

DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS IN THE UNITED STATES

1937

REPOR'T No. 132

SECOND SERIES

DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS IN THE UNITED STATES

1937

REPORT No. 132
SECOND SERIES

UNITED STATES
GOVERNMENT PRINTING OFFICE
W ASHIVGTON: 1938

UNITED STATES TARIFF COMIMISSION

RAYMOND B. STEVENS, Chairman
HENRY F. GRADY, Vice Chairman
EDGAR B. BROSSARD
OSCAR B. RYDER
E. DANA DURAND
A. MANUEL FOX
SIDNEY MORGAN, Secretary

Address All Communications
UNITED STATES TARIFF COMIMISSION WASHINGTON, D. C.

CONTENTS

TEXT

Page
Acknowledgment v
Introduction 1
Part I
Summary of United States production and sales of dyes and other synthetic organic chemicals, 1937:
Coal-tar crudes 3
Coal-tar intermediates 3
Coal-tar dyes 4
Color lakes and toners 4
Medicinals 4
Flavors and perfume materials 4
Resins 4
Chemicals for rubber 5
Miscellaneous chemicals 5
Summary of production and sales of coal-tar products 5
Summary of production and sales of synthetic organic chemicals not of coal-tar origin 6
Part IIProduction and sales of synthetic organic chemicals in the United States,1937:
Coal-tar crudes 9
Coal-tar intermediates 10
Coal-tar dyes:
Production and sales by types 20
Production and sales by classes of application 33
Color lakes and toners 34
Mericinals 36
Flavors and perfume materials 41
Resins 44
Rubber chemicals 45
Miscellaneous chemicals 48
APPENDIX
Directory of manufacturers of dyes and other synthetic organic chemicals, 1937 54
STATISTICAL TABLES

1. Comparison of United States production of tar and production and sales of certain crudes, 1925-30, 1936, and 1937 3
2. Intermediates, dyes, and other coal-tar chemicals: Summary of United States production and sales, 1937 5
3. Intermediates, dyes, and certain other classes of coal-tar chemicals: Comparison of United States production and sales, 1925-30, 1936, and 1937 6
4. Synthetic organic chemicals of non-coal-tar origin: Summary of United States production and sales, 1937 6
5. Synthetic organic chemicals of non-coal-tar origin: Comparison of United States production and sales, 1925-30, 1936, and 1937 7
6. Coal-tar crudes: United States production and sales, 1937 10
7. Coal-tar intermediates: United States production and sales, 1937 11
8. Coal-tar dyes: United States production and sales, by types, 1937 _- 20
Page
9. Comparison of United States production and sales of dyes by classes of application, 1925-30, 1936, and 1937 33
10. Color lakes and toners: United States production and sales, 1937 34
11. Synthetic medicinals: United States production and sales, 1937:
(A) Coal-tar 37
(B) Non-coal-tar 39
12. Synthetic flavors and perfume materials: United States produetion and sales, 1937:
(A) Coal-tar 41
(B) Con-coal-tar 43
13. Synthetic resins: United States production and sales, 1937:
(A) Coal-tar 44
(B) Non-coal-tar 45
14. Synthetic rubber chemicals: United States production and sales, 1937:
(A) Coal-tar 46
(B) Non-coal-tar 47
15. Niscellaneous synthetic chemicals: United States production and sales, 1037:
(A) Coal-tar 48
(B) Non-coal-tar 49

ACKNOWLEDGMENT

In the preparation of this report, the Commission had the services of P. K. Lawrence and Bertha M. Robertson, of the Chemical Division, and of others.

DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS

INTRODUCTION

The data on the domestic production and sales of dyes and other synthetic organic chemicals for 1937 contained in this annual report were collected and compiled by the United States Tariff Commission. The Commission considers that the value of such information to governmental agencies and to the public warrants its collection and publication.

This report has been abridged in order to expedite publication and to effect economies in printing. Detailed tabulation of imports of dyes and other coal-tar products into the United States has been omitted to a a oid duplication of the semiannual list of imports, published jointly by the Department of Commerce and the Tariff Commission. Statistics of imports and exports as published in Foreign Commerce and Navigation of the Cnited States have also been omitted.

The grouping of coal-tar crudes, intermediates, dyes, and color lakes and toners follows that of the Tariff Act of 1930 and conforms in general, although not in every detail, to common practice. Azoic dyes, formerly listed under the heading "Unclassified dyes," and their components, formerly included under "Miscellaneous coal-tar products," have been combined under "Azoic dyes and their components" as a subgroup of "Unclassified dyes." The practice of grouping other symthetics, both coal-tar and non-coal-tar, by principal application, as was done in the 1936 report, is continued herein. This procedure applies to medicinals, flavors and perfume materials, resins, rubber chemicals, and miscellaneous products.

The statistics for 1937 were compiled from returns of 308 companies and are thought to form a complete record of the manufacture of such products in the United States. Data for separate items are given in as great detail as is possible without disclosing the operations of individual manufacturers. The policy of the Commission is to omit production and sales figures for a product or group of products unless at least three firms report a substantial output. If the total is not well distributed among three or more manufacturers, production or sales figures are not published. Erery effort is made to avoid duplication of figures and it is beliered that there is no duplication of production or sales statistics either for individual nroducts or groups of products.

SUMMARY OF UNITED STATES PRODUCTION AND SALES OF DYES AND OTHER SYNTHETIC ORGANIC CHEMICALS, 1937

COAL-TAR CRUDES

The output of coal tar in the United States in 1937, as reported to the Bureau of Mines, was $603,053,000$ gallons as compared with $560,386,000$ gallons in 1936. Sales totaled $386,648,000$ gallons at an average of 4.8 cents per gallon. About 50 percent of the 1937 production was distilled for the recovery of the several constituents and in addition substantial quantities were topped to recover naphthalene and the tar acids. Some crude tar was burned as fuel at or near the point of production.

Table 1 compares the production and sales of coal tar, benzol, motor benzol, naphthalene, and crecsote oil in 1937 with 1936 and with the average for $1925-30$.

Table 1.-Comparison of United States production of tar and production and sales of certain crudes, 1925-30, 1936, and 1937

Product	$\begin{aligned} & 1925-30 \\ & \text { average } \end{aligned}$	1936	1937	Percent increase 1937 over 1936
Tar produced....-.-.-.-.-.-.-.------------thousands of gallons.--	630. 536	560, 386	603.053	7.0
Benzol:				
	22, 257	19.413	126,795	38.0
	22, 257	19, 145	22, 141	15.6
	4,651	2,676	2,928	9.4
Motor benzol:				
Production.------.--------------- thousands of gallons.-	96, 879	85,673	95, 527	11.5
	96.879	84.762	93,767 8,385	10.6
Sales value.---------------------- thousands of dollars.-	15,920	7,629	8,385	9.9
Naphthalene:				
	44, 762	89,536	115.979	29.5 47.7
	44,762	74,054	109.394	47.7 72.9
	581	1,466	2,535	72.9
Creosote oil:				
Production.-.-.-.-.-.-.----------.-. - thousands of gallons .	95, 443	101, 758	107, 294	5.4 15.3
	95,443	93.216	107.485	15.3
	11,742	10, 294	12, 452	21.2

[^0]
COAL-TAR INTERMEDIATES

Peak production of intermediates, both in quantity and variety, was reported for 1937. The output totaled $575,593,000$ pounds, or about 13 percent more than for 1936 . Most of the intermediates
were produced in greater quantities although those used in synthetic resins show the largest gains. As compared with 1936, phenol production increased 35 percent, phthalic anhydride 45 percent, and outstanding increases are shown for the substituted phenols, metacresol, cresylic acid, chlorinated diphenyls, maleic anhydride, and the xylenols.

COAL-TAR DYES

Coal-tar dyes were produced in slightly greater quantity in 1937. Sales of classified dyes decreased about 1.5 percent in quantity and 2.2 percent in value, while the unclassified dyes show a 14 percent increase in sales quantity and an 11 percent increase in sales value over the preceding year.

The components for azoic dyes, formerly included in "Miscellaneous coal-tar products" are included in the azoic dyes under the heading "Unclassified dyes." This transfer accounts for a large part of the increase in 1937.

COLOR LAKES AND TONERS

The output of color lakes and toners in 1937 was $18,041,000$ pounds or 17.5 percent more than in 1936. Sales totaled $15,263,000$ pounds valued at $\$ 11,812,000$, or 12 percent by quantity and 16 percent by value over the previous year. More detail as to types is shown in this report, and phosphomolybdic acid lakes and toners are shown separately for the first time.

medicinals

This important group of synthetics continues to increase in quantity and variety. Production of medicinals of coal-tar origin in 1937 totaled $14,800,000$ pounds and those of non-coal-tar origin $1,814,000$ pounds. Sales of coal-tar medicinals were 11,989,000 pounds valued at $\$ 11,496,000$ and those not of coal-tar origin amounted to $1,442,000$ pounds valued at $\$ 2,408,000$. Sales of aspirin increased 25 percent in quantity over the preceding year. Outstanding increases are noted for sulfanilamide and mandelic acid, both of which were minor items in 1936.

FLAVORS AND PERFUME MATERIALS

In 1937 the output of coal-tar flavors and perfume materials increased 25 percent and those not of coal-tar origin increased more than 50 percent over the preceding year. Sales of those of coal-tar origin totaled $3,907,000$ pounds valued at $\$ 3,983,000$, or 14 percent more by quantity and 24 percent more by value than in 1936. Sales of non-coal-tar flavors and perfume materials increased 35 percent by quantity and 19 percent by value over 1936.

RESINS

Increased production and sales of synthetic resins are again reported and several new types have appeared on the market. Resins from coal tar increased 21 percent in production to an all-time peak of $142,025,000$ pounds (net resin), and those not derived from coal tar increased in output to $21,006,000$ pounds or 35 percent over 1936.

The only group showing decreased activity in 1937 was the cast
phenolic resins, the output of which declined about 11 percent as compared with the preceding year.

CHEMICALS FOR RUBBER

These important synthetics, as a group, were produced in somewhat smaller quantities in 1937 than in 1936. Except for coal-tar antioxidants, the output of which increased about 5 percent over 1936 , all groups report less activity during the past year.

Miscellaneous chemicals

Miscellaneous synthetic chemicals consist of products not properly classified under any of the foregoing groups. Like other groups, they are divided into those of (a) coal-tar origin, and (b) non-coal-tar origin. Those of coal-tar origin include individual products and groups of products, which if imported would be classified as intermediates under paragraph 27 of the Tariff Act of 1930, and others which would be classified as photographic chemicals, synthetic tanning materials, and others under paragraph 28. Those of non-coal-tar origin include many important but unrelated products widely used in industry and the arts.

SUMMARY OF PRODUCTION AND SALES OF COAL-TAR PRODUCTS

Table 2 summarizes the production and sales of coal-tar products in 1937, and table 3 compares the production and sales in 1937 with 1936 and with the average for $1925-30$.

Table 2.-Intermediates, dyes, and other coal-tar chemicals: Summary of Uniteri States production and sales, 193\%

[^1]Table 3.-Intermediates, dyes, and certain other classes ${ }^{1}$ of coal-tar chemicals: Comparison of United States production and sales, 1925-30, 1936, and 1937

${ }^{1}$ See text for changes in classifications made, from time to time, in the groups listed above.
${ }^{2}$ Includes color lakes and toners, rubber chemicals, and miscellaneous coal-tar chemicals not shown separately.
${ }^{3}$ Does not include resins from coumarone and indene, hydrocarbon, styrol, and sulfonamides.
${ }^{4}$ Does not include resims from adipic acid, coumarone and indene, hydrocarbon, styrol, succinic acid, and sulfonamides.
${ }^{8}$ Includes azoic dyes (rapid fast and rapidogene dyes) formerly included in the miscellaneous gronp.
${ }^{6}$ Includes components for azoic dyes, formerlyi ncluded an the miscellaneous group.
${ }^{7}$ Not on comparable basis.
${ }^{8}$ A verage for 1927-30.

SUMMARY OF PRODUCTION AND SALES OF SYNTHETIC ORGANIC CIIENHCALS NOT OF COAL-TAR ORIGIN

Table 4 summarizes the production and sales in 1937 of the several groups of synthetic organic chemicals not of coal-tar origin. Only a small part of the total output can be broken down into the several subgroups. Table 5 compares the output and sales of all non-coal-tar synthetics in 1937 with the preceding year and with the average for the period 1925-30.

Table 4.-Synthetic organic chemicals of non-coal-tar origin: Summary of United States production and sales, 1937

[^2]Table 5.-Synthctic organic chemicals of non-coal-tar origin: Comparison of l nited States production and sales, 1925-30, 1936, 1937

	$\begin{aligned} & \text { 1925-30 } \\ & \text { average } \end{aligned}$	1936	1937	Increase, 1937 over 1936
Production				Percent
Sales......	379.972	2,041,455	2, 16, ${ }^{\text {a }} 19$	23.9
Sales value_	44, 499	105, 832	119,420	12.8

Part II

PRODUCTION AND SALES OF SYNTHETIC ORGANIC CHEMICALS IN THE UNITED STATES, 1937

COAL-TAR CRUDES

Statistics of production of coal tar in 1937, collected and compiled by the Bureau of Mines, show an output of $603,053,000$ gallons as compared with $560,386,000$ gallons in 1936. Sales totaled 386,648,000 gallons or about 64 percent of the output. The unit sales price in 1937 was 4.8 cents per gallon as against 4.3 cents in 1936.

Tar distilled by purchasers thereof amounted to $335,434,000$ gallons, or 4 percent more than in 1936 .

The output of crude naphthakene was $115,979,000$ pounds as compared with $89,536,000$ pounds in 1936. Average sales price was 2.3 cents per pound in 1937 and 2 cents per pound in 1936 . Continued increasing demand for tar acids, principally by makers of synthetic resins, resulted in sharp increases in the output of phenol, the cresols, and cresylic acid. An important development in raw materials for synthetic resins in 1937 was the first commercial production of paracresol.

Table 6 shows statistics of domestic production and sales in 1937 of coal tar, the quantities of the several kinds of tar distilled, the production and sales of light oil and derivatives thereof, and of the products of tar distillation and processing. These data were collected from producers of tar by the Bureau of Mines and from purchasers of tar by the Tariff Commission.

Table 6.-Coal-tar crudes: ${ }^{1}$ United States production and sales, 1937

[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 54. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indieate that the statistics, of production or sales cannot be published without revealing information with regard to individual firms.
Tar distilled by purchasers thereof: ${ }^{2}$

${ }^{1}$ Data for coke ovens reported to Bureau of Mines, and for tar refineries and others to United States Tariff Commission, unless otherwise noted.

2 Reported to United States Tariff Commission only.
a Reported to Bureau of Mines only.
${ }^{4}$ Includes motor benzol, tohnol, xylol, and sales of henzol reported to United States Tariff Commission and other light oil products reponted to Bureau of Mines.
s 1nclules ernde and refined naphthalene reported to Bureau of Mines and crude naphthalene reported to Thitef] states Tariff Commission.
${ }^{\text {B I Includes crude }}$ tar acids, reported to United States Taniff Commission, and Bureau of Mines, and phenol and sodium phenolate reported to Bureau of Mines.

COAL-TAR INTERMEDIATES

The peak production of $575,893,000$ pounds of coal-tar intermediates represents an imerease of 13 percent over 1936. Sales totaled 242,194,000 pounds valued at $\$ 35,639,000$, or an average of 15 cents per pound. The difference between production and sales is due to large consmmption by the maker in the manufacture of finished products. There were 55 makers of intermediates in 1937 as against 58 makers in 1936.

Outstanding gains in this group are shown by intermediates used in synthetic resins. Phenol output totaled $65,690,000$ pounds, or 35 percent more than in 1936, and was a peak peace-time production. Production of phthalie anhydride increased 45 percent over the preceding year to $45,211,000$ pounds. The cresols and maleic anhydride, shown separately for the first time, both record appreciable increases in output. Commercial production of several phenol derivatives was reported for the first time. Other raw materials for synthetic resins made in increased quantity include tertiary amyl phenol, tertiary butyl phenol, chloro-o-phenyl phenol, bis-phenol (p-p-dihydroxy diphenỵl-dimethyl methane), and dichorophenol.

Production of technical benzoic acid increased about 30 percent, mixed cresols more than 30 percent, paradichlorobenzene 22 percent, and b-hydroxy naphthoic acid 21 percent. Other outstanding gains are noted for benzotrichloride, benzyl chloride, chloronapthalene, diphenyl and its derivatives, and the xylenols. Most of the intermediates for dyes were produced in slightly greater quantities than in 1936.

