

SECONDUREUSION

sURVEYING AND TABLES

BY

G. A. WENTWORTH

Author of a Series of Text-Books in Mathematics

> SECOND REVISED EDITION

GINN \& COMPANY
BOSTON • NEW YORK • CHICAGO • LONDON

MATHEMATICAL TEXT-BOOKS

 BY
GEORGE A. WENTWORTH

Elementary Arithmetic
Practical Arithmetic
Mental Arithmetic
Primary Arithmetic (Wentworth and Reed)
Grammar School Arithmetic
Advanced Arithmetic
Exercises in Arithmetic (Wentworth and Hill)
First Steps in Algebra
School Algebra
New School Algebra
Higher Algebra
Elements of Algebra
Complete Algebra
Shorter Course in Alge bra
College Algebra (Revised Edition)
Exercises in Algebra (Wentworth and Hill)
First Steps in Geometry (Wentworth and Hill)
Plane and Solid Geometry (Revised)
Plane Geometry (Revised)
Solid Geometry (Revised)
Plane and Solid Geometry and Plane Trigonometry (Second Revised Edition)
Analytic Geometry
Logarithms and Metric Measures
Geometrical Exercises
Syllabus of Geometry
Examination Manual in Geometry (Wentworth and Hill)
Exercise Manual in Geometry (Wentworth and Hill)
Plane Trigonometry (Second Revised Edition)
Plane Trigonometry and Tables (Second Revised Edition)
Plane and Spherical Trigonometry (Second Revised Edition)
Plane and Spherical Trigonometry, and Tables (Second Revised Edition)
Plane Trigonometry and Surveying, and Tables (Second Revised Edition)
Surveying and Tables (Second Revised Edition)
Plane and Spherical Trigonometry and Surveying, and Tables (Second Revised Edition)
Plane and Spherical Trigonometry, Surveying, and Navigation (Second Revised Edition)
Logarithmic and Trigonometric Tables
Seven Tables (Wentworth and Hill)
Complete

COPYRIGHT, 1882, 1895, 1896, 1903, BY
G. A. WENTWORTH

ALL RIGHTS RESERVED
$3 \% 0 . i 0$

PREFACE

The object of this work on Surveying is to present the subject in a clear and intelligible way, according to the best methods in actual use, and in so small a compass that students in general will find time to acquire a competent knowledge of this important study.

The author is under obligation to G. A. Hill, A.M., of Cambridge, Mass. ; to Professor James L. Patterson, of Chestnut Hill, Pa. ; to Dr. F. N. Cole, of New York, N.Y.; to Professor S. F. Norris, of Baltimore, Md.; and to Professor B. F. Yanney, of Alliance, Ohio. Professor Yanney has done most of the work on the second revision, and Miss M. Gertrude Cross, of Boston, has furnished the drawings.
G. A. WENTWORTH.

Exeter, N.H., 1903.

CONTENTS

SURVEYING

[The numbers refer to the pages.]

CHAPTER I. Field Instruments:

Definitions, 1 ; classification, 1 ; operations comprised, 2 ; the surveyor's chain, 3 ; the engineer's chain, 3 ; accompanying pieces, 4 ; how to chain, 4 ; special constructions by means of the chain, 5 ; obstacles to chaining, 7 ; the tape, 9 ; the compass, 10 ; kinds of compasses, 11 ; bearing of a line, 12 ; checking bearings, 13 ; obstacles, 14 ; measurement of horizontal angles, 14; measurement of vertical angles, 15 ; verniers, 15 ; uses of the compass vernier, 17 ; magnetic declination, 19 ; surveyor's transit, 23 ; uses, 24 ; measurement of horizontal angles, 26 ; measurement of vertical angles, 26 ; stadia measurements, 26 ; the solar compass, 28 ; to establish a true meridian, 32 ; the Y level, 36 ; the leveling rod, 36 ; substitutes for the Y level, 39 ; the plane table, 40 ; to orient the table, 42 ; to plot any point, 43 ; to plot a field, 43 ; the three-point problem, 44.

CHAPTER II. Office Instriments :

Definitions, 46 ; the diagonal scale, 46 ; the circular protractor, 47 ; constructions, 48 ; the planimeter, 49 ; the slide rule, 49.

CHAPTER III. Land Surveying:

Definitions, 50 ; special methods of surveying, and of computing areas, 51 ; rectangular system of co-ordinates, 52 ; general method for farm surveys, 57 ; field notes, 58 ; computation of the area, 58 ; balancing the work, 60 ; supplying omissions, 61 ; to make a plot, 63 ; modification of the latitude and departure method, 66 ; location surveys, 67 ; illustrative problems, 67 ; laying out the public lands, 71 ; reference lines, 71 ; townships, 71 ; subdivision of townships, 73 ; meander lines, 73.

CHAPTER IV. Triangulation:

Definitions, 74 ; classification, 75 ; measurement of base lines, 75 ; measurement of angles, 76.

CHAPTER V. Leveling :

Definitions, 77 ; corrections for curvature and refraction, 77 ; differential leveling, 78 ; single setting of the level, 78 ; several settings of the level, 79 ; profile leveling, 80 ; field work, 81 ; making the profile, 84 ; topographic leveling, 85 ; drainage surveying, 86 ; field work, 86 ; plot and profile, 86 .

CHAPter VI. Railroad Surveying:

Laying out the route, 89 ; establishing the roadbed, 89 ; excavations, 89 ; embankments, 90 ; curves, 91 ; methods of laying out the curve, 92 .

CHAPTER VII. City Surveying :
Field-work instruments, 94 ; streets, 94 ; blocks and lots, 96 ; plots, 96 ; records, 96.

SURVEYING

CHAPTER I

FIELD INSTRUMENTS

SECTION I

DEFINITIONS

Definition. Surveying is the art of determining and representing distances, areas, and the relative position of points on the surface of the earth.

Classification. Of surveying there are various kinds, depending upon the extent, the purpose, or the method of the survey. The following are the principal divisions:

1. Plane Surveying, in which the part of the earth's surface surveyed is regarded as a plane; Geodetic Surveying, in which the true figure of the earth is regarded.
2. Land Surveying, in which boundary lines, contents, and outline maps are the chief things aimed at; Topographic Surveying, in which differences in elevation and contour maps are chiefly sought; Hydrographic Surveying, in which the purpose is to determine the configuration and topography of the bed or basin of a body of water ; Mine Surveying, in which the position and extent of underground excavations are determined and graphically represented.
3. Rectangular Surveying, in which a system of perpendicular lines is used as reference lines; Triangular Surveying, which proceeds by means of a system of triangles referred to a well established base line.

Operations Comprised. Surveying commonly comprises the following three distinct operations:

1. The Field Measurements, or the determining certain lines and angles by direct measurement.
2. The Computation of the required parts from the measured lines and angles.
3. The Plotting, or representing on paper the measured and the computed parts in relative extent and position.

Historic Note. Surveying is undoubtedly one of the oldest of the arts of civilized man. The Bible contains several admonitions not to remove "the ancient landmark," as in Proverbs xxii. 28. To the Babylonians is credited the division of the circle into 360 degrees. The Egyptians were known to survey frequently the valley of the Nile, a necessity owing to the periodic overflow of that river. Thence came Geometry. The Egyptians also possessed rules for finding the area of land of various shapes. Moreover, on Egyptian soil the Greek mathematician Eratosthenes made the first attempt at determining the circumference of the earth by measuring an arc of the circumference. This was in 276 b.c. Among the Romans Surveying was considered one of the liberal arts, and received impetus in the time of Julius Cæsar from his sweeping order that the entire empire should be surveyed for the purpose of equitable adjustment of taxes, and also from the introduction of the more practical parts of Greek Geometry. The works of Roman surveyors served as models for centuries, and much that we have to-day is only improvements on what has been handed down from them. For a brief account of surveying in the United States, see Cajori's "The Teaching and History of Mathematics in the United States," pp. 92, 286.

SECTION II

THE CHAIN

Surveyor's Chain. The Surveyor's Chain, or Gunter's Chain as it is often called, is made of iron or steel wire and is 4 rods or 66 feet long, composed of 100 links connected by small rings, and provided with a tally mark at the end of every 10 links. A link as a unit of measure includes a link of the chain and half the rings that connect it with adjoining links. Each link is 7.92 inches long. Since a chain is 4 rods long, a square chain contains 16 square rods, and since an acre contains 160 square rods, a square chain is one-tenth of an acre. A square chain contains also 10,000 square links and, therefore, an acre contains 100,000 square links. Hence, if a given area is expressed in square chains, it is reduced to acres by pointing off the last figure, and, if expressed in square links, it is reduced to acres by pointing off the last five figures. The tally marks are appropriately notched to facilitate counting links from either end, the one at the middle of the chain being rounded so as to be distinguished readily from the others. Handles form part of the end links, to which they are so attached as to prevent twisting and to allow lengthening or shortening of the chain. The Surveyor's Chain is used in measuring land.

Engineer's Chain. The Engineer's Chain differs from the ordinary Surveyor's Chain chiefly in that it is 100 feet in length, the length of each link being 1 foot. It is used in surveying railroads and canals, and often in other surveys where extensive lines are to be run.

Both the Surveyor's Chain and the Engineer's Chain are generally provided with attachments, so that from the full chains half-chains can be made up, to be used in case of rough or hilly country.

Accompanying Pieces. Usually eleven, sometimes ten, Marking pins go with the chain. These are of iron or steel, about 14 inches long, pointed at one end and formed into a ring at the other end. In case eleven pins are used, the first one is placed at the beginning of the line to be measured, and thereafter one at the end of each chain. The last pin in the ground is, therefore, not to be counted. In case ten pins are used, the first one is placed at the end of the first chain, and so on, the last pin in the ground being counted. Strips of red cloth should be fastened to the ring ends of the pins so as to make them easily visible. Ranging poles, which are of various lengths, are necessary for alignment. These are commonly made of wood, and are steel shod, graduated to feet, and painted in alternate red and white stripes.

How to chain. Ranging poles should be placed, one at each end of the line to be measured, and at such intermediate points as the necessities of the case require. A head chainman or leader, and a rear chainman or follower are required. The follower takes one end of the chain, and one pin, which he thrusts into the ground at the beginning of the line. The leader takes the other end of the chain and the remaining ten pins, and moves forward until the word "Halt" from the follower warns him that he has advanced nearly the length of the chain. At this signal he stops, and the follower, meanwhile having placed his end of the chain against the pin at the beginning of the line, directs the leader by the words "Right" and "Left" until he is exactly in the line. This being accomplished, and the chain tightly stretched in a horizontal position, the follower says, "Down." The leader then puts in a pin at the end of the chain and answers, "Down"; after which the follower withdraws the pin at his end of the chain, and the chainmen move forward, repeating the process just described until the end of the line is reached.

If the marking pins in the hands of the leader are all placed
before the end of the line is reached, after putting the last pin in the ground he waits until the follower comes up to him, gives him the ten pins in his hands and records the fact that ten chains have been measured. The measuring then proceeds as before. If the distance from the last pin to the end of the line is less than a chain, the leader places his end of the chain at the end of the line, and the follower stretches tightly such part of the chain as is necessary to reach the last pin, and the number of links is counted. If the ground slopes, one end of the chain must be raised until the horizontal position is attained. By means of a plumb line or a slender staff or, less accurately, in case of the leader by dropping a pin (heavy end downwards), the point vertically under the raised end of the chain may be determined. If the slope is considerable, half a chain or less may be used ; in which case care must be taken that the correct number of full chains and links is found. For instance, if a tally shows 15 half chains and 35 links, the appropriate measure is 7 chains and 85 links, or, as it is usually expressed, 7.85 chains.

Special Constructions by Means of the Chain. 1. At a given point in a given line to construct a perpendicular to that line.

Let $L E$ (Fig. 1) be the given line, and P the given point. On $L E$ measure off $P B=P A=20$ links. Then place one end of the chain at B and the other end at A. Stretch the chain from the middle point, and mark that point, as $C . \quad P C$ is the perpendicular required. (Why ?)

Or, make $P B=30$ links. Place one end of the chain at P, and the end of the 90 th link at B. Then, taking the

Fig. 1 chain at the end of the 40th link from P and stretching both portions tightly, mark that point, as C. Then $P C$ is the perpendicular required. (Why ?)
2. Through a given point without a given line to construct a perpendicular to that line.

Let $L E$ (Fig. 1) be the given line, and C the given point. Take any point as B in the line and stretch the chain between C and B; then swing the chain about C until the point at B is again in the line, as at A. Measure the distance between A and B. Then P, the mid-point of $A B$, is a second point in the required perpendicular. (Why ?)

Or, let the middle of the part of the chain between C and B be held in place, and swing the end at C until it meets the line as at $P . \quad P C$ is the required perpendicular. (Why ?)
3. At a given point in a given line to construct an angle equal to a given angle.

Fig. 2
Let P (Fig. 2) be the given point in the given line $L E$, and angle A the given angle. Make $P D=A B$. At D and B, respectively, construct perpendiculars $D F$ and $B C$. Make $D O=B C$. Then angle $O P D$ is the angle required. (Why ?)
4. To construct any given angle, as $25^{\circ} 40^{\prime}$.

Find from the tables the tangent of $25^{\circ} 40^{\prime}$, which is 0.4806 . Lay off $P D($ Fig. 2) $=100$ links. Construct the perpendicular $D F$ and lay off $D O=48.06$ links. Then angle $O P D$ is the angle required. (Why ?)
5. Through a given point to construct a line parallel to a given line.

Let P (Fig. 3) represent the given point, and $L E$ the given line. Through P lay out any convenient line as $B A$
intersecting LE. Construct angle $B P D=$ angle $P A E$. Then the line $C D$ is the required line. (Why ?)

Fig. 3
Obstacles to chaining. In general practice various obstacles are encountered in chaining. The circumstances in each case must decide the best method to be used. Only a few suggestive cases can be considered in this work.

1. To measure a line when a building, or other object, stands in the way.

In Fig. 4 construct the perpendicular $A B$, the perpendicular $B C$, the perpendicular $C D=A B$, then the perpendicular $D E$, which

Fig. 4 will be in line $L A$ prolonged.

Then, $L A+B C+D E=L E$. (Why?) As a check, another series of perpendiculars may be constructed.
2. To measure across a body of water.

At A (Fig. 5) lay

Fig. 5 out $A P$, making angle $P A B=60^{\circ}$. This can be done by laying out the equilateral triangle $A B D$. At P range out $P C$, making angle $A P C=60^{\circ}$. Then measure $A P$.

The line $A C$ is equal to $A P$. (Why?) If C is some fixed point in $L E$, across the stream, accessible or inaccessible, we may proceed as follows: After laying out $A P$, as already described, with 90 links of the chain stretched in the form of an equilateral triangle, and with one side of this triangle in $A P$, move the triangle until the point C is in line with the forward side of the triangle. Then proceed as before.
3. To measure a line the end of which is invisible from the beginning, and the intermediate points are unknown.

Fig. 6
Let $L E$ (Fig. 6) represent the line. Lay out the line $L R$ so that R shall be beyond E and visible from L. Construct from E the perpendicular $E A$ to $L R$. Measure $L A$ and $A E$. $L E$ can then be computed. (How?) If intermediate points on $L E$ are to be sought, take any point in $L A$, as B; construct $B C$ perpendicular to $L A$; then measure off $B D$ of such length that $B D: A E=L B: L A$. The line $L R$ is called a random

line.
4. To measure the distance between two inaccessible points.

Let L and E (Fig. 7) be two inaccessible points. Select some point as P from which both L and E are visible. Measure $P L$ and $P E$ by the method in 2. Range
out $P L^{\prime}$ in line with $L P$ and equal to $L P$; similarly, $R E^{\prime}=E R$. Then measure $L^{\prime} E^{\prime}$, which is equal to $L E$. (Why?)

EXERCISE I

1. Range out a line which, by estimation, is more than 10 chains long. Then measure it with the chain out and back.
2. Prolong a line beyond a building, or other obstacle which prevents continuous alignment.
3. Find the distance from a point to a line when the distance is more than a chain.
4. Lay out a square field each side of which shall be 5.76 chains long.
5. Find the length of a line by means of a random line. Then, as a check, find its length by direct measurement.

SECTION III

THE TAPE

Kinds of Tape. The tape measure used by the surveyor or engineer consists of a thin ribbon of steel, or of linen with interwoven wires of brass, wound upon a reel, often in a leather or metal case. Tapes vary in length from 25 feet to 500 feet or more. They are variously graduated to links, to feet and inches, to feet and tenths of a foot, to metric units, or to a combination of these. A common combination is feet and tenths of a foot on one side, and links on the reverse side.

Uses. The kind of tape determines to a great extent the use to which it is to be put. If 33 feet or 66 feet long and graduated to links, the evident purpose is for land surveying. If 50 feet or 100 feet long and graduated to feet and
tenths of a foot, the tape is especially designed for city work. Other kinds are employed in bridge, road, or mining work, in very accurate measurements of base lines, or as standards of comparison for other instruments of measurement.

SECTION IV

THE COMPASS

Parts and their Uses. The essentials of the compass, one style of which is shown in Fig. 8, are: the compass circle, graduated to half degrees and figured from 0° to 90° each way

Fig. 8. The Surveyor's Compass
Note. The letters E and W on the face of the compass are reversed from their true positions. The reason for this is that if the sights are turned towards the west, the north end of the needle is turned towards the letter W, and if the north end of the needle is turned towards E , the sights are turned towards the east.

If the north end of the needle points exactly towards \mathbf{E} or \mathbf{W}, the sights range east or west.
from the north and south points, for indicating the directions of lines; the magnetic needle, pivoted on a pin at the centre of the compass circle, for showing the direction of the magnetic meridian ; and the sight standards, attached to the ends of the main plate, for alignment. To the main plate are attached two spirit levels at right angles to each other for leveling the instrument; underneath is a needle-lifting screw which, by actuating a concealed spring, lifts the needle from the pivot and presses it against the glass covering of the compass circle when the instrument is not in use ; a tangent screw, and almost directly under it a clamp screw, which operates the vernier; and a small dial plate for keeping tally in chaining. The north end of the needle usually has some ornamentation to distinguish it from the south end, and a coil of fine wire is wound on the south end to prevent the needle from dipping. The sight standards have fine slits nearly their whole length, with circular openings at intervals to facilitate sighting upon an object; on the edges of the north standard are tangent scales for reading vertical angles, and on the outside of the south standard are two eyepieces at the same distance from the main plate as the zeros of the tangent scales, respectively. The telescopic sight is an attachment to the south standard, now often used. The instrument entire turns horizontally upon the upper end of a ball spindle, the lower end of which rests in a spherical socket in the top of a Jacob's staff, or a tripod, which supports the instrument. The socket of the compass which fits to the ball spindle is provided with a clamp screw and a spring catch. From the centre of the plate at the top of the tripod a plummet is suspended by which the centre of the compass can be placed directly over a definite point on the ground.

Kinds of Compasses. The compass described is the vernier compass, or surveyor's compass, and is the one in general use. If there is no vernier attachment, the compass is called a plain
compass and is used in running new lines and the preparation of maps. A railroad compass has all the features of the vernier compass, and has also a vernier plate and graduated limb for measuring horizontal angles.

Hints on the Use and Care of Instruments. The instruments described in this work are adjusted by the maker. If they should require readjustment, full directions will be found in the manual furnished with the instruments. Before beginning to use any instrument, make a thorough study of its various parts and their uses. In moving or adjusting any part always know what you are doing and why you are doing it. When an instrument is not in use keep it in a place that is free from moisture and dust.

Bearing of a Line. The magnetic meridian of a place is the direction which a bar magnet assumes when freely supported

Fig. 9 in a horizontal position. The magnetic bearing of a line is the angle it makes with the magnetic meridian. To take the bearing of a line proceed as follows: Place the compass so that the Jacob's staff, or plummet of the tripod, is directly over one end of the line, and level by pressing with the hands on the main plate until the bubbles are brought to the centres of the spirit levels. Turn the south end of the instrument toward you, and sight at the ranging pole at the other end of the line. Read the bearing from the north end of the needle. First, write N. or S. according as the north end of the needle is nearer N. or S.
of the compass circle ; secondly, write the number of degrees between the north end of the needle and the nearest zero mark; thirdly, write E. or W. according as the north end of the needle is nearer E. or W. of the compass circle. Thus, in Fig. 9 (a), the bearing is N. $45^{\circ} \mathrm{W} . ;(b)$, N. 60° E.; (c), S. $60^{\circ} \mathrm{W} . ;(d)$, S. 45° E.

If the needle coincides with the N.S. or E.W. line, the bearing is N., S., E., or W. according as the north end of the needle is over N., S., E., or W. As the compass circle is divided into half degrees, the bearing may be determined pretty accurately to quarter degrees.

It will be noticed that the letters E and W on the face of the compass are reversed from their true positions. These are so placed in order that when the sights are turned towards the west the north end of the needle will point towards the letter W, or if the sights are turned towards the east, the north end of the needle will point towards the letter E. It turns out that if the south sight standard is always turned towards the observer, the reading at the north end of the needle will indicate the true bearing of the line. Should the north sight standard be turned towards the observer, the reading at the south end of the needle would then be taken.

Checking Bearings. When the bearing of a line has been taken, the instrument should be removed to the other end of the line and the reverse bearing taken. The number of degrees should be the same, but the letters should be reversed. For instance, if the direct bearing is $\mathrm{N} .353^{\frac{3}{4}} \mathrm{~W}$., the reverse bearing should be $\mathrm{S} .353^{\circ} \mathrm{E}$. In case the reverse bearing is not what it ought to be, there is some mistake, or some local disturbance, or both. To detect errors a second trial at the direct bearing should be taken. To detect local disturbances take the direct and reverse bearings of other lines ranged out from the beginning of the line whose bearing is sought. If they all show the same difference between their two respective bearings, the evidence of some local disturbance, as iron,
iron ore, etc., is pretty conclusive. In this case the true bearing of the line can be obtained by making the necessary correction. In all cases, precautions should be taken to have the chain, pins, and other instruments that would affect the direction of the needle sufficiently removed from the compass.

Obstacles. When a fence or other obstruction interferes with placing the instrument over the line the instrument may be placed at one side, the ranging pole being correspondingly placed at the other end. If one end of the line cannot be seen from the other end, run a random line. Then (Fig. 6, p. 8) $\tan E L A=A E \div L A$, whence the angle $E L A$ can be found. This angle combined with the bearing of the random line will give the bearing required. Or some point can be selected from which the ends of the line are visible. The distances to the ends may be measured, and the angle between the two auxiliary lines may also be measured. Of the triangle thus formed, the angle at the beginning of the given line may be computed, and, when properly combined with the bearing of the first auxiliary line, will give the required bearing. If a single triangle is not sufficient, a series of triangles may be employed until the end of the line is reached.

Measurement of Horizontal Angles. To measure a horizontal angle by means of the needle, place the compass over the vertex of the angle, take the bearing of each line separately, and combine these bearings according to the following rules, as suggested by Fig. 10 :

1. If the first letters of the bearings are alike, and also the last letters, find the difference of the bearings.
2. If the first letters are alike, and the last letters unlike, add the bearings.
3. If the first letters are unlike, and the last also unlike, subtract the difference of the bearings from 180°.
4. If the first letters are unlike, and the last alike, subtract the sum of the bearings from 180°.

Measurement of Vertical Angles. A vertical angle is an angle the sides of which are in a vertical plane. If one side of a vertical angle is horizontal and the other ascends, the angle is called an angle of elevation ; if one side is horizontal and the other descends, the angle is called an angle of depression. To measure an angle of elevation by means of the compass, sight through the lower eyepiece to a point that is as far above the point whose elevation is sought as the instrument is above the point from which the elevation is to be taken. Read off the degrees of the right-hand tangent scale, marked by a card placed squarely across the face of the south standard, the top of the card being in the line of sight. To measure an angle of depression, proceed in the same manner, using the upper eyepiece and the left-hand tangent scale. If the compass is provided with a telescopic sight that has a vertical circle attachment, these should be used instead of the eyepieces and tangent scales.

Verniers. A vernier is a contrivance for measuring portions smaller than those into which a line is divided. We shall describe two kinds.

Let $A B$ (Fig. 11) be a portion of a line graduated to tenths and hundredths of a foot. VR is the vernier.

In (a), nine parts of the line are divided into ten equal parts on the vernier. Hence, a division on the vernier is less than a division on the line by the difference between $\frac{1}{10}{ }_{0}$ of a foot and $\frac{1}{10}$ of $\frac{9}{100}$ of a foot, or $\frac{1}{1000}$ of a foot. Now, if the vernier
is moved so that 1 of the vernier coincides with 1 of the scale, it has moved over a space equal to $\frac{1}{1000}$ of a foot. If the vernier is moved so that 2 of the vernier coincides with 2 of the scale, it has moved over a space equal to $\frac{{ }^{2}{ }^{2} 0}{}$ of a foot; and so on.

In (b), 6 of the vernier coincides with 9 of the scale, which indicates that the zero of the vernier has moved past 3 of the scale a space equal to $\frac{6}{1000}$ of a foot. The reading, then, is

0.536 foot. This form of the vernier is known as the direct form, since the figuring on the vernier proceeds in the same direction as that on the scale.

In (c), eleven parts of the line are divided into ten equal parts on the vernier. Hence, a division on the vernier is greater than a division on the line by the difference between $\frac{1}{10}$ of $\frac{11}{100}$ of a foot and $\frac{1}{100}$ of a foot, or $\frac{1}{1000}$ of a foot. Now, if the vernier is moved so that 1 of the vernier coincides with 10
of the scale, i.e., the end of the 6 th tenth, the vernier has moved over a space equal to $\frac{1}{1000}$ of a foot. If the vernier is so moved that 2 of the vernier coincides with 9 of the scale, the vernier has moved over a space equal to $\frac{2}{10 \overline{0} \overline{0}}$ of a foot; and so on.

In $(d), 6$ of the vernier coincides with 7 of the scale, which indicates that the zero of the vernier has moved past 3 of the scale a space equal to $\frac{6}{1000}$ of a foot. The reading here is 0.636 foot.

This form of the vernier is known as the retrograde form, since the figuring on the vernier proceeds in the opposite direction from that on the scale. In either form the following rule for using and reading the vernier may be adopted:

Move the vernier until its zero line, or index, is at the point to which the required measurement is to be taken; read the main scale to the nearest division below the index, and that number of the division line of the vernier which stands opposite a line of the main scale.

FIg. 12

Compass Vernier and its Uses. Let $L L^{\prime}$ (Fig. 12) represent the limb of the compass graduated to half degrees, and $V V^{\prime}$ the vernier divided into thirty equal spaces, equal to twenty-nine spaces of the limb. Then, one space of the vernier is less than one space of the limb by $1^{\prime}\left(=30^{\prime}-\frac{1}{30}\right.$ of $\left.29 \times 30^{\prime}\right)$, and the reading may be obtained to single minutes.

In Fig. 12 the index, or zero, of the vernier stands between 32° and $32^{\circ} 30^{\prime}$, and the line of the vernier marked 9 coincides with a line of the limb. Hence, the reading is $32^{\circ} 9^{\prime}$.

When the index moves from the zero line of the limb in a direction opposite to that in which run the numbers of the limb, the number of minutes obtained as above must be subtracted from 30^{\prime} to obtain the minutes required. (Why?) If, however, the vernier is made double, that is, if it has thirty spaces on each side of the zero line, it is always read directly. The usual form of the double vernier, shown in Fig. 13, has

Fig. 1?
only fifteen spaces on each side of the zero line. When the vernier is turned to the right less than 15 ' past a division line of the limb, read the lower figures on the left of the zero line at any coincidence; if moved more than 15^{\prime} past a division line of the limb, read the upper figures on the right of the zero line at any coincidence ; and vice versa. In this form of the double vernier it will be observed that the spaces on the vernier are larger than those on the limb, since the 30 equal spaces of the former are equal to 31 half-degree spaces of the latter.

The most important use of the vernier compass is in setting off the variation of the needle explained just below. If the variation of the needle at any place is known, by means of the vernier screw the compass circle may be turned through an arc equal to the variation. If the observer stands at the south end of the instrument, the vernier is turned to the right or left according as the variation is west or east. The compass now gives the bearings of the lines with the true meridian.

In order to retrace the lines of an old survey, turn the sights in the direction of a known line and move the vernier until the needle indicates the old bearing. If no line is definitely known, the change of variation from the time of the old survey will give the are to be set off.

Magnetic Declination. The magnetic declination, or variation of the needle, at any place is the angle which the magnetic meridian makes with the true meridian, or north and south line. The variation is east or west, according as the north end of the needle lies east or west of the true meridian. Western variation is indicated by the sign + , and eastern by the sign - . The kinds of magnetic declination are put under three heads:

1. Irregular variations, which are sudden deflections of the needle due to magnetic storms or other causes not well understood.
2. Solar-diurnal variations, which in northern latitudes reach their farthest point east about 8 o'clock A.м., and their farthest point west about 2 o'clock p.м., varying from 5 ' in the winter in some localities to 20^{\prime} in the summer in other localities.
3. Secular variation, which is a change in the same direction for a period of years, then in the opposite direction for about the same time.

It is not accurately known how long it takes a complete secular variation to run its course, but from data already obtained it seems probable that the period of time covered is not less than two and a half or three centuries.

$\begin{aligned} & \text { Z } \\ & \frac{0}{4} \\ & \frac{2}{4} \\ & 7 \end{aligned}$	
	皆に
$\begin{aligned} & \text { P1 } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	
苞	

The agonic line, or line of no variation, is a line joining those places at which the magnetic meridian coincides with the true meridian. At the beginning of the present century this line crossed the United States in an irregular way from Michigan to South Carolina. It is gradually moving westward, so that the variation is increasing at places east of this line, and decreasing at places west of the line. East of this line the variation is westerly, and west of this line the variation is easterly. Lines that join places of equal magnetic declination are called isogonic lines.

Table of Magnetic Declination. On pp. 20, 21 will be found a table showing the variation in magnetic declination at different places in the United States and contiguous territory during the nineteenth century ; also the annual change for the epoch of 1900 .

EXERCISE II

1. Lay out a field of five sides and take the bearings and measures of the sides in order, beginning at the most westerly point and going about the field clockwise.
2. From the bearings obtained in Example 1 find the value of each of the interior angles. What is their sum?
3. Lay out the field the bearings and distances of whose sides are given in Example 1 of Exercise VI, p. 64.
4. Range out a line whose bearing is $\mathrm{N} .38^{\circ} 30^{\prime} \mathrm{W}$., and at some point in this line range out another line making a right angle with it. What is the bearing of the second line?
5. Set up the compass at a spot near which there is known to be some local disturbance, as iron in a building, or an iron fence, and find the variation of the needle due to such disturbance.

SECTION V

THE TRANSIT

Surveyor's Transit. The transit is the most important instrument used in surveying. There are many modifications of it, each adapted to its own particular use. All, however, have about the same essential features. The one described here, and shown in Fig. 14, is the surveyor's transit, the one of most general use. The essential parts are the telescope with its axis and two standards, the circular plates with their attachments, the sockets upon which the plates revolve, the leveling head, and the tripod. Within the telescope are two fine cross wires, at right angles to each other, whose intersection determines the optical axis, or line of collimation, of the telescope. Under the telescope, and attached to it, is a spirit level by which horizontal lines may be run, or the difference of level between two stations be found. The axis of the telescope carries a vertical circle which measures vertical angles to single minutes by means of a vernier. The vernier plate, which carries the telescope and also the compass circle, has two verniers diametrically opposite to each other, and it moves entirely around the graduated limb of the main plate. The sockets are compound; the interior spindle attached to the vernier plate turning in the exterior socket, when an angle is taken on the limb, but when the plates are clamped together the exterior socket itself, and with it the whole instrument, revolves in the socket of the leveling head. The transit is leveled by four leveling screws which pass through a plate firmly fastened to the ball spindle and rest in small sockets, these resting in turn on the upper side of the tripod plate. On the underside of this lower or tripod plate is an arrangement called a shifting centre, which enables the surveyor to change the position of the vertical axis horizontally without
moving the tripod; besides this there is, if specially ordered, a device called a quick-leveling attachment to bring the transit quickly to an approximately level position by the pressure of the hands after which the leveling screws are used.

Uses. The transit may be used for all the purposes for which the compass may be used, but with much greater precision. The principal use, however, is in measuring horizontal angles by means of the graduated limb and verniers. It may be used, furthermore, in obtaining differences of level; also, provided there is the attachment to the telescope known as the stadia, in measuring distances, especially over broken ground. A still further use, when the transit is supplied with what is known as a gradienter attachment, is in fixing grades as well as measuring distances.

Getting the Transit Ready. The instrument should be set up so as to be firm, the tripod legs being pressed into the ground until the plates are as nearly level as can conveniently be done by this means. For the subsequent leveling turn the instrument until the spirit levels on the vernier plate are parallel to the vertical planes passing through opposite pairs of the leveling screws. Take hold of opposite screw heads with the thumb and forefinger of each hand, and turn both thumbs in or out as is necessary to bring the bubble to its proper place, the left thumb always moving in the direction that the bubble is to move. For precise work, in addition to leveling by the leveling screws, it is advisable to level the plates by the telescope level, as this is much more sensitive than the levels on the plate. In this operation the position of the level on the telescope must be observed over both sets of leveling screws, one half the correction being made by the axis tangent screw, the other half by the leveling screws. Before an observation is made with the telescope, the eyepiece should be focused by its pinion until the cross wires appear distinct; the object glass is then focused by its pinion

Fig. 14. The Sulveyor's Transit
until the object to be observed appears well defined. This latter process must be repeated when the distance to the object is changed.

Measurement of Horizontal Angles. Place the instrument directly over the vertex of the angle, and level. Set the limb at zero by the tangent screw of the plates, and turn the telescope in the direction of one of the sides of the angle, directing it to the object by the tangent screw of the leveling head. Then unclamp the main plate and turn the telescope until it is in the direction of the other side of the angle, and read the angle by the verniers. The object of the two verniers on the vernier plate is to correct any mistakes that might arise from the want either of exact coincidence in the centres of the verniers and the limb or of exact graduations on the limb. The correct reading may be obtained by adding to the reading of one vernier the supplement of the reading of the other, and taking half their sum.

Measurement of Vertical Angles. Direct the telescope to the object; clamp, and read the angle indicated on the vertical circle by the vernier. The angle read will be an angle of elevation or depression as the case may be, the horizontal line being the line of collimation of the telescope when in a horizontal position.

Stadia Measurements. As already stated on page 24, the stadia is an attachment to the telescope used in measuring distances, especially over rough ground. It consists essentially of two horizontal wires fastened to small movable slides, and so adjusted as to include a given space, say one foot on a rod 100 feet distant. These wires will then include two feet on a rod 200 feet away, or a half-foot at a distance of 50 feet, and so on. Usually the instrument is so adjusted that the zero of the indicated distance is in front of the centre of the instrument; hence, the true distance is the indicated distance plus the distance of this zero from
the centre of the instrument. This latter distance is determined for each instrument by the maker, and noted on a card placed on the inside of the instrument box. It is known as the constant of the instrument. The readings are taken on a rod, specially designed for the purpose, known as the stadia rod. This is graduated to feet, and tenths and hundredths of a foot. Any ordinary leveling rod, if similarly graduated, will answer the same purpose. Obviously in taking stadia measurements the rod must always be held at right angles to the line of sight. This statement has special reference to measurements taken up or down hill-slopes. In this case, if horizontal distance is required, the measured distance must be multiplied by the cosine of the angle of elevation or depression. (Why?)

EXERCISE III

1. By means of the transit, measure the interior angles of the field of Example 1, Exercise II, p. 22, and compare with the results obtained in Example 2 of the same exercise.
2. Lay out the entire angular magnitude about some point into four or more angles, and measure each one of them. What should the sum of them equal?
3. If the constant of a transit adjusted to one foot 100 feet away is 3.8 inches, what is the true length of a line when the indication on the rod is 2.35 feet?
4. Measure a line by the stadia, and compare with measurements taken by the chain and also by the tape.
5. Compute the height of a tall object, as a tree or steeple, by first measuring its distance from some convenient point and measuring the angle of elevation at that point.
6. Lay out a square field containing just one acre.

SECTION VI

THE SOLAR COMPASS

Description and Uses. A full description of the solar compass, or Burt's solar compass, as it is often called from its inventor, with its principles, adjustments and uses, forms the subject of a considerable volume, which should be in the hands of the surveyor who uses this instrument. The limits of our space will allow only a brief reference to its principal features. Fig. 15 exhibits the instrument by itself; Fig. 16, p. 31, is a graphical illustration of the solar apparatus as an attachment to the transit, the circles shown being intended to represent those supposed to be drawn upon the concave surface of the heavens. The form of the solar compass shown in Fig. 15 has the arrangement of its sockets and plates similar to that of the transit, the standards similar to those of the compass, the solar apparatus being placed on the upper vernier plate and taking the place of the needle, for which it operates as a substitute in the field.

The solar compass consists mainly of three arcs of circles, a the latitude arc, by which is set off the latitude of the place, b the declination arc, by which is set off the declination of the sun, and c the hour arc, by which is set off the hour of the day. The $\operatorname{arm} h$ is movable about a point at the extremity of the piece containing the declination arc, there being at each end a solar lens having its focus on a silvered plate on the other end. The are of the declination limb turns on an axis, and one or the other solar lens is used, according as the sun is north or south of the equator. Fig. 15 shows the position of the declination are when the sun is south; Fig. 16, when it is north. The needle box is moved about its centre by a slow-motion screw. It contains a magnetic needle, and is furnished with a graduated arc about 36° in extent.

Fig. 15. Burt's Solar Compass

Fig. 16. Transit with Solar Attachment
The circles shown in the cut are intended to represent in miniature circles supposed to be drawn upon the concave surface of the heavens.

The solar compass may be used for most of the purposes of a compass or transit. Its most important use, however, is to run north and south lines, especially in laying out the public lands. It may be used also in determining the latitude of a place.

To establish a True Meridian. Set off on the latitude arc the latitude of the place. Set off on the declination arc the declination of the sun, corrected for refraction. Set the instrument over the station; level, and turn the sights in a north and south direction by the needle. The surveyor then turns the solar lens to the sun, and with one hand on the instrument and the other on the revolving arm, moves both from side to side until the sun's image is made to appear on the silvered plate, precisely between the equatorial lines. The line of sights then indicates the true meridian.

The bearing of any line from the meridian may be read by the verniers of the horizontal limb. When a due east and west line is to be run, these verniers are set at 90°, and the sun's image is kept between the lines as before.

Other Methods. By North Star at Culmination. The North Star, or Polaris, at present revolves about the north pole of the heavens at the distance of about $1 \frac{1}{5}^{\circ}$; hence, it is on the meridian twice in 23 h .56 m .4 s . (a sidereal day), once above the pole, called the upper culmination, and 11 h .58 m .2 s . later below the pole, called the lower culmination.

The time of the upper culmination of Polaris may be found by means of the star Mizar, the middle one of the three stars in the handle of the Dipper (in the constellation of the Great Bear). It crosses the meridian at nearly the same time as Polaris. Suspend a plumb line, placing the bob in a pail of water to lessen its vibrations. South of the plumb line, upon a horizontal board firmly supported, place a compass sight, or any upright with a small opening or slit, fastened to a board a few inches square. At night, when Mizar by estimation approaches the meridian, place the compass sight in line with

Polaris and the plumb line, and move it so as to keep it in this line until the plumb line falls also on Mizar (Fig. 17). Note the time; then (1903) 3 m .39 s . later Polaris will be on the meridian. If then Polaris, the plumb line and the compass sight are brought into line, the plumb line and compass sight will give two points in the meridian ; or if the telescope of the transit is brought to bear on Polaris, and a light is held near to make the wires visible if necessary, the telescope will then lie in the plane of the meridian, which may be marked by bringing the telescope to a horizontal position.

For each year subsequent to 1903 add 21 s. to 3 m .39 s . If the lower culmination takes place at night, the time may be found in a similar manner. When Mizar cannot conveniently be used, δ Cassiopeiae (Fig. 17) may be employed, the method being the same as in the case of Mizar. The interval, however (1903), is 4 m .24 s . and the annual increase of the interval about 20 s .

By North Star at Greatest Elongation. When Polaris is at its greatest apparent angular distance east or west of the pole, it is said to be at greatest elongation. It

Fig. 17 attains its greatest eastern elongation and western elongation, respectively, 5 h .59 m .1 s . after lower and upper culmination. The azimuth of a star is the angle which the meridian plane makes with the vertical circle passing through the star and the zenith of the observer.

If now we know the time of either extreme elongation and also the azimuth of Polaris at an extreme elongation, we can from these data establish a true meridian. The latter of these
data is given for various latitudes and for years to come in tables, to which the surveyor is supposed to have access. To obtain a line in the direction of Polaris at greatest elongation, we may proceed as follows: A few minutes before the time of greatest elongation, place the compass sight in line with the plumb line and Polaris, keeping it in line with these until the star begins to recede. At this moment the sight and plumb line are in the required line. Or bring the telescope of the transit to bear on the star, and follow it keeping the vertical wire over the star until it begins to recede. The telescope will then be in the required line. In either case, after having the transit sighted in the direction of the line just found, turn it in the proper direction through an angle equal to the azimuth as found from the tables.

The accompanying table * gives the Washington mean time of each tenth transit of Polaris (upper culmination) at the meridian of Washington, D.C. The last column contains the variation per day, to facilitate the interpolation of the time for any intermediate transit.

The transit which occurs October 17 is the tenth transit following that which occurs on October 8. This is because two transits occur on October 13; the interval separating them being 23 h .56 m .4 s . of mean time. These two transits are introduced in the table for greater convenience, and as a safeguard against error respecting the particular day of transits in that vicinity. The double lines merely call attention to the break thus caused in the series.

By interpolation we may, by taking account of the longitude of any given station, find the local mean time of transit of Polaris at that station for any particular day. Thus, to find the Cincinnati mean time of the upper culmination of Polaris at Cincinnati, on May 15, 1902, we have (p. 36) :

[^0]

Local mean time of transit at Washington, May 11, 1902

$$
=10^{\mathrm{h}} 9^{\mathrm{m}} 14^{\mathrm{s}} \text { A.м. }
$$

Longitude of Cincinnati west of Washington
$=+0^{\mathrm{h}} 29^{\mathrm{m}} 40^{\mathrm{s}}=+0^{\mathrm{d}} .021$.
May $15^{\mathrm{d}}+0^{\mathrm{d}} .021=$ May $15^{\mathrm{d}} .021$.
Preceding tabular date $=$ May 11.
Therefore, interval $=4^{\mathrm{d}} .021$.
Daily variation $\quad=-3^{\mathrm{m}} 55^{\mathrm{s}} .3=-235^{\mathrm{s}} .3$.
Total change $=4.021 \times\left(-235^{\mathrm{s}} .3\right)=-15^{\mathrm{m}} 46^{\mathrm{s}}$.
$10^{\mathrm{h}} \quad 9^{\mathrm{m}} 14^{\mathrm{s}}$ A.M.
$\frac{-1546}{9^{\mathrm{h}} 53^{\mathrm{m}} 28^{\mathrm{s}} \text { А.м. }}$
Therefore, the required time is $9^{\mathrm{h}} .53^{\mathrm{m}} 28^{\mathrm{s}}$ A.m., May $15,1902$.

SECTION VII

THE Y LEVEL

Description. The essential parts of the Y level (Fig. 18) are, the telescope, which is of various lengths, usually about 20 inches, and rests on supports called Y's, from their shape; the spirit level, which is under the telescope and attached to it; and the leveling head and tripod, which are similar to the same parts of the transit.

Leveling Rod. There are several kinds of leveling rods, each possessing some merit peculiar to its purpose. The one shown in Fig. 19 is known as the Philadelphia leveling rod, and is the one in most common use. It is made of two pieces of wood, sliding upon each other, and held in position by a clamp. The front surface of each piece is graduated to hundredths of a foot up to 7 feet; the back surface of the rear piece is figured from 7 to 13 feet, reading from the top down,

Fig. 18. The Y Level
and it also has a scale by which the rod is read to half hun-
 dredths of a foot as it is extended. The target slides along the front of the rod and is held in place by two springs which press upon the sides of the rod. It has a square opening at the centre, through which the division line of the rod opposite to the horizontal line of the target may be seen. It also carries a scale by which heights may be read to half hundredths of a foot. For heights not greater than 7 feet, the target is moved up or down the front surface, the rod being closed and clamped; but when a greater height is required the target is fixed at 7 feet and the rear half of the rod extended to the required height. The rod thus becomes a selfreading rod 13 feet long.

How to use Level and Rod. When the leveling instrument is used, the tripod should be set firm ; the spirit level should then be brought successively over each opposite pair of leveling screws

Fig. 19 and leveled in each position, the operation being repeated until the bubble remains in the middle of the tube through an entire rotation of the telescope. Each time before taking an observation the instrument should be examined to see if it is still level. Care should be taken to bring the cross wires of the telescope precisely in focus and the object into such perfect view that the wires will appear to be fastened to the surface, however the eye is moved. For very accurate work the instrument should be shielded from the direct rays of the sun.

The leveling rod should be held in a truly vertical position, the rodman standing squarely behind it.

The target is then raised or lowered at the signal of the leveler until its horizontal line is cut by the intersection of the cross wires of the telescope. The reading is done by the leveler or the rodman according to the kind of rod used.

Substitutes for the Y Level. For ordinary work, the Surveyor's or Engineer's Transit is often used.

The plumb level (Fig. 20) consists of two pieces of wood joined at right angles. A straight line is drawn on the upright perpendicular to the upper edge of the crosshead. The instrument is fastened to a support by a screw through the centre of the crosshead. The upper edge of the crosshead is brought to a level by making the line on the upright coincide with a plumb line.

Fig. 20

Fig. 21

Fig. 22

A carpenter's square can be made into a level by being supported by a post (Fig. 21), the top of avhich is split or sawed so as to receive the longer arm. The shorter arm is made vertical by a plumb line, which brings the longer arm to a level.

The water level, as shown in Fig. 22, consists of two upright glass tubes cemented into a connecting tube of any material. The whole is nearly filled with water and supported at a convenient height. The surface of the water in the uprights determines the level. The water should be colored.

A level line may be obtained by sighting along the upper surface of the block in which an ordinary spirit level is mounted.

For many purposes not requiring great accuracy, any of the foregoing simple instruments in connection with any graduated rod will be sufficient.

EXERCISE IV

1. Set up the level and take the readings on the leveling rod at two stations equally distant from the instrument. What does the difference of these readings indicate?
2. Set up the level successively at the two stations in Example 1, taking the readings on the leveling rod placed where the instrument was first. What does the difference of these readings indicate? Ought this difference to be the same as that in Example 1? Explain.
3. In the field of Example 1, Exercise II, p. 22, set up the level successively at the middle of each of the five sides, taking the readings on the rod each time at both adjacent stations of the field. Find the difference between the sum of the hindsights and the sum of the foresights. What should this difference equal?

SECTION VIII

THE PLANE TABLE

Description and Uses. The plane table, an approved form of which is shown in Fig. 23, consists mainly of a drawing board made of well-seasoned wood, arranged in sections to prevent warping, and supported at a convenient height by a tripod and leveling head, with attachments for horizontal movement.

Fig. 23. The Plane Table

The board is provided with rollers or clamps or both, for keeping the paper secure and even. The plumbing arm has its end brought to a point which, however placed on the paper, is directly above the corresponding point on the ground determined by the plummet. The alidade is a ruler of brass or steel supporting a telescope with stadia or sight standards, whose line of sight is in or parallel to the same vertical plane with the beveled edge of the ruler. A compass with two spirit levels serves both to level the table and, when applied by the edges parallel to the zero line of the compass circle, to determine the magnetic bearing of the lines drawn on the paper, or the direction of the table itself.

After the principal lines of a survey have been determined and plotted, the details of the plot may be filled in by means of the plane table; or, when a plot only of a tract of land is desired and extreme accuracy is not required, this instrument affords the most expeditious means of obtaining it. There is little use for it outside of the United States Coast and Geodetic Survey and the United States Geological Survey.

To orient the Table. This operation consists in placing the table so that the lines of the plot shall be parallel to the corresponding lines on the ground.

This may be accomplished approximately by turning the table until the needle of the compass indicates the same bearing as at a previous station, the edge of the compass coinciding with the same line on the paper at both stations.

If, however, the line connecting the station at which the instrument is placed with another station is already plotted, the table may be placed in position accurately by placing it over the station so that the plotted line is by estimation over and in the direction of the line on the ground; then making the edge of the ruler coincide with the plotted line, and turning the board until the line of sight bisects the signal at the other end of the line on the ground.

To plot any Point. Let $a b$ on the paper represent the line $A B$ on the ground; it is required to plot c, representing C on the ground.

1. By intersection.

Place the table in position at A (Fig. 24), plumbing a over A, and making the fiducial edge of the ruler pass through a; turn the alidade about α until the line of sight bisects the signal at C, and draw a line along the fiducial edge of the ruler. Place the table in position at B, plumbing b over B, and repeat the operation just described. Then c is the intersection of the two lines thus drawn.

Fig. 24

2. By resection.

Place the table in position at A (Fig. 25), and draw a line in the direction of C, as in the former case; then remove the instrument to C, place

Fig. 25

Fig. 26 it in position by the line drawn from a, make the edge of the ruler pass through b, and turn the alidade about b until B is in the line of sight. A line drawn along the edge of the ruler will intersect the line from α in c.

3. By radiation.

Place the table in position at A (Fig. 26), and draw a line from a toward C, as in the former cases. Measure $A C$, and lay off $a c$ to the same scale as $a b$.

To plot a Field $A B C D \ldots$
By radiation.
Set up the table at any point P, and mark p on the paper over P. Draw indefinite lines from p
toward A, B, C, \cdots Measure $P A, P B, \cdots$, and lay off $p a, p b, \cdots$ to a suitable scale, and join a and b, b and c, c and d, \cdots

Fig. 27

By progression.

Set up the table at A, and draw a line from a toward B. Measure $A B$, and plot $a b$ to a suitable scale. Set up the table in position at B, and in like manner determine and plot $b c$; and so on.

By intersection.
Plot one side as a base line. Plot the other corners by the method of intersection, and join these points in proper order by straight lines.

By resection.

Plot one side as a base line. Plot the other corners by the method of resection, and join these points in proper order by straight lines.

The Three-Point Problem. Let A, B, C represent three field stations plotted as a, b, c, respectively (Fig. 28) ; it is required

Fig. 28
to plot d representing a fourth field station D, from which A, B, and C are visible.

Place the table over D, level and orient approximately by the compass. Determine d by resection as follows: Make the
edge of the ruler pass through a and lie in the direction $a A$, and draw a line along the edge of the ruler. In like manner, draw lines through b toward B and through c toward C. If the table is oriented perfectly, these lines meet at the required point d, but ordinarily they will form the triangle of error, $a b$, $a c, b c$. In this case, through a, b, and $a b ; a, c$, and $a c$; and b, c, and $b c$, respectively, draw circles ; these circles will intersect in the required point d. For at the required point the sides $a b, a c, b c$ must subtend the same angle as at the points $a b, a c, b c$, respectively. Hence, the required point d lies at the intersection of the three circles mentioned. The plane table may now be oriented accurately.

The three-point problem may also be solved by fastening on the board a piece of tracing paper and marking the point d representing D, after which lines are drawn from d toward A, B, and C. The tracing paper is then moved until the lines thus drawn pass through a, b, c, respectively, when by pricking through d the point is determined on the plot below. This method, however, is impracticable in case the wind blows.

CHAPTER II

OFFICE INSTRUMENTS

SECTION IX

PLOTTING INSTRUMENTS

Definitions. A map is a representation by means of points, lines, and conventional signs on a plane surface, as on paper of a surveyed portion of the earth's surface, including objects upon it. If only the boundary lines are drawn, the representation is called an outline map, or plot. The plot is a figure similar to the original, and the ratio of a line of the field to the corresponding line of the plot is called the scale. In surveying it is customary to designate the scale as so many chains to the inch.

Principal Minor Instruments. The principal minor instruments used in plotting are a ruler, pencil, straight-line pen, hair-spring dividers, compasses, a right triangle of wood or hard rubber, a T-square, and a parallel ruler.

The Diagonal Scale. A portion of this scale is shown in Fig. 29. $A B$ is the unit. $A B$ and $A^{\prime} B^{\prime}$ are divided into ten equal parts, and B is joined with h, the first division point to the left of B^{\prime}; the first division point to the left of B is joined with the second to the left of B^{\prime}, and so on. The part of the horizontal line numbered 1 intercepted between $B B^{\prime}$ and $B h$ is evidently $\frac{1}{10}$ of $\frac{1}{10}=\frac{1}{10} \overline{0}$ of the unit; the part of the horizontal line numbered 2 intercepted between $B B^{\prime}$ and $B h$ is $\boldsymbol{I}^{2} \overline{0}$ of the unit, and so on.

The method of using this scale is as follows:
Let it be required to lay off the distance 1.43 .

Fig. 29

Place one foot of the dividers at the intersection of the horizontal line numbered 3 and the diagonal numbered 4, and place the other foot at the intersection of the vertical line numbered $1\left(C C^{\prime}\right)$ and the horizontal line numbered 3 ; the distance between the feet of the dividers will be the distance required. For, measuring along the horizontal line numbered 3 , from $C C^{\prime}$ to $B B^{\prime}$ is 1 ; from $B B^{\prime}$ to $B h$ is 0.03 ; and from $B h$ to the diagonal numbered 4 is 0.4 ; and $1+0.03+0.4=1.43$.

The Circular Protractor. This instrument (Fig. 30) usually consists of a semicircular piece of brass or german silver, with its arc divided into degrees and its centre marked.

Some protractors have an arm which carries a vernier, by which angles may be constructed to single minutes. Still others embrace an entire circle and have several arms with verniers.

A rectangular protractor, having the degrees marked off on three sides of a plane scale, is sometimes used. Often this form of the protractor is found on the reverse side of the diagonal scale.

Constructions. 1. To lay off an angle with the circular protractor. Place the centre over the vertex of the angle, and make the diameter coincide with the given side of the angle. Mark off the number of degrees in the given angle, and draw a line through this point and the vertex.

Fig. 30
2. To draw through a given point a line parallel to a given line with a right triangle and ruler.

Make one of the sides of the triangle coincide with the given line, and, placing the ruler against one of the other sides, move the triangle along the ruler until the first side passes through the given point; then draw a line along this side.
3. To draw through a given point a line perpendicular to a given line with a right triangle and ruler.

Make the hypotenuse of the right triangle coincide with the given line, and, placing a ruler against one of the other sides of the triangle, revolve the triangle about the vertex of the right angle as a centre until its other perpendicular side is against the ruler; then move the triangle along the ruler until the hypotenuse passes through the given point, and draw a line along the hypotenuse.

SECTION X

COMPUTING INSTRUMENTS

The Planimeter. This is an instrument for measuring the area of any irregular field, by applying it to a plot of the field drawn accurately to scale. The form in most common use is that known as the polar planimeter. The essential parts are two arms, one fixed in length, the other adjustable, and a rolling wheel mounted on an axis parallel to the adjustable arm. The outer end of the arm of fixed length is made fast to the plot by means of a needle point, and the free end of the other arm is made to trace the perimeter of the figure to be measured. A disk records the area in the unit for which the instrument is set.

The Slide Rule. This is an instrument for effecting the processes of multiplication, division, involution, and evolution by means of logarithms. It consists of a series of scales so arranged that by sliding one upon the other the addition or subtraction of logarithms is mechanically performed. For a full description of this labor-saving device in its various forms, the student is referred to some treatise on the subject.

CHAPTER III

LAND SURVEYING

SECTION XI

DEFINITIONS

Land Surveying is the art of measuring, laying out, and dividing land, computing parts and areas from measured parts, and preparing a plot. An original survey includes laying out the boundary lines and establishing the corners. A resurvey is the retracing of old boundary lines and the finding of corner monuments, or the relocating of them when lost.

Rules for Areas. The unit of land measure is the

$$
\begin{aligned}
\text { acre } & =10 \text { square chains }=4 \text { roods } \\
& =160 \text { square rods, perches, or poles. }
\end{aligned}
$$

Areas are referred to the horizontal plane, no allowance being made for inequalities of surface.

Let A, B, and C be the angles of a triangle, and a, b, and c the opposite sides, respectively, and let $s=\frac{1}{2}(a+b+c)$.

Area of triangle $A B C=\frac{1}{2}$ base \times altitude

$$
\begin{aligned}
& =\frac{1}{2} b c \sin A \\
& =\frac{a^{2} \sin B \sin C}{2 \sin (B+C)} \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

Area of rectangle $=$ base \times altitude.
Area of trapezoid $=\frac{1}{2}$ sum of parallel sides \times altitude.
Note. Spanish American units are in use in Texas, California, and Mexico. In this system the vara is the unit of length, which in Texas is
reckoned $33 \frac{1}{8}$ inches, in California 33 inches, in Mexico 32.9927 inches. The area of a square 1000 varas on a side is called a labor, and of a square 5000 varas on a side is called a league.

SECTION XII

SPECIAL METHODS OF SURVEYING, AND COMPUTING AREAS

Triangular Fields. Measure, as may be most convenient, the three sides, two sides and the included angle, two angles and the included side, or a side and the altitude upon that side, and compute the area by the appropriate formula.

Fields having More than Three Straight Sides. Divide the field into triangles and take the sum of the areas of the triangles. Or, run a diagonal and perpendiculars to it from the opposite vertices ; take the sum of the areas of the right triangles, rectangles, and trapezoids thus formed.

A third method is as follows: Let $A B C D$ (Fig. 31) represent a field, and P and P^{\prime} two stations within it. (They may be without the field.) Measure $P P^{\prime}$ with great exactness. Measure the angles between $P P^{\prime}$ and the lines from P and P^{\prime} to the corners of the field.

In the triangle $P^{\prime} P D, P P^{\prime}$ and the angles $P P^{\prime} D$ and $P^{\prime} P D$ are known; hence, $P D$ may be found. In like manner, $P C$ may be found. Then, in the triangle $P D C, P D$,

Fig. 31 $P C$, and the angle $D P C$ are known; hence, the area of $P D C$ may be computed. In like manner, the areas of all the triangles about P or P^{\prime} may be determined.

$$
\begin{aligned}
& \text { Area } A B C D=P A D+P D C+P C B+P B A \\
& \text { area } A B C D=P^{\prime} A D+P^{\prime} D C+P^{\prime} C B+P^{\prime} B A .
\end{aligned}
$$

also,

Fields having Irregular Boundary Lines. Let $A G B C D$ (Fig. 32) represent a field having a stream $A E F G H K B$ as a boundary line. Run the line $A B$. From E, F, G, H, K, prominent points on the bank of the stream, let fall perpendiculars $E E^{\prime}$, $F F^{\prime}, G G^{\prime}$, etc., upon $A B$. Regarding $A E, E F$, etc., as straight

Fig. 32

Fig. 33
lines, the portion of the field cut off by $A B$ is divided into right triangles, rectangles, and trapezoids, the necessary elements of which can be measured and the areas computed. The sum of these areas added to the area of $A B C D$ gives the area required. If the offsets are at regular intervals, then the area of the part cut off by $A B$ may be found by adding the offsets and multiplying by the common distance between them.

When the irregular boundary line crosses the straight line that joins its extremities, as in Fig. 33, the areas of $A E F H$ and HGB may be found separately, as in the preceding case. Then, the area required $=A B C D+H C B-A E F H$.

Rectangular System of Co-ordinates. Let $X X^{\prime}$ and $Y Y^{\prime}$ (Fig. 34) be two fixed perpendicular lines intersecting at the point O. Let the four parts into which these lines divide the plane be called Quadrants, as in Trigonometry, and be distinguished by naming them, respectively, first, second, third, and fourth quadrants.

Suppose the position of a point is described by saying that its distance from $Y Y^{\prime}$, expressed in terms of some chosen unit
of length, is 3 , and its distance from $X X^{\prime}$ is 4 . Then there is in each quadrant one point and only one which will satisfy these conditions. The position of the point in each quadrant may be found by drawing parallels to $Y Y^{\prime}$ at the distance 3 from $Y Y^{\prime}$, and parallels to $X X^{\prime}$ at the distance 4 from $X X^{\prime}$; then the intersections P_{1}, P_{2}, P_{3}, and P_{4} satisfy the given conditions.

In order to determine which one of the four points, P_{1}, P_{2}, P_{3}, P_{4}, is meant, we adopt the rule that distances measured from $Y Y^{\prime}$ to the right are positive; to the

Fig. 34 left, negative. Distances measured from $X X^{\prime}$ upward are positive ; downward, negative. Then, the position of P_{1} will be denoted by $+3,+4$; of P_{2}, by $-3,+4$; of P_{3}, by $-3,-4$; of P_{4}, by $+3,-4$.

The fixed lines $X X^{\prime}$ and $Y Y^{\prime}$ are called the Axes of Co-ordinates ; $X X^{\prime}$ is called the Axis of Abscissas, or Axis of $\mathbf{x} ; Y Y^{\prime}$, the Axis of Ordinates, or Axis of y. The intersection O is called the Origin.
The two distances (with signs prefixed) which determine the position of a point are called the Co-ordinates of the point; the distance of the point from $Y Y^{\prime}$ is called its Abscissa ; and the distance from $X X^{\prime}$, its Ordinate.

Abscissas are usually denoted by x, and ordinates by y, and a point is represented algebraically by simply writing the values of its co-ordinates within parentheses, that of the abscissa being always written first.

Thus, P_{1} (Fig. 34) is the point (3, 4), P_{2} the point $(-3,4), P_{3}$ the point $(-3,-4)$, and P_{4} the point $(3,-4)$. In general the point whose co-ordinates are x and y is the point (x, y).

This system of co-ordinates may be applied to the determination of areas in the following manner:

Suppose the field to be $A B C D E$ (Fig. 35). Lay out the two axes so that the field shall lie wholly within the first quadrant. Then measure the co-ordinates of each of the vertices

and designate them as follows: for $A,\left(x_{1}, y_{1}\right)$; for $B,\left(x_{2}, y_{2}\right)$; for $C,\left(x_{3}, y_{3}\right)$; for $D,\left(x_{4}, y_{4}\right)$; for $E,\left(x_{5}, y_{5}\right)$. Evidently each of these co-ordinates is positive. Then,

$$
\begin{aligned}
& \text { area } A B C D E=\text { area } L A B M+\text { area } M B C P+\text { area } P C D R \\
& \text { - area NEDR - area LAEN; }
\end{aligned}
$$

or, in terms of the co-ordinates,

$$
\begin{aligned}
\text { area } A B C D E= & \frac{1}{2}\left(y_{1}+y_{2}\right)\left(x_{2}-x_{1}\right)+\frac{1}{2}\left(y_{2}+y_{3}\right)\left(x_{3}-x_{2}\right) \\
& +\frac{1}{2}\left(y_{3}+y_{4}\right)\left(x_{4}-x_{3}\right)-\frac{1}{2}\left(y_{4}+y_{5}\right)\left(x_{4}-x_{5}\right) \\
& -\frac{1}{2}\left(y_{5}+y_{1}\right)\left(x_{5}-x_{1}\right), \\
=\frac{1}{2}\left\{x_{1}\left(y_{5}-y_{2}\right)+\right. & x_{2}\left(y_{1}-y_{3}\right)+x_{3}\left(y_{2}-y_{4}\right) \\
& \left.+x_{4}\left(y_{3}-y_{5}\right)+x_{5}\left(y_{4}-y_{1}\right)\right\} .
\end{aligned}
$$

This method can be put in the form of a general rule:
Take one-half the algebraic sum of the products obtained by multiplying the abscissa of each vertex by the difference between the ordinates of the two adjacent vertices, takien in the clockwise order.

EXERCISE V

1. Required the area of a triangular field whose sides are 13 chains, 14 chains, and 15 chains.
2. Required the area of a triangular field if it has two angles $48^{\circ} 30^{\prime}$ and $71^{\circ} 45^{\prime}$, and the included side 20 chains.
3. Required the area of a triangular field whose base is 12.60 chains, and altitude 6.40 chains.
4. Required the area of a triangular field which has two sides 4.50 chains and 3.70 chains, and the included angle 60°.
5. Required the area of a field in the form of a trapezium, one of whose diagonals is 9 chains, and the two perpendiculars upon this diagonal from the opposite vertices 4.50 chains and 3.25 chains.
6. Required the area of the field $A B C D E F$ (Fig. 36), if $A E=9.25$ chains, $F F^{\prime}=6.40$ chains, $B E=13.75$ chains, $D D^{\prime}=7$ chains, $D B=10$ chains, $C C^{\prime}=4$ chains, and $A A^{\prime}=4.75$ chains.

Fig. 36
7. Determine the area of the field $A B C D$ from two interior stations P and P^{\prime}, if $P P^{\prime}=1.50$ chains,

$$
\begin{array}{ll}
P P^{\prime} C=89^{\circ} 35^{\prime}, & P P^{\prime} D=349^{\circ} 45^{\prime}, \\
P P^{\prime} B=185^{\circ} 30^{\prime}, & P^{\prime} P B=35^{\circ} 35^{\prime} 40^{\prime} \\
P P^{\prime} A=309^{\circ} 15^{\prime}, & P^{\prime} P A=113^{\circ} 45^{\prime},
\end{array}
$$

8. Required the area of the field $A B C D E F$ (Fig. 37), if $A F^{\prime}=4$ chains, $F F^{\prime}=6$ chains, $E E^{\prime}=6.50$ chains, $A E^{\prime}=9$ chains, $A D=14$ chains, $A C^{\prime}=10$ chains, $A B^{\prime}=6.50$ chains, $B B^{\prime}=7$ chains, $C C^{\prime}=6.75$ chains.

