9 8.651 2.481 8.640 2.518 8.629 2.556 8.618 2.594 9 10 9.613 2.756 9.600 2.798 9.588 2.840 9.576 2.882 10 70 70 17 15' 12° 30' 12° 45' 1 .956 .292 .955 .297 .954 .301 .952 .305 1 2 1.913 .585 1.169 3.820 1.186 3.815 1.203 .810 1.254 5 5 4.732 1.462 4.775 1.483 4.769 1.504 4.762 1.524 5 6 5.733 1.754 5.730 1.779 5.722<	- 5									
7 6.729 1.929 6.720 1.959 6.712 1.988 6.703 2.017 7 8 7.690 2.205 7.680 2.239 7.671 2.272 7.661 2.306 8 9 8.613 2.756 9.600 2.718 8.629 2.556 8.618 2.594 9 7 6'' 73° 6'' 73° 6'' 73° 6'' 74° 0'' 73° 6'' 73° 6'' 73° 6'' 1 .956 .292 .955 .297 .954 .301 .952 .305' 1 2 1.913 .585 1.910 .593 1.907 .601 1.905 .610 2 3 2.869 .877 2.865 .890 2.861 .902 2.857 .915 3 4 3.825 1.169 3.820 1.770 5.721 1.804 5.711 1.829 6 6 5.733 1.764 2.339 7.640 2.337 7.630 <th< th=""><th>G</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>8</th></th<>	G									8
8 7.690 2.205 7.680 2.239 7.671 2.272 7.661 2.306 8 9 8.651 2.481 8.640 2.518 8.629 2.556 8.618 2.594 9 10 9.613 2.756 9.600 2.798 9.588 2.840 9.576 2.882 10 74° 0' 73° 45' 73° 30' 73° 15' 1 1 .956 .292 .955 .297 .954 .301 .952 .305 1 2 1.913 .585 1.910 .593 1.907 .601 1.905 .610 2 3 2.869 .877 2.865 .890 2.861 .902 2.857 .915 3 4 5.473 1.754 5.730 1.779 5.722 1.804 5.714 1.829 6 6 6.673 2.631 8.595 2.669 8.583 2.707 8.572 2.744 9 9 8.607 2.631 8.595	7						1 088			7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8									8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										ğ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-					the late of the late to the	CONTRACTOR STREET			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1									1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2									2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3									3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4					3.810		3.810		4
7 6.694 2.047 6.685 2.076 6.676 2.105 6.667 2.134 7 8 7.650 2.339 7.640 2.372 7.630 2.406 7.619 2.439 8 9 9 8.607 2.631 8.595 2.669 9.537 3.007 9.524 3.049 10 73° 0' 72° 45' 72° 30' 72° 15' 18° 30' 18° 45' 72° 10' 2.231 1 1 9.51 .309 .950 .313 .948 .317 .947 .321 1 2 1.902 .618 1.899 .626 1.897 .635 1.894 .643 2 3 2.853 .927 2.849 .939 2.845 .952 2.841 .964 3 4 3.804 1.236 3.799 1.253 3.793 1.269 3.788 1.286 4 5 4.755 1.545 4.748 1.566 4.742 1.587	5									5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0		1.70+							0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.094	2.047							17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	7.650								8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10			Conception in the second second		and the second sec	the second second		and the second	10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_			and the second s					1	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2					1 007		1 004		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0					1.897		1.894		2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2.853	.927	2.849	.939	2.845	.952	2.841	.964	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$2.853 \\ 3.804$	$\begin{array}{r}.927\\1.236\end{array}$	$2.849 \\ 3.799$.939 1.253	$2.845 \\ 3.793$.952 1.269	2.841 3.788	.964	34
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	$\begin{array}{r} 2.853 \\ 3.804 \\ 4.755 \end{array}$.927 1.236 1.545	$\begin{array}{r} 2.849 \\ 3.799 \\ 4.748 \end{array}$.939 1.253 1.566	$\begin{array}{r} 2.845 \\ 3.793 \\ 4.742 \end{array}$.952 1.269 1.587	2.841 3.788 4.735	.964 1.286 1.607	345
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 5 6	2.853 3.804 4.755 5.706	$\begin{array}{r} .927 \\ 1.236 \\ 1.545 \\ 1.854 \end{array}$	$\begin{array}{r} 2.849 \\ 3.799 \\ 4.748 \\ 5.698 \end{array}$	$\begin{array}{r} .939 \\ 1.253 \\ 1.566 \\ 1.879 \end{array}$	$\begin{array}{r} 2.845 \\ 3.793 \\ 4.742 \\ 5.690 \end{array}$.952 1.269 1.587 1.904	2.841 3.788 4.735 5.682	.964 1.286 1.607 1.929	3456
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 5 6 7	$\begin{array}{r} 2.853 \\ 3.804 \\ 4.755 \\ 5.706 \\ 6.657 \end{array}$	$\begin{array}{r} .927\\ 1.236\\ 1.545\\ 1.854\\ 2.163\end{array}$	$\begin{array}{r} 2.849 \\ 3.799 \\ 4.748 \\ 5.698 \\ 6.648 \end{array}$	$\begin{array}{r} .939\\ 1.253\\ 1.566\\ 1.879\\ 2.192 \end{array}$	$\begin{array}{r} 2.845 \\ 3.793 \\ 4.742 \\ 5.690 \\ 6.638 \end{array}$.952 1.269 1.587 1.904 2.221	$\begin{array}{r} 2.841 \\ 3.788 \\ 4.735 \\ 5.682 \\ 6.628 \end{array}$	$\begin{array}{r} .964 \\ 1.286 \\ 1.607 \\ 1.929 \\ 2.250 \end{array}$	34567
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	456 78	$\begin{array}{r} 2.853 \\ 3.804 \\ 4.755 \\ 5.706 \\ 6.657 \\ 7.608 \end{array}$	$\begin{array}{r} .927\\ 1.236\\ 1.545\\ 1.854\\ 2.163\\ 2.472\end{array}$	$\begin{array}{c} 2.849\\ 3.799\\ 4.748\\ 5.698\\ 6.648\\ 7.598\end{array}$	$\begin{array}{r} .939\\ 1.253\\ 1.566\\ 1.879\\ 2.192\\ 2.505\end{array}$	$\begin{array}{r} 2.845\\ 3.793\\ 4.742\\ 5.690\\ 6.638\\ 7.587\end{array}$.952 1.269 1.587 1.904 2.221 2.538	$\begin{array}{r} 2.841 \\ 3.788 \\ 4.735 \\ 5.682 \\ 6.628 \\ 7.575 \end{array}$	$\begin{array}{r} .964 \\ 1.286 \\ 1.607 \\ 1.929 \\ 2.250 \\ 2.572 \end{array}$	345678
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 5 6 7 8 9	$\begin{array}{r} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\end{array}$	$\begin{array}{r} .927\\ 1.236\\ 1.545\\ 1.854\\ 2.163\\ 2.472\\ 2.781\end{array}$	$\begin{array}{c} 2.849\\ 3.799\\ 4.748\\ 5.698\\ 6.648\\ 7.598\\ 8.547\end{array}$	$\begin{array}{r} .939\\ 1.253\\ 1.566\\ 1.879\\ 2.192\\ 2.505\\ 2.818\end{array}$	$\begin{array}{c} 2.845\\ 3.793\\ 4.742\\ 5.690\\ 6.638\\ 7.587\\ 8.535\end{array}$.952 1.269 1.587 1.904 2.221 2.538 2.856	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\end{array}$.964 1.286 1.607 1.929 2.250 2.572 2.893	3456789
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 5 6 7 8 9	$\begin{array}{c} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\\ 9.511\end{array}$	$\begin{array}{r} .927\\ 1.236\\ 1.545\\ 1.854\\ 2.163\\ 2.472\\ 2.781\\ 3.090 \end{array}$	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497	$\begin{array}{r} .939\\ 1.253\\ 1.566\\ 1.879\\ 2.192\\ 2.505\\ 2.818\\ 3.132\end{array}$	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469 \end{array}$	$\begin{array}{r} .964\\ 1.286\\ 1.607\\ 1.929\\ 2.250\\ 2.572\\ 2.893\\ 3.214 \end{array}$	3456789
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 5 6 7 8 9	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72°	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0 '	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71°	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45'	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71°	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71°	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15'	3456789
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19°	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0'	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71° 19°	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15'	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° 19°	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 19°	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45'	34567890
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ -\\ -\\ 1\\ \end{array}$	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19° .946	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 0' 0' 0'	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71° 71° 19° .944	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° 19° .943	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 71° 19° .941	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 3 38	345678910 1
6 5.673 1.953 5.665 1.978 5.656 2.003 5.647 2.027 6 7 6.619 2.279 6.609 2.308 6.598 2.337 6.588 2.365 7 8 7.564 2.605 7.553 2.638 7.541 2.670 7.529 2.703 8 9 8.510 2.930 8.497 2.967 8.484 3.004 8.471 3.041 9 10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10 70° 45' 70° 30' 70° 15'	$\begin{array}{c} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ -\\ -\\ 1\\ \end{array}$	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19° .946 1.891	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 0' 0' 0' 0' 0'	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71° 71° 19° .944 1.888	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° 19° .943 1.885	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 71° 19° .941 1.882	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 338 .676	345678910 1