Table 7 shows production and sales of coal-tar intermediates in 1937.
Table 7.-Coal-tar intermediates: United States production and sales, 1934
The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 54. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published without revealing juformation with regard to individual firms. The figures thus concealed, howerer, are included in the total]

Name of intermediate	Manufacturers' identification numbers (according to list on p. 54)	Prorluc-	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
p-Acetaminobenzene sulfonamide.	N				
p-Acetaminobenzene sulfonyl chloride					
Acetanilide, tech .	45, 64, 86, 141	210, 848			
Acetoacetanilide.	37, 219				
Acetoacet-o-chloroanilide	64, 219				
Acetoacetdichloroanilide	70				
Acetotoluide .-	34,14S				
Acetyldiaminoanthraquinone.-...------.--					
Acetyl-p-phenylenediamine (p-amino acetamilide).	$5,45,64,86,148 \ldots$	239, 756			
Acetyl-p-phenrlenediamine sulfonic acid. .-	86				
Acetyl-p-toluidine.	64, 168,				
Acridine yellow -...------------------------	64, 148				
1-Amino-4-acetylamino-6 and 7 -naphthylamine sulfonic acid (acetylamino Clere's acid).	14 S .				
a-Aminoanthraquinone and salt	64, 86, 148				
b-Aminoanthraquinone.	64, 86, 148.				
Aminoazobenzene and hydrochlorid	7, 34,64, 86, 148 \ldots	173,461			
Aminoazobenzene sulfonic acid.....	$\begin{aligned} & 7,34,45,64,86,148, \\ & 171 . \end{aligned}$	122,011			
Aminoazobenzene disulfonic aci	7,148.				
Aminoazotoluene .-	$\begin{aligned} & 34,45,64,86,148, \\ & 171 . \end{aligned}$	216,391			
Aminoazotoluene mono sulfonate	64, 14, .-.-.----...				
Aminoazoxylene.-	86, 143.				
Aminoazosylene-toluidine	7,34				
8-Amino-1:2-benzacridone	64.				
- Aminobenzoic acid (anthranilic acid)	62, 64, 8				
p-Aminobenzoic acid.------.-.-.--	64...				
Amino-ō-benzoylaminoanthraquinone	64.				
2(4-Aminobenzoylamino) 5-aminotoluene.	64.				
m-Aminobenzo 11 acid	14.				
m-Aminobenzoyl J acid	64, 171				
p-Aminobenzoyl J acid	$64,36,148,171$	50, 593			
p-Aminobenzoy-m-phenylenediamine					
m-Aminobenzoyl-p-tolylenediamine .	64				

Table 7.-Coal-tar intermediates: United States production and sales, 1937-Con

Name of intermediate	Manufacturers identification numbers (accord-ing to list on p. 54)	Produc. tion	Sales				
			Quantity	Value	Unit valut		
		Pounds	Pounds				
1-Amino-2-brome-4-p-toluidine authraqui-none.							
Aminohutyrylaminodiethyl hydroquinone.	171						
2-Amino-4-chlorotoluene.............................. 64, 1							
1-Amino-2:4-dibromoanthraquinone--...-.	6.4, 148						
2.Amino-5-diethylaminotoluene hydrochlo- ride. p-Aminodiethylaniline............................. 70,							
Aminodiplenylamine sulfonic	45, 86, 1						
Aminodiphenyl ether -..............-.......-. 171							
p-Aminuetliylbenzylaniline sulfonic acid	64						
1-Amino-2-methyl-4-p-toluidine anthraguinone.							
1-Amino-8-naphthol-1-sulfonic acid	4.5, 64, 148	74, 161					
1-Amino-8-naphthol-3:6-disulfonic acid (Hacit1).							
2-Amino-5-naphthol-7-sulfonic acid (J acid)	5, 45, 64, 148	551,956					
$\begin{aligned} & \text { 2-A mino-8-naphthol-6-sulfonic acid (gamma } \\ & \text { acil). }\end{aligned} \mathbf{4 5 , 6 4 , 8 6 , 1 4 8 \ldots \ldots . . .} 1,081,751$							
Amino-2-naphthol-6:8-disulfonic acid							
2-Amino-8-naphthol-3:6-disulfonic acid (2 Racid). 64,							
Amino-1-naphthylamine-6 and 7 -sulfonic acid (amino Cleve's acid).							
0-Aminophenol sulfonic acid							
p-Aminophenol and hydrochloride............ $34,45,64,7,224$, 232. 743,321 461,984 298,096							
p -Aminophenylammonium-hydroxide--...	X						
m-Aminophenylpyrazolone carboxylic acid 171							
Aminopyrazolone	171,						
A niline disulfonic acid_	45, 64, 148	24,892					
Aniline methane sulfonic acid..--.-.---.--	86, 171						
A niline oil	34, 62, 64, 141, 145, 148, X.	38, 850, 344	14, 720,211	1,667, 159	1		
Anisic arid							
0-Anisidine-......-.							
Anthracene, refined							
Anthranilic acid. (See o-Aminobenzoic acid.)							
Anthraquinone (100 percent)	34, 148						
A nthraquinone-a-sulfonic acid...........-.-. 86,148							
Ant hraquinone-1:8-potassium disulfonate.--- 64.							
Ant hraquinone-1-sodium sulfonate........... 64. Anthraquinone-2-sodium sulfonate (silver							
Anthraquinone-2-sodium sulfonate (silver $\quad 7,64,1$,salt).							
Anthraquinone-2:6-1lisulfonate Anthraquinone or-tisulfonete							
1:9-Anthrathiazol-2-carbonyl chloride------.-- 61							
Azox yaniline	171						

Table 7.-Coal-tar intermediates: United States production and sales, 1937-Con.

Name of intermediate

Benzene sodium disulfonate
Benzidine, base
Benzidine hydrochloride and sulfate
Benzidine sulfonic acid
Benzidine disulfonic acid
Benzoic acicl, tech
Benzotrichloride.
1-Benzoylamino-4-chloroanthraquinone
1-Benzoylamino-5-chloroant hraquinone
5-Benzoylamino-1:1-dianthramide
1-Benzoylamino-5-p-toluene s:llfonic anthraquinone.
Benzoyl henzoic acid.
Benzoyl chloride
Benzoyl J acid
Benzyl chloride
Benzyl disulfide.
Broenner's acid. (See 2-Naphthylamine-6sulfonic acid.).
Bromobenzanthrone
Bromorenzene
p-Bromomethylaminoanthraquinone
p-Bronophenol.
Butyl phenol (p-tertiary)
Chicago acid. (See 1-Amino-8-naphthol-
2:4-disulfonic acid.).
o-Chloroacet oacetanilide
Chloroacetoacet ylnapht hylamide.
1-Chloro-5-aminoanthraquinone
1-Chloro-8-aminoanthraquinone
o-Chloroaminobenzoic acid
Chlcroaninophenol sulfonic aeid
5-Chloro-2-aminotoluene hydrochloride.-
m-Chloronailine
o-Chloroaniline.
p-Chloroaniline sulfonic acid
2-Chloroaniline-5-sulfonic acid
Chloroanisidine
Chloroanisidine methylene
Chloroanthraquinone
o-Chlorobenzaldehyde
Chlorobenzanthrone
Chlorolienzene (mono)
o-Chlorobenzoic acid
Chlorobenzoyl benzoic acid.
1-Chloro-2-carboxy anthraquinone
p-Chloro-m-cresol
2-Chloro-1:4-dihydroxy anthraquinone.
(chloroquinizarin)
Chlorometanilie acid
Chlorome thylanthraquino
Chloronaphthalenes
o-Chloro-p-nitroaniline
p-Chloronitroaniline
1-Chloro-5-nitroanthraquinone
1-Chloro-8-nitroanthraquinone
4-Chloro-2-nitrotoluene
6-Chloro-2-nitrotoluene
o-Chlorophenol
p-Chlorophenol
Chlorophenylhydrazine-p-sulfonic acid
Chlorophenylmethylpyrazolone sulfonic acid
2-Chloro-o-nhenylphenol
2-Chloro-6-phenylphenol and sodium salt.
4-Chloro-6-phenylptienol
Chlorosulfophenylmethylpurazolone
Chloro symmetrical xylenol
Chlorotoluene
o-Chloro-p-toluene sodiun sulfonate
Chloro-0-toluidine
4-Chloro-2-toluidine methylene
Chlorotoluidine sulfonic acid
2-Chloro-4-toluidine-5-sulfonic acid
Chlorotolylthioglycollic acid
p -Chloro-p-xylidine

identification numbers (according to list on p. 54)

64
$45,64,148$
$5,34,64,70,86,148$
7, 45.
$45,145,171, \mathrm{X}_{\ldots}$.
$64,101,105,145$
$101,105,145$.
64, 86
64
64
64
$34,64,148$
$105, \mathrm{X}$.
45
$101,105, \mathrm{X}, \mathrm{X}$
105.

64
62, 70
86
62

37
171.

64, 148.
64.
$45,64,86$
64.

86, 145
145,224
145, 224
86.

86
$105,171,224$
171
34, 64, 86, 148
86, 148.
7, 148
62, 64. 105, 145, 201
$148, \mathrm{X}$
$34,64,86,148$
64
22

7, 148
64, 148
34, 64, 148
$105, \mathrm{X}$
34, 62, 64
64, 224
64
64
64
64, 148
145
82,
86
62
6
62
22
$64,105,148$
145
64, 148
171
$34,45,64, \mathrm{X}$
64
$64,86,148$.
64

Produc-

$-\frac{$| Produc- |
| :---: |
| tion |}{Pounds}

1, 539, 383

- 6, 165

Sales

1, 191,079

1, 115, 175

$$
186.691
$$

\qquad
-
--
\qquad
\qquad
-..............

312,205

Table 7.--Coal-tar intermediates: United States production and sales, 193.-Con

Name of intermediate	Manufacturers' identification numbers (according to list on p. 54)	$\underset{\text { ion }}{\text { Produc- }}$	Sales				
			Quantit ${ }^{\text {y }}$	Value	$\begin{array}{\|l\|} \text { Unit } \\ \text { Valut } \end{array}$		
p-Chororshltrioglycomic acir	64,	Pounds	Pounds				
Chronotropic acid. (See 1:S-1)ihydroxs naphthalene-3: 6 -(lisulfonic acid.) Cleve's acid. (see 1-Naphthylanine-6 and 7 -sulfonic acid.)							
Cresidine --							
m-Cresol.	22, ${ }^{2}$						
o-Cresol p-Cresol	22, 20 2095 209						
Cresol. meta-para	22, 155, X						
Cresol, meta, ortho,	$22,34,124,185, ~ X ~$	13,745, 271	13, 251, 3 45	1,071,965	\$0.05		
O-Cresotinic acid.	22, 148, 185,						
Cumidine .-................--------------- 23, 148,							
Cyanoacetylcoumarone	20						
Crelohexylamine							
dehydrothio-p-toluidine							
Diaminodimethylacritine ---.---------..-	171						
1) iaminodimethylplicny lacridine --...-.-.-- 171							
	148						
Diaminodip henylamine sulforic acid.-....- 5 , $\frac{1}{1}$							
1:8-1iamino-4:5-dinitro anthrayuinone....- 64 1							
Diaminophenetol Diaminostilbene disulfonic acid	34						
1:5-1) ianilidoanthraquinone-o-o-dicarboxylic acid (dicarbosylic-anthraquinone)	64	$1{ }^{\text {a }}$					
1:1-1) ianthraquinone imine diamino........							
1:1-Dianthraquinone imine-f:4-dibenzoyl diarnino							
1:1-Dianthraquinoze imine 4:5-dibenzoyl dia? ino							
Diazosalieylic acid.	64, 86, 148						
Dibenzacridone trianthrimid...-.-.-.-.-.-. 64.							
1/2-1)							
13:13-Dihenzanthrouyl.							
13:13-Dibenzanthronyl selenide .-............ 64							
Dibenzyl aniline Dibromoaminoanthracuinose							
$\begin{array}{ll}\text { Dicarboxy benzidine disulfonic acid.-.......-. } & 17 \\ \text { Dichloroacetoacetanilide.-................... } & 37\end{array}$							
Dichloroaniline	45. 64. 105, 145, 148, 224.	231, 308	79,387	31, 309			
Dichlorvaniline sulfonic acid.	6t, $56,148,171$	35,276					
1:5-Dichloroanthraquinone	61.8						
1:8-Dichloroanthraquinone	61						
2:6-Dichlorolvenzal chloride	64						
o-Dichlorobenzene.	62, 64, 105, 115	3. 209.179	28851, 138	147. 129	05		
p-Dichlorolenzene.-	$62,64,105,145,201$.	11, 705,376	11. 118, 594	1,09", 118	佰		
1) ichlorobenzidine.-	64						
bichlso carboxyl pyrazolone	171						
1:8-bichloro-4:5-dinitroanthraquinone	6.4						
Dichlorohydrazine...	171						
Dichlorohyrazine sulfonic acid	171						
2:4-1)imhurophenol.	145.						
Dichloronvazolone	171						
Dichlurnsuffophenyprazolone	45						
bichlorosulfothenylmethylpyrazo	64.						
Dicselohexylamine	145						
Di thylaminolenzaldeliyde	70, 56,14						
Disthyl-m-aminophenol	61, X						
Diethylaniline	61, 148						
Diethelaniline-m-sulfonic a							

Table 7.-Coal-tar intermediates: L'nited States production and sales, $193 \mathbf{H}^{-}$- Con.

Name of intermediate	Manufacturers' identification numbers (according to list on [. 54)	Produc. tion	Sales				
			Quantity	Value	Unit value		
1:4-Dihydroxy antbraquinone (quinizarin) --	5, 7, 16, 64, 86, 148,	Pounds 205, 544	Pounds				
1:5-Dihydroxy anthraquinone (anthrarufin)-	64, 86, 14, 171, X	162, 127					
1:8-Dihydroxy anthraquinone (chrysazin) --	64.86						
p-p-Dihydroxydiphenyldimethylmethane (bis-phenol).							
5:5-Dihydroxy-7:7-disulfonic-2:2-dinaphthylamine (Rhoduline acid).	5,64.						
5:5-Dihydroxy-7:7-disulfonic-2:2-dinaphthylurea (J acid urea).	45, 64, 56, 148.	207, 396					
1:5-Dihydroxynaphthalene --------------	64, 86, 148						
1:8-Dilydroxynaphthalene-3:6-d is ulfonic acid (chromutropic acid).	45, 64, 148						
5:5-Dihydroxy-di-b-naphthylamine-7:7-disulfonic acid (I acid imide).	148.						
2:5-Dimethoxy aniline	64.						
Dimethylaniline.	34, 64, 148	3, 510, 106					
Dimethyldianthraquinou	34. 61, 86, 148	55,933					
Dinitroaniline.	34, 64, 145, 148						
Dinitroanthraquinone -							
4:8-Dinitroant ararufiu---	61.						
Dinitrobenzene.-	34,61. 14	1,873,430					
Dinitrobenzene sulfonic ac	45, 86						
Dinitrochlorohenzene.	34, 64, 86, 145, 148	7,009, 768					
Dinitrodibenzanthronyl							
4:8-Dinitro-1:5-dinitrophenyl ether anthraquinone.							
Dinitrohydroxydiphenylamine	45, 86						
Dinitrophenol, tech	7,64, 5b, 14 n						
Dinitrostilbene disulfonic ac	64, sf. 140	34, 65					
Dioxamic acid	83						
1:5-Diovamino-4:8-dinitroanthraquinone	64.						
Dioxy dibenzanthrone.	64						
Dioxy s acid	64						
Diphenoxy anthraquinone 1:5-Diphenovy anthraquino							
Diphenyl.	62, 115, 171						
Diphenyl derivatives: 115							
p-imino-							
Polychloro							
Diphenylamine.							
Diphenyl ensilon acid	64, 148, X	44, 590					
Dipyrazol dianthrone	64.						
Distilhenediphenol.							
1:5-Di-p-toluidine anthraquinone	6.						
1:8-Di-p-toluidine anthraquiume-	6.						
1:4-Di-n-tolytaminoanthraquinone							
6 -Ethoxy-3-hydroxy thionaphthalene	64						
Ethylaminobenzoate	X						
Ethyl-o-amino-p-cresol	64.						
Ethylaniline (mono)	64, 148						
Ethylbenzene.							
Ethylbenzena benzoate							
Ethylbenzylaniline	64, 149						
Ethylbenzylaniline sulfonic acid	45, 64, 56, 145	425,979					
Ethylbenzyl-m-toluidine	64, 148						
Ethylhenzyl-m-toluidine sulfonic acid.	64, 56,148						
Ethyl salicyl carbonate	62, X						
Ethyl-m-tolaidine	64, 148						
Ethyl-o-toluidine.	6.4						
Ethyl-o-tohidine-p-sulfonic acid	64.						
Ethylene glycol monophenyl ether							
Fast yellow L.	5						
$\mathrm{m}_{\text {m-Fluor aniline }}$	64.						
Fluorescein	1172, 152						
Furoylammodimethoxy anmine....-------111							
Garnma acid. (See 2-Amino-8-naphthol-6- sulfonic arid.)							
H acid. (See 1-Amino-8-naphthol-3:6-disulfonic acid.)							
Hexachlorodiphenyl oxide	62.						
2:1-2:1-14ydrazine dibromoanthraquinone	64.						

