
11
$* 9336 \cdot 2675440$

UNITED STATES TARIFF COMMISSION

WASHINGTON

Tariff Information Series-No. 22

CENSUS OF DYES AND COAL-TAR CHEMICALS

1919

UNITED STATES TARIFF COMMISSION

 WASHINGTONTariff Information Series-No. 22

CENSUS OF DYES AND COAL-TAR CHEMICALS

1919

$$
\begin{aligned}
& * 9=26 \cdot \lambda 62-A \psi \\
& \text { Nos. } 22-32
\end{aligned}
$$

UNITE STATES TARIFF COMMISSION.

Office: 132日 New York Avenue, Washington, D. C.
COMMISSIONERS.
Thomas Walker Page, Chairman.
David J. Lewis.
William S. Culbertson. Edward P. Costigan.

John F. Bethune, Secretary.

ADDITIONAL COPIES
ON THIS PUBLICATION MAY BE PROCURED FROM
TIE SUPERINTENDENT OF DOCUMENTS
GOVERNMENT PRINTING OFFICE
WASHINGTON, D. C.
AT
20) (ENTS PTR COTY

LETTER OF TRANSMITTAL.

United States Tapiff Commission; Washington, December C, 19.2.

To the President:
The Tariff Commission transmits herewith a report showing the results of the census of production of dyes and related coal-tar chemicals for the year 1919. This census is taken in conformity with your letter of October $2 \overline{6}, 191 \overline{7}$, recuesting the Tariff Commission to secure the information on the relation between the domestic production and the imports of dyes and other coal-tar chemicals, required by section 501 of the act of September $8,1916$.

Very respectfully,

> Thomas Walieer Page, r'hairman. Daid J. Lewls. Willine S. Cubertson. Edward P. Costigin.

Tine President,
The White House, Wushington.

$$
\begin{gathered}
* 9326.2-2 A H \\
\text { Nos. } 22-22 .
\end{gathered}
$$

UNITED STATES TARIFF COMMISSION.

Office: 18:2 New York Arenur, Washington, D. C.
COMMISSIONERS.
Thomas Walker Page, Chairman.
David J. Lewis.
William S. Culbertson.
Edward P. Costigan.

John F. Bethune, secretary.

ADDITIONAL COPIES

20 CENTS PER COPY

LETTER OF TRANSMITTAL.

United States Tariff Commishoa;
 Washington, December 0, 1920 .

To the President:
The Tariff Commission transmits herewith a report showing the results of the census of production of dyes and related coal-tar chemicals for the year 1919. This census is taken in conformity with your letter of October $2 \bar{i}, 1917$, requesting the Tariff Commission to secure the information on the relation between the domestic production and the imports of dyes and other coal-tar chemicals, required by section 501 of the act of September $8,1916$.

Tery respectfully,

Thomas Whleer Page, C'hairman. Datid J. Lemis.
William S. Culbertson. Edward P. Costigan.

Tiie President,
The White House, Washington.

INTRODUCTION.

This report is a survey of the domestic dye and coal-tar chemical industry in 1919, and presents the results of a special investigation made by the United States Tariff Commission. The report is divided into four parts, as follows:

Part I, a summary of the developments in the coal-tar chemical industry, 1912, describes the progress made in the various branches of the American industry. The relation of export trade to the industry is briefly shown.

Pamt II, a census of dyes and coal-tar chemicals, 1919, gives a detailed discussion of the significant facts in the production of crude, intermediate, and finished coal-tar products during 1919. Dyes are classified by their methods of application, and imports in 1914 are compared with production in 1917, 1918, and 1919. The number of employees, rates of pay, and cost of research in the coal-tar chemical industry are shown.

Part III, a census of dyes imported into the United States from July 1, 1919, to June 30, 1920, shows the quantity and value of imports of individual dyes.

Part IV, an appendix, gives the imports and exports of coal-tar dyes and chemicals and of natural dyes since 1917. A list of manufacturers whose proluction luring 1919 was reported to the Tariff Commission is also shown.

In the preparation of this report the Tariff Commission has had the services of A. R. Willis, Warren N. Watson, C. R. De Long, and (irimell Jones, of the chemical division, and others of the commission's staff.

CONTENTS.

Page.
Letter of transmittal 3
Introduction 5
Pakt I.
Summary of the developments in the conl-tar elfemical industry, 1919 : Introductory 9
Important devalomments in the rlomestic industry-
Crudes 10
Intermediates 11
Dyes 12
Export trade in dyes 13
Paet II.
Census of dyes and coal-tar chemicals, 1919:
Crudes-
Introduciory 15
Shortage of naphthalene 17
The anthracene situation 17
Intermediates-
Introduc.ory 18
Intermediates nsed for military purposes 19
Intermetiates consmmed in large quantity 20
Tolnene derivatives 20
Intermediates derived from antinacene 20
Intermediates mead in dyeing and printing 20
Dyes and other tinished products-
Introolace ory 3:
Dyes 4 4)
Other finished coal-tar products 50(folor lakns, photosraphic whemicals, medicinals, flavors,perfume materials, synthetic resins, synthetic tanmingmaterials.)
Employeres and rates of pay 5
Research work 54
Notes on the dye industry of other eomotriss 55
Palst IIf.
Census of dyes imported into the Cnited states from July 1, 1919, to June 30, 1920 59
Part IV:
Appendix:
Statistics of imports and exports-1917-June $30,19 \div 0$ St
Directory of mamufacturers of conl-ta! products, 1919 9.4

Part I.--SUMMiARY of THE developraents in The COAL-TAR CHEMICAL INDUSTRY DURING 1919.

INTLODUCRORI.

The Tariff Commission, in several earlier reports, ${ }^{1}$ has described the importance of a well-developed dye industry to the industrial system of the country. These reports have also shown in detail the progress of the American industry during 1917 and 1918. The commission has also presented information relating to the cost of production of certain important intermediates and dyes. The commission ${ }^{2}$ has analyzed the existing tariff law on dyes and related chemicals of coal-tar origin and on the raw materials from which these products are obtained and has made suggestions for such a redrafting of this law as would give effect to the intent of Congress in passing the act of September 8, 1916. The present report is, therefore, confined to a discussion of the progress which has been made in the American industry during the calendar year 1919. This report also presents the available information on the condition of the dye industries of Germany, England, Switzerland, France, and Japan.

The account of the progress of the industry, as given in the following pages, is based upon detail reports from 214 manufacturers, and, it is believed, that the canvas includes every manufacturer of dyes and other coal-tar chemicals in the United States. The investigation was carried out in conformity with a request of the President to secure information necessary to administer section 501 of the act of September 8, 1916. The production reports of individual manufacturers were collected by the Burean of Census and transmitted to the Tariff Commission for tabulation and interpretation.

In the tariff act of September 8, 1916, the coal-tar chemicals are divided into three groups, which conform in general (although not in crery detail) with commercial practice. (iroup T. the crudes, exempt from duty, which are contained in and separated from crude coal tar; Group II, intermediates, dutiable at 15 per cent and $2 \frac{1}{2}$

[^0]cents per pound, which are produced from the crudes by chemical processes, and which, with some exceptions, are used only for the manufacture of dyes or other finished products by further chemical treatment; (Group III, dyes and other finished products, now dutiable in part at 30 per cent and in part at 30 per cent and 5 cents per pound. This grouping is adhered to in the following discussion of the industry.

MPORTANT DEVELOPMENTS IN THE DOAESTIC INHUSTRY.
The derelopment in the production of coal-tar chemicals in this country during 1919 is shown by comparing the production of that year with the production during 1918.

TABLE 1.-Summary of lhe production of coal-tar chemiruh, I! 18 and 1919.

	1918			1919		
	Number of manu-facturers.	Quantity.	Talue.	Number of manu-facturers.	Quantity.	Value.
	35 128	Pounds. $357,662,251$ $76,802,959$	$822,474,075$ $124,382,822$ $83,815,746$	$\begin{array}{r}24 \\ 116 \\ 105 \\ \hline\end{array}$	Pounds. $\mathbf{1 7 7} 362,426$ $82,532,390$	$\begin{array}{r}\$ 17,657,750 \\ 63,210,079 \\ 84,585,544 \\ \hline\end{array}$
Dyes: Dutiable at 30 per cent plus 5 cents per pound. Dutiable at 30 per cent.....		$53,825,677$ $4,638,769$	$\begin{array}{r} 58,255,391 \\ 3,770,991 \end{array}$		$52,310,482$ $11,091,712$	$\begin{array}{r} 59,950,522 \\ 7.648 .333 \end{array}$
Total of dyes.	78	$55,464,446$	62,02t, 390	90	$63,402,194$	67, 599, 855
Color lakes, dutiable at 30 per cent plus 5 cents per pound. .	29	9,590,537	5,020,023	34	7,569,921	4,179,964
Photographic chemicals, dutiable at 30 fer cent plus 5 cents per pound.	6	316,749	823,915	10	335, 509	1,059,340
Medicinals, dutiable at 30 per cent.	31	3,623,352	7,792,984	31	6, 777,988	7, 883,071
Flavors, dutiable at 30 per cent.	7	458, 256	4, 425,627	9	610,825	1,318,654
Synthetje phenolic resins, dutiable at 30 per cent plus 5 cents per pound.	5 1	4,233,356	2,642,120		$\} 3,794,534$	2,381,358
Tanning materials (synthetic).. Pcrfume materials................	6	116,263	504,695	6	41,419	164,302

1 Production of coal-tar distillers does not include production of crudes at by-roduct coke ovens, which was reported to TVnited States Geological Survey.

Crudes.-One of the outstanding developments during 1919 which is of significance in considering the future of the coal-tar chemical industry is the increase of 17.2 per cent in the productive capacity of be-prodnct coke orens in the United States. The production of coke in by-product ovens was 56.2 per cent of the total production, and thus for the first time exceeded the output of the wastefnl heehive orens. There is no question that, with the possible exception of authracene, adequate supplies of fundamental raw materials are now available from domestic sources for the future growth
and expansion of the coal-tar chemical industry in the United States. In 1919 considerable progress was made as to supplies of anthracene. the output of this important material being about three times the production of 1918. Moreover, a larger proportion of it was refined. Although this shows encouraging progress, a much greater increase in output must be secured before there will be a sufficient supply of anthracene for alizarin and vat dyes. It may be roughly estimated that the 1919 production contained about one-fifth the amount of pure anthracene required for American needs. The difficulty in securing adequate supplies of anthracene is the most important and fundamental problem awaiting solution in the dre industry. Important work is under way which points to the solution of this problem in the near future. When a sufficient supply of anthracene is secured an adequate production of alizarin and rat dyes will soon follow.

The value of the crudes produced during 1919. as shown in Table 1, does not represent the total production in the United States, as those crudes produced at by-product coke ovens were reported to the United States Geological Surrey and are not arailable at the present time. Complete information is therefore not at hand for an accurate analysis of the production of these raw materials in the United States during 1919.

Intermertiutes.- From Table 1, it is apparent that the total production of intermediates decreased from 357.662.251 pounds in 1918 to 177.362 .426 pounds in 1919. This falling off was due to decreases in the output of certain intermediates which were used during 1918 in the manufacture of explosives and poison gases, or which were made during 1918 with the expectation of future military demands. The signing of the armistice left on hand large stocks of these intermediates and during 1919 they were diverted to the manufacture of dyes or other finished products. The most conspicuons example of this kind is phenol, which decreased from 106, 794,277 pounds in 1918 to abont $1,543.659$ pounds in 1919. It the signing of the armistice about $35,000,000$ pounds of phenol were on hand awaiting conversion into explosives. Other similar cases include benzene sulphonic acid. monochlorobenzene, dinitrotoluene, diphenylamine. nitronaphthalene, and dimethylaniline, all of which were used in substantial amounts in making military explosives as well as in dye making. If these intermediates are eliminated from consideration, those remaining show a gain of over 10 per cent in production in 1919 as compared with 1918. However, this gain in gross output does not measure the progress of this branch of the industry. Of much greater importance was the appearance of about 76 intermediates that were not made during 1918, and many substantial increases in the amount
produced of certain intermediates which are comparatively difficult to make, but which are needed for dyes of high quality.

Dyes.-During 1919 the total ontput of dyes was $63,402,194$ pounds, valued at $\$ 67,598,855$, an increase of about 8 per cent in quantity as compared with 1918. The production in 1919 exceeded by 38 per cent in quantity the imports during the fiscal year 1914. The increase in total output by no means measures the whole improvement in the situation. An analysis of the figures for 1919 shows many instances of substantial decrease in those dyes which are relatively easy to make and also of those needed in large amounts during 1918 for Army and Nary uniforms. Decreased output of these particular dyes has been more than offset by the increased output of dyes of better quality, many of which were made for the first time in the United States during 1919.

The domestic industry has been especially successful in the production of those colors for which there exists a large and constant demand. Sulphur black, which is consumed in the United States in larger amounts than any other color, was produced to the extent of $14,504,5 \pi 0$ pounds by 13 manufacturers. Some of the American brands are superior in quality to the best products imported from Eermany before the war. Another notable achievement was the production during 1919 of indigo in amounts exceeding our prewar import. This dye, which ranks second in consumption by the United States, ranks first in world consumption on account of its large use in China.

As has been pointed out in earlier reports of the commission, during 1915 and 1916 the new American dye industry naturally sought the line of least resistance by making the dyes which were easiest to make, and the consumers used whatever dyes they could get instead of the varieties they preferred. As a result there were many cases of enforced substitutions of both German dyes (arailable from stocks) and American dyes. This substitution in early years of the war materially damaged the reputation of American dyes. During the succeeding years there has been a steady and progressive improvement in the situation. Athough consumers were better supplied with the particular dyes they desired in 1919 than they were in 1918, there were still needed certain types of dyes which could not be supplied from American sources in the quantity desired. Thus in 1919 there was an insufficient domestic output of vat dyes which, on account of their extreme fastness and beanty of shade, are important for cotton shirtings, ginghams, and calicos. Considerable progress has been made, however, toward supplying these much-needed colors. There is also a demand for many individual dyes of other classes which are not yet available at all or only in inaderquate amounts.

This is particularly true of alizarin derivatives and of certain other specialties.

Export trade in dyes.-The domestic production of certain dyes has developed to a point beyond the quantity necessary for domestic consumption, and a large surplus has been available for export to foreign markets. particularly Japan and China. During the calendar year 1919 the United States exported "dyes and dyestufis" to the value of $\$ 17.084,435$, of which $\$ 10.524 .071$ represented aniline dyes, $\$ 1,355,936$ logwood extract. and $\$ 0.004,428$ other dyes. For the nine months ending September 30, 1920, the domestic exports of dyes and dyestuffs amounted to $\$ 26.02 .2309$ of which $\$ 17.038 .235$ was aniline dyes, $\$ 2.321,090$ was logwood extracts, and $\$ 0,673.064$ was other dyes. This sum for the nine months of 1920 is more than double the exports during the same period in 1919 and also exceeds the value of total imports during the fiscal year 1911. The actual quantity exported, however, is smaller than the prewar import, and the increase in value is due to a higher value per pound. During 1919 and 1920 (nine months) Japan and China took about one-third of our total exports of dyes.

In estimating the significance of this achievement of the domestic industry in the exportation of dyes it should be remembered that domestic manufacturers during 1919 and 1920 have met little competition in foreign markets from German dyes. It should also be pointed out that any deductions as to the competitive strength of the domestic industry which are lased on exports of dyes do not take into consideration the fact that the domestic industry is still deficient in the important groap of vat and alizarin dyes.

The coal-tar dyes exported include sulphur dyes, chieily blacks and browns; direct cotton dyes, chiefly blacks. greens, blues, and reds; indigo (synthetic) : acid dyes, chiefly scarlets and oranges: and basic dyes, chiefly malachite green, methyl violet, and magenta. The export tade in dyes is an important factor in producing dyes at a low cost to the domestic consumer. Germany, in order to minimize her costs of production. made every effort to develop and dominate foreign markets.

Part II.-CENSUS OF DYES AND COAL-TAR CHEMICALS, 1919.

CRUDEs.

Introductory.-The production of coal-tar crudes by distillers of coal tar, crude light oils and drip and holder oils is shown in Table 2. Those firms engaged primarily in the operation of coke ovens and gas houses, and operating distilleries for the production of crudes, reported their ontput to the Geological Survey. Cnfortunately the production of crudes ly these firms has not yet been tabulated, and complete figures on the production of coal-tar crules during 1919 are therefore not arailable. It should be remembered that the figures for individual commoditics in Table 2 represent only a part (in some cases a small fraction) of the total quantity of crudes arailable to the dye industry in 1919. These figures must be considered in connection with those for crudes at by-product coke orens and gas honses, to be published at a later date by the Conited States (reological survey.

There are, howerer, arailable facts showing that there exists, so far as crude materials are concerned (anthracene excepted), an adequate supply for the future growth and development of the coaltar chemical industry in the United States. For eximple, the Geological Surrey has reported that the productive capacity of the byproduct coke ovens during 1919 increased 16.2 per cent over that of 1918. During the war the military demand for the by-products of coal distillation. especially toluene and ammonia, caused the War Industries Board and the War Department to aid in the crection of by-product coke orens. The completion of many of these ovens during 1919 is responsible for this increase in productive capacity.

During 1919 the output of coke decreased sharply as compared with 1918 hecause of strikes in the steel and coal industries. But the reduction was almost entirely accounted for by the output of the wasteful bechive ovens. The production of coke in by-product ovens in 1919 was only 3.2 per cent less than in 1918. As a result the out-
put of coke from by-product ovens exceeded for the first time that of the beehive ovens, which do not recover the valuable by-products. ${ }^{1}$ It would appear, therefore, that there was only a slight decrease in the quantity of coal tar available during 1919. Transportation difficulties interfered with shipments of coal tar to distillers. This is reflected by decreases in output as shown in Table 3. Shortage of coal due to strikes in coal mines also caused considerable quantities of tar to be burned as fuel. These factors resulted in less tar being distilled. In general the conclusion may be drawn that there was a reduction in the output of crudes in 1919.

Table 2.-Prontuction of cont-tar crudes during 1919, b!! firms not primarily enghlacal in the operation of cokeoren plants and !as houses.

The numbers in the second column refer to the numbered alphabeticallist of manufacturers given on p. 94. An xinlieates that the corresponding product was made by a manufacturer who did not consent to the publication of his name in conncetion therewith. Blanks in the third and fourth columns indicate that there was actual production of the eorresponding art icle but that the figures can not be published without revealing the output of individual firms.]

[^1]Jhhe following talne shows the fraction of the Cnited States output of coke produced in by-mounct owens, as compiled by the Geological survey:

1: $: 0$	19	1916	35.0
1)(\%)	\%. 3	1917	38.6
1905	10.7	1918	46.0
1910	17. 1	1919	56.2

Tabie 3.-Comparison of moduction of coul-tar crudes, 1915 and 1919 , bil firms not primarily engaged in the operation of eoke-oren plants and gas houses.

Narke.	1918			1919		
	Quantity.	Value.	Value per unit.	Quantits.	Value.	$\begin{aligned} & \text { Value } \\ & \text { per } \\ & \text { witit. } \end{aligned}$
Total crudes.		22,474,075			817, 657,750	
Benzene, gallons	3,015, 418	-994, 161	\$0.33	1, 226,373	550,547	80.31
Toluene, gallons.	1,596,353	3, 044, 850	1.91	12, 510,957	233, 321	. 46
Naphthalene, crude, pound	40, 13, 092	1,251,410	. 03	12,612,203	327, 201	. 03
Solvent naphtha, galions.... Dead or creosote oil, gallons	44, 772, 789	164,068 $4,428,046$. 21	43, 2645,013	\% $\begin{array}{r}75,517 \\ 4,26 \pm, 54\end{array}$. 30
Pitch of tar, short tons....	+356,612	3,966, 341	11.12	- 2×3.066	3,619,333	12.79
Other distillates, callons.	7,034,204	1,460,363	. 21	6,857,001	1,461.50	. 21
Refined tar, barrels.	1,398,049	6, 227, 448	4.45	1,35t, 047	6,540,	4.73

Shortayg of naphthalene.-The output of crude naphthalene by tar distillers during 1919 was $12,612,203$ pounds ralued at $\$ 327,201$, as compared with $40,138,092$ pounds ralned at $\$ 1,281,440$ in 1918 by the same group of manufacturers. (These figures are not total output, as previously explained.) This large reduction in output by tar distillers was due to several causes, among which was the decreased distillation of tar. At the time of the signing of the armistice there were on hand large stocks of crude naphthalene which had accumulated as a by-product in the effort to secure maximum supplies of toluene for making explosives. As a consequence, producers of crude naphthalene expected an oversupply and therefore diminished their production by leaving considerable naphthalene in the creosote oil, thereby increasing the yield of creosote oil then in great demand. When export restrictions on dyes were removed there developed an unexpectedly large export demand for dyes and intermediates made from naphthalene. This quickly exhausted the accumulated stocks and resulted in an acute shortage of maphthalene toward the end of 1919 and in the early part of 1920 . Imports of crude naphthalene from England during 1919 were not as large as was anticipated, owing to English export restrictions and transportation difficulties. During the first nine months of 1020 , howerer. imports of naphthalene amounted to nearly $11,000,000$ pounds.

The anthracene situation.-Considerable progress was made during 1919 in the production of anthracene, but the problem of securing adequate supplies is still monsolved. In 1918 the actual anthracene contained in the crude anthracene produced was abont a quarter of a million pounds, but very little of the crude product wass refined. In 1919 the output of actual anthracene was about three times the 1915 production, and a much larger fraction of it was refimed than in 1918. Notwithstanding this encouraging progress a much greater increase in output must be secmed before there will be enough
anthracene available from domestic sources to supply the demand for alizarin and vat dyes which are so important to a well-developed industry. It may be roughly estimated that the 1919 production of crude anthracene contained less than one-fifth of the amount of anthracene required for domestic needs. The fundamental difficulty is not primarily an actual lack of anthracene in the tar, nor are there purely technical difficulties in its recovery, but rather the fact that its removal leaves the pitch so hard that it does not find a ready market in this country. Any method of recovering anthracene which seriously disturbs the marketing of the other larger fractions of the tar, especially the pitch, would make the anthracene so expensive that the dyes derived therefrom could not be made on a competitive basis. In England and Germany large amounts of hard pitch were used for the briquetting of coal dust and coke breeze, but this industry is little developed in the United States. England shipped considerable amounts of crude anthracene to Germany before the war.

The securing of supplies of anthracene adequate in amount and at a cost which is not prohibitive is perhaps the greatest difficulty confronting the industry. Whether the problem will be solved by the tar distillers or by the development of a synthetic process for making anthraquinone (the most important intermediate made from anthracene) from raw materials now available in adequate quantity can not be determined at the present time. Active work along both lines is well under way and important progress has been made during 1920.

Production of carbazol was reported in 1919 by one firm. It is obtained as a joint product in the separation of anthracene from coal tar. The development of a demand for carbazol would facilitate an increase in the production of anthracene from coal tar.

INTERMEDIATES.

Introductory.-The production of intermediates in the United States during 1919 is shown in Table 4 in as great detail as possible without revealing the output of individual manufacturers. During 1919 there was produced a total of 175,362,426 pounds of intermediates, valued at $\$ 63,210,079-a$ decrease of about 50 per cent from the output in 1918 of $357.662,251$ pounds, valued at $\$ 124,382,892$. Notwithstanding this large decrease in quantity the number of individual intermediates produced in 1919 was 216 , as compared with 140 in 1918. The 1919 output, with the exception of many of the anthracene derivatives which are still not produced, more nearly represents domestic requirements under peace-time conditions. In addition to these intermediates, there were produced on a laboratory scale 11 in intermediates or organic coal-tar chemicals for researeh and
experimental purposes. These totaled 2,291 pounds and were valued at $\$ 23,333$, as compared with an output in 1918 of 645 pounds, valued at $\$ 7.8 \pm 3$.

Intermediates used for military purposes.-The decrease in quantity of intermediates can be traced directly to the cessation of military requirements. 'There was a marked decrease in those intermediates used in making explosives and in those required for dyes for military uniforms. If the intermediates used mainly for explosives be eliminated from consideration, the remaining ones show an increase in output of about 10 per cent during 1919 as against the corresponding intermediates in 1918. The most striking example of a decrease in intermediates used for explosives is phenol.

The enormous output of phenol ($106,794,277$ pounds) in 1918 , made almost entirely in synthetic phenol plants, left large stocks of this product on hand when the armistice was signed. Consequently, the price of phenol declined sharply-from about 45 cents per pound to 6 cents-but soon rose again to about 15 cents per pound. The surplus stock of Government phenol on hand at the signing of the armistice, about $35,000,000$ pounds, represented nearly three times the normal annual consumption. The Monsanto Chemical Co., of St. Louis, Mo., was made the agent of the War Department for its sale. The synthetic phenol plants responsible for the huge output shut down promptly after the signing of the armistice, and many of them were later entirely dismantled. It is probable, however, that the present and future consumption of phenol will be in excess of the output of natural phenol obtained by separation from coal-tar distillates, and that when the surplus stocks have been consumed some of the synthetic plants will necessarily resume production.

Other intermediates used both for war purposes and for dye manufacture which showed a striking decrease in 1919 inchule monochlorobenzene, with a decrease of 80 per cent; nitronaphthalene, 36 per cent; dimethylaniline, 16.5 per cent; diphenylamine, and dinitrotolnene. It is probable that the production of all of these in 1919 was below the amount used during the year for dye making, and that stocks on hand November 11, 1918, and intended for military uses were diverted to the dye industry. It may therefore be assumed that the production of these intermediates during 1919 was somewhat less than actual requirements.

Intermediates required in the manufacture of dyes used for military uniforms also showed a decrease corresponding to the decreased output of such dyes. Among these may be mentioned: m-dinitrobenzene and m-nitraniline which are used in Alizarin Yellow GGand R-ilyes used on wool cloths for army uniforms-and m-toluylenediamine, used for sulphur browns on cotton cloths for khaki uniforms.
$22816^{\circ}-21-2$

Intermediates consumed in large quantity.-As a rule the intermediates for which there is the largest normal consumption and the manufacture of which had been well established by 1918, showed comparatively little change during 1919. Examples of these are nitrobenzene, aniline, paranitraniline, and betanaphthol. On the other hand, there are also many examples of a large increase in the production of intermediates difficult to make but which are required for dyes of the best quality. A good example of this kind is amidonaphthol sulphonic acid 2:8:6 (gamma acid). This was made in 1918 by a single firm, but in 1919 by five firms, with a combined output of 155,025 pounds, valued at $\$ 667,360$, which is many times the 1918 output. These fire firms used gamma acid to make nearly a half million pounds of Oxamine Black-an important direct black which can be developed on the fiber. Moreover, gamma acid is also required for other important direct cotton dyes of a fast type, and in the manufacture of Zambesi Black, a very important dye for union hosiery.

Tolwene derivatives.-There was a notable increase in output and a marked decrease in price of those intermediates derived from toluene. Benzoic acid, U. S. P., for example, increased in output from 152,896 pounds in 1918 to 699,108 pounds in 1919, and the price dropped from $\$ 3.07$ to $\$ 0.75$ per pound. Orthotoluidine and paratoluidine, important intermediates, doubled in output with about a 50 per cent reduction in ralue. The general increase in output of toluene derivatives and the decrease in value are due to removal of war-time restrictions on toluene and the lessened demand for it.

