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REPORT OF THE COMMITTEE ON THE TEACH-
ING OF MATHEMATICS TO STUDENTS

OF ENGINEERING.

To the Society for the Promotion of Engineering Education:

The committee was appointed at a joint meeting of mathe-

maticians and engineers held in Chicago, December 30-31,

1907, under the auspices of the Chicago Section of the Ameri-

can Mathematical Society, and Sections A and D of the

American Association for the Advancement of Science,* and

on the suggestion of officers of the Society for the Promotion

of Engineering Education who were there present, the com-

mittee was instructed to report to this Society.

The membership of the committee is as follows:

ALGER, Philip E.,t professor of mathematics, U. S. Navy,

Annapolis, Md.

CAMPBELL, Donald F., professor of mathematics, Armour

Institute of Technology, Chicago, 111.

ENGLEB, Edmund A., president of the Worcester Polytechnic

Institute, Worcester, Mass.

RASKINS, Charles N., assistant professor of mathematics, Dart-

mouth College, Hanover, N. H.

HOWE, Charles S., president, Case School of Applied Science,

Cleveland, Ohio.

KUICHLING, Emil, consulting civil engineer, New York City.

MAGRUDEB, William T., professor of mechanical engineering,

Ohio State University, Columbus, Ohio.

MODJESKI, Ralph, civil engineer, Chicago, 111.

OSGOOD, William F., professor of mathematics, Harvard Uni-

versity, Cambridge, Mass.

SLIGHTER, Charles S., consulting engineer of the U. S. Recla-

mation Service, professor of applied mathematics, Univer-

sity of Wisconsin, Madison, Wis.

-'For an account of the Chicago meeting, see Science for 1908 (July

12, 24, and 31; August 7 and 28; and September 4).

t Deceased.

1



2 COMMITTEE ON TEACHING MATHEMATICS.

STEINMETZ, Charles P., consulting engineer of the General

Electric Company, professor of electrical engineering,

Union University, Schenectady, N. Y.

SWAIN, George F., consulting engineer, professor of civil

engineering, Harvard University, Cambridge, Mass.

TOWNSEND, Edgar J., dean of the College of Science and pro-

fessor of mathematics, University of Illinois, Urbana, 111.

TURNEAURE, Frederick E., dean of the College of Mechanics

and Engineering, University of Wisconsin, Madison, Wis.

WALDO, Clarence A., head professor of mathematics, Washing-
ton University, St. Louis, Mo.

WILLIAMS, Gardner S., consulting engineer, professor of civil,

hydraulic and sanitary engineering, University of Michigan,
Ann Arbor, Mich.

WOODWARD, Calvin M.,* dean of the School of Engineering and

Architecture and professor of mathematics and applied

mechanics, Washington University, St. Louis, Mo.

WOODWARD, Robert S., president of the Carnegie Institution of

Washington, Washington, D. C.

ZIWET, Alexander, professor of mathematics, University of

Michigan, Ann Arbor, Mich.

HUNTINGTON, Edward V., chairman, assistant professor of

mathematics, Harvard University, Cambridge, Mass.

After deliberation, the committee decided that it could best,

carry out the purpose for which it was appointed by preparing
a synopsis of those fundamental principles and methods of

mathematics which, in the opinion of the committee, should

constitute the minimum mathematical equipment of the stu-

dent of engineering.

This synopsis, as finally adopted, consists of five parts :

1. A Syllabus of Elementary Algebra ;

2. A Syllabus of Elementary Geometry and Mensuration;
3. A Syllabus of Plane Trigonometry ;

4. A Syllabus of Analytic Geometry;
5. A Syllabus of Differential and Integral Calculus.

Two other syllabi, on Numerical Computation and on Ele-

mentary Dynamics, were contemplated in the original plan,

but were not completed.
* Deceased.



COMMITTEE ON TEACHING MATHEMATICS. <3

It is hoped that this report may be serviceable in two ways :

first, to the teacher, as an indication of where the emphasis

should be laid; and secondly, to the student, as a syllabus of

facts and methods which are to be his working tools. It does

not include data for which the student would properly refer

to an engineers' hand-book; it includes rather just those

things for which he ought never to be obliged to refer to any
book the things which he should have constantly at his

fingers' ends.

The teacher of mathematics should see to it that at least

these facts are perfectly familiar to all his students, so that

the professor of engineering may presuppose, with confidence,

at least this much mathematical knowledge on the part of his

students. On the other hand, if the professor of engineering

needs to use, at any point, more advanced mathematical meth-

ods than those here mentioned, he should be careful to explain

them to his class.

The committee has not found it possible to propose a de-

tailed course of study. The order in which these topics

should be taken up must be left largely to the discretion of

the individual teacher. The committee is firmly of the

opinion, however, that whatever order is adopted, the principal

part of the course should be problems worked by the students,

and that all these problems should be solved on the basis of a

small number of fundamental principles and methods, such

as are here suggested.

The defects in the mathematical training of the student of

engineering appear to be largely in knowledge and grasp of

fundamental principles, and the constant effort of the teacher

should be to ground the student thoroughly in these funda-

mentals, which are too often lost sight of in a mass of details.

A pressing need at the present time is a series of synoptical

text-books, which shall present, (1) the fundamental prin-

ciples of the science in compact form, and (2) a classified and

graded collection of problems (which would naturally be sub-

ject to continual change and expansion) . It is the hope of the

committee that this report, which is confined to the first part of



4 COMMITTEE ON TEACHING MATHEMATICS.

the desired text-book, will stimulate throughout the country

practical contributions toward the second.

In the early part of its investigation the committee collected

a large amount of information in regard to the present status

of mathematical instruction for engineering students. Since

that time, however, a much more inclusive inquiry has been

undertaken by the International Commission on the Teaching
of Mathematics, of which the American Commissioners are

Professors D. E. Smith, J. W. A. Young and W. F. Osgood.
In order to avoid unnecessary duplication, this committee

voted to turn over all the results of its own inquiry in this field

to the larger commission, to be worked up in accordance with

the general scheme adopted by that commission, and to be

incorporated in their report. This material is therefore not

included in the present report.

Respectfully submitted,

EDWARD V. HUNTINGTON,
Chairman.

June, 1911.



A SYLLABUS OF THE FORMAL PART OF
ELEMENTARY ALGEBRA.

This syllabus is intended to include those facts and methods of ele-

mentary algebra which a student who has completed a course in that

subject should be expected to "know by heart" that is, those funda-

mental principles which he ought to have made so completely a perma-
nent part of his mental equipment that he will never need to ' ' look them

up in a book."

It is not intended as a program of study for beginners, and no at-

tempt has been made to arrange the topics in the order in which they

should be taught. In reviewing the subject, however, either at the end

of the course in algebra, or at the beginning of any later course, such a

syllabus will be found serviceable to both teacher and student; and in

the hands of a skillful teacher, and supplemented by an adequate collec-

tion of problems, it might well be made the basis of a course of study

conducted by the "syllabus method."

One of the chief defects in the present-day teaching of algebra is the

multiplicity of detached rules with which the student ;
s mind is burdened;*

and every successful attempt to knit together a number of these detached

rules into a single general principle (provided this principle is simple

and easily applied) should conduce to economy of mental effort, and di-

minish the liability to error.

TABLE OP CONTENTS.

CHAPTER I. TRANSFORMATION OF ALGEBRAIC EXPRESSIONS.

General laws of addition and multiplication.

Type-forms of multiplication (Factoring).
Fractions.

Negatives.
Radicals and Imaginaries.

Exponents and Logarithms.
CHAPTER II. SOLUTION OF EQUATIONS.

Legitimate operations on equations.

To solve a single equation.

Quadratic equations.

Exponential equations.

To solve a set of simultaneous equations.

CHAPTER III. MISCELLANEOUS TOPICS.

Eatio and proportion.

Variation.

Inequalities.

Arithmetical, geometric, and harmonic progressions.

* For example, in a recent prominent text-book there are no less than

fifty italicized rules in the part of the book preceding quadratic

equations I



CHAPTER I.

TRANSFORMATION OF ALGEBRAIC EXPRESSIONS.

1. The ordinary operations of transforming and simplify-

ing algebraic expressions should be so familiar to the student

that he performs them almost instinctively ;
at the same time

he should be able, whenever called upon, to justify each step of

his work by reference to some one or more of a small number
of well established principles.

For example, if the student is asked "by what authority he replaces

?
,

X
by T-, or Vaa + &a

by o + & (to mention only two of the common-
b -\- x o

est blunders), he will be forced to recognize either that he is making use

of methods that he has never proved, and that are in fact erroneous,

or else (which is more likely) that he is working altogether in the dark,

without any conscious reason for the steps he has taken.

The following list of such principles, while making no pre-

tense at logical completeness, will be sufficient for all practical

purposes.

2. General laws of addition and multiplication.

a + &= & + a. db= ba. ( Commutative laws. )

(Associative laws.)

a ( & -f- c )
= ab + ac. (Distributive law. )

These laws hold when a, ~b, c are any of the quantities that occur in

ordinary algebra, whether "real" or " complex.
"* The student should

~be constantly encouraged to test general algebraic statements ~by substi-

tuting concrete numerical values.

3. Type-forms of multiplication (Factoring).

The following type-forms of multiplication are the ones that are most

important to remember:

* This syllabus is confined chiefly to the algebra of real quantities ;
the

algebra of complex quantities will be treated only incidentally.

6



ALGEBKA.

and so on; the general case is best remembered in the form

Note also that in the algebra of real quantities, an+ ~b
n is

divisible by a+ & when and only when n is odd. Thus :

Further: (x + a)(x+ &) = z2 + (a + l}x + ab,

and the
" binomial theorem' ':

(a+ &)
2= a2 + 2ab + 6 2

, (a+ &)
3= a3 + 3a'& + 3a& 2 + 6 s

,

& 2
, (a &)

3= a8 3a2

where Aj!= "A; factorial"= 1 X 2 X 3 X X &.

4. Fractions.

a
Del If bx= a, then and only then we write x=

^(or a/6,

Here a is called the numerator and 6 the denominator of the fraction.

A fraction with a zero denominator, as a/0, does not represent any
definite quantity. For, if a is not zero, there is no quantity x such that

X x= a
;
and if a= 0, then every quantity x will have this property.

Hence, the denominator of a fraction must always ~be different from ecro.

From the definition, a/I= a
;
also

a n L m*- = 1,
- = 0. (a 4= 0).*a a

* The symbol =f means "not equal to."
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To add two fractions with common denominator :

a b a -f- b

c c~~ G

To multiply two fractions :

a x ax

b
X

V
~

by
'

To divide by a fraction, "invert the divisor and multiply" :

a x a y ay
b y

~
b x

~~
bx

'

The value of a fraction is not changed if we multiply (or

divide) both the numerator and the denominator by any

quantity not zero:

a ma

This is the most important principle concerning fractions.

For example, to reduce two fractions to a common denominator, we
have merely to multiply numerator and denominator of each fraction by
a suitable factor.

Again, to simplify a complex fraction, we multiply the whole numera-

tor and the whole denominator by any quantity which will " absorb" all

the subsidiary denominators. Thus, by multiplying by xyz, we have

+*
x y ayz -\- bxz

c+ d
~

(c + d}xy
y

z

at once, by a single mental process. (The common practice of reducing
the numerator and denominator separately, and then inverting the denom-

inator and multiplying, is tedious and clumsy.)

Def. If bx =j 1, then x= 1/&, which is called the reciprocal

of b. To divide by b (b 4= 0) is the same as to multiply by the

reciprocal of b.

5. Negatives.

Def. If a-}-x= Q, then and only then we write x= a.

In particular, ( a) a.

If a is not zero, a is always opposite to a
;
that is, if a is

positive, a is negative, and if a is negative, a is positive.
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Thus, if a= 3, which is a negative quantity, then a= 3, which

is positive.

The notation
|

a
|,
which is coming into use more and more

widely, means the absolute value of a, that is, the numerical

value of a regardless of sign ; thus,
|

5
|

= 5,
|

5
|

= 5.

The laws of operation with the minus sign are best remem-

bered by regarding a as the product of a and 1 :

whence, in particular (putting a== 1),

When this is done, the customary formulas:

(
-

a)(
- b )

= ab, (-)()=-* =-a=^=-, =? =
,

become immediate consequences of the general laws of multiplication

and division, and therefore need not be separately memorized; and the

same is true of the formula

which, when remembered in the following form, becomes an immediate

application of the distributive law: "a minus sign in front of a paren-

thesis must be ' distributed '

through every term within, if the parenthe-

ses are to be taken away."
By knitting together in this way the rules for negatives with the

general rules of operation, the total number of processes to be remem-

bered and applied, and hence the liability to error, is materially reduced.

Def. If a+ x= ~b, then and only then we write x= b a.

It is easily shown that b a b + ( fl) ;
that is, subtracting

any quantity a is the same as adding the opposite of a.

6. Radicals.

Def. If a is positive, and n is any positive integer, there

will always be one positive value of x such that xn= a. This

value x is denoted by f/a, and is called the (principal) nth

root of a.

It should be noticed that while there are (for example) two square

roots of 9, namely 3 and 3, it is only the positive one of these two

values that is denoted by V9~j that is, the mark V S"means 3 and not 3.
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The radical sign, except in the case of square roots, and

sometimes in the case of cube roots, should always be replaced

by fractional exponents (see below) when it is desired to com-

pute with these quantities; this done, no special rules for the

manipulation of radicals need then be remembered beyond the

general laws of exponents.

Square roots. If a and & are positive,

= a & and

Note also the process called "rationalizing the denominator

(or numerator) of a fraction "; for example,

c c Va V& c (Va V~

Va -f- V6 Va -f V& Va V& a 6

Vl x Vl Jc 1 x

A/1 +X~ Vl +X Vl X Vl X2
'

Def . If a is negative, and n is odd, there will always be one

negative value of x such that xn= a
; this value is denoted by

ija, and is called the (principal) nth root of a.

Thus {/^T8= 2.

7. Imaginaries.

If a is negative, and w is even, then there is TIO positive or negative
nth root of a. Hence, such quantities do not occur in the algebra of

positive and negative quantities. They occur only in the more general

algebra of complex quantities; in this algebra every quantity a (except

zero) has n distinct nth roots, the notation
n

^a being applied, as occasion

requires, to any one of these n values. The detailed study of this general

algebra is probably too difficult for a first course; for such applications
as occur in elementary work, the following working rules are sufficient :

1) In manipulating a complex quantity of the form V &>

where & is positive, write V &= V 1 V& =i^b, and treat

i like any other letter
;
then simplify the result by the relation

i
2= 1.

2) Every complex quantity can be written in the form

a-\-ib, where a and & are "real" (that is, positive, negative,
or zero) ;

and if a + 1'& == a'+ *'&', then a= a' and b= V.
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In electrical engineering the letter t is used to denote current, and

V 1 is denoted by j.

8. Exponents.
The subject of negative and fractional exponents is a part of algebra

in which the preparation of the student is apt to be especially unsatis-

factory.

Definition of negative and fractional exponents. If a is positive, and

p and q are any positive integers, then

9. Laws of operation with exponents.

If a and 6 are positive, then :

am+n= aman
,

amn=(am )
n

,

All these laws hold for any values of m and n; the three fundamental

ones can readily be recalled to mind through simple special cases, such as

a'a2
, (a)

s
,
and (afc)

8
.

The three other laws commonly mentioned, namely

am-n am/an, a/ = ^a, (a/6 ) =
are immediate corollaries of those just mentioned.

If a is negative, and m not an integer, o" will, in general, be a complex

quantity. In such cases, let o'= a, so that a' is positive, and write

a"*= ( l)a', where ( l)m must then be handled according to the

rules of operation in the algebra of complex quantities.

10. Logarithms.
The subject of logarithms should be taught in logical connection

with the subject of exponents. The common practice of separating these

subjects, and treating logarithms as a part of trigonometry, is unfortu-

nate. Numerous applications of logarithms can be found that have

nothing to do with trigonometry; moreover, the training in the use of

logarithms which a student gets in trigonometry is usually quite inade-

quate as a preparation for the applications of logarithms in any of his

later work outside of surveying.

Def. The logarithm of a (positive) number, to any (posi-

tive) base, is the exponent of the power to which the base must

be raised to produce that number.
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Thus, the notation

x= logbN

means

l*= N.

Note that negative numbers in general have no logarithms in the

algebra of real quantities.

From the laws of exponents we have, whatever the base

may be :

log (db) =-log o+ log &, log (\ =log a log 6,

log (a
n
) =n log a, log ^a= -log a,

log 1= 0, log (base) = 1.

Only two bases are in common use. For purposes of

numerical computation, the base chosen is 10, and in this

system log(10n)=w.
In higher mathematics, the base e= 2.718 is used, for the

reason that the use of this base simplifies certain formulas in

the calculus; in this system log (e
n)=n.

Change of base. To find log^JV when log10.ZV is known, let

x= \Q%eN, that is, ex= N. Then take the logarithm of

both sides of this equation to base 10, and solve for x.

The resulting formula, logeN= (log1&2V
r

)/(log10e), is so easily obtained

in this way that it is not worth while to remember it separately. The

approximate values

Iog10e= .4343, and logeJV= (2.3026) log10IV,

however, are useful to remember.



CHAPTER II.

SOLUTION OF EQUATIONS.

11. Legitimate operations on equations. If a given equa-

tion is true, it will still be true if we

(a) add any quantity we please to both sides;

(&) subtract any quantity we please from both sides;

(c) multiply both sides by any quantity we please;

(d) divide both sides by any quantity we please except zero,

(e) raise both sides to any positive integral power;

(/) *extract any positive integral root of both sides, except

that if an even root is extracted, the double sign must be

used
;

(g) *take the logarithm of both sides (provided both sides

are positive) .

In regard to (d), we must never divide both sides by an unknown

quantity without first excluding the possibility that that quantity is zero.

In (/), the restriction stated means, for example, that from A*=B
we can infer merely that A== V#; that is, that either A= Vl3, or

A= VB', but we cannot tell which.

12. To solve a single equation in x, means to find all the

values of x that satisfy the equation, or to show that none

such exist.

Any value of x that satisfies the equation is called a root of

the equation.

In testing a root, the only safe method is to substitute the given

value in each side of the equation separately, and see whether the re-

sults, when reduced, are equal. Thus, we should find that x= 2 is a

root of the equation x= 2 V12 2x, and that x= 4 is not a root.

In this connection it should be noticed that if we square both sides

of a given equation, the new equation will, in general, have more roots

than the given equation. Thus (to use the same example), by squaring

x 2= V12 2x we have x3 2x 8= 0. This equation has of

course the root 2, since x= 2 satisfies the original equation from

* In the algebra of complex quantities (/) and (#) are not applicable.

2 13



14 AIX5EBRA.

which this was derived; but it has also the root 4, which was not a root

of the original equation.

The formal process usually called "solving the equation
"

means merely transforming the equation, by a judicious choice

of the legitimate operations, into a form in which the solutions

are obvious.

If this is not possible, we must have recourse to the method

of trial and error which, while often laborious, is always

applicable in numerical cases.

If an equation is given in the factored form:

(a
._ a)(a

._
j8)(a

._ 7 )
... 0,

then the roots are obviously x= a, x= p, x= 7, . Thus, the roots

of x(x + 2) = are and 2.

13. Quadratic equations. To solve the quadratic equation

ax*-\-bx-\-c= 0,

we may divide through by a:

,

b G
x* + - x = --

a a

and then "complete the square":

2 ^ fAY- W c _ 62 - 4ac
f
ax}~\^) ~--4a?~a- 4a2 ;

whence,

b &2 4ac

or, we may use the general result just obtained as a formula.

The quantity which must be added to both sides in "completing the

square
' '

is obvious by analogy with rr* + 2mrc + ma
,
so that this method

requires less effort of the memory than the method of solution by formula.

The ' ' method of factoring
' ;

is very convenient in certain special cases,

when the factors can be obtained by inspection.

The method still sometimes used, of first multiplying through by 4o to

avoid fractions, is apt to lead to confusion, and should be discouraged.

From the formula it is evident that the sum of the roots is
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Xl -\-x2
= b/a, and the product of the roots is xix2

= c/a;

also, if the coefficients, a, &, c, are real, the roots will be real-

and-distinct, real-and-coincident, or imaginary, according as

& 2 4ac is positive, zero, or negative.