Table 7.- Coal-tar intermediates: United States production and sales, 1937-Con.

Table 7.-Coal-tar intermediates: United States production and sales, 1937—Con.

Name of intermediate	Manufacturers identification numbers (accord- ing to list on p .54	Production	Sales		
			Quantity	Value	Unit value
1-Naphthylamine-4:8-disulfonic acid	45, 64, 148	$\begin{gathered} \text { Pounds } \\ 409,235 \end{gathered}$	Pounds		
b-Naphthylamine-2:3:6-disulfonic acid					
1-Naphthylamine-3:6:8-trisulfonic acid	64, 86, 148	4.649,858			
2-Naphthylamine-1-sulfonic acid (Tobias acid).	5, 34, 45, 64, X...	1, 155,494	594, 978	\$365, 211	\$0.61
2-Naphthylamine-6-sulfonic acid (Broenner's acid).	64, 148				
2-Naphthylamine-3:6-disulfonic acid 2 Naphthylamine-4-8-disulfonic acid	148				
2-Naphthylamine-5:7-disulfonic acid	64, 64,148	$\begin{aligned} & 993.920 \end{aligned}$			
2-Naphthylamine-6:8-disulfonic acid	45, 64, 148	1,624, 271			
2-Naphthylamine-2:3:6-trisulionic acid					
1-Naphthylamino-2-carboxylic acid anthraquinone.					
p-Nitroacetanilide ------------------..-	5, 45, 86.				
Nitroacetoacetylnaphthylamid	171				
3-Nitro-4-aminoanisole-	148				
5-Nitro-2-aminoanisole.					
Nitroaminodiphenylamine-o-sulfonic acid_					
p-Nitro-p-aminodiphenylamine-osulfonic acid.					
Nitroaminophenol--	34, 45, 86, 148	106, 583			
p-Nitro-0-aminophenol ${ }_{\text {ditro-4-amino-2-sulfodiphenylami }}$					
4-Nitro-4-amino-2-sulfodiphenyl	144, 45, 64, 22	185, 780	113, 462	73, 037	. 64
0 -Nitroaniline	145				
p-Nitroaniline-	7, 64, X				
p-Nitroaniline sulfonic acio	34, 64, 86, 148	77,329			
m-Nitro-p-anisidine. 3-Nitro-4-anisilline					
p-Nitro-o-anisidine	64,86				
o-Nitroanisole	64, 145				
p-Nitroanisole	64, 148 ...-.---				
' Nitrohenzene ----------	$34,64,145,148, ~ \mathrm{X}$ 45,64,	$\begin{array}{r} 53,301,541 \\ 171,441 \end{array}$	4,480, 146	322,953	. 07
m -Nitrobenzoic acid.					
p-Nitrohenzoic acid.					
m-Nitrohenzoyl chloride	64, 105				
m-Nitrobenzoyl sulfonic acid					
p-Nitrobenzoyl chloride	64, 105				
p-Nitrobenzoyl J acid --...................	64. 8				
Nitrobutyrylaminodicthyl hydroquinone. Nitrocarboxyl pyrazolone.....-........					
m -Nitrochlorohenzene...	64, 145				
o-Nitrochlorobenzene.	64, 145				
0-Nitrochlorobenzene-p-sulfonic					
p-N1trochlorobenzene --.-------..-	64, 145				
p-Nitrochlorohenzene-o-sulfonic acic	7,45, 64, 86, 148	287, 036			
Nitrocresol					
m-Nitrocresol					
m-Nitro-p-cresol					
Nitrocresol methyl cther	64.				
8-Nitro-1-diazo-2-naphthol-4-sulfonic acid	86, 148				
Nitro-p-dichlorobenzene	45. 148, 224				
Nitrodiphenyl ether	171				
Nitrohydrazine---	171				
Nitromethane base					
Nitronaphthalene -------------------	64, 86, 148	4, 608, 601			
2-Nitronaphthalene-4:8-disulfonic acid	45, 86, 148				
o-Nitrophenetol.					
o-Nitrophenol	64, 224				
p-Nitrophenol.	34, 64, 145, 224				
Nitrophenylenediamine.					
Nitrophenylmethylpyrazolo	64, 70, 171	2, 732			
Nitropyrazolone					
Nitrosalicylic acid					
Nitrosodiethylaniline.	86				
Nitrosodimethylaniline	7, 148				
Nitrosoethylbenzylauiline					
Nitrosophenol.	$34,45,64,70,148$	650, 711			
Nitrotoluene.	$34,64,35,14$				
m -Nitrotolucne					
0 -Nitrotoluene sulfonic	7, 45				
p-Nitrotoluene.	64,				

Table 7.-Coal-tar intermediates: United States production and sales, 1937—Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
			Quantity	Value	Unit value
p -Nitrotolnene-o-sulfonic acid	5, 45, 64, 86, 145 1.	Pounds 981,764	Pounds		
		801, 152	731,971		
m-Nitro-i-1oluidine	34, 45, 64, 168, N ..			\$919.2s9	\$1.26
-Nitro-o-toluidine					
	64, 148				
	64, 86				
	6. 118				
Oxalyl-m-phenylenediamine Oxalyl-1-1 מenylenediamine	61, 80				
Oxydiclilorobenzoyl benzoic acid.-------------	118				
Penta anthramide .-----.-----	64, 86				
PentachlorobenzenePenta chlorophenol	105				
	${ }^{62} .145$				
o-Phenetidine.	5, 64, 145.				
p -Phenetidine Pbenol.	62, 61, $145 \ldots \ldots$				
	$\begin{aligned} & 22,34,62,124,145 \\ & 145, \mathrm{X} . \end{aligned}$	65, 689, 782	57, 175, 514	6, 152, 843	11
Phenyl-2-amino-5-maphthol-i-sulfonic acid (phenyld acid).	45, 63, 148	71, 122			
Phenyl-2-amino-s-naphthol-6-sulfonic acid (phenyl gamma acid). Phenylanmonimm naphtholate.	$5,45,64,171$	11, 549			
Pheny Phenylethyl malonic ester					
Phenylethyl malouic diethyl ester............. m -Phenylenedianine.	$\begin{aligned} & 7,34,45,64,14, \\ & 179 . \end{aligned}$	782,065			
m-Phenclenediamine sulfonic ach	45, 64, 86	105, 693			
p -Phenylenediamine	31, 45				
p-Phenylenediamine star	45, 80				
	64.				
Phenylolycine, sodimits salt	62, 64, 149	7. 257,445			
Phenylhydrazine and hydrochloride...........	62, 70, 171, 18				
	86i, 171, 207	14, 695			
Phenyl malonic diethyl ester -..................					
1-Phenyl-3-methyl-5-pyrazolone (developer Z).	34, 62, 61. 171, X fif, 171	166, 064			
Phenyl-1-naphthylamine-8-sulfonic acid...-	5, 61, 86, 148	230, 682			
o-Phenylphenol p-Phenyluhenol					
p-Phenylphenol ---------7ablePhloroglucinol. (See tablePhthalamide.					
	8, 22, 64, 145, 148...	45, 210, 784	17, 565, 905	2, 492, 473	. 14
Phthalonitrile	64.				
Phthalyl chloride	145				
a-Picotene -.....					
Piperidine....	34, 64, 148				
	64, 105, 145				
Primuline, base	61, 118				
Primuline sulfonProline.-.----	86, 167				
	171				
	168				
Pyrazol anthrone	6.				
Quinaldine (See 2-Methyl quinoline.)Quinaldine yellow, base.-------------					
	148				
Quinoline -	22				
Quinoline derivRed K ${ }^{\text {a base }}$ -	X				
	86				
	64, 168				
Rhoduline acid. (See 5:5-Dihydroxy-7:7-disulfonic-2:2-dinaphthylamine.)					
Ruther chemicals. (See table 14.) Salicylic acid, tech.					
	62, 64				
Salicylie anilide					
Schaeffer's acid. (See 2 Naphthol-6-sul-					
Silver salt. (See Anthraquinone-2-sodium sulfonate.) Sodium chloro-o-phenviphenate					
	64				
Sodium pentachlorophenate------------------------Sodinm 0 --phenvlphenate	62				
	62				
	62				
	62				

Table 7.-Coal-tar intermediates: United States production and sales, 133\%-Con.

COAL-TAR DYES

PRODUCTION AND SALES BY TYPES

Coal-tar dye production in 1937 totaled $122,245,000$ pounds, or 2.3 percent greater than in 1936. Sales increased less than 1 percent in quantity and slightly over 1 percent in value to $118,046,000$ pounds, valued at $\$ 64,613,000$. Sales of classified (Colour Index) dyes decreased 1.5 percent in quantity and 2.2 percent in value, while new and unclassified dyes show a 14 percent increase in quantity and 11 percent increase in value of sales. A large part of this increase is due to the inclusion of azoic dye components in this group for the first time. The unclassified dyes account for 14 percent of the sales quantity and 30 percent of the sales value of all dyes in 1937.

Production of synthetic indigo increased slightly to $18,417,000$ pounds, while salcs quantity declined slightly to $17,791,000$ pounds, valued, at $\$ 2,965,000$. Output of $13,615,000$ pounds of sulfur black was 7 percent less than in 1936.

In 1937 production of food dyes increased to 425,000 pounds, as compared with 409,000 pounds in 1936. Average sales price dropped to $\$ 2.86$ per pound from $\$ 3$ per pound in 1936 .

There were 43 makers of dyes in 1937 and 41 makers in 1936.
Table 8 shows production and sales of coal-tar dyes, by types, in 1937.

Table 8.-Coal-tar dyes: United States production and sales, by types, 1937
The numbers in the third column refer to the numbered alphabetical list of manufacturers printed on p. 51 . An X signifies that the manufacturer did not consent to the publication of his identification num. ber with the designated product. Blanks in the fourth, fifth, and sixth collumns indicate that the statistics of production or sales cannot be published without revealing information with regard to individual firms. The figures thus concealed, however, are included in the total]

Colour Index No.	Name of dye	Manufacturcrs' identification numbers (according to list ou p. 54)	$\begin{gathered} \text { Produc- } \\ \text { tion } \end{gathered}$	Sales		
				Quantity	Value	Unit
25	CLASSIFIED DYES					
	Nitroso Dyes		Pounds	Pounds		
	Fast printing grcen	86.				
	Nitro dyes					
10	Naphthol yellow S..	34, 45-.............				
	Azo Dies					
	monoazo dyes					
16	Acid yellow G.					
17	Spirit yellow R	7, 34. $55,80,86,148$				\$0.83
19	Butter yellow- Chrysoidine	$7,34,55,80,86,148$ $7,34,55,86,148$	$2 ¢, 678$ $4+1,451$	30,096	$19,642$	
21	Chirysoidine R -	34, $56,148 \ldots$	120, 802			
23	Oil orange.	55-.....				
24	Sudan 1...	7, 31, 55, 64, 86, 148	312,224	298, 116	145, 401	. 49
$\begin{aligned} & 26 \\ & 27 \\ & 27 \end{aligned}$	Croceine orange Orange G	7,45, 148, $34,14.6$				
29	Orange Ci-..-- ${ }^{\text {Chrometrope }}$	34, 45, 14, 86,148 148	190, 364	184, 035	87, 136	. 47
30	Fast actul fuchsine B	7,145				
31	Amido maphthel red G.	5, 7, 34, 15, 64, 36,	476, 775	438,227	144, 246	. 33
36	Chrome sellow 29		166, 332	12S, 330	60, 621	. 47
40	Chirome jellow 12	7,34, 45, 86, 216.....-	95, 726	82, 761	41,173	. 50
52	Mordiant yellow 4G Victoria violet	7. 45,88 ,				
54	Lanafuchsine..-		106, 652	98. 251	54.458	. 55

Tabie 8.-Coal-tar dyes: United States production and sales, by types, 193i-Con.

Table S.- Coal-tar dyes: United States production and sales, by types, 193~-Con.

Table 8.-Coal-tar dyes: Uniled Stetes moduction and sales, by types, 193\%-Con.

Table 8.-Coal-tar dyes: United States production and sales, by types, 1937-Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
$\begin{aligned} & \text { Index } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
	CLASSIFIED DYES-Continued					
	Triffenylmethane and Diphenilnafethylmethane Dyes-Contd.					
667	Fast acid green B	$34,56,148$				
670	Acid light green.	64, 56---				
671	Acid glaveine blue	64, $66,148 . \ldots$.	41 S .151	438,179	\$390, 795	\$0. 89
676	Pana fuchsine----	34, 152, X.......--	20,364	19,080	33, 559	1. 76
678	Magenta	34, 45, X				
680	Nethyl violet and base...--.............-	$\begin{gathered} 34,64,66,86,104 \\ 148, \mathrm{X} . \end{gathered}$	902,370	909, 543	583, 596	. 64
681	Crystal violet	61, 86, 148........-				
682	Ethyl violet.	6.1, 86.				---
689	Spirit blue 2B.					
691	Fast green hluish	7				
695	Acid violet 4BN					
696	Iast acid violet 10 B	64, X.-.--------				
698	Acid violet.-.....	$45,64,86,148, \mathrm{X}_{\ldots}$	260,047	240, 161	218,813	. 91
699	Acid fast vio'et BG					
703	Alkali blue 6B	86_---------...-...				
705	Nethyl bhue.-.-.	152-..---------. --				
706	Methyl cotton blue	$152 \ldots$				
707	Soluble blue.	34, 86, X	73, 756	64, 858	108, 138	1.67
712	Patent blue.	86,148				
714	Patent blue A.....	86, 148				
720	Eriochrome arurol B-	6.1, 86, 148, X	75,690	73, 5,86	119, 748	1.63
722	Eriochrome cyanine R	$86,148, \mathrm{X}$.				
724	Aurine ...-...-					
728	Vicforia blue R	$64,86 \ldots$				
729	Vidoria hlue B	64, 86, 148				
735	Naphthalene green V	64, 148, X	89, 517			
737	Wool green S...	31, 64, 86_........	127, 231	136, 746	70, 297	. 51
	'Fotal triphenylmethane and diphenylnaphthylmethane dyes.		3, 507, 379	3, 270,668	3,662,097	1.12
	Xantilene Dyes					
749	Rhodamine B	64 ---------------				
749	Fhodamine B conc	64, X....-.-.-...--				
752	Rhodamine for cone	64, X				-----
758	Fast acid violet A2R	X				
766	Uranine...	7, 34, 102, 152, 181.	5,629	4.756	S, 859	1.86
768	Eosine.	$\begin{aligned} & 7,34,102,148,152, \\ & 181 . \end{aligned}$	56, 636	E5, 092	78,472	1. 42
768	Tetrabromoflıorescein (bromo acid) .-.	$\begin{aligned} & 7,34,102,115,152 \\ & 181 . \end{aligned}$	341, 893	329, 100	389, 722	1. 18
372	Erythrosine	152				
773	Erythrosine B	34.				------
754	Phloxine B	152				
777	Rose bencale	152-------------				
779	Rose bengate B	34-------------				
	Acrimine Dyes					
788	Aeridine orance A	$86,171 \ldots \ldots$				
793	Phosphine.	$34,45,64,148,171$.	119,738	127,533	99, 632	. 78
791	Phosphine 2A	171				
797	Euchrysine.	86, 171.....				------
	Quinoline Dyes					
801	Quinoline yollow-	64, 148. I	112, 646	92,459	135, f881	1. 47
802	Quineline yellow KT	145.				
	Thiazole Dyes					
\$12	Primuline	45, 64, 148, 167 $\ldots .$.				
$81 ?$	Direct pure yellow ME	64.---				
814	1)irect fast yellow-	$64,86,148,167 \ldots$	365, 660	337, 165	296, 722	. 88
415	Thioflavime T dirert billant favine	164---				

Table 8.-Coal-tar dyes: United States production and sales, by types, 1937—Con.

[^3] are included in the vat dyes.

Table 8.-Coal-tar dyes: Vnited States production and sales, by types, 193:-Con.

