
UNIVERSITY OF ILLINOIS Agricultural Experiment Station

BULLETIN No. 323

SWINE TYPE STUDIES

III. THE ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE AND THE UTILIZATION OF FEED ENERGY IN GROWTH

BY H. H. MITCHELL and T. S. HAMILTON

URBANA, ILLINOIS, MAY, 1929

CONTENTS

(PART III)

PAGE

GENERAL PLAN OF THE EXPERIMENTS	493
FIRST EXPERIMENT	49
Composition of the Control Pigs	493
The Maintenauce Experiments	500
The Fattening Experiment	51
SECOND EXPERIMENT	53:
Composition of the Control Pigs	53:
The Maintenance Experiments	53
The Fattening Experiment	55
A Comparison of 225-Pound Pigs of Both Experiments	568
Measurement of Type	568
Digestibility and Metabolizable Energy of the Fattening Ration	57
Relation of Feed Consumed Above Maintenance to Gross Energy of Gains	578
NUTRIENT REQUIREMENTS OF PIGS	5 8:
Relation of Weight to Age	58
Relation of Chemical Composition to Weight	584
Relation Between Age and Maintenance Requirements	58
Nutrient Requirements of Pigs of Different Weight	599
SUMMARY AND CONCLUSIONS	59

THIS series of bulletins on SWINE TYPE STUDIES includes the following:

- I. TYPE IN SWINE AS RELATED TO RATE AND ECON-OMY OF GAIN (Bulletin 321).
- II. TYPE IN SWINE AS RELATED TO QUALITY OF PORK (Bulletin 322).
- III. THE ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE AND THE UTILIZATION OF FEED ENERGY IN GROWTH (Bulletin 323).

THE ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE AND THE UTILIZATION OF FEED ENERGY IN GROWTH

By H. H. MITCHELL AND T. S. HAMILTON1

A series of investigations relating to the general question of the comparative value of different types of Poland China pigs for market production was started by the Animal Husbandry Department of the University of Illinois in the summer of 1922. The division of Animal Nutrition cooperated in this work during the first two years to the extent of analyzing the carcasses of the pigs individually, analyzing the feeds, supervising the maintenance feeding trials and, in the second year's work, determining the digestibility and metabolizable energy of the ration fed, both at the maintenance level and at the fattening level of feeding.

The large amount of experimental data thus accumulated possesses a significance far more general than the comparison of the different types of pigs used in the work, and in this bulletin the bearing of these data upon the general problems of swine nutrition will be considered.

GENERAL PLAN OF THE EXPERIMENTS

The types of Poland China pigs analyzed in the experiments of 1922-23 and 1923-24 may be described as follows:

Type A, Very Chuffy. The Very Chuffy pigs were extremely short-bodied, low-set, thick animals capable of being fattened at an early age, the never attaining an extremely large size. Perfection in this type was exemplified by the famous old boar, Chief Perfection 2d. The popularity of the type covered the period from about 1895 to 1908.

Type B, Chuffy. The Chuffy pigs were the same general type of animals as the Very Chuffy, tho they were much less extreme and showed considerably more size and growthiness.

Type C, Intermediate. The Intermediate pigs were longer in both body and legs and lacked the thickness of back and early fleshing qualities of the Very Chuffy and Chuffy types. Animals of this type were popular in the show ring from 1915 to 1917. Some very popular recent show winners (1925-26) have also been of this type.

Type D, Rangy. The Rangy pigs showed still more length of body and leg, were leaner and more growthy, showed a stronger arch to

¹ H. H. MITCHELL, Chief in Animal Nutrition, and T. S. HAMILTON, Associate.

BULLETIN NO. 323

their backs, and carried somewhat more bone than pigs of the three types just described. This type is popular in the show ring at the present time.

These four types of pigs are illustrated in Fig. 1. An attempt to measure the type of the experimental pigs was made in the second experiment by a method that will be described later.

FIG. 1.—REPRESENTATIVE PIGS OF THE VERY CHUFFY, CHUFFY, INTERMEDIATE AND RANGY TYPES AT WEIGHTS OF APPROXIMATELY 225 POUNDS

In the experiment of the first year, 1922-23, Types B, C, and D were investigated; in the following year Types A, C, and D were used. In each year's work five pigs from each type were slaughtered and analyzed at the initial weight of 50 to 70 pounds. At the same time five pigs from each of the three types used were put on a maintenance trial to determine the amount of feed required to maintain constant weight at the initial weight. These pigs were fed individually in dry lot and, in the first year's work, they were slaughtered and analyzed at the end of the maintenance period. Twenty pigs of each type, starting at a weight of 50 to 70 pounds, were hand-fed individually to the limit of their appetites, also in dry lot. In the first year's experiment the pigs on a fattening ration were earried to approximately 225 pounds in weight; within each type 15 of the pigs were slaughtered at this weight and the remaining five pigs were used in a second maintenance experiment at the end of which they were slaughtered. In the second year's experiment it was planned to kill

five of the fattening pigs of each type at a weight of 175 pounds, five more at a weight of 225 pounds, and five more at a weight of 275 pounds, while five pigs of each type were to be used at a weight of 225 pounds in a maintenance feeding period. However, in the experiment of 1923-24 there was considerable mortality among the experimental pigs, due to pneumonia, and the numbers slaughtered at the different weights were necessarily somewhat reduced.

In the experiment of 1922-23 the ration consisted of shelled eorn, wheat middlings, and tankage in proportions varying with the growth of the pigs. In the following experiment a small amount of alfalfa meal was introduced into the ration. Only in the experiment of 1923-24 were the digestibility and metabolizable energy of the ration determined.

Because of several important differences in the details of the two experiments, they will be considered at length separately.

FIRST EXPERIMENT

The large majority of the pigs used in the first experiment (1922-23) were farrowed in March; a few were farrowed in late February, and a few in early April. The experiment started July 8, so that the average initial age of the pigs was approximately 3.5 months.

COMPOSITION OF THE CONTROL PIGS

Five pigs from each of the three types, B, C, and D (Chuffy, Intermediate, and Rangy), were slaughtered at the beginning of the experiment at an average live weight of 29.7 kilograms (65.4 pounds). The careasses were dressed in the ordinary manner and divided into symmetrical halves; one of the halves was then separated with the knife into bone, lean, visible fat, and skin. The bone, lean, and fat of each pig were analyzed separately, but the skin, after being weighed, was ground and composited for analysis for all 15 pigs. Composite samples were also prepared for the blood and for the brain. The thoracic and abdominal viscera of each pig constituted another chemical sample, which included edible as well as inedible organs and the abdominal fats. The tail was also added to this sample. For convenience in the preparation for analysis, the ears and snout were weighed separately for each pig and composited for analysis (for all pigs of the same type); the wet hair as removed after sealding and the toenails of all pigs were composited for analysis. The contents of the intestinal tract unfortunately were not weighed for any of the pigs slaughtered in the first experiment.

The weights of these various parts of the carcass for each of the 15 pigs are given in Table 1, grouped according to type. The most noticeable features of this table relative to type differences are the

495

						Offal			Ears	Hair
Pig No.	Live					and			and	(wet)
and sex1	weight	Fat	Lean	Bone	Skin	tail	Blood	Brain	snout	and toe
						tan			shout	and toe
				Type B	-Chuffy					
	kgs.	grams	grams	grams	grams	grams	grams	grams	grams	grams
1b	24.04	5 797	5 720	3 111	1 044	3 345	975	57	212	311
2b	30.84	6 225	7 896	3 848	1 345	4 039	907	71	269	467
3b	28.12	5 169	8 308	3 558	1 414	4 082	1 270	85	241	368
48	25.40	4 388	7 445	3 110	1 189	2 806	703	57	241	283
5b	31.29	5 4 5 4	9 355	3 525	1 727	3 926	1 134	66	269	396
Average	27.94	5 407	7 745	3 430	1 344	3 640	997	67	246	365
			Т	ype C—]	Intermed	iate			-	
6b	27.66	3 922	8 701	3 851	1 216	3.742	1 338	71	212	396
7b	33.11	6 662	10 120	3 952	1 419	4 422	1 156	85	269	425
8b	27.21	3 995	7 869	3 697	1 371	3 883	929	57	241	340
98	29.93	5 026	9 480	3 979	1 264	3 975	975	71	269	396
10ь	32.20	5 699	10 151	4 517	1 343	4 592	1 202	57	354	425
Average	30.02	5 061	9 264	3 999	1 322	4 123	1 120	68	269	396
				Type I	-Rang	y				
11ь	30.39	4 289	8 948	4 820	1 705	4 224	1 179	64	326	340
12b	29.93	3 820	10 378	4 294	1 460	4 110	1 088	71	241	382
13Ъ	37.64	6 895	11 175	5 059	2 002	4 521	1 723	71	340	496
14b	25.85	2 671	6 906	3 983	1 323	3 657	907	57	255	311
15b	32.65	4 326	10 683	4 610	1 691	4 181	1 383	71	283	3 8
Average	31.29	4 400	9 618	4 553	1 636	4 139	1 256	67	289	379
										-

TABLE 1.—WEIGHTS OF SAMPLES ANALYZED FROM THE CONTROL PIGS: FIRST EXPERIMENT

 $^{1}b = barrow; s = sow.$

increasing average weights of lean, bone, and blood from the Chuffy, Intermediate, and Rangy animals, and the decreasing weights of fat.

The percentage composition of the samples of lean, fat, and bone from the control pigs will be found in Tables 2, 3, and 4. In these tables and in all similar computations of this bulletin the crude protein is calculated by multiplying the nitrogen content by 6 instead of the conventional factor, 6.25. This factor was used in view of Armsby's conclusion¹ that the fat- and ash-free dry matter of animal carcasses contains an average of 16.64 percent of nitrogen. The melting points of the fat in the fat samples were determined by the method of Wiley² with the results shown in Table 3. The energy value of

[May,

¹ Armsby, H. P. The nutrition of farm animals, 204. Macmillan. 1917.

^a Sherman, H. C. Methods of organic analysis, 2d. ed., 192. Macmillan. 1912.

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	\mathbf{Ash}	Gross energy per gram
		Type B-Chuf	fy		
	pct.	pct.	pct.	pct.	sm. cals.
1	35.41	15.82	18.32	.93	2 594
2	36.96	14.63	20.18	. 90	2 705
3	30.30	16.81	13.42	.94	2 145
4	32.32	15.92	15.03	.94	2 369
5	31.00	-15.16	14.18	.94	2 326
Average	33.20	15.67	16.23	. 93	2 428
		Type C—Interme	diate		
6	32.37	17.03	13.40	.98	2 325
7	34.86	16.12	17.21	.96	2 496
8	30.64	16.21	13.05	.97	2 129
9	30.64	15.71	12.95	.98	2 287
0	29.99	16.03	11.93	.94	2 176
Average	31.70	16.22	13.71	. 97	2 283
	-	Type D-Rang	;y		
	30.73	15.68	12.67	.94	2 150
12	28.56	16.13	10.61	.97	1 925
3	29.99	15.45	12.41	. 91	2 144
4	28.47	15.89	10.75	. 95	1 908
5	28.81	16.34	10.69	.95	2 089
Average	29.31	15.90 .	11.43	.94	2 043
Average of all types	31.40	15.93	13.79	.95	2 251

TABLE 2.—CHEMICAL COMPOSITION OF SAMPLES OF LEAN MEAT FROM THE CONTROL PIGS: FIRST EXPERIMENT

these samples, as well as of all other samples in the two experiments, was determined directly in the calorimetric bomb.

It will be noted that for the samples of lean as well as for the samples of fat, the content of fat (ether extract) decreases in the average from the Chuffy, Intermediate, and Rangy pigs, whereas with the samples of bone no such distinction between types exists.

The composition of the offal and of the ears and snout does not possess any particular significance; hence the values obtained will not be given. The composition of the composite samples of blood, skin, and brain, however, may be of interest and is therefore given in Table 5.

Since the composite hair and nails were analyzed in the wet condition as obtained after slaughter, composition on the dry basis only is of significance. The average weight of hair and toenails for each

497

		FIRST E	XPERIMENT			
Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram	Melting point
		Туре Е	3—Chuffy			
	pct.	pct.	pct.	pct.	sm. cals.	°C.
	79.06	5.74	67.19	. 32	6 873	33.0
	78.69	4.87	68.04	. 32	6 762	34.3
	75.18	5.82	68.56	. 32	6 699	31.6
	70.41	7.38	60.81	.32	6 370	35.0
	70.47	6.78	62.77	. 32	6 286	36.0
Average	74.76	6.12	65.47	.32	6 598	34.0
		Type C—	Intermediate			
	69.81	6.72	60.79 .	. 38	6 188	39.0
	74.92	6.36	67.27	.38	6 297	41.0
	69.18	7.44	62.83	. 38	6 065	36.0
	70.82	6.72	62.54	.38	6 263	39.0
	71.19	6.96	62.60	.38	6 076	35.5
Average	71.18	6.84	63.21	.38	6 178	38.1

TABLE 3.—CHEMICAL COMPOSITION OF SAMPLES OF FAT FROM THE CONTROL PIGS: FIRST EXPERIMENT

T	D Demark	
I ype	D-Rangy	

11	66.43	7.62	57.23	. 39	5 802	31.1
12	61.81	8.46	52.84	. 39	5 379	37.0
13	70.51	7.26	62.76	.39	6.005	37.7
14	f3.12	8.64	51.40	.39	5 481	31.2
15	65.78	8.22	57.29	. 39	5 609	35.0
Average	65.53	8.04	56.30	. 39	5 656	34.4
Average of all types	70.49	7.00	61.66	. 36	6 144	\$ 35.5

pig, as noted in Table 1, was 380 grams. Since this sample contained 28.16 percent of dry matter, the average weight of dry hair and toenails was 107 grams. This dry matter contained 81.2 percent of protein $(N \ge 6.0)$, and 4.0 percent of ash, and possessed a gross energy content of 5.50 calories per gram.

The nutrients found in the various samples for each pig were summated and expressed as percentages of the live weight of the pig. These percentages were used in computing the initial composition of the fat pigs, an essential step in the estimation of the composition of the gains made. They represent, therefore, the most significant results of the analyses of the control pigs and are summarized in Table 6. The average composition of these 65-pound pigs was 34.00 percent dry matter, 11.61 percent crude protein (N x 6.0), 18.69 percent fat, and 2.28 percent ash: the average gross energy content was 2.474 small

1.... 2. 3. 4. 5.

6. 7. 9. 10.

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type B-Chuf	fy		
	pct.	pct.	pct.	pet.	sm. cals.
1	48.58	17.20	16.36	12.95	2 628
2	50.35	17.57	17.38	13.41	2 648
3	47.26	17.58	14.44	14.77	2 447
4	47.84	18.66	12.40	14.88	2 378
5	43.75	16.74	12.58	12.72	2 267
Average	47.56	17.55	14.63	13.75	2 474
		Type C—Interme	diate	10	
6	46.28	16.86	14.93	13.94	2 198
7	46.73	16.98	14.76	12.96	2 381
8	43.74	17.52	13.11	12.09	2 218
9	46.00	17.28	13.04	14.41	2 186
0	44.56	16.74	13.03	12.24	2 288
Average	45.46	17.08	13.77	13.13	2 254
		Type D-Rang	<u>z</u> y.		
1	45.06	15.30	16.65	10.94	2 475
2	44.20	16.14	14.61	11.50	2 324
3	48.28	17.16	15.37	13.63	2 586
4	43.70	17.10	14.62	11.07	2 347
5	45.86	17.52	13.10	13.58	2 168
Average	45.42	16.64	14.87	12.14	2 380
Average of all types	46.15	17.09	14.43	13.01	2 369

TABLE 4.—CHEMICAL COMPOSITION OF SAMPLES OF BONE FROM THE CONTROL PIGS: FIRST EXPERIMENT

calories per gram. If it may be assumed that these pigs had the same average "fill" as the control pigs of the experiment of 1923-24, that is, 7.49 percent, the average composition of these pigs on the empty-weight basis would be as follows: dry matter, 36.75 percent; crude protein, 12.55 percent; fat, 20.20 percent; ash, 2.46 percent; and gross energy, 2.694 small calories per gram.

TABLE 5.—AVERAGE CHEMICAL COMPOSITION OF BLOOD, SKIN, AND BRAINS OF THE CONTROL PIGS: FIRST EXPERIMENT

Sample	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
Blood	16.79	14.88	.11	1.30	1 069
Skin	48.00	21.00	25.70	.48	3 565
Brains	20.46	9.42	9.09	1.58	1 633

499

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Aslı	Gross energy per gram	Meltin, point
	1	Type E	B-Chuffy		1	
						<u> </u>
	pct.	pct.	pct.	pct.	sm. cals.	°C.
1	79.06	5.74	67.19	. 32	6 873	33.0
2	78.69	4.87	68.04	. 32	6 762	34.3
3	75.18	5.82	68.56	.32	6 699 6 370	31.6
4	70.41 70.47	7.38 6.78	$60.81 \\ 62.77$.32 .32	6 286	35.0 36.0
0	10.41	0.78	02.77	. 32	0 280	30.0
Average	74.76	6.12	65.47	.32	6 598	34.0
		Туре С	Intermediate			
6	69.81	6.72	60.79	. 38	6 188	39.0
7	74.92	6.36	67.27	. 38	6 297	41.0
8	69.18	7.44	62.83	.38	6 065	36.0
9	70.82	6.72	62.54	.38	6 263	39.0
0	71.19	6.96	62.60	.38	6 076	35.5
Average	71.18	6.84	63.21	.38	6 178	38.1
		Type I)—Rangy			
1	66.43	7.62	57.23	. 39	5 802	31.1
2	61.81	8.46	52.84	.39	5 379	37.0
3	70.51	7.26	62.76	. 39	6 005	37.7
4	€3.12	8.64	51.40	. 39	5 481	31.2
5	65.78	8.22	57.29	. 39	5 609	35.0
Average	65.53	8.04	56.30	. 39	5 656	34.4
Average of all types	70.49	7.00	61.66	. 36	6 144	\$ 35.5

TABLE 3.—CHEMICAL COMPOSITION OF SAMPLES OF FAT FROM THE CONTROL PIGS: FIRST EXPERIMENT

pig, as noted in Table 1, was 380 grams. Since this sample contained 28.16 percent of dry matter, the average weight of dry hair and toenails was 107 grams. This dry matter contained 81.2 percent of protein (N x 6.0), and 4.0 percent of ash, and possessed a gross energy content of 5.50 calories per gram.

The nutrients found in the various samples for each pig were summated and expressed as percentages of the live weight of the pig. These percentages were used in computing the initial composition of the fat pigs, an essential step in the estimation of the composition of the gains made. They represent, therefore, the most significant results of the analyses of the control pigs and are summarized in Table 6. The average composition of these 65-pound pigs was 34.00 percent dry matter, 11.61 percent crude protein (N x 6.0), 18.69 percent fat, and 2.28 percent ash; the average gross energy content was 2,474 small

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type B-Chuf	fy		
	pct.	pct.	pct.	pct.	sm. cals.
1	48.58	17.20	16.36	12.95	2 628
2	50.35	17.57	17.38	13.41	2 648
3	47.26	17.58	14.44	14.77	2 447
4	47.84	18.66	12.40	14,88	2 378
5	43.75	16.74	12.58	12.72	2 267
Average	47.56	17.55	14.63	13.75	2 474
		Type C—Interme	diate		
6	46.28	16.86	14.93	13.94	2 198
7	46.73	16.98	14.76	12.96	2 381
8	43.74	17.52	13.11	12.09	2 218
9	46.00	17.28	13.04	14.41	2 186
0	44.56	16.74	13.03	12.24	2 288
Average	45.46	17.08	13.77	13.13	2 254
	•	Type D-Rang	zy.		
1	45.06	15.30	16.65	10.94	2 475
2	44.20	16.14	14.61	11.50	2 324
3	48.28	17.16	15.37	13.63	2 586
4	43.70	17.10	14.62	11.07	2 347
5	45.86	17.52	13.10	13.58	2 168
Average	45.42	16.64	14.87	12.14	2 380
Average of all types	46.15	17.09	14.43	13.01	2 369

TABLE 4.—CHEMICAL COMPOSITION OF SAMPLES OF BONE FROM THE CONTROL PIGS: FIRST EXPERIMENT

calories per gram. If it may be assumed that these pigs had the same average "fill" as the control pigs of the experiment of 1923-24, that is, 7.49 percent, the average composition of these pigs on the empty-weight basis would be as follows: dry matter, 36.75 percent; crude protein, 12.55 percent; fat, 20.20 percent; ash, 2.46 percent; and gross energy, 2,694 small calories per gram.

 TABLE 5.—Average Chemical Composition of Blood, Skin, and Brains of the Control Pigs: First Experiment

Sample	Dry substance	Crude protein (Nx6.0)	Fat	\mathbf{Ash}	Gross energy per gram
1	pct.	pct.	pct.	pct.	sm. cals.
Blood	16.79	14.88	.11	1.30	1 069
Skin	48.00	21.00	25.70	.48	3 565
Brains	20.46	9.42	9.09	1.58	1 633

499

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type B—Chu	ffy		
	pct.	pct.	pct.	pct.	sm. cals.
1	40.47	10.84	25.01	2.19	3 080
2	38.50	10.05	23.55	2.15	2 844
3	36.36	11.94	21.31	2.45	2 720
4	33.24	11.17	18.43	2.53	2 482
5	33.16	11.46	18.93	1.97	2 537
Average	36.35	11.09	21.45	2.26	2 733
		Type C—Interme	diate		
6	32.97	12.01	17.03	2.52	2 343
7	37.39	11.36	22.69	2.11	2 727
8	31.68	11.65	17.06	2.19	2 271
9	33.89	11.80	18.49	2.48	2 485
10	34.86	12.01	18.79	2.29	2 522
Average	34.16	11.77	18.81	2.32	2 470
		Type D-Ran	sy.		
11	32.68	11.84	16.98	2.28	2 328
12	30.86	12.49	14.74	2.25	2 143
3	34.99	11.69	19.56	2.39	2 540
4	27.61	11.39	12.59	2.21	1 894
5	31.31	12.42	15.15	2.51	2 183
Average	31.49	11.97	15.80	2.33	2 218
Average of all types	34.00	11.61	18.69	2.28	2 474

TABLE 6.—CHEMICAL COMPOSITION OF ENTIRE CARCASSES OF THE CONTROL PIGS: FIRST EXPERIMENT

THE MAINTENANCE EXPERIMENTS

Amounts of Feed and Energy Required for Constant Weight. At the beginning of the experiment five pigs from each of the three types were put upon a maintenance experiment in order to determine the amounts of the ration fed at the beginning of the experiment required to maintain constant weight. Again, at the end of the experiment, when the fat pigs had reached a weight of approximately 225 pounds, five pigs from each type were subjected to a maintenance experiment, the ration being fed to the fat pigs at that time being used in this case.

The ration used for the fattening pigs in this experiment consisted of shelled corn, wheat middlings, and tankage: the proportions fed varied as the experiment progressed, the proportion of corn increasing and the proportions of middlings and tankage decreasing. For the entire fattening period the average ration contained 76 percent of

500

May,

Pig No. and sex ¹	Initial Mainte- weight weight	Average daily feed			Average daily feed per 100 pounds live weight		
			Corn	Tankage and mid- lings ²	Total	Weight ratio	Surface ratio
		Type	B—Chuf	Ŧy			
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
L1b	51	51	.33	.16	.49	.97	.78
2b	40	43	.37	.19	. 56	1.31	.99
3b	47	52	.31	.15	.46	. 89	.72
4b	64	62	. 55	.28	.84	1.36	.73
l5b	52	52	.36	.16	. 52	1.01	.81
Average	51	52	.39	.19	. 57	1.11	.81
		Type C-	-Interme	diate			
6b	46	49	. 31	.14	.45	.93	.73
7Ъ	50	54	.31	.15	.46	.85	.70
8b	46	52	. 36	.19	. 55	1.05	.84
9b	47	51	. 32	.16	.48	.94	.76
0b	44	51	.35	.17	. 52	1.02	82
Average	46	51	. 33	.16	.49	.96	.77
		Туре	D-Ran	gy			
1b	47	51	. 32	.16	.48	.95	.76
2b	44	48	.37	. 19	. 55	1.16	. 90
3b	44	51	. 32	.16	.48	.96	.76
48	49	53	. 36	.19	. 55	1.04	.84
5b	48	50	. 32	.16	.48	.98	.77
Average	46	51	.34	.17	. 51	1.02	.81
Average of all types	47.7	51.3	. 353	. 173	. 523	1.03	. 797

TABLE 7.—RESULTS OF MAINTENANCE EXPERIMENT ON THE YOUNG PIGS: FIRST EXPERIMENT

¹b = barrow; s = sow. ²The mixture used was 2 parts middlings to 1 part tankage.

corn, 16 percent of middlings, and 8 percent of tankage. During the maintenance experiment on the young pigs the average ration contained 67 percent of corn, 22 percent of middlings, and 11 percent of tankage, while in the maintenance experiment on the fat pigs the tankage was eliminated and the corn and middlings made up 81 and 19 percent respectively of the average ration fed.

The maintenance feeding continued for 16 to 17 weeks. With the fat pigs a period of at least 8 weeks was obtained in which the pigs were at constant weight on constant feed. In this test, after a sharp initial drop in weight during the first week of reduced feed, the weights of the pigs were maintained at a practically constant level

BULLETIN NO. 323

No. 202

			ERIMEN.	1			
Pig No. and sex	Initial weight	Mainte- nance	Ave	erage daily f	eed	Average daily feed per 100 pounds live weight	
	HOLENO	weight	Corn	Middlings	Total	Weight ratio	Surface ratio
		Туре	e BChuff	y			
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
6s	223	206	2.06	.50	2.56	1.24	1.58
11b.	227	213	1.56	.38	1.94	.91	1.17
13s	225	204	1.63	.38	2.01	.98	1.25
148	232	229	1.44	.31	1.75	.76	1.01
20b	227	216	1.56	.38	1.94	.90	1.16
Average	227	214	1.65	.39	2.04	.96	1.23
		Type C	—Interme	liate			
1s	227	221	1.50	.38	1.88	.85	1.11
3b	222	219	1.44	.31	1.75	.80	1.04
14s	227	219	1.75	.44	2.19	1.00	1.30
17b	229	217	1.81	.44	2.25	1.04	1.34
208	225	219	1.56	.38	1.94	. 89	1.15
Average	226	219	1.61	. 39	2.00	.92	1.19
		Туре	e D-Rang	у			
8b	224	209	1.94	.43	2.37	1.13	1.45
10ь	224	217	1.94	.43	2.37	1.09	1.41
11b	225	204	2.06	.50	2.56	1.26	1.59
13b	220	213	1.63	.38	2.01	.94	1.21
17b	224	205	1.81	.43	2.24	1.09	1.39
Average	223	210	1.88	.43	2.31	1.10	1.41
Average of all types.	225.3	214.3	1.71	.403	2.12	.99	1.28

TABLE 8.—RESULTS OF MAINTENANCE EXPERIMENT ON THE FAT PIGS: FIRST EXPERIMENT

for the remainder of the period. With the young pigs, altho the original weight was generally increased slightly in the first few weeks, it was found necessary to reduce the feed gradually over a much longer period than in the second maintenance trial. As a result, a period of only 5 weeks of constant weight on constant feed was obtained. The experiment could not be extended further because of the approach of cold weather, which tended to reduce the weights of the pigs on amounts of feed that had proved adequate for maintenance. The average data for these two maintenance trials are given in Tables 7 and 8. The average analyses of the feeds used are given in Table 9. The corn used in the maintenance experiment on the young pigs is represented mainly by the sample taken from July 1 to September 19,

Feed	Dry substance	N-free extract	Crude protein (Nx6.25)	Ash	Crude fiber	Fat	Gross energy per gram
	pct.	pct.	pct.	pct.	pct.	pct.	sm. cals.
Yellow corn: July 1 to Sept. 19 Sept 19 to end of ex-	90.06	72.63	9.62	1.46	2.09	4.26	4 001
periment	89.41	71.94	9.46	1.30	2.42	4.29	4 041
Average	89.74	72.29	9.54	1.38	2.26	4.28	4 021
Tankage	91.61	5.21	57.50	19.26	2.00	7.64	4 356
Wheat middlings	88.94	65.06	16.17	2.44	2.51	2.76	4 002

TABLE 9.—CHEMICAL COMPOSITION OF FEEDS USED: FIRST EXPERIMENT

while that used in the maintenance experiment on the fat pigs is represented entirely by the second sample taken. The two samples of corn were approximately the same in composition.

The maintenance energy requirements have been expressed as weights of feed required per day per 100 pounds live weight. In reducing to this basis the actual experimental results obtained, two methods have been used, the one involving the ratio of the live weight of the pig to 100 pounds, and the other the ratio of the two-thirds power of these weights. The latter ratio is approximately the same as the ratio of the surface area of the pigs to the surface area of a 100-pound pig. The method involving the surface ratio is apparently the preferable one for the basal metabolism of animals, but in liveweight maintenance, such as obtained in this experiment, the energy requirements of the pigs relate not only to the basal metabolism but also to an unknown amount of muscular metabolism incidental to the muscular activity in the feed lots. It has been well established that the amount of energy consumed in locomotion, either along a level or up an ineline, is proportional to the body weight; it bears no evident direct relation to the basal metabolism or to the body surface of the animal. Hence, in so far as the requirement of energy by these pigs relates to the basal metabolism the surface ratio is preferable in equating the experimental results for differences in size, but in so far as the requirement relates to the activity of the voluntary muscles the weight ratio is preferable.

There seems to be no way of deciding which method of equating for differences in size is preferable except by consulting the figures. It will be noted that for the two groups of pigs the maintenance requirements computed from the weight ratio are closely the same, while those computed from the surface ratio are quite dissimilar. From the weight ratio the average requirement of the young pigs was 1.03 pounds of feed per day per 100 pounds live weight and for the fat

503

ſ	М	a	ų

Pig No. and sex ¹	Live weight	Boneless meat	Bone	Skin	Offal	Blood	Brain	Ears, snout + tai
	1		Туре	B-Chuff	y			
	kgs.	grams	grams	grams	grams	grams	grams	grams
116	21.77	9 944	3 695	1 481	2 900	510	83	204
2b	18.28	8 181	2 937	1 484	2 400	624	105	219
3b	22.08	9 792	3 862	1 553	2 629	624	81	285
4b	27.75	13 510	4 469	1 614	3 435	851	84	368
5b	21.43	7 975	3 853	1 630	3 139	851	97	270
Average	22.26	9 880	3 763	1 552	2 901	692	90	269
			Туре С	—Intermed	liate			
6Ъ	21.17	7 742	4 369	. 1 955	2 700	737	77	223
7b	22.93	10 634	4 247	1 704	2 850	7132	88	257
8s	22.56	10 321	4 286	1 832	2 655	624	85	310
9b	22.08	10 640	3 585	1 522	2 635	936	85	206
10Ъ	21.85	9 101	3 854	1 331	2 800	879	80	242
Average	22.12	9 688	4 068	1 669	2 728	778	83	248
			Тур	e D-Rang	у			
1b	21.88	9 425	3 607	1 868	2 606	709	75	250
2b	20.69	8 634	4 124	1 538	2 930	539	90	235
3b	22.31	9 115	4 213	1 749	2 870	539	95	183
48	22.73	9 790	4 493	1 758	3 102	765	80	226
5b	21.31	9 114	4 212	1 506	2 755	794	91	285
Average	21.78	9 216	4 130	1 684	2 853	669	86	240

TABLE 10.—WEIGHTS OF SAMPLES ANALYZED FROM THE YOUNG MAINTENANCE PIGS: FIRST EXPERIMENT

¹b = barrow; s = sow. ²Sample lost; average of all results substituted.

pigs .99 pound. From the surface ratio these average requirements were, respectively, .80 pound and 1.28 pounds.

