

SYNTHETIC ORGANIC CHEMICALS

United States Production

 and Sales, 1968UNDER THE PROVISIONS OF
SECTION 332 OF THE TARIFF
ACT OF 1930, AS AMENDED

UNITED STATES TARIFF COMMISSION

Glenn W. Sutton, Chairman
Penelope H. Thunberg
Bruce E. Clubb
Will E. Leonard, Jr.
Herschel D. Newsom
George M. Moore
Kenneth R. Mason, Secretary

Address all communications
UNITED STATES TARIFF COMMISSION
Washington, D.C. 20436

CONTENTS

Page

Introduction 1
Summary 3
Tar and tar crudes 7
Crude products from petroleum and natural gas for chemical conversion 15
Cyclic intermediates 21
Dyes 53
Pigments 95
Medicinal chemicals 107
Flavor and perfume materials 129
Plastics and resin materials 141
Rubber-processing chemicals 153
Elastomers 161
Plasticizers 165
Surface-active agents 173
Pesticides and related products 197
Miscellaneous chemicals 209
Appendix:
Directory of manufacturers 245
U.S. imports of benzenoid intermediates and and finished benzenoid products 265

INTRODUCTION

This is the fifty-second annual report of the U.S. Tariff Commission on domestic production and sales of synthetic organic chemicals and the raw materials from which they are made. The format of the annual report has been changed somewhat fron that used in previous years, but the general contents remain the same. The report is made up of fourtecn sections, each covering a specified group (based principally on use) of synthetic organic chemicals as follows: tar and tar crudes; crude products from petroleun and natural gas; internediates; dyes; benzenoid pigments; medicinal chemicals; flavor and perfume materials; plastics and resin materials; rubber-processing chemicals; elastomers; plasticizers; surface-active agents; pesticides and related products; and miscellaneous organic chemicals.

This report covers U.S. production and sales of all synthetic organic chemicals for which the volume of production or sales exceeded 1,000 pounds or for which the value of sales exceeded $\$ 1,000$, and identifies the manufacturers of each.

The data given in this report were supplied by approxirately 800 companies. Each reporting company has been assigned an identification symbol consisting of a combination of not more than three capital letters, selected in most instances with the approval of the manufacturer and, whenever possible, bearing some relationship to the conpany name. The identification symbols are permanently assigned, and except for such changes as nay be required, will continue to be used in future reports in this series. The company identification codes and their names and addresses are listed in the Appendix, table 1 and 2.

The raw materials referred to in this report are obtained from coal, crude petroleuri, natural gas, and certain other materials such as vegetable oils, fats, rosin and grains. With few exceptions, the report does not cover organic chemicals that are derived frori natural (vegetable) sources by simple extraction or distillation. Crude organic chcricals are derived from coal by thernal decomposition, from petroleum and natural gas by catalytic cracking and by distillation or absorption, and from other natural sources by fermentation. Production of these crude organic chemicals is the first step in the manufacture of synthetic organic chenicals. From these crudes, intermediates are obtained by synthesis or refining; most of the internediates are then converted into finished chemical products, such as medicinal chemicals, plastics and resin materials, and dyes. More than half of the total production of intemediates is not sold directly to the ultinate consuner, but is used by the producing companies themselves in their manufacturing processes. The statistics given in this report include data for all known domestic producers of the itens covered.

In this report the statistics on production of the individual chenicals reported by nanufacturers include the total output of the companies ${ }^{\prime}$ plants, i.e., the quantities produced for consumption within the producing plants, as well as the quantitics produced for domestic and foreign sale. The quantities reported as produced, therefore, generally exceed the quantities reported as sold. Some of these differences, however, are attributable to changes in inventories. As specified in the reporting instructions that the Comission sends to manufacturers, and as used in this report, production and sales (unless otherwise specifically indicated) are defined as follows:

Production is the total quantity of a comnodity made available by originat manufacture only. It is the sum (expressed in terms of 100 -percent active ingredient unless otherwise specified) of the quantities of a commodity--
(1) Produced, separated, and consuned in the same plant or establishment (a commodity is considered to be separated when it is isolated fron the reaction systen and/or when it is weighed, analyzed, or otherwise measured). Byproducts and coproducts not classified as waste materials are also included;
(2) Produced and transferred to other plants or establishrients of the same firm;
(3) Produced and sold to other firms (including production for others under toll agrecments ${ }^{1}$); and
(4) Produced and held in stock.

[^0](1) Purification of a conmodity unless specifically requested in the reporting instructions;
(2) Intermediate products that are forned in the nanufacturing process but are not isolated from the reaction system--that is, not weighed, analyzed, or otherwise measured; and
(3) Materials that are used in the process but are recovered for reuse or sale; and waste products that have no economic significance.

Sales are defined as actual sales of commodities by original manufacturers only. Sales include--
(1) Shipments of comodities for domestic use and for export, or segregation in a warehouse when title has passed to the purchaser in a bonafide sale;
(2) Shipments of a commodity produced by others under toll agreements; and
(3) Shipments to subsidiary or affiliated companies.

Sales exclude--
(1) All intracompany transfers within a corporate entity;
(2) All sales of purchased comodities; and
(3) All shimments of a commodity produced for others under toll agreenents.

The value of a sale is the net selling price, f.o.b. plant or warehouse, or delivered value, whichever represents the normal industry practice.

Data on the chemicals covered in this report are usually given in terms of undiluted materials. Products of 95 percent or more purity are considered to be 100 percent pure. The principal exceptions are the statistics on dyes and a few solvents, which are reported in temm of cormercial concentrations, and the statistics on certain plastics and resins, which are reported on a dry basis. The report specifically notes those products for which the statistics are reported in terms of commercial concentrations.

The average unit values of sales for grouns of products shown in the tables accompanying this report are the averages for products which vary widely in unit values and in the quantities sold.

Statistics are presented in as great detail as is possible without revealing the operations of individual producers. Statistics for an individual chenical or group of chemicals are given only where there are three or more producers no one or two of which riay be predominant. Moreover, even when there are three or more producers, statistics are not given if there is any possibility that their publication would violate the statutory provisions relating to unlawful disclosure of information accepted in confidence by the Commission. ${ }^{2}$

Statistics on tars and tar crudes include data furnished directly to the Tariff Comission by distillers of coal tar, water-gas tar, and oil-gas tar, and data furnished to the Division of Bituminous Coal, U.S. Bureau of Mines, by coke-oven operators.

Statistics on U.S. general imports in 1968 of benzenoid intermediates and finished benzenoid products that entered under schedule 4 , parts $1 B$ and $1 C$, of the Tariff Schedules of the United States are given in the Appendix.

Information on synonymous names of organic chemicals included in this report may be found in the SOCMA Handbook: Commercial Organic Chemical Ncmes, recently published by the Chemical Abstracts Service of the Anerican Chemical Society, or the Colour Index (2 d edition), published in 1956 by the Society of Dyers and Colourists.

[^1]Combined production of all synthetic organic chemicals, tars, tar crudes, and crude products from petroleum and natural gas in 1968 was 199,787 million pounds--an increase of 13.2 percent over the output in 1967 (see table 1). Sales of these materials in 1968, which totaled 108,766 million pounds, valued at $\$ 12,620 \mathrm{million}$, were 15.3 percent larger than in 1967 in terms of quantity and 10.1 percent larger in terms of value. These figures include data on production and sales of chemicals measured at several successive steps in the manufacturing process, and therefore they necessarily reflect some duplication.

In 1968 , production of all synthetic organic chemicals, including cyclic intermediates and finished chemical products, totaled 120,318 million pounds, or 14.9 percent more than the output in 1967 (see table 1). Production of cyclic intermediates (25,014 million pounds) was 20.3 percent larger in 1968 than in 1967; that of plastics and resin materials ($16,360 \mathrm{million}$ pounds) was 18.6 percent larger; that of rubber-processing chemicals (313 mil lion pounds) was 18.4 percent larger; and production of pesticides and related products and miscellaneous chemicals were more than 13 percent larger in 1968 than in 1967.

The output of other groups of synthetic organic chemicals which increased in 1968 compared to 1967 were elastomers (11.7 percent), dyes (9.8 percent), surface-active agents (7.5 percent), plasticizers and flavor and perfume materials (5.4 and 5.3 percent larger). Pigments increased in production by less than 1 percent and medicinal chemicals decreased by 1.6 percent.

TABLE 1.--Synthetic organic chemicals and their ras materials: U.S. production and sales, 1967 and 1968

Chemical	Production			Sales					
				Quantity			Value		
	1967	1968	$\begin{aligned} & \text { Increase } \\ & \text { or } \\ & \text { decrease } \\ & (-), 1968 \\ & \text { over } \\ & 1967^{1} \end{aligned}$	1967	1968	$\begin{aligned} & \text { Increase } \\ & \text { or } \\ & \text { decrease } \\ & (-), 1968 \\ & \text { over } \\ & 1967^{2} \end{aligned}$	1967	1968	$\begin{gathered} \text { Increase } \\ \text { or } \\ \text { decrease } \\ (-), 1968 \\ \text { over } \\ 1967^{11} \end{gathered}$
Grand total ${ }^{2}$ -	Mizlion pounds $176,541$	Miztion pounds $199,787$	Percent 13.2	Mitlion pounds $94,309$	Mittion pounds $108,766$	Percent 15.3	Mitlion dollars 11,466	$\left\{\begin{array}{c} \text { Mition } \\ \text { doltars } \\ 12,620 \end{array}\right.$	Percent 10.1
Tar	7,803	7,608	-2.5	3,547	3,580	. 9	34	36	7.7
Tar crudes-	9,588	9,845	2.7	6,132	6,418	4.7	136	138	1.4
Crude products from petroleum and natural gas-	54,438	62,017	13.9	29,453	34,189	16.1	858	920	7.2
Synthetic organic chemicals, total ${ }^{2}$	104,711	120,318	14.9	55,177	64,578	17.0	10,438	11,526	10.4
Intermediates----------------	20,793	25,014	20.3	9,461	11,328	19.7	1,000	1,131	13.1
Dyes----------------------------	206	226	9.8	199	215	8.1	332	370	11.5
8enzenoid pigments------------	53	54	. 8	43	46	6.9	108	120	10.7
Medicinal chemicals-----------	180	177	-1.6	127	123	-3.5	385	415	7.7
Flavor and perfume materials--	112	117	5.3	97	109	12.6	93	97	4.2
Plastics and resin materials--	13,793	16,360	18.6	11,977	14,397	20.2	2,673	2,907	8.8
Rubber-processing chemicals--Elastomers (synthetic	264	313	18.4	201	236	17.5	132	151	14.8
Elastomers (synthetic	3,823	4,268	11.7	3,262	3,563	9.2	874	973	11.3
Plasticizers----------------	1,263	1,331	5.4	1,162	1,239	6.6	261	280	7.2
Surface-active agents--------	3,479	3,739	7.5	1,750	1,998	14.2	317	357	12.6
Pesticides and related products	1,050	1,192	13.6	897	960	6.9	787	849	7.9
Miscellaneous chemicals------	59,696	67,525	13.1	26,001	30,366	16.8	3,476	3,875	11.5

[^2]
General

On the basis of their principal uses, the synthetic organic chemicals covered in this report are classified either as intermediates or as finished products. Finished products, in turn, are grouped as follows: Dyes, benzenoid pigments, medicinal chemicals, flavor and perfume materials, plastics and resin materials, rubberprocessing chemicals, elastomers (synthetic rubbers), plasticizers, surface-active agents, pesticides and related products, and miscellaneous synthetic organic chemicals. Most of these groups are further subdivided, according to chemical classes, into cyclic and acyclic compounds. As most of the intermediates are used in the manufacture of finished products, aggregate figures that cover both intermediates and finished products recessarily include considerable duplication.

Total production of synthetic organic chemicals (intermediates and finished products combined) in 1968 was 120,318 miliion pounds, or 14.9 percent more than the output of 104,711 million pounds reported for 1967 (see table 6). Sales of synthetic organic chemicals in 1968 amounted to 64,578 million pounds, valued at $\$ 11,526$ million, compared with 55,177 million pounds, valued at $\$ 10,438$ million, in 1967 . Production of all cyclic products (intermediates and finished products combined) in 1968 totaled 39,406 million pounds, or 17.7 percent more than the $33,479 \mathrm{million}$ pounds produced in 1967 . The output of acyclic organic chemicals in 1968 amounted to 80,912 million pounds--13.6 percent more than the 71,232 million pounds reported for 1967 .

TABLE 2.--Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, anmual 1967 and 1968
[Production and sales in thousands of pounds; sales value in thousands of dollars]

| Chemical | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

See footnote at end of table.

TA8LE 2.--Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, annual 1967 and 1968--Continued
[Production and sales in thousands of pounds; sales value in thousands of dollars]

TABLE 2.-Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, annual 1967 and 1968--Continued
[Production and sales in thousands of pounds; sales value in thousands of dollars]

Chemical					

${ }^{1}$ Data for 1968 are not comparable with those for average 1957-59.

The following tabulation shows, by chemical groups, the number of companies that reported production in 1968 of one or more of the chemicals included in the groups listed in table 6:

Chemical group	Number of companies	Chemical group	Number of companies
Cyclic Intermediates	---- 217	Rubber-processing chemicals	--- 33
Dyes-	- 49	Elastomers (synthetic rubbers)	- 32
Benzenoid pigments	- 34	Plasticizers-	-- 58
Medicinal chemicals-	-- 109	Surface-active agents-	- 207
Flavor and perfume materials	-- 52	Pesticides and related products	-- 89
Plastics and resin materials-	--- 288	Miscellaneous chemicals-	- 330

Tar
Coal tar is produced chiefly by the steel industry as a byproduct of the manufacture of coke; water-gas tar and oil-gas tar are produced by the fuel-gas industry. Production of coal tar, therefore, depends on the demand for steel; production of water-gas tar and oil-gas tar reflects the consumption of manufactured gas for industrial and household use. Water-gas and oil-gas tars have properties intermediate between those of petroleum asphalts and coal tars. Petroleum asphalts are not usually considered to be raw materials for chemicals.

The quantity of tar produced from coal in the United States in 1968 was 761 million gallons, or 2.5 percent less than the 780 million gallons produced in 1967 (see table l). U.S. production of water-gas and oil-gas tars was not reported to the Commission for 1967 or 1968; production of these tars amounted to 19 million gallons in 1962, the last year for which production was reported to the Tariff Commission.

Consumption of tar in 1968 amounted to 751 million gallons, of which 644 million gallons was consumed in distillation and in other uses (by tar distillers), 105 million gallons were used as fuel, and 2 million gallons were consumed by coke-oven operators in miscellaneous uses (see table 2). Table 4 lists tar products and identifies the manufacturers.

Tar Crudes

Tar crudes are obtained from coke-oven gas and by distilling coal tar, water-gas tar, and oil-gas tar. The most important tar crudes are benzene, toluene, xylene, naphthalene, creosote oil, and pitch of tar. Some of these products are identical with those obtained from petroleum. Data for materials derived from petroleum are included, for the most part, with the statistics for like materials derived from coke-oven gas and tars, and are shown in tables 1 and 3.

Domestic production of industrial and specification grades of benzene reported by coke-oven operators and petroleum refinery operators ${ }^{1}$ in 1968 amounted to 1,000 million gallons-- 3.2 percent more than the 969 million gallons reported for 1967. These statistics include data for benzene produced from light oil and petroleum. Sales of benzene by coke-oven operators and petroleum operators in 1968 amounted to 614 million gallons, valued at $\$ 130$ million, compared with 564 million gallons, yalued at $\$ 135$ million, in 1967. In 1968 the output of toluene ${ }^{1}$ (including material produced for use in blending in aviation fuel) amounted to 695 million gallons--8.0 percent more than the 644 million gallons reported for 1967. Sales of toluene in 1968 were 442 million gallons, valued at $\$ 76$ million, compared with 385 million gallons, valued at $\$ 72$ million, in 1967. The output of xylene ${ }^{1}$ in 1968 (including that produced for blending in motor

[^3]fuels) was 537 million gallons, compared with 455 million gallons in 1967. About 99 percent of the 537 million gallons of xylene produced in 1968 was obtained from petroleum sources.

Production of crude naphthalene in 1968 (including 376 million pounds of petroleum-derived naphthalene) amounted to 902 million pounds, compared with 898 million pounds in 1967. In 1968 the output of creosote oil for wood preservation was 127 million gallons (100 percent creosote basis), compared with 126 million gallons in 1967. Production of road tar in 1968 was 56 million gallons, compared with 50 million gallons in 1967.

Some of the products included in the statistics in table 3 are derived from other products for which data are also included in the table. The statistics, therefore, involve considerable duplication, and for this reason no group totals or grand totals are given. It is estimated that, after duplication has been eliminated insofar as possible, the net value of the output (from all sources) of these products and of tar burned as fuel was $\$ 574$ million in 1968 , compared with $\$ 597$ million in 1967 and $\$ 552$ million in 1966. The total value of sales of those products derived from coke-oven gas and tars, shown in table 3, amounted to $\$ 138$ million in 1968 , compared with $\$ 136$ million in 1967. Table 4 lists crude tar products and identifies the manufacturers.

TABLE 1.--Tar and tar crudes: Sumary of U.S. production of specified products, average 1957-59, annual 1967 and 1968
[Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported]

[^4]TABLE 2.--Tar: U.S. production and consumption, 1967 and 1968
(ln thousands of gallons)

[^5]TABLE 3.-TTar crudes: U.S. production and sales, 1968
[Listed below are all tar crudes for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 4 lists separately all products for which data on production or sales were reported and identifies the manufacturers reporting to the U.S. Tariff Commission]

Product	Unit of quantity	Production	Sales		
			Quantity	Value	$\begin{gathered} \begin{array}{c} \text { Unit } \\ \text { value } \end{array} \\ \hline \end{gathered}$
				$\begin{aligned} & 1,000 \\ & \text { doztans } \end{aligned}$	
Crude light oil: ${ }^{2}$ Coke-oven operators	1,000 ga1--	238,887	95,511	11,349	\$0.12
1ntermediate light oil: Coke-oven operators----Light-oil distillates:	1,000 gal--	5,560	1,828	216	. 12
Benzene, specification and industrial grades, total ${ }^{2}$	1,000 ga1--	1,000,131	614,037	129,725	. 21
Coke-oven operators	1,000 gal--	-92,584	97,433	21,311	. 22
Petroleum operators	1,000 ga1--	907,547	516,604	108,414	. 21
Toluene, all grades, total ${ }^{2}$	1,000 ga1--	695,179	442,002	76,459	. 17
Coke-oven operators----	1,000 gal--	19,645	19,867	3,704	. 19
Petroleum operators-----	1,000 gal--	675,534	422,135	72,755	. 17
Xylene, all grades, total ${ }^{2}$	1,000 gal--	537,058	303,049	45,859	. 15
Coke-oven operators	1,000 gal--	5,576	5,473	1,088	. 20
Petroleum operators------------------------------	1,000 gal--	531,482	297,576	44,771	. 15
Solvent naphtha: ${ }^{2}$ Coke-oven operators------------	1,000 gal--	3,714	2,921	460	. 16
Naphthalene, crude (tar distillers and coke-oven operators), total ${ }^{4}$ -	1,000 1b---	525,711	333,810	15,379	. 05
Solidifying at--					
Less than $74^{\circ} \mathrm{C}-$ -	1,000 1b---	75,849	59,492	2,565	
$74^{\circ} \mathrm{C}$. to less than $79^{\circ} \mathrm{C}$	1,000 1b---	449,862	274,318	12,814	. 05
Crude tar-acid oils: ${ }^{2}$ Coke-oven operators----------	1,000 gal--	29,150	25,019	5,630	. 22
Creosote oil (Dead oil) (tar distillers and cokeoven operators) (100% creosote basis), total ${ }^{5}$ -	1,000 gal--	126,894	113,694	$6^{6} 24,917$	${ }^{6} .22$
Distillate as such (100% creosote basis)---------	1,000 gal--	106,036	94,277	19,110	. 20
Creosote content of coal-tar solution (100% creosote basis)	1,000 gal--	20,858	19,417	${ }^{6} 5,807$	${ }^{6} .30$
	1,000 gal--	90,230	22,132	4,173	. 19
Coke-oven operators, tot	1,000 gal--	9,933	6,007	602	. 10
From 1 i ight oil	1,000 gal--	6,728	3,001	351	. 12
	1,000 gal--	3,205	3,006	251	. 08
Tar distillers ${ }^{8}$-------------------------------------	1,000 gal--	80,297	16,125	3,571	. 22
	1,000 gal--	56,262	52,615	6,428	
Tar (crude and refined) for other uses ${ }^{9}$. Pitch of tar (tar distillers and coke-oven operators):	1,000 gal--	11,549	9,509	2,085	. 22
Hard (water softening point above 160° F.)------	1,000 tons	1,019	794	27,462	34.59
Other	1,000 tons	914	425	13,519	31.81

[^6]
Footrotes for table 3--Continued

4 Statistics represent combined data for the commercial grades of naphthalene. Because of conversion of naphthalene from one grade to another, the figures may include some duplication.

Statistics include data only for creosote oil sold for, or used in, wood preserving. In 1968 , production of creosote in coal-tar solution (100% solution basis) amounted to 32,002 thousand gallons; sales were 30,335 thousand gallons, valued at 5,807 thousand dollars, with a unit value of $\$ 0.19$ per gallon.

6 Includes value of coal tar used in preparing creosote in coal-tar solution.
7 Includes data for crude sodium phenolate.

- Includes data for crude light oil, benzene, toluene, xylene, solvent naphtha, ethylbenzene, rubberreclaiming oils, pyridine crude bases, crude tar-acid oils, crude cresylic acid, neutral oils, methylnaphthalene, and crude tetralin.

Includes data for tar used for paint, pipe covering, saturating, and other uses.
10 lncludes soft and medium pitch of tar (water softening points less than $110^{\circ} \mathrm{F}$., and $110^{\circ} \mathrm{F}$. $10160^{\circ} \mathrm{F}$.), and pitch emulsion.

Note.--Statistics for materials produced in coke and gas-retort ovens are compiled by the Division of Bituminous Coal, U.S. Bureau of Mines, Department of the Interior. Statistics for materials produced in tar and petroleum refineries are compiled by the U.S. Tariff Commission.
[Tar crudes for which separate statistics are given in table 3 are marked with an asterisk (*); products not so marked do not appear in table 3 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2; these tables identify all U.S. producers of tar crudes (except producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines).]

I Does not include manufacturers' identification codes for producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines. These producers are listed in the U.S. Bureal of Mines Mineral Industry Survey, February 4, I969, entitled "Coke Producers in the U.S. in 1967."

Crude products that are derived from petroleum and natural gas ${ }^{1}$ are related to the intermediates and finished products made from such crudes in much the same way that crude products derived from the distillation of coal tar are related to their intermediates and finished products. Many of the crude products derived from petroleum are identical with those derived from coal tar (e.g., benzene, toluene, and xylene). Considerable duplication exists in the statistics on the production and sales of petroleum crudes because some of these crude chemicals are converted to other crude products derived from petroleum and because data on some production and sales are reported at successive stages in the conversion processes. Notwithstanding these duplications, the statistics are sufficiently accurate to indicate trends in the industry and to serve as a basis for general comparsion. Many of the crude products for which data are included in the statistics may be used either as fuel or as basic materials from which to derive other chemicals, depending on prevailing economic conditions; but in this report every effort has been made to exclude data on materials that are used as fuel; however, data are included on toluene and xylene which are not used directly as fuel but in blending aviation and motor-grade gasolines.

The output of crude products derived from petroleum and natural gas as a group amounted to 62,017 million pounds in 1968 , or 13.9 percent more than the 54,438 million pounds reported for 1967 (table 1). The larger output in 1968 is accounted for chiefly by increased production of ethylene, propylene, xylenes, toluene, and benzene. Sales of crude chemicals from petroleum in 1968 amounted to 34,189 million pounds, valued at $\$ 920$ million, compared with 29,453 million pounds, valued at $\$ 858$ million, in 1967 .

The output of aromatic and naphthenic products from petroleum amounted to 18,285 million pounds in 1968 , compared with 16,455 million pounds in 1967. Sales in 1968 , which amounted to 11,583 million pounds, valued at $\$ 271$ million, were 1,631 million pounds larger, and valued at $\$ 4$ million more, than those in 1967. The output of 1° and 2° benzene from petroleum amounted to 6,698 million pounds in $1968--3.3$ percent more than the 6,485 million pounds produced in 1967. The output of toluene in 1968 was 4,911 million pounds-- 8.2 percent more than the 4,540 million pounds produced in 1967. Production of xylene was 3,832 million pounds in 1968 , compared with 3,240 million pounds in 1967. These figures include toluene and xylene used in blends in aviation and motorgrade gasolines. Production of naphthalene from petroleum sources in 1968 was 734 thousand pounds less than production in 1967 . The output of 20.2 million pounds of naphthenic acids in 1968 was 4.3 million pounds less than that produced in 1967.
${ }^{1}$ Statistics on aromatic chemicals from coal tar are given in the previous section, "Tar and Tar Crudes".

Production of all aliphatic hydrocarbons and derivatives from petroleum and natural gas was 43,733 million pounds in 1968 , compared with 37,983 million pounds in 1967. Sales of these products were 22,606 million pounds, valued at $\$ 649$ million, in 1968 , compared with 19,501 million pounds, valued at $\$ 592$ million, in 1967 . The statistics on production of acetylene include only acetylene produced from hydrocarbons and used as a raw material in the production of other chemicals. Total production of acetylene for chemical synthesis is reported to the U.S. Bureau of the Census. In 1968, production of acetylene from hydrocarbon sources, amounted to 475 million pounds. Production of ethylene was 13,151 million pounds in $1968--10.9$ percent more than the 11,855 million pounds produced in 1967. The output of propylene and propane-propylene mixture was 7,025 million pounds in 1968--10.0 percent more than the 6,389 million pounds produced in 1967. Production of l,3-butadiene, one of the principal ingredients of S-type synthetic rubber, was 2,929 million pounds in 1968, compared with 2,660 million pounds in 1967. The output of 1,3-butadiene in 1968 was the largest on record.

Data for 1968 on crude products from petroleum and natural gas for chemical conversion was supplied by 72 companies and company divisions.

Table 2 lists crude products from petroleum and natural gas and identifies the manufacturers.

TABLE 1.--Crude products from petroleum and natural gas for chemical sonversion: J. Sroduction and sales, 2968
[Listed below are the crude products from petroleum and natural gas for chemical conversion for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists separately all products from petroleum and natural gas for chemical conversion for which data on production or sales were reported and identifies the manufacturer of each]

TABLE 1.--Crude products from petroleum and natural gas for chemical conversion: U.S. production and sales, 1968--Continued

${ }^{1}$ Calculated from rounded figures.
${ }^{2}$ The chemical raw materials designated as aromatics are in some cases identical with those obtained from the distillation of coal tar; however, the statistics given in the table above relate only to such materials as are derived from petroleum and natural gas. Statistics on production or sales of benzene, toluene, xylene, and naphthalene from all sources are given in tables 1 and 3 of the proceding report on "Tar and Tar Crudes, 1968."
${ }_{3}$ Includes toluene and xylene used as solvents, as well as that which is blended in aviation and motor gasolines.
${ }^{4}$ Includes data for 90 -percent benzene, crude cresylic acid, alkyl aromatics, distillates, solvents, and miscellaneous cyclic hydrocarbons.
${ }^{5}$ Production figures on acetylene from calcium carbide for chemical synthesis are collected by the U.S. Bureau of the Census.
${ }_{7}^{6}$ Includes data for propane-propylene mixture.
7 The statistics represent principally the butene content of crude refinery gases from which butadiene is manufactured.
${ }^{\theta}$ Includes data for 2 -butene, mixed butylenes, and mixed olefins.
${ }^{9}$ Includes data for pentanes, pentenes, and C_{5} hydrocarbon mixtures.
10 Includes data for the following molecular weight ranges: $C_{6}-C_{7} ; C_{8}-C_{20} ; C_{11}-C_{15} ; C_{15}-C_{20}$; and $C_{16}-C_{30}$.
11 Includes compounds having a molecular weight of 3,000 or less.
12 Includes data for butyl, ethyl, methyl, and miscellaneous mercaptans.
13 Includes data for ethane-ethylene mixture, heptane, isopentane, methane, octanes, n-paraffins, and hydrocarbon mixtures.

TABLE 2.--Crude products from petrolew and natural gas for chemical conversion: Manufacturers' identification codes, by products, 1968
[Crude products from petroleum and natural gas for chemical conversion for which separate statistics are given in table lare marked below with an asterisk (*); products not so marked do not appear in table 1 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, taoles 1 and 2 . An x signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
AROMATICS AND NAPHTHENES *Benzene (except motor grade): *Benzene, 1° - \qquad	
	ACU, APR, ASH, ATR, CCP, COR, CSD, CSO, CSP, DLH, DXS, ENJ, GOC, GRS, MOC, MON, PLC, PPR, SHC, SHO, SIN, SKO, SM, SNI, SOG, SUN, TOC, TX, UOC, VEL, VPT.
*resylic acid, crude	ACC, CO, DOW, SHO, SOC, UCC. PRD.
*Naphthalene, all grade	ASH, COL, MON, SUN, TID.
*Naphthenic acids:	
Acid number lower than 150------------------------	ATR, SUN, TX.
Acid number 150-199	ATR, PRD, SOC, SUN.
Acid number 200-224	ATR, PRD, SOC.
Acid number 225-249	PRD.
*Sodium carbolate and phenate,	ATR, CSP, SIN.
*Toluene:	
	ASH, ATR, CSD, CSP, DLH, DXS, ENJ, GOC, MOC, MON, PLC, PPR, SHC, SHO, SIN, SNT, SOG, SUN, TOC, TX, UCC, UOC, VEL, VPT.
*Pure commercial grade, 2°--------------------------	COR, DOW, ENJ, LEN, MON.
*Solvent grade, 90%	CO, FG, SKO.
All other-	ACC, CSD, DXS, ELP, GRS, PLC, SHC, SHO, SM, SOC, TOC, TX, VPT.
*Xylenes, mixed:	
Aviation grade	CSD, CSO.
${ }^{*} 3^{\circ}$ grade-	ATR, DLH, MOC, PPR, UCC, UOC.
* $5^{\circ} \mathrm{gr}$	ASH, SIN, SOG, TX.
All othe	CCP, COR, CSD, CSP, DXS, ENJ, GRS, LEN, MON, PPR, SHO, SM, SNT, SOC, SUN, TOC, VPT.
All other aromatics, naphthenes, distillates and solvents.	$\mathrm{ACC}, \mathrm{ACU}, \mathrm{CBN}, \mathrm{CPK}$, DUP, ELP, ENJ, FG, JCC, LEN, MOC, MON, OMC, PLC, PRD, SOC, SOG, SOI, TX, USI, VPT.
ALIPHATIC HYDROCARBONS	
C_{1} hydrocarbon: Methane-------------------------------	CCP, MON.
${ }^{*} \mathrm{C}_{2}$ hydrocarbons:	
*Adetylene-	DOW, DUP, MNO, MON, UCC, x.
* Ethane-	ACU, CCP, ENJ, MON, PAN, PLC, SHO, SM, SOI, TX, USI.
*Ethylene	ACU, ATR, BFG, CBN, CCP, CO, CPX, DOW, DUP, EKX, ELP, ENJ, GOC, JCC, KPP, MON, OMC, PLC, SHC, SM, SNO, TX, UCC, USI.
${ }^{*} C_{3}$ hydrocarbons:	
	AMO, APR, ASH, CCP, CSD, CSO, DXS, ENJ, GOC, GRS, JCC, MOC, OMC, PAN, PLC, SHO, SIN, SM, SNT, SOG, SOI, SPI, TX, UOC, USI.
*Propane-propylene mixture	ENJ, GOC.
	ACU, AMO, ASH, ATR, BFG, CBN, CCP, CPX, CSO, DOW, EKX, ELP, ENJ, GOC, JCC, KPP, MOC, MON, PLC, SHC, SHO, SIN, SIO, SM, SNT, SOG, SOI, SPI, SUN, TX, UCC, UOC.
${ }^{*} C_{4}$ hydrocarbons: *1,3-Butadiene, grade for rubbers (elastomers)--	CBN, CPY, DOW, DUP, ELP, ENJ, FRS, GGC, MON, PLC, PTT, SBI, SHO, SM, SOC, SPI, TID, TUS, UCC.
*Butadiene and butylene fractions--------------	ACU, DOW, GOC, GYR, KPP, MOC, PLC, PTT, SHC, SHO, SIN, SOC, SPI.
	COR, CSD, DXS, GRS, MOC, OMC, PAN, PLC, SHO, SM, SNT, SOC, SOG, USI.

TABLE 2.--Cmude products from petroleum and natural gas for chemical conversion: Monufacturers' identification codes, by products, 1968--Continued

Cyclic intermediates are synthetic organic chemicals derived principally from coal-tar crudes produced by destructive distillation (pyrolysis) of coal and from petroleum and natural gas. Most cyclic intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products, such as dyes, medicinal chemicals, elastomers (synthetic rubbers), pesticides, and plastics and resin materials. Some intermediates, however, are sold as end products without further processing. For example, refined naphthalene may be used as a raw material in the manufacture of 2 -naphthol or of other more advanced intermediates, or it may be packaged and sold as a moth repellent or as a deodorant. In 1968 nearly half of the total output of cyclic intermediates was sold; the rest was consumed chiefly by the producing plants in the manufacture of more advanced intermediates and finished products.

Total production of cyclic intermediates in 1968--25,014 million pounds--was the largest on record, and was 20.3 percent larger than the output of 20,793 million pounds reported for 1967 . The larger output of cyclic intermediates in 1968 reflects the increased demand by the chemical products industries, particularly those industries that produce plastics materials, pesticides, dyes, and plasticizers, and an increase in exports. Sales of cyclic intermediates in 1968 amounted to 11,328 million pounds, valued at $\$ 1,131$ million, compared with 9,461 million pounds, valued at $\$ 1,000 \mathrm{million}$, in 1967. In terms of quantity, sales of cyclic intermediates in 1968 were 19.7 percent larger than those in 1967 and in terms of value, 13.1 percent larger.

Production of ethylbenzene in 1968 was 4,034 million pounds, or 20.5 percent larger than the 3,347 million pounds reported for 1967. Output of styrene in 1968 was 3,698 million pounds, an increase of 12.8 percent over the $3,278 \mathrm{million}$ pounds in 1967. Other intermediates whose production exceeded 1 billion pounds in 1968 were cyclohexane (2,039 million pounds), phenol (1,513 million pounds), cumene ($1,347 \mathrm{million}$ pounds), p-xylene ($1,316 \mathrm{million}$ pounds), and dimethyl terephthalate ($1,309 \mathrm{mil}$ lion pounds). The output of other large-volume intermediates in 1968 compared with 1967 were: Ortho-xylene, 944 million pounds (91.4 percent larger than in 1967) ; terephthalic acid, 927 million pounds (33.5 percent larger) ; alkylbenzenes, 758 million pounds (10.7 percent larger) ; phthalic anhydride, 744 million pounds (2.2 percent larger) ; cyclohexanol, 717 million pounds (not published in 1967); and chlorobenzene, 576 million pounds (19.1 percent larger). Production of isocyanates amounted to 339 million pounds (31.8 percent larger than in 1967) , and production of aniline was 263 million pounds, an increase of 16.8 percent over 1967. The above 15 chemicals accounted for 82 percent of the total output of cyclic intermediates in 1968.

Table 1 gives statistics on production and sales of cyclic intermediates in 1968. In general, the classification of a given chemical as an intermediate is determined by the way in which the greater part of its output is consumed. Individual statistics given in the table represent 90 percent of the total quantity of intermediates produced. Since many of the intermediates included in the statistics represent successive steps in production, the totals necessarily include considerable duplication.

Table 2 lists these products alphabetically and identifies the manufacturers, and table 3 in the Appendix shows imports of intermediates and related products during 1967 and 1968.

Table 1.--Cyclic intermediates: U.S. production and sales, 1968
[Listed below are all cyclic intermediates for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists alphabetically all cyclic intermediates for which data on production or sales were reported and identifies the manufacturer of each]

Chemical

Total
Acetanilide, tech-
Acetophenone, tech
Alkylbenzenes ${ }^{2}$
4*-Aminoacetanilide (Acetyl-p-phenylenedianine)
1-Aminoantitraquinone and salt-
2-Aminoanthraquinone and salt
1-Amino-4-benz ami doanthraquinone-
7-($\dot{\mathrm{p}}$-Ani nobenzanido) -4-hydroxy-2-naphthalenesulfonic acid-...........
2 -Amino-p-benzenedisulfonic acid [$\left.\mathrm{SO}_{3} \mathrm{H}=1\right]$ -
1-Amino-5-ch loroanthraquinone
3-Amino-5-ch1oro-2-hydroxybenzenesulfonic acid
6 -Amino-4-chloro-m-toluenesulfonic acid [$\mathrm{SO}_{3} \mathrm{H}=1$]-

anido-2-anthracenesulfonic acid, sodium salt-.
4-Amino-3-hydroxy-1-naph thal enesulforic acid (1,2,4-acid)
6-Amino-4-hydroxy-2-naphthalenesulfonic acid (Gamma acid), sodium salt
7-Anino-4-hydroxy-2-naph thal enesul fonic acid (J acid), sodium salt-
N -(4-Amino-3-methoxy-1-anthraqui nony1)-p-toluenesulfonaride-
6-Amino-1,3-naph thal enedisulfonic acid (Amino 1 acid)
7-Amino-1,3-naphthalenedisulfonic acid (Amino G acid)
4-Anino-1-naphthalenesulfonic acid (Naphthionic acid)
6-Amino-2-naph thal enesulfonic acid (Broenner's acid)-
8-Amino-1-naphthalenesulfonic acid (Peri acid)-cid)
2-Amino-5-nitrobenzenesulfonic acid [$\mathrm{SO}_{3} \mathrm{H}=1$]-
2-Amino-4-ni trophenol
4-Amino-4'-nitro-2,2'-stilbenedisulfonic acid-
p -[(p-Ami nophenyl) azo]benzenesul fonic acid-....................
4-Amino-m-toluenesulfonic acid [$\mathrm{SO}_{3} \mathrm{H}=1$]
Aniline (Aniline oil)
7anilino-4-hydroxy-2-naph thal enesulfonic acid (Phenyl J acid)----

8-Anilino-1-naphthalenesulfonic acid (Phenyl peri acid)-
o-Anisidine
o-Anisidinomethanesulfonic acid-

Benzaldehyde, tech
1-Benzamido-5-chloroanthraquinone-..
7H-Benz[de] anthracen-7-one (Benzanthrone)
Benzoic acid, tech-
o-Senzoylbenzoic acid-
[3, 3'-Bianthra[1,9-cd]pyrazole]-6, $6^{\prime}-\left(2 \mathrm{H}, 2^{\prime} \mathrm{H}\right.$) dione (Pyrazoleanthrone yellow)21

$1,4-$ Bis [1 -anth raqui nony 1 amino] an thraquinone-
3-Bromo-7i-benz [de] anth racen-7-one (3-Bromobenzanthrone)
2-Brоло-4,6-dinitroaniline
1-Bromo-4- (methylamino) anthraquinone-
1-Chloroanthraquinone-
2-Chloroanthraquinone-
Chlorobenzene, mono-
o- (p-Chlorobenzoyl)benzoic acid-
1-Chloro-2,4-dinitrobenzene (Dinitrochlorobenzene)
See footnotes at end of table.

Production	Sales		
	Quantity	Value	Unit value ${ }^{1}$
$\begin{gathered} 1,000 \\ \text { pounds } \\ 25,013,938 \end{gathered}$	$\begin{gathered} 1,000 \\ \text { pounds } \\ 11,328,129 \end{gathered}$	$\begin{gathered} \text { 1,000 } \\ \text { dolzars } \\ 1,131,433 \end{gathered}$	Per pound $\$ 0.10$
3,621	534	146	. 27
1,742	659	190	. 29
757,594	735,155	68,210	. 09
746 1.189
1,189
962	...	\cdots	...
47 \cdot	...
23	...	-	...
28
105
8
796
339	.	-.	.
16	...	- \quad.	...
934
464	60	91	1.52
727	. \cdot	. \cdot	...
12
927
952 \cdot	...
173 \cdot	...
95
187	...	\cdots	...
42
192
200
259	. .	. \cdot	
233	.	.	
263,432	125,273	13,504	. 11
57 302
302
268	\cdots	,	...
1,706	1,051	744	. 71
496	. .	. \cdot	...
$\begin{array}{r}34 \\ 3737 \\ \hline\end{array}$			
3,737	3,932 ..	1,665	... ${ }^{42}$
1,914
21,911	B,357	1,472	. 18
4,699	-••	-	\cdots
21	. .	\ldots	\cdots
520
100
151
112 \cdot
45
215	. \cdot	. .	. \cdot
863			
575,751	142,654	8,501	. 06
1,485	- ${ }^{\text {a }}$
6,626	2,192	341	. 16

Table 1. -- Cyclic intermediates: U.S. production and sales, 1968--Continued

Chemical	Production	Sales		
		Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
	$1,000$ pounds	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{gathered} \text { 1,000 } \\ \text { dollars } \end{gathered}$	Per pound
6-Chlorometanilic acid--	10	. \cdot	...	
	267	... ${ }_{355}$...	
2-Chloro-4-nitroaniline (0-Chloro-p-nitroaniline)-----------------	348	355	324	\$0.91
4-Chloro-2-nitroaniline (p-Chloro-o-nitroaniline)-------------------	*- ${ }_{10}$	491	403	. 82
1-Chloro-5-nitroanthraquinone--	110	..	1 172	$\cdots{ }^{\text {. }}$
1-Chloro-2-nitrobenzene (Chloro-o-nitrobenzene)		14,623	1,172	. 08
4-Ch loro-3-nitrobenzenesul fonami de----------	372
4-Chloro-3-nitrobenzenesulfonic acid-	174
4-Chloro-3-nitrobenzenesulfonyl chloride-	390	\cdots		...
α-Chlorotoluene (Benzyl chloride)	72,968	16,544	2,591	. 16
[(4-Chloro-o-tolyl)thio]acetic acid	
Cresols, total ${ }^{3}$	81,902	73,517	15, 153	. 21
o-Cresol-----	17,494	18,614	2,704	. 15
(m, p)-Cresol	41,368	33,421	5,205	. 16
All other ${ }^{4}$--	23,040	21,482	7,244	. 34
	63,985	59,645	9,463	. 16
Cumene----	1,347,230			. 03
Cyclohexane-	2,038,950	1,949,770	65,409	. 03
Cyclohexanol-	716,926	4,338	910	. 21
Cyclohexanone-	481,892	20,369	2,846	. 14
1,4-Diaminoanthraquinone	55
2,6-Diaminoanthraquinone	306
1,4-Di ami no-2, 3-dihydroanthraquinone	754
4,4'-Diamino-2,2'-stilbenedisulforic acid-	7,775	...	\cdots	.
4,5'-Dibenzamido-1, ${ }^{\prime \prime}$ '-iminodian thraquinone	143	...	\cdots	...
1,5-Dibenzoylnaphthalene---	559
3,9-Dibromo-7H-benz [de] anthracen-7-ore	248
1,5-Dich loroan thraqui none-----	72			... 11
o-Dichlorobenzene-------	60,603	46,290	4,977	. 11
p-Dich lorobenzene--	70,338	69,117	6,646	. 10
	2,940	2,828	3,292	1.16
2,5-Dich 1oro-4-(3-methyl-5-oxo-2-pyrazol in-1-y1)benzenesulfonic acid-	293			
3-(2', 6'-Dichloropheny 1)-5-methyl-4-isoxazolecarbonyl chloride---		26	420	16.15
Dicyclopentadiene (includes cyclopentadiene)-------------------------	67,078	41,505	2,182	. 05
N, N - Di ethylaniline----------------	1,452	1,113	581	. 52
9, 10-Dihydro-9, 10-dioxo-1,5-anthracenedisulfonic acid, disodium salt	460 \cdot
9,10-Dihydro-9,10-dioxo-1,8-anthracenedisulfonic acid, potassium salt	318	...	\ldots	...
9,10-Dihydro-9,10-dioxo-2,6-anthracenedisulfonic acid and salt---	622	. \cdot	. \cdot	\cdots
9,10-Dihydro-9,10-dioxo-1-anthracenesulfonic acid and salt (Gold salt)	3,196	...	\cdots	...
9,10-Dihydro-5-nitro-9,10-dioxo-1-anthracenesulfonic acid--.....--	, 151	. ${ }^{1} 16$	$\cdots{ }_{503}$	
	2,322	416	503	1.21
	175
1,8-0ihydroxy-4,5-dinitroanthraquinone (4,5-Dinitrochrysazin)----	159	-
16,17-Dihydroxyviol anthrone (Dihydroxydibenzanthrone)------------	397			-
	17,438	10,079	1,968	. 20
2,2-Dime thyl-1,1'-bianthraqui none	135	111		...
2,4-Dinitroaniline-------------	207	111	80	. 72
3', 4-Dini trobenzanilide	15
	863	. .	- \cdot	...
4, 4^{\prime} - Dinitrostilbene-2, 2^{\prime}-disulfonic acid	11,319			... 21
Diphenylamine----------	32,165	28,956	6,026	. 21
	126			
Diviny lbenzene--------	2,845	2,193	1,584	. 72
	5,556
	299	. .	. \cdot	. \cdot
See footnotes at end of table.				

Table 1. -- Cyclic intermediates: U.S. production and sales, 1968--Continued

Chemical				

Table 1.--Cyclic intermediates: U.S. production and sales, 1968--Continued

Chemical	Production	Sales		
		Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
	1,000 pounds	$1,000$ pounds	$\begin{aligned} & \text { 1,000 } \\ & \text { dolzars } \end{aligned}$	Per pound
Phenylacetonitrile (α-Tolunitrile) -		439	222	\$0.51
p-Phenylazoaniline (C.1. Solvent Yellow 1) and hydrochloride-	275			
p-Pheny lenediamine-	677			
Phthalic anhydride-	743,804	428,229	53,646	. 13
Picolines, total ${ }^{3}$ -	2,629	1,971	787	. 40
2 -Picoline (α-Picoline)	1,071	1,190	548	. 46
Other picolines-------	1,558	781	239	. 31
Piperidine-	470	\cdots	\cdots	\ldots
Propiophenone	554	\cdots		...
2° Pyridine ${ }^{3}$	7,421	7,554	3,773	. 50
Salicylaldehyde-	3,693	2,221	2,258	1.02
Salicylic acid, tech	29,614	6,446	2,190	. 34
Styrene, all grades-	3,697,890	1,733,909	116,037	. 07
Terephthalic acid-	926,597			\cdots
Terephthalic acid, dimethyl ester	1,309,107	542,617	95,722	. 18
1,4,5,8-Tet rachloroanthraquinone-	17
1,4,5,8-Tetrahydroxyanthraquinone, leuco derivativ	185
Toluene-2,4-diamine (4 -m-Tolylenediamine)-	94,611
o-Toluidine-	8,567	. \cdot	\cdots	...
o- (p-Toluoyl)benzoic acid---	432
4-(0-Tolylazo)-o-toluidine (C.I. Solvent Yellow 3)-	...	26	25	. 96
1,2,4-Trichlorobenzene-	10,867	11,069	1,295	. 12
	208	...		
1,3,3-Trimethyl-2-methyl eneindoline (Trimethyl base)----------1.0	479
7,7'-Ureylenebis[4-hydroxy-2-naphthalenesulfonic acid] (J Acid	259			
Violanthrone (Dibenzanthrone)-	362			
o-Xylene---	944,256	768,160	33,953	. 04
p-Xylene----	1,315,649	991,205	77,423	. 08
All other cyclic intermediates	2,507,184	1,799,612	319,756	. 18

[^7]TABLE 2. -- Cyclic intermediates: Manufacturers' identification codes, by products, 1968
[Cyclic intermediates for which separate statistics are given in table lare marked with an asterisk (*); cyclic intermediates not so marked do not appear in table 1 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2. An x signifies that the manufacturer did not consent to his identification with the designated product.]

