c^{3}
$x \cdot 8$ Byerles，curliaio

SYLLABUS

COURSE IN THE THEORY OF EQUATIONS．

にい心「いN：
 1ぶ半。

Mathematical Books.

lintro.iriceBYERLY: Differential Calculus $\$ 2.00$
Integral Calculus 2.00
HALSTED: Mensuration 80
HARDY: Elements of Quatornions 2.00
HILL: Geometry for Begimers 80
PEIROE: Elements of Logarithms 40
Mathematical Tables, Chiefly to Four Figures 25
Three- and Four-Place Tables of Logarithms 40
WALD0: Multiplication and Division Tables. Folio size, 40
Small size, 20
WENTWORTH :
Elements of Algebra 90
Complete Algebra 1.12
Plane Geometry 60
Plane and Solid Geometry 1.00
Plane Trigonometry, Paper 30
Plane and Spherical Trigonometry 48
Plane Trigonometry and Tables. Paper. 48
Plane and Spherical Trigonometry and Tables 90
Fivè-Place Log, and Trig, Tables. Paper 25
Cloth 45
WENTWORTH \& HILL:
Practical Arithmetic 75
WHEELER: Plane aud Splerical Trigonometry 80
Copres sent to Tecachosis fin Exuminution. "ith a rieen to Intronlatiom. ont iepoipt of lutrolation Price.
GINX, HEATH A (O., Publishers.

SYLLABCS

COLRSE IN THE THEORY OF EQUATIONS.

1. Define a ioot of an equation. Explain a short methoel of substitnting : my given mumber for a in a manerical equation. using only the detarthed coeflicients.
2. If 11 is a root of the equation. the first member is divisible
 showing the form of the quotiont: i.". substitute "for r in the first member of the equation, and then subtrate the result from the given first member. ame the enution will he in a form where every tem is obviously divisille ley - -
3. Prove the converse of the theorem in s. . If ar - e will divide the first member of the equation, " is ar root.
4. Assming that every equation hat at least one root, prove .that every equation of the nth degree hats n roots and can be thrown into the form

$$
A(x-a)(x-b)(x-c) \cdots=0
$$

5. Show that the coefticients of the equation are simple functions of the negatives of the roots.
6. Show that, if, on substituting two different values for x in then in the first member of an equation, the results are of opposite signs, there must be an odd momber of roots between the values substituted.

holttion of Nemerical Equations. Commenswable Roots.

7. Prove that if the coeflicients of an equation are whole numbers, and the coefficient of the tirst term is mity, the equation camot have a fractional root. Any commensurable root of such an equation must then be an exact divisor of the constant term by ${ }^{\S} 5$.
8. After a root a is found, the degree of the equation may be lowered by dividing by x-a. Explain abbreviated methods of division: tirst, by detached coetlicients; second, by synthetic division.
9. Prove the theorem: If a is a commensurable root it will exactly divide the constant term, the quotient thas obtained plas the coeflicient of the preceding term, this quotient plas the preceding coefficient, and so on, and the last quotient will be -1 .

Prove the converse of this theorem.
(iive the working method of finding all the commensmable roots of the equation described in $\S 7$.
10. If the coeflicients of an equation are whole numbers, and the coeflicient of the first tem is not unity, show that the equation may easily be transformed into one where the coefficients are whole numbers and the coetticient of the first term is unity, and may then be treated by 9.
11. Descartes' Rule of Signs. Explain what is meant by a permanence of sign : a cartation of sign.

Prove that the number of positive roots of an equation, complete or incomplete, camnot exceed the number of variations of sign. Show that. by reversing the signs of the terms of odd degree, the equation may be tramstormed into one whose roots are the negatives of the roots of the given equation, and that ly applying Descartes Rule to the transormed equation, information may be oltaned concerning the negative roots of the given equation.

