

$$
\begin{gathered}
9336.26 j^{30} 125 \\
y_{00} 8090 \\
\text { anembr }
\end{gathered}
$$

UNITED STATES TARIFF COMMISSION

PRODUCTION AND SALES

 OF
DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS

1933

REPORT No. 89
SECOND SERIES

UNITED STATES TARIFF COMMISSION

PRODUCTION AND SALES

of

DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS

1933

REPORT No. 89
SECOND SERIES

UNITED STATES
GOVERNMENT PRINTING office
WASHINGTON: 193!

For sale hv the Sumerintendent of Doeuments, Washington, D.C. - - . - - Price 10 cents BOSTON PUBLIC LIBRARY

UNITED STATES TARIFF COMMISSION

ROBERT L. O'BRIEN, Chairman
THOMAS WALKER PAGE, Vice Chairman
EDGAR B. BROSSARD
OSCAR B. RYDER
SIDNEY MORGAN, Secretary
Address All Communications
UNITED STATES TARIFF COMMISSION WASHINGTON, D.C.

CONTENTS

Page
Introduction v
Part I
Summary of dyes and of other synthetic organic chemicals, 1933:
Introduction
Introduction I I
Summary of domestic production, 1933:
Coal-tar crudes 1
Coal-tar intermediates 2
Coal-tar dyes 2
Synthetic organic chemicals of non-coal-tar origin 4
Part II
Production of dyes and other coal-tar chemicals, 1933:
Coal-tar crudes 5
Coal-tar intermediates 6
Dyes and other finished coal-tar products:
Introduction 15
Dyes 15
Color lakes 16
Photographic chemicals 16
Medicinals 16
Flavors 16
Perfume materials 16
Synthetic coal-tar resins 17
Miscellaneous products 17
Production of dyes by classes of application 35
Part III
Synthetic organic chemicals of non-coal-tar origin, 1933 37
Research work, 1933:
Introduction:
Dyes and other coal-tar chemicals 43
Synthetic organic chemicals not of coal-tar origin 43
Coal-tar and non-coal-tar chemicals 44
Appendix
Directory of manufacturers of dyes and other synthetic organic chemicals, 1933 45

Text Tables

1. Comparison of production and sales of tar and certain crudes, 1925-30, 1932, and 1933

2
2. Dyes and other coal-tar chemicals: Summary of production and sales, $\quad 3$
3. Dyes and other coal-tar chemicals: Comparison of production and sales 1925-30, 1932, and 1933
4. Synthetic organic chemicals of non-coal-tar origin: Comparison of
production and sales $1925-30,1932$, and $1933 \ldots-\ldots .-\ldots-\ldots-\ldots$
5. Coal-tar crudes: Production and sales, 1933.. 5
6. Coal-tar intermediates: Production and sales, 1933_..................... 6
7. Dyes and other finished coal-tar products: Production and sales, 1933_ 17
S. Comparison of production and sales of dyes by classes of application,
$\quad 1925-30,1932$, and 1933
9. Synthetic organic chemicals of non-coal-tar origin: Production and
sales, 1933

INTRODUCTION

This report of the domestic dye and synthetic organc chemical industry is the result of an investigation made by the United States Tariff Commission as part of its regular work. It includes production and sales tabulations of coal-tar crudes, intermediates, dyes, and other finished coal-tar chemicals and synthetic organic chemicals of non-coal-tar origin in 1933.

In the preparation of this report, the Tarfi Commesion bad the services of Dexter North and P. K. Lawrence of the Chemical Division of the Commission's staff, and oi others.

PART I

SUMMARY OF DYES AND OF OTHER SYNTHETIC ORGANIC CHEMICALS. 1933

Introduction

The data on the domestic prorluction and sales of dyes and other synthetic organic chemicals for 1933 contamed in this report were collected and compiled by the Tariff Commission as a part of its regular work. The usefulness of such information to governmental agencies and to the public, the Commission considers, warrants its collection and publication.

Detailed tabulations of imports of coal-tar products are not shown here, but are arailable in the monthly list of dye imports, published jointly by the Department of Commerce and the Tariff Commission.

In this report coal-tar products are grouped according to the Tariff Act of 1930 and coniorm in general to common practice. Crudes are duty-free under paragraph 1651; intermediates are dutiable at 40 percent and 7 cents per pound, and at 20 percent and $31 / 2$ ceuts per pound under paragraph 27 ; and dyes and other finished coal-tar products are dutiable under paragraph 28 at 45 percent and 7 cents per pound, except indigo and sulphur black which are dutiable at 20 percent and 3 cents per pound. Certain finished products listed under "Miscellaneous Coal-tar Products", page 34, are dutiable under paragraph 27.

The figures for 1933 were compiled from returns of 237 domestic producers, 9 S of whom made synthetic organic chemicals of non-coaltar origin, and 193 made synthetic organic chemicals of coal-tar origin. A directory of manufacturers who granted permission to publish their names is shown on page 45 .

Data for individual products are given in as great detail as is possible without disclosing the operations of individual manufacturers. The policy of the Commission is to omit production and sales figures for a product unless at least three firms report a substantial production. If the total is not well distributed among the 3 or more manufacturers, or if 1 or 2 producers report the bulk of the total, production or sales figures are not published.

Summary of Domestic Production, 1933

COAL-TAR CRUDES

Production of coke-oven and coal-gas tar, reported to the Bureau of Mines for 1933, totaled $363,298,586$ gallons, of which about 52 percent was distilled by purchasers of tar and a small percentage by the producers of tar. In addition 30,154,122 gallons of water-gas tar and 1,043,931 gallons of oil-gas tar were distilled.

A comparison of the production and sales of tar and of certain crudes with the average for 1925-30 and with 1932 is shown below:

Table 1.-Comparison of production and sales of tar and certain crudes, 192:5-30, 1932, and 1933

	$\begin{aligned} & 1925-30 \\ & \text { average } \end{aligned}$	1932	1933	$\begin{aligned} & \text { Increase } \\ & 1933 \text { over } \\ & 1932 \end{aligned}$
	630, 536	303, 812	363, 299	Percent $+19.6$
Benzol:			36, 29	
	22, 257	11,442	19,382	+69.4
	22, 257	11, 908	19,723	+65.6
	4,651	2,148	3,453	+60.8
Motor benzol: \quad Production				
	96,879 96,879	34,227 34,136 4	40,224 38,655	+17.5 +13.2
	15,920	4,025	4,380	+13.2 +8.8
Naphthalene:				
	44,762	13,593	30, 621	+125.3
	44,762	12, 979	25, 253	+94.6
Sales value.------------------.-----Thousauds of dollars.--	581	164	350	+113.4
Cresote oil:				
Production---------------------- Thousauds of gallons	95, 443	57.842	57,489	-. 6
	95, 443	60, 201	58, 030	-3.6
Sales value-----------------------.-. Thousands of dollars .-	11,742	5,594	4, 779	-14.6

COAL-TAR INTERMEDIATES
In 1933 the production of intermediates by 59 firms was 370.753 , 749 pounds, or 69.9 percent more than was produced in 1932 and 38.6 percent more than the average for 1925-30. Five hundred and thirty-four chemicals were reported under this classification in 1933 as compared with 407 in 1930. Increased production in 1933 as compared with 1930 is shown for dye intermediates, such as aniline oil, 1 amino-2-naphthol-4-sulfonic acid, gamma acid, H acid, J acid, metanilic acid, and sulfanilic acid. Intermediates for resins, such as phenol and phthalic anhydride, increased remarkably, whereas refined cresylic acid decreased. Other important intermediates showing increased production are dinitrochlorobenzene, refined naphthalene, and nitrobenzene.

COAL-TAR DYES

The production of dyes by 46 firms was $100,952,778$ pounds, or 7 percent more than the average for the period $1925-30$, and 41.6 percent more than the output in 1932. Sales totaled $98,238,398$ pounds, valued at $\$ 43,102,469$, or 6.5 percent more 1 volume, and 9 percent more in value than the 1925-30 average, and exceeded 1932 by more than 33 percent m quantity. Sales of unclassified dyes, included in the total, increased to $7,734,981$ pounds, valued at $\$ 7,794,740$. No comparison with 1932 is made because of the incompleteness of data for unclassified dyes for that year.

The weighted average value per pound of dyes sold in 1933 was $\$ 0.439$, as compared with $\$ 0.428$ average for $1925-30$, and $\$ 0.448$ in 1932.

Table 2.-Dyes and other coal-tar chemicals: Summar!! of production and soles, 1933

	Number of manafacturers	Production	Sales		
			Quantit ${ }^{\text {c }}$	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
Intermediate	53	Porends 370, 753, 74!	Pounds 163, が2.560	\$23, 704,672	80.145
Finished products-lotal ${ }^{1}$	159	176, 200, 320	$162,092,167$	65, 992.8077	. 426
Dyes:	.	93, 172, 314	90, 503, 417	35, 307, 729	. 3910
Unclassified		7. $7 \times 0,46$	7. 734.451	7.731, 710	1.01
Total.	46	100, 452, 778	45, 238,398	43, 102, 469	. 439
Color lakes.	35	7, 584,313	T. 57- 481	5, 224,374	. 640
Photographic chemicals	10	825, 88\%	688.976	678, 564	. 985
Medicinals. - -	34	8, 715,027	S. 070.411	f. 827,682	. 846
Flavors--.....-.	13	1, 734, 815	1. 739,509	1, 996 , B6i3	1.03
Perfume materials	20	1, 420,501	$1,225,929$	- 687,141	. 561
Synthetic resins ${ }^{1}$ Miscellaneous ${ }^{2}$.-.	33 27	$41,628,4 \times 5$ $13.340,5 t 4$	$31,657,4,53$ $12, \times 45,810$	7. 338,560	.229 .266

${ }^{1}$ Does not include coumarone and indene resins and resins derived from maleie acid.

- 2 Includes benzoate of soda, benzoyl peroxide, stains and indicators, diazo salts, poisonous and tear gases, naphthol AS derivatives, rapid fasi and rapmogene colors, research chemicals, tanning materials, textile assistants, and others.

Table 3 is a comparison of protuction and sales of dyes and other coal-tar chemmeals in 1933 and in earlier years.

Table 3.-Dyes and other coal-tar chemicals: Comparison of production and sales 1925-30, 193.., and 1933

	$\begin{aligned} & \text { 1425-30 } \\ & \text { average } \end{aligned}$	1932	1933	Increase 1933 over 1932
Intermediates:				Percent
Production.-.-.-------------.--.-. Thousands of pounds	287, 492	218, 143	370, 754	69.9
	109, 133	96, 960	163, 683	68.8
	22,405	17, 259	23, 705	37.3
Finished coal-tar products ${ }^{1}$:				
	138, 078	118,702	${ }^{2} 176,206$	43.4
	133, 964	114,950	${ }^{2} 162,092$	11.0
	65, 027	52, $\times 95$	${ }^{2} 684,993$	30.4
Dyes: Production Thousands of pounds				
Production.--------------.-.-. Thousands of pounds --	94, 003	71, 264	100, 953	41.6
	92, 207	73, 591	98, 238	33.5
	39,428	32, 94.1	43,102	30.8
Medicinals: ${ }_{\text {Production }}$				
Production-.----------------- Thousands of pounds .-	4,508	fi, 365	8,715	36.9
	4, 106	6, 090	8, 070	32.5
	7, 464	5,880	6,828	16.1
	3,966	2, 307	3, 159	36.9 31.8
	3,919 2,901	2,250 2,622	2, 965	${ }_{3}^{31.8}$
Sales value \qquad (1927-30):	2,901	2,622	2, 481	${ }^{3} 5.3$
Production...-.-.-.-.-.-.-.-.-. Thousands of pounds.-	24. 442	29,039	2 41, 628	43.4
	22, 135	23,891	231,658	32.5
Sales value.-------------------Thousands of dollars .-	7, 756	5,001	${ }^{2} 7,239$	44.8

[^0]Activitics in synthetic organic chemicals not of coal-tar origin reached an all-time peak in 1933 with a production of $771,574,595$ pounds and sales totaling $542,679,454$ pounds, valued at $\$ 55,604,615$. Production increased 27 percent and sales volume 24 percent over 1930, whereas sales value decreased 15 pereent.

Comparison with 1930, the last year for which detailed statistics were collected, shows an increase of 129 percent in sales of amyl acetate and sec amyl acetate and a decline in unit sales value from $\$ 0.21$ to $\$ 0.10$ per pouncl. Sales of butyl acetate declined about 3 percent in quantity and in unit value from $\$ 0.17$ to $\$ 0.09$ per pound. Sales of carbon tetrachloride increased about 5 percent in quantity and unit value declined from $\$ 0.06$ to $\$ 0.043$ per pound. Sales of citral in 1933 were 20,937 pounds at $\$ 1.63$ per pound as compared with 6,569 pounds at $\$ 1.91$ in 1930. Sales of ethyl acetate declined 48 percent and unit value from $\$ 0.10$ to $\$ 0.069$ per pound. Production of formaldehyde increased 28 percent and synthetic methanol 35 percent over 1930 .

Sales of non-coal-tar barbituric acid derivatives increased from 18,932 pounds valued at $\$ 13.17$ per pound in 1930 to 69,018 pounds valued at $\$ 8.05$ per pound in 1933.

Synthetic non-coal-tar resin sales increased 82 percent in quantity and 20 percent in unit value as compared with 1932.