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturer (see Appe
*6-Amino-4-hydroxy-2-naphthalenesulfonic acid (Gamma acid), sodium salt.	ACS, DUP, TCD, TRC.
*7-Ami no-4-hydroxy-2-naphthal enesulfonic acid (J acid), sodium salt.	ACS, CMG, DUP, TCD, TRC.
```2-(2-Ami no-S-hydroxy-7-sulfo-1-naphthylazo)-S- nitrobenzoic acid.```	TRC.
1- (6-Ami no-1-hydroxy-3-sul fo-2-naph thylazo)-6-nitro-2-naphthol-4-sulfonic acid.	TRC.
S-Aminoisophthalic acid-----	GAF.
3-Amino-2-mercaptobenzoic aci	SDH.
4-Ami no-3-( $\beta$-methanesulfanamidoethyl) N , N -diethylaniline hydrochloride.	EKT.
*N-(4-Amino-3-methoxy-1-anthraquinonyl)-p-toluenesul fonamide.	AAP, DUP, GAF.
S-Ami no-6-methoxy-2-naphthalenesulfonic acid-----	TRC.
m- [(4-Ami no-3-methoxyphenyl)azo]benzenesulfonic acid--	DUP, TRC.
4- [(4-Amino-5-methoxy-o-tolyl)azo]-4-hydroxy-2,7naphthalenedisulfonic acid, benzenesulfonate.	TRC.
3-[(4-Ami no-S-methoxy-o-toly1) azo]-1,5-naph thalenedisulfonic acid.	TRC.
7-[(4-Amino-S-methoxy-o-toly1)azo]-1,3-naphthalenedisulfonic acid.	TRC.
4'-Ami no-N-methylacet anilide	CMG, GAF.
1-Amino-2-methylanthraquinon	1 Cl .
$4^{\prime}$-Amino-6'-methyl-mmbenzanisidide	GAF.
```4-Amino-4'-(3-methy1-5-oxo-2-pyrazolin-1-y1)-2,2'- stilbenedisulfonic acid.```	TRC.
2-Amino-3-methyl pyridine-	RIL.
2-Amino-S-methylpyridine	RIL.
2-Amino-6-methylpyridine-	RIL.
2-Amino-4-methylpyrimidine (2-Amino-4-methyl-1,3diazine).	ACY.
2-Amino-4-(methylsulfonyl) phenol-	ACS, TRC.
2-Amino-S-methyl-1,3,4-thiadiazole	ACY.
1-Ami no-2-methyl-4-p-toluidinoanthraquinon	ICI.
1 -Ami nonaphth [$2,3-\mathrm{c}]$ acridan-S, 8, 14-trione	DUP.
4 -Aminonaphth [$2,3-\mathrm{c}$] ac ridan-S, 8, 14 -trione	DUP.
6-Aminonaphth [$2,3-\mathrm{c}$] acridan-S, 8, 14-trione	GAF.
2 -Amino-1, S-naphthalenedisulfonic acid-	ACY, SDH.
3-Amino-1, 5-naphthalenedisulfonic acid (C acid)	GAF, TCD, TRC.
3-Ami no-2,7-naphthalenedisulfonic acid-	TRC.
4-Amino-1,S-naphthalenedisulfonic acid-	ACS.
4-Amino-1,6-naphthalenedisulfonic acid-	DUP.
*6-Amino-1,3-naphthal enedisulfonic acid (Amino I acid)-	ACS, DUP, TCD, TRC.
*7-Amino-1,3-naphthalenedisulfonic acid (Amino G acid)-	ACS, DUP, TCD, TRC.
1-Amino-2-naphthalenesulfonic acid (0-Naphthionic acid)	DUP.
2-Amino-1-naphthalenesulfonic acid (Tobias acid)-.	ACY, SW.
*4-Amino-1-naphthalenesulfonic acid (Naphthionic acid)	ACS, ACY, DUP.
4-Amino-1-naphthalenesulfonic acid, sodium salt-.	ACS, DUP.
S-Amino-1-naphthalenesulfonic acid (Laurent's acid)	ACS, DUP, TCD.
5 -Amino-2-naphthalenesulfonic acid ($1,6-\mathrm{Cl}$ eve's acid)--	ACS, ALL, TRC.
```S(and 8)-Amino-2-naphthalenesulfonic acid (Cleve's acid mixed).```	DUP, TCD, TRC.
*6-Amino-2-naphthalenesulfonic' acid (Broenner's acid)---	ACS, SNA, TRC.
6 (and 7)-Amino-1-naphthal enesulfonic acid------	VPC.
*8-Amino-1-naphthalenesulfonic acid (Peri acid)-	ACS, DUP, SDC, TCD, TRC.
8-Amino-2-naphthalenesulfonic acid (1,7-Cleve's acid)-	ACS, DUP.
	DUP.
8-Amino-1,3,6-naphthalenetrisulfonic acid (Koch's acid)	ACS .
5 (and 8)-Amino-2-naphthol	GAF.
8-Amino-2-naphthol-	DUP, TRC, VPC.
2-Amino-4-nitroacetanilide-	SDC.

TABLE 2 - - Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2 )
3-Carboxy-2 (and 4)-hydroxybenzenediazonium sulfat	ACS, GAF.LIL.
[(o-Carboxypheny 1) thio] thy 1 mercury	
Cedrene--	GIV.
$2^{\prime}$-Chloroacetoacetanilide	FMP.
$2^{\prime}$-Chloroace tophenone-	EK.
$4^{1}$-Chloroacetophenone-	L1L.
2-Chloro-2', ${ }^{\prime}$ '-acetoxylidide-	SDW.
$4^{\prime}$ - (Chloroacetyl) acetanilide------------	DUP.
m-Chloroaniline------------------------------	DUP, GAF.
o-Chloroaniline-	DUP, MON.
p -Chloroaniline-	DUP, MON.
3-(0-Chloroanilino)propionitrile	DUP.
5-Chloro-o-anisidine $\left[\mathrm{NH}_{2}=1\right]$ (4-Chloro-o-anisidine $\left[\mathrm{OCH}_{3}=1\right]$ ).	ALL, BUC.
5-Chloro-o-anisidine hydrochloride--------------	BUC, GAF.
p-Chloroanisole--.	EK.
4-Chloroanthranilic acid-	DUP.
* 1-Chloroanthraquinone-	ACY, DUP, GAF, MAY, TRC.
*2-Chloroanthraquinone-	ACS, ACY, GAF, TRC.
N -(5-Chloro-1-anthraquinony 1)-p-toluenesulfonamid	ICI.
o-Chlorobenzaldehyde-	HN, PD.
p-Chlorobenzaldehyde----	HN,
4- (p-Chlorobenzamido) an thraqui none-1,2-acridone	GAF.
Chloro-7H-benz[de]anthracen-7-one (Chlorobenzanthrone).	ACY, TRC.
*Chlorobenzene, mono- $\qquad$   p-Chlorobenzenesulfinic acid $\qquad$	ACS, DOW, DVC, HK, HKD, MON, MTO, NEV, OMC, PPG, SCC.
p-Chlorobenzenesulfonamide--	ACY.
p-Chlorobenzenesulfonic acid	GAF.
p-Chlorobenzenesulfonyl chloride	NES.
o-Chlorobenzoic acid--	HN, PD.
5-Chloro-2-benzoxazolinone-	
*o-(p-Chlorobenzoy 1 ) benzoic acid-	ACS, ACY, DUP, GAF, HN, ICI.HN.
p-Chlorobenzoyl chloride-	
4,4'-(o-Chlorobenzylidene) di-2,5-xylidine--------	GAF.
$\alpha$-(p-Chlorobenzy 1)- $\alpha$-phenyl-1-pyrrolidimepropanol hydrochloride.	LIL.
Chloro (p-chloropheny 1) phenyl me thane--------------	OPC.
4-Chloro-3-(chlorosulfonyl)benzoic acid	TRC.
Chlorocyc lohexane-.	ACY.
1-Chloro-2,5-diethoxy-4-nitrobenzene-	GAF.
2-Chloro-N, N -diethyl-4-nitroaniline--	DUP.
2-Chloro-3',4'-dihydroxyacetophenone-	SDW.
2-Chl oro-1,4-dihydroxyanthraquinone	HSH.
4'-Chloro-3,5-diiodosalicylanilide-------	x .
$4^{\prime}$-Chloro-3,5-diiodosalicylanilide acetate	$x$.
$4^{\prime}$-Chloro- $2^{\prime}, 5^{\prime}$-dimethoxyacetoacetanilide-	PCW.
5-Chloro-4,7-dime thylbenzo[b] thiophen-3 (2H)-one	ACS.
4-Chloro-N,N-dimethy 1-3-nitrobenzenesul fonami de-	EKT, SDC.
*1-Chloro-2,4-dinitrobenzene (Dinitrochlorobenzene)	AAP, ACS, DUP, SDC. DUP.
1-Chloro-2,4-dinitrobenzene and 2-chloro-1,3-dinitrobenzene mixture.	
3-Chloro-4,6-dinitrobenzenesulfonic acid------	TRC.
4-Chloro-3,5-dinitrobenzenesulfonic acid, potassium	SDC.
3-Chlorodiphenyl amine-	SK.
Chlorodiphenylmethane--------------	OPC.
2-Chloroethanol, p-toluenesulfonate	GAF.
N -(2-Chloroethyl)-N-ethyl aniline-	GAF.
Chloroformic acid, benzyl ester-	RSA.
Chloroformic acid, p-nitrobenzyl ester	EK.
Chloroformic acid, phenyl ester---	EK.
1-Chloro-4-hydroxyanthraquinone-	ICI.
$5^{\prime}$-Chloro-3-hydroxy-2-naphth-o-anisidide	BUC, PCW.
3-Chloro-4-hydroxyquinoline-3,4-carbonic acid-	
6-Ch1oroisatoic anhydride--	SDH. MEE.
4 -Chlorometanilic acid-	DUP, GAF.
5 -Chlorometanilic acid-	CS. ${ }^{\text {der }}$
	AAP, DUP, GAF.
5-Chloro-2-methoxybenzenediazonium chloride	GAF.
N -[(5-Chloro-2-methoxyphenyl)azo]sarcosine	TL.
p-(Chloromethyl)anisole----	SDW.
*1-Chloro-2-methylanthraquinone	ACS, ACY, CMG, DUP, GAF, ICI, TRC.

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2. --Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)	
S-Chloro-o-toluidine hydrochloride $\left[\mathrm{NH}_{2}=1\right]$	$\begin{aligned} & \text { ATL, SDH. } \\ & \text { ATL. } \\ & \text { GAF. } \end{aligned}$	
N -[(S-Chloro-o-tolyl)azo]sarcosine-------		
1-(S-Chloro-o-toly1)-1-tetrazene-		
*[(4-Chloro-o-toly1)thio]acetic acid-	ACS, ACY, ALL, GAF. HK.	
p-Chloro- $\alpha, \alpha, \alpha$-trifluorotoluene---		
4-Chloro- $\alpha, \alpha, \alpha$-trifluoro-o-toluidine	MEE.	
Chlorotripheny 1 methane----	EK.	
$\alpha$-Chloro-o-xylene-------	BPC.	
$\alpha$-Chloro-p-xylene---	BPC.	
2-Chloro-p-xylene-------	DUP.	
4-Chloro-2, S-xylenesulfonyl chloride--	ACS.	
4-Chloro-3, 5 -xylenol------	OTA.	
[(4-Chloro-2, S-xylyl) thio]acetic acid-	ACS.	
Cholesteryl nonanoate------------	EK.	
Cholesteryl oleyl carbonate (Misomorphic)	EK.	
Cholestyramine resin-	MRK.	
Cholic acid-----	W1L.	
Cinnamoyl chloride-	ICO, UOP, $x$.	
*Cresols: ${ }^{2}$ ( ${ }^{\text {a }}$ (		
*o-Cresol:		
From coal tar-	KPT, PRD.	
From petroleum	KPT, MER, NPC, PRD.	
Cresols, mixed: ${ }^{2}$		
From coal tar-	ACP, KPT, PRD. MER, NPC, P1T, PRD.	
From petroleum--		
	ACP, KPT, SW.	
*Cresylic acid, refined: ${ }^{2}$ (		
From coal tar-	ACP, KPT.	
From petroleum	$\begin{aligned} & \text { MER, NPC, PIT. } \\ & \text { CLK, CSP, DOW, GOC, HPC, MOC, MON, SHC, SKO, SNT, } \\ & \text { SOC, TX. } \end{aligned}$	
*Cumene-		
p-Cumy lphenol-		
2-[p-(Cyanoacetamido)pheny 1]-6-methy 1-7-benzo-   thiazolesulfonic acid.		
d1- $\alpha$-Cyanocyclohexaneacetic acid, ethyl ester-	SDW.	
4- [(2-Cyanoe thy 1) ethy 1 amino]-o-tolualdehyde---	DUP, GAF.	
p- [(2-Cyanoe thy 1 )me thy lamino]benzaldehyde	DUP, GAF.	
Cycloaliphatic epoxides-	UCC.	
*Cyclohexane-	ASH, ATR, CO, COR, CSD, ENJ, GOC, GRS, PLC, PPR, SOG, TX, UOC.	
1,4-Cyclohexanedicarboxylic acid, dimethyl este	EK.	
1,2-Cyclohexanedicarboxylic anhydride--	ACS.	
	PD.	
1,4-Cyclohexanedione-2,5-dicarboxylic acid, die	FMP.	
*Cyclohexanol--	ACP, CNP, DBC, DUP, EKT, MON.	
*Cyclohexanone------	ACP, CEL, CNP, DBC, DUP, MON.	
Cyclohexanone oxime-	ACP, CNP.	
	PLC.	
$\alpha-1$-Cyclohexene-1-acetic acid, ethyl ester-	SDW.	
4-Cycl ohexene-1-carboxal dehyde---	UCC.	
4-Cyclohexene-1,2-dicarboximide--...----	CHO.	
4-Cyclohexene-1,2-dicarboxylic anhydride	ACS, PTT.	
	ABB, MON.	
S-Cyclohexy1-3-oxo-1-indancarboxylic acid-	BJL.	
Cyclohexyl-2-propanone------	GIV.	
N -Cyclohexyltaurine, sodium salt-	GAF.	
Cyclopentanine base-----------	L1L.	
Cyclopentadienyliron--	ARA.	
Cyclopentanepropionic acid-	ARA.	
Cyclopentanol----------	L1L.	
Cyclopentanonecarboxylic acid	ARA.	
Cyclopentene--------------	ARA, PLC.	
	HEX. HN, HPC.	
p-Cymene-----------------------------------	ACS, $\mathrm{HN}, \mathrm{HPC}$.	
Deoxycholic acid------------------------------------------ WIL.		
	WIL.	
3, S-Diacetamido-2,4,6-triiodobenzoic acid--	SDW.	

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
3'-[Di (2-acetoxyethyl) amino]-p-ace tophene tidide-	TRC.
3-(Diallylcarbamoy1)-1,2,2-trimethylcyclopentanecarboxylic acid.	WYT.
	ACY.
*1,4-Diaminoanthraquinone	ACS, CMG, DUP, GAF, TRC.
1,5-Diaminoanthraquinon	DUP, GAF, TRC.
1,5 (and 1,8)-Diaminoanthraquino	AAP, ICI, TRC.
*2,6-Di aminoanthraquinone---	AAP, ACS, GAF, ICI, TRC, VPC.
3,4-Diaminobenzanilide	DUP, TRC.
2,4-Diaminobenzenesulfonic acid [ $\mathrm{SO}_{3} \mathrm{H}=1$ ]	ACS, DUP, TRC.
2,5-Diaminobenzenesulfonic acid [ $\mathrm{SO}_{3} \mathrm{H}=1$ ]	TRC.
4, $4^{1}$-Diamino-2, ${ }^{\prime}$-biphenyldisulfonic acid	AAP, ACS, ACY.
1,5-Diamino-2,6-dibromo-4,8-di-p-toluidinoanthraquinone.	ICI.
1,4-Diamino-2,3-di chloroanthraquinone-----..-----	CMG, DUP.
	ACY, ATL, DUP, GAF, HSH, ICC, ICI, MAY, TRC.
4,8-Diamino-9,10-dihydro-1,5-dihydroxy-9,10-dioxo-2,6-anthracenedisulfonic acid.	TRC.
1,4-Diamino-9,10-dihydro-9,10-dioxo-2,3-anthracenedicarbonitrile.	DUP.
1,4-Diamino-9,10-dihydro-9,10-dioxo-2,3-anthracenedicarboxinide.	DUP.
1,5-Diamino-4,8-dihydroxyanthraqui none	ICC, VPC.
1,5 (and 1,8)-Diamino-4,8( and 4,5)-dihydroxyanthraquinone---	DUP.
	ICI.
4,4'-Diamino-5, $5^{\prime}$-dimethyl-2, ${ }^{\prime}$ - biphenyldisulfonic acid---	AAP.
	RH, VEL.
2,6-Diaminopyridine-...-	NEP, RIL.
	BJL.
	ACS, ACY, DUP, GAF, GGY, SDH, TRC, VPC.
1.5-Diamino-2,4,6,8-tetrabromoanthraquinon	ICI.
$3,5-$ Diamino-p-toluenesulfonic acid [ $\mathrm{SO}_{3} \mathrm{H}=1$ ]	GAF.
4,6-Diamino-m-toluenesulfonic acid $\left[\mathrm{SO}_{3} \mathrm{H}=1\right]$	ACS,
3,5-Diamino-2, 4,6-triiodobenzoic acio-.---	5DW.
	APD.
1,5-Diani lino-9, 10-dihydro-9,10-dioxo-2,6-anthracenedicarboxylic acid.	ACS.
2,4-Dianilino-1-hydroxyanthraquinone-	GAF.
	AC5.
	SDC.
Diarylguanidine-------	DUP.
p-Diazo-N,N-dime thylaniline-1-amino-8-лaph thol-3-sulfonate-6-sulfonic acid, sodium salt.	IDC.
5 (and 3)-Diazo-6-oxo-1,3(and 1,4)-cyclohexadiene-l-carboxylic acid.	DUP.
1,5-Dibenzani doanthraquinone----------------------	GAF, TRC.
6,1I-Dibenzamido-16H-dinaph tho [2,3- $\left., 2^{\prime}, 3^{\prime}-1\right]$ -carbazole-5,10, 15,17-tetrone.	ICI.
	ACS, ACY, DUP, GAF, ICI, MAY, TRC.
Dibenzo[b,def]chrysene-7,14-dione-	ICI.
	EVN.
* 1,5-Dibenzoy 1 naph thalene-	ACY, DUP, GAF, HST, ICI, TRC, VPC.
$3^{\prime}-(\mathrm{N}, \mathrm{N}$-Dibenzyl) amino-p-acetanisidide	SDC.
$N, N^{\prime}$-Dibenzylethylenediamine-	WYT.
$\mathrm{N}, \mathrm{N}^{+}$-Dibenzylethylenediamine diacetate	WYT.
	SDH.
N,N-Dibenzylsulfanilic acid-	ICI.
2,4 ${ }^{\text {- }}$-Dibromoace tophenone---------	EK.
*3,9-Dibromo-7H-benz [de] anthracen-7-one	DUP, GAF, MAY, TRC.
	DOW.
	DOW.
	EK.
5,13-Dibromo-8,16-pyranthrenedione	MEE.
Dibromoviolanthrone-	GAF.
	BJL.
2,5-Dibutoxy-4-morpholinobenzene sulfate diazoniumsulfate salt.	ALL.
	ARA.

# TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued 

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)			
2,6-Di-tert-butyl-4-nonylphenol				
2,4-Di-tert-butylphenol----	DOW.			
Dibutyltin bis (cyclohexyl maleate)	x .			
3', 4'-Dichloroace tophenone	EK.			
3,4-Dichloroaniline-	DUP, MON.			
2,5-Dichloroaniline and hydrochloride $\left[\mathrm{NH}_{2}=1\right]$	ACS, BUC, DUP.			
3-(2,4-Dichloroanilino)-1-(2,4,6-trichlorophenyl)-2-pyrazolin-5-one.	EK.			
	ACS, DUP, GAF, ICI, TRC.			
1,5 (and 1,8)-Dichloroanthraqui non	DUP.			
1,8-Dichloroan thraquinone-------	GAF, ICI.			
2,6-Dichlorobenzaldehyde	DUP.			
Dichlorobenzanthrone-	ACY.			
m-Dichlorobenzen	EK, OMC			
*o-Dichlorobenzene	ACS , CPD, DOW, DUP, DVC, HKD, MON, NEV, PPG, SCC, SVT.			
*p-Dichlorobenzene-				
4,6-Dichloro-m-benzenedisulfonamide	A88.			
4,6-Dichloro-m-benzenedisulfonyl chloride-	ABB.			
*3,3'-Dichlorobenzidine base and salts----	ACS, ALL, CWN, LAK.			
2, ${ }^{\prime}$ - Dichlorobenzil---	MTO.			
2,4-Dichlorobenzoic acid	HN .			
2,4-Dichlorobenzoyl chloride-	HN.			
2,5-Dichlorobenzoyl chloride	GAF .			
2,4-Dichloro-m-cresol-	EKT.			
7,16-Dichloro-6,15-dihydro-5,9,14,18-anthrazinetetrone.	1CI.			
4,5-Dich loro-3,6-dioxo-1,4-cyclohexadiene-1,2-dicarbonitrile.	ARA.			
Dichlorodiphenylsilane-	DCC.			
$2^{\prime}, 7^{\prime}$-Dichlorofluorescein	EK.			
2-(5,8-Dichloro-1-hydroxy-2-naph thy 1azo)-1-hydroxy-benzene-4-sulfonamide.	TRC.			
	IC1.			
*2,5-Dich loro-4-(3-me thy1-5-oxo-2-pyrazolin-1-y1)benzenesulfonic acid.	ACY, CMG, PCW, SDH, TRC, VPC.			
Dichlorome thy lphenylsilane-	DCC.			
2,6-Dichloro-4-nitroaniline	CWN, DUP, EKT, HSH, MEE .			
1,2-Dichloro-4-nitrobenzene	DUP, MON, SDC.			
1,4-Dichloro-2-nitrobenzene (Nitro-p-dichlorobenzene).	AAP, DUP, SDC, VPC.			
3,4-Dichloro-5 (or 6)-nitrobenzenesulfonic acid	MEE.			
2,5-Dichloro-3-nitrobenzoate, ammonium salt-	GAF.			
2,5-Dichloro-3-nitrobenzoic acid-..-	GAF.			
2,5-Dichloro-3-nitrobenzoic acid, ethyl ester	GAF.			
	DOW, MON.			
*3-(2', 6'-Dich loropheny1)-5-me thyl-4-i soxazole carbonyl chloride.	BKL, ICO, OTC.			
2,6-Dichloropyrazine-	ACY.			
3,6-Dichloropyridazine	ACY.			
4,7-Dichloroquinoline-	PD, 5DW.			
3,5-Dichlorosalicylic acid-	ICO.			
2,5-Dichlorosulfarilic acid [ $\left.5 \mathrm{SO}_{3} \mathrm{H}=1\right]$---	CMG, DUP.			
2,5-Dichloro-4-sulfobenzenediazonium sulfate	TRC.			
	HN.			
$\alpha, \alpha$-Dichlorotoluene (Benzal chloride)	ACS, HK,			
Dichloroxylene-	BPC.			
2,4-Dichloro-3,5-xylenol	OTA.			
Dicyclohexylamine-	$A B 8, ~ M O N$.			
	$A B B$.			
*Dicyclopentadiene (includes cyclopentadiene)	ENJ, GOC, UCC, VEL.			
	VEL.			
2',5'-Diethoxybenzanilide-	GAF.			
p-Diethoxybenzene--.----1	GAF.			
2,5-Diethoxy-4-morpholinobenzenediazonium chloride, zinc chloride.	ALL.			
p -(Diethylamino) benzaldehyde	AC5, GAF.			
$3^{\dagger}-\left[2-\left(\right.\right.$ Diethylamino)ethyl] - †-hydroxyacetanilide	PD.			
$\alpha-[(2-D i e t h y l a m i n o)$ ethy 1]- $\alpha$-phenylcyclohexanemethanol, hydrochloride.	ACY.			
m-(Diethylamino) phenol ( $\mathrm{N}, \mathrm{N}$-Diethyl-3-aminophenol)	ACY.			

TABLE 2. -- Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identificatio (see Appendix, tables 1 an
6,7-Dihydroxy-2-naphthalenesulfonic acid	GAF, IDC.
$11 \beta, 21$-Dihydroxypregna-4,17(20)-cis-dien-3-one	UPJ.
113,21 -Dihydroxypregna-1,4,17(20)-cis-trien-3-on	UPJ.
4,5-Dihydroxy-3-(p-sul fophenyl azo)-2, 7-naphthalenedisulfonic acid, trisodium salt.	EK.
*16,17-Dihydroxyviolan throne (Dihyd roxyd ibenzanthrone)-	ACY, DUP, GAF, ICI, MAY.
m-Di iodoben	
o-Diiodobenzene-	EK.
Diisopropylbenzen	DOW.
$\mathrm{N}, \mathrm{N}^{\prime}$-Di i sopropy 1-p-phenylenediam	DUP, USR.
2,5-Dimethoxyaniline-	ALL, EKT.
1,5 (and 1,8)-Dimethoxyanthraquinone	TRC.
m-Dimethoxy benzene-	ACY.
3,3'-Dimethoxybenzidine (o-Dianisidine)	ALL, CWN, DUP, SDH.
3,3' - Dimethoxy benzidine hydrochloride	ALL, CWN.
2,4-Dimethoxybenzoic acid-	ACY.
3,5-Dimethoxybenzoic acid-	ICO.
$N, N^{\prime}-\left[\left(3,3^{\prime}-\right.\right.$ Dimethoxy-4, $4^{\prime}$-biphenylylene )bis-(azo)]bis( N -methyltaurine).	GAF.
2,5-Dimethoxy- - -methyl- $\beta$-nitrostyrene	$x$.
2,5-Dime thoxy- $\alpha$-methyl phenet hyl ami	$x$.
N -(3,4-Dimethoxy- $\alpha$-methylphenethy1)-2- (4-ethoxy-3-methoxypheny 1)acetamide.	LIL.
	EKT.
2,5-Dimethoxy-4'-nitrostilbene	$x$.
3,4-Dimethoxyphenethylamine (Homoveratrylamine)	LIL.
4-( $2^{\prime}, 5^{\prime}$-Dimethoxyphenethyl)aniline hydrochloride	UPJ.
N -(3,4-Dimethoxyphenethyl)-2-(3,4-dime thoxypheny1)-	LIL.
(3,4-Dimethoxypheny1)acetic acid----------------	L1L.
( 3,4 -Dimethoxypheny1) acet onitrile	LIL.
2,5-Dimethoxytetrahydrofuran----	HEX.
16,17-Dimethoxyviol anthrone-	GAF, ICI, MAY.
1,5-(Dimethyl amino) anthraquinone	AAP.
p-Dimethyl ami nobenzanilide	DUP, TRC.
m -(Dimethylamino) benzoic acid	SDH.
$\alpha$ - (Dimethyl amino)-p-cresol-	TKL.
6-Dimethyl amino-2-[2-(2, 5-dimethyl-1-pheny1-3-pyrryl)-vinyl]-1-methyl-1-quinolinium methyl sulfate.	x .
2-[[2-(Dimethylamino)ethyl]-2-thenylamino]pyridine (nonmedicinal grade)	ABB.
2-[[2-(Dimethylamino) ethyl]-3-thenylaminopyridine-	5DW.
m- (Dimethylamino)phenol-	ACY.
N -(p-Dimethyl ami nopheny 1)-1,4-naphthoquinoneimi ne	ACS.
* $\mathrm{N}, \mathrm{N}$ - Dimethylanil ine-	ACS, ACY, DSC, DUP, SDH.
7,12-Dimethylbenz[a] anthracene	EK.
3,3'-Dimethylbenzidine (0-Tolidine)------------------------------	ALL, CWN, DUP.
	CWN, DUP, EK.
$\mathrm{N}, \mathrm{N}$ - Dimethylbenzyl ami ne------	MLS, RH.
$\alpha, \alpha$-Dimethy lbenzy lhyd roperoxide---	ACP, CLK.
4-( $\alpha, \alpha$-Dime thylbenzyl)-2-phenylazophenol	TRC. ACP, ACY, CMG, DUP, GAF, ICI, TRC.
*2,2'-Dimethy 1 -1, ${ }^{\text {N, }}$ '-Dimethylcyclohexy ${ }^{\text {aminaquinone }}$	AAP, ACS, ACY, CMG, DUP, GAF, ICI, TRC.
$\mathrm{N}, \mathrm{N}$-Dimethylcyclohexylamine-	ABB, DUP, EKT.
S,5-Dime thylhydantoin------	GLY.
2,3-Dimethylindole---	DUP.
2,5-Dimethyl-4 (2)-morpholinylmethylphenol hydrochloride	IDC.
N,N-Dimethyl-p-nitrosoaniline--------------	ACS, ACY, ESA.
$\mathrm{N}, \mathrm{N}$-Dimethyl-3-nitro-p-toluenesul fonami de-	GAF.
6,6-Dime thyl-2-norpinene-2-ethanol-	RDA.
5,5-Dimethyl-2,4-oxazolidinedion	EK.
$\mathrm{N}, \mathrm{N}$-Dimethyl-p-phenyl enediami ne-	EKT.
$\mathrm{N}, \mathrm{N}$-Dimethyl-p-phenylenediamine hydrochloride	EK.
$\mathrm{N}, \mathrm{N}$-Dimethyl-p-phenylenediamine sulfate	EK.
	JCC.
N -[[4-(Dime thylsulfamoy1)-o- tolyl]azo]-N-methyl-S-sulfoanthranilic acid.	GAF.
$\mathrm{N}, \mathrm{N}$-Dimethylsul fanilic acid----	GAF.
2,4-Dimethythiazole-	EK.
$\mathrm{N}, \mathrm{N}$-Dime thyl-p-toluidine	EK, RSA, SEl.
2,4-Dinitroacetanilide-------------------------------------------	SDC.



TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical | Manufacturers ${ }^{\text {a }}$ identification codes |
| :---: |
| (see Appendix, tables 1 and 2 ) |

N-Ethyl-N- (2-methylsulfonamidoethy 1)-m-toluidine----------- WAY
N-Ethy 1-1-naph thy 1 amine----------------------------------------
$\alpha$-Ethyl-3-nitrocinnamic acid
p-Ethy 1 phenol

* N -Ethy $1-\mathrm{N}$-phenylbenzylami ne


5-Ethyl-2-picoline (2-Methyl-5-ethylpyridine) (MEP)--------
1-Ethylpiperidine
4-Ethy Ipyridine
6-Ethy 1-1,2,3,4-tetrahydro-1,1,4,4-tetramet hy 1-
naphthalene.

N -Ethy 1 -o-toluidine-
3-(N-Ethy 1-m-toluidino)-1,2-propanediol

1-Ethyny 1-1-cyclohexanol
Fluoren-9-one-
Fluorescein (3', $6^{\prime}$-Di hydroxyfluoran)-
1-Fluoro-2,4-dinitrobenzene-
o-Fluorotoluene-
4-Formy 1-m-benzenedisulfonic acid
o-Formy lbenzenesulfonic acid (o-Sulfobenzaldehyde)
Furan
Furfuryl al cohol
Furfurylamine-
methyl ester

N -Glycoloylarsanilic acid, sodium salt-
Hexach lo robenzene

1,4,5,6,7,7-Hexach loro-5-nitrobornene-2,3-dicarboxylic anhydride.
1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic acid--

Hexafluoroben zene
1,2,3,4,5,6-Hexahydro-8-hydroxy-cis-6, 11-dime thy 1-2,6-methano-2-benzazocine.
Hexahydro-1-methy 1-4-pheny1-1H-azepine-4-carbonitrile-
Hexa (2-methyl-1-aziridinyl)-1,3,5-phosphotriazine-
Hippuric acid
p-Hydrazinobenzenesulfonic acid-
3-Hydrazino-5
razino-5-nitro-p-toluenesuronic acid $\left[\mathrm{SO}_{3} \mathrm{~F}=1\right.$

Hydrazobenzene-
Hydroabietyl alcohol
*lydroquinone, tech-
3'-Hydroxyace tophenone
3'-Hydrox
ophenone benzoate
6'-Hydroxy-m-acetototuidide-
p-Hydroxybenzal dehyde
*p-Hydroxybenzenesulfonic acid

o- (p-Hydroxybenzoy1)benzoic acid-
3'-Hydroxy-2 (N-benzy 1-iN-methy Iamino) ace tophenone
4-Hydroxy coumarin
...(2-Hydroxyethyl)ani linolpropionitrile--
3- [N- (2-Hydroxyethy1)anilino]propionitrile, acetate---.....
3- [N-(2-Hydroxyethy 1)anilino]propionitrile, benzoate ester.
N- $\beta$-Hydroxyethy 1-2, 4-dihy droxy benzami de
3-Hydroxy-N- (2-hydroxyethyl)-2-naphthamide
N - [7-ilydroxy -8- [2-hydroxy-5-(methy 1sulfanoy 1pheny 1)azo] 1-naph thy 1] acetamide.
$6^{\prime}$ - Hy droxy-5 ' - [ (2-hydroxy-5-nitropheny 1)azo]-m-ace totoluidide.
N - [7-Hydroxy-8- [ (2-hydroxy-5-nitropheny 1)azo]-1-naphthy 1]acetamide
7-Hydroxy-8-[ [ [4' - [ (p-hydroxypheny 1)azo]-4-bipheny ly 1]azo]-1,3-naphthalenedisulfonic acid.
7-Hydroxy-8-[ [ $4^{\prime}$ - [ ( p -hydroxypheny 1)azo $]-3,3^{\prime}$ - dime thy 1-4bipheny Iyl] azo]- 1, 3-naphthalenedisulfonic acid.

DSC, DUP.
SDW.
ACY.
ACS, DUP, SDH.
BPC, MAL.
TRC.
UCC.
RIL.
RIL.
GIV.
DUP.
DUP.
EKT.
DUP, EKT.
ACS, CUC, EKT.
EK.
ICC.
ER.
EK.
GAF, SDH.
SDH, VPC.
DUP, QKO.
Qko.
MLS.
EK.
EK.
SDW.
DVC.
HK, VEL.
VEL.
HK, VEL.
1CC.
WHC.
SDW.
WYT
1 CO.
BPC.
GAF, WJ.
STG.
GNF.
$x$.
$x$.
CRS, DA, EKT.
SDH.
SDH.
TRC.
DOW.
DOW, MON, PRD.
HN .
LIL.
SDW.
ABB.
DUP, ICC.
EKT.
DUP.
IDC.
IDC.
TRC.
TRC.
TRC.
TRC.
TRC.

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identif (see Appendix, tabl
2-Hydroxy- $\alpha^{1}$, $\alpha^{3}$-mesitylenedi	ACY.
*4-Hydroxymet anilamide	ACS, CMG, DUP, TRC, VPC.
*4-Hydroxymet anilic acid	ACS, CWN, DUP, TRC.
4- (4-Hydroxy-3-met hoxybenzylidine)-1-methy 1-2, 3-pyrrolidinedione.	EK.
4-Hydroxy-1-methy 1 carbostyri1---	ICC.
*3-Hydroxy-2-methyl cinchoninic	DUP, GAF, 1CC, TRC.
4 -Hydroxy $-\mathrm{N}^{2}$-methy 1met anil am	TRC.
N -(Hydroxymet hy 1 )phthalimide	ACY.
3-Hydroxy-N-(3-N-morphol inopropy1)-2-naphthamid	IDC.
3-Hydroxy-2,7-naphthalenedisulfonic acid	TCD.
*3-Hydroxy-2,7-naphthalenedisulfonic acid, disodium salt.	ACS, ACY, GAF, TRC, WJ.
7-Hydroxy-1,3-naphthalenedisulfonic acid------.	DUP, TCD, TRC.
7-Hydroxy-1, 3-napht halenedisulfonic acid, disodium salt.	ACS, ACY.
4-Hydroxy-2-naphthal enesul fonamide	GAF.
4-Hydroxy-1-naphthalenesulfonic aci	ACS, DUP.
S-Hydroxy-1-naphthalenesulfonic acid	ACS, TRC.
*6-Hydroxy-2-naphthal enesulfonic acid	ACS, SNA, TMS.
*6-Hydroxy-2-naphthalenesulfonic acid, sodium salt-	ACY, TRC, WJ.
7-Hydroxy-2-naphthalenesulfonic acid (Cassella's acid)-----	DUP.
8-Hydroxy-1-naphthalenesulfonic acid-	GAF, VPC.
4-Hydroxy-2-naph thal enesulfonic acid, benzene sulfonate, sodium salt.	GAF.
8 -Hydroxy-1-naphth al enesulfonic acid, $\gamma$-sultone	ACY.
3-Hydroxy-2-naphthanilide (Naphthol AS)-	ATL, BUC, PCW.
1-Hydroxy-2-naphthoic acid-	ACS.
	BUC, DUP, PCW.
3-Hydroxy-2-naphthoic acid, methyl es	PCW.
3-Hydroxy-2-napht ho-o-toluidide	ATL, BUC, PCW.
N - (2-Hydroxy-1-napht hy 1) acet amide	ACY.
* N - ( 7 -Hydroxy-1-napht hy 1 ) acet amide-	CMG, GAF, TRC.
1- (2-Hydroxy-1-naphthylazo)-6-nitro-2-naphtho1-4-sulfonic acid.	TRC.
4-Hydroxy-7-(p-nitrobenz amido)-2-naphthal enesulfonic acid--	DUP, GAF.
2-Hydroxy-5-nitrometanilic acid	TRC.
1- (2-Hydroxy-4-nit rophenyl azo)-2-naphthol	TRC.
	BJL.
3- [4- (4' -Hydroxypheny1azo)-2, S-dimethoxyphenylazo]benzenesul fonic acid.	TRC.
3-Hydroxy-4-(phenylazo)-2-naphthoic acid----	ICC.
$11 \alpha$-Hydroxyprogest erone------	UPJ.
	MLS
$\alpha, \alpha^{\prime}-[(\alpha$-Hydroxy-p-sul fobenzylidene)bis [ (3-methyl-pphenylene)(ethylimino)] ]di-m-toluenesulfonic acid.	TRC.
	ICI.
	RH.
	ACY, DUP, GAF, IC1, MAY, TRC.
	ACY, MAY.
	ICI, TRC.
*1, 7'- Iminobis [ 4 -hydroxy-2-naphthalenesulfonic acid]--------	ACS, DUP.
	ACY, DUP, IC1, MAY, TRC.
	ACY, DUP, GAF, ICI, TRC.
Indole-3-acetonit	BJL.
Indole-2,3-dione-	ACS.
S-Iodoanthranilic aci	SDW.
Isobutylbenzene------	PLC.
*Isocyanic acid derivatives:	
Bitolylene diisocyanate (TODI)	UPJ.
Cyclohexy 1 isocyanate------	OTC.
Dianisidine diisocyanate (DADI)	CWN, UPJ.
3,4-Dichlorophenyl ester----	
Dicyclohexy 1 methane-4, ${ }^{\prime}$ '-di is ocyanate	DUP.
*Dipheny 1methane-4, ${ }^{\text {' }}$-diisocyanate (MDI)	ACS, DUP, MOB, UPJ.
Pheny lisocyanate--.-----	CWN, MOB.
Polyisocyanates (complex)--.---	MOB.
*Polymethylene polyphenylisocyanat	KAI, MOB, UPJ.
	DUP, MOB, UCC.
Toluene 2,4- and 2,6-diisocyanate ( $65 / 35$ mixture)	DUP, MOB.
	ACS, DUP, MOB, OMC, RUC, UCC, WYN.
p-Ther--------	EK.   DUP, EK, M08, OTC, UCC.

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Isonicotinic acid, methyl ester-	RIL.
Isonicotinonitrile-	RIL.
Isooctylphenol	PRD.
Isophthalic acid (Benzene-1,3-dicarboxylic acid)-	ACC, SOC,
Isophthalic acid, diallyl ester-	FMP.
Isophthalic acid, dimethyl ester	MTR.
Isophthalic acid, diphenyl ester	BJL.
Is ophthaloyl chloride--	DUP.
Isopropylbenzyl chloride	BPC.
Isopropylcresol-	KPT.
4,4'-1sopropylidenebis [2,6-dibromophenol] (Tetrabromobisphenol A).	DOW.
4,4'-Isopropylidenebis[2,6-dichlorophenol] (Tetrachlorobisphenol A).	DVC.
5,5'-Isopropylidenebis (2-hydroxy-m-xylene- $\alpha, \alpha^{\prime}$-diol)----	ARK.
	DOW, GE, MON, SHC, UCC.
	APD.
4,4'-1sopropylidenediphenol, propoxylated-	APD.
o-Isopropy l phenol--	TNA.
4-Isopropyl-m-phenylenediamine	DUP.
Isoviolanthrone (Isodibenzanthrone)	ACY, DUP, GAF.
*Leuco quinizarin ( $1,4,9,10$-Anthratetrol)	AAP, ACS, ACY, EKT, ICC, TRC.
2,4-Lutidine-	ACP, KPT, RIL.
3,4-Lutidine-	RIL.
Mandelonitrile	KF.
*Melamine--	ACP, ACY, FIS, RCl.
*dl-p-Mentha-1,8-diene (Limonene)	ARZ, GIV, HN, NCI.
p-Mentha-1,4(B)-diene------	GIV.
p-Menth-1-ene-	G1V.
*o-Mercaptobenzoic acid (Thiosalicylic acid)	EVN, LIL, MED, WAY.
Metanilamide--	$C M G, ~ V P C .$
*Metanilic acid (m-Aminobenzenesulfonic acid)-	ACY, DUP, TRC.
1-Methoxyanthraquinone-	GAF.
6 -( $2^{1}$-Methoxybenzenesul fonamido)-2-benzoxazol inone	SDC.
4-Methoxymetanilic acid	ACY, VPC.
N -(2-Methoxy-1-naphthyl)acetamide	TRC.
(m-Methoxyphenyl)acetic acid	SDW.
(p-Methoxyphenyl)acetic acid	CTN,
5-[n-(2'-Methoxy) phenyl]-2-aminophenol	SDC.
4-Methoxy-m-phenylenediamine sulfate	WAY.
$4{ }^{\text {'-Methoxypropiophenone }}$	LIL.
1- (Methylamino) anthraquinone	AAP, ACS, ACY, DUP, GAF, ICI.
1-(Methylamino)-4-p-toluidinoanthraquinon	GAF, ICI.
N-Methylaniline---	ACY, DUP.
2-(N-Methylaniline) ethanol	GAF.
3-(N-Methylanilino) propionitrile	DUP.
5-Methyl-o-anisidine [ $\mathrm{NH}_{2}=1$ ]	DUP, SDC.
m-Methylanisole-	GIV.
N-Methylanthranilic acid-	GIV, ICC.
2-Methylanthraquinone	ACS, ACY.
3-Methylbenzo[f]quinoline-	ACY.
3-Methylbenzo[f]quinoline-B,10-disulfonic acid-	DUP.
2-Methylbenzothiazole	FMT.
2-Methylbenzyl alcohol-	UCC.
N-Methylhenzylamine-	MLS, SDW.
Methylbenzyl ether-	UCC.
5-(1-Methylbutyl)barbituric acid	LIL.
3-Methylcholanthrene	EK.
Methylcyclohexane-	PLC.
Methylcyclopentadiene	ENJ, VEL.
N -Methyldicyclohexylamine	ABB.
4-Methyl- $\alpha, \alpha$-diphenyl-1-piperazineethanol, dihydrochloride.	$A B B$.
N-Methyleneaniline	DUP.
4, $\mathbf{4}^{\prime}$-Methylenebis [2-chloroaniline]	DUP.
4,4'-Methylenebis [ $\mathrm{N}, \mathrm{N}$-diethylaniline]	ACY, GAF, TRC.
*4,4'-Methylenebis [ $\mathrm{N}, \mathrm{N}$-dimethylaniline] (Methane base)--	$\text { ACY, DSC, DUP, GAF, SDH, } x \text {. }$
4,4'-Methylenebis [ $\mathrm{N}, \mathrm{N}$-dimethyl-3-nitroaniline]----------	GAF.
2,2'-Methylenebis (6-nonyl-p-cresol)----------	ACY.
4,4'-Methyl enedianiline-	ACS, DOW, DUP, MOB.
5,5'-Methylenedisalicylic acid-	HN .

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical
$3^{\prime}$-Nitro-p-acetoph
3'-Nitroacetop
m-Nitroani
4 -Nitro-0-anisidine $\left[\mathrm{NH}_{2}=1\right]$
1-Nitroanthraquinone   ACY, MAY.
2-(4-Nitro-2-anthraquinonyl)anthra[2,3-d]-oxazole-S,10- AC5, GAF.
5-Nitro-2-benzimidazolinone-
*m-Nitrobenzoic acid $\begin{aligned} & \text { HK, SAL, SDH } \\ & \text { 5AL, WAY. } \end{aligned}$
*m-Nitrobenzoic acid, sodium salt
p-Nitrobenzoic
p-Nitrobenzoyl chloride   HK.
5-Nitro-2-furanmethanediol,
4-Nitronaph thalic anhydride-------
$* 7$ (and 8 )-Nitronaphth $[1,2-\mathrm{d}][1,2,3]$ oxadiazole-S-sulfonicacid.
o-Nitrophenol   DUP, MON.
(p-Nitropheny
4'-(p-Nitrophenyl)
4-[(p-Nitrophenyl)
4-Nitro-0-phent
(p-Ni
2,2'-(m-Nitrophenylimino)diethanol, diacetate ester-------- DUP.
2-(p-Nitrophenyl)-2H-naph tho [1,2-d]triazole-6,8-disulfonic acid.
2-(p-Nitrophenyl)-l-octadecyl-S-benzimidazolesulfonic GAF. acid.
1-(m-Nitrophenyl)-S-oxo-2-pyrazoline-3-carboxylic acid----- DUP, VPC.

TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Cyclic intermediates: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*1,2,4-Trich lorobenzene	DOW, DVC, HK, SVT
$\mathrm{N}, 2,6$-Trichloro-p-benzoqui none imi ne-	EK.
Trichlorophenylsilane--	DCC, UCC.
$\alpha, \alpha, \alpha$-Trichlorotoluene (Benzotrichloride)	HK, VEL.
$\alpha, 2,4$ Trichloroto Iuene--	HN .
	BPC.
$\alpha, 3,4$-Trichlorotoluene-	HN .
2,4,6-Trichloro-s-triazine (Cyanuric chloride)-	ACY, GGY, NIL.
	DUP.
2-(Trifluorome thyl) phenothiazine-	SK.
$\alpha, \alpha, \alpha-$ Trifluoro- N -pheny 1-m-toluidine (3-(Trifluorome thy 1)di pheny lami ne).	SK.
	HK.
	MEE.
$\alpha, \alpha, \alpha$-Trifiuoro-o-toluidine	MEE.
1,2,4-Trihydroxyanthraqui none	GAF.
$2,3,5-T r i i o d o b e n z o i c ~ a c i d-~$	GAF.
	ACS.
	GAF.
	DUP, GAF, VPC.
*1,3,3-Trimethy 1-2-methy leneindoline (Trimethyl base)-------	ACS, DUP, GAF, VPC.
Trime thy Iphenylammonium iodide	EK.
$\alpha, \alpha^{\prime}, 2$-Trime thyl-1,4-piperazinedie thanol	WYN.
	KPT, RIL.
	EK.
2,4,6-Trinitrobenzenesulfonic acid	EK.
2,4,7-Trinitrofluoren-9-one	EK.
Triphenylamine-	EK.
Triphenylme thane	EK.
Triphenylme thanol-	EK.
$\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$-Tris (dimethylamino)mesitol	RH, TKL.
Tris (2-isocyanata-para-tolyl)isocyanurate	DUP.
	ICC, ICO.
Tri-p-tolyphosphine-	EK.
	ICI.
*7, 7'-Urey leneb is [4-hydroxy-2-naphthalenesulfonic acid]   (J Acid Urea).	ACS, ACY, CMG, GAF, TCD, TRC, VPC.
	GIV, LIL, SLV.
	LIL.
p-Vinylbenzenesulfonic acid (Styrene suifonate sodium) -..--	DUP.
	UCC.
	PLC.
	TRC.
	PLC.
2-Vinylpyridine-------	NEP, RIL.
4-Vinylpyridine--	RIL.
*Violanthrone (Dibenzanthrone)-	ACY, ATL, DUP, GAF, ICI, MAY, SDC, TRC.
Xanthene-9-carboxylic acid-	MAL.
m-Xylene--	SOC.
*o-Xylene-	ASH, CCP, COR, CSD, CSO, CSP, DLH, ENJ, GRS, MON, PPR, SIN, SKC, SNT, SOC, TOC.
*p-Xylene-------------	$\begin{aligned} & \text { ACC, CSD, ENJ, HCR, PPR, SHC, SHO, SIN, SNT, SOC, } \\ & \text { SOG, TOC. } \end{aligned}$
2,S-Xylenesulfonic acid-	EK, NES.
Xylenol crystals----	ACP .
2,6-Xylenol, synthetic-	KPT.
Xylenols:	
Medium b.p-	NPC, PRD.
	GE , PRD.
Xylidines:	
2,4-Xylidine (m-4-Xylidine) -	ACS, DUP.
2, S-Xylidine (p-Xylidine)-	ACS, DUP.
2,6-Xylidine--	DUP.
Original mixture-	ACS, DUP.
4-(2,4-Xylylazo)-0-toluidine	ACS.
4-( $2,5-X y l y l a z o)-0-t o l u i d i n e-$	ACY.
4-(2,4-Xylylazo)-2,5-xylidine	ACS.
	ARA, BPC, CUC, CWN, DUP, FG, GAF, ICC, LIL, MON, PAS, PCW, P1C, SFA, VEL, x.

[^8]

Domestic synthetic dyes are derived in whole or in part from cyclic intermediates. Approximately two-thirds of the dyes consumed in the United States are used by the textile industry to dye natural and synthetic fibers or fabrics; about one-sixth is used for coloring paper; and the rest is used chiefly in the production of organic pigments and in the dyeing of leather and plastics. Of the several thousand different synthetic dyes that are known, more than one thousand are manufactured by one or more domestic producers. The large number of dyes results from the many different types of materials to which dyes are applied, the different conditions of service for which dyes are required, and the costs that a particular use can bear. Dyes are sold as pastes, powders, lumps, and solutions; concentrations vary from 6 percent to 100 percent. The concentration, form, and purity of a dye are determined largely by the use for which it is intended.

Total domestic production of dyes in 1968 amounted to 226 million pounds, or 9.8 percent more than the 206 million pounds produced in 1967 (table 1 ). Sales of dyes in 1968 amounted to 215 million pounds, valued at $\$ 370$ million, compared with 199 million pounds, valued at $\$ 332$ million, in 1967. In terms of quantity, sales of dyes in 1968 were 8.1 percent larger than in 1967 and in terms of value, ll. 5 percent larger. The average unit value of sales of all dyes in 1968 was $\$ 1.72$ a pound, or 3.0 percent greater than the $\$ 1.67$ a pound reported in 1967.

For many important dyes, for which statistics are given in table l, production was larger in 1968 than in 1967. The output of Mordant Black 11 more than tripled in 1968, from 359,000 pounds in 1967 to $1,217,000$ pounds in 1968. The output of Disperse Yellow 42 and Vat Orange 15 nearly doubled in 1968 compared with 1967. Disperse Yellow 42 production increased from 650,000 pounds to $1,223,000$ pounds and Vat Orange 15 production increased from 639,000 pounds to l,206,000 pounds. Other important dyes whose output in 1968 was substantially larger than in 1967 were Acid Blue 9 ( 83.3 percent), Vat Yellow 2 ( 49.4 percent), Direct Green 6 ( 47.7 percent), Acid Red l (45.7 percent), Direct Brown 95 ( 42.2 percent), Direct Orange 72 ( 29.1 percent), Vat Orange 1 (28.1 percent), Basic Violet 1 (28.0 percent), Direct Blue 2 ( 25.6 percent), and Direct Black 38 (19.5 percent).

On the other hand, the output of a few important dyes was smaller in 1968 than in 1967. Production of Vat Green 8 was 959,000 pounds in 1968 , or 61.5 percent less than the $2,489,000$ pounds produced in 1967 . The output of Disperse Yellow 34 was 31.6 percent smaller in 1968 than in 1967 ; that of Disperse Yellow 33 was 31.2 percent smaller; that of Vat Black 25 was 29.8 percent smaller; and that of Vat Green 3 was 15.5 percent smaller.

Table 2 summarizes production and sales of dyes in 1968, by class of application. Five application classes of dyes accounted for approximately threefourths of all the dyes produced. Vat dyes accounted for 24.2 percent of the total; direct dyes, for 16.2 percent; fluorescent brighteners, for 13.8 percent; acid dyes, for 9.9 percent; and disperse dyes, for 9.8 percent. Of these five classes of dyes, the output of acid dyes was 28.3 percent larger in 1968 than in 1967; the output of disperse dyes was 21.3 percent larger; the output of direct
dyes was 13.6 percent larger; and the output of fluorescent brighteners was 13.3 percent larger. The output of vat dyes, however, was 3.5 percent less in 1968 than in 1967.

Of the remaining classes, the output of basic dyes in 1968 was 9.8 percent more than the 1967 production; that of azoic compositions was 34.3 percent larger in 1968 than in 1967; fiber-reactive dyes, 38.5 percent larger; food, drug and cosmetic colors, 10.7 percent larger; mordant dyes, 95.3 percent larger; and solvent dyes, 3.2 percent larger.

Table 3 shows production and sales of dyes, by chemical class. In 1968, three chemical classes of dyes accounted for more than two-thirds of all the dyes produced: Azo dyes accounted for 31.4 percent of the total; anthraquinone dyes, for 24.3 percent; and stilbene dyes, for 14.6 percent. The output of the azo dyes was 19.9 percent larger in 1968 than in 1967 , that of the stilbene dyes was 15.7 percent larger, and that of the anthraquinone dyes, 6.6 percent larger. Of the remaining chemical classes for which statistics are published, the output of quinoline dyes was 59.5 percent larger in 1968 than in 1967 ; thiazole dyes, 16.9 percent larger; phthalocyanine dyes, 12.3 percent larger; nitro dyes, ll. 3 percent larger; azoic dyes, 10.6 percent larger; and triarylmethane dyes, 6.0 percent larger. On the other hand, the output of xanthene dyes was 23.2 percent smaller in 1968 than in 1967; cyanine dyes, 21.3 percent smaller, and methine dyes, 2.6 percent smaller.

Table 4 lists all dyes for which data on production or sales were reported and identifies the manufacturer of each. Imports of dyes during 1967 and 1968 are included in table 3 of the Appendix.

TABLE 1.--Benzenoid dyes: U.S. production and sales, 1968
[Listed below are all benzenoid dyes for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 4 lists all dyes for which data on production or sales were reported and identifies the manufacturer of each]


See footnotes at end of table.

TABLE 1.--Benzenoid dyes: U.S. production and sales, 1968--Continued

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{\text {I }}$
ACID DYES--Continued	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} 1,000 \\ \text { dol2ars } \end{gathered}$	Per pound
Acid red dyes--Continued				
Acid Red 137---	204	170	537	\$3.16
Acid Red 151-------	269	273	575	2.11
Acid Red 182	76	53	165	3.11
Acid Red 186-	16	18	60	3.33
All other----	899	628	2,240	3.57
Acid violet dyes, total	487	416	915	2.20
Acid Violet 1------	60	48	80	1.67
Acid Violet 3 -	97	70	147	2.10
Acid Violet 7------	40	55	75	1.36
Acid Violet 12-----	19	21	35	1.67
Acid Violet $17-$	89			
Acid Violet 49-----	80	71	183	2.58
All other	102	151	395	2.62
Acid blue dyes, total-	4,667	4,206	12,8B2	3.06
Acid Blue 7--	47	55	210	3.82
Acid Blue 9	781			
Acid Blue 25--.-....	246	224	1,207	5.39
Acid Blue 27--------	90	54	207	3.83
Acid Blue 40	104	82	345	4.21
Acid 8lue 41--.-...---	61	67	235	3.51
Acid Blue 43-------		8	65	8.13
Acid Blue 45-	781	596	1, B47	3.10
Acid Blue $62-$	40	31	210	6.77
Acid Blue 78--	41	25	177	7.08
Acid Blue 113---.-----	729	722	1,357	1.88
Acid Blue 158 and 158A-	$167$	179	- 363	2.03
Al1 other-----------	1,580	2,163	6,659	3.08
Acid green dyes, total-	972	885	2,717	3.07
Acid Green 1	83	70	146	2.09
Acid Green 3-------	175	145	210	1.45
Acid Green 9--	. .	15	63	4.20
Acid Green 16	71	98	476	4.86
Acid Green $20-$	40	39	80	2.05
Acid Green $25-$	439	344	1,175	3.42
All other----	164	174	567	3.26
Acid brown dyes, total-	1,076	1,000	2,281	2.28
Acid Brown 14------	433	410	,607	1.48
All other-	643	590	1,674	2.84
Acid black dyes, total-	3,760	3,717	6,370	1.71
Acid Black 1-1------	885	892	1,218	1.37
Acid Black $24-$	96	92	168	1.83
Acid Black 48		17	106	6.24
Acid Black 52-	730	796	1,356	1.70
Acid Black $60-$	135	141	486	3.45
Acid Black 107--	-194	210	562	2.68
All other----	1,720	1,569	2,474	1.58

See footnotes at end of table.

TABLE 1.--Benzenuia dyes: U.S. production and sales, 1968--Continued

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{1}$
AZOIC DYES AND COMPONENTS Azoic Compositions   Total $\qquad$	pounds	$\begin{aligned} & \text { 1,00w } \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & \text { 1,0uo } \\ & \text { dolzars } \end{aligned}$	Per pound
	2,336	2,051	3,255	\$1.59
Azoic Yellow 2	114	64	$\cdots{ }_{85}$	1.33
Azoic Orange 3-	85			
Azoic Red 1--	316	287	333	1.16
Azoic Red 2-	81	42	57	1.36
Azoic Red 6--	160	70	110	1.57
Azoic Violet 1-	.	14	36	2.57
Azoic Blue 3--	119	80	170	2.13
Azoic Brown 9 -	254	208	402	1.93
Azoic black dyes-	747460	$\begin{aligned} & 832 \\ & 454 \end{aligned}$	$\begin{array}{r} 359 \\ 703 \end{array}$	1.63
All other azoic compositi				1.55
Total-	8.6	724	1,050	1.45
Azoic Diazo Component 4, base	$\cdots$	11	15	1.36
Azoic Diazo Component 9, base-	${ }_{167}$	28	24	. 86
Azoic Diazo Component 12, base		162	171242	1.06
Azoic Diazo Component 32, base-	137	160		1.51
Azoic Diazo Component 48, base-	522	39	76	1.95
All other azoic diazo components, bas		324	522	1.61
Azoic Diazo Components, Salts (Fast Color Salts)				
Total	1,648	1,604	1,473	. 92
Azoic Diazo Component 1, salt-	. $\cdot$	5	6	1.20
Azoic Diazo Component 3, salt	378	387	211	. 55
Azoic Diazo Component 5, salt	42	47	51	1.091.10
Azoic Diazo Component 6, salt-	.	59	65	
Azoic Diazo Component 8, salt-	31125	38	37	. 97
Azoic Diazo Component 9, salt-		12775	81	. 64
Azoic Diazo Component 12, salt-	78		79	1.05
Azoic Diazo Component 13, salt-	244	239	164	.69.90
Azoic Diazo Component 28, salt-	266	254	228	
Azoic Diazo Component 49, salt------	99	92	232	2.52
All other azoic diazo components, salts	385	281	319	1.14
Azoic Coupling Components (Naphthol AS and Derivatives)				
Total	2,151	1,712	2,913	1.70
	397	392	367	.943.25
Azoic Coupling Component 3-	8	8	2626	
Azoic Coupling Component 4	23	10		2.20
Azoic Coupling Component 7-	420	360	696	1.93
Azoic Coupling Component 8--		19	56	2.95
Azoic Coupling Component 14-	170	125	266	2.13
Azoic Coupling Component $15-$		8	48	6.00
Azoic Coupling Component 17 -	104	$\ldots$		

See footnotes at end of table.

Dye	Production	Sales		
		Quantity	Value	Uniさ   Value ${ }^{1}$
AZOIC DYES AND COMPONENTS--Continued	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} \text { 1,000 } \\ \text { dollars } \end{gathered}$	Per pound
Azoic Coupling Component 18	458	303	340	\$1.12
Azoic Coupling Component 20--		38	70	1.84
Azoic Coupling Component $29-$		11	26	2.36
Azoic Coupling Component 43-	7	6	16	2.67
All other azoic coupling components	564	432	980	2.27
8ASIC DYES				
Total-	13,061	12,697	33,868	2.67
Basic yellow dyes, total	3,031	2,856	8,975	3.14
Basic Yellow 2-------		414	912	2.20
Basic Yellow 11-	850	818	3,072	3.76
Basic Yellow 13	109	...	...	...
All other-	2,072	1,624	4,991	3.07
Basic orange dyes, total-	1,740	1,546	3,314	2.14
8asic Orange 1-------		386	456	1.18
Basic Orange 2-	615	463	750	1.62
Basic Orange 21-	614	529	1,520	2.87
All other-	511	168	588	3.50
Basic red dyes, total	1,650	1,726	5,923	3.43
8asic Red 9--	7	11	45	4.09
Basic Red 13-	47	29	83	2.86
Basic Red $14-$	408	398	1,177	2.96
All other-	1,188	1,288	4,618	3.59
Basic violet dyes, total-	3,128	2,867	5,929	2.07
Basic Violet 1------	1,243	954	1,281	1.34
Basic Violet 4-----	30	34	113	3.32
Basic Violet $10-$	260	297	1,083	3.65
Basic Violet 16	. 127	, 117	391	3.34
All other-	1,468	1,465	3,061	2.09
Basic blue dyes, total-	1,955	2,066	6,399	3.10
Basic Blue 1---	46	43	149	3.47
Sasic Blue 5-	...	17	119	7.00
Basic Blue 9-	$\cdots$	500	1,078	2.16
Basic Blue 26	60	45	145	3.22
All other-	1,849	1,461	4,908	3.36
Basic Green 1-.	87	71	236	3.32
Basic Green 4-	502	675	1,723	2.55
Basic Brown 1-	214	167	300	1.80
Basic Brown 4--	595	554	733	1.32
All other basic dyes-	159	169	336	1.99

TA8LE 1.--Benzenoid dyes: U.S. production and sales, 1968--Continued


See footnotes at end of table.

TABLE 1.--Benzenoid dyes: U.S. production and sales, 1968--Continued

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{1}$
DIRECT DYES--Continued	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{aligned} & \text { 1,000 } \\ & \text { dotzars } \end{aligned}$	Per pound
Direct violet dyes, total-	170	184	590	\$3.21
Direct Violet 1-----	13	12	17	1.42
Direct Violet 9-	78	90	208	2.31
All other-	79	82	365	4.45
Direct blue dyes, total-	7,241	7,404	11,442	1.55
Direct Blue 1--------	385	365	780	2.14
Direct Blue 2-------	1,300	1,355	1,227	. 91
Direct Blue 6-----	483	539	361	. 67
Direct Blue 8--	59	41	86	2.10
Direct Blue 15-	38	20	34	1.70
Direct Blue 22-----	...	11	21	1.91
Direct Blue 24------	. .	10	13	1.30
Direct Blue 25 -	48	67	169	2.52
Direct Blue 67-	43	31	122	3.94
Direct Blue 71-	50	56	159	2.84
Direct Blue 76-------	189	177	268	1.51
Direct Blue $78-$	120	125	373	2.98
Direct Blue $80-$	544	556	855	1.54
Direct Blue 86-	1,255	1,197	1,820	1.52
Direct Blue 98-	161	162	307	1.90
Direct Blue 100--	47			
Direct Blue 120 and 120A--	87	102	229	2.25
Direct Blue 126--------		150	421	2.81
Direct Blue 191-	86	78	145	1.86
Direct Blue 218	909	893	1,644	
All other--	1,437	1,469	2,408	1.64
Direct green dyes, total-	1,405	1,235	2,704	2.19
Direct Green 1-	323	223	258	1.16
Direct Green 6-	616	610	801	1.31
Direct Green 8-	24	20	- 27	1.35
All other---	442	382	1,618	4.24
Uirect brown dyes, total-	2,009	1,906	2,583	1.36
Direct Brown 1--------	106	97	128	1.32
Direct Brown 1A-	86	101	150	1.49
Direct Brown $2-$	186	187	279	1.49
Direct Brown 6----------	,	109	121	1.11
Direct Brown 31------	99	103	313	3.04
Direct Brown 74	80	61	101	1.66
Direct Brown 95-	815	762	757	. 99
Direct Brown 111-	40	40	141	3.52
Direct Brown 154-	332	310	309	1.00
All other------	265	136	284	2.09
Direct black dyes, total-	9,571	9,370	8,418	. 90
Direct Black 4---------	161	199	217	1.09
Direct Black 9--		52	65	1.25
Direct Black 19--	98	100	160	1.60
Direct Black 22	844	810	535	. 66
Direct Black 38	6,338	6,253	4,937	. 79
Direct Black $51-$	70	71	238	3.35
Direct Black 80--	1,247	1,081	941	. 87
All other---	813	804	1,325	1.65

See footnotes at end of table.

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{d}$
DISPERSE DYES	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} \text { 1,000 } \\ \text { dolzars } \end{gathered}$	Per pound
Total	22,215	20,098	49,327	\$2.45
Disperse yellow dyes, total-	5,917	5,672	10,305	1.82
Disperse Yellow 3------	2,305	2,377	3,460	1.46
Disperse Yellow 5------	...	51	173	3.39
Disperse Yellow 8-	...	33	119	3.61
Disperse Yellow $23-$	548	480	899	1.87
Disperse Yellow 33-	243	220	365	1.66
Disperse Yellow 34-	229	246	419	1.70
Disperse Yellow 42-	1,223	1,130	1,705	1.51
Disperse Yellow $54-$	422	368	1,385	3.76
All other-	947	767	1,780	2.32
Disperse orange dyes, total	2,638	2,088	3,726	1.78
Disperse Orange 3--	139	137	231	1.69
Disperse Orange 5--	. .	142	348	2.45
Disperse Orange 17-	242	127	204	1.61
Disperse Orange $25-$	126	129	158	1.22
All other-	2,131	1,553	2,785	1.79
Disperse red dyes, total-	2,554	2,196	7,199	3.28
Disperse Red 1--------	303	279	466	1.67
Disperse Red 5-	96	70	94	1.34
Disperse Red 11	32	35	214	6.11
Disperse Red 13-	11	17	24	1.41
Disperse Red 15-	73	...	...	...
Disperse Red 17-	139	123	160	1.30
Disperse Red 60	239	227	784	3.45
Disperse Red 65	.	40	82	2.05
All other	1,661	1,405	5,375	3.83
Disperse violet dyes, total-	358	307	1,017	3.31
Disperse Violet 1	51	41	124	3.02
Disperse Violet 4 -	14	16	54	3.38
Disperse Violet 27	97	80	134	1.68
All other-	196	170	705	4.15
Disperse blue dyes, total	8,482	7,701	23,749	3.08
Disperse 8lue 1	340	252	1,004	3.98
Disperse Blue 3-	1,825	1,644	2,692	1.64
Disperse 8lue 7 --	531	482	3,409	7.07
Disperse Blue 64-	130	. .	$\ldots$	...
Disperse 8lue 79-	1,138	928	3,484	3.75
All other--	4,518	4,395	13,160	2.99
Disperse black dyes, total-	1,960	1,864	2,663	1.43
Disperse Black 1--	188	202	356	1.76
All other-	1,772	1,662	2,307	1.39
All other disperse dyes	306	270	668	2.47

See footnotes at end of table.

TABLE 1--Benzenoid dyes: U.S. production and sales, 1968--Continued

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{1}$
FlBER-REACTIVE DYES	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} \text { 1,000 } \\ \text { dotlars } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { pound } \end{aligned}$
Fiber-reactive dyes, total   Reactive yellow dyes   Reactive orange dyes-   Reactive blue dyes-   Reactive black dyes   All other reactive dyes   Fluorescent brightening agents   Total-	2,815	2,369	10,569	\$4.46
	783	651	2,686	4.13
	555	.	.	...
	873	770	4,271	5.55
	84	97	304	3.13
	520	851	3,308	3.89
	31,297	28,892	52,674	1.82
Fluorescent Brightening Agent 9-------------------   Fluorescent Brightening Agent 28------------------   All other fluorescent brightening agents---------   FOOD, DRUG, AND COSMETIC COLORS   Total $\qquad$   Food, Drug, and Cosmetic Dyes   Total $\qquad$	234	259	316	1.22
	1,420	1,512	2,398	1.59
	29,643	27,121	49,960	1.84
	3,579	3,630	13,574	3.74
	3,373	3,430	12,261	3.57
FDECC Blue No.	86	78	897	11.50
FDECC Blue No. 2	26	24	247	10.29
FDEC Red No. $2-$	1,111	1,152	3,112	2.70
FDEC Red No. 3	103	131	1,688	12.89
	27	34	145	4.26
FDECC Yellow No. 5-	971	962	2,869	2.98
FDEC Yellow No. 6	872	872	2,359	2.71
All other food, drug, and cosmetic dyes   Drug and Cosmetic and External Drug and Cosmetic Dyes   Total	177	177	944	5.33
	206	200	1,313	6.57
DE¢C Red No. $7-$	13	12	49	4.08
D\&C Red No. 19	11	10	61	6.10
	17	18	60	3.33
	10	8	27	3.3 B
D\&्¢C Yellow No.		15	44	2.93
All other drug and cosmetic and external drug and cosmetic dye--MORDANT DYESTotal------------------------------------------	155	137	1,072	7.82
	2,861	2,508	3,925	1.56
Mordant yellow dyes----.-.------------------------------------------------	211	189	332	1.76
Mordant orange dyes, total $\qquad$   Mordant Orange 1 $\qquad$   All other- $\qquad$	143.	133	213	1.60
	33	. . .	...	.
	110	$\cdots$	. $\cdot$	$\ldots$


| Dye |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

See footnotes at end of table.

TABLE 1--Benzenoid dyes: U.S. production and sales, 1968--Continued

|  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TA8LE 1.--Benzenoid dyes: U.S. production and sales, 1968--Continued

Dye	Production	Sales		
		Quantity	Value	Unit Value ${ }^{1}$
VAT OYES--Continued	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	Per pound
Vat brown dyes, total	4,296	4,223	7,735	\$1.83
Vat Brown 1, 11\%-	860	869	1,408	1.62
Vat Brown 3, 11\%-	1,337	1,102	2,090	1.90
Vat Brown 5, 13\%--	. 56	84	142	1.69
All other------	2,043	2,168	4,095	1.89
Vat black dyes, total	6,989	7,157	7,301	1.02
Vat Black 25, 12-1/2\%	3,685	3,881	3,109	. 80
Vat 81ack 27, 12-1/2\%	988	988	1,368	1.38
All other-	2,316	2,288	2,824	1.23
All other dyes ${ }^{3}$ -	544	504	1,073	2.13

${ }^{1}$ Calculated from rounded figures
${ }^{2}$ Production and sales quantities of "C.I. Leuco Sulfur" and "C.I. Solubilized Sulfur" dyes are reported in terms of the usual commercial concentration of the "C.i. Sulfur" dyes.
${ }^{3}$ Includes oxidation bases, ingrain dyes, and miscellaneous dyes. Statistics for these groups of dyes may not be published separately because publication would disclose information received in confidence.

TA8LE 2--Benzenoid dyes: U.S. production and sales, by elass of application, 1968

${ }_{2}$ Calculated from rounded figures.
${ }^{2}$ Production and sales quantities of "C.I. Leuco Sulfur" and "C.I. Solubilized Sulfur" dyes are reported in terms of the usual commercial concentration of the "C.I. Sulfur" dyes.
${ }_{3}$ Includes oxidation bases, ingrain dyes, and miscellaneous dyes.
Statistics for these groups of dyes may not be published separately because publication would disclose information received in confidence.

TABLE 3.--Benzenoid dyes: U.S. production and sales, by chemical class, 1968

Chemical class	Production	Sales		
		Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
Total	$1,000$ pounds $226,498$	$1,000$ pounds $214,661$	$\begin{gathered} 1,000 \\ \text { dollars } \\ 370,196 \\ \hline \end{gathered}$	Per pound $\$ 1.72$
Anthraquinone---	55,099	51,020	95,760	1.88
Azo, total-	71,121	68,133	131,789	1.93
Monoazo--	29,775	28,064	62,854	2.24
Disazo-	22,665	21,954	41,404	1.89
Trisazo---	11,359	10,956	11,822	1.08
Polyazo-	2,452	2,439	3,752	1.54
Not specified-	4,870	4,720	11,957	2.53
Azoic-	6,961	6,091	8,691	1.43
Cyanine-	521	481	1,433	2.98
Indigoid	$\cdots$	5,432	3,400	. 63
Methine-	2,091	1,928	6,340	3.29
Nitro-	1,990	1,869	3,002	1.61
Oxazine---------	273	278	1,178	4.23
Phthalocyanine-	2,327	2,203	5,474	2.48
Quinoline----	1,241	1,114	3,603	3.24
Stilbene-	33,157	31,007	47,826	1.54
Sulfur ${ }^{2}$	17,788	17,939	10,772	. 60
Thiazine-	. .	500	1,078	2.16
Thiazole-	520	504	1,158	2.30
Triarylmethane-	7,264	6,873	16,766	2.44
Xanthene------	1,360	1,137	5,984	5.26
All other ${ }^{3}$	24,785	18,152	25,942	1.43

[^9]
## DYES

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968
yes for which separate statistics are given in table 1 are marked below with an asterisk (*); dyes not so marked do not appear in table l because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2. An $x$ signifies that the manufacturer did not consent to his identification with the designated product.]


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2 )
ACID DYES--Continued	
*Acid green dyes--Continued	
*Acid Green $25-$--	ACS, ATL, DUP, GAF, HSH, IC1, TRC, VPC.
Acid Green 35	TRC.
Acid Green 41-	ICI, VPC.
Acid Green 44--------	VPC.
Acid Green S0---------	ACY, GAF.
Acid Green 58-----------	TRC.
Other acid green dyes-	ALT, VPC.
*Acid brown dyes:	
Acid Brown 1-	gaf.
Acid Brown 6-	GAF.
*Acid Brown 14-	AAP, ACS, ACY, DUP, GAF, TRC, YAW.
Acid Brown 19	TRC.
Acid Brown 22	DUP.
Acid Brown 28 -	TRC.
Acid Brown 29.	DUP.
Acid Brown 31---	GAF.
Acid Brown 45---	TRC.
Acid Brown 96	ACY.
Acid Brown 97--	ACY.
Acid Brown 98--	ACY, TRC.
Acid Brown 152--	GAF.
Acid Brown 158-----	GAF.
Acid Brown 223--	GAF.
Acid Brown 243-.....-	GAF.
Other acid brown dyes	CMG, DUP, GAF, VPC.
*Acid black dyes:	
*Acid Black 1---	AAP, ACS, ACY, ATL, DUP, FAB, GAF, HSH, PDC, TCD, TRC, YAW.
Acid Black 2---Acid Black 12---	ACS, ACY.
*Acid Black $24-$	ACS, CMG, DUP, GAF.
Acid Black 26, 26A, and 268-	ACS, DUP, TRC.
Acid Black 29---------------	ACS, GAF.
Acid Black 41---------	ACS.
*Acid Black 48---	ACY, DUP, GAF, ICI, TRC.
*Acid Black 52---	ACS, DUP, GAF, TCD, TRC.
Acid Black 53-	ACS.
Acid Black 58--	DUP, TRC.
*Acid Black $60-$	BDO, CMG, TRC.
*Acid Black 107-	ACY, GAF, TRC.
Acid Black 108	GAF.
Acid Black 138-	VPC.
Other acid black dyes	ALT, DUP, PDC.

Azoic yellow dyes:
Azoic Yellow l-
*Azoic Yellow 2


ALL, ATL.
ALL, BUC, x .
BUC.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
AZOIC DYES AND COMPONENTS--Continued Azoic Diazo Components, Bases--Continued (Fast Color Bases)	
Azoic Diazo Component 28, base	BUC.
*Azoic Diazo Component 32, base	AAP, ATL, BUC, DUP, SDH.
Azoic Diazo Component 34, base	GAF.
Azoic Diazo Component 41, base	GAF.
Azoic Diazo Component 42, base	PCW.
Azoic Diazo Component 44, base	AAP, BUC.
*Azoic Diazo Component 48, base	CWN, DUP, GAF.
Azoic Diazo Component 49, base	PCW.
Azoic Diazo Component 121, base	PCW.
Azoic Diazo Components, Salts (Fast Color Salts)	
*Azoic Diazo Component l, salt	AAP, GAF, SDH.
Azoic Diazo Component 2, salt	ALL, GAF.
*Azoic Diazo Component 3, salt	AAP, ALL, BUC, GAF, SDH.
*Azoic Diazo Component S, salt-	AAP, ALL, BUC, GAF, SDH.
*Azoic Diazo Component 6, salt	AAP, BUC, GAF, SDH.
*Azoic Diazo Component 8, salt-	AAP, ALL, BUC, GAF.
*Azoic Diazo Component 9, salt-	AAP, ALL, BUC, GAF, SUH, VPC.
Azoic Diazo Component 10, salt	GAF, SDIl.
Azoic Diazo Component 11, salt	AAP, ALL.
*Azoic Diazo Component 12, salt-	AAP, ALL, BUC, GAF, SDH.
*Azoic Diazo Component 13, salt	AAP, ALL, BUC, GAF, SDH.
Azoic Diazo Component 14, salt	AAP.
Azoic Diazo Component 20, salt	ALL, GAF.
*Azoic Diazo Component 28, salt	ALL, BUC, GAF, SDH.
Azoic Diazo Component 32, salt	ALL, SDH.
Azoic Diazo Component 34, salt-	ALL, GAF.
Azoic Diazo Component 3S, salt-	GAF.
Azoic Diazo Component 36, salt-	AAP, GAF.
Azoic Diazo Component 37, salt-	GAF.
Azoic Diazo Component 41, salt-	GAF.
Azoic Diazo Component 42, salt	ALL, GAF.
Azoic Diazo Component 44, salt	BUC, GAF.
Azoic Diazo Component 48, salt	GAF, SDH.
*Azoic Diazo Component 49, salt	AAP, ALL, BUC, GAF, SDH.
Azoic Diazo Component 121, salt	GAF.
Other azoic diazo components, salts	SDH.
Azoic Coupling Components (Naphthol AS and Derivatives)	
*Azoic Coupling Component 2 -	AAP, ACY, ATL, BUC, GAF, PCW.
*Azoic Coupling Component 3 -	BUC, GAF, PCW.
*Azoic Coupling Component 4-	BUC, GAF, PCW.
*Azoic Coupling Component 7--	AAP, BUC, PCW.
*Azoic Coupling Component 8--	BUC, GAF, PCW.
Azoic Coupling Component 11-	BUC, GAF, PCW.
Azoic Coupling Component 12	BUC, GAF, PCW.
Azoic Coupling Component $13-$	GAF, SDH.
*Azoic Coupling Component $14-$	ACS, ATL, BUC, GAF, PCW.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
AZOIC DYES AND COMPONENTS--Continued	
Azoic Coupling Components--Continued (Naphthol AS and Derivatives)	
*Azoic Coupling Component ls	BUC, GAF, PCW.
Azoic Coupling Component 16------	BUC, GAF.
*Azoic Coupling Component 17------	ACY, BUC, PCW.
*Azoic Coupling Component 18-------	ACY, ATL, BUC, DUP, GAF, PCW.
Azoic Coupling Component 19-	GAF, PCW.
*Azoic Coupling Component 20----	ATL, BUC, GAF, PCW.
Azoic Coupling Component 21-	BUC, PCW, SDH.
Azoic Coupling Component $23-$	GAF, PCW.
Azoic Coupling Component 24-	GAF, PCW.
*Azoic Coupling Component 29	ATL, BUC, GAF, PCW.
Azoic Coupling Component 34-	BUC, PCW.
Azoic Coupling Component 35-	GAF, PCW.
Azoic Coupling Component 36	GAF.
*Azoic Coupling Component 43-	ATL, BUC, GAF.
Azoic Coupling Component 44-	PCN.
Other azoic coupling components	ATL, GAF, VPC.
BASIC DYES	
*Basic yellow dyes:	
Basic Yellow l--	DUP.
*Basic Yellow 2--	ACS, ACY, DUP.
*Basic Yellow ll-	ACS, DUP, EKT, GAF, VPC.
*Basic Yellow 13-	ACS, DUP, GAF.
Basic Yellow 15-	DUP.
Basic Yellow 16---	DUP.
Basic Yellow 24	BAS.
Basic Yellow 2S-	BAS.
Basic Yellow 26-	ACY.
Basic Yellow 28----	VPC.
Basic Yellow 29	VPC.
Basic Yellow 31-	DUP.
Basic Yellow 37-----	ACY, DUP.
Basic Yellow 41-	ACY.
Other basic yellow dyes-	DUP, VPC.
*Basic orange dyes:	
* Basic Orange 1-	ACS, ACY, DUP, GAF, TRC.
*Basic Orange 2	ACS, ACY, DSC, DUP, GAF, PSC, TRC.
Basic Orange 10-	VPC.
Basic Orange 14-	GAF.
Basic Orange 17----	ACS.
*Basic Orange 21-	ACS, DUP, GAF, VPC.
Basic Orange 22-	ACS, GAF.
Basic Orange 24-	DUP.
Basic Orange 2 S	DUP.
Basic Orange 26--	DUP.
Basic Orange 27---	VPC.
Basic Orange 31---	ACY.
*Basic red dyes:	
Basic Red 1--	BAS, DUP.
Basic Red $2-$	ACS, DUP.
*Basic Red 9-	ACY, DSC, HSC.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye
BASIC DYES--C
*Basic red dyes--Continued
Basic Red 12
*Basic Red 13
*Basic Red $14-$
Basic Red 15
Basic Red 16
Basic Red 17
Basic Red 18-
Basic Red 19-
Basic Red 22
Basic Red $29-$
Basic Red 30-
Basic Red 47-
Basic Red 48-
Basic Red 49
Other basic red dyes
*Basic violet dyes:
*Basic Violet 1-
Basic Violet 2
*Basic Violet 4-
Basic Violet 7-
*Basic Violet 10-
Basic Violet 13
Basic Violet 14-
Basic Violet 15
* Basic Violet 16-
Basic Violet 18
Basic Violet 24-
*Basic blue dyes:
*Basic Blue 1-
Basic Blue 2
Basic Blue 3
*Basic Blue 5-
Basic Blue 6
Basic Blue $7-$
* Basic Blue 9-
Basic Blue 11
Basic Blue 22-
*Basic Blue 26-
Basic Blue 35
Basic Blue 38-
Basic Blue 39-----
Basic Blue 41--
Basic Blue 45
Basic Blue 47---
Basic Blue S4-
Basic Blue 76--
Basic Blue 77--
Basic Blue 82
Basic Blue 87-
Other basic blue dyes

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
DIRECT DYES~-Continued	
*Direct orange dyes:	AAP, ACS, ATL, BDO, CMG, VPC.
*Direct Orange 1--	ACS.
*Direct Orange 8-	ACS, ATL, DUP, GAF, TRC.
Direct Orange 10-	AAP, ACS.
Direct Orange 11-	GAF.
*Direct Orange 15-	ACS, ACY, DUP, GAF, TRC.
* Direct Orange 26	ACS, ATL, DUP, GAF, TRC.
*Direct Orange 29	ATL, FAB, TCD, TRC.
*Direct Orange 34	ACS, ATL, CMG, DUP, GAF.
*Direct Orange 37-	ACY, CMG, DUP, GAF, TRC.
* Direct Orange 39-	ACY, ALT, ATL, DUP, GAF, TCD.
Direct Orange 42-	ATL.
Direct Orange 59-	DUP, GAF.
Direct Orange 61-	TRC.
Direct Orange 67-	ACS, VPC.
Direct Orange 70-	TRC.
*Direct Orange 72-	ACS, ALT, ATL, FAB, TCD, TRC, VPC.
*Direct Orange 73-	DUP, GAF, TRC, VPC.
Direct Orange 74---	DUP.
Direct Orange 76----	DUP.
Direct Orange 78---	VPC.
Direct Orange 79---	DUP.
Direct Orange 80-	DUP, VPC.
* Direct Orange 81-	ACS, DUP, GAF, VPC.
Direct Orange $83-$	GAF.
Direct Orange 88	DUP.
*Direct Orange 102-	ACS, ACY, DUP, GAF.
Direct Orange 110-	TRC.
Direct Orange 114-	DUP. DUP VPC
Other direct orange dyes	ALT, ATL, DUP, VPC.
*Direct red dyes:	
*Direct Red	AAP, ACS, ATL, DUP, GAF, TRC, YAN.
*Direct Red	ATL, DUP, FAB, TCD, TRC.
*Direct Red 4-	ACS, ATL, TRC, VPC.
Direct Red 5-	ACS.
Direct Red	ATL.
*Direct Red 10	AAP, ACS, ATL.
*Direct Red 13	ACS, ATL, DUP, GAF, TRC, YAW.
*Direct Red 16-	ACS, ATL, DUP, GAF, TRC.
Direct Red 20	ACS, GAF.
*Direct Red 23	ACS, ATL, CMG, DUP, FAB, GAF, TCD, TRC.
*Direct Red 24	AAP, ATL, FAB, TCD, TRC, VPC.
*Direct Red 26	AAP, ACS, ATL, DUP, GAF, TCD, TRC, VPC.
*Direct Red 28	ACS, ATL, DUP, TRC, YAW.
*Direct Red 31-	ACS, ATL, DUP, GAF.
Direct Red 32	ACS, DUP.
* Direct Red 37-	ACS, ACY, ATL, DUP, GAF, TRC, YAW.
*Direct Red 39	ACS, ATL, DUP, GAF, TRC, YAW.
Direct Red 46	ATL.
Direct Red 62	ATL, TRC.
Direct Red 67	ACS.
Direct Red 72-	ACS, GAF, TRC.
Direct Red 73	ACS, DUP.
* Direct Red 75--	ACS, CMG, DUP, GAF.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
DIRECT DYES--Continued	
*Direct red dyes--Continued	
Direct Red 76	ACS, GAF.
*Direct Red 79-	ATL, CMG, TCD, TRC, VPC.
*Direct Red 80-	AAP, ACS, ATL, BDO, BL, CMG, DUP, FAB, SDH, TCD, TRC, VPC.
*Direct Red 81-	AAP, ACS, ACY, ALT, ATL, BL, CMG, DUP, GAF, TCD, TRC, VPC, YAW.
*Direct Red 83-	ACS, ALT, ATL, BL, CMG, DUP, FAB, TCD, TRC, VPC.
Direct Red 84	GAF, TCD.
Direct Red 95-	VPC.
Direct Red 111	GAF.
Direct Red 117	DUP.
*Direct Red 122-	QNG, TRC, VPC.
Direct Red 123	GAF.
Direct Red 139	VPC.
*Direct Red 149-	ATL, CMG, DUP, GAF.
Direct Red 152	CMG, DUP.
Direct Red 153	ATL.
Direct Red 209	TRC.
Direct Red 212	VPC.
Other direct red dyes	ALT, ATL, BL, GAF, TCD, TRC, VPC.
*Direct violet dyes:	
*Direct Violet 1-	AAP, ACS, ATL.
Direct Violet $7-$	ACS, GAF.
*Direct Violet 9-	ACS, ATL, DUP, GAF, TCD, TRC.
Direct Violet 14	ACS.
Direct Violet 22	DUP.
Direct Violet 47	DUP, GAF.
Direct Violet 48	ACS, DUP.
Direct Violet 49	ACS.
Direct Violet 51-	ACS, DUP.
Direct Violet 62	ACY.
Direct Violet 66	ATL, TRC.
Direct Violet 67	DUP.
*Direct blue dyes:	
*Direct Blue 1--	AAP, ACS, ACY, ATL, BL, DUP, FAB, GAF, TCD, TRC, VPC, YAW.
*Direct Blue 2	AAP, ACS, ATL, BL, DUP, FAB, GAF, TCD, TRC, VPC, YAW.
* Direct Blue 6	AAP, ACS, ACY, ATL, BL, DUP, GAF, TCD, TRC, YAW.
*Direct Blue 8-	ACS, ATL, DUP, GAF, YAW.
Direct Blue 14	ACS, ATL, DUP, TCD, TRC.
*Direct Blue 15	ACS, ATL, DUP, YAW.
*Direct Blue 22	ACS, ATL, CMG, DUP.
*Direct Blue 24	ACS, TCD, YAN.
* Direct Blue 25	ACS, ATL, DUP, GAF, TRC, YAW.
Direct Blue 26	ATL.
*Direct Blue 67	ACS, ATL, DUP, TRC.
*Direct Blue 71-	ACS, DUP, GAF, TRC.
Direct Blue 74	DUP.
Direct Blue 75	TRC.
*Direct Blue 76	ACS, ALT, ATL, BL, DUP, FAB, GAF, TCD, TRC, VPC.
*Direct Blue 78	ACS, ATL, CMG, DUP, TRC.
*Direct Blue 80	ACS, ALT, ATL, BL, DUP, FAB, GAF, TCD, TRC.
Direct Blue 81-	ATL.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

## Dye

## DIRECT DYES--Continued

*Direct blue dyes--Continued
*Direct Blue 86-----------------------------------------







Direct Blue 133





*Direct Blue 191
Direct Blue 199
Direct Blue 224


*Direct green dyes:
*Direct Green 1




Direct Green 26--------------------------------------

Direct Green 28

Direct Green 39------------------------------------


Direct Green 47--------------------------------------



*Direct brown dyes:
*Direct Brown 1
*Direct Brown IA


Direct Brown 25
Direct Brown 27
*Direct Brown 31
Direct Brown 32
Direct Brown



Direct Brown 59
*Direct Brown 74-----------------------------------------

Manufacturers' identification codes (see Appendix, tables 1 and 2)

AAP, ACS, ACY, ALT, ATL, DUP, FAB, GAF, ICC, 1CI, SDH, TCD, TMS, TRC, VPC.
ICI.
TRC.
ALT, ATL, GAF, TRC, VPC.
ALT, ATL, TCD.
DUP.
DUP, GAF, TCD, TRC.
BL, DUP, GAF, TRC, VPC.
GAF.
GAF.
DUP.
ACS, ATL, TRC.
TRC.
TCD, TRC.
AAP, ALT, GAF.
GAF
ACS, DUP, FAB, GAF, TCD, TRC.
ALT, ATL.
ACY.
ALT, BL, GAF, TCD, YAW.
AAP, ACS, ACY, ALT, DUP, FAB, GAF, TCD, TRC, YAW.
AAP, ACS, ATL, DUP, FAB, GAF, TCD, TRC, YAW.
ACS, ATL, TRC.
ACS, TRC.
DUP.
DUP, TRC.
DUP, TRC.
TRC.
DUP, GAF.
GAF.
DUP.
VPC.
DUP, GAF.
TRC.
TRC.
ACY, ATL, BL, DUP.
ACY, ATL, DUP, TCD.
GAF, TRC, YAW.
AAP, ACS, ACY, ATL, BL, DUP, GAF, TCD, TRC, YAN.
ACS, DUP, GAF, TRC.
DUP.
ATL, GAF.
AAP, ACS, ATL, DUP, GAF, TRC, YAN.
GAF.
DUP.
AAP.
GAF, YAW.
AAP.
ACY.
AAP, ACS, DUP.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


## DYES

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


# TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued 

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
DISPERSE DYES--Continued	
*Disperse red dyes--Continued	
Disperse Red 140-	DUP.
Other disperse red dyes	EKT, GAF, ICC, MAY, SDC, TCD, TRC.
*Disperse violet dyes:	
*Disperse Violet 1--	AAP, EKT, GAF, HSH, ICC, TRC.
*Disperse Violet 4-	AAP, GAF, ICC.
Disperse Violet 8-	GAF.
Disperse Violet 14-	DUP.
Disperse Violet 18-	DUP, TRC.
Disperse Violet 26-	DUP.
*Disperse Violet $27-$	AAP, ACY, BL, DUP, EKT, GAF, ICC.
Disperse Violet 43-	EKT.
Disperse Violet 44-	EKT.
Other disperse violet dyes	EKT, GAF, TCD.
*Disperse blue dyes:	
*Disperse Blue 1--	AAP, GAF, TRC.
*Disperse Blue 3-	AAP, ACS, DUP, EKT, GAF, HSH, ICC, TCD, TRC.
*Disperse Blue 7-	BDO, EKT, GAF, ICC, TCD, TRC.
Disperse Blue 9-	DUP, GAF, ICC.
Disperse Blue 27-	DUP, EKT.
Disperse Blue 34-	EKT.
Disperse Blue 3S-	ICI.
Disperse Blue S5-	TRC.
Disperse Blue S9-	DUP.
Disperse Blue 60-	DUP.
Disperse Blue 61-	DUP.
Disperse Blue 62-	DUP, EKT, SDC.
Disperse Blue 63-	DUP.
*Disperse Blue 64	DUP, EKT, GAF, TRC.
Disperse Blue 70	AAP.
Disperse Blue 71-	VPC.
Disperse Blue 73-	TRC.
*Disperse Blue 79-	AAP, EKT, TRC.
Disperse Blue 81-	VPC.
Disperse Blue 94-	BAS.
Disperse Blue 109	DUP.
Disperse Blue 112-	EKT.
Disperse Blue 116	ACY.
Disperse Blue 117-	EKT.
Disperse Blue 118-	EKT.
Disperse Blue 119-	EKT.
Disperse Blue 120-	EKT.
Disperse Blue 121-	EKT.
Disperse Blue 122	EKT.
Disperse Blue 123-	EKT.
Disperse Blue 132	DUP.
Disperse Blue 133-	DUP.
Disperse Blue 150-	DUP.
Other disperse blue dyes	EKT, GAF, HSH, lCC, MAY, SDC, TCD, TRC.
Disperse green dyes--	GAF, ICC, TRC.
Disperse brown dyes:	
Disperse Brown 1-	TRC.
Disperse Brown $2-$	DUP, EKT, GAF.
Disperse Brown 7--	EKT.
Other disperse brown dyes--..	EKT, GAF, ICC, SDC, TCD.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

## Dye

## DISPERSE DYES-- Continued



## FIBER-REACTIVE DYES

*Reactive yellow dyes:











Reactive Yellow 22



*Reactive orange dyes:
Reactive Orange
Reactive Orange
Reactive 0 伍
Reactive Reng
Reactive Orange


Reactive Orange 16-

Reactive red dyes:















Manufacturers' identification codes
(see Appendix, tables 1 and 2)

AAP, DUP, GAF, TRC.
DUP, TRC.
AAP, DUP.
YAW.
AAP, BL, DUP, EKT, GAF.
DUP, EKT, GAF, ICC, TCD, VPC, YAN.

ICI.
TRC.
TRC.
1CI.
TRC.
1C1.
HST.
HST.
DUP, HST.
HST.
ICI.
ICI.
HST.
HST.
ACY, HST, VPC.
ICI.
TRC.
ICI.
TRC.
ICl.
IC1.
IC1.
HST.
ACY, HST.
ICI.
ICI.
IC1.
TRC.
ICI.
ICl.
ICI.
1CI.
TRC.
IIST.
1CI.
HST, lCI.
1CI.
ACY.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

| Dye |  |
| :--- | :--- | :--- |
| FlBER-REACTIVE DYES--Continued |  |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued


TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |
| :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
VAT DYES--Continued	
*Vat orange dyes:	
*Vat Orange 1, 20\%	ACS, ACY, CMG, GAF, HST, ICI, TRC, VPC.
*Solubilized Vat Orange 1, $26 \%$	GAF, HST, ICI.
*Vat Orange 2, 12\%	AAP, ACS, ACY, CMG, DUP, GAF, ICI, TRC.
*Vat Orange 3, 13-1/2\%	CMG, DUP, GAF, HST.
Vat Orange 4, 6\%	ACY, CMG, DUP.
*Vat Orange 5, 10\%	AAP, ACY, HST.
*Solubilized Vat Orange 5, 30\%	GAF, HST, ICI.
Vat Orange 7, 11\%	GAF, HST, TRC.
*Vat Orange 9, $12 \%$---	AAP, ACS, ACY, CMG, DUP, GAF, ICI, TRC.
Vat Orange 11, $6 \%$	ACS, DUP.
*Vat Orange 15, 10\%-	AAP, ACS, GAF, ICI, TRC, VPC.
Vat Orange 23, 17-1/2\%	ACY, DUP.
Vat Orange 24--	DUP.
Other vat orange dyes	GAF, SDC.
*Vat red dyes:	
*Vat Red 1, 13\%	AAP, ACY, HST, ICI.
Solubilized Vat Red 1, 37\%	GAF, HST, ICI.
Vat Red 10, 18\%	ACS, GAF.
Solubilized Vat Red 10, 31\%-	GAF.
Vat Red 12, 8-1/2\%-	DUP.
*Vat Red 13, $11 \%$	DUP, GAF, TRC.
Vat Red 14, $10 \%$	GAF, HST.
Vat Red 15, 10\%	GAF, HST, TRC.
Vat Red 16, 11\%	DUP.
Vat Red 17, $10 \%$	GAF.
Vat Red 23-	DUP.
Vat Red 29, 18\%	GAF.
*Vat Red 32, $20 \%$ -	ACS, DUP, GAF.
Vat Red 35, 12-1/2\%	ACS, TRC.
Vat Red 41, 20\%	HST.
Vat Red 44, 17\%-	TRC.
Vat Red 52, $10 \%-$	DUP.
Vat Red 56, 15-1/2\%	ACY.
Other vat red dyes	GAF, TRC, VPC.
*Vat violet dyes:	
*Vat Violet I, 11\%	ACS, ACY, DUP, GAF, ICI, TRC.
Solubilized Vat Violet 1, $26 \%$	GAF.
*Vat Violet 2, $20 \%$	ACS, ACY, GAF, HST.
Vat Violet 3, 15\%	GAF, HST.
*Vat Violet 9; 12\%-	DUP, GAF, ICI, TRC.
*Vat Violet 13, 6-1/4\%	ACS, DUP, GAF, ICI, TRC.
Vat Violet 14, 12-1/2\%-	ACS, DUP.
Vat Violet 17, 12-1/2\%-	DUP, GAF.
Vat Violet 21-	VPC.
Other vat violet dyes-	GAF, MAY.
*Vat blue dyes:	
Vat Blue 1, $20 \%$ -	ACS.
Solubilized Vat Blue 1, 25\%	GAF.
Vat Blue 3, 16\%----	HST.
*Vat Blue 4, 10\%	ACY, DUP, GAF.
Vat Blue 5, 16\%-	ACS, ATL, DUP, HST.
Solubilized Vat Blue 5, 38\%	GAF, HST.
*Vat Blue 6, 8-1/3\%--	ACS, ACY, DUP, GAF, ICI, TRC.
Solubilized Vat Blue 6, 17-1/2\%	GAF, HST, ICI.

TABLE 4.--Benzenoid dyes: Manufacturers' identification codes, by products, 1968--Continued

|  |  |  |
| :--- | :--- | :--- | :--- |

TABLE 4.--Benzenoid dyes: Manufacturers' identifications codes, by products, 1968--Continued

Dye	Manufacturers' identification codes (see Appendix, tables 1 and 2)
VAT DYES--Continued	
*Vat black dyes--Continued	
Vat Black 34, $16 \%$	1 Cl .
Vat Black 37---	GAF.
Vat Black 38, $20 \%$ -	GAF.
Vat Black 52, 18-1/2\%	ACY.
Other vat black dyes	
All other dyes-------	ACY, PAT, SDC.

As the terms are used in this report, benzenoid pigments are toners and lakes derived in whole or in part from benzenoid chemicals and colors. They are used in paints and related products, in printing inks, and in plastics and resin materials.

Statistics on production and sales of all benzenoid pigments in 1968 are given in table 1. Statistics on sales of a few selected pigments by commercial forms (dry full-strength form, dry extended form, dry dispersions, aqueous dispersions, and flushed colors) are given in table 2. Prior to 1961, statistics for toners included the quantities and values of extenders and diluents. Beginning in 1961, data were collected for both full-strength and extended toners on a full-strength-toner-content basis. Individual toners and lakes are identified in this report by the names used in the second edition of the Colour Index.

Total production of benzenoid pigments in 1968 was 53.7 million pounds --0.8 percent more than the 53.3 million pounds produced in 1967 and 5.1 percent more than the 51.1 million pounds produced in 1966 . Total sales of benzenoid pigments in 1968 amounted to 45.8 million pounds, valued at $\$ 119.9$ million, compared with 42.9 million pounds, valued at $\$ 108.4$ million, in 1967 and 43.3 million pounds, valued at $\$ 107.6$ million, in 1966 . In terms of quantity, sales of benzenoid pigments in 1968 were 6.9 percent larger than in 1967 and 5.8 percent larger than in 1966; in terms of value, sales in 1968 were 10.7 percent larger than in 1967 and 11.5 percent larger than in 1966.

Production of toners in 1968 amounted to 49.9 million pounds--1.5 percent more than the 49.2 million pounds reported for 1967. Sales in 1968 were 42.2 million pounds, valued at $\$ 116.3$ million, compared with 39.0 million pounds, valued at $\$ 104.7$ million, in 1967 . Sales in 1968 were thus 8.2 percent larger than those in 1967 in terms of quantity and 11.1 percent larger in terms of value. The individual toners listed in the report which were produced in the largest quantities in 1968 were Pigment Yellow 12, 4.8 million pounds; Pigment Blue 15 , beta form, 4.3 million pounds; Pigment Blue 15, alpha form, 4.0 million pounds; Pigment Red 49, barium toner, 3.6 million pounds; Pigment Green $7,3.5$ million pounds; Pigment Blue 19 , 3.0 million pounds; Pigment Red $48,2.5$ million pounds; Pigment Red 53, barium toner, 2.2 million pounds; and Pigment Red $90,2.0 \mathrm{million}$ pounds. The production of Pigment Blue 15, alpha form, appears to have decreased in 1968 compared with 1967, due to a correction in reporting procedures by two producers. The net result of these statistical corrections is to decrease 1968 totals for Pigment Blue 15, compared with those of earlier years, and to increase the statistics for the beta form while correspondingly decreasing the statistics for the alpha form.

Production of lakes totaled 3.8 million pounds in 1968--7.8 percent less than the 4.2 million pounds reported for 1967. Sales of lakes in 1968 amounted to 3.6 million pounds, valued at $\$ 3.6$ million, compared with sales in 1967 of 3.9 million pounds, valued at $\$ 3.7$ million. Sales in 1968 were thus 6.7 percent smaller than those in 1967 in terms of quantity, and 2.1 percent smaller in terms of value.

For each of 15 selected pigments, or groups of pigments, table 2 gives data on sales by commercial forms. Pigment Yellow 12, Pigment Red 90, and Pigment Blue 19 were sold principally in the flushed form. The remaining 12 pigments, or groups of pigments, for which statistics are published were sold principally in the dry full-strength form. Statistics on sales by commercial forms could not be published for Pigment Red 49 , sodium toner, without revealing the operations of individual companies.

Table 3 lists benzenoid pigments and identifies the manufacturers; imports of pigments during 1967 and 1968 are shown in table 3 of the Appendix.

TABLE 1.--i.nzenoid pigments: U.S. prouktion and sazei, 196n
[Listed below are all toners and lakes for which any reported data on production or sales may be published. (leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all toners and lakes for which data on production or sales were reported and identifies the manufacturer of each]

Pigment	Production	Sales		
		Quantity	Value	$\begin{array}{r} \text { Unit } \\ \text { value } \end{array}$
	$1,000$ pounds	1,00u pounds	1.000 dollans	Per pownd
	53,749	45,810.	119,934	\$2.62
	49,919	42,202	110,337	2.76
Yellow toners, total--	9,499	6,560	17,924	2.73
Hansa yellows, total----------1	1,526	1,217	3,032	2.49
Pigment Yellow 1, C.I. 11680 Pigment Yellow 3, C.I. 11710	730	566	1,023	1.81
Pigment Yellow 3, C.1. ${ }^{\text {Pigment }}$ Yellow 710	175 309	106	239	2.25
Pigment Yellow 74, C.I. 11741	203	172	628	3.65
Other Hansa yellows--	109	373	1,142	3.06
Benzidine yellows, total	7,663	5,196	13,193	2.54
Pigment Yellow 12, C.1. 21090 Pigment Yellow 14, C, 21.2109	4,763	2,983	6,414	2.15
Pigment Yellow 14, C.1. 21095	1,829	1,456	3,624	2.49
Pigment Yellow 17, C.I. 21105 Other benzidine yellows------	393	288	849	2.95
All other benzidine yellows	673	469	2,306	4.92
All other	310	147	1,699	11.56
Orange toners, total-	924	836	2,820	3.37
Pigment Orange 2, C.I. 12060	67	57	- 89	1.56
Pigment Orange 5, C. $1.12075-$	274	218	348	1.60
Pigment Orange 13, C.1. 21110 Pigment Orange 16, C. I, 21160	175	164	525	3.20
Pigment Orange 16, C. I. 21160 Pigment Orange 34, C.I. $21115-1$	257	245	6.46	2.64
	72 79	63 89	201 1,011	3.19 11.36
Red toners, total-	20,571	18,338	37,649	2.05
Naphthol reds, total----	1,209	1,013	3,430	3.39
Pigment Red 2, C.I. 12310	52	, 43	${ }^{117}$	2.72
Pigment Red 5, C.I. 12 490Pigment Red 17, C.I. 12390	80	48	236	4.92
	65	55	172	3.13
Pigment Red 22, C.1. 12315	96	107	312	2.92
Pigment Red 23, C.I. 12355		629	1,962	3.12
Other naphthol reds----------1	909	131	631	4.82
Pigment Red 1, C.I. 12 070, dark-	133	106	134	1.26
Pigment Red 1, C.I. 12 070, light	173	155	196	1.26
Pigment Red 3, C.I. 12 120------	1,699	1,508	2,404	1.59
Pigment Red 4, C.I. $12085-$	300	219	322	1.47
	55			...
Pigment Red 38, C.I. 21120	224	183	792	4.33
Pigment Red 49, C.I. 15630 :Barium toner---------	2,467	2,409	4,504	1.89
	3,587	3,432	3,654	1.06
Calcium toner	1,387	1,283	1,424	1.11
Siodium toner--------------	208	256	287	1.12
	1,508	1,591	2,427	1.53
Pigment Red 53, C.I. 15 585, bariu	2,227	1,952	2,668	1.37
Pigment Red 54, C.1. 14 830, calci	71	78	178	2.28

See footnotes at end of table.

「ABLE 1.--senzenoid pigments: U.s. production and sales, 1968--Contimued

|  |
| ---: | ---: | ---: | ---: | ---: | ---: |

See footnotes at end of table.

TABLE 1.--Benzenoid pigments: U. $\therefore$. prociuction ana $\dot{a} Z_{t} ; 136$--Continued

Pigment	Production	Sales		
		Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value }^{1} \end{gathered}$
LAKES--Continued				
	1,000 pownd:	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\left\{\begin{array}{c} \text { 1,00u } \\ \text { dollars } \end{array}\right.$	Per pound
Violet lakes:   Pigment Violet S, C.I. 58055	192	176	388	\$2.20
Blue lakes, total-	1,914	1,771	1,813	1.02
All other lakes ${ }^{2}$	968	941	660	. 70

${ }^{1}$ Calculated from rounded figures.
2 Includes all black, brown, green, orange, yellow lakes, "all other" red, and "all other" violet lakes.
Note.--The C.1. (Cotour Index) numbers shown in this report are the identifying numbers given in the second edition of the Colour Index.

The abbreviation PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstonolybdic) acids, respectively.

TABLE 2.--Benzenoid pigments: U.S. sales of selected dxy full-strength colors, dry extended colors, dry dispersions, aqueous dispersions, and flushed cotors, 1968

## Selected pigments by commercial forms

Pigment Yellow 12, C.1. 21090 , total-
 Flushed color

Pigment Yellow 13, C.I. 21 100; Pigment Yellow 14, C.I. 21 095; Pigment Yellow 17, C.1. 21 105; and other benzidine yellows, total-
 Dry extended toner ${ }^{\text {Aqueous dispersions }}{ }^{3}$ Flushed color-

Pigment Red 3, C.I. 12 120, total Dry full-strength toner and dry extended toner ${ }^{4}$ Aqueous dispersions ${ }^{3}$ -
$\qquad$
Pigment Red 48, C.1. 15865 , total
Dry full-strength toner-
Dry extended toner and dry dispersions ${ }^{4}$
Aqueous dispersions ${ }^{3}$
Flushed color
Pigment Red 49, C.I. 15 630, barium toner, totalDry full-strength toner and dry extended toner ${ }^{4}$ Aqueous dispersions ${ }^{3}$ and flushed color ${ }^{4}$ -

Pigment Red 49, C.1. 15 630, calcium toner, totalDry full-strength toner-------------------1
Dry dispersions and aqueous dispersions


Pigment Red 53, C.I. 15 585, barium toner, total-
Dry full-strength toner, dry extended toner, and dry dispersions ${ }^{4}$
Aqueous dispersions ${ }^{3}$ and flushed color ${ }^{4}$
Pigment Red 90, C.I. 45380 , total
Dry full-strength toner, dry extended toner, and dry dispersions ${ }^{4}$
Aqueous dispersions ${ }^{3}$ and flushed color ${ }^{4}$
Pigment Violet 3, C.I. 42 535, fugitive, total--
Dry full-strength toner and dry extended toner ${ }^{4}$
Flushed color-
Pigment Violet 3, C.1. 42 535, permanent (PMA and PTA), total--
Dry full-strength toner-
Dry extended toner, aqueous dispersions ${ }^{3}$ and flushed color ${ }^{4}$
Pigment 8lue 15, C.1. 74160 , alpha form, total-

Dry extended toner
Dry dispersions-----
Flushed color-
$\mathrm{n}^{3}$ -

See footnotes at end of table.

TA8LE 2.--Benzenoid pigments: U.S. sales of selected dry full-strength colors, dry extended colors, dry dispersions, aqueous dispersions, and flushed colors, 1968--Continued

Selected pigments by conmercial forms	Sales		
	Quantity ${ }^{1}$	Value	Unit value ${ }^{2}$
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & \text { 1,000 } \\ & \text { dollars } \end{aligned}$	Per pownd
Pigment Blue 15, C. 1.74160 , beta form, total	3,305	10,525	\$3.18
Dry full-strength toner------------------	1,205	4,023	3.34
Dry extended toner and dry dispersions ${ }^{4}$	451	1,579	3.50
Aqueous dispersions -------------------------	850 799	2,414 2,509	2.84 3.14
Pigment Blue 19, C. 1. $42 \mathrm{750A}$, total	2,969	7,270	2.45
Dry full-strength toner and dry extended toner ${ }^{4}$	315	766	2.43
Aqueous dispersions ${ }^{3}$ and flushed color ${ }^{4}$	2,654	6,504	2.45
Pigment Green 7, C.1. 74260 , total-	3,109	10,781	3.47
	1,217	4,335	3.56
Dry extended toner and dry dispersions	, 641	2,530	3.95
Flushed color-------	1,076 175	3,289 62	3.06 3.58

[^10]TABLE 3.-. Benzenoid pigments: Manufacturers' identification codes, by products, 1968
[Benzenoid pigments for which separate statistics are given in table 1 are marked below with an asterisk (*); products not so marked do not appear in table l because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from tne Appendix, tables 1 aum 2 . An $x$ signifies that the manufacturer did not consent to nis identification with the designated product.]

*Benzidine yellows:
*Pigment Yellow 12, C.1. 21090
Pigment Yellow 13, C.1. 21 100---------------------
*Pigment Yellow 14, C.1. $21095-$
*Pigment Yellow 17, C.I. 21 10S
Pigment Yellow 76-
Pigment Yellow 83
Pigment Yellow 97


Pigment Yellow 19-------n-------------------------------1
Pigment Yellow 60, C.l. 12 705--
Pigment Yellow 112 C.l. 70 600-
(Basic Yellow 2), C.I. 41000 fugitive-------------
All other---
*Orange toners:
Pigment Orange 1, C.1. 11 72S
*Pigment Orange 2, C.I. 12060
*Pigment Orange 5, C.I. 12075
*Pigment Urange 13, C.I. 21 110-----------------------1

*Pigment Urange 16, C.I. 21 160--
*Pigment Orange 34, C.1. 21 11S------------------------
*Pigment Orange 43, C.1. 71 105---
(Vat Orange 1), C.I. S9 10S---
(Vat Orange 4), C.I. 59 710-
(Vat Orange 1S), C.I. 69025 -
All other-
*Red toners:
*Naphthol reds:
*Pigment Red 2, C.I. 12 310-
*Pigment Red S, C.I. 12490
Pigment Red 7, C.1. 12420
Pigment Red 9, C.I. 12460
Pigment Red 10, C.I. 12440
ACS, ACY, AMS, CPC, DUP, FCL, GAF, HSC, HSH, ICl, IMP, KON, PPG, ROM, S, SDH, SNA, SW.
ACS, IISC, IISH, IMP, $\mathbb{E C W}, \mathrm{KON}, \mathrm{PPG}, \mathrm{S}, \mathrm{SW}$.
ACS, SNA.
IMP.
IMP.
SINA.
1CI, IMP.
SW.
ACS, SNA, SW, $x$.
DUP, HSC, IMP, SDH, SW.
IMP.
DUP, KCW.
ACS, ACY, AMS, DUP, FCL, HSC, HSH, ICC, IMP, KON, LVY, S, SDil, SNA, SW.
BUC, FCL, GAF, IISC, IISII, HST, ICC, IMP, ROM, SDil, SNA, SW.
ACS, ACY, AMS, BUC, CIK, CPC, DUP, FCL, GAF, IISC, IISiI, HST, ICC, 1 MP, KON, ROM, S, SDH, SNA. SW, $x$.
AMS, ACY, BUC, FCL, IISH, HSC, HST, ICC, IMP, SDH, SNA, SW.
$x$.
HST.
HST.
HSII, ICC, ROM, SW.
IMP.
GAF.
SW.
ACS, TRC.
MRX.
ACY, ICC, IMP, S, SW.
ACS, KCW.
FCL, IMP, SDII, SH, UHL.
ACY, HSC, IMP, SNA, SW.
ACS, ACY, AMS, DUP, IMP, KUN, S, SNA, SW.
ACS, GAF.
ACS, BUC, DUP, FCL, HSC, HSH, HST, ICC, 1MP, ROM, SDII, SNA, SW.
BUC, ICC, ROM, SDH, SNA.
GAF, HST.
IIST.
ACS.
ACS, TRC.
GAF, KON.

ACS, GAF, IISC, IMP, KCW, KON, MRX, SDH, SW.
ACS, DUP, GAF, IISH, ICC, ICI, IMP, ROM, S, SDH, SH.
ICI, S.
IMP.
KCW.

TABLE 3.--Benzenoid pigments: Manufacturers' identification codes, by products, 1968--Continued

## Pigment

Manufacturers' identification codes (see Appendix, tables I and 2)

## TONLRS--Continued



IMP, KCW.
DUP.
IUP.
ACY, FCL, ICC, IMP, S, SNA, SW. UHL.
ACS, IMP, SW.
ACY, DUP, FCL, GAF, IMP, MRX, SNA, SIW.
ACY, BUC, DUP, FCL, ICC, IMP, SDH, SNA, SW.
SIIA.
$x$.
KCW, ROM, S, SDH, SW, x.
ACY, HSC, HSI!, IMP, KON, LVY, SDH, SW.
ACY, IISC, HSH, IMP, KON, PPG, SDH, SW.
ACY, CIK, CPC, DUP, IISC, HSII, IMP, KCW, KON, PPG, SDII, SNA, SW, UIIL.
ACY, AMS, FCL, IISC, IAP, KON, MRX, SDII, SNA, SW, UIIL.
DUP, HSC, HSH, KON, SW.
ACS, DUP, GAF, ICC, SNA, SW.
ACS.
ACS, ACY, AMS, DUP, FCL, GAF, HSC, IISH, ICC, IMP, KON, LVY, MRX, S, SNA, SW.

ACY, AMS, CIK, FCL, HSC, IMP, KON, LVY, SDH, SW, UIIL.
ACY, AMS, FCL, IISC, IMP, LVY, PPG, SDII, SW.
ACY, AMS, HSC, KUN, SDH, SW.
GAF.
AIIS, FCL, IISC, IISII, IMP, SNA, SN.
ACY, AMS, CIK, FCL, IISC, IMP, KON, LVY, MGR, MRX, SDH, SNA, SW.
KON.
HSII, IMP, SDH.
ACS, DUP.
ACS, AMS, CIK, DUP, FCL, HSC, ${ }^{1} \mathrm{SLI}, \mathrm{MMP}$, KON, LVY, MGR, SDII, SNA, SN.
DUP, GAF, IMP.
ACS, HSII, IMP, KON, SNA, SW.
ACS.
SW.
GAF.
KClV, MGR.
CP'C, DUP, FCL, GAF, IMP, KON, LVR, LVY, MGR, MRX, S, SNA, TCD, UHL.
ACY, AMS, DUP, FCL, GAF, IISC, IMP, KCN, KON, MGR, MRX, S, SDII, SNA, UILL.
ACS.
ACS, SDIH.
AMS, FCL, ICC, IMP, LVR, LVY, SDH, TCD.
TCD.
SW.
ACS, ACY.
ACS, IISC.
ACS, TRC.
ACS.

TABLE 3.--Benzenoid pigments: Manufacturers' identification codes, by products, 1968--Continued


TABIE 3.--Benzenoid pigments: Manufacturers' identification codes, by products, 1968--Continued


Note.--The C.I. (Colour Index) numbers shown in this report are the identifying codes given in the second edition of the Colour Index.

When the name of a color is enclosed in parentheses, it indicates that this name is that of the dye from which the pigment can be made and that no name for the pigment itself is given in the Colour Index.

The abbreviations PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstomolybdic) acids, respectively.

Medicinal chemicals include the medicinal and feed grades of all organic chemicals having therapeutic value, whether obtained by chemical synthesis, by fermentation, by extraction from naturally occurring plant or animal substances, or by refining a technical grade product. They include antibiotics and other anti-infective agents, antihistamines, autonomic drugs, cardiovascular agents, central nervous system depressants and stimulants, hormones and synthetic substitutes, vitamins, and other therapeutic agents for human or veterinary use and for animal feed supplements.

Table 1 shows statistics for production and sales of medicinal chemicals grouped by pharmacological class, while table 2 lists separately each product for which data were reported and identifies the manufacturers. The statistics shown in table l are for bulk chemicals only; finished pharmaceutical preparations and products put up in pills, capsules, tablets, or other measured doses are excluded. ${ }^{1}$ The difference between production and sales reflects inventory changes, processing losses, and captive consumption of medicinal chemicals processed into ethical and proprietary pharmaceutical products by the primary manufacturer. In some instances, the difference may also include quantities of medicinal grade products used as intermediates, e.g., penicillin G salts used as intermediates in the manufacture of semisynthetic penicillins. All quantities are given in terms of l00-percent content of the pure bulk drug.

Total U.S. production of bulk medicinal chemicals in 1968 amounted to 177 million pounds, or 1.6 percent less than the 180 million pounds produced in 1967 and 4.4 percent less than the 185 million pounds produced in 1966. Total sales of bulk medicinal chemicals in 1968 amounted to 123 million pounds, valued at $\$ 415$ million, compared with sales in 1967 of 127 million pounds, valued at $\$ 385$ million, and sales in 1966 of 136 million pounds, valued at $\$ 398$ million. In terms of quantity, sales in 1968 were thus 3.5 percent smaller than in 1967 and 10.2 percent smaller than in 1966. In terms of value, however, sales in 1968 were 7.7 percent larger than in 1967 and 4.1 percent larger than in 1966 .

Production of the more important groups of medicinal chemicals in 1968 was as follows: Antibiotics, 10.3 million pounds ( 8 percent larger than in 1967), of which 6.0 million pounds was for medicinal use and 4.3 million pounds was for other uses; anti-infective agents other than antibiotics, 34.2 million pounds ( 9 percent larger than in 1967) ; central

[^11]nervous system depressants and stimulants, 43.1 million pounds (1 percent smaller); gastrointestinal agents, 48.0 million pounds ( 8 percent smaller); and vitamins, 17.0 million pounds ( 3 percent smaller). Production of some of the more important individual products listed in table 1 was as follows: Choline chloride, 35.0 million pounds ( 9 percent smaller than in 1967); aspirin, 30.9 million pounds (2 percent larger); salicylic acid, 11.6 million pounds (l percent larger); methionine and its hydroxy analogue, 10.1 million pounds ( 8 percent smaller); piperazine base and salts, 8.7 million pounds ( 2 percent smaller); ascorbic acid, 6.7 million pounds ( 9 percent smaller); anti-infective sulfonamides, 4.8 million pounds ( 5 percent smaller); penicillins, 2,473 trillion units ( 74 percent larger); tetracyclines, 1.3 million kilograms (16 percent smaller); vitamin A, l, 064 trillion units (10 percent larger); and vitamin E, 414 billion units (20 percent larger).

Table 3 in the Appendix includes imports of benzenoid medicinal chemicals and pharmaceuticals during 1967 and 1968.

## MEDICINAL CHEMICALS

TABLE 1.--Medicinal chemicals: U.S. production and sales, 1968
[Listed below are all synthetic organic medicinal chemicals for which any reported data on production or salez may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all medicinal chemicals for which data on production or sales were reported and identifies the manufacturer of each]

| Chemical |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

See footnotes at end of table.

TABLE 1.--Medicinal chemicals: U.S. production and sales, 1968--Continued

Chemical				

See footnotes at end of table.

TABLE 1.--Medicinal chemicals: U.S. production and sales, 1968--Continued

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |

See footnotes at end of table.

Chemical	Production ${ }^{1}$	Sales ${ }^{1}$		
		Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
	$\frac{1,000}{\text { pounds }}$	$\frac{1,000}{\text { pounds }}$	$\frac{1,000}{\text { doltars }}$	Pound
Vitamins--Continued				
Vitamin C, total-	$\begin{aligned} & 8,560 \\ & 6,712 \end{aligned}$	5,859	9,925 6,794	$\begin{array}{r} \$ 1.69 \\ 1.58 \end{array}$
Ascorbic acid-All other	$\begin{aligned} & 6,712 \\ & 1,848 \end{aligned}$	$\begin{aligned} & 4,291 \\ & 1,568 \end{aligned}$	6,794 3,131	$\begin{aligned} & 1.58 \\ & 2.00 \end{aligned}$
Vitamin $D_{2}\left(\right.$ Ergocalciferol) ${ }^{12}$	1	1	210	210.00
Vitamin E ${ }^{12}$------------.-	768	542	10,434	19.25
Vitamin K: Menadione sodium bisulfite	149	74	614	8.30
Other vitamins	86	23	2,619	113.87
Miscellaneous medicinal chemicals ${ }^{13}$	2,315	1,111	32,370	29.14

${ }^{1}$ The data on production and sales are for bulk medicinal chemicals only; they exclude finished preparations and dosage-form products, which are manufactured from bulk chemicals. All quantities are given in terms of $100 \%$ active ingredient.
${ }^{2}$ Calculated from rounded figures.
${ }^{3}$ The term "benzenoid," as used in this report, describes any cyclic medicinal chemical whose molecule contains either a six-membered carbocyclic ring with conjugated double bonds (e.g., the benzene ring or the quinone ring) or a six-membered heterocyclic ring with $l$ or 2 hetero atoms and conjugated double bonds, except the pyrimidine ring (e.g., the pyridine ring or the pyrazine ring).
${ }^{4}$ Includes antibiotics of unknown structure.
${ }^{5}$ With the exception of bacitracin, the penicillins, and a few other antibiotics which were reported in terms of U.S.P. units, all quantities for antibiotics were reported as grams of antibiotic base. (Thus production of 480,900 grams of tetracycline hydrochloride, for example, would have been reported as 444,430 grams of tetracycline base.) For inclusion in the main statistical table, all quantities were converted from grams of antibiotic base to pounds of antibiotic base ( 453.6 grams $=1$ pound) or from U.S.P. units to pounds ( 22.7 million units of bacitracin, 458 million units of procaine penicillin $G, 723$ million units of potassium penicillin $G$, etc. $=1$ pound). The following tabulation shows statistics for all individually publishable antibiotics in terms of kilograms of antibiotic base (Kg.) or billions of U.S.P. units (BU):

Antibiotic	Unit of quantity	Production	Sales		
			Quantity	Value	Unit   value
				$\frac{1,000}{\text { do } 2 \operatorname{lan} s}$	
Bacitracin, total	---BU---	6,274	5,844	4,963	\$849.25
For medicinal use	---BU---	371	237	894	3,772.15
For other uses-	---BU---	5,903	5,607	4,069	725.70
Neomycin, for all uses-	---Kg---	141,312	34,254	1,451	42.36
Penicillins, total-	---BU---	2,473,189	930,133	33,427	35.94
Penicillin G, potassium, for medicinal use-	---BU---	1,130,993			
Penicillin $G$, procaine, for all uses-------	---BU---	825,082	579,210	9,981	17.23
Semi-synthetic penicillins, for medicinal use, total	---BU---	262,984	...		.
Ampicillin--	---BU---	194,138	...	$\ldots$	. $\cdot$
Dicloxacillin, sodiur	---BU---	14,101	$\ldots$		$\ldots$
All other---	---BU---	54,745	...		
All other penicillins, for all uses-	---BU---	254,130	350,923	23,446	66.81
Tetracyclines, for all uses	---Kg---	1,273,484	388,810	19,913	51.22

${ }^{6}$ Because of a clerical error, the quantities and unit value for medicinal grade bacitracin shown in the 1967 report were incorrect. Production should have been shown as 9,000 pounds ( 203 billion units); sales should have been shown as 9,000 pounds ( 211 billion units); and the average unit value of sales should have been $\$ 107.67$ per pound ( $\$ 4,592.42$ per billion units).

Footnotes for table 1--Continued
${ }^{7}$ Total production of all penicillins, for all uses, amounted to $4,113,000$ pounds; sales amounted to $1,775,0 \pi 01$ pounds, valued at $\$ 33,427,000$.
${ }^{8}$ The p-hydroxybenzoic acid esters formerly reported as antifungal agents have been transferred to the peport on Miscellaneous Chemicals.
${ }_{9}$ Production of rauwolfia and veratrum alkaloids amounted to 363 pounds.
10 Includes 2 or more of the following 6 drugs which are subject to Federal control under the Drug Abuse Control Act: Chlordiazepoxide hydrochloride, diazepam, ethchlorvynol, ethinamate, glutethimide, and methyprylon. U.S. production of these 6 drugs amounted to 561 thousand pounds in 1968.

11 Sunscreens, which were formerly reported as dermatological agents, have been transferred to the repurt on Miscellaneous Chemicals.

12 All quantities for vitamins $A, B_{12}, D$, and $E$ were reported in terms of grams or units, but were converted to pounds for inclusion in the main statistical table ( 1.317 billion units of vitamin $A$ acetate, 0.824 billion units of vitamin A palmitate, 453.6 grams of vitamins $B_{12}, 18.14$ billion units of vitamin $D, 617,000$ units of d-alpha tocopheryl acetate, 454,000 units of dl-alpha tocopheryl acetate, etc. $=1$ pound). The following tabulation shows statistics for these vitamins, except for $D_{3}$, which was not separately publishable, in terms of grams, millions of international units (MU), or billions of U.S.P. units (BU):

Vitamin	Unit oi quantity	Production	Sales		
			Quantity	Value	Unit value
				$\frac{1,000}{\text { dol2ars }}$	
Vitamin A alcohol and esters, total	---BU---	1,063,766	740,231	18,593	\$25.12
Vitamin A palmitate (feed grade)	---BU---	719,447	472,099	10,239	21.69
A11 other-------	---BU---	344,319	268,132	8,354	31.16
Vitamin $\mathrm{B}_{12}$ (Cyanocobalamin)	--grams-	1,152,000	1,356,000	9,213	6.73
Vitamin $D_{2}$ (Ergocalciferol)	---BU---	21,604	22,600	210	9.29
Vitamin E-	---MU---	414,163	305,164	10,434	34.19

13 Includes production and sales of antineoplastic agents, diagnostic agents, smooth-muscle relaxants, and unclassified medicinal chemicals; also includes sales of all other cardiovascular agents.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968
[Medicinal chemicals for which separate statistics are given in table 1 are marked below with an asterisk (*); medicinal chemicals not so marked do not appear in table $l$ because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2. An $x$ signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical	Manufacturers '   (see Appendi
*Antibiotics:	
*For medicinal use:	
*Antifungal and antitubercular antibiotics:	
Antifungal antibiotics:	
Amphotericin B-------------------------------------	OMS .
	$x$.
	OMS.
Antitubercular antibiotics:	
	COM.
Dihydrostreptomy	MRK, PFZ.
Streptomycin	LIL, MRK, PFZ.
	PFZ.
	COM, PEN, PFZ, PMP.
*Penicillin G, potassium	LIL, OMS, PFZ, WYT.
*Semi-synthetic penicillins:	
	BEE, BRS, WYT.
*Dicloxacillin, sodium	BEE, BRS, WYT.
*Other semi-synthetic penicillins:	
	OMS.
Cloxacillin, sodium-------------------------------	BEE, BRS.
	BRS.
Methicillin, sodium	BRS.
Nafcillin, sodium-------------------------------------	WYT.
Oxacillin, sodium----------------------------------	BRS.
Phenethicillin, potassium---------------------	BRS, PFZ.
*Other antibiotics for medicinal use:	
Cephaloridine	LIL.
Cephalothin, sodium-----------------------------------	LIL.
Chloramphenicol	PD, RLS.
Erythromycin-----------------------------------------	ABB, LIL.
	ABB.
Gentamycin-	SCH .
	$x$.
	BRS.
	$x$.
	OMS, PEN, PFZ, UPJ.
Novobiocin	MRK, UPJ.
Oleandomycin----------------------------------------	PFZ.
Paromomycin	MRK.
Penicillins:	
Penicillin G, benzathine-------------------------	WYT.
Penicillin G, procaine--------------------------	LIL, OMS, PFZ, WYT.
	OMS.
	PFZ.
Phenoxymethylpenicillin (Penicillin V)-------	LIL.
Phenoxymethylpenicillin, benzathine----------	WYT.
Phenoxymethylpenicillin, hydrabamine---------	$A B B$.
Phenoxymethylpenicillin, potassium----------	ABB, LIL, OMS.
	PFZ.
	ABB.
Tetracyclines:	
	ACY, RLS.
Demeclocycline-------------------------------------	ACY.
	PFZ.
Methacycline----------------------------------------	PFZ.
Oxytetracycline	PFZ, RLS.
Tetracycline-------------	ACY, BRS, PFZ, RLS.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Antibiotics--Continued	
*Other antibiotics for medicinal use--Continued	
	OMS .
	PFZ.
	$x$.
	LIL.
*For other uses:	
	COM, DLI, GPR, PEN, PMP.
	ACY.
	UPJ.
	LIL.
	PEN, PFZ.
	UPJ.
	PFZ.
	WYT.
	LIL, MRK, OMS.
	LIL, MRK, PFZ.
Tylosin----	LIL.
*Antihistamines:	
*Antinauseants:	
	BUR.
	HEX, SRL.
	PFZ.
Trimethobenzamide hydrochloride-----------------------	HOP.
	PD.
	SCH.
	SCH.
	$A B B$, BUR.
	ACY.
*Chlorpheniramine maleate-	HEX, LEM, RLS, SCH, SK, x.
	MRK.
	SCH .
Dexchlorpheniramine maleate-----------------------------	SCH .
	GAN, PD, RLS.
	BKC.
	ABB.
	LIL.
	ABB.
	HOF.
	HEX, LEM, SCH, $x$.
Phenyltoloxamine citrate----------------------------------	BRS.
Pyrilamine maleate----------------------------------------	HEX, MRK, RSA.
	MRK.
	LIL.
Thenyldiamine hydrochloride---------------------------1-1	SDW.
	NEP.
	CBP.
	CBP.
Tripelennamine hydrochlorid	CBP, $x$.
Triprolidine hydrochloride-------------------------------	BUR.
*Anti-infective agents (except antibiotics):	
*Arsenic, bismuth, and mercury compounds:	
Arsanilic acid	SAL, WHL.
	x .
	BPC.
	MAL, NOR, PEN.
	LIL, PYL, WHL.

See footnotes at end of table.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products,1968-Continued


## Manufacturers' identification codes <br> (see Appendix, tables 1 and 2)

PYL, SDW.
HYN.
MRK.
SAL.
ABB.
ABB.
MRK.
MRK.
MRK.
MRK.
SAL.
SAL.
PYL, SAL.
LIL, MED, PYL, SEL.

ACY.
SDH.
KPI, LEMM.
GIV.
MAL.
DOW, FLM, JCC, UCC.
JCC, PYL.
BUR, JCC.
DOW, FLM, JCC, WHL.
SEL.
JCC.
DOW, JCC, SEL.
BUR, JCC, PYL, SEL.
JCC.
PYL.
PD.
PD.
UOP.
SDW.
CBP, FIN, LEM, PYL, RSA, SRL.
SDW.
MRK.
CBP, PYL.
LEM, MRK.
FIS, LEM, MRK.
FIS.
FIS, LEM, MRK, PYL.
PD, SDW.
ACY.
HOF.
SAL.
SDW.
SDW.
LEM, PYL.
LEM, MRK, PYL.
LEM, MRK.

See footnotes at end of table.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by product, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Anti-infective agents (except antibiotics)--Continued *Sulfonamides--Continued	
	ACY.
	ACY.
Sulfabromomethazine, sodium----------------------------	MRK.
	CTN, LEM.
	LEM.
Sulfachloropyridazine, sodiun------------------------	CBP.
Sulfachloropyrazine, sodium-----------------------	ACY.
Sulfadiazine---------------------------------------------	$A C Y$.
	ACY.
	HOF.
	ACY.
	ACY.
	ACY, CTN, LEM.
Sulfamerazine, sodium---------------------------------	ACY, CTN.
	ACY, CTN, LEM.
	CIN.
	ACY, CTN.
	HOF.
	ACY.
	LEM, MRK, SAL.
	SAL.
	ACY, CTN, MRK. ACY.
	MRK.
	ACY, LEM, MRK.
	ACY, MRK.
	HOF.
	HOF.
*Other anti-infective agents:   *Anthelmintic agents:	
	MAL.
2,2-Dichlorovinyl dimethyl phosphate----------	SHC.
	ACY.
	ACS, SDH.
	HEX, MRK.
	CLV, ISC.
	x .
	MRK.
*Antibacterial agents and general antiseptics:   *Antileprotic and antitubercular agents:	
	MLS, PD.
	SDW.
	RDA.
	RIL.
	MLS.
	MRK.
	MLS .
	ABB.
*Urinary antiseptics:	
	MAL.
	KON.
	MAL.
	HN.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' i (see Appendi
*Anti-infective agents (except antibiotics)--Continued   *Other anti-infective agents--Continued   *Antibacterial agents and general anti-septics--Continued   *Urinary antiseptics--Continued   *Metnenamine salts:	
	RIK.
Methenamine mandelate-----------------------	ARN, LEM, NEP, PYL.
Methenamine sulfosalicylate-----------------	
Methylene blue	ACS, ACY.
Nitrofurantoin	NOR.
Phenazopyridine hydrochloride-	HOF, KON, NEP.
*Other antibacterial agents and general antiseptics:	
	ACS.
	SDW.
Aminacrine hydrochlori	SDW.
	SDH.
Bromoform-	DOW.
	MAL, PEN.
Cetalkonium chlor	FIN, SDW.
Cetylpyridinium chlo	FIN, HEX, NEP.
	MON.
Chlorobutanol	BPC, PD.
Iodoform ${ }^{2}$	MAL, PEN.
Nalidixic acid	SDH.
Nifuraldezone	NOR.
Nitrofurazone	NOR.
Oxolinic aci	NEP.
Povidone - iodine complex	GAF.
*Antifungal agents:	
Benzoic acid-	MON, PFZ.
	WTL.
	ACS.
	LEM.
	LEM.
Sodium undecylena	BAC.
	BAC, CFC.
	BAC, LEM, WTL.
*Antiprotozoan agents:	
	SAL.
Aminitrozole	ACY.
	MRK.
	SDW.
	DOW.
	NOR.
Metronidazole	RDA.
	NOR.
	MRK.
Nitromide	SAL.
	BUR.

See footnotes at end of table.

TABLE 2.--Medicinal chemicals : Manufacturers' identification codes, by products, 1968-Continued

## Chemical

*Autonomic drugs:
*Parasympatholytic (anticholinergic) agents (except tropane derivatives):
*Quaternary ammonium compounds:










*Tertiary amines:
Adiphenine hydrochloride----------------------------




Oxyphencyclimine hydrochloride------------------


Trihexyphenidyl hydrochloride---------------------
*Sympathomimetic (adrenergic) agents:
Arterenol hydrochloride (racemic)-----------------

Epinephrine bitartrate (levo)
*Epinephrine hydrochloride (racemic)







Phenylephrine bitartrate


Propylhexedrine-

Pseudoephedrine hydrochloride----------------------

Tetrahydrozoline hydrochloride-----------------------
*Other autonomic drugs:
Ganglionic blocking agents:
Hexamethonium chloride-
Tetraethylammonium chloride-----------------------
Parasympatholytic tropane derivatives:

Benztropine mesylate------------------------------


Homatropine methylbromide-

Manufacturers' identification codes
(see Appendix, tables 1 and 2)

BJI, ICO.
SCH .
ABB.
SK.
LKL.
SRL.
LKL.
SRL.
SCH.
ACY.
CBP.
SK.
BKC.
RIK.
RIK.
PFZ.
LKL.
BJL.
ACY, SDW.
SDW.
LIL.
SDW.
ECL, $\mathrm{VB}, \mathrm{x}$.
SDW.
SDW.
$x$.
CBP.
SDW.
BKL.
GAN, SDW.
GAN.
CTN, GAN, HEX, ORT, SDW.
BKL, GAN, ICO, NEP, ORT.
HEX, SK.
LKL.
BUR, GAN.
GAN.
PFZ.

RSA.
RSA.
$x$.
x .
CTN.
CTIN, HEX.
CTN, HEX.

TABIE 2.-Medicinal chemicals : Manufacturers' identifisation codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables $I$ and 2)
*Autonomic drugs--Continued   *Other autonomic drugs--Continued	
Parasympathomimetic (cholinergic) agents:	
	MRK.
	MRK, RSA.
	HEX, HOF.
	PEN.
	HOF.
Sympatholytic (antiadrenergic) agent: Ergonovine maleate.	LIL.
*Cardiovascular agents:	
	FIN.
	LEM, OMS.
	HEX.
	HEX.
	FIN.
*Rauwolfia and veratrum alkaloids:	
	RIK.
	RIK.
	PEN.
	PEN.
	CBP.
*Other cardiovascular agents:	
Antihypertensive agents (except rauwolfia and veratrum alkaloids):	
	CBP.
	CBP.
Methyldopa-	MRK.
	$A B B$.
Bioflavonoids:	
	SKG.
	SKG.
	SKG.
	SKG.
	PEN.
Sclerosing agent: Sodium morrhuate-----------------	MED.
Vasodilators:	
	LIL.
	MAL.
	APD.
	APD.
	APD.
	HOF.
	APD.
*Central depressants and stimulants:	
*Amphetamines:	
*Amphetamine base and sulfate (racemic):	
	HEX, ORT.
	ARN, HEX, SK.
	HEX.
Dextroamphetamine carboxymethylcellulose--------	ARN.
Dextroamphetamine hydrochloride	ARN, HEX.
	ARN.
	ARN, HEX, SK.
	ARN.
	ARN.
	HEX.

TABIE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued

## Chemical

*Central depressants and stimulants-Continued
*Amphetamines--Continued Methamphetamine (levo) Methamphetamine (racemic)
*Methamphetamine hydrochloride (dextro)----------Methamphetamine hydrochloride (racemic)---------
*Analgesics and antipyretics:

*Salicylates (except aspirin):
Aluminum aspirin







*Other analgesics and antipyretics:

p-Aminobenzoic acid and salts:





















*Antidepressants:







*Antitussives:



Codeine


Ethylmorphine hydrochloride--------------------------
 Thebaine

Manufacturers' identification codes
(see Appendix, tables 1 and 2)
$A B B, H E X$.
HEX.
ARN, GAN, HEX.
ARN, HEX.
DOW, MLS, MON, NOR, SDG.
$A B B, S C H$.
MAL.
DOW, MAL.
HN, PEN.
CFC, $x$.
CFC, HN.
DOW, HIN.
CFC.
ATP, MLS, NEP, $x$.
LEM.
GAN.
LEM.
GAN, LEM.
GAN, LEM.
MRK.
LEM.
PEN.
WYT.
MRK.
PD.
SDW, WYT.
LIL.
EN.
GGY.
SDW.
SDW.
MON.
GGY.
OTC.
LIL.
MRK.
LKL.
GGY.
PFZ.
LIL.
NEP.
MRK.
CBP.
PFZ.
RIK.
MRK.
HOF.
BKL.
MAL, MRK.
MAL, MRK, PEN.
MRK.

TABLE 2.--Medicinal chemicals : Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Central depressants and stimulants--Continued *Barbiturates:	
	GAN.
	GAN.
5-Allyl-5-(2-cyclopenten-l-yl)barbituric acid---	GAIN.
	LIL.
	GAN, LIL.
	GAN.
	GAN.
	ABB, GAN.
	ABB, BPC, GAN.
	SDW.
	SDW.
	GAN, SDW.
	SDW.
	SDW.
	ABB.
	LIL.
	ABB, GAN.
	ABB, GAN, PD.
	GAN, MAL.
	GAN, MAL, SDW.
	GAN.
	GAN, LIL.
	SDW.
	PD.
	ABB.
	$x$.
*Hypnotics and sedatives (except barbiturates) :	
	PD.
	ABB.
	LIL.
	CBP.
	NEP.
	HOF.
*Skeletal muscle relaxants:	
	BKL.
	UPJ.
	BKL, HEX, OMS.
	OMS.
	LIL.
	ARP.
*Succinylcholine chloride----------------------------	ABB, BUR, SDW.
	ABB.
*Tranquilizers:	
Azacyclonol hydrochloride-----------------------------	BKC.
	PFZ.
	HOF.
	SDW.
	HOF.
	HOF.
	LIL.
	ARP.
Hydroxyzine hydrochloride----------------------------	PFZ.
	PFZ.
	BKL.
	$A B B, B K L, x$.
	HEX.
	WYT.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued


TABLE 2.--Medicinal chemicals : Manufacturers' identification aodes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Dermatological agents and local anesthetics--Continued   *Other dermatological agents and local   anesthetics--Continued   Local anesthetics--Continued   Isobutyl aminobenzoate- $\qquad$   oxethazaine $\qquad$   Fhenacaine hydrochloride $\qquad$   Piperocaine hydrochloride $\qquad$   Pramoxine hydrochloride- $\qquad$   Procaine hydrochloride- $\qquad$      Tetracaine $\qquad$   Tetracaine hydrochloride- $\qquad$	```ICO. WYT. GAN, SDW. LIL. ABB. ABB, LEM, PFZ. OMS. SDW. SDW.```
*Expectorants and mucolytic agents:      *Guaiacol and its derivatives:   Glyceryl guaiacolate- $\qquad$      Potassium guaiacolsulfonate- $\qquad$   Iodinated glycerol $\qquad$   Iodobrassid- $\qquad$   Lobeline sulfate- $\qquad$   Terpin hydrate   Thonzonium bromide- $\qquad$	$\begin{aligned} & \text { CLV, ISC, WHL. } \\ & \text { GAN, HEX, } x \text {. } \\ & \text { MON. } \\ & \text { HN. } \\ & x \text {. } \\ & \text { CBP. } \\ & \text { ABB. } \\ & \text { LEM, FEN. } \\ & \text { NEP. } \end{aligned}$
*Gastrointestinal agents:   *Choleretics and hydrocholeretics:         Florantyrone- $\qquad$   Iron bile salts $\qquad$   Ox bile extract- $\qquad$      Tocamphyl $\qquad$	$\begin{aligned} & \text { SRL, WIL. } \\ & \text { WIL. } \\ & \text { SRL. } \\ & \text { LIL. } \\ & \text { ABB. } \\ & \text { WIL. } \\ & \text { x. } \end{aligned}$
*Choline chloride (all grades):      Medicinal grade- $\qquad$	COM, DA, DLI, HFT, TMH. HFT.   GAF, RH.
*Methionine and its hydroxy analogue:   Methionine (feed grade)   Methionine (medicinal grade) $\qquad$   Methionine, hydroxy analogue, calcium salt------	DOW.   DOW, LEM.   DUP, MON.
*Other gastrointestinal agents:	
Betaine	HFT, LEM.
	SCH .
	COM.
	ACY, HFT.
Choline citrate (Tricholine citrate)------------	ACY, HFT.
Choline dihydrogen citrate-------------------------	ACY, HFT.
Danthron $\qquad$  	GAF. CHT.
	MAL.
	SKG.
	MON.
	SCH.
	ABB, PEN.
Polycarbophil	SCH.
	UPJ.
	MAL.

TABLE 2.--Medicinal chemicals : Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Hematological agents:	
Aminocaproic acid	ACY.
	ABB, WIL.
	SCH.
	ABB, FIN.
	EKT.
Dextran------	PHR.
	GAN.
	ABB, RIK, WIL.
Sodium warfarin	EN.
*Hormones and synthetic substitutes:   *Corticosteroids:	
	SCH .
	SCH.
	SCH .
	SCH.
	UPJ.
	MRK, UPJ.
	MRK, SCH.
	SCH.
	MRK.
Dichlorisone acetate-	SCH.
Fludrocortisone acetate	UPJ.
Fluorometholone---	UPJ.
9-Fluoroprednisolone acetate	UPJ.
	UPJ.
	MRK, PFZ, UPJ.
Hydrocortisone acetate	MRK, UPJ.
	UPJ.
	MRK, UPJ.
Prednisolone acetat	SCH, UPJ.
Prednisone----------	MRK, UPJ.
	MRK.
*riamcinolone-------------	ACY, OMS.
*Synthetic hypoglycemic agents:	
	LIL.
	PFZ.
Phenformin hydrochloride----------------------------	BKL.
	x .
	HST, x.
*Other hormones and synthetic substitutes: Anabolic agents and androgens:	
Fluoxymesterone-	UPJ.
Testosterone cypionate	UPJ.
Antithyroid agents:	
	LIL.
	ACY.
Thiouracil--	ACY.
Estrogens:	
	BKC.
Dienestrol diacetate	SCH.
	CTN, LIL.
Diethylstilbestrol diphosphate------------------	
Estrogenic substances, conjugated----------------	ORG.
Natural estrogenic substance----------------------	ORG.
Piperazine estrone sulfate---------------------------	ABB.

TABLE 2.--Medicinal chemicals :Manufacturers' identification codes, by products, 1968-Continued

## Chemical

*Hormones and synthetic substitutes--Continued *Other hormones and synthetic substitutes-Continued Progestogens:

11- $\beta$-Hydroxy- $6 \alpha$-methylprogesterone-------------- UPJ.


Other hormones:
Corticotropin (ACTH) (pituitary)--------------------

*Renal-acting and edema-reducing agents: *Mercurial diuretics:

Meralluride


*Theobromine and theophylline derivatives:
Ambuphylline
*Aminophylline
Aminophylline sodium biphosphate---------------------

Theobromine sodium salicylate---------------------------

*Other renal-acting and edema-reducing agents:
Acetazolamide
Benzothiadiazine derivatives:







## 








*Therapeutic nutrients:
*Amino acids and salts:


Aspartic acid and salts:




Glutamic acid and salts:


Glutamic acid hydrochloride-------------------------

Lysine (feed grade)-




Manufacturers' identification codes
(see Appendix, tables $I$ and 2 )
x .
$x$.
ARP, ORG.
ARP, LIL.

LKL,
SDW.
WYT.
GAN, LEM.
GAN, LEM, SRL.
GAN.
NEP.
GLY.
CHT.
ACY.

OMS.
PFZ.
MRK.
OMS .
$A B B$, CBP, MRK.
ABB.
PFZ.
SCH.
GGY.
MRK.
MRK.
MRK.
SRL.
ACY, SK.

ABB, CUT, STA.
$A B B$.
HEX.
WYT.
WYT.
DA.
IMC, LEM.
IMC, LEM.
IMC, LEM.
IMC, LEM.
MRK.
MRK.
SDW.
MAL, PFZ, WHL.

TABLE 2.--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Therapeutic nutrients--Continued	
*Other therapeutic nutrients:	
Calcium glucoheptonate	PFN.
	PYL.
	STA.
	PFZ.
Ferrous gluconate	PFZ, SDW.
	DLI.
	WIL.
	WIL.
	PFZ.
Manganese gluconate	PFZ.
	PFZ.
*Vitamins:	
*Vitamin A alcohol and esters:	
	HOF, PFZ.
Vitamin A acetate (medicinal grade)-------------	CW, HOF, PFZ.
	CW, HOF, PFZ.
	CW.
	EKT, HOF, PFZ.
*Vitamin A paimitate (medicinal grade)-----------	EKT, HOF, PFZ.
*Cyanocobalamin (all grades):	
	GPR, IMC, MRK, PMP.
Cyanocobalamin (medicinal grade)--------------	MRK.
Cyanocobalamin (U.S.P. crystalline)-----------	MRK.
Cyanocobalamin with intrinsic factor concentrate.	WIL.
*Niacin (all grades):	
	MRK, NEP, RIL.
	DA, MRK, RIL, SCR.
	MRK, NEP, PD, SCR.
*Pantothenic acid and derivatives:	
Calcium pantothenate (dextro)--------------------	x.
*Calcium pantothenate (racemic) (feed grade)---	CKL, DA, DLI, HFT.
```Calcium pantothenate (racemic) (medicinal grade).```	DA.
$\begin{aligned} & \text { Calcium pantothenate (racemic) - calcium } \\ & \text { chloride complex. } \end{aligned}$	CKL, DA, HFT.
	HOF.
	HOF, PD.
	PD.
*Riboflavin (all grades):	
	COM, DA, GPR, HOF, MRK.
	HOF, MRK.
*Other B-complex vitamins:	
Biotin--	HOF.
	ACY.
	STA.
	NEP.
Niacinamide hydrochloride---------------------------	NEP.
	HOF.
Riboflavin-5-phosphate, sodium----------------	HOF.
	NEP.
Thiamine hydrochloride---------------------------	HOF, MRK.
Thiamine mononitrate-------------------------------	HOF, MRK.

