$$
\begin{array}{r}
9336.2613 a 125 \\
135.1+1
\end{array}
$$

SYNTHETIC ORGANIC CHEMICALS UNITED STATES PRODUCTION AND SALES
 1939

REPORT No. 140
SECOND SERIES

BOSTON PUBLIC LIBRARY

39999063171936

RECENT REPORTS OF THE UNITED STATES TARIFF COMMISSION

Earthen Floor and Wall Tiles, Report No. 141, Second Series, 1940 In press
Glues, Gelatins, and Related Products, Report No. 135, Second Series, 1940 $\$ 0.25$
Italian Commercial Policy and Foreign Trade, Report No. 142, Second Series, 1940 In press
Silverware, Report No. 139, Second Series, 1940 $\$ 0.25$
Starches and Dex̣trines, Report No. 138, Second Series, 1940 In press
Cotton and Cotton Waste, Report No. 137, Second Series, 1939 $\$ 0.10$
Grapes, Raisins, and Wines, Report No. 134, Second Series, 1939 60
Incandescent Electric Lamps, Report No. 133, Second Series, 1939 25
Changes in Import Duties Since the Passage of the Tariff Act of 1930, Miscel- laneous Series, 1939 45
Rules of Practice and Procedure and Laws Relating to the United States Tariff Commission Miscellaneous Series, 1939 10

[^0]
SYNTHETIC ORGANIC CHEMICALS UNITED STATES PRODUCTION AND SALES

$$
1939
$$

REPORT No. 140
SECOND SERIES

UVITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTOV: 1910

UNITED STATES TARIFF COMMISSION

RAYMOND B. STEVENS, Chairman
OSCAR B. RYDER, Vice Chairman
EDGAR B. BROSSARD
E. DANA DURAND
A. MANUEL FOX
SIDNEY MORGAN, Secretary

Address All Communications
UNITED STATES TARIFF COMMISSION
WASHINGTON, D. C.
TEXT
Page
Acknowledgment ఛ
Introduction I
PART I
Summary, 1939 1
PART II
Production and sales by groups, 1939:
Coal-tar crudes 5
Coal-tar intermediates 6
Coal-tar dyes 16
Color lakes and toners 31
Medicinals 34
Flavors and perfume materials 38
Resins 42
Rubber chemicals 43
Miscellaneous chemicals 46
APPENDIXES
A. Rescarch expenditures 57
B. Imports 57
C. Directory of manufacturers of synthetic organic chemicals, 1939 58
STATISTICAL TABLES

1. Comparison of United States production of tar and production and sales of certain crudes, average 1925-30, annual 1936-39 2
2. Intermediates, dyes, and other coal-tar chemicals: Summary of United States production and sales, 1939 3
3. Intermediates, dyes, and certain other classes of coal-tar chemicals: Comparison of United States production and sales, average 1925-30, annual 1936-39 4
4. Synthetic organic chemicals of non-coal-tar origin: Summary of United States production and sales, 1939 4
5. Synthetic organic chemicals of non-coal-tar origin: Comparison of United States production and sales, average 1925-30, annual 1936- 39 5
6. Coal-tar crudes: United States production and sales, 1939 b
7. Coal-tar intermediates: United States production and sales, 1939 5
8. Comparison of United States production and sales of dyes by classes of application, average 1925-30, annual 1938 and 1939 18
9. Coal-tar dyes: United States production and sales, by types, 1939 17
10. Color lakes and toners: United States production and sales, 1939 32
11. Synthetic medicinals: United States production and sales, 1939:
(A) Coal-tar 34
(B) Non-coal-tar 37
12. Synthetic flavors and perfume materials: United States production and sales, 1939:
(A) Coal-tar 39
(B) Non-coal-tar 401
13. Synthetic resins: United States production and sales, 1939:
(A) Coal-tar 42
(B) Non-coal-tar 43
14. Synthetic rubber chemicals: United States production and sales, 1939:
(A) Coal-tar 43
(B) Non-coal-tar 45
15. Miscellancous synthetic organic chemicals: United States production and sales, 1939:
(A) Coal-tar 45
(B) Non-coal-tar 48
16. Imports of finished coal-tar products, classified by uses, and of coal-tar intermediates, into the United States, 1939 and 1938 5%

ACKNOWLEDGMENT

In the preparation of this report, the Commission had the serviees of W. F. Sterling and Bertha M. Robertson of the Chemical Division, and of others.

SYNTHETIC ORGANIC CHEMICALS, UNITED STATES PRODUCTION AND SALES, 1939

INTRODUCTION

The United States Tariff Commission's twenty-third annual report on the production and sales of synthetic organic chemicals in the United States includes all synthetic organic chemicals grouped under the following classifications: Coal-tar crudes, intermediates, dyes, color lakes, and toners; coal-tar and non-coal-tar medicinals, flavors, and perfume materials, resins, rubber chemicals, and miscellaneous chemicals. For the first time separate figures are shown for non-coaltar rubber chemicals, and for plasticizers, both coal-tar and non-coal-tar. Among the synthetic products reported first in 1939 are synthetic ephedrine, sulfapyridine, and hormones.

Many of the basic products included in this report are essential to national well-being and to national defense. Toluol (p. 6) and phenol (p .14) are the raw materials for the very important military explosives, trimitrotoluene and picric acid, and are considered by the War Department to be critical materials.

Incidental to the collection of production and sales statistics, the Commission has from time to time compiled data on rescarch expenditures by the synthetic organic chemical industry in order to obtain information on the relationship between research and development in the industry. A summary of research expenditures in 1939 is shown in appendix A of this report.

The Tariff Commission also cooperates with the Department of Commerce in the analysis of imports of coal-tar intermediates and finished products. These data are issued semiannually by the Department of Commerce. ${ }^{1}$ A summary of the data obtained in these analyses for 1938 and 1939 is given in appendix B.

Three hundred and six companies reported production and sales of synthetic organic chemicals in 1939. Appendix C is a directory of all manufacturers who have given permission to be identified as producers.

PART I.-SUMMARY, 1939

Activity in the synthetic organic chemical industry, as a whole, increased sharply in 1939 over 1938, and exceeded that in the previous peak year, 1937.

The accelcration in the rate of coke-oven operations resulted in an increase of almost a third in coal-tar production. Greater market demand caused increased production of crude products from tar. The output of toluene or tuduol, the raw material for the military explosive, trinitrotoluene, commonly called T. N. T. was the highest on record.

[^1]The production of coal tar, and the production and sales of crudes produced in large volume are shown in table 1 for the years 1939, 1938, 1937, 1936, and the average for the period 1925-30.

Table 1.-Comparison of United States production of tar and production and sales of certain crudes, average 1935-30, annual 1936-39
[Production and sales in thousands of gallons, value in thousands of dollars]

Product	$\begin{gathered} \text { A verage } \\ 1925-30 \end{gathered}$	1936	1937	1938	1939	Increase, 1939 over 1938
						Percent
Tar produced	630, 536	560, 386	603, 053	419,580	554, 406	32.1
Benzol:						
Production	22, 257	19,413	26,795	17, 745	30, 470	71.7
Sales.	22, 257	19, 145	22, 141	17,176	26,628	55.0
Sales value	4,651	2,676	2,928	2,317	3, 618	56.2
Motor benzol:						
Production	96, 879	85, 673	95,527	61,903	86, 246	39.3
Sales	96, 879	81,762	93, 767	61, 221	81, 672	33.4
Sales value	15,920	7,629	8.385	6,064	7,679	26.6
Naphthalene:						
Production ${ }^{1}$	44,762 44,762	89,536 74,054	115,979 109,394	53,584 50,693	104,086 87,837	94.2 73.3
Sales value	581	1,466	2, 535	979	1,517	55.0
Creosote oil:						
Production	95, 443	101, 758	107, 294	88, 067	110, 242	25. 2
Sales	95,443	93, 216	107, 485	88, 713	101, 487	14.4
Sales value	11,742	10, 29 l	12,472	10,820	12, 385	14.5

${ }^{1}$ Thousands of pounds.
Source: Compiled from data reported to the Taritf Commission and to the Bureau of Mines.
The combined sales of all synthetic organic chemicals in 1939 were valued at $\$ 384,343,000$, and not only exceeded by 39 percent those in 1938, a year of poor chemical sales, but surpassed the value of sales in any preceding year. The increase in sales value of coal-tar chemicals over 1938 was 42 percent, or from $\$ 130,462,000$ to $\$ 184,645,000$, and in non-coal-tar synthetic organic chemicals 36 percent, or from $\$ 146,435,000$ to $\$ 199,698,000$. The groups showing the largest percentage increase in sales value were intermediates, medicinals, and synthetic resins. The peak activity in synthetic organic chemicals in 1939 resulted from improved business conditions, a building up of inventories by both producers and consumers, and increased exports in the last quarter, particularly to countries whose imports of synthetic chemicals formerly came chiefly from the European belligerents. Although official export statisties do not give a total for all synthetic organic chemicals, it is known that exports of these synthetic products advanced considerably in 1939. The value of exports of all coal-tar chemicals was $\$ 9,891,000$ in 1938 and \$14,612,000 in 1939.

No significant increases in unit values of sales of synthetie organic chemicals occurred in 1939. Virtually all important raw materials for synthetic organic chemicals are abundant in the United States and in general have not advanced in price.

In 1939 a large part of the output of synthetic organic chemicals was consumed, as in preceding years, by producers in the manufacture of other chemicals. More than half of the coal-tar intermediates and of miseellancous non-coal-tar chemicals, as well as smaller fractions of some of the other groups, was thus consumed by the producing companies. Accordingly the quantity of production is in excess of the
quantity of sales in some group totals and in many individual commodities appearing in the tables in this report.

Each product reported by the manufacturers is listed in the detailed tables shown in this report. Statistics of production and sales are given for as many separate chemicals as is possible without disclosing information concerning the operations of individual companies. The Commission withholds statistics for a product or a group of products unless at least three firms report, and unless the total production and sales are well distributed among the three or more firms. In nearly all instances the absence of numerical data indicated by a blank in the detailed tabulations is not because of a lack of production or sales figures, but because these data are confidential. All such figures, however, are included in their respective group totals.

Sales statistics given in the tables are intended to reflect only sales of chemicals produced by the seller. Every effort has been made to eliminate resales of purchased merchandise and intercompany transfers.

Group totals for 1939 are comparable with those for 1938 except in one instance. The total of non-coal-tar rubber chemicals, heretofore included under the total of the miscellaneous chemicals group, is shown separately in 1939. This change, however, is a minor one and does not affect appreciably the miscellaneous non-coal-tar chemicals total for comparative purposes.

The production and sales of intermediates and finished coal-tar products in 1939 are summarized in table 2, and a comparison of production and sales in 1939 with 1938, 1937, and 1936, and with the 1925-30 average is shown in table 3.

Table 2.-Intermediates, dyes, and other coal-tar chemicals: Summary of United States production and sales, 1939
[Production and sales in thousands of pounds, value in thousands of dollars]

Product	Number of manufacturers	Production	Sales		
			Quantity	Value	Value per pound
Intermediates	63221	607, 175	269, 084	38.489	\$0.14
Finished products, total		437, 867	353, 604	146, 156	. 41
Dyes: Classified		99, 564	95,074	48,018	50
Unclassified		20,627	19, 420	22. 206	1. 14
Total	43	120, 191	114, 494	70, 221	. 61
Color lakes and toners	48	18, 154	15,57\%	11,785	. 76
Medicinals	44	15, 188	12,932	13, 711	1.06
Flavors and perfume mater	30	5,349	4,435	4,447	. 90
Resins	64	179,335	128,420	23,028	. 18
Rubber chemicals	10	29.966	20,965	10,081	. 48
Miscellaneous ${ }^{1}$	51	69, 681	56, 278	12, 880	. 23

[^2]252005-40-2

Table 3.--Intermediates, dyes, and certain other classes of coal-tar chemicals: Comparison of United States production and sales, average 1995-30, annual 1936-39
[Production and sales in thousands of pounds, value in thousands of dollars]

Product	Average, 1925-30	1936	1937	1938	1939	$\begin{aligned} & \text { Increase, } \\ & 1939 \text { over } \\ & 1938 \end{aligned}$
Intermediates:						Percent
Production.	267, 492	509, 706	575, 893	401, 943	607,175	51.1
Sales	109, 133	223, 119	242, 194	171,514	269.084	56.9
	138, 078	336, 348	373, 063	276, 387	437, 867	58.4
Sales.	133, 964	287, 276	315, 742	245, 340	353, 604	44.1
Dyes:						
Production	94, 003	119,523	122, 245	81,759	120, 191	47.0
Sales	92, 207	117, 573	118,046	87, 803	114,494	3 n .4
Sales value	39, 428	63, 686	64, 613	53,096	70, 224	32.3
Medieinals: Production						
	4,508	12,034	14,800	11, 097	15, 188	36.9
Sales_-....	4, 106	10, 779	11,989	8, 885	12,932	45.5
Sales value -......-	7,464	9, 763	11, 496	9, 509	13, 711	44.2
Flavors and perfume Production.	3,966	3,481	4,356	3.837	¢, 349	39.4
Sales.	3,919	3,437	3,907	3,664	4,938	34.8
Sales value.	2,901	3,220	3,983	3,368	4,447	32.0
Resins:						
Production.	${ }^{2} 24,442$	117, 302	142,025	106. 923	179,338	67.7
Sales	${ }^{2} 22,135$	86, 214	109, 201	84,764	128, 420	51.5
Sales value	${ }^{2} 7,756$	17,056	20,582	15, 811	23, 028	45.6

${ }^{2}$ Includes color lakes, rubber chemicals, and miscellaneous coal-tar products not shown separately.
${ }^{2}$ 1927-30 average.
The production and sales in 1939 of the several groups of synthetic organic chemicals not of coal-tar origin are shown in table 4. The bulk of such chemicals are solvents and other industrial chemicals classificd as miscellaneous. In table 5 production and sales of all non-coal-tar synthetic organic chemicals in 1939 are compared with those in 1938, 1937, and 1936, and with the average for 1925-30.

Table 4.-Synthetic organic chemicals of non-coal-tar origin: Summary of United States production and sales, 1939
[Production and sales in thousands of pounds, value in thousands of dollars]

Product	Number of mannfacturers	Production	Sales		
			Quantity	Value	Value per pound
Medicinals	39	1,668	1,483	6,120	\$4. 13
Flavors and perfume material	30	2, 137	2, 233	1,588	. 71
Resins--	19	33, 690	31,877	15,983	. 46
Rubher ehemicals	89	- $\begin{array}{r}13,122 \\ 2,984,038\end{array}$	11,896 $\begin{array}{r}1,81 \\ 1,481,874\end{array}$	1 172,086 1	. 26
Total		3, 034, 655	1, 532, 363	199,698	. 13

Table 5.-Synthetic organic chemicals of non-coal-tar origin: Comparison of [nitext States production and sales, average 1925-30, annual, 1936-39
[Production and sales in thousands of pounds, value in thousands of dollars]

Item	A veraqe, $1925-30$	1936	1937	1938	1939	$\begin{gathered} \text { Increase, } \\ 1939 \text { over } \\ 1938 \end{gathered}$
Production	379, 972	2,041,455	2, 529,650	2, 409, 456	3, 034, 655	Percent 25.
Sales...	264,006	1, 034, 921	1, 168, 149	1, 121, 608	1, 532, 363	36.6
Sales value.	44, 499	105, 832	119, 420	${ }^{1} 146,435$	199,698	36.

- Adjusted so as to be on the same value basis as 1939.

PART II.-PRODUCTION AND SALES BY GROUPS, 1939

COAL-TAR CRUDES

An upswing in coke oven operations resulted in an increase in the production of coal tar from 419,580,000 gallons in 1938 to $554,406,000$ gallons in 1939. Sixty-two percent of the output was sold in 1939 in comparison with 72 percent in 1938. Tar distilled by purchasers thereof in 1939 amounted to $334,871,000$ gallons, or 17 percent more than in the preceding year.

Total production of toluene increased from $16,090,000$ gallons ini 1938 to $24,355,000$ gallons in 1939. No toluene of nitration grade was produced commercially from petroleum in 1939. A solvent, however, containing approximately 50 percent toluene was produced in substantial quantities by two oil companies. Figures for this product are not included in this report.

The output of crude naphthalene increased 94 percent to 104,085,00\% pounds, and the production of ercosote oil adranced 25 percent to $110,242,000$ gallons. Increased demands, particularly from synthetic resin manufacturers, were responsible for an increase in the recovery of crude cresylic acid and other crude tar acids. For the first time, one company reported cresylic acid produced in conjunction with petroleum refining.

Statistics of domestic production and sales of coal tar, erude light oil, and the crude products made from them, as well as the quantities of the several kinds of tar distilled are shown in table 6. These statistics represent a combination of data reported to the Tariff Commission by the distillers of purchased tar, and of data reported to the Bureau of Mines by coke-oven operators who distill tar produced by themselves.

Table 6.-Coal-tar crudes: ${ }^{1}$ United States production and sales, 1939

[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58 . An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published without revealing information with regard to individual firms]

Tar distilled by purchasers thereof: ${ }^{2}$	Gallons	
Oil-gas tar -----------------------	16,230, 837	\$809, 362
Water-gas tar	21,320, 255	958, 079
Coal tar.	297, 320, 098	15, 892, 717
Total.	334, 871, 190	17,660, 158

Product	Manufacturers'identification numbers of companies reporting to Tariff Commission (according to list on p. 58)	Production (quantity)	Sales		
			Quantity	Value	Unit value
Tar ${ }^{3}$----------- ${ }^{\text {gallons }}$		554, 406, 216	344, 534, 382	\$16, 585, 734	\$0. 048
Light oil and derivatives:					
Crude light oil....gallons.-	57, 103, 116, 171, 180, X.	170, 993, 376	9,397, 726	730,591 3,617	. 078
Benzol (except motor benzol) .-..........-.-. gallons	8, 22, 62, 153, 171 $\ldots \ldots \ldots$	30, 470, 459	26, 627, 639	3, 617, 953	. 136
Notor benzol .-.-...- do ...-	22, 171, X	$86,245,584$	81,671,632	7,678,770	. 094
Toluol, crude and refined gallons	8, 22, 62, 107, 153, 17	24, 355, 116	24, 683, 051	$4,952,453$	201
Solvent naphtha, crude and refined .-.-. gallons.	$8,22,62,122,153,179,180, \mathrm{X}$	7,468,386	7,093, 186	1,355, 079	. 191
Xylol ${ }^{3}$ _-.........-d do		4,089, 090	4, 393, 400	1,018, 589	. 232
Other light oil products $\begin{gathered}\text { gallons -- }\end{gathered}$	8, 22, 62, 153	6, 684, 622	4,562, 135	443, 469	. 097
Naphthalene, crude (solidifying under $79^{\circ} \mathrm{C}$.) ${ }^{4}$.--pounds.-	$\begin{aligned} & 22,57,116,122,171,179,180, \\ & 184, \mathrm{X} . \end{aligned}$	104, 085, 593	87, 836, 963	1,517, 240	. 017
Anthracene, crude (less than 30 percent) ${ }^{2}$ pounds					
Cumene ${ }^{2} \ldots \ldots \ldots$.-....-. gallons .-	22				
Cresylic acid, crude (less than 75 percent) ${ }^{2}$-------- gallons..	22, 204				
Pyridine.-...-.-.-.-.-.- do..-	22, 122, 179	217,517	164.256	269,831	1. 64
Creosote oil.....-.-.-.-.- do...-	$\begin{aligned} & 11,22,56,57,68,103,107 \\ & 109,116,122,124,153,179 \\ & 180,184, \mathrm{X} . \end{aligned}$	110,241, 843	101, 486, 998	12, 384, 939	. 122
Coal tar sold or consumed in coal-tar solution 2.-.gallons.-	$11,22,122$				
Tars, crude and refined ${ }^{2}$ _do...-	$\begin{aligned} & 11,22,57,62,103,122,153 \\ & 171,179,180,184, \mathrm{X}, \mathrm{X} \end{aligned}$	33, 957, 602	32, 258,215	2, 181, 744	. 068
Tars, road ${ }^{2}$-.....-......do. ${ }^{\text {do. }}$	$\begin{aligned} & 11,22,68,103,109,122,124 \\ & 171,179,180,184 . \end{aligned}$	149,835, 943	137, 696, 311	11, 191, 316	. 081
Other distillates ${ }^{5}$..-.-. do...-	$\begin{aligned} & 22,56,103,116,122,166,179 \\ & 180,184, \mathbf{X}, \mathbf{X} . \end{aligned}$	42, 680, 447	10,740,339	1,542, 251	. 144
Pitch of tar..-.-....-.....tons.-	$\begin{aligned} & 11,22,56,57,68,103,109 \\ & 116,122,124,166,179,180 \\ & 184, X . \end{aligned}$	568, 153	306, 457	4,358,507	14.22
Pitch of tar coke ${ }^{2}$--.....-do...-	$22,68,109,122,179,180$.	90,124	81,443	1,016, 351	12.48
Total				71, 419, 156	

${ }^{1}$ Data for coke ovens reported to Bureau of Mines, and for tar refineries and others, to United States Tariff Commission unless otherwise noted.
${ }_{2}^{2}$ Reported to United States Tariff Commission only.
${ }^{3}$ Reported to Bureau of Mines only.
4 Includes refined naphthalene reported to Bureau of Mines
${ }^{5}$ Includes crude tar acids reported to United States Tariff Commission and pheuol, sodium phenolate, and certain other products reported to Bureau of Mines.