Intermediutes derived from anthracene.-During 1919 the actual anthracene content of the anthracene produced amounted to 813,318 pounds, or orer three times the output in 1918. In 1919 three firms, as against only one firm in 1918, reported a production of refined anthracene of more than 80 per cent purity suitable for the manufacture of rat and alizarin dyes. The total quantity of refined anthracene produced was several times the oupput of the previons year. It may be roughly estimated that orer $4,000,000$ pounds of pure anthracene would be iequired to manufacture alizarin and tat dyes to the amount of the average anmal import from 1912 to 1914, inclusive.

The progress among the anthracene derivatives is of especial interest. Here, unformately, definite figures can not be given withour revealing the production of individual firms. In 1919 there were 10 intermediates produced from anthracene, as against only 5 in 1918. The output of anthraquinone, which is the most important because it serves as the raw material for the manufacture of nearly all other intermediates derived from anthracene, was about ten times as great in 1919 as in 1918. Recent information indicates that several firms
are experimenting on the production of anthraquinone synthetically from benzene and phthalic anhydride. One firm is now (December, 1920) known to be manufacturing synthetic anthraquinone in commercial quantities. The production of anthraquinone in adequate quantity either from natural anthracene or synthetically from other coal-tar materials already arailable will mean mach to the future development of a well-rounded and permanent dye industry in the United States.

Tabee 4.-Producfion of inkeractiotes during 1919.
[The intermediates are arranged in this taho according to chemical strueture. They are listed under the following five chasses: Benzene compounds; tolnene compounds; xylene compounds: naphthalene compounds; and anthracene compounds. Each class of compounds is further divided into 10 nunbered subctasses, hased on the following arhitrary order: (1) Halogen, (2) nitre. (3) amino. (4) sulphonic acid, (5) hydroxyt, (6) alcohols, (7) aldehrdes, (S) carboxyic acids, (9) krones, and (10) all otheis. If a compond contains two or more radicals. it is arbitrarily classed under the subclass of the hisherst numerical order. For example, the compound nitrophenolsulphonic acid is lister under the !emzene compounds, subclass (5), bydroxy, since the hydroxt? radical is of highes numerical crder than the (2) uitro and (i) saphonic radicals.
The mombers in the seond column refer to the numbered alplatmedical list of manufacturers printer on p. 14 . An x simifies that the corresponding intermediates wre made by a mamufacturer who dirl ont consont to the publication of his name in connection therewith. Planks in the third and fourth columns indicate that there was actual production of the correspondins intormediates in the United states during 1010 . but that the figures can not be jublished without werealing information in regard to the output of individual firms. The details thus concealed are howerer. included in the totals. Reports harn been receiced from anll fums known to be manufacturers.]

Comman nayn.	Manufacturers’ idertification numbers according to list on page 94.	Total proluction, 1919.		Average price per pound.
		Quantity.	Yalue.	
Total intermediates.		Pounds. $177,362,426$	\$63, 210,079	¢0. 26
BENZENE COMPOUNDS.				
Malogen:				
Chlorobenzene (mono)	53, 64, 76, 92, 118, 132, 151.....	4,116, 606	623, 875	. 15
n-Dichlorolenzene. Bromobenzene (mo	76, 118, 132................	130, 864	8,746	. 07
Bromobenzene (mono)....... Nitro:				
Nitrobenzente (oil ofmyrbane)......	$\begin{aligned} & 16,24,27,53,64,104,112,113 \text {, } \\ & 116,151, x, x, x, x . \end{aligned}$	$42,542,017$	5, 599, 837	. 14
Nitrochlorobenzenc(orthoand para) p-Dichloronitrobonzenc...........	13, 53, 109, 112,136, x.	2,520,291	739, 117	. 29
Dinitrobenzene..	$23,21,53,66,112,116,16)^{\text {a }}$	2,240,292	548,302	. 24
Dinitrochlorobenzen	13, $53,64,92,109,151,166 .$.	$4,423,730$	907,794	. 21
Amino: Aniline oil.	$\begin{aligned} & 16,21,2 \overline{7}, 53,64,66,104,109 \\ & 112,113,151, x, x, x . \end{aligned}$	$24,345,786$	5,932,536	. 24
Aniline salt (and suiphate)	21, 27, 6f, 112, $113 \ldots$.	1, 446,909	359, 29t	25
Aniline for red...	112.......			
Dimethylaniline....	24, 53, 112	3, 559, 654	1,941, 152	. 53
Ethylaniline (mono)	31, 53, 112	195, 161	305, 524	1.57
Diethrlaniline...	31, 71, 143	30, 000	26,500	. 85
Ethyrbenzylanilix	31, 53, 112			
Dibenzylaniline......	112			
Nitrosodimethrlaniline.............	8, 40, 53, $61,16,65,92,112$, x...	592, i63	36, 091	. 6_{1}
Acetanilide, teclunical	$\begin{aligned} & 23.31,-3,64,109,112,116,13 t i, \\ & \mathrm{x}, \mathrm{x} . \end{aligned}$	1,934, 125	797, 1.51	. 41
-Nitroaretznilide	23, 116, 136, x...................	$60.7,658$	481,606	. 69
Ethylacetanilide	112			
Gallanilide.	112.			
p-Chloromiline.	X			
Dichloroaniline.	116.			
m-Nitranilize.	53, 156, х	(ix, f00	191, 322	1.52
p-Nitraniline and sulphate	$23,53,92,112,116,136, \times, x \ldots$	1,310,658	1,3SS,627	1.06
m-Phenylenediamine.	$5,8,23,53,58,64,69,112,116,$	(20.9, 789	6:17,379	1. 01
p-1 henylenediamine.	10,6!, 112, 136, 116, 171, x, x...	234,332	$55^{4}, 3946$	2.43
Acet-p-phenvernerlamine.	-3,112, 116, 136, x...........	(i2, 51:7	103, 7 (4)	1. lit
Diphenylamine	112, x			
Phenazine.	92...			
Phenglglycine, sodium salt.	112			

Table 4.-Production of intermediates during 1919-Continued.

Common name.	Manufacturers' identification numbers according to list on nage 94.	Total production, 1919.		Averagepriceper pound.
		Quantity.	Value.	
BENZENE COMPOUNDS-Con.				
Sulphonic acid: Sulphanilic acid.	24, 27, 53, 66, 69, 92, 101, 112,	Pounds. $1,023,861$	\$243,656	\$0.24
Mctanilic acid.	53, 54, 64, 112, x	453,137	266, 172	. 59
o-Chlorometanilic acid p-Chlorometanilic acid				
Nitrobenzenesulphonic a	136			
Ethylbenzylaniline sulphonic acid	31.			
Ethylbenzylanilinedisulphonie acid	116			
Dinitrophenol sulphonic acid.....-.	23.			
Dinitrochlorobenzene sulphonic acid Amino-azo-henzene and sulpho-	23.1			
Amino-azo-benzene and sulphonate.	27,54, 69, 92, 112,	82,755	59, 847	72
Hydroxyl:				
Phenol(U.S.P.and tech.) Nitrophenol..............	$15,24,30,41,101,134$ $116 . \ldots \ldots \ldots \ldots$.	1,543,659	155,624	. 10
o-Nitrophenol	8,23, 116	18,373	16,497	. 90
p-Nitrophenol.	¢, 13, 23, $53,66,109,116,151,156$.	76,191	76,464	1.00
Nitro sodium phenolate.	53,57........			
Dinitrophenol, and sodium Nitroaminophenol 1:2:4.......	13, 53, 64, 1	230,771	65,050	. 28
Indophenol.	13, 45, 92, 112,	130,001	131,229	1.01
o-Nitroanisol.	112, 116, X			
0 -Anisidin.				
o-Amidophenol.	8,112			
Diethyl m-amidophenol.				
p-Amidophenol and sulphat	$16,19,24,53,57,64,89,92,104,$	128,627	282,970	2.20
o-Amidophenol p-sulphonic acid	23, 112			
Nitroamidophenol sulphonic acid Diamidophenol...............				
Nitrosophenol.	$13,40,45,92,112,116$,	155,273	82,833	. 54
Nitrophenetol (ortho and para)				
p -Phenetidin.	109			
Picric acid..				
Ammonium pic	23.			
${ }_{\text {Pesarcin }}$ (tech. and U , S .	23, 24, 53, 112	150,458	130,388	. 87
Aleohols:				4.20
Benzy alcohol.	61, 65, 66, 141, 155, x	15,678	33,770	2.15
Aldehydes: Benzaldehyde	$20,24,31,37,53,61,65,134$, $141,155, x, x$.	518,634	403, 109	. 78
Chlorobenzaldehyde				
Nitrobenzaldehyde				
Carboxylic acids:				
Benzoic, teeh.	53, 61, 65, 135, 155. ${ }^{\text {a }}$.	21, 212	46,554	2.19
Benzoic, U. S. P..	21, 53, 77, 134, 135, 141,	699,10s	534, 832	. 77
Ammonium benzo		610,150	536,194	. 88
Nitrobenzoic acid	20, 76, 7, 13	61,150	30,194	. 8
o-Amido benzoic (anth	109, 136, 150, 168,	22,976	98,602	4.29
Acet. anthranilic acid				
Salicylic, tech. Salicylic, U.S.	$23,21,53,104,109,134, \mathrm{x}, \mathrm{x}, \mathrm{x}$ $20,24,44,52,53,104,109, \mathrm{x}$		$1,009,462$ 918,832	. 29
Salicylic, U'. S.	$20,24,44,52,53,104,109, \times x$	2.619,726	918,832	. 35
Amidosalicylic acid.	24,92, 112.	37,769	44, 144	1.17
Cinnamic acid.....................	61, 141	2,502	10,305	4.12
Ethyl p-aminolicnzoate (not medicinal).				
(- - ulphobenzoic and ammonium sali.				
Chloride of 0-sulphobenzoic actid				
Ketones: Totramethyldiaminobenzophenone (Michler's ketone).	23, 53, 61	2.1, 0.57	488,553	1.74
Benzidin base.	. $23,23,31,53,666,112,116, x$.	1, 041, 922	1,370,393	1. 26
Benzidinsuphate	3,23,31, 53, 112,	231, 707	221,283	. 96
c- Nitrolenzidin and suljha	${ }^{61}, 116$			
Dinitroox ydiphenylamine Dianisidin................	116.			
Dianisidin....	33, 112,	107, 411	488, 114	4.54
Thiscarbanilide.......	112, 113, 131, x, x, x	2,264,375	802,575	. 35
Arsanilieard...........	$103,10$.			
()xarylphenylarsenic aric Nitron henolarsenic acid.	47, 103, 47 $103, \mathrm{x}$	6,944 3,341	117,288	16.89 44.01

TABLE 4.-Production of intermediates during 1919—Continued.

Common name.	Manufacturers’ identification numbers according to list on page 94.	Total production, 1919.		Average price per pound.
		Quantity.	Value.	
TOLUENF COMPOUNDS.				
Haloren:		Pounds.		
Chlorotoluene	112.......................			
Benzylchloride	$20,23,31,61,65,134,141,155$.	720,973	\$166, 182	\$0. 23
Benzalchloride Benzoylchloride	61, 65, 141, x..................			
Nitro:				
Nitrotoluene.	$31,53,51,62,112,116,147, \mathrm{x}, \mathrm{x}$.	6, 211, 775	1,019,522	.17 .83
o-Nitrotoluene.	53, 112, 116, х.................		312,416	. 23
m-Nitrotoluene	$53,69 \ldots$ $31,53,62,112,116,147$	1,263, 0, 6	704, 750	In
D-Nitrotoluene	31,53,54, 64, 69, 112, 14, 4	1, 746,266	264,388	. 35
Chloronitrotoluene				
Toluidine	31, 53, 112,147, x, x	806,210	309,894	. 38
o-Tolntidine	$53,66,112,116,147, \mathrm{x}-$.	1,002,042	503, 020	. 50
p-Toluidine......	53,62,66, $112,116,147, x$	575, 841	600, 267	1.04
Siethylorthotoluidin				
o-Chlor p-toluidine.				
o-Acetotoluidine	136.			
p -Acetotoluidine	136, x			
o and p-Nitrotolnidine	147, X			
m-Nitroparatoluidine.	53, 135, x, x.......	5x, 4, 424	210,307	3.60
m-Tolnylenediamine.	$31,53,54,61,69,112,116$	439,544	504,063	1. 15
Tolidine.	$53.66,112,116, \mathrm{x}$.	143,012	264,861	1. 86
Tolidinesulphate	116.			
Sulphonicacid:				
o-Chlorotoluene sodium sulphonate	$109 \ldots$	32,338	29,464	. 91
p -Nitrotoluene sulphonicacid o-Toluidine sulphonie acid. .	$53,112, ~ x$ 69.	32,33s	29,464	.91
p-Toluidine sulphonic aeid.	1, x			
o-Chloro p-toluidine m-disulphonic acid.	X.			
Toluylenediamine sulphonie aeid...	112.			
o-Toluene sulphochloride.	2f, 109..			
n-Toluene sulphochloride	26, 109, x	5S, 932	6,148	. 10
o-Toluene sulphamide.	26, 109, x			
p-Toluene sulphamide.............. .	26, 109..			
Hydroxyl:				
Crcosote oil (eontaining more than				
Stilbenes:				
Dinitrostilbene disulphonie.	112.			
Diamidostilbene disulphonic acid...	112, x, x.	5,021	19,082	3.50
		- 4,836	7, 71	
Mydrazotoluol.	112..			
Dehydrothio-para-toluidine sulphonic acid.	$18,54, \mathrm{x}, \mathrm{x}$			
XYLENE COMPOUNDS.				
Nitroxylol.	$27,112, \mathrm{x}, \mathrm{x}$.	293,219	53,449	. 18
Xylidine..	5, 24, 27, 53, 112, 147, x, x.	$3 \times 6,635$	206, 797	. 53
Xylidine salts.	24, \times			
Dehydrothio m-xylidine base	$68, \mathrm{x}$			
Cumidinc.........	112, x............			
NAPHTHALENE COMPOUNDS.				
Naphthalene, solidifying $79^{\circ} \mathrm{C}$. or above (retined, tlake).	$15,30,53,91,97,134,164 \ldots$	17, 625,235	1,160, 415	. 07
IIalogen: Chloronaphthalene				
Nitro:				
Nitronaphthalene.	$15,53,116, \mathrm{x}$	2,71,516	368, 500	. 13
Dinitronaphthalene	112.			
Amino: a-Naphthylamine.		1,552,824	632,547	. 41
Phenylalphanaphthylamine	15, $23,53 . \ldots \ldots$.	1,552,n2,	.-....	.
b-Naphthylamine, erude .	$53,124, \mathrm{x}$	99,597	167,590	1.68
Ethylbetanaphthylamine.........				

Table 4.-Iroduction of iniermediates during ly fi-Continued.

Common name.	Manufacturers identification numbers aceording to list on page 91.	Total production, 1919.		Average price pry pound.
		Quantity.	Value.	
NAPHTHALENE COMPOUNDSContinued.				
Other naphthols:		Pounds.		
Amidonaphthol sulphonic acid 1:2:1.	$23,27,53,54,64,92,112,136$, 152, x, x, x.	837,354	8808, 894	80.57
Amidonaphthol sulphonic acid 2:8:6 (gamma acid).	$5,53,92,112,116 \ldots \ldots \ldots \ldots$	155, 025	667, 369	4.30
Amidonaphthol disulphonic acid 1:8:2:1 (Chieago acid).	53, 116.			
Amidonaphthol disulphonic acid 1:8:3:6 (H acid).	$\begin{aligned} & 53,64,105,105,112,116,152 \\ & 163, \mathrm{x}, \mathrm{x}, \mathrm{x} . \end{aligned}$	3, $837,53 \mathrm{H}$	5,041,463	1.32
Chloronaphthol disulphonic acid 1:8:3:6 (chlor H acid).	112.............................			
Diazonaphthol sulphonic aeid 1:2:4.	23, 92, 112.	419,349	417, 815	1.07
Nitrodiazo naphthol sulphonic acid 8:1:2:4.	23.........		4,	
Carboxylic acids:				
Other napht thalene compounds:				
Phthalic anhydride.........	23, 66, 109, 162, 164, x	207, 677	290,037	. 99
Phthalamide...	150, X...............			
o-Cresolphthalcin				
o-Cresolsulphophthatein.				
Dilromeresolsulphophthal				
Dilromsulphophthalein				
Tetrabromphenolsulphophthalein..	81			
Thymolsulphophthalein...........				
ANTIPRACENE COMPOUNDS.				
Anthracene, purity of 25 per eent or more.	$11,15,91,112, \mathrm{x}$.	1,3*1,944	2: 5,977	. 22
Anthraquinones:				
Anthraquinono.....	2, 11, 53, 112.	2:4,260	547,787	1. 86
Dinitroanthraquinone.....	112.			
Betaaminoanthraquimone..........	53.			
Anthraquinone 2 sodium sulphonate (silver salt).	53, 112			
Anthraquinonedisulphonate 1:5....	112.			
Ant hraquinone disulphonie acid 2:7-	112.			
Dihydroxy anthraquinone 1:5 anthrarufin.				
Nitrosulfoanthrarufin.	112.			
Cenzanthrome				
CARBAZOL COMPOUNDS.				
Carbazol, purit y of 25 percent or more.	15,53.			
All other intermediates.	23, 112, 116, \times,			

CHEMICALS FOR SALE FOR RESEARCII AND EAPERIMENTAL PURPOSES.

Total.		Pounds. 2,291	823,333	\$10. 1.5
BENZENE COMPOUNDS.				
Halogen: Iorlobenzene.	57,153..			
o-1) ichlorobenzene				
Amino aud related derivatives:				
Iniline redistilled.				
p-Bromoniline..				
p -Cbloroaniline	57-153			
o-Chloroaniline.	153			
p-3romoaniline hydrochloride	57.			
Dichloroaniline 2:4.				
Methylaniline.				
p-Bromoacetanilide	57			
Methylacetanilide.				
p-Nitrocthylacetanilide				
$\underset{\text { p-lminodimethylaniline }}{\text { chloride................................. }}$	57			
Benzylamine....	1.31			
Phenylhydrazine.	57-6			

Tabre 4.-Production of intermediates during 1919-Continued.
CHEMICALS FOR SALE FOl4 lEESEARCH AND ENPERIMENTAL PURPOSES-COn.

Common name	Manufacturers’ identification numbers according to list on page 94.	Total production, 1919.				
		Quantity.	Value.			
ENZENE COMPOUNDS-Con.						
Amino and related derivatives-Con.		Pounds.				
Methylphenyihy i azine...........						
p-Bromophenylhydrazine hydro-	57.					
I cetylphenylhydrazine						
Carbanilide.	57					
Diphenylcarlomine						
Benzanilide..............						
Sulphonieacids: 0 Dichlorobenzene sulionate . . .						
Inydroxyl: ${ }^{\text {Benzene }}$ sulpho chloride. ${ }^{\text {a/ }}$						
Sodium phenolate.						
p-Bromophenol....						
Acetylp-methylaminophenol						
p-Benzal aminophenol...						
Acetyl p-anisidine.						
p-Dimethylaminophenolsulphonate						
p-inisol						
Nitroanisol.						
Phenetol.						
$0-1$ ihydroxybenzene (Catechol)						
1 Iydro uinone limethylether....						
O-Dimethoxthenzene (Veratrole).						
Hydro uinonemonomethylether.						
Resorcmolmonomethylether Resorcinoldimethyl ether...						
Resorcinoldiacetate..						
Aldenydes:						
p -Chlorohenzaldehyde.						
Trinitrobenzaldehyde						
Salicylaldehyde........						
Carloxethoxybenzaldehyde						
p-chlorobenzoic acid.			Carboxylie acids: .			
Iolobenzoic acil..						
o-Nilrohenzoic acid.	37, 153					
m- Nitrobenzorcacid.						
Sodinn m-nitrolnenzoate						
p-Nitrohenzoic acid.	153					
Ethylm-nitrobenzoat						
Trinitrohenzoic acil.						
Acetylanthranilir acid.						
Penzois anhydride.						
Butylbenzoate.						
thenyllemzoate.						
Putylsalicylate						
Methylo-methoxybenzoate						
o-Methoxhmentic acid.						
Anicie acid.						
Butyl o-methoxy benzoate						
Benzilic acil..	57,153.					
Pherstacetic acid.	153, 1.					
1 cel iphenviglycine						
Phthatic acie.	57.					
Kotores:						
Ethers:						
Sintylphenyl ether.						
Butylbenzyl ether.						
Other benzene componuds:						
['herylarety j ctioride..						
Benzii (libenzoyl).	57, 153.					
Benzoin.	.7,153.					
Benzamide.	87.					
DinitrobenzoyJurea						

TAB1. 4.-Production of intermediates during 1919-Continued.

Nanle.	Manufacturers identification numbers according to list on page 94 .	Total production, 1919.		$\begin{aligned} & \text { Arer- } \\ & \text { age } \\ & \text { brice } \\ & \text { per } \\ & \text { round. } \end{aligned}$
		Qmantity.	Value.	
BENZENE COMPOUNDS-Con.				
Other beazene compounds-Continued. Phthalimide.				
Benzonitrile............				
Benzylcyanide				
Phenylisocyanate.	153.			
Thiophenol. Potassium hydrogen phtnalol.				
Quinone				
Chloromil.				
Quinh ydrone.				
a.Benzildioxime.....				
Ethylphenylacetate Diphenylpiperazine.				
Diphenylpiperazine hydrochioride.				
p-Dimethylaminoazobenzene......				
TOLUENE COMPOUNDS.				
Halogen:				
0 -Bromotoluene.	153.			
p-Bromotoluene.	153.			
o-Iodotoluene...	153.			
Amino: Acetyl p-toluidine				
Benzoyl o-toluidine.	57.			
Strlphonic acid:				
Aminotoluene sulphonic acid $4: 2 .$.				
Phenyl p-tolumesulphonate........				
p-Toluenesulphonylaniline..........				
p-Tonuenesulphonyl methylaniline.				
o-Cresolp-toluenesulfonate.				
o-Cresol methylether.				
Butylo-cresol cther.				
p-Thiocresol........	57, 133.			
XYLENE COMPOUNDS.				
o-Xylene.				
m-Xylene.				
p-Xylme...				
$0-\mathrm{X}$-lone sodium sulphonate.				
p-Xylene sodium sulphonate				
Mesitylene.....................				
NAPHTHALENE COMPOUNDS.				
Halogen:				
Alpha bromonaphthalene.	57, x.			
Benzoyla-naphthylamine..........				
Hydroxyl: Nitroso b-naphthol.	57, x.			
QUINOLINE COMPOUNDS.				
Quinoline				
Quimoline cthiodide.				
Quinaldine.	57,15			
b-Naphthaquinaldine				

Table No. 5 is a comparison of the production in 1918 and 1919 of those intermediates for which figures can be published.

Table S.-Produrtion of intermediates, 1918 and 1919.

Name.	Prorluction, 1818.			P'roduction, 1919.		
	Cuantity.	Villue.	$\left.\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound } \end{gathered} \right\rvert\,$	Qmantity.	Valne.	Price per pound
Totalintermediat	Pounds. 357,662,2.31	\$121,362,5c2	S10.35	Pounds. 177,382,426	863,210,079	80.36
Halogen. Chlorobenzene (mono)						
	20,530,632		. 13	4.116, 12.66	[23,870	. 1.52
Nitio: Nitrobenzene (oil of myrbane)	3¢,250,332	5,659,991	. 15	42, 544,017	5. 899, 837	139
Dinitrobenzene................	4,115,269	1,148,309	.25	2, 250, 252	518,302	244
Amino: ${ }_{\text {Aniline oil }}$	24, 102, 129	6,572,684	. 27	24,345,286	5, 932,535	
Aniline salt and sul	1,765,359	591,512	. 1	1,446,969	5,350, 296	. 248
Dimethylaniline.	4,23,458	2, 412, 820	. 3	3,559, 404	1,941, 152	. 54.5
Dicthylaniline.	48, e4,	122, 673	2.55	30,000	-26,500	- Q83
Nitrosodimethylaniline	5.10 .4	454,415	. 53	502, 613	364,091	. 614
Acetanilide, teech	2,085,0<3	1,105,546	. 3	1,93.1, 125	797,151	. 412
p-Nitroacetanilid	541,552	415,956	.7	699,658	484, 666	. 693
m-Nitraniline.	630, 802	C10, 318	1.02	68,600	104,322	1.521
p-Nitraniline and sulp	1,320, 061,	1,722,319	1.30	1.310, 6.5	1,388, 627	1.059
m-Phenylenediamine	611,299	763, 436	1.10	c09, 7×9	617.379	1.012
p -Phentlenediamine.	215, 148	791,1:1	3.68	23, 332	568, 396	2.423
Acet-p-phenylenediamin	177,990	3<2,017	2.15	62,567	103, 750	1.658
Sulphonic acids:	1,247,478	361,153	. 20	1,023. 861	243,656	. 238
Metanilic acid..	-249,922	132,21.4	. 53	453,137	265.152	. 547
Aminoazobenzene and sulphonate.	171,504	183,169	1.07	82,755	59,847	. 223
Hydroxyl: Phenol(T. S. P. and tech)........	1\%t, 794, 277	$3{ }^{3}, 230,2 \times 4$	2.5	1,543, 5.59	15.5,624	. 101
o-Nitroplennl......................	143,274	215,783	1.51	18,373	16, 497	. 895
p-Nitrophenol	192,259	210,127	1.69	76, 191	76,464	1.004
1 -Amidophenol and	113, 423	320,5 52	2.3	128, 627	2 23,970	2.199
Picramic acid.	235, 652	462,158	1.96	150,458	130,388	. 867
Aloohols:	13, 9:0	57,134	4, 25	15,6\%8	23, 70	2.154
Aldeliydes:						
	3:0,591	866,251	2.10	515, 934	103,109	777
Carboxylic acids:						
Benzoie, tech.	109,316	155, 207	1.12	21,212	46,554	2.105
fenzoic, U. S.	172, 96	530, 172	3.07	649, 108	534,832	. 765
Sodium benzoa	$2 \mathrm{ma}, \mathrm{CG7}$	658, 879	2.53	610, 150	535, 194	. 878
o-Amidobenzoic (anthranilic)	11,826	67, 24, 7	5.09	22,976	35,602	4.415
Salieylie, tech.	1,395, 630	749,337	. 67	3, 44i7, 185	1,009,462	. 291
S:Iicylic, U.S	3,270, 162	2,706, 171	. 83	2,619,720	418, 832	. 351
(innamic.	1,485	13,842	9.31	2,502	10,345	4.119
Ketmes:						
Terameihyldiaminolenzolianone. Dipheny]s: Benzidine, base \qquad	73,208	206,032	3.50	281,057	408,553	1.738
	1,565,139	1,677, 466	1.01	1,051, 322	1,370,393	1. 263
Benzidine sulphate...	- 936,748	427,180	. 45	231,707	221,283	. 955
Other benzene mmpounds:	1,326,236	622, 451	- 47	2,268,375	S02,575	. 354
TOLUENE COMPOUNDS.						
Halogen:						
Benzylchlorid	600,030	463,071	. 65	720,953	166, 182	. 231
Nitro:	3, 120, 670	1,027,629	. 30	6, 211,775	1,049,522	. 169
o-Nitrotohuen	1,240, 469	1,50, 313	. 69	1,3601,599	1,312, 416	. 230
Amino:	670,615	717,086	1.11	1,263, 056	701, 750	. 558
Toluidine.	303, 0674	250,125 612,765	.818	$\begin{array}{r} 806,210 \\ 1,062,942 \end{array}$	$\begin{aligned} & 301,894 \\ & 5013,020 \end{aligned}$. 384
p-Toluidine	20,5,452	3810,257	1. $九 5$	575, 841	(i0), 267	1. 042
m-Nitmparat	21,415	117,309	4.80	52, 454	210,307	3. 598
m-Toluylenediamine	012, 163	812,702	1.11	430, $51 \cdot 4$	501,063	1. 147
XVIENE COMIOOCNOA.						
Nitroxylol	$63.39,835$	3:3, 059	. 53	293,219	53, 449	. 184
Xylidine..	531,834	201, 187	. 51	386,635	206,797	. 535

Table $5 .-$ Production of intermediaies． 1918 and $1919-C o n t i n n e d$.