6 5.673 1.953 5.665 1.978 5.656 2.003 5.647 2.027 6 7 6.619 2.279 6.609 2.308 6.598 2.337 6.588 2.365 7 8 7.564 2.605 7.553 2.638 7.541 2.670 7.529 2.703 8 9 8.510 2.930 8.497 2.967 8.484 3.004 8.471 3.041 9 10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10 70° 45' 70° 30' 70° 15'	$\begin{array}{c c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 1 \\ 2 \\ 3 \\ \end{array}$	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19° .946 1.891 2.837	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 3 26 .651 .977	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71° 71° .944 1.888 2.832	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659 .989	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° 19° .943 1.885 2.828	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 19° .941 1.882 2.824	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 338 .676 1.014	34567890 123
7 6.619 2.279 6.609 2.308 6.598 2.337 6.588 2.365 7 8 7.564 2.605 7.553 2.638 7.541 2.670 7.529 2.703 8 9 8.510 2.930 8.497 2.967 8.484 3.004 8.471 3.041 9 10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19° .946 1.891 2.837 3.782	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 o' o' o' o' o' o' 1.326 .651 .977 1.302	2.849 3.799 4.748 5.698 6.648 7.598 8.547 9.497 71° 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659 .989 1.319	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° . 943 1.885 2.828 3.771	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30 30' 30 3030 30 30 303030 303030	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 19° .941 1.882 2.824 2.824 3.765	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 45' 10 14 1.352	34567890 123
8 7.564 2.605 7.553 2.638 7.541 2.670 7.529 2.703 8 9 8.510 2.930 8.497 2.967 8.484 3.004 8.471 3.041 9 10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10	45678910 10 12345	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 19° .946 1.891 2.837 3.782 4.728	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 0' 0' 0' 0' 0'	2.849 3.799 4.748 5.698 6.648 8.547 9.497 71° 71° 9.44 1.888 2.832 3.776 4.720	.939 1.253 1.566 1.879 2.192 2.505 2.818 8.132 45' 15' .330 .659 .989 1.319 1.648	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° 19° .943 1.885 2.828 3.771 4.713	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30 30' 30 3030 30 30 303030 30	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469\\ \hline \textbf{71^\circ}\\ \hline \textbf{19^\circ}\\ \hline \textbf{1882}\\ 2.824\\ 3.765\\ 4.706\\ \end{array}$.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 45' 1.014 1.352 1.690	34567890 12345
9 8.510 2.930 8.497 2.967 8.484 3.004 8.471 3.041 9 10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10 71° 0' 70° 45' 70° 30' 70° 15'	$\begin{array}{c c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array}$	2.853 3.804 4.755 5.706 6.657 7.608 8.559 9.511 72° 9.511 19° .946 1.891 2.837 3.782 4.728 5.673	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 o' o' o' o' o' o' c' 1.302 1.628 1.953	2.849 3.799 4.748 5.698 6.648 8.547 9.497 71° 71° 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.497 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.51111111111111	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659 .989 9.989 1.319 1.648 1.978	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° - 943 1.885 2.828 3.771 4.713 5.656	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30 30' 30' 30' 30' 30' 3	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469\\ \hline \textbf{71^\circ}\\ \textbf$.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 1.014 1.352 1.690 2.027	34567890 123450
10 9.455 3.256 9.441 3.297 9.426 3.338 9.412 3.379 10 71° 0' 70° 45' 70° 30' 70° 15'	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\\ 9.511\\ \hline \textbf{72^\circ}\\ \hline \textbf{79^\circ}\\ \hline \textbf{9511}\\ 2.837\\ 3.782\\ 4.728\\ 4.728\\ 5.673\\ 6.619 \end{array}$.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 0' 0' 0' 0' 1.326 .651 .977 1.302 1.628 1.953 2.279	$\begin{array}{r} 2.849\\ 3.799\\ 4.748\\ 5.698\\ 6.648\\ 7.598\\ 8.547\\ 9.497\\ \hline 71^\circ\\ \hline 92^\circ\\944\\ 1.888\\ 2.832\\ 3.776\\ 4.720\\ 5.665\\ 6.609\\ \end{array}$.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659 .989 1.319 1.648 1.978 2.308	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° - 9.43 1.885 2.828 3.771 4.713 5.656 6.598	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{71^{\circ}}\\ \hline \textbf{5.647}\\ 5.647\\ 5.647\\ \hline \textbf{6.588}\\ \end{array}$.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' . 338 .676 1.014 1.352 1.690 2.027 2.365	34567890 1234567
71° 0′ 70° 45′ 70° 30′ 70° 15′	4567890 12345678	$\begin{array}{r} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\\ 9.511\\ \hline \textbf{72^\circ}\\ \hline \textbf{1.891}\\ 2.837\\ 3.782\\ 4.728\\ 5.673\\ 6.619\\ 7.564\\ \end{array}$.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 0' 0' 0' 0' 0' 0' 0' 1.302 1.628 1.958 1.958 1.958 1.958	$\begin{array}{r} 2.849\\ 3.799\\ 4.748\\ 5.698\\ 6.648\\ 7.598\\ 8.547\\ 9.497\\ \hline 9^{\circ}\\ \hline 9^{\circ}\\ \hline 9^{\circ}\\ \hline 9^{\circ}\\ 92\\ 3.776\\ 4.720\\ 5.665\\ 6.609\\ 7.553\\ \hline \end{array}$.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' .330 .659 .989 1.319 1.648 1.978 2.308 2.638	2.845 3.793 4.742 5.6906 6.638 7.587 8.535 9.483 71° .943 1.8855 2.828 3.771 4.713 5.656 6.598 7.541	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469\\ \hline \textbf{71}^\circ\\ \hline \textbf$.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 338 .676 1.014 1.352 1.690 2.027 2.365 2.703	34567890 12345678
	45678901 123456789	$\begin{array}{c} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\\ 9.511\\ \hline \textbf{72^\circ}\\ \hline \textbf{19^\circ}\\ \hline \textbf{1.897}\\ 2.837\\ 3.782\\ 4.728\\ 5.673\\ 6.619\\ 7.564\\ 8.510\\ \end{array}$.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 o' o' o' o' o' o' o' o'	2.849 3.799 4.748 5.698 8.547 9.497 71° 71° 9.944 1.888 2.832 3.776 4.720 5.665 6.669 7.553 8.497	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' . 330 .659 .989 1.319 1.648 1.978 2.308 2.638 2.638 2.967	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° .943 1.885 2.828 3.771 4.713 5.656 6.598 7.541 8.484	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 71° 941 1.882 2.824 2.824 3.765 4.706 5.647 6.5847 6.529 8.471	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 1.014 1.352 1.690 2.027 2.365 2.703 3.041	34567892 123456789
D. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. D.	45678901 123456789	$\begin{array}{r} 2.853\\ 3.804\\ 4.755\\ 5.706\\ 6.657\\ 7.608\\ 8.559\\ 9.511\\ \hline \textbf{72^\circ}\\ \hline \textbf{19^\circ}\\ \hline \textbf{189^\circ}\\ 2.837\\ 3.782\\ 4.728\\ 5.673\\ 6.619\\ 7.564\\ 8.510\\ 9.455\\ \end{array}$.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 o' o' o' o' o' o' o' o'	$\begin{array}{r} 2.849\\ 3.799\\ 4.748\\ 5.698\\ 6.648\\ 7.598\\ 8.547\\ 9.497\\ \hline \begin{array}{r} \mathbf{71^{\circ}}\\ \mathbf{71^{\circ}}\\ \mathbf{71^{\circ}}\\ \mathbf{71^{\circ}}\\ 9.441\\ 1.888\\ 2.832\\ 3.776\\ 4.720\\ 5.665\\ 6.609\\ 7.553\\ 8.497\\ 9.441 \end{array}$.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' 15' 15' 15' 15' 15' 13 19 1.648 1.978 2.308 2.638 2.638 2.638 2.967 3.297	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° .943 1.885 2.828 3.771 4.713 5.656 6.598 7.541 8.484 9.426	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	$\begin{array}{c} 2.841\\ 3.788\\ 4.735\\ 5.682\\ 6.628\\ 7.575\\ 8.522\\ 9.469\\ \hline \begin{array}{c} \textbf{71}^\circ\\ \textbf{71}^\circ\\ \hline \textbf{71}^\circ\\ \textbf{71}^\circ\\ \textbf{71}^\circ\\ \textbf{71}^\circ\\ \textbf{75}\\ 4.706\\ 5.647\\ 6.588\\ \textbf{7.529}\\ 8.471\\ 9.412\\ \hline \end{array}$.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 45' 45' 1.014 1.352 1.690 2.027 2.365 2.703 3.041 3.379	34567892 123456789
	456778900 10 12334567890 10	2.853 3.804 4.755 5.7068 8.559 9.511 72° 19° .946 1.891 2.837 3.782 4.728 5.673 6.619 7.564 8.510 9.455 71°	.927 1.236 1.545 1.854 2.163 2.472 2.781 3.090 o' o' o' o' o' o' c' c' c' c' c' c' c' c	2.849 3.799 4.748 5.698 8.547 9.497 71° 71° 9.944 1.888 2.832 3.776 4.720 5.665 6.609 7.553 8.497 9.441 70°	.939 1.253 1.566 1.879 2.192 2.505 2.818 3.132 45' 15' . 330 .659 9.889 1.319 1.648 1.978 2.308 2.638 2.638 2.638 2.967 3.297 45'	2.845 3.793 4.742 5.690 6.638 7.587 8.535 9.483 71° .943 1.885 2.828 3.771 4.713 5.656 6.598 7.541 8.484 9.426 70°	.952 1.269 1.587 1.904 2.221 2.538 2.856 3.173 30' 30' 30' 30' 30' 30' 1.335 1.669 2.003 2.337 2.670 3.004 3.338 30'	2.841 3.788 4.735 5.682 6.628 7.575 8.522 9.469 71° 79° 19° 9.941 1.882 2.824 2.824 3.765 4.706 5.647 6.5847 6.529 8.471 9.412 9.412 70°	.964 1.286 1.607 1.929 2.250 2.572 2.893 3.214 15' 45' 45' 338 676 1.014 1.352 1.690 2.027 2.365 2.703 3.041 3.379 15'	34567890 1234567890