14. Exponential equations. To solve an equation of the

form ax=b, when a and & are positive, take the logarithm of

both sides: x log o=log &; and then solve for x.

15. To solve a set of simultaneous equation in x, y, z

means to find all the sets of values of x, y, z, ,
that satisfy

all the equations at once, or show that none such exist.

Two simultaneous equations of the first degree, as ax + by= c and

Ax + By= C, can always be solved in a couple of lines, if the work is

arranged as follows:

7x 6y
Ux lOy



CHAPTER III.

MISCELLANEOUS TOPICS.

16. Ratio and Proportion.

simply the fraction a/b; and a "proportion" is simply an

equation between two ratios.

The notation a'.b'.'.c'.d should be replaced by the equation a/b= c/d;

and all special terminology, such as lt
taking a proportion by alterna-

tion/' "by 'Composition,
"

etc., should be dropped in favor of the

ordinary language of the equation.

17. Variation. The statement "y varies as x," or "y varies

directly as x" or "y is proportional to x," means y= kx,

where k is some constant. Similarly, "y varies inversely as

x," means y= k/x; "y varies inversely as the square of x,"
means y= k/x*. The constant k can always be determined if

we know any pair of values of x and y that belong together.

The statement ' '

y varies as u and v,
' ' means y varies as the product of

u and v, that is, y= Jcuv.

18. Inequalities. Tne notions of ' '

greater and less ' ' are thoroughly
familiar when we are dealing only with positive quantities, but the ex-

tension of these terms to the algebra of all real quantities (positive,

negative, and zero) is apt to cause some confusion.

(a) All real quantities (positive, negative, and zero) may
be represented by the points of a directed line (running, say,

from left to right) :

r

>
_3 __2 1 +1 +2 +3

and the notation a<b (read: "a algebraically less than 6")
means simply that a precedes &, or a lies on the left of &, along
this line.

Similarly, a > Z> (read: "a algebraically greater than 5") means that

a comes after ~b, or lies on the right of &, along the line. (The idea that

a negative quantity is a magnitude whose size is in some way "less than

nothing
" should be carefully avoided.)

16
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Obviously, if a and b are any real quantities, one and only
one of the three relations : a= b, a < b, and a > 5, will hold

between them
; further, if a < b and & < c, then a < c.

(6) Complex quantities require for their representation the points of

a plane instead of the points of a line, and the symbols < and > are not

used in connection with these quantities.

Legitimate operations on inequalities. If a given inequality

is true, it will still be true if we

(a) add any quantity we please to both sides;

(b) subtract any quantity we please from both sides;

(c) multiply both sides by any positive quantity;

(d) divide both sides by any positive quantity;

(e) raise both sides to any positive power (integral or

fractional), provided both sides are positive.

(/) take the logarithm of both sides, provided "both sides

are positive.

If we multiply or divide both sides by any negative number,
we must reverse the sense of the inequality.

The neglect of the rules for handling inequalities is the source of many
common errors.

19. Arithmetical Progression.

In an arithmetical progression :

a, a + d, a + 2d, a+ 3d, ,

each term is obtained from the preceding by adding a con-

stant quantity.

The nth term is obviously Z'=a+ (n l)d.

a+ l

The sum of n terms is S= ~ n.
A

This formula is most easily remembered in the form:

S=: (average of the first and last terms) X (number of terms).

The arithmetic mean between a and b is A==

20. Geometric Progression.

In a geometric progression :

a, ar, ar\ ar\ ,
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each term is obtained from the preceding by multiplying by a

constant quantity.

The nth term is obviously l= arn
~1

.

The sum of n terms is 8= .

This formula is best remembered in connection with the rule for

factoring:

The geometric mean between a and & is 6r

The geometric mean is also called the mean proportional.

Infinite geometric progression. If
|

r
|
< 1, the sum of n

terms approaches the limit

a

1 r

as n increases indefinitely (since, in the expression for 8, if

|

r
|
< 1, rn approaches zero).

21. Harmonic Progression.

A harmonic progression is a series of terms whose recip-

rocals are in arithmetical progression. (The harmonic pro-

gression is not of great importance.)

The harmonic mean between a and & is H=
a+ b



A SYLLABUS OF ELEMENTARY GEOMETRY AND
MENSURATION.

This syllabus is intended to include those facts and methods of ele-

mentary geometry which a student should have so firmly fixed in his

memory that he will never think of looking them up in a book.

1. Right Triangles.

In a right triangle, the square on the hypotenuse is equal

to the sum of the squares on the other two sides (Pythagoras,

580-501 B.C.) ;
and the sum of the acute angles is 90.

Examples of right triangles with integral sides: 3, 4, 5; 5, 12, 13.

Two right triangles are congruent when they agree with

respect to (a) any side and an acute angle; or (6) any two

sides.

In the "45 triangle" and the "30-60 triangle/' the ratios

of the sides are as indicated in the figure.

2. Oblique Triangles.

In any plane triangle, the sum of the angles is 180.

an exterior angle of a triangle equals the

sum of the opposite interior angles.

Hence,

Of two unequal sides in a triangle, the greater is opposite

the greater angle.

A plane triangle is, in general, wholly determined when any
three of its parts (not all angles) are given.

19
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There are four cases :

(a) two angles (provided their sum is less than

180) and one side;

(ft) two sides and the included angle;

(c) the three sides (provided the

largest is less than the sum of the other

two);

(d) two sides and the angle opposite one of them (the "ambiguous

case,
' ' in which we may have two solutions, or one, or none) .

Hence the usual rules for testing the equality of two plane

triangles.

The center of gravity of a plane triangle is the

intersection of the three medians, and is two

thirds of the way from any vertex to the middle

point of the opposite side.

3. Angles in a Circle.

An angle inscribed in a semicircle is a right angle.

An angle subtended by an arc of a circle at any point of the

circumference is equal to half the angle subtended by the same

arc at the center.

4. Similar Figures. Proportion.

If any two lines are cut by a set of parallels,

the corresponding segments are proportional.

(Hence the usual rule for dividing a given line

into any number of equal parts.)

In all problems in proportion, the notation a:6::c:d, and all special

terminology, such as "taking a proportion by alternation,
" "by com-
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position/' etc., should be abandoned in favor of the ordinary language
of the equation. For example, if a/b= c/d, then, by adding 1 to both

sides, (a + &)/&= (c + d)/d; and by subtracting 1 from both sides,

(a &)/& = (<; d)/d; etc.

If two plane triangles are similar, their corresponding sides

are proportional.

In a right triangle, the perpendicular

from the vertex of the right angle to the

hypotenuse is a mean proportional be-

tween the segments of the hypotenuse:

p
2= mn.

Any two similar fig-

ures, in the plane or in

space, can be placed in
"

perspective,
"

that is,

so that lines joining

corresponding points of the two figures will pass through a

common point. In other words, of two similar figures, one is

merely an enlargement of the other.

In two similar figures, if k is the factor of proportionality,

any length in one = k X (the corresponding length in the

other) ; any area in one= k2 X (the corresponding area in

the other) ; any volume in one= fc
s X (the corresponding vol-

ume in the other) .

5. Lines and Planes.

If a line is perpendicular to a plane,

every plane containing that line is perpen-
dicular to the plane.
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A dihedral angle is measured by a plane angle

formed by two lines, one in each face, perpen-

dicular to the edge.

6. Plane Areas.

Area of parallelogram= base X altitude.

Area of triangle

= J base X altitude.

Area of trapezoid
= J sum of

||
sides X alt.

= mid-section X altitude.

7. The Circle. (*= 3.1416 = 22/7, approximately.)

Circumference of circle= 2^.

(Proved by regarding the circle as the

limit of an inscribed or circumscribed

polygon; proof rather long.)

Area of circle = ?rr
2

.

(Proof by regarding circle as limit of sum of triangles radiating out

from the center, the altitude of each triangle being the radius of the

circle; hence, area of circle = $ circumference X radius.)

Area of sector angle of sector

area of circle four right angles
; hence,

Area of sector= Jr*0, where 6 is the angle in radians.

For area of segment, subtract triangle from sector.
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8. The Cylinder.

Volume of any cylinder (or

prism)= base X altitude.

Area of curved surface of any

right cylinder (or right prism) =
perimeter of base X altitude.

(Proof by regarding the area as the limit of a sum of rectangles

whose common altitude is the altitude of the cylinder; or, by slitting

the cylinder along an " element" and rolling the surface out into a

rectangle.)

9. The Cone.

Volume of any cone (or pyra-

mid) = 1/3 base X altitude.

(Proof by dissecting a triangular

prism; or, more simply, by the in-

tegral calculus.)

Area of curved surface of a right circular cone (or a regular

pyramid) = 1/2 perimeter of base X slant height.

(Proof by regarding the area as the limit of a sum of triangles whose

common altitude is the slant height of the cone.)

Area of frustum of a right circular cone (or of a regular

pyramid)

=1/2 sum of perimeters of bases X slant height.

= perimeter of mid-section X slant height.

(Proof by regarding the area as the limit of the trapezoids whose

common altitude is the slant height of the frustum.)
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10. The Sphere.

Area of a zone= circumference of great circle X altitude

of zone.

In other words, the area of the sphere cut out by two parallel planes
is equal to the area of the portion of the circumscribing cylinder inter-

cepted between the same pair of parallel planes. (Proof by regarding
the zone as the limit of a sum of conical frustums.) Hence>

Area of sphere=
= area of four great circles of the sphere.

In other words, the area of the sphere is equal to the area of the

curved surface of the circumscribing cylinder.

Volume of sphere= |vr
3

.

(Proof by regarding sphere as limit of a sum of pyramids radi-

ating out from the center, the altitude of each pyramid being the radius

of the sphere; hence, volume of sphere = J area of sphere X radius.)

Area of a lune _ angle of lune

area of sphere ""four right angles*

Area of spherical triangle is proportional to its

spherical excess (that is, the excess of the sum of its

angles over 180).

(Proof by considering three lunes which have the given triangle in

common.)
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The following further theorems, the proof of which involves the inte-

gral calculus, are mentioned here also, because they are easy to remember

and are often serviceable in elementary work.

11. Cavalieri's Theorem (1598-1647).

Suppose two solids have their bases in the same plane, and

let the sections made in each solid by any plane parallel to the

base be called
"
corresponding sections." If then the corre-

sponding sections of the two solids are always equal, the vol-

umes of the solids will be equal.

(Proof bj regarding each of the solids as the limit of a pile of thin

slabs.)

12. Theorems of Guldin (1577-1643), or

of Pappus (about 290 A.D.).

1. Suppose a plane figure revolves about

an axis in its plane but not cutting it.

Then the volume of the solid thus generated
is equal to the area of the given figure

times the length of the path traced by its

center of gravity.

2. Suppose a plane curve revolves

about an axis in its plane but not cutting

it. Then the area of the surface thus

generated is equal to the length of the

given curve times the length of the path
traced by its center of gravity.
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13. The Prismoidal Formula.
The prismoidal formula holds for any solid lying between two parallel

planes and such that the area of a section at distance x from the base is

expressible as a polynomial of the second (or third) degree in x.

If A, B= areas of the bases, M= area of a plane section

midway between the bases, and h= altitude, then

Volume of
prismoid=^

(A + B + 4M).



A SYLLABUS OF PLANE TRIGONOMETRY.
This syllabus is intended to include those facts and methods of plane

trigonometry which a student should have so firmly fixed in his memory
that he will never think of looking them up in a book.
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CHAPTER I.

SINE, COSINE, AND TANGENT OP ACUTE ANGLES.

1. Definition of sine, cosine, and tangent of an acute angle
x. In any right triangle, if x is one of the acute angles, the

sine, cosine and tangent of x are defined as ratios between the

sides of the triangle, as follows:

side opp. side adj.
-^
hypot.hypot.

FIG. 2.

side opp.

"side adj. FIG- 1.

These ratios are pure numbers, depending only on the size of

the angle.

2. To trace the changes in these num-

bers when the angle changes from to

90, draw the figure so that the denomi-

nator of the ratio is kept constant, say

equal to 1 inch, and trace the changes in

the numerator. Thus, from Fig. 2, when

x goes from to 90, sin x goes from

to 1, and cos x goes from 1 to
;
from

Fig 3, when x goes from to 90, tan x

goes from to infinity.

3. Tables. The ratios thus defined

are called "trigonometric functions"'

of the angle, and their values have

been tabulated, to 4, 5, or 6 places of

decimals, in the "tables of trigonometric

functions." Before using the printed

tables, the student should make his own

table, for a few angles, by graphical con-

struction, with a protractor, to two

places of decimals.*
*
It is clear from the figure that the values of cos x from to 90 are

the same as the values of sin x in reverse order; note how this fact is

made use of to save space in the tables.

28

1

FIG. 3.
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FIG. 4.

4. The functions of 30, 45, and 60 can be found exactly,

without the use of the table. Thus, in the

triangles which occur in Fig. 4, it is readily

proved by the Pythagorean theorem that

if the hypotenuse is 1 inch, the shortest

side is in., the longest side is JV3 in.,

and the middle-sized side JV2 in. Hence

any function of 30, 45, or 60 can be read

off the figure by inspection. For example,

sin 30 = J, tan 45 = 1, tan 60 = \/3 ; etc.

5. It is frequently required to find the remaining functions

of an angle when any one function is given. To
do this, draw a right triangle, mark one of the

angles, and mark two sides to correspond to

the given function. Then compute the remain-

ing side by the Pythagorean theorem, and read

off any desired function from the completed

figure. For example,

Given, tan z= . From the figure, sin #= 2/V13; etc.

Given, sin x= a. From the figure, tan x= a/VI a*
;
etc.

To construct an angle when any one of its functions is

given, first find the tangent of the angle ;
when the tangent is

known, the construction of the angle is obvious.

6. The notation sin2
x, etc., is used as an abbreviation for

(sin x)
2

;
etc.

The following fundamental relations are easily proved and

remembered from the figure : for any angle x,

FIG. 7.

sin'

3

FIG. 8.

sin a; sin (90 x) = cos x.

cos x' cos (90 x)=sinx.
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7. The student should be thoroughly drilled in the defini-

tions of the sine, cosine and tangent, in right

triangles in all possible positions in the plane

regardless of lettering. Thus, the mental proc-

ess should be as follows: pointing at the figure,

"the tangent of this angle is this side, divided

by this side"; etc.
IG' ^ The following forms of the original equations

are especially useful, and should be emphasized:

side opp.= hypot. X sine
;

side adj.= hypot. X cosine.

SOLUTION OF RIGHT TRIANGLES.

8. We recall that in any right triangle, the sum of the

squares on the two legs is equal to the square
on the hypotenuse, and the sum of the acute

angles is 90. Hence, when either acute angle
is known, the other may be found; and the

sine of either acute angle is the cosine of the

other :

c
2= a2 + & 2

,
sinA= cos B.

9. By the aid of a table of sines, cosines and tangents, when

any two parts of a right triangle, besides the right angle, are

given, the remaining parts may be found (except in the case

where the given parts are the two acute angles, in which case

the triangle is not determined).

For, we have merely to remember the definitions of the func-

tions, selecting the equations so that only one unknown ap-

pears in each equation; then solve for the unknown quantity,

and compute by the aid of the tables. The results should be

checked by substituting in some relation not used in the direct

computation.*
* This computation, like many other numerical computations, can often

be shortened by the use of the slide rule, or by the use of logarithms;
in fact, tables are provided which give the logarithms of the trigono-

metric functions directly in terms of the angles; but the student should

thoroughly understand the use of the functions themselves before he

begins to use the logarithmic tables.
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10. Numerous problems involving right triangles: isosceles

triangles, polygons, oblique triangles solved by means of right

triangles, heights and distances, surveying problems, etc.

FIG. 11.

ORTHOGONAL PROJECTION. COMPONENTS OF FORCES, ETC.

11. The projection of a length AB on any line is the given

length times the cosine of

the angle between the lines.

(Proof from the definition of

cosine.)

The projection of a plane
area upon any fixed plane is

the given area times the cosine

of the angle between the

planes. (Proof by the theo-
/, ,. , \rem of limits.)

12. The component of a force along any fixed axis is the

magnitude of the force times the cosine of the

angle between the force and the axis.

Since we usually require the components FIG. 12.

along two rectangular axes, it is important to w %_

remember that cos (90 x)= sin x. The i^^^f
mental process should be as follows : FIG. 13.

In Fig. 12, the component of F along the t/-axis is F times

the cosine of 0; the component of F along the #-axis is F
times the cosine of the other angle, which is F times the sine

of 0-
}
that is, Fv

= Fcos6-, Fx= FsinO. Similarly, in Fig.

13, Fx=F cos
<f> ;

Fy jFsin< (minus, because it pulls

backward along that line).

The components of velocities, accelerations, or any other

vector quantities are to be handled in the same way.
13. Every problem should be accompanied by a sketch or

diagram, to show that the student understands the meaning
of each step of his work. And in many cases, an accurate

graphical solution on a drawing board may be used as a valu-

able check on the correctness of the numerical computation.
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14. Note. That portion of trigonometry which has been

outlined up to this point is so elementary in character, and so

readily understood and appreciated by the student, that it

may well be introduced much earlier in the course than is

usually done perhaps even as early as the elementary course

in plane geometry.



CHAPTER II.

THE TRIGONOMETRIC FUNCTIONS OF ANY ANGLE.

15. Angles in general. An angle, as the term is used in ap-

plied mathematics, is the amount of rotation of a moving
radius OP about a fixed point 0, measured from a fixed line

FIG. 14.

OX. Here OX is called the initial line and OP the terminal

line of the angle. Counterclockwise rotation is positive, and

angles are added and subtracted as algebraic quantities. The

quadrants are numbered as in the figure; an "angle in quad-

rant II 1 '

for example, means an angle whose terminal line lies

in quadrant II.

16. Congruent angles are angles differing by any multiple

of 360.

17. Complementary angles are angles whose sum is 90 ;

supplementary angles are angles whose sum is 180.

18. Units of angular measurement are: the degree, sub-

divided into minutes and seconds, or decimally; the grade,

33
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subdivided decimally; and the radian, subdivided decimally.

1 degree = 1 = l/90th of a

right angle;

1 grade = l/100th of a right

angle (used in France) ;

1 radian = angle subtended by
an arc equal to the radius. FIG. 15.

Since ratio of semi-circumference to radius= TT (where
ir= 3.1416 =3l/7 approximately), we have

TT radians 180, and hence 1 radian = about 57.3.

19. The radian is especially important in problems concern-

ing the motion of a particle in a circular path. Thus, if

r ft.= radius of the circle,

s ft.= length of arc traversed, and

6 radians= angle swept over by the moving radius, then

s= r0.

This important equation is not true unless the angle is meas-

ured in radians. Again, if

v ft. per sec. == linear velocity of the particle in its path, and
o> radians per sec. = its angular velocity, then

<o = r<o.

Further, if the angular velocity == w radians per sec. = N
rev. per min., then the relation between the numbers o> and
N is given by

_rrN
~30'

In all higher mathematics, when a letter is used for an

angle, without designating the unit, it is understood that the

letter means the number of radians in the angle.
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20. Definition of sine, cosine, and tangent of any angle.

Let x be any angle, swept over by a moving radius revolving

from OX to OL, and suppose for convenience of language that

OX extends horizontally to the right. Assume, for the moment
that OX and OL are not perpendicular. From any point P
of the moving radius drop a perpendicular on the initial

line (or the initial line produced), thus forming a right tri-

FIG. 16.

angle, called the triangle of reference for the given angle x.

In this triangle, the perpendicular MP is called the side oppo-
site 0, and is positive if it runs up, negative if it runs down

;

the base OM is called the side adjacent to 0, and is positive if

it runs to the right, negative if it runs to the left, and the

radius OP is called the hypotenuse of the triangle and may
always be taken as positive. The sine, cosine and tangent of

the angle x are then defined as follows :

side opp side adj. side opp.

side adj.

sin x

cos a;

iut5 uup. iu a>uj.sma;= -r ,
cosz= -.

,
tana;

nypot. hypot.