Changes in Composition of Young Maintenance Pigs. The determination of the maintenance requirements of animals by feeding experiments involving only live-weight determinations is known to be subject to error since the maintenance of live weight does not necessarily indicate the existence of a condition of nutritive equilibrium. This is especially true of young animals, in which continued subsistence on a ration inadequate for growth will nevertheless not entirely inhibit growth. In such animals body weight may be maintained constant, in spite of an increase in water, protein, and mineral matter, by a corresponding reduction in the content of fat, resulting in a considerable reduction in the energy content of the body. Thus liveweight maintenance trials on immature animals will always under-

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energ per gram
		Type B-Chuf	fy		
	pet.	pct.	pcl.	pct.	sm. cals.
1	39.16	13.80	22.99	.77	2 992
2	31.60	15.12	16.42	.83	2 231
3	27.66	16.14	10.24	. 86	1 984
4	37.00	14.52	20.55	. 83	2 909
5	25.75	17.04	7.11	.90	1 726
Average	32.23	15.32	15.46	. 84	2 388
	1	Type C—Intermed	iate		
6	23.65	16.08	5.43	.85	1 367
7	29.72	15.00	13.08	. 84	2 073
8	25.68	16.20	8.27	. 89	1 777
9	33.11	16.50	14.58	.88	2 380
0	28.29	16.56	10.25	.88	2 018
Average	28.07	16.07	10.32	.87	1 923
		Type D-Rang	SY.		-
1	27.43	17.22	7.01	. 86	1 717
2	32.13	16.26	13.12	.84	2 383
3	30.86	16.62	11.68	.81	2 141
	30.09	15.42	12.67	.77	2 113
5	32.66	14.04	16.78	.75	2 396
Average	30.63	15.91	12.25	.81	2 150
Average of all types	30.31	15.77	12.68	. 84	2 154

TABLE 11.—CHEMICAL COMPOSITION OF BONELESS MEAT FROM THE YOUNG MAINTENANCE PIGS: FIRST EXPERIMENT

estimate the energy requirement of maintenance, and the more immature the animal the greater will be this underestimation.

Because of these well-known facts the pigs used in the maintenance trials in this experiment were slaughtered and analyzed at the end of the feeding period. By comparing the composition of the young maintenance pigs with that of the control pigs slaughtered at the beginning of the experiment, an estimate could be made of the change in composition during the maintenance feeding period. On such an estimate could be based a more or less satisfactory correction of the daily feed consumption required for the maintenance of weight, and thus the daily feed consumption required for the maintenance of energy equilibrium could be obtained.

The sampling and analysis of the young maintenance pigs was carried out in a manner essentially the same as that of the control pigs except that the lean and the fat were analyzed together. The weights of samples from these pigs are given in Table 10, and the chemical

	Dry	Crude protein			Gross energy
Pig No.	substance	(Nx6.0)	Fat	Ash	per gram
		Type B—Chuff	íy		
	pct.	pct.	pct.	pct.	sm. cals.
1	51.00	17.34	13.73	16.44	2 469
2	51.70	17.28	14.85	16.97	2 620
3	48.75	17.64	11.66	18.52	2 141
4	54.06	16.92	17.30	17.47	2 619
5	46.90	16.98	10.65	17.22	1 999
Average	50.48	17.23	13.64	17.32	2 370
		Type C-Interme	diate		
6	44.76	17.16	9.01	15.45	1 989
7	49.70	16.80	14.52	16.00	2 335
8	45.42	17.40	10.94	15.70	2 072
9	55.48	18.00	16.13	19.29	2 543
0	51.11	18.72	12.00	19.32	2 171
Average	49.29	17.62	12.52	17.15	2 222
		Type D-Rang	sy		
1	46.61	17.70	10.20	16.60	2 044
2	47.60	16.50	13.89	15.55	2 318
3	45.30	16.26	10.46	15.49	1 999
4	47.97	16.62	13.21	15.79	2 377
5	48.78	15.66	14.58	15.74	2 362
Average	47.25	16.55	12.47	15.83	2 220
Average of all types	49.01	17.13	12.88	16.77	2 271

TABLE 12.—CHEMICAL COMPOSITION OF BONES OF THE YOUNG MAINTENANCE PIGS: FIRST EXPERIMENT

composition of the boneless meat and of the composite bones in Tables 11 and 12 respectively. The blood, skin, and brain were weighed separately for each pig but were composited for analysis. The results of these analyses will be found in Table 13. The hair and toenails from all pigs were collected and analyzed. It was estimated that each pig contributed to this sample 164 grams of dry matter containing

TABLE 13.—AVERAGE CHEMICAL COMPOSITION OF BLOOD, SKIN, AND BRAINS OF THE YOUNG MAINTENANCE PIGS: FIRST EXPERIMENT

Sample	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
Blood	20.12	15.66	.06	1.56	1 283
Skin	37.36	22.56	14.11	. 56	2 491
Brains	21.72	9.90	9.24	1.33	1 481

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Стонь емегу рег дляла
		Type B-Chuf	fy		
	pet.	pect.	pect_	prel.	em. culs.
1	33.77	13.58	15.06	3.35	2 249
2	30.49	14.65	11.90	3.35	1 962
3	27.70	14.72	8.30	3.86	1 695
4	33.55	13.93	14.78	3.45	2 284
5	25.74	14.43	6.41	3.71	1 494
Average	30.25	14.25	11.29	3.56	1 937
		Type C-Interme	diste		
6	25.50	14.54	5.65	3.77	1 359
7		14.55	10.60	3.60	1 536
S	27.62	15.40	7.73	3.63	1 5000
9	32.12	15.43	11.57	3.82	2 012
0	27.68	14.75	8.00	4.10	1 666
Average	28.58	14.93	8.72	3.78	1 714
		Type D-Ram	57		
1	26.92	15.15	6.49	3.37	1 543
2	30.17	14.82	10.06	3.71	1 919
3	28.29	14.43	8.68	3.49	1 711
4	29.57	14.60	9.65	3.70	1 537
5	30.62	13.71	11.83	3.67	1 947
Average	29.11	14.54	9.38	3.59	1 791
Average of all types	29.31	14.55	9.76	3.64	1 514

TABLE 14.—CHEMICAL COMPOSITION OF ENTIRE CARCASSES OF THE YOUNG MAINTENANCE PIGS: FIRST EXPERIMENT

88.5 percent of crude protein $(N \ge 6.0)$, 5.2 percent of ash, and 902 calories of gross energy. The analyses of the offal sample, consisting mainly of the visceral organs and of the ears, snout, and tail, will not be reported since they possess no particular significance in themselves.

From the weights of samples and their percentage composition the total amounts of the different chemical constituents in the carcasses of the pigs were determined, and from these amounts and the live weights of the pigs the percentage composition of the entire carcass (live weight), exclusive of the contents of the alimentary tract, was determined. The results of these calculations are given in Table 14

The average analyses for all types of pigs in the maintenance and control groups of the boneless meat (lean plus fat), bone, offal, and entire carcass have been summarized for comparison in Table 15, Evidently during the period of maintenance feeding the growth of the maintenance pigs was not suppressed altho their food consumption

Funda a links	TC. Rockore	Oracie georgian Nati. D	Fire	100	danse ensatt
	<u> </u>	Jamiles new	R	° 2	
	385		345	gers.	an. 2011.
The bast on a lot		TR	10 10		2 334
Contern.	5.2	100 miles	M. HE		3 1411
		Banes			
William Same		15.15	22.88	195	10 - 2000-
- Tat - 3		17.18F	14.45	TL AL	2 384
		Offici			
Real Property and			4. TH		1 352
C m	11 M	21	·		E HE
		Building to see 1		-	
Sector of the	1.11	調査	3.77	无禄	1 104
5 m 2	3.8	11.41	18. TP	20 10	2474

Table 37. - A Comparison of Percentage Compassion of the Volue Maintenance Pois and the Control Pois. First Expression

was restricted to the amount needed only for the maintenance of constant weight. In the fiesh and adinose tissue, protein and water were being denosited and fat withdrawn, the net change being a reduction in gross energy per gram of tissue of about 41 percent. The bones lost water and fat and gained mineral matter, with only an insignifeant loss in cross energy. The offel parts did not change creatly in composition, the the net effect was again a reduction in energy entient. The changes in the entire carcass reflect, in the main, the changes in the lean and fatty tissues: the water content increased 7 persent, the postein 25 percent, and the mineral matter 60 percent. while the fat content decreased 45 percent and the gross energy content 27 percent. These changes do not, of course, take account of the memsiberable variations in live weight during the period of maintenames issuing. They dearly demonstrate, however, that the maintenames of live vehicle in an immature animal is merely the resultant If a number of considerable increases and decreases in the materials of which the animal is composed and that the quantity of feed or of ind intrients rentired to maintain vehrit under tiese enditions cannot be considered to bear any close relation to the animal's requirements for muchture something

Charges in Composition of Fat Maintenance Pigs. The 225point namenance purs were not analyzed in such detail as the young namenance purs and after the work was completed in was discovered that some of the data required for an accurate estimate of their total

Etg. Wil	Dey autorbures	Cinale protect. Noti 10	Fatt	Yadı	Groue-cherg
		Digge B-Chut	fiz		
	greti.	parts.	gett.	316	ant and .
ri	HE DE	144.357	300 356	41.111	3000
I		144 771	進調	12.20	# 11226
	198.1	THE SEC	30.222	HIM.	I WEEL
4 <u>4</u>	冠 产	18.30	盖派		18 9 8 55
0.	AL	Det 944	建築	2.78	
Everner:	虱痛	THE JTP	28. De	21 20 0	2002
		Egge C-linema	ei zu		
1	燕園	122.006		18 M	# 72#
ž	·理》410	INE AST	100 M	35.086	
iii	三王 4部	THE SHIP	122.380	32.335	# 7211
	670.0 0	III. AND	1000	12.450	1 44 (1922)
5L	HL 1155	122.770	粗蕊	R III	# 7700
Horener		<u>199</u> 266	42.E	22	# 197
		Tinge Di-Hong	Er.		
*	·		(1)	.Z. 194	4.34
û	36.116	100 306	410 1155	10 100 ·	45 4572
<u>n</u>	455.335	15.35.	10 A	-EL 7722	18 HERE
£	- THE (1910)	(1772) (2770)	振动	22.036	# .75.
	48.22	III. TH	20.44	44.4M	3 57
Novemue.	·#		36.189	2.00	41 12257
Average offail types		125. 西半	35. HE		42 (1986)

Teala 14. —Percenture Composition of Dressed Carcasses of the 225-Point Manutemanie Poist First Experiment

composition had unfortunately not been permanently recorded. The dressed carcass of each of the 125-pound maintenance pigs was malyzed as a composite sample of the bone, boneless mean, and skin of which it is composed. The results of the chemical analysis of these samples are included in Table 16. The analyses of the other samples need not be considered since they are in themselves without significance.

A comparison of the composition of the dressed carcass and of the offal of these maintenance plus and of the fat plus analyzed in the conclusion of the fattening period will be found in Table U. Prograg from the differences in average composition of these samples from maintenance and fat plus, the 225-pointd put, when you or a maintenance ration, will still change considerably in composition. In spire of inadequate intrition, growth is not entirely suppressed fat is being used up, while water minemas and protein are reing added, so that the net change in energy is considerable, especially for the Unify and Rangy plus.

	L	Maj
TION OF DRES		$\mathbf{s} \mathbf{c}$
ND MAINTEN	NOR PLACE	

Group of pigs	Dry substance	Crude protein (Nx6.0)	Fat	\mathbf{Ash}	Gross energy per gram
		Carcass compos	iite		
	pct.	pct.	pct.	pct.	sm. cals.
Chuffy type					
Maintenance pigs	51.68	14.79	33.14	3.80	3 932
Fat pigs	62.31	13.06	45.12	2.73	5 060
Intermediate type					
Maintenance pigs	59.42	12.28	43.11	3.25	4 797
Fat pigs	64.30	13.34	46,27	2.71	5 108
Rangy type					
Maintenance pigs	54.29	13.85	36.09	3.66	4 137
Fat pigs	62.19	13.59	44.44	2.93	4 960
0		Offal			
Chuffy type					
Maintenance pigs	29.00	13.58	12.60	1.15	1 996
Fat pigs	27.79	11.83	12.83	.82	1 960
Intermediate type					
Maintenance pigs	32.52	13.00	17.28	1.09	2 385
Fat pigs	27.90	11.79	12.76	.81	1 991
Rangy type					
Maintenance pigs	30.78	14.14	13.49	1.10	2 110
Fat pigs	27.06	12.18	11.51	.86	1 899

TABLE 17.—COMPARISON OF PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE 225-POUND FAT PIGS AND THE 225-POUND MAINTENANCE PIGS: FIRST EXPERIMENT

The data are not at hand for an estimate of the complete composition of the entire carcasses of the 225-pound maintenance pigs. However, satisfactory estimates of their total gross energy values will be found in Table 19.

Estimates of Feed Required for Maintenance. There are rather serious difficulties in the way of any method of correcting the food intake records of the two groups of maintenance pigs in order to get a satisfactory estimate of the amounts of food required to maintain a condition of energy equilibrium. The method we have adopted yields the results given in Tables 18 and 19.

Obviously in using the results of the slaughter tests, it is necessary to use the total feed consumption of the maintenance period from the first day of feeding to the day of slaughter rather than the feed consumption found to be best adapted to the maintenance of constant weight, as used in Tables 7 and 8. The estimates of the original energy content of the pigs in each type are based upon the average energy content of the control pigs of that type. The final energy contents

	EXPERIMENT
	Fust
	DAYS:
	110
	PIGS,
	Young
	THE
	NT ON
	TXPERIME
	NCE]
	AINTENA
-	§ M.
	FOI
	DATA
	-COMPLETE]
	18
	BLE

1929]

									Mainten	Maintenance feed	
Pig No	Initial	Average	Initial energy	Final energy	of	Total	Feed equivalent of		Per	Per day per 100 pounds live weight	100 pounds eight
	weight	weight	content	content	energy	eaten	energy loss	l'otal	day	Weight	Surface
				E						rauo	18110
				Typ	Type 15-Chuffy		-				
	108.	lbs.	therms	.therms	therms	lbs.	lbs.	lbs.	lbs.	lbs.	lb_8 .
	52	52	65	32	32.5	11	24	95	.87	1.68	1.35
	64	61	62	63	16.0	.93	12	105	.96	1.56	1.33
	47	51	60	37	22.1	68	16	84	.76	1.49	1.19
	40	41	50	36	-13.8	75	10	86	.78	1.88	1.40
11	51	51	63	49	14.3	11	11	81	.74	1.46	1.17
Average	51	51	63	43	19.7	76	15	90	.82	1.62	1.29
				Type C	Type C-Intermediate	iate					
	44	49	49	36	12.9	20	10	80	.73	1.48	1.17
	47	51	53	44	8.3	60	9	75	.68	1.34	1.07
	46	50	52	38	14.0	72	10	82	.75	1.49	1.18
7	50	53 w	56	42	14.0	68	10	78	.71	1.35	1.09
	46	49	52	20	22.2	65	17	81	.74	1.52	1.19
Average	47	50	52	38	14.3	69	11	50	.72	1.44	1.14
				Typ	Type D-Rangy	>			-		
	48	49	48	42	6.5	67	5	72	.65	1.32	1.05
	49	52	40	42	7.6	72	9	78	.71	1.36	1.10
	44	48	44	38	6.1	68	5	73	.66	1.38	1.08
	44	47	44	40	4.6	74	e	77	.70	1.50	1.16
	47	50	47	34	13.6	67	10	27	.70	1.40	1.11
Average	46	49	47	39	7.7	20	9	75	.68	1.39	1.10
		4	;			C.	ç	00	r	1 10	1 10

ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

511

			Taitin			E	ŗ	;		Mainten	Maintenance feed	
Pig No.	Initial	Average	energy	energy	jo	feed	r eed equivalent	Main- tenance	Ē		Per day per 100 pounds live weight	100 pound eight
	MCISIIL	Actigut	1191100	COLLEGIA	energy	careu	or energy loss ¹	period	1 otal	Fer day	Weight ratio	Surface ratio
					Type B	Type B-Chuffy						
1	168.	lbs.	therms	therms	therms	103.	108.	days	lbs.	lbs.	lbs.	168.
6	223	210	400	275	125	284	94	113	378*	3.352	1.602	2.042
11	227	214	407	337	70	258	52	119	310	2.60	1.22	1.57
13	225	208	403	306	26	260	73	120	333	2.77	1.33	1.70
14	232	228	416	349	67	246	50	119	296	2.49	1.09	1.44
20	227	217	407	332	75	288	56	131	344	2.63	1.21	1.57
Average	227	215	407	320	87	:	:	:	:	2.62	1.21	1.57
					Type C-I	Type C-Intermediate	te	4				
	227	221	418	408	10	256	~	125	267	2.14	.92	1.26
3	222	219	409	420	-11	253	∞ 1	125	245	1.96	.90	1.16
14	227	218	418	403	15	223	11	66	234	2.36	1.08	1.40
17	229	218	422	424	1	225	1	97	223	2.30	1.06	1.37
20	225	219	414	418	4	239	1	118	237	2.01	.92	1.19
Average	226	219	416	414	3	:	:	:	:	2.15	.98	1.28
					Type D	Type D-Rangy						
8	224	210	396	366 .	30	205	23	83	228	2.75	1.31	1.68
10	224	217	396	365	31	274	23	113	297	2.63	1.21	1.57
11	225	206	398	270	128	334	96	125	4302	3.442	1.672	2.13^{7}
13	220	213	389	397	80 1	242	9 	111	236	2.13	1.00	1.29
17	224	209	396	276	120	496	6	200	586	2.93	1.40	1.79
Average	223	211	395	335	60	:	;	:	:	2.61	1.23	1.58
A second of all trans	100	1										

BULLETIN NO. 323

.

[May,

of the pigs were directly determined as explained above. The estimated losses (or gains) in energy during the maintenance period are converted into terms of feed on the somewhat dubious assumption that the metabolizable energy of the rations consumed, as estimated from results obtained in the next year's experiment, would be utilized to the extent of 100 percent in preventing a loss in body energy.

Some estimate of this sort is required in order to make the correction desired, and the selection of this ideal percentage was based upon the following considerations. Armsby¹ has estimated from available data that on fattening rations swine utilize over 78 percent of the metabolizable energy of their rations for maintenance and gain. Furthermore, Forbes, Frics, Braman, and Kriss² have presented evidence to show that the metabolizable energy of the feed is utilized to a greater extent when fed at the maintenance or submaintenance level than when fed at the supermaintenance level. This is quite in agreement with the observation of Benedict and Benedict,³ on human subjects, that the ingestion of a small breakfast does not appreciably affect a basal metabolism determination that is made immediately afterward.

The average estimate of the feed equivalent of the energy losses of the young maintenance pigs, according to the data obtained in this experiment (Tables 18 and 19), is equal to 14 percent of the total feed consumed and to 13.5 percent in the case of the 225-pound maintenance pigs. If it had been assumed that the metabolizable energy of the feed were only 78 percent net available for maintenance, instead of 100 percent, these percentage feed corrections would be inereased to approximately 18. Evidently, therefore, any likely error in the feed correction for losses of body energy would not greatly affect the final estimate of the feed required for maintenance per 100 pounds live weight.

Among the young maintenance pigs the energy content of the body decreased on the average 31 percent for the Chuffy type, 28 percent for the Intermediate type, and 16 percent for the Rangy type during the maintenance feeding period of 110 days. Among the 225-pound maintenance pigs the average percentage losses of body energy were 21, 5, and 15 respectively. The differences between the average type values are not readily explainable on the basis of differences in rate of growth or in the attainment of maturity. The consistently larger

¹ Armsby, H. P. The nutrition of farm animals, 288.

^a Forbes, E. B., Fries, J. A., Braman, W. W., and Kriss, M. Jour. Agr. Res. 33, 483. 1926.

³ Benedict, C. G., and Benedict, F. G. Boston Med. and Surg. Jour. 170, 849. 1923.

percentage losses in body energy for the Chuffy type on a ration adequate for the maintenance of body weight may indicate a growth impulse for these pigs that is less readily inhibited by restrictions in the amount of feed consumed.

Before considering the final estimates of the amount of feed required for maintenance, it is necessary to decide which method of reducing these amounts to 100 pounds of body weight is preferablethat involving a ratio of weights or that involving a ratio of surfaces (two-thirds powers of the weights). The average estimates for all types by the weight ratio are 1.48 pounds of feed for the young pigs and 1.13 pounds for the older pigs; the estimates obtained by the surface ratio are 1.18 pounds and 1.46 pounds respectively. In neither case do the values agree well. Using the weight ratio one would infer that the maintenance requirements are more intense (greater per unit of weight) for the young pigs than for the older pigs; using the surface ratio, the opposite would be inferred. However, where differences in maintenance requirements with age have been measured, it has been invariably found that, per unit of weight, the basal metabolism of the younger animal is greater than that of the older: and per unit of surface, where a difference exists, the younger animal again has a higher basal heat production.¹ The activity factor, which is of course involved in live-weight maintenance, is probably affected by age and also by seasonal factors²; it is probably fair to presume³ that, except for the very young animal, increasing age is accompanied by decreasing spontaneous activity.

Therefore, with respect to basal metabolism as well as spontaneous activity, one would expect a greater energy requirement per unit of size for the young animal than for the old. Since this relation is shown by the estimates of maintenance requirements per 100 pounds of body weight obtained by the weight ratio and is not shown by those obtained by the surface ratio, it is perhaps fair to assume that the former method is more satisfactory than the latter in varying such estimates for variations in size and age. This is probably due to the fact that spontaneous activity plays a large part in determining the feed requirements for live-weight maintenance. In assuming that the energy equivalent of this activity varies with surface rather than weight, the estimate for a 100-pound pig from results obtained on a 50-pound pig would be too low, while that made from results on a

² This does not apply to the very young animals. The new-born animal has a very low basal metabolism per unit of weight or surface, but very quickly attains a level considerably higher than the adult level.

⁴ Hitchcock, F. A. Amer. Jour. Physiol. 75, 205. 1925.

Armsty, H. P. The nutrition of farm animals. 307.

225-pound pig would be too high. In this connection it may be recalled that Armsby, Fries, and Braman¹ found that the basal catabolism of cattle of different weights, indirectly determined, was as well correlated with body weight as with body surface.

The estimated feed requirements for the young maintenance pigs per 100 pounds weight, it is interesting to observe, are not distinctly different for the different types. For the older maintenance pigs, however, the Intermediate type appears to have a distinctly lower requirement of feed for energy equilibrium.

THE FATTENING EXPERIMENT

Composition of the Fat Pigs. When the 20 pigs of each type that were grown out and fattened reached a weight of approximately 225 pounds, they were withdrawn individually from this feeding experiment; 15 in each type group were slaughtered and analyzed immediately and 5 were placed upon a maintenance feeding test described in the preceding section. The slaughter data and the weights of samples taken for analysis for the 45 fat pigs are given in Table 20; the analyses of the more significant of these samples will be found in Tables 21, 22, and 23. Table 24 contains the analyses for the composite samples of blood, brains, hair, and skin to which all pigs in all types contributed.

The average weight of brain for these 45 pigs was 89 grams, as compared with 67 grams for the 15 control pigs. The average weight of air-dried hair (plus toenails) was estimated to be 318 grams.

From the weights of samples and their chemical composition the percentage composition of the entire carcasses (live weight) was computed, with the results given in Table 25. The weight of "fill" in these carcasses was not determined. If it is assumed to be 5.6 percent of the live weight, or the average of the 225-pound fat pigs of the experiment of the following year, the average percentage composition of these 45 fat pigs, on the empty-weight basis, would be as follows: 52.3 percent dry substance, 11.9 percent crude protein (N x 6.0), 36.7 percent fat, and 2.2 percent of ash. The gross energy value on the same basis would be 4.17 calories per gram, or 189 therms per 100 pounds.

The average percentage compositions of the more important chemical samples and of the entire carcass for the three types of pigs are summarized for comparison in Table 26. In spite of the very obvious differences in the conformation of the three types of pigs and in their market condition at the time of slaughter, their chemical composition did not vary greatly. The Intermediate-type pigs proved to be some-

¹ Armsby, H. P., Fries, J. A. and Braman, W. W. Joint Agr. Res. 13 43, 1915.

[Moy,

TABLE 20.—WEIGHTS OF SAMPLES FROM THE FAT PIGS: FIRST EXPERIMENT

	.	m 1 1					
Pig No. and sex ¹	Live weight	Total fat ²	Total lean	Total bone	Skin ³	Offal	\mathbf{Blood}
			Type B-C				
	kgs.	grams	grams	grams	grams	grams	grams
1b	104.3	29 600	34 239	8 741	4 153	7 700	2 665
2b	102.1	31 645	32 038	8 842	3 780	7 990	2 864
3b	98.9	29 718	30 674	9 656	2 898	8 149	1 871
4s	99.8	24 729	32 519	9 406	3 800	9 650	1 588
58	102.1	31 591	30 884	9 072	3 981	8 606	2 239
78	102.1	30 361	33 051	7 902	3 473	8 593	2 239
8b	101.2	26 806	31 957	8 846	3 808	8 865	1 559
9s	101.2	32 093	27 653	0 654	4 300	9 130	1 899
0b	101.2	29 737	32 287	8 399	3 234	8 800	1 899
2b	99.8	25 131	32 287	8 348	3 752	9 747	2 580
	98.4	27 127	28 283	8 987			
.5b	101.2			•	3 446	9 915	1 701
6b		30 157	29 633	8 395	3 799	8 695	2 608
7b	105.2 103.9	$30 \ 376 \\ 32 \ 315$	33 093	9 393	3 261	8 800	2 183
8b			29 845	8 406	3 871	9 110	2 268
9b	104.8	34 015	29 702	8 953	3 704	8 950	1 814
Average	101.8	29 860	31 194	8 867	3 684	8 847	2 155
		Ty	pe C-Inte	rmediate			
28	104.3	29 555	33 545	9 248	4 194	6 655	2 098
4b	101.6	28 654	32 909	9 692	4 274	7 286	3 062
5b	101.3	29 068	32 345	10 210	4 150	9 670	2 239
6Ь	102.5	·30 816	31 422	8 944	4 181	9 000	1 956
7b	102.1	27 672	35 139	9 438	4 022	8 134	2 211
8b	100.7	28 558	33 854	8 644	3 629	8 454	1 956
9s	100.2	27 680	32 691	9 415	4 014	7 552	2 098
0b	99.3	28 977	32 141	9 334	3 770	8 145	1 927
1b	104.3	27 837	33 856	10 673	4 991	8 656	2 069
2s	102.5	30 704	30 115	8 738	3 459	9 414	2 268
38	104.3	28 736	31 235	9 493	4 050	10 570	2 183
58	104.3	28 418	33 916	9 066	3 898	9 527	2 523
6s	104.3	28 274	34 580	9 685	3 982	7 922	1 701
8b	101.6	32 385	31 740	9 526	3 840	8 107	2 154
9b	98.9	28 024	32 263	8 785	4 330	7 945	2 041
Average	102.4	29 024	32 783	9 393	4 052	8 469	2 166
			Type D-F	langy			
1b	99.3	29 958	31 190	9 974	4 026	8 514	1 474
2b	101.2	26 694	34 970	10 122	4 118	8 537	1 927
3b	102.5	27 115	33 243	9 307	4 785	8 920	2 268
4b	105.2	25 055	31 796	12 770	5 027	9 965	1 531
5b	103.9	27 114	33 097	10 327	4 730	8 980	2 3 5 3
6b	104.3	28 062	32 591	11 001	4 949	10 015	1 588
7b	107.0	24 603	36 393	11 442	5 111	10 500	2 239
9Ь	100.7	23 787	33 969	10 856	4 086	9 785	2 098
2b	101.2	29 257	31 501	10 107	4 441	8 500	2 012
4b	101.6	30 079	32 821	9 206	4 798	7 893	2 665
5s	103.4	25 064	33 916	11 315	4 276	8 852	2 523
.6b	102.1	31 006	32 858	10 128	3 934	8 645	2 381
8b	101.6	30 342	29 228	10 552	4 306	8 165	1 474
98	99.3	23 665	35 312	10 820	4 027	7 785	2 183
оь	100.2	27 094	32 914	10 033	4 042	8 876	2 722
Average	102.2	27 260	33 053	10 531	4 444	8 929	2 096
Average of all	102.1	28 715	32 343	9 597	4 060	8 748	2 139
types	104.1	40 (10	02 040	9 997	1 + 000	0 (40	2 138

¹b = barrow; s = sow. ²Including the caul and mesentery fats. ³Including snout and ears.