S. N. 41.

77

20°-23°45′ TRAVERSE TABLES. 66°15′-70°

D		Lat.	Den	Lat.	Den	Lat.	Den	Tet	Den	D
-		20°	Dep.	20°	Dep. 15'		Dep.	Lat.	Dep.	<u>D.</u>
-		.940	0'	Alantas	(month the local of	20	a	200		
	12	1.879	.342	.938 1.876	.346	.937 1.873	.350	.935 1.870	.354	1
161	3	2.819	.684 1.026	2.815	1.038	2.810	.700	2.805	.709	23
	4	3.759	1.368	3.753	1.384	3.747	1.401	3.740	1.417	0 4
	5	4.698	1.710	4.691	1.731	4.683	1.401	4.676	1.771	5
120	6	5.638	2.052	5.629	2.077	5.620	2.101	5.611	2.126	6
		6.578	2.394	6.567	2.423	6.557	2.451	6.546	2.480	7
	8	7.518	2.736	7.506	2.769	7.493	2.802	7.481	2.834	8
	9	8.457	3.078	8.444	3.115	8.430	3.152	8.416	3.189	9
101		9.397	3.420	9.382	3.461	9.367	3.502	9.351	3.543	10
-	- -	700		690	and the second se	690	A REAL PROPERTY AND ADDRESS OF	690	and an other states	-
-		21°	-	210	· ····································	21°	30'		45'	-
-	1-	.934	.358	.932	.362	-	.367			
	2	.954	.5.58	1.864	.302	.930 1.861	.307	.929	.371	1
	3	2.801	1.075	2.796	1.087	2.791	1.100	$1.858 \\ 2.786$	1.112	23
	4	3.734	1.433	3.728	1.450	3.722	1.100	3.715	1.482	34
	5	4.668	1.433	4.660	1.812	4.652	1.400	4.644	1.402	45
	6	5.601	2.150	5.592	2.175	5.582	2.199	5.573	2.223	6
	7	6.535	2.509	6.524	2.537	6.513	2.566	6,502	2.594	7
	3	7.469	2.867	7.456	2.900	7.443	2.932	7.430	2.964	8
	9	8.402	3.225	8.388	3.262	8.374	3.299	8.359	3.335	9
1		9.336	3.584	9.320	3.624	9.304	3.665	9.288	3.706	10
-		690	0'	680		650	the shadow when the state of the	680	And in the other day of	
-		220		220		220		220	-	-
	1-	.927	.375	the second secon			· Ingenite Company			
1000										1
1 6	5			.926	.379	.924	.383	.922	.387	1
	2	1.854	.749	1.851	.757	1.848	.765	1.844	.773	2
	23	$1.854 \\ 2.782$	$.749 \\ 1.124$	$1.851 \\ 2.777$.757 1.136	$1.848 \\ 2.772$.765 1.148	$1.844 \\ 2.767$.773 1.160	23
	2 3 4	1.854 2.782 3.709	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \end{array}$	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \end{array}$.757 1.136 1.515	$\begin{array}{c} 1.848 \\ 2.772 \\ 3.696 \end{array}$.765 1.148 1.531	$\begin{array}{r} 1.844 \\ 2.767 \\ 3.689 \end{array}$.773 1.160 1.547	2 3 4
	2345	$\begin{array}{r} 1.854 \\ 2.782 \\ 3.709 \\ 4.636 \end{array}$	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \\ 1.873 \end{array}$	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \end{array}$.757 1.136 1.515 1.893	$\begin{array}{r} 1.848 \\ 2.772 \\ 3.696 \\ 4.619 \end{array}$.765 1.148 1.531 1.913	$ 1.844 \\ 2.767 \\ 3.689 \\ 4.611 $.773 1.160 1.547 1.934	2 3 4 5
	23456	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\end{array}$	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \\ 1.873 \\ 2.248 \end{array}$	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \end{array}$	$\begin{array}{r} .757 \\ 1.136 \\ 1.515 \\ 1.893 \\ 2.272 \end{array}$	$\begin{array}{c} 1.848 \\ 2.772 \\ 3.696 \\ 4.619 \\ 5.543 \end{array}$.765 1.148 1.531 1.913 2.296	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\end{array}$	$\begin{array}{r} .773 \\ 1.160 \\ 1.547 \\ 1.934 \\ 2.320 \end{array}$	2 3 4 5 6
	234567	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\end{array}$	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \\ 1.873 \\ 2.248 \\ 2.622 \end{array}$	$1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \\ 6.479$	$\begin{array}{r} .757\\ 1.136\\ 1.515\\ 1.893\\ 2.272\\ 2.651\end{array}$	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\end{array}$	$\begin{array}{r} .765 \\ 1.148 \\ 1.531 \\ 1.913 \\ 2.296 \\ 2.679 \end{array}$	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\end{array}$	$\begin{array}{r} .773\\ 1.160\\ 1.547\\ 1.934\\ 2.320\\ 2.707\end{array}$	234567
	23456	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\end{array}$	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \\ 1.873 \\ 2.248 \\ 2.622 \\ 2.997 \end{array}$	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \end{array}$	$\begin{array}{r} .757\\ 1.136\\ 1.515\\ 1.893\\ 2.272\\ 2.651\\ 3.029\end{array}$	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391 \end{array}$	$\begin{array}{r} .765\\ 1.148\\ 1.531\\ 1.913\\ 2.296\\ 2.679\\ 3.062\\ \end{array}$	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\end{array}$	$\begin{array}{r} .773\\ 1.160\\ 1.547\\ 1.934\\ 2.320\\ 2.707\\ 3.094 \end{array}$	2345678
	2 3 4 5 6 7 8 9	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\end{array}$	$\begin{array}{r} .749 \\ 1.124 \\ 1.498 \\ 1.873 \\ 2.248 \\ 2.622 \end{array}$	$\begin{array}{c} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \\ 6.479 \\ 7.404 \end{array}$	$\begin{array}{r} .757\\ 1.136\\ 1.515\\ 1.893\\ 2.272\\ 2.651\end{array}$	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\end{array}$	$\begin{array}{r} .765 \\ 1.148 \\ 1.531 \\ 1.913 \\ 2.296 \\ 2.679 \end{array}$	$\begin{array}{r} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\end{array}$	$\begin{array}{r} .773\\ 1.160\\ 1.547\\ 1.934\\ 2.320\\ 2.707\\ 3.094\\ 3.480\end{array}$	234567
	2 3 4 5 6 7 8 9	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\end{array}$	$\begin{array}{c} .749\\ 1.124\\ 1.498\\ 1.873\\ 2.248\\ 2.622\\ 2.997\\ 3.371\\ 3.746\end{array}$	$\begin{array}{c} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \\ 6.479 \\ 7.404 \\ 8.330 \end{array}$	$\begin{array}{r} .757\\ 1.136\\ 1.515\\ 1.893\\ 2.272\\ 2.651\\ 3.029\\ 3.408\end{array}$	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\end{array}$	$\begin{array}{r} .765\\ 1.148\\ 1.531\\ 1.913\\ 2.296\\ 2.679\\ 3.062\\ 3.444\\ 3.827\end{array}$	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\\ 8.300 \end{array}$	$\begin{array}{c} .773\\ 1.160\\ 1.547\\ 1.934\\ 2.320\\ 2.707\\ 3.094\\ 3.480\\ 3.867\end{array}$	23456789
	2 3 4 5 6 7 8 9	$\begin{array}{c} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\end{array}$	$\begin{array}{c} .749\\ 1.124\\ 1.498\\ 1.873\\ 2.248\\ 2.622\\ 2.997\\ 3.371\\ 3.746\end{array}$	$\begin{array}{c} 1.851\\ 2.777\\ 3.702\\ 4.628\\ 5.553\\ 6.479\\ 7.404\\ 8.330\\ 9.255\end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45'	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\\ 9.239\end{array}$.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30'	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67°	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15 ′	23456789
1	234567890	1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23°	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0'	1.851 2.777 3.702 4.628 5.553 6.479 7.404 8.330 9.255 67° 23°	.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15'	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23°	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30'	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23°	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 45'	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \\ \\ \\ \\ $
1	2 3 4 5 6 6 7 8 9 9 0 	1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23° .921	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 3.391	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \\ 6.479 \\ 7.404 \\ 8.330 \\ 9.255 \\ \hline \begin{array}{r} 67^{\circ} \\ \hline 23^{\circ} \\ \hline 23^{\circ} \\ .919 \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .395	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° .917	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30'	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23° .915	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 45' 45' .403	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ - \\ 1 \end{array} $
1	2 3 4 5 6 6 7 8 9 9 0 	1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23°	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 3.391 .781	1,851 2,777 3,702 4,628 5,553 6,479 7,404 8,330 9,255 67° 23° 9,919 1,838	.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .395 .789	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° .917 1.834	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30' 30' 30'	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 233° .915 1.831	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 45' 403 .805	$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 1 \\ 2 \end{array}$
1	23456678990	1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23° .921 1.841	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 0' 0' 1.172 1.563	$\begin{array}{r} 1.851 \\ 2.777 \\ 3.702 \\ 4.628 \\ 5.553 \\ 6.479 \\ 7.404 \\ 8.330 \\ 9.255 \\ \hline \begin{array}{r} 67^{\circ} \\ \hline 23^{\circ} \\ \hline 23^{\circ} \\ .919 \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .395	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° .917	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30'	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23° .915	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 45' 45' .403	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ - \\ 1 \end{array} $
1	23456678990	1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23° 23° . 921 1.841 2.762	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 o' o' o' o' i 1.781 1.172 1.563 1.954	1,851 2,777 3,702 4,628 5,553 6,479 7,404 8,330 9,255 67° 23° 67° 23° 919 1,838 2,756	.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .395 .789 1.184	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° 9.917 1.834 2.751	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23° .915 1.831 2.746	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 45' 403 .805 1.208	$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array}$
1		1.854 2.782 3.709 4.636 5.563 6.490 7.418 8.345 9.272 68° 23° 23° 1.841 2.762 3.682	.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 0' 0' 0' 1.563 1.954 2.344	1.851 2.777 3.702 4.628 5.555 5.555 6.479 7.404 8.330 9.255 67° 23° 70 1 .838 2.756 3.675	.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .789 1.184 1.579	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° .917 1.834 2.751 3.668	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.062 3.444 3.827 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23° .915 1.831 2.746 3.661	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3_867 15' 45' .403 .805 1.208 1.611 2.014 2.014 2.014	$\begin{array}{c c}23\\4\\56\\7\\8\\9\\10\\1\\2\\3\\4\\56\end{array}$
1	2 3 4 5 6 7 8 9 0 - - - - - - - - - - - - -	$\begin{array}{r} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\\ \hline {\bf 68^{\circ}}\\ \hline {\bf 23^{\circ}}\\ \hline {\bf 23^{\circ}}\\ \hline {\bf 23^{\circ}}\\ \hline {\bf 2.762}\\ 3.682\\ 4.603\\ \hline {\bf 5.523}\\ 6.444 \end{array}$.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 0' 0' 0' 1.172 1.563 1.954 2.344 2.344	1.851 2.777 3.702 4.628 5.553 6.479 7.404 8.330 9.255 67° 23° . 919 1.838 2.756 3.675 4.594	.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .395 .789 1.184 1.579 1.974	1.848 2.772 3.696 4.619 5.543 6.467 7.391 8.315 9.239 67° 23° .917 1.834 2.751 3.668 4.585	.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30' 309 7.977 1.196 1.595/ 1.994	1.844 2.767 3.689 4.611 5.533 6.455 7.378 8.300 9.222 67° 23° .915 1.831 2.746 3.661 4.577	.773 1.160 1.547 1.934 2.320 2.707 3.094 3.480 3.867 15' 403 8.05 1.208 1.611 2.014	$\begin{array}{c c}23\\4\\56\\7\\8\\9\\10\\1\\23\\4\\56\\7\end{array}$
1	2 3 4 5 6 7 8 9 0 - - - - - - - - - - - - -	$\begin{array}{r} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\\ \hline \begin{array}{r} \mathbf{23^{\circ}}\\ $.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 o' o' o' o' o' o' o' o'	$\begin{array}{r} 1.851\\ 2.777\\ 3.702\\ 4.628\\ 5.553\\ 6.479\\ 7.404\\ 8.330\\ 9.255\\ \hline \begin{array}{r} \mathbf{23^\circ}\\ \mathbf{23^\circ}\\ \mathbf{23^\circ}\\ 9.919\\ 1.838\\ 2.756\\ 3.675\\ 4.594\\ 5.513\\ 6.432\\ 7.350\\ \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .789 1.184 1.579 1.974 2.365 2.763 3.158	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\\ 9.239\\ \hline {\bf 67}^{\circ}\\ {\bf 23}^{\circ}\\ \hline {\bf 23}^{\circ}\\ {\bf 23}^{\circ}\\ 1.834\\ 2.751\\ 3.668\\ 4.585\\ 5.502\\ 6.419\\ 7.336\\ \end{array}$.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\\ 8.300\\ 9.222\\ \hline 9.222\\ \hline 9.222\\ \hline 9.22\\ \hline $.773 1.160 1.547 1.934 2.320 2.707 3.094 3.867 15' 45' .403 .805 1.208 1.611 2.014 2.819 3.222	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1		$\begin{array}{r} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\\ \hline \begin{array}{r} \mathbf{68^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ 2.762\\ 3.682\\ 4.603\\ 5.523\\ 6.444\\ 8.285\\ \end{array}$.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 0' 0' 0' 0' 0'	$\begin{array}{r} 1.851\\ 2.777\\ 3.702\\ 4.628\\ 5.553\\ 5.553\\ 5.553\\ 5.553\\ 6.479\\ 7.404\\ 8.330\\ 9.255\\ \hline \begin{array}{r} \mathbf{67^{\circ}}\\ \mathbf{23^{\circ}}\\ \hline \mathbf{23^{\circ}}\\ .919\\ 1.838\\ 2.756\\ 3.675\\ 4.594\\ 5.513\\ 6.432\\ 7.350\\ 8.269\\ \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' 15' 15' 15' 1 ,893 3.786 15' 1 ,893 3.789 1.184 1.579 1.974 2.368 2.768 2.768 3.158 3.553	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\\ 9.239\\ \hline \begin{array}{c} \mathbf{67^{\circ}}\\ 917\\ 1.834\\ 2.751\\ 3.668\\ 4.585\\ 5.502\\ 6.419\\ 7.336\\ 8.254 \end{array}$.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' .797 1.196 1.595 1.994 2.399 2.791 2.791 3.190 3.589	$\begin{array}{r} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\\ 8.300\\ 9.222\\ \hline 67^{\circ}\\ \hline 23^{\circ}\\ .915\\ 1.831\\ 2.746\\ 3.661\\ 4.577\\ 5.492\\ 6.407\\ 7.322\\ 8.238\end{array}$.773 1.160 1.547 1.934 2.320 2.707 3.094 3.867 15' 45' 45' 45' 45' 45' 1.208 1.611 2.014 2.819 3.222 3.625	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1		$\begin{array}{r} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\\ \hline \begin{array}{r} \mathbf{23^{\circ}}\\ $.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 o' o' o' o' o' o' o' o'	$\begin{array}{r} 1.851\\ 2.777\\ 3.702\\ 4.628\\ 5.553\\ 6.479\\ 7.404\\ 8.330\\ 9.255\\ \hline \begin{array}{r} \mathbf{23^\circ}\\ \mathbf{23^\circ}\\ \mathbf{23^\circ}\\ 9.919\\ 1.838\\ 2.756\\ 3.675\\ 4.594\\ 5.513\\ 6.432\\ 7.350\\ \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' .789 1.184 1.579 1.974 2.365 2.763 3.158	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\\ 9.239\\ \hline {\bf 67}^{\circ}\\ {\bf 23}^{\circ}\\ \hline {\bf 23}^{\circ}\\ {\bf 23}^{\circ}\\ 1.834\\ 2.751\\ 3.668\\ 4.585\\ 5.502\\ 6.419\\ 7.336\\ \end{array}$.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	$\begin{array}{c} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\\ 8.300\\ 9.222\\ \hline 9.222\\ \hline 9.222\\ \hline 9.22\\ \hline $.773 1.160 1.547 1.934 2.320 2.707 3.094 3.867 15' 45' .403 .805 1.208 1.611 2.014 2.819 3.222	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	233455678990	$\begin{array}{r} 1.854\\ 2.782\\ 3.709\\ 4.636\\ 5.563\\ 6.490\\ 7.418\\ 8.345\\ 9.272\\ \hline \begin{array}{r} \mathbf{68^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ \mathbf{23^{\circ}}\\ 2.762\\ 3.682\\ 4.603\\ 5.523\\ 6.444\\ 8.285\\ \end{array}$.749 1.124 1.498 1.873 2.248 2.622 2.997 3.371 3.746 0' 0' 0' 0' 0' 0' 0' 0'	$\begin{array}{r} 1.851\\ 2.777\\ 3.702\\ 4.628\\ 5.553\\ 5.553\\ 5.553\\ 5.553\\ 6.479\\ 7.404\\ 8.330\\ 9.255\\ \hline \begin{array}{r} \mathbf{67^{\circ}}\\ \mathbf{23^{\circ}}\\ \hline \mathbf{23^{\circ}}\\ .919\\ 1.838\\ 2.756\\ 3.675\\ 4.594\\ 5.513\\ 6.432\\ 7.350\\ 8.269\\ \end{array}$.757 1.136 1.515 1.893 2.272 2.651 3.029 3.408 3.786 45' 15' 15' 15' 15' 184 1.579 1.184 1.579 1.184 2.763 3.158 3.553 3.947	$\begin{array}{c} 1.848\\ 2.772\\ 3.696\\ 4.619\\ 5.543\\ 6.467\\ 7.391\\ 8.315\\ 9.239\\ \hline \begin{array}{c} \mathbf{23^{\circ}}\\ $.765 1.148 1.531 1.913 2.296 2.679 3.062 3.444 3.827 30' .797 1.196 1.595 1.994 2.399 2.791 2.791 3.190 3.589	$\begin{array}{r} 1.844\\ 2.767\\ 3.689\\ 4.611\\ 5.533\\ 6.455\\ 7.378\\ 8.300\\ 9.222\\ \hline 67^{\circ}\\ \hline 23^{\circ}\\ .915\\ 1.831\\ 2.746\\ 3.661\\ 4.577\\ 5.492\\ 6.407\\ 7.322\\ 8.238\end{array}$.773 1.160 1.547 1.934 2.320 2.707 3.094 3.867 15' 45' 45' 45' 45' 45' 1.208 1.611 2.014 2.819 3.222 3.625 4.027	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

24°-27°45'

TRAVERSE TABLES.