COAL-TAR INTERMEDIATES

The production of $607,175,000$ pounds of coal-tar intermediates in 1939 was the highest on record, exceeding by 51 percent the output in 1938, and by 5 percent the previous peak in 1937. Sales in 1939 were 269,084,000 pounds valued at $\$ 38,489,000$, or an a verage of 14 cents per pound. The difference between production and sales of intermediates is due almost entirely to the large consumption by the producers in the manufacture of finished coal-tar products.

The production of intermediates used in the manufacture of synthetic resins increased more proportionately than did the total
production of intermediates; the output of phthalic anhydride and phenol increased 60 percent and 54 percent, respectively. The production and sales of virtually all intermediates used in the manufacture of dyes and medicinals were considerably higher in 1939 than in 1938; the output of $41,775,000$ pounds of the basic commodity, aniline oil, was 56 percent more than in the preceding year. Among the many other intermediates that advanced in production were H acid 46 percent, p-dichlorobenzene 21 percent, dimethylaniline 52 percent, a-naphthylamine 39 percent, and sulfanilic acid and salt 25 percent.

Statistics of production and sales of coal-tar intermediates are shown in table 7 .

Table 7.-Coal-tar intermediates: United States production and sales, 1939
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statisties of production or sales cannot be published withont revealing information with regard to individual firms. The figures thus concealed, however, are included in the total]

Name of intermediate

Acetanilide, tech
Acetanilide-p-sulfonic acid
Acetoacetanilide
Acetoacet-o-anisidide
A cetoacet-o-chloranilide
Acetoacet-m-xylidide
Acetotoluide
5-Acetylamino salicylic acid
Acetyldiaminoanthraquinone
Acetyl-1:4-naphthalene-diamine-6 and
7 sulfonic acid (acetylamino Cleve's acid).
Acetyl-p-phenylenediamino (p-amino acetanilide).
Acetyl-p-phenylencdiamine sulfon ic acid.
Acetyl-p-toluidine
Acridine yellow
Adipic acid
a-Aminoanthraquinone and salt
b-Aminoanthraquinone
Aminoazohenzene and hydrochloride.
A minoazobenzene sulfonie acid
Arnin@azobenzene disulfonic acid
p-Aminoazobenzene disulfonic acid
Aminoazotoluene
Aminoaztoluene nono sulfonate
Aminoazorylene
Aninoazoxylene-toluidine
S-Amino-1:2-benzacridone
o-Aminobenzoic acid (anthranilic acid)
p-Aminohenzoic acid
A mino-5-benzoylaminoanthraquinone
m-Aminobenzoyl J acid
p-Arainobenzoyl J acid
p -Aminobenzoyl-m-phenylenediamine .
m-Aminobenzoyl-p-tolylenediamine
1-Amino-2-bromo-4-p-toluilline anthraquinone.
Aminobutyrylaminodiethyl hydroquinone.
Amino-4-chlorophenol
2-Amino-4-chlorotoluene
2-Amino-6-chlorotoluene
m-A minocresol methyl ether
1-Amino-2:4-dibromoanthraquinone
p -Aminodiethyl benzaldehyde
2-Amino-5-diethylaminotoluene hydrochloride.
p -Aminodiethylaniline.
D -Aminodimethylaniline
p -Aminodiphenylamine.

Manufacturers' identifieation numbers (according to list on p. 58)	Production	Sales		
		Quantity	Value	Unit
44, 60, 62, 85, 138..	$\begin{gathered} \text { Pounds } \\ 487,606 \end{gathered}$	Pounds		
85, 318				
218-..-				
${ }_{2} 218$				
218				
1--......				
14				
144......				
44, 62, 85, 144	254, 293			
62, 99, X, X.	854, 789			
62, 144-......				
(62, 85,144	255, 914			
62, 85, 144	624, 118			
$6,8,44,62,85,144,165$	197, 305			
6, 8, 44, $62,85,144,165$	137, 527			
8,44,62, 85, 144, 165	373, 193			
85, 144				
6, 85, 144				
8				
7,60,62				
62				
6, $62,144,165$	27,570			
6, 62, 85, 144, 165	79, 400			
165.				
14.				
62.144				
62, 144.				
62, 144				
62				
X.				
85, X				
69.				

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 58)	Produc-	Sales		
			Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
		Pounds	Pounds		
Aminodiphenylamine sulionic	6,4				
Aminodiphenyl cther					
3-Amino-4-hydroxyphenyl arsonic acid-					
4. Amino-3-methoxy diphenylamine-2. sulfonic acid.					
1:7-Aminonaphthol.--..----------.-.					
1-Amino-2-naphthol-4-sulfonic acid	44, 62, 85, 144	1,083, 317			
1-A mino-8-naphthol-4-sulfonic acid	44, 62, 144				
1-Amino-8-naphthol-2:4-disulfonic acid (Chicago acid).	44, 62, 144	152, 487			
1-Amino-8-naphthol-3:6-disulfonic acid (H acid)	62, 85, 142, 144	3,664,378			
2-Amino-5-naphthol-7-sulfonic acid (J acid).	6, 44, 62, 85, 1	639, 114	46, 964	\$81, 407	\$1. 73
2-Amino-8-naphthol-6-sulfonic acid (gamma acid).	6, 44, 62, 85, 144.	1,042, 278	184, 549	166, 533	. 85
2-Amino-8-naphthol-3:6-disulfonic acid (2 R acid).	62,144.				
0 - Aminophenol.-	$62,69,225,234, \mathrm{X}$	19,910	15,931	21,798	1.37
0-A minophenol sulfonic acid	44, 144				
pr-Aminophenol and hydrochloride.	8, 62, 69, 225, 234,	1,012,442	439, 131	257,676	. 59
0-Aminophenylammonium-hydroxide					
m-Aminophenylpyrazolone carboxylic acid.					
5n-Aminophenyl-p-tolylamine sulfonic acid.					
Aminopyrazolone.	165, X				
2-Aminopyridine-					
Aminosalicylic acid.	C,				
2-A minotoluene-5-sulfonic acid	44				
4-A minotoluene-2-sulfonic acid	44				
Amylbenzyl cyrlohexylamine	142				
A.myl naphrhalenes.	191				
Amyl phenol (p-tertiary)	191				
1. Anilido-2-carboxylic acid anthraqui- none.					
Aniline disulfonic acid	44, 62, 144, 165	52, 788			
A niline hydrochloride and sulfate					
Aniline methane sulfonic aci	$165,60,138,142,144, \mathrm{x}$				
A niline oil Aniline omega sulfonic acid	8, 60, 62, 138, 142, 144, X.	41, 775, 370	13, 348, 564	1,436,023	1
Anisic acid.-.-..---....	X				
0-A nisidine	62, 142				
0-A nisidine omega sulfonic acid	6, 144, 165				
p-A nisidine	62, 142, 14t.				
Anthranilic acid (See o-Aminobenzoic acid).					
Anthracene, refined	179				
Anthraquinone (100 percent)	8.1				
a.Anthraquinoue liydrazine disulfonate	$\begin{aligned} & 85 \\ & 85,144 \end{aligned}$				
Anthraquinone-b-sulfonic acid	85,				
Anthraquinone-1:5-disulfonic acid	62, 8				
Anthraquinone-1:8-disulfonic acid					
Anthraquinone-2:6-disulfonic acid	62, 85, 144				
Anthraquinone-1:8-potassium disulfonate.					
Anthraquinone-1-sodium sulfonate \&nthraquinone-2-sodium-sulfonate (sil-	$\begin{aligned} & 62 \\ & 6,62,141 \end{aligned}$				
ver salt).					
Anthraquinone-2:6-fisulionate	6				
4.9-Anthrathiazol-2-carbonyl chloride.	$\stackrel{62}{ }$				
Azoxyaniline	165				
Renzaldehyde, lech	25, X,				
\#enzaldehyde disulfonic acid	85				
Penzamide	102.				
Renzanthrone	6, 8, 62, 85, 144, 161	278, 279			
Benzene sodium disulfonato	62				
Menzene sulfonic acid	142				
Benzidine, haso	44, 62, 69, 144				
Benzidine hydrochloride and sulfate	8. 62, 69, 85, 144	1,540, 628			
Renzidine sulfonic acid	165				
Eenzidine disulfonic acid	6, 44, 165, X	7.822			
Benzoic acis, teeh	622. $85,102,142,209, \mathrm{X} .$.	222, 483	246, 481	93, 253	38
Senzoic anhydride		117,930	124, 415	16, 300	13

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales				
			Quantity	Value	Unit value		
- *		Pounds	Pounds				
Benzoyl acetanilide	X						
1-Benzoylamino-4-chloroant braquinone	85						
1-Benzoylamino-5-chloroanthraquinone	62,144						
5-Benzoylamino-1:1-(liant hramide-							
1-Benzoylamino-5-p-toluene sulfonic anthraquinone.	62.						
Benzosl benzoic acid.......................	S, 62. 144						
Benzoyl chloride.	102, 142						
Benzoyl J Acid.							
Benzylamine	102.						
Benzyl chloride	25, 102, 142, I						
Bensyl disulfide	102						
Benzylidine aminopyrazolone	X						
Beta gamma picoline .-...	22,179						
Broenner's acid (See 2-Naphthylamine-6-sulfonic acid). Bromamine acid							
Bromohenzanthrone	62						
Bromohenzene	60, 69						
p-Bromomethylaninoanthraquinone.							
p-Brompophenol	-						
Butyl phenol (p-tertiary)	60						
Carbazole, refined	179						
Chicago Acid (See 1-Amino-8-naphthol-2:4-disulfonic acid). o-Chloroacetoacetanilide							
Chloroacetoacetylnaphthylamide	165						
1-Chloro-5-aminoanthraquinone.	144						
1-Chloro-8-aninoanthraquinone.	62.						
o-Chloroamlnohenzoic acid	85, X						
Chloroaminophenol sulfonic acid	44,62, 85						
5-Chloro-2-aminotoluene hydrochlorive.							
Chloroaniline:$142,225$							
Ortho Meta.	$\begin{aligned} & 142,225 \\ & \times 5,112 \end{aligned}$						
Para	62, 142						
o-Chloroaniline sulfonic acid	165						
p-Chloroaniline sulfonic acid	6, 44, 62	7,317					
Chloroanisidine	102.						
Chloroanthraquinone	8.62, 85.144	430, 361					
o-Chlorohenzaldehyde	$62,85,144$	116,098					
Chlorobenzanthrone	144						
Chlorobenzene (mono)	$60.62,71,102,142,199$		3, 480, 163	\$127,	\$0.04		
o-Chlorobenzoic acid.	$85.144, \mathrm{X}$	23,135					
Chlorobenzoyl benzoie acid	S,62, 85, 144	1,096, 212					
Chlorobenzyl disulfide	102						
1-Chloro-2-carboxy anthraruinone	62						
p-Chloro-mi-cresol	22						
2-Chloro-1:4-dihydroxy anthraquinone (chloroquinizarin).	6,144						
Chlorometanilic acid	62, 144						
Chloromethylanthraquinone	8, 62, 85, 144	114, 187					
Chloronaphthalenes	102, X						
o-Chloro-n-nitroaniline	8, 60, 62, X						
p-Chloronitroaniline	60, 62, 144.						
0-Chloro-o-nitroaniline	225						
1-Chloro-5-nitroanthraquinone	$1+4$						
4-Chloro-2-nitrotolnene	62.						
6-('hloro-2-nitrotoluene	62, 144						
o-Chlorophenol	142, X						
p-Chlorophenol	142						
Chlorophenylhydrazine-p-sulfonic acid							
2-Chloro-6-phenyly henol and sodium salt.	60.						
Chlorosulfophenylmethylpyrazolone	62						
Chloro symmetrical xylenol	22.						
ChIorotcluene	62. 102, 144						
o-Chloro-p-toluene sodium sulfonate	$112, \mathrm{X}$						
Chloro-o-toluidine	144						
4-Chloro-2-toluidine	165						
Chlorotoluidine sulfonie acid	8, 44, 62, X, X	345, 634	72, 672	64.7	. 89		
2-Chloro-4-toluidine-5-sulfonic acid	62 -						
Chlorotolythioglyeollic acid	62, 55.144	677.624					
Chloro-4-xylolsulfuchlorisle	85.						
p-Chloroxylylthoglycollic acid . .	85						
Chromotropic acid sece 1:S-Dihydroxynapht halene-3:f-disulfonic acid). Cleve's acid (See 1-Naphthylamine-f							

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales				
			Quantity	Value	Unit value		
		Pounds	Pounds				
Cresols:							
Meta	$22, \mathrm{X}$	1,320, 513	1,25, 872	132, 991			
Para	22, 209						
Meta-para	22,179						
Ortho-meta-pa	8, 22, 122, 180, 209, X	13, 177, 035	14, 593, 732	1, 077, 318	. 07		
0-Cresotinic acid -...-							
Cresylic acid (refined)	$\begin{aligned} & 8,22,122,179,180, \mathrm{X} \\ & 142 \end{aligned}$	14, 179, 392	14, 475, 446	892, 023	. 06		
Cumidine	23, 144						
Cyanoacetylcoumarone	X						
Cyclohexylamine...	142						
Decyl benzene	142						
Dehydrothio-p-toluidine	62						
Dehydrothio-p-toluidine sulfonic acid	44, 62, 144	37, 173					
m -Diaminoanisole	225						
Diaminoanthraquinone	6, 22.85	124, 587					
2:6-Diaminoanthraquinone	62, 85, 144	59, 099					
Diaminoanthrarufin							
Diaminodibenzanthronyl	62						
4:4-Diamino-2:2-dimethyldiphenylmethane.	62, 14						
1:8-Diamino-4:5-dinitro anthraquinone.-	62						
Diaminodiphenylamine sulfonic acid...-	6, 44						
Diaminophenetol							
2:6-Diaminopyridine	176						
Diaminostilhene disulfonic acid	62, 85, 144						
1:5-Dianilidoanthraquinone-o-o-dicarboxylic acid(dicarboxylic-anthraquinone) Dianisidine							
	44, 62						
1:1-Dianthraquinone imine	62, 144						
1:1-Dianthraquinone Imine diamino	62, 85, 144						
1:1-Dianthraquinone imine-4:4-dibenzoyl diamino.	62, 144						
1:1-Dianthraquinone imine-4:5-dibenzoyl diamino.	62, 144						
1:1-Dianthraquinone imine dinitro	62						
1:1-Dianthraquinylamine.-....---.-.-.-	85						
	44, 144						
	62.144						
Dibenzanthrone.	8, 62						
2:2-Dibenzanthronyl	62.						
13:13-Dibenzanthronyl							
4:5-Dibenzoylamino-1:1-dianthraquinonylamine. Dibenzyl							
	209						
Dibenzyl aniline.	62						
Dibromoaminoanth p-Dihromobenzene	62, 85						
	60						
Dibromodihydroxy naphthalene	X						
Dibromopyrantrrone ${ }_{\text {Dichlo }}$	62						
	36						
	44, 62, 102, 142, 144, 225	140, 455					
Dichloroaniline sulfonic acid	62, 85, 144, 165	47, 749					
	62						
1:8-Dichloroanthraquinone .-.........-	62, 85						
1:8-Dichloroanthraquinone-4:5-disulfonic acid. 2.6-Dichlorobenzal chloride							
2:6-Dichlorobenzal chloride o-Dichlorobenzene	60, 62, 71, 102, 142	4, 998, 203	4, 411, 109	234, 267	. 05		
p -Diehlorohenzene	60, 62, 71, 102, 142, 199	15, 796, 756	15, 577, 113	1, 452, 198	. 09		
Dichlorobenzidine	44, 62, 144						
1:8-1)ichloro-4:5-dinitroanthraquinone -2:4-Diehlorophenol	62						
	142						
Dichlorophenylhydrazine sulfonic acid	165						
Dichlorophenylpyrazolone carhoxylic acid. Dichlorosulfophenylpyrazolone	165						
Dichlorosulfophenylmethylpyrazolone. Di-o-cresol	62, 165						
Di-o-cresol ${ }^{\text {Dieyclohexylamine }}$	X						
	142						
2:5-Diethoxy aniline	62						
DiethylaminobenzaldehyDiethyl-m-aminophenol.	85, 144						
	62, X						
Diethylaniline	62, 144						
Dicthylaniline-m-sulfonic acidDicthyl-m-toluidine.----.--	62, X						

Table 7.-Coal-tar intermediates: United States production and sales, 1999-Con.