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energ per gram
	substance				per gram
		Type B-Chu			
	pct.	pct.	pct.	pct.	sm. cals.
1	39.68	16.74	22.32	.86 .	3 088
2	40.90	16.68	20.57	. 89	2 852
3	41.06	16.50	23.71	.85	3 263
1	39.90	16.50	21.24	.88	3 017
5	41.70	16.98	22.70	.88	3 038
7	38.06	16.86	20.48	.89	3 071
8	40.93	16.14	22.66	.93	3 102
9	40.66	17.82	20.76	. 86	3 068
)	35.21	18.18	16.29	.87	2 715
2	40.69	16.62	23.41	.85	3 059
5	40.78	15.72	22.94	.83	3 229
3	38.19	16.80	19.80	.85	2 934
7	35.45	16.74	16.91	.87	2 626
8	40.10	16.38	22.05		3 025
9	38.01	17.40	19.16	.90	2 866
Average	39.42	16.80	21.00	.87	2 997
		Type C-Interm	ediate		
2	43.561	16.611	23.591	.871	3 1882
L	42.84	17.10	21.88	.92	3 001
5	45.32	16.98	21.23	.91	3 024
3	44.98	15.72	28.04	.84	2 440
7	43.36	16.56	22.80	.90	3 085
8	42.35	15.84	25.40	.89	3 232
9	47.36	16.56	22.11	. 89	3 039
)	43.30	16.50	24.57	.85	3 210
1	41.68	16.02	23.55	.87	3 067
2	41.10	17.22	22.55	.87	3 140
3	47.51	16.80	22.92	.85	3 136
5	43.93	16.38	25.91	.84	3 382
3	40.12	16.68	22.36	.84	3 318
	40.12				3 077
8 9	42.00	17.04 17.16	22.49 24.42	.85 .83	3 439
Average	43.56	16.61	23.59	.87	3 119
	43.56	Type D-Rar 15.42	24.54	. 80	3 122
2	43.30	16.44	23.44	.98	3 116
3	40.48	17.40	20.56	.95	3 030
1	45.36	16.20	25.60	.96	3 326
5	40.80	16.38	22.64	.92	3 200
8	40.83	15.78	22.58	.81	3 227
7	44.43	16.44	21.32	. 89	2 971
9	44.65	17.04	22.89	.98	3 196
2	41.97	16.20	24.68	.80	3 166
f	45.84	16.98	22.35	1.01	3 085
5	42.07	16.32	22.80	.83	3 004
3	37.08	16.62	19.61	.88	2 913
8	39.77	16.02	22.00	. 89	2 972
9	39.82	17.04	21.03	.95	3 069
0	38.52	16.56	21.28	.93	3 004
Average	41.97	16.46	22.49	.91	3 093
Average of all types	41.65	16.62	22.36	.88	3 070

TABLE 21.—PERCENTAGE COMPOSITION OF LEAN SAMPLES FROM THE FAT PIGS: FIRST EXPERIMENT

¹This sample was accidently thrown out before it was analyzed. The percentages given are the averages for that type. ²Calculated using 5.7 ealories per gram of protein and 9.5 calor es per gram of fat.

Pr Na	In: SUCCESSION	Counte partien. Nat. 10	THE	list	Sour grant
		Type B-Ond	Ex.		
	36.	36	345	345	28. 20L
		3.300	题业	.Jf.	1 455
		3.34	2.2	H	10 1000
and a second second second	35.35	2.36	775.180		-a -Abene
	SE. 36	2.M	SL SD		17 HEEE
		3.34	29.30	_16	ii then
	<u>S.</u>	SIE .	30.40		T TER
		3.45	SZ 30	_Di-	1 502
		4.05	SO ID	_DF	7 340
	- 32	4.颈	75.30	_36	7 325
		3.75	50.90		7 530
		3.92	330.20	_05	1 755
	<u>強烈</u>	4.48 3.72	75.30 52.60	_105 _105	7 341
		3.75	76.70		T TER
	31.18	3.35	75.40	_116 _116	
	8.3	3.00	25.00		7 385
			da.me		1 4 38539
		Rege C - Interna	Time	1	1 7.676
	11.71	3.65	78.5		7 1000
5		3.72	SL.I		1 100
		8.80	82.5		1 994
	SE AL	1.34	75.9		7 834
	5.2	LC	82.2		7 985
	5.70	3.35	81.5		5 155
		3.6	SEL D		7 370
	5.3	3.30	10 A		1 441
	36.16	2.24	70.3	38	
	36.35	2.45	10.5		7 994
	5. 3	2.42	10.4		7 496
	S . (8)	(E.)	8.5		
		2.26	5. 5		
		2.96	3 .0		T III
Hereitanget		E 49	#1 _1	.165	7 785
		Tage D - Ber			
		二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二			
		2.3	10. IN	12	1 114
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 . 2 .	至.查	. 17	
	S. 4	4. JE	74.74	12	7 790-
	S . 4	11.1 <u>1</u>	M.		7 407
·····	征 .圜	2.1	五三		- <u>-</u>
	新.····································	1.96 1. Tu	16. 45-	TE	T HE
	崔.雷	1. 14	72	T	T 794
		<u>4</u> . Z		JI.	7 656
	1.9- 	14	報:報:	II	7 571
		1. M	.7930E	TF	ा छ। गाउन
	10 A	<u>4.12</u>	73÷.10	1	
	1	4.Z	72.22	II	THE THE
	截.些	1.94	死. 11	JT.	7 784 7 455
AND ALL AND AL	***	1. 78	71-12	37	
TANE O BELLE	10 16.12	1	71 8	11	- 689

TARLE 22 - FERRENTING COMPOSITION OF FAI SAMPLES FROM THE FAI POSS. FIRST EXPERIMENT

The intermination was institution. The inter gives a the sveringe value for the vole "Language, many 1." choose per grain o protein and 3.1 choose per grain o na;

Eig No.	Dry:	(Andergroven) (Nictian)	Ent.	. Yaki	Girnal-cales
		Type B-Cinc	fiy-		
	mei.	jati.	gati.	THE.	3846-00686
	611.498	110.74	THE SEE	1285 AND	38 1116
	600.220	IDE 022	126.739	185.000	3 2256
	5 36 220	196.722	THE GASE	115.381	35 0042
	660.986	109.220	22.42	124.804	3235
	37.40	186.300	320.932	ING. IN	3 145
an an an an to to the rest descent descent descent descent	661.990	186.486	221.520	DEC 280	22 1800
		108.385 196.422	2002.1044 200.200	126.497	3 2244
	622,530	156.320	220,550	220,400	38 2215
	022.500	106.386	157.857	130 005	38 1200
	559.100	TTP TH4	100.055	THESE	3 1224
	02.57	185.384	20.03	100.333	3145
i getti sarta tujatu nyana tujatying manin tujatying a	65.20	186.185	222.738	126 725	3304
	559.700	TES.000	220.511	127.886	3 121
)	650.550	127.588	201.977	127.444	3 255
Avernan	660.772	15.73	20.37	THE ARE	3115
		Rigge C Hater			11 1 1
	599.90	1 135.584	221.200	117.122	3357
	022.115	18.54	20.457	136.380	3 1941
	660 000	104.322	201.200	117 199	33 1534
		IDLOBS	22.357	157.152	3 195
La definite del marco a la composición con este este de la deparate	- MILIOD	109.322	200.371	117.300	3 310
		100 002	250.194	199.722	3 201
		III III	21.35	125.46	33 2580
	(100.320	100.002	571 37 9	1265 700	33 1986
******	(60.380	186.600	23.35	1255.900	3 411
			221.277	135.31	320
	(186) -1400	186.722	22.57	LTT. C	33 3555
		1286.384	322.18 6	ITT JOD	3 241
	(E 10)	125.005	222.311	045.720	33 3388
			220.194	157.557	3 1284
l		136.336	224 109	THE DE	33 3350
However the second s		126 986	20.22	IT.OF	1 3 502
	680,990	Tigge ID - Han	21.50	17.45	33
		THE ARE	195.381	085.084	
	CIER AND	196.122	201.125	Die SB4	3 115
	100 HE	18.42	235.75	155.2	38 2000
••••••••••••••••••••••••••••••••••••••	122.25	185.900	207	15.357	3 37
******	苏西	177.984	30.75	LIFE CHEF	3 112
•	35.30	18. 18	T. 12	17.25	B 1234
····	12.5	18.30	2.2	18.357	3 178
	39.37	118.350	THE LIDE	177.499	115
i		19. W	30.40	185.32	\$ 11 8.
1	35.30	185.186	2:10	重要	B 11
	394 010	195.351	2.2	Edi	2 3 47
÷ · · · ·	(1)]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	185.199	5.2	3.9	1 48
• • • • •	C. 3	18.42	T. 11	17.77_	1.422
• 1	B. 3	TR. MC	R.F	Jr. 4.	7 10
Erenage.	· · · · · · · · · · · · · · · · · · ·	18.39	2.77	T. D	1 IS
HITEMAN IS IS TIM	e 9. 10	185. 38	3.3		1.19

Тлага 22. — Рансамстана Сларожского ор Вюна Бамелаз Биам она Fee Pase Наяс Есереннымс

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type B—Chu	ffy		
	pct.	pct.	pct.	pct.	sm. cals.
1	44.81	11.30	30.20	2.01	3 586
2	50.91	11.05	35.34	2.07	4 055
3	50.13	10.86	35.33	1.98	4 034
1	46.71	11.13	32.17	2.11	3 677
5	50.73	11.07	36.01	2.06	4 055
7	48.26	11.15	35.24	1.94	3 917
8	47.05	10.70	33.53	2.08	3 824
9	50.80	11.19	36.40	2.17	4 091
D	45.97	11.16	32.29	2.10	3 733
2	49.14	11.24	34.95	2.05	3 938
5	47.37	10.40	33.78	2.14	3 872
6	48.28	10.99	33.91	2.04	3 864
7	47.86	10.75	34.11	2.13	3 831
3	49.00	10.41	35.01	1.89	4 042
9	49.42	10.53	35.45	1.92	4 017
Average	48.43	10.93	34.25	2.05	3 902
2	49.17	Type C—Interm	34.44	1.95	3 893
L	50.19	11.66	34.66	2.23	3 888
5	51.10	11.47	34.84	2.13	3 941
5	51.21	10.77	38.70	1.92	4 234
7	50.46	11.62	34.20	2.09	3 928
3	50.85	10.94	36.73	2.05	4 071
)	51.52	11.38	34.55	2.13	3 972
)	50.83	11.33	36.22	2.19	3 988
,		11.52	34.86	2.20	3 845
2	50,33 49.49		35.12	2.07	3 971
3		10.69			3 883
	49.90	11.00	34.34	1.98	1
5	49.17	11.19	34.87	1.94	3 873
3	49.08	11.07	34.65	2.05	4 017
3 9	53.29 51.72	11.33 11.40	38.84 36.94	$\begin{array}{c} 2.10 \\ 1.96 \end{array}$	4 242 4 196
Average	50.55	11.24	35.60	2.06	3 996
		Type D—Ran	0717		
	51.27	10.72	37.51	2.19	4 179
2	49.76	11.62	34.84	2.38	3 972
3	48.03	11.58	34.36	2.10	3 824
.	48.34	11.50	33.35	2.40	3 821
5	48.21	11.35	31.91	2.22	3 811
3	48.49	11.20	34.52	2.18	3 902
7	49.02	11.77	32.85	2.34	3 738
9	48.85	11.91	32.25	2.51	3 783
2	50.56	11.53	35.38	2.17	4 022
	52.95	11.69	36.50	2.16	4 144
5	46.99	11.77	31.79	2.28	3 656
6	50.18	11.68	35.61	2.02	4 084
8	49.28	10.92	35.78	1.97	3 947
9	47.75	12.12	32.53	2.44	3 786
0	48.09	11.64	33.03	2.18	3 852
Average	49.18	11.53	34.15	2.24	3 901
	49.39	11.23	34.67	2.12	3 933

Table 25.—Percentage Composition of Entire Carcasses¹ of the Fat Pigs: First Experiment

¹On live-weight basis.

Sample	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
Blood	19.80	17.82	.04	1.22	952
Brains	21.50	10.44	9.69	1.38	1 523
Hair ¹	93.19	83.58	2.49	5.64	4 868
Skin ²	90.00	37.08	51.85	.35	7 816

TABLE 24.—PERCENTAGE COMPOSITION OF COMPOSITE SAMPLES FROM THE FAT PIGS: FIRST EXPERIMENT

1On the air-dry basis. This sample includes the toenails. This sample includes the ears and snout.

what fatter on the average than the other types, a distinction evident for all samples except the offal, but the differences are slight and of doubtful significance. The Rangy pigs, because of a slightly larger proportion of bone, contained a higher average percentage of ash in the entire carcass. While this is very probably a significant type difference, it is not important quantitatively.

TABLE 26.—COMPARISON OF THE AVERAGE PERCENTAGE COMPOSITION OF DIF-FERENT TYPES OF FAT PIGS AND OF PRINCIPAL ANALYTICAL SAMPLES: FIRST EXPERIMENT

Туре	Dry substance	Crude protein · (Nx6.0)	Fat	Ash	Gross energy per gram
		Lean			10
	pct.	pct.	pct.	pct.	sm. cals.
Chuffy	39.42	16.80	21.00	.87	2 997
Intermediate	43.56	16.61	23.59	.87	3 119
Rangy	41.97	16.46	22.49	.91	3 093
		Fat			
Chuffy	84.24	3.90	78.64	.16	7 585
Intermediate	86.12	3.49	81.10	.14	7 795
Rangy	84.11	3.78	79.92	.15	7 688
		Bone			
Chuffy	60.72	18.73	21.04	19.10	3 118
Intermediate	60.94	18.98	22.48	17.68	3 262
Rangy	60.13	18.80	21.75	17.20	3 195
		Offal			
Chuffy	27.79	11.83	12.83	. 82	1 960
Intermediate	27.90	11.79	12.76	.81	1 991
Rangy	27.06	12.18	11.51	. 86	1 899
		Entire carcass	1		
Chuffy	48.43	10.93	34.25	2.05	3 902
Intermediate	50.55	11.24	35.60	2.06	3 996
Rangv	49.18	11.53	34.15	2.24	3 901

The absence of marked type differences in the composition of the earcasses of pigs is very strikingly shown in the case of the dressed carcasses. In Fig. 2 longitudinal sections of three typical carcasses of the Chuffy, Intermediate, and Rangy pigs are pictured. They differ distinctly in appearance and in market finish, but when they are dissected with a knife into lean, fat, and bone and analyzed chemically, no pronounced differences are evident except possibly with respect to

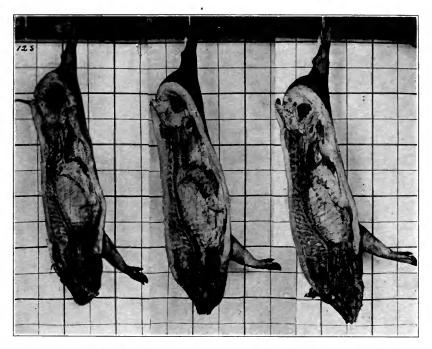


FIG. 2.—REPRESENTATIVE CARCASSES OF CHUFFY, INTERMEDIATE, AND RANGY PIGS SLAUGHTERED AT APPROXIMATELY 225 POUNDS LIVE WEIGHT: FIRST EXPERIMENT

While the pigs of these types differed distinctly in appearance and market finish, the carcasses did not differ much in chemical composition.

the bone and ash content of the Rangy pigs (Tables 27 and 28). Apparently these carcasses differed in their *distribution* of tissues and of nutrients but not in their *content* of them to any but an inappreciable extent.

Composition of Gains. The amounts of organic and inorganic nutrients contained in the carcass of an animal measure the amounts of food nutrients that have been used for growth and fattening;

Type	Average weight of dressed carcass	Lean	Fat	Bone	Skin
	kgs.	pct.	pct.	pct.	pct.
Chuffy	71.82	43.45	39.06	12.36	5.13
Intermediate	73.45	44.64	37.00	12.79	5.52
Rangy	73.61	44.92	34.74	14.32	6.01

TABLE 27.—AVERAGE PERCENTAGES OF LEAN, FAT, SKIN, AND BONE IN DRE SED CARCASSES OF THE FAT PIGS: FIRST EXPERIMENT

TABLE 28.—AVERAGE PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE FAT PIGS: FIRST EXPERIMENT

Туре	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per pound
	pct.	pct.	pct.	pct.	cals.
Chuffy	62.31	13.06	45.12	2.73	2 297
Intermediate	64.30	13.34	46.27	2.71	2 319
Rangy	62.19	13.59	44.44	2.93	2 252

hence, they are measures of the requirements of nutrients, for these purposes, from the time of conception to the time of the examination of the carcass, due consideration being given to the interchangeability of foods in metabolism. It follows, therefore, that increases in the amounts of nutrients contained in older, as compared with younger, animals measure the amounts of nutrients used between those ages for growth and concomitant fattening and measure also the corresponding requirements. The composition of the gains put on by growing and fattening animals is a most important and fundamental consideration to a study of their food requirements.

In computing the composition of the gains in weight of the fat pigs during their feeding period some estimate must be made of their composition at the beginning of the experiment. Such an estimate may be made on the assumption that the fat pigs in each type possessed the same composition at their initial weights as the control pigs of that type slaughtered and analyzed at the beginning of the experiment. In Table 29 will be found the estimates of the percentage composition of the gains put on by the fat pigs from initial weights averaging 72 pounds to final weights of 225 pounds.

In this table the pigs in each type have been arranged in the order of decreasing rates of gain during their feeding periods, for the purpose of determining whether the composition of the gains was related to the rate at which they were made. It is conceivable that the slower gains would represent more growth and less fattening than

Percentage composition of gain Average Crude Pig No. Dry Gross energy daily gains protein Fat Ash substance per gram (Nx6.0) Type B-Chuffy lbs. pct. pct. pct. pct. sm. cals. 1. 1.22 49.0 11.4 34.4 1.90 4.00 18. 1.20 53.6 10.1 40.1 1.72 4.53 4. 1.18 50.5 11.2 36.1 2.074.03 12..... 1.18 54.811.3 41.0 1.96 4.48 2. 1.16 58.211.0 42.3 1.97 4.72 17..... 1.14 53.3 10.5 40.1 2.06 4.35 9. 1.13 56.6 11.3 42.3 2.154.64 10..... 1.11 50.7 11.2 37.7 2.01 4.23 16..... 53.8 10.9 39.7 1.93 4.39 1.11 8. 1.08 52.010.6 39.0 2.00 4.33 19. 1.08 55.8 10.2 42.4 1.74 4.66 5. 1.07 56.2 11.1 41.5 1.97 4.55 7. 1.06 53.9 11.2 41.7 1.78 4.48 10.1 1.06 39.0 2.094.36 52.03.75 57.1 10.8 42.3 1.85 4.70 Average.... 53.8 10.9 40.0 1.95 4.43 Type C-Intermediate 2..... 11.3 39.5 4.35 1.28 54.1 1.84 9..... 1.26 58.211.3 40.5 2.154.5516. 1.26 55.7 10.8 41.6 1.95 4.70 4..... 1.23 56.1 11.5 40.6 2.18 4.41 11. 1.22 58.211.5 42.6 1.97 4.51 10.8 40.0 1.88 4.40 1.20 55.7 5. 11.3 41.4 2.044.54 1.19 58.012. 1.18 55.110.241.3 1.86 4.53 15. 1.18 55.011.1 41.0 1.82 4.42 1.72 4.96 6. 1.15 58.110.2 46.9 8. 1.15 57.3 10.6 43.8 2.08 4.69 2.16 4.38 10. 1.13 57.0 11.1 42.6 2.01 4.73 1.09 58.511.1 44.4 19. 1.08 59.1 11.3 44.5 1.83 4.91 7. 1.07 57.2 11.7 40.5 2.014.52 Ave:age 56.9 11.1 42.1 1.95 4.57 Type D-Rangy 4.76 16. 1.20 56.9 11.6 42.7 1.96 20. -1.2055.411.5 40.5 2.114.57 5. 1.09 54.6 11.1 38.1 2.17 4.43 2.424.64 2. 1.04 56.7 11.6 41.9 2.14 4.89 1. 1.0258.410.3 45.34. 1.01 54.1 11.4 39.2 2.43 4.37 4.88 1.01 59.7 11.4 44.6 2.0614..... .99 63.6 11.6 46.72.415.10 7.97 56.011.6 39.7 2.334.36 3.94 53.211.3 40.3 2.004.34 15..... .91 52.111.8 36.9 2.194.13 19.90 54.9 12.3 39.7 2.504.47 9.... .88 56.8 11.9 39.8 2.594.516.82 54.7 11.0 41.3 2.144.52.76 54.6 42.0 1.83 4.48 18..... 10.5 56.111.4 41.22.224.56 Average.... Average of 55.6 41.1 2.044.52all types 11.1

the more rapid gains and would contain, therefore, more protein and mineral matter and less fat, dry matter, and energy. A study of the table, however, shows that this was not the case. There appears to be no progressive change in the percentage of any of the analyzed constituents or in the gross energy of the gain per gram with progressively decreasing rates of growth. Also, a comparison of the rates of gain with the composition of the carcasses of the fat pigs reveals no appreciable correlation.

No considerable average differences exist among the three types of pigs in the composition of their gains. A distinct tho slight increase in the percentage of ash in the gains of the Rangy pigs as compared with the other types seems to exist, while the gains of the Chuffy pigs were somewhat more watery and lower in fat and energy than those of the Intermediate type in particular.

The differences, however, are so small that the average composition for the entire 45 pigs may be considered as applying to Poland China pigs in general. It may be said, therefore, that during growth and fattening from about 70 to 225 pounds, pigs of this breed put on gains containing, on the average, 56 percent of dry matter, 11 percent of crude protein $(N \ge 6.0)^1$, 41 percent of fat, and 2 percent of mineral matter, and possessing an energy value of 4.5 calories per gram, or 2.1 therms per pound.

Hence it may be computed that for pigs gaining 1 pound a day, the average daily increment in protein would approximate .11 pound, in mineral matter (ash) .021 pound, and in gross energy 2.1 therms. For daily gains of 1.5 pounds per day, representing more nearly the maximum rate of gain, the daily increments would be .17 pound of protein, .031 pound of mineral matter (ash), and 3.1 therms of gross energy.

These figures may be taken to measure the requirements of these nutrients for growth and fattening, tho obviously they cannot be covered by equal amounts of digestible food nutrients unless allowance is made for the losses of the latter in the course of their assimilation. On the assumption that the average biological value of the protein² of good farm rations may be taken to be 60, and that the metabolizable energy of feed is utilized to the extent of 75 percent, then it may be computed that for pigs gaining at rates of 1 pound and 1.5 pounds daily the requirements of digestible protein for growth and fattening would approximate .18 and .28 pounds respectively, and the requirements of metabolizable energy 2.8 and 4.1 therms respectively. These requirements are, of course, to be added to the mainte-

 $^{^{1}}$ If the factor 6.25 is used, the average percentage of crude protein increases from 11.1 to 11.6.

^a The biological value of a protein is the maximum percentage of the digestible protein that is available for the maintenance and growth of animals.

nance requirements, which would vary with the weight of the animal. The question of the total food requirements of growing pigs will be considered in a later section of the bulletin.

The nutritive ratio of a gain containing .11 pound of protein and 2.1 therms of energy per pound is 1 to 9, and that of the estimated quantities of digestible protein and metabolizable energy required to produce a gain of this character would be 1 to 7.4. Apparently a fairly wide nutritive ratio is consistent with maximum growth.

Distribution of Added Nutrients in the Carcass. Another question of practical significance concerning the growth and fattening of farm animals relates to the distribution of the added nutrients among the different anatomical divisions of the body. From the weights of samples of the control and the fat pigs, and from the percentage composition of these samples, the distribution of nutrients among the more important divisions of the carcass may be computed. Similar computations may also be made relative to the gains in nutrients. The results of such computations for dry matter, crude protein, ash, and gross energy make up Table 30.

In the carcasses of both control and fat pigs the greater part of the dry substance was contained in the lean and fat tissues of the dressed carcass, and this is even more true of the gains of dry substance, of which the edible meat of the dressed carcass contained an average of 74 percent. The crude protein was more evenly distributed thru the carcass, tho of the gain in protein in the fat pigs an average of almost 60 percent (57.7) was added to the boneless meat of the Seventy-five to 80 percent of the mineral matter in dressed carcass. the carcasses was located in the bones, and 80 percent of the mineral matter added during growth was deposited in the skeleton. The lean of the carcass contained 12 to 13 percent of its mineral matter and received over 13 percent of the added minerals. As regards gross energy, even in the control pigs the fatty tissues contained more than any other sample, namely, 35 to 47 percent; in the fat pigs 50 to 53 percent of the total energy content of the carcass was located in the fat sample. Of the gains of energy, 54 percent went to the adipose tissue and over 24 percent to the lean meat on the carcass, a total of 78 percent for the boneless meat of the dressed carcass.

Thus during growth and fattening 74 percent of the increment in dry matter, 58 percent of the increment in protein, 14 percent of the increment in mineral matter, and 78 percent of the increment in gross energy were added to the boneless meat of the carcass, economically the most important part of the animal.

Relation of Feed Consumed Above Maintenance to Gross Energy of Gains. The provisions in the plan of this experiment for the individual feeding of the pigs, for the determination of the maintenance requirements of feed, and for the slaughter and analysis of

	D	Dry substance	ece	Ü	Crude protein	ain		Ash		0	Gross energy	v
Sample	Control pigs	Fat pigs	Gains	Control pigs	Fat pigs	Gains	Control pigs	Fat pigs	Gnins	Control	Fat pigs	Gains
			Ty	Type B-Chuffy	uffy							
Fnt	40.0	48.2	50.6	10.7	10.0	9.7	2.7	2.1	1.5	46.9	53.4	55.3
Lean	25.4	24.9	24.8	30.2	47.1	50.7	11.5	13.0	13.9	24.7	23.4	23.2
Bone	16.1	10.9	9.3	19.5	14.9	12.8	75.2	78.4	80.3	11.1	1.1	5.8
Skin	6.3	0.7	6.9	9.1	12.3	13.7	1.0	.5	0.	6.3	7.3	7.7
Offalt	8.4	7.8	7.7	14.5	0.0	7.9	4.9	3.7	3.6	7.7	7.6	7.4
			Type	Type C—Intermediate	nediate							
Pat	35.0	45.6	48.0	9.8	8.3	7.6	2.7	1.6	1.	42.0	52.1	54.3
Lenn	28.5	27.6	27.4	42.5	47.3	40.1	13.0	13.3	13.1	28.3	25.4	24.8
Bone	17.7	11.0	9.5	19.3	15.5	13.9	75.6	7.87	80.0	12.1	7.6	6.8
Skin	0.2	7.0	7.3	7.8	14.1	16.6	6.	5.	0.	6.3	0.0	6.8
Offalt	8 4	7.3	7.0	13.4	9.2	7.5	4.8	3.6	3.4	7.5	7.4	7.4
			Ty	Type D-Rangy	ngy							
Fut.	29.0	43.0	46.0	9.4	8.3	7.7	2.3	1.5	9.	35.5	49.6	52.4
Lenn	38.0	27.6	25.4	40.8	46.2	48.3	12.3	13.2	13.6	28.0	25.6	25.0
Bone	20.8	12.6	10.8	20.2	16.8	15.5	75.5	79.4	80.0	15.4	8.5	7.1
Skin	7.9	7.9	8.0	9.2	13.7	15.5	1.1	5.	0.	8.3	8.0	8.0
Official	00	7 4	7 1	12 7	0 0	0 0		2 0	2 7	. 0	C 12	1

BULLETIN NO. 323

both control and fat pigs render possible a comparison of feed consumed above the estimated maintenance requirements with the composition of the gains put on. The ration fed can be considered liberal in its content of protein and mineral matter and adequate, in all probability, in its content of the necessary vitamins. Hence the amounts required for maintenance were determined by the net energy content of the ration, and the gross energy of the gains put on was determined by the amounts of net energy consumed above the maintenance requirements. On the other hand, the relation of protein and mineral matter consumed to the protein and mineral matter of the gains is not highly significant even if a maintenance requirement of protein and minerals be deducted from the intakes since it is probable that in all cases an excess of these nutrients was consumed.

The utilization of the feed consumed, or of the feed energy consumed, would be best expressed by relating it to the sum of (1) the energy expended in life and activity and (2) the energy stored during growth and fattening. Unfortunately the data secured in this experiment do not permit an expression of these two factors in terms of energy or in any common terms. Hence the two cannot be summated. An alternative method of procedure is to determine the energy expense of the pigs in terms of feed, as was done in the maintenance experiments, deduct the estimated feed used for this purpose from the total feed consumed, and relate the excess feed to the gross energy of the gains secured.

This method assumes, somewhat gratuitously, not only that the basal metabolism and the activity of the maintenance pigs per unit of weight was equal to that of the fattening pigs, but also that the utilization of feed energy for these purposes is not affected by the level of feeding, that is, by the feed eonsumption per unit of weight. Admittedly no evidence ean be offered for the essential correctness of either assumption; in fact there are good reasons for believing that the latter assumption is not true, tho how greatly it diverges from the truth cannot at present be said. However, since this method is the only one that can be used under the prevailing circumstances, it has been applied to the data at hand in Tables 31, 32, and 33.

The logic of the method can probably be best explained by following the calculations for one pig. Pig 1 of the Chuffy type in 129 days of feeding increased in weight from 73 to 230 pounds, making a total gain of 157 pounds, this gain containing 284 therms of gross energy. The total feed consumption was 632 pounds. The estimate of the amount of feed used for maintenance is based on three values: (1) the average weight of the pig during the feeding period, 143 pounds, obtained by averaging all of the weekly weights; (2) the average daily feed requirement per 100 pounds live weight (weight ratio), 1.41 pounds, obtained by averaging the type averages for the two 1929]

TABLE 31.-NET ENERGY COMPUTATIONS FOR TYPE B, CHUFFY PIGS: FIRST EXPERIMENT

								-	-	-	-				
Pig No.	1	8		4	εÇ	2	- 00	6	10	12	15	16	17	18	19
	ibs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.		lbs.						
Final weight	230	225	218	220	225	224	223	223	228	220	217	223	232	229	231
Initial weight	73	75	72	59	62	72	68		26	68	65	11	26	65	22
Gain	157	150	146	161	163	152	155	-	152	152	152	152	156	164	154
Average weight	143	141	113	124	128	139	129		135	131	129	130	138	130	139
Days on experiment	(129)	(129)	(194)	(137)	(131)	(143)	(143)	(143)	(137)	(129)	(143)	(137)	(137)	(137)	(143)
Maintenance feed per day Per 100 pounds	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41
Per head	2.02	1.99	1.59	1.75	1.80	1.96	1.82	1.78	1.90	1.85	1.82	1.83	1.95		1.96
Total feed	632	577	703	587	506	621	580	602	589	595	582	568	587	3	610
Total feed for maintenance	261	257	308	240	272	280	260	255	260	239	260	251	267	251	280
tenance.	371	320	395	347	324	341	320	347	329	356	322	317	320	356	330
	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms	therms
Gross energy of gains	284	321	310	294	337	309	303	339	292	309	301	303	309	340	326
Net energy of feed per 100 pounds	22	100	78	85	104	91	95	98	89	87	93	96	26	96	66

-	2		5	
÷.,	5	z		
- 19	4	۰	ş	

Mar.