62°15′-66°

D.	Lat	Dep.	Lat	Dep.	Lat	Dep.	Lat.	Dep.	D.
-	24		24	15'	24	30'	24	45'	
1	.914	.407	.912	.411	.910	.415	.908	.419	1
23	1.827	.813	1.824	.821	1.820	.829	1.816	.837	2 3 4
3	2.741	1.220	2.735	1.232	2.730	1.244	2.724	1.256	3
4	3.654	1.627	3.647	1.643	3.640	1.659	3.633	1.675	4
5	4.568	2.034	4.559	2.054	4.550	2.073	4.541	2.093	5
6	5.481	2.440	5.471	2.464	5.460	2.488	5.449	2.512	6
7	6.395	2.847	6.382	2.875	6.370	2.903	$6.357 \\ 7.265$	2.931 3.349	7
89	7.308	3.254 3.661	7.294 8.206	3.286 3.696	7.280 8.190	3.732	8.173	3.768	9
10	9,135	4.067	9.118	4.107	9.100	4.147	9.081	4.187	10
-	<u></u>	0'	65	45	65°	30/	65°	15'	
-	25.0		250	15'	25		25°	45'	
$\overline{1}$		423	.904	427	.903	.431	.901	.434	T
2	.906 1.813	.423	1.809	.421	1.805	.451	1.801	.434	1
3	2.719	1.268	2.713	1.280	2.708	1.292	2.702	1.303	23
4	3.625	1.690	3.618	1.706	3.610	1.722	3.603	1.738	4
5	4.532	2.113	4.522	2.133	4.513	2.153	4.504	2.172	5
G	5.438	2.536	5.427	2.559	5.416	2.583	5.404	2.607	6
7	6.344	2.958	6.331	2,986	6.318	3.014	6.305	3.041	7
8	7.250	3.381	7.236	3,413	7.221	3.444	7.206	3.476	8
9	8.157	3.804	8.140	3.839	8.123	3.875	8.106	3.910	9
10	9.063	4.226	9.045	4.266	9.026	4.305	9.007	4.344	10
	65°	0/	640	45′	64 °	30′	64 °	15′	
_	26?	0'	26°	15'	26°	30	26°	45'	
1	.899	.438	.897	.442	.895	.446	.893	.450	1
23	1.798	.877 1.315	1.794	.885 1.327	1.790	.892 1.339	$1.786 \\ 2.679$.900	23
4	2.696 3.595	1.315	$2.691 \\ 3.587$	1.527	$2.685 \\ 3.580$	1.339	3.572	1.800	4
45	4.494	2.192	4.484	2.211	4.475	2.231	4.465	2.250	5
6	5.393	2.630	5.381	2.654	5.370	2.677	5.358	2.701	6
7	6.292	3.069	6.278	3.096	6.265	3.123	6.251	3.151	7
8	7.190	3.507	7.175	3.538	7.159	3.570	7.144	3.601	8
9	8.089	3.945	8.072	3.981	8.054	4.016	8.037	4.051	9
10	8.988	4.384	8.969	4.423	8.949	4.462	8.930	4.501	10.
	64	0'	63	45	63.0	30′	63°	15′	1
1	27	0'	270	15	270	30′	27°	45'	
1	.891	.454	.889	.458	.887	.462	.885	.466	1
2	1.782	.908	1.778	.916	1.774	.923	1.770	.931	23
				1074	0001	1 905	2.655	1.397	3
23	2.673	1.362	2.667	1.374	2.661	1.385			
4	2.673 3.564	1.816	3.556	1.831	3.548	1.847	3.540	1.862	4
45	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \end{array}$	$1.816 \\ 2.270$	$3.556 \\ 4.445$	$1.831 \\ 2.289$	$3.548 \\ 4.435$	$1.847 \\ 2.309$	$3.540 \\ 4.425$	$1.862 \\ 2.328$	4 5
4 5 6	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \\ 5.346 \end{array}$	$\frac{1.816}{2.270}\\ 2.724$	$3.556 \\ 4.445 \\ 5.334$	1.831 2.289 2.747	$3.548 \\ 4.435 \\ 5.322$	$\begin{array}{c} 1.847 \\ 2.309 \\ 2.770 \end{array}$	$3.540 \\ 4.425 \\ 5.310$	$\begin{array}{c} 1.862 \\ 2.328 \\ 2.794 \end{array}$	456
4 5 6 7	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \\ 5.346 \\ 6.237 \end{array}$	$\begin{array}{c} 1.816 \\ 2.270 \\ 2.724 \\ 3.178 \end{array}$	3.556 4.445 5.334 6.223	$\begin{array}{r} 1.831 \\ 2.289 \\ 2.747 \\ 3.205 \end{array}$	$\begin{array}{r} 3.548 \\ 4.435 \\ 5.322 \\ 6.209 \end{array}$	$\begin{array}{c} 1.847 \\ 2.309 \\ 2.770 \\ 3.232 \end{array}$	3.540 4.425 5.310 6.195	$\begin{array}{r} 1.862 \\ 2.328 \\ 2.794 \\ 3.259 \end{array}$	4567
4 5 6 7 8	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \\ 5.346 \\ 6.237 \\ 7.128 \end{array}$	$\begin{array}{c} 1.816\\ 2.270\\ 2.724\\ 3.178\\ 3.632 \end{array}$	3.556 4.445 5.334 6.223 7.112	$\begin{array}{r} 1.831 \\ 2.289 \\ 2.747 \\ 3.205 \\ 3.663 \end{array}$	$\begin{array}{r} 3.548 \\ 4.435 \\ 5.322 \\ 6.209 \\ 7.096 \end{array}$	$\begin{array}{c} 1.847 \\ 2.309 \\ 2.770 \\ 3.232 \\ 3.694 \end{array}$	$\begin{array}{r} 3.540 \\ 4.425 \\ 5.310 \\ 6.195 \\ 7.080 \end{array}$	$\begin{array}{c} 1.862 \\ 2.328 \\ 2.794 \\ 3.259 \\ 3.725 \end{array}$	456
4 5 6 7	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \\ 5.346 \\ 6.237 \end{array}$	$\begin{array}{c} 1.816 \\ 2.270 \\ 2.724 \\ 3.178 \end{array}$	3.556 4.445 5.334 6.223	$\begin{array}{r} 1.831 \\ 2.289 \\ 2.747 \\ 3.205 \end{array}$	$\begin{array}{r} 3.548 \\ 4.435 \\ 5.322 \\ 6.209 \end{array}$	$\begin{array}{c} 1.847 \\ 2.309 \\ 2.770 \\ 3.232 \end{array}$	3.540 4.425 5.310 6.195	$\begin{array}{r} 1.862 \\ 2.328 \\ 2.794 \\ 3.259 \end{array}$	4 5 6 7 8
4 5 6 7 8 9	$\begin{array}{r} 2.673\\ 3.564\\ 4.455\\ 5.346\\ 6.237\\ 7.128\\ 8.019\\ 8.910\end{array}$	$\begin{array}{r} 1.816\\ 2.270\\ 2.724\\ 3.178\\ 3.632\\ 4.086\\ 4.540 \end{array}$	$\begin{array}{r} 3.556 \\ 4.445 \\ 5.334 \\ 6.223 \\ 7.112 \\ 8.001 \\ 8.890 \end{array}$	$\begin{array}{c} 1.831\\ 2.289\\ 2.747\\ 3.205\\ 3.663\\ 4.121\\ 4.579\end{array}$	$\begin{array}{r} 3.548 \\ 4.435 \\ 5.322 \\ 6.209 \\ 7.096 \\ 7.983 \\ 8.870 \end{array}$	$\begin{array}{c} 1.847\\ 2.309\\ 2.770\\ 3.232\\ 3.694\\ 4.156\\ 4.617\end{array}$	$\begin{array}{r} 3.540 \\ 4.425 \\ 5.310 \\ 6.195 \\ 7.080 \\ 7.965 \\ 8.850 \end{array}$	$\begin{array}{r} 1.862\\ 2.328\\ 2.794\\ 3.259\\ 3.725\\ 4.190\\ 4.656\end{array}$	4 5 6 7 8 9
4 5 6 7 8 9	$\begin{array}{r} 2.673 \\ 3.564 \\ 4.455 \\ 5.346 \\ 6.237 \\ 7.128 \\ 8.019 \end{array}$	$\begin{array}{r} 1.816\\ 2.270\\ 2.724\\ 3.178\\ 3.632\\ 4.086\\ 4.540 \end{array}$	$\begin{array}{r} 3.556 \\ 4.445 \\ 5.334 \\ 6.223 \\ 7.112 \\ 8.001 \end{array}$	$\begin{array}{r} 1.831 \\ 2.289 \\ 2.747 \\ 3.205 \\ 3.663 \\ 4.121 \end{array}$	$\begin{array}{r} 3.548 \\ 4.435 \\ 5.322 \\ 6.209 \\ 7.096 \\ 7.983 \end{array}$	$\begin{array}{r} 1.847\\ 2.309\\ 2.770\\ 3.232\\ 3.694\\ 4.156\end{array}$	$\begin{array}{r} 3.540 \\ 4.425 \\ 5.310 \\ 6.195 \\ 7.080 \\ 7.965 \\ 8.850 \end{array}$	$\begin{array}{r} 1.862 \\ 2.328 \\ 2.794 \\ 3.259 \\ 3.725 \\ 4.190 \end{array}$	4 5 6 7 8 9

28°-31°45'

TRAVERSE TABLES.