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	Unit value-
		Pounds	Pounds		
Fluorescein					
	144				
Gamma aeid. (See 2-Amino-8-naph-thol-6-sulfonic acid.)					
H acid. (See 1-A mino-8-naphthol-3:6disulfonic acid.)					
Hexachlorobenzene	102				
Hexachlorodiphenyl oxide-.-------------------					
	X				
2:1-2:1-Hydrazine dibromoanthraquinone.					
Hydroquinone diethy	X, X				
Hydroquinone diethyl ether-..- Hydroquinone dimethyl ether.	85				
a-Hydroxyanthraquinone Hydroxy ethylethylaniline	6, 14				
	$62.85,144$,	982, 426	704, 488	\$687, 451	\$0.98.
1-Hy?roxy-4-nitroanthraquinone p-Hydroxyphenyl arsonic acid			104,	+68, 45	
p-Hydroxyphenyl arsonic acid............ Indophenol (blue and green)	62,1				
	144				
Isopropyl ester of p-toluidine sulfonie aeid. Iso resinduline					
	62				
Iso violanthrone..----------------.--	6. 62				
Laurent's acid (Seel-Naphthylamine5 -sulfonic acid).					
Lead trinitroresorcinate (lead styphnate).	X				
Leuco-1:1-dimethyldiaminoanthraquinone.					
none. Leuco indophenol BCFN..............					
Leuco quinizarin	6, 62. 144	38,878			
Maleie aeid and anb	7, 142, 144	2, 227, 613	2, 410, 738	586, 656	24
Metanilie acid	144-....-				
	8, 44, 62 ,				
Methoxy omega sulfonic acid Methylaminoanthraquinone	82				
4-M et hyl-4-aminodiphenylamine-2-sul- fonic aeid. b-Mrthylanthraquinone	144				
	8, 62,				
b-Mrthylanthraquinone 2-Mcthylhenzanthrone					
Methyleyclohexylamine -.-.....................	142				
o-Methylcyclohexylamine2-Methyl ${ }^{\text {duinnline (}}$ (quinaldine)					
	22, 144,				
Methylene bismethyl. -...........-....					
Michler's hydrol. (See Tetramethyldiaminobenz hydrol.)					
Michler's ketone. (See Tetramethyldiaminobenzophenone.)					
Naphthalene, soligifying $79^{\circ} \mathrm{C}$. or above (refined, flake). From domestic crude naphthalene	$\begin{aligned} & 8,22,62,179,194,232, \\ & \mathrm{X}, \mathrm{X} . \end{aligned}$	59, 465, 247	35, 499, 488	1, 899, 254	. 05
		31,704, 522			
From domestic crude naphthalene... From imported crude naphthalene.		27, 760, 725			
1:5-Naphthalene disulfonie acid.........	44, 62, 85, 14	363, 997			
2:6-Naplit halene disulfonic acid------...	85				
2:7 Naphthalene disulfonic acid...-......Naphthalene sodium sulfonate	62, 144,				
	85				
h-Naphthalene sulfonic acid	144				
Naphthale ne-b-thioglycollie acid	62, 8				
Naphthalene-1:3:6-trisulfonic acid] .-....-					
Naphthionic acil. (See 1-Naphthyl-amine-4-sulfonic acid.) a-Naphthol.					
	44, 62, 85, 144	757, 747	426, 356	218,353	51
a-Naphthol-3.6-disulfonic acid.-.b-Naphthol, tech	4.4, 144				
	8, 144, X				
1-Naphthol-8-chloro-3:6-disulfonic aeid (chloro 11 aeid).	14				
1-Naphthol-4-sulfonic acid (Nevile \& Winther's aeid). 1-Naphthol-5-sulfonic acid	44, 62, 144	219, 310			
	44, 62, 85, 144	166, 704			
2-Naplithol sulfonic acirl					
2-Naphthol-6-sulfonic acid (Schaeffer's acid). 2-Naphthol-7-sulfonic acid	8, 44, 62, 85, 144	185, 004	42,913	20,157	47
	4.1, 62, X	66, 807	27, 237	30,79	1. 13
2-Naphthol-7-7ulfonic acid........-.........					

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

2-Naphthol-3:6-disulfonic acid
2-Naphthol-6:8-disulfonic acid
Naphthsulton disulfonic acid 1:8:3:6
a-Naphthylamine
$\mathrm{a}-\mathrm{Na} \mathrm{N}_{\mathrm{p}} \mathrm{h}$ thylamine disulfonic acid
b-Naphthylamine
1-Naphthylamine-2-sulfonic acid (onaphthionic acid).
1-Naphthylamine-4-sulfonic acid (naphthionic acid).
1-Naphthylamine-5-sulfonic acid (Laurent's acid).
1-Na, hhthylamine-6-sulfonic acid
1-Naphthylaminc-6 and 7-sulfonic acid (Cleve's acid).
1-Naphthylamine-7-sulfonic acid
3-Naphthylaminc-8-su'fonic acid
1-Naphth ylamine-3:8-disulfonic acid
1-Naphthylamine-4:8-disulfonic acid
1-Naphthylamine-3:6:8-trisulfonic acid
2-Naphthylamine-1-sulfonic acid (Tohias acid)
2-Naphthylamine 6-sulfonic acid (Brocnner's acid).
2-Naphthylamine-3:6-disulfonic acid
2-Naphthylamine- $4: 8$-disulfonic acid
2-Naphthylamine-5:7-disulfonic acid
2-Naphthylamine- $6: 8$-disulfonic acid
2-Naphthylamine-2:3:6-1risulfonic acid
1-Naphthylamino-2-carboxylic acid anthraquinone.
p -Nitroacetanilide
3-Nitro-4-aminoanisole
4-Nitro-2-aminoanisole
5-Nitro-2-aminoanisole
Nitroaminophenol
p-Nitro-o-aminophenol
4-Nitro-4-amino-2-sulfodiphenylamine
o-Nitroaniline
m -Nitroaniline
p -Nitroaniline
p -Nitroaniline sulfonic acid
m -Nitro-p-anisidine
p-Nitro-o-anisidine
3-Nitro-4-anisidine
5-Nitro-2-anisidine
o-Nitroanisole
p-Nitroanisole
Nitrobenzene
Nitrobenzene sulfonic acid
Nitrobenzene-2:5-disulfonic acid
6-Nitrobenzimidazole
m -Nitrobenzoic acid
p-Nitrobenzoic acid.
m -Nitrobenzoyl chloride
p-Nitrohenzoyl chloride.
p-Nitrobenzoyl J acid.
3-Nitrobenzoyl-3-nitroaniline
m -Nitrobenzoyl sulfonic acid
Nitrobutyrylaminodiethyl hydroquinone.
o-Nitrochlorobenzene
0 -Nitrochlorohenzene sulfonic acid
o-Nitrochlorohenzene-p-sulfonic acid
m-Nitrochlorobenzene
p -Nitrochlorobenzene.
p -Nitrochlorobenzene-o-sulfonic acid
2-Nitro-4-chlorotoluene
m -Nitrocresol
m-Nitro-p-cresol
8-Nitro-1-diazo-2-naphthol-4-sulfonic acid.
Nitro-p-dichlorobenzene
Nitrodiphenyl ether
3-Nitro-4-hydroxy-1-phenylarsonic acid
Nitronaphthalene
Manufacturers' iden-
tification numbers
(aceording to list on
p. 58)
$44,62,85,144, \mathrm{X}$.
4
44
62,
$8,62,144$
$62, ~ X$
$6,44,62,144$
8, 44, 62, 85, 144
62, 144
$8,44,62,85 \ldots \ldots \ldots$
44, 62, 14
8. 44, 62, 85, 144
$44,62,144$
$44,62,144$
$62,85,144$
8, 44, 62, 99, X, X
$44,144, \mathrm{X}$
44, 144
44, 62, 85,144
44. 62, 85, 144

4
62, 144
44, 85
144
62,
62
6
8, 44, 14
6,2, 5
144
142
8, 44, 62, 144, 225
6, 142, 228
8. 44, 62

62, 144
6, 62, 85, 144
8.

62, 142
62, 144
8, 62.85,144.165, X
44, $6^{2}, 85,144$
X
62
62, 102
62,102,
62,85,
85
${ }_{1} 165$
62, 142
144
$6.2,142$
62, 142
6. 44, 62, 144

144
1, 62
44
85, 144
44, 142, 144, 225
165
1
$62,85,144$

$\left.-\frac{$| Produc- |
| :---: |
| tion |}{Pounds} \right\rvert\,

$\begin{array}{r} 601,098 \\ 1,102,116 \end{array}$
---.....----

$\begin{array}{r}245,577 \\ \hdashline-\cdots 203.811\end{array}$
$\begin{array}{r}363.882 \\ 398,882 \\ 4,73 \times, 923 \\ \hline\end{array}$
1, 354.206

| $-169,794$ |
| ---: | ---: |
| $-1,125,887$ |
| $1,450,950$ |

1, 40........

-

-

$\begin{array}{rr}- & 57,256,976 \\ 273,150\end{array}$

.
-

-

.

.....

201, 292

Sales

Quantity	Value	Unit value
Pounds 184,765	$\$ 92,535$	$\$ 0.50$

\qquad

Table 7.-Coal-tar intermediates: United States production and sales, 1939-Con.

Name of intermediate	Manufacturers' identification numbers (according to list on p. 58)	Produc.tion	Sales		
			Quantity	Value	Unit value
		Pounds	Pounds		
1-Nitronaphthalene-8-sulfonic acid-----					
2 -Nitronaphthalene-4:8-disulfonic acid -1-Nitronaphthalene trisulfonic acid	44, 85, 144	94, 799			
o-Nitrophenetol..........					
o-Nitrophenol-	62, 225, X				
p-Nitrophenol	$62,142,225$				
Nitrophenyl hydrazine	165				
Nitrophenyl pyrazolone carboxylic acid					
Nitrosodiethylaniline--	${ }_{6,85}^{85}, 14$				
Nitrosoethylbenzylaniline					
Nitroso-b-naphthol.	X				
Nitrosophenol	8. 20, 44, 62, 85, 144, 234	386, 173			
Nitrotoluene.	62.144				
O-Nitrotolurue	62, 85,144 6,44				
m -Nitrotoluene...	62, 144				
p-Nitrotoluene.	62, 144				
p-Nitrotoluene-o-sulfon	44, 62, 85, 144	967, 747			
Nitrotoluidine m -Nitro-p-toluid	8, 62, 99, X, X, X	785, 535	722, 026	\$872, 904	\$1. 21
p -Nitro-o-toluidine	8, 62			\$	
5-Nitro-2-toluidine	165				
Nitroxylene.-	44, 62, 14				
Oxalyl-p-nitroaniline	62, 85, 14				
Oxalyl-m-phenylenerliamin	62, 144				
Oxalyl-p-phenylenerliamine	62, 85, 144				
Oxydichlorobenzoyl benzoic acid					
Penta anthramide Pentachlorobenzene	$\begin{aligned} & 62,85,14 \\ & 102 \end{aligned}$				
Pentachlorophenol a	60, 142				
o-Phenetidine.-	62, 142				
p-Phenctidine	62, 142, X				
Phenol	$8,22,60,122,142,179$,	68, 577, 421	59, 857, 139	6, 111, 442	. 10
Phenyl-2-amino-5-naphthol-7-sulfonic acid (phenyl J acid).	$\begin{aligned} & 6,44,62,85,144,165, \\ & \text { X. } \end{aligned}$	88, 509			
Phenyl-2-amino-8-naphthol-6-sulfonic acid (phenyl gamma acid).	$\begin{aligned} & 6, \frac{44}{\mathrm{~N}} .62,85,144,165, \\ & \hline \end{aligned}$	20, 701			
Phenylammonium naphtholate.					
Phenyl ethanolamine-.					
Phenyl diethanolamine					
Phenylethyl malonic ester	$\begin{aligned} & 25, \mathrm{X} \\ & 1,25, \mathrm{X} \end{aligned}$				
Phenylethyl malonic diethyl m -Phenylencdiamine	1, 25, X $\mathrm{C}, 44,62,144,172$	783, 004			
m-Phenylenediamine sulfonic acid	44, 62, 85, 144	81,090			
p-Phenylenediamine	8, 228				
p-Phenylenediamine sulfonic	44, 8				
Phenylene nerol acid. Phenylglycine, sodium salt	60, 62,144	5, 420, 072			
Phenylhydrazine and hydrochlor	60, 69, 182				
Phenylhydrazine-o-sulfonic acicl.					
Phenylhydrazine-p-sulfonic aci	85, 165, 206				
Phenyl malonic diethyl est					
Phenylmethylpyrazolone-.-	6, 8, 60, 62, 85, 165, X				
1-Phenyl-3-methyl-5-pyrazolone (developer 7).	62,1				
Phenyl-I-naphthylamine-8-sulfonic acid	8, 62, 85, 144	299,978			
o-Phenylphenol					
Ph-Phenylphenol					
Phthalamide Phthalic acid and anhydride	62, $\mathrm{X}, 62,142,144$	44, 274, 430	20,380, 004	2, 785, 372	14
I'hthalonitrile.	62 ,				
Phthalyl chloride	142				
a-Pieoline. Picramic acid and sal	22, 179	140, 132	81,986	53, 868	66
P'iperidine......-.	62, 102, 142	14, 13			
Primuline, base	44, 85, 144				
Primuline sulfonic aci	85, 161				
Propiophenone	X				
P yrazol anthrone	62				
P'yrazolone-....	17				
Pyidine, refer (S-Mcthyl quinoline). (suinaldine yellow, base	144				
Quinoline	22				
Quinoline derivative	X				
Red K B, hase	85				
Resorrinol, tech	62, X				
Thorluline acid (See 5:5-Dihydroxy-7:7-disulfonic-2:2-dinaththylamine).					

Table 7.-Coal-tar intermediates: United States production and sales, 1939—Con.

COAL-TAR DYES

The production of $120,191,000$ pounds of coal-tar dyes in 1939 was 47 percent more than in the preceding year. Sales were 30 percent by quantity and 32 percent by value above those in 1938. Since sales in 1938 were in considerable part from inventories, the increase shown for production in 1939 is much greater than that for sales. A decided betterment in export trade, particularly during the last quarter, contributed to the improrement in sales. After satisfying the American market, dye producers had a considerable surplus for export. The quantity exported was limited largely by plant capacity.

Unclassified ${ }^{1}$ dyes constituted 17 percent of sales quantity and 32 percent of sales value of all dyes in 1939, as compared with 16 percent and 32 percent, respectively, in 1938. Sales of the bulk color, synthetic indigo, decreased somewhat in value, but increased slightly in quantity, from $11,738,000$ pounds in 1938 to $11,950,000$ pounds in 1939. The average value per pound of all dyes sold was $\$ 0.60$ in 1938 and $\$ 0.61$ in 1939. A continuation of the steady trend toward a greater production of the higher priced dyes, especially vats and azoics, more than offset a reduction of 1 cent per pound on synthetic indigo and decreased unit values in the groups of acetate silk dyes and azoic dyes. Research resulted in the development of a number of new dyes in 1939.

Production and sales of dyes by classes of application are shown in table S; and of individual dyes, grouped, as far as practicable by chemical classes, in table 9 . Totals of chemical classes that can be shown without revealing confidential information are given.

Table 8.-Comparison of United States production and sales of dyes, by classes of application, average 1925-30, annual 1938 and 1939

Class of application	Production					
	Quantity			Percent of total		
	$\begin{aligned} & \text { Average } \\ & { }_{1925-30} \end{aligned}$	1938	1939	$\begin{gathered} \text { A verage } \\ 1925-30 \end{gathered}$	1938	1939
Acetate silk	Pounds (1)	Pounds 2,072, 375	Pounds $2,584,873$		2.5	2.2
Acid.....	11, 813, 941	11,699,020	17, 700, 432	12.6	14.3	14.7
Azoic.	(1)	2, 687, 725	3, 317, 761		3.3	2.8
Basic.	4, 833,382	4, 473, 033	6, 415,693	5.1	5.5	5.3
Direct	17,983, 751	21,060,655	31, 438, 399	19.1	25.8	26.2
Lake and spirit-soluble.	1,947, 124	2, 254, 620	3, 304, 687	2.1	2.8	2.7
Mordant and chrome.-	3, 611, 603	3,058, 926	5, 236, 683	3.8	3.7	4.4
Sulfur--.........	20, 004, 635	11, 459, 927	18, 650,598	21.3	14.0	15.5
Vat, total	33, 221,072	22, 346, 618	30, 034, 981			
(a) Indigo.	27, 128, 311	11,000, 829	12, 474, 777	28.9	13.5	10.4
(b) Other	6, 092, 761	$11,345,789$	17, 560, 204	6.5	13.9	14.6
Unclassified.	587, 657	615,949	1,506, 281	. 6	. 7	1.2
Total.	94, 003, 170	81, 758, 848	120, 190,688	100.0	100.0	100.0

[^3][^4]Table 8.-Comparison of United States production and sales of dyes, by classes of application, average 1925-30, annual 1938 and 1939-Continued

Class of application	Sales					
	Quantity			Percent of total		
	Pounds	Pounds	Pounds			
Acetate silk		2. 029,625	2, 402, 148		2.3	2.1
Acid..	11,699, 667	12,416, 001	17,062, 522	12.7	14.1	14.9
Azoic.		2, 591,306	3, 144, 736		3.0	2.7
Basic	4, 709, 926	4, 417,627	5, 975, 859	5.1	5.0	5.2
Direct	17,580,927	21, 967, 120	30, 421, 361	19.1	25.0	26.6
Lake and spirit-soluble	1, 896, 821	2, 339, 341	3, 278, 102	2. 1	2.7	2.9
Mordant and chrome.	3, 558, 732	3, 452, 169	5, 325, 074	3.8	3.9	4.7
Sulfur	19, 810, 565	12,855, 450	17,310, 556	21.5	14.7	15.1
Vat, total	32, 429,018	25, 031, 204	28, 135, 476			
(a) Indigo	27, 111, 575	11,738, 149	11, 949, 582	29.4	13.4	10.4
(b) Other	5, 317,443	13, 293, 055	16, 185, 894	5. 8	15.1	14.1
Unclassified	521,625	702,991	1,438.131	. 5	. 8	1.3
Total	92, 207, 281	87, 802, 834	114. 193.968	100.0	100.0	100.0

Class of applieation	Sales					
	Value			Percent of total		
	$\begin{aligned} & \text { Average } \\ & 1925-30 \end{aligned}$	1938	1939	$\begin{gathered} \text { Average } \\ 1925-30 \end{gathered}$	1938	1939
Acetate silk	${ }^{(1)}$	\$2, 001, 844	\$2, 210, 758		3.8	3.2
Acid	\$8, 651, 526	9, 841, 787	13, 295, 598	21.9	18.5	18.9
Azoic	(1)	4, 151, 107	4, 707, 546		7.8	6.7
Direct	$3,977,258$ $9,076,783$	4,152,496	5,593, 109	10.1	7.8	8.0
Lake and spirit-soluble	1,681, 736	1,766, 708	2,298, 367	4.3	3.3	3.3
Mordant and chrome.	2, 212,390	1, 727, 669	2, 664, 749	5.6	3.3	3.8
Sulfur	3,928, 982	3, 215, 621	4,656,536	10.0	6.1	6.6
Vat, total	9, 114, 973	13, 578, 125	16, 789, 372			
(a) Indigo	3, 741, 314	1,849,621	1,842, 718	9.5	3.5	2.8
(b) Other	5,373, 659	11, 728,504	14,946, 654	13.6	22.1	21.3
Unclassified.	784, 604	691, 230	1,358, 457	2.0	1.3	1.9
Total	39, 428, 252	53,095, 563	70,223,601	100.0	100.0	100.0

${ }^{1}$ Not shown separately during 1925-30.
Table 9.-Coal-tar dyes: United States production and sales, by types, 1939
!The numbers in the third column refer to the numbered alphabetical list of manufacturers printed on page 58. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the fourth, fifth, and sixth columns indicate that the statistics of production or sales cannot be published without revealing information with regard to individual firms. The figures thus concealed, however, are included in the total]

Col-	Name of dye	Manufacturers, identificalion numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
$\begin{aligned} & \text { dex } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
	Classified Dyes nitroso dyes		Pounds	Pounds		
$\stackrel{2}{5}$	Fast printing green.					
	Nitro dyes					
10	Naphthol yellow S..	8, 44, 144 --------...--				
	AZO DYES Monoazo dyes					
16	Acid yellow G	6, 85				
17	Spirit yellow R	6, $8,54,79,85,144 \ldots$	53, 733	49,616	\$39, 951	\$0.81
19	Butter yellow	$6,8,54,79,85,144 \ldots$	31,748	34,215	22,587	. 66
21	Chrysoidine	$8,54,85,144 \ldots \ldots \ldots$ $8,85,144 \ldots \ldots$	179,925	121, 616	40.810	. 34
23	Oil orange....					
24	Sudan I.	6, 8, 54, 62, 85, 144.	332, 713.	338, 368	158,649	. 47

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939 -Con.