Pile Not	28	+	•		4	ZU		101	=	12	11	11	91	<u>a</u>	-
	the	the	lha.	Ites	the.	the.	lin.	the	His.	the	Ihe.	the.	the	Hin	the
Filmi wedati	2011	166	0116	1000	020	666	121	615	230	220	230	048	2361	122	# 2
Initial weight	20	0P	117	00	98	14	11U	14	11	M	194	10	NA NA	14	120
tinta.	17.1	100	113.3	107	102	194	102	142	108	143	141	100	102	173	160
Average weight	125	1112	183	130	1112	130	127	110	188	120	180	183	144	123	124
իսչը ոս ոչկոսիսուի	(181)	(150)	(181)	(197)	(191)	(181)	(170)	([143])	(1)8(1)	(181)	(193)	(183)	(120)	(1441)	(143)
Myhtenning food par ilsv															
Per [10] munda	R					131									
Per head	10 1	1.00	1.01	1, 63			1.04					1.001			
Tutal lord	177	000	MM	1110	132	670	070	010	CH0	000	080	1999	674	124	114
Todal feed for mainlemments.	2017	(HUR	16.6	888	1412	216	11411	808	41E	MIN	226	022	MIN	234	222
Telp food communed afners matter	11,11	309	040	374	0.66	BAN	171	418	040	NUN	028	410	900	490	144
	11.000		the second	the second	the second	the second	there are a	thermos	there are	the same	these may	thermo	therms	they are	Harrison
discontant of andor	344	1444	1340	1457	0.90	Millin .					1940	_	343	374	
Nuclear and from the the test of the	-	01	147	an a	-	141	Rids	44	A.	10	643	12.14	M	70	2.1

Ha Not	-	29 4	200	-	ų.	ų	8-	đ	18	-	15	10	#	ñŧ	нğ
	11.4	the.	the	the.	144	His.	the.	tha.	164.	the.	184.	144	144	\$ face	144
Press herdedict	010	633	1100	1919	1121	1940	930	999	1994	185	NAN N	1926	100	1116	16.6
tratities to actual the	Hel.	- UN	14	14	10	60	00	66	70	**	56	60	A II	194	ini
	181	104	No.	176	146	141	147	163	168	1 /101	174	168	104	1.64	195
A verteight weight	13	184	121	124	198	116	180	187	196	195	114	190	113	199	1 BH
a in the sequentiant	(164)	(164)	(174)	(174)	(191)	(808)	(173)	(173)	(181)	(161)	(181)	(181)	(112.21)	(173)	11611
Matutanana taat per day Parta da amada	25 ·	1.81	18	1	70		1.81	1.81	1.21	1.81	1.81	1.41	1.81	in a	
fait lasted	1.66	. 13	1.64	110	1.0.1	1.61	1. 80	114	1.64	1.64	1.411	1.67	1.40	1,00	1 11.
little tool .	1181	t fait	144	HIN	000	100	(10)	688	164	244	706	109	Int	197	666
fertust formel face transitiet with the second		949	545	1146	14	919	919	910	110	1	1147	613	មត្តម	118	2
1 1144 10-11 1-14414414991 414444 41447	174	ATA	Num	N N N	1181	âVâ	876	996	110	191	470	386	40.9	hih	319
	\$ 44 + 44 H	14.4.414	(herma)	+h=++++	A 144 144 14	HAFFHIA	14 million	ther we	I her His	AM-144	APP HAR		there and	A 444 444 4	1 A 14 14 14
Constant addaturgies auf Berfile	F6H	515	194	846		***	100	118	141	111	nge	887 113	818	110	196

TAHLE HI. - NET ENERGY COMPUTATIONS FOR TYPE D, RANGY PIGSI FURST EXPERIMENT

TAT.

groups of maintenance page see Tables 15 and 191; and (3) the number of days on experiment, 129. For this page the average daily maintenance requirement is thus estimated at 2.02 pounds of feed and the total at 261 pounds. Hence the amount of feed consumed above maintenance was 632 - 261 = 371 pounds. Since this amount of excess feed produced a gain of 284 therms of energy in the form of body substance, the net energy of the feed per 100 pounds is equal to $284 \pm 3.71 = 77$ therms.

For the 15 Chuffy pigs the average net energy value of the feed was 92.3 therms per 100 pounds, for the Intermediate pigs it was 88.7 therms, and for the Rangy pigs, 87.4 therms. However, the average differences between types cannot be considered significant in view of the rather wide range of the individual estimates within each type. The average for the 45 pigs was 89.5 therms per 100 pounds of feed.

A net energy value of \$9.5 therms per 100 pounds is much lower than would be expected from Armsby's² estimates of the net energy values of corn, tankage, and middlings for pigs. The average ration consumed by these pigs contained 76 percent of corn. 8 percent of tankage, and 16 percent of wheat middlings. Taking Armsby's values of 120 therms per 100 pounds for corn, 109 therms for tankage, and 104 therms for middlings, the net energy value of the ration should be 116.6 therms per 100 pounds instead of \$9.5 therms, as computed from the results of this experiment. A discussion of this difference will be reserved until the results of the next year's experiment are considered.

SECOND EXPERIMENT

The chemical work in the second year's experiment (1923-24) was concerned with the Very Chuffy type of Poland China piz (Type A), the Intermediate type (Type C), and the Rangy type (Type D). All the pigs were farrowed in March except a very small minority which were farrowed in hate February.

COMPOSITION OF THE CONTROL PIGS

Since the Very Chuffy pizs were to be started on experimental feeding as they individually reached a weight of approximately 55 pounds, and the Intermediate and Rangy pizs as they reached an approximate weight of 70 pounds, the control pigs of the three types were sharinthered for analysis at approximately these weights. Five pigs of the Rangy type were sharintered on July 3, five of the Intermediate type on July 10, and five of the Very Chuffy type on July 17.

In order to reduce as far as providently the amount of analytical work in this experiment. All pars analyted were divided into two samples. Or the dry of shorthored the dressed encodes was prepared

AUTHORY H. P. The number of fair annual Table 7 The

Pig Na.1	e Linne vi	wight	Weight of contents of allmentary tract	Employ	weight	Contents of alimentary tractin gen- cent of live weight
		T	ope L—Tery Chui	Ex		
	The.	Ban.	Din.	Uline.	Mages.	1
10	Tel .#	246.1	些	亚玉	24: 11	王.田
145	577. CB	26.1	A.3	现志	CTRE-	M.E
19	WIL 7	235.00	£6i	41fi.11	20.9	Sh.D
14	TR. E	7年 平	#.II	H.3	THE TE	
25	40900	An (P)	2.4	₩ſi.#	2n .n	五里
Average	邪.6	I #?	4.2	+01L#	200.44	T.19
		Ty	pe C—Internedia	ite		
3	0.76	300.2	6.5	62.A	295.1	1.5
21	201.99	(111) (P)	3.7	10.3	30.5	5.0
1070	ZB.B	319 D	6. F	相思悉	29.4	素油
<u>11</u>	68.9	30.2	5.2	MR.T	235.9	7.6
14:	776.66	34.3	张 .香	HILL P	MA.S	<u>11.4</u>
Everage	7711.45	32.1)	5.7	HE F	201.4	ALL A
			Type D-Range			
IT	(ff).3	36.4	1 2.9 ⁽¹	46.X	30h.11	私愿
141	TAN	348.38	5 1.92	17.46	381.7	4.B
EK	79.7	3年.季	5.6	772.38	THE E	· Th
4	18.3	311.2	5.4	相談に差	T. AL	7.3
25	178. U	335.9	J. B	明机型	30.4	1 4
Everage.	72.6	315 G.	¥	10.5	30.5	1.0

TABLE 34.—LIVE WEIGHES AND EAPTY WEIGHES OF THE CONTROL PIGE, AND WEIGHES AND PERCENTAGES OF "FILL" SECOND EXPERIMENT

"The sex of these pups was not recorded.

Norm.—The Type A gags were shaughtered on fully D_{a}^{*} , the Type B gags on fully D_{a}^{*} and the Type D gags on fully π .

in the usual way, divided into halves, weighed, and taken to the refrigerator. The remainder of the carcass, with the exception of the hair, scurf, and toenails, was weighed, ground, sampled, and analyzed together. This was called the "offial sample" and consisted mainly of the blood and viscera.

When the carcass had been chilled for several days, both halves were reweighed to determine the shrink in storage, and the right half was divided by knife into skin, bean, fat, and bone. Each of these divisions was weighed and ground separately, after which identical convenient aliquots from each were composited into one sample for analysis.

The average dry weight of hair, sourd, and tuenalls from a number of animals at each slaughter weight was determined, and by applying

BULLETIN No. 323

			LATI	CRUMENT			
Pig No. Live 0			E	Pressed carea	8		
Pig No.	Pig No. weight	Offal	Lean	Fat	Skin	Bone	Total
			Туре А-	-Very Chuffy			
	kge	hju	kps	kpr	laps	kpr	kps
	26.1	4.88	8.82	4.32	1.36	2.90	17.40
12	25.1	5.05	8.40	3.76	1.24	3.22	16.62
13	23.0	5.22	6.54	3.08	1.32	2.82	14.05
24	24.2	5.20	7.12	4.74	.96	2.78	15.60
25	22.2	4.55	7.78	3.15	1.24	2.94	15.14
Average	24.3	4.99	7.80	3.82	1.22	2.94	15.76
Average			1	1			
in percent			(49.5)	(24.2)	(7.7)	(18.7)	(100.0)
			Type C-	Intermediate			
3	30.2	6.15	9.16	6.22	1.58	3.75	20.74
21	32.2	5.75	10.36	6.98	1.46	3.84	22.64
baba	32.2	6.52	10.05	6.46	1.70	3.76	22.00
13	31.3	6.30	9.72	5.70	1.62	3.66	20.70
34	34.3	6.35	9.95	6.40	1.66	4.06	22.10
Average	32.0	6.23	9.86	6.36	1.60	3.52	21.64
Average							
in percent			(45.6)	(29.4)	(7.4)	(17.7)	(100.0)
			Туре	D-Rangy			
21	31.4	6.01	10.66	6.15	1.54	3.94	22.63
22	33.3	6.66	11.60	5.25	1.76	4.56	23.20
13	34.5	6.45	12.30	5.46	2.10	4.38	24.44
4	31.2	5.42	11.54	3.60	1.50	4.20	21.44
25	33.9	6.19	10.64	6.42	1.95	4.10	23.12
Average	32.9	6.15	11.40	5.40	1.9)	4.25	22.94
Average							
in percent!			(49.7)	(23.5)	(5.3)	(15.6)	(100.0)

TABLE 35.—WEIGHTS OF PARTS OF CARCASSES OF THE CONTROL PIGS: SECOND EXPERIMENT

average analyses to this material, obtained in the experiment of the preceding year, the weights of nutrients per pig were estimated.

The above general description of the preparation of samples in the second experiment apply to the handling of the control pigs except for a further simplification. Instead of analyzing the offal samples individually, they were composited for each type.

The slaughter weights of each of the control pigs and the weights and percentages of "fill" are collected in Table 34. The contents of

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A-Very Cl	huffy		
	pct.	pct.	pct.	pet.	em. cals.
21	48.20	14.64	28.24	3.16	3 452
22	45.39	14.82	25.98	3.31	3 292
23	50.12	12.78	33.04	3.47	3 822
24	50.19	12.72	31.19	3.23	3 843
25	40.85	14.58	22.80	3.33	2 910
Average	46.95	13.91	28.25	3.30	3 464
		Type C-Interme	diate		-
3	49.84	12.66	33.07	2.94	3 805
21	51.40	12.66	33.58	2.77	3 983
22	50.56	12.36	33.15	2.85	3 615
23	41.94	12.54	23.00	3.15	2 989
24	48.79	13.56	32.02	3.40	3 734
Average	48.51	12.76	30.96	3.02	3 625
		Type D-Ran	ស		
21	49.77	12.78	33.84	3.15	3 916
22	55.58	13.08	33.00	3.24	3 930
23	47.08	12.60	30.49	2.91	3 550
24	43.72	14.58	24.04	3.42	3 177
25	52.30	12.00	35.98	3.27	4 187
Average	49.69	13.01	31.47	3.20	3 752
Average of all types	48.38	13.23	30.23	3.17	3 614

TABLE 36.—PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE CONTROL PIGS: SECOND EXPERIMENT

535

the alimentary tract represent a fast of approximately 18 hours. The average percentage "fill" for all the control pigs was 7.5.

From the percentages of separated fat in the dressed carcass (Table 35) it appears that the pigs of the Intermediate type were in the best condition at the beginning of the experiment. The percentages of lean, fat, skin, and bone were surprisingly similar for the Very Chuffy and Rangy pigs.

The results of the chemical analysis of the dressed carcasses for the pigs of the different types (Table 36) do not indicate any considerable differences in fat content. According to these values the Very Chuffy pigs were in general the least fat and the highest in protein and ash. With these samples, as with all others in the two type experiments, the gross energy was determined directly in the bomb calorimeter.

The chemical analyses of the composite offal samples for the three types of control pigs are given in Table 37.

Туре	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
Chuffy	21.36	12.84	6.63	1.00	1 440
Intermediate	28.26	13.02	8.23	.91	1 609
Rangy	23.82	13.14	7.41	.92	1 551

TABLE 37.—PERCENTAGE COMPOSITION OF COMPOSITE OFFAL SAMPLES FROM THE CONTROL PIGS: SECOND EXPERIMENT

The total amounts of nutrients found in all samples from the control pigs have been expressed in Table 38 as percentages of the live weights of the pigs. The average percentages for the different types given in this table have been used in later computations of the initial composition of the pigs slaughtered at larger weights in arriving at estimates of the composition of the gains put on.

TABLE 38.—PERCENTAGE COMPOSITION AND ENERGY CONTENT OF THE LIVE CONTROL PIGS: SECOND EXPERIMENT

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A—Very C	huffy		
	pct.	pct.	pct.	pct.	sm. cals.
21	37.31	12.71	20.08	2.34	2 603
22	34.16	12.41	17.85	2.34	2 404
23	36.80	11.31	21.75	2.39	2 696
24	38.17	11.48	21.52	2.31	2 816
25	33.42	13.14	16.87	2.52	2 309
Average	35.97	12.21	19.61	2.38	2 566
		Type C—Interm	ediate		
3	40.62	11.84	24.44	2.25	2 973
21	41.73	11.69	25.09	2.15	3 117
22	40.71	11.51	24.29	2.17	2 818
23	33.99	11.40	16.90	2.30	2 331
24	37.18	11.58	22.21	2.39	2 732
Average	38.85	11.60	22.59	2.25	2 794
		Type D-Ran	gy		
21	40.94	12.19	25.79	2.48	3 145
22	43.94	12.18	24.45	2.46	3 071
23	38.00	11.73	22.79	2.24	2 807
24	34.73	12.80	17.80	2.53	2 482
25	40.51	11.01	25.91	2.45	3 166
Average	39.62	11.98	23.35	2.43	2 934
Average of all types	38.15	11.93	21.85	2.35	2 765

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

The average composition of the live control pigs was: dry substance, 38.15 percent; crude protein, 11.93 percent; fat, 21.85 percent; ash, 2.35 percent; and gross energy, 2.76 calories per gram. Allowing an average "fill" of 7.49 percent would place the average water content at 54.36 percent. The average composition, on the basis of the empty weight, would be: water, 58.76; crude protein, 12.90; fat, 23.62; ash, 2.54; and gross energy, 3.00 calories per gram.

The control pigs in this experiment contained somewhat more fat than those of the preceding year, 21.85 as compared with 18.69 percent. On the fat-free, live-weight basis the averages for the two years were as follows:

	Dry		
	substance	Protein	Ash
	percent	percent	percent
Control pigs of first experiment	18.83	14.28	2.80
Control pigs of second experiment	20.86	15.27	3.01

THE MAINTENANCE EXPERIMENTS

Maintenance trials were run on a number of pigs in each of the three types at the initial weight of 55 to 70 pounds and at the market weight of 225 pounds. In addition to the feeding experiments to determine the amount of feed required for the maintenance of weight, digestion trials were run upon some of the pigs in each of the two maintenance groups. Besides the ordinary determinations on feed and feces, these digestion trials included gross energy determinations upon feed, feces, and urine, permitting the estimation of the metabolizable energy of the ration.

Since the maintenance experiments were planned only with reference to estimations of the feed utilization of the 225-pound fat pigs, the maintenance pigs were fed a ration approximating closely in composition the average ration that these fat pigs consumed during their fattening period. This average ration contained 78.5 percent of shelled corn, 6.6 percent of tankage, 13.2 percent of wheat middlings, and 1.7 percent of alfalfa meal. The corn was fed whole and the other constituents as a ground mixture. The average percentage composition of the feeds used thru the maintenance and fattening periods of the second experiment is summarized in Table 39.

The young maintenance pigs of the Very Chuffy type received daily 6.5 ounces of whole corn and 1.5 ounces of a mixture containing 8 parts of middlings, 4 of tankage, and 1 of alfalfa meal. The Intermediate and Rangy pigs averaging somewhat larger in weight, received daily 7 ounces of corn and 2 ounces of the mixture. The fat maintenance pigs received varying amounts of corn and the same mixture, averaging closely 4 parts of the former to 1 of the latter.

It was hoped that the maintenance feeding could continue until each pig was at constant weight on constant feed for eight weeks. BULLETIN NO. 323

	Dry	Crude					Gross	energy
Feed	sub- stance	protein	N-free extract	Crude fiber	Fat	Ash	Per 100 pounds	Per gram
	pct.	pct.	pct.	pct.	pct.	pct.	therms	sm. cals.
Corn	84.68	8.86	70.07	2.76	1.65	1.34	169.14	3 729
Tankage	89.87	56.13	5.69	2.86	4.51	20.68	178.31	3 931
Middlings	87.18	16.13	59.62	4.70	2.83	3.90	180.03	3 969
Alfalfa meal	85.72	15.58	31.67	28.18	1.29	9.00	175.36	3 866

TABLE 39.—AVERAGE CHEMICAL COMPOSITION OF FEEDS USED THRUOUT THE SECOND EXPERIMENT

With the larger pigs, whose maintenance feeding started in December and continued into March, this ideal was realized; but with the younger maintenance pigs, whose feeding started July 21 and in some

TABLE 40.—AVERAGE FEEDING RESULTS OF THE MAINTENANCE TRIALS ON THE
YOUNG PIGS: SECOND EXPERIMENT

Pig No. and sex ¹	Initial body weight	Maintenance body weight	Average daily feed	Feed per 100 pounds body weight
	Type A—Ve	ery Chuffy		
	lbs.	lbs.	lbs.	lbs.
1b	54	47	. 500	1.06
28	52	44.5	. 500	1.12
38	54	43	. 500	1.16
4	56	44	. 500	1.14
5	55	44	.500	1.14
Average	54	44.5	. 500	1.12
	Type C—In	termediate		
6s	75	62	.562	.91
7b	79	62	. 562	.91
88	72	61	.562	.92
98	73	60	. 562	.94
0	71	60	.562	.94
Average	74	61	. 562	.92
	Type D-	-Rangy		
18	68	58	. 562	.97
2b	. 69	57	. 562	.99
38	69	58	.562	.97
4b	73	59	. 562	.95
5b	71	58	.562	.97
Average	70	. 58	. 562	.97

 $^{1}s = sow; b = barrow.$ ²Computed by the simple weight ratio.

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No. and sex	Initial body weight	Maintenance body weight	Average daily feed	Feed per 100 pounds body weight
1	Type A—Ve	ery Chuffy		
	lbs.	lbs.	lbs.	lbs.
10s	217	211	2.20	1.04
12	242	239	2.50	1.05
14b	221	218	2.26	1.04
Average	240	233	2.32	1.04
	Type C—In	termediate		
6	223	228	2.23	.98
8b	260	263	2.64	1.00
11 –	240	242	2.40	.99
14b	241	237	2.56	1.08
Average	241	242	2.46	1.01
	Type D-	-Rangy		
4b	269	268	2.76	1.03
7s	229	226	2.42	1.07
2	243	241	2.43	1.01
8b	218	219	2.28	1.04
l9b	256	250	2.63	. 1.05
Average	243	241	2.50	1.04

TABLE 41.—AVERAGE FEEDING RESULTS OF THE MAINTENANCE TRIAL ON THE FAT PIGS: SECOND EXPERIMENT

¹Computed by the simple weight ratio.

cases as late as August 25, it was found that in October, when the weather became cold and an epidemic of respiratory infection involved practically all the pigs, their weights decreased on amounts of feed sufficient for maintenance during the warmer season. Hence for some of these pigs constant weight was maintained for only four or five weeks.

The average data for the two maintenance feeding trials are given in Tables 40 and 41.

The results of these feeding trials indicate, in agreement with the results obtained the preceding year, that the Intermediate-type pigs required less feed for the maintenance of body weight than did the pigs of the other types, probably because of a smaller degree of activity. The pigs of the Rangy type rank next in this respect, while the Very Chuffy pigs, like the Chuffy pigs of the preceding year, were the least economical.

Changes in Composition of Young Maintenance Pigs. Feeding trials alone, however, cannot give reliable information of maintenance energy requirements because, altho body weight is maintained, the

Bulletin No. 323

energy stored in the body may be considerably diminished. In the first experiment information on this point was obtained by slaughtering the maintenance pigs at the end of their period of experimental feeding and examining the carcasses by chemical methods. A comparison of the composition of these carcasses with that of the control pigs revealed surprisingly large losses of energy during the period of maintenance feeding. The maintenance trials of the second experiment were also planned to include such examinations of the carcasses of the maintenance pigs, but unfortunately it was not found to be expedient to carry out this work on the young maintenance pigs because of the prevalence of respiratory infection during October. Their feeding trials, therefore, altho remarkably uniform in the results obtained, cannot be used in the estimation of the true maintenance requirements. Attention may be called, however, to the remarkably good agreement between the results shown in Table 40 and those given in Table 7, relating to the young maintenance pigs of the preceding experiment.

Changes in Composition of Fat Maintenance Pigs. The 225pound maintenance pigs were slaughtered and analyzed according to the routine explained above as applying to all pigs in the second ex-

Pig No.	Live	weight	Weight of fill	Empty weight		Percent of fill			
Type A—Very Chuffy									
	lbs.	kgs.	lbs.	lbs.	kgs.				
10	209.4	95.0	4.0	205.4	93.2	1.9			
14	214.2	97.2	5.7	208.5	94.6	2.7			
Average	211.8	96.1	4.9	207.0	93.9	2.3			
		Type C-	-Intermediate						
6	234.6	106.4	4.7	229.9	104.3	2.0			
8	258.1	117.1	3.5	254.6	115.5	1.4			
11	243.7	110.5	7.0	236.7	107.4	2.9			
14	238.3	108.1	8.7	229.6	104.1	3.7			
Average	243.7	110.5	6.0	237.7	107.8	2.5			
		Type	D—Rangy						
4	270.8	122.8	7.5	263.3	119.4	2.8			
7	227.6	103.2	9.7	217.9	98.8	4.2			
2	236.4	107.2	12.0	224.4	101.8	5.1			
18	214.1	97.1	6.1	208.0	94.3	2.8			
19	251.6	114.1	8.7	242.9	110.2	3.5			
Average	240.1	105.9	8.8	231.3	104.9	3.7			

TABLE 42.—LIVE WEIGHTS AND EMPTY WEIGHTS OF THE FAT MAINTENANCE PIGS AND WEIGHTS OF FILL: SECOND EXPERIMENT

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Offal	Dressed carcass							
116.10.	UEAI	Lean	Fat	Skin	Bone	Total			
		Type A-	-Very Chuffy						
	kgs.	kgs.	kge.	kgs.	kgs.	kge.			
0	9.37	38.88	25.80	3.54	8.00	76.22			
4	10.03	39.72	28.54	3.84	9.74	81.84			
Average	9.70	39.30	. 27.18	3.70	8.88	79.04			
Average in percent	*****	(49.7)	(34.4)	(4.7)	(11.2)	(100.00)			
		Туре С-	Intermediate						
6	11.59	40.36	31.92	4.02	8.82	\$5.12			
S	11.48	47.60	34.68	4.14	11.56	97.98			
1	12.16	44.26	32.78	3.84	10.64	91.52			
4	11.91	41.12	28.14	6.18	12.58	\$8.02			
Average	11.79	43.34	31.85	4.54	10.90	90.66			
Average in percent		(47.8)	(35.2)	(5.1)	(12.0)	(100.00)			
		Туре	D-Rangy						
4	11.76	49.28	24.76	5.14	12.66	91.84			
7	11.12	45.60	19.34	5.98	12.94	\$3.86			
2	13.09	41.92	25.46	4.22	11.08	\$5.68			
8	10.86	36.40	28.96	4.15	10.44	79.98			
9	13.06	48.24	28.96	5.74	12.72	95.66			
Average	11.95	44.28	26.10	5.06	11.96	\$7.40			
Average in percent		(50.7)	(29.9)	(5.8)	(13.7)	(100.00)			

TABLE 43.—WEIGHTS OF PARTS OF CARCASSES OF THE FAT MAINTENANCE PIGS: Second Experiment

periment. The essential weights and chemical data are given in Tables 42 to 46. Because of their relative insignificance, only the average analyses of the offal samples for the three types of pigs are reported.

The marked difference in "fill" between the fat pigs weighing about 225 pounds that were taken directly from full feed and those that were taken from a maintenance ration is of interest. The average fill of the full-fed pigs was 12.1 pounds and for the maintenance pigs. 7.1 pounds.

A comparison of the percentage composition of the 225-pound pigs killed at the end of their fattening period and those killed after a maintenance period of two or three months does not reveal the large differences noted in the preceding year. For convenience of study the average composition of the dressed carcass, offal, and entire body of the three types and the two groups of pigs are summarized in Table 47.

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A-Very Ch	uffy		-
_	pct.	pct.	pct.	pct.	sm. cals.
10	61.13	13.02	41.09	3.15	4 469
14	59.40	11.88	44.48	2.83	4 810
Average	60.26	12.45	42.79	2.99	4 640
		Type C—Interme	diate		
6	61.69	11.16	47.51	2.88	5 015
8	59.13	12.06	43.88	2.93	4 774
11	61.00	11.64	45.76	2.74	5 809
4	56.11	12.66	40.10	3.28	4 433
Average	59.48	11.88	44.31	2.96	4 758
-		Type D-Rang	sy .		
4	57.62	12.84	40.92	3.29	4 444
7	51.91	13.20	33.97	3.76	3 929
12	57.34	11.94	41.64	3.12	4 713
8	61.89	11.82	46.50	2.66	4 998
9	55.98	12.42	40.33	3.05	4 334
Average	56,95	12.44	40.67	3.18	4 484

TABLE 44.—PERCENTAGE COMPOSI			
CASSES OF THE FAT MAIN	NTENANCE PIGS:	¹ Second Expen	RIMENT

¹Corrected.

Except for a general increase in the ash content and a prevailing increase in protein, the composition of the fat maintenance pigs was quite similar to that of the fat pigs. In particular this similarity holds for the gross energy content, the differences indicated in the table being such as would be expected from the statistical "error of sampling" alone.

Possibly a partial explanation of the absence of marked differences in the fat and energy content of the fat maintenance pigs and of the fat pigs weighing 225 pounds may be found in the fact that in several cases the maintenance pigs were not put upon the maintenance ration

	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
Туре А	30.37	13.14	14.62	1.00	2 289
Туре С	34.15	12.66	18.97	.83	2 573
Type D	33.37	12.47	18.45	.96	2 393

TABLE 45.—AVERAGE PERCENTAGE COMPOSITION OF OFFAL SAMPLES OF THE FAT MAINTENANCE PIGS: SECOND EXPERIMENT

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	\mathbf{Ash}	Gross energ per gram
		Type A—Very Ch	uffy		
	pct.	pct.	pct.	pct.	sm. cals.
10	51.87	11.88	34.09	2.63	3 782
14	53,61	11.48	39.29	2.51	4 331
Average	52.74	11.68	36.69	2.57	4 057
		Type C-Interme	diate		
6	53,05	10.41	39.85	2.40	4 277
8	52.(2	11.48	38.33	2.54	4 228
11	55.21	11.06	40.86	2.37	4 347
14	49.29	11.89	34.36	2.78	3 875
Average	52.54	11.21	38.35	2.52	4 182
		Type D-Rang	y		1.1
4	46.28	10.90	32.14	2.56	3 539
7	45.59	12.30	29.07	3.18	3 428
12	50.29	11.09	35.84	2.62	4 090
18	55.25	11.16	41.05	2,32	4 444
19	50.73	11.94	35.77	2.66	3 890
Average	49.63	11.48	34.77	2.67	3 878

TABLE 46.—PERCENTAGE COMPOSITION OF THE FAT MAINTENANCE PIGS, ON LIVE-WEIGHT BASIS: SECOND EXPERIMENT

at the end of their fattening period; with some pigs several weeks intervened. In this interim considerable weight was put on, particularly by Pig 8 of the Intermediate type and Pigs 4 and 19 of the Rangy type and to a less extent by Pigs 11 and 14 of the Intermediate type and Pig 12 of the Rangy type. In these cases, therefore, it is questionable whether comparison with the 225-pound fat pigs is significant.

Estimates of Feed Required for Maintenance. Correction of the feed records of the fat maintenance pigs for the indicated changes in the energy content of their bodies (Table 47) in a manner similar to that used for the maintenance pigs of the preceding experiment (Table 19) yields the estimates in Table 48. The average daily feed requirements per 100 pounds body weight for the three types were 1.11, .93, and .95 pounds respectively, as compared with 1.21, .98, and 1.23 pounds for the Chuffy, Intermediate, and Rangy pigs in the preceding experiment (Table 19). Considering the Very Chuffy and Chuffy types as comparable in their feed requirements per unit of weight, the agreement between the two experiments is good except for the Rangy type. The fact that the computations for the Rangy pigs from the data of the second experiment may be faulty, as explained

	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	Т	ype A—Very Cl	huffy		
	pct.	pct.	pct.	pct.	sm. cals.
Dressed carcass					
Fat pigs	62.24	9.93	49.21	2.21	4 956
Maintenance pigs	.60.26	12.45	42.79	2.99	4 640
Offal					
Fat pigs	31.50	12.45	15.41	. 83	2 288
Maintenance pigs	30.37	13.14	14.62	1.00	2 289
Live pig					
Fat pigs	51.59	9.37	39.40	1.80	4 070
Maintenance pigs	52.74	11.68	36.69	2.57	4 057
		Type C—Interm	ediate		
Dressed carcass					
Fat pigs	60.64	11.60	45.10	2.72	4 830
Maintenance pigs	59.48	11.88	44.31	2.96	4 758
Offal					
Fat pigs	31.51	12.53	16.22	. 89	2 253
Maintenance pigs	34.15	12.66	18.97	.83	2 573
Live pig					
Fat pigs	51.39	10.89	37.09	2.24	4 053
Maintenance pigs	52.54	11.21	38.35	2.52	4 182
		Type D-Rar	gy ,		
Dressed carcass					
Fat pigs	55.94	12.32	40.23	2.73	4 422
Maintenance pigs	56.95	12.44	40.67	3.18	4 484
Offal					
Fat pigs	29.10	12.98	14.42	.91	2 083
Maintenance pigs	33.37	12.47	18.85	.96	2 393
Live pig					
Fat pigs	47.45	11.57	33.00	2.24	3 710
Maintenance pigs	49.63	11.48	34.77	2.67	3 878

TABLE 47.—COMPARISON OF AVERAGE PERCENTAGE COMPOSITION OF THE 225-POUND FAT PIGS AND OF THE FAT MAINTENANCE PIGS: SECOND EXPERIMENT

above, may account for this discrepancy. Also the fact that in this experiment only two of the fat maintenance pigs of the Very Chuffy type were slaughtered¹ detracts from the significance of the average estimate of this type.