Fig. 37
9. Required the area of the field $A G B C D$ (Fig. 32, p. 52), if the diagonal $A C=5, B B^{\prime}$ (the perpendicular from B to $A C$) $=1, D D^{\prime}$ (the perpendicular from D to $\left.A C\right)=1.60, E E^{\prime}=$ $0.25, F F^{\prime}=0.25, G G^{\prime}=0.60, H H^{\prime}=0.52, K K^{\prime}=0.54, A E^{\prime}=$ $0.2, E^{\prime} F^{\prime}=0.50, F^{\prime} G^{\prime}=0.45, G^{\prime} H^{\prime}=0.45, H^{\prime} K^{\prime}=0.60$, and $K^{\prime} B=0.40$.
10. Required the area of the field $A G B C D$ (Fig. 33, p. 52), if $A D=3, A C=5, A B=6$, angle $D A C=45^{\circ}$, angle $B A C=$ $30^{\circ}, A E^{\prime}=0.75, A F^{\prime}=2.25, A H=2.53, A G^{\prime}=3.15, E E^{\prime}=$ $0.60, F F^{\prime}=0.40$, and $G G^{\prime}=0.75$.
11. Determine the area of the field $A B C D$ from two exterior stations P and P^{\prime}, if $P P^{\prime}=1.50$ chains,

$$
\begin{aligned}
& P^{\prime} P B=41^{\circ} 10^{\prime}, \quad P^{\prime} P D=104^{\circ} 45^{\prime}, \quad P P^{\prime} B=132^{\circ} 15^{\prime} \\
& P^{\prime} P A=55^{\circ} 45^{\prime}, \quad P^{\circ}, \quad P P^{\prime} D=103^{\circ} \quad 0^{\prime} \\
& P^{\prime} P C=77^{\circ} 20^{\prime}, \quad P^{\prime} C P^{\prime},
\end{aligned}
$$

12. Find the area of the field $A B C D E$ (Fig. 35, p. 54), if the co-ordinates, in chains, of the vertices taken in order are (1.40, 6.75), (4.60, 8.32), (9.00, 9.05), (12.15, 5.58), and (5.27, 1.16).
13. Find the area of the field $A B C D E$ (Fig. 35, p. 54), by measuring distances as follows :

$$
\begin{aligned}
& A L=400 \text { feet } ; \quad B M=700 \text { feet; } \quad C P=680 \text { feet; } \\
& D R=380 \text { feet } ; \quad E N=200 \text { feet } ; \quad L M=150 \text { feet; } \\
& M N=250 \text { feet } ; \quad N P=200 \text { feet } ; \quad P R=220 \text { feet } .
\end{aligned}
$$

14. Lay out a field of four sides, and find its area by the method of triangles and also by the method of rectangular co-ordinates.
15. Lay out a field of six sides, and find its area by the method of triangles and also by the method of rectangular co-ordinates.

SECTION XIII

GENERAL METHOD FOR FARM SURVEYS

Definitions. A course is the bearing and length of a line. The latitude of a course is the distance between the parallels through its extremities, and is called a northing or a southing, as the course is northward or southward. The departure of a course is the distance between the meridians through its extremities, and is called an easting or a westing, as the course is eastward or westward. The meridian distance of a point is its distance from a meridian. The double meridian distance of a course is double the meridian distance of its mid-point, and therefore equal to the sum of the meridian distances of the extremities of the course.

Let $A B$ (Fig. 38) represent a line, whose bearing and length are known. Let $M N$ be a reference meridian; and let p and p^{\prime} be parallels through A and B, and m and m^{\prime} meridians through the same points. Then, angle $m A B$ represents the bearing

Fig. 38 of line $A B$. The latitude of the course $A B$ is $A E$, and its departure $E B$. The meridian distance of the point B is $B C$ and of $A, A D$. Evidently, the double meridian distance of the course $A B$ is $(B C+A D)$.

Again, in the triangle $A E B$,

$$
A E=A B \times \cos E A B, \quad \text { and } \quad E B=A B \times \sin E A B .
$$

Hence, latitude $=$ distance $\times \cos$ of bearing, and departure $=$ distance $\times \sin$ of bearing. From these formulas, the latitude and departure of any course may be found by means of a table of natural sines and cosines. They may be found also
from the Traverse Table, which is merely the tabulated results of the foregoing method for given courses.

Field Notes. The field notes are kept in a book provided for the purpose. The page is commonly ruled in three columns, in the first of which is written the number of the station; in the second, the bearing of the side; and in the third, the length of the side.

Field Notes

Fig. 39

1	N. $20^{\circ} \mathrm{E}$.	8.66
2	S. $70^{\circ} \mathrm{E}$.	5.00
3	S. $10^{\circ} \mathrm{E}$.	10.00
4	N. $70^{\circ} \mathrm{W}$.	10.00

To obtain the field notes, say of field $A B C D$ (Fig. 39), place the compass at A, the first station, and take the bearing of $A B$ (p. 12); suppose it to be $\mathrm{N} .20^{\circ} \mathrm{E}$. Write the result in the second column of the field notes opposite the number of the station. Measure $A B=8.66$ chains, and write the result in the third column of the field notes. Place the compass at B, and, after testing the bearing of $A B$ (p. 13), take the bearing of $B C$, measure $B C$, and write the results in the field notes; and so continue until the bearing and length of each side have been recorded.

Computation of the Area. The survey may begin at any corner of the field; but, for computing the area, the field notes should be arranged so that the most eastern or the most western station shall stand first. For the sake of uniformity, we shall always begin with the most western station and keep the field on the right in passing around it.

The field notes occupy the first three of the eleven columns in the tablet below. Columns IV, V, VI, and VII contain the latitudes and departures corresponding to the sides, taken from the Traverse Table. The line represented by each number is indicated immediately above that number. Column VIII contains the meridian distances of the points B, C, D, and A, taken in order. Column IX contains the double meridian distances

I	II	III	IV	V	VI	VII	VIII	IX	X	XI
Side	Bearivg	Dist.	N.	S.	E.	W.	M.D.	I.M.D.	N.A.	S.A.
$A B$	N. $20^{\circ} \mathrm{E}$.	8.66	$\begin{aligned} & A B^{\prime} \\ & 8.14 \end{aligned}$	- ${ }^{\prime}{ }^{\prime}$	$B B^{\prime}$. .	$B B^{\prime}$	$\begin{aligned} & B B^{\prime} \\ & 2.96 \end{aligned}$	$\begin{aligned} & 2 A B B^{\prime} \\ & 24.0944 \end{aligned}$	\cdots
					${ }^{\text {C'C }}$ C		${ }^{2} C^{\prime}$			
$B C$	S. $70^{\circ} \mathrm{E}$.	5.00	. .	1.71	4.70	\cdots	7.66	10.62		18.1602
				$C^{\prime} D^{\prime}$	$D^{\prime \prime}$ D		$D D^{\prime}$	$C C^{\prime}+D D^{\prime}$		$2 D^{\prime} D C C^{\prime}$
$C D$	S. $10^{\circ} \mathrm{E}$.	10.00	-••	9.85	1.74	-••	9.40	17.06	\cdots	168.0410
DA	N. $70{ }^{\circ} \mathrm{W}$.	10.00	$\begin{aligned} & D^{\prime} A \\ & 3.42 \end{aligned}$			$\begin{aligned} & D D^{\prime} \\ & 9.40 \end{aligned}$	0	$\begin{gathered} D D^{\prime} \\ 9.40 \end{gathered}$	$\left\lvert\, \begin{aligned} & 2 A D D^{\prime} \\ & 32.1480 \end{aligned}\right.$	
		33.66	11.56	11.56	9.40	9.40			56.2424	186.2012

(186.2012 sq. ch. -56.2424 sq. ch. $) \div 2=64.98$ sq. ch. $=6.50$ acres.
of the courses. Their composition is indicated by the letters immediately above the numbers. Column X contains the products of the double meridian distances by the northings in the same line. The first number,
$24.0944=2.96 \times 8.14=B B^{\prime} \times A B^{\prime}=$ twice area of triangle $A B B^{\prime} ;$
$32.1480=9.40 \times 3.42=D D^{\prime} \times A D^{\prime}=$ twice area of triangle $A D D^{\prime}$.
Column XI contains the products of the double meridian distances by the southings in the same line. The first number,

$$
\begin{aligned}
18.1602=10.62 \times 1.71 & =\left(B B^{\prime}+C C^{\prime}\right) \times B^{\prime} C^{\prime} \\
& =\text { twice area of trapezoid } C^{\prime} C B B^{\prime} ; \\
168.0410=17.06 \times 9.85 & =\left(C C^{\prime}+D D^{\prime}\right) \times D^{\prime} C^{\prime} \\
& =\text { twice area of trapezoid } D^{\prime} D C C^{\prime} .
\end{aligned}
$$

The sum of the north areas in column X

$$
=56.2424=2\left(A B B^{\prime}+A D D^{\prime}\right)
$$

The sum of the south areas in column XI

$$
=186.2012=2\left(C^{\prime} C B B^{\prime}+D^{\prime} D C C^{\prime}\right)
$$

But $\quad\left(C^{\prime} C B B^{\prime}+D^{\prime} D C C^{\prime}\right)-\left(A B B^{\prime}+A D D^{\prime}\right)=A B C D$.
Hence, $2\left(C^{\prime} C B B^{\prime}+D^{\prime} D C C^{\prime}\right)-2\left(A B B^{\prime}+A D D^{\prime}\right)=2 A B C D ;$
that is, $186.2012-56.2424=129.9588=2 A B C D$.
Hence, area $A B C D=\frac{1}{2}$ of 129.9588 sq. ch. $=64.98 \mathrm{sq} . \mathrm{ch} .=6.50 \mathrm{~A}$.

Balancing the Work. In the survey, we pass entirely around the field ; hence, we move just as far north as south. Therefore, the sum of the northings should equal the sum of the southings. In like manner, the sum of the eastings should equal the sum of the westings. In this way the accuracy of the field work may be tested.

In the example on page 59 the sum of the northings is equal to the sum of the southings, being 11.56 in each case ; and the sum of the eastings is equal to the sum of the westings, being 9.40 in each case. Hence, the work balances.

In actual practice the work seldom balances. When it does not balance, corrections are generally applied to the latitudes and departures by the following rules:

1. The perimeter of a field is to any one side as the total error in latitude is to the correction required.
2. The perimeter of a field is to any one side as the total error in departure is to the correction required.

Example. The perimeter of a field measured 306.62 chains and one side 72.47 chains, with a total error of 22 links in latitude and of 18 links in departure.

Then $306.62: 72.47=22$ links : $x=18$ links : y.
Whence $x=5$ links and $y=4$ links.
Hence the correction in latitude applied to the given side is 0.05 chains, and the correction in departure is 0.04 chains.

If special difficulty was found in taking a particular bearing, or in measuring a particular line, the corrections should be applied to the corresponding latitudes and departures.

The amount of error allowable varies in the practice of different surveyors, and according to the nature of the ground. An error of 1 link in 8 chains would not be considered too great on smooth, level ground; while on rough ground an error of 1 link in 3 chains might be allowed. If the error is considerable, the field measurements should be repeated.

As another example let it be required to find the area of field $A B C D E F$ from the following

Field Notes

1	N. $73^{\circ} 30^{\prime} \mathrm{W}$.	5.00
2	S. $16^{\circ} 30^{\prime} \mathrm{W}$.	5.00
3	N. $28^{\circ} 30^{\prime} \mathrm{W}$.	7.07
4	N. $20^{\circ} 00^{\prime} \mathrm{E}$.	11.18
5	S. $43^{\circ} 30^{\prime} \mathrm{E}$.	5.00
6	S. $13^{\circ} 30^{\prime} \mathrm{E}$.	10.00

Side	bearing	Dist.	N.	S.	E.	W.	M.D.	D.M.D.	N.A.	S.A.
$A B$	N. $20^{\circ} 00^{\prime} \mathrm{E}$.	11.18	10.51		3.82	\ldots	$\begin{aligned} & B^{\prime} B \\ & 3.82 \end{aligned}$	$\begin{aligned} & B^{\prime} B \\ & 3.82 \end{aligned}$	$\begin{aligned} & 2 A B B^{\prime} \\ & 40.1+82 \end{aligned}$	
BC	S. $43^{\circ} 30^{\prime} \mathrm{E}$.	5.00		3.63	3.44	\ldots	${ }_{7.26}{ }^{\text {C }}$	$\begin{gathered} B^{\prime} B+C^{\prime} C \\ 11.08 \end{gathered}$		2 ${ }^{2}{ }^{\prime \prime} C B B^{\prime}$
							$D^{\prime} D$	$C^{\prime} C+D^{\prime} D$		$2 D^{\prime} D C C^{\prime}$
CD	S. $13^{\circ} 30^{\prime} \mathrm{E}$.	10.00		9.72	2.33	\ldots	9.59 $E^{\prime} E$	$\begin{gathered} 16.85 \\ D^{\prime} D+E^{\prime} E \end{gathered}$	2 D' $^{\text {DE }}$ ' ${ }^{\prime}$	${ }^{163.7820}$
DE	N. $73^{\circ} 30^{\prime} \mathrm{W}$.	5.00	1.42	\ldots		4.79	4.79	14.38	20.4196	
						4.80	$F^{\prime} F$	$E^{\prime \prime} E+F^{\prime \prime} F$		$2 F^{\prime}$ FEF
EF	S. $16^{\circ} 30^{\prime} \mathrm{W}$.	5.00	\ldots	4.79	\ldots	1.42	3.37	8.16		39.0864
FA	N. $28^{\circ} 30^{\prime \prime} \mathrm{W}$.	7.07	6.21			3.37	0.00	${ }_{3 .}^{F^{\prime} F}$	$\begin{aligned} & 2 A F F^{\prime \prime} \\ & { }_{20.92} \end{aligned}$	
		43.25	18.14	18.14	9.59	$\begin{aligned} & 9.58 \\ & 9.59 \end{aligned}$			81.4955	243.0888

The first station in the field notes is D, but we rearrange the numbers in the tablet so that A stands first. The northings and southings balance, but the eastings exceed the westings by 1 link. We apply the correction to the westing 4.79 (the distance $D E$ being in doubt), making it 4.80 , and write the correction. In practice, the corrected numbers are written in red ink, and often all the latitudes and departures are rewritten in four additional columns, headed, respectively, $\mathrm{N}^{\prime}, \mathrm{S}^{\prime}, \mathrm{E}^{\prime}, \mathrm{W}^{\prime}$.

Supplying Omissions. If for any reason the bearing and the length of any side do not appear in the field notes, the latitude and departure of this side may be found in the following manner :

Find the latitudes and departures of the other sides as usual. The difference between the northings and southings gives the northing or southing of the unknown side, and the difference between the eastings and westings gives the easting or westing of the unknown side.

If the length and the bearing of the unknown side are desired, they may be found by solving the right triangle, whose sides are the latitude and departure found by the method just explained, and whose hypotenuse is the length required.

Obstructions. If the end of a line is not visible from its beginning, or if the line is inaccessible, its length and bearing may be found as follows:

By means of a random line (p. 8).
When it is impossible to run a random line, which is frequently the case on account of the extent of the obstruction, the following method may be used:

Fig. 40

Let $A B$ (Fig. 40) represent an inaccessible line whose extremities A and B only are known, and B invisible from A.

Set flagstaffs at convenient points, C and D. Find the bearings and lengths of $A C, C D$, and $D B$, and then proceed to find the latitude and departure of $A B$.

Example. Suppose that we have the following notes (see Fig. 40):

Side	Bearing	Dist.	N.	S.	E.	W.
$A C$	S. $45^{\circ} \mathrm{E}$.	3.00		2.12	2.12	
$C D$	E.	3.50			3.50	
$D B$	N. $30^{\circ} \mathrm{E}$.	4.83	4.18		2.42	
			4.18	2.12	8.04	0

The northing of $A B$ is $A E=2.06$, and the easting, $E B=8.04$. These numbers may be entered in the tablet in the columns N. and E., opposite the side $A B$.

If the bearing and length of $A B$ are required,

$$
\tan B A E=\frac{B E}{A E}=\frac{8.04}{2.06}=3.903
$$

Hence, the angle $B A E=75^{\circ} 38^{\prime}$.
Also,

$$
A B=\sqrt{\overline{A E_{2}}+\overline{B E}^{2}}=\sqrt{8.04^{2}+2.06^{2}}=8.30
$$

Therefore, the bearing and length of $A B$ are N. $75^{\circ} 38^{\prime}$ E. and 8.30.
To make a Plot. A plot or map may be drawn to any desired scale. If a line 1 inch in length in the plot represents a line 1 chain in length, the plot is said to be drawn to a scale of 1 chain to an inch. In this case (Fig. 41) the plot is drawn to a scale of 8 chains to an inch.

Draw the line $N A S$ to represent the meridian, and lay off the first northing $A B^{\prime}=8.14$. Through B draw an indefinite line perpendicular to $N S$ and lay off $B^{\prime} B$, the first easting, $=2.96$. Draw $A B$; then the line $A B$ represents the first side of the field. Through B draw $B C^{\prime \prime}$ perpendicular to $B B^{\prime}$, and make $B C^{\prime \prime}=1.71$, the first southing. Through $C^{\prime \prime}$ draw $C^{\prime \prime} C$ perpendicular to $B C^{\prime \prime}$, and equal to 4.70, the second easting. Draw $B C$. The line $B C$ represents the second side of the field. Proceed in like manner until the field is completely

Fig. 41 represented. The extremity of the last line $F^{\prime} A$, measured from F^{\prime}, should fall at A. This is a test of the accuracy of the plot.

By drawing $A C, A E$, and $E C$, the hexagonal figure $A B C D E F A$ is divided into triangles, the bases and altitudes of which may be measured and the area computed approxi-

Fig. 42 mately.

Another method is as follows: Draw $M N$ (Fig. 42) to represent a meridian. Let the point A in this line be taken as the first station in the rearranged field notes of page 61. With the circular protractor mark off each of the bearings as b, c, d, e, f, and a. Draw $A B$ to scale through b. With triangle and ruler (p. 48) or with parallel ruler draw to scale $B C$ parallel to $A c$; and so on.

After some practice, still other methods will be suggested, but the methods given are among the best.

EXERCISE VI

Find the areas of the following and make a plot of each.
In 3 and 7, detours were made on account of obstructions (p. 62). The notes of the detours are written in braces.

1

sta.	Bearings	Dist.
1	S. $75^{\circ} \mathrm{E}$.	6.00
2	S. $15^{\circ} \mathrm{E}$.	4.00
3	S. $75^{\circ} \mathrm{W}$.	6.93
4	N. $45^{\circ} \mathrm{E}$.	5.00
5	N. $45^{\circ} \mathrm{W}$.	$5.19 \frac{1}{2}$

2

3

Sta.	Bearings	DISt.
1	S. $2^{\circ} 15^{\prime} \mathrm{E}$.	9.68
,	N. $51^{\circ} 45^{\prime} \mathrm{W}$.	2.39
2	S. $85^{\circ} 00^{\prime} \mathrm{W}$.	6.47
	S. $55^{\circ} 10^{\prime} \mathrm{W}$.	1.62
3	N. $3{ }^{\circ} 45^{\prime} \mathrm{E}$.	6.39
4	S. $66^{\circ} 45^{\prime} \mathrm{E}$.	1.70
5	N. $15^{\circ} 00^{\prime} \mathrm{E}$.	4.98
6	S. $82^{\circ} 45^{\prime}$ E.	6.03

4

Sta.	Bearings	Dist.
1	N. $5^{\circ} 30^{\prime} \mathrm{W}$.	6.08
2	S. $82^{\circ} 30^{\prime} \mathrm{W}$	6.51
3	S.	$3^{\circ} 00^{\prime} \mathrm{E}$.
4	E.	5.33
		6.72

6

Sta.	Bearings	Dist.
1	N. $20^{\circ} 00^{\prime} \mathrm{E}$.	$4.62 \frac{1}{2}$
2	N. $73^{\circ} 00^{\prime} \mathrm{E}$.	$4.16 \frac{1}{2}$
3	S. $45^{\circ} 15^{\prime} \mathrm{E}$.	$6.18 \frac{1}{2}$
4	S. $38^{\circ} 30^{\prime} \mathrm{W}$.	8.00
5	Wanting	Wanting

5

7

Sta.	Bearings	Dist.
	S. $81^{\circ} 20^{\prime} \mathrm{W}$.	4.28
	N. $76^{\circ} 30^{\prime} \mathrm{W}$.	2.67
2	N. $5^{\circ} 00^{\prime} \mathrm{E}$.	8.68
3	S. $87^{\circ} 30^{\prime} \mathrm{E}$.	5.54
	S. $7^{\circ} 00^{\prime} \mathrm{E}$.	1.79
4	S. $27^{\circ} 00^{\prime} \mathrm{E}$	1.94
4	S. $10^{\circ} 30^{\prime} \mathrm{E}$.	5.35
	N. $76{ }^{\circ} 45^{\prime} \mathrm{WV}$.	1.70

8

9. An Ohio farm is bounded and described as follows: Beginning at the southwest corner of lot No. 13 , thence N. $1 \frac{1}{4}{ }^{\circ}$ E. 132 rods and 23 links to a stake in the west boundary line of said lot; thence S. 89° E. 32 rods and $15_{1}^{4}{ }^{4}$ links to a stake; thence N. 11_{4}° E. 29 rods and 15 links to a stake in the north boundary line of said lot; thence S. 89° E. 61 rods and $18 \frac{{ }_{10}}{}{ }^{6}$ links to a stake; thence $\mathrm{S} .32 \frac{1}{2}^{\circ} \mathrm{W} .54$ rods to a stake; thence S. $35^{\frac{1}{4}}$ E. 22 rods and 4 links to a stake; thence S. 48° E. 33 rods and 2 links to a stake; thence S. $7 \frac{1}{2}^{\circ} \mathrm{W} .76$ rods and 20 links to a stake in the south boundary line of said lot; thence N. $89^{\circ} \mathrm{W} .96$ rods and 10 links to the place of beginning. Containing 85.87 acres, more or less.

Verify the area given and plot the farm.

Modification of the Latitude and Departure Method. The area of a field may be found by a modification of the latitude and departure method, if its sides and interior angles are known.

Let A, B, C, D represent the interior angles of the field $A B C D$ (Fig. 43). Let the side $A B$ determine the direction of reference. The bearing of $A B$, with reference to $A B$, is 0°. The bearing of $B C$, with reference to $A B$, is the angle $b=180^{\circ}-B$. The bearing of $C D$, with reference to $A B$, is the angle $c=C-b$. The bearing of $D A$, with reference to $A B$, is the angle $d=A$.

Fig. 43

The area may now be computed by the latitude and departure method, regarding $A B$ as the meridian.

In practice, the exterior angles, when acute, are usually measured. As the interior angles may be measured with considerable accuracy by the transit, the latitudes and departures should be obtained by using a table of natural sines and cosines.

EXERCISE VII

1. Find the area of the field $A B C D$, in which the angle $A=120^{\circ}, B=60^{\circ}, C=150^{\circ}$, and $D=30^{\circ}$; and the side $A B=4$ chains, $B C=4$ chains, $C D=6.928$ chains, and $D A=$ 8 chains.

Keep three decimal places, and use the Traverse Table.
2. Find the area of the farm $A B C D E$, in which the angle $A=106^{\circ} 19^{\prime}, B=99^{\circ} 40^{\prime}, C=120^{\circ} 20^{\prime}, D=86^{\circ} 8^{\prime}$, and $E=$ $127^{\circ} 33^{\prime}$; and the side $A B=79.86$ rods, $B C=121.13$ rods, $C D=90$ rods, $D E=100.65$ rods, and $E A=100$ rods.

Use the table of natural sines and cosines, keeping two decimal places in the results.

General Remarks on determining Areas. Operations depending upon the reading of the magnetic needle must lack accuracy. Hence, when great accuracy is required (which is seldom the case in land surveying) the method of pp. 58-61 cannot be employed.

The best results are obtained by the methods explained on pp. 51-54 and 66, the horizontal angles being measured with the transit, and great care exercised in measuring the lines.

SECTION XIV

LOCATION SURVEYS

Definition. In surveying proper we measure lines and angles as we find them, while in location surveys we mark them out on the ground where they are required to be in order to inclose a given area, or conform to a specified shape, or meet some other given condition. Laying out, parting off, and dividing up land are included in this class of surveys. The surveyor must, for the most part, depend on his general knowledge of Geometry and Trigonometry, and his own ingenuity, for the solutions of problems that arise in location surveys.

Illustrative Problems. Probleni 1. To divide a triangular field into two parts having a given ratio, by a line through a given vertex.

Let $A B C$ (Fig. 44) be the triangle, and A the given vertex.

Divide $B C$ at D, so that $\frac{B D}{D C}$ equals the given ratio, and draw $A D . A B D$ and $A D C$ are the parts required; for

$$
A B D: A D C=B D: D C
$$

Fig. 44

Problem 2. To cut off from a triangular field a given area, by a line parallel to the base.

SURVEYING

Fig. 45

Let $A B C$ (Fig. 45) be the triangle, and let $D E$ be the division line required.

Then $A B C: A D E=\overline{A B}^{2}: \overline{A D}^{2}$.
$\therefore \sqrt{A B C}: \sqrt{A D E}=A B: A D$. .
$\therefore A D=A B \sqrt{\frac{A D E}{A B C}}$.
Problem 3. To cut off from a triangular field a given fraction of the field, by a line from a given point in a side.

Let $A B C$ (Fig. 46) be the triangle, and P the point from which the line $P D$ is to be located so as to cut off, say, one-third the area of the triangle.

$$
A D=A B \times A C \div 3 A P
$$

For

$$
A B C: A P D=A B \times A C: A P \times A D=3: 1
$$

Fig. 46

Fig. 47

Problem 4. To divide any field into two parts having a given ratio, by a line through a given point in the perimeter.

Let $A B C D E$ (Fig. 47) represent the field, P the given point, and $P Q$ the required division line.

The areas of the whole field and of the required parts having been determined, run the line $P D$ from P to a corner D, dividing the field, approximately, as required. Determine the area $P B C D$.

The triangle $P D Q$ represents the part which must be added to $P B C D$ to make the required division.

$$
\text { Area } P D Q=\frac{1}{2} \times P D \times D Q \times \sin P D Q
$$

Hence,

$$
D Q=\frac{2 \times \operatorname{area} P D Q}{P D \times \sin P D Q}
$$

Note. $\quad D Q=\frac{2 \times \text { area } P D Q}{\text { perpendicular from } P \text { on } D E}$. This perpendicular from P on $D E$ may be run and measured directly.

Problem 5. To divide a field into a given number of parts, so that access to a pond of water is given to each.

Let $A B C D E$ (Fig. 48) represent the field, and P the pond. Let it be required to divide the field into four parts. Find the area of the field and of each part.

Let $A P$ be one division line. Run $P E$, and find the area $A P E$. Take the difference between $A P E$ and the area of one of the required parts; this gives the area of the triangle $P Q E$, from which $Q E$ may be found, as in Problem 4. Draw $P Q ; P A Q$ is one of the required parts. In like manner, $P Q R$ and $P A S$ are determined; whence,
 PSR must be the fourth part required.

EXERCISE VIII

1. From the square $A B C D$, containing 6 acres 1 rood 24 perches, part off 3 acres by a line $E F$ parallel to $A B$.
2. From the rectangle $A B C^{\prime} D$, containing 8 acres 1 rood 24 perches, part off 2 acres 1 rood 32 perches by a line $E F$ parallel to $A D$ which is equal to 7 chains. Then, from the remainder of the rectangle, part off 2 acres 3 roods 25 perches, by a line $G H$ parallel to $E B$.
3. Part off 6 acres 3 roods 12 perches from a rectangle $A B C D$, containing 15 acres, by a line $E F$ parallel to $A B ; A D$ being 10 chains.
4. From a square $A B C D$, whose side is 9 chains, part off a triangle which shall contain 2 acres 1 rood 36 perches, by a line $B E$ drawn from B to the side $A D$.
5. From $A B C D$, representing the rectangle, whose length is 12.65 chains, and breadth 7.58 chains, part off a trapezoid which shall contain 7 acres 3 roods 24 perches, by a line $B E$ drawn from B to the side $D C$.
6. In the triangle $A B C, A B=12$ chains, $A C=10$ chains, and $B C=8$ chains; part off a trapezoid of 1 acre 2 roods 16 perches, by the line $D E$ parallel to $A B$.
7. In the triangle $A B C, A B=26$ chains, $A C=20$ chains, and $B C=16$ chains; part off a trapezoid of 6 acres $1 \operatorname{rood} 24$ perches, by the line $D E$ parallel to $A B$.
8. It is required to divide the triangular field $A B C$ among three persons whose claims are as the numbers 2,3 , and 5 , so that they may all have the use of a watering place at $C ; A B$ $=10$ chains, $1 C=6.85$ chains, and $C B=6.10$ chains.
9. Divide the five-sided field $A B C H E$ among three persons, X, Y, and Z, in proportion to their claims, X paying \$500, Y paying $\$ 750$, and Z paying $\$ 1000$, so that each may have the use of an interior pond at P, the quality of the land being equal throughout. Given $A B=8.64$ chains, $B C=8.27$ chains, $C H=8.06$ chains, $H E=6.82$ chains, and $E A=9.90$ chains. The perpendicular $P D$ upon $A B=\widetilde{5} .60$ chains, $P D^{\prime}$ upon $B C$ $=6.08$ chains, $P D^{\prime \prime}$ upon $C H=4.80$ chains, $P D^{\prime \prime \prime}$ upon $H E$ $=5.44$ chains, and $P D^{\prime \prime \prime \prime}$ upon $E A=5.40$ chains. Assume $P H$ as the divisional fence between the shares of X and Z , it is required to determine the position of the fences $P M$ and $P N$ between the shares of X and Y and between the shares of Y and Z .
10. Divide the triangular field $A B C$, whose sides $A B, A C$, and $B C$ are 15,12 , and 10 chains, respectively, into three equal
parts, by fences $E G$ and $D F$ parallel to $B C$, without finding the area of the field.
11. Divide the triangular field $A B C$, whose sides $A B, B C$, and $A C$ are 22,17 , and 15 chains, respectively, among three persons, A, B, and C , by fences parallel to the base $A B$, so that A may have 3 acres above the line $A B, \mathrm{~B} 4$ acres above A's share, and C the remainder.

SECTION XV

LAYING OUT THE PUBLIC LANDS

Reference Lines. The public lands north of the Ohio River and west of the Mississippi are generally laid out in accordance with what is known as the rectangular system of surveying. First, an initial point is selected with great care, and then astronomically established. Through this point a principal meridian, or true north and south line, is run by means of the solar compass, or the transit with observations on Polaris ; and also an east and west line, called a base line. Crossing the principal meridian at intervals of 24 miles, both north and south of the initial point, are run other east and west lines, called standard parallels, or correction lines. Northward from the base line and from each of the standard parallels, at intervals of 24 miles, both ways from the principal meridian, are run true north and south lines, called guide meridians. Thus, the land is divided into blocks approximately 24 miles square. Six principal meridians have been established, in addition to which and connected with which there are twenty or more independent meridians in the western states and territories.

Division from Reference Lines; Townships. Within each block parallels to the base line, or to a standard parallel, are run at intervals of 6 miles. These are called township lines.

At the same intervals are also run north and south lines, called range lines. Thus, the tract would be divided into townships exactly 6 miles square if it were not for the convergence of the meridians on account of the curvature of the earth. An east and west series of townships is called a tier, and a north and south series is called a range. A township is designated by giving the number of the tier north or south of the base line and the number of the range east or west of

Fig. 49
the principal meridian. Thus, T. 3 N., R. 2 W., read township three north, range two west, means that the township is in the third tier north of the base line, and in the second tier west of the principal meridian.

Let NS (Fig. 49) represent a principal meridian ; $W E$ a base line; $D L$ and $D^{\prime} L^{\prime}$ standard parallels; $G M$ and $G^{\prime} M^{\prime}$ guide
meridians; $r l, r^{\prime} l^{\prime}$, ..., range lines; $t p, t^{\prime} p^{\prime}$,, township lines. If $O r$ is taken as 6 miles, then $O^{\prime} l$ will be less than 6 miles. $O^{\prime} k$ being equal to 6 miles and $O^{\prime} l$ being less, it will be observed that there will be offsets on the base line and on standard parallels at intervals of 6 miles.

Township A would be designated thus: T. 2 N., R. 3 E. How would townships B and C be designated?

Subdivision of Townships. The townships are divided into sections approximately 1 mile square, and the sections are divided into quarter sections. The township, section, and quarter-section corners are permanently marked. The sections are numbered, beginning at the northeast corner, as in Fig. 50, which represents a township divided into sections. The quarter sections are designated, according to their position, as N.E., N.W., S.E., and S.W. Section

6	5	4	3	2	1
7	8	9	10	11	12
18	17	$\frac{16}{15}$	$\frac{15}{14}$	$\frac{13}{}$	$\frac{23}{23}$
19	20	$\frac{21}{22}$	$\frac{24}{26}$	$\frac{25}{27}$	
30	29	$\frac{27}{21}$	$\frac{23}{33}$	34	35
36					

FIG. 50 lines are surveyed in such an order as to throw the errors on the northwest quarter sections, which are carefully measured and their areas calculated.

Meander Lines. If in running a line a navigable stream or a lake more than 1 mile in length is encountered, it is meandered by marking the intersection of the line with the bank and running lines from this point along the bank to prominent points which are marked, and the lengths and bearings of the connecting lines recorded.

Manual. For detail of methods, see the "Manual of Surveying Instructions," issued by the Commissioner of the General Land Office, at Washington, D.C., for the use of Surveyors-General.

CHAPTER IV

TRIANGULATION

SECTION XVI

DEFINITIONS

The third method of surveying explained on paye 51 is an example of triangulation on a small scale. The simple principle there involved is elaborately worked out in hydrographic or topographic surveys, or in the measurement of terrestrial arcs, as in the "Transcontinental Triangulation and American Arc of the Parallel," recently completed by the United States Coast and Geodetic Survey.

Let F (Fig. 51) represent a point whose position with reference to the base line $A B$ is required. Connect $A B$ with F by the series of triangles $A B C, A C D, A D E$, and $D E F$, so that a signal at C is visible from A and B, a signal at D visible from A and C, a signal at E visible from A and D, and a signal at F visible from D and E. In the triangle $A B C$,

Fig. 51 the side $A B$ is known, and the angles at A and B may be measured; hence, $A C$ may be computed. In the triangle $A C D, A C$ is known, and the angles at A and C may be measured ; hence, $A D$ may be computed. In like manner, $D E$ and $E F$ or $D F$ may be determined. $D F$, or some suitable line connected with $D F$, may be measured, and this result
compared with the computed value to test the accuracy of the field measurement. This net or chain of triangles enables us to determine the relative position of all the points with respect to each other. If the point A is, furthermore, astronomically located, and the azimuth of line $A B$ is known, then we have sufficient data also to determine the absolute geographical position of each of the points.

Classification. Three orders of triangulation are recognized, viz.: primary, in which the sides are from 20 to 190 miles in length; secondary, in which the sides are from 5 to 40 miles in length, and which connect the primary with the tertiary ; tertiary, in which the sides are seldom over 5 miles in length, and which bring the survey down to such dimensions as to admit of the minor details being filled in by the compass and plane table.

Measurement of Base Lines. Base lines should be measured with a degree of accuracy corresponding to their importance. Suitable ground must be selected and cleared of all obstructions. Each extremity of the line may be marked by cross lines on the head of a copper tack driven into a stub which is sunk to the surface of the ground. Poles are set up in line about half a mile apart, the alignment being controlled by a transit. or theodolite placed over one end of the line. The preliminary measurement may be made with an iron wire about one-eighth of an inch in diameter and 60 meters in length, or with a steel chain of the same length.

The final measurement is made with the tape line, or with bars 6 meters long, which are supported upon trestles when in use. These bars are placed end to end, and brought to a horizontal position, if this can be quickly accomplished; if not, the angle of inclination is taken by a sector, or a vertical offset is measured with the aid of a transit, so that the exact horizontal distance can be computed. A thermometer is attached to each bar, so that the temperature of the bar may
be noted and a correction for temperature applied. Sometimes the bars are laid in melting ice, in which case accuracy to at least one five-millionth part of the length measured is attainable.

Measurement of Angles. Angles are measured by means of the transit with much greater accuracy than with the compass, since the reading of the plates of the transit is taken to minutes, and by means of microscopes to seconds, while the reading of the needle of the compass is to quarter or halfquarter degrees.

In order to eliminate errors of observation and of adjustment, and errors arising from imperfect graduation of the circles, a large number of readings is made and their mean taken. Two methods are in use, viz., repetition and series.

The method of repetition consists essentially in taking as many readings of an angle as is desired, the reading in each case after the first being from the index of the next preceding reading, and then taking the mean.

The method of series is the one generally used when several angles about the same point are to be measured. It consists essentially in taking the readings successively on each station, then reversing the telescope and repeating the observations in the reverse order, which completes a series. This process is repeated a number of times, each series beginning with a different index. Then the mean of the different series is found.

On account of the curvature of the earth, the sum of the three angles of a triangle upon its surface exceeds 180°. This spherical excess, as it is called, becomes appreciable only when the sides of the triangle are about 5 miles in length. To determine the angles of the rectilinear triangle having the same vertices, one-third of the spherical excess is generally deducted from each spherical angle.

CHAPTER V

LEVELING

SECTION XVII

DEFINITIONS

A level surface is a surface parallel with the surface of still water, and is, therefore, slightly curved owing to the spheroidal shape of the earth. A level line is a line in a level surface. The line of apparent level of a place is a tangent to the level line at that place. Hence, the line of apparent level is perpendicular to the plumb line.

Leveling is the process of finding the difference of level of two places, or the distance of one place above or below a level line through another place.

Corrections for Curvature and Refraction. In ordinary leveling no distinction is made between true and apparent levels. In precise leveling the difference between the two is measured, i.e., correction is made for curvature of the earth. There is sometimes also a correction made for refraction of light.

Let t (Fig. 52) represent the line of apparent level of the place P, a the level line, d the diameter of the earth; then c represents the correction for curvature. To compute the correction for curvature :

$$
t^{2}=c(c+d) . \quad(\text { Geometry }, \S 381 .)
$$

Therefore, $c=\frac{t^{2}}{c+d}=\frac{a^{2}}{d}$, approximately, since c is very small compared with d, and $t=a$, very nearly.

Fig. 52

Since d is constant ($=7920$ miles, nearly), the correction for curvature varies as the square of the distance.

Example. What is the correction for curvature for 1 mile?
By substituting in the formula deduced above,

$$
c=\frac{a^{2}}{d}=\frac{1^{2}}{7920} \text { miles }=8 \text { inches, nearly. }
$$

Hence, the correction for curvature for any distance may be found in inches, approximately, by multiplying 8 by the square of the distance expressed in miles.

If correction for refraction is also made, it is customary to diminish the above by about one-sixth of itself; or, $c=\frac{5}{6}$ of $8 a^{2}$.

SECTION XVIII

DIFFERENTIAL LEVELING

Single Setting of Instrument. To find the difference of level between two places when both are visible from some intermediate point, and the difference of level does not exceed 13 feet, only one setting of the level will usually be necessary.

Let A and B (Fig. 53) represent the two places. Set the Y level at a station equally distant, or nearly so, from A and

Fig. 53
B, but not necessarily on the line $A B$. After leveling the instrument, bring the telescope to bear upon the rod (p.38), and by signal direct the rodman to move the target until its horizontal line is in the line of apparent level of the telescope.

Let the rodman now record the height $A A^{\prime}$ of the target. In like manner find $B B^{\prime}$. The difference between $A A^{\prime}$ and $B B^{\prime}$ is the difference of level required. If the instrument is equally distant from A and B, or nearly so, the curvature and the refraction on the two sides of the instrument balance, and no correction for curvature or refraction is necessary.

Several Settings of Instrument. When both places are not visible from the same place, or when the difference of level between them is considerable, two or more settings of the level may be necessary.

Let A and D (Fig. 54) represent the two places. Place the level midway between A and some intermediate station B.

Fig. 54
Find $A A^{\prime}$ and $B B^{\prime}$, as in the preceding case, and record the former as a backsight and the latter as a foresight. Select another intermediate station C, and in like manner find the backsight $B B^{\prime \prime}$ and the foresight $C C^{\prime}$; and so continue until the place D is reached.

The difference between the sum of the foresights and the sum of the backsights will be the difference of level required.

$$
\text { Since, } \begin{aligned}
& B B^{\prime}+C C^{\prime}+D D^{\prime}-\left(A A^{\prime}+B B^{\prime \prime}+C C^{\prime \prime}\right) \\
& =B B^{\prime}-B B^{\prime \prime}+C C^{\prime}-C C^{\prime \prime}+D D^{\prime}-A A^{\prime} \\
& =B^{\prime} B^{\prime \prime}+C^{\prime} C^{\prime \prime}+D^{\prime} D-A A^{\prime}=A^{\prime} A^{\prime \prime}-A A^{\prime}=A A^{\prime \prime} .
\end{aligned}
$$

SECTION XIX

PROFILE LEVELING

Definitions. The intersection of a vertical plane with the surface of the earth is called a section, or profile. The term "profile," however, usually designates the plot, or representation of the section on paper.

Profile leveling is leveling to obtain the data necessary for making a profile or plot of any required section.

A profile is made for the purpose of exhibiting in a single view the inequalities of the surface of the ground for great distances along the line of some proposed improvement, such as a railroad, canal, or ditch, thus facilitating the establishment of the proper grades.

The data necessary for making a profile of any required section are the heights of its different points above some assumed horizontal plane, called the datum plane, together with their horizontal distances apart or their distances from the beginning of the section.

The position of the datum plane is fixed with reference to some permanent object near the beginning of the section, called a bench mark, and in order to avoid negative heights is assumed at such a distance below this mark that all the points of the section shall be above it.

The heights of the different points of the section above the datum plane are determined by means of the level and leveling rod; and the horizontal length of the section is measured with an engineer's chain or tape, and divided into equal parts, usually 100 feet in length, called stations, marked by stakes numbered $0,1,2,3$, and so on.

Where the ground is very irregular, it may be necessary, besides taking sights at the regular stakes, to take occasional sights at points between them. If, for instance, at a point

40 feet in advance of stake 3 (Fig. 55) there is a sudden rise or fall in the surface, the height of this point would be determined and recorded as at stake 3.40.

The readings of the rod are ordinarily taken to the nearest tenth of a foot, except on bench marks and points called turning points, where they are taken to thousandths of a foot.

A turning point is a point on which the last sight is taken just before changing the position of the level, and the first sight from the new position of the instrument. A turning point may be coincident with one of the stakes, but must always be a hard point, so that the foot of the rod may stand at the same level for both readings.

Fig. 55
Field Work. To explain the method of obtaining the field notes necessary for making a profile, let $0,1,2,3, \ldots, 11$ (Fig. 55) represent a portion of a section to be leveled and plotted. Establish a bench mark at or near the beginning of the line, measure the horizontal length of the section, and set stakes 100 feet apart, numbering them $0,1,2,3$, and so on. Place the level at some point, as between 2 and 3, and take the reading of the rod on the bench $=4.832$. Let $P P^{\prime}$ represent the datum plane, say 15 feet below the bench mark; then

$$
15+4.832=19.832
$$

is the height of the line of sight $A B$, called the height of the instrument, above the datum plane.

Now take the reading at $0=5.2=0 \mathrm{~A}$, and subtract the same from 19.832 , which leaves $14.6=0 P$, the height of the point 0 above the datum plane. Next take sights at 1, 2, 3, 3.40 , and 4 , equal, respectively, to $3.7,3.0,5.1,4.8$, and 8.3 , and subtract the same from 19.832 ; the remainders $16.1,16.8$,

Fig. 56
$14.7,15.0$, and 11.5 are respective heights of the points 1,2 , $3,3.40$, and 4 .

Then, as it is necessary to change the position of the instrument, select a point in the neighborhood of 4 suitable as a turning point (t.p. in the figure), and take a careful reading on it $=8.480$; subtract this from 19.832, and the remainder, 11.352 , is the height of the turning point.

Now carry the instrument forward to a new position, as between 5 and 6 , shown in the figure, while the rodman remains at $t . p$.; take a second reading on $t . p$. $=4.102$, and add it to 11.352 , the height of $t . p$. above $P P^{\prime} ;$ the sum 15.454 is the height of the instrument $C D$ in its new position.

Take sight upon 5, 6, and 7, equal, respectively, to 4.9, 2.8, and $0.90 \pm$; subtract these sights from 15.454 , and the results $10.6,12.7$, and 14.550 are the heights of the points 5,6 , and 7 , respectively.

The point 7, being suitable, is made a turning point, and the instrument is moved forward to a point between 9 and 10 . The sight at $7=6.870$, added to the height of 7 gives 21.420 as the height of the instrument $E F$ in its new position. The
readings at $8,9,10$, and 11 , which are, respectively, $5.4,3.6$, 5.8 , and 9.0 , subtracted from 21.420 give the heights of these points, namely, $16.0,17.8,15.6$, and 12.4 .

Proceed in like manner until the entire section is leveled, establishing bench marks at intervals along the line to serve as reference points for future operations. The bench marks should be described with sufficient minuteness to enable any one not connected with the survey to locate them easily and unmistakably. A record of the work is given in the following table :

Station	+s.	H.I.	-s.	H.s.	Remamis
B	4.832			15.0	Bench on rock 20 ft .
0		19.832	5.2	14.6	south of 0
1			3.7	16.1	
2			3.0	16.8	
3			5.1	14.7	3 to 3.40 turnpike road
3.40			4.8	15.0	
4			8.3	11.5	
t.p.	4.102		8.480	11.352	
5		15.454	4.9	10.6	
6			2.8	12.7	
7	6.870		0.904	14.550	
8		21.420	5.4	16.0	
9			3.6	17.8	
10			5.8	15.6	
11			9.0	12.4	
B					Bench on oak stump
12					27 ft . N.E. of 12,
etc.					

The first column contains the numbers or names of all the points on which sights are taken. The second column contains the sight taken on the first bench mark, and the sight on each turning point taken immediately after the instrument
has been moved to a new position. These are called plus sights $(+$ S.) because they are added to the heights of the points on which they are taken to obtain the height of the instrument given in the third column (H.I.). The fourth column contains all the readings except those recorded in the second column. These are called minus sights (- S.) because they are subtracted from the numbers in the third column to obtain all the numbers in the fifth column except the first, which is the assumed depth of the datum plane below the bench. The fifth column (H.S., height of surface) contains the required heights of all the points of the section named in the first column together with the heights of all benches and turning points.

Making the Profile. Draw a line $P P^{\prime}$ (Fig. 56), to represent the datum plane, and beginning at some point as P, lay off the distances $100,200,300,340,400$ feet, and so on, to the right, using some convenient scale, say 200 feet to the inch. At these points of division erect perpendiculars equal in length to the height of the points $0,1,2,3.40,4, \cdots$, given in the fifth column of the above field notes, using in this case a larger scale, say 20 feet to the inch. Through the extremities of these perpendiculars draw the irregular line $0,1,2,3, \ldots, 11$, and the result, with some explanatory figures, is the required plot or profile.

The making of a profile is much simplified by the use of profile paper, which may be had by the yard or roll.

If a horizontal plot is required, the bearings of the different portions of the section must be taken. Such a plot should be made, if it will assist in properly understanding the field work, or if it is desirable for future reference in connection with the field notes. Sometimes both the profile and the plot are drawn side by side on the same sheet; in this case, if the line leveled over is not straight, the profile will be longer than the plot.

SECTION XX

TOPOGRAPHIC LEVELING

The principal object of topographic surveying is to show the contour of the ground. This operation, called topographic leveling, is performed by representing on paper the curved lines in which parallel horizontal planes at uniform distances from each other would meet the surface. It is evident that all points in the intersection of a horizontal plane with the surface of the ground are at the same level. Hence, it is necessary only to find points at the same level and join these to determine a line of intersection.

The method commonly employed will be understood by reference to Fig. 57. The ground $A B C D$ is divided into equal squares, and a numbered stake driven at each intersection. By means of a level and leveling rod the heights of the other stations above m and D, the lowest stations, are determined. A plot of the ground with the intersecting lines is then drawn, and the height of each station written as in the figure.

Suppose that the horizontal planes are 2 feet apart; if the
 first passes through m and D, the second will pass through p, which is 2 feet above m; and since n is 3 feet above m, the second plane will cut the line $m n$ in a point s determined by the proportion $m n: m s=3: 2$. In like manner, the points t, q, and r are determined.

The irregular line tsp $\cdots q r$ represents the intersection of the second horizontal plane with the surface of the ground.

In like manner, the intersections of the planes, respectively, 4,6 , and 8 feet above m are traced. The more rapid the change in level the nearer these lines approach each other.

SECTION XXI

DRAINAGE SURVEYING

Preliminaries. The locality to be drained should first be carefully reconnoitered, with the view of ascertaining the general feature of the land so as to enable the surveyor properly to locate the drains; the beginning, route, and terminus of which should all be definitely planned. By the beginning of a drain is meant its highest point.

Field Work. The field work is essentially the same for under drains and for open drains. The first thing is to establish the line of a drain. This includes the setting of stakes at intervals of from 50 feet to 100 feet, and also wherever there is an angle in the line; the bearings and lengths of the successive straight-line sections, beginning with the instrument set over the beginning of the drain; and the designation by distances of the points of meeting of roads and land lines. Levels of the lines are then taken in accordance with the method described on pp. 81-83. If circumstances will permit, it is sometimes of advantage to have the leveling process go hand in hand with the establishing of the line.

Plot and Profile. If a considerable region is to be drained, a plot should be made of the entire tract, and on this plot should be drawn, in proper position, the lines of the drain and its branches. In a suitable place on the sheet should be noted the courses of the various sections of the drain and the number of linear feet belonging to each owner of land within the tract drained. A profile should also be made,
as shown on page 84. From this profile inspection will determine whether a single grade will suffice, or whether a succession of different grades will be better.

EXERCISE IX

1. Find the difference of level of two places from the following field notes: backsights, 5.2, 6.8, and 4.0; foresights, 8.1, 9.5, and 7.9.
2. Stake 0 of the following notes stands at the lowest point of a pond to be drained into a creek; stake 10 stands at the edge of the bank, and 10.25 at the bottom of the creek. Make a profile, draw the grade line through 0 and 10.25 , and fill out the columns H.G. and C., the former to show the height of grade line above the datum, and the latter, the depth of cut at the several stakes necessary to construct the drain.

Station	+S.	H.I.	- S.	H.S.	H.G.	C.	Remarks
B	6.000			25			
0			10.2		20.8	0.0	Bench on rock 30 ft. west of stake 1
1			5.3			5.3	
2			4.6				
3			4.0				
4			6.8				
5	4.572		7.090				
6			3.9				
7			2.0				
8			4.9				
9			4.3				
10			4.5				
10.25			11.8				

Horizontal scale, $2 \mathrm{ch} .=1 \mathrm{in}$.
Vertical scale, $\quad 20 \mathrm{ft} .=1 \mathrm{in}$.
3. Find the difference in altitude between the highest point and the lowest point of the campus or of a field.
4. Obtain the data necessary for a profile of a half mile of highway, and make the profile.
5. Write the proper numbers in the third and fifth columns of the following table of field notes, and make a profile of the section.

Station	+ S.	H.I.	-s.	H.S.	Remarks
B	6.944			20	Bench on post 22 ft .
0			7.4		
1			5.6		
2			3.9		
3			4.6		
t.p.	3.855		5.513		
4			4.9		
5			3.5		
6			1.2		

CHAPTER VI

RAILROAD SURVEYING

SECTION XXII

LAYING OUT THE ROUTE

Preliminary Survey. After it has been decided which of several feasible lines is the best, a preliminary survey for final location should be made. This should include, among other things, data referring to elevations, depressions, streams to be crossed, highways, buildings obstructing, character of soil, and natural resources affording materials for construction; also data referring to proximity to towns, titles of land, rights of way, and so on.

Establishing the Roadbed. When the general route of a railroad has been determined, a middle surface line is run with the transit. A profile of this line is determined, as on page 84 . The leveling stations are commonly 1 chain (100 feet) apart. Places of different level are connected by a gradient line, which intersects the perpendiculars to the datum line at the leveling stations in points determined by simple proportion. Hence, the distance of each leveling station above or below the level or gradient line which represents the position of the roadbed is known.

SECTION XXIII

CROSS-SECTION WORK

Excavations. If the roadbed lies below the surface, an excavation is made. Let $A C B D$ (Fig. 58) represent a cross
section of an excavation, f a point in the middle surface line, f^{\prime} the corresponding point in the roadbed, and $C D$ the width of the excavation at the bottom. The slopes at the sides are commonly made so that $A A^{\prime}=\frac{2}{3} A^{\prime} C$, and $B B^{\prime}=\frac{2}{3} D B^{\prime}$. When $f f^{\prime}$ and $C D$ are known, the points A, B, C^{\prime}, and D^{\prime} are readily determined by a level and tape measure.

If from the area of the trapezoid $A B B^{\prime} A^{\prime}$ the areas of the triangles $A A^{\prime} C$ and $B B^{\prime} D$ are deducted, the remainder is the area of the cross section. In like manner the cross section at the next station may be determined. These two cross sections are the bases of a solid whose volume will be the amount of the excavation. Since the cross sections are not similar, the computations, to be accurate, should be made by means of the Prismoidal Formula (Geometry, § 733).

Embankments. If the roadbed lies above the surface, an embankment is made, the cross section of which is like that of the excavation, but inverted.

Fig. 59
Fig. 59 represents the cross section of an embankment which is lettered so as to show its relation to the excavation of Fig. 58.

SECTION XXIV

CURVES

Principles. When it is necessary to change the direction of a railroad it is done gradually by a curve, usually the arc of a circle. Let $A F$ and $A O$ (Fig. 60) represent two lines to be thus connected. Take any convenient length $A B=A E=t$. The intersection of the perpendiculars $B C$ and $E C$ determines the centre C, and the radius of curvature $B C=r$. The length of the radius de-

Fig. 60 pends on the angle A and the tangent $A B$. For, in the right triangle $A B C$,

$$
\tan B A C=\frac{B C}{A B}, \quad \text { or } \tan \frac{1}{2} A=\frac{r}{t}
$$

Hence,

$$
r=t \tan \frac{1}{2} A
$$

The degree of a railroad curve is the angle subtended at the centre of the curve by a chord of 100 feet. If D is the degree of a curve and r its radius,

$$
\sin \frac{1}{2} D=\frac{50}{r}, \quad \text { and } r=50 \csc \frac{1}{2} D
$$

For example, a 6° curve has a radius of 955.37 feet.
Sometimes the topography of the route is such as to necessitate a successive series of curves of different radii, in which case the whole series of curves is called a compound curve, the principles involved being the same for each component as for a simple curve.

Methods of laying out the Curve. 1. Let Bm (Fig. 61) represent a portion of the tangent. It

Fig. 61

Fig. 62
 is required to find $m P$, the perpendicular to the tangent meeting the curve at P.

$$
m P=B n=C B-C n
$$

But
and

$$
C B=r
$$

$$
C n=\sqrt{\overline{C P}^{2}-\overline{P n}^{2}}
$$

$$
=\sqrt{r^{2}-t^{2}}
$$

$$
m P=r-\sqrt{r^{2}-t^{2}}
$$

Hence, $\quad m P=r-\sqrt{r^{2}-t^{2}}$.
2. It is required to find $m P$ (Fig. 62) in the direction of the centre.

$$
m P=m C-P C
$$

But $m C=\sqrt{B C^{2}+\overline{B m^{2}}}=\sqrt{r^{2}+t^{2}}$.
Hence,

$$
m P=\sqrt{r^{2}+t^{2}}-r
$$

3. Place transits at B and E (Fig. 63). Direct the telescope of the former to E, and of the latter to A. Turn each toward the curve the same number of degrees, and mark P, the point of intersection of the lines of sight. P is a point in the circle to which $A B$ and $A E$ are tangents at B and E,

Fig. 63 respectively.
4. If the degree D of the curve is given and the tangent $B A$ at B (Fig. 64), place the transit at B and direct the telescope toward A. Turn off successively the angles $A B P, P B P^{\prime}$,
$P^{\prime} B P^{\prime \prime}, \cdots$, each equal to $\frac{1}{2} D$, and take $B P, P P^{\prime}, P^{\prime} P^{\prime \prime}$, \cdots, each 100 feet, the length of the tape. Then, P, P^{\prime}, $P^{\prime \prime}, \cdots$ lie on the required curve.

If the angle A and the tangent distance $B A=t$ are given, D can be found from the formulas

$$
\sin \frac{1}{2} D=\frac{50}{r}, \text { and } r=t \tan \frac{1}{2} A .
$$

Whence, $\quad \sin \frac{1}{2} D=\frac{50}{t} \cot \frac{1}{2} A$.

EXERCISE X

1. The cross-section areas at five stations, 100 feet apart, of a railroad cut are, respectively, 576.8 square feet, 695.1 square feet, 809.5 square feet, 652.0 square feet, and 511.7 square feet. Compute the volume of material in this portion of the cut: (i) on the hypothesis that the cross sections are similar; (ii) on the hypothesis that they are dissimilar, the alternate cross sections being regarded as mid-sections.
2. Find the radius of a curve of 1°, of 2°, of 3°, of 4°, of 5°.
3. Two adjacent straight sections of a railroad form an angle of $148^{\circ} 16^{\prime}$. They are joined by a curve touching each of them at the distance of 388 feet from the vertical point. Find the radius and the degree of the curve.
4. Lay out a curve by the first or second method, and check the work by means of one of the transit methods.

CHAPTER VII

CITY SURVEYING

SECTION XXV

FIELD WORK

Instruments. Since the principles in city surveying are essentially the same as those in land surveying, instruments of the same general character as the instruments already described may be used, except that in this class of work the ordinary compass and the chain are set aside. For the smaller cities, an instrument such as the surveyor's transit is sufficient in accuracy for the purposes of angle measurement and for leveling. However, when extreme accuracy is demanded, as in the case of large cities, specially made instruments should be used: a transit reading to 30 seconds, or even to 10 seconds ; a high-grade Y level of at least 20 -inch length; and a standard tape, tested for sag and temperature.

Streets. In most cases the city engineer must take the streets as he finds them. When a city has outgrown its original plan, if indeed it had any, sheer necessity may demand the location of additional streets or changes in existing streets. If a proposed town or city is to be laid out, the general contour of the ground and location of the site determine to a great extent the system of streets to be adopted. Experience has shown that wherever possible a rectangular system of street lines, with a few well-located diagonal streets, is the most satisfactory. Streets ordinarily vary in width from 50 to 100 feet, and each sidewalk from 7

Fil. 67
to 15 feet. The principal improvements of streets are grading, paving, setting curbs, laying sidewalks, constructing sewers, and laying water pipes.

The field work necessary for all these may be included under the heads of leveling, locating lines, and locating points, which have already been described.

Blocks and Lots. There is no established rule for the size of either blocks or lots. Fig. 65 gives some idea of their dimensions. The location of a block is described by reference to the streets which bound it. A lot is described by number and block, or by number alone, or by giving the location and length of its bounding lines. The co-ordinate system of location of points, described on page 53, has much in its favor for use in city surveying. Monuments at points of reference and at intersections of streets and corners of lots should be of permanent character, and set with extreme care.

SECTION XXVI

OFFICE WORK

Plots. Among the more important plots that should be prepared by the city engineer are a complete city map, drawn to scale, showing the streets and alleys, blocks and lots, with dimensions, and the location of railroads, street-car lines, sewage system, water-pipe lines, and so on ; a topographical map of the entire city, including as may be found desirable portions of the surrounding region ; a profile map of the streets. These are made from the field notes, which should be amply and carefully prepared.

Records. No work of importance, whether done in the field or in the office, should fail to be recorded in some permanent form. Field notes, computations, plots, and copies of work specially prepared should be properly indexed and filed away.

SURVEYING

Exercise II. Page 22

2. 540°.
3. N. $51^{\circ} 30^{\prime} \mathrm{E}$.

Exercise III. Page 27
2. 360°.
3. 235 ft .3 .8 in .

Exercise V. Page 55

1. 8 А. 64 P.
2. 16 A. $74 \frac{2}{2} \frac{2}{5}$ P.
3. $4 \mathrm{~A} .5_{\frac{3}{2} 5} \mathrm{P}$.
4. $115 \frac{7}{2} \frac{7}{0}$ P.
5. 3 А. 78 Р.
6. 13 A. $6 \frac{1}{10} \mathrm{P}$.
7. $2 \mathrm{~A} .58 \frac{1}{2} \mathrm{P}$.
8. 11 А. 157 p.
9. 7.51925 .
10. 13.0735 .
11. 4 A .35 P .
12. 4 A .110 P .
13. 6 A. $23 \frac{1}{2} \frac{7}{5}$ P.

Exercise VI. Page 64

1. 2 A. 26 p.
2. 20 A. 12 Р.
3. 8 A .54 P .
4. 3 А. 122 Р.
5. 2 А. 78 р.
6. 6 А. 2 Р.
7. 5 А. 42 р.
8. 2 А. 151 p.

Exercise VII. Page 66

1. $2 \mathrm{~A} .12 \frac{1}{2} \mathrm{P}$.
2. 98 А. 92 р.

Exercise VIII. Page 69

1. $A E=3.75 \mathrm{ch}$.
2. $A E=5.50 \mathrm{ch}$.
3. $A E=3.50 \mathrm{ch}$.;
4. $C E=4.456 \mathrm{ch}$.
$E G=3.42 \mathrm{ch}$.
5. $A D=2.275 \mathrm{ch} . ; B E=1.82 \mathrm{ch}$.
6. $A E=4.55 \mathrm{ch}$.
7. $A D=4.51 \mathrm{ch} . ; B E=3.61 \mathrm{ch}$.
8. The distances on $A B$ are $2 \mathrm{ch} ., 3 \mathrm{ch}$., and 5 ch .
9. $E M($ on $E A)=2.5087 \mathrm{ch} . ; A N($ on $A B)=6.4390 \mathrm{ch}$.
10. Let $E G>D F$; then $A E=12.247 \mathrm{ch} ., A G=9.798 \mathrm{ch} ., A D=8.660$ ch., $A F=6.928 \mathrm{ch}$.
11. Let $D G>E F$; then $C G=14.862 \mathrm{ch} ., C D=13.113 \mathrm{ch} ., C F=11.404$ ch., $C E=10.062 \mathrm{ch}$.

Exercise IX. Page 87

1. 9.5 .
2. Column H.G. 20.8, 20.4, 20.0, 19.6, 19.2, 18.8, 18.4, 18.0, 17.6, $17.2,16.8,16.7$.
Column C. $0.0,5.3,6.4,7.4,5.0,5.1,6.2,8.5,6.0,7.0,7.2,0.0$.

3. Third column : 26.944 opposite $0 ; 25.286$ opposite 4.

Fifth column : 20, 19.5, 21.3, 23, 22.3, 21.431, 20.4, 21.8, 24.1.

Exercise X. Page 93

1. $9986.5 \mathrm{cu} . \mathrm{yd} . ; 9994.9 \mathrm{cu} . \mathrm{yd}$.
2. 5730 ft . ; $2865 \mathrm{ft} . ; 1910 \mathrm{ft} . ; 1433 \mathrm{ft} . ; 1146 \mathrm{ft}$.
3. $1365 \mathrm{ft} . ; 4^{\circ} 11^{\prime} 53^{\prime \prime}$.

FIVE-PLACE

Logarithyido and Trigononetric

TABLES

ARRANGED BY
(r. A. WENTWORTH, A.M.

AND

G. A. HILL, A.M.

GINN \& COMPANY
BOSTON • NEW YORK • CHICAGO • LONDON

Entered according to Act of Congress, in the year 1882, by G. A. WEntworth and G. A. Hill in the office of the Librarian of Congress at Washington

Copyright. 1895, by G. A. Wentworth and G. A. Hill. 210.2

INTRODUCTION.

1. If the natural numbers are regarded as powers of ten, the exponents of the powers are the Common or Briggs Logarithms of the numbers. If A and B denote natural numbers, a and b their logarithms, then $10^{a}=A, 10^{b}=B$; or, written in logarithmic form,

$$
\log A=a, \quad \log B=b
$$

2. The logarithm of a product is found by adding the logarithms of its factors.

$$
\begin{array}{lrl}
\text { For, } & A \times B=10^{a} \times 10^{b}=10^{a+b} \\
\text { Therefore, } & \log (A \times B)=a+b=\log A+\log B .
\end{array}
$$

3. The logarithm of a quotient is found by subtracting the logarithm of the divisor from that of the dividend.

For,

$$
\frac{A}{B}=\frac{10^{a}}{10^{b}}=10^{a-b}
$$

Therefore, $\quad \log \frac{A}{B}=a-b=\log A-\log B$.
4. The logarithm of a power of a number is found by multiplying the logarithm of the number by the exponent of the power.

For, $\quad A^{n}=\left(10^{a}\right)^{n}=10^{a n}$.
Therefore, $\quad \log A^{n}=a n=n \log A$.
5. The logarithm of the root of a number is found by dividing the logarithm of the number by the index of the root.

For,

$$
\sqrt[n]{A}=\sqrt[n]{10^{a}}=10^{\frac{a}{n}}
$$

Therefore, $\quad \log \sqrt[n]{A}=\frac{a}{n}=\frac{\log A}{n}$.
6. The logarithms of $1,10,100$, etc., and of $0.1,0.01,0.001$, etc., are integral numbers. The logarithms of all other numbers are fractions.

For, $10^{0}=1$, hence $\quad \log 1=0 ; \quad 10^{-1}=0.1$, hence $\quad \log 0.1=-1$. $10^{1}=10$, hence $\quad \log 10=1 ; \quad 10^{-2}=0.01$, hence $\log 0.01=-2$; $10^{2}=100$, hence $\log 100=2 ; \quad 10^{-3}=0.001$, hence $\log 0.001=-3$; $10^{3}=1000$, hence $\log 1000=3 ; \quad$ and so on.
If the number is between 1 and 10 , the logarithm is between 0 and 1. If the number is between 10 and 100 , the logarithm is between $\quad 1$ and 2. If the number is between 100 and 1000 , the logarithm is between 2 and 3. If the number is between 1 and 0.1 , the logarithm is between 0 and -1 . If the number is between 0.1 and 0.01 , the logarithm is between -1 and -2 . If the number is between 0.01 and 0.001 , the logarithm is between -2 and -3 . And so on.
7. If the number is less than 1, the logarithm is negative (§6), but is written in such a form that the fractional part is always positive.

For the number may be regarded as the product of two factors, one of which lies between 1 and 10 , and the other is a negative power of 10 ; the logarithm will then take the form of a difference whose minuend is a positive proper fraction, and whose subtrahend is a positive integral number.

Thus,	0.48	$=4.8 \times 0.1$.	
	Therefore (§ 2), $\log 0.48$	$=\log 4.8+\log 0.1=0.68124-1 . \quad$ (Page 1.)	
	Again,	0.0007	$=7 \times 0.0001$.
	Therefore, $\quad \log 0.0007$	$=\log 7+\log 0.0001=0.84510-4$.	

The logarithm $0.84510-4$ is often written $\overline{4} .84510$.
8. Every logarithm, therefore, consists of two parts : a positive or negative integral number, which is called the Characteristic, and a positive proper fraction, which is called the Mantissa.

Thus, in the logarithm 3.52179, the integral number 3 is the characteristic, and the fraction . 52179 the mantissa. In the logarithm $0.78254-2$, the integral number -2 is the characteristic, and the fraction 0.78254 is the mantissa.
9. If the logarithm is negative, it is customary to change the form of the difference so that the subtrahend shall be 10 or a multiple of 10 . This is done by adding to both minuend and subtrahend a number which will increase the subtrahend to 10 or a multiple of 10 .