TABLE 2,--Medicinal chemicals: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
*Vitamins--Continued	
*Vitamin C:	
*Ascorbic acid	HOF, MRK, PFZ.
Calcium ascorbate	PFZ.
	HOF, MRK, PFZ.
*Vitamin D_{2} (Ergocalciferol)----------------------------	DLI, PHF, SCR, VTM.
*Vitamin E:	
d-Alpha tocopherol-------------------------------------	CW, EKTP.
dl-Alpha tocopherol-------------------------------------	HOF.
d-Alpha tocopheryl acetate-------------------------	CW, EKT.
dl-Alpha tocopheryl acetate------------------------	HOF.
dl-Alpha tocopheryl acetate (feed grade)-------	HOF.
d-Alpha tocopheryl acid succinate---------------	CW, EKT.
dl-Alpha tocopheryl acid succinate-------------	HOF.
*Vitamin K: Menadione sodium bisulfite-------------	ABB, DA, DLI, HET, HFT, WHL.
*Other vitamins:	
Beta-carotene (Provitamin A)----------------------	EKT, HOF.
Cholecalciferol (Vitamin D_{3})----------------------	DA, DLI, PHF, VTM.
7-Dehydrocholesterol (Provitamin D_{3})------------	VTM.
Menadiol sodium diphosphate---------------------	HOF.
	ABB, HET, HFT, WHL.
Phytonadione (Vitamin K_{1})---------------------------	MRK.
*Miscellaneous medicinal chemicals:	
Antineoplastic agents:	
Mercaptopurine---	BUR.
Thioguanine---	BUR.
	LIL.
	LIL.
Diagnostic agents:	
Roentgenographic contrast media:	
	MAL.
	SDW.
	SDW.
Iodohippurate, sodium	MAL.
	SDW.
Iopanoic acid--	SDW.
	x .
	MAL
Iothalamate, sodium------------------------------1-1	MAL.
Methiodal, sodium-	SDW.
Other diagnostic agents:	
Evans blue (blood volume determination)-------	NEP.
Indocyanine green (cardiac output test)-------	x.
Metyrapone (pituitary function test)----------	CBP.
Smooth muscle relaxants:	
	CTN.
	CTN.
Alverine hydrochloride-	CTN.
Papaverine hydrochloride-	LIL, MRK.
Sodium benzyl succinate-	LEM.
Unclassified medicinal chemicals:	
	BUR.
	PEN,
Penicillamine (copper chelating agent)----------	MRK.