Col .	Name of dye	```Manufacturers' identification numbers (according to list on p. 58)```	Produc-tion	Sales		
$\begin{aligned} & \text { dex } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
26	Classified Dyes-Continued azo DYES-continued Monoazo dyes-Continued Croceine orange	44, 144	Pounds			
27		$8,41,62,85,144$	184, 500	179,517	\$44, 377	\$0.47
29	Chromotrone 2R	144				
30	Fast acid fuchsine B.	6, 144				
31	Amido naphthol red G	6, 8, 44, 62, 85, 144	475, 277	462, 995	152, 695	. $3 \overline{3}$
36	Chrome yellow 2G	6, 8, 44, 85 $\ldots \ldots$	86, 460	116, 348	50, 889	. 44
40	Chrome yellow R	6, 8, 44, 85 $6,44,85$	84,246 24,012	72,463	39, 915	. 55
52	Mordant yellow 4G Victoria violet	$6,44,85$ $8,44,62,85,144$	24, 90 9067	$\begin{array}{r}\text { 21, } \\ 93 \\ \hline 1954\end{array}$	9,080 58,755	. 42
54	Lanafuchsine.	X				
56	Chromotrope 6B	44, 144				
57	Amido naphthol red 6B	${ }_{\text {6 }}^{6,8,4} 19,42,85,144$	447, 108	436, 384	172, 238	. 39
$\begin{aligned} & 69 \\ & 73 \end{aligned}$	Toluidine red RL. Sudan II	197, $8,54,79,85,144$				
79	Ponceau 2R	$8,44,62,85,144,148$	380, 964	373, 656	151,172	. 40
84	Double ponceau R	62, 85				
88	Bordcaux B.	$8,44,85,144$	152, 250	137, 049	62, 853	. 46
90	Chromotrope 10B					
98	Chrome brown R	$8,44,85$				
99	Palatine chrome green C	85				
101	Chromate brown B	8, 172, X				
105	Acid chrome brown R	62				
110	Chrome flavine G	85				
113	Oil scarlet.	62, 85				
122	Chrome yellow 5 G	44				
126	Direct pink E2GN	62				
128	Direct pink	85, 144				
130	Direct pink EBN					
138	Metanil yellow Methyl orange.	$6,44,62,85,144$. 62.	423, 976	445, 307	237, 465	53
145	Azo flavine 2R	85				
146	Azo yellow	6, 85, 144	62, 000	70,971	41,676	59
148	Resorcin yellow	8, 85, 144				
151	Orange II	8, 44, 85, 99, 144, 148	$1,446,763$	1, 398, 618	379, 106	. 27
161	Orange R	$8,44,62,144$	$233,028$	$251,071$	72, 744	. 29
163	Lake red 4B (100 percent)	$\begin{aligned} & 44,62,14 \\ & 8,62 \end{aligned}$				
167	Lake red C (100 percent)	144				
168	Acid chrome garnet R	44, 144				
169	Chrome violet R	44, 85, 14	13,431	15,600	11,560	. 74
170	Chrome black PV	85, 144				
172	Acid alizarin black R	85				
175	Acid brown R	85				
176	Fast red A.	$8,44,62,85,144$	169, 804	145, 372	69, 340	. 48
179	Azo rubine	6, 44, 62, 85, 144	169,698	172,338	87,971 91,836	. 51
180	Fast red VR Croceine scarlet 3BX	$\begin{aligned} & 8,44,85,144 \\ & 44 \end{aligned}$	194, 355	176,061	91,836	. 52
184	Amaranth .-.	6, 44, 144	48,341	40, 250	19,581	. 49
185	Cochineal red ---------	8, 44, 85, 144		73, 974	33, 481	. 45
189	Lake red R (100 percent)	197, 44,144				
195		44, 85, 144		22, 796	10, 212	. 45
197	Chrome yellow RN Chrome blue black B	44, 85, 144				
202	Chrome blue black U-	44, 62, 85, 144	1, 700,360	1,729, 643	483, 275	. 28
203	Chrome black T.	44, 62, 85, 144	660,724			
204	Chrome hlaek A	44, 85, 144, 172	144, 243	160, 246	67,508	. 42
208	Fast acid blue R.	8, 62, 144	127,533	118,314	60, 130	.51
209	Fast aeid blue B .-...-.	62, 85, 144	47, 980	37, 849	24,346	. 64
214	Lake red D (100 percent)				39, 195	50
216 219	Chrome red B--....---	$8,44,62,85,1$ $62,85, ~$	93, 78	78, 230	39,10	
225	Direct pink R	62				
	Disazo dyes					
234	Resorein brown B	6, 8, 44, 62, 85, 144, 235	404, 828	346, 870	175,737	. 51
235	Resorcin dark brown	6. $8,44,54,85,144,235$	125, 756	125, 602	85, 540	. 68
238	Acid chrome brown G					
246	Acid black 10B.	$6,8,44,62,85,144,235$ $44,54,62, \ldots \ldots$	2, 190, 688	1, 992, 899	751, 530	. 38
249	Cloth red R	44 ,				
252	Brilliant croceine	8, 44, 62, 85, 144	371, 270	404, 898	306, 797	76
256	Cloth red 3G	8, 62				

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 58)	$\begin{gathered} \text { Produc- } \\ \text { tion } \end{gathered}$	Sales		
No.				Quantity	Value	Unit value
	Classified Dyes-Continued azo dyes-continued Disazo dyes-Continued		Pounds	Pounds		
258	Sudan IV	44, 54, 62, 79, 85, 144 \ldots				
$\stackrel{262}{267}$	Cloth red 2B Neutral gray G	6, 44, 85,144 $62, \mathrm{X}$	81, 616	79, 411	\$45, 288	\$0. 57
274	Milling orange	6, 8, 44, 85	28,168	30, 811	15,095	49
275	Cloth scarlet G	6, 8, 44, 62, 235		4, 811	4, 551	95
278	Direct fast red 8BL	$6,8,27,62,85,144,$	170, 032	188,690	388, 559	2.06
280	Scarlet EC	6, 85, 144	31,402	27, 084	27,057	1.00
288	Fast cyanine G	8, $55,144, \mathrm{X}$	76,595	72, 906	45, 279	. 62
289	Fast cyanine 5R	8. $62,85,144, \mathrm{X}$	539, 032	481, 226	272,157	. 57
290	Naphthalene acid black 4B					
294	Acid black B	144				
299	Chrome black F-...	44, 62, 85, 144		175, 763	81,375	. 46
302	Chrome blue green B Fast acid black N2B	8,62 $44,62,8$				
306	Fast acid black F	85				
307	Fast cyanine hlack B	8. $62,85,144, \mathrm{X}$	165, 025	170, 982	111,106	. 65
308	Naphthylamine black					
316	Developed blue NA	44, 62, 85, 144	234,738			
317	Developed blue B	44, 62, 85, 144				
319	Direct fast heliotrope 2B.	62, 85				
324	Developed brilliant orange GR.	62, 85, 165, X				
325	violet B	6, $44,62,85,144, \mathrm{X}$	543, 425	590,429	626, 559	1. 06
327	Direct fast scarlet 4BS	44,85				
331	Bismarck brown	8, 62, 85, 144	114, 030	86, 305	30.094	. 35
332	Bismarck brown 2R	8,44, 62, 85, 144	846, 785	824, 511	307, 644	. 37
336	Acid chrome black F					
343	Chrome fast yellow C					
349	Direct fast yentow fast yellow 4GL					
353	Direct fast pink 2BL	8, 62, 85, 144	53, 937	32, 767	58, 970	1.80
364	Paper yellow.	8, f2, 85, 144	236, 229	226, 641	170,071	. 75
365	Chrysophenine	62, 85, 144				
370	Congo red	6i, 144				
374	Direct orange TA	144				
375	Congo corinth G	$6,8,44,62,85,144$, 235.	405, 599	361, 123	234,779	. 65
376	Dircet rubinc	44, X				
382	Direct scarlet B	6, 8, 44, 85, 144, 235, X.	179,385	195, 864	174,367	89
385	Direct violet.					
387	Direct violet B	44, 62, 144				
394 395	Direct violet N	6, $6,44,62,85,144 \ldots$	118,910	108, 342	98, 200	. 91
401	Developed black BHN	$6,8,41,62,85,144$,	2, 308, 990	2, 367, 172	768, 918	. 32
405	Direct cyanine R....	144				
406	Direct blue 2B...	$6,8,44,54,62,85 \text {, }$	1, 035,526	1, 172,418	236,579	. 20
409	Dircet orange DB					
410	Chrysamine G	62.				
411	Cresotine yellow G	44, 144, 235				
415	Direct orange R	44, 62, 85				
419	Direct fast red F	$6,8,27,44,62,85$	444, 089	399, 312	254, 722	. 64
420	Direct brown M	6. $8.44,62,85,144$,	566, 046	501, 936	236, 469	. 47
423	Direct brown B	8, 235				
430	Polar red C	44, 62, 85, 144, X, X.				
431	Acid chrome red					
436	Direct brilliant red 8B	44				
441	Chrome fast yellow RD	85				
443	Milling red 2G	6, 44				
446	Direct orange RT	6, 144				
448	Benzonurpurine 4B	44, 62, 144	732, 410	733, 664	371, 925	. 51
464	Direct blue R	62				
468	Direct mauve B	144				
471	Direct blue 3R	44, 144				
472	Direct blue BX	44, 62, 144	20,663	18.930	6,698	. 35
477	Direct blue 3B	44, 54, 62, 144		145, 144	37,507	26
478	Direct orange G	6, 44, 144				
487	Acid milling red B	6, 8, 44, 85, 165, X	60. 292	57. 038	47, 527	. 86
495	Benzopurpurine 10B	44, 62, 144	43, 806	33,592	28, 877	. 86
502	Direct azurine G	6, 44, 62, 85, 144, 235	175,701	170,333	94, 729	. 56

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
$\begin{aligned} & \text { dex } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
	Classified Dyes-Continued azo Dyes-continued Disazo dyes-Continued		Pounds	Pounds		
508	Direct brilliant blue G. Direct blue RW	62 , 44,62				
515	Direct blue RW-	6, 44, 142.	136, 555	143, 037	\$110, 217	\$0.77
516	Chicago blue B					
518	Direct pure blue 6B	6, 44, 62, 85, 144	648, 750	600, 294	472, 278	79
	Trisazo dyes					
520	Direct pure blue.	8, 44, 62, 85, 144	109, 269	94, 103	46,091	. 49
533	Drect fast blue FR.	6, 44, 62				
534	Naphthogene blue 4R	85, 44, 62, 85, 144	419, 496	356, 926	171,395	. 48
544	Pluto black 5BS.	85--			1,	
552	Diazo black RS	62, 144				
561	Direct brown BT	$\begin{aligned} & 6,27,62,85,144,165, \\ & 235, X . \end{aligned}$	155, 089	192, 361	232, 208	1.21
567	Direct fast blue R					
576	Direct fast blue B	44, 62, 144				
577	Direct brown T2G					
581	Direct black EW	8, 44, 62, 85, 144, 235	8, 750,343	8, 465, 150	2, 031, 443	. 24
582	Direct black RX	8, 44, 62, 85, 144, 235	857, 953	741, 087	202,947	. 27
583	Direct green ET	$6,8,44,62,85,144,$	222, 011	186, 350	66,587	. 36
589	Chloramine green B	8, 44, 62, 85, 144, 235	157, 493	175, 489	51,397	. 29
590	Direct steel blue G					
593	Direct green B..	$\begin{aligned} & 6,8,44,62,85,144, \\ & 172,235 . \end{aligned}$	819, 676	756, 163	260,452	. 34
594	Direct green G	8, 44, $62,144,235 \ldots$	102, 794	107, 553	43,512	. 40
595	Direct olive G					
596	Direct brown 3GO	$\begin{aligned} & 6,8,44,62,85,144, \\ & 235 . \end{aligned}$	1, 013,873	928, 208	302, 332	. 33
598	Congo brown G -	6, 44, 62, 85, 144..	143, 779	146, 252	68,743	. 47
601	Congo brown R.					
	Tetrakisazo dyes					
606	Direct brown G.	8, 85, 235				
	Total classified azo dyes		39, 493, 294	38,300, 354	16, 650, 980	.43 1.07
	Total unclassified azo dye		13, 820, 165	13, 167, 898	14, 096, 081	
	Total azo dyes.		53, 313,459	51, 468, 252	30, 747, 061	. 60
620	Direct yellow R	8, 44, 55, 62, 85, 144 \ldots	345, 036	367, 698	184, 618	. 50
621	Chioramine orange G	$8,44,62,85,144 \ldots \ldots . .$. $8,62,85$	143, 176	145, 437	96, 165	. 66
622	Stilbene yellow Diphenyl catechine	$8,62,85$ 144				
631	Direct chrysoine G...					
	pYrazolone dyes					
636	Fast light yellow 2G	6, 62, 85, 144. 165				
639	Fast light yellow-...	6, 27, 44, 62, 85, 144,	298, 105	315, 004	269, 445	. 86
640	Tartrazine -	6, 8, 85, 99, 144, 165 \ldots	616, 841	647, 298	433,486	. 67
651	Pigment fast yellow C					
652	Chrome red B-...	8, 44, 62, 85, 144, X...-	205, 784	210,257	179, 876	. 86
654	---	6,144, 165				
654	Devcloped fast yellow 2 G	62.				
	Total pyrazolone dyes 1		1, 259, 721	1, 304, 386	1,064, 570	. 82
	KETONIMINE DYES					
655	Auramine.	8, 62, 144, X	1, 008, 364	931,634	814,074	. 87

${ }^{1}$ Includes unclassified dycs of this group.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
$\begin{aligned} & \text { dex } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value
	Classified Dyes-Continued TRIPHENYLMETHANE AND DIPHENYL- Naphtifylmetilane dyes					
657	Malachite green	8. $65.144, \mathrm{X}$.	$35 \pi, 355$	$358,435$	\$405, 729	\$1.13
658	Rhoduline blue 6G	85. 144				
662	Brilliant green	8, 65, X	38, 068	41, 719	58, 802	1.41
663 666	Setocyanine.-	8, 44, 62, 85, 144	105. 311	114,374	83,409	73
667	Fast acid green B	8. $85,144 \ldots \ldots$	39, 135	36,558	81, 951	2. 24
670	Acid light green	62, 85				
671	Acid glaucine blue	62, 83, 144				
${ }_{6}^{676}$	Para fuchsine..	8. $148 . \mathrm{X}$	19,656	18,564	34, 254	1.85
677	Magenta	8, 148, X $62.65,85,101,144$,		40,369 $1,010,353$	74,305 639,112	1.84
680	Methyl violet and base.	$8,62,65,85,101,144,$	1, 012, 228	1, 010, 353	639, 112	. 63
681	Crystal violet	62, 65, 85, 144				
682	Ethyl vialet	$6_{82}^{62} 85$				
691	Spist areen bluish					
696	Fast acid violct 10B	$62 . \mathrm{X}$				
698	Acid violet	8,44, 62, 85, 144, X	256, 158	270, 121	250, 170	. 93
699	Acid fast violet BG					
703	Altali blue 6B.	85				
705	Methyl blue-	148				
706	Methyl cotton blue	148			118,611	1.62
712	Soluble blue-	8. 5,144	81,571	73, 303	113, 61	1.62
714	Patent blue A.	85, 144				
720	Eriochrome azurol B.	62. $8.5,144$,	117, 650	124, 683	205, 809	1.65
722	Eriochrome cyanine R	85. 144, X				
724	Aurine -.-.-.	62				
728	Victoria blue R	62, 85.144				
735	Naphthaiene green V	$\begin{aligned} & 62,85,144 \\ & 62,144, \mathrm{X} \end{aligned}$				
737	Wool green S....--	8, 62,85 .	222, 735	191,091	100, 173	. 5
	Total triphenylmethane and diphenylnaphthylmethane dyes. ${ }^{1}$ Xanthene dyes		4, 316, 386	4, 075, 911	4, 433, 808	1.09
749	Rhodamine B	62				
749	Rhodamine B conc.	62, X				
752	Rhodamine 6G conc	62, X				
758	Fast acid violet A2R					
766	Uranine-.	8, 99, 148				
768	Eosine	8, 99, 144, 148	47, 867	46, 937	68, 920	1. 47
768	Tetrabromofluorescein (bromo acid).	8, 99, 111, 148	380, 395	306, 979	368, 788	1. 20
772	Erythrosine	148				
773	Erythrosine B					
774	Phloxine I	148				
777	Rose bengale	148				
779	Rose bengale B.					
	Total xanthene dyes.........		609, 786	557, 507	992, 056	1.78
788	Acridine orange A.	85,165	163, 756			
793	Phosphine	8, 44, 62, 55, 144, 165..		141, 040	101, 173	. 72
797	Phosphine 2G	165.16				
	Euchrysine \qquad Quinoline dyes	85, 165				
8018	Quinoline yellow.	62, 144, X	103, 471	118, 454	155,405	1.31
	Quinoline yellow KT...............	X.-.------.-.......				
	thiazole dyes					
812	Primuline.	44, 62, 144				
813	Direct pare yellow M	62,1425144				
814	Direct fast yellow.-	$44,62,85,144,161$	380,374	331,676	300, 351	. 91
815	Direct brilliant flavine ${ }^{\text {S }}$					
${ }^{1}$ Includes unclassified dyes of this group.						

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939—Con.