Narme．	I＇roduction， 1915.			Troduction， 1919.		
	Quantit．	Value．	$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound } \end{gathered}$ pound.	Quantitr．	Value．	Price per pound
THilene compound						
Naphthalene，solidifying $79^{\circ} \mathrm{C}$ ．or above（refined，flake）	$\begin{gathered} \text { Pounds. } \\ 28,112,155 \end{gathered}$	\＄2，162，618	¢0．08	$\begin{aligned} & \text { Pound.s. } \\ & 17,625,235 \end{aligned}$	81，160， 815	89． 063
Nitroi ${ }^{\text {Nitronsphthalene }}$	4，340，010	1，439，052	． 33	2， 74,515	365，500	． 133
nino： a－Naphthrlamine．	${ }^{2,671,601} 31$	1，327， 710	$\stackrel{.50}{1+4}$	$\begin{aligned} & 1.552,225 \\ & 99.597 \end{aligned}$	${ }^{632,557}$	－ 1.407
$\begin{aligned} & \text { Sulohonic acids: } \\ & \text { Sulpho(alphamino compounds- } \end{aligned}$						
Sulpho（alpha）amino compounds－ Naphthylanire sulphonic $1: t$ （Naphithionic）．．．．．．．．．．．．．．	1． 262,261	953，291	． 66	2．005， 189	1，23， 512	615
nydroxyl：${ }^{\text {aphrain }}$						
a－Naphthol．．．．．．．．．．．．．．．．．．． 135,723 102,032 .75 135,025 136,833 1.013						
Beta naphithol compounds－ b－Naphthol tech						
2：3：6（R acid）．．．．．．．．．	712，033	572， 401	． 80	1，008， 0.07	721.3 赼	716
Other naphthols：						
Amido naphthol sulphonic acid 1：2：士．．．．	169.999	210.478	1． 54	837，38．	803．891	． 956
Amido naphthoi disulphonic acid						
	2，883， 228	4，879，351	1.69	3，837， 534	5．$\times 81,459$	1.321
Phthalic anhydride．．．．．．	227， 414	648，650	2． 85	290，677	230，037	． 997
ANTHRACENE COMPOUNDS．						
Anthraccue，purity of 25 per cont or more．	25， 532	80，670	． 36	1，351，914	238，974	． 216

a 1918 figures include naphthol sulphonic 2：8．

INTERAEDIATES UZED IN゙ DYENGG ふND PRINTiN゙

In many cases the last chemical step in the manufacture of dyes can be adrantageously performed on or within the fiber to be dyed rather than in a dye factory．In this way an insoluble dye can be pre－ cipitated within the fiber，and thus secure a high degree of fastness． Is a consequence，textile mills and other dje consumers hare been purchasers of intermediates．The（ierman dye makers made a prac－ tice of selling intermediates for this purpose to textile mills under special trade names designed to conceal the chemical nature of the product．German firms were thus enabled in many cases to charge prices to the consumers above the market prices of the intermediates when sold under their true chemical names．

In Table 6 are given the trade names under which these products were sold by German firms before the war，with the corresponding scientific chemical names，the imports（when arailable）during the fiscal year $191 t^{1}$ and the American production during 1919．The

[^2]identification, of course, can not be guaranteed since it has not been possible to make a critical laboratory examination of authentic samples. It is based upon a careful search of the scientific and technical literature and correspondence or consultation with a number of experts in this field. It is especially interesting to note the extent to which these needs are being met by American manufacturers of intermediates. It is hoped that the publication of this information will enable American consumers to purchase these materials under their own proper names at more reasonable prices, and will also help American intermediate makers to supply those not yet made in the United States.

Table 6.-Intrmediates used in dyeing and printing.

Table 6.-Intermcoliates used in dyeing and printing-Continued.

Tabse G.-Intcrmediates used in dyein! and printing-Continned.

1 1'ounds.
2 See Resorcin.

DYES ANO OTLIER FINTSHED BRODUCTS.

Introductory.-The finished products of the coal-tar chemical industry are many and diverse. They include (1) dyes, (2) color lakes, (3) photographic chemicals (developers), (4) medicinals, (5) flavors, (6) perfume materials, (7) synthetic phenolic resins,
(8) synthetic taming materials, and (9) explosives. There are many other substances belonging to all of these classes (except the synthetic resins and synthetic tanning materials) that are not derived from coal tar and that do not need to be considered for the present purpose.

A few minor uses of coal-tar products hardly deserve separate classification for the present purpose. For example, sodium benzoate and sodium salicylate are used as food preserratives as well as for strictly medicinal purposes, but these uses are so closely allied that it does not seem proper to set up a separate class of food preservatives. Many dyes and lakes are used as inks or ink powders, either pure or mized with gum or other vehicle. A separate classification mould therefore result in the overlapping of the two classes of products. Some coal-tar chemicals, usually and properly classified as intermediates, are used for accelerating the rulcanization of rubber, the most important being aniline, thiocarbanilide, phenylenediamine, and nitrosodimethylaniline. As the substances used for this purpose belong to the class of intermediates and are so classified in the tariff law, it seems inadrisable to set up another class of finished products.

The technical and generic relationship of these different classes is exceedingly close. To a large eatent they use the same intermediates. Phenol enters into the manufacture of some representatives of each of the nine classes of finished products. Aniline is used for making dyes, lakes, medicinals, photographic chemicals, and explosives. Simerous other examples showing this close relationship could be cited.

In previous reports ${ }^{1}$ the commission has pointed out the cloṣe relation of dyes to explosives and poison gases and the ease with which a dye factory can be converted into an explosive or poisongas plant in an emergency. Since the signing of the armistice certain plants in the Cuited States which were erected for the manufacture of explosives have been used for the manufacture of intermediates and dyes.

A close relation also exists between the dye industry and the manufacture of flavors, perfume materials, photographic chemicals. and color lakes. I. well-rounded and matured dye industry mould inevitably be accompanied by these smaller offshoots, which in many cases would furnish an outlet for by-products obtained in making the intermediates needed for the dye industry. The synthetic phenolic resin industry and the synthetic taming material industry are not so closely related to the dye industry as are the other eases cited. They are dependent chiefly upon phenol and formaldelyde. and therefore fumish an ontlet in times of peace for the materiah, phenol, which is of such rital military importance.

[^3]In general, the products derived from coal tar are treated alike in the tariff act of September 8, 1916. There are, however, exceptions to this generalization which the commission has pointed out in previous reports. ${ }^{1}$

Table γ shows in as great detail as is permissible, without revealing the output of single firms, the production of finished coal-tar products during 1919. Table 8 compares the production in 1918 and 1919 of products for which output could be published. The outstanding developments in the various classes of dyes and other finished coaltar products is discussed in detail beginning on page 43.

Table 7.-Production of finished coul-tar products during 1919.
[The number in the first column identinnes the dye according to the 1914 edition of the Schultz tables. The seend column gives the common name of the dye. The numbers in the third column refer to the numbered alphabetical list of manufacturers printed on p. 94. An x simpifies that the corresponding product was mode by a manufacturc who did not consent to the puibication of his identification number in connection therewith. Blanks in the fourth and fifth columns indicate that there was actual production during 1919, hut that the figires ean not be published without revealing information in recard to the output of individual firms. The figures chus concealed are, however, ineluded in the totals.]

Table 7.-Production of finished coal-tar products daring 1919—Continued.

$\begin{aligned} & \text { Schultz } \\ & \text { No. } \end{aligned}$	Common name.	Manufacturers'identification numbers.	Total production, 1919.		Average price per pound.
			Quantity.	Value.	
	AZO DEES-continued.				
	Monoazos-Continued.				
65	Azo coralline	64.			
66	Amido naphthol red 6	64.			
67	Chromotrope 6 B.	$5,112,11$	77, +51	$\$ 154,526$	\$1.99
68	Spirit yellow R.	112, x..			
70	Prilliant orange 0				
73	Helio fast red....				
76	Sudan II.	69, 112, \times			
79	X ylidine orance $2 R$	136, x...			
81	Brilliant cochincal..				
82	Ponceau 2 R .	$5,24,27,68,112,126, x, x$.	552,680	439,515	. 80
83	Poneeau 3 R.	75, 112, x..................	21,152	125, 201	5. 31
88	Acid anthracene brown R	112.....			
¢9	Metachrome brown B.	53			
94	Azo Eosinc.	116.			
102	Diamond flavine C	23,			
115	Sudan brown.....				
106	Autolred..............				
107	Sulphamine lrown Λ.	136.			
109	Palatine red A.......	136.			
111	Fastred BT...	13k, x.....			
112	Bordeaux B..	5, 21, 27, 64, 92, 112, 136, x .	$161, \cdot 62$	$1+6,810$. 91
114	Chrometrone 10 B				
117	Erica 2 GN.....				
118	Geranine. . . .				
119	Diamine rose.	112, 123			
120	Salmon red...				
121	Erica B......	58, 6:			
132	Lake red 1....	$136 .$			
134	Metanil yellow.	59, 53, 54, 64, 112,	474,143	787110	1.65
138	Miethyl orange..	5', 121.....			
139	Orange IV....				
141	Azo yellow.	112			
143	Tropaeolino.	63.			
144	Orange I	$112, x . \ldots . . .$.			
145	Orange II.	$\begin{aligned} & 5,24,27,53,57,+64,69,112, \\ & 117,120,156, x, x, x . \end{aligned}$	1,133,925	717,199	. 63
151	Orange R..........	$69 .$			
152	Permancnt red 4 ${ }_{\text {Laker }}$	x			
15.1	Palatime chromo hown.	23, 112			
15.5	Acid alizarine garnet R	23.....			
156	Palatine chrome violct.	23, 112.......................			
153	Acid alizarine black R.	23............................			
160	Fast brown N.	61.			
161	Fast red A...	$5,27,53,69,92,112,116,129$,	267, 5 s 2	250,954	1.05
163	Azo rabine.	$5,27,13, C 4,92,112,116, x$.	157, 261	267, 129	1.43
164	Fust red VR	112.........................			
166	Fast, rod E.......	5, \times			
167	Crecein scarlet 3 BX				
168	Amaranth.	$\begin{aligned} & 21,24,92,112,116,136,155 \\ & \mathrm{x}, \mathrm{x}, \mathrm{x} . \end{aligned}$	294, 416	517,491	2.98
169	Cochineal red.	5,21, 27, $92,112,136, \times \ldots$.	231,519	305, 445	1.32
178	lithol red R.....	112, 136,150, x.............	269, 169	103,926	. 39
177 180		136.........................		$1{ }^{\text {a }}$	
181	Salicine black U.	$2 \overline{7}, 53,54,64,92,112,116$	730,372		1.25
183	Eriochrome black T	$136,152 .$	131,312	923,	1. 20
184	Eriochrome llack A	$23,64,92,112$.	6sti, 710	933,677	1.36
188	Sulphon acid blue R..	112..........		933, 61	
189	Sulphon acid llue B..	112.			
190	Benzo lrown 5 R....	123.			
193	Stanley red.	123.			
194	Thiazine red I.	116.			
195	Rosophenine SG..				
196	Titan red..........	X.........			
197	Thiazine red G .	64, 123, x .	11, \times	14,266	1.20
198	Mimosa C...	123.....			
200	Lake red D............	136,150.			

$22816^{\circ}-21-3$

Thble 7.--Production of finishad coal-iar products during 1919-Continned.

$\begin{gathered} \text { Schultz } \\ \text { No. } \end{gathered}$	Common name.	Branufacturers' identification numbers.	Total proriuction, 1919.		trerage per price pound.
			Quantits.	Talue.	
	Trisazo dyes.		Puands.		
436	Columbia black FF	112.			
441	Diazo blue liack PRS	116.			
450	Benzo black bue R.	X			
162	Direct deep black EW	5,40,43, $53,112,116,165, \mathrm{x}, \mathrm{x}$	7,250,007	87,521,313	\$1.04
463	Cotton black E......	112,116....................			
464 469	Erie direet green ET	43,112, 11.	69,700	134,408	1.93
469	Chloramine black N . Chloramine green B	116......			
471	Chloramine blue 3 C	116.			
474	Oxamine green 5.	5,53,75,112,116,	305,34	565, 73	1.55
475	Oxamine green GX	13, 43, $53, \mathrm{x}, \mathrm{x}$.	136,638	211,75s	2.11
470	Benzamine brown 3 GO	43, 112, x .			
477	Congo browil Cr....... All ot he: trisazo dyes	5,112,.....	131,960	198, 46	1.51
	Tolal trisazo dyes.........		8, 529,578	10,217, ins	1.16
	Tetrakisazo dyes.				
485	Benzo brown G..... Othertetrahisazo dy	13,43,x.......................	83,:506	102, 330	1.23
	All other azo dyes...	13, 58, 92, 123, x	81,472	124, 193	1.35
	Total of azo dye		27,191,371	36, 116,702	1.31
493	DIPIENXLJETHANE DEES. Aurambe.		127, 567	92,	8
	TRIEIENYLMETHANE DYES.				
495	Malachite green.	$40,50,53,95,112,166, ~$, x, x.	560,301	\$1, S27, 17	3.24
499	Brilliant green.				
502	Gninea green.	31, 112.			
503	Briliant milling green 13.	112.			
505	Light grєell..	158.			
506	Erioglaucine..	112.			
511	Para-fuchsine.	112			
512 513	Magenta. . . New fuchsine	$13,33,50,53,66,69,80,85$, $112,125,134, x, x, x$	155.830	712.0×6	457
515					
510	Sethyl rinlet.	$\begin{aligned} & 27,49,51,66,69,71,112,117 \\ & 146,171, x . \end{aligned}$	571,436	1, 193.179	2. 11
516 521	Crystal Violet.				
521	Aniline blue.	69, 136,			
525	Fast acid viclet 10 B	116...			
530	Acid violet.	31,112.			
535	Methylalkali blue.	136			
536	Alkali blue........	$50,69, k 0,112,136,116, x, x$.	7.740	494, 133	6.35
537	Methyl blue fou silh	50, $80 \ldots \ldots$.			
539		$50,64,112$	15,315	$\{0,61\}$	5.55
	Alloiler triphenylmethane dyes.	$23,112 .$			
	Total triphenylmethane dyes.		1.701,712	6, 494. -0	3.69
	DIPIIENYL-NAPHTHYL-SLETHANE DYES.				
55.9	Victoria biue J'.	23.			
500	Night blue.	x.			
566	Wool green S	5,23...................			
	Xinthone wyes.				
573	Rlodamıne B .	53.			
580	Fastacid violet B	15.			
585	Uranine.	5:3, 69.			
587	Eosine........	5:3, 66, 64, 117.	121,30:	7it. 179	15:31
592	Erythrosine B.	69, x......			
503	Phloxine P....	53.			
597	Ruse Bengale B	69.			
599	(talliene..	$150,169$.			
(0)	Coerulein 13.	169.			
col	Corruleins.	1:0.			
	Total xanthone dyes.		190,134	1,2:5,523	6.50

TABLE 7.-Production of finished coal-iar products during 1919-Continued.

$\begin{gathered} \text { Sehultz } \\ \text { No. } \end{gathered}$	Common name.	Manufacturers'identification numbers.	Total production, 1919.		Average price per pound.
			Quantity.	Value.	
	ACRIDINE DYES.		Pounds.	.	
6 6 2	Aeridine yellow	112			
606	Phosphine.	69, 72, 112	14,648	\$56,588	\$3.86
	THIOBENZENYL LIYEs.				
615	Thioflavine S.	123.			
616	Primuline..	$18,112,123, x, x, x, x$	271,338	491, 870	1.71
617	Colimbia yellow. Other thiobenzen		54,077	143, 831	2.66
	INDOPMENOL DYES.				
619	Indonhenol.	77, 112, 151	126,611	201,737	1.59
	Other indophenol dyes.	92........			
	OXAZINE AND THIAZINE fYES.				
622	Delphine blue B	40, 112, 152.	43,827	164, 181	3.75
626	Galloeyanine...	5, 24, 40, 64, 112, x.	365, 243	1,105,346	3.03
631	Chromocyanine V	112..			
649	Cotton blue.	92, x.			
656	Alizarine green (61.........................			
659	Methylcne blue...................	$24,27,40,53,66,98,112,127$, 159, $166, \times$ x.	+65,992	1,410,760	3.03
660	Methylene green.................	92,112, x..................	2,435	11,684	4.80
667	Brilliant alizarine hine...........				
	rotal oxazine and thiazines. AZINE fYES.		904,755	2,751,677	3.04
672	1zo carmine G	53,68.........			
679	Safranine....	$29.66,74,112,127 \ldots \ldots .$.	131,042	527,231	4.02
681	New fast gray.	68, 116, x, x...	28, 488	48,514	1. 71
683	Safranine 11 N	112.....			
697	Induline (spirit soluhle).	18,64, 112, x..............	436, 201	231, 233	. 53
694	Nirrosine (spirit soluble).	$24,27,64,69,112 \ldots \ldots . .$.	346,167	245,508	. 71
f99	Induline (water soluble)........	1x,53, 64,69...............	130, 704	87, 494	. 67
700	Nigrosine (water soluble).......	18,24, 64,66, 69, 112, 152....	1, 669, 149	987, 457	. 59
	SULPIIUR COLORS.				
720	Sulphur hlack	$\begin{gathered} 13,40,53,64,73,92,112,114 . \\ 151,166, x, x, x . \end{gathered}$	11,504,770	4,141,124	. 29
	Sulphur l, lue	$\begin{aligned} & 13,17,40,45,53,64,74,92 \\ & 112,116,151, x . \end{aligned}$	1,622,762	1,797,469	1.11
	Sulphur brown	$\begin{aligned} & 5,40,53,58,64,74,92,112 \\ & 114,116,144,148,151, x \\ & \mathrm{x}, \mathrm{x} . \end{aligned}$	805,861	378, 129	. 47
713					
	Sulphur green	$40,64,112,116,144,151, \mathrm{x}, \mathrm{x} .$	$277,641$	$279,149$	1. 01
	Sulphur yellow and orange..... Sulphur inaroon	$\begin{aligned} & 40,53,112,116 \ldots \ldots \ldots \ldots \ldots \\ & 40,58, \ldots \ldots \ldots \ldots \end{aligned}$	$276,400$	22S, 441	. 83
	sulphur tan.	14, x,	81,905	27,567	. 34
	Sulphur eolors (rarious shades).	112....			
	Total sulphur colors......		17, 624,41.	6,901, 734	. 39
	ANTHRAQCINONE LYES.				
765	Indanthrene green B..........	33.			
768	Intanthrene violet R..	53.			
$77 \times$	Atizarin.....	112.			
779	Alizarin orange.	112....			
752	Alizarin brown.	40, 150, 169	40, 426	63,674	1.58
7×4	Alizarin SX.	112....			
403	Alizarin lhue W X	112.			
S 12	Indanthrene blue (ic'1)..........	53.			
819	Indanthrene yellow (.	53.			
858	Alizarin saphirol B.............	112.			

Table 7.-Production of finished roul-tar products during 1919- Continued.

Table 7.-Production of fuished coal-iar moducts dwing 1919-continned.

$\begin{gathered} \text { Schultz } \\ \text { No. } \end{gathered}$	Common name.	Manuiacturers' identification numbers.	Total Ca aduction, 1919.		Average price per pound.
			Quantits.	Value.	
	Mebicisals-continued.		Pounds.		
	Anesthesino (ethyl p-amino benzoate).	1, x			
	Arsphenamine................	47, 103.			
	Bacteriolovical stains	72.			
	Benzyl benzoate.	61, 155.			
	Bismuth b-naphthol....	104, x .			
	Bismuth tribromphenol.	104.....	40,907	\$37, 881	89.93
	Cuchonhen (phenylcinchoninic acid).	1,2i.....			
	Copper sulphocarbolate..........	110.			
	Creosote carbonate.	24, 116			
	Dibrom oxy mercury fuorescin.				
	Droxicquinoline sulphate......	59			
	Dichloramine T.	1, 24, 101, 170	2,103, 101	91,670	. 04
	Guaiacol carbonate	53....			
	Guaiacol crrstals. U. S. P	53, 116.			
	Guaiacol ligund.	23, 116.			
	Halasone..............	1,21,109	459	815	1. 8.5
	Indigo disulphonie acid.				
	Methylsalicylate.	36, 104, x,	879, 333	332,123	. 38
	b-Naphthoi benzoate	24,61, 104, 121	36, 701	156, 562	4. $2 \overrightarrow{7}$
	b-Naphthol salicrlate	121			
	Neoarsphenamine.	47, x			
	p-Nitro benzoie aci				
	Phonolphthatein.	109, 168.			
	Phenolsilphonates.	1, 104, x	33,711	16,333	- 18
	Phenolsulphonephthalein	81....			
	Procaine.	1, x, z.	3, 443	330, 334	95.8
	Salol.	104, 109, x	124, 034	112,359	. 91
	Sodium sailcylate.	44, 61, 104, 109, x , 2	301, 51s	169, 508	. 56
	Sodiun sulphocarbolate	101			
	Strontium salicylate.	x.			
	Zine sulphocarlolate.	101.			
	Total medicimals.		6,775,948	$7,883,071$	1.16
	FLAVORS.				
	Conmarin.	109, x			
	Ethyl benzoate.	61.			
	Ethylsalicylate.................	61.			
	Methyl salicylate (see medicinals).				
	Saecharin.	21, 26, 109, 131, x, x.	517,053	1,017,031	1.85
	Allother ílavor				
	rotal havors.		610,825	1,315,654	2. 16
	PERFUME MATERAMS.				
	Amylsalicylate.				
	Benzylacetate.	6i.5, 111, 155,	17,013	3J,137	2.30
	Benzyl benzoate.	141, 155			
	Benzsl butyrate.				
	Benzyl formate...				
	Benzyl propionate.	61, \times			
	Benzyl valerave.	61.			
	Sromistyrol.	61, 141, 155			...
	Cinnamicaleohel.				
	jiethyl phthatate.	61.			
	Jiphenyl oxide..	141, x			
	Ethylanthranilate.	61.			
	Isohutyl benzoate. .				
	Methylaretojehenone	$61,153, x$.			
	Methylanthranilate.	61, 15, ${ }^{\text {a }}$.	635	8, 260	11.83
	Methylphenylacetate	61, 155, x .			
	Aethyl phthalol................				
	b-Naphiliol cthyl ether (nerolin).				
	b-Naphthol methyl ether (yara yara).				
	Phenylaceialdehyde.	61, 155.			
	Phenyl ethytacelato..				

Table 7.-Proluction of fimished coul-ter products duiny 1919 --Continued.

The following table shows a comparison of the published figures for 1918 and 1919:

Table S.-Comparisom of produclion of finished ronl-7ar moducts, 1918 and 1919.

$\begin{aligned} & 0 \\ & B_{0} \\ & N \\ & \text { N } \\ & \text { B } \\ & 0 \end{aligned}$	Nime oid dye.	Production, 1918.			Production, 1919.		
		Quantity.	Valur.	$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound. } \end{gathered}$	Quantity.	Vialue.	$\begin{gathered} \text { Price } \\ \text { per } \\ \text { pound. } \end{gathered}$
	Toial funished coal-tar products	$\begin{gathered} \text { Pounds. } \\ 75,502,9.59 \end{gathered}$	8 $83,815,746$	81.09	Pourds. $\therefore 2,532,390$	S3 $2,585,544$	81.03
4	Naphtholgreen.	22, 46.5	54,013	2. 49	34, 646	3s, 331	1.121
9	Direct yellow R	307, 702	804,378	2. 61	$\pm 19,92 \pm$	-97,67.1	1. 741
32	Bratei yellow	27200	30,979	1. 12	31, 156	47,96-1	1.54
33	Chrysciuine Y	373,495	290,363	. 72	314, 581	32th, 223	1. 037
$3 \cdot 1$	Chryscidine 1?	137,035	166, 826	1.22	220, 5-12	215.976	1.12
36	Sudan I.	29,670	35,185	1.25	75, 805	4 $2,2 \times 5$	1. 282
37	Croceine orange.	30, 421	25,358	. 89	17,224	15,273	. 584
48	Alizarin yellow G6	2,233,203	1,525, 617	. 63	153,170	$116,90 \%$. 717
58	Alizarin yellow R	335,910	352,940	. 91	130,424	110, 152	. 45
$\therefore 2$	Konceau' 12	1,189,054	937,502	. 79	552, 650	439,515	.395
112	Bordeans 3	201, 115	205,355	1.02	[61, 862	115,510	. 907
145	Orange Ií.	91ti, 890	619,031	. (i)	1, 133, y25	717,199	. 633
161	Fastred A	242, 215	249,251	1.03	257, 2	24er, 51.4	1.05
163	Azorubine	79,75	120,305	$1.5!$	[57, 264	$267,12$.	1. 427
168	Amaranth.	73, 239	6t, 440	. 54	29t, 416	47, 491	2.95
173	Lithol red R	353, 104	833, 8.3	2.3.	260, 169	$103,92 \mathrm{~b}$. 386
181	salicinc black 1	4b3, 159	759,386	1.62	730, 272	923, 885	1.25
	Total monoazo dyes.	8,531,763	9, 22, 200	1.07	8, 51,510	11,500,344	1.3016
217	Algama black 10B.	1,15, 309	1, 11,3, 04,	1. 215	L, 5:-7, stit	2, 357,443	1.464
227	Brilliant croceinge	-4, 643	$1+12,45$	1.92	15.,509	374.494	2.409
2 3	Bismaris brown Y	375,204	305,417	. $s 1$	412,5\%4	115, 2.6	1.011
284	Bismark brown 2R	295, 0s0	350,664	.97	631,304	659, 332	1. 044
303	Paper yellow.	1,651	5, 66S	3. 11	4, ,723	61, 711	1. 266
304	Chrysophenine ${ }^{\text {a }}$	$41,66^{4} 3$	238,012	5.71	86, 995	219,215	2.525
307	Congored....	-57, 153	1,17, 549	2.01	4,3, 731	979.255	1.120

Talee 8.-Comparison of production of fimished coal-tar products, etc.-Contd.