$\begin{gathered} \text { Col- } \\ \text { ons } \\ \text { Index } \\ \text { No. } \end{gathered}$	Name of dye	Manufacturers' itlentification rumbbers (aceording to list on 1,54)	$\begin{gathered} \text { Prodne- } \\ \text { tion } \end{gathered}$	Sales		
				Quantit ${ }^{\text {y }}$	Valne	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
$\begin{aligned} & 10 \mathrm{~S} \mathrm{x} \\ & 1091 \end{aligned}$	CLASSIFIED DYES-Continued	$61,86,145$$64,85$	$\begin{aligned} & \text { Pounds } \\ & 44,814 \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \quad 40.912 \end{aligned}$	\$130, 947	\$3. 20
	Acid anthraquinone blue B					
	Acid alizarin rubine					
	Total anilmaruinone		1,270,982	1,385, 651	1,988.878	1.44
	Anthraquinone Vat Dyes (single strengtil)					
1095	Anthraguinome val yellow GC (121 ef)	34, 64. 56, 167	799, 423	793, 22	883, 506	1. 11
1006	Anthraduinone vat golden otange (i (1218).	34, 64, 5t5, 14s.	199, 751	167, 066	225, 089	1.35
1097	Anthraduinone vat golden orange R (12 2^{\prime},	34, 64, 148...-..--				
1098	Anthracuinone vat scarlet GS ($162.3 \mathrm{c}^{\circ}$) -	8f, 148				
1099	Anthragninone vat lark blue Bu)(550	$34,64,86,145,164$	174,231	165, 504	191, 989	1.16
1101	Anthrupuinone vat jate oreen (be)					
1102	Anthraruinone vat green Ban an back B (121, $\left.2_{0}^{\circ} 0\right)$.	$34,64,86,144,167$.				
1103	Anthratuinone vat vindet R (25\%) --...	86				
1104		$7,64.86,11$	218.401			
1105	Anthratuinone vat violet 13 (25 c)	S6,				
1106	Anthrariuinone vat biae ISS (10\% -	61, 9				
1109	Anthrandinome vat biue 30 (14$)^{\circ} \mathrm{O}$	64				
1113		7, 64, 86, 118	818,911	769,267	145, 446	. 8
1114		$7,64,86,14$		802.854	860,733	1.07
1118	Anthracuinone vat yollow $\mathrm{A}\left(122^{2} \mathrm{c}\right)$-.-	$6.1,86,14$.				
1120	Anthratuinone vat lirown B (29C)	64				
1128	Anthraquinone vat 1 ink R (121,0$)$	86				
1132	Anthraruinone vat yellow R (121, 20)	64				
1133	Anthramumone sat ret $F F$, extra (121 2					
1134	Andfaratumome vat brilliant violet 2B (12,2 , 2)	61.				
1135	Anthraguinone vat brilliant violet R (12! a^{2}).					
1150	Anthrumunone vat olive $\mathrm{R}(12 \mathrm{~s}, 0)$	64, 56, 14, --------				
1151	Anthrapuinone vat brown R (121, ef	64, 86, 148.........				
1152	Anthraquinone vat bromn (1 (12, g'o)	64, 145.				
1161	Anthraquinone vat red violet RRN (121.2)	64, 86.				
1162	Anthriuminone vat red BN , evtra (12! y^{-c}).	64.148---------.-				
1163		64.				
1169		61.				
1170	Anthraquinone vat yellow $\mathrm{K}(12.8,0)-$ -	64				
1173	Anthrapuinone vat bue green B (12! z^{\prime}).	145				
	Intugoid and Thiolnhmami Datas					
1177	ladigo, synthetic	62, 8t, 14.	18, 419, 013	17. 790,910	2,965,24s	. 17
1178	Indico white (2)",	145				
1140	lndige extract	64. 118.				------
1183	Tribrontimdigo R B (20 , ${ }^{\circ}$)	in2. 148				
1184	Brontindigo lime 2 BD ($160^{\circ} \mathrm{c}$)	Ci2, 86, 148				
1159	Brilliant indigo fl (20.0)	64.				
1210	Vit red 13 (121,	86.				
1212	Vat red 3 3 (2nc)	62. 64, sh, 115	76, 369	82, 772	114,584	1. 38
1217	Vat ronge $R\left(10^{\prime}\right.$	34, 61, 56, 118, X_{\ldots}	605,131	553,075	641,851	1.16
1222	Vat violet B (10ri)	62				
1228	Yat fast semet (i) (\%)	02				
1229		62				------
	Foon Dyes					
22	Yellow AB	$67,148$.				
61	Yellow (1)	67, 148				
80	Poncean 3R	$23,148,207$.				
150	Oringer 1	23, 123, 14, 207, 227-	97. 265	86, 684	191,51:	2.21
1s.?	Ambramit.	23, 123, 14, 207, 22-	111, 720	105, 230	262, 35	2. 43
610	'Tarnazine	$23,123,114,207 \ldots$	102,409	4, 7,066	211.105	2.45
668	Smincos errab 13 -	23, 14s, 22.				
670	Light Erons (${ }_{\text {collowish }}$)	$23,148,227$				
738	Erythrosime	$23,123,14,207$	6, 878	7,142	100, 117	13.94
11:0	Indigo disulfonie acid Brilliant b!no Pr'F	$\begin{aligned} & 23,123,207 \\ & 23,114,227 \end{aligned}$				

Table 8.-Coal-tar dyes: L'nited States production and sales, by types, 193\%-Con.

Table 8.-Coal-tar dyes: United States production and sales, by types, 1937-Con.

$\begin{gathered} \text { Col- } \\ \text { our } \\ \text { Index } \\ \text { No. } \end{gathered}$	Name of dye	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
				Quantity	Value	Unit value
	UNCLASSIFIED DYES—Con. Acid alizarin green B \qquad		Pounds	Pounds		
	Acid anthracene brown PG					
	Acid anthracene yellow G R extra					
	Acid anthrb, WSA).					
	Acid black (AR, BR supra, 8B, 8 BN , GRF, GRF conc., 3G, J, NBJ, RB. TL, 640, 773).	$5,7,34,55,64,86$, 148.	77, 828			
	Acid blue (D, 2G) -	${ }^{171}$,				
	Acid brillant blue ($3 \mathrm{~B}, \mathrm{RR}$)	7,64				
	Acid brilliant green 10G					
	Acid irilliant red (BBA, 5B, G, 4BL)-	74, 64.141.				
	Acid ceresine.					
	A cid chromal brown AEB					
	Acid chrome fast hlack (BBN, WAN)	64, 86				
	Acid fast blue (B, G, IB, NB)	64, 148				
	Acid fast brown CGS					
	Acid fast red BL	34, 64				
	Acid fast yellow (JY, RS)	7,34				
	Acill flavine, conc.	179				
	Acid garnet GR.	179				
	Acid green,	64-...				
	Acid light rubine BL					
	A cid milling brown R sup.					
	Acid milling red R...					
	Acid milling yellow ($\mathrm{G}, 2 \mathrm{GX}, \mathrm{R}$)	34, 45, 171				
	Acid naphthol blue black --.....--	$45 \cdots \cdots \cdots$				
	Acid navy blue (conc., B, B conc., M, M4B).	7, 34, 45, 64, 233_..-	15, 467	14, 607	\$8, 588	\$0.59
	Acid nentral yellow GNS..-..............					
	Acid orange (GS, R, 2R, 4R, YF)	34, 171, X				
	Acid red, (B, 3B, OA).	45, 171				
	Acid sapphire G.					
	Acid spirit black.					
	Acd spirit yellow 2R	34				
	Acid violet (B, BS, RL, 2R, 2RX)	34. 45, 171, 17				
	A cid yellow (conc., $2 \mathrm{G}, 5 \mathrm{G}, \mathrm{R}$)	34, 45, 171				
	Alizarin blue GS.					
	Alizarin direct blue (AR, A2G)	86				
	Alizarin snpra blue (A, C)	86				
	Alizarin L.-.-.--					
	Alkali fast green $10{ }^{\text {a }}$	14				
	Anthracene chromate brown E BS conc.	X				
	Anthracene chrone brown RL	234				
	A nthracene indigo blue N	86.				
	Anthraquinone vat black (J,R)	34, 14				
	Anthraquinone vat blue green (FFR, Y).	64, 86				
	A nthraquinone vat brilliant green BN .-	86.				
	Anthraquinone vat brilliant orange (GR, LRK).					
	Anthrafuinone vat brilliant scarlet BGN.					
	Anthraquinone vat briliant yellow 4 G					
	Anthraquinone vat brown (BR, G, RR, VR).	64, 86				
	Anthraquinone vat dark brown (R , RG, RT).	64, 86..				
	Anthraquinone rat deep black BD.	86				
	Anthraquinnne vat direct black 3G	64				
	Anthraquinone vat golden orange 3G-					
	Anthraquinone vat golden yellow (GK,					
	GOW).					
	Anthraquinone vat khaki (GG) -	64, 86, 118				

Table 8.-Coal-tar dyes: United States production and sales, by types, 193\%-Con.

Table S.-Coal-tar dyes: United States production and sales, by types, 1937-Con.

Table 8.-Coal-far dyes: United States production and sales, by types, 193i--Con.

$\begin{gathered} \text { Col- } \\ \text { our } \\ \text { index } \\ \pm 0 . \end{gathered}$	Name of dye	Manufacturers' identification numbers according to list ou 1), 54)	Production	sales		
				Quantity	Yalue	Unit value
	UNCLASSIFIED DYES-Contd.		Pounds	Pounds		
	Wireet enpter thlue ($\mathrm{R} R, \mathrm{R} \mathrm{R}$ S)	6.1, 36				
	Firect dark hlue 12					
	lirect fast hlack, (13, FOR, F TC, G, L, Leone. P P' catra, VE).	$\begin{aligned} & \bar{T}+4,64,86,145, \\ & 233, \mathrm{~S} . \end{aligned}$	569,752	559, 063	8371,860	\$0.67
	Direct fast hlue (FF, 21 L, 4GL, SGL, LEtR, Lf, R, EL. SRL)	$45,64,56,145$.	346,364	321, 321	368, 219	1.15
		$6.1,56,148, \mathrm{X}$ $6.4,56,148 .$.	147, 143	117,958	180,734	1. 53
	Direct fast light blue FF					
	birect last olive brown RL					
	Direct fast orange (EG, ER, E3G, (i, 29 cone, 2 (iL, 4 G cone., L3R, L5G, Lif, R, RA, 2R, $\mathrm{fR}, 7 \mathrm{R}, \mathrm{S})$. Direct fast red ($5 \mathrm{BL}, 8 \mathrm{BLN}, 8 \mathrm{~L}$ LSW) ..	$\begin{gathered} 34,45,64,86,109 \\ 145, \mathrm{x} . \\ 45,148, \mathrm{X}, \ldots \end{gathered}$	292,480	243, 401	278, 629	1.14
	Direct fast rahine B cone.	148				
	Direct fast violet (BB, F)	5, 86				
	Direct fast yellow (CA extra, 4GL, $5 \mathrm{GL}, \mathrm{L}$ R, L5G, RL). Direct garnet K .	$5,45,64,86,145 \ldots$	167, 048	155,576	246, 813	1. 59
	Direct gray (3 F C, BL, G, Z)	55, 148,				
	Direet green (54FS, 5G, 2Y	5,6t				
	Direct green blick.-					
	Direct light vellow RL					
	birect mavy blue ($\mathrm{BF}, \mathrm{BH}, 4 \mathrm{~B}, \mathrm{DB}$, R, RY). Direct orance (B, GL, D2R)	$5,34,64,148,233$, X.	111, 133			
	Wirect red ($13,3 \mathrm{~B}$, G)	$5,45$.				
	Hirect red violet RY					
	Direat rho duline red					
	Direct samplire B					
	Firect silk thlue $\mathrm{N}^{\text {R }}$ -	86				
	Direct speck dye red SW	148				
	Direct vioset (2R, 2R)	5, 14				
	Direct violet black.--					
	Discharge hrown RB					
	Fast acill hlack BR	86				
	Fast arid hlue (R, W F)	8f, 148				
	Fasi acit Bordeanx B	56.				
	Fast acid brown RG	148				
	Fast acid light red B	45				
	Fast acid red (313. Gra)	86.				
	Fast acid violet (ERR extra, VR)	64, 17				
	Fast acid yellow l	S6.				
	Fast black V.	64				
	Fast crimson R	148				
	Fast light red (B.4B)	85				
	Fast silk yellow ${ }_{\text {a }}$					
	Fast wool red (BL, G L)	148				
	Fast wool volet B	14 R				
	Fast wool yellow GS	148				
	Fluorescent green \#5	6.				
	Fluorescent red \#3	64				
	Fluorol 5 (.	S6.				
	Formal fast hlack G	45				
	Formanol black R	K				----
	Gas yellow.	34				
	Hansa yellow (G)	f4, 86				
	Helio red RMT	86				
	Helingen hlue $\mathrm{B}_{\text {- }}$	Sif				
	Ifydroform nayy blue	167				
	Hydroform yellow 3G	167				
	Indamine navy hlue 2B					
	Indigo vat hrown (C)	$34,148, \mathrm{X}$	175, 301	173,955.	179,250	1.03
	Indigo vat pink (FB, FF)	34, 64, 148,	466,502	410, 848	498, 132	1.21
	Indigo vat scarlet 2 GN .	148.				
	Indocyonine B.	S6				
	Indophenol blue	181				
	Jet black APX	64.				
	Lake blne (F, ff)	64				
	Lake fast blue BL conc	64				
	Lake fast orange (C, R)	64				
	Lake fast yellow 10 G	6.4				
	Lake red 2R.	$6{ }_{6}$				
	Lake scarlet 2Y'L	64.				
	Leather brown R R	61				
	Metalized azo gray ${ }^{\text {G }}$	34				
	Milling fast garnet R					

Table 8.-Coal-tar dyes: United States production and sales, by types, 1937-Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
$\begin{aligned} & \text { Index } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
	UNCLASSIFIED DYES-Contd. Milling fast yellow 5GL	X	Pounds	Pounds		
	Milling navy blue 4B.	149.				
	Milling orance $\mathbb{R}^{\text {a }}$.	64, 148.				
	Milling red (B conc., R)	148.				
	Milling yellow (GN, 3G, 2GCW, O cone., XN). Monastrol fast blue BS	$64,148,171$ 61.				------
	Mordant green SN					
	Mordant yellow OD	86				
	Naphthylamine black V	64				
	Neatral brown (RD, 2RS	5, 61, 148				
	Neutril red G.					
	Nigrosine base (B, N, R, 2R)	118				
	Oil black.	181				
	Sil blue (116R)	181, 234				
	Oil brenze	64				
	Oil brown ($\mathrm{D}, \mathrm{\lambda l}, \mathrm{Y}$, \#79, \#102)	80, 148				
	Oil fast black	148				
	Oil fast blue B.	148				
	Oil fast orange A con	148				
	Oil fast rel (I, Y)	148				
	Oil fast yellow (EG, 3G)	64, 118				
	Oil green_-----.-.-.	234 ---				
	Oil orange ($0,2 \mathrm{R}, \# 30, \# 67$)	$34,55,80,148,231$.	55, 805	47, 725	\$42.496	\$0.89
	Oil pink B -------1700	148--------.-				
	Oil red (EG, EGN, G, I 1471, N 1700, O, OB, RO, \#322).	$\begin{aligned} & 7,34,55,80,148, \\ & 231 . \end{aligned}$	75.842	90.067	82, 449	. 92
	Oil violet. --	234				
	Oil yellow (N, PIW)	34, 64				
	Orange Y	55.				
	Paper red AP	86				
	Patent blue B conc	148				
	Pigment rubine ($\mathrm{C}, 3 \mathrm{G}$)					
	Quinoline yellow KT.					
	Rayon dyes: Black B					
	Black GDW	80.				
	Blue BB.	80				
	Bordeaux B,	61				
	Brown G, M	64.				
	Brown R B	80.				
	Nayy blue N	64				
	Violet 3B	64				
	Resin brilliant red R	148				
	Resin brilliant scarlet 6G	148				
	Resin brown Z	148				
	Resorcin brown (R, YX	45,55				
	Rosanthrene ($A, 1 \mathrm{l}$)	64.-.				
	Rosantbrene orange	64.				
	Rubber colors	64				
	Safranine 8B	148				
	Silk black (4BF, G)	45.				
	Silk blue 10G	64				
	Silk brown (B, G, R)	$15, \mathrm{X}$				
	Silk fast blue 3 ${ }^{\text {c }}$.	64				
	Silk red (2B, 4B, 10B)	45, X				
	Stilbene brown 3GLX					
	Stilbene orange EG					
	Sudan corinth B	85				
	Sudan orange (IT, R T)	86				
	Sudan red 4B.	S6.				
	Sulfon orange G	86				
	Sulfon yellow R	86				
	Supranol brown 5R	86.				
	Supranol red PB	86.				
	Vat blue BR.	62.				
	Woal blue (CG, CGG)	148				
	Wool nary luae B.	148				
	Zambesi black (B, D, G, PC, V)	45, 86, 148				
	All other...-	$64, \mathrm{X}, \mathrm{X}$				
	Total unclassified dyes		17.744, 083	16,460,559	9, 160, 390	1.16
	Total dyes:					
	Those for which individual sta-		88, 810.983	85, 531, 022	4, 661,513	. 41
	tisties are shown.					
	Those for which individual sta-		33, 433,596	$32,515,105$	29, 951, 401	. 92
	tistices cannot be shown. Grand total		129.244.5\%9	119.046.127	44619914	55

PRODUCTION AND SALES OF DYES BY CLASSES OF APPLICATION

Table 9 compares the production and sales of dyes by classes of application, in 1937 and 1936, with the average for the period 1925-30.