It seems evident, therefore, that the maintenance experiments of the second type were much less successful than those of the first year.

¹ Pig 12 of the Very Chuffy type became sick, lost in weight, and was removed from the experiment.

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

	Initial	Average	Initial	Final	Loss	Total	Feed equiva-	Main-		enance ber day
Pig No.	weight	weight	energy content	energy	of	feed eaten	lent of energy loss ¹	tenanee period	Total	Per 100 pounds body weight ^s
			Т	ype A—V	Very Chu	ffy				
	lbs.	lbs.	therms	therms	therms	lbs.	lbs.	days	lbs.	lbs.
10	217	212	400	359	41	145	31	66	2.67	1.26
14	221	218	408	421	-13	149	10	66	2.11	.97
Average		215	404	390	14					1.11
			Ту	vpe C—I	ntermedi	ate				
6	223	228	410	455	-45	194	34	87	1.84	.81
8	260	262	478	495	-17	230	13	87	2.49	.95
11	240	242	439	480	-41	132	31	55	1.84	.76
14	241	237	443	419	24	187	18	73	2.81	1.19
Average		242	442	462	-20					.93
				Type D-	Rangy					
4	269	268	453	435	18	240	14	87	2.60	.97
7	229	226	385	354	31	177	23	73	2.74	1.21
12	243	241	409	438	-29	134	22	55	2.00	.83
18	218	219	367	431	-64	166	48	73	1.62	.74
19	256	250	427	444	-17	192	13	73	2.45	.98
Average		241	408	420	-12					.95

TABLE 48.—Corrected Feed Requirements of the Fat Maintenance Pigs: Second Experiment

¹Assuming that the metabolizable energy of the ration, 1,331 ealories per pound, is completely utilizable. ²Using the ratio of body weights.

Since the rations of the two series of experiments were quite similar, the estimates of the feed requirements for maintenance obtained in the first year's work, rather than the incomplete maintenance estimates of the second year, will be used in computations of the utilization of feed energy by the fat pigs weighing 225 pounds. It is not believed that the application of the estimated requirements of the Chuffy pigs to the Very Chuffy pigs of this experiment will result in serious error.

Digestibility and Metabolizable Energy of the Maintenance Ration. During the period of maintenance feeding 9 of the young pigs and 8 of the fat pigs were subjected to digestibility studies in which, besides the chemical examination of feed and feees, the gross energy content of feed, feees, and urine was also determined, thus permitting the computation of metabolizable energy. The nitrogen content of

Pig No.	Dry substance	Crude protein	N-free extract	Crude fiber	Fat
	240	Type A—Very (Chuffy		
	pct.	pct.	pct.	pct.	pct.
2	67	60	84	13	67
	75	69	91	28	71
3	75	59	87	14	63

TABLE 49.—COEFFICIENTS OF DIGESTIBILITY OBTAINED WITH THE YOUNG MAIN-

Гуре С-	-Intermediate
---------	---------------

β	74	68	87	-11	80
	68	65	82	-11	57
8	70	64	91	-33	77

13	80	71	90	33	80
15	52	68	84	-25 -11	71
14	65	61	83	-11	67
Average	69.6	65.0	86.6	3	70.3

the urine was also determined, so that estimates of nitrogen balances and corrections of metabolizable energy to a condition of nitrogen equilibrium could be made. The collection periods in all cases were of ten days' duration. The periods of preliminary feeding were several weeks in length.

TABLE 50.—COEFFICIENTS OF DIGESTIBILITY OBTAINED WITH THE FAT MAINTE-NANCE PIGS: SECOND EXPERIMENT

Pig No.	Dry substance	Crude protein	N-free extract	Crude fiber	Fat
		Type A-Very	Chuffy		
	pct.	pct.	pct.	pct.	pct.
10	84	76	90	51	81
14	85	79	92	50	63
14	80 84	76 78	88 89	9 43	66 79
	-	Type D—Ra	ngy		
7	79	73	85	5	67
19	83	79	89	12	74
18	84	80	90.	40	76
4	85	79	91	39	66
Average	83.3	77.6	89.6	33.3	71.9

Pig No.	Nitrogen of feed consumed	Nitrogen of faces	Nitrogen of urine	Nitrogen balance
	Type A-V	Very Chuffy		
	grams	grams	grams	grams
2	4.80	1.92	3.53	.35
1	4.64	1.44	3.14	.06
3	4.64	1.92	2.56	.16
6	5.44	1.76	3.03	. 65
7	5.44	1.92	2.93	. 59
8	5.28	1.92	3.47	11
10	Type D	-Rangy		
3	5.44	1.60	3.14	.70
5	5.44	1.76	3.14	. 54
14	5.28	2.08	3.70	50
Average		·		. 27

TABLE 51.—AVERAGE	DAILY NITROGE	N BALANCES	OF THE	Young	MAINTENANCE
	Pigs: Seco	ND EXPERIM	ENT		

The heavier maintenance pigs utilized their feed better than the young pigs mainly because of a higher digestibility of protein, which in the former case averaged 77.6 percent and in the latter 65.0 (Tables 49 and 50). The heavier pigs also appeared to use the crude fiber more efficiently than the lighter pigs. The young maintenance pigs

TABLE 52.—AVERAGE DA	ILY NITROGEN BALANCES OF	F THE FAT MAINTENANCE PIGS:
	SECOND EXPERIMENT	

Pig No.	Nitrogen of feed consumed	Nitrogen of feces	Nitrogen of urine	Nitrogen balance
	Type A-	Very Chuffy		4
	grams	grams	grams	grams
0	22.08	5.28	11.60	5.20
4	21.12	4.48	12.62	4.02
4	24.16	Intermediate 5.92 5.76	13.50 16.61	4.74
		D-Rangy	10.01	0.01
7	22.88	6.08	8.69	8.11
9		5.12	16.61	2.91
8	22.88	4.64	17.38	.86
4	25.76	5.28	15.77	4.71
Average				4.30

		1 10 10	f fiasmithday	the second state	Tanna an	In concern		Mediantile energy	tile energy	
11N 1911	1.1 Fe	autorenes romannen	246 get 446 64	ethannel	le tem	nites tali	Tetal par day	there has a straight the second secon	the the discussibilities degree the modelese	Park with H
				*	Pype A Very Chuffy	e Chuffy				
	His	Aus	the	1994	1401 1110	1 here 21.9	there and	(herma	they ma	144
	=	1000	1.114.14	689°	60.0	600	40.	11.24	2.141	11.4
	111	100	19/41	. 910	100	610.	14	81, 631	2,00	1111
	-	1116	1111	114	-	1601	697	11.14	1. 117	6 64
				-	Type C Internation	enter lind es				
	Att	116A	11411	1.088	1946	.000	.7A	31,340	1.405	1 84
	90	166	100.0	1,090	1185	660	14.	N 12	1, 100	11 1341
	(4)	1665	HMH	HTH.	144	690	04.1	0.10	14	414
					Vanal B any't'	ABURA				
	ALC.	966	4114	1,000	10.0	000	141	11. 67	1 (14	17.11
	AN I	400.	HAH .	1,020	19.67	180	44	14.1414	144	1. 11.
	a.	1063	1900	11.14	. 2940	1040	111	19, 691	144	11, 131
1 1 0-1 11 260.	0.10	1	11440	1174	1944	6 10 10	9.01	18 2001	1.64	F1 87.6.

100

May

-
7
-
2
-
100
1.00
-
11
150
-
-
-
7
-
-
-
T
Alex.
1000
12
-
-
-
102
-
.
1
-
de
77
-
-
die .
-
· ·
1000
de la
-
1
-
-
12
-
-
-
-
-
-
20
-
-
-
11.15
H.t.V
HH.V.
114.411
HART
HANNI
HUN HATH
HANH HE
WHEN HATH
BRAH HE YE
BREH BEAR
BPAR BURATH
BRAY BU RAWE
NEWLY BU HATER
SNEEDY BU RATE
PINERRY BU RATE
BNBROY BU RATE
H III
on Plyandy of RATH
H III

	•	14.11	1 Brates 1 Percent	11 44 15 4 45 30	Distant KW	El manuer.		Appletellenten anarez	lite energy	
nth Att	11892 A	14144444444 1414444444	11111111111111111111111111111111111111	ut feal Faugumen	nf fuera	94 19491	िल्ल्स) विषये चित्रकु	Past kg. dry antartanna	146 16 เป็นจากโปล เหตุลูลกับ การโรง	કાર કાર્યો હાલકાર∰ કાર કાર્યો વાસ્ત્રી
				in the second se	Pype A Very Chuffy	y Chaffy				
	12	644 871 811	144 1 547	Ангин 8.76 8.76	(ARFHH 171 171 171	ААР ША 1 9 А 1 6 А	Arres 8.03 8.03 8.03	66.000 8.88 0.55	(Aerena 1 MA 1 U	141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				÷	Pyne (3 Intermediate	ныцаны	-			
	1945	588 1111 -	1 766	4, 98 1, 48	19 19 19 19	51103 197	8.88 8.67	8, 30	1	11 11
					Type D HERE	HHH				
	1166	1991	1, 000	60.1	518.	181	8 (F	8.30	1.01	1.11
	100 Pi	1 1117		110 +	- SINI	211	197 B	197, 148 197, 148	201	4.1.4
	2 2	510 I	1987		HSH -	1112	04 8	81.88 86.88	1.112	11 112
Acremen	U4-p	1691	1.781	1.11	707	131	19 B	8.44	110	1.11

were storing nitrogen at the average rate of .27 gram per day and the fat maintenance pigs, at the average rate of 4.30 grams per day (Tables 51 and 52).

For the young pigs the metabolizable energy per kilogram of dry matter eaten averaged 3.29 therms and per pound of digestible organic matter, 1.94 therms (Table 53). For the fat pigs these averages were, in order, 3.44 and 1.89 therms (Table 54). An average of 73.2 percent of the gross energy of the feed was metabolizable for the young pigs and 79.4 percent for the fat pigs.

Metabolizable Energy Required for Maintenance. If it is permissible to combine the feeding data relating to maintenance requirements of the first year's experiment with the determinations of the metabolizable energy of the feed obtained in the second year's work, an estimate of the amount of metabolizable energy required for the maintenance of the energy equilibrium of swine may be made.

The ration used in the first maintenance trial contained approximately 90 percent of dry matter. On the assumption that the metabolizable energy content was 3.36 therms per kilogram of dry matter, which is equal to 1.525 therms per pound, the young maintenance pigs appeared to need an average of 2,031 calories of metabolizable energy per day per 100 pounds live weight (weight ratio), while the fat pigs required an average of 1,551 calories (Table 55). Armsby¹ has com-

50-ро	und pigs		225-ро	und pigs	
Туре	Feed	Metabolizable energy	Type	Feed	Metabolizable energy
	lbs.	cals.		lbs.	cals.
в	1.62	2 223	В	1.21	1 661
C	1.44	1 976	C	.98	1 345
D,	1.39	1 908	D	1.23	1 688
Average	1.48	2 031	Average	1.13	1 551

TABLE 55.—METABOLIZABLE ENERGY REQUIRED FOR MAINTENANCE OF SWINE PER 100 POUNDS LIVE WEIGHT PER DAY

puted from the results of live-weight experiments that swine need some 1,534 ealories of metabolizable energy per day per 100 pounds live weight for maintenance, altho a wide range of estimates were obtained from individual experiments. This estimate of Armsby's is in close agreement with the average obtained in this experiment for the older swine, which weighed approximately 225 pounds. The young pig appears to require, per unit of weight, a considerably larger amount of energy, approximately one third more.

¹ Armsby, H. P. The nutrition of farm animals, 287.

THE FATTENING EXPERIMENT

The fattening experiment involved 60 pigs, 20 from each of the Very Chuffy, Intermediate, and Rangy types. These pigs were put upon experimental feeding individually as they reached the desired initial weights, that is, 55 pounds for the Very Chuffy type and 70 pounds for the Intermediate and Rangy types. The pigs that were started first on June 30 included some pigs that were slightly heavier than these weights. The remaining pigs were put on experiment during July, with the exception of Pig 16 of the Very Chuffy group, which was started on August 4.

The ration used consisted of mixtures of shelled corn, tankage, middlings, and alfalfa meal varied according to the weights of the pigs. The corn was fed whole and the other feeds in a mixture consisting of 8 parts of middlings, 4 parts of tankage, and 1 part of alfalfa meal. The ratio of corn to mixture was changed according to a definite plan as the pigs increased in size.

Pig No. and sex ¹	Date of slaughter	Live v	veight	Weight of contents of alimentary tract	Empty	weight	Contents of alimentary tract in percent of live weight
		Type A	-Very (Chuffy			
		lbs.	kgs.	lbs.	lbs.	kas.	pct.
6b	Nov. 26, 1923	168.88	76.60	8.63	160.25	72.69	5.11
98	Nov. 26, 1923	183.81	83.37	9.94	173.88	78.87	5.40
168	Dec. 20, 1923	190.69	86.50	6.88	183.81	83.37	3.61
18b	Nov. 20, 1923	178.94	81.17	10.19	168.75	76.54	5.69
19b	Nov. 26, 1923	178.88	81.14				
20s	Nov. 26, 1923	167.00	75.75	8.69	158.31	71.81	5.20
Ave a -e		178.03	80.~6	8.87	169.00	76.63	5.00
		Туре С	—Intern	nediate			
38	Nov. 1, 1923	183.63	83.29	10.25	173.38	78.64	5.58
5s	Oct. 11, 1923	170.88	77.51	14.31	156.56	71.01	8.37
13b	Oct. 1, 1923	182.56	82.81	14.38	168.19	76.29	7.88
Average		179.02	81.20	12.98	166.04	75.31	7.28
		Typ	e D—Ra	ngy			
14b	Oct. 1, 1923	169.88	77.06	12.94	156.94	71.19	7.62
15b	Nov. 14, 1923	188.19	85.36	12.25	175.94	79.80	6.51
20b		174.94	79.35	13.19	161.75	73.37	7.54
Average		177.67	80.59	12.79	164.88	74.79	7.22

TABLE 56.—LIVE AND EMPTY WEIGHTS AND "FILL" OF THE PIGS KILLED AT Approximately 175 Pounds: Second Experiment

 $^{1}s = sow; b = barrow.$

BULLETIN NO. 323

It was the original plan of the experiment to kill five pigs from each type at a weight of approximately 175 pounds, five at a weight of approximately 225 pounds, and five at a weight of approximately 275 pounds, the remaining five pigs to be used at a weight of about 225 pounds in a maintenance feeding trial. However, during the months of October and November, as with the first experiment, an epidemic of respiratory infection destroyed several of the pigs, and because of this and other unforseen contingencies the above plan was not adhered to.

Composition of Pigs Slaughtered at 175 Pounds. Twelve pigs were slaughtered at weights approximating 175 pounds, 6 from the Very Chuffy type and 3 each from the other two types. The dates of slaughter, live, and empty weights, and the weights and percentages of "fill" for these pigs are collected in Table 56. The average per-

			1	Dressed carca	88	
Pig No.	Offal	Lean	Fat	Skin	Bone	Total
		Type A-	-Very Chuffy			
	kgs.	kgs.	kgs.	kgs.	kys.	kgs.
6	. 10.25	29.42	18.76	3.04	7.20	58.42
9	. 11.23	29.78	23.78	3.02	7.38	63.96
6	. 10.75	29.34	28.54	2.78	6.56	67.22
8	. 10.88	27.68	22.96	3.06	7.80	61.50
19	. 9.51	29.02	24.42	3.08	6.70	63.22
20	. 9.53	26.80	22.50	2.92	6.58	58.80
Average	. 10.36	28.68	23.50	2.98	7.04	62.18
Average in percent		(46.1)	(37.8)	(4.8)	(11.3)	(100.0)
0.0		Type C-	-Intermediate			
3	. 9.28	28.86	25.30	3.26	7.20	64.62
5	. 10.82	25.38	20.26	4.28	7.84	57.76
3	. 11.06	28.92	19.86	4.24	8.82	61.84
Average	. 10.39	27.72	21.80	3.92	7.96	61.40
Average in percent		(45.1)	(35.5)	(6.4)	(13.0)	(100.0)
		Type	D—Rangy			
14	10.73	24.98	21.78	3.74	7.42	57.92
15	1 1	32.44	18.80	4.14	9.12	64.50
20		25.52	20.66	4.06	7.78	58.02
Average		27.64	20.42	3.98	8.10	60.14
Average in percent		(46.0)	(34.0)	(6,6)	(13.5)	(100.0)

TABLE 57.—WEIGHTS OF SAMPLES AND PHYSICAL COMPOSITION OF DRESSED CAR-CASSES OF THE 175-POUND PIGS: SECOND EXPERIMENT

centage fill for the Very Chuffy pigs was 5.0, for the Intermediate pigs 7.3, and for the Rangy pigs 7.2.

On the average the dressed careasses from the Very Chuffy pigs contained a larger percentage of separable fat (37.8) than those of the other types (35.5 and 34.0, in order) and a smaller percentage of skin (4.8, as compared with 6.4 and 6.6) and bone (11.3 as compared with 13.0 and 13.5) (Table 57). The percentage composition of the dressed carcasses, as determined by chemical analysis (Table 58), was not, however, significantly different for the different types except possibly with reference to ash. In fat and energy content the three types of carcasses are not to be certainly distinguished, tho in general the Very Chuffy pigs rank the highest in these respects. They appear to be significantly lower in ash than the dressed carcasses of either the Intermediate or the Rangy pigs.

The average percentage composition of the offal samples only is given in Table 59. The percentage composition of the entire carcasses on the live-weight basis (Table 60) shows the same general relations among the three types as that of the dressed carcasses.

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A—Very Cl	huffy		
	pct.	pct.	pct.	pct.	sm. cals.
6	56.86	10.26	42.94	2.22	4 583
9	54.96	11.94	39.34	3.13	4 475
16	60.43	11.22	47.07	2.10	5 025
18	57.73	12.18	42.64	2.72	4 660
19	56.59	12.06	42.64	2.76	4 810
20	59.27	11.64	43.58	3.11	4 665
Average	57.64	11.55	43.04	2.67	4 703
		Type C—Interme	diate		
3	54.28	12.78	37.58	3.43	4 257
5	58.89	12.24	42.17	3.20	4 532
13	57.93	12.60	39.63	3.21	4 273
Average	57.03	12.54	39.79	3.28	4 354
		Type D-Rang	зУ		
14	57.67	11.88	42.72	3.15	4 626
15	55.77	12.42	39.20	3.15	4 411
20	60.71	11.88	42.38	3.13	4 517
Average	58.05	12.06	41.43	3.14	4 518
Average of all types	57.59	11.92	41.82	2.94	4 569

TABLE 58.—PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE 175-POUND PIGS: SECOND EXPERIMENT

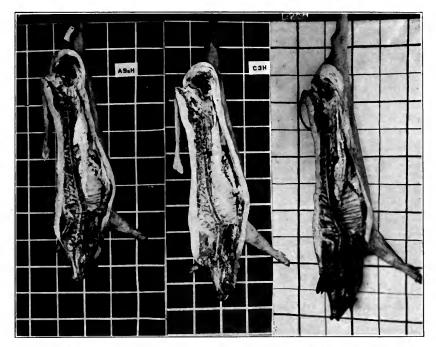


FIG. 3.—REPRESENTATIVE CARCASSES OF VERY CHUFFY, INTERMEDIATE, AND RANGY PIGS SLAUGHTERED AT APPROXIMATELY 175 POUNDS LIVE WEIGHT: SECOND EXPERIMENT

The Very Chuffy carcass contained a larger percentage of separable fat and a smaller percentage of skin and bone than the other carcasses. The results of chemical analysis of these carcasses were not significantly different for the three types except possibly with reference to ash.

On the empty-weight basis the average percentages of dry substance for the three type groups were 51.1, 50.8, and 51.3 respectively; the average percentages of crude protein were 11.4, 12.3, and 11.9, of fat 36.8, 34.2, and 35.4, and of ash 2.3, 2.8, and 2.7; the average amounts of gross energy per gram of empty carcass were 4.12, 3.84, and 3.95 calories.

Composition of Gains up to a Weight of 175 Pounds. Applying the average percentage composition of the control pigs (Table 38) of the three types to initial weights of 55 pounds for the Very Chuffy type and 70 pounds for the Intermediate and Rangy types, and the average percentage composition of the pigs killed at approximately 175 pounds to an exact weight of 175 pounds, will give the weights of nutrients in pigs of these weights. Subtracting the estimated

	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct	pct.	sm. cals.
Туре А	29.22	12.69	14.28	1.03	2 107
Type C	28,39	12.54	12.38	.88	1 964
Type D	28.57	12.26	14.20	1.00	2 012

TABLE 59—AVERAGE PERCENTAGE COMPOSITION AND ENERGY CONTENT OF OFFAL SAMPLES FOR EACH TYPE FOR THE 175-POUND PIGS: SECOND EXPERIMENT

weights of nutrients in the 55-pound and 70-pound pigs from the estimated weights in the 175-pound pigs of like type will give estimates of the gains in nutrients between these live weights. The percentage composition of these gains is obtained by dividing the weights of added nutrients by the corresponding gains in live weight, namely, 120 pounds for the pigs of the Very Chuffy type and 105 pounds for the pigs of the other types.

It seems unnecessary to report the intermediate calculations leading to the estimated percentage composition of gains. The Very

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	Ť	Type A—Very C	huffy	•	
	pct.	pct.	pct.	pct.	sm. cals.
6	47.58	10.10	34.48	1.85	3 780
9	46.29	11.16	32.09	2.55	3 725
16	51.06	10.53	38.38	1.80	4 194
8	48.26	11.16	34.56	2.21	3 854
19	47.94	11.25	35.04	2.27	4 023
20	49.93	10.94	35.37	2.60	3 892
Average	48.51	10.86	34.99	2.21	3 911
		Type C—Interme	diate		
3	45.70	11.73	30.47	2.80	3 539
5	48,42	11.08	33.45	2.52	3 699
13	47.17	11.42	31.06	2.54	3 449
Average	47.10	11.41	31.66	2.62	3 562
		Type D-Ran	gy		
14	47.31	11.08	33.82	2.53	3 753
15	46.54	11.29	31.63	2.57	3 624
20	49.02	10.75	33.21	2.44	3 632
Average	47.62	11.04	32.89	2.51	3 670

TABLE 60.—PERCENTAGE COMPOSITION AND GROSS ENERGY CONTENT OF THE 175-POUND PIGS ON BASIS OF LIVE WEIGHT: SECOND EXPERIMENT

BULLETIN No. 323

Chuffy pigs in gaining from 55 to 175 pounds put on added weight containing 54.3 percent of dry matter, 10.2 percent of crude protein $(N \ge 6.0)$, 42.0 of fat, and 2.1 of ash, and possessing a gross energy value of 2.05 therms per pound. The gain of the Intermediate pigs from 70 to 175 pounds live weight contained 52.6 percent of dry matter, 11.3 percent of crude protein, 37.7 percent of fat, 2.9 percent of ash, and 1.85 therms of gross energy per pound. The gain of the Rangy pigs thru the same weight interval contained 53.9 percent of

TABLE 61LIVE AND	EMPTY	WEIGHTS	AND	"Fill"	OF	THE	PIGS	KILLED	AT .	AP-
PROX	IMATELY	225 Pour	DS:	Second	Exi	PERIM	IENT			

Weights of

Pig No. and sex ¹	Date of slaughter	Live weight		contents of alimentary tract	entary Empty		alimentary tract in percent of live weight
		Туре	A-Very	Chuffy			
		lbs.	kgs.	lbs.	lbs	kgs.	pct.
11b	Dec. 20, 1923	226.1	102.5	13.22	212.8	96.5	5.9
17s	Jan. 3, 1924	234.8	106.5	16.5	218.3	99.0	7.0
Average		230.4	104.5	14.9	215.6	97.8	6.4
	Ту	pe C—In	termediat	e: Hand-fed			
1b	Jan. 3, 1924	218.6	99.2	6.7	211.9	96.1	3.1
2b	Dec. 10, 1923	228.2	103.5	7.4	220.8	100.2	3.3
9b	Nov. 8, 1923	224.0	101.6	13.4	210.6	95.5	6.0
15b	Nov. 20, 1923	224.4	101.8	·12.3	212.1	96.2	5,5
18s	Nov. 8, 1923	239.2	108.5	12.2	226.9	102.9	5.1
19b	Nov. 26, 1923	223.8	101.5	12.1	211.7	96.0	5.4
Average		226.4	102.7	10.7	215.7	97.8	4.7
	Т	ype C—I	ntermedia	te: Self-fed			
60s	Oct. 16, 1923	210.4	95.4				
90s	Oct. 11, 1923	217.0	98.4				
91s	Nov. 20, 1923	217.0	98.4				
99s	Nov. 20, 1923	219.1	99.4				
99b	Oct. 16, 1923	230.9	104.7				
Average		218.9	99.3				
		Tyj	pe D-Ra	ngy			
2b	Dec. 10, 1923	221.1	100.3	7.7	213.4	96.8	3.5
5b	Dec. 20, 1923	232.4	105.4	14.9	213.4	98.7	6.4
8b	Nov. 26, 1923	219.9	99.8	17.8	202.1	91.7	8.1
9s	Nov. 14, 1923	228.4	103.6	12.2	216.1	98.0	5.4
16b	Nov. 14, 1923	225.3	102.2	11.1	214.2	97.2	4.9
Average		225.4	102.2	12.7	212.7	96.5	5.6

DULLETIN N

¹s = sow; b = barrow. ²Not weighed. Average for A, C, and D types.

Contents of

alimentary

dry matter, 10.4 percent of protein, 40.3 percent of fat, 2.6 percent of ash, and 1.94 therms of gross energy per pound.

Composition of Pigs Slaughtered at 225 Pounds. Two pigs of the Very Chuffy type, 6 of the Intermediate, and 5 of the Rangy were slaughtered at a weight of 225 pounds. In addition 5 Intermediate pigs that had been self-fed in a group of 10 on the same ration as the hand-fed pigs were also slaughtered at this weight. These pigs, probably because of the competition accompanying lot feeding, had

FIG. 4.—REPRESENTATIVE CARCASSES OF VERY CHUFFY, INTERMEDIATE, AND RANGY PIGS SLAUGHTERED AT APPROXIMATELY 225 POUNDS LIVE WEIGHT: SECOND EXPERIMENT

The dressed carcasses of the Very Chuffy pigs slaughtered at this weight were in general higher in fat than those of the Intermediate pigs, which in turn were noticeably fatter than those of the Rangy pigs.

consumed more feed and had gained considerably faster than the hand-fed pigs. The results of their analyses, when compared with those for the hand-fed pigs of the same type, are of interest in connection with the general question of the effect of the rate of gains upon the composition of the carcass and of the gains in weight.

The weights, "fills", slaughter data, and the percentage composition of the dressed carcasses of these 18 pigs are presented in Tables

Bulletin No. 323

Pig No.	Offal	Carcass composite						
	0.141	Lean	Fat	Skin	Bone	Total		
		Typ	e A—Very Ch	uffy				
	kgs.	kgs.	kgs.	kgs.	kgs.	kgs.		
1	12.01	33.26	35.06	3.76	6.92	79.00		
7	12.62	34.28	34.52	3.86	7.98	80.64		
Average	12.32	33.78	34.80	3.82	7.46	79.86		
Average in		18.0						
percent		(42.3)	(43.6)	(4.8)	(9.3)	~(100.00)		
		Type C-	-Intermediate:	Hand-fed				
1	11.34	40.34	28.64	3.60	8.34	80.92		
2	14.03	31.56	37.40	4.22	9.80	82.98		
9	13.05	36.88	27.60	3.80	8.06	76.34		
5	13.03	35.64	28.72	3.30	9.08	76.74		
8	12.77	37.62	31.98	4.38	8.40	82.38		
9	12.72	36.86	29.64	3.78	8.74	79.02		
Average	12.82	36.48	30.66	3.84	8.74	79.72		
Average in						-		
percent	••••	(45.8)	(38.5)	(4.8)	(11.0)	(100.0)		
		Type C-	-Intermediate:	: Self-fed	•			
	13.29	26.90	32.08	4.46	6.96	70.40		
0	13.29	30.82	32.88	3.46	7.48	70.40		
	12.44 12.20	30.82	29.10	3.40	1			
1 9 ¹	12.20	28.50	36.32	4.00	7.30	78.34		
92	14.26	36.70	31.64	5.06	8.24	81.64		
5	14.20	30.70	51.04	0.00	0.24	01.04		
Average	13.06	32.22	32.40	4.14	7.58	76.34		
Average in								
percent	•••••	(42.2)	(42.4)	(5.4)	(9.9)	(100.0)		
		r	Type D-Rang	у				
2	13.85	38.34	28.54	3.84	11.16	81.88		
5	15.00	36.00	30.36	3.56	11.24	81.16		
8	13.98	33.16	23.58	4.66	11.76	73.16		
9	13.76	38.72	26.12	4.20	9.64	78.68		
6	13.06	39.14	25.5 6	4.22	10.06	78.98		
Average	13.93	37.08	26.84	4.10	10.78	78.80		
1								
Average in		1		1				

TABLE 62.—WEIGHTS OF SAMPLES AND PHYSICAL COMPOSITION OF DRESSED CAR-CASSES OF THE 225-POUND PIGS: SECOND EXPERIMENT

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A-Very Cl	nuffy		
	pct.	pct.	pct.	pct.	sm. cals.
11	60.85	10.32	47.87	2.08	4 624
17	63.63	9.54	50.54	2.34	5 287
Average	62.24	9.93	49.21	2.21	4 956
	Туре	C-Intermediate:	Hand-fed		
		1			
1	60.17	12.78	43.26	2.64	4 784
2	64.50	10.02	50.77	2.56	5 349
9	58.14	11.04	43.51	2.24	4 628
15	60.35	11.76	44.91	(3.71)1	4 811
18	62.73	12.54	44.62	2.57	4 716
19	57.95	11.46	43.55	- 2.59	4 694
Average	60.64	11.60	45.10	2.52	4 830
	Тур	e C—Intermediate	: Self-fed		
60	64.95	10.56	51.15	2.24	5 386
90	64.29	10.08	51.75	2.15	5 345
91	58.18	12.00	44.86	2.37	4 706
992	65.56	9.72	53.63	1.75	5 547
993	63.36	11.04	47.69	2.37	4 976
Average	63.27	10.68	49.82	2.18	5 192
	63.27	10.68 Type D—Rang		2.18	5 192
	63.27	·			5 192
Average	1	Type D-Rang	sy	2.18	1
Average	57.71	Type D-Rang 11.82	5y 42.00	2.59	4 571
Average	57.71 57.95	Type D—Rang 11.82 11.82	57 42.00 42.85	2.59 2.77	4 571 4 609
Average	57.71 57.95 54.52	Type D—Rang 11.82 11.82 13.16	42.00 42.85 38.18	2.59 2.77 2.69	4 571 4 609 4 159

TABLE 63.—PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE PIGS KILLED AT APPROXIMATELY 225 POUNDS: SECOND EXPERIMENT

¹Omitted from the average. ²Sow. ³Barrow.