Table 4.-Synthetic organic chemicals of non-coal-tar origin: Comparison of production and sales, 1925-30, 1932, and 1393

[^1]
PART II

PRODUCTION OF DYES AND OTHER COAL-TAR CHEMICALS, 1933

Coal-tar Crudes

Table 5 shows the total commercial production of coal tar, quantities distilled, and the production and sales of hight-orl products and tar products in 1933. These data were compiled from information obtained by the Bureau of Mines from producers of tar and by the Tariff Commussion from purchasers of tar.

Table 5.-Coal-tar crudes: ${ }^{1}$ Production and sales, 1938

[The numbers in the scoond column refer to the numbered alphabetical list of manufacturers given on p. 45. An X indicates that the corresponding product was made by a manufacturer who did not consent to the publication of his name in connection therewith. A blank in the third column indicates that the production figure cannot be published without revealing information in regard to the output of individual firms. A blank in the fourth and fifth columns indicates that the sales figure cannot be published without revealing information in regard to the output of individual firms. The figures thus concealed are, however, included in the total]

Car distilled: ${ }^{2}$

Coal tar, 189,657,715 gallons. 343, 550

Total, 220,855,768 gallons
9,386, 026

	Manufacturers'identification numbers (according to list on p. 45) ${ }^{2}$	Production (quantity)	Sales		
			Quantity	Value	Unit value
Tar --.--------------- gallons.-		${ }^{3} 363,298,586$	241,000, 100	\$3, 980, 956	\$0.037
Light oil and derivatives: Crude light oil. .-......do....	$\begin{aligned} & 27,84,96,139,141,148 \\ & 149, \mathrm{X}, \mathrm{X}, \mathrm{X} . \end{aligned}$	103, 023,997	7.843.234	741.082	. 094
Benzol (except motor ben-zol).--................... gallons.	18, 22, $50,141 \ldots \ldots$	19,352,352	19. 322,822	3, 452, 529	. 175
Motor benzol $-\ldots . . .-$ do...- Toluol, crude and refined		${ }^{3} 40.224,022$	38, 654,902	4,379,737	. 113
Toluol, crude and refined		${ }^{3} 11,539,107$	11, 541,990	3, 123, 738	271
Solvent naphtha.-.-- do...-		${ }^{3} 2,717,254$	2,570,981	449,96	. 175
		$32,101,377$	2,271,658	521, 775	. 230
Other light oil products gallons --	$18,50,139,141,148,149,$	5, 329,997	2, 445, 350	420,318	. 172
Naphthalene, crude and refined pounds.	$\begin{gathered} 12,18,96,141,148,149 \\ \mathrm{X} . \end{gathered}$	$430,620,754$	$25,252,619$	350,410	$\stackrel{F}{5014}$
Anthracene crude	96, 148				
Cresol or cresylic acid, crude	12, 18, 148				
Cumene........-.-.-. .-.	18, -.-.--				
Pyridine....	18, 148.				
Crude tar acids.........g.gallons .-	$11,12,18,148,149, \mathrm{X}$	2,858,513	724, 740	206, 435	. 285
Creosote oil. .-. .-.----.-. . do...-	$\begin{aligned} & \text { 2. } 11,12,18,22,27,84 \\ & 88,90,96,102,148 \\ & 149, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X} \\ & \mathrm{X} . \end{aligned}$	57, 489,356	58, 030,083	4,779.076	. 082
Tars, refined..............do....	$\begin{aligned} & 2,11,12,18,22,27,50, \\ & 84,96,141,148,149 \\ & \text { X, X, X. } \end{aligned}$	${ }^{2} 6,902,851$	6,550, 27 S	658, 160	. 100
Tars, road .-.-.-.---.-.-. - do.-.-	$\begin{array}{r} 11,12,18,27,84,90 \\ 139,141,148,149, ~ X . \end{array}$	2 95, 613, 206	99, 062, 021	7,813, 894	079
Other distillates....-.-. .-. do....	$\begin{gathered} 12,18,27,84,88,148, \\ 149, \mathrm{X} . \end{gathered}$	${ }^{2} 6,785,571$	$6,763,174$	934,971	. 138
Pitch of tar.--.-. --.---- --	$\begin{aligned} & \text { 2, 11, 11, 18, 27, 84, 90, } \\ & 96,139,148,149, \mathrm{X} \\ & \mathrm{X}, \mathrm{X}, \mathrm{X} . \end{aligned}$	588,728	323, 065	3,742,675	11.585
Pitch of tar coke..........do.-.	12, 18, 22, $90,148,149 \ldots$	${ }^{2} 27,828$	33, 082	287, 572	8. 693

[^2]
Coal-tar Intermediates

Outstanding among the coal-tar intermedrates showing increased production in 1933 as compared with 1932 are anilme oil, 52 percent; refined naphthalene, 65 percent; phenol, 138 percent; and phthalic anhydride, 125 percent. These increases are due mainly to the increasel demun 'ior the synthetic resins derived from these materials. Total production oí intermediates was $370,753,749$ pounds, or 4.6 parcent more than the pak year of 1929.

Among the intermediates reportel in 1933 but not in 1930 are the following: Acetotolnule, a-aminoanthraquinone, aminoazoxylene-toluidine, amino-5-benzoyl aminouthraquinone, 1 -amino-2-bromo-4-ptoludine anthraquinone, amyl phenol (tertiary), amino omega sulfonc acid, anthraqumone-i-sulfonc acid, azobenzene, benzotrichloride, cresols, 2:2-dibenzanthronyl, dibromoaminoanthraquinone, dimitroanthrarufin disodium sulfonate, diphenylguanidine phthalate, ethylbenzyl-m-toluidine sulfonic acid, nitrosoathyl benzylaniline, oxychorobenzoy benzoic acid, phenylated rosaniline and m-xylidine acetate.

Table 6.-Coal-tar intermediates: Production and sales, 1933
The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 45. An X signities that the manufacturer did not consent to the publication of his identification number with the designated product. A hlank in the third column indicates that the production figure cannot be published without revealing information in regard to the output of individual firms. A blank in the fourth and fiftly columns indicates that the sales of the corresponding product cannot be published without reveling information in regard to the individual firms. The figures thus concealed are, however. inclutled in the total.?

Intermediates	Manufacturers' identification number (acording to list on p. 45).	Production	Sales		
			Quantity	Value	Unit value
Total intermediates		$\begin{gathered} \text { Pounds } \\ 370,753,749 \end{gathered}$	Pounds $163,682,560$	\$23, 704, 672	\$0.145
Acetanilicle, teeh	5, 37, 54,	55, 059			
1)-Acetaniside-	119. C \%	77,087	31,709	22,644	714
A cetoacetylnapht hylamide	138				
A cetotoluide	119, X				
Acetyldiaminoanthraquinone.	,				
1-A eetylmethylamino-4-bromoanthraquinone.					
Acetyl-p-phenylenediamine (p -amino acetanilide).	5, 37, 54, 69, 119, X	S6, 494			
Acetyl-p-phenylenediamine sulfonie acid.					
Acetyl-p-toluidine	54, 134, X				
Acrithy se amine condensation products.					
p-Amino acetanilide. (Sec Acetyl- p-phenylenediamine.)					
1-Amino-1-acetylamino-6 and 7 naphthylamine sulfonic acid (acet ylamino Cleve's acid).	119.				
p-Amino pamimotiphenylamine (phenytene nerol acid).					
Q-Aminoanthraquinone.	34, 69_....				
b-Aminoanthraquinone -.-........	6, 54, 69, 119	362, 869			
Aminnazobenzene and hydrochoride.	$37,54,119, \mathrm{X}$ 6, 119	179,502			
A minoazobernzene suffonic acid.-...	6, 37, 69, 119, X	38, 142			
A minozzotomene	5, 54, 63, 119..				
Aminoazoxylene.	6, 69, 119	23,459			
Aminozzoxylene-toluidine	X				
1)-Aminobenzene J acid	69				

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Intermediates	Manufacturers identifieation number ac1). 45)	Production	Sales		
			Quantity	Value	Unit value
enzidine hydrochloride and sul-	-,54, 58, 69, 119	Pounds 1, 187,533 3,544	Pounds		
$\xrightarrow{\text { fate. }}$ Benzidine sulionic acids					
Renzidine sultmic act	$\begin{aligned} & 6.37,138, \mathrm{X} \\ & 54, ~ \\ & 5,4, ~ 33, ~ \end{aligned}$				
Benzoic anhydride	X				
Benzotrichloride ---...-					
	54. 119, X				
Benzoy Benzoyl J acilid.	- ${ }^{53,79,83,1}$	691, 577	606, 425	\$114, 387	\$0. 189
1-Benzoylamino-4-chloroant hraqui-					
1-Benzoylamino-5-chloranthraqui-	54				
Benzej chloride.	79, 53, X				
Broenner's acid. (See 2 Naphthyl amine-6-sulfonic acid.)					
	54				
	69				
	X				
p-13romophenol (See 1-Amino-s-nain-thol-2 : 4-disulfonic acid.) Chloroacetoacet ylnaphthylamide					
1-Chloro-5-aminoanthraquinone.-	138				
Chlorominophenol sulfonic acid					
p-Chloroaniline sulfonic acid	${ }_{15}$				
	6,54	298, 933			
Chlorobenzanthrone	6. 54.119 .19 .7 ,				
Chlorobenzene (mono			7,504		045
h-Chlorobenzot hiazole					
Chlorobenzoyl henzoic acid 2-Chloro-1:4-dihydroxy anthraqui-	54, 69, 119	638, 662			
	119, 142				
none (chloroquinizarin)					
Chloromethylanthraquinon	5, 54, 119, $54, \ldots$.........-	44, 606			
	83, ${ }^{34}$,				
Chloronitroaninophenol	${ }_{5}^{37}$				
l.Chloro-5-nitroanthrauinone					
o-Chlorophenol Chloron	$\begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}$				
	X				
Chlorophenylllydrazine - p - sulfonic acid.					
Chlorophenylmethylpyrazolone sulfonic acid.	69				
Chorosulfophenylmet hylpyrazolone Chlorotoluene	54				
o-Chloro-p-toluene sodium sulfonate. Chloro-0-toluidine					
	54,	220,341			
Chloro-o-toluidine Chlorotolnidine sulfonie acid \qquad					
Chlorotolylthiosiscollie acid. p -Chloro-p-xylidine					
D-Chloroxylyl thioglycollic acid......					
Chromotropic acid. (See 1:S-Dihydroxymalhathalene - 3:6-disulfonic acid.)					
Cleve's acid. (See l-Naphthyla-mine-6 and 7 -sulfonic aeid.) Cresidine					
Cresol, ortho, meta and para Cresol, meta-para					
(resol) ortho (resslic acild (refined) .-..............		13, 813,941	11,975,441	626,	
Cresylic aciCroulidineCumidine					
Dehydrothio-p-toluidine-...........-					
Dehydrothio-p-toluidine sulfonicaciddDehridrothio-un-xylidine					
	37, 119				

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Intermediates	Manufacturers' identifleation number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
m-Diaminoanisole	187				
Diaminoanthrarufin	6, 54				
Diaminoanthraquinone	6, 54, 69				
2:6-1 iaminoanthraquinone	$54,69,119$				
Diaminodibenzanthronyl.	54...-				
1:4-Diamino - 2:3 - dichloroanthraquinone.	54				
2:6- Diamino - 1:5 - dimercapto anthraquinone.	54.				
Diaminodimethylacridine .-......--	138				
4:4-Diamino-2:2:-dimethyldipheny!methane.					
Diaminodimethy]phenylacridine...	138				
2:4-Diaminodiphenylamine	153				
Diaminodiphenylamine sulfonic acid.	5, 37.				
4:4-Diaminodiphenyl-2-sulfonic acid.	119.				
2:6-Diamino - 3:7-disulfonic acid anthraquinone.					
2:6-Diamino - 3:7-disulfonic - 1:5dichloroanthraquinone.	54.				
Diaminomethylphenylacridine....	138				
Diaminophenetol.	X				
Diaminostilbene disulfonic acid	54, 69, 119				
Dianisidine.	37, 54, 119				
1:1-Dianthrachinylanine	69				
1:1-Dianthraquinone imine	54				
1:1-Dianthraquinone imine diamino	54				
1:1-Dianthraquinone imine-4:4-dibenzoyl diamino.					
1:1-Dianthraquinone imine-4:5-dibenzoyl diamino.					
1:1-Dianthraquinone imine dinitro.-	54				
1-Diazo-2-naphthol-4-sulfonic acid.--	$37,69,119,142$				
Diazosalicylic acirl.-	fir, 119				
Dibenzanthrone.	54, X				
2:2-Dibenzanthronyl	54				
13:13-Dibenzanthronyl	54				
13:13-Dibenzanthronyl selenide	54				
Dibenzothyazyl distulfide...	X				
1:5 - Dibenzoyldiaminoanthraquinone.					---*
4:5-Dibenzoyldiamino - 1:1 - dianthramide.	11.9				
Dibenzylanine.	X				
Dibenzyl aniline	54				
Dibromoaminoanthraquinone	54, 69.				
Dibutyl phthalate.	43, 97, 155, 181, X, X, X	2,311,811	1,921,756	\$364, 549	\$0.190
Dicarboxylic-anthraquinon					
Dichloroaniline.	37, 69, 187	104, 721			-------
Dichloroaniline nitrosamine	69				
Dichloroaniline sulfonic acid	69, 119, $13 \times$				
1:8-Dichloroanthraquinon					
o-Dichlorolenzene.--	53, 54, 83, X	1,329,589	1, 663, 356	59,8f0	. 036
p-Dichlorohenzene.---------------	$53,54,83,164, \mathrm{X}$	5,111,022	$5,398,817$	576,885	. 107
1:5 - Dichloro - 2:6-diaminoanthraquinone.					
1:8 - Dichloro - 4:5 - dinitroanthraquinone.					
2:5-Dichloro-1-nitrobenzene	119				
Dichlorophenylpyrazolone carboxylic acid.	138				
Dichlorosulfophenylpyrazolone.	37				
Dichlorosulfophenylmet hylpyrazolone.	138				
2:5-Diethoxy aniline	54				
Diethylamine	196				
Diethyl-m-aminophenol	54, 110				
Diethylaniline.	53,54				
Diethylaniline-m-sulfonic acid	54.				
Diethy! a-napthylamine	54.				
1:4-Dihydroxy anthraquinone (quinizarin).	$5,6,54,119,142, \mathrm{X} \ldots$	73,721			
5:5 - Dihydroxy - 7:7 - disulfonic -	54				
2:2-dinaphthylamine (Rhoduline acid)					