58°15′-62°

D,	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
-	28	1	28	-	28		280		-
T	.883	469	.881	.473	.879	.477	.877	.481	T
2	1.766	.939	1.762	.947	1.758	.954	1.753	.962	2
3	2.649	1.408	2.643	1.420	2.636	1.431	2.630	1.443	3
4	3.532	1.878	3.524	1.893	3.515	1.909	3.507	1.924	4
5 6	4.415	2.347	4.404	2.367	4.394	2.386	4.384	2.405	5
6	5.298	2.817	5.285	2.840	5.273	2.863	5.260	2.886	6
7	6.181	3.286	6.166	3.313	6.152	3.340	6.137	3.367	7
8	7.064	3.756	7.047	3.787	7.031	3.817	7.014	3.848	8
9	7.947	4.225	7.928	4.260	7.909	4.294	7.890	4.329	9
10	8.829	4.695	8.809	4.733	8.788	4.772	8.767	4.810	10
	620	and the second state	61°		61°		61°	15'	
-	29°	1	290	15'	29°		290		
1	.875	.485	.872	.489	.870	.492	.868	.496	T.
23	1.749	.970	1.745	.977	1.741	.985	1.736	.992	2
3	2.624	1.454	2.617	1.466	2.611	1.477	2.605	1.489	3
4 5	3.498	1.939	3.490	1.954	3.481	1.970	3.473	1.985	4
0 C	4.373 5.248	2.424 2.909	$4.362 \\ 5.235$	2.443	4.352	2.462	4.341	2.481	5
6 7	6.122	3.394	-6.107	2,932 3.420	$5.222 \\ 6.092$	2.954 3.447	5.209	2.977	6 7
8	6.997	3.878	6.980	3.420	6.963	3.939	$6.077 \\ 6.946$	3.473 3.970	8
9	7.872	4.363	7.852	4.398	7.833	4.432	7.814	4.466	9
10	8.746	4.848	8.725	4.886	8.704	4.924	8.682	4.962	10
-	61°	0	600	45'	60°		60°	15'	
-	30°	0'	30°	15/			309		
1	.866				30°	30'		45'	
1	1.732	.500 1.000	$.864 \\ 1.728$.504 1.008	$.862 \\ 1.723$	$.508 \\ 1.015$.859 1.719	.511 1.023	12
2 3			$\frac{1.120}{2.592}$	1.511	2.585	1.523	2.578	1.534	3
1 31	9 508	1 500							
3	2.598	1.500	the second s						
4	3.464	2.000	3.455	2.015	3.446	2.030	3.438	2.045	4
4 5 6	$3.464 \\ 4.330$	$2.000 \\ 2.500$	3.455 - 4.319	$2.015 \\ 2.519$	$3.446 \\ 4.308$	$2.030 \\ 2.538$	$3.438 \\ 4.297$	$2.045 \\ 2.556$	45
4 5 6 7	3.464	2.000	3.455	2.015	3.446	2.030	3.438	2.045	4 5 6
45	$\begin{array}{r} 3.464 \\ 4.330 \\ 5.196 \\ 6.062 \\ 6.928 \end{array}$	$\begin{array}{c} 2.000 \\ 2.500 \\ 3.000 \end{array}$	$3.455 \\ 4.319 \\ 5.183$	$\begin{array}{c} 2.015 \\ 2.519 \\ 3.023 \end{array}$	$3.446 \\ 4.308 \\ 5.170$	$\begin{array}{c} 2.030 \\ 2.538 \\ 3.045 \end{array}$	$3.438 \\ 4.297 \\ 5.156$	$\begin{array}{c} 2.045 \\ 2.556 \\ 3.068 \end{array}$	4 5 6 7
4 5 6 7 8 9	$\begin{array}{r} 3.464 \\ 4.330 \\ 5.196 \\ 6.062 \\ 6.928 \\ 7.794 \end{array}$	$\begin{array}{c} 2.000 \\ 2.500 \\ 3.000 \\ 3.500 \\ 4.000 \\ 4.500 \end{array}$	$\begin{array}{r} 3.455\\ -\ 4.319\\ 5.183\\ 6.047\\ 6.911\\ 7.775\end{array}$	$\begin{array}{c} 2.015 \\ 2.519 \\ 3.023 \\ 3.526 \end{array}$	$\begin{array}{r} 3.446 \\ 4.308 \\ 5.170 \\ 6.031 \\ 6.893 \\ 7.755 \end{array}$	$\begin{array}{c} 2.030 \\ 2.538 \\ 3.045 \\ 3.553 \end{array}$	3.438 4.297 5.156 6.016	$\begin{array}{r} 2.045 \\ 2.556 \\ 3.068 \\ 3.579 \end{array}$	456789
4 5 6 7 8	$\begin{array}{r} 3.464 \\ 4.330 \\ 5.196 \\ 6.062 \\ 6.928 \\ 7.794 \\ 8.660 \end{array}$	$\begin{array}{c} 2.000\\ 2.500\\ 3.000\\ 3.500\\ 4.000\\ 4.500\\ 5.000 \end{array}$	$\begin{array}{r} 3.455\\ -\ 4.319\\ 5.183\\ 6.047\\ 6.911\\ 7.775\\ 8.638\end{array}$	$\begin{array}{c} 2.015\\ 2.519\\ 3.023\\ 3.526\\ 4.030\\ 4.534\\ 5.038\\ \end{array}$	3.446 4.308 5.170 6.031 6.893	$\begin{array}{c} 2.030 \\ 2.538 \\ 3.045 \\ 3.553 \\ 4.060 \end{array}$	$\begin{array}{r} 3.438 \\ 4.297 \\ 5.156 \\ 6.016 \\ 6.875 \end{array}$	$\begin{array}{c} 2.045 \\ 2.556 \\ 3.068 \\ 3.579 \\ 4.090 \end{array}$	4 5 6 7 8
4 5 6 7 8 9	$\begin{array}{r} 3.464 \\ 4.330 \\ 5.196 \\ 6.062 \\ 6.928 \\ 7.794 \end{array}$	$\begin{array}{c} 2.000 \\ 2.500 \\ 3.000 \\ 3.500 \\ 4.000 \\ 4.500 \end{array}$	$\begin{array}{r} 3.455\\ -\ 4.319\\ 5.183\\ 6.047\\ 6.911\\ 7.775\end{array}$	$\begin{array}{c} 2.015\\ 2.519\\ 3.023\\ 3.526\\ 4.030\\ 4.534\end{array}$	$\begin{array}{r} 3.446 \\ 4.308 \\ 5.170 \\ 6.031 \\ 6.893 \\ 7.755 \end{array}$	$\begin{array}{r} 2.030\\ 2.538\\ 3.045\\ 3.553\\ 4.060\\ 4.568\end{array}$	$\begin{array}{r} 3.438 \\ 4.297 \\ 5.156 \\ 6.016 \\ 6.875 \\ 7.735 \end{array}$	$\begin{array}{r} 2.045\\ 2.556\\ 3.068\\ 3.579\\ 4.090\\ 4.602 \end{array}$	456789
4 5 6 7 8 9	$\begin{array}{r} 3.464 \\ 4.330 \\ 5.196 \\ 6.062 \\ 6.928 \\ 7.794 \\ 8.660 \end{array}$	$\begin{array}{c} 2.000\\ 2.500\\ 3.000\\ 3.500\\ 4.000\\ 4.500\\ 5.000 \end{array}$	3.455 - 4.319 5.183 6.047 6.911 7.775 8.638 59 °	$\begin{array}{c} 2.015\\ 2.519\\ 3.023\\ 3.526\\ 4.030\\ 4.534\\ 5.038\\ \end{array}$	$\begin{array}{r} 3.446 \\ 4.308 \\ 5.170 \\ 6.031 \\ 6.893 \\ 7.755 \\ 8.616 \end{array}$	$\begin{array}{c} 2.030\\ 2.538\\ 3.045\\ 3.553\\ 4.060\\ 4.568\\ 5.075 \end{array}$	$\begin{array}{r} 3.438\\ 4.297\\ 5.156\\ 6.016\\ 6.875\\ 7.735\\ 8.594 \end{array}$	$\begin{array}{c} 2.045\\ 2.556\\ 3.068\\ 3.579\\ 4.090\\ 4.602\\ 5.113\\ \end{array}$	4 5 6 7 8 9 10
$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ - \\ 1 \\ - \\ 1 \\ \end{array}$	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0'	3.455 - 4.319 5.183 6.047 6.911 7.775 8.638 59 °	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45'	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59 °	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30'	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59°	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15'	45678910
$\begin{array}{c c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ - \\ 1 \\ 2 \\ \end{array}$	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857 1.714	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0' 0'	3.455 - 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° 31° . 855 1.710	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 15'	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59° 31°	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30'	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31°	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45'	45678910
$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ - \\ 1 \\ 2 \\ 3 \\ \end{array}$	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857 1.714 2.572	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0' 0' 0' 0' 0' 1.030 1.545	3.455 - 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° 31° . 855 1.710 2.565	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 13' 13' 1.038 1.556	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59° 31° . 853 1.705 2.558	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30' 30' 30' . 522 1.045 1.567	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° 31° . 850 1.701 2.551	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' 45' . 526 1.052 1.579	45678910 123
$\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857 1.714 2.572 3.429	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0' 0' 0' 0' 0' 1.515 1.030 1.545 2.060	3.455 - 4.319 5.183 6.047 6.911 7.775 8.638 31° 31° . 855 1.710 2.565 3.420	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 15' 1.038 1.556 2.075	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59° 31° 8.53 1.705 2.558 3.411	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 30' 	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° . 850 1.701 2.551 3.401	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' . 526 1.052 1.579 2.105	45678910 10 1234
4 5 6 7 8 9 10 1 2 3 4 5	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° . 857 1.714 2.572 3.429 4.286	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0' 0' 0' 0' 0' 0' 0' 	3.455 4.319 5.183 6.047 6.911 7.75 8.638 59° 31° . 855 1.710 2.565 3.420 4.275	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 15' 1.038 1.556 2.075 2.594	3.446 4.308 5.170 6.031 6.893 7.7555 8.616 59° 31° .853 1.705 2.558 3.411 4.263	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30' 30' 30' 30' 30' 30' 2.090 2.090 2.612	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° 8.50 1.701 2.551 3.401 4.252	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' . 526 1.052 1.579 2.105 2.631	45678901 12345
4 5 6 7 8 9 10 1 2 3 4 5	3.464 4.330 5.196 6.022 6.928 7.794 8.660 60° 31° . 857 1.714 2.572 3.429 4.286 5.143	$\begin{array}{c} 2.000\\ 2.500\\ 3.000\\ 3.500\\ 4.000\\ 5.000\\ \hline {\bf 0'}\\ \hline {\bf 0'}\\ \hline {\bf 0'}\\ \hline {\bf 0'}\\ \hline {\bf 0}\\ 1.545\\ 2.060\\ 2.575\\ 3.090\\ \end{array}$	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° 31° 31° 31° 2.565 3.420 4.275 5.129	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 15' 1.038 1.556 2.075 2.594 3.113	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 5.116	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30' 30' 30' 30' 30' 2.522 1.045 1.567 1.567 2.090 2.612 3.135	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° 8.500 1.701 2.551 3.401 4.252 5.102	2.045 2.556 3.068 3.579 4.090 5.113 15' 45' 45' 1.526 1.052 1.579 2.105 2.631 3.157	4567890
4 5 6 7 8 9 10 1 2 3 4 5	$\begin{array}{r} 3.464\\ 4.330\\ 5.196\\ 6.028\\ 6.928\\ 7.794\\ 8.660\\ \hline \begin{array}{r} 60^{\circ}\\ \hline \\ 8.660\\ \hline \\ \hline \\ 8.57\\ 1.714\\ 2.572\\ 3.429\\ 4.286\\ 5.143\\ 6.000\\ \end{array}$	2.000 2.500 3.000 3.500 4.000 4.500 5.000 0' 0' 0' 0' 0' 0' 0' 	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59 ° 31° 8 55 1.710 2.565 3.420 4.275 5.129 5.984	2.015 2.519 3.526 4.030 4.534 5.038 45' 15' 1.038 1.556 2.075 2.594 3.113 3.631	3.446 4.308 5.170 6.031 6.893 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 3.411 4.263 5.116 5.968	2.030 2.538 3.045 3.553 3.553 3.653 30' 30' 30' 30' 30' 2.522 1.045 1.567 2.090 2.612 3.135 3.657	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° .850 1.701 2.551 3.401 4.252 5.102 5.952	$\begin{array}{c} 2.045\\ 2.556\\ 3.068\\ 3.579\\ 4.090\\ 4.602\\ 5.113\\ \hline 15'\\ \hline 45'\\ \hline .526\\ 1.052\\ 1.579\\ 2.105\\ 2.631\\ 3.157\\ 3.683\\ \hline \end{array}$	45678910 1234567
45678910 10 12345678	3.464 4.330 5.196 6.028 6.928 7.794 8.660 60° 31° .857 1.714 2.572 3.429 4.286 5.143 6.000 6.857	2.000 2.500 3.500 4.000 4.500 5.000 0' 0' 0' 0' 0' 0' 0' 	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° . 855 1.710 2.565 3.420 4.275 5.129 5.984 6.839	2.015 2.519 3.526 4.030 4.534 5.038 45' 15' 1.038 1.556 2.075 2.594 3.113 3.631 4.150	3.446 4.308 5.170 6.031 6.693 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 5.116 5.968 6.821	2.030 2.538 3.045 3.553 4.060 4.568 5.075 30' 30' 30' 30' 30' 2.522 1.045 1.567 2.090 2.612 3.135 3.657 4.180	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° 8.500 1.701 2.551 3.401 4.252 5.102 5.952 6.803	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' . 526 1.052 1.579 2.105 2.631 3.157 3.683 4.210	45678910 12345678
4567890 10 123456789	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857 1.714 2.572 3.429 4.286 5.143 6.000 6.857 7.715	2.000 2.500 3.500 4.000 4.500 5.000 o' o' o' o' o' o' o' o'	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° .855 1.710 2.565 3.420 4.275 5.129 5.984 6.839 7.694	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 13' .519 1.038 1.556 2.075 2.594 3.113 3.631 4.150 4.669	3.446 4.308 5.170 6.031 6.6893 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 5.168 5.968 6.821 7.674	2.030 2.538 3.045 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.522 1.045 1.567 2.612 3.135 3.653 3.65' 4.180 4.180	3.438 4.297 5.156 6.016 6.875 7.735 8.594 59° 31° 8.509 1.701 2.551 3.401 4.252 5.052 5.952 6.803 7.653	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' . 526 1.052 1.579 2.105 2.631 3.157 3.683 4.210 4.736	4567890 123456789
45678910 10 12345678	$\begin{array}{r} 3.464\\ 4.330\\ 5.196\\ 6.028\\ 7.794\\ 8.660\\ \hline \begin{array}{r} 60^{\circ}\\ 8.57\\ \hline 1.714\\ 2.572\\ 3.429\\ 4.285\\ 5.143\\ 6.000\\ 6.857\\ 7.715\\ 8.572\\ \end{array}$	$\begin{array}{c} 2.000\\ 2.500\\ 3.500\\ 4.000\\ 4.000\\ 5.000\\ \hline {\bf 0'}\\ \hline \hline \hline {\bf 0'}\\ \hline \hline \hline {\bf 0'}\\ \hline \hline \hline \hline {\bf 0'}\\ \hline	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° .855 1.710 2.565 3.420 4.275 5.129 5.984 6.839 7.694 8.549	$\begin{array}{c} 2.015\\ 2.519\\ 3.023\\ 3.526\\ 4.030\\ 4.534\\ 5.038\\ \hline \textbf{4.534}\\ \textbf{5.038}\\ \hline \textbf{4.534}\\ \textbf{5.038}\\ \hline \textbf{4.534}\\ \textbf{5.19}\\ 1.038\\ 1.556\\ 2.075\\ 2.594\\ 3.113\\ 3.631\\ 4.150\\ 4.669\\ 5.188\\ \hline \textbf{5.188}\\ \end{array}$	3.446 4.308 5.170 6.031 6.693 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 5.116 5.968 6.821 7.674 8.526	$\begin{array}{c} 2.030\\ 2.538\\ 3.045\\ 3.553\\ 4.060\\ 4.568\\ 5.075\\ \hline \textbf{30'}\\ $	3.438 4.297 5.156 6.016 6.875 8.594 59° 31° .850 1.701 2.551 3.401 4.252 5.102 5.952 6.803 7.653 8.504	$\begin{array}{c} 2.045\\ 2.556\\ 3.068\\ 3.579\\ 4.090\\ 4.602\\ 5.113\\ 15'\\ \hline 45'\\ \hline .526\\ 1.052\\ 1.579\\ 2.105\\ 2.631\\ 3.157\\ 3.683\\ 4.210\\ 4.736\\ 5.262\\ \end{array}$	45678910 12345678
45678910 10 123456789	3.464 4.330 5.196 6.062 6.928 7.794 8.660 60° 31° .857 1.714 2.572 3.429 4.286 5.143 6.000 6.857 7.715	2.000 2.500 3.500 4.000 4.500 5.000 o' o' o' o' o' o' o' o'	3.455 4.319 5.183 6.047 6.911 7.775 8.638 59° 31° .855 1.710 2.565 3.420 4.275 5.129 5.984 6.839 7.694 8.549	2.015 2.519 3.023 3.526 4.030 4.534 5.038 45' 13' .519 1.038 1.556 2.075 2.594 3.113 3.631 4.150 4.669	3.446 4.308 5.170 6.031 6.693 7.755 8.616 59° 31° .853 1.705 2.558 3.411 4.263 5.116 5.968 6.821 7.674 8.526	2.030 2.538 3.045 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.522 1.045 1.567 2.612 3.135 3.653 3.65' 4.180 4.180	3.438 4.297 5.156 6.016 6.875 8.594 59° 31° .850 1.701 2.551 3.401 4.252 5.102 5.952 6.803 7.653 8.504	2.045 2.556 3.068 3.579 4.090 4.602 5.113 15' 45' . 526 1.052 1.579 2.105 2.631 3.157 3.683 4.210 4.736	4567890 123456789