Col-	Name of dye	Manufacturers' identification numbers (according to list on p. 58)	Produc.tion	Sales			
$\begin{aligned} & \text { dex } \\ & \text { No. } \end{aligned}$				Quantity	Value	Unit value	
	Classified Dyes-Continued	$\begin{aligned} & 85,144, X_{-} \\ & 8,62,85,14 \\ & 62 \end{aligned}$	$\begin{gathered} \text { Pounds } \\ 130,564 \\ 272,839 \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 133,190 \end{gathered}$	\$203, 379	\$1.53	
	AZINE DYES						
833 841	Wool fast blue GL						
853	Acid cyanine BF						
860	Induline (spirit-soluble)	$\begin{aligned} & 8,85,144 \\ & 8,85,144 \\ & 8,85,144 \\ & 8,85,144 \end{aligned}$	$52,-775$42,760$1,284,394$$1,364,325$	54, 679	20,780	-.78.67.28.35	
861	Induline (water-soluble)			49, 732	33, 131		
864	Nigrosine (spirit-soluble)			1, 272, 311	356, 010		
865	Nigrosine (water-soluble)			1, 328,458	469, 220		
	aniline black and allied dyes						
871	Diphenyl black base	85					
873	New fast gray.	8,62,8,85					
875	Fur black						
	oxazine dyes						
883	Gallocyanine		88, 783	74, 206	92, 267	1. 24	
909	Cotton blue						
913	Nile blue BX						
	thiazine dyes				468, 175		
922	Methylene blue	8, 62, 65, 85, 144 8, 144	539, 396	521, 877		. 90	
924	Methylene green B.-						
927	New methylene blue-	$\begin{aligned} & 8,1 \\ & 85 \\ & 85 \end{aligned}$				-..-.-.--	
931	Brilliant chrome blue						
	sulfide dyes	62, 85-......---.------					
969	Carbazole vat blue R.		${ }^{(2)}$	(2) ${ }^{(2)}$	$\begin{gathered} \left(^{(2)}\right) \\ 1,814,402 \end{gathered}$		
971	Carbazole rat blue						
	Sulfur black.---------------------		$\begin{array}{r} 11,975,466 \\ 2,562,489 \end{array}$	$\begin{array}{r} 10,797,002 \\ 2,481,508 \end{array}$. 17	
	Sulfur blue.	$\begin{aligned} & 8,20,44,62,85,106, \\ & 144,200 . \end{aligned}$			1, $1,1644,402$		
	Sulfur brown	$\begin{aligned} & 8,20,44,55,62,85, \\ & 106,144,200 . \\ & 8,20,62,85,106,144 \end{aligned}$	1,793, 126	1,793, 805	496, 940	. 28	
	Sulfur green		958, 615 629, 615	$\begin{aligned} & 931,498 \\ & 625,106 \end{aligned}$	$\begin{aligned} & 652,219 \\ & 285,920 \end{aligned}$		
	Sulfur maroon	$\begin{aligned} & 8,20,62,85,106,144 \\ & 8,62,85,144 \end{aligned}$.70 .46	
	Sulfur olive	$8,20,55,62,85,106$, 144, 200.	176, 820	158, 431	46,834	- 30	
	Sulfur orange		$\begin{array}{r} 48,090 \\ 171,302 \end{array}$	$\begin{array}{r} 36,967 \\ 187,020 \end{array}$	$\begin{aligned} & 14,061 \\ & 54,216 \end{aligned}$. 38	
	Sulfur ta	$44,62,85,144$ $8,20,44,55,62,85$, 196. 8, 20, 44, 62, 85, 106, 144, 200.					
	Sulfur yellow		335, 375	299, 219	127, 547	. 43	
	Total sulfide dyes		18,650, 898	17,310, 556	4, 656, 536	. 27	
1	Alizarin		46,113	49,889	84,069	1.69	
1034	Alizarin red S. Alizarin brown						
1040	Alizarin brown	144, 236-..-----					
1043	Pseudopurpurine	85--------------------------					
1053	Acid alizarin blue SE	$\begin{aligned} & 62,85,144, \mathrm{X} \\ & 8,16,62,85,144,236, \\ & \mathrm{X}, \mathrm{X} . \end{aligned}$	$\begin{array}{r} 44,695 \\ 747,675 \end{array}$	$\begin{array}{r} -61,825 \\ 715,601 \end{array}$	$\begin{array}{r} 122,652 \\ 1,097,863 \end{array}$	$\begin{aligned} & 1.98 \\ & 1.53 \end{aligned}$	
1054	Acid alizarin blue B						
1060	Antbracene blue SWGG		$\begin{aligned} & 16, \mathrm{X} \\ & 85,144, \mathrm{X} \end{aligned}$				
$10 ¢ 2$	Anthracene blue W R						
1063	Anthracene blue WRS	16-1.-------------------					
1073	Alizarin irisol R					----	
1075	Alizarin astrol B						
1076	Cyananthrol R		357, 586	330,008	574, 761		
1078	Alizarin cyanine green F	$6,8,16,62,85,144$,				1.74	
1080	Acid anthraquinone violct B .	$16,62, \ldots$					
1085	Anthraquinone blue black B.		$\begin{array}{r} 151,830 \\ 80,793 \end{array}$	$\begin{array}{r} 157,109 \\ 59,846 \end{array}$	$\begin{aligned} & 233 \\ & 185,434 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 3.10 \end{aligned}$	
1088	Acid anthraquinone blue B.						
1091	Acld alizarin rubinc.	85-.-.....---.......--					
	Total anthraquinone dyes ${ }^{1}$.-		2,417, 229	2, 394, 534	3, 726, 580	1.56	

${ }^{1}$ Includes unclassified dyes of this group.
${ }^{2}$ Totals not included under sulfide dyes.
with the vat dyes.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1989-Con.

Indigo, synthetic (20 percent).
Indigo white (20 percent).

Indigo extract

Tribromindigo R B (20 percent)
Bromindigo blue 2BD (16 percent)
Vat blue 5B (20 percent)
Ciba pink B (20 percent)
Vat red B (12 $1 / 2$ percent)
Vat red 3B (20 percent)
Vat orauge R (10 percent) Vat fast searlet \mathbf{G} (20 pereent) Vat red R (10 percent)
Anthraguinone vat ycllow GC (121, percent).
Anthraquinone ∇ at golden orange G ($12 \frac{1}{2}$ percent).
Anthraquinone vat golden orange R ($12^{1 / 2}$ percent).
Anthraquinone vat scarlet GS ($163 /$ percent).
Anthraquinone vat dark blue BO , (25 percent).
Anthraquinone vat jade green (6 percent).
Anthraquinone vat green B and black B (1212 percent).
Anthraquinone vat violet R (25 percent).
Anthraquinone sat violet $R R$ (121_{2} percent).
Anthraquinone vat violet $B(25$ percent).
Anthraquinone vat blue RS (10 percent).
Anthraquinone vat blue 3 G (10 pereent).
Anthraquinone vat blue GCl ($81 / 3$ percent).
Anthraquinone vat blue BCS (20 percent.
Anthraquinone vat yellow $G\left(12 \frac{1}{2}\right.$ percent).
Anthraquinone vat brown B (22 percent).
Anthraquinone vat pink $\mathrm{R}(12,2$ pereent).
Anthraquinone vat sellow R (12 ${ }^{1}$ ' percent).
Anthraquinone vat red FF, extra (12^{1} 2 percent).
Anthraquinone vat briliant violet 2 B ($12^{\frac{1}{2}}$ percent).
Anthraquinone vat brilliant violet R (121_{2}^{1} pereent).
Anthraquinone vat olive R (121/2 percent).
Anthracquinone vat brown $\mathrm{R}(121 / 2$ porcent).
Anthraquinone vat brown $\mathrm{G}\left(12_{2}{ }_{2}\right.$ percent).
Anthraquinone vat red violet RRN (121 percent).
Anthraquinone vat red BN , extra (123,2 percent).
Anthraquinone vat violet BN (25 percent).
Anthraquinone vat yellow $R(121 / 2$ percent).
Anthraquinone vat blue green B (1215 percent).

INDIGOID AND THIOINDIGOID DYES

Manufacturers

identification
numbers (aceording to list on p. 58)
\qquad
$60,62,144$.
144
62,144
60, 144
$60,85,144$
60.

60
85
$60,62,85,144 \ldots-192,605$
$8,62,35,137,144 \ldots \ldots \quad 469,268$
60

$|$| Manufacturers' |
| :---: |
| identifieation |
| numbers (aceording |
| to list on p. 58) |

$8,62,85 \ldots \ldots$
$8,62,85,144 \ldots \ldots$
$62,144 \ldots \ldots$
$8,85,144 \ldots \ldots$

$6,8,62,85,144,161 \ldots$
$62 \ldots$
$8,62,85,144,161 \ldots$
$85 \ldots \ldots$
$6,62,85,144 \ldots \ldots$

$8,62,85 \ldots \ldots$.
$60,64,85,144 \ldots \ldots$
$62,55,144 \ldots \ldots$

$62,85,144$.
$62,85,144$.
62,144
62, 85
62,144
62
62.

161

60

$\substack{\text { Produc- } \\ \text { tion }}$
Q

Pounds
Pounds
635,438
272,528

Pounds 662,833	$\$ 616,506$	$\$ 0.93$
$241,0.2$	322	1.34

. 41
1.65
.59
1.11

15
\qquad
\qquad
\qquad
.95

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

${ }^{2}$ Includes black, developed black, and cellitazole black.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939—Con.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

$252005-40-5$

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939-Con.

Name of dye	```Manufacturers' identification numbers (according to list on p. 58)```	Production	Sales		
			Quantity	Value	Unit value
Unclassified Dyes-Continued					
Chrome yellow, 2G, 3G, DS, OD, R-105, SW	$8,44,62,85,144,165$.	$60,343$	$\begin{aligned} & l u n d s \\ & 57,061 \end{aligned}$	\$24,842	\$0.44
Ciba black					
Cloth fast blue	44				
Cloth red 2R,	44, 144				
Cotton black 3G	8				
Croceine scarlet FP conc	144				
Developed black G, GA, NSB, OB, OB ex., OT, ZV conc.	6, 44, 62, 85, 144, X	326, 739	316, 941	201,278	63
Developed blue B, BR, BR conc., BR ex., BRG, 5GL, 6G.	$6,44,62,144, \mathrm{X} \ldots$	326,		201,278	
Developed Bordeanx 7B, 7 B conc., $2 \mathrm{BL}, \mathrm{BGL}$, RB.	$6,62,85,144, \mathrm{X}$	205,658	209, 901	282, 158	1. 34
Devcloped brilliant green 3B, 3G.	85, 144				
Developed brilliant orange G. GG, GN.					
Developed brilliant scarlet 2BL, 2BLex. cone., 5BL, RO.	$62,85, \mathrm{X}$	82,040	77,881	161, 117	2.07
Developed brown 6G, NR, R, 3RB	62,85				
Deve loped dark brown B	X				
Developed fast blue B	44				
Developed fast brown R K	62				
Dcveloped fast red 78L	62, X				
Developed fast violet BL, 2R	62, X				
Developed iast yellow 2G	85, 144				
Developed garnet RD					
Developed green B L, 2GL, GW	62				
Developed indigo blue 4GL	62, 85				
Developed orange, GR, R, 2R, 3R, RFW, WD.	6, 62, 144				
Developed red BFW, 7BL, 7BL conc.	$6,62,144 \ldots \ldots$	9,450			
Developed rubine B, B special \ldots	85, X				
Developed scarlet A, 2BL, DIS, FW, GFW, R.	62, 144, X				
Developed sky blue B, 3GL..	85				
Developed violet BRD, 2R	6, 62				
Developed yellow 4G	62				
Diamond green SS	85				
Diazophen red	8				
Diazophen yellow	8				
Direct black 3G, 3GR , 5G, NCW	$44,85,144,235 \ldots$	118, 425	123, 463	55, 134	. 45
Direct blue BB, FF, 3G, 5G, NR	6,62, 144............-	84, 966	70,012	74, 738	1.07
Direct blue green CW					
Direct Bordeaux B, 6B Direct brilliant blue BFL	$6,85,14$ 144	224, 489	213, 935	169,941	. 79
Direct brilliant cerise	8				
Direet brilliant red 12B cone	144				
Direct brilliant violet $\mathrm{B}, 4 \mathrm{~B}, \mathrm{R}$	6, 44				
Direct brown CWR, CSW, FW, GB, G2R, G3R, K, R, RB, RY, S.	$\begin{aligned} & 6.8,44,54,144,235 \\ & \text { X. } \end{aligned}$	118, 910	100, 468	69,472	. 69
Direct catechine, GS, 3G, G conc--	6, 6				
Direct chrome black blue B.	X				
Direct chrome blue black B	85, 144				
Direct chrome brown BS	8				
Direct copper blue BR, RR, RRX	62, 85				
Direct dark blue SR					
Direct fast black B, FA, FOR ex. (1b), FRG, FOR, FTC, G, L, I, cone., P'Gex. P'rR, VE.	$\begin{aligned} & 6,44,62,85,144,235 \\ & \mathrm{X} . \end{aligned}$	655, 634	545,465	328,892	. 60
Direct fast blue FF, 3GL, 4GL, 8GL, LB, RR, LG, R, RL, SRL.	62, 85, 144, X	287, 110	315, 787	404, 969	1. 28
Direct fast brown BRL, BRLN,	$62,85,144, \mathrm{X} \ldots$	150, 376	143,784	210,002	1. 46
4GL, LABR, LG, 13R, R, 2RL, 4R, 3YL.					
Direct fast gray BL, GiL, 2GIL, R	62, 85, 144	37, 847	29,552	52,304	1. 77
1)irect fast green 2Y	62				
Direct fast light blue FF	44				
Direet fast olive brown RL.					
Direet fast orange EG, E3G, ER, G, 2G conc., 4G conc., 2GL, GT, (x., I,5G, L.7G, L.3R, RE, 6R, S.	$8,62,85,106,144, \mathrm{X}$	205, 407	241, 093	294, 494	1. 22

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939—Con.

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939—Con.

Name of dye	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
Unclassified Dyes-Continued		Pounds	Po		
Lake fast yellow 10G	62.				
Lake orange OTP.	62				
Lake pink RL.	144				
Lake red 2B	62				
Lake scarlet 2 Y L	62				
Lake yellow G, PI	62, 144				
Leather brown RR	62				
Metalized azo gray G	8				
Milling fast garnet R	X				
Milling fast red B conc., F F	X				
Milling fast yellow 5 GL conc	X				
Milling navy blue 4B.....-	144				
Milling red B, B conc., R	144, 165				
Milling yellow $\mathrm{GN}, 2 \mathrm{GCW}, 3 \mathrm{G}, \mathrm{O}$ conc., R, XN	$62,144,165$	20,030			
Monastral fast blue BS-N, GS	62,.-....				
Monastral fast green GS	62				
Mordant green SN					----
Naphthol navy blue M	44				
Naphthylamine black V	62				
Neutral blue G	$165 \ldots$				
Neutral brown RD, 2RS, RX ...	8, 62, 144, X	31,563	25,697	\$37,825	\$1.47
Neutral silk brown RA, RWA	N				
Neutral silk yellow CGA... Neutral yellow RX	X				
Nigrosine base B, N, R, 2R	144				
Oil blue......--.......-.-.	236				
Oil bronze	62				
Oil brown D, G, M, \#79, \#102	79, 144				
Oil fast black.	144				
Oil fast blue B, R	6, 144				
Oil fast orange A conc					
Oil fast red M, Y	144				
Oil fast yellow EG, 3G	62, 144				
Oil green	236				
Oil orange, $\mathrm{O}, 2 \mathrm{R}$, soluble, \#30, \#67--	8, 54, 79, 144, 233	28, 280	28,059	23, 152	. 83
Oil red, EG, EGN, G, O, OB, RO, soluble, \#322	$6,8,54,79,144,233 \ldots$	153,906	144, 486	142, 182	. 98
Oil violet	236				
Oil yellow, N, PH	8, 62, 236				
Orange Y	54				
Paper red AP	85.				
Patent blue B conc	144.				
Phenamine violet B	85				
Phenanthrene brown CR	165				
Phosphine R.	85.				
Pigment rubine $G, 3 \mathrm{G}$	85.				
Plutoform black AM.	85-- --				
Polyform dyes: Blue BRF					
Dark brown 3 BF	62				
Dark maroon GF	62.				
Orance RF	62				
Scarlet 2GF, RF	62				
Y'cllow GF-.	62.				
Pyrazoline black	165				
Pyrazoline blue 4GL, 8GL.	165				
Pyrazoline red BLW	165				
Pyrazoline yellow 4GI, R	165				
Rayon colors:					
Black B	62.				
Bordeaux B	62				
Brown G, M	62				
Navy blue N	62.				
Violet 3B	62				
Resin brilliant orange R R	144				-
Resin brilliant red R.	144				
Resin brown Z...	144				
Resorcin brown YX	54				
Rosanthrene A, R.	62				
Rosanthrene orange	62				
Rubber colors.	62				
Safranine 8B.....	144				

Table 9.-Coal-tar dyes: United States production and sales, by types, 1939—Con.

COLOR LAKES AND TONERS

Improvement in the surface-coatings and decorating trades in 1939 accelerated trade in color lakes and toners. Production was $18,154,000$ pounds, and sales were $15,577,000$ pounds, valued at $\$ 11,785,000$. In 1938 the output was $14,407,000$ pounds, of which $12,658,000$ pounds were sold for $\$ 9,403,000$. In both 1938 and 1939 toners, or fullstrength colors, constituted 67 percent of the value of total sales of the group, lakes and extended colors were 29 percent, and reduced toners 4 percent.

Statistics of production and sales of color lakes and toners in 1939 , are shown in table 10 .

Table 10.--Color lakes and toners: United States production and sales, 1939
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58 . An X signifies that the manufacturer did not consent to the publication of his itentification number with the designated product. Blanks in the third, fourth, and firth columns indicate that the statistics of production or sales cannot be published without revealing information with regard to individual firms. The figures thus concealed are, however, included in the total]

Table 10.-Color lakes and toners: United States production and sales, 1939—Con.

[^5]
MEDICINALS

Synthetic medicinals, both coal-tar and non-coal-tar, increased in production and sales in 1939.

In the coal-tar group the output in 1939 was $15,188,000$ pounds, and sales were $12,932,000$ pounds, valued at $\$ 13,711,000$, compared with production of $11,097,000$ pounds and sales of $8,885,000$ pounds, valued at $\$ 9,509,000$ in 1938. The $5,372,000$ pounds of aspirin manufactured in 1939 represents an increase of 38 percent over 1938. Production and sales of sulfanilamide about doubled. The average sales. value dropped from $\$ 1.79$ a pound in 1938 to $\$ 1.28$ a pound in 1939 . Sulfapyridine, used in the treatment of certain types of pneumonia, and synthetic ephedrine, were reported for the first time. Prior to 1939 the entire domestic supply of ephedrine had been extracted from medicinal plants imported from the Orient.

The production of non-coal-tar synthetic medicinals in 1939 was $1,668,000$ pounds. Sales were $1,483,000$ pounds, valued at $\$ 6,120,000$. In 1938 the output was $1,379,000$ pounds, and sales were $1,137,000$ pounds, valued at $\$ 2,278,000$. The much larger increase in sales value than in sales quantity in 1939 was due to a greater increase in sales of certain high-priced products than in the lower-priced commodities of the group and to the inclusion for the first time of figures for the very high-priced synthetic hormones in the group total.

Statistics of production and sales of synthetic medicinals in 1939 are shown in table 11.

Table 11.-Synthetic medicinals: United States production and sales, 1939
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58. An X signifies that the manufacturer did not consent to the publication of his identifieation number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statisties of production or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the total]

Name of medicinal	Manufacturers' identification numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR	$\begin{aligned} & 46,6,138,142 \ldots \\ & 60,142,209, \mathrm{X}^{-} \end{aligned}$	$\begin{gathered} \text { Pounds } \\ 427,983 \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 496,482 \end{gathered}$	\$116, 412	\$0. 23
Acetphenetidin					
A cetylamino-hydroxy-phenyl arsonic acid and salts (Acetarsone) (Stovarsol).	1, 140, X				
Acetylsalicylie acid (Aspirin) .-...........	$\begin{aligned} & 60,142, \mathrm{X}, \mathrm{X}, \mathrm{X} \\ & 8,32,83,140,142, \\ & \mathrm{X} . \end{aligned}$	$\begin{array}{r} 5,371,682 \\ 709,148 \end{array}$	$\begin{array}{r} 5.343,234 \\ 711,099 \end{array}$	$\begin{array}{\|r} 2,520,282 \\ 911,938 \end{array}$	1.47
p-Aminobenzosulfonamide (Sulfanilamide)					
p-Aminobenzoyl di-n-butylamino propanol (Butyn base).					
p-Aminohenzoyl di-n-butylamino propanol sulfate (Butyn sulfate).					
p-Aminobenzoyldiethylaminoethanol (Procaine).	$\begin{aligned} & 1,25,83,155,209 \\ & \mathrm{X}, \mathrm{X} . \end{aligned}$	9,218	10,588	293, 478	27.72
p - Aminohenzoyldimethylaminomethyl bu- tanol hydrochloride (Tutocain).	X				
m-Amino-p-hydroxyphenylarsine oxide bydrochloride (Mapharsen). Ammonium mandclate	X 201				
Amyl-m-cresol....	X				
Antipyrine.	1, 140				
Arsanilic acid.			233	27, 782	119.24
Arsphenamine	$\begin{aligned} & 1, \\ & \mathrm{I}, 5,132,140,201, \\ & \mathrm{X} . \end{aligned}$	328			
Barbituric acid derivatives:	X, X				
Cyclohexenylmethylmethyl barbituric acid and salt.					
l'henoharbital	$\begin{aligned} & 1,25,83,132,140, \\ & 209, \mathrm{X} . \end{aligned}$	109, 825	131, 182	514, 262	3.92
Phenobarbital calciu					

Table 11.-Synthetic medicinals: United States production and sales, 1999-Con.