61, 62, and 63. The dressed carcasses of the 2 Very Chuffy pigs were in general higher in fat than those of the 6 hand-fed Intermediate pigs, which in turn were noticeably fatter than those of the 5 pigs of the Rangy type. The self-fed pigs of the Intermediate type produced dressed carcasses rather distinctly fatter than the hand-fed pigs of the same type. The higher ash content of the dressed carcasses of the Rangy pigs is also noticeable. The offal samples of the three types showed only inconsiderable differences in percentage composition.

559

BULLETIN NO. 323

Туре	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
A	31.50	12.45	15.41	.83	2 288
C, hand-fed	31.51	12.53	16.22	.89	2 253
C, self-fed	31.26	12.25	16.04	.89	2 349
D	29.10	12.98	14.42	.91	2 083

TABLE 64.—AVERAGE PERCENTAGE COMPOSITION OF OFFAL SAMPLES OF THE 225-POUND PIGS: SECOND EXPERIMENT

TABLE 65.—PERCENTAGE COMPOSITION AND GROSS ENERGY CONTENT OF THE 225 POUND PIGS ON BASIS OF LIVE WEIGHT: SECOND EXPERIMENT

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash .	Gross energy per gram
		Type A-Very C	huffy		
	pct.	pct.	pct.	pct.	sm. cals.
11	51.13	9.72	38.94	1.72	3 864
17	52.05	9.01	39.86	1.88	4 275
	1				
Average	51.59	9.37	39.40	1.80	4 070
	Турз	C-Intermediate	· Hand-fed		
1	53.04	12.17	37.08	2.28	4 180
2	55.78	10.18	42.35	2.18	4 571
9	48.37	10.17	35.11	1.82	3 807
15	50.35	10.70	36.31	2.92	3 974
18	51.46	11.30	35.73	2.08	3 843
19	49.33	10.82	35.96	2.14	3 941
Average	51.39	10.89	37.09	2.24	4 053
	Тур	e C—Intermediat	e: Self-fed		
60	52.43	9.80	39.94	1.77	4 291
90	52.14	9.34	40.45	1.73	4 279
91	50.47	11.43	37.57	2.00	4 039
991	52.88	9.17	41.56	1.44	4 472
99²	54.34	10.49	39.97	2.03	4 238
Average	52.45	10.05	39.90	1.79	4 264
		Type D—Ran	gy		
2	51.59	11.72	36.30	2.25	4 027
5	49.24	11.08	35.23	2.28	3 882
8	44.23	12.23	29.81	2.11	3 344
9	46.28	11.47	31.84	2.35	3 611
16	45.91	11.33	31.84	2.22	3 688

¹Sow. ²Barrow.

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No. and sex	Date of slaughter	Live	weight	Weight of contents of alimentary tract	Empty	weight	Contents of alimentary tract in per cent of live weight
		Ту	pe A—Ver	y Chuffy			
1		lbs.	kgs.	lbs.	lbs.	kgs.	pct.
58	Feb. 26, 1924	276.4	125.4	10.7	265.7	120.5	3.9
		Тур	oe C—Inte	ermediate			
10s	Feb. 1, 1924	283.9	128.8	6.3	277.6	125.9	2.2
12b	Dec. 10, 1923	279.1	126.6	10.7	268.4	121.8	3.8
16b		276.5	125.4	12.7	263.7	119.6	4.6
176	Jan. 3, 1924	285.8	129.6	13.4	272.4	123.6	4.7
Average		281.3	127.6	10.8	270.5	122.7	3.8
			Type D—]	Rangy			
18	Jan. 8, 1924	267.7	121.4	6.9	260.8	118.3	2.6
3b	Jan. 8, 1924	271.1	123.0	10.4	260.7	118.2	3.8
6b	Jan. 8, 1924	280.2	127.1	12.8	267.8	121.5	4.4
10b		275.6	125.0	11.8	263.8	119.7	4.3
13b	Dec. 10, 1923	269.0	122.0	11.5	257.5	116.8	4.3
Average		272.7	123.7	10.6	262.1	118.9	3.9

TABLE 66.—LIVE AND EMPTY WEIGHTS AND "FILL" OF THE PIGS KILLED AT AP-PROXIMATELY 275 POUNDS: SECOND EXPERIMENT

The estimated percentage composition of the 225-pound pigs on the basis of the live weight will be found in Table 65. Since these values are mainly determined by the composition of the dressed carcasses, they do not require any special discussion.

On the empty-weight basis the average percentage composition of the 2 Very Chuffy pigs was 55.1 percent dry matter, 10.0 percent crude protein, 42.1 percent fat, and 1.92 percent ash. The corresponding figures for the Intermediate-type hand-fed pigs were 53.9, 11.4, 38.9, and 2.35 respectively; and for the Rangy pigs, 50.3, 12.3, 35.0, and 2.37. The average gross energy content per gram of empty weight for the three types was 4,350, 4,254, and 3,932 small calories.

Composition of Gains up to a Weight of 225 Pounds. Estimates of the average percentage composition of the gain from 55 to 225 pounds for the Very Chuffy pigs and from 70 to 225 pounds for the other two types follow:

		Crude			
	Dry	protein			Gross energy
Type	matter	$(N \ge 6.0)$	Fat	Ash	per pound
	pct.	pct.	pct.	pct.	therms
A, Very Chuffy	56.6	8.4	45.8	1.61	2.066
C, Intermediate, hand-fed	57.1	10.6	43.7	2.23	2.095
C, Intermediate, self-fed.	58.6	9.3	47.7	1.58	2.234
D, Rangy	51.7	11.4	38.0	2.19	1.875

561

Bulletin No. 323

			Carcass composite					
Pig No.	Offal	Lean	Fat	Skin	Bone	Total		
		Type A-	-Very Chuffy					
5	kgs. 14.97	kgs. 45.26	kgs. 39.16	kgs. 4.54	kgs. 9.40	kgs. 98.36		
Average in percent .		(46.0)	(39.8)	(4.6)	(9.6)	(100.0)		
		Type C-	-Intermediate					
10	15.69	44.52	42.06	4.76	9.16	100.50		
12	15.62	40.76	41.54	5.56	11.96	99.82		
16	14.96	37.26	48.32	3.92	9.26	98.76		
17	14.85	38.36	47.40	5.04	11.36	102.16		
Average	15.28	40.22	44.84	4.82	10.44	100.32		
Average in percent .		(40.1)	(44.7)	(4.8)	(10.4)	(100.0)		
		Туре	D-Rangy					
1	12.03	42.84	38.44	4.86	11.46	97.60		
3	14.55	40.20	44.16	4.48	10.10	98.94		
6	15.61	46.48	36.24	5.22	11.78	99.72		
0	14.70	45.50	38.34	5.20	11.28	100.32		
	15.23	43.56	39.78	5.20	11.88	100.42		
Average	14.42	43.72	39.40	5.00	11.30	99.42		
Average in percent .		(44.0)	(39.6)	(5.0)	(11.4)	(100.0)		

TABLE 67.—WEIGHTS OF SAMPLES AND PHYSICAL COMPOSITION OF DRESSED CAR-CASSES OF THE 275-POUND PIGS: SECOND EXPERIMENT

The smaller fat content of the gains of the Rangy pigs and the greater fat content of the gains of the self-fed Intermediate pigs are worthy of special note.

Composition of Pigs Slaughtered at 275 Pounds. Only 1 Very Chuffy pig was killed at a weight of 275 pounds, while 4 Intermediate and 5 Rangy pigs were slaughtered and analyzed at this weight. The data obtained are presented in Tables 66 to 70, in the same form as the data for the other groups of pigs.

Little comment on these results is needed, since essentially the same relations hold between the types at this weight as at the other weights.

The average percentage composition of the pigs on the emptyweight basis is given in Table 71.

Average Percentage Composition of Gains up to 275 Pounds. For the Intermediate and Rangy types it appears profitable to compute the percentage composition of the gains put on from an initial

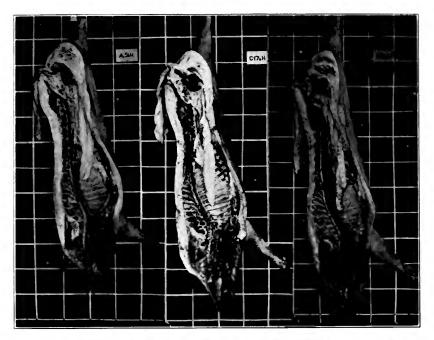


FIG. 5.—REPRESENTATIVE CARCASSES OF VERY CHUFFY, INTERMEDIATE, AND RANGY PIGS SLAUGHTERED AT APPROXIMATELY 275 POUNDS LIVE WEIGHT: SECOND EXPERIMENT

These carcasses showed essentially the same relations in physical and chemical composition between the types at this weight as at the other weights.

weight of 70 pounds to a weight of 275 pounds. Such computations, based upon the composition of the control pigs and of the pigs examined at weights approximating 275 pounds, follow: for the Intermediate pigs, dry matter 60.9, protein 9.5, fat 49.9, and ash 2.04 percent; for the Rangy pigs, dry matter 58.8, protein 10.7, fat 45.8, and ash 2.27 percent. The gross energy of the gain per pound for the Intermediate type is 2,310, and for the Rangy type 2,187 calories.

Comparison of Results Obtained for Pigs of Different Weights. The experiment of the second year affords the opportunity for determining the changes in the composition of the carcasses of growing and fattening pigs with advancing age. Tables 72, 73, and 74 have been constructed to facilitate a comparison of the groups of pigs examined at different weights. In all types increasing weight (and age) was associated with increasing percentages of fat and dry matter and decreasing percentages of protein and ash. This relation is particularly well shown in the pigs of the Intermediate type, in which the changes in composition with age proceed in a very regular fashion.

563

BULLETIN NO. 323

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
-		Type A-Very Cl	huffy	<u>, , , , , , , , , , , , , , , , , , , </u>	
	pct.	pct.	pct.	pct.	sm. cals.
5	61.70	11.22	47.35	2.18	5 155
		Type C—Interme	diate		
10	63.48	11.58	49.80	2.71	5 213
12	61,75	10.86	47.93	2.73	4 974
16	67.12	9.18	55.56	2.12	5 697
17	67.32	10.32	54.24	2.48	5 516
Average	64.92	10.49	51.88	2.51	5 350
F	· ·	Type D-Rang	sy.		
1	61.59	11.76	46.62	3.11	5 031
3	64.18	10.80	50.70	2.26	5 208
6	59.40	10.74	45.20	2.82	4 875
10	60.76	11.58	46.17	2.50	4 983
13	61.12	. 12.00	45.46	2.84	4 835
Average	61.41	11.38	46.83	2.71	4 986

TABLE 68.—PERCENTAGE COMPOSITION OF DRESSED CARCASSES OF THE	Pigs I	KILLED
AT APPROXIMATELY 275 POUNDS: SECOND EXPERIMENT		

TABLE 69.—AVERAGE PERCENTAGE COMPOSITION OF OFFAL SAMPLES FOR THE THREE TYPES OF 275-POUND PIGS: SECOND EXPERIMENT

Туре	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
A1	29.93	12.00	15.46	.82	2 221
C	33.25	12.57	18.13	.85	2 397
D	32.94	13.31	17.52	.88	2 354

¹The percentages were obtained on one pig only.

Since the greatest change with age is the change in fat content, it becomes a question of interest to determine whether the change in fat content accounts entirely for the changes noted in the other constituents. This may be determined by computing the percentages of dry matter, protein, and ash on the fat-free, or "protoplasmic" basis. This has been done for the entire empty carcass, with the results shown in Table 75. Apparently the fat-free substance of these pigs was very similar in composition regardless of age or type. The Very Chuffy pigs were somewhat more watery than the pigs of the other types, with correspondingly smaller contents of protein and ash. The control pigs also were slightly lower in protein than the older pigs. But it may be said that the fat-free material of all pigs closely ap-

564

[May,

1929] ENERGY AND PROTEIN REQUIREMENTS OF GROWING SWINE

Pig No.	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		Type A-Very Cl	uffy		
	pct.	pct.	pct.	pct.	sm. cals.
5	52.29	10.53	38.99	1.82	4 326
		Type C—Interme	diate		
0	53.66	10.83	40.81	2.23	4 355
2	52.83	10.42	39.71	2.28	4 199
6	57.54	8.95	46.48	1.78	4 834
7	57.27	9.90	44.84	2.06	4 646
Average	55.32	10.02	42.96	2.09	4 508
		Type D-Rang	3y		
1	52.91	11.11	38.87	2.60	4 272
3	55.92	10.56	43.07	1.93	4 507
6	50.97	10.43	37.66	2.34	4 135
0	53.19	11.09	39.39	2.11	4 311
3	54.63	11.77	39.43	2.49	4 270
Average	53.52	• 10.99	39.68	2.29	4 299
Average of all types	54.12	10.56	40.92	2.16	4 385

TABLE 70.—PERCENTAGE COMP	OSITION AND GROSS	ENERGY CONTENT OF THE 275	-
Pound Pigs on Basis	S OF LIVE WEIGHT:	SECOND EXPERIMENT	

proximated the following composition: 76.4 percent of water, 3.02 percent of nitrogen (18.9 percent of N x 6.25), and 3.7 percent of ash. These data indicate that the pig reaches a constant protoplasmic composition ("chemical maturity") at a much younger age than Moulton¹ has found from a composite study of data from a number of sources.

A comparison of the composition of gains between the different weight intervals is made in Table 76. It is apparent that with increasing age the fat content of the gains increases, while to a corresponding extent the protein and ash contents decrease. From the composition of the gains on the fat-free basis it is evident that they approxi-

TABLE 71.—AVERAGE PERCENTAGE COMPOSITION	OF THE 275-POUND PIGS ON BASIS
OF EMPTY WEIGHT: SECOND	EXPERIMENT

Туре	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	sm. cals.
A ¹	54.4	11.0	40.6	1.89	4 501
С	57.5	10.4	44.7	2.17	4 688
D	55.7	11.4	41.3	2.38	4 473

¹These percentages are for one pig only.

¹ Moulton, C. R. Jour. Biol. Chem. 57, 79. 1923.

En	Similar altrip armenit		Consider geneticion (Cilludi: dit)			Constanting Spectra Spectra
- <u> </u>		Rep: H	Wag Chally	•		
3	3			91. 19.35 19.35 19.35	100 100 100 100 100	an.ak. 3404 4738
7.4.5		-	-	42.5	2.0	5 196
		111	HIN			
		BIE		H		
						Genigmen Ngeni
		1222		19933	19944	140 217 228 228
		200-				
		11.5 71.5 71.5			12. 25. 26. 25.	11 (11) 11 (11) 12 (11) 12 (11) 12 (11)
		Time	D-Bage			
	B I I I	**** 不是 正律 # 道			1100 1110 1110 1111 1111	2 301 2 022 2 326 2 326

United The American Design Constants of Dimension (Constanting Of Place of Dimension Design Science Winnerses: Business Streamstants

						11
Love matrix	Numiter of page	Iley.	Coule:	The	ANE	Grossenerg
	wenged	-	(Hist. 0)			1
			INTER BASS	6		
		The	Very Classy			
UBmc.		jati.	786.		JE.	son calle
	- 5	38.O	122.2	198.00	225	2570
	- 6	486.3 31.0	100.95 91.45	35.0	221	30000
	- 2	31.00	10.5	328.4	1.92	4.330
- 20			11 100c30 1	alleun		2 340
-		Time	Several Sec	-		
70	5	36.5	ILS	2.6	225	27000
100	3	ALE	TEE	381.27	2.42	3 3500
		31.4	100:39	STE	2.24	5 1600
154	4	5.3	100.00	45.0	209	±30
		Timel	D-Bang	1.00		
700	5	38.5	120	28.3	240	2950
75		5.5	mo	32.9	2.31	3 1500
	- 5	5.8	TES	322.00	224	357700
T		32.5	E CO	3112	2.2	# 3800
		200 9549932V	COLUMN TRACT			
		Tipe 1	Warm (Blandy)		-	
Z		Ska	IE.E	TE	2.35	2780
	- 6	31.0	III.#	20.5	233	## 1 230
		秦卫	100.00	450 B	1.92	# 350
·	E	法监	TELED	40.5	E.999	4.300
		TopeG	- Shitten and in the	E		
71		42.2	122.65	22.5	2 :	
725		ALS:	III I	34.2	2233	35 3346
5	Æ		III.#	36.9	2.35	
75		3.3	III. #		217	
		There	T-Bange			
TR		100 A	12.5		2.00	10 13400°
		E.E	II.P	(第14)	至元	The second
25.	3	3. JK	121.3	王山	237	2 3000
251. · · · · · · ·		32.7	II. H			# 40

PAREZ 71 - YVERAGE PERCENCIAGE COMPOSITION OF PERCENCER FOR AND WEIGHTS: SHOWN EXPERIMENT

name dossely in composition the carrasses themselves. Some slight readjustment of the composition of gains is required to make them strictly comparable with the composition of the empty carrass sneeincy to not allow for slight differences in "fill" at the different slaughter vehicles.

24

Live weight	Approximate age	Number of pigs averaged	Dry substance	Crude protein (Nx6.0)	\mathbf{Ash}
	•	Type A—Very C	Chuffy		
lbs.	days		pct.	pct.	pct.
55	. 122	5	22.5	16.9	3.28
175	. 281	6	22.6	18.0	3.69
225	. 281	2	22.5	17.3	3.32
275	. 348	1	23.2	18.5	3.18
Average			22.6	17.5	3.45
	1	Type C—Interm	ediate		
70	115	5	23.4	16.7	3.23
175	. 209	3	25.2	18.7	4.30
25	252	6	24.5	18.7	3.85
275	. 286	4	23.1	18.8	3.92
Average			24.0	18.2	3.77
		Type D-Rai	ngy		
70	. 108	5	23.2	17.1	3.47
175	. 210	3	24.6	18.4	4.20
225	. 254	5	23.5	18.9	3.65
275	. 287	5	24.5	19.4	4.05
Average			23.9	18.5	3.80
Average of all types			23.6	18.1	3.69

TABLE 75.—AVERAGE PERCENTAGE COMPOSITION OF PIGS OF DIFFERENT TYPES AND WEIGHTS ON FAT-FREE EMPTY BASIS: SECOND EXPERIMENT

A COMPARISON OF 225-POUND PIGS OF BOTH EXPERIMENTS

In order to determine how nearly the 225-pound pigs of the first year's experiment were duplicated in the second year's experiment the average percentage compositions of the dressed carcasses, entire carcasses (live-weight basis), and gains in weight have been collected in Table 77. Altho in general the pigs in the first year's work were slightly fatter than those in the second year's work, the agreement thruout was remarkably good.

MEASUREMENT OF TYPE

Altho the types of the pigs used in the first experiment can be illustrated by photographs and can be described in a general way, it is obviously desirable in defining the material with which an experimental investigation is concerned to measure it in as accurate a manner as possible. So far as experimental feeds and rations are concerned, this is possible by means of chemical analysis, so that a mere description of feeds and rations may well be considered as a poor substitute for a quantitative definition.

Gain in weight from—	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per pound
		GINAL BASI			
	Туре	A-Very Chu	fy		
lbs.	pct.	pct.	pct.	pct.	cals.
55 to 175		10.2	42.0	2.13	2 050
55 to 225	56.6	8.4	45.8	1.61	2 070
	Туре	C-Intermedia	ate		
0 to 175	52.6	11.3	37.7	2.86	1 850
0 to 225	57.1	10.6	43.7	2.23	2 090
10 to 275	60.9	9.5	49.9	2.04	2 310
	Ту	pe D-Rangy			
0 to 175		10.4	40.3	2.64	1 940
0 to 225	51.7	11.4	38.0	2.19	1 870
70 to 275	58.8	10.7	45.8	2.27	2 190
	FAT	-FREE BASI	s		
	Туре	A-Very Chu	fy		-
55 to 175	21.2	17.6		3.67	
55 to 225	19.9	15.5		2.97	
	Туре	C-Intermedia	ste		
70 to 175	23.9	18.1		4.59	
70 to 225	23.8	18.8		3.96	
70 to 275	22.0	19.0		4.07	
	Т	rpe D-Rangy			
70 to 175	22.8	17.4		4.42	
70 to 225	22.1	18.4		3.53	
70 to 275	24.0	19.7		4.19	
Average	22.5	18.1		3.93	

TABLE 76.—COMPUTED PERCENTAGE COMPOSITION OF GAINS IN LIVE WEIGHT 10 DIFFERENT SLAUGHTER WEIGHTS: SECOND EXPERIMENT

No quantitative method of measuring experimental animals is in general use. It is true that in most of the experimental work involving farm animals the object is to test the feed rather than the animal, so that an accurate description of the animal is not so essential as that of the feed. But in experiments such as the one under discussion, in which the relative capacities of different types of animals are being studied, it obviously becomes a matter of importance to the significance of the results obtained to measure the type or conformation of the animals included in the different groups.

r	34	
Т	м	ay,

Туре	Experiment	Dry substance	Crude protein (Nx6.0)	Fat	Ash	Gross energy per gram
		D	ressed carcass			
		pct.	pct.	pct.	pct.	sm. cals.
A	2	62.2	9.9	49.2	2.21	4 960
В	1	62.3	13.1	45.1	2.73	5 060
c	1	64.3	13.3	46.3	2.71	5 110
c	2	60.6	11.6	45.1	2.52	4 830
D	1	62.2	13.6	44.4	2.93	4 970
D	2	55.9	12.3	40.2	2.73	4 420
			Live pig			
A	2	51.6	9.4	39.4	1.80	4 070
в	1	48.4	10.9	34.2	2.05	3 900
c	1	50.5	11.2	35.6	2.06	4 000
C	2	51.4	10.9	37.1	2.24	4 050
D	1	49.2	11.5	34.1	2.24	3 900
D	2	47.4	11.6	33.0	2.24	3 710
			Gain		۰	
A	2	56.6	8.4	45.8	1.61	2 070
В	1	53.8	10.9	40.0	1.95	2 297
с	1	56.9	11.1	42.1	1.96	2 319
C	2	57.1	10.6	43.7	2.23	2 090
ס	1	56.1	11.4	41.2	2.22	2 252
D	2	51.7	11.4	38.0	2.19	1 870

TABLE 77.-COMPARISON OF THE 225-POUND PIGS IN THE TWO EXPERIMENTS

With this conviction an attempt was made to apply to swine, in a modified form, a measurement of type that has been worked out by Yapp for dairy cattle at the Wisconsin Agricultural Experiment Station.¹ A type index is computed which measures the proportion the animal would fill of a rectangular solid determined by the animal's major dimensions. The dimensions chosen for dairy cattle were the height at withers (H) and the horizontal distance (L) from pinbone to point of shoulder. The type index is taken as the ratio of the volume of a rectangular solid equal to $H^2x L$, to the volume of the animal obtained from its weight and its specific gravity. It was found that a calf one week of age occupies only 12.6 percent of the volume of such a rectangular solid, while at 22 months of age it occupies 21.2 percent. Evidently the change in conformation of the calf in this interval of time is reflected in the change in type index.

¹Wis. Agr. Exp. Sta. Bul. 352, 25. 1923.

Pig No.	Live weight	Specific gravity	Volume of pig	Volume of box	Type index
	Т	ype A—Very (Chuffy		
	lbs.		cu. in.	cu. in.	pct.
21	57.4	.997	1 594	3 536	45.1
22	57.6	.986	1 618	4 016	40.3
23	50.7	.977	1 435	3 646	39.4
24	53.4	.985	1 502	3 548	42.3
25	49.0	.996	1 363	3 693	36.9
Average	53.6	.988	1 502	3 688	40.8
	Т	ype C—Intern	nediate		
3	66.5	.977	1 887	5 154	36.6
21	70.9	.981	2 003	5 640	35.5
22	71.1	.988	1 994	5 396	37.0
23	68.9	.979	1 951	5 499	35.5
24	75.6	.979	2 138	5 422	39.4
Average	70.6	.983	1 995	5 422	36.8
		Type D—Ra	ngy		·
21	69.2	.933	2 054	6 031	34.1
22	73.5	.879	2 317	6 716	34.5
23	76.7	.932	2 278	6 682	34.1
24	68.7	.965	1 974	6 151	32.1
25	74.7	.984	2 104	5 786	36.4
Average	72.6	.939	2 145	6 273	34.2

TABLE 78.—Type Indexes of the Control Pigs: Second Experiment

In applying this conception of a type index to swine it was thought advisable to relate the volume of the pig to the volume of a solid more closely restricted to the dimensions of the pig than the solid used for dairy cattle. The plan adopted was to refer the volume of the pig to the volume of a rectangular box into which the pig would just fit. The length of the box would be determined by the maximum length of the pig from snout to root of tail. Its height would be determined by the maximum height of the pig and its width by the maximum width of the pig.

These measurements of the pigs were taken with a tape and a caliper made for the purpose. The pig was thrown on its side¹ on a level floor and the maximum measurements were taken with the pig in this position. In the first measurements made the maximum height of the pig was taken as the height at the rear, but in the later measurements the maximum height of the back with the legs stretched straight was taken. The maximum length was the distance along the head and back from the end of the snout to the root of the tail.

¹At the time of slaughter the pig was measured immediately after being stuck and before being scalded.

Pig No.	Live weight	Specific gravity	Volume of pig	Volume of box	Type index	Estimated initial type index
	T	vpe A-Very	r Chuấy			
	lbs.		cu. in.	cu. in.	pcl.	pct.
6	. 167.0	.953	4 855	11 442	42.4	34.8
9	. 183.8	.971	5 242	11 747	44.6	41.3
16	. 190.7	.953	5 542	12 992	42.7	38.7
18	. 177.9	.954	5 168	13 107	39.4	41.9
19	. 178.9	.963	5 146	11 568	44.5	42.4
20	. 167.0	.963	4 805	10 724	44.8	43.8
Average	. 177.6	.960	5 126	11 930	43.1	40.5
	Ту	pe C—Inter	mediate			
3	1\$3.6	.972	5 232	14 910	35.1	29.2
5	. 170.9	.965	4 589	12 588	38.5	35.5
13	. 182.6	.957	5 286	13 057	40.5	35.0
Average	179.0	.966	5 136	13 518	38.1	33.2
		Type D—F	langy			
14	169.9	.960	4 903	14 857	33.0	37.5
15		. 9601	5 429	15 800	34.4	35.6
20	. 174.9	.960	5 045	13 941	36.2	31.4
Average.	177.7	. 960	5 126	14 866	34.5	34.8

TABLE 79.- TYPE INDEXES OF THE 175-POUND PIGS: SECOND EXPERIMENT

An assumed specific gravity, because of an error in the determination.

The specific gravity of the pigs was determined after slaughter. After being bled, scalded, and scraped, the carcass of each pig was lowered into a cylindrical tank made with as small a diameter as practicable, and the rise in water level was measured on a glass gauge running the length of the tank on the outside. From a previous calibration of the tank the volume of the carcass could be readily calculated from the rise in the water level. The volume of the live pig was estimated from that of the carcass by adding the volume of the blood. assuming the specific gravity of the blood to be 1.06. No allowance was made for the volume of the hair and scurf.

The results obtained on the four groups of slaughtered pigs are summarized in Tables 78, 79, 80, and 81. In addition to the type indexes of the slaughtered pigs indexes were computed for all animals at the start of the experiment from measurements upon each animal and volume estimates based on the live weight of the pig and the average specific gravity of the control pigs for that type as actually determined after slaughter. These estimates of the initial type indexes are included in the last column of Tables 79, 80, and 81.

Pig No.	Live weight	Specific gravity	Volume of pig	Volume of box	Type index	Estimated initial typ index
	Т	ype A—Very	r Chuffy			
1	lbe.		cu. in.	cu. in.	pet.	pct.
11	226.1	.946	6 622	15 100	43.9	37.0
15	208.2	.971	5 941	13 513	44.0	41.9
17	234.8	.955	6 812	14 623	46.6	35.9
Average	223.0	.957	6 458	14 412	44.8	38.3
	T	pe C—Inter	rmediate			
1	218.6	.990	6 119	15 802	38.7	34.0
2	228.2	.940	6 724	16 446	40.9	34.5
9	224.0	.970	6 398	15 542	41.2	34.4
15	224.4	. 9681	6 421	17 541	36.6	37.6
IS	239.2	.964	6 874	17 425	39.4	26.5
19	223.8	.963	6 442	15 944	40.4	32.2
20	235.0	.981	6 634	16 940	39.2	33.2
Average	227.6	.968	6 516	16 520	39.5	33.2
		Type DF	langy			
2	221.1	.9641	6 354	46 689	38.1	32.8
5	232.4	.938	6 863	17 433	39.4	32.7
8	219.9	.978	6 227	16 625	37.5	33.3
9	228.4	.987	6 409	17 325	37.0	30.2
11	240.4	.965	6 901	18 048	38.2	31.8
16	225.3	.968	6 447	17 181	37.5	- 33.1
Average	227.9	.967	6 534	17 217	38.0	32.3

TABLE SO .- Type INDEXES OF THE 225-POUND PIGS: SECOND EXPERIMENT

¹An average specific gravity is assumed.

Apparently the type index chosen is larger the chuffier the type of pig, as would be expected from the method of its computation. It is also evident that for the same type the index increases as the animal fattens. This also is to be expected. However, the variations noted are not large in comparison with the index itself or in comparison with the variations obtained within any one type at any one weight. These latter variations are difficult to explain except on the basis of errors in the measurements of the pigs, and to anyone acquainted with the difficulties of measuring a live pig the possibility of considerable error, particularly in determining the maximum width and maximum height, will be readily appreciated.

Therefore, until a better method of obtaining the required measurements on pigs is perfected, or until the selection of other suitable measurements more accurately obtainable is made, the type indexes of individual animals cannot be considered very accurate measurements upon which, for example, selections for small differences in

Mary.