Thus, the logarithm $0.78254-2$ is changed to $8.78254-10$ by adding 8 to both minuend and subtrahend. The logarithm $0.92737-13$ is changed to $7.92737-20$ by adding 7 to both minuend and subtrahend.
10. The following rules are derived from § 6:-

If the number is greater than 1, make the characteristic of the logarithm one unit less than the number of figures on the left of the decimal point.

If the number is less than 1, make the characteristic of the logarithm negative, and one unit more than the number of zeros between the decimal point and the first significant figure of the given number.

If the characteristic of a given logarithm is positive, make the number of figures in the integral part of the corresponding number one more than the number of units in the characteristic.

If the characteristic is negative, make the number of zeros between the decimal point and the first significant figure of the corresponding number one less than the number of units in the characteristic.
$\begin{aligned} & \text { Thus, the characteristic of } \log 7849.27=3 ; \\ & \text { the characteristic of } \log 0.037=-2=8.00000-10 .\end{aligned}$
If the characteristic is 4 , the corresponding number has five figures in its integral part. If the characteristic is -3 , that is, $7.00000-10$, the corresponding fraction has two zeros between the decimal point and the first significant figure.
11. The logarithms of numbers that can be derived one from another by multiplication or division by an integral power of 10 have the same mantissa.

For, multiplying or dividing a number by an integral power of 10 will increase or diminish its logarithm by the exponent of that power of 10 ; and since this exponent is an integer, the mantissa of the logarithm will be unaffected.

Thus, $\quad \log 4.6021=0.66296$. (Page 9.)
$\log 460.21=\log \left(4.6021 \times 10^{2}\right)=\log 4.6021+\log 10^{2}$

$$
=0.66296+2=2.66296
$$

$\log 460210=\log \left(4.6021 \times 10^{5}\right)=\log 4.6021+\log 10^{5}$
$=0.66296+5=5.66296$.
$\log 0.046021=\log \left(4.6021 \div 10^{2}\right)=\log 4.6021-\log 10^{2}$
$=0.66296-2=8.66296-10$.

TABLE I.

12. In this table (pp. 1-19) the vertical columns headed N contain the numbers, and the other columns the logarithms. On page 1 both the characteristic and the mantissa are printed. On pages $2-19$ the mantissa only is printed.

The fractional part of a logarithm can be expressed only approximately, and in a five-place table all figures that follow the fifth are rejected. Whenever the sixth figure is 5 , or more, the fifth figure is increased by 1 . The figure $\underline{5}$ is written when the value of the figure in the place in which it stands, together with the succeeding figures, is more than $4 \frac{1}{2}$, but less than 5 .

Thus, if the mantissa of a logarithm written to seven places is 5328732 , it is written in this table (a five-place table) 53287. If it is 5328751 , it is written 53288. If it is 5328461 or 5328499 , it is written in this table 53285 .

Again, if the mantissa is 5324981, it is written 53250; and if it is 4999967, it is written 50000 .

This distmetion between 5 and $\mathbf{5}$, in case it is desired to curtail still further the mantissas of logarithms, removes all doubt whether a 5 in the last given place, or in the last but one followed by a zero, should be simply rejected, or whether the rejection should lead us to increase the preceding figure by one unit.

Thus, the mantissa 13925 when reduced to four places should be 1392 ; but 13925 should be 1393.

To Find the Logarithm of a Given Number.

13. If the given number consists of one or two significant figures, the logarithm is given on page 1 . If zeros follow the significant figures, or if the number is a proper decimal fraction, the characteristic must be determined by § 10 .
14. If the given number has three significant figures, it will be found in the column headed N (pp. 2-19), and the mantissa of its logarithm in the next column to the right, and on the same line. Thus,

$$
\begin{array}{ll}
\text { Page 2. } & \log 145=2.16137,
\end{array} \quad \log 14500=4.16137 .
$$

15. If the given number has four significant figures, the first three will be found in the column headed N , and the fourth at the top of the page in the line containing the figures $\mathbf{1}, \mathbf{2}, \mathbf{3}$, etc. The mantissa will be found in the column headed by the fourth figure, and on the same line with the first three figures. Thus,

$$
\begin{aligned}
& \text { Page 15. } \quad \log 7682=3.88547, \quad \log 76.85=1.88564 \\
& \text { Page 18. } \quad \log 93280=4.96979, \quad \log 0.9468=9.97626-10 .
\end{aligned}
$$

16. If the given number has five or more significant figures, a process called interpolation is required.

Interpolation is based on the assumption that between two consecutive mantissas of the table the change in the mantissa is directly proportional to the change in the number.

Required the logarithm of 34237.
The required mantissa is (§11) the same as the mantissa for 3423.7; therefore it will be found by adding to the mantissa of 3423 seven-tenths of the difference between the mantissas for 3423 and 3424 .

The mantissa for 3423 is 53441 .
The difference between the mantissas for 3423 and 3424 is 12 .
Hence, the mantissa for 3423.7 is $53441+(0.7 \times 12)=5344^{\circ}$
Therefore, the required logarithm of 34237 is 4.53449 .

Required the logarithm of 0.0015764 .
The required mantissa is the same as the mantissa for 1576.4 ; therefore it will be found by adding to the mantissa for 1576 four-tenths of the difference between the mantissas for 1576 and 1577 .

The mantissa for 1576 is 19756 .
The difference between the mantissas for 1576 and 1577 is 27 .
Hence, the mantissa for 1576.4 is $19756+(0.4 \times 27)=19767$.
Therefore, the required logarithm of 0.0015764 is $7.19767-10$.
Required the logarithm of 32.6708 .
The required mantissa is the same as the mantissa for 3267.08; therefore it will be found by adding to the mantissa for 3267 eight-hundredths of the difference between the mantissas for 3267 and 3268 .

The mantissa for 3267 is 51415 .
The difference between the mantissas for 3267 and 3268 is 13 .
Hence, the mantissa for 3267.08 is $51415+(0.08 \times 13)=51416$.
Therefore, the required logarithm of 32.6708 is 1.51416 .
17. When the fraction of a unit in the part to be added to the mantissa for four figures is less than 0.5 it is to be neglected; when it is 0.5 or more than 0.5 it is to be taken as one unit.

Thus, in the first example, the part to be added to the mantissa for 3423 is 8.4 , and the .4 is rejected. In the second example, the part to be added to the mantissa for 1576 is 10.8 , and 11 is added.

To Find the Antilogarithm; that is, the Number Corresponding to a Given Logarithm.
18. If the given mantissa can be found in the table, the first three figures of the required number will be found in the same line with the mantissa in the column headed N , and the fourth figure at the top of the column containing the mantissa.

The position of the decimal point is determined by the characteristic (§ 10).

Find the number corresponding to the logarithm 0.92002.
Page 16. The number for the mantissa 92002 is 8318.
The characteristic is 0 ; therefore, the required number is 8.318 .
Find the number corresponding to the logarithm 6.09167.
Page 2. The number for the mantissa 09167 is 1235.
The characteristic is 6 ; therefore, the required number is 1235000 .
Find the number corresponding to the logarithm 7.50325-10.
Page 6. The number for the mantissa 50325 is 3186.
The characteristic is -3 ; therefore, the required number is 0.003186 .
19. If the given mantissa cannot be found in the table, find in the table the two adjacent mantissas between which the given mantissa lies, and the four figures corresponding to the smaller of these two mantissas will be the first four significant figures of the required number. If more than four figures are desired, they may be found by interpolation, as in the following examples:

Find the number corresponding to the logarithm 1.48762.
Here the two adjacent mantissas of the table, between which the given mantissa 48762 lies, are found to be (page 6) 48756 and 48770 . The corresponding numbers are 3073 and 3074 . The smaller of these, 3073 , contains the first four significant figures of the required number.

The difference between the two adjacent mantissas is 14 , and the difference between the corresponding numbers is 1 .

The difference between the smaller of the two adjacent mantissas, 48756, and the given mantissa, 48762 , is 6 . Therefore, the number to be annexed to 3073 is $\frac{6}{14}$ of $1=0.428$, and the fifth significant figure of the required number is 4 .

Hence, the required number is 30.734 .
Find the number corresponding to the logarithm $7.82326-10$.
The two adjacent mantissas between which 82326 lies are (page 13) 82321 and 82328. The number corresponding to the mantissa 82321 is 6656.

The difference between the two adjacent mantissas is 7, and the difference between the corresponding numbers is 1 .

The difference between the smaller mantissa, 82321, and the given mantissa, 82326 , is 5 . Therefore, the number to be annexed to 6656 is $\frac{5}{7}$ of $1=0.7$, and the fifth significant figure of the required number is 7 .

Hence, the required number is 0.0066567 .
In using a five-place table the numbers corresponding to mantissas may be carried to five significant figures, and in the first part of the table to six figures.*
20. The logarithm of the reciprocal of a number is called the Cologarithm of the number.

If A denotes any number, then

$$
\operatorname{colog} A=\log \frac{1}{A}=\log 1-\log A(\S 3)=-\log A
$$

Hence, the cologarithm of a number is equal to the logarithm of the number with the minus sign prefixed, which sign affects the entire logarithm, both characteristic and mantissa.

* In most tables of logarithms proportional parts are given as an aid to interpolation; but, after a little practice, the operation can be performed nearly as rapidly without them. Their omission allows a page with larger-faced type and more open spacing, and consequently less trying to the eyes.

In order to avoid a negative mantissa in the cologarithm, it is customary to substitute for $-\log A$ its equivalent

$$
(10-\log A)-10
$$

Hence, the cologarithm of a number is found by subtracting the logarithm of the number from 10 , and then annexing -10 to the remainder.

The best way to perform the subtraction is to begin on the left and subtract each figure of $\log A$ from 9 until we reach the last significant figure, which must be subtracted from 10 .

If $\log A$ is greater in absolute value than 10 and less than 20, then in order to avoid a negative mantissa, it is necessary to write $-\log A$ in the form

$$
(20-\log A)-20
$$

So that, in this case, $\operatorname{colog} A$ is found by subtracting $\log A$ from 20 , and then annexing -20 to the remainder.

Find the cologarithm of 4007 .

$$
\text { Page 8. } \quad \begin{aligned}
\log 4007 & =\frac{10}{3.60282}-10 \\
\operatorname{colog} 4007 & =\frac{10}{6.39718-10}
\end{aligned}
$$

Find the cologarithm of 103992000000 .

$$
\text { Page 2. } \log 103992000000=\frac{20 \quad-20}{\operatorname{colog} 103992000000}=\frac{11.01700}{8.98300-20}
$$

If the characteristic of $\log A$ is negative, then the subtrahend; -10 or -20 , will vanish in finding the value of $\operatorname{colog} A$.

Find the cologarithm of 0.004007 .

$$
\begin{aligned}
\log 0.004007 & =\begin{array}{l}
10-10 \\
\operatorname{colog} 0.004007
\end{array}=\frac{7.60282-10}{2.39718}
\end{aligned}
$$

With practice, the cologarithm of a number can be taken from the table as rapidly as the logarithm itself.

By using cologarithms the inconvenience of subtracting the logarithm of a divisor is avoided. For dividing by a number is equivalent to multiplying by its reciprocal. Hence, instead of subtracting the logarithm of a divisor its cologarithm may be added.

Exercises.

Find the logarithms of :

1. 6170 .
2. 0.617 .
3. 2867.
1. 85.76 .
2. 296.8 .
3. 7004 .
4. 0.8694 .
5. 0.5908 .
6. 73243.
1. 67.3208 .
2. 18.5283 .
3. 0.0042003 .

Find the cologarithms of:
13. 72433.
16. 869.278 .
19. 0.002403.
14. 802.376 .
17. 154000 .
20. 0.000777 .
15. 15.7643.
18. 70.0426 .
21. 0.051828.

Find the antilogarithms of:
22. 2.47246 .
25. 1.26784 .
28. $9.79029-10$.
23. 7.89081.
26. 3.79029.
29. $7.62328-10$.
30. $6.15465-10$.

Computation by Logarithms.
21. (1) Find the value of x, if $x=72214 \times 0.08203$.

Page 14. $\quad \log 72214=4.85862$
Page 16. $\quad \log 0.08203=8.91397-10$
By §2. $\quad \log x=\overline{3.77259}$
Page 11. $x=5923.63$
(2) Find the value of x, if $x=5250 \div 23487$.

$$
\begin{array}{lcl}
\text { Page 10. } & \log 5250 & =3.72016 \\
\text { Page 4. } & \operatorname{colog} 23487 & =5.62917-10 \\
\text { Page 4. } & \log x & =9.34933-10=\log 0.2235 \S \\
& \therefore x & =0.22353
\end{array}
$$

(3) Find the value of x, if $x=\frac{7.56 \times 4667 \times 567}{899.1 \times 0.00337 \times 23435}{ }^{\circ}$

$$
\begin{array}{lcl}
\text { Page 15. } & \log 7.56 & =0.87852 \\
\text { Page 9. } & \log 4667 & =3.66904 \\
\text { Page 11. } & \log 567 & =2.75358 \\
\text { Page 17. } & \operatorname{colog} 899.1 & =7.04619-10 \\
\text { Page 6. } & \operatorname{colog} 0.00337 & =2.47237 \\
\text { Page 4. } & \operatorname{colog} 23435 & =5.63013-10 \\
\text { Page 5. } & \log x & =2.44983=\log 281.73 \\
& \therefore x & =281.73 .
\end{array}
$$

(4) Find the cube of 376 .

Page 7. $\quad \log 376$	$=2.57519$	
Multiply by $3(\S 4)$,	$\frac{3}{2}=\log 53158600$	
Page 10.	$\log 376^{3}$	$=\overline{7.72557}$
	$\therefore 376^{3}$	$=53158600$.

(5) Find the square of 0.003278 .

Page 6.	$\log 0.003278=7.51561-10$	
		2
Page 2.	$\log 0.003278^{2}$	$=\frac{2}{15.03122-20}=\log 0.000010745$
	$\therefore 0.003278^{2}$	$=0.000010745$.

(6) Find the square root of 8322.

$$
\begin{array}{lll}
\text { Page 16. } & \log 8322 & =3.92023 \\
\text { Divide by } 2(\S 5), & 2) 3.92023 \\
& & =\log \sqrt{8322} \\
& \stackrel{1.96012}{=}=\log 91.226 \\
\therefore \sqrt{8322} & =91.226
\end{array}
$$

If the given number is a proper fraction, its logarithm will have as a subtrahend 10 or a multiple of 10 . In this case, before dividing the logarithm by the index of the root, both the subtrahend and the number preceding the mantissa should be increased by such a number as will make the subtrahend, when divided by the index of the root, 10 or a multiple of 10 .
(7) Find the square root of 0.000043641 .
\(\begin{array}{ll}Page 8. \quad \log 0.000043641 \& =5.63989-10

Divide by 2(\$ 5), \& 2\)| $10 \quad-10$ |
| :--- |
| $15.63989-20$ |\end{array}

Page 13. $\log \sqrt{0.000043641}=7.81995-10=\log 0.0066062$ $\therefore \sqrt{0.000043641}=0.0066062$.
(8) Find the sixth root of 0.076553 .

Page 15. $\quad \log 0.076553$	$=8.88397-10$
Divide by $6(\S 5)$,	$60-50$
Page 13.	$\log \sqrt[6]{58.88397-60}$
	$\therefore \sqrt[6]{0.076553}$
	$=9.81400-10$
0.076553	$=0.65163$.

Exercises.

Find by logarithms the value of:

1. $\frac{45607}{31045}$.
2. $\frac{5.6123}{0.01987}$.
3. $\frac{2.567}{0.05786}$.
4. $\frac{0.06547}{74.938 \times 0.05938}$.
5. $\frac{4.657 \times 0.03467}{3.908 \times 0.07189}$.
6. $\frac{0.0075389 \times 0.0079}{0.00907 \times 0009784}$.
7. $\frac{312 \times 7.18 \times 31.82}{519 \times 8.27 \times 5.132}$.
8. $\frac{0.007 \times 57.83 \times 28.13}{9.317 \times 00.28 \times 476.5}$.
9. $\frac{5.55 \times 0.0007632 \times 0.87654}{2.79 \times 0.0009524 \times 1.46785}$.
10. $\sqrt{\frac{0.003457 \times 43.387 \times 99.2 \times 0.00025}{0.005824 \times 15.724 \times 1.38 \times 0.00089}}$
11. $\sqrt[3]{\frac{23.815 \times 29.36 \times 0.007 \times 0.62487}{0.00072 \times 9.236 \times 5.924 \times 3.0007}}$.
12. $\sqrt{\frac{3.1416 \times 0.031416 \times 0.0031416}{1.7285 \times 0.017285 \times 0.0017285}}$.

TABLE II.

22. This table (page 20) contains the value of the number π, its most useful combinations, and their logarithms.

Find the length of an arc of $47^{\circ} 32^{\prime} 57^{\prime \prime}$ in a unit circle.

$$
\begin{aligned}
47^{\circ} 32^{\prime} 57^{\prime \prime} & =171177^{\prime \prime} \\
\log 171177 & =5.23344 \\
\log \frac{1}{a^{\prime \prime}} & =4.68557-10 \\
\log \text { arc } 47^{\circ} 32^{\prime} 57^{\prime \prime} & =\overline{9.91901-10}=\log 0.82994 \\
\therefore \text { length of arc } & =0.82994
\end{aligned}
$$

Find the angle if the length of its arc in a unit circle $=0.54936$.

$$
\begin{array}{ll}
\log 0.54936 & =9.73986-10 \\
\operatorname{colog} \frac{1}{a^{\prime \prime}}=\log a^{\prime \prime} & =5.31443 \\
\log \text { angle } & =\overline{5.05429}=\log 113316 \\
\therefore \text { angle } & =113316^{\prime \prime}=31^{\circ} 28^{\prime} 36^{\prime \prime} .
\end{array}
$$

23. The relations between arcs and angles given in Table II. are readily deduced from the circular measure of an angle.

In Circular Measure an angle is defined by the equation

$$
\text { angle }=\frac{\text { arc }}{\text { radius }}
$$

in which the word arc denotes the length of the are corresponding to the angle, when both are and radius are expressed in terms of the same linear unit.

Since the arc and radius for a given angle in different circles vary in the same ratio, the value of the angle given by this equation is independent of the value of the radius.

The angle which is measured by a radius-arc is called a Radian, and is the angular unit in circular measure.

Since $C=2 \pi R$, it follows that $\frac{C}{R}=2 \pi$, and $\frac{\frac{1}{2} C}{R}=\pi$. Therefore,

If the arc $=$ circumference,	the angle $=2 \pi$.
If the arc $=$ semicircumference,	the angle $=\pi$.
If the arc $=$ quadrant,	the angle $=\frac{1}{2} \pi$.
If the arc $=$ radius,	the angle $=1$.

Therefore, $\pi=180^{\circ}, \frac{1}{2} \pi=90^{\circ}, \frac{1}{3} \pi=60^{\circ}, \frac{1}{4} \pi=45^{\circ}, \frac{1}{6} \pi=30^{\circ}$, $\frac{1}{8} \pi=22 \frac{1}{2}^{\circ}$, and so on.

Since 180° in common measure equals π units in circular measure,

$$
\begin{aligned}
& 1^{\circ} \text { in common measure }=\frac{\pi}{180} \text { units in circular measure } ; \\
& 1 \text { unit in circular measure }=\frac{180^{\circ}}{\pi} \text { in common measure }
\end{aligned}
$$

By means of these two equations, the value of an angle expressed in one measure may be changed to its value in the other measure.

Thus, the angle whose are is equal to the radius is an angle of 1 unit in circular measure, and is equal to $\frac{180^{\circ}}{\pi}$, or $\check{5} 7^{\circ} 17^{\prime} 45^{\prime \prime}$, very nearly.

TABLE III.

24. This table (pp. 21-49) contains the logarithms of the trigonometric functions of angles. In order to avoid negative characteristics, the characteristic of every logarithm is printed 10 too large. Therefore, -10 is to be annexed to each logarithm.

On pages 28-49 the characteristic remains the same throughout each column, and is printed at the top and the bottom of the column.

But on pp. 30, 49, the characteristic changes one unit in value at the places marked with bars. Above these bars the proper characteristic is printed at the top, and below them at the bottom, of the column.
25. On pages 28-49 the $\log \sin , \log \tan , \log$ cot, and $\log \cos$, of 1° to 89°, are given to every minute. Conversely, this part of the table gives the value of the angle to the nearest minute when $\log \sin , \log \tan , \log$ cot, or $\log \cos$ is known, provided $\log \sin$ or $\log \cos$ lies between 8.24186 and 9.99993 , and \log tan or log cot lies between 8.24192 and 11.75808 .

If the exact value of the given logarithm of a function is not found in the table, the value nearest to it is to be taken, unless interpolation is employed as explained in § 26 .

If the angle is less than 45° the number of degrees is printed at the top of the page, and the number of minutes in the column to the left of the columns containing the logarithm. If the angle is greater than 45°, the number of degrees is printed at the bottom of the page, and the number of minutes in the column to the right of the columns containing the logarithms.

If the angle is less than 45°, the names of its functions are printed at the top of the page; if greater than 45°, at the bottom of the page. Thus,

Page 38. $\log \sin 21^{\circ} 37^{\prime}=9.56631-10$.
Page 45. $\log \cot 36^{\circ} 53^{\prime}=10.12473-10=0.12473$.
Page 37. $\log \cos 69^{\circ} 14^{\prime}=9.54969-10$.
Page 49. $\log \tan 45^{\circ} 59^{\prime}=10.01491-10=0.01491$.
Page 48. If $\log \cos =9.87468-10$, angle $=41^{\circ} 28^{\prime}$.
Page 34. If $\log \cot =9.39353-10$, angle $=76^{\circ} 6^{\prime}$.
If $\log \sin =9.47760-10$, the nearest $\log \sin$ in the table is $\overline{\mathbf{y}} .47774-10$ (page 36), and the angle corresponding to this value is $17^{\circ} 29^{\prime}$.

If $\log \tan =0.76520=10.76520-10$, the nearest $\log \tan$ in the table is $10.76490-10$ (page 32), and the angle corresponding to this value is $80^{\circ} 15^{\prime}$.
26. If it is desired to obtain the logarithms of the functions of angles that contain seconds, or to obtain the value of the angle in degrees, minutes, and seconds, from the logarithms of its functions, interpolation must be employed. Here it must be remembered that,

The difference between two consecutive angles in the table is $60^{\prime \prime}$.

Log sin and \log tan increase as the angle increases; $\log \cos$ and log cot diminish as the angle increases.

Find $\log \tan 70^{\circ} 46^{\prime} 8^{\prime \prime}$.

Page 37. $\log \tan 70^{\circ} 46^{\prime}=0.45731$.
The difference between the mantissas of $\log \tan 70^{\circ} 46^{\prime}$ and $\log \tan 70^{\circ} 47^{\prime}$ is 41 , and $\frac{8}{60}$ of $41=5$.

As the function is increasing, the 5 must be added to the figure in the fifth place of the mantissa 45731 ; and

Therefore $\log \tan 70^{\circ} 46^{\prime} 8^{\prime \prime}=0.45736$.

Find $\log \cos 47^{\circ} 35^{\prime} 4^{\prime \prime}$.
Page 48. $\log \cos 47^{\circ} 35^{\prime}=9.82899-10$.
The difference between this mantissa and the mantissas of the next log cos is 14 , and $\frac{4}{60}$ of $14=1$.

As the function is decreasing, the 1 must be subtracted from the figure in the fiftb place of the mantissa 82899 ; and

Therefore $\log \cos 47^{\circ} 35^{\prime} 4^{\prime \prime}=9.82898-10$.

Find the angle for which log $\sin =9.45359-10$.
Page 35. The mantissa of the nearest smaller $\log \sin$ in the table is 45334 .
The angle corresponding to this value is $16^{\circ} 30^{\prime}$.
The difference between 45334 and the given mantissa, 45359, is 25 .
The difference between 45334 and the next following mantissa, 45377, is 43, and ${ }_{4}^{25}$ of $60^{\prime \prime}=35^{\prime \prime}$.

As the function is increasing, the $35^{\prime \prime}$ must be added to $16^{\circ} 30^{\prime}$; and the required angle is $16^{\circ} 30^{\prime} 35^{\prime \prime}$.

Find the angle for which log cot $=0.73478$.
Page 32. The mantissa of the nearest smaller log cot in the table is 73415.
The angle corresponding to this value is $10^{\circ} 27^{\prime}$.
The difference between 73415 and the given mantissa is 63 .
The difference between 73415 and the next following mantissa is 71 , and $\frac{63}{71}$ of $60^{\prime \prime}=53^{\prime \prime}$.

As the function is decreasing, the $53^{\prime \prime}$ must be subtracted from $10^{\circ} 27^{\prime}$; and the required angle is $10^{\circ} 26^{\prime} 7^{\prime \prime}$.

Exercises.

Find

1. $\log \sin 30^{\circ} 8^{\prime} 9^{\prime \prime}$.
2. $\log \sin 54^{\circ} 54^{\prime} 40^{\prime \prime}$.
3. $\log \cos 43^{\circ} 32^{\prime} 31^{\prime \prime}$.
4. $\log \cos 69^{\circ} 25^{\prime} 11^{\prime \prime}$.
5. $\log \tan 32^{\circ} 9^{\prime} 17^{\prime \prime}$.
6. $\log \tan 50^{\circ} 2^{\prime} \quad 2^{\prime \prime}$.
7. $\log \cot 44^{\circ} 33^{\prime} 17^{\prime \prime}$.
8. $\log \cot 55^{\circ} 9^{\prime} 32^{\prime \prime}$.
9. $\log \tan 25^{\circ} 27^{\prime} 47^{\prime \prime}$.
10. $\log \cos 56^{\circ} 11^{\prime} 57^{\prime \prime}$.
11. $\log \cot 62^{\circ} 0^{\prime} 4^{\prime \prime}$
12. $\log \cos 75^{\circ} 26^{\prime} 58^{\prime \prime}$
13. $\log \tan 33^{\circ} 27^{\prime} 13^{\prime \prime}$.
14. $\log \cot 81^{\circ} 55^{\prime} 24^{\prime \prime}$.
15. $\log \tan 89^{\circ} 46^{\prime} 35^{\prime \prime}$.
16. $\log \tan 1^{\circ} 25^{\prime} 56^{\prime \prime}$ 。

Find the angle A if

17. $\log \sin A=9.70075$.	25. $\log \cos A=940008$.
18. $\log \sin A=9.91289$.	26. $\log \cot A=9.78815$.
19. $\log \cos A=9.86026$.	27. $\log \cos A=9.34301$.
20. $\log \cos A=9.54595$.	28. $\log \tan A=10.52288$.
21. $\log \tan A=9.79840$.	29. $\log \cot A=965349$.
22. $\log \tan A=10.07671$.	30. $\log \sin A=8.39316$.
23. $\log \cot A=10.00675$.	31. $\log \sin A=8.06678$.
24. $\log \cot A=9.84266$.	32. $\log \tan A=8.11148$.

27. If $\log \mathrm{sec}$ or \log cse of an angle is desired, it may be found from the table by the formulas,

$$
\begin{aligned}
& \sec A=\frac{1}{\cos A} ; \text { hence, } \log \sec A=\operatorname{colog} \cos A \\
& \csc A=\frac{1}{\sin A} ; \text { hence, } \log \csc A=\operatorname{colog} \sin A
\end{aligned}
$$

Page 31. $\log \sec 8^{\circ} 28^{\prime}=\operatorname{colog} \cos 8^{\circ} 28^{\prime}=0.00476$.
Page 42. log csc $59^{\circ} 36^{\prime} 44^{\prime \prime}=\operatorname{colog} \sin 59^{\circ} 36^{\prime} 44^{\prime \prime}=0.06418$.
28. If a given angle is between 0° and 1°, or between 89° and 90°; or, conversely, if a given $\log \sin$ or \log cos does not lie between the limits 8.24186 and 9.99993 in the table; or, if a given $\log \tan$ or log cot does not lie between the limits 8.24192 and 11.75808 in the table ; then pages 21-24 of Table III. must be used.

On page $21, \log \sin$ of angles between 0° and $0^{\circ} 3^{\prime}$, or $\log \cos$ of the complementary angles between $89^{\circ} 57^{\prime}$ and 90°, are given to every second; for the angles between 0° and $0^{\circ} 3^{\prime}, \log \tan =\log \sin$, and $\log \cos =0.00000$; for the angles between $89^{\circ} 57^{\prime}$ and 90°, $\log \cot =\log \cos$, and $\log \sin =0.00000$.

On pages $22-24, \log \sin , \log \tan$, and \log cos of angles between 0° and 1°, or $\log \cos$, \log cot, and $\log \sin$ of the complementary angles between 89° and 90°, are given to every $10^{\prime \prime}$.

Whenever $\log \tan$ or log cot is not given, they may be found by the formulas,

$$
\log \tan =\text { colog cot. } \quad \log \cot =\text { colog tan. }
$$

Conversely, if a given log tan or log cot is not contained in the table, then the colog must be found; this will be the log cot or $\log \tan$, as the case may be, and will be contained in the table.

On pages $25-27$ the logarithms of the functions of angles between 1° and 2°, or between 88° and 90°, are given in the manner employed on pages $22-24$. These pages should be used if the angle lies between these limits, and if not only degrees and minutes, but degrees, minutes, and multiples of $10^{\prime \prime}$ are given or required.

When the angle is between 0° and 2°, or 88° and 90°, and a greater degree of accuracy is desired than that given by the table, interpolation may be employed; but for these angles interpolation does not always give true results, and it is better to use Table IV.

Find $\log \tan 0^{\circ} 2^{\prime} 47^{\prime \prime}$, and $\log \cos 89^{\circ} 37^{\prime} 20^{\prime \prime}$.
Page 21. $\log \tan 0^{\circ} 2^{\prime} 47^{\prime \prime}=\log \sin 0^{\circ} 2^{\prime} 47^{\prime \prime}=6.90829-10$.
Page 23. $\log \cos 89^{\circ} 37^{\prime} 20^{\prime \prime}=7.81911-10$.
Find $\log \cot 0^{\circ} 2^{\prime} 15^{\prime \prime}$.
$\begin{array}{ll}\text { Page 21. } \log \tan 0^{\circ} 2^{\prime} 15^{\prime \prime} & =\begin{array}{l}10 \\ -10 \\ \text { Therefore, } \log \cot 0^{\circ} 2^{\prime} 15^{\prime \prime}\end{array}=\frac{6.8591-10}{3.18409}-\end{array}$
Find $\log \tan 89^{\circ} 38^{\prime} 30^{\prime \prime}$.

$$
10 \quad-10
$$

Page 23. $\log \cot 89^{\circ} 38^{\prime} 30^{\prime \prime}=7.79617-10$ Therefore, $\log \tan 89^{\circ} 38^{\prime} 30^{\prime \prime}=2.20383$

Find the angle for which $\log \tan =6.92090-10$.
Page 21. The nearest $\log \tan$ is $6.92110-10$. The corresponding angle for which is $0^{\circ} 2^{\prime} 52^{\prime \prime}$.

Find the angle for which $\log \cos =7.70240-10$.
Page 22 . The nearest $\log \cos$ is $7.70261-10$. The corresponding angle for which is $89^{\circ} 42^{\prime} 40^{\prime \prime}$.

Find the angle for which $\log \cot =2.37368$.
This log cot is not contained in the table.
The colog cot $=7.62632-10=\log \tan$.
The $\log \tan$ in the table nearest to this is (page 22) $7.62510-10$, and the angle corresponding to this value of $\log \tan$ is $0^{\circ} 14^{\prime} 30^{\prime \prime}$.
29. If an angle x is between 90° and 360°, it follows, from formulas established in Trigonometry, that,
between 90° and 180°, $\log \sin x=\log \sin \left(180^{\circ}-x\right)$, $\log \cos x=\log \cos \left(180^{\circ}-x\right)_{n}$, $\log \tan x=\log \tan \left(180^{\circ}-x\right)_{n}$, $\log \cot x=\log \cot \left(180^{\circ}-x\right)_{n}$;
between 180° and 270°,
$\log \sin x=\log \sin \left(x-180^{\circ}\right)_{n}$,
$\log \cos x=\log \cos \left(x-180^{\circ}\right)_{n}$
$\log \tan x=\log \tan \left(x-180^{\circ}\right)$,
$\log \cot x=\log \cot \left(x-180^{\circ}\right)$;
between 270° and 360°, $\log \sin x=\log \sin \left(360^{\circ}-x\right)_{n}$,
$\log \cos x=\log \cos \left(360^{\circ}-x\right)$,
$\log \tan x=\log \tan \left(360^{\circ}-x\right)_{n}$,
$\log \cot x=\log \cot \left(360^{\circ}-x\right)_{n}$.

The letter n is placed (according to custom) after the logarithms of those functions which are negative in value.

The above formulas show, without further explanation, how to find by means of Table III. the logarithms of the functions of any angle between 90° and 360°.

Thus, $\log \sin 137^{\circ} 45^{\prime} 22^{\prime \prime}=\log \sin 42^{\circ} 14^{\prime} 38^{\prime \prime}=9.82756-10$.
$\log \cos 137^{\circ} 45^{\prime} 22^{\prime \prime}=\log _{n} \cos 42^{\circ} 14^{\prime} 38^{\prime \prime}=9.86940_{n}-10$.
$\log \tan 137^{\circ} 45^{\prime} 22^{\prime \prime}=\log _{n} \tan 42^{\circ} 14^{\prime} 38^{\prime \prime}=9.95815_{n}-10$.
$\log \cot 137^{\circ} 45^{\prime} 22^{\prime \prime}=\log _{n} \cot 42^{\circ} 14^{\prime} 38^{\prime \prime}=0.04185_{n}$.
$\log \sin 209^{\circ} 32^{\prime} 50^{\prime \prime}=\log _{n} \sin 29^{\circ} 32^{\prime} 50^{\prime \prime}=9.69297_{n}-10$.
$\log \cos 330^{\circ} 27^{\prime} 10^{\prime \prime}=\log \cos 29^{\circ} 32^{\prime} 50^{\prime \prime}=9.93949-10$.
Conversely, to a given logarithm of a trigonometric function there correspond between 0° and 360° four angles, one angle in each quadrant, and so related that if x denote the acute angle, the other three angles are $180^{\circ}-x, 180^{\circ}+x$, and $360^{\circ}-x$.

If besides the given logarithm it is known whether the function is positive or negative, the ambiguity is confined to two quadrants, therefore to two angles.

Thus, if the $\log \tan =9.47451-10$, the angles are $16^{\circ} 36^{\prime} 17^{\prime \prime}$ in Quadrant I . and $196^{\circ} 36^{\prime} 17^{\prime \prime}$ in Quadrant III. ; but if the $\log \tan =9.47451_{n}-10$, the angles are $163^{\circ} 23^{\prime} 43^{\prime \prime}$ in Quadrant II. and $343^{\circ} 23^{\prime} 43^{\prime \prime}$ in Quadrant IV.

To remove all ambiguity, further conditions are required, or a knowledge of the special circumstances connected with the problem in question.

TABLE IV.

30. This table (page 50) must be used when great accuracy is desired in working with angles between 0° and 2°, or between 88° and 90°.

The values of S and T are such that when the angle a is expressed in seconds,

$$
\begin{aligned}
& \mathrm{S}=\log \sin a-\log a^{\prime \prime}, \\
& \mathrm{T}=\log \tan a-\log a^{\prime \prime} .
\end{aligned}
$$

Hence follow the formulas given on page 50 .
The values of S and T are printed with the characteristic 10 too large, and in using them -10 must always be annexed.

Find $\log \sin 0^{\circ} 58^{\prime} 17^{\prime \prime}$.

$$
\begin{aligned}
0^{\circ} 58^{\prime} 17^{\prime \prime} & =3497^{\prime \prime} \\
\log 3497 & =3.54370 \\
\mathrm{~S} & =4.68555-10 \\
0^{\circ} 58^{\prime} 17^{\prime \prime} & =8.22925-10
\end{aligned}
$$

Find $\log \cos 88^{\circ} 26^{\prime} 41.2^{\prime \prime}$.

$$
\begin{aligned}
90^{\circ}-88^{\circ} 26^{\prime} 41.2^{\prime \prime} & =1^{\circ} 33^{\prime} 18.8^{\prime \prime} \\
& =5598.8^{\prime \prime} \\
\log 5598.8 & =3.74809 \\
\mathrm{~S} & =4.68552-10 \\
0 \mathrm{og} \cos 88^{\circ} 26^{\prime} 41.2^{\prime \prime} & =8.43361-10
\end{aligned}
$$

Find $\log \tan 0^{\circ} 52^{\prime} 47.5^{\prime \prime}$,

$$
0^{\circ} 52^{\prime} 47.5^{\prime \prime}=3167.5^{\prime \prime}
$$

$$
\log 3167.5=3.50072
$$

$$
T=\underline{4.68561-10}
$$

$\log \tan 0^{\circ} 52^{\prime} 47.5^{\prime \prime}=\overline{8.18633-10}$

Find $\log \tan 89^{\circ} 54^{\prime} 37.362^{\prime \prime}$.
$90^{\circ}-89^{\circ} 54^{\prime} 37.362^{\prime \prime}=0^{\circ} 5^{\prime} 22.638^{\prime \prime}$ $=322.638^{\prime \prime}$
$\log 322.638=2.50871$
$\mathrm{T}=4.68558-10$
$\log \cot 89^{\circ} 54^{\prime} 37.362^{\prime \prime}=7.19429-10$
$\log \tan 89^{\circ} 54^{\prime} 37.362^{\prime \prime}=2.80571$

Find the angle, if $\log \sin =6.72306-10$.

$$
\begin{aligned}
& S=\frac{6.72306-10}{} \begin{array}{l}
4.68557-10
\end{array} \\
& \text { Subtract, } \quad \begin{array}{l}
2.03749 \\
109.015^{\prime \prime}=
\end{array}=0^{\circ} 1^{\prime} 49.0155^{\prime \prime} .
\end{aligned}
$$

Find the angle for which $\log \cot =1.67604$.

$$
\begin{aligned}
& \text { colog } \cot = 8.32396-10 \\
& \mathrm{~T}= 4.68564-10 \\
& \text { Subtract, } \begin{array}{l}
3.63832
\end{array}=\log 4348.3 \\
& 4348.3^{\prime \prime} \\
&=1^{\circ} 12^{\prime} 28.3^{\prime \prime} .
\end{aligned}
$$

Find the angle for which $\log \tan =1.55407$.

$$
\begin{aligned}
& \begin{aligned}
\text { colog } \tan = & 8.44593-10 \\
\mathrm{~T}= & 4.68569-10
\end{aligned} \\
& \text { Subtract, } \begin{aligned}
& 3.76024=\log 5757.6 \\
& 5757.6^{\prime \prime}=1^{\circ} 35^{\prime} 57.6^{\prime \prime}, \\
& \text { and } 90^{\circ}-1^{\circ} 35^{\prime} 57.6^{\prime \prime}=88^{\circ} 24^{\prime} 2.4^{\prime \prime} . \\
& \text { Therefore, the angle required is } 88^{\circ} 24^{\prime} 2.4^{\prime \prime} .
\end{aligned} \\
& \text { Ther }
\end{aligned}
$$

TABLE V.

31. This table (p. 51), containing the circumferences and areas of circles, does not require explanation.

TABLE VI.

32. Table VI. (pp. 52-69) contains the natural sines, cosines, tangents, and cotangents of angles from 0° to 90°, at intervals of 1^{\prime}. If greater accuracy is desired it may be obtained by interpolation.

Note. In preparing the preceding explanations, we have made free use of the Logarithmic Tables by F. G. Gauss. For Table VI. we are indebted to D. Carhart.

TABLE VII.

33. This table (pp. 70-75) gives the latitude and departure to three places of decimals for distances from 1 to 10 , corresponding to bearings from 0° to 90° at intervals of 15^{\prime}.

If the bearing does not exceed 45° it is found in the left-hand column, and the designations of the columns under "Distance" are taken from the top of the page; but if the bearing exceeds 45°, it is found in the right-hand column, and the designations of the columns under "Distance" are taken from the bottom of the page.

The method of using the table will be made plain by the following examples:-
(1) Let it be required to find the latitude and departure of the course N. $35^{\circ} 15^{\prime}$ E. 6 chains.

On p. 75, left-hand column, look for $35^{\circ} 15^{\prime}$; opposite this bearing, in the vertical column headed "Distance 6, " are found 4.900 and 3.463 under the headings "Latitude" and "Departure" respectively. Hence, latitude or northing $=4.900$ chains, and departure or easting $=3.463$ chains.
(2) Let it be required to find the latitude and departure of the course S. $87^{\circ} \mathrm{W} .2$ chains.

As the bearing exceeds 45°, we look in the right-hand column of p. 70, and opposite 87° in the column marked "Distance 2 " we find (taking the designations of the columns from the bottom of the page) latitude $=0.105$ chains, and departure $=1.997$ chains. Hence, latitude or southing $=0.105$ chains, and departure or westing $=1.997$ chains.
(3) Let it be required to find the latitude and departure of the course N. $15^{\circ} 45^{\prime}$ W. 27.36 chains.

In this case we find the required numbers for each figure of the distance separately, arranging the work as in the following table. In practice, only the last columns under "Latitude" and "Departure" are written.

Distance.	Latitude.	Departure.
$20=2 \times 10$	$1.925 \times 10=19.25$	$0.543 \times 10=5.43$
7	$2.887 \div 10=0.289$	$0.814 \div 10=0.081$
$0.3=3 \div 10$	$5.775 \div 100=0.058$	$1.628 \div 100=0.016$
$0.06=6 \div 100$	26.334	
27.36		7.427

Hence, latitude $=26.334$ chains, and departure $=7.427$ chains.

TABLE I

THE

COMMON OR BRIGGS LOGARITHMS

OF THE

NATURAL NUMBERS

From 1 to 10000.

1-100

\mathbf{N}	log	\mathbf{N}	\log	\mathbf{N}	\log	\mathbf{N}	\log	\mathbf{N}	\log
$\mathbf{1}$	0.00000	$\mathbf{2 1}$	1.32222	$\mathbf{4 1}$	1.61278	$\mathbf{6 1}$	1.78533	$\mathbf{8 1}$	1.90849
2	0.30103	22	1.34242	42	1.62325	62	1.79239	82	1.91381
3	0.47712	23	1.36173	43	1.63347	63	1.79934	83	1.91908
4	0.60206	24	1.38021	44	1.64345	64	1.80618	84	1.92428
$\mathbf{5}$	0.69897	25	1.39794	45	1.65321	65	1.81291	85	1.92942
$\mathbf{6}$	0.77815	$\mathbf{2 6}$	1.41497	$\mathbf{4 6}$	1.66276	$\mathbf{6 6}$	1.81954	$\mathbf{8 6}$	1.93450
7	0.84510	27	1.43136	47	1.67210	67	1.82607	87	1.93952
8	0.90309	28	1.44716	48	1.68124	68	1.83251	88	1.94448
9	0.95424	29	1.46240	49	1.69020	69	1.83885	89	1.94939
10	1.00000	30	1.47712	50	1.69897	70	1.84510	90	1.95424
$\mathbf{1 1}$	1.04139	$\mathbf{3 1}$	1.49136	$\mathbf{5 1}$	1.70757	$\mathbf{7 1}$	1.85126	$\mathbf{9 1}$	1.95904
12	1.07918	32	1.50515	52	1.71600	72	1.85733	92	1.96379
13	1.11394	33	1.51851	53	1.72428	73	1.86332	93	1.96848
14	1.14613	34	1.53148	54	1.73239	74	1.86923	94	1.97313
15	1.17609	35	1.54407	55	1.74036	75	1.87506	95	1.97772
$\mathbf{1 6}$	1.20412	$\mathbf{3 6}$	1.55630	$\mathbf{5 6}$	1.74819	$\mathbf{7 6}$	1.88081	$\mathbf{9 6}$	1.98227
17	1.23045	37	1.56820	57	1.75587	77	1.88649	97	1.98677
18	1.25527	38	1.57978	58	1.76343	78	1.89209	98	1.99123
19	1.27875	39	1.59106	59	1.77085	79	1.89763	99	1.99564
20	1.30103	40	1.60206	60	1.77815	80	1.90309	100	2.00000
\mathbf{N}	$\mathbf{l o g}$								

$1-100$

\mathbf{N}	0	1	2	3	4	5	6	7	8	9
100	00000	00043	00087	00130	00173	00217	00260	00303		00389
101	00432	00475	00518	00561	00604	00647	00689	00732	00775	00817
102	00860	00903	00945	00988	01030	01072	01115	01157	01199	01242
103	01284	01326	01368	01410	01452	01494	01536	01578	01620	01662
104	01703	01745	01787	01828	01870	01912	01953	01995	02036	02078
105	02119	02160	02202	02243	02284	02325	02366	02407	02449	02490
106	02531	02572	02612	02653	02694	02735	02776	02816	02857	02898
107	02938	02979	03019	03060	03100	03141	03181	03222	03262	03302
108	03342	03383	03423	03463	03503	03543	03583	03623	03663	03703
109	03743	03782	03822	03862	03902	03941	03981	04021	04060	04100
110	04139	04179	04218	04258	04297	04336	04376	04415	04454	04493
111	04532	04571	04610	04650	04689	04727	04766	04805	04844	04883
212	04922	04961	04999	05038	05077	05115	05154	05192	05231	05269
113	05308	05346	05385	05423	05461	$05 \underline{500}$	05538	05576	05614	05652
114	05690	05729	05767	05805	05843	05881	05918	05956	05994	06032
115	06070	06108	06145	06183	06221	06258	06296	06333	06371	06408
116	06446	06483	06521	06558	06595°	06633	06670	06707	06744	06781
117	06819	06856	06893	06930	06967	07004	07041	07078	07115	07151
118	07188	07225	07262	07298	07335	07372	07408	07445	07482	07518°
119	07555	07591	07628	07664	07700	07737	07773	$07 \mathrm{S09}$	07846	07882
120	07918	07954	07990	08027	08063	08099	08135	08171	08207	08243
121	08279	08314	08350	08386	08422	08458	08493	08529	$0856 \underline{1}$	08600
122	08636	08672	08707	08743	08778	08814	08849	08884	08920	08955
123	08991	09026	09061	09096	09132	09167	09202	09237	09272	09307
124	09342	09377	09412	09447	09482	09517	09552	09587	09621	09656
125	09691	09726	09760	09795	09830	09864	09899	09934	09968	10003
126	10037	10072	10106	10140	10175	10209	10243	10278	10312	10346
127	10380	10415	10449	10483	10517	10551	10585	10619	10653	10687
128	10721	10755	10789	10823	10857	10890	10924	10958	10992	11025
129	11059	11093	11126	11160	11193	11227	11261	11294	11327	11361
130	11394	11428	11461	11494	11528	11561	11594	11628	11661	11694
131	11727	11760	11793	11826	11860	11893	11926	11959	11992	12024
132	12057	12090	12123	-12156	12189	12222	12254	12287	12320	12352
133	12385	12418	12450	12483	12516	12548	12581	12613	12646	12678
134	12710	12743	12775	12808	12840	12872	12905	12937	12969	13001
135	13033	13066	13098	13130	13162	13194	13226	13258	13290	13322
136	13354	13386	13418	13450	13481	13513	13545	13577	13609	13640
137	13672	13704	13735	13767	13799	13830	13862	13893	13925	13956
138	13988	14019	14051	14082	14114	14145	14176	14208	14239	14270
139	14301	14333	14364	14395	14426	14457	14489	14520	14551	14582
140	14613	14644	14675	14706	14737	14768	14799	14829	14860	14891
141	14922	14953	14983	15014	15045	15076	15106	15137	15168	15198
142	15229	15259	15290	15320	15351	15381	15412	15442	15473	15503
143	15534	15564	15594	15625	15655	15685	15715	15746	15776	15806
144	15836	15866	15897	15927	15957	15987	16017	16047	16077	16107
145	16137	16167	16197	16227	16256	16286	16316	16346	16376	
146	16435	16465	16495	16524	16554	16584	16613	16643	16673	16702
147	16732	16761	16791	16820	16850	16879	16909	16938	16967	16997
148	17026	17056	17085	17114	17143	17173	17202	17231	17260	17289
149	17319	17348	17377	17406	17435	17464	17493	17522	17551	17580
150	17609	17638	17667	17696	17725	17754	17782	17811	17840	17869
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
150	17609	17638	17667	17696	17725	17754	17782	17811	17840	17869
151	17898.	17926	17955	17984	18013	18041	18070	18099	18127	18156
152	18184	18213	18241	18270	18298	18327	18355	18384	18412	18441
153	18469	18498	18526	18554	18583	18611	18639	18667	18696	18724
154	18752	18780	18508	18837	18865	18893	18921	18949	18977	19005
155	19033	19061	19089	19117	19145	19173	19201	19229	19257	19285
156	19312	19340	19368	19396	19424	19451	19479	19507	19535	19562
157	19590	19618	19645	19673	19700	19728	19756	19783	19811	19838
158	19866	19893	19921	19948	19976	20003	20030	20058	20085	20112
159	20140	20167	20194	20222	20249	20276	20303	20330	20358	20385
160	20412	20439	20466	20493	20520	20548	20575	20602	20629	20656
161	20683	20710	20737	20763	20790	20817	20844	20871	20898	20925
162	20952	20978	21005	21032	21059	21085	21112	21139	21165	21192
163	21219	21245	21272	21299	21325	21352	21378	21405	21431	21458
164	21484	21511	21537	21564	21590	21617	21643	21669	21696	21722
165	21748	21775	21801	21827	21854	21880	21906	21932	21958	21985
166	22011	22037	22063	22089	22115	22141	22167	22194	22220	22246
167	22272	22298	22324	22350	22376	22401	22427	22453	22479	22505
168	22531	22557	22583	22608	22634	22660	22686	22712	22737	22763
169	22789	22814	22840	22866	22891	22917	22943	22968	22994	23019
170	$2304 \underline{5}$	23070	23096	23121	23147	23172	23198	23223	23249	23274
171	23300	23325	23350	23376	23401	23426	23452	23477	23502	23528
172	23553	23578	23603	23629	23654	23679	23704	23729	23754	23779
173	23805	23830	23855	23880	$2390 \underline{5}$	23930	23955	23980	24005	24030
174	$2405 \underline{5}$	24080	24105	24130	$2415 \underline{5}$	24180	24204	24229	24254	24279
175	24304	24329	24353	24378	24403	24428	24452	24477	24502	24527
176	24551	24576	24601	24625	24650	24674	24699	24724	24748	24773
177	24797	24822	24846	24871	24895	24920	24944	24969	24993	25018
178	25042	25066	25091	25115	25139	25164	25188	25212	25237	25261
179	25285	25310	25334	25358	25382	25406	25431	2545 s	25479	25503
180	25527	25551	25575	25600	25624	25648	25672	25696	25720	25744
181	25768	25792	25816	25840	25864	25888	25912	25935	25959	25983
182	26007	26031	$2605 \underline{5}$	26079	26102	26126	26150	26174	26198	26221
183	26245	26269	26293	26316	26340	26364	26387	26411	26435	26458
184	26482	26505	26529	26553	26576	26600	26.623	26647	26670	26694
185	26717	26741	26764	26788	26811	26834	26858	26881	26905	26928
186	26951	26975	26998	27021	27045	27068	27091	27114	27138	27161
187	27184	27207	27231	27254	27277	27300	27323	27346	27370	27393
188	27416	27439	27462	27485	27508	27531	27554	27577	27600	27623
189	27646	27669	27692	27715	27738	27761	27784	27807	27830	27852
190	27875	27898	27921	27944	27.967	27989	28012	28035	28058	28081
191	28103	28126	28149	28171	28194	28217	28240	28262	28285	28307
192	28330	28353	28375	28398	28421	28443	28466	28488	28511	28533
193	28556	28578	28601	28623	28646	28668	28691	28713	28735	28758
194	28780	28803	28 S25	28847	28870	28892	28914	28937	28959	28981
195	29003	29026	29048	29070	29092	29115	29137	29159	29181	29203
196	29226	29248	29270	29292	29314	29336	29358	29380	29403	29425
197	29447	29469	29491	29513	29'535	29557	29579	29601	29623	$2964{ }^{\text {² }}$
198	29667	29688	29710	29732	29754	29776	29798	29820	29842	29863
199	29885	29907	29929	29951	29973	29994	30016	30038	30060	30081
200	30103	30125	30146	30168	30190	30211	30233	30255	30276	30298
N	0	1	2	3	4	5	6	7	8	9

\mathbf{N}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
$\begin{array}{llllll}30103 & 30125 & 30146 & 30168 & 30190\end{array}$ 3032030341303633038430406 3053530557305783060030621 $\begin{array}{llllll}30750 & 30771 & 30792 & 30814 & 30835\end{array}$ 3096330984310063102731048 $\begin{array}{lllllll}31 & 175 & 31 & 197 & 31 & 218 & 31 \\ 239 & 31 & 260\end{array}$ 3138731408314293145031471 3159731618316393166031681 3180631827318483186931890 3201532035320563207732098 3222232243322633228432305 3242832449324693249032510 $32634326543267 \underline{5} 3269 \underline{\underline{1}} 32715$ $\begin{array}{lllll}32838 & 32858 & 32879 & 32899 & 32919\end{array}$ 3304133062330823310233122
215
216
217
218
219
220
221
222
223
224
225

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
N
$\begin{array}{llllllllll}33 & 244 & 33 & 264 & 33 & 284 & 33 & 304 & 33 & 325\end{array}$ 3344533465334863350633526 3364633666336863370633726 3384633866338853390533925 3404434064340843410434124 $342423426234282 \quad 3430134321$ $34439344593447934498 \quad 34518$ 3463534655346743469434713 3483034850348693488934908 3502535044350643508335102 $\begin{array}{llllllll}35 & 218 & 35 & 238 & 35 & 257 & 35 & 276 \\ 35 & 295\end{array}$ 3541135430354493546835488 $\begin{array}{lllllll}35 & 603 & 35622 & 35641 & 35660 & 35679\end{array}$ $\begin{array}{lllllll}35 & 793 & 35813 & 35832 & 35851 & 35870\end{array}$ 3598436003360213604036059
3617336192362113622936248 3636136380363993641836436 3654936568365863660536624 3673636754367733679136810 3692236940369593697736996
$\begin{array}{llllllll}37 & 107 & 37 & 125 & 37 & 144 & 37 & 162 \\ 37 & 181\end{array}$ $372913731037328373463736 \underline{5}$ $\begin{array}{llllllll}37 & 475 & 37493 & 37511 & 37 & 530 & 37548\end{array}$ $\begin{array}{llllllll}37 & 658 & 37 & 676 & 37 & 594 & 37 & 712 \\ 37 & 731\end{array}$ $\begin{array}{llllll}37 & 840 & 37 & 858 & 3: & 76 \\ 37 & 894 & 37912\end{array}$ 3802138039380573807538093 $\begin{array}{llllllll}38 & 202 & 38 & 220 & 38 & 238 & 38 & 256\end{array} 38274$ 3838238399384173843538453 3856138578385963861438632 $\begin{array}{lllllll}38739 & 38757 & 3877 \underline{5} & 38792 & 38 & 810\end{array}$ $\begin{array}{llllll}38917 & 38934 & 38952 & 38970 & 38987\end{array}$ 3909439111391293914639164 $\begin{array}{llllll}39 & 270 & 39 & 287 & 39 & 305 \\ 39 & 322 & 39340\end{array}$ 3944539463394803949839515 3962039637396553967239690 3979439811398293984639863
5
6
7 8 9 3021130233302553027630298 3042830449304713049230514 3064330664306853070730728 3085630878308993092030942 3106931091311123113331154

3128131302313233134531366 3149231513315343155531576 $\begin{array}{lllllll}31702 & 31723 & 31744 & 31765 & 31785\end{array}$ 3191131931319523197331994 3211832139321603218132201
$\begin{array}{lllllll}32 & 325 & 32 & 346 & 32366 & 32 & 387 \\ 32408\end{array}$ 3253132552325723259332613 3273632756327773279732818 3294032960329803300133021 3314333163331833320333224
$\begin{array}{llllllll}33 & 34 & 33 & 365 & 33 & 385 & 33405 & 33425\end{array}$ 3354633566335863360633626 3374633766337863380633826 3394533965339853400534025 3414334163341833420334223
3434134361343803440034420 3453734557345773459634616 $\begin{array}{lllllll}34733 & 34753 & 34772 & 34792 & 34811\end{array}$ 3492834947349673498635005 $\begin{array}{lllllllllll}35 & 122 & 35 & 141 & 35 & 160 & 35 & 180 & 35 & 199\end{array}$

3531535334353533537235392 3550735526355453556435583 3569835717357363575535774 3588935908359273594635965 3607836097361163613536154
3626736286363053632436342 3645536474364933651136530 3664236661366803669836717 3682936847368663688436903 3701437033370513707037088 3719937218372363725437273 $\begin{array}{llllll}37 & 383 & 37401 & 37420 & 37438 & 37457\end{array}$ $\begin{array}{llllll}37566 & 37585 & 37603 & 37621 & 37639\end{array}$ $\begin{array}{lllllll}37 & 749 & 37767 & 37 & 785 & 37 & 803 \\ 37 & 822\end{array}$ 3793137949379673798538003
$\begin{array}{lllllllllllllll}38 & 112 & 38 & 130 & 38 & 148 & 38 & 166 & 38 & 184\end{array}$ 3829238310383283834638364 3847138489385073852538543 $\begin{array}{lllll}38650 & 38668 & 38686 & 38703 & 38721\end{array}$ 3882838846388633888138899

3900539023390413905839076 3918239199392173923539252 3935839375393933941039428 3953339550395683958539602 3970739724397423975939777 3988139898399153993339950

N	0	1	2	3	4	5	6	7	8	9
250	39794	39811	39829	39 S46	39863	39 S81	39898	39915	39933	39950
251	39967	39985	40002	40019	40037	40054	40071	40088	40106	40123
252	40140	40157	40175	40192	40209	40226	40243	40261	40278	40295
253	40312	40329	40346	40364	40381	40398	40415	40432	40449	40466
254	40483	40500	40518	40535	40552	40569	40586	40603	40620	40637
255	40654	40671	40688	40705	40722	40739	40756	40773	40790	40807
256	40824	40 S41	40858	40 S75	40592	40909	40926	40943	40960	40976
257	40993	41010	41027	41044	41061	41078	41095	41111	41128	41145
258	41162	41179	41196	41212	41229	41246	41263	41280	41296	41313
259	41330	41347	41363	41380	41397	41414	41430	41447	41464	41481
260	41497	41514	41531	41547	41564	41581	41597	41614	41631	41647
261	41664	41681	41697	41714	41731	41747	41764	41780	41797	41814
262	41830	41847	41863	41880	41896	41913	41929	41946	41963	41979
263	41996	42012	42029	42045	42062	42078	42095	42111	42127	42144
264	42160	42177	42193	42210	42226	42243	42259	42275	42292	42308
265	42325	42341	42357	42374	42390	42406	42423	42439	42455	42472
266	42488	42504	42521	42537	42553	42570	42586	42602	42619	42635
267	42651	42667	42684	42700	42716	42732	42749	42765	42781	42797
268	42813	42830	42 S46	42 S62	42 S78	42894	42911	42927	42943	42959
269	42975	42991	43008	43024	43040	43056	43072	43088	43104	43120
270	43136	43152	43169	43185	43201	43217	43233	43249	43265	43281
271	43297	43313	43329	43345	43361	43377	43393	43409	43425	43441
272	43457	43473	43489	43505	43521	43537	43553	43569	43584	43600
273	43616	43632	43648	43664	43680	43696	43712	43727	43743	43759
274	43775	43791	43507	43823	43838	43854	43870	43886	43902	43917
275	43933	43949	43965	43981	43996	44012	44028	44044	44059	44075
276	44091	44107	44122	44138	44154	44170	44185	44201	44217	44232
277	44248	44264	44279	44295	44311	44326	44342	44358	44373	44389
278	44404	44420	44436	44451	44467	44483	44498	44514	44529	44545
279	44560	44576	44592	44607	44623	44638	44654	44669	44685	44700
280	44716	44731	44747	44762	44778	44793	44809	44 S24	44840	44855
281	44871	44886	44902	44917	44932	44948	44963	44979	44994	45010
282	45025	45040	45056	45071	45086	45102	45117	45133	45148	45163
283	45179	45194	45209	45225	45240	45255	45271	45286	45301	45317
254	45332	45347	45362	45378	45393	45408	45423	45439	45454	45469
285	45484	45500	45515	45530	45545	45561	45576	45591	45606	45621
286	45637	45652	45667	45682	45697	45712	45728	45743	45758	45773
287	45788	$45 \mathrm{S03}$	45 S18	45834	45849	45864	45879	45894	45909	45924
288	45939	45954	45969	45984	46000	46015	46030	46045	46060	46075
289	46090	46105	46120	46135	46150	46165	46180	46195	46210	46225
290	46240	46255	46270	46285	46300	46315	46330	46345	46359	46374
291	46389	46404	46419	46434	46449	46464	46479	46494	46509	46523
292	46538	46553	46568	46583	46598	46613	46627	46642	46657	46672
293	46687	46702	46716	46731	46746	46761	46776	46790	. 46805	46820
294	46835	46850	46 S64	46879	46894	46909	46923	46938	46953	46967
295	46982	46997	47012	47026	47041	47056	47070	47085	47100	47114
296	47129	47144	47159	47173	47188	47202	47217	47232	47246	47261
297	47276	47290	47305	47319	47334	47349	47363	47378	47392	47407
298	47422	47436	47451	47465	47480	47494	47509	47524	47538	47553
299	47567	47582	47596	47611	47625	47640	47654	47669	47683	47698
300	47712	47727	47741	47756	47770	47784	47799	47813	47828	47842
N	0	1	2	3	4	5	6	7	8	9