[^12]Flavor and perfume materials are organic chemicals used to impart flavors and odors to foods, beverages, cosmetics, and soaps. These aromatic chemicals are also utilized to neutralize or mask unpleasant odors in industrial processes and products as well as in consumer products.

Total domestic production of flavor and perfume materials in 1968 amounted to 117.5 million pounds, or 5.3 percent more than the 111.5 million pounds produced in 1967 (table l). Sales of these materials in 1968 amounted to 108.8 million pounds, valued at $\$ 97.3$ miliion, compared with 96.6 million pounds, valued at $\$ 93.4$ million in 1967.

Production of cyclic flavor and perfume materials in 1968 amounted to 60.3 million pounds; sales amounted to 49.7 million pounds, valued at $\$ 52.4$ million. The individual chemical in the cyclic group produced in the greatest volume in 1967 again was benzyl alcohol (5.8 million pounds). Production of synthetic sweeteners amounted to 19.7 million pounds in 1968, compared with 17.5 million pounds in 1967.
U.S. output of acyclic flavor and perfume materials in 1968 amounted to 57.2 million pounds; sales of these materials amounted to 59.1 million pounds, valued at $\$ 44.8$ million. Monosodium glutamate was by far the most important of the acyclic chemicals, and the individual flavor and perfume chemical produced in the greatest volume; output of this chemical totaled 47.7 million pounds in 1968 , compared with 45.2 million pounds in 1967.

Information on 1968 production, sales (quantity and total value), and unit value of sales of the individual products covered by this report is given in table l. Table 2 lists all flavor and perfume materials for which data on production and sales were reported and identifies the manufacturer of each. Table 3 of the Appendix includes imports of these products during 1967 and 1968.

TABLE 1.--Flavor and perfume materials: U.S. production and sales, 1968
[Listed below are all synthetic organic flavor and perfume materials for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all flavor and perfume materials for which data on production or sales were reported and identifies the manufacture of each]

Table 1.--Flavor and perfume materials: U.S. production and sales, 1968--Continued

| Material | | | |
| :--- | ---: | ---: | ---: | ---: |

[^13]Table 2.--Flavor and perfume materials: Manufacturers' identification codes,
by products, 1968--Continued
[Flavor and perfume materials for which separate statistics are given in table lare marked below with an asterisk (*) ; those not so marked do not appear in table 2 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes are taken from the Appendix, tables 1 and 2. An x signifies that the manufacturer did not consent to his identification with the designated product.]

Material	Manufacturers' identification codes (see Appendix, tables 1 and 2)
FLAVOR AND PERFUME MATERIALS, CYCLIC Benzenoid and Naphthalenoid	
2'Acetonaphtho	GIV.
Acetophenone-	GIV.
Acetyl cedrene	GIV.
5-Acetyl-1, 1, 2, 3, 3,6-hexame thylid	PFW.
p-Allylanisole-	GIV.
Allyl cinnamate---	RT.
4-Allyl-1,2-dimethoxybenzene (4-Allylveratrole)--	GIV.
*4-Allyl-2-methoxyphenol (Eugenol) 4-Allyl-2-methoxyphenol acetate (Eugenyl acetate)	FB, GIV, ICO, IFF, LUE, PEN, RT, UOP, VLY. GIV.
*4-Allyl-1,2-(methylenedioxy)-benzene (Safrole)---	FB, GIV, OPC.
Allyl phenoxyacetate	GIV, RT.
Allyl phenyl acetate	RT.
*p-Anisaldehyde-	GIV, OPC, UOP.
Anisole (Methyl phenyl ether)	GIV.
*Anisyl acetate-----------	GIV, RT, UOP.
Anisyl butyrate	RT.
Anisyl formate	RT.
Anisyl esters, other	RT.
* Benzophenone-	GAF, GIV, ICO, NEO, PD, UOP.
*Benzyl acetate	GIV, IFF, OPC, SHL, UOP.
*Benzyl alcohol	BPC, OPC, SHL, UOP, VEL.
*Benzyl benzoate	MON, NEO, PFZ, UOP, VEL.
*BenzyI butyrate	FB, GIV, UOP.
*Benzyl cinnamat	FB, GIV, UOP.
*Benzyl ether-	OPC, SHL, VEL.
Benzyl formate	GIV, RT, UOP.
Benzyl glyceryl acetal	GIV, RT, VLY.
	GIV.
```1-(Benzyloxy)-2-methoxy-4-propeny lbenzene (Benzyl! isoeugenyl ether).```	GIV, UOP.
*Benzyl phenylacetate-	GIV, MYW, RT, UOP.
	FB, GIV, UOP.
*Benzyl salicylat	GIV, OPC, RT, UNG, UOP.
4-tert-Butyl-2', 6'-dimethyl-3', 5'-dinitroacetophenone (Musk ketone).	GIV.
```6-tert-Butyl-3-methyl-2,4-dinitroanisole (Musk ambrette).```	GIV.
p-tert-Butyl-c-methy 1 hydrocinnamaldehyde--------	GIV.
1-tert-Butyl-3,4,5-trime thyl-2,6-dinitrobenzene--	GIV.
5-tert-Butyl-2,4,6-trinitro-m-xylene (Nusk xylol)	GIV.
	GIV.
Cinnamaldehy de	FB, UOP.
	BPC.
	GIV, RT, UOP.
*Cinnamyl alcohol	FB, GIV, NEO, UOP.
*Cinnamyl anthranilate	FEL, GIV, RT.
	FB.
*Cinnamyl propionate--------------------------------------	GIV, RT, UOP.
Citral dimethyl acetal------------------------------	GIV.

Table 2.--Flavor and perfume materials: Manufacturers' identification codes, by products, 1968--Continued

Material

FLAVOR AND PERFUME MATERIALS, CYCLIC--Continued

Benzenoid and Naphthalenoid--Continued

Cuminyl alcohol-
trans-Decahydro- β-naph thol
Dihydronordicyclopentadienyl acetate--.....-...-...-
p-Dime thoxybenzene (Dimethylhydroquinone)-----..-
1,2-Dimethoxy-4-propeny lbenzene (4-Propeny1veratrole).
p- α-Dimethylbenzyl alcohol
3,7-Dimethyl-1,6-octadien-3yl anthranilate (Linalylanthranilate).
3,7-Dimethy 1-1,6-octadien-3yl benzoate (Linalyl benzoate).
3,7-Dimethyl-2,6-octadienylphenylacetate (Geranyl phenylacetate).
$\alpha, \alpha-$ Dimethy1phenethyI acetate------------------------

Diphenylmethane (Benzylbenzene)-------------------
1,3-Diphenyl-2-propanone (Dibenzyl ketone)
1-Ethoxy-2-hydroxy-4-propenylbenzene------------
3-Ethoxy-4-hydroxybenzaldehyde (Ethylvanillin)---
2-Ethoxynaphthalene-
Ethyl anisate (Ethyl p-methoxpenzoate)

Ethyl cinnamate-
Ethyl α, β-expoxy- β-methylhydrocinnamate-...........
2-Ethylhexyl salicylate------------------------------

3^{\prime}-Ethyl-5', 6', 7', 8'-tetrahydro-5', 5', $8^{\prime}, 8^{\prime}$,-tetramethyl-2'-acetonaphthone.
Geranyl benzoate-
α-Hexylcinnamaldehyde-

Hydratropaldehyde, dimethy1 acetal
*Hydrocoumarin

4-(4-Hydroxy-3-methoxypheny1)-2-butanone--------

Isocyclocitral

p-Isopropyl- α-methylhydrocinnamaldehyde (Cyclamen aldehyde).

p-Mentha-, 8-diene (Limonene)

Manufacturers' identification codes
(see Appendix, tables 1 and 2)

DOW, RDA.
GIV.
IFF.
GIV.
ICO.
GIV.
GIV.
FMT.
HOF .
GIV, UOP.
GIV, IFF.
IFF.
ARA.
GIV.
SHL.
MON, RDA.
GIV, UOP.
ICO.
FB.
GIV, UOP.
GIV, RT
FEL.
GIV.
GIV, RT, UOP.
FB , UOP.
GIV, UOP.
GIV.
GIV, IFF, UOP, VLY.
GIV, IFF, UOP.
GIV, IFF, RT.
GIV, ICO, UOP.
GIV.
GIV.
GIV.
GIV.
GIV.
RT.
FB, GIV, OPC, RT, UOP.
FMT.
OPC.
FB, GIV, UOP.
FB, GIV, OPC, UOP.
GIV.
RT.
GIV, RDA.
FMT.
RT, SKG.

Material	Manufacturers' identification codes (see Appendix, tables 1 and 2)
FLAVOR AND PERFUME MATERIALS, CYCLIC--Continued Benzenoid and Naphthalenoid--Continued	
4'-Methoxyacetophenone (Acetanisole)--------------	GIV, ICO, UOP.
p-Methoxybenzyl alcohol (Anisyl alcohol)---------	GIV, UOP.
o-Methoxycinnamaldehyde-	x.
2-Methoxynaphthalene-	GIV, UOP.
1-(p-Methoxypheny 1)-1-pentene-3-one---------------	GIV.
*2-Methoxy-4-propenylphenol (Isoeugenol)----------	GIV, SHL, UOP, VLY.
4^{\prime}-Methylacetophenone-	VOP.
Methyl anisate (Methyl p-methoxybenzoate)--------	ICO.
	GIV, OPC, UOP.
*Methyl anthranilate-------------------------------------	FB, MEE, OPC, PFW, SHL, UNG.
Methyl benzoate	HN, VLY.
α-Methylbenzyl acetate (Styralyl acetate)-------	GIV, UNG, UOP.
	FB, GIV, UOP, VLY.
*Methyl cinnamate-	FB, ICO, UOP.
	GIV.
$1,2-($ Methylenedioxy)-4-propenylbenzene (Isosaf- role).	GIV.
1,2-(Methylenedioxy)-4-propy lbenzene-------------	VLY.
p-Methy 1 hydratropaldehyde-------------------------------	GIV.
Methyl N -methylanthranilate---------------------------	GIV, OPC.
Methyl phenylacetate------------------------------------	GIV.
	CFC, DOW, HN, MON, PEN.
1,1,3,3, 5-Pentamethy 1-4,6-dinitroindan-----------	GIV.
	FB, GIV, IFF, UOP, VLY.
Phenethyl acetat	GIV, IFF, NEO.
Phenethyl alcohol	IFF.
Phenethyl formate	IFF, RT, UOP.
	GIV, IFF, RT.
Phenethyl isovalerate	GIV, RT, UOP.
Phenethyl isovalerate benzoat	IFF.
*2-Phenethyl phenylacetat	GIV, IFF, RT, UOP, VLY.
Phenethyl propionate	GIV, IFF, UOP.
Phenethyl salicylate	GIV, UOP.
Phenethyl salicylate butyrat	IFF.
2-Phenoxyethyl isobutyrat	IFF.
2-Phenoxyethyl propionat	IFF.
Phenylacetaldehyde-	GIV, UOP.
Phenylacetaldehyde, dimethyl acetal	GIV, UOP.
o-Phenylanisole (2-Methoxybiphenyl)	GIV, OPC.
4-Phenyl-3-buten-2-one (Methyl styryl ketone)----	FB, UOP.
	GIV.
Phenylethyl tiglate	FB.
3-Phenyl-1-propanol (Hydrocinnamic al cohol)------	FB, GIV.
3-Phenylpropyl acetate	GIV, UOP.
3-Phenylpropyl cinnamate	
Piperonal (Heliotropin)	GIV, SHL, UOP.
*p-Propenylanisole (Anethole)	ARZ, FB, GLD, HN, HPC, NCI, UOP.
	FB, GIV.
*Sweeteners, synthetic:	
Cyclohexanesulfamic acid-----------------------------	ABB.
Cyclohexanesulfamic acid, calcium salt---------	ABB, MON, PBY, PFZ, UNS
Cyclohexanesulfamic acid, sodium salt---------	ABB, MON, PBY, PFZ, UNS.
```Saccharin (1,2-Benzisothiazolin-3-one,-1,1- dioxide.```	MEE, MON.

## Material

FLAVOR AND PERFUME MATERIALS, CYCLIC--Continued

## Benzenoid and Naphthalenoid--Continued.

*Sweeteners, synthetic--Continued
Saccharin, calcium salt---------------------------




Tolylaldehyde-
p-Tolyl phenylacetate--------------------------------
$\alpha$-(Trichloromethyl)benzyl acetate (Rosetone)--..-
Vanillin (4-Hydroxy-3-me thoxybenzaldehyde).......-
Verdy1 propionate--

## Terpenoid, Heterocyclic, and Alicyclic






B-Caryophyllene
Caryophyllene alcohol
Cedrenol
Cedrol-
*Cedryl





*Essential oils, chemically modified:







Piperonal terpenes

Synat
Synthetic indane musk
Ethylene brassylate-----------

16-Hydroxyhexadecanoic acid, o-lactone (Hexadecanolide).
2-Hydroxy-3-methyl-2-cyclopenten-1-one (Methyl cyclopentanolone).
2-Hydroxy-3-methyl-2-cyclopenten-1-one isovalerate.
3-Hydroxy-2-ethyl-4-pyrone (Ethyl maltol)--.----
3-Hydroxy-2-methyl-4-pyrone (Ma1tol)-------------
4-Hydroxynonanoic a~id, $\gamma$-lactone ( $\gamma$-Nonalactone)
4-Hydroxyoctanoic acid, $\gamma$-lactone ( $\gamma$-Octalactone)
4-Hydroxyundecanoic acid, $\gamma$-lactone ( $\gamma$-Undecalactone.

Manufacturers' identification codes
(see Appendix, tables 1 and 2)

LAK, MEE, MON, PBY.
LAK, MEE, MON.
GIV, HN, TCC.
GIV.
FB, GIV, ICO, UOP.
ICO.
GIV.
ICO.
MON, SLV.
GIV.

GIV.
GIV.
FEL.
DOW, IFF.
IFF, VLY.
GIV.
FB.
GIV.
GIV, IFF, UOP.
GIV, IFF, UNG, UOP.
IFF.
GIV.
ARA.
GIV.
IFF.
FB.
SHL.
FEL, FLO, LUE, PFW, VND.
FB, GIV.
IFF.
FEL, GIV, UNG.
SHL.
GIV.
IFF.
RDA, VLY.

## RDA.

IFF.
DOW, RT.
RT.
PFZ.
DOW, PFZ.
GIV.
GIV, RT.
FB. by products, 1968--Continued

Material	Manufacturers' identification codes (see Appendix, tables 1 and 2)
FLAVOR AND PERFUME MATERIALS, CYCLIC--Continued	
Terpenoid, Heterocyclic, and Alicyclic--Continued	
*I onones:	
	GIV, HOF, IFF, MYW, UOP.
B-I	HOF, MYW, UOP.
Ionone ( $\alpha$ - and $\beta$-)-------------------------------	GIV, MYW, UNG, UOP.
	RDA.
*Isobornyl acetate	FB, GIV, OPC, PFW, RDA.
	GIV, OPC,
Isohexenyl cyclohex-3-ene carboxaldehyde---------	OPC.
Isomenthone--------------------------------------------	GIV, UOP.
2-I sopropy lcy c lohexanol-------------------------------	GIV.
	RT.
p-Mentha-6,8-dien-2-ol (Carveol)--------------.---	FB.
p-Mentha-6,8-dien-2-one (Carvone)----------------	FB, FRM.
*p-Mentha-3-one (Menthone)----------------------------	GIV, HN, NEO, OPC.
p-Menth-8-en-3-ol (Isopulegol)	GIV.
1,1-p-Menthen-6-yl-1-propanone-	GIV.
*Menthol, synthetic:	
	GIV, NEO, PFW.
	GIV, GLD, HN, NEO.
	GIV.
Methylcyclohexyl propionate--------------------------	GIV.
*Methylionones:	
6-Methyl- $\alpha$-ionone	GIV, IFF, MYW.
6-Methyl- $\beta$-ionone	NEO
	GIV, IFF, MYW, UNG, UOP.
	GIV.
	ICO.
2-(2-Methyl-1-propeny 1)-4-methyl-tetrahydropyrane (Rose oxide).	GIV.
Neryl acetate prime------------------------------------	GIV.
	RT, SHL, VLY.
Santalol	GIV, IFF.
	GIV.
*Terpineols:	
$\alpha$-Terpineol-------------------------------------------	GLD, HPC.
	HN.
	GIV, NEO.
Terpinol hydrate (terpin hydrate), tech----------	HPC.
	GIV, IFF, NEO, PFW, RDA, UNG.
	GIV, UOP.
3,3,5-Trimethylcyclohexanol (m-Homomenthol)------	ICO.
1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1,6-hepta-dien-3-one (Allyl- $\alpha$-ionone).	GIV.
```4-(2,6-Trimethyl-1-cyclohexen-1-yl)-3-methyl-3- buten-2-one ( }\beta\mathrm{ -Isomethylionone).```	HOF.
Vernaldehyde---	GIV.
	GIV, UOP.
*Vetivenyl acetate--	FB, GIV, IFF, NEO, UOP.

Table 2.--Flavor and perfume materials: Manufacturers' identification codes, by products, 1968--Continued

Material	Manufacturers' identification codes (See Appendix, tables 1 and 2)
FLAVOR AND PERFUME MATERIALS, ACYCLIC	
Acetylbutyryl (2,3-Hexanedione)---------------------	RT.
	FB.
Acetylvaleryl (2,3-Heptanedione)-----------------	RT.
	RT.
	RT.
Allyl hexadienoat	RT.
	FB, GIV, PFW.
Allyl isothiocyanate (Synthetic mustard oil)-----	MRT.
Allylmercaptan--	RT.
Allyl octanoate (Allyl caprylate)-----------------	RT.
Allyl sulfide--	RT.
	RT.
	GIV.
	RDA.
Butyl butyryl lactate	ICO, RT.
Butyl 10-undecylenate	GIV.
	FB.
*Citral (Geranial)	FB, FEL, GIV, LUE, RT, UOP, VLY.
Citronellyl acetate------------------------------------	GIV, IFF, UOP.
Citronellyl butyrat	GIV, UOP.
*Citronellyl formate-	GIV, RT, UOP, VLY.
*Citronellyl isobutyrate--------------------------------	GIV, RT, UOP.
	IFF, VLY.
Decanal (Capraldehyde)	GIV, IFF.
Diethyl sebacate---	FEL, UOP.
	ICO, UCC, UOP.
	IFF.
1,1-Dime thoxy-3,7-dimethy 1-2,6-octadiene---------	VLY.
	GIV.
	HOF.
3,7-Dimethyl-1,6-nonadien-3-ol, acetate----------	HOF.
3,6-Dimethy1-2,6-octadienal (citral)--------------	HOF.
*3,7-Dime thyl-cis-2,6-octadien-1-ol (Nerol)-------	FB, GIV, GLD, IFF, UOP.
*3,7-Dimethyl-trans-2,6-octadien-1-ol (Geraniol)--	FB, FEL, GIV, GLD, IFF, NCI, NEO, UNG, UOP, VLY.
3,7-Dimethy1-1,6-octadien-3-ol (Linalyl alcohol)-	FB, FEL, GIV, GLD, HOF, LUE, SHL, UNG.
3,7-Dimethyl-1,6-octadien-3-01 acetate (Linalyl acetate).	FB, GIV, GLD, HOF, SHL, UNG.
3,7-Dimethyl-1,6-octadien-3-ol cinnamate---------	HOF.
3,7-Dimethyl-1,6-octadien-3-yl butyrate (Linalyl butyrate).	GIV.
3,7-Dime thyl-1,6-octadien-3-yl isobutyrate (Linalyl isobutyrate).	GIV, HOF.
3,7-Dimethyl-1,6-octadien-3-yl propionate (Linalyl propionate).	GIV, HOF.
	HOF.
*3,7-Dime thyl-1-octanol (Dihydrocitronellol)------	FB, GIV, VLY.
3,7-Dimethyl-3-octanol (Tetrahydrolinalool)------	GIV, HOF.
3,7-Dimethyl-6-octen-1-a1 (Citronellal)-----------	FB, GIV, IFF, UOP.
	FB, GIV, GLD, IFF, NEO, OPC, UOP, VLY.
	IFF.
	FB, NW, RT, UOP.
	FB, PFW.
	FEL, RT, UOP.
*Ethyl hexanoate (Ethyl caproate)	FB, NW, RT.
	PFW.

Table 2.--Flavor and perfume materials: Manufacturers' identification codes, by products, 1968--Continued

Material

Manufacturers' identification codes (see Apvendix, tables 1 and 2)

FLAVOR AND PERFUME MATERIALS, ACYCLIC--Continued

Ethyl laurate---

Ethyl propionate--

*Geranyl acetate--

Geranyl tiglate and isotiglate-----------------------
*Glutamic acid, monosodium salt (Monosodium glutamate).

3-Hydroxy-2-butanone (Acetoin)--------------------
*7-Hydroxy-3,7-dime thyl-1-octanal (Hydroxycitronellal).
7-Hydroxy-3,7-dimethyl octanal, dimethyl acetal (Hydroxycitronellal, dimethyl acetal).
4-(4-Hydroxy-4-me thy lpenty 1)-3-cyclohexene-10carboxaldehyde.
Isobutyl acetate-----..-------------------------------

Methyl-2-nonenoate----------------------------------
Methylol methyl hexyl ketone-------------------------

2-Methylundecanal
Mugual and tetrahydro muguol------------------------

Nonamethylene glycol diacetate----------------------
Nonanal-
Nonane-1,3-diol monoacetate----------------------------

FB , PFW.
FB, UOP.
PFW, RT.
FB, FEL, GIV, RT, UOP.
FB, RT'.
FB.
PFW.
IFF.
FB.
IFF.
FEL, GIV, IFF, UNG, UOP, VLY.
GIV, UOP.
GIV, RT, VLY.
IFF.
FB.
1FF.
IFF.
FB, FMT.
COM, GRW, IMC, MRK.
BAC.
BAC.
GIV.
FB.
x .
RT.
OPC.
FMT.
GIV, GLD, IFF, OPC, UOP, VLY.
GIV, IFF.
IFF.

FB.
GIV .
VLY.
FB.
FB, GIV, NW, PFW, RT, UOP.
FB, GIV, RT, UOP.
RT.
FB, PFW.
FB.
GIV, IFF.
PFW.
RT.
RT.
GIV.
RT.
GIV.
IFF.
IFF.
GIV, IFF.
VLY.
GIV.
GIV.

Table 2.--Flavor and perfume materials: Manufacturers' identification codes, by products, 1968-~Continued

Material	Manufacturers' identification codes (see Appendix, tables I and 2)
FLAVOR AND PERFUME MATERIALS, ACYCLIC--Continued	
Nonanol-	GIV.
Nonyl acetate-	GIV.
Ocimenol and acetate---------------------------------------	IFF.
Octanal--	GIV, IFF.
3-Octanone (Ethyl amyl ketone)--------------------------	GIV.
	GIV.
	RT.
*Rhodinol---	FB, FEL, GIV, IFF, LUE, NEO, SHL.
Rhodiny1 acetate---	GIV, IFF.
Sodium allyl sulfonate------------------------------------	SHL.
	IFF, UOP.
3,7,9-Trimethyl-1,6-decadien-3-ol-----------------	HOF.
Trimethylhexyl acetate------------------------------1-1	OPC.
2,6,10-Trime thy 1-9-undecen-I-al--------------------	GIV.
	GIV, IFF.
	GIV.
γ-Valerolactone---	GIV.
	GIV.

Plastics and resin materials are condensation and polymerization products or organic chemicals, containing necessary plasticizers, fillers, extenders, stabilizers, and coloring agents. At some stage in their manufacture they exist in such physical condition that they can be shaped or otherwise processed by the application of heat and pressure. Some types of plastics materials may be molded, cast, or extruded into semifinished or finished forms. Other types are used as adhesives, for the treatment of textiles and paper, and for protective coatings. Statistics on U.S. production and sales of synthetic plastics and resin materials for 1968 are given in table 1^{1}. In general, the statistics follow the outline of the Tariff Commission's monthly report on the production and sales of synthetic plastics and resin materials (S.O.C. Series P-68). However, the data given include some companies which were not covered in the monthly reports, and also some adjusted figures supplied by the original reporting companies, and, consequently, many of the figures given in table l are revised from those shown in the Commission's monthly release dated April 15, 1969, which contained year-end cumulative monthly totals for 1968. The end use breakdowns shown were developed with the advice of representatives of the plastics industry, and the data reported reflect producers' determinations of the use categories for their materials.

Total U.S. production of synthetic plastics and resin materials in 1968 amounted to 16,360 million pounds--19 percent more than the 13,793 million pounds reported for 1967. Sales in 1968 were 14, 397 million pounds, valued at $\$ 2,907$ million. Production of benzenoid plastics and resin materials in 1968 amounted to 5,899 million pounds and that of nonbenzenoid materials to 10,461 million pounds. These figures compare with the benzenoid production in 1967 of 5,033 million pounds, and with nonbenzenoid production of 8,759 million pounds.

The 1968 output of all types of thermosetting resins totaled 3,573 million pounds, compared with 3,231 million pounds in 1967. This latter figure is exclusive of coumarone-indene and petroleum polymer resins which were previously classified as thermosetting. In 1968 phenolic and other tar acid resins were produced in the largest quantity in the thermosetting group. Output of phenolic resins amounted to 1,097 million pounds in 1968, compared with 983 million pounds in 1967. Production of urea and melamine resins in 1968 was 816 million pounds, and that of alkyd resins was 692 million pounds. Other thermosetting resins produced in significant amounts in 1968 were polyester resins (615 million pounds); epoxy resins (158 million pounds); and polyurethane resins (76 million pounds).

[^14]The total output of thermoplastic resins in 1968 amounted to 12,787 million pounds, compared with 10,562 million pounds in 1967. the 1968 figure includes data for coumarone-indene and petroleum polymer resins which were previously classified as thermosetting. In 1968, as in previous years, polyethylene, polystyrene, and polyvinyl chloride were the resins produced in the largest volume. The output of high-pressure polyethylene in 1968 was 3,306 million pounds, which corresponds to the output of 2,716 million pounds reported for 1967. Production of low-pressure polyethylene in 1968 was 1,261 million pounds, corresponding to the 1,082 million pounds produced in 1967. Total output of polyvinyl chloride resins in 1968 was 2,635 million pounds, and that of polystyrene resins was 2,896 million pounds.

TABLE 1.--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1968

[^15]| Kind and use | | |
| :---: | :---: | :---: | :---: | :---: |

See footnotes at end of table.

TABLE 1.--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1968--Continued

| Kind and use | | | |
| :---: | :---: | :---: | :---: | :---: |

See footnotes at end of table.

TABLE 1.--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1968--Continued

Kind and use	Production	Sales		
		Quantity	Value	$\begin{array}{\|c} \text { Unit }^{\text {Unalue }} \\ \text { in } \end{array}$
	$1,000$ pounds dry basis ${ }^{2}$	$1,000$ pounds dry basis ${ }^{2}$	$\begin{gathered} \text { 1,000 } \\ \text { dolzars } \end{gathered}$	Per pound
THERMOPLASTIC RESINS--Continued				
Vinyl resins (resin content)--Continued Polyvinyl acetate:				
Production and sales, total--...--	383,569	306,226	77,846	\$0.25
Latexes-	270,628	...	,	.. .
Resins-------.--	112,941		\ldots	\cdots
Sales and use, total	...	358,075
Emulsion paints--	. . .	120,625
Adhesives---	\ldots	133,562
Paper treating-	...	28,544
Textile treating-	. . .	11,859
All other domestic uses	. \cdot	60,809	. .	. \cdot
Export sales		2,676	\cdots	
Polyvinyl alcohol-	45,168	39,083	16,555	. 42
Other vinyl resins	150,984	89,338	35,576	. 40
All other thermoplastic resins ${ }^{11}$	605,800	550,785	306,213	. 56

[^16]TABLE 2.--Plastics and resin materials: Manufacturers' identification codes, by products, 1968
[Plastics and resin materials for which separate statistics are given in table lare marked below with an asterisk (*); chemicals not so marked do not appear in table l because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2 . An x signifies that the manufacturer did not consent to his identification with the designated product.]

Manufacturers' identification codes
 (see Appendix, tables 1 and 2)

ACP, ACY, APT, APV, ASH, BAL, BEN, BOY, BRU, CEL, CIK, CM, COM, CPV, DEG. DSO, DUN, DUP, EW, FAR, FBR, FCD, FLW, FOC, FSH, GEI, GIL, GLD, GRG, GRV, HAN, HPC, HRS, ICF, JOB, JSC, JWL, KEL, KMC, KMP, KPT, KPS, KYN, MCC, MID, MMM, MNP, NCI, NON, NPV, OBC, ORO, OSB, PER, PFP, PLS, PPG, PRT, PRX, PTP, QCP, RCI, RED, REL, RH, SCN, SED, SIP, SM, SVC, SW, SYV, TV, TXT, x, x, x, x.
ACP, ACY, APV, ASH, BEN, CGL, CM, COM, CPV, DEG, DUN, DUP, EW, FAR, FBR, FCD, FOC, GE1, GLD, GRV, HAN, HPC, HYC, ICF, KMC, KYN, MCC, MID, MMM, MOB, NCI, NON, NPV, ORO, OSB, PPG, PTP, RCI, RED, RH, SCN, SHA, SW, TV.

CBA, CEL, DOW, SHC, UCC
CBA, CEL, DOW, RCI, SHC, UCC.
CBA, CEL, DOW, RCI, SHC, UCC.
CBA, CEL, DOW, RCI, SHC, UCC.
AMR, BEN, CM, EW, FAR, HAP, IOC, MID. MMM, MNP, MRB, NON, NPV. OCF, ORO, OSB, PRX, PYR, REL, REZ, SCN, SED, x.

ACY, APD, DA, GLD, HKD, ICF, LAS, MFG, ORO, PPG, RCI, RH, SIC, SW.
ACP, ACY, ASH, CGL, CPV, DA, DEG, DSO, GLD, GNT, GRV, HKD, ICF, IPC, KPS, KPT, LAS, MFG, MRO, PLU, PPG, RCI, SIC, SW, VAL, x.
ACP, ACY, APD, DA, GLD, GYR, ORO, OSB, PPG, SW, §YV.
ACP, ACR, ACY, APD, DA, EKX, FMP, GEI, GLD, GNT, GRG, GYR, HKD, LAS, PLU, PPG, RCI, RH, SCN, SIC, SW, x.

GE, HER, HKD, HVG, MON, MRB, NPI, PLS, RCI, RGC, UCC, VSV.

ACP, AMR, ASH, BOR, CBR, CD, EW, FOM, GE, HKD, IRI, MON, NPP, NTC, NVF, PGU, PPL, PYZ, RCD, RCI, SCN, SPL, UCC.
AMR, ASH, BME, BOR, CBM, HKD, MMM, MON, PYZ, RCI, SCN, UCC.
ABS, ASH, BME, BOR, FRL, GE, HKD, MMM, PYZ, RAB, RCI, SCN, SYV, UCC.
ACP, AMR, ASH, BOR, HKD, MON, OCF, PYZ, RCI, UCC.
ACP, ACR, AMR, ASH, BOR, GE, HKD, MON, PYZ, RCI, SCN, UCC.
ASH, BOR, CBC, CBD, HPC, MON, PGU, PYZ, RCI, RH, SIM, WCA, WRD.
AMR, BOR, CBC, CBD, HKD, MON, PYZ, RCI, UCC, UPL.
ASH, BOR, CGL, CIK, CM, CPV, DSO, EW, FAR, FCD, GE, GEI, GRG, GRV, HAN, HER, HKD, ICF, INL, KYN, MID, MMM, MON, MRB, NPV, ORO, PRX, PYZ, RCI, REL, RH, SHA, SM, SW, UCC, x.

TABLE 2.--Plastics and resin materials: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
THERMOSETTING RESINS--Continued	
*Phenolic and other tar acid resins--Continued *All other uses (including export)-	ACP, ACR, AMR, ASH, BME, BOR, CBR, EW, FRL, GE, GE1, HER, HKD, HVG, IOC, IRC, KND, KPT, MCA, MMM, MON, MRB, NCI, PLS. PTP, PYR, RAB, RCI, REZ, RGC, RH, RPC, SCN, SNC, SW, UCC, UNO, USR, WTC.
*Polyurethane and diisocyanate resin	ARK, ASH, BFG, CGL, DUP, EK, FAR, GPM, HAP, HYC, ICI, IPI, JWL, KMC, MCC, MID, PEL, PTP, PVI, PYR, QUN, RCI, REZ, SCN, SKT, UPJ, x.
*Rosin modifications:	
*Rosin and rosin esters, unmodified (ester gums)- *All other-	ASH, CBY, DPP, FAR, FRP, MCC, NCI, PTP. ASH, CBY, DPP, EW, FAR, FRP, NCI, OSB, RH, SCF
*Silicone res	ACP, ASH, DCC, RCI, SPD, UCC.
Styrene-alkyd polyest	ASH, CGL, EW, FLW, MCC.
*Urea and melamine resins:	
*Textile treating and coating resins	ACY, APX, ASH, CBR, DAN, DUP, HNC, HRT, JSC, MON, MRA, ONX, PC, QCP, RCI, RH, RPC, S, SBC, SED, SNW, STC, TXT, USO, VAL, WIC.
*Paper treating and coating resins	ACY, AMR, BME, BOR, CBC, CBD, DUP, HPC, MMM, MON, RCI, RH, SIM, x.
Molding materials	ACP, ACY, BOR, CAP, FMB, PMC, SFA.
Bonding and adhesive resins for: *Laminating	ACY, ASH, BOR, CBR, FOM, GE, MON, NPP, NTC, PGU, PMC, PPL, RCI.
*Plywood	ACP, ACY, ASH, BOR, CBC, CBD, HPC, MON, NTC, PGII, RCI, RH, SAC, SOR, WRD.
*Fibrous and granulated wood	ACY, AMR, BOR, CBC, CBD, IPR, MON, PGU, RCI, SOR, SYV, UPL.
*Protective coatings	ACP, ACY, CEL, CPV, DSO, DUP, GLD, GRV, HAN, KPS, MID, MON, NON, PPG, RCI, REL, RH, SCN, SED, SW.
*All other uses (including export)	ACP, ACY, AMR, ASH, BOR, CIB, CMP, DEP, DUP, EFH, FMB, HPC, IRI, MON, RCI, REN, RH, RPC, S, SBC, SEY, TV, UNO, VAL.
	ACP, ACY, DCC, HVG, MID, MOB, MON, NTC, OCF, PPG.
Acrylic resin	ACY, ASH, CEL, CIB, @UP, EFH, FLH, GLC, GLX, HRT, JNS, JSC, ORO, PCI, PVI, QUN, RH, RPC, SAR, SED, SEY, SH, SNW, UCC, VAL, VPC, WIC, x, x.
Sheets, continuous:	
*Under 0.003 gage-	CEL, DUP, EKT.
*0.003 gage and ove	CEL, DOW, EKT, HN, MON, MPP, SPY, x.
*All other sheets, rods, and tub	CEL, HN, MPP, RSB, SPY, x.
*Molding and extrusion materials	CBN, CEL, DOW, EKT, MON, RSB.
*Coumarone-indene and petroleum polymer resins:	
*R1oor tile-------	ACP, NEV, PAI, RCI, VEL.
*Rubber compounding	ACC, ACP, KPI, NEV, PAI, RCI, VEL.
*All other uses (including export)---------------	ACC, ACP, DSO, DUP, ENJ, GLD, MCA, MID, NEV, ORO, PAI, PPG, RCI, VEL, VSV.

TABLE 2.--Plastics and resin materials: Manufacturers' identification codes, by products, 1968-Continued

Chemical

THERMOPLASTIC RESINS--Continued

Polyamide resins:
*Nylon type---
Non-nylon type
Polyolefin plastics materials:
Ethylene polymers and copolymers:
Production:
*High-pressure polyethylene
*Low-pressure polyethylene-
*Ethylene copolymers
*Polyethylene, density 0.940 and below:
*Sales and use:

*Blow molding--
*Film and sheet
*Extrusion coating on paper and other
substrates

*All other uses (including export)
*Polyethylene, density over 0.940 :
*Sales and use:

*Blow molding--------------------------------------
*Film and sheet------------------------------------
*Extrusion coating on paper and other
substrates-----------------------------------

*Other extruded products
*All other uses (including export)
Polypropy lene:
*Production-
*Sales and use:
Injection and blow molding

Other extruded products-------------------------
All other uses (including export)

* Styrene type plastics materials:

ABS and SAN resins:
*Production---
*Sales and use:
*Molding-
*Extrusion-
*All other uses (including export)

Manufacturers' identification codes (see Appendix, tables 1 and 2)

ALF, BCM, CEL, DUP, FG, GOC, MON, POL.
AMR, DUP, EMR, GNM, HN, UCC.

ACP, CBN, CPX, DOW, DUP, EKX, ENJ, GOC, KPP, MON, RCC, UCC, USI.
ACP, CEL, CPX, DOW, DUP, HPC, KPP, MON, PLC, UCC, USI. DUP, ENJ, UCC, USI.

ACP, CBN, CEL, CPX, DOW, DUP, EKX, ENJ, GOC, KPP, MON, PLC, RCC, UCC, USI.
CBN, DOW, DUP, EKX, KPP, MON, PLC, RCC, UCC, USI. ACP, CBN, CEL, CPX, DOW, DUP, ENJ, EKX, GOC, KPP, MON, PLC, RCC, UCC, USI.

CEL, CPX, DOW, DUP, EKX, GOC, MON, PLC, RCC, UCC, USI.
DOW, DUP, EKX, KPP, MON, PLC, UCC, USI. EKX, GOC, KPP, PLC, UCC, USI.
CEL, CPX, DOW, DUP, EKX, ENJ, KPP, PLC, UCC, USI. ACP, CEL, CPX, DOW, DUP, EKX, ENJ, GOC, KPP, MON, PLC, RCC, UCC, USI.

ACP, CEL. CPX, DOW, DUP, EKX, HPC, KPP, PLC, SHC, UCC, USI.
ACP, CEL, CPX, DOW, DUP, EKX, HPC, KPP, MON, PLC, SHC, UCC, USI.
ACP, CEL, CPX, DOW, DUP, EKX, HPC, KPP, PLC, SHC, UCC, US1.

DUP, EKX, PLC, UCC, USI.
ACP, CEL, DUP, EKX, HPC, KPP, MON, PLC, SHC, UCC.
ACP, CEL, DUP, EKX, HPC, KPP, PLC, SHC, UCC, USI.
CEL, DOW, DUP, EKX, HPC, KPP, PLC, UCC, USI.
ACP, CEL, CPX, DOW, DSO, DUP, EKX, HPC, KPP, MON, PLC, UCC, USI.

AVS, DA, EKX, ENJ, HPC, NVT, RCC, SHC.
ACP, EKX, ENJ, HPC, NVT, PLC, RCC, SHC, UCC.
ACP, AVS, DA, EKX, ENJ, HPC, RCC, SHC, UCC.
EKX, ENJ, HPC, PLC, SHC.
EKX, ENJ, HPC, PLC, RCC, SHC.
ACP, AVS, DA, EKX, ENJ, HPC, NVT, PLC, RCC, SHC, UCC.

BFG, DOW, FBF, FIR, GRD, KPP, MCB, MON, RCC, SW, UCC, USR.

BFG, DOW, FBF, KPP, MCB, MON, UCC, USR.
BFG, DOW, MCB, MON, RCC, UCC, UISR.
BFG, DOW, FIR, GRD, KPP, MCB, MON, RCC, SW, UCC, USR.

TABLE 2.--Plastics and resin materials: Manufacturers' identification codes, by products, 1968-. Continued

TABLE 2.--Plastics and resin materials: Manufacturers' identification codes, by products, 1968-Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
THERMOPLASTIC RESINS--Continued	
Vinyl resins--Continued	
Polyvinylchloride and copolymers--Continued	
*Plastisol formulating and molding	ACP, BFG, BOR, CRY, DA, FIR, MON, PNT, PYR, SFA, THC, UCC, USR.
*All other uses (including export)-	AME, BFG, BOR, CPL, CRY, CUC, DA, DOW, ESC, FIR, GNT, GRA, GYR, MON, PNT, SFA, THC, TNA, UCC, USR.
Polyvinyl acetate:	
*Latexe	AML, BEN, BOR, BOY, CEL, CUC, DSO, DUP, FAR, FC, FLH, GLC, CLD, GRD, HAN, HNC, HRT, JOB, JSC, KMC, KMP, MCC, MMM, MON, NPV, NSC, NTC, OBC, PFP, PII, PRX, PTP, QCP, RPC, SED, SPC, UCC, WIC, x.
*Resins	ASH, BEN, BLS, BOR, CST, CUC, DSO, DUP, FAR, HNC, MON, MRN, NCI, NSC, ONX, PPG, PTP, RCI, RPC, SCO, SEY, SH, UCC, x.
*Sales and use:	
*Emulsion paints	AML, ASH, BEN, BOR, CEL, CUC, DSO, DUP, FAR, FLH, GLC, GLD, GRD, HAN, KMC, KMP, MCC, MON, NCI, NSC, OBC, PFP, PPG, PRX, PTP, RCI, RPC, SED, SPC, UCC, WIC.
*Adhesives	AML, ASH, BOR, CEL, CUC, DUP, FC, FLH, GRD, HNC, MMM, MON, MRN, NCI, NSC, NTC, PII, PPG, RCI, SH, UCC, WIC.
*Paper treating	AML, BOR, CEL, CUC, DSO, DUP, FLH, MMM, MON, NSC, PII, WIC.
*Textile treating	AML, BOR, CEL, CST, CUC, DUP, GRD, HRT, NSC, PII, SCO, UCC, WIC.
*All other uses (including export	AML, BCN, BOR, CEL, CUC, DUP, GLC, GRD, JSC, MON, NSC, PII, QCP, RCI, SCO, SEY, UCC.
*Polyvinyl alcohol	BOR, CUC, DUP, FC, MON.
*Other vinyl resins	BAS, BOR, DOW, DUP, EW, GLD, GRD, MCC, MON, SH, UCC.
*All other thermoplastic resin	ACP, CBY, CEL, CIB, DEP, DUP, GE, GGY, JSC, MOB, MMM, PTP, RH, RPC, SBC, SCN, SNW, UNO, UOC, VAL, WIC.

Rubber-processing chemicals are organic compounds that are added to natural and synthetic rubbers to give them qualities necessary for their conversion into finished rubber goods. In this report, statistics are given for cyclic and acyclic compounds, by use--such as accelerators, antioxidants, blowing agents, and peptizers. Data on production and sales of rubber-processing chemicals in 1968 are given in table l. Table 2 lists these products and identifies the manufacturers.

Production of rubber-processing chemicals as a group in 1968 amounted to 313 million pounds, or 18.4 percent more than the 264 million pounds reported for 1967. Sales of rubber-processing chemicals in 1968 amounted to 236 million pounds, valued at $\$ 151$ million, compared with 201 million pounds, valued at $\$ 132$ million, in 1967. The increased production and sales of rubber-processing chemicals in 1968 is attributable principally to the increased production and sales of cyclic compounds, particularly the thiazole accelerators and the amino antioxidants.

The output of cyclic rubber-processing chemicals in 1968 amounted to 264 million pounds, 19.7 percent more than the 220 million pounds reported for 1967. Sales in 1968 were 199 million pounds, valued at $\$ 133$ million, compared with 170 million pounds, valued at $\$ 116$ million, in 1967. Of the total output of cyclic rubber-processing chemicals in 1968, accelerators accounted for 31.5 percent and antioxidants for 62.9 percent. Production of antioxidants, which amounted to 165.7 million pounds in 1968 , included 124.6 million pounds of amino compounds and 41.1 million pounds of phenolic and phosphite compounds. Sales of amino antioxidants in 1968 were 91.2 million pounds, valued at $\$ 61.3$ million; sales of phenolic and phosphite antioxidants were 30.3 million pounds, valued at $\$ 22.4$ million.

Production of acyclic rubber-processing chemicals in 1968 amounted to 49.1 million pounds, an increase of 11.6 percent over
the 44.0 million pounds reported for 1967. Sales in 1968 totaled 36.6 million pounds, valued at $\$ 18.4$ million, compared with 30.9 million pounds, valued at $\$ 15.5$ million, in 1967. Accelerators, principally dithiocarbamic acid derivatives and tetramethylthiuram sulfides, accounted for 49.2 percent of the output of acyclic rubber-processing chemicals for 1968. Dodecyl mercaptans accounted for 29.5 percent. Blowing agents, modifiers, short-stops, and lubricating and conditioning agents accounted for the remainder of the output of acyclic compounds.

TABLE 1.--Rubber-processing chemicals: U.S. production and sales, 1968
[Listed below are all rubber-processing chemicals for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists separately all rubber-processing chemicals for which data on production or sales were reported and identifies the manufacturer of each]

| Chemical | | | |
| ---: | ---: | ---: | ---: | ---: |

5ee footnotes at end of table.

TABLE 1.--Rubber-processing chemicals: U.S. production and sales, 1968--Continued

Chemical	Production	Sales		
		Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
RUBBER-PROCESSING CIIEMICALS, ACYCLIC Total	$1,000$ pounds $49,093$	$1,000$ pounds $36,583$	$\begin{gathered} 1,000 \\ \text { dollars } \\ 18,388 \\ \hline \end{gathered}$	Per pownd $\$ 0.50$
Accelerators, activators, and vulcanizing agents, tot	24,164	18,277	10,823	. 59
Dithiocarbamic acid derivatives, total ${ }^{3}$	8,411	7,361	5,647	. 77
Dibutyldi thiocarbamic acid, sodium salt	1,326
Dibutyldithiocarbamic acid, zinc salt	2,061	1,996	1,894	. 95
Diethyldithiocarbamic acid, zinc salt	1,897	1,583	977	. 62
Dime thyldithiocarbamic acid, zinc sal	1,842	1,666	758	. 45
All other dithiocarbamic acid derivativ	1,285	2,116	2,018	. 95
Thiurams, total ${ }^{4}$...	10,673	4,909	. 46
Bis(diethylthiocarbamoyl) disulfide	-	787	461	. 59
Bis(dimethylthiocarbamoyl) disulfide	8,497	8,128	3,131	. 39
Bis (dime thylthiocarbamoyl) sulfide	1,881	1,590	1,230	. 77
		168	87	. 52
All other accelerators, activators, and vulcanizing agents ${ }^{5}$------	5,375	243	267	1.10
Dodecyl mercaptans-	14,497	12,687	4,711	. 37
Dimethyldithiocarbamic acid, sodium sa	4,550	1,914	713	. 37
All other acyclic rubber-processing chemicals ${ }^{6}$	5,882	3,705	2,141	. 58

[^17]TABLE 2.--Rubber-processing chemicals: Manufacturers' identification codes, by products, 1968
[Rubber-processing chemicals for which senarate statistics are given in table lare marked below with an asterisk (*); chemicals not so marked do not appear in table 1 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2 . An x signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical	Manufacturers' (see Appendi	
RUBBER-PROCESSING CHEMICALS, CYCLIC		
Accelerators, activators, and vulcanizing agents: *Aldehyde-amine reaction products:		
Acetaldehyde-aniline condensat	USR.	
n-Butyraldehyde-aniline condensat	DUP, MON,	RCD, USR.
Butyraldehyde-butylideneaniline conden	MON.	
$\alpha-E t h y l-\beta-p r o p y l a c r y l a n i l i d e ~$	CCO.	
Heptaldehyde-aniline condensate-----------------------	USR.	
Triethyltrimethylenetriamine	USR.	
*Dithiocarbamic acid derivatives:		
Dibenzyldithiocarbamic acid, sodium sal	USR.	
Dibenzyldithiocarbamic acid, zinc salt	USR, WRC.	
Dibutyldithiocarbamic acid, N,N-dimethylcyclohexylamine salt.	MUN.	
Dibutyldithiocarbamic acid, diphenylguanidine salt.	CCO.	
2,4-Dinitrophenyl dimethyldithiocarbamate-------	USR.	
Piperidinecarbodithioic acid, piperidiniumpotassium salts, mixed.	DUP.	
Guanidines:		
Dicatechol borate, di-o-tolylguanidine salt-----	DUP.	
1,3-Diphenylguanidine	ACY.	
Diphenylguanidine phthal	MON.	
1,3-Di-o-tolylguanidine	ACY.	
	ACS.	
*Thiazole derivatives:		
2-Benzothiazyl N, N-diethylthiocarbamoyl sulfide-	PAS.	
1,3-Bis (2-benzothiazolylmercaptome thyl)urea-----	MON.	
N -tert-Butyl-2-benzothiazolesulfenamide---------	ACY, MON.	
* N -Cyclohe xyl-2-benzothiazolesulfenamide--------	$\mathrm{ACY}, \mathrm{BFG}$,	MON, USR.
N,N-Diis opropyl-2-benzothiazolesulfenamide-...--	ACY.	
N -(2,6-Dime thylmorpholino)-2-benzothiazolesulfenamide.	MON.	
*2,2'-Dithiobis (benzothiazole)	ACY, BFG,	GYR, MON, USR.
*2-Mercaptobenzothiazole------------------------------	$\mathrm{ACY}, \mathrm{BFG} \text {, }$	GYR, MON, USR.
2-Mercaptobenzothiazole, zinc chloride	DUP.	
*2-Mercaptobenzothiazole, zinc sal	$\mathrm{ACY}, \mathrm{BFG}$,	DUP, GYR, USR.
4-Morpholinyl-2-benzothiazyl disulfide	GYR.	
N -Oxydie thylene-2-benzothiazolesul fenami de	ACY, BFG,	MON.
Thiazoline-2-thio	ACY.	
All other cyclic accelerators, activators, and vulcanizing agents:		
p-Benzoquinonedioxime	CTN, DUP.	
Bis (p-aminocyclohexy1)methane carbamat	DUP.	
Bis (morpholinothiocarbony1) disulfide	ACY.	
Dibenzoyl-p-quinonediox	CTN, USR.	
Dibenzylamine	MLS, USR.	
$\mathrm{N}, \mathrm{N}^{\prime}$-Dicinnamylidene-1,6-hexanediamin	DUP.	
Di-N, N^{\prime}-pentamethylenethiuram tetrasulfid	DUP, VNC.	
4,4'-Di thiodimorpholine	MON.	
2-Imidazoline-2-thiol	DUP, RBC.	
m-Phenylenebismaleimide	DUP.	
Poly-p-dinitrosobenzene	DUP.	
Styrene polysulfide	TKL.	
m-Tolylenebismaleimide	DUP.	

TABLE 2.--Rubber-processing chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)	
RUBBER-PROCESSING CIIENICALS, CYCLIC--Continued		
Antioxidants, antiozonants, and stablizers--Con. *Phenolic and phosphite antioxidants and stabilizers--Continued		
*Polyphenolics (including bisphenols):		
Bisphenol, hindered-.-------------	GYR.	
4, 4^{\prime} - Butylidenebis (6-tert-butyl-m-cresol)--..-	MUN.	
2,5-Di-(1,1-dime thy lpropyl)hydroquinone-------	MON.	
2,2'-Methylenebis (6-tert-butyl-p-cresol) --..--	ACY, ASH.	
2,2'-Methylenebis (6-tert-butyl-4-ethy lphenol)-	ACY.	
```2,2'-Methylenebis [6-(1-methylcyclohexyl)-p- cresol].```	ICI.	
2,2'-Methylenebis (6-tert-octyl-p-cresol)---..-	ACY .	
2,2'-Thiobis (4,6-di-sec-amy lphenol)-----------	MUN.	
4,4'-Thiobis (6-tert-butyl-m-cresol)------------	MON.	
1,1,3-Tri (2-methyl-4-hydroxy-5-tert-butylphenyl)but ane.	ICI.	
Other phenolic antioxidants and stabilizers:		
	BFC.	
N -Butyroy 1-p-aminophenol	MLS.	
o-Cresol, alkylated---	PIT.	
N -Lauroy 1-p-ami nophenol	MLS.	
*Phenol, alkylated---------------------------------	ACY, BFG,	CCO, GYR, NEV, PIT, USR.
	DUP, GYR,	PlT.
	BFG, GYR, MLS	NEV, USR.
	MLS. PIT.	
Blowing agents:		
$N, N^{\prime}$ - Dimethyl- $\mathrm{N}, \mathrm{N}^{\prime}$-dinitrosoterephthalamide-	DUP.	
Dinitrosopentamethylenetetramine-	DUP, NPI.	
p,p'-Oxybis (benzenesul fonhydrazide)----------------	USR.	
*Peptizers:		
Alkylated o-thiocresol-	PIT.	
Alkylated thiophenol, zinc salt	P1T.	
Aryl mercaptans -	PIT.	
2-Benzamidothiophene, zinc salt	ACY.	
$2^{\prime}, 2^{\prime \prime}$ '-Dithiobis (benzanilide)	ACY.	
Dixylyl disulfides, mixed	PIT.	
2-Naphthalenethiol--	DUP.	
Pentachlorobenzenethiol	DUP.	
Pentachlorobenzenethiol, zinc salt--.-------------	DUP.	
	PIT.	
Thiophenol (Benzenethiol)	PIT.	
	DUP.	
Other cyclic rubber-processing chemicals:		
p-tert-Amy 1phenol sulfide (tackifier)	PAS.	
Dicresyl disulfide	USR.	
$\mathrm{N}, 4$-Dinitroso- N -methylaniline (physical-property improver).	MUN.	
	USR.	
N -Nitrosodiphenylamine (retarder)------------------	ACY, BFG,	CTN, GYR, NPI, SAL, USR.

TABLE 2.--Rubber-processing chemicals: Manufacturers' identification codes, by products, 1968--Continued


Cyclic and acyclic elastomers (synthetic rubbers) are a group of high polymeric materials which have properties similar to those found in natural rubber. The term "elastomers", as used in this report, is specifically defined as substances in bale, crumb, powder, latex, and other crude forms, which can be vulcanized or similarly processed into materials that can be stretched to at least twice their original length and, after having been so stretched and the stress removed, will return with force to approximately their original length.

Data on U.S. production and sales of elastomers in 1968 are shown in table 1. Table 2 lists these products and identifies the manufacturers.

The total domestic output of all types of synthetic elastomers in 1968 was 4,268 million pounds, compared with 3,823 million pounds reported for 1967. Sales of these elastomers amounted to $3,563 \mathrm{mili}$ ion pounds, valued at $\$ 973$ million, in 1968 , compared with 3,262 million pounds, valued at $\$ 874$ million, in 1967.

Production of cyclic elastomers in 1968 amounted to 2,563 million pounds, compared with 2,298 million pounds in 1967. Sales of cyclic elastomers in 1968 were 2,017 million pounds, valued at $\$ 479$ million, compared with 1,940 million pounds, valued at $\$ 440$ million, in the previous year. Of the total U.S. production of cyclic elastomers in 1968, the polybutadiene-styrene type (including vinylpyridine) accounted for 2,545 million pounds, and the polyurethane type for 18 million pounds.

The U.S. production of acyclic elastomers in 1968 was 1,705 million pounds, compared with 1,525 million pounds in 1967. Sales of these products in 1968 amounted to 1,546 million pounds, valued at $\$ 494$ million. Of the 1968 production of acyclic elastomers, stereo elastomers were produced in the largest amount ( 809 million pounds), followed by the polyisobutylene-isoprene type ( 252 million pounds) , and the polybutadiene-acrylonitrile type (N-type) ( 160 million pounds). The stereo elastomers are composed principally of polybutadiene, polyisoprene, and ethylene-propylene rubber. Production of silicone elastomers in 1968 was 9.2 million pounds and of other acyclic elastomers was 475 million pounds. The latter figure includes polyacrylate, polyalkalene sulfide, polychloroprene, polyisobutylene, and types of other elastomers of lesser importance.

TABLE 1.--Elastomers (synthetic mbbers): ${ }^{1}$ U.S. production and sates, 1968
[Listed below are all elastomers (synthetic rubbers) for which reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all elastomers for which data on production or sales were reported and identifies the manufacturer of each]


[^18]Note.--Statistics on the production of S-type, N-type, Butyl, neoprene, and stereo elastomers were compiled in cooperation with the U.S. Bureau of the Census.

TABLE 2.--Elastomers (synthetic mbbers): Manufacturers' identification codes, by products, 1968
[Elastomers (synthetic rubbers) for which separate statistics are given in table 1 are marked below with an asterisk (*); products not so marked do not appear in table 1 because the reported data are accepted in confidence and mav not be published. Manufacturers' identification codes shown below are taken from the Apperdix, tables 1 and 2 . An $x$ signifies that the uanutacturer did not consent co nis identitication with the designated product.]

Product		Manufacturers' identification codes   (see Appendix, tables 1 and 2)

> ر
(t) <
f
0

3
,

$\square$

$\theta$
(1)

Plasticizers are organic chemicals that are added to synthetic plastics and resin materials to (1) improve workability during fabrication, (2) extend or modify the natural properties of these resins, or (3) develop new improved properties not present in the original resins. Plasticizers reduce the viscosity of the resins and make it easier to shape and form them at high temperatures and pressures. They also impart flexibility and other desirable properties to the finished product.

Statistics on production and sales of plasticizers are given in table 1. Table 2 lists the individual products and identifies the manufacturers of each.

Total U.S. production of plasticizers in 1968 amounted to 1,331 million pounds--representing an increase of 5.4 percent over the output of 1,263 million pounds reported for 1967. Sales in 1968 of the plasticizers covered by this report amounted to 1,239 million pounds, valued at $\$ 280$ million, compared with 1,162 million pounds, valued at $\$ 261$ million in 1967 --increases of 6.6 percent in quantity and 7.2 percent in value.

Production of cyclic plasticizers in 1968, which consisted chiefly of the esters of phthalic anhydride and phosphoric acid, amounted to 985 million pounds, compared with 930 million pounds in l967--an increase of 5.9 percent. Sales of cyclic plasticizers in 1968 amounted to 918 million pounds, valued at $\$ 178$ million, compared with 865 million pounds, valued at $\$ 168$ million in the previous year. This represents an increase in sales quantity of 6.2 percent and in sales value of 5.9 percent. The production of dioctyl phthalates amounted to 440 million pounds or 33.0 percent of the total plasticizers output and 44.7 percent of the total cyclic plasticizer output.

Production of acyclic plasticizers in 1968 amounted to 346 million pounds, an increase of 4.0 percent, compared with 333 million pounds in 1967. Sales of acyclic plasticizers in 1968 amounted to 320 million pounds, valued at $\$ 102$ million, compared with 297 million pounds, valued at $\$ 93$ million, in 1967, a gain of 7.9 percent in sales quantity and 9.6 in value. Production of complex linear polyesters in 1968 amounted to 49 million pounds, and that of epoxidized esters, to lol million pounds. Among the other products included in the acyclic class are the esters of adipic, azelaic, oleic, sebacic, and stearic acids.
[Listed below are plasticizers for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all plasticizers for which data on production or sales were reported and identifies the manufacturer of each]

| Chemical |  |  |  |
| :---: | :---: | :---: | :---: | :---: |

See footnotes at end of table.

TABLE 1.--Plasticizers: ${ }^{1}$ ".S. production and sales, 1968--Continued


[^19]
## TABLE 2.--Plasticizers: Manufacturers' identification codes, by products, 1968--Continued

[Plasticizers for which separate statistics are given in table 1 are marked below with an asterisk (*); products not so marked do not appear in table l because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2. An $x$ signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical
PLASTICIZERS, CYCLIC
Coumarone-indene plasticiz
N -Cyclohexyl-p-toluenesulfonamide
Dibenzyl sebacat
Diethylene glycol dibenzoat
Di-tert-octyldiphenyl oxide
Dipropanediol dibenzoate
N-Ethyl-p-toluenesulfonamide
Is opropylidenediphenoxypropan
Naphthalene, alkylated-
Phosphoric acid esters:
p-Chlorophenyldiphenyl phosphat
*Cresyl diphenyl phosphate
Dibutyl phenyl phosphate
Diphenyl octyl phosphate
Methyl diphenyl phosphate
*Tricresyl phosphate-
*Triphenyl phosphate-
All other phosphoric acid esters
Phthalic anhydride esters:
Alkyl benzyl phthalates
Bis (4-methyl-1,2-pentyl) phthalat
Butyl benzyl phthalate
Butyl cyclohexyl phthalat
n-Butyl n -decyl phthalat
*Butyl octyl phthalates:
Butyl 2-ethylhexyl phthalate
Butyl iso-octyl phthalate
Butyl-n-octyl phthalate
Di(2-butoxyethyl) phthalate

*Dicyclohexyl phthalate----------------------------------
Diethyl isophthalate-

Dihexyl phthalate
Di (isodecyl)-4,5-epoxy phthalate

Diisodecyl hydrophthalate
*Diisodecy 1 phthalate-------------------------------------

Di(2-methoxyethyl) phthalate
Dimethyl isophthalate
*Dimethyl phthalate
Dinonyl phthalate-
*Dioctyl phthalates: Dicapryl phthalate
Di(2-ethylhexyl) isophthalate
*Di (2-ethylhexyl) phthalate
*Diiso-octyl phthalate-
*Mixed diocty1 phthalates
Diphenyl phthalate
*Ditridecyl phthalate
2-(Ethylhexyl)isodecyl phthalate

Manufacturers' identification codes (see Appendix, tables 1 and 2)

NEV.
MON.
WTH.
VEL.
DOW.
VEL.
MON.
DOW.
ACC.

## MON.

FMP, MON, MTR, SFA, SM.
MON.
MON.
FMP, MON
FMP, MON, MTR, SFA.
EK, MON, SFA.
SFA.
x .
GRH.
MON.
ACP
PCC, TEK.
MON, UCC.
GRH.
GRH, PCC, RCI.
FMP, WTC.
ACP, CGL, COM, DA, DUP, EKT, ENJ, GRH, MON, PCC,
PFZ, RCI, RUB, SW, UCC.
ACP, DUP, FMP, MON, PFZ, WTC.
PFZ.
DUP, EKT, KF, MON, PFZ, TEK.
ACP, CGL, CPL, ENJ.
UCC.
UCC.
ACP, BFG, CGL, CPL, EKT, ENJ, GRH, MON, PCC, RCI, RUB, TEK, UCC.
ENJ.
EKT, FMP.
PFZ.
EKT, KF, MON, TCC, WTC.
CPL, RCI, TEK.
GRH, WTH.
UCC.
ACP, BFG, CGL, CPL, EKT, ENJ, GRH, MON, PCC, PFZ, RCI, RUB, TEK, UCC, WTC.
ACP, CGL, CPL, ENJ, GRH, MON, FCC, RCI, RUB, TEK, UCC.
BFG, TEK.
MON.
ACP, CGL, CPL, ENJ, GRH, MON, PCC, RCI, RUB, TEK, UCC.
UCC.

TABLE 2.-- Plasticizers: Manufacturers' identification codes, by products, 1968--Continued

Chemical

## PLASTICIZERS, ACYCLIC--Continued