12. Explain the rongl laborions method of approximating to the value of an incommensurable root based upen Sis and show that it is theoretically eapahbe of any desired degree of acerolracy, and as applicable to a transcendental ato to an algennaic equation.
13. Explain briefly Voreton's Methort: i.e.. find a portion a
 for x in the equation. neglecting higher powers of 1 than the first, thas obtaning an equation of the first degree to determine an approximate value of h. The result is reasonally acemate if h is small.
14. Morners Mefluot. Find hes 12 a portion af of the root. Transform the equation into one whose roots are less by a than those of the original equation. Treat the resulting equation by $\$ 12$.

Show that the coefticients of the transtormed equation will be the remainders obtained in dividing the original equation repeatedly by $x-a$.

Newtons Method, s 13. shows that an :ppoximate value for the rest of the root may be fomm by dividing the constant term of the transiomed equation by the preceding coetlicient.

Describe Horners Method in its practical abbreviated working form. Show how to deal with negative roots.

General Idethots and Theorems.

15. Explain the method of finding equal roots ly obtaining the greatest common divisor of the first member of the equation and its derivative with respect to x.
16. Describe Sturm's Functions. Prove Sturn's Theorem.
17. In dealing with a given numerical equation of high degree: first, test for commensurable roots, and lower the degree of the efuation ly their aid if any are fomm ; second, test for equal roots; thind, use Horner's Method in finding appreximately the incommensurable roots, employing Sturm's Theorem as an anxiliary if it proves absolutely necessary.

Tmiginames.

18. The treatment and use of imaginaries is purely arhitrary and conventional. Define the sfuare root of -1 as a symbol of operation, and state the conventions adopted to govern its use.

$$
\begin{aligned}
\sqrt{-u^{2}} & =a \sqrt{-1} . \\
(u+b) \sqrt{-1} & =u \sqrt{-1}+b \sqrt{-1}, \\
a \sqrt{-1} & =\sqrt{-1} . \| .
\end{aligned}
$$

Interpret the powers of $\sqrt{-1}$ by the aid of the definition and these conventions.

Show that these conventions enable ns to cleal with imaginary roots of a quadratic. and that their treatment and properties are closely analogous to those of real roots.
19. Show why $a+b \sqrt{-1}$ is taken as the typical form of an imaginary. Explain the ordinary geometrical representation of an imaginary by the position of a point in a plane. N.B. This interpretation is entirely arlitrary, but has proved very useful in suggesting import:unt relations which might not otherwise have been discovered.

20 . Show that the smin. the prodtuct. and the quotient of two imaginaties are imaginaries of the typical form.
21. Give the secoud typical form of an imaginary suggested by the graphical construction of $\$ 19$.

$$
r(\cos \phi+\sqrt{-i} \cdot \sin \phi) .
$$

Define the modnlus :und the cromment of an inaginary.
state the convention concerning the sign of the moxhlus, and show that the argment may have an infinite number of ralues differing ly multiples of 2π.
23. Show that the modulus of the product of two imaginaries is the prodnet of their moxluli, anel that the argment of their product is the sum of their argments. Prove the theorems concerning the moxhlus and argment of the photiont of two imaginaties; of a power of an imaginary ; of a root of :m inatginary.
23. Show that the nth root of any real or imaginary has " values, having the same modulus and argments differing by multiples of $\frac{2 \pi}{\prime \prime}$.
24. Define ronjugate imaginaries. Prove that conjugate imaginaries have a real sum and a real product.
Show that if an equation with real coetficients has an imaginary root, the conjugate of that root is also a root of the equaltion.
25. Give Curdan's Solution of " Cubic of the form

$$
x^{3}+q x+r=0 .
$$

Consider the irreducible case. Give a Trigonometric Solution. Show that any cubic can be reduced to the form

$$
x^{3}+r x+r=0 .
$$

Obtain the general solution of any cubic.
26. Ciive Descartes' and Euler's Methods of solving a biquadratic equation.
smmetric finctions of the Roots of an Equation.
27. Define a symmetric function of several quantities. Show that any combination of symmetric functions is symmetric.