These ratios are positive or negative numbers, depending

only on the position of the terminal side of the angle x, and
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are called trigonometric functions of x. The functions of any

angle congruent to x are the same as the functions of x, so

that we need consider only the angles in "the first revolu-

tion,
"

that is, angles between and 360.
21. To trace the changes in each function as the angle

changes from to 360, draw the figure so that the denomi-

nator of the ratio is kept constant, say equal to 1 inch, and

trace the changes in the numerator (Fig. 17 for the sine and

cosine; Fig. 18 for the tangent). Obviously, the sine will be

positive for angles in the upper quadrants; the cosine will

be positive for angles in the right hand quadrants; and the

tangent will be positive in quadrants 7 and 777.

The definitions of the functions of 0, 90, 180, and 270,
which were not included above, can now be readily obtained

by noting what becomes of the function of a variable angle

x when x approaches one of these values as a limit.

In using the "circle of reference" be careful to have every

angle start from the initial line that extends horizontally to

the right.

OTHER TRIGONOMETRIC FUNCTIONS.

22. Definition of other trigonometric functions. Besides

the sine, cosine, and tangent, other functions in common use

are the cotangent, the secant, and the cosecant, which are

most conveniently defined thus :

1 1 1
cot x , sec x = , csc a;

tan x 1 cos x 1 sm x

Less important, but often convenient, are the versed sine and

the coversed sine:

vers x= 1 cos x, covers x= 1 sin x.

23. It is worth remembering that the sine and cosine are

always less than (or equal to) 1, in absolute value; their

reciprocals, the secant and cosecant, are always greater than

(or equal to) 1, in absolute value; the tangent and cotangent

may have any value, positive or negative; while the versed

sine and coversed sine are always positive, ranging from to 2.
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FIG. 17.

FIG. 18.
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%-90*

FIG. 19.

24. Use of the tables: reduction to the first quadrant. The
tables in common use give the values of the functions only
for angles between and 90, that is, only for angles in the

first quadrant. To find the functions of an angle x in one

of the other quadrants, find first the
" reduced angle

" in

quadrant I (that is, x 90, or x 180, or x 270), and
then proceed as in the following examples:*

(a) To find cossc, when x is in quadrant II. Draw any
angle in quadrant II to represent the angle x (avoiding,

however, lines near the middle of the

quadrant) and draw the
" reduced

angle
" x 90 in quadrant 7. Then,

pointing at the figure, cos x is this line

(VVV) [divided by the radius], which
is the same in length as this line (<)
[divided by the radius], which is the

sine of x 90
;
but the first line is

negative; hence

cos re= sin (x 90),

where sin (x 90), of course, can be found in the table.

(&) To find tans, when x is in quadrant II. Pointing at

the figure, tan x is this line (
<

) divided

by this line (|||), which is the same as

this line (WV) divided by this line (H),
which is the cotangent of (x 90);
but the signs are unlike; hence

tan x = cot (x 90),

where cot (x 90) can be found from

the table.

Similarly for any other case.

25. The converse problem of finding the angle correspond-

ing to any given function is complicated by the fact that there

will be (in general) two angles between and 360 corre-

sponding to any given function. The most satisfactory way
* The given angle is supposed to be already reduced to an angle be-

tween and 360.

%-90

FIG. 20.
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to find these two angles, in any numerical case, is to draw

the figure, and proceed as in the examples below, in which x

in each case represents an angle in the first quadrant which

can be found in the table.

0-5

FIG. 21.

Given sin # 0.5;

x= x or 180 x .

FIG. 22.

Given sin#= 0.5;

4- xn or 360

FIG. 23.

Given cos a;= 0.8;

x= x or 360 x .

FIG. 24.

Given cosz= 0.5;= x or

Given tan x= 0.8;

x= x or 180 +

FIG. 26.

Given tan#= 0.8;

a= 180 x or 360 x .
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These results are not formula to be memorized
;
it is much

safer, and more intelligent, to draw the appropriate figure,

or to visualize it in the mind, for each case as it arises. The

student should be thoroughly drilled in numerical cases,

especially for angles in the second quadrant.

Notice that an angle is completely determined when we
know the value of any one of its functions, and the sign of

any other function (not the reciprocal of the first).

It we restrict ourselves to angles between and 180,
as in the case of angles in a triangle, then an angle is wholly

determined by either its cosine or its tangent; but there will

be two angles, x and 180 x, corresponding to a given sine.

26. The functions of certain angles in the later quadrants,

corresponding to 30, 45, and 60 in quadrant 7, may be

found exactly, without the use of the tables, by inspection

of the figure (see 4).

For example, cos 120= .

27. If it is required to find the remaining functions of an

angle when one function is given, draw a right triangle and

proceed as in 5, considering only the absolute values of

the quantities, without regard to sign; then adjust the sign

of the answer according to the quadrant in which the

angle lies. Or, the angle may be drawn at once in the proper

quadrant.

SOLUTION OF OBLIQUE TRIANGLES.

28. In any plane triangle the following theorems are easily

proved from a figure :

(1) The "Law of Sines." Any side is to any other side as

the sine of the angle opposite the first side is to the sine of the

angle opposite the other side
;
in the usual notation :

a sin A

with two analogous formulae obtained by "advancing the

letters."
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(2) The "Law of Cosines." The square of any side is

equal to the sum of the squares of the other two sides, minus

twice their product times the cosine of the included angle :

a2= 6 2 + c2 2fcc cos A,

with two analogous formulae obtained by "advancing the

letters."

These two laws, with the fact that the sum of the angles is

180, suffice to "solve" any plane triangle, and are important

in many theoretical considerations.

The following formulas which are especially adapted to

logarithmic computation, give the tangents of the half-angles

in terms of the sides, and are included here for reference :

A r B r C r
tan = - -

,
tan = --

r . tan =
2 s a' 2s 6' 2s c

where

and

r = A /^ LL > ^ L = radius of inscribed circle.

\ s

From these formulae we have at once,

= rs= Vs (5 ) (s &) ( s c )-

29. The only case which is likely to give any difficulty, is

the
' '

ambiguous case
' ' in which the given parts are two sides

and the angle opposite one of them. Here we must remem-

ber, at a certain point in the work, that when the sine of an

angle is given, there will be, in general, two angles corre-

sponding to that sine, one the supplement of the other; so

that from that point on, the problem breaks up into two

separate problems. But if the sine of an angle is 1, then

the only value for the angle is 90
;
and if the sine is greater

than 1, there is no corresponding angle, and the problem is

impossible. It is advisable to construct a fairly accurate

figure.
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30. Problems in oblique triangles, triangulation, etc.

In every case at least a rough sketch should be drawn on

which the known parts are clearly marked, and a "blank
form" for the computation should be made out for the entire

problem, before any of the quantities are looked up in the

table.



CHAPTER III.

GENERAL PROPERTIES OF THE TRIGONOMETRIC FUNCTIONS.

31. Relations between the functions of a single angle. The
student should convince himself that the following important
relations will hold for any angle x:

sin
2 x -f cos2 x = 1, tan x

\ ,

'cos x

sec
2 x = 1 + tan2

x.

All these relations are easily recalled by the aid of the

figures.

Somewhat less important is the following :

32. Functions of ( x). From the figure,

sin ( x) = sin a;,

cos ( x) =cos#,
tan ( x) = tanic.

33. Functions of (90 + x) , (x + 180 ) ,
etc. Any function

of a combination like (zw90) or (n90x) can be

expressed in terms of a function of x by the use of the figure.

For example, find sec (270 x). Take as x any small

angle in the first quadrant, and draw the angle 270 x.

Then, sec (270 x) is 1 over the

cosine of (270 x), which, pointing at

the figure, is the radius over this line

( VVV ), which is the same, in length, as

the radius over this line ( ^ ) ,
which is

1 over the sine of x, or esc x. But the

signs are opposite ; therefore,

sec (270 x)= esc re.

43
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This method requires the memorizing of no rules or for-

mulae, besides the definitions of the functions; a very little

practice will develop all the speed and accuracy that can be

desired, and the method is one which is readily recalled to

mind after long disuse. The special case of complementary

angles, however, is worth remembering as a separate formula :

Any function of (90 x) =the co-named function of x.

FORMULAS FOR THE SUM OF Two ANGLES, ETC.

34. In simplifying trigonometric expressions which occur

in calculus, mechanics, etc., the following formulae are so fre-

quently required that they should be thoroughly memorized.

The ability to recognize those relations readily, regardless of

the special lettering employed, is a necessary condition for

rapid progress in almost any branch of analysis, but it is

highly undesirable to extend the list ~beyond the limits here

given.

The fundamental formulae from which all others are derived

are these two, the proof of which is obtained from a figure :

(1) sin (x + y) sin x cos y + cos x sin y,

(2) cos (x + y) = cos x cos y sin x sin y.

These and the following formulae should be memorized in

words, not in letters : thus,
' '

the sine of the sum of two angles

is the sine of the first times the cosine of the second, plus the

cosine of the first times the sine of the second// etc.

Dividing (1) by (2) and then dividing numerator and de-

nomerator by the product of the cosines, we have

tan x + tan y
(3) tan (x -f v) = = .

1 tan x tan y

Changing the sign of y in these three formulae, and remem-

bering the relations for negative angles, we have the corre-

sponding formulae for sin (x y), cos (a; t/), tan (x y),

which will be exactly the same as (1), (2), and (3) with all

the connecting signs reversed:
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(4) sin (x 2/)
= sin x cos y cos x sin y,

(5) cos (x y)= cos x cos y + sin re sin y,

tan # tan y
(6) tan (a y) = T-

*-
1 + tan x tan y

Putting re= i/ in (1), (2), and (3) we have at once

(7) sin 2x= 2 sin x cos re,

(8) cos 2#= cos2
re sin2

re

=3 1 2 sin8 x= 2 cos* a; 1,

2 tan re

(9) tan 2x =
1 tan2

re"

Solving (8) first for sin re and then for cos re, and putting
2x= y, or x= y/2, we find

do)

cos y

whence,

(12) tan^= xr7 C08y
.

2 \l-fcosy

This last formula may be transformed, by rationalizing

numerator or denominator, into

siny
2

"
sin y 1 -f cos y*

Other formulas, useful for special purposes, should not be

memorized, but should be derived as needed.

35. In proving the identity of two trigonometric expres-

sions, it is best to reduce each expression separately to its

simplest form.

* The plus sign is to be used when sin \y is positive, the minus sign

when sin*?/ is negative. Similarly in the next two formulas.

4
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The fallacy of supposing that because a true relation can be

deduced from a given equation, the given equation is there-

fore necessarily true, should be carefully explained.

For example, from the false equation 3= 3 we can obtain the true

equation 9= 9 by squaring both sides
; or, from the false equation

30 = 150 we can obtain the true equation % = % by taking the sine

of both sides; but in each of these cases the step taken is not reversible.

36. The following device for transforming an expression

of the form a cos x -f- b sin x is often useful :

/(a
f+y)

a cos * + b sin = Va' + ^ cos* +
sin*]

= A cos (x B},

where A = >/(a
2
-f 6

2

) and tan B = -.

37. The inverse functions.

The angle between 90 and +90 whose sine is x is de-

noted by sin-1 x*
The angle between and 180 whose cosine is x is denoted

by cos"1 x.

The angle between 90 and +90 whose tangent is x

is denoted by tan-1 x.

In simplifying expressions involving these "inverse func-

tions,
"

it is well to take a single letter to stand for each in-

verse function
; as, y= sin-1 x, whence, by definition, sin y=x ;

etc.

38. Solution of trigonometric equations. Many trigonomet-

ric equations can be solved only by the "method of trial and

error." In other cases, however, it is possible, by the use of

the formulas given above, to transform the given equation into

a form involving only a single function of a single angle;
if this equation can be solved for the function in question,

then the required value (or values) of the angle can be found

from the tables or it can be shown that no solution exists.

* The symbol sin-1 a; (or arc sin x) is often defined as simply "the

angle whose sine is x "
; but since there are many such angles, it is neces-

sary to specify which one is to be taken as "the" angle, if the symbol
is to have any definite meaning.



A SYLLABUS OF ANALYTIC GEOMETRY.

This syllabus is intended to include those facts and methods of ana-

lytic geometry which a student who has completed an elementary course

in that subject should have so firmly fixed in his memory that he will

never think of looking them up in a book.

A course of study in analytic geometry should consist chiefly of

problems solved by the students, each problem being solved on the basis

of a small number of fundamental formulas such as are here mentioned.

This syllabus is confined mainly to the conic sections; but a satis-

factory course in analytic geometry should include also the study of

many other curves, both in rectangular and in polar coordinates. The

syllabus takes up only those properties of curves which can be readily

investigated without the aid of the calculus; but the present tendency
to introduce the elements of the calculus before any elaborate study
of geometry is attempted is to be much encouraged.
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CHAPTER I.

RECTANGULAR COORDINATES.

1. In many geometrical problems it is convenient to describe

the position of a point in a plane by giving its distances from two

fixed (perpendicular) lines in the plane.*

For example, on a map, the distance of a point to the east or

west from a fixed meridian is called the longitude of the point, and

its distance north or south from the equator is called its latitude.

So in general, in any plane, the distance of a point to the right

or left from a fixed vertical axis is called the abscissa, x, of the point,

and its distance up or down from a fixed horizontal axis is called

its ordinate, y. The x and y together are called the coordinates of

the point.

The value of x(=OM) will be positive to the

right, negative to the left; the value of y (=.MP)
will be positive upward, negative downward. The

point for which x = x and y = y1 is denoted by
?

PI, OT(xlf yi).

2. To express the distance between two points in terms of their

coordinates: fy

3. To find the coordinates of the point half way between two

given points:
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4. To -find the coordinates of a point P on the line through two

-fixed points, and such that its distance from the first point is n
times the distance between the two points

x = xl nxz

y = 2/i + n(y2

Here n may be any real number (positive, negative, or zero).

5. To find the slope of a line through two given points:

xl

The angle <j>
is called the inclination

of the line; tan
<f>

is the slope.

6. If two lines are parallel, their slopes are equal : m = mz .

If two lines are perpendicular,

the product of their slopes is minus one:

= 1 .

7. To express the areas of triangles and polygons in terms of the
coordinates of the vertices, consider the trapezoids formed by the
ordinates drawn to the vertices.

8. In any problem involving an unknown point, remember that

two conditions are necessary to determine the coordinates of the point
(simultaneous equations in two unknown quantities).



CHAPTER II.

THE STRAIGHT LINE: EQUATIONS OF THE FORM Ax + By+ C = 0.

9. We have seen that if two conditions are imposed on x and y,

the position of the point (x, y) is wholly determined. If only one

condition is imposed, the position of the point is only partially

restricted. (Examples: x = 5, x2 + y
2 = 25, etc.)

The collection of all points which satisfy a given condition im-

posed on x and y is called the locus of that condition; and the con-

dition itself, expressed in algebraic language, is called the equation

of the locus. Thus, the equation of a straight line is the algebraic

expression of the condition which x and y must satisfy in order that

the point (x, y) shall lie on the line
;
in other words, the equation of

a line is an equation which is TRUE when the coordinates of any point

on the line are substituted for x and y, and FALSE when the coordinates

of any point off the line are substituted for x and y; and so in general

for the equation of any locus.

10. To find the coordinates of the points of intersection of

two loci whose equations are given, we have simply to find the

pairs of values of x and y (if any) which satisfy both the equations
at once (simultaneous equations in x and y).

11. To find the equation of a line (not perpendicular to either

axis), when its slope, m, and the coordinates of

one of its points (xlf y^, are given:

The equation of a line perpendicular to

the x-axis (or the y-axis) is, by inspection,

x = a (or y = 6).

The equation of any straight line is of the form Ax -f By + C = 0, and

the locus of every equation of the form Ax + By + C = is a straight line.

Hence, to plot the locus of such an equation, it is sufficient to find any two of

its points.

12. To find the slope of a line whose equation is given (the line

being not perpendicular to an axis), write the equation in the

form y = ( ) x + ( ) ;
then the coefficient of x will be the slope.

50
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13. To find the equation of a line parallel or perpendicular to a

given line and through a given point, remember that m = m2 for

parallel lines, and m^rn^ = 1 for perpendicular lines (see 6).

Special method: if the given line is Ax + By + C = 0, then the parallel

is Ax + By = fc and the perpendicular is .Bz Ay = K, where k and X are to

be determined.

14. To find the angle 6 between two lines

whose slopes are given:

I -\- rn^mi

15. To find the distance between a given point (XQ, y ), and a

given line:

(a) When the inclination of the line,

<t>,
and the coordinates of one of its

points, (xi, 2/1), are given, we have

from the figure :

QP =(xQ x^ sin
(f> (2/0 2/i) cos <,

(b) When the equation of the line is

given in the form Ax + By -j- C = 0, use the following formula :f

_
Ax + By 4

VA2 + B2

Here the vertical bars mean "
the absolute value of."

* Proof: By trigonometry, tan (02 0i) = tan 02 tan 0i

1+ tan 2 tan 0i

t Proof: Show that the foot of the perpendicular from Po to the line

Ax + By + C = has the coordinates xz = ZQ AA, t/2
=

2/0 A, where

C) / (A
2 + 2

).



CHAPTER III.

THE CIRCLE : EQUATIONS OF THE FORM X2 + y
2

-{-Dx -\- Ey + F 0.

16. The equation of a circle is the algebraic expression of the

condition which x and y must satisfy in order that the point (x,y)

shall lie on the circle (see 9 and 10).

17. To find the equation of a circle when its radius, r, and the

coordinates (, /?) of its centre are given:
y

'<*
When the centre is at the origin (0, 0), this

equation becomes

~2 I *,2 _ . ^

18. The equation of any circle is of the form z2
-f ?/

2
-fDx+Ey+F=0.

Conversely, every equation of the form x2
-f- 1/

2
-f- Dx -f Ey + F = can be re-

duced to the form (x -f $)
2
-f (y -f f) 2 = \(& + & 4F), and therefore rep-Z a \

resents a circle with centre at ( D/2} E/2), or a single point, or no locus, ac-

cording as D* -f- E2 4F is positive, zero, or negative. When we say, in brief,

that the locus of any equation of the form x2 + y
2 + Dx -h Ey + F = is a

"circle," we must understand that the "circle" may be "real," "null," or

"imaginary."

19. To find the centre and radius of a circle whose equation is

given, do not use a formula, but ' '

complete the squares", of the terms

in x and y in each case, and compare with the standard equation in

the manner just indicated.

20. In problems concerning tangents to a circle, use the fact that

the tangent is perpendicular to the radius drawn to the point of con-

tact.
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CHAPTER IV.

THE PARABOLA: y
2 = 2px.

21. DEFINITION: The locus of a point which moves so that

its distance from a fixed point _
its distance from a fixed line

is called a parabola.

The fixed point is called the focus and the fixed line the directrix.

The line perpendicular to the directrix

through the focus is called the principal

axis. There is evidently only one point

of the principal axis which is also a point

of the curve, namely the point half way
between the focus and the directrix; this

point is called the vertex.

22. If we take the vertex as the ori-

gin and the principal axis as the axis of x
r

the equation of the parabola is

where p= the distance between focus and

directrix.*

23. The form of the curve is therefore that shown in the

figure, t By definition PF = PH for every point P on the curve.

The breadth of the curve at the focus is called the lotus rectum,

and is equal to 2p.

* Proof: If (x, y) is any point on the curve, then

Many British authors write the equation in the form y
2 = 4ax, to avoid

fractions. Other writers use y* = 4px for the same purpose ;
this latter form,

however, is unfortunate, since 2p is a fairly well-established notation for the latus

rectum in each of the conies.

t Thus when x is 0, y is 0. When x increases, y increases, plus and minus;

the curve is symmetrical with respect to the z-axis. When x is negative, y is

imaginary. When x = p/2, y = p; when x = 2p, y = rt 2p.

53
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24. To find the equation of a tangent to the parabola y*= 2px,

use one of the following formulas :

(a) When the point of contact, (xlt t/J ,
is given :*

y^y p(x + xj;

(&) When the slope, m, is given :t

y = mx -(-
JL
2m'

A line perpendicular to a tangent at the point of contact is

called a normal.