\mathbf{N}	0	1	2	3	4	5	6	7	8	9
300	47712	47727	47741	47756	47770	47784	47799	47813	47828	47842
301	47857	47871	47885	47900	47914	47929	47943	47958	47972	47986
302	48001	48015	48029	48044	48058	48073	48087	48101	48116	48130
303	48144	48159	48173	48187	48202	48216	48230	48244	48259	48273
304	48287	48302	48316	48330	48344	48359	48373	48387	48401	48416
305	48430	48444	48458	48473	48487	48501	48515	48530	48544	48558
306	48572	48586	48601	48615	48629	48643	48657	48671	48686	48700
307	48714	48728	48742	48756	48770	48785	48799	48813	48827	48841
308	48855	48869	48883	48897	48911	48926	48940	48954	48968	48982
309	48996	49010	49024	49038	49052.	49066	49080	49094	49108	49122
310	49136	49150	49164	49178	49192	49206	49220	49234	49248	49262
311	49276	49290	49304	49318	49332	49346	49360	49374	49388	49402
312	49415	49429	49443	49457	49471	49485	49499	49513	49527	49541
313	49554	49568	49582	49596	49610	49624	49638	49651	49665	49679
314	49693	49707	49721	49734	49748	49762	49776	49790	49803	49817
315	49831	49845	49859	49872	49886	49900	49914	49927	49941	49955
316	49969	49982	49996	50010	50024	50037	50051	50065	50079	50092
317	50106	50120	50133	50147	50161	50174	50188	50202	50215	50229
318	50243	50256	50270	50284	50297	50311	50325	50338	50352	50365
319	50379	50393	50406	50420	50433	50447	50461	50474	50488	50501
320	50515	50529	50542	50556	50569	j0 583	50596	50610	50623	50637
321	50651	50664	50678	50691	$5070 \underline{1}$	50718	50732	50745	50759	50772
322	50786	50799	50813	50826	50840	50853	50866	50880	50893	50907
323	50920	50934	50947	50961	50974	50987	51001	51014	51028	51041
324	$5105 \underline{1}$	51068	51081	51095	51108	51121	51135	51148	51162	$5117 \underline{1}$
325	51188	51202	51215	51228	51242	51255	51268	51282	51295	51308
326	51322	51335	51348	51362	51375	51388	51402	51415	51428	51441
327	51455	51468	51481	51495	51508	51.521	51534	51548	51561	51574
328	51587	51601	51614	51627	51640	51654	51667	51680	51693	51706
329	51720	51733	51746	51759	51772	51786	51799	51812	51825	51838
330	51851	51865	51878	51891	51904.	51917	51930	51943	51957	51970
331	51983	51996	52009	52022	52035	52048	52061	52075	52088	52101
332	52114	52127	52140	52153	52166	52179	52192	52205	52218	52231
333	52244	52257	52270	52284	52297	52310	52323	52336	52349	52362
334	$5237 \underline{5}$	52388	52401	52414	52427	52440	52453	52466	52479	52492
335	52504	52517	52530	52543	52556	52569	52582	52595	52608	52621
336	52634	52647	52660	52673	52686	52699	52711	52724	52737	52750
337	52763	52776	52789	52802	$5281 \underline{5}$	52827	52840	52853	52866	52879
338	52892	52905	52917	52930	52943	52956	52969	52982	52994	53007
339	-53020	53033	53046	53058	53071	53084	53097	53110	53122	53135
340	53148	53161	53173	53186	53199	53212	53224	53237	53250	53263
341	53275	53288	53301	53314	53326	53339	53352	53364	53377	53390
342	53403	53415	53428	53441	53453	53466	53479	53491	53504	53517
343	53529.	53542	53555	53567	53580	53593	53605	53618	53631	53643
344	53656	53668	53681	53694	53706	53719	53732	53744	53757	53769
345	53782	53794	53807	53820	53832	53845	53857.	53870	53882	53895
346	53908	53920	53933	53945	53958	53970	53983	53995	54008	54020
347	54033	54045	54058	54070	. 54083	54095	54108	54120	54133	54145
348	54158	54170	54183	54195	54208	54220	54233	54245	54258	54270
349	54283	54295	54307	54320	54332	54345	54357	54370	54382	54394
350	54407	54419	54432	54444	54456	54469	54481	54494	54506	54518
\mathbf{N}	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
350	54407	54419	54432	54444	54456	54469	54481	54494	54506	54518
351	54531	54543	54555	54568	54580	54593	54605	54617	54630	54642
352	54654	54667	54679	54691	54704	54716	54728	54741	54753	54765
353	54777	54790	54802	54814	54827	54839	54851	54864	54876	54888
354	54900	54913	54925	54937	54949	54962	54974	54986	54998	55011
355	55023	55035	55047	55060	55072	55084	55096	55108	55121	55133
356	55145	55157	55169	55182	55194	55206	55218	55230	55242	55255
357	55267	55279	55291	55303	55315	55328	55340	55352	55364	55376
358	55388	55400	55413	55425	55437	55449	55461	55473	55485	55497
359	55509	55522	55534	55546	55558	55570	55582	55594	55606	55618
360	55630	55642	55654	55666	55678	55691	55703	55715	55727	55739
361	55751	55763	55775	55787	55799	55811	55823	55835	55847	55859
362	55871	55883	55895	55907	55919	55931	55943	$5595 \underline{5}$	55967	55979
363	55991	56003	56015	56027	56038	56050	56062	. 56074	56086	56098
364	56110	56122	56134.	56146	56158	56170	56182	56194	56205	56217
365	56229	56241	56253	56265	56277	56289.	56301	56312	56324	56336
366	56348	56360	56372	56384	56396	56407	56419	56431	56443	56455
367	56467	56478	56490	56502	56514	56526	56538	56549	56561	56573
368	$5658 \underline{5}$	56597	56608	56620	56632	56644	56656	56667	56679	56691
369	56703	56714	56726	56738	$567 \underline{50}$	56761	56773	56785	56797	56808
370	56820	56832	56844	56855	56867	56879	56891	56902	56914	56926
371	56937	56949	56961	56972	56984	56996	57008	57019	57031	57043
372	57054	57066	57078	57089	57101	57113	57124	57136	57148	57159
373	57171	57183	57194	57206	57217	57229	57241	57252	57264	57276
374	57287	57299	57310	57322	57334	57345	57357	57368	57380	57392
375	57403	57415	57426	57438	57449	57461	57473	57484	57496	57507
376	57519	57530	57542	57553	57565	57576	57588	57600	57611.	- 57623
377	57634	57646	57657	57669	57680	57692	57703	57715	57726	57738
378	57749	57761	57772	57784	57795	57807	57818	57830	57841	57852
379	57864	57875	57887	57898	57910	57921	57933	57944	57955	57967
380	57978	57990	58001	58013	58024	58035	58047	58058	58070	58081
381	58092	58104	58115	58127	58138	58149	58161	58172	58184	58195
382	58206	58218	58229	58240	58252	58263	58274	58286	58297	58309
383	58320	58331	58343	58354	58365	58377	58388	58399	58410	58422
384	58433	58444	58456	58467	58478	58490	58501	58512	58524	58535
385	58546	58557	58569	58580	58591	58602	58614	58625	58636	58647
386	58659	58670	58681	58692	58704	58715	58726	58737	58749	58760
387	58771	58782	58794	58805	58816	58827	58838	588 50	58861	58872
388	58883	58894	58906	58917	58928	58939	58950	58961	58973	58984
389	58995	59006	59017	59028	59040	59051	59062	59073	59084	59095
390	59106	59118	59129	59140	59151	59162	59173	59184	59195	59207
391	59218	59229	59240	59251	59262	59273	59284	59295	59306	59318
392	59329	59340	59351	59362	59373	59384	59395	59406	59417	59428
393	59439	59450	59461	59472	59483	59.494	59506	59517	59528	59539
394	59550	59561	59572	59583	59594	59605	59616	59627	59638	59649
395	59660	59671	59682	59693	59704.	59715	59726	59737	59748	59759
396	59770	59780	59791	59802	59813	59824	59835	59846	59857	59868
397	59879	59890	59901	59912	59923	59934	59945	59956	59966	59977
398	59988	59999	60010	60021	60032	60043	60054	60065	60076	60086
399	60097	60108	60119	60130	60141	60152	60163	60173	60184	60195
400	60206	60217	60228	60239	60249	60260	60271	60282	60293	60304
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
400	60206	60217	60228	60239	60249	60260	60271	60282	60293	60304
401	60314	60325	60336	60347	60358	60369	60379	60390	60401	60412
402	60423	60433	60444	60455	60466	60477	60487	60498	60509	60520
403	60531	60541	60552	60563	60574	60584	60595	60606	60617	60627
404	60638	60649	60660	60670	60681	60692	60703	60713	60724	60735
405	60746	60756	60767	60778	60788	60799	60810	60821	60831	60842
406	60853	60863	60874	60885	60895	60906	60917	60927	60938	60949
407	60959	60970	60981	60991	61002	61013	61023	61034	61045	61055
408	61066	61077	61087	61098	61109	61119	61130	61140	61 151	61162
409	61172	61183	61194	61204	61215	61225	61236	61247	61257	61268
410	61278	61289	61300	61310	61321	61331	61342	61352	61363	61374
411	61384	61395	61405	61416	61426	61437	61448	61458	61469	61479
412	61490	61500	61511	61521	61532	61542	61553	61563	61574	61584
413	61595	61606	61616	61627	61637	61648	61658	61669	61679	61690
414	61700	61711	61721	61731	61742	61752	61763	61773	61784	61794
415	61805	61815	61826	61836	61847	61857	61868	61878	61888	61899
416	61909	61920	61930	61941	61951	61962	61972	61982	61993	62003
417	62014	62024	62034	62045	62055	62066	62076	62086	62097	62107
418	62118	62128	62138	62149	62159	62170	62180	62190	62201	62211
419	62221	62232	62242	62252	62263	62273	62284	62294	62304	62315
420	62325	62335	62346	62356	62366	62377	62387	62397	62408	62418
421	62428	62439	62449	62459	62469	62480	62490	62500	62511	62521
422	62531	62542	62552	62562	62572	62583	62593	62603	62613	62624
423	62634	62644	62655	$6266 \underline{5}$	62675	62685	62696	62706	62716	62726
424	62737	62747	62757	62767	62778	62788	62798	62808	62818	62829
425	62839	62849	62859	62870	62880	62890	62900	62910	62921	62931
426	- 62941	62951	62961	62972	62982	62992	63002	63012	63022	63033
427	63043	63053	63063	63073	63083	63094	63104	63114	63124	63134
428	63144	$6315 \underline{5}$	63165	63175	63185	63195	63205	63215	63225	63236
429	63246	63256	63266	63276	63286	63296	63306	63317	63327	63337
430	63347	63357	63367	63377	63387	63397	63407	63417	63428	63438
431	63448	63458	63468	63478	63488	63498	63508	63518	63528	63538
432	63548	63558	63568	63579	63589	63599	63609	63619	63629	63639
433	63649	63659	63669	63679	63689	63699	63709	63719	63729	63739
434	63749	63759	63769	63779	63789	63799	63809	63819	63829	63839
435	63849	63859	63869	63879	63889	63899	63909	63919	63929	63939
436	63949	63959	63969	63979	63988	63998	64008	64018	64028	64038
437	64048	64058	64068	64078	64088	64098	64108	64118	64128	64137
438	64147	64157	64167	64177	64187	64197	64207	64217	64227	64237
439	64246	64256	64266	64276	64286	64296	64306	64316	64326	64335
440	64345	64355	64365	$6437 \underline{5}$	64385	64395	64404	64414	64424	64434
441	64444	64454	64464	64473	64483	64493	64503	64513	64523	64532
442	64542	64552	64562	64572	64582	64591	64601	64611	64621	64631
443	64640	64650	64660	64670	64680	64689	64699	64709	64719	64729
444	64738	64748	64758	64768	64777	64787	64797	64807	64816	64826
445	64836	64846	64856	64865	64875	64885	64895	64904	64914	
446	64933	64943	64953	64963	64972	64982	64992	65002	65011	65021
447	65031	65040	65050	65060	65070	65079	65089	65099	65108	65118
448	65128	65137	65147	65157	65167	65176	65186	65196	65205	65215
449	65225	65234	65244	65254	65263	65273	65283	65292	65302	65312
450	65321	65331	65341	65350	65360	65369	65379	65389	65398	65408
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
450	65321	65331	65341	65350	65360	65369	65379	65389	65398	65408
451	65418	65427	65437	65447	65456	65466	65475	65485	65495	65504
452	65514	65523	65533	65543	65552	65562	65571	65581	65591	65600
453	65610	65619	65629	65639	65648	65658	65667	65677	65686	65696
454	65706	65715	65725	65734	65744	65753	65763	65772	65782	65792
455	65801	65811	65820	65830	65839	65849	65858	05868	65877	65887
456	65896	65906	65916	65925	65935	65944	65954	65963	65973	65982
457	65992	66001	66011	66020	66030	66039	66049	66058	66068	66077
458	66087	66096	66106	66115	66124	66134	66143	66153	66162	66172
459	66181	66191	66200	66210	66219	66229	66238	66247	66257	66266
460	66276	66285	66295	66304	66314	66323	66332	66342	66351	66361
461	66370	66380	66389	66398	66408	66417	66427	66436	66445	66455
462	66464	66474	66483	66492	66502	66511	66521	66530	66539	66549
463	66558	-6567	66577	66586	66596	66605	66614	66624	66633	66642
464	66652	66661	66671	66680	66689	66699	66708	66717	66727	66736
465	66745	66755	66764	66773	66783	66792	66801	66811	66820	66829
466	66839	66848	66857	66867	66876	66885	66894	66904	66913	66922
467	66932	66941	66950	66960	66969	66978	66987	66997	67006	67015
468	67025	67034	67043	67052	67062	67071	67080	67089	67099	67108
469	67117	67127	67136	67145	67154	67164	67173	67182	67191	67201
470	67210	67219	67228	67237	67247	67256	67265	67274	67284	67293
471	67302	67311	67321	67330	67339	67348	67357	67367	67376	67385
472	67394	67403	67413	67422	67431	67440	67449	67459	67468	67477
473	67486	67495	67504	67514	67523	67532	67541	67550	67560	67569
474	67578	67587	67596	67605	67614	67624	67633	67642	67651	67660
475	67669	67679	67688	67697	67706	67715	67724	67733	67742	67752
476	67761	'67 770	67779	67788	67797	67806	67815	67825	67834	67843
477	67852	67861	67870	67879	67888	67897	67906	67916	67925	67934
478	67943	67952	67961	67970	67979	67988	67997	68006	68015	68024
479	68034	68043	68052	68061	68070	68079	68088	68097	68106	68115
480	68124	68133	68142	68151	68160	68169	68178	68187	68196	68205
481	$6821 \underline{5}$	68224	68233	68242	68251	68260	68269	68278	68287	68296
482	$6830 \underline{\underline{5}}$	68314	68323	68332	68341	68350	68359	68368	68377	68386
483	68395	68404	68413	68422	68431	68440	68449	68458	68467	68476
484	68485	68494	68502	68511	68520	68529	68538	68547	68556	68565
485	68574	68583	68592	68601	68610	68619	68628	68637	68646	$6865 \underline{5}$
486	68664	68673	68681	68690	68699	68708	68717	68726	68735	68744
487	68753	68762	68771	68780	68789	68797	68806	68815	68824	68833
488	68842	68551	68860	68869	68878	68886	68895	68904	68913	68922
489	68931	68940	68949	68958	68966	68975	68984	68993	69002	69011
490	69020	69028	69037	69046	69055	69064	69073	69082	69090	69099
491	69108	69117	69126	69135	69144	69152	69161	69170	69179	69188
492	69197	69205	69214	69223	69232	69241	69249	69258	69267	69276
493	69285	69294	69302	69311	69320	69329	69338	69346	69355	69364
494	69373	69381	69390	69399	69408	69417	69425	69434	69443	69452
495	69461	69469	69478	69487	69496	69504	69513	69522	69531	69539
496	69548	69557	69566	69574	69583	69592	69601	69609	69618	69627
497	69636	69644	69653	69662	69671	69679	69688	69697	69705	69714
498	69723	69732	69740	69749	69758	69767	69775	69784	69793	69801
499	69810	69819	69827	69836	69845	69854	69862	69871	69880	69888
500	69897	69906	69914	69923	69932	69940	69949	69958	69966	69975
N	0	1	2	3	4	5	6	7	8	9

\mathbf{N}	0	1	2	3	4	5	6	7	8	9
500	69897	69906	69914	69923	69932	69940	69949	69958	69966	69975
501	69984	69992	70001	70010	70018	70027	70036	70044	70053	70062
502	70070	70079	70088	70096	70105	70114	70122	70131	70140	70148
503	70157	70165	70174	70183	70191	70200	70209	70217	70226	70234
504	70243	70252	70260	70269	70278	70286	70295	70303	70312	70321
505	70329	70338	70346	$7035 \underline{5}$	70364	70372	70381	70389	70398	70406
506	70415	70424	70432	70441	70449	70458	70467	70475	70484	70492
507	70501	70509	70518	70526	70535	70544	70552	70561	70569	70578
508	70586	70595	70603	70612	70621	70629	70638	70646	$7065 \underline{5}$	70663
509	70672	70680	70689	70697	70706	70714	70723	70731	70740	70749
510	70757	70766	70774	70783	70791	70800	70808	70817	70825	70834
511	70842	70851	70859	70868	70876	70885	70893	70902	70910	70919
512	70927	7,0935	70944	70952	70961	70969	70978	70986	70995	71003
513	71012	71020	71029	71037	71046	71054	71063	71071	71079	71088
514	71096	71105	71113	71122	71130	71139	71147	71155	71164	71172
515	71181	71:189	71198	71206	71214	71223	71231	71240	71248	71257
516	71265	71273	71282	71290	71299	71307	71315	71324	71332	71341
517	71349	71357	71366	71374	71383	71391	71399	71408	71416	71425
518	71433	71441	71450	71458	71466	71475	71483	71492	71500	71508
519	71517	71.525	71533	71542	71550	71559	71567	71575	71584	71592
520	71600	71609	71617	71625	71634	71642	71650	71659	71667	71675
521	71684	71692	71700	71709	71717	71725	71734	71742	71750	71759
522	71767	71775	71784	71792	71800	71809	71817	71825	71834	71842
523	71850	71858	71867	71875	71883	71892	71900	71908	71917	71925
524	71933	71941	71950	71 958	71966	71975	71983	71991	71999	72008
525	72016	72024	72032	72041	72049	72057	72066	72074	72082	72090
526	72099	72107	72115	72123	72132	72140	72148	72156	72165	72173
527	72181	72189	72198	72206	72214	72222	72230	72239	72247	72255
528	72263	72272	72280	72288	72296	72304	72.313	72321	72329	72337
529	72346	72354	72362	72370	72378	72387	72395	72403	72411	72419
530	72428	72436	72444	72452	72460	72469	72477	72485	72493	72501
531	72509	72518	72526	72534	72542	72550	72558	72567	72575	72583
532	72591	72599	72607	72616	72624	72632	72640	72648	72656	72665
533	72673	72681	72689	72697	72705	72713	72722	72730	72738	72746
534	72754	72762	72770	72779	72787	72795	72803	72811	72819	72827
535	72835	72843	72852	72860	72868	72876	72884	72892	72900	72908
536	72916	72925	72933	72941	72949	72957	72965	72973	72981	72989
537	72997	73006	73014	73022	73030	73038	73046	73054	73062	73070
538	73078	73086	73094	73102	73111	73119	73127	73135	73143	73151
539	73159	73167	$7317 \underline{5}$	$73^{\prime} 183$	73191	73199	73207	73215	73223	73231
540	73239	73247	73255	73263	73272	73280	73288	73296	73304	73312
541	73320	73328	73336	73344	73352	73360	73368	73376	73384	73392
542	73400	73408	73416	73424	73432	73440	73448	73456	73464	73472
543	73480	73488	73496	73504	73512	73520	73528	73536	73544	73552
544	73560	73568	73576	73584	73592	73600	73608	73616	73624	73632
545	73640	73648	73656	73664	73672	73679	73687	73695	73703	73711
546	73719	73727	73735	73743	73751	73759	73767	73775	73783	73791
547	73799	73807	73815	73823	73830	73838	73846	73854	73 S62	73870
548	73878	73886	73894	73902	73910	73918	73926	73933	73941	73949
549	73957	73965	73973	73981	73989	73997	74005	74013	74020	74028
550	74036	74044	74052	74060	74068	74076	74084	74092	74099	74107
N	0	1	2	3	4	5	6	7	8	9

N	(1)	1	2	3	4	5	6	7	8	9
550	74036	74044	74052	74060	74068	74076	74084	74092	74099	74107
551	74115	74123	74131	74139	74147	74155	74162	74170	74178	74186
552	74194	74202	74210	74218	74225	74233	74241	74249	74257	74265
553	74273	74280	74288	74296	74304	74312	74320	74327	74335	74343
554	74351	74359	74367	74374	74382	74390	74398	74406	74414	$74+21$
555	74429	74437	74445	74453	74461	74468	74476	74484	74492	$74 \underline{500}$
556	74507	74515	74523	74531	74539	74547	74554	74562	74570	74578
557	74586	74593	74601	74609	74617	74624	74632	74640	74648	74656
558	74663	74671	74679	74687	74695	74702	74710	74718°	74726	74733
559	74741	74749	74757	74764	74772	74780	74788	74796	74803	74811
560	74819	74827	74834	74842	74850	74858	74865	74873	74881	74889
561	74896	74904	74912	74920	74927	74935	74943	74950	74958	74966
562	74974	74981	74989	74997	75005	75012	75020	75028	75035	75043
563	75051	75059	75066	75074	75082	75089	75097	75105	75113	75120
564	75128	75136	75143	75151	75159	75166	75174	75182	75189	75197
565	$7520 \underline{5}$	75213	75220	75228	75236	75243	75251	75259	75266	75274
566	75282	75289	75297	75305	75312	75320	75328	75335	75343	75351
567	75358	75366	75374	75381	75389	75397	75404	75412	75420	75427
568	75435	75442	75450	75458	75465	75473	75481	75488	75496	75504
569	75511	75519	75526	75534	75542	75549	75557	75565	75572	75580
570	75587	75595	75603	75610	75618	75626	75633	75641	75648	75656
571	75664	75671	75679	75686	75694	75702	75709	75717	75724	75732
572	75740	75747	$7575 \underline{5}$	75762	75770	75778	75785	75793	75800	75808
573	75815	75823	75831	75838	75846	75853	75861	75868	75876	75884
574	75891	75899	75906	75914	75921	75929	75937	75944	75952	75959
575	75967	75974	75982	75989	75997	76005	76012	76020	76027	76035
576	76042	76050	76057	76065	76072	76080	76087	76095	76103	76110
577	76118	76125	76133	76140	76148	76155	76163	76170	76178	76185
578	76193	76200	76208	76215	76223	76230	76238	76245	76253	76260
579	76268	76275	76283	76290	76298	76305	76313	76320	76328	76335
580	76343	76350	76358	76365	76373	76380	76388	76395	76403	76410
581	76418	76425	76433	76440	76448	76455	76462	76470	76477	76485
582	76492	$76 \underline{500}$	76507	76515	76522	76530	76537	76545	76552	76559
583	76567	76574	76582	76589	76.597	76604	76612	76619	76626	76634
584	76641	76649	76656	76664	76671	76678	76686	76693	76701	76708
585	76716	76723	76730	76738	76745	76753	76760	76768	$7677 \underline{5}$	76782
586	76790	76797	76805	76812	76819	76827	76834	76842	76849	76856
587	76864	76871	76879	76886	76893	76901	76908	76916	76923	76930
588	76938	76945	76953	$\therefore 6960$	76967	76975	76982	76989	76997	77004
589	77012	77019	77026	77.034	77041	77048	77056	77063	77070	77078
590	77085	77093	77100	77107	77115	77122	77129	77137	77144	77151
591	77159	77166	7.7173	77181	77188	77195	77203	77210	77217	77225
592	77232	77240	77247	77254	77262	77269	77276	77283	77291	77298
593	17305	77313	77320	77327	77335	77342	77349	77357	77364	77371
594	77379	77386	77393	77401	77408	77415	77422	77430	77437	77444
595	77452	77459	77466	77474	77481	77488	77495	77503	77510	77517
595	77525	77532	77539	77546	77554	77561	77568	77576	77583	77590
597	77597	77605	77612	77619	77627	77634	77641	77648	77656	77663
598	77670	77677	77685	77692	77699	77706	77714	77721	77728	77735
599	77743	77750	77757	77764	77772	77779	77786	77793	77801	77808
600	77815	77822	77830	77837	77844	77851	77859	77866	77873	77880
N	(1)	1	2	3	4	5	6	7	8	9

$550-600$

N	0	1	2	3	4	5	6	7	8	9
600	77815	77822	77830	$\overline{77837}$	$\overline{77844}$	$\overline{77851}$	77859	77866	77873	77880
601	77887	77895	77902	77909	77916	77924	77931	77938	77945	77952
602	77960	77967	77974	77981	77988	77996	78003	78010	78017	78025
603	78032	78039	78046	78053	78061	78068	$7807 \underline{5}$	78082	78089	78097
604	78104	78111	78118	78125	78132	78140	78147	78154	78161	78168
605	78176	78183	78190	خ் 197	78204	78211	78219	78226	78233	78240
606	78247	78254	78262	78269	78276	78283	78290	78297	78305	78312
607	78319	78326	78333	78340	78347	78355	78362	78369	78376	78383
608	78390	78398	78405	78412	78419	78426	78433	78440	78447	78455
609	78462	78469	78476	78483	78490	78497	78504	78512	78519	78526
610	78533	78540	78547	78554	78561	78569	78576	78583	78590	78597
611	78604	78611	78618	78625	78633	78640	78647	78654	78661	78668
612	78675	78682	78689	78696	78704	78711	78718	78725	78732	78739
613	78746	78753	78760	78767	78774	78781	78789	78796	78803	78810
614	78817	78824	78831	78838	78845	78852	78859	78866	78873	78880
615	78888	$7889 \underline{5}$	78902	78909	78916	78923	78930	78937	78944	78951
616	78958	78965	78972	78979	78986	78993	79000	79007	79014	79021
617	79029	79036	79043	79050	79057	79064	79071	79078	79085	79092
618	79099	79106	79113	79120	79127	79134	79141	79148	79155	79162
619	79169	79176	79183	79190	79197	79204	79211	79218	79225	79232
620	79239	79246	79253	79260	79267	79274	79281	79288	79295	79302
621	79309	79316	79323	79330	79337	79344	79351	79358	79365	79372
622	79379	79386	79393	79400	79407	79414	79421	79428	79435	79442
623	79449	79456	79463	79470	79477	79484	79491	79498	79505	79511
624	79518	79525	79532	79539	79546	79553	79560	79567	79574	79581
625	79588	79595	79602	79609	79616	79623	79630	79637	79644	79650
626	79657	79664	79671	79678	79685	79692	79699	79706	79713	79720
627	79727	79734	79741	79748	79754	79761	79768	79775	79782	79789
628	79796	79803	79810	79817	79824	79831	79837	79844	79851	79858
629	79865	79872	79879	79886	79893	79900	79906	79913	79920	79927
630	79934	79941	79948	$7995 \underline{1}$	79962	79969	79975	79982	79989	79996
631	80003	80010	80017	80024	80030	80037	80044	80051	80058	80065
632	80072	80079	80085	80092	80099	80106	80113	80120	80127	80134
633	80140	80147	80154	80161	80168	80175	80182	80188	80195	80202
634	80209	80216	80223	80229	80236	80243	80250	80257	80264	80271
635	80277	80284	80291	80298	$8030 \underline{5}$	80312	80318	80325	80332	80339
636	80346	80353	80359	80366	80373	80380	80387	S0 393	80400	80407
637	80414	80421	80428	80434	80441	80448	80455	80462	80468	80475
638	80482	80489	80496	80.502	80509	80516	80523	80530	80536	80543
639	80550	80557	80564	80570	80577	80584	80591	80598	80604	80611
640	80618	80625	80632	80638	80645	80652	80659	80665	80672	80679
641	80686	80693	80699	80706	80713	80720	80726	80733	80740	80747
642	80754	80760	80767	80774	80781	80787	80794	80801	80808	80814
643	80821	80828	$8083 \underline{5}$	80841	80848	80855	80862	80868	80875	80882
644	80889	80895	80902	80909	80916	80922	80929	80936	80943	80949
645	80956	80963	80969	80976	80983	80990	80996	81003	81010	81017
646	81023	81030	81037	81043	81050	81057	81064	81070	81077	81084
647	81090	81097	81104	81111	81117	81124	81131	81137	81144	81151
648	81158	81164	81171	81178	81184	81191	81198	81204	81211	81218
649	81224	81231	81238	81245	81251	81258	81265	81271	81278	81285
650	81291	81298	81305	81311	81318	81325	81331	81338	81345	81351
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
550	S1 291	81298	81305	81311	81318	81325	81331	81338	81345	81351
651	81358	81365	81371	81378	S1 385	81391	81398	81405	S1411	81418
652	81425	81431	81438	81445	81451	81458	81465	81471	81478	S1485
653	81491	S1 498	81505	81511	S1 518	81525	81531	81538	81544	81551
654	81558	81564	81571	81578	81584	81591	81598	81604	81611	81617
655	81624	S1 631	S1 637	S1 644	S1 651	81657	81664	81671	81677	81684
656	S1 690	S1 697	S1 704	81710	S1 717	81723	81730	81737	81743	81750
657	S1757	81763	81770	81776	S1 783	81790	81796	81503	81809	81816
658	81523	81829	81836	81842	81849	81856	81862	81869	81875	81882
659	81889	81895	81902	81908	81915	81921	81928	81935	S1 941	81948
660	81954	81961	81968	81974	81981	81987	81994	82000	82007	82014
661	82020	82027	82033	82040	82046	82053	82060	82066	82073	82079
662	82086	S2 092	82099	82105	S2 112	82119	82125	82132	82138	82145
663	82151	82158	82164	S2 171	82178	82184	82191	82197	82204	82210
664	82217	82223	82230	S2 236	S2 243	82249	82256	82263	82269	S2 276
665	82282	82289	82295	82302	82308	82315	82321	82328	82334	82341
666	82347	82354	S2 360	S2 367	S2 373	82380	82387	82393	S2 400	82406
667	82413	82419	82426	82432	S2 439	82445	82452	82458	82465	82471
668	82478	82484	82491	S2 497	S2 504	82510	82517	82523	82530	82536
669	82543	82549	82556	S2 562	S2 569	82575	82582	82588	82595	82601
670	82607	82614	82620	82627	S2 633	82640	82646	82653	82659	S2 666
671	82672	S2 679	82685	S2 692	S2 698	S2 705	82711	82718	82724	82730
672	82737	82743	82750	S2 756	S2 763	82769	82776	82782	82789	S2 795
673	82802	82808	82814	S2 821	82827	82834	82840	S2 847	82853	82860
674	82866	82872	S2 879	82885	82892	S2 898	82905	82911	S2 918	82924
675	82930	82937	82943	82950	82956	82963	82969	82975	82982	82988
676	82995	83001	83008	83014	83020	83027	83033	83040	83046	83052
677	83059	83065	83072	83078	S3 085	83091	83097	83104	83110	S3 117
678	83123	83129	83136	S3 142	S3 149	83155	83161	83168	83174	83181
679	83187	83193	83200	83206	S3 213	83219	83225	83232	83238	$8324 \underline{5}$
	83251	83257	83264	83270	83276	83283	83289	S3 296	83302	83308
681	83315	83321	83327	S3 334	83340	S3 347	83353	S3 359	83366	83372
682	83378	83385	83391	S3 398	S3 404	83410	83417	S3 423	83429	83436
683	83442	83448	83455	83461	83467	83474	83480	83487	83493	83499
684	83506	83512	83518	83525	83531	83537	83544	83550	83556	83563
685	83569	83575	83582	83588	83594	83601	83607	83613	83620	83626
686	S3 632	83639	83645	83651	S3 658	83664	S3 670	S3 677	S3 683	S3 689
687	83696	83702	83708	83715	83721	83727	83734	S3 740	83746	83753
688	83759	S3 765	83771	83778	83784	83790	83797	83803	S3 809	S3 816
689	83822	83828	83835	83841	S3 847	83853	83860	83866	S3 872	83879
690	83885	83891	83897	83904	83910	83916	83923	83929	S3 935	83942
691	S3948	83954	83960	S3 967	83973	83979	83985	S3 992	83998	S4 004
692	84011	84017	84023	84029	84036	S4 042	84048	84055	84 061	S4 067
693	84073	84080	84086	84092	84098	84105	84111	S+ 117	S+ 123	84130
694	84136	84142	S4 148	8415 s	84161	84167	84173	84180	S4 186	84192
695	84198	$8+205$	$8+211$	84217	84223	84230	84236	84242	84248	84255
696	84261	84267	84273	84280	S4 286	84292	St 298	84305	84 311	84317
697	84323	84330	84336	S4 $3+2$	84348	84354	84361	84367	84373	84379
698	84386	84392	84398	84404	84410	84417	84423	84429	S+435	S+442
699	84448	84454	84460	84466	84473	84479	84485	84491	84497	S4 504
700	84510	84516	84522	84528	84535	84541	84547	S4 553	84559	84566
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
700	$\overline{84510}$	84516	84522	84528	84535	84541	84547	84553	8455	84566
701	84572	S4 578	84584	84590	84597	84603	84609	84615	84621	84628
702	84634	84640	84646	84652	84658	84665	84671	84677	84683	84689
703	84696	84702	84708	84714	84720	84726	84733	84739	84745	84751
704	84757	84763	84770	84776	84782	84788	84794	84800	848	84813
705	84819	84825	84831	848	848	50	84856	84862	84	84874
706	84880	84887	84893	84899	84905	84911	84917	84924	84930	8493
707	84942	84948	84954	84960	84967	84973	84979	84985	84991	84997
708	85003	85009	85016	85022	85028	85034	85040	85046	85052	85 058
709	85065	85071	85077	85083	85089	85095	85101	85107	85114	85120
710	85126	85132	85138	85144	85150	85156	85163	85169	85	85181
711	85187	85193	85199	85205	85211	85217	85224	85230	85236	85242
712	85248	85254	85260	85266	85272	85278	85285	85291	85297	85303
713	85309	85315	85321	85327	85333	85339	85345	85352	85358	85364
714	85370	85376	85382	85388	85394	85400	85406	85412	85418	85425
715	85431	85437	85443	85449	85455	85461	85467	85473	85479	85485
716	85491	85497	85503	85509	85516	85522	85528	85534	85540	85546
717	85552	85558	85564	85570	85576	85582	85588	85594	85600	85606
718	85612	85618	85625	85631	85637	85643	85649	85655	85661	85667
719	85673	85679	85685	85691	85697	85703	85709	85715	85721	85727
720	85733	85739	85745	85751	85757	85763	85769	85775	85781	85788
721	85794	85800	85806	85812	85818	85824	85830	85836	85842	85848
722	85854	85850	85866	85872	85878	85884	85890	85896	8590	85908
723	85914	85920	85926	85932	85938	85944	85950	85956	85962	85968
724	85974	85980	85986	85992	85998	86004	86010	86016	86022	5628
725	86034	86040	86046	86052	86058	86064	86070	¢ 86076	86082	86088
726	86094	86100	86106	86112	86118	86124	86130	86136	S6 141	86147
727	86153	86159	86165	86171	86177	86183	86189	86195	86201	S6207
728	86213	86219	86225	86231	86237	86243	86249	86255	86261	86267
729	86273	86279	285	86291	86297	86303	86308	86314	86320	86326
730	86332	86338	86344	86350	86356	86362	86368	86374	380	. 86386
731	86392	86398	86404	86410	S6415	86421	86427	86433	86439	86445
732	86451	86457	86463	86469	86475	86481	S6487	86493	86499	86504
733	86510	86516	86522	86528	86534	86540	86546	86552	86558	86564
734	86570	86576	86581	86587	865	86	86	86	86617	86623
735	86629	86635	86641	86646	86652	86658	86664	86670	86676	86682
736	86688	86694	86700	86705	86711	86717	. 86723	86729	86735	86741
737	86747	86753	86759	86764	86770	86776	86782	86788	86794	86800
738	86806	86812	86817	86823	86829	86835	86841	86847	86853	86859
739	86864	86870	86876	8688	86888	68	869	86	6991	86917
740	86923	86929	86935	86941	86947	86953	86958	86964	86970	86976
741	86982	86988	86994	86999	87005	87011	87017	87023	87029	87035
742	87040	87046	87052	87058	87064	87070	87075	87081	87087	87093
743	87099	87105	87111	87116	87122	87128	87134	87140	87146	87151
744	87157	87163	87169	87175	87181	87186	87192	87.198	8720	87210
745	87216	87221	87227	87233	87239	87245	87251	87256	87262	87268
746	87274	87280	87286	87291	87297	87303	87309	87315	87320	87326
747	87332	87338	87344	87349	87355	87361	87367	87373	87379	87384
748	87390	87396	87402	87408	87413	87419	87425	87431	87437	87442
749	87448	87454	87460	87466	87471	87477	87	87	87	87500
750	87506	87512	518	523	87529	87535	87541	87547	8755	7558
N	O	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
750	S7 506	87512	87518	87523	87529	87535	87541	87547	87552	87558
751	87564	87570	87576	87581	87587	87593	87599	87604	87610	87616
752	87622	S7 628	87633	87639	87645	87651	87656	87662	87668	87674
753	87679	87685	87691	87697	87703	S7 708	87714	87720	87726	87731
754	87737	87743	87 749	87754	87760	87766	87772	87777	87783	87789
755	87795	S7 800	87806	87812	87818	87823	87829	87835	87841	87846
756	87852	S7 858	87864	87869	87875	87881	87887	87892	87898	87904
757	87910	87915	87921	87927	87933	87938	87944	87950	87955	87961
758	87967	87973	87978	87984	87990	87996	88001	88007	SS 013	S8 018
759	88024	S8 030	88036	88041	$880+7$	- 88053	88058	S8 064	88070	SS 076
760	88081	S8 087	88093	88098	88104	88110	8S 116	S8 121	88127	88133
761	S8 138	S8 144	S8 150	88156	88161	88167	88173	88178	88184	88 190
762	S8 195	S8 201	SS 207	88213	88218	88224	S8 230	S8 235	88241	S8 247
763	S8 252	88258	88264	S8 270	88275	88281	S8 287	S8 292	S8 298	88304
764	S8 309	88315	88321	88326	88332	88338	88343	88349	88355	88360
765	S8 366	SS 372	88377	88383	88389	88395	88400	88406	S8 412	88417
766	S8 423	SS 429	88434	88440	S8 446	88451	88457	88463	88468	88474
767	- 88480	SS 485	SS 491	88497	88502	88508	S8 513	88519	88525	88530
768	S8 536	S8 542	S8 547	88553	S8 559	88564	88570	88576	88581	88587
769	88593	S8 598	S8 604	88610	88615	88621	88627	88632	88638	88643
770	88649	$8865 \underline{1}$	88660	88 666	SS 672	88677	88683	88689	88 694	S8 700
771	88705	S8 711	S8 717	88722	S8 728	88734	88739	88745	88750	88756
772	88762	88767	S8 773	88779.	S8 784	88790	88795	88801	88807	88812
773	88818	S8 824	88829	$88835{ }^{\circ}$	SS 840	S8 846	S8 852	S8 857	S8 863	88868
774	S8 874	S8 880	88885	88891	88897	SS 902	88908	88913	88919	SS 925
775	88930	88936	S8 941	88947	88953	88958	88964	88969	88975	88981
776	88986	88992	88997	89003	S9 009	S9 014	89020	89025	89031	89037
777	59042	89048	S9 053	89059	89064	89070	89076	89 081	89087	89092
778	89098	S9 104	89109	S9 115	89120	S9 126	89131	S9 137	89143	S9 148
779	89154	89159	$8916 \underline{1}$	89170	89176	89182	89187	89193	89198	S9 204
780	89209	S9 215	89221	89226	89232	89237	89243	89248	89254	89260
781	89265	S9 271	89276	89282	89287	89293	89298	89304	S9 310	S9 315
782	89321	89326	89332	89337	S9 343	89348	89354	S9 360	S9 365	S9 371
783	89376	89382	89387	89393	89398	89404	S9 409	89 415	89421	89426
784	89432	89437	89443	89448	89454	89459	89465	89470	89476	S9 481
785	89487	89492	89498	S9 504	89509	89515	89520	89526	89531	89537
786	89542	89548	89553	89559	89564	89570	89575	89581	S9 586	89592
787	89597	89603	89609	89614	89620	89625	89631	89636	89642	89647
788	89653	89658	89664	89669	89675	89680	89686	89691	89 697	89702
789	89708	S9 713	89719	89724	89730	89735	89741	89746	89752	S9 757
790	89763	89768	89774	89779	S9 785	89790	89796	S9 801	S9 S07	S9 812
791	89818	S9 823	89829	89834	S9 840	S9 845	S9 851	89856	89862	S9 867
792	89873	89878	89883	89889.	89894	89900	S9 905	89911	89916	89922
793	89927	89933	89938	89944	89949	89955	89960	89966	89971	89977
794	89982	S9 988	89993	89998	90004	90009	90015	90020	90026	90031
795	90037	90042	90048	90053	90059	90064	90069	90075	90080	90086
796	90091	90097	90102	90108	90113	90119	90124	90129	90135	90140
797	90146	90151	90157	90162	90168	90173	90179	90184	90189	90195
798	90200	90206	90211	90217	90222	90227	90233	90238	90244	90249
799	$9025 \underline{5}$	90260	90266	90271	90276	90282	90287	90293	90298	90304
800	90309	90314	90320	90325	90331	90336	90342	90347	90352	90358
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4
800	90309	90314	90320	90325	90331
801	90363	90369	90374	90380	90385
802	90417	90423	90428	90434	90439
803	90472	90477	90482	90488	90493
804	90526	90531	90536	90542	90547
805	90580	90585	90590	90596	90601
806	90634	90639	90644	$906 \underline{1} 0$	90655
807	90687	90693	90698	90703	90709
808	90741	90747	90752	90757	763

$810 \quad 908499085490859 \quad 9086 \underline{5} 90870$ $811 \quad 9090290907909139091890924$ $812 \quad 9095690961909669097290977$ $813 \quad 9100991014910209102591030$ $814 \quad 9106291068910739107891084$
8159111691121911269113291137 816 817 818 819
820
821
822
823
824
825
826
827
828
S29
830
831
S32
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
N 9116991174911809118591190 9122291228912339123891243 9127591281912869129191297 9132891334913399134491350

9138191387913929139791403 9143491440914459145091455 9148791492914989150391508 9154091545915519155691561 9159391598916039160991614 9164591651916569166191666 9169891703917099171491719 9175191756917619176691772 9180391808918149181991824 9185591861918669187191876
9190891913919189192491929 9196091965919719197691981 9201292018920239202892033 9206592070920759208092085 9211792122921279213292137

9216992174921799218492189 9222192226922319223692241 9227392278922839228892293 $92324923309233 \underline{5} 9234092345$ 9237692381923879239292397
9242892433924389244392449 9248092485924909249592500 9253192536925429254792552 9258392588925939259892603 $926349263992645926 \underline{5} 09265 \underline{5}$

9268692691926969270192706 9273792742927479275292758 9278892793927999280492809 9284092845928509285592860 9289192896929019290692911 9294292947929529295792962
$\overline{1} \quad \frac{2}{3} \quad 4$

N	0	1	2	3	4	5	6	7	8	9
850	92942	92947	92952	92957	92962	92967	92973	92978	92983	92988
851	92993	92998	93003	93008	93013	93018	93024	93029	93034	93039
852	$930+4$	93049	93054	93059	93064	93069	93075	93080	93085	93090
853	93095	93100	93105	93110	93115	93120	93125	93131	93136	93141
854	93146	93151	93156	93161	93166	93171	93176	93181	93186	93192
855	93197	93202	93207	93212	93217	93222	93227	93232	93237	93242
856	93247	93252	93258	93263	93268	93273	93278	93283	93288	93293
857	93298	93303	93308	93313	93318	93323	93328	93334	93339	93 344
858	93349	93354	93359	93364	93369	93374	93379	93384	93389	93394
859	93399	93404	93409	93414	93420	93425	93430	93435	93440	93445
860	93450	93455	93460	93465	$93^{\circ} 470$	93475	93480	93485	93490	93495
861	93500	93505	93510	93515	93520	93526	93531	93536	93541	93546
862	93551	93556	93561	93566	93571	93576	93581	93586	93591	93596
863	93601	93606	93611	93616	93621	93626	93631	93636	93641	93646
864	93651	93656	93661	93666	93671	93676	93682	93687	93692	93697
865	93702	93707	93712	93717	93722	93727	93732	93737	93742	93747
866	93752	93757	93762	93767	93772	93777	93782	93787	93792	93797
867	93802	93807	93812	93817	93822	93827	93832	93837	93842	93847
868	93852	93857	93862	93867	93872	93877	93882	93887	93892	93897
869	93902	93907	93912	93917	93922	93927	93932	93937	93942	93947
870	93952	93957	93962	93967	93972	93977	93982	93987	93992	93997
871	94002	94007	94012	94017	94022	94027	94032	94037	94042	94047
872	94052	94057	94062	94067	94072	94077	94082	94086	94091	94096
873	94101	94106	$9+111$	94116	94121	94126	94131	94136	94141	94146
874	94151	94156	94161	94166	94171	94176	94181	94186	94191	94196
875	94201	94206	94211	94216	94221	94226	94231	94236	$9+240$	94245
876	94250	94255	94260	94265	94270	94275	94280	94285	94290	94295
877	94300	94305	94310	94315	94320	94325	94330	94335	94340	94345
878	94349	94354	94359	94364	94369	94374	94379	94384	94389	94394
879	94399	94404	94409	94414	94419	94424	94429	94433	94438	94443
880	94448	94453	94458	94463	9+468	94473	94478	94483	94488	94493
881	94498	94503	94507	94512	94517	94522	94527	94532	94537	94542
882	94547	94552	94557	94562	94567	94571	94576	94581	94586	94591
883	94596	94601	94606	94611	94616	94621	94626	94630	94635	94640
884	94645	94650	94655	94660	94665	94670	94675	94680	94685	94689
885	94694	94699	94704	94709	94714	94719	94724	94729	94734	94738
886	94743	94748	94753	94758	94763	94768	94773	54778	94783	94787
887	94792	94797	94802	94807	94812	94817	94822	94827	94832	94836
888	94841	94846	94851	94856	94861	94866	94871	94876	94880	94885
889	94890	94895	94900	94905	94910	94915	94919	94924	94929	94934
890	94939	94944	94949	94954	94959	94963	94968	94973	94978	94983
891	94988	94993	94998	95002	95007	95012	95017	95022	95027	95032
892	95036	95041	95046	95051	95056	95061	95066	95071	95075	95080
893	95085	95090	95095	O5 100	95105	95109	95114	95119	95124	95129
894	95134	95139	95143	95148	95153	95158	95163	95168	95173	95177
895	95182	95187	95192	95197	95202	95207	95211	95216	95221	95226
896	95231	95236	95240	95245	95250	95255	95260	95265	95270	95274
897	95279	95284	95289	95294	95299	95303	95308	95313	95318	95323
898	95328	95332	95337	95342	95347	95352	95357	95361	95366	95371
899	95376	95381	95386	95390	95395	95400	95405	95410	95415	95419
900	95424	95429	95434	95439	95444	95448	95453	95458	95463	95468
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
900	95424	95429	95434	95439	95444	95448	95453	95458	95463	95468
901	95472	95477	95482	95487	95492	95497	95501	95506	95511	95516
902	95521	95525	95530	95535	95540	95545	95550	95554	95559	95564
903	95569	95574	95578	95583	95588	95593	95598	95602	95607	95612
904	95617	95622	95626	95631	95636	95641	95646	95650	95655	95660
905	95665	95670	95674	95679	95684	95689	95694	95698	95703	95708
906	95713	95718	95722	95727	95732	95737	95742	95746	95751	95756
907	95761	95766	95770	95775	95780	95785	95789	95794	95799	95804
908	95809	95813	95818	95823	95828	95832	95837	95842	95847	95852
909	95856	95861	95866	95871	95875	95880	95885	95890	95895	95899
910	95904	95909	95914	95918	95923	95928	95933	95938	95942	95947
911	95952	95957	95961	95966	95971	95976	95980	95985	95990	95995
912	95999	96004	96009	96014	96019	96023	96028	96033	96038	96042
913	96047	96052	96057	96061	96066	96071	96076	96080	96085	96090
914	96095	96099	96104	96109	96114	96118	96123	96128	96133	96137
915	96142	96147	96152	96156	96161	96166	96171	96175	96180	96185
916	96190	96194	96199	96204	96209	96213	96218	96223	96227	96232
917	96237	96242	96246	96251	96256	96261	96265	96270	96275	96280
918	96284	96289	96294	96298	96303	96308	96313	96317	96322	96327
919	96332	96336	96341	96346	96350	96355	96360	96365	96369	96374
920	96379	96384	96388	96393	96398	96402	96407	96412	96417	96421
921	96426	96431	96435	96440	96445	96450	96454	96459	96464	96468
922	96473	96478	96483	96487	96492	96497	96501	96506	96511	96515
923	96520	96525	96530	96534	96539	96544	96548	96553	96558	96562
924	96567	96572	96577	96581	96586	96591	96595	96600	96605	96609
925	96614	96619	96624	96628	96633	96638	96642	96647	96652	96656
926	96661	96666	96670	96675	96680	96685	. 96689	96694	96699	96703
927	96708	96713	96717	96722	96727	96731	96736	96741	96745	96750
928	$9675 \underline{5}$	96759	96764	96769	96774	96778	96783	96788	96792	96797
929	96802	96806	96811	96816	96820	96825	96830	96834	96839	96844
930	96848	96853	96858	96862	96867	96872	96876	96881	96886	96890
931	96895	96900	96904	96909	96914	96918	96923	96928	96932	96937
932	96942	96946	96951	96956	96960	96965	96970	96974	96979	96984
933	96988	96993	96997	97002	97007	97011	97016	97021	97025	97030
934	9703 S	97039	97044	97049	97053	97058	97063	97067	97072	97077
935	97081	97086	97090	97095	97100	97104	97109	97114	97118	97123
936	97128	97132	97137	97142	97146	97151	97155	97160	97165	97169
937	97174	97179	97183	97188	97192	97197	97202	97206	97211	97216
938	97220	97225	97230	97234	97239	97243	97248	97253	97257	97262
939	97267	97271	97276	97280	97285	97290	97294	97299	97304	97308
940	97313	97317	97322	97327	97331	97336	97340	97345	97350	
941	97359	97364	97368	97373	97377	97382	97387	97391	97396	97400
942	97405	97410	97414	97419	97424	97428	97433	97437	97442	97447
943	97451	97456	97460	97465	97470	97474	97479	97483	97488	97493
944	97497	97502	97506	97511	97516	97520	97525	97529	97534	97539
945	97543	97548	97552	97557	97562	97566	97571	97575	97580	97585
946	97589	97594	97598	97603	9760%.	97612	97617	97621	97626	97630
947	97635	97640	97644	97649	97653	97658	97663	97667	97672	97676
948	97681	97685	97690	97695	97699	97704	97708	97713	97717	97722
949	97727	97731	97736	97740	97745	97749	97754	97759	97763	97768
950	97772	97777	97782	97786	97791	97795	97800	97804	97809	97813
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
950	97772	97777	97782	97786	97791	97795	97800	97804	97809	97813
951	97818	97823	97827	97832	97836	97841	. 97845	97850	97855	97859
952	97864	97868	97873	97877	97882	97886	97891	97896	97900	$9790 \underline{5}$
953	97909	97914	97918	97923	97928	97932	97937	97941	97946	97950
954	97955	97959	97964	97968	97973	97978	97982	97987	97991	97996
955	98000	98005	98009	98014	98019	98023	98028	98032	9803	98041
956	98046	98050	9805	98059	98064	98068	98073	98078	98082	98087
957	98091	98096	98100	$9810 \underline{5}$	98109	98114	98118	98123	98127	98132
958	98137	98141	98146	98150	$9815 \underline{5}$	98159	98164	98168	98173	98177
959	98182	98186	98191	98195	98200	98204	98209	98214	98218	98223
960	98227	98232	98236	98241	98245	98250	98254	98259	98263	98268
	98272	98277	98281	98286	98290	98295	98299	98304	98308	98313
962	98318	98322	98327	98331	98336	98340	$9834 \underline{5}$	98349	98354	98358
963	98363	98367	98372	98376	98381	98385	98390	98394	98399	98403
964	98408	98412	98417	98421	98426	98430	98435	98439	98444	9848
965	98453	98457	98462	98466	98471	98475	98480	98484	98489	98493
966	98498	98502	98507	98511	98516	98520	98525	98529	98534	98538
967	98543	98547	98552	98556	98561	98565	98570	98574	98579	98583
968	98588	98592	98597	98601	98605	98610	98614	98619	98623	98628
969	98632	98637	98641	98646	98.650	9865	98659	98664	98668	98673
970	98677	98682	98686	98691	98695	98700	98704	98709	98713	98717
971	98722	98726	98731	98735	98740	98744	98749	98753	98758	98762
972	98767	98771	98776	98780	98784	98789	98793	98798	98802	98807
973	98811	98816	98820	98825	98829	98834	98838	98843	98847	98851
97	98856	98860	98865	98869	98874	98878	98883	98887	98892	896
975	98900	98905	98909	98914	98918	98923	98927	98932	98936	41
976	98945	98949	98954	98958	98963	98967	98972	98976	98981	98985
977	98989	98994	98998	99003	99007	99012	99016	99021	99025	99029
978	99034	99038	99043	99047	99052	99056	99061	99065	99069	99074
	99078	99083	99087	99092	99096	991	99	909	991	118
980	99123	99127	99131	99136	99140	99145	99149	99154	99158	99162
981	99167	99171	99176	99180	99185	99189	99193	99198	99202	99207
982	99211	99216	99220	99224	99229	99233	99238	99242	99247	99251
983	99255	99260	99264	99269	99273	99277	99282	99286	99291	99295
984	9930	99304	30	99313	99317	99322	993	9933	9933	99339
985	99344	99348	99352	99357	99361	99366	99370	99374	99379	99383
986	99388	99392	99396	99401	99405	99410	99414	99419	99423	99427
987	99432	99436	99441	99445	99449	99454	99458	99463	99467	99471
988	99476	99480	99484	99489	99493	99498	99502	99506	99511	99515
989	99520	99524	99528	99533	99537	99542	99546	99550	99555	9559
990	99564	99568	99572	99577	99581	99585	99.590	99594	99599	99603
991	99607	99612	99616	99621	99625	99629	99634	99638	99642	99647
992	99651	99656	99660	99664	99669	99673	99677	99682	99686	99691
993	99695	99699	99704	99708	99712	99717	99721	99726	99730	99734
994	99739	99743	99747	99752	99756	99760	99	99769	99774	99778
995	99782	99787	99791	99795	99800	99804	99808	99813	99817	99822
996	99826	99830	99835	99839	99843	99848	99852	99856	99861	99865
997	99870	99874	99878	99883	99887	99891	99896	99900	99904	99909
998	99913	99917	99922	99926	99930	99935	99939	99944	99948	99952
99	99957	99961	99965	99970	99974	99978	99983	99987	99991	9996
1000	00000	00004	00009	00013	00017	00022	00026	00030	00035	039
N	0	1	2	3	4	5	6	7	8	9

TABLE III.

THE LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS:

From 0° to $0^{\circ} 3^{\prime}$, or $89^{\circ} 57^{\prime}$ to 90°, for every second ;
From 0° to 2°, or 88° to 90°, for every ten seconds;
From 1° to 89°, for every minute.
Note. To all the logarithms - 10 is to be appended.

$\log ^{9} \sin$				0°		$\begin{aligned} & \log \tan =\log \sin \\ & \log \cos =10.00000 \end{aligned}$			
"	$0^{\prime \prime}$	$1{ }^{\prime}$	21	' 1	11	0^{\prime}	$1{ }^{\prime}$	$2{ }^{\prime}$	11
0		6. 46373	6. 76476	60	30	6.16270	6.63982	6. 86167	30
1	4.68557	6. 47090	6. 76836	59	31	6.17694	6.64462	6. 86455	29
2	4.98660	6. 47797	6. 77193	58	32	6.19072	6.64936	6. 86742	28
3	5.16270	6. 48492	6. 77548	57	33	6. 20409	6. 65406	6. 87027	27
4	5. 28763	6.49175	6. 77900	56	34	6.21705	6. 65870	6.87310	26
5	5. 38454	6. 49849	6. 78248	55	35	6. 22964	6.66330	6.87591	25
6	5.46373	6. 50512	6. 78595	54	36	6. 24188	6. 66785	6. 87870	24
7	5. 53067	6. $5116 \underline{5}$	6. 78938	53	37	6.25378	6. 67235	6. 88147	23
8	5.58866	6. 51808	6. 79278	52	38	6. 26536	6.67680	6.88423	22
9	5.63982	6. 52442	6. 79616	51	39	6. 27664	6.68121	6.88697	21
10	5.68557	6. 53067	6. 79952	50	40	6. 28763	6. 68557	6.88969	20
11	5. 72697	6. 53683	6. 80285	49	41	6. 29836	6.68990	6. 89240	19
12	5.76476	6.54291	6. 80615	48	42	6.30882	6.69418	6. 89509	18
13	5.79 952	6. 54890	6. 80943	47	43	6.31904	6. 69841	6.89776	17
14	5.83170	6. 55481	6. 81268	46	44	6.32903	6. 70261	6.90042	16
15	5. 86167	6. 56064	6.81591	45	45	6.33879	6. 70676	6. 90306	15
16	5.88969	6. 56639	6. 81911	44	46	6.34833	6. 71088	6. 90568	14
17	5.91602	6.57207	6. 82230	43	47	6.35767	6. 71496	6.90 829	13
18	5. 94085	6. 57767	6. 82545	42	48	6.36682	6. 71900	6.91088	12
19	5.96433	6. 58320	6. 82859	41	49	6.37577	6. 72300	6.91346	11
20	5. 98660	6. 58866	6. 83170	40	50	6. 38454	6. 72697	6. 91602	10
21	6. 00779	6. 59406	6. 83479	39	51	6.39315	6. 73090	6. 91857	9
22	6.02800	6. 59939	6.83786	38	52	6.40158	6.73479	6.92110	8
23	6.04730	6. 60465	6. 84091	37	53	6. 40985	6. 73865	6.92362	7
24	6.06579	6. 60985	6.84394	36	54	6.41797	6. 74248	6.92612	6
25	6.08351	6. 61499	6.84694	35	55	6.42594	6. 74627	6.92861	5
26	6. $1005 \underline{5}$	6.62007	6. 84993	34	56	6. 43376	6.75003	6.93109	4
27	6. 11694	6. 62509	6.85289	33	57	6.44145	6. 75376	6.93355	3
28	6. 13273	6.63006	6. 85584	32	58	6.44900	6. 75746	6.93599	2
29	6.14797	6.63496	6. 85876	31	59	6.45643	6.76112	6.93843	
30	6. 16270	6.63982	6. 86167	30	60	6.46373	6.76476	6. 94085	0
' 1	$59{ }^{\prime}$	58^{\prime}	57^{\prime}	' 1	19	$59{ }^{\prime}$	58^{\prime}	57^{\prime}	"

' 1	$\log \sin$	$l o g \tan$	$\log \cos$	' 1	, 1	$\log \sin$	log tan	$\log \cos$	111
			10.00000	060	100	7.46373	7.46373	10.00000	050
	5. 68557	5. 68557	10.00000	50	10	7. 47090	7.47091	10.00000	
20	5.98660	5.98 660	10.00000	40	20	7.47797	7.47797	10.00000	40
30	6. 16270	6.16270	10.00000	30	30	7.48491	7.48492	10.00000	30
40	6. 28763	6. 28763	10.00000	20	40	7.49175	7.49176	10.00000	20
50	6.38454	6. 38454	10.00000	10	50	7.49849	7.49849	10.00000	10
	6. 46373	6. 46373	10.00000	059	110	7.50512	7.50512	10.00000	049
10	6. 53067	6. 53067	10.00000	50	10	7.51165	7.51165	10.00000	50
20	6. 58866	6. 58866	10.00000	40	20	7.51808	7.51809	10.00000	40
30	6. 63982	6.63982	10.00000	30	30	7.52442	7.52443	10.00000	30
40	6. 68557	6. 68557	10.00000	20	40	7.53067	7. 53067	10.00000	20
50	6. 72697	6. 72697	10.00000	10	50	7. 53683	7. 53683	10.00000	10
20	6. 76476	6. 76476	10.00000	058	120	7.54291	7. 54291	10.00000	048
10	6. 79952	6. 79952	10.00000	50	10	7.54890	7. 54890	10.00000	
20	6. 83170	6. 83170	10.00000	40	20	7.55481	7.55481	10.00000	40
30	6. 86167	6. 86167	10.00000	30	30	7.56064	7. 56064	10.00000	30
40	6. 88969	6. 88969	10.00000	20	40	7.56639	7.56639	10.00000	20
50	6. 91602	6.91602	10.00000	10	50	7. 57206	7.57207	10.00000	10
30	6. 94085	6. 94085	10.00000	057	130	7.57767	7. 57767	10.00000	047
10	6. 96433	6. 96433	10.00000	50	10	7.58320	7. 58320	10.00000	50
20	6. 98660	6. 98661	10.00000	40	20	7.58866	7. 58867	10.00000	40
30	7.00779	7.00779	10.00000	30	30	7.59406	7.59406	10.00000	30
40	7.02800	7.02800	10.00000	20	40	7.59939	7. 59939	10.00000	20
50	7.04730	7.04730	10.00000	10	50	7.60465	7.60466	10.00000	10
40	7.06579	7.06579	10.00000	056	140	7.60985	7. 60986	10.00000	046
10	7. 08351	7.08352	10.00000	50	10	7.61499	7. 61500	10.00000	50
20	7. 10055	7. 10055	10.00000	40	20	7.62007	7.62008	10.00000	40
30	7. 11694	7. 11694	10.00000	30	30	7.62509	7.62510	10.00000	30
40	7. 13273	7.13273	10.00000	20	40	7.63006	7. 63006	10.00000	20
50	7. 14797	7.14 797	10.00000	10	50	7.63496	7.63497	10.00000	10
50	7. 16270	7.16270	10.00000	055	150	7.63982	7.63982	10.00000	045
10	7. 17694	7.17694	10.00000	50	10	7.64461	7.64462	10.00000	50
20	7. 19072	7.19073	10.00000	40	20	7. 64936	7.64937	10.00000	40
30	7. 20409	7. 20409	10.00000	30	30	7.65406	7.65406	10.00000	30
40	7. 21705	7.21705	10.00000	20	40	7.65870	7.65871	10.00000	20
50	7. 22964	7.22964	10.00000	10	50	7.66330	7.66330	10.00000	10
60	7. 24188	7. 24188	10.00000	054	160	7. 66784	7.66785	10.00000	044
10	7. 25378	7.25378	10.00000	50	10	7.67235	7.67235	10.00000	
20	7. 26536	7.26536	10.00000	40	20	7.67680	7.67680	10.00000	40
30	7. 27664	7. 27664	10.00000	30	30	7.68 121	7.68121	10.00000	30
40	7.28763	7.28764	10.00000	20	40	7.68557	7.68558	9.99999	20
50	7.29	7.29	10.00000	10	50	7.68989	7.68990	9.99999	10
70	7. 30882	7.30882	10.00000	053	170	7.69417	7.69418	9.99999	043
10	7.31904	7.31904	10.00000	50	10	7.69841	7.69842	9. 99999	50
20	7. 32903	7.32903	10.00000	40	20	7. 70261	7. 70261	9. 99999	40
30	7.33879	7.33879	10.00000	30	30	7. 70676	7. 70677	9. 99999	30
40	7. 34833	7.34833	10.00000	20	40	7. 71088	7.71088	9. 99999	20
50	7.35767	7.35767	10.00000	10	50	7. 71496	7.71496	9.99 999	10
80	7. 36682	7.36682	10.00000	052	180	7. 71900	7.71900	9. 99999	042
10	7.37577	7.37577	10.00000	50	10	7. 72300	7.72301	9. 99999	50
20	7.38454	7.38455	10.00000	40	20	7.72697	7. 72697	9. 99999	40
30	7.39 314	7.39315	10.00000	30	30	7.73 090	7.73090	9.99999	30
40	7.40158	7.40158	10.00000	20	40	7. 73479	7.73480	9.99 999	20
50	7.40985	7.40985	10.00000	10	50	7.73865	7. 73866	9.99 999	10
	7.41797	7.41797	10.00000	051	190	7. 74248	7. 74248	9.99999	041
10	7.42594	7.42594	10.00000	50	10	7. 74627	7.7462S	9.99 999	50
20	7.43376	7.43376	10.00000	40	20	7.75003	7. 75004	9.99999	40
30	7.44145	7.44145	10.00000	30	30	7. 75376	7.75377	9. 99999	30
40	7.44900	7.44900	10.00000	20	40	7. 75745	7.75 746	9.99999	20
50	7.45643	7.45643	10.00000	10	50	7. 76112	7.76113	9.99999	10
100	7.46373	7.46373	10.00000	050	200	7. 76475	7.76476	9. 99999	040
' ',	$\log \cos$	$\log \cot$	$l o g \sin$	" '	, ',	log cos	log cot	$\underline{l o g} \sin$	'' '

$1{ }^{\prime \prime}$	$\log \sin$	$\log \tan$	$\log \cos$	'1'	' 11	$\log \sin$	$l o g$ tan	log cos	
200	7.76475	7. 76476	9. 99999	040	300	7.94084	7.94086	9.99998	030
	7. 76836	7. 76837	9. 99999	50	10	7.94325	7.94326	9.99998	
20	7.77193	7. 77194	9. 99999	40	20	7.94564	7.94566	9. 99998	40
30	7.77548	7. 77549	9. 99999	30	30	7. 94802	7. 94804	9. 99998	30
40	7.77899	7. 77900	9.99 999	20	40	7.95039	7.95040	9. 99998	20
50	7.78248	7. 78249	9.99999	10	50	7.95274	7.95276	9. 99998	10
210	7.78594	7.78595	9. 99999	039	310	7.95508	7.95510	9. 99998	029
10	7.78938	7. 78938	9. 99999	50	10	7.95741	7.95743	9.99998	
20	7. 79278	7. 79279	9. 99999	40	20	7.95973	7.95974	9.99998	40
30	7. 79616	7. 79617	9.99 999	30	30	7.96203	7.96205	9. 99998	30
40	7.79952	7.79 952	9. 99999	20	40	7.96432	7.96434	9.99998	20
50	7. 80284	7. 80285	9. 99999	10	50	7.96660	7.96662	9.99 998	10
220	7. 80615	7. 80615	9. 99999	038	320	7.96887	7. 96889	9. 99998	028
10	7. 80942	7. 80943	9.99 999	50	10	7.97113	7.97114	9. 99998	
20	7.81268	7.81269	9. 99999	40	20	7.97337	7.97339	9. 99998	40
30	7. S1 591	7. 81591	9. 99999	30	30	7.97560	7.97562	9. 99998	30
40	7.81911	7.81912	9.99999	20	40	7.97 782	7.97784	9.99998	20
50	7.82229	7.82230	9. 99999	10	50	7. 98003	7.98005	9. 99998	10
230	7. 82545	7.82546	9.99 999	037	330	7.98223	7.98225	9. 99998	027
	7.82859	7. 82860	9. 99999	50	10	7.98442	7.98444	9. 99998	
20	7. 83170	7.83171	9. 99999	40	20	7.98660	7.98662	9. 99998	40
30	7.83479	7.83480	9. 99999	30	30	7.98876	7.98878	9. 99998	30
40	7. 83786	7. 83787	9. 99999	20	40	7.99092	7. 99094	9. 99998	20
50	7.84091	7.84092	9.99 999	10	50	7.99306	7.99308	9.99 998	10
240	7.84393	7.84394	9. 99999	036	340	7. 99520	7. 99522	9. 99998	026
10	7. 84694	7. 84695	9. 99999	50	10	7.99732	7. 99734	9.99998	
20	7. 84992	7. 84994	9. 99999	40	20	7.99943	7.99946	9.99998	40
30	7.85289	7.85290	9. 99999	30	30	8. 00154	8. 00156	9. 99998	30
40	7.85583	7.85584	9. 99999	20	40	8. 00363	8. 00365	9. 99998	20
50	7. 85876	7.85877	9. 99999	10	50	8. 00571	8. 00574	9.99998	10
250	7. 86166	7. 86167	9. 99999	035	350	8. 00779	8. 00781	9. 999	025
10	7. 86455	7. 86456	9. 99999	50	10	8. 00985	8. 00987	9. 99998	50
20	7. 86741	7.86743	9. 99999	40	20	8. 01190	8. 01193	9. 99998	40
30	7.87026	7.87027	9. 99999	30	30	8. 01395	8. 01397	9. 99998	30
40	7.87309	7. 87310	9. 99999	20	40	8. 01598	8. 01600	9.99 998	20
50	7.87590	7.87591	9.99 999	10	50	8. 018	8.01803	9.99998	10
260	7.87870	7.87871	9. 99999	034	360	8. 02002	8.02004	9.99998	024
10	7. 88147	7. 88148	9. 99999	50	10	8. 02203	8. 02205	9. 99998	50
20	7. 88423	7. 88424	9. 99999	40	20	8.02402	8. 02405	9. 99998	40
30	7. 88697	7. 88698	9.99 999	30	30	S. 02601	8. 02604	9. 99998	30
40	7. 88969	7. 88970	9. 99999	20	40	8. 02799	8. 02801	9. 99998	20
50	7. 89240	7.89241	9.99 999	10	50	8.02996	8.02998	9. 99998	10
270	7. 89509	7. 89510	9. 99999	033	370	8. 03192	8. 03194	9. 99997	023
10	7. 89776	7.89777	9. 99999	50	10	8. 03387	8.03390	9. 99997	50
20	7. 90041	7. 90043	9. 99999	40	20	8. 03581	8. 03584	9.99997	40
30	7.90305	7.90307	9.99 999	30	30	8. 03775	8.03777	9.99997	30
40	7. 90568	7. 90569	9. 99999	20	40	S. 03967	8.03970	9. 99997	20
50	7. 90 S29	7. 90830	9. 99999	10	50	8. 04159	8. 04162	9. 99997	10
280	7.91088	7.91089	9. 99999	032	380	8. 04350	8.04353	9. 99997	022
10	7.91346	7.91347	9. 99999	50	10	8.04540	8. 04543	9. 99997	50
20	7.91602	7.91603	9. 99999	40	20	8. 04729	8. 04732	9.99997	40
30	7.91857	7.91858	9. 99999	30	30	8. 04918	8.04921	9.99 997	30
40	7.92110	7.92111	9. 99998	20	40	S. 05105	S. 05108	9.99997	20
50	7.92362	7.92363	9. 99998	10	50	8.05292	8.05295	9.99997	10
290	7.92612	7.92613	9. 99998	031	390	8. 05478	8.05481	9.99997	$0 \boldsymbol{2 1}$
10	7.92861	$7.92 \mathrm{S62}$	9. 99998	50	10	8. 05663	8. 05666	9.99997	50
20	7.93108	7.93110	9. 99998	40	20	8. 05848	8. 05851	9. 99997	40
30	7.93354	7.93356	9. 99998	30	30	8. 06031	8. 06034	9.99997	30
40	7.93599	7.93601	9.99998	20	40	8. 06214	8.06217	9. 99997	20
50	7.93842	7.93844	9. 99998	10	50	8. 06396	8. 06399	9.99997	10
300	7: 94084	7.94086	9. 99998	030	400	8.06578	8. 06581	9.99997	020
' ''	$\log \cos$	log cot	$\log \sin$	'	,	$\log \cos$	log cot	$\log \sin$	