32°-35°45'

TRAVERSE TABLES. 54°15′-58°

D.	Lat,	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
-	320		320	15'	320	30'	320	45'	-
1	.848	.530	.846	.534	.843	.537	.841	.541	1
2	1.696	1.060	1.691	1.067	1.687	1.075	1.682	1.082	2
3	2.544	1.590	2.537	1.601	2.530	1.612	2.523	1.623	3
4	3.392	2.120	3.383	2.134	3.374	2.149	3.364	2.164	4
5	4.240	2.650	4.229	2.668	4.217	2.686	4.205	2.705	5
6	5.088	3.180	5.074	3.202	5.060	3.224	5.046	3.246	6
7	5.936	3.709	5.920	3.735	5.904	3.761	5.887	3.787	7
8	6.784	4.239	6.766	4.269	6.747	4.298	6.728	4.328	8
9	7.632	4.769	7.612	4.802	7.591	4.836	7.569	4.869	9
10	8.480	5.299	8.457	5.336	8.434	5.373	8.410	5.410	10
	58°	0'	57° 45′ 57° 30′		57°				
_	33 °	0'	33°	15′	33 °	30'	33°		
1	.839	.545	.836	.548	.834	.552	.831	.556	T
	1.677	1.089	1.673	1.097	1.668	1.104	1.663	1.111	23
23	2.516	1.634	2.509	1.645	2.502	1.656	2.494	1.667	3
4	3.355	2.179	3.345	2.193	3.336	2.208	3.326	2.222	4
5	4.193	2.723	4.181	2.741	4.169	2.760	4.157	2.778	5
6	5.032	3.268	,5.018	3.290	5.003	3.312	4.989	3.333	6
7	5.871	3.812	5.854	3.838	5.837	3.864	5.820	3.889	17
8	6.709	4.357	6.690	4.386	6.671	4.416	6.652	4.445	8
9	7.548	4.902	7.527	4.935	7.505	4.967	7.483	5.000	9
10	8.387	5,446	8.363	5.483	8.339	5.519	8.315	5.556	10
	57°	0'	56° 45′ 56°		30	56°	15'	-	
	34°	0'	34 °	15'	34 °	30	34°	-	
1	.829	.559	.827	.563	.824	.566	.822	.570	1
23	1.658	1.118	1.653	1.126	1.648	1.133	1.643	1.140	2
3	2.487	1.678	2.480	1.688	2.472	1.699	2.465	1.710	3
4	3.316	2.237	3.306	2.251	3.297	2,266	3.287	2.280	4
5	4.145	2.796	4.133	2.814	4.121	2.832	4.108	2.850	5
6	4.974	3.355	4.960	3.377	4.9.45	3.398	4,930	3.420	6
7	5.803	3.914	5.786	3.940	5.769	3.965	5.752	3.990	17
8	6.632	4.474	6.613	4.502	6.593	4.531	6.573	4.560	8
9	7.461	5.033	7.439	5.065	7.417	5.098	7.395	5.130	9
10	8.290	5.591	8.266	5.628	8.241	5.664	8.216	5.700	10
-	56 °	0'	55°	45'	55°	30'	55°	15'	
	320	0'	35°	15′	35 °.		35°	45'	
1	.819	.574	.817	.577	.814	.581	.812	.584	1
23	1.638	1.147	1.633	1.154	1.628	1.161	1.623	1.168	23
3	2.457	1.721	2.450	1.731	2.442	1.742	2.435	1.753	3
4	3.277	2.294	3.267	2.309	3.256	2.323	3.246	2.337	4
5		2.868	4.083	2.886	4.071	2.904	4.058	2.921	5
0	4.096			9 169	4.885	3.484	4.869	3.505	6
6	4.915	3.441	4.900	3.463					
6 7	4.915 5.734	3.441 4.015	5.716	4.040	5.699	4.065	5.681	4.090	7
6 7 8	4.915 5.734 6.553	$\begin{array}{r} 3.441 \\ 4.015 \\ 4.589 \end{array}$	$5.716 \\ 6.533$	4.040 4.617	5.699 6.513		$\begin{array}{c} 5.681\\ 6.493\end{array}$	4.090 4.674	78
6 7 8 9	4.915 5.734 6.553 7.372	$\begin{array}{r} 3.441 \\ 4.015 \\ 4.589 \\ 5.162 \end{array}$	5.716 6.533 7.350	4.040 4.617 5.194	5.699 6.513 7.327	$\begin{array}{r} 4.065 \\ 4.646 \\ 5.226 \end{array}$	5.681 6.493 7.304	4.090 4.674 5.258	789
6 7 8	4.915 5.734 6.553 7.372 8.192	$\begin{array}{r} 3.441 \\ 4.015 \\ 4.589 \\ 5.162 \\ 5.736 \end{array}$	5.716 6.533 7.350 8.166	$\begin{array}{r} 4.040 \\ 4.617 \\ 5.194 \\ 5.771 \end{array}$	5.699 6.513 7.327 8.141	$\begin{array}{r} 4.065 \\ 4.646 \\ 5.226 \\ 5.807 \end{array}$	$5.681 \\ 6.493 \\ 7.304 \\ 8.116$	4.090 4.674 5.258 5.842	78
6 7 8 9	4.915 5.734 6.553 7.372	$\begin{array}{r} 3.441 \\ 4.015 \\ 4.589 \\ 5.162 \end{array}$	5.716 6.533 7.350	4.040 4.617 5.194	5.699 6.513 7.327	$\begin{array}{r} 4.065 \\ 4.646 \\ 5.226 \end{array}$	5.681 6.493 7.304	4.090 4.674 5.258	789

36°-39°45'

TRAVERSE TABLES.

50°15′-54°

	-			1 .					
D.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
-	36°	0'	36°	15'	360	30'	36°	45'	-
1	.809	.588	.806	.591	.804	.595	.801	.598	1
23	1.618	1.176	1.613	1.183	1.608	1.190	1.603	1.197	2
3	2.427	1.763	2.419	1.774	2.412	1.784	2.404	1.795	3
4	3.236	2.351	3.226	2.365	3.215	2.379	3.205	2.393	45
5 6	4.045	2.939	4.032	2.957 3.548	4.019 4.823	2.974	4.006	2.992	b
7	4.854 5.663	3.527 4.115	4.839 5.645	4.139	4.825	3.569	4.808	3.590 4.188	7
8	6.472	4.113	6.452	4.139	6.431	4.104	6.410	4.100	8
9	7.281	5.290	7.258	5.322	7.235	4.759	7.211	5.385	9
10	8.090	5.878	8.064	5.913	8.039	5.948	8.013	5.983	10
-	54°	0'	53°	45	530	30	53°	15'	-
-	37°	0'	37°	15'					-
		-			370	30'	37°	45'	-
1	.799	.602	.796	.605	.793	.609	.791	.612	1
$\frac{2}{3}$	1.597	1.204	1.592	1.211 1.816	1.587	1.218	1.581	1.224	23
3	$2.396 \\ 3.195$	$1.805 \\ 2.407$	2.388 3.184	1.810	$2.380 \\ 3.173$	1.826	$2.372 \\ 3.163$	1.837 2.449	34
45		and the second second		3.026		2.435	and the second s		45
6	$3.993 \\ 4.792$	3.009 3.611	3.980 4.776	3.632	3.967 4.760	3.044 3.653	3.953	$3.061 \\ 3.673$	6
7	5.590	4.213	5.572	4.237	5.553	4.261	5.535	4.286	7
8	6.389	4.815	6.368	4.842	6.347	4.870	6.326	4.898	8
9	7.188	5.416	7.164	5.448	7.140	5.479	7.116	5.510	9
10	7.986	6.018	7.960	6.053	7.934	6.088	7.907	6,122	10
-	53°	0.010	1.500 52°	45'	520	30'	520	15'	-
-	380	0/ 0/				-		-	
	the second se		380	15'	380	30	380	45'	1
$\frac{1}{2}$.788 1.576	.616	.785	.619	.783	.623	.780	.626	1
3	2.364	1.231 1.847	$1.571 \\ 2.356$	1.238 1.857	$1.565 \\ 2.348$	1.245	$1.560 \\ 2.340$	1.252 1.878	23
4	3.152	2.463	3.141	2.476	2.348	1.868	3.120	2.504	4
5	3.940	3.078	3.927	3.095	3.913	3.113	3.899	3.130	5
6	4.728	3.694	4.712	3.715	4.696	3.735	4.679	3.756	6
7	5.516	4.310	5.497	4.334	5.478	4.358	5.459	4.381	7
8	6.304	4.925	6.283	4.953	6.261	4.980	6.239	5.007	8
9	7.092	5.541	7.068	5.572	7.043	5.603	7.019	5.633	9
10	7.880	6.157	7.853	6.191	7.826	6.225	7.799	6.259	10
-	52°	0'	51 °	45'	51 °	30'	51°	15'	
	39°	0'	39°	15'	39°	30'	39°	45'	
T	.777	.629	.774	.633	.772	.636	.769	.639	1
2	1.554	1.259	1.549	1.265	1.543	1.272	1.538	1.279	2
23	2.331	1.888	2.323	1.898	2.315	1.908	2.307	1.918	3
4	3.109	2.517	3.098	2.531	3.086	2.544	3.075	2.558	4
5	3.886	3.147	3.872	3.164	3.858	3.180	3.844	3.197	5
6	4.663	3.776	4.646	3.796	4.630	3.816	4.613	3.837	6
7	5.440	4.405	5.421	4.429	5.401	4.453	5.382	4.476	7
8	6.217	5.035	6.195	5.062	6.173	5.089	6.151	5.116	8
9	6.994	5.664	6.970	5.694	6.945	5.725	6.920	5.755	9
10	7.771	6.293	7.744	6.327	7.716	6.361	7.688	6.394	10
	51 °	0'	50 °	45'	50°	30′	50°	15'	1
D.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	D.