If the tangent and normal at

any point P meet the principal

axis at T and N, the projections

of PT and PN on the principal axis

are called the subtangent and sub-

normal, respectively. The subtan-

gent is bisected by the vertex. The

subnormal is constant, equal to the

semi-latus rectum, p.

25. The locus of the middle points of a

set of parallel chords in the parabola is a

straight line parallel to the principal axis; such

a line is called a diameter. In the parabola

y
2 = 2px, if the slope of the parallel chords is m,

then the equation of the diameter is y =. p/m.\

* Proof: Let Pa = (zi + h, y\ + &) be a second point on the curve, near PI;

then the slope of the tangent at Pi will be the limit of k/h as Pa approaches Pi

along the curve, namely m= p/y^. Then use 11. The slope of the curve may
also be found by the general method of the differential calculus.

t Proof: Determine /3 so that the line y= mx + p shall have only one

point in common with the curve. [Eemember that a quadratic equation

As? + Bx + C= will have equal roots if B* 44C= 0.]

J Proof: Let (x , y ~)
be any point of the required locus; find the points of

intersection of the curve and a line through (XQ , yQ) with slope m; then

express the condition that (x0) T/O) shall be the middle point between these two

points. [Remember that the sum of the roots of a quadratic equation

Ax* + Bx -f- C = is B/A.]
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25a. Among the many properties of the parabola which should be worked

out as problems, the following may be mentioned as especially important, and

easy to remember:

1. The normal at any point P bisects the angle formed

by the line from P to the focus and the line through P
parallel to the principal axis (parabolic mirror).

2. If Plf P2,
. . . are any points on a parabola,

the distances of these points from the principal

axis are proportional to the squares of their dis-

tances from the tangent at the vertex.

3. If the tangents at P and Q inter-

sect at T
}
and if M is the middle point of

the chord PQ, then the line through T
and M is a diameter, and the segment
TM is bisected by its point of intersec-

tion with the curve.

4. The locus of the foot of the perpendicular from the

focus on a moving tangent is the tangent at the vertex.
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5. The locus of the point of intersection of perpen-
dicular tangents is the directrix.

Note. The usual methods for constructing a parabola should also be given.



CHAPTER Y.

THE ELLIPSE I b
2X2 + a2

y* =. O?b*.

26. DEFINITION : The locus of a point which moves so that

its distance from a fixed point

its distance from a fixed line

(where e is a constant less than 1), is called an ellipse.

The fixed point is called the focus, the fixed line the directrix,

and the constant, e, the eccentricity. The line perpendicular to the

directrix through the focus is called the principal axis. There are

evidently two points of the principal axis which are also points of

the curve; these two points are called the vertices, and the point half

way between them is called the centre.

27. If we let 2a= the distance

between the vertices, then :*

the distance between the centre and either vertex is a;

the distance between the centre and the focus is ae;

the distance between the centre and the directrix is a/e.

28. If we take the centre as the origin and the principal axis

as the axis of x, the equation of the ellipse is

where b is an abbreviation for a \/l #.\ Note that b < a.

* Proof: Since the vertices, V and V
t
are points of the curve, VF/VD

and V'F/V'D=*e', that is,

whence CF = ae and CD = a/e.

f Proof: If (a:, y) is any point on the curve, then

*+:-
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29. The form of the curve is therefore that shown in the

figure.* The right triangle enables us to find any one of the three

quantities a, 6, and e, when the other

two are given.

The symmetry of the equation
shows that the curve might equally

well have been obtained, with the same

eccentricity, e, from a second focus and

directrix, shown on the right.

The breadth of the curve at either

focus is called the latus rectum, and is

equal to 2a(l e
2
), or 262

/a.

30. Let P be any point of the ellipse, F and F f the foci, and PH
and PH 1 the perpendiculars from P to the directrices ; then

(a) PF/PH = e and PFf

/PH' = e,

by definition of the curve. Further-

more :f

(b) PF + PF' = 2a.

In fact, the ellipse is often defined as the locus of a point which

moves so that the sum of its distances from two fixed points is constant.

31. If a circle be described upon the major axis of an ellipse

as diameter, each ordinate in the ellipse is to

the corresponding ordinate in the circle as b is

to a.} In fact, the ellipse is often defined as

the locus of points dividing the ordinates of a circle

in a constant ratio.

From this property it follows that the area of

an ellipse is irab.

* Thus, when y = 0, x = a; when x -- 0, y = b. The curve is sym-
metrical with respect to both axes. In first quadrant, as x increases, y decreases

(slowly when x is small, and rapidly when x approaches a).

t Proof: PF = e(PH) and PF' = e(PH'), so that PF + PF' = e(HH>)
= e(2a/e) = 2a.

JProof : In the ellipse, y = -
Y/a

3 z2
; in the circle, y = V/a

2 - &
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82. To find the equation of a tangent to the ellipse 2 + p I

use one of the following formulas :*

'(a) When the point of contact, (xif 2/J, is

given :

(b) When the slope, m, is given:

y = mx zb Y/a
2
ra

2
4- &

2
-

33. The locus of the middle points of a set of parallel chords

in the ellipse is a straight line through the centre; such a line is

x2 y2

called a diameter. In the ellipse 2 + p = 1,

if the slope of the parallel chords is m, then

b 2

the slope of the diameter is .*
a2m

Any two lines through the centre, such

that the product of their slopes is b2/a
2

,
are

called a pair of conjugate diameters, because

each bisects all chords parallel to the other.

34. The circle described in 31 is called the auxiliary circle.

If P is any point on the ellipse, and Q the

corresponding point on the auxiliary circle

(see figure), then the angle (f>
which CQ makes

with the axis is called the eccentric angle of

the point P. From the figure, and 31,

x = a cos<f> and y = b sin^

where x, y are the coordinates of P.

The eccentric angles of the ends of two conjugate diameters

differ by 90.
* Proof as in the case of the parabola.
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34a. Among the many properties of the ellipse that should be worked

out as problems, the following are especially easy to remember:

1. The normal at any point P bisects the angle
formed by the lines joining P with the foci.

2. The locus of the foot of the perpendicular from
the focus on a moving tangent is the circle on the major
axis as diameter.

3. The locus of the point of intersection of per-

pendicular tangents is a circle with radius Va* + Z>
3
.

4. The area of a parallelogram bounded by tan-

gents parallel to conjugate diameters is constant.

Note. The usual methods for constructing an ellipse should also be given.



CHAPTER VI.

THE HYPERBOLA : b
2X2 a2

y
2 = tt

262.

35. DEFINITION : The locus of a point which moves so that

its distance from a fixed point

its distance from a fixed line

(where e is a constant greater than 1) ,
is called a hyperbola.

The fixed point is called the focus, the fixed line the directrix,

and the constant, e, the eccentricity. The line perpendicular to the

directrix through the focus is called the principal axis. There are

evidently two points of the principal axis which are also points of

the curve; these two points are called the vertices, and the point

half way between them is called the centre.

V g- fflV JJ -

36. If we let 2a = the distance

between the vertices, then:* !<-# A
<*--|

4,

the distance between the centre and either vertex is a;

the distance between the centre and the focus is ae;

the distance between the centre and the directrix is a/e.

37. If we take the centre as the origin and the principal axis

as the axis of x, the equation of the hyperbola is

where 6 is an abbreviation for a^e
2

l.f Note that b may be

greater or less than a, or equal to a.

* Proof: Since the vertices, V and V, are points of the curve, VF/VD = e

and F'*yF'Z> = e;thatis,

CF a a + CF

whence CF = ae and CD = a/e.

f Proof: If (x, y) is any point on the curve, then

\l(x ae)' + (y O)
2
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38. The form of the curve is therefore that shown in the figure.
*

The two lines through the centre

with slopes b/a are called the

asymptotes of the hyperbola; the

two branches of the curve ap-

proach these lines more and more

nearly as they recede from the

centre.f The right triangle enables

us to find any one of the three

quantities, a, 6, and e, when the

other two are given.

The symmetry of the equation
shows that the curve might equally

well have been obtained, with the same eccentricity, e, from a

second focus and directrix, shown on the left.

The breadth of the curve at either focus is called the latus rectum,

and is equal to 2a(e
2

1), or 2b2

/a.

39. Let P be any point of the hyperbola, F and Fr the foci, and

PH and PH! the perpendiculars

from P to the directrices; then

(a) PF/PH= e and PFf

/PH'= e,

by the definition of the curve.

Furthermore :J

(6) \PF PF'\=2a.

In fact, the hyperbola is often defined as the locus of a point
which moves so that the difference of its distances from two fixed points
is constant.

*
Thus, when y = 0, x = a; when x = 0, or x < a, y is imaginary; when x

increases beyond a, y increases, plus and minus (most rapidly when x is little

greater than a). The curve is symmetrical with respect to both axes.

t For, the slope = I - approaches
- as x increases; moreI -

2 approaches

over, if yi is the ordinate of any point on the curve, and 7/2 the ordinate of the

corresponding point on the asymptote, then the difference 7/2 y\ approaches

zero; for y<? y? = 62
,
and therefore y2 yi = W/(yz + yi).

t Proof: PF = e(PH) and PF = e(PH'), so that \ PF PF'
\
= e(HH')

s= e (2a/e) = 2a.
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40. The product of the distances from any point of a hyperbola

to the asymptotes is constant. Hence, the hyperbola is often

defined as the locus of a point which

moves so that the product of its distances

from two fixed lines is constant. (The
distances here may be the perpendicular

distances; or, the distance to each line

may be measured parallel to the other.)

41. An important special case is that of the "rectangular"

hyperbola, whose asymptotes are perpendicular

(a = b) ; the equation of the rectangular hyper-

bola referred to its asymptotes as axes is (by 40)

42. To find the equation of a tangent to the hyperbola
x2 v2

-2 J3
= l use one f tne following

formulas :*

(a) When the point of contact, (xlf yj,
is given :

(6) When the slope, m, is given:

43. The locus of the middle points of a set of parallel chords

in the hyperbola is a straight line through the centre ; such a line is

called a diameter. In the hyperbola
x2 y2

^2
= 1, if the slope of the parallel

chords is m, the slope of the diameter

b2 *
will be

a2m
Any two lines through the centre,

such that the product of then* slopes is b2/a
2

, are called a pair of

conjugate diameters, because each bisects all chords parallel to the

other.

* Proof as in the case of the parabola.
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43a. Among the properties of the hyperbola, the following are easy to

remember:

1. If a line cuts the hyperbola and its asymptotes,

the parts of the line intercepted between the curve and

the asymptotes are equal. In particular, the portion

of any tangent intercepted between the asymptotes

is bisected by the point of tangency.

2. The area of the triangle bounded by any tan-

gent and the asymptotes is constant.

Note. The usual methods of constructing a hyperbola especially the

rectangular hyperbola should be given.



CHAPTER VII.

TRANSFORMATION OF COORDINATES.*

44. The equation of a curve can often be simplified by a
"
change of axes/' either changing to a new origin (XQ, t/ ),

or turning the axes through an angle 0, or both.

If (x, y), (x
r

, y'), (x", y"), are the coordinates of the same

point P, referred to three different sets of axes, as in the

figures, then

T Y'



CHAPTER VIII.

GENERAL EQUATION OF THE SECOND DEGREE IN X AND t/.

45. The general equation of the second degree in x and y
is of the form

Ax2 + Bxy + Cy* + Dx + Ey + F= Q.

By a suitable transformation of coordinates this equation can

always be brought into one or other of the following forms :

A'x2 + C'y
2 + F'= Q, C"y

2 + D"x= 0, C"y
2 + F"= 0,

and hence can be shown to represent a conic section, using
this term in a general sense to include (1) an ellipse, which

may be real, null, or imaginary; (2) a hyperbola, or a pair

of intersecting lines; (3) a parabola, or a pair of parallel lines

(distinct, coincident, or imaginary).*
The student should be able to plot readily the locus of an

equation of the second degree in any of the simple cases men-

tioned below these being the cases which occur most often

in practice.

46. To plot Ax2
-}-Cy

2 + F= Q, where A and C have the

same sign. Find the intercepts on the axes (by putting

x= and 2/
= 0) ;

if both are real, we have an ellipse in which

a= the larger of the two intercepts, and b= the smaller
;
or

if A= C, the ellipse becomes a circle. If both intercepts are

zero, or imaginary, the locus is a single point, or imaginary.

* Proof: If B* 4AC is not zero, transform to parallel axes with

origin at (x , y ), and choose x and t/ so that the terms of the first

degree in the new equation shall vanish; then turn the axes through an

angle 6, and choose 6 so that the term in xy shall vanish. If B2 44C
= 0, turn the axes through an angle 6, and choose 6 so that the term in

xy shall vanish; then transform to a new origin (XQ, i/o), and choose x

and 2/0 so that the constant term and one of the terms of the first degree,

or so that both the terms of the first degree shall vanish. For special

methods of abbreviating the computation in numerical cases see 55,

note.
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47. To plot Ax2 + Cy2 + F= 0, where A and C have oppo-

site signs. Unless F= 0, one of the intercepts will be real

and the other imaginary, and the curve will be a hyperbola

whose principal axis is the axis on which the intercepts are

real. To find the slopes of the asymptotes, divide by x2 and

find the limit of y/x as x increases indefinitely. If F= Q, the

locus is a pair of intersecting lines.

48. To plot Cy2 + Dx + F= 0. Write this as

or ^T-?*'-

This is a parabola with vertex at x = F/D, and running
out along the positive or negative axis of x. Plotting one or

two points will fix the direction, and comparison with the

equation y
2= 2px will give the semi-latus rectum, p.

49. To plot Ax2 + Cy2 + Dx + Ey + F= 0. Write this in

the form

and "complete the squares"; then reduce to the form

Ax'2 + Cy'
2 + F= by an obvious change of origin.

50. ToplotCy
2 + Dx + Ey + F= Q. Complete the square

of the terms in y and reduce to the form Cy2
-\-Dx-\- F= Q

by an obvious change of origin.

51. To plot Bxy + F= 0. This is a rectangular hyberbola

referred to its asymptotes (see 41). The equation

Bxy + Dx + Ey + F= can be reduced to this form by

moving the origin to XQ
= E/B, y = D/B.

52. If the equation to be plotted does not come under any
of the forms just considered, a fair idea of the position of the

curve may be found by the following very elementary method.

Solving the equation for y in terms of x, we have, if C is not

zero,

Bx + E 1

where X is an expression involving x alone. Finding the
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values of (Ex + 23)/2C, and adding and subtracting the

values of yX/2C, for various values of x, we can find as

many points (x, y) on the curve as we please. Or, again,

solving for x in terms of y, we have, if A is not zero,

where T is an expression involving y alone. From this equa-
tion we can find values of x corresponding to as many values

of y as we please.

This method is very easy to remember, but does not give

readily the exact dimensions of the curve.

53. The center of the curve will be the point of intersection

of the two lines

except when B2 4AC= 0, in which case these lines will be

parallel, and the curve has no center.

54. The slopes of the lines joining the origin with the infi-

nitely distant points of the curve (if any) are given by writ-

ing the terms of the second degree equal to zero :

dividing through by x2
(or 2/

2
), and solving for y/x (or x/y).

55. If a more detailed discussion of the curve is required,

it is best to follow the special methods of reduction given in

the text-books (compare foot-note in 45).t

56. The student should be familiar with the geometric

proof that all the
' *

conic sections
' ' can be obtained as plane

* The student of the calculus will recognize these equations as

8F/Bx= and
where

F(x, y)==Ax* + Bxy

is the equation of the curve.

t The resulting formulae are given here for reference, although the

problem is not one of common occurrence.

Eequired, to plot the equation Ax3 + Sxy + Cy*
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sections of a right circular cone. It is a profitable exercise

to construct a cone, given the vertex and a hyperbolic section.

It should also be made thoroughly clear why an elliptic sec-

tion is a symmetrical figure instead of egg-shaped.

Case I. Central conic. If B* 4AG is not zero, transform to the

center as a new origin:

x.= (2CD BE)/(B* AC), y = (2AE BD)/(B* 4AC) ;

then turn the axes through a positive acute angle 6 given by

tan 20= B/(A C).

The transformed equation will be

where F'= Dx /2 + Ey /2 + F, while A' and C' are found by solving

the equations A' + C'=A + C, A' C'=: V(A C)*+ B3
,
where

the sign before the radical is to be + or acording as B is positive

or negative. The reduced equation can be plotted as in 46, 47.

Case II. Parabolic type. If B* 4A.C= 0, the equation may be

written in the form (ax-}- cyY + Dx + Ey + F= 0, where o=VA
while c=VC or c= VC according as B is positive or negative. The

locus will be of the parabolic type. Take as a new axis of x' the line

ax + cy + m= 0,

where m= (aD + cE)/2(A + C), and choose the positive direction

along this line so that it shall make a (positive or negative) acute angle

with the axis of x. This line will be the principal axis of the curve.

Two subcases may now occur.

(a) If a/c is not equal to D/E, take as axis of y' the line

ex ay + n =0,

where n=(A + C) (m
1

F)/(aE cD). This line will be the tan-

gent at the vertex, and the transformed equation will be

where 2p=(cD aE)/V(A + C)'. The locus is a true parabola.

(6) If a/c= D/E, the equation referred to the axis of x' will be

y'
f=:m-- F,

which represents a pair of distinct, coincident, or imaginary parallel

lines.



CHAPTER IX.

SYSTEMS OP CONICS.

57. If U and V are expressions of the second degree in x

and y, the equations 7= and V= will represent conies;

then (a) the equation U -f- kV= 0, where k is any constant,

will represent another conic passing through all the points

of intersection of the first two, and having no other points in

common with either of them; and (&) the equation UV=
will represent a curve made up of the two conies Z7=0 and

V= taken together. Corresponding theorems hold good if U
and V are any expressions in x and y (not necessarily of the

second degree).

58. To find the equation of a conic through five points, let

u= and v= be the equations of the lines PJPZ and P3P4 ,

and let u'= and v'= be the equations of the lines Pfz

and P2P. Then uv + ku'v'= 0, where k is any constant,

will be the equation of a conic through these four points. It

remains to determine k so that this conic shall pass through P5 .

59. The equation

a? + jfc &
2 + ft

~

where & is an arbitrary constant, represents a family of con-

focal ellipses and hyperbolas, which intersect at right angles.
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CHAPTER X.

POLAR COORDINATES.

This chapter, placed here for convenience of reference, may
well be introduced, in teaching, much earlier in the course.

60. It is often convenient to represent the position of a

point P by giving the angle, $, which the line through and

P makes with the #-axis, and the distance, r, from to P along

this line. The angle <f>
is called the vectorial angle, or simply

the angle, of tile point P, and is measured from the positive

direction of the axis of x to the positive direction of the line

through and P. The distance r= OP is called the radius

vector of the point P, and is positive or negative according as

it runs forward or backward along the line through and P.

It is customary to take r positive, and let
<f> range from

to 360.

61. From the figure,

y px= rcos<j>, y= r sm
<f>,

x2
-f- y

z= r2
, y/x= tan <.

By the aid of these relations, we can trans-

form any equation from rectangular to

polar coordinates, and vice versa.

62. The polar equation of a conic, referred to the focus as

origin, and the principal axis as axis of x

(see figure) is

1 e cos
'

where p is the semi-latus rectum, and e the

eccentricity.

63. Plotting curves in polar coordinates is an excellent

exercise in reviewing the trigonometric functions. The work
should be so arranged that no critical value of the function

occurs between two successive assigned values of 0.
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CHAPTER XI.

COORDINATES IN SPACE.

64. Four methods are in use for representing numerically

the position of a point in space. If Ox, Oy, Oz are three mu-

tually perpendicular axes, the position of any point P may
be determined by:

(1) Rectangular coordinates, x, y, z;

(2) Polar coordinates in space, r, a, /?, y, where the angles

a, /?, y are subject to the restriction cos2 + cos2
ft + cos2

y= 1
;

(3) Spherical coordinates, r, <, 0, where < = the latitude of

P, and its longitude :

(4) Cylindrical coordinates p, 0, z.