1 ' 1	$\log \sin$	$\mathbf{l o g}$	$\log \cos$		' 11	$\log \sin$	$\log \tan$	$\log \cos$	
400	8. 06		9. 99	020	500	8. 16268	8. 16273	9.99 995	010
	8. 06758	8.06761	9. 99997	50	10	8. 16413	8. 16417	9.99995	
20	8. 06938	8. 06941	9.99 997	40	20	8. 16557	8. 16561	9. 99995	40
30	S. 07117	8.07120	9. 99997	30	30	8. 16700	8. 16705	9. 99995	30
40	8. 07295	8.07299	9. 99997	20	40	8. 16843	8. 16848	9. 99995	20
50	8.07473	8.07476	9. 99997	10	50	8. 16986	8. 16991	9. 99995	10
410	8. 07650	8. 07653	9. 99997	019	510	8. 17128	8. 17133	9. 99995	
10	8. 07826	8. 07829	9. 99997	50	10	8. 17270	8. 17275	9.99 995	
20	8. 08002	8. 08005	9. 99997	40	20	8. 17411	8. 17416	9.99 995	40
30	8. 08176	8.08 180	9. 99997	30	30	8. 17552	8.17557	9.99 995	30
40	8. 08350	8.08354	9. 99997	20	40	8. 17692	8. 17697	9.99 995	20
50	8.08524	8.08527	9.99997	10	50	8. 17832	8.17837	9.99 995	10
420	8. 08696	8.08700	9. 99997	01	520	8. 17971	8.17976	9.99 995	
10	8. 08868	8. 08872	9.99997	50	10	8. 18110	8.18115	9.99 995	
20	8. 09040	8.09043	9. 99997	40	20	8. 18249	8.18254	9. 99995	40
30	8. 09210	8. 09214	9. 99997	30	30	8. 18387	8.18392	9. 99995	30
40	8. 09380	8. 09384	9. 99997	20	40	8. 18524	8. 18530	9.99 995	20
50	8.09550	8. 09553	9. 99997	10	50	8.18 662	8.18 667	9.99995	10
430	8. 09718	8. 09722	9. 99997	017	530	8. 18798	8. 18804	9. 99995	
10	8. 09886	S. 09890	9.99997	50	10	8. 18935	8.18940	9.99995	
20	8. 10054	8. 10057	9. 99997	40	20	8. 19071	8. 19076	9.99995	40
30	8. 10220	8. 10224	9. 99997	30	30	8. 19206	8.19212	9.99 995	30
40	8. 10386	8. 10390	9.99997	20	40	8. 19341	8. 19347	9. 99995	20
50	8. 10552	8. 10555	9.99 996	10	50	8. 19476	8.19481	9. 99995	10
440	8. 10717	8. 10720	9. 99996	016	540	8. 19610	8. 19616	9.99 995	06
1	8. 10881	8. 10884	9. 99996	50	10	8. 19744	8. 19749	9. 99995	50
20	8. 11044	8. 11048	9.99996	40	20	8. 19877	8.19883	9.99995	40
30	8. 11207	8. 11211	9.99 996	30	30	8. 20010	8. 20016	9. 99995	30
40	8. 11370	8. 11373	9. 99996	20	40	8. 20143	8. 20149	9.99 995	20
50	8. 11531	8. 11535	9. 99996	10	50	8. 20275	8.20281	9.99 994	10
450	8. 11693	8. 11696	9.99996	015	550	8. 20407	8. 20413	9. 99994	
10	8. 11853	8. 11857	9. 99996	50	10	8. 20538	8.20544	9.99994	
20	8. 12013	8. 12017	9. 99996	40	20	8. 20669	8. 20675	9.99 994	40
30	8. 12172	8.12176	9. 99996	30	30	8. 20800	8. 20806	9. 99994	30
40	8. 12331	8. 12335	9.99996	20	40	8. 20930	8. 20936	9. 99994	20
50	8. 12489	8.12493	9.99 996	10	50	8. 21060	8. 21066	9.99994	10
460	8. 12647	8. 12651	9.99996	014	560	8. 21189	8. 21195	9.99 994	
10	8. 12804	8. 12508	9. 99996	50	10	8. 21319	8. 21324	9. 99994	50
20	8. 12961	8. 12965	9. 99996	40	20	8. 21447	8. 21453	9. 99994	40
30	8. 13117	8. 13121	9.99 996	30	30	8. 21576	8.21581	9. 99994	30
40	8.13272	8. 13276	9.99996	20	40	8. 21703	8. 21709	9. 99994	20
50	8. 13427	8.13431	9. 99996	10	50	8.21	8.21837	9. 99994	10
470	8. 13581	8.13585	9. 99996	013	570	8. 21958	8. 21964	9. 99994	
10	8. 13735	8.13739	9. 99996	50	10	8. 22085	8. 22091	9.99994	50
20	8. 13888	8.13892	9. 99996	40	20	8. 22211	8. 22217	9.99994	40
30	8. 14041	8.14045	9. 99996	30	30	8. 22337	8. 22343	9. 99994	30
40	8. 14193	8. 14197	9.99 996	20	40	8. 22463	8.22469	9.99 994	20
50	8. 14344	8.14348	9.99 996	10	50	8. 22588	8. 22595	9.99994	10
480	8. 14495	S. 14500	9.99996	012	580	8. 22713	8.22720	9. 99994	
10	8. 14646	8. 14650	9. 99996	50	10	8. 22838	8. 22844	9.99 994	50
20	8. 14796	8.14800	9. 99996	40	20	8. 22962	8. 22968	9. 99994	40
30	8. 14945	8. 14950	9. 99996	30	30	8. 23086	8. 23092	9.99994	30
40	8. 15094	8. 15099	9. 99996	20	40	8. 23210	8. 23216	9. 99994	20
50	8. 15243	8. 15247	9. 99996	10	50	8. 23333	8.23339	-. 99994	10
490	8. 15391	8.15395	9.99 996	011	590	8.23456	8. 23462	9.99994	
10	8. 15538	8.15543	9. 99996	50	10	8. 23578	8. 23585	9.99994	50
20	8. 15685	8. 15690	9. 99996	40	20	8. 23700	8. 23707	9.99 994	40
30	8. 15832	8.15836	9.99 996	30	30	8. 23822	8.23829	9.99 993	30
40	8. 15978	8. 15982	9. 99995	20	40	8. 23944	8. 23950	9. 99993	20
50	8. 16123	8. 16128	9. 99995	10	50	8. 24065	8. 24071	9.99 993	10
500	8. 16268	8.16273	9.99995	010	600	8.24186	8.24192	9.99993	
' ''	$\log \cos$	log cot	$\underline{\log \sin }$	" '	,	$\log \mathrm{cos}$	$\log \cot$	$\underline{l o g} \sin$	' ' 1

' 1	\log	$l o g$ tan			' 11	$\log \sin$	n	cos	
0	8. 24186	8. 24192	9. 99993	060	100	8.30879	8. 30888	9.99991	050
10	8. 24306	8. 24313	9.99993	50	10	8. 30983	8. 30992	9.99991	50
20	8. 24426	8. 24433	9.99993	40	20	8.31086	8.31095	9.99991	40
30	8. $2+546$	8. 24553	9.99993	30	30	8.31188	8. 31198	9.99991	30
40	8. 24665	8. 24672	9.99993	20	40	8.31291	8.31300	9.99991	20
50	8. 24785	8. 24791	9.99 993	10	50	8.31393	8. 31403	9.99991	10
	8. 24903	S. 24910	9.99993	059	110	8. 31495	S. 31505	9.99 991	049
10	8. 25022	8. 25029	9.99993	50	10	8.31597	8. 31606	9.99991	
20	8. 25140	8. 25147	9.99 993	40	20	8. 31699	8. 31708	9.99 991	40
30	8. 25258	8. 25265	9.99993	30	30	8. 31800	8.31809	9.99991	30
40	8. 25375	8.25382	9.99 993	20	40	8. 31901	8.31911	9.99991	20
50	8. 2549 ?	8.25500	9.99 993	10	50	8. 32002	8. 32012	9.99991	10
20	8. 25609	8. 25616	9.99 993	058	120	8. 32103	8.32112	9.99 990	048
10	S. 25726	8. 25733	9.99 993	50	10	8. 32203	8. 32213	9.99990	
20	8. 25842	8. 25849	9.99 993	40	20	832303	8. 32313	9.99 990	40
30	8. 25958	8. 25965	9. 99993	30	30	8. 32403	8. 32413	9.99990	30
40	8. 26074	8. 26081	9. 99993	20	40	8. 32503	8. 32513	9.99 990	20
50	8. 26189	8. 26196	9.99993	10	50	8. 32602	8.32612	9.99990	10
	8. 26304	8. 26312	9.99993	05	130	8. 32702	8. 32711	9.99 990	047
10	8. 26419	8. 26426	9.99993	50	10	8. 32801	8. 32811	9.99990	
20	8. 26533	8. 26541	9.99993	40	20	8. 32899	8.32909	9.99 990	40
30	8. 26648	8. 26655	9. 99993	30	30	8. 32998	8.33008	9. 99990	30
40	8. 26761	8. 26769	9. 99993	20	40	S. 33096	8.33106	9. 99990	20
50	8. 26875	8.26882	9. 99993	10	50	8.33195	S. 33205	9.99 990	10
40	8. 26988	8. 26996	9. 99992	056	140	8. 33292	8. 33302	9. 99990	046
10	8. 27101	8. 27109	9. 99992	50	10	8. 33390	8. 33400	9. 99990	50
20	8. 27214	8. 27221	9. 99992	40	20	8. 33488	8. 33498	9.99990	40
30	8. 27326	8. 27334	9. 99992	30	30	8. 33585	8. 33595	9.99990	30
40	8. 27438	8. 27446	9. 99992	20	40°	8. 33682	8.33692	9.99990	20
50	8. 27550	8. 27558	9.99 992	10	50	8. 33779	8.33789	9.99990	10
50	8. 27661	8. 27669	9. 99992	055	150	8. 33875	8. 33886	9. 99990	045
10	8. 27773	8. 27780	9. 99992	50	10	8. 33972	8. 33982	9. 99990	
20	8. 27883	8.27891	9.99992	40	20	8. 34068	8.34078	9.99990	40
30	S. 27994	8.28002	9. 99992	30	30	S. 34164	8.34174	9. 99990	30
40	8. 28104	8. 28112	9.99 992	20	40	8. 34260	8.34270	9.99 989	20
50	8. 28215	8. 28223	9. 99992	10	50	S. 34	8.34366	9.99 989	10
60	8. 28324	8. 28332	9.99992	054	160	8. 34450	8. 34461	9.99 989	044
10	8. 28434	8. 28442	9. 99992	50	10	8. 34546	8. 34556	9.99989	50
20	8. 28543	8. 28551	9.99 992	40	20	8. 34640	8.34651	9.99 989	40
30	8. 28652	8. 28660	9.99 992	30	30	8. 34735	8. 34746	9. 99989	30
40	8. 28761	8. 28769	9.99992	20	40	8. 34830	8.34840	9.99 989	20
50	8. 28869	8. 28877	9. 99992	10	50	8. 34924	8.34935	9. 99989	10
70	8. 28977	8. 28986	9. 99992	053	170	8. 35018	8. 35029	9. 99989	043
10	8. 29085	8. 29094	9. 99992	50	10	8. 35112	8. 35123	9.99 989	
20	8. 29193	8. 29201	9. 99992	40	20	8. 35206	8. 35217	9.99989	40
30	8. 29300	8. 29309	9.99992	30	30	8. 35299	8. 35310	9. 99989	30
40	8. 29407	8. 29416	9. 99992	20	40	S. 35392	8. 35403	9. 99989	2.0
50	8. 29514	8. 29523	9. 99992	10	50	8. 35485	8: 35497	9.99 989	10
	8. 29621	8. 29629	9. 99992	052	180	8. 35578	8. 35590	9. 99989	
10	8. 29727	8. 29736	9.99 991	50	10	8. 35671	8. 35682	9.99 989	
20	8. 29833	8. 29842	9. 99991	40	20	8. 35764	8. 35775	9. 99989	40
30	8. 29939	8. 29947	9. 99991	30	30	8. 35856	S. 35867	9. 99989	30
40	8. 30044	8. 30053	9.99 991	20	40	S. 35948	8.35959	9. 99989	20
50	8. 30150	8. 30158	9.99991	10	50	8. 36040	8.36051	9.99989	10
$9 \quad 0$	8. 30255	S. 30263	9. 99991	051	190	8. 36131	8. 36143	9.99 989	041
10	8. 30359	8. 30368	9. 99991	50	10	8. 36223	8. 36235	9.99988	50
20	8. 30464	8. 30473	9. 99991	40	20	8. 36314	8. 36326	9.99 988	40
30	8. 30568	8. 30577	9. 99991	30	30	8. 36405	8. 36417	9.99 988	30
40	8. 30672	8. 30681	9. 99991	20	40	8. 36496	8. 36508	9.99 988	20
50	8. 30776	8. 30785	9.99 991	10	50	8. 36587	8.36 599	9.99 988	10
100	8.30879	8. 30888	9.99991	050	200	8. 36678	8. 36689	9. 99988	040
, ',	$\underline{\log }$	$\mathbf{l o g} \cot$	$\log \sin$	' '	' ''	log cos	log cot	$\mathbf{l o g} \sin$	' 1

	log sin	log tan	log cos		' 1	$\log \sin$	log tan	log cos	
0	8. 36		9. 99	040	300	8.41	8.41807		030
$\begin{aligned} & 10 \\ & 20 \end{aligned}$	8. 36	8.36780 8.36870		40	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	8.41872 8.41952 8	8.41887 8.41967		
30	8. 36948	8. 36960	9.99	30	30	8. 42032	8. 42048	9.99985	
40	8. 37038	8.37050	9.99 988	20	40	8.42112	8. 42127	9.99	-
50	8. 37128	8.37140	9.99988	10	50	8. 42192	8. 42207	9. 99	10
10	8.37217	8.37229	9. 99988	039	310	8. 42272	8.42287	9. 99985	029
	8,373 8.37	8.37318 8.37408		50 40	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	8. 42351	8. 82366		
30	${ }_{8}$ 8. 37484	8.37497	9.99	30	30	8. 42510	8.42525		
	8.37573	8.37585	9.99	20	40	8. 42	8. 42604		
	8. 37662	8.37674	9. 99	10	5	8. 42	8.42	9.99985	10
0	8.37750	8.37762	9. 99988	038	0	8. 42746	8. 4276	9. 99984	028
	8.37838 8.37926	8.37850 8.37938	9.99988 9.99988	50 40		8. 42825	8. 42840	9. 99984	
	$\begin{aligned} & 8.37926 \\ & 8.38014 \end{aligned}$	$\begin{aligned} & 8.37938 \\ & 8.38026 \end{aligned}$	9.99988 9.99987	40	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	8. ${ }^{\text {8. }} \mathrm{l}$ 92983	8.42919 8.42997	9. 9.99984 984	40
	8.38101	8. 38114	9.99 9	20	40	8. 4306	8.43075	9. 99	
	8.38189	8.38202	9.99987	10	50	8. 4313	8.4315	9.99	10
230	8.38	8.382	9. 99	037	330	8. 4321	8. 43232	9.99984	27
$\begin{aligned} & 10 \\ & 20 \end{aligned}$	8.3 8.3 8	8. 8.383763 8.3846	9.99	50	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	8.43293 8.43371	8.43309 8.43387		
30	8.385	8.38	9.9	30	30	8. 43	8. 43	9. 9	
							8. 4		
50	8.38710	8. 38	9.99987	10	50	8. 43	8.		
40	8.38796	8.38809	9.99987	036	340	8. 43680	8. 43696	9.99984	026
	8.38882	8.38895				8. 43	8. 817773		
3	8.3896 8.390	8.38981 8.39067	9. 99	30	30	8.43834 8.43910	8.43850 8.4392	9.99984 9.9984	
	8. 39139	8. 391		20	40	8. 43	8. 44		0
50	8.39225	8. 39238	9.99 987	10	50	8. 4406	8. 44	9. 99	10
50	8. 39310	8. 39323	9.99987	035	50	8. 44139	8. 44156	9.99983	5
	8.39395	8. 39408	9. 99			8. 44	8. 44232		
30	8.394 8.39	8. 39	9.99	40 30		8. 44 S. 43 d		9.99983 9.99983	
40	8. 39649	8. 39663	9. 99	20	40	8. 44	8. 44		
50	8.39734	8.39747	9.99986	10	50	8. 4451	8.44 536	9.99983	0
6	8.39818	8.39832	9.99986	034	360	8. 44594	8. 44611	9.999	024
	8. 39	8.39916	9. 99986	50		8. 44669	8. 44686	9.99983	
	8.39	8.40000	9.99986	40	20	8. 447	8. 44	9. 99983	40
	8. 40	8. 40083	9.9	${ }^{30}$	40	8. 44	8. 44		
50	8. 40237	8. 40251	9.99986	10	50	8. 44969	8. 44987	9.99983	10
70	8. 40320	8. 40334	9.99986	033	370	8. 45044	8. 45061	9.99983	
	8. 4048	8. 40417	9. 99	50		8.45119	8. 45136		
30	8. 40	S. 40	9.99	40	20	8. 45193	8. 45	9.99983	
	8. 40651	8. 40665	9.999	20	40	8. 45341	8. 45359	9. 99	
50	8. 40734	8. 40748	9.99986	10	50	8. 45415	8.45433	9.9998	10
280	8. 408	8. 40830	9. 99	03	380	8. 45489	8. 45507	9. 99982	
	8. 40	8.40913	9.99	50		8. 45563	8. 45581	9. 99982	
	S. 40	8. 80	9.9			8.4563 8.4571	8. 45	9.99982 9.99982	
40	8. 41144	8. 41158	9.99986	20	40	8. 45784	8. 45802	9.99982	
50	8. 41225	8. 41240	9.99 986	10	50	8.45857	8. 45875	9.99982	10
290	8. 41	8. 41321	9.999	03	390	8. 45	8.459	9. 9	
	8.413	8.41403	-			8.46	8. 4602		
	8. 414	8.41484	9.	40		8.	8.		
	8. 41631	8. 41646	9.99	20	40	8. 46222	8. 4624	9.99	
50	8. 41711	8. 41726	9.999	10	50	8. 46294	8. 46312	9.99 9	
300	8.41792	8. 41807	9.99985	030	400	8.46366	46385	9. 99982	20
, ',	log cos	log cot	$l o g \sin$	"	, "	$\log \mathrm{c}$	log cot	log s	

' ${ }^{\prime}$	$\log \mathrm{s}$	log	$\log \cos$	1	' 11	$\log \sin$	log tan	log cos	
400	8. 46366	8. 46385	9. 99982	020	500	8. 50504	8. 50527	9. 99978	010
10	8. 46439	8. 46457	9. 99982	50	10	8. 50570	8. 50593	9. 99978	
20	8. 46511	8. 46529	9. 99982	40	20	8. 50636	8. 50658	9. 99978	40
30	8. 46583	8. 46602	9.99 981	30	30	8. 50701	8. 50724	9.99 978	30
40	8. $4665 \underline{5}$	8. 46674	9. 99981	20	40	8. 50767	8. 50789	9. 99977	20
50	8.46727	8. $467+5$	9. 99981	10	50	8. 50832	8. 50855	9. 99977	10
410	8. 46799	8. 46 S17	9. 99981	019	510	8. 50897	8. 50920	9. 99977	$0 \quad 9$
10	8. 46870	8. 46889	9. 99981	50	10	8. 50963	8. 50985	9. 99977	50
20	8. 46942	8. 46960	9. 99981	40	20	8. 51028	8.51050	9.99 977	40
30	8.47013	8. 47032	9. 99981	30	30	8. 51092	8.51115	9. 99977	30
40	8.47084	8.47103	9. 99981	20	40	8. 51157	8.51180	9.99977	20
50	8.47155	S. 47174	9. 99981	10	50	8. 51222	8. 51245	9.99977	10
420	8.47226	8. 47245	9. 99981	018	520	8. 51287	8. 51310	9. 99977	08
10	8.47297	8. 47316	9.99 981	50	10	8. 51351	8. 51374	9. 99977	
20	8. 47368	8.47387	9.99981	40	20	8. 51416	8. 51439	9. 99977	40
30	8.47439	8. 47458	9. 99981	30	30	8. 51480	8. 51503	9. 99977	30
40	8. 47509	8. 47528	9.99 981	20	40	8. 51544	8. 51568	9.99977	20
50	8. 47580	8.47599	9. 99981	10	50	8. 51609	8.51632	9. 99977	10
430	8. 47650	8. 47669	9. 99981	017	530	8. 51673	8. 51696	9. 99977	0
10	8. 47720	8. 47740	9. 99980	50	10	8. 51737	8. 51760	9.99976	50
20	8.47790	8.47810	9. 99980	40	20	8. 51801	8. 51824	9.99976	40
30	8. 47860	8. 47880	9. 99980	30	30	8. 51864	8. 51888	9.99976	30
40	8.47930	8. 479 950	9. 99980	20	40	S. 51928	8. 51952	9.99976	20
50	8. 48000	8.48020	9. 99980	10	50	8. 51992	8. 52015	9. 99976	10
440	8. 48069	8. 48090	9. 99980	016	540	8. 52055	8. 52079	9.99 976	
10	8. 48139	8. 48159	9. 99980	50	10	S. 52119	8. 52143	9.99976	
20	S. 48208	8. 48228	9. 99980	40	20	8. 52182	8. 52206	9.99976	40
30	8. 48278	8. 48298	9. 99980	30	30	8. 52245	8. 52269	9.99 976	30
40	8. 48347	8.48367	9. 99980	20	40	8. 52308	8. 52332	9.99976	20
50	8.48416	8. 48436	9. 99980	10	50	8. 52371	8. 52396	9. 99976	10
450	8. 48485	8.48505	9. 99980	015	550	8. 52434	8. 52459	9. 99976	
10	8. 48554	8. 48574	9. 99980	50	10	8. 52497	8. 52522	9.99976	50
20	8.48622	8.48643	9. 99980	40	20	8. 52560	8. 52584	9.99976	40
30	8.48691	8.48711	9. 99980	30	30	8. 52623	8. 52647	9.99975	30
40	8. 48760	8. 48780	9. 99979	20	40	S. 52685	8.52710	9.99 975	20
50	8.48828	8. 48849	99979	10	50	8. 52748	8. 52772	9.99 975	10
460	8. 48896	8.48917	9. 99979	014	560	8. 52810	8. 52835	9.99 975	
10	8. 48965	8.48985	9. 99979	50	10	8. 52872	8. 52897	9.99 975	50
20	8. 49033	8. 49053	9. 99979	40	20	8. 52935	8. 52960	9. 99975	40
30	8. 49101	8. 49121	9. 99979	30	30	8. 52997	8. 53022	9. 99975	30
40	8.49169	8. 49189	9.99 979	20	40	8. 53059	8. 53084	9.99 975	20
50	8. 49236	8. 49257	9. 99979	10	50	8. 53121	8. 53146	9. $9997 \underline{5}$	10
470	8. 49304	8. 49325	9. 99979	013	570	8. 53183	8. 53208	9.99 975	
10	8. 49372	8.49393	9. 99979	50	10	8. 53245	8. 53270	9.99975	
20	8. 49439	8.49460	9.99 979	40	20	8. 53306	8. 53332	9.99 975	40
30	8.49506	8.49528	9.99 979	30	30	8. 53368	8. 53393	9. 99975	30
40	8.49574	8.49595	9.99 979	20	40	8. 53429	8.53455	9. 99975	20
50	8. 49641	8.49662	9.99 979	10	50	8. 53491	8.53516	9.99 974	10
480	8. 49708	8.49729	9.99979	012	580	8. 53552	8. 53578	9. 99974	
10	8.49775	8.49796	9.99 979	50	10	8. 53614	8. 53639	9. 99974	50
20	8.49842	8.49863	9.99978	40	20	8. 53675	8. 53700	9. 99974	40
30	8. 49908	8. 49930	-9. 99978	30	30	8. 53736	8. 53762	9. 99974	30
40	8.49975	8. 49997	9. 99978	20	40	8. 53797	8. 53823	9. 99974	20
50	8. 50042	8. 50063	9. 99978	10	50	8. 53858	8. 53884	9.99974	10
490	8. 50108	8. 50130	9. 99978	011	590	8. 53919	8. 53945	9. 99974	
10	8. 50174	8. 50196	9. 99978	50	10	8. 53979	8. 54005	9. 99974	50
20	8. 50241	8. 50263	9.99 978	40	20	S. 54040	8.54 066	9. 99974	40
30	8. 50307	8.50329	9.99 978	30	30	8. 54101	8. 54127	9. 99974	0
40	8. 50373	8. 50395	9.99978	20	40	8. 54161	8. 54187	9. 99974	20
50	8. 50439	8. 50461	9.99 978	10	50	8. 54222	8.54 248	9.99974	
500	8.50504	8. 50527	9. 99978	010	60.0	8. 54282	8. 54308	9. 99974	
, '1	$\log \cos$	$\log \cot$	$\log \sin$	" '	' 11	$\log \cos$	log cot	$\log \sin$	' 1

'	$\begin{gathered} \log \sin \\ 8 \end{gathered}$	$\begin{gathered} \log \tan \\ 8 \end{gathered}$	$\begin{gathered} \log \cot \\ \mathbf{1 1} \end{gathered}$	$\log \cos$	1
0	54282	54308	45692	99974	60
1	54642	54669	45331	99973	59
2	54999	55027	44973	99973	58
3	55354	55382	44618	99972	57
4	55705	55734	44266	99972	56
5	56054	56083	43917	99971	55
6	56400	56429	43571	99971	54
7	56743	56773	43227	99970	53
8	57084	57114	42886	99970	52
9	57421	57452	42548	99969	51
10	57757	57788	42212	99969	50
11	58089	58121	41879	99968	49
12	58419	58451	41549	99968	48
13	58747	58779	41221	99967	47
14	59072	59105	40895	99967	46
15	59395	59428	40572	99967	45
16	59715	59749	40251	99966	44
17	60033	60068	39932	99966	43
18	60349	60384	39616	99965	42
19	60662	60698	39302	99964	41
20	60973	61009	38991	99964	40
21	61282	61319	38681	99963	39
22	61589	61626	38374	99963	38
23	61894	61931	38069	99962	37
24	62196	62234	37766	99962	36
25	62497	62535	37465	99961	35
26	62795	62834	37166	99961	34
27	63091	63131	36869	99960	33
28	63385	63426	36574	99960	32
29	63678	63718	36282	99959	31
30	63968	64009	35991	99959	30
31	64256	64298	35702	99958	29
32	64543	64585	35415	99958	28
33	64827	64870	35130	99957	27
34	. 65110	65154	34846	99956	26
35	65391	65435	34565	99956	25
36	65670	65715	34285	99955	24
37	65947	65993	34007	99955	23
38	66223	66269	33731	99954	22
39	66497	66543	33457	99954	21
40	66769	66816	33184	99953	20
41	67039	67087	32913	99952	19
42	67308	67356	32644	99952	18
43	67575	67624	32376	99951	17
44	67841	67890	32110	99951	16
45	68104	68154	31846	99950	15
46	68367	68417	31583	99949	14
47	68627	68678	31322	99949	13
48	68886	68938	31062	99948	12
49	69144	69196	30804	99948	11
50	69400	69453	30547	99947	10
51	69654	69708	30292	99946	
52	69907	69962	30038	99946	8
53	70159	70214	29786	99945	7
54	70409	70465	29535	99944	6
55	70658	70714	29286	99944	5
56	70905	70962	29038	99943	4
57	71151	71208	28792	99942	3
58	71395	71453	28547	99942	2
59	71638	71697	28303	99941	1
60	71880	71940	28060	99940	0
,	$\begin{gathered} 8 \\ \log 008 \end{gathered}$	$\stackrel{8}{8}$	$\frac{11}{\log \tan }$	$\underset{\log \mathrm{s} 1}{\mathbf{9}}$,

${ }^{\prime}$	$\begin{gathered} \log \sin \\ 8 \end{gathered}$	$\begin{gathered} \log \tan \\ 8 \end{gathered}$	$\begin{gathered} \log \cot \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{O} \end{gathered}$	${ }^{+}$
0	71880	71940	28060	99940	60
1	72120	72181	27819	99940	59
2	72359	72420	27580	99939	58
3	72597	72659	27341	99938	57
4	72834	72896	27104	99938	56
5	73069	73132	26868	99937	55
6	73303	73366	26634	99936	54
7	73535	73600	26400	99936	53
S	73767	73832	26168	99935	52
9	73997	74063	25937	99934	51
10	74226	74292	25708	99934	50
11	74454	74521	25479	99933	49
12	74680	74748	25252	99932	48
13	74906	74974	25026	99932	47
14	75130	75199	24801	99931	46
15	75353	75423	24577	99930	45
16	75575	75645	24355	99929	44
17	75795	75867	24133	99929	43
18	76015	76087	23913	99928	42
19	76234	76306	23694	99927	11
20	76451	76525	23475	99926	40
21	76667	76742	23258	99926	39
22	76883	76958	23042	99925	38
23	77097	77173	22.827	99924	37
24	77310	77387	22613	99923	36
25	77522	77600	22400	99923	35
26	77733	77811	22189	99922	34
27	77943	78022	21978	99921	33
28	78152	78232	21768	99920	32
29	78360	78441	21559	99920	31
30	78.568	78649	21351	99919	30
31	78774	78855	$2114 \underline{5}$	99918	29
32	78979	79061	20939	99917	28
33	79183	79266	20734	99917	27
34	79386	79470	20530	99916	26
35	79588	79673	20327	99915	25
36	79789	79875	20125	99914	24
37	79990	80076	19924	99913	23
38	S0 189	80277	19723	99913	22
39	80388	S0 476	19524	99912	21
40	80585	80674	19326	99911	20
41	80782	80872	19128	99910	19
42	S0 978	S1 068	18932	99909	18
43	S1 173	81264	18736	99909	17
44	S1 367	81459	18541	99908	16
45	S1 560	81653	18347	99907	15
46	81752	81846	18154	99906	14
47	$819+4$	82038	17962	99905	13
48	82134	82230	17770	99904	12
49	S2 324	82420	17580	99904	11
50	82513	82610	17390	99903	10
51	82701	82799	17201	99902	9
52	82888	82987	17013	99901	8
53	83075	83175	16825	99900	7
54	83261	83361	16639	99899	6
55	83446	S3 547	16453	99898	5
56	83630	S3 732	16268	99898	4
57	83813	83916	16084	99897	3
58	83996	84100	15900	99896	2
59	84177	84282	15718	99895	1
60	84358	$84+64$	15536	99894	0
'	$\underline{\mathrm{log} \cos }$	$\log 00 t$	$\log \tan$	$l \mathrm{log} \sin$	'

'	$\log \sin$	$\log \tan$	$\begin{gathered} \log \cot \\ \mathbf{1 1} . \end{gathered}$	$\log \cos$!	1
0	S+358	84464	15536	99894	60
1	S+ 539	S+ 646	15354	99893	59
2	St 718	84 826	15174	99892	58
3	S4 897	85006	14994	99891	57
4	S5 075	$8518 \underline{1}$	14815	99891	56
5	85252	85363	14637	99890	55
6	85429	85540	14460	99889	54
7	85605	85717	14283	99888	53
8	85780	85893	14107	99887	52
9	$8595 \underline{5}$. 86069	13931	99886	51
10	86128	86243	13757	99885	50
11	86301	86417	13583	99884	49
12	86474	86591	13409	99883	48
13	86645	S6 763	13237	99882	47
14	86816	86935	13065	99 S81	46
15	86987	87106	$12 \mathrm{S94}$	99880	45
16	87156	87277	12723	99879	44
17	87325	87447	12553	99879	43
18	S7 494	87616	12384	99878	42
19	87661	87785	12215	99877	41
20	87829	87953	12047	99876	40
21	87995	88120	11880	99875	39
22	88161	SS 287	11713	99874	38
23	SS 326	SS 453	11547	99873	37
24	88490	SS 618	11382	99872	36
25	88654	88783	11217	99871	35
26	SS 817	S8948	11052	99870	34
27	88980	89111	10889	99869	33
28	89142	89274	10726	99868	32
29	89304	89437	10563	99\$667	31
30	89464	89598	10402	99866	30
31	S9 625	89760	10240	99865	29
32	S9 784	89920	10080	99864	28
33	89943	90080	09920	99863	27
34	90102	90240	09760	99862	26
35	90260	90399	09601	99861	25
36	90417	90557	09443	99860	24
37	90574	90715	09285	99859	23
38	90730	90872	09128	99858	22
39	90885	91029	08971	99857	21
40	91040	91185	08815	99856	20
41	91195	91340	08660	99855	19
42	91349	91495	08505	99854	18
43	91502	91650	08350	99853	17
44	91655	91803	08197	99852	16
45	91807	91957	08043	99851	15
46	91959	92110	07890	99850	14
47	92110	92262	07738	99858	13
48	92261	92414	07586	99847	12
49	92411	$9256 \underline{5}$	07435	99846	11
50	92561	92716	07284	99845	10
51	92710	92866	07134	99844	9
52	92859	93016	06984	99843	8
53	93007	93165	06835	99842	7
54	93154	93313	06687	99841	6
55	93301	93462	06538	99840	5
56	93448	93609	06391	99839	4
57	93594	93756	06244	99838	3
58	93740	93903	06097	99837	2
59	93 S85	94049	05951	99836	1
60	$\begin{gathered} 94030 \\ \mathbf{8} \end{gathered}$	94195	$\begin{gathered} 05805 \\ 11 \end{gathered}$	99834	0
'	$10 \mathrm{~g} \cos$	log oot	$\log \tan$		'

${ }^{\prime}$	$\log \sin$ 8	$\begin{aligned} & \log \tan \\ & .8 \end{aligned}$	$\begin{gathered} \log 00 t \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} \hline \log \cos \\ 9 \end{gathered}$	${ }^{\prime}$
0	94030	94195	05805	99834	60
1	94174	94340	05660	99833	59
2	94317	94485	05515	99832	58
3	94461	94630	05370	99831	57
4	94603	94773	05227	99830	56
5	94746	94917	05083	99829	55
6	94887	95060	04940	99828	54
7	95029	95202	04798	99827	53
8	95170	95344	04656	99 S25	52
9	95310	95486	04514	99824	51
10	95450	95627	04373	99823	50
11	95589	95767	04233	99822	49
12	95728	95908	04092	99821	48
13	95867	96047	03953	99820	47
14	96005	96187	03813	99819	46
15	96143	96325	03675	99817	45
16	96280	96464	03536	99816	44
17	96417	96602	03398	99815	43
18	96553	96739	03261	99814	42
19	96689	96877	03123	99813	41
20	96825	97013	02987	99812	40
21	96960	97150	02850	99810	39
22	97095	97285	02715	99809	38
23	97229	97421	02579	99808	37
24	97363	97556	02444	99807	36
25	97496	97691	02309	99806	35
26	97629	97825	02175	99804	34
27	97762	97959	02041	99803	33
28	97894	98092	01908	99802	32
29	98026	98225	01775	99801	31
30	98157	98358	01642	99800	30
31	98288	98490	01510	99798	29
32	98419	98622	01378	99797	28
33	98549	98753	01.247	99796	27
34	98679	98884	01116	99795	26
35	98808	99015	00985	99793	25
36	98937	99145	00855	99792	24
37	99066	99275	00725	99791	23
38	99194	99405	00595	99790	22
39	99322	99534	00466	99788	21
40	99450	99662	00338	99787	20
41	99577	99791	00209	99786	19
42	99704	99919	00081	99785	18
43	99830	00046	99951	99783	17
44	99956	00174	99826	99782	16
45	$\overline{00082}$	00301	99699	99781	15
46	00207	00427	99573	99780	14
47	00332	00553	99447	99778	13
48	00456	00679	99321	99777	12
49	00581	0080 E	99195	99776	11
50	00704	00930	99070	99775	10
51	00828	01055	98945	99773	9
52	00951	01179	98821	99772	8
53	01074	01303	98697	99771	7
54	01196	01427	98573	99769	6
55	01318	01550	98450	99768	5
56	01440	01673	98327	99767	4
57	01561	01796	98204	99765	3
58	01682	01918	98082	99764	2
59	01803	02040	97960	99763	1
60	01923	02162	97838	99761	0
,	$\begin{gathered} \underset{\mathbf{9}}{\log \cos } \end{gathered}$	$\stackrel{9}{\log \cot }$	$\begin{gathered} 10 \\ \log \tan \end{gathered}$	$\begin{gathered} \mathbf{9} \\ \log \sin \end{gathered}$,

'	$\begin{gathered} \log \sin \\ 9 \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{g} \end{gathered}$	'
0	01923	02162	97838	99761	60
1	02043	02283	97717	99760	59
2	02163	02404	97596	99759	58
3	02283	02525	97475	99757	57
4	02402	02645	$9735 \underline{\underline{5}}$	99756	56
5	02520	02766	97234	99755	55
6	02639	02885	97115	99753	54
7	02757	$0300 \underline{5}$	96995	99752	53
8	02874	03124	96876	99751	52
9	02992	03242	96758	99749	51
10	03109	03361	96639	99748	50
11	03226	03479	96521	99747	49
12	03342	03597	96403	99745	48
13	03458	03714	96286	99744	47
14	03574	03832	96168	99742	46
15	03690	03948	96052	99741	45
16	03805	04065	95935	99740	44
17	03920	04181	95819	99738	43
18	04034	04297	95703	99737	42
19	04149	04413	95587	99736	41
20	04262	04528	95472	99734	40
21	04376	04643	95357	99733	39
22	04490	04758	95242	99731	38
23	04603	04873	95127	99730	37
24	04715	04987	95013	99728	36
25	04 S28	05101	94899	99727	35
26	04940	05214	94786	99726	34
27	05052	05328	94672	99724	33
28	05164	05441	94559	99723	32
29	$0527 \underline{5}$	05553	94447	99721	31
30	05386	05666	94334	99720	30
31	05497	05778	94222	99718	29
32	05607	05890	94110	99717	28
33	05717	06002	93998	99716	27
34	05827	06113	93887	99714	26
35	05937	06224	93776	99713	25
36	06046	06335	93665	99711	24
37	06155	06445	93555	99710	23
38	06264	06556	93444	99708	22
39	06372	06666	93334	99707	21
40	06481	06775	93225	99705	20
41	06589	06885	93115	99704	19
42	06696	06994	93006	99702	18
43	06804	07103	92897	99701	17
44	06911	07211	92789	99699	16
45	07018	07320	92680	99698	15
46	07124	07428	92572	99696	14
47	07231	07536	92464	99695	13
48	07337	07643	92357	99693	12
49	07442	07751	92249	99692	11
50	07548	07858	92142	99690	10
51	07653	07964	92036	99689	9
52	07758	08071	91929	99687	8
53	07863	08177	91823	99686	7
54	07968	08283	91717	99684	6
55	08072	08389	91611	99683	5
56	08176	08495	91505	99681	4
57	08280	08600	91400	99680	3
58	08383	08705	91295	99678	2
59	08486	08810	91190	99677	1
60	08589	08914	91086	675	0
,	$\log 008$	$\begin{gathered} \mathbf{9} \\ \log 00 t \end{gathered}$	$\begin{gathered} 10 \\ \log \tan \end{gathered}$	$\log \sin$,

'	$\begin{gathered} \log \sin \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$		'	$\begin{gathered} \hline \log \sin \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \tan \\ 9 \end{gathered}$	$\begin{aligned} & \log \cot \\ & \mathbf{1 0} \end{aligned}$	$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$	${ }^{\prime}$
0	OS 589	08914	91086	99675	60	,	14356	$1+780$	85220	99575	60
1	08692	09019	90981	99674	59	1	14445	$1+872$	85128	99574	59
2	08795	09123	90877	99672	58	2	14535	14963	85037	99572	58
3	08897	09227	90773	99670	57	3	14624	15054	84946	99570	57
4	08999	09330	90670	99669	56	4	14714	15145	$8485 \underline{5}$	99568	56
5	09101	$0943+$	90566	99667	55	5	14803	15236	84764	99566	55
6	09202	09537	90463	99666	54	6	14891	15327	S4 673	99565	54
7	09304	09640	90360	99664	53	7	14980	15417	84583	99563	53
8	09405	$097+2$	90258	99663	52	8	15069	15508	84492	99561	52
9	09506	09 S+5	90155	99661	51	9	15157	15598	S4 402	99559	51
10	09606	09947	90053	99659	50	10	15245	15688	84312	99557	50
11	09707	$100+9$	S9 951	99658	49	11	15333	15777	$8+223$	99556	49
12	09807	10150	S9 850	99656	48	12	15421	15867	84133	99554	48
13	09907	10252	89748	99655	47	13	15508	15956	84044	99552	47
14	10006	10353	89647	99653	46	14	15596	16046	83954	99550	46
15	10106	10454	89546	99651	45	15	15683	16135	83865	99548	45
16	10205	10555	89445	99650	44	16	15770	16224	83776	99546	44
17	$1030+$	10656	89344	99648	43	17	15857	16312	83688	99545	43
18	10402	10756	89244	99647	42	18	15944	16401	83599	99543	42
19	10501	10856	S9 144	99645	41	19	16030	16489	83511	99541	41
20	10599	10956	89044	99643	40	20	16116	16577	83423	99539	40
21	10697	11056	88944	99642	39	21	16203	16665	83335	99537	39
22	10795	11155	S8 $84 \underline{5}$	99640	38	22	16289	16753	83247	99535	38
23	10593	11254	88746	99638	37	23	16374	16841	83159	99533	37
24	10990	11353	88647	99637	36	24	16460	16928	83072	99532	36
25	11087	11452	88548	99635	35	25	16545	17016	82984	99530	35
26	11184	11551	88449	99633	34	26	16631	17103	82897	99528	34
27	11281	11649	SS 351	99632	33	27	16716	17190	82810	99526	33
28	11377	11747	88253	99630	32	28	16801	17277	82723	99524	32
29	11474	11845°	S8 155	99629	31	29	16886	17363	82637	99522	31
30	11570	11943	85057	99627	30	30	16970	17450	82550	99520	30
31	11666	12040	87960	99625	29	31	17055	17536	S2 464	99518	29
32	11761	12138	87862	99624	28	32	17139	17622	82378	99517	28
33	11857	12235	87765	99622	27	33	17223	17708	82 292	99515	27
34	11952	12332	87668	99620	26	34	17307	17794	S2 206	99513	26
35	$120+7$	12428	87572	99618	25	35	17391	17 SSO	82120	99511	25
36	12142	12525	87475	99617	24	36	17474	17965	82 035	99509	24
37	12236	12621	87379	99615	23	37	17558	18051	81949	99507	23
38	12331	12717	87283	99613	22	38	17641	18136	81864	99505	22
39	12425	12813	87187	99612	21	39	17724	18221	81779	99503	21
40	12519	12909	87091	99610	20	40	17807	18306	81694	99501	20
41	12612	13004	86996	99608	19	41	17890	18391	81609	99499	19
42	12706	13099	S6 901	99607	18	42	17973	18475	81525	99497	18
43	12799	i3 194	86806	99605	17	43	18055	18560	81440	99495	17
44	12 S 92	13289	S6 711	99603	16	44	18137	18644	81356	99494	16
45	12985	13384	86616	99601	15	45	18220	18728	81272	99492	15
46	13078	13478	86522	99600	14	46	18302	18812	81188	99490	14
47	13171	13573	86427	99598	13	47	18383	18896	81104	99488	13
48	13263	13667	86333	99596	12	48	18465	18979	81021	99486	12
49	13355	13761	86239	99595	11	49	18547	19063	80937	99484	11
50	13447	13854	86146	99593	10	50	18628	19146	80 S54	99482	10
51	13539	13948	86052	99591	9	51	18709	19229	80771	99480	9
52	13630	$140+1$	85959	99589	8	52	18790	19312	80688	99478	8
53	13722	14134	85866	99588	7	53	18871	19395	80605	99476	7
54	13813	$1+227$	85773	99586	6	54	18952	19478	80522	99474	6
55	13904	14320	85680	99584	5	55	19033	19561	80439	99472	5
56	13994	14412	85588	99582	4	56	19113	19643	80357	99470	
57	14085	14504	85496	99581		57	19193	19725	80275	99468	3
58	14175	14597	85403	99579	2	58	19273	19807	80193	99466	2
59	14266	14688	85312	99577	1	59	19353	19889	80111	99464	1
60	14356	14780	$\begin{gathered} 85220 \\ \mathbf{1 0} \end{gathered}$	$\mathbf{9}_{\mathbf{9}}^{9975}$	0	60	19433	19971	80029	99462	0
,	$\log \cos$	$\log \cot$	$\log \tan$	$\log \sin$,	,	$\underline{l o g} \cos$	log cot	$\log \tan$	$\mathrm{log} \sin$,

1	$\log \sin$ 9	$\log \tan$ 9	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{O} \end{gathered}$	${ }^{\prime}$
0	28060	2S S65	71135	99195	60
1	28125	28933	71067	99192	59
2	28190	29000	71000	99190	58
3	$2825+$	29067	70933	99187	57
4	28319	$2913+$	70866	99185	56
5	$2 \mathrm{3S4}$	29201	70799	99182	55
6	28448	29268	70732	99180	54
7	28512	$2933 \underline{5}$	70665	99177	53
S	28577	29402	70598	99175	52
9	28641	$29+68$	70532	99172	51
10	$2870 \underline{5}$	29535	70465	99170	50
11	28769	29601	70399	99167	49
12	28833	29668	70332	99165	48
13	28596	29734	70266	99162	47
14	28960	29500	70200	99160	46
15	29024	29 S66	70134	99157	45
16	29087	29932	70068	99155	44
17	29150	29998	70002	99152	43
18	29214	30064	69936	99150	42
19	29277	30130	69570	99147	1
20	29340	30195	69 S05	$991+5$	40
21	$29+03$	30261	69739	99142	39
22	29466	30326	69674	99140	38
23	29529	30391	69609	99137	37
24	29591	30457	$695+3$	99135	36
25	29654	30522	69478	99132	35
26	29716	30557	69413	99130	34
27	29779	30652	69348	99127	33
2 S	29 St1	30717	69283	99124	32
29	29903	30782	69218	99122	31
30	29966	30 S46	69154	99119	30
31	30028	30911	69089	99117	29
32	30090	30975	69025	99114	28
33	30151	31040	68960	99112	27
34	30213	31104	68896	99109	26
35	30275	31168	68532	99106	25
36	30336	31233	68767	99104	24
37	30398	31297	68703	99101	23
3 S	30459	31361	68639	99099	22
39	30521	$3142 \underline{5}$	68575	99096	21
40	30582	31489	68511	99093	20
41	30643	31552	68448	99091	19
42	30704	31616	6 S 3 St	99 0SS	18
43	30765	31679	68321	99086	17
44	30 S26	31743	6 S 257	99083	16
45	30 S87	31506	68194	99080	15
46	30947	31570	68130	99078	14
47	31008	31933	68067	99075	13
48	31068	31996	68004	99072	12
49	31129	32059	$679+1$	99070	11
50	31189	32122	67 S78	99067	10
51	31250	32185	67 S15	99064	9
52	31310	32248	67752	99062	8
53	31370	32311	67689	99059	7
54	31430	32373	67627	99056	6
5.5	31490	32436	67564	99054	5
56	31549	32498	67502	99051	4
57	31609	32561	67439	99048	3
58	31669	32623	67377	99046	2
59	31728	32685	$6731 \underline{5}$	99043	2
60	31788	32747	67253	99040	0
,		9	10	9	,

7	$\log \sin$ 9	$\log \tan$ ©	\log cot 10	$\begin{gathered} \log \cos \\ 9 \end{gathered}$	7
0	31788	32747	67253	99040	60
1	31847	32 S10	67190	99038	59
2	31907	32872	67128	99035	58
3	31966	32933	67067	99032	57
4	32025	32995	67005	99030	56
5	32084	33057	66943	99027	55
6	32143	33119	66 SS1	99024	54
7	32202	33180	66820	99022	53
S	32261	33242	66758	99019	2
9	32319	33303	66697	99016	51
10	32378	33365	66635	99013	50
11	32437	33426	66574	99011	49
12	32495	33457	66513	99008	48
13	32553	33548	$66+52$	99005	47
14	32612	33609	66391	99002	46
15	32670	33670	66330	99000	45
16	32728	33731	66269	98997	44
17	32786	33792	66208	98994	43
18	32844	33 S53	66147	98991	42
19	32902	33913	66087	98989	
20	32960	33974	66026	98986	40
21	33018	34034	65966	98983	39
22	33075	34095	65905	98980	38
23	33133	$3+155$	65 S45	98978	37
24	33190	34215	65785	98975	36
25	33248	34276	65724	98972	35
26	33305	34336	65664	-98 969	34
27	33362	34396	65604	98967	33
28	33420	34456	65544	98964	32
29	33477	34516	65484	98961	31
30	33534	34576	65424	98958	30
31	33591	34635	65365	98955	29
32	33647	. 34695	65305	98953	28
33	33704	34755	65245	98950	27
34	33761	34814	65186	98947	26
35	33 818	34874	65126	98944	25
36	33 S74	34933	65067	98941	24
37	33931	34992	65008	98938	23
38	33987	35051	64949	98936	22
39	34043	35111	64 S89	98933	21
40	34100	35170	64830	98930	20
41	34156	35229	64771	98927	19
42	34212	35 2SS	64712	98924	18
43	34268	35347	64653	98921	17
44	34324	35405	64595	98919	16
45	34380	35464	64536	98916	15
46	34436	35523	64477	98913	14
47	34491	35581	$6+419$	98910	13
48	34547	35640	64360	98907	12
49	34602	35698	64302	98904	11
50	34658	35757	64243	98901	10
51	34713	35 S15	64185	98898	19
52	34769	35873	64127	98596	8
53	34824	35931	64069.	98593	7
54	34879	35989	64011	98590	6
55	34934	36047	63953	9S S87	5
56	34989	36105	63895	98884	4
57	35044	36163	63 S37	98581	3
58	35099	36221	63779	98578	2
59	35154	36279	63721	98875	
60	35209	36336	63664	98872	0
	9	9	10	9	
,	$\log \cos$	\log cot	$\log \tan$	$\log \sin$	'

'	$\log \sin$ 9	$\log \tan$ 9	$\log \cot$ 10	$\log 00 s$	'
0	35209	36336	63664	98572	60
1	35263	36394	63606	98869	59
2	35318	36452	63548	98867	58
3	35373	36509	63491	98864	57
4	35427	36566	63434	98861	56
5	35481	36624	63376	98858	55
6	35536	36681	63319	98855	54
7	35590	36738	63262	98852	53
8	35644	36795	63205	98849	52
9	35698	36852	$6314 \overline{8}$	98846	51
10	35752	36909	63091	98843	50
11	35806	36966	63034	98840	49
12	$35 \mathrm{S60}$	37023	62977	98837	48
13	35914	37080	62920	98834	47
14	35968	37137	62863	98831	46
15	36022	37193	62807	98828	45
16	36075	37250	62750	98825	44
17	36129	37306	62694	98822	43
18	36182	37363	62637	98819	42
19	36236	37419	62581	98816	41
20	36289	37476	62524	98813	40
21	36342	37532	62468	98810	39
22	36395	37588	62412	98807	38
23	36449	37644	62356	98804	37
24	36502	37700	62300	98801	36
25	36555	37756	62244	98798	35
26	36608	37812	62188	98795	34
27	36660	37868	62132	98792	33
28	36713	37924	62076	98789	32
29	36766	37980	62020	98786	31
30	36819	38035	61965	98783	30
31	36871	38091	61909	98780	29
32	36924	38147	61853	98777	28
33	36976	38202	61798	98774	27
34	37028	38257	61743	98771	26
35	37081	38313	61687	98768	25
36	37133	38368	61632	98765	24
37	37185	38423	61577	98762	23
38	37237	38479	61521	98759	22
39	37289	38534	61466	98756	21
40	37341	38589	61411	98753	20
41	37393	38644	61356	98750	19
42	37445	38699	61301	98746	18
43	37497	38754	61246	98743	17
44	37549	38808	61192	98740	16
45	37600	38863	61137	98737	15
46	37652	38918	61082	98734	14
47	37703	38972	61028	98731	13
48	$3775 \underline{5}$	39027	60973	98728	12
49	37806	39082	60918	$9872 \underline{5}$	11
50	37858	39136	60864	98722	10
51	37909	39190	60810	98719	9
52	37960	39245	60755	98715	8
53	38011	39299	60701	98712	7
54	38062	39353	60647	98709	6
55	38113	39.407	60593	98706	5
56	38164	39461	60539	98703	4
57	38215	39515	60485	98700	3
58	38266	39569	60431	98697	2
59	38317	39623	60377	98694	1
60	38368	39677	60323	98690	0
,			$\begin{gathered} 10 \\ \log \tan \end{gathered}$		'

${ }^{\prime}$	$\begin{gathered} \log \sin \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} \log \cos \\ .9 \end{gathered}$	${ }^{\prime}$
0	38368	39677	60323	98690	60
1	38418	39731	60269	98687	59
2	38469	39785	60215	98684	58
3	38519	39838	60162	98681	57
4	38570	39892	60108	98678	56
5	38620	39945	60055	98675	55
6	38670	39999	60001	98671	54
7	38721	40052	59948	98668	53
8	38771	40106	59894	98665	52
9	38821	40159	59841	98662	51
10	38871	40212	59788	98659	50
11	38.921	40266	59734	98656	49
12	38971	40319	59681	98652	48
13	39021	40372	59628	98649	47
14	39071	$4042 \underline{5}$	59575	98646	46
15	39121	40478	59522	98643	45
16	39170	40531	59469	98640	44
17	39220	40584	59416	98636	43
18	39270	40636	59364	98633	42
19	39319	40689	59311	98630	41
20	39369	40742	59258	98627	40
21	39418	40795	59205	98623	39
22	39467	40847	59153	98620	38
23	39517	40900	59100	98617	37
24	39566	40952	59048	98614	36
25	39615	41005	58995	986.0	35
26	39664	41057	58943	98607	34
27	39713	41109	58891	98604	33
28	39762	41161	58839	98601	32
29	39811	41214	58786	98597	31
30	39860	41266	58734	98594	30
31	39909	41318	58682	98591	29
32	39958	41370	58630	98588	28
33	40006	41422	58578	98584	27
34	40055	41474	58526	98581	26
35	40103	41526	58474	98578	25
36	40152	41578	58422	98574	24
37	40200	41629	58371	98571	23
38	40249	41681	58319	98568	22
39	40297	41733	58267	$9856 \underline{5}$	21
40	40346	41784	58216	98561	20
41	40394	41836	5 S 164	98.558	19
42	40442	41887	58113	98555	18
43	40490	41939	58061	98551	17
44	40538	41990	5S 010	98548	16
45	40586	42041	57959	98545	15
46	40634	42093	57907	98541	14
47	40682	42144	57856	98538	13
48	40730	42195	57805	98535	12
49	40778	42246	57754	98531	11
50	40825	42297	57703	98528	10
51	40873	42348	57652	98525	9
52	40921	42399	57601	98521	8
53	40968	42450	57550	98518	7
54	41016	42501	57499	98515	6
55	41063	42552	57448	98511	5
56	41111	42603	57397	98508	4
57	41158	42653	57347	98505	3
58	41205	42704	57296	98.501	2
59	41252	$4275 \underline{5}$	57245	98498	1
60	41300	42805	57195	98494	0
$\frac{1}{1}$		9 $\log \cot$	10	9	1

				cos				$\begin{aligned} & \log \tan \\ & \hline \end{aligned}$	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\begin{aligned} & \log \cos \\ & \hline \end{aligned}$	
0	41300	42805	57195	98494	60	O	44034	45750	54250	98284	60
1	41347	42856	57144	98491	59	1	44078	45797	54203	98281	
2		42906	57094	98488	58	2	44122	45845	54155	98277	58
3	41441	42957	570	98	57			458	54108	98273	
4	41488	43007	56993	98481	56	4	44	45940	54060	98270	56
5	41535	43057	56943	98477	55	5	44253	45987	54013	98266	55
6	41582	43108	56892	98474	54	6	44297	46035	53965	98262	4
	41628	43158	56842	98471	53	7	44341	46082	53918	98259	53
8	416	4320	56				4438	46130	5387		52
	41722	43258	56742		51		4442	46177	5382	98	51
10	417	43308	56692	98460	50	10	4447	46224	53776	98248	50
11	41815	43358	56642	98457	49		44516	46271	53729	98244	49
12	41861	43408	56592	98453	48	12	44559	46319	53681	98240	48
13	41908	43458	56542	98450	47	13	44602	46366	53634	98237	47
14	41954	43508	56492	98447		14	44646	46413	53587	98233	46
15	42001	43558	56442	98443	45	15	4468	46460	53540	98229	45
17	420	43607	56393	98440	4	16	44	46507	53493	98	
17	42093	43657	56343	98436	43	17	44736	46554	53446		43
18	42140	43707	56293	98433	42	18	44819	46601			42
19.	42186	43756	56244	98429	41	19	44862	46648	53352	98215	41
20	42232	43806	56194	98426	40	20	44905	46694	53306	98211	40
	42	43855		98	39	21	44	46741	532		
22	42324	43905			38	22	44992	46788	53212	$9820+$	8
23	42370	43954	56046		37	23	45035	46835	53165	98200	
24	42416	44004	55996	98412	36	24	45077	46881	53119	98196	36
25	42461	44053	55947	98409	35	25	45120	4692	53072	981	35
26	4250	44102	5589				45163	4697	53025		4
27		44151	55849 55799	98402	33		4520	47021	52979		
29	4264	$4+250$	55750	983	31	29	45292	47114	5288	98177	32
3	42690	44299	55701	98391	30	30	4533	47160	52840	98174	30
	42735	44348	55652		29		4537	47207	52793	98170	
33	42781	44397	55603	98	28	32	45419	47253	52747	98166	28
33	42826	44446	55554		26	34	45462	47299	52701	${ }^{98162}$	27
34	42872	44495	55505	98377	26	34	45504	47346	52654	98159	26
3	42917	44544	55456	98373	25	35	4554	47392	52608	8	25
	42	4459	55.408				455	4743	525	98	
37	43	44641	55359	98	23	37	45632	4748	52516	98147	
38	43	44690	55310		22	38	45674	47530	52470	98144	
40	43143	44787	55213	98356	20	40	4575	47622	5237	8136	20
41	43188	44836	55164	98352	19	41	45801	47668	52332		
42	43233	44884	55116	98349	18	42	4584	47714	52286	9812	18
	43278	44933	55067	98345	17	43	45	47760	52240	981	17
44	43323	44981	55019	98342	16	44	4592	47806	52194	98121	16
45	43367	45029	54971	98338	15	45	45969	47852	52118	98117	15
4	43412	45078	54922	98334			46011	47897	52103	98113	
47	43457	45126	54874	98331	13	47	46053	47943	52057	98110	13
48	43502	45174	54826	98327	12	48	4609	47989	52011	98106	12
49	4354	45222	54778	98324	-		4613	48035	51965		
5	4359	45271	54729	98320	10	50	46178	48080	51920	98098	0
		4531	546	98317 98313			46220	48126	51874	98094 98090	
53	43724	45415	54585	98309	${ }_{7}$	53	46303	48217	51783	9808	
54	43769	45463	54537	98306	6	54	4634	48262	51738	98083	6
55	438	45511	54489	98	5	55	46386	48307	51693	98079	5
	43	45559	5444	98299				48353	51647	98075	
57 58	43	45606	54334	98295	3 2 2		46469	48398	51502	98071	3
59	43990	45702	54298	98288	${ }_{1}^{2}$	59	46552	48489	51511	9806	1
60					0	60	46594		51466		0
	1 log 0	log 00	$\log \tan$	$\log \sin$			$\log 00$	\log co	log ta	$\log ^{9}$ sin	

'	$\begin{gathered} \log \sin \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ 10 \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$	
0	46594	48534	51466	98060	60
1	46635	48579	51421	98056	59
2	46676	48624	51376	98052	58
3	46717	48669	51331	98048	57
4	46758	48714	51286	98044	56
5	46800	48759	51241	98040	55
6	$468+1$	$4880+$	51196	98036	54
7	46882	48849	51151	98032	53
8	46923	$4889+$	51106	98029	52
9	46964	48939	51061	98025	51
10	47005	48984	51016	98021	50
11	47045	49029	50971	98017	49
12	47086	49073	50927	98013	48
13	47127	49118	50882	98009	47
14	47168	49163	50837	98005	46
15	47209	49207	50793	98001	45
16	47249	49252	50748	97997	44
17	47290	49296	50704	97993	43
18	47330	49341	50659	97989	42
19	47371	49385	$5061 \underline{5}$	97986	41
20	47411	49430	50570	97982	40
21	47452	49474	50526	97978	39
22	47492	49519	50481	97974	38
23	47533	49563	50437	97970	37
24	47573	49607	50393	97966	36
25	47613	49652	50348	97962	35
26	47654	49696	50304	97958	34
27	47694	49740	50260	97954	33
28	47734	49784	50216	97950	32
29	47774	49828	50172	97946	31
30	47814	49872	50128	$979+2$	30
31	47854	49916	50084	97938	29
32	47894	49960	50040	97934	28
33	47934	50004	49996	97930	27
34	47974	50048	49952	97926	26
35	48014	50092	49908	97922	25
36	48054	50136	49864	97918	24
37	48094	50180	49820	97914	23
38	48133	50223	49777	97910	22
39	48173	50267	49733	97906	21
40	48213	50311	49689	97902	20
41	48252	50355	49645	97898	19
42	48292	50398	49602	97894	18
43	48332	50442	49558	97890	17
44	48371	50485	49515	97886	16
45	48411	50529	49471	97882	15
46	48450	50572	49428	97878	14
47	48490	50616	49384	97874	13
48	48529	50659	49341	97870	12
49	48568	50703	49297	97866	11
50	48607	50746	49254	97861	10
51	48647	50789	49211	97857	9
52	48686	50833	49167	97853	8
53	48725	50876	49124	97849	7
54	48764	50919	49081	97845	6
5.5	48803	50962	49038	97841	5
56	48 St2	51005	48995	97837	4
57	48881	51048	48952	97833	3
58	48920	51092	48908	97829	2
59	48959	51135	48865	97825	1
60	48998	51178	48822	97821	0
,	$\begin{gathered} \boldsymbol{9} \\ \log \cos \end{gathered}$	$\stackrel{9}{\log \text { cot }}$	$\begin{gathered} 10 \\ \log \tan \end{gathered}$	$\stackrel{\boldsymbol{9}}{\log \sin }$	

'	$\log \sin$	$\log \tan$ 9	$\log \cot$ 10	$\begin{gathered} \log \cos \\ 9 \end{gathered}$	${ }^{\prime}$
0	48998	51178	48822	97821	60
1	49037	51221	48779	97817	59
2	49076	51264	48736	97812	58
3	49115	51306	$4869+$	97808	57
4	49153	$513+9$	48651	97804	56
5	49192	51392	48608	97800	55
6	49231	51435	48565	97796	54
7	49269	51478	48522	97792	53
8	49308	51520	48480	97788	52
9	49347	51563	48437	97784	51
10	49385	51606	48394	97779	50
11	49424	51648	48352	97775	49
12	49462	51691	48309	97771	48
13	49500	51734	48266	97767	47
14	49539	51776	48224	97763	46
15	49577	51819	48181	97759	45
16	49615	51861	48139	97754	44
17	49654	51903	48097	97750	43
18	49692	51946	48054	97746	42
19	49730	51988	48012	97742	41
20	49768	52031	47969	97738	40
21	49806	52073	47927	97734	39
22	49844	52115	47885	97729	38
23	49882	52157	47843	97725	37
24	49920	52200	47800	97721	36
25	49958	52242	47758	97717	35
26	49996	52284	47716	97713	34
27	50034	52326	47674	97708	33
28	50072	52368	47632	97704	32
29	50110	52410	47590	97700	31
30	50148	52452	47548	97696	30
31	50185	52494	47506	97691	29
32	50223	52536	47464	97687	28
33	50261	52578	47422	97683	27
34	50298	52620	47380	97679	26
35	50336	52661	47339	97674	25
36	50374	52703	47297	97670	24
37	50411	52745	47255	97666	23
38	50449	52787	47213	97662	22
39	50486	52829	47171	97657	21
40	50523	52870	47130	97653	20
41	50561	52912	47088	97649	19
42	50598	52953	47047	97645	18
43	50635	52995	47005	97640	17
44	50673	53037	46963	97636	16
45	50710	53078	46922	97632	15
46	50747	53120	46880	97628	14
47	50784	53161	46839	97623	13
48	50821	53202	46798	97619	1
49	50858	53244	46756	97615	11
50	50896	53285	46715	97610	10
51	50933	53327	46673	97606	9
52	50970	53368	46632	97602	8
53	51007	53409	46591	97597	7
54	51043	53450	46550	97593	6
55	51080	53492	46508	97589	5
56	51117	53533	46467	97584	
57	51154	53574	46426	97580	3
58	51191	53615	46385	97576	2
59	51227	53656	46344	97571	1
60	51264	53697	46303	97567	0
	$\log \mathrm{c}$	$\begin{gathered} 9 \\ \log 00 \end{gathered}$	10 $\log \tan$	$10 g$,