Table 6.-Coal-tar intermediates: Production and sales, 1933--Continued

Intermediates	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
		Pounds 150,607	Pounds		
5:5 - Dinytroxy - 7.t - Misulanic. 2:2-dimaphthylurea (J acid urea).	$37,54,69,11$				
1:5-Dihydroxynaphthalene.........	69, 119				
1:8 - Dibydroxynaphthalene - 3:6disulfonic acid (chromotropic acid).	37, 119				
5:5-Dihydroxy - di - b-naphtlyyla mine - 7:7 - disulfonic acid (I acid imide).	119				
b-Di-p-hydroxyphenylpropane.-	X				
2:5-Dimethoxy aniline	51				
Dimethosy - diphenyl - bis - diazoamino - trimethylamine sulfonate.	139				
Dimethylamine..-.-.---.-.-.	43,54				
p-Dimethylaminobenzaldehyde	135-....--				
Dimethylaniline......... Dimethyldianthraquinony	53, 54, 119, X	2, 824,270	966,949	\$188,397	\$0.195
Dimethyl phthalate.....-	184				
Dinitroaniline.	$6,54,119,138$,				
2:4-Dinitroanisole	187				
Dinitroanthraduinone	6, 54				
4:8-1)initroant hrarufin	54				
Dinitroanthrarufin disodium sulfonate.					
Dinitrobenzene.	54, 119				
Dinitrobenzene sulfonic ac	37, 69				
Dinitrochlorobenzene	$54,69,119, \mathrm{X}$	6, 859,558	913,320	107, 167	. 117
Dinitrochrysazin disodium sulfonate.					
Dinitrodibenzanthronyl -	54				
4:8 - Dinitro - 1:5 - dinitrophenyl ether anthraquinone.					
Dinitrohydroxydiphenylamine.	37.				
Dinitrophenetol.	X				
Dinitrophenol.	6, 54, 58, 69	158, 985			
Dinitrosilbene	X				
Dinitrostilbene disulfonic acid	54, 119				
Dinitrotoluene	$54,119, \mathrm{X}$				
1:5-Dioxaminoanthraquinone	54				
1:8-Dioxamino-4:5-dinitroantliraquinone.					
1:5-Dioxamino-4:8-dinitroanthraquinone.					
bioxy dibenzanthrone	54				
1:5-1)iphenosy anthraquinone	54				
Diphenyl and derivatives..	T				
Diphenylamine	54				
Diphenyl epsilon acid	54				
Diphenylether - 2-diazoaninodicarboxy fyrrolidine.	138				
Diphenylethylenediamine..-.....-	77				
Wiphenylsuanidine	8, 53, 54, 153	1,516,963	1,299,063	414, 403	. 319
Siphenylounidine phthalate	153				
Diphenylguanidine succinate	X				
biphonylmethane sulfonate.	119				
1)iphenyl p-phenylenediamine	54				
Dipyrazol dianthrone	54				
Distilbenediphenol.	119				
1:5-1)i-p-toluidine ant hraquinone.	54				
1:8-1)i-p-toluidine anthraruinone.	54				
1:4-Di-p-tolylaminoanthraquinone.					
Wion-tolylethylenediamine	77				
Ditolylguanidine..	8, 54				
Ditolylmethane.	119				
Ditolylthiourea	54, 119, 153				
o- Ethoxy - p-amino - o - sulfodiphenylamine.	119.......-				------
Ethoxyethyl phthalate	184				
6-Ethoxy-3-oxy thiomaphthalene	54				
Ethylacetanilide.	119				
Ethyl-p-aminoacetanilide	119.				
Ethyl-o-amino-p-cresol	54, 110				
Ethylaniline (mono) -	54, 119				
Ethylhenzylaniline	54, 119				
Ethylbenzylaniline sulfonic acid..	$37,54,69,110,119 \ldots$	271, 763			

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Table 6.-Coal-tar intermediates: Production and sales, 1939-Continued

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Table 6.-Coal-tar intermediates: Production and sales, 1933-Continued

Intermediates	Manufacturers' iden(according to list on p. 45).	Production	Sales		
			Quantity	Value	Unit ralue
Sulfanilic acid.	7.37, 119, 187, X	$\begin{aligned} & \text { Pounds } \\ & 1,458,315 \end{aligned}$	Pounds		
Sulfanilide .---.-.-...------------					
1-Sulfo-5-nitroant hraquinone.-------					
Sulfophenylmethylpyrazolone ...--					
p-Tertiary buty phenol...-					
Tetrachlorofluorescein					
Tetrachlorophthalic anhydride					
Tetramethyldiaminobenzhydrol (Michler's hydrol)	$\begin{aligned} & 138 . \\ & 54,69 . \\ & \hline \end{aligned}$				
Tetramethyldiaminobenzophenone (Michler's ketone)	$\begin{aligned} & 54,69- \\ & 54,69- \end{aligned}$				
Tetramethyldiaminodiphenylmethane	54, 69, 110, 119, 138, X 5, 119 .	774, 570			
		131, 564	135, 807	\$25,561	\$0. 188
Thiophenyl-b-naphthylamine-..-------------					
Tolidine and salts.-.----.-....-.----------	37,	190, 922			
	X				
	6,15				
	$\stackrel{54,11}{\text { 54, }}$				
	54, 119,				
o-Toluidine sulfonic acid.-...........---------------					
p-Toluidine sulfonic acid.-.------------------	54, $119,194 \ldots$$5.37,54$.$\times 1$.				
p -Tolyl-o-benzoic acid.	$\begin{aligned} & \mathrm{X} \\ & 54,119 \mathrm{X} \\ & 5,37,54,119, \mathrm{X} \end{aligned}$	$\begin{array}{r} 8,500 \\ 687,248 \end{array}$			
m-Tolylenerianine m -Tolyenedamine			260, 665	160,438	15
T-Tolyl-b-naphthylamine - - acid (tolyl neri acid)					
Trichlorobenzenc.-....-----------------------	${ }^{83}$ -				
		1, 111.500°	1,222, 500	252,625	. 197
Trinitrophenol - --...--	54, 119				
	54, 19	07			
Triphenylphosphate m -X ylene		50,			
X ylidine and salt	37, 54, 119, X	$\begin{aligned} & 242 \\ & 29,991 \\ & \hline 101 \end{aligned}$			
	$\begin{aligned} & 5,54, X \\ & 54,119= \\ & 5,6,119 \end{aligned}$				
Xylidine					
	54,119				
Other coal-tar intermediates...-. - -					

Dres and Other Finished Coal-Tar Products

INTRODUCTION

Finished coal-tar products may be divided into the following classes: (1) Dyes, (2) color lakes, (3) photographic chemicals, (4) medicinals, (5) flavors, (6) perfume materials, (7) synthetic resins, and (8) miscellaneous products.

DYES

The production of $100,952,778$ pounds of dyes in 1933 is exceeded only by the $111,421,505$ pounds produced in 1929 and is 7 percent more than the average for the period 1925-30. Sales totaled $98,238,398$ pounds valued at $\$ 43,102,469$ or $\$ 0.439$ per pound or 6.5 percent more
in quantity, and 9 percent more in value than the 1925-30 period. Sales in 1933 exceeded 1932 br more than 30 percent in quantity. Sales of unclassified and special dyes included in this total increased to $7,734,981$ pounds ralued at $\$ 7,794,740$ or $\$ 1.01$ per pound.

COLOR LAIES

Increased activity is noted in this industry in 1933 as compared with 1932, production having increased 19 percent and sales volume 22 percent, and the unit yalue of sales haring increased from $\$ 0.655$ to $\$ 0.69$. Comparison with 1930 shows a decrease of 21 percent in production and sales and on increase in unit ralue from $\$ 0.59$ to $\$ 0.69$ per pound. Increased sales in 1933 as against 1930 are shown for black, lithol red, orange, and para red lakes.

PHOTOGRAPHIC CHEMICALS

The production of photographic chemicals was 825,887 pounds in 1933, as compared with 818,000 pounds in 1932, and 624,828 pounds in 1930. Sales, however, declined to 688,976 pounds, valued at $\$ 678,564$, as compared with 714,000 pounds, valued at $\$ 797,000$ in 1932, and 605,635 pounds valued at $\$ 761,572$ in 1930. Data for hydroquinol are shown separately in this report.

medicinals

Sales of $8,070,411$ pounds of coal-tar medicinals, valued at $\$ 6,827,682$ exceeded in quantity any year since 1919 and were 48 percent higher than 1930. The unit value of sales averaged $\$ 0.85$ per pound as compared with 80.97 in 1932 and $\$ 1.45$ in 1930 . Sales of acetyl salicylic acid (aspirin), by quantity, increased 45 percent over 1930. The price declined from $\$ 0.77$ to $\$ 0.62$ per pound. Sales of arsphenamine and derivatives totaled 5,390 pounds, at an average of $\$ 152.34$ per pound, as compared with 6,488 pounds at $\$ 138.45$ in 1932 and 5,553 pounds at $\$ 226.09$ per pound in 1930. Sales of phenobarbital amounting to 60,197 pounds at $\$ 6.99$ per pound, as compared with 24,069 pounds at $\$ 55.04$ per pound, were outstanding, as was the increase in sales of phenolphthalein to 451,418 pounds, at $\$ 0.44$ per pound, from 384,931 pounds, at $\$ 0.94$ per pound, in 1930.

See table 9, part III, for synthetic medicinals of non-coal-tar origin.

FLAVORS

Sales of flavors declined 14 percent in volume as compared with 1930 and 6 percent as compared with 1932. Sales of coumarin, however, increased 19 pereent by volume over 1930 ; the unit value of sales declined from $\$ 3.27$ per pound in 1930 to $\$ 2.42$ in 1933. Sales of vanillin totaled 191,039 pounds at $\$ 4.06$ per pound, a substantial decline from the 296,161 pounds sold in 1930 at $\$ 5.34$ per pound, and slightly less than the 192,864 pounds sold at $\$ 4.40$ per pound in 1932.

PERFUME MATERIALS

Quantitatively, sales of perfunic materials were greater in 1933 than in 1930, amounting to $1,225,929$ pounds and $1,018,867$ pounds, re-
speetively, in the 2 years. Sales value, however, deelined to $\$ 687,141$ or $\$ 0.56$ per pound as compared with $\$ 745,208$ or $\$ 0.73$ per pound in 1930.

SYNTHETIC COAL-TAR RESINS

Remarkable increases are noted for synthetic resins derived from phenol and cresol. In quantity, sales increased 61 percent over 1930 and 86 percent over 1932, while unit values declined from $\$ 0.38$ per pound in 1930 to $\$ 0.23$ in 1933. Separate data for resins derived from phthalie anhydride are published for the first time.

See table 9, part III, for synthetie resins of non-coal-tar origin.

MISCELLANEOUS PRODUCTS

Production and sales data as shown for this group of products are not comparable with data for earlier years because of the inchusion of certain products not heretofore considered under this classification, such as synthetic insecticides, biological stains and indicators, poisonous and tear gases, and textile assistants derived from coal tar.

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933
[The numbers in the third column refer to the numbered alphabetical list of manufacturers printed on p. 45. An X signifies that the manufacturer did not consent to the publication of his identincation number with the designated product. A blank in the fourth comamn indicates that the production figure cannot be puhlished without revealing information in resard to the output of individual firms. A blank in the fifth and sixth columms indicates that the sales of the corresponding product cannot he rublished without revealing information in regard to the individual firms. The figures thus concealed are, however, included in the total]

Does not include coumarone and indene resins and resins derived from maleic acid.