The relations between the various sets of coordinates are as

follows :

x= r cos a,

y= r COS J3,

z =rcosy.

x= r cos
<f>

cos 6

y r cos < sin 6

z= r sin <f>

= r cos <,
2= x2 + 2/

2
,

As there is no well-established uniformity in the use of the

letters in spherical coordinates, or in the choice of the positive

directions along the axes, it is important, in reading any
72
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author, to note, on a figure, the exact meanings of the letters

he employs.
65. Distance between two points, in terms of their coordi-

nates :

J>

66. Angle

given :

between two lines whose direction cosines are

where Zt
= cos alt mx

= cos plt nx
= cos y^ etc.*

67. Equation of a plane:

Ix + my + nz = p,

where p= perpendicular distance from

the origin, and I, m, n= fhe direction

cosines of the normal to the plane, t

Every equation of the form

Ax -f- By + Cz + D represents a

plane ; for, it can be thrown into the form

Ix -\-rny -\-nz- p by dividing through by yA2 + Bz + C2
.

* Proof: let (1) and (2) be lines through the origin, parallel to the

given lines; on these lines take points Plf P2 at a distance r from the

origin; then

P^'= r + r3 2rr cos ^= (rl, rl,Y + (rmt rm,)' + (rn, rnj*.

t Proof : The foot of the perpendicular is N= (pi, pm, pri) ; take Nf

= (2pl, 2pm, Zpri) and express the condition that the point (x, y, *)

shall be equidistant from and N'.
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68. Equation of sphere with center at the origin :

69. Equation of ellipsoid, with center at the origin :

tf/tf + 2/V&
2 + s2

/c
2= 1.

70. Any equation in x, y, z will represent a surface (real

or imaginary), the form of which can be investigated by the

method of plane sections. Thus, putting x= xlt the equation

becomes an equation in y and z, which represents a curve in

the plane x==x1 ; similarly for y= yt and z= z 1 .

71. Any equation of the second degree in x, y, z represents

a (real or imaginary) surface of the second degree, or coni-

coid. The types of real conicoids are as follows :

(1) Ellipsoid, with semi-axes a, &, c. Special case: ellip-

soid of revolution, generated by rotating an ellipse about its

major axis (prolate spheroid) or about its minor axis (oblate

spheroid).

(2) Hyperboloid of two sheets. Special case: generated

by rotating a hyperbola about its principal axis.

(3) Hyperboloid of one sheet, or ruled hyperboloid. Spe-

cial case: generated by rotating a hyperbola about its conju-

gate axis. Two sets of straight lines can be drawn on this

surface.

(4) Elliptic paraboloid. Special case: generated by rotat-

ing a parabola about its principal axis.

(5) Hyperbolic paraboloid, or ruled paraboloid. A saddle-

shaped figure, on which two sets of straight lines can be

drawn.

(6) Cone, generated by a straight line always passing

through a fixed point called the vertex, and always touching a

fixed conic, called the directrix. If the directrix is a circle,

the cone is a circular cone (right or oblique). If the vertex

recedes to infinity, the cone becomes a cylinder. On any cone

a single set of straight lines can be drawn.

The student should become familiar with at least the shapes
of these surfaces, through diagrams or models.

Any plane section of any surface of the second degree is a

conic.



A SYLLABUS OF DIFFERENTIAL AND
INTEGRAL CALCULUS.

This syllabus is intended to include those facts and methods of the

calculus which every student who has completed an elementary course

in the subject should have so firmly fixed in his memory that he will

never think of looking them up in a book. The topics here mentioned

are therefore not by any means the only topics that should be included

in a course of study, nor does the arrangement of these topics, as

classified in the following table of contents, necessarily indicate the

order in which they should be presented to a beginner.

TABLE OF CONTENTS.

PAET I. FUNCTIONS OF A SINGLE VARIABLE.

CHAPTER I. FUNCTIONS AND THEIR GRAPHICAL REPRESENTATION.

Function and argument. Tables. Graphs.

The elementary mathematical functions.

Continuity.
To find a mathematical function to represent an empirically given

curve.

CHAPTER II. DIFFERENTIATION. BATE OF CHANGE OF A FUNCTION.

A. Definitions and notation. Bate of change of a function, or slope

of the curve. Derivatives. Increments and differentials. Higher
derivatives.

B. To find the derivative when the function is given.

Bules for differentiating the elementary functions. Differentiation

of implicit functions, and of functions expressed in terms of a param-
eter.

C. To find the derivative when the function itself is not given; set-

ting up a differential equation.

Useful theorems on infinitesimals.

D. Applications of differentiation in studying the properties of a

given function. Slope; concavity; points of inflexion. Maxima and

minima. Multiple roots. Small errors.

CHAPTER III. INTEGRATION AS ANTI-DIFFERENTIATION. SIMPLE DIF-

FERENTIAL EQUATIONS.

Definition of an integral. Constant of integration.

Formal work in integration. Use of tables of integrals. Method of

substitution, and method of integration by parts.

Simple differential equations.
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CHAPTER IV. INTEGRATION AS THE LIMIT OF A SUM. DEFINITE

INTEGRALS.

Definition of the definite integral of f(x)dx from x= a to x= l>.

Fundamental theorem on the evaluation of a definite integral.

Duhamel's theorem.

Approximate methods of integration: squared paper; Simpson's

rule; the planimeter; expansion in series.

Definite integral as a function of its upper limit.

CHAPTER V. APPLICATIONS TO ALGEBRA: EXPANSION IN SERIES; IN-

DETERMINATE FORMS.

Taylor's theorem with remainder. Maclaurin's theorem. Im-

portant series.
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Tangent and normal. Subtangent and subnormal.

Differential of arc (in rectangular and polar coordinates).

Radius of curvature.

Velocity and acceleration in a plane curve.

PART II. FUNCTIONS OF TWO OR MORE VARIABLES.*

*In preparation.



CHAPTER I.

FUNCTIONS AND THEIR GRAPHICAL REPRESENTATION.

1. Function and argument. In many problems in prac-

tical life we have to deal with the relation between two variable

quantities, one of which depends on the other for its value.

For example, the temperature of a fever patient depends on the time;
the velocity acquired by a falling body depends on the distance fallen;

the weight of an iron ball depends on its diameter, etc.

In general, if any quantity y depends on another quantity

x, then y is called a function of x, written, for brevity,

y= f(x), and the independent variable x is called the argu-
ment of the function. More precisely stated, the notation

y= f(x) means that to every value of the argument x (within

the range considered), there corresponds some definite value

of the function, y, the value of y, or f(x), corresponding to

any particular value x= a is denoted by /(a).

If several values of y correspond to each value of x, we have what

is called a " multiple valued function of x," which is really a collection

of several distinct functions. Tor example, if y*= x, then y= dr Vx,
which is a double valued function of x.

Any mathematical expression involving a variable x is &

function of x
;
but there are many important functional rela-

tions which cannot be expressed in any simple mathematical

form.

2. A function is said to be tabulated when values of the

argument (as many as we please, preferably at regular inter-

vals) are set down in one column, and the corresponding
values of the function are set down in another column, op-

posite the first. For example, in a table of sines, the angle

is the argument, and the sine of the angle is the function.

3. A function may also be exhibited graphically, as follows :

Lay off the values of the argument as abscissas along a (hori-

zontal) axis, Ox, and at each point of the axis erect an ordi-

6 77
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nate, y, whose length shall indicate the value of the function

at that point; a curve drawn through the tops of these ordi-

nates is called the curve, or the graph, of the function. It

should be clearly understood, however, that it is the height of

the ordinate up to the curve, rather than the curve itself, that

represents the function.

In plotting the curve for any function, it is important to

indicate on each axis the scale which is used on that axis, and

the name of the unit. For example, if we plot distance as

a function of the time, the units on the i/-axis may represent

feet, and those on the #-axis, seconds.*

The obvious method of obtaining the graph of the sum or difference of

two functions directly from the graphs of those functions should be

noted.

4. The elementary mathematical functions. In many im-

portant cases, the relation between the function and the argu-

ment can be expressed by a simple mathematical formula.

For example, if s= the distance fallen from rest in the time t,

then s = %gt
2

. In such cases, the value of the function for

any given value of the argument can be found by simple sub-

stitution in the formula.

The most important elementary mathematical functions are

the following:

Algebraic functions: ex, c/x; xz
, #*; V# (x positive).

Here V^= the positive value of y for which y*= x.

Trigonometric functions: sin x, cos x, tan x (x in radians).

Exponential function: e* (e= 2.718 . . .).

Logarithmic function: loge x (x positive).

The student should be thoroughly familiar with the curves

of each of these functions, so as to be able to sketch them, or

visualize them, at any moment; many of the essential prop-

erties of the functions can be obtained by inspection of the

curve.

* It is not necessary that the lengths representing the units of x and y
shall be equal; scales should be so chosen that the completed graph is of

convenient size to fit the paper. In applications to geometry, however

(see Chapter VI), the scales must be equal.
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He should also be familiar with the formulas necessary for

handling expressions involving these functions. The better

drilled the student is in this formal algebraic work, the more

rapid progress can he make in the really vital parts of the sub-

ject. (See chapters of this report on algebra and trigo-

nometry.)

5. Next in importance are the following: the hyperbolic

functions, which are coming more and more into use :

sinh x= (e* e-*)/2, cosh x= (e* + e~*)/2,

tanh x= (e
x

e-*)/(e* + e~*) ;

the inverse trigonometric functions:

sin'
1 x= the angle between 7T/2 and + ir/2 radians

(inclusive) whose sine is x-*

cos-1 x= the angle between and TT

(inclusive) whose cosine is x\

tan"1 x= the angle between 7r/2 and + 7r/2

(inclusive) whose tangent is x\

and the inverse hyperbolic functions:

sinh"1 x= the value of y for which sinh y= x
;

cosh"1 x= the positive value of y for which cosh y= x
;

tanh"1 x= the value of y for which tanh y= x.

It should be noticed that the curves for the inverse functions

can be obtained from the curves for the direct functions by

rotating the plane through 180 about the line bisecting the

first quadrant.
Formulas for the hyperbolic functions resemble those

for the trigonometric functions, but the differences are so

* The symbol sin-1 x is often defined as simply
' ' the angle whose sine

is x "', but since there are many such angles, it is necessary to specify

which one is to be taken as " the " angle, if the symbol is to have any
definite meaning. Thus, if sin x=

,
x may equal Tr/6, or 5?r/6, etc.;

but only one of these values, namely 7r/6, is properly denoted by the

symbol sin"1 \. Similarly for cos-1 x and tan-1 x\ and also for cosh'1 x,

which is like Vx in this respect. The conventions adopted to avoid am-

biguity may be readily recalled from the figure, if we note that in each

case the complete curve consists of two or more "
branches/' and that

that one is taken as the "principal branch" which passes through the

origin, fir which lies nearest the origin on the positive side of the
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confusing that it is better not to try to memorize any formulas

for the hyperbolic functions, but to look them up whenever

they are needed. (The list in B. 0. Peirce's Table of Integrals,

for example, is entirely adequate.)
6. Continuity. A function y= f(x) is said to be continu-

ous at a given point x a, if a small change in x produces

only a small change in y; or more precisely, if f(x) always ap-

proaches /(a) as a limit when x approaches a in any manner.

A function may be discontinuous at a given point in three

ways: (1) it may become infinite at that point, as y= \/x at

x= Q; or (2) it may make a finite jump, as y= tsnr1
(1/x) at

= 0;* or (3) the limit L/(#) may fail to exist because of the
x^=a

oscillation of the function in the neighborhood of x= a, as

y= sin I/a? at x= 0. In each of these cases, the function is,

properly speaking, not defined at the point in question.

A good example of a discontinuous function is the velocity of a

shadow cast by a moving object on a zig-zag fence.

In what follows, we shall confine our attention to functions

that are continuous, or that have only isolated points of dis-

continuity.

7. To find a mathematical function to represent an em-

pirically given curve. In many cases the form of the func-

tion is given only empirically ;
that is, the values of the func-

tion for certain special values of the argument are given by

experiment, and the intermediate values are not accurately

if

known (for example, the temperature of a fever patient, taken

every hour). In such cases, the methods of the calculus are

not of much assistance, unless some simple mathematical law

can be found which represents the function sufficiently accu-

* This function approaches ?r/2 when x approaches from above, and

w/2 when x approaches from below.
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rately.* This problem of finding a mathematical function

whose graph shall pass through a series of empirically given

points is a very important one, which is much neglected in the

current text-books. The complete discussion of the problem

involves, it is true, the theory of least squares, which would

undoubtedly be out of place in a first course in the calculus;

but an elementary treatment of the problem in simple cases

would be very desirable.f

The curves which are most likely to be worth trying, in any
given case, are these :

y= a -f- l)x (straight line) ;

y= a+ Ix+ ex2
(parabola) ;

t/
= a+ c/(o;-f&) (hyperbola);

y= a sin (bx+ c) (sine curve) ;
and

y= axm.

In testing this last curve, put t/'
= log y, x'= log x, and

fl'= log a, and see whether y' and xr

satisfy the straight line

relation y'= a' -f- mx
f

; the use of
' *

logarithmic squared

paper
"

greatly facilitates the process.

The student should be familiar with all the possible forms

of these curves, for various values of the constants a, &, c,

and m.

* If no simple law can be found to represent the entire curve, it is

sometimes possible to break up the curve into parts, and find a separate
law for each part.

t Numerous examples may be found in John Perry's
" Practical

Mathematics/' and in F. M. Saxelby's "Practical Mathematics"

(Longmans, 1905).



CHAPTER II.

DIFFERENTIATION. BATE OF CHANGE OF A FUNCTION.

For the sake of clearness, this chapter is divided into four parts,

A, B, C, D.

A. DEFINITIONS AND NOTATION.

8. Rate of change of function; slope of curve. Given a

function, y= f(x), one of the most important questions we
can ask about it is, what is the rate of change of the function

at a given instant ?

For example, the distance of a railroad train from the starting point
is a function of the time elapsed, and we may ask, what is the rate of

change of this distance? The answer is, so-and-so many miles per hour.

Again, the volume of a metal sphere is a function of the temperature,
and we may ask, what is the rate of change of this volume? The answer

is, so-and-so many cubic inches per degree.

If the graph of the function is a straight line, then clearly

the rate of change of the function will be constant; for, at

any instant, (change in y)/ (change in x) =the slope of the

line.

If the scales along x and y are the same, the slope of the line = tan <p,

where is the angle which the line makes with the x axis. If the

scales are not the same, the slope of the line may still be interpreted as

the ratio of the "side opposite" to the "side adjacent
" in the triangle

of reference for
<f>, provided each side is measured in the proper units.

For example, in the figure, slope= 7/3.

82
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If the graph is not a straight line, the meaning of "rate

of change" at a given instant must be made more precise, as

follows: Consider a particular value, x= x
; give x an arbi-

trary change, Arc, and compute the corresponding change in

y, namely, Ay= f(x + &x) f(x ). Then the ratio A2//Aa;

may be called the AVERAGE rate of change of the function dur-

ing the interval from x= x to X XQ -\- Az. (Geometrically,

A2//A# is the slope of the secant PQ in the figure.) Now let A#

approach zero, so that the interval in question closes down
about the point x= x . Then the ratio &y/&x will in general

approach a definite limit, and this limit is called the ACTUAL

rate of change at the point x= x . (Geometrically, the limit

of A2//A& is the slope of the tangent at P.*)

9. Derivatives. The rate of change of a function y= f(x)

at any point, or the slope of the curve at that point, is called

the derivative of the function at that point, and is denoted by

/'(), orZ^2/, or y'.

The notation y is also used, but only when the independent
variable is the time.

This definition of the derivative of a function as the limit

of At//Aic is the fundamental concept of the differential cal-

culus. It is desirable that the meaning of the definition be

made perfectly clear, by numerous and varied illustrations,

before any formal work in differentiation is taken up.

10. Increments and Differentials. The value Aic is called

the increment given to x} and Ai/ the corresponding increment

* The sense in which the tangent line is the " limit " of the secant

lines should be made thoroughly clear. First, the tangent is a fixed

line; secondly, the secant is a variable line, depending on the value

given to A# (that is, for every value of Arc, except the value 0, there

?>? a corresponding position of the secant) ; thirdly, the angle between the

tangent and the secant can be made to become and remain as small as we

please by taking Ao; sufficiently small. The tangent line itself does not

in general belong to the series of secant lines; it is not in any sense the

"last one" of the secants; it is a separate line, which bears a special

relation to the series of secant lines, as described. The student may
readily convince himself that the tangent is the only line through P
that has the property just stated.
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produced in y. The value that Ay would have if the curve

coincided with its tangent (see figure) is called the differential

of y and is denoted by dy.

In case of the independent variable x, the differential of x

is, by definition, the same as the increment : dx= &x.

The use of differentials gives us a new notation for the de-

rivative,

/'<*>=!

Both these notations are in common use.

Notice that Ay and dy are both variables which approach
zero when we make Arc approach zero; dy/dx is a constant,

equal to tan
<f>-, Ay/Az is a variable, approaching tan

<f>
as a

limit. Hence we may write :

and
= f'(x)dx.

These relations between increments, differentials, and deriva-

tives should be thoroughly mastered
; they are readily recalled

by the figure. Note especially that Ax and dx are quantities

measured in the same unit as x\ and Ay and dy in the same

unit as y; while the derivative, dy/dx, that is, the slope, is

(in general) measured in a compound unit (like miles per

hour) .
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If the lengths representing the units of x and y are not equal, the

slope of the curve, or tan <p, must be understood in the generalized sense

explained above.

The process of finding the derivative, or the equivalent

process of finding the differential of the function in terms of

the differential of the argument, is called differentiation.

11. Higher derivatives. Since the slope of the curve varies,

in general, from point to point, the derivative, f'(x), is itself

a function of x (often called the derived function) ;
the de-

rivative of f(x) is called the second derivative of the given

function, and is denoted by /"(#), or D^y, or y" (or by y in

case the independent variable is the time) ;
and so on for the

higher derivatives.

It is also easy to define second, third, . . . differentialsf but

they are not of great importance. One matter of notation,

however, should be carefully noticed, namely that d2
y/dx

2
is

d(dy/dx)
commonly used to denote /" (x), that is 3 , and not,

as one might expect -V;
(dxY

As an example where the distinction is important, consider

x= sin 6 and y= 1 cos 6,

where is the independent variable.
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B. To FIND THE DERIVATIVE WHEN THE FUNCTION is GIVEN.

12. Formal work in differentiation. The student should

be thoroughly familiar with the results of differentiating all

the elementary functions. A list of the formulas which should

be memorized is given below; any other formulas should be

worked out as needed, or looked up in a book.

To establish these formulas, first prove the following im-

portant limits :

. . sin Au , , . 1 cos Auhm - - = 1. and hm - = 0,
A=0 Au Au=0 AU

provided u is in radians
;
and

lim(l + -V e 2.718---;*
=, \ n/

and hence prove the formulas for differentiating the sine and

the logarithm.

The proofs of the other formulas present no difficulty.

These limits having been established, it can then be shown that

sin (u + AM) sin u TT

lim ~ = - cos u, if u is measured in degrees,

= cos u, if u is measured in radians
;

lim
- =

(Q.4343...)^,
if the base is 10,

= -, if the base is e= 2.718
u 1

The reason for choosing the radian as the unit angle, and e as the base

of the "natural" system of logarithms is the simplification in the

formulas for the derivatives of the sine and the logarithm which results

from this choice.
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RULES FOR DIFFERENTIATING THE ELEMENTARY FUNCTIONS

OF A SINGLE VARIABLE.*

(The first jour of these rules are the fundamental ernes, from
which all the others can be derived.)

The differential of a constant is zero :

dk=0.

The differential of the LOGARITHM to the base e of any function

is one over that function, times the differential of the function :

d(\ogex)
= dx (e =2.718. . .).x

The differential of the SINE of any function (in radians) is

tne cosine of that function, times the differential of the function :

d(sin x) = cos x dx.

Hie differential of the sum [or difference] of two functions

is the differential of the first plus [or minus] the differential of

the second :

d(u v) = du dv.

The differential of a constant times any function is the con-

stant times the differential of the function:

The differential of a function to any constant power is the

exponent of the power, times the function to the power one less,

times the differential of the function :

d(x
n)=nxn

~ldx.

Useful special cases of this rule are:

.

The differential of e with a variable exponent is e with the

same exponent, times the differential of the exponent :

(e =2.718. . .)