72°

7	$\log \sin$ 9	$\begin{gathered} \log \tan \\ 9 \end{gathered}$	$\log \cot$ 10	$\begin{gathered} \log \cos \\ \boldsymbol{g} \end{gathered}$	'
0	51264	53697	46303	97567	60
1	51301	53738.	46262	97563	59
2	51338	53779	46221	97558	58
3	51374	53 S20	46180	97554	57
4	51411	53861	46139	97550	56
5	51447	53902	46098	97545	55
6	51484	53943	46057	97541	54
7	51520	53984	46016	97536	53
8	51557	54025	45975	97532	52
9	51593	54065	45935	97528	5
10	51629	$5+106$	$4589+$	97523	50
11	51666	$5+147$	45853	97519	49
12	51702	$5+187$	45813	97515	48
13	51738	54228	45772	97510	47
14	51774	54269	45731	97506	46
15	51811	54309	45691	97501	45
16	51847	54350	45650	97497	44
17	51883	54390	45610	97492	43
18	51919	54431	45569	97488	42
19	51955	54471	45529	97484	41
20	51991	54512	45 4S8	97479	40
21	52027	54552	45448	$9747 \underline{5}$	39
22	52063	54593	45407	97470	38
23	52099	54633	45367	97466	37
24	52135	54673	45.327	97461	36
25	52171	54714	45286	97457	35
26	52207	54754	45246	97453	34
27	52242 .	54794	45206	97448	33
28	52278	54835	45165	97444	32
29	52314	$5487 \underline{5}$	45125	97439	31
30	52350	54915	45085	97435	30
31	52385	54955	45045	97430	29
32	52421	54995	45005	97426	28
33	52456	55035	44965	97421	27
34	52492	55075	44925	97417	26
35	52527	55115	44885	97412	25
36	52563	55155	44845	97408	24
37	52598	55195	44805	97403	23
38	52634	55235	$4+765$	97399	22
39	52669	55275	$4472 \underline{5}$	97394	21
40	52705	55315	44685	97390	20
41	52740	55355	44645	97385	19
42	52775	55395	44605	97381	18
43	52811	55434	44566	97376	17
44	52846	55474	44526	97372	16
4.5	52881	55514	44486	97367	15
46	52916	55554	44446	97363	14
47	52951	55593	44407	97358	13
48	52986	55633	$4+367$	97353	12
49	53021	55673	44327	97349	11
50	53056	55712	44288	97344	10
51	53092	55752	44248	97340	9
52	53126	55791	44209	97335	S
53	53161	55831	44169	97331	7
54	53196	55870	44130	97326	6
5.5	53231	55910	44090	97322	5
56	53266	55949	$4+051$	97317	4
57	53301	55989	44011	97312	3
58	53336	56028	43972	97308	2
59	53370	56067	43933	97303	1
60	53405	56107	43893	97299	0
	Э	9	10	9	
'	$\log \cos$	$\log \cot$	$\log \tan$	$\log \sin$	\dagger

7	$\log \sin$ 9)	$\log \tan$ ©	$\begin{gathered} \log \cot \\ \mathbf{1 0} \end{gathered}$	$\log \cos$	\prime
0	53405	56107	43893	97299	1
,	53440	56146	43854	97294	59
2	53475	56185	43815	97289	58
3	53509	56224	43776	97285	57
4	53544	56264	43736	97280	56
5	53578	56303	43697	97276	55
6	53613	56342	43658	97271	54
7	53647	56381	43619	97266	53
8	53682	56420	43580	97262	52
9	53716	56459	43541	97257	51
10	53751	56498	43502	97252	50
11	53785	56537	43463	97248	49
12	53819	56576	43424	97243	48
13	53854	56615	43385	97238	47
14	53888	56654	43346	97234	46
15	53922	56693	43307	97229	45
16	53957	56732	43268	97224	44
17	53991	56771	43229	97220	43
18	54025	56 S10	43190	97215	42
19	54059	56849	43151	97210	
20	54093	56887	43113	97206	40
21	54127	56926	43074	97201	39
22	54161	56965	43035	97196	38
23	54195	57004	42996	97192	37
24	54229	57042	42958	97187	36
25	54263	57081	42919	97182	35
26	54297	57120	42 S80	97178	34
27	54331	57158	42842	97173	33
28	54365	57197	42803	97168	32
29	54399	57235	$4276 \underline{1}$	97163	31
30	54433	57274	42726	97159	30
31	54466	57312	42688	97154	29
32	54500	57351	42649	97149	28
33	54534	57389	42611	97145	27
34	54567	57428	42572	97140	26
35	54601	57466	42534	97135	25
36	54635	57504	42496	97130	24
37	54668	57543	42457	97126	23
38	54702	57581	42419	97121	22
39	54735	57619	42381	97116	21
40	54769	57658	42342	97111	20
41	54 S02	57696	42304	97107	19
42	54836	57734	42266	97102	18
43	54869	57772	42228	97097	17
44	54903	57810	42190	97092	16
45	54936	57849	42151	97087	15
46	54969	57 S87	42113	97083	14
47	55003	57925	42075	97078	13
48	55036	57963	42037	97073	12
49	55069	58001	41999	97068	11
50	55102	58039	41961	97063	10
51	55136	58077	41923	97059	9
52	55169	58115	41885	97054	
53	55202	58153	41847	97049	
54	$5523 \underline{1}$	58191	41809	97044	6
55	55268	58229	41771	97039	5
56	55301	58267	41733	97035	4
57	55334	58304	41696	97030	3
58	55367	58342	41658	97025	
59	55400	58380	41620	97020	1
60	55433	58418	41582	97015	0
		9	10	ツ	
'	$\log \cos$	$\log \cot$	$\log \tan$	$\log \sin$	1

,	$\begin{gathered} \log \sin \\ .9 \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ 10 \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$,
0	55433	58418	41582	97015	60
	55466	58455	41545	97010	59
2	55499	58493	41507	97005	58
3	55532	58531	41469	97001	57
4	55564	58569	41431	96996	56
5	55597	58606	41394	96991	55
6	55630	58644	41356	96986	54
7	55663	58681	41319	96981	53
8	55695	58719	41281	96976	52
9	55728	58757	41243	96971	51
10	55761	58794	41206	96966	50
11	55793	58832	41168	96962	49
12	55826	58869	41131	96957	48
13	55858	58907	41093	96952	47
14	55891	58944	41056	96947	46
15	55923	58981	41019	96942	45
16	55956	59019	40981	96937	44
17	55988	59056	40944	96932	43
18	56021	59094	40906	96927	42
19	56053	59131	40869	96922	41
20	56085	59168	40832	96917	40
21	56118	59205	40795	96912	39
22	56150	59243	40757	96907	38
23	56182	59280	40720	96903	37
24	$5621 \underline{5}$	59317	40683	96898	36
25	56247	59354	40646	96893	35
26	56279	59391	40609	96888	34
27	56311	59429	40571	96883	33
28	56343	59466	40534	96878	32
29	56375	59503	40497	96873	31
30	56408	59540	40460	96868	30
31	. 56440	59577	40423	96863	29
32	56472	59614	40386	96858	28
33	56504	59651	40349	96853	27
34	56536	59688	40312	96848	26
35	56568	59725	40275	96843	25
36	56599	59762	40238	96838	24
37	56631	59799	40201	96833	23
38	56663	59835	40165	96828	22
39	56695	59872	40128	96823	21
40	56727	59909	40091	96818	20
41	56759	59946	40054	96813	19
42	56790	59983	40017	96808	18
43	56822	60019	39981	96803	17
44	56854	60056	$399+4$	96798	16
45	56886	60093	39907	96793	15
46	56917	60130	39870	96788	14
47	. 56949	60166	39.834	96783	13
48	56980	60203	$39^{\circ} 797$	96778	12
49	57012	60240	39760	96772	11
50	57044	60276	39724	96767	10
51	57075	60313	39687	96762	
52	57107	60349	39651	96757	8
53	57138	60386	39614	96752	7
54	57169	60422	39578	96747	6
55	57201	60459	39541	96742	5
56	57232	60495	39505	96737	4
57	57264	60532	39468	96732	3
58	57295	60568	39432	96727	2
59	57326	$6060 \underline{5}$	39395	96722	1
60	57358	60641	39359	96717	0
	9	9	10	\bigcirc	
'	$\log \cos$	$\log \cot$	$\log \tan$	$\log \sin$	

'	$\log \sin$ 9	$\begin{gathered} \log \tan \\ 9 \end{gathered}$	$\begin{aligned} & \log \cot \\ & 10 \end{aligned}$	$\log \cos$	'
0	57358	60641	39359	96717	60
1	57389	60677	. 39323	96711	59
2	57420	60714	39286	96706	58
+	57451	60750	39250	96701	57
4	57482	60786	39214	96696	56
5	57514	$60 \$ 23$	39177	96691	55
6	57545	60859	39141	96686	54
	57576	60995	$3910 \underline{\underline{5}}$	96681	53
8	57607	60931	39069	96676	52
9	57638	60967	39033	96670	51
10	57669	61004	38996	96665	50
11	57700	61040	38960	96660	49
12	57731	61076	38924	96655	48
13	57762	61112	38888	96650	47
14	57793	61148	38852	96645	46
15	57824	61184	38516	96640	45
16	57855	61220	38780	96634	44
17	57885	61256	38744	96629	43
18	57916	61292	38708	96624	42
19	57947	61328	38672	96619	11
20	57978	61364	38636	96614	40
21	58008	61400	38600	96608	39
22	58039	61436	38564	96603	38
23	58070	61472	38528	96598	37
24	58101	61508	38492	96593	36
25	58131	61544	38456	96588	35
26	58162	61579	38421	96582	4
27	58192	61615	38385	96577	33
28	58223	61651	38349	96572	32
29	58253	61687	38313	96567	31
30	58284	61722	38278	96562	30
31	58314	61758	38242	96556	29
32	58345	61794	38206	96551	28
33	58375	61830	38170	96546	27
34	58406	61865	38135	96541	26
35	58436	61901	38099	96535	25
36	58467	61936	38064	96530	24
37	58497	61972	38028	96525	23
38	58527	62008	37992	96520	22
39	58557	62043	37957	96514	21
40	58588	62079	37921	96509	20
41	58618	62114	37 S86	96504	19
42	58648	62150	37850	96498	18
43	58678	62185	37815	96493	17
44	58709	62221	37779	96488	6
45	58739	62256	37744	96483	15
46	58769	62292	37708	96477	14
47	58799	62327	37673	96472	13
48	58829	62362	37638	96467	12
49	58859	62398	37602	96461	11
50	58889	62433	37567	96456	10
51	58919	62468	37532 。	96451	9
52	58949	62504	37496	96445	8
53	58979	62539	37461	96440	7
54	59009	62574	37426	96435	6
55	59039	62609	37391	96429	5
56	59069	62645	37355	96424	4
57	59098	62680	37320	96419	3
58	59128	62715	37285	96413	2
59	59158	62750	37250	96408	1
60	59188	62785			0
,	$\log \cos$	log cot	$\begin{gathered} 10 \\ \log \tan \end{gathered}$	$\xrightarrow[\log \sin]{9}$	

${ }^{\prime}$	$\log \sin$ ()	$\begin{aligned} & \log \tan \\ & \mathbf{9} \\ & 62785 \end{aligned}$	$\log 00 t$ 10 37215	$\log \cos$ 9 96403	$\frac{1}{60}$
0					
1	59218	62820	37180	96397	59
2	59247	62855	37145	96392	58
3	59277	62890	37110	96387	57
4	59307	62926	37074	96381	56
5	59336	62961	37039	96376	55
6	59366	62996	37004	96370	54
7	59396	63031	36969	96365	53
8	59425	63066	36934	96360	52
9	$5945 \underline{5}$	63101	36899	96354	51
10	59484	63135	36865	96349	50
11	59514	63170	36830	96343	49
12	59543	63205	36795	96338	48
13	59573	63240	36760	96333	47
14	59602	63275	36725	96327	46
15	59632	63310	36690	96322	45
16	59661	$6334 \underline{5}$	36655	96316	44
17	59690	63379	36621	96311	43
18	59720	63414	36586	96305	42
19	59749	63449	36551	96300	41
20	59778	63484	36516	96294	40
21	59808	63519	36481	96289	39
22	59837	63553	36447	96284	38
23	59866	63588	36412	96278	37
24	59895	63623	36377	96273	36
25	59924	63657	36343	96267	35
26	59954	63692	36308	96262	34
27	59983	63726	36274	96256	33
28	60012	63761	36239	96251	32
29	60041	63796	36204	96245	31
30	60070	63830	36170	96240	30
31	60099	63865	36135	96234	29
32	60128	63899	36101	96229	28
33	60157	63934	36066	96223	27
34	60186	63968	36032	96218	26
35	60215	64003	35997	96212	25
36	60244	64037	35963	96207	24
37	60273	64072	35928	96201	23
38	60302	64106	35894	96196	22
39	60331	64140	35860	96190	21
40	60359	$6417 \underline{5}$	35825	961.85	20
41	60388	64209	35791	96179	19
42	60417	64243	35757	96174	18
43	60446	64278	35722	96168	17
44	60474	64312	35688	96162	16
45	60503	64346	35654	96157	15
46	60532	64381	35619	96151	14
47	60561	64415	35585	96146	13
48	60589	64449	35551	96140	12
49	60618	64483	35517	96135	11
50	60646	64517	35483	96129	10
51	60675	64552	35448	96123	9
52	60704	64586	35414	96118	8
53	60732	64620	35380	96112	7
54	60761	64654	35346	96107	6
55	60789	64688	35312	96101	5
56	60818	64722	35278	96095	4
57	60846	64756	35244	96090	3
58	60875	64790	35210	96084	2
59	60903	64824	35176	96079	1
60		64858 $\log \cot$	35142 10 $\log \tan$	96073 9 $\log \sin$	0
'					1

+	$\log \sin$ 9 62595	log tan 9 $66 S 67$	\log cot 10 33133	$\begin{gathered} \mathbf{l o g} \cos \\ \mathbf{9} \\ 95{ }_{728} \end{gathered}$	60
0					
1	62622	66900	33100	95722	59
2	62649	66933	33067	95716	58
3	62676	66966	33034	95710	57
4	62703	66999	33001	95704	56
5	62730	67032	32968	95698	5
6	62757	67065	32935	95692	54
7	62784	67098	32902	95686	53
8	62811	67131	32869	95680	52
9	62838	67163	32837	95674	51
10	62865	67196	32804	95668	50
11	62892	67229	32771	95663	49
12	62918	67262	32738	95657	48
13	62945	67295	32705	95651	47
14	62972	67327	32673	95645	46
15	62999	67360	32640	95639	45
16	63026	67393	32607	95633	44
17	63052	67426	32574	95627	43
18	63079	67458	32542	95621	42
19	63106	67491	32509	$9561 \underline{5}$	41
20	63133	67524	32476	95609	40
21	63159	67556	32444	95603	39
22	63186	67589	32411	95597	38
23	63213	67622	32378	95591	37
24	63239	67654	32346	95585	36
25	63266	67687	32313	95579	35
26	63292	67719	32281	95.573	34
27	63319	67752	32248	95567	33
28	63345	67785	32215	95561	32
29	63372	67817	32183	95555	31
30	63398	67850	32150	95549	30
31	63425	67 882	32118	95543	29
32	63451	67915	32085	95537	28
33	63478	67947	32053	95531	27
34	63504	67980	32020	95525.	26
35	63531	68012	31988	95519	25
36	63557	68044	31956	95513	24
37	63583	68977	31923	95507	23
38	63610	68109	31891	95500	22
39	63636	68142	31858	95494	21
40	63662	6 S 174	31826	95488	20
41	63689	68206	31794	95482	19
42	63715	68239	31761	95476	18
43	63741	68271	31729	95470	17
44	63767	68303	31697	95464	16
45	63794	68336	31664	95458	15
46	63 S20	68368	31632	95452	14
47	63846	68400	31600	95446	13
48	63872	68432	31568	95440	12
49	63998	68465	31535	95434	11
50	63924	68497	31503	95427	10
51	63950	68529	31471	95421	9
52	63976	68561	31439	95415	8
53	64002	68593	31407	95409	7
54	64028	68626	31374	95403	6
55	64054	68658	31342	95397	5
56	64080	68690	31310	,95391	4
57	64106	68722	31278	95384	
58	$6+132$	68754	31246	95378	2
59	64158	68786	31214	95372	1
60	$64 \mathbf{9}_{\mathbf{9}}^{184}$	68818 9	31182 10 $\log \tan$	$\begin{gathered} 95366 \\ \mathbf{9} \\ \log \sin \end{gathered}$	0
'	$\log \cos$	$\log \cot$			'

	$\begin{gathered} \log \sin \\ \boldsymbol{9} \end{gathered}$	$\log \tan$ 9	$\log \cot$	$\begin{gathered} \log \cos \\ \boldsymbol{y} \end{gathered}$	'
0	64184	68818	31182	95366	60
1	64210	68850	31150	95360	59
2	64236	68882	31118	95354	58
3	64262	68914	31086	95348	57
4	64288	68946	31054	95341	56
5	64313	68978	31022	95335	55
6	64339	69010	30990	95329	54
7	64365	69042	30958	95323	53
8	64391	69074	30926	95317	52
9	64417	69106	30894	95310	51
10	64442	69138	30862	95304	50
11	64468	69170	30830	95298	49
12	64494	69202	30798	95292	48
13	64519	69234	30766	95286	47
14	$6454 \underline{5}$	69266	30734	95279	46
15	64571.	69298	30702	95273	45
16	64596	69329	30671	95267	44
17	64622	69361	30639	95261	43
18	64647	69393	30607	95254	42
19	64673	69425	30575	95248	41
20	64698	69457	30543	95242	40
21	64724	69488	30512	95236	39
22	64749	69520	30480	95229	38
23	$6477 \underline{5}$	69552	30448	95223	37
24	6480 C	69584	30416	95217	36
25	64826	69615	30385	95211	35
26	64851	69647	30353	95204	34
27	64877	69679	30321	95198	33
28	64902	69710	30290	95192	32
29	64927	69742	30258	95185	31
30	64953	69774	30226	95179	30
31	64978	69805	30195	95173	29
32	65003	69837	30163	95167	28
33	65029	69.568	30132	95160	27
34	65054	69900	30100	95154	26
35	65079	69932	30068	95148	25
36	65104	69963	30037	95141	24
37	65130	69995	30005	95135	23
38	65155	70026	29974	95129	22
39	65180	70058	29942	95122	21
40	65205	70089	29911	95116	20
41	65230	70121	29879	95110	19
42	65255	70152	29848	95103	18
43	65281	70184	29816	95097	17
44	65306	70215	29785	95090	16
45	65331	70247	29753	95084	15
46	65356	70278	29722	95078	14
47	65381	70309	29691	95071	13
48	65406	70341	29659	95065	12
49	65431	70372	29628	95059	11
50	65456	70404	29596	95052	10
51	65481	70435	29565	95046	
52	65506	70466	29534	95039	8
53	65531	70498	29502	95033	
54	65556	70529	29471	95027	6
55	65580	70560	29440	95020	5
56	65605	70592	29408	95014	4
57	65630	70623	29377	95007	3
58	65655	70654	29346	95001	2
59	65680	70685	29315	94995	1
60	65705	70717	29283	94988	0
	9	9	10	9	
'	$\log \cos$	$\log \cot$	$\log \tan$	$\log \sin$	'

										$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$	
0		70717			60	O	67161	72567	27433		
1	6575	7074 707	29252		59 58 58	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	6720	${ }_{72}^{72598}$	2740	$9+587$	59
3	65779	70810	29190	94969	57	3	67232	72659	2734	94573	
4	65804	70841	29159	94962	56	4	67256	72689	27311	94567	
5	65828	70873	29127	94956	55	5	67280	72720	27280	94560	55
6	65853	$7090+$	29096	94949			67303	72750	27250		
		709	29	94943	53	7	67327	72780	27220		53
8	65902	70966	$2903+$	94936	52	8	67350	7281	27189	94540	
	65927	70997	29003	94930	51		67374	72841	27159	94533	1
10	65952	71028	28972	94923	50	10	67398	72872	2712	94526	50
		71059	28941	94917	49	11	67421	72902	2709		
12		71090	28910	94911	48	12	6744	7293			8
13		71121	28879	94904	47	13	674	729	2703		7
14	66050	71153	28847	94898	46	14	67492	72993	27007	94499	6
15	66075	71184	28816	94891	45	15	67515	73023	26977	94492	45
	66099	71215	28785			16	67539	73054	269		
17	66124	71246	28754	94	43	17	6756	73084	269		
18	6614	7127	28723	94	42	18	6758	73114	268	94	,
19		71308	28692	9486	41	19	67	73144	268		
20	6619	71339	28661	94858	40	20	67633	73175	26825		40
	66221	71370	28630				67656	73205	2679		
	66246	71401	28599	9484	38		676	7323	2676		38
23	66	71431	28569		37		6770	7326	2673		37
24	66295	71462	285	$9+832$	36	24	67	7329	267	94	
25	66319	71493	28507	9+826	35	25	67750	73326	26674	94424	35
		71524	28476				67773	73356	26644		
	6636	7155	28445	$9+8$	33		67	7338	26614		33
	6639	715	28414	948	32		678	7341	265		32
29	664	71617	28383	-	31	29	67	7344	265	94397	31
30	66	71648	28352	9479	30	30	67866	73476	26524	94390	30
					29		67890	73507	26493		
	66	71770	28260	94773		32 33	6791 67 93	73567	2643		
34	66537	71771	28229	94767	26	34	67	73597	2640	943	26
35	665	71802	28198		25	35	67	${ }_{7} 73627$	26373	94355	25
		71833 71863	28167 28137					73657	26343		
	6663	71894	28106	94770	22	38	6805	73717	2628	94	
39	6665	71925	28075	94734	21	39	6807	73747	26253	94	21
40	66682	71955	28045	94727	20	40	68098	73777	26223	94	O
				94720	19	41	68121	7380	2619	94	9
42	66	720	279	94	18	42	6814	7383	26163		18
44	66779	72078	27922	$9+707$ $9+700$	16	44	681				
45	66803	72109	27891	94694	15	45	68	73927	26073		15
46	66	72140	27860		14		68	73957	26043	94	4
47		72	27		13	47	68	739	26	94273	13
49	66899	72231	. 27769	94667	11	49	6830	74047	${ }_{25} 2593$	$9+2$	11
50	66922	72262	27738	94660	10	50	68328	74077	2592		O
	66	7229	27707	94654			683	74107	2589		
52		72323				52	6837	74137	2586		
53	6	72354	27676	94640		54	68397	74166	25834	94231	
54	67018	72384	27616	94634	6	54	68420	74196	25804	94224	6
55	67042 67066	72415	27585	94	5	55	6844	74226	25774	$9+$	
56	67066 67090	72445 72476	275	94			6846	74256	25744	$9+2$	4
	113	7250			2		6851				3 2 2
59	67137	7253	27463	4600	1	59	68534	74345	$2565 \underline{5}$	9418	1
60					0	60			25625		0
,			log				log 008	log 0	log. tan	\log	

1	$\log \sin$ 9	$\log \tan$ O	$\log \cot$ 10	$\log \cos$ 9	,
0	68557	74375	25625	$9+182$	60
1	68580	74405	25595	94175	59
2	68603	74435	25565	94168	58
3	68625	74465	25535	94161	57
4	68648	74494	25506	94154	56
5	68671	74524	25476	94147	55
6	68694	74554	25446	94140	54
7	68716	74583	25417	94133	53
8	65739	74613	25387	94126	52
9	68762	74643	25357	94119	51
10	68784	74673	25327	$9+112$	50
11	68507	74702	25298	94105	49
12	68829	74732	25268	94098	48
13	68852	74762	25238	94090	47
14	$6887 \underline{5}$	74791	25209	94083	46
15	68897	74821	25179	94076	45
16	68920	74851	25149	94069	44
17	68942	74880	25120	94062	43
18	68965	74910	25090	94055	42
19	68987	74939	25061	94048	41
20	69010	74969	25031	94041	40
21	69032	74998	25002	94034	39
22	69055	75028	24972	94027	38
23	69077	75058	24942	94020	37
24	69100	75087	24913	94012	36
25	69122	75117	24883	94005	35
26	69144	75146	24854	93998	34
27	69167	75176	24824	93991	33
28	69189	75205	24795	93984	32
29	69212	75235	24765	93977	31
30	69234	75264	24736	93970	30
31	69256	75294	24706	93963	29
32	69279	75323	24677	93955	28
33	69301	75353	24647	93948	27
34	69323	75382	24618	93941	26
35	69345	75411	24589	93934	25
36	69368	75441	24559	93927	24
37	69390	75470	24530	93920	23
38	69412	75500	24500	93912	22
39	69434	75529	24471	93905	21
40	69456	75558	24442	93898	20
41	69479	75588	24412	93 S91	19
42	69501	75617	24383	93884	18
43	69523	75647	24353	93876	17
44	69545	75676	24324	93869	16
45	69567	75705	24295	93862	15
46	69589	75735	24265	93855	14
47	69611	75764	24236	93847	13
48	69633	75793	24207	93840	12
49	69655	75822	24178	93833	11
50	69577	75852	24148	93 S26	10
51	69699	75881	24119	93819	9
52	69721	75910	24090	93811	8
53	69743	75939	24061	93804	7
54	69765	75969	24031	93797	6
55	69787	75998	24002	93789	5
56	69809	76027	23973	93782	4
57	69831	76056	23944	93775	3
58	69853	76086	23914	93768	2
59	69875	76115	23885	93760	1
60	69897	76144	23856	93753	0
\square			10		,

	$\begin{gathered} \log \sin \\ \mathbf{9} \\ 69 \mathrm{~S} 97 \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \\ 76 \mathrm{1}+4 \end{gathered}$	$\begin{gathered} \hline \log \cot \\ \mathbf{1 0} \\ 23856 \end{gathered}$	$\begin{gathered} \hline \log \cos \\ \mathbf{9} \\ 93753 \end{gathered}$	$\frac{1}{60}$
0					
1	69919	76173	23827	93746	59
2	69941	76202	23798	93738	58
3	69963	76231	23769	93731	57
4	69984	76261	23739	93724	56
5	70006	76290	23710	93717	55
6	70028	76319	23681	93709	5
7	70030	76348	23652	93702	53
8	70072	76377	23623	93695	52
9	70093	76406	23594	93687	51
10	70115	76435	23565	93680	50
11	70137	76464	23536	93673	49
12	70159	76493	23507	93665	48
13	70180	76522	23478	93658	47
14	70202	76551	23449	93650	46
15	70224	76580	23420	93643	45
16	70245	76609	23391	93636	44
17	70267	76639	23361	93628	43
18	70288	76668	23332	93621	42
19	70310	76697	23303	93614	41
20	70332	76725	23275	93606	40
21	70353	76754	23246	93599	39
22	70375	76783	23217	93591	38
23	70396	76812	23188	93584	37
24	70418	76841	23159	93577	36
25	70439	76870	23130	93569	35
26	70461	76899	23101	93562	34
27	70482	76928	23072	93554	33
28	70504	76957	23043	93547	32
29	70525	76986	23014	93539	31
30	70547	77015	22985	93532	30
31	70568	77044	22956	93525	29
32	70590	77073	22927	93517	28
33	70611	77101	22899	93510	27
34	70633	77130	22870	93502	6
35	70654	77159	22841	93495	25
36	70675	77188	22812	93487	24
37	70697	77217	22783	93480	23
38	70718	77246	22754	93472	22
39	7073	77274	22726	93465	21
40	70761	77303	22697	93457	20
41	70782	77332	22668	93450	19
42	70803	77361	23639	93442	18
43	70824	77390	22610	93435	17
44	708	77418	22582	93427	16
45	70867	77447	22553	93420	15
46	70888	77476	22524	93412	14
47	70909	77505	22495	93405	13
48	70231	77533	22467	93397	12
49	70952	77562.	22438	93390	11
50	70973	77591	22409	93382	10
51	70994	77619	22381	93375	9
52	71015	77648	22352	93367	8
53	71036	77677	22323	93360	7
54	71058	77706	22294	93352	6
55	71079	77734	22266	93344	
56	71100	77763	22237	93337	4
57	71121	77791	22209	93329	3
58	71142 71163	77820	22180	93322	2 1
60		77877	22123	93307	0
	$\stackrel{8}{0}$	$\stackrel{9}{9}$	10	log \sin	
,	$\log 008$	log oot	$\log \tan$	$\log \sin$	

	33°					34°					
'	$\log \sin$ 9	$\log \tan$	$\begin{gathered} \log \cot \\ 10 \end{gathered}$	$\begin{gathered} \log 008 \\ 9 \end{gathered}$,	${ }^{\prime}$	$\begin{aligned} & \log \sin \\ & \hline 9 \end{aligned}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\log \cot$	$\begin{gathered} \log \cos \\ 9 \end{gathered}$	'
0	73631	81252	18748	92359	60	0	74756	82899	17101	91857	60
,	73630	81279	18721	92351	59	1	74775	82926	$1707+$	91 S+9	59
2	73650	81307	18693	$923+3$	58	2	74794	82953	$170+7$	91840	58
3	73669	81335	18665	92335	57	3	74812	82980	17020	91832	57
4	73689	81362	18638	92326	56		74831	83008	16992	91823	56
5	73708	81390	18610	92318	55	5	74850	83035	16965	91815	55
6	73727	81418	18582	92310	54	6	74868	83062	16938	91806	54
S	73747	81445	18555	92302	53	7	74887	83089	16911	91798	53
8	73766	81.473	18527	92293	52	8	74906	83117	16883	91789	52
9	73785	81500	18500	92285	51	9	74924	83144	16856	91781	51
10	73805	81528	18472	92277	50	10	74943	83171	16829	91772	50
11	73824	81556	18444	92269	49	11	74961	83198	16802	91763	49
12	73843	81583	18417	92260	48	12	74980	83225	16775	91755	48
13	73863	81611	18389	92252	47	13	74999	83252	16748	91746	47
14	73882	81638	18362	92244	46	14	75017	83280	16720	91738	46
15	73901	S1 666	18334	92235	45	15	75036	83 307	16693	91729	45
16	73921	S1 693	18307	92227	44	16	75054	S3 334	16666	91720	44
17	73940	81721	18279	92219	43	17	75073	83361	16639	91712	43
18	73959	81748	18252	92211	42	18	75091	83388	16612	91703	42
19	73978	S1 776	18224	92202	41	19	75110	83415	16585	91695	41
20	73997	81803	18197	92194	40	20	75128	83442	16558	91686	40
21	74017	81831	18169	92186	39	21	75147	83470	16530	91677	39
22	74036	81858	18142	92177	38	22	75165	83497	16503	91669	38
23	74055	81886	18114	92169	37	23	75184	83524	16476	91660	37
24	74074	81913	18087	92161	36	24	75202	83551	16449	91651	36
25	74093	81941	18059	92152	35	25	75221	83578	16422	91643	35
26	74113	81968	18032	92144	34	26	75239	83605	16395	91634	34
27	74 132	81996	$1800+$	92136	33	27	75258	83632	16368	91625	33
28	74151	82023	17977	92127	32	28	75276	83659	16341	91617	32
29	$7+170$	82051	17949	92119	31	29	75294	83686	16314	91608	31
30	74189	82078	17922	92111	30	30	75313	83713	16287	91599	30
31	$7+208$	82106	17894	92102	29	31	75331	83740	16260	91591	29
32	74227	82133	17867	92094	28	32	75350	83768	16232	91582	28
33	74246	S2 161	17839	92086	27	33	75368	83795	16205	91573	27
34	74265	82188	17812	92077	26	34	75386	83822	16178	91565	26
35	74284	S2 215	17785	92069	25	35	75405	83849	16151	91556	25
36	74303	82243	17757	92060	24	36	75423	83876	16124	91547	24
37	74322	82270	17730	92052	23	37	75441	83903	16097	91538	23
38	74341	S2 298	17702	92044	22	38	75459	83930	16070	91530	22
39	74360	82325	17675	92035	21	39	75478	83957	16043	91521	21
40	74379	82352	17648	92027	20	40	75496	83984	16016	91512	20
41	74398	82380	17620	92018	19	41	75514	84011	15989	91504	19
42	74417	82407	17593	92010	18	42	75533	84038	15962	91495	18
43	74436	82435	17565	92002	17	43	75551	84065	15935	91486	17
44	74455	82462	17538	91993	16	44	75569	84092	15908	91477	16
45	74474	82489	17511	91985	15	45	75587	84119	15881	91469	15
46	74493	82517	17483	91976	14	46	75605	84146	15854	91460	14
47	74512	82544	17456	91968	13	47	75624	84173	15827	91451	13
48	74531	82571	17429	91959	12	48	75642	84200	15800	91442	12
49	74549	82599	17401	91951	11	49	75660	84227	15773	91433	11
50	74568	82626	17374	91942	10	50	75678	$8+254$	15746	91425	10
51	74587	82653	17347	91934	9	51	75696	84280	15720	91416	,
52	74606	82681	17319	91925	8	52	75714	84307	15693	91407	8
53	74625	82708	17292	91917	7	53	75733	84334	15666	91398	7
54	74644	82735	17265	91908	6	54	75751	84361	15639	91389	6
55	74662	82762	17238	91900	5	55	75769	84388	15612	91381	5
56	74681	82790	17210	91891	4	56	75787	84415	15585	91372	4
57.	74700	82817	17183	91883	3	57	75805	84442	15558	91363	3
58	74719	82844	17156	91874	2	58	75823	84469	15531	91354	2
59	74737	82871	17129	91866	1	59	75841	84496	15504	91345	1
60	74756	$\begin{gathered} 82899 \\ \mathbf{9} \end{gathered}$	17101	$91 \underset{\mathbf{9}}{ } 857$	0	60	75859	84523	15477	91336	0
'	log 008	$\log 00 t$		log sin	1	1	log oos	log oot	$\log \tan$	$\log \sin$,

1	$\log \sin$ $\mathbf{9}$75859	log tan 9 84523	$\log \cot$ 10 15477	$\log \cos$ $91 \stackrel{9}{3} 36$	$\begin{gathered} \prime \\ \hline 60 \end{gathered}$
0					
1	75877	84550	15450	91328	59
2	75895	84576	15424	91319	58
3	75913	84603	15397	91310	57
4	75931	84630	15370	91301	56
5	75949	84657	15343	91292	55
6	75967	S4 684	15316	91283	54
7	75985	84711	15289	91274	53
8	76003	84738	15262	91266	52
9	76021	84764	15236	91257	51
10	76039	84791	15209	91248	50
11	76057	84818	15182	91239	49
12	76075	84845	15155	91230	48
13	76093	84872	15128	91221	47
14	76111	84899	15101	91212	46
15	76129	84925	15075	91203	45
16	76146	84952	15048	91194	44
17	76164	84979	15021	91185	43
18	76182	85006	14994	91176	42
19	76200	85033	14967	91167	1
20	76218	85059	14941	91158	40
21	76236	85086	14914	91149	39
22	76253	85113	14887	91141	38
23	76271	85140	14860	91132	37
24	76289	85166	14834	91123	36
25	76307	85193	14807	91114	35
26	76324	85220	14780	91105	34
27	76342	85247	14753	91096	33
28	76360	85273	14727	91087	32
29	76378	85300	14700	91078	31
30	76395	85327	14673	91069	30
31	76413	85354	14646	91060	29
32	76431	85380	14620	91051	28
33	76448	85407	14593	91042	27
34	76466	85434	14566	91033	26
35	76484	85460	14540	91023	25
36	76501	85487	14513	91014	24
37	76519	85514	14486	91005	23
38	76537	85540	14460	90996	22
39	76554	85567	14433	90987	21
40	76572	85594	14406	90978	20
41	76590	85620	14380	90969	19
42	76607	85647	14353	90960	18
43	76625	85674	14326	90951	17
44	76642	85700	14300	90942	16
45	76660	85727	14273	90933	15
46	76677	85754	14246	90924	14
47	$7669 \underline{5}$	85780	14220	90915	13
48	76712	85807	14193	90906	12
49	76730	85834	14166	90896	11
50	76747	85860	14140	90887	10
51	$7676 \underline{5}$	85887	14113	90878	9
52	76782	85913	14087	90869	8
53	76800	85940	14060	90860	7
54	76817	85967	14033	90851	6
55	76835	85993	14007	90842	5
56	76852	86020	13980	90832	4
57	76870	86046	13954	90823	3
58	76887	86073	13927	90814	2
59	76904	86100	13900	90805	1
60	76922$\mathbf{9}$$\log 008$	86126 O $\log \cot$	13874 10$\log \tan$	$\begin{gathered} 90796 \\ \mathbf{9} \\ \log \sin \end{gathered}$	0
'					'

\prime	$\log \sin$ 9 76922	$\log \tan$ 9 86126	$\log \cot$ 10 13874	$\log 008$ 9 90796	$\frac{1}{60}$
0					
1	76939	86153	13847	90787	59
2	76957	86179	13821	90777	58
3	76974	S6 206	13794	90768	57
4	76991	86232	13768	90759	56
5	77009	86259	13741	90750	55
6	77026	86285	13715	90741	54
7	77043	86312	13688	90731	53
8	77061	86338	13662	90722	52
9	77078	86365	$1363 \underline{5}$	90713	51
10	77095	86392	13608	90704	50
11	77112	86418	13582	90694	49
12	77130	86445	13555	90685	48
13	77147	86471	13529	90676	47
14	77164	86498	13502	90667	46
15	77181	86524	13476	90657	45
16	77199	86551	13449	90648	44
17	77216	86.577	13423	90639	43
18	77233	86603	13397	90630	42
19	77250	86630	13370	90620	41
20	77268	86656	13344	90611	40
21	77285	86683	13317	90602	39
22	77302	86709	13291	90592	38
23	77319	86736	13264	90583	37
24	77336	86762	13238	90574	36
25	77353	86789	13211	90565	35
26	77370	86815	13185	90555	34
27	77387	86842	$1315 \overline{8}$	90546	33
28	77405	86868	13132	90537	32
29	77422	86894	13106	90527	31
30	77439	86921	13079	90518	30
31	77456	86947	13053	90509	29
32	77473	86974	13026	90499	28
33	77490	87000	13000	90490	27
34	77507	87027	12973	90480	26
35	77524	87053	12947	90471	25
36	77541	87079	12921	90462	24
37	77558	87106	12894	90452	23
38	77575.	87132	12868	90443	22
39	77592	87158	12842	90434	21
40	77609	87185	12815	90424	20
41	77626	87211	12789	90415	19
42	77643	87238	12762	90405	18
43	77660	87264	12736	90396	17
44	77677	87290	12710	90386	16
45	77694	87317	12683	90377	15
46	77711	87343	12657	90368	14
47	77728	87369	12631	90358	13
48	77744	87396	12604	90349	12
49	77761	87422	12578	90339	11
50	77778	87448	12552	90330	10
51	77795	87475	12525	90320	9
52	77812	87501	12499	90311	8
53	77829	87527	12473	90301	7
54	77846	S7 554	12446	90292	6
55	77862	87580	12420	90282	5
56	77879	87606	12394	90273	4
57	77896	87633	12367	90263	3
58	77913	87659	12341	90254	2
59	77930	87685	12315	90244	1
60	77946	87711	12289	90235	0
'	$\begin{gathered} \mathbf{9} \\ \log \cos \end{gathered}$	$\stackrel{\mathbf{9}}{\log \cot }$	$\begin{gathered} 10 \\ \log \tan \end{gathered}$	$\begin{gathered} \mathbf{9} \\ \log \sin \end{gathered}$,

${ }^{\prime}$	$\begin{gathered} \log _{9} \sin \\ 9 \end{gathered}$	$\log \tan$ 9	$\begin{gathered} \log \cot \\ 10 \end{gathered}$	$\begin{gathered} \log \cos \\ \mathbf{9} \end{gathered}$	'	'	$\log \sin$ 9	$\log \tan$ 9	$\log \cot$ 10	$\log \cos$ 9	'
0	77946	87711	12289	90235	60	0	78934	89281	10719	89653	60
1	77963	87738	12262	90225	59	1	78950	89307	10693	89643	59
2	77980	87764	12236	90216	58	2	78967	89333	10667	89633	58
3	77997	87790	12210	90206	57	3	78983	89359	10641	89624	57
4	78013	87817	12183	90197	56	4	78999	89385	10615	89614	56
5	78030	87843	12157	90187	55	5	79015	89411	10589	89604	55
6	78047	87869	12131	90178	54	6	79031	89437	10563	89594	54
7	78063	87895	12105	90168	53	7	79047	89463	10537	89584	53
3	78080	87922	12078	90159	52	8	79063	89489	10511	89574	52
9	78097	87948	12052	90149	51	9	79079	89515	10485	89564	51
10	78113	87974	12026	90139	50	10	79095	89541	10459	89554	50
11	78130	88000	12000	90130	49	11	79111	89567	10433	89544	49
12	78147	88027	11973	90120	48	12	79128	89593	10407	89534	48
13	78163	88053	11947	90111	47	13	79144	89619	10381	89524	47
14	78180	88079	11921	90101	46	14	79160	89645	10355	89514	46
15	78197	88105	11895	90091	45	15	79176	89671	10329	89504	45
16	78213	88131	11869	90082	44	16	79192	89697	10303	89495	44
17	78230	88158	11842	90072	43	17	79208	89723	10277	89485	43
18	78246	88184	11816	90063	42	18	79224	89749	10251	89475	42
19	78263	88210	11790	90053	41	19	79240	89775	10225	89465	41
20	78280	88236	11764	90043	40	20	79256	89801	10199	89455	40
21	78296	88262	11738	90034	39	21	79272	89827	10173	89445	39
22	78313	88289	11711	90024	38	22	79288	89853	10147	89435	38
23	78329	88315	11685	90014	37	23	79304	89879	10121	89425	37
24	78346	88341	11659	90005	36	24	79319	89905	10095	89415	36
25	78362	88367	11633	89995	35	25	79335	89931	10069	89405	35
26	78379	88393	11607	89985	34	26	79351	89957	10043	$8939 \underline{5}$	34
27	78395	88420	11580	89976	33	27	79367	89983	10017	89385	33
28	78412	88446	11554	89966	32	28	79383	90009	09991	89375	32
29	78428	88472	11528	89956	31	29	79399	90035	09965	89364	31
30	78445	88498	11502	89947	30	30	79415	90061	09939	89354	30
31	78461	88524	11476	89937	29	31	79431	90086	09914	89344	29
32	78478	88550	11450	89927	28	32	79447	90112	09888	89334	28
33	78494	88577	11423	89918	27	33	79463.	90138	09862	89324	27
34	78510	88603	11397	89908	26	34	79478	90164	09836	89314	26
35	78527	88629	11371	89898	25	35	79494	90190	09810	89304	$\mathbf{2 5}$
36	78543	88655	11345	89888	24	36	79510	90216	09784	89294	24
37	78560	88681	11319	89879	23	37	79526	90242	09758	89284	23
38	78576	88707	11293	89869	22	38	79542	90268	09732	89274	22
39	78592	88733	11267	89859	21	39	79558	90294	09706	89264	21
40	78609	88759	11241	89849	20	40	79573	90320	09680	89254	20
41	78625	88786	11214	89840	19	41	79589	90346	09654	89244	19
42	78642	88812	11188	89830	18	42	79605	90371	09629	89233	18
43	78658	88838	11162	89820	17	43	79621	90397	09603	89223	17
44	78674	88864	11136	89810	16	44	79636	90423	09577	89213	16
45	78691	88890	11110	89801	15	45	79652	90449	09551	89203	15
46	78707	88916	11084	89791	14	46	79668	90475	09525	89193	14
47	78723	88942	11058	89781	13	47	79684	90501	09499	89183	13
48	78739	88968	11032	89771	12	48	79699	90527	09473	89173	12
49	78756	88994	11006	89761	11	49	79715	90553	09447	89162	11
50	78772	89020	10980	89752	10	50	79731	90578	09422	S9 152	10
51	78788	89046	10954	89742	9	51	79746	90604	09396	89142	9
52	78805	89073	10927	89732	8	52	79762	90630	09370	89132	8
53	78821	89099	10901	89722	7	53	79778	90656	09344	89122	7
54	78837	89125	10875	89712	6	54	79793	90682	09318	89112	6
55	78853	89151	10849	89702	5	55	79809	90708	09292	89101	5
56	78869	89177	10823	89693	4	56	79825	90734	09266	89091	4
57	78886	89203	10797	89683	3	57	79840	90759	09241	89081	3
58	78902	89229	10771	89673	2	58	79856	90785	09215	89071	2
59	78918	89255	10745	89663	1	59	79872	90811	09189	89060	1
60	78934	89281	10719	89653	0	60	79887	90837	09163	89050	0
			$\begin{gathered} 10 \\ 10 \mathrm{tan} \end{gathered}$				9	9	10	9	
'	$\log 005$	$\log 00 t$	$\log \tan$	$\log _{\sin }$	'	'	log 008	$\log 00 t$	$\log \tan$	$\log \sin$	\prime

'	$\begin{gathered} \log \sin \\ 9 \end{gathered}$	$\begin{gathered} \log \tan \\ \mathbf{9} \end{gathered}$	$\log \cot$ 10	$\begin{gathered} \log \cos \\ 9 \end{gathered}$	
0	81694	93916	06084	87 778	60
1	81709	93942	06058	87767	59
2	81723	93967	06033	87756	58
3	81738	93993	06007	87745	57
4	S1 752	94018	05982	87734	56
5	81767	94044	05956	87723	55
6	81781	94069	05931	87712	54
8	81796	94095	05905	87701	53
8	81810	94120	05880	87690	52
9	81825	94146	05854	87679	51
10	81839	94171	05829	87668	50
11	81854	94197	05803	87657	49
12	81868	94222	05778	87646	48
13	81882	$9+248$	05752	87635	47
14	81897	94273	05727	S7 624	46
15	81911	94299	05701	87613	45
16	81926	94324	05676	87601	44
17	81940	94350	05650	87590	43
18	81955	$9+375$	05625	87579	42
19	81969	94401	05599	87568	41
20	81983	94426	05574	87557	40
21	81998	94452	05548	87546	39
22	82012	94477	05523	87535	38
23	S2 026	94503	05497	87524	37
24	S2 041	94528	05472	87513	36
25	S2 055	94554	05446	87501	35
26	82069	94579	05421	87490	34
27	82084	94604	05396	87479	33
28	82098	94630	05370	87468	32
29	82112	94655	05345	87457	31
30	82126	94681	05319	87446	30
31	82141	94706	05294	87434	29
32	82155	94732	05268	87423	28
33	82169	94757	05243	87412	27
34	S2 184	94783	05217	87401	26
35	S2 198	94808	05192	87390	25
36	S2 212	94834	05166	87378	24
37	82226	94859	05141	87367	23
38	82240	94884	05116	87356	22
39	$8225 \underline{5}$	94910	05090	87345	21
40	82269	94935	05065	87334	20
41	82283	94961	05039	87322	19
42	82297	94986	05014	87311	18
43	82311	95012	04988	87300	17
44	82326	95037	04963	87288	
45	82340	95062	04938	87277	15
46	S2 354	95088	$0+912$	87266	4
47	82368	95113	04887	87255	13
48	\$2 382	95139	04861	87243	12
49	S2 396	95164	04836	87232	11
50	82410	95190	04810	87221	10
51	82424	95215	04785	87209	9
52	82439	95240	04760	87198	8
53	82453	95266	04734	87187	7
54	82467	95291	04709	87175	6
5.5	S2 481	95317	04683	S7 164	5
56	82495	95342	04658	87153	5
57	S2 509	95368	04632	87141	3
58	82523	95393	04607	87130	2
59	82537	95418	04582	87119	1
60	82551	95444	04556	87107	0
,	$1 \mathrm{log} \cos$	log cot	10 tan	$\underline{l o g} \sin$,

		$\begin{gathered} \log \operatorname{taz} \\ \mathbf{9} \end{gathered}$	$\begin{gathered} \log \cot \\ 10 \end{gathered}$	$\stackrel{\log \cos }{\mathbf{9}}$	
0	82551	95444	04556	87107	60
1	82565	95469	04531	87096	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	${ }_{82}^{82593}$	95495 95520	O4505		8
4	82607	95545	0445	87062	
5	82621	95571	04429	87050	55
6	82635	95596	04404	87	
7	82649	95622	04378		3
8	8266	95647	04353	87	52
	82677	95672	0432	8700	51
10	82691	95698	04302	86993	50
11	82705	95723	04277		
12	82719	95748	04252	86	8
13	82733	95774	0422		
14	82747	95799	0420	86	6
15	82761	95825	04175	86936	45
16	82775	95850	04150	86924	
17	827	95875	04125	86	43
1	82802	95901	04099	86	42
19	\$2 816	95926	04074	868	41
20	8283	95952	04048	86879	0
${ }_{20}^{21}$	82		04023		
23	8287	96	03972	868	
24	82885	96053	03947	868	6
25	82899	96078	03922	86821	5
26	8291	96104	03896		
27	82927	96129	03871	86	
29			${ }_{03}^{03}$		
30	829	96205	03795	86	
	82	96231	03		
32	829	96256	03744	86740	
			03		
34	83023	96307	03693	86717	
	83037	96332	03668	86705	5
37	830	963	03		
			03		
39	83092	96433	03567	86	
40	$\begin{aligned} & 83106 \\ & 83120 \end{aligned}$	$\begin{aligned} & 96459 \\ & 96484 \end{aligned}$	$\begin{aligned} & 03541 \\ & 03516 \end{aligned}$		
42	83 13	96510	03490	86624	18
43	8314	9653	0346	86612	
44	83161	96560	03440	. 86	
45	83174	96586	03414	86589	15
46	83	96611	03	86577	
47		96	03	86	
				86	
49	83229	9668	03313		
50	83242	96712	03288	86530	0
	83	96	03262	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	
52 53	83270 83 283	96788	${ }^{03237}$		
54	83297	96814	03186	86	6
55	83	96839	03		5
	83				
57	8333	96890	03110		3
58 59					1
60					0
		$\log 00$	$\log \text { ta }$	\log	

${ }^{\prime}$	$\log \sin$ 9 83378	$\log \tan$ 9	$\log \cot$ 10 03034	$\log \cos$ 9 86413	$\frac{1}{60}$	${ }^{\prime}$	$\log \sin$ 9 84177	$\log \tan$ © 98484	$\log \cot$ 10 01516	$\log \cos$ 9 85693	
0											
1	83392	96991	03009	86401	59	1	84190	98509	01491	85681	59
2	83405	97016	02984	86389	58	2	84203	98534	01466	85669	58
3	83419	97042	02958	86377	57	3	84216	98560	01440	85657	57
4	S3 432	97067	02933	86366	56	4	84229	98585	01415	$8564 \underline{5}$	56
5	83446	97092	02908	86354	55	5	84242	98610	01390	85632	55
6	83459	97118	02 S82	86342	54	6	84255	98635	01365	85620	54
7	83473	97143	02857	86330	53	7	84269	98661	01339	85608	53
8	83486	97168	02832	86318	52	8	84282	98686	01314	85596	52
9	83500	97193	02807	86306	51	9	84295	98711	01289	85583	51
10	83513	97219	02781	86295	50	10	84308	98737	01263	85571	50
11	83527	97244	02756	86283	49	11	84321	98762	01238	85559	49
12	83540	97269	02731	S6 271	48	12	84334	98787	01213	85547	48
13	83554	97295	02705	86259	47	13	84347	98812	01188	85534	47
14	83567	97320	02680	86247	46	14	84360	98838	01162	85522	46
15	83581	97345	02655	86235	45	15	84373	98863	01137	85510	45
16	83594	97371	02629	86223	44	16	84385	98888	01112	85497	44
17	83608	97396	02604	86211	43	17	84398	98913	01087	85485	43
18	83 621	97421	02579	86200	42	18	84411	98939	01061	85473	42
19	83634	97447	02553	86188	41	19	84424	98964	01036	85460	41
20	83648	97472	02528	86176	40	20	84437	98989	01011	85448	40
21	83661	97497	02503	86164	39	21	84450	99015	00985	85436	39
22	83674	97523	02477	86152	38	22	84463	99040	00960	85423	38
23	83688	97548	02452	86140	37	23	$8+476$	99065	00935	85411	37
24	83701	97573	02427	86128	36	24	84489	99090	00910	85399	36
25	83715	97598	02402	86116	35	25	84502	99116	00884	85386	35
26	83728	97624	02376	86104	34	26	84515	99141	00859	85374	34
27	83741	97649	02351	S6 092	33	27	84528	99166	00834	85361	33
28	83755	97674	02326	86080	32	28	84540	99191	00809	85349	32
29	83768	97700	02300	86068	31	. 29	84553	99217	00783	85337	31
30	83781	97725	02275	86056	30	30	84566	99242	00758	85324	30
31	83795	97750	02250	86044	29	31	84 579	99267	00733	85312	29
32	$8380 \overline{8}$	97776	02224	86032	28	32	S4 592	99293	00707	85299	28
33	83821	97801	02199	86020	27	33	84605	99318	00682	85287	27
34	83834	97826	02174	86008	26	34	84618	99343	00657	85274	26
35	83848	97851	02149	85996	25	35	84630	99368	00632	85262	25
36	83861	97877	02123	85984	24	36	84643	99394	00606	85250	24
37	83874	97902	02098	85972	23	37	84656	99419	00581	85237	23
38	83887	97927	02073	85960	22	38	84669	99444	00556	85225	22
39	83901	97953	02047	85948	21	39	84682	99469	00531	85212	21
40	83914	97978	02022	85936	20	40	84694	99495	00505	85200	20
41	83927	98003	01997	85924	19	41	84707	99520	00480	85187	19
42	83940	98029	01971	85912	18	42	84720	99545	00455	85175	18
43	83954	98054	01946	85900	17	43	84733	99570	00430	85162	17
44	83967	98079	01921	85888	16	44	84745	99596	00404	85150	16
45	83980	98104	01896	85876	15.	45	84758	99621	00379	85137	15
46	83993	98130	01870	85864	14	46	84771	99646	00354	85125	14
47	84006	98155	01845	85851	13	47	84784	99672	00328	85112	13
48	84020	98180	01820	85839	12	48	84796	99697	00303	85100	12
49	84033	98206	01794	85827	11	49	84809	99722	00278	85087	11
50	84046	98231	01769	85815	10	50	84822	99747	00253	85074	10
51	84059	98256	01744	85803	9	51	84835	99773	00227	85062	9
52	84072	98281	01719	85791	8	52	84847	99798	00202	85049	8
53	84085	98307	01693	85779	7	53	84860	99823	00177	85037	7
54	84098	98332	01668	85766	6	54	84873	99848	00152	85024	6
55	84112	98357	01643	85754	5	55	84885	99874	00126	85012	5
56	84125	98383	01617	85742	4	56	84898	99899	00101	84999	4
57	84138	98408	01592	85730	3	57	84911	99924	00076	84986	3
58	84151	98433	01567	85718	2	58	84923	99949	00051	84974	2
59	84164	98458	01542	85706		59	84936	99975	00025	84961	1
60	84177 9 $\log 008$	98484 9 $\log \cot$	01516 10 $\log \tan$	85693 9 $\log \sin$	0	60		$\begin{gathered} 00,000 \\ 10 \\ \log 00 t \end{gathered}$	00000 10 $\log \tan$		0
1					\dagger	'					'

TABLE IV.

For Determining with Greater Accuracy than can be done by means of Table III.:

1. $\log \sin , \log \tan$, and $\log \cot$, when the angle is between 0° and 2°;
2. $\log \cos$, log tan, and log cot, when the angle is between 88° and 90°;
3. The value of the angle when the logarithm of the function does not lie between the limits 8.54684 and 11. 45316.

FORMULAS FOR THE USE OF THE NUMBERS S AND T.

I. When the angle α is between 0° and 2° :
$\log \sin a=\log a^{\prime \prime}+S$.
$\log \tan a=\log \alpha^{\prime \prime}+T$.
$\log \cot \alpha=$ colog tan α.

$$
\begin{aligned}
\log a^{\prime \prime} & =\log \sin a-S \\
& =\log \tan a-T \\
& =\operatorname{colog} \cot \alpha-T
\end{aligned}
$$

II. When the angle α is between 88° and 90° :
$\log \cos \alpha=\log \left(90^{\circ}-\alpha\right)^{\prime \prime}+S$. $\log \cot \alpha=\log \left(90^{\circ}-\alpha\right)^{\prime \prime}+T$. $\log \tan \alpha=\operatorname{colog} \cot \alpha$.

$$
\begin{aligned}
\log \left(90^{\circ}-\alpha\right)^{\prime \prime} & =\log \cos \alpha-S \\
& =\log \cot \alpha-T \\
& =\operatorname{colog} \tan \alpha-T
\end{aligned}
$$

$$
\text { and } a=90^{\circ}-\left(90^{\circ}-a\right)
$$

\longrightarrow-050200

Values of S and T.

$\mathrm{a}^{\prime \prime}$	S	$\log \sin a$	$\mathrm{a}^{\prime \prime}$	T	$\underline{\log \tan a}$	a	T	$\log \tan a$
0		-	0		-	5146		8.39713
2409	4.68557	8.06740	200	4. 68557	6. 98660	5424	4.68567	8.41999
	4.68556		1726	4.68558			4.68568	
	4.68555	8. 21920	1726	4.68559	7.92263	5689	4.68569	8. 44072
3823		8. 26795	2432		8.07 156	5941		8.45955
4190	4.68555	8.30776	2976	4.68560	8. 15924	6184	4.68570	8.47697
	4.68554			4.68561			4.68571	
4840	4.68553	8.37038	3434	4. 68562	8. 22142	6417	4.68572	8.49305
5414		8.41904	3838		8. 26973	6642		8. 50802
5932	4.6	8.45872	4204	4.68563	8.30930	6859	4.68573	8. 52200
	4.68551			4. 68564			4.68574	
5408		8.49223	4540		8. 34270	7070		8.53516
6633		8. 50721	4699		8. 35766	7173	$\underline{1}$	8. 54145
	4. $685 \underline{5} 0$			4.68565			4.68575	
6851	9	8. 52125	4853	4.6856	8.37167	7274		8. 54753
7267		8. 54684	5146		8.39713			
$a^{\prime \prime}$	S	$\log \sin a$	$\mathrm{a}^{\prime \prime}$	T	$\log \tan a$	a	T	$\log \tan a$

TABLE V.-Circumferences and Areas of Circles. 51

	If $N=$ the radius of the circle, the circumference $=2 \pi N$. If $N=$ the radius of the circle, the area $\quad=\pi N^{2}$. If $N=$ the circumference of the circle, the radius $=\frac{1}{2 \pi} N$. If $N=$ the circumference of the circle, the area $=\frac{1}{4 \pi} N^{2}$ 。								
${ }^{N}$	$2 \pi N$	$\pi_{N}{ }^{2}$	$\frac{1}{2 \pi} N$	$\frac{1}{4 \pi} N^{2}$	N		πN	$\frac{1}{2 \pi} N$	$\frac{1}{4 \pi} N^{2}$
0	0.00	0.0	0.000	0.00	50	314.16	7854	7.96	198.94
1	6. 28	3.1	0.159	0.08	51	320.44	8171	8.12	206. 98
2	12.57	12.6	0.318	0.32	52	326. 73	8495	8.28	215.18
3	18. 85	28.3	0.477	0.72	53	333.01	8825	8.44	223. 53
4	25.13	50.3	0.637	1. 27	54	339.29	9161	8.59	232.05
5	31.42	78.5	0. 796	1.99	55	345.58	9503	8.75	240.72
6	37.70	113. 1	0.955	2. 86	56	351. 86	9852	8.91	249. 55
7	43.98	153.9	1.114	3.90	57	358.14	10207	9. 07°	258.55
8	50. 27	201. 1	1. 273	5. 09	58	364.42	10568	9. 23	267. 70
9	56.55	254.5	1.432	6.45	59	370.71	10936	9.39	277.01
10	62.83	314.2	1. 592	7.96	60	376.99	11310	9. 55	286.48
11	69.12	380.1	1. 751	9.63	61	383.27	11690	9.71	296. 11
12	75.40	452.4	1. 910	11. 46	62	389.56	12076	9.87	305.90
13	81.68	530.9	2. 069	13.45	63	395.84	12469	10.03	315.84
14	87.96	615.8	2. 228	15.60	64	402. 12	12868	10.19	325.95
15	94.25	706.9	2. 387	17.90	65	408.41	13273	10.35	336.21
16	100. 53	804.2	2. 546	20.37	66	414.69	13685	10.50	346. 64
17	106. 81	907.9	2. 706	23. 00	67	420.97	14103	10.66	357.22
18	113. 10	1017.9	2.865	25. 78	68	427.26	14527	10.82	367.97
19	119.38	1134.1	3.024	28.73	69	433.54	14957	10.98	378.87
20	$125.66{ }^{\text {. }}$	1256.6	3. 183	31.83	70	439. 82	15394	11. 14	389.93
21	131.95	1385.4	3. 342	35.09	71	446.11	15837	11.30	401.15
22	138.23	1520.5	3. 501	38. 52	72	452.39	16286	11.46	412.53
23	144.51	1661.9	3. 661	42. 10	73	458.67	16742	11.62	424.07
24	150.80	1809.6	3. 820	45.84	74	464.96	17203	11. 78	435.77
25	157.08	1963.5	3.979	49. 74	75	471.24	17671	11.94	447.62
26	163.36	2123.7	4.138	53. 79	76	477.52	18146	12. 10	459.64
27	169.65	2290.2	4. 297	58. 01	77	483.81	18627	12. 25	471.81
28	175.93	2463.0	4.456	62.39	78	490.09	19113	12.41	484.15
29	182. 21	2642.1	4.615	66.92	79	496.37	19607	12. 57	496.64
30	188. 50	2827.4	4. 775	71. 62	80	502.65	20106	12. 73	509.30
31	194.78	3019.1	4. 934	76.47	81	508.94	20612	12. 89	522. 11
32	201. 06	3217.0	5. 093	81. 49	82	515.22	21124	13.05	535.08
33	207.35	3421.2	5. 252	86.66	83	521.50	21642	13.21	548.21
34	213.63	3631.7	5.411	91.99	84	527.79	22167	13.37	561. 50
35	219.91	3848.5	5. 570	97.48	85	534.07	22698	13.53	574.95
36	226. 19	4071.5	5. 730	103. 13	86	540.35	23235	13.69	588.55
37	232.48	4300.8	5. 889	108. 94	87	546.64	23779	13.85	602.32
38	238. 76	4536.5	6. 048	114.91	88	552.92	24328	14.01	616.25
39	245.04	4778.4	6. 207	121. 04	89	559.20	24885	14.16	630.33
40	251.33	5026.5	6. 366	127.32	90	565.49	25447	14.32	644.58
41	257.61	5281.0	6. 525	133.77	91	571.77	26016	14.48	658.98
42	263. 89	5541.8	6. 685	140.37	92	578.05	26590	14.64	673.54
43	270.18	5808.8	6. 844	147.14	93	584.34	27172	14.80	688.27
44	276.46	6082.1	7. 003	154.06	94	590.62	27759	14.96	703.15
45	282.74	6361.7	7. 162	161. 14	95	596.90	28353	15. 12	718. 19
46	289.03	6647.6	7.321	168.39	96	603. 19	28953	15. 28	733.39
47	295.31	6939.8	7.480	175. 79	97	609.47	29559	15.44	748.74
48	301.59	7238.2	7.639	183.35	98	615.75	30172	15.60	764.26
49	307.88	7543.0	7. 799	-191. 07	99	622.04	30791	15.76	779.94
50	314.16	7854.0	7.958	198.94	100	628.32	31416	15.92	795.77
N	π_{N}	$\pi_{N}{ }^{2}$	$\frac{1}{2 \pi} N$	$\frac{1}{4 \pi} N^{2}$	N	$2 \pi_{N}$	π_{N}	$\frac{1}{2 \pi} N$	$\frac{1}{4 \pi}{ }^{2}$

,	0°	$1{ }^{\circ}$	2°	3°	$4{ }^{\circ}$	1
0	$\begin{array}{cc} \hline \text { sin } & \text { cos } \\ 0000 & 1.000 \end{array}$	$\begin{array}{cc} \hline \sin & \cos \\ 0175 & 9998 \end{array}$	$\begin{array}{cc} \hline \boldsymbol{\operatorname { s i n }} & \boldsymbol{\operatorname { c o s }} \\ 0349 & 9994 \end{array}$	$\begin{array}{cc} \hline \sin & \boldsymbol{c o s} \\ 0523 & 9986 \end{array}$	$\begin{array}{cc} \overline{\sin } & \text { cos } \\ 0698 & 9976 \end{array}$	60
1	00031.000	01779998	03529994	05269986	07009975	59
2	00061.000	01809998	03559994	05299986	07039975	58
3	00091.000	01839998	03589994	05329986	07069975	57
4	00121.000	01869998	03619993	05359986	07099975	56
5	00151.000	01899998	03649993	05389986	07129975	55
6	00171.000	01929998	03669993	05419985	07159974	54
7	00201.000	01959998	03699993	05449985	07189974	53
8	00231.000	01989998	03729993	05479985	07219974	52
9	00261.000	02019998	03759993	05509985	07249974	51
10	00291.000	02049998	03789993	05529985	07279974	50
11	00321.000	02079998	03819993	05559985	07299973	49
12	00351.000	02099998	03849993	05589984	07329973	48
13	00381.000	02129998	03879993	05619984	07359973	47
14	$00+11.000$	02159998	03909992	05649984	07389973	46
15	00441.000	02189998	03939992	05679984	07419973	45
16	00471.000	02219998	03969992	05709984	07449972	44
17	$00+91.000$	02249997	03989992	05739984	07479972	43
18	00521.000	02279997	04019992	05769983	07509972	42
19	00551.000	02309997	04049992	05799983	07539972	41
20	00581.000	02339997	04079992	05819983	07569971	40
21	00611.000	02369997	04109992	05849983	07589971	39
22	00641.000	02399997	04139991	05879983	07619971	38
23	00671.000	02419997	04169991	05909983	07649971	37
24	00701.000	02449997	04199991	05939982	07679971	36
25	00731.000	02479997	04229991	05969982	07709970	35
26	00761.000	02509997	04259991	05999982	07739970	34
27	00791.000	02539997	04279991	06029982	07769970	33
28	00811.000	02569997	04309991	06059982	07799970	32
29	008+ 1.000	02599997	04339991	06089982	0782. 9969	31
30	00871.000	02629997	04369990	06109981	07859969	30
31	00901.000	02659996	04399990	06139981	07879969	29
32	00931.000	02689996	04429990	06169981	07909969	28
33	00961.000	02709996	04459990	06199981	07939968	27
34	00991.000	02739996	04489990	06229981	07969968	26
35	01029999	02769996	04519990	06259980	07999968	25
36	01059999	02799996	04549990	06289980	08029968	24
37	01089999	02829996	04579990	06319980	08059968	23
38	01119999	02859996	04599989	06349980	08089967	22
39	01139999	02889996	04629989	06379980	08119967	21
40	01169999	02919996	04659989	06409980	08149967	20
41	01199999	02949996	04689989	06429979	08169967	19
42	01229999	02979996	04719989	06459979	08199966	18
43	01259999	03009996	04749989	06489979	08229966	17
44	01289999	03029995	04779989	06519979	08259966	16
45	01319999	03059995	04809988	06549979	08289966	15
46	01349999	03089995	04839988	06579978	08319965	14
47	01379999	03119995	04869988	06609978	08349965	13
48	01409999	03149995	04889988	06639978	. 08379965	12
49	01439999	03179995	04919988	06669978	08409965	11
50	01459999	03209995	04949988	06699978	08439964	10
51	01489999	03239995	04979988	06719977	08459964	9
52	01519999	03269995	05009987	06749977	08489964	8
53	01549999	03299995	05039987	06779977	08519964	7
54	01579999	03329995	05069987	06809977	08549963	6
55	01609999	03349994	05099987	06839977	08579963	5
56	01639999	03379994	05129987	06869976	08609963	4
57	01669999	03409994	05159987	06899976	08639963	3
58	01699999	03439994	05189987	06929976	08669962	2
59	01729999	03469994	05209986	06959976	08699962	1
60	01759999	$\begin{array}{cc} 0349 & 9994 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 0523 & 9986 \\ \prime \cos & \sin \end{array}$	$\begin{array}{cc} 0698 & 9976 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 0872 & 9962 \\ \cos & \sin \end{array}$	0
'	89°	88°	87°	86°	$8 .{ }^{\circ}$	'