Table s.-Comparison of production of finished coal-tar moducts, ete-rontel.

DIEs.
In Table 9 the dyes have been arranged according to the method of application on the fiber into the following classes: (1) Direct dyes; (2) vat dyes, further subdividet into indigo and other vats; (3) acid dyes; (4) sulphur dyes; (5) mordant dyes: (6) basic dyes; (7) color lake and spirit soluble dyes: (8) unclassified dyes. The available information on dyes including imports during the 1914 fiscal year and domestic production from 1917 to 1919 inchusive has been arranged in this manner and the totals for each group are shown in Table 9.

Althongh the distinction between certain groups is not clear cut, particularly between acid and mordant dyes, still it is believed that this grouping more nearly reflects the progress in the industry than does that of Tables 7 and 8 , which chassify the lyes according to
cherical structure. This is especially true from the consumer's standpoint, as he is directly concerned with the application of the dye on the fiber. This same information is also shown graphically in figure 1, page 45.

Tables).- (omparison of imports, 1914, with the modurtion of lyes by classes, 1917, 1918, (ond 191!).

Class.	1911		191\%		190		$\underline{1919}$	
	Timports.	Per cent of total.	United States prodection.	$\begin{aligned} & \text { Per } \\ & \text { cent of } \\ & \text { total. } \end{aligned}$	Uniled States production	$\begin{aligned} & \text { Per } \\ & \text { cent of } \\ & \text { total. } \end{aligned}$	United States production.	$\begin{aligned} & \text { Per } \\ & \text { cent of } \\ & \text { total. } \end{aligned}$
Direct. at (including indigo	$\begin{gathered} \text { Pourals. } \\ 10,26+, 757 \\ 10,352,663 \end{gathered}$	22.34 22.53	$\begin{aligned} & \text { Pounds. } \\ & 1 \hat{1}, \frac{181}{} 189,761 \\ & 2 \times 9,296 \end{aligned}$	24.32 .63	$\begin{gathered} \text { Pounds. } \\ 12,2 \times 5,683 \\ 3,251,327 \end{gathered}$	21.01 5.61	Pounds. $14,414,934$ 9,252,982	$\begin{aligned} & 22.78 \\ & 14.59 \end{aligned}$
$\begin{aligned} & \text { (a) Matigo........ } \\ & \text { (b) Otho rets... } \end{aligned}$	$\begin{aligned} & 8,407,359 \\ & 1.945,304 \end{aligned}$		274,771 14,525		$\begin{array}{r} 3,49,588 \\ 197,419 \end{array}$		$\begin{array}{r} 8,863,821 \\ 359,153 \end{array}$	
Acid	9.246,501	20.21	9,372,121	20.38	9, 709,071	16.76	12, 195, 968	19.24
Siriphur	7,053,479	15.35	15,598, 222	53.91	23,698, 826	40.53	17,624,418	27.80
Mordent	4.400, 42	9.6	4,164,902	9.06	5. 14, 192	9.32	3,985, 050	6.29
Dyes for color lahes and spirit soluble	3, 0022,480	6.53	2,0، ?,0ı3	4.52	2, 879,639	4.93	4,036,532	6.37
\% nelassificul...	$\begin{array}{r} 1,512,605 \\ 27,503 \end{array}$	3.23 .05	$\begin{array}{r} 934,360 \\ 2,365,541 \end{array}$	2.103 5.15	$1,065.466$ +.232	1.83 .01	$\begin{array}{r} 1,813,199 \\ 49,111 \end{array}$	2.85 .07
Total	45,950, 995	100.00	45, 977, 246	100.00	5, 464, 415	100.00	63,402,194	100.00

Diract dyes---From a study of Table 9 and frgure 1 it is seen that in 1917 the domestic production of direct dyes slightiy exceeded the 1914 import. There has been a small but steady increase each succeeling year culminating in an output of ofer $14,000,000$ pounds in 1919. This is an increase of about 40 per cent over the prewar imports and of 10.5 per cent orer the 1918 output. This class of colors ranked second in quantity of output in 1919 and accounted for about 22 per cent of both the 191 import and 1919 production. Of move importance than the increaced outat was the decrease in quantity of the dyes of lessec importance in this group, which was more than offset by an increased outpot of the better dyes and the appearance of new dyes of a foster type. Thens there was a greater variety of direct dyes from which the consuner could make his selection for dyeing cotton, inalf wool, and half silk goods.

Direct Deep Black EIV with a total output in 1919 of $\frac{7,250,007}{}$ pounds valued at $\$ 4,521,343$, an increase over 191%, accounted for over 50 per cent of the production of direct dyes. Benzo Blue 2B lanke? second in this group with an output of $1,380,335$ pounds valued at $\$ 1,386,291$, a slipht decrease from 1918.

Other important dyes in this class which showed an important gain in quatity produced in 1919 were as follows: Congo Red, increased by 50 per cent; Primuline, hy 3 , per pent; Benzo Blue 3R, by 100 per cent; and (hrysamine C, by 100 per cent: and Oxamine

Black B. H. N., Oxamine Green B, Benzazurine, and Oxamine Green G, also showed large increases over the output of 1918 , which could not be published.

The following direct colors made their first appearance in 1919: Those produced in considerable quantity include Chloramine Black N, Diamine Fast Red F, Chloramine Blue 3G, Cotton Black E, Chicago Blue 6B, Dianil Blue B, Chloramine Green B, Diamine Violet N, Oxydiamine Orange R, Chicago Blue R and W, and Erica B : others produced in smaller quantities than those already mentioned include: Erica 2GN, Diazo Blue Black RS, Congo Corinth, Benzo Black Biue R, Diamine Brown, Benzo Fast Scarlet, Titian Red 3B, Azo Blue, Brilliant Messian Purple, Salmon Red, Benzo Brown 5R, Rosephenine 10B, Thio-flavine S, Benzo Blue R, and Geranine. Several other important direct dyes were produced in large guantities. These could not be identified according to Schultz but are included in the total for this class.

Indigo and other aut dyes.-It is in this class of dyes that the domestic industry has been particularly backward, and in 1919 the quantity of vat dyes, with the exception of indigo which is the most important, was still inadequate for domestic needs.

The production of indigo (20 per cent paste) during 1919 of $8,863,82+$ pounds, a slight increase over 1914 imports, may be regarded as the most important development of the American dye industry in 1919. The output exceeded the domestic demand and large quantities of indigo were exported. Of all the dyes produced in this country indigo ranks second only in quantity to sulphur black, but exceeds it by over $\$ 1,000,000$ in value. Bromindigos, which are of great value for cotton dyeing and printing, were manufactured in considerable quantity in 1919.

The manufacture of vat dyes, not including indigo, is less developed and the output more inadequate for our domestic needs than any other class. During 1919 four vat dyes (yellow, blue, green, and violet) were placed on the market during 1919 by one firm, but the output was only a small fraction of the domestic demand. A second firm announced the production of three vat dyes in 1920. Other concerns have also worked on vat colors, several of which, including two yellows and a red, have already been offered for sale. This indicates that fundamental developments in this field are under way and an increased output of vat colors during 1920 may be expected. The manufacture of these dyes has required the highest technical skill, long research, and a large investment of capital. On account of the present small domestic production they are probably the most needed of all, although the normal quantity consumed
annually is smaller than that of other classes of dyes. They are used for dyeing and printing fast colors on cotton and. to a lesser extent, on silk.

Vat dyes, other than indigo, were imported during 1914 to the extent of nearly $2,000,000$ pounds or about 4 per cent of the total for that year. The production of these dyes in 1919 was about 390,000 pounds or only one-fifth of the prewar requirements. The future development of a balanced industry will necessitate a greatly increased output of these dyes. This will be possible only when an increased output of anthracene or synthetic anthraquinone has been attained. The development of a variety of vat colors should also include the manufacture of thio-indigoids.

Acid dyes.-The prewar imports of acid dyes were equaled by the domestic output in 1917. Since then the production has increased each year, amounting in 1919 to $12,000,000$ pounds. which is an increase of nearly one-fourth the 1918 output and about 30 per cent in excess of the $191+$ import. Acid dees rank third in the quantity produced in 1919 and accounted for about 19 per cent of the total output of dyes. This group of dyes ranks next to sulphur dyes, in being the most fully developed in the domestic industry. The consumer should have no trouble in securing a good variety and quantity of acid dyes.

In quantity produced during 1919, the most important dyes in this class were Algama Black 10 B . with a production of 1.875 .860 pounds, an increase of 62 per cent orer 1918: Indigotine, or indigo extract, $1,699.870$ pounds. an merease of 18.5 per cent: an! Nigrosine (water soluble). 1.660.149 pounds, an increase of 39 per cent orer 1918. Other dyes in this class which showed an important gain in 1919 as against 1918 were: Metanil Yellow, which increased by 100 per cent; Cochincal Red, 40 per cent : and Alizarin Saphirol B, Fast Reat A, Azo Robine. Brilliant Crocein, and Victoria Violet also showed marked increase over 1918 figures which would not be published.

Eosine, Bordeanx B. and Poncean 2 R showed a marked decline in output during 1919.

Among other important dyes of this class are the following: Naphthol Yellow. Alkali Blue, Tartrazine. Amaranth. (xuinea Green, Scarlet EC, Fast Red VR. Resorcin Brown, Azo Yellow and Violet, sulphonic Acid Blue R, Buffalo Black 10 B, Wool Red B, Chromotrope 6 B, Fuchsine B.

Among the acid dyes produced for the first time in 1919 there may be mentioned Cranine, Sulphonic Acid Blue B. Chromotrope 10 B , Brilliant Cochineal, Wool Green S. Erio-glaucine, Erythrine B, Cloth Red G. Crocein 3 B. Neptune Green. Light Gireen, Fast Sulphon Black F. Ponceau G.

Sulphur dyes.-In quantity output the sulphur dyes have ranked first each year beginning with 1917, although they ranked only fourth in prewar imports. The domestic outpat in 191 was over $15,000,000$ pounds, or more than donble the imports of 1914 . There was an increase to a maximum in 1918 of more than $23,000,000$ pounds. During 1919 the output decreased by one-fourth-to 17,624,418 pounds, which is still two and one-half times the prewar import. This reduction is more than accounted for in a decrease of over $8,000,000$ pounds in sulphur olives and khakis required in cotton uniform cloth.

Of the total production of dyes in 1910, 28 per cont was sulphur colors: in 1918, 40 per cent, and of the 1914 imports 15 per cent. The production of Sulphur Black is larser than that of any other individual color. In 1919 it was $14,504,570$ pounds, an increase of 17 per cent orer 1918. This output was 260 per cent greater than the 1914 import of sulphur blacks. The production of Sulphur Blue increased over 50 peir cent, to $1,622.762$ pounds. Severat new sulphar colorsmaroon, bronze, orange, and blues-were added to the list in 1919. The sulphur dyes produced in 1919 were of greater purity and higher concentration than those of the prerions year. The production of this class is the most highly developed of all classes of colors, and is in excess of the domestic needs so that large quantities have been expoited. Sulphur Corinth was practically the only sulphur dye for which no production was reported in 1919. In the absence of vat dyes sulphur dyes hare been of special ralue to the cotton trade.

Mordont dyes.-As is shown in Table ? this class of dyes in 1917 had reached an output only slightly less than the 1914 import and iii 1918 increased to about $5,500,000$ pounds, or about 22 per cent in excess of the prewar import. During 1919 the production declined nearly 27 per cent to slightly less than $4,000,000$ pounds. This decrease is accounted for by a reduced output of those dyes used in military uniforms-chiefly by Alizarin Yellow (rG and Alizarin Yellow R (not true alizarin derivatives) used for khaki shades on woolen cloth and, to a lesser extent, by Gallocyanine used for blue Nary uniforms. Of these dyes the largest decrease in production was that of Alizarin Yellow GG, from orer $2,000,000$ pounds in 1918 to 160,000 pounds in 1919. If the dyes of this group used for military uniforms are eliminated, then the remaining mordant dyes show a sulstantia! increase.

Marked progress has been made during 1919 in solving the diverse terdmical problems involved in the manufacture of mordant dyes, particularly those made from anthracene. Probably the most important development in mordant dyes is the large increase shown in the output of Alizarin. The availability of this dye which is one
of the fastest known, filled an important requirement of dye consumers. Mordant dyes which appeared for the first time in 1919 include Alizarin SX, Galleine, Brilliant Alizarin Bhe, Alizarin (treen B, Alizarin Orange, Alizarin Garnet, and Coernlein, all of which are important in arriving at a complete dye industry. The successful production of sereral of these dyes represents intensire research work over an extended period and the investment of a large amount of capital for their commercial output.

Considerable increase was made in those dyes the manufacture of which had been previously established. The most important of these include Salicine Black T. which increased bt per cent: and Erio Chome Black A, and Diamond Black, which showed a large increase orer 1918.

As previonsly pointed out the production of mordant dres of the faster types derived from alizarin is entirely dependent upon an adequate supply of anthracene or synthetic anthraquinone.

The protuction of mordant dyes for 1919, grouped by color, was as follows:

Black:	Founds. 1, 501, 064
Yollow:	570,663
Blues	478, 367
Browns	462, 342
Reds	249, 093
Greens	214,336
Violets	24.18 .7

Color Take and spirit soluble dyes.-This class of dyes. as can be seen by referring to Table 9, in quantity produced are the least important, amounting in 1919 to less than 3 per cent of the total. But their importance can not be estimated by quantitative production, as they are used largely in the manufacture of color lakes, a very important class of pigments for paint, lithographic ink, and other industries.

The output of these dyes has doubled from 1917 to 1919, or frem 934,360 pounds to $1,813,199$. The 1919 output is 20 per cent in excess of the 1914 imports. Induline spirit soluble and nigrosine spirit soluble, with an output of 436,201 and $3 \pm 6,167$ pounts. respectively, account for 43 per cent of the total production of these dyes. Important spirit soluble dyes also include Sudan I, Butter Yellow. Sudan Brown, Oil Red, Sudan II. Sudan IY. Spirit Yellow Find G.

There were three important dyes user for coln takes prodnced for the first time in 1919, namely-Lake Red C, Permanent Red $\ddagger \mathrm{B}$, and Pigment Chlorine.

Dyes used in color lake manufacture induke Lithol Red R, with an output in 1919 of 269.169 pounds ralued at $\$ 103,926$. Sther impor-
tant dyes of this class include : Para Red, Helio Fast Red, Lake Red D, and Pigment Scarlet G.
Decreased consumption of natural dyes.-In 1916 the scarcity of coal-tar dyes led to an abnormal consumption of natural dyes. Since then the steady increase in the domestic output of coal-tar dyes has caused a marked decrease in the use of natural dyes. This forced use of natural dyes demonstrated their merits for certain purposes and has extended their field of application. Competition between natural and synthetic dyes results largely, but not entirely, in a victory for coal-tar dyes.

Imports of the more important natural dyes have shown a general decrease from 1916 to 1919. The total imports of crude logwood for consumption for the calendar year 1912 were 29,022 tons, as compared with 33,168 tons in 1918, and 40,921 tons in 1914. Logwood, the most important natural dye, is used chiefly for the production of blacks on silk, leather, and wool. It has adrantages for black dyeing on silk and leather not possessed by artificial dyes. It also has extensive use for the production of black on wool. Natural indigo imports for' consumption also declined from 1,637,914 pounds in 1918 to only 234,991 pounds in 1919 , and in all probability will soon be negligible as was the case prior to the war.

Quercitron, the most important natural dye of domestic origin, is prepared from the bark of the black oak (Querous tinctoria). It has extensive use in the dyeing of yellows, olive, and khaki shades.

OTHER FINISHED COAL-TAR PRODUCTS.

Color lakes.-The coal-tar products included in this group are a class of pigments used for paints, lithographic inks, and many other purposes. They are made by "fixing" a coal-tar dye on an inert base material, such as aluminum hydroxide, or barium sulphate (blanc fixe).

The total output of coal-tar color lakes in 1919 was $7,569.921$ pounds, or a decrease of 25 per cent from 1918. Red lakes were first with an output of $3,151,149$ pounds, or 42 per cent of total lakes. Of this quantity about 17.9 per cent was Lithol Red and 15.3 per cent Para Reds. The other important lakes in order of production in 1919 were scarlet, maroon, yellow, blue, eosine, green, violet, and orange.

I'hotographic chemicals.- The total output of coal-tar products used as developers in photography increased from 316,749 pounds in 1918 to 335,509 pounds in 1919 . Hydroquinone, the most important product in this group. decreased 11 per cent in output to 272,329 pounds. Methyl p-amidophenol sulphate (metol), another impor-
tant photographic developer, showed more than a 400 per cent increase in production in 1919, as against that of 1918 .

Medicinals.-The production of coal-tar medicinals in 1919, exclusive of deducting $2.103,101$ pounds of disinfectants-a product not reported in 1918-showed an increase of 1.0 .51 .53 .5 pounds, or 29 per cent more than the 1918 production. The total output, including the disinfectant, was $6, i \pi, 968$ pounds. valued at $\$ T .883,071$.

Acetylsalicylic acid (aspirin) in 1919 accounted for over one-half of the total value of merlicinals, the quantity produced being $1,575,105$ pounds, or nearly double the 1918 ontput.

A large increase was reported in the production of acetphenetidine, chloramine T. phenolphthalein. neoarsphenamine, b-naphthol benzoate, guaiacol crystals T. S. P.. and guaiacol liquid; while the following products showed a decrease in output: Arsphenamine. bismuth b-naphthol, bismuth tribromphenol, dichloramine T, phenolsulphophthalein and phenolsulphonates.

The following are among the medicinals which were reported in 1919 for the first time: Anesthesine (ethyl p-amino benzoate). cinchophen (phenylcinchoninic arid), dibromoxy-mercury-fluorescin, copper sulphocarbolate, sodium sulphocarbolate, zinc sulphocarbolate, creosote carbonate. guaiacol carbonate, b-naphthol salicylate, amyl salicylate, and ammonium salicylate. The progress made during 1919 in the production of a greater variety of coal-tar medicinals is an important addition to the American coal-tar industry.

Flavors and parfume matprials.-Further progress was made during 1919 in the manfacture of flavors and perfume materials derived from coal tar. There is no sharp difference between these products, many of them being suitable for both flavors and perfumes. One of them, here considered as a flavor, is the substance saccharin, which in recent years because of the scarcity and high price of sugar, has had extensive use as a sugar substitute, and also as a sweetener in chewing tobacco. The output of saccharin was 547,988 pounds, valued at $\$ 1.01 \mathrm{~T}, 091$, or an increase of nearly 29 per cent over 1918 . This increase was made possible through the release from military control of toluene, the raw material. The average price of saccharin decreased to $\$ 1.86$ per pound as compared with $\$ 10.5$. in 1918.

Coumarin, used both as a flawor and as a perfume in scented soaps, has more than doubled in output from 1917 to 1919. Syuthetic coumarin has practically replaced the natural protuct derived from tonka beans.

Benzyl benzoate and benzyl acetate, ordinarily considered as perfume materials, were used in large fuantities as solvents in the manufacture of varnish for aeroplane wings. Recently benzyl benzoate has been used with considerable success as a nonnareotic antispas-
modic. The output of both products decreased in i919. The output of henzel benzoate in 1919 was less than one-twelfth the 1918 production, white benzyl acetate decreased nearly 50 per cent. Perfume materials whose output increased in quantity during 1919 include: bromstyrol, cinnamic alcohol, methyl acetophenone, methyl anthranilate, and methyl phenylacetate. Several perfune chemicals were reported in 1919 for the first time.

Symthetio resins.-Although the total 1919 output of synthetic resins was about the same as in 1918, the production of individual resins differed widely. Those resins, derived from phenol by condensation with formaldelyde and hexamethylenetetramine increased in quantity as compared with the 1918 figures. As a direct effect of this increase there was a decrease in output of resins obtained from cresol, a subsittute for phenol during the war. Resins made by condensation of solvent naphtha and paracoumarone showed an increased output in 1919. The synthetic phenolic resin industry, the products of which have many difierent uses, was created by inventions of American chemists. The development in the last few years has been achieved by laborious and painstaking research conducted with an intimate knowledge of the requirements in other industries in which these products are now used.

Synthetic tanning materials.-Synthetic taming materials are of comparatively recent origin, having come into commercial use in Germany and England since 1912. They are made by the condensation of certain coal-tar derivatives and formaldehyde in the presence of an acid. They have proved their value for tanning, but they are sometimes sold in combination with a small amount of natural tanning extract. Their use results in (1) great economy of time required for tanning; (2) a satisfactory leather of light color, and (3) a reduction in the quantity of natural tanning extracts required. As the supply of domestic natural tanning materials is decreasing, the domestic tamning industry is becoming more and more dependent upon natural taming materials of foreign origin. These synthetic products, therefore, promise to be of great importance in the future of the domestic industry. A single firm in this country reported the manufacture of these materials in 1919.

ENALOMEES AND RATEN (OF PdY.

Employees and rates of pay.-Each of the 214 firms reporting the mamufacture of coal-tar chemicals was asked to report the number of its employees receiving specified rates of pay on December 15,1919, or the nearest representative date for which records were available. Twenty-four firms found it impracticable to give
the information. In most of these cases the primary products were not derived from coal tar and the departments were not separately organized in such a way that the number of men engaged in the manufacture of any one class of products could be definitely stated. Certain other firms had gone out of business during 1919.

One hundred and ninety-one firms reported a total of $24,736 \mathrm{em}-$ pioyees engaged in the manufacture of coal-tar products, of which 2,605 , or 10.5 per cent. were chemists or engineers. This is probably a larger proportion of technically trained men than will be found in any other important manufacturing industry in the United States. Employed in the main under the immediake or general direction of these technicaily trained men were 22,131 skilled artisans and unskilled laborers. This is an increase orer 1918 of 389 in number of the first group, but a decrease of 2.861 in the number of employees without technical training.

Table 10 shows the number and percentage of employees engaged in manufacturing operations receiving specified rates of pay in each of the groups of technically trained and untrained men; and the percentage of the total of each group of employees receiving each specified rate of pay or more. The proportion of technically trained men receiving the higher rates of compensation is much greater than the proportion of untraned men. For example, 5t.4 per cent of the technically trained men receive $\$ 40$ or more per week, whereas only 12.7 per cent of the employees without technical training received $\$ \pm 0$ or more per week. Thirty-two per cent of the technically trained men received $\$ 50$ or more per week, whereas only 2.6 per cent of the men without technical training received that sum.

Table 10.-imployecs amt rales of pay.

Wages per weck.	Number of employees at each spccified wage engaged in mamufacturing operatious.			Percentage receiing each specificd wage.		Percentage receiving earh specified wage or more.	
	Chemists and technically trained men.	Men without technical training.	$\begin{aligned} & \text { All em- } \\ & \text { ployees. } \end{aligned}$	Of all chemists aad technically trained men.	Of all men without tceimical training.	Of all chemists and techmically trained men.	Of all men without technical training.
Under sin.	1	120	121	0.01	0.54	100.00	100.00
\$10, hat mader \$ 15.	6	440	414	. 23	1.99	99. 96	99. 16
\$15, hat under $\$ 20$.	95	1,177	1,272	3. 65	5.32	99.73	97.47
\$20, but under $\$ 25$.	165	5,221	5,389	6.45	23.59	96.05	92.15
\$25, lut umder 830.	2.1	5.407	5,654	9. 63	24.13	49.63	
\$30, , hut under $\$ 35$	312	4,042	4,351	11.97	15.27	50. 610	44. 13
S3is, but under $\$ 40$.	277	2,922	3,199	10.63	13.20)	(\%.5. 13	25.56
S 010 , bat under 815	440	! 4.7 .7	1, $\times 97$	16. 49	6.58	57. 110	12. 66
\$15, hut under $\$ 50$	220	761	$9: 1$	8.45	3.14	10. 51	6.08
\$50, but under $\$ 75$	205	554	1,059	19.39	2.50	32.06	2.64
\$75 and over.	330	30	360	12.67	. 14	12.67	. 14
Total.	2,60.	22, 131	24,736	100. 60	100.00		

A comparison with the corresponding figures for 1918 shows that wages during 1919 were substantially higher than in 1918. Especially was this true of employees without technical training, and technically trained employees who received less than $\$ 500$ per week. For example, during 1918, 15.4 per cent of all employees without technical training received less than $\$ 20$ per week whereas in 1919 only 7.8 per cent of such employees received less than $\$ 20$ per week. Moreover in 1918, 5.9 per̀ cent of all chemists or technically trained men received less than $\$ 20$ per week whereas in 1919 only 3.9 per cent were receiving less than this weekly rate. During the same time the group of men without technical training receiving rates of pay greater than $\$ 20$ per week increased by 7.6 per cent whereas chemists and technically trained men increased by only 2 per cent. At the high rates, however, this increased percentage is quite reversed. For example, there was an increase of 6.3 per cent in the group of technically trained men receiving $\$ 10$ per week or more as compared with an increase of 0.5 per cent of employees without technical training.

In Table No. 11 a comparison is made of the percentages of technically trained men and men without technical training for 1918 and 1919. There was little change in 1919 as compared with 1918 in the percentages of both classes of men receiving the higher rates of pay ($\$ 50$ and more per week).
Table 11 shows very clearly the great dependence of the industry on its technically trained employees.

Table 11.-C'ompurison of employees, retes of pay, 1918 and 1919.

Wages per week,		Percentage receiving each specified wage or more.					
		Of all chemists and technically traiued men.			Of all men without technical training.		
		1918	1919		1918	1919	
\$10, hut under $\$ 15$.		99.7	99.9	0.2	98.2	99.5	1.3
\$15, but under $\$ 20$.		98.4	99.7	1.3	94.6	97.5	2.9
\$20, but under $\$ 25$.		94.1	96.1	2.0	S4. 6	92.2	7. 6
\$25, hat under $\$ 30$.		86.1 76.9	89.6 80.0	3.5	63.6 43.0	6.8 .6 44.1	5.0 1.1
\$as, but under \$ 40.		62.9	68. 0	5.1	22.3	25.9	3.6
\% 40 , but under $\$ 45$		51.2	57.1	6.2	12.2	12.7	1.5
\$45, hut under $\$ 50$		40.4	40.5	. 1	6.5	6. 1	. 4
\$50, but under 875		32.6 16.9	32.1	${ }^{1} 1.5$	2.6 .1	2.6	
\$75 and over.....		16.9	12.7	14.2	. 1	.1	

1 Pecrease.
RESEARCII WORK.
Of the total of 214 firms, 65 had separately organized research laboratories for the solution of technical problems in the manufacture
of their products and for the discovery of new products. During 1919 the net operating expenses of these research laboratories, together with the cost of research work done in the laboratories not separately organized for research, was $\$ 4,2 \pi 4,247$. This includes salaries, apparatus, and materials, after deducting the value of salable products made in research laboratories. This figure is probably an understatement of the real cost of experimental work, since it does not include in all cases the cost of experimental work done as a part of manufacturing operations and not shown on the books of the companies as a charge against research.