* All these rules remain valid when the word ' ' derivative ' '
is put in

place of "differential," and the symbol "D" in place of " d."

t To prove this and the next five rules, let y= the function, and take

the logarithm of both sides before differentiating.
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The differential of the product of two functions is the first

times the differential of the second, plus the second times the

differential of the first:

d(uv) = u dv + v du.

The differential of the quotient of two functions is the denomi-

nator times the differential of the numerator, minus the numer-

ator times the differential of the denominator, all divided by
the denojuinator squared :

The differential of the cosine of any function is minus the

sine of that function, times the differential of the function:

d(cos x) = sin x dx.*

The differential of the tangent of any function is the secant-

square of that function, times the differential of the function :

n x) = sec2# dx.-\

The differentials of the inverse sine, the inverse cosine, and

the inverse tangent, of any function, are given by the following

formulas, which the student may put into words for himself :

d (sin-
1

x) = = = dx, t ( i ^ sirr
1* ^ **)

1/1

1

z) = = dx. (0 ^ cos-
1* ^ ir)

1/1 x2

n-1

x) = n ._2
dx. ( * i tan-1* ^ i)

1 -f- x

[To find the differential of u to the vth power, where u and v

are any functions, let

jr***

and take the logarithm to base e of both sides before differ-

entiating. Similarly, to find the differential of the logarithm of

u to any base v, let

y lgvu> whence vv = u;

then differentiate both sides.]

* Proof : cos x= sin QTT x}. f Proof : tan x= sin #/cos x.

$ Proof: Let 2/= sin~X that is,' sin y= x; then differentiate both

sides. Similarly for the next two formulas.
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The rules on these two pages suffice for the differentiation of

any elementary junction; they should be carefully memorized.

The differentials of the hyperbolic functions are given by
the following formulas, which are also worth remembering:

d sinh x= cosh x dx
;

d cosh x= sinh x dx
;

d tanh #= sech2 xdx-
t

hence,

dx , , . dx . dx
d smh"1 x r= , dcoQh~l x= r= =, d tanh"1 x= ,

13. Differentiation of implicit functions, and of functions

expressed in terms of a parameter.

(a) Suppose we have an equation connecting x and y, but

not giving y explicitly as a function of X-, as, for example,

9#2 + 4i/
2= 36. In finding dy/dx in cases of this kind, in-

stead of first solving the equation for y in terms of x, and then

differentiating, it is usually better to differentiate the equation

through as it stands (remembering that both x and y are

variables) ; thus, in the present example we have

ISxdx+ 8ydy= 0, whence, dy/dx= 9x/ty.

This result can then, if desired, be expressed wholly in terms

of xy by aid of the original equation.

(6) Again, suppose y is given as a function of u and v,

where u and v are both functions of x\ as, for example,

y=zuz
-}-v sin u. Differentiating both sides by the regular

rules, we have dy= 2udu+ v cos u du-{- sin u dv, whence,

collecting the terms in du and dv, and dividing by dx,

d N du . dvl

This result shows how the rate of change of y depends on the

rates of change of u and v, which are supposed to be known.

(c) Finally, both x and y may be given as functions of a

third variable, tf; as, x= F(t), y=f(t). To every value of

this auxiliary variable, or
"
parameter/' t, there corresponds

a pair of values of x and y, so that here again y is indirectly

determined as a function of x. Of course if we can eliminate t

7
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we shall have a single equation connecting x and y ;
but it is

often more convenient to keep the equations in the parameter

form. Thus, to find dy/dx, we have merely to differentiate

both of the given equations: dx= F'(t)dt, dy= f'(t)dt-, and
then divide the second result by the first : dy/dx= f'(t)/F'(t) .

C. To FIND THE DERIVATIVE WHEN THE FUNCTION ITSELF is

NOT GIVEN; SETTING UP A DIFFERENTIAL EQUATION.

14. In many cases it is required to find the rate of change
of a function when the function itself is not directly given;
in fact it is often easier to find the derivative of a function

than it is to find the function itself.

For example, a hemispherical bowl of radius r, full of

water, is being emptied through a hole in the bottom
;
find the

rate of change of the volume of water drawn off, regarded as a

function of the distance, y, between the level of the water and
the center of the bowl. To compute this value directly from

the definition, we notice first that the increment AT produced
in V by an increment At/ given to y will have a value between

7r(r
2

2/
2
)At/ and ir[r

2
(y -\- Ai/)

2
]A2/; dividing either of

these values by Ai/, and taking the limit of the ratio AT/At/,
we find at once dV/dy= Tr (r

2
2/

2
), which gives the re-

quired value of dV/dy for any value of y from y= to y= r.

This process of finding the derivative directly from first

principles, as the limit of the ratio of the increments, when
the function itself is not given, is called ''setting up a dif-

ferential equation," since the result of the process is an

equation between the differentials of the function and of the

argument.*

Every problem of this kind is a problem in finding the

limit of the ratio of two variable quantities, each of which is

approaching zero; and in this connection the following theo-

rems on infinitesimals are extremely useful, if not indis-

pensable.

* The problem of finding the relation between the quantities them-

selves when the relation between their differentials is known will be dis-

cussed in the next chapter.
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15. Theorems on infinitesimals.

Def. Any variable quantity that approaches as a limit is

called an infinitesimal. For example, Ax, Ay, dx, dy, are

infinitesimals.

The erroneous notion that an infinitesimal is a constant quantity which

is "smaller than any other quantity, however small, and yet not zero"

should be carefully avoided.

Notation. The notation lim x= <z, or x -> a (read: "x ap-

proaches a as a limit "), means that x= a-}-e, where e is a

variable approaching zero. Thus a statement expressed in

terms of "lim" or
" - " can always be translated into an

equation, which can then be handled by the ordinary rules of

algebra. The symbol is preferable to= and seems likely to

replace it.

Def. If a and (3 are infinitesimals, and lim (a/(3) = 0, then

a is said to be an infinitesimal of higher order than ft.

For example, if Aw= e .
At?, where e itself approaches 0, then Aw is

of higher order than Av. Again, 1 cos A0 is of higher order than A0.

If the difference between two infinitesimals is of higher

order than either, then their ratio approaches 1 as a limit
;
and

conversely, if the ratio of two infinitesimals approaches 1,

then their difference is of higher order than either. Two
infinitesimals having this relation may be called

"
similar

"

or
"
equivalent

"
infinitesimals.

Important examples are the following: a convex arc of a

curve, and the chord of that arc, are
' '

similar
' '

infinitesimals.

Again, sin Ax and tan Ax are both
' '

similar
' '

to Ax, provided

Ax is in radians.

FIRST EEPLACEMENT THEOREM FOR INFINITESIMALS. In

finding the limit of the ratio of two infinitesimals, either of

them may be replaced by a "similar" infinitesimal, without

affecting the value of the limit.

As explained above, two infinitesimals are
"

similar " : (1)

if the difference betiveen them is of higher order than either;

or (2) if the limit of their ratio is 1. (Sometimes the first test

is more convenient, sometimes the second.)
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This theorem frequently enables us to replace a complicated

infinitesimal, like vr(r+ Ar)*A#, by a simpler one, as 7rr
2
Az;

~but it justifies this replacement only in the case expressly

stated in the hypothesis of the theorem, namely the case in

which we are finding the limit of a ratio* (The fallacy that

"infinitesimals of higher order can always be neglected
"

should be carefully guarded against.)

* A second replacement theorem for infinitesimals will be given in the

chapter on Definite Integrals.
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D. APPLICATIONS OF DIFFERENTIATION IN STUDYING THE
PROPERTIES OF A GIVEN FUNCTION.

16. That a knowledge of differentiation is of fundamental

importance in studying the variation of a given function is

evident from the following theorems.

Let the given function be y= f(x).

I. The value of the derivative at any point shows the slope

of the curve at that point.

Hence, if the derivative is positive at any point, the curve

is rising at that point (as we move in the positive direction

along the axis) ;
that is, the function is increasing. And if

the derivative is negative at any point, the curve is falling at

that point; that is, the function is decreasing.

II. // the second derivative is positive at any point, the

slope is increasing at that point, and hence the curve is con-

cave upward; and if the second derivative is negative at any
point, the slope is decreasing at that point, and hence the

curve is concave downward.
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A point where the concavity changes sign is called a point

of inflexion; at every such point, the second derivative is

or oo.*

17. Maxima and minima. The application to problems in

maxima and minima is immediate. In seeking the largest or

smallest value of a given function in a given interval, we need

consider only (1) the points where the slope is zero; (2) the

points where the slope is infinite (or otherwise discontinuous) ;

and (3) the end-points of the interval; for among these points

the desired point will certainly be found. In most practical

cases it will be a point where the slope is zero.

The conditions of the problem will usually show clearly

which of these points, if any, is a maximum (or a minimum).

to , u

18. Multiple roots. The roots, or the zeros, of a function,

are the values of the argument for which the function becomes

zero. An inspection of the figure will show that any value of

x for which f(x) and f(x) are both zero simultaneously, will

count as at least a double root.

* But the second derivative may be zero at points which are not

points of inflexion
;
for example, y=.s? at x= 0.
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19. Small errors. The following theorem is very useful in

discussing the effect, on a computed value, of small errors in

the data :

III. If dx is small, dy and Ai/ are nearly equal.

That is, the difference between dy and At/ can be made as small as we

please, in comparison with dx, by making dx sufficiently small (except
at points where dy/dx does not have a finite value).

Thus, if we wish to find approximately the error Ai/ pro-

duced by a small error in x, it will usually be sufficiently

accurate to compute, instead of At/, the simpler value, dy.

In problems concerning the relative error, dy/y, or dx/x.
it is often convenient to take the logarithm of both sides of

the given equation y= f(x) before differentiating.

This class of problems is of great practical value.



CHAPTER III.

INTEGRATION AS THE INVERSE OP DIFFERENTIATION. SIMPLE

DIFFERENTIAL EQUATIONS.

20. In many problems in pure and applied mathematics, we
have given the derivative [or differential] of a function, and
are required to find the function itself.

Suppose f(x) [or f(x)dx] is the given derivative [or differ-

ential] ;
it is required to find a function F(x) which, when dif-

ferentiated, will give f(x) [or f(x)dx]. Clearly, if one such

function F(x) has been found, then any function of the form

F(x)-\-C, where C is any constant, will have the same

property.

DEFINITION. Any function F(x) whose differential is

f(x)dx is denoted by

read: an integral of f(x)dx. The process of finding an inte-

gral of a function is called integration or the inverse of

differentiation.

If F(x) is any particular integral of f(x)dx, then every

integral of f(x)dx can be expressed in the form F(x) + C,

where C is a constant, called the constant of integration.

It can be shown that every continuous function has an inte-

gral; but this integral may not (in general, will not) be ex-

pressible in terms of the elementary functions.*

Most of the functions that occur in practice can, however,
be integrated in terms of elementary functions, by the aid of

a table of integrals, such as B. 0. Peirce's well-known table

of integrals. The entries in such a table can be verified by
differentiation.

21. Formal work in integration. The time devoted to the

formal work of integration should not be longer than is nec-

* In such cases, an approximate expression for the integral may be

obtained by infinite series.

96
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essary to give the student a reasonable degree of expertness in

the use of the tables.

The following integration formulas should be memorized;

they are derived immediately from the corresponding formulas

for differentiation.

Ccudx = c
j
udx

;
j
(u + v + )dx =

J
udx' -f Cvdx -f- ;

/xn+l
I

z
w
cfo = - - (provided n =f= 1) ;n -|- II

(in words: an integral of any function raised to a constant

power, =f= 1, times the differential of that function, is equal

to the function raised to a power one greater, divided by the

new exponent) ;

( smxdx=coBx- ( coax dx= sin x; ( sec*xdx = tan x;

Bin
~1 * r ~ C0frt: = tan" *

The constant of integration must be supplied in each case.

A large number of integrals can be brought under the form

fx
ndx by a simple transformation. For example,

/cos
3 xdx /cos

2 x cos x dx= /(I sin2
x) cos x dx

= /cos # dx /sin
2

a; cos x dx= /cos # dx / (sin x)
zd (sin a?)

= sin x (sin x)
3
/3.

Similarly for any odd power of the sine or cosine.

The following integrals are also important, though it is not

worth while to memorize them when a table is at hand :

I sin
2 xdx= (# sin x cos x) ;

I cos
2 xdx= ^(x+ sin x cos #) ;

/ dx , TV #\ . 1 -f sin # /* dx . #
=log tan I

- + -
)
=4 log r-: : =log<l

tan -;J cos x \4 2/
&e

l sma;' J smz 2 J

J
sinh a: cZa; = cosh a?;

J
cosh xdx = sinh a;;

J
sech2ic^== tanhrc.
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22. Among the other formulas of integration, the following

are perhaps the ones that occur most often in practice; they

are inserted here for reference, and especially to illustrate the

usefulness of the hyperbolic functions.

/dx
1

_. _. x

J-+J
= -

a
ian

a'

/dx^T
dx

1, a + x 1 TI #= loge
- - = - tanh"1

-,
a? 2a &e " - - Jx a a

x a 1 , _. a;
. = coth 1

x -4- a ct a

/dx
_. x

.
= sin

l

Jo? y2 d-,
or == cos A

-,
ct

+ a2

), or = sinh x

-,

a2

), or = cosh l

t/axV* a2

/A/a
2

a;
2 dx 4 1 ^ V

2 2 + 2
sin l L

2
L J

= - he V#
2

4- a
2+ a2 sinh"1 -

,
or

or

^a2 a2

loge (a? + V?

- heV^a2 a2 cosh"1 -
.

2 L a J

23. Methods of Integration. Among the methods by which

a given integral may be reduced to a form in the tables (or

an integral in the table to one of the fundamental forms), the

most important are (1) the method of substitution and (2)

the method of integration by parts.

In the method of substitution, the given integral, ff(x)dx,
is expressed wholly in terms of some new variable y (and dy),

in the hope that the new integral may be easier to handle than

the old one. The substitutions which are most likely to be

useful are the following:
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(a) y= any part of the given expression whose differential

occurs as a factor; y x16

-, y= I/x-t y= sinx; y= cosx-t

2/
= tan(z/2).

(6) x a sin y, or= a tan y, or= a sec y, in expressions

involving V fl2 #* or V02 + #2
,
or V^2

fl27 respectively.

But much can be done without formal substitution of a new

letter, if one remembers that the
" x "

in the formulas of

integration may stand for any function.

The method of integration by parts is an application of the

formula

Cudv= uv Cvdu.

Take as dv a part of the given expression which can be

readily integrated ;
on applying the formula, the new integral

may be simpler than the old one.

The student should be practiced in both of these methods.

24. Simple differential equations. In a large number of

problems in pure and applied mathematics, it is possible to

write down an expression involving the rate of change of a

desired function more readily than to write down the expres-

sion for the function itself. (Compare Chap. II, B.) In

other words, it is often easier to write down a relation between

tn differentials of two variables than to write down the rela-

tion between the variables themselves. Such a relation con-

necting the differentials of two or more quantities, is called a

differential equation, and any function which satisfies the

equation, when substituted therein, is called a solution of the

equation.

Every such problem, then, breaks up into two parts: (1)

setting up the differential equation; (2) solving that equation.

The first part of the problem has already been treated in

Chap. II, B. This part of the problem is too apt to be neg-

lected in elementary courses; there is scarcely anything that

develops real appreciation of the power of the calculus more

effectively than practice in setting up for one 's self the differ-

ential equations for various physical phenomena.
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As to the second part of the problem, namely, the solu-

tion of the differential equation, the general plan is to reduce

the given equation, by more or less ingenious devices, to the

form dy= f(x)dx, or y= ff(x)dx, and then to complete the

solution, if possible, by the aid of a table of integrals. In a

technical sense, the differential equation is said to be "
solved

"

when it is thus reduced to a simple
* '

quadrature
' '

;
that is, to a

single integration.

The solution of a differential equation of the nth order, that

is, an equation involving the nth derivative, will contain n

arbitrary constants
;
to determine these constants, n conditions

connecting #, y, y' . . ., i/
(n) must be known (the

"
initial

"

or
"

auxiliary
"

conditions of the problem).
25. The general discussion of differential equations is too

large and too difficult a topic to find a place in a first course

in the calculus, but two, at least, of the simpler equations are

so important that their solution should be given, as an exercise

in integration.

These equations are the following:

(1) J + n'2/=0, where </'=--

The solution is

2/
= C1 sin (nt + C2 ) or, y= Cs sin nt+ <74 cos nt,

where the C's are arbitrary constants.

(2) J'-'2,
=

0, where / = -|-.

The solution is

y = C1 sinh (n* + C2 ), or, y =
where the C's are arbitrary constants.

The method of obtaining these results, rather than the re-

sults themselves, should be remembered: namely, multiply

through by dy, noting that dy/dt= y', and integrate each term,

getting Jt/'

J

+ ^n
2
2/

2= 0; then replace y' by dy/dt, "separate
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the variables,
' ' and integrate again. By a similar method, any

equation of the form dy'/dt + f(y) = can be solved, if we

can integrate f(y)dy.
26. Another very important differential equation is the

equation for
' '

damped vibration
' '

:

The solution is given here for reference :

Case 1. If a2 6 2 > 0, let m= V 2 & 2
; then

or y= [C8 sin (mt) + (74 cos

Case 2. If a2 6 2= 0,

Case 3. If a2 & 2 < 0, let n= V & 2 a27 then

y= Cj- sinh (nt + CJ,

or = C

26a. Another important case is the linear differential equa-

tion of the first order :

where P and Q are functions of x (or constants), but do not

contain y. The solution is given here for reference :

ye
F'=

j*Qe
Fdx + const.,

where



CHAPTER IV.

INTEGRATION AS THE LIMIT OF A SUM. DEFINITE INTEGRALS.

27. The limit of a sum. Many problems in pure and ap-

plied mathematics can be brought under the following general

form:

Given, a continuous function, y= f(x), from a?= a to

x= b. Divide the interval from x= a to x= b into n equal

parts, of length Az=(& a)/n* Let x^x^x^ . . . xn ~be

values of x, one in each interval; take the value of the func-
tion at each of these points, and multiply by Ax; then form
the sum:

Required, the limit of this sum, as n increases indefinitely,

and Ax ^ 0.

This problem may be interpreted geometrically as the prob-

lem of finding the area under the curve y= f(x), between the

ordinates x= a and x= b; each term of the sum represents

the area of a rectangle whose base is Ax and whose altitude is

the height of the curve at one of the points selected. It is

easily seen that the difference between the sum of the rec-

tangles and the area of the curve is less than a rectangle

*It is not necessary that the parts be equal, provided the largest of

them approaches zero when n is made to increase indefinitely.

102
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whose base is A# and whose altitude is constant. This dif-

ference approaches zero as Arc= 0; therefore the sum of the

rectangles approaches the area of the curve as a limit.

In this way, or by an analytic proof, it is shown that the

limit of the sum in question always exists. The problem then

is, to find the value of this limit.

The value of the limit can always be obtained by the fol-

lowing fundamental theorem, whenever an integral of the

given function f(x) can be found.

FUNDAMENTAL THEOREM OP SUMMATION. If xlf x2,
- xn

are values of x ranging from x= a to x= b, as in the state-

ment of the general problem above, then

lim [/(X) A* +/O2)A* -f . . :+/(>n)A*] = F(b) - F(a),
As=M>

ivhere

i*5 any function whose derivative is the given function f(x).

The proof of this remarkable theorem is best given by show-

ing that the right hand side of the equation, as well as the

left, is equal to the area under the curve from x= a to x= b;

to do this, consider the area from x= a to a variable point
x x, and find the rate of change of this area regarded as a

function of #; hence find the area itself as a function of x,

determine the constant of integration in the usual way, and

then put x= b in the result.

DEFINITION. The limit of a sum of the kind described above

is called the definite integral of f(x)dx from x= a to x= b,

and is denoted by

*
/(*()A*, or

n= i=0

The function obtained by the inverse of differentiation is

called, for distinction, an indefinite integral. By the funda-

mental theorem just stated, the definite integral is equal to the

difference between two values of the indefinite integral :
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The double use of the term "
integration

"
meaning in one case anti-

differentiation, and in the other case finding the limit of a sum and the

fundamental theorem connecting these two distinct concepts, should be

made thoroughly clear.*

The concept of the definite integral is the most useful con-

cept in the application of the calculus, and the study of

problems which can be formulated as definite integrals may
well occupy one third of the time of a first course.