Table 11.-Synthetic medicinals: United States production and sales, 1939—Con.

Name of medicinal	Mannfacturers' identification numbers (according to list on p. 58)	Produc-tion	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR-continued		Pounds	Pounds		
8-Hydroxyquinolin	25, 140,	Pounds			
o-Iodobenzoic acid					
o-Iodosobenzoic acid					
Iodoxyquinoline sulfonic acid (Yatren acid)					
Laevo-methylaminoethanol catechol (Epinephrine). Lithium benzoate					
Lithium salicylate					
Magnesium benzoat	X				
Magnesium salicylat	60, 132, X	3, 791	4,656	\$4, 691	\$1.01
Mandelic acid		42, 423	37, 274	68, 509	1.84
Menthyl salicylate	209 ,				
2-Methyl-6-chloro-9-diethylaminopentylamino anisidine.					
Methyl-m-amino-p-hydroxy benzoate (Orthoform).					
Methylene-citrylsalicylic acid (Novaspirin)	X				
Methylene disalicylic acid derivative (Formidine).					
p-Methylphenyl cinchoninic ethyl ester (Neocinchophen).	1, 8, 25	5,560	4,747	47, 152	9.93
Mono n-amylaminoethyl p-aminobenzoate (Amylcaine).					
Monoisobutylaminoethyl p-aminobenzoate (Monocaine).	155				
Neoarsphenamine -................................-	1, $\frac{59}{\mathrm{X}}$, 132, 140, 201,	9,686	9, 609	903, 685	94.05
Neo-silver arsphenamine					
Neo-synephrin hydrochlo	X				
Nicotinic acid	83, 86, 140, 149				
Nicotinic acid amide					
Oxyquinoline henzoat	25, 140				
Oxyquinoline citrate	140				
Oxyquinoline sulfate	25, 140				
Oxyquinoline tannate					
Phenolphthalein	142, 164, X				
Phenolsulfonates (calcium, sodium, zinc, etc.)	132 ,				
Phenyl isocyanate b-Phenylisopropyl					
Phenyl mercuric acetate	70, 93				
Phenyl mercuric benzoate					
Phenyl mercuric chloride	93				
Phenyl mercuric hydroxid	70, 93				
Phenyl mercuric nitrate	70, 93				
Phenyl-propanolamine hydrochloride (Propadrin hydrochloride).					
2-Phenylquinoline-4-carboxylic acid (Cinchophen) (Phenyl cinchoninic acid).	8, 25.				
Potassium oxyquinoline sulfate	25				
Propyl p-aminobenzoate	X				
Pyramidon and trichloroethyl alcohol urethane compounds.					
Pyridine-b-carboxylic acid diethylamide					
Resorcinol Resorcinol monoacetat	62, X				
Salicylic acid	60, 142, X	4, 259, 675	2, 307, 174	562, 437	. .
Salicylic acid acetyl-p-amino phenolate	X				
Salol.	60				
Sllver arsphenamine	1, X				
Sodium diphenyl hydantoinate (Dilantin)	X, X				
Sodium o-iodohippurate.					
Sodium methylene sulfonamino-hydroxyphenyl arsonate (Aldarsone).					
Sodinm salicylate.-...	60, 142, X	497, 234	519, 266	215,028	. 41
Sodinm p-toluene sulfochloramide (Chloramine T).					
Sodium succinate					
Strontium salicylate	60, 132,				
2 -Sulfanilamido pyridinc (Sulfapyridine)	8, 140				
Sulfanilamide (Sce mide).					
Sulfoarsphenamine	1, 59, 132, 140, X.	169	135	20,987	155. 46
Tetrachloropluenol					
Tetraiodophenolphthalein and sodium salt (lodeikon) (Antinosin).	$25,32,69,132,140 \text {, }$	11, 192	6,250	101,643	16.26
Theocalcin....-	140.				
Theophyllin					

Table 11.-Synthetic medicinals: United States production and sales, 1999-Con.

Table 11.-Synthetic medicinals: United States production and sales, 1939—Con.

Name of medicinal	Manufacturers' identification numbers (according to list on p. 58)	$\begin{aligned} & \text { Produc- } \\ & \text { tion } \end{aligned}$	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Hexamethylenetetramineanhydromethylene	X.				
Hexamethylenetetramine tetra iodide					
Iodoform -	132, 140, 149	12,498	11,479	\$42, 224	\$3.68
Iodomethane sulfate sodium					
Lithium lactate -	108.				
Menthol (synthetic)	${ }^{209}$, X, X				
Menthol ester of valeric acid (Validol) Methyl iodide	$\begin{aligned} & 155, \mathrm{X} \\ & 69,70,132,140 \end{aligned}$	1,513	1,215	4,725	3.89
Methylene citric acid				4,	
Methylene iodide	69, 140, X				
Progesterone (Proluton)					
Sodium bismuth-thioglycollate (Thiobismol)	X				
Sodium formaldehyde sulfoxylate	X				
Sulfonethylmethane.	132				
Sulfonmethane	${ }_{62} 132,140$, X	75,081	66, 236	22,355	. 34
Testosterone (Oreton-F)	186				
Testosterone propionate (Orcton)	186				
Theobromine sodium acetate	132, 149				
Theophylline and derivatives:					
Base --.-.-.-.-.-.-.-.-.	$25,132, \mathrm{X}$.-.....				
Ethylenediamine (Aminophylline)	$\begin{array}{r} 10,25,61,83, \\ 173, \mathrm{X}, \mathrm{X}, \mathrm{x} \end{array}$	16, 294	6,958	91, 880	13. 20
Methylglucamine (Glucaphylline)					
Sodium acetate	83, 132,				
Thiamin chloride (Vitamin B)	100,				
Thioethamyl sodium					
Thymol.	X, X				3.43
Tribromomethane (Bromoform)	60, X	5,829	7,155	24, 575	3.43
Tribromotertiarybutyl alcohol (Brometone).					
Trichlorotertiarybutyl alcohol (Chloretone) (Chlorobutanol).	25, 140, X, X, X, X	18,068	7,799	23, 111	2.96
Uric acid and potassium acid salt.-					
Total non-coal-tar medicinals:					
Those for which individual statis tics are shown.					
Those for which individual statistics cannot be shown.		1, 509, 349	1,350, 040	5, 192, 326	3.85
Grand total.		1,668, 226	1, 482, 592	6, 119,713	4.13

FLAVORS AND PERFUME MATERIALS

Synthetic flavors and perfume materials, both those derived from coal tar and those obtained from non-coal-tar raw materials, advanced in production and sales in 1939. Of the output in 1939 of $5,349,000$ pounds of those of coal-tar origin, 4, 938,000 pounds were sold for $\$ 4,447,-$ 000 , representing increases of 39 percent in production, 35 percent in sales quantity, and 32 percent in sales value over 1938. Sales of coumarin advanced 45 percent with a decline in value from $\$ 2.51$ a pound in 1938 to $\$ 2.34$ a pound in 1939. Sales of vanillin increased 33 percent by quantity and 19 percent by value.

The output of non-coal-tar flavors and perfume materials in 1939 was $2,137,000$ pounds. Sales were $2,233,000$ pounds valued at $\$ 1,588,000$. Production was 45 percent more than in 1938 , while sales were up 72 percent by quantity and 101 percent by value. Among the products that advanced in production and sales were anisic aldehyde, citral, geraniol, geranyl acetate, ionone, and terpineol. 'The production of heliotropin was less in 1939 than in 1938.

Statistics of production and sales of synthetic organic flavors and perfume materials in 1939 are shown in table 12.

Table 12.-Synthetic flavors and perfume materials: United States production and sales, 1939

TThe numbers in the second column refer to the numbered alphabetical list of manufacturers printed on P. 58. An X significs that the manufacturer did not consent to the publication of his identification number with the designaterl product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published without resealing information in regard to individual firms. The figures thus concealed, however, are included in the total]

Table 12.-Synthetic flavors and perfume materials: Unitcd States production and sales, 1939-Continued

Table 12.-Synthetic flavors and perfume materials: United States production and sales, 1939-Continued

SYNTHETIC RESINS

The total production of $213,028,000$ pounds of synthetic resins (coal-tar and non-coal-tar) in 1939 was the highest on record, cxceeding by $82,669,000$ pounds the output in 1938 , and by $49,997,000$ pounds the previous peak in 1937. The 1939 production, by principal uses, was $54,807,000$ pounds for molding and casting, $18,411,000$ pounds for laminating, $100,180,000$ pounds for paints and varnishes, and $39,-$ 630,000 pounds for other uses. Corresponding figures for 1938 are $33,538,000$ pounds for molding and casting, $10,189,000$ pounds for laminating, $56,528,000$ pounds for paints and varnishes, and 30,104,000 pounds for other uses.

The $179,338,000$ pounds of resins of coal-tar origin in 1939 exceeded by 68 percent the output in 1938. Alkyd resins were up 87 percent and tar acid resins 58 percent.

The production of non-coal-tar synthetic resins in 1939 was $33,690,-$ 000 pounds, or 44 percent more than in 1938. The rapid expansion in the use of urea resins for surface coatings resulted in an increase in their production of more than 100 percent. An increase of several fold in sales of the vinyl acetyl resins, higher in price than other non-coal-tar resins, resulted in a change in the average unit value of sales of all non-coal-tar resins from $\$ 0.41$ in 1938 to $\$ 0.46$ in 1939. The average value per pound of sales of urea resins decreased from $\$ 0.44$ to $\$ 0.36$ during the year.

Statistics of production and sales of synthetic resins in 1939 are shown in table 13.

Table 13.-Synthetic resins: United States production and sales, 1939
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of production or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the total]

Table 13.-Synthetic resins: United States production and sales, 1939-Continued

Name of resin	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR		Pounds	Pounds		
Abictic acid	97, X				
Acrylic acid esters	$62,181, \mathrm{X}$				
Ketone.-	X				
Petroleum	X, X				
Polyamide	62				
Terpenes.	X				
Urea .- -	$7.62,178,181, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}$.	16,569, 343	14.556, 232	\$5, 288, 767	\$0.36
Urea and thiourea	$\mathbf{X} \times \cdots \ldots$				
Vinyl acetal	62, X				
Vinyl acetate and chloride	$36,60,89, \mathrm{x}$				
Total non-coal-tar resins..		33, 689, 691	34, 876, 769	15,983, 405	. 46

RUBBER CHEMICALS

With the increase in the manufacture of rubber products, particularly tires, synthetic organic chemicals for use in compounding rubber increased greatly in production and sales in 1939. Coal-tar rubber chemicals were up 60 percent in production. The increase in those used as accelerators was 47 percent, and in those used as antioxidants 69 percent.

Statistics of total production and sales of non-coal-tar rubber chemicals are shown separatcly for the first time. Heretofore these data have been included under the miscellaneous non-coal-tar chemicals group to avoid revealing confidential information. These non-coal-tar rubber chemicals increased considerably in production and sales, but less than did those of coal-tar origin.

Statistics of production and sales of synthetic rubber chemicals are shown in table 14.

Table 14.-Synthetic rubber chemicals: United States production and sales, 1939
IThe numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58. An X signifies that the manufacturer did not consent to the publication of his identification nmmber with the designated product. Blanks in the third, fourth, and fifth columns indieate that the statisties of production or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the total]

Table 14.-Synthetic rubber chemicals: United Slates production and sales, 1939-Continued

Name of ehemical	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR		Pounds	Pounds		
Accelerators-Continued. Other-Continued.					
Benzothiazole thiobenzoate	142				
Benzothiazyl disulfide .-.......					
Benzothiazyl-2-sulphenethylamide.					
Carbon disulfide on methylene dimethyleyclohexylamine.	142				
Carbon disulfide on methylene dipiperidine.	142				
p-p'Diaminodiphenylmethane --.	X				
Dibenzothiazyldimethylthiolurea.					
D jbenzothiazyldimethylthiolurea, diphenylguanidine phthalate and anhydroformaldehyde aniline.					
Dibenzylamine -...-.........--	X				
Dimethylethylenediphenyldithiocarbamate lead salt.					
Dinitrophenylbenzothiazyl sulfide plus diphenylguanidine acetate.					
Dinitrophenyldimethyldithiocarbamate.					
Dinitrophenyl ester of mercaptobenzothiazole.					
Diphenylcarbamyl dimethyldithiocarbamate.	X				
Diphenylguanidine...--.---------	7, 60, 62, 142	1, 852, 136	1, 234, 817	\$412. 183	\$0.33
Diphenylguanidine acetate	${ }^{142}$				
Diphenylguanidine oxalate-..	${ }_{142}$, X				
Diphenylguanidine phthalate -.--					
Dhenyl ester of mercaptobenzothiazole.	142				
Diphenylguanidine phthalate, diphenylguanidine and dinitrophenyl ester of mercaptobenzothiazole.	142				
Di-o-tolyguanidine.--.------....--					
Di-o-tolylthiourea	142				
Hexamethylenetetramine ester of mercaptobenzothiazole.					
Mercaptobenzothiazole .-.-....--	142, 62				
Mercaptobenzothiazole on benzyl chloride addition of hexamethylenetetramine.					
Mercaptobenzothiazole-cyclohexylamine.					
Mercaptobenzothiazole methylene aniline.					
Mercaptobenzothiazole methyl-ene-o-toluidine.	X.				
Mercaptobenzotriazole lead salt					
Mercaptobenzothiazole sodium salt.	142 ,				
Mercaptobenzothiazole zine salt	62. 142, X				
Methylene mercaptobenzothia- zole.					
Methylene-p-toluirline (anhydroformaldehyde p-toluidine).	$62, \mathrm{X}, \mathrm{X}$				
Piperidine penta methylene dithiocarbamate and jotassium salt.					
Reaction product, mercaptoben-					
zothiazole-formaldehyde-cresy-licacid-hevamethylenetetramine.					
	62,144142,144				
Thiocarbtoluide					
Triplenylguanidine	142, 14				

Table 14.-Synthetic rubber chemicals: United States production and sales, 1999-Continued

Table 14. Synthetic rubber chemicals: United States production and sales, 1939-Continued

Name of chemical	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
(B) Non-Coal-tar-continued		Pounds	Pounds		
A ccelerators-Continued. Xanthates:					
Chloronaphtha .-.........					
Di-n-butylvantho disulfide Potassium amyl					
Potassium butyl					
Potassium ethyl.					
Potassium isopropyl					
Potassium pentasol					
Sodium butyl					
Sodium ethyl					
Zinc butyl.-.					
Zinc isopropyl.					
Total non-coal-tar rubber chemicals.		13, 122, 206	11, 896, 450	\$3,086. 119	\$0. 26

MISCELLANEOUS CHEMICALS

The miscellaneous coal-tar chemicals group includes all unrelated commodities and groups of commorlities not properly classifiable under any of the specified groups. Although the groups are comparable for 1938 and 1939 as to classifications of individual commorlities, a comparison of group totals is of little significance bccause of the heterogeneous nature of the products making up these totals. The production of coal-tar textile chemicals increased from 5,791,000 pounds in 1938 to $9,452,000$ poumsls in 1939. Sales advanced proportionately. Hydroquinone, shown under photographic chemicals, is the photographic grade only. The technical grade is included under coal-tar intermediates. Plasticizers of coal-tar origin are shown separately as a subgroup for the first time.

The miscellaneous non-coal-tar group includes the bulk of the non-coal-tar synthetic products and consists of industrial chemicals that cannot be grouped as medicinals, aromatic chemicals, rubber chemicals, or resins. The output of miscellancous non-coal-tar synthetic organic chemicals in 1939 was $2,984,038,000$ pounds as compared with $2,383,168,000$ pounds in 1938 . In this group some of the important products that advanced in production were acetic acid 23 percent, acetic anhydride 58 percent, butyl alcohol 56 percent, carbon tetrachloride 16 percent, and isopropyl alcohol 27 percent. Sales of acetone were up 50 percent, and of synthetic methanol 39 percent. Commodities representing a large part of the total production of miscellaneous non-coal-tar products cannot be shown separately without revealing confidential information. Among such products in 1939 were: Synthetic camphor, crotonaldehyde, synthetic ethyl alcohol, ethyl chloride, ethylene dibromide, ethylene dichloride, ethylene glycol, synthetic methanol, and tetracthyl lead. Non-coal-tar plasticizers are shown as a subgroup for the first time.

Statistics of production and sales of miscellianeous synthetic organic chemicals are shown in table 15.