NOTES ON DYE INDUSTRIES IN OTHER COUNTRIES.

Germany.-About 90 per cent of the productive capacity of German dye factories is located within the territory occupied by the allied and American troops. Inspection by the military authorities has disclosed the fact that during the war plants which formerly had manufactured dyes were engaged in a large scale production of explosires, and of poisonous gases. An inventory of the stocks of dyes on hand as of August 15, 1919, showed that the total was approximately 20,000 tons, which is probably about one-tenth of their annual prewar production.

Production of dyes in Cermany during the first year after the signing of the armistice was practically negligible compared with the prewar output. Begimning with February, 1920, detailed statements of ene-quarter of the monthly production (this portion is required to be reserved for optional purchases of the allied and associated Governments by the peace treaty, Amex VI, Part II) of every dye in each factory were made to the Reparations Commission. Copies of these monthly statements through October, 1920, have been received by the Department of State, which has given permission for their publication by the Tariff Commission. A summary of these reserved stocks in German dye plants is shown in Table 12.

During February, 19:0, the quantity of dyes reserved by German plants totaled $8 \mathbf{i} 6,449$ pounds, indicating a total output of over $3,500,000$ pounds for that month. A progressive increase is shown in each succeeding month to a maximum of $3,026,24 \bar{\gamma}$ pounds in August, which indicates a total output of over $12,000,000$ pounds monthly. Since August there has been a slight decline in reserved stocks to $2,779,132$ pounds in October. The rate of production from July to October inclusive is only about one-third of Germany's prewar output.

Group.	Classification of colors.	Felruary.	March.	April.	May.	June,	July.	Angust.	September.	Octcber.	Total for s months.
I	- $1 \mathrm{ilzarin} \mathrm{red}$.	29,629	100,347	79,070	121,401	241,194	206, 2:1	210,329	198, 032	215,023	1, 403, 8s
II	Indigopaste	33, 30%	124,258	306, 371	33s,318	241,204	513, 717	777, 734	(4)2, 729	124,599	8, 414. 293
111	Yat colors, except Indanthrene Blue (\% ${ }^{\text {(D }}$...	15,316	9,361	19,577	62,15	41, 1186	T2,595	54, 0,38	62, 6108	S4,369 1,131	$\begin{aligned} & 422,650 \\ & 68,224 \end{aligned}$
IV	Indanthrene Bhe........................... .	3,135 17.010		3,307 40,622	54, 64.3	11, 92.02	(3), 411	69,612	-35,658	55, 440	507,510
V	Whizarin colors ot her than red	17,210 262,123	22,862 $3+6,301$	40,622 400,221	54,643 $4.51,135$	- 541,5321	684, 709	573, 09012	593, 694	666, 239	4, $52 \times, 9$ \%
V11	birect colors for cutton	262,128 63,202	346 51,495	400, 51,586	41, 41,687	8-2,131	123, 983	113,97:3	(15, 439	117,562	750, 2.58
vill	Direet colors heod	149,227	202,819	20.5,09.	360, 192	419,812	512.504	469,59	402, 647	487,131	3,359,73.)
IN	Chrome colors for wool	61,313	91,257	95,605	182, 2, 7	18:, 647	19.3,246	300, 504	20\%, 760	216,057	1,343,676
स	Basic colors...........	19,912	44,374	72, 249	106,555	124,035	126, 763	141,595	103, 661	151, 145	905,289
± 1	Sulphur colors	163, 2	149,452	235, 423	190,51.7	305,979 170,742	328,170 136,196	291, 11083	295,804 73,565	262, 64 92,690	$\begin{aligned} & 2,201,741 \\ & 1,111,4(i i) \end{aligned}$
V111	Lake colors..	56,454 1,537	164,229 12,599	156,163 85,527	$150,00$. 80,672	170,742	136, 190	110, 88	10,000	32,090	1, 189,337
	Tota	S76,449	1,319,351	1.813,	$\stackrel{2}{2}, 111,165$	2,510, 385	3,016,015	3,026,247	$2.922,210$	2,750,132	20,378, 022

${ }^{1}$ Peace Treaty, Annex VI, Part II

England.-At least six English firms were manufacturing dyes in 1914, and in addition two other factories at Ellsmere Port and Bromborough Port were operated by the Germans in order to comply with the patent act of 1907 .

It has been estimated that these firms produced about 10 per cent of the dyes used in the United Fingdom in the year immediately preceding the outbreak of the war, with a total output not exceeding 2,000 tons annually. ${ }^{1}$ The proctuction included a fairly wide range of acids, direct, basic, and sulphur colors, and in addition a iimited variety of alizarin derivatives. With the exception of indigo, rat dyes were not produced in England. Derelopment since the war has been chiefly in the faster dyes including vats and alizarin derimtives, and has resulted in the production of a considerable rariety in this field. The output, howerer, has not been sufficient to meet the domestic demand. Recent estimates indicate that the present production of fast dyes is about 25.000 tons ammally. ${ }^{1}$ The range of dyes produced, however, is limited. In January, 1920, the adrisory committee of the British Color Users Association visited Germany, and arranged for the purchase of 140 tons of dyes to relieve the shortage of certain types in England.

Switzerland.-Althongh hampered by a lack of intermediates and other raw materials, the Swiss dye industry developed during the war to a remarkable degree, owing to the absence of German competition in the dye markets of the world.

Since 1915, the Swiss dye manufacturers have been under contract to supply English dye consumers with a large proportion of the dyes made from English intermediates and other English raw materials. England has therefore receired more Swiss dyes than any other country. In 1918, the ralue of the exports of Swiss colors to England was over three times the ralue of those exported to the United States. Switzerland has also imporied intermediates and other raw materials from the United States, France, and Italy.

The leading dye manufacturers of Switzerland have recently been consolidated into a single company. This company controls a brauch in England and has purchased control of the dye factory of Ault \& Wiborg, at Norwood, Ohio.
vance.-The development of a dye industry in France has been slower than in the United States, England, or Switzerland. Several plants maintained $\begin{aligned} & \text { German firms before the war have been taken }\end{aligned}$ orer and operated by French interests. They were located at Neuilly-sur-Saone (Rhone), Creil (Oise). Flers (Nord), Lyom, At. Fons (Rhone), and Tourcoing (Nord). These factories were probably established mainly for the purpose of crading the high French duty

[^4]on manufactured dyes by importing the intermediates from Germany at a lower duty. By the establishment of these factories in France the Germans were able also to avail themselves of the free entry accorded goods of French manufacture by French colonies.

Japan.-Before the war, Japan annually imported, mainly from Germany, ${ }^{1}$ dyes to the value of about $\$ 4,000,000$. In 1915 a law was passed providing for subsidies to companies engaging in dye manufacture. The subsidies were to be in amounts sufficient to enable the companies to pay 8 per cent dividends upon their invested capital, and were to continue for 10 years. It is reported that at least three companies are thus subsidized.

Many companies went into the business and at one time there were more than 100 firms, with an estimated capital of about $\$ 7,500,000$. But many of these new enterprises proved short lived. Of the 72 firms reported as manufacturers in the spring of $1920,46 \mathrm{had}$ discontinued by the end of July. The number making sulphur colors was reduced from 33 to 7 . Those firms still operating are reported to be working only part time. It is reported that the range of dyes now made in Japan includes direct cotton dyes, basics, and mordants, oxidized colors and sulphurs. The Mitsui Mining Co. is making various anthracene colors and synthetic indigo. The Japan Color Co. produces Sulphur Blacks, which have been exported chiefly to China.

[^5]
Part ill. Census of dyes imported into The united states from JULY 1, 1919, TO JUNE 30, 1920.

Section 601 of Title Y of the act of September 8, 1916, makes the specific duties on dyes and other finished coal-tar products after September 8,1921 , dependent upon whether as much as 60 per cent of the consumption of these products is being produced in the U'nited States. Unfortunately, however, the provisions are not clear as to whether the domestic consumption is to be considered as the total consumption of each class of finisher products or the consumption of individual items within the class. In either case there has been a lack of detailed information as to the importation of individual dyes, and therefore a census of imports was undertaken by the Tarifi Commission.

With the cooperation of the Treasmry Department all invoices covering dye imports in the fiscal year 1920, with the exception of those of the port of New York, were sent to the commission for tabulation. The statistics of dyes imported through the port of New York were obtained by transcribing the necessary information direct from the invoices in the customshouse files of the collector of the port of New York.

The dyes were classified according to their chemical composition and were tabulated according to the Schultz and Julius Tables, 1914 edition. Various dyes were also identified according to Norton"s census ${ }^{1}$ as well. and from other sources of information in the files of the Tariff Commission. Dyes identified by Norton as a, b, c classes under a given Schultz number were included in that number in each case without special designation, although it is understood that such dyes are not always chemically identical with the original Schultz types.

The Tariff Commission can not rouch for the accuracy of these classifications, as some identifications were supplied by dye experts and others by foreisn manufacturers. Those dyes which could not be identified by Schultz numbers were classified according to their method of application as follows: Direct, vat (inchuding indigo), acid, sulphur, mordant and chrome, basic and oil-soluble dyes. I small number of colors not classified by either method are listed by name under the heading " unidentified and unclassitied colors." In

[^6]addition, 9.35 .2 pounds of dyes are included in "all other," as the trade or chemical mame for the dyes was not gren in the invoices.

The published rames of English dyes include c. i. f. charges, with the exception of a small charge for packing. In the case of Swiss djes, howerer. all extra charges are included in every instance. The (kemman invones varied in the methods used, but in most cases the extra charges the not inchuded in the invoice valnes.

Tho date of the consular certification was taken as a basis in converting the foreign invoice value to United States cmrency. The rate of exchange used as a basis in contersions was the exchange value published by the Treasury Department for that quarter in which the consular certification dates oceuried.

SYMBOLS DENOTIN゙G MANUFACTURER.

In the table of imports of dyes under the heading "manufacturer" is shown a symbol for each dye, which refers to the following list of mannfacturess in foreign conntries.

1. THE STX゙ LEMDING COMPANIES.

A__-_-Aćien-Gesellschaft fur Anilin-Fabrikation, Berlin. Founded 1373. Branches in France and Russia.
P ---.-. Padische Anilin- und Soda-Fabrik, Ludwigshafen on the Rhine. Founded 1865. Branches in France and Russia.
By-....- Farbenfabriken rorm. Firedr. Bayer \& Co., Leverkusen on the Rhine. Fommel 1862. Branches in France, Russia. and the United States (hensselater, N. Y.).
C-_- Leopolt Cassella \& Co., Frankfort on the Main. Founded 1870. Branches in France and Russia.
K__-... Fille \& Co., A. G., Biebrich on the Rhine. Founded 1870. Branch in thussia.
M__...-Farmerke vorm. Meister Lucius \& Brining. Hochst on the Main. Femeled 1862. Branches in France and Russia.
2. THEE SEYEN SMALLER GERMIAN COMPANIES.

PK - - Leipziger Anilinfabik Beyer \& Kegel, Fnistenberg near Leipsig. Fownted 1882.
orf ('hemikalienmork Griesheim G. m. b. H., Griesheim on the Main. Forunded 1881.
C.J_..... ©rl Jäger G. m. b. H., Anilinfarbenfabrik, Dusseldorf. Founded 1823.
(ivD_ Themische Furik Griesheim-Elektron, Offenbach on the Main. Fomendel 184.
I. Fimberk Muhlheim vom. A. Leonhardt \& Co., Muhlheim on the Main. Foumbed 1879. Branch in France.
1 AI Fhrmische Fahriken vorm. Weiler ter Meer, Uerdingen on the Rhine. Fosunded 1877.

3. LCTCTI, DELGIAN. AND FRENCIJ COMPANIES.

FA____ Farbwerk Ammersfoort, Ammersfoort, Netherlands. Fomoled 1SSS.
NF___-Niederlandische Farben- und Chemikalienfabrik Delft, Delft. Netherlands. Founded 1897. Branch in Lussia.
LG___-_hazard Gorichanx, of Brussels. (These products are mobaby compounded largely from the dyes mate ly A. Wiescher \& Co., ef Haeren, Belginm.)
P_-_-_-Societe Anmyme des Matiores colorantes et produits chimiques St. Denis formerly A. Purrier), St. Denis, neal Paris, France. Founded 1830.

4. SWISS COMPANIER, ALL AT BASEL.

DH___-Farbwerke vorm. L. Durant. Huguenin \& Co. Fommded 1871. Branches in Germany and France.
G_-_-_-Anilinfarben- whl Extract-Fabriken remm. Joh. Inut. freizy. E'ountar] 1764. Branches in France, Germans. and Russia.

I__-_-_ Gesellschaft fur chemische Industrie. Founder 1ss. Franch in France.
S__-_-_Chemische Fabrik form. Sandoz \& Co. Founded 1887.

5. ENGGLISII COMPIN゙IES.

$\mathrm{ClCo}_{\mathrm{C}} \ldots$ The Clayton Amilne Co. (Lta.), Clayton. near Manchester. Fommeat 1876.
(R_-_-Clans \& Cor (formerly Clauss \& Ree), Clayton, near Manchasto. Founder 1890.
CT___ Colne Vale Chemical Co., Milnsbridre, near Huddersfield.
IRIS _- Read Holliday \& Sons (Ltd.), Huddersfield. Fonnderl 1s30. (Iu:chased by British Dyes (Ltd.).)
BD_-_-British Dres (Ltd.), Founded 1915.
Lev___ Merinstein (Ltcl.), Crumpsill Ville, near Manchester. Fommorl 1-bit.
Q_-_-_-Importations of manom source. through dealers in colors.
T.able 13.-Summary of dyes imported into the Cmited states durin! tler jisat !lear 19?0. classified by application.

Table 14.-Imports of dyes for fiscal year 1920.

$\begin{gathered} \text { Schultit } \\ \text { No. } \end{gathered}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value
4	Naphthol green.		Pounds. 450	
9	Nient yellow R.....	Lev.		\$1,455
	Afghan yellow GX		1,	1,455
	Sum yellow...			
15	Diphenyl fast yellow G.	Bi)	14	
	Diphenylchlorine yellow $\mathrm{F} F$			1,610
	Diphenylehlorine yellow FF supra	${ }_{1}$		
17	Fast liglit yellow 2 (1,153	3,035
22	Fast light yellow 36, concentrated		59,999	92,078
	X Xene light yeliow 2 G		59, 399	92,0\%
	Yylene light yellow R			
23	Tartrazinc.		48,614	50,458
	Tartrazine cone.			
	Tartrazine cone, pure			
	Tartrazine I) ${ }^{\text {conene. }}$	BI)C		
	Tartrazine X .			
28	Pigment fast yellow (i..		400	559
	Pigment fast yellow G........ Pigment fast yellow G jowder			
34	Chrysoidine R		1,102	
	C'otton orange conc. 110 per cent	W0.		
38	Orange ${ }^{\text {a }}$.		11,143	3,450
	Orange erystals	1.		
	Orange crystal 26	W0.		
	Orange crystals 2G 95	W D		
45	Brilliant lake red R paste		723	
58	Alizarine yellow R. ${ }^{\text {a }}$.		860	
	Terracotia RRN powder Victoria riolet.............			
61	Victoria riolet. Victoria violet 4 BS.		6,632	10, 051
	Ethylacid violet S 4 BXX			
63	Azo acid blue.		9, 222	
	Azo acid blue B.			
64	Lanafuehine SB....		374	48
65	A zo coralline......		6,194	
	Azo coralline L cone. 230 per cent	WD		
	Amido naphthol red B B		95	
7374	Helio fast red RL pdr...	Вy.	1, 001	
	Tammin orange.......		171	103
74	Tannin orange R........			
	Tannin orange R powder.....			
88 91	Aeid anthracene brown RH extra.	By.......	51	
91	Anthracylchrome green D............		3,316	2,334
	Antiracyl chrome grean A conc. 15	V1.		
	Anthraey l chrome green A Eosamine B................	W		
100	Eosamine B		800 2,630	
107	Sulphamine brown A cone, 110 per	W1...		
112	Bordeaux B........................		7, 852	
	Bordeaux G conc. 110 per cent	W 1		
121	Erika 13N....		225	
122	Erika (iN.		146	
132	Lake red P..........		1,750	
	Lake red P paste.	M		
134	Metanil yellow.		8,456	2,923
	Metanil yellow	LG.		
	Metanil yellow 77 conc. 120 per cent	W0		
	Metanil ycllow Y conc.........	B1)		
137	Acid ycllow.		7, 848	
139	Fast yellow G cone. 120 per cent.	WD.		
	Orange 1 Y . ${ }^{\text {a }}$.		6,419	1,268
	orange IV powder.			
	Orance lV powder.	WD		
140	Cureumeine.		661	
	cureumeme Gf conc. dk . pdr.	BK		
141	Azo yellow......		3, 814	
	Helianthine G.			
144	Orange I.........		1,323	
	Naphthol orange conc. 130 per eent	BK		
145)range II...		2,265	

Table 14.-Imports of dyes for fiscul year 19.30-Continued.

Table 14.-Imports of dyes for fiscol yefti 19?

$\begin{aligned} & \text { Echultz } \\ & \text { No. } \end{aligned}$	Name of dye.	$\begin{aligned} & \text { Mant: } \\ & \text { facturer. } \end{aligned}$	Impues	
			(xtantis.	Invice rame.
3+6	Oxamine red.		$\begin{array}{r} \text { Ponaly. } \\ 3 \leqslant 9 \end{array}$	
349	Diamine brown B		21	
354	Direct gray R...		+, 927	
	Direct gray R paste			
3.56	Anthracene red........ Dianol brown........	By.....	26, 99	¢5, 127
	Dianol brown Gix.	Ler:		¢6, 127
	Dianol crange browni.	BD.		
	Dianol orange brown 170 per cent	BI		
	Dianol orange hrown 200 per cent	B Ler		
	Dianol orange brown X .	B1		
	Dianol orange brown X 200 per cent	BD		
355	Diphenyired...		1,113	
	Diphenyl red SC.		5.ind	
362	Oxrdiamine orange.		1, 1,53	
	Toluy cne orange P conc. 166 per cent	W1.		
323	Benzopurpurine 4B.....		1,2\%	4.123
	Benzopurpurine 4B 25 per cent. Benzopurpurine 4B 250 per cent			
	Cotion fastied 4 BS			
364	Dtazo brilliant black B.	By	3.149	
368	Deltapurpurine 5B...		1, 95	
	Deltapurparine 53.... Deltapurpurize 5 B con	BK		
370	Brilliant congo.............		5,546	4651
	Brilliant congo R			
	Brilliant congo R	By		
386	Benzo blue BX . Chloramine blue BXR		0.010	
	Chloramine blue BXR couc.			
	Chlorine blue BXA.			
391	Benzo blue 3B.......		1,124	
392	Diamine blue 3B Toluylcne orange....		3,487	1,111
	Toluylene orange (i conc. 15 per	W1		
	Toluylenc fast orange CI	By		
400	Acid anthracene red.......		1,822	4.5
	Milling scarlet 4 R con Acid antliracene red 3			
	Milling scarlet 4RO.			
404	Diamine y cllow N.pdr.		313	
49.5	Benzo purpurine 10B.	S.........	273	
410	Benzazurine G.....		29.	
	Benzoin blue RII conc. 300 per cent	31		
416	Brilliant azurine ${ }^{\text {GG }}$ Brilliant azurine 5 G couc. 30100		T3	
	Chicago blue R W		151	
421	Oxaminc blue 3REX		13	
	Chicago hlue 6B.....		11,529	69.739
	Brilliant benzo blae 63	By.		
	Chicago blue 6B.......			
	Chicago blue 6 B extra.	L1		
	Chloramine sky blue FF.			
	Dianol brilhiant hlue 6B.			
	Dianol brilliant blue 63.	BD		
	Direct sky blue 250 per cent (gr. sha			
	Oxamine pure blue 6B highly conc.	B......		
426	Benzaminc pure blue.		2, 54	12,50\%
	Chloramine sky bluo \therefore.			
	Chloramine sky blue 1 conc. pure			
	Chloramine sky blue A 400 per cent			
423	Nirect blue B...		, (2, 3	, , ${ }^{\text {a }}$
	Direet fave GN 2,0 per cent.			
	Direct olno 46 N 250 per cent..			
	Diamine cutch...........			
434	Commsic Nas bue		12,377	43, 00.5
	Coomasic Naty blue 2 RN	B1		
	Commssie Nary blue 2RNX	Le		
436	Columbia black FF...		1,5(i)	1, min
	1)iancl black 3II			
	Dianct black FF:			
449	Trisulphon brown.		69, 246	-217
	Trisutphon bronn Γ.			
	Trisulnhon brown M			

Table 14.-Imports of dyes for fiscal year 1920 -Continued.

$\begin{aligned} & \text { Schullz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value.
419	Trisulphon brown-Continued.		Pounds.	
	Trisulphon brown MB cone. 7:10.			
	Trisulphon brown 1 B conc. Trisulphon brown BR.......			
456	Benzo fast blue 4GL...............	By	150	\$105
	Benzo fast blue B			
457	Trisulphon brown GG.		43,751	54,280
	Trisulphon brown fG.....			
46^{7}	Diphenvlgreen Gri............		2,337	
	Dipheny l green Köw, supra.		2,307	
469	Chloramine black N		1,102	
431	Chloramine black extra		4,078	
474	Dianol green 13G...		2,460	2,990
475	Direct green B..			
	Oxamine green $G X$		2, 742	2,120
	Chloramine green G			
	Alkali green D...	WD.		
475	Congo brown fi.........		200	
478	Columbia green..........		6,2s2	8,2,i
	Direct green 21.			
	Direct green B.			
483	Rosophenine.	Cl'O.	550	
485	Benzo brown G...................	By...	31	
493	Iuramine....		48,879	87,043
	Auramine O...			
	Auramine conc.	La		
	A uramine cone.			
495	Malachite green...............		100	
	Malachite green crystals 50 per cent		3,329	10,106
	Setoglaucine.			
	Setoglaucine.			
499	Turquoise blue G		227	
	Brilliant green..........		3,418	2,751
	Brilliant green $613 ~$ Brilliant green crystals No.			
500	Setopaline......................		1,102	
502	Acid green B....		${ }^{178}$	
503	Neptune grecn.....		1,894	
	Benzylgreen B .			
	Benzylgreen K.			
	Brilliant acid green 6B..			
	Brilliant acid green 6B cone.	By.		
	Erioviridine B, supra......			
505	Light green...		986	897
	Acid green cone. 250 per cent.	WD		
	Acid green extra conc........			
	Acid green GG extra.	$13 y$.		
506	Erioglaucine		3,426	11, 890
	Eriocyanine A			
	Erioglancine EP			
	Erioglaucine supra..			
507	Xylene hue V'S..		30,573	
508	XyIme blue AS.		7,309	
512	Magenta.		189	
	Niagenta 1 ' powder	31		
514	Red violet powder.		750	
515	ked violet. .	tM		
	Methyl violet.		3,312	1,620
	Methylviolet 23.	WIV...		
	Methylviolet 3 B .	CG.		
	Methylviolet 5130			
	Methylviolet RBM.	WI)		
516	Crystal violet		1,836	2, 670
	Crystal violet extra			
	Crystal violet 613...			
	Crystal violet powder	${ }^{3}$		
	Violet 5 30.			
	Violet 530 powder			
517	Benzyl violet....		1,900	
	Benzyl violet 5 BN			
i21	A niline blue.		5,967	

$\begin{aligned} & \text { Schullz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manifacturer.	Imports.	
			Quantity.	Invoice valte.
522	Victoria blue 4 R .	B.	Pounds.	
523	Fast light green.	13 y .	3,612	\$4,302
	Fast green extra	Ву.		
	Fast green extra bluish.	By		
524	A cid magenta...........		660	312
	Acid magenta G 260 ner cent Fuchsine S.	$\begin{aligned} & \text { jß } \\ & \text { B.. } \end{aligned}$		
	Acid fuchsine 0			
527	Acid violet 4BN..		33,439	7-7,643
	Acid violet 4BN			
	Acid violet 4BNS			
	Acid violet 13 W	By		
528	Fast acid violet 10B	By.	799	995
530	Fast acid violet 1013 conc. $40,100$.	BY..	硅	-
	Acid violet 4 B extra	J,	1,814	2,617
	Acid violet 413s.			
	Acid violet 4 BLOOF			
	Acid violet 4RO.			
	Formyl violed StB			
	Guinea violet 4B.			
531	Eriocyanine.		4,885	
	Eriocyanine 1.			
534	Acid violet 7 B cone.		31	
536	Alkali blue......... Alkai blue 11		5, 494	6,046
	Alkali blue 11 . Alkali blne 313			
	Alkali blue 313.			
	Alkali bhe 2P.			
	Alkali blue 4\%.	A		
	Alkali blue 4 (3E			
	Alkaliblue 613.	By		
	Alkali blue 6 B			
	Alkalibnne THfRROO)	Gre		
	Alkaliblue R .	C.		
	Alkali blue 2R			
537	Methyl blue forsilk.		3, 139	13,540
	MethylLyons Jhte.			13,
	Methylsilk houe new			
	Methylenesilk biue			
539	Soluble blue..........		4,374	4,110
	Pureblue RT. Soluble hat 2 R	Bİ	1,	1,
	Soluble blue 3R.	(1)		
	Soluble blue 3 M .	B 1		
543	Patent blue.		20,067	37,1,91
	Acid blne V conc.	1 G		
	Acid bliae V'scone	BK		
	Jatent hime.			
	Patent blue P.	M		
	Patent Ine 1,	M		
	Patent blue V .			
	Patent Hue V	CG.		
	Patent Wue IS conc.			
	Patent marine hhe JE			
	Tetracyanole extra.			
54.4	Cyanine 13..	11.	14	
515	Patent blire $\Lambda^{\text {A..... }}$		26, 709	54,775
	Patent blue λ.	11.		
	fatent Jue A.	${ }^{1} 18$.		
	Patent bue lis	L1i...		
	Palent blue 1 N.	LG...		
	Brilliant acid hine ('3.	By..		
	Brilliant acid blue FF conc. 60/100	B		
546	C'y'anole...		336	139
	Cyanole blue.			
	Cyanole extra.	C		
548	Acid Violet $6 \mathrm{BN} . .$.		7,351	15.530
	Acid violet613N.			
	Acid violel 6 BN .	1,1;		
	Acid viole t63nso			
531	Eriochrome azurol 13 C .		4,365	
	Eriochromr azurol BX		1,30	
553	Eriochrome cyanine RC..		2, 20:	
554	Chrome azurols cone.		, 771	2,6497
	Chrome azurolsx	1.		
	Chrome azurolsXT.	G.		

$\because 16^{\circ}-\because 1-5$

Table 14-rmports of dyes for fiscal year 1990-Continuen.