For example, problems in areas, volumes, surfaces, length of arc,

center of gravity, moments of inertia, center of fluid pressure, etc.

Many of thepe problems require two applications of the fundamental'

theorem.

28. Properties of definite integrals. From the definition

of the definite integral we have at once :

r/C*
t/a

and, by the aid of a figure, the Mean Value theorem:

where X is some (unknown) value of x between a and &, and

F(x) and f(x) are any continuous functions, provided f(x)
does not change sign from x= a to x= b.

We have also the following important theorem on change of

variable:

In evaluating the integral

if x is a function of a new variable
,
we may replace f(x)dx

by its value in terms of t and dt, and replace x= a and x= b

* The use of the term in the sense of summation was historically the

earlier, and the symbol f is the old English "long a," the first letter

of "sum."
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by the corresponding values t= a and t=
/3, without altering

the value of the integral, provided that thoroughout the inter-

val considered there is one and only one value of x for every

value of t, and one and only one value of t for every value of x.

29. All problems leading to a definite integral are prob-

lems in finding the limit of a sum, each term of which is

approaching zero, while the number of terms is increasing

indefinitely. Whenever a function f(x) can be found, such

that all terms of the sum are obtained by substituting suc-

cessively xlt
x

21 etc., in the expression f(x)dx, then the formu-

lation of the problem as a definite integral is immediately
obvious. The separate terms of the sum, of which f(xk)dx is

a type, are called elements.

Thus, in finding the area under a curve, an obvious element

of area is the rectangle ydx; if the curve revolves about the

re-axis, the element of volume of the solid thus generated is

the cylinder iry
2dx. Here y must be expressed as a function

of x before the integration can be completed. Again, in polar

coordinates, the element of area is the sector, %r
2
dQ, where r

must be a known function of 6.

In many cases, however, the proper function is not so

immediately obvious. In such cases, the following theorem is

of great service :

SECOND REPLACEMENT THEOREM FOR ESTFINITESMALS (THEO-
REM OF DUHAMEL). In finding the limit of a sum of positive

terms, each of which approaches zero while the number of

terms increases indefinitely, any term may be replaced by a
"

similar
" term without affecting the value of the limit. Two

variables a and /? are called
"

similar
"

if

(1) lim^=l, or if (2) lim -^=0.
p a

For example, let us find the weight of a rod whose density,

w, and cross-section, A, are both functions of x. The "true

element'* of weight, AW, corresponding to a given length A#,

will certainly lie between the values w'A'&x and w"A"&x, where

8
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w'jA' are the smallest values, and w",A" the largest values

of w and A within the interval from x= x to x= x+ &x;
but either of these extreme values may be replaced by the

simpler value wAkx, where w,A are the values of w and A
at the beginning of the interval, for,

.. w'A'bx w"A"bxhm =lim - = 1.

Hence, AW itself, which lies between these extremes, can be

replaced by wA&x, which is therefore the required
"
differ-

ential element" of weight.* The total weight of the rod,

from x= a to x= b, is then equal to the definite integral

rwAdx-,

where w and A must of course be expressed as functions of x

before the integration can be completed.

In justifying replacements of this kind by Duhamers

theorem, sometimes the first test is more convenient, some-

times the second. When once the common replacements have

been justified, the use of the theorem in practice rapidly

becomes almost intuitive.

30. Approximate methods of integration. If the function

f(x) is given only empirically, the theorem on evaluating the

definite integral by purely mathematical means cannot be ap-

plied. In such cases, an approximate value of the definite

integral

may be found by plotting the curve y= f(x) on squared

paper, and estimating the area by counting squares (and frac-

tions of squares).

Another method of approximation is by Simpson's Rule:

* When x is the independent variable, it is immaterial whether we

write Ac or dx.
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Divide the area into n panels, where n is even, and number
the ordinates from 1 to w+ 1; then, if Arc is the width of

each panel,

Area= JA# (first ordinate + last ordinate

+ twice the sum of the other odd ordinates

+ four times the sum of the even ordinates) .

The instrument known as a planimeter provides a mechan-

ical means of integration, used especially in measuring the

areas of indicator cards.

Another and very important method of approximation is

by the use of series; see the next chapter.

31. Definite Integral as a function of its upper limit. If

X is a variable, the definite integral

represents the area under the curve y f(x) from x= a to

the variable ordinate x= X, and is therefore a function of X,

AX

X

say <f>(X). By applying the definition of derivative to this

function, it is easy to see from the figure that <j>'(X)
= f(X):

Thus $(X) is one of the indefinite integrals of f(X).
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Any indefinite integral which cannot be expressed in terms

of known functions can always be written as a definite

integral regarded as a function of its upper limit, and its

value, for any given value of the argument, can then be found

by one of the methods of approximate integration.

The elliptic integrals, the most important of which are

(IQ

and
/n , ya

. . f ,o i/l (F) sm
2

are handled in this way, by the method of expansion in series.

The student should be made familiar with the construction

and use of tables of the elliptic integrals.

In such tables, fc
2
is usually expressed in the form sin2 o, which empha-

sizes the fact that



CHAPTER V.

APPLICATIONS TO ALGEBRA : EXPANSION IN SERIES
;
INDETER-

MINATE FORMS.

Note. This chapter may be taken, if preferred, immediately
after the chapter on differentiation. It is in reality an exten-

sion of the "formal work" of that chapter, since it deals with

changes in the form of algebraic expressions.

32. Taylor's theorem. It is often desirable to obtain an

approximate expression for a given function, in the neighbor-

hood of a given point x= a, in the form of a series arranged

according to ascending powers of x o, with constant coeffi-

cients. For values of x near to a, the higher powers of a; a

will then become negligible.

The most convenient theorem for this purpose is the fol-

lowing :

TAYLOR'S THEOREM. If f(x) is continuous, and has deriva-

tives through the (n-\-l)st, in the neighborhood of a given

point x a, then, for any value of x in this neighborhood,

f(x-)
= f(a) +

f
-

(x
-

a) + (*
- ay +

where X is some unknown quantity between a and x. The last

term,

/"

is the error committed if we stop the series with the term in

(x o)
n

,
and the formula is useful only when this error be-

comes smaller and smaller as we increase the number of

terms.

109
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This form for the l ( remainder ' ; E is easily remembered since it

differs from the general term of the series only by the fact that the

derivative in the coefficient of the power of (x a) is taken for x=X
instead of for x= a* (There are also other forms of the remainder

which are sometimes useful.)

33. The special case where a= is called Maclaurin's

Theorem:

where X is some unknown quantity between and x.

34. Another special case, obtained by putting n= Q, gives

/(*) /(a)tf(Z)( a),

where again X is some unknown quantity between a and x.

This theorem is called the Law of the Mean, and is of great

importance in the theoretical development of the subject.

35. If the error-term in Taylor's Theorem approaches zero

as n increases, the formula becomes a convergent infinite series,

called the Taylor's series for the given function, about the

given point x= a.

The series with which the student should be especially fa-

miliar are the following :

* The simplest proof of this theorem is by means of integration. For

example, for the case n= 2, we have

fa

X

f"(t)dt=f'"(X)(x-a),

where X is some (unknown) constant between a and x (as is evident from

a figure) ;
but also

by the fundamental theorem; so that

Integrating this equation twice between the limits x= a and x= x,

remembering that /"() an^ f"(X) are constants, we have at once:

_/"()(* a) =:f>(XM(x a)',

a)
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Binomial series:

provided \x \
< 1.

Sine series :

#3
x* x 1

sin x = x
g-|
+

g-j jy-j
+ (* in radians).

Cosine series :

#2
#* #6

cos x = 1
g-j
+

j-j|
}
+ (re in radians).

Exponential series :

Next in importance are the series for log (1 + rr), tan'1 x, sinh a;,

and cosh x.

From these series we have the following important approxi-

mations, when x is small :

sin x = x
,

cos x = 1
,
etc.

An important special case of the binomial series is the

geometric series :

= 1 + x + z2 + x3 + -, provided \x\ < 1.

36. The student should also understand the comparison test,

and the test-ratio test, for the convergence of an infinite series,

and the following theorem on alternating series : If the terms

of a series are alternately positive and negative, each being

numerically less than or equal to the preceding, and if the nth

term approaches zero as n increases, then the series is conver-

gent, and the error made by breaking off the series at any

given term does not exceed numerically the value of the last

term retained.
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Further, a power series can be differentiated or integrated

term by term, within the interval of convergence.
37. Indeterminate forms. The evaluation of indeterminate

forms can often be facilitated by the use of the following

theorem, in which f(x) and F(x) are functions which possess

derivatives at a given point x= a.

Theorem of indeterminate forms. If f(x) and F(x) both

approach zero, or both become infinite, when x approaches a,

then

The second limit may often be easier to evaluate than the first.

The student should thoroughly understand the meaning of

indeterminate forms, for which the common
symbols^, l^etc.,

are merely a suggestive short-hand notation.

Thus, "0/0" means that we are asked to find the limit of

a function y= f(x)/F(x), when f(x) and F(x) both approach
zero. Now the change in f(x) alone would tend to decrease

y numerically, while the change in F(x) alone would tend to

increase y ;
hence we cannot tell, without further investigation,

what the combined effect of both changes, taking place simul-

taneously, will be.

Again, the symbol I
00

means that we are asked to find the

limit of a function i/
= /(ic)

F(a?)
,
when /(#) approaches 1 and

F(x) becomes infinite. Now the change in f(x) alone would

tend to make y approach 1, while the change in F(x) alone

would tend to make y recede from 1
;
hence we cannot tell, with-

out further investigation, what the combined effect will be.

The student should thoroughly master in this way the

meaning of all the seven types of indeterminate forms, namely,

5, -, O-oo, V, 1", oo', oo-oo.
U OO

The cases involving exponents are best treated by first find-

ing the limit of the logarithm of y, from which the limit of $
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can then be obtained. The form 0- oo, or y= f(x) -F(x), can

be written as 3/== ,, .
,
or i/= ., ., ,

.
,
which then comes

under one of the first two forms. The last form, oo oo, is

usually best handled by the method of series.

Before applying the theorem of indeterminate forms, one

should, of course, try first to find the required limit by a

simple algebraic transformation, if possible.



CHAPTER VI.

APPLICATIONS TO GEOMETRY AND MECHANICS.

In all applications to geometry, in which a curve is repre-

sented by an equation connecting x and y, the scales on the x

and y axes must be equal (compare 3, footnote).

38. Tangent and normal. The equation of the tangent at

any point (and hence the equation of the normal) can be

written down at once when we know the slope and the coordi-

nates of the point of contact.

Again, to find the subtangent or subnormal at any point,

we have simply to find the ordinate and the slope at that point,

and then solve a right triangle.

39. Differential of arc. If s= length of arc of the curve

y= f(x), measured from some fixed point A of the curve,

then s, like y, is a function of x, and we may ask what is the

rate of change of s with respect to x, that is, what is the value

of ds/dx. Now ds/dx= lim (As/Az), and in finding this

limit we may replace the arc As by its chord, V
hence ds/dx= lim VI + (Ay/As)

2= VI+ (dy/dx) *, or

114
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as indicated in the figure. This formula, and the correspond-

ing relations

dx ds cos
<j>, dy= ds sin

<j>,

are important, and are readily recalled to mind by the figure.

In the case of a circle of radius r, if d0=ihe angle at the

center, subtended by the arc ds, then

ds= rd0,

provided the angle is measured in radians.

40. Again, in case of a curve whose equation is given in

polar coordinates, r= f(6), we see at once from the figure, by
the aid of the replacement theorem, that

ds = V(dr)
2 + (rd0y and tan i/r= -^-,

where ^ is the angle which the tangent makes with the radius

vector produced.

41. Radius of Curvature. Consider the normal to a given

curve at a given point, P, and also the normal at a neighbor-

ing point, Q. These two normals will intersect at some point

C' on the concave side of the curve
;
and as Q approaches P,

along the curve, this point C' will (in general) approach a

definite position C as a limit. The circle described with a

center at this point C and radius equal to CP will fit the

given curve more closely, in the neighborhood of the point P,

than does any other circle. This circle is called the osculating

circle, or the circle of curvature, at the point P ;
its center G

is called the center of curvature, and its radius CP is called

the radius of curvature, at the point P.
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The radius of curvature may thus be taken as a measure of

the flatness or sharpness of the curve
;
the smaller the radius

of curvature, the sharper the curve.

The length of the radius of curvature, R, at any point P is

most readily found as follows : In the triangle PC'Q, we have

C'P/PQ= sin Q/sin A<, where A< is the angle between the

normals (or between the tangents) at P and Q. Therefore

#= lim C"P= lim (chord PQ/sin A<) sin Q-, or, replacing

the chord by the arc As, and sin A< by A<, and noticing that

Q is approaching 90, so that lim sin <?
= !, we have

B= lim (As/A</>), or,

&=
^>'

This important formula is readily recalled to mind from the

figure, if one thinks of the arc As as approximately a circular

arc.

To express E in terms of x and y, we have only to remember that

ds= V(dx)*-\- (dyj*= ^/l + y'
2
dx, and tan <f>

= dy/dx= y', whence

d<p= y"dx/ (1 + i/
/a

) ; then

R (!+/)*
* ==

77

y
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Def. The curvature of a curve at a point is defined as the

rate at which the angle <j>
is changing with respect to the

length of arc s
;
that is,

d+ 1
curvature = -

T
- = ^ .

ds R
If the slope of the curve is small, the curvature is approxi-

mately equal to y".

Def. The locus of the center of curvature is called the

evolute of the curve.

The normals to the given curve are tangent to the evolute,

and the given curve may be traced by unwinding a string from

the evolute.

42. Velocity and acceleration. Consider a particle moving

along a straight line. Its distance from the origin is a func-

tion of the time :

The velocity of the particle is the rate of change of its

distance :

The velocity will be positive or negative, according as the

particle is moving forward or backward along the line.

The acceleration of the particle is the rate of change of its

velocity:

A= dv/dt= F"(t)=x".

The acceleration will be positive or negative according as

the velocity is increasing or decreasing (algebraically).

If a particle is moving along a plane curve, we must

consider the components of its motion along two fixed axes.

The components of acceleration along the x- and i/-axes

are x" and y" ;
the components of acceleration along the

tangent and normal are dv/dt and v2
/R, respectively, where

v= V#'
2 + y'

2= the path velocity, and R= the radius of

curvature.

It should be carefully noticed that dv/dt is not the whole acceleration,

but only that component of the acceleration which lies along the tangent.
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The importance of this application in problems in mechanics

is obvious.

Note. As explained in the preface of this report, these

pages are intended merely to give a resume of the working

principles of the calculus with which the student should be

perfectly familiar after having taken a course in this subject.

The main part of the work of such a course should be prob-
lems done by the students each problem being solved on the

basis of the small number of fundamental theorems here

mentioned.
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DISCUSSION.

Professor Chas. 0. Gunther: It seems to me that in this

report some mention should be made of imaginary and com-

plex quantities. A little knowledge of these quantities can,

for instance, be utilized to good advantage by applying it to

that part of the calculus known as integration. In fact, in-

tegration can be simplified to the extent of eliminating the

usual
" reduction formulae

" and rendering the use of tables

of integrals unnecessary.

As found in text-books in general, there are three cases for

which the expression

dy= cos*0 sin* 0d0 (1)

can be easily integrated. Two of these cases include frac-

tional values for h and k. All other cases in which h and U

are integers can either directly, or by means of a single

imaginary trigonometric substitution (tan0=isina, in which

a is an imaginary quantity) ,
be reduced to one or more of the

three cases just referred to.

The general binomial differential expression

dy= xm (a+ bxn)P/dx (2)

is only another form of (1) since ^a-\-bx
n can always be

represented by one of the three sides of a right triangle and

therefore expressed as a trigonometric function of one of the

acute angles of the triangle.

To make this transformation the student must know the

relation between the hypotenuse and the two sides of a right

triangle, the values of the trigonometric functions of an angle

in terms of the sides of a right triangle, and the rules for

differentiation.

Differential expressions involving trinomial surds may be

rationalized in a similar manner.

The expressions

(3)

(4)
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may be integrated with great facility if complex quantities

are employed, because eax cosbx and e
ax sinbx are the rec-

tangular components of a vector whose modulus is eax and

whose argument is ~bx. The integrals of (3) and (4) are found

from the integral of

dn
z = eC+>* (5)dxn

in which z is a complex variable of the form y + iy. The

integral of (5) is readily found to be

+ ^->+...+ClX +C , (6)

in which Cn_i, Clf , are constants of the form = + iC.

Equation (6) may be written

The integral of (3) is the real part of (7) and the integral of

(4) is the imaginary part of (7) divided by i.

Again in differential equations we find the linear equations

sj/tt

-^
+ ay=bcos nx, (8)

-^-
+ ay b sin nx, (9)

and their solutions can be obtained from the solution of the

equation

~ + az=be<**, (10)

in which z y -f- iy.

The foregoing illustrates a few of the applications of com-

plex and imaginary quantities, and includes a first treatment

of hyperbolic functions as trigonometric functions of imagi-

nary quantities.

Some little consideration should also be given to the com-

plex and imaginary branches of certain curves, as for example,
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the circle, the ellipse, and the hyperbola. It should be noted

that the equation of the circle x2 + y
2= a2

is also the equation
of an imaginary hyperbola for values of x > a and < a.

This is important, since of the three forms of binomial surds

\/a
2 x2

, V^2 + x2
, V^2 #2

>
the first is obtained from the

equation of the circle x2
-}-y

2= a2
,
and the latter two from

the equation of the hyperbola x2
y
2= a2

; but all three are

obtained from the equation of the circle if imaginary quanti-

ties are made use of.

Professor J. E. Boyd : I want to emphasize everything Pro-

fessor Gunther just said about the use of complex quantities.

We cannot derive a formula for an eccentrically loaded long

column without the use of them
;
we cannot make alternating

current calculations without them. A student might as well

learn how to use them. I endorse what he says about the use of

integral tables in teaching calculus. Our professors in calcu-

lus last year adopted a book that advised the use of tables.

This year a book of the other type was selected. We did not

use the tables any more than was absolutely necessary and

found the result satisfactory. The student does not need

tables often, except to make use of the several transformations.

Professor P. L. Emory: The average student is vastly lack-

ing in a knowledge of the use of logarithms. He also lacks

the ability to read trigonometric formulae from the triangle.

The tendency of the report is to include more material than

can be covered in an engineering course. I would be satisfied

to have a little more training in a few principles which stu-

dents must know so well that they have confidence in their

knowledge. One of the most serious difficulties that I encoun-

ter is with the constant of integration. This is largely the

fault of the text-books. I have a grievance against the text-

book writer who omits the constant in all cases, supplemented

by the remark that it should always be added. We cannot

expect the student to remember a footnote to be applied with

each operation.

Professor J. B. Webb: I am pleased to hear what Pro-

fessor Emory said about the constant of integration and his

9
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explanation of the difficulty, but I think the trouble is more

in the teaching than in the text-books. In reading Mr. F. "W.

Taylor's book on his system, I was interested in one of the

illustrations which he uses. He takes the case of loading cars

with pig iron, where, by the application of his system he

about tripled the amount that a man could do in a day, and at

the same time enabled the man to earn more money. One of

the first things he did was to examine the men that were in the

gang, and he found that but one man in eight was suitable

for this work. He used only those who were fitted for it. We
have about the same proportion, perhaps, of the unfit in our

classes, and the ones fitted for engineering could do three

times the work and do it better if our classes were conducted

on the Taylor system.

I have had some interesting experiences with the complex
variable. Having studied the subject in Germany in 1878-

1880, on my return to this country I tried to teach its use.

Objections were made by those not acquainted with the sub-

ject, that it was too advanced and of little practical use, so

that it proved to be harder to convince the average American

teacher of its importance than to arouse the interest of intelli-

gent students. Some of the professors were convinced, but

that was where the trouble lay. If a student was conditioned

because he did not get through with his mathematics, some

said I taught
' '

over his head ' ' and gradually the standard

would be forced down. The trouble with the present schools

is that they want too many students and are going to hold

all they have and get more if they can. They do not call out

the seven and keep the one. After Dr. Steinmetz, a layman,

produced his book on the treatment of alternating currents,

using complex variables, there was less objection made to

them. Now I say it is a disgrace that it should be necessary

for a layman to show professional teachers that a certain part

of mathematics is needed. What we should do is to eliminate

the students who are not capable of profiting by what we know

should be taught, and then hold the others to a high standard.