Et We	Liver weight:	insection gravity	Wisiums Par in	Walums ai par	Darter.	Inital type inital type
	I	THE H-WE	y Chully			
	Ilin.		25. 35.	21. 35	-	346
ž	ゴル王		\$ 1000	125 1258	-65 .10	42.8
	1	nuc—Jun	สอารณ์เหนือ			
R	.285 P		* 38	III TOL	42.4	2.5
	1719 1	104	\$ 375	20 029	31.IB	36.2
BE	26.3	350	1	19 725	41.10	I.I.I
T	王远军	. 2000	1 22	20 008	39.1	JE ID
Average.	251.3		* 38	20 075	¥1.10	34.5
		Tage II-3	R way			
E	207.77		7 1844	30 7766	a.s	39.3
\$	1271.11	11140	77 32900	20 204	39.11	382.11
ũ	200 2	10000	3 III	28 576	35.10	20.4
16	TEX	. 29033	7 346	201 1127	T.S.	32.9
B	269.10		2 310	20 971	201-11	36.3
WWEIGH.	372.7	(1776)	77 (902)	21 333	37.00	322.90

LARE SI -- USER INDERES OF THE DIS-POINT PLAS. SECON EXPERIMENT

And a state of the second state of the state

type may safely be made. Possibly they are even less accurate for this purpose than maked-ever ratings. However, the average index for a group of animals must be concelled a much greater degree of accuracy, and as a quantitative description of the type or conformation of the pigs as a group it is in all probability of more value than a worded description, a group photograph, or a group of individual photographs.

We may say, therefore, that the Wery Chuffy pigs at the start of the experiment possessed an index of 40.5. At a weight of 175 pounds the type index had increased to 42.1, and at 225 pounds, to 44.5.

The Intermediate type plips started with an index of 36.8. At 175 pounds it was 34.1. at 225 pounds, 39.5. and at 275 pounds, 41.0. Hight self-fiel plips of this type shaughtered at 225 pounds gave an average type index of 39.9. agreeing closely with the average at that weight for the hand-fiel plips.

The Rangy pips possessed an mitail type index of 94.2. one of 14.5 m D75 pounds. 94.1 m 225 pounds and 97.0 m D75 pounds. Ten self-fiel pips of this type simumered in the 225-pound weight give in evenue type index of 94.2

A group of I self-fet page of the Chuffy type shaughnered and examined in 2027 pounds possessed in everage type index of 42.5 compared with indexes in the same weight of 44.5 for the Very Chuffy hand-fet page and 29.5 for the Intermediant hand-fed page. A group of 5 self-feil. Very Rangy pigs. Type E examined at this weight gave in average index of 32.3, practically the same as that for the Rangy hand-feil pigs. It would appear that at this weight the better condition of the self-feil Very Rangy pigs offset the difference between the Very Rangy and Rangy types.

DIGESTIBILITY AND METABOLIZABLE ENERGY OF THE FAITENING RATION

Three pigs of the Intermediate type and three of the Rangy were used in the determination of the digestibility of the fattening ration and its content of metabolizable energy. The metabolism experiments were performed on these pigs shortly after they had reached a weight of 225 pounds; at the conclusion of the metabolism experiments they were put upon a maintenance experiment, the results of which have already been considered.

The ration used in four of these metabolism experiments was practically the same as the average ration fed throat the fattening period and as the rations used in the maintenance trials, that is, approximately 4 parts of yellow come to 1 parts of a ground mixture containing 8 parts of wheat middlings, 4 parts of tankage, and 1 part of alfalfa meal. In two of the experiments, however, upon the heaviest pigs (Fig 4 of the Rangy type and Fig 8 of the Intermediate type) the ratio of core to mixture was approximately 6 to 1.

The coefficients of digestibility obtained, computed in the ordinary way, are summarized in Table S2, while a conparison of the average coefficients obtained for the young maintenance pigs, the fat maintenance pigs, and the fattening pigs is given in Table S2.

The average digestion coefficients for the pips on full field are in good agreement with those obtained with the fat maintenance pips except for the coefficients for fat. The young maintenance pips gave low coefficients for dry matter, crude protein, and crude filer. A probable explanation of these abnormally low results is suggested from the average composition of the faces for these three groups of pips given in Table §4.

The high ash content of the faces of the young maintenance pigs is notable and is probably due to a concation in the alimentary tract of large amounts of cinders obtained from the dry lot in which they were feel previous to being placed in the netabolism crates. Definite indications of a disturbance in the digestion of protein and of craffe ther brought about by the presence of these conders may be seen. The low coefficient of digestibility of dry matter is dist explained.

In Table 15 the metabolizable energy of the ration, expressed in different ways, is given, regarder with the experimental lata from viten it was electrated. For known of thy matter, the metabolizable energy recorded 1.35 therms for the fat rugs on full feed, 1.44

Da	ily ration		Dry	Crude	N-free	Crude	
Pig No.	Corn	Mixture ¹	substance	protein	extract	fiber	Fat
		Т	ype C—Inter	rmediate			
	grams	grams	pct.	pct.	pct.	pct.	pct.
	2 100	510	82	69	90	35	59
	3 140	530	80	68	88	23	51
	2 000	500	83	73	89	39	61

71

74

89

90

36

25

53

52

59.5

TABLE 82.—COEFFICIENTS OF DIGESTIBILITY OF THE FATTENING RATION: SECOND EXPERIMENT

Average			82.5	72.4	89.5	34.3	
¹ Consisting of 8	parts of	wheat middlin	ngs, 4 parts	of tankage,	and 1 part	of alfalfa mea	1.

82

82

TABLE 83.—AVERAGE DIGESTION COEFFICIENTS OF THE RATION FOR THE THREE GROUPS OF PIGS STUDIED

Group	Dry substance	Crude protein	N-free extract	Crude fiber	Fat
	pct.	pct.	pct.	pct.	pct.
Young maintenance pigs	69.6	65.0	86.6	3	70.3
Fat maintenance pigs	83.3	77.6	89.6	33.3	71.9
Fat pigs on full feed	82.5	72.4	89.5	34.3	59.5

TABLE 84.---AVERAGE COMPOSITION OF FECES FOR THE THREE GROUPS OF PIGS: SECOND EXPERIMENT

Group	Dry substance	Crude protein	N-free extract	Crude fiber	Fat	Ash	Gross energy per gram
	pct.	pct.	pct.	pct.	pct.	pct.	sm. cals.
Young maintenance pigs	49.6	8.56	16.08	6.35	1.77	16.71	1 797
Fat maintenance pigs	34.8	7.24	16.16	4.30	1.47	5.98	1 527
Fat pigs on full feed	30.4	6.56	13.91	3.95	2.51	3.49	1 399

therms for the fat pigs on a maintenance ration, and 3.29 therms for the young pigs on a maintenance ration. Per pound of digestible organic matter, the metabolizable energy for the three groups of pigs was 1.86, 1.89, and 1.94 therms respectively. The metabolizable energy of the ration expressed as a percentage of the gross energy was 78.0, 79.4, and 73.2 for these three groups of pigs in the order given.

The nitrogen balance sheets of the six fat pigs on full feed during the ten-day collection periods will be found in Table 86.

6. 8. 11.

12

3 065

2 925

735

730

	_	Ě	Dimetible	Theread	Fnorm	Finerer		Metabolizable energy	able energy	
Pig No.	Body weight	ubstance consumed	organic matter	of feed consumed	of	of urine	Total per day	Per kg. dry substance	Per lb. of digestible organic matter	Fercent of gross energy
				F	Type C-Intermediate	ermediate	9			
	lbs.	kg8.	<i>lbs.</i>	therms	therms	therms	therms	therms	therms	pd.
6	220	2.186	3.92	9.517	1.771	.345	7.40	3.39	1.89	77.8
8	262	2.756	4.82	11.589	2.590	.264	8.73	3.17	1.81	75.4
11	233	2.163	3.91	9.421	1.758	.284	7.38	3.41	1.89	78.3
					Type D-Rangy	Rangy				
+	273	2.787	5.24	11.760	1.723	. 553	9.48	3.40	1.81	80.6
12	233	3.107	5.55	13.523	2.591	.450	10.48	3.37	1.89	77.5
19.	260	3.245	5.80	13.760	2.534	.401	10.82	3.34	1.87	78.7
Average		8				:		3,35	1.86	78.0

1929]

577

Pig No.	Nitrogen of feed consumed	Nitrogen of feces	Nitrogen of urine	Nitrogen balance
	Туре С—	Intermediate		
	grams	grams	grams	grams
6	. 46.24	14.08	21.85	10.31
8	. 60.48	19.36	27.93	13.19
11	45.92	12.16	14.56	19.20
	Type I	D-Rangy		
4	. 58.88	12.64	29.04	17.20
12		19.68	33.35	13.53
19	75.52	19.52	37.62	18,38

TABLE 86.—NITROGEN BALANCES OF THE FAT PIGS ON FULL FEED: SECOND EXPERIMENT

RELATION OF FEED CONSUMED ABOVE MAINTENANCE TO GROSS ENERGY OF GAINS

For the 13 pigs slaughtered at weights approximating 225 pounds the relation between the amount of feed consumed above the estimated maintenance requirements and the estimated gross energy content of the gains has been computed, with the same reservations concerning its significance that have already been explained in connection with similar computations of the preceding experiment. The results will be found in Table 87. The maintenance requirements have been taken from the results of the maintenance trials of the experiment of the first year, for reasons explained elsewhere (page 544). The requirement for Chuffy pigs of that experiment has been applied to the Very Chuffy pigs of this experiment.

As an average for the 13 pigs it appears that each 100 pounds of ration consumed above the estimated maintenance requirement produced a storage of 74.8 therms of gross energy in the carcasses of the growing and fattening pigs. This is lower than the average value for the 45 pigs of the preceding experiment, 89.5 therms, and is much lower than would be expected from Armsby's estimates of the net energy value of the ration for swine.

The average metabolizable energy content of the ration, as determined from the three groups of pigs upon which digestion trials were run, involving 23 individual pigs, is 3.35 therms per kilogram of dry matter. The average dry matter content of the ration is 85.32 percent, so that metabolizable energy per kilogram of ration is 2.86 therms, or 129.9 therms per 100 pounds. If 100 pounds of the ration possessed a net energy value of 74.8 therms for these fattening pigs, the percentage availability of the metabolizable energy would be 57.6. This is considerably less than the percentage estimated by Armsby, 78.14, but approximates the expected performance of the steer.

[May,

1929]

579

Type A-V. C. Type C-Intermediate Type D-Rangy	Type A	Type A-V. C.			Type C	Type C-Intermediate	ate			Typo	Type D-Rangy	y	
	=	17	-	c		-	9	9			9		
	-	11	-	4		61	10	AT	м	¢	¢	ħ	10
Rinal woildht	1bs.	925	010	200	100	100	030	100	100	000	000	000	100
Initial weight	57	69	80	077	73	1.77	78	102	177	407 68	1077	077	76
Gain	169	176	150	150	151	155	161	152	154	164	150	156	149
Average weight	125.3	120.1	136.2	138.9	139.5	138.3	153.9	133.1	129.4	136.0	131.5	142.9	144.9
Days on experiment	(173)	(186)	(172)	(149)	(131)	(143)	(131)	(138)	(128)	(152)	(135)	(137)	(137)
Maintenance feed per day							4						
Per 100 pounds	1.41	1.41	1.21	1.21	1.21	1.21	1.21	1.21	1.31	1.31	1.31	1.31	1.31
Per head.	1.77	1.82	1.65	1.68	1.69	1.67	1.86	1.61	1.70	1.78	1.72	1.87	1.90
Total feed.	720	707	758	727	613	662	703	625	623	696	608	642	631
Total feed for muintenance	306	339	284	250	221	230	244	222	218	271	232	256	260
Total feed consumed above main-													
tenance	420	458	474	477	392	423	450	403	405	425	376	386	371
	therms												
Gross energy of gain	330	387	327	386	294	317	318	300	315	319	240	278	276
Net energy: Gross energy of gain per													
100 pounds feed consumed above													
muintenance	2.0	84	69	81	75	75	. 69	17	78	75	64	72	74

Admittedly the calculations discussed in this section are indirect and are based upon questionable assumptions. The average direct

[May,

experimental data for the group of 13 pigs are as follows: in a feeding period of 147 days a pig averaging 137 pounds in weight consumed 678 pounds of the experimental ration containing 807 therms of metabolizable energy. This amount of metabolizable energy sufficed to cover the pig's maintenance requirements and to produce a gain in body tissue containing 315 therms of gross energy. The conclusion that the energy gained represented only 57.6 percent of the metabolizable energy used for that purpose depends upon the validity of the assumption that the metabolizable energy required per unit of weight for maintenance is the same in the period of full feed as in the period of maintenance feeding.

In the present state of knowledge of energy metabolism it seems profitless to discuss the probable accuracy of this assumption and of the conclusion based upon it. However, other evidence may be cited to the effect that the percentage utilization of feed energy by swine is greatly exaggerated in Armsby's estimate of the net energy value of feed for this species.

In Research Bulletin 73 of the Missouri Agricultural Experiment Station Hogan, Weaver, Edinger, and Trowbridge report the results of an experiment designed to determine the relation of feed consumed to energy retention in swine. Sixteen pigs were slaughtered at weights ranging from 100 to 300 pounds, and the carcasses were submitted to complete chemical analysis. By comparing the energy content of pigs of different weights, estimates were made of the corresponding gains in energy, and from the amounts of feed consumed in the time required for these gains, the net energy consumed was estimated by employing Armsby's values.¹ Upon deducting from the estimated net energy intakes the estimated gross energy contents of the gains, estimates were secured of the net energy required for maintenance. These estimates, expressed per square meter of body surface per day, averaged approximately 3,000 calories. Now the basal metabolism of the pig may be taken roughly as 1,000 calories per square meter per day.² It seems extremely improbable that the requirement of energy of the active pig for maintenance should be three times its basal heat production. For example, a pig weighing 100 pounds (surface area 1.097 square meters, according to Hogan et al) standing 12 hours out of the 24, with an assumed increased energy expenditure of 20 percent, would have to travel 36 miles a day at a lively canter for a pig in

¹ Armsby, H. P. The nutrition of farm animals, 722. ² Deighton, T. Roy. Soc. (London) Ser. B. Proc. **95**, 340. 1923. Rapport, D., Weiss, R., and Csonka, F. A. Jour, Biol. Chem. **60**, 583. 1924. Wierzuchowski, M., and Ling, S. M. Jour. Biol. Chem. 64, 697. 1925. Wood, T. B. Jour. Agr. Sci. 16, 425. 1926. Armsby, H. P. The nutrition of farm animals, 285.

order to expend the equivalent of 3,000 calories per square meter of body surface daily.¹ It may be doubted whether a fattening pig would exhibit this much activity or anything approximating it.

Hence the estimate that the maintenance requirement of these pigs averaged 3,000 calories daily per square meter of surface may be considered much too high. In inquiring concerning the source of error it appears reasonable to suppose that it is directly traceable to an excessive estimate of the net energy intake of the pigs based upon Armsby's net energy values and, therefore, that these estimates are themselves much too high. This is the conclusion to which the data of these type experiments also point rather definitely.

In examining critically the experimental evidence upon which Armsby based his estimates of the heating effect of food on swine (*loc. cit.*, 653-656), the necessity of assuming thruout an average value for the fasting catabolism with which to compare the heat production on feed must detract considerably from the accuracy of the estimates made. Furthermore, this method is not analogous to the method used for cattle, in which the heat production of periods on different levels of feed is compared, since it involves the heating effect of the food consumed rather than the heating effect of increments of food imposed upon a basal amount. When the method applied to swine by Armsby is applied to steers, much smaller heat increments per unit of feed than those reported by Armsby are obtained.²

The heat increments thus computed for swine are not particularly concordant among themselves, and the differences obtained between different feeds are frequently so unexpected as to constitute circumstantial evidence of the unreliability of the method of computation or of the data to which it has been applied. The extremely high heating effect of palm oil and the greater heating effect of straw pulp than of wheat gluten may be cited in this connection. The fact that no experimental data are available on the heating effect of most of the feeds whose net energy values have been estimated may also be mentioned. For these reasons it must be concluded that no satisfactory estimates of the net energy value of feeds for swine are at present available.

NUTRIENT REQUIREMENTS OF PIGS

The most satisfactory estimate of the nutrient requirements of growing and fattening pigs, in terms of the expenditure and storage of nutrients in the body of the pig rather than in terms of digestible

¹Assuming a very liberal expenditure in horizontal locomotion of .8 small calories per kilogram of weight per meter traveled.

² Forbes, E. B., Fries, A. J., Braman, W. W., and Kriss, Max. Jour. Agr. Res. 33, 489, Table 4. 1926.

BULLETIN NO. 323

food nutrients,¹ should be based upon established relations between (1) age and body weight, (2) body weight and chemical composition, and (3) age (or weight) and the minimum expenditures of nutrients compatible with the maintenance of life. The data secured in the swine-type studies described in the preceding pages afford information with respect to relations 1 and 2. Other published investigations also throw light upon these points and also, to some extent, upon relation 3. It appears possible, therefore, by the use of all available information to reach some definite, tho evidently only tentative, conclusions concerning the nutrient requirements of fattening pigs.

RELATION OF WEIGHT TO AGE

For growth alone it should be possible to establish a significant relationship for each species or breed of animals between age and weight were it not for the fact that for many of the different "improved" breeds of farm animals growth is usually accompanied by what must be considered physiologically as an excessive deposition of fat. A certain rate of fat deposition is undoubtedly associated with normal growth. Hence with animals such as swine, that readily fatten during growth, it is difficult to decide just how great a rate of fat deposition is essential for normal growth; and since excess fat may be deposited at greatly varying rates, observed relationships between age and weight in the case of swine are lacking in definite significance. No "normal growth curve" for swine can be justified as such without a demonstration that excessive fat deposition did not occur in animals from which the data were secured, while no age-weight curve for growing and fattening swine can possess a definite meaning unless it represents the maximum performance.

For these reasons nothing definite is known concerning the normal growth rate for swine and no normal rate of fattening can be said to exist. The time relations of these processes have thus defied standardization. A comparison of the age-weight relation of the individually fed pigs of the swine-type studies with that published by the Missouri Agricultural Experiment Station is of importance to the later discussion. Such a comparison will be found in Table 88.

In the experiment of the second year the withdrawal of pigs for slaughter was started when the pigs were about 28 weeks of age. Since the animals thus removed were generally among the heaviest of their respective groups, an attempt has been made, by removing from consideration also correspondingly lighter pigs, to obtain average weights fairly representative of the ages given.

Considerable differences in the rate of weight increase occurred

¹ Mitchell, H. H. The determination of the protein requirement of animals and of the protein values of farm feeds and rations. Bul. Natl. Research Council. 11, Part I, No. 55. 1926.

NO AND FATTENING SWINE	
RELATION FOR GROWING	ts in pounds
T RELATION	(All weight
a SSAne-Weight	
TABLI	

													Color.	Totolar avera		
			lörat	lårat experiment	ut				Becot	Second experiment	lent		nge fr	nge from two	Missou	Missouri data ²
Age in weeks	Ty	Type B	T'y	Type C	Tyl	Type D	Ty	Type A	F .	Type C	CL.	Type D	experi	experiments.		
	No. of pigs	No. of Average pigs weight		No. of Average pigs weight	No. of pigs	Average weight	No. of piga	No. of Average piga weight	No. of pigs	Average weight		No. of Average pigs weight	No. of pigs	Average weight	No. of pige	Average weight
		lbs.		lbs.		lba.		lbs.		lba.		lba.		lba.		Ubs.
	:			• • • •	•••••		10	54	18	02	20	20			44	59.1
15.	20	20	20	62	30	02	10	58	18	7.5	20	02	78	00	4.4	07.0
	••••				::		20	19	18	80	20	26	78	7.3	14	71.8
	20	17	20	20	20	99	:						78	27	1.1.	77.3
			:::::::::::::::::::::::::::::::::::::::				10	00	10	10	20	85	20	82	1-1-	85.1
10.	20	80	20	28	20	73	•••••		••••				62	88	44	92.7
20			:::				20	78	10	105	20	00	20	0.5	44	104
21	20	00	20	10	20	82	•••••				•••••		20	102	44	601
22					•		20	00	10	120	50	113	02	100	1.1	117
	30	III	8	105	20	03					••••		70	116	4.1	125
						••••	20	102	19	134	20	127	10	122	÷ŀ	135
	20	124	20	120	20	103						•••••	20	130	44	145
				••••			20	115	10	140	50	145	20	130	44	1.5.1
	20	144	20	139	20	118							••••	140	1.1	103
							:		:			•••••		152	44	172
	20	158	20	166	20	181					• • • •		•••••	169	1.1	181
30	••••				••••		20	131	10	173	17	158	73	100	14	192
	20	178	20	175	20	150	• • • •						• • • •	176		
							8	150	15	101	17	176	2.2	187	•	•
	20	202	20	200	20	172	:							261	•	
	:	•••••					18	108	11	208	13	107	44	205		
3.5		••••	20	218	30	180	16	180	10	210	13	211	43	216	•	
36	:	:			:		11	103					:	•••••		
					•••••		10	100			• • • •		:	:	:	
		••••		•••••			10	211				:	:	•••••		
	••••		:	:			0	221				:		:		

1929]

583

HIT BASIS
LIVE-WEIG
VEIGHTS, ON
BODY V
DIFFERENT
AT
PIGS
OF
COMPOSITION
PERCENTAGE
NO
Data
OF
TABLE 89.—COMPILATION
\mathbf{T}_{\prime}

Missouri data²

U. S. D. A. data¹

Illinois data

										•					
Ash	pct.	4.1	:	:	:	2.8	2.6		:	2.5	:		2.6	:	2.0
Fat	pct.	2.0	•	:	:	15.6	25.5	:	:	28.2	:	:	33.1	:	41.5
Crude protein (Nx6.25)	pct.	14.2		:		13.9	12.9	:		13.8			12.4		11.4
Dry matter	pct.	20.3	:	:	:	40.2	47.5	•	:	40.4	:	:	52.5	:	58.9
No. of pigs		43	:	:	:	5	5	:	:	5	:	:	2	:::	61
Ash	pct.	•••••	3.1	3.4	3.1	3.0	:	2.8	:	:	2.4	:	:	:	:
Fat	pct.	:	17.3	13.0	15.5	24.1	:	32.6	:	:	39.8	:	:		:
Crude protein (Nx6.25)	pct.		13.9	14.2	14.9	14.4	:	13.5	:	:	12.1	:	:	:	:
Dry matter	pct.		34.1	30.3	32.9	41.0		48.5	•••••	•••••	54.1	•••••	••••	•••••	
No. of pigs		::::	2	2	2	2	:	6	::	:	6	:	:	:	
Gross energy per gram	cals.	•••••	:		2.63	:	•••••	::	3.76	:	•••••	3.93	:	4.38	••••
Ash	pct.	:	:	:	2.3	:	:	:	2.4	:	:	2.1	:	2.2	

: •

:

:

:

20.3

12.3

36.1

:

35 (weaned)..... 55 to 70..... 100. 150..... 160..... 175.

1.8 (birth).... 15.....

lbs.

8

•

: : : : : : •••••

:

33.6

11.5

47.9

12

••••• : :

:

215.....

200.....

225.....

pct. :

pct.

pcl.

Fat

protein (Nx6.25) Crude

matter

Dry

No. of pigs

Approximate weight 11.6

49.5

58 10

: 54.1.....

•

:

300.

275..... 250.

40.9 34.9

11.0

::::

••••

¹Ellis, N. R., and Hankins, O. G. Jour. Biol. Chem. 66, 101, 1925, ²Hogan, A. G., Weaver, L. A., Edinger, A. T., and Trowbridge, E. A. Mo. Agr. Exp. Sta. Res. Bul. 73. 1925. Wited in Armsby, H. P., and Moulton, C. R. The animal as a converter of matter and energy, Table 18, 51. New York. 1925. Includes some analyses by other than Missouri workers.

BULLETIN NO. 323

SI
BASIS
E
-FREE
2
FAT
۲.
EMPTY
Ē
NO
TS,
GH
E
×
DΥ
$\mathbf{B}_{\mathbf{OD}}$
E
FERENT
EB
ΗH
$\mathbf{D}_{\mathbf{IF}}$
AT
PIGS
OF
z
TIO
SIS
PO
MO
Q
GE
VL.
ENT
вc
PE
NO
Ś
AT.
9
I OF
NOI
ATI
μL
IWO
20
Ĩ
90.
E
ABL
$^{\rm L}$

		Illinoi	Illinois data			U. S. D. A. data ¹	A. data ¹			Missou	Missouri data	
Approximate weight	No. of pigs	Dry matter	Crude protein (Nx6.25)	Ash	No. of pigs	Dry matter	Crude protein (Nx6.25)	Ash	No. of pigs	Dry inatter	Crudo protein (Nx6.25)	Ash
lbs.		pct.	pct.	pct.		pcl.	pct.	pct.		pct.	pct.	pct.
1.8 (birth)	:	:	:		:::		:	:	4	18.7	12.7	4.2
15	:	:	:	•	7	21.6	17.9	3.9	:		:	
35 (weaned)	:	:		•	7	22.6	18.5	4.3	:	:	:	:
55	5	22.5	17.6	3.3				:	:	:	:	
65	15	20.9	16.3	3.0	7	22.7	18.9	3.9	:		:	:
70	10	23.3	17.6	3.3	:		::::	:	:		:	:
100	:	•	:	•••••	7	24.3	20.0	4.1	5	21.6	18.3	3.7
150	•		:		:			:	2	21.8	19.2	3.9
160			:	. :	9	25.3	20.8	4.4	:	:	:	:
175	12	23.8	19.0	4.0	:		:	:	:		:	:
200		:	:	•	:	:		:	61	24.5	20.6	3.8
215	:	:	:	:	6	25.3	21.2	4.2	:			
225	58	24.5	19.5	3.6	:					:	:	:
250	:		:		:				63	24.3	19.8	4.1
275	10	23.8	19.9	3.9	:		•••••		:	:		:
300.	:	::	•••••			••••			2	25.9	20.5	3.7

where a manual we considered as consisting largely of water, the percentages animal may be considered as consisting largely of water, the percent-ages of dry matter, erude protein, and ash on the fat-free basis are slightly larger than the percentages that would have been obtained if the computation could have been made on the empty weight. The empty weights of the pigs are not reported.

Animal No.	Age	Live	Fat	-	osition of fat mpty animal	
		weight	content	Dry matter ¹	Crude protein	Ash
20	days	lbs.	pct.	pct.	pct.	pct.
7	26	14.8	15.7	23.3	19.0	4.3
0	24	14.1	18.5	19.4	16.4	3.0
9	26	16.0	14.5	19.0	15.6	3.4
3	57	28.0	12.7	21.0	17.3	3.7
4	100	61.0	8.7	21.6	18.0	3.6
8	141	105	14.2	23.4	19.4	4.0
81	186	164	15.5	25.1	21.2	3.9
1	206	208	26,6	29.1	25.1	4.1
9	78	34.5	10.5	22.9	17.4	5.4
2	119	97.0	14.9	21.9	17.8	4.1
32	164	140	16.0	22.6	18.2	4.5

TABLE 91.—Composition of Pigs of Different Weights on Empty Fat-Free Basis, From Data of Wood

¹Determined indirectly by summation.

TABLE 92.—COMPARISON OF COMPOSITION OF SOWS AND BARROWS AT A WEIGHT OF
Approximately 225 Pounds, on Live-Weight Basis

				Percentage	composition		Gross
Туре	Sex	No. of pigs averaged	Dry matter	Crude protein (Nx6.0)	Fat	Ash	energy per gram
						-	sm. cals.
B	Sows	4	49.13	11.14	34.96	2.07	3 935
	Barrows	11	48.18	10.85	33.99	2.04	3 891
c	Sows	6	49.72	11.12	34.66	2.02	3 935
	Barrows	9	51.11	11.33	36.22	2.09	4 037
D	Sows	2	47.37	11.95	32.16	2.36	3 727
	Barrows	13	49.46	11.47	34.45	2.22	3 929

The recomputation of Wood's results on the empty fat-free basis brings them into essential agreement with the American data, as is evident from Table 91.

Thus the difference in the composition of pigs of different weights depends upon two factors. The most important factor is the fat content, which seems to be dependent primarily upon the system of feeding, particularly upon the amount of carbonaceous feed consumed above the requirements. The second factor is the varying composition of the protoplasmic tissues, which is unrelated to the method of feeding and probably dependent either upon the chronological age of the

animal or upon its physiological age as represented by the growth attained. Under the conditions of feeding represented in the American investigations reviewed, the protoplasmic composition of developing swine appears to reach approximate constancy ("chemical maturity'') when a weight of 150 to 175 pounds is reached, so that pigs of greater weight will differ in composition in accordance with their fat content only.

The swine-type experiment of the second year affords the opportunity to determine whether the composition of sows differs materially from that of barrows. Among the 225-pound pigs examined in this experiment enough sows were included to make a comparison possible. The average results of sow and barrow analyses in the different types are summarized in Table 92.

Evidently no considerable sex difference existed. In this respect swine differ from poultry, i.e., pullets fatten more rapidly and grow more slowly than capons,¹ and also from cattle, i.e., heifers fatten more rapidly than steers.²

RELATION BETWEEN AGE AND MAINTENANCE REQUIREMENTS

The maintenance requirements of swine for any nutrient may be factored into the amount required to supply the basal (or minimal) expenditure and the amount required to supply the expenditure in the muscular activity more or less characteristic of the animal under usual farm conditions.

Considering energy requirements first, the basal energy expenditure of swine has been determined by Tangl,³ who obtained an average value of 1,100 calories per day per square meter of body surface for two young growing animals about 7 months of age and weighing 40 to 50 kilograms, and an average value of 1,060 calories on the same basis for two animals about 15 months old and weighing 110 to 120 kilograms. These figures represent the heat production of pigs lying down, from 72 to 96 hours after the last meal. E. Voit* has recalculated the results of some earlier and less carefully controlled experiments of Meissl⁵ on two adult fat hogs and has obtained values of 1,064 and 1,086 calories per square meter of surface per day.

Recently Deighton (loc. cit.) has studied the basal heat production of a pig at different ages and has found it to vary greatly and in much the same fashion as that of man. At birth and shortly after, it is low; it rises to a maximum, 70 percent above the adult level, at 4 months of age; and then decreases until 12 months of age, at which time only

¹Mitchell, H. H., Card, L. E., and Hamilton, T. S. Ill. Agr. Exp. Sta. Bul. 278. 1926.

² Ill. Agr. Exp. Sta. Ann. Rpt. 1927-28, 99.

 ⁸ Tangl, F. Biochem. Ztschr. 44, 252. 1912.
 ⁴ Voit, E. Ztschr. Biol. 41, 113. 1901.
 ⁵ Meissl, E. Ztschr. Biol. 22, 63. 1886.