```
*Complex linear polyesters and polymeric plasti-
 cizers.
Di(butoxyethoxy-ethoxy)methane-
Dibutyl tartrate--
Diethylene glycol dipelargonate (dinonanoate)------
Diiso-octyl diglycolate-------------------------------
*Epoxidized esters:
 Butyl epoxydioleate----------------------------------
 Butyl epoxytallate---------------------------------------
 Epoxidized linseed oils-------------------------------
 *Epoxidized soya oils----------------------------------
 Epoxidized tall oils--------------------------------
 *2-Ethylhexyl epoxytallates----------m--------------
 Octyl epoxystearates-
 Octyl epoxytallates------------------------------------
 All other epoxidized esters-----------------------
 Glyceryl pelargonate------------------------------------
 Glyceryl tri-acetate (Triacetin)---n-----------------
 Glyceryl tributyrate and tripropionate--------------
 Glycol pelargonate----n-------------------------------
 Isodecyl nonanoate (Isodecyl pelargonate)------------
 Lauric acid esters------------------------------------
Myristic acid esters:
 Ethoxyethyl myristate-------.------------------------
 *Isopropyl myristate-----------------------------------
*Oleic acid esters:
 2-Butoxyethyl oleate--------------------------------
 *Butyl oleate---
 Decy1 oleate---
 *Glyceryl trioleate (Triolein)----------------------
 Isopropyl oleate------------------------------------
 Methoxyethy1 oleate--n-------------------------------
 *Methyl oleate--------------------------------------
 Propyleneglycol oleate------------------------------
 n-Propyl oleate-----------n-----------------------
 All other oleic acid esters---------------------------
 Palmitic acid esters:
 Isobutyl palmitate----------------------------------
 Iso-octyl palmitate-
 *Isopropyl palmitate--------------------------------
 2-Methoxyethyl palmitate------------------------------
*Phosphoric acid esters:
 Tri(2-butoxyethy1) phosphate-----------------------
 Tributyl phosphate-----------------------------------
 Tri(2-chloroethyl) phosphate-----------------------
 Triethyl phosphate---------------------------------
 Trioctyl phosphate-----------------------------------
 All other phosphoric acid esters-------------------
 Ricinoleic and acetylricinoleic acid esters:
 n-Butyl acetylricinoleate-
 Butyl ricinoleate-
 *Glyceryl monoricinoleate
 Glyceryl tri(acetylricinoleate)-----------------------
 Methoxyethyl ricinoleate---------------------------
 Methyl ricinoleate-----------------------------------
```

*Complex linear polyesters and polymeric plasticizers.
Di (butoxyethoxy-ethoxy)methane-

Diethylene glycol dipelargonate (dinonanoate)------

*Epoxidized esters:


Epoxidized linseed oils-------------------------------


Octyl epoxystearates-

All other epoxidized esters---------------------------





Myristic acid esters:


*Oleic acid esters:



*Glyceryl trioleate (Triolein)





Palmitic acid esters:

Iso-octyl palmitate

*Phosphoric acid esters:
Tri(2-butoxyethy1) phosphate------------------------



All other phosphoric acid esters--------------------
有 Butyl
-
Glyceryl monoricinoleate---------------------------------
 Methyl ricinoleate-

Manufacturers' identification codes (see Appendix, tables 1 and 2)

ASH, EKT, EMR, HAL, MON, PFZ, RCI, RH, RUB, TEK, WTH.
TKL.
ARC.
EMR.
CCA, UCC.
ASH.
ASH.
ASH, SWT.
ASH, BAC, CPL, RH, SWT, TEK, UCC, WTC.
RCI, RH.
ASH, BAC, UCC.
WTC.
RH, TEK, UCC, WTC.
EMR.
EMR.
PFZ.
EKT.
EMR.
EMR.
SBC.
SCP
ARC, DRW, ICI, PCS, SBC, WTC.
ARC, HAL.
ARC, CHL, HAL, ICI, SWT, WM, WTH.
VND.
CHL, DRW, EMR, SNT, WM.
EMR, WM.
HAL.
DA, EMR, ICI, SWT.
DRW.
CHL, EMR, WM.
DA, RH.
ARC, DA, EKT.
DRW, RUB.
ARC, DRW, ICI, PCS, SBC.
EKT.
FMP.
FMP.
SFA, UCC.
EKT.
UCC.
SCP, SM.
BAC.
BAC, RCI.
BAC, DA, GLY, HAL.
BAC.
RCI.
BAC, DA.

TABLE 2.--Plasticizers: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
PLASTICIZERS, ACYCLIC--Continued	
Ricinoleic and acetylricinoleic acid esters-Continued	
All other ricinoleic and acetylricinoleic acid esters.	BAC.
Sebacic acid esters:	
Dibutoxyethyl sebacate	HAL, RCI.
*Dibutyl sebacate-	EKT, GRH, HAL, PFZ, RCI, RH, WTH.
*Di(2-ethylhexyl) sebacate	GRH, HAL, PFZ, RCI, RH, WTH.
Diiso-octyl sebacate	DA, RCI, RUB.
*Stearic acid esters:	
Butoxyethyl stearate	ARC.
*n-Butyl stearate-	ARC, CHL, DA, DRW, EMR, HAL, ICI, PCS, RUB, SCP, SWT, WTH.
Dimethy lammonium stearate-	RH.
Dodecyl (lauryl) stearate-	RCI.
2-Ethylhexyl stearate	FMP.
Glyceryl triacetyl stearate-	BAC.
Isobutyl stearate-	DA.
Isopropyl stearate-	WM.
Methoxyethyl stearate	ARC.
Methyl dichlorostearate	HK.
Methyl pentachlorostearate	HK.
Methyl stearate------	CHL.
All other stearic acid esters	
Sucrose acetate isobutyrate	ARC, EKT.
Tetraethylene glycol di(2-ethylhexanoate)	UCC.
Triethylene glycol dicaprylate----	RUB.
*Triethylene glycol di (caprylate-caprate)	DRW, FOR, HAL, RUB, WM.
Triethylene glycol di-2-ethylbutyrate-	UCC.
Triethylene glycol di(2-ethylhexanoate)	EKT, UCC.
Triethylene glycol dipelargonate-	RUB.
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate	EKX.
All other acyclic plasticizers	ARC, EMR, GLY, HPC, RH, RUB, TKL, WM.



The surface-active agents included in this report are organic chemicals that reduce the surface tension of water or other solvents and are used chiefly as detergents, dispersing agents, emulsifiers, foaming agents, or wetting agents in either aqueous or nonaqueous systems. Waxes and products used chiefly as plasticizers are excluded. Surface-active agents are produced from natural fats and oils; from silvichemicals such as lignin, rosin, and tall oil; and from chemical intermediates derived from coal-tar and petroleum. A major part of the output of the bulk chemicals shown in this report is consumed in the form of packaged soaps and detergents for household and industrial use. The remainder is used in the processing of textiles and leather, in ore flotation and oil-drilling operations, and in the manufacture of agricultural sprays, cosmetics, elastomers, foods, lubricants, paints, pharmaceuticals, and many other products.

Table 1 shows statistics for production and sales of surface-active agents grouped by ionic class and by chemical class and subclass; table 2 lists these products and identifies the manufacturers. All quantities are reported in terms of 100 -percent organic surface-active ingredient and thus exclude all inorganic salts, water, and other diluents. Sales statistics reflect sales of bulk surface-active agents only; sales of formulated products are excluded.

Total U.S. production of surface-active agents in 1968 amounted to 3,739 million pounds, or 7.5 percent more than the 3,479 million pounds reported for 1967 and 12.6 percent more than the 3,321 million pounds reported for 1966. Sales of bulk surface-active agents in 1968 amounted to 1,998 million pounds, valued at $\$ 357$ million, compared with sales in 1967 of 1,750 million pounds, valued at $\$ 317$ million, and sales in 1966 of 1,766 million pounds, valued at $\$ 315$ million. In terms of quantity, sales in 1968 were thus 14.2 percent larger than in 1967 and 13.1 percent larger than in 1966; in terms of value, sales in 1968 were 12.6 percent larger than in 1967 and 13.3 percent larger than in 1966.

Production of anionic surface-active agents in 1968 amounted to 2,710 million pounds, or 72.5 percent of the total output reported for 1968 and 3.7 percent more than the anionic output reported for 1967. Sales of anionics in 1968 amounted to 1,161 million pounds, valued at $\$ 166$ million. Of the total anionic output, 1,015 million pounds consisted of potassium and sodium salts of fatty, rosin, and tall oil acids, of which 525 million pounds was the sodium salt of tallow acids and 122 million pounds was the sodium salt of coconut oil acids; 708 million pounds consisted of alkylbenzenesulfonates, of which 430 million pounds was sodium dodecylbenzenesulfonate, 113 million pounds was dodecylbenzenesulfonic acid, and 107 million pounds was sodium tridecylbenzenesulfonate; and 444 million pounds consisted of ligninsulfonates, of which 284 million pounds was the calcium salt and 47 million pounds was the sodium salt.

Production of nonionic surface-active agents in 1968 amounted to 854 million pounds, or 22.8 percent of the total output reported for 1968 and 21.2 percent more than the nonionic output reported for 1967 . Sales of
nonionics in 1968 amounted to 689 million pounds, valued at $\$ 130$ million. Of the total nonionic output, 243 million pounds consisted of alkylphenol ethoxylates and other benzenoid ethers, of which 133 million pounds was nonylphenol ethoxylate; 358 million pounds consisted of alcohol ethoxylates and other nonbenzenoid ethers, of which 275 million pounds was mixed linear alcohol ethoxylate; 87 million pounds consisted of alkanolamides; and 82 million pounds consisted of glycerol esters.

Production of cationic surface-active agents in 1968 amounted to 167 million pounds, or 4.5 percent of the total output reported for 1968 and 8.4 percent more than the cationic output reported for 1967 . Sales of cationics in 1968 amounted to 140 million pounds, valued at $\$ 57$ million. Of the total cationic output, 46 million pounds consisted of quaternary ammonium salts not containing oxygen, and 25 million pounds consisted of primary monoamines not containing oxygen.

Production of amphoteric surface-active agents in 1968 amounted to 8.4 million pounds, or approximately 0.2 percent of the total output reported for 1968 and 25.8 percent more than the amphoteric output reported for 1967. Sales of amphoterics in 1968 amounted to 8.2 million pounds, valued at $\$ 4.8$ million.

The difference between production and sales reflects inventory changes and captive consumption of soaps and surface-active agents by synthetic rubber producers, and by manufacturers of cosmetics, packaged detergents, bar soaps, and other formulated consumer products. In some instances the difference may also reflect quantities of surface-active agents used as chemical intermediates, e.g., nonionic alcohol and alkylphenol ethoxylates which may be converted to anionic surface-active agents by phosphation or sulfation.

## TABLE 1. --Surface-active agents: U.S. production and sales, 1968

[Listed below are all surface-active agents for which reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all surface-active agents for which data on production or sales were reported and identifies the manufacturer of each]

| Chemical |  |  |  |
| ---: | ---: | ---: | ---: | :---: |

See footnotes at end of table.

# TABLE 1.--Surface-active agents: U.S. production and sales, 1968--Continued 

Chemical	Production ${ }^{1}$	Sales ${ }^{2}$			
		Quantity ${ }^{1}$	Value	$\begin{aligned} & \text { Unit }_{3} \\ & \text { value }^{2} \end{aligned}$	
Anionic Surface-Active Agents--Continued	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$1,000$ pounds	$\begin{gathered} \text { 1,000 } \\ \text { dotzars } \end{gathered}$	Per pound	
Sulfonic acids (and salts thereof)--Concinued   Alkylbenzenesul fonates--Continued					
Other alkylbenzenesulfonates, total-	142,233	15,370	2,112	\$0.14	
	1,784	. . .			
	107,486	- 1 - 370			
	32,963	15,370	2,112	. 14	
Benzene-, cumene-, toluene-, and xylenesulfonates, total------	55,769	42,343	3,942	. 09	
	10,783	8,720	820	. 09	
Xylenesulforic acid, sodium salt-	25, 243	16,563	1,387	. 08	
All other----.	19,743	17,060	1,735	. 10	
	444,257	432,209	16,323	. 04	
	283,964	269,178	6,523	. 02	
Ligninsulfonic acid, sodium sal	47,099	48,682	4,049	. 08	
All other-	113,194	114,349	5,751	. 05	
Naphthalenesulfonates, total	11,393	7,747	3,113	. 40	
Butylnaphthalenesulfonic acid, sodium salt	444	...	- 207	... 5	
Diisopropylnaphthalenesulfonic acid and sodium salt----------	428	400	207	. 52	
	10,521	7,347	2,906	. 40	
Sulfonic acids having amide linkages, $t$	5,127	3,956	2,309	. 58	
N -Methyl-N-oleoyltaurine, sodium salt	2,510	2,397	1,205	. 50	
Sul fosuccinic acid derivatives--	1,417	. . . 5	. .		
	1,200	1,559	1,104	. 71	
	8,823	8,822	4,489	. 51	
Sulfosuccinic acid, bis(2-ethylhexyl) ester, sodium salt-	6,128	6,204	3,199	. 52	
All other--	2,695	2,618	1,290	. 49	
All other sulfonic acids	37,528	17,259	9,495	. 55	
	. .	157,650	37,195	. 24	
Acids, amides, and esters, sulfated, total		13,572	3,732	. 27	
Coconut oil acids - ethanolamine condensate, sulfated, potassium salt		39	35	. 90	
	5,000	4,751	1,404	. 30	
Butyl oleate, sulfated, sodium salt	1,824	1,757	453	. 26	
	144			. . 3	
	363	324	107	. 33	
	412	397	130	. 33	
All other	2,257	2,273	714	. 31	
Oleic acid, sulfated, disodium sal	6,957	6,940	1,572	. 23	
Tall oil, sulfated, sodium salt-	791	888	198	. 22	
	. .	954	523	. 55	
Alcohols, sulfated, total	i7	32,983	15,127	. 46	
Dodecyl sulfate salts, total-	47,520	,		. . 38	
	2,950	2,961	1,134	. 38	
	. . 285	2,523	1,453	. 58	
	285	237	127	. 54	
	19,487	. . .	. . .	. .	
Dodecyl sulfate, triethanolamine salt	9,498	. . .	. .	. . .	
	15,300			...	
	151	130	68	. 52	
	2,309	.		49	
	. . .	272		.49	
	$\cdots$	26,860	12,211	. 45	
Ethers, sulfated, total	150,787	79,966	12,387	. 15	
	3,541	3,308	985	. 30	
Dodecyl alcohol, ethoxylated and sulfated, ammonium salt----	1,402	$\cdots$		50	
Dodecyl alcohol, ethoxylated and sulfated, sodium salt------	2,100	2,022	1,001	. 50	
Mixed linear alcohols, ethoxylated and sulfated, sodium salt	2,495	. ${ }^{\text {P }}$		-••	
	141,249	74,636	10,401	.14	
	35,562	31,129	5,949	. 19	
	7,212	6,465	1,916	. 30	
	1,346	1,224	357	. 29	
	2,252	1,793	233	. 13	
	1,349	1,053	212	. 20	
	130	128	90	. 70	
	71	46	11	. 24	

TABLE l.--Surface-active agents: U.S. production and sales, 1968--Continued

Chemical			

See footnotes at end of table.

TABLE 1.--Surface-active agents: U.S. production and sales, 1968--Continued


TABLE 1.--Surface-active agents: U.S. production and sales, 1968--Continued


TABLE 1.--Surface-active agents: U.S. production and sales, 1968--Continued

Chemical	Production ${ }^{1}$	Sales ${ }^{2}$		
		Quantity ${ }^{1}$	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
Nonionic Surface-Active Agents--Continued	$1,000$ pounds	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	$\begin{aligned} & \text { Per } \\ & \text { pound } \end{aligned}$
Ethers--Continued				
0 Oher ethers and thioethers, total	47,442	37,925	9,139	\$0.24
Tridecyl alcohol, ethoxylated-	6,764	6,035	1,341	. 22
All other-	40,678	31,890	7,798	. 24
Other nonionic surface-active agent	1,670	1,150	1,187	1.03

I All quantities are given in terms of 100 percent organic surface-active ingredient.
2 Sales include products sold as bulk surface-active agents only.
${ }^{3}$ Calculated from rounded figures.
4. The term "benzenoid," as used in this report, describes any surface-active agent, except lignin derivatives, whose molecular structure includes 1 or more 6 -membered carbocylic or heterocyclic rings with conjugated double bonds (e.g., the benzene ring or the pyridine ring).
5 Includes ligninsulfonates.
6 lncludes production of "all other" sulfated acids, amides, and esters and of "all other" sulfated alcohols; also includes sales of "all other" potassium and sodium salts of fatty, rosin, and tall oil acids.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968
[Surface-active agents for which separate statistics are given in table lare marked below with an asterisk (*); products not so marked do not appear in table 1 because the reported data are accepted in confidence and may not be published, Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2 . An $x$ signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Arphoteric Surface-Active Agents	
Acyclic:	
Alky lbetain	DUP.
(1-Carboxyheptadecyl)trimethylamonium hydroxide, inner salt.	DUP.
(Carboxymethyl) (coconut oil alkyl)dimethyiamonium hydroxide, inner salt.	CUL.
(Carboxyme thy 1)[3-(coconut oil amido)propyl]dimethylammonium chloride, sodium salt.	JRG.
(Carboxymethyl)[3-(coconut oil amido)propyl]dimethylammonium hydroxide, inner salt.	UVC.
(Carboxymethy1)dimethyl(9-oct adecenyl)ammoni um hydroxide, inner salt.	DUP.
(Carboxymethyl) dodecyldimethylammonium hydroxide, inner salt.	TCC,
(1-Carboxyundecy 1) trime thylamnonium hydroxide, inner salt.	DUP.
	GNM.
N -(Coconut oil alkyl)-B-alanine, partial sodium salt----	GNM,
$3-[(C o c o n u t ~ o i l ~ a l k y l) a m i n o] b u t y r i c ~ a c i d, ~ s o d i u m ~ s a l t----~$	ARC.
N -(2-Coconut oil ani doe thyl)-N-(2-hydroxyethyl)glycine, sodium salt.	TCC.
N -(Dodecyl and tetradecyl)- B -alanine	GNM.
N -( Dodecyl and tetradecyl)- $\beta$-alanine, triethanolamine salt.	GNM.
N-Dodecyl-3-imi nodipropionic acid-	GNM.
N -Dodecyl-3-iminodipropionic acid, sodium salt	GNM.
N -(2-Hydroxyethyl)-N-(2-stearamidoethyl)glycine, sodium salt.	GAF.
Mixed acyclic primary amines, ethoxylated and sulfated, sodium salt.	$\mathrm{RH} \text {. }$
	DUP, TXT.
	T×T.
Oleic acid - ethylenediamine condensate, propoxylated and sulfated, sodium salt.	S.
	MYW.
Polypeptide, sodium salt	MYN.
	GNM.
N -(Tallow alkyl)-3-iminodipropionic acid, disodium salt--	GNM.
All other acyclic	VAC.
Cyclic:	
1,1-Bis (carboxymethyl)-2-undecy1-2-imidazolinium hydroxide, disodium salt.	M1R, UVC.
1-[2-(2-Carboxy ethoxy) ethyl]-1-(2-hydroxy-3-sulfopropy 1)-2-(mixed alkyl)-2-imidazolinium hydroxide, disodium salt.	UVC.
1-Carboxymethy1-2-heptadecy1-1-(2-hydroxyethyl)-2-imidazolinium hydroxide, sodiun derivative, sodium salt.	MIR, UVC.
1-Carboxymethyl-1-(2-hydroxyethyl)-2-nonyl-2-imidazolinium chloride, sodium salt.	PCS, UVC.
1-Carboxyme thyl-1-(2-Hydroxyethyl)-2-nony l-2-imidazoliniun hydroxide, sodium derivative, sodiun salt.	M1 R.
1-Carboxyme thy 1-1-(2-hyd roxyethyl)-2-undecyl-2-imi dazolinium hydroxide, sodium derivative, sodium salt.	MIR, PCS , UVC.
Hep tadecylme thy lbenzimidazolinesulfonic acid, sodium salt.	$\mathrm{ClB} \text {. }$
3-[2-(2-Mixed alky1-2-imidazolin-1-yl)ethoxy]-propionic acid salt.	MOA.
3-[2-(2-Undecyl-2-imidazolin-1-y1)ethoxy]-propionic acid, sodium salt.	UVC.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Anionic Surface Active Agents	
*Carboxylic acids (and salts thereof):   *Amine salts of fatty, rosin, and tall oil acids:	
Coconut oil acids, diethanolamine salt	SEY.
Coconut oil acids, ethanolamine sal	SBP.
Oleic acid, n-butylamine salt	DYS.
Oleic acid, triethanolamine sal	DOM.
Stearic acid, morpholine salt-	CSB.
Stearic acid, $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetrakis(2-hydroxyethyl)ethylenediamine salt.	ICI.
Stearic acid, triethanolamine salt-----------------------	AML, GLY.
Tall oil acids, diethanolamine sal	SEY.
Tallow acids, ethanolamine salt-	SBP.
Tallow acids, triethanolamine salt	SBP.
*Carboxylic acids having amide, ester, or ether linkages: Butoxyethoxypropionic acid-	UVC.
	MYW.
N -(Coconut oil acy1) polypeptide, potassiun salt--------	M W W.
N -(Coconut oil acyl) polypeptide, sodium salt-----------	MNW.
N -(Coconut oil acyl)polypeptide, triethanol amine salt--	M WW.
N-(Coconut oil acyl)sarcosine, sodium salt-------------	HMP.
Diisobutylene - maleic anhydride copolymer, ammonium and sodium salts.	RH.
*N-Lauroy lsarcosine, sodium salt----------------------	CP, GGY, rMP, ONX.
N -(Mixed alkylsulfony 1 ) glycine, sodium salt	GAF.
Mixed linear alcohols, ethoxylated and carboxyalkylated, sodium salt.	SEY.
N -0leoy lpolypeptide, sodium salt-	LMI, MYW.
N -0leoylsarcosine, sodium salt	GAF, GGY, WTC.
Phthalic acid, octadecyl ester, potas	ClB.
Stearolactolactic acid-	GLY.
Stearolactolactic acid, calcium sal	GLY.
Stearolactolactic acid, sodium salt	GLY.
N-Stearoylsarcosine, sodium salt----------------1.-..--	UVC.
Tridecyloxypoly (ethy leneoxy) acetic acid, sodiun salt--N - (Undecenoy lpolypeptide), potassiun salt-------------	MW.
Unspecified sarcosine derivatives	HMP.
*Potassium and sodium salts of fatty, rosin, and tall oil acids:   Castor oil acids, potassium salt-	
	ARL, BAC, SEA. BAC, HEW, MRV, SNW.
*Coconut oil acids, potassium and sodium salts:   *Potassiun salt-	BAC, HEW, MRV, SNW.
	ACE, AES, CP, CSB, DA, DSO, DYS, GAF, GRC, GRL, HEN hint, JRG, LUR, MCP, NMC, PCH, PG, SWT. AGP, CON, CP, GRC, HEW, JRG, LEV, NPR, PG, PRX, SWT.
	GRC, HNT, HRT, NMC.
	GRC, LUR, NMC.
	DRW, VAL.
	SNW.
Mixed vegetable fatty acids, potassium salt-----------	AES, DYS, GRC, GRL, MCP, PCH, SWT.
Mixed vegetable fatty acids, sodium salt--------------	SWT.
  *Oleic acid, potassium salt-	AES. DRL, BSW, CCL, C1B DA, DAN, DYS, GAF, GYR, HN
	AES, ARL, BSW, CCL, C1B, DA, DAN, DYS, GAF, GYR, H QCP, S, SHP, SWT, USR, WBG.
*Oleic acid, sodium salt-	BSW, DA, GYR, LAK, LEV, LUR, MRV, NMC, SEA, SWT, WBG, WTC.
Olive oil acids, sodium salt-------------------------------	HEW, HNT, LUR.
	HEW, NMC.
	HEW.
Peanut oil acids, potassium salt-------------------------   Rosin acids, potassium salt-	KAL, SLC.
	USR, x .
	CRT, HRT, MRA, PLC, PRX, QCP, SLM, $x$.
Soybean oil acids, sodium salt------------------------------	CON, HEW.
	HEN.
	GYR, HEW, WTC.
*Stearic acid, sodium salt-	
*Tall oil acids, potassium salt	ACE, AES, CON, CSB, DRW, DYS, GAF, GRC, HNT, NMC, PNX QCP, SOP, VAL, $x$.
	GRC, GYR, MRV, PRX, SOP, UNP, $x$.
Tallow acids, potassium salt *Tallow acids, sodium salt-	NMC, PG, SWT.
	AGP, BSW, CON, CP, DA, DYS, GRC, HEW, JRG, LEV, LUR, NMC, NPR, PG, PLC, PRX, QCP, SWT.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Anionic Surface-Active Agents--Continued	
*Phosphoric and polyphosphoric acid esters (and salts thereof):	
*Alcohols and phenols, ethoxylated and phosphated:	GAF.
p-tert-Butylphenol, ethoxylated and phosphated--...-	RTF.
Dinonylphenol, ethoxylated and phosphated---------------------	GAF.
Dodecyl alcohol, ethoxylated and phosphated------------------	GAF, WIC.
Dodecylphenol, ethoxylated and phosphated------------------	GAF.
2-Ethylhexanol, ethoxylated and phosphated-----------------	WAY.
Iso-octyl alcohol, ethoxylated and phosphated-----------	GAF.
*Mixed linear alcohols, ethoxylated and phosphated-----	CHP, CRT, CST, GAF, SEY, TCH, TCI, WAY, WYN.
*Nonylphenol, ethoxylated and whosphated--	GAF, HDG, NLC, RTF, SCP, TCC, TXT, VAC.
Nonylphenol, ethoxylated and phosphated, barium salt---	WAY.
9-0ctadecenyl alcohol, ethoxylated and phosphated------	GAF.
9-Octadecenyl alcohol, ethoxylated and phosphated ethanolamine salt.	GAF .
Octadecyl alcohol, ethoxylated and phosphated----------	GAF.
	DYS, RHI.
Octylphenol, ethoxylated and phosphated, magnesium salt.	$x$.
Phenol, ethoxylated and phosphated------------------------------	GAF.
Polyhydric alcohol, ethoxylated and phosphated-----------	NLC.
Tridecyl alcohol, ethoxylated and phosphat	GAF, LUR, NLC, TCC, WAY.
	SOP.
*Alcohols, phosphated or polyphosphated:	
Decyl, dodecyl, and octyl phosphate, morpholine salt---	DUP.
	RCD.
2-Ethylhexyl phosphate---	WAY.
*2-Ethylhexyl phosphate, sodiun sal	SEY, TCI, UCC.
*2-Ethylhexyl polyphosphate	SFA, TCC, TCI, UVC.
2-Ethylhexyl polyphosphate, sodium	SFA.
Hexyl polyphosphate, potassium salt	DEX.
	CST, DUP, SFA, TCC.
	DUP.
9-Oct adeceny? phosphate-	DUP.
	RCD.
*Octyl phosphates:	
Dctyl phosphate-	TXT.
Octyl phosphate, alkylamine sal	DUP, TXT.
Octyl phosphate, potassium sal	DUP.
Octyl polyphosphate-------------1	DEX.
	DEX.
	NLC, SFA.
*Sulfonic acids (and salts thereof):   *Alkylbenzenesulfonates:	
*Dodecylbenzenesulfonates:	
*Dodecylbenzenesulfonic acid	ACS, ARD, CO, CRT, CTL, EMK, HLI, LAK, LEV, PIL, PLX, RCD, RTF, STP, TCI, TDC, TEN, TXT, WTC.
Dodecylbenzenesulfonic acid, ammonium salt------------	AKS, ARL.
Dodecylbenzenesulf fonic acid, butylamine salt----------	SOP, WTC.
	APD, CO, NLC, RCD, RH, RTF, STP, WTC, $x$.
Dodecylbenzenesulfonic acid, diethanolamine salt-----	VAL.
Dodecylbenzenesulforic acid, dimethylamine salt---.--	PIL.
Dodecylbenzenesulfonic acid, ethylenediamine salt----	APD. ${ }^{\text {Pres }}$
*Dodecylbenzenesulfonic acid, isopropanol amine salt---	CTL, PCS, RCD, $x$.
*Dodecylbenzenesulfonic acid, isopropylamine salt	APD, CTL, RCD, RTF, SNW, STP.
*Dodecylbenzenesulforic acid, (mixed alkyl)amine salt.	PCS, VAL, WTC.
Dodecylbenzenesulfonic acid, potassium salt----------	RCD, SOP, VAL.
Dodecylbenzenesulfonic acid, propoxylated ethylenediamine salt.	PCS.
*Dodecylbenzenesulfonic acid, sodium salt	AAC, ACS, AKS, APX, ARD, ARL, ATR, BLA, $C 0, C P$, CRT, CTL, DA, DEP, DSO, HLI, LEV, MON, PEK, PG, PIL, PLX, PRX, RCD, RTF, STP, TEN, TXT, UNP, VAC, WTC.
	RTF, VAC.
*Dodecylbenzenesulfonic acid, triethanolami ne salt----	AAC, ACS, AML, ARD, ARL, ATR, CTL, DSO, HLI, MCP, PIL, RCD, RTF, SOS, STP.
*Other alkylbenzenesulfonates:	
Decylbenzenesulfonic acid, sodium salt Didodecylbenzenesulfonic acid-	MON.   CO.

TABLE 2,--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

Manufacturers' identification codes (see Appendix, tables 1 and 2)

## Anionic Surface-Active Agents--Continued

*Sulfonic acids (and salts thereof)--Continued
*Sulfonic acids having anide linkages--Continued
*Sulfosuccinic acid derivatives--Continued
Sulfosuccinic acid, alkanolamide ester sodium salt---
Sulfosuccinic acid, 2-(coconut oil amido)ethyl ester, di sodium salt.
Sulfosuccinic acid, 2-undecylenamidoethyl ester, disodium salt.
*Sulfosuccinic acid esters:
Sulfosuccinic acid, bis (2,6-dimethyl-4-heptyl) ester, sodium salt.
*Sulfosuccinic acid, bis(2-ethylhexyl) ester, sodium salt.
Sulfosuccinic acid, bis(tallow monoglyceride) ester, sodium salt.
Sulfosuccinic acid, dihexyl ester, sodium salt---------
Sulfosuccinic acid dioctyl ester, sodium salt--..--------
Sulfosuccinic acid, dipentyl ester, sodium salt--------
Sulfosuccinic acid, ditridecyl ester, sodiun salt------
Sulfosuccinic acid, dodecyloxypoly(ethyleneoxy) et hyl ester, disodium salt.


*All other sulfonic acids:

Coconut oil acids, 2-sulfoethyl ester, sodium salt-----
Dodecyldiphenyloxidedisulfonic acid, disodium salt-----

2-Lauroyloxy-l-propanesulfonic acid-


n-Octylphenol, ethoxylated and sulfonated, sodium salt.
Petroleunsulfonic acid, water soluble (acid layer), sodium salt.


*Sulfuric acid esters (and salts thereo
*Acids, amides, and esters, sulfated:
*Coconut oil acids - ethanolamine condensate, sulfated, potassium salt.
*Esters of sulfated oleic acid:











*Other acids, amides, and esters, sulfated:
Coconut oil acids - isopropanolamine condensate, sulfated, sodium salt.
Glycerol monoester of coconut oil acids, sulfated, sodium salt.
9-Oct adecenyl acetate, sulfated, sodium salt----------1
Oleic acid - ethanolamine condensate, sulfated, sodium salt.
 Propyl ricinoleate, sulfated, disodium salt--..............

$\qquad$

HDG.
LAK.
LAK.

GAF.
ACY, AKS, CRT, CST, DA, DAN, EMK, GGY, HDG,
fIRT, ICI, MCP, MOA, PC, SBC, TCI, UVC.
ACY.
$\mathrm{ACY}, \mathrm{MOA}$.
MCP, Ril.
ACY.
ACY, MOA.
LAK.
SCP.
SCP.

RBC.
GAF, LEV.
DOW.
ACS, LEV.
SDH.
DUP, VPC, WTC.
SLM.
CRT, RH, SNW.
SIN, WTC.
SLM.
STC.

DEX, EMK, ONX.
S.

AKS, CHP, EFH, ICI, MCP, ONX, PC.
GAF.
LEA, MRV, SCP.
DA.
CRT, DEX, HRT, ICI, LEA, LUR, SCP.
DA, ICl.
ACY, CHP, GAF, MCP, MRV.
EFil.
ACT, ACY, CHP, CRT, DA, EFH, GAF, ICI,
LEA, MRV, PCI, SCO, TEN, WHW.
ACY, APX, BAO, DA, HRT, 1CI, KAL, MRV, RTF, SEA, WHI.
APX.
$A A C, C P$.
DUP.
SCP.
SEA.
AKS.
DA.
EMR.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2. --Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Anionic Surface-Active Agents--Conti nued	
*Sulfuric acid esters (and salts thereof)--Continued   *Ethers, sulfated--Continued   *Other sulfated ethers--Continued	
Tridecyl alcohol, ethoxylated and sulfated, sodium salt.	AAC, ARL, ORX, RCD.
All other	APX, PG.
*Castor oil, sulfated, sodiun sa	AAL, $A C T, A C Y, ~ A K S, ~ A M L, ~ A P X, ~ B A O, ~ B S W, ~ C R T, ~ D A, ~$ DEX, DRN, EFH, GAF, HRT, ICl, KAL, KNG, LEA, LUR, MCP, MRA, MRD, MRV, ONX, PC, S, SCO, SEA, SLC, SLM, SNW, WIII, WHN.
*Coconut oil, sulfated, sodium	ACY, BAO, DA, KNG, LUR, MRD, RTC, SEA, WHW.
	ACT, BAO, CRT, DRW, EFH, HRT, MRD, S, SEA, WAW, WH1, WIIW.
Cottonseed oil, sulfated, sodium salt--------------------	DA.
Grease, other than wool, sulfated, sodium salt-.......-	SEA, WHIL, Wilin.
Herring oil, sulfated, sodium salt	DA.
Lard, sulfated, sodium salt-	SLN, WAW.
Mixed animal and vegetable oils, sulfated, sodium salt-	SLM.
	AML, BAO, SCO, SLM, WIII.
Mustard seed oil, sulfated, sodium	DA, LUR.
*Neat's-foot oil, sulfated, sodium salt	ACT, BAO, CRT, DA, KAL, LEA, LUR, MRD, PC, SEA, SLM, WHI, WHW.
*Peanut oil, sulfated, sodium sal	ACY, DA, ICI, LEA, LUR, SLC.
*Ricebran oil, sulfated, sodiun sa	EFH, NNG, LUR.
*Soybean oil, sulfated, sodiun sal	CRT, DRW, HRT, KAL, LEA, MRD, ONX.
*Sperm oil, sulfated, sodiun salt	ACT, AKS, BAO, CLD, CRT, DA, DRW, HRT, KAL, KNG, MRD, ONX, RTC, S, SEA, SLM, WHI, WHW.
*Tallow, sulfated, sodium sa	ACT, ACY, BAO, BSW, DA, EFH, HEW, ICI, KAL, LUR, NCP, MRA, MRD, ONX, PC, PCI, SCP, SEY, SID, SOS, WHI.
Whale oil, sulfated, sodium sal	KNG.
All othe	WH1 .
Other anionic surface-active agents:	
Lignin (non-sulfonated) and salts thereof	WVA.
Mixed linear alcohols, ethoxylated and carbonated, sodium salt.	S .
Tridecyl alcohol, ethoxylated and carbonated, sodium salt.	S.
Cationic-Surface-Active Agents	
*Amine oxides and oxygen-containing amines (except those having amide linkages):	
*Acyclic:	
N,N-bis (2-hydroxyethyl)(coconut oil al kyl)amine oxide--	ARC.
	CTL, FIN.
	ARC, FIN, TCH.
$\mathrm{N}, \mathrm{N}$ - Bis (2-hydroxyethyl)octadecylamine oxide-------------	ARC.
	ARC.
$\mathrm{N}, \mathrm{N}$ - Bis (2-hydroxyethyl) (tallow alkyl)amine acetate-----	ONX, PG.
N, N - Bis (2-hydroxyethyl) (tallow alkyl)amine oxide-------	ARC.
*(Coconut oil alkyl)amine, ethoxylated----....................	AAC, APD, ARC, NLC, SDII, TCII, VAC.
(Coconut oil alkyl)amine, ethoxylated, acetate	RPC.
(Coconut oil alkyl)amine, ethoxylated, maleate--....-.	SDH.
5, B-Diethyl-7-hydroxydodecane-6-one oxime------------------	GNM.
	ARC.
	ONX.
$\mathrm{N}, \mathrm{N}$-Dimethyl(hydrogenated tallow alkyl) ami ne oxide	ARC.
(Hydrogenated tallow alkyl) amine, ethoxylated	CIB.
N -(2-Hydroxyethyl)-N, $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tris (2-hydroxypropyl)ethylenediamine.	NLC.
1,1',1' ', '''-[2-hydroxypropylimi nobis)ethylene-nitrilo]tetra-2-propanol, tristearate ester.	DUP.
	APD, CIB, DA, GAF, RH.
(Mixed alkyl) poly (oxyethylene) ami ne-	GAF.
Mixed substituted oximes-..	GNM.
(9-Octadecenyl) amine, ethoxylated-----	ARC.

TABLE 2, --Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Cationic Surface-Active Agents--Continued	
*Amines, not containing oxygen (and salts thereof): *Ami ne salts:	
	ARC, ASH.
Hexamethy lenediami ne-p-tol uenes ul fonate	$x$.
(Hydrogenated tallow alkyl)amine ace	ARC, ASH.
(9-0ctadecenyl) amine acetate (9-0ctadecenyl) amine oleate-	ARC, GNM.
(9-0ctadecenyl)amine oleate	ARC.
N - (9-0ctadecenyl)trimethylenediamine tallat	ARC.
Octadecylamine acetate--	ACY, ARC.
Octylamine acetate-	ARC.
(Soybean oil alkyl)amine acetate	ARC, ENO.
(Tallow alkyl)ami ne acetate-	ARC, ASH, FOR.
N -(Tallow alkyl)trimethylenediami ne acetate-	ARC, FOR.
N - (Tallow alkyl)trimethylenediami ne naphthenate	APD, FOR.
N -(Tallow alkyl)trimethylenediami ne oleate-	ARC, FOR.
N -(Tallow-alkyl)trimethylenediamine talla	ARC.
All other-------	ASII.
*Diamines and polyamines:	
	ARC, ENO, FOR, GNM.
*Imidazoline derivatives:	
1- (2-Ami noethyl)-2-heptadecy 1-2-i midazoline----------	HDG, UVC.
1-(2-Ami noe thy 1)-2-(mixed alkyl)-2-imidazoli ne-------	RTF, UVC.
1-[3-(2-Ami noe thyl) naph th-1-yl]-2-(8-heptadecenyl)-2imidazoline.	NLC.
1-(2-Aminoethyl)-2-nor(tall oil alkyl)-2-imidazoline-	NLC, RTF, UVC.
2-(8-Heptadeceny1)-2-imidazoline	PCS.
2-Hept ade cyl-2-imi dazoline-	SCO.
* N - (9-0ct adeceny 1 ) trimethylenedi ami ne	ARC, FOR, GNM.
	ARC, ENO, FOR, GNM.
*Other diamines and polyami nes:	
N - (Docosyl- and eicosyl)trimethylenediami ne	ENO.
	CCW.
N - (Soybean oil alkyl)trimethylenediamin	ARC, ENO.
N -(Tall oil alkyl)trimethy le nediami ne-	ARC.
N -(Tallow alkyl)dipropylenetriami ne--	GNM.
*Primary monoamines:	
*(Coconut oil alkyl)anine-	ARC, ASH, ENO, FOR, GNM.
(Cottonseed oil alkyl)ami n	FOR.
Docosyl- and eicosylamine	ENO.
Dodecylami ne--	ARC, ASH, ENO, FOR, GNM.
*Hexadecylami ne-	ARC, ASH, ENO, FOR.
* (Hydrogenated tallow alkyl)ami	ARC, ASH, ENO, FOR, GNM.
(Mixed alkyl)amine---	ARC.
(Mixed tert-alkyl)amin	RH.
*9-0 ct adeceny lami ne-	ARC, ENO, FOR, GNM.
*Octadecylami ne.	ARC, ASH, ENO, FOR, GNM.
Octylami ne-	ARC.
tert-0ctyl ami ne---	RH.
(Soybean oil alkyl)amin	ARC, ENO.
*(Tall oil alkyl)amine-	ARC, FOR, GNM.
*(Tallow alkyl)ami ne-------------	ARC, ASH, ENO, FOR, GNM.
*Secondary and tertiary monoamines:	
Bis (coconut oil alkyl)amine-	ARC.
Bis (hydrogenated tallow alkyl)ami ne-	FOR.
Bis (soybean oil alkyl)amine-------	ARC.
* $\mathrm{N}, \mathrm{N}$ - Dimethyl (coconut oil alkyl)amine	ARC, BRD, PG.
$\mathrm{N}, \mathrm{N}$-Dimethyl dodecylami ne--	BRD.
	BRD.
$\mathrm{N}, \mathrm{N}$-Dimethyl(hydrogenated tallow alkyl)amine	ARC, ENO.
	BRD.
	ARC, ENO.
N,N-Dime thyltet radecylami ne------	BRD, ENO.
N -Methylbis (coconut oil alkyl)ami ne-	ENO, FOR, GNM.
N -Methylbis (hydrogenated tallow alkyl) amine---..---...-	ARC, ENO, FOR, GNM.
N -Methylbis(mixed al kyl)amine-	PG.
N -Methyldioct adecylamine-	FOR.
Tri dodecylami ne-	GMM.
	GNM.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemi cal	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Cationic Surface-Active Agents--Continued	
*0xygen-containing quaternary ammonium salts (except those having amide linkages):   *Acyclic:	
(2-Ani noethy 1)ethyl(hydrogenated tallow alky1)(2-hydroxyethy1)ammonium ethyl sulfate.	LUR, VAC.
Bis(2-hydroxyethyl, ethoxylated)ethylammonium ethyl sulfate.	APD.
Bis (2-hydroxyethyl, ethoxylated)methyl (9-octadeceny1)ammoniun chloride.	ARC.
Bis(2-hydroxyethy1, ethoxy lated)me thy loct adecy 1 anmonium chloride.	ARC.
(Coconut oil alkyl)amine, ethoxylated and quaternarized.	ARC.
(Coconut oi 1 alkyl)bis(2-hydroxyethyl, ethoxylated)me thylammonium chloride.	ARC, VAC.
(Coconut oil alky1)(2-hydroxyethyl, ethoxylated)methyl(mixed alky1)ammonium methyl sulfate.	ARC.
N -(2-Hydroxyethy 1 ) $-\mathrm{N}_{,} \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tris (2-hydroxypropy 1) ethy 1enediamine, distearate methyl sulfate.	DUP.
2-Hydroxytrimethylenebis [(coconut oil alkyl)dimethylanmonium chloride].	ClB.
(9-Octadecenyl) amine, ethoxylated and quaternarized----	ARC.
Octadecylanine, propoxy lated and quaternarized------	TCC.
(Tallow alkyl)amine, propoxylated and quaternarized---(Tallow alky1)diamine, ethoxylated and quaternarized---	ARC.
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\mathbf{+}}, \mathrm{N}^{+}$-Tetrakis (2-hydroxypropyl)ethylenediamine dioleate methyl sulfate.	DUP.
*Benzenoid:	
Benzyl(coconut oil alky1)bis (2-hydroxyethy 1)ammonium chloride.	C1B, NLC.
Benzyl(coconut oi lalkyl, ethoxylated)dimethylammonium chloride.	GAF.
1-Benzyl-2-heptadecy1-1-(2-hydroxy ethyl)-2-imidazoliniun chloride.	UVC.
```1-Benzy1-1-(2-hydroxyethy1)-2-nor(tal! oil alkyl)-2- imidazolinium chloride.```	MOA, NLC, UVC.
(Ethoxybenzy1)dimethyl(octylphenoxy) ammonium chloride--	RH.
(Ethoxybenzy1)dime thyl (octyltoly loxy)ammonium chloride*CycIic nonbenzenoid:	RH.
1-Ethy1-2-(8-heptadeceny1)-1-(2-hydroxyethy 1)-2-imidazolinium ethyl sulfate.	APD, MOA, UVC.
N -Ethy 1-N-hexadecylmorpholinium ethyl sulfate--......-	APD, BRD.
N -Ethyl-N-(soybean oil alky1)morpholinium ethyl sulfate.	APD.
2(8-Hept ade ceny 1)-1,1-bis (2-hy droxyethy 1)-2-imi dazolinium chloride.	GGY.
*Quaternary ammonium salts having amide linkages:	
2-Heptadecy 1-1-me thy 1-1- (2-s tearani doe thy1)-2-imi dazolinium methyl sulfate.	CUL.
(2-Hydroxy ethy1)dime thy l(3-stearani dop ropy 1) ammonium dihydrogen phosphate.	ACY.
(2-Hydroxyethy1) dimethyl(3-stearami dop ropyl) ammoni um nitrate.	ACY.
(2-Hydroxyethyl) dimethyl(3-tallow acyl ami dop ropyl)ammoniun chloride.	CUL.
(3-Lauramidopropy1)trimethylammonium methyl sulfate----.	ACY.
Trimethyl (3-oleami dopropyl)ammonium methyl sulfate------	CIB.
All other	DUP, NLC.

TABLE 2. --Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Cationic Surface-Active Agents--Continued	
*Quaternary ammonium salts, not containing oxygen:*Acyclic:	
* Bis (coconut oil alkyl)dimethylannoniun chloride	ARC, ENO, FOR, GNM, VAC.
Bis (coconut oil alkyl)dimethylammonium nitrate	
*Bis (hydrogenated tallow alky1)dimethylanmonium ch loride.	ARC, ASH, ENO, FOR, GNM, VAC.
*(Coconut oil alkyl)trimethylammonium chloride---------(Cottonseed oil alkyl)trimethylamnonium chloride-	ARC, FOR, GNM. FOR.
Didodecyldimethy lammonium bromide------------------------1-	ONX.
Dimethylbis (mixed alkyl)- and Trimethyl(mixed alky1)ammonium chloride.	GNM.
Dimethylbis (9-octadecenyl)ammonium chloride----------	GNM.
Dimethylbis (soybean oil alkyl)ammonium chloride------	ARC.
Dimethyldioctadecylamonium chloride-	FOR, ONX, PG.
Dimethyldioctadecylammonium methyl sulfate	ONX.
Dodecyltrimethy lanmonium bromide------------------------	DUP.
Dodecyltrimethylanmonium chloride---------------------------	ARC, FOR, GVM.
Ethyldimethyl (mixed alkyl)ammonium ethyl sulfate------	JOR, TCC.
Ethyldimethyl (9-octadecenyl)ammonium bromide----------	ONX.
Ethylhexadecyldimethylammonium bromide-----------------	FIN.
*Hexadecyl trime thy lammonium salts:	
Hexadecyltrimethylammonium bromide-	DUP, FIN, ICI.
Hexadecyltrime thylammonium chloride	ARC, BRD.
Hexadecyltrimethylammonium p-toluenesulfonate-------	FIN.
(Hydrogenated tallow alkyl)trimethylammonium chloride--	ARC, FOR.
Methyltrioctylammonium chloride--------------------------	GNM.
Methyltris (mixed alkyl)ammonium chloride--------------	ASH.
$N, N, N^{\prime}, N^{\prime}, N^{\prime}-P e n t a m e t h y l-N-(t a l l o w ~ a l k y l) t r i m e t h y l e n e-~$ bis[armonium chloride].	ARC, GNM, ORO.
Triethyloctadecy lammonium ethyl sulfate-----------------	AKS.
Trime thy loct adecylanmonium chloride--------------------	ARC.
Trimethyl (soybean oil alkyl)anmonium chloride---------	ARC, VAC.
Trimethyl (tallow alkyl)ammonium chloride---------------	ARC, FOR, GNM.
Trimethyltetradecylammonium bromi de---------------------	FIN.
All other---	STC, VAC.
* Benzenoid:	
*Benzyl (coconut oil alkyl)dimethylammonium chloride-----	CRT, DEP, LUR, RTF, TXT.
* Benzyldimethyl (mixed alkyl)ammonium chloride-----------	AAC, BRD, CUL, FIN, ONX, PG, RH, TXT, VAC.
*Benzyl dimethyloctadecylammonium chloride---------------	CUL, FIN, ONX, TNI, WSN.
Benzyldimethyltetradecylamnonium chlorid	SNW.
Benzyldodecyldimethylammonium chloride-	FIN, ONX, SDH.
Benzylhexadecyldimethylanmonium chloride---------------	ONX, RH.
Benzyl (hydrogenated tallow alkyl)dimethylamonium chloride.	ENO.
Benzyl(mixed alkyl)pyridinium chloride------------	RFT.
1-Benzylpyridinium chlori de--------------------------------	DEP.
Benzyltrimethylammoniun chloride-----------------------	BRD, CUL, TCC, VAC.
* (3,4 -Dichlo robenzyl) dodecyldimethylammonium chloride---	CUL, ONX, VAC.
(Dodecylbenzy 1) dimethy loct adecylammonium chloride-----	ARC.
(Dodecy lbenzyl)tri ethylammonium chloride--------------	PC.
* (Dodecylbenzyl) trimethylammonium chlori de---.------..--	CUL, NLC, VAC, WTC.
2-Dodecylisoquinolinium bromide--------------------------	CUL, ONX.
(Dodecylmethylbenzyl)trimethylannoniun chloride	RH.
1-Dodecylpyridinium chloride----------------	BRD, HK.
(Ethylbenzyl)dimethyl (mi xed alkyl)ammoniun chloride----	ONX.
Nonionic Surface-Active Agents	
*Carboxylic acid ami des:	
*Carboxylic acid - alkanolamine condensates: *Diethanolamine condensates (amine/acid ratio $=2 / 1$):	
*Capric acid--- Castor oil acids	GGY, PCS, SCP, UVC. BAC, PCS, VAL.
	AKS, AML, ARD, BSW, CLI, CTL, DA, DEP, DSO, EFH, GAF, HLI, HRT, JOR, KNP, LJR, MCP, MOA, ONX, PC, PCS, PNX, PUR, RCD, RTF, SBC, SCP, SEY, SOP, SOS, STP, SWT, TXC, UNN, UVC, VAC, VND, WTC.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