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

	Name of jroduet	Manufaeturers' identifieation number (according to list on p. 45)	Production	Sales		
$\begin{gathered} \text { Index } \\ \text { No. } \end{gathered}$				Quantity	Value	Unit value
	AZO Dres-contiuued					
	Monoazo Dyes-eondinned		Pounds	Pounds		
56	Chromotrope 613	119				
57	Amido naphthol red 6B	5, 6, 37, 54, 69, 119, X .	167,883	182,74	\$81,001	\$0. 443
69	Toluidine red l L	X, X .-.----...				
73	Sutan II	$44,63,69,119$				
79	Poncean 2R	$6,37,51,69,119, \mathrm{X}$	299, 331	317,970	112,413	. 354
S0	Ponceau 3R					
81	Oil brown					
83	Aeid brown 3 R	K				
84	Double poncern R	54				
88	Borderux B.....-	5, 37, 54, 119, X		75,351	32, 549	. 429
90	Chromotrope 1013	54 -				
98	Chrome brown R	37				
101	Chromate brewn B.	119, 142, X				
105	Acid chrome brown R	$5,51,69$				
110	Chrome thvine $\mathrm{G}^{\text {a }}$					-----
113	Sudan R	63				
114	dzo cosine (1	51				
119	Eosamine 4	51				
122	Chrome yellow 5 (37				
126	Direct pink E2GN	54				
128	Direct pink -	119				
130 138	Direct pink EBN	54 .-.				
138	Netanil yellow Dethyl orange	5, 37, 51, 69, 119	458, 114	454, 5.0	235, 510	. 513
142	Methyl orange					
145	Azoflavine 2R					
146	Azo yellow	A, 54, 69, 119	52, 770	49, 745	34, 114	686
148	Resorein yellow	119, X				
150	frange I					
151	Orange If	5.37, 6\%, 119, X	1, 128,249			-----
153	Azofuchsine Fr					
156	Permanent orange de	f				
160	Tonsa rubine	69				
161	Orange $\mathrm{P}_{\text {L }}$	51, 119, X				
163	Lake red 48	$37,54, \mathrm{x}$	54, 785	64, 960	71.354	1. 10
165	Lakered 0	$5.54,69,82,111,179$	454, 200	386, 314	399, 130	1.03
167	Acid chrome hrown R	119 .				
168	dei'l chrome garnet R	37, 64, 119.				
169	Chrome violet k	$37,54,114, \mathrm{X}$		9, 101	8,301	. 883
170	('hrome black lo	09.119				
175	A cil chrome brown					
176	Fast red 1	$37,51,69,119, \mathrm{X}, \mathrm{X}$	-3,207	78, 799	13, 545	. 541
179	Azo rubine	37, $21,69,119, \mathrm{X}$	116,528	124, 775	63,952	. 513
$181)$	Fast red VR	$37,61,119,192 \ldots$	A1,030	92, 147	45.985	. 499
152	Fast red E.	5				
1×3	Crucrine sarlet 3B	37				
184	tmaranth	6, 37, 54, 69, 119, X		20,581	9, 761	. 474
155	Cochineal red	$37,69,119$,	75,772	77, 592	34, 591	. 446
189 145	Lake red R (lom percent)..	37,51, ti4, 162. X, X.				
145	Nhordant yellow	$37,119 \ldots \ldots$				
197	Chrome yellow RiN	119				
201	Chrome hlue hase 13	$345,37,54,119$,				
202	Chrome bras hatack (T	$5,37,44.54,69,119$	1,630, 005	1,705,301	456, 654	. 267
203 209	Chrome black ${ }^{\text {cha }}$ (hrome black	$37,54,69,119 \ldots$				
208 208	Fast acid blue k	37,54, ti9, 119, 142 5, 54, t9, 114,	165, 3n9	159.734	71,551	. 448
209	Fust acid blue 3	5, 51, 69, 119.	165,	1.0 .13	7,	
211	Methyl red.	7 \%				
214	lakered い	17.9				
216	Chrome rell 13	$5,37,+4,51,69,119,$	89,391	85, 1 i 6	47, 182	. 554
225	1)irect pink E	二1, X				
	Disazo Dyes					
234	Resorcin brown 13	$\begin{aligned} & 5,6,3 \overline{7}, 44,54,69 \\ & 119, \mathrm{X} . \end{aligned}$	291,839	249,631	125, 181	. 501
235	Resoren dark brown	5, 14, 119, X				
2\%8	A chl chrome brown (51-.-------				
216	Aeid brack 10 B .	$5,6,37,54,69,114,$ $142,197, \mathrm{X}, \mathrm{X} .$	1, 227,654	1, 198, 129	435,072	. 366
247	Acil dark grean A	$37,44,54, \mathrm{~N}$	18,330	15,389	8,319	. 540
2 L	Siwhon G					

Table 7.-Dyes and other finished coal-tar producls: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Producion and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

$\begin{gathered} \text { Col- } \\ \text { our } \\ \text { Index } \\ \text { No. } \end{gathered}$	Name of product	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
				Quantity	Value	Unit value
	AZINE DYES		Pounds	Pounds		
833	Wool fast blue (54, 69, 119				
841	Saframine	54, 119				
860	Induline (spirit-soluble)	69, 119, X				
861	Induline (water-soluble)	69, 119, X	29,633	35,354	\$26, 368	\$0. 746
S64	Nigrosine (spirit-soluble)	69, 119. X	566, 142	694, 356	196, 191	. 325
865	Nigrosine (water-solnble).	63, 119, X	1,244,125	1, 350, 874	445, 183	. 330
	ANiline black and allied DYEs					
873	New fast gray	54, 139, X				
875	Fur black....	69, X....				
	OXAZINE DYES					
875	Delphine blue B	119				
S53	Gallocyanine	K, X				
909	Cotton blue.	6, 119, X	58,055	41, 3×7	53,045	1. 23
913	Nile blue B.					
	THIAZINE DYEA					
922	Methylene blue ...	54.69, 119, X		409, 141	343, 641	840
924	Methylene green B.	X				
931	Brilliant chrome blue	69, X				
	SULFIDE DYES					
969	Carbazole vat blue R.	54	$\left.{ }^{2}\right)$			
971	Carbazole vat blue $\mathrm{G}_{\text {- }}$	54	(2)			
	Sulfur black	54, 60, 119, X	16,020, 531	14,951, 341	2, 034, 449	. 136
	Suliur blne.	$5,37,54,69,87,119, \mathrm{X}$	1,357,303	1,283, 858	504, 934	. 393
	Sulfur brown	5, 37, $\mathrm{x}_{\text {, }} \mathbf{4}, 54,69,87,119$	1,522,320	1, 450,521	402, 790	. 278
	Sulfur green	$5,54,69,87,119$	150, 2×8	164.145	125.234	763
	Suliur maroon	$5,54,69,119$	459,670	421,056	220,023	. 523
	sultur olive.	54, 60, 119, X	48,343	86,732	25, 766	. 332
	sultur orange	37,54, 69, $119 \ldots-\ldots$		23,920	9, 664	. 104
	Sulfurtan	5, 37,54,69,87,	303, 017	306.003	82, 500	. 271
	sulfur yellow	$5,37,54,69,87,119, \mathrm{X}_{-}$	202, 699	212,170	80,402	. 379
	Other sulticle dyes	$5,37, \ldots$		212,170	-1,	
	Total sulnde dyes		20, 188,008	18, 939, 801	3,516,559	. 185
1027	Alizarin	6, 11! ${ }^{\text {, }}$ S				
1034	Alizarin red S.	6, 119, λ		27.211	46, 439	1. 71
1035	Alizarin brown	119, $\mathrm{X}^{\text {. }}$				
1037	Alizarin red Ps	69				
1039	Alizarin (tl	51				
1040	Alizarin SX	119				
1053	Acidalizarin blue SE	54,69				
1054	A cid alizarin blue 13 -	54, 69, 119	451, 177	415,293	652,404	1.64
1059	Anthracene blue WG	16......				
1060	Anthracene blue SWGGG	16.				
1062	Anthracene blue WR	36,119				
1058	Anthracene blue W'Rs	16				
1073	Alizarin irisol l	16,54				
1975	Alizarin astrol 13	51,69				
1075	C'Yanantlirol R .-....---	54				
11075	Alizarin cyanine green \mathbf{E}	$5,6,16,54,69,119, \mathrm{X}^{-}$	67,546	58,346	119,019	2.04
1080	A cid anthraquinone violet 3 .	$16,54 \ldots \ldots$	6,	5,316	10,019	
1085	Anthra kunone blue black 3 .	$54,69,119, \mathrm{X}$	86,681	83,162	121, 429	1. 46
$\begin{aligned} & 10 \times \mathrm{x} \\ & 1091 \end{aligned}$	Acid anthraruinone blue 33.	51, 69, 119		25,143	80, 696	3.21
	Acid tizarin rubine.-	69....				
	'Total anthrriuinone dyes.		1,024, 605	944, 711	1,480,964	1.57

${ }^{2}$ Totals not inchuded under sulfide dyes. In the dyes classified by method of application, these 2 dyes are included in the rat dyes.

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

ol-	Name of product	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
$\begin{aligned} & \text { Index } \\ & \text { No. } \end{aligned}$				Quantity	- Value	Unit value
	Anthramelinone vat dyes (single strength)					
1095	Anthraquinone vat yellow	54, 69	Pounds	Pounds		
1096	Anthraquinone orange G. orange G.	54, 69, 119, X	113, 320	124, 551	\$185, 735	\$1.49
1097	Anthráninone vat golden orange R.	119.				
1098	Anthraquinone vat scarlet G_{-}	119				
1099	Anthraquinone vat dark blue BO.	54, 69, 119, X, X	93, 447	100, 810	121, 261	1. 20
1101	Anthraquinone rat jade green					
1102	Anthraquinone vat green B and black.	54, 69, 119, X				
1104	Anthraquinone vat violet RR.	6, 54, 69, 119, X.	96, 423	96, 170	160,950	1. 67
1107	Anthraquinone vat blue RS-	54, 69				
1109	Anthraquinone vat blue 3G-	54				
1113	Anthraquinone rat blue GCD.	53, 54, 69, 119	423, 326	523,026	299, 189	. 572
1114	Anthraruinone vat blue BCS .	54, 69, 119.	453, 253	411,475	394, 345	. 958
1115	Anthrariuinone rat blue RCD.					
1118	Anthraquinone vat yellow $\mathrm{G}_{\text {- }}$	6, 53, 54, 69, 119	153, 042	227,455	246, 875	1.09
1120	Anthraquinone vat brown B Anthraquinone vat scarlet R_{-}					
1131	Anthraquinone rat red 5 GK .	54				
1132	Anthraquinone vat yellow GK.	6,54				
1133	Anthraquinone vat red $\mathrm{FF}_{\text {- }}$	54				
1134	Anthraquinone rat brilliant violet B .					
1135	Anthraquinone vat brilliant violet R .					
1150	Anthraquinone rat olive $\mathrm{R}_{\text {- }}$ -	54, 69, 119.				
1151	Anthraruinone vat brown R -	54, 69, 119				
1152	Anthraquinone vat brown $\mathrm{G}_{\text {- }}$	54, 69, 119				
1161	Anthraquinone vat red violet RRN.	54, 69				
1162	Anthraquinone vat red BN.	54, 1				
1163 1169	Anthraquinune vat violet BNX .					
1170	Anthraquinone rat yellow	54, X				
1173	3f. Anthraquinone vat blue green FFB.					
	Total anthraquinone vat dyes.		3, 532, 834	3,705,978	4, 035,688	1.09
	indigoid and thioindigold					
1177	Indigo, synthetic, 20 percent paste.	53, 54, 119.	23,412,400	22, 500, 721	3, 506, 985	. 156
1178	Indigo white..-------------	119				
1180	Indigo extract.-...-	54, 119				
1183 1184	Tribromindigo RB					
1184	Bromindigo blue 2B, 2BD	53, 69, 119				
1186	Bromindigo 6B.	53				
1207	Yat red B.-	54				
1210	Vat brilliant link R					
1212	Vat red 3B--........	53, 54, 69, 119 \ldots	$59,299$	74,681	86, 070	1.15
1217	Vat orange R	$54,69,119, \mathrm{X}, \mathrm{X}, \mathrm{X}$.	329, 769	352,938	473,508	1.34
1222	Vat violet BR.	53, 54				
1228	Yat scarlet G.	53				
1229	Vat red R.--....-..............	53--------------1.				
	FOOD DYES					
22	Yellow AB.	56, 119, 168, X				
61	Yellow OB	56, 119, 168, X				
80	Ponceau 3R	19, 119, 168, 189,	26,081	25, 818	112,526	4.36
150	Orange 1.	19, 119, 165, 189, X..-	83,348	84, 325	148, 812	1.76