Table 9.-Comparison of United States production and sales of dyes, by classes of application, 1925-30, 1936, and 193\%

Class of application	Production					
	Quantity			Percent of total		
	$1925-30$ average	1936	1937	$1925-30$ average	1936	1937
Acetate silk	Pounds (i)	Pounds 2, 3ธ $\%, 855$	$\begin{aligned} & \text { Pounds } \\ & 2,191,881 \end{aligned}$		2. 00	1. 79
Acid.	11, 813,941	15,974, 423	15, 343, 304	12.57	13.35	12. 55
Azoic	(2)	(2)	${ }^{3} 2,699,643$			2. 21
Basic	4, S33, 382	5, 727,303	5, 775, 239	5.14	4.79	4. 73
Direct	17, 983, 751	+29,907, 629	30, 595, 183	19. 13	25.02	25. 03
Lake and spirit-soluble	1,947, 124	2, 722,507	3, 157,406	2.07	2.28	2. 58
Mordant and chrome.	3, 611, 608	6, 639, 112	6, 192, 888	3.84	5.55	5.07
Sulfur.	20.004, 635	20, 717, 289	20,528,542	21.28	17.33	16. 79
Vat, total	33, 221,072	34, 449, 513	34, 501, 413			
(a) Indigo	27, 128, 311	18,039, 119	18, 416,903	2Q. 86	15. 09	15. 06
Unclassified.-	$6,092,761$ 587,657	$16,410,094$ 995,185	$16,084,510$ $1,2-29,080$	6.48 .63	13. 73	13.16 1.03
Total	94, 003, 170	119, 523, 146	122,244,579	100.00	100.00	100.00
	Sales					
	Quantity			Percent of total		
	Pounds (1)	Prunds $1,943,405$	Pounds $2,099,5 \times 7$		1. 65	1. 78
Acid.	11,699,667	$15,528,825$	14,911, 413	12.69	13.21	12. 63
Azoic.	(2)		$32,391,318$			2. 03
Basic.	4, 709,926	5, 4f,5, 227	5, 432,964	5.11	4.65	4. 50
Direct..	$17,550.927$	429,495, 273	29, 152, 360	19.07	25.09	24. 69
Lake and spirit-soluble	1, 546, 821	2, 624,777	2,949,90s	2.06	2. 23	2. 50
Mordant and chrome.	3,553,732	6,234,937	6,008,996	3.86	5. 31	5. 09
Sulfur.-	19, 810,565	20, 812,369	20, 455, 232	21.48	17.70	17. 33
Vat, total	32, 429,018	34, 557, 262	33, 406, 528			
(a) Indigo	27, 111, 575	$17.848,853$	17, 790, 949	29. 40	15.18	15. 07
(b) Other	5, 317, +43	16, 708, 409	$15,615,579$	5. 77	14.21	13.23
Unclassified.-	521.625	910,747	1,236, 819	. 56	. 77	1.05
Total.	92, 207,281	$117,572,823$	118,046, 127	100.00	100.00	100.00
	Sales					
	Value			Percent of total		
Acetate silk			\$2, 314, 350		3.88	3. 58
Acid.-	\$3,651, 526	11,933, 721	11, 461, 325	21. 94	15. 74	17. 74
Azoic	(2)	(2)	${ }^{3} 4,165,537$			6. 45
Basic.	3,977, 258	4,905,755	5, 059, 983	10.09	7.70	7.83
Direct.-	9,076, 783	4 17,497, 791	15, 138,355	23.02	27.48	23.43
Lake and spirit-soluble	1,681,736	1,714,916	1, 853, 690	4. 27	2. 69	2.87
Mordant and chrome.	2, 212, 390	3, 116, 262	2,880,527	5.61	4.89	4. 46
Sulfur	3, 928, 982	4,635, 256	4,609, 158	9.96	7.28	7.13
Vat, total	9, 114,973	16,611, 226	16, 075, 211			
(a) Indigo	3, 741,314	?.889, 105	2, 965, 248	9.49	4.54	4.59 20.29
Unclassified	$5,373,659$	$13,722,421$	$13,109,963$	13.63 1.99	21.55 1.25	20.29 1.63
Unclassified	754,604	797,034	1,051,775	1.99	1.25	1.63
Total	$39,428,252$	$63,685,557$	$64,612,914$	100.00	100.00	100.00

[^4]
COLOR LAKES AND TONERS

The 50 domestic makers of color lakes and toners report an output of $18,041,000$ pounds，with sales of $15,263,000$ pounds，valued at $\$ 11,812,000$ ，or an average of 77 cents per poumd．This activity is an increase of 17.5 percent in production， 12 percent in sales quantity， and 16 percent in sales value over the preceding year．

Toners or full strength colors are the most important class of this group，followed by lakes and extended colors，and by reduced toners．

Table 10 shows production and sales of color lakes and toners in 1937.

Table 10．－Color lakes and toners：Lnited States production and sales， 1937
［The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p． 5 ．An \mathcal{X} signifies that the manufaturer didnot consent to the prblieation of his identification num－ ber with the designated product．Iblanks in the thirl，fourth，and fifth eolumns indieate that the sta－ tisties of produclion or sales cannot be mblished without revealing information with regard to individual firms．The figures thus concealed are，however，ineludet in the total］

Name of nroduct	Manufacturers＇identification num－ bers（according to list on p．51）	$\begin{aligned} & \text { Proluc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
LaEES and extended COLORS					
Alizarin	$12,64,97,123,126,138,142,157,176$ ， $159,217,218,234$, N，X，X，X，X， ス，ス，ス． $2,12.29,64,104,126,138,142,176$ ， 218，X，X，X． 44，73， $97,123,138,217,218,234, \mathrm{X}$	Pounds 144， 602	Pounds 125， 976	\＄154， 900	\＄1． 23
Azo Bordeaux．		367，615	327， 443	89，912	． 27
Black		78，573	66，357	34，790	． 52
Blue．	$12,29,44,64,73,97,104,119,123$ ， $138,157,208,217,218,231, \mathbf{x}, \mathbf{x}$ ，	295， 723	160， 994	86， 870	． 54
Brown	138，217，215，231，234，ス	41， 030	（1）	（1）	
Eosine and phloxine	$\begin{aligned} & 29,36,4,64, \\ & 138,199,208,217,97,115, \pm, \pm, 126, \\ & X, X . \end{aligned}$	140，040	129，922	110，112	． 85
Fast light yellow．	$12, \overline{X T}, \mathrm{X} .104,123,138,208,218, ~ \grave{2}, \mathrm{X},$	162， 606	53， 309	39， 660	． 74
Green．	$12,29,44,64,73,77,97,104,123,126$ ， $138,157,208,217,218, x, x, x$ ， x, x x, x, x स，	333， 246	221，440	112， 253	． 51
Helio fast rubine．．－．－．．．．－－	$12,29064104,123,138,208, \text { Х, X. }$	48，657	26，586	44，412	1.67
Lithol rubine and maroon．－	$\begin{aligned} & 12,29,36,44,64,73,7,97,104,119, \\ & 123,126,112,157,197,199,208, \\ & 21 \tau, 218,231, \mathrm{X}, \mathrm{X}, \mathrm{X}, 土, X, \end{aligned}$	911， 003	911，361	238，910	． 26
Mcthyl violet ．－．－．－．－．－．－．－－	$12,29,44,64,66,77,97,104,123,126$ ， 138，199，208，218，234，Х，ג，ג， X，X．	155， 498	148，271	77，359	． 52
Naphithol yellow．	12，73，77．123，218，234，X，X，X．．．	30，783	30， 805	21，708	． 70
Orange．．．．．．－－．－．－．－．．．．．．．．．．．．．．．．	$\begin{array}{r} 29,36,44, \\ 138,217,218,231, \times, \times, \pm, ~ X, \end{array}$	221，157	135， 409	38，147	． 28
Peacock blue．	$12,29,36,44,64,73,77,102,104,123$ ， $126,138,199,208,217,218,234, \mathrm{X}$, ス，X，ス，X，x，X．	1，562，411	1，214，120	675， 796	． 58
Persian orange．．．．．．．．－．．．－－－	$\begin{aligned} & 12,36,64,73, \\ & 199,208,218, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \\ & \mathrm{X}, \mathrm{X}, \mathrm{X} . \end{aligned}$	500， 594	335， 487	134， 856	． 40
Phosphomolybdic acid lakes，total．		86，159	63， 122	51，227	． 81
Hlue ．	12，36，77，104，208，X，X．				
Brown	X $-\cdots \cdots$				
	12，77，157，X				
Red．	12， 157 ， X				

：Included in all other．

Table 10.-Color lakes and toners: United States production and sales, 1937-Con.

Table 10.-Color lakes and toners: United States production and sales, 1937—Con.

MEDICINALS

Synthetic medicinals were produced in increased quantity in 1937. The 47 makers of coal-tar medicinals produced $14,800,000$ pounds, with sales of $11,989,000$ pounds, valued at $\$ 11,496,000$. Aspirin sales increased 25 percent to a peak of $5,144,000$ pounds. Sulfanilamide, a minor item in 1936, showed sales of 267,000 pounds, valued at $\$ 1,322,-$ 000 in 1937, the average value being $\$ 4.95$ per pound. Mandelic acid and salts increased more than 200 percent in output. Among the outstanding changes were sharp decreases in the prices of the arsphenamines and the several medicinal dyes.

Production of non-coal-tar synthetic medicinals, by 37 makers, totaled $1,814,000$ pounds, with sales of $1,442,000$ pounds, ralued at $\$ 2,408,000$, or an average of $\$ 1.67$ per pound. Amino acetic acid, a relatively new product in this group, inereased more than 100 percent in production, 90 percent in sales quantity, and 100 percent in sales value over 1936. Average sales price was $\$ 1.86$ per pound, as compared with $\$ 4.89$ per pound in 1933. Further decline in the production and sales of certain barbituric acid derivatives is noted.

Table 11 shows production and sales of synthetic medicinals in 1937.

Table 11.-Synthetic medicinals: United States production and sales, 1937
[The numbers in the sccond column refer to the numbered alphabetical list of manufacturers printed on p. 54. An X significs that the mannfacturer did not consent to the publication of his identification num. ber with the designated product. Blan ks in the third, fonrth, and fifth columins indicate that the statistics of production or sales cannot be published withont revealing information in regard to individual firms. The figures thus concealed, however, are included in the totalj

Table 11.-Synthetic medicinals: United States production and sales, 1937-Con.

Name of medicinal	Manufacturers' ideutification numbers (according to list on p. 54)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR-continued		Pounds	Pounds		
3:4-Dimethoxy phenylpropionic acid.	K				
e-Dimethylamino antipyrine (Aminopyrine).	145, X				
	6.1				
Dioxy anthranol (Anthralin) Diphenylune thyl pyrozolonyl					
Disodiumhydrorymercurisalicyloxy acetate (Mercurosol).					
Dyes, medicinal, total.		40, 104	38,089	\$759, 299	\$19.93
Brilliant green					
3:6-Diamino acrifine sulfate (Proflavine).	148				
3:6-Diaminn-10-methyl acridine chloride (Acriflavine).	I, 148.				
Dibromohydroxymercurifluorescein sodium salt (Mercurochrome).	107				
Gentian violet.	148				
Hexalet--					
Aethyl violet	148				
Phenolsulfonpht	107.				
Scarlet red					
Stovarsol and salt Sulfosalicylic acid	X				
Sulfosalicylic ac Tryparsamide.	70.				
Tryparsamide --.					
Ethyl-p-amino benzoate (Benzocaine) (Anesthesine).	1, $84,143,160,192$,	15, 149	12, 444	44, 054	3.54
Ethylenediamine mandelate					
Gamma - diethylaminopropylcinnamate hydrochloride (Apothesine).					
Guaiacol (liquid) Hexylresorcinol	101,				
8-Hydroxyquinoline (Oxyquinoline base)-	X,				
8-Hydroxyquinoline-5-sulfonic acid.					
o-Iodohenzoic acid.	70.				
0-Iodusobenzoic acid					
Iodoryquinoline sulfonic acid (Yatren acid!).	\bar{X}, \bar{X}				
Laero-methylaminoethanol catechol (Epinephrinis).					
Lithium salicylate -					
Magnesium salicylate Mandelic acid and sal	62, 101, 136		5,487	5,482	1. 00
Mandelic acid and Menthyl salicurat	1. $84,136.143,15$	148, 408	121,932	212, 210	1.99
2-Methoxy-6-chloro-9-diethylaminopentyl amino-acridine.					
Methyl-m-amino-p-hydroxy benzoate (Orthofom).					
Methylene-citrylsalicylic acid (Novaspirin).					
Methylene disalicylic acid derivative (Formidine).					
p-Methylphenyl cinchoninic ethyl ester (Neocinchophen).	1, 3f, X.				
Monn n-amylaminoethyl p-aminobenzoate (Amylcaine).	160				
Monoisobitylaminoethyl p-aminohenzoate (Monocaine).	160.				
Neoarsphenamine.	1, 60, 136, 143, X, X .	8. 797	8,238	1,053,991	131.58
Neo-silver arsphenamine--					
Reo-synephrin hydrochlorid Oxyquineline benzoate.....	X				
Oryquinoline citrate	x,				
Oxyquinoline sulfate					
Oxymuinoline taunate					
Phennharhital (see Barbituric acid derivatives).					
Plomolphthalein --.--..--.-.---------	145, X, X	460, 400			
Phenelsulfonates (calcium, sodium, zinc, etc.).	136, $\overline{\text { K }}$				
Phenylazo-diamino pyridine hydrochloride (Pyridium).	182				

Table 11.-Synthetic medicinals: United Slates production and sales, 1997-Con.

Name of medicinal	Manufacturers' identification numbers (according to list on P. 54)	Produc- tion	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR-continued		Pounds	Pounds		
Phenylethylmethyl urea sodiun	X				
Phenyl isocy anate.	70				
b-Phenylisopropld amine and s	X				
Phenyl mercuric acetate	71,96				
Phenyl mercuric benzoate	96.				
Phenyl mercuric chloride	96				
Phenyl mercuric hydroxid	71,96				
Phenyl mercuric nitrate.	71, 96				
Phenylmethylisopropyl antipyrine (Isopropyl antipyrine).					
Phenyl-propanolamine hydrochloride (Propadrin hydrohtoride).	193.				
2-Phenylquinotine-4-carboxylic acid and salts (Cinchophen) (Phenyl cinchoninic acid).	34, X				
Potassinm oxyuninoline sulfate...-------	λ				
Pronyl ${ }^{\text {p-aminohenzoate. }}$	X				
Pyramidon and trichloroethyl alcohol urethane compounds.					
Resorcinol.-.-.-.-.-.-.-.-.-	64, 168				
Resorcinol monoaceta	70, 143, 192.				
Salicylic acid	62, 101, 145, X	$4,402,589$	2,283, 420	\$610,549	\$0.27
Salol.	62				
Silver arsphenami	1, 入				
sodinm o-iodohipmurate	136				
Sodium met hylene sulfonamino-hydroayphenyl arsonate.					
Sorlium salictate	$62,101,145$				
Sodium p-toluene sulfochloramide (Chloramine T).	145------.				
Strontium salicylate	62, 101, 136				
Succinic peroxide					
Sulfanilamide. (See p-Aminobenzosulfonamide.)					
Sulfoarsphenamine.	1, fi0, 13', $143, \mathrm{X}, \mathrm{X}$.	325	291	49,323	169. 49
Tetrabromo-o-cresol	191 - --				
Tetraiodophenolphthalein sodium salt (Iodeikon) (Antinosin).	$\frac{7}{\mathrm{X}}, 136,143,148, \mathrm{X}$	5, 997	4,940	73,018	14.78
Theobromine ard sothum salicylate	$136,143,153$				
Theophylline calcium salicylat	X				
Theophylline sobium salicylate	X				
Thymol p-aminohenzoate	160				
p-Toluene sulfurichloramide (Dichloramine T).	145				
Zinc sulfanilate.---------....	X				
All other medicinals of coal-tar origin Total coal-tar medicinals: Thase for which individual statistics are shown. Those for which individual statistics cannot be shown.	1,				
		11,573, 296	8,951,456	7, 180, \$56	80
		3, 226,525	$3,007,873$	1,315, 189	1. 43
Grand total		14, 799, \$21	11,959,359	1, 49n, 045	96
(B) NON-COAL-TAR					
Acetannin (Tannigen) (Tannyl acetate) .-	S				
Adenice culf te ---...-.					
A minoacetic acis (6lycocol) (tlycine)	f, 62, 64, 169, 209, $\mathrm{X}_{\text {. }}$	116,344	105,405	195, 879	1.86
Amyl nitrite (Isuamyl nitrite)	70, 13, 5				
Ascorhic acid.	X. X				
Barbiturie acid derivatives, total		119, $83{ }^{\circ}$	67,814	419.457	6.18
Allyl isomopyl acetyi carbamide	103				
Alylisomopytharbituricacikandsulta-	103				
Butyl ethyl harbituric acirl aut salts .	1				
Calcium isopropyl ethyl bartiturie aciri and salts.					
Cyclohereny] ethyl barbituric acid anci salts.					
Diallylbarbituric acid and salts.	X				
Dibromobarbituric acid and salts (Dibromin).					
Diethylbarbituric acid and salts (Bar-	1, $81,103, \mathrm{X} \ldots \ldots$				
bital).					
Diethyl ester of monoethyl-ethyl mannic acid.	X				

Table 11.-Synthetic medicinals: United Statcs production and sales, 1937-Con.