,	5°	6°	7°	8°	9°	1
	$\overline{\sin \cos }$	sin cos	$\overline{\sin }$ cos	$\overline{\sin } \boldsymbol{\operatorname { c o s }}$	$\boldsymbol{\operatorname { s i n }} \mathbf{\operatorname { c o s }}$	
0	08729962	$104599+5$	12199925	13929903	15649877	60
1	08749962	10489945	12229925	13959902	15679876	59
2	08779961	10519945	12249925	13979902	15709876	58
3	08809961	$105499+4$	12279924	14009901	15739876	57
4	08839961	10579944	12309924	14039901	15769875	56
5	08869961	$106099+4$	12339924	14069901	15799875	55
6	08899960	$106399+3$	12369923	14099900	15829874	54
7	08929960	10669943	12399923	14129900	15849874	53
8	08959960	10689943	12419923	14159899	15879873	52
9	08989960	$107199+2$	12459922	14189899	15909873	51
10	09019959	10749942	12489922	14219899	15939872	50
11	09039959	10779942	12509922	14239898	15969872	49
12	09069959	10809942	12539921	14269898	15999871	48
13	09099959	10839941	12569921	14299897	16029871	47
14	09129958	10869941	12599920	14329897	16059870	46
15	09159958	10899941	12629920	14359897	16079870	45
16	09189958	10929940	12659920	14389896	16109869	44
17	09219958	10949940	12689919	14419896	16139869	43
18	$092+9957$	10979940	12719919	14449895	16169869	42
19	09279957	11009939	12749919.	14469895	16199868	41
20	09299957	11039939	$12769918{ }^{\circ}$	14499894	16229868	40
21	09329956	11069939	12799918	14529894	16259867	39
22	09359956	11099938	12829917	14559894	16289867	38
23	09389956	11129938	12859917	14589893	16309866	37
24	09419956	11159938	12889917	14619893	16339866	36
25	09449955	11189937	12919916	14649892	16369865	35
26	09479955	11209937	$129+9916$	14679892	16399865	34
27	09509955	11239937	12979916	14699891	16429864	33
28	09539955	11269936	12999915	14729891	16459864	32
29	09569954	11299936	13029915	14759891	16489863	31
30	09589954	11329936	13059914	14789890	16509863	30
31	09619954	11359935	13089914	14819890	16539862	29
32	09649953	11389935	13119914	14849889	16569862	28
33	09679953	11419935	13149913	14879889	16599861	27
34	09709953	11449934	13179913	14909888	16629861	26
35	09739953	11469934	13209913	14929888	16659860	25
36	09769952	11499934	13239912	14959888	16689860	24
37	09799952	11529933	13259912	14989887	16719859	23
38	09829952	11559933	13289911	15019887	16739859	22
39	09859951	11589933	13319911	15049886	16769859	21
40	09879951	11619932	13349911	15079886	16799858	20
41	09909951	11649932	13379910	15109885	16829858	19
42	09939951	11679932	13409910	15139885	16859857	18
43	09969950	11709931	13439909	15159884	16889857	17
44	09999950	11729931	13469909	15189884	16919856	16
45	10029950	11759931	13499909	15219884	16939856	15
46	10059949	11789930	13519908	15249883	16969855	14
47	10089949	11819930	13549908	15279883	16999855	13
48	10119949	11849930	13579907	15309882	17029854	12
49	10139949	11879929	13609907	15339882	17059854	11
50	10169948	11909929	13639907	15369881	17089853	10
51	10199948	11939929	13669906	15389881	17119853	9
52	10229948	11969928	13699906	15419880	17149852	8
53	10259947	11989928	13729905	15449880	17169852	7
54	10289947	12019928	13749905	15479880	17199851	6
55	10319947	12049927	13779905	15509879	17229851	5
56	10349946	12079927	13809904	15539879	17259850	4
57	10379946	12109927	13839904	15569878	17289850	3
58	10399946	12139926	13869903	15599878	17319849	2
59	10429946	12169926	13899903	15619877	17349849	1
60	$\begin{array}{cc} 1045 & 9945 \\ \cos & \sin \\ \hline \end{array}$	$\begin{array}{cc} 1219 & 9925 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 1392 & 9903 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 1564 & 9877 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 1736 & 9848 \\ \cos & \sin \end{array}$	0
'	$84{ }^{\circ}$	83°	82°	81°	80°	'

,	10°	11°	12°	13°	14°	'
	$\sin \cos$					
0	17369848	19089816	20799781	22509744	24199703	60
1	17399848	19119816	20829781	22529743	24229702	59
2	17429847	19149815	20859780	22559742	24259702	58
3	17459847	19179815	20889780	22589742	24289701	57
4	17489846	19209814	20909779	22619741	24319700	56
5	17519846	19229813	20939778	22649740	24339699	55
6	17549845	19259813	20969778	22679740	24369699	54
7	17579845	19289812	20999777	22699739	24399698	53
8	17599844	19319812	21029777	22729738	24429697	52
9	17629843	19349811	21059776	22759738	24459697	51
10	17659843	19379811	21089775	22789737	24479696	50
11	17689842	19399810	21109775	22819736	24509695	49
12	17719842	19429810	21139774	22849736	24539694	48
13	17749841	1945 9809	21169774	22869735	24569694	47
14	17779841	19489808	21199773	22899734	24599693	46
15	17799840	19519808	21229772	22929734	24629692	45
16	17829840	19549807	21259772	22959733	24649692	44
17	17859839	19579807	21279771	22989732	24679691	43
18	17889839	19599806	21309770	23009732	24709690	42
19	17919838	19629806	21339770	23039731	24739689	41
20	17949838	19659805	21369769	23069730	24769689	40
21	17979837	19689804	21399769	23099730	24789688	39
22	17999837	19719804	21429768	23129729	24819687	38
23	18029836	19749803	21459767	23159728	24849687	37
24	18059836	19779803	21479767	23179728	24879686	36
25	18089835	19799802	21509766	23209727	24909685	35
26	18119835	19829802	21539765	23239726	24939684	34
27	18149834	19859801	21569765	23269726	24959684	33
28	18179834	19889800	21599764	23299725	24989683	32
29	18199833	19919800	21629764	23329724	25019682	31
30	182.29833	19949799	21649763	23349724	25049681	30
31	18259832	19979799	21679762	23379723	25079681	29
32	18289831	19999798	21709762	23409722	25099680	28
33	18319831	20029798	21739761	23439722	25129679	27
34	18349830	20059797	21769760	23469721	25159679	26
35	18379830	20089796	21799760	23499720	25189678	25
36	18409829	20119796	21819759	23519720	25219677	24
37	18429829	20149795	21849759	23549719	25249676	23
38	18459828	20169795	21879758	23579718	25269676	22
39	18489828	20199794	21909757	23609718	25299675	21
40	18519827	20229793	21939757	23639717	25329674	20
41	18549827	20259793	21969756	23669716	25359673	19
42	18579826	20289792	21989755	23689715	25389673	18
43	18609826	20319792	22019755	23719715	25409672	17
44	18629825	20349791	22049754	23749714	25439671	16
45	18659825	20369790	22079753	23779713	25469670	15
46	18689824	20399790	22109753	23809713	25499670	14
47	18719823	20429789	22139752	23839712	25529669	13
48	18749823	20459789	22159751	23859711	25549668	12
49	18779822	20489788	22189751	23889711	25579667	11
50	18809822	20519787	22219750	23919710	25609667	10
51	18829821	20549787	22249750	23949709	25639666	9
52	18859821	20569786	22279749	23979709	25669665	8
53	18889820	20599786	22309748	23999708	25699665	7
54	18919820	20629785	22339748	24029707	25719664	6
55	18949819	20659784	22359747	24059706	25749663	5
56	18979818	20689784	22389746	24089706	25779662	4
57	19009818	20719783	22419746	24119705	25809662	3
58	19029817	20739783	22449745	24149704	25839661	2
59	19059817	20769782	22479744	24169704	25859660	1
60	19089816	20799781	22509744	24199703	25889659	0
	cos \sin	cos \sin	cos \sin	$\cos \sin$	cos \sin	
'	79°	78°	77°	76°	75°	${ }^{\prime}$

,	15°	16°	17°	18°	19°	\prime
	$\boldsymbol{\operatorname { s i n }} \mathbf{\operatorname { c o s }}$	sin \cos	$\boldsymbol{\operatorname { s i n }} \mathbf{\operatorname { c o s }}$	sin \cos	$\overline{\sin } \mathbf{\operatorname { c o s }}$	
0	25889659	27569613	29249563	30909511	32569455	60
1	25919659	27599612	29269562	30939510	32589454	59
2	25949658	27629611	29299561	30969509	32619453	58
3	25979657	27659610	29329560	30989508	32649452	57
4	25999656	27689609	29359560	31019507	32679451	56
5	26029655	27709609	29389559	31049506	32699450	55
6	26059655	27739608	29409558	31079505	32729449	54
7	26089654	27769607	29439557	31109504	32759449	53
8	26119653	27799606	29469556	31129503	32789448	52
9	26139652	27829605	29499555	31159502	32809447	51
10	26169652	27849605	29529555	31189502	32839446	50
11	26199651	27879604	29549554	31219501	32869445	49
12	26229650	27909603	29579553	-3123 9500	32899444	48
13	26259649	27939602	29609552	31269499	32919443	47
14	26289649	27959601	29639551	31299498	32949442	46
15	26309648	27989600	29659550	31329497	32979441	45
16	26339647	28019600	29689549	31349496	33009440	44
17	26369646	28049599	29719548	31379495	33029439	43
18	26399646	28079598	29749548	31409494	33059438	42
19	26429645	28099597	29779547	31439493	33089437	41
20	26449644	28129596	29799546	31459492	33119436	40
21	26479643	28159596	29829545	31489492	33139435	39
22	26509642	28189595	29859544	31519491	33169434	38
23	26539642	28219594	29889543	31549490	33199433	37
24	26569641	28239593	29909542	31569489	33229432	36
25	26589640	28269592	29939542	31599488	33249431	35
26	26619639	28299591	29969541	31629487	33279430	34
27	26649639	28329591	29999540	31659486	33309429	33
28	26679638	28359590	30029539	31689485	33339428	32
29	26709637	28379589	30049538	31709484	33359427	31
30	26729636	28409588	30079537	31739483	33389426	30
31	26759636	28439587	30109536	31769482	33419425	29
32	26789635	28469587	30139535	31799481	33449424	28
33	26819634	28499586	30159535	31819480	33469423	27
34	26849633	28519585	30189534	31849480	33499423	26
35	26869632	28549584	30219533	31879479	33529422	25
36	26899632	28579583	30249532	31909478	33559421	24
37	26929631	28609582	30269531	31929477	33579420	23
38	26959630	28629582	30299530	31959476	33609419	22
39	26989629	28659581	30329529	31989475	33639418	21
40	27009628	28689580	30359528	32019474	33659417	20
41	27039628	28719579	30389527	32039473	33689416	19
42	27069627	28749578	30409527	32069472	33719415	18
43	27099626	28769577	30439526	32099471	33779414	17
44	27129625	28799577	30469525	32129470	33769413	16
45	27149625	28829576	30499524	32149469	33799412	15
46	27179624	28859575	30519523	32179468	33829411	14
47	27209623	28889574	30549522	32209467	33859410	13
48	27239622	28909573	30579521	32239466	33879409	12
49	27269621	28939572	30609520	32259466	33909408	11
50	27289621	28969572	30629520	32289465	33939407	10
51	27319620	2899.9571	30659519	32319464	33969406	9
52	27349619	29019570	30689518	32349463	33989405	8
53	27379618	29049569	30719517	32369462	34019404	7
54	27409617	29079568	30749516	32399461	34049403	6
55	2742. 9617	29109567	30769515	32429460	34079402	5
56	27459616	29139566	30799514	32459459	34099401	4
57	27489615	29159566	30829513	32479458	34129400	3
58	27519614	29189565	30859512	32509457	34159399	2
59	27549613	29219564	30879511	32539456	34179398	1
60	27569613	29249563	30909511	32569455	34209397	0
	cos \sin	$\cos \sin$	$\cos \sin$	cos \sin	$\text { cos } \sin$	
'	$74{ }^{\circ}$	73°	72°	71°	70°	,

,	20°	21°	22°	23°	24°	'
	$\sin \cos$	$\sin \cos$	$\sin \cos$	sin \cos	$\boldsymbol{\operatorname { s i n }} \cos$	
0	34209397	35849336	37469272	39079205	40679135	60
1	34239396	35869335	37499271	39109204	40709134	59
2	34269395	35899334	37519270	39139203	40739133	58
3	34289394	35929333	37549269	39159202	40759132	57
4	34319393	35959332	37579267	39189200	40789131	56
5	34349392	35979331	37609266	39219199	40819130	55
6	34379391	36009330	37629265	39239198	40839128	54
7	34399390	36039328	37659264	39269197	40869127	53
8	34429389	36059327	37689263	39299196	40899126	52
9	34459388	36089326	37709262	39319195	40919125	51
10	34489387	36119325	37739261	39349194	40949124	50
11	34509386	36149324	37769260	39379192	40979122	49
12	34539385	36169323	37789259	39399191	40999121	48
13	34569384	36199322	37819258	39429190	41029120	47
14	34589383	36229321	37849257	39459189	41059119	46
15	34619382	36249320	37869255	39479188	41079118	45
16	34649381	36279319	37899254	39509187	41109116	44
17	34679380	36309318	37929253	39539186	41129115	43
18	34699379	36339317	37959252	39559184	41159114	42
19	34729378	36359316	37979251	39589183	41189113	41
20	34759377	36389315	38009250	39619182	41209112	40
21	34789376	36419314	38039249	39639181	41239110	39
22	34809375	36439313	38059248	39669180	41269109	38
23	34839374	36469312	38089247	39699179	41289108	37
24	34869373	36499311	38119245	39719178	41319107	36
25	34889372	36519309	38139244	39749176	41349106	35
26	34919371	36549308	38169243	39779175	41369104	34
27	34949370	36579307	38199242	39799174	41399103	33
28	34979369	36609306	38219241	39829173	41429102	32
29	34999368	36629305	38249240	39859172	41449101	31
30	35029367	36659304	38279239	39879171	41479100	30
31	35059366	36689303	38309238	39909169	41509098	29
32	35089365	36709302	38329237	39939168	41529097	28
33	35109364	36739301	38359235	39959167	41559096	27
34	35139363	36769300	38389234	39989166	41589095	26
35	35169362	36799299	38409233	40019165	41609094	25
36	35189361	36819298	38439232	40039164	41639092	24
37	35219360	36849297	38469231	40069162	41659091	23
38	35249359	36879296	38489230	40099161	41689090	22
39	35279358	36899295	38519229	40119160	41719088	21
40	35299356	36929293	38549228	40149159	41739088	20
41	35329355	36959292	38569227	40179158	41769086	19
42	35359354	36979291	38599225	40199157	41799085	18
43	35379353	37009290	38629224	40229155	41819084	17
44	35409352	37039289	38649223	40259154	41849083	16
45	35439351	37069288	38679222	40279153	41879081	15
46	35469350	37089287	38709221	40309152	41899080	14
47	35489349	37119286	38729220	40339151	41929079	13
48	35519348	37149285	38759219	40359150	41959078	12
49	35549347	37169284	38789218	40389148	41979077	11
50	35579346	37199283	38819216	40419147	42009075	10
51	35599345	37229282	38839215	4043. 9146	42029074	9
52	35629344	37249281	38869214	40469145	42059073	8
53	35659343	37279279	38899213	40499144	42089072	7
54	35679342	37309278	38919212	40519143	42109070	6
55	35709341	37339277	38949211	40549141	42139069	5
56	35739340	37359276	38979210	40579140	42169068	4
57	35769339	37389275	38999208	40599139	42189067	3
58	35789338	37419274	39029207	40629138	42219066	2
59	35819337	37439273	39059206	40659137	42249064	1
60	$\begin{array}{lc} 3584 & 9336 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 3746 & 9272 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 3907 & 9205 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 4067 & 9135 \\ \cos & \sin \\ \hline \end{array}$	$\begin{array}{cc} 4226 & 9063 \\ \cos & \sin \end{array}$	0
,	69°	68°	67°	66°	65°	1

,	25°	26°	27°	28°	29°	1
	sin $\boldsymbol{\operatorname { c o s }}$	$\sin \cos$	$\sin \cos$	$\sin \cos$	$\sin \cos$	
0	42269063	43848988	4540 S910	46958829	48488746	60
1	42299062	43868987	45428909	46978828	48518745	59
2	42319061	43898985	45458907	47008827	48538743	58
3	42349059	43928984	45488906	47028825	48568742	57
4	.4237 905S	4394 S983	45508905	47058824	48588741	56
5	42399057	43978982	45538903	47088823	48618739	55
6	42429056	4399 8980	45558902	4710 S821	48638738	54
7	42459054	44028979	45588901	47138820	48668736	53
8	42479053	44058978	45618899	47158819	48688735	52
9	42509052	44078976	45638898	47188817	48718733	51
10	42539051	44108975	45668897	4720 S816	48748732	50
11	42559050	44128974	45688895	47238814	48768731	49
12	425 S 9048	44158973	45718894	47268813	48798729	48
13	$426090+7$	44188971	45748893	47288812	48818728	47
14	42639046	44208970	45768892	47318810	48848726	46
15	42669045	44238969	45798890	47338809	48868725	45
16	42689043	4425 S967	45818889	47368808	48898724	44
17	42719042	44288966	45848888	47388806	48918722	43
18	42749041	4431, 8965	45868886	47418805	48948721	42
19	42769040	4433 8964	45898885	47438803	48968719	41
20	42799038	44368962	45928884	47468802	48998718	40
21	42819037	44398961	4594 S8S2	47498801	49018716	39
22	$428+9036$	44418960	45978881	47518799	49048715	38
23	42879035	44448958	4599 SS79	47548798	49078714	37
24	42899033	44468957	46028878	47568796	49098712	36
25	42929032	44498956	46058877	47598795	49128711	35
26	42959031	44528955	46078875	47618794	49148709	34
27	42979030	44548953	4610 8874	47648792	49178708	33
28	43009028	44578952	4612 S873	47568791	49198706	32
29	43029027	44598951	46158871	47598790	49228705	31
30	43059026	44628949	46178870	47728788	49248704	30
31	43089025	44658948	46208869	47748787	49278702	29
32	43109023	44678947	4623 S867	47778785	49298701	28
33	43139022	4470 S945	46258866	47798784	49328699	27
34	43169021	44728944	4628 8865	47828783	49348698	26
35	43189020	44758943	46308863	47848781	49378696	25
36	43219018	44788942	46338862	47878780	49398695	24
37	43239017	44808940	46368861	47898778	49428694	23
38	43269016	44838939	4638 8859	47928777	49448692	22
39	43299015	44858938	46418858	47958776	49478691	21
40	43319013	44888936	46438857	47978774	49508689	20
41	$433+9012$	44918935	46468855	48008773	4952 S688	19
42	43379011	44938934	46488854	48028771	49558686	18
43	43399010	44968932	4651 S853	48058770	49578685	17
44	43429008	44988931	4654 S851	-4807 8769	4960 S683	16
45	$434+9007$	45018930	46568850	48108767	49628682	15
46	43479006	45048928	46598849	48128766	49658681	14
47	43509004	45068927	46618847	$4815 \quad 8764$	49678679	13
48	43529003	45098926	46648846	48188763	49708678	12
49	43559002	45118925	46668844	48208762	49728676	11
50	43589001	45148923	4669 S843	48238760	49758675	10
51	43608999	45178922	46728842	48258759	4977 S673	-9
52	43638998	45198921	4674 SS40	48288757	49808672	8
53	43658997	45228919	4677 S839	48308756	49828670	7
54	43688996	45248918	46798838	48338755	49858669	6
55	43718994	45278917	46828836	48358753	49878668	5
56	43738993	45308915	46848835	48388752	49908666	4
57	43768992	45328914	4687 8834	48408750	49928665	3
58	43788990	4535 S913	46908832	48438749	49958663	2
59	43818989	45378911	4692 8831	48468748	49978662	1
60	43848988	45408910	$4695 \quad 8829$	48488746	50008660	0
	$\cos \sin$	cos sin	$\cos \sin$	$\cos \sin$	$\cos \sin$	
,	$64{ }^{\circ}$	63°	62°	61°	60°	'

,	30°	31°	32°	33°	$34{ }^{\circ}$	1
	$\overline{\sin } \boldsymbol{\operatorname { c o s }}$	$\sin \cos$	$\sin \cos$	$\sin \cos$	$\sin \cos$	
0	50008660	51508572	52998480	54468387	55928290	60
1	50038659	51538570	53028479	54498385	55948289	59
2	50058657	51558569	53048477	54518384	55978287	58
3	50088656	51588567	53078476	54548382	55998285	57
4	50108654	51608566	53098474	54568380	56028284	56
5	50138653	51638564	53128473	54598379	56048282	55
6	50158652	51658563	53148471	54618377	56068281	54
7	50188650	51688561	53168470	54638376	56098279	53
8	50208649	51708560	53198468	54668374	56118277	52
9	50238647	51738558	53218467	54688372	56148276	51
10	50258646	51758557	5324 S465	54718371	56168274	50
11	50288644	51788555	53268463	54738369	56188272	49
12	50308643	51808554	53298462	54768368	56218271	48
13	50338641	51838552	53318460	54788366	56238269	47
14	50358640	51858551	53348459	54808364	56268268	46
15	50388638	51888549	53368457	54838363	56288266	45
16	50408637	51908548	53398456	54858361	56308264	44
17	50438635	51938546	53418454	54888360	56338263	43
18	50458634	51958545	53448453	54908358	56358261	42
19	50488632	51988543	53468451	54938356	56388259	41
20	50508631	52008542	53488450	54958355	56408258	40
21	50538630	52038540	53518448	54988353	56428256	39
22	50558628	52058539	53538446	55008352	56458254	38
23	50588627	52088537	53568445	55028350	56478253	37
24	50608625	52108536	53588443	55058348	56508251	36
25	50638624	52138534	53618442	55078347	56528249	35
26	50658622	52158532	53638440	55108345	56548248	34
27	50688621	52188531	53668439	55128344	5657 8246	33
28	50708619	52208529	53688437	55158342	56598245	32
29	50738618	52238528	53718435	55178340	56628243	31
30	50758616	52258526	53738434	55198339	56648241	30
31	50788615	52278525	53758432	55228337	56668240	29
32	50808613	52308523	53788431	55248336	56698238	28
33	50838612	52328522	53808429	55278334	56718236	27
34	50858610	52358520	53838428	55298332	56748235	26
35	50888609	52378519	53858426	55318331	56768233	25
36	50908607	52408517	53888425	55348329	$5678{ }^{-8231}$	24
37	50938606	52428516	53908423	55368328	56818230	23
38	50958604	52458514	53938421	55398326	56838228	22
39	50988603	52478513	53958420	55418324	56868226	21
40	51008601	52508511	53988418	55448323	56888225	20
41	51038600	52528510	54008417	55468321	56908223	19
42	51058599	52558508	54028415	554888320	56938221	18
43	51088597	52578507	54058414	55518318	56958220	17
44	51108596	52608505	54078412	55538316	56988218	16
45	51138594	52628504	54108410	55568315	57008216	15
46	51158593	52658502	54128409	55588313	57028215	14
47	51188591	52678500	54158407	55618311	57058213	13
48	51208590	52708499	54178406	55638310	57078211	12
49	51238588	52728497	54208404	55658308	57108210	11
50	51258587	52758496	54228403	55688307	57128208	10
51	51288585	52778494	54248401	55708305	57148207	9
52	51308584	52798493	54278399	55738303	57178205	8
53	51338582	52828491	54298398	55758302	57198203	7
54	51358581	52848490	54328396	55778300	57218202	6
55	51388579	52878488	54348395	55808299	57248200	5
56	51408578	52898487	54378393	55828297	57268198	4
57	51438576	52928485	54398391	55858295	57298197	3
58	51458575	52948484	54428390	55878294	57318195	2
59	51488573	52978482	54448388	55908292	57338193	1
60	$\begin{array}{cc} 5150 & 8572 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 5299 & 8480 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 5446 & 8387 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 5592 & 8290 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 5736 & 8192 \\ \cos & \sin \end{array}$	0
'	59°	58°	57°	56°	55°	'

,	35°	36°	37°	38°	39°	1
	$\overline{\sin } \boldsymbol{\operatorname { c o s }}$	$\sin \cos$	$\sin \cos$	sin \cos	$\sin \cos$	
0	57368192	58788090	60187986	61577880	62937771	60
1	57388190	58808088	60207985	61597878	62957770	59
2	57418188	58838087	60237983	61617877	62987768	58
3	57438187	58858085	60257981	61637875	63007766	57
4	57458185	58878083	60277979	61667873	63027764	56
5	57488183	58908082	60307978	61687871	63057762	55
6	57508181	58928080	60327976	61707869	63077760	54
7	57528180	58948078	60347974	61737868	63097759	53
8	57558178	58978076	60377972	61757866	63117757	52
9	57578176	58998075	60397971	61777864	63147755	51
10	57608175	59018073	60417969	61807862	63167753	50
11	57628173	59048071	60447967	61827860	63187751	49
12	57648171	59068070	60467965	61847859	63207749	48
13	57678170	59088068	60487964	61867857	63237748	47
14	57698168	59118066	60517962	61897855	63257746	46
15	57718166	59138064	60537960	61917853	63277744	45
16	57748165	59158063	60557958	61937851	63297742	44
17	57768163	59188061	60587956	61967850	63327740	43
18	57798161	59208059	60607955	61987848	63347738	42
19	57818160	59228058	60627953	62007346	63367737	41
20	57838158	59258056	60657951	62027844	63387735	40
21	57868156	59278054	60677950	62057842	63417733	39
22	57888155	59308052	60697948	62077841	63437731	38
23	57908153	59328051	60717946	62097839	63457729	37
24	57938151	59348049	60747944	62117837	63477727	36
25	57958150	59378047	60767942	62147835	63507725	35
26	57988148	59398045	60787941	62167833	63527724	34
27	58008146	59418044	60817939	62187832	63547722	33
28	58028145	59448042	60837937	62217830	63567720	32
29	58058143	59468040	60857935	62237828	63597718	31
30	58078141	59488039	60887934	62257826	63617716	30
31	58098139	59518037	60907932	62277824	63637714	29
. 32	58128138	59538035	60927930	62307822	63657713	28
33	58148136	59558033	60957928	62327821	63687711	27
34	58168134	59588032	60977926	62347819	63707709	26
35	58198133	59608030	60997925	62377817	63727707	25
36	58218131	59628028	61017923	62397815	63747705	24
37	58248129	59658026	61047921	62417813	63767703	23
38	58268128	59678025	61067919	62437812	63797701	22
39	58288126	59698023	61087918	62467810	63817700	21
40	58318124	59728021	61117916	62487808	63837698	20
41	58338123	59748020	61137914	62507806	63857696	19
42	58358121	59768018	61157912	62527804	63887694	18
43	58388119	59798016	61187910	62557802	63907692	17
44	58408117	59818014	61207909	62577801	63927690	16
4.5	58428116	59838013	61227907	62597799	63947688	15
46	58458114	59868011	61247905	62627797	63977687	14
47	58478112	59888009	61277903	62647795	63997685	13
48	58508111	59908007	61297902	62667793	64017683	12
- 49	58528109	59938006	61317900	62687792	64037681	11
50	58548107	59958004	61347898	62717790	64067679	10
51	58578106	59978002	61367896	62737788	64087677	9
52	58598104	60008000	61387894	62757786	64107675	8
53	58618102	60027999	61417893	62777784	64127674	7
54	58648100	60047997	61437891	62807782	64147672	6
55	58668099	60077995	61457889	62827781	64177670	5
56	58688097	60097993	61477887	62847779	64197668	4
57	58718095	601179.92	61507885	62867777	64217666	3
58	58738094	60147990	61527884	62897775	64237664	2
59	58758092	60167988	61547882	62917773	64267662	1
60	$\begin{array}{rc} 5878 & 8090 \\ \cos & \sin \end{array}$	60187986	$\begin{array}{cc} 6157 & 7880 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 6293 & 7771 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 6428 & 7660 \\ \cos & \sin \end{array}$	0
1	54°	53°	52°	51°	50°	'

,	40°	41°	42°	43°	$44{ }^{\circ}$	1
	$\sin \cos$					
0	64287660	65617547	66917431	68207314	69477193	60
1	64307659	65637545	66937430	68227312	69497191	59
2	64327657	65657543	66967428	68247310	69517189	58
3	64357655	65677541	66987426	68267308	69537187	57
4	64377653	65697539	67007424	68287306	69557185	56
5	64397651	65727538	67027422	68317304	69577183	55
6	64417649	65747536	67047420	68337302	69597181	54
7	64437647	65767534	67067418	68357300	69617179	53
8	6446.7645	65787532	67097416	68377298	69637177	52
9	64487644	65807530	67117414	68397296	69657175	51
10	64507642	65837528	67137412	68417294	69677173	50
11	64527640	65857526	67157410	68437292	69707171	49
12	64557638	65877524	67177408	68457290	69727169	48
13	64577636	65897522	67197406	68487288	69747167	47
14	64597634	65917520	67227404	68507286	69767165	46
15	64617632	65937518	67247402	68527284	69787163	45
16	64637630	65967516	67267400	68547282	69807161	44
17	64667629	65987515	67287398	68567280	69827159	43
18	64687627	66007513	67307396	68587278	69847157	42
19	64707625	66027511	67327394	68607276	69867155	41
20	64727623	66047509	67347392	68627274	69887153	40
21	64757621	66077507	67377390	68657272	69907151	39
22	64777619	66097505	67397388	68677270	69927149	38
23	64797617	66117503	67417387	68697268	69957147	37
24	64817615	66137501	67437385	68717266	69977145	36
25	64837613	66157499	67457383	68737264	69997143	35
26	64867612	66177497	67477381	68757262	70017141	34
27	64887610	66207495	67497379	68777260	70037139	33
28	64907608	66227493	67527377	68797258	70057137	32
29	64927606	66247491	67547375	68817256	70077135	31
30	$6494 \quad 7604$	66267490	67567373	$6884 \quad 7254$	70097133	30
31	64977602	66287488	67587371	68867252	70117130	29
32	64997600	66317486	67607369	68887250	70137128	28
33	65017598	66337484	67627367	68907248	70157126	27
34	65037596	66357482	67647365	68927246	70177124	26
35	65067595	66377480	67677363	6894.7244	70197122	25
36	65087593	66397478	67697361	68967242	70227120	24
37	65107591	66417476	67717359	68987240	70247118	23
38	65127589	66447474	67737357	69007238	70267116	22
39	65147587	66467472	67757355	69037236	70287114	21
40	65177585	66487470	67777353	69057234	70307112	20
41	65197583	66507468	67797351	69077232	70327110	19
42	65217581	66527466	67827349	69097230	70347108	18
43	65237579	66547464	67847347	69117228	70367106	17
44	65257578	66577463	67867345	69137226	70387104	16
45	65287576	66597461	67887343	6915.7224	70407102	15
46	65307574	66617459	67907341	69177222	70427100	14
47	65327572	66637457	67927339	69197220	70447098	13
48	65347570	66657455	67947337	69217218	70467096	12
49	65367568	66677453	67977335	69247216	70487094	11
50	65397566	66707451	67997333	69267214	70507092	10
51	65417564	66727449	68017331	69287212	70537090	9
52	65437562	66747447	68037329	69307210	70557088	8
53	65457560	66767445	68057327	69327208	70577085	7
54	65477559	66787443	68077325	69347206	70597083	6
55	65507557	66807441	68097323	69367203	70617081	5
56	65527555	66837439	68117321	69387201	70637079	4
57	65547553	66857437	68147319	69407199	70657077	3
58	65567551	66877435	68167318	69427197	70677075	2
59	65587549	66897433	68187316	69447195	70697073	1
60	$\begin{array}{ll} 6561 & 7547 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 6691 & 7431 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 6820 & 7314 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 6947 & 7193 \\ \cos & \sin \end{array}$	$\begin{array}{cc} 7071 & 7071 \\ \cos & \sin \end{array}$	0
1	49°	48°	47°	46°	45°	1

'	0°	$1{ }^{\circ}$		$2{ }^{\circ}$		3°		4°		
	000	0175		0349		0524				
0	0000 Infinite	0175	57.2900	0349	28.6363	0524	19.0811	0699	14.3007	60
,	00033437.75	0177	56.3506	0352	$28.399+$	0527	18.9755	0702	14.2411	59
2	00061718.87	0180	55.4415	0355	28.1664	0530	18.8711	0705	14.1821	58
3	00091145.92	0183	54.5613	0358	27.9372	0533	18.7678	0708	14.1235	57
4	0012859.436	0186	53.7086	0361	27.7117	0536	18.6656	0711	14.0655	56
5	0015687.549	0189	52.8821	0364	27.4899	0539	18.5645	0714	14.0079	55
6	0017572.957	0192	52.0807	0367	27.2715	0542	18.4645	0717	13.9507	54
7	0020491.106	0195	51.3032	0370	27.0566	0544	18.3655	0720	13.8940	53
8	0023429.718	0198	50.5485	0373	26.8450	0547	18.2677	0723	13.8378	52
9	0026381.971	0201	49.8157	0375	26.6367	0550	18.1708	0726	13.7821	51
10	0029343.774	0204	49.1039	0378	26.4316	0553	18.0750	0729	13.7267	50
11	0032312.521	0207	48.4121	0381	26.2296	0556	17.9802	0731	13.6719	49
12	0035286.478	0209	47.7395	0384	26.0307	0559	17.8863	0734	13.6174	48
13	0038264.441	0212	47.0853	0387	25.8348	0562	17.7934	0737	13.5634	47
14	0041245.552	0215	46.4489	0390	25.6418	0565	17.7015	0740	13.5098	46
15	0044229.182	0218	45.8294	0393	25.4517	0568	17.6106	0743	13.4566	45
16	0047214.858	0221	45.2261	0396	25.2644	0571	17.5205	0746	13.4039	44
17	0049202.219	0224	44.6386	0399	25.0798	0574	17.4314	0749	13.3515	43
18	0052190.984	0227	44.0661	0402	24.8978	0577	17.3432	0752	13.2996	42
19	0055180.932	0230	43.5081	0405	24.7185	0580	17.2558	0755	13.2480	41
20	0058171.885	0233	42.9641	0407	24.5418	0582	17.1693	0758	13.1969	40
21	0061163.700	0236	42.4335	0410	24.3675	0585	17.0837	0761	13.1461	39
22	0064155.259	0239	41.9158	0413	24.1957	0588	16.9990	0764	13.0958	38
23	0067149.465	0241	41.4106	0416	24.0263	0591	16.9150	0767	13.0458	37
24	0070143.237	0244	40.9174	0419	23.8593	0594	16.8319	0769	12.9962	36
25	0073137.507	0247	40.4358	0422	23.6945	0597	16.7496	0772	12.9469	35
26	0076132.219	0250	39.9655	0425	23.5321	0600	16.6681	0775	12.8981	34
27	0079127.321	0253	39.5059	0428	23.3718	0603	16.5874	0778	12.8496	33
28	0081122.774	0256	39.0568	0431	23.2137	0606	16.5075	0781	12.8014	32
29	0084118.540	0259	38.6177	0434	23.0577	0609	16.4283	0784	12.7536	31
30	0087114.589	0262	38.1885	0437	22.9038	0612	16.3499	0787	12.7062	30
31	0090110.892	0265	37.7686	0440	22.7519	0615	16.2722	0790	12.6591	29
32	0093107.426	0268	37.3579	0442	22.6020	0617	16.1952	0793	12.6124	28
33	0096104.171	0271	36.9560	0445	22.4541	0620	16.1190	0796	12.5660	27
34	0099101.107	0274	36.5627	0448	22.3081	0623	16.0435	0799	12.5199	26
35	010298.2179	0276	36.1776	0451	22.1640	0626	15.9687	0802	12.4742	25
36	010595.4895	0279	35.8006	0454	22.0217	0629	15.8945	0805	12.4288	24
37	010892.9085	0282	35.4313	0457	21.8813	0632	15.8211	0808	12.3838	23
38	011190.4633	0285	35.0695	0460	21.7426	0635	15.7483	0810	12.3390	22
39	011388.1436	0288	34.7151	0463	21.6056	0638	15.6762	0813	12.2946	21
40	011685.9398	0291	34.3678	0466	21.4704	0641	15.6048	0816	12.2505	20
41	011983.8435	0294	34.0273	0469	21.3369	0644	15.5340	0819	12.2067	19
42	012281.8470	0297	33.6935	0472	21.2049	0647	15.4638	0822	12.1632	18
43	012579.9434	0300	33.3662	0475	21.0747	0650	15.3943	0825	12.1201	17
44	012878.1263	0303	33.0452	0477	20.9460	0653	15.3254	0828	12.0772	16
45	013176.3900	0306	32.7303	0480	20.8188	0655	15.2571	0831	12.0346	15
46	013474.7292	0308	32.4213	0483	20.6932	0658	15.1893	0834	11.9923	14
47	013773.1390	0311	32.1181	0486	20.5691	0661	15.1222	0837	11.9504	13
48	014071.6151	0314	31.8205	0489	20.4465	0664	15.0557	0840	11.9087	12
49	014370.1533	0317	31.5284	0492	20.3253	0667	14.9898	0843	11.8673	11
50	014668.7501	0320	31.2416	0495	20.2056	0670	14.9244	0846	11.8262	10
51	014867.4019	0323	30.9599	0498	20.0872	0673	14.8596	0849	11.7853	
52	015166.1055	0326	30.6833	0501	19.9702	0676	14.7954	0851	11.7448	8
53	015464.8580	0329	30.4116	0504	19.8546	0679	14.7317	0854	11.7045	7
54	015763.6567	0332	30.1446	0507	19.7403	0682	14.6685	0857	11.6645	6
55	016062.4992	0335	29.8823	0509	19.6273	0685	14.6059	0860	11.6248	5
56	016361.3829	0338	29.6245	0512	19.5156	0688	14.5438	0863	11.5853	4
57	016660.3058	0340	29.3711	0515	19.4051	0690	14.4823	0866	11.5461	3
58	016959.2659	0343	29.1220	0518	19.2959	0693	14.4212	0869	11.5072	2
59	017258.2612	0346	28.8771	0521	19.1879	0696	14.3607	0872	11.4685	1
60	$\begin{array}{cc} 0175 & 57.2900 \\ \boldsymbol{\operatorname { c o t }} & \tan \end{array}$	$\begin{aligned} & 0349 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 28.6363 \\ \tan \end{gathered}$	$\begin{aligned} & 0524 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 19.0811 \\ \tan \end{gathered}$	$\begin{aligned} & 0699 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 14.3007 \\ \tan \end{gathered}$	0875 cot	$\underset{\tan }{11.4301}$	0
,	89°		88°		$\mathbf{8 7}^{\circ}$		86°		85°	

'	5°	6°		7°		8°		9°		,
	0875	1051	. 514	tan		tan	150			
0	087511.4301	1051	9.5144	1228	8.1443	1405	7.1154	$158+$	6.3138	60
1	087811.3919	1054	9.4878	1231	8.1248	1408	7.1004	1587	6.3019	59
2	088111.3540	1057	9.4614	1234	8.1054	1411	7.0855	1590	6.2901	58
3	088411.3163	1060	9.4352	1237	8.0860	1414	7.0706	1593	6.2783	57
4	088711.2789	1063	9.4090	1240	8.0667	1417	7.0558	1596	6.2666	56
5	089011.2417	1066	9.3831	1243	8.0476	1420	7.0410	1599	6.2549	55
6	089211.2048	1069	9.3572	1246	8.0285	1423	7.0264	1602	6.2432	54
7	089511.1681	1072	9.3315	1249	8.0095	1426	7.0117	1605	6.2316	53
8	089811.1316	1075	9.3060	1251	7.9906	1429	6.9972	1608	6.2200	52
9	090111.0954	1078	9.2806	1254	7.9718	1432	6.9827	1611	6.2085	51
10	090411.0594	1080	9.2553	1257	7.9530	1435	6.9682	1614	6.1970	50
11	090711.0237	1083	9.2302	1260	7.9344	1438	6.9538	1617	6.1856	49
12	091010.9882	1086	9.2052	1263	7.9158	1441	6.9395	1620	6.1742	48
13	091310.9529	1089	9.1803	1266	7.8973	1444	6.9252	1623	6.1628	47
14	091610.9178	1092	9.1555	1269	7.8789	1447	6.9110	1626	6.1515	46
15	091910.8829	1095	9.1309	1272	7.8606	1450	6.8969	1629	6.1402	45
16	092210.8483	1098	9.1065	1275	7.8424	1453	6.8828	1632	6.1290	44
17	092510.8139	1101	9.0821	1278	7.8243	1456	6.8687	1635	6.1178	43
18	092810.7797	1104	9.0579	1281	7.8062	1459	6.8548	1638	6.1066	42
19	093110.7457	1107	9.0338	1284	7.7883	1462	6.8408	1641	6.0955	41
20	093410.7119	1110	9.0098	1287	7.7704	1465	6.8269	1644	6.0844	40
21	093610.6783	1113	8.9860	1290	7.7525	1468	6.8131	1647	6.0734	39
22	093910.6450	1116	8.9623	1293	7.7348	1471	6.7994	1650	6.0624	38
23	094210.6118	1119	8.9387	1296	7.7171	1474	6.7856	1653	6.0514	37
24	094510.5789	1122	8.9152	1299	7.6996	1477	6.7720	1655	6.0405	36
25	094810.5462	1125	8.8919	1302	7.6821	1480	6.7584	1658	6.0296	35
26	095110.5136	1128	8.8686	1305	7.6647	1483	6.7448	1661	6.0188	34
27	095410.4813	1131	88455	1308	7.6473	1486	6.7313	1664	6.0080	33
28	095710.4491	1134	8.8225	1311	7.6301	1489	6.7179	1667	5.9972	32
29	0960 10.4172	1136	8.7996	1314	7.6129	1492	6.7045	1670	5.9865	31
30	096310.3854	1139	8.7769	1317	7.5958	1495	6.6912	1673	5.9758	30
31	096610.3538	1142	8.7542	1319	7.5787	1497	6.6779	1676	5.9651	29
32	096910.3224	1145	8.7317	1322	7.5618	1500	6.6646	1679	5.9545	28
33	097210.2913	1148	8.7093	1325	7.5449	1503	6.6514	1682	5.9439	27
34	097510.2602	1151	8.6870	1328	7.5281	1506	6.6383	1685	5.9333	26
35	097810.2294	1154	8.6648	1331	7.5113	1509	6.6252	1688	5.9228	25
36	098110.1988	1157	8.6427	1334	7.4947	1512	6.6122	1691	5.9124	24
37	098310.1683	1160	8.6208	1337	7.4781	1515	6.5992	1694	5.9019	23
38	098610.1381	1163	8.5989	1340	7.4615	1518	6.5863	1697	5.8915	22
39	0989 10.1080	1166	8.5772	1343	7.4451	1521	6.5734	1700	5.8811	21
40	099210.0780	1169	8.5555	1346	7.4887	1524	6.5606	1703	5.8708	20
41	099510.0483	1172	8.5340	1349	7.4124	1527	6.5478	1706	5.8605	19
42	099810.0187	1175	8.5126	1352	7.3962	1530	6.5350	1709	5.8502	18
43	10019.9893	1178	8.4913	1355	7.3800	1533	6.5223	1712	5.8400	17
44	1004 9.9601.	1181	8.4701	1358	7.3639	1536	6.5097	1715	5.8298	16
45	10079.9310	1184	8.4490	1361	7.3479	1539	6.4971	1718	5.8197	15
46	10109.9021	1187	8.4280	1364	7.3319	1542	6.4846	1721	5.8095	14
47	$1013 \quad 9.8734$	1189	8.4071	1367	7.3160	1545	6.4721	1724	5.7994	13
48	10169.8448	1192	8.3863	1370	7.3002	1548	6.4596	1727	5.7894	12
49	10199.8164	1195	8.3656	1373	7.2844	1551	6.4472	1730	5.7794	1
50	10229.7882	1198	8.3450	1376	7.2687	1554	6.4348	1733	5.7694	10
51	10259.7601	1201	8.3245	1379	7.2531	1557	6.4225	1736	5.7594	9
52	10289.7322	1204	8.3041	1382	7.2375	1560	6.4103	1739	5.7495	8
53	10309.7044	1207	8.2838	1385	7.2220	1563	6.3980	1742	5.7396	
54	10339.6768	1210	8.2636	1388	7.2066	1566	6.3859	1745	5.7297	6
55	10369.6499	1213	8.2434	1391	7.1912	1569	6.3737	1748	5.7199	5
56	10399.6220	1216	8.2234	1394	7.1759	1572	6.3617	1751	5.7101	4
57	10429.5949	1219	8.2035	1397	7.1607	1575	6.3496	1754	5.7004	3
58	10459.5679	1222	8.1837	1399	7.1455	1578	6.3376	1757	5.6906	2
59	10489.5411	1225	8.1640	1402	7.1304	1581	6.3257	1760	5.6809	1
60	$\begin{array}{cc} 1051 & 9.5144 \\ \cot & \tan \end{array}$	$\begin{aligned} & 1228 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 8.1443 \\ \tan \end{gathered}$	$\begin{gathered} 1405 \\ \text { cot } \end{gathered}$	$\begin{gathered} 7.1154 \\ \boldsymbol{\operatorname { t a n }} \end{gathered}$	$\begin{gathered} 1584 \\ \text { cot } \end{gathered}$	$\underset{\tan }{6.3138}$	$\begin{array}{r} 1763 \\ \text { cot } \end{array}$	$\begin{gathered} 5.6713 \\ \tan \end{gathered}$	0
,	$84{ }^{\circ}$		$8{ }^{\circ}$		2°		1°		${ }^{\circ}$,

,	10°	11°	12°	13°	$14{ }^{\circ}$	
	ta	tan	\tan	$\boldsymbol{t a n}$	n	
0	17635.6713	19445.1446	21264.7046	23094.3315	24934.0108	0
1	17665.6617	19475.1366	21294.6979	23124.3257	24964.0058	59
2	17695.6521	19505.1286	21324.6912	23154.3200	24994.0009	58
3	17725.6425	19535.1207	21354.6845	23184.3143	25033.9959	57
4	17755.6330	19565.1128	21384.6779	23214.3086	25063.9910	56
5	17785.6234	19595.1049	21414.6712	23244.3029	25093.9861	55
5	17815.6140	19625.0970	21444.6646	23274.2972	25123.9812	54
8	17845.6045	19655.0892	21474.6580	23304.2916	25153.9763	53
8	17875.5951	19685.0814	21504.6514	23334.2859	25183.9714	52
9	17905.5857	19715.0736	21534.6448	23364.2803	25213.9665	51
10	17935.5764	19745.0658	21564.6382	23394.2747	25243.9617	50
11	17965.5671	19775.0581	21594.6317	23424.2691	25273.9568	49
12	17995.5578	19805.0504	21624.6252	23454.2635	25303.9520	48
13	18025.5485	19835.0427	21654.6187	23494.2580	25333.9471	47
14	18055.5393	19865.0350	21684.6122	23524.2524	25373.9423	46
15	18085.5301	19895.0273	21714.6057	23554.2468	25403.9375	45
16	18115.5209	19925.0197	21744.5993	23584.2413	25433.9327	44
17	18145.5118	19955.0121	21774.5928	23614.2358	25463.9279	43
18	18175.5026	19985.0045	21804.5864	23644.2303	25493.9232	42
19	18205.4936	20014.9969	21834.5800	23674.2248	25523.9184	41
20	18235.4845	20044.9894	21864.5736	23704.2193	25553.9136	40
21	18265.4755	20074.9819	21894.5673	23734.2139	25583.9089	39
22	18295.4665	20104.9744	21934.5609	23764.2084	25613.9042	38
23	18325.4575	20134.9669	21964.5546	23794.2030	25643.8995	37
24	18355.4486	20164.9594	21994.5483	23824.1976	25683.8947	36
25	18385.4397	20194.9520	22024.5420	23854.1922	25713.8900	35
26	18415.4308	20224.9446	22054.5357	23884.1868	2574 3.8854	34
27	18445.4219	20254.9372	22084.5294	23924.1814	25773.8807	33
28	18475.4131	20284.9298	22114.5232	23954.1760	25803.8760	32
29	18505.4043	20314.9225	22144.5169	23984.1706	25833.8714	31
30	18535.3955	20354.9152	22174.5107	24014.1653	25863.8667	30
31	18565.3868	20384.9078	22204.5045	24044.1600	25893.8621	29
32	18595.3781	29414.9006	22234.4983	24074.1547	25923.8575	28
33	18625.3694	20444.8933	22264.4922	24104.1493	25953.8528	27
34	18655.3607	20474.8860	22294.4860	24134.1441	25993.8482	26
35	18685.3521	20504.8788	22324.4799	24164.1388	26023.8436	25
36	18715.3435	20534.8716	22354.4737	24194.1335	26053.8391	24
37	18745.3349	20564.8644	22384.4676	24224.1282	26083.8345	23
38	18775.3263	20594.8573	22414.4615	24254.1230	26113.8299	22
39	18805.3178	20624.8501	22444.4555	24284.1178	26143.8254	21
40	18835.3093	20654.8430	22474.4494	24324.1126	26173.8208	20
41	18875.3008	20684.8359	22514.4434	24354.1074	26203.8163	19
	18905.2924	20714.8288	22544.4374	24384.1022	262333.8118	18
43	18935.2839	20744.8218	22574.4313	24414.0970	26273.8073	17
44	18965.2755	20774.8147	22604.4253	24444.0918	26303.8028	16
45	18995.2672	20804.8077	22634.4194	24474.0867		15
46	19025.2588	20834.8007	22664.4134	24504.0815	26363.7938	14
47	19055.2505	20864.7937	22694.4075	24534.0764	26393.7893	13
48	19085.2422	20894.7867	22724.4015	24564.0713	26423.7848	12
49	19115.2339	20924.7798	22754.3956	24594.0662	26453.7804	11
50	19145.2257	20954.7729	22784.3897	24624.0611	26483.7760	10
51	19175.2174	20984.7659	22814.3838	24654.0560	26513.7715	9
52	19205.2092	21014.7591	22844.3779	24694.0509	26553.7671	8
53	19235.2011	21044.7522	22874.3721	24724.0459	26583.7627	7
54	19265.1929	21074.7453	22904.3662	24754.0408	26613.7583	6
55	19295.1848	21104.7385	22934.3604	24784.0358	26643.7539	5
56	19325.1767	21134.7317	22964.3546	24814.0308	26673.7495	
57	19355.1686	21164.7249	22994.3488	24844.0257	26703.7451	
58	19385.1606	21194.7181	23034.3430	24874.0207	26733.7408	2
59	19415.1526	21234.7114	23064.3372	24904.0158	26763.7364	1
60	$\begin{array}{cc} 1944 & 5.1446 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 2126 & 4.7046 \\ \text { cot } & \tan \end{array}$	$\begin{array}{ll} 2309 & 4.3315 \\ \text { cot } & \tan \end{array}$	$\begin{array}{cc} 2493 & 4.0108 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 2679 & 3.7321 \\ \cot & \tan \end{array}$	0
'	79°	78°	77°	$76{ }^{\circ}$	75°	,

NATURAL TANGENTS AND COTANGENTS.

'	15°	16°	17°	18°	19°	,
					$\overline{\tan } \boldsymbol{\operatorname { c o t }}$	
0	26793.7321	28673.4874	30573.2709	32493.0777	34432.9042	60
1	26833.7277	28713.4836	30603.2675	32523.0746	34472.9015	59
2	26863.7234	28743.4798	30643.2641	32563.0716	34502.8987	58
3	26893.7191	28773.4760	30673.2607	32593.0686	34532.8960	57
4	26923.7148	28803.4722	30703.2573	32623.0655	34562.8933	56
5	26953.7105	28833.4684	30733.2539	32653.0625	34602.8905	55
6	26983.7062	28863.4646	30763.2506	32693.0595	34632.8878	54
7	27013.7019	28903.4608	30803.2472	32723.0565	34662.8851	53
8	2704 3.69\%5	28933.4570	30833.2438	32753.0535	34692.8824	52
9	27083.6933	28963.4533	30863.2405	32783.0505	34732.8797	51
10	27113.6891	28993.4495	30893.2371	32813.0475	34762.8770	50
11	27143.6848	29023.4458	30923.2338	32853.0445	34792.8743	49
12	27173.6806	29053.4420	30963.2305	32883.0415	34822.8716	48
13	27203.6764	29083.4383	30993.2272	32913.0385	34862.8689	47
14	27233.6722	29123.4346	31023.2238	32943.0356	34892.8662	46
15	27263.6680	29153.4308	31053.2205	32983.0326	34922.8636	45
16	27293.6638	29183.4271	31083.2172	33013.0296	34952.8609	44
17	27333.6596	29213.4234	31113.2139	33043.0267	34992.8582	43
18	27363.6554	29243.4197	31153.2106	33073.0237	35022.8556	42
19	27393.6512	29273.4160	31183.2073	33103.0208	35052.8529	41
20	27423.6470	29313.4124	31213.2041	33143.0178	35082.8502	40
21	27453.6429	29343.4087	31243.2008	33173.0149	35122.8476	39
22	27483.6387	29373.4050	31273.1975	33203.0120	35152.8449	38
23	27513.6346	29403.4014	31313.1943	33233.0090	35182.8423	37
24	27543.6305	29433.3977	31343.1910	33273.0061	35222.8397	36
25	27583.6264	29463.3941	31373.1878	33303.0032	35252.8370	35
26	27613.6222	29493.3904	31403.1845	33333.0003	35282.8344	34
27	27643.6181	29533.3868	31433.1813	33362.9974	35312.8318	33
28	27673.6140	29563.3832	31473.1780	33392.9945	35352.8291	32
29	27703.6100	29593.3796	31503.1748	334329916	35382.8265	31
30	27733.6059	29623.3759	31533.1716	33462.9887	35412.8239	30
31	27763.6018	2965 3.3723	31563.1684	33492.9858	35442.8213	29
32	27803.5978	2968 3.3687	31593.1652	33522.9829	35482.8187	28
33	27833.5937	29723.3652	31633.1620	33562.9800	35512.8161	27
34	27863.5897	29753.3616	31663.1588	33592.9772	35542.8135	26
35	27893.5856	29783.3580	31693.1556	33622.9743	35582.8109	25
36	27923.5816	29813.3544	31723.1524	33652.9714	35612.8083	24
37	27953.5776	29843.3509	31753.1492	33692.9686	35642.8057	23
38	27983.5736	29873.3473	31793.1460	33722.9657	35672.8032	22
39	28013.5696	29913.3438	31823.1429	33752.9629	35712.8006	21
40	28053.5656	29943.3402	31853.1397	33782.9600	35742.7980	20
41	28083.5616	29973.3367	31883.1366	33822.9572	35772.7955	19
42	28113.5576	30003.3332	31913.1334	33852.9544	35812.7929	18
43	28143.5536	30033.3297	31953.1303	33882.9515	35842.7903	17
44	28173.5497	30063.3261	31983.1271	33912.9487	35872.7878	16
45	28203.5457	30103.3226	32013.1240	33952.9459	35902.7852	15
46	2823 3.5418	30133.3191	32043.1209	33982.9431	35942.7827	14
47	28273.5379	30163.3156	32073.1178	34012.9403	35972.7801	3
48	28303.5339	30193.3122	32113.1146	34042.9375	36002.7776	12
49	28333.5300	30223.3087	32143.1115	34082.9347	36042.7751	11
50	28363.5261	30263.3052	32173.1084	34112.9319	36072.7725	10
51	28393.5222	30293.3017	32203.1053	34142.9291	. 36102.7700	
52	28423.5183	30323.2983	32233.1022	34172.9263	36132.7675	
53	28453.5144	30353.2948	32273.0991	34212.9235	36172.7650	7
54	28493.5105	30383.2914	32303.0961	34242.9208	36202.7625	6
55	28523.5067	30413.2880	32333.0930	34272.9180	36232.7600	5
56	2855	30453.2845	32363.0899	34302.9152	36272.7575	4
57	28583.4989	30483.2811	32403.0868	34342.9125	36302.7550	3
58	28613.4951	30513.2777	32433.0838	34372.9097	36332.7525	2
59	28643.4912	30543.2743	32463.0807	34402.9070	36362.7500	1
60	$\begin{array}{cc} 2867 & 3.4874 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 3057 & 3.2709 \\ \text { cot } & \boldsymbol{\operatorname { t a n }} \end{array}$	$\begin{array}{lc} 3249 & 3.0777 \\ \boldsymbol{c o t} & \boldsymbol{\operatorname { t a n }} \end{array}$	$\begin{array}{cc} 3443 & 2.9042 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 3640 & 2.7475 \\ \cot & \tan \end{array}$	0
'	$74{ }^{\circ}$	73°	72°	71°	70°	,

'	20°	21°	22°	23°	24°	
			$\boldsymbol{t a n}$ cot	$\boldsymbol{t a n}$ cot	$\boldsymbol{t a n} \cot$	
0	36402.7475	38392.6051	40402.4751	42452.3559	44522.2460	60
1	36432.7450	38422.6028	40442.4730	42482.3539	44562.2443	59
2	36462.7425	38452.6006	40472.4709	42522.3520	44592.2425	58
3	36502.7400	38492.5983	40502.4689	42552.3501	44632.2408	57
4	36532.7376	38522.5961	40542.4668	42582.3483	44662.2390	56
5	36562.7351	38552.5938	40572.4648	42622.3464	44702.2373	55
6	36592.7326	38592.5916	40612.4627	42652.3445	44732.2355	54
7	36632.7302	38622.5893	40642.4606	42692.3426	44772.2338	53
8	36662.7277	38652.5871	40672.4586	42722.3407	44802.2320	52
9	36692.7253	38692.5848	40712.4566	42762.3388	44842.2303	51
10	36732.7228	38722.5826	40742.4545	42792.3369	44872.2286	50
11	36762.7204	38752.5804	40782.4525	42832.3351	44912.2268	49
12	36792.7179	38792.5782	40812.4504	42862.3332	44942.2251	48
13	36832.7155	38822.5759	40842.4484	42892.3313	44982.2234	47
14	36862.7130	38852.5737	40882.4464	42932.3294	45012.2216	46
15	36892.7106	38892.5715	40912.4443	42962.3276	45052.2199	45
16	36932.7082	38922.5693	40952.4423	43002.3257	45082.2182	44
17	36962.7058	38952.5671	40982.4403	43032.3238	45122.2165	43
18	36992.7034	38992.5649	41012.4383	43072.3220	45152.2148	42
19	37022.7009	39022.5627	41052.4362	43102.3201	45192.2130	41
20	37062.6985	39062.5605	41082.4342	43142.3183	45222.2113	40
21	37092.6961	39092.5533	41112.4322	43172.3164	45262.2096	39
22	37122.6937	39122.5561	41152.4302	43202.3146	45292.2079	38
23	37162.6913	39162.5539	41182.4282	43242.3127	45332.2062	37
24	37192.6889	39192.5517	41222.4262	43272.3109	45362.2045	36
25	37222.6865	39222.5495	41252.4242	43312.3090	45402.2028	35
26	37262.6841	39262.5473	41292.4222	43342.3072	45432.2011	34
27	37292.6818	39292.5452	41322.4202	43382.3053	45472.1994	33
28	37322.6794	39322.5430	41352.4182	43412.3035	45502.1977	32
29	37362.6770	39362.5408	41392.4162	43452.3017	45542.1960	31
30	37392.6746	39392.5386	41422.4142	43482.2998	45572.1943	30
31	37422.6723	39422.5365	41462.4122	43522.2980	45612.1926	29
32	37452.6699	39462.5343	41492.4102	43552.2962	45642.1909	28
33	37492.6675	39492.5322	41522.4083	43592.2944	45682.1892	27
34	3752. 2.6652	39532.5300	41562.4063	43622.2925	45712.1876	26
35	37552.6628	39562.5279	41592.4043	43652.2907	45752.1859	25
36	37592.6605	39592.5257	41632.4023	43692.2889	45782.1842	24
37	37622.6581	39632.5236	41662.4004	43722.2871	45822.1825	23
38	37652.6558	39662.5214	41692.3984	43762.2853	45852.1808	22
39	37692.6534	39692.5193	41732.3964	43792.2835	45892.1792	21
40	37722.6511	39732.5172	41762.3945	43832.2817	45922.1775	20
41	37752.6488	39762.5150	41802.3925	43862.2799	45962.1758	19
42	37792.6464	39792.5129	41832.3906	43902.2781	45992.1742	18
43	37822.6441	39832.5108	41872.3886	43932.2763	46032.1725	17
44	37852.6418	39862.5086	41902.3867	43972.2745	46072.1708	16
45	37892.6395	39902.5065	41932.3847	44002.2727	46102.1692	15
46	37922.6371	39932.5044	41972.3828	44042.2709	46142.1675	14
47	37952.6348	39962.5023	42002.3808	44072.2691	46172.1659	13
48	37992.6325	40002.5002	42042.3789	44112.2673	46212.1642	12
49	38022.6302	40032.4981	42072.3770	44142.2655	46242.1625	11
50	38052.6279	40062.4960	42102.3750	44172.2637	46282.1609	10
51	38092.6256	40102.4939	42142.3731	44212.2620	46312.1592	9
52	38122.6233	40132.4918	42172.3712	44242.2602	46352.1576	8
53	38152.6210	40172.4897	42212.3693	44282.2584	46382.1560	7
54	38192.6187	40202.4876	42242.3673	44312.2566	46422.1543	6
55	38222.6165	40232.4855	42282.3654	44352.2549	46452.1527	5
56	382526142	40272.4834	42312.3635	44382.2531	46492.1510	4
57	38292.6119	40302.4813	42342.3616	44422.2513	46522.1494	3
58	. 38322.6096	40332.4792	42382.3597	44452.2496	46562.1478	2
59	38352.6074	40372.4772	42412.3578	44492.2478	46602.1461	1
60	38392.6051	40402.4751	$4245 \quad 2.3559$	44522.2460	46632.1	0
	an	cot \tan	cot \tan	tan	cot tan	
,	69°	68°	67°	66°	65°	,

1	25°	26°	27°	28°	29°	'
	tan	tan cot	$\boldsymbol{t a n} \cot$	tan	tan cot	
0	46632.1445	48772.0503	50951.9626	53171.8807	55431.8040	60
1	46672.1429	48812.0488	50991.9612	53211.8794	55471.8028	59
2	46702.1413	48852.0473	51031.9598	53251.8781	55511.8016	58
3	46742.1396	48882.0458	51061.9584	5328 1,8768	55551.8003	57
4	46772.1380	48922.0443	51101.9570	53321.8755	55581.7991	56
5	46812.1364	48952.0428	51141.9556	53361.8741	55621.7979	55
6	46842.1348	48992.0413	51171.9542	53401.8728	55661.7966	54
7	46882.1332	49032.0398	51211.9528	53431.8715	55701.7954	53
8	46912.1315	49062.0383	51251.9514	53471.8702	55741.7942	52
9	46952.1299	49102.0368	51281.9500	53511.8689	55771.7930	51
10	46992.1283	49132.0353	51321.9486	53541.8676	55811.7917	50
11	47022.1267	49172.0338	51361.9472	53581.8663	55851.7905	49
12	47062.1251	49212.0323	51391.9458	53621.8650	55891.7893	48
13	47092.1235	49242.0308	51431.9444	53661.8637	55931.7881	47
14	47132.1219	49282.0293	51471.9430	53691.8624	55961.7868	46
15	47162.1203	49312.0278	51501.9416	53731.8611	56001.7856	45
16	47202.1187	49352.0263	51541.9402	53771.8598	56041.7844	44
17	47232.1171	49392.0248	51581.9388	53811.8585	56081.7832	43
18	47272.1155	49422.0233	51611.9375	53841.8572	56121.7820	42
19	47312.1139	49462.0219	51651.9361	53881.8559	56161.7808	41
20	47342.1123	49502.0204	51691.9347	53921.8546	56191.7796	40
21	47382.1107	49532.0189	51721.9333	53961.8533	56231.7783	39
22	47412.1092	49572.0174	51761.9319	53991.8520	56271.7771	38
23	47452.1076	49602.0160	51801.9306	54031.8507	56311.7759	37
24	47482.1060	49642.0145	51841.9292	54071.8495	56351.7747	36
25	47522.1044	49682.0130	51871.9278	54111.8482	56391.7735	35
26	47552.1028	49712.0115	51911.9265	54151.8469	56421.7723	34
27	47592.1013	49752.0101	51951.9251	54181.8456	56461.7711	33
28	47632.0997	49792.0086	51981.9237	54221.8443	56501.7699	32
29	47662.0981	49822.0072	52021.9223	54261.8430	56541.7687	31
30	47702.0965	49862.0057	52061.9210	54301.8418	56581.7675	30
31	47732.0950	49892.0042	52091.9196	54331.8405	56621.7663	29
32	47772.0934	49932.0028	52131.9183	54371.8392	56651.7651	28
33	47802.0918	49972.0013	52171.9169	54411.8379	56691.7639	27
34	47842.0903	50001.9999	52201.9155	54451.8367	56731.7627	26
35	47882.0887	50041.9984	52241.9142	54481.8354	56771.7615	25
36	47912.0872	50081.9970	52281.9128	54521.8341	56811.7603	24
37	47952.0856	50111.9955	52321.9115	54561.8329	56851.7591	23
38	47982.0840	50151.9941	52351.9101	54601.8316	56881.7579	22
39	48022.0825	50191.9926	52391.9088	54641.8303	56921.7567	21
40	48062.0809	50221.9912	52431.9074	54671.8291	56961.7556	20
41	48092.0794	50261.9897	52461.9061	54711.8278	57001.7544	19
42	48132.0778	50291.9883	52501.9047	54751.8265	57041.7532	18
43	48162.0763	50331.9868	52541.9034	54791.8253	57081.7520	17
44	48202.0748	50371.9854	52581.9020	54821.8240	57121.7508	16
45	48232.0732	50401.9840	52611.9007	54861.8228	57151.7496	15
46	48272.0717	50441.9825	52651.8993	54901.8215	57191.7485	14
47	48312.0701	50481.9811	52691.8980	54941.8202	57231.7473	13
48	48342.0686	50511.9797	52721.8967	54981.8190	57271.7461	12
49	48382.0671	50551.9782	52761.8953	55011.8177	57311.7449	11
50	48412.0655	50591.9768	52801.8940	55051.8165	57351.7437	10
51	48452.0640	50621.9754	52841.8927	55091.8152	57391.7426	9
52	48492.0625	50661.9740	52871.8913	55131.8140	57431.7414	8
53	48522.0609	50701.9725	52911.8900	55171.8127	57461.7402	7
54	48562.0594	50731.9711	52951.8887	55201.8115	57501.7391	6
55	48592.0579	50771.9697	52981.8873	55241.8103	57541.7379	5
56	486320564	50811.9683	53021.8860	55281.8090	57581.7367	4
57	48672.0549	50841.9669	53061.8847	55321.8078	57621.7355	3
58	48702.0533	50881.9654	53101.8834	55351.8065	57661.7344	2
59	48742.0518	50921.9640	53131.8820	55391.8053	57701.7332	1
60	$\begin{array}{cc} 4877 & 2.0503 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 5095 & 1.9626 \\ \text { cot } & \text { tan } \end{array}$	$\begin{array}{cc} 5317 & 1.8807 \\ \cot & \tan \end{array}$	$\begin{array}{cc} 5543 & 1.8040 \\ \text { cot } & \tan \end{array}$	$\begin{array}{cc} 5774 & 1.7321 \\ \cot & \tan \end{array}$	0
'	64°	63°	62°	61°	60°	'