			Metabolizable	Basal metab	olism per day
Weight	Assumed age	Surface area ¹	energy required for maintenance	According to Deighton ²	Assumed at 1,000 cals. per sq. m
lbs.	mos.	sq. m.	cals.		cals.
30	2	. 433	620	571	433
50	3	. 609	1 000	993	609
100	5	.966	1 860	1 623	966
150	6.5	1.266	2 570	1 914	1 266
200	8	1.534	3 140	1 988	1 534
250	9.5	1.780	3 570	2 051	1 780

TABLE 93.—METABOLIZABLE ENERGY REQUIRED FOR MAINTENANCE OF SWINE OF DIFFERENT AGES COMPARED WITH THEIR BASAL METABOLISM

¹Computed by the Meeh formula, using Hogan and Skouby's constant of 777 (Jour. Agr. Res. 25, 419, 1923.) ²Taken from Deighton's curve (*loc. cit.*)

is the constant adult value of approximately 1,000 calories per square meter of surface attained. Later observations by Deighton, cited by Wood (*loc. cit.*), indicate considerable variability among different pigs, but the existence of a high level of basal metabolism at 4 months of age is confirmed.

The results of the two swine-type experiments reported herein permit a statement of the maintenance requirements of pigs of different age in terms of metabolizable energy on the assumption that the requirement per unit of weight from the 50-pound to the 225pound pig varies in a linear fashion. A comparison of these values for pigs at different age and weight with estimates of the basal heat production is given in Table 93.

The amount of metabolizable energy required for maintenance is evidently a maximum figure for the net energy requirement that would be attained only if and when the metabolizable energy is 100 percent net available. It should be higher than the basal heat production for another reason, since it probably includes a considerable expenditure of energy for muscular activity, particularly horizontal locomotion. Hence the close agreement of the values in columns 4 and 5 of Table 93 for the 30- and 50-pound pigs is difficult to explain except on the basis of errors either in the estimation of the metabolizable energy requirement or in the basal metabolism. Since the former is based upon 15 determinations (Table 18), even the indirect, while the latter is based upon direct observations on one pig only, it may perhaps be justifiable to accord the greater significance to the metabolizable energy value and to conclude that the basal metabolism of the young pig is not so intense per square meter of surface as Deighton's limited data would indicate. The adult level of basal metabolism is computed in the last column of the table.

Body weight	Daily urinary nitrogen	Urinary N per kilogram body weight	Authority
kgs.	grams	grams	
10.9	. 54	.050	McCollum and Steenbock
14.3	.96	.067	McCollum and Hoagland ²
16.8	.90	.054	McCollum and Steenbock
17.7	1.09	.062	McCollum and Hoagland
19.5	1.09	.056	McCollum and Steenbock
22.2	1.60	.072	McCollum and Hoagland
25.0	1.32	.053	Pfeiffer ³
26.3	1.19	.045	Pfeiffer
37.2	1.61	.043	McCollum and Steenbock
38.1	2.00	.052	Mitchell and Kick ⁴
38.1	1.88	.049	Mitchell and Kick
38.5	1.83	.047	McCollum and Steenbock
.0.0	1.95	.049	Mitchell and Kick
1.0	1.54	.038	Morgan et al ⁵
6.3	2.23	.048	McCollum and Hoagland
38.1	2.65	.039	McCollum and Steenbock
74.9	2.61	.035	McCollum and Steenbock

TABLE 94.—Daily Excretion of Urinary Nitrogen by Swine Subsisting on Low-Nitrogen or Nitrogen-Free Rations

¹Wis. A_{IT}. Exp. Sta. Res. Bul. 21. 1912. ²Jour. Biol. Chem. 16, 305. 1913. ²Jour. Landw. 33, 149. 1885. ⁴Unpublished data from Illinois Agricultural Experiment Station. ⁵Landw. Vers. Sta. 75, 1. 1914.

For the older pigs the estimated metabolizable energy requirement exceeds the estimated basal metabolism to an increasing extent, until for the 200- and 250-pound pigs it is questionable whether the difference represents muscular work only. The former values are probably in excess of the net energy requirements for maintenance while the latter are undoubtedly below them.

The minimum expenditure of protein in maintenance is measured by the minimum output of urinary nitrogen on a nitrogen-free diet. Since muscular activity does not appreciably increase this expenditure if sufficient non-protein nutrients are being consumed, the uncertainty in deciding upon a representative amount of muscular activity in pigs of different size does not complicate the matter of protein requirements.

The results of a number of published and unpublished experiments on the urinary nitrogen output of pigs on low-nitrogen or nitrogenfree rations may be cited in this connection (Table 94). The arrangement is in the order of increasing body weight. In spite of the irregularity of the results per kilogram of body weight it is evident that as the weight of the pig increases, the minimum (endogenous) expenditure of nitrogen per unit of weight decreases. Thus for the pigs weighing from 10 to 20 kilograms the average loss of nitrogen in the urine is 58 milligrams per kilogram of body weight; for the pigs weighing 20 to 30 kilograms, it is 57 milligrams; for those weighing BULLETIN NO. 323

30 to 40 kilograms, 48 milligrams; for those weighing 40 to 50 kilograms, 45 milligrams; and for those weighing over 50 kilograms, 37

milligrams. This is very nearly a linear decrease. No data have been found that bear at all directly upon the minimum losses of minerals from the bodies of swine during maintenance.

NUTRIENT REQUIREMENTS OF PIGS OF DIFFERENT WEIGHT

On the basis of the more or less definite information above discussed an attempt has been made to formulate a statement of the daily requirements of protein, mineral matter, and energy by the growing and fattening pig. It has been necessary to make somewhat arbitrary estimates in certain cases and to smooth out in a somewhat arbitrary fashion what appear to be irregularities due to experimental error or to a lack of homogeneity in the experimental data. The final results are presented, therefore, as a purely tentative scheme subject to revision as more numerous, more representative, and more significant data accumulate.

The maintenance requirements of protein have been estimated at different body weights from the data of Table 94, assuming a linear decrease in nitrogen loss per kilogram of body weight from the lightest to the heaviest pigs. The maintenance requirement of energy has been taken from the metabolizable energy values of the swine-type experiment given in Table 93, column 4, scaling down the estimates for the two heaviest weights to an even 3,000 calories and decreasing to a smaller extent the estimates for the 100- and 150-pound pigs. This is an arbitrary change but appears to be in the right direction since the difference between the basal heat production and the net energy requirement for maintenance would appear to be smaller at these higher weights than the unchanged figures indicate. The general proposition that the requirement of metabolizable energy for the maintenance of swine is only slightly greater than that of net energy receives support from the recent work of Forbes and his associates¹ indicating that with steers approximately 80 percent of the metabolizable energy of light rations is net available, a percentage utilization much higher than that previously observed in the comparison of light and heavy rations.

No satisfactory estimate of the mineral requirements of maintenance can be made at present. Figures for the calcium requirement have been given, based upon Sherman's² studies in human nutrition, indicating a need for 1 gram of calcium for each 100 grams of protein.

The estimates of the requirements for growth have been largely based upon the average analyses of pigs weighing 55 to 70 pounds, 175 pounds, 225 pounds, and 275 pounds obtained in the Illinois

¹ Forbes, E. B., Fries, J. A., Braman, W. W., and Kriss, M. Jour. Agr. Res. 33, 483. 1926.

^a Sherman, H. C. Jour. Biol. Chem. 44, 21. 1920.

swine-type studies (Table 89). The composition of weanling pigs has been taken from the U. S. Department of Agriculture work. It has been estimated from the data of Table 88 that pigs at weaning would weigh 30 pounds and would be 8 weeks of age; that at 65 pounds they would be 14 weeks old; at 175 pounds, 30 weeks; at 225 pounds, 35 weeks; and at 275 pounds, 41 weeks. The daily increments in

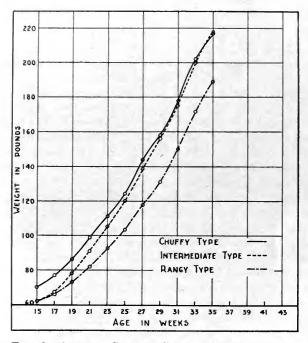


FIG. 6.—AVERAGE GROWTH CURVES OF THE CHUFFY-, INTERMEDIATE-, AND RANGY-TYPE PIGS IN THE FIRST EXPERIMENT

The growth curves are not carried beyond the twentieth week of the experiment because after this time pigs from each lot were being withdrawn for slaughter as they reached the desired weight of 225 pounds.

protein, mineral matter (ash) and energy have been computed from these data. The daily increment in calcium has been assumed to equal 30 percent of the daily increment in ash on the basis of unpublished data on the calcium and ash content of chickens, sheep, and horses.

The estimates thus made of the nutrient requirements of growing and fattening pigs will be found in Table 95. In evaluating and applying these estimates it should be kept in mind that they are based upon a moderate rate of growth and fattening, averaging about one

1	\mathbf{x}
1	
	Ξ.
- 6	
	-
	-
	9
	Ζ.
- 6	_
	-
- 1	-
- 1	Ξ.
-	4
	÷.
- 5	-
	4
	<
1	3
	5
	-
1	5
- 1	5
	5
- 1	=
- 7	5
	2
1	4
	\frown
	-
	0
1	-
	4
	5÷
	Ξ.
	×.
	-
	نہ ،
	-
	5
	2
	F
	E S
	EQ
-	REQU
4	ILEQU
4	L ICEQU
4	T REQU
q	NT REQU
4	ENT REQU
q	IENT REQU
q	RIENT ILEQU
q	FRIENT ILEQU
C	TRIENT REQU
G	UTRIENT ILEQU
	NUTRIENT ILEQU
N	IN UTRIENT ILEQU
N. D.	IN UTRIENT ILEQU
N D	Y IN UTRIENT MEQU
N.	LY IN UTRIENT MEQU
N. D	ILY NUTRIENT KEQU
N.	AILY IN UTRIENT IVEQU
N	VALLY IN UTRIENT IVEQU
a N	UAILY IN UTRIENT IVEQU
a A	LAILY NUTRIENT REQU
a N C	O LUAILY IN UTRIENT REQU
a A	ID TAILY NUTRIENT MEQU
a M	ED LAILY NUTRIENT REQU
u u	TED LIAILY IN UTRIENT MEQU
C N	ATED LIAILY IN UTRIENT MEQU
C N	IATED LUAILY IN UTRIENT IVEQU
a v	MATED LIAILY IN UTRIENT IVEQU
C N C	IMATED LUAILY NUTRIENT KEQU
A A	FIMATED LAILY NUTRIENT REQU
D N D	STIMATED LAILY NUTRIENT REQU
D N D	USTIMATED LIAILY IN UTRIENT REQU
D N D	PSTIMATED LIAILY IN UTRIENT REQU
D N D	-PERTIMATED PAILY NUTRIENT REQU
D N D	-PESTIMATED LIAILY NUTRIENT REQU
0 N 0	
D N D	0PSTIMATED LIAILY NUTRIENT ILEQU
D N D	93PISTIMATED LIAILY NUTRIENT REQU
	93PISTIMATED LIAILY IN UTRIENT REQU
D N D	S 93 PSTIMATED LIAILY IN UTRIENT IVEQU
0 D N D	LE 90PISTIMATED LIAILY NUTRIENT IVEQU
OF P D M	LE 93INSTIMATED LIAILY INUTRIENT IVEQU
OF P D N	BLE 93PSTIMATED LIAILY NUTRIENT KEQU
OL D M	ABLE 93PSTIMATED LIAILY INUTRIENT REQU
D N D	ABLE 93PISTIMATED LIAILY NUTRIENT INEQU
D N D	LABLE 93PSTIMATED LIAILY NUTRIENT REQU
	I ABLE 93 PISTIMATED IJAILY NUTRIENT REQU

			Calcium			Total ash		Crude	Crude protein (Nx6.25)	x6.25)		Net energy	
W eight	Approx- imute nge	Mainte- nance	Mainte- Growth nance and fat- tening	Total	Mainte- nance	Mainte- Growth nance and fat- tening	Total	Mainte- nance	Maintee Growth nance and fat- tening	Total	Mainte- nance	Mainte- Growth nance and fat- tening	Total
108.	weeks	grams	grams	grams	grams	grams	grams	grams	grams	grams	cals.	cals.	cals.
30.	x	.05	1.95	2.0	:	6.5	:	5	37	42	620	830	1 450
50.	12	.08	2.10	2.2	:	7.0	:	80	41	49	1 000	1 180	2 180
100.	20	.13	2.25	2.4	:	7.5	:	13	47	60	1 800	1 730	3 530
150.	20	.16	2.40	2.6	:	8.0	:	16	54	02	2500	2 390	4 890
200.	32	.17	2.55	2.7	:	8.5	:	17	52	69	3 000	3 080	$6 \ 080$
250.	38	.14	2.70	2.8	:	0:6	:	14	50	64	3 000	3 330	6 330

[May,

pound daily. For more rapid rates the estimates should be increased accordingly and since, within limits, the rate of gain does not appear to affect the composition of the gain (see page 525), such a correction may be made justifiably.

It should also be kept in mind that these estimates refer to the animal, not to the feed. They are, therefore, coverable by feed nutrients only when allowance is made for all losses in the course of their utilization in digestion and in metabolism. This conception of "net" nutrient requirements is thus simply an extension of Armsby's conception of net energy.

In illustrating the application of these estimates to food nutrients, the case of energy and protein may be taken. Since the net energy content of feeds for swine is yet to be determined, an approximate statement of the net energy requirements in terms of metabolizable energy may be made on the following basis. In the experiment of the first year, which involved a much more extensive study of the relation between feed consumed and gains secured than the second year's work, the 45 fattening pigs averaging 128 pounds in weight consumed daily an average of 4.14 pounds of feed containing 5.68 therms of metabolizable energy. The daily energy storage amounted on the average to 2.19 therms, and the maintenance requirement may be estimated at 2.15 therms daily (Table 95). Hence the average net energy intake was 4.34 therms, or 76 percent of the metabolizable energy intake. Therefore, under the conditions of feeding represented by the values in Table 95 it may be assumed that approximately 76 percent of the metabolizable energy of a ration of corn, tankage, and middlings would be net available.

From unpublished data on the utilization of the protein of corn and tankage by swine it may be estimated conservatively that the biological value of the protein in a ration of corn, middlings, and tankage is at least as high as 50.

Hence the net protein and net energy requirements presented in Table 95 may be expressed approximately in terms of digestible protein

TABLE 96.—ESTIMATED DAILY REQUIREMENTS OF GROWING AND FATTENING PIGS FOR DIGESTIBLE PROTEIN AND METABOLIZABLE ENERGY

Weight of pig	Digestible protein	Metabolizable energy	Nutritive ratio 1 to:
lbs.	lbs.	therms	
30	.185	1.91	4.6
50	, 216	2.88	6.2
00	. 264	4.64	8.4
50	. 308	6.43	10.2
200	. 304	8.00	13.1
250	. 282	8.33	14.9

595

BULLETIN NO. 323

and metabolizable energy by division by .50 and .76 respectively. This transformation yields the estimates of Table 96.

The nutritive ratio of the rations supplying protein and metabolizable energy in the proportions indicated has been estimated in the last column of the table on the assumption that the metabolizable energy content of protein is 4.1 calories per gram.

SUMMARY AND CONCLUSIONS

General Description of Experiments. The experimental data described and discussed in this bulletin were obtained as a part of certain swine-type studies undertaken by the Animal Husbandry Department of the University of Illinois. The purpose in securing these data was to obtain reliable information on: (1) the composition of growing and fattening pigs at different weights; (2) their maintenance requirements; (3) the rates at which the different nutrients are deposited in the carcasses of pigs during growth and fattening; and (4) the relation between feed (and food nutrients) consumed above the maintenance requirements and the nutrients recovered in the gains of pigs.

A number of different types of Poland China pigs were fed, submitted to digestion and metabolism studies, and slaughtered and analyzed in the course of these experiments in order to determine whether type affects any of the five factors above enumerated. The results obtained, however, have a far more general significance than as mere type comparisons.

The extent of the experimental inquiry is indicated by the numbers of pigs analyzed. Thirty pigs were analyzed individually at the initial weights of 55 to 70 pounds, 12 pigs at 175 pounds, 63 pigs at 225 pounds, and 10 at 275 pounds. Individual maintenance feeding trials were undertaken on 30 pigs at the initial weights and on 27 pigs at 225 pounds or over. Forty-two of these pigs were slaughtered and analyzed at the end of maintenance feeding in order to determine to what extent they had withdrawn nutrients from their bodies during this period. A total of 157 pigs were thus slaughtered and analyzed individually; from two to four separate analytical samples were obtained from each pig, and a number of composite samples involving all the pigs of one type in any one killing were also analyzed. Each sample was analyzed for dry matter, total nitrogen, fat (ether extract), ash, and gross energy. In addition to this analytical work all of the feed used in the maintenance and fattening experiments was submitted to routine analysis, including the gross energy determination; in the second year's work digestion and metabolism experiments were run on 23 pigs, some of which were on maintenance feed and some on full feed. The content of digestible nutrients and metabolizable energy in the rations used could thus be estimated.

Type Comparisons. The carcass analyses revealed only inappreciable differences between types in spite of large differences in their market finish. The dressed carcasses of pigs of distinctly different type slaughtered at the same weight, altho differing distinctly in market finish, analyzed very nearly the same. Apparently these carcasses differed in the distribution of fat but not in the content of fat. These results are in agreement with those of Hogan, Weaver, Edinger, and Trowbridge, obtained at the Missouri Agricultural Experiment Station (Research Bulletin 73).

More or less distinct type differences were noted with reference to the amounts of feed required to maintain energy equilibrium. In general, especially at the heavier weight, the Intermediate-type pigs were more economical of food energy in maintenance, particularly in comparison with the Chuffy and Very Chuffy pigs. This may have been due to less muscular activity or to a less persistent growth impulse under adverse conditions of feeding.

With reference to the utilization of feed no type differences were detected.

Maintenance Requirements for Body-Weight Equilibrium. Of a ration consisting of yellow corn, middlings, and tankage, approximately 1 pound per day per 100 pounds live weight (weight ratio) was required for the maintenance of body weight, both in the case of the young pigs weighing 50 to 70 pounds and also in the case of the fat pigs weighing 225 pounds and more.

Changes in Composition of Pigs on Maintenance Ration. A comparison of the composition of the maintenance pigs at the end of their period of feeding with their probable composition at the beginning indicated clearly that profound changes had occurred, particularly in the young pigs. These changes consisted of a more or less extensive withdrawal of fat and corresponding storage of water, protein, and ash. The period of inadequate feeding on a well-balanced ration had effectively suppressed body-weight changes but had not suppressed growth.

Among the young maintenance pigs of the first experiment, as a result of these changes in composition during a feeding period of 110 days, the energy content of the body decreased on the average 31 percent for the Chuffy pigs, 28 percent for the Intermediate pigs, and 16 percent for the Rangy pigs. Among the 225-pound maintenance pigs the average losses of body energy were 21, .5, and 15 percent respectively.

In the second year's work the young maintenance pigs were not slaughtered, and the fat maintenance pigs, heavier and older than the corresponding pigs of the preceding year, showed only inconsiderable changes in energy content.

Maintenance Requirements for Energy Equilibrium. On the basis of changes in composition of the pigs during the period of maintenance feeding, and also the basis of total amounts of feed consumed, it is possible to estimate the amounts of feed required to maintain energy equilibrium; in other words, to prevent a loss of energy from the body rather than merely a loss in weight. This estimate involves the use of certain simplifying assumptions, the accuracy of which is fully discussed in the text. For the maintenance of energy equilibrium it seems necessary to provide about 1.50 pounds of the ration used per 100 pounds live weight (using the weight ratio) for young pigs weighing 50 to 70 pounds. For older pigs, weighing 225 pounds or more, the first experiment indicated an average requirement of 1.13 pounds of feed, and the second, .95 pound, values not greatly different from those previously given for the maintenance of body weight. Certain average type differences were obtained, but their significance is difficult to assess because of the small number of pigs in each maintenance type group, and the variation among the individual estimates secured.

Digestibility and Metabolizable Energy of Experimental Ration. The digestibility and metabolizable energy value of the rations used in the two years' work were not appreciably affected by the level of feeding (maintenance as compared with full feed) or by considerable changes in the proportions of the individual feeds. Per kilogram of dry matter, the metabolizable energy averaged 3.347 therms for the fat pigs on full feed, 3.440 therms for the fat pigs on maintenance feed, and 3.287 therms for the young maintenance pigs. Expressed as a percentage of the gross energy of the ration, the metabolizable energy averaged 78.0, 79.4, and 73.2 for these three groups of pigs in the order given.

Changes in Composition of Pigs With Age. The percentage composition of the pigs killed at increasing weights exhibited the expected changes, that is, increasing contents of dry matter and fat and decreasing contents of protein and ash. The results were quite comparable with those obtained in recently reported experiments from the Missouri Agricultural Experiment Station and from the U. S. Department of Agriculture Experimental Farm at Beltsville, Maryland.

On the basis of the fat-free empty weight, the so-called "protoplasmic" basis, much of this variation in composition disappears, indicating that it is largely due to varying percentages of fat. In fact, after a weight of 150 to 175 pounds is reached under ordinary conditions of feeding, corresponding to an age of 25 to 30 weeks, the composition of pigs on the protoplasmic basis appears to be remarkably constant and to be unaffected by the system of feeding. This protoplasmic composition characteristic of maturity consists of 75 to 76 percent of water, 20 to 21 percent of crude protein, and approximately 4 percent of ash. Effect of Sex and Rate of Gain on Composition of Swine. The composition of sow carcasses at a weight of 225 pounds is not appreciably different from that of barrow carcasses, the system of feeding being the same. Swine are thus clearly distinguished in this respect from cattle and poultry in which the female at any given weight (except for extreme immaturity) is distinctly fatter than the castrated male.

The composition of swine carcasses at the 225-pound weight and of the gains put on to that weight are not affected, or are affected only to an inconsiderable extent, by variations in the rate of gain ranging from .75 to 1.25 pounds per day, the system of feeding remaining the same.

Distribution of Added Nutrients in Carcass. In gaining weight from 65 to 225 pounds the pigs in this experiment deposited 74 percent of the added dry matter, 58 percent of the added protein, 15 percent of the added ash, and 78 percent of the added energy in the boneless meat of the dressed carcass. Eighty percent of the added ash was stored in the skeleton. Approximately 50 percent of the added protein and 24 percent of the added energy were stored in lean meat.

Net Energy Value of Rations. On the basis of certain simplifying assumptions it has been computed that the net energy value of the rations for growth and fattening averaged 89.5 therms per 100 pounds in the first experiment and 74.8 therms per 100 pounds in the second experiment. These values are much lower than would be expected from Armsby's computations of the net energy values of feeds for swine. Other evidence is cited and discussed in the text in support of the conclusion that swine are considerably less efficient in the utilization of feed energy than Armsby has estimated.

Measurement of Type. An attempt to measure the conformation, or type, of the pigs was made in the second year's experiment, based upon the reference of the volume of the pig to the volume of a box the three dimensions of which are determined by the maximum length, height, and width of the pig. The type index chosen was the percentage of the volume of this box that would be occupied by the pig. The index is larger the chuffier the type of pig; and for pigs of a given type it is larger the fatter the pig.

From a study of the numerous type indexes obtained in this experiment it appears that the one chosen is subject to wide individual differences, due probably to the difficulty in securing accurate dimensional measurements of pigs and to the fact that the differences between the types of pigs used in this experiment are not large. However, it is believed that the average index for a large group of animals of similar type and weight must be conceded a greater value as a quantitative description of type, or conformation, than a worded description. or a group photograph or a group of individual photographs.

Maintenance Requirements for Energy Equilibrium. On the basis of changes in composition of the pigs during the period of maintenance feeding, and also the basis of total amounts of feed consumed, it is possible to estimate the amounts of feed required to maintain energy equilibrium; in other words, to prevent a loss of energy from the body rather than merely a loss in weight. This estimate involves the use of certain simplifying assumptions, the accuracy of which is fully discussed in the text. For the maintenance of energy equilibrium it seems necessary to provide about 1.50 pounds of the ration used per 100 pounds live weight (using the weight ratio) for young pigs weighing 50 to 70 pounds. For older pigs, weighing 225 pounds or more, the first experiment indicated an average requirement of 1.13 pounds of feed, and the second, .95 pound, values not greatly different from those previously given for the maintenance of body weight. Certain average type differences were obtained, but their significance is difficult to assess because of the small number of pigs in each maintenance type group, and the variation among the individual estimates secured.

Digestibility and Metabolizable Energy of Experimental Ration. The digestibility and metabolizable energy value of the rations used in the two years' work were not appreciably affected by the level of feeding (maintenance as compared with full feed) or by considerable changes in the proportions of the individual feeds. Per kilogram of dry matter, the metabolizable energy averaged 3.347 therms for the fat pigs on full feed, 3.440 therms for the fat pigs on maintenance feed, and 3.287 therms for the young maintenance pigs. Expressed as a percentage of the gross energy of the ration, the metabolizable energy averaged 78.0, 79.4, and 73.2 for these three groups of pigs in the order given.

Changes in Composition of Pigs With Age. The percentage composition of the pigs killed at increasing weights exhibited the expected changes, that is, increasing contents of dry matter and fat and decreasing contents of protein and ash. The results were quite comparable with those obtained in recently reported experiments from the Missouri Agricultural Experiment Station and from the U. S. Department of Agriculture Experimental Farm at Beltsville, Maryland.

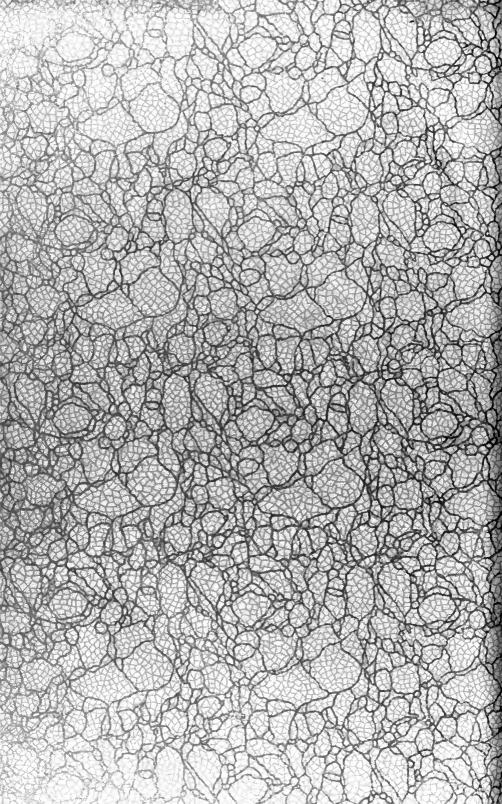
On the basis of the fat-free empty weight, the so-called "protoplasmic" basis, much of this variation in composition disappears, indicating that it is largely due to varying percentages of fat. In fact, after a weight of 150 to 175 pounds is reached under ordinary conditions of feeding, corresponding to an age of 25 to 30 weeks, the composition of pigs on the protoplasmic basis appears to be remarkably constant and to be unaffected by the system of feeding. This protoplasmic composition characteristic of maturity consists of 75 to 76 percent of water. 20 to 21 percent of crude protein, and approximately 4 percent of ash. Effect of Sex and Rate of Gain on Composition of Swine. The composition of sow carcasses at a weight of 225 pounds is not appreciably different from that of barrow carcasses, the system of feeding being the same. Swine are thus clearly distinguished in this respect from cattle and poultry in which the female at any given weight (except for extreme immaturity) is distinctly fatter than the castrated male.

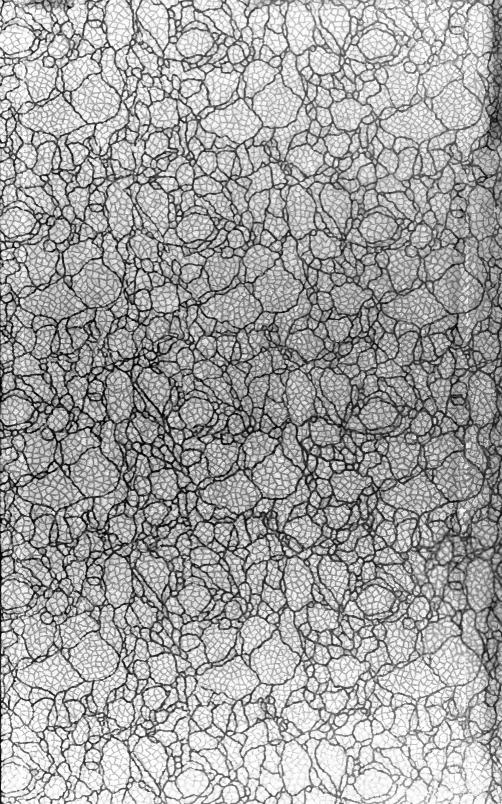
The composition of swine carcasses at the 225-pound weight and of the gains put on to that weight are not affected, or are affected only to an inconsiderable extent, by variations in the rate of gain ranging from .75 to 1.25 pounds per day, the system of feeding remaining the same.

Distribution of Added Nutrients in Carcass. In gaining weight from 65 to 225 pounds the pigs in this experiment deposited 74 percent of the added dry matter, 58 percent of the added protein, 15 percent of the added ash, and 78 percent of the added energy in the boneless meat of the dressed carcass. Eighty percent of the added ash was stored in the skeleton. Approximately 50 percent of the added protein and 24 percent of the added energy were stored in lean meat.

Net Energy Value of Rations. On the basis of certain simplifying assumptions it has been computed that the net energy value of the rations for growth and fattening averaged 89.5 therms per 100 pounds in the first experiment and 74.8 therms per 100 pounds in the second experiment. These values are much lower than would be expected from Armsby's computations of the net energy values of feeds for swine. Other evidence is cited and discussed in the text in support of the conclusion that swine are considerably less efficient in the utilization of feed energy than Armsby has estimated.

Measurement of Type. An attempt to measure the conformation, or type, of the pigs was made in the second year's experiment, based upon the reference of the volume of the pig to the volume of a box the three dimensions of which are determined by the maximum length, height, and width of the pig. The type index chosen was the percentage of the volume of this box that would be occupied by the pig. The index is larger the chuffier the type of pig; and for pigs of a given type it is larger the fatter the pig.


From a study of the numerous type indexes obtained in this experiment it appears that the one chosen is subject to wide individual differences, due probably to the difficulty in securing accurate dimensional measurements of pigs and to the fact that the differences between the types of pigs used in this experiment are not large. However, it is believed that the average index for a large group of animals of similar type and weight must be conceded a greater value as a quantitative description of type, or conformation, than a worded description, or a group photograph or a group of individual photographs. The Nutrient Requirements of Swine. Finally, the data of this and of other recent similar experiments have been discussed with reference to the problem of the expression of the food requirements of pigs in terms of nutrient expenditures and the nutrient content of the tissues produced. The discussion has led to the formulation of tentative estimates of the food requirements of pigs differing in age and weight.


These estimates can be put to accurate use only in connection with information, largely unavailable at the present writing, concerning the net value of farm feeds as sources of energy, protein, and mineral matter for swine. However, an approximate method of using the estimates is described which is believed to be sufficiently accurate for most practical purposes.

THE LIBRARY OF THE FEB 2 = 1930 UNIVERSITY OF ILLINOIS