40°-43°45'

TRAVERSE TABLES.

46°15′-50°

D.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	D.
-		0'		15'	400	30'	400	45'	
1	.766	.643	.763	.646	.760	.649	.758	.653	TI
2	1.532	1.286	1.526	1.292	1.521	1.299	1.515	1.306	2
23	2.298	1.928	2.290	1.938	2.281	1.948	2.273	1.958	23
4	3.064	2.571	3.053	2.584	3.042	2.598	3.030	2.611	4
5	3.830	3.214	3.816	3.231	3.802	3.247	3.788	3.264	5
6	4.596	3.857	4.579	3.877	4.562	3.897	4.545	3.917	6
7	5.362	4,500	5.343	4.523	5.323	4.546	5.303	4.569	7
8	6.128	5.142	6.106	5.169	6.083	5.196	6.061	5.222	8
9	6.894	5.785	6.869	5.815	6.844	5.845	6.818	5.875	9
10	7.660	6 428	7.632	6.461	7.604	6.494	7.576	6.528	10
-	50°	0'	49°	45'	490	30'	49°	15'	-
	41°	0'	41 °	15'	41°	30'	41 °	45'	
1	.755	.656	.752	.659	.749	.663	.746	.666	1
23	1.509	1.312	1.504	1.319	1.498	1.325	1.492	1.332	.2
3	2.264	1.968	2.256	1.978	2.247	1.988	2.238	1.998	3
4	3.019	2.624	3.007	2.637	2.996	2.650	2.984	2.664	4
5	3.774	3.280	3.759	3.297	3.745	3.313	3.730	3.329	5
6	4.528	3.936	4.511	3.956	4.494	3.976	4.476	3.995	6
7	5.283	4.592	5.263	4.615	5.243	4.638	5.222	4.661	7
8	6.038	5.248	6.015	5.275	5.992	5.301	5.968	5.327	8
9	6.792	5.905	6.767	5.934	6.741	5.964	6.715	5.993	9
10	7.547	6.561	7.518	6.593	7.490	6.626	7.461	6.659	10
-	49°	0'	48°	45'	48°	30'	480	15'	-
-	42°	0'	42°	15'	42° 30'		42° 45'		a
1	.743	.669	.740	.672	.737	.676	.734	.679]
2	1.486	1.338	1.480	1.345	1.475	1.351	1.469	1.358	2
23	2.229	2.007	2.221	2.017	2.212	2.027	2.203	2.036	3
4	2.973	2.677	2.961	2.689	2,949	2.702	2,937	2.715	.4
5	3.716	3.346	3.701	3.362	3.686	3.378	3.672	3.394	5
6	4.459	4.015	4.441	4.034	4.424	4.054	4.406	4.073	6
7	5.202	4.684	5,182	4.707	5.161	4.729	5.140	4.752	7
8	5.945	5.353	5.922	5.379	5.898	5.405	5.875	5.430	8
9	6.688	6.022	6,662	6.051	6.636	6.080	6.609	6.109	9
10	7.431	6.691	7.402	6.724	7.373	6.756	7.343	6.788	10
-	48°	0'	47°	45'	47°	30'	470	15'	20.00
	43 °	0'	43 °	15'	43 °	30'	43 °	45'	
1	.731	.682	.728	.685	.725	.688	.722	.692	1
- 2	1.463	1.364	1.457	1.370	1.451	1.377	1.445	1.383	23
3	2.194	2.046	2.185	2.056	2.176	2.065	2.167	2.075	3
4	2.925	2.728	2.913	2.741	2.901	2.753	2.889	2.766	4
5	3.657	3.410	3.642	3.426	3.627	3.442	3.612	3.458	5
6	4.388	4.092	4.370	4.111	4.352	4.130	4.334	4.149	5 6 7
7	5.119	4.774	5.099	4.796	5.078	4.818	5.057	4.841	7
8	5.851	5.456	5.827	5.481	5.803	5.507	5.779	5.532	8
9	6.582	6.138	6.555	6.167	6.528	6.195	6.501	6.224	9
						10004			
10	7.314	6.820	7.284	6.852	7.254	6.884	=7.224	6.915	10
$\frac{10}{\overline{D}}$	7.314 47°	1	7.284 46° Dep.	6.852 45'	7.254 46°	0.884 30' Lat.	-7.224 	0.915 15' Lat.	10 D

44°-45°

TRAVERSE TABLES.

45°-46°

<u>D.</u>	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	<u>D.</u>
T	.719	.695	.716	.698	.713	.701	.710	.704	1
2	1.439	1.389	1.433	1.396	1.427	1.402	1.420	1.408	2
3	2.158	2.084	2.149	2.093	2.140	2.103	2.131	2.112	3
4	2.877	2.779	2.865	2.791	2.853	2.804	2.841	2.816	4
5	3.597	3.473	3.582	3.489	3.566	3.505	3.551	3.520	5
6	4.316	4.168	4.298	4.187	4.280	4.205	4.261	4.224	6
7	5.035	4.863	5.014	4.885	4.993	4.906	4.971	4.928	7
8	5.755	5.557	5.730	5.582	5.706	5.607	5.682	5.632	8
9	6.474	6.252	6.447	6.280	6.419	6.308	6.392	6.336	9
10	7.193	6.947	7.163	6.978	7.133	7.009	7.102	7.040	10
	46°	0'	45°	45/	45°	30'	45°	15'	
	45°	0'	45°	15′	45°	30	45°		
1	.707	.707	.704	.710	.701	.713	.698	.716	1
2	1.414	1.414	1.408	1.420	1.402	1.427	1.396	1.433	2
3	2.121	2.121	2.112	2.131	2.103	2.140	2.093	2.149	3
4	2.828	2.828	2.816	2.841	2.804	2.853	2.791	2.865	4
5	3.536	3.536	3.520	3.551	3.505	3.566	3.489	3.582	5
6	4.243	4.243	4.224	4.261	4.205	4.280	4.187	4.298	6
7	4.950	4.950	4.928	4.971	4.906	4.993	4.885	5.014	7
8	5.657	5.657	5.632	5.682	5.607	5.706	5.582	5.730	8
9	6.364	6.364	6.336	6.392	6.308	6.419	6.280	6.447	9
10	7.071	7.071	7.040	7.102	7.009	7.133	6.978	7.163	10
	45°	0'	440	45'	44°	30'	44°		
D.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.] D.

MISCELLANEOUS TABLE.

WHEN DIAMETER = 1.			LOG.
Circumference of circle, π ,		3.14159	0.49715
Area of circle,		.78540	9.89509-10
Contents of sphere,		.52360	9.71900-10
Earth's equatorial radius, in miles,		.3962.57	3.59798
Earth's polar radius, in miles,		.3949.324	3.59652
Compression, $1 \div 299.1528$,		0.00334	7.52411-10

EQUIVALENTS.

1	American	mile =	.86756	nautical miles,	PACE.	9.93830-10
1	4	" = 16	09.40831	meters,	10	3.20667
1	66	"	.21689	German geograph.	miles,	9.33624-10
1	66	" _	1.50866	Russian versts,	014.54	0.17859
1	66	vard =	.91444	meters,	310.61	9.96115-10
1	66	" =	.48217	Vienna klafter,		9.68320-10
1		foot =	.30481	meters,		9.48403-10
1	66	"	.15639	toises,	AP COL	9.19421-10
1		" =	.93835	Parisian feet, .	OT MARY	9.97236-10
1	"	" =		Vienna feet, .		
1		"	1.09395	Spanish feet, .	- 17	0.03900

MERIDIONAL PARTS.

Deg.	0'	10'	20'	30′	40′	50'
0	0.0	9.9	19.9	29.8	39.7	49.7
1	59.6	69.5	79.5	89.4	99.3	109.3
2 3 4	119.2	129.2	139.1	149.0	159.0	168.9
3	178.9	188.8	198.8	208.7	218.7	228.6
	238.6	248.6	258.5	268.5	278.4	288.4
5	298.4	308.4	318.3	328.3	338.3	348.3
6	358.3	368.3	378.2	388.2	398.2	408.2
7	418.3	428.3	438.3	448.3	458.3	468.3
8	478.4	488.4	498.4	508.5	518.5	528.6
9	538.6	548.7	458.8	568.8	578.9	589.0
10	599.1	609.2	619.3	629.4	639.5	649.6
11	659.7	669.8	680.0	690.1	700.2	710.4
12	720.5	730.7	740.9	751.0	761.2	771.4
13	781.6	791.8	802.0	812.2	822.5	832.7
14	842.9	853.2	863.4	873.7	884.0	894.2
15	904.5	914.8	925.1	935.4	945.7	956.1
EU.		TRANS A PROPERTY	101 I.S	122 6 28	128 3 83	124 100
16	966.4	976.7	987.1	997.5	1007.8	1018.2
17	1028.6	1039.0	1049.4	1059.8	1070.2	1080.7
18	1091.1	1101.6	1112.0	1122.5	1133.0	1143.5
19	1154.0	$1164.5 \\ 1227.9$	$1175.1 \\ 1238.5$	$1185.6 \\ 1249.1$	$1196.1 \\ 1259.7$	1206.7
20	1217.3	1227.9	1238.0	1249.1	1209.1	1270.3
21	1281.0	1291.6	1302.3	1313.0	1323.7	1334.4
22	1345.1	1355.8	1366.6	1377.3	1388.1	1398.9
23	1409.7	1420.5	1431.3	1442.1	1453.0	1463.8
24	1474.7	1485.6	1496.5	1507.4	1518.4	1529.3
25	1540.3	1551.3	. 1562.3	1573.3	1584.3	1595.4
26	1606.4	1617.5	1628.6	1639.7	1650.8	1661.9
27	1673.1	1684.3	1695.5	1706.7	1717.9	1729.1
28	1740.4	1751.7	1762.9	1774.3	1785.6	1796.9
29	1808.3	1819.7	1831.1	1842.5	1854.0	1865.4
30	1876.9	1888.4	1899.9	1911.4	1923.0	1934.6
0.1	1040.0	1057.9	1060.4	1001 1	1000.0	0004 F
31 32	$1946.2 \\ 2016.2$	$1957.8 \\ 2028.0$	1969.4 2039.7	$ 1981.1 \\ 2051.5 $	$\begin{array}{c c} 1992.8 \\ 2063.3 \end{array}$	2004.5 2075.2
$\frac{32}{33}$	2016.2 2087.0	2028.0 2098.9	2039.7 2110.8	2031.3	2005.5 2134.7	2075.2
34	2087.0	2098.9	2110.8	2194.8	2206.9	2219.0
35	2231.1	2243.3	2255.5	2267.7	2279.9	2292.2
1.4		国政公司 (14)金属	187. J. St.S.	SR 1 Adv	18. 1.49	128 100178
36	2304.5	2316.8	2329.2	2341.5	2353.9	2366.4
37	2378.8	2391.3	2403.8	2416.3	2428.9	2441.5
38	2454.1	2466.8	2479 5	2492.2	2504.9 2582.0	2517.7 2594.9
39 40	2530.5 2607.9	$2543.3 \\ 2621.0$	$\begin{array}{c c} 2556.2 \\ 2634.0 \end{array}$	$2569.1 \\ 2647.1$	2582.0 2660.2	2594.9 2673.3
40	2001.9	2021.0	2004.0	2011.1	2000.2	2010.0
41	2866.5	2699.7	2713.0	2726.3	2739.6	2752.9
42	2766.3	2779.8	2793.2	2806.7	2820.3	2833.8
		1				

MERIDIONAL PARTS.