,	30°	31°		32°		33°		$34{ }^{\circ}$		
	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\operatorname { c o t }}$	tan	1.6643	tan		$\underline{\text { tan }}$		67		
0	57741.7321	6009	1.6643	6249	1.6003	6494	1.5399	6745	1.4826	60
,	57771.7309	6013	1.6632	6253	1.5993	6498	1.5389	6749	1.4816	59
2	57811.7297	6017	1.6621	6257	1.5983	6502	1.5379	675	1.4807	58
3	57851.7286	6020	1.6610	6261	1.5972	6506	1.5369	6758	1.4798	57
4	57891.7274	6024	1.6599	6265	1.5962	6511	1.5359	6762	1.4788	56
5	57931.7262	6028	1.6588	6269	1.5952	6515	1.5350	6766	1.4779	55
6	57971.7251	6032	1.6577	6273	1.5941	6519	1.5340	6771	1.4770	54
7	58011.7239	6036	1.6566	6277	1.5931	6523	1.5330	6775	1.4761	53
8	58051.7228	6040	1.6555	6281	1.5921	6527	1.5320	6779	1.4751	52
9	58081.7216	6044	1.6545	6285	1.5911	6531	1.5311	6783	1.4742	51
10	58121.7205	6048	1.6534	6289	1.5900	6536	1.5301	678	1.4733	50
11	58161.7193	6052	1.6523	6293	1.5890	6540	1.5291	6792	1.4724	49
12	58201.7182	6056	1.6512	6297	1.5880	6544	1.5282	6796	1.4715	48
13	58241.7170	6060	1.6501	6301	1.5869	6548	1.5272	6800	1.4705	47
14	58281.7159	6064	1.6490	6305	1.5859	6552	1.5262	680	1.4696	46
15	58321.7147	6068	1.6479	6310	1.5849	6556	1.5253	6809	1.4687	45
16	58361.7136	6072	1.6469	6314	1.5839	6560	1.5243	6813	1.4678	44
17	$58+01.7124$	6076	1.6458	6318	1.5829	6565	1.5233	681	1.4669	43
18	58441.7113	6080	1.6447	6322	1.5818	6569	1.5224	682	1.4659	42
19	58471.7102	6084	1.6436	6326	1.5808	6573	1.5214	6826	1.4650	41
20	58511.7090	6088	1.6426	6330	1.5798	6577	1.5204	68	1.4641	40
21	58551.7079	6092	1.6415	6334	1.5788	6581	1.5195	683	1.4632	39
22	58591.7067	6096	1.6404	6338	1.5778	6585	1.5185	6839	1.4623	38
23	58631.7056	6100	1.6393	$63+2$	1.5768	6590	1.5175	684	1.4614	37
24	$58671.70+5$	6104	1.6383	6346	1.5757	6594	1.5166	684	1.4605	36
25	58711.7033	6108	1.6372	6350	1.5747	6598	.1.5156	685	1.4596	35
26	58751.7022	6112	1.6361	6354	1.5737	6602	1.5147	6856	1.4586	34
27	58791.7011	6116	1.6351	6358	1.5727	6606	1.5137	6860	1.4577	33
28	58831.6999	6120	1.6340	6363	1.5717	6610	1.5127	686	1.4568	32
29	58871.6988	6124	1.6329	6367	1.5707	6615	1.5118	68	1.4559	31
30	58901.6977	6128	1.6319	6371	1.5697	6619	1.5108	6873	1.4550	30
31	58941.6965	6132	1.6308	6375	1.5687	6623	1.5099	68	1.4541	29
32	58981.6954	6136	1.6297	6379	1.5677	6627	1.5089	688	1.4532	28
33	59021.6943	6140	1.6287	6383	1.5667	6631	1.5080	6886	1.4523	27
34	59061.6932	6144	1.6276	6387	1.5657	6636	1.5070	6890	1.4514	26
35	59101.6920	6148	1.6265	6391	1.5647	6640	1.5061		1.4505	25
36	59141.6909	6152	1.6255	6395	1.5637	6644	1.5051	6399	1.4496	24
37	59181.6898	6156	1.6244	6399	1.5627	6648	1.5042	6903	1.4487	23
38	59221.6887	6160	1.6234	6403	1.5617	6652	1.5032	690	1.4478	22
39	59261.6875	6164	1.6223	6408	1.5607	6657	1.5023	691	1.4469	21
40	59301.6864	6168	1.6212	6412	1.5597	6661	1.5013	6916	1.4460	20
41	59341.6853	6172	1.6202	6416	1.5587	6665	1.5004	6920	1.4451	19
42	59381.6842	6176	1.6191	6420	1.5577	6669	1.4994	692	1.4442	18
43	59421.6831	6180	1.6181	6424	1.5567	6673	1.4985	692	1.4433	17
44	59451.6820	6184	1.6170	6428	1.5557	6678	1.4975	6933	1.4424	16
45	59491.6808	6188	1.6160	6432	1.5547	6682	1.4966	693	1.4415	15
46	59531.6797	6192	1.6149	6436	1.5537	6686	1.4957	694	1.4406	14
47	59571.6786	6196	1.6139	6440	1.5527	6690	1.4947	6946	1.4397	13
48	5961 1. 6775	6200	1.6128	6445	1.5517	6694	1.4938	6950	1.4388	12
49	59651.6764	6204	1.6118	6449	1.5507	6699	1.4928	695	1.4379	1
50	59691.6753	6208	1.6107	6453	1.5497	6703	1.4919	6959	1.4370	10
51	59731.6742	6212	1.6097	6457	1.5487	6707	1.4910	6963	1.4361	9
52	59771.6731	6216	1.6087	6461	1.5477	6711	1.4900	6967	1.4352	7
53	59811.6720	6220	1.6076	6465	1.5468	6716	1.4891	6972	1.4344	7
54	59851.6709	6224	1.6066	6469	1.5458	6720	1.4882	6976	1.4335	6
55	59891.6698	6228	1.6055		1.5448					5
56	59931.6687	6233	1.6045	6478	1.5438	6728	1.4863	6985	1.4317	
57	59971.6676	6237	1.6034	6482	1.5428	6732	1.4854	6989	1.4308	3
58	60011.6665	6241	1.6024	6486	1.5418	6737	1.4844	6993	1.4299	2
59	60051.6654	6245	1.6014	6490	1.5408	6741	1.4835	6998	1.4290	1
60	60091.6643	$\begin{aligned} & 6249 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 1.6003 \\ \tan \end{gathered}$	$\begin{aligned} & 6494 \\ & \text { cot } \end{aligned}$	$\begin{gathered} 1.5399 \\ \boldsymbol{\operatorname { t a n }} \end{gathered}$	6745	$\begin{gathered} 1.4826 \\ \tan \end{gathered}$	7002 cot	$\begin{gathered} 1.4281 \\ \tan \end{gathered}$	0
,	59°		8°		7°		6°		5°	,

,	35°	36°	37°	38°	39°	
	$\boldsymbol{t a n} \boldsymbol{\operatorname { c o t }}$	tan	$\boldsymbol{t a n}$	$\overline{\tan }$	$\boldsymbol{t a n}$ cot	
0	70021.4281	72651.3764	75361.3270	78131.2799	80981.2349	60
1	70061.4273	72701.3755	75401.3262	78181.2792	81031.2342	59
2	70111.4264	72741.3747	75451.3254	78221.2784	81071.2334	58
3	70151.4255	72791.3739	75491.3246	78271.2776	81121.2327	57
4	70191.4246	72831.3730	75541.3238	78321.2769	81171.2320	56
5	70241.4237	72881.3722	75581.3230	78361.2761	81221.2312	55
6	70281.4229	72921.3713	75631.3222	78411.2753	81271.2305	54
	70321.4220	72971.3705	75681.3214	78461.2746	81321.2298	53
8	70371.4211	73011.3697	75721.3206	78501.2738	81361.2290	52
9	70411.4202	73061.3688	75771.3198	78551.2731	81411.2283	51
10	70461.4193	73101.3680	75811.3190	78601.2723	81461.2276	50
11	70501.4185	73141.3672	75861.3182	78651.2715	81511.2268	49
12	70541.4176	73191.3663	75901.3175	78691.2708	81561.2261	48
13	70591.4167	73231.3655	75951.3167	78741.2700	81611.2254	47
14	70631.4158	73281.3647	76001.3159	78791.2693	81651.2247	46
15	70671.4150	73321.3638	76041.3151	78831.2685	81701.2239	45
16	70721.4141	73371.3630	76091.3143	78881.2677	81751.2232	44
17	70761.4132	73411.3622	76131.3135	78931.2670	81801.2225	43
18	70801.4124	73461.3613	76181.3127	78981.2662	81851.2218	42
19	70851.4115	73501.3605	76231.3119	79021.2655	81901.2210	41
20	70891.4106	73551.3597	76271.3111	79071.2647	81951.2203	40
21	70941.4097	73591.3588	76321.3103	79121.2640	81991.2196	39
22	70981.4089	73641.3580	76361.3095	79161.2632	82041.2189	38
23	71021.4080	73681.3572	76411.3087	79211.2624	82091.2181	37
24	71071.4071	73731.3564	76461.3079	79261.2617	82141.2174	36
25	71111.4063	73771.3555	76501.3072	79311.2609	82191.2167	35
26	71151.4054	73821.3547	76551.3064	79351.2602	82241.2160	34
27	71201.4045	73861.3539	76591.3056	79401.2594	82291.2153	33
28	71241.4037	73911.3531	76641.3048	79451.2587	82341.2145	32
29	71291.4028	73951.3522	76691.3040	79501.2579	82381.2138	31
30	71331.4019	74001.3514	76731.3032	79541.2572	82431.2131	30
31	71371.4011	74041.3506	76781.3024	79591.2564	82481.2124	29
32	71421.4002	74091.3498	76831.3017	79641.2557	82531.2117	28
33	71461.3994	74131.3490	76871.3009	79691.2549	82581.2109	27
34	71511.3985	74181.3481	76921.3001	79731.2542	82631.2102	26
35	71551.3976	74221.3473	76961.2993	79781.2534	82681.2095	25
36	71591.3968	74271.3465	77011.2985	79831.2527	82731.2088	24
37	71641.3959	74311.3457	77061.2977	79881.2519	82781.2081	23
38	71681.3951	74361.3449	77101.2970	79921.2512	82831.2074	22
39	71731.3942	74401.3440	77151.2962	79971.2504	82871.2066	21
40	71771.3934	74451.3432	77201.2954	80021.2497	82921.2059	20
41	71811.3925	74491.3424	77241.2946	80071.2489	82971.2052	19
42	71861.3916	74541.3416	77291.2938	80121.2482	83021.2045	18
43	71901.3908	74581.3408	77341.2931	80161.2475	83071.2038	17
44	71951.3899	74631.3400	77381.2923	80211.2467	83121.2031	16
45	71991.3891	74671.3392	77431.2915	80261.2460	83171.2024	15
46	72031.3882	74721.3384	77471.2907	80311.2452	83221.2017	14
47	72081.3874	74761.3375	77521.2900	80351.2445	83271.2009	13
48	72121.3865	74811.3367	77571.2892	80401.2437	83321.2002	12
49	72171.3857	74851.3359	77611.2884	80451.2430	83371.1995	1
50	72211.3848	74901.3351	77661.2876	80501.2423	83421.1988	10
51	72261.3840	74951.3343	77711.2869	80551.2415	83461.1981	
52	72301.3831	74991.3335	77751.2861	80591.2408	83511.1974	8
53	72341.3823	75041.3327	77801.2853	80641.2401	83561.1967	7
54	72391.3814	75081.3319	77851.2846	80691.2393	83611.1960	6
55	72431.3806	75131.3311	77891.2838	80741.2386	83661.1953	5
56	72481.3798	75171.3303	77941.2830	80791.2378	83711.1946	4
57	72521.3789	75221.3295	77991.2822	80831.2371	83761.1939	3
58	72571.3781	75261.3287	78031.2815	80881.2364	83811.1932	2
59	72611.3772	75311.3278	78081.2807	80931.2356	83861.1925	1
60	$\begin{array}{cc} 7265 & 1.3764 \\ \text { cot } & \tan \end{array}$	$\begin{array}{cc} 7536 & 1.3270 \\ \text { cot } & \tan \\ \hline \end{array}$	$\begin{array}{cc} 7813 & 1.2799 \\ \text { cot } & \tan \\ \hline \end{array}$	$\begin{array}{cc} 8098 & 1.2349 \\ \text { cot } & \tan \\ \hline \end{array}$	$\begin{array}{cc} 8391 & 1.1918 \\ \text { cot } & \tan \\ \hline \end{array}$	0
'	$54{ }^{\circ}$	53°	52°	$51{ }^{\circ}$	50°	,

NATURAL TANGENTS AND COTANGENTS.

,	40°	41°	42°	43°	44°	$\frac{1}{60}$
	$\boldsymbol{\operatorname { t a n }} \mathbf{c}$	$\boldsymbol{\operatorname { t a n }}$ cot	$\overline{\tan }$	$\overline{\tan } \mathbf{c}$	$\overline{\tan \cot }$	
0	83911.1918	86931.1504	90041.1106	93251.0724	96571.0355	
1	83961.1910	86981.1497	90091.1100	93311.0717	96631.0349	59
2	84011.1903	87031.1490	90151.1093	93361.0711	96681.0343	58
3	84061.1896	87081.1483	90201.1087	93411.0705	96741.0337	57
4	84111.1889	87131.1477	90251.1080	93471.0699	96791.0331	56
5	84161.1882	87181.1470	90301.1074	93521.0692	96851.0325	55
6	84211.1875	87241.1463	90361.1067	93581.0686	96911.0319	54
7	84261.1868	87291.1456	$90+11.1061$	93631.0680	96961.0313	53
8	84311.1861	87341.1450	90461.1054	93691.0674	97021.0307	52
9	84361.1854	87391.1443	90521.1048	93741.0668	97081.0301	51
10	84411.1847	87441.1436	$90571.10+1$	93801.0661	97131.0295	50
11	84461.1840	87491.1430	90621.1035	93851.0655	97191.0289	49
12	$8+511.1833$	87541.1423	90671.1028	93911.0649	97251.0283	48
13	84561.1826	87591.1416	90731.1022	93961.0643	97301.0277	47
14	84611.1819	87651.1410	90781.1016	94021.0637	97361.0271	46
15	84661.1812	87701.1403	90831.1009	94071.0630	97421.0265	45
16	84711.1806	87751.1396	90891.1003	94131.0624	97471.0259	44
17	84761.1799	87801.1389	90941.0996	94181.0618	97531.0253	43
18	84811.1792	87851.1383.	90991.0990	94241.0612	97591.0247	42
19	84861.1785	87901.1376	91051.0983	$9+291.0606$	97641.0241	41
20	84911.1778	87961.1369	91101.0977	94351.0599	97701.0235	40
21	84961.1771	88011.1363	91151.0971	94401.0593	97761.0230	39
22	85011.1764	88061.1356	91211.0964	94461.0587	97811.0224	38
23	85061.1757	88111.1349	91261.0958	94511.0581	97871.0218	37
24	85111.1750	88161.1343	91311.0951	94571.0575	97931.0212	36
25	85161.1743	88211.1336	91371.0945	94621.0569	97981.0206	35
26	85211.1736	88271.1329	91421.0939	94681.0562	98041.0200	34
27	85261.1729	88321.1323	91471.0932	94731.0556	98101.0194	33
28	85311.1722	88371.1316	91531.0926	94791.0550	98161.0188°	32
29	85361.1715	88421.1310	91581.0919	94841.0544	98211.0182	31
30	85411.1708	88471.1303	91631.0913	94901.0538	98271.0176	30
31	85461.1702	88521.1296	91691.0907	94951.0532	98331.0170	29
32	85511.1695	88581.1290	91741.0900	95011.0526	98381.0164	28
33	85561.1688	88631.1283	91791.0894	95061.0519	98441.0158	27
34	85611.1681	88681.1276	91851.0888	95121.0513	98501.0152	26
35	85661.1674	88731.1270	91901.0881	95171.0507	98561.0147	25
36	85711.1667	88781.1263	91951.0875	95231.0501	98611.0141	24
37	85761.1660	88841.1257	92011.0869	95281.0495	98671.0135	23
38	85811.1653	88891.1250	92061.0862	95341.0489	98731.0129	22
39	85861.1647	88941.1243	92121.0856	95401.0483	98791.0123	21
40	85911.1640	88991.1237	92171.0850	95451.0477	98841.0117	20
41	85961.1633	89041.1230	92221.0843	95511.0470	98901.0111	19
42	86011.1626	89101.1224	92281.0837	95561.0464	98961.0105	18
43	86061.1619	89151.1217	92331.0831	95621.0458	99021.0099	17
44	86111.1612	89201.1211	92391.0824	95671.0452	99071.0094	16
45	86171.1606	89251.1204	92441.0818	95731.0446	99131.0088	15
46	86221.1599	89311.1197	92491.0812	95781.0440	99191.0082	14
47	86271.1592	89361.1191	92551.0805	95841.0434	99251.0076	13
48	86321.1585	89411.1184	92601.0799	95901.0428	99301.0070	12
49	86371.1578	89461.1178	92661.0793	95951.0422	99361.0064	11
50	86421.1571	89521.1171	92711.0786	96011.0416	99421.0058	10
51	86471.1565	89571.1165	92761.0780	96061.0410	99481.0052	9
52	86521.1558	89621.1158	92821.0774	96121.0404	99541.0047	8
53	86571.1551	89671.1152	92871.0768	96181.0398	99591.0041	7
54	86621.1544	89721.1145	92931.0761	96231.0392	99651.0035	6
55	86671.1538	89781.1139	92981.0755	96291.0385	99711.0029	5
56	86721.1531	89831.1132	93031.0749	96341.0379	99771.0023	4
57	86781.1524	89881.1126	93091.0742	96401.0373	99831.0017	3
58	86831.1517	89941.1119	93141.0736	96461.0367	99881.0012	2
59	86881.1510	89991.1113	93201.0730	96511.0361	99941.0006	
60	$\begin{array}{cc} 8693 & 1.1504 \\ \text { cot } & \tan \end{array}$	$\begin{array}{cc} 9004 & 1.1106 \\ \boldsymbol{c o t} & \tan \end{array}$	$\begin{array}{cc} 9325 & 1.0724 \\ \boldsymbol{c o t} & \tan \end{array}$	$\begin{array}{cc} 9657 & 1.0355 \\ \cot & \tan \end{array}$	$\begin{array}{rr} 1.000 & 1.0000 \\ \cot & \tan \end{array}$	0
,	49°	48°	47°	46°	45°	,

$\left\|\frac{\text { Bearing. }}{}\right\|$	Distance 1							Dist	5.	Bearing,
	Lat. Dep,	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	
O 15	1.0000 .004	2.000	0.009	3.000	0.013	4.000	0.017	5.000	0.022	8945
30	1.0000 .009	2.000	0.017	3.000	0.026	4.000	0.035	5.000	0.044	30
45	1.0000 .013	2.000	0.026	3.000	0.039	4.000	0.052	5.000	0.065	15
10	1.0000 .017	2.000	0.035	3.000	0.052	3.999	0.070	4.999	0.087	890
15	1.0000 .022	2.000	0.044	2.999	0.065	3.999	0.087	4.999	0.109	45
30	1.0000 .026	1.999	0.052	2.999	0.079	3.999	0.105	4.998	0.131	30
45	1.0000 .031	1.999	0.061	2.999	0.092	3.998	0.122	4.998	0.153	15
20	0.9990 .035	1.999	0.070	2.998	0.105	3.998	0.140	4.997	0.174	880
15	0.9990 .039	1.998	0.079	2.998	0.118	3.997	0.157	4.996	0.196	45
30	0.9990 .044	1.998	0.087	2.997	0.131	3.996	0.174	4.995	0.218	30
45	0.9990 .048	1.998	0.096	2.997	0.144	3.995	0.192	4.994	0.240	15
30	0.9990 .052	1.997	0.105	2.996	0.157	3.995	0.209	4.993	0.262	870
15	0.9980 .057	1.997	0.113	2.995	0.170	3.994	0.227	4.992	0283	45
30	0.9980 .061	1.996	0.122	2.994	0.183	3.993	0.244	4.991	0.305	30
45	0.9980 .065	1.996	0.131	2.994	0.196	3.991	0.262	4.989	0.327	15
4.0	0.9980 .070	1.995	0.140	2.993	0.209	3.990	0.279	4.988	0.349	860
15	$0.997 \quad 0.074$	1.995	0.148	2.992	0.222	3.989	0.296	4.986	0.371	45
30	0.9970 .078	1.994	0.157	2.991	0.235	3.988	0.314	4.985	0.392	30
45	0.9970 .083	1.993	0.166	2.990	0.248	3.986	0.331	4.983	0.414	15
50	0.9960 .087	1.992	0.174	2.989	0.261	3.985	0.349	4.981	0.436	5
15	0.9960 .092	1.992	0.183	2.987	0.275	3.983	0.366	4.979	0.458	45
30	0.9950 .096	1.991	0.192	2.986	0.288	3.982	0.383	4.977	0.479	30
45	0.9950 .100	1.990	0.200	2.985	0.301	3.980	0.401	4.975	0.501	15
60	0.9950 .105	1.989	0.209	2.984	0.314	3.978	0.418	4.973	0.523	840
15	0.9940 .109	1.988	0.218	2.982	0.327	3.976	0.435	4.970	0.544	45
30	0.9940 .113	1.987	0.226	2.981	0.340	3.974	0.453	4.968	0.566	30
45	0.9930 .118	1.986	0.235	2.979	0.353	3.972	0.470	4.965	0.588	15
70	0.9930 .122	1.985	0.244	2.978	0.366	3.970	0.487	4.963	0.609	30
15	0.9920 .126	1.984	0.252	2.976	0.379	3.968	0.505	4.960	0.631	45
30	0.9910 .131	1.983	0.261	2.974	0.392	3.966	0.522	4.957	0.653	30
45	0.9910 .135	1.982	0.270	2.973	0.405	3.963	0.539	4.954	0.674	15
80	0.9900 .1 .39	1.981	0.278	2.971	0.418	3.961	0.557	4.951	0.696	820
15	0.9900 .143	1.979	0.287	2.969	0.430	3.959	0.574	4.948	0.717	45
30	0.9890 .148	1.978	0.296	2.967	0.443	3.956	0.591	4.945	0.739	30
45	0.9880 .152	1.977	0.304	2.965	0.456	3.953	0.608	4.942	0.761	15
90	0.9880 .156	1.975	0.313	2.963	0.469	3.951	0.626	4.938	0.782	810
15	0.9870 .161	1.974	0.321	2.961	0.482	3.948	0.643	4.935	0.804	45
30	0.986	1.973	0.330	2.959	0.495	3.945	0.660	4.931	0.825	30
45	0.9860 .169	1.971	0.339	2.957	0.508	3.942	0.677	4.928	0.847	15
100	0.9850 .174	1.970	0.347	2.954	0.521	3.939	0.695	4.924	0.868	800
15	0.9840 .178	1.968	0.356	2.952	0.534	3.936	0.712	4.920	0.890	45
30	0.9830 .182	1.967	0.364	2.950	0.547	3.933	0.729	4.916	0.911	30
45	0.9820 .187	1.965	0.373	2.947	0.560	3.930	0.746	4.912	0.933	15
110	$0.982,0.191$	1.963	0.382	2.945	0.572	3.927	0.763	4.908	0.954	790
15	0.9810 .195	1.962	0.390	2.942	0.585	3.923	0.780	4.904	0.975	45
30	0.9800 .199	1.960	0.399	2.940	0.598	3.920	0.797	4.900	0.997	30
45	0.9790 .204	1.958	0.407	2.937	0611	3.916	0.815	4.895	1.018	15
120	0.9780 .208	1.956	0.416	2.934	${ }^{\circ} 0.624$	3.913	0.832	4.891	1.040	780
15	0.9770 .212	1.954	0.424	2.932	0.637	3.909	0.849	4886	1.061	45
30	0.9760 .216	1.953	0.433	2.929	0.649	3.905	0.866	4.881	1.082	30
- 45	0.9750 .221	1.951	0.441	2.926	0662	3.901	0883	4.877	1.103	- ${ }^{15}$
130	0.9740 .225	1.949	0.450	2.923	0.675	3.897	0.900	4.872	1.125	770
15	0.9730 .229	1.947	0.458	2.920	0.688	3.894	0.917	4.867	1.146	45
30	0.9720 .233	1.945	0.467	2.917	0.700	3.889	0.934	4.862	1.167	30
45	0.9710 .238	1.943	0.475	2.914	0.713	3.885	0.951	4.857	1.188	15
140	0.9700 .242	1.941	0.484	2.911	0.726	3.881	0.968	4.851	1.210	760
15 15	0.9690 .246	1.938	0.492	2.908	0.738	3.877	0.985	4.846	1.231	45
30	0.9680 .250	1.936	0.501	2.904	0.751	3.873	1.002	4.841	1.252	30
15^{45}	0.9670 .255	1.934	0.509	2.901	0.764	3.868	1.018	4.835	1.273	75 ${ }^{15}$
15 0	$\begin{array}{cc}0.966 & 0.259 \\ \text { Dep. } & \text { Lat. }\end{array}$	1.932 Dep.	0.518 Lat.	2.898 Dep.	$\begin{gathered} 0.776 \\ \text { Lat. } \end{gathered}$	3.864 Dep.	1.035 Lat.	4.830 Dep.	1.294 Lat.	75 0
Bearing.	Distance 1	is	e 2	ist	ce 3	ist	ce 4	Dist	ce 5.	Bearing.

Bearing.	Dista									
	Lat. Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat	Dep	
O 15	$6.000 \quad 0.026$	$\begin{aligned} & 7.000 \\ & 7 \end{aligned}$	0.031	$\begin{aligned} & 8.000 \\ & 8.000 \end{aligned}$	0.035	$\begin{aligned} & 9.000 \\ & 9000 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.079 \end{aligned}$	10.000		8945
45	5.9990 .079			7.999	0.105	8.999	0.118	9.999		
	5.9990 .105	6.999	0.122	7.999	0.140	8.999	0.157	9.999	0.175	890
	5.9990 .131		0.153	7.998	0.175	8.998	0.196	9.998	0.218	45
	5.9980 .157	6.998	0.183	7.997	0.209	8.997	0.236	9.997	0.262	30
45	5.9970 .183	6.997	0.214	7.996	0.244	8.996	0.275	9.995	0.305	15
	5.9960 .209		0.244		0.279		0.314			
	5.9950 .23	6.995	0.275	7.994	0.314	8.993	0.353	9.992	0.393	45
	$\begin{array}{llll}5.994 & 0.26 \\ 5.993 & 0.28\end{array}$	6.993 6.992	0.305 0.336	7.992	0.349	8.991 8.990	0.393 0.432	${ }_{9}^{9.991}$	0.436 0.480	30 15
3	50.992	6.992	0.366	7.989	0.419	8.988	${ }_{0.471}$	9.986		
	5.9900 .3	6.989	0.39	7.987	0.454	8.986	0.510	9.984	0.567	
	5.9890 .366	6.987	0.427	7.985	0.48	8.983	0.549	9.981	0.611	30
	5.9870 .392	6.985	0.458	7.983	0.523	8.981	0.589	9.979	0.654	
4	5.9850 .419	6.983	0.488	7.981	0.55	8.978	0.628	9.976	0.698	0
	5.98400 .445	6.981	0.51	7.978	0.59	8.975	0.667	9.973	0.741	45
45	$\begin{array}{llll}5.982 & 0.471 \\ 5.979 & 0.497\end{array}$	6.978 6.976	0.549							30 15
5	5.9770 .523	6.973	0.610	7.970	0.697	8.966	0.784	9.962	0.872	50
	5.9750 .549	6.971	0.641	7.966	0.732	8.962	0.82	9.958	0.915	45
	5.9720 .575	6.968	0.671	7.963	0.767	8.959	0.86	9.954	0.959	30
	${ }_{5}^{5.970} 0.601$	6.965	0.701	7.960	0.802	8.955	0.902	9.950	1.002	
	5.9670 .627	6.962	0.732	7.956	0.836	8.951	0.941	9.945	1.045	840
	5.9640 .653	6.958	0.762	7.952	0.871	8.947	0.980	9.941	1.08	45
	5.961 0.679 5.958		0.792	7.949	${ }_{0}^{0.904}$		1.019		1.132	30
7	$\begin{array}{lll}5.955 & 0.751 \\ 5.955 & 0.731\end{array}$	6.948	0.853	7.940		${ }_{8}^{8.933}$	1.097		${ }_{1.219}^{1.175}$	15
	5.9520 .757	6.944	0.883	7.936	1.010		1.136	9.920	1.262	45
	$\begin{array}{lll}5.949 & 0.783 \\ 5.945 & 0.809\end{array}$	6.940	0.914	7.932	1.04	8.923	1.175	9.914	1.305	30
$8{ }^{4}$	$\begin{array}{lll}5.992 & 0.83 \\ 5.942\end{array}$	6.932	${ }_{0}^{0.974}$	7.922		${ }_{8}^{8.918}$	1.253	9.9009	1.392	
15	5.9380 .861	6.928	1.004	7.917	1.148	8.907	1.291	9.897	1.435	
,	5.9340 .887	6.923	1.035	7.912	1.182	8.901	1.330	9.890	1.478	30
	5.9300 .913	6.919	1.065	7.907	1.217	8.895	1.369		1.521	15
	5.9220 .939	6.914	1.095	7.902	1.251	8.8	1.408	9.877	1.564	810
	5.9220 .964	6.909	1.125	7.896	1.286	8.88	1.447	9.870	1.607	45
45	$5.918{ }_{5} 9130.990$	${ }_{6}^{6.904}$	1.155	7.89	1.320	8.877	1.485	9.863	1.651	30
0	$\begin{array}{ll}5.909 & 1.042 \\ 5.904 & 1.068\end{array}$	6.89	$\begin{aligned} & 1.216 \\ & 1.246 \end{aligned}$	$\begin{aligned} & 7.878 \\ & 7872 \end{aligned}$	1.38	${ }_{8}^{8.863}$	1.56	${ }_{9}^{9.848}$		$80 \quad 0$
30	5.9001 .093	6.883	1.276	7.866	1.45	8.8	1.640	9.83	1.822	45
	5.8951 .119	6.877	1.306	7.860	1.492	8.842	1.679	9.825	1.865	
110	5.8901 .145	6.871	1.336	7.853	1.526	8.835	1.717	9.816	1.908	790
	5.8851 .171	6.866	1.366	7.846	1.561	8.827	1.756	9.808	1.951	
30	5.8741 .222	${ }_{6}^{6.859}$	1.425	7.839			1.794			30
	5.8741 .222	6.853	1.425	7.832		8.811	1.833	9.791	2.036	
120	5.869		1.455		1.663	8.803	1.871	9.782	2.079	780
	5.8631 .273	6.841	1.485		1.697	8.795	1.910	9.772	2.122	
	5.858 5.852 1.329						1.948		2.164 2.207	15
130	5.8461 .350	6.821	1.575	7.795	1.800	8.769	2.025	9.744	2.250	770
	5.8401 .375	6.814	1.604	7.787	1.83	8.760	2.063	9.734	2.292	45
30	5.834 1.401	6.807	1.634	7.779	1.868	8.751	2.101	9.724	2.335	30
	${ }_{5}^{5.828}$	6.799	1.664	7.771	1.902	8.742	2.139	9.713	2.377	15
14	$\begin{array}{lll}5.822 & 1.452 \\ 5.815 & 1.477\end{array}$			7.762	. 93	8.73	21	9.703		0
	5.8091 .502	${ }_{6}^{6.777}$	1.753	7.745	${ }_{2.003}$	8.713	2.25		204	30
	5.8021 .528	6.769	1.782	7.736	2.037	8.703	2.291	9.671	2.546	15
150	5.7961 .553	6.761	1.812	7.727	2.071	8.693	2.329	9.659	2.588	750
	Dep.	Dep.	Lat.				Lat.	Dep.	Lat.	
Bearing.	Distance 6.									Bearing.

Bearing.	Distance 1.									Bearing.
	p.	Lat.		Lat.	Dep.	La	Dep.	Lat.	Dep.	
1515	0.9650 .263	1.930	0.526	2.894	0.789	3.859	. 052	4.824	1.315	7445
	0.9640 .267	1.927	0.534	2.891	0.802	3.855	1.069	4.818	1.336	30
45	0.9620 .271	1.925	0.543	2.887	0.814	3.850	1.086	4.812	1.357	15
160	0.9610 .276	1.923	0.551	2.884	0.827	3.845	1.103	4.806	1.378	0
15	0.9600 .280	1.920	0.560	2.880	0.839	3.840	1.119	4.800	1.399	45
30	0.9590 .284	1.918	0.568	2.876	0.852	3.835	1.136	4.794	1.420	30
45	0.9580 .288	1.915	0.576	2.873	0.865	3.830	1.153	4.788	1.441	15
170	0.9560 .292	1.913	0.585	2.869	0.877	3.825	1.169	4.782	1.462	0
	$\begin{array}{ll} 0.955 & 0.297 \end{array}$	1.910	0.593	2.865	0.890	3.820	1.186	4.775	1.483	45
30	0.9540 .301	1.907	0.601	2.861	0.902	3.815	1.203	4.769	1.504	30
45	0.9520 .305	1.905	0.610	2.857	0.915	3.810	1.220	4.762	1.524	15
180	0.9510 .309	${ }^{1} 1.902$	0.618	2.853	0.927	3.804	1.236	4.755	1.545	720
	0.9500 .313	1.899	0.626	2.849	0.939	3.799	1.253	4.748	1.566	45
30	0.9480 .317	- 1.897	0.635	2.845	0.952	3.793	1.269	4.742	1.587	
45	0.9470 .321	1.894	0.643	2.841	0.964	3.788	1.286	4.735	1.607	15
190	0.9460 .326	1.891	0.651	2.837	0.977	3.782	1.302	4.728	1.628	710
	0.9440 .330	1.888	0.659	2.832	0.989	3.776	1.319	4.720	1.648	45
30	0.9430 .334	1.885	0.668	2.828	1.001	3.771	1.335	4.713	1.669	30
45	0.9410 .338	1.882	0.676	2.824	1.014	3.765	1.352	4.706	1.690	15
200	0.9400 .342	1.879	0.684	2.819	1.026	3.759	1.368	4.698	1.710	0
15	0.9380 .346	1.876	0.692	2.815	1.038	3.753	1.384	4.691	1.731	45
30	0.9370 .350	1.873	0.700	2.810	1.051	3.747	1.401	4.683	1.751	30
45	0.9350 .354	1.870	0.709	2.805	1.063	3.741	1.417	4.676	1.771	15
210	0.9340 .358	1.867	0.717	2.801	1.075	3.734	1.433	4.668	1.792	0
15	0.9320 .362	1.864	0.725	2.796	1.087	3.728	1.450	4.660	1.812	45
30	0.9300 .367	1.861	0.733	2.791	1.100	3.722	1.466	4.652	1.833	30
45	0.9290 .371	1.858	0.741	2.786	1.112	3.715	1.482	4.644	1.853	15
0	0.9270 .375	1.854	0.749	2.782	1.124	3.709	1.498	4.636	1.873	80
15	0.9260 .379	1.851	0.757	2.777	1.136	3.702	1.515	4.628	1.893	45
30	0.9240 .383	1.848	0.765	2.772	1.148	3.696	1.531	4.619	1.913	30
45	0.9220 .387	1.844	0.773	2.767	1.160	3.689	1.547	4.611	1.934	15
230	0.9210 .391	1.841	0.781	2.762	1.172	3.682	1.563	4.603	1.954	670
15	0.9190 .395	1.838	0.789	2.756	1.184	3.675	1.579	4.594	1.974	45
30	0.9170 .399	1.834	0.797	2.751	1.196	3.668	1.595	4.585	1.994	30
45	0.9150 .403	1.831	0.805	2.746	1.208	3.661	1.611	4.577	2.014	15
240	0.9140 .407	1.827	0.813	2.741	1.220	3.654	1.627	4.568	2.034	0
15	0.9120 .411	1.824	0.821	2.735	1.232	3.647	1.643	4.559	2.054	45
30	0.9100 .415	1.820	0.829	2.730	1.244	3.640	1.659	4.550	2.073	30
45	0.9080 .419	1.816	0.837	2.724	1.256	3.633	1.675	4.541	2.093	15
0	0.9060 .423	1.813	0.845	2.719	1.268	3.625	1.690	4.532	2.113	0
15	0.9040 .427	1.809	0.853	2.713	1.280	3.618	1.706	4.522	2.133	45
30	0.9030 .431	1.805	0.861	2.708	1.292	3.610	1.722	4.513	2.153	30
45	0.9010 .434	1.801	0.869	2.702	1.303	3.603	1.738	4.503	2.172	15
260	0.8990 .438	1.798	0.877	2.696	1.315	3.595	1.753	4.494	2.192	640
15	0.8970 .442	1.794	0.885	2.691	1.327	3.587	1.769	4.484	2.211	45
30	0.8950 .446	1.790	0892	2.685	1.339	3.580	1.785	4.475	2.231	30
45	0.8930 .450	1.786	0.900	2.679	1.350	3.572	1.800	4.465	2.250	15
270	0.8910 .454	1.782	0.908	2.673	1.362	3.564	1.816	4.455	2.270	630
15	0.8890 .458	1.778	0.916	2.667	1.374	3.556	1.831	4.445	2.289	45
30	0.8870 .462	1.774	0.923	2.661	1.385	3.548	1.847	4.435	2.309	30
45	0.8850 .466	1.770	0.931	2.655	1.397	3.540	1.862	4.425	2.328	156
280	0.8830 .469	1.766	0.939	2.649	1.408	3.532	1.878	4.415	2.347	20
15	0.8810 .473	1.762	0.947	2.643	1.420	3.524	1.893	4.404	2.367	45
30	0.8790 .477	1.758	0.954	2.636	1.431	3.515	1.909	4.394	2.386	30
29 45	0.8770 .481	1.753	0.962	2.630	1.443	3.507	1.924	4.384	2.405	15
290	0.8750 .485	1.749	0.970	2.624	1.454	3.498	1.939	4.373	2.424	610
15	0.8720 .489	1.745	0.977	2.617	1.466	3.490	1.954	4.362	2.443	45
30	0.8700 .492	1.741	0.985	2.611	1.477	3.481	1.970	4.352	2.462	30
45	0.8680 .496	1.736	0.992	2.605	1.489	3.473	1.985	4.341	2.481	15
300	0.8660 .500	. 732	1.000	2.598	1.500	3.46	. 000	4.330		600
	Dep. Lat.	Dep.		Dep.			Lat.			
Boaring.	Distance 1.	stan	nce 2.		e 3		ce 4.	ista	e	Bearing.

Bearing,	Distance 6.					Bearing
\bigcirc	Lat. Dep,	Lat. Dep,	Lat. Dep.	Lat. Dep,	Lat. Dep.	
1515	5.7891 .578	6.7541 .841	7.7182 .104	8.6832 .367	9.6482 .630	7445
30	5.7821 .603	6.7451 .871	7.7092 .138	8.6732 .405	9.6362 .672	30
45	5.7751 .629	6.7371 .900	7.7002 .172	8.6622 .443	$9.625 \quad 2.714$	15
160	5.7681 .654	6.7291 .929	7.6902 .205	8.6512 .481	9.6132 .756	0
15	5.7601 .679	6.7201 .959	7.5802 .239	8.6402 .518	9.6012 .798	45
30	5.7531 .704	6.7121 .988	7.6712 .272	8.6292 .556	9.5882 .840	30
45	5.7451 .729	6.7032 .017	7.6612 .306	8.6182 .594	9.5762 .882	15
170	5.7381 .754	6.6942 .047	7.6502 .339	8.6072 .631	9.5632 .924	730
15	5.7301 .779	6.6852 .076	7.6402 .372	8.5952 .669	9.5502 .965	45
30	5.7221 .804	6.6762 .105	7.6302 .406	8.5832 .706	9.5373 .007	30
45	5.7141 .829	6.6672 .134	7.6192 .439	8.5722 .744	9.5243 .049	15
180	5.7061 .854	6.6572 .163	7.6082 .472	8.5602 .781	9.5113 .090	20
15	5.6981 .879	6.6482 .192	7.5982 .505	8.5472 .818	9.4973 .132	45
30	5.6901 .904	6.6382 .221	7.5872 .538	8.5352 .856	9.4833 .173	30
45	5.6821 .929	6.6292 .250	7.5752 .572	8.5222 .893	9.4693 .214	15
190	5.6731 .953	6.6192 .279	7.5642 .605	8.5102 .930	9.4553 .256	710
15	5.6651 .978	6.6092 .308	7.5532 .638	8.4972 .967	9.4413 .297	45
30	5.6562 .003	6.5982 .337	7.5412 .670	8.4843 .004	9.4263 .338	30
45	5.6472 .028	6.5882 .365	7.5292 .703	8.4713 .041	9.4123 .379	15
$20 \quad 0$	5.6382 .052	6.5782 .394	7.5182 .736	8.4573 .078	9.3973 .420	0
15	5.6292 .077	6.5672 .423	7.5062 .769	8.4443 .115	9.3823 .461	45
30	5.6202 .101	6.5572 .451	7.4932 .802	8.4303 .152	9.3673 .502	30
45	5.6112 .126	o. 5462.480	7.4812 .834	8.4163 .189	9.3513 .543	15
210	5.6012 .150	$6.535 \quad 2.509$	7.4692 .867	8.4023 .225	9.3363 .584	690
15	$\begin{array}{ll}5.592 & 2.175\end{array}$	6.5242 .537	7.4562 .900	8.388	9.3203 .624	45
30	5.5822 .199	6.5132 .566	7.4432 .932	S. 3743.299	9.3043 .665	30
45	5.5732 .223	6.5022 .594	7.4302 .964	8.3593 .335	9.2883 .706	$\overbrace{}^{15}$
220	5.5632 .248	6.4902 .622	7.4172 .997	8.345	9.2723 .746	680
15	5.5532 .272	6.4792 .651	7.4043 .029	8.3303 .408	9.25513 .787	45
30	5.5432 .296	6.4672 .679	7.3913 .061	8.3153 .444	9.2393 .827	30
45	5.5332 .320	$6.455 \quad 2.707$	7.3783 .094	8.3003 .480	9.2223 .867	15
230	5.5232 .344	6.4442 .735	7.3643 .126	8.28513 .517	9.2053 .907	0
15	5.5132 .368	6.4322 .763	7.3503 .158	8.2693 .553	9.1883 .947	45
30	5.5022 .392	6.4192 .791	7.3363 .190	8.2543 .589	9.1713 .988	30
-45	5.4922 .416	6.4072 .819	7.3223 .222	8.2383 .625	9.1534 .028	15
240	5.4812 .440	6.3952 .847	7.3083 .254	8.2223 .661	9.1364 .067	0
15	$\begin{array}{ll}5.471 & 2.464 \\ 5.460 & 2.488\end{array}$	6.3822 .875	7.2943 .286	8.2063 .696	9.1184 .107	45
30	5.4602 .488	6.3702 .903	7.2803 .318	8.1903 .732	9.10044 .147	30
45	5.4492 .512	6.3572 .931	7.2653 .349	8.1733 .768	9.0814 .187	15
250	5.4382 .536	6.3442 .958	7.2503 .381	8.1573 .804	9.0634 .226	50
15	5.4272 .559	6.3312 .986	7.2363 .413	8.1403 .839	9.0454 .266	45
30	5.4162 .583	6.3183 .014	7.2213 .444	8.1233 .875	9.0264 .305	30
45	5.4042 .607	6.3053 .041	7.2063 .476	8.1063 .910	9.0074 .345	15
260	5.3932 .630	6.2923 .069	7.1903 .507	8.0893 .945	8.9884 .384	40
15	5.3812 .654	6.2783 .096	$7.175 \quad 3.538$	8.0723 .981	8.9694 .423	45
30	5.3702 .677	6.2653 .123	7.1603 .570	8.0544 .016	8.9494 .462	30
45	5.3582 .701	6.2513 .151	7.1443 .601	8.0374 .051	8.9304 .501	15
270	5.3462 .724	6.237 3.17 5	7.1283 .632	8.0194 .086	8.9104 .540	3
15	5.3342 .747	6.2233 .205	7.1123 .663	8.0014 .121	8.8904 .579	45
30	5.3222 .770	6.2093 .232	1.096 3.694	7.9834 .156	8.8704 .618	30
-2 45	5.310 2.794 .5	6.1953 .259	7.0803 .725	7.9654 .190	8.8504 .656	15
280	$\begin{array}{ll}5.298 & 2.817 \\ 5\end{array}$	6.1813 .286	7.0643 .756	7.9474 .225	8.8294 .695	20
15	5.2852 .840	6.1663 .313	7.0473 .787	7.9284 .260	S.809 4.733	45
30	5.2732 .863	6.1523 .340	7.0313 .817	7.9094 .294	8.7884 .772	30
45	5.2602 .886	6.1373 .367	7.0143 .848	7.8914 .329	8.7674 .810	15
290	5.2482 .909	6.1223 .394	6.9973 .878	7.8724 .363	8.7464 .848	610
15	5.2352 .932	6.1073 .420	6.9803 .909	7.8524 .398	8.7254 .886	45
30	5.2222 .955	6.0933 .447	6.9633 .939	7.8334 .432	8.7044 .924	30
${ }^{4} 45$	5.2092 .977	6.0773 .474	6.9463 .970	7.8144 .466	8.6824 .962	15
300	5.1963 .000	6.0623 .500	6.9284 .000	7.7944 .500	8.6605 .000	600
\bigcirc	Dep. Lat.	Dep, Lat	Dep. Lat	Dep, Lat.	Dep. Lat.	
Bearing,	Distance 6	stance 7	istance 8	is	istance 10.	Bearing,

Bearing.	D					Bearing.
	Lat. Dep,	ap.	Dep.	Lat. Dep,	Lat. Dep.	
3015	0.8640 .504	1.7281 .008	2.5921 .511	3.4552 .015	4.3192 .519	945
	0.8620 .508	1.7231 .015	2.5851 .523	3.4472 .030	$4.308 \quad 2.538$	30
45	0.8590 .511	1.7191 .023	2.5781 .534	3.4382 .045	4.2972 .556	15
310	0.8570 .515	1.7141 .030	2.5721 .545	3.4292 .060	4.2862 .575	$59 \quad 0$
	0.8550 .519	1.7101 .038	2.5651 .556	3.4202 .075	4.2752 .594	5
30	0.8530 .522	1.7051 .045	2.5581 .567	3.4112 .090	4.2632 .612	30
45	0.8500 .526	1.7011 .052	2.5511 .579	3.4012 .105	4.2522 .631	15
320	0.8480 .530	1.6961 .060	2.5441 .590	3.3922 .120	4.2402 .650	80
	0.5460 .534	1.6911 .067	2.5371 .601	3.3832 .134	4.2292 .668	45
30 45	0.8430 .537	1.6871 .075	2.5301 .612	3.3742 .149	4.2172 .686	30
45 0	$\begin{array}{ll}0.841 & 0.541 \\ 0.839 & 0.545\end{array}$	$\begin{array}{lll}1.682 & 1.082 \\ 1.677 & 1.089\end{array}$	$\begin{array}{ll}2.523 & 1.623 \\ 2.516 & 1.634\end{array}$	$\begin{array}{ll}3.364 & 2.164 \\ 3.355 & 2.179\end{array}$	$\begin{array}{ll}4.205 & 2.705 \\ 4.193 & 2.723\end{array}$	15
15	0.8360 .548	1.6731 .097	2.5091 .645	3.3452 .193	$\begin{array}{ll}4.183 \\ 4.181 & 2.741\end{array}$	45
30	$0.83+0.552$	1.6681 .104	2.5021 .656	3.3362 .208	4.1692 .760	30
45	0.8310 .556	1.6631 .111	2.4941 .667	3.3262 .222	4.1572 .778	15
340	0.8290 .559	1.6581 .118	2.4871 .678	3.3162 .237	4.1452 .796	0
	0.8270 .563	1.6531 .126	2.4801 .688	3.3062 .251	4.1332 .814	45
30	0.8240 .566	1.6481 .133	2.4721 .699	3.2972 .266	4.1212 .832	30
45	0.8220 .570	1.6431 .140	2.4651 .710	3.2872 .280	4.1082 .850	15
0	0.8190 .574	1.6381 .147	2.4571 .721	3.2772 .294	4.0962 .868	0
	$\begin{array}{lll}0.817 & 0.577\end{array}$	1.6331 .154	2.4501 .731	$3.267 \quad 2.309$	4.0832 .886	45
30	0.8140 .581	1.6281 .161	2.4421 .742	3.2572 .323	4.0712 .904	30
45	0.8120 .584	1.6231 .168	2.4351 .753	3.2462 .337	4.0582 .921	15
360	0.8090 .588	1.6181 .176	2.4271 .763	3.2362 .351	4.0452 .939	$54 \quad 0$
15	0.8060 .591	1.6131 .183	2.4191 .774	3.2262 .365	4.0322 .957	45
30	$\begin{array}{ll}0.804 & 0.595 \\ 0.801 & 0.598\end{array}$	1.6081 .190	2.4121 .784	3.2152 .379	4.0192 .974	30
745	$\begin{array}{ll}0.801 & 0.598 \\ 0.799 & 0.602\end{array}$	$\begin{array}{ll}1.603 & 1.197 \\ 1.597 & 1.204\end{array}$	$\begin{array}{lll}2.404 & 1.795 \\ 2.396 & 1.805\end{array}$	$\begin{array}{lll}3.205 & 2.393 \\ 3.195 & 2.407\end{array}$	$\begin{array}{ll}4.006 & 2.992 \\ 3.993 & 3.009\end{array}$	15
15	0.7960 .605	1.5921 .211	2.3881 .816	3.1842 .421	3.9803 .026	45
30	0.7930 .609	1.5871 .218	2.3801 .826	3.1732 .435	3.9673 .044	30
45	0.7910 .612	1.5811 .224	2.3721 .837	3.1632 .449	3.9533 .061	15
380	0.7880 .616	1.5761 .231	2.3641 .847	3.1522 .463	3.9403 .078 .	0
15	0.7850 .619	1.5711 .238	2.3561 .857	3.1412 .476	3.9273 .095	45
30	0.7830 .623	1.5651 .245	2.3481 .868	3.1302 .490	3.9133 .113	30
45	0.7800 .626	1.5601 .252	2.3401 .878	3.1202 .504	3.8993 .130	15
390	0.7770 .629	1.5541 .259	2.3311 .888	3.1092 .517	3.8863 .147	0
15	0.7740 .633	1.5491 .265	2.3231 .898	3.0982 .531	3.8723 .164	45
30	0.7720 .636	1.5431 .272	2.3151 .908	3.0862 .544	$3.858 \quad 3.180$	30
45	0.7690.	1.5381 .27	2.3071 .91	3.0752 .5	3.8443 .197	15
0	0.7660 .643	1.5321 .286	2.2981 .928	3.0642 .571	3.8303 .214	0
	0.7630 .646	1.5261 .292	2.2901 .938	3.0532 .584	3.8163 .231	45
30	0.7600 .649	1.5211 .299	2.2811 .948	3.0422 .598	$3.802 \quad 3.247$	30
45	0.7580 .653	1.5151 .306	2.2731 .958	3.0302 .611	$\begin{array}{lll}3.788 & 3.264\end{array}$	15
41.0	0.7550 .656	1.5091 .312	2.2641 .968	3.0192 .624	3.7743 .280	$49 \quad 0$
15	0.7520 .659	1.5041 .319	2.2561 .978	3.0072 .637	$\begin{array}{llll}3.759 & 3.297\end{array}$	45
30	0.7490 .663	1.4981 .325	2.2471 .988	2.9962 .650	3.7453 .313	30
45	0.7460 .666	1.4921 .332	2.2381 .998	2.9842 .664	$\begin{array}{lll}3.730 & 3.329\end{array}$	15
420	0.7430 .669	1.4861 .338	2.2292 .007	2.9732 .677	3.7163 .346	80
15	0.7400 .672	1.4801 .345	2.2212 .017	2.9612 .689	$\begin{array}{lll}3.701 & 3.362\end{array}$	45
30	0.7370 .676	1.4751 .351	2.2122 .027	2.9492 .702	$\begin{array}{llll}3.686 & 3.378\end{array}$	30.
45	$0.73+0.679$	1.4691 .358	2.2032 .036	2.9372 .715	3.6723 .394	5
430	$\begin{array}{lll}0.731 & 0.682\end{array}$	1.4631 .364	2.1942 .046	2.9252 .728	$\begin{array}{lll}3.657 & 3.410\end{array}$	0
15	0.7280 .685	1.4571 .370	2.1852 .056	2.9132 .741	3.6423 .426	45
30	0.7250 .688	1.4511 .377	2.1762 .065	2.9012 .753	$\begin{array}{lll}3.627 & 3.442 \\ 3\end{array}$	30
45	0.7220 .692	1.4451 .383	2.1672 .075	2.8892 .766	3.6123 .458	15
440	0.7190 .695	1.4391 .389	2.1582 .084	2.8772 .779	$3.597 \quad 3.473$	0
15	0.7160 .698	1.4331 .396	2.1492 .093	2.8652 .791	3.5823 .489	45
30	0.7130 .701	1.4271 .402	2.1402 .103	2.8532 .804	3.5663 .505	30
45	0.7100 .704	1.4201 .408	2.1312 .112	2.8412 .816	3.5513 .520	15
450	$0.707 \quad 0.707$	414	2.1212 .121	2.8282 .828	.536 3.536	450
	Dep. Lat.	Dep. Lat.	Dep. Lat.	Dep. Lat.	Dep. Lat,	
Bearing.	1.	tance 2.	tance 3.	stance 4.	tance 5.	Bearing.

Bearing.	Distance 6	Distance 7. Distance 8. Distance 9. Distance 10.								
	D			Lat.	ep.	Lat.	Dep.		Dep.	
3015	5.1833 .023	6.047	3.526	6.911	4.030	7.775	4.534	8.638	5.038	5945
	5.1703 .045	6.031	3.553	6.893	4.060	7.755	4.568	8.616	5.075	30
45	5.1563 .068	6.016	3.579	6.875	4.090	7.735	4.602	8.594	5.113	15
0	5.1433 .090	6.000	3.605	6.857	4.120	7.715	4.635	8.572	5.150	0
	5.1293 .113	5.984	3.631	6.839	4.150	7.694	4.669	8.549	5.188	45
30	5.1163 .135	5.968	3.657	6.821	. 4.180	7.674	4.702	8.526	5.225	30
45	5.1023 .157	5.952	3.683	6.803	4.210	7.653	4.736	8.504	5.262	15
2	5.0883 .180	5.936	3.709	6.784	4.239	7.632	4.769	8.481	5.299	0
15	5.0743 .202	5.920	3.735	6.766	4.269	7.612	4.802	8.457	5.336	45
30	5.0603 .224	5.904	3.761	6.747	4.298	7.591	4.836	8.434	5.373	30
45	5.0463 .246	5.887	3.787	6.728	4.328	7.569	4.869	8.410	5.410	15
330	5.0323 .268	5.871	3.812	6.709	4.357	7.548	4.902	8.387	5.446	0
15	5.0183 .290	5.854	3.838	6.690	4.386	7.527	4.935	8.363	5.483	45
30	5.0033 .312	5.837	3.864	6.671	4.416	7.505	4.967	8.339	5.519	30
45	4.9893 .333	5.820	3.889	6.652	4.445	7.483	5.000	8.315	5.556	15
40	4.9743 .355	5.803	3.914	6.632	4.474	7.461	5.033	8.290	5.592	0
	4.9603 .377	5.786	3.940	6.613	4.502	7.439	5.065	8.266	5.628	5
	4.9453 .398	5.769	3.965	6.593	4.53	7.417	5.09	8.241	5.664	30
45	4.9303 .420	5.752	3.990	6.573	4.56	7.395		8.217	5.700	15
0	4.9153 .441	5.734	4.015	6.553	4.589	7.372	5.162	8.192	5.736	0
	4.9003 .463	5.716	4.040	6.533	4.617	7.350	5.194	8.166	5.772	45
30	4.8853 .484	5.699	4.065	6.513	4.646	7.327	5.226	8.141	5.807	30
45	4.8693 .505	5.681	4.090	6.493	4.674	7.304	5.258	8.116	5.843	5
360	4.8543 .527	5.663	4.115	6.472	4.702	7.281	5.290	8.090	5.878	0
15	4.8393 .548	5.645	4.139	6.452	4.730	7.258	5.322	8.064	5.913	
30	4.8233 .569	5.627	4.164	6.431	4.759	7.235	5.353	8.039	5.948	30
45	4.8083 .590	5.609	4.188	6.410	4.787	7.211	5.385	8.013	5.983	15
370	4.7923 .611	5.590	4.213	6.389	4.815	7.188	5.416	7.986	6.018	0
15	4.7763 .632	5.572	4.237	6.368	4.842	7.164	5.448	7.960	6.053	45
30	4.7603 .653	5.554	4.261	6.347	4.870	7.140	5.479	7.934	6.088	30
$38{ }^{45}$	4.7443 .673	5.535	4.286	6.326	4.898	7.116	5.510	7.907	6.122	
380	4.7283 .694	5.516	4.310	6.304	4.925	7.092	5.541	7.880	6.157	0
15	4.7123 .715	5.497	4.334	6.283	4.953	7.068	5.572	7.853	6.191	45
30	4.6963 .735	5.478	4.358	6.261	4.980	7.043	5.603	7.826	6.225	
45	4.6793 .756	5.459	4.381	6.239	5.007	7.019	5.633	7.799	6.259	5
0	4.6633 .776	5.440	4.405	6.217	5.035	6.994	5.66	7.772	6.293	510
15	4.6463 .796	5.421	4.429	6.195	5.062	6.970	5.694	7.744	6.327	45
30	4.6303 .816	5.401	4.453	6.173	5.089	6.945	5.725	7.716	6.361	30
45	4.6133.	5.382	4.476	6.151	5.116	20	5.755	7.688	6.394	15
400	4.5963 .857	5.3	4.500	6.128	5.142	6.894	5.785	7.660	6.428	0
	4.5793 .877	5.343	4.523	6.106	5.169	6.869	5.815	7.632	6.461	
30	4.5623 .897	5.323	4.546	6.083	5.196	6.844	5.845	7.604	6.495	30
45	4.5453 .917	5.303	4.569	6.061	5.222	6.818	5.875	7.576	6.528	15
410	4.5283 .936	5.283	4.592	6.038	5.248	6.792	5.905	7.547	6.561	0
15	+.511 3.956	5.263	4.615	6.015	5.275	6.767	5.934	7.518	6.594	45
30	4.4943 .976	5.243	4.638	5.992	5.301	6.741	5.964	7.490	6.626	30
45	4.4763 .995	5.222	4.661	5.968	5.327	6.715	5.993	7.461	6.659	15
20	4.4594 .015	5.202	4.684	5.945	5.353	6.688	6.022	7.431	6.691	480
15	4.4414 .034	5.182	4.707	5.922	5.379	6.662	6.051	7.402	6.724	45
30	4.4244 .054	5.161	4.729	5.898	5.405	6.635	6.080	7.373	6.756	30
45	4.4064 .073	5.140	4.752	5.875	5.430	6.609	6.109	7.343	6.788	15
30	4.3884 .092	5.119	4.774	5.851	5.456	6.582	6.138	7.314	6.820	0
15	4.3704 .111	5.099	4.796	5.827	5.481	6.555	6.167	7.284	6.852	45
30	4.3524 .130	5.078	4.818	5.803	5.507	6.528	6.195	7.254	6.884	30
45	4.3344 .149	5.057	4.841	5.779	5.532	6.501	6.224	7.224	6.915	15
44.0	4.3164 .168	5.035	4.863	5.755	5.557	6.474	6.252	7.193	6.947	0
15	4.2984 .187	5.014	4.885	5.730	5.582	6.447	6.280	7.163	6.978	45
30 45	4.280 4.261 4.206	4.993	4.906	5.706	5.607	6.419	6.308	7.133	7.009	30
45	4.2614 .224	4.971	4.928	5,681	5.632	6.392	6.336	7.102	7.040	15
450	4.2434 .243	4.950	. 950	5.657	5.657	6.364	6.364	7.071	. 071	45
	p.			Dep				Dep		
Bearing.	D									Bearing

A TABLE OF THE ANGLES
Which every Point and Quarter Point of the Compass makes with the Meridian.

North.		$\begin{array}{\|c} \text { Points. } \\ 0-1 / 4 \\ 0-12 \\ 0-3 / 4 \\ 1 \end{array}$	$\begin{array}{\|rrr\|} \hline 0 & 1 & 11 \\ 2 & 48 & 45 \\ 5 & 37 & 30 \\ 8 & 26 & 15 \\ 11 & 15 & 0 \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { Points. } \\ 0-1 / 4 \\ 0-1 / \\ 0-3 / 4 \\ 1 \end{array}\right\| .$	South.	
N. by E.	N. by W.				S. by E.	S. by W.
N.N.E.	N.N.W.	$\begin{aligned} & 1-1 / 4 \\ & 1-1 / 2 \\ & 1-3 / 4 \\ & 2 \end{aligned}$	$\left\|\begin{array}{rrr} 14 & 3 & 45 \\ 16 & 52 & 30 \\ 19 & 41 & 15 \\ 22 & 30 & 0 \end{array}\right\|$	$\begin{aligned} & 1-1 / 4 \\ & 1-1 / 2 \\ & 1-3 / 4 \\ & 2-3 \end{aligned}$	S.S.E.	S.S.W.
N.E. by N .	N.W. by N.	$2-1 / 4$ $2-1 / 4$ $2-3 / 4$ 3	$\left\|\begin{array}{rrr} 25 & 18 & 45 \\ 28 & 7 & 30 \\ 30 & 56 & 15 \\ 3 & 45 & 0 \end{array}\right\|$	$\begin{aligned} & 2-1 / 4 \\ & 2-1 / 2 \\ & 2-3 / 4 \\ & 3 \end{aligned}$	S.E. by S.	S.W. by S.
N.E.	N.W.	$3-1 / 4$ $3-1 / 4$ $3-3 / 4$ 4	$\left\lvert\, \begin{array}{rrr} 36 & 33 & 45 \\ 39 & 22 & 30 \\ 42 & 11 & 15 \\ 45 & 0 & 0 \end{array}\right.$	$\begin{aligned} & 3-1 / 4 \\ & 3-1 \\ & 3-3 / 4 \\ & 4 \\ & \hline \end{aligned}$	S.E.	S.W.
N.E. by E	N.W.by W.	$4-1 / 4$ $4-1 / 2$ $4-3 / 4$ 5	$\begin{array}{\|lll} 47 & 48 & 45 \\ 50 & 37 & 30 \\ 53 & 26 & 15 \\ 56 & 15 & 0 \end{array}$	$\begin{aligned} & 4-1 / 4 \\ & 4-1 / 2 \\ & 4-3 / 4 \\ & 5 \end{aligned}$	S.E. by E.	S.W. by W.
E.N.E.	W.N.W.	$5-1 / 4$ $5-1 / 4$ $5-3 / 4$ 6	$\begin{array}{\|rrr} 59 & 3 & 45 \\ 61 & 52 & 30 \\ 64 & 41 & 15 \\ 67 & 30 & 0 \end{array}$	$\begin{aligned} & 5-1 / 4 \\ & 5-1 / 2 \\ & 5-3 / 4 \\ & 6 \end{aligned}$	E.S.E.	W.S.W.
E. by N.	W. by N .	$6-1 / 4$ $6-1 / 4$ $6-3 / 4$ 7	$\begin{array}{\|rrr} 70 & 18 & 45 \\ 73 & 7 & 30 \\ 75 & 56 & 15 \\ 78 & 45 & 0 \end{array}$	$\begin{aligned} & 6-1 / 4 \\ & 6-1 / 2 \\ & 6-3 / 4 \\ & 7 \end{aligned}$	E. by S.	W. by S.
East.	West.	$\begin{aligned} & 7-1 / 4 \\ & 7-1 / 2 \\ & 7-3 / 4 \\ & 8 \end{aligned}$	$\left.\begin{array}{\|rrr\|} \hline 81 & 33 & 45 \\ 84 & 22 & 30 \\ 87 & 11 & 15 \\ 90 & 0 & 0 \end{array} \right\rvert\,$	$\begin{aligned} & 7-1 / 4 \\ & 7-1 / 2 \\ & 7-3 / 4 \\ & 8 \end{aligned}$	East.	West.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

16.345

[^0]: * Furnished by the Director of the Nautical Almanac Office, Washington, D.C.