$\begin{aligned} & \text { Schultz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manıfacturer.	Imparts.	
			Guantiry	Invoice ralue.
			Pounds.	
5555	Aurine............	R........	580	
559	Vewt vietoria blue B	B.....	97 5,823	812,839
	Victoria blue.			812,839
	Vietoria blue B			
	Vietoria hlue B................il			
	Victoria blue B base,			
562	Intensive blue B......	By.	874	3,170
	Wool hine N extra.			
564	Naphthalene green.		9,242	29,0063
	Erio ureen Tisupra.			
	Naphthalene green Vextracone			
565	Acid blue B...		166	702
	Acid hite BSeme Woothlue 513	B		
	Wool blue 219 i			
	Wool blue C extr			
566	Woolyreens...		158,360	323,413
	Wroolgreen Sis.			
	Wooldreen.....			
	Woolgreen SC.			
	Wool green S extra conc. new			
	Cyanolgreen B.			
	Cyanolareen B..			
570	Rhodamine S extra.		22	
571	Rnodamine 6G...		1,675	46, 213
	Rhodamine 6G extra.....			
	RThodamine 6G extra conc			
	Rhod:mine 6f.....			
573	Rnorlamine C...		220	
	Rhodamine B..		4.917	53.443
	Rhodamine B exira.			
	Rhodamine Bextra.			
	Rhodamine B cme..			
576	Rhodamine 3t,		172	80
	lrisamine (i extra.			
	Iricamine (t extra.			
580	Fast aeid riolet R .	M	175	130
	Fast acid violet RGE			
581	Fast acid phlosine A....		211	904
	Fast acill eosine G extr			
	Fastacid phloxine A.			
542	East acid violet. A2B....	11.	127	94
	Tiolamin I			
	Tiolamin R cone.			
51	Fast acid dine R.		5011	
5×7	Eosine.		3, 220	2,364
	Eosine cone. 115 per cripl	IIT.		
	Eosin D................	i11.		
59	Fast cocine L paste		720	
	Eryihrosine 13..		9	
59	rialleime.....		7, 4t ${ }^{\text {a }}$	3,455
	Salleine lot percent...			
	Galloine 10iper cemt maste.			
	Gatleine Jtht paste....			
	Galleine 1, pa-le.			
601	Coerulein ${ }^{\text {S }}$		2, 4 Si	3, 435
	Coerule in I paste 14 prar cent.			
	Cocrumin Ms powder..	111		
	Comule ins pewrler..	1 H		
	Corralr in s powder.	B1).		
	Corrule in Spowder..	13.		
	Coernleins powter	1.		
60.3	Rhoduline orange N .	Br.	45)	1,001)
	Euchrysine 3 R X			
fillf)	Phosidine Acid phosphine H		4, 297	101, 503
	Srillint phosphine 5 (ano per			
	Brilliant plosphinesta..	I.		
	brilliant phosphine St	I. .		

Table 14.-Imperts of dyes for fiscal year 1920-Continued.

$\begin{gathered} \text { Schultz } \\ \text { No. } \end{gathered}$	Name of dye.	$\begin{aligned} & \text { Manu- } \\ & \text { faeturer. } \end{aligned}$	Imports.	
			Quantity.	Invoice value.
606	Phosphine-Continued. Paraphosphine G extra		Pounds.	
	Paraphosphine G.			
	Patent phosphine R			
	Patent phosphine G cone. 300 per			
	Patent phosphine M 300 per cent.			
	Phosphine 3R....................			
	Phosphine extra	M..		
	Phosphine I....	I, C		
	Saba phosphine G			
	Saba phosphine G			
608	Euehrysine R RO....		999	
609	Flavophosphine 4G, cone.		7	
613	Quinoline rellow, water soluble		33,437	\$48,032
	Chinaldine yellow, ord Chinoline vellow			
	Chinoline yellow	В Y .		
	Chinoline yellow.	N		
	Quinoline yeilow N extra	I.G		
	Silk vellow......			
615	Thiollavine S.		675	
616	Primuline...		13.481	10, 750
	Primuline.	Lev		
	Primuline E			
	Primuline extra.	B D		
	Primuline yellow	LG		
617	Colnmbia yellow.........		5, 180	4,651
	Chloramine yellow G..			
	Chloramine yellow GG.			
	Diamine fast yellow 3 G	C		
618	Thioflavine T...........	Q	3,315	917
	Thiofla vine T			
	Thioflavine T J 40 per cent			
	Rhoduline yellow 6G.	B y		
624	Violet moderne N.		2,425	
	Tiolet moderne powder	DII		
$6 i 26$	fallneranine. -		27,070	12,944
	Brillimat chrome blue P			
	Galloevanine paste.			
631			1,259	
	Chromocranine B past	DH	,	
(33)3	Indalizarine R		$5 . \% 1$	
	Indalizarine paste I	ПH		
63.5	Modern violet.		5, 4.50	-...-.-.
	IItra violet 11().			
	prune................	DH.	$3, \mathrm{~min}$	
(23) ${ }^{\circ}$	Prune pure....		-, ${ }^{\text {a }}$	
$\begin{aligned} & 6: 37 \\ & 6.42 \end{aligned}$	Gallamine blue extra paste.		13,790	
	Phenoeyanime TC.........		2,940	2,091
	Plonocyanine R paste...	1iH.		
	Phmocyanine TV powder	I) 11.		
	Phenoeyanine VS paste...	DH		
194	Cotton blue....		9, 815	11, 19
	Meldola blue 3 R .			
	Meldola blue 3 R conc.			
6036.58	Nile blue A.			
		By	1,713	
(in)	Jethylene blue.		3, 122	7,737
	Dethylene blue.			
	Methylene blne...	$11)$		
	Methyleneblue BB.			
	Monhylene blue FZP.	Lev.		
	Methylone hlue fisF.	Lev..		
	Nethylone blue medicinal.	Q....		
	Toludine blue.-........			
640	Methylene green.		160.5	1,239
	Methylene greeil (imetra			
	Methylme green W. .			
6i8]	Thionine blue..........		3:30	
	Thionine blue (i) powder.			
6463	Now methylene blue...		143	33
	New methylene blne N			
	Methylene blue NNX.			
66%	Indoehromine...........		12,752	31,20.5
	Indochromine T.			
	Indoehtomine T cone.			
	Indochromine T conc. (louble.			

Table 14.—Imports of dyes for fiscal year 1920-Continued.

Table 14-Imports of nlues for fiscal year 19:30-Continued.

$\begin{aligned} & \text { Schultz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value.
778	Alizarin (synthetic)		Pounds. 8, 575	S2, 762
	Alizarin paste YCA 20 per cent			ง-,
	Alizarin red paste 1P 20 per ce Alizarin red paste YCA.....			
	Alizarin red IB 20 per cent paste			
	Alizarin red IB 40 per cent paste			
789	Alizarin orange R paste.	By	500	
	Alizarin red 1 WS.		5,012	1,524
	Alizarin red S powder.	B.		
	Alizarin red SWB powder	B		
782	Alizarin brown............	By		
	Anthracene brown 20 per cent	B		
	Anthracene brown 100 per cent po	B		
	Anthracene brown WL paste	Le		
	Alizarin brown 20 per cent paste			
	Anthracene brown WLP paste.			
784	Alizarin SX.		2,2s9	815
	Alizarin pastesX 20 per cent.	Q		
	Alizarin GX 20 per cent paste			
757	Alizarin Bordeaux G G paste. [Mixture with 778.$]$		20	
788	Nizarin cyanine NS powder.	By..	187	92
789	Alizarine cyanine WRB powder			
	Anthracene blue WR paste. Anthracene blue VV paste doubl		29,608	32, 114
790	- inthracene hlue SW GG powder.		8.96	939
	Anthracene biue SWGG powder.	13		
	Anthracene hlue SWGG ex powder			
	Anthracene blue SWR powder			
	Anthracene 1, hae SW B powder			
$\begin{aligned} & 791 \\ & 792 \end{aligned}$	Indanthrene olive G powder.	B	11	
	Cibanone orange R...		6,188	11,610
	Cibanone grepn G paste.			
	Cibanone orange R paste............. Cibanone orange R paste 9 per cent.			
	Cibanone orange R paste 7 per cent.			
	Cibanone orange R paste 8 per cent			
	(ibanone orange R paste 10 per cent			
795	Cibanone yellow R paste 10 per cent.		15, 5×4	21,48
	Cibanone yellow R paste..	I......		
	Cibanone yellow R paste..........			
	Cibanone yellow l paste 10 per cent			
799	Alizarin maroon paste, 10 per cent.		70	
	Alizarin cyanine $G \mathcal{G}$ powder...		3, 165	10,95x
	Alizarin cyanine green G extra por			
800	Anthracene blue WG paste...		49	
s03	Alizarin blue WX 10 per cent pas		2,031	114
	Alizarin blue JR powder.....			
834	Alizarin blue S.........		12,290	8,527
	Alizarin hue SB 4.5.			
	Alizarin bluo S powder.			
	Alizarin blue S powder.............			
	Alizarin sky blue 13 conc. $70 / 100$ po			
	Alizarin sky blue B powder........			
	Alizarin blue SB 45 conc. 50 per cent			
810	Alizaringreen S paste.			
	Ifelindone yellow 3 GN..		1,44)	3, 501
	Kelindone yellow CG			
	Ifelindone yellow CAK powder and			
	Helindone yellow 3GN paste and po	M.		
	Ifelindone yellow 3GN.............			
811	Algole yellow 3 GL paste.		410	112
	Algole yellow 3 (r poirder.			
	Algole yellow 3 G L powder.			
812	Indanthrene orange RT.........		3×2	43
	Indanthrene orange RT paste			
	Algole yellow WF...			
815	- Ifole scarlet G paste....	13	552	1,217
816	Algole scarlet G powder			
	Algole red 5 G paste........ Algole red 5 G powder		146	21
	Algole yellow 3 G paste			
817	Algole yellow I p powder.	By.	(1)	

Table 14.-Imports of dyes for fiscul yeur 1920-Continued.

$\begin{aligned} & \text { Selinitz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manufacturer.	Imports.	
			quantits.	Inroice value.
$\checkmark 12$	Alzole pink R paste.	By.	Pounds. 1,113	\$879
819	Algole pink R powder			
	Algole red FF extra paste	By	2,910	365
	Ingole red FF extra powder	BY		
	Algole brilliant red 2B paste			
	Alqole red R extra paste.. Alrole red R extra powder	By		
	Agole red R extra powder Aloole lrililiant violet R paste	By		
¢21	Agole miliant violet R paste... A lgole brilliant violet RP pow	$\begin{aligned} & \text { By } \\ & \text { By } \end{aligned}$	3,016	10,820
	Algole brilliant violet 2B paste.		556	2,970
	digole! riliant violet 2 B pow Algole blue 3 R paste			
	Algole blue 3 K powder	By		
$\times 22$	Algole lurilliant orange FR paste	By	449	510
	Algole brilliant orange FR powder	By		
s23	Algole violet B powder.	By	29	
824	Algole orange \mathbf{R} paste.......	By	373	355
525	lgole orange R powder. Algole red 1 B paste		3,552	5,474
	Agole red B powder			,
$\bigcirc 25$	Indanthrene elaret B paste		2,721	418
	Induthrenc elaret B extra paste			
829	Algole bordeanx 3 B paste. sloglelordeanx 3 B powder		61	35
830	Indarithrene red R paste.....		1,53s	876
	Indanhrenered R powder.			
	Indanthrenered R donble paste.			
	Indanthrenered R double powder			
	Indauthrenered R double paste, sam			
831	Indanthrenered 3 N extra paste.		2,916	1,466
	Indanthrenered BN extra paste, S			
	Indanthrene red BN extra powder			
	Indanthrene violet RN extra pow			
833	Algole clive R paste.		461	203
	Algole olive R powd			
834	Algole gray B powder...		101	49
835	Alingolegray 28 yowd		10, 110	
	Ifelindone orange GRN paste		1,	
833	Lielindone brown 3GN paste....		15, 000	1,389
835	Indanthrenchlue RS....		$8,1.41$	1,359
	Indonthrene lihe RS for paper paste			
	ludanthrene blue RS for paper trip.			
	ludantirene blue RS paste........			
	indinthrene blue Rs douisle paste			
	Indanthrene blue Iis paper paste, sa			
	Imlanthrene blue RS trip. paper..			
83	Aldgote blte K powder...	By	121	
840	Induntinrene blue 3 (powder.		5.51	129
	fndmarenelnue 3G paste			
842	Indantmrene hat (iCD) paste.		54,478	42,205
	Indanthrene blue GCD paste, san			
	Indanthreneblue GeD powder...			
	Indanthreneblue GCD double paste			
	fudanhreneblue (aCD double paste			
84	Alvale hne3t paste.............		2.079	
結	Ludanhrenemarom R laste		46	
$\therefore 17$	Alwobereen 3 paste.......	By	339	717
	Algole green 3 powder.			
	Alule dark areen I powde			
4.5	Indanthrone gray B paste...		1,44	91
	Imtantmrne gray 3 powder.	11.		
	Indinthrene gray is double paste	B.		
	fudantirene iray B dombe paste,	R.		
$\checkmark 49$	Indanthreno vellow if doubie paste....		22, 12	66i, 203
	ludinthrese yollow if paste...			
	Indanthrene yollow 9 paste, sand fe	B.		
	futantmone yellow R paste duahle.	1.		
	Indenthrene yellow R paste...	13.		
	indanthrene yellow R paste, sand fi	13		
	Indanthrene yellow l doubie paste,			
	hadantmene yellow powder..			
8.50	Indanthrene bue W B powder.		1,499	
851	Alizarin direct bine B.........		213	S
	A lizarin cyanole 13.			
	Alizarin direct Jlue B			
	Aligarin dirmet hae EB			

Table 14.-Imports of dyes for fiscal year 1930-Continued.

Table 14 -Imports of dyes for fiscal year 1990-Continued.

$\underset{\text { Schultz }}{\text { Sche }}$	Same of dye.	Manufacturer.	Imports.	
			Quintity.	Invoice value.
96	Helindone hlue arin		Pounds. 427	\$5,574
	Helindone hue 3 GN	M.		
901	Helindone bluc 3GN concentrated			
			40,441	118,796
	(iba violet 3 paste 10 pereent.			
	Ciba violet R paste 10 per cent.			
	Ciba violet 2 B powder....			
	Ciba violet R.........			
	Ciba riolet R..			
	Ciba riolet R powder			
	Ciba violet 3 powder.			
	Ciba violet B powder 95 per cent			
	Ciba violet 3 paste 10 per eent..			
002	Helindone hrown 2 R . ${ }^{\text {He....... }}$		155	290
	Helindone lnown 2 R paste			
	Helindone brown $2 R$ powder			
904	Helindone brown $\begin{gathered}\text { fe............ } \\ \text { Helindone hrown }\end{gathered}$		1,884	7,218
	Ifelindone hrown CR powder	M.		
	Helindone brown a powder.			
	Melindone hrown G paste...	I		
90%	Thioindigosearlet G.....		$4{ }^{2} 1$	
	Cibared (i powder.			
907	Cibasearlet....		21,818	24,908
	Helindone fast scarlet C...... Helindone fast scartet C mast	11		
	Cibaseartet a paste			
	Ciba searlet g extra pasteand pow			
	Ciba searlet a extra paste........			
	Ciha seariet G extra paste 20 pere			
910	Helindone pink....		11,122	21,966
	helindone pink. ${ }^{\text {a }}$ -			
	Helindone pink AN 10 per eent.			
	Helindone pink BN 10 pereent.			
	liclindone pink BN 10 percent pa			
	Thioindico rose BN paste.			
912	Thin indigo med 13 paste.....		276	438
91.5	Thioindizo red 1 powder			
	Helindone fast scarlet R...		179	1,389
	Helindone fast searlet R powder			
	Helindone fast searlet R paste..			
916	Hetindone scarlets.		21	
914	thelindonescarlet s paste			
	Helindone red 313.		838	1, 805
	Helindone red 3 B paste			
	Helindone red 3 B powder			
46	Ciba liordeaux 13 paste 10 pereent		1,786	3,492
	Ciba Bordtanx B paste...			
	Ciba Rorteanx B powder.	1........		
120	Melindoue violet...............		6, 809	27,991
	Ilelimdone violet B paste			
	Helimdonie vio'el BB paste.			
	1ledindone violet 3 powder...			
	Iledindone viotet B 3 powder			
	1 telindone violet R........			
	Helimdone viold R paste.			
	Hetindone violel R powder.			
121	Helindone gray 2 B13R.........		139	330
	Itrimumengay 1313 paste.			
	Itcindone gray $\mathrm{Bl3}$ powder			
	Helindone gray 13 R powder			
423	Ursol 1 D)		100	
	Ursol the paste			

ENIDENTIFUED DIRECT DYES.

Table 14.-Imports of dyes for fiscal year 19.20-Continued.
UNIDENTIFIED DIRECT DYES-Continued.

$\begin{gathered} \text { Schultz } \\ \text { No. } \end{gathered}$	Name of dye.	Manufacturer.	Imports	
			Quantity.	Invoice value.
	Alkalipink ${ }_{\text {c }}$	WD..	$\begin{array}{r} \text { Pounds. } \\ 510 \end{array}$	\$101
	Alkali rubin 8 conc. 300 per cent	WD.	1,675	
	Alkali scarlet...............	WD.	1322	
	Aminogene base RN		661	
	Aminogene lhat RN		1,942	
	Benzamine azo blue G conc. 350 per ces Benzamine azo blue 3 R conc. 215 p	WD	2,197	1,467
	Benzamine fast yellow 2 G conc. 200 per	W D.	220	
	Benzamine violet C.	WD.	236	
	Benzo Bordeaux 6B..	By.	1,149	
	Benzo chrome hrown ${ }^{\text {B }}$	By	2,398	
	Benzo fast hlack...	I.	1,572	
	Benzo fast black			1,189
	Benzo fast black L		3,377	
	Benzo fist blue FFI	By	299	
	Benzo fast blue f .		900	
	Benzo fast Bordeaux 6BL	By.	1,226	
	Benzo fast brown 3fi,	B 7	176	
	Benzo fast eosine BL.	BY.	99	
	Benzo fest helrotrone BLi.	By.	1,212	
	Benzo fast heliotrope 48 L Benzo fast heliotrope 2R		112	
	Penzo fast heliotrope 2RL	By	703	
	Benzo fast orange S...	By.	150	
	Penzo fast scarlet 4B.	By.	201	
	Benzo red I2B....		600	
	Benzo rhoduline red B		1.50	
	Benzoin black.	B15	1,764	
	Benzoin blue black RH 150 jer cont	В R	247	
	Prilliant benzogreen 13.		225	
	Brilliant henzo violet 13.		351	
	Brilliant henzo violet 2 R		24	
	Brilliant fast blue B.		450	
	Brilliant fast hlue B conc. 50/100		201	
	Brilliant fast liue 29...		109	
	Brilliant fast blue 20 conc. 60/100		242	
	Chicagored III		$2,20.5$	
	Chloramine l, hek. Chloramine black in		6172	855
	Chloramine hlack EX con			
	Chloramine brilliant red s S		21,796	4, 119
	Chloramine brilliant red Chloramine brown 2R			
	Chloramine fast red F		1. 102	
	Chloramine pink R	Dii	625	1,569
	Chlorazol pink R	RH'		
	Chlorazol pink?	BD.		
	Chloramine red $\times 13 \mathrm{~S}$.	By........	7,23	
	Chloramine viold R .	By.	397	
			1,05:2	1,397
	Chloramine red BH......			
	Chlorazol brown (f..		8,942	
	Chlorazol green 13....	B1).......	2576	
	Chlorazol dark green IL	BD.......	10,094	31, 993
	Chlorazolgreen	BD		
	Chloramine dark green I'			
	(hlorazol darkgreen 19)	B1.	1,024	
	Chlorazol sky lulue FFS.	8い	40
	Columbia brown RK.		200	
	Congo brilliant R.		220	
	Cotton hlue 11 double	M.........	1,102	
	Cotton yellow GI.		291	
	Cuprunite brown ${ }^{\text {chin }}$		500	
	Diamine aro hlue İ.		8.715	
	Diamine Bordeaux S		$1)^{26}$	
	Dinmine catechine B.		117	
	Diamine fast hue FFI	r..........	2,919	

Tabie 11-Imborts of dues for fiscul year 1920-Continued.

["NIDENTIFIED DIRECT DYES-Continued.

$\begin{gathered} \text { Sckultz } \\ \text { No. } \end{gathered}$	Name of dre.	Manufacturer	Imports.	
			Quantity.	Inroice value.
	Diamine fast brown f_{i}		Pounds. 2,665	\$1,548
	Diamine fast may BN.		3,171	1,184
	Diamine fast gray B			
	Diamine fist gray ${ }_{\text {diamine fast }}$			
	Diamine fast Bordeain 6BS		99	
	Itamine fast Bordeaux.		73	
	Diamine fast orange EG		99	-
	Diamine fast scarlet 10 B		187 9	
	Dianinine fast scarlet SBN		64	
	Diamine fast violet FFB.		13	
	Diamine orange F...		1,100	1,41
	Diamine orange B . Diamine orange G .			
	Diamine searlet B....		137	
	Diamine skr-blue FF		26	
	Diamine violet red.		2
	Diamine violet red K e		37	
	Diamineral blue CYB		51	
	Dianil light red 8 BW		4	
	Dianol black FFE.	PD	- $\begin{array}{r}1,640 \\ 23,435\end{array}$	
	Dianol dark blue B			
	Dianol fast hlue 2?		4,034	
	Dianol fast the G.	BI'	810	
	Dianol fast blue R B.	B1)....	1,814	-...-. -
	Dianol fast hlue	Ler		
	Dianol fast pink BK	B1)	7,342	
	Dianol last pink		120	
	Dianol fast yellow ARX		4,475	
	Dianol list yellow A RX'	B1)	4,	
	Dianol orange lirown X	1317	5,064	
	Diand violet R..	131.	5,480
	Dianol violet R	Ler.	18	
	Diazenil pink ${ }^{\text {B }}$.	M	543
	Diazo Bordeanx 7 B	BY.	181
	Tiazo brilliant green 36.	Bro	2	
	Diazo brilliant orange fer estra	By	4
	Diazo brilliant orange 5crextra.		4	
	1) iaza mrilliant scarlet B extra.		194	
	Diazo brilliant scarlet 2BL extra coce		815	
	Siazo brilliaut starlet 5BL extra.	13y...	24	
	Diazo brown 34..............	135	289
	Diazo hrilliant scarlet 38 extra.		28.4	
	Diazo hrilliant searlet ti B extra	BY:	308
	Tiazo brilliant scarlet Gextra.	13.	317	
	Diazo hrown 3i....]).	212	
	Uiazo hrown 3R13..	isy.		
	Diazo fast bordenus 3		229	
	1 liasu tast red 6131.	139	11	
	Piazo fast violet bL.	13,	143
	Diazoshy -hme 36.	13.....	443	
	1)jazalat rad 313 L	13,	509	
	リiz\% fazi velay 3 L	139....	ss	
	Praze fara yutow 6	Bi......	119	
	1 biazo fati yellaw 24,	By......	9	
	Wiazo hat - dhow 3RL..	13,	${ }^{2}$	
		By.......	511	
	biamintigobltue 4 (L e	By:.....	161	
	Hiazo muhine -...		(i06)	
		BY......	49	
	tiazo sky -hth.	By.......	11	
	Hazoskj-hme ${ }^{\text {dit }}$	By.......	953	
	1) iazo vime 1 dic.	By.	$\stackrel{2}{2}$	
	Diazosentors R.		459	
	Diphenyt han KFi		1,587	
	Diphenvl viold bis		220	
	Wirech mark biomac.		210	
	Bired bhar BXi?	Ci	${ }_{2}^{2,843}$	

Table 14.-Imports of dyes for fiscal year 19.30-Continued.
I NIDENTIFIED DIRECT DYES-Continued.

$\begin{aligned} & \text { schultz } \\ & \text { No. } \end{aligned}$	Name of dye.	$\begin{aligned} & \text { Manu- } \\ & \text { facturer. } \end{aligned}$	Imports.	
			Quantity.	In voice. value.
	Direct brown 3GNC		Pounds.	
	Dir ect brown R.......		2,204 1 $1-29$	
	Direct fast yellow GR.		1.829,5	
	Direct green.......	CC	万, 76	83,540
	Direct sly-1, lue green shade		2,032	
	Direct violet B. .		1,941	
	Direct riolet R , 360 ger cent	CG	1.243	
	Heligoland black FFNA Heligolnd black Friex	Cr	21,049	10.45!
	Heligoland haek B 1100 per cent	Cí		
	Heligoland blue 6B..	Cr.	9.93	
	Naphtamine fast green D		323	
	Naphtogene blue BM.		731	
			2.221	
	New rellow for cotton. 333 prer cent.	WV	3.9 is	3.724
	New yellow for cotton, 335 per cont	W1		3.124
	New yellow for cotton.	W!.		
	Oxamine yellow 36		40	
	Oxydiamine brown RN.		201	
	Oxydiaminogen ED..		24	
	Oxydiaminogene OB		5 jiO	
	Polyphenyl blue GNH conc		; 3	
	Polymbenyl ornng PC.		908	1,036
	Polymhenyl oranes 5			
	Polyphenyl pllow RC.		1.179	
	Prazol brown F ..		1,98:	
	Prazol orance G.		25,078	
	Rocanthrone Bordeaux 1		, 540	
	Rosanthrene R...is		1,7\%	3.894
	Rosmithrone R past			
	Solomine bhte FF...		(1)t	
	Thional mow P.		$1 \cdots$	
	Tolnclene ras orange (il	1.1	39	
	Tolaymme yhtow (i.		2)	
	Trezor Bodmax 13,	Gir	is	
	Triazollyown com	$\mathrm{CrF}^{\text {c }}$	2	
	Trisulphone bromze B		92	
	Zamberiblek It extra.		18, wit 2	11,24
	Zambesi blact l) extra	1.		
	Zambeci black I).			
	Zambesi black ${ }^{+}$			

UKIOENTIFIEN VAT COLORC

Algole brown G powder	B,	1941
Algole yellow 3GJ, powder	! ${ }^{\text {d }}$	33
Caledon that R	1	20
Chloranthrene Bordeaux R		111
Chlorant hene red 50	$1: 1$	311
Cibanome green B paste 10 peremt		2.524
Cibanmegrecin B prasta.		
Cibatone crem B		
Durindone blue 4B.	(1)	4, 202
Turindone bhe 53.	13)	
durindone the 5 B .	$1 \times$	
Durindone blue fi3.	(3)	
Tharindome hat 68.	$1 . \mathrm{ev}$	
Thrindona blue 4B exir		
Duriodone red 1 S .		120
Durindone searlet 12		1,050
Imarindone scarlet		
Helindone black 2R G paste (for pr		387
Helindone hack paste (for pri		
Helindone fast searlet B pouder. indonthrene bluish green BN mair		$\begin{aligned} & 10 \\ & 10 \end{aligned}$

Table 14.-Imports of dyes for fiscal year 1920-Continued.

UNIDENTIFIED VAT COLORS-Continued.

$\begin{aligned} & \text { Schultz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value.
			Pounds.	
	Indanthrene bure RC powder..			
	Indanthrene brown R R......		${ }^{26}$	
	Indanthrene siolet $13 N$ exira paste.		3,007	\$739
	Indanthrene violet BN extra paste			
	Vat violet R paste			
	Vat yellow R paste.		110 440	

UNIDENTIFIED ACID COLORS.

Table 14.-Imports of dyes for fiscal year 1920-Continued.

UNIDENTIFIED ACID COLORS-Continued.