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and salcs, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Name of product	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { Value } \end{aligned}$
Unclassified Dyes-Contd.		Pounds	Pounds		
A zo scarlet G conc	138				
Azo violet 2 B	5				
Azoxylene azo b-naphthol. Azoxylene azo $\mathrm{N}-1700$	N				
Azoxylene yellow $\mathrm{T}-7463$	X				
Basic black APX.	54				
Basic navy blue.	69				
Bis benzene diazo a-naphthol.	N				
Bis xylene diazo a-naphthol -- Bordeaux BP.	-				
Brilliant acid blue 3BP	138				
Brilliant henzo violet B	54				
Brilliant green crystals	T				
Brilliant milling blue $\mathrm{B}_{\text {_- }}$	54,69				
Brilliant milling green B conc. Brilliant red lake R paste					
Brilliant wool blue (FFR, G extra, N). Celanthrene black	69,119 $54 \ldots$	---------			
Celanthrene Blue G	54				
Celanthrene brilliant blue	54				
Celanthrene brilliant red....-	54				
Celanthrene brown (BR, Y, AN).	54.				-
Celanthrene fast light yellow-	54				
Celanthrene navy blue (R , BN, CB, CBR).	54				
Celanthrene orange, ex-	54				
Celanthrene purple	$\begin{aligned} & 54 \\ & 54 \end{aligned}$				
Celanthrene red violet R	54				
Celanthrene sky blue (B, ISR).					
Celanthrene violet CB.-....-					
Cherry red toner no. 1	69				
Chromate blue black B	37				
Chromate brilliant brown (R, RL).					
Chromate brown (EBS conc., EB, EG, BC, EBR).	5, 36, 54, 69, X, X. X.	113, 298	110, 707	\$89, 461	\$0.808
Chrome black ($3 \mathrm{G}, 77, \mathrm{SW}$,	$5,54,119,144, \mathrm{X} \ldots \ldots$	8,427	15,888	15,429	. 971
NSE). Chrome blue ATX	54, 144				
Chrome brown (E, 3B, EB, (i, PG, RH).	(i, 36, 37, 54, 119.	129,951			
Chrome green ($\mathrm{B}, 3 \mathrm{~B}, \mathrm{SN}$. $5 \mathrm{~W}, \mathrm{G}, \mathrm{CB})$.	$5,37,119,144, \mathrm{x}$ 119				
Chrome red (B, BGA)	36.				
Chrome red hrown 3R	69				
Chrome violet	144				
Chrome yellow (DS, 5G, SS, SW, G, 3(3, 2(1).	$5,37,54,69,119, \mathrm{X}$	53,879	62, 231	23, 883	. 384
Chromovane eyanine $\mathrm{R}_{\text {-...- }}$					
Chromoxane pure blue B	69				
Cloth red (R, 2R) , ..	119				
Croceine searlet FP 'one	119				
Developed black ($6,2 B N$, OB, OT, ZV conc).	37, 54, 69, 119	165,551	153, 801	77,001	. 501
$\begin{aligned} & \text { Develobed blue (13, BK, } \\ & \text { B55:3, B555, NA, } 5(11) . \end{aligned}$	$37,44,54,119$				
Developed 13ordeauy (713, 7B eone.).	54, 119				
Developed brilliant scarlet (2131,. 5B1).					
Develapd brown R	54				
Developed fast hlue ($\mathrm{B}, 2 \mathrm{RW}$, NBB).	37, 51				
Developetl fast red 7BL	5.1				
bevelored fast violet BL ,	54				
Weveloped green (131, 2(iL).	54				
Developed indigo hlue 4(iL...	5, 54				
I eveloped orange (RR, W O)-	54.				

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1938Continued

Name of product	Manufacturers, identifieation number (according to list on p. 45)	Production	Sales		
			Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
Unclassified Dies-Contry.		Pounds	Pounds		
Fast acid violet (VR, ERR ex).	54, 138......---....				
Fast acid yellow R ----------					
Fast black V Fast erimson R					
Fast light red ($\mathrm{B}, 4 \mathrm{~B}$)	619				
Fast light yellow (3G, E2G)	69				
Fast silk red R'T.	5				
Fast wool hack of F cone.	119				
Fast wool red (BL, GL) ...	119				
Fast wool violet B	119				
Gas yellow......	$\underset{\sim}{2}$				
Hansa yellow G	54, 62, 92				
Helio Bordeaux BL Helio fast rubine 4BL					
Helio red RM1T					
Indamine navy hlue $2 \overline{3}$	5				
Indigo vat brown (i)	119				
Indigo vat pink FF	51, 119. X, X	118, 045	--------		
Indocyanine ${ }^{\text {In }}$ - blue B.JTISN					
Lacquer maroon	N				
Lake orange--	X				
Lake pink RL	119				
Lake red Larlet GC	119				
Lenafuclisine B.	54				
Leather brown.					
Light fast violet -----....---	X				
Lithosol fast blue BL cone...					
Methyl violet (L cone., NFB, 5B erystal).	69, 119				
Milling fast garnet R .-.......-	35				
Milling fast red BA					
Milling fast yellow 5 G					
Milling orange ($\mathrm{G}, \mathrm{RN}, \mathrm{R}, \mathrm{R}$ cone.).	54. 119,138				
Milling red (B,G,R).	119, X.				
Milling yellow (CR, $3 \mathrm{G}, \mathrm{GN}$, R, O (cone.) Naphthogene blue 2R	5, 54, 119, 138, X...	34,016	28, 107	\$29, 748	\$1.06
Naphthylamine hlack V-....					
Neptune blue BR.....					
Neutral discharge red BW	${ }^{6}$				
New met hylene blue -------	X				
Nigrosine base (B, N, NB, R, 2R). Oil hrown (M, Y, J)	$119 \ldots$ 63.119				
Oil fast urance A.	119				
Oil fast red M1	119				
Oil fast yellow 3G	119				
Oil reen-.....	I				
Oil pink 13...	119				
Oil red (3B, G, O, JO, V, E($\mathrm{i}_{4} 40,322$).	6, 44, $63,119,195,{ }^{-1}$	32,664	37,483	37,656	1. 00
Oil violet	X				
Oil yellow N	54, X				
Oxymmmine back					
Paper sarlat 8	69				
Para brown lok	119				
Para yellow (ill	119				
$\begin{aligned} & \text { Patent llue (AF, } 2 \mathrm{RG}, \mathrm{~B} \\ & \text { conc.) } \end{aligned}$	69, 119				
ltharmasol scarlet $\mathrm{a}_{\text {- }}$	138				
Pharmasol yellow (a.	13 N				
Pharmol blue B	135				
Pharmol yellow (${ }^{\text {P }}$	1138				
Phenamine biack (B, BN	69				

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1993Continued

Name of product	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
Unclassified Dies-Contd.					
Phloxine BN	X	Pounds	Pounds		
Pigment orange	X				
Pigment red R R	X				
Pigment yellow ${ }_{\text {Plut }}$	K				
Plutoform black C	69				
Polar orange (GS, R) Polar red (B, 3B, $)$	5, 37				
Polar yellow (2G, 5G, R, G) -	5, 37				
Printing violet $\mathrm{R}_{\text {. }}$.-.---.-----	119				
Rapid printing orange.-.....	X				
Rapid printing scarlct.---..--					
Rayon hlack (B, MS)-	54				
Rayon Bordeaux (B, 3B)...-	54				
Rayon brown (G, M) --------					
Rayon navy blue N-------.	54				
Rayon violet (B, 3B, 4R) $-\ldots$.	54				
Resin brilliant orange RR....	119				
Resin brilliant red R.-......-	119				
Resin brilliant scarlet 6G.-.-	119				
	119				
Resin violet B----	119				
Resorcin brown YX .-.......-	$\stackrel{44}{X}$				
Rosanthrene (A, R)	54				
Roto orance (IT, IPI) . . .-. -	69				
Rubber colors..---					
Safranine 8B	119				-------
Silk black 4BF					
Silk blue (10G, 3G)	51				
Silk brown (R, G, B)	37, X				
Silk red (10B, 2B) ...					
Silk white hlice $\mathrm{O}_{\text {. }}$					
Silk yellow N .	X				
Sudan blue G	69				
Sudan orange (G, RT)	69				
Sudan red BJ3	69.				
Sudan yellow (2G, R)					
Sulfon navy blue (2 BN , 4B).	69.				
Sulfon yellow R.	69				
$\begin{aligned} & \text { Supranol red (PBX, PG, } \\ & \text { PRX, R). } \end{aligned}$	69.				------
Toluene azo b-naphthol	X				
Union fast gray.	119				
Universal black	69				
Vat black.-.	155				
Vat red.	155				
Victoria fast violet.	X				
Victoria pure blue (BOA, BGO).	69				------
Violet toner...-					
Vulcan blue T_{1}	5				
Wool bluc (CG, CB)	119				
Wool fast orange G.	69				
Wool green B.-...	119				
Wool navy blue B	119				
Wool red special.	138				
$\begin{aligned} & \text { Zambesi black (BG, PC, } \\ & V, D, V D) . \end{aligned}$	5, 37, 69, 119				
	54, X.				
Total unclassified dyes_		7,780, 464	7,734, 981	\$7, 794, 740	\$1.01
Grand total of dyes....		100, 952, 778	98, 238, 398	43, 102, 469	. 439
Color Lakes					
Black lakes..	$\begin{gathered} 41,98, X, X, X, X \\ X . \end{gathered}$	151, 111	163, 875	115. 224	. 703
Blue lakes.	$\begin{array}{r} 24,30,41,57,82,96 \\ 98,99,101,111,162, \\ 171,179,195, \mathbf{X}, \\ \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}, \\ \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X} . \end{array}$	754,614	757, 961	649,540	. 857

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Table 7.-Dyes and other finished coal-tar producis: Production and sales, 1933Continued

Name of product	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
FLATORS	*				
Coumarin (synthetic)	53, 54, 62, 113, X	140,512	124, 054	\$300, 819	\$2. 42
Ethyl benzoate.	62, X				
Ethyl cinnamate	$62,65,66$				
Ethyl salicylate.	$53,62, \mathrm{X}$	401	320	290	. 906
Ethyl ranillin.	65.				
Methyl cinnamate	$62,66,1 \times 2$				
Methyl salicylate	53, 79, X	$1,115,154$	1, 146, 064	354, 191	. 309
Saccharin.--------- Vanillin	X	195, 811	191, 039	75,239	4. 060
Total flavor		1, 738, 815	1,739,509	1,796,663	1. 03
Perfume Materials					
Acetophenone.	62, 66, X, X		3,738	3, 717	. 994
Amyl cinnamic aldehy	62, 65, X, X, X, X	32, 159	30,370	62,985	2.07
Amyl salicylate.	$62,161, \mathrm{X}, \mathrm{X}$				
Benzal glycerin.					
Benzophenone	$54,62,65,66$				
Benzyl acetate	62, 161.				
Benzyl alcohol	62, 83, 161				
Benzyl benzoate	62, 65, 161				
Benzyl butyrate	X				
Benzyl cinnamate	62				
[3enzyl formate.	X				
Benzyl isoeugenol	186				
Benzyl propionate	62, X, X,	130	185	386	2. 09
Benzyl salicylate.	186, X				
Benzyl valerate	X				
Cinnamic acid.	65, 66				
Cinnamic alcohol	66.				
Cinnamic aldehyde.	62, 65, X, X	6,374	4,288	6,729	1. 57
Cinnamyl propionate					
Cinnamyl valerianate					
p-Cresyl acetate...					
p-Cresylphenyl acetate	62				
Diamyl phthalate.	97, X				
Diethyl phthalate	X, X, X				
Dimethyl anthranilate					
Dimethylbenzyl carbinol	62				
Dimethyl hydroquinone.					
Dimethyl phthalate.-	97, X, X,		61,852	13, 822	. 223
Diphenylmethane	X				
Diphenyl oxide	53, X				
Ethyl anthranilate	X				
p-Hydroxy benzoic acid esters (aseptoform).	65.				
Isobutyl anthranilate.....---	62.				
Isobutyl indol.-	62.				
Isobutylphenyl acetate.	62, X, X				
Isobutyl salicylate.	X				
Linalyl anthranilate	186				
Linalyl benzoate.	186				
Linalyl cinnamate.	186.				
Methyl acetophenone	62, 66, X				
Methyl anthranilate.	53.				
Methyl benzoate.	65, 66				
Methyl p-cresol.					
Methylphenyl acetate	1,62, 66, X, X				
Methylphenyl carbinyl acetate.					
Musk ambrette.	65.				
Musk ketone	65.				
Musk xylol.	65.				
b-Naphthyl ethyl ether	66.				
b-Naphthyl methyl ether....	66.				
Phenylacetic acid.	66.				
Phenylacetic ketone					
Phenylethyl acetate.	62, X				
Phenylethyl alcohol.--------	$53,62,182, \mathrm{X}$...-....				
Phenylethyl anthranilate.	186.				
Phenylethyl butyrate.-	X				
Phenylethylphenyl acetate.	X				

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Docs bot include coumarone and indene resins or reslns dericed from malelc acid.

Table 7.-Dyes and other finished coal-tar products: Production and sales, 1933Continued

Production of Dyes by Classes of Application

The dyes produced in the United States in 1933, classified according to method of application, were: (1) Acid dyes, (2) basic dyes, (3) direct dyes, (4) lake and spmet-soluble dyes, (5) mordant and chrome dyes, (6) sulfur dyes, and (7) vat dyes, subdwided into indigo and other vats. The classification of a dye in any one of these groups must necessarily be arbitrary in certain instances, because a dye may have properties which permit of its application by more than one method.