FLAVORS AND PERFUME MATERIALS

These important synthetics were produced in increased quantity and variety in 1937. Production of those of coal-tar origin amounted to $4,356,000$ pounds, or 25 percent more than in 1936. The 28 makers report sales of $3,907,000$ pounds, valued at $\$ 3,983,000$, or 14 percent more by quantity and 24 percent more by value than in the preceding year. Among the outstanding features of this group in the past year are a 36 percent increase in sales of coumarin, and a 26 percent increase in sales quantity and 33 percent in sales value of vanillin. It should be noted that ranillin from whatever source is included under coal-tar flavors.

Synthetic flavors and perfume materials not of coal-tar origin were produced by 27 makers in 1937, and the output totaled $1,803,000$ pounds, or 51 percent increase over 1936. Sales were 1,560,000 pounds, ralued at $\$ 1,024,000$, or 35 percent more by quantity and 19 percent more by value than in the preceding year. Unusual increases are noted for geraniol, methyl ionone, and terpineol. Sales of geraniol inereased 60 percent by quantity and 37 percent by value, while sales of methyl ionone increased 63 percent and of terpineol more than 50 percent in both quantity and value.

Table 12 shows production and sales of synthetic flavors and perfume materials in 1937.

Table 12.-Synthetic flavors and perfume materials: UTnited States production and sales, 1937
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 54. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the total)

Table 12.-Synthetic flavors and perfume materials: United States production and sales, 1933°-Continued

Name of flavor or perfume material
(A) COAL-TAR-continued

Cinnamyl acetate
Cinnamyl isobutyrate
Cinnamyl valerianate.
Coumarin_
p-Cresylaretate
p-Cresymethyl ether
p-Cresylphenyl acetate
Diethyl suecinato.
Dinethyb acetal of phenylacetaldehyde
Dmethyel anthranilate.
Dimethythenzyl earbinol
Dimethyl hydrofuinone.
Diphenylmethane
Diphenyl oxide.
Ethyl anthraniate
Ethy] lonzato.
Ethyl cinnamate
Ethylmethylphenyl glycidate.
Ethylphenyl acetate.
Ethyl salicytate
Ethyl vamilhn
Guaiacol aretate
D-Ilydroxy benzoic aeit ester (Aserto form).
Isoamytphenyl acetate
Isobutyl anthranilate.
Isobutyl indol.
Isobuty] henyt acetate.
Isobutyl salicylate..
Linalyd anthranikate
Menthyl benzoate.
Methyl acetophenone
Methyl anthranilate
Methyl benzoate
Methyt cimnamate
Methyl p-cresol
Methylnaphthyl ketone
Methylphenyl acetate.
Methytphenyl carbinol
Methylphenyl carbinyl acetate
Methyl salicylate
Musk amturette
Musk ketone
Musk xylol.
h-Naphthyl anthranilate
b-Naphthyl ethyl ether (Nerolin)
b-Naphthyl methyl ether (Yara yara)
Phenylacet acetal
Phenylaeetic acid
Phenylacetic auchyle
Phenylaceticestor.
Phenylacetic ketone
Phenylethyl acetate
Phenylethyl atcolioh
Phenylethyl butyrate
Phenylethyl formate
Phenslethyluhenyl acetate
Phenylethyl salicylate
Phenylethyl valerianate
Propyl cinnamate.
Saccharin
Satieylahlohyde
Tatylacente
Tolyn atehyde
Trichloromethyphenycarbinol acotate (Rosetonte)
Vanillitline
Vaniliin
'Total conl-tar flavors aud perfumbe materials:

Thase for which individuad statist ics are shown.
${ }^{\text {Tr }}$ These for whiel individual stalistics cannot be shown.
(irand tolal

Table 12.-Synthetic flavors and perfume materials: United States production and sales, 193\%-Continued

Table 12.-Synthetic flavors and perfume materials: United States production and sales, 1937-Continued

Name of flavor or perfume material	Manufacturers' identification numbers (according to list on p. 54)	Produc. tion	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Rhodinol formate.	75, X				
Rhodinyl acetate.	75, \mathbf{X}				
Santalyl acetate.	75				
Terpineol.	64, 99, X, X	781, 152	733, 070	\$147, 798	\$0. 20
Terpinolene .	64-----		13,070	117,	
Terpinyl acetate	64, 75, X, X				
Undecalactonc.-	75, X				
Vertiverol acetate.	75, X, X, X...........				
Total non-coal-tar flavors and perfume materials:					
Those for which individual statistics are shown.		1,427,575	1, 265, 733	733, 765	. 58
Those for which individual statistics cannot be shown.		375, 192	294, 736	290,670	. 99
Grand total.		1,802,767	1,560, 469	1,024,435	. 66

RESINS

Activity in the production of synthetic resins continues to increase with a record output exceeding 160 million pounds in 1937 , or 23 percent more than in 1936. Production of resins from coal tar exceeded 141 million pounds, of which tar acid resins were the most important, followed by the alkyd resins. Tar acid resin production increased 15 percent to $80,771,000$ pomds, while alkyd resin increased 30 percent to $61,254,000$ pounds. Cast phenolic resins show decreased production and sales compared with the preceding year.

Resins not of coal-tar origin increased 35 percent in output to $21,006,000$ pounds, with sales of $18,891,000$ pounds valued at $\$ 5,681,000$, or 28 percent in quantity and 58 percent in value as compared with 1936.

Table 13 shows production and sales of synthetic resins in 1937.
Table 13.-Synthetic resins: L'nited States production and sales, 1937
[The numbers in the second column refer to the numbered alphabetical list of nanufacturers printed on page 54. An X signifies that the manafacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published withont revealing information in regard to individual firms. 'The figures thus concealed, however, are included in the total)

Name of resin	Manufacturers' identification numbers (according to list on$\text { p. } 54)$	Production	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR					
Adipie acid.	88.	Pounds (1)	Pounds (1)		
Alkyd:					
Maleic anhydride_	$8,35,38,89,99,117,128,184$	2, 803,987	2, 154,988	\$418, 183	\$0. 19
I'hthalic anhydrirle	$\begin{aligned} & 8,19,24,31,38,64,88,117,134 \\ & 176,184,220, \mathrm{X}, \mathrm{X}, \mathrm{X}, \\ & \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X} \\ & \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}- \\ & \mathrm{X} . \end{aligned}$	58, 450, 032	32, 583, 307	$6,445,511$	20
Succinic ackd.		(1)	(1)		

t Not included in total.

Table 13.-Synthetic resins: United States production and sales, 1937-Contd.

Name of resin	Manufacturers' identification numbers (according to list onp. 54)	Production	Sales		
			Quantity	Value	Unit valne
(A) COAL-TAR-continued					
Coumarone and indene.	22, 150, X.	(1)	(1)		
Hydrocarbon.		(1)	(1)		
Styrol....-.	62, X	(1)	(1)		
Sulfonamides .-.------...-		(1)	${ }^{(1)}$		
Taracids: Cresol or cresylic acid	65, 88, 184, 213, X, X, X, X, X,	10, 701, 463	8, $\pm 66,610$	\$976, $5 \ddagger 9$	$\$ 0.12$
Phenol: Cast	S, X. 40,64, 76, 114, 122, 137, X........	5, 459.654	5. 335,746	2, 180, 620	. 41
Other	$8,24,35,49,53,65,19,89,128,$	47, 898, 203	45, 750,767	6, 812, 799	. 15
Phenols and cresols.-	$88,100,134,18 \pi, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X},$	14, 086, 283	13, 277, 663	$3,464,791$. 26
X ylenols	$88, \dot{X}, \mathrm{X}, \mathrm{X}$	651,979	654, 318	122, 137	. 19
X ylenols and cresols	18, 88, X, X	1,972,940	977,940	161,566	. 17
Total coal-tar resins		142,024,541	109,201,349	20, 582, 156	. 19
(B) NON-COAL-TAR					
A balyn-hydrogen-nitrogen.	99				
Abietic acid.-...	99, X				
Acrylic acid esters	64, X, x				
Ketone....					
Petroleum.					
Terpenes...					
Urea and thiourea	ㄹ, 64, 184, X, X, X, X, X, X....				
Vinyl acetate and chloride	3-, 64, 76,91				
Wood rosin-methyl alcohol					
Total non-coal-tar resin		21, 005, 869	18, 591, 277	5,680,600	. 30

RUBBER CHENICALS

Synthetic rubber chemicals were produced in somewhat smaller quantities in 1937. The 10 makers report production of 29,202,000 pounds of coal-tar rubber chemicals, of which $15,166,000$ pounds were arcelerators and $14,036,000$ pounds antioxidants.

Statisties of production and sales of non-coal-tar rubber ehemicals are not publishable since the figures would reveal the activity of individual firms.

Table 14 shows production and sales of synthetic rubber chemicals in 1937.

Table 14.-Synthetic rubber chemicals: United States production and salcs, 1937
[The numbers in the second eolumn refer to the numbered alphabetical list of manufacturers printed on p. 54. An X siqnifies that the manufacturer did not consent to the publication of his identification number with the designatel product. Blanks in the third, fourth, and fifth columns indieate that the statisties of production or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the totall

Name of chemical	Manufacturers' identifieation numbers (according to list on p. 54)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR		Pounds	Pounds	\$4,503, 236	\$0. 42
Aldehyde-amines:					
Acetaldehyde aniline-- Butyraldehyde anilive					
Crotilidine aniline...-					
Ethyl h-propylacryl aniline					
Heptaldehyde aniline....-.-.-.....--	X				
Methylene aniline (anhydroformaldehyde aniline).	64,145				
Other:					
Aminobenzothiazole thiobenzoate					
Benzothiaz 1 disulfide....-	X				
Benzothiazyl-ethyl-thio carbonate.	X				
Carhon disulfide on methylene dipiperidine.	14				
p-p ${ }^{\text {P Diaminodiphenylmethane }}$	X				
Dibenzothiazyl-dimethylthiol-urea-.........-					
Dibenzothiazyl-dimethyithiol-urea, diphenylguanilline phthalate and anlydroformaldehyde aniline.					
Dibenyylamine ---7....-.-.-.-.-......--					
Dimethylethylenediphenyldithiocarbamate lead salt.					
Dinitrophenylbenzothiazyl sulfide plus diphenylguanidine acetate.	145, X.				
Dinitrophenyldimethyldithiocarbamate....-	X				
Dinitrophenyl ester of mercaptobenzothiazole					
Diphenylearbamyldimethyldithiocarbamate. Diphenylquanitine	8, $62, \ldots 4,145$	1, 562,029	1,267, 226	416, 205	33
Diphenylguanidine acetate					
Diphenylquanicline phthalate	145				
Diphenylguaniline and dinitrophenyl ester of mercaptotenzothiazole.	145				
Diphenylguanidine plithalate, diphenylguaniline and dinitrophenyl ester of mercaptobenzothiazole.	145.....----				
Di-o-tolylguanidine.	64, X				
Di-o-tolyithiourea.	64				
Hexametlylenetetramine ester of mercap:tobenzothiazole.	145				
Mereaptobenzothiazole..	145, X, X.				
Mercaptohenzothiazole on benzyl ehloride addition of hexamethylenetetramine.					
Mercaptohenzothiazole methylene aniline-.--	X				
Mereaptobenzothiazole methylene-o-toluidine.					
Mercaptobenzothiazole potassium salt	64				
Mercaptobenzothiazole sodium salt	145				
Mercaptobenzothiazole zinc salt	$64,145, \mathrm{X}$				
Methylene dianilide	64				
Methylene dipiperidine.	115				
Methylue mercaptobenzothiazole	I				
Methylene p -toluidine (anhydroformaldehyde p-toluidine).					
Piperidine penta methylene dithiocarbanate and potassium salt.					
Thincarbanilide- .-------------------------	64, 145, 148	371,256	207,565	47, 820	2
Triphenylguanidine	64,14				
Other accelerators					
Antioxirlants, total.		14,036, 042	10, 126, 462	3, 690.654	
Acetaldeliyde aniline	X				
1-1minotiphenyl acetone compoun	145.				
A niline-acetone -.-. ${ }^{\text {a }}$ a	145				
Aniline-acetone, acid derivatives Aniline-b-naphthol..--...---	145				
Aniline-b-naphthol					

Table 14.-Synthetic rubber chemicals: United States production and sales, 1937Continted

${ }^{1}$ Not publishable. Included in "Miscellaneous" synthetic chemicals of non-coal-tar origin.

MISCELLANEOUS CHEMICALS

Miscellaneous coal-tar chemicals were produced by 43 makers, and those not of coal-tar origin by 89 makers, in 1937. Table 15 shows production and sales.

Coal-tar products included herein are unrelated commodities and minor products not properly classified under any of the other groups. Statistics of production and sales for these miscellaneous groups are not comparable with those for earlier years because of the inclusion of products heretofore classified elsewhere or the transfer of subgroups to other elassifications. Diazo salts and naphthol AS derivatives formerly elassified here are combined with the azoic dyes under unclasfied dyes in this report.

Many increases in quantity occurred in the products of the group not of coal-tar origin. The record output of $2,505,027,000$ pounds was 24 percent more than in 1936. Sales totaled $1,146,255,000$ pounds valued at $\$ 110,306,000$. Production of acetic anhydride increased 30 percent and the increase in output of synthetic acetic acid was even greater. Acetone increased 31 percent, the butyl alcohols 65 percent, and carbon tetrachloride 23 percent in 1937 over 1936. Ethyl acetate production declined about 5 percent and isopropyl alcohol about 6 percent.