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1959
[The numbers in the second column refer to the numbered alphabetical list of manufacturers printed on p. 58. An X signifies that the manufacturer did not consent to the publication of his identification number with the designated product. Blanks in the third, fourth, and fifth columns indicate that the statistics of prodnction or sales cannot be published without revealing information in regard to individual firms. The figures thus concealed, however, are included in the total]

Name of chemical	```Manufacturers' irlentification numbers (ac- cording to list on p.58)```	Production	Sales		
			Quantity	Value	Unit value
(A) COAL-TAR					
Amino diethyl hydroquinone	X				
Benzoate of ammonia	102, 142				
Benzoate of soda	$\begin{aligned} & 62,102,142,209, \\ & \mathrm{X} . \end{aligned}$				
Benzoyl peroxide	X				
Benzylated phenol (Santoplens) -.....	$142 \ldots$				
Biological stains and chemieal indicators	$\begin{aligned} & 96, \mathrm{~J} 23,14,211 \\ & \mathrm{X}, \mathrm{X} . \end{aligned}$				
Butyl eateenol	142.....				
Cyclanol...	62				
Cyclohexane	22				
Cyelohexanone	22, X				
Cyclohexanyl acetate	224				
Decahydronauhthalene (Decalin)	62				
Diamylhydroquinone.	142				
Diphenylethane porymer					
a-a-Dipyridyl..........--					
Gases (poisonons, tear, ete.): Chloroace tophenone					
Chloropierin.	S, X				
Diphenylamine ehlorarsine	X				
Gaboline antioxidants	62				
Hexalin (Cyclohexanol)	22, 102, X				
Inseeticides (synthetic):					
Aromatie thioeyanates	J02, 117				
Other	203 .-.				
Lauryl jeyridinium chlor	102		--------		
Methyl cyclohesane					
Methyl cyelohexanone	22, i2, 102				
Methyl hexalin (Methyl eyclohexanol)	22, 12, 102				
Naphthanil red for printing	62				
Naphthanil searlet for printing	62				
o-Phenyl mercajtobenzot hiazole	142				
Phenylmercuric acetate.	93				
Phenylmerenric chloride	93				
Phloroglucinol.					
Photographie chemicals, total		2, 12I, 041	1, 716, 241	\$1,847.694	\$1.08
p-Aminophenol sulfate...	70				
Benztriazol	70				
Catechol (Pyrocatechin)	142, X				
Chkoro hydrocuinone	70, 236				
Diaminophenol hydrochloride (Amidol).	70, 225				
	$\begin{aligned} & 62.225,236, \mathrm{x}, \\ & \mathrm{x} . \end{aligned}$	1, 441, 329,	1,389,022	1,139, 880	. 82
p-Hydroxy phenylglycine	$69,70, x, X$				
Methyl p-aminophenol sulfate (Metol) (Rhodol).	$62,69,225,230$	275, 186	290, 537	636, 319	2. 19
$\mathrm{N}-\mathrm{N}^{\prime}-\mathrm{N}^{\prime \prime}$ tri (2-methyleyclohexyl) diethylenctriamine.					
o-Phenylenedlamine .-............	225				
Phthalide					
Plasticizers, total .		23, 839, 211	19, 299,337	4,089,378	. 21
Ethyl ortho-para-toluene sulfonamide (Santicizer 8).	142				
Phthalates, total		15, 753,079	11,334, 218	2,227,078	. 20
Carbitol.	157				
Diamyl	115, 218				
Dibutoxy ethyl	62, 157				
Dihutyl	$\begin{aligned} & 7,53,62,115,142, \\ & 218 . \end{aligned}$	7,923,731	5. 6 fit1, 733	942,134	. 17
Dieyelohexyl	62				
Diethoxy ethyl	157				
Diethyl...-.	$\begin{aligned} & 7,53,115,142, \\ & 218, \mathrm{X} . \end{aligned}$	1,812,925	1,373,457	240,072	
Dimethoxy ethyl	62, 157....				
	$7,53, \quad 115, \quad 142,$				

[^6]Table 15.-Miscellanoous synthetic organic chemicals: United States production and sales, 1939-Continued

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1939-Continued

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1939-Continued

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1939-Continued

Name of chemical	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Ferrous lactate	132, 193				
Formaldehyde (40 percent)	$45,62, \mathrm{X}, \mathrm{X}$	134, 478, 827	91, 159, 551	\$4, 060, 666	\$0.04
Formamide Formic acid (90 percent)	$\begin{aligned} & 62 \\ & 62, \end{aligned}$				
Furfural					
Furfural derivatives:					
Furfuryl alcohol	177, X				
Furoic acid	177				
Itydrofuramide	177				
Tetrahydrofurfuryl alcohol	177, N				
Gallic acid, tech	69, 132, 236	145, 338			
Glyceryl monostearate	$50.117, \mathrm{X}, \mathrm{X}$				
Glyceryl distearate	117				
Glyceryl monooleate	50				
Glyceryl trihydroxy stearate	62				
Glycol bori-borate.-.-.....	X				
Glycol stearate.	50, 117, X				
Guanyl-nitrosamine-guanyl-tetrazene	X				
Heptadecanol --..---.-.-.-.-.-.-.-.					
Heptane.-.-	36				
Hexachloroethan					
Hexaldehyde	36				
Hexamethylenetetramine, tech	62, X				
IIexyl acetate (sec)					
IIexyl alcohol (n and see)	$36,62, \mathrm{X}$				
Higher acetates (above hexyl)	X				
Higher alcohols (containing more than 5 carbon atoms).	$62, \mathrm{X}$				
Iligher ketones.	62				
Jigher methacrylates (above methyl)	62				
Hydrazine sulfate	182				
Hydrocarbons (high boiling)	62				
Hydroxyethyl ethylenediamine	36				
Hydroxylamine hydrochloride	182, X				
Mydroxylamine sulfate...	182				
Insecticides	115, 203, 218, X				
Isobutyl propionate					-----
Isobutyraldehyde					
Isobutyric acid	62				
Isophorone	36				
Isopropanolamines					
Isopropyl acetate	36, 194, X				
Isopropyl alcohol (1sopropanol)	36, 194, X	179,062, 266	$18,407,564$	816,373	. 04
Isopropyl hromide	$60, \mathrm{X}$				
1sopropyl chloride	102.				
Isopropyl ether	36, 194, X				
Lactic acid:					
Edihle (100 percent) Medicinal (100 percent)	9, 14, 47, 62, 193	1, 609, 094	1,280, 235	270,327	. 21
Medicinal (100 percent) Technical (100 nercent)	11,62 $9,14,47,62,193$				
Laurylamine and hydrochloride	$9,14,47,62,193$ 62	1,530, 4.0	1, 439,401	165,312	. 12
Levulinic acid	X				
Malonic acid	60, X				
Mannitan laurate	19				
Mannitol	19				
Melamine	X				
Mesityl oxide	36, 53, 194				
Methacrylic acid	62				
Methanol (synthetic)	36, 45, 53, 62		136, 407, 086	4,836,639	. 04
Methyl acetate	62, 150).				
Methyl acetoacetate	36.				
Methyl borate	62.				
Mcthyl bromide	60				
1-Methyl butyl hromide	1				
Methyl ehloride (Chloromethane) (100 percent).	62, 168, 227, X	3,021,078	2,917,513	981,926	. 33
Methyl dichlorostearate.....-.-.-.-.	X				
Methyl formate	53, 62, 115				
Methyl isobutyl earbinol	3 f.				
Methyl isobutyl carbinol acetate	36				
Methyl isobutyl ketone..	36, 194				
Methyl lactate.	53				
Methyl methaerylate	62				
Methyl propyl ketone	N				
Methyl stearate.	102, X				
Methyl succinate.-					

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1939-Continued

Name of chemical	Manufacturers' identification numbers (according to list on p. 58)	Production	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Methylamyl ket					
Methylethyl ketone	36, 194, X				
Methylene chloride (Dichloromethane).-	24, 60, 62, 227				
Monoethanolamine and hydrochloride ...					
Morpholine.					
Mucochloric acid	X				
Nickel formate.					
Organic mercury compound (Seed disinfectant).					
	$\begin{aligned} & 87,143,158,226, \\ & \mathrm{X} . \end{aligned}$	10, 416, 269	11, 854, 176	\$1, 168, 369	\$0. 10
Paracetaldehyde	150				
Paraformaldehyd	62, X				
Pelviren acid Pentachloroethane					
Pentzerythritol	150				
Phorone.					
Plasticizers, total		6,031, 548	5.069.738	1,674,049	. 33
Butyl stearate	53, 117				
Camphor (synthetic)	62, 147				
Dibutyl oxalate.	53, 218				
Dibutyl sebacate	53, 62, 181				
Dibutyl tartrate Diethylene glycol monostear	$\begin{aligned} & 53,62,117 \\ & 50,117 \end{aligned}$	23,354	23.197	10,197	. 44
Itiethylene glycol distearate.	50, 111^{-}				
Glycersl tripropionate					
Tributyl borate.					
Tributyl citrate	53				
Tributyl phosphate	142				
Triethyl citrate	164				
Triethyl phosphate --......	53, 142				
Triethylene glycol dihexoate					
Triglycol dioctoate					
Polyethyleneamines	26, 36				
Polyethylene glycol	36				
Polyoly cerol	142				
Polymycerol-abietic acid compound	142				
Polypropylene glycol	36.				
Propionic acid	62, X				
Propionic anhydride	36, X				
Propionyl chloride	102				
n-Propyl acetate					
n - Propyl alcohol (Propanol)	62				
Propylene chlorohydrin	36				
Pronylene diamine	26, 36				
Propylene dichloride	36, 60				
Propylene glycol.	36, 62				
Propylene glycol monolqurate	117				
Propylene glycol monostearate	117				
Pronylene oxide					
Pyrogallic acid (Pyrogallol)	69, 132, 236	49, 770	60, 807	84,955	1. 40
Research chemicals	32, 69, 189				
Rubber, synthetic	60.62				
Sodiun formate	132, 226, X				
Sodium lactate.	132, 193				
sorlium methylate	136				
Sodium oxal acet	218				
Sorlitm oxalate.	87, 132, 226				
Sodium propionate	62				
Sorbitol	19				
Sorbitan monolanrate	19				
Soybean fatty acids monogly ceride	117				
Sucrose octa acetate	150				
Sulfated fatty alcohols, acids, etc. (Gardinols, Igepons, Intramines, Mapros, Xynomines).	$\begin{aligned} & 36.44,62,85,144, \\ & \mathrm{X}, \mathrm{X} . \end{aligned}$	12, 527, 302	10. 660,181	3,037,975	28
Sulfoacetic acid					
Sulfonated thiocarbanilide acetaldehyde ammonia compound.					
Tetrabromoethane (Acetylene tetra-					
bromide).					
Tetrachloroethane (Acetylene tetra- chloride).	62, 231 .-				
'Tetrachloroethylene(Perchloroethylene) .	60, 62.				
Tetradecanol	36				
Tetraethyl lead.					

Table 15.-Miscellaneous synthetic organic chemicals: United States production and sales, 1939-Continued

Name of chemical	```Manufacturers' identification numbers (ac- cording to list on p.58)```	Production	Sales		
			Quantity	Value	Unit value
(B) NON-COAL-TAR-continued		Pounds	Pounds		
Tetracthylene glycol dimethyl ether.	36	Pounds			
Tributyl phosphite.-	62				
Trichloroethylene	62, 231				
Trichloromonofluoromethane	119 .				
Triethanolamine.	36.				
Triethylene glycol	36.				
Triglycol dichloride	36				
Triisobutylene	X				
Triisopropanolamine	36				
Trimethylene hromide	60.				
Undecanol.	36				
Undecylenic acid	X				
Urea (solid).	62				
Urea in urea-ammonia solution	62				
Urea in solid fertilizer					
Vanillin (See table 12 (A) P. 40).					
Vinyl acetate .------.-. -	150, X				
Vinyl chloride					
Waxes (synthetic)					
Other miscellaneous non-coal-tar chemicals.	62, X, X, X, X..				
Total miscellaneous non-coal-tar chemicals:					
Those for which individual		894, 436, 804	570, 703, 573	\$31, 602, 748	\$0.06
statistics are shown.					
Those for which individual statistics cannot be shown.		2,089,601,004,	911,170, 222	141,317.907	. 16
Grand total...		2, 984,037, 808	, 481, 573.795	172, 920,655	. 12

APPENDIXES

A. Rescarch expenditures.
B. Imports.
C. Directory of manufacturers of synthetic organic chemicals, 1939.

APPENDIX A.-RESEARCH EXPENDITURES

Producers of synthetic organic chemicals employed 2,197 technically trained research workers in 1939, according to figures reported by the industry. The average annual salary was $\$ 3,113$ as compared with $\$ 3,32 \mathrm{~S}$ in 1938 . This lower average salary figure indicates increased placement of younger men rather than a lowering of technical salary levels. The gross cost of rescarch was $\$ 14,077,000$, and the net cost $\$ 13,064,000 .{ }^{1}$ This net cost of research was 3.5 percent of sales of all synthetic organic chemicals in 1939, as compared with 4.3 percent in 1938. Although research expenditures increased considerably in 1939, sales increased much more.

APPENDIX B.-IMPORTS

The Tariff Commission cooperated with the Department of Commerce in 1939 as in previous years, in compiling from original customs documents import data on coal-tar intermediates and finished coal-tar products. These statistics are released to subscribers semiannually by the Department of Commeree in Import Statement No. 2865, and are shown in greater detail than in the ammal publication "Foreign Commerce and Navigation of the United States." Table 16 is a summary of the issues of Import Statement No. 2865 for 1938 and 1939, and shows imports of dutiable coal-tar products for those years, classified according to use.

Table 16.—Imports of finished coal-tar products, classified by uses, and of coal-tar intermediates into the United States, 1959 and 1935

Product	1939		193	
	Quantity	Foreign invoice value	Quantity	Foreign invoice value
Coal-tar dyes:	Pounds		Pounds	
	1, 092. 569	\$1.489,200	${ }^{6} 603,145$	\$764. 629
Mordant and chrome	1,633, 458.59	1,912,022	1, 1255, 601	1,497.:12
Direct ${ }^{1}$	1. 488,748	1,992.930	824.921	1,053,058
Artificial silk	190, 665	267,254	129,357	173.44
Basic.	158. 431	172.351	119,295	135,0ヶ2
Sulfur	67. 461	62, 6.37	44.792	33. 427
Color-lake and spirit-solubl	59.656	111,273	39,816	75, 858
Other.	12.962	4.091	4. 444	8.74
Total coal-tar dyes	15.212, 457	6, 554, 940	3, 149, 520	4, 049,128
Finished coal-tar products other than dyes:				
Aromatic chemirals . .-.......	699, 593	105. 538	45, 570	71.271
Medicinals and pharmaceuticals	29, 786	215. 643	36. 221	170, 506
Color lakes	-7. 821	6. 4165	5.096	3.554
Other products	302, 551	354. 270	153. 59.5	342.008
Intermediates..	3, 096, 354	2, 827, 470	2, 357,003	1, 5ti2, 344

[^7]
APPENDIX C.-DIRECTORY OF MANUFACTURERS OF SYNTHETIC ORGANIC CHEMICALS, 1939 (ALL COMPANIES WHICH HAVE GIVEN PERMISSION TO BE IDENTIFIED AS PRODUCERS)

Number	Name of company	Office address (location of plant given in parentheses if not in same city as office)
1	Abbott Laboratories	14th St. and Sheridan Rd., North Chicago, Ill.
2	Advance Paint Co	545 West Abbott St., Indianapolis, Ind.
3	Alston-Lucas Paint	1031 North 'Throop St., Chicago, Ill.
4	Althouse Chemical Co	540 Pear St., Reading, Pa.
5	Ameceo Chemicals, Ine	75 Rockwood St., Rochester, N. Y.
6	American Aniline Products, Inc	50 Union Square, New York, N. Y. (Lock Haven, Pa.)
7	American Cyanamid Co	30 Rockefeller Plaza, New York, N. Y. (Bound Brook and Warners, N. J., Bridgeville, Pa.)
8	American Cyanamid Co., Calco Chemical Division.	Bound Brook, N. J.
9	American Maize-Products Co-------------	100 East 42d St., New York, N. Y. (Roby, Ind.)
10	American Pharmaceutical Co	525 West 43d St., New York, N. Y.
11	American Tar \& Chemical Co	5910 Freemont St., Duluth, Minn.
12	Ansbacher-Siegle Corporation	92 Chestnut Ave., Rosehank, S. I., New York, N. Y.
13	Ansul Chemical	P. O. Box 231, Marinette, W'is.
14	Apex Chemical Co.	225 West 34th St., New York, N. Y. (Elizabethport, N. J.)
15	Arco Co	7301 Bessemer Are., Cleveland, Ohio.
16	Arnold, Hofiman \& C	55 Canal St., Provitlence, R. I. (Dighton, Mass.)
17	Aromatic Products, Ine	15 East 30th St., New York, N. Y. (Springdale, Conn)
18	Artifex Products	Delaware Avc. and Elm St., Camden, N. J.
19	Atlas Powder Co	Wilmington, Del. (Atlas Point, Del., Stamford, Conn.)
20	Augusta Chemical	P. O. Boy 6fo, Augusta, Ga.
21	Bakelite Corporation	247 Park Ave., New York, N. Y. (Bloomnield and Bound Brook, N. J.)
22	Barrett Co	40 Rector St., New York, N. Y. (plants throughout United States)
23	Bates Chemical	Scottdale Rd., Lanstowne, Pa.
24	Belle Alkali Co	Belle, W. Va.
25	Benzol Products Co	237 South St., Newark, N. J. (Piseataway, N. J.)
26	Bersworth, F. C., L	609 Warerly St., Framingham, Mass.
27	Bick \& Co., In	12 h and Bern sits., Reading, Pa.
28	Birge Co., Ine	390 Niagara St., Buffalo, N. Y.
29	Brooklyn Color	Morgan and Norman Arps., Brooklyn, N. Y.
30	Brown Co..	404 Commercial St., Portland, Maine (Berlin, N. H.)
31	Brown, Andrew	5431 Sonth Riverside Drive, Los Angeles, Calif.
32	Burroughs Welleome	9 East thst St.. New York, N. Y. (Turkahoe, N. Y.)
33	Bush, W. J., \& Co., Ine	11 East 3sth St., New Y'ork, N. Y. (Linden, N. J.)
34	California Flaxseed Products Co	3135 F ast 26ith St., Los Angeles, Calif.
35	California Ink Co., Inc.-.-.--. .-. -- .-. -	545 Sansome St., San Francisco. Calif. (Berkeley, Calif.)
36	Carbide \& Carhon Chemicals Corporatiou. -	30 East 121 St., New York, N. Y. (South Charleston, W. Ta., Niagara Falls, N. Y., Whiting, Ind.)
37	Carus Chemical Co., Ine	1377 Eighth St., La Salle, Ill.
$3 \times$	Catalin Corporation of America	1 Park Ave., New York, N. Y. (Fords, N. J.)
39	Celtutoid Corporation	290 Ferry St., Newark, N.J.
40	Chemieal Manufacturing Co., Ine	Ashlant, Mass.
41	Chemico, Inc	475 Worchester Rd., Akron, Ohio.
42	Chikds Pulp Colors, Ine	43 summit st., Brookjyn, N. Y.
43	Ciba Pharmaceutical Products, I	Lafayette l'ark, Summit, N. J.
44	Cincinnati Chenical Works, Ine. -	P. O. Box 20, Evanston Station, Cincinnati, Ohio (Norwool and St. Bernart, Ohio)
45	Cities service Oil Co	Bartlesville, Okla. (Tallant, Okla.)
40	Citro Cnmmical Co	Maywood, N. J.
47	Clinton $\mathrm{Co}^{\text {co}}$	Clinton, Jowa.
48	Colasta Co., Ine	Mechanic St., Hoosick Falls, N. Y.
49	Coleman \& Bell Co	Main and Waverly Ares., Norwood, Ohio.
50	Colloid Chemical Laboratnries, lue	21 West St., New York, N. Y. (Ginttenberg, N. J.).
51	Collway Colors, tne	15 Market sit., laterson, N. J.
52	Cott's jatent Fire Arms Alanufacturing Co	17 Van Wyke A ve., Hartiord, Conn.
53	Commercial solvents Corporation	17 East 421 st., New York, N. Y. ('Terre Haute, 1nd., Peoria, Jll., Agnew, Calif.)
5.	Commonwealth Color of Cluemical Co	Nevins, Butler \& Baltic Sts., Brooklyn, N. Y.
55	Conk- Falls Wyo Works. Ine	70 I'ine st., New York, N. Y'. (Cooks Falls, N. Y.)
54	Coopers (reek C'hemical Corpuration	West Conshotiocken, t'a.
57	Crown Tar Works-Division of Public sarvice Co of Colorado.	$90015 t h$ St., Denver, Colo.
58	1)evoe \& Raynotuls 「o., lne.........	P. O. Box 328, Louisville, Ky.
59	1) iarsenot Co., Inc.	72 Kingsley St., Butfalo, N. Y.
69	Dow Chernical Co	Midlant. Mich. (Pittshurg, Calif.)
61	tubin, JI. F., Laboratories, lnc	250 East 43+1 St., New York, N. Y.