Deg.	0/	10′	20'	30′	40′	- 50'
43	2847.4	2861.1	2874.8	2888.5	2902.2	2916.0
44 45	2929.9	2943.7	2957.6	2971.6	2985.6	2999.6
40	3013.7	3027.8	. 3042.0	3056.2	3070.4	3084.7
46	3099.0	3113.4	3127.8	3142.3	3156.8	3171.3
47	3185.9	3200.5	3215.2	3230.0	3244.7	3259.6
48	3274.5	3289.4	3304.3	3319.4	3334.4	3349.6
49 50	$3364.7 \\ 3456.9$	3380.0 3472.4	$3395.2 \\ 3488.0$	$3410.6 \\ 3503.7$	$3425.9 \\ 3519.4$	3441.4 3535.1
au	0400.3	0112.1	0100.0	0000.1	0019.1	0000.1
51	3550.9	3566.8	3582.8	3598.7	3614.8	3630.9
52	3647.1	3663.2	3679.6	3696.0	3712.4	3728.9
53 54	3745.4 3846.0	3762.0 3863.1	3778.7 3880.1	3795.4 3897.3	$3812.2 \\ 3914.5$	3829.1 3931.8
55	3949.1	3966.6	3984.1	4001.7	4019.3	4037.0
va	0010.1	0.00.0	0001.1	1001.7		1001.0
56	4054.8	4072.7	4090.7	4108.7	4126.9	4145.1
57	4163.3	4181.7	4200.2	4218.7	4237.3	4256.0
58 59	4274.8 4389.4	4293.7 4408.9	4312.7 4428.4	4331.7 4448.0	4350.9 4467.7	4370.1
60	4507.5	4408.9	4420.4	4448.0	4588.1	4487.5 4608.6
00	1001.0	10-11-0	1011.0	1001.0	1000.1	1000.0,
61	4629.1	4649.8	4670.5	4691.4	4712.4	4733.5
62	4754.7	4776.0	4797.5	4819.0	4840.7	4862.5
63	.4884.5	4906.5	4928.7	4951.0	4973.5	4996.0
64 65	5018.8 5158.0	5041.6 5181.7	5064.6 5205.5	5087.7 5229.5	5111.0 5253.7	5134.4 5278.0
un l	0100.0	0101.1	0200.0	0220.0	0.40.1	0210.0
66	5302.5	5327.1	5351.9	5376.9	5402.1	5427.4
67	5452.8	5478.5	5504.3	5530.3	5556.5	5582.9
68 69	5609.5 5773.1	5636.3 5801.1	5663.2 5829.3	5690.4 5857.7	5717.7 5886.3	5745.3 5915.2
70	5944.3	5973.6	5849.5 6003.2	6033.0	6063.1	6093.4
	0.0 11.0	00000	0000	0000.0	0000.1	
71	6124.0	6154.8	6185.9	6217.2	6248.9	6280.8
72	6313.0	6345.5	6378.2	6411.3	6444.7	6478.4
73 74	6512.4 6723.6	6546.8 6760.1	6581.5 6796.9	6616.5 6834.1	6651.8 6871.7	6687.6 6909.7
75	6948.1	6987.0	7026.2	7065.9	7106.1	.7146.7
1.0	12 2.1			1-11-11-11-20	all i ca	the Fred
76	7187.8	7229.3	7271.4	7313.9	7357.0	7400.6
77 78	7444.8	7489.5 7770.5	7534.8 7819.6	7580.7 7869.4	7627.0 7919.9	7674.3 7971.1
79	7722.1 8023.1	8075.9	7819.0 8129.5	7869.4 8184.0	7919.9 8239.3	8295.4
80	8352.5	8410,6	8469.6	8529.7	8590.8	8653.0
07	0.5.0	00000	0010.0	0010.0	0001.0	0071.0
81 82	8716.3 9122.7	8780.9	8846.6	8913.6	8981.9	9051.6 9501.9
82 83	9122.7 9583.0	9195.3 9666.0	9269.4 9751.1	9345.2 9838.3	9422.7 9927.8	9501.9
84	10114.0	10211.0	10310.8	10413.6	10519.6	10628.8
85	10741.7	10858.4	10979.2	11104.3	11234.2	11369.1
	The seal of					Although the second

CORRECTIONS FOR MIDDLE LATITUDE.

					1	173.	L	IFF	ERE	NCE	OF	LAT	ITU	DE.	117	-		10		
Mid. Lat.	2°	3°	4°	5°	6°	7 °	8°	90	10°	110	12°	13°	14°	15°	16°	17°	18°	19°	20°	Mid. Lat.
15° 16 17 18 19	1' 1 1 1. 1	$\frac{2'}{2}$ $\frac{2}{2}$ $\frac{2}{1}$ 1	acosta e e e e e e e e e e e e e e e e e e e	- 54444		000000	12' 11 11 10 10	15' 14 14 13 13	18' 18 17 16 16	22' 21 20 20 19	26' 25 24 23 22	31' 30 28 27 26	36' 34 33 32 30	41' 39 38 36 35	-47' 44 43 41 40	52' 50 48 46 45	59' 56 54 52 50	65' 62 60 58 56	72' 69 66 64 61	15° 16 17 18 19
20 21 22 23 24	1 1 1 1 1	1 1 1 1 1	222222	44433	55555	77777	10 9 9 9 9	$12 \\ 12 \\ 12 \\ 12 \\ 11 \\ 11 \\ 11$	$15 \\ 15 \\ 14 \\ 14 \\ 14 \\ 14$	18 18 17 17 16	$ \begin{array}{c} 22 \\ -21 \\ 21 \\ 20 \\ 20 \\ 20 \end{array} $	$25 \\ 25 \\ 24 \\ 23 \\ 23 \\ 23$	29 29 28 27 27	34 33 32 31 31	38 37 36 35 35	43 42 41 40 39	48 47 46 45 44	54 52 51 50 49	60 58 56 55 54	20 21 22 23 24
25 26 27 28 29	1 1 1 1 1	1 1 1 1 1 1	222222	00 00 00 00 00	1010101010	.7 6 6 6 6	98888	11 11 11 10 10	$ \begin{array}{r} 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \end{array} $	16 16 16 16 16 15	19 19 19 19 18 18	23 22 22 22 22 21	$26 \\ 26 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ $	30 30 29 29 29 28	34 34 33 33 32	39 38 37 37 37	43 42 42 41 41	48 47 47 46 46	53 52 52 51 51	25 26 27 28 29
30 31 32 33 34	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $		222222	00 00 00 00 00	55444	6 6 6 6 6	000000	10 10 10 10 10	$13 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $	$ \begin{array}{r} 15 \\$	18 18 18 18 18	21 21 21 21 21 21 21	25 24 24 24 24 24	28 28 28 28 28 28	32 32 32 32 32 32	36 36 36 36 36	41 40 40 40 40 40	45 45 45 45	50 50 50 49 49	30 31 32 33 34
35 33 37 38 39	0 1 1 1 1	1 1 1 1 1	222222	00 00 00 00	44444	6 6 6 6 6 6	****	10 10 10 10 10	$\begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \end{array}$	$ \begin{array}{r} 15 \\$	18 18 18 18 18	21 21 21 21 21 21	24 24 24 24 24 24	28 28 28 28 28 28	32 32 32 32 32 32 32	36 36 36 36 36	40 40 40 40 40 40	43 43 43 43	49 49 49 50 50	35 36 37 38 39
40 41 42 43 44		1 1 1 1 1	222222	00000000	CICICICICI	6 6 6 6 6	0.00.00.00	10 10 10 10 10	13 13 13 13 13 13	$15 \\ 15 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ $	18 18 18 18 18 19	21 21 22 22 22 22	$25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\ 25 \\$	28 28 29 29 29 29	32 32 33 33 33	36 37 37 37 38	41 41 41 42 42	45 46 46 46 46 47	50 51 51 52 52	40 41 42 43 44
45 46 47 48 49	111111	111111	222222	00 00 00 00 00	10-10-10-10	66777 777	889999	11 11 11 11 11 11	$13 \\ 13 \\ 13 \\ 14 \\ 14 \\ 14$	16 16 16 17 17	19 19 19 20 20	22 22 23 23 23 23	26 26 26 27 27	30 30 30 31 31	34 34 35 35 36	38 38 39 40 40	43 43 44 44 44 45	.48 -48 49 50 50	53 53 54 55 56	45 46 47 48 49
50 51 52 53 54	1 1 1 1 1	1 1 1 1 1 1	222222	4 4 4 4 4	010101010	777777	9 9 9 10 10	11 12 12 12 12 12	$ \begin{array}{r} 14 \\ 14 \\ 15 \\$	17 17 18 18 18	20 21 21 21 21 22	24 24 25 25 26	28 28 29 29 29 30	32 32 33 34 34	36 37 38 38 39	41 42 43 43 44	46 47 .48 49 50	51 52 53 54 56	57 58 59 60 62	50 51 52 53 54
55 56 57 58 59	1 1 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	233333	44444	66666	888888	10 10 10 11 11	$ \begin{array}{r} 13 \\ 13 \\ 13 \\ 14 \\ 14 \\ 14 \end{array} $	16 16 16 17 17	19 19 20 20 21	22 23 24 24 25	26 27 28 28 29	31 31 32 33 34	35 36 37 38 39	40 41 42 43 45	45 46 48 49 50	51 52 54 55 57	57 58 60 61 63	63 65 66 68 70	55 56 57 58 59
69 61 62 63 64	1 1 1 1 1	222222	ce ce ce ce ce	4.0.0.05	67777	9 9 ·9 10 10	$ \begin{array}{c} 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \end{array} $	14 15 15 16 16	18 18 19 20 20	22 22 23 24 24 24	26 26 27 28 29	30 31 32 33 34	35 36 37 39 40	40 42 43 44 46	46 47 49 51 52	52 53 55 57 59	58 60 62 64 67	65 67 70 72 75	72 75 77 80 83	60 61 62 63 64
65 66 67 68 69 70	1 1 1 1 1 1	2222222	3344444	556666	7888999	$ \begin{array}{r} 10 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 13 \end{array} $	$ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 $	17 18 18 19 20 21	$\begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \end{array}$	25 26 28 29 30 32	30 32 33 34 36 38	36 37 39 40 42 44	41 43 45 47 49 52	48 50 52 54 57 60	54 57 59 62 65 68	62 64 67 70 74 78	69 72 76 79 83 88	78 81 85 89 93 93	86 90 94 99 104 110	65 66 67 68 69 70

ECLECTIC EDUCATIONAL SERIES.

Published by VAN ANTWERP, BRAGG & CO., Cincinnati and New York.

THALHEIMER'S HISTORICAL SERIES.

By M. E. THALHEIMER, Teacher of History and Composition in Packer Collegiate Institute. For Graded Schools, High Schools, Academies, and Colleges. These books furnish to Teachers, students and general readers the best brief and economical course in Ancient, Modern and English History.

ECLECTIC HISTORY OF THE UNITED STATES.

12mo., half roan, 392 pp. Copiously illustrated with Maps, Portraits, etc. Contains reliable References and Explanatory Notes; Declaration of Independence; Constitution and Questions on the same; Synopses of Presidential Administrations, etc.

THALHEIMER'S HISTORY OF ENGLAND.

12mo., 288 pp. A compact volume, comprehensive in scope, but sufficiently brief to be completed in one school term. Its statements of historical facts are based upon the studies of the most recent and reliable authorities. Reliable Maps and pictorial illustrations.

THALHEIMER'S GENERAL HISTORY.

12mo., 355 pp. Maps and pictorial illustrations. The wants of common schools, and those of higher grade unable to give much time to the study of history, are here exactly met. The teacher is aided by *Review Questions* at the end of each principal division of the book, and by references to other works in which each subject will be found more fully treated.

THALHEIMER'S ANCIENT HISTORY.

A Manual of Ancient History from the Earliest Times to the fall of the Western Empire, A. D. 476. 8vo., full cloth, 365 pp., with Pronouncing Vocabulary and Index. Illustrated with Engravings, Maps and Charts.

In compliance with a demand for separate Histories of the Early Eastern Monarchies, of Greece and Rome, an edition of THALHEIMER'S MANUAL OF ANCIENT HISTORY in three Parts has been published, viz:

1. Thalheimer's History of Early Eastern Monarchies.

2. Thalheimer's History of Greece.

3. Thalheimer's History of Rome.

The *First* embraces the pre-classical Period and that of Persian Ascendency. The *Second*, Greece and the Macedonian Empires. The *Third*, Rome as Kingdom, Republic and Empire.

Each part sufficiently full and comprehensive for the Academic and University Course. Liberally illustrated with accurate Maps. Large 8vo., full cloth.

For convenience the numbering of pages and chapters corresponds with that of *Thalheimer's Ancient History*, so that these separate volumes can be used in classes partially supplied with the complete work.

THALHEIMER'S MEDIÆVAL AND MODERN HISTORY.

A Manual of Mediæval and Modern History. 8vo., cloth, uniform with Thalheimer's Ancient History. 455 pp., and very full Index. Numerous double-page Maps. A sketch of fourteen centuries, from the fall of one empire at Ravenna to the establishment of another at Berlin.

YB 36159

924229 TA 545 54 Educ.

THE UNIVERSITY OF CALIFORNIA LIBRARY