$\begin{aligned} & \text { Schultz } \\ & \text { No. } \end{aligned}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value.
	Erio green B conc.		$\begin{gathered} \text { Pounds. } \\ 6,556 \end{gathered}$	836,151
	$\underset{\text { Erio green B supra }}{\text { Erio }}$		-7,914	
	Erio violet A L supra.			
	Erio violet RL supra..			
	Fast acid green BB extra	W19	1,100)	
	Fast light blue B.....	wD......	1×8	
	Fast light yellow.	WD.......	1,102	
	Fast red AN conc. 135 pe Fast red V........	WD.......	2, 069	24,595
	Fast blue wool BL.		3 3, 4	2,977
	Fast wool blue i			
	Green 21..........		441	
	Guinea fast green B.	A	509 109	
	Jasmine high cone.		$4, \mathrm{~L}$ ¢	.
	Jersey black B.		100	
	Kiton fast violet $10 \mathrm{~B} \ldots$.		661	1,446
	Kiton fast yellow S . Kiton yellow S.....	$1 .$	642	893
	Milling red 4 BA ...		100	
	Milling yellow 3G............		15	
	Milling yellow 36, 200 per cent		243	
	Milling yellow 00.		6.1	
	Naphthalene black 12B		6,110	
	Naphthalene hlue B.		110	
	Naphthylamine bluc black		6 6,65\%	
	Navy blue. Nay blue.		225	363
	New acid brown.....			
	Paiatin light yellow P Patent blue E.......		620	
	Pratent hlue E.....		309	
	Polar red G conc.		1,543	
	Resorcin lavana brown		411	
	Rosinduline G.XF.		$21)$	
	Special blue G		82	
	Sulphone blue R.	$1 . \mathrm{G}$	3, 1222	
	Vicloria navy blue B		5292	
	Wool hlue RL......		2, 664	
	Wool hlue S conc. 333 per cent	Wい	1.459	.
	Woal brown..........	WD.	441	
	Wool fast violet B , conc. $50 / 100$	13y........	5, 5	
	Wool green NB		3,292	
	Wylene fast green 13.		1, -24	

UNIDENTIFIED SULPIFLR COLORS.

Cross dye green B.	13 D.	16,274	
Cruss dye areen 2 ; conc	130	7,05t	89.429
Cross dye green 2 G	11 I		
Cross dye yellow Y.	131	4,480	
Eclipse brown BK		5.952	
Mydrosulphon green S		501	
Immedialolive B		201	
Immedialpurple		4	
Immedialdirect hue B.		40	
Pyrogene yellow O.		2, 24,	
Sulphur blue....		(3)	299
Sulphur bluc extra			
Sulphur brown..		3(4)	135
Sulphur cutch.........			
Sulphur green..		$2(16)$	
Sulphur green B	B1)	3, 19	
Suphur indigo.	Q	$1(10)$	
Suphur vellow		3, $\sin (1)$	1,267
Sulphur yello			

Table 14.-Imports of dyes for fiscal year 1920-Continued.
UNIDENTIFIED SULPHUR COLORS-COntintad.

$\begin{gathered} \text { Schultz } \\ \text { No. } \end{gathered}$	Name of dye.	Mantfacturer.	Imports.	
			Quantity.	Invoice value.
	Sulphur yellow G	S...	Pounds.	
	Sulphurol dark brown	WD......	992	$\$ 131$
	Sulphurol indigo blue, conc.	WD.	1,157	232
	Suphurol indigo B. conc.	WD....		
	Suphurol orange............	WT).....	441	
	Thiamine green, 2 G .	Q........	4,850	
	Thiamine brilliant green 2 Y	Q.......	2.381	
	Thiogene New blue 2RL		509	
	Thional briliant blue 6B.		7,670	22, 何 3
	Thional brilliant green GG.......		386	
	Thional yellow Cr...	S.	8,377	15,983
	Thienal brilliant yellow G.			
	Thional bronze GV............		220	
	Thional brown (iv).		27, 887	
	Thional brown CID	Lever.	470	
	Thional orange G .		1.638	
	Thional yellow 3RD.		6,407	
	Thional hrilliant green $47 \times \mathrm{L}$.	BD.	2,166	
	Thiona! lrilliant green 418 X			
	Thionalbrown R...	$\begin{aligned} & \text { Bn } \\ & \text { Lev } \end{aligned}$	15,4.2	
	Thicnal corinth RBX	B1)	10,970	
	Thional direct blue S.	BI	2,240	
	Thional green 3B..	BD	7,840	6,273
	Thional mreen 3 B	Ler.		
	Thional green DY	Ler	30,332	
	Thionine green 2G D		11,647	
	Thional yellow GR	Ler.	4,980	
	Thional yellow GE	B]		
	Thional yellow 3RD ...	BI	27.619	
	Thional yellow 3RD			

UNIDENTIFIEO MORIHNT AND CHROME COLORS.

Table 14.-Imports of dyes for fiscal year 1920-Continued.
UNIDENTIFIED MORDANT AND CHROME COLORS-Continued.

$\begin{gathered} \text { Sehultz } \\ \text { No. } \end{gathered}$	Name of dye.	Manufacturer.	Imports.	
			Quantity.	Invoice value.
	Alizarine delphinol blue SE		Pounds.	
	Alizarine emeraldole G powder.		231	
	Alizarine saphirole TVSA powder	BY.	994	
	Alizarine sky blue 3R powder.		24	
	Alizarine uranole 2 B potider Anthraeene acid hrown	By-	64 115	
	Anthracene hine LG\%.		2,177	
	Anthraeene blue STVB powder		36	
	Anthracene brown RD paste.		5,908	
	Anthracene lrown WLP paste	B	634	
	Anthracene chrome blue.	f...	62	
	Anthracene rellow		20	
	Anthracyanine 3FL.		145	
	Anthracsanine FL cone. 60/100.	R	95	
	Anthraeyl hat BT.	WD.	165	
	Anthracyl chrome bue D eonc. 125 pe	$\begin{aligned} & \text { wD. } \\ & \text { wD. } \end{aligned}$	8,950	
	Anthranol blaek T dounle eonc	TV.	1,389	
	Anthranol blue RD.	WI.	926	
	Anthranol Bordeaux.	WD	6,377	
	Anthranol brown M.	WD.	311	-
	Anthranol green D.	WD.	212	
	Anthranol orange. .	WD.	321	-
	Anthranol cellow.	WD	18.5	
	Brilliant alizarine eranine 3 f		500	
	Briliant ehrome blue P		220	
	Brilliant delphine blue 1		90, $\times 35$	
	Brilliant milling plue B			
	Cheshire ehrome black R		100	
	Cheshire chrome viotet P	Qii	100	
	Chrome black..........	Wก	6,243	\$2, 31
	Chrome black ${ }_{\text {c }}$.	LG		
	Chrome black PON	CG		
	Chrome brilliant blue G.		1,102	
	Chrome brotn DO....	WD	8,434	3,141
	Chrome brown Ril			
	Chrome fast eyanine G_{G}...		1,102	
	Chrome green Y paste		15, 406	4,964
	Chrome green Y.	Ler		
	Chromegreen Y paste Chrome yellow BN			
	Chromophenine FKN powder	D11	711	
	Chromorhodine B extra.	DH	110	
	Diadem chrome red BR.		25	
	Diamond Borleaux R.	19	597	
	Diamond magenta crystal	W1)	663	-......
	Era black J eone.	L叮	120	
	Fra chrome dark blue (2,2+1	
	Erio alizarine blne 6 15 per cont		1.94	
	Eriochrome azurol BX.		441	
	Frio chrome red PEI.	1	$4{ }^{\text {+1 }}$	
	Erio chrome violet B.		10,71.	
	Erio floxine fr eone...		4,431	7,749
	Fast riolet 222 pee cent.	WI	231	
	Gatlo violet 1)..		51	
	Indalizarine I paste...	115	624	372
	Indalizarine I paste	吕:		
	Dmasa chrume bran Pp.			
	Omega ehrome brown P			-3,01
	Onega chrome brown (19M			
	Omega chame brown G			
	Omega ehrome green F.		1,873	
	Omera chrome red 13.....		971	
	Palatine chrome brown IRS		4	

Table 14．－Imports of dyes for fiscal year 1920－Continuted．
UNIDENTIFIED BASIC COLORS．

$\begin{aligned} & \text { Schultz } \\ & \text { So. } \end{aligned}$	Name of dye．	Manu－ iacturer．	Imports．	
			Quantity．	Invoice value．
	Corn blue B conc． 143 per cent．	WD．	Pounäs． 644	\＄180
	Indocyanine B ．．．．．．．．．．	WD．	441	
	Pyrophosphine GG．	WD．．．．．．．	441	
	Rosazeine 6G extra．	M．．．．．．．．	220	
	Rosolane B cone． Seto Blie VE．．．	M．．．．．．	80	
	Tannin yellow GE．	Q．	125	
	Turquoise blue BB．	By．	201	
	Rhoduline heliotrope B．	$13 y$.	11	
	Rhoduline heliotrope 3B Victoria blue 4BS．．．．．．	By．．．．．	${ }_{7}{ }^{24}$	

（NIOENTIFIFD OIL－SOLUBLE DYVS．

（NIDENTHFIEI）DYES FOR COLOR LAKEG．

Brilliant lake blue $\mathrm{S}_{\text {extra }}$	Ry．	498	
Helio Bordeaux BL powder	By．．．．．．．．．	500	
Helio fast blue BL cone．	By．．．．．．．．	339	
Lithol fast orange R paste	B．．．．．．．．．	110	
Lithol Rubine G powder．	B．	249	
Pigment scarlet 3B．．	M．	1，000	

（NIDENTIFIED C゙NCLASSIFIED COLORS．

Bistre T．	Q．	1，653	
Du Olive GL powder	Lev．	2，249	
lnk Blue BJIBN．	（irE．．	29	
Mounsey Olive brown．	Q ．．．．．．．．．．	100	
New fastred G C L cone．．．．．．	BK．．．．．．．	1，598	
Nitro orange OT 115 per cent $\ldots \ldots$.	$\begin{aligned} & \text { BK } \\ & \text { BK } \ldots \ldots \ldots \end{aligned}$	662	\＄2う8
Paper black．	MI．．．．．．．．．．	1，146	
	W1）．．．．．．	13， 701	5，370
Pajer red $690 .$.	W1）．．．		
Paper red R．．．．．．	W1）．．．		
Parasalphone frown V ．		611	
Parasulphone brouze Gis．	S．．．．．．．．．	110	
Peacock blue．．．．．．．．．．．．．	Q ．．．．．．．．．	1，182	
Red lluish CPl3N		1，102	
Scarlet Z．．．．．．	にK．．．．．．．	1，186	
Tartraphenhne．．．．．．．．．．	2...........	， 720	
Thanine Brilliant green 2 Y ．	i）	1，120	
Tibet black FWN．．．	WD．．．．．	1， 882	
． 111 other．		9，352	14，74
Total．．	．	3，501， 147	4，548，109

Part IV.-APPENDIX

STATISTICS OF IMPORTS AND EXPORTS
DIRECTORY OF MANUFACTURERS OF COAL-TAR PRODCCTS

Table 15.-Imports of dycs entcred for consmmption for 1917, 1918, 1919, and first 6 months of 19.20 (calcndar !ears).

	1917		1918		1919		$\begin{aligned} & 1920 \\ & \text { (} 6 \text { months). } \end{aligned}$	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	Quantity:	Value.
Alizarin: Natural, 30 per cent. Synthetic, 30 per cent.	Pounds. 6,899 19,180	$\$ 12,216$ 55,179	Pounds. 105, 711	\$155, 816	Pounds. 6,684	88,612	Pounds. 58.810	\$18,785
Colors or color lakes obtained, derived, or manufactured from alizarin, 30 per cent plus 5 cents per pound.		$18,680$	1,499	4,490	15,358	14,495	9,961	8,78 \cdot 7,387
Dyes obtained, derived, or manufactured from alizarin, 30 per cent			6,446	13.399			17,777	6,220
Colors or color lakes obtained, derived, or manufactured from anthracene and carbazol, 30 per cent plus 5 cents per pound.	53,205	49,729	27,900	23,83\|	35,073	55, 475	(17,	42,122
Dyes obtained, derived, or manufactured from anthracene and carbazol, 30 per cent.	23,146	\|	12, 527		7,162 78	(7,72		60,760
Indigo: Natural	2,261,122	4,230,510	1,637,911	2,007, 930	1,102 234,991	1,762 28,925	20,574	60,760 33,831
Synthetic. Indigoids, whether or not obtained from indigo.	$1,379,349$ 129,983	871,267 140,932	690,414 3,376	342,549 13,744	537,697 34,049	327,133 \cdot 52,79	99,419 35,372	115,672 99,198
Allother colors, dyes, or stains, whether soluble or not, etc., 30 per cent plus 5 cents per pound.	2,257,476	2,574,363	1, 799,467	2,161, 799	1,941,687.	2, 84, 294	1,353,604	1, \$13, 211

Table 16.-Imports of natmral dyes and extracts of cutcred for consumbtion, 1917 to Junc $30,19.0$.

Calendar year.	Annato.		Cochineal.		Cudbear.	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
1917.	Pounds. 6600.102		Pounds. 121, 879		Pounds.	
1918.	660,102 $65 \div 250$	\$76, 2361	121,879 237 102	845,345 116,660	55,897 54,447	87,515
1919.	356, 432	19,972	116,014	52, 029	33, 391	4,150
1920 (6 months)	759,117	31,002	106, 804	- 44,215	17,924	2, 842
Calendar year.	I'yewnods, diversp.		Fustir wool.		Indigo. natural.	
1917. 1915. 1919 1924) (6inonths)	Tons.		Tons.		Pounds.	
	7,565	\$94, 029	10, 44^{2}	8289, 756	2, 261, 122	84,230,510
	15, 966	407, 190	11, 866	281, 813	1,637, 914	2,007,958
	- 922	${ }_{2}^{23,286}$	696	15, 291	234, 991	285,925
	1,539	29,913	829	16, 567	20, 574	33, 831

Table 16.-Imports of natural dyes and extracts of, entered for consumption. 1917 to June 30, 1920-Continued.

Note.-No imports of eamwood and madder extract.
Table 17.-Imports of coul-tar products entered for consumption, Jan. 1, 1917JItuc 30. 1930.

Calendar year.	Quantity.	Value.	Duty collected.	Actual and ad ra!orem rates.			
	Pounds.			Percent.			
Acetanilid ${ }^{1}$ (25 per cent $)^{2}$. ${ }^{\text {a }}$ (${ }^{\text {a }}$Acet phenctidin $(25$ per cent							
1917........................	3,280	840,352	\$10,088	25. 00			
1918.							
1919............							
1920 (6 months) (25 per cent) :							
1917..	1. 47.1	4,670	1,168	23.00			
1919..	26	76	19	25.03			
1920 (6 months).							
Antipyrene (25 per cent):				$\begin{aligned} & 2.50 \\ & 2.00 \\ & 25.00 \\ & 2.500 \end{aligned}$			
1918.	-9,416	106, 643	26,661				
1919.	13,736	135, 56\%	33, 491				
1920 (6 months).	10,653	37,576	9,394				
Phenolphthalein (25 per cent):2							
1918.	100	1.200	3116	2500			
1919..							
1920 (timonths).................	219	726	141	2500			
Saceharin (65 cents per pound): 1917..............................	354	6.544	3(1)	. 53			
1915......							
1919.							
1920 (6 months)							

[^7]Table 17a.-Imports of coul-tar mroducts entered for consumption, Jan. 1, 1917, to June 30, 1920 (act of Sept. 8, 1916).

GROUP I (FREE).

GROUTI, CRUDE (FREE).

Anthracene, purity less than 25 per cent...........	Pounds. (1)	(1)	Pounds.	85	Pounds: 82,669	\$2,022	Pounds.	\$499
Acenaphthene, cumol fluorene, methylanthracene and methylnaphthalene.	(1)	(1)			1i, 759	946		
Carbazol, purity less than 25 per cent.	(1)	(1)			112	S2		

[^8]Table 17b.-Imports of coal-tar products entcred for consumption, Jan. 1, 1917, to sune 30, 19:0.

(Act of Sept. 8, 1916.)

GROUP II (DUTIABLE AT 15 PER CENT PLUS 2 2 CENTS PER POUND).

	Quantity.	Value.	Duty.	Actual and computed advalorem rate.
Not colors, dyes orstains, photographic chemicals, medic-				
inals, flavors, or explosives, and n. s. p. f.:	Pounds.			Percent.
Jan. 1, 1917-Dec. 31, 1917	4, 653	\$20, 539	83, 190. 00	15. 53
Jan. 1, 1918-Dec. 31, 1918.	1, ${ }_{63} 9$	14,060 374	2, 153.78	15.32 15.42
Jan. 1, 1920-June 30, 1920.	250	1,087	169.30	15.58
Carbolicacid (phenol) which on heing subjected todistillation yields in the portion distilling below $200^{\circ} \mathrm{C}$. a quantity of tar acids equal to or more than 5 per cent of the original distillate:				
Jan. 1, 1917-Dec. 31, 1917	30,676	4,954	1,510.00	30. 48
Jan. 1, 1918-Dee. 31, 1918.	145,261	47,085	10, 769.28	22.87
Jan. 1, 1919-Dec. 31, 1919.				
Jan. 1, 1920-June 30, 1920.				
Liquid-				
Jan. 1, 1918-Dec. 31, 1918	134, 406	15, 186	5,638.05	37.13
Jan. 1, 1919-Dec. 31, 1919	2,061	264	91.13	34. 52
Jan. 1, 1920-June 30, 1920.	30	14	2.18	15.57
Salicylicacid:				
Jan. 1, 1917-Dec. 31, 1917.	26,273	23,575	4,193.00	17.79
Jan. 1, 1918-Dec. 31, 1918.	117	112	19.73	17.62
Jan. 1, 1920-June 30, 1920				
Anthraquinone:				
Jan. 1, 1918-Dec. 31, 1918.				
Jan. 1, 1919-Dec. 31, 1919	3,147	2,643	375.13	14.20
Jan. 1, 1917-Dec. 31, 1917	1,432	9.5	50.00	52.68
Jan. 1, 1918-Dec. 31, 1918.				
Jan. 1, 1919-Dec. 31, 1919				
Jan. 1, 1920-June 30, 1920.				
Binitrotoluol:				
Jan. 1, 1917-Dec. 31, 1917.	61, 632	10,471	3,111.00	29.71
Jan. 1, 1918-Dec. 31, 1918.	22, 635	3,333	1,065. 83	31.98
Jan. 1, 1919-Dec. 31, 1919	6, ¢96	1,331	372.05	27.95
Naphthatene solidify ing at $79^{\circ} \mathrm{C}$. or above:				
Jan. 1, 1917-Dec. 31, 1917...............	267, 057	12, 125	«, 497.00	70. 02
Jan. 1, 1918-Dec. 31, 1918.	2,795	171	95.53	55.87
Jan. 1, 1919-Dec. 31, 1919	7,650	384	245.85	64. 80
Jan. 1, 1920-June 30, 1920.	154, 281	7,700	5,012.00	65.09
Jan. 1, 1917-Dec. 31, 1917. Jan. $1,1918-D e c . ~ 31, ~$	1,027	1,069	186.00	17.40
Jan. 1, 1919-Dec. 31, 1919.				
Jan. 1, 1920-June 30, 1920.				
Nitronaphthalene: 1010				
Jan. 1, 1917-Dec. 31, 1917. Jan. 1, 1918-Dec. 31, 1918	15, 102	7, 75.	1,616.00	20.83
Jan. 1, 1919-Dec. 31, 1919.				
Nitrotutuol:				
Jan. 1, 1915-Dec. 31, 191s..............................				
Jan. 1, 1919-Dec. 31, 1919.	342	4.5	81.35	15.00
Jan. ${ }^{\text {a }}$, 192-June 30, 1920.				
Jan. 1, 1917-Dec. 31, 1917.	94	1, 4, 3	2 cos 00	15.13
Jan. 1, 1918-Dec. 31, 1918.				
Jan. 1, 1919-Dec. 31, 1919.				
Naphthylamine:				
Jan. 1, 1917-Dec. 31, 1917.				
Jan. 1, 1920-June 30, 1920...				

Table 17b.-Imports of coul-tur poducts entered for consumption, Jun. 1. 1917, to Jume 30, 1920-Continued.

〔ROUP Ii (DUTIABLEAT 15 PER CENT PLUS 21 CENTS PER POYND)-Continued.

	Quantity.	Volue.	Duti.	Actual and computed advalorem rate.
Amidonaphthol:	Pounds.			Per cent.
Jan. 1, 1917-Dec. 31, 1917				
Jan. 1, 1918-1)ec. 31, 1918.				
Jan. 1, 1919-Der. 31, 1919	150	2	\$14.55	20.21
Amidophenol:				
Jan. 1, 1917-Dec. 31, 1917.				
Jan. 1, 1919-Dec. 31, 1919.	1,028	2,417	388.25	16.06
Anthracene, purity of 25 per cent or more:				
Jan. 1, 1917-Dec 31, 1917				
Jan. 1, 1919-Dec. 31, 1919	51, 893	8,011	2,499.02	31.19
Benzaldehyde:				
Jan. 1, 1918-Dec. 31, 1918				
Jan. 1, 1919-Dec. 31, 1919.	24,472	17,790	3,280.30	18.44
Jan. 1, 1920-Jume 30, 1920	9,479	5,928	1,125.00	19.00
Jan. 1, 1918-Dec. 31, 1918				
Jan. 1, 1919-Dec. 31, 1919	1,120	427	92.05	21.56
Nitrobenzol: ${ }_{\text {Jan. }}$ (1917-Dec. 31, 1917				
Jan. 1, 1917-Dec. 31,1917Jan. 1, 1918-Dec. 31,1918				
Jan. 1, 1919-Dec. 31, 1919	21,513	4,003	1,138. 28	28.44
Jan. 1, 1920-June 30, 1920	22,110	3,219	1,036.00	32.18
Jan. 1, 1918-Dec. 31, 1918.				
Jan. 1, 1919-Der. 31, 1919.	2, 746	1,769	334.00	18.88
$\begin{aligned} & \text { Jan. 1, 1918-Dec. 31, } 1918 \\ & \text { Jan. } 1,1919 \text {-Dec. } 31,1919 \end{aligned}$				
Jan. 1, 1918-Dec. 31, 1918	21,273	3,250	1,019.00	31.36
Jan. 1, 1919-Dec. 31, 1919				
Jan. 1, 1917-Dec. 31, 1917	5 $\ldots .$.	7 \cdots	1.00	16.86
Jan. 1, 1919-Dec. 31, 1919	1,000	430	89.50	20.81
Alldistillates, n. s.p. f., which on distillation yield in the portion distilling below $200^{\circ} \mathrm{C}$ a quantity of tar acids equal to or more than 5 per cent of the original distillate:				
equal to or more than per cent on the original distilate:				
Jan. 1, 1918-Dec. 31, 1918.	1,5.50			16.93
Jan. 1, 1919-Dec. 31, 1919	3,170	4,587	767.30	16.73
Jan. 1, 1920-June 30, 1920	23,399	18, 423	3,323.00	18.04
Allsimilar products obtained, derived, or manuactured in whole or in part from the products provided for in				
Group I (free): Jan. 1, 1917-Dec. 31, 1917 193,021 17,595 $7,465.00$ 42.43				
Jan. 1, 1918-Dee.31, 1918	13,44.5	8,640	1,632. 12	18.89
Jan. 1, 1919- יec. 31, 1919	51.214	39,861	7,259.50	18. 21
Jan. 1, 1920-June 30, 1920	35,575	35,463	6,284.00	17.72

TABLE 17b.-Tmports of coal-tar products entered for comsumption, Jun. 1, 1917. to June 30, 1920-Continued.

GROUP III (DUTLABLE AT 30 PER CENT AD YALOREM).

GROU1' IU (DTTLABLF AT 30 PER CENT AD VALOREM PLUS 5 CENTS PER POUND).

When obtained, derived, or manufactured in whole or in part from any of the prolucts provided for in Group I (free) or II, including natural indigo and their deriva-
Colors, or color lakes obtained, derived, or manufactured from alizarin-
Jan. 1, 1917-Dec. 31, 1917
Jan. 1, 191s- Dec. 31, 1918
Jan. 1, 1919 - Dec. 31, 19
Jan. 1, 1920-June 30
Colors, or color lakes obtained, derived, or inanufac-
tured from antracene and carbazol-
Jan. 1, 1917 -Dec. 31, 1917
Jan. 1, 1918-Dec. 31, 1918
Jan. 1, 1919-Dec. 31, 1919
$\mathrm{J}_{\text {du. }}$ 1, 1920-June 30, 1

Pounds.	Dollars.	Dollars.	Percent.
7,0ti2	19,640	$5,957.00$	31.59
1, 499		1,421.95	31.67
$15,35 \mathrm{~K}$	14,405	5,089. 40	35.33
9,061	7,35\%	2,1669.00	36.13
53.20 .5	49, 729	17,579. 00	35.35
27.900	22,546	8, 15\%. 80	36.19
38, 073	55, 7.5	18, 216.15	33. 43
40,991	+2.122	14.1ヶ¢. 00	34.88

Table 17b.-Imports of coal-tar products entered for consumption, Jan. 1, 1917, to June 30, 1920-Continued.

GROUP III (DUTIABIE AT 30 PER CENT AD VALOREM PLUS 5 CENTS PER POUNDContinued.

	Quantity.	Value.	Duly.	Actual and computed advalorem rate.
When obtained, derived, or manufactured in whole or in part from any of the products provided for in Group I (free) or II, ineluding natural indigo and their deriva-tives-Continued.				
All other coiors, dyes, or stains, whether soluble or				
not in water, color acids, color bases, or color lakes- Jan. 1, 1917-Dec. 31, 1917	Pounds.	Dollars.	Dollars.	Per cent.
Janl. 1, 1918-Dec. 31, 19181.	2,257,476	2,574,363	885, 183.00	34.38
Jan. 1, 1919 -Dec. 31, 1919	1,799,467	2,161, 799	738, 213.05	34.16
Jan. 1, 1920-June 30, 1920.................................	1,991,687	2, 848, 294	954, 072.55	33.50
Phenolic resin, synthetic -	1, 368, 604	1, 813,211	612, 394.00	33.77
Jan. 1, 1917-J. ${ }^{\text {S }}$ - 31, 1917.	134,702	11,596	10,214.00	88.08
Jan. 1, 1918 Dec. 31, 1918				
Jan. 1, 1919 -Dec. 31, 1919.	1,114	2,860	913.70	31.95
Jan. 1, 1920-Jume 30, 1920	1,530	-949	361.20	38.05
Pbotographic chemicals-				
Jan. 1, 1917-Dec. 31, 1917	12, 632	101,406	31,053.00	30.62
Jan. 1, 1918 -Dec. 31, 1918	14, 550	108,537	33, 288.60	30.67
Jan. 1, 1919-Dec. 31, 1919.	12,059	77, 876	23, 965. 75	30.77
Jan. 1, 1920-June 30, 1920.	9,918	32,186	10,152.40	31.54

${ }^{1}$) oes not include 110 pounds, valued at $\$ 322$, duty $\$ 81.68$, from Cuba.
Table 18.-General imports of conl-tar products, by cowntrics, for calcudar years 1915 -.Junc 30, 19.0.