APPENDIX C.-DIRECTORY OF MANUFACTURERS OF SYNTHETIC ORGANIC CHEMICALS, 1939 (ALL COMPANIES WHICH HAVE GIVEN PERMISSION TO BE IDENTIFIED AS PRODUCERS)-Continued

Num-
ber

Durez Plastics \& Chemicals, Ine.
Durite Plasties, Ine
Dye Specialties Corporation
I yestufls \& Chemicals, Ine
Eakins, J.s. \& W. R., Inc
Eastern Tar l'roducts Corporation
Eastman Kodak Co.
Edual Iaboratories, Inc
Elko Chemical Works, Ine
Ethyl Dow Chemical Co
Ethyl Gasoline Corporation
Federal Color Laboratories, Inc. .
Federal Laboratories, Ine
Felton Chemical Co., Ine
Fine Colors Co
Florasynth Laboratories, Inc
Foster-Heaton Co
Franco-American Chemical Works
Fries Bros
Fries, George G., \& Co., Ine
Gane's Chemical Wrorks, Ine
Gebaner Chemical Co
General Aniline \& Film Corporation, Gen-
eral Aniline Works Division.
Gencral Biochemicals, Ine
General Chemical Co
General Electric Co
Goodrich, B. F., Co
Goodyear Tire \& Rubber Co
Guyan Color \& Chemical Works
Halowar Corporation
Hamilton Laboratories, Inc
Hampden Color \& Chemical Co
Harmon Color Works, Ine
Hartman Leddon Co
Hercules Powder Co
Heresite \& Chemical Co
Hilton-Davis Chemical Co
Hoffmann-La Roche, Inc
Ilolland Aniline Dye Co
Hooker Electrochemical Co
Huggins, James \& Son
Hynson, Westcott \& Dunning, Inc
Imperial Paper \& Color Corporation, Pig. ment Color Division.
Industrial Dyestuff Co., Ine
Inland Steel Co
Jamicson, C. E. \& Co
Jennison-Wright Co
Ioanite Corp
Johnson. Charles Fneu, © Co
Joliet Wall Paper Mills
Jones-Dabney Co
Kay \& Ess Co
Kay-Fries Chemicals, Inc
Kentucky Color \& Chemical Co
Kissler Chemical Corporation
Keystone Color Works, Ine
Kinetic Chemicals, Inc
Kinvedler, A., Co
Kohnstamm, II., \& Co., Ine
Kopmers Co., Tar \& Chemiral Division
LaMotte Chemiral Products Co
Lehigh Brigucting Co

Office address (location of plant given in parentheses if not in same city as office)

Wilmington, Del. (Carney's Point, New Brunswick, Perth Amboy, Arlington, and Newark, N. J., Belle, W. Va., Waynesboro, Va,, Niagara Falls, N. Y., El Monte, Calif.)
Walck Road, North Tonawanda, N. Y.
5000 Snmmerdale Ave., Philadelphia, Pa.
924 Bergen Ave., Jersey City, N. J.
1lth and Monroe Sts., St. Louis, Mo.
55 Berry St.. Brooklyn, N. Y.
Lexington Builning, Balimore, Md. (Norfolk, Va.) 343 State St., Rochester, N. Y. (Kingsport, Tenn.) 732 Federal St., Chicago, Ill. Gif Lister Ave., Newark, N. J.
Wilmington, N. C. (Kure Beach, N. C.)
405 Lexington Are., New York, N. Y.
4633 Forest Are, Now wod, Ohio
185 41st St., Pittshurah, Pa. (Tunnelton, Pa.) 599 Johnson Ave., Brooklyn, N. Y.
21-29 McBride Ave., Paterson, N. J.
1513-33 Olmstead A fe., New York, N. Y.
833-39 Magnolia Ave., Elizabeth, N.J.
Berry Ave., Carlstadt, N. J.
92 Reade St., New Y'ork. N. Y'. (Bloomfield, N. J.) 68 Beekman St., New York, N. Y. (Long Island City, N. Y.)
43 West 16 th St., New York, N. Y. (Carlstadt, N. J.)

9410 St . Catherine Are., Cleveland, Ohio.
435 Hudson St.: New York, N. Y. (Rensselaer, N. Y̌., Grasselli. N. J.)

Chagrin Falls, Ohio.
40 Rector St., New York, N. Y. (Claymont, Del. Buffalo, N. Y'.)
1 River Road, Schenectary, N.Y. (Pittsfield, Mass.) 500 South Main St., Akron, Ohio.
1144 East Market St., Akron, Ohio.
P. O. Box loss, Iuntineton, W. Va.

247 Park Ave., New York, N. Y. (Wyandotte, Mich.)
Hamilton, Ohio.
161 Armory St., Springfield, Mass.
P. O. Box 1158, Paterson, N. J. (Haledon, N. J.)

6010 Haverford Ave., Philadelphia, Pa.
Delaware Trust Bldg., Wilmington, Del.
822 South 14th St., Manitow oc, Wis.
Langdon Farm Rd., Cincinnati, Ohio.
Kingsland Rd. and Bloonfield Are., Nutley, N.J. Holland, Mich.
Buffalo A ve. and 47th St., Niagara Falls, N. Y.
239 Medford St., Malden, Mass.
1030 North Charles St., Baltimore, Md.
Glens Falls, N. Y. (Queensbury, N. Y.)
Massasoit Ave., East Providence, R. I.
38. South Dearborn St., Chicago, III. (Indiana IFarbor, Ind.)
1962-80 Trombly A ve., Detroit, Mich.
2463 Broadway. Toledo, Ohio.
10-02 44 th Drive, Long Island City, N. Y.
$10 t h$ St. at Lombard St., Philadelphia, Pa.
Logan A re., Joliet, Ill.
1481 South lith St.. Louisville, Ky.
820 Kiser St.. Dayton, Ohio.
140 Madison Are., New York, N. Y. (West Haverstraw, N. Y'.)
3 3th St. South of Bank St., Louisville, Ky.
Delaware Ave. \& Niffin St., Philadelphia, Pa.
1.51 West Gay Are., York, J'a.
duront Bldg., Wilmington, Del. (Pennsgrove, N. J.)

717 North Prince St., Lancmster. Pa.
8T Park flace, New York, N. Y. (Brooklyn, N. Y.)
Koppers Bldg., P'ittshurgh. Pa. (Plants throughout the United states.)
McCormick Bldg., Baltimore, Md. (Towson, Mat.)
Thiversal Blak., Fargo, N. Wak. (Dickinson, N. jak.)

APPENDIX C.-DIRECTORY OF MANUFACTURERS OF SYNTHETIC ORGANIC CHEMICALS, 1939 (ALL COMPANIES WHICH HAVE GIVEN PERMISSION TO BE IDENTIFIED AS PRODUCERS)-Continued

Num- ber	Name of company

Office address (location of plant given in parentheses if not in same city as office)

Lewis, John D., Inc
Lilly, Eli, \& Co
Lucidol Corporation
Lucders, George, \& Co
Macher, Willian \& Son
Magruder Color Co., Inc
Makalot Corporation
Ma!Iinckrodt Chemical Works
Marblette Corporation
Marx, Max, Colur \& Chemi-l Co--
Maschmeijer, A., Jr., Inc
Mathieson Alkali W or'ks, Inc.
May, Otto B., Inc.
Maywood Chentical Works
Mepham, Geo. S., Corporation
Merck \& Co., Ine
Minerec Corporation
Monsanto Chemical Co

Mutual Chemical Co. of America

National Aniline \& Chemical Co., Inc
Nangatuck Chemical, Division of United States Rubber Co.
Neville Co
Newport Industries. Inc
New York Color \& Chemical Co., Inc.. Division of American Dyewood Co.
New York Quinine \& Chemical Works, Inc.
Niacet Chemicals Corporation
Niagara Chlorine Products Corporation
Niagara Smelting Corporation
Nord \& Schulich. Ine
Northwestern Chemical Co
Novocol Chemical Mfg. Co., Inc
Nubian Paint \& Varnish Co
\qquad
Ohio-Aper, Inc.
\qquad
Oldbury Electro Chemical Co..
Panelyte Corporation.
Patent Chemicals, Inc
Peerless Color Co
Pennsylvania Coal Products Co
Pfanstielll Chemical Co
Pfizer, Chas., \& Co., Inc
Pharma Chemical Corporation
Philadelphia Gas Works Co
Phopnix Color \& Chemical Co
Pittsberg Chemical Co
Pittsbnrgh Plate Glass Co
Plaskon Ce., Inc
Portland Gas \& Coke Co
Poughkeepsie Dyestuff Corporation
Premo Pharmaceutical Laboratories, Inc
Puhlicker, Inc
Pylam Products Co., Ine
Pyrithum Corporation.
Quaker Oats Co
Reichhold Chemicals, Inc
Reilly Tar \& Chemical Corporation
Republic Creosoting Co
Resinous Products \& Chemical Co
Rogers, Allen F., Laboratorics, Inc
Rohm \& Haas Co
Ruberoid Co
Salvo Chemical Co
Schering Corporation

68 Traverse St., Providence, R. I. (Mansfield, Mass.)
Indianapolis, Ind.
293 Larkin St., Buffalo, N. Y.
427 Washington St., New York, N. Y.
1533 West Clearfield Si.. Philadelphia, Pa.
2385 Richmond Terrace, Port Richmond, S. I., N.Y.
262 Washington St., Boston, Mass. (Waltham, Mass.)
3600 North 2 d St, St. Louis, Mo.
37-21 Thirtieth St., Long Island City, N. Y.
192-4 Coit St., Irvington, N. J.
43 West 16th St., New York, N. Y. (Newark, N. J.)
60 East 42 d St., New York, N. Y. (Niagara Falls, N. Y.)

198-214 Niagara St., Newark, N. .t.
100 West Hunter Ave., Maywood, N. J.
2001 Lynch A ve., East St. Louis, Ill.
Rahway, N. J. (Philadelphia, Pa.)
120 Broadway, New York, N. Y. (Baltimore, Md.)
1700 South 2 d St., St. Louis, Mo. (St. Louis, Mo.,
Nitro, IV. Ya., Springfield and Everett, Mass.,
Edgewater, N. J., Monsanto, Ill., Anniston, A Ia.)'
270 Madison Are., New York, N. Y. (Jersey City, N.J.)

40 Rector St., New York, N. Y. (Buffalo, N. Y.)
1790 Broadway. New York, N. Y. (Naugatuck, Conn.)
Neville Island, Pittsburgh, Pa.
P. O. box 911, Pensacola, Fla.

Main \& Joralemon Sts., Belleville, N. J.
99 North 11th St., Brooklyn, N. Y.
4700 Pine A ve., Niagara Fall:, N. Y.
Mill si., Lockport, N. Y
420 Lexington Ave., New York, N. Y. (Niagara Falls, N. Y.)
Foot of Blanchard St., Newark, N.J.
1263 North 70th St., Wauwatosa, Wis.
2923 Atlantic Ave., Brooklyn, N. Y.
18.56 Norlh LeClaire A ve., Chicago, ml .

Nitro, W. Va.
P. O. Box 346, Niagara Falls, N. Y.

230 Park A re., New York, N. Y. (Trenton, N. J.)
57 Wilkinson A ve., Jersey City, N.J.
521-35 North Ave., Plainfield, N. J.
Petrolia, Pa.
104 Lakeview Ave., Waukegan, Ill.
81 Maiden Lane, New York, N. Y. (Brooklyn, N. Y.).

949 Broadway, New York, N. Y. (Bayonne, N. J.)
1800 North 9th St., Philadelphia, Pa.
2412 Van Ifouten St., Paterson, N. J.
Central Tower, San Francisco, Calif. (Vernon, Cailif.)
235 East Pittsburgh A ve., Milwaukee, Wis.
2112 Sylvan A ve., Toledo, Ohio.
Public Service Bldg., Portland, Oreg.
77 North Water St., Poughkeepsie, N. Y.
443 Broadway, New York, N. Y.
1800 West Lehigh Ave., Philadelohia, Pa.
799 Greenwich St., New York, N. Y.
21 Grey Oaks A ve.. Nepera Park, N. Y.
141 W. Jackson Bled., Chicago. Ill. (Cedar Rapids, Iowa.)
601 Woodward Heights Blvd., Detroit, Mich. (Elizaheth, N.J.)
1615 Merchants Bank Bldg., Indiamapolis, Ind. (Plants throughout the United States.)
1615 Merchants Bank Bldg., Indianapolis, Ind. (Flants througlout the United States.)
222 West Washington Square. Philadelphia, Pa. 72 Grand Ave., Brooklyn, N. Y.
222 West Washington Square, Phitadelphia, Pa. (Bridesburg and Bristol, Pa.)
500 Fifth Ave., New York, N. Y. (Eric, Pa., Joliet. Ill.)
Rothschild, Wis.
86 Orange St., Bloomfield, N. J.

APPENDIX C.-DIRECTORY OF MANUFACTURERS OF SYNTHETIC ORGANIC CHEMICALS, 1939 (ALL COMPANIES WHICH HAVE GIVEN PERMISSION TO BE IDENTIFIED AS PRODUCERS)-Continued

$\underset{\text { Ner }}{\text { Num- }}$	Name of company	Office address (location of plant given in parentheses if not in same city as office)
187	Schering \& Glatz, Inc	113 W'est 18th St., New Yor's, N. Y'.
188	Seeley \& Co., Ine	22 Albany St., New York, N. Y. (Farmingdale,
189	Sepin Laboratories	P. O. box 185, station A, San Diego, Calif. (Santee. Calif.)
190	Sharp \& Dohme, Inc	640 North Broad St., Philadelphia, Pa.
191	Sharples Solvents Corporation	23d \& Westmoreland Sts., Philadelphia, Pa. (W yandotte, Mich.)
192	Shawinigan Resins Corporation	Springfield, Mass. (Indian Orchard, Mass.)
193	Sheffield By-Products Co	524 West 57 th St., New York, N. Y. (Hobart, N. Y.)
194	Shell Chemical Co	100 Bush St., San Francisco, Calif. (Martinez and Dominguez, Calif.)
195	Sherwin-Williams Co	101 Prospect Ave., NW., Cleveland, Ohio (Chicago, III.)
196	Simons, Harold L., Inc	11-25 Forty-fourth Rd., Long Island City, N. Y.
197	Sinclair \& Valentine Co	611 West 129th St., New York. N. Y.
198	Smith, Kline \& French Laboratories	105 North 5 th St., Philadelphia, Pa.
199	Solvay Process Co	Syracuse, N. Y. (Geddes, N. Y.) (Sy
200	Southern Drestuf Corporation	745 Fifth A ve., New York, N. Y. (New Brunswick,
202	Standard Alcohol Co.-	N. J., Brooklyn, N. Y.) P. O. box 243, Elizabeth, N. J. (Linden, N. J.)
203	Standard Chemical Products, Inc	1301 Jefferson St., Hoboken, N. J.
204	Standard Oil Co. of California.	225 Bush St., San Francisco, Calif. (Richmond, Calif.)
205	Standard Ultramarine Co	Huntington, W. Va.
206	Stange, Wm. J., Co	2536 West Monroe St., Chicago
207	Stroock \& Wittenherg Corporation	60 East 42d St. New York, N. Y. (Newark, N. J.)
208	Sun Chemical \& Color Co. Div. General Printing Ink Corporation.	309-21 Sussex St., Harrison, N. J. (East Rutherford, N. J.)
209	Swann \& Co-	205 South 32d St., Birmingham, Ala.
210	Synthetic Chemicals. In	57 Wilkinson Are., Jersey City, N. J.
211	Synthetical Laboratories	5558 Ardmore A ve., Chieago, Ill.
212	Taylor Chemical Corporation	Phillipsburg, N. J. (Wyandotte, Mich.; Penn
213	Taylor Fibre Co.	Norristown, Pa. (Bctzwood, Pa.)
214	Todd, A. M., Co	1717 Douglas Are., Kalamazoo, Mieh.
215	Trubek Laboratories	State Highway No. 2, East Rutherford, N. J.
216	Uhlich, Paul, \& Co., Inc	157 Chambers St., New York, N. Y. (Brooklyn, N. Y.)
217	United Color \& Pigment Co	McClellan St., Newark, N.
218	U. S. Industrial Chemieals, Ine	60 East 42d St., New York, N. Y. (Baltimore, MId.)
219	Valentine \& Company, Inc	11 East 36th St., New York, N. Y. (Brooklyn, $\mathrm{N} . \mathrm{Y}$.)
220	van Ameringen-Haebler, Inc.	315 Fourth Ave., New York, N. Y. (Elizabeth, N. J.)
221	Van Dyk \& Co., Ine	57 Wilkinson Ave., Jersey City, N. J.
222	Varcum Chemical Corporat	P. O. box 433, Niagara Falls, N
223	Velsicol Cornoration	3542 North Kimball A ve., Chicago, Ill. (Marshall, III.)
224	Verley Chemical Co	1621 West Carroll Ave., Chicago, Ill.
225	Verona Chemieal Co	26 Veroua A ve., Newark, N
226	Victor Chemical Works	141 West Jackson Blyd., Chicago, Ill. (Chicago Heights, 111.)
227	Virginia Smelting Co	West Norfolk, Va.
228	Wannanaker Chemical Co	Orangeburg. S. C.
229	Warner-Jenkinson Mrg. Co	2526 Baldwin St., St Louis, Mo.
230	Watertown Mifg. Co	127 Echo Lake Rd., Watertown, Conn.
231	Westvaeo Chlorine Products Corporation.	405 Lexington Are., Xew Jork. N. Y. (South Charieston, W. Va.; Nowark, Calif.)
232	White Tar Co. of N. J., Ino	1201 Koppers Bldg., Pittsburgh, Pa. (Kearny, N. J.)
233	Wilhelm, A., Co. Division of the Glidden Co.	Third and Bern Sts., Reading, Pa.
234	Wolf-Alport Chemieal Corporation.	${ }_{1127}$ Irving Ave., Brooklyn, N. Y.
235	Young Aniline W orks, In	2731 Boston St., Baltimore, Md.
236	Zinsser \& Co., Ine	Hastings-on-fludson, N. Y.

[^0]: For Sale by the Superintendent of Documents, Government Printing Office, Washington, D. C., at the prices indicated

[^1]: ${ }^{1}$ United States Imports for Consumption of Dyes, Aromatic Chemicals, Medicinals, Intermediates, and other Coal-Tar Products, as defined in Paragraphs 27 and 28 of the Tariff Act of 1930, Semiannual Statement No. 2865.

[^2]: ${ }^{1}$ Includes benzoate of ammonia, benzoate of soda, benzoyl peroxide. biological stains and chemical indicators, poisonous and tear gases, synthetic insecticides, photographic chemicals, phasticizers, synthetic tanning materials, textile chenicals, and others.

[^3]: ${ }^{1}$ Not shown separately during 1925-30.

[^4]: ${ }^{1}$ Not classified according to Colour Index numbers.

[^5]: ${ }^{1}$ Included in all other.

[^6]: ${ }^{1}$ Photographie grade only.

[^7]: ${ }^{1}$ Includes Rapid Fast Dyes.
 Source: United States Imports for Consumption of Dyes, Aromatie Chemicals, Medieinals, Intermediates, and Other Coal-Tar l'roducts in Paragraphs 27 and 28 of the Tarilf Aet of 1930 . Semiannual State. ment No. 2865.
 ${ }^{1}$ The net cost figure is oblained by deducting from cross cost the creatits for salable products obtained iu the course of research.