| Chemical | |
| :---: | :--- | :--- |
| | |

TABLE 2。--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
Nonionic Sunface-Active Agents--Continued	
```*Carboxylic acid esters--Continued *Glycerol esters--Continued *Glycerol esters of mixed acids--Continued```	
Glycerol monoester of cottonseed oil acids.....-....--	EKT.
Glycerol monoester of hydrogenated cottonseed oil acids.	GLD, LEV.
*Glycerol monoester of hydrogenated soybean oil acids.	DRW, EKT, GLD, PCS.
Glycerol monoester of hydrogenated tallow acids	GLD.
	ARC, EKT, GLD, GLY.
Glycerol monoester of peanut oil acids----------------------	DRW.
	EFH.
Glycerol monoester of unspecified mixed fatty acids--	EKT, LEV.
	ARC, SLM.
Glycerol sesquiester of unspecified mixed fatty acids.	APD.
*Natural fats and oils, ethoxylated:   AAC APD BAC, DA, DRW, EMR, GAE GLY, ICI NLC, PCS,	
	$A A C, A P D, B A C, D A, D R W, E M R, G A F, ~ G L Y, ~ I C I, ~ N L C, ~ P C S$, RTF, TCH, TMH, WYN.
Hydrogenated castor oil ethox	APD, DA, GAF, TCH.
	AAC, APD, CRD, PCS.
Tallow, ethoxylated	DRW.
*Polyethylene glycol esters:	
*Polyethylene glycol esters of chemically defined acids:	
	TCC.
*Polyethylene glycol dilaura	ARC, DA, DEX, DRW, EFH, GLY, HAL, HDG, JOR, PCS, WM,
	ARC, CLD, DA, EFH, GGY, GLY, HAL, HDG, NLC, PCS, SM, UVC, VND.
* Polyethylene glycol distearat	ARC, EFH, GLY, HAL, HDG, PCS, QCP.
	CCA.
*Polyethylene glycol monol aurate-----------------------------	AAC, ARC, CCA, DA, DEX, GAF, GGY, GLY, HAL, HDG, JOR, KNP, MCP, PCS, SYC, TCH, UVC.
*Polyethylene glycol mono-oleat	APD, ARC, CCA, CRT, DA, DEX, DRW, EFH, GAF, GGY, GLY, HAL, HDG, HRT, ICI, ONX, PCS, SM, SWT, SYC, TCH, UVC, VAC, WM, WTC.
	APD, CLD.
Polyethylene glycol monopelargonate--------------------------	PCS.
*Polyethylene glycol monoricinolea	ARC, DA, HAL, UVC.
	$A A C, A K S, ~ A M L, ~ A P D, ~ A R C, ~ C H P, ~ C R T, ~ D A, ~ D E P, ~ D E X, ~ D R W, ~$ EFH, EMR, GAF, GGY, GLY, HAL, HDG, ICI, KNP, ONX, PC, PCS, RH, SEY, TCC, TCH, UVC, VAC, VND, WTC.
	EMR, PCS.
*Polyethylene glycol esters of rosin and tall oil acids:	
Polyethylene glycol diester of tall oil acids--------	EFH, GLY.
Polyethylene glycol monoester of rosin acids-.-------	NLC.
*Polyethylene glycol monoester of tall oil acids------	EFH, GLY, NLC, SOS.
Polyethylene glycol sesquiester of rosin acids.......-	APD, HPC, QCP.
*Polyethylene glycol sesquiester of tall oil acids----	AML, APD, APX, ARC, DA, DRW, MON, OMC, SLM, TCH, UVC, WTC.
*Polyethylene glycol esters of other mixed acids:	
Polyethylene glycol esters of mixed unspecified fatty acids.	EMR, MCP, VAC.
Polyethylene glycol diester of trimerized castor oil acids.	GLY.
Polyethylene glycol monoester of coconut oil acids-.-	EMR, GLY.
Polyethylene glycol monoester of soybean oil acids---	SYC.
Polyethylene glycol monopelargonate-n-------.......----	EMR.
Polyethylene glycol sesquiester of castor oil acids--	ARC, GGY.
*Polyethylene glycol sesquiester of coconut oil acids.	ARL, DA, DRN, ONX, PG, SCP, UVC, VND.
Polyethylene glycol sesquiester of tallow acids.-.-.-	ONX, SOS.
*Polyglycerol esters:	
	DRW.
	VND.
Polyglycerol mono-oleat	HDG, PCS, VND.
	PCS.
*Propanediol esters:	
1,2-Propanediol distearat	ARC, HAL, PCS.
1,3-Propanediol monoester of coconut oil acids--..----	DRW.
1,2-Propanediol monoester of tallow acids	GLD.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968-Continued

## Chemical

## Nonionic Surface-Active Agents--Continued

*Carboxylic acid esters--Continued
*Propanediol esters--Continued




*Other carboxylic acid esters:

Ethoxylated glycerol sesquiester of mixed fatty acids-Ethoxylated methanol ester of coconut oil acids.........



Ethoxylated sorbitol hexaester of tall oil acids--...--





Ethoxylated sorbitol pentaester of tall oil acids--.---
Ethoxylated sorbitol pentalaurate--------------------------1
Ethoxylated sorbitol tetraester of lauric and oleic acids.
Ethoxylated sorbitol tetraester of tall oil acids------






All other-
*Ethers:
*Benzenoid ethers:
AIkylphenol - formaldehyde condensates, alkoxylated: p-tert-Butylphenol - formaldehyde, alkoxylated------(Mixed alkyl)phenol - formaldehyde, alkoxylated--... Nonylphenol - formaldehyde, alkoxylated--.-...........--tert-Octylphenol - formaldehyde, ethoxylated--...--p-tert-Butylphenol, ethoxylated-
Diisobutylphenol, ethoxylated-
Dinonyl-and nonvlphenol, ethox
*Dinonylphenol, ethoxylated-
*Dodecylphenol, ethoxylated-
I so-octylphenol, ethoxylated-
(Mixed alkyl)phenol, ethoxylated-
(Mixed alkyl) phenoxypoly (ethyleneoxy)ethyl chloride----
*Nonylphenol, ethoxylated
Nonylphenol, ethoxylated and propoxylated-
Nony lphenoxypoly (ethyl eneoxy) ethyl iodide-
Phenol, ethoxylated-
Tetradecylphenol, ethoxylated-
Tridecylphenol, ethoxylated-
Xylenol, ethoxylated-
All other--------.
*Linear alcohols, alkoxylated:

## Coconut oil alcohol, ethoxylated-



Decyl and octyl alcohols, ethoxylated and propoxylated.
Decyloxypoly (ethyleneoxy) ethyl chloride-----------------
*Dodecyl al cohol, ethoxylated-
*Hexadecyl al cohol, ethoxylated-
*Mixed Iinear alcohols, ethoxylated-
Mixed linear alcohols, ethoxylated and propoxylated--


Manufacturers' identification codes
(see Appendix, tables 1 and 2)

ARC, IIAL, SBC, WM.
EFH, HAL.
ARC.
APD, ARC, CCW, EKI, GLY, HAL, PCS, PG.
APD.
$A P D$.
JOR.
APD.
$A P D$.
APD.
$A P D, T C H$.
APD.
$A P D$.
APD.
MCP, SNW.
APD.
APD, RTF.
APD.
APD.
APD.
NLC.
HDG.
HDG.
GLY, PCS, VAL.
NLC, RTF.
SUG.
CCW, GLY, STC, TCC, WM.

RTF.
NLC, RTF.
NLC, RTF.
SDiv.
RTF.
GAF, RH.
GAF.
GAF, HDG, PCS, STP, TMHI.
APX, GAF, MON, PCS, TMH, UCC.
DA, OMS .
GAF, PCS.
GAF.
APD, CIB, CLY, DA, DOW, GAF, HOG, JCC, MON, NLC, OMC,
PCS, RH, RTF, STP, TCH, TMH, UCC.
RTF.
GAF.
APD, DA, GAF, JCC, TCH, UCC.
ORO.
PCS.
NLC.
GAF, RH, VPC.

PCS.
GAF, ICI.
GAF.
GAF.
GAF.
AAC, APD, DRW, GAF, HDG, OMC, UCC.
ACS, APD, ASH, CIB, GLY, ICI.
AAC, CO, GAF, HDG, JCC, MON, NLC, RH, RTF, SHC, STP, TCH, UCC.
GAF, JCC, STP, WYN.
$\mathrm{AAC}, \mathrm{APD}, \mathrm{ASII}, \mathrm{CIB}, \mathrm{DA}$, DUP, GAF, GLY, $1 \mathrm{Cl}, \mathrm{TCH}, ~ V A C$, VPC.

TABLE 2.--Surface-active agents: Manufacturers' identification codes, by products, 1968--Continued

Nonionic Surface-Active Agents-- Continued	

Pesticides and related products include fungicides, herbicides, insecticides, rodenticides, plant hormones, seed disinfectants, soil conditioners, soil fumigants and synergists. The data are given in terms of 100 -percent active material; they thus exclude such materials as diluents, emulsifiers, and wetting agents. Statistics on production and sales of pesticides and related products in 1968 are given in table 1 ; table 2 lists these products and identifies the manufacturers.

Production of pesticides and related products in 1968 amounted to 1,192 million pounds--about 13.6 percent more than the 1,050 million pounds reported for 1967. Sales in 1968 were 960 million pounds, valued at $\$ 849$ million, compared with 897 million pounds, valued at \$787 million, in 1967.

The output of pesticides and related products included in the cyclic group amounted to 930 million pounds in 1968 -about 13 percent more than the 823 million pounds produced in 1967. Sales in 1968 were 723 million pounds, valued at $\$ 697$ million, compared with 682 million pounds, valued at $\$ 628$ million, in 1967. The output of DDT amounted to 139 million pounds in 1968--about 35 percent more than in 1967.

Production of acyclic pesticides and related products increased in 1968, amounting to 263 million pounds, compared with the 227 million pounds reported for 1967. Sales in 1968 were 237 million pounds, an increase of about 10 percent as compared with 216 million pounds, in 1967; however, the value of sales decreased to $\$ 152$ million in 1968 , compared with $\$ 159$ million in 1967--a decline of more than 4 percent.

TABLE 1.--Pesticides and related products: U.S. production and sales, 1968
[Listed below are all pesticides and related products for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 2 lists all pesticides and related products for which data on production or sales were reported and identifies the manufacturer of each]

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Product |  |  |  |

TA8LE 1.--Pesticides and related products: U.S. production and sales, 1968--Continued

Product	Production	Sales		
		Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { doztars } \end{aligned}$	$\begin{aligned} & \text { Per } \\ & \text { pound } \end{aligned}$
Total-	262,812	236,970	151,945	\$0.64
Fungicides, total	40,985	40,752	29,191	. 72
Dimethyldithiocarbamic acid, ferric salt (Ferbam)	1,900	1,906	695	. 36
Ethylene bis(dithiocarbamic acid), disodium salt (Nabam)		1,996	899	. 45
Ethylene bis(dithiocarbamic acid), zinc salt (Zineb)-	3,081	3,442	1,419	. 41
	36,004	33,408	26,178	. 78
Herbicides and plant hormones ${ }^{8}$, tot	60,033	46,665	40,056	. 86
Methanearsonic acid, monosodium sal	15,805	14,520	4,347	. 30
	44,228	32,145	35,709	1.11
Insecticides, rodenticides, and soil conditioners and fumigants, total	161,794	149,553	82,698	. 55
1,2-Dibromo-3-chloropropane (DBCP)	7,887			
Methyl bromide (Bromomethane)	20,454	19,967	7,832	. 39
All other acyclic insecticides (including acyclic organophosphorus insecticides), rodenticides, and soil conditioners and fumigants ${ }^{9}$	133,453	129,586	74,866	. 58

[^20]TABLE 2.--Pesticides and related products : Manufacturers' identification codes, by products,1968
[Pesticides and related products for which separate statistics are given in table l are marked below with an asterisk (*); chemicals not so marked do not appear in table l because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Apuendix, tables 1 and 2 . An $x$ signifies that tne manufacturer did not consent to his identification with the designated product.]

Chemical
Manufacturers' identification codes
(see Appendix, tables 1 and 2)

## PESTICIDES AND RELATED PRODUCTS, CYCLIC

*Fungicides :
2,6-Bis (dimethylami nomethyl) cyclohexanone---------- MRK
5-Chloro-2-Benzothiazolethiol, laurylpyridinium salt.
2,4-Dichloro-6-(o-chloroanilino)-s-triazine---.....--
1,4-Dichloro-2,5-dimethoxybenzene----------------------

*3,5-Dime thyl-1,3,5,2H-tetrahydrothiadiazine-2thione (DMTT).
Diphenylammonium propionate-----------------------------
3, 3' -Ethy lenebis (tetrahydro-4,6-dimethyl-2H-1,3,5-thiadiazine-2-thione).
2-Heptadecyl-2-imidazoline (Glyodin)--.--------------
2-Mercaptobenzothiazole, monoethanolamine salt-----
UCC.
*Mercury fungicides:
N - (Ethy lmercuri)-p-toluene sulfonanilide----------

Mercurial turf fungicides----------------------------
Methylmercury quinolinolate--------------------------
2-(Phenylmercuriamino) ethyl acetate----------------
*Phenylmercuric acetate (PMA)-------------------------

Phenylmercuric borate
P.

DUP.
MAL.
MRK.
CLY.
BKM, CLY, MRK, TRO, WRC.
MAL, TRO.
WRC.
Phenylmercuric dimethyldithiocarbamate------------
Phenylmercuric hydroxide-----------------------------
WRC.
MON, MRK.
Phenylmercuric lactate--------------------------------

*Phenylmercuric oleate----~----------------------------

N-Pheny lmercuri formamide-----------------------------
Tris (2-hydroxyethy1) (phenylmercuri) ammonium
lactate.
2-(1-Methyl-n-heptyl)-4,6-dinitrophenyl crotonate (Dinocap).
3-(2-Methylpiperidino) propy 1-3,4-dichlorobenzoate (Piperalin).
*Naphthenic acid, copper salt---------------------------


Pentachlorophenol, sodium salt--n-n--------------------
*8-Quinolinol (8-Hydroxyquinoline), copper salt-n-.

2,3,4,6-Tetrachlorophenol
N -Trichlorome thyl thio-4-cyclohexene-1,2-dicarboximide (Captan).
N-Trichloromethylthiophthalimide (Folpet)-----------
*2,4,5-Trichlorophenol acid and salts:
2,4,5-Trich lorophenol-
2,4,5-Trichlorophenol, ethanolamine salt-------..-2,4,5-Trichlorophenol, sodium salt----------------
2,4,6-Trichlorophenol-
Other cyclic fungicides-
*Herbicides and plant hormones:
3-Amino-2,5-dichlorobenzoic acid, methyl ester---.-
4-Amino-3,5,6-trichloropicolinic acid (Picloram)---
5-Bromo-3-sec-butyl-6-methyluracil (Bromacil)----.
3-tert-Butyl-5-chloro-6-methyluracil-----------------

MRK.
CLY, HNX, MRK, TRO, WRC.
MRK.
VIN.
CLY.
RH.

LIL.
CCA, FER, HNX, MCI, SHP, TRO, WTC.
OMC, OTC.
BXT, DOW, FRO, MON, RCI, SFD.
DOW, MON, RCI.
F1S, HNX, MON, MRK.
USR.
DOW.
CHO.
CHO .
DA, DOW, HK, HPC.
GAF.
DOW.
DOW, RBC.
BKM, ORO, VNC.
GAF.
DOW.
DUP.
DUP.

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

## PESTICIDES AND RELATED PRODUCTS, CYCLIC--Continued

*Herbicides and plant hormones--Continued
N -Butyl-N-ethyl- $\alpha, \alpha, \alpha$-trifluoro-2,6-dinitro-ptoluidine (Benefin).
2-Butynyl-4-ch loro-m-chlorocarbanilate (Barban)----
2-Chloro-4,6-bis (ethylamino)-s-triazine (Simazine)-
2-Chloro-4,6-bis (isopropylamino)-s-triazine (Propazine).
2-Chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine).

$\mathrm{N}^{\prime}-(4-C h l o r o p h e n o x y)$ phenyl $\mathrm{N}, \mathrm{N}$-dimethy Iurea (Chloroxuron).
3-(p-Chloropheny 1)-1,1-dime thylurea (Monuron)------
3-(p-Chlorophenyl)-1,1-dime thylurea trichloroacetate.

2,6-Di-tert-butyl-p-tolylme thylcarb amat e-----------
2,S-Dichloro-3-aminobenzoic acid, ammonium salt----
3,6-Dichloro-o-anisic acid (Dicamba)----------------
2,4-Dichlorobenzyltributylphosphonium chloride--..-
2,S-Dichloro-3-nitrobenzoic acid--------------------
3-(3,4-Dichloropheny1)-1,1-dimethylurea (Diuron)---
3-(3,4-Dichloropheny 1)-1-methoxy-1-methylurea (Linuron).
2,4-Dichlorophenyl-4-nitrophenyl ether--------------
3', 4'-Dichloropropionanilide (Propanil)-------------
1,2-Dihydropyridazine-3,6-dione (Maleic hydrazide) (MH).
N -(beta-0,0-Diisopropyl-dithiophosphorylethy1)benzene sulfonamide (Bensulide).
$\mathrm{N}, \mathrm{N}$-Dimethyl-2,2-diphenylacetamide (Diphenamid)----
1,1-Dimethyl-3-phenylurea (Fenuron)------------------
1,1-Dimethyl-3-phenylurea trichloroacetate--.---.
Dimethyl-tetrach lorotereph thalate---------------------
Dinitrobutylphenol (DNBP)

Dinitrobutyl phenol, triethanolamine salt----------


Diphenylacetonitrile (Diphenatrile)-----------------
2-Ethylamino-4-isopropylamino-6-me thylmercap to-striazine (Ametryne).
S-Ethyl cyclohexyle thylthiocarbamate-----------------
S-Ethyl hexahydro-1H-azepine-1-carbothioate (Molinate).
Gibberellic acid-
3-(Hexahydro-4,7-me thanoindan-S-y1)-1,1-dimethylurea (Norea).
3-1ndolebutyric acid-
I sopropy 1 N - (3-chlorophenyl) carbamate (CIPC)
1sopropy 1 N -pheny 1 carbamate (IPC)--------------------
Methyl 2-chloro-9-hydroxyfluorene-9-carboxylate--.
1-(2-Methylcyclohexyl)-3-phenylurea (Siduron)-.....
2-Methylmercapto-4,6-bis (isopropylamino)-striazine (Prometryne).
4-(Methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline-

Manufacturers' identification codes
(see Appendix, tables 1 and 2)

TABLE 2.--Pesticides and retated products: Manufacturers' identification codes, by prouncis, 1yoó--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
PESTICIDES AND RELATED PRODUCTS, CYCLIC--Continued	
*Herbicides and plant hormones--Continued	
1-Naphthaleneacetic acid and derivatives:	
1-Naphthaleneacetamide-	AMC.
1-Naph thaleneacetic acid (NAA	AMC, THM.
$1-$ Naphthaleneacetic acid, methyl este	AMC.
1-Naphthaleneacetic acid, sodium salt--	AMC, BKL.
$\mathrm{N}-1$-Naph thylphthalamic acid (NPA)-------	USR.
7-0xabicyclo[2.2.1]heptane-2,3-dicarboxylic acid, disodium salt (Endothall).	PAS.
Phenoxyacetic acid derivatives:	
4-Chloro-2-methylphenoxyacetic acid (MCPA)	CLY, RDA, RIV.
4-Chloro-2-methylphenoxyacetic acid, potassium salt.	GTH.
*2,4-Dichlorophenoxyacetic acid (2,4-D)----------	DA, DOW, HPC, MON, RDA.
*2,4-Dichlorophenoxyacetic acid esters and salts:	
2,4-Dichlorophenoxyacetic acid, 2-butoxyethyl ester.	AMC.
2,4-Dichlorophenoxyacetic acid, butoxypolypropyleneglycol ester.	DOW.
*2,4-Dichlorophenoxyacetic acid, n-butyl ester.	AMC, DA, DOW, HPC, MON, PBI, RDA, RIV.
2,4-Dichlorophenoxyacetic acid, sec-butyl ester	DOW, MON, RDA.
*2,4-Dich lorophenoxyacetic acid, dimethylamine salt.	ALC, AMC, DA, DOW, HPC, PBI, RDA, RIV, TMH.
2,4-Dichlorophenoxyacetic acid, ethanolamine and isopropanolamine salt.	DOW.
2,4-Dichlorophenoxyacetic acid, ethyl ester---	AMC, DOW.
2,4-Dichlorophenoxyacetic acid, 2-ethylhexyl ester.	DA, HPC.
*2,4-Dichlorophenoxyacetic acid, iso-octyl ester.	DOW, MON, PBI, RDA, RIV.
2,4-Dichlorophenoxyacetic acid, isopropyl ester.	AMC, DOW, HPC, MON.
2,4-Dichlorophenoxyacetic acid, lithium salt--	GTH, RIV.
*2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)-----	DA, DOW, HFT, HPC, MON, THM.
*2,4,5-Trichlorophenoxyacetic acid esters and salts:	
2,4,5-Trichlorophenoxyacetic acid, amyl esters	HPC.
2,4,5-Trichlorophenoxyacetic acid, 2-butoxyethyl ester.	AMC.
2,4,5-Trichlorophenoxyyacetic acid, butoxypolypropyleneglycol ester.	DOW.
*2,4,5-Trichlorophenoxyacetic acid, n-butyl ester.	DA, DOW, HPC, MON, PBI, RIV.
2,4,5-Trichlorophenoxyacetic acid, 2-ethylhexyl ester.	DA, HPC.
*2,4,5-Trichlorophenoxyacetic acid, iso-octyl ester.	DA, DOW, MON, PBI, RIV, TMH.
2,4,5-Trichlorophenoxyacetic acid, triethylamine salt.	DOW, HPC, RIV.
Polychloro-tetrahydro-methanoindene (Polychlorodi-	VEL.

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

PESTICIDES AND RELATED PRODUCTS, CYCLIC--Continued
*Herbicides and plant hormones--Continued
2-(2,4,5-Trichlorophenoxy)propionic acid (Silvex)
2-(2,4,5-Trichlorophenoxy)propionic acid esters and salts:
2-( $2,4,5$-Trichlorophenoxy)propionic acid, 2-ethyl-hexyl ester.
2-(2,4,5-Trichlorophenoxy)propionic acid, isooctyl ester.
2-(2,4,5-Trichlorophenoxy)propionic acid, sodium salt.
$\alpha, \alpha, \alpha$-Trifluoro-2,6-dinitro-N,N-dipropyl-ptoluidine (Trifluralin).
3-(m-Trifluoromethylphenyl)-1,1-dimethylurea (Flumeturon).
Tris-(2,4-dichlorophenoxyethyl)phosphite (2,4DEP).
Insect attractants and repellants:
tert-Butyl 4(or S)-chloro-2-methylcyclohexanecarboxylate (Trimedlure).
N,N-Diethyltoluami de (DEET)---------------------------

*Insecticides:
3-sec-Amy lphenyl-N-me thy l carb amat e------------------

2-sec-Butyl-4,6-dinitropheny1-3,3-dimethylacrylate (Binapacry1).
2-(p-tert-Butylphenoxy)-cyclohexyl-2-propynyl sulfite.
o-sec-Butylphenyl N -methylcarbamate $\qquad$
Chlorinated insecticides:
*Aldrin-toxaphene group:
Heptachloro-tetrahydro-endo-methanoindene (Heptachlor).
Hexach loro-epoxy-octahydro-endo-endo-dimethanonaph thalene (Endrin).
Hexachloro-epoxy-octahydro-endo-exo-dimethanonaphthalene (Dieldrin).
Hexach loro-h exahydro-endo-exo-dime thanonaphthalene (Aldrin). Octachloro-hexahydro-methanoindene (Chlordan)-
 Toxaphene (Chlorinated camphene)
2,2-Bis (p-chlorophenyl)-1,1-dichloroethane (DDD) (TDE).
1,1-Bis (p-chlorophenyl)-2-nitrobutane-----------
1,1-Bis (p-chlorophenyl)-2-nitropropane--.....-...-

* $\alpha$-Bis ( $p$-chloropheny 1 ) $\beta, \beta, \beta$-trichloroethane (DDT)

2-(p-tert-Butylphenoxy)isopropyl-2'-chloroethyl sulfite.

p-Chlorophenyl p-chlorobenzenesulfonate (Ovex)-
o-Ch lorophenyl-N-methylcarbamate-----------------
p-Chlorophenyl 2,4,5-trichlorophenyl sulfone (Tetradifon).
6-Ch loro-3, 4-xy ly lmethyl carbamate----------------
Decachlorooctahydro-1,3,4-metheno-2H-cyclobuta [cd] pentalen-2-one.

Manufacturers' identification codes (see Appendix, tables 1 and 2)

DOW, HPC.

HPC.
RIV.
RIV.
LIL.
CBA.
USR.

UOP.
CHF, HPC, PFZ.
MGK.
$x$.
HK.
FMN.
USR.
OTC.

VEL.
SHC, VEL.
SHC.
SHC.
VEL.
HN .
HPC.
$\mathrm{ACN}, \mathrm{RH}$.
COM.
COM.
ACN, DA, LEB, MTO, OMC.
USR.
GGY.
DOW.
OTC.
FMN, FMP.
UPJ.
ACN.

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

Manufacturers' identification codes (see Appendix, tables 1 and 2)

## PESTICIDES AND RELATED PRODUCTS, CYCLIC--Continued

*Insecticides--Continued
Chlorinated insecticides--Continued
1,1-Dich loro-2,2-bis (p-ethylphenyl) ethane-------
4,4'-Dich loro- $\alpha$-trichlorome thylbenzhydrol (Dicofol).
2,6-Dime thyl-3,5-dich loro-4-pyridinol-----------
Dodecach lorooct ahydro-1,3,4-metheno-2H-cyclobuta[cd]pentalene (Mirex).
Hexachlorocyclohexane (Benzene hexachloride) (BHC).
Hexachlorocyclohexane, $100 \% \gamma$-isomer (Lindane)--
Hexachloro-hexahydro-methano-benzodioxathiepin-3-oxide (Endosulfan).
1,1,1-Trichloro-2,2-bis (p-methoxypheny1) ethane (Methoxychlor).
Isobornyl thiocyanoacetate------------------------------
0-Isopropylphenyl N -methylcarbamate-------------------
1-Naphthyl N -methylcarbamate (Carbaryl)------------
*Organophosphorus insecticides:
4-tert-Butyl-2-chlorophenylmethyl methylphosphoramidite.
S-[[(p-Chlorophenyl) thio]methyl] 0,0-diethyl phosphorodithioate (Carbophenothion).
2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate.
0,0-Diethyl 0-3-chloro-4-methyl-1-oxo-2H-1-benzopyran-7-yl-phosphorothioate (Coumaphos).
Diethyl-1-(2,4-dichloropheny1)-2-chlorovinyl phosphate.
0,0-Diethyl-1-(2,5-dichloropheny1)-0-2-chlorovinyl phosphate.
0,0-Diethyl 0-(2-isopropy1-4-methyl-6-pyrimidiny1) phosphorothioate (Diazinon).
0,0-Diethyl 0-p-(methylsulfinyl)phenyl phosphorothioate.
*0,0-Diethyl 0-p-nitrophenyl phosphorothioate (Parathion).
0,0 -Diethyl 0-3,5,6-trichloro-2 pyridyl phosphorothiate.
0,0 -Dimethyl 0 -[4-(methylthio)-m-tolyl] phosphorothioate (Fenthion).
*0,0-Dimethyl 0-p-nitrophenyl phosphorothioate (Methyl parathion).
0,0-Dimethyl S-[4-oxo-1,2,3-benzotriazin-3(4H)ylmethyl] phosphorodithioate.
0,0 -Dimethyl S-phthalimidomethyl phosphorodithioate.
Dimethyl 2,4,5-trichlorophenyl phosphorothionate (Ronne1).
2,3-p-Dioxane S,S-bis( 0,0 -diethylphosphorodithioate) (Dioxathion).
$\alpha$-Methylbenzyl 3-(dimethoxyphosphinyloxy)-ciscrotonate.
$0,0,0^{\prime}, 0^{\prime}$-Tetramethyl $0,0^{\prime}$-thiodi-p-phenylene phosphorodithioate.

RH.
RH.
DOW.
ACN.
DA, HK.
HK.
HK.
CHF, DUP, HFT.

CIS, HPC.
OTC.
UCC.
DOW.
SF.
SHC.

CHG.
SHC.
SHC.

GGY.
CHG .

AMP, MON, SF, SHC.
DOW.
CHG.
AMP, MON, SF, SHC, VEL.
CHG.
SF.
DOW .
HPC.
SHC.
ACY .

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

Manufacturers' identification codes (see Appendix, tables 1 and 2)

PESTICIDES AND RELATED PRODUCTS, CYCLIC--Continued
*Insecticides--Continued
N-(Phenyl-2-nitropropyl)piperidine--------------------


Lampricide: 3-Trifluoromethyl-4-nitrophenol-------Nematocides:

0,0-Diethyl 0-(2,4-dichlorophenyl)phosphorothioate.
0,0-Diethyl 0-2-pyrazinyl phosphorothioate (Thionazin).
*Rodenticides:
*3-( $\alpha$-Acetonylbenzyl)-4-hydroxycoumarin (Warfarin)-2-Diphenylacetyl-1,3-indandione (Diphacinone)-----2-Diphenylacetyl-1,3-indandione, sodium salt--....-
3-(1-Furyl-3-acetylethyl)-4-hydroxycoumarin (Coumafuryl).
2-Pivaloyl-1,3-indandione (Pindone)
Synergists and adjuvants:
$\alpha-[2-(2-n-$ Butoxyethoxy $)$-e thoxy]-4,5-me thy lene-dioxy-2-propyltoluene (Piperonyl butoxide).
N -(2-Ethy lhexyl)bicyclo(2.2.1)-5-heptene-2,3dicarboximide.
Piperonal bis[2-(2-butoxyethoxy)ethyl]acetal------

PESTICIDES AND RELATED PRODUCTS, ACYCLIC
*Fungicides:
Bis-1,4-bromoacetoxy-2-butene-------------------------



Disodium cyanodithioimidocarbonate-------------------
Dithiocarbamic acid fungicides:
*Dimethyldithiocarbamic acid, ferric salt (Ferbam).
Dimethyldithiocarbamic acid, manganese salt-----
Ethylene bis(dithiocarbamic acid), diamonium salt.
*Ethylene bis(dithiocarbamic acid), disodium salt (Nabam).
Ethylene bis(dithiocarbamic acid), manganese salt (Maneb).
*Ethylene bis(dithiocarbamic acid), zinc salt (Zineb).
Polyethylenethiuram disulfide (PETD)-------------

Mercury fungicides:
Chloromethoxypropylmercuric acetate----.----------

3-Methyl (mercurithio)-1,2-propanediol------...--

MRK.
JTC.
ORO.
MEE.
SM.
ACY.

ABB, CIS, MOT, PEN.
NES.
NES.
AMC.
MOT , PIC.
FMN, FMP.
MGK.
MGK.

VIN.
MAL.
FMN.
CLY.
BKM.
DUP, FMN, VNC, WRC.
FMN.
CIS, RBC.
CHF, CIS, DUP, FMN, RH.
DUP, RH.
DUP, FMN, RH, WOD.
FMN.
ACY.
TRO.
CHF .
DUP.

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

## Chemical

> Manufacturers' identification codes
> (see Appendix, tables 1 and 2 )

## PESTICIDES AND RELATED PRODUCTS, ACYCLIC--Continued

*Fungi cides--Continued Mercury fungicides--Continued

Methylmercuric hydroxide----------------------------

2-Propene-1,1-diol diacetate

*Herbicides and plant hormones:
Cacodylic acid
2-Chloroallyl diethyldithiocarbamate (CDEC)-------
2-Chloro-N,N-diallylacetamide (CDAA)------..................
2,3-Dichloroallyl diisopropylthiolcarbamate (Diallate).
2,2-Dichloropropionic acid, sodium salt (Dalapon)-

S-Ethyl-N,N-diisobutylthiocarbamate-----------------
S-Ethyl di-N, N-propylthiocarbamate (EPTC)--------.

Methanearsonic acid, disodium salt (DSMA)---------
Methanearsonic acid, dodecyl- and octylammonium salts.
*Methanearsonic acid, monosodium salt (MSMA)-------
S-Propyl butylethylthiocarbamate (Pebulate)-------
S-Propyl dipropylthiocarbamate (Vernolate)---...--
S,S,S-Tributyl phosphorotrithioate------------------
Tributyl phosphorotrithioate---------------------------
Trichloroacetic acid, sodium salt (TCA)-----------
S-2,3,3-Trichloroallyl N,N-diisopropylthiolcarbamate (Tri-allate).
*Insecticides:
Butoxy polypropylene glycol (fly repellent)--...--

Organophosphorus insecticides:
S-[1,2-Bis (e thoxy carbonyl) ethyl] 0,0-dime thyl phosphorodithioate (Malathion).
2-Carbomethoxy-1-propen-2yl dimethyl phosphate--
1,2-Dibromo-2,2-dichloroethyl dimethyl phosphate (Naled).
0,0-Diethyl S-2-(ethylthio)ethyl phosphorodithioate (Disulfoton).
0,0-Diethyl 0-2-(ethylthio)ethyl phosphorothioate (Demeton 0 ).
0,0-Diethyl S-2-(ethylthio)ethyl phosphorothioate (Demeton S).
0,0 -Diethyl S-(ethylthio)methyl phosphorodithioate (Phorate).
3-(Dimethoxyphosphinyloxy) - $\mathrm{N}, \mathrm{N}$-dimethyl-ciscrotonamide.
0,0-Dimethyl-0-2,2-dichlorovinyl phosphate (DDVP).
0,0-Dime thyl S-(N-methylcarbamoylmethyl) phosphorodithioate (Dimethoate).

MRT.
WRC.
SHC.
BKM.
ASL, VIN.
MON.
MON.
MON.
DOW.
USR.
SF .
SF.
RBC.
ASL, CLY, DA.
CLY, VIN.
ASL, DA, VIN.
SF.
SF.
CHG.
SM.
DOW.
MON.

UCC.
COM.
ACY, CIS.
SHC.
SHC.
CHG .
CHG.
CHG .
ACY, MON.
SHC.
SHC.
ACY.

TABLE 2.--Pesticides and related products: Manufacturers' identification codes, by products, 1968--Continued

PESTICIDES AND RELATED PRODUCTS, ACYCLIC--Continued

```
*Insecticides--Continued
```

    *Organophosphorus insecticides--Continued
    Dimethyl phosphate of 3 -hydroxy-N-methyl-ciscrotonamide.
S-[2-(Ethylsulfiny1)ethyl] 0,0-dimethyl phosphorodithioate (Oxydemetonmethyl).
$0,0,0^{\prime}, 0^{\prime}$-Tetrae thyl $\mathrm{S}, \mathrm{S}^{\prime}$-methylene bisphosphorodithioate (Ethion).
Tetraethyl pyrophosphate (TEPP)
Tetra-n-propyl dithiopyrophosphate---------------

2-Thiocyanoethyl dodecanoate-----------------------------
Nematocides:
0-Ethyl S, S-dipropyl phosphorodithioate----------
2-Methy1-2-(methylthio)propionaldehyde 0-(methylcarbamoyl)oxime.

*Soil conditioners: Polyacrylonitrile, hydrolyzed, sodium salt.
*Soil fumigants:

*1,2-Dibromo-3-chloropropane (DBCP)------------------

1,3-Dich loropropene, 1,2-dich loropropane---------
*Methyl bromide (Bromomethane)------------------------
N -Methyldithiocarbamic acid, sodium salt (Metham)Trichloronitromethane (Chloropicrin)---------------

SHC.
CHG.
FMN, FMP.
ALC.
SF.
BFG.
RH.
SM.
UCC.
RBC.
ACY.

LIL.
AMP, BST, DOW, SHC.
DOW.
DOW, SHC.
AMP, DOW, GTL, MCH.
SF.
DOW, IMC.


The term miscellaneous chemicals comprises those synthetic organic products that are not included in the use groups covered by the other preliminary reports in the 1968 series. They include products that are employed in a great variety of uses. The number of chemicals used exclusively for only one purpose is not large. Among the products covered are those used for gasoline and lubricating oil additives, paint driers, photographic chemicals, tanning materials, flotation reagents, refrigerants, textile polymers, sequestering agents, organic fertilizers, antifreeze chemicals, solvents, and acyclic intermediates. Statistics on production and sales of miscellaneous chemicals in 1968 are given in table 1; table 2 lists these products and identifies the manufacturers.

Production of miscellaneous cyclic and acyclic chemicals in 1968 totaled 67.5 billion pounds, or 13 percent more than the output of 59.7 billion pounds reported for 1967. Sales of miscellaneous chemicals in 1968 amounted to 30.4 billion pounds, valued at $\$ 3.9$ billion, compared with 26.0 billion pounds, valued at $\$ 3.5$ billion, in 1967 .

The total output of miscellaneous cyclic chemicals in 1968 was 1.8 billion pounds, or 17 percent more than the output of 1.5 billion pounds reported for 1967. Sales in 1968 totaled 903 million pounds, valued at $\$ 320$ million, compared with 776 million pounds, valued at $\$ 284 \mathrm{mil}-$ lion, in 1967. In 1968 the most important groups of cyclic compounds were the lubricating oil additives, the output of which was 508 million pounds, and synthetic tanning materials, the output of which was 42 million pounds.

Total production of miscellaneous acyclic chemicals in 1968 was 65.7 billion pounds, or 13 percent more than the output of 58.2 billion pounds reported for 1967. Sales in 1968 totaled 29.5 billion pounds, valued at 3.6 billion, compared with 25.2 billion pounds, valued at $\$ 3.2$ billion, in 1967 . The statistics for acyclic chemicals were regrouped in 1966 primarily by chemical function. The order of precedence of these functional groups is generally that used in naming and indexing chemical compounds by Chemical Abstracts, but other important considerations are comparability with statistics for earlier years and the need for groupings that will not reveal the operations of individual producers.

In 1968, the most important groups of acyclic chemicals were the halogenated hydrocarbons, the nitrogenous compounds, monohydric alcohols, and aldehydes and ketones. Production of halogenated hydrocarbons, which are used as solvents, intermediates, refrigerants, and aerosol propellants, totaled 13.8 billion pounds. The most important chemicals in this group were dichloroethane (production of 4.8 billion pounds in 1968 compared with 4.0 billion pounds in 1967) and vinyl chloride ( 3.0 billion pounds compared with 2.4 billion pounds). Output of nitrogenous compounds totaled 11.5 billion pounds. The most important chemical in this group was urea (used principally in fertilizers and as a feed
additive), production of which was 4.9 billion pounds in 1968 compared with 4.2 billion pounds in 1967.

Monohydric alcohols, which are used largely as solvents and intermediates, were the third largest group in 1968, with production of 10.3 billion pounds. The most important items in the group in terms of production were synthetic methanol ( 3.8 billion pounds in 1968 compared with 3.4 billion pounds in 1967), isopropyl alcohol (2.1 billion pounds in 1968, the same as in 1967), and synthetic ethyl alcohol (2.1 billion pounds in 1968, compared with 1.9 billion pounds in 1967). Aldehydes and ketones, which are also used largely as solvents and intermediates, were the next largest group with production of 9.3 billion pounds. The most important items in this group in 1968 were formaldehyde ( 4.3 billion pounds), acetaldehyde ( 1.6 billion pounds), and acetone ( 1.4 billion pounds).

## TABLE 1. --Miscellaneous chemicals: U.S. production and sales, 1968

[Listed below are all miscellaneous chemicals for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported. Table 2 lists all miscellaneous chemicals for which data on production or sales were reported and identifies the manufacturer of each]

| Chemical |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

See footnotes at end of table.

TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued


TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued

Chemical	Production	Sales		
		Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value }^{2} \end{aligned}$
	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{gathered} \text { 1,000 } \\ \text { dolzars } \end{gathered}$	Per pownd
h, l'-Azobisformamide	4,219	3,360	3,572	\$1.06
	2,830	2,016	1,007	. 50
	1,352	1,268	1,559	1.23
	223,866	185,673	25,233	. 14
	73,017	61,985	8,922	.14
	85,140	58,305	6,716	. 12
	65,709	65,383	9,595	. 15
	484,928		. .	$\cdots$
Nitriloacids and salts, total	64,899	52,040	14,720	. 28
	3,111	993	536	. 54
(Ethylenedinitrilo) tetraacetic acid, disodium salt-----	784	812	497	. 61
(Ethylenedinitrilo)tetraacetic acid, tetrasodium salt---	27,972	20,686	6,551	. 32
(N-Hydroxyethylethylenedinitrilo)triacetic acid, tri-   sodium salt	5,022	3,827	1,502	. 39
	28,010	25,722	5,634	. 22
	5,503	3,438	2,763	. 80
	2,546	2,013	843	. 42
		668	285	.43
Stearic acid - ethylenediamine condensate (amine/acid ratio=1/2)	12,913	13,200	4,031	.31
Urea in compounds or mixtures ( $100 \%$ basis), total---------	7 4,871,159	4,468,125	${ }^{8} 138,153$	. 03
	565,254	554,883	16,108	. 03
In liquid fertilizer	1,991,185	1,755,018	54,574	. 03
In solid fertilizer-	1,970,225	1,911,934	59,894	. 03
	344,495	246,290	7,577	. 03
All other nitrogenous compounds	3,834,624	1,308,042	499,904	.38
	5,577,038	1,114,976	167,939	. 15
Acetic acid, synthetic, $100 \%$	1,738,236	378,019	24,265	. 06
Acetic anhydride, $100 \%------=-----$	1,663,776	130,061	13,001	. 10
	82,453	16,459	4,467	. 27
	1,163,399	108,578	17,981	. 17
	79,113			41
	1,276	984	400 6.378	. 41
	43,335	40,360	6,378	. 16
	3,950	3,884	1,188	. 31
	3,432			$\cdots$
	181,748	131,335	16,202	. 12
	38,104	20,442	1,948	. 10
	578,216	284,854	82,109	. 29
Salts of Organic Acids				
	242,707	201,694	71,621	. 36
	29,274	28,090	6,920	. 25
	1,028	845	296	. 35
	217	192	162	. 84
	3,686	3,579	1,059	. 30
	16,510	15,734	2,573	. 16

TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued

Chemical	Production	Sales		
		Quantity	Value	$\begin{gathered} \text { Unit } \\ \text { value } \end{gathered}$
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Salts of Organic Acids--Continued	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$1,000$ pounds	$\begin{gathered} 1,000 \\ \text { dol2ars } \end{gathered}$	Per pound
Acetic acid salts--Continued				
	669	588	218	\$0.37
	334	276	112	. 41
	6,830	6,876	2,500	.36
2-Ethylhexanoic acid ( $\alpha$-Ethylcaproic acid) salts, total--	5,772	4,956	3,184	. 64
	1,213	458	168	. 37
	1,155	1,040	935	. 90
	824	960	407	. 42
	111	121	41	. 34
	472	466	222	. 48
	1,997	1,911	1,411	. 74
	14,660	13,687	3,444	.25
Linoleic acid salts----------1	237	. .	-	-
	2,832	2,585	3,736	1.45
	. . ${ }^{\text {, }}$	876	1,181	1.35
Oleic acid salts ${ }^{9}$	1,201	1,109	638	. 58
Palmitic acid, aluminum salt	84	4 8	-	
	5,206	4,875	5,452	1.12
Propionic acid salts:				
	6,854	5,243	1,124	. 21
	44,716	36,941	12,628	. 34
	5,559	3,968	1,490	. 38
Aluminum distearate-	4,473	3,053	1,126	. 37
	642	566	241	. 43
Aluminum tristearate	444	349	123	. 35
	16,416	15,107	4,690	. 31
	503	, 514	244	. 47
Magnesium stearat	4,279	4,384	1,629	. 37
	12,038	10,930	3,780	. 35
All other-	5,921	2,038	795	. 39
All other salts of organic acids	118,178	93,105	31,079	. 33
Total	9,335,751	3,780,608	209,835	. 06
	1,585,066	. $\cdot$	$\ldots$	- .
	1,360,603	1,014,637	49,817	. 05
	798,902	523,702	27,459	. 05
	561,701	490,935	22,358	. 05
	451,224	437,842	42,256	. 10
	70,517			...
Formaldehyde ( $37 \%$ by weight)	4,304,608	1,514,004	37,273	. 02
4-Hydroxy-4-methyl-2-pentanone (Diacetone alcohol)-------	87,166	31,767	4,039	. 13
4-Methyl-2-pentanone (Methyl isobutyl ketone)--...-------	182,090	166,852	20,565	. 12
	1,294,477	615,506	55,885	. 09
Alcohols, Monohydric, Unsubstituted				
	10,296,488	4,766,950	306,147	. 06
	9,661,996	4,316,039	241,957	. 06
8utyl alcohols:   n-8utyl alcohol (n-Propylcarbinol)	432,597	251,500	23,816	. 09

TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued

| Chemical |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
|  |  |  |  |

See footnotes at end of table.

## TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued



TABLE 1.--Miscellaneous chemicals: U.S. production and sales, 1968--Continued

Cnemical	Production	Sales		
		Quantity	Value	$\begin{aligned} & \text { Unit } \\ & \text { value } \end{aligned}$
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued   All Other Miscellaneous Acyclic Chemicals--Continued	$1,000$   pounds	$\begin{aligned} & 1,000 \\ & \text { pounds } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dollars } \end{aligned}$	Per pound
Sodium formaldehyde sulfoxylate-	S, 542	4,87S	1,160	\$0.24
Sodium methoxide (Sodium methylate)	6,037	5,253	1,338	. 25
Tetraethyllead---	485, 208	482,134	249,142	. 52
Tetramethyllead ${ }^{13}$ -	115,537	116,181	49,175	. 42
Tetra (methyl-ethyl) leads-	304, 295	294,801	156,713	. 53
Zinc formaldehyde sulfoxylate	895	761	312	. 41
	595,709	116,420	41,989	. 36

I Calculated from rounded figures.
2 Compared with revised 1967 statistics for production of $12,600,000$ pounds and sales of $10,200,000$ pounds, valued at $\$ 3,100,000$.
${ }^{3}$ Statistics exclude production and sales of tricresyl phosphate. Statistics on tricresyl phosphate are given in the "Plasticizers" report.
${ }^{4}$ Quantities are given on the basis of solid naphthenate, tallate, or linoleate content.
5 Statistics exclude production and sales of copper naphthenate. Statistics on copper naphthenate are given in the "Pesticide and Related Products" report.

6 Statistics exclude production and sales of fatty amines. Statistics on fatty amines are given in the "SurfaceActive Agents" report.

7 Production of urea in primary solution totaled $4,872,815$ thousand pounds.
8 lncludes estimated values for sales of urea in nitrogen compounds.
9 Statistics exclude production and sales of potassium and sodium oleate. Statistics on these oleates are included in the "Surface-Active Agents" report.
10 Statistics exclude production and sales of potassium and sodium stearates. Statistics on these stearates are included in the "Surface-Active Agents" report.
11 Statistics on production of ethyl alcohol from natural sources by fermentation are issued by the Alcohol Tax Unit, U.S. Internal Revenue Service.

12 Of the total production, over $55 \%$ consisted of alcohols lower than $C_{10}$ and less than $45 \%$ consisted of alcohols higher than $C_{10}$.
13 Includes production and sales for use in synthesis of tetra(methyl-ethyl)leads.

TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968
[Miscellaneous chemicals for which separate statistics are given in table lare marked with an asterisk (*) ; chemicals not so marked do not appear in table 1 because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from the Appendix, tables 1 and 2 . An $x$ signifies that the manufacturer did not consent to his identification with the designated product.]

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, CYCLIC	
Acetylcyclohexanesulfonyl peroxide---------------------------	WTL.
	PLB.
2-Aminobenzothiazole-	FMT.
1-( 2-Aminoethyl)piperazine	JCC, UCC.
1-(3-Aminopropyl)morpholine-	JCC.
Amyl p-dimethylaminobenzoate	VND:
o-Anisaldehyde------------	ASL.
Anisaldehyde bisulfite	GIV, SHL.
Arylalkyl phosphites--	WES.
* Benzoic acid, sodium salt-	HN, MON, PFZ, VEL.
p -Benzoquinone ( p -Quinone)	EKT.
Benzothiazole--	ACY.
*Benzoyl peroxide-	AZT, CAD, NOC, RCI, UPR, WTL.
Benzyltrimethylammonium chloride	COM.
Biological stains-	ACS, EK.
Bis-aminopropylpiperazine	JCC.
B1s(2,4-dtchlorobenzoyl) peroxide	CAD, WTL.
2,4-Bis(L-hydroxy-3,5-di-tert-butyl-phenoxy)-6-(n-octyl-thio)-1, 3,5-triazine.	GGY.
	JCC.
$\begin{aligned} & \text { 2,4-Bis(n-octylthio)-6-(L'-hydroxy-3',5'-di-tert-butyl- } \\ & \text { anilino)-1,3,5-triazine. } \end{aligned}$	GGY.
Boron fluoride-phenol complex----------------------------------	ACS.
	EFH.
	FRO, TCC, VEL.
p-tert-Butylbenzoic acid, barium bis-salt-------------------	CCA.
	EKT.
	AZT, WTL.
4-tert-Butylphenyl salicylate	DOW.
*-tert-Butylpyrocatechol	BKL, CTN, DOW.
	GLC, HPC.
Cellulose acetate phthalate	ICO.
Centralite-1 ( $\mathrm{N}, \mathrm{N}^{\prime}$-Diethyl-N, ${ }^{1}$-diphenylurea)---------------	OTC, PAS.
	ACS, EK, FIN, LAM.
	ACS, ARA, CLB, EK, GFS, LAM, PIC.
Chloramine $B$ (Sodium derivative of N -chlorobenzenesulfonamide).	NES.
1-(3-Chloroallyl)-3,5,7-triaza-l-azoniaadamantane chloride.	DOW.
	NCA.
5-Chloro-2-hydroxybenzophenone-----------------------------------	DOW.
	KCH.
	ACS.
Cumene hydroperoxide------------------------------------------------	HPC, RCI.
	FMB.
1,3-( and 1,4-) Cyclohexadiene	ALD.
Cyclohexanone peroxide-------------------------------------------	Ä̈T, CAD, NOC, WTL.
Cyclohexene-1,2-dicarboxylic acid (Tetrahydrophthalic acid) disubstituted, polyester salts: Barium and cadmiun salts.	RCI .
	EK.
Cyclohexenone and cyclopentenone-------------------------------	ALD.
	EKT.
Cyclopropane-----	OH, OMS, TAE.
Cytidine and derivatives----------------------------------------	PLB.
Decahydronaphthalene (Decalin)-----------------------------------	DUP.
Decyl diphenyl phosphite----------------------------------------	x .
Dehydroacetic acid, sodium salt-	GAN.
Diami nohexanitrobiphenyl------------------------------------------	NCA.
	NCA.
2,5-Di-tert-amylhydroquinone--------------------------------------	CTN, EKT.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification code (see Appendix, tables 1 and 2)
MISCELLANEOUS CHENICALS, CYCLIC--Continued	
* Gasoline additives--Continued	
$\mathrm{N}, \mathrm{N}$ '-Di-sec-butyl-o-phenylene diamine-	x .
N, $\mathrm{N}^{\prime}$-Di-sec-butyl-p-phenylenediamine-	DUP, EKT.
	TNA.
2,6-Di-tert-butyl-c-dime thylamino-p-cre sol	TNA.
2,6-Diethylaniline-	TNA.
N, ${ }^{\prime}$ - Dii sopropyl-p-phenylenediamine-	DUP, x .
N, $\mathrm{N}^{\prime}$-Tisalicylidene-1, 2 -propane diamine	DUP, EKT, TX
Methylcyclopentadienylmanganese tricarbonyl	TNA.
4, 4'-Me thylenebis(2,6-di-tert-butylphenol)-------------------	SCH, TNA.
	TNA.
	ASH.
1,3,5-Tris(3,5-di-tert-butyl-L-hydroxybenzy1)mesitylene---	TNA.
	DUP, EKT, TNA, UPM.
Glyceryl p-aminobenzoat	VND.
Glyceryl tribenzoate--	VEL.
Guanosine phosphates-	PLB.
* Hexame thylenetetramine, tec	BOR, DUP, HKD, HIP, HN, PLS.
Hexani trostil bene	NCA.
Hydri ndantin-	HEX.
--(2-Hydroxy-p-anisoyl) benzoic acid	ACY.
p-Hydroxybenzoic acid esters:	
Benzyl p-hydroxybenzoate-	LEM.
Butyl p-hydroxybenzoate (Butylparaben)-------------	HN, ICO, LEM.
Ethyl p-hydroxybenzoate (Ethylparaben)-----------	HN, LEM.
n -Heptyl p-hydroxybenzoate (Heptylparaben)	WSN.
*Methyl p-hydroxybenzoate (Methylparaben)	Hh, 1C0, IEN, PYL, WSit.
*Propyl p-hydroxybenzoate (Propylparaben)	HN, ICO, LEM, WSN.
Other	HN.
Hydroxye thylpiperazine	UCC.
2-Hydroxy-L1-me thoxybenzophenone-	ACY, GAF.
2-Hydroxy-4-me thoxy-5-sulfobenzophenone trihydrate	ACY.
Hydroxyme thyl-5,5-dimethylhydantois	GLY.
2-Hydroxy- $\mathrm{l}_{1}$-n-octoxybenzophenone-	ACY.
Hydroxyphenylbenzotriazole derivatives	EK, GOY.
2-Hydroxypropyl p-( $\mathrm{N}, \mathrm{N}$-bis-2-hydroxypropylamino) benz	SHL.
1-Hydroxy-2-pyridine (Omadine)-	OMC.
2-Imidazolidinethione (1,3-Ethylene-2-thiourea)	PAS.
1,2,3-Indantrione monohydrate (Ninhydrin)	HEX.
Inosine phosphates--	PLB.
Isobutyl vinyl ether - toluene, xylene polymers	GAF.
Isocyanuric acid--------	MON.
p-Isopropyl-a-methylcinnamaldehyde	GIV.
Ketene dimer-	EKT.
* Lubricating oil and grease additives:	
Heterocyclic compounds, sulfurized------	ORO.
Tall oil ester, sulfurized	LUB.
Terpenes, sulfurized-	LUS.
Other--	HK, LUB.
Oil-soluble petroleum sulfonates:	
Oil-soluble petroleum sulfonate, armonium salt---------	SIN.
*Oil-soluble petroleum sulfonate, barium salt--	CO, LUB, TX, x .
* Oil-soluble petroleum sulfonate, calcium salt-	CO, ENJ, LUE, ORO, SHO, TX, WTC, $x$.
Oil-soluble petroleum sulfonate, magnesium salt-	CO.
*Oil-soluble petroleum sulfonate, sodium salt---	CO, EVJ, MOR, PAR, SHO, SOC, SOI, IX, WTC.
Phenol salts:	
Barium salt of nonylphenol	ENJ, CCA.
Calcium salt of octylphenol-formaldehyde	SHC.
Other--	EIJJ, GOC, LUB, MON, ORO, SIN, TX, x .
All other-	ENJ, LUB, MON, OKO, SIN, $x$.
Maleic anhydride half esters, vinyl ether copolymers------	GAF.
	HPC.
8-p-Menthyl hydroperoxide	HN, HPC.
p-Methoxybenzylidenemalonic acid, dimethyl ester	ACY.
L-Methoxyphenol	ASL, CIN, EKT.
2-Nethylcyclohexanol-	EKT.
Methyl cyclopropanecarboxylate-	NEP.
2,2'-Me thylenebis(4-chlorophenol) (Dichlorophene)-----------	GIV.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968-- Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, CYCLIC--Continued	
Methylenebis(5,5-dimethylhydantoin)	GLY.
2,2'-Methylenebis(3,4,6-trichlorophenol) (Hexachlorophene)-	GIV.
Methyl gallate----------------------------------------------------1-	HSH.
Methylglucoside	CRN, PFN.
* L-Nethylmorpholine	SRD, ${ }^{\text {ICC, }}$ UCC.
Methyl phenyl phosphat	TNA.
1-Nethyl-2-pyrrolidone, monomer	GAF.
* Morpholine-	DOW, JCC, UCC.
Morpholine salt of p-toluenesulfonic scid---------------------	AMB.
* Naphthenic acid salts:	
Aluminum naphthenate	HSH, WTC.
Barium naphthenate	CCA.
Cadmium naphthenate	CCA.
	CCA, CCC, FER, HIJ. HSH, NCI, SHP, SW, TRO, WTC. SHP.
Cobalt lead manganese naphthe	HNX, HSH.
* Cobalt naphthenate	CCA, CCC, FER, HNX, HSH, MCI, SHP, SW, TRO, WTC.
Iron naphthenate-	CCA, CCC, HNX, HSH, MCI, NTC.
Lead manganese naphthen	
* Lead naphthenate-	CCA, CCC, CCN, FER, HNX, HSH, MCI, SHP, SV, TRO, TX, WIt.
Lithium naphthenate	CCA, NCI.
* Manganese naphthenat	CCA, CCC, FER, H.JX, HSH, MCI, SHP, SW, TRO, WTC.
Nickel naphthenat	CCA.
Rare earths naphthen	CCA.
Sodium naphthenate	CCA.
Strontium naphthen	CCA . $C$ CC, WNY HSH MCT SHP ST, TRO, WMC
* Zinc naphthenate------------	CCA, CCC, FER, HNX, HSH, MCI, SHP, SW, TRO, WTC.
$0-$ Nitrobenzoic acid and sodium salt-	
5-Norbornen-2-ylmethyl acrylate (Bicyclo(2.2.1)hept-5-ene-2-methylol acrylate).	ICO.
Octadecyl 3-(3,5-di-tert-butyl-L-hydroxyphenyl)propionate--	GGY.
Organic mercury compounds: Phenylmercuric borate----------	TRO.
Pentaerythritol tetrabenzoate	VEL.
	GAF.
2-Phenoxyethanol (Ethylene glycol monophenyl ether)--------	DOW, JCC.
2-(2-Phenoxyethoxy)ethanol (Diethylene glycol phenyl ether)	DOW.
	EKT.
m-Phenylene isonaphthalamide	DUP.
	HDG, SM.
5-Phosphonylribose-l-pyrophoschate, magnesium salt	PLB.
Photographic chemicals:	
N-(o-Acetamidophene thyl)-1-hydroxy-2-naphthamide---------	EKT.
2-(L-Amino-N-ethyl-m-toluidino)ethyl sulfate-------------	EKT.
3-Amino-1, 2, 4 -triazole---------------------------------------	FMT.
* Benzotriazole	EK, FMT, MEE, MRT.
p-Benzylaminophenol hydrochloride	EK.
3-Chloro-L-diethylaminobenzenediazonium salts (p-Diazo-2-chloro-NI, N-diethylaniline salts).	ESA, FMT.
	EK.
2, L-Diaminophenol dihydrochloride (Amidol)----------------	VPC.
2,5-Di butoxy-L-morpholinobenzenediazonium salts----------	ESA, FNT.
\%2,5-Diethoxy-4-morpholinobenzenediazonium salts----------	ESA, FITT, GAF, IDC.
	FMT.
p-Diethylaminobenzenediazonium ( $\mathrm{p}-\mathrm{Diazo-N,N-diethyl-}$ aniline) salts.	ESA, FMT, GAF, IDC, MRT.
N,N-Diethyl-p-phenylenediamine hydrochloride------------	EKT, FMT.
* N, N-Diethyltoluene-2,5-diamine, monohydrochloride-------	EKT, FMT, IDC.
	$x$.
	EK.
$\mathrm{p}-$ Dimethylami nobenzenediazonium chloride ( $\mathrm{p}-\mathrm{Diazo-N,N-}$ dimethylaniline) - zinc chloride.	ESA, FMT, IDC.
$4-\left(2^{\prime}, 6^{\prime}\right.$-Dimethylmorpholinyl)benzenediazonium chloride -	IDC.
p-Diphenylaminediazonium sulfate-----------------------------	FMT
*p-(N-Ethylbenzimido) benzenediazonium chloride (p-Diazo-   N-benzyl-N-ethylaniline) - zinc chloride.	ESA, FMT, MRT.
p-(Ethyl(2-hydroxyethyl)amino) benzenediazonium chloride (p-Diazo-N-ethyl-N-hydroxyethylaniline) - zinc chloride.	ESA, FMT, IDC.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMLCALS, CYCLIC--Continued	
Photographic' chemicale--Continued	
N -Ethyl-N-hydroxyethyl-p-phenylenediamine sulfate.-	IDC.
N -Ethyl-N-( $\alpha$ - methanesulfonamidoe thyl) toluene-2,5-diamine sulfate.	EKT.
	EKT.
p-((2-Hydroxyethyl) methylamino)benzenediazonium chloride (p-Diazo-N-hydroxye thyl-N-methylaniline) - zinc chloride.	ESA, FMT.
1-( 3 -Hydroxyphenyl) urea-------------------------------------	FMT.
4-Methoxy-1-naphthol-----------------------------------------	$x$.
p-Methylaminophenol sulfate---------------------------------	EK.
5-Methylbenzotriazole-----	EK, FMT.
4-Methyl-1-phenyl-3-pyrazoli dinone-----------------------	WAY.
4-Morpholinylbenzenediazonium salts----.------------------	FMT.
6-Nitrobenzimidazole------------------------------------------	EK, FMT.
	EKT.
	CFC, FMT.
1-Phenyl-3-pyrazolidinone-------------------------------------	GGy, WAY.
L-Phenylpyrocatechol-------------------------------------------	x.
Polyvinyl cinnamate------------------------------------------	WAY.
2-Resorcylic monoethanolamide	FMT.
	BKC.
```l-(2,4,6-Trichlorophenyl)-3-(4-nitroanilino)-2-pyrazo- lin-5-one.```	EKT.
	EKT, FMT, IDC, x .
Phthalic acid, lead salt, dibasic------------------------------	NTL.
Picramic acid, sodium salt-------------------------------------	SJC.
Picric acid, sodium salt--	NCA.
	ARZ, CBY, GLD, HN, HPC, NCI.
	GAF.
Piperonal, sodium bisulfite complex---------------------------	SHL.
Polyethylene terephthalate------------------------------------	DUP, EK.
	EK.
Propyl gallate-	EKT, HN, HSH.
	HSH, NAL.
Resorcinol monobenzoate---	EKT.
* Rosin acid salts:	
Aluminum resinate--	JMS.
	JMS, SW.
Cobalt manganese resinate------------------------------------	JMS.
Copper resinate---1-1	JMS.
	HSH, JMS.
Lead resinate---	JMS.
Manganese resinate---	JNS, WVA.
	JMS, SW.
	DUP, FIN, LEM, PCW.
	MRK, NTL.
	DEX, GOC.
	LEM, MON, MRK.
* Tall oil salts (Linoleic-rosin acid salts):	
Calcium manganese tallate	NC1.
	CCA, CCC, HNX, HSH, MCI, TRO, WTC.
*Cobalt tallate Copper tallate \qquad	CCA, CCC, FER, HNX, MCI, SHP, TRO, WTC. CCA, MCI, SHP.
*Iron tallate-	CCA, MCI, MLD, SHP, WTC.
Lead manganese tallate---------------------------------------	HSH, MCI.
*Lead tallate...	CCA, CCC, FER, HNX, HSH, MCL, SHP, TRO, WTC.
Manganese tallate	CCA, CCC, FER, HNX, HSH, MCI, TRO, WTC.
	HSH, MCI.
Tannic acid------------------	HSH, MiAL.
*Tanning materials, synthetic:	
Hydroxytoluenesulfonic acid, formaldehyde condensate (Cresol-formaldehyde sulfonate), sodium salt.	GGY.
*2-Naphthalenesulfonic acid, formaldehyde condensate and salts.	AKS, DA, GRD, RH, TCD.
1-Phenol-2-sulfonic acid, formaldehyde condensate (Phenol-formaldehyde, sulfonated).	FH .

TABLE 2.--Miscellaneous chemicals: Manufacturers ${ }^{\dagger}$ identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, CYCLIC--Continued	
*Tanning materials, synthetic--Continued Styrene maleic anhydride interpolymer, partial sodium salt.	DUP.
Sulfonyldiphenolsulfonic acid, formaldehyde condensate---	GAF.
	AKS,
2,3,5,6-Tetrachloro-4-(methylsulfonyl)pyridine	DON.
1,2,3,4-Tetrahydronaphthalene (Tetralin) -......	DUP, UCC.
	ORO, PAS.
Tetrahydrothiophene-1,1-dioxide (Sulfolane)----------	PLC.
Tetrakis(methylene-3-(3', 5'-di-tert-butyl-4,'-hydroxyphenol)propionate)methane.	GGY.
	SDC.
Tetraphenyltin	x.
*Textile chemicals, other than surface-active agents:	
1,3-Bis(hydroxyme thyl)-2-imidazolidone (Dime thylolethylene urea).	ACY, AKS.
	GAF.
	SNW. DUP.
1-((Octadecyloxy)methyl)pyridinium chl	DUP.
Tetrahydro-3,5-bis(methoxymethyl)-LH-1,3,5-oxadiazin-L-one (1,3 -Bis(methoxymethyl)uron).	x. GAF.
	GAF.
	CIV.
	SLH.
(2, ${ }^{1}$-Thiobis(4 -octylphenolate))-n-butylamine nickel-....--	ACY.
Thiophene--	PAS.
o-Toluidine formaldehyde hydrochlorí	RBC.
o-Tolylbiguanide -	MON.
Triallyl cyanurate--	ACY.
Triaryl phosphites-	WSS.
Tribenzylamine----	APC.
	DOW, FIN, MEE.
3,4',5-Tribromosalicylanilide and dibromosalicylanilide mixtures.	FIN.
3,4,L'-Trichlorocarbanilide-	MON.
	WTH.
1,3,5-Trichloro-s-triazine-2,4,6(1H,3H,5H)trione (Trichloroisocyanuric acid).	MON.
	USB.
	x.
3,5,5-Trime thyl-2-cyclohexen-1-one (Isophorone)-----------	EHJ, UCC.
	RFM.
	CCW, x.
Triphenyl phosphite	HK, MON.
Triphenyl sulfonium chloride mixtur	FIS.
Triphenyltin--	x.
Tris(l-aziriainyl)phosphine oxide	DO\%.
Uridine derivatives-----------	PLB.
1-Vinyl-2-pyrrolidinone, monomer and polymer-----------------	GAF.
1-Vinyl-2-pyrrolidinone - acrylamide copolymer--------------	GAF.
1-Vinyl-2-pyrrolidinone - vinyl acetate copolymer------------	GAF.
I-Vinyl-2-pyrrolidinone - other copolymers	GAF.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Nitrogenous Compounds--Continued	
*Amines--Continued	
Isobutylamines:	
*Diisobutylamine-	PAS, UCC, VGC.
Isobutylamine, mono- --	PAS.
Isopropylamines:	
*Diisopropylamine	ESC, PAS, UCC, VGC.
Isopropylamines, mono-	ESC, PAS, UCC, VGC.
Methylamines:	
*Dimethyl amine	COM, DUP, ESC, GAF, PAS, RH.
Dimethylamine hydrochloride--------------------------------	CFC, EK.
Dimethylamine sulfate	RH. COM , DUP ESC, GAF, PAS, RH.
	COM, DUP, ESC, GAF, PAS, RH. RBC.
Methylamine hydrochlor	RBC. COM, DUP, ESC, GAF, PAS, RH.
*Trimethy lamine--n-Octylamine, mono-	COM, DUP, ESC, GAF, PAS, VGC.
Pentaethyleneh examine-	DOW.
Pentylamines (Amylamines) :	
Dipentylamine-	PAS, VGC.
Pentylamine, mono-	ALB, PAS.
Tripentylamine-	PAS.
1,2-Propanediamine (Propyl enediamine)	UCC.
1,3-Propanediamine (1,3 -Diami nopropane)------------------	JCC.
*Propylamines: ESC P PAS UCC VGC $^{\text {a }}$	
*Dipropyl amine---	ESC, PAS, UCC, VGC.
*Propylamine, mono-	ESC, PAS, UCC, VGC.
Tripropylamine---	UCC.
Tetraethy 1 enepen tamine $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetramethyl-1,3-butanediamine-	DOW, JCC, UCC. UCC.
Tetramethyl ethyl enediamine	RH.
Triethylenetetramine	DOW, UCC. DUP EK, GNM TCC NES, NLC, UCC
Other amines-	ALB, ALD, DUP, EK, GNM, JCC, NES, NLC, UCC.
2-Amino-1-butanol	ACY, COM.
2-Aninoethanethiol (2-Mercaptoethylamine) hydrochloride-	EVN.
1-Aminoethanol (Acetaldehyde ammonia)-------------------	PAS.
2-Aminoethanol (Monoethanolamine) hydrochloride----------	WSN.
2-Aminoethanol (Monoethanolamine) sulfi	EVN, SUM.
Ami noethoxyethanol--	JCC.
2-(2-Aminoethylamino)ethanol (Aminoethyl ethanolamine)-----	DOW, HDG, JCC, UCC.
2-Aminoethyl mercaptoacetate (Monoethanolamine thioglycolate.	EVN, HAB.
2-Amino-2-ethy 1-1,3-propanediol-------------------------------	COM.
	СОМ.
2-Amino-2-(hydroxymethyl)-1,3-propanediol (Tris- (hydroxy-methy1) ami nomethane).	COM.
2-Amino-2-methyl-1,3-propanediol	COM.
2-Amino-2-methy1-1-propanol-	COM.
2-Amino-1rpropanol---	LIL.
3-Amino-1-propano1---	UCC.
*1,1'-Azobisformamide---	FMT, NPI, USR.
2, 2'-Azobis[2-methylpropionitrile] (Azobisisobutyronitrile).	DUP.
N, N-Bis (2-hydroxyethy 1)-2-(st earami domethoxy) ethy lamine----	CIB.
	GLY, X .
Bis (trimethylsilyl) acetamide--	ALD, PIC.
	ARA.
N -Bromosuccinimide (Succinibromimide)----------------------	ARA, SDW.
2,3-Butanedione monoxime--	EK.
	ACP, CCA.
Butyl isocy anate-	CWN, UPJ.
	BKL.
Butyraldehyde oxime---	ACP.
n-Butyronitrile--	EKX. NCP DBC UCC
Caprolactam (2-0xoh examethylenimine)	ACP, CNP, DBC, UCC.
Chloroacetamide-	BPC.
Chloroacetonitrile	BPC.
	ACY.
2-Chloro-N, N -dimethy 1 ethylamine (Dimethylami noethyl	CTN, HEX, MCH, MRK, x.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2. -- Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers : identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Nitrogenous Compounds--Continued	
Glycine salts: Cupric glycinat	BPC.
	ACY.
Guanidine hydrochloride-	ACY.
	FOR.
	BKL.
Hexamethylenediammonium adipate (Ny lon salt)	CEL, DUP, MON.
Hydracrylonitrile (Ethylene cyanohydrin)-	UCC.
2-Hydrazinoethanol (2-Hydroxyethylhydrazine)	NOR.
Hydroxyethyl carbamate-	JCC.
N-Hydroxymethylacry lamide terpolymer--------------------------	GAF.
2-(Hydroxymethy 1)-2-nitro-1,3-propanediol (Tris (hydroxymethy1) nitromethane).	COM.
N-Hydroxymethy 1 stearamide------------------------------------	ICI.
Hydroxypropyl carbamate-	JCC.
Isobutyl cyanoacetate-	KF.
	EKX, ESC.
Isopropanolamines:	
1-Arino-2-propanol (Monoisopropanolamine)---------------	DOW, UCC.
1,1'-Iminodi-2-propanol (Diisopropanolamine)------------	DOW, UCC.
1,1',1''-Nitrilotri-2-propanol (Triisopropanolamine)----	DOW, UCC.
3-Isopropoxypropionitrile------------------------------------	DUP.
3-1sopropoxypropylamine	DUP.
2-Isopropy lami noe thanol-	PAS
	DOW.
	DTC.
	MON.
Lauronitrile (Dodecyl nitrile)	FOR.
Lysine diisocyanate methyl este	MRK.
	KF, MTR.
Methacrylamide-	RH, x .
Methacrylonitrile	SOH.
Methoxyanine hydrochloride-------------------------------------	EK.
3-Methoxypropy 1 amine---	EKT, JCC.
N -Methylacetamide-	ACI, EK.
2-Methylaminoethanol (N-Methylethanolamine)	UCC.
Methyl carbamate--	BKL, FMP.
Methyl cyanoacetate-	KF.
Methyl α-cyanoacrylate	EKT.
$\mathrm{N}, \mathrm{N}^{+}$-Methyl enebis (acrylamide)---------------------------------	ACY.
	ARC.
Methylenebis(thiocyanate)	NLC.
N -Methy $1 \mathrm{glucamine-}$	DUP.
	OTC, UCC.
2,2'-(Methylimino) diethanol (Methyldiethanolamine)--------	UCC.
*2-Methyllactonitrile (Acetone cyanohydrin)----------------	ACY, RH, x .
	COM.
2-Methyl-2-nitro-1-propanol-	COM.
Methy 1polyethanolamine-	GAF.
N-Methyltaurine	GAF.
*Nitriloacids and salts:	
(Diethylenetrinitrilo) pentaacetic acid---------------------	HMP.
(Diethylenetrinitrifo) pentaacetic acid, monosodium hydrogen ferric salt.	GGY.
(Diethylenetrinitrilo)pentaacetic acid, pentasodium salt.	GGY, HMP.
(Diethylenetrinitrilo)pentaacetic acid, sodium salt----	CWL, DOW, GGY, RPC.
N, N-Dihydroxyethy 1 glycine , sodium salt	CWL, DOW, HMP.
Ethanoldiglycine, disodium salt---	HMP.
* (Ethylenedinitrilo) tetraacetic acid (Ethylenediaminetetraacetic acid).	DOW, GGY, HMP.
(Ethylenedinitrilo) tetraacetic acid, calcium disodium salt.	DOW, GGY.
*(Ethylenedinitrilo)tetraacetic acid, disodium salt------	DOW, EK, GGY, HMP, RPC.
(Ethylenedinitrilo) tetraacetic acid, disodium copper salt.	GGY.
(Ethylenedinitrilo)tetraacetic acid, disodium zinc salt, dihydrate.	GGY, HMP.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Nitrogenous Compounds--Continued	
*Nitriloacids and salts--Continued (Ethylenedinitrilo)tetraacetic acid, manganese salt---- (Ethylenedinitrilo) tetraacetic acid, monosodium iron salt.	$\begin{aligned} & \text { GGY. } \\ & \text { GGY, HMP, RPC. } \end{aligned}$
(Ethylenedinitrilo) tetraacetic acid, tetraammonium salt.	DOW.
(Ethylenedinitrilo)tetraacetic acid, tetrapotassium salt.	GGY, HMP.
*(Ethylenedinitrilo)tetraacetic acìd, tetrasodium salt-(Ethylenedinitrilo)tetraacetic acid, triammonium salt-(Ethylenedinitrilo) tetraacetic acid, trisodium salt---(N -Hydroxyethylethylenedinitrilo) triacetic acid----...--	```CRT, CWL, DOW, GGY, HMP, HRT, IBI, RPC. DOW. GGY, HMP. GGY.```
* (N -Hydroxyethylethylenedinitrilo) triacetic acid, trisodium salt.	CRT, CWL, DOW, GGY, HMP, IBI, RPC.
Nitrilotriacetic acid, trisodium salt------------------	DOW, GGY, HMP.
Other	EK, HMP.
2-Nitro-1-butanol	COM.
Nitroethane	COM.
Nitromethan	COM.
1-Nitropropane	COM.
2-Nitropropane	COM.
Nylon, 6 and $6 / 6$ polymer for fiber	DBC, DUP, MON.
Octadecy1 isocyanate--	CWN, MOB, UPJ.
Octadecyloxymethyltriethylammonium chloride---------------	DAN.
	ARC; ASH, FIN, HUM.
Oleic acid, amine condensates	CCW, GAF, GLY.
Oleonitrile (Octadecene nitrile)	ARC, FOR.
01 eoy lhydroxamic acid-	WOB.
	FIN.
*Pentaerythritol tetranitrat	COM, DUP, HPC.
Pentyl nitrate (Amyl nitrate)--------------------------------	TNA.
Polyacry lamide--	ACY, HPC, NLC.
	DUP.
Polyesteramide-	ICI.
Polyoxyalkylene amines	JCC, UCC.
n-Propyl carbanate	BKL.
Propyl isocyanate-	OTC.
Propyl nitrate-	TNA.
Quaternary ammonium compounds	EK, RSA, WAY.
Ricisolamide	TKL.
*Sarcosine ($\mathrm{N}-\mathrm{Methylaminoacetic} \mathrm{acid)----------------------}$	GAF, GGY, HMP.
Semicarbazide base-	FMT.
Semicarbazide hydrochloride	FMT.
Semioxamazide--	NOR.
	ARC, ASH, FIN, HUM.
	CCW, GLY, ICI, x .
	CIB, SNW.
Stearonitrile (Octadecanenitrile)-	FOR.
Stearylerucamide-	FIN.
	ACS.
Tallow amide, hydrogenate	ARC, ASH.
	FOR.
	ARC, FOR.
	FOR.
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetrakis (2-hydroxypropy1) ethylenediamine-----.	WYN.
	ACY.
3,3'-Thiodipropionitrile-	ACY.
Thiosemicarbazide---	ACY, FMT.
*Urea in compounds or mixtures, 100% basis: *In feed compounds-	ACN, ACY, AGY, DUP, FTX, GCC, JDC, KET, MON, MSC, SHC, SOH, TER, VLN, WYC.
* ln liquid fertilizer	ACN, AGY, BOR, CFA, CNC, COL, DUP, ESC, FCA, FTX, GCC, GOC, HKY, HPC, JDC, KET, MON, MSC, NIT, OMC, PLC, PPC, SHC, SNI, SOH, TER, VLN, WYC, x.
*ln solid fertilizer--------------------------------------	ACN, ACY, AGY, DUP, GCC, GOC, HPC, JDC, MON, MSC, OMC, PPC, SHC, SNO, SOH, TER, VLN, WYC, x, x.
In plastics--1-	DUP, MON, OTC.
	ACN, BOR, CNC, DUP, HKY, HPC, MSC, SHC, SNO, TER, WYC.

TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification corles (see Appendix, tables 1 and 2)
M1SCELLANEOUS CHEMICALS, ACYCLIC--Continued Acids, Acid Anhydmides, and Acyl Halides--Continued	
Neodecanoic acid-	ENJ.
Neoheptanoic acid	ENJ.
Neopentanoic acid	ENJ.
Nonanoic acid (Pelargonic acid)	EMR, GIV.
Nonenylsuccinic anhydride------	HMY.
Octadecylphosphonic acid---	SM.
Octanoyl chloride-----	HK.
Octenylsuccinic anhydride-	HMY.
Oleoyl chloride-	GAF.
Oxalic acid-----	ACS, MAL, PFZ, SF1.
Palmitoyl chloride	GAF, OPC.
Pelargonyl chloride-	WTL.
Peroxyacetic acid-	FMB, UCC.
Pivaloyl chloride-	WTL.
Polyacrylic acid-	DA, RH.
Polygalacturonic acid	SKG.
*Propionic acid--	CEL, COM, EKT, UCC.
Propionic anhydride-	EKT, UCC.
Propionyl chloride-	$A B B, E K, O P C$.
Sebacic acid--	RH, WTH.
Sorbic acid (2,4 -Hexadienoic acid)-	UCC.
Succinic acid	ACS, BKC.
Succinic anhydride	ACS.
d-Tartaric acid-	BKC.
Tetrahydroxysuccinic acid (Dioxytartaric acid)-	ACY.
Thioacetic acid-	EK, EVN.
Thiolactic acid-	EVN.
3,3'-Thiodipropionic acid	CCW, EVN.
Trichloroacetic acid-	DOW.
Trichloroacetyl chloride	EK.
Valeric acid-	UCC.
All other	$\mathrm{ABB}, \mathrm{ALD}, \mathrm{CLB}, \mathrm{EK}, \mathrm{GAF}, \mathrm{HMY}, \mathrm{PD}, \mathrm{PIC}, \mathrm{RH}, \mathrm{L}^{\circ} \mathrm{CC}, \mathrm{x}$.
Salts of Organic Acids	
*Acetic acid salts:	
Aluminum acetate-	ACY, UCC.
Aluminum subacetate--	MAL.
*Ammonium acetate---	ACS, BKC, MAL.
Barium acetate	ACS, BKC, MAL.
Cadmium acetate--------	BKC, MAL, SHP.
Calcium acetate-	ACS, BKC, ENJ, MAL.
Chromium acetat	ACY.
Cobalt acetate	BKC, HSH, SHP.
*Copper acetate----------	ACS, BKC, SHP, UCC.
Dibutyltin diacetate---	CCW.
Lead acetate------	ACS, BKC, MAL.
Lead subacetate-	ACS, BKC, MAL.
Lead tetraacetate-	ARA, UCC.
Magnesium acetate-	ACS, BKC.
Manganese acetate	HSH, SHP.
	MAL.
	$B K C, H S H, S H P .$
*Potassium acetate-	ACS, BKC, CWL, MAL, UCC.
Silver acetate--	MAL.
*Sodium acetate-	ACS, BKC, CEL, DAN, EKT, MAL, UCC, WSN.
Sodium diacetate-	UCC.
Strontium acetate	BKC.
*Zinc acetate-	ACS, BKC, HSH, MAL, SHP, SNW, UCC.
*Zirconium acetate-	HSH, NTL, SNW, TZC.
Adipic acid, ammonium salt----	F1S.
Chloroacetic acid, sodium salt-	DOW.
Citric acid salts:	
Ammonium citrate	MAL, PFZ.
Calcium citrate-	PFZ.
Ferric ammonium citrate-	PFZ.
Ferric citrate-	MAL.
	BKL, MAL.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables I and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Alcohols, Monohydric, Unsubstituted--Continued	
*Alcohols C_{10} or higher, urmixed:	
*Decyl alcohols-	CO, DUP, ENJ, GOC, IDU, PCC, PG, TID, UCC.
3,9-Diethy1-6-tridecanol	UCC.
3,6-Dimethyl-3-octanol-	CUC.
Dodecyl alcohol (Laury 1 alcohol) (95\%)	CO, DUP.
7-Ethyl-2-methyl-4-hendecanol-----	UCC.
4-Ethyl-1-octyn-3-ol--	CUC.
*1-Hexadecanol (Cetyl alcohol) (95\%)	ASH, DUP, GIV.
*Rexadecyl alcohols, other--	CO, ENJ, PG.
1-Octadecanol (Stearyl alcohol) (95\%)	ASH, CO, DUP, PG.
cis-9-Octadecen-1-ol (0leyl alcohol)	ASH, DUP.
Tetradecyl alcohols----	CO, DUP, PG, UCC.
1-Tridecanol-	ENJ, GOC, HOU, TID, UCC.
2,6,8-Trimethyl-4-nonanol	UCC.
Al1 other---	CO .
*Mixtures of alcohols:	
${ }^{*} \mathrm{C}_{9}$ and lower only:	
Amyl alcohols	ENJ, PUB, UCC.
Other	CEL, EKX, GOC.
	ASH, CO, ENJ, GOC, ICl, PG, SHC, TNA.
	CO, EKX, PG, TNA.
Potyhydric Alcohols and their Esters and Ethers	
*Polyhydric alcohols:	
1,4-Butanediol-	GAF.
	CEL.
	GAF, .
2-Butene-1,4-diol-	GAF.
	GAF.
3-Chloro-1,2-propanediol (Glycerol α-chlorohydrin)-------	EVN.
	NEP.
	CUC.
	CUC.
	EKX.
	ACP, APD, CAU, CEL, DOW, DUP, EKX, GAF, HCH, JCC, MAT, OMC, SHC, UCC, WYN.
	UCC.
2-Ethy 1-2-(hydroxymethy1)-1,3-propanediol (Trimethylol propane).	CEL. APD, DOW, SHC.
Glycerol, synthetic-	CEL.
2-(Hydroxymethy1)-2-methy1-1,3-propanediol (Trimethylolethane).	COM.
	APD.
	EVN.
	APD. SHC UCC
	CEL, SHC, UCC.
	ABB, BKL, COM, ICO.
	CEL, COM, HN, HPC, RCI.
*Propylene glycol (1,2-Propanediol)	APD, CEL, DOW, DUP, JCC, OMC, UCC, WYN.
*Sorbitol-------------------	APD, BRD, MRK, PFZ.
	EKX.
	APD, CUC, PHR, UCC.
*Polyhydric alcohol esters:	
1,3-Butanediol dimethacrylate	SAR.
2-(2-Butoxyethoxy) ethyl acetate	EKT, UCC.
	UCC.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Polyhydric Alcohols and their Esters and Ethers--Continued	
Polyhydric alcohol ethers--Continued	
3[3-(3-Methoxypropoxy) propoxy 1] propanol	DOW.
Methyl butynoxyethanol-	CUC.
Polybutylene glycol-	NLC.
Polyethoxyethylglycerol	GLY.
Polyethoxyethylsorbitol	APD, GLY, TCH.
*Polyethylene glycol---	ACP, DA, DOW, DUP, GAF, HDG, JCC, MAT, NLC, OMC, UCC, WYN.
*Polypropoxy ethers:	
*Glycerol tri (polyoxypropylene) ether-	JCC, OMC, UCC, WYN. ACS, APD, DA, JCC, UCC, WYN.
*Propypropylene glyco	DOW, JCC, HDG, NLC, OMC, UCC, WYN.
Polytetramethylene ether glycol	QKO, x.
Tetraethylene glycol--	DOW, UCC.
1,1,3,3-Tetramethoxypropane	KF , UCC.
2,2'-Thiodiethanol (Thiodiglycol)	PIC, UCC.
*Triethylene glycol-	ACP, CAU, DOW, GAF, HCH, JCC, MAT, OMC, UCC.
Tripropylene glycol	DOW, HDG, UCC.
All other---	DOW, EK, EKX, GAF, PIC, UCC, WYN.
Esters of Monohydric Alcohols	
Allyl methacrylate	SAR, x.
Amyl acetates, 90% :	
lsopentyl acetate (Isoamyl acetate)	NW.
Mi xed--	PFW, PUB, UCC.
Butyl acetates:	
Iso-	EKT, ENJ, PUB, UCC.
*Normal	CEL, EKT, ENJ, PUB, SHC, UCC.
Secondary-	ENJ, HPC, PUB, SHC.
Tertiary-	EK.
*Butyl acrylate	CEL, DBC, RH, UCC.
n-Butyl 4,4-bis (tert-butylperoxy) valerate	WTL.
Butyl chloroacetate	MON.
Butyl lactate-	COM.
	PCC.
tert-Butyl peroxyacetate	AZT, WTL.
	AZT, WTL.
	AZT, WTL.
tert-Butyl peroxyisopropylcarbonate	PPG, WTL.
	AZT, WTL.
	VND.
	FMP.
*Dibutyl fumarate	MON, PFZ, RCI, RUB,
*Dibuty1 maleate-	CUC, DUP, MON, RCI, RUB.
	WTL.
Diethyl sec-butylethylmalonate	ABB.
	BPC.
	ABB.
	CTN, FMP, OTC.
Diethyl diethylmalonate (Diethyl malonic ester)----------------	BPC, L1L.
	KF .
	LIL.
```Diethyl ethyl(1-methylbutyl)malonate (Ethyl-1-methyl butyl malonic ester).```	ABB .
	RUB.
	HRT, RUB.
	WTL.
	ACY, UCC.
	$A B B, K F$, LIL.
	$A B B$, LIL.
	BPC.
	BKL, FMP.
	RUB.
	RUB.
Diisopropyl peroxydicarbonate (Isopropyl percarbonate)-----	PPG, WTL.
	EFH.
	ACY, CCW, EVN, HAB. EK.

TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued   Esters of Monohydmic Alcohols--Continued	
Dimethyl carbonate-	CTN, OTC.
2,5-Dimethylhexane 2,5-diperoctoate	UPR.
	AAC.
Dimethyl malonate-	KF.
Dimethyl methoxymethylene malonate-	KF.
Di (4-methyl-2-pentyl) maleate-...-	RUB.
Dimyristyl $3,3^{\prime}$-thiodipropionate-	CCW.
Dioctyl fumarate	RCI .
*Dioctyl maleate--------	MON, PCC, RCI.
*Distearyl 3,31-thiodipropionate	ACY, CCW, EVN, HAB.
Dithiobis (stearyl propionate)--	EVN.
Ditridecyl maleate----------10.	RUB.
Di(tridecyl) 3,3'-thiodipropionate-	ACY, EVN.
	CEL, EKT, EKX, ENJ, HPC, MON, PUB, UCC.
Ethyl acetoacetate----	EKT, UCC.
*Ethyl acrylate-----	CEL, DBC, RH, UCC. DOW, KF, MON.
Ethyl chloroformate	CTN, FMP, OTC.
Ethylene carbonate	JCG.
Ethyl formate----	COM.
2-Ethyl-1-hexyl acetate-	EKT, UCC.
*2-Ethyl-1-hexyl acrylate-	CEL, DBC, UCC.
2-Ethyl-1-hexyl methacrylate	X.
Ethylidene diacetate------	CEL.
Ethyl propionate----------------1	NW.
Ethyl silicate (Tetraethoxysilane)	SFA, UCC.
Ethyl sulfate (Diethyl sulfate)-	UCC.
Ethyl thioglycolate-.......----	EVN.
Fatty acid esters, not included with plasticizers or surface-active agents:	
Dimethyl brassylate-------------	EMR.
Ethyl stearate-----	ICO.
Hexadecyl stearate-	ICI.
Isopropyl linoleate	VND.
Methyl esters of coconut oil	PG.
Methyl esters of tallow--	BFR, CHL, DA, HUM.
Methyl 12-hydroxystearate	BAC, HUM.
Methyl stearate--	DA.
Myristyl myristate-	VND.
All other--	CCA, DA, EMR, ICI.
Hexyl acetate-	ENJ.
n-Hexyl acrylate-	UCC.
*Isobutyl acrylate-	DBC, RH, UCC.
Isobutyl isobutyrate	EKX.
lsodecyl acrylate--	UCC.
*Iso-octyl mercaptoacetate---	CCW, EVN, HAB.
Iso-octyl 3 -mercaptopropionate-------	EVN. ENT HPC UCC
*Isopropyl acetate--------------	EKT, ENJ, HPC, UCC.
1sopropyl chloroformate-	CTN, PPG.
Lauryl lactate-*---	VND.
Methallylidene diacetate-	UCC.
Methyl acetate--	EK, UCC.
Methyl acetoacetate-	EKT, UCC.
Methyl acrylate, monomer-	CEL, DBC, RH.
Methyl borate ------	MHI, SFA.
Methyl chloroacetate-	DOW, KF.
Methyl chloroformate--	CTN, FMP.
Methyl dichloroacetate-	KF, PD.
Methyl formate--	DUP.
*Methyl methacrylate, monomer-	ACY, DUP, RH.
4-Methyl-2-pentyl acetate--	PUB, SHC, UCC.
Methyl sulfate (Dimethyl sulfate)-	DUP.
Methyl vinyl acetate-----	UCC.
Myristyl lactate-----....	VND.
	EVN.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2. --Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturers' identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued Halogenated Hydrocarbons--Continued	
*Chlorinated paraffins:	
Less than $35 \%$ chloride	DA.
35\%-64\% chlorine	CCH, DA, DV, HK, HPC, ICI, KPS, NEV.
65\% or more chlorine	DVC, NEV.
2-Chloro-1, 3-butadiene	DUP.
1-Chlorobutane (n-Butyl chloride)--	PUB, UCC.
2-Chlorobutane (sec-Butyl chloride)-	PLC.
1-Chloro-1,1-difluoroethane--	ACS, DUP.
*Chlorodif luorome thane	ACS, DUP, KAI, PAS, UCC.
*Chloroethane (Ethyl chloride)	AME, DOW, HPC, PPG, SHC, TNA.
*Chloroform----------------	ACS, DA, DOW, DUP, FRO, SFI.
*Chloromethane (Methyl chloride)-	ACS, ANM, DCC, DOW, DUP, FRO, TNA, UCC.
2-Chloro-2-methylpropane (tert-Butyl chloride)---	EK.
3-Chloro-2-methylpropene (Methallyl chloride)----	FMP.
	DUP.
3 -Chloropropene (Allyl chloride)	DOW, SHC.
Chlorotrifluoroethylene (Trifluorovinyl chloride)	ACS, MMM.
Chlorotrifluoroethylene, polymerized-----.--	$\mathrm{HK}, \mathrm{MMM}$.
*Chlorotrifluoromethane-	DUP, PAS, UCC.
1,2-Dibromo-1,1-dich loroethane	DOW.
Dibromodifluoromethane	DOW.
1,2-Dibromoethane (Ethylene dibromide)	DOW, ETD, HCH, MCH.
Dibromomethane (Methylene bromide)-	DOW, UCC.
1,2-Dibromo-1,1,2,2-tetrafluoroethane	DUP.
Dichlorobutadiene-	DUP.
1,3-Dichloro-2-butene-	DUP.
1,4-Dichlorobut ene---	DUP.
*Dichlorodifluoromethane	
*1,2-Dichloroethane (Ethylene dichloride)	AME, BFG, CO, DA, DOW, JCC, MON, PPG, TNA, UCC, WYN.
*Dichloromethane (Methylene chloride)------	ACS, DA, DOW, DUP, FRO, SFI.
*1,2-Dichloropropane (Propylene dichloride)   2,3-Dichloropropene--------------------------	DOW, JCC, UCC. DOW, UCC.
* Dichlorotetrafluoroethane	ACS, DUP, UCC.
1,1-Difluoroethane-	ACS, DUP.
Difluorotetrachloroethane-	DUP, UCC.
Diiodomethane (Methylene iodide)	NTB.
Hexaf luoropropylene, monomer----	DUP.
Iodobutane (Butyl iodide)---	RSA.
Iodoethane (Ethyl iodide), tech	CLB, EK, FMT, RSA.
Iodoform (Triiodomethane)---	NTB.
*Iodomethane (Methyl iodide)	CLB, EK, FMT, RSA.
1-1odoperfluorohexane	
Lauryl chlorides--	TEK.
Octafluorocyclobutane-	DUP.
1,1,2,2-Tetrabromoethane (Acetylene tetrabromide)	Dow.
Tetrabromoethane-----------------------------	Dow.
1,1,2,2-Tetrachloroethane (Acetylene tetrachloride)	DUP.
*Tetrachloroethylene (Perchloroethylene)	DA, DOW, DUP, FRO, HK, PPG, SFI, TNA, TTX.
Tetrafluoroethylene, monomer-	DUP.
Tetrafluoroethylene, polymer-	DUP, PAS.
Tetrafluoromethane---	DUP.
*1,1,1-Trichloroethane (Methyl chloroform)-	DOW, PPG, TNA.
1,1,2-Trichloroethane (Vinyl trichloride)	DOW.
*Trichl oroe thyl ene----	DOW, DUP, HK, PPG, TNA, TTX.
*Trichlorofluoromethane	ACS, DUP, KAI, PAS, UCC.
1,2,3-Trichloropropene	DOW, UCC.
Trichlorotrifluoroethane	ACS, DUP, PAS, UCC.
Vinyl bromide (Bromoethylene)---	DOW.
*Vinyl chloride, monomer (Chloroethylene)---	AME, BFG, CO, DA, DOW, GNT, HN, MON, MNO, PPG, TNA, UCC.
Vinyl fluoride-----------------	$x$.
Vinylidene chloride, manomer (1,1-Dichloroethylene)-	DOW.
All other---------	DUP, EK, GAF, PAS, PIC.

TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued


TABLE 2.--Miscellaneous chemicals: Manufacturers' identification codes, by products, 1968--Continued

Chemical	Manufacturerst identification codes (see Appendix, tables 1 and 2)
MISCELLANEOUS CHEMICALS, ACYCLIC--Continued   All Other Miscellaneous Acyclic Chemicals--Continued	
Methanesulf anol	PAS.
Methyldisulifide	CRZ.
Methyl sulfide (Dimethyl sulfide)	CRZ.
Methyl sulfoxide-------	CRZ.
Organo-aluminum compounds:	
Isobutylaluninum chloride	TNA, TEA.
Methylaluminum chlorides	TNA.
Other--	TNA, TSA.
Organo-boron compounds	ACS, SFA.
Organo-lead compounds:	DUP, HCH , NTC, TNA
*Tetraethyllead-n-*--   *Tetramethyllead----	DUP, $\mathrm{HCH}, \mathrm{NLC}, \mathrm{TNA}$. DUP, MIC, TNA.
*Tetra(methyl-ethyl) lead	DUP, HCH, TNA.
Organo-lithium compounds	FTE.
Organo-magnesium halides	ArA, CLB, $x$.
Organo-mercury compounds	NTB.
Organo-silicon compounds:	
Monomers	$\text { DCC, PIC, TRC, VCC, } x \text {. }$
*Polymers	DCC, ORO, SFA, SPD, UCC.
Orcano-tin compounds:	
Eis(tributyltin) oxicie	CCh.
Dibutyltin dichlorıde-	CCN.
Ifibutylmethoxytin (Dibutyl tin methoxide)	CCA.
	CCA, CCN, $x$.
Perchloromethanethiol (Perchloromethyl mercaptan)---	CHO.
Perlargonyl peroxide---------	WTL.
*Phosgene (Carbonyl chloride)	ACS, CTRi, DUP, MOB, OMC, OTC, PPG, RUC, UCC, UPJ, VDM.
Pine oil, synthetic-	CBY, HCI.
B-Propi olactone-	CEL.
Propionyl peroxide	KTLL.
Rare sugars-	PFN, PIC, P.SA.
Sodium ethoxide	FMP.
Sodium formaldehyde bisulfite	EK, IDC.
*Sodium formaldehyde sulfoxglate	DA, RH, ROY.
*Sodium methoxide (Sodium methylate)-m................- EFR, DA, DUP, OMC, REC, SFA.	
Succinyl peroxide-	WTL.
Tetrakis(hydroxymethyl)phosphonium chloride	HK.
Tributylphosphine-----	CCTH.
Trioctylphosphine oxide-	EK.
*Zinc formaldehyde sulfoxylate   Other-	$\mathrm{DA}, \mathrm{RH}, \mathrm{ROY}$.   ALD, ALK, CUC, DA, DUP, EK, GAF, KF, LCI, NES, NTL, PIC, PIC, SDW, SFA, UCC, WTL, $x, x, x_{0}$

## APPENDIX

The Directory of Manufacturers lists the companies that report their production of synthetic organic chemicals to the U.S. Tariff Commission. The name of each manufacturer is preceded by an alphabetical identification symbol. These identification symbols consist of not more than three capital letters, and usually bear a relation to the company name.

For 1968 , the Directory of Manufacturers lists approximately 800 primary manufacturers. Some of the companies that report production of synthetic organic chemicals do not sell the materials, but consume their entire output in further manufacturing.

The Directory of Manufacturers lists the reporting companies in two ways: table lists them in alphabetical order by identification symbols; table 2 lists the reporting companies in alphabetical order by company name, and gives the corresponding identification symbol and the company address. Company divisions are usually listed under the parent company's name.

TABLE 1.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968
[Names of synthetic organic chemical manufacturers that reported production or sales to the U.S. Tariff Commission for 1968 are listed below in the order of their identification codes as used in the final tables of the 14 individual sections of this report. Table 2 of the Appendix lists these manufacturers alphabetically and gives their office addresses.]

Code identification	Name of company	Code   identi-   fication	Name of company
AAC	Alcolac Chemical Corp.	ARC	Armour \& Co., Armour Industrial
AAE	American Aniline \& Extract Co., Inc.		Chemical Co. Div.
AAP	American Aniline Products, lnc.	ARD	Ardmore Chemical Co., lnc.
ABB	Abbott Laboratories	ARK	Armstrong Cork Co.
ABS	Abex Corp., American Brakeblok Div.	ARL	Arol Chemical Products Co.
ACC	Anoco Chemicals Corp.	ARM	USS Agri-Chemicals, lnc.
ACE	Acme Chemical Co.	ARN	Arenol Chemical Corp.
ACI	Aceto Industrial Chemical Co., Inc.	ARP	Armour Pharmaceutical Co.
ACN	Allied Chemical Corp., Agricultural Div.	ARZ	Arizona Chemical Co.
ACP	Allied Chemical Corp., Plastics Div.	ASH	Ashland Oil \& Refining Co.,
ACR	Corn Products Co., Acme Resin Co. Div.		Ashland Chemical Co. Div.
ACS	Allied Chemical Corp., Specialty Chemicals	ASL	Ansul Chemical Co.
	Div.	AST	Astra Pharmaceutical Products, inc.
ACT	Arthur C. Trask Co.	ASY	American Synthetic Rubber Corp.
ACU	Allied Chemical Corp., Union Texas Petroleum Div.	ATL	Atlantic Chemical Corp.
ACY	Petroleum Div. American Cyanamid Co.	ATP	Atco Chemical-Industrial Products, Inc., Fine Chemicals Div.
AES	Amerace-Esna Corp., Chemical Specialties	ATR	Atlantic Richfield Co., ARCO Chemical Co. Div.
		ATU	Atlantic Tubing \& Rubber Co.
AGP	Armour-Dial, Inc.	AV	FMC Corp., American Viscose Div.
AGY	Agway, Inc., Nitrogen Div.	AVS	Avisun Corp.
AKS	Arkansas Co., Inc.	AZT	Dart Industries, Inc., Aztec Chemicals Div.
ALB	Anes Laboratories, Inc.		
ALC	Alco Chemical Corp.	BAC	Baker Castor Oil Co.
ALD	Aldrich Chemical Co., Inc.	BAL	Baltimore Paint \& Chemical Corp.
ALF	Allied Chemical Corp., Fibers Div.	BAO	Bayoil Co., Inc.
ALL	Alliance Chemical Co., Inc.	BAR	American Rubber \& Chemical Co.
AlT	Crompton \& Knowles Corp., Chemicals Group, Althouse Div.	$\begin{aligned} & \text { BAS } \\ & \text { BAX } \end{aligned}$	BASF Corp.   Baxter Laboratories, Inc.
ALX	Alox Corp.	BCM	Belding Chemical Industries
AMB	American Bio-Synthetics Corp.	BCN	Lehn \& Fink Products Corp., 8eacon Div.
AMC	Amchem Products, Inc.	BDO	Benzenoid Organics, Inc.
AME	Anerican Chemical Corp.	BEE	Beecham, Inc.
AML	Amalgamated Chemical Corp.	BEN	8ennett's
AMO	Anerican Oil Co. (Texas)	BFG	B. F. Goodrich Co., B. F. Goodrich
AMP	American Potash \& Chemical Corp.		Chemical Co. Div.
AMR	Pacific Resins \& Chemical Co.	BFR	Branchflower Co.
AMS	Martin-Marietta Corp., Ridgway Color \& Chemical Div.	BJL BKC	Burdick 昌 Jackson Laboratories, lnc. J. T. Baker Chemical Co.
ANM	Ancon Chemical Corp.	${ }_{\text {BKL }}$	Millmaster Onyx Corp., Millmaster Chemical
APD	Atlas Chemical Industries, Inc.		Div., Berkely Chemical Dept.
APR	Atlas Processing Co.	BKM	Buckman Laboratories, Inc.
APT	American Petrochemical Corp., Mol Rez Div.	BL	8elle Chemical Co., Inc.
APV	Armstrong Paint \& Varnish Works, lnc. Apex Chemical Co., Inc.	BLA	Astor Products, Blue Arrow Div.
APX	Apex Chemical Co., Inc. Arapahoe Chemicals Div. of Syntex Corp.	BLS	Beech-Nut, Inc.

TABLE l.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code   identi-   fication	Name of company	Code identification	Name of company
BME	Bendix Corp., Friction Materials Div.   Borden, Inc., Borden Chemical Div.   Walter N. Boysen Co.   Stauffer Chemical Co., Cowles Chemical   Div., Benzol Products   Brand Plastics Co.   Baird Chemical Industries, Inc.   Bristol-Meyers Co., Bristol Laboratories Div.	CNC	Columbia Nitrogen
BDR		CNP	Columbia Nipro Corp.
BOY		CO	Continental Oil
BPC		COL	Collier Carbon \& Chemical Corp.
BPL		COM	Commercial Solvents Corp.
BRD		CON	Concord Chemical Co., Inc.
BRS		COR	Coopers Creek Chemical Corp.
		CP	Colgate-Palmolive Co.
BRU	M. A. Bruder \& Sons, Inc.	CPC	Childs Pulp Colors, Inc.
BST	Occidental Petroleum Corp., Occidental Chemical Co. Div.	CPD	Chemical Products Corp.
		CPL	Conoco Plastics
BSW	Original Bradford Soap Works, Inc.	CPP	Charmin Paper Products Co.
BUC	Blackman-Uhler Chemical Co.	CPV	Cook Paint \& Varnish Co.
BUK	Buckeye Cellulose Corp.	CPX	Chemplex Co.
BUR	Burroughs-Wellcone \& Co. (U.S.A.) , Inc.	CPY	Copolymer Rubber \& Chemical Corp.
BXT	J. H. Baxter \& Co.	CRD	Croda, Inc.
CAD	Chemetron-Noury Corp.	CRN	Corn Products Co.
CAP	Cap-Roc, Inc.	CRS	Carus Chemical Co., Inc.
CAU	Calcasieu Chemical Corp.	CRT	Crest Chemical Corp.
CBA	```Ciba Corp.: Ciba Agrochemical Co. Ciba Products Co. Georgia-Pacific Corp., Coos Bay Div. Chembond Corp. Carborundum Co., Coated Abrasives Div. Columbian Carbon Co., Inc. and Chemicals Div.```	CRY CRZ	Tenneco Chemicals, Inc., Tenneco Plastics Div.
CBC		CRZ	Crown Zellerbach Corp., Chemical Products Div.
CBD		CSB	Imoco-Gateway Corp. Chemical Services
CBM		CSD	Cosden Dil \& Chemical Co.
CBN		CSD	Cities Service Oil Co.
		CSP	Coastal States Petrochemical Co.
CBR	Colab Resin Corp.	CST	Charles S. Tanner Co.
CBT	Samuel Cabot, Inc.	CIL	Continental Chemical Co.
CBY	Crosby Chemicals, Inc.	CUC	Air Reduction Co., Inc., Airco Chemicals
CCA	Carlisle Chemical Works, Inc., Advance Div.		Plastics
CCC	Chase Chemical Corp.	CUT	Cutter Laboratories, Inc.
CCH	Pearsall Co.	CW	General Mills, Inc.
CCL	Charlotte Chemical Laboratories, Inc.	CWL	Stauffer Chemical Co.,
CCO	Reichhold Chemicals, Inc., Rubber Chemicals Group		Cowles Chemical Div,
CCP	Crown Central Petroleum Corp.	CWP	Consolidated Papers, Inc.
CCW	Carlisle Chemical Works, Inc.	CW	
CEL	Budd Co., Polychem Div.	DA	Diamond Shamrock Corp.
	Celanese Corp., Celanese Coatings Co. Cooperative Farm Chemicals Association	DAN	Dan River Mills, Inc.
CFA		DAV	Conchemco, Inc., H. B. Davis Co. Div.
CFC	Sun Chemical Corp.	DCC	Dow Corning Corp.
CGL	Cargill, Inc.	DCP	Dixie Chemical Products, Inc.
CHF	Chemical Formulators, Inc.	DEG	Degen Oil \& Chemical Co.
CHG	Chemagro Corp.	DEP	DePaul Chemical Co., Inc.
CHL	Chemol, Inc.	DEX	Dexter Chemical Corp.
CHO	Stauffer Chemical Co., Calhio Chemicals, Inc. Div.	DIX	Dixie Chemi cal Co.
CHP	C. H. Patrick \& Co., Inc.	DLH	Hess Oil \& Chemical Corp.
CHT	Chattem Drug \& Chemical Co., Chatten Chemicals Div.   Ciba Chemical \& Dye Co.	DOM	Dominion Products, Inc.
CIB		DOW	Dow Chemical Co.
CIK	Tenneco Chemicals, Inc., Cal/Ink Div.	DPP	Dixie Pine Products Co., Inc.
CIS	Chemical Insecticide Corp.	DRW	Drew Chemical Corp.
CKL	Chemlek Laboratories, Inc.	DSO	DeSoto, Inc.
CLB	Columbia Organic Chemicals Co., Inc.	DUN	Frank W. Dunne Co.
CLD	Colloids, Inc.	DUP	E. I. dupont de Nemours \& Co., Inc.
CLI	Clintwood Chemical Co.	DVC	Dover Chemical Corp.
CLN	Standard Brands, Inc., Clinton Corn Processing Co. Div.	DXS	Sun Dil Co., DX Div.
		DYS	Davies-Young Co.
CLV	Clover Chemical Co.	ECC	Eastern Color \& Chemical Co.
CLY	W. A. Cleary Corp.	ECL	Eastside Chemical Laboratory
CM	Carpenter-Morton Co. Cos-Mar Co.	EFH	E. F. Houghton \& Co.
CMC	Cos-Mar Co. Nyanza, Inc.	EK	Eastman Kodak Co.:
CMP	Nyanza, Inc. Commercial Products Co., Inc.	EKT	Tennessee Eastman Co. Div.
	Comercial Products Co., Inc.	EKX	Texas Eastman Co. Div.

TABLE 1.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code identification	Name of company	Code   identi-   fication	Name of company
ELP	E1 Paso Products Co.	GIV	Givaudan Corp.
EMK	Emkay Chemical Co.	GLC	General Latex \& Chemical Corp.
EMR	Emery Industries, Inc.	GLD	SCM Corp.:
EN	Endo Laboratories, Inc.		Famous Foods Div.
ENJ	Enjay Chemical Co.		Glidden-Durkee Div.
ENO	Enenco, Inc.	GLX	Electro-Seal Glasflex Corp.
EPC	Epoxylite Corp.	GLY	Glyco Chemicals, Inc.
ESA	East Shore Chemical Co., Inc.	GNF	General Foods Corp., Maxwell House Div.
ESC	Escambia Chemical Corp.	GNM	General Mills, Inc., Chemical Div.
ETD	Ethyl-Dow Chemical Co.	GNT	General Tire \& Rubber Co., Chemical Div.
EVN	Evans Chemetics, Inc.	GOC	Gulf Dil Corp.
EW	Westinghouse Electric Corp., Industrial	GOR	Gordon Chemical Co., lnc.
	Plastics Div., Chemical Products Plant	GPM	General Plastics Manufacturing Co.
		GPR	Grain Processing Corp.
FAB	Fabricolor Manufacturing Corp.	GRA	Great American Plastics Co.
FAR	Farnow, Inc.		W. R. Grace \& Co.:
FB	Fritzsche Bros., Inc.	GRC	Dubois Chemicals Div.
FBF	Rexall Chemical Co., Fiberfil Div.	GRD	Dewey \& Almy Chemical Div.
FBR	Pabco Paint Corp.	GRG	P. D. George Co.
FC	Franklin Chemical Co.		W. R. Grace \& Co.:
FCA	Farmers Chemical Association, Inc.	GRH	Hatco Chemical Div.
FCD	France, Campbell \& Darling, Inc.	GRL	Vestal Laboratories Div.
FCL	Federal Color Laboratories, Inc.	GRO	Millmaster Onyx Corp., A. Gross \& Co. Div.
FEL	Felton International, lnc.	GRS	Pontiac Refining Corp.
FER	Ferro Corp., Ferro Chemical Div.	GRV	Guardsman Chemical Coatings, Inc.
FG	Foster Grant Co., Inc.	GRW	Great Western Sugar Co.
FH	Foster-Heaton Co.	GTH	Guth Chemical Co.
FIN	Fine Organics, Inc.	GTL	Great Lakes Chemical Corp.
FIR	Firestone Tire \& Rubber Co., Firestone Plastics Co. Div.	GYR	Goodyear Tire \& Rubber Co.
FIS	Fisher Chemical Co., Inc. \& Fisher Melamine Cord.	HAB   HAL	Halby Products Co., Inc. C. P. Hall Co. of Illinois
FLH	H. B. Fuller Co.	HAM	Hampden Color \& Chemical Co.
FLM	Fleming Laboratories, Inc.	HAN	Hanna Paint Manufacturing Co., Inc.
FLO	Florasynth, Inc.	HAP	Applied Plastics Co., lnc.
FLW	Fuller-0'Brien Corp.	HCH	Houston Chemical Corp.
FMB	FMC Corp., Inorganic Chemicals Div. \& Organic Chemicals Div.	HCR	Hercor Chemical Corp.
FMN	FMC Corp., Niagara Chemical Div.	HDG	Heresite \& Chemical Co.
FMP	FMC Corp., Organic Chemicals Div. \& Nitro Plant	HET	Heterochemical Corp. Hewitt Soap Co.
FMr	Fairmount Chemical Co., Inc.	HEX	Hexagon Laboratories, Inc.
FOC	Farac Oil \& Chemical Co., Div of Handschy Chemical Co.	HFT	Hoffman-Taff, Inc.
FOM	Formica Corp.	HK HKD	Hooker Chemical Corp., Durez Div.
FOR	El Dorado Chemical Co.	HKY	Hawkeye Chemical Co.
FRL	Firestone Tire \& Rubber Co., Firestone 1ndustrial Rubber Products Co. Div.	HL1 HMP	Haag Laboratories, Inc.   W. R. Grace \& Co., Hampshire Chemical Div.
FRM	Farmer's Chemical Co.	HMY	Humphrey Chemical Co.
FRO	Vulcan Materials Co., Chemicals Div.	HN	Tenneco Chemicals, Inc.
FRP	Filtered Rosin Products Co.	HNC	H \& N Chemical Co.
FRS	Firestone Tire \& Rubber Co., Firestone Synthetic Rubber \& Latex Co. Div.	HNT   HNX	Huntington Laboratories, lnc.   Tenneco Chemicals, Inc., Nuodex Div.
FSH	Frisch \& Co., Inc.	HOF	Hoffmann-LaRoche, Inc.
FST	First Chemical Corp.	HOU	Air Products \& Chemicals, Inc., Houdry
FTE	Foote Mineral Co.		Process G Chemical Div.
FTX	Central Farmers Fertilizer Co., Fel-Tex Plant	HPC	Hercules, Inc.
GAF	GAF Corp.:	HRS	Harris Paint Co.
	Dyestuff \& Chemical Div.	HRT HSC	Hart Products Corp.
	Polymers Chemical Dept., Textile Chemical Div.	HSH	Harshaw Chemical Co. Div. of Kewanee Oil Co.
GAN	Gane's Chemical Works, Inc.	HST	American Hoechst Corp.
GCC	W. R. Grace \& Co., Ag Chem. Group	HUM	Kraftco Corp., Humko Products Div.
GE	General Electric Co.,	HUS	Husky Briquetting, Inc.
GE1	Insulating Materials Dept.	HVG	Haveg Industries, Inc.
GFS	G. Frederick Smith Chemical Co.	HYC	Dextro Corp., Hysol Div.
GGC	Goodrich-Gulf Chemicals, Inc. Geigy Chemical Corp.	HYN	Hynson, Westcott \& Dunning, Inc.
GIL	Gilman Paint \& Varnish Co.		

TABLE 1.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code identification	Name of company	Code identification	Name of company
IBI	Industrial Biochemicals, Inc.	LMI	North Anerican Chemical Co.
ICC	Inmont Corp.	LPC	Lignin Products Co.
ICF	Interchemical Corp., Finishes Div.	LUB	Lubrizol Corp
ICI	ICI America, Inc.	LUE	George Lueders \& Co., Inc.
ICO	Inmont Corp.	LUR	Laurel Products Corp.
IDC	Industrial Dyestuff Co.	LVR	C. Lever Co., Inc.
IFF	International Flavors \& Fragrances, Inc.	LVY	Fred'k H. Levey Co. Div. of Columbian
IMC	International Minerals \& Chemical Corp.		Carbon Co., Inc.
IMP	Hercules, Inc., Imperial Color \& Chemical Dept.	MAL	Mallinckrodt Chemical Works
INL	Inland Steel Co., Inland Steel Container	MAR	American Can Co.
	Co. Div.	MAT	Matador Chemical Co., Inc.
10C	Ionac Chemical Co. Div, of Sybron Corp.	MAY	Otto B. May, Inc.
IPC	Interplastic Corp., Comnercial Resins Div.	MCA	Masonite Corp, Alpine Div.
IPI	Isocyanate Products, Inc.	MCB	Borg-Warner Corp., Marbon Chemical Div.
IPR	Inter-Pacific Resins, Inc.	MCC	McCloskey Varnish Co.
IRC	TRC, Inc., IRC Div.	MCH	Michigan Chemical Corp.
IRI	Ironsides Resins, Inc.	MCI	Mooney Chemicals, Inc.
ISC	Interstate Chemical Co.	MCP	Moretex Chemical Products, Inc.
		MED	Medical Chemicals Corp.
JCC	Jefferson Chemical Co., Inc.	MEE	Maumee Chemical Co.
JDC	Nipak, Inc.	MER	Merichem Co.
JEN	Jennison-Wright Corp.	MET	M \& T Chemicals, Inc.
JMS	J. Meyer \& Sons, Inc.	MFG	Molded Fiber Glass Cos., Inc.
JNS	S. C. Johnson \& Son, Inc.	MGK	McLaughlin Gormley King Co.
JOB	Jones-Blair Paint Co.	MGR	Magruder Color Co., Inc.
JOR	Jordan Chemical Co.	MHI	Ventron Corp., Metals Chemicals Div.
JRG	Andrew Jergens Co.	MID	Dexter Corp., Midland Div.
JSC	Jersey State Chemical Co.	MIR	Miranol Chemical Co., Inc.
JTC	Joseph Turner \& Co.	MLS	Miles Laboratories, Inc., Marschall Div.
JWL	Jewel Paint \& Varnish Co.	MMM	Minnesota Mining \& Manufacturing Co.
		MNO	Monochem, 1nc.
KAI	Kaiser Aluminum \& Chemical Corp.	MNP	Minnesota Paints, Inc.
	Kaiser Chemicals Div.	MOA	Mona Industries, Inc.
KAL	Kali Manufacturing Co.	MOB	Mobay Chemical Co.
KCC	Kennecott Copper Corp., Chino Mines Div.	MOC	Marathon Oil Co., Texas Refining Div.
KCU	Keystone Chemurgic Corp. Kennecott Copper Corp., Utah Copper Di	MON	Monsanto Co.
KCW	Keystone Color Works, Inc.	MOT	Motomco, Inc.
KEL	Kelly-Pickering Chemical Corp.	MR	Benjamin Moore \& Co.
KEN	Witco Chemical Corp., Kendall Refining Co.	MRA	Crown-Metro
	Div.	MRB	Marblette Co. Div. of Allied Products Corp.
KET	Ketona Chemical Corp.	MRD	Marden-Wild Corp.
KF KMC	Kay-Fries Chemicals, Inc. Kohler-McLister Paint Co.	MRK	Merck \& Co., Inc.
KMP	Kohler-Mclister Paint Co. Kelly-Moore Paint Co.	MRN	Standard Brands Chemicals, Inc., Paisley Div.
KND	Knoedler Chemical Co.	MRT	W. R. Grace \& Co., Marco Chemical Div Morton Chemical Co.
KNG	Far-Best Corp., O. L. King Div.	MRV	Marlowe-Van Loan Corp.
KNP	Knapp Products, Inc.	MRX	Max Marx Color \& Chemical Co., Inc.
KON	H. Kohnstamm \& Co., Inc.	MSC	Mississippi Chemical Corp.
KPI	Kenrich Petrochemicals, Inc.	MTO	Montrose Chemical Corp. of California
KPP	Sinclair-Koppers Co.	MTR	Chris-Craft Industries, Inc., Montrose
KPS	Koppers Pittsburgh Co.		Chemical Div.
KPT	Koppers Co., Inc., Organic Materials Div.	MYW	Stepan Chemical Co., Maywood Div.
KYN	Kyanize Paints, Inc.		
KYS	Keysor Chemical Co.	NCA	Northrop Carolina, Inc.
LAK	Lakeway Chemical Co.	NCI	Union Camp Corp., Chemicals Div.
LAM	LaMotte Chemical Products Co.	NCW	Nostrip Chemical Works, Inc.
LAS	Lasco Industries, Inc.	NEO	Norda Essential Oil \& Chemical Co., Inc.
LCI	Lachat Chemicals, Inc.	NES	Nease Chemical Co., Inc.
LEA	Leatex Chemical Co.	NEV	Neville Chemical Co.
LEB	Lebanon Chemical Corp.	NIL	Nilok Chemicals, Inc.
LEM	B. L, Lemke \& Co. , Inc.	NIT	Nitrin, Inc.
LEN	Leonard Refineries, lnc.	NLC	Nalco Chemical Co.
LEV	Lever Brothers Co.	NMC	National Milling \& Chemical Co.
LIL	Eli Lilly \& Co.	NOC	Norac Co., lnc. \& Mathe Chemical Co. Div.
LKL	Lakeside Laboratories Div. of ColgatePalmolive Co.	NON	A. P. Nonweiler Co.
LKY	Lake States Div. of St. Regis Paper Co.	NOR   NPC	Norwich Pharmacal Co. Northwest Petrochemical Corp.

TABLE 1. --Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code   identi-   fication	Name of company	Code   identi-   fication	Name of company
NP I	National Polychemicals, Inc.	PMP	Premier Malt Products, Inc.
NPP	Enjay Chemical Co., Enjay Fibers \&	PNT	Pantasote Co.
	Laminates Co. Div.	PNX	Murphy-Phoenix Co.
NPR	Safeway Stores, Inc., Newport Products	POL	Polymer Corp.
	Co. Div.	PPC	Premier Petrochemical Co.
NPV	Norris Paint \& Varnish Co.	PPG	PPG Industries, Inc.
NSC	National Starch \& Chemical Corp.	PPL	Pioneer Plastics Core
NTB	National Biochemical Co.	PPR	Phillips Puerto Rico Corp., Inc.
NTC	National Casein Co.	PRC	Products Research \& Chemical Corp.
NTL	National Lead Co.	PRD	Productol Chemical Co., Inc.
NVF	NVF Co.	PRT	Pratt \& Lambert, Inc.
NVT	Novamont Corp., Neal Works	PRX	Purex Corp., Ltd.
NW	Northwestexn Chemical Co.	PSC	Passaic Color \& Chemical Co.
		PSP	Georgia-Pacific Corp., Bellingham Div.
OBC	0'Brien Corp.	PTO	Puerto Rico Chemical Co., Inc.
OCF	Owens-Corning Fiberglas Corp.	PTP	Preservative Paint Co.
OH	Air Reduction Co., Inc., Ohio Medical	PTT	Petro-Tex Chemical Corp.
	Products Div.	PUB	Publicker Industries, Inc.
OMC	Olin Corp., \& Agricultural Chemicals Div.	PUR	Puritan Chemical Co.
OMS	E. R. Squibb \& Sons, Inc.	PVI	Polyvinyl Chemicals, Inc.
ONX	Millmaster Onyx Corp., Onyx Chemical Co. Div.	PYL	Polychemical Laboratories, Inc.
OPC	Orbis Products Corp.	PYR	Poly Resins
ORG	Organics, Inc.	PYZ	Polyrez Co., Inc.
ORO	Chevron Chemical Co.		
ORT	Roehr Chemicals, Inc.	QCP	Quaker Chemical Corp.
OSB	C. J. Osborn Co.	QKO	Quaker Oats Co.
OTA	Ottawa Chemical Co.	QUN	K. J. Quinn \& Co., Inc.
OTC	Dtt Chemical Co.		
OTH	Chevron Chemical Co.	$\begin{aligned} & \text { RAB } \\ & \text { RAY } \end{aligned}$	Raybestos-Manhattan, Inc., Raybestos Div. ITT Rayonier, Inc.
PAI	Pennsylvania Industrial Chemical Corp.	RBC	Roberts Chemicals, Inc.
PAN	Pan American Petroleum Corp.	RCC	Rexall Drug \& Chemical Co., Rexall Chemical
PAR	Pennsylvania Refining Co.		Co. Div.
PAS	Pennwalt Corp.	RCD	Richardson Co.
PAT	Patent Chemicals, Inc.	RCI	Reichhold Chemicals, Inc.
PBI	Private Brands, Inc.	RDA	Rhodia, Inc.
PBY	Pillsbury Co.	RED	Red Spot Paint \& Vamish Co., Inc.
PC	Proctor Chemical Co., Inc.	REH	Reheis Chemical Co. Div. of Armour
PCC	USS Chemicals Div. of U.S. Steel Corp.		Pharmaceutical Co.
PCH	Peerless Chemical Co.	REL	Reliance Universal, Inc. \& Rel-Rez Div.
PCI	Pioneer Chemical Works, Inc.	REM	Remington Arms Co., Inc.
PCR	Princeton Chemical Research, Inc.	REN	Renroh Resins
PCS	Emery Industries, Inc., Western Div.	REZ	Rezolin, Inc.
PCW	Pfister Chemical, Inc.	RGC	Rogers Corp.
PD	Parke, Davis \& Co.	RH	Rohm \& Has Co.
PDC	Berncolors-Poughkeepsie, Inc	RIK	
PEK	Peck's Products Co.		\& Chemical Co.
PEL	Pelron Corp.	RIL	Reilly Tar \& Chemical Corp.
PEN	CPC International, Inc., Penick Div.	RIV	Riverdale Chemical Co.
PER	Perry \& Derrick Co., Inc.	RLS	Rachelle Laboratories, Inc.
PFN	Pfanstiehl Laboratories, Inc.	ROB	Robeco Chemicals, Inc.
PFP	Midwest Manufacturing Corp.	ROM	United Merchants \& Manufacturers, Inc.,
PFW	Polak's Frutal Works		Roma Chemical Div.
PFZ	Chas. Pfizer \& Co., Inc.	ROY	Royce Chemical Co.
PG	Proctor \& Gamble Co., Proctor \& Gamble Manufacturing Co .	RPC	Millmaster Onyx Corp., Refined-Onyx Div. R.S.A. Corp.
PGU	Gulf Oil Corp., Perkins Glue, Chemicals Dept.	RSB RT	Rosenberg Bros. \& Co.   F. Ritter E Co.
PHF	Peter Hand Foundation, Inc.	RTC	Ritter Chemical Co., Inc.
PHR	Pharmachem Corp.	RTF	Retzloff Chemical Co.
PIC	Pierce Organics, Inc.	RUB	Hooker Chemical Corp., Ruco Div.
PII	Polymer Industries, Inc.	RUC	Rubicon Chemicals, Inc.
PIL	Pilot Chemical Co.		Sandoz Inc \& Dyestuff \& Chemical Div
PIT	Pitt-Consol Chemical Co.	S	Sandoz, Inc. \& Dyestuff \& Chemical Div.
PLA	Richardson Co., Richardson Polymers Div.	SAC	Southeastern Adhesives Co.
PLB	P-L Biochemicals, Inc.	SAL	Salsbury Laboratories
PLC	Phillips Petroleum Co.	SAR	Sartomer Resins, lnc.
PLS	Plastics Engineering Co.	SBC	Scher Bros., Inc.
PLU	Plumb Chemical Corp.	SBI	Standard Brands Chemical Industries, lnc.
PLX PMC	Plex Chemical Corp.   Plastics Manufacturing Co.	SBO	Southern Biochemical Corp.

TABLE 1.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code   identi-   fication	Name of company	Code   identi-   fication	Name of company
SBP	Sugar Beet Products Co.	SPL	Spaulding Fibre Co., lnc.
SCC	Standard Chlorine of Delaware, Inc.	SPY	Standard Pyroxoloid Corp.
SCF	Schaefer Varnish Co.	SRL	G. D. Searle \& Co.
SCH	Schering Corp.	STA	A. E. Staley Manufacturing Co.
SCN	Schenectady Chemicals, Inc.	STC	Sou-Tex Chemical Co., Inc.
SCO	Scholler Bros., Inc.	STG	Stange Co.
SCP	Standard Chemical Products, Inc.	STP	Stepan Chemical Co.
SCR	R. P. Scherer Corp.	SUG	Colonial Sugars Co., Sucro Chemical Div.
SDC	Martin-Marietta Corp., Southern Dyestuff	SUM	Summit Chemical Products Corp.
	Co. Div.	SUN	Sun Dil Co., Sunoco Div.
	Sterling Drug, Inc.:	SVC	Sullivan Varnish Co.
SDG	Glenbrook Laboratories Div.	SVT	Solvent Chemical Co., Inc.
SDH	Hilton-Davis Chemical Co. Div.	SW	Sherwin-Williams Co.
SDW	Winthrop Laboratories Div.	SWT	Swift \& Co., Swift Chemical Co. Div.
SEA	Seaboard Chemicals, Inc.	SYC	Synthetic Chemicals, lnc.
SED	Conchemco, Inc., Kansas City Div.	SYP	Synthetic Products Co.
SEL	Selney Co., Inc.	SYV	Synvar Corp.
SEY	Seydel-Woolley \& Co.		
	Stauffer Chemical Co.:	TAE	Chemetron Corp., National Cylinder Gas Div.
SF	Agricultural Div.	TCC	Tanatex Chemical Corp.
SFA	Specialty Chemical Div.	TCD	Tenneco Chemicals, Inc., Tenneco Colors Div.
SFD	Sonford Chemical Co.	TCH	Trylon Chemicals, lnc.
SFI	Stauffer Chemical Co., Industrial Div.	TCI	Norwich Pharmacal Co., Texize Chemicals,
SH	Stein, Hall \& Co., Inc.		Inc. Div.
SHA	Shanco Plastics \& Chemicals, Inc.	TDC	Diversey Corp., Diversey Chemical Co. Div.
SHC	Shell Oil Co., Shell Chemical Co. Div.	TEK	Teknor Apex Co.
SHF	National Dairy Products Corp., Sheffield Chemical Div.	$\begin{aligned} & \text { TEN } \\ & \text { TER } \end{aligned}$	Tennessee Copper Co. Div. of Tennessee Corp. Terra Chemicals International, Inc.
SHL	Nitini, Inc. Sub of Shulton, Inc.	THC	01 in Corp., Thompson Plastics
SHO	Shell Oil Co.	THM	Wm. T. Thompson Co., Thompson Chemicals Div.
SHP	Shepherd Chemical Co.	TIC	Ticonderoga Chemical Corp.
SIC	Vistron Corp., Silmar Div.	TID	Getty Oil Co.
SID	George F. Siddall Co., Inc.	TKL	Thiokol Chemical Corp.
SIM	Simpson Timber Co.	TMH	Thompson-Hayward Chemical Co.
SIN	Sinclair Oil Corp.	TMS	Sterling Drug, Inc., Thomasset Colors Div.
S10	Standard Oil Co. of Ohio	TNA	Ethyl Corp.
SIP	James P. Sipe \& Co.	TNI	Gillette Chemical Co. Div. of Gillette Co.
SK	Smith, Kline \& French Laboratories	TOC	Tenneco Dil Co.
SKC	Sinclair-Koppers Chemical Co.	TRC	Toms River Chemical Corp.
SKG	Sunkist Growers, Inc.	TRO	Troy Chemical Co.
SKO	Skelly Oil Co.	TSA	Texas Alkyls, Inc.
SKT	Textron, Inc., Spencer Kellogg Div.	TTX	Detrex Chemical Industries, Inc.
SLC	Soluol Chemical Co., Inc.	TUS	Texas-U.S. Chemical Co.
SLM	Salem Oil \& Grease Co.	TV	Sun Chemical Corp.
SLV	Sterling Drug, Inc., Salvo Chemical Div.	TX	Texaco, lnc.
SM	Mobil Chemical Co.	TXC	Tex Chem Co.
SM	Mobil Oil Corp. \& Mobil Chemical Co.	TXN	Textilana-Nease, Inc.
	Div., Industrial Chemical Div.	TXT	Textilana Corp.
SMC	Stamford Chemical Industries, Inc.	TZC	Tizon Chemical Corp.
SNA	Sun Chemical Corp., Pigments Div.		
SNC	Sonoco Products Co.	UBS	Staley Chemicals
SNI	Kaiser Aluminum \& Chemicals Corp., Kaiser	UCC	Union Carbide Corp.
	Agricultural Chemicals Div.	UD1	Petrochemicals Co., Inc.
SNO	SunOlin Chemical Co.	UHL	Paul Uhlich \& Co., Inc.
SNT	Suntide Refining Co.	UNG	Ungerer \& Co.
SNW	Sun Chemical Corp., Chemical Div.	UNN	United Chemical Corp. of Norwood
SOC	Standard Oil Co. of California, Chevron	UNO	United Oil Manufacturing Co.
	Chemical Co.	UNP	United Chemical Products Corp.
SOG	Signal Oil \& Gas Co.	UNS	Union Starch \& Refining Co., Inc.
SOH	Vistron Corp.	UOC	Union Oil Co. of California
SOI	American Oil Co. (Maryland)	UOP	Universal Oil Products Co., UOP Chemical
SOL	Solar Chemical Corp.		Div.
SOP	Southern Chemical Products Co.	UPF	U.S. Pipe \& Foundry Co.
SOR	Thomason lndustries, Inc., Southern Resin Div.	UPJ	Upjohn Co.
SOS	Southern Sizing Co.	UPL	U.S. Plywood-Champion Papers, Inc., California Div., Shasta Operations
SPC	Sinclair Paint Co.	UPM	Universal Oil Products Co.
SPD	General Electric Co., Silicone Products Dept.	UPR USB	Argus Chemical Corp., U.S. Peroxygen Div. U.S. Borax Research Corp.
SP1	Sinclair Oil Corp., Chemical Div.		

TABLE 1.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by code, 1968--Continued

Code identification	Name of company	Code identification	Name of company
USI	National Distillers \& Chemical Corp.:   National Petro Chemical Corp. Div.   U.S. Industrial Chemicals Co. Div.	WHII   WHL   WHW	White \& Hodges, Inc.   Whitmoyer Laboratories, Inc.   Whittemore-Wright Co., Inc.
USO	U.S. Oil Co., Inc.	W1C	Wica Chemicals, Inc.
USR	Uniroyal, lnc., Chemical Div.	W1L	Wilson Pharmaceutical \& Chemical Corp.,
UVC	Universal Chemicals Corp.	WJ	Wilson Laboratories Div. Warner-Jenkinson Manufacturing Co.
$\begin{aligned} & \text { VAC } \\ & \text { VAL } \end{aligned}$	Northern Petrochemical Co., Varney Div. Valchem	WM	Wilson Pharmaceutical \& Chenical Corp. Wilson-Martin Div.
VB	Vermilye-Bell	WMP	Warner Machine Products, Inc., Warner
VDM	Van De Mark Chemical Co., Inc.		Chemical Div.
VEL	Velsicol Chemical Corp.	WOB	Woburn Chemical Corp.
VGC	Virginia Chemicals, Inc.	WOD	Woodbury Chemical Co.
VIN	Vineland Chemical Co.	WON	Woonsocket Color \& Chemical Co.
VLN	Valley Nitrogen Producers, Inc.	WRC	Wood Ridge Chemical Corp.
VLY	Chem-Fleur, Inc.	WRD	Weyerhaeuser Co.
VNC	Vanderbilt Chemical Corp.	WSN	Washine Chemical Corp.
VND	Van Dyk \& Co., Inc.	WTC	Witco Chemical Co., Inc.
VPC	Verona-Pharma Chemical Corp.		Wallace \& Tiernan, Inc.:
VPT	Vickers Refining Co., Inc.	WTH	Harchem Div.
VSV	Valentine Sugars, Inc., Valite Div.	WTL	Lucidol Div.
VIM WAW	Vitamins, Inc. W. A. Wood Co.	WVA	Westvaco Corp.: Chemical Div., Tall Oil Dept. Polychemicals Div.
WAY	Philip A. Hunt Chemical Corp., Wayland Chemical Div.	WYC WYN	Wycon Chemical Co.   Wyandotte Chemicals Corp.
WBC WBG WCA	Worthington Biochemical Corp. White \& Bagley Co.	WYT	Wyeth Laboratories, Inc. Div. of American Home Products Corp.
WCC   WES   WHC	```Witco Chemical Corp., Witfield Chemical Div. Weston Chenical Co., Inc. Whittaker Corp., Research & Development/San Diego```	YAW	Young Aniline Works, Inc.

TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968
[Names of synthetic organic chemical manufacturers that reported production or sales to the U.S. Tariff Commission for 1968 are listed below alphabetically, together with their identification codes as used in the final tables of the 14 individual sections of this report. Table 1 of the Appendix lists these manufacturers in the order of their identification codes.]

Identi-   fication code	Name of company	Office address
A8B	Abbott Laborator	14th St. and Sheridan Rd., N. Chicago, IL 60664.
ABS	Abex Corp., American Brakelok	900 W. Maple Rd., Troy, Ml $4 \mathrm{B084}$.
ACI	Aceto Industrial Chemical Co.,	126-02 Northern Blvd., Flushing, New York, NY 11368.
ACE	Acme Chemical Co	2506 N. 32d St., Milwaukee, WI 53245.
AGY	Agway, Inc., Nitrogen Div---------	1446 8uffalo St., Olean, NY 10760.
HOU	Air Products \& Chemicals, Inc., Houdry   Process \& Chemical Div.   Air Reduction Co., Inc.:	1339 Chestnut St., Philadelphia, PA 19107.
CUC	Airco Chemicals \& Plastic	150 E .42 d St., New York, NY 10017.
OH	Ohio Medical Products	1400 E. Washington Ave., Madison, WI S3701. 19134.
ALC	Alco Chemical Corp	Trenton Ave, and William St, Philadelphia, PA 19134.
AAC	Alcolac Chemical Corp	3440 Fairfield Rd., Baltimore, MD 21226.
ALD	Aldrich Chemical Co.	2371 N. 30th St., Milwaukee, WI 53210.
ALL	Alliance Chemical Co., IncAllied Chemical Corp.:	P. 0. Box 326, Ridgefield, NJ $076 \mathrm{S7}$.
ACN	Agricultural Div------	40 Rector St., New York, NV 10006.
ALF	Fibers Div	1450 Broadway, New York, NY 1001B.
ACP	Plastics Div	P. 0. Box 36S, Morristown, NJ 07960.1
ACS	Specialty Chemicals Div	Colunbia Rd. Eq Park Ave, Morristown, NJ 07960.
ACU	Union Texas Petroleum	P. 0. Box 2120, Houston, TX 77001.
ALX	Alox Corp	3943 Buffalo Ave., Niagara Falls, NY 14302.13
AML	Amalgamated Chemical Corp	Ontario and Rorer Sts., Philadelphia, PA 19134.
AMC	Amchem Products. Inc-	Brookside Ave., Ambler, PA 19002.
AES	Amerace-Esna Corp., Chemical Specialties Div.	74 Hudson Ave., Tanafly, NJ 07670.
AAE	American Aniline \& Extract Co., Inc-	Venango and F Sts., Philadelphia, PA 19134.
AAP	American Aniline Products,	P. 0. 80x 3063, Paterson, NJ 07509.
AMB	American 8io-Synthetics Corp	710 W . National Ave., Milwaukee, WI 53204
MAR	American Can Co-	100 Park Ave., New York, NY 10017.
AME	American Chemical Corp	P. O. Box 9247, Long Beach, CA 90B10.
ACY	American Cyanamid Co	Wayne, NJ 07470.
HST	American Hoechst Corp	129 Quidnick St., Coventry, RI 02816.
S01	American Oil Co. (Maryland	910 S. Michigan Ave., Chicago, lL 60680.
AMO	American Oil Co. (Texas)---------------	910 S. Michigan Ave., Chicago, IL 60680.   3134 California St., N.E. Minneapolis, MN 55418.
APT	American Petrochemical Corp., Mol Rez Di	3134 California St., N.E. Minneapolis, MN 55418. 3000 W . 6th St., Los Angeles, CA 9000 S .
AMP	American Potash \& Chemical Corp-	3000 W. 6th St., Los Angeles, CA 9000 S.   P. 0. Box 1034, Louisville, KY 40201.
BAR ASY	American Rubber \& Chemical Co	P. ก. Box 360, Louisville, KY 40201.
ASY	American Synthetic Rubber Corp	200 Rock Lane, Milford, CT 06460.
ALB	Ames Laboratories, Inc Amoco Chemical Corp--	200 Rock Lane, Milford, CT 06460.   130 E. Randolph Dr., Chicago, IL 60601.
ANM	Ancon Chemical Corp	1 Stanton St., Marinette, WI S4143.
ASL	Ansul Chemical Co-	1 Stanton St., Marinette, W1 54143.
APX	Apex Chemical Co	200 S. 1st St., E1izabethport, NJ 07206.
IIAP	Applied Plastics Co., In	130 Penn St., El Segundo, CA 90246.
ARA	Arapahoe Chemicals, Div. of Syntex Corp	285 S Walnut St., Poulder, C0 80302.
ARD	Ardmore Chemical Co., Inc-	840 Valley Brook Ave., Lyndhurst, NJ 07071.
ARN	Arenol Chemical Corp	40-33 23d St., Long Is land City, NJ 11101
UPR	Argus Chemical Corp., II.S. Peroxygen Di	840 Morton Ave., Richmond, CA 94B04.
ARZ	Arizona Chemical Co--	Wayne, NJ 07470.
AKS	Arkansas Co., In	1BS Foundry St., Newark, NJ 07105.
ARC	Armour \& Co., Armour Industrial Chemical Co. Div.	401 N. Wahash Ave., Chicago, IL 60690.
AGP	Armour-Dial, 1nc--	100 S. Wacker Dr., Chicago, IL 60606.
ARP	Armour Pharmaceutical Co	P. O. Box S11, Kankakee, IL 60901.
ARK	Armstrong Cork C	Liberty and Charlotte Sts., Lancaster, PA 17604.
APV	Armstrong Paint \& Varnish Works, In	1330 S. Kilbourn Ave., Chicago, IL 60623.
ARL	Arol Chemical Products Co	371 Wayne St., Jersey City, NJ 07302.
ASH	Ashlard Oil \& Refining Co Ashland Chemical Co. Di	1401 Winchester Ave., Ashland, KY 41101.   P. 0. Box 149, Baytown, TX 77 S 20 and 170 N . High St., Columbus, OH 4321S.
BLA	Astor Products, Blue Arrow	S244 Edgewood Ct., Jacksonville, FL 32203.
AST	Astra Pharmaceutical Products, Inc	7-1/2 Neponset St., Worcester, MA 01606.
ATP	Atco Chemical-Industrial Products, Inc., Fine Chemicals Div.	93 Main St., Franklin, NJ 07416.
ATL	Atlantic Chemical Corp-	10 Kingsland Rd., Nutley, NJ 07110.

TABLE 2*--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication   code	Name of company	Office address
	Oden	

## ATR

ATU
APD
APR AVS

BAS
BRD
BAC
BKC
BAL
BXT
BAX
BAO
BEE
BLS

## 8CM

 BL8ME
BEN
BDO
PDC
buc
BOR
MCB
BOY
BFR
BPL
BRS
BRU
BUK
BKM
CD
BJL
BUR
PEN
CBT
CAU
CAP
CBM
CGL
CCW
CCA
CM
CRS

Atlantic Richfield Co.:
ARCO Chemical Co. Div



Avisun Corp-
BASF Corp


J. T. Baker Chemical Co--

Baltimore Paint \& Chemical Corp-
J. H. Baxter \& C

Baxter Laboratories, Inc--------------------------
Bayoil Co., Inc-
Beecham, lnc-
Beech-Nut, 1 nc-
Belding Chemical Industries
Belle Chemical Co., Inc-
Bendix Corp., Friction Materials Div-----------

Benzenoid Organics, Inc---
Berncolors-Poughkeepsie, Inc
Blackman-Uhler Chemical Co--
Borden, Inc, Borden Chemical Div--------------
Borg-Warner Corp., Marbon Chemical Div-
Walter N. Boysen Co-
Branchflower Co-

Bristol-Meyers Co., Bristol Laboratories Div.
M. A. Bruder $\&$ Sons, Inc-

Buckeye Cellulose Corp---
Buckman Laboratories, Inc-
Burdick \& Jackson Laboratories, Inc------------
Burroughs-Wellcome \& Co. (J.S.A.), 1nc--------
CPC International, Inc., Penick Div.-----------

Calcasieu Chemical Corp------------------------------
Cap-Roc, Inc-----------
Carborundum Co., Coated Abrasives--------------


Advance Div----------------------------------------
Carpenter-Morton Co----
Carus Chemical Co., Inc-
Celanese Corp. of America
Celanese Coatings Co--
Central Farmers Fertilizer Co. Fel-Tex Div-
Charlotte Chemical Laboratories, Inc---.-.-.-.

Chase Chemical Corp--------------------1
Chemicals Div.
Chemagro Corp----------------------------------------
Chembond Corp-
Chemetron Corp.
National Cylinder Gas Div------------------------
Organic Chemical Div------------------------------
Chemetron-Noury Corp-
Chem-F1 eur, 1 nc----------------------------------------
Chemical Formulators, Inc-
Chemical Insecticide Corp-
Chemical Products Corp-


Chemplex Co-


Childs Pulp Colors, Inc----------------------------
Chris-Craft Industries, Inc., Montrose Chemical Div.

260 S. Broad St., Philadelphia, PA 19101.
Mill St., Cranston, RI 02905.
Wilmington, DE 19899.
P. 0. Box 9188 , 3546 Midway St., Shreveport, LA. 71109.

River Rd. \& Grantham Lane, New Castle, DE 19720
Ft. of Central Ave., S. Kearny, NJ 07032.
18 S Madison Ave., New York, NY 10016.
40 Avenue A, Bayonne, NJ 07002.
222 Red School Lane, Phillipsburg, NJ 08865.
2325 Hollins Ferry Rd., Baltimore, MD 21230.
1700 S. E1 Camino Real, San Mateo, CA 94402.
6301 N. Lincoln Ave., Morton Grove, IL 600 S 3
2 Union St., Peabody, MA 01960.
6 S Industrial S., Clifton, NJ 07012.
Church St., Canajoharie, NY 13317.
1407 Broadway, New York, NY 10018.
P.0. Box 848, Lowell, NC 28098.
P.0. Box 238, Troy, NY 12180.

65 W. 1st S. St., Salt Lake City, UT 84110.
P.0. Box 157, Bellingham, MA 02019.

75 N, Water St., Poughkeepsie, NY 12602.
P.0. Box 5627, Spartanburg, SC 29301.

3 S0 Madis on Ave., New York, NY 10017.
P.0. Box 68, Washington, WV 26181.

1001 42d St. , Nakland, CA 94608.
4SOl Shilshole Ave., NW., Seattle, WA 98101.
130 E. Randolph Dr., Chicago, IL 60601.
P.0. Box 657, Syracuse, NY 13201.

S2d St. and Grays Ave., Philadelphla, PA 19143.
2899 Jackson Ave., Memphis, TN 38108
1256 N. McLean Blvd., Memphis, TN 38108
70 S. Chapel St., Newark, DE 19711.
1953 S. Harvey St., Muskegon, MI 49442.
1 Scarsdale Rd., Tuckahoe, NY 10707.
100 Church St., New York, NY 10008.
246 Summer St., Boston, MA 02210.
P.0. Box 1522, Lake Charles, LA 70601.

300 State St., Rochester, NY 14614.
Walmore Rd., Niagara Falls, NY 14302.
Cargill B1dg., Minneapolis, MN SS402.
West St., Reading: (HH 45215.
S00 Jersey Ave., New Brunswick, NJ 08903.
376 3d St., Everett, MA 02149.
1375 8th St., LaSalle, IL 61301.
S22 5th Ave., New York, NY 10036
149 S S. 11 th St., Louisville, KY 40208.
P.0. Box 68, Fremont, NB 6802 S.
P.0. Box 948, Charlotte, NC 28201.

800 Hoberg St., Green Bay, W1 $\$ 4305$.
3527 Smallman St.. Pittsburgh, PA 15201.
1715 W. 38th St., Chattanooga, TN 37409.
P.0. Box 4913, Station "F", Kansas City, M0 64120.
P.0. Box 270, Springfield, OR 97477.

840 N. Michigan Ave., Chicago, IL 60611.
373 7th Ave., New York, NY 10001.
2153 Lockport-Olcott Rd., Burt, NY 14028.
200 Pulaski St., Newark, NJ 07105.
P.0. Box 26, Nitro, WV $2 S 143$.

30 Whitman Ave., Metuchen, NJ 08840.
P.0. Box 449, Cartersville, GA 30120.

4040 W. 123 d St., A1sip, IL 60658.
P.0. Box 20687, Greenshoro, NC 27420.

3100 Golf Rd., Rolling Meadows, IL 60008.
940 Hensley St., Richmond, CA 94801 amd 200 Bush St.
San Francisco, CA 94120.
43 Summit St., Brooklyn, NY 11231.
100 Lister Ave., Newark, NJ 0710 S.

TABLE 2. --Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued


TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication code	Name of company	Office address
[CC	Dow Corning Corp	P.0. Box S82, Midland, MI 48640 .
DRW	Drew Chemical Corp	416 Division St., Boonton, NJ 07005.
DUN	Frank W. Dunne Co	1007 41st St., Cakland, CA 94608.
DUP	E. 1. dupont de Nemours \& Co., Inc	DuPont B1dg., Wilmington, DE 19898.
DSC	Dye Specialties, In	26 Journal Sq., Jersey City, NJ 07306.
ECC	Eastern Color $\mathrm{G}^{\text {C Chemical }}$ Co-	35 Livingston St., Providence, R1 02904.
EK	Eastman Kodak Co-	343 State St., Rochester, NY 14650.
EKT	Tennessee Eastman Co. Div	P.0. Box S11, Kingsport, TN 37662.
EKX	Texas Eastman Co. Div	P.0. Box 2068, Longview, TX 75601.
ESA	East Shore Chemical Co., Inc-	1180 Michigan Ave., Muskegon, MI 49440.
ECL	Eastside Chemical Laboratory	12880 Bellevue-Richmond Rd., Bellevue, WA 98004.
FOR	E1 Dorado Chemical Co-	P.0. Box S99, Oakland, CA 94604.
GLX	Electro-Seal Glasflex Corp	Stirling, NJ 07980
ELP	El Paso Products Co-	P.0. Box 3986, Odessa, TX 79760.
EMR	Emery Industries, Inc	4300 Carew Tower, Cincinnati, OH 45202.
PCS	Western Div	8733 S. Dice Rd., Santa Fe Springs, CA 90670.
EMK	Emkay Chemical Co-	319 2d St., Elizabeth, NJ 07206.
EN	Endo Laboratories, Inc	1000 Stewart Ave., Garden City, NY 11530.
ENO	Eneco, lnc	P.0. Box 398, Memphis, TN 38101.
ENJ	Enjay Chemical Co-	60 W. 49th St., New York, NY 10020.
NPP	Enjay Fibers \& Laminates Co. Di	Odenton, MD 21113.
EPC	Epoxylite Corp-	P.0. Box 3397, 1428 N. Tyler Ave., S. E1 Monte, CA 91733.
ESC	Escambia Chemical Corp	P.0. Box 467, Pensacola, FL 32570.
TNA	Ethy 1 Corp-	330 S. 4th St., Richmond, VA 23217.
ETD	Ethyl-Dow Chemical Co	Midland, MI 48640.
EVN	Evans Chemetics, Inc----------------------------------	250 E. 43d St., New York, NY 10017.
AV	FMC Corp.: American Viscose Div	1617 John F. Kennedv Blvd., Philadelphia, PA 19103.
FMB		633 3d Ave., New York, NY 10017 and Sawyer Ave. G River Rd., Town of Tonawanda, NY 14150.
FMN	Niagara Chemical Div	100 Niagara St., Middleport, NY 14105.
FMP	Organic Chemicals Div   Nitro Plant	633 3d Ave., New York, NY 10017.   633 3d Ave., New York, NY 10017.
FAB	Fabricolor Manufacturing Corp	24-1/2 Van Houten St., Paterson, NJ 07S0S.
FMT	Fairmount Chemical Co., lnc----------------------	117 Blanchard St., Newark, NJ 0710S.
FOC	Farac Oil G Chemical Co., Div. of Handschy Chemical Co.	13601 S. Ashlana Ave., Riversale, İ 60627.
KNG	Far-Best Corp., 0. L. King Div------------------	640 Gilman St., Berkeley, CA 94710.
FCA	Farmers Chemical Association, Inc	P.0. Box B7, Harrison, TN 37341.
FRM	Farmer's Chemical Co	P.0. Box S91, 3713 W. Min St., Kalamazoo, MI 4900 S.
FAR	Farnow, Inc-	77 Jacobus Ave., S. Kearny, NJ 07032.
FCL	Federal Color Laboratories, In	4526 Chickering Ave., Cincinnati, OH 45232.
FEL	Felton International, Inc	599 Johnson Ave., Brooklyn, NY 11237.
FER	Ferro Corp., Ferro Chemical Div	P. 0. Box 349, 70 S0 Knick Rd., Bedford, OH 44014.
FRP	Filtered Rosin Products Co	P. 0. Box 349, Baxley, GA 31513.
FIN	Fine Organics, Inc   Firestone Tire \& Rubber Co.:	205 Main St., Lodi, NJ 07644.
FRL	Firestone Industrial Rubber Products Div-----	P.0. Box 2290, Fall River, MA 02777.
FIR	Firestone Plastics Co. Div------------------	P.0. Box 699, Pottstown, PA 19464.
FRS	Firestone Synthetic Rubber \& Latex Co. Div---	381 W. Wilbeth Rd., Akron, OH 44301.
FST	First Chemical Corp-------------------------------	P.0. Box 1427, Pascagoula, MS 39567.
FIS		S80 Sylvan Ave., Englewood, NJ 07632.
F1S		S80 Sylvan Ave., Englewood, NJ 07632.
FLM	Fleming Laboratories, Inc--------------------------	P.0. Box 10372, Charlotte, NC. 2B201.
FLO		900 Van Nest Ave., Bronx, NY 10462.
FTE	Foote Mineral Co-	Route 100, Exton, PA 19341.
FOM	Formi ca Corp----------------------------------------	4614 Spring Grove Ave., Cincinnati, OH 4 S 232.
FG		289 N. Main St., Leominster, MA 014S3.
FH		16 E. Sth St., Paterson, NJ 07524.
FCD		N. Michigan Ave., Kenilworth, NJ 07033.
FC		2020 Bruck St., Columbus, OH 43207.
FRE	Freeman Chemical Corp-	222 E. Main St., Port Washington, WI S3074.
FSH	Frisch \& Co., lnc-	88 E. 11 th St., Paterson, NJ 07524.
FB	Fritzsche Bros., lnc	76 9th Ave., New York, NY 10011.
FLH	H. B. Fuller Co	2400 Kasota Ave., St. Paul, MN 5S108.
FLW		450 E. Grand Ave., S. San Francisco, AA 940B0.
GAN	GAF Corp.:   Dyestuff $\&$ Chemical Div   Polymer Chemical Dept., Textile Chemical DivGane's Chemical Works, Inc	P.0. Box 12, Linden, NJ 07036.   1228 Chestnut St., Chattanooga, TN 37402. 535 Sth Ave., New York, NY 10017.

TABLE 2. --Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication code	Name of company	Office address
GGY	Geigy Chemical Corp	444 Saw Mill River Rd., ArdsIey, NY I0502.
GE	General Electric Co	1 Plastics Ave., Coshocton, OH 43812 , and 1 Plastics Ave., Pittsfield, MA OI 203.
GEI	Insulating Materials Dep	I River Rd., Schenectady, NY 12305.
SPD	Silicone Products Dep	Waterford, NY 121B8.
GNF	General Foods Corp., Maxwell House Di	I12S Hudson St., Hoboken, NJ 07030.
GLC	General Latex \& Chemical Corp	666 Main St., Cambridge, MA 02139.
CW	General Mills, Inc	Quimby St., Ossining, NY 10562.
GNM	Chemical Di	5. Kensington Rd., Kankakee, IL 60901.
GPM	General PIastics Manufacturing	3481 5. 35th St., Tacoma, WA 9B409.
GNT	General Tire \& Rubber Co., Chemical Di	1708 Englewood Ave., Akron, OH 44309.
GRG	P. D. George Co-Georgia-Pacific Corp.:	5200 N. 2d St., St. Louis, MO 63I47.
PSP	Bellingham Div-	P.0. 80x I236, Bellingham, WA 98225.
CBC	Coos Bay Div	P.O. Box 869, Coos Bay, OR 97420
TID	Getty Oil Co-	Delaware City, DE 19706.
TNI	Gillette Chemical Co., Div. of Gillette Co	P.0. Box 362, N. Chicago, IL 60064.
GIL	GiIman Paint \& Varnish Co	W. 8th and Pine Sts., Chattanooga, TN 37401.
GIV	Givaudan Corp	I25 Delawanna Ave., CIifton, NJ 07014.
GLY	Glyco Chemicals	417 5th Ave., New York, NY 10016.
8FG	B. F. Goodrich Co., B, F, Goodrich ChemicaI Co. Div.	3 J 35 Euclid Ave., CIeveland, OH 44 I 37.
GGC	Goodrich-Gulf Chemicals, Inc	I717 E, 9th 5t., Cleveland, OH 44114.
GYR	Goodyear Tire $\&$ Rubber Co	II 44 E. Market St., Akron, OH 44313.
GOR	Gordon Chemical Co., Inc W. R. Grace \& Co,:	8 B Webster St., Worcester, MA 01603.
GCC	Agricultural Chemical Group	P.0. Box 277, Memphis, TN 3810I.
GRD	Dewey \& Almy Chemical Div-	62 Whittemore Ave., Cambridge, MA 02140.
GRC	Dubois Chemicals Div	634 Broadway, Cincinnati, OH 45202.
HMP	Hampshire Chemical	Poisson Ave., Nashua, NH 03060.
GRH	Hatco Chemical Div	629 Amboy St., Edison, NJ 08817.
MRO	Marco Chemical Div	171 I W. Elizabeth Ave., Linden, NJ 07036.
GRL	Vestal Laboratories	4963 Manchester Ave., St. Louis, M0 63110.
GPR	Grain Processing Corp	1600 Oregon St., Muscatine, LA 5276I.
GRA	Great American PIastics	85 Water St, Fitchburg, MA 01420.
GTL	Great Lakes Chemical Corp	P.0. Box 2200, West Lafayette, IN 47906.
GRW	Great Western Sugar Co	P.0. Box 5308, Terminal Annex, Denver, CO 80217.
GRV	Guardsman Chemical Coatings,	I350 Steele Ave., SW., Grand Rapids, MI 49502.
GOC	Gulf Oil Corp-	P.0. Box 2100, Houston, TX 77001.
PGU	Perkins Glue, Chemicals Dept	632 N. Cannon Ave., Lansdale, PA I9446.
GTH	Guth Chemical Co	332 S. Center St., Hillside, IL 60162.
HNC	H \& N Chemical Co	90 Maltese Dr., Totowa, NJ 07512.
HLI	Haag Laboratories, In	I4010 S. Seeley Ave., Blue Is land, IL 60406.
HAB	Halby Products Co., Inc	600 Terminal Ave., New Castle, DE 19720.
HAL	C. P. HaIl Co. of Illinoi	7300 5. Central Ave., Chicago, 11 6063B.
HAM	Hampden Color \& Chemical Co	126 Memorial Dr., Springfield, MA 0I101.
HAN	Hanna Paint Manufacturing Co., Inc	P.0. Box 147, Columbus, OH 43216.
HRS	Harris Paint Co	1010-26 N. I9 th St., Tampa, FL 33601.
HSH	Harshaw Chemical Co., Div. of Kewanee OiI	1945 E. 97th St., Cleveland, OH 44106.
HRT	Hart Products Corp	1440 Broadway, New York, NY 10018.
HVG	Haveg Industries, Inc	900 Greenbank Rd., Wilmington, DE 19B0B.
HKY	Hawkeye Chemical Co	P.0. Box 899, Clinton, LA 52733.
HCR	Hercor Chemical Corp	P.0. Box 4198, Ponce, PR 00731.
HPC	Hercules, Inc	910 Market 5t., WiImington, DE 19899.
IMP	Imperial Color \& Chemical Dept	P.0. 8ox 23I, Glens Falls, NY I $2 \mathrm{B03}$.
HER	Heresite \& Chemical Co-	822 S. 14th St., Manitowoc, WI 54220.
DLH	Hess Oil \& Chemical Corp-	I Hess St., Woodbridge, NJ 0709 S .
HET	Heterochemical Corp-	IIl E. Hawthorne Ave., Valley Stream, NY II582,
HEW	Hewitt Soap Co-	333 Linden Ave., Dayton, OH 45403.
HEX	Hexagon Laboratories, Inc	3536 Peartree Ave., Bronx, NY 10469.
HDG	Hodag Chemical Corp-	7247 N. Central Park Ave., Skokie, IL 60076. 324 Kingsland St., Nutley, NJ 07II0.
HOF HFT	Hoffmann-LaRoche, Inc	P.0. Box 1246 S.S.S., Springfield, MO 65805.
HSC	Holland Suco Color Co	P.0. Box 2166, Huntington, WV 25722.
HK	Hooker Chemical Corp	Buffalo Ave. G 47th St., Niagara Falls, NY I4302.
HKD	Durez Div	WaIck Rd, N . Tonawanda, NY 1412 I .
RUB	Ruco Div	New South Rd., Hicksville, NY 11802.
EFH	E. F. Houghton \& Co	303 W. Lehigh Ave., Philadelphia, PA 19133.
HCH	Houston Chemical Corp-	I Gateway Center, Pittsburgh, PA 15222

TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication code	Name of company	Office address
HMY	Humphrey Chemical Co-----------------------------	Devine St., North Haven, CT 06473.
WAY	Philip A. Hunt Chemical Corp., Wayland Chemical Div.	P.0. Box 0, Lincon, R1 02865.
HNT		P.0. Box 710, Huntington, IN 46750.
HUS		P.0. Box 380, Cody, WY 82414.
HYN		Charles and Chase Sts., Baltimore, MD 21201
ICI		151 South St., Stamford, CT 06904.
RAY	ITT Rayonier, Inc	161 E. 42d St., New York, NY 10017.
C58	Imoco-Gateway Corp., Chemical Services Div-----	Howard E West Sts., Baltimore, MD 21230.
IBI	Industrial Biochemicals, Inc	U.5. Highway \#1, Edison, NJ 0BB17.
IDC	Industrial Dyestuff Co-	P.0. Box 4249, E. Providence, RI 02914.
INL	Inland Steel Co., Inland Steel Container Com--	4300 W. 130th St., Chicago, IL 60658.
$\begin{aligned} & \text { ICC } \\ & 1 \text { © } 0 \end{aligned}$	Inmont Corp-	150 Wagaraw Rd., Hawthorne, NJ 07506 and Berry Ave. and Route 17, Carlstadt, NJ 07072.
ICF	Interchemical Corp., Finishes Div	5935 Milford Ave., Detroit, MI 48210.
IFF	International Flavors \& Fragrances, Inc--------	521 W, 57th St. New York, NY 10019
IMC		5401 01d Orchard Rd, , Skokie, IL 60078
ISC		501 Santa Fe, Kansas City, Mo 64105.
IPR		P.0. Box 445, 1602 N .1 l (1) Ave., Sweet home, OR 97386.
IPC	Interplastic Corp., Commercial Resins Div.--..-	2015 N.E. 8roadway 5t., Minneapolis, MN 55413
IOC	Ionac Chemical Co., Div, of Sybron Corp--------	Birmingham, NJ 08011.
IRI	Ironsides Resins, Inc	270 W. Mound St., Columbus, OH 43216.
IPI		900 Wilmington Rd., New Castle, DE 19720.
JCC	Jefferson Chemical Co., Inc	P.0. Box 53300, Houston, TX 77052.
JEN	Jennison-Wright Corp	P.0. Box 691, Toledo, OH 43601
JRG		2535 Spring Grove Ave., Cincinnati, OH 45214.
J 5C		59 Lee Ave., Haledon, NJ 07508.
JWL		345 N. Western Ave., Chicago, IL 60612.
JNS	5. C. Johnson \& Son, Inc	1525 Howe St., Racine, WI 53403.
JOB	Jones-Blair Paint Co-	6969 Denton Dr., Dallas, TX 75235.
JOR	Jordan Chemical Co-	1830 Columbia Ave., Folcraft, PA 19032.

Lakeway Chemical Co--

Lasco Industries, IncLeatex Chemical Co---

Devine St., North Haven, CT 06473.
P.0. Box 0, Lincon, R1 02865.
P.0. Box 710, Huntington, IN 46750.
P.0. Box 380, Cody, WY 82414.

Charles and Chase Sts., Baltimore, MD 21201
151 South St., Stamford, CT 06904.
161 E. 42d St., New York, NY 10017
U.5. Highway \#1, Edison, NJ 0BB17.
P.0. Box 4249, E. Providence, RI 02914.

4300 W. 130 th St., Chicago, IL 60658
and Route 17, Carlstadt, NJ 07072.
5935 Milford Ave., Detroit, MI 48210.
W. 57th St. New York, NY 10019

5401 Old Orchard Rd., Skokie, IL 60078
Santa Fe, Kansas City, Mo 64105
97386

Birninghat, NU 08011.
900 Wilmington Rd., New Castle, DE 19720.
P.0. Box 53300, Houston, TX 77052.
P.0. Box 691, Toledo, OH 43601

59 Lee Ave., Haledon, NJ 07508.
345 N. Western Ave., Chicago, IL 60612.
1525 Howe St., Racine, NT 53403.
1 B30 Columbia Ave., Folcraft, PA 19032.
P.0. Box 246, Savannah, GA 31402.
P.0. Box 337, Gramercy, LA 70052.

427 Moyer St., Philadelphia, PA 19125.
360 Lexington Ave., New York, NY 10017.
1015 Commercial St., San Carlos, CA 94070.
956 Bransten Rd., San Carlos, CA 94070.
Hurley, NM 88043.
P.0. Box 11299, Salt Lake City, UT 84111.

Foot of E. 22d St., Bayonne, NJ 07002.
P.0. Box 6565, Tarrant Branch, Birmingham, AL 35217.

26000 Springfield Rd., Saugus, CA 91350.
R.D. 2, Bethlehem, PA 18017.

151 W. Gay Ave., York, PA 17403.
180 Hamilton Ave., Lodi, NJ 07644.
651 High St., Lancaster, PA 17604.
1201 Osage St., Denver, C0 80201.
161 Avenue of the Americas, New York, NY 10013.
Koppers Bldg., Pittsburgh, PA 15219.
Koppers B1dg., Pittshurgh, PA 15219.
5050 Poplar Ave., Memphis, TN 38117.
2 d and Boston Sts., Everett, MA 02149.
20200 Ashland Ave., Chicago Heights, IL 60411
1707 E. North Ave., Milwaukee, WI 53201.
603 W. Davenport St., Rhinelander, WI 54501.
5025 Evanston Ave., Muskegon, M1 49443.
Chestertown, MD 21620.
1561 Chapin Rd., Montebello, CA 90640.
2600 E. Tioga St., Philadelphia, PA 19134.
2722 N. Hancock St., Philadelphia, PA 19133.
P.0. 8ox 180, Lebanon, PA 17042 .

33 Richdale Ave., Cambridge, MA 02140.

TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued


TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued


TABLE 2:--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication code	Name of company
CCH	Pearsall Co---
PEK	Peck's Products Co-
PCH	Peerless Chemical Co-
PEL	Pelron Corp---
PAI	Pennsylvania Industrial Chemical Cor
PAR	Pennsylvania Refining Co
PAS	Pennwalt Corp--
PER	Perry \& Derrick Co., Inc
PHF	Peter Hand Foundation, Inc-
UDI	Petrochemicals Co., Inc-
PTT	Petro-Tex Chemical Corp-
PFN	Pfanstiehl Laboratories, Inc-
PCW	Pfister Chemical, Inc------
PFZ	Chas. Pfizer \& Co., Inc
PHR	Pharmachem Corp-
PLC	Phillips Petroleum Co-
PPR	Phillips Puerto Rico Cove, In
PIC	Pierce Organics, Inc-
PBY	Pillsbury Co-
PIL	Pilot Chemical Co-
PCI	Pioneer Chemical Works, Inc-
PPL	Pioneer Plastics Corp-
PIT	Pitt-Consol Chemical Co
PLS	Plastics Engineering Co-
PMC	Plastics Manufacturing Co-
PLX	Plex Chemical Corp-
PLU	Plumb Chemical Corp-
PFW	Polak's Frutal Works-
PYL	Polychemical Laboratories, In
POL	Polymer Corp--------
PII	Polymer 1ndustries, Inc
PYR	Poly Resins------
PYZ	Polyrez Co., Inc----
PVI	Polyvinyl Chemicals, Inc
GRS	Pontiac Refining Corp-
PRT	Pratt \& Lambert, Inc--
PMP	Premier Malt Products, Inc
PPC	Premier Petrochemical Co
PTP	Preservative Paint Co----
PRC	Princeton Chemical Research,
PBI.	Private Brands, Inc-
${ }^{\text {PG }}$	Procter \& Gamble Co-------
PC ${ }_{\text {PR }}$	Proctor Chemical Co., Inc---
PRD	Productol Chemical Co., Inc-..--
PRC	Products Research \& Chemical Corp
PUB	Publicker Industries, Inc------
PT0	Puerto Rico Chemical Co., Inc
PRX	Purex Corp., Ltd-------------
PUR	Puritan Chemical Co-
QCP	Quaker Chemical Corp-
QKN	Quaker Oats Co-----
QUN	K.J. Quinn \& Co., Inc-
RSA	R.S.A. Corp--------
RLS	Rachelle Laboratories, Inc-
RAB	Raybestos-Manhattan, Inc., Raybestos
RED	Red Spot Paint \& Varnish Co., Inc--
REH	Reheis Chemical Co., Div, of Armour Pharmaceutical Co.
RCI	Reichhold Chemicals, Inc---
CCO	Rubber Chemicals Group--
RIL	Reilly Tar \& Chemical Corp-
REL	Reliance Universal, Inc---   Rel-Rez Div-------------
REM	Remington Arms Co., Inc-
REN	Renroh Resins----------
RTF	Retzloff Chemical Co-

## office address

P. 0. Box 108, Phillipsburg, NJ 08865.

610 E. Clarence Ave., St. Louis, M0 63147
3850 Oakman Blvd., Detroit, MI 4 B204.
7847 W. 47th St., Lyons, IL 60534.
120 State St., Clairton, PA 15025.
Union Bank B1dg., Butler, PA 16001.
3 Penn Center, Philadelphia, PA 19102.
2510 Highland Ave., Norwood, nH 45212.
2 E. Madison St., Waukegan, IL 60085.
1825 E. Spring St., Long Beach, CA 90806.
P.0. Box 2584, Houston, TX 77001.

1219 Glen Rock Ave., Waukegan, IL 60085.
Linden Ave., Ridgefield, NJ 07657,
235 E. 42d St., New York, NY 10017.
Broad and Wood Sts., Bethlehem, PA 1 B018.
440 Frank Phillips Bldg., Bartlesville, oK 74003.
GPO Box 4129, San Juan, PR 00936.
3747 Meridian Rd., Rockford, IL 61103.
608 2d Ave. S., Minneapol is, MN 55402.
11756 Burke 5t., Santa Fe Springs, CA 90670.
P.0. Box 237, Route 73, Maple Shade, NJ 08052.

Pionite Rd., Auhurn, ME 04210.
191 Doremus Ave., Newark, NJ 07105.
1607 Geele Ave., Shehoygan, WI 53081.
2700 S. Westmoreland, Dallas, TX 75224.
1205 Atlantic St., Union City, CA 94487.
4837 James St., Philadelphia, PA 19137.
33 Sprague Ave., Middletown, NY 10940
490 Hunts Point Ave. Bronx, NY 10474.
2120 Fairmont Ave., Reading, PA 19603.
viaduct Rd., Springcale, Cl' 06B79.
11655 Wicks St., Sun Valley, CA 91352.
P.0. Box 32n, Woodbury, NJ 08096.

730 Main St., Wilmington, MA 01887.
3400 Lawrence Dr., Corpus Christi, TX 78409.
P.0. Box 22, Buffalo, NY 14240.

917 W. Juneau Ave., Milwaukee, WI 53201.
P.0. Box 100, Pasadena, TX 77501.

8033 36th St. So., Seattle, WA 98108.
P.0. 80x 651, Princeton, NJ 08540.

300 5. 3d St., Kansas City, KS 66118.
Ivorydale Technical Ctr., Cincinnati, OH 45217.
P.0. Box 399, Salisbury, NC 28144.

615 5. Flower St., Los Angeles, CA 90017.
2919 Empire Ave., Burbank, CA 91504.
1429 Walnut St., Philadelphia, PA 19102.
P.0. Box 157, Arecibo, PR 00612.

5101 Clark Ave., Lakewood, CA 90712, and 2244 N. Elston
Ave., Chicago, IL 60614.
916 Ashby St., NW., At lanta, GA 3031B.
Lime, E1m and Sandy Sts., Conshohocken, PA 19428.
345 Merchandise Mart Plaza, Chicago, IL 60654.
195 Canal St., Malden, MA. 02148.
690 Sawmill River Rd., Ardsley, NY 10502.
700 Henry Ford Ave., Long Beach, CA 90810.
75 E. Main 5t., Stratford, CT 06601.
966 E. Columbia St., Evansville, IN 47708.
325 Snyder Ave., Berkeley Heights, NJ 07922.
525 N. Broadway, White Plains, NY 10602.
2508 E. Bailey Rd., Cuyahoga Falls, OH 44221.
11 S. Meridian St., Indianapolis, IN 46204.
6901 Cavalcade St., Houston, TX 77001.
4730 Crittenden $\operatorname{Dr} .$, Louisville, KY 40221.
939 Barnum Ave., Bridgeport, CT 06602.
P.0. 8ox 1191, New Bern, NC 28560.
P.0. Box 45296, Houston, TX 77045.

TABLE 2;--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

Identi-   fication   code	Name of company	Office address

Rexall Drug \& Chemical Co., Rexall Chemical Co. Div.
Fiberfil Div-
Rezolin, Inc-
Rhodia, Inc--
Richardson Co-----------------------------------------
Richardson Polymers Div----------------------
Riker Laboratories, Div. of Rexall Drug
\& Chemical Co.


Riverdale Chemical Co-----------------------------
Robeco Chemicals, Inc-
Roberts Chemicals, Inc-
Roehr Chemicals, Inc--
Rogers Corp---

Rosenberg Bros. \& Co------------------------------
Royce Chemical Co-----
Rubicon Chemicals, Inc-
SCM Corp.:
Famous Foods Div-

Safeway Stores, Inc., Newport Products Co. Div.

Salsbury Laboratories------------------------------
Salem Oil \& Grease Co-
Sandoz, Inc--
Dyestuff \& Chemical Div-
Sartomer Resins, Inc-
Schaefer Varnish Co., Inc------------
Schenectady Chemicals, Inc------------------------
Scher Bros., Inc-----------------------------------
R.P. Scherer Corp-

Schering Corp---------------------------------------
Scholler Bros., Inc---------------------------------
Seaboard Chemicals, Inc---------------------------
G. D. Searle $\&$ Co-----------------------------------

Shanco Plastics \& Chemicals, Inc---------------
Shell Oil Co----------------------------------------
Shell Chemical Co. Div------------------------
Shepherd Chemical Co--
Sherwin-Williams Co
George F. Siddall Co., Inc-----------------------
Signal $0 i 1$ \& Gas Co---------------------------------
Simpson Timber Co----------------------------------

Sinclair-Koppers Co--------------------------------

Sinclair Paint Co-
James 8. Sipe \& Co-
Skelly Oil Co-
G. Frederick Smith Chemical Co--

Smith, Kline \& French Laboratories
Solar Chemical Corp-----
Soluol Chemical Co., lnc-
Solvent Chemical Co., Inc-
Sonford Chemical Co------
Sonoco Products Co-
Sou-Tex Chemical Co., lnc-
Southeastern Adhesives Co-
Southern Biochemical Corp-
Southern Chemical Products Co-
Southern Sizing Co-------
E. R. Squibb \& Sons, Inc-

Staley Chemicals--
A. E. Staley Manufacturing Co-

## P.0. Box 37, Paramus, NJ 076S2.

1701 N. Heidelbach Ave., Evansville, IN 47717. 20701 Nordhoff St., Chatsworth, CA 91311.
600 Madison Ave., New York, NY 10022.
2708 Lake St., Melrose Park, IL 60160.
42 S Morgan Lane, West Haven, CT 06 S 16.
19901 Nordhoff St., Northridge, CA 91324.
4001 Goodwin Ave., Los Angeles, CA 90039.
403 W. Main St., Amsterdam, NY 12010.
220 E. 17th St., Chicago Meights, IL 60411.
S1 Madison Ave., New York, NY 10010.
P.0. Box S46, Nitro, WV 2 S143.

S2-20 37th St., Long lsland City, NY 11101.
Main St., Pogers, CT 06263.
Independence Mall West, Philade1phia, PA 19105.
100 Landing Ave., Smithtown, NY 11787.
E. Rutherford P.O., E. Rutherford, NJ 07073.
P.0. Box S17, Geosmar, LA 70734.

2333 w. Logan Blvd., Chicago, 1L 60647.
900 Union Commerce Bldg., Cleveland, 0 H 4411 S.
1501 Mariposa St., San Francisco, CA 94107.
SOO Gilbert St., Charles City, IA 50616.
60 Grove St., Salem, MA 01970.
P.0. Box 3S7, Fair Lawn, NJ 07410.

Route No. 10, Hanover, NJ 07936.
P.0. Box S6, Essington, PA 19029

1350 S. 1Sth St., Louisville, KY 40210.
Congress St. and 10th Ave., Schenectady, NY 12301.
P.0. Box S3B, Allwood Station, C1ifton, NJ 07012.

942 S Grinnell Ave., Detroit, MI 4B213.
1011 Morris Ave., Union, NJ 07083.
Collins and Westmoreland Sts., Philadelphia, PA 19134.
30 Foster St., Salem, MA 01970.
P.0. Box S110, Chicago, IL 60680.

7 Park Ave., New York, NY 10016.
762 Marietta Blvd., NW., Atlanta, GA 30318.
111 Wales St., Tonawanda, NY 141S0.
S2 W. S2d St., New York, NY 10020.
S2 W. S2d St., New York, NY 10020.
S000 Poplar St., Cincinnati, OH 4S212.
101 Prospect Ave., NW., Cleveland, OH 44101.
P.0. Box 92S, Spartanburg, SC 29301.
P.0. Box S008, Houston, TX 77012.

2301 N. Columbia B1vd., Portland, OR 97217.
9822 La Porte Freeway, Houston, TX 77012.
900 Koppers B1dg., Pittsburgh, PA 15219.
600 Sth Ave., New York, NY 10020.
3960 E. Washington Blvd., Los Angeles, CA 90023.
P.0. Box 13090 , Pittsburgh, PA 1 S243.
P.0. Box 16 Sn, Tulsa, OK 74102.

867 McKinley Ave., Columbus, OH 43223.
1500 Spring Garden St., Philadelphia, PA 19101
1S Fuller St., Leominster, MA 014 S 3.
Green Hill and Market Sts., W. Warwick, RI 02893.
341 Commercial St., Malden, MA 02148.
P.0. $80 \times 127$, Port Neches, TX 776S1.

2d St., Hartsvi11e, SC 29SSO
E. Catawba Ave., Mount Holly, NC 2812 n
P.0. Box 791, Lenoir, NC 28645.
P.0. Box 2S26, Greenville, SC 29602.

420 Lower Boundary St., P.n. Box 20S, Macon, GA 31202.
P. O. Box 909B7, Fast Point, GA 30344.

310 Wheeler St., Tonawanda, NY 14150.
460 Park Ave., New York, NY 10022.
320 Schuyler Ave., Kearny, NJ 07032.
22d and Eldorado Sts., Decatur, IL 62525

TABLE 2. --Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

1 denti-   fication code	Name of company	nffice address
SMC	Stamford Chemical Industries, Inc-	P.0. Box 1131, Stamford, CT 06940.
CLN	Standard Brands, Inc., Clinton Corn Processing Co. Div.	1251 Beaver Channel Parkway, Clinton, IA 52733.
SBI	Standard Brands Chemical Industries, Inc-------	P.0. Drawer K, Dover, DE 19901.
MRN	Paisley Div	P.0. Drawer K, Dover, DE 19901.
SCP	Standard Chemical Products, Inc-----------------	1301 Jefferson St., Hoboken, NJ 07030.
SCC	Standard Chlorine of Delaware, 1nc---...-----..-	1035 Belleville Turnpike, Kearny, NJ 07032.
S0C	Standard Oil Co, of California, Chevron Chemical Co.	200 Bush St., San Francisco, CA 94120.
SIO	Standard Oil Co. of Ohio------------------------	Midland Bldg., Cleveland, OH 44115.
SPY	Standard Pyroxoloid Corp	8S Pleasant St., Leominster, MA 01453.
STG	Stange Co Stauffer Chemical Co.:	342 N.Western Ave., Chicago, IL 60612.
SF	Agricultural Div--------------------------------	299 Park Ave., New York, NY 10017.
CHO	Calhio Chemicals Div--------------------------	299 Park Ave., New York, NY 10017.
CNL	Cowles Chemical Div	12000 Shaker Blvd., Cleveland, OH 44120.
BPC	Cowles Chemical Div., Benzol Products--------	Menlo Park Office Bldg., Edison, NJ 08817.
SFI	Industrial Chemical Di	299 Park Ave., New York, NY 10017.
SFA	Specialty Chemical	299 Park Ave., New York, NY 10017.
SH	Stein, Hall \& Co., Inc----------------------------	60 S 3d Ave., New York, NY 10016.
STP	Stepan Chemical Co	R.R. \#1, Elwood, IL 60421.
MYW	Maywood Div   Sterling Drug, Inc.:	100 W . Hunter Ave., Maywood, NJ 07607
SDG	Glenbrook Laboratories Div--------------------	90 Park Ave., New York, NY 10016.
SDH	Hilton-Davis Chemical Co.	2235 Langdon Farm Rd., Cincinnati, 0 HH 45237.
SLV	Salvo Chemical Div	Military Rd., Rothschild, WI S4474.
TMS	Thomasset Colors Di	120 Lister Ave., Newark, NJ 0710 S.
SOW	Winthrop Laboratories	90 Park Ave., New York, NY 10016.
SBP	Sugar Beet Products Co-	302 Waller St., Saginaw, MI 48605.
SVC	Sullivan Varnish	410 N. Hart St., Chicago, IL 60622.
SUM	Summit Chemical Products	11 Williams St., Belleville, NJ 07109.
$\begin{aligned} & \text { CFC } \\ & \text { TV } \end{aligned}$	Sun Chemical Corp	1106 Harrison Ave., Kearny, NJ 07032 and 135 W. Lake St., North Lake, IL 60164.
SNW	Chemicals Div	Wood River Junction, RI 02894.
SNA	Pigments Div	441 Tompkins Ave., Staten Is land, NY 10305.
SKG	Sunkist Growers, Inc Sun Oil Co.:	720 E. Sunkist St., Ontario, CA 91764.
DXS	DX Div-	P.0. Box 2039, Tulsa, OK 74102.
SUN	Sunoco Div	1608 Walnut St., Philadelphia, PA 19103.
SNO	Sunolin Chemical	P.0. Box F, Claymont, DE 19703.
SNT	Suntide Refining Co	P.a. Box 2608, Corpus Christi, TX 78403.
SWT	Swift \& Co., Swift Chemical Co. Div	1211 W. 22d St., Oak Brook, IL 60521.
SYC	Synthetic Chemicals, Inc	335 McLean Blvd., Paterson, NJ 07504.
SYP	Synthetic Products C	1636 Wayside Rd., Cleveland, OH 44112.
SYV	Sy nvar Corp---	917 Washington St., Wilmington, DE 19899.
IRC	TRW, Inc., IRC Div-	401 N. Broad St., Philadelphia, PA 19108.
TCC	Tanatex Chemical Corp	P.0. Box 388, Lyndhurst, NJ 07071.
CST	Charles S. Tanner Co	P.0. Box 3867, Greensville, SC 29608.
TEK	Teknor Apex Co	505 Central Ave., Pawtucket, RI 02662.
HN	Tenneco Chemicals,	280 Park Ave., New York, NY 10017.
CIK	Cal/Ink Div	711 Camelia St., Berkeley, CA 94710.
HNX	Nuodex Div	P.0. Box 2, Piscataway, NJ $088 \mathrm{S4}$.
TCD	Tenneco Colors Di	P.o. Box S1, Reading, PA 19603.
CRY	Tenneco Plastics Div-	P.0. Box 2, Piscataway, NJ 08854.
TOC	Tenneco Oil Co., Refining \& Marketing Accounting.	P.n. Box 2SII, Houston, TX 77001.
TEN	Tennessee Copper Co., Div. of Tennessee Corp---	Copperhill, TN 37317.
TER	Terra Chemicals International, Inc-------------	507 6th St., Sioux City, IA S1121.
TX	Texaco, Inc-------------------------------------------	135 E .42 d St., New York, NY 10017.
TSA		P.a. Box 600, Deer Park, TX 77536.
TUS	Texas-11.S. Chemical Co----------------------------	P.0. Box 667, Port Neches, TX 77651.
TXC		20-21 Wagaraw Rd., Fair Lawn, NJ 07410.
TXT		12607 Cerise Ave., Hawthorne, CA 90250.
TXN	Textilana-Nease, Inc------------------------------	2140 S. 88th St., Edwardsville, KS 66022.
SKT	Textron, Inc., Spencer Kellogg Div-------------	120 Delaware Ave., Buffaio, NY 14240.
TKL	Thiokol Chemical Corp----------------------------	P.0. Box 27, Bristol, PA 19007.
SOR	Thomason Industries, Inc., Southern Resin	P.0. Drawer 1600, Fayetteville, NC 28302.

TABLE 2. --Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968--Continued