Table 15.-Miscellaneous synthelic chemieals: United States production and sales, 1937

[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 54. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be pubtished without revealing information in regard to indivldual firms. The figures thus concealed are, however, iucluded in the total]

Name of chemical	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR ${ }^{1}$		Pounds	Pounds		
Amino djethyl hydroquinone.	X				
Benzoate of ammonia Benzoate of soda	105, 145				
Benzoyl peroxide					
Benzylated phenol (Santopheus)	145				
Biological stains and chemical indicators.	125, 148, 211, X				
Butyl eatechol.-					
Cresophan	${ }_{6}$				
Oyclohexane-	64				
Cyclohexanone	64				
Decahydronaphthalene (Decalin)	64				
Diamyl hydroquinone	70, 145				
	71				
Ethylene glycol monophenyl ether...-					
Gases (poisonous, tear, etc.): Chloroacetophenone					
Chloropicrin ------	74, X				
Diphenylamine chlorarsine	74, 168				
Hexalin (Cyclohexanol)-	64,105				
Insecticides (synthetuc): Aliphatic thiocyanates.					
Methyl cyclohexanone-..........-...--	64				
Methyl hexatin (Methyl cyclohexanol)	64,105				
Naphthanil red for printing--..--....--	64				
o-Phenyl mercaptobenzothiazole	$\stackrel{64}{ }$				
Phloroglucinol .-	7 I				

Table 15.-Miscellaneous synthetic chemicals: United States production and sales, 1937-Continued

Table 15.-Miscellaneous synthetic chemicals: United States production and sales 193\%-Continued

Table 15.-Miscellaneous synthetic chemicals: United States production and sales 1937-Continued

Name of chemical	Manufacturers' ident fication numbers (according to list on p. 54)	Production	Sales		
			Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
(B) NON-COAL-TAR-continued	$\begin{aligned} & 54,64,120 . \\ & 209 \end{aligned}$	Pounds$22,058$	Pounds		
Dibutyl tartrate					
Dicapryl alcohol...					
Dicapryl sebacate.....--					
Dichloroethyl ether...	121				
Dichloroethylene	$64 .$				
Dichloroisopropyl ether					
Dichloromonotluoromethane					
Dichlorotetrafluoroethanc					
Dicyandiamid.-					
Diethanolamine-	$\begin{aligned} & \mathrm{X} \\ & 37 \end{aligned}$				
Diethyl acetic acid					
Diethyl oxalate					
Diethyl sulfate	${ }^{1}$				
Diethylaminoethan					
Diethylene glycol.					
Diethylene glycol diethyl ether Diethylene glycol dipropionate					
Diethylene glycol monobutyl ether					
Diethylene glycol monobutyl ether acetate.	37 37				
Diethylene glycol monoethyl ether--.--					
Diethylene glycol monoethyl ether acetate.	37				
Diethylene glycol monomethyl ether...					
Dietlyylene oxide (Dioxan)					
Diglycol oleate.					
Diisobutylene.					
Diisobutyl ketone					
Dimethyl ether-					
Dimethylglyoxime	6, 70, 169, 158				
Dimethyl sulfate					
Epichlorohydria					
Erucic acid.-.--.-....-.					
Ethyl acetate (85 percent)	37, 54, 64, 79, 81 , $145,180,219$.	69, 637, 571	44, 339, 330	\$2, 910, 222	\$0. 07
Ethyl acetnacetate-...-.	37, $219 . .$.				
Ethyl alcohol (synthetic)					
Ethyl bromide....	1, 62 62				
Ethyl bromo acetate					
Ethyl butyraldeliyde					
Ethyl chloride (tech. and USP)	62, 6				
Ethyl chlorocarbonate.-	219.				
Ethyl ether (tech., USP and absolute.)	$\begin{aligned} & 37,64,136,143, \mathrm{X} \\ & 54,7,81,136,159 \\ & 219, \mathrm{X}, \mathrm{X} . \end{aligned}$				
Ethyl formate...-.-					
a-Ethyl hexanal.					
a-Ethyl hexanol.					
Ethyl hevoic acid					
a-Ethylhexyl acetate					
Ethyl lactate.					
Ethyl mercaptan					
Ethyl monochloro aceta	62, 75				
Ethyl oxalate	81, 219..				
Ethyl propionate	75, 81, 219, X, X				
Ethyl silicate.					
Ethylene chlorohydrin.					
Ethylenediamine (medicinal and tech.)	28.37				
Ethylenediaminodiacetic acid.	171				
Ethylene dibromide.	62, 72, 229.				
Ethylene dichloride	37, 62 -				
Ethylene glycol	37, 62				
Ethylene glycol diacetate	37				
Ethylene glycol diethyl ether-					
Ethylene glycol monobutyl ether-....-	37				
Ethylene glycol monobutyl ether stearate (Butoxy ethyl stearate).	161.				
Ethylene glycol monoethyl ether.					
Ethylene glycol monocthyl ether	37, 81				

Table 15.-Miscellaneous synthetic chemicals: United States production and sales 1937-Continued

Name of chemical	Manufacturers' identification numbers (according to list on p. 54)	Production	Sales		
			Quantity	Value	Unit valu
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Ethylene glycol monomethyl ether-.--	37				
Ethylene glycol monomethyl ether acetate.					
Ethylene glycol monomethyl ether oleate (Methoxy ethyl oleate).	161.				
Ethylene oxide .-......-.-.......-------					
Ethylidin diacetate					
Fatty acids (synthetic) .-.-......-					
Fatty alcohols (containing more than 8 carbon atoms).					
Fenchone.	151				
Formaldehyde (10 percent)	46, 64, 101				
Formamide--.-.....--	$\begin{aligned} & 64-\cdots-\cdots \\ & 64,225 \end{aligned}$				
Furfural-	183.				
Furfural derivatives: Furfury alcohol	183, X				
Furoic acid.	183				
Hydrofuramide	183				
Tetrahydrofurfuryl alcoh	183, X	263, 756			
Glyceryl monomyristate					
Glyceryl monostearate.	51,				
Glyceryl oleate.-					
Alyceryl tripropionat	70				
Glycol bori-borate	X				
Glycol stearate.	51, X				
IJeptadecanol	37				
Heptane---	37				
Heptoic acid					
Hexachloroethane	fi2, 93				
Hexaldehyde.					
I lexamethylenetetramine,	64,101,				
Hexyl acetate (sec.)					
Hexyl alcohol (n and sec)	37, 64, X				
Higher acetates (above hexyl).					
Higher alcohols (containing more than 5 carbon atoms.	64,				
Hydroxylamine hydrochloride..---.-.	188, X				
Hydroxylamine sulfate.					
Insecticides.-					
Isobutyl propionate	64				
Isobutyr aldehyde.	64				
Isobutyric acid					
Isopropyl acetate	37, 219, X				
Isopropyl alcohol (Isopropanol)	37, 196, 219, X	131, 462,298			
Isopropyl chloride	105.				
Isopropyl ether--	37, 196,	3,978, 267			
Ketones, mixed Lactic acid:					
Lactic acid: Edible (100 percent)	9, 14, 48, 64, 195	927,329	883, 961	\$195, 855	\$0. 22
Medicinal (100 percent)	14, 64-........	327,32	883,	10e, 865	
Technical (100 percent)	9, 14, 48, 64, 195				
Levnlinic acid					
Malonic acid.-					
Mannitol	19				
Mesityloxide.	37, 54				
Methacrylic acid.					
Methanol (synthetic)	37, 46, 54, 64		125, 313, 631	4,827,626	04
Methyl acetate	154				
Methyl acetoacetate	37.				
Methyl bromide..	62, 93				
Methyl chloride (Chloromethane) (100 percent).	$64,175,226, \mathrm{X}$	3, 404, 079	3, 374,955	1,074, 665	. 32
Methyl dichlorostearate.	X				
Methyl formate	54, 64, X				
Methyl isobutyl carbinol.	37.				
Methyl isobuty] carbinol acetate.					
Methyl isobutyl ketone.	37				
Methyl lactate.-	54				
Methyl methacrylate					
Methyl propyl ketone.	196, X				
Methyl stearate.	105				
Methyl succinate	X				
Methylamyl ketone.					
1-Methylbutyl bromi					
Methylbutyl ketone.	X				

Table 15.-Miscellaneous synthetic chemicals: Unitcd States production and sales 193~-Continued

Name of chemical	```Manufacturers' identificatiou numbers (according to list on p.54)```	Production	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Methylene chloride (Dichloromethane)	25, 62, 64, 93				
	37, 196, X...				
Monoethanolamine. Morpholine					
Oxalic acid.-	87, 163, 225,	10, 247, 541	9, 605,180	\$1,030, 137	\$0.11
Paracetaldehyd	154.				
Paraformaldehyd	64, 101				
Pelargonic acid.					
Pentachloroethane					
Pentaerythritol.	154				
Perchloroethylene					
Phorone-					
Polyethylcneamines					
Polyglycerol.-	145				
Polyglycerol-abietic acid compound	145				
Propionic acid.	64, 70				
Propionic anhydride	37, 70				
Propionyl chloride	105				
n-Propyl acetate					
n-Propyl alcohol (Propanol)					
Propylene chlorohydrin	37				
Propylene diamine					
Propylene dichlori	37, 62				
Propylene glycol	37, 64				
Propylene oxide					
Pyrogallic acid (Pyrogallol)	70, 136, 234	115, 027	99, 812	118,614	1. 19
Research chemicals	70, 154, X				
Rubber, synthetic	${ }^{64,} \mathbf{}$				
Sodium formate	6.4, 136, 225, X				
Sodium lactate	195.				
Sodium oxal acetate	219				
Sodium oxalate.	87, 136, 225				
Sorbitol					
Sucrose octa acetate	154				
Sulfated fatty alcohols, acids, etc. (Gardinols, Igepons, Intramines).	37, 64, 86, X, X, X				
Sulfoacetic acid...					
Sulfonated thiocarhanilide acetaldehyde ammonia compound.					
Tetrabromoethane (Acetylene tetrabromide).					
Tetrachloroethane (Acetylene tetrachloride).	64, 229				
Tetrachloroethylene-.---.-.-...-					
Tetradecanol...	37				
Tetraethyl lead.					
Tetraethylene glycol dimethy ether-					
Tributyl phosphate					
Tributyl phosphite.					
Trichloroethane.-					
Trichloroethylene	64, 229				
Trichloromonofluoromethane					
Triethanolamine.					
Triethyl citrate					
Triethyl phosphate	54, 145				
Triethylene glycol					
Triethylene elycol dihexoate					
Triethylenetetramine	25				
Trisobutylene	196, X				
Trimethylene bromi					
Urea (solid).	64				
Urea in urea-ammonia solution					
Vanillin. (See table 12.)					
Vinyl acetate-.--					
Waxes (synthetic)					
Kanthates. (See table 14.) Other products.					
	64, 211, X, X.				
Total miscellaneous non-coal-tar chemicals:					
Those for which individual		952, 067, 910	443, 656, 368	27, 108, 608	. 06
statistics are shown. Those for which individual					. 12
statistics cannot be shown.		1,552,959,104	102, 590,029	83, 197, 810	. 12
Grand total ${ }^{1}$.		2,505,027,014	1,146,255,397	110, 306, 424	. 10

1 Includes non-coal-tar rubber chemicals.

APPENDIX

Dircctory of manufacturers of dyes and other synthetic organic chemicals, 1937

No.	Name of company
1	Abthott Laboratories
2	Aliston Lucas Paint Co
3	Althonse Chemical Co
4	Aluminnm Industries, Ine
5	Amalgamated Dyestuff \& Chemical Works, Inc.
6	Ameceo Chemicals, Inc.-.-.-.-.---.-.-. -
7	Anmerican Aniline Products, Inc
8	American Cyananid Co...
9	American Maize-Products Co
10	American Pharmaceutical Co., Inc
11	American Tar \& Chemical Co.
12	Ausbacher-Siegle Corporation.
13	Ansnl Chemical Co......
14	Aliex Chemical Co.,
15	Arco Co
16	Arnold, IIoffman \& C
17	Aromatic Products, Inc.
18	Artifex Products Co_
19	Atlas Powder Co.
20	Augusta Chemical Co
21	Bakelite Corjoration
22	Barrett Co.
23	Bates Chemical Co
24	Beck, Kolier \& Co.
25	Belle Alkali Co
26	Penzol Prorlucts Co
27	Berkheimer, J. F.., Manufacturing
28	Bersworth, F C., Laboratories.
29	Brooklyn Color Works, Inc.
30	Brown Con---......
31	Brown, Andrew, Co
32	Burroughs Welleome \& Co.,
33	Bush, W'. J.. \& Co., Ine
34	Caleo Chemical Co., Ine
35	Californit Flaxseed Products C
36	C'alifornia Ink Co., lne.
37	Carbide \& Carbon Chemicals Corporation.
38	Carbogeu Cheminal Co-.--.-.-.-.-------
39	Carus Chemical Co
40	Catalin Corporation of Ante
41	Cellutoid Corporation
42	Chemical Manufactnring C
43	Chemical sperialties, Inc
44	Childs Punp Colors, Inc.
45	Cincinnati Chemical Works, Ine
46	Cities Scrvice Oil C
47	Citro Chemical Co
48	Clinton Co.
49	Colissta Co., Ine
50	Coleman \& Bell Co
51	Colloid Chemical Laborat
52	Collway Colors, Inc
53	Colt's Patent Fire Arms Manufacturing Co.
54	Commercial Solvents Corporation...-..-.
55	Commonwealth Color \& Chemical Co.
56	Cooks Falls Dye Works, Inc..
57	C'oopers C'reek Chemical Co.
58	Crown Tar Works (division of Public Service (o. of Colorado).
59	Devoe \& Raynolds Co., Ine.
60	Diarsenol Co., Inc.-
61	Dorlge d Oleott Co.
62	Dow Chemical Co.
63	Jubin, H. F., Latoratories. Inc.
64	du Pont de Nemours, E. I. \& Co

Office address (location of plant given in parentheses if not in same city as office)

14th St. and Sheridan Rd., North Chicago, Ill.
1029 North Throop St., Chicago, Ill.
540 Pear St., Reading, Pa.
2438 Beekman St., Cincinnati, Ohio.
75 IIudson St., New York, N. Y. (Newark, N. J.).
75 Rockwood St., Rochester, N. Y.
50 Union Square, New York, N. Y. (Lock Haven, Pa.). 30 Rockefeller Plaza, New York, N. Y. (Bound Brook and Warners, N. J., Bridgeville, Pa.).
100 East 42d St., New York, N. Y. (Roby, Ind.). 525 West $43 d$ St., New York. N. Y.
5910 Fremont St., Dnluth, Minn.
92 Chest nut Ave., Rosebank, Staten Island, N. Y. Box 231, Marinette, Wis.
225 West 34th St., New York, N. Y. (Elizabethport, N. J.).

7301 Bessemer Ave., Clevelind, Ohio.
55 Canal St., Providence, R. I. (Dighton, Mass.).
Siringdale, Conn.
Delaware Ave., and Elm St., Camden, N. J.
Wilmington, Del. (Atlas Peint, Del., Stamford, Conn.). Box 660, Angusta, Ga.
247 Park A ve.. New York, N. Y. (Bloomfield and Bonnd Brook, N. J.).
40 Rector St., New York, N. Y. (Plants throughout the Uniterl States).
Scottdale Ril., Lansdowne, Pa.
601 :Woolward Meights Blvi, Detroit, Mich. (Ferndale, Miclı.).
Belle, IV. IVa.
237 South St.. Newark, N. J. (Piscataway, N. J.).
Kenton station, Portland, Oreg.
609 Waverly St., Framingham, Miass.
129-13 Cherry St., Brooklyn, N. Y.
404 Commercial St., Portiant, Me. (Berlin, N. H.).
5431 South Riverside Drive, Los Angeles, Calif.
9 Elst 41 st St., New York. N. Y. (Tuckahoe, N. Y.).
11 E ast 3sth St., New York, N. Y. (Linden, N. J.).
Boind Brook, N. J.
3135 East 26tli St., Los Angeles, Calif.
545 Sansome st., San Francisco, Calif. (Berkeley, Calif.).
30 East $42 d$ St., New York, N. Y. (South Charleston,
IV. Va., Niagara Falls, N. Y. (Whiting, Ind.).
south dre., Garwood, N. J.
1377 sth st., La Siblle, Ill.
Forts, N. J.
290 Ferry St., Newark, N. J.
Ashland, Mass.
16 East sth St., Holland, Mich.
43 Summit st., Brooklyn, N. Y.
I. O. Box 20, Evanston Station, Cincinnati, Ohio (Norwood and St. Bernart, Ohio).
Bartlesville. Okla. (Tallant, Okla.).
Maywood, N. J.
Clinton, lowa.
Mechanic St., Hoosic Falls, N. Y.
Main and Waverly A ves., Norwoorl, Ohio.
21 West St., New York, N. Y.
15 Market St., Paterson, N. J.
17 Van Dyke Ave., IIartford, Conn.
230 Park Ive., New York, N. Y. (Terre Mante, Ind., Peoria, Ill., Agnew, Calif.).
Nevins, Butler, and Baltic Sts., Brooklyn, N. Y.
Cooks Falls, N. Y.
River IdA., West Conshohocken, Pa.
900 15th St., Denver, Colo.
1 West 4 th St., New York, N. Y. (Louisville, Ky.). 7:3 Kingsley St., Buffalo, N. Y.
180 Varick St., New York, N. Y. (Bayonne, N. J.).
Midland, Mich.
250 East 43 d St., New York, N. Y.
Wimington, Del. (Carneys Point, New Brmnswick, Pertl Amboy, Arlington, and Newark, N. J., Carroltville, Wis., Belle, W. Va., Niagara Falls, N. Y., E] Monte, Calif.).

Directory of manufacturers of dyes and other synthetic organic chemicals, 193\%Continued

Name of company

Durite Plastics, Inc

I) ye Specialties Corporation

Dyestutfs \& Chemicals, Inc
Eakins, J. S., \& W. R., Inc.
Easteru Tar Products Corporation

Eastman Kodak Co.