DEAD OR CREOSOTE OLL (FREE).

Imported from-	1918		1919		$\begin{gathered} \text { Jan. 1, 1920-June 30, } \\ 1920 . \end{gathered}$	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
England	Gallons.		Gallons. $8,934,045$	\$1,085, 617	Gallons. $2,551,835$	\$318,644
Scotland	- 1, 125	\$8822	600,756	10,462	2, 63, 934	9,476
Canada.	1,543, 660	161,693	2,273,578	278, 138	605,324	88,541
All other	- 462	314			2,015, 130	2382,875
Total..	1,545,247	162,869	11,268, 379	1,374,217	5,239, 223	799,536

${ }^{1}$ lmports not available for 1917 calendar year.
2 All from Netherlands.
CARBOLIC ACII.

Imported from-	1918				1919	
	Carbotic acid, free.		Carbolic acid, dutiable (phenol).		Carbolic a id, frce.	
	P'ounds.	Value.	l'ounds.	Value.	Pounds.	Value.
England	155, 236	817,260	208,037 75,300	\$54, 884	1,619, 823	\$158, 820
Scotland					$\cdots 345,46$	28,968
Total.	155,236	17,260	283, 337	62,497	1,965, 289	187,788

Table 18.—General imports of roal-tor produrts, by countries, for calendar years 1918-Junc 30, 1920-Continued.
C.1kBOIIC ICID-Continued.

Imported from-	1919		Jan. 1, 1920-June 30, 1920.			
	Carbolicacid, dutiable (phenol).		Carbolic acid, free.		Carbolic acid duti able (phenol).	
	Pounds.	Value.	younds.	Value.	Pounds.	Value.
England. Scotland.	2,061	\$264	$\begin{aligned} & 55,119 \\ & 14,0 \div 0 \end{aligned}$	$\begin{array}{r} 84,728 \\ 1,590 \end{array}$	30	\$14
Total.	2,061	264	69,159	6,318	30	14

ANILIN SALTS.
(Free under act of 1909; dutiable under act of Oct. 3, 1913, and under the act of Sept. 8, 1916.)

Imported frome -	1918		1919		$\begin{aligned} & \text { Jan. 1, 1920- June } \\ & 30,1920 . \end{aligned}$	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
England.	$\begin{array}{r} \text { Pounds. } \\ 21,273 \end{array}$	33, 250	Pounds.		Pounds.	
Total.	21,273	3,250				

INDIGO

(Free under act of Oet. 3, 1913; dutiable umder act of Sept. 8, 1916.)

Imported from-	191)				1919	
	Indigo, matural, (dutiable).		Indigo, synthetie (dutiable).		Indioo, natural (dutiable).	
	Pounds.	Value.	Pounds.	Value.	l'ounds.	Value.
Switzerland England. British India Salvador. All other... Total.	$\begin{array}{r} 25,762 \\ 261,975 \\ 1,138,166 \\ 234,452 \\ 83,709 \end{array}$	835,719	-70, 212	8410, 121	15,796	829, 557
		$\begin{array}{r} 463,510 \\ 1,24,431 \\ 299,534 \\ 108,150 \end{array}$	6,817	5,587	10,584	15, 647
					99,597	94.901
					60,940 40,557	46, 445
	1, 717,074	2, 194,367	こ:7,029	416,008	227, 124	260, 115
Imported from-	1919		1920 (6 months)			
	Indigo, synthetic (dutiable).		Indigo, natural (dutiable).		Indigo, synthetic (dutiahle).	
	l'ounds.	Value.	Pounds.	Value.	Pounds.	Value.
Switzerland.	-26, 440	8388,067			119.551	8123,084
England.	1,468 $\times, 400$	1,970 $5,-29$	14,262	829,951	1.229	361
France..	\cdots	, , 29	21,116	16,246	381, 31	150,917
Germany.			4,32\%	5,155		
India...			2, sio	7,392		
All other	85,500	36,607	321	105		
Total.	523.88	432,373	46, 578	59, 149	502, 531	250, 362

Tabie 18.-General imports of eoal-tar products, by countries, for calendar years 1918-June 30. 1990-Continned.

ALIZARIN AND ALIZARIN DYES.

(Free under act of Oct. 3, 1913; dutiable under act of Sept. 8, 1916.)

Tmported from-	1918		1919		$\begin{gathered} \text { Jan. 1, 1920-June } \\ 30,1920 . \end{gathered}$	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
Switzerland.	Pounds. 440	\$572	Pounds. 220	\$2,517	Pounds.	
United Vingdom	1,310	3,739	23,417	\$2, 21.084	218,539 22,169	$\$ 73,084$ 13,541
Canada..........		- 2	215	414	-80	${ }_{800}$
Japarl...	15, 141	58,948				
All other	501	7,629	23	265	221	534
Total.	20, 392	70, 890	23,875	24:230	241,012	87,959

COAL-TAR COLORS OR DYES (DUTLABLE).

Table 19.-Womestic erports of coal tar and of dyes and dyestuffs for calendar years 1915^{1}-Jtue 30 . 1920 .

COAL TAR.

Exported to-	1918		1919		$\begin{gathered} \text { Jan. 1, 1920-June } \\ 30,1920 . \end{gathered}$	
	Quantity:	Value.	Quanity.	Value.	Quantity.	Value.
	Barrels.		Barrels.		Barrels.	
North America	2, 5 , 149	139,456	71, 749	158,205	26, ${ }^{214} 4$	81, 749
South America.	805	6,258	2, 759	20, 166	2,470	13,160
Asia	198	1.505	475	3,174	10	65
Oceania.	154	1,739	45	301	34	339
Afriea.	1,176	7,435	1,334	15, 25.7	17	142
Total.	5Q, 551	168, 720	76, 592	198,503	29, 579	87,555

${ }^{1}$ Exports not a vailable for 1917 calendar yeur.

Tabre 19.—Domestic erports of coml tar amd of dyes and dyestuffs for anlemtar yeurs 1918-Jume 30, 19?0-Continued.

DYES AND DYESTCFFS (VALCE).

Exported to -	Calendar years.					
	1914			1:199		
	$\begin{aligned} & \text { Aniline } \\ & \text { dyee: } \end{aligned}$	togwood pytracts.	All other.	Aniline dyes.	Logwood extracts.	All other.
Portugal.	\$176,769	\$10,541	\$131,280	870,296	82, 319	836,063
France..	6,345	263,610	496, 875	127,059	$3+1,96$ 596,042	19,193 224,659
Germany				150		
Italy..	2-4,903	70, 237	234, 238	269, 130	58,716	140,359
Netherlan				26, 284	21,735	9, 104
Russia......	22,509	7,728	12,425 5,000	$\bullet, 570$ $\times 193$	22, 824	
Cnited Kingiom	$380,1 \times 1$	345,45×	524, 576	413, 700	304,656	423, 119
Canarla.	836,445	82,292	724, 522	1,015,334	119,871	1,007, 492
Mexico.	289, 327	5,666	181,029	467, 806	17, 438	230, 359
Central America	5,617	400	5,498	5,941	${ }_{892}$	14,544
West lndies.	23, 417	742	35, 473	34,307	137	40,900
South America	1,719, 46-	128,645	931,600	1, 651, 872	66,099	58.127
Asia..	4,245, $36{ }^{-}$	504,542	2, 720, 399	5,565, 053	48,063	1, 921,202
Ocemia	109, 490	20,194	133,493	174,964	14, 041	143,223
Africa.	3,993	715	15,534	45, 566	1,508	s,281
Denmar				535,334	9,6.1 14,319	2, 438
Spain...	515,895	104,48	412, 222	$535,3 \times 3$ 22,691	$\begin{array}{r}18,349 \\ \times, 54 \\ \hline\end{array}$	15, 208
Norway		95	4,529	13, 663	1,300	7,303
All other	22.924	4,877	6,761	267,682	-,584	44.780
Total.	s, 529,611	1.551,350	6, 636, 099	10, 724,071	1,355, 936	5, 004,428

DYES AND DYESTUFES (VALUE).

Exported to-	Jan. 1-June 30, 1420.		
	Aniline dyes.	Logwood extracts.	All other.
Portugal.	834,789	\$1, 840	\$6,240
Belgium.	214,693	92, 200	30, ${ }^{\text {® }}$
France...	369, 693	360, 773	230,235 8,369
Italy.	2\$1,249	166, 25.5	191,452
Netherlands.	22, 254	34, 133	44,659
Russia (European).	100		
Switzerland. C (ingdom.	48,334	18,965	614,592
Canada.	885, 420	81, 621	53s, 436
Mexico.	527,991	4,021	114,575
Central America.	7,03.1	726	6,642
West Indies..	22, 1×3	2,914	56, 675
South America.	900, 829	16,93n	276.907
Asia.	7,317,211	157,609	2, 216, 26
Oceania.	46, 410	1,016	70, 762
Africa..	32,027	1,350	21, 670
Demmark.	(1, 620	22,574	2,130
Spain..	412, 58	I, 2.50	101,06-
Sweden.	6. $26 \times$	1, 110	12, 663
Norway.	1,710	20,251	9,964
All other	61,139		27,962
Total.	11, 116,743	1,415, 709	4, 551,059

Table 20.—Inks and ink pouders.
(1) IMPORTS FOR CONSUMPTION, 1918 LJUNE 30, 1920.

(C) DOMESTLC EXPORTS OF PRINTER'S INK AND ALL OTHER INKS, 1918 1-JUNE $30,1920$.

Exported to-	Calendar years.				1920 (6 months).	
	1918		1919			
	$\begin{aligned} & \text { Printer's } \\ & \text { ink. } \end{aligned}$	All other inks.	Printer's ink.	All other inks.	Printer's ink.	All other inks.
Europe.	\$48, 394	\$25, 371	\$210,482	\$68, 382	\$118, 174	\$49,653
North America.	256,507	206, 360	320, 008	297, 959	183, 910	158, 859
South America.	353, 023	100, 833	603, 758	210,212	218,626	90,054
Asia..	224, 345	67,736	435, 664	155, 420	323,975	101,525
Oceania.	116, 424	42,452	113,288	109,962	79,574	43,270
Airica.	42, 189	5,429	29,726	14,282	4,944	4,354
Total.	1,040, 882	448, 181	1,712,926	856, 217	929,203	447,715

1 Figures for 1917 not available.

Directory of manufacturers of coal-far moducts during 1919.

[The list below includes all firms that reported to the Tariff Commission the production of coal-tar products during 1919, except $\overline{6} 6$ that objected to the publication of their names. These 56 firms, almost without exception, are either out of business at the present time or manufacture coal-tar products for their own consumption and not for sale. Included among these 56 tirms are firms engiged, primarily, in the manufacture of twxtiles, soap, rubber goods, perfumes, and inks. Cokeoven plants and gas houses whiclr reported to the Geological Survey and not to the Tariff Commission are not inchaderl. The list includes manufacturers of crudes, intermediates, dyes, lakes, medicinals, flavors, photographic chemicals, syuthetic phenolic resins, and synthetic tanning materials.]

No.	Name of company.
1	The Abbott Laboratorics
2	Aeme Dyestuff Co...
3	Agawam Chemical Works (lnc.)
4	Althouse Chemical Co. (Ine.)
5	Amalgamated Dyestuff \& Chemical Works.
6	American Aniline Products (Inc.)....
7	American Chemical Works.
8	American Nitration Co. (lnc.)
9	American Tar Products Co.
10	Ansbacher \& Co., Λ. B.................
11	Anthrakone Dye 1'roducts \& Chemjeal Co. (Ine.).
12	Georgia Railway \& Power Co.........

Office address (location of factory given in parentheses if
not in same city as the office).

4753 East Ravenswood Λ venue, Chicago, Ill.
133 Maiden Lane, New York, N. Y. (Metuchen, N. J.).
531 Grosvenor Building, Providence, R. I. (North Attleboro, Mass.).
540 Pear Street, Reading, Pa.
75 IIudson Strcet (New York, N. Y.) (Newark, N. J.).
80 Fifth Avenue, New York, N. Y. (Lockhaven, Pa.).
1030 Folsom Street, San Francisco, Calif.
River Road, Nutley, N. J.
208 South La Salle Street, Chicago, Ill. (St. Louis, Mo., Youngstown, Ohio, Woodward, Ala., Carrollville, Wis.; Follanshee, W. Va.).
527 Fifth Avenue, New York, N. Y.
1834 Broadway, New York, N. Y. (Jersey City, N. J.).
75 Marietta Street, Atlanta, Ga.

Dircctory of mamufacturers of roal-tar products during 1919-Continued.

Atlantic Dyestuff Co.

Atlas Color Works (Inc.)
The Barrett Co
Bayway Chemical Co
Beaver Chemical Co.
Beaver Manufacturing Co
Bennett \& Davis (Ine.).
British-American Corporation of New Jersey.
Brooklyn Color Works (Inc.)
Bulls Ferry Chemical Co.
Butterworth-Judson Corporation

Calco Chemical Co

Philip Carey Manufacturing Co
Carus Chemical Co
Central Dyestuff \& Chemical Co.
Certainteed Products Corporation
Certified Chemical Corporation
Chatfield Manufacturing Co.
Chemical Co. of America (Inc.).
Chemical Products Laboratories
Chemical Products Corporation.
Charles M. Childs \& Co. (Ine.).
Clifton Chemical Laboratories.
Color Co. of America.
Commonwealth Chemical Corporation Condensite Co. of America. Consolidated Color \& Chemical Co.... Coopers Creek Chemical Co. Croton Color \& Chemical Co. (i........ Cumberland Chemical Corporation Daris Chemical Corporation, Everly M.

Denver Gas \& Electric Light Co Dermatological Research Laboratories Devoe \& Raynolds (lnc.)
Dicks, David Co. (Inc.)
Dicks, David \& Heller Co.
Dissosway-Schad Co. (Inc.)
Dow Chemical Co., The
DuPont de Nemours \& Co...... 1
Dye Products \& Chemical Co. (Inc.). Eakins (Inc.), J. S. \& W. R
Eastman Kodak Co
Essex A niline Works (Inc.)
Exedol Laboratories (Inc.)
Fine Colors Co. (Inc.)
Florasynth Laboratori
Gary Chemicalco.
Goodyear Tire \& D
Grasselli Chemical Co. The
Haarmann-de-Lair-Schaefer Co
Harmer Laboratories Co
Helena Light \& Railway co..............
IIelkulin Chemical Co.
Heller \& Merz Co.
Morris Hermann \& ('o
Heyl Laboratories, The (Inc.)
Hind Harrison Plush Co., The
Holland Aniline Co.
Holliday-Kemp Co. (Inc.).
Hooker Electro-Chemical Co
Hord Color Products Co..
保
Huron ChemicalCo ㄷ........
Hydrocarhon Chemical Products Co..
Hynson, Westcott \& Dumning.
Independent Coal Tar Co.
Industrial Chemical co..
International Consolidated chemical
Corporation.
Iridescent Dyestuff \& Color Co.

Office address (location of factory given in parentheses if not in same city as the office).

88 Ames Building, Boston, Mass. (Burrage, Mass.). 322 Ninth Street, Brooklyn, N. Y.
17 Battery Place, New York N. Y. (refincry, Frankfort, Pa .).
sI Fulton Strect, New York, N. Y. (Elizabeth, N. J.).
Damascus, Va.
Ballardvale, Mass
327 South La Salle Strect, Chicago, Ill.
109 Beekman Street, New York, N. Y. (Ridgefield Park, N. J.).
fi01 Sapkett Street, Brooklyn, N. Y.
Edgewater, N. J. (Shadyside, N. J.)
61 Broadway, New York, N. Y. (Newark, Lyndhurst, N. J.).

Bound Brook, N. J. (Burlington, Newark, Jerscy City, WoodJridge, N. J.).
Lockland, Ohio.
La Salle, Ill.
Plum Point Lane, Newark, N. J.
1801 Boatman's Bank Building, St. Louis, Mo. (East St. Louis, Ill.).
246 Plymouth Street, Brooklyn, N. Y.
Seventy-fourth and Lebanon Streets, Cincinnati, Ohio.
174 Front Street, New York, N. Y. (Springfield, N. J.).
Belleville, Ill.
104 Thirty-second Street, Milwaukee, Wis.
43 Summit Street, Brooklyn, N. Y.
Clifton, N. J.
14 Cedar Street, New York, N. Y. (Valley Stream, N. Y.). 15 Park Row, New York, N. Y. (Newark, N. J.).
Bloomficld, N. J. (Wyandotte, Mich.).
122 Hudson Street. New York, N. Y. (Newark, N. J.).
West Conshohocken, Pa.
293 Broadway, New York, N. Y. (Croton, N. Y.).
Bristol. Va.
25 West Forty-fourth Street, New York, N. Y. (U'nion, N. J.).

900 Fifteenth Street, Denver, Colo.
1720 Lombard Street, Philadelphia, Pa.
101 Fulton Street, New York, N. Y. (Brooklyn, N. Y.).
19 North Moore Street, New York, N. Y.
Chicago Heights, Ill.
830 Humbolt Street, Brooklyn, N. Y. (55) Echford Street, Brooklyn, N. Y.).
Midland, Mích.
Wilmington, Del. (Penns Grove, N. J.).
200 Fifth Avenue, New York, N. Y. (Newark, N. J.).
24 Wallabout Street, Brooklyn, N. Y.
343 State Street, Rochester, N. Y.
88 Broad Street, Boston, Mass. (Sonth Middleton, Mass.).
Edgewater, N. J.
21-29 McBride A renue, Paterson, N. J.
Unionport, N. Y.
738 Broadway, Gary, Ind. (Chesterton, Ind.).
Akron, Ohio.
Clevcland, Ohio (Rensselaer, N. Y.).
Maywood, N. J.
1704 Market Street. Philadelphia, Pa.
Helena, Mont.
900 Jefferson Street, Hoboken, N. J.
Newark, N. J.
788 President Street, Brooklyn, N. Y. (Newark, N. J.).
437 Barretto Street, New York, N. Y.
Clark Mills, N. Y.
Holland, Mich.
Betis Avenue and Qucens Boulevard, Woodside, Long Island.
40 Wall Street. New York, N. Y.
Sandusky, Ohio.
595 East Seventh Street, South Boston, Mass.
100 Fith Avenue, New York, N. Y.' (51 Bergen Strect, Brooklyn, N. Y.).
35 Cottage Arenue Lancaster, Pa.
Charles and Franklin Strects, Baltimore, Mdd.
26 Broad Street, Boston, Mass. (Taunton, Mass.).
P. O. Box 124s, Proridence, R.I.

II East Thirty-sixth Strect, New York, N. Y. (Long Island City, N. Y.).
326 Broadway, New York, N. Y. (587 Sheepshead Bay Road, Brooklyn, N. Y.).

Directory of manufucturers of coul-tar products during 1919-Continued.

No.	Name of company.
89	K. \& T. Chemical Corporation.
91	Kettle River Co..
92	Klipstein \& Sons Co., E. C.............
94	Koppers Produets Co
95	Lamin Chemical Co.
90_{1}	Lasher \& Co., F. G.
97	Lew is Manufaetiring Co., F. J.
98	Lindsay Light Co
100	MeKesson \& Roblins (Ine.)
101	Mallinektodt Chemieal Works.
102	Max Mary Color \& Chemical Co.
103	Mascachusetts State Department of Health.
104	Merck \& Co.
105	Merrimac Chemical Co
106	Metz Lahoratories, II. A. (Ine.)
107	Miller, T. Augustus.
108	Monroe Drug Co.
109	Monsanto Chemical Work
110	Montana Power Co......................
111	National Ammonia Co, of Pennsylrania.

Office address (location of fact ory given in parentheses if not in same city as the office).

100 Broadway, New York, N. Y. (Hillburn, N. Y.).
Madison, Ill.
644 Greenwich Street, New York, N. Y. (Chrome, N. J.;
South Charleston, W. Va.).
Taion Areade, Pittshurgh, Pa.
Huntington, W. Va.
104 Grove Street, Brooklyn, N. Y.
2513 South Rohey Street, Chicago, Il. (Chattanooga, Tean.: Canal Dover, Ohio: Meline, Ill.).
161 East Grand A renue, Chicago, InI.
91 Fulton Street, New York, N. Y. (Brooklyn, N. Y.).
3600 North Second Street, St. Louis, Mo.
192 Coit Street, Irvington, N. f.
510 State House, Boston, Mass.
45 Park Place, New York, N. Y. (Rahway, N. J.).
145 State Street, Boston, Mass. (North Woburn, Mass.). 122 Hudson Street, New York, N. Y. (Brooklyn, N. Y.). 44 Bergen Street, Brookiyn, N. Y
Fourth and Oak Streets, Quincs, inl.
1800 South Second St reet, St. Louis, Mo.
40 East Broadway, Butte, Mont.
Philadelphia, Pa.
21 Burling Slip, New York, N. Y. (Bufalo, N. Y.; Mareus
Hook, Pa.: Wappinger Falls and Brooklyn, N. Y.). 1790 Broadway, New York, N. Y. (Naugatuck, Conn.). North Billerica, Mass.

80 Crown Street, Ner Haven, Comn.
1112 First National Bank Building, Minwaukes, Wis. (Carrollville, Wis.; Passaie, N. J.).
98 John Street, New York, N. Y. (Piiladelphia, Pa.).
Buffalo A yenue, Niagara Falls, N. Y.
Eddy Building, Sarinaw, Mich.
1.22 West One hundred and eighth Sireet, New Iork, N. Y. 301 Liberty Street, Schenectady, N. I.
176 Purchase Street, Boston, Mass. (Poughkeepsie, N. Y.).
Bound Brook, N. J.
Matawan, N.J.
2×37 West Twenty-first Street, Broohlyn, N. Y.
636 West Twenty-second Street, Chicago, ill.
15 William Street, New York, N. Y. (Ponghkeepsie, N. Y.). 161\& Merchants Bank Building, Indianapolis, Ind. (Seattle, Wash.; St. Lonis Park, Minn.).
135 Cedar St., New York, N. Y. (New Brunswiek, N. J.) . Charleston, W. Va.
220 West Forty-seeond Street, New York, N. Y. (247
Water Street, Brooklyn, N. Y.).
Syracuse, N. Y. (Solray, N. Y.).
66 Forest Street, Jersey City, N. J.
Cleveland, Ohio. (Kenisington, Chieago, Mh.).
611 West One limdred and twint y-ninth Street, New York, N. Y. (Edgewater, N. J.).

140 Livingstone Strcet, Brooklyn, N. Y.
81 Fulton Street, New York, N. Y. (Newark, N. J.).
West Fifth Street, Bayonne, N. J.
Cable, Wis.
517 Cortland Street, Belle ville, N. J.
Newman, Ca.
254 North Tent i Street, Brooklyn, N .7 .
326 Broadway, New York, N. Y. (Brookiyn, N. Y.)
192 Broadway, New York, N. Y. (Linden, N. J.).
502 Iroquois Buildug, Buffalo, N. Y.
11 Cliff Street, New York, N. Y. (Brooklyn, N. Y.).
41 Union Square, New York, N. Y.
so Fifth Avenue, New York, N. Y. (Kingsport. Tenn.)
93-95 Broad Street, Boston, Mass. (Ashland, Mass.).
Urbana, Ill.
1010 Wells Building, Milwauke, Wis.
4-6 Platt Street, New York, N. Y. (Jersey City, N. J.).
Verona and Riverside Avemues, North Newark, N. J.
P. O. 134, Pittsburgh, Pa.

2526 Bald win Street, SI. Louis, Mo.
lovedson Buibding, Washington IV. C. (Alexandria, Va.).
2 Rector Strect, Nuw York, N. Y. (Perth Amhov, N. J.).
Fifty-second and Wahace strects, Clicago, In.

Directory of manufactures of coal-tur products during 1919—Continued.

No.	Name of company.	Office address (location of factory given in parentheses if not in same city as the office).
162	Western Reserve Cher ${ }^{\text {cal Co. }}$	3434 East Ninty-third Street, Cleveland, Ohio.
163	Wilbur White Chem calco., The	Owego, N. Y.
164	White Tar Co. of N. J. (Inc.), The.	56 Vesey Strect, New York, N. Y. (Kearney, N. J.).
165	Widder Dye \& Cr mical Co. (nnc.)	100 South Second Street, Brooklyn, N. Y.
1166	Williamsburg Clemical Co. (Inc.).	${ }_{342}^{230}$ Morgan Avenue, Brooklyn, N. Y.
168	Youngstown Chemical Co	Youngstown, Ohio.
169	Zinsser \& Co. (Inc.)	Hastings-on-the-Hudson, N. Y.
170	Zobel Co. (Inc.) Ernst.	112 Second A venue, Brooklvn, N. Y.
171	Zobel Color Works.	326 Broadway, New York, X. Y. (Brooklyn, N. Y'.).

[Total of $2 \because 7$ firms, including the 56 firms that did not consent to the publication of their names in the list above.]

[^0]: ${ }^{1}$ Census of Dyes and Coal-Tar Chemicals, 1917; Report on Dyes and Related Coal-Tay Chemicals, 1918 ; Consus of Dyes and Cont-Tar Chemicals, 1918 ; and Costs of lroduction in the Dye Industry, 191 S and 1919.
 ${ }^{2}$ Dyes and Other Coal-Tar Chemicals, Dec. 12, 1918.

[^1]: a The instructions sent to manufacturers were as follows:
 Include undir "flead or ereosote oil" only products which may be used for ereosoting. Inelude under "otherdi itillates" shingle stain oils, disinfectant oils, and flotation oils which do not contain over 5 per cint of phenol. In lude under "refined tars" those lars which are used for road treatment, saturating folt, and for protective coatings.
 ihenol and all li itillates which, on being subjected to distillation, yield in the portion distilling below $200^{\circ} \mathrm{C}$. a quantity oftaracids equalto or more than 5 per cent of the originaldistillate, arenot 10 be ineluded Ince that are to beplaced in Group 1I.
 crasol, for the parpose of the schedule, is defined as a distillate, containing not more than 5 per cent of phenol and at least 50 per eent of the isomeric eresols.

[^2]: I Norton，Thomas H．：＂Artificial Dyestufis Used in the United States，＂Dept．of Com． merce，Sp．Agents Series．No．121；and lickrell，Dr．E．R．：＂Chemicals and Allied Products Used in the United States，＂lent．of Commerce．Misc．Series No．SH．

[^3]: ${ }^{1}$ Census of byes and Coaltat hemicals, 1018: po an and as.

[^4]:

[^5]: ${ }^{1}$ British Trade Journal, May 9, 1918.

[^6]: ${ }^{1}$ Norton, Thomas II.: "Artifirial Dyestuffs ${ }^{\text {P'sed }}$ in the T'nitud States," Dept. of Commerce, Sl. Agts. Series No. 121 .

[^7]: 1 No imports.

 - Dutiable moder the aet of Oct. 3, 1913, rather than under the at of sept. - 19at.

 3 Included under acetysalieyle acid.

[^8]: ${ }^{1}$ Imports not available by calendar year.