```Identi- fication code```	Name of company	Office address
Tilm	Wm. T. Thomspon Co., Thompson Chemicals Div.	3028 Locust St., St. Louis, Mn 63103.
7MH	Thompson-Hayward Chemical Co-	5200 Speaker Rd., Kansas City, KS 66110.
TIC	Ticonderoga Chemical Corp	P.0. Box 745, Marguerite Ave., Leominster, MA 01453.
TZC	Tizon Chemical Corp	Flemington, NJ 08822.
TRC	Toms River Chemical Cor	P.0. Box 71, Toms River, NJ 08753.
ACT	Arthur C. Trask Co	327 S. LaSalle St., Chicago, IL 60604.
TR0	Troy Chemical Co	338 Wilson Ave., Newark, NJ 07105.
TCH	Trylon Chemicals,	P.n. Box 600, Mauldin, SC 29662.
JTC		Pleasant View Terrace, Ridgefield, NJ 07451.
ARM	USS Agri-Chemicals, Inc	P.0. Box 1685, At lanta, GA 30301.
PCC	USS Chemicals Div. of U.S. Steel Cor	Grant B1dg., Pittsburgh:, PA 15219.
UHL	Paul thlich \& Co., Inc	90 West St., New York, NY 10006.
UNG	Ungerer \& Co	161 Avenue of the Americas, New York, NY 10013.
NCI	Union-Camp Corp., Chemical	P.0. Box 6170, Jacksonville, FA 3220 S.
UCC	Union Carbide Corp	270 Park Ave., New York, NY 10017.
UOC	Union Oil Co. of Californ	461 S. Boylston St., Los Angeles, CA 90017.
UNS	Union Starch \& Refining Co	900 19th St., Granite City, IL 62040.
USR	Uniroyal, Inc., Chemical Di	Naugatuck, CT 06770.
UNN	United Chemical Corp. of Norwood	P.0. Box 367, Endicott St., Norwood, MA 02062.
UNP	United Chemical Products Corp-	York and Colgate Sts., Jersey City, NJ 07302.
ROM	United Merchants \& Manufacturers, Inc., Roma Chemical Div.	749 Quequechan St., Fall River, MA 02721.
UNO		2d and Cascade Sts., Erie, PA 16512.
USB	U.S. Borax Research Cor	3075 Wilshire Blvd., Los Angeles, CA 9000 S .
USO	U.S. Oil Co., Inc	P.0. Box 4228, E. Providence, R1 02914.
UPF	U.S. Pipe \& Foundry	3300 lst Ave. N., Birmingham, Al 35202.
UPL	U.S. Plywood-Champion Papers, Inc., California Div., Shasta Operations.	P.0. Box 2317, Redding, CA 96001.
UVC		1224 Mendon Rd., Ashton, RI 02864.
UPM	Universal Oil Products Couop Chemical Niv-	30 Algonquin Rd., Des Plaines, IL 60018. State Highway 17, E. Rutherford, NJ 07073.
UPJ	Upjohn Co	7000 Portage Rd., Kalamazoo, MI 49001.
CWN	Carwin Organic Chemicals----------------------------	Sackett Point Rd., North Haven, CT 06473.
VAL	Valchem	1407 Broadway, New York, NY 10018.
VSV	Valentine Sugars, Inc., Valite	726 Whitney Bldg., New Orleans, LA 70130.
VLN	Valley Nitrogen Producers, Inc	1221 Van Ness Ave., Fresno, CA 93721.
VDM	Van De Mark Chemical Co., Inc	N. Transit Rd., Lockport, NY 14094.
VNC	Vanderbilt Chemical Corp	33 Winfield St., E. Norwalk, CT 06801.
VND	Van Dyk \& Co., Inc-	Main EWilliams Sts., Belleville, NJ 07109.
VEL	Velsicol Chemical Corp	341 E. Ohio St., Chicago, IL 60611.
M HI	Ventron Corp., Metal Chemicals	Congress St., Beverly, MA D1915.
VB	Vermilye-Bell-	21707 Bothell Way, Bothell, WA 98011.
VPC	Verona-Pharma Chemical Corp	Ionio Ct., Union, NJ 07083.
VPT	Vickers Refining Co., Inc	P.0. Box 2240, Wichita, KS 67201.
VIN	Vineland Chemical Co	W. Wheat Rd., Vineland, NJ 08360.
VGC	Virginia Chemicals,	3340 W. Norfolk Rd., Portsmouth, VA 23703.
SOH	Vistron Corp	720 Republic Bldg., Cleveland, OH 44115.
SIC	Silmar Div	12335 S. Van Ness Ave., Hawthorne, CA 90250.
VTM	Vitamins, Inc	401 N. Michigan Ave., Suite 2730, Chicago, LL 60611.
FRO	Vulcan Materials Co., Chemicals Di	P.0. Box 54S, Wichita, KS 67201.
WTH	Wallace \& Tiernan, Inc.: Harchem Div-	110 E. Hanover Ave., Cedar Knolls, NJ 07927.
WTL	Lucidol Div	1740 Military Rd., Buffalo; NY 14240.
WJ	Warner-Jenkinson Manufacturing Co	2526 Baldwin St., St. Louis, M0 63106.
WMP	Warner Machine Products, Inc., Warner Chemical Div.	1200 Rochester Ave., Muncie, IN 47302.
WSN	Washine Chemical Corp	165 Main St., Lodi, NJ 07644.
WCA	West Coast Adhesives Co	11104 NW. Front Ave., Portland, OR 97231.
EW	Westinghouse Electric Corp., Industrial Plastics Div., Chemical Products Plant.	Manor, PA 15665.
WES	Weston Chemical Co., Inc	104 E. 40th St., New York, NY 10016.
WVA	Westvaco Corp. : Chemical Div., Tall Oil Dept------------------- 	P.O. Box S207, N. Charleston, SC 29406. P.O. Box S207, N. Charleston, SC 29406.
WRD	Weyerhaeuser Co-	115 S. Palmetto Ave., Marshfield, WI 54449.
WBG	White \& Bagley Co	P.0. Box 1171, Worcester, MA 01601.
WHI	White \& Hodges, Inc	576 Lawrence St., Lowel1, MA 01852.

TABLE 2.--Synthetic organic chemicals: Alphabetical directory of manufacturers, by company, 1968

Identification code	Name of company	Office address
WLI	White Laboratories, Inc	Galloping Hill Rd., Kenilworth, NJ 07033.
WHL	Whitmoyer Laboratories, Inc	19 N. Railroad St., Myerstown, PA 17067.
WHC	Whittaker Corp., Research ξ_{T} Development/ San Diego.	3 S 40 Aero Ct., San Diego, CA 92123.
WHW	Whittemore-Wright Co., Inc-------------------	62 Alford St., Boston, MA 02129.
WIC	Wica Chemicals, IncWilson Pharmaceutical \& Chemical Coro.:	P.0. Box 506, Charlotte, NC 28201.
WIL	Wilson Laboratories Div-	4221 S. Western Blvd., Chicago, IL 60609.
WM	Wilson-Martin Div	Jackson and Swanson Sts., Philadelphia, PA 1914 B ,
WTC	Witco Chemical Co., Inc	P.0. Box 30S, Paramus, NJ 07652.
KEN	Kendall Refining Co. Div	77 N. Kendall Ave, , Bradford, PA 16701.
WCC	Witfield Chemical Div	P.0. Box 1243, Wilmington, CA 90744.
W0B	Woburn Chemical Corp	1200 Harrison Ave., Harrison, NJ 07029.
WOD	Woodbury Chemical Co	P.0. Box 788, St. Joseph, MO 64505.
WAW	W. A. Wood Co-	108 Spring St., Fverett, MA 02149.
WRC	Wood Ridge Chemical Corp	Park Pl. E., Wood Ridge, NJ 0707S.
WON	Woonsocket Color \& Chemical Co	176 Sunnyside Ave., Woonsocket, RI 0289 S.
WBC	Worthington Biochemical Corp	Halls Mills Rd., Freehold, NJ 07728.
WYN	Wyandotte Chemicals Corp	1609 Biddle Ave., Wyandotte, MI 48192.
WYC		P.0. Box 1087, Colorado Springs, CO 80901.
WYT	Wyeth Laboratories, Inc., Div. of American Home Products Corp.	P.0. Box 8299, Paoli, PA 19101.
YAW	Young Aniline Works, Inc-------------------	2731 Boston St., Baltimore, MD 21224.

U.S. IMPORTS OF BENZENOID INTERMEDIATES AND FINISHED BENZENOID PRODUCTS

Table 3 summarizes, for 1967 and 1968, U.S. imports of benzenoid chemicals and products entered under the Tariff Schedules of the United States (TSUS), schedule 4, part 1, subparts B and C. The data, which were obtained by analyzing invoices covering imports through U.S. customs districts, are given in detail in a separate report of the Tariff Commission. ${ }^{1}$

In 1968, general imports of benzenoid intermediates entered under part $1 B$, comprised 663 items with a total weight of 71.4 million pounds, and an invoice value of $\$ 38.8$ million, compared with 71.8 million pounds, with an invoice value of $\$ 28.2$ million, in 1967 . Half of these intermediate products were declared to be "competitive" (duty based on "American selling price"). In terms of value, 52 percent of all the intermediates imported in 1968 came from West Germany; 14 percent, from Japan, and 11 percent, from the United Kingdom. The remaining imports came mainly from Switzerland, Italy, Canada, and France. Imports from West Germany in 1968 increased to $\$ 19.9$ million from $\$ 13.2$ million in 1967 . In 1968 , imports from Switzerland increased to $\$ 4.0 \mathrm{million}$, from $\$ 2.5 \mathrm{million}$ in 1967 . Imports in 1968 from Italy increased to $\$ 2.9$ million from $\$ 2.6$ million in 1967 . Imports from Canada amounted to $\$ 1.1$ million in 1968 , compared with $\$ 2.3$ million in 1967 , while imports from France totaled $\$ 406,000$, compared with $\$ 640,000$ in 1967.

In 1968,16 chemicals accounted for approximately 63 percent of the quantity of imports of benzenoid intermediates. The large-volume intermediates imported in 1968 and their principal sources are:

Intermediates

Quantity
 (1,000 pounds)

Phthalic anhydride	11,124	West Germany, Italy, Canada
Styrene monomer	9,439	Canada
Polyalkylbenzen	8,283	Italy (all)
2-Naph thol	2,681	Italy, West Germany
```4-(p-Chlorophenoxypheny1) isocyanate```	1,774	West Germany, Switzerland
H acid and sal	1,705	Italy, West Germany, Japan
m, p-Cresol	1,454	Japan, United Kingdom
Acetoacetanilide	1,112	United Kingdom, Switz., Japan
Phthalocyanine crude, copper	1,076	Japan, West Germany
B . 0 . N.	1,043	West Germany, Italy
Sodium naphthionate	1,020	Japan, West Germany
3, $3^{+}$-Dichlorobenzidine, base and salts	929	West Germany, Japan
Anthracene, refined	837	West Germany, France
Bromamine acid	791	West Germany, Switzerland
Anthraquinone	745	Japan, West Germany
Ethylbenzene	736	Canada (all)

## Principal sources

(except as noted)
West Germany, Italy, Canada Canada
Italy (all)
Italy, West Germany
West Germany, Switzerland
Italy, West Germany, Japan
Japan, United Kingdom
United Kingdom, Switz., Japan
apan, West Germany

Japan, West Germany
West Germany, Japan
West Germany, France
West Germany, Switzerland

Canada (all)

Imports of the benzenoid intermediates classified as rubber-processing chemicals amounted to 313,000 pounds in 1968 , compared with 307,000 pounds in 1967 , and 408,000 pounds in 1966.

In 1968 imports of all finished benzenoid products that are dutiable under part 1C comprise 2,198 listed items, with a total weight of 55.4 million pounds and an invoice value of $\$ 68.4$ million. In 1967 , imports consisted of 2,227 items, with a total weight of 45.9 million pounds and an invoice value of $\$ 54.3$ million. The most important group of finished benzenoid products imported in 1968 was benzenoid dyes. Imports of dyes amounted to $\$ 33.7$ miliion (invoice value), or 49.3 percent of the value of all imports under 1C. In 1967, imports of dyes amounted to $\$ 23.4 \mathrm{milli}$ ion (invoice value), or 43.0 percent of the value of all imports under part 1 C .

[^21]Imports of medicinals and pharmaceuticals, the next most important group of products entered under part 1C in 1968, decreased in 1968, compared with 1967. In 1968, imports of medicinals and pharmaceuticals were valued at $\$ 11.7$ million (invoice value), or 17.1 percent of the total value of imports under part 1C. In 1967, imports of medicinals and pharmaceuticals were valued at $\$ 11.9$ million, or 22.0 percent of the total value of imports under part 1 C .

As in 1967, imports of benzenoid pigments increased in 1968. In 1968, imports of these products were valued at $\$ 4.3$ million, compared with $\$ 2.9$ million in 1967.

Imports of benzenoid flavor and perfume materials increased in 1968. In 1968, imports of these products were valued at $\$ 4.0 \mathrm{million}$, compared with $\$ 2.8$ million in 1967. In 1968, imports of other benzenoid products entered under part 1 C (chiefly polyamide resins and pesticides) were valued at $\$ 14.7$ million, compared with $\$ 13.3$ million in 1967.

TABLE 3.--Benzenoid intermediates and finished benzenoid products: U.S. general imports, classified by use, 1967 and 1968

Product	1967		1968	
	Quantity	$\begin{gathered} \text { Invoice } \\ \text { value } \end{gathered}$	Ouantity	$\begin{aligned} & \text { Invoice } \\ & \text { value } \end{aligned}$
	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{gathered} \text { 1,000 } \\ \text { dozzars } \end{gathered}$	$\begin{array}{r} 1,000 \\ \text { pounds } \end{array}$	$\begin{aligned} & 1,000 \\ & \text { dozzars } \end{aligned}$
	71,779	28,230	71,426	38,820
Finished benzenoid products, total-	45,907	54,340	55,414	68,436
Dyes, total-	12,812	23,382	19,133	33,722
Acid--	2,168	. . .	3,055	
Azoic dyes-	5	. .	\%	
Azoic components:				
Fast color bases	648	. . .	798	
Fast color salts	273	. .	297	
Naphthol AS and its derivatives	749	. . .	716	
Basic	1,198	. .	1,356	$\cdots$
Direct-	794	. . .	1,155	
	2,358	. .	3,743	
Fiber-reactive	1,188	. . .	1,909	. . .
Fluorescent brightening agents---------------	250	. .	423	
Mordant---------------------------------------------	367	. .	411	. $\cdot$
	203	. . .	385	
	89	. . .	154	
Vat -	2,455	. .	4,585	
A11 other----------------------------------------------	${ }^{3} 67$		${ }^{3} 146$	
Pigments (toners and lakes)-----------------------	1,485	2,944	1,990	4,307
Medicinals and pharmaceuticals	4,581	11,935	4,134	11,710
F1avor and perfume materials---------------------	1,740	2,758	2,478	4,022
All other-	425,289	13,321	27,679	14,675

[^22]Source: Compiled from the records of the U.S. Bureau of Customs.



[^0]:    ${ }^{1}$ A toll agreement is an agreenent between two firms, under which one firm furnishes the raw materials and pays the processing costs and the other firm prepares the finished product and returns it to the first firm.

[^1]:    ${ }^{2}$ Sec. 5, U.S.C. 139 b and sec. 18, U.S.C. 1905.

[^2]:    ${ }^{1}$ Percentages calculated from figures rounded to thousands.
    ${ }^{2}$ 8ecause of rounding, figures may not add to the totals shown.

[^3]:    1 Statistics on production and sales of benzene, toluene, and xylene by tar distillers cannot be shown because publication would reveal the operations of individual companies.

[^4]:    1 Includes data for oil-gas, water-gas, and gas-retort tar reported to the American Gas Association for 1957-59 only, and for coal tar reported to the Division of Bituminous Coal, II.S. Bureau of Mines.
    ${ }^{2}$ Decreased by less than 0.05 percent.
    ${ }^{3}$ Includes data for benzene produced from imported crude light oil.
    ${ }^{4}$ Includes data for material produced for use in blending motor fuels. Statistics are not comparable with monthly figures which included some o-xylene.
    ${ }^{5}$ Naphthalene solidifying at less than $79^{\circ} \mathrm{C}$. Figures include production by tar distillers and coke-oven operators and represent combined data for the commercial grades of naphthalene to avoid disclosure of the operations of individual companies. Because of conversion between grades, the figures may include some auplication. Statistics on naphthalene refined from domestic crudes are reported in the section on cyclic intermediates.
    ${ }^{6}$ Includes data for creosote oil produced by tar distillers and coke-oven operators and used only in wood preserving.

[^5]:    ${ }^{1}$ Reported to the US. Bureau of Mines.
    ${ }^{2}$ Reported to U.S. Tariff Commission. Represents tar purchased from companies operating coke ovens and gas-retort plants and distilled by companies operating tar-distillation plants. For 1968 , statistics include tar consumed other than by distillation or as fuel by tar distillers.
    ${ }^{3}$ Not publishable. (See footnote 2)

[^6]:    ${ }_{2}^{1}$ Unit value per gallon, or ton, as specified.
    ${ }^{2}$ Data reported by tar distillers are not included because publication would disclose the operations of individual companies. Production of benzene and xylene by tar distillers decreased in 1968, compared with 1967; production of toluene increased. The annual production statistics for petroleum operators on benzene, toluene, and xylene are not comparable with the combined monthly production figures, due to fiscal year revisions.
    ${ }^{3}$ Includes data for material produced for use in blending motor fuels.

[^7]:    ${ }^{1}$ Calculated from rounded figures.
    ${ }^{2}$ Principally straight-chain dodecylbenzene, tridecylbenzene and other straight-chain alkylbenzenes, but includes lesser amounts of branched-chain compounds.
    ${ }^{3}$ Includes data for coke ovens and gas-retort ovens, reported to the Division of 8ituminous Coal, U.S. Bureau of Mines, Department of the Interior, and for tar and petroleum refineries and other producers, reported to the U.S. Tariff Commission.
    ${ }^{4}$ Figures include ( $0, m, p$ )-cresol from coal tar and some $m$-cresol and $p$-cresol.
    ${ }^{5}$ Does not include ethylbenzene produced and consumed in continuous-process styrene manufacture.

[^8]:    ${ }^{1}$ See report on Medicinals for data on medicinal grade of this item.
    ${ }^{2}$ Does not include manufacturers' identification codes for producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines. These producers are listed in the U.S. Bureau of Mines Mineral Industry Survey Coke Producers in the United States in 1967, Feb. 4, 1969.

[^9]:    Calculated from rounded figures.
    ${ }^{2}$ Production and sales quantities of "C.I. Leuco Sulfur" and "C.I. Solubilized Sulfur" dyes are reported in terms of the usual commercial concentration of the "C.I. Sulfur" dyes.
    ${ }^{3}$ Includes production and sales of acridine, aminoketone, azine, coumarin, indophenol, ketone imine, nitroso, oxidation bases, vat sulfur, and miscellaneous dyes; and production of indigoid and thiazine dyes. Statistics for these groups of dyes may not be published separately because publication would disclose information received in confidence.

[^10]:    ${ }_{2}^{1}$ Quantity of the various commercial forms is given in terms of dry full-strength toner (or dry lake) content.
    ${ }^{2}$ Calculated from rounded figures.
    ${ }_{4}$ Includes presscake.
    ${ }^{4}$ Separate data on these comercial forms may not be published without revealing the operations of individual companies.

    Note.--The C.l. (Colour Index) numbers shown in this report are the identifying numbers given in the second edition of the Colour Index.

    The abbreviations PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstomolybdic) acids, respectively.

[^11]:    ${ }^{1}$ Complementary statistics on the dollar value of manufacturers' shipments of finished pharmaceutical preparations, except biologicals, are published annually by the U.S. Department of Commerce, Bureau of the Census, in Current Industrial Reports, Series MA-28G. Many pharmaceutical manufacturers who report to the Bureau of the Census are excluded from the Tariff Commission report because they are not primary producers of medicinal chemicals, that is, they do not themselves produce the bulk drugs which go into their pharmaceutical products but purchase their drug requirements from domestic or foreign producers.

[^12]:    1 For producers of the technical grade, see report on cyclic intermediates.
    ${ }^{2}$ For producers of the technical grade, see report on miscellaneous chemicals.

[^13]:    ${ }^{1}$ Calculated from the unrounded figures.
    ${ }^{2}$ Includes some technical grade.

[^14]:    Thee also table 2 which lists these products by chemical types and by end uses, and identifies the manufacturers.

[^15]:    TABLE 1.--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1968--Continued

[^16]:    ${ }^{1}$ Calculated from rounded figures.
    ${ }^{2}$ For the purpose of this report, "dry basis" is defined as the total weight of the material, including resin, plasticizers, fillers, extenders, colors and stahilizers, and excluding water, solvents and other liquid diluents.

    The term "polyester resins" includes unsaturated alkyds copolymerized with a monomer such as styrene, and polyallyl resins such as diallyl phthalate and allyl diglycol carbonate.
    lncludes data for acetone-formaldehyde resins; styrene-alkyd polyesters; toluenesulfonamide resins; silicone resins; and other thermosetting resins which were produced in small quantities. Also included are saturated polyesters for urethanes.
    ${ }^{5}$ Represents data for polyethylene produced by the high-pressure process and for ethylene copolymers.
    ${ }^{6}$ Represents production of polyethylene by the low-pressure process.
    ${ }^{7}$ ABS resins are polymers of acrylonitrile, styrene, and butadiene. SAN resins are polymers of styrene and acrylonitrile.
    ${ }^{8}$ Includes straight polystyrene, 979 million pounds; rubber-modified polystyrene, 882 million pounds; styrene-butadiene copolymers, 366 million pounds; and all other, 160 million pounds.
    ${ }^{9}$ Includes data not reported monthly during 1968.
    10 Includes data for polyvinyl butyral: polyvinylidene chloride; and certain copolymers.
    11 Includes data for acrylic; fluorocarbon; non-nylon polyamides; polycarbonate; polyoxymethylene; polyterpene; and other thermoplastic resins.

[^17]:    ${ }^{1}$ Calculated from rounded figures.
    ${ }^{2}$ Includes retarders, tackifiers, physical-property improvers, and production data for blowing agents.
    ${ }^{3}$ Data on dithiocarbamates included in this table are for materials used chiefly in the processing of natural and synthetic rubbers. Data on dithiocarbamates which are used chiefly as fungicides will be included in the report "Pesticides and Related Products"

    Includes data for small amounts of tetranethylthiuram sulfides for uses other than in the processing of natural and synthetic rubbers.

    5 Includes production data for thiurams.
    6 Includes blowing agents, polymerization regulators, shortstops, and conditioning and lubricating agents.

[^18]:    The term "elastomers" is defined as substances in bale, crumb, powder, latex, and other crude forms which can be vulcanized or similarly processed into materials that can be stretched at $68^{\circ} \mathrm{F}$. to at least twice their original length and, after having been so stretched and the stress removed, will return with force to approximately their original length.

    Calculated from rounded figures.
    ${ }^{3}$ Elastomer-content basis.
    4 Partly estimated.
    5 Includes data for polyacrylate, polyalkalene sulfide, polychloroprene, polyisobutylene, and other elastomers, and for sales of polyisobutylene-isoprene elastomers.

[^19]:    ${ }_{2}$ Does not include data for clearly defined extenders or secondary plasticizers.
    ${ }^{2}$ Calculated from rounded figures
    ${ }^{3}$ Includes data for alkylated naphthalene, glycol dibenzoates, hydrogenated terphenyls, phosphate esters (including sales of triphenyl phosphate), toluenesulfonamides, tetrahydrofurfuryl oleate, and other cyclic plasticizers.

    4 Adipic acid polyesters account for most of the production of complex linear polyesters and polymeric plasticizers.

    5 Includes data for azelaic, citric and acetylcitric, lauric, myristic, palmitic, pelargonic, ricinoleic, sebacic, and tartaric acid esters, glyceryl and glycol esters, and other acyclic plasticizers.

    Note.--Production and sales statistics are included in this report for some items that are not used exclusively as plasticizers.

[^20]:    ${ }^{1}$ Calculated from rounded figures.
    ${ }^{2}$ Includes captan, dinocap, folpet, glyodin, pentachloronitrobenzene, sodium pentachlorophenate, tri- and tetrachlorophenols, and others.
    ${ }^{3}$ Includes barban, 2-chloro-N-isopropyl acetanilide, dicamba, dimethylurea compounds, dinitrophenol compounds, endothal, isopropyl phenylcarbamates (IPC and ClPC), maleic hydrazide, picloram, propanil, triazines, trifluralín, uracils, and others.

    4 Includes aldrin, chlordan, dieldrin, endrin, heptachlor, terpene polychlorinates, and toxaphene.
    5 Includes carbophenothion, coumaphos, diazinon, dioxathion, parathion (production only), ronnel, and other phosphorothioates and phosphorodithioates, and others.
    ${ }_{6}$ Includes chlorobenzilate, DDD, dicofol, endosulfan, i.exachlorocyclohexane, lindane, methoxychlor, and other chlorinated insecticides, carbaryl, insect attractants, DEET and other insect repellents, small amounts of nematocides, rodenticides, including Warfarin (sales only), synergists, and others.

    7 lncludes dithiocarbamates, including dodine, maneb, mercury compounds, Nabam (production only), PETD, and others.
    ${ }^{8}$ Includes CDAA, dalapon, methanearsonic acid's disodium salt and dodecyl- and octyl-ammonium salts, thiocarbamate, thiolcarbamate, and organophosphorus herbicides, sodium TCA, and others.

    9 Includes DBCP (sales only), DDVP, disulfoton, ethion, malathion, naled, phorate, TEPP, and other organophosphorus insecticides, soil conditioners and fumigants, metaldehyde (which is a mollusicide), small quantities of rodenticides, and others.
    ${ }^{10}$ Acyclic organophosphorus insecticides are included with "All other acyclic insecticides" in order to establish an all other acyclic insecticide total without disclosing the operations of individual companies.

[^21]:    ${ }^{1}$ Imports of Benzenoid Chemicals and Products, 1968, TC Publication 290, 1969 [processed].

[^22]:    1 Includes small quantities of rubber-processing chemicals.
    ${ }^{2}$ Imports of azoic dyes in 1968 were 353 pounds.
    ${ }^{3}$ Includes ingrain dyes.
    4 Includes organic pesticides and related products, plasticizers, surface-active agents, and textile assistants.