Edwal Laboratories, Inc-
Ethyl-Dow Chemical Co
Federal Color Laboratories, Inc.
Federal Laboratories, Inc.
Felton Cbemical Co., Inc.
Fiberloid Corporation.
Fine Colors Co
Florasynth Laboratories, Inc
Ford Motor Co
Foster-I Ieaton C
Franco-American Chemical Works.
Fries Bros.
Fries, George G., \& Co., Inc.
Gane's Chemical Works, Inc. Gebauer Chemical Co
General Aniline Works, Inc
General Chemical Co
General Electric Co
General Paint Corporation
General Plastics, Inc
Goodrich, B. F., Co.
Goodyear Tire \& Fubber Co
Great Western Electro-Chemical Co
Guyan Color \& Chemical Works.
IIalowax Corporation.
IIamilton Laboratories, Inc
Itampden Color \& Chemical Co---.........
Harmon Color Works, Ine
Hercules Powder Co.
IIeresite \& Chemical Co.
Heyden Chemical Corporation
IIilton-Davis Chemical Co.
IIoffmann-LaRoche, Inc.-
Ifolland Aniline Dye Co
Hooker Electrochemical Co
Iluggins, James, \& Son-
\qquad
Hynson, Westcott \& Dunning, Inc
Imperial Paper \& Color Corporation
(Pigment Color Division).
Industrial 1)yestuff Co
Inland Tar Co
Jamieson, C. E., \& Co
Jasco, Inc
Jennison-Wright Co.
Joanite Corporation.
Johnson, Charles Eneur----....................
Joliet W'all Paper Mills
Jones-Dabney Co
Kay-Fries Chemicals, Inc.
Kentucky Color \& Chemical Co
Kessler Chemical Corporation
Kinetic Chemicals, Inc.
Knoedler, A., Co
Kohnstamm, H. \& Co., Inc
Koppers Co. (Tar \& Chemical Division)
LaMotte Chemical Products Co
Lavanburg, Fred L., Co., Inc.
Lehigh Briquetting Co
Lewis, John D., Inc
Lilly, Eli, \& Co
Lucidol Corporation
Lueders, George, \& Co.
Macher, Willian, \& Son
Magruder Color Co., Inc
Makatot Corporation
Mallard, A. E
Mallinckrodt Chemical Works

Office address (location of plant given in parentheses if not in same city as office)

5000 Summerdale Ave., Philadelphia, Pa.

3 Bennett St., Jersey City, N. J.
Ilth and Monroe Sts., St. Louis, Mo.
55 Berry St., Brooklyn, N. Y.
Lexington Bldg., Baltimore, Md. (Baltimore, Md.,
Norfolk, Va.).
343 State St., Rochester, N. Y. (Rochester, N. Y., Kingsport, Tenn.).
732 Federal St., Chicago, II.
Wilmington, N. C.
4633 Forest A ve., Norwood, Ohio.
18541 st St., Pittsburgh, Pa. (Tunnelton, Pa.).
599 Johnson Ave., Brooklyn, N. Y'.
W orcester St., Indian Orchard, Mass.
2t-29 McBride Are., Paterson, N. J.
1513-33 Olmstead A ve., New York, N. Y.
3674 Schaefer Rd., Dearborn, Mich.
833-39 Magnolia Ave., Elizabeth, N. J.
342 Madison Ave., New York, N. Y. (Carlstadt, N. J.). 92 Reade St.. New York. N. Y'. (Bloomfield, N. J.).
68 Beekman St., New York, N. Y. (Long Island City, N. Y.).

43 West 16th St., New York, N. Y. (Carlstadt, N. J.).
\&26 Hanna Bldg., Cleveland, Ohio.
435 Hudson St., New York, N. Y. (Rensselaer N. Y., Grasselli, N. J.).
40 Rector St., New York, N. Y. (Buffalo, N. Y.).
1 River Ra., Schenectady, N. Y. (Schenectady, N. Y.,
Pittsfield, Mass.).
3000 Sant Strings Rif., Tulsa, Okla.
Walck Rd., North Tonawanda, N. Y
500 South Main St., Akron, Ohio.
1144 East Market St., Akron, Ohio
9 Main st., San Francisco, Calif. (Pittsburg, Calif.).
P. O. Box 10s8, Ituntington, W. Sa.

247 Park Ace., New York, N. Y. (Wyandotte, Mich.).
Hamilton, Ohio.
161 Armory st., Springfield, Mass.
I. O. Box M5s, Paterson, N. J. (Haledon, N. J.).

Delaware Trust Bldg., Wilmington, Del.
822 south Ith St., Manitowoc, Wis.
50 Union Square, New York, N. Y. (Garfield and Perth Amboy, N. J.).
Langdon Farm Rd., Cincinnati, Ohio.
Nutley, N.J.
Holland, Mich.
60 East 42, St., New York, N. Y. (Niagara Falls, N. Y.). 239 Medford St., Malden, Mass.
1030 North Charles St., Baltimore, Md.
Glens Falls, N. Y'. (Queensbury, N. Y.).
Massasoit Are., East Providence, R. I.
38 south Dearborn St., Chicago, Ill. (Indiana IIarbor, Ind.).
1962-80 Trombly Ave., Detroit, Mich.
c/o Standard Oil Co., of La., Baton Rouge, La.
2463 Broadway, Toledo, Ohio.
1002 44th Drive, Long Island City, N. Y
10th St. at Lombard St., Philadelphia, Pa.
Logan A ve., Joliet, Ill.
1481 South 11th St., Louisville, Ky.
1s0 Marlison Ave., New York, N. Y. (West Haverstraw, N. Y..).

3 tth St. South of Bank St., Louisville, K y.
Delaware Ave and Mifflin St., Philadelphia, Pa
du Pont Bldg., Wilmington, Del. (Carney's Point, N. J.).
717 North Prince St., Lancaster, Pa.
87 Park Place, New York, N. Y. (Brooklyn, N. Y.)
Koppers Ildg., Pittsburgh, Pa. (Plants throughout the
United States).
McCormick Blitg., Baltimore, Md.
105 Bedford Ave., Brooklyn, N. Y.
Universal Bldg., Fargo, N. D. (Dickinson, N. D.).
68 Traverse St., Providence, R. I. (Mansfield, Mass.)
Indianapolis, Ind.
293 Larkin St., Buffalo, N. Y
427 Washington St., New York, N. Y. (Brooklyn, N. Y.).
1533 West Clearfield St., Philadelphia, Pa.
2385 Richmond Terrace, Staten Ishand, N. Y.
262 Washington St., Boston, Mass. (Waltham, Mass.).
3021 Wabash Ave., Detroit, Mich.
3600 North $2 d$ St., St. Louis, Mo.

Directory of manufacturers of dyes and other synthetic organic chemicals, 1937Continued

Marblette Corporation
Marx, Max, Color \& Chemical Co
Maschmeijer, A., Jr., Inc.
May, Otto B., Inc.
Maywood Chemical Works
Mepham, Gco. S., Corporation-
Merck \& Co., Inc.
Mineree Corporation
Monsanto Chemical Co

Moser, Chas., Co
Mutual Chemical Co. of America
National A niline \& Chemical Co
Naugatuck Chemical (division of United
States Rubber Products, Inc.).
Neville Co
Newport Industries, Inc.
New York Color \& Chenical Co., Inc. (division of American Dyewood Co.).
New York Quinine \& Chemical Works, Inc.
Niacet Chemicals Corporation.
Niagara Chlorine Products Corporation
Niagara Smelting Corporation.
Niagara Wall Paper Co_
Nord \& Schulich, Inc.-
Northwestern Chemical Co
Novocol Chemical Manufacturing Co. Inc
Ohio-A pex, Inc.-
Ohio Chemicals, Inc.
Oldbury Electro Chemical Co
Otganic Chemicals, Inc.
Patent Chemicals, Inc.

Peerless Color Co
Peunsylvania Coal Products Co................
Pfanstiehl Chemical Co.
Pfizer, Chas. Co_
Pharma Chemical Corporation
Philadelphia Gas Works Co-
Phoenix Color \& Chemical Co.
Pitman-Moore Co., Inc_
Pittsberg Chemical Co.
Pittshurgh Plate Glass Co
Plaskon Co.. Inc.
Portland Gas \& Coke Co
Ponghkeensie Dyestuff Corporation........
Publicker, Inc.
Pylam Products Co., Inc
Pyridium Corporation.
Quaker Oats Co
Rauh, Robert, Inc
Reilly Tar \& Chemical Corporation.

Republic Creosoting Co

Resinox Corporation
Rogers, Allen E., Laboratories, Ine
Ruberoid Co.
Salvo Chemical Corporation
Schering \& Glatz, Inc
Seydel Chemical Co.-
Sharp \& Dohme, Inc.
Sharples Solvents Corporation
Sheffield By-Products Co_
Shell Chemical Co.
Sherwin-Williams Co
Simons, Harold La., Inc
Sinclair \& Valentine Co
Smith, Kline Frnch - -----------------
Solvay Process Co.
Southern D yestuff Corporation
Squibh, E. R., \& Sons.
Standard Alcohol Co.

Office address (location of plant given in parentheses if not in same city as office)

37-21 30th St., Long Island City, N. Y.

192-4 Coit St., Irvington, N. J.
43 West 16 th St., New York, N. Y. (Newark, N. J.).
198-214 Niagara St., Newark, N. J.
100 West Iunter Ave., Maywood, N. J.
2001 Lynch A re., East St. Louis, Ill.
Rahway, N. J. (Rahway, N, J., Philadelphia. Pa.).
120 Broadway, New York, N. Y. (Baltimore, Md.).
1700 South $2 d$ St., St. Louis, Mo. (St. Louis, Mo., Mon-
santo, Ill., Everett, Mass., Anniston, Ala., Nitro, (1. Va.).

215-27 East 9th St., Cincinnati, Ohio.
270 Madison Ave., New York, N. ${ }^{+}$. (Jersey City, N. J.). 40 Rector St., New York, N. Y. (Buffalo, N. Y.).
1790 Broatway, New York. (Nangatuck, Conn.).
Neville Island, Pittsburgh, Pa.
P. O. Box 1612, Peusacola, Fla.

100 East 42 d st., New York, N. Y. (Belleville, N. J.).
99-117 North 11th St., Brooklyn, N. Y.
4700 Pine Ave, Niagara Falls, N. Y'
Mill St., Lockport, N. Y.
420 Lexington Ave., New York, N. Y. (Niagara Falls, N. Y.).

Walnut Ave. and 2d St., Niagara Falls, N. Y.
Foot of Blanchard St., Newark, N. J.
1263 North 70th St., Wauwatosa, Wis.
2923 Atlantic A ve., Brooklyn, N. Y.
Nitro, IV. Va.
475 Dorchester Rd., Akron, Ohio.
P. O. Box 346, Niagara Falls, N. Y.

211 East 19th St., New York, N. Y.
57 Wilhinson Ave., Jersey City, N. J.
15th and Lỵthe Sts., Louisville, Ky.
521-35 North Ave., Plainfield, N. J.
Petrolia, Pa.
104 Lakeview Ave., Waukegan, Ill.
81 Maiden Lane, New York, N. Y. (Brooklyn, N. Y.).
949 Broadway, New York, N. Y. (Bayonne, N. J.).
1800 North eth St., Philadelphia, Pa.
24 Van Houten St., Paterson, N. J.
1220 Madison A ve., Indianapolis, Ind.
703 Market St., San Francisco, Calif. (Los Angeles, Calif.) 235 East Pittsburgh Ave., Milwankee, Wis.
2112 Sylvan Are., Toledo, Ohio.
Public Service Bldg., Portland, Oreg.
77 North Water St., Poughkeepsie, N. Y.
260 South Broad St., Philadelphia, Pa.
799 Greenwich St., New York, N. Y. (Norwalk, Conn.). 21 Grey Oaks Ave., Nepera Park, N. Y.
141 West Jackson Blvd., Chicago, Ill. (Cedar Rapids, Iowa).
480 Frelinghuysen A ve., Newark, N. J.
1615 Merchants Bank Bldg., Indianapolis, Ind. (plants throughout the United States).
I615 Merchants Bank Bldg., Indianapolis, Ind. (plants throughout the United States).
230 Park A ve., New York, N. Y. (Edgewater, N. J.).
72 Grand A ve., Brooklyn, N. Y.
500 Fifth Ave., New York, N. Y. (Erie, Pa., Joliet, Ill.). Rothschild, Wis.
113 West 1xth St., New York, N. Y.
88 Forrest St., Jersey City, N. J.
g 40 North Broad St., Philadelphia, Pa.
23d and Westmoreland Sts., Philadelphia, Pa. (IVyandotte, Mich.).
524 West 57 th St., New York, N. Y. (Hobart, N. Y.).
100 Bush St., San Francisco, Calif. (Martinez and I opminguez, Calif.).
101 Prospect Ave., N. IW., Cleveland, Ohio (Chicago, Ill.).
11-25 4th Rd., Long Island City, N. Y.
611 West 129 th St., New York, N. Y.
105 North 5th St., Philadelphia, Pa.
Syracuse, N. Y. (Geddes, N. Y.).
P. O. Box 1045, Charlotte, N. C.

745 Fifth A ve., New York, N. Y. (Brooklyn, N. Y., New Brunswick, N.J.).
26 Broadway, New York, N. Y. (Linden, N. J.).

Directory of manufacturers of dyes and other synthetic organic chemicals, 1937Continued

No.	Name of company	Office address (location of plant given in parentheses if not in same city as office)
205	Standard Naphthalene Products Corporation.	Jacobus Ave., South Kearny, N. J.
206	Standard Ultramarine Co	Huntington, Wr Va.
207	Stange, William J., Co	2536 Wrest Monroe St., Chicago, Ill.
208	Sun Chemical \& Color Co. (division of General Printing Ink Corp.)	309-21 Sussex St., Harrison, N. J. (East Rutherford and Harrison, N. J.)
209	Swann \& Co	3205 A venue B , Birmingham, Ala.
210	Synthetic Chemicals, In	57 Wilkinson A ve., Jersey City, N. J.
211	Synthetical Laboratories	5558 Ardmore Are., Chicago, Ill.
212	Taylor Chemical Corporation	Phillipsburg, N. J. (Wyandotte, Mich., Penn Yan, N. Y.)
213	Taylor Fibre C	P. O. Box 470, Norristown, Pa. (Betzwood, Pa.).
214	Toda, A. M., Co	1717 Donglas A ce., Kalamazoo, Mich.
215	Trubek Laboratories,	State Highway No. 2, East Rutherford, N. J.
216	Turner \& Heller Co.	36 Barry St., Hyde Park, Mass.
217	Uhlich, Paul, \& Co., Inc	157 Clambers St., New York, N. Y. (Brooklyı, N. Y.)
218	United Color \& Pigment Co	MeClellan St., Newark, N. J.
219	U. S. Industrial Chemical Co	60 East 42d St., New York, N. Y. (Baltimore, Md.).
220	Valentine \& Co., Inc	11 East 36th St., New York, N. Y. (Brooklyn, N. Y.).
221	ran Ameringen-Haeble	315 Fourth A ve., New York, N. Y. (Elizabeth, N. J.).
222	Van Dyk \& Co., Inc	57 Wilkinson Ave., Jersey City, N. J.
223	Varcum Chemical C	P. O. Box 433, Niagara Falls, N. Y.
224	Verona Chemical Co	26 Verona Ave., Newark, N. J.
225	Victor Chemical Wor	141 Wert Jackson Blvd., Chicago, Ill. (Chicago Heights, Ill.).
226	Virginia Smelting Co.	West Norfolk, Va.
227	Wrarner-Jenkinson Manufacturing	2526 Baldwin St., St. Louis, Mo.
228	Watertown Manufacturing Co	127 Echo Lake Rd., Watertown, Conn.
229	Westvaco Chlorine Products Corporation	405 Lexington A re., New York, N. Y. (South Charleston, W. Va.).
230	White Tar Co., of N. J., Inc	1201 Koppers Bldg., Pittsburgh, Pa. (Kearny, N. J.).
231	Wilhelm, A., Co. (division of Glidden Co.)	Third and Bern Sts., Reading, Pa.
232	It olff Alport Chemical Corporation	1197 Irving Ave., Brooklyn, N. Y.
233	Young Aniline Wrorks, In	2701 Boston St., Baltimore, MI.
234	Zinsser \& Co., Inc.	Hastings-on-Hudson, N. Y.

[^0]: ${ }^{1}$ Includes 5,135 thousand gallons reported to the U. S. Tariff Commission. This amount accounts for 26.4 percent of the increase.

[^1]: ${ }^{1}$ Does not include resins from adipic acid, coumarone and indene, hydrocarbon, styrol, succinic acid, and sulfonamides.
 ${ }^{2}$ I Includes sazoic dyes (rapid fast and rapidogene dyes) and their components (fast color salts and naphthol (AS derivatives)
 ${ }^{3}$ Includes benzoate of ammonia, benzoate of soda, benzoyl peroxide, biological stains and chemical indicators, poisonous and tear gases, synthetic insecticides, phthalates, photographic chemicals, synthetic tanning materials, textile assistants, and others. Does nut include components for azoic dses.

[^2]: 1 ncludes non-coal-tar rubber chemicals and all other non-coal-tar synthetic organic chemicals.

[^3]: ${ }^{1}$ Totals not included under sulfide dyes. In the dyes elassified by method of application these 2 dses

[^4]: I Not shown separately during 1925-30.
 ${ }^{2}$ Not shown separately prior to 1937.
 8 Includes azoic dyes (rapid fast and rapidogene dyes) and their components (fast color salts and naphthol AS derivatives).

 - Includes rapid fast dyes and rapidogene dyes.