Table 8.-Comparison of production and sales of dyes by classes of application, 1925-30, 1932, and 1933

Class of application	Production					
	Quantity			Percent of total		
	$\begin{aligned} & 1925-30 \\ & \text { average } \end{aligned}$	1932	1933	1925-30	1932	1933
Acid	Pounds 11, 813,941	Pounds 8, 343,000	Pounds 11, 999,772	12.57	11.71	11.85
Basic	4, 8,33, 3×2	3,509,000	4, 645,550	5.14	4.92	4. 60
Direct	17,983, 751	16, 600, 000	21, 704, 072	19.13	23. 29	21. 50
Lake and spirit-soluble	1,947, 124	3, 274,000	3, 209, 242	2.07	4. 59	3. 18
Mordant and chrome	3,611, 608	2, 920,000	5, 318, 385	3.84	4.10	5.27
Sulfur	20, 004, 635	15, 195, 000	20, 188, 008	21.28	21.32	20. 00
Vats (including indigo)	33, 221, 072	20,763, 000	33, 093,422	35. 34	29.13	32.78
(a) Indigo.........	27, 128, 311	13,752,000	23,412,400	28.86	19. 29	23. 19
(b) Other vats	6, 092, 761	7, 010, 000	9, 681,022	6.48	9.84	9.59
Unclassified.-.	587, 657	666, 000	794, 327	. 63	. 94	. 78
Total	94, 003, 170	71, 269,000	100, 952, 778	100.00	100.00	100.00
Class of application	Sales					
	Quantity			Percent of total		
	$\begin{array}{r} 1925-30 \\ \text { average } \end{array}$	1932	1933	1925-30	1932	1933
Acid	Pounds 11, 699,667	Pounds $8,538,010$	Pounds 11, 923, 201			
Basic	4,709,926	3, 397, 000	4, 415, 4 8 7	5.11	4.62	4. 49
Direct	17,580, 927	16, 350, 000	21, 674, 210	19.07	22.22	22.06
Lake and spirit-soluble	1, 896, 821	2, 980,000	2,951, 979	2. 06	4.05	3. 00
Mordant and chrome	3,558,732	3, 167,000	5, 468, 641	3.86	4.30	5. 57
Sulfur	19,810,565	14, 747, 000	18, 989, 801	21. 48	20.04	19. 33
Vats (including indigo)	32,429,018	23, 796, 000	32,042, 801	35.17	32.34	32.62
(a) Indigo	27, 111,575	16,322,000	22, 500, 721	29.40	22.18	22. 91
(b) Other vats	5, 317,443	7. 475, 000	9, 542, 080	5.77	10. 16	9.71
Uaclassified.	521,625	615, 000	772,278	. 56	. 83	. 79
${ }^{\text {Total }}$	92, 207, 281	73, 591,000	98, 235, 398	100.00	100.00	100.00
Class of application	sales					
	Value			Percent of total		
	$\begin{aligned} & \text { 1925-30 } \\ & \text { a verage } \end{aligned}$	1932	1933	1925-30	1932	1933
Acid.	\$8, 651, 526	\$5, 573, 000	88, 295, 064	21.94	16.92	19.25
Basic	3, 977, 258	2, 956,000	4, 043,067	10.09	8.97	9.38
Direct.	9, 076, 7×3	7, 560,000	10,770, 563	23.02	23.86	24. 99
Lake and spirit-soluble	1, 681, 336	2, 156,000	2,362,932	4.27	6. 63	5. 48
Mordant and chrome.	2, 212, 390	1,904,000	2, 384,753	5.61	5.78	5. 53
Sulfur	3, 928, 988	2, 636,000	3,516,559	9.96	8. 00	8. 16
Vats (including indigo)	9, 114, 973	$8,539,000$	10, 980, 385	23.12	25. 92	25.48
(a) Indigo.....	3, 741, 314	2, 457,010	3, 506,985	9.49	7.55	8. 14
(b) Other vats.	5, 373, 659	6, 052, 000	7. 473,400	13.63	18. 37	17.34
Unclassified.	784,604	1,290, 000	746, 146	1.99	3.92	1.73
Total	39,428, 252	32, 944,000	43, 102, 469	100.00	100.00	100.00

PART III

SYNTHETIC ORGANIC CHEMICALS OF NON-COAL-TAR ORIGIN

The 98 domestic firms manufacturing synthetic organic chemicals not derived from coal tar report a production of $771,574,595$ pounds or 27 percent increase over 1930. Sales of $542,679,454$ pounds, valued at $\$ 55,604,615$, represent an increase of 24 percent in quantity and a decrease of 15 percent in value as compared with 1930. Although 305 chemicals are included in this group, 31 of them account for seven-eighths of the total production. The 8 tonnage items for which separate data are published account for nearly half of the total and the remaining 23 account for 40 percent. In value of sales, the 31 leading products account for 77 percent of total sales, and 7 of the 8 for which data are shown account for 27 percent.

The difference between production and sales percentages represented by these products is due to consumption by the producers in the manufacture of other products.

Outstanding increases in 1933 as compared with 1930 are shown for acetaldehyde, acetone, monochloroacetic acid, crotonaldehyde, citral, diethyl sulfate, ethyl alcohol, ethyl chloride, formaldehyde, formic acid, isobutyl alcohol, isopropyl acetate, isopropyl alcohol, methanol and tetraethyl lead.

Synthetic medicinals of non-coal-tar origin are listed separately for the first time. The barbituric acid derivatives, an important class of products in this group, account for more than 50 percent of the total sales value. Sales of these derivatives totaled 69,018 pounds, valued at $\$ 555,757$, in 1933 as compared with 18,932 pounds, valued at $\$ 248,893$, in 1930. During the same period the unit value of sales declined from $\$ 13.17$ to $\$ 8.05$ per pound.

Sales of synthetic resins not of coal-tar origin increased 82 percent in quantity and 119 percent in value over the preceding year. Separate data for resins from urea and thiourea are shown for the first time.

Table 9.-Synthetic organic chemicals of non-coal-tar origin: Production and sales, 1933
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 45. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. A blank in the third column indicates that the production figure cannot be published without revealing information in regard to the output of individual firms. A blank in the fourth and fifth columns indicates that the sales of the corresponding product cannot be published without revealing information in regard to the individual firms. The figures thus concealed are, however, included in the total]

Table 9.-Synthetic organic chemicals of non-coal-tar origin: Production and sales, 1933-Continued

Name of chemical	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
Dibutyl carbinol	-				
Dibutyldithiocarbamate sodium.	N				
Dibutyl ketone.	X				
Dichlorodifluoromethane	94				
Dichloroethyl ether.	K				
Dichloromethyl sulfide	X				
Dichlorotetraduoroethane	94				
Diethanolamine	X				
Diethyl succinate	X				
Diethyl sulfate.-	184, X				
Diethylene glycol					
Diethylene glycol monobutyl ether-	X				
Diethylene glycol monoethyl ether-	N				
Diethylene glycol monoethyl ether acetate.					
Diethylene glycol monomethyl ether.					
Diethylene oxide (dioxan).------.-.	K				
Dihydrovanillone.-	62				
Dihydroxy citronellic keto	62				
Diisobutylene-.-.-.------	159				
Dimethyl ether	54				
Dimethylglyoxim	7, 58				
Dimethyl sulfate					
Dipropyl ketone	X,				
Epichlorohydrin					
Ethoxy acetic acid					
Ethyl acetate (85 percent).	$\begin{aligned} & 43,54,62,64,116,143 \\ & 184,191, \mathrm{X}, \mathrm{X} . \end{aligned}$	41, 121, 394	25,234,242	\$1,739, 918	\$0.069
Ethyl acetoacetate....					
Ethyl acrylate...					
Ethyl alcohol (synthetic)	X				
Ethyl bromide.---...-.	53,				
Ethyl butyl alcohol					
Ethyl butyrate...	26, $62, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}^{\text {- }}$	46,023			
Ethyl carbonate					
Ethyl chloride.	53, 54, X				
Ethyl chlorocarbonate					
Ethyl ether (tech., USP and absolute).	$108, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}$	7,494, 705	5, 286, 846	1, 146, 432	217
Ethyl formate.	62, 66, 108, X, X, 工, 工	4,465	3,146	1,906	. 606
a-Ethyl hexanal	X--------------..-				
a-Ethyl hexanol					
a-Ethylhexyl acetate					
Ethyl iodide...	58, 108,				
Ethyl isobutyrate					
Ethyl isovalerate	$62, \mathrm{X}, \mathrm{X}$		494	813	1.65
Ethyl ketone...					
Ethyl lactate.					
Ethyl laurate.					
Ethyl malouate (mono)	1				
Ethyl myristate...-					
Ethyl nitrite	108, X, X	19,271	19,103	11,680	. 611
Ethyl oenanthate	$62 . \mathrm{X}, \mathrm{X}$				
Ethyl oxalate....-	S, X				
Ethyl oxyhydrate	62.				
Ethyl pelargonate.	26, 62				
Ethyl propionate	62, 184, X				
Ethyl valerate..	62, $\mathrm{X}, \mathrm{X}, \mathrm{X}$				
Ethylamine .-					
Ethylene chlorohydrin	X.				
Ethylenediamine-	23, X				
Ethylene dibromide	29, 53				
Ethylene dichloride.	53,				
Ethylene glycol......	K				
Ethylene glycol monobutyl ether.--	X				
Ethylene glycol monoethyl ether-.--					
Ethylene glycol monoethyl ether acetate (cellosolve acetate).	X, X				
Ethylene glycol monomethyl ether_					
Ethylene glycol monomethyl ether acetate (methyl cellosolve acetate).	X, X.				
	X				
Ethylidin diacetate					
Formaldehyde (40 percent)	51, 54, 79, X, X	52, 236, 203	46, 423, 621	2, 122,925	. 046
Formic acid (90 percent) --	$54,188, \mathrm{X}_{\ldots} \ldots$				

Table 9.-Synthetic organic chemicals of non-coal-tar origin: Production and sales. 1933-Continued

Name of chemical	Manufacturers* identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
Furfural	146				
Furfural derivatives: (a) Calcium furoate					
(b) Fuoric acid -...-					
(c) Tetrahydrofurfuryl alcohol.					
Furoyl chloride..---...-.-. - .-.					
Gallic acid, tech	$58,108, \mathrm{X}$	265, 402			
Geraniol	$\begin{aligned} & 54,62,66,105,182,186 \\ & \mathrm{X}, \mathrm{X}, \mathrm{X} . \end{aligned}$	196, 415	157, 407	\$257,686	\$1. 64
Geranyl acetate	62, 186...				
Geranyl butyrate	62				
Geranyl formate..	62				
Geranyl propionate	62				
Glueonic acid.-.-.	137.				
Heliotropin	6走, X, X	15, 894	13,182	22,950	1.74
Heptaldehyde					
Heptyl alcohol	K				
Hexachloroethane	53, 54				
Hexamethylenetetramine	54, 79, 153				
Hexyl acetate (sec).	X				
Hexyl alcohol (n and sec)	X, X				
Higher alcohols (containing more than 5 carbon atoms).					
Higher ketones . .-...--.............--					
Hydroxyamines (mono, di, and tri).	X				
Hydroxylamine hydrochloride..-.-.					
Hydroxy citronnellal.........	54				
Iodoform. ---	123				
Ionone	54, 113, 182, X, X	29.322	28,009	86,610	3.09
Isoamyl acetate	X, X, X	17,291	17, 830	5. 437	. 305
Isoamyl butyrate	62, X, X, X, X	11,698	8,955	7,082	. 791
Isoamyl formate.	X, X, X_{\ldots}		202	201	. 995
Isoanyl isovalerate.	X, X				
Isoamyl propionate.	X				
Isohornyl acetate..					
Isobutyl acetate.	62, X,		94	167	1. 78
Isobutyl alcohol.	54, X				
Isobutyl butyrate	62, X				
Isobutyl formate.					
Isobutyl propionate					
Isoeugenol	62, X				
Isopropyl aectate	134, X, X, X				
Isopropyl alcohol (isopropanol)	X, X				
Isopropyl ether...........----.	X.				
Lactic acid (100 percent)	10, X, X				
Linaly] acetate. - .-. . .	62, 65 \ldots				
Linalyl formate					
di-Malie acid.	119				
Menthol, synthetic	65, 123.				
Methanol, synthetic	43, 54, 169, X	66,099, 718	74,814, 686	3,297, 060	. 044
Methyl acetate..	$124,191, \mathrm{X}$.	06, 09, 71			
Methyl acetoacetate					
Methyl butyl ketone					
Methyl chloride....					
Methyl ethyl ketone	$159, \mathrm{X}$				
Methyl iodide.-.-					
Methyl isohutyl carbinol.	N				
Methyl isobutyl carbinol acetate..-	X				
Methyl isobutyl ketone..---.....	K				
Methyl propyl ketone...	159				
Methyl succinate....	X.				
Methylamine..--					
Methylene citric acid.	X				
Methylene dipiperidine	153				
Methylene iorlitle......	X				
Methylnonyl acetaldehyde	62				
Monoethanolamine.-.--	X				
Nitroamino sulfide.	119				
Nonyl alcohol.	62				
Nonyl aldehyde	62.				
sec-Octyl acetate	62. 186				
n-Octyl alcohol	62, X, X				
sec-Octyl alcohol (capryl alcohol)	7,62				
Octyl aldehyde .-....--------.	62 .				
Oxalic acid	128, 188, X	8,843, 057	8,977,003	897,653	.100
Paracetaldehyde.	124	8,813,057	+,97,003	807, 65	.