The coefficients of an equation are symmetric functions of the roots of the equation by $\$ 5$.
28. Explain Nevton's Methor of expressing the sums of powers of the roots of an equation in terms of the coefficients,

$$
f x=(x-c)(x-b)(x-c) \cdots
$$

Take the logarithm of each member and differentiate

$$
\frac{f^{\prime} \cdot x}{f x}=\frac{1}{x-u}+\frac{1}{x-b}+\frac{1}{x-c} \cdots
$$

Consider the case where the required power is less than the degree of the equation ; where the required power is greater than the degree of the equation.
29. (iive the short practical method of obtaining the sums of powers of the roots of a mumerical equation ; divide $x f^{\prime} x$ by $f \cdot x$, and the coefficients of x^{-1}, x^{-2}, x^{-3}, ete., in the quotiont are s_{1}, s_{2}, s_{3}, etc. Shorten by using detached coefficients.
30. Any complicated symmetric function ean be made to depend upon simpler functions so that only rational integral forms need be specially investigated.
31. Show that symmetrie functions may be expressed in terms of the sums of powers of the quantities involvel.

$$
\begin{aligned}
& \mathbf{\Sigma} t^{m}=s_{m} . \\
& \mathbf{\Sigma} a^{m} b^{p}=s_{m} s_{p}-s_{m+p} . \\
& \mathbf{\Sigma} a^{m} b^{p} c^{q}=s_{m} s_{p} s_{q}-s_{m+p} s_{q}-s_{m+q} s_{p}-s_{p+q} s_{m}+\stackrel{s}{m+p+p} .
\end{aligned}
$$

Consider special cases.
32. Explain the method of eliminetion ly the aid of symmetric functions.

Dembrinants.

33. Show that, if two simultaneous equations of the first degree.

$$
\begin{aligned}
& \prime_{1} \cdot r+l_{1,1}+{ }_{1}=0 . \\
& \sigma_{2} \cdot x+l_{2}!+r_{2}=0 .
\end{aligned}
$$

are solved. the numerators and demominators of the values of x and y have a peculiar symuntrite form.

Explain the notation adopted for writing compactly such expressions.

Describe a Determinumt, its rous, colnmms. and diacomal term.

Give a rule for expanding a determinant. Give the low of sigms.

Illustrate by determinants of the second and third orders.
34. Show that a determinant may be broken up into a sum of terms each involying a sub-determinunt. Illustrate.
35. Show that an interchange of two rows or of two columns will change the sign of a determinant.
36. Show that if two rows or two colmms are illentical, the value of the determinant is zero.
37. Show that if each constituent of any row or column is multiplied by a given quantity, the whole determinant is multiplied by that quantity-
38. Show that if each constitnent of any row or of any column is a binomial, the determinant can be broken up into the sum of two other determinants of the same order.
39. Show how to compute the value of a mumerical determinant. Consider examples.
40. Explain the application of determinants to elimination in the case of n equations of the first degree between n unknown quantities.
41. Explain the application of determinants to climination in the case of two equations of ayy degree involving two unknown quantities.

W. E. BYERLY,
Professor of Mathematics in Harcard Unicersity.

ELEMENTS OF THE DIFFERENTIAL CALCULUS.

Abstract

 brataches of alaly, the beal in mes burs much felt of poathing whish in ereneral power, an wrll d- knowleld. litl fire from detaik whis lare impurtant mils for Hebat, it is, wh the whole, itt a bery hish alegree. wiad, atole, matheal fis a tritu- wion l:Dis-pirit, aml cateulated to develop the -inne- -pirat in the latarner. . . 'The book rollot- an woll in of the diflerential, that is noxasain! lo the wrdinaty student. And with - 0 mach of this great sejentilie my moteras in the relations of abstrate tharnathly actuanted with the lansk ber. fore us has made a lones mride inte a berat real allattri.

ELEMENTS OF THE INTEGRAL CALCULUS.

 my (1)

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.

$$
\text { M5 } 51548
$$