We expect too much of the student who takes calculus. Of
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a semester in calculus at least one-half is spent in reviewing

previous mathematics. A course in calculus is an excellent

review of geometry, algebra and especially of trigonometry,
and at its close we should not expect the average student to

know much more about it than he did about trigonometry at

the start.

This committee was appointed to see what was the matter

with the teaching of mathematics. They imply that good text-

books are lacking. I cannot agree with this and would rather

have one of the old-fashioned text-books than those outlined

in their report. If they intend to give simply a list of subjects

that students should be drilled in, well and good; but if the

report intends to prescribe the methods of thought and of

logical deduction, to be used in those subjects, then I think it

is all wrong.

Professor Magruder: The introduction to the report states

clearly the purpose of the syllabus.

Professor W. J. Risley: The suggestions that have been

made here this afternoon are very good. I am in favor of a

section on imaginary quantities. When I approached some of

the Harvard professors of engineering subjects I found that

they wanted their students to perform vector addition analyt-

ically. They said that the teachers of mathematics were

teaching a lot of things of which little or no use was made
later. To a great extent Professor Webb was right in stating

that he had to teach the professors of engineering what they

ought to teach, in order that they might understand some of

the mathematics which he attempted to send to them. On the

other hand, sometimes the professors of engineering have to

teach the professors of mathematics some things that they

don't know that their students ought to know. Neither set is

to be criticized too severely unless they are unwilling to learn

when the right way is pointed out.

Principal Arthur L. Williston: I was very much inter-

ested in what Professor Webb said a moment ago, referring

to Mr. Taylor's work and his method of culling out one man
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of the eight who was especially adapted for a particular kind

of work, using him intensively on that kind of work, and find-

ing tasks for which the other seven are fitted. That idea is

really at the bottom of all of our difficulty in this discussion

of teaching mathematics to engineers, which we have had

almost since we began trying to teach engineers. As there are

few men of the naturally analytical kind that Professor Webb
describes it does not make much difference what sort of

methods we use with them. As a matter of fact a very small

proportion of the men who form the body of eminent engi-

neers have that type of mind. "We all know the sort of fellow

who thrives on complex quantities. And I am sure the

majority of those here will bear me out in my statement that

a very small proportion of the successful, eminent engineers

of this country are of that kind. The ideal plan would be to

separate those fellows from the mass and give them a course

in real mathematics. They would like it and it would be a

pleasure to the instructors to teach them. But let us take the

other group. For the most part, the man who is going to be a

successful engineer in industrial work is a practical, concrete

man. He does not handle imaginary, complex, abstract quan-

tities easily. And yet that is the very type of mind that the

world wants in its important industrial activities. Those fel-

lows, who, by the way, constitute the great majority, want

mathematics not as an analytical light but simply as a neces-

sary evil, if you please, as a tool that they must use. If in

our talking and our thinking we could learn to talk of mathe-

matics as two subjects, one thing for the first type, another

for the second, it would simplify all our discussion. It is

absolutely futile to attempt to teach the first kind of mathe-

matics to three out of four young men who will be good engi-

neers whether the colleges turn them out as fitted to be engi-

neers or not. They are going to be engineers. As I under-

stand it, the work of this committee has been to some extent

a movement toward trying to get the teaching of mathematics

for engineers differentiated from the teaching of pure mathe-

matics. I am sorry that the difference is not more marked.
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Professor E. R. Maurer: I prefer to hear a teacher of

mathematics discuss this syllabus, because he can see it in the

light of his experience in teaching the subject. To be sure,

others have good ideas as to what knowledge and training

engineers ought to have in mathematics, but they fail to ap-

preciate the difficulties of teaching the subject. So, between

two criticisms, one offered by teachers of mathematics and the

other by teachers who have never taught mathematics, I place

more confidence in the former. In estimating the value of

mathematical instruction we are apt to forget that, in many
schools, particularly the large ones, more or less inexperienced

men are employed as instructors in the departments of mathe-

matics. The results suffer on that account. In addition there

is the poor quality of the working material. I try to be chari-

table when I judge the students that come to me from the de-

partment of mathematics on those two accounts. Many of the

boys have had their training at the hands of inexperienced
men and many have very little mathematical talent. I think

the syllabus is good as a list of topics with which all engineer-

ing students ought to be familiar. I agree with Professor

Webb in that we ought not to set this up as a subject matter

for all teachers of mathematics to use and not depart from it

in any particular. The teacher of mathematics, or of any sub-

ject in an engineering school ought to understand his subjects

well enough to get up his own syllabus, if necessary.

The President: An informal committee of instructors in

the University of Illinois, formed of a dozen men representing

the department of mathematics, mechanics, civil engineering,

electrical engineering and mechanical engineering, made a

careful study of the report of the Mathematics Committee to

see whether the syllabi covered the ground which these pro-

fessors thought should be covered in class. In general I may
say that they approve almost wholly of the contents and in

general of the matters of emphasis as to what part should be

well understood, what other, only partly known. With your

permission I shall include this report in the discussion.

The committee of University of Illinois instructors selected
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to discuss the preliminary report of the Committee on the

Teaching of Mathematics to Students of Engineering submit

the following recommendations:

Since the syllabi are meant to embody the minimum equip-

ment in mathematics of a good engineer, they have been dis-

cussed from that point of view. But it is the opinion of the

committee that much could be gained by publishing a list of

topics that should be included in the courses discussed, and

emphasizing by a star those which are
' '

so essential that every

engineering student should have them so firmly fixed in his

memory that he will never need to look them up in a book."

The discussions of the committee were confined to the syllabi

which are printed in the Proceedings, i. e., Algebra, Trigo-

nometry, Analytic Geometry, and Calculus. Section numbers

refer to the sections as published in the syllabus.

Algebra,.

1. Under factoring some mention should be made of the

important cases of collecting coefficients, and of quadratic
trinomials.

2. Important principles and rules should be given in trans-

lated word form as well as in symbolic form (as is done once on

page 8 and in the differentiation rules in the calculus syl-

labus). Students often fail to get the full meaning of sym-
bolic forms. The operations with fractions and the definitions

and laws of exponents especially need statement in word form.

3. If algebra follows trigonometry, the three forms for

imaginaries should be included.

4. The notions equality, identity and equation should be

carefully differentiated.

5. The principles of equivalent equations should be in-

cluded, for a student should know what operations introduce

or take out roots.

6. More emphasis is needed on the "completing the square"

process, for it is often needed later in integration and analytics

when no solution is required.

7. Harmonic progression should be omitted.
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Trigonometry.

1. The committee agrees that the syllabus is satisfactory

and probably is complete enough for the average engineer.

Some members expressed a desire for the memorization of

more formulas as particularly useful to electric engineers.

2. Some members desired greater stress on the visible hand-

ling of formulae. By visible is meant graphical so far as the

expression of relationship and formulae can be. For ex-

ample the student should not so much remember the six fun-

damental definitions as formulas as he should remember the

denning triangle and its ratios. The same idea should be

carried throughout.

Analytic Geometry.

1. The syllabus states in the introduction, "This syllabus

is confined mainly to the conic sections; but a satisfactory

course in analytic geometry should include also the study of

many other curves." This committee believes that the syl-

labus would be improved by including the most important of

these "many other curves" including the so-called engineer-

ing curves.

2. The equation of a straight line passing through two given

points should be included.

3. The equation of a straight line should be written in such

a form and taught in such a manner that all constants of the

line are readily determined.

4. The method of treating the conic sections in the syllabus

is commended. For obtaining a proper facility in handling

the practical applications of these curves, it is desirable to

study each form separately even at the expense of the addi-

tional time that is required when this method is employed.

The properties of these curves as given are amply sufficient.

5. The geometrical construction of the conies should be in-

cluded and given more than a mere reference.

6. In the transformation of coordinates the method rather

than the equations should be remembered.

7. The subject matter in articles 46-54 is not that which a
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student should remember, but belongs to that class of things

which can easily be referred to when required.

8. Much greater emphasis should be placed upon work in

polar coordinates.

9. It is desirable for the student to be familiar with cylin-

drical coordinates and the committee commends the inclusion

of these coordinates in the syllabus.

10. Great stress should be laid upon representation with

space coordinates. Any single equation in space coordinates

represents some surface. If the equation is in three variables

the surface may be any form, if in two variables the surface is

a cylinder, if in one variable the surface is a plane or a system
of planes parallel to one of the coordinate planes. Great

emphasis should be placed upon the fact that it requires a

pair of simultaneous equations to determine a line in space.

11. Article 71 should be omitted from the syllabus, though
included in a course in Analytic Geometry.

12. In the first sentence of the second paragraph of the

introduction the phrase "a course should consist chiefly of

problems'* should be changed to read "a large number of

problems should supplement the treatment of general prin-

ciples.
' '

Calculus.

The committee reports very favorably on the syllabus for

the first part of calculus. A subcommittee drew up a synop-
sis of a course in calculus before reading the syllabus as

printed in the Bulletin. The two did not differ in many
essential details. The main question that came up was whether

a topic was included under "
those facts and methods which

every student should have so firmly fixed in his memory that

he will never need to look them up in a book,
' '

or simply under

"those topics included in an elementary course in calculus.
"

These two classes are referred to below as first and second

classes. The specific changes suggested in the syllabus are as

follows :

1. Section 5. Hyperbolic functions should be included in

the second of the above classes. Mnemonic rules for changing
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a trigonometric formula to the corresponding formula in

hyperbolic functions should be included.

2. Use arc sin x, arc cos x, etc., instead of sin"1 x, cos'1
,
etc.

3. Section 21 (Formal work in integration). Tables of

integrals should not be used until the student has had con-

siderable practice in formal integration.

4. Include in section 22, integration by separation into

partial fractions.

5. Much practice in differentiation and integration with

respect to variables represented by symbols other than x, y, z

should be given.

6. In connection with differential equations (Sections 24,

25, 26) use d?y/dx
2 instead of dy'/dx.

7. Include linear differential equations of first order in con-

nection with sections 25, 26.

8. Include sections 15 (Theorems on infinitesimals), 22

(Integration formulas), 35 (Theorem of Duhamel), 38 (Sub-

tangents, subnormals, etc.), 41 (Curvature), in the second of

the above classes.

9. Include angular velocity and acceleration in section 42.

10. We particularly commend sections 7, 12 (note) and 14.

Professor A. M. Buck: A good many people, and espe-

cially some who are mathematicians, forget that with the engi-

neering student mathematics is a subject that is taken not for

its own sake, but in order that problems can be solved after-

wards. If we take the view-point of the students we find that

they appreciate this point better than their teachers do. Stu-

dents have told me that they could not get along in mathe-

matics because they did not know what use they were going to

make of it. Had it been brought to their attention that the

mathematics would have some application to their engineering

work they would have gone into it with good spirit and would

have obtained more benefit from the work. Taking it as an

abstract study they simply would not give it the necessary

time. If the teacher of mathematics will look at his subject

from an engineering view-point and see that those things

which he teaches are to be used as tools and that the better the
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student has his tools in hand the better work he can do, then

there will be an improvement in the teaching.

Professor H. R. Thayer: I am going to state my opinion
from the view-point of the engineer. I have spent more time

outside in practice than I have in teaching. All of the latter

has been along the line of structural design, where I have

been using the work of the mathematical department. In the

first place, in my experience as a student, mathematics came

fairly easy to me. I found that when an examination was

imminent, I could cram up for it the night before and forget

it afterwards. That is about what nineteen out of twenty
students will do. Complicated notation tends to discourage
the student from getting what is extremely important to get,

namely, fundamental principles. I find that students know
their mathematics fairly well but they don't know how to

apply it. This, it seems to me, is far more important for them
to learn than such extremely complicated mathematical prob-

lems as are often given them. In actual engineering experi-

ence the applications of any but these fundamental formulae

are few and far apart. In the very infrequent cases where

the more complicated formulae are used it is only necessary to

refer to tables in the text-books, as the majority of successful

engineers do today. In my opinion, the ideal engineer need

not have an extremely mathematical training. In running a

railroad, it is far less important to get the line exactly curved

and mathematically accurate, than it is to run it where it will

cut least into expenses, which is the main point involved.

Imaginary quantities do not teach this. The student must be

taught to use efficiency engineering in handling his mathe-

matics. If this can be taught well, we shall have better engi-

neering students than if we attempt to teach them to handle

their problems by imaginary complex quantities.

Professor G. H. Morse: A previous speaker has referred

to alternating currents and to lack of familiarity with the

mathematics needed for this subject. I wish to emphasize the

absolute necessity for a certain amount of study of complex

quantities in this connection. I recently made a tour of a
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number of western institutions Illinois, Purdue, Armour

Institute, and Wisconsin with the object of discovering how
the professors were teaching electrical engineering. At Illi-

nois I found Professor Berg, who spent a great many years at

the General Electric works developing their many products.
I learned that he has given up entirely all methods of teaching

alternating currents except that involving the use of complex
quantities illustrated by graphics, of course. He insists upon
this method, both for himself and his assistants. The so-called

trigonometrical methods have no standing with him whatever.

At Purdue I found Professor Harding, and his attitude, while

not as radical as that of Professor Berg, was very similar.

In my own case I find that the use of complex quantities in

teaching alternating currents is wonderfully elucidating in

certain parts of the subject.

Some years ago I had the notion that there was mathematics

for engineers to use, the kind that is a necessary evil, and that

there was mathematics for mathematicians, in which they had

great pleasure in soaring, and which they jealously guarded
from use, preferring not to have any practical applications
made of it. Since I have been associated with the mathe-

maticians at the University of Nebraska my ideas have entirely

changed. I now find that every stage of these flights in pure
mathematics is a "

short cut." The higher the flight the

shorter and more useful the cut. If only the engineers can

appreciate these flights their work will be greatly simplified.

Professor S. B. Charters, Jr.: I wish to emphasize the

fact that we are dealing in engineering with two totally differ-

ent classes of students. In every group, in the proportion of

about one to fifteen or twenty, there is one engineer. Such a

man should have and will take and enjoy the fullest mathe-

matical training. On the other hand, the comparatively larger

number are not engineers at all. They are simply men who
are getting a certain amount of engineering training; and

these men fill the bulk of the positions. From the colleges of

the west a great many must go out into practical work as

mining superintendents, superintendents of construction in
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the installation of plants, etc. Now that class of work absorbs

the bulk of our men, and these have no use for higher mathe-

matics whatever. It might be a help to them and it might not.

Among those graduates whom I have observed, the ones who
have had the best success have not been great mathematicians.

The highest paid man we have among our alumni today, is one

who could not pass any mathematical examination, I am

reasonably certain. We have a few men who graduate every

year who should be given higher mathematics. We have a

feeling that, if it were possible, engineering should be divided

into two courses; the longer course of, say, five or six years,

with adequate mathematical training, for the man who shows

special aptitude on those lines. Those men should be the

leaders in the designing branch of the profession. A second

class of men need not have the higher mathematics, but should

have the proper training in handling men. These must do the

bulk of the work. We need a certain number of men to do the

designing and hand down formulae which these other men can

follow. We need more men to take those mathematical

formulae and from them get the results. That was illustrated

to me by a friend who stated that in the American Bell Tele-

phone Company there is one man who does the principal

mathematical work for the system. In each division they have

mathematicians to interpret this work to the rank and file.

Probably twenty-five or thirty experts do the mathematical

work for this large company and the rest of it is done by the

engineers who need have only the ordinary mathematical

training.

Professor H. S. Jacoby: Allow me to call attention to the

fact that this report deals with minimum requirements, and

that we should express our appreciation of the splendid work

done by the committee. The report may not be perfect in

every part, but it will be worth a great deal to have it adopted,

printed and made available to the teachers whose work is

affected by it. It may be made a starting point for definite

recommendations
; changes may be made later as the necessity

for them appears. If in any institution the mathematical
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courses are of such a character as to require enlargements to

conform to the recommendations, it is very likely that they

will be modified in time. The report ought not to be a hin-

drance to any teacher of mathematics, or to any course of

study which is now more extensive in its scope.

Professor Webb: It occurs to me that there is something
else that can be said about the cause of the trouble between

engineers and mathematicians. An engineer very often has

a problem that he does not see through. He has a general

idea that mathematics is a powerful instrument, which needs

a mathematician to solve the problem; and he thinks that if

he knew a little more mathematics he could solve it himself.

As a matter of fact, the problem may be very simple as to its

mathematics, and it may be only that he does not see through
its practical or engineering side. A school teacher came to

me with a problem a few days ago and said she had given it

to different people to solve, and some advocated one solution

and some another. One said that its solution needed calculus
;

I thought it could be solved quite simply, but she thought not.

This was a problem of the so-called practical variety. A barn

forty feet square has a horse tethered to one corner of it by a

rope one hundred feet long. How much grass can the horse

graze over without going over the same grass twice ? The solu-

tion of this is very simple, but one should not expect mathe-

matics to solve it before the problem has been thoroughly

analyzed. Problems of this nature are constantly met with in

engineering work. Very little mathematics may be needed

after they are properly analyzed, but if this calls for more
common engineering sense and ingenuity than the engineer

has, one must not expect the average mathematician, much less

the recruit graduate, to make good the deficiency.



SYLLABUS ON COMPLEX QUANTITIES.*

BY CHAS. O. GUNTHEE,

Professor of Mathematics, Stevens Institute of Technology.

1. Derivation of formulas :

e*6= cos + i sin 0, er^= CosO i sin 0,

cos0= ^ , tsin0= ^ .

2. Definition and graphical representation of a complex
quantity. Polar trigonometric and polar exponential equiva-
lents ofz= x+ iy, that is,

z=p(cos0 -\-isinO), polar trigonometric;
z= pe

i
o, polar exponential;

in which p=^/xz
-\- y

2
is the modulus (the positive sign being

always associated with it) ;
and 0, given by the relation

ta,nO= y/x, is the argument of z. Any multiple of 2* may
be added to the argument without altering the complex

quantity.

3. Graphical addition, subtraction, multiplication and divi-

sion of complex quantities. Graphical solution of the equa-

tion xn 1= 0. Logarithms of complex quantities.

APPLICATIONS TO INTEGRATION.

4. The expression

in which p and r are positive integers or zero, is by the substi-

* This syllabus was prepared as an appendix to the report of the

Committee on the Teaching of Mathematics to Engineering Students at

the request of the members of the Society present at the Pittsburgh

meeting.

134
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tution tan 0=i sin a (a being an imaginary quantity) trans-

formed into

dy= i( 1 )
v sin2? a cos2r ada.

This latter expression can be integrated by doubling a as many
times as necessary.

The foregoing includes the integration of the expression

dy= cot2* $ csc2r+1 6dO,

since the latter expression may be written

As found in text-books, the integration of the expression

(I)

is readily accomplished in three cases, namely :

(a) When either h or k is an odd positive integer.

( b ) When h + k is an even negative integer.

(c) When both h and k are even positive integers, or zero.

The first two of these cases include fractional values for

h and k.

By means of the substitution given above, all the other cases

in which K and k are integers can be brought under one or

more of the three cases just mentioned.

In the above are also included all the cases for which the

general binomial differential expression

dy= xm (a

can be integrated without resorting to infinite series. This

expression is only another form of (1), since Va+ bx" can

always be represented by one of the three sides of a right

triangle and therefore expressed as a trigonometric function

of one of the acute angles of the triangle.

In determining the value of a definite integral, if the

variable is changed the limits should be changed to correspond.

For example, in finding the length of the arc of the parabola,
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j/
2 == 4az, from the vertex to the point (a, 2a), we have

0=1

sec
3 0d0

___=o

sin a=l /t sin =1

cos
2 a da == ai I (1 +

. _in a=0 Ji sin a=0

]t

sin o=l

=
[log. (1/2 + 1) + 1/2].

t sin =

Further applications of complex quantities to integration

will be found in the author's discussion on p. 119.
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