Table 9.-Synthetic organic chemicals of non-coal-tar origin: Production and sales, 1933-Continued

Name of chemical	Manufacturers' identification number (according to list on p. 45)	Production	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
Paraformaldehyde	54, 7				
Pelviren acid					
Perchloroethylene.	54				
a-Pipecoline	153				
Piperidine.	54, 153				
Piperitone					
Propionic acid	194, X				
Propionie anhydride					
n-Propyl acetate-.					
n-Propyl alcohol (propanol)					
Propylene chlorohydrin	X				
Pronylene diamine.	23				
Propylene dichlorid	53. X				
Propylene glycol.					
Propslene oxide.........	- 5 - 108				
Pyrogaliol (pyrogallic acid) Pyruvic acid----	55, 108, X	74,044	71,251	\$93,167	\$1.31
Rhodinol-	62, 105, 182, 186, X, X, X	3,486	3. 279	42,610	12.99
Rhodinylacetate.					
Rubber, synthetic.					
Sebacic acid.	54				
Suceinic acid...	119, 155				
Succinic reroxide	X				
Sulphated fatty alcohols and acids (gardinols) (igchon A, T).	54, 69				
	54, X				
Terpin hydrate					
Terpinyl acetate...					
Tetraethyl lead	54, 54, 192				
Tetramethylthiouramsulfide	X				
Tetramethylthiouramdisulfide	X,				
Triacetin -------....					
Trilromoacety aldehyde (bromal) -					
Tributylamine-..-	54, 192, X				
Trichloromonofluoromet hane	94 . .-.				
Triethanolamine	X				
Triethyl citrate.					
Triethylene glycol	X				
Triethyltrimet hylenetriamine	X				
Trithioformaldehyde	X				
Urea-ammonia solution	54				
Vinyl acetate	X				
Vinyl chloride					
Waxes, synthetic	54, 65, X				
Xanthates	76, 153, X, X, X				
Zinc diethyldithiocarbamate.					
Zinc dimethyldithiocarbamate	X, X				
All other -	54, 184, X				
Total.		767, 581, 144	538,995,482	52, 775, 973	. 038

SYNTHETIC MEDICINALS OF NON-COAL-TAR ORIGIN, 1933

Acetannin (tannigen) (tannyl ace-	X			
tate).				
Adenine sulfate	58			
Alkyl-amino-alkyl-amino acridine .-	X			
Allyl isopropyl acetyl carbamide ---	81			
Amyl nitrite-.-......-				
Barbituric acid derivatives	81-----------------------18,	69, 018	\$555, 757	\$8.05
Allyl-isopropyl-barbituric acid and salts.				
Butyl ethyl barbituric acid and salts.				
Calcium isopropyl ethyl barbituric acid and salts.				
Cyclohexenyl ethyl barbituric				
diallylbarbituric acid and salts.	X			

Table 9.-Synthetic organic chemicals of non-coal-tar origin: Production and sales, 1933-Continued

SYNTHETIC MEDICINALS OF NON-COAL-TAR ORIGIN, 1933-Continued

SYNTHETIC RESINS OF NON-COAL-TAR ORIGIN

Derived from urea or thiourea	173, 181, X, X, X, X .-	3, 234, 356	2,977,791	\$1,422,671	\$0.478
All other		337, 361	278,620	322, 431	1. 15
Derived from vinyl...-........-.					
Derived from wood rosin-					
methyl alcohol (abalyn). Plioform and pliolite	X				
Derived from abalyn-hydrogen-					
nitrogen (hercolyn).					
Derived from petroleum.-......	X				
Derived from terpenes					
Total		3,571,717	3, 256, 411	1, 745, 102	. 536

PART IV

RESEARCH WORK

Introduction

In 1933 there were 237 firms manufacturing synthetie organic chemicals. Of these, 193 produced coal-tar chemicals, and 98 produced non-coal-tar chemicals. There were 114 separately organized research laboratories of which 70 were engaged in research on coal-tar products and 44 on synthetic organic chemicals of non-coal-tar origin.

The synthetic organic chemical industry employed 1,060 technically trained research workers in 1933 whose salaries totaled $\$ 3,305,587$ or an average of $\$ 3,118$ per worker. The gross cost of research was $\$ 6,496,814$ and the net cost was $\$ 6,163,688$. Compared with total sales of $\$ 124,597,492$ the net research expenditure amounted to slightly more than 5 percent.

Dyes and Other Coal-Tar Chemicals

In 1933 there were 193 firms manufacturing dyes and other coaltar chemicals, of which 70 reported separately organized research laboratories. Of the 166 firms reporting in 1930 only 46 had separate research laboratories.

The gross cost of research, including that done in laboratories not separately organized for research, in 1933 was $\$ 3,357,597$ and the net cost $\$ 3,135,949$, as compared with a gross cost of $\$ 3,786,294$ and a net cost of $\$ 3,432,116$ in 1930. These costs of research, as reported, are no doubt an underestimate of the full cost of research in this field, because the figures in all cases do not include the cost of research in conjunction with manufacturing operations.

The industry gave employment to 498 technically trained research workers in 1933. Salaries paid to these workers totaled $\$ 1,766,818$, or an average annual salary of $\$ 3,54 \mathrm{~S}$ per worker.

Sales of dyes and other finished coal-tar chemicals in 1933 totaled $\$ 68,992,877$. Net research expenditures of $\$ 3,135,949$ are equivalent to 4.5 percent of the total sales as compared with 5.2 percent in 1930 and 3.8 percent in 1929.

Synthetic Organic Chemicals not of Coal-Tar Origin

Of the 98 firms producing synthetic non-coal-tar chemicals in 1933, 44 had separately organized research laboratories.

There were 524 technically trained research workers employed at a total salary of $\$ 1,407,179$ or $\$ 2,685$ annually, per worker. The gross cost of research was $\$ 2,915,261$ and the net cost $\$ 2, \$ 08,083$. These costs are undoubtedly an underestimate because they do not include, in all cases, the cost of research in conjunction with manufacturing operations.

Total sales of synthetic organic chemicals of non-coal-tar origin in 1933 were $\$ 55,604,615$. Thus net research expenditures of $\$ 2,808,083$ were equivalent to 5.5 percent of the total sales.

Coal-Tar and Non-Coal-Tar Chemicals

A number of firms producing synthetic products both of coal-tar and non-coal-tar origin were mable to separate their research costs. In this group 38 technically trained research workers were employed receiving $\$ 131,591$ in salaries or an average of $\$ 3,463$ per worker. The gross cost of research was $\$ 223,656$ and the net cost $\$ 219,656$.

APPENDIX

Directory of manufacturers of dyes and other synthetic organic chemicals, 1933

No.	Name of company	Office address (location of plant given in parentheses if not in same city as office)
1	Abbott Laboratories	14th St. and Sheridan Road, North Chicago, III.
2	Alcatraz Co., Inc., The	3200 Williamsburg Ave., Richmond, Va.
3	Alston Lucas Paint Co	Wade and Currier Sts., Chicago, III.
4	Althouse Chemical Co	540 Pear St., Reading, Pa.
5	Amalgamated Dyestutf \& Chemical Works, Inc.	75 Uludson St., New York, N.Y゙. (Newark, N.J.).
6	American Aniline Products, Inc......	50 Union Square, New York, N.Y. (Lock Haven, Pa.).
7	American Chemical Products Co	7 Litchfield St., Rochester, N.Y.
8	American Cyanamid Co	535 Fifth Ave., New York, N.Y. (1)
10	American Dyewood Co	100 E. 42 d St., New York, N.Y. (Belleville, N.J.).
10	American Maize-Products	100 E. 42d St., New York, N.Y. (Roby, I
11	American Tar \& Chemica	424 Canada Cement Co. Building, Montreal, Canada. (Duluth, Minn.).
12	American Tar Products Co., Inc.	Koppers Building, Pittsburgh, Pa.
13	Ansbacher-Siegle Corpor	82 Chestnut A re., Rosebank, S.I., N. Y
14	Ansul Chemical Co	Foot of Stanton St., Marinette. Wis.
15	Apex Chemical Co., Inc	225 W. 34th St., New York, N.Y. (Elizabethport. N.J.).
16	Arnold, Hoffrman \& Co.	55 Canal St., Providence, R.I. (Dighton, Mass.).
17	Bakelite Corporation	247 Park Ave., New York, N.Y. (Bound Brook, N.J.)
18	Barrett Co., The	40 Rector St., New York, N.Y. (plants throughout United States).
19	Bates Chemical Co., In	Lansdowne, Pa.
20	Beck, Koller \& Co., In	601 Woodward Heights Boulevard, Ferndale, Mich.
21	Benzol Products Co	237 South St., Newark, N.J. (Piscataway, N.J.).
22	Berkheimer Manufacturing Co., J. E	2928 South M St.. Tacoma, Wash.
23	Bersworth Laboratories, F	609 Waverly St., Framingham, Mass.
24	Brooklyn Color Works,	129-143 Cherry St., Brooklyn, N.Y
25	Brown Co	404 Commercial St., Portland. Me. (Berlin. N.H.).
26	Bush \& Co., Inc., W	11 E. 38th St., New York, N.Y. (Linden, N.J.).
27	Cabot, Inc., Samuel	141 Milk St., Boston, Mass. (Chelsea, Mass.).
28	Calco Chemical Co.. Inc., Th	Bound Brook, N.J.
29	California Chemical Corpor	220 Bush St., San Francisco, Calif. (Newark and Chula Vista. Calif:; Charleston, W.Va.).
30	California Ink Co. Inc., The	545 Sansome St., San Francisco, Calif. (Berkeley, Calif.).
31	Carbide \& Carbon Chemicals Corporation.	30 E. 42 d St., New York, N.Y.
32	Carus Chemical Co., Inc.	1377 Eighth St., La Salle, IIl.
33	Catalazuli Manufacturing Co., I	119-01 Twenty-second Ave., College Point, L.I., N.Y.
34	Catalin Corporation of America	230 Park Ave., New York, N.Y. (Fords, N.J.).
35	Celluloid Corporation-	290 Ferry St., Newark, N.J.
36	Chemical Manufacturing Co., Inc	Ashland. Mass.
37	Cincinnati Chemical Works, Inc	Evanston Station, Box 20, Cincinnati, Ohio (Norwood and St. Bernard, Ohio).
38	Citro Chemical Co. of	199 Maywood Ave., Maywood, N.J.
39	Colasta Co. Inc., The	Mechanic St., Hoosick Falls, N.Y.
40	Coleman \& Bell Co., Th	Main and Waverly Aves., Norwood, Ohio.
41	Collway Colors. Inc.	15 Market St., Paterson, N.J.
42	Colt's Patent Fire Arms Manufacturing Co.	Hartford, Conn.
43	Commercial Solvents Corporation	230 Park Ave., New York, N. Y'. (Peoria, Ill.; Terre Haute, Ind.).
44	Commonwealth Color \& Chemical Co	Nevins. Butler and Baltic Sts., Brooklyn, N.Y.
45	Consolidated Color \& Chemical Co..	230 Fifth Ave., New York, N.Y. (Rensselaer, N.Y'.).
46	Continental-Diamond Fibre Co	Newark, Del.
47	Cooks Falls Dye Works, Inc.	140 Maiden Lane, New York, N.Y'. (Cooks Falls, N.Y.).
48	Coopers Creek Chemical Co	River Road, West Conshohocken, Pa.
49	Crown TarWorks (Public Service Co. of Colorado).	900 15th St., Denver, Colo.
50	Darvin \& Nord, Inc.	Foot of Blanchard St., Newark, N.J.
51	Delta Chemical \& Iron	Wells. Mich.
52	Diarsenol Co., Inc	771-3 Ellicott Square, Buffalo, N.Y.
53	The Dow Chemical Co	Midland, Mich.
54	Du Pont de Nemours \& Co., E.I	Du Pont Building, Wilmington, Del. (Belle, W.Va.; Carnevs Point and New Brunswick N.J. Carrollville, Wis.)
55	Dye Specialties Corporation, Inc.	7 Bennett St., Jersey City, N.J.
56	Dyestuffs \& Chemicals, Inc.	Ilth and Monroe Sts., St. Louis, Mo.
57	Eakins, Inc., J. S. \& W. R	55 Berry St., Brooklyn, N.Y.
58	Eastman Kodak Co	343 State St., Rochester, N.Y'
59	Federal Color Laboratories, Inc.	4633 Forest Ave., Norwood, Ohio.
60	Felton Chemical Co., Inc	599 Johnson Ave., Brooklyn, N.Y.
61	Fine Colors Co	21-29 McBride Ave., Paterson, N.J.
62	Florasynth Laboratories, I	1513 Olmstead Ave., New York, N.Y.
63	Foster-Heaton Co.	833-39 Magnolia Ave., Elizabeth, N.J.

Directory of manufacturers of dyes and other synthetic orgaric chemicals, 1933-Con.

No.	Name of company	Office address (location of plant given in parentheses if not in same city as office)
64	Franco-American Chemical Works.	Foot of Berry Ave., Carlstadt, N
65	Fries Bros	92 Reade St., New York, N.Y. (Bloomfield, N.J.
66	Fries \& Co., Inc., George	68 Beekman St., New York, N.Y. (11-25 44th Rd., Long lsland City, N.Y.).
67	Friesland Chemieal	Friesland, W' is.
68	Gebauer Chemical Co.,	82d Ifanna Building, Cleveland, Ohio.
69	General Aniline Works, Ine	1150 Broadway, New York, N.Y. (Grasselli. N.J.: Albany, N.Y.).
70	General Electric C	1 River Rd., Schenectady, N.Y.
71	General Plastics, In	Walek Rd., North Tonawanda, N.Y.
72	Glyco Products Co.	33 Thirty-fifth St., Brooklyn, N.Y.
73	Goodrich Co., The 3	500 S . Main St., Akron, Ohio.
74	Goodyear Tire d Rubb	1144 E. Market St., Akron, Ohio.
75	Grasselli Chemical Co., The	1400 Guardian Building, Clereland, Ohio.
76	Great Western Eleet ro-Chemical Co.-	9 Ma in St., San Francisco, Calif. (Pittsburg, Calif.)
77	Hall Co., The C. P	2510 First Central Trust Bialding, Akron, Onio.
I8	Mernules Powder ${ }^{\text {C }}$	I claware Teust Building. Wilmington, Del.
79	Heyden Chemical Corporation.	50) Union Square, New York, N.Y. (Garfield and Perth Amboy, N.J.).
80	Ifilton Davis Co., The	P.O. Box $\mathrm{s}_{\text {, Pleasant Ridge Station, Cincinnati, Ohio. }}$
81	Hothmann-La Enche. I	Nutley, N.J.
82	Holland Aniline Dye Co	R.F.I). No. 4, Holland, Mich.
83	Hooker Electrochemical	60 Nst., New York, N.Y. (Niagara Falls, N.Y.).
54	Huggins \& Som, James	233 Medford St., Makien, Mass.
85	II ${ }^{\text {ason, Westcott \& Dunnin }}$	1030 N. Charles st., Bratimore, Md.
86	imperial Color Wrorks, Inc	Box 231, (aleas Falls, N. ${ }^{\text {c }}$.
87	Industria] Dyestuil C	Massasoit Are., East Providence, R.1.
88	Inland Tar Co.	38 S. Dearborn St., Chicago, Ill. (Indiana Harbor, Ind.
89	Jasco, Inc	Baton Rouge, La. (North Baton Rouge, La.).
(10)	Jennison-Wright C	2463 Brondway, Toledo, Ohio.
41	Joanite Corporation	68 Nott Ave, Long lsland City, N. Y.
42	Johnsen de Co., Charles E	101 h st at Lombard st, Philddelphia, Pa.
93	Kavaleo Products, Ine	Nitro, WV.Va.
34	Kenetic Chemicals, In	Du Font Building, Wilmington, Del. (Deep Water Point, N.J.).
95	Kent Culor Corporation	2 E , 9th st., Brooklyn, N.Y.
96	Kentucky Color d Chemical Co	3 tl st., south of Bantt St., Lonisville, Ky.
97	Kessler Chemical Corporativin	Chrysler Building, New York, N.Y. (Philadelphia, Ia.).
98	Kohnstamm \& Co.. 11	87 Park Place, New York, N.Y. (Brooklyn, N.Y.).
99	Krehs Pigment \& Color Corporation .	250 Vataderpool St, Newark, N.J.
100	LaMotte Chemical Products.........	MeCormick Building, Baltimore, Md.
101	Lavanharg Co.. Fred L	90 John St., New York, N.Y. (Brooklyn, N.Y.).
102	Lehigh Briquetting Co	「niversal Building, Fargo, N. Dak. (Lehigh (post office 1)ickinson), N. Dak.).
103	Lewis di Bros. Co., John	910 Widener Building, Philadelphia, Pa.
104	Lilly \& Co., Eli	Indianapolis, Ind.
105	Lueders d C'o., George	t27 Washington St., New York, N.Y. (1105 Metropolitan Ave., Brooklyn, N.Y.).
106	Mather \& Son, Willia	$153:$ W. Clearfield St., Pbiladelphia, Pa.
107	Makalot Corporation	262 Washington St., Boston, Mass. (Waltham, Mass.).
110	Mallinckrodt Chemical Works	3600 N. 2d St., St. Louis, Mo.
109	Marblette Corporation, The	37-21 Thirtieth st., Long Island City, N.Y.
110	Marietta Dyestullis Co., The -	410 Peoples Bank Building, Marictta, Ohio.
111	Marx Color d Chemical Co., Mas	192 Coit St., Irvington, N.J.
112	May, Ine., Otto P.	195 Niagara st., Newark, N.J.
113	Maywood Chemical Who	100 W.
114	Mepham Corporation, Geo	2001 Lyneh Ave., East St. Jouis, Ill.
145	Merek \& Co., Inc.	Rahway, N.J.
116	Merrimac Chemical (\%o	Everett, Mass.
117	Moser (${ }^{\text {co., The Char }}$	$215-297$ E. 9th st., Cincimmati, Ohio.
118	Mutual Chemical Co.	270 Madison Ave., New York, N.Y. (Jersey City, N.J.).
114	National Aniline \& Cliemical Co., Inc-	10 Rector St., New York, N.Y. (Buffalo, N. Y.).
120	National City Turpentine Co........-	3135 E .26 th St., Los Angeles, Calif.
121	Nangatuck Chemical Co., The	Nangatuck, Conn.
122	Neville Co., The	Neville Post Olfice, Pittsburgh, Pa.
123	New York Quinine d Chemical Works, Ine.	49 N. 11 th st., Brooklyn, N.).
124	Niacet Chemieals Corporation.	Pine Ave. and 47th St., Niagara Falls, N. Y .
125	Niagara Smelting Corporation	2601 Graybar luailding, New York, N.Y. (Niagara Falls, N.Y.).
126	Northwestern Chemical Co	137 Gth st., Wauwatosa, Wis.
127	Novoeol Chemical Mffg. Co., Inc	2423 Atlantie Ave., Brooklyn, N.Y.
128	Oldbury Electro ('hemieal Co...	Niagara Falls, N. ${ }^{\text {Y }}$.
129	Orbis Prorlucts Trading Co	215 Pearl St., New York, N. Y.
130	Paramet Chemical Corporation	4.1th Ave. and 10th St., Long Island City, N. Y.
131	Parke, Davis \& Co....	Foot of MeDougall Ave., Detroit, Mich.
132	Pratent Cliemicals, Inc	57 Widkinson Ave., Jersey City, N.J.
133	Peerless Color Co.	521-535 North Ave., Plainfield, N.J.
134	Pemnsyluania Coal Products Co	Box 157, Petrolia, Pa.
135	Pfanstichl Chemical Co	Manufacturers Terminal, Market St., Wankegan, Ill.
136	Pfister Chemieal Co	Morsemore Railroad Station, Ridgefield, N.J.
137	Pfizer \& Co., Inc., Charles	\$1 Maiden Lane, New York, N.Y. (Brooklyn, N.Y.).
138	Pharma Chemieal Corporatio	949 Broadway, New York, N.Y. (Bayonne, N.J.).

Directory of manufacturers of dyes and other synthetic organic chemicals, 1933-Con.

No.	Name of company	Office address (location of plant given in parentheses if not in same city as office)
39	Philadelphia Gas Works Co., The	1401 Arch St., Philarlelph
140	Pittsburgh Plate Glass Co	235 E. Pittsburgh Ave., Milwaukee, Wis.
141	Portland Gas \& Coke Co	Public Service Building, Portland, Oreg.
142	Poughkeepsie Dyestulf Corporati	77 N. Water St., Poughkeepsie, N.Y
143	Publicker, Inc	260 s. Broad St., Pliladelphia,
144	Pylam Products Co., 1	799 Greenwich St., New York
145	Pyridium Corporation,	21 Gray Oaks Ave., Nepera Park, N
146	Quaker Oats Co., The	141 W. Jackson Blvd., Chicago, Ill. (Cedar Rapuils, lowa).
147	Rauh, Inc., Rohert	$4{ }^{\text {40 }}$ Frelinghuysen Ave., Newark, N.J.
148	Reilly Tar \& Chemical Corporation	1615 Merchants Bank Building, Indianapolis, Ind. (Chicago and Granite City, Ill., Chattanooga, 'Tenn., Fair mont, W.Va., Dover, Ohio, and Newark, N.J.).
149	Republic Creosoting Co	1655 Merchants Bank Building, Indianapolis, Ind. (Minneapolis, Minn., Mobile, Ala., Norfolk, Va., Provo, Utah, and Kennydale, Wash.).
1:0	Resinous Products \& Chemical Co., Inc.	222 W. Washington Square, Philade!phia. Pa. (Bridesborg, Philadelphia, Pa.).
151	Resinoa Corporation	230 Park Ave., New York, N. Y. (I.O. Box 436, Edgewater, N.J.).
152	Rohm \& Haas Co	222 W. Washington Square, Philadelphia, Pa. (Bristol, Pa.$)$.
153	Rubber Service Labor	Nitro, W.Va,
154	Ruberoid Co.	95 Madison Ave., New York, N.'. (Erie, Pa.).
155	Selden Co., The	30 Rockefeller Plaza, New York, N.Y
156	Seydel Chemical	86 Forest St., Jersey
157	Sharp \& Dohme, In	Broad and Wallace Sts., Philadelphia, Pa.
158	Sharples Solvents Corporation, The	23d and Westmoreland Sts., Philadelphia, Pa. (Wyandotte, Mich.).
159	Shell Chemical C	100 Bush St., San Francisco, Calif. (Shell Point, Martinez and Emeryville, Calif.).
160	Sherwin-Williams C	101 Prospect Ave. N.W., Cleveland, Ohio.
161	Simons, Inc., Harold	11-25 44th Road, Long Island City, N.Y
162	Sinclair \& Valentine Co	11-21 St. Clair Place, Ne
163	Smith, Kline \& French Laboratories	105 N. 5th St., Philadelphia, Pa. (Delaware Ave. and Poplar St., Philadelphia, Pa.).
164	Solvay Process Co.,	Syracuse, N.Y. (Geddes, N.Y
165	Squibb \& Sons, Inc.,	745 5th Ave., New York, N.Y. (Brooklyn, N.Y.; New Brunswick, N.J.).
166	Standard Alcohol Co	2 Park Ave., New York, N.Y. (Linden, N.J.).
167	Standard Ultramarine Co., Inc., The-	Huntington, W.Va.
168	Stange Co., William	2549-51 W. Madison St., Chicago, Ill.
169	Star Oil Processing C	Bartlesville, Okla. (Tallant
170	Stokes \& Smith Co. (Durite Plastics Division).	Summerdale Ave. near Roosevelt Blvd., Philadelphia, Pa.
171	Sun Chemical \& Color Co.	1006 th A ve., New York, N.Y. (Harrison, N.J.).
172	Synthetic Chemicals, Inc	57 Wilkinson Ave., Jersey City,
173	Synthetic Plastics Co., In	535 5th Ave., New York, N.Y. (Bound Brook, N.J
174	Synthetical Laboratories	5558 Ardmore A ve., Chicago, Ill.
175	Taylor \& Co., Inc	Norristown, Pa. (Betzwood, Pa.).
176	Taylor Chemical Corporation	Phillipsburg, N.J. (Wyandotte, Mich.; Cascade Mills, N.Y.).
177	Todd Co., A. M	1717 Douglas Ave., Kalamazoo, Mich
178	Trubek Laboratories, Inc.,	State Highway No. 2, East Rutherford,
179	Whlich \& Co., Inc., Paul	157 Chambers st., New York, N.Y. (35 Herkimer I'l., Brooklyn, N.Y.
180	United Color \& Pigment Co	McClellan St., Newark, N.
181	Unyte Corporation.	521 Fifih Ave., New York, N.Y. (Grasselli, N.J.).
182	Van Ameringen Haebler, Inc	315 4th A ve., New York, N.Y. (Elizabeth, N.J.).
183	Van Dyk \& Co., Ine	57 Wilkinson Ave., Jersey City, N.J.
181	Van Schaack Bros. Chemical Works, Inc.	3358 A vondale A ve., Chicago, Ill.
185	Varcum Chemical Corporation.	Box 62, LaSalle Station, Niagara Falls, N.Y',
186	Verley, Inc., Albert	11 E. Austin A ve., Chicago. Ill.
187	Verona Chemical Co	26 Verona Ave., Newark
188	Victor Chemical Work	141 W. Jackson Blyd., Chicago. 111. (Chicago Heights, 111.).
189	Warner-Jenkinson Maufacturing Co.	2526 Baldwin Sl., st. Louis, Mo.
190	Watertown Manufacturing Co., The.-	Echo Lake Road, Watertown, Conn
191	Western Industries Co	110 Sutter St., San Francisco, Calif. (Stege, Calif.
192	Westvaco Chlorine Products, Inc	405 Lexington Ave., New York, N.Y. (South Charleston, W.Va.).
193	White Tar Co. of New Jersey, Inc., The.	1201 Koppers Building, Pittsburgh, Pa. (Kearny, N.l., Cincinnati, Ohio.).
194	White Chemical Co., The Wilbur.	MicMaster St., Owego, N.Y'
195	Wilhelm Co., The A	3d and Bern Sts., Reading, Pa
196	Wolff Alport Chemical Corporatio	1127 Irving Ave., Brooklyn, N.Y.
197	Young Aniline Works,	2701 Boston St., Baltimore, Md.
198	Zinsser \& Co., Inc	Hastings on Hudson, N.Y.

\qquad
 9．2．2．

 Whath
最

（1） aror
\qquad

[^0]: 'Includes color lakes, photographic chemicals, and miscellaneous coal-tar products not shown separately.
 ${ }^{2}$ Does not include some resins.
 ${ }^{3}$ Decrease-due principally to low price of vanilla beans and other natural flavors.

[^1]: ${ }^{1}$ No data.

[^2]: ${ }^{1}$ Data for coke ovens and gas works reporting to Bureau of Mines; and for tar refineries and others reporting to United States Tariff Commission.
 ${ }^{2}$ Reported to United States Tariff Commission only.
 ${ }^{3}$ Reported to Bureau of Mines only.
 ${ }^{4}$ Includes crude and refined naphthalene reported to Bureau of Mines and crude naphthalene reported to United States Tariff Commission.